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INTRODUCTLON

¥ . A 1.1 Backpround to spontaneous combustion

s It is well known that self-heating occurs in large stockpiles of coal,

. ‘ v.p. In above-ground storage beds, storage silos, storage holds in

- ;'4' ships and even in dumps of mine waste material which would not burn in

a domestic tireplace, but which presents a serious problem when dumped

'% in large heaps. Self-heating is an extremely undes rable phenomenon,

a4 1t leads to a degradation of the coal propertie and 1f the heat

. prticrated within the coal bed cannot be dissipated ..o the surroundings

v at  near ambilent temperature spontaneous combustion can result,

’,f LA Spontanvous combustion causes a serious pollution problem through the

nloe euwission of noxiour gases and particulate matter, can be a danger to

<4 huwan 1ife and in the case of coal stockpiles may lead to a loss of

. R i w11 or part of the coal store, with possibly disasterous economic

¢ consequences. It is wlso Important to prevent spontaneous combustion

in dumps of mine waste material because of the pollution problem and

. trom the safety aspect, particularly as the waste material may be
required to backfill open-cast mines,

g T k" Although the problem of spontaneous combustion has been known for a
T lonig time, it is only recently that sclentifically-based models of the
' phenomenon have appeared in the literature., Many of the early

F I ‘nvestigations were concerned with laboratory measurements of the
Ep £ susceptibility of particular coal samples to spontaneous combustion,
5 L Although sven studies provide valuable information, they are of
Himited wuse in desipgning stockplling facilities and developing

( Jk‘;ﬂ contingeney measures in case of fires in coal beds, Many of the
U ' ‘ ‘ e thods that have been used to counteract the problem of spontanecus
! | conbustion have been developed through experience on an ad hoc

‘1 basly, and while many are undoubtedly of considerable merit, the use
of ad  hoe procedures  in new  situations may be potentiallwy
cisasterous.  In order to pain a peneral undevstanding of a phenomenon
atul to be able to predict behaviour in new situations a mathematfical
wodel of that phenomenon 1s Invaluabie,

o :
4 ‘ More recent models of spontaneous combustion have placed the subject
v o 4 Hrmer seientific Poundation. and have dealt with effects such oy
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1.1 Rackpround to spontaneous cophustion

& ¢
J”:J’ : It is well known that self-heating occurs in large stockpiles of coal,
;’ . e.g. in above-ground storage beds, storage silos, storaga holds in
‘¢ff°’; ships and owen {n dumps of mine waste material which would not burn in
% - a domestic fireplace, but which presents a serlous problem when dumped
' - y in large hesps. Self-heating is an extremely undesirable phenomenon,
; "f f»;«:‘ as It leads to a deg. ‘ation of the coal properties, and if the heat
” > L generated within the coal bed cannot be dissipated to the surroundings
} "{J:“ at  near ambient temperature spontaneous combustion can result,
- . LS Spontuneous combustion causes a serious pollution problem =hrough the
g;* . ™ evmission of noxious gases .d particulate mat:er, can be i danger to
. N human 1life and in the case of coal stockpiles may lead to a logs of
v 4 all or part of the coal store, with possib’y disasterous econcmic

13 +

consequences. It is also important to prevent spontaneot.s combugtion
{n dumps of mine waste material because of the pollution problem and
from the safety aspect, particularly as the waste material moav be
required to backfill open-cast mines.

Although the problem of gpontaneous combusti n has been known for a
long time, it is only recently that scientifi- .lly-based models of the
phenomenon have appeared 1in the 1literature. Many of the early

& irvestigations were concerned with laboratory measurements of the
susceptibility of particular coal samples to sprntaneous combustion
Y i Although such studles provide wvaluable infarration, they are &
R timited wuse 1In designing stockpiling ftacil cies and developi -
'u,L::? contingency measures in case of fires in ecou! teds. Many of -
N }f . methods that have been used to counteract the o lem of spontan.
) combustion have been developed throagh expe:ie: o n an  ad :
' . basis, and while many are undoubtedly of —onsico.ole merit, the o
v 2 of ad hee procedures in  new  situations wyr o potenti. v
| disasterous. In order to gain a general —under:  mding »f a phensm:on
» ' and to be able to prediet behaviour in new sicw cens a mathematioal
4 | wodel of that phenomenon {y fnvaluable.

o
o ‘; 4 More recent models of spontaneous couwbi o fon o oave wed the subiiecet
Yo on a Firmer selentific foundation, amd boeve dealt w. etfect., such as
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the kineties of the oxidatlion reactions, the adsorption and desorption
of water, the ingress of reactant gases Into the bed, heat transfer

mechanisms  in coal beds and the physical properties of the coal
stockpile,  Most ol these studies have considered simple, idealised
peometyies,  because  of  the complexity of wmodelling spontancous

cowbustion {1n two or three dinensions,

In the Dbepartment of Chemical Eonglneering at the University of the
Witwatersrand a  ten  vyear program of research into spontaneous
combustion has been conducted along two fronts, Modelling of tha

phenomenon on the  coal  chemistry  level has  yilelded wvaluable

/ information on e.p. heats of reaction, reaction mechanisms, reaction
rate expressions and the influence of many of the intrinsic properties
ot the voal.  The intervested reader is referred to Itay,1984, Itay et
al. 1y doneurrently with this research, considerable work has been
dore in the area ot modelling the physical processes occurrlng in
A thave-yreand  coal  stockpiles. A  hierarchical approach to the
rodelling has been followed, beginning with a simple one-dimensional
o “ vodel,  which  prevides  waluable  insights  while still  remaining
watticivntly tractable to be  solved on a small computer, and
E caarivating in the three-dizensional model described in this thesis,

o
s Sdoeomore corples podels are reparded as research tools, to investigate

in wore cepplex and reslistic geometries the results of the simpler

)

ﬂ\’, i wode s and to contirm oor medity where necessary the predictions of
i & L YRTHIVRNRUPS 175 NV The  mathematical  sophistication required in  the
fﬁ 7 palt i -dimensionad models is clearly bevond what can be expected of the

P vraect itioner fn industre, and the computational requirements of these
L A rodeds o are so opreat that only the most powerful of mainframe computers
ﬁf o are capable ob solwing the equations. However, as a means of testing

e arcd walidarioy the predicrions and erfteria of the simple models they
f@‘f irednvaluable, el Tend contidence and justification to the simple

. o erpresglons tor sate orocbpiling parameters we envisage heing used by
B *he practitioner.  Al'tourh the modelling effort has been aimed at

abovesgronnd  stockpiles, the principles could be applied to coal

storape bunkers, coal stored in the holds of ships and even to the

Storaye of apricaltuaral praing.
JRRIREY apee and atws of thee et

fhe main purpose of  the atudy deseribed in this  thesis 1g  to
oy : fnmecrdpate dpnitfon  points  in realistic coal stockpiles. The
* 8 irnition point {s defined a5 the peoint ar which the steadv-ust te
‘g condition ot the eoal bed experiences a rapid qualitative change from
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a low temperature solution to a high temperature burning situation az
some critical parameter {s changed The wvalidity of a simple
relationship for the ignition particle size developed for a
onv-dimensfonal model will be investigated for small two-dimensional
coal beds, and a new nriterion for ignition points developed Ffor the
interlors of large coal beds. The question of which criterion should
be used for a particular coal bed will also be answered. As will be
shown in sectlion 1.3, the determination of ilgnition points for a coal
stockpile is a vital piece of information for the e¢nal industry, as it
provides an estimate of the limit of safe stockpiling conditions. When
this 1limit 1is known, the practitioner can design coal stockpiles
accordingly.

The thesis is dividei into two main sections, the first dealing with
the determinatlon of ignition points in small coal stockpiles, or at
the edges of large ones, and the second showing how ignition points
may be calculated for the interiors of large stockpiles. In Chapter 2
the equations describing energy, mass and momentum transfer in a coal
stockpile are derived. This set of simultaneous non-linear partial
differential equations mus® « solved numerically, and a brief survey
of some of the methods u : previously for such problems is followed
by a description of the finite element program that was used in this
study., A continuation method which was used to caleulate ignition
points in the :0al bed 1s described, and a comparison made be ween the
results so obtained and a simple relationship tor the ignition point
derived from a one-dimensional model. When the natural convection flow
showe formation of Benard-like cells, a different criterion is used to
predict the particle size at ignition. The chapter is concluded with
an investigation, using a numerica’ methed, into the formation of
Benard-like cells in coal beds. A paper based on the work of this
chapter has been published (Brooks et al,,1988r, see Appendix G).

Chapter 3 1is devoted to a study of a laterally-unbounded laver of
enal, in which spatiallv-periodic solutions can be assumed. This
allows the treatment of extremely large coal stockpiles which could
0.t be analysed by the numerical techniques of Chapter 2 because of
the enormous computat!onal effort that would have been required. By
assuming spatially-periodie  solutions, conditions for which
Benard-1like cells form can be modelled, complementing the work of
Chapter 2., A review of the literature on ecellular natural convection
and ignition in exothermically-reacting media commences the chapter,
The model for the Infinite layesr 1is then developed, and the
simplifications used are  introduced and Jjustified, A bhrief
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description is given of the Galerkin method which is used to transform
the governing non-linear partial differential equations into a set of
algebraic equations., The thermal explosion limift in the layer for the
conduction-only case is examined as a worst-case solution and as a

test of the continuation maithod that is used to calculate ‘gnition
a . points. The caleulation of the conditions for the onset of convection
‘ is performed and the implicntions that the results have with regard to
4. e the likely stable size of che Benard-like cells is discussed. By using
‘ a continuation method similar to that used in Chapter 2, ignition
vk points are calculated for the infinite layer, and a new simple

» 22 criterion for ignition in this situation is developed., The work
described in this chapter formed the basis for paper to be published
Jaone 4 in a journal (see Appendix G).

§ The 1implications of this study for the modelling of spontaneous
i combustion are discussed in Chapter 4, and it is shown how to choose
; the correct criterion for the determination of ignition points in a
given coal stockpile. The ignition criteria that htiave been developed
o Y are simple algebraic equations containing easily measurable parameters
. ‘ ‘ of the coal bed. The criteria are suitable for wuse by the

. practitioner in industry and should prove extremely useful in the

A e Bn S e et

prevention of spontaneous combustion, The thesis is concluded with
Chapter 3.

i

There are two areas of Interest that are not covered in this thesis,
and these are the unsteady-state behaviour of coal beds and the
modelling of beds of very fine coal particles, The unsteady-state
behaviour is of interest because in some case- a coal bed will reach
steady-state only after many years, It may be that beds which will
combust if left for long enough can be quite safely stockpiled Inr
short periods, which may satisfy che needs of the practitioner. It was
A found that numerical solution of the unsteady-state problem was very

A0 problematical, as the the system of governing equations is stiff anc
‘ cannot be solved by conventional numerical methods, It was also not
. possible to consider beds of very fine coal particles, for which the
maximum temperature rise can he acceptably lew. Thls was benause all
! the reaction occurs in a thin layer on the su-y+se of the bed, and
within thig layer the gradients of temperature and concentration are
{f extremely steep. To represent these steep gradients numerically
’ i proved to be very divficult.
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1.3 Historical review of models of spontaneous combustion

In this review emphazis is given to the simplified models developed by
Broots and Glasser,1986 and Brooks et al,,1988a, as it is to the
verification and improvement of these models that a large part of this
thesis 1is directed, The Lliterature of the coal-chemistry side of
gspontaneous combustion has been reviewed elsewhere (Itay,1984,
Schmal,1987) and only the most important results are summarised here,

There has been much work concerning coal and its oxidation (e.g, Van
Krevelen,1981 and Guney,1972), Schmal,1987 and Brooks,l986 provide
reviews of the subject relevant to spontaneous combustion. It has been
found that the predominant reactlion mechanism up to temperatures of
=~80°C when coal 1s exposed to the atmosphere is chemlsorption leading
The heat of
reaction for the chemisorption reaction has been found by many
investigators to be =300 kJ mol-l of oxygen absorbed (Brooks,1986,
Schmal, 1987, Sondreal and Ellman,1974), Above B80°C chemisorption
merges into chemlical reaction in which the oxy-coal complexes are
broken down into gaseous products (Srhmal,1987). This relatively high
temperature behaviour s not of great interest as it is known that a

to the formation of so-called oxy-coal complexes,

coal stockpile at 80°C is on the way to combustion., It is of motre
concern to us to find conditions for which a coal bed will combust
than to calculate the conditions at combustion.

The rate of the oxidation reaction has been found to be a function of
the reaction temperature, the surface area available for reaction, the
partial pressure of oxygen in the gas, the oxidation history and the
coal structure. The dependence of the reaction rate on temperature
has generally been found to be well-described by an Arrhenius
relation, with a value of the actlvation energy typlcally =60
kJ mol-l g-1, Itay,1984 found that the reaction rate 1is directly

proportional to oxygen partial pressure for fresh coal. For very fine
coal particles Smith,1989 has found that the rate of oxidation is not
dependent on particle size, while for larger particles the dependency
1s less certaln, Schmal,1987 reports that the rate decreases
proportionally with the inverce of the particle diameter., It has been
found that the reactivity of coal decreases with the degree of
oxldation of the coal (Van Krevelen,1981, Van Doornum,1954). The order
of the oxidation rcaction has been found to be between 0.5 and 1
(Itay,1984, Sondreal and Ellman,1974, Schmal,1987).

The effects of adgsorption and desorption of water on the self-heating
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of coal have been discussed by Brooks,1986 and Schmal,19¢7 amongst

when dry coal adsorbs moisture from the atmosphere. This can result

L gl ' ¢ others. The most dangerous situation for spontaneous combustion 1is
% in a temperature increase to the point where the rate of oxidation is

significant. However, the assoclated temperature rise is not as great

as 1s observed in combusting coal beds and cannot alone explain ’
£ : > : spontaneous combustion, It appears that molsture adsorption plays

* only an initiating effect in the spontaneous combustion process, For

. ‘ N moist coal in contact with dry air the situation is reversed and the

' ‘ desorption of water will result in a lowering of the temperature,
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The oxidation of pyrite 1s unlikely to be of great significance in
spontaneous combustion, as the heat of reaction for pyrité oxidation
is only about one tenth that of the oxygen chemisorption reaction and
the pyrite content of coal is generally very small (Schmal,1987). The
effects of coal composition on spontaneous combustion have not been
ennclusively established, although Smith,1989 has investipated these
effects.

7

Early studies of spontaneous combustion were concerned mainly with the
meagurement  of  intrinsic  heat generation (e.g. Schmidt and
Elder,1940) which can be achieved by calorimetry or differential
thermal analysis., Van Doornum,1954 presented a model which attempted
to predict safe storage conditions £for coal. He solved the
unsteady-state conduction equation with a source term that was an
exponential function of temperature but not of the Arrhenius form, and
derived two dimensionless numbers that characterise . the safety of the
coal bed, The model has severe limitations in that natural convection

is neglected, as is the consumption of oxygen. Oxygen consumption is
in fact significant if conduction is the only form of heat and mass
transfer in the coal bed. In addition, the model contalns constants
that must be measured for every coal under consideration. Sondreal
and Ellman,1974 fitted data for the oxidation of lignites to empirical
equations which were used in the Van Doornum, 1954 model, together with
v an  exygen balance equation. This model also neglected natural
" convection, and is limited to the range of lignite properties studied
by the authors.

f% More recent gtudies (Nordon,1979 and Schmal et al.,1985) have
' considered one-dimensional models describing the heat and mass
), g transfer processes in the coal pile but allowing only for Fforced

2

convection, These models are similar to fixed-bed axial dispergion
models which are known to have multiple steady-state solutions,
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Nordon,1979 incorrectly concluded that natural convection could be
neglected because the gas and solid phases were assumed to be In
thermal equilibrium, Although his model formulation allowed for the
effects of moisture, these effects were rmot Included in the

computations., The model showed two distinct sceady states, a low
N tempevature plateau of less than ~17°C and a high temperature one of
! greater than ~87°C., For the low temperature plateau the reaction was
& limited by thermal conduction of the char, while the high temperature

" }k L plateau was limited by diffusion of oxygen. Nordon found that smaller
; ; beds favoured the low temperature solution and he postulated the
e concept of a critical bed size. Schmal et al.,1985 found that it was
i necessary to include the effects of moisture evaporation, condensation
L w and transport in their model when the temperatures were greater than
.7 50-60°C, It was found that a dry-coal model predicted higher oxygen
i consumption rates than were indicated by field measurements. Inclusion
1 of moisture effects was found to have a temperature levelling effect,
Brooks and Glasser,1986 and S5chmal,l1987 have shown that natural
convection {s in fact the main mode of transport in a coal stockpile,
and Brooks,1986 presented a calculation showing that diffusion alone
could not account for spontaneous combustion. Young et al.,1986
. i considered two-dimensional mass and energy transport in a porous
% medium in the vieinity of a hot-spot. They found that the model
! T predictions and experimental measurements agreed well and that nacural

b ’ convection supplied sufflicient oxygen to support the hot-spot.

% ;53‘ - Handa et al.,1983 considered a two-dimensional model of spontaneous

*%ﬁ e combustion in a coal bed., They presented time-dependent oxygen
: ' concentration profiles, isotherns and stream function contours for the
sloping edge of a bed., From their results it appeared that the
characteristic temperature for thermal tunaway was ~50-60°C, which
agreed with the results of Brooks and Glasser,1986. Morita et al.,1986

;g;% used a similar model for the prediction of self-heating effects in a
o g. coal storage silo. Their numerically-calulated results showed
TS
: excellent agreement with nmeasured valu.s. Bowes,1984 comprehensively

: reviewed experimental and theoretical studies of spontaneous
' combustion for many different materlals,

Coal stockpiles in general possess little or no symmetry; this Ffact
f complicates the modelling of their bhehaviour econsiderably. However,
¥

e considerable insight into the behaviour of a stockpile can be gained
' 1 by studying a simpler geometrv., Brooks and Glasser,1986 considered a
vertically aligned, radially-insulated bed of coal, open at both ends.
In this thesis we call this model the one-dimensional analogue of a
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coal stoskplle., It can be seen that this model bears a strong
resemblance to an adiabatic fixed bed reactor; the major difference is
that the flow in the coal stockpile is caused by buoyancy forces
arising f{rom the sclf heating. The flowrate through the bed is thus
not fixed, but rather a function of the temperature profile in the
bed, Since the maln concern was the long term storage of strategic
stockpiles, a pseudo steady-state Fformulation was used i.e., it was
assumed that the depletlon of the coal was small,

Assuming in addition:

1) Plug-flow of the gas

2) Equal gas and solid temperatures

3) Ideal gas behaviour

4) Oxygen transport by molecular diffusion may be neglected,

the equations describing the bed were (Brooks and Glasser, 1986):

'

u_p
o "a dY
Oxvgen mass balance: W4z " "fa (L.
d’r dr
Energy balance: ke ;;3 . uopacp a7 + (-AH) r, = 0 (1.2
ap” T T
, al L. [ N . =2
Momentum balance: iz ug e Ta P8 [1 T ] (1.3)

The permeability was calculated using the first term of the Ergun
equation, since the velocities in a coal bed are very small.

The rate expression was of the simplified form:

’
6 ko PaY
ro= et (l-¢) exp(-L/RgT) BT (1.7
P g a

i.e. the reaction rate was assumed to be linear with respect to the
axygen partial pressure and proportional to the surface area per unit
volume, While this rate expression may not be entirely realistic, it
does gerve as a simple expression having the right characteristics.

Boundary conditions used were:
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k ‘ Two boundary conditions were imposed on the momentum balance, since '
K u, was to be determined. The model 1is shown schematically in
, : e Figure 1.1,
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. 3‘f7 ‘ Flgure 1.1 One-dimensional analogue of a coal stockplle
+ This set of equations has been extensively studied (Brooks and

Glagser, 1986; Brooks et al., 1788a). It has been shown that the set
of aequations exhibits steady-state multipliecity. A schematic of a
‘ typical bifurcation diagram of average temperature versus particle
/t i slze Ls shown in Figure 1.2, We observe an ignitlon point at particle

;! sice Dpi' and an extinction poilnt at particle size Dpe' For anv
|
g value of the particle sice greater than Dpe the coal stockpile is
L .

¢ E JT sate and for any particle size hetween Dyy and Dy, the stockpile

is conditionally safe. For particle sizes smaller than Dpi the only
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Cohee ol Figure 1.2 3chematic dlagram of maximum temperature versus particle
LA . . : .
RN size for the »ne-dimensional conal stockpile
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TN - solution lies on what i{s termed the ignited branch, In practice Dpe
. vk a0 - : :
TR ig verv large, and trulv safe stockpiling conditions ae not achieved;
“ 128
T sne has to be satisfiad wish conditionally safe conditions. This
T might not be the case if a small perturbation could move the solution
Lol . , :
;j/"*’"a' 4 from the extinguished %o ®he {snited branch. In Filgure 1.3 an example
) of a1 bifurcation diagram of parsicle size versus maximum temperatura
,,f}f g , . is shown; the caleculation shown i3 for a pre-exponential factor of 1)
: m/5 and a bed length of 3 =@,  Other model parameters are given in
, { Appendix A. From filgure 1.3 iv is clear that the uns:zable solution,
C :
which separates the two stabla solutions, rises fairly steeply from
/ the {ignition point. This {mplies that provided ona iz not too :lose
% to the ignition point, a falrly large perturbation in the temperature
v
oy § would be needed to ignite a conditionally safe stockpile, The igniczion
. i .
. _ point 1s thus seen to be of crucial iImportance in the studv of
|
v
I
- !
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re 1.3 Calculated diagram of maximum temperature versus particle

Figur
size showing the unstable solutlon for the one-dimensional coal
stockpile

There exists a reglon of particle sizes on the ignited branch for
which the temperature rise is reasonably low, This arises because in
~he fine coal the flowrates are very small and the coal is wvery
roactive; thus the oxvgen is scavenged close to the inlet, where the
sensible heat due to reaction is easlly dissipated at low taemperature.

Coal stockpiles in this region may be cons.dered safe, even thu.gh
they fall on what 1is called the ignited branch, Provided the
remperature remalns below for example 70°C, spontaneous combustion is
not considered to have occurred; a stockpile in this situation would
be considered to be acceptable to the practitioner. It can be seen
that  for a specified allowed maximum temperature vise (4,0 a

corresponding  maximum  allowable particle size (Dpc) may be
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caleulated. In many cases this particle size may be too small to be
of practical importance. This is particularly the case with waste
material of inherently low reactlvity, for which the costs of crushing
to this particle size would be prohibitive,

It 1s clear that a simple way of calculating Dpi would be very
valuable for the practitioner, Brooks et al,,1988a showed that for
values of the Rayleligh number, pgiven by

2 2 3
Pa grcp L Dp €

Ra, =

L (1.6)

150 u ke (1-6)2

greater than approximately 100, the value of Dpi could be calculated
from the relationship:

L) [ 900 Y pa k, exp(-y) L7 1/3
222

a

In order to derive this relationship further assumptions were made:

a) The consumption of reactant was neglected

b) The positive exponential approximation was used
(Frank-Kamenetskii,h 1969)

¢) The temperature at the ends of the bed was assumed to be ambient,
i.e. Dirichlet boundary conditions were used in place of (1.5).

These assumptions are all reasonable along the extinguished branch of
solutlons, up to the {ignition point., This wag verified by ~omparing
the lgnition point caleulated from Eq,(l.7) with the lgnition point
ralculated from the model without the above simplifying assumptions,
The agreement In all cases was good.

Thig very powerful rvesult alluws simple calculation of the particle
size at ignition, or alternatively the length required for ignition of
a coal of a pgiven particle size and reactivity, A problem that
remaing 14 the determination of L for a stockpile of more usual
peometry., This is one of the main questions addressed in this thesie,

In an attempt to make the model described above more realistic, a

gimplified three-dimensfonal wodel has been daveloped (Brooks et al,
1988b).  This model envisawes the coal stockpile to be gplit into
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. ,n"\w;v three different regions, in each of which different effects dominate,
’ A A_ and different assumptions are made, These reglons are shown in Figure
* ;‘“ ”E‘ﬂ 1.4, The first of these is a central chimney in which reaction, flow
© ’f‘ ﬁwf and heat transfer are all consldered. The second is a ball around the
. g base of the chimney, in which only flow and heat transfer arve
S -
o R considered. The third is physically the same as the second but only
e reaction Is considered to occur,
;;i«‘#;t :
¢ “ -1,

A
R Y Coal surface T T T f
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@ Flow, heat transfer and reaction

Hm Flow and heat transfer only

Figure 1.4 Simplified three-dimensional mcidel

o This formulation allows a more realistic boundary condition at the
bottom of the bed to be derived. In addition it is possible to compute
" the amount of oxrvgen depletion occurring outside the chimney, using a
/ rasidence time density funcrion approach. This results in :he
’ uXpression:
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1
Y, (to)l/3 " 473
DR t. exp(-kt) dt (1.8)
Y t
a )
where k is the equivalent homogeneous rate constant at Ta

6 ko exp(-v)
i.e, ko= e (L.9)

p

and t, is the minimum time for oxygen to reach the chimney entrance,
given by:
2 xR
G

t " 3 (1.10)
(]

It can be seen that the amount of oxygen depletion outside the chimney
will be larger for longer beds, since t, will be larger. In the limit
of an infinitely long bed, no oxygen will reach the entrance of the
chimney, and thus no ignition will occur, It appeared from
cialeulations that the bed has to be very long hefore this occurs,

The amount of oxygen depletici will also be larger for finer
particles, since uy will be sualler and k larger. This phenomenon
may be seen in Figure 1.5; for small particle sizes the ignition
points do not show the trend expected from equation (1.7). However we
observe that the ignition point ag calculated from equation (1.7) is a
conservative bound on the particle size at ignition, i.e, it predicts
that the ignition occurs for some particle size larger than that
calculated from the extended model., This would be expected in view of

the simplifying assumptions made in the derivation of equation (1.7).

The model exhiblts somewhat different behaviour on the ignited branch,
in that there exists a maximum bed temperature cs a function of the
depth of the chimney. This ‘"worst-depth" comes about due vo the
balance between heat loss to the surface, which is large for small
depths, and oxygen depletion, which is large for large depths, This
worst depth is typically of the order of a few metres, which accords

with the observation that the hot-spot in a stockpile is often
reasonably close to the surface.

From thig review It iy elear that the particle size at ignition is a
vital parameter and that an expression like Eq. (1.7) applicable to a
more realistie geometry would be Invaluable to the practitioner. The
remiainder of this thesis 1s devoted to developing such expressions.
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Figure 1.5 Ignition points calculated from the simplified
three-dimensional model and Eq. (1.7) for the base case parameters
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CHAPTER 2

NUMERICAL SOLUTION OF SMALL COATI. STOCKPILE MODELS

2.1 Statement of problem and model formulation

This is concerned with the numerical solution of
realistic models of spontaneous combustion than those developed by
and Glasser,1986, Young et al.,,l986 and Brooks et al,,1938h,

he behaviour of small coal stockpiles is examined,

chapter more
Brooks
and particular
attention given to confirming the predictions of the one-dimensional
model of Brooks and Glasser,1986 and developing and testing simple
(1.7) (Brooks et
Models are considered for which the coal stockpiles have

ceriteria for
al.,1988a).

geometries similar to those that might be found Iin practice,
wh'ch the natural flow
unicellular, The models are restricted in this way because numerical

ignition points, particularly Eq.
and for

convection patterns are predominantly
soiation of the model equations for stockpiles which show Benard-like
rells
fine diccretization of the differential equations. Such a model would
than was available in this

chapter 3 the question s addvesned of how the interior of a coal bed

ats rion requires a three-dimensional formulation and wvery

require more  cornuter  pover study. In

mav be modelled using a different approximate analysis,

the
numerical investigation of ignition points in small coal heds. The

A right frustum was chosen as bein, a suitable geometry for

frustum closely approximates the shape of the coal stockpile that

would be formed if i‘he eoal was thrown from a stacker and is very

similar to the shape of instrumented test heaps that have bheen
coqstructed at a coal mine {in South Africa. If radial symmetry is
cssumed, the three-dimensional stockpile can be modelled with a

two-dimensional mathematical formulation. 1+ can be argued that the
assumption of radial symmetry imposes a symmetry on the problem that
is unt felt in reality, however provided that the frustum is not so
large that the flow pattern breaks down inte Benard-like cells the
assumption i{s probably good, For cases when the flow does show a
if the diameter of the frustum is sufficiently

large the toroidal shape of the outside Benard-like convection cells

rellular structure,

approximates two-dimensional roll cells. Such roll cells are known to

be a stasle planform In natural cowr stion (Chandrasekhar,1961,
Tveitereid,1977). The central cell can be considered to he an
approximation to a hexagonal cell, and such cells are known to be

L7 e 4
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formed in porous media (Tveltereid,1977). This subject recelves a
thorough discussion in section 2.5. To make the simulations more
general, the sloping edge of a large coal bed is modelled, by using
Carteslan coordinates and assuming that the bed is infinitely long in
one of the horizontal dimensions. As in the case of the frustum, the
situation 1is conslidered where the flow pattern is predominantly
unicellular, When the flow breaks down into cells in this edge model,
the internal flow cells correspond to two-dimensional roll cells and
thus h.ve physical meaning., A comparison between this model and the
frustum highlights the differences between the two situatirns and
indicates how ignition points can be calsulated both in small
frustum-shaped stockpiles and at the edges of very large ones, A
direct numerical solution of a truly three-dimensional model of a coal
stockpile was not possible because of limitations on computeyr power.
Such a4 study would almost certainly require array processing
facilities which were not avallable for this work.

In addition to their added dimensionality, the u:lels described in
this chapter have fewer simplifying assumptions tha.o those of Brooks
and Glasser,1986, Yourpg et al.,1986 and Brooks et al ,1988b, Reaction
1s considered to occur throughout the coal bed, rat' ~. than at a hot
snot as considered by Young et al.,1986, and the rate of reaction is
vonsidered to be a function of both temperature and concentration,
rather than being evaluated at an average temperature as was done by
Brooks and Glasser,1986. Mo assumptions are made about special flow
and heat trangfer reglons as was done by Brooks et al,,1988b, and
molecular diffusion of oxygen was allowed for.

2.1.1 Model formulation

We commence the formulatinn of the model with a discussion of the
assumptions rade in the derivation of the governing equations. These
assumptions have bien  thoroughly discussed and jJustified by
Brooks,1986 and here only an overview lg presented. The coal supply is
assumed to be infinite because the time constant for complete coal
oxldation 1s much larger than that for heat transfer. It is assumed
that the reactant gas, which is alr, and any product gases have the
game phy~ical properties and that the gas 1s Iincompressible. The
velocities are known to be vervy low in coal beds justifying the use of
the Darey Law, In the Darvy Law, the permeability is calculated from
the Blaks-Kozeny equatlon (Bird et al,,1960), Because heat transfer
is by far the slowest process occurring in the baed it ig necessary to
consider only the energy balance in unsteady-state form. In practice
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{t turns out to he extremely difficult to solve the model in

unsteady-state form 1f this assumption is not made, as the guverning
equat fons are extremely stiff. It is assuwed that the gas and solld
are in thermal equilibrium and that effective continuwum properties can
This continuum assumption has been . roquently uged in the
e.g. Beukema et al,, 1983, Viljoen ot al.,1988,
thoroughly discuseed by Brooks, 1986, (0f Interest |-

¢han and Banerjee,1981 in which they considered a hoiri.nntal porous

be used.

H{terature and 1is

the result of

laver of sgpherical pglass beads saturated with water i nnded by
i{sothermal horizental walls heated from below and with .. abatie
wertical walls, The authors Ffound that a model accountiug for

socti-fluld heat
results than did a continuum model). Inertial effects are neglected,
the effect heating, The
approximation i{s used go that buoyancy effects are included only in
the
expansion coeffielent approach which 1is different from th t used by
Brooks ¢t al.,1983%a.

approximations

transter pgave better agreement with experimental

as  is very small of viscous Boussinesq

body force term. Buovancy effects are modelled by a thermal

This does not veally pose a problem as the two

are essentially the same for temperatures close to

wt fent which {s where all solutions are sought, Moisture adsorption
vttvora yre neglected and  according to the results of Schmal et
i oL thig will hiave the effect of predicting higher reaction
tates, thas viviow conservative results,

hee reaction rate 14 assumed to be linear with respect to oxvgen
partial ;ressure and seaction Is assumed to ocecur only on the surtace
b the coal particies.  The reaction rate expression is identical to
Eq. (1.4). The coal particles are assumed to be spherical and of

This
It {5 known that the segregation that occurs when

aniform size. means that size segregation in che bed has not

been consldered,

non-uniformly sized material {s thrown from a stacker makes coal beds

liuble to
core of very
of

redach the

more spontaneous combustion. This is because the coal hed

bas a Fine reactive material, surrounded by an outer

reginn coarse mater .1 through which o vgen can easily pass to

this
oxidation of the coal cannot readily be transported to -he surface and

reactive core. The enerpgy liberated i core due to the

dissipated to the atmosphere, because of the very pgoou sulating

propertivs of the suwrrounding coal layer, The finite element jrorram

solve in
the

properties that are a function of position in the bed, In principle it

which {5 used to the governing equations and is degeribed

section 2.3 has facility of belng able to incorporate coal bed
would be possible to nodel

The effect of

the effect of particle size seprepation,

ageing 1s not included, but as it {s known that the
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e AT reactivity of ccal decreases with age 1t Is expected that this will i
R O make the results conservative, Further discussion of the model
o Wb
FA g, derivation is given by Young,1985 and Brooks, 1986,

RN

The continuity equation and momentum, energy and specles balance

Ry W

P equations are:

7 xm/ K Continuity equation

e V.p U=0 (2.1)
§ e Momentum balance

“ ;Lg
v 'VP-T %‘pag(l-r)(T-Ta))‘=0 (2.2)

4 Energy balance

; ‘ ., 4T Do
- # (1 - ¢) e (p cp)s ke ve T (p c )

Uu.:.vrT+ -A H 2.3
plg Y r, ( ) (2.3)

LN » Concent.ation balance

0meDW G-V VG- (2.4)

All symbols are defined in the nomenclature.

The wodel 1is completed by the addition of suitable boundary
conditions., It 1s assumed that on the free surface of the coal bed

the oxygen concentration will be ambient at points where air is
flowing into the bed, while for points at which gas is flowing out of

. the bed there is zero gradient of concentration in the outward normal
iy, direction. Along the bottom of the stockpile it is assumed that the

s outward normal gradient of concentration is zero, and because only
ST half of the frustum need be considered through symmetry considerations

D t a similar condition Is imposcd on the bed centreline, The temperature
; boundary condition along the free surface of the bed is modelled by a

{ heat transfer coefficient for regions of gas outflow and by a heat

’ ‘ v_1 transfer coefficient and a term accounting for cooling due to inflow
% of ambient air for regions where the pgas enters the bed., It is found

S in real coal beds that the temperature is almost ambient on che

! surface, and in the numer:cal simulations it has been found that the
j } model with the above boundary conditions does in fact predict almost

amhlient conditlons on the bed surface, Along the bottom of the bed it

‘ |
ﬁﬁﬁ‘" | is assumed that the temperature is ambirnt as there is no available
- ‘) estimate of the heat transfer coe’ficlient there. On  the hed

L4

, ( centreline there t¢ no heat flux, The value of the heat transfer
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coefficient on the free surface was fitted from experimental data
(Anderson,1987). Because the model is to be written in terms of a
gsuream functlon as discussed below, the specification of the flow
boundary condition is left until the model has been presented In
stream function form, The boundary conditions for the symmetrical
half of the domaln can be stated:

On_the bed centreline (0,2):
4T 4.C ;
o 0, e 0 (2.54)
On _the bottom surface:
g .c
T=T,, 57 =0 (2.5h)
On_the free surface.

. a1 _ . . ac
Outflow; ke - h (T Ta) i 0 (2.5¢)
Inflow: Kk LI 4 Y e )(T-T),C=C (2.5d)

) e d n a ’'np A ! a T

By.defining suitable characteristic dimensions Eqs. (2.1)-(2.5) can be
made dimensionless, which has many advantages. In dimensionless form
the equatlions contaln a number of dimensionless groups which are the
natural par.meters of the model and provide a means of comparison for
different situations on the basis of dimensionless groups, In
addition, 1f the problem 1is correctly scaled, the accuracy of the
solution can be improved e.g. Markatos and Pericleous,1984, found that
golution of the governing equations for a model of laminar and
turbulent convection in a square cavity by a finite domain method in
dimensionless form inecreased the accuracy by 3% compared to the
dimensional solutlion, The scale analysis of Bejan, (Bejan,1981, Bejan
and Khair,1985, Poulikakos and Bejan,1984) provides one method for the
selection of sultable scaling factors., Dimensionless groups such us
the Rayleigh number (Ra) ot Pe.'et number (Pe) can also be used
convenlently to classify various flow situations.

The following dimensionless varlables were used:

rom e (2. 6a)
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wi, u, =U./ Ca/H (2.6¢)
\ e Uy Uy / Ca /) (2.64)
\\\" e 6 =(T T, ) /T, (2.6e)
\\ PR
S Mo by LEE (2.66)
. ap/n " Tan/x '
o
o i e
E {',ff’ ; CM /' pa
Py v R v (2.6g)
: P g Y
' l/ * a
¢ a"" ‘I Where H ls the characteristic length of the coal bed defined as the
PN - . helight of the bed.
’ {
&
The dimensionless Darcy-Oberbeck-Boussinesq equations defining the
model are:
V:u=20 (2.7)
VI+u-Ra ¢z=020 (2.8)
" a8 ) gl o, 2 . .8
e, + U v e V{)fﬂrphexp{l-—re}'{ (2.9) Y
2 2 v_ 6
0=1leV Y-g-VY-:phexp{l+0}Y (2.10)
B} Eqs. (2.7)-(2.10) can be simplified even further by the introduction
of a stream function ¥, which automatically satisfies the continuicy
! | equation:
BRI 11 4w .
/i’ Ve = [ v T o (2.114)
| 1] ay
“""”‘4*“' g Vo T [;: ] ar (2.11b)
< ; Where ¢ = € {nr Cartesian coordinates
0 4 .
i ¢ =1 for eylindrical coordinates ‘
| .
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b
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Taking the curl of the momentum balance equation eliminates pressure,
and substitution of the stream function replaces the two components of
veloecity u by ¥, The stream function formulation is useful in that
it allows easy flow visualisation and reduces the number of variables.

The dimensionless equations describing the processes occurring in the
frustum-shaped coal bed, agsuming radial symmetry, become:

Stream function equation:

2
a | Loy % LA
Tar (roer |t 2 t Ra ar (2.12)
dz
Lnergy balance:
2
Lovas  lavae 1o [ a0, 8% 2 a0
rdzde raradz rar | Tar|? az2 *h Ph OXPL T g Y219
Oxvgen mole fraction:

. . 2
1 agay 1 ay dy | SR U ) 4 Y 2 28
r dz 3r T ¥ dr 3z © € { v ar | T oor ] + az2 R e

(2.14)
The dimensionless equations .1e processes occurring in the
trapezoidal-shaped coal bed, in wensional Cartesian coordinates

become:

Stream function equation:

2 2
8¥ 28 .. pa ¥ (2.15)
d°r 3"z
Energy balance:
Jp 80 dy ag 1’ 3% 2 6
oy e N gy ¢yv oy 4 L X /
gz or T or 8z S Pt Beg e g Y (416
d r dz
Oxygen mole fraction:
oy 3Y oy aY 129 8%y 2 j
vy ox ap dx . d ax . 1y
dz dr ar 9z = g P P PhC¥PL T |
Jd T Jez
21N
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Taking the curl of the momentum balance equation eliminates pressure,
and substitution of the stream functlon replaces the two components of
velocity u by ¥, The stream function formulation is useful in that
it allows easy flow visualisation and reduces the number of variables,

The dimensionless equations describing the processes occurring in the
frustum-shaped coal bed, assuming radial symmetry, become:

Stream function equation!

2
r & Lo 3% g, & (2.12)
r 322 t

[~ 1]

Energy balance:

1390 Lapan 194
r or

2
20 | . 8% 2 70
¥ 3z 8r ~ T 4r dz £ ] tTy Ry QXP[ ] Y (2.1

r

o

Oxygen mole fraction:

2
Loy ay 1 ayay _ La. a8y axY 2 b
Y 3z dr © T dr 3z ~ @ { ¥ ar [ r J ) } Py *“P[ T+d | "

(2.14)
The dimensionless eaquations describing the processes occurring in the
trapezoldal-shaped coal hed, in two-dimensional Cartesian coordinates

become;

Stream function equation:
9
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The model is completed by the addition of boundary conditions for VY, 4
and . The boundary for oxygen and
temperature have already been discussed and can be stated immediately,

conditions concentration
normal to the free surfaces and equal to
the bottom of the bed and on the bed
centreline. the frustum (or the sloping edge model)
can be described in termg the length H and two
gpeometric parameters A and B, which are defined in Eqs., (2.19g) and
(2.19h) below. The boundary conditions may also be formally specified
of
However the situation is more clearly

The stream function ¥ must be
an arbltrary constant along
The geometry of
characteristic

in terms of these geometric parameters, rather than Iin terms

outward normal ‘orivatives.

understood from tigure 2.1,
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Figare 2.1 Boundary condition
stockpile model

in which all the boundary conditions are

e surface

In flow

aban = [ Bi+u, 0

it = 0
Y -1
w urface
«‘
T

i)

s and computational domain for the small

shown, Az an example of how the boundary conditions may be specitiod
in terms of the peometric parameters the temperature boundary
condition tor regilons of outflow is written in terms of A and B:
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(2.19b)

(2.19¢)

(2.19d)

(2.19e)

(2.19£)

(2.19g)

(2.19h)

(2.20a)

(2.20h)

(2.20e)
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A a A 2 A A
4 4 B3 oo . [ | [ I e 2
r‘, B - o Ra t s Bi t ' cph ¢ f Le t (2.Lof)
¢ ¢ g d
e Limiting behaviour of the model is obtained when one of the
AT characteristic times 18 very much smaller or larger than the rest, In
. such cases it will be possible to simplify the model by neglecting
b
. . 1 some terms. Examination of the typleal parameter wvalues given in
‘ Appeudix A shows that the characteristic time for thermal conduction,
S > ty is werv large, which implies that a typical coal bed 1is
) .
¥ N convertion-dominated.,  For non-limiting cases, i.e. cases for which
. - none of the terms can be neglected with recpect to any of the others,
& onlvy rumerical solution of equations (2.7)-(2.10) is possible. Note

that Ra detined by Eq. (2.1%) 1is slightly different to Raj used by
Brooks et al.,14Y88a. This difference arlses due to the different
assumption on  the bhuovaney. Because the maln interest 1lies in
solutions to the equations in which the temperature rise is not great,
the product (nTy)+~1.07, and to the accuracy vrequired by the
practitioner it will be seen that this small difference will have no
appreciable effect on the fgnicion eriteria which will be developed,

2.2 Brief review of rnmerical  methods  for natural and forced

convection probhlems

There 1s a paucity of literature on the modelling of spontaneous

combustlion, while there 15 extensive coverage given to modelling of
i combined natural convection and conductlion in perous media. Some of

! ‘j this literature contains useful information on numerical solution
technigues and  there s also a  wealth of 1literature devoted
sperifically  to numerical techniques for the solution of such
equationg.,  Modelling of the processes oceurring in a coal bed {5 a
mich more difficult task than simply modelling natural convection in a
{ pornus mediuam, because {a addition to the usual preblems of numerical

sty i stability and eomputational etficiency there ave bifurcations in the
’ v solution space and  govere stiffness  problems, The prohlem is

' complicated by the presence of ignition points, and the complox
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temporal aud spatial structures that are known to occur In porous
media with internal heat generation (Lennle et al.,lY88, Kimura et
al., 1987),

Convection problems such as those defined by Eqs, (2.7)-(2,10) are
usually solved by either the finite difference method or the finite
element method, There are other techniques available for the solution
of non-linear eliiptic partial differential equations, e.,g. the method
of lines, which was used by Brooks,19856 to solve his system of
ordinary differential equations and spectral methods (Kimura et
al.,1986), Such methods are more suilted to ildealised domains such as
squares and clrcles or ones for which there exist mappings to simpler
reglons, The method of lines is attractive when compared to finite
difference or finite element methods in theat the computer storage
requirements are generally much smaller, but the method is wvery
diffieult to apply for reglons with comple geometry as would be
encountered in modelling the spontaneous combustion of ¢ .l beds for
example,

2.2.1 The finite difference method

The finite difference method 1s the most well-known metnod for the
numerical solution of systems of elliptic or parabolic partial
differ.ntial equations. The essence of the method is to divide the
vomputational domain into an array of grid points., At each grid point

+ differential operator 1is expressed by a difference formula in
terms of the values of the fleld variables at neighbouring grid
points. This results in a system of non-linear algebralc equations
which must then be solved by some iterative method, Methods such as
the ADI (alternating direction implicit) method result in a system of
equations which forms a tridiagonal matrix, with great advantages in
terms of storage and computational speed, In spite of the
well-developed state of the finlte difference method, there are
several disadvarn.ages to 1ts use Ffor the modelling of spontanecous
combustion, In partieular it {3 difficult to formulate finite
difference schemes to allow for graded meshcs, Such graded meshes may
well be riquired in certain regions of the computational domain when
there are very sharp gradients, e.g, the extremely steep gradients in
oxygen concentration which oceur in a bow.dary layer at the surface of
a coal bed contalning very small coal particles. The ineclusion of
complex boundury conditions, such as those shown in Ffigure 2.1, s
diffieult with the finite difference mothod.
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2.2.2 The finite element. method

The finite element method is implemented by dividing the ccmputational
domain into a number of discrete elements and approximating the field
variables within each element by low order polynomials termed the
shape functions. The encire domain is modelled by combining th.
equations for each of the elements into a large system of simultanec.s
non-linear algebraic equations, This is better understood from a more

formal mathematical description.

Consider a one-dimensional differential operator L(u) on [a,b]:

L(u) =0 (2.21)

The function u can be approximated in a weighted residual sense as:

=

n
W) - )
j=1

u(x) wj(x) °y (2.22)

The py are continuous and satisfy the boundary conditions. In general
substitution of (2.21) into (2.22) gives a non-zero residual R(x):

Lu’y = R(x) (2.23)

The Galerkin form of the weighted residual method requires that the
weighted average of the residual vanish the of the
differential equations and that the weighting function be the same as
the trial function:

on domain

J w,(x) R(x) dx = O (2.24)
aJ

In the finite element method the domain 1 is divided into a number of
subdomains termed elements, and the Galerkin process is applied to
each of these elements. This process results in a matrix equation for

each element:

K,w -F =0 (2.25)
Where the subscript e vrefers to an element, K 1s the element

stiffness matrix, and F is the vector forcing function. In order to
solve the problem on the entire domain each of the element matrix

equations is combined in a single matrix equation:

Kuw g
The stiffne n {s generally banded.
element method is well-deacribed in many texts,

(2.26)
The
and further details

system matrix K finite
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can be found in e.g. Norrie and De Vries,1983, Carey and Oden,1986
and Akin,1982,

2.2.3 Review of the literature

The brief re lew that follrws glves an indlcation of some of the
methods that have been used to model natural and forced convection. A
review of this nature Is obviously selective as the amount of material
published in this field is enormous. The selection of a solution
method for use in this study was based on this literature review,

McDonald, 1979, has presented an extensive review of the numerical
considerations 1involved in combustion modelling, with particular
reference to furnace applications. Many of the points discussed are
of velevance to the modelling of spontaneous combustion in coal beds.
McDonald considered that, of the two most popular numerical methods
for the solution of combustion problems, finite difference methods
were more advanced than finite element methods and that the matrix
inversion problems resulting from a finite element method are in many
cases ldentical to those arising from finite difference schemes. For
systems of coupled non-linear equations, such as that defined by Egs.
(2.77-(2.10), Picard iteration allows the equations to be treated
ind -pendently but McDonald felt that many iterations may be required
for large systems and that the block implicit approach may be
preferatle, In a discussion of the convergence properties of various
algorichms ricDonald demonstrated how "simple schemes" show poor
convergence when compared to more advanced schemes (such as the
alternating-direction implicit -ADI- method) when the mesh is
increasingly reflned, Such mesh refinement can be necessary to resolve
the steep gradients that can occur in boundary layers, for example,
However it was also shown that local mesh refinement can lead to a
deterioration of performance of certain schemes when compared to their
uniform mesh convergence properties. However, McDonald stated that it
is wusually possible to devise schemes to converge adequately on
locally refined meshes.

It is known that in the one-dimensional convection-diffusion equation
oscillatory solutions are obtained with second order finite difference
approximations for cell Revnolds numbers (or Peclet numbers) greater
than a critical value. This problem has been overcome in the past by
the introduction of an artificial viscosity in a technique termed
upwinding, The use of upwinding to improve the stability of schemes
for the solution of the convection-diffusion equation has received

Lo e e e

P e
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v | much attentinn as this is obviously a crucial point in convection

@ L modelling.

Spalding, 1972, developed a new finite difference scheme for the
one-dimensional convection-diffusion equation. He showed that the
conventional ceitral difference formulation was considerably in error
when compared to the exact solution for |Pe|>2. The Peclet number Pe
is defined

Ly Pe = (cp G L)/ky
where G is the mass flow rate.

1 The conventional upwind formulation (one in which the fluid crossing
b an interface possesses a temperature equal to the temperature at the
‘ last grid point that the fluld crosseu) is less accurate than the
f central difference formulation for |Pe|<2. Spalding proposed two
s schemes, The first was a difference expression for temperature based
E on the exact solution for the one-dimensional equation (later referred
P to as exponential differencing). He also proposed a scheme which was
a mixture of cen.cal differencing for Pe>2 and upwind differencing
elsewhere, Runchal, 1972, examined this last scheme, central and
upwind differencing for a model two-dimensional problem. He concluded
that for Pe>2 only the Spalding and upwind schemes were stable and
that the Spalding scheme was more accurate in this region. Young,1985
used Spalding differencing in a finite difference solution of his

N ] two-dimensional model of spontaneous combustion, Schulenberg and
N ! ) J HMuller,1984 used exponential differencing for the spatial derivatives
1f{£ in a study of porous medium convection, Shiralkar and Tien,1981 also '
in?@ used exponential differences in a finite difference solution of heat
; "6 transfer in shallow enclosures,
S G
iy ;% Conventional upwinding has frequently been used in
y“\"“ convection-diffusion modelling. Heinrich and Zienkiewicz,1977
. ‘ described an upwinding scheme for the finite element method which they

claimed to be accurate and to reduce oscillations for a number of test
N problems in which convectlon was dominant. However for an entry flow
o problem they imposed a boundary layer on the outlet flow (hence a
/.' region of large gradients) and then distributed a mesh with the

largest elements at the outlet, This appears to be a self-defeating

b method, Prasad and Kulacki,}984, in a study of curvature effects on
- N heat transfer, used a difference technique in which a grid was set up
on the domain and the equations integrated over a finite area micro
b{ cell around each node, This method gives risze to upwind differences |
&
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for the convection terms. Markatos and Pericleous,1984 used a similar
method to study turbulent and laminar natural convection in a cavity.
Markatos and Pericleous vconsidered that only mesh refinenment can
detect the false difiusion introduced by upwinding, and that by
obtaining grid-independent  results false  diffusion could he
eliminated. Chan and Banerjee,1981 analysed three-dimensional natural
convection In porous media .sing a marker-and-cell technique. The
domain was discretized into cells of size (AX,Ay,A02) with centres
(1.§, k). Chan and Banerjee wused a method termed local error
truncation to reduce diffusional truncation errors, and controlled the
amount  of upwinding after cancellation of 1low order diffusion

truncation errors,

If significant flow gradients exist then the artificial viscosity
intraduced by upwinding may produce unwarranted numerical diffusion
and it {s not certain that from different initial puesses the same
{teration path will lead to the same final snlution (McDonald,1979),
McDonald recommended the use of an artiflicial viscosity based on the
rate of change of some gvadient of flow scaled by the square or some
higher power of the mesh to retain the formal order accuracy of the
tinite difference scheme and selectively damp the high frequency
oscillations. Mesh vrefinement 1{s an attractive alternative to
upwinding but is subject to convergence problems and with the
additional problem that the region requiring refinement is not known
a priori. In general global mesh refinement may be prohibitively
expensive and adaptive mesh refinement i{s a possible alternative.

Acharva and Patankar,1985, have described such an adaptive grid
procedure for parabolic flows. In this technique the distribution of
nodal points is adjusted In response to the computed solution. In
this way regions in which there are large pgradients or curvature
effects are supplied with an abundance of nodal points., Carey and
Plover,1985, have described a variable upwinding finite element
formulation which can be used In conjunctior with adaptive mesh
refinement. They felt that use of a fixed upwinding parameter with
mesh size reduetion leads tn convergence to a solution of the wrong
problem. Carey and Plover felt that when local mesh reflnement 1is
used the upwinding parameter should be a function of the mesh size.
Local mesh refinement was achieved by monitoring and reducing local
reslduals and Introducing a local upwinding parameter that tended to
zero  as  the mesh became  increasingly refined, Gartling and
Becker,1977 discuss rezoning in reglons of sharp gradients for the
finite element method,
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o v Lillington and Shepherd,1978 discussed the effect of various boundary
E v conditions and heat s~urce proflles on the nature of solutions to the

E two-dimensional heat transport equatlon obtalned by central difference
approximations. Upwinding was felt to be inappropriate when
recirculation was present because false diffusion resulting from the
E upwinding persists in this scheme., It was found that oscillations in

a , solutions were dependent on the boundary conditions, the heat source
. profile and the parity of the mesh Intervals. TFor Efixed inlet and

o outlet conditions as Pe + « (i.e. as the problem becomes completely
o convection dominated) the solution was unbounded and oscillatory when
the mesh parity was even., Lillington and Shepherd found a better

R approach was the specification of an inlet condition and neglection of
difrusion at the outlet,

“? Smith,1980, performed a similar analysis to that of Lillington and
w‘“f, Shepherd, 1978 for upwind finite  differences, central finite
T differences, linear finite elements and quadratic finite elements, He
found that the filrst method was always stable while the latter three
could all give oscillatory solutions depending on the mesh Peclet

a0 ] number, the boundary conditions, the source profile, the mesh parity
dﬁégy‘ and the numerical scheme. Smith concluded that oscillatory solutions

e could be avolded or reduced by the use of boundary conditions with

dpf specified outlet gradients (as opposed to a fixed temperature) and
,ﬁg;ﬂ that finite element methods reduced or eliminated non-physical
. osclllations when compared to finite difference schemes. This is a
strong argument for the use of the finite element method,

v S Gresho and Lee, 1981, felt that a priori damping (i.e. upwinding) of

i % solutions was inadvisable because oscillatory solutions provide a
T useful signal that the numerical scheme 1is not suitable for the
‘ rhvsics of the problem at hand, in particular that the mesh size
k should be locally refined. They also stated that the use of upwinding
: can lead to the solution of a different problem,

Donea, 1984, developed a method to improve the stability preperties of
a firice element method for convective transport problems, The time

#} ‘ derivative was discretized by a Taylor expansion while the spatial
. derirative was left in continuous form. This equation was then
approximated by conve tional finite element methods, This technique

%,
N, .
% v was claimed to give more accurate and stable results, and did not

S - produce unwanted digsipation, unlike upwinding. The method was applied
‘ i to one or mere space dimensions but development would be required for
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application to combined convection-diffusion.

It seems that the finite element method is zood way of reducing the
problems of numerical stability that are assoclated with solving
convection-diffusion problems, and that by using the finite element
method there is likely to be little neced to use the so-called upwind
method, There 1s strong evidence that the upwind methcd can lead to
the solution of the wrong problem in certain cases, and it seems far
better not to use the method if possible,

There is also some evidence that finite element methods are superior
to finite difference methods i. terms of computational speed. Havstad
and Burns, 1982 studied natural convection in a vertical annulus, and
solved the pgoverning equations using a finite difference method,
Hickox and Gartling, 1985, also studied natural convection in a
vertical, annular porous layer. Numerical solutions to the coupled
dimensionless equations in pressure and temperature were obtalned by a
Galerkin finite element method., It Is interesting that the equations
were solved in primitive variable form vather than in terms of a
stream function. (Gartling and Becker, 1976, state that the
introduction of a stream function (or stream funection and vorticity)
which is done in finite difference schemes to avoid the need to
gatisfy the continulty equation 1is unnecessary in a finite element
method). For temperature and pressure quadratic basis funceions were
used, while linear functlons were used for the velocity field, A 10 x
20 mesh with eight-node quadrilateral olements was used, The
steady-state solution was obtained by Picard ilteration, The mesh was
uniformly graded 1in the radial direction but graded vertically to
accommodate the expected steep pgradients ‘near the upper and lower
boundaries. The results obtained agreed well with those of Prasad and
Kulacki, 1984 and Havstad and Burns, 1982 but the number of iterations
required for convergence appeared to br considerably less than the
number required by Havstad and Burns, 1982 who were limited by the
cost of their numerical procedure. This result points to the possible
superiority of finite element methods over finite difference methnds
in terms of comwputational speed,

Several works in the litvrature have considered natural convection
with internal heat sources; these studies are the closest to the
spontaneous combustion modelling considered in this thesis, Saatdjian
and Caltagirone, 1980 studied natural convection in a pornus laver
under the Influence of an exothermie decomposition reaction. They
considered a two-dimensional porous medium saturated with a pas, As
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M T T s s s . B ST i rargir ™ 19

[P Y N

T
MLl i Ls e

-




iy{gmmqwmw AR I VY A

o n

Bt

Rl

T e

Rrmsh, » TR T e (TR, R T B

8
\
)
!
§

-

33

the lower boundary temperature increased the matrix decomposed
exothermically to glve gaseous products considered to be the same as
the saturating fluld. The decomposition reaction was considered to be
a single reaction with Arrhenius temperature dependence. The equations
were approximated by finite differences and solved using an algorithm
in which both implicit and explicit procedures were used. Because
explicit procedures were used the time step in the solution of the
unsteady-state problem was limited to ensure numerical stabllity, The
spatial discretization was performed on a 17 x 17 grid, Overall mass
and energy balances showed that the  temporal and spatial
discretizations were reasonable,

Beukema et al.,1983, studied the influence of three-dimensional
natural convection on cooling rates and temperuhure distributions in
gtored agricultural products., Heat generation was modelled as a
uniform source term in the equation of energy. The system of three
governing equations was reduced to one elliptic and one parabolic
equation by the introduction of the vector potential and vorticity and
the elimination of pressure. Heat transfer at the walls was described
by overall heat transfer coefficlents which accounted for the
intluence of both internal and external coefficients and conduction
through the walls, Values for the heat transfer coefficlents were
obtained by a comparison of experimental and model results for
different sets of values of the heat transfer coefficlents, The use
of heat transfer coefficients on the boundaries is of interest, as the
most common approach in the literature 1s to speclfy either the
boundary temperature or the temperature gradient along the outward
normal to the boundary. The equations were approximated by finite
difference discretizations with backward differences used for the time
derivatives, central differences for the conduction terms and upwind
differences used for the convection terms, This was done to ensure
stability of the procedure. Beukema et al.,1983 did not mention the
possibllity of the introduction of artifical diffusion by the use of
this technique. An unconditionally stable Crank-Nicholson scheme was
chosen for the time integration, The iterative solution of the
simultaneous equations was done by successive over-relaxation.

Handa et al., 1983 examined the spontaneous combustion of coal in a
two-dimensional trapezoidal coal bed. The coal oxidation was modelled
as a two-step process. Surprisingly the Darcy law was not used in the
momentum equations, and in the term accounting for viscous forces the
viscosity of air was uged, which 1s ineorrect., The equations were
solved uging a finite difference scheme with upwind differencing for
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the convective terms. The flow patterns in the trapezoid showed
interesting development with time, although in one case two cells with
the same direction of rotation were shown, a situatior which is highly
unlikely. For the particular set of parameters considered ignition
was found to occur after approximately 50 days, and the temperature at
irniltion appeared to be ~50°G, which agrees with the results of Broaoks
and Glasser,1986 and with the results presented in section 2.5 of this
work., The time ro ignition was found to be a strong function of the
activation energy.

Motrita et al.,1986 modelled spontaneous combustion of coal in storage
silos, and the model used was essentially the same as that used by
Handa et al.,1983, The equations were solved using "the Decoupled
method" and "the Quasi Implicit Difference Method was applied using
the Upstream Difference Scheme"., It is not clear exactly what this
means because in the abstract the authors claim te have used the
finite element method, The c¢alculated results showed excellent
agreement with experimentally measured tomperature and concentration
profiles.

Vasseur et al.,1984 considered two-dimensional natural convection with
internal heat generation in concentric horizontal cylinders. In the
small and large Rayleigh number 1limits, corresponding to a
pseudo-conduction regime and a boundary layer regime respectively, the
authors obtained analytical solutions. A numerical soluticn of the
equations was also obtained with the equations approximated by finite
diffsrences. An alternating-direction-implicit (ADI) technique was
used for the energy cuvuation in wl'ch the r atial derivatives were
represented by central differences and the time derivative by a
forward difference. The equation in the stream function was solved by
successive over-relaxation,

2.3 Degeription of the finite element propram

The finite element method has some significant advantages over the
finite difference mothod for the application required in this study.
It appears that numerical ascillations can be reduced when compared
with the finite difference method, and the method may also be faster
than the finite difference method. Complex regions can be handled very
easily and complex boundary conditions can be implemented easily, e.g.
the "split" boundary conditions for inflow and outflow (figure 2.1),
The shape and size of the elements can be menipulated to conform to
regions of steep gradients in the fleld variables and it is very easv
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to specify spatiallv-dependent properties of the continuum. This would
he very useful in modelling the effects of size segregation, or the
effect of coating the coal bed with a layer of reactive macerial or
with a laver of .weactive material. To be weighed againsgt these
advantages is the « that the mathematlical sophistication of the
tochnique is  somewi : srvster  than  that required by the finite
difference method. i = advantages ol the finite element method for
this study were fel* to far outweigh this disavantage, and a finite
element 1rogram which was ba-ead broadly on NAG software (NAG Finite
Element Library,1982) was developed initially by Anderson, 1986. From
conzeption the program was designed to solve general systems of linked
non-linear partial differential equations with quite general boundary
conditions. Further detalls of the program are given 1ln Anderson and
Bradshaw, 1987,

The genweral class of prablem soluble by the program is as follows:
Hie &) =K '?] (2.27)

Where M Is an operator, eoperating linearlv on the Ffirst time
deriviative of & The 1ot hand side of (2.27) takes the form of a
linear sum  of first order t me-derivatives, whose individual
selticlents mav be nonlinear in sy itial derivatives if necessary,

Ko i{= a gener.l, nonlinear operator, operating on g} tlal derivatives
of ¢ of anv order below that uf the shape functions employed.
Appiicati-n ot Green's theorem reduces the order of the spatial
durfuitives, thus expanding the applicability irange of any glven shape
1t on,

Thee ensoent program implementation uses the Galerkin weighted residual
wethod . desceribed in section 2.7.2 although only minor changes would
e nece arv ta change thls to e.g. a eollocation method.

Thee pre iminavy finite element analysis of the left and right hand
Cldes et (20277 i discussed {n detall in many texts, e.g. Norrle and
e i 19730 Asuenmbly of ripht hand side contributions into a single

iz amd a wector ia discussed in detail by Anderson,l1986 (sce
Byoonedis B Assembly of left hand side contributions (into the
ma 14 TaTSMY, the time derivative multiplier) {s done in a sim{lar

b lan
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~(V Brief Outline of Method of Solution
:7 Finite element analysis of equation (2.27) ylelds:

ab -’
SYSM(®) ~— = SYSK(®)® + £(x,®) (2.28)
at
5”}1 Where SYSM and SYSK are matrices (both may depend on the dependent
variable ¢ as shown)

is the time dependent part of ¢ ( where $ = N * b)
are the shape funcuions, dependent only on x
is a vector

irh 1=

Details of the composition of the above matrices and vectors are
i discussed in detall by Anderson,1986.

; For an unsteady-state solution, the system (2.28) is solved for db/dt
“ (right hand side evaluated at the current time value) using supplied
. initial conditions. The solution is then advanced in time by a

% uiltisrep method or by Gear's method,
I i
4

For a steady-state solutlon, the right hand side of (2.28) 1s equated
-y to zero, and the resulting expression solved iteratively for ¢ until
B g successive values satisfy a user-specified convergence criterion,
AT Convergence ls assumed when the average error for all three dependent
] variables 1s less than 1C°3. The average error Ils defined as the
sum over all nodes of the absolute difference between successive
v {terates, normallzed by the value of the old iterate, divided by the
) “'; o, number of nodes. An alternative convergence criterion was also tested q

Al

o in which the maximum error was used lnstead of the average ervor.
. This made 1little difference to the results but increased run times
o congiderably,

If the coefficlents of the time derivatives do not depend on ¢ or
t, (this can be seen by inspection) the user can set a flag which
' ensures that the matrix 'SYSM' 1s assembled and decomposed (into
upper and lower triangular matrices) only once during unsteady
‘ simulations, right at the start. This has a dramatic effeect on run

~e

times, since golution of (2.28) during successive time-marching steps
1 .
i requires only 'back-substitution’ into the triangular matrices. As the
total number of deprees of freedom in a problem increases, reduction

of 'SYSM' rapldly begins to dominate overall solution time,
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Other features of the program are an optlonal continuation method (De
Villiers,1984) f{or the sgolution of non-linear problems in which
convergence of the l[terative procedure is difficult to obtaln, the
ability to solve a mixture of steady- and unsteady-state equations,
the least-squares fitting of experimental data, great flexibility in
the gpecification of boundary conditions and source terms and a wide
chaoice of mesh element types with the option of crushing the mesh as
desired., Relaxation can be implemented separately on any of tha field

variables,

Recause of the key vrole that this program played in the modelling of
spontaneous combustion in this study, a brief review is glven of some
of the sample problems that were used to test the accuracy and
capabilicies of the program, Many of the results have been cheacked
against published data; the results and these checks are ommitted here
for the sake of brevity but the report of Anderson and Bradshaw, 1987
gives more details and {s Included in Appendix B,

Simulation of rivulet flow - a single, linear partial differential

equation. This kind of analysis 1s relevant to the design of
so0lid-fluld chemical reactors, such as 'trickla-beds’.,
Simulation of steady thermal conduction in a composite medium -

calenlations of this sort are used to estimate thermal energy transfer
in glass-fibre reinforced plastiecs and steel-concrete composites, for
example.

Simulation of natural convection heat transfer in porous annulug -
LW linked partial  differential
caleulations are used to evaluate the average Nusselt number for heat

nonlinear squations. Such
transfer through lavers of {nsulation around steam pipes, and
heat-leaks into cryopenic installations, for example, Many examples
of this type of caleulation may be Ffound 1in the literature, see
section 2.2.9.

Fitting measured tempperatare data to a model - least-sgquares

estimation of parameters, The sum of squares of temperature
prediction errors for some experimental measurements was minimised by
variation of the Rayleiph number and a heat transfer coefficient., For
experimental details and numerical results, see Anderson (1987),
Fitted results predleted permeabllities (embedded in Ra) of the same
order of mapnitade as those estimated using known physical quantities
(perticle wize, viscosity, wete.).  This 1s how the heat transfer
coefficlient in gection 2.1.1 wis calculated.
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E The four problem tvypes described above are merely representative of
(7 EA the range of preblems soluble by the program,
’ A listing of the computer program is given in Appendix B, together
with two reports (Anderson,l986 and Ander~~n and Bradshaw,1987) which

pive further details and outline implementation procedures,

2 4 Preliminary numerical dinvestigations inte the small stockpile

model

< Before proceeding to the calculation of ignition points for the small
coal stockpile model {t was felt desirable to examine the pgeneral
behaviour of the model by comparison with results £from the
g one-dimensional model, and to establish sultable parameters and a
B strategy for numerically calculating the ignition points. In Appendix
oo A typlcal base case parameters ave given. Of this set of parameters
;{ L the practitioner has some control over the voidage ¢ and the particle
o slze Dp. He also has control over the shape and size of the coal
MR stockpile, Of the other parameters it 1is likely that only the
pre-exponential factor Ik, and the ambient temperature T, will show
ddQ much varlation. The Investigations in thils skudy have accordingly been
y directed towards quantifying the effects of these parameters on
PR igniticn points 1+ small coal beds. The majority of the experiments
' S reported in this chupter were conducted for coal beds for which the
. YR sloping edge of the bed was at angle of 30° to the horizontal. t is
*5%‘ b found in practice that coal beds thrown from a stacker will form with
an angle of between 30° and 40° to the horizontal, (Coal of high
economic value is often stored in wind-rows, streamlined rows of
5w ’ carefully layered compacted material with a side angle of about 11° to
/ K the horizontal,)

W 2.4.1 Selection of finite element mesh

Schreiber and Keller,1983 have shown that poor spatial resolutioun in
the solution of cavity driven flow can lead to spurious bifurcation
points. It ig egpeciallly important that this problem is avert.d in .
» this work because the main aim 1s the locatlon of limit points. The
l selection of a sultable finite element mesh can be seen to be vital,

-

From the outset guadrilateral elements were chosen as it was felt that

| they were more convenient to work with than triangular elements trom
. the point of view of mesh pgeneration, although the finite element
‘ ‘ program allows the option ot specifying triangular elements if

A AR e e

g desired, The elements were fFitted to the trapezoida: shape of the \
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symmetrical half of the coal bed by means of a simple shrinking
transformation. In selecting a sultabie finite element mesh it is
necessary to weigh up the inreased accuracy to be obtained from a mesh
with many elements against the increased computer storage requirements
1nd execution time that this will cause,

is available the coarsest mesh which still yields acceptably accurate

When llimited computer power

results is desired.
of 20 by 20
independent wvariable
(2.15)-(2.17) gives
algebralc equations to be solved iteratively.

Initial experimentation was performed with a mesh
which for the three
(2.12)-(2.14) or

1200 non-linear
While this mesh gave

4-noded quadrilateral elements,
model defined by Egs.
1200 degrees of freedom, i.e,

acceptable results in terms of accuracy, the comvutational storage
(6 Mb on an IBM 3083 machine)
calculation times of several c¢.p.u hours each (several days of real

requirements and ignition point

time), meant that this mesh was too fine for general use.

Quadratic shape functions were felt to be better than linear ones,
because for the same number of degrees of freedom, greater accuracy in
the solution is possible with higher order shape functions, Smith,1980
made an 1investigation into the effect of boundary conditions and
numerical schemes on the solution of the heat transport equation. He
concluded that finite elements with quadratic shape functions offered
the best way of avoiding the oscillatory solutions which plague this
problem, This provided another point in favour of using quadratic
shape functions. In Figure 2.2, the effect of different mesh types on
the ignition particle size can be seen for the base case parameter
set. For this experiment three different meshes have been used, 6 by 6
4-noded elements with linear shape functions, 3 by 3 8-noded elements
and 6 by 6 B8-noded elements with
The numbers of nodes for these three
while the
degrees of freedom is found by multiplying the number of nodes by 3,
It 1s 1Immediately clear that the

superivor In accuracy to the linear ones,

with quadratic shape functions
quadratic shape functions.
meshes are respectively, 40, 49, 133, total number of

quadratic shape functions are
and from the very small
variation in the wvalue of Dpt it can be assumed that the 6 by 6 mesh
of B8-noded elements is adequate for the calcualtion of ignition
Further refining the mesh was found to have a negligible
All the results in the remainder of this

chapter were obtained using this mesh.

points,
effect on the results,
The finite element program in
ity present form In tact allows the user to specify a wide range of
mesh types including 12-node quadrilateral elements,
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s oos o Chojes of initial conditions and use of continuation
t oy . P
w oo The results shown in fizure 2.2 were uhtained by calculating the
AR
€ R maximum bed temperature at discrete values of particle size by
k A iterating from an initial condition in the coal bed of ambient
temperature and concentration and no flow. It was found that at a
‘ ’ ' particular particle size the numerical scheme showed divergence, and
£ , ; ;
¢ ] for the 6 by 6 mesh of 8-noded elements, this ocrurred at a particle
) size of 14.5mm. Leaving aside for the moment the question of the .
' B validity of calling this particle size the ignitien point, comparison
i
;’ with results given in section 2.5 for the same mesh and parameter set
K ‘ showed that the point of numerical breakdown found by using a simple
( ﬂ*§“4 | continuation scheme occurred at a smaller particle size, 12mm. The
! ° reason that the continuation scheme gives a different (better) result
f ; can he explained as follows. Close to the point of numerical
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breakdown, the conditlons in the bed are far from the initial ambient,
quiescent condition and it is known that obtaining good solutions to
highly non-linear problems such as Eqs. (2.7)-(2.10) is strongly
dependent on having good initial values. Hence, if the calculation to
obtain steady-state conditions is made for a particle size of 12mm
starting from an initial condition of ambient temperature and
concentration and no flow, 1t would be expected that the caleculation
will not converge. This is exactly what has been observed in figure

RN

DA

The continuation method is one way of ensuring that good initial
guesses are avaliable at all stages of the computation., A thorough
treatment of the continuation method is given by De Villiers,1984 and
here only a very brief overview is given of the method as applied to
this problem., If the steady-state calculation 1s commenced far from
"ignitlon", there 1s 1little temperature rise 1in the bed, and
correspondingly little flow and little consumption of oxygen. In this
case the initial conditions are close enough to the steady-state
solution to ensure convergence. If the particle slze 1is then
decreased slightly and che computation at this new particle size is
started from th: previous solution we can again ensure that the new
solution is not far from the initlal condition, This is the essence of
how the continuation procedure is applied, Successively smaller steps
in particle size are taken, and at each successive size the solution
from the previous particle size is used as the initial condition, The
decrement in particle size is chosen in such a way that the change in
some measure of the solution (e.g. L,-norm) changes by approximately
the same amount on each calculation step. From Figure 2.2 it can be
seen that successlively smaller steps In Dp will have to be taken to
achieve this., In section ?2.4.3 we discuss in more detail how ignition
points can be obtained for the small coal bed using this continuation
method,

2.4.3 Obtaining ipgnition points

tme can locate ignition points elther directly or by observing
numerical bireakdown of a continuation scheme as described in section
2.4.2, To calculate the ignition points directly one needs to locate
the limit point of the system of algebraic equations which results
from application of the finite element method to Eqs. (2.7)-(2.10)
The system can he written:

fl(§,p) =0 ,i=1,2,....,n (2.2
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whers p 1s the bifurcation parameter. The condition for a real
bifurcation point is:
det(J) = 0 (2.30)

where the elements of the Jacobian matrix are

a fi
{ eij} = “3“;5— y1,j=1,2,......0,n (2.31)

Equation (2.30) is equivalent to saying that zero is an eigenvalue of
J, hence ignition will be indicated by an eigenvalue equal to zero
Thus to locate the ignition point directly one must solve the system
2.29) and (2.30) simultaneously. There is of course the possibility
that ignition 1is marked by a Hopf bifurcation, but only real
bifurcation is considered in this work,

Such a direct calculation of limit polnts is not easy in practice for
the very large systems of algebralc equations that result from using a
numerical method such as the finite element method, The main problem
is in the evaluation of the Jacobian J, because it is very difficult
to obtain an analytical expression for the (eij) . This means that
the elements of the Jacoblan must be calculated numevically by
perturbing the £;(x,p) slightly and dividing the difference between
the perturbed and unperturbed £;(x,p) by the amount of the
perturbation:

3 £ fi<§’p)|xi+Ax1' £, (x.p) | x,

]
. (2.32)
xj A xj

DB

Thig is not an accurate way to calculate the elements of J, and was
found to give a singular Jacobian, It is also possible to locate
limit points by using the methud of arc length continuation (Ku .cek
and Marek,1983). In this method the are length of the solution curve
becomes a parameter of the system, and by using this arc length as the
continuation parameter it is possible to proceed around limit points,
something which is not possible using any other conventional scheme,
Again the implementation of this method for the type of problem that
we are considering is extremely difficult., Unless the elements of a
Jacobley matrix similar to that in Eq. (2.30) can be obtained
analytically, which is very difficult when the finite element method
has been used, the elements of J must be caleulated numerically as
in Eq. (2.32), Unfortunately this 1s an extremely unreliahle
caleculation and is fraught with scaling problems, Although it is
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e possible to scale temperature and concentration to ensure that the
A ey from these variables are of the same order of magnitude, scaling
e of the stream function 1is not really possible because it 1is the

g derivative of the stream function which is of importance, This lack
4 of scaling leads to a matrix which is so ill-conditioned that any
numerical routine to use the matrix fails because the matrix appears
to be singular. For this reason all attempts to use arc length
an ; continuation on this problem proved unsuccessful, Arc length
. continuation has of course been used 'r»rv successfully for simpler
systems than the one considered here and iu.ther work in this area
would perhaps yield fruitful results,

mq . If one attempts to find Dpi by a continuation method (other than arc

" A langth continuation) or e.g. by Newton’s method, the numerical scheme
& will break down at the ignition point (Kubicek and Mar}k,1983), 1If
one can be sure that the point of numerical breakdown iz in fact the
: limit point of the system of equations, then this simplistic method
f» «‘g can be used to obtain ignition points, In Figure 2.3 the variation is

shown of the maximum temperature with particle size in a frustum, The
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results In Figure 2.3 were obtained using the simple continuation
method described above, and using A=0.866, B=0.5, k,=1 m/s with all
other parameters at thelr base case values as given in Appendix A. 1In
accordance with the results for the simpler models, one can observe
what appears to be an ignition at a critical particle size, This
particle size has been calculated by stepping down in particle size,
using the continuation procedure of section 2.4.2, until the program
fails to find a low temperature solution, While this does not prove
that an ignition point has been found, the fact that the tangent is
almost vertical, and the evidence from the simpler models, would seem
to indicate that what we are observing 1is an ignition, and not a
nunerical artefact. This belief is also strengthened by the fact that
utilizing a finer mesh does not change the position of the ignition.
Because it is the determination of the point of ignition that 1is of
interest, and not the conditions inside a burning bed, it 1is adequate
merely to locate the ignition point. This is the technique that was
used in this chapter to locate ignition points.

Because the calculation of ignition points using the continuation
method requires a large amount of computer time, typically of the
order of several c.p.u., hours for each calculation un an IEM 3083,
this placed a limitation on the number cases which could be examined
in the remainder of this chapter,

2.6 .46 Examination of some general trends of the model

One ot the Llmportant results predicted by the one-dimensional model is
that for coal beds whose low-temperature steady-state solution lies on
the extinguished branch, decreasing the voidage ¢ will iacrease Dy
(Brooks,1986). This result has bheen confirmed by Brooks et al.,1988b,
for the simplified three-dimensional model. In figure 2.4 the results
of a similar calculation for a two-dimensional cartesian coordinate
stockplle edge are shown, verifying the behaviour of the simpler
models, The geometric parameters defining this edge were A=0,866
B=0}.5. All other parameters were at their base case values apart from
the voldage ¢.

From this result 1t can be seen that the ad hoc remedy for
preventing spontaneous combustion of compacting the coal bed (s in
fact extremely dangerous if the bed congists of coal particles of size
larger than Dpi' This is because compacting the bed iIncreases the
amount of reactive material per unit volume while decreasing the
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permeability of the bed and thus hampering the cooling effect of the
B W natural convection flow. For fine particles compacting the bed would
A be a good way of preventing spontaneocus combustion, Obviously it is
ety ‘ vitally important to know which kind of action the practitioner must

. take, and to do this th> value of Dpi must be known.
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Figure 2.4 Locus of ignition points showing safe and unsafe regions as
L a function of bed voidage for A-=0,866, B=0,5 and all other parameters
PP at base case values (Appendix A)

1 As discussed in section 2.1.2 the value of the heat transfer
roefficlent, h, used in the temperature boundary condition, was fitted
from experimental results (Anderson,1987)., To investigate the effect
that the value of the heat transfev coefficient has on ignition
points, a calculation was made using three different values of h=0.5,
5, 50 W/mz/K. The results are shown in figure 2.5, and it is
j’ apparent that the effect of h on Dpi is very small, Of interest
( s the vresult that the wvalue of Dpi is at a minimum for
sy ‘ h-O.SW/mZ/K. An explanatlon for this is that for small h, there
J exists a greater temperature driving force for flow than for large h,
i and the resulting strong convective flow helps reduce the temperature
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‘»Ta s in the bed. This is 2 small effect however, and the main conclusion
’ o is that the value of h, or equivalently the dimensionless parameter
' ;7‘ ; Bi, has little effect un the value of Dpi. For all calculations in
3 . this study the value used was that given in Appendix A, h=5 W/mz/K,
; which was fitted from experimental data.
70 4
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AN Figure 2.5 Effect of heat transfer coefficient on caleculated ignition
. SN points in the frustum for A=0.377, B=0.333 and other parameters at
LI S base case values (Appendix A)
e
fbﬂ*it ‘ 2.4.5 Ungteady-state solutions
; If steady-state analyses {indicate that a coal bed will ignite, one
would like to know when this will happen. It may be that some beds -
which will eventually ignite 1if left for long enough will do so only
} after many years. If the stockpile is to be dismantled before this
4 time then the coal can be safely stockpiled, Ideally one would like a

simple expression for the time to ignition for a stockpile in terms of
meagurable parameters, in the same way as was done for the ignition
point particle size criterion, Egq. (1.7). Unfortunately no such
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simple, rellable expression has yet been developed, and the
unsteady-state modelling of  spontaneous combustion 1s not a
well-researched field.

Brooks,1986 examined the unsteady-state behaviour of a one-dimensional
coal bed. He found that at the ignition temperature there was an
extremely rapid iIncrease in bed temperature with time, Schmal et
al.,1985 conslidered an unsteady-state model of a one-dimensional coal
bed, but neglected natural convection, In order to use the results of
Schmal et al. one would have to pick a maximum permissible
temperature (at which ignition 1s considered to have commenced) and
then calculate what natural convection flowrate thi corresponded to,
By comparison with the imposed veloeity one woul then be able to
estimate the time to reach this maximum temperatur

Gijbels and Bruining,1982 attempted to derive a relationship for the
time to ignition for underground coal stores. Unfortunately their
analysis was incorrect as they took the Laplace transform of an
unbounded function., Viljoen et al.,l1988 have presented a method for
determining whether a bed of reactive porous material will ignite or
be stabilised by a natural convection flow. The essence of the method
lies in comparing the growth time for a small convective perturbation
to the bed, to the growth time for the conductien only solution. If
the perturbation to the bed 1s not large enough then natural
sonvection will not bulld up quickly enough to prevent the bed from
exploding. The technique rests on the assumption that if the
convective perturbation grows to the same size as the conduction
solution in a tiime ihat 18 less than the time taken for thermal
explosion (for a bed in which there is no convection), then the bed is
safe. This assumption needs verification., The method is not suitable
at present for use by the practitioner, as it requires specification
of the size of the imposed perturbation, which is an abstract concept
in terms of coal beds. Further work in this direction may produce a
result that is more direetly applicable to the coal stockpiling
situation,

t is more difficult to obLtain unsteadv-state solutions to equations
(2.7)-(2.10) than to solve the steady-state problem, Examination of
the terms multiplying the time derivatives of the energy equation and
the concentration equations, =900 and ¢=0.3 respectively, shows them
to differ in size by many orders of magnitude, meaning that the
problem iy so stiff that even stiff equation intagrators such as
Gear’s method are unlikely to be adequate. The alternative 15 to




quwﬂmmmmmwwrw R AL
&4

I
i e

=3

Y
-
o T

)
i
|

2k,

48

solve the equations as a mixture of steady and unsteady-state
equatlions with only the energy equation written in unsteady-state
form. Solution of the equations in this form adds an additional
complication in that it is very difficult to decide for how long the
unsteady-state equation can be integrated before the steady-state
equations must be solved, prior to integrating the unsteady-state
equation in time once more, Decoupling equations in this manner can
lead to problems as severe as solving the original system
(McDonald, 1979),
this mixed-feri decoupled approach was used, but the computations were

In an attempt to obtain unsteady-state solutions,

extremely slow and divergent, This 1s unfortunate because the
unsteady-state behaviour can be very useful, Some beds that will burn
in the steady-state do so only after an extremely long time, and it
may be that the bed will have been used before high tamperature
burning commences.

2.4.6 Solutions on the igni od branch

As discussed in section 1.3, there exists a re-gion of particle sizes
on the ignited branch for which the maximum steady state temperature
rise 1is acceptably low, This happens because of the wvery low
flowrates and high reactivities in beds of fir coal. which means that
the oxygen is consumed on the surface of the !':d where the temperature
rise is easily dissipated to the surrounding-. Calculation of these
solutions is difficult, because the physical :vstem has now developed
a boundary layer in which extremely steep grudients of concentration
occur, To resolve such gradients numerically is difficult and in
splte of using very fine meshes close to the boundary we wers unable
to obtain any solutions on the ignited brancn. Tt appears that a
better method would be to write a two-region w-del, with one set :f
equations describing heat transfer in the interi:- of the bed assum g
that no reaction takes place as there is no <. ~m present, and “re
other set describing the behaviour in the thi-
all the reaction is assumed to take :lac sl%iough  this  .as
attempted it proved to be much more difficuls + 1 v saged and - - 11

remains an area for further investigation

- undary laver w.re
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S . 2.5 Tapnition points in small stockpiles and stockpile edges

" 2.5.1 Tpnition points in frusta

In this section ignition points are calculated for frusta which
‘ resemble instrumented coal heaps at a coal mine in South Africa., The
S Y 5 test heaps, each made up of different size fractions and equipped with
P thermocouples and oxygen probes, were approximately 90m in diameter
i"3 "f} and 17m high with a side angle of about 30°., The frusta which were

¢ f examined in this section were of similar dimensions, The ignition
‘ point particle sizes Ffor these frusta were calculated using the
> continuation procedure described in sections 2,4,2 and 2.4,3. The
”; J method is summarised agaln briefly. Starting from ambient conditions
& at some particle size for which very little temperature rise is
A expectsd, steady-state conditions in the coal bed are calculated for a
decreasing series of particle sizes, using the result from the
pravious larger particle size as the starting condition for the next
smaller size. The step size used was such that the value of Dpi was
found to within at least lmm, The jth particle size in the stepping
sequence 1ls glven by:

D =D -[D . D, qun[gH] (2.33)
Py Pnax Prax  Pmi -

b - f‘f*,” = Where Dp max >> Dpi' Dp min

* in the stepping series, typically 30,
1l

< Dpi and N is the number of terms

,k,x}‘ This relatlonship spaces polints more closely at smaller particle
‘?‘ . sizes; if the measure in the change in the solution with particle size ,
\,:H‘ 7 is taken to be indicated by the maximum temperature, a suitable ﬁ
R f Lg-norm, it can be seen from figure 2,3 that successively smaller i
e i steps in Dp must be taken to keep the change in the solution
: approximately constant,

It 1is found that at a certaln particle size the computational
procedure diverges, because the argument of the exponential Ffunction =
in the temperature equation exceeds the allowed range of the computer
}' arithmetic, At this point it is assumed that the steady-state solution
to Egs. (2.7)-(2.10) would be a2 high temperature burning solution,

.wm*kl i.e. the bed has ipnited, and the numerical procedure cannot be
expected to find such a solution using the continuation method

described section 2,4.2, The particle gize immediately before this

U SN .

divergence occurs is taken to be the ignition point particle size *

e e e ) ) i . o _ . . . apr xR AP Ll
izt : . . s - . Sabruniaid BrriSurastuntiie— 1 = s
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Dpi' It is also found in some cases that the computations fail to
converge according to the convergence crilteria, but do not diverge,
This

appears

gituation is discussed in more detail in section 2.5.3, It
that these (or possibly
convection, for porous

cases represent
chaotic) which 1is
convection driven by internal sources (Lennie et al,,1988, Viljoen et
al., 1989, Kordylewski and Krajewski, 1984).

either perlodic

known to exist medium

2.5,1.1 pnints _in  frustum-shaped coa. beds with one

convection call

Ienition

In figures 2.5 a-c typical streamlines, isotherms and concentration
contours are shown for a frustum at lgnition. 1In this case the base
radius of the frustum was 45m, the height 15m and the side angle 30°,
waere thus A=0.577, B-0.333.) The other

parameters were at their base case values (Appendix A) except for the

The geometric parameteus

pre-exponential factor ky=1 m/s.

15.00 ;
! l ?. o
‘ [
A
\ Y \ i
11,25~ S
»\ \‘ ' \‘-“ " ’
= T.50- VN /7
-E:‘) ' N “_‘ \\“~u—-"" ," “
;§ ! " e J/ P
— i N \N\___,_/”’t’ / ‘\“‘
"\ S 4 S
o . g N
3"54} ‘\“‘\..____._.—/'/ / \"\
1 \\ / ’
i / ~
0.00 — . T ; )
0.00 11.25 22.50 33.75 45.00
Radius m
Stream function -~ -24  cr 18 -e-e -1.3 - 0.7
0.2 —— 03 —— 08
Flgure 2.6a Typical streamlines in a frustum for A=0,377, B8=0,233,
k =l m/s other parameters at base c:se values
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’ It can be seen that the flow pattern is unicellular, with all the air
| T entering on the sloping surface and leaving thrnugh the flat upper

B surface. Inspection of figure 2.6 shows that the temperatures on the
o A surface of the bed are close to ambient, and that the consumption of

oxygen is extremely low. Such results are typical of those obtained
on the extinguished branch of solutions, i.e, solutions for particle

? sizes greater than Dpi' The maximum temperature in the bed is found
: on the centreline of the bed, approximately 1.5 m below the surface,
. In real ecoal beds it has been found that the surface temperature of
ﬂ the bed may be ambient while a metre under the surface the bed is red
hot, The assumptions made in deriving Eq. (L.7), i.e. ambient
. v temperature at the ends of the bed and a zero order reaction, would
‘ E also have been reasonable for the results shown in figure 2,6,

. )

: It is found that for frusta which are somewhat flatter than that shown
| in figure 2.6, the flow pattern breaks down into a number of
i convection cells., ' The question of when this oceurs and the
1 implications that it has for the determination of ignition points are
N : discussed in more detail in seection 2.5.1,2,
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. J Figure 2.7 Locus of ignition points for the frustum with one
1 circulation pattern for parameters in Table 2.1
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Shown in figure 2.7 are the loci of ignition points for different
frusta which exhibited only one circulation pattern, Two different
; frusta were examined, both with a side angle of 30°, height 15m but
1 with base radii 30 and 45m, These frusta can bhe characterised by the
parameters A and B, as indicated on the figure. The frustum with base
,1,‘ { radius 45m was also modelled with an ambient temperature of 283K, to
e assess the effect of ambient temperature on the ignition point and to
, test how well the simple criterion Eg. (1.7) modelled the effect of
ambient temperature, The results in figure 2.7 were obtained for a

< range of pre-exponential factors, k,, between 0.5 and 50 m s'l.

, ;ﬁ parameter bed 1 bed 2 bed 3
: " 23,89 23.89 24.73
f 8 7.42 7.42 7.676
e Le 0.0353 0.0353 0.0353
. 0.577 0.866 0.577
“ 8 0.333 0.500 0.333
‘ Bi 1125 750 1125
R (m) 45 30 45

NS i i s

Table 2.1 Parameter values used in calculation of ignition points in
figures 2.7 and 2.14

The results have been plotted as the modified Rayleigh number Ra* as
a function of the Frank-Kamenetskii parameter FK. Elementary geometry
has been used to write the wvalues for Ra¥ and FK as if the
characteristic length was the length of the diagonal from the toe of
the frustum to the centreline of the bed at the upper surface. The
loci of ignition points divide the parameter space into safe and
unsafe regions., Straight lines have been fitted through the data.
Ra® and F” are not natural parameters of Eqs, (2.7)-(2.10), but arise
when the so-called positive approximation is used
(Frank-Kamentskii, 1969), This is discussed in section 3.3, but for
the purposes of this section we nate that it is unnecessarvy to make
this approximation for a numerical solution, It is however wery

exponential

useful, and perfectly reasonable, to present the vesults in this Fform,
because it allows direct comparison with the simple ignition criterion
of Brooks et al,,1988a (Eq. (1.7)).
ignition points was described by;

In that expression the locus of

e S N



Ko a2ttty A i

T

D oe =

54
Ra, = FK (2.34)
The parameters are defined:
Ra

* L “
Ra'j= = (2.33)
. 2
FR =87 o (2.36)

It can be seen that Egqs. (2.7)-(2.10) could also be written in terms
0 Ra* and FK,

From figure 2.7 it can be seen that the numerically-caleulated
ignition points lie on a curve with the functional form:

7
Ra® = £ (A,B) B * Lo opg (2.37)

The slope £;(A,B) reflects the dependence of the ignition points on
the shape of the frustum, Ra® i seen to be a weak function of the
geometry (A,B), and for the purposes of the practitioner the slope
could be considered to be 1. As was discussed in section 2,2.1, Ra"
differs from Ra{ by the factor T, ~1.07. It is quite clear that
to the accuracy with which £1(A\B) 1s assumed = 1, Ra® can be
assumed to be equal to Ra{. This means that the locus of ignition
points for the frustum is described by the same equation as for the
one-dimensional model 1If one uses the dlagonal length as the
characteristic¢ length, Such a length is felt to give a crude measure
of an "average streamline", and to be a reasonable characterisation of
the size of the bed. The term /(E2+l)/B in Eq. (2.37) merely converts
the dimensionless parameters, which are defined in terms of the height
of the bed, Lnto a parameter set in which the diagonal is the
characteristic length, This means that I(f Ra® and FK had been
defined in terms of the diagonal lLength and not the height of the bed,
then Eq., (2.37) would have had exactly the same form as Eq. (2.34),
The fact that the ignition point loeci in figure 2.7 have approximately
the form of Eq. (2.34) indicates that the choice of length scale was
reasonable. It has been found that using the height or the surface to
volume ratio of the bed did not give such good apreement with the
simple relationship Eq. (2.34), (Lin and Aking, 1986 found that a
auitable length secale for natural convection in enclosures was glven
by the product of the volume to surfaca area ratlo and a
dimensionality parameter). In figure 2.8 a similar set of results to
that presented in figure 2.7 is given, but using the base ridius of

T PWNRPY ) Py Wtoimips ik &
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' ‘ the frustum as the characteristic length. This figure shows that the
- ) base radius is perhaps a better characteristic length as the curves
. ! for two different frusta fall almost exactly on each other. However,
T using the base radius has less physical justification than using the
# length of the diagonal, but for the results in figure 2,8 the length
‘ of the base radius 1is perhaps closer to the average streamline.
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4¢‘:° Figure 2.8 Locus of ignition points for the frustum with one
NI

circulation pattern and base radius as characteristic length for
parameters in Table 2.1

‘ From figures 2.7 and 2,8 it appears that the simple criterion for
T ignition points, Eq. (2.37) does not entirely adequately account for
j, the effect of ambient temperature on Iignition points. However, Eq.

(2,37) 1is conservative for the case when T,~283 K, il.e. it predicts
ignition at a larger particle size than occurs in practice,

¢ From figure 2.3 it can be seen that characterising the size of the

frustum by the length of the longest streamline and using this lengzh
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in Eq. (2.37) vresults in the simple criterion predicting a

conservative value for Dpi'

In considering the results of figures 2.7-2.9 it must be borne in mind
that the value of Dpi has not been found exactly for any given value
of k,. This means that in figures 2.7-2,9 the value of Ra* could be
smaller and the wvalue of FK could be larger than the indicated
ignition point, although in all cases the wvalue of Dpi was found to
within at least lmm,

16.0

e at ignition {mmn)

Frustum base 45 m
i 9 Frustum base 30 m

-
~
~
~
~
x

Eq. 1.
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Pra - exponential factor (m:s)

Flgure 2.9 Locus of ignition poiuts £or the frustum with only one
convection cell, and showing the effect of different length scales for
the parameters in Table 2.1

NDf interest 1s the result showa in figure 2,10, in waich the maximum
zemperature in the frustum is plotted ags a function of the particle
size normalized by the ignition particle size. This has been done for
the two different sizes of frusta in table 2.1 and for a range of
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pre-exponential factors 1-50 m s”l,  To within the accuracy that the
ignition points have been found it can be seen that all the points lie
on one curve, which indicates that Dpi is strongly characteristic of
the system, determine from £first
principles the form of the curve in figure 2,10, however it would be
possible to fit the data empirically, and by using Eq. (2.37) for the
value of Dpi' to obtain an expression for the maximum temperature in

It did not prove possible to

the coal bed as a function of easily measurable parameters,

Thus, for frusta which show one circulation pattern it has beeu shown
that the locus of ignition points 1s well-described by Eq. (2.37),
which is the same as was derived for the simplified one-dimensional
model if the diagonmal is taken as the characteristiec length. This is
an extremely useful result because it means that the practitioner can
very easily calculate the minimum particle size for saf) stockpiling
for a coal bed of given size and coal reactivity, or alternatively the
maxisum bed size for a coal of given particle size and reactivity,

3604,
L
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rr"(‘,j;{‘
3003 P
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Figura 2.10 Maximum temperature in the coal bed as a function of

reduced particle size for frusta of Table 1.1 and k, 1-50 m/s
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2.5.1.2 Ignition points
cells

in frusta which show multiple convection

When a frustum is made flatter and wider than the ones examined in the

previous section,

the flow pattein breaks down inte a number of
Benard-like convectlon cells, This can be seen in figure 2,11, which
shows streamlines and isotherms for a frustum of base radius 30m and
height 5m. There are two internal cells visible, i.e. convection
cells in which the flow enters and leaves the bed solely through the
upper surface, and an edge cell, which resembles the cireulation
pattern shown in figure 2.6 for the case where the frustum had a
unicellular flow, This result is typical of all those obtained when
the flow pattern shows Benard-like cells both for frusta and edge

models discussed in saction 2.5,2, The typical features are: an odd

number of cells, the maximum temperature at igniti)n on the bed
Sl R R
i ! L syt
J , oy Phply b D
{ | po ! | 11! [ |
i \ | b Py rh e
! i b prbit b
i i (ol NERE R
i o bt
\ R R Y
. 4 ! RN
.78 ' Lo AENRER R
1 ‘ ok bt
. [ i EEE NN
1 \ I vl EERERRRRS
" | ! o BN
g i b B R R R
: { H | | \ \ | IR [
3 i N l by RN
2 ‘ § I R R N
¢ B 50-1 \ t . [RYUT B| i [N N
‘ ! / A DEoNY NN
¢ i ! ! P I T L S AR N SRR
" . .\‘ ,’ } \\ II " 1 I‘ |‘ \\\ ‘\‘
¥ q \ ) " \ ;o t VN ‘\ M
l \\ l, ll \—“"’-‘ l, l‘ “\ \\ \\ ,,““ ;" ll'
1 s\ ,d’ \ ! ! “ ‘\ TERmSen. I“ /,
- T \ . son ‘
1,294 - Y b N e /
. conmmma .
l \ ! | I s
\ 2 \ s e
‘ / \ -
4 - \
L N
N\
J N e,
0.00 +4 T T T
9 2 - 1.0 az.8 30
RADIUS (M)
9TRAEAM FUNCTION B e il I < -3.8 —_— =3, ———— =3, 0 ——— a4
32,0 dmnane =i, B cawnmn wi D mmannn =0, B wommun =0, 4
cemee- 0.0 D ~—mm 008 —— 1.2 ——— 1.8
———— a0 ——— 2,4 a.
Figure 2,1la Typical streamlines in a frustum showing multiple

convection cells for Aa=Q,288,
case values

B=0.166 ond other parameters at base

centreline, the width of the internal cells equal, and equal to the
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e i N width of the outflow region for the edge cell. & cell has been
- B *,{ defined as the smallest adiabatic cell, i.e, the width 1is measured
: from the point of inflow to the point of outflow. Although the
H assumptions of 4 zero order reaction and ambient surface temperatures
} f would also have been reasonable for the case shown in figure 2,11, one
f would expect that Eq. (2.37) would no longer describe the locus of
WL , ignition points, This {s particularly the case because the point in
,4,q | the bed showing the highest temperature at ignition is close to the
L ‘ L,‘ surface and on the centreline of the bed. Oxygen Ls supplied to this
L o ,ﬂt hot-spot by a two-dimensional roll cell, and the flow in this roll
|

7 cell has turned through 180°, This is a situation very different

from that modelled by the one-dimensional model.
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Figure 2.1lb Isotherms in a frustum showing multiple vonvection cells
A for A=0.288, B=).,l66 and other parameters at base case values

The weakness of assuming radial symmetry now also be:omes apparent, as

' v, 1¢ is wvery unlikely that the toroidal convection cells predicted by
' e o i the model would be found in realitv. O0Of course if the radius of
L curvature of the teroidal cells is verwy large then the cells resembie
[ two-dimensional =2oll cells, whieh ocour in practice. This sclld
|
s
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problem of the centre cell which could be considered to

approximate a hexagonal cell of the kind that are known to form in

(Tveitereid, 1977). While recognising that this
of symmetry is not very satisfactory, it is still of
o consider frusta which show multiple convection cells and

to compare the results obtained in this geometry with those obtained

realistic edge model described in section 2.5.2.

are shown for three

2.12 the loci of ignicion points
In this

frusta all with the three convection cell pattern.

case the results have been plotted as /Ra* as a function of FK*, and
it can be seen that this functicnal form appears

to degcribe the

The characteristic length used in Ffigure

easonably well.
The parameter FK*

the diagonal length of the edge cell,

does not depend on particle size and is defined as follow::

G .
FK = FK /Ra (2.38)

a0 1
1Conduction=only asymptote
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ot
Y
B ' [rrm e s et P —— -
" T parameter bed 1 bed 2 bed 3
# o e RUTUUN (TR SR S U
g y 23,89 23.89 23,89
& B 7.42 7.42 7.426
o Le 0.0353 0.,0353 0.0353
g A 0.288 0.385 0.433
e " 0.166 0.222 0.250
E Bi 750 1125 1000
P R (m) 30 45 40
v . L.
Table 2.2 Parameter values used in calculation of ignition points in
' #‘af fisures 2,12 and 2,15

From figure 2,12 1t appears that the ignition point locus can be
described by a relatlionship of the form:

JRa” = £, (A,B) Y 45 (2,39)

where £, (A,B) is a function of the frustum geometry and JRa®>5,

It was found that the correct length scale appeared to be the diagonal
of the edge cell., By elementary geometry and using the characteristic
features of the Benard-like cells, 1t is possible to express this
length in terms of the height of the bed, provided that one knows the

ﬂg&fg side angle of the bed. Because all the computations of gections 2.5.1
Wb and 2,5,2 were made for a side angle of 30°, it is found that the
',4 locus of ignition points can be described by:

"

d;?/md 7 QR L [1 . mﬁ—;] = 27.9 [1 . ~Fi;J (2,40)

T 1+ (/3»0.75)2] fRa fa

o Vg )f .
£

) zﬂ The slope of the curves in fipure 2.12 is =1/200, The denominator

cw T represents the length scale correction, and JRa™>5,

It 18 significant that a different functional form for the locus of
ipgnition points has heen obtained for the case where multiple
- convection cells are present. The fact that the [low turnsg arount in
ﬁp‘ the roll cells means that the predominant mechanism in the bed is ne

& longer the same as that when only a single convection cell (the cdpo
cell) {ig found.

r"“,‘!

In fipure 2.13 the loel of {dgnition pointe have been plotted as
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. Ra¥ vs FK, s was done for the frusta which showed only one
i conve:. .lon cell, but using the diagonal as the length secale, It can
- be seen that the locus of ignition pointts in this case is not
A well-described by a relationship of the form of Eq. (2.37). Although
: we know that the assumption of radlal symmetry is poor for s frusta
J B which show Benard-like cells, we have been able to show that the

s : ignition poin.z fall on a curve described by Eq. (2,40), This is a
gﬁg useful result, and complements the sarlier expression for frusta with

only one flow cell,

300 4
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: 5f3~ ann”
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PN o x A=0,433 B=0.25

e 10 30 50 70 90 140 130 156 470 190

e by FK 5

Tigure 2.7 Llocus of ignition points for Irusta with multiple
convection cells showing incorrect functional Form for parameters Iin

Table 2.. -

2 5.2 TIenition points at adees of larege coal stockpiies

! To make the analysis of ignition points in coal beds more general it
' l 1s necessary to look at a two-dimensional cartesian mode., assuming
| that the bed is infinitsly long in one horizoncal direction. In this
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kY required to solve the three-dimensional model was not avaliable. The
Y % coal beds are assumed to have a trapezoidal cross sectionjat the edge,
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way it is possible to consider the edges of large coal stockpiles and
to look more closely at the situations whers the flow breaks up into
cells, This can be achieved because each of the convection cells is
adiabatic and there 1is no flow between cells. Thus by considering
only an edge cell, it is possible to examine the effects that will be
present at the edge of a large coal bed. By looking at the situation
when multiple cells are present it is possible to draw empirical
conclusions as to how large a coal bed must be before the flow breaks
down into Benard-like cells, and which ignition point criterion to use
in that case, Iun this section a two-dimensional formulation is used,
asssuming that the coal beds are infinitely long in ome of the
horizontal directions. This slightly restrictive assumption was
necessary because the vast amount of computer power that would be

2.5.2.1 Tenition points at edges showing one convection cell

In figure 2.14 the loci of ignition points are -hown for the edge

cotvection cell for parcmeters in Table 2.1
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model in which only one convectlon cell was present, Tre geometries
used were the same as those deseribed in section 2.5.1 and detailed in
table 2.1, although of course a two-dimensional cartesian formulation
was used. TFor this case it appears that the ignition points arve
deseribed by an equation of the form:

| -
Ra™s £,(A,B) l§~§irl# FK (2.41)

where I‘B(A,B) ig a function of the cdge geometry, and =1,

The curve for the rdge with A=0,577, B=0.333, T -253K most closely
tits BEq. 2.3, The funetion f4(A,B) has a small effect on the
ipnition points and although the form of f3(A,B) is different to
f1eABY, dand has a larger effect on ignition points than £1(A.B) in
Fg. 2.3y, for the purposes of the practitioner it geems that the
fprition points in roal beds which show only one ~irculation pattern
cat be adequatelv deseribed by Eq. (2.37),  Thus e¢ither for frusta or
two-dimensional edpes, if there is only a singl: ronvection cell
present the locus of ipnition points is deseribed o the accuracy
required by the praetitloner by Eq. (2.37), In the 1 xt seetion the
cuestion of when multiple convection cells occur is o scussed,

4.5.2.2 Ignition points at_edpes with multiple convection cells

When the flow pattern stows multiple convection cells in this edge
model, the internal cells that are formed have more physical meaning
than those in the frusta, These internal cells in the case of the
cdpe model are in fact two-dimensional roll cells, which are known to
be stable in natural rcotvection n porous media (Tveltereid,1977), 1In
fipure 215 dpnition points are shown for the edge model where
poalriple convection eells are present, The results have beon plotted
the same way ac for the frustum (Figure 2.12) and using the same get
of parameters as given in table 2,2, Tt appears that the locus of
fenition points in thiy case 15 again well-deseribed by an equation of
the form:

SR < E(ABY R 45 (2.42a)

This expregsion can be written more compactly as:
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The constant 130 represents the inverse of 'he slope ot the eurves in

while the denominator is the fact.. tn corrcct the lenpth

figure 2,15,

was discussed for Eqs, (2.31-(2.. i.e. the correct

seale, as

4o the edee cell,

length secale for this problem is the diagonal lengr! !

but FK 15 defined ivw terms of the height of the bheo The diecpgnnal

T-nnth of the edge cell can casily be expressed in term: the helght
Yo ho,

of he bed, which is the puvrpose of the denomimator in i

s, GQualda-hy are wvalid for 4Ra”93.
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Wy locus of ignition points for coal stockpiles of trapezeidal
cross-section w.th multiple Benard-like cells.

* ‘Qﬁ" ] It is also significant that the asymptotic Fform of the equation

k describing the locus of lgnition points as Ra becomes large fs of the

3 31 game functicnal form as the expression for thermal ewxpleosicn in a bed

' " in which conduction is the only form of heat transfer (i.e., TK=

) ' o constant, see section 3.3)., This is also the form of the conduction
\ ‘Jf¥~~ asvmptotes of boch the Dirichlet and general one-dimensional models of
C i Brooks et al.,1988a. In the Dirichlet model it was assumed that the

( i temperature at both ends of the bed was ambient and cthat the

consumption of oxvgen could ba neglected., For that model the ignition
point locus was described by Eq. (L.7) (Eq. (2.34)), while the
conduction asymptote was given by FK=3.514. This is known as the
thermal explosion limit as will be discussed in section 3.3. In the

general model the same convection and conduction asymptotss were found

as the Biot number became large. For an even simpler model called the
lumped thermal model, in which it was assumed that the bed temperature
was unifovm, the convection asyiptote was given by RaimO.S&l FK,
while the conduction asvmptote was given by FK/Bi=0,736, Thus it can
be seen that even for the poor assumption of the lumped thermal model

the form of the convection and conduction asymptotes is maintained, ‘
even though the constants are different. In this regard one can note
that the results of Schmal et al.,1985 indicate tho. allowing for
moisture effects has the effect of making the bed temperature more
uniform. If this is the case then the assumption of the lumped
thermal model may not be as poor as first appears. Thus, although
convection most certainly ocecurs in this edge with multiple cells, the
fact that the flow must turn through 180° and is therefore relatively

slow means that the locus of ignition points is described bv a ¥

eonduction .symptota-type expregsion.

As in the case of frusta it was found that when multiple cells formed
there was always an odd number of cells, and that the [gnitien

} oceurred at  the hot spot on the centre line of the bed. The

streamlines and isotherms shown in figure 2,16 are tvpleal., In this
4 particular case they wure obtained for a domain of width 40m and
height 10m with a side angla 307,  As can be seen the internal r~=1ly
are of equal width, and this width {s approximatelv equal to tho width

} of the outtlow region for the edpge cell,
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e M k In ovder to establish more clearly the condition for which the flow
’ ot pattern shows multiple convection cells, the width of the edge in
¢ ‘l\ figure 2,16 was veduced until the convection cells coalesced. The
\\; pre-exponential factor used was k,=10 m/s. The results of this
\\ computation are shown in f£igure 2.17, in which the number of cells has
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B il Figure 2..7 The formation of multiple convection cells in the edge
' p model for bed 3, Table 2.2 base case parameters
" I
‘ been plotued as a function of the ratio of the width of the upper flat
a surface to the height of the edge. The ratio has been exprassed in .
K
} tarms of the geometric parameters A and B, i.e, (L-4)/B, 1Ic can be
& reen Uit only an odd number of cells was found, a result thar was
. also fFound for all fri:ta and edges which showed multiple cells., The
ey “ transition between 1 and 3 cells occurred at (l-A),B=l.3 and
. 4 examinasion of figure 2.16 shows that the hoc spot geparation i3 also
‘ given by 1.5 times the heipht of the edge. This empirical result was
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found to he valid for most cases that showed multiple cells. The size
of the internal cells is such that they are each approximately of
width H/2, and this is a result that is confirmed in Chapter 3 of this
thesis, when the interior oL large coal beds is examined analytically.

Using this empirical result it ls possible to predict when multiple
flow cells will form in a coal bed of trapezoidal cross section, and
if such cells are formed, what thelr approximate size will be, 1
this way the length of the dlagonal of the edge cell can be calculated
(2.42) the
calculated, This very simple empirical criterion was used in Eqs,
(2.40) and (2.42b)
simple relationships for the locus of ignitior

and by using Eq. locus of ignition points can be
to correct the len ~h scale and the resulting
alnts can be used by
the practitioner to determine the critical parameters for

stockpilirg for coal beds which show multiple flow cells,

safe

25,3 Tgnition points in edges with only sloping surfaces

Stockpiled coal is often stored in "wind-rows", carefully compacted
beds of erushed coal with a verv shallow side angle to minimise the

Fule

effect of wind pressure. It was to be of interest to examine

ignition points for coal hLude ‘haellow side angles, Analysis
of the erge model was made |
and for which the o

geometry resembles the edge of wi.. . . beds,

.ch contained orly a sloping
15°, This
It was found that this
tvpe of adge model gave convergence problems as the reactivity of the
coal. was increased,

surface, -he horizontal was

indicating that j«viedic convection is likely to

be found in such cases. The results of this investigation are given

in table 2,3,
2
A B ¥ B Le R (m) Whi Ra L
0.995% 0.266 [23.89 7.42 0.0353 45 0,040 247 .6
0,995) 0.266 |23.87 7.42 0.0353 45 0.0875 1313.6

Table 2.3 Results ot ignition point caleculations for the sloping edge
model

From so few results It ig Jdiffleult to draw any firm coaclusions ohoun

the behaviour of this type of bed, In the cases which gave converped
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solutions, the flow pattern showed a single edge cell, with most of
the flow leaving the bed through the 0.2m wide flat part at the top of
the bed on the cerntreline, This flat portion was inciluded because
quadrilateral elements were used in the finite element program. As the
reactivity of the coal was increased it appeared that the convectilon
became periodic., To study this type of behaviour, unsteady-state
solutions are required.

2 6 Numerical investigation into convection cell size fin coal heds

in order to gain further Insight into the formation of convection
zells in coal beds, numerical experiments on an open-topped box were
carried out, with the aims of finding stable cell sizes and also
calculating ignition peints in convection cells., It was felt that
such an investigation would provide some insight into the preferred
size of the internal cells To perform this investigation, a box,
impermeable on the bottom and sides and adiabatic on the sides was
examined, The boundary conditions on such a box are the same as the
conditions on the boundaries of the adiabatic internal cells ohserved
in sections 2.5.1.2 and 2.5.2,2, The boundary conditions for the top
surface were the same as for the edge and frustum models, while on the
inmpermable walls of the box the normal derivative of concentration
was equal to zero. The boundary conditions may be stated:

The geometric parameters ace A=0, B=H/R

L8y _ 30 . N
On (z, 0), (z ,1): 7o " 7 a 0. v =1 (2.43a)
o (r,0): g~1 w0 =0, =l (2.43b)
n
| . wy 30 o
On (r,BR): inflow Y Ya' 3 (Bi + un) g, 3 n 0 (2.43c¢)
¥y 34 . &y
outflow i 0, T Bi 4, T a 0 (2.43d)

It should not be e.pected that this analysis wilil predict exaccly the
sltuation in an infinite or laterally-unbounded coal bed, as it is
known that the presence of side walls Influences the results even when
the computational domain is large (Joseph,l976). However it does
provide a ugseful insight into the formation of convection cells,

2,.6.1 Cell gize nelection In the apen-topperd boy

In this gection we are concerned with finding, by num :ical
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experiment, the stable roll cell size in the open-topped box, rather
than caleulating ignition points. Coals of two different reactivities
ware axamined and the steady-state convection patterns were calculated
for a number of different Rayleigh numbers and aspect ratlos, using
different sized boxes for the two differ:nt coals, These calculations
were performed beoth f£ar a zero ovder reaction and a first ordex
reaction., It was found that the zero order reaction Iin some cases
indicated ignition where this was not Indicated for the £irst order
reactlon. It was felt that 1t was the =zero order veactlon
approximation which was in error. An explanation for this is as
follows, The ite ative calculation used to obtain the steady-state
solution can be considered as some indeterminate time-marching
procedure, i.e, the iteration generally proceeds forward in time.
Early on in the calculation the flow rates ir the bed are very small,
as 1s the temperature rise, In this situation it is wnown that the
consumption of oxygen is signlficant, This has the effect of limiting
the temperature rise at places where the reaction rate starts to speed
up, As time progresses, the flow rates become larger and the
consumption of oxygen decreases until at steady-state it has been
shown (sections 2.5..L, and 2.5.2) that the consumption of oxygen is
negligible, However, when the approximatien of a zero order reaction
has been made, tarty in the calculation there is no limitation of the
temperature rise caused by lack of oxygen, and the bed proceeds to
ignition much more rapidly than should really occur. For this reason
it was felt that the first order reaction was more reasonable, and the
results of the calculations using a zero order reaction were
discarded,

The results >f the calculations are presented in figures 2.18 and
2.19, which .how the number of roll cells for different aspect ratios
and values of Ra/B., It can he geen that for some cases no stable
solution could be found. Inspection of the results for these cases
showed that the convection appeared to be periodie, with the cell
gizes and numbers changing continuously during the course of the
lteration. Such a result has been found by many authors e.g. Viljoen
et al,,h 1989,

From figure 2,18 it can be seen that small cells are favoured by large
values of Ra and szmall aspect ratios, L.e, very flat coal beds. This
result was also found by Gatica at al.,1987. From figure 2.19 there
appears to be a falrly large region in which there was no sgtable
steady-state solution; this region was on the boundary of stability of
one and two cellg., It ig difficult to draw conclusions as to stable
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b E cell sizes in these simulations, particularly as it is known that the
*I initial cendition affects the steady-state solution when a number of
, ‘ different flow planforms are possible stable solutions, However, it
seems that no roll cells form which have an aspect ratio less than 0.4%
& '
B This means that long flat cells are not likely to be a stable flow
. pattern,
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2.6.2 Tonition point caleulations in the open-topped boyx
© Ignition points in the open-topped box were calculated 1ising the
j ) continuation proceduve described In gection 2.4.2, The calculation
was performed for different sized boxes and several pre-exponential
. | factors, The idea behind this analysis was to find the stable roll
iy s cell size at ignition, and to relate this to the correct cholce of
.o charactaeristic length to be used in the criteria for ignition. Thig
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2 ; was important because the results of section 2.6.1 did not provide any 3
gk [ﬂ real information on the preferred troll cell size, except that ﬁ
¥ long,flat cells are not formed and oscillatory convection occurred, ;
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Figure 2,19 Stable roll cells in the open-topped box for a low
reactivity coal., 2 - two cells, 4 - four cells, u- no stable solution.

.ﬁg“;y The analysis of the results was unfortunately complicated by the fact

W&, . that the boxes which showed multiple flow cells generally had cells of

( o ﬂ; uneven size, making it very diffiecult to draw conclusions about the
A{fﬁ relationship between cell size and ignition point particle size. It

i }¢ was also found that a number of cases had no stable solution, but did

P ii not show numerical breakdown. This 1is the same phenomenon as

: »~q; discussed in saectien 2,6.1 and it seems likely that for these cases

wo the convection is elther periodic or possibly chaotic. This situation

‘ ig found moat frequently for boxes of small aspeet ratio, in which it
! ' would be expected that a large number of convection cells would be
formed, The results of the calculations are presented in table 2.4,
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;
Aspect |Number Ra 2 D_, (mm) k (m/s)| L (m)
ratio |(of cells L ‘phi pL °
o B of
1{,*‘\ box
’ 1.0 2 2083.5 0.243 9,65 10 15
0.5 4 1528.5 0.050 11.70 10 30
0.333 4 2178.5 0.015 17.09 10 45
’ 2.0 1 2573.8 0.616 7,585 5 7.5
o
e 1.0 2 1286.,0 0.154 7.585 5 15
0,666 4 936,1 0.066 7.92 5 22.5
0.5 4 3053.2 0.018 16,52 5 30
i 0.333 617.0 0.014 9.10 5 45
i
‘»r
L Table 2.4 Ignition point calculations for the open-topped box
W gﬂ
‘ From the results in table 2.4 it can be seen that the pi:ferred cell
: W ot
.0 size appears to be one with an aspect ratio of 2, i.e the cell is half
/ as wide as the height of the box and the hot-spot separation is equal
; o to the height, This {u a result of pgreat interest, as it can be
: compared with the cell size found by an analytical technique described
"gﬁﬂr in Chapter 3.
oo 2.7 Coneluding yemarks
Y
J&”f, In this chapter a numerical investigation has been made into the
(5

CoL ignition behaviour of small coal stockpiles and the edges of very
{,x,’; large ones., It appears that the particle size at ignition in this
: situation can be calculeted from a simple algebraic expression, o

within the 1limits of accuracy required by the practitioner in

AP industry., For coul stockpiles which show only one natural convection
f 5 pattern, the following expression describes the Llocus of ignition
Ot points both im frusta and on the adges of very large beds of

’ E trapezoidal cross section:

2
*
Rt S dBR Ly (2.44)
' l
In terms of physlcal parameters, to ave'd lgr.ltion the particle size
J‘ Dp must be such that:
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This 15 a similar relationship for the particle size at ignition as
was derived for a simplified one dimensional model, Eq.(l.7) (Brooks
et al.,1988a), It has been found that if the length of the diagonal
from the toe of the stockpile to the centreline at the upper surface
of the stockpile is used as the length in Eqs., (2.44)-(2.,43) then Eq.
(2,39 becomes identical to Eq. (1.7). It appears that this length in
seme way approximates the length of an "average streamline", and that
good agreement between the one-dimensional model and the frusta orv
edge model is achieved because the one-dimensional model is modelling
in some sense this "average streamline",

It was found that as the coal beds were made flatter and longer,
multiple convection cells formed. By experimentation, convection
cells were found to form when the length of the flat upper surface of
the laver was greater than 1.5 times the height of the layer. The
horizontal separation of two adjacent hot-spots in the stockpile was
found to be equal to 1-1.5 times height of the layer. In terms of the
gpeometric parameters A and B defined in Eqs. (2.1%9g)-(2,1%h), the
condition for the formation of multiple cells may be expressed:

(1 - A)

) > 1.5 (2.46)

when the stockpile shows multiple convection cells Eq. (2.44) no
longer describes the locus of ignition points, and the following
criterion should be used:

FK = b [1 - ~§~;] (2.47)
. JRa
where,
for frusta: b = 27.9 (2.48)
for edpgeg: b = 18.1% (2.4M

In the limit as the Rayleigh number becomes verwv large the particle

sioe must be such that:
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2
By 6k p (1L -¢€)H c_ exp(-v)
B D > D ey e o a . P e
e p pi b ke

(2.50)

L ‘ The constant b includes a correction to convert from the diagonal
length of the edge cell to the height of the bed. The appropriate

<

length scale when mul..ple cells form appears to be the length of the
é,\ ‘ diagonal of the edge c¢rll. Because the stockpiles always show an odd
number of cells, the widths of the internal cells and the outflow
R region of the edge cell are always equal, and the hot-spot separation
L is 1-1.5 times the height of the stockpile, it is possible to predict
. a priori approximately what this diagonal length will be., It can be
- ; seen that the functional forms of the two ipnition point criteria Eqs.
«a ; (2.44) and (2.47) ave quite differenc, indicating that the fundamental
A behaviour of the beds in each of these two cases is governed by a

o completely different mechanism., It was expected that Eq. (2.44) would
i not predict ignition points in the multiple cell case, because the
v ] internal convection cells experience a flow turn-around, and this is
. cloarly a wvery different situation to that modelled by the .
. } one-dimensional chimney. In the limit as Ra becomes very large Eq.
5 : (2.47) is of the same form as the thermal explosion limit or the
conduction asymptote for the one-dimensional models, indicating the
,dd,,} importance of conduction when cells form,

A We are now in a position to predict ignition point particle sizes in

R ¥
"'“.},w« ; small coal stockpiles from simple algebraic expressicns which can
/A easily be used by the practitioner in inuustry. In the next chapter a
" ¥
Py method is developed of finding ignition points in the interior of
et i‘; large coal stockpiles using an approximate analysis, v
J,'( " ‘
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P CHAPTER 3

S IGNITION POLNTS IN VERY TARGE COAL STOCKPILES

3.1 Introduction

In this chapter an infinite layer of coal is considered, and by using

~)ﬁ?‘ an approximate analysis the two- and three-dimensional convective
R planforms are examined and ignition points calculated for a zero order
g reaction for the interior of a coal bed, This complements the work of

! Chapter 2, in which small coal stockpiles or the edges of large omnes
were examined, and completes the analysis of ignition points in coal

Wik stockpiles. In section 3.2 the model is discussed. In section 3.3
the conduction only solution is examined as a worst case solution and

S

the thermal explosion limits are calculated using . method that can be

SE S w

=

used to obtain ignition points for the conduction-convection problem,
KR The determination of the onset of convection 1s discussed in section
?} @ 3.4, The convection planforms are examined in section 3.5 and in
section 3.6 it is shown how ignition points may be obtained for the
Y infinite layer model, and : simple relationship is presented Ffor the
4 particle size at ignition., A method for determining the stability of
o the steady-state convection planforms is described in section 3.7.

ﬁf o Related to the modelling of spontuneons combustion is the classical

, theory of thermal explosions and particularly the recent work which
,f has been done on the =2ffect of natural convection on thermal
< Lo explosion, in which it has been shown that natural convection
@j;? stabilises the reaction and increases the value of the critical
Al 0 Frank-Kamenetskii parameter (F¥, defined in the nomenclature) Ffor
explosinn, Most of this work has considered two-dimensional
P convection using approximate analyses. Jones,1973 calculated marginal
J w3 stability curves for the onset of convection in a confined
exothermically-reacting fluid, assuming the reaction to be of zexo
order, He showed that for small Rayleigh numbers it was possible to
proceed directly to explosion without convection ever becoming
significant, Merzhanov and Shtessel,1973 examined the eFffect of
e natural convection on the thermal explosion of liquids and showed that
k sufficiently vigorous natural convection could stabilise the system,

/f Kordylewski and Krajewski, 1984 used a numerical technique to study the

‘ effect of natural convection on the ignition of a porous material with
S I ; a zero order chemical reaction, They showed that the critical
condition for ignition was shifted to higher temperatures than for the

T e
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pure conduction case, and they also found evidence for the existence
of oscillatory convection at high Raylelgh numbers. They postulated
that this form of convection was slimilar to turbulence and that the
fmprovement of heat transfer due to turbulence indicated that for
sufficiently high Rayleigh numhers ignition could be prevented,
Viljoen and Hlavacek,1987 used a continuation method to trace the
branches of stabillty for a =zero order porous medium exothermic
reaction in a rectangular cavity.
method and showed that natural
stabilising the sy.tem.

They used a low-order Galerkin
effect of
The thermal explosion limit was calculated

convection has the

using a polynomial approximation to the exponential temperature
dependence. For the convecting system they found a Hopf bifurcation
at a larger critical parameter value than for the thermal explosion
limit, beyond which they could find no solutions., It was presumed that
Viljoen et al,, 1988 calculated
induction times for the onset of natural convection and for thermal
If the

induction time for the onset of natural convection is shorter than

explosion occurred beyond thls point,
explosion for a zero order reaction ir. a porous medium.

that for thermal explosion, natural convection can stabilise the bed,
This is of interest in the storage of coal as it may be the case that
the time to spontaneous combustion {s longer than the required
stockpiling time.

In addition to the considerable volume of work on the stability of
fluid motions (e.g. Joseph,1976) some work has been done on the
stability of systems with internal heat generation, considering the
stability of different flow planforms, and conditions for the onset of
natural convection. Roherts,l967 used a mean-field approximation to
study three-dimensional convection patterns in a fluid with uniform
internal heat generation., He found that two-dimensional rolls were
stable for all Rayleigh numbers (Ra) and that down-hexagons were
stable for a 1limited range of Raylelgh numbers. Tveitereid and
Palm,1976 examined the same problem and found that down-hexagons were
the stable planform for a limited range of Rayleigh numbers and that
rolls were not a4 stable planform. The discrepancy is probably due to
the approximations used by Roberts, 1967, Tveitereid,1977 considered a
similar problem in a porous layer with impermeable horizontal surfaces
and found stable rolls and down-hexagons for a limited range of
Rayleigh numbers, while up-hexagons were unstable Ffor all Ra,
Steinberg and Brand,1983 examined the instabilities in a porous layer
with a binary mixture with a fast chemical reaction. The medium was
heated either from above or below and the authors found that

stationary or oscillatory ingtabilities appeared depending on the sign
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i % and magnitude of the heat of reaction.
L 3

W In a series of papers Gatica et al.,1987a, 1987b, 1988 considered the

S AT stability of chemically reacting systems for both forced flow and
%’ § natural convection in porous media. In their 1987b paper they
: considered non-linearly stratified fluids and showed that at the onset
of convection the local convection cells could be better represented
by local eigenfunctlons than by global ones., They showed that for

‘n';f‘f large aspect ratios (width/height) FK had a stabilising effect while
e the opposite was true for small aspect ratios. As expected, smaller
AP wave number perturbations were found more likely to survive as the

aspect Yatio was decreased, Their 1988 paper examined both forced
] flow and closed cavity natural convection with chemical reaction,

, N . Strong convection was found to favour the formation of small
‘ convection cells., Viljoen et al,,1989 considered a porous medium in a
ff; cavity with a catalytic surface and showed the existence of
: oscillatory convection for certain conditions. They also showed that
the onset of convection could be marked by oscillatory instabilities.

x'\,.‘ 3.2 Model formulation

,gd‘ The model used in this chapter is derived using the same assumptions
,m as were discussed in Chapter 2, The computational domain differs, as
R P do the assoclated boundary conditions. Wa consider a
i;"*’/ laterally-unbounded layer of coal of uniform thickness which
o approximates the interios of a large coal bed, and allows assumption
A of spatially-periodic solutions,

The dimensionless Darcy-Oberbeck-Boussinesq equations defining the

. Dx . model are:
R V.u=0 (3.1)
oy A
R VID+u-Rafz=0 (3.2)
:*“-g».
. . a8 2 2 vy 0
\ | tpar+g~‘78-v §+ﬁzph92{p{l+0]'(i+T) (3.3)
o 2 2 7 8
A 0=leV T -u:VT- @, exp (1L+7T) (3.4)
Ji = h 1+
]
5,
the 7 The dimensionless variables are defined in the nomenclature and
- ,E typlcal wvalues of the parameters are glven in Appendix A. From Egs.
' }
|
&
1 ( ‘
'3 a *
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(3,1) and (3.2) one can show that there is no vertical component of
vorticity, hence the velocity u is poloidal and can be replaced by
the scalar potential y (Joseph,1976)(see Appendix H):

2 2
8 8 2
g=fx~ [ axdz ' dydz ' v l] x (3.5
where V% is the horizontal Laplacian,

Taking the curl of the momentum equations to eliminate pressure gives:

v2y = - Rao (3.6)

g +§x-vo-vzo+awﬁew{ H“é]’(l*T) (3.7)

(o1

|

1)

[+
-

0~Lle V2T - gx- ¥ T-cpiexp{ —11—:"—6}<1+T> (3.8)

For the zero order reaction model one need retaln only Eqs. (3.6) and
(3.7) with T equal to zero. The coal layer is bounded below by an
impermeable, perfectly-conducting plane while ¢he upper surface is
permeable and also at ambient temperature, This is known to be a
reasonable  assumption for real coal beds, For the oxygen
concentration boundary condition one can assume that good backmixing
occurs on the upper surface of the bed so that the concentration is
ambient there, with no flux or. the lower surface. Note that Schmal et
al, 1985 found that the outlet oxygen boundary condition had little
effect on the temperature profiles in their one-dimensional model, The
boundary conditiona ure:

a_T (0)

2 x o) =0 0 = 9 Lo (3.92)
-ai-[vix(l)]=o(1)=r<1)=o (3.9b)

3.2 1 Simplification of the model

Since the activation energy in the system is usually large (typically
=60kJ mol-L K“l) and the temperature rise small (<40°C) for
solutions on the extinpguished branch, one can replace the Arrhenius
temperature dependence by the approximation introduced by
Frank-Ramenetskii, 1969 in thermal explosion theory:

E E B T - T1
EF *FT "RT ["‘T“J 3:10)
a a
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to write:
Wy 0 (3.11)
In terms of the new variable w the model now becomes:
*
v y = - Ra'w (3.12)
2 K
0lY L Tw=v s oY) (3.13)
dr - ./R*
a
2 ﬂ?
0=Le V' T-gx VI+ ——— e (Ll+T) (3.14)
v B JRa
where
*
FK'= B A Jy (3 15)
A :-(pﬁ JrRa (3.16)
+
Ra = RE_ (3.17)
b
The temperature boundary condition becomes:
w(0) = w(l) =0 (3.18)

Because ome 1g primarily interested in caleculating ignition points in
the infinite layer, it will be assumed that the reactlion is of zero
order. Thils assumption is known to be good at ignition ( Chapter 2,
Viljoen et al,, 1988) and the validity of the assumption was checked
for the results in section 3.6,

3.3 Conduction-only solution

In the classical thermal explosion theory it can be shown that '
solutions to the conductlon-only problem exist only for values of FK

less than FK .4, where FK,,.;. depends on the geometry of the
The effect of natural convection ig to shift the thermal

ignition point to higher temperatures and to increase the value of

system,

FRopyr compared to the pure conduction case. In terms of the coal
bed this means that the ignition point is shifted to a smaller
particle size, giving a larper range of safe stockpiling sizes. One
can thus consider the pure conduction solution to be a worst case "
solutinn, The conduction-only solutlon is also applicable when the
induction time for convection 1is longer than the time to thermal
explosion,

would always be perturbations to the bed sufficlently large that a

Normally one might expect that Iin a real coal bed there

conduction-only solution could not exist, However, it may be the case

S v ' ittt G e v 4
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that the perturbations to the coal bed are not in the region of
attraction of the convective solution, Simply put, the perturbations
may be so small that before any appreclable flow develops in the bed a
thermal explosion situation has been reached. It can he shown that
when conduction is the only heat transfer mechanism in a coal bed
thermal explosion will oceur for §=3.,514 (see e.g.
rrank-Kamenetskii (1969)) . The associated temperature will be low,
-308K, Viljoen et al. 1988 have shown that if the induction time for
natural convection is longer than the time for thermal explosion then
thermal explosion will occur in the material concerned.

One can calculate the thermal explosion limit for the conduction-only
case numerically, using both a collocation method and the Galerkin
method. Thermal explosion 1is indicated by the breakdown of the
numerical method and for a zero order reaction one can check the
explosion limit by comparison with the known analytical solution. This
is instructive, because when considering the conduction-convection
problem it is not possible to obtain an analytical expression for the
ignition point, while use of the breaxdown of the computational scheme
to indicate ignition is easy and has previously been shown to be
effective in Chapter 2. For the conduction-convection problem it is
posgible to caleulate ignition points directly or by using an
arc-length contlnuation scheme, howewver both these methods become more
difficult to apply as the complexity of the model increases.

The conduction-only equation for the zero order reaction is:

d2w w

-—~§ + FK e
dz
Equation (3,19) was solved using orthogonal cc.l. u.ion and ignition
was indicated by divergence of the computations., In later sections

¢ wo, v (0) = w (L) =0 (3.19)

where the Galerkin method is used to solve the conduction-convection
problem one has to expand the exponential functlon of temperature as a
polynomial. It is useful to see the effect of this appzrximation on
the thermal explosion limit and accordingly the foliowing equation io
solved in which the temperature exponential has been expanded as a
second order polynomial about w,=0:

2 2
d w, wc
=y FFRK Ol +w+ 37 ) =0, w(0) =w(l)=0 (3,20)

For comparison purposes equation (3.20) was also solved by a Galerkin
method, The Galerkin method provides a convenivnt means of solving

A
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VY boundary value problems, and the essence of the method is glven below,
; Further details are given in many texts e.g. Kantorovich and
A, . Krylov,1964.
;,f':'

' Consider a system of two ''nked differential equations in terms of
u{x,y,z) and v(x,y,z) on w. ‘omain D, This system may be represented
by the differential opewatoys

(u,v) = 0 (3.21a)
# .
2 T, (u,v) =0 (3.21b)
1 The solutions are approximated by
¢! - * n
o u (x,y,2) =Z g wli(x,y,z) (3,22a)
o i=]
o g,z =) (
IJ. v (le!z = CZi ‘p?.i xly:z> (3.22b)
il
-
t” ‘ J wli(x,y,z),¢21(x,y,z), 1=1,2,...,n satisfy +he boundary
. ! conditions, The ¢y, ep; are the undetermined cecefficients. For
£ ; (u*,v*) to be an exact solution to the problem, i.e, for:
' *
Aﬁi Ll(u W) =0 (3.23a)
Vo L (v = 0 3.23b
S T - (5230
g,
{;ﬁﬁ i% 1s required that Zl(u*,v*) be orthogonal to the comp.-te set of
,ﬂ’ J functions €1is I=1,2,....n,,... and that Lg(u*,v*) be orthogonal
” to -he complete set of functions ®94, i=1.2,...yn,... However we
‘ E have an incomplete set with cj, i=1,2,..n. Thus only n orthogonality
) % conditions can be satisfied:
; s & - *
; ) = Ll(u nov,o, v (R, Y, 2)) ¢1i(x,y,z) dxdydz =
o N
1 } i n n
I R A d ¢ X z L
‘ 'm th_z C Py ET.E) y Sy @y (%,¥,2) | p (x,¥,2) dxdyd 24a)
l ]l::]_ jml
D
1
|
f' b
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s ' J
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.:' .. .
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B 3 v
; 0= ”f Lz(u§ (X,y,2),V (%,¥,2)) Py (X,y,2) dxdydz =
di(a\ . 0 . v D
) . u 3
. . ; 24
} ”j Lz[j?;lcli"’li(‘”"y'z) ,jé]cutpzi(x,y,z) Ppq (X,y,2) dedydz  (3.24D)
D S

» From Eqs (3.24a)-(3.24b) the coefficients €14,Cny can be
Jﬁ C determined and hence from Eqs. (3.22a)-(3.22b) the approximate
‘ ; solution to the original problem (Egs. (3.21a)-(3.21b)) can bhe

LI recovered,
. To solve Eq. (3.20) using the Gelerkin method, the conduction-only
oW -~ equation with a quadratic  approximation to the temperature
& y JA exponential, solutions are sought of thr form:
A @
o w = z A sin (nw z) (3.25)
U [ n
.o 4 n=1
. ’ “
- 5
N # ; Substitution of (3.,25) into (3.20), multiplication by the particular

value and integration over the layer yields the following infinite set
of algebralc equations:

2 2 m A 1
o ST A+ FK 1-C1) . i A A sin (p w z)
2 "m mx 2 2 np
n,p 0
. X sgin (m#x 2) sin (n n 2) dz } = 0 (3.26)

The series can be truncated at some suitable point. The resulting sect
of non-linear equations was solved using the WAG routine CO5SNBF, which
AR uses a modification of Powell's Method, The integral in Eq, (3.26)
1 was evaluated numerically,

The results of the thermal explosion limit caleculations arve summarised
In table 3.1,

)
Y
R B g o,
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' Egn solution number of Order of |Number of
method collocation| polynomial|Galerkin FKC
points terms

3.19 |[collocation 15 9 - 3,5139

" 15 7 . 3,5140

" 15 11 - 3,5139

3.20 t 15 11 - 3,9979

" 15 7 - 3.9979

et 3.20 Galerkin - - 25 4.,0200

Table 3,1, Values of the critical Frank-Kamenetskil parameter for
the conduction-only model with zero order reaction.

¢%( The wvalue of FKcrit-B.Slb for the solution of (3.19) agrees exactly
1 l» with the analyti:al solution, while FK,.;r for the approximate
#"f equation (3.20) is larger, FK .;.=3.9979. This compares with the
L l work of Viljoen and Hlavacek,1987 in which it was found that
R FRopqp=3.995, It would be expected that FRopqe £for Eq. (3,20)

would be larger than for Eq., (3,19) as the source term in (3.20) is
the quadratic
The high order
Galerkin method pgives a result comparable to the collocation method
‘ for the solution of Eq. (3.20). The approximate model Eq, (3.20)
:9‘¢, shows a larger value of FK,.y., which means that the approximation
is not conservative, i.e,

. | size than does the rigorous model,

less  strongly temperature  dependent, However

approximation still retains the thermal explosion,

it predicts ignition at a smaller particle
This point must be borne in mind

s in later sections as it is possible that the analysis of the

¢ ﬂ”f« conduction-conv.ction problem will also not be conservative, It seems
S that the breakdown of the numerical method gives a reliable indication

Py of the presence of the ignition point. This is encouraging for the

; v convection situation where direct methods of locating the ignition

point become more difficult and breakdown of a numerical scheme can
{ readily be used as a gulde to the presence of a bifurcation point,

3.4 Dnsat of ponvection

The temperature profile set up when a porous layer is heat .d elther
from below or internally depends on the value of Ra, Below a critical
value of Ra (Rayyi.) conduction is the only form of heat transfer
while beyond Ra,.;,. convection commences and modifies the the heat

v transfor and temperature profile., This is the porous medium analogue

Byetinsicam cc
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of the classical Rayleigh-Benard problem. Any lateral temperature
gradient in a coal bed in which conduction is the only form of
transport will immediately give rise to convection, As there will
inevitably be such gradients in a teal coal bed it is reasonable to

assume that convection will always be present, However it is of
interest to calculate the onset of convection pecause the wave number
at which convection commences gives an indication of the size of

o, 4
'ﬁ”i;’ '¢. convection cell which is likely to be Eirst formed, In what follows
v the neutral stability curve for the onset of momotonic convection is
!;“5{ calculated by assuming that the principle of the axchange of
« ”AH stabilities holds, Viljoen et al.,1989 have shown that the onset of
Lo “j“ oscillatory convection can in fact precede steady convection under
TR e ) certain conditions for a first order chemical reaction.

%

';if At the onsec of convection the convection solution (y, w) is
ks approximated by:
v s e
Sy R - 2 -
f. nf;gi X =& X, * § Xg * e (3.27)
N} e
~ W 6w 4B W+ (3.28)
L c 1 2 e )
,fﬂ-ﬁ'
ﬁf B :f where the subsecript ¢ wvepresents the conduction solution and the
P e parameter § is assumed to ve small enough to allow a linear theory to
e *a be formulated. The conduction solution is known to exist only f
‘{’ By v 4 FK<FKcrit|

Substitution of Eqs., (3.27) and (3.28) into Egs., (3.12) ond (3,13}
and retaining only terms of order § yields

{

v Xy = - Ra 2 (3.29)
) y! 8 Wy ) 5. 4V ¥
- 9 . FK | ~ -~
. @ — =V w, + V5 x, — + = (W, +w, W) (3.30)
| . T A e

v\\._“_

Solutions of the form
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Ql - G exp { i (kx+1y) } sin (wz ) exp (o r ) (3.31)

§1-cexp ft(kx+1y7)Y PP (a,z)esp(or) (3.32)

are sought, '

- , The form of F(a,z) is found by substituting (3.31) and (3.32) inte
’ . (3.29) and solving the resulting ordinary differential equation. The
i form of F(a,z) is given in Appendix D. This is the a.proach followed

. by Tveitereid,l1977. Egs. (3.31) and (3.32) are a first order
o ! ! truncation of a Fourier-type series where it has been assumed that a
1 - first order truncation will adequately represent the small convection
v;ﬁ perturbations to the basic solution. The conduction solution is
it approximated by an n-term series, Eq. (3.25) as it is expected that
M the solution will be conduction-dominated.

Only monotonic convection
§, v is considered and accordingly omo +ic;=0. Application of the
>t ‘ Galerkin method gives the following dispersion relation: -

1
0 - - —~§—£—- - g z nrA J F(a,z)com(nmaz)sin(rz) dz

73.33)

+
=
*
——
3t
+
l ]
r3 ]
—_—

.k
JRa

. The sytem has been parameterized so that Ra* is the only parameter
i
R which is a function of particle size. The point of the onset of ¢
M A v
V. convection is given by min(Ra*,a) on the neutral stability curve of

R Ra* as a Function of a, The neutral stability curve for FK =50 i
. ”;i’ shown in figure 3.1,

It can be seen that the curve rises extremely rapidly for 0.5>a>4, and
that the wvalue of the minimum wave number is at a=~l.6. A typical

X family of neutral stability curves is presented for FK*=SO, 70, 80 in
figure 3.2,

‘f It is expected that the range of stable wave numbers will lie close to
the minimum value of a and so figures 3.1 and 3.2 give a useful
T indication of where one should seek solutions to  the

: , convection-conduction problem. Tveitereid,1977 found that the range
of stable wave numbers for a porous layver with
peneration was quite smal.,

internal heat
and close to the minimum wave number at

- W v AR A B
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The neutral stability curve cannot exist for values of FK¥ greater

than the thermal explosion limit., One can also calculate the thermal
explosion limit by using a continuation procedure at a fixed wave

number to calculate Ra® for the onset of convection., The thermal
o explosion limit is indicated by breakdown of the numerical method,
i FK¥ is used as the continuation parameter. The results of such a
, calculation can be seen in figure 3.3 , where the neutral stability
T curve appears as the almost vertical line terminating just above the
o thermal explosion limit curve that was calculated using the exact

R ~ralue FK=-3,51.
f e For the parameter set used in figure 3.3 the numerical scheme
Q% “;af; indicated thermal explesion at FK*=100, Although the curve does not
‘?:?fiﬁ exactly intersect the thermal explosion limit curve, at the point that
y ,‘wgif the continuation scheme broke down the tangent of the neutral
o w stability curve was almost vertical and steepening, which indicates
e ) that FKY at the explosion point had been found within the limits of
. ﬁ' c et acsuracy of the numerical scheme. As expected Ra¥ at the explosion

noint is not found very accurately.
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3,5 Steadv _and unsteady-state convection patterns

The main iInterest in these results lies in the steady and
unsteady-state convection patterns and the determination of ignition

points, Steady and unsteady-state convection patterns were obtained
for the zero order model «closely following the approach of

%?r¢' = Tveitareid, 1977, The Galerkin method is used to transform the set of
o ,;_" partial differential equations (3.12)-(3,13) into either an infinite
;'@;; set of algebraic equations for the steady-state case or an infinite
" set of ordinary differential equations for the unsteady-state problem.
. f, A brief description of how this was done 1s given in Appendix D,
ca - Solution of a sultably truncated set of these equations allows one to
'ff37 recover the temperature and velocity profiles in the coal layer.
prad
e Solutions of the form:
n‘;{'i’.: S
b w=19 Y B exp{ i(pkx + qly)t sin (rhz) (3.34)
] S pqh
. i h p.,q
b | x =% 5 B . exp{ i(pkx + qly)y F. (\,z) (3.35)
pgh ‘ h e '
h p.q

are sought,
where:

22 o ()2 + (qu)2 (3.36)

in which k and 1 are the x- and y-components of the wave number a,

The limits on the integer summation indices are:

o & (p,q) <@ 1l2h<w (3.37)

The form of Fh(A,z) is found by substituting (3.36) and (3,37) into
(3.12) and solving the resulting ordinary differential aquation,
. : Fn(X,2) is given in Appendix D.

| To obtain the system of algebraic equations, Eqs. (3.34)-(3.35) arc
\ substituted into (3.13), the equation multiplied by its welighting
} function ar: integrated over the layer, This results in an infinite

set of equailons in the coefficients B As discussed In section

rsg’
v, 3,3 the exponential function of temper;iure is approximated by a
N S M second order Taylor expansion about w=0, which it 1is exp.cted will
I under-estimate the reaction rate dependence on temperature, In
fi steady-state form the infinite set of equations is:

ARVERH
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1 22 2 2
- - - A 1651th A -
0 5 Brsg (g°x° + v°) }: }: quhBtuf { b (£,g,h,))
,E  ptt=r
qtums
* g
2 2 K[ 1 [EREIL)
(ptk® + qul®) a (f,g,h,A) } + — { =B + +
/Ra* 2 rsg g r=g5=0
- L3 B . o (fgh) (3.38)
2 “pqgh "tuf '8 :
h,f p+t=¥
q+um=s
where! ‘
v - (rk)2 4 (s1)2 (3.39)

The integrals a(f,g,h,A), b(f,g,h,A) and c(f,g,h) are given Iin
Appendix D, In order to limlt the solutions of this set of equations
to those which one would expect are physically reasonable, the
infinite set is truncated such that modes for which:

gz+%r2+zl;'52>l\2+l (3.40)

are neglected, where A is an integer truncation number, This is the
form of truncation used by Tveitereid,1977 and Tveitereid and
Palm,1976. The components of the wave number satisfy:

k2412 -4 1% = a2 (3.41)
Only real coefficients where:
Brsg = B-r-sg = Br-sg = B-rsg (3.42)

are considered.

These westrictions allow hexagons, rolls and squares to be planforms
25 these are the most Likely solutions (Tveltereid,1977, Tveltereid
and Palm,1976) and it is known that these are physically reasonable
solutions (Chandrasekhar,196l, White,1988, Busse and Frick,1985),

Steady-state solutions were obtained using the NAG routine COSNBF,
whichh uses a modification of Powell's Method, The integrals
a(f,g,h,)), b(f,g,h,)) and c(f,g,h) were evaluated numerically, and
the results were checked against an alternavive form of the computer
program in whiech the integrals were expressed analytically. The

il et e L " — &, 24 Riorarsim e, LA A ¥
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results were identical. A listing of the computer program is given in
Appendix E.

Figures 3.4a and 3.4b show a horizontal section of the infinite coal
layer at half the height of the layer. The down-hexagonal planform
can be clearly seen, with the principle vertices of the hexagons at
the centres of the triangular-shaped blobs,

140
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Figure 3J.4a Horizontal section of the coal layer at half-height
ghowing isotherms with a=l, r=90, FK=10,37

The planform in figure 3.4 was obtained by solving Eg. (3.39) in
unsteady-state form, The left-hand side of the equation was replaced
by pdw/dr., The initlal condition was a mild up-hexagon planform, (An
up-hexagon is defibed as one in which the flow rises at the centre of
the centre of the cell when viewed from above), It was found that
using an up-hexagonal initial perturbation gave a down-hexagonal
pattern after some time, indicating that the up-hexagons are not
stable to perturbations while down-hexagons are, The results for
figure 3.4 were obtained with a truncation number of 2, which gives 2%
terms. It was found that the computational effort increased
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Figure 3.4b Horizontal section of the coal layer at half-height
showing contours of equal vertical veloeity with a=l, r=90, FK=10.37

dramatically with increasing truncation number, restricting most of
the calculations to A=2, It was found that A=l was not a satisfactory
sruncation, as it gave rise to spurious oscillations. Down-hexagons

appeared to be a stable planform, as solving both the steady- and
vt unsteady-state problem with an initial perturbation of down-hexagons
resulted in a final steady pattern of down-hexagons. An initial
,4 pattern of rolls did not show any change to a hexagonal pattern during
, ! the time of integration, indicating the stability of rolls to small
s perturbations. Ideally the stability of the steady-state solutions
should be established by examining the temporal behaviour of a

! perturbation to the steady-state solution. Although such a stabilicw

analysis was attempted it was found that the determination of the
eigenvalues was  Insufficiently aceurate to vyield any useful

LR J
T 4 ‘ information (see section 3.7). The tentative conclusion that rolls
, ”S and down-hexagons are the stable planforms in this system is supported
|
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by the results of Tveitereid,1977,

The results of unsteady-state and steady-state calculations have becn
compared and it has been found that provicded one ls far from lgnition
the two methods give the same answer i1n the limit as the integration
time becomes large. In most cases the stvady state 1s reached only
after many yeavs, tlose to dignition the results show poorer
agresment, with the unsteady-state caleulation showing explosion when
the stoady-state calculation does not. The reason for this is
probably that the zero order reaction approximation is not good during
the early stages of the flow and temperature development in the
unsteady-state calculation, Earl; on the flow rates are very small,
and one would expect oxXygen consuption to be significant and thus
limit  the  temperature rise, However, with the zero order
approximation there is no oxygen limitation at low flow rates and
hence the temperature can rise more rapidly, leading to explosion,
The steady-state calculation does not suffer Ffrom this problem,
presumably because the correspondence between iteration steps and real
time is not such that high oxygen consumption is required eatrly on in
the calculation,

3.6 Ignition points in_the interior of the stockpile

One can determine the ignition points in the layer elther dirvectly or
by observing numerical breakdown of a continuation scheme as described
in section 3.3, To calculate the ignition points directly one needs
to locate the limit point of the system of algebraic equations (3,38),
The system can be written:

£, (zp) =0 ,i=1,2,....,n (3.43)

where p 1s the bifurcation parameter. The condition for a real
bifurcation point is:

det(J) = 0 (3.44)

where the celements of the Jacobisn matrix are:
d fi
eij - 5“33u yii=42,00000 00 (3.45)

Equation (3.44) 1s equivalent to saying that zero is an cigenvalue of
J, henee ignitlion will be indicated by an eigenvalue equal to zero.
Thus to locate the ignition point directly one must solve the svstem
(3.43) and (3.44) simultaneously, There is of course the possibility
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that ignition 1is marked by a Hopf bifurcation, but only real
bifurcation is considered in this work,

In the indirect method of ignition point calculation continuation in
the bifurcatlon parameter (e.g FK* for a fixed Ra*) is used until

divergence of the method indicaves that the ignition point has been
found. In this work that was the approach followed as it was found
a8 that the eilpgenvalue calculation was wunreliable and apt to give
4 Vo bifurcation points for non-physical conditions. For some cases the
“ determinant of the Jacoblan J was caleulated analytically at the

I R ¢
- point located by the indirect method, and it was found that det(J)
v : was in fact extremely close to zero, indicating that this simplistic
#
Lo method does give a good estimate of the ignition point
W o]
Y? {J;,
qué 4 In figure 3.5 the locus of ignition points is shown for seven
é” different sizes of roll cell, calculated oy the continuation method
ion
R for the =zero order reaction.
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Figure 3.5 Locus of ipnition points for various sizes of roll cell
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The vesults were obtained for a truncation number A=2. It was found
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that the locus of ignition points was described, to within the
accuracy of the calculation, by FK*//Ra*aFKi—constanc, FRy being a
function of the wave number. In figure 3.5 the ignition loci have been
plotted as FK*(l/FKi-l/S.Z) versus JRa¥. This has been done so that
the curves for different wave numbers can be distinguished while still
showing the functiomal dependence. The height of the layer has been
used as the characteriscic length, Of interest was the result for a=l,
2 \ the largest w»oll cell examined, where it was found that for FK*<60
W the system proceeds directly to thermal explosion., Such a result was

S also found by Jones,1973 and can be expected if the induction time for
‘ ’rx\ﬁg the onset of corwection is greater than that for thermal explosion.
- This situation .s likely to arise in coal beds of small particle size
AR " if the roll cell size { wvery large. Note also that the curves go
'$ ' ﬁt’f'ﬂ; through a minimum slope for a=m, suggesting that there might be some

{ﬁgf%; significance for this cell size.

. ;~°’.’

p ‘ﬂf,Sf”; As expectad the presence of ce.vection shifts +=he thermal :uplosion
/ Y;f”‘ﬁ; limit to a higher critical vaiue, The functional dependenca of F¥.:
{; K j for a single wave number a=r is shown in figure 3.6, The wvalidity of

! the zero order reaction assumption was checked and it was *ound that
at ignition the consumption of oxygen was extremely low.
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I In figure 3.7 the locus of ignition points as a function of cell size
is shown.
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Figure 3.7 Locus of ignition points for roll cells as a function of

ne can see that there is a "best" cell size, L.e. one for which the
value of FK; is largest. This behaviour was not predicted from the

e
* AN

R iznizion ariterion of Brooks et al,,1988a, as in that expression:

p Sta Ra; = FK (3.46)
and so the ignitcion particle size was proportional to the cube root of
a the bed length, and Dpi should decrease montonically with decreasing
bed length L. In Chapter 2 it was found that for frustum-shaped coal
‘ ) beds or bed edges showing only one flow cell Eq. (3.46) was able to
} predict satisfactorily ignition points Lf the length of the diagonal
4 was wsed as the bed length scale L. The flow pattern in that
situation was dominated by flow in through the sleoing surface, while

the present situation is very different in that all the flow enters
and leaves through the uppet surface of the infinite layer. The
"hest" cell gize phenomenon can be explained asz follows., For very

k-3
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large roll aells, the average streamline 1is long and slow, and
convection is not very strong, 7Yhis means that FK; at ignition will
not be increased very much above the thermal explosion value. As the
cell size is decreased somewhat the convection becomes stronger, and
the stabilising effect of this strong convective flow increases FK;
compared to the large cell size case, If the cell size is decreased
even more, so that the roll cell is very narrow, the flow must then
turn around very sharply. This requirement has the effect of slowing
down the flow so that the convection is now not as strong as for a
medium cell size, Examination of the velocity profiles for different
roil cell sizes showed that this reasoning s likely to be correct.

From figure 3.7 it can be seen that the variation of FK; with cell
size is small, and chat for the purposes of the practitioner FK; can
be considered to be a constant. The cell size for which FK; attains
its maximum value {s aw~r, which corresponds to a flow pactern in which
two adjacent hot spots are at a horizontal seperation equal to the
height of the layer. This can be seen in figure 3.8, where the
isotherms in the layer are sk . for a=r at ignition. This is an
{mporzant result, as it cont 3 the results of sections 2.5.2.2 and
1.5 2 in which 1t was found that the preferrad widtl, of the internal
seils was half the height of the bed, and that the hot-spot separation

was L-1.% times the helzht of the bed,
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It seems likely that such a cell will Form preferentially in the layer
and that it is reasonable to express the ignition criterion as:

FKi = 5,17 (3.47)

In terms of more familiar variables, a stockpile is safe provided that

Br6k o (1~ o) HY o exp(-7)
D,> D = D P (3.48)

pi 5,17 ke

One can compare this result to Eq. (3.49), which is the criterion
of Brooks et al.,1988a expregsed in similiar variables:

1/3

(3.49)

2
3 1 - e 150 vy "8 p 6 kO exp (-v) T
€ g P

a

The functional dependence of Dpi on the coal bed paramelcrs 1s seen
to be quite different for the two criteria, The implication of this
is that En. (3.46) gives a pood description of tue ignition point

NE R

locus for a coal bed in the natural convection flow does not
experience a flow direction reversal, but 1is inadequate for the
deseription of the interior of the coal bed. For the interior of the
bed Eq. (3.47) should be used to determine ignition points, The
question of when multiple flow cells form n a coal bed has heen
partly addressed in Chapter 2. Eq, (3.47) has the same functional
form as the asymptotic forms of Eqs. (2.40) and (2.42b) as Ra became
very large, the expressions which were found to describe the locus of
ignition points in stockpiles of trapezoldal cross section when
multiple eonvection cells were present., This is a very significant
result and gives a stronpg indication that the form of the expression
is of the right kind. Note that the length scale in the two
situations 1is different, being the height of the layes for the
infinite layer model and the length of the diagunal of the codge cell
for the trapezoidal stockpiles described by Eqs., (2.42b), However the
constants have been corrected so that the two equations may be
compared directly. The reasons for the differences between the
congtants are discussed in sectlon 4.3,

It is also of interest to compare the equation deseribing the locus of
ignition points, By, (3.47), with the result of Viljoven and
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Hlavacek, 1987, For a zZexro order reaction in an
exothermically-reacting porous medium in a cavity they Efound a Hopf
bifur:ation at FK=5,2 beyond which they could find no solutions, It
was presumed that explosion occurred beyond this point,

Ignition points for the hexagonal planform have not been calculated,
but one would not expect that the result would be very different to
that for roll cells, The fact that it has been shown that roll cell
size has only a second order effect on ignition, and the result of
Tveltereid,1977 in which it was found that the Nusselt number in a
porous layer with internal heat generation was essentially independent
of flow planform, both indicate that hexagons are unlikely to give a
different ignition c¢riterion to that found for roll cells. It would
be of interest to calculate ignition points using a higher order
truncation than has been done, The probable effect of this would be
to move the position of the maximum temperature in the bed closer to
the surface and to increase the wvalue of this maximunm, The
possibility that ignition has been found at a slightly lower maximum
bed temperature than would nccur in reality means that Eq. (3.47) is
probably a conservative criterion, in that it predicts ignition at a
larger particle size than occurs in practice., The increase i{n the
computational effort required to examine higher order truncations
would be considerable.

1.7 Stability of steadv-state solutions

As mentioned in section 3.5 it is desirable to test the stability of
the steady-state solutions, In this section a method 1s described,
based on the approacﬁ of Kimura et al,, 1987, for examining the
stability of the steady-state solutions to small perturbations. It
was found that the numerical routines used to evaluate the eigenvalues
required in this method were verv unreliable. We consider small
perturbations to the steady-state Fourier coefficients and assume that
the perturbations are sufficiently small to allow a linear theory to
be formulated, The perturbations have an exponential time dependence.

We write:

N

B + 8
pah pgh P

qh exp(opqh r) (3.,50)

Where:
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The Bégg are the steady-state coefficients. The trial function
{Wm; o are obtained by substituting Eq. (3.50) into Eqs, (3.34)-(3.35) to
R give:
' -5 T el exp { 1(pkx + qly)} sin (whz) (3.53)
! ’ w , pqh S.PC{h P PK: qly .
o) h p.q
> RN - 80D, X i(pkx + ql F_ (\z 3,54
2 ey X ZZ[pth‘pqh exp { i(pkx + qly)p F (A,z) (3.54)
J *:, a h piq
— ?‘0>
,:;h&“vw" The form of Fy,(X,z) is found in the same way as in section 3.5. Egs.
,"P("*' - ; (3.53)-(3,54) are then substituted into Eq, (3.12) and the Galerkin
(.‘" A method applied, This yields the following infinite set of equations
¥ .
. in the g'pqh.
£ oo
S ) 2. .1 22 2 (o) (o)
,,// i #{“ 2 g'r:sg 2 S-r:sg (g™ + v 2 [ §‘t:uprqh * gpqhBtuf X
v h,f ptt=r
. Aoa qiu=g
: )ﬁ *:I“", &k
AR P biegh) 2 etk + qui®) a (Eghn) e P e
e ; *l 2 “rsg
SO JRa
L, Fa
Ve 1 (o) (o)
Y +Z Z [ 5 [gcuprqh““quthf ¢ (f,g,h) (3.55)
2 I 1 h,f pht=v
Lo q¥u=s
o .vv'h \{‘ ':‘; £\
L
gt
wherc:
SRR Ve ol v (s1)? (3.56)
1 The integrals a{f,g,h,\)-c(f,g,h), which were evaluated numerically,
R are given in Appendix D, Noting that:
t g.rsg - arsg §.rsg (3.57)
iy L, enables us to write the left-hand side of Eg. (3.53) as:
.' v '
. ® ., :
' ? 2 Ursggrsg (3.58)
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Thus it can be seen that the system represented by Eq. (3.55) when
suitably truncated is an eigenvalue problem of the form:

ot =AC (3.59)

The behaviour of the eigenvalues ¢ determines the stability of the
steadv-state solutions. If any of the eipgenvalues has a positive real
part, then that steady-state solution is not stable to the small
perturbation ., as the perturbation will grow in time. If all the real
parts of the eigenvalues are negative, then the solution is stable. If
the real part of one of the eigenvalues is zero and the imaginary part

nen-zero then the solution is oscillatory.

As discussed in section 3.5, it was found that the commercial routines
that were used to calculate the eigenvalues were very unreliable and
unfortunately this method could not be used to determine the stability

ot the steadv-state gsolutions,

T3 Cogelusion

Using a Galerkin method, natural convection planforms in an infinite
laver ot eoal have been obtained, and it was found that down-hexagons
and roll cells were the only planforms that were stable in time., A
simple continuation scheme was used to caleculate ignition points in
the laver for a number of different roll cell gizes, From these
caleulations it was possible to present a simple critervion for the
ignition point particle size in the interivr of a large coal bed which
can be wused by the practitioner to determine safe stockpiling
procedures,  The funetional form of this criterion is similar to the
one found in Chapter 2 by numerical experiment for coal stockpiles
which che natural convection flow slowed multiple convection cells

as the Ravlelgh number became very large. Because ignition points were
found to oceur at much larger Rayleigh numbers (for the same coal
reactivity)y in the infinite lavetr, no investigations were made on the
form of the ignition point criterion for very small values of Ra to
see Lf the eriterion for the infinite laver had exactly the form as
was found in Chapter 2. Thus, while we are fairly cenfident of the
form of the ignition criterion for multiple cells for large Ra, the
funciional form must still be verified for small Ra. In Appendix F
details are pgiven of how the analvsis of this chapter ecould he

vt ended to the case of a first order reaction.
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CHAPTER 4

IMPLICATTIONS FOR THE MODELLING OF SPONTANEQUS COMBUSTION

It has been seen that all the models of spontaneous combustion
discussed in this thesis, from the one-dimensional chimney and the

r}ﬂ#{ ) E simplified three-dimensional model in Chapter 1, through to the two
S Sy g and three-dimensional models of Chaptews 2 and 3, all show
Jf“,; steady-state multipliclity. It is this multiplicity that gives rise to

the problems experienced by the practitioner: under certain conditions
the coal stockpile may be at a low temperature steady-state (close to
ambient temperature), while at the same set of conditions the coal bed
may be burning at a temperature of many hundreds of degrees. The
situation is complicated by the fact that coal stockpiles which are
"safe" may be safe for two different reasons, as was discussed in
section 1.3. The precautions and stockpiling procedures to be taken
depend on correctly identifying the reglon in which the stockpile lies
in terms of figure 1.2, The essential feature as far as the
pra:titioner is concerned is to ensure that the coal bed is not in the
situation where only a high temperature burning solution exists, It is
thus vitally important to be able to identify the parameter values for
which high and low temperature solutions exist.

=y For coals commonly found in practice, a plot of maximum bed

temperature as a function of partlcle size has the form shown in
figure 1.2, There are other variants to this bifurcation diagram, as
discussed by Brooks et al.,1988a, but these are found less frequently
and for rather narrow ranges of parameters, Inspection of the curve
in figure 1.2 showed that the two points of real interest were the
ignition point Dpi' and the point at which the maximum temperature
on the ignited branch of solutions ceased to be acceptably low D

pe’
If one were to set an upper limit on the acceptable temperature on

'; . this branch of solutions, e.g. T=350K, then one could give a
definition for "safe" coal stockpiles. As it has been shown that the
maximum temperature at ignition is also of the order of 350K, it would
appear that such a definition could be:

Stockpiles are safe with T=350K {f:

T v 0«<D_ <D  and Dp > D (4.1)
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Stockpiles are unsafe if:

D <D <D, (4.2)
pe P pi

Dpc is the particle size on the ignited branch of solutions for

) which the bec temperature is at the specified maximum. Classifying a
P - bed as safe 1if Dp<Dpc needs qualification, The particle size Dpc
can be predlcted from the lumped thermal model of Brooks et al,,1988a

once the maximum temperature has been set (Glasser and Bradshaw,1989),

Because of the assumptions that were made in the derivation of that
model, the exact wvalue of Dpc may be in error, although the
- expression used to predict it is likely to be of the correct form,

cw o) However, this 13 not a very good storage criterion, because in time
J the bed in this situation will become less safe 1f left untended. The
3 temperature rise for this type of bed was low because fine, reactive
£ particles consume all the oxygen close to the surface of the bed from
c)y" f where the energy generated can easily be dissipated to the

2 surroundings. In time this outer layer of coal will become completely

oxidised and cease to scavenge the oxygen close to the surface,
¥ ; Oxygen will then be able to penetrate deeper into the bed, from where,
' because of the high resistance to flow of these gmall particles, the
heat cannot be removed by natural convection, Thus the bed will

hecome less safe as time progresses, It may be the case that the bed
L will have been dismantled before this happens, but as there is as yet
iQ@V:. ; no easlly applied criterion for safe stockpiling times, it would
e appear to be far better to consider such a bed as inherently unsafe.
o PR It was for this reason that the work in this thesis was directed
: iﬁg;} ; rather towards identifying ignition points than the puint Dpc.
L o A In the preceding two chapters two different methods were used to
analyse different stockplle sicuations; a numerical method was used tn
v . examine small coal stockpiles and an approximate analysls was used to
. investigate the behaviour of very large coal beds, From these

;o analyses simple criteria were developed whirli can be used by the
”! practitioner in industry to determine the ignition point fot a given

! coal stockplile, In this chapter the results from the two methods are

! discussed in order to give an overview of how to predict the ignition

j‘ i point in a coal stockpile.

4,1 The _small stockpile model

In Chapter 2 a numerical method was used to examine small c¢oal
stockpiles and to determine when a stockpile can be considered to be
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small, It was found that for certain sizes of frusta or edges of
large stockpiles the mnatural convection £low showed only one

circulation pattern. All the flow was found to enter the bed through
the sloping surface and to exit through the upper surface, In this

case the locus of ilgnition prints was well-described by the following

2
%
N IR

B

equation:

(4.3)

The appropriate length scale for such beds has been found to be the
length of the diagonal from the toe of the edge or frustum, to the
upper surface at the centreline of the frustum or the inner boundary
If this length was to be used in Eq. (4,3), chen
the term involving the geometric parameter B would fall away and Eq,
(4.3) would be exactly the same as the relationship derived for the
of ignition points for a one-dimensional model (Brooks et
al.,1988a), which indicates that the one-dimensional chimney can be
seen to resemble

of the edge region.

locus

the small frustum ot the edge of a large coal
stockpile where there is only one flow cell, Criteria of this form
were found by Brooks et al,,lv88a to describe the ignition points of
If the right hand side of
Eq. (4.3) is multiplied by a constant, then for a lumped thermal model
(uniform bed temperature) the constant 1s = 0,541,
a model with the ends of the bed at ambient
temperature and the general model the constant = 1, These results
give confidence that the form of Eq. (4.3) is indeed correct.

other simplified one-dimensional models.

while for a
plug-flow model,

Eq. (4.3) is a simple algebraic expression whizh may easily be written
in terms of physical parameters that are more readily understood by
the practitioner. It is possible to restate the relationship as a
criterion for choosing the particle size to prevent ignition in the
bed:

2 , 1
1.« ] [ 150 v" B p 6 k exp (-y) H [g2 l__} /3

D > D, = [
P pi € nT, &p, B
(4.4)

It can be sgeen that each of the parameters appearing in Eq. (4.4) is
easily measurable, and hence it is a simple matter to predict the
minimur particle size that is allowed Ffor a partlicular coal stockpile
in order to prevent spontaneous combustion, This is a very powerful

plece of information for the coal mining industry.
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The practitioner has control over only the parameters ¢ and H, while
the rest atre properties of the coal and cannot be altered. Eq. (4.4)
shows that compaction of a bed which lies on the extinguished branch
of solutions <Dp>Dpi) will increase the required minimum particle
gize for preventiolr of ignition, This result is contrary to intuition
but can be explained if one remembers that the bed 1s safe because
natural convection removes the heat generated by the chemisorption
reaction, Compacting the bed hinders natural convection and so reduces
the capacity for heat removal, making the bed less safe, Eq. (4.4)
shows that the smaller the bed the safer it will be, however the bed
length appears to the one third power, so the dependence is not very
great. One can see that the ambient temperature has a large =ffect on
the particle size at ignition; coal beds are safer if the ambient
temperature is low.

In order to be able to use Eq. (4.3) it 1= necessary to know that all
the flow enters the bed through the sloping surface and exits through
the upper surface., If this is not the case then Eq, (4.3) is no
longer a good description of the locus of ignition points in the coal
bed. This would be expected, as it Ls known that Eq., (4.3) describes
the behaviour of a chimney: the chimney is clearly very different to a
bed in whizh the flow pattern is anything other than grossly straight.
From numerical experiment it was found that as the edges or frusta
were made longer and flatter the flow pattern showed Benard-like
convection cells, internal cells for which the flow enters and leaves
the bed through the upper surface, i.e. the flow turns around through
180°. It was found that this occurred when:

l - A
B

> 1.5 (4.5)

Eq. (4.3), written in terms of the peometric parameters A and B, means
that Benard-like cells will form if the length of the upper surface of
the bed is greater than 1.5 times the height of the bed, It was found
that these roll cells exhibited several characteristic features. Only
an odd number of cells was formed, and the width of the internal roll
cells was equal and also equal to the width of the outflow regioen of
the edge cell. The horizontal separation of adjacent hot-spots was
approximately 1-1.5 times the helght of the layer. From these
characteristics and using Eq. (4.5) 1t 1is possible to make a
prediction about whea multiple cells will Fform in a coal stockpile
with a trapezoidal cross-section, and to estimate how many cells will
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be formed. When multiple 2ells form in the edge model, .e, the
two-dimensional cartesian coordinate model, the internal cells have
physical meaning, in that they are roll cells, and this typo of cell
is known to exlst in porous medla., In the case of the frustum, the
assumption of radial symmetry used in Chapter 2 means that all the
cells except the eentral one have a toroldal shape. Toroidal cells
are not found in practice, but are a result of imposing a symmetry
that i+ not felt in reality. It can be argued that if the radius of
curvature of these toroidal cells 1s very large then they may be
considered to approximate roll cells, This leaves the problem of the
contral cell, which could perhaps be considered to bhe an appraximation
to a hexaporal cell of the type which are known to be found in
practice. However 1t is clear that, while it is of interesc to
examine the frustum which shows multiple cells, the results obtainad
from those cases ave less meaningful than those obtained from the edge

model,

When analvsis indicates that multiple cells will be formed it isg
necessary to use a different expression to describe tha locus of

fonivion points. It has been found that a sultable esxpression is:

B3
FE = b (1 - 5//Ra ) (4.6)

For the edre model [t is reasonable to approximate b=18.15%, while for
the frastum h=27.90  As discussed above, more rellance can be placed
on the results from the edge model than on the frustum in this
multiple flow wcell sirtuation, and hence for the purposes of the
pracuitjoner the locus of ignition points can be expressed as:

¥
FK = 18.15 (1l -5//Ra™) (4.7

The ecorreer length scale in the situation when multiple c¢olls are
formed was found to be the length eof the diapgonal from the toe of the
boed to the corver of the upper surface and the {nner boundary of the
edpe cell, This lenpth can  be estimated a prior! from the
characteristics of the roll cell geometry deseribed above. This would
be done as o tollows.  Firstly Eg, (4.5) is used to determine that
mltiple cells exist. Tt 1. possible to determine how many coells will
form: this can be done because only an odd number of cells will form,
avd the hot-spot senaration s 1-1.5 times the heipht of the laver,
Ouce the number of cells has been decided, it is an vasy matter to
divide the stoekplie into roil eells and an edge eell, beecadne the

widths of the roll cells o equal, and the oafloy region o1 the adpe
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‘ @"~1mﬁ ecell is also of the same width., In this way the required diagonal
% f
. 3 length can be estimated. Because all the ignltion polnt computatlons
N oy sy
VE }% except those for box and the wind rows were made for an angle of 307, v
P Rl ¥ . X
- o %r and because the diagonal length can be expressed in terms of the 4
by . H
v height, the constant in Eq. (4.7) has been corvected for the effect of :
i 14
the ‘length scale, so that the parameters still appear exactly as %
) defined in the nomenclature. é
- ' 71;‘
B ‘:,’F.‘. 4
al : It ¢an be seen that the asymptotic form of the ignition criterion for :
. ¢« . . :
i Ra lavge 1s the same as the criterion for thermal explosion or the Ly
BT I . 5
“ conduction asymptotes for the one-dimensional models (Burooks et |
. al., 19884y, indlcating that the coal bed in this case is i
. t i
S o 4 conduction-dominated because of the weak convection caused by the flow }
N g b j
S reversal. However compacting the bed would make it less safe, 1B
; N/ 2
(//}]/, 7’ ' i ;
SRR W
S A In terms of physical parameters, the condition for safe stockplling i
L for large Ra can be expressed as: g
PR " 8 !
o ¥ , 2 i
> Pe ] By bkyo (1 e H” e expl-y) . AR
‘ g D.» D, = - (4,8) i
y P pi 18,15 k ' HE
. e i
W it |
g 0
T } !
’ i
T
i
<, The dnterior model s
SR E S A In Chapter 3 an approximate analysls was used to examine convection
PSS ",'” ) i R . . N
Tl # peanforms in an infinite laver, and to derive a criterion for ignition
I ot
A ;L , points in this case. Considering an infinite layer allows the
. S * i
\,4f‘“% ﬁ acsumption of spatiallv-periodic solutions and allows far larger
B oot damaing to be investigated than would be possibile with a numerical
S g ’ﬂ e thod, In order to perform the analysis several simplifving
R T (
T Yoy arsumptions had to be made over and above tho. e made in Chapter 2.
vl o Culy the case of a zero order reaction was conslidered, and this is
.J‘,)‘ " w 3 3
R Bhown to be a very reasondable agsumption,  The positive exponencial
! approwimation was made, which 15 reasonable in view of the larpge
‘ whivation energy of the chemisorption reaction. A more restrictive

agsumption was  the replacement of the exponential temperature
dependence in the energy enquation with a quadratic expansion abour
fieal), It was shown that this approximation is likely to prediet

igrition points at parameter values larger than would occur in

W, ‘ reality, i.,e. the results are nor conservative,

It was found that for this model the locus of fpnition point. was wery
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well drucribed by the exprecsion:

FK = 5.17 (4.9)

The effect of roll cell slzs: on the ignition polnt was found to be
small, and the constant 5,17 in Eq. (4.9) represents the result for a
roll cell size for which the horizontal separation of hot-spots was
equal to the height of thte layer. It appeared likely that this cell
size would be formed preferentially in the laver. This is
particularly interesting result, because a similar result was found in
the numerical investigation of the edge which showed multiple cells,
i.e. *he hot-spot separation being 1.-1.5 times the height of the bed.
This was confivmed in the open-topped box simulations in section
2.6.2, This result allows one to be confident that the formation of
multiple cells and thelr size can be predicted sufficiently
accurately. One would not expect the two criteria to agree exactly,
as the presence of boundaries in the numerical investigation will
obviously affect the results (Joseph,1976). One can also see that
Egs.t4.7) and (4.%) are of the same functional form for large Ra,
however the constants for the two cases are quite different, being
13.15 and 5.17. These differences are dlscussed in section 4.3, Eq.
i4,2) ean be expressed in re.ms of physical parameters as:
3 776 ko N (1L - ¢) H2 gnrexp(ij)‘

Dp - Dpi o ) 5.17 lg T (4,10

Q

4.4 comparinon nf the amall stockpile and interior models

2

As has already been discusgsed, 1t would not be expected that the
ignition point eriterion for the small stocipile with a single
convection cell would be the same as the criterion for the stockplle
with nultiple conveetion cells. However one might expect that the
cupression for the numerical investigation of the latter case, Bq.
4. /) would apree with the one developed from the analysis of the
iatinite laver, Egq. (4.9, It has been shown that the two ewpressions
are of ossentially the same torm, however the values of the constunts
that  appear in the two expressions are quite different.

The most likely cauge of this difference Is the low order truncation
used  in the  approximate  analysls  of  the infinite  laver. The
truncation  that was used  to ensure  reasonable amputation  times

allowed only 2 terms to deseribe  the wertical wariation of the
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velocity potential and temperatvre, This means that the position of
the hot-spot could not be as close tu the upper surface of the layer
as might occur in practice. This may be expressed in another way .-
saving that the lower the order of the truncation, the more closely
the solution will be Tniced tn represent a conduction-only solution,
As it is known that natural convectlion increases the critical value of
the parameter at ignition over the conduction only solution, an
excessively low order truncation would predict ignition at a smaller
parameter value (FK.ny¢) than actually oceurs. To be weighed
against this is the knowledge that the quadratic approxiwation to the
temperature exponential used in the approximate analysis will predict
in . oat a larger FK than would occur in realizy. It was found
¢ e position of the hot-spot in the numerical Investigations was
1 -w the upper surface of the bed, which is closer than was

e infinite laver model (see figure 3.8). In the absence of

rmation it is difficult to draw firm concluslons as to

1 -:eion of Egs. (4.7) and (4.9} is correct, although it would
seem t e form of the expression has been well-defined for large

Ra. Untii further work is done it would seem to be Lest to use this
expression realising that the correct value of the constant is between
.17 and 18,13, Note that for the frustum with multiple cells the
value of the censtant would be =27.9 and that for small Ra there may
e another term in the {pgnition ~riterion,

If one compares FBq, (4.3) with Eq. (4.9) it can be seen that for
parameter values near their base case values ignition could always be
expectad to occur in the centre of a large bed, rather than at its
erdpe.  There are two situations where this might not be the case. For
valies of Ra® close to unity the edge would be predicted to show
igunition before ¢+ - cent.e. However Eq. (4.3) is not valid for such
small values of Ra™, and at such values of Ra¥ 1t is possible that a
conduction only solution will exist in this parameter region, as has
been seen In figure 3.2, In this case one would use a conduction
asymptote expressien to find the thermal explosion limit., The other
situation in which the edge might show ignition hefore the centre of a
larvge bed is fo. ~eryv small wvalues of FK*.  This will arise for
extremely unreactive coals, e.g.  coals for which k, is verv small.
Thus, for verv larpge cnal stockpliles of base -~age reactivity, ignitlon
is prodicted to ocour in the centre of the bed, This also meaus that
small beds which shew only one convection cell will always be safcr
than very larpge beds, unless the reactivity of the coal s very low,
Thiys result shows that coal stockpiles on the extinguished branch will
he made less wsate by building walls areund them and leaving the top

open,
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4 .4 Storape of coal

It is not the purpose of this thesis to present detailed stockpiling

o =
o e

procedures, for this the vreader 1s referred to Glasser and

Bradshaw,1989. Here only a few of the important points are mentioned.

In order to use the ignition point criteria that have been developed,

s the practitioner must know the rate of reaction of the coal with

o . oxygen, together .ith heat of the reaction and activation energy. The

PP rate of reactlon can be measured using a relatively simple apparatus

’ (Smith,1989) while the heat of reaction and the activation energy ace

T not found to vary much between coals and so the wvalues given in

f@ : 'f Appendix A could be safely used., The practitioner has control over
| ff‘¥ the particle size Dp, the voidage ¢ and the bed size H,

© ™ ' The particle size is defined as the total surface area per unit
‘ ¢ 4 volume, S and for uniform spheres S=6/Dp. as was used throughout this
‘ thesis, For a sieved fraction of coal the followin~ definition should
be used:

my 1
§ = }:-—7— - (4.12)

§=1 °p3 P

The reasons for using this expression are discussed in Brooks, 1986 and
Glasser and Bradshaw,1989.

Once a suitable stockpiling condition has been decided upon it must be
ensured that these conditions are not altersd during the laying of the
stockpile, In particular, care must be taken to ensure that the bed
. 1s constructed without the formacion of any unseen size distribution,
’ Such a distribution can be disasterous 1if cherz is a particle size
which is indicated as unsafe by the ignicican criteria, There will
« almost certainly be a way for oxygen to reach the region with this
particular dangerous particle size and ignition 1s an almost certain
J consequence, Such a situation could arise during compaction of a bed
F p : if particle breakage occurs, and could also arise due to the gtacking
method, As discussed in section 2,1.,1, dropping the coal from a
stacke: results in a bed with extreme segregation of particles and
“ . should be avoided if it is economici v possible to do so. The
storage conditions will also have determined whether or not the bed
lies on the ignited branch or the extinguished branch of solutions,
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; As has been discussed, the actions that are taken in the construction :
i and maintenance of the stockpile are depend on whether or not the bed ;\
. b is oxygen limited or reaction rate limited.

St

=T
2T

Once the coal stockpile has been coustructed it will also be necessary
to monitor the coal regularly. In particular infra-red thermography
can be used to indicate temperature anomalies, and oxygen probes and
- thermocouples can be used for more accurate on-the-spot assessments.

. iy 4.5 Conclusion

This chapter is connluded by a summary of the different ignition

criteria, and when each shiuld be used.

A I Small coal stockpiles of trapezoidal cross-section

o, This snalysis is applicable to frusta, long trapeuium-shaped beds and
oo edges of larpe beds when only one convection cell is present. This
u can be determined by ensuring that the length o: the flat wupper
surface is less than 1.5 times the height of the bed:

©d 1 -A

) ,7 “

R In this case the locus of ignition points is described by:

Ra = FK (4.3)

/ A
Yoy To ensure that the bed does not ignite the particle size Dp must be \
N such that:

o El va . 2 1/3
R D s b - 1 -« 150 v“ B u 6 ko exp (-v) H Bz .1
P Pi € nT, &6, B
i
(4.4)

The interior nf larpe coal stockiles

This analysis Is approprlate for very large coal stockpiles when many

Benard-like econvection cells will be formed, Egq. (4.13) is used to

determine w:iwether or not multiple cells will form. Then knowing that

4 an odd nuaber of cells will be formed, that the horizontal separation

! of adjacent hot-spots will be 1-1.5 times the height of the layer, and

N ,f that the roll cells are of equal width and the outflow region of the
|

edge c¢ell has the sam: width, it is possible to determine how many
cells will form and what thelr size will be.

R A A L S AR A s ~>ranl

. )
i o, oy AR A R
7S NSER RN ettt . RS, K 0



EERRI M IREOY T A g0 e

-
<
. .
N
=
f..d
.
o
o 0

,;““J',"x &
P
v “ 1 .
Ny
i
& -
j 5 e
L
- N
“f
P

N
gy (
u : ‘
. ” 1
{
i
# ]
]
. L
1
e 4
v
i

113

The locus of Ignition points (s described by:

FK = b (1 - G/JRa*) P B)

To ensure that the bed does not ignite the pa icle size Dp must
be such that for large Ra:
6 1 2
Ly ATk (L e ey -
p - pi b k -
e
For the infinite laver the value of b is 3.17, while for edg~s .“ich

show multiple cells the walus is 13.15. The true value of b probaniv
lies between thege two values,
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CHAPTER 5

CONCLUSTON

In this thesis it has been shown that the critical parumeters to
determine the point of ignition 1Iin realistically-shaped coal
stockpiles can be predicted adequately Dby simple algebralc
relationships., These criteria were expressed In terms of easily
measurable properties of the coal together with a measure of the size
of the coal stockpile. Knowledge of the parameter wvalues at the
ignition point 1s a vital pilece of information for the practitioner,
because it delimits the vreglons of safe and conditionally safe
stockpiling. TFor a stuckpila of given size and coal reactivity, if
the particle size is smaller than the ignition polnt particle size
then the only steady-state condition of the bed is a burning
situation. If the particle size is greater than the ignition point
particle size, then it ig Llikely that the stockpile can be safely
stored indefinitely, provided that there are no large temperature
perturbations to the bed (~hundreds °C) and provided that the particle
size is not too close to the ignition point particle size. Although
it is possible to store stockpiles of extremely fine coal, of particle
size less than the ignition point particle size, Eor whi:h the maximum
temperature rise in the bed is acceptably low, the cost of crushing
the coal to these sizes may be prohibitively high. It is also likely
that such a bed would become less safe with time as the oxygen
absorbing properties of the outer layer of the bed dacrease, allowing
oxygen ingress deep into the bed from where energy cannot easily be
dissipated., A knowledge of the ignition point particle size is also
vital in planuing appropriate preventitive measures for stockplles of
a glven partiele size, For example, 1f the particle size is greater
than the fgnition point particle size then compaction of the coal bed
will make the bed lessz safe, while for stockpiles with a particle size
less than the ignitlon point particle size this action will make the
bed safer.

In this work two approaches were taken to solving the equations
describing the processes occurving in a coal stockpile, Small coal
beds, 1.e. those which show a predominantly unicellular flow pattern,
were analysed using a numerical technlque. This method was applied to
various geometriss: frusta, trapezoidal beds and the edges of
infinitely long ones., The behaviour of the interiors of large coal
stockpiles was examined using an approximate analytical method, By
using one or both . the methods entire coal beds can be modzlled, and
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from this modelling effort eriteria for the ignition peint particle
sizes for different situations were developed,

In the numerical analysis of small stockpile models, the finite
element method was used to obtain results In geometries which elosely
resembled instrumented test coal heaps at a mine in South Africa.
Using a two-dimensional Fformulation, trends predicted by simpler
madels were confirmed. In particular it was found that such coal beds
shiow an ignition point, that the hot-spot is near the surface of the
hed, that the surface of the bed is close to amblent temperature and
» consumption of oxvgen for non-burning heds is verv low, Manv
A simple

that ol
of these features are observed in real coal beds as well.
continuation procedure was imbedded in the finite element method and

wan used o caleulate ignition points in frusta, trapezoids and edges,

Two twvpes of hehaviour were found to oceur. For relatively small ecal
fedi all the flow was found to enter the bed through the sloping side
surcacse and o leave through the flat upper surface. In this case the
troas of {gnition polnts was well-described by the simple cviterion
al. 1988a for a

tooedlmengional chimney podel of a eaal zteckpile.,  The ecorruct length

tor  lpnition that was  devived by Brooks et

S oy e in this eriterion was the length of the diagonal from

Phe toe of the eoal hed to the svimetry line at the upper surface. As
e ooal heds were made longer or  flatter it was  found that

Porard-like convectfon ~ells formed. In this situation the fruscum
maode ! in which radial symmetry was assumed was no longer a good
approximation  to reality, The two-dimensional edge model was
physically reasonable, and analyvsis of this model showed that the
locus of ipnition points was well.desceribed by a different simple
velatiouship o the one  suitable for the beds with only one
civemnlation patrern. The different functional forms of the two
velationships indicites the fundamental mechanisms of transport in the
Leda are sienifieantly different in the two cases. The asvmptotic
furetional torm ot the relationship for the case when multiple cells
foraed was tound 1o he the same as the form of the thermal explosion
imir asvmprote, or the conduction asvmptotes of the one-dimensional
wodels ol Broeks et al. 17884, This indicates the importance of

condietion when the flow anderpoes a 180° dirvection change,

From pmerical experiments the conditions were determined for which
multiple reells will  torm, These multiple  cells  have  stvonpls
charvactoristic  featnres:  an odd namher of  cells is 0 Formed,  the

hovisontal separation of adjacent hot-gpots i found to be 1215 riges
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the height of the bed and the widths of the internal cells and the
outflow region of the edge cell were equal.
to determine a priorl when multiple

These characteristics
make 1t possible cells will

form,

These two slmple criteria for the critlcal parameters at ignition are
extremely useful to the The
algebrale expressions allowing rapid calculation of the parameters for

practitioner, criteria are simple

ignition in terms of the coal properties,

which merit further
,«atlons in the unsteady -state model are very stiff,

The saveral deficiencies

research, Tt

numerical ¢ lhas

and cannot e e solved with commercial software, This means that

the equatior e decoupled and solved as a mixture of steady and
This decoupling procmdure involves trial

and error and did not prove very successful when applied in this

unsteady-stut iong,

study, Further work is needed, as the unsteady-state results ‘an be

of considerable importance. This may be the case if a stockpile of

coal 1s to be stored only for a short pericd, The steady-state
behaviour of such a bed may well indicate high temperature burnout,
but an unsteady-state analysis may indicate that this would happen

only after the useful life of the stockpile.

In this work no solutions were found for beds very fine particles
where the maximum temperature rise in the bed is acceptably small,
Numerically this is a difficult problem, as several different length
scales are now evident. In particular extremely steep gradients of
concentration ocecur in a thin boundary layer on the bed surface,
Numerical resolution of this layer while still retaining an adequate
discretization of the remainder of the coal bed is very difficult and
was not achieved in this work, A better approach would be to develop
different, simplified mechanisms in each
Thiy¢ merits further investigation. It would also be of great
interest to model the effects of particle size segregation. This

could be quite easily implemented with the finite element program,

a two regiun model with
reglon.

Because it ig clearly extremely costly to silve numerically a coal bed
in whi h many convection cells exist, unless only a few cells ire to
be modelled, an apprrximate analysis was made of the interior of a

large 2ou]  stockplle. Assuming that the coal layer was
laterally-unbounded allowed the assumption of spatiallv-periodic
solutions. Infra-red thermography analys.s of real coal beds appears

The

to indicate that spatially-perisdic convection cells do exist.
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Galerkiun wethod is well-suited to the solution of this problem, as it
allows very convenient representation of the periodicity. In order to
use the Calerkin method several assumptions were made: most
importantly the reaction was assumed to be of =zero ovder and the
boundaries of the bed were assumed to be at ambient temperaturae, Both
of thege assumptions had been shown to be reasonable in the numerical
analvsis, A continuation method was used to calculate ignition peints
in the infinite laver for a convection pattern of two-dimensional rail
cells, It was tound that the sgize of the roll cells had onlv a second
order eoffect on the ignition point and that the locus of ignition
points could he deseribed by a relatinnship of the same functional
form as was found in the numerical wo.. for -dges showing multiple
cells for large Ra, However, the actual lue of the eritical
parameter for ignitlon was different in the two cases, and although it
is likel: that the form of the criterion is correct, the value of the
constant probably lies between the wvalue obtained from the numerical
work and that obtained from tle approximate analvsis. Because lgnitlon
was tound to oceur for large Ra in the infinite laver, no results were
obtuined for small Ravleigh numbers, and it was not possible to
confirm the presence of Lae extra term in the {gnition eriterion for

1

rlrivile flow eells obtained ioo+ numerical work for small Ra, It

was Domand that the prete v ppeared to be one for which
height of the laver., This

coanfirmg the result that was o 1e numerlcal work, and allows

the hot-npat separction was

ote “n he confident that the for... . . and sizes of Benard-like cells
can he [ﬁrurii ated,

This approximate analvsis could be improved. In particular mors
powerful computer facilities would permit higher order approximating
functions to be used., This sould have the effect of moving the
hot-spot ¢loger to the top ~f the bed, and possibly changing the
critical wvalue of the parameter for dignition., & more powerful
computer would also allow hexagons to be emamined, although it is
likelv that hexarons would exhibit verv similer hehaviour to roll
cells,  The use of mere suitable eigenvalue calculation routines woula
allow examination ot the stabllity of the cteady-state solutions, and
perhaps also direet caleualtion of ipnition points,

o

The denition peint eriteria derived in this work are fels 0 0 apage

bepcfit to the coal minivg indastry, They «llow easy ol ion of
the eritical parameter wvalues at ignition and are well-ui ed <0 aue

by the practitioner,
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N APPENDTX A
. ‘;f
o x’a BASE CASE MODEL PARAMETERS
o Ambient temperature Ta 293 K
. Ambient pressure Py 1,013 x 109 pa
PR Density of air Pa 1,18 kg/m3
s ] Density of solid Pe 1.5 x 10% kg/n?
‘ ] Gas specific heat capacity () g 103 J/kg/R
e Solid specific heat capacity (cp)sg 103 J/kg/K
" MD ] Enthalpy of reaction AH - 3 x 108 J/kmol
‘ N W"é Dimensionless activation energy ¥ 23,9
"?‘ifsw f Voidage ¢ 0.3
d‘ff}‘} Bed thermal conductivity ke 0.2 W/m/K
R Lewis number Le 0.0333
g Gas molecular mass M 29 kg/kmol
Height of layer H 15 m
Molecular diffusion coefficilent D 2 x 105 m2/s
Gas viscosity W 1.8 x 1073 kg/m/s
Coefficient of themal expansion n 3,67 x 1073 /K
Heat transfer coefficient h 5 W/mz/K

.
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APPENDIX B

DESCRIPTION AND LISTING OF THE FINTTE ELEMENT PROGRAM

-, In this appendix a listing is given of the finite element program
' described in Chapter 2, together with associated sample data files

J

and some service programs, The version of the program that has been

At"v. . R
;J”’ 5 given is the most basic version that was used to obtain the results of
PR Chapter 2, The version of the program which has the option to solve a
K va . mixture of stead and unsteady-state equationz 1is necessarily more

complex and has not been included here for space reasons, The service

subroutines used to perform arc-length continuation have also been
omitted for the same reason, Also includa:d in this appendix are
coples of two reports describing the finite element program., These two
reports give further details on program structure, data files and
other implementation details.

:“u\gw : The following program (stored in files FEPDE FORTRAN and SUBS FORTRAN)
.y | was written in Fortran 77 by P, Anderson and S,M. Bradshaw, Two input
L data files are required, and examples are given after the program

listing., In this form the program is written to solve the model
defined by Egs, (2.7)-(2.10) in a domain of trapezoidal cross section,




TSIV g 1 am

BLOCK DATA DIMDAT
IMPLICIT REAL*8 (A-H,0-2)
COMMON /XP/ XPARM(4)
COMMON /DIMS/ INBDC, ILISTB, [COORD, INLTOP, INF, IRHS, ISYSK,
# JNBDG, JLISTB, JWLTOP, JNF, JSYSK, INROPV, IAL, JAL
COMMON /I0/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
* INPARM
o CONMON /FEMWRK/ RHS(410), AL(410,140),
. : : o NROPV(410), RESDV(4,500), RESD(4), ERR(4),
* ERRAV(4), ERRGNT(4), ERRTOT(4), SCALE
o COMMON /BAND/ IBAND, IHBAND, ITOTDF
4o COMMON /MTRIX/ SYSK(410,140), SYSM(410,140)
L ¢ REAL*8 XK0A
A DATA INi#G /6/, ILISTB /140/, ICOORD /500/,INLTOP /500/,INF
o * 7500/,
e # IRHS /410/, ISYSK /410/, JNBDC /80/, JNF/5/, JLISTB /5/,
c * JNLTOP /14/, JSYSK 7140/, INROPV /410/, IAL/410/, JAL /140/
o DATA NINT/3/, ITERM 4/, NIN /5/, NOUT /16/, IPROFL /7/,NTOUT /8/,
e, * IERR /9/, SCALE /10.0D25/, LNPARM /1/

17 s
#
\

REAL*8  F(410),DELTAX(410),XTEMP(410),X0LD(410)
* XMIN(410),XMAX (410}

COMMON /VARS1/ X(410), PAR(410), NEQN, NXEQN
COMMON /VAPSZ/ VAR(410), IVAR(41Q)

COMMON /OUTVAR/ DELTA, NVP

COMMON /GPARAM/ H, TOL, NN, METH, MITER, NUMINT

e
=

DATA XMIN/9¥%-1./
DATA XMAX/6%5000.,1.,2%10./

GCaoaoaooaoaoacaa

o END
o . IMPLICIT REAL*8(A<H,0-2)

~
X L
:ﬁ%ﬁ»
N e
.
\\..
—~
o

e c FOR ADAMS METHOD WK=20401, FOR STIFF METHOD WK=12001
Ay DIMENSION WK(12001), IWK(410), FNCVAL(410), FNCDER(410)
JTEL DIMENSION VAR(410)
T EXTERNAL FUNC, MONT, TDERV, PDERV
TS COMMON /XP/ XPARM(4)
PN REAL*8 HESS(8), GRAD(3), WRKZ(12), XKOA
DA COMMON /DIMS/ INBDC, ILISTB, [COOR™, INLTOP, INF, IRHS, ISYSK,
Yoo, v # JNBDC, JLISTB, JNLTuP, JNF, JSYSK, INROPV, IAL, JAL
R COMMON /107 NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
P # INPARM
“ PP COMMON /XTRACT/ NXTRCT, IVXTR(6), IEXLST(6,4,60), NODXTR(6)
et LOGICAL FIRST
o COMMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, I&RM, XMU,
J # PHI, ALPHA, PO, XLAM
) COMMON /GRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
f i TAU, ZETA, SICMA
r COMMON /VAR/ NVAR
COMMON /ELDAT/ NLTOP(500,14),C00RD(500,3) ,NELE, IELTYP ,NODEL, ITELS ,
. ‘ # NF(507,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
Vi #NK,NY,
# IXPOS(500), IYPOS(500), NODSID
. COMMON /FEMWRK/ RHS(410), “L(410,140),
oty . * NROPV(410), KESDV(4,500), RESD(4), ERR(4),
N ~ * ERRAV(4), ERRCNTI4), ERRTOT(4), SCALE
T COMMON /BAND/ IBAND, IHBAND, ITOTDF
¥ . COMMON /MTRIX/ SYSK (410, 140), SYSM(410,140)
1
4
(
1 - »

“
)
b
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b N COMMON /BWDRY/ NBNDRY(5,6,80), NBND(5), NBDC(6,80), LISTB(140,5)
. ‘ Vﬂiﬁ COMMON /SHPFN/ FUN(12), GDER(3,12)
:‘;; %f COMMON /FVALS/ FVAL(5,500), FLST(5,500)
“" COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM

ool COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
& H # IFRST, ICHK. ITASK, IPAYN, DPUP, DPLOW
o ﬁq COMMON /EXPT/ XEXP(10), YEXP(10), FEXP(10,10)
COMMON /RELAX/ RELAX1, RELAX2, RELAX3
COMMON /TMDAT/ TEND
, COMMON /DERFLG/ IFLAGL, IFLAG2, IFLAG3
! COMMON /RLNUM/ RALY, CFACT

LA " COMMON /ANGL/ ANGLE
o K REAL*8 PARM(4)
[EERTI REAL*8 W1(3), W2(3), W3(3), W4(3), W5(4), W6(4,4)
’ o ., g C
' ‘ ﬂ (o1t dededededededodeohe hdedededededeieolinlok
“ (ol % *
L C* * INPUT DATA SECTION *
e c* #* %
' r};i O ededeleioiiviriolehioieiolelolniololed
(S ¢
£ 55 ¥ INPUT OF NODAL GEOMETRY
. ,-: | C
eSS ‘
AL READ (NIN,*) NODTOT, IDIMN, NVAR
I READ (INPARM,*) XMAX, YMAX, CHRL, CRDSYS, IEQFRM .
., v 1 READ (NIN,*) NX, NY

IDFNOD=NVAR
DO 1010 I=1,NODTOT
READ (NIN,*) NODNUM, (COORD(NODNUM,J),J=1,IDIMN)

1010 CONTINUE
)
"
6 INPUT OF ELEMENT TOPOLOGY
"
¢ IELTYP =1 = 3 nc.led triangular elements
C 2 = 5 1t 1] 1f
.*,‘< C 3 => 10 " 1" 1t
. C ¢ => 4 "  quadrilateral !
> C 5 =5 8 " n " v
a o 5 = 12 t 1 1"
. i “» bt 6
L €
Ctay READ (NIN,*®) IELTYP, ITELS, NODEL
o DG 1020 I=1,ITELS
N READ (NIN,*) IELNM, (NLTOP(IELNM,J+2),J=1,NOCEL)
' NLTOP(IELNM, 1) = IELTYP
’ ‘ NLTOP(IELNM,2) = NODEL
R 1020 CONTINUE
¢
|
. g I INPUT OF NUMBER OF DEGREES OF FREEDOM
I PER NODE, INPUT OF BOUNDARY CON=-
j- ¢ DITINNS AND CONSTRUCTION OF NODAL
c FREEDOM ARRAY NF. ZEROING OF WORMALS
¢
oty ) DO 1030 IEQ=1,NVAR
» g READ (NIN,*) NBND(IEQ)
< WRITE(ITERM,#*)'BND ',1TBND, IEQ
‘; DO 1930 I=1,NBND(IEQ)
* t
‘. .
%
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ey READ (NIN,*) NBTYPE,NODSID, NUMNOD, (NBNDRY(IEQ,I,J+3),J=1,NUMNOD)
‘ y NBNDRY (IEQ,1,1) = NBTYPE
S NBNDRY (IEQ,1,2) = NUMNOD
‘ R NBNDRY(IEQ,I,3) = NODSID
(. *"gi 1030 CONTINUE
/x‘

il

fhn

2 ¢ INPUT OF LIST OF NODES FOR WHICH EXTRACTED VALUES ARE REQD
- READ (NIN,*) NXTRCT
oo DO 1031 I=1,NXTRCT
o M 1031 READ (NIN,®) IVXTR(I), NODKTR(I),
‘ % (TEXLST(I,TVXTR(I),J),J=1,NODXTR(I))

READ (INPAKM,*) HCOEF, DD, EPST, KA, XKO, XKEQ, DIFF, XMU

e § READ (INPARM,*) T0, RHO, GRAV, NHTCAP, DELTAH, ANGDEG
e ¢ HCOEF= HEAT TRANSFER COEFFICIENT
. By ¢ DP=PARTICLE SIZE
PR 4 c EPSI=VOIDAGE
T G EA=ACTIVATION ENERGY

.« ¢ XKO=PRE ~EXPONENTIAL FACTOR

x5 ¢ XKE4=TERMAL CONDUCTIVITY
IR ¢ DIFF=DIFFUSION COEFFICIENT -,
RE AL ¢ ALPHA= THERMAL DIFFUSIVITY :
oo G AMU=VISCOSITY

LA ANGLE=3.14159265D0%ANGDEG/ 180 . 0D0
) 4 ¢ ALPHASXKEQ/HTCAP/RHO .
. A ;1 XLAM=DP/20.,0D-3 :

a “w PERM=DP*DP*EPSI##3/150,D0/ (1, 0D0~EPSI)#*¥2
RYLGH=GRAV®3 , 6 7D~ 3#TO*CHRL*RHO%% 2 PERM*HTCAP / XKEQ/ XMU X
WRITE (ITERM,#)'DP RALLY',DP, RYLGH &
. ) RLLY=RYLGH o
SR PHI=900,00D0 E
e PO=101325.0000 !
N a4 C ==~ DEFINE DIMENSIONLESS GROUPS -ﬂ

o wg@%. | XI"W=EPS I*DIFF*RHO*HTCAP/XKEQ i
T LA GAMMA=EA/8 ., 314D0/TO ,&

' BETA=DELTAH/0,029D0/TO/HTCAR/4 ., 7610 fk

K e g e

e Xl

T ) BIOT=HCOEF¥*CHRL/ XKEQ ¥
SR N THIELE=b . 0DO¥*XKO*RHO*HTCAP#* (1, 0D0~EPSI ) *CHRL*CHRL g
and o * / (XKEQ*DP)
o DEE=THIELE*DSQRT (RYLGH)*DEXP ( ~GAMMA)
P CHI=THIELE*THIELE/XLEW/RYLGH
ENEN TAU=RYLGH/THIELE y
gl v e ZETA=RLLY*RLLY*GAMMA®BETA
o STGMA=GAMMA/BETA
S R1=XMAX~YMAX/DTAN(ANGLE)
et WRITE(IERR,*)R1
o GEOMA=IXMAX 1)/ XMAX
. ‘ GEOMB=YMAX/ XMAX
e WRITE(IERR,*) "LEWIS=", XLEW, 'GAMMA=', GAMMA
’ WRITE(IEKR,*)'BETA=', BETA
L WRITE(IERR,*)'BIOT=", BIOT, 'THIELE=', THIELE*DEXP(~GAMMA)

. . WRITE(IERR,*) 'RAYLEIGH=', RLLY
- : WRITE(IERR,*) 'DEE=', DEE, 'CHI=', CHI, "TAU=', TAU
WRITE(IERR,* ) '4ETA=", ZETA, 'SIGMA=', ¢ICMA
WRITE(IERR,*)'A=", GEOMA, 'B=', GEOMB it
DOVA=DIFF/ALPHAREPS L ah
XPARM(1)=KYLGH 5
G KPARM(2)=HCOEF o

NPAR=3 e

PARM(3)=RYTGH g
¢ DARM (4 3=HCOEF L
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READ (INPARM,*) ICHK
READ (INPARM,*) CFCTMX, STEPS1, STEPS2, ITRACE, ICONT, ITASK
READ (INPARM,*) DPUP, DPLOW
READ (INPARM,*) RELAX1, RELAX2, RELAX3
READ (INPARM,#) IREAD
Scale the domain to the required shape
XMAX=XMAX/CHRL
YMAX=YMAX/CHRL
DO 2010 I=1,NODTOT
COORD(I,1)=COORD(1,1)*XMAX
COORD(I,2)=CO0ORD(I,Z)*YMAX
COORD(I,1)=COORD(I,1)*(1.0~-COORD(1,2)/DTAN(ANGLE) /XMAX)
CONTINUE
Input/calculation of initial guesses for variables
and zeroing of normals
IF (ITASK.EQ.5) THEN
DO 1013 NOD=1,NODTOT
READ(17,*)FVAL(1,NOD),FVAL(2,NOD),DUMMY3,DUMMY1,DUMMY2
CONTINUE
DO 1014 NOD=1,NODTCT
FVAL(2,NOD)=(FVAL(2,NOD)+273,15D0~-T0)/TO
CONTINUE
set SCALE = 1.0 for arc length continuation
SCALE=1,0D0
GO TO 1012
END IF
IF(IREAD.EQ.1) THEN
DO 5011 NOD=1,NODTOT
READ(17,*)FVAL(1,NOD), FVAL(2,NOD), FVAL(3,NOD), DUM1, DUM2
FVAL(2 ,NOD)=(FVAL(2,NOD)+273,15D0~T0)/TO
FVAL(3,NOD)=FVAL(3,NOD)*4.76D0
FLST(1,NOD)=FVAL(1,NOD)
FLST(2,NOD)=FVAL(2,NOD)
FLST(3,NOD)=FVAL(3,NOD)
CONTINUE
ELSE
DO 1011 NOD=1,NODTOT
READ(17,%*)FVAL(1,NOD),FVAL(2,NOD),FVAL(3,NOD),DUMMY1,DUMMY2
FVAL(2,NOD)=(FVAL(2,NOD)+273,15D0-T0)/TO
FVAL(3,NOD)=FVAL(3,NOD)*0.029/RH0*4.76
FVAL{1,NOD)=COORD(NOU, 1)*(COORD(NOD,1)-1.0)%10.0
FVAL(1,NOD)=1.0D0
FLST(1,NOD)=FVAL(1,NOD)
FVAL(2,NOD)=0.,0D0
FLST(2,NOD)=FVAL(2,NOD)
FVAL(3,NOD)=0.9995679D0
FVAL{3,NOD)=0.0D0
FLST(3,NOD)=FVAL(3,NOD)
COMTINUE
END IF
CONTINUE
Set initial conditions on Dirichlet boundaries
IF((ITASK.EQ.4).0R.(ITASK.EQ.6)) THEN
DO 1036 IEQ=1,NVAR
DO 1037 M=1,NBND(IEQ)
TF (NBNDRY(IEQ,M,1).EQ.1) THEN
NLIST=0
20 1038 N=1,NBNDRY(IEQ,M,2)
NLIST=NLIST+1
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NDNUM=NBNDRY (IEQ,M, 3+NLIST)
WRITE(LTERM,*) '"NDNUM', NDNUM
=COORD(NDNUM, 1)

Y=COORD (NDNUM, 2)

FVAL(IEQ, NDNUM)=HU(X,Y.IEQ)
FLST(IEQ, NDNUM)=FVAL(IEQ,NDNUM)

WRITE (ITERM *)FVAL(IEQ,NDNUM), IEQ, NDNUM

CONTINUE
ELSE
CONTINUE
END IF
CONTINUE
CONTINUE
END IF

Combine initial cond's into system vector FNCVAL

CALL COMBN (FVAL, NVAR, NODTOT, FNCVAL)
WRITE (ITERM,*)' ICONT="', ICONT

"ITASK' = 0 - CALCULATE SOLUTION ONGE

"ITASK' = 1 - FIT PARAMETERS BY REPEATED EVALUATIONS
"ITASK' = 2 - CALCULATE 5.0.5 SURFACE

"ITASK' = &4 -~ SOLVE UNSTEADY STATE PROBLEM

"ITASK' =5 - STFADY STATE BY ARC LENGTH CONTINUATION

IF (ITASK.EQ.4) THEN
WRITE (ITERM,*) 'READING TIME STEPPING DATA'
READ (NIN,*) TSTART, TFINAL, NTSTEP
TSTEP=(TFINAL-TSTART)/FLOAT (NTSTEP)
CFACT=1,0D0
END IF
IFRST=1
READ IN EXPERIMENTAL MESH POINTS
READ (MZSH,*) SCLX, SCLY
DPTH=DPTH*SCLY
READ (MESH,*) NEXPX, NEXPY
DO 1032 J=1,NEXFPY
DO 1032 I=1,NEXPX
READ (MESH,*) XEXP(I), YEXP(J), FEXP(I,J)
XEXP(I)=XEXP(I1)*SCLY
YEXP(J)=YEXP(J)*SCLY
FEXP(I,J)=FEXP(I,J)+273.15D0
SET UP CONVENTIONAL GRID REFERENCE POINTS
DO 99 I=1,NODTOT
IYPOS(I)=I/NX+1
IF((I/NX*NX) . EQ.I) IYPOS(I)=IYPOS(I)-1
IXPOS(I)=I-NX*(IYPOS(I)-1)
KX{TXPOS(I))=COORD(I,1)
YY(IYPOS(I))=COORD(I,?2

SETUP NODAL FREEDOM ARRAY

ITOTDF = 0
DO 1050 I=1,NODTOT
DO 1040 J=1, IDFNCD
ITOTDF = I'TOTDF + 1
NF(I,J) = ITOTDF
CONTINUE
COMTINUE
WRITE (ITERM,*) ' ITOTDF=", ITOTDF




falad

3 3

[ 'n' #
> ' : hw‘eﬁ%g Y.
. . , . MR TR
A "‘:“-v' e ;,,“\ J L

[ WP

125

CALCULATION OF SEMT: *ANDWIDTH

aaa

‘ FIRST = ,TRUE.
e s b IDIF = 0

3 DO 1060 NELE=1,. ELS&
1 CALL FREDIF(NELE, NLTOF, INLTOP, JNLTOP, NF, INF, JNF,IDFNOD,
e * FIRST, IDIF, ITEST)
PR 1060 CONTINUE
B IHBAND = IDIF + 1
o IBAND=2%IHBAND-1

s 4 WRITE (4,%) 'BANDWIDTH = ', IBAND

> W IF (IBAND.GT.JSYSK) WRITE(ITERM,*)'MATRIX TOO SMALL'

[N o
. Ctededdrdededodededodolefoddrioiodolidilidolontdidoinirivievlolololoivlolololeloloivlnvlnioelloiinlollidelololoiniololiioeloedod

P IF (ITASK.EQ.0) THEN
o WRITE (ITERM,*)'SINGLE CALCULATION PROCEEDING’
. ; €0=0.00D0
) STEPS=STEPS1
RN WRITE (ITERM,*) 'CALLING ERCHK'
LA CALL ERCHK
& ) CALL FUNC (NPAR,XPARM, FSOS)
© A GO TO 241
: . END IF
T ( ,," C=‘.--.':~.':-.‘:-.‘.-w'::'::’:-.':-,':-.’:-.’rf:-.‘:-:’.-:‘::':7'::’«:‘:7’::‘::’::‘::‘:*:’::‘:7‘::’::’::‘:7‘:**:’rs‘::‘r-.'r-.’:-,‘n‘r',‘:-.‘:-.':7‘.’:‘:-.':-:‘.-*.‘::'r:’:1’:*1‘::‘::’:-.’::‘::‘:-.’:-.‘::’::‘::’:***-.‘::’:
R If (ITASK.EQ.1) THEN
e WRITE(ITERM,*) 'FITTING PARAMETERS'
ZXMIN (FUNCT,NVAR,NSIG,MAXFN, IOPT,P1,HESS,GRAD,FVAL,WRK, IER)
CALL ZXMIN(FUNC, 2, 2, 140, 3, XPARM,HESS, GRAD, FSS, WRKZ, IER
TOLR=5. 0%*DSQRT (X02AA.. "RR))
CALL EO4CCE (2, XPARM, FSS, TOLR, 3, Wl, W2, W3, W&, W5, We,
# FUNC, MONT, 140, IFAIL)
WRITE(ITERM,*)'IER, IFAIL = ', IER, IFAIL
WRITE (NOUT,*) 'SOS,PARAMS = ' FSS, XPARM(1), XPARM(2), XPARM(3)
WRITE(NOUT,*) 'IER, IFAIL = ' /IER. IFAIL
WRITE (NOUT,*) 'GRADIENTS '
WRITE (NOUT,*) (GRAD(J),J=1,3)
WRITE (NOUT,*) 'HESS'
WRITE(NOUT,*) (HESS(J),J=1,8)
( END IF
“ Cvhdedelededfdedo b delb Al el de bRl o e b A A b A S e b el oot oo dedk o de et Ttttk
IF (ITASK.EQ.2) THEN
WRITE (ITERM,*) 'CALCULATING LEAST-SQUARES DATA'
i FI A RLY1=0,5*RYLGH
L RLY2=1.5*RYLGH
1
e

o
oy
(@]

:-4
[PR>E> RS Ne]

a

oy RLSTP=(RLY2-RLY1)/6,0D0
o HCF1=0. SDO*HCOEF
L L HCF2=1, 50D0*HCOEF
‘ ! HCSTP=(HCF2-HCF1)/6.0D0
: B HCF=1 . ODO*HCOEF
' o DO 242 RLY=RLY1,RLY2,RLSTP
DO 242 HCF=HCF1,HCF2,HCSTP
S XPARM(1)=RLY
;f i XPARM(2)=HCF
‘ | CALL FUNC(NPAR,XPARM,FSS)
‘ | 242 WRITE (NOUT,*) FSS, RLY##*2, HCF#+2
oy , END IF
. Corieideioledolodelolvhilelobbdeidobdotdolebdbiolnb ol bk ddelioloieidedldsdoleld dedododridodedodniiedokdod ke
r IF (ITASK.EQ.4) THEN
| WRITE(ITERM,*) 'UNSTEADY STATE SOLUTION'

)
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» c Initialise IPAYN
I IPAYN=0
, c Initialise FNCDER
DO 788 J=1,ITOTDF
: FNCDER (J)=0.0D0
3 788 CONTINUE
1 CALL ASSHN
o C INTEGRATE 0.D.E.'S USING DGEAR: INITIALISE VARIABLES
TEND=TSTART
. TDIF=TSTEP
= : , TOLR=1.0D~3
. N o METH=1 ~> Adams method MITER=0 -> Functional itern.
s c METH=2 -> Stiff method
, PR METH=2
0. Lt A MITER=0
’ C g ] INDEX=1
L o DO 789 ITSTEP=1,NTSTEP
W TEND=TEND+TDIF
Yt WRITE(ITERM,*) 'CALLING DGEAR'
Cove CALL DGEAR (ITOTDF, TDERV, PDERV, TIME, TSTEP, FNCVAL, TEND,
,,3“, : # TOLR, METH, MITER, INDEX, IWK, WK, IER)
R WRITE(4,*)'TEND, IER = ',TEND, IER
. e CALL VECCOP (FNCVAL, ISYSK, RHS, ISYSK, ITOTDF, ITEST)
i y o J CALL SEPRT 7RHS, NVAR, NODTOT, FVAL)
‘ . CALL PRTANS
CALL PRTXTR .
. . IF (IER.GE.132) THEN
1 N . WRITE (NOUT,*)'IER = ', IER
R STOP
’ END IF
787 CONTINLE
END [F
(j:‘::‘::‘:%\“.‘—:**:’f:’::’::‘:-.‘:-.'::’:*-.‘:-.’r-.’::'r-.‘:-.'r-!::‘:7‘:1‘:-.’:-.‘:7’::‘:1‘:*7‘::':1’:*7‘:-.‘::’.-*:‘:-.':-.’f:‘:-.'r:‘:-.‘r-.’r-.’::’e:‘r:’r:‘::’r:‘:t‘::&:’:ﬁv‘v:‘r:’:ﬁ:v‘ﬁ‘:v‘:t‘:fr**
IF (ITASK.EQ.5) THEN
WRITE (ITERM,*)"ARC LENGTH CONTINUATION'
£ REAL*8  F(9),DELTAX(9),XTEMP(9),X0LD(9),XMIN(9) ,XHAX(9)

O

¢ REAL*8  JAC(9,9)
» C
s c COMMON /VARS1/ X(9),PAR(9),NEQN,NXEQN
¢ COMMON /VARS2/ VAR(9),IVAR(9) Y
o COMMON /OUTVAR/ DELTA,NVP
‘ i COMMON /GPARAM/ H,TOL,NN,METH,MITER,NUMINT
p
" ¢ DATA XMIN/9*-1./
C DATA XMAX/6%5000.,1,,2%10,/
ti ! G
e ‘ % o ND is ITOTDF + the number of parameters ie ITOTDF+1
3 ! ND=ITOTDF+1
KA VAR (ND)=KLAN
© copy initial values into VAR(ND)
e DO 5 I=1,ITOTDF
‘ | VAR(I)=FNCVAL(I)
/f ; 3 CONTINUE
: . READ(10,%) NSIG, ITMAX, NPOINT
. ‘ READ(10,*) I¥LAG1, IFLAGZ, IFLAG3
T : c READ(10,*) H, TOL
A Lo . READ(10,#*) HH, DIR
oo ¢ READ(10,%) NN, METH, MITER, NUMINT
' | 3 READ(10,%*) IVAR
¢ é
- t
", » -
4
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o c READ(10,%) DELTA, NVP
¢ R ,z_« C
g NEQN = ITOTDF
°. St { NXEQN = NEQN+1
T ,&i NDE = NXEQN
PER AT L C DO 10 I = 1,NXEQN
Y SRR & C 10 X(I) = VAR(IVAR(I))
Ly RS c DO 20 I=NXEQN+1,ND
i 0 NXT=I-NXEQN
: c20 PAR(NXT)=VAR(IVAR(I))
: c
1 c CALL PARA(ND, NEQN, VAR, NSIG, ITMAX, NPOINT
_ ¢ ,VMIN, VMAX, HH, DIR, FNCVAL, NDE, NODTOT)
i c
U END IF
e » Ct‘r-.‘r-.‘:-.'v:‘::‘:-.':**-.‘.--.’f-.‘:*-.‘:-.’:-lc-.‘r:'r-.’ﬁ't-.‘:-.‘:*:’:ﬁfe**v‘:*:’eﬁ-}:v’:?f******:‘v*-.'r-.’::‘:v'r-.’:-.‘.-:':-.‘r'.':-.’:-.'n'::':-.‘:-.‘.--.’:-.’r-.‘:**-.‘:v‘:s‘::’:-.’n‘.-*
241 CALL PRTANS
( ¥ CALL PRTXTR
e, STOP
4 ; —.‘ »,'.‘F‘ END
. ;,’7 R C ddeveiediriiekivieirmoliiiridehdnbdeoede ool ol e ik edenb ol e e dede e dede il ndedededededede
to ‘lulf 3 C
o
N * c SUBROUTINE TO CALCULATE S.0,S OF TEMPERATURE PROFILE ERRORS
Taa ‘_J SUBROUTTNE FUNC (NPAR, X, FS0S)
' w7 IMPLICIT REAL#*8 (A-H,0-2)
R cE COMMON /FVALS/ FVAL(5,500), FLST(5,500)
v ct REAL*8 X(4), FMAT(60,60), FNTRP(60,60), WK(135)
cY COMMON /ELDAT/ NLTOP(500,14),C00RD(500,3),NELE, IELTYP,NODEL, ITELS,
o * NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
b 3 “NX,NY,
o * IXPOS(500), 1YPOS(500), NODSID
COMMCN /EXPT/ XEXP(10), YEXP(10), FEXP(10,10)
COMMON /XTRACT/ NXTRCT, IVXTR(6), IEXLST(6,4,60), NODXTR(6)
COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
* IFRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
, Lo COMMON /10/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
.o T, * INPARM
oo g c
SO c C0=1,00
, C e ¢ ICONT=0
. T R STEPS=STEPS2
C "_[’ ’_11 ” If first time around, allow many continuation steps {'STEPS1')
e IF (IFRST.EQ.1) THEN
) AR STEPS=STEPS1
Ay ¢0=0.00D0
e | e ICONT=0
e IFRST=0
T END IF
Se v NXE=9
NYE=8
. [FMAT=30
C IFNTRP=30
}a, , WRITE (4,%) 'PARAMS ',X(1),X(2),X(3)
‘ ! CALL FELMNT
| DO 10 I=1,NODTOT
g 10 FMAT(IXPOS(I), IYPOS(I))=FViL(2,I)
v , c CALL IBCIEU (FMAT, IFMAT, XX, NX, YY,NY, XEXP, NXE, VEXP, NYE,
v c * FNTRP, IFNTRP, WK, IER)
; F$08=0.00D0
4
~ i
i}
e ’ 4
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DO 20 I=1,NXE
N0 20 J=1,NYE
FLG=1.0D0
IF (FEXP(I,J).LT.300.00) FLG=0.00D0
TNTRP=TREAL(FNTRP(I,J))
IF ((ITASK.EQ.0).AND.(FLG.NE.0,00)) WRITE (IERR,%*)
TNTRP,FEXP(I,J)-273.15, XEXP(I), YEXP(J
20 FSOS=FSOS+FLG* (INTRP+273, 15-FEXP(I,J) )##*2
WRITE(4,*)'S0S ',FS0OS
! WRITE (4,%)
WRITE(&,*) FSOS, X(1),X(2),X(3)
s , RETURN
w0 END

*

BT SUBROUTINE FELMNT
b IMPLICIT REAL*8(A-H,0-2)
s REAL*8 JAC, JACIN, LDER
. DIMENSION ABSS(3,9), BELM(60,60), BELV(60), BN(60), BNTN(60,60),
y o * BNTMP(12), BMTEMP(12,12),
v * COSIN(3), RMAT(60,60), ELK(60,60), GDERT(12,3),
vﬁﬂ‘ ( * GEOM(12,3), JAC(3,3),JACIN(3,3), ABSCL(9), LDER(3,12)
S *, P(3,3),
% PD(3,12),NSTER(60), WOHT(9),BELV1(60),SRCE(60), QL(12)
IR * TMAT(12,12),
ot * XTVEC(60), DERMAP(3,12)
R COMMON /XP/ XPARM(4)
- . COMMON /DIMS/ INBDG, ILISTB, ICOORD, INLTOP, INF, IRHS, ISYSK,
. , % JNBDC, JLISTB, JNLTOP, JNF, JSVSh, INROPV, IAL, JAL
e COMMON /107 NINT, ITERM, NIN, NCUT, IPROFL, MESH, IERR, NTOUT,
e * INPARM
L C COMMON /PARM/ PARAM(4)
COMMON /VAR/ NVAR
COMMON /ELDAT/ NLTOP(500,14),COORD(500,3),NELE,IELTYP,NODEL, ITELS,
# NF(300,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,

“NX,NY,
* IXPOS(500), IYPOS(500), NODSID
COMMON /XTRACT/ NXTRCT, IVXTR(6), LEXLST(6,4,60), NODXTR(6)
e COMMON /FEMWRK/ RHS(410), AL(410,140),
¢ e W NROPV(410), RESDV(4,500), RESD(4), ERR(4),
K T * ERRAV(4), ERRCNT(4), ERRTOT(4), SCALE v
© C OISt COMMON /BAND/ IBAND, IHBAND, ITOTDF
S COMMON /MTRIX/ SYSK (410, 140), SYSM(410,140)
AR T COMMON /BNDRY/ NBNDRY(5,6,80), NBND(5), NBDC(6,80), LISTB(140,5)
‘ ot ‘ COMMON /SHEFN/ FUNC12), GDER(3,12)
; Ay GOMMON /FVALS/ FVAL(5,500), FLST(5,500)
s GCOMMON /RLNUM/ RALY, CFACT

: e COMMON /JECM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
‘ ’ . COMMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, MU,

’ & PHI, ALPHA, D0, XLAM
) COMMON /GRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIQT, DEE, CHI,
' w # TAU, ZETA, SIGMA

o COMMON /CONT/ €O, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
‘ éﬁ * IFRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
: ' COMMON /RELAX/ RELAX1, RELAX2, RELAX3
. COMMON /SPLIT/ IVAR, KK, K, NBTYPE, NODE, IFIRST

] ey , REAL*8 CHPARM(4), MAPFUN(12), MAXVAL(3)

R ¢ PROBLEM SIZE DEPENDENT ARRAYS
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i N . . o
Lo, DATA IABSS /3/,IBELM/60/,IBELV /60/,IBN /60/,IBNTN /60/,ICOSIN/3/,
P % : % IRMAT /60/,IELK /60/, IFUN /12/, IGDER /3/,IGDERT /12/, IGEOM
w */12/,
o i * IJAC /3/, IJACIN /3/,IABSCL /9/, ILDER /3/, IP /3/, IPD /3/,
. 4 b % INSTER /60/,IWGHT /9/, JABSS /9/,JBELM/60/,JBNTN /60/,JCOORD /3/,
e 4 % ISRCE /60/, IXTVEC /60/,
T o % JRMAT /60/, JELK /60/, JGDER /12/, JGDERT /3/, JGEOM /3/,JJAC
e */3/,
} * JJACIN /3/, JLDER /12/, JP /3/,JPD /12/
L c
) A C PROBLEM SIZE DEPENDENT DATA STATEMENTS
\”'}_"'( C
" c DATA INBDC /6/, ILISTB /140/, ICOORD /500/, INLTOP /500/,INF /500/
AR C  *, IRHS /410/, ISYSK /410/, JNBDC /80/,JLISTB /5/, JNLTOP /14/,
) C % JSYSK /140/, INROPYV /410/, IAL/410/, JAL /140/
O o C
< - ¥ C
- ot MPINCR=NODSID~-1
LT NODMAP=NODEL-NODS ID+2
vk g c
! < ':"6 “‘,4 C
{w €
R c RYLGH=XPARM(1)
pet 0 HCOEF=XPARM(2)
R C SET 'RALY' TO MAX VALUE
‘ L C RALY=RYLGH
‘A‘ ::
- C SET ITEST FOR FULL CHECKING
¢
, IDFNOD=NVAR
v : ITEST = 0
IDGT=0
. [WKREA=50000
: NRHS=1
o ' N e
" Yoo Lo C* dededededodededoiidevoiododeiododediidodododedodnbedeidededielokede e
L G o %
Y Cx * SYSTEM STIFFNESS MATRIX ASSEMBLY * ¥
" e I W *
o (%544 derededefededeseiinbibdelelnbfidedede el do i bededols
L o
flp c {
RS C
ok CALL MATNUL(SYSK, ISYSK, JSYSK, ITOTDF, IBAND, ITEST) :
N CALL VECWUL(RHS, IRHS, ITOTDF, ITEST)
o IDFEL = NODEL*IDFNOD
IF ((IELTYP.EQ.1).0R. (IELTYP.EQ.2).0R. (IELTYP.EQ.3)) THEN
CALL QTRI7(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)
END IF
. IF ((IELTYP.EQ.4).O0R.(IELTYP.EQ.5).0R. (IELTYP.EQ.6)) THEN
' C CALL QQUA4(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)
Fo . CALL QQUAY(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)
o END IF
v ‘ DO 1100 NELE=1,ITELS
ooty CALL ELGEOM(NELE, NLTOP, INLTOP, JNLTOP, COORD, ICOORD,JCOORD, |
» " * (EOM, IGEOM, JGEOM, IDIMN, ITEST) J
E v ‘ (J
‘ C INTEGRATION LOOP FOR ELEMENT MATRICES
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USING NQP QUADRATURE POINTS

CALL MATNUL(ELK, IELK, JELK, IDFEL, IDFEL, ITEST)
CALL VECNUL(SRCE, ISRCE, IDFEL, ITEST)

DO 1090 IQUAD=1,NQP

CALL MATNUL(RMAT, IRMAT, JRMAT, IDFEL, IDFEL, ITEST)
CALL VECNUL(XTVEC, IXTVEC, IDFEL, ITEST)

FORM SHAPE FUNCTION AND SPACE
DERIVATIVES IN THE LOCAL CORRDINATES.
TRANSFORM LOCAL DERIVATIVES TO GLOBLL
COORDINATE SYSTEM

X1 = ABSS(1,IQUAD)/1,0000D0
ETA = ABSS(2,IQUAD)/1.00000000
IF (IELTYP.EQ.I) THEN
CALL TRIM3(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL TRIM3(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
END IF
IF (IELTYP.EQ.4) THEN
CALL QU4FN(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL QU4FN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
END IF
IF (IYLTYP.EQ.5) THEN
CALL QUSFN(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL QU4FN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
END IF
Calculate Jacobian (mapping fn. deriv's * element geometry)
CALL MLTXTR (DERMAP, ILDER, JLDER, GEOM, IGEOM, JGEOM, JAG, IJAC,
* JJAC, IDIWV, NODHAP, MPINCR)
CALL MATMUL(LDER, ILDER, JLDER, GEOM, IGEOM, JGEOM, JAC,IJAC,
* JJAC, IDIMN, NODEL, IDIMN, ITESF)
CALL MATINV(JAC, IJAC, JJAC, JACIN, TJACIN, JJACIN, IDIMN, DET,
* ITEST)

CALL MATMUL(JACIN, IJACIN, JJACIN, LDER, ILDER, JLDER, GDER,IGDER,

* JGDER, IDIMN, IDIMN, NODEL, ITEST)

CALCULATE (XI,ETA) IN GLDBAL (X,Y)
COORDINATES /nD FORM P MATRIX

XMAP=0,0D0

YMAP=0.,0D0

MAP=0

DO 8999 KL=1,NODMAP, MPINCR

IMAP=IMAP+1

XMAP=XMAP+GEOM (KL, 1)*MAPFUN(INAR)
YHAP=YMAP+GEOM (KL, 2)*MAPFUN (IMAP)

X=XMAP

Y=YMAP

CALL SCAPRD(GEOM(1,1), IGLS8OM, FUN, IFUN, NODEL, X, ITEST)
CALL SGAPRD(GEOM(1,2), IGEOM, FUN, IFUN, NODEL, Y, ITEST)

FORM INTEGRAND ELEMENT STIFFNESS ELK

QUOT = DABS{DET)*WCHT (IQUAD)
DO 1082 TEQ=1,NVAR
DN 1081 IVAR=1,NVAR

0O 1080 I=1,NODEL
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DO 1070 J=* ,NODEL
CALL EiNS (F, X, Y, I, J, IEQ, IVAR, FUN, GDéR, QUOT)
TMAT(1,J)=F*QUOT
1074 CONTINUE
CALL SOURCT (F, X, Y, I, IEQ, IFUN, GDER, NVAR)
QL D)=F+QUaT
1080 CONTINUE
1081 CALL ASMAT (TMAT, RMAT, IVAR. IEQ, NODEL)
1082 CALL ASVEC (QL, XTVEC, I1EQ, = wT)
CALL MATADD(ELK, IELK, JELK, "™ IRMAT, JRMAT, IDFEL,IDFEL,
* I'TEST)
CALL VECADD(SRCE, ISRCE, XTVEC, '’ “eC, IDPEL, ITEST)
1090 CONTINUE

€
g ASSEMBLY OF SYCTEM STIFFNESS MATRIX
¢

CALL DIRECT(NELE, NLTOP, INLTOP, JNLTOP, NF, INF, JNF,IDFNOD,
* NSTER, INSTER, ITEST)
CALL ASUSM(SYSK, ISYSK, JSYSK, ELK, IELK, JELK, NSTER,INSTER,

= IHBAND, IDFEL, ITEST)
CALL ASRh,(RHS, IRHS, SRCE, ISRCE, NSTER, INSTER, IDFEL,ITEST)

1150 CONTINUE

G

O Sededesedededndedodedededpflededededodediloleededeidededededsdeindede
AP o whe
S * INSERTION OF BOUNDARY CONDITIONS *
[ W w*
I serpdevssidevsssdoRiedeleeiedsdedefdevediiofodohefededededlelodedeste

CALL JLIN3(WGHT, IWGHT, ABSCL, lABSCL, NQP, ITEST)

0010300 IVAR=L,NVAR

D0 1231 I=1,NBNDOIVAR)

0121 I=1,40
IFSTND=NBNDRY!IVAR, 1, 4)

ot NBUCI D, Ji=NBNDRY VAR, 1, I

O01230 ITYPE=1,NENDILL GR)

NBTYPE = SELC: ITYPE, 1

NUML = NBDCOITYPE, D)

SOOT 1110, 1130, 11311, NBTYPE

"SPLIT' DIRICHLET BOUNDARY CONDITIONS
o1 GALL SIUENU CTTELL , NLTOP, INLTOP, JINLTOP, ITYPE, NBDC,INBDC,
COINBLEC, NUMEID, TE.OILISTB, JLISTB, ITEST)
IF oNUMUIDUEQ. Gy wh 0 UROLITERM, %) 'BOUNDARY ERROR',NVAR, ITYPE
D111 M=1 NUHE L
IELNM = LISTR(M, 1,
ISIDNY = LISTBM,2)
NELE=TELL 7
LIs(1S 0 =1)% w0oDsID=1)
3 === KK and .1 ro tlhe first and sceond nodes on side ISIDNM
O ==+ and these o o incremented in loop 1117 such that on
0 === each subser oot ran through the loop the node called KK
£ === bacomes the oode called KKD in the previous time through
3 === the loap

DO 1117 N-1,NOIRTD-
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{ --~ IFIRST is the first node in the boundary list for SPLIT
IF(N.EQ.1) THEN
G ==~ NODE =1 implies that the node is the first in the element
NODE=1
ELSE
NODE=0
END IF

KK=NLTOP(NELE, 3+LL+N-1)
KK1=NLTOP(NELE , 3+LL+N}
K=NVAR*KK+(IVAR-NVAR)
IF((KK.EQ, IFSTND) .OR. (KK1.EQ. (IFSTND+N))) THEN
IFIRST=1
ELSE
IFIRST=0
END IF
IF(ISIDNM.EQ.2) THEN
DELTA=COORD(KK+1,1)~COORD (KK, 1)
END IF
IF(ISIDNM.EQ.3) THEN
DELTA=DSQRT ( {COORD (KK+1,1)~COORD (KK, 1) )#*2+(COORD(KK+1,2) -
* COORD(KK,2))%#2)
END IF
FVALLI=FVAL(1,KK)
FVAL2=FVAL(1,KK1)
DERIV=(FVAL2-FVAL1)/DELTA
CALL DIRIC (DERIV, ISIM'M)
1117 CONTINUE
1119 CONTINUE
GO TO 1230

~
e

" PRESCRIBED VALUES (DIRICHLET)
¢
1110 DO 1120 J=1,NUMNOD

KK = NBDC(ITYPE,J+3)

K = NVAR*NBDC(ITYPE,J+3)+(IVAR-NVAR)

CALL DIRIC (DERIV, ISIDNM)
1126 CONTINUE
GO TO 1230

O3 O

DERIVATIVES (NEUMANN AND CAUCHY)

U

1130 CALL SIDENO (ITELS, NLTOP. INLTOP, JNLTOP, ITYPE, NBDC,INBDC,
* JNBDC, NUMSID, LISTB, ILISTB, JLISTB, ITEST)
IF (NUMBID.EQ.0) WRITE(ITERM,*)'BOUNDARY ERROR', NVAR, ITYPE
DO 1220 M=1,NUMSID
IELNM = LISTB(M,1)
NELE=IELNM
[SIDNM = LISTB(M,2
CALL VECNUL(BELV, IBELV, IDFEL, ITEST)
CALL VECNUL(BELVY, IBELV, IDFEL, ITEST)
CALL MATNUL(BELM, IBELM, JBELM, IDFEL, IDFEL, ITEST)
¢
G CONSTRUCT QUADRATURE RULE AND LOCAL
C GEOMETRY
G
CALL ELGEOM(TELNM, NLTOP, INLTOP, JNLTOP, COORD, ICOORD,JCOCRD,
* GEOM, IGEOM, JGEOM, IDIMN, ITEST)
[F (CIELTYP.EQ.1).OR. (IELTYP.EQ.2) .OR. (IELTYP.EQ.3)) THEN
CALL BQTRI(ABSS,IABSS,JABSS, ABSCL, IABSCL, NQP, ISIDNM,COEFF,
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* ITEST)
END IF

%

IF (CIELTYP.EQ.4).OR, (IELTYP.EQ.5).0R, (IELTYP,EQ.6)) THEN
CALL BQQUA(ABSS, IABSS,JABSS, ABSCL, IABSCL, NQP, ISIDNM,COEFF,

ITEST)
END IF

¢
C PERFORM BOUNDARY INTEGRATION
G
DO 1190 J=1,NQP
CALL MATNUL(BNTN, IBNTN, JBNIN, IDFEL, IDFEL, ITERT)
CALL VECNUL(BN, IBN, IDFEL, ITEST)
XI = ABSS(1,J)/1.000
ETA = ABSS(2,J)/1.0D0
IF (l1ELTYP.EG.1) THEN
CALL TRIM3(FUN, IFUN, LDER [ILDER, JLDER, XI, ETA, ITEST)
CALL TRIM3(MAPFUN, IFUN, DJRMAP, ILDER, JLDER, XI, ETA, ITEST)
CALL LINTRI(XI, ETA, GEOM, IGEOM, JGEOM, NODEL, ISIDNM,ULEN,
* ITEST)
END IF
{F 7IELTYP.EQ.4) THEN
CALL QUAFN(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL QUAFN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
CALL LINQUACXI, ETY, GEOM, IGEOM, JGEOM, NODEL, ISIDNM,ULEN,
& ITEST)
END IF
IF (IELTYP.EQ.5) THEN
CALL QUSFN(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL QUAFNCMAPFUN, [FUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
SALL LINQUACKI, ETA, GEOM, IGEOM, JGEOM, NODEL, ISIDNM,ULEN,
e ITEST)
END IF
QAT = ULENSWGHT(J y*COEFF
o CALCULATE «XI,ETA) IN GLOBAL (X,Y)
o COURDINATES

%904

G

G
9
"

I

G

L

SHMAP=0,000

THAP=0.0L0

[MAP=0Q

DO BY0Y KL=1,NODUAP, MPINCR
[HAP=1MAP+]
RHAP=MAPFGEGH (KL, 1 MAPFUN(TMAP)
THAP=YMAP+GEGH (KL, 2 p*MAPFUNCINAP)
n=XMAR

T=YMAD
CALL SCAPRDCGEOMt1,1), IGEOM, FUN, IFUN, NODEL, X, ITEST)

LALL SCAPRD(GEUM(T,2), IGEOM, FUN, IFUN, NODEL, Y, ITHEST)

CALCULATION OF THE NORMAL DIRECTION
COSINES
Caloulate Jacobiaon (mapping fn, deriv's * alament geomstry)
CALL MLTXTR (DERMAP, ILDER, JLDER, GEOM, ICEOM, JGEOM, JAC, IJ 7,
! JJAC, IDIMN, NODMAP, MPINCR)
CALL MATMULC(LDER, ILDER, JLDER, GEOM, IGEOM, JGEOM, JAC,I1JAG,
* JJAC, TDRIMN, NODEL, IDIMN, ITEST)
CALL MATINV(JAC, TJAC, JJAC, JACIN, IJACIN, JJACIN, IDIMN,DET,

* TTEST)
CALL MATMUL(JACIN, IJACIN, JJACIN, LDER, ITDER, JLDER, GDER, IGDER,

e
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’ Y
* JGDER, IDIMN, IDIMN, NODEL, ITEST)
R IF ((IELTYP.EQ.1). OR. (IELTYP.EQ.2).OR. (IELTYP.£Q.3)) THEN
TR * C CALL DCSTRI(JACIN,IJACIN, JJAGIN, ISIDNM, COSIN, ICOSIN,ITEST)
B END IF
S , IF ((IELTYP.EQ.4).OR. (IELTYP,EQ.5).0R. (IELTYP.EQ.6)) THEN
7 C CALL DCSQUA(JACIN, IJACIN, JJAC'J, ISIDNM, COSIN, ICOSIN,ITEST)
END IF
o
GO TO (1220, 1160), NBTYPE
o
g C CAUCHY CONDITIONS
0 -
' S ¢
: S 1160 VV=0.0D0
- DO 1181 IEQ=1,NVAR
)4 DO 1180 K=1,NODEL
& . DO 1170 L=1,NODEL
. CALL BFUNM (F, X, Y, K, L, IEQ, IVAR, FUN, QUOT, ISIDNM,
) * GDER)
o w BUTEMP(K,L) = F*QUOT
Py : 1170 CONTINUE
. » CALL BFUNV (F, &, Y, K, IEQ, IVAR, FUN)
g K BNTMP(K) = F#OUOT
: i 1180 CONTINUE
‘. o 1181 CALL ASMAT (BMTEMD, BNTN, IVAR, IEQ, NODEL)
‘ R CALL ASVEC (BNTMP, BN, IEQ, NODEIL)
N CALL MATADD(BELM, TBELM, JBELM, BNTN, IBNTN, JBNTN, IDFEL,IDFEL,
o * TEST;
Y SALL VECADD (BELV1, IBELV, BN, IBN, IDFEL, ITEST)
- 1190 CONTINUE
) 4§%§ : ASSEMBLY OF BOUNDARY CONDITIONS
—.'."/_',’i“.;,,;":. ::
A CALL DIRECT(IELNM, NLTOP, INLTOP, JNLTOP, NF, INF, JNF,IDFNOD,
R * NSTER, INSTER, ITEST)
e 5OCTH (1220, 12107, NBTYPE
i 1230 CALL ASUSM(SYSK, ISYSK, JSYSK, BELM, IBELM, JBELM, NSTER, INSTER,
i ¥ THBAND, IDFEL. ITEST)
R CALL ASKHS(RHS, IRHS, BELVL, IBELV, NSTER, INSTER, IDFEL,ITEST)
a2 1220 GUNTINUE
. 1230 CONTINUE
& RETURN v
oo END
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SUBROUTINE ASMAT(A, B, IVAR, IEQ, NODEL)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 A(12,12), B(60,60)
COMMON /VAR/ NVAR
ICFST=IEQ-NVAR
JOFST=IVAR-NVAR
DO 10 I=1,NODEL
II=NVAR*1+IQOFST
DO 10 J=1,NODEL
JJ=NVAR*J+JOFST
B(II,JJ)=A(I,J)
RETURN
END

SUBROUTINE ASVEC(V, W, IEQ, NODEL)

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 V(12), W(60)

COMMON /VAR, NVAR

IDFST=IEQ-NVAR

DO 10 I=1,NODEL
W(NVAR*I+I0OFST)=V (1)

RETURN

END

SUBROUTINE USSEQN (F, X, Y, I, J, IEQ, IVAR, FUN, GDER, QUOT)
IMPLICIT REAL¥8 (A-H,0-Z)
COMMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU, .
* PHI, ALPHA, PO, XLAM
LU%WOV /GRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
TAU, ZETA, SIGMA
,OMMON /RLNCM/ RALY, CFACT
COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STuPS2, ITRACE, ICONT,
* IFRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
REAL®8 FUN(12), GDER(3,12)
F=0.,0000
Contributions from equation 1
IF (IEQ.EQ.') THEN
IF (IVAR.EQ.1) THEN
=-GDER(1,I)*GDER(1,J)~-GDER(2,
* ~-FUN(I)*GDER(1,J)/X
END IF ¥
IF (IVAR.EQ.2) THEN
F=0.00D0
END IF
IF (IVAR.EQ.3) THEN
F=0,00D0
END IF
END IF
Contributions from equation 2
IF (IEQ.EQ.2) THEN
IF (IVAR.EQ.1) THEN
F=0.00D0 -
END IF
IF (IVAR.EQ.2) THEN
F=FUN(I)#*FUN(J)/PHI
END IF
IF (IVAR.EQ.3) THEN
F=0.00D0
END IF

I)*GDER(2,J)
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. END IF
. C CONTRIBUTIONS FROM EQUATION 3
s IF (IEQ.EQ.3) THEN
' IF (IVAR.EQ.l) THEN
F=0.00D0
g END IF
: IF (IVAR.EQ.2) THEN
=0,00D0
END IF
IF (IVAR.EQ.3) THEN
L F=FUN(I)*FUN(J)/EPSI
a2 END IF

e END IF
° RETURN
; END

' “! c

. C

i ¢
5 o c

A C This file contains the equations for the unsteady problem

SUBROUTINE EQNS (F, X, Y, I, J, IEQ, IVAR, FUN, ODER, QUQT)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /RLNUM/ RALY, CFACT

. m COMMON /CONT/ CO, CFCTWY STEP3, STEPS1, STEPS2, ITRACE, ICONT,
“ %” ¥ ® TI‘RST ICHK, ITASK, IPAYN, DPUP, DPLOW
Beon LDW%OV JELDAT/ NLTQP(500,14), COORD(SOO 3), NELE IELTYP,NODEL, ITELS,
o ; NF(500,5), XX(30), YY(30),NODTOT, IDIMN IDFEL
S *NX,NY,

L IXPOS(500), IYPOS(500), NODSID
n cawwow /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU,
PHI, ALPHA, PO ,XLAM
CLMMON JGRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
* TAU, ZETA, SIGMA
R COMMON /JEQM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
A SOMMON 710/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
TE * INPARM
AN e GRDSYS=0 SELECTS CARTESIAN COORDINATES, =1 SELECTS CYLINDRICAL
L " [EQFRM=0 SELECTS CONCENTRATION FORM, =1 SELECTS PHI**2 FORM
L REAL#*8 FUN(12), GDER(3,12)
RALLY=RALY
SELECT APPROPRIATE EQUATION SET FOR COORDINATE SYSTEM CRDSYS=0
z » FOR CARTESIAN
vyt [F(CRDSYS.EQ.0.0)THEN
‘ Contributions from equation 1
o IF (IEQ.EQ.1) THEN
g IF (IVAR.EQ.1) THEN
’ =-GDER(1,[}*GDER(1,J)
: ’ ‘ * -GDER(2,1I)*GDER(2,J)
. ‘ - RETURN
END IF
IF {IVAR.EQ.2) THEN
F=RLLY* (DPUP- (DPUP-DELOW)* (DSIN(3,141500/2., 0D0*
|2 e {CFACT-1,0D0)/ (CFCTMX~1.0D0)) ) )##2/DPw+2
£ * ®FUN(I)*GDER(L,J)
RETURN
gyt END IF
_— IF(IVAR.EQ.3) THEN
Lo F=0.0D0
RETURN

s
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. END IF
e END IF

C Contributions from equation 2

- IF (IEQ.EQ.2) THEN
0 Fa I¥ (IVAR.EQ.1) THEN

R F=0,00D0

RETURN
END IF
IF (IVAR.EQ.2) THEN
: F=(+DFXY(2,1)#*FUN(I)*CDER(1,J)-DFXY (1, 1)*FUN(I)*

o * GDER(2,J) )+GDER(1, I)*GDER{1,J)+GDER(2,1)*GDER(2,J)
PR RETURN
5 END IF
a IF(IVAR.EQ.3) THEN
: F=0,0D0
. RETURN
. END IF
e END IF

D

CONTRIBUTIONS FROM EQUATION 3
o IF(IEQ.EQ.3) THEN
L IF(IVAR.EQ.1) THEN
o F=0.0D0
A RETURN
o END IF
Al IF(IVAR.EQ.2) THEN
. =0, 0D0
= RETURN
¢ END IF
‘ IF(IVAR.EQ.3) TLEN
,n? IF IEQFRM.EQ." ) THEN
F=+DFXY (2, 1)*FUN(I)*GDER(1,J)
% -DFXY(1,1)*FUN(I)*GDER(2,J)
+XLEW* (GDER(1,1)*GDER(1,J)+GDER(2,I)*GDER(2,J))
RETURN
END [F
IF(IEQFRM.EQ. 1) THEN
F=+DFXY (2, 1)*FUN(I)*GDER(1,J)*FUN(J)
# -DFXY (1, 1)*FUN(I)*GDER(2,J)*FUN(J)
3 it +XLEW# (GDER( 1, I)*GDER(L,J)*FUN(J)-DFXY (L, 3)*GDER(1,J)*FUN(I)
T #* +GDER(2, I )*GDER(2,J)*FUN(J) -DFXY (2, 3)*GDER(2,J)*FUN(1))
R RETURN
SR END IF
S END IF
L END IF
S END IF
' : [dededededdeiededeistedoloteiokiclniedodotohdomdededodode, fedededololodoirideivioideidvivioddolofodobdedededeiioidododedenet
Co e EQUATIONS IN CYLINDRICAL COORDINAIES
[ dededeisdedeleiededeidodoioeividviohbololobiveidoiohddedeloddodr ook deioiedivi ookl fedeiokedsdelololol doned deode
IF(CRDSYS .EQ. 1. )THEN
e ¢ Contributi vs rrom equation 1
oo IF (IEQ.EQ.1) TUEN
i} IF (IVAR.EQ.1) THEN
: F==GDER(1,I)*GDER(1,J)-FUN(I)*GDER(1,J)/X
* -GDER(2, I)*GDER(2,J)
g RETURN
R 1 END IF
. IF (IVAR.EQ.2) TUEN
F=RLLY* (DPUP~ (DPUP-DPLOW)* (DSIN(3, 1415D0/ 2, 0D0*
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* (CFACT~1,0D0)/ (CFCTHX-1.0D0)) ) )#*2/DP#+*2
w *FUN(I)*GDER(1,J)*X
RETURN
END IF
IF(IVAR,EQ.3) THEN
F=0."D0
RETURN
END 1F
END IF

G Contributions from equation 2
IF (IEQ.EQ.2) THEN
IF (IVAR.EQ.1) THEN
¥=0,00D0
RETURN
END IF

IF (IVAR.EQ.2) THEN
F=(+DFXY(2,1)*FUN(I)*GDER(1,J)/X-DFXY(1, 1)*FUN(I)%*

* GDER(2,J)/X)+GDER(1,I)*GDER(L,J)+GDER(2,I)%GDER(2,J)
* ~FUN(I)*GDER(1,J)/X
RETURN
END IF
IF(IVAR.EQ.3) THEN
F=0,0D0
RETURN
END IF
END IF
G CONTRIBUTIONS FROM EQUATION 3
IF(IEQ.EQ.3) THEN
IF(IVAR.EQ.1) THEN
F=0.000
RETURN
END IF
IF(IVAR.EQ.2) THEN
F=0,0D0
RETURN
END IF
IF(IVAR.EQ.3) THEN
IF(IEQFRM.EQ.0) THEN
F=+DFXY(2, 1 )*FUN(I)*GDER(1,J)/X

# ~DFXY(1,1)*FUN(I)*GDER(2,J)/X
it +XLEW*(GDER(1,I)*GDER(1,J)~GDER(1,J)*FUN(I)/X
# +GDRR(2, I)*GDER(2,J))
RETURN
END IF

IF(IEQFRM.EQ.1) THEN
F=+DFXY(2, L)*FUN(I)*GDER(1,J)*FUN(J) /X
# -DFXY (1, 1)*FUN(I)*GDER(2,J)*FUN(J)/X
1 +XLEW* (GDER(1,I)*GDER(L,J)*FUN(J)-GDER(1,N*FUN(J)*FUN(L)/X
* ~DFXY(1,3)*GDER(1,J)*FUH(T)
% +GDER(2, I)*GDER(2,J)*FUN(J)
* ~DFXY(2,3)*GDER(2,J)*FUN(I))
TRTURN
END .7
END IF
END IF
END IF
WRITE(4,%) '"ERROR - IEQ OR IVAR > NEQ',IEQ,IVAR

RETURN
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N SUBROUTINE BFUNM (F, X, Y, K, L, IEQ, IVAR, FUN, QUOT, ISIDE,
A * ODER)
- IMPLICIT REAL*8 (A-H,0-Z)
. ‘ LOHMON /107 NINT, ITERM NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
INPARM
, LowMON JELDAT/ NLTOP(500,14),CO0RD(500,3),NELE, IELTYP,NODEL, ITELS,
B NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL
.»534« ’N‘( NY
A IXPOS(500), IYPOS(500), NODSID
" COMVON JJEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
, p COMMON /PARAM/ RYLGH, ucozr DP EPST, EA, ¥KO, DOVA, PERM, ¥MU,
% * PHI, ALPHA, PO, XLAM
o . COMMON /GRPS/ sLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
. % TAU, ZETA, SIGMA
S COMMON /ANGL/ ANGLE
‘ o REAL*8 FUN(12), GDER(3,12)
: g F=0.00D0
S IF(IEQ.EQ.1) THEN
p IF (IVAR.EQ.1) THEM
, A F=0.00D0% FUN(K)*FUN(L)
s RETURN
Yo END IF
! IF (IVAR.EQ.2) THEN
" F=0.00D0*FUN(K)*FUN(L)
“oo RETURN
END IF

.,-4? o
o

3
T LT
e

. ~
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IF (IVAR.EQ.3 THEN
F=0.00D0*FL.I(K)*FUN(L)
RETURN

END IF

END IF

IF(IEQ.EQ.2) THEN
IF (IVAR.EQ.1) THEN
F=0,00D0* FUN(K)*FUN(L)
PETURN
END IF
IF {IVAR,EQ.2) THEN
IF(ISIDE.EQ.2) THEN
IF(CRDSYS.EQ.1.0) THEN
VELN=~DFXY(1,1)/X
ELSE
YELN=-DFXY(1,1)
END IF
END IF
I[F(ISIDE.EQ.3) 1HEN
IF(CRDSYS.EQ.1.0) THEN
VELN=DFXY (2, 1)*DSIN(ANGLE)/X
FLSE
VELN=DFXY(2,1)*DSIN(ANGLE)
END IF
END IF
IF(ISIDE.EQ.2) THEN
IF(VELN.GT.0.0D0) THEN
=B JOT*FUN (K)#FUN(L)

‘Jm_mhamw,”wywmmwmuummumﬁumu
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RETURN
ELSE
F=(BIOT+VELN)*FUN(K)*FUN(L)
RETURN
END IF
END IF
IF(ISIDE.EQ.3) THEN
IF(VELN.GT.0.,0D0) THEN
F=BIOT*FUN(K)*FUN(L)
RETURN
ELSE
F=(BIOT+VELN)*FUN(K)*FUN(L)
RETURN
END IF
END IF
END IF
IF (IVAR.EQ.3) THEN
F=0.00D0*FUN(K)*FUN(L)
RETURN
END IF .
END IF

IF(IEQ.EQ.3) THEN
IF (IVAR.EQ.1) THEN
F=0.00D0* FUN(K)*FUN(L)
RETURN
END IF
IF (IVAR.EQ.2) THEN
F=0,00D0*FUN(K)*FUN(L)
RETURN
END IF
IF (IVAR.EQ.3) THEN
F=0.,00D0*FUN(K)*FUN(L)
RETURN
END IF
END IF
RETURN
END

SUBROUTINE BFUNV (F, X, Y, K, IEQ, IVAR, FUN)
IMPLICIT REAL*8 (A-H,0-2)

COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
VP COMMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU,
RS * PHI, ALPHA, PO, KLAM

” K‘ COMMON /GRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
ety L3

TAU, ZETA, SIGMA
COMMON /ANGL/ ANGLE
REAL*8 FUN(12)
F=0.00D0
IF (IEQ.EQ.1) THEN
F= 0.00DO*FUN(K)
RETURN
END IF
IF (IEQ.EQ.2) THEN
F=0,00D0
RETURN
END IF
IF (IEQ.EQ.3) THEN
F= 0.,00D0*FUN(K)
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PR RETURN
] END IF
A RETURN
9 END

' A SUBROUTINE DIRIC (DERIV, ISIDE)
‘ S IMPLICIT REAL*8 (A-H,0-2)
COMMON /SPLIT/ IVAR, KK, K, NBTYPE, NODE, IFIRST
COMMON /JEQM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
‘ COMMON /IQ/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
: . * INPARM
B COMMON /VAR/ NVAR

o : COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3),NELE,IELTYP,NODEL,ITELS,

* * NF(500,5), XY(30), YY(30),NODTQT, IDIWN IDFEL

- *NX,NY,
' : * IXPDS(500), IYPOS(500), NODSID
‘ o COMMON /FEMWRK/ RHS(410), AL(410,140),

, L * NROPV(410), RESDV(4,500), RESD(4), ERR(4),
’ ’ * ERRAV(4), ERRCNT(4), ERRTOT(4), SCALE
A COMMOW /BAND/ TBAND, IHBAND, ITOTDF
A COMMON /MTRIX/ SYSK(410, 140), SYSM(410,140)

¥, COMMON /CONT/ CO, CFCTMX, STEPS, STEPSL, STEPS2, ITRACE, ICONT,

* IFRGT, ICHK, ITASK, IPAYN, DPUP, DPLOW

? TEST FOR BOUNDARY CONDITION 'SPLIT'

LSTS1ID=1

I[F(ISIDE.NE.LSTSID) THEN

LSTSID=18IDE
IFIRST=1

END LF
ﬂmA IF(NBTYPE.EQ.1) GO TO 11
. IF ((IELTYP.EQ.1).0R.(IELTYP,EQ.3)) THEN
M;ﬂ”& IF ((ISIDE.EQ.2).AND.(DERIV.LT.0.000)) GO TO 10
, i IF ((ISIDE.EQ.3).AND.(DERIV.LT.0.0D0)) GO TO 10
: e GO T0 11
gopm ELSE
CAAY o ==- LSTNOD=2 implies that the last node was a derivative
wni IF(IFIRST.EQ.1) THEN
7 IF((NODE.EQ.1).AND. (DERIV.LT,0.0D0)) THEN
oo LSTNOD=2
eT RETURN
o END IF
§ .l ’ IF((NODE.EQ.1) . AND, (DERIV.GE.0.0D0)) THEN
: R R LSTNOD=1
o GO TO 11
Ty END IF
e IF((NODE.NE.1).AND. (LSTNOD.EQ.2)) THEN
) RETURN
END IF
IF((NODE . NE,1).AND, (LSTNOD .EQ.1).AND. (DERIV.GE.0,0D0)) THEN
GO TO 11
, L END IF
‘ [Z((NODE,NE. 1) AND, (LSTNOD,EQ.1) . AND. (DERIV.LT.0.0D0)) THEN
'} LSTNOD=2
GO TO 11
END IF
) ELSE
S IF((NODE EQ. 1) . AND. (LSTNOD.EQ.2)) THEN
oo RETURN
END IF

GaoOaoaao
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U IF((NODE.EG.1).AND. (LSTNOD,NE.2).AND, (DERIV.GE.0,0D0)) THEN
‘ LSTNOD=1
LA . s GO TO 11
END IF
4 IF((NODE,EQ.1) .AND. (LSTNOD.NE.2) .AND. (DERLV.LT.0.0DCQ)) THEN
N LSTNOD=2
o RETURN
’ END IF
. » ‘ IF((NODE.NE.1),AND. (DERIV.GE.0.0R0)) THEN
} J LSTNOD=1
// G0 TO 11
- yas END IF
(A IFCGIOE.NE, 1), AND, (DERIV.LT,0.0D0)) THEN
f- LSTNOD=2
o : GO TO 11
L END IF
END IF
L END IF
. 11 ¥ = COORD(KK,1)
A Y = COORD(KK,2)
{F(ITASK.NE.4) THEN
c Payne-Irons on K matrix
SYSK (K, IHBAND) = SYSK(K,IHBAND)Y*SCALE
RHS(K) = SYSK(K,IHBAND)*H(X,Y,IVAR)
ey g END IF
LR IF((ITASK.EQ.4)  AND. (IPAYN.EQ.1)) THEN
4 " Payns-Izons on mass matrix
S SYSM(K, IHBAND) = SYSM(K,IHBAND)*SCALE
END IF
10 RETURN
END

Tl
N

DOUBLE PRECISION FUNCTION H(X,Y,IVAR)
: IMPLIGIT REAL¥*8 (A-H,N~2)
« 4 COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
w3 COMMON /PARAM/ RYLOGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU,
& s PHI, ALPHA, PO, XLAM
COMMON /GRPS/ XLEW, CAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
% TAU, ZETA, SIGMA
. COMMON /RLNUM/ RALY, CFACT
. o COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
I #* IFRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
: : H=0, 0DO
R IF (IVAR.EQ.1) H=1.00D0
‘ i A [F (IVAR.EQ.2) THEN
v R , H=0, 0D0
‘ END IF
1 . u IF(IVAR.EQ.3) THEN
‘ ’ C H=XMOTWT*CO/RHOG/MOLFRAC
IF(IEQFRM,EQ.0) THEN
5 H=0,029D0%8,523D0/ 1, 177023D0%4, 76
F KETURN
4 END IF
IF(IEQFRM.EQ. 1) THEN
. 4“' ; H=DSQRT (0., 029D0*8,523D0/ 1, 177023D0%4.,76)
RETURN
END IF

} END IF
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. _ RETURN
; END

, DOURLE PRECISION FUNCTION HU(X,Y,IVAR)
* S IMPLICIT REAL#*8 (A-H,0-Z)
S COMMON /JEOM/ XMAX, YNAX, CHRL, CRDSYS, IEQFRM, ISIDNM

COMMON /PARAM/ RYLCH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU,
w PHI, ALPHA PO, XLAM

LONMON /CRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,

TAU, ZETA, SlGMA
LOMMON /RLNUM/ RALY, CFACT

w2 COMMON /CONT/ ©CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
(N #* IFRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
Ty HU=0,0D0
. IF (IVAR.EQ.2) HU=1,00D0
IF (IVAR.EQ.1) THEN
. HU=1,0D-6
' END IF
- IF{IVAR.EQ.3) THEN
b C HU=XMOLWTYCO/RHOG/MOLFRAC
p IF(IEQFRY.EQ.0) THEN
B HU=0,029D0%8.523D0/1.177023D0%4 ., 76
. RETURN
Y END IF
R IF(IEQFRM.EQ.1) THEN
e HU=DSQRT (0, 029D0%8,523D0/1,177023D0%4.76)
RETURN
. END IF
. END IF
. KETURN
Fo) END

G This file contains the source terms for the unsteady problem

o SUBROUTINE SOURCT (F, X, Y, I, IEQ, FUN, GDER, NVAR)

ey [MPLICIT REAL¥8 (A~H,0-2)
E CCHMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, ¥KO, DOVA, PERM, XMU,
L PHI, ALPHA, PO, XLAM
) "COMMON /GRPS/ XLEW, GAMMA. BETA, THIELE, RLLY, BIOT, DEE, GHI,
\ e g TAU, 4ETA, SIGMA v
b - COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
A COMMON /RLNUM/ RALY, GFACT
C S COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE, ICONT,
5 % IFRST, ICHK, ITASK, IPAYN, DBUP, DPLOW
v GOMNON /10/ NINT, ITERM, NIN, NOUT, IPKOFL, MESH, IERR, NTOUT,
‘ INPARM
'REAL#8 FUN(12), GDER(3,12)
F=0, 0000

F¥=0, 0000
FY=0,0000
THMPRT=TREAL(FXY{2))+273. 1500 - |
Ie o E  BROOKS=58198
: EOVR=EA/8, 314D0
¢ CHOOSE FORM OF RATE EXPRESSION FOR EQUATION FORM
i IF(IEQFRM,EQ.0) THEN
B CONC=FXY (3)

.o IF(NVAR.EQ.2) THEN

CONC=0,9995679D0
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END IF
END IF
IF(LEQFRM.EQ.1) THEN
CONC=FXY (3)*FXY(3)
END IF
TERM=-EQVR/TMPRT
TERM=-EQVR/293.0D0
TERM=-GAMMA/ (1.0DO+FXY(2))
RA=DEXP (TERM)

DIVIDE RATE BY 2 FOR PHI**2 EQUATION FORMULATION

IFCIEQFRM.EQ. 1)RA=RA/2,

IF (IEQ.EQ.1) THEN
F=0.0
RETURN

END IF

IF (IEQ.EQ.2) THEN
F=THIELE#*BETA*CONC*FUN(I)*RA/

B (CFCTMX~-1.0D0))))*DP

s
W

RETURN

END IF

IF(1EQ.EQ.3) THEN
F=-THIELE*FUN( T }*CONU*RA/

® (CPCTMX~1.0D0))))*DP

w

RETURN
END IF
RETURN
END

SUBROUTINE SEPRT (RHS, NVAR, NTNOD, FVAL)

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 RHS(410), FVAL(5,500)
DO 10 IEQ=1,NVAR
[OFST=IEQ-NVAR
DO 10 NOD=1,NTNOD

FVAL{IEQ,NOD)=RHS (NVAR*NOD+IOFST)

RETURN
END

(DPUP-(DP.P~DPLOW)* (DSIN(3.1415D0/2.0D0* (CFACT~1.0D0)/

(DPUP~ (DPUP-DPLOW)*(DSIN(3.1415D0/2.0D0¥*(CFACT-1.0D0)/

SUBROUTINE MLTXTR (ARAY1, Il, J1, ARAY2, [2, J2, ARAY3, I3, J3,

NDIM, MXMLT, INCR)
IMPLICIT REAL*8 (A-I1,0-%)

REAL*8 ARAY1(11,J1), ARAY2(I2,J2}, ARAY3(I},i%

DO 10 I=1,NDINM
DO 10 J=1,NDIM
ARAY3(I,J)=0,00D0
KCNTR=0
DO 10 K=1,MXMLT, INCR

Single increment for map function

KCNTR=KCNTR+1

ARAY3(I,J)=ARAY3(1,J)+ARAY1(I ,KCNTR)*ARA (K

RETURN
END

SUBROUTINE COMBN (FNVAL, NVAR, NTNOD,

VHIXD
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IMPLICIT REAL*8 (A-H,0-2)
COMMON /IO/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
* INPARM
REAL#8 VMIX(410), FNVAL(5,500)
DO 10 IEQ=1,NVAR
IOFST=IEQ-NVAR
DO 10 NOD=1,NTNOD
VHIX(NVAR*NOD+IOFST )=FNVAL(IEQ,NOD)
RETURN
END

DOUBLE PRECISION FUNCTION FXY(IVAR)

IMPLICIT REAL*8 (A-H,0-%)

COMMON /FVALS/ FVAL(5,500), FLST(5,500)

COMMON /VAR/ NVAR

COMMON /SHPFN/ FUN(12), GDER(3,12}

COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3),NELE,IELTYP,NODEL, ITELS,
* NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
*NX,NY,
* IXPOS(500), IYIOS(500), NODSID
FXY=0.00D0
DO 10 I=1,NODEL

NOD=NLTOP(NELE, I+2)
IOFST=IVAR-NVAR
FXY=FXY+FUN(I)*FVAL(IVAR,NOD)
RETURN
END

DOUBLE PRECISION FUNCTION DFXY (IDRN, IVAR)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /FVALS/ FVAL(S,500), FLST(5,500)

COMMON /VAR/ NVAR

COMMON /SHPFN/ FUN(12), GDER(3,12)

COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3) ,NELE, IELTYP,NODEL, ITELS,
& NF(22,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
*NX,NY,
% IXPOS(500), IYPOS(500), NODSID
DFXY=0,00D0
DO 19 I=1,NODEL

NOD=NLTOP(NELE, I+2)
DFXY=DFXY+GDER(IDRN, I )*FVAL(IVAR,NOD)
RETURN
END

DOUBLL PRECISION FUNCTION TREAL(TDIML)
IMPLICIT REAL#*8 (A-H,0-2)
TREAL=(1,0D0+TDIMNL)#*293,0D0-273.15D0
RETURN

END

SUBROUTINE PRTANS

IMPLICIT REAL*8 (A-},0-7)

COMMON /FVALS/ FVAL(5,500), FLST(5,500)

COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3) ,NELE, IELTYP NODEL, ITELS,
* NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL, g
*NK,NY,
* IXPOS(500), IYPOS(500), NODSID
COMMON /VAR/ NVAR
COMMON /10/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
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* [NPARM
COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSY®, IEQFRM, ISIDNM
DO 10 NOD=1,NOBTOT
IF(IEQFRN.EQ.O) THEN
WRITE (NOUT,5) FVAL (1,NOD), TREAL(FVAL(2,NOD)),
* FVAL(3,NOD)/4.76,
*DACOS(l 0DO-COORD (NOD, 1))*2. ODO/B 142D0*CHRL
, COORD(NOD, 2)*CHRL
FORMAT(5F16.8)
END IF
IF(IEQFRM.EQ.1) THEN
WRITE (NOUT,*) FVAL (1,NOD), TREAL(FVAL(Z,NOD)),

* FVAL(3,NOD)*%2/4.76,COO0RD(NOD, 1)
* , COORD(NOD,2
END IF
10 CONTINUE
RETURN
END

fo!

o3

SUBROUTINE PRTXTR

IMPLICIT REAL*3 (A-H,0-2)

COMMON /XTRACT/ NXTRCT, IVXTR(6), IEXLST(6,4,60), NODXTR(6)

COMMON /FVALS/ FVAL(5,500), FLST(5,500)

COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3),NELE, IELTYP,NODEL, ITELS,
* NF(5300,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
*NX,NY,

* IXPOS(500), TYPOS(" '+, NODSID
COMMON /JEOM/ XMAX, YMAX, CHPT JRDSYS, IEQFRM, ISIDNM
COHWOV /10/ NINT, ITERM, NIN UT, IPROFL, MESH, IERR, NTOUT,

INPARM
DQ 20 I=1,NXTRCT
ITOT=0
{FGL8T=1

DO 30 J=1,NODXTR(I)
NHNOD=IEXLST( T, IVXTR(I),J)
IF(IVXTR(I).EQ.1) THEN

--=- Calculate the number of flow reversals
FLOWI=FVYAL(IVXTR(I) ,NMNOD)
FLOW2=FYALCIVXTR(I) ,NMNUD+1)
~--- sign of the flow
SIGN=FL(W2~-FLOW1 ¥
LF(SIGN,GE.0.0D0) TIUEN
[FLG=1
ELSE
IFLG=0
END IF

. === If the {low directirn is different from previous increment ITOT

IF(IFGLST.NE IFLG) ITOT=ITOT+1
IFGLST=IFLG
WRITE (IPROFL,%*) FVAL(IVXTR(I), NHNOD},
COORD(NMNOD, 1), COORD(NMNOD,2
ELSE . -
[F(IVKTR(I).EQ.2) THEN
WRITE(IPROFL,*) TREAL(FVALCIVXTR(I), NMNOD)),
% CODRDINNNOD, 1), COORD(NMNOD,2)
ELSE
IFCIVXTR(I).EQ.3) THEN
WRITE(IPROFL,*) FVAL(IVKTR(I), NMNOD)/4,76,
CCORD(NMNOD, 1), GOORD(NMNOD,2

ar
3

i3

etk " )
ooy i g MLAL A b




TEFAIT E0RETER € A0 perl3ee Do wprs

‘\\ . R
=3 4 1 1
/,(
2
s, o “ {g
« “» } ." ‘ . i , )
T V"‘ 2 .
SR 5 W S
° 147
I END IF
e END IF
4 END IF
. 30 CONTTNUE
T T WRITE(NOUT,*) 'NUMBER OF FLOW CELLS',ITOT
o 20 CONTINUE
", RETURN
END
G

SUBROUTINE SOLVE
IMPLICIT REAL*8 (A-H.0-2)

A G
V,A«:’*" z [ dededededededehfolohifodeddodededeiehde
. ty c# * ]
y‘“ S c # EQUATION SOLUTION *
. r C* # *
i Co sededede et et de et dedo e et e oo
! C
Q,*i COMMON /DIMS/ INBDC, ILISTB, ICOORD, INLTOP, INF, IRHS, ISYSK,
® JNBDC, JLISTB, JNLTOP, JNF, JSYSK, INROPV, IAL, JAL
‘ COMMON /VAR;/ NVAR
LA COMMON /ELDAT/ NLTOP(500,14),CO0ORD(500,3),NELE, IELTYP,NODEL, ITELS,
L ‘g * NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,
R 8K, NY,
R * IXPOS(500), IYPOB(500), NODSID
Y“"'? COMMON /FEMWRK/ RHS(410), AL(410,140),
' * NROPV(410), RESDV(4,500), RESD(4), ERR(4),
.7 * ERRAV (&), ERRCNT(4), ERRTOT(4), SCALE
& : COMMON /BAND/ 1BAND, [HBAND, ITOTDF

COMMON /MTRIX/ SYSK(410,140), SYSM(410,140)

COMMON /FVALS/ FVAL(S5,500), FLST(5,500)

ITEST=0

CALL GAUSOL (SYSK, ISYSK, JSYSK, AL, IAL, JAL, ITOTDF, IHBAND,
NROPYV, INRQPY, RHS, IRHS, ITEST)

GALL SEPRT(RHS, NVAR, NODTOT, FVAL,

RETURN
END
C
C
SUBROUTINE ERCHK
IMPLICIT REAL*8 (A-H,0-2) ¥
s h DIMENSICN ABSS(3,9), BELM(60,50), BELV(60), BN(60), BNTN(60,60),
: ?rlﬂ},”; * BNTMP(12), BMTEMP(12,12),
o C : * COSIN(3), RMAT(60,60), ELK(60,60), GDERT(12,3),

RIS ¥ GEOM(12,3),  JAC(3,3),JACIN(3,3), ABSCL(9), LDER(3,12)
o ®, P(3,3),

E * PD(3,12),NSTER(60), WGHT(9),BELV1(60),SRCE(60), QL(12)

5 %, TMAT(12,12),

7 #* XTVEC(60), DERMAP(3,12)

COMMON /XP/ XPARM(4)

COMMON /DIMS/ INBDC, ILISTB, ICOORD, INLTOP, INF, IRH., ISYSK,

"f * JNBDG, JLISTB, JNLTOP, JNF, JSYSK, INROI'V, IAL, JAL -
/» COMMON /I0/ NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
* INPARH
G COMMON /PARM, PARAM(4)
ﬂﬂu'h_ ; COMMON /VAR/ NVAR
. ; COMMON /ELDAT/ NLTOP(500,14),CO0RD(500,3) ,NELE,IELTYP,NODEL,ITELS,
T " * NF(500,5), XX(30), YY{30),NODTOT, IDIMN, IDFEL,
' ’ *NX,NY,
* t
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IXPOS(500), IYPOS(500), NODSID
COMMON /XTRACT/ NYTRCT, IVXTR(6), IEXLST(6,4,60), NODXTR(6)
COMMON /FEMWRK/ RHS(410), AL(410,140),
NROPV(410), RESDV(4,500), RESD(4), ERR(4),
ERRAV(4), ERRCNT(4), ERRTOT(4), SCALE
COMMON /BAND/ IBAND, IHBAND, ITOTDF
COMMON /MTRIX/ SYSK(410,140), SYSM(410,140)
COMMON /BNDRY, NBNDRY(5,6,80), NBND(5), NBDC(6,80), LISTB(140,5)
COMMON /SHPFN/ FUN(12), GDER(3,12)
COMMON /FVALS/ FVAL(5,500), FLST(5,500)
COMMON /RLNUM/ RALY, GFACT
COMMON /CONT/ CO, CFCTMX, STEPS, STEPS1, STEPS2, ITRACE,
[FRST, ICHK, ITASK, IPAYN, DPUP, DPLOW
COMMON /JEOM/ XMAX, YMAX, CHRL, CRDSYS, IEQFRM, ISIDNM
COMMON /PARAM/ RYLGH, HCOEF, DP, EPSI, EA, XKO, DOVA, PERM, XMU,
PHI, ALPHA, PO, XLAM
COVWON /GRPS/ XLEW, GAMMA, BETA, THIELE, RLLY, BIOT, DEE, CHI,
TAU, ZETA, SIGdA

CONNON /RELAX/ RELAYI RELAX2, RELAX3
REAL*8 CHPARM(4), MAPFUN(12), MAXVAL(S)
STEPS=STEPS2

If first time around, allow many continuation steps ('STEPS1')
IF (IFRST.EQ.1) THEN

STEPS=STEPS1

C0=0.,200D0

IFRST=0
END IF )
IDFNOUD=NVAR
ITEST=0
IDGT=0
IWKREA=50000
NRHS=1
CALL MATNUL(FLST, 4, NODTOT, NVAR, NODTOT,
iteration (if necessary) begins here

ICONT,

ITEST)

CFSTP=(CFCTMX~C0O)/STEPS
IPCNTR=0
IF (ICONT.EQ.O) THEN

NITER=0

CFACT=1,00D0

CFCTMX=CFACT-0.01D0 ¥
END IF
DO 10000 CFACT=1.0D0, CFCTMX+0.01DO,
IF(ICONT.EQ.1) WRITE(ITERM,*)' CFACT =
NITER=0
CALL FELMNT
IF (NITER.GT.300) THEN

WRITE(ITERM,*) 'ITERATION LIMIT EXCEEDED, CFACT =

ERR(1), ERR(2), ERR(3)

1.0D0
' ,CFACT

', CFACT,

WRITE(NOUT,*) 'ITERATION LIMIT EXCEEDED, CFACT = ', CFACT,
ERR(1), ERR(2), ERR(3), ERRAV(1), ERRAV(2), ERRAV(3) -
GCALL PRTANS .
CALL PRTXTR
sTop
END IF

NITER=NITER+1
IPCNTR=IPCNTR+1
CALL SOLVE
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CALCULATE RESIDUALS

TMAX=0.,0D0
DO 127 IVAR=1,NVAR
RESD(IVAR)=0,00D0
ERR(IVAR)=0.00D0
ERRAV (IVAR)=0,0D0
ERRCNT (IVAR)=0,0D0
ERRTOT (IVAR)=0.0D0
MAXVAL(IVAR)=0.00D0
DO 127 NOD=1,NODTOT
FV=FVAL(IVAR,NOD)
IF (DABS(FV).GT.MAXVAL(IVAR)) MAXVAL(IVAR)=DABS(FV)
CONTINUE
DO 126 IVAR=1,NVAR
DO 125 NOD=1,NODTOT
IF(FVAL(2,NOD).LT.0.0D0) FVAL(2,NOD)=0.0D0
IF(FVAL(2,NOD).GT.2.5D0) FVAL(2,NOD)=2.50D0
IF(FVAL(3,NOD).LT.0.0D0) FVAL(3,NOD)=0,0D0
IF(FVAL(3,NOD).GT.0,999567900) FVAL(3,NOD)=0.999567900
FV=FVAL(IVAR,NOD)
IF(IVAR,EQ.2) THEN
RSDV=(FVAL(IVAR,NOD)-FLST(IVAR,NOD))/MAXVAL(IVAR)
ELSE
RSDV=(FVAL(IVAR,NOD)~FLST(IVAR,NOD))/FVAL(IVAR,NOD)
END IF
ERRTOT(IVAR)=ERRTOT (IVAR)-+RSDV
RESDV (IVAR ,NQCD)=RSDV
IF (DABS(RSDY).GT.DABS(ERR(IVAR))) ERR(IVAR)=RSDV
IF{IVAR.EQ. ) THEN
FYAL(IVAR,NCD)=(FVAL(IVAR,KNOD)

% +RELAX1*FLST(1VAR,NOD) )/ (RELAX1+1.,0D0)

ELSE
IF(IVAR.EQ.2) THEN
FVAL({IVAR,NOD)=(FVAL(IVAR,NOD)

* +RELAX2*FLST(IVAR,NOD) )/ (RELAX2+1.0D0)

ELSE
I7(IVAR.EQ.3) THEN
FVAL(IVAR,NOD)={FVAL(IVAR,NOD)

N +RELAX3*FLST(IVAR,NOD))/(RELAX3+1.0D0)

END IF
END IF
END IF
FLST(IVAR,NOD)=FV
IF(IVAR.EQ.2)THEN
TTEST=FVAL(IVAR,NOD)
IF(TTEST.GT. TaX ) THEN
THAX=TTEST
NDTMAX=NOD
END IF
END IF
RESD(IVAR)=RESD(IVAR)+RESDV ([VAR,NOD)#*%*2
ERRAV(IVAR)=ERRTOT(IVAR)/FLOAT(NODTOT)
ERRCNT(IVAR)=0.0D0
DO 128 NOD=1,NODTOT
IF(RESDV(IVAR,NOD).GT.ERRAV(IVAR)) THEN
ERRCNT(IVAR)=ERRCNT (IVAR)+1,0D0
END IF
CONTINUE
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L 126  CONTINUE
S RESD(1)=DSQRT(RESD(1))/NODTOT

N RESD(2)=DSQRT(RESD(2))/NODTOT

o C WRITE (ITERM,*) 'ERRORS ',ERR(l), ERR(2)

R IF (ITRACK.EQ.1) THEN

' WRITE (ITERM,*) 'MAX NORM ERR ',ERR(1), ERR("), ERR(3)
- WRITE(ITERM,*) 'AVG ERR ', ERRAV(1), ERRAV(2), ERRAV.3)
WRITE CITERM,*) '# OF NODES WITH ERROR EXCEEDING ERRAV'
WRITE(ITERM,*) ERKCNT(1), ERRCNT(2), ERRCNT(3)
WRITHE(ITERM,*) TREAL(TMAX), COORD(NDTMAX,1)*CHRL

, % , COORD(NDTMAX, 2)*CHRL
o WRITE(ITERM,*)'DP",
R * DPUP~(DPUP -DPLOW)* (DSIN(3. 1415D0/2.0D0%* (CFAGT-1.0D0)/
Ty %* (CFOTMX~1.000)))
R END IF
7 IF(ICONT.EQ.1) GO TO 637

WRITE(NTOUT,*) TREAL(TMAX)+273.15, COORD(NDTMAX,1)*CHRL
* , COORL (NDTMAX, 2 )#*CHRL
‘ 637 IF (ICHK.NE.1) THEN
! C IF((RESD(1).G6T.0.040).0R, (RESD(2).GT.0.01)) GO TO 9000
| IF ((DABS(ERRAV(1)).GT,1.0D-3).0R.(DABS(ERRAV(2)).GT.1.0D-3)
R * .OR. (DABS (ERRAV(3)).GT,1.0D-3)) GO TO 9000
p END IF
IF(ICONT.EQ.1) THEN
IF( (TREAL(TMAX)+273.15) .GE,360.0D0) THEN
CFCTHY=(CFCTMX-CFACT)*10. 0D0
CFSTP=1.0D0
C0=1.0D0
GO TO 10001
END IF
: END IF
A IF (ICHK.EQ.1) THEN
aﬁﬂggi : ICNV=0
M WRITE(ITERM,*)' ARE ERRORS OK 7'
)T a READ (NINT,*)ICNV
R IF (ICNV.NE. 1) GOTO 9000
it END IF
T c IF ((IPCNTR/ITRACE)*ITRACE.EQ.IPCNTR) THEN
WRITE(ITERM,*) 'CONTINUATION FACTOR = ',CFACT
£ END IF
REWIND(UNIT=2) v
WRITE(2,5) CFACT
D0 10 NOD=1,NODTOT
WRITE (2,5) FVAL (1,NOD), TREAL(FVAL(2,NOD)),

GaOoaaa

3 U

&,
-
<

* FVAL(3,NOD)/4.76,CO0RD(NOD, 1)*CHRL
* , COORD(NOD,2)*CHRL
5 FORMAT(5F16.8)
19 CONTINUE
2 IF ({TREAL(THXLST)-TREAL(TMAX)).GT.50,0D0) GO TC 10000

WRITE(NOUT,*) 'CFACT=", CFACT
WRITE (NOUT ,*) 'RAYLEIGH', RLLY*
*  (DPUP-(DPUP-DPLOW)* (DSIN(3.1415D0/1,0D0% (CFACT~1.0D0)/

if i *  (CFCTMX-1,CD0)) ) )%=2/DP*+2
{ WRITE (NOUT,*) "THIELE', THIELE/
! *  (DPUP~{DPUP-DPLOW)*(DSIN(3.1415D0/2,000% (CFACT~1,0D0)/
oy V. j *  (CFCTMX-1.0D0))))*DP »
s i # *DEXP (-GAMMA)

WRITE(NOUT,®)'DP',
¥ DPUP-(DPUP=DPLOW)*(DSIN(3, 1415D0/2, 0D0* (CFACT=1.0D0)Y/
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*  (CFCTMX-1.0D0)))
WRITE (NOUT,*) TREAL(TMAX)+273.15, CGQORD(NDTMAX,1)*CHRL
* , COORD(NDTMAX, 2)*CHRL

CALL PRTXTR

THXLST=TMAX

CONTINUE

Resot GFACT

IF(ICONT.EQ.0) CFACT=1.0D0

8010
8020
9010
9020
2030
1040

FORMAT
FORMAT
FORMAT
FORMAT

FORMAT-

FORMAT

(l6I5)

(15, 6F10.0)

(//25H #rwd NODAL GEOMETRY ¥/ /1H )
(1H , 18I5)

(14, 15, 6F10.5)

(//27H %k ELEMENT TOPOLOGY #¥¥%//1H )

49050
9060

GG

FORMAT
FORMAT
RETURN
END

(//30H e BOUNDARY CONDITIONS ki) /1H )
(//27H s NODAL POTENTIALS #iwe//1H )

SUBROUTINE ASSM
IMPLICIT REAL#8 (A-H,0-%)
REAL*8 JAC, JACIN, LDER
REAL*8 CHPARM(4), MAPFUN(12), MAXVAL(S)
DIMENSION ABSS(3,9), BELM(60,60), BELV(60), BN(60), BNTN(60,60),
* BNTMP(12), BMTEMP(12,12),
* CO8INC3), RMMAT(A0,600), ELM(60,60), GDERT(12,3),
 GLOM(12,3), JAC(3,3),JACIN(3,3), ABSCL(9), LDER(3,12)
#, P13,3),
* PDC3,12) ,NSTER(60), WGHT(9),BELV1(60),8RCE(60), QL(12)
, THMATU12,12),
# XTVEC(60), DERMAP(3,12)}
COMMON /DIMS/ INBDC, ILISTB, ICOORD, INLTOP, INF,
i JNBUC, JLISTB, JNLTOP, JNF, JSYSK,
ITERM, NIN, NOUT, IPRO¥L, MESH

IRHS, ISYSK,
INROPY, IAL, JAL
TERR, NTOUT,

COMMON /L10/ NINT,

COMMON

CUMMON
COMMON

e

By

L3

*NX,NY,
*

COMHON
COMMON

COMMON
COMMON
GUMMON
COMMON
CUMMON
SOMMON
CoMMON

INPARM

/PARM/ PARAM(4)

/¥YAR/ NVaR

/ELDAT/ NLTOP(500,14),COORD(500,3) ,NELE, IELTYP ,NODEL, ITELS,
NF(500,5), XX(30), YY(30),NODTOT, IDIMN, IDFEL,

IXPOS(500), IYPOS(500), NCDSID
/XTRACT/ NXTRCT, IVXTR(6), IEXLST(6,4,60), NODXTR(6)
fFEMWER/  RHS(410), AL(410,140),
NROPV(410), RESDV(4,500), RESD(4), ERR(4),
ERRAV(4), ERRCNT(43, ERRTOT(4), SCALE
/BAND/ IBAND, IHBAND, ITOTDF
/HTRIX/ SYSK(410,140), SYSM(410,140)
/BNDRY/ NBNDRY(5,6,80), NBND(5), NBDC(6,80), LISTB(140,53)
/SHPFN/ FUN(12), GDER(3,12)
/FVALS/ FVAL(S5,500), FLST(5,500)
/RLNUM/ RALY, CFACT
JCONT/ GO, CFCTMX, STEPS, STEPSL, STEPS2, ITRACE, ICONT,
IFRST, ICHK, ITASK, IPAYN, DPUD, DPLOW

G
G
g

i ¢
|

COMMON /SPLIT/ LVAR, RK, K, NBTYPE, NODE, IFIRST

PROBLEM SIZE DEPENDENT ARRAYS
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DATA IABSS /3/,IBELM/60/,IBELY /60/,IBN /60/,IBNTN /60/,ICOSIN/Z",
* IRMMAT /e0/,IELM /60/, TFUN /12/, IGDER /3/,IGDERT /12/, IGEOM
"‘./ 12/ )

* 1JAC /3/, LJACIN /3/,IABSCL /9/, ILDER /3/, IP /3/, IPD /3/,

* INSTER /60/,IWGHT /9/, JABSS /9/,JBELM/60/,JBNTN /60/,JCO0RD /3/,
* ISRCE /60/, IXTVEC /eQ/,

% JRMMAT /60/, JBLM /60/, JGDER /12/, JGDERT /3/, JGEOM /3/,JJAC
*/3/,

* JJACIN /3/, JLDER /127, JP /3/,JPD /12/

WRITE(ITERM,*) 'INSIDE ASSM'
MPINCR=NODSID=1
NODMAP=NODEL-NODS ID+2
IDFNOD=NVAR

ITEST = 0

INGT=0

IWKREA=50000

NRHS=1
B T e e e T
- %
* MASS MATRIX ASSEMBLY *
¥ *

dedededededeRdoirieiniodelodilokdidiielofodthvedekdok deledoied

GCALL MATNUL(SYSM, 1SYSK, JSYSK, ITOTDF, IBAND, ITEST)

IDFEL = NODEL*IDFNOD

[F ((IELTYP.EQ.1).OR.(IELTYP.EQ.2),0R. (IELTYP.ZQ.3)) THEN
CALL QTRI7(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)

END IF

(F ((IELTYP.EQ.4).0R. (IELTYP.EQ.5).0R, (IELTYP.EQ.6)) THEN
CALL QUQUAZ(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)
CALL QQUA4(WGHT, IWGHT, ABSS, IABSS, JABSS, NQP, ITEST)

END IF

DO 1100 NELE=1,ITELS

CALL ELGEOM(NELE, NLTOP, INLTOP, JNLTOP, COORD, ICOORD,JCOORD,

* GEOM, IGEOM, JGEOM, IDIMN, ITEST)

INTEGRATION LOOP FOR ELEMENT MATRICES
USING NQP QUADRATURE POINTS

CALL MATNUL(ELM, IELM, JELM, IDFEL, IDFEL, ITEST)
DO 1090 IQUAD=1,NQF
CALL MATNUL(RMMAT, IRMMAT, JRMMAT, IDIEL, IDFEL, ITEST)

FORM SHAPE FUNCTION AND SPACE
DERIVATIVES IN THE LOCAL CORRDINATES,
TRANSFORM LOCAL DERIVATIVES TO oLOBAL
COORDINATE SYSTEM

LI = ABSS(1,IQUAD)/1.00000D0
ETA = ABSS5(Z,IQUAD)Y/1.00000D0
IF (IELTYP.EQ.1) THEN
CALL TRIM3(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
CALL TRIM3(MAPFUN, TFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
END IF
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B IF (IELTYP.EQ.4) THEN
Loy CALL QU4FN(FUN, IIUN, LOER, ILDER, JLDER, XI, ETA. ITEST)
T CALL QU4FN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)

S E4D IF

by IF (IELTYP.EQ.5) THEN
LN CALL QU8FN(  FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
s CALL QU4FN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)

) END IF

IF (IELTYP.EQ.6) THEN
o CALL QU12FN(FUN, IFUN, LDER, ILDER, JLDER, XI, ETA, ITEST)
) CALL QU4FN(MAPFUN, IFUN, DERMAP, ILDER, JLDER, XI, ETA, ITEST)
o END IF
T C Calculate Jacoblan (mapplng fn. deriv's * element geom,)
) CALL MLTXTR (DERMAP, ILDER, JLDER, GEOM, IGEOM, JGEOM, JAC,IJAC,
v # JJAC, IDIMN, NODMAP, MPINCR)
CALL MATINV(JAC, IJAC, JJAC, JAGIN, IJACIN, JJACIN, IDIMN, DET,
* ITEST)
c CALL MLTXTR(JACIN, IJACIN, JJACIN, LDER, ILDER, JLDER, GDER,IGDER,
* JGDER, IDIMN, NODMAP, MPINCR)
o CALL MATMUL(JACIN, IJACIN, JJACIN, LDER, ILDER, JLDER, GDER,IGDER,
R * JGDER, IDIMN, IDIMN, NODEL, ITEST)
; CALCULATE (XI,ETA) IN GLOBAL (X,Y)
COORDINATES AND FORM P MATRIX

o
(9]

~
-~
s RoRe!

fooo XMAP=0,0D0
1 YMAP=0.0D0
- IMAP=0
g . DO 8999 KL=1,NODMAP, MPINCR
: IMAP=IMAP+1
XMAP=XMAP +tGEOM (KL, 1 Y*YMAPFUN(IMAP)
8999 YMAP=YMAP+GEOM (KL, 2)*MAPFUN( IMAP)
X=XMAP
pon Y=YMAD
2 P o ™ALL SCAPRD(GEOM(1,1}, IGEOM, FUN, IFUN, NODEL, ¥, ITEST)
{ e » 'ALL SCAPRD(GEOM(1,2), IGEOM, FUN, IFUN, NODEL, Y, ITEST)

FORM INTEGRAND ELEMENT STIFFNESS ELM

-®
oOaa

(I AND QUOT = DABS (DET)*WGHT ( IQUAD)
N eray DO 1082 IEQ=1,NVAR v
e DO 1081 IVAR=1,NVAR
R DO 1080 I=1,NODEL
N DO 1070 J=1,NOUEL
o CALL USSEQN (F, X, ¥, I, J, IEQ, IVAR, FUN, GDER, QUOT)
e TMMAT( T, J)=QUOTH
A 1070 CONTINUE
: 1UBO  CONTINUE
1081 CALL ASMAT (TMMAT, RMMAT, IVAR, IEQ, NODEL)
| 1982 CONTINUE
| CALL MATADD(ELM, IELM, JELM, RMMAT, IRMMAT, JRMMAT, IDFEL,IDFEL,
. * ITEST)
¥ } 1090 CONTINUE
¥
|

G
. ! C ASSEMBLY OF MASS MATRIX
' r“ﬁd ',"‘ ‘ c
e I CALL DIRECT(NELE, NLTOP, INLTOP, JNLTOP, NF, INF, JNF,IDFNQD,
' ! #* NSTER, INSTER, ITEST)
% ¥ CALL ASSYM(8YSM, IS8YSK, JSYSK, ELM, IELM, JELM, NSTER,INSTER,

——
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. ! C % IHBAND, IDFEL, ITEST)
s CALL ASUSM(SYSM, ISYSK, JSYSK, ELM, IELM, JELM, NSTER,INSTER,
A * IHBAND, IDFEL, ITEST)
S 1100 CONTINUE
e - c
{:‘/"" ; C¥% desiefeddede il e dedlb el dedeie delolofedolle e o
R c* # %
a 1 cw % INSERTION OF BOUNDARY CONDITIONS =+
o *® w
O Fededededrelinilet el oot ekl el
L CALL QUIN3(WGHT, IWGHT, ABSCL, IABSCL, NQP, ITEST)
R DO 1230 IVAR=1,NVAR
o DO 1231 I=1,NBND(IVAR)
= DO 1231 J=1,40
- IFSTND=NBNDRY(IVAR, I, &)
1231 NBDG(I,J)=NBNDRY(IVAR, I, J)
: DO 1230 ITYPE=1,NBND(IVAR)
VI NBTYPE = NBDG(ITYPE,1)
N NUMNOD = NBDC(ITYPE,2)
_ v GO TO (1110, 1230, 1131), NBTYPE
\'.wf" C
i g
g‘{ w7 ﬁ' 2 g
i " 'SPLIT' DIRICHLET BOUNDARY CONDITIONS
LR 1131 CALL SIDENO (ITELS, NLTOP, INLTOP, JNLTOP, ITYPE, NBDG,INBDC, )
* i “ JNBDC, NUMSID, LIST3, ILISTB, JLISTB, ITEST)
ﬁﬁ IF (NUMSID.EQ.0) WRITE(ITERM,*)'BOUNDARY ERROR',NVAR, ITYPE
s DO 1119 M=1,NUMSID
wf"ﬁl‘ IELNM = LISTB(M,1)
éf”*'J ISIDNM = LISTB(M,2)
Vo NELE=IELNM
i g LL=(ISIDNM-1)*(NODSID~-1)
{ === KK and KKl are the first and second nodes »n side ISIDNM
G -=-- and these are incremented in loop 1117 such that on
R p £ --- each subsequent run through the loop the node called KK
T  --- becomes the node called KK1 in the previous time through
B R ;‘{ ¢ JV." ¢ --- the loop
Y ‘i DO 1117 N=1,NODSID-1 ;
o G ===~ IFIRST is the first node in the boundary list for SPLIT
ey IF(N.EQ.1) THEN
RIS 5 w== NODE =1 implies that the node is the first in the element
o NODE=1
g RLSE
’ . i NODE=0
) y 5 END IF
R
1

KK=NLTOP (NELE, 3+LL+N-1)

KK1=NLTOP (NELE , 3+LL+N)

=NVAR*KK+( IVAR~NVAR)
LF((KK,EQ.IFSTND) ., OR. (KK1,EQ, (IFSTND+1))) THEN

2 : IFIRST=1 -
! ELSE
! IFIRST=0
ity END IF
. ‘ IF(ISIDNM.EQ.2) THEN

r DELTA=COURD(KR+1,1)~COORD(KK, 1)
R END IF
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. IF(ISIDNM.EQ.3) THEN
oy DELTA=DSQRT ( (COORD (KK+1, 1) =COORD (KK, 1) )#%2+4(COORD (KK+1,2) ~
2 * COORD (KK, 2) )#%2)
S END IF
o PVALL=FVAL(1,KK)
P FYAL2=FVAL(L,KK1)
: S DERIV=(FVAL2-FVALL)/DELTA
L , CALL DIRIC (DERIV, ISIDNM)
\ 1117 CONTINUE
! 1119 CONTINUE
GO TO 1230
e C
“ ¢ PRESCRIBED VALUES (DIRICHLET)
: . C
RN 1110 DO 1120 J=1,NUMNOD

KK = NBDC(ITYPE,J+3)

K = NVAR®NBDC(ITYPE,J#+3)+(IVAR-NVAR)
. CALL DIRIC (DERIV, ISIDNM)

cw 1120 CONTINUE

o GO TO 1230

v ¢

o 1230 CONTINUE
X N Resat [PAYN
X IPAYN=0
Bt G CALL CHORDN (SYSM, ISYSK, JSYSK, ITOTDF, IHBAND, ITEST)
S CALL GAURDN (SYSM, ISYSK, JS.sK, AL, IAL, JAL, ITOTDF, IHBAND,
* NROPY, INROPY, ITEST)
- WRITE (ITERM,*) "EXITING AsSsM'
o G IF (ITEST.NE.J99) WRITE(4,+)'ITEST GAURDN = ', ITEST
» C IF¥ (ITEST.NE.999) STOP
M, RETURN
afs/@‘ \ . BND
o ;"‘ ~, ¥ TBERV evaluates derivatives for unsteady solution
8 Lo SUBROUTINE TOERV (NDE, TIME, FNCVAL, FNCDER)
[ IMPLICIT REAL#8 (A-H,0-2)
a0 GOMMON /DIMS/ INBDC, ILISTB, ICOCRD, INLTOP, INF, IRHS, ISYSK,
o * JNBDC, JLISTB, JNLTOP, JNF, JSYSK, INROPV, IAL, JAL
S COMMON /XP/ XPARM(4)
e COMMON /FEMWRK/  RUS(410), AL(410,140),
o] * NROPY (4101, RESDV(4,500), RESD(4), ERR(4),
o * ERRAV(4), ERRCNT(4), ERRTOT(4), SCALE
) v COMMDN /BAND/ IBAND, IHBAND, I[TOTDF
e L COMMON /MTRIK/ SYSK (410,140), SYSM(410,140)
Sl COMMON /FVALS/ FVAL(35,500), FLST(5,500)
ok COMMON /107 NINT, ITERM, NIN, NOUT, IPROFL, MESH, IERR, NTOUT,
- | % INPARM
\ REAL*8 FNCVAL(410), FNCDER(410), WORK1(410), WORK2(410)
f WRITE(ITERM,*) 'INSIDE TDERV'
CALL SEPRT(FNCVAL, NVAR, NODTOT, FVAL)
CALL FELMNT
CALL MVUSB(SYSK, ISYSK, JSYSK, FNCVAL, NDE, WORK1, NDE,
v ‘ # ITOTDF, IHBAND, ITEST)
’ ! CALL VECSUB (WORK1, I3YSK, RHS, ISYSK, NDE, ITEST)
. ; 5 CALL CHOSUB (SYSM, ISYSK, JSYSK, wWORKL, ISYSK, NDE, IHBANU,
g ¢ % ITEST)
R i CALL GALSUB (8YSM, ISYSK, JSYSK, AL, IAL, JAL, NDE, LHBAND, NROBPY
£ # , INKOPY, WORK1, I1SYSK, ITEST)
o CALL VECCOP (WORK1, [SYSK, FNCDER, ISTSK, NDE, ITEST)
.
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WRITE (ITERM,*) 'EXITING TLERV'
RETURN
END

SUBROUTINE MONT(FMIN, FMAX, SIM, N, IS, NCALL)
IMPLICLT REAL*8 (A-11,0-2)

REAL#8 SIM(4,4)
WRITE(Q,*)((SIM(I,J),J=l,2),I=l,3)

WRITE (4,%)

RETURN

END

=

e —_—

P

SUBROUTINE PDERV(N, X, Y, YJAC)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 Y(N), YJAC(N)

RETURN

END
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. By The following file (NDQ63 DATA) contains the finite elemen: mesh data
& ‘ for use with the finite element program. In this case the mesh is a 6
= ooy .
& i by 6 array of S -rwded quadrilateral ulements with boundary conditions
¢ as for figure 2.1,
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? P 133 2 3
:H ; Vi 6 6
1 1 0.0000000 0.0000000
; : 2 0.08332712 0.0000000
! 3 0.1 2666 0,0000000
| 4 0. 2500000 0,0000000
I 5 0.3333333 0.09500000
i 6 0.4166666 0.0000000
! 7 0.5000000 0.0000000
' 8 0.5833333 0.0000000
L 9 0.6666666 0.0000000
& 10 0.7500000 0.0000000
{ 11 0.8333333 0.0000000
) 12 0.9166666 0.0000000
; 15 1.0000007 0.0000000
; 14 0.0000000 0.0833333
! 15 0.1666666 ",0833333
16 0.3333333 0.0833333
| 17 0.5000000 0.0833333
1 18 0.6666666 0.0833333
‘ 19 0.3333333 0.0833333
; 2 1.0000000 0.0833333
\ 21 0.0000600 0.1666666
! 2 0833333 0.1666666
: 1666656 0.1666666
2500000 0.1666666
- v. 3333333 0.1666666
26 4166666 0.1666666
2 5000000 0.1666666
i 28 0.58333%3 0.1666666
| 29 0.66666066 0.1666666
ol 30 0.7500000 0,1666666
’ 31 0.8333333 0,1666666
L 32 0.9165666 0.1666666
(m 33 1.0000000 0, 1666666
; 34 0, 0000000 u. 2500000
t ‘ 35 0,1666666 0.2500000
! R 36 0.3333333 0.2500000
! o 37 0.5000000 0.2500000
‘ i q; 38 0.6666666 0.2500000
a o 39 0.8333333 0.2500000
i 40 1,0000000 0.2500000
41 9.0000000 0,3333333
42 D.08333" 0.3333333
41 0.1666606¢ 0.3333333
LA 3,2500000 0.3333333
45 0.3333333 0.3333333
4t 0.4166666 0.3333333
47 0.5000000 0.3333333
48 0.5833333 0.3333333
49 0.6666666 0.3333333
50 0.750000) 0.3333333
51 0.8333353 0.3333333
52 0.9166666 0.3333333
iy 53 1.0000000 0.3333333
54 0.0000000 £,4166666
55 0, lobbbos 0.4166666
585 0,3333533 0.,4166666
57 0.5000000 0.,4166666
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58
59
60
61
M
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7Y
20
31
82
83
B4
33
o3¢}
87
43
89
90
91

n
-

93

94

95

96

98

99
100
101
102
103
104
105
e
107
g
109
116
111
112
113
114
115
116

159

0.6666666
0.8333333
1.0000000
0.0000000
0.0833333
0.1066666
n.250C000
0.3333333
0.4166666
0.5000000
0.5833333
0.6666666
0.75000100
0.8333333
0.9166666
1,0000000
0,0000000
0.1666666
0.3333333
0.5000000
0.6666666
0,8333333
1,0000000
0,0000000
0.0833333
0.1666666
(,2500000
0 37333333
0.41p06666
{y, 20n0060
0.,5833337
0,66660666
0.7590000
0,8333333
0.9166666
1.0000000
0.0000000
0.1666666
0.3333333
0.,5000000
0.6666666
0.8333333
1,0000000
0.0000000
0,0833333
0.,1666666
0.,2500000
0.3333333
0.4166666
0.50000u0
0,.5833333
0.6666666
0.7500000
0.8333333
1.0000000
0.0000000
0.166H661
0.3333333

0.4166666
0.4166666
0.4166666
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5833333
0.58333.3
0.5833333
0.5833333
0.5833333
0.5833333
0.5833333
0.6666666
0.6666666
0.6666666
0.6666666
0.6666666
0.,6666666
0.6666666
1,h66666E
0.0666666
0.6666666
0.6666666
0.6666666
0.7500000
0.7500000
0.7500000
0.7500000
0.7500000
0.7500000
0.,7500000
0.8333333
0.8333333
0.8333333
0.8333333
0,8333333
0.8333333
0.8333333
0,8333333
0.8333333
0.8333333
0,8333333
.8333333
0.8333333
0.916n666
0.71h60686
0.9166646
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J 117 0,5000000 0.9166666
) 118 0.6666666 0.9166666
119 0.8333333 0.9166666
120 1.0000000 0.9166666
121 0.0000000 1.0000000
122 0.0833333 1.0000000
123 0.1666666 1.0000000
124 0.2500000 1.0000000
125 0.3333333 1.0000000
126 0.4166666 1.0000000
127 0.5000000 1,0000000
. 12 0.5833333 1.0000000
< 129 0.6666666 1.0000C00
130 0.7500000 1.0000000
131 0.8333333 1.0000000
132 0.9166666 1,0000000
133 1.0€00000 1.0000000
; 5 306 8
“ 1 1 14 21 22 23 15 3 2
P 2 3 15 23 24 25 16 5 4
oA 3 5 16 25 26 27 17 7 6
A 4 7 17 27 28 29 18 9 8
! 5 9 18 29 20 31 19 11 10
o 6 11 19 31 2 33 2 1312
y ! ] 7.1 34 4t 42 43 35 23 22
. " 8 23 35 43 44 45 36 25 24
L 3 9 25 36 43 46 47 37 27 26
; N 10 27 37 47 48 49 38 2y 28
A 11 29 38 49 50 51 39 31 30
12 31 39 51 253 40 33 2
- : 13 41 54 Bl 62 63 55 43 42
1% 43 55 63 64k B85 56 45 44
‘ 15 45 56 65 86 67 57 47 46
. 16 7 57 67 68 69 58 49 48
o 7 49 38 69 70 71 59 51 50
< 18 51 359 71 273 60 53 2
L 19 61 74 81 82 83 75 63 62
o 20 63 75 83 84 85 756 65 64 Y
Ry 21 55 76 85 86 87 77 67 66
e 22 67 77 87 88 89 78 69 68
v 23 69 78 &9 90 91 79 7L 70
24 710 79 91 92 93 80 73 72
a5 31 94 101 102 103 95 83 82
. 26 83 95 103 104 105 96 85 84
b 27 85 96 105 106 107 97 8”7 86
| 28 87 97 107 108 109 98 89 88
29 89 98 109 110 111 99 91 90

30 91 99 111 112 113 100 93 92

} 3101001 114 121 122 123 115 103 102
1 32103 115 123 124 125 116 105 174 -
'f 33 105 116 125 126 127 117 107 106
? 34107 117 127 128 129 118 109 108
Fa 35 109 118 129 130 31 119 111 110
| 36 111 119 131 132 133 120 113 112
2
oy 1311 14 21 34 41 54 61 74 81 94 101
° 114
1311 12 11 10 9 % 7 6 5 4 3
2 AY
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B 2337 1 l& 21 34 41 54 61 74 81 94
. ’ 101 114 121 122 123 124 125 126 127 128
' e 129 130 131 132 133 120 113 100 93 80
i 73 60 53 40 33 20 13
S 1311 12 11 10 9 8 7 6 5 4 3
2
1
3326 121 122 123 124 125 126 127 128 129 130
¥ 131 132 133 120 113 100 93 80 73 60
a 53 40 33 20 13 12
R A 1
s 1 12 121 122 123 124 125 126 127 128 129 130
S 131 132
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The following file (INPARM2 DATA) contains the physical parameters of
the model and the flags to control the program operation. In this
case the problem to be solved is an ignition point calculation in
Cartesian cootrdinates,
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0
30.00E0 15.0E0  30.0 0.0 y ]
' 5.0 55.00E-3 0.1 58198. 10.0  0.20 2.06-5 1.8E-5

293.0 1.177023 9.81 1.0E3 300.0E3  30.0EQ
! 0
' 55.0 35.0 1.0 1 1 0
¢ : ' 55.00E-3 15.0E-3

1.0 1.0 1.0
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of 4-noded quadrilateral elements

mesh

a

The following program SNODE FORTRAN written
generates

optional mesh crushing.

Anderson
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s

C ==~ Program to generate a mesh of &
REAL AC2Y,B(2)
INTEGER IBND(4,300)
DATA MESH /8/
AL1)=0.0080
B{1)=1,00E0
AL21=0,00E0
Re2v=1,00ED
SW=B(1:-Al)
Yh-2B(2)-A12)

-=+ Choose where to crush mesh

1-U 2-BOTH 3-L &
THEHX=2
[MEAHY=2
NPDX='1
NDY=11

‘HLT=\0D% 1
NaLY=NODY -1
MOTA=NELYUNELY
NNCDNS=NODRNODY
WRITE (b ,*y NNODS, 2, 2
WAITECe %) NODX, NODY
Ty 1o TY=1,N0DY

[ Re]

T=PMESH: TY, NODY, Ac2y, B(D),

D010 T¥=1,N0DK
SNOD=NNOD* L

ReFMESH IN, NGO, AcDy, 801y,

m i\AL(‘E(", INNU ), :’s', Y
WRITE: o,y By, Biely
WLUITEGe ey 1, NELS, «
L3 IELNM=1,NELS
‘ELW~IELN‘ NELX
I0=IELNM NELX

11 CONRUWSNELA )Y ONT L TELNY) THEN

.\RL.\'-“‘L.\T« K‘L o pl
anl IF
PRET=NROW = 1) wNCDR+1
TELEOS=TELNN =1 NRUW=1 ) NELY
THLET=1.80+IELPNS~1
m'FT-I?LFT+\bDX
TPRT=ITLFT+1
I?TQT=E?UFT+I

WRITE (A =) TELNY, IBLET, ITLFT,

HTINUE

h\[.u(). !
e

(N3

.

UTEYW/NELY

L1 40 Is1,NohY
i) SANDY, T=TeNODy - NODK+1

Dot I=1 Ay

FaNODE T
34 OISR G ST
oo 1= .1“[&
J=NODY - T4l
50 RN, D= JaNolx

=R 5-7 6~L&M&R

~nodod elements

IBTRT
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! yé DO 20 I=1,NODX
| J=NODX~T+1
? A 20 IBND(4,1)=J
A DO 60 I=1,4
Y 80  WRITE(6,70)(IBND(T,JV,J=1,20)
70 FORMAT (oX,10(I3,1X))
) STOP
= i END
9 Co . G
s REAL FUNCTION FMESH (T, N, A, B, IMESH)
e c 1-U 2-BOTH 3~L 4-R 5-7 6-LSM&R
oo PI=3,14139
’ i’ FMESH=0, 00ED
; XI=FLOAT(I-1)
. NN=FLOAT(N-1)
FRCL=XT, XN#PI#2,0
VI FRC=XI/NN
S IF (IMESH.EQ.1) F=A+(B-A)*FRC
fA% IF (IMESH.EQ.2) F=(0.5%(A-B)%COS (PI*FRC +(4+B)/2.0)
. IF (IMESH.EQ.3) F=(B-A)%*(1,0-COS(FRC*PL/2.0))
p IF (IMESH.EQ.&4) F=(B-4)%(SIN(FRC/2.0%PI))
, 0 IF (IMESH.EQ.5Y F=(4.0/9,0%FRC¥%3«6,0/19 O*FRC**2+FRC/10,0)
A IF (IMESH.EQ.5) F=(FRC1/2.0-SIN(2,0%FRC1)/4.0)/P1
P PMESH=F .
o RETURN
o END
l B}
' W‘fﬁfn
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v The Ffollowing program SNNDEQ FORTRAN written in Fortran 77 by F.
¢ Anderson generates a mesh of §-noded quadrilateral elements.
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: ,;Q‘ C =-- Program to gonevate a mesh of 8-noded eluments
ToTEGER ILTOP(S0Q,10), NBND(300)
y BT REAL COORD(500,2
i NELX=8

e e i E

o a0 NELY=8 !
s o » NIS=2ENELN+1 5
1 . N2S=NELN+1 B
L : NIX=N1KHNDS i
y N1Y=2ENELY+1 :

|

' N2Y=NETLY+1
A N3Y=NLYHN2Y
R NNODY=2%NELY+1
{ f” ITNOD=NELY® (NIX+N2X)+N1X
\ i WRITE(6.%) ITNOD, 2, 2
e WRITE(6,%) 2, 2
? g - ITELS=NELX#NELY
L DO 1) NELE=1,ITELS
‘ o R=NELE, NELX
IROW=INT(R)
TEPOS=NELY
IF ({NELE/NELS®NELX).NEL.NELE) THEN
TUPOSENELE - INTIR)*NELY
IROW=INT(R)+1
END IF
NSTRT=( 2 NELX+2 )% IROW=1)+1
IRLAENSTRT+2% ( IEPOS-1)
ILTOP(NELE, 11=1IBL
IF (IEPOS.EQ.1)  NSTRTM=ILTOP(NELE, 1)+2¥NELX+1
TF (TEPOS.EO.1)  NSTRTT=ILTOP(NELE, 1)+N1X+N2X
IMLENSTRTH+IEPOS -1
ILTOP(NELE, 2y=IML
ITLENSTRTT+2% ( IEPOS 1)
ILTOPONELE, 3=ITL
IMT=ILTOP(NELE, 3 ,+1
ILTOP(NELE, &) =IMT
TTR=ILTCY NELE, &)+l
ILTGPINELE, 3)=1TR
IMR=ILTOP(NELE, 2 1+1
ILTOP(NELE,5)=1MR
THR=ILTOPINELE, 11+2
TLTOPINELE, 7 =1ER
INBEILTOPINELE, 1 j+1
ILTOPONELE, 8)=1MB
N GONTINUE
3 FORMATUEX, 19,3%,8¢13,2X))
DO 50 NGU=L, TTNOD
IROWENGD N3+
IF (NGD/NIKNSX.NE.NOD) THEN
IROW=NOD/N3X+1
END IF
IF (NOD/N3SEN3X, EO.NOD) TROW=TROW =1
TSTRT=0IROW =1 J3eN3+1
TIPS IROW=1)
IN FIRST LEVEL
TEAT=OL, 0¥NOD= 1, 0% TSTRT+1. 00/ 1 1, 05N1X)
TF OCTEST.LT. L. U0E0 ) THEN
LEV=1
INPOS=NCD = ISTRT
K= INPOS,/ FLOATINIX=1)

- -
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