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ABSTRACT

in adaptive steady-state on-line optimizing regulator that will keep a
plant at its optimum, as defined by a measurable objective, in the face
of economically significant disturbances is prcposed. The concepts and
theory underlying the operation of the adaptive optimizing regulator are
developed and discussed. A case study of a hypotheticai simpie bail mill
grinding circuit is developed and simulated to test the operation of the
regulator. Finally, the adaptive optimizer is proposed and tested by
simulation 45 an integrated approach to the control and optimization of

autogenous run-of-mine grinding circuits.

The optimizing regulator continuously estimates an internal model of the
controlled process, and based on this, determines mill fresh solids feed
rate and mill water flow rate such that & circuit performance chbjective
is optimized. The dual requirements of controlling both the mill pulp load
and the load of particles of grinding media size is thus directly and

simultaneously addressed.

Results of the simulation study are presented and discussed. i
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1.0 INTRODUCTION

This chapter erplains why the research into the theory and operation of
an adaptive optimizing regulator was undertaken and defines the aims of

the dissertation. It also gives an overview of the report structure,

For background material on digitul computer process control the reader
is referred to the standard text by Smith(1972). The reader locking for
an up to date introduction to adaptive control, and more specifically for
this study, on-line dynamic model identification, is faced with a bewil-
dering array of intricate publi.hed papers. A fairly gentle, yet compre-
hensive survey paper (" Lorg et al. 1986) is an advisable starting point.
Background material on process optimization can be obtained in the ref-

erences cited in the relevant sections.

1.1 MOTIVATION FOR THIS STUDY

The motivation for this research comes directly from the need in the South
African mining industry for a solution to the autogenous run-of-mine
milling problem. It is a practical problem characterised by the lack of
reliable measurements in a harsh environment resulting in the need to use
available measurements to their full potential. This involves taking ad-
ventage of the computing power now available and using available on-line
num:rical techniques for input-output modelling. Due to the large quan-
tity of ore processed, a small amprovement in mill control and hence a

slightly more cptimal operation is cconomically worthwhile.

Introduction 1



There is a need for a fresh look at this problem from a mere global and
co-ordinated point of view to allow the synthesis of a systematic contrel

strategy to achieve a given control objective.

A sensible route to take in tackling this problem with a new approach is
first to provide solid theoretical foundations. The theory and design is
approached from a general viewpoint because of its applicability to con-
trol problems other than autogenous mill control. It is beyond the scope
of this research to develop the theory fully. The theory is developed as
far as possible and then tested under predicrable conditions in a sim-
plified case study. Before actual implementation the controller would
need further testing, by simulation, under fairly realistic and variable

conditions.

1.2 AIM OF THIS STUDY

This work aims to:

o Motivate and define a suitable sub-problem in relation to the global

objective of 1nproving plant perrformance.

o Look at existing methods of solution and identify their shortcomings.

o Develop the theory to soive this sub-problem in the light of new de-

velopments in adaptive control.

o Show how the adaptive optimizing regulator fits intoe a globa) hi-

erarchi:al control system.

Introduction
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o Choose a suitable simple example plant to test the controller under

simulation.

o To apply the adaptive optimizing regulator, using simulation, to an

example plant.

o Try to solve a real world problem with the adaptive optimizing regu-
lator. The chosen real world problem i o improve the control of an

autogenous grinding mill circuit.

1.3 OVERVIEW OF THE ORGANISATION OF THIS REPORT

Chapter 2 introdu.es the concept and puts the adaptive optimizer into a
process control context. Starting with a sufficiently general problem,
realistic assumptions are introduced to simplify the problem until a
solution is plausible within the framework of existing techniques and

technology.

Chapter 3 gives detailed theoretical and design considerations for a
general adaptive optimizing regulator module. The regulator is broken
down into functional entities and each is discussed individually. An

outline of the design procedure is summarised at the end of this chapter.

Chapter &4 documents a case study of the application of the adaptive op-
timizer theory to a simplified ball mill grinding circuit control und
optimization problem. It presents a representative simulation and dis-

cusses the results.

Introduction 3



Chapter 5 represents the culmination of the developments in previous
chapters in solving the real world problem of autogenous mill control.
Background to the milling problem is given, the autogenous milling control
objectives are loo'~d at in a new light, and the applicability of the
adaptive optimizer is reinforced. The simulation environment used in this
study is discussed as well as the details of the mill model and simulated
implementation of the optimizer. Representative simulation runs are given

and analyzed.
Finally, chapter 6 draws conclusions from the research. By carefully

specifying the limitations and areas that need further research the future

direction, namely to achieve the goal of implementation on a mine, is set.

Introduction 4



2.0 CONCEPT OF A GLOBAL CONTROL SYSTEM INCORPORATING AN
ADAPTIVE OPTIMIZING REGULATOR

2.1 PROBLEM FORMULATION

2.1.1 GENERAL PROBLEM

A very general description of the acceptable operation of a dynamic system
consists of a set of n differential equations, a set of q inequality

constraints and a set of m output relationships given by:

¢ TR - P TSR w T (1)
dt
SO - 58 i i (2)
. B8 Y R) SR (3)
where -
X I n-vector of model state variables
U = l-vector of manipulable control inputs
Y £ m-vector of measurable outputs
d £ :-vector of disturbance variables

Such a model can be usod to obtain a current estimate ( at time t=0 ) of
the optimum trajectory of the real system by finding control inputs u(t)

to minimize the integrated total of a specified objective function or

Concept of Adaptive Optimizer 5
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S T L VIR [ S O A kT
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D0l ) B B i ds (2)
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performance index, Y, over the time pe-iod (0,T). This optimization

problem may be written as:

T
min /Y( V) 8E ) Ll e i (4)
u

0
such that (1), (2) and (3) are satisfied.

Note that Y is an economic objective function that is possibly measuraed
directly or in the more general case Y could be an arbitrary algebraic
function of the control inputs u(t), plant outputs y(t) and measurable
disturbances which are a subset of d(t). For particular values of the
inputs, outputs and the measurable disturbances, Y is essumed to have an
extremum, a minimum or maximum point which drifts due to the unmeasured
disturbances. It is desired to keep the system operating at this extremum
value while avoiding constraint violations. We call this safe tracking

of the optimal operating point, optimizing regulation.

It is well-known that (4) represents an exceptionally difficult non-
linear dynamic optimization problem, and excessive amounts of computing
are required for its solution. For the case where unmeasurab.e disturb-
ances do not affect the optimum significantly it may be possible to solve
this problem off-line, but it is definitely not feasible for on=-line ap-
plications. We therefore propose a simplification based on classifying

process disturbances according to their frequency spectra.

Concept of Adaptive Optimizer 6



2.1.2 PROBLEM SIMPLIFICATION

Practical optimization time periods (0,T) are typically large relative
to the dominant process time constants, and therefore only persistent
disturbances, ds' with periods larger than the process settling time have
an important effect on Y. Rapidly varying disturbances, df. also called
process noise, comparable to or faster than t'.n dominant system time
constants, are effectively non-existen. relative to the optimization pe-
riod. Also, the influence of these rapidly varying disturbances can be
suppressed by using conventional single-variable or multi-variable regu-
latory control. Therefore the plant can be assumed to be at quasi-steady

state during the time period (0,T) for optimization purposes.

In order to implement the conventional regulatory contrcl subsystem, a
subset of the inputs u1 is selected to control a subset of the outputs,
Yy in the face of disturbances, df. Using the quasi-steady state as-
sumption, optimization problem (4) can then be reformulated as a steady-
state or static optimization problem, dependent on persistent

disturbances d.:

min Y( Y,, Vs, U,, Uy, d. J i Lowa M on AR
*
Y /U
such that
®
f(Y| ’ Yu ds ) - 0 ......... (h)
*
(Y ¥ Vg, ds A B ¢ SR TR (7)

wvhere
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(Y., ya) |

(u,, u,

g3
"

)  §

u
Y, £ vector of setpoints for the conventioral regulators

Y. ¥ vector of remaining uncontrolled outputs

The resulting generul control structure is shown in Figure 1.

SUPERVISORY CONTROL

OPTIMIZING v
REGULATOR
cu.cu%ar:
| OBJECTIVE
. IT"K“.
¥, _ ;
“a
REGULATORS y
“| 3 :
REAL PROCESS
4 v N\
v" L

Figure 1. General structure of a control system incorporating
!
: optimizing regulator
l

an

The task of the optimizing regulator is to repeatedly solve (5) for the

*
optimum input variables U, and ¥y, . The resulting control inputs, U,

, are then applied directly to the plant while control inputs u,

Concept of Adaptive Optimizer
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been replaced by the setpoints y,* of the associated conventional regu-
lators. The solution is « «culated every T, seconds where the choice of
T, depends on the speed of v. - ~rion of the disturbances, d' ¥
In summary, the ta i of the optimiz'ng regulator is to track a shifting
opt .nam that is a‘fected by disturbances that vary slowly compared with
the dominant plant time constants. The optimizer may have a number of
direct plant inputs and conventional regulator setpoints to guide the

plant Lo the cptimum.

2.2 HIERARCHICAL CONTROLLER STRUCTUKE

This study tocuses em the optimizing regulator, but it is imporctant to
understand the comtext in which it operates. A big attraction is its in-
herent flexibility and a vision of how it will fit into the global picture
of a distributed huera.chical computer control system. The block struc-
ture in TFigure 2 on page 10 gives an idea of lLow it might fit into a

complete hierarchical computer control system.

The envisaged controller will have a number of different levels of con-
trol. The lowest level being conventional SISO controllers, the next level
possibly being MIMO regulatory controllers. It is possible that these
regulators are adaptive controllers, but still have the same purpose of
controlling the plant to setpoints. On a higher level, or supervisory
level the optimizer will determine setpoints for the lower lovels. The
bandwidth of the higher level controller may be orders of magnitude lower
than the underlying regulators. This ensures safe operation of the plant

while taking the pressure off the higher optimizer level of control.lt

Concepr of Adaptive Optimizer 9
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Figure 2. Hierarchical controller structure.

gives the optimizer time to converge to the new settings without the risk

of unpredictable cperation or constraint violations.

The optimizer level is highly flexible. If the control objective changes
then it is a simple matter to re-define the optimization problem. All
that needs to be done is to give the estimator new data calculated from
the new objective function. The estimator willi then adapt the model pa-
rameters to the new data and new gradients will be calculated. An example
where the objective function may change is when under normal conditions
the objective is to maximize the throughput of a plant, but when there

i5 a4 market surplus of the product one may wan to minimize plant energy

Concept of Adaptive Optimizer 10



consumption. This flexibility in the choice of the control objective could
be of enormous economic benefit. Ultimately the highest level of control
w'']l be an expert system that uses off-line information to choose the best

control objective for the optimizer.

2.3 THEORETICAL FOUNDATIONS FOR THE ADAPTIVE OPTIMIZING
REGULATOR

Now that the coatext of the optimizing regulator and its task have been

specified we look at the theory behind it.

A wide variety of techniques have been proposed for use in digital process
control computers for maintaining a process at its optimum steady-state
operating point. In off-line methods (Savas, 1965, Webb et al. 1978,
Maarleveld and Rijinsdorp, 1970), key process measurements are regularly
supplied to a predetermined detailed steady-state process model and a
static optimization procedure is then performed to find the required
control inputs. These are then applied to the plant. Although a detailed
non=linear model can be used and fast static optimization algorithms are
available, this method suffers from two serious disadvantages. Firstly,
most economically important disturbances cannot be measured or modelled
exactly. Secondly, even for processes of low complexity, off-line models

are difficult to obtain and are always inaccurate owing to the impossi=

bility of modelling all effects., Consequently, it is imperative that the
optimizing regulator interacts with the operating process in some way so
that all cconomically important disturbances are detected as soon as they
affect the plant outputs, and a detailed fundamentul model is not re=
quired,

Concept of Adaptive Optimizer 11



Numerous on-line methods for obtaining steady-state models through direct
searches on the operat’ g plant have been proposed. Edler et al. (1970)
compare the performaice of different techniques. Since steady-state in-
formation is required, measurements should be taken only after the process
has settled after each change in the control inputs. This results in a
very slow search procedure. On the other hand, Sawaragi et al. (1971) have
found that very complex stability problems arise if the control inputs
are changed before process transients die away. Furthermore, these meth-

ods are very sensitive to process noise (Saridis, 1974).

In this research project we have selected an approach based on a two-step
procedure of regularly determining the parameters of a steady-state
mathematical model and then adjusting the control inputs so that the
performance index is at its optimum va 1e. This approach is very closely
linked to adaptive control and first attracted attention in the 1960s
(Balckman, 1962, Jacobs, 1969), but lack of suitable computing hardware
made practical implementation difficult. With the availability of micro-
processor’ there has recently been renewed interest in this approach
(Sternby, 1980, Garcia and Morari, 1984). Also encouraging theoretical
results concerning the stability and convergence properties of the algo-
rithms incorporating this adaptive two-step optimization procedure are

now available (Haimes and Wismer, 1972, Roberts and Williams, 1981).

In order to ovarcome the problems of having to wait for the plant to reach
steady-state after each adjustnent to the control inputs and sensitivity
to noise, the mos:c promising approac!, appears to be to determine the
steady-state process model parameters by recursively estimating the pa-
rameters of a simple dynamic input-output model during the transient re-
sponse, as suggested by Bamberger and Isermann(1978). It is then a simple
matter to extract the corresponding steadye-state model. This can be used
to solve optimjzation problem (5) and thereby determine how the control

inputs shouid be varied in order to improve plant economic performance,

Concept of Adaptive Optimizer 12



The procedure is then repeated at the new operating point with a dynamic
process identification followed by an optimization step, and so on until

the optimal point is reached. Figure 3 on page 14 shows this closed-loop

two step process.

Concept of Adaptive Optimizer 13



" OPTIMIZING
? PARAMETER
: REGULATOR ESTIMATOR Lé e
"l
- —
DYNAMIC MODEL —"—)t COMPARE
2
STEADRY STATE MODEL v
vvi
OPTIMIZATION
CALCULATE
l OBJECTIVE
i 3
i - REGULATORS
9 | Vg de
Uy o
$ A%
REAL PROCESS
¢/
v Yo WV
! Figure 3. Block diagram of the internal structure of the

optimizing regulator.

Concept of Adaptive Optimizer

, ;
adaptive

14



3.0 DETAILED THEORETICAL AND DESIGN CONSIDERATIONS

3.1

CHOICE OF LOWER LEVEL REGULATORS

Detailed discussion on conventional regulatory process control, where the

process is controlled to setpoints, can be found in the standard texts.

setpoint regulators available.

Lower level regulation is only required if higher bandwidth than the

optimizer can provide is necessary.

As far as the optimizer is concerned the lower level regulators have
a dual function of eliminating high frequency disturbances and also

avoiding constraint violations between optimizer plant moves.

Chosen carefully according to the plant, a MIMO plant with strong

coupling requires a MIMO decoupling regulato..

Usually have S150 cascaded controllers with MIMO contreollers to de-

termine their setpoints.

Use MIMO decoupling design methods if an adequate model of that sub-

section of -the plant is available.

It may be necessary to use 5180 or MIMO adaptive control for a slowly

time varying plant.

Detailed Theoretical and Design Considerations 15



o If the above two methods are not suitable and very little is known
about the plant medel then a method due to Garcia and Morari (1983)

called Internal Model Control (IMC) might be of use.

3.2 ON-LINE OBJECTIVE FUNCTION IDENTIFICATION

The optimiser needs a dynanic mathematical model of the objective function
froo which a steady-state model is extracted and gradients are calculated.
This puts stringent requirements on the choice of model and the estimation

of the model parameters.

3.2.1 CHOICE OF MODEL

Here iss':«3 are discussed concerning the choice of the form of a dynamic
model to represent the objective function. It is not clear how the choice
of a dynamic mode! affects its derived steady state model, sc for this
section it is assumed that all that is required is a good dynamic objec-
tive function model. In a later section we lnok at the implications of

extracting a steady state model from the dynamic model.

For most processes a linear second order model with deadtime is an accu-
rate representation. For the optimizer we need to model the objective
function and not just the plant output. Since the objective function is
non=linear and the controllcer operates around the extremum point one has
to be more careful when assuming a linecar medel. If a linear model is

assumed it means that at each operating point the estimator must be given

Detail~d Theoretical and Design Considerations 16



sufficient time to change the m. ~ ° parameters and only a new set of plant
input moves is given after the estimator has converged. In other words
if a general non-linear model is used then less demands are made of the
model parameter estimator and/or an increase in controller bandwidth is

possible.

If reljable on-line measurements of plant disturbances are available it
is imperative that these are included in the model. The models parameters

should only have to be updated tor the following Lwo reasoiis:

o If unmeasurable disturbances change the plant significantly.

o If the operating point changes and the approximate model no longer
fits the plant adequately. For example: a linear model is used on a

plant that is non-linear over the operating range.

Unnecessary model adaption will obviously retard the overall performance.

The trade-off between the selection of a more simple linear dyna ‘¢ model
and a non-linear dynamic model, can at this stage, only be evaluated by

a simulation study.

All that the standard on-line estimators require is that the model can
be written in a certain form. Since the calculated objective is generally
a scalar and a plant will typically have multiple inputs the model must
be single output multi-input. Using the variables appropriate to the op-
timizer we write the model in the regressive form required by the param-
eter estimator:

Y(1) = @(L-l)q.éll-li ......... (1)

wvhere

Detailed Theoretical and Design Considerations 17



t £ discrete time variable as an integral multiple of the model ex-

ecution time

*
¢ £ regressioa vector or history vector of past Y(t), y, (tv), Yy,

(t) and u(r).

0(t-1) = parameter vector. This is a vector of unknown model param-

eters that are estimated,

Writing the model in this form assumes it is linear in its parameters,
but note that the regression vector can have non-linear functions of past

values of Y(t), y,* (t) and u(r).

The obvious choice for a linear model is “he DARMA model. I. is widely
used in adaptive control because it 1s the equivalent of an observable
discrete state space representation (Goodwin and Sin, 1984 :32). Ob-~
servable and uncontrollable modes are ‘ncluded in the model. The general

form of the single output multiple input DARMA model is:

n m r
Say(t-i) = § Bu(t-d=i) + J Cz(t=d-i) + ¢ .......... \2)
1 » i+1

or introducing the backward shift operator §°'

Alg~ Y)y(e) = B(q ') u(ted) & C(q" ') B8lB2d) +8  wi i Tuos « +(B)
where y(t) = output

u(t) = vector of inputs

Z(t) = vector of measurable disturbances

and ¢ is the de value about which the incremental model operates.

Detailed Theoietical and Design Considerations 18



The a, coefficients and the B and C coefficient matrices are the unknown

i
model parameter coefficients that need to be estimated using plant data.

n, m and r describe the order of the model, and d is the pure delay.

A general non-linear model that fits a large class of non-linear processes
is the Hammerstein model (Haber and Keviczky, 1978). It is linear in its
parameters and can be written in regressive form for the estimator. 'lIn

the backward shift operator notation ¢ ' it is written as:

A(g"Y)y(t) = B, (g°") u(t-d) + B, (q°') u* (t-d) + ¢ ...... (4)

Note that measurable disturbances can be included in a similar vain to

the above DARMA model.

This model can be tested against the DARMA model for a particular plant.
The advantage of both the above models is that standard estimators as used
in adaptive control can be used, and the models are relatively simple yet
highly versatile and very general. The nodel is only expected to match
the plant at a given operating point, such models are succinctly defined

as point-parametric (Brdys, 1983).

The choice of the model order depends on the specific plant. For most
plants second order will suffice, this means two time constants, one to
collect the fast dynamics and the other to collect the slow dynamics. If

there are other dominant time constants then a higher order model may be

needed,

Pure delay or transport delay d can ecasily be included in the discrete
model but the approximate delay time needs to be known. For this study
it is assumed the approximate plant pure delay is known and that it is
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constant, Work is being done on ways of estinating the dead-time on-line

if it is unknown or if it changes with time (llacLeod, 1987).

3.2.2 ESTIMATION OF MODEL PARAMETERS

There are numerous on-line recursive parameter estimation methods ( see
Seborg et al. 1986 for a comprehensive survey ). The method most widely
used and that has received the most attention is the recursive least
squares estimator (RLS). This is due to its fast convergence and good
statistical properties, it gives unbiased estimates if *the noise is un-
correlated. There are modifications to the recursive least squares if the
noise in the system is correlated, this could be the case for intercon-
nected subsystems. An examnple of a modified RLS estimator is the in-

strumental variables estimatcr (Wong and Polak, 1967).

The standard RLS estimator (Goodwin and Sin,1984 :49) for a single output

multi-input plant has the following form:

B(t) = 6(t-1) + M(t-1)8(t-1) . e(t)

where
e(t) {is the estimation error which is the difference between the
measured value and the value tne model predicts at time t. It is
written es: y(t) = §(t), where y(t) = #(L—I)TOIL-I)

0 is the vector or matrix of unknown model parameters,

M is the gain matrix for the estimator
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¢ is the regression vector.

This estimator has the problem that once it has converged to the set of
model parameters it "falls asleep" and will not converge if the plant
parameters change again. This loss of sensitivity is due to M being

non-increasing.

The RLS estimator can be modified to avoid the above problem. irious
modifications exist (Seborg et al. 1986) and the choice is usually a
trade-of f between accurate estimates and fast convergence to changing
parameters. The convergence theory for the standard RLS can be applied

to any modified RLS provided:

1. The covariance matrix P (one of rhe terms in M) is only increasing

in magnitude.

2. There is an upper bound on P.

We look at some of the better known modified RLS estimator algorithms.

RLS with exponential data weighting: (Goodwin and Sin, 1984 :64).For
the forgetting factor A<l the estimator gives recent plant data a higher
weighting so that old data, that may not be accurate if the plant has
changed, is forgotten. This is a popular method because )\ can be selected
according to how fast the plant is changing or what frequency plant
changes the estimator must track. It nevertheless has the following pit-
fall if X is not chosen carefully: Consider a plant under regulatory
control and in a steady state. If the physical plant does not change (no

significant unmeasurable disturbances) and old plant data is being for-

gotten chen there might not be sufficient information content in the plant
input to estimate the parameters, This condition of the plant input not
being persistent.y exciting (Goodwin and Sin, 1984 :72) leads to deteri-
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