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A B S T R A C T

\n adaptive steady-state on-line optimising regulator that will keep a 

plant at its optimum, as defined by a measurable objective, in the face 

of economically significant disturbances is proposed The concepts and 

theory underlying the operation of the adaptive optimizing regulator are 

developed and discussed. A case «-tudy of a hypothetical smipie bail mill 

grinding circuit is developed and simu1-it«d to test the operation of the 

regulator. Finally, the adaptive optimizer is proposed and tested by 

simulation as an integrated approach to the control and optimization of 

autogenous run-of-mine grinding circuits.

The optimizing regulator continuously estimates an internal model of the 

controlled process, and based on this, determines mill fresh solids feed 

rate and mill watur flow rate sutli that a circuit performance objective 

is optimized. The dual requirements of controlling both the mill pulp load 

and the load of particles of grinding media size is thus directly and 

simultaneously addressed.

Results of the simulation study are presented and discussed.

Abstract i i i



PREFACE  

ACKNOWLEDGEMENTS

The supervision, valuable assistance and encouragement given by Prof.I.>1. 

MacLeod is gratefully acknowledged.

I woiud like to t'nank my parents, Jean and John for their enthusiastic 

support. Their wisdom and understanding during the rough patches was much 

needed and appreciated.

In addition I would like to thank:

o The CSIR's foundation for Research and Development (FRD) for finan­

cial assis. ince.

o The Department of Electrical Engineering, University of the 

Witwatersrand

Pre face iv



T A B L E  OF C O N T E N T S

1 .0  IN T R O D U C T IO N  ................................................................................................... 1

1.1 Motivat ion fo r  this S tu d y  ................................................................................ 1

1 .2  Aim of this S tudy  ................................................................................................... 2

1.3  O v e rv ie w  of the Organ isation  of this Report  ......................................  3

2 .0  CO N C E P T  OF A GLOBAL CONTROL SYSTEM IN C O R P O R A T IN G

AN A D A P T IV E  O P T IM IZ IN G  REGULATOR ....................................................  5

2.1 Problem Formulation ..............................................................................................  5

2 .1 .1  General Problem .........................................................................................  5

2 . 1 . 2  Problem Simpli ficat ion ................................................................................ 7

2 .2  Hierarchical  Contro l le r  S t ru c tu re  .............................................................  9

2 .3  Theoret ical  Foundations for  the Adapt ive Optimizing Regulator  11

3 . 0  D E T A IL E D  T H E O R E T IC A L  AND DESIGN C O N S ID E R A T IO N S  . 15

3.1 Choice of Lower Level Regulators ............................................................. 15

3 .2  O n- l ine  Objective  Function Identi f icat ion ...........................................16

3 .2 . 1  Choice of Model .............................................................................................. 16

3 . 2 . 2  Estimation of Model Parameters .........................................................20

3 .3  Making the O n- l ine  Objective  Function Model Identif icat ion Ro­

bust  ........................................................................................................................................23

3 .3 .1  Coping with Determinist ic  Disturbances and Plant Noise . 24

3 . 3 . 2  Coping with Modell ing E r ro r  within the Ba idwidth of In te res t  29

3 .4  Ext rac t ing  the S teady-S ta te  Model from the Dynamic Model . 32

3 .5  O n- l ine  Optimization ......................................................................................... 33

3.5.1.1 Introduction ............................................33

3.5.1.2 Optimization Algorithm ................................  34

3 .6  Summary of Design Procedure  and Outl ine of Algori thm . . .  38

Table; of Contents v



4 . 0  CASE S T U D Y :  A P P L IC A T IO N  OF A D A P T IV E  O P T IM IZ E R  T H E O R Y  

TO  A BALL MILL ............................................................................................................ 42

4.1  Introduction ............................................................................................................ 42

4 .2  Ball Mill Model ....................................................................................................... 43

4 .3  G r ind ing  C i rc u i t  Contro l  ................................................................................48

4 .4  Mill Solids Feedra te  Regulator  ...................................................................... 50

4 . 5  Ball Mill Adapt ive  Optimizer  ........................................................................... 52

4 .5 .1  Problem Formulat ion .................................................................................... 52

4 . 5 . 2  Optimizer  .................................................................. ................................. 52

4 . 5 . 3  Simulation ....................................................................................................... 55

4 .6  Simulation Results ..............................................................................................55

4 .7  Conclusions .................................................................................................................58

5 . 0  A P P L IC A T IO N  OF A D A P T IV E  O P T IM IZ IN G  R EGULATOR TO AN 

AUTOGENOUS G R IN D IN G  C I R C U I T  ..................................................................60

5 .1  Background .................................................................................................................60

5 .1 .1  Mill ing .................................................................................................................60

5 . 1 . 2  Autogenous Mill Contro l  ........................................................................... 61

5 .2  A New Look at Autogenous Mill Control  Objectives ........................64

5 .3  Appl icabi l i ty  of A da pt iv e  Opt imiz ing Regulator  ................................. 67

5 .4  Simulation .................................................................................................................69

3 .4 .1  Detai ls of Autogenous Mill Model ....................................................70

5 . 4 . 2  Details of A dapt ive  Opt imiz ing Regulator .................................71

5 .5  Results of Simulation ......................................................................................... ....77

5 .6  Conclusions and F u r t h e r  Work ..................................................................82

6 . 0  CONCLU SIONS ....................................................................................................... 83

7 .0  REFERENCES ............................................................................................................85

A P P EN D IX  A. AN EXAMPLE OF ROBUST MODEL I D E N T I F I C A T I O N  91

Table of Contents vi



A P P E N D IX  C .  S T E A D Y  STA TE R E L A T IO N S H IP S  FOR THE BALL MILL  

S IM U L A T IO N  ..................................................................................................................... 96

A P P E N D IX  D.  BALL MILL A D A P T IV E  O P T IM IZ E R  PASCAL PROGRAM

L IS T IN G  .......................................................................................................................... 101

A 'P E N D IX  E.  F ILE  C O N T A IN IN G  P L A N T  PARAMETERS ...................  112

A P P EN D IX  F.  F ILE C O N T A IN IN G  C O N T R O L L E R  PARAMETERS . 114
%

A P P EN D IX  G. AUTOGENOUS MILL A D A P T IV E  O P T IM IZ E R  PASCAL

S IM U L A T IO N  ................................................................................................................  1 6

A P P EN D IX  H .  FILE C O N T A IN IN G  AUTO G E N O U S  MILL I N I T I A L

ST A T E S  .......................................................................................................................... 130

A P P EN D IX  I.  FILE C O N T A IN IN G  G R IN D IN G  C I R C U I T  C O N S T A N T S  132

A P P EN D IX  J. FILE C O N T A IN IN G  A U TO G E N O U S  MILL S IM U L A T IO N

SETUP AND C O N T R O L L E R  PARAMETERS ...............................................  134

APPENDIX  K. PASCAL INCLUDE FILE MODEL.P  .................................  137

A PPENDIX  L.  PASCAL INCLUDE FILE O U T P U T _ C A L C  . P . . . .  143

A PPENDIX  M. PASCAI PROGRAM P L O T .P  ...............................................  146

APPENDIX  N.  V ARIABLES DUMPED DUR IN G  A S IM U L A T IO N  RUN 154

A P P E N D IX  B. EXAMPLE OF A SIMPLE O P T IM IZ A T I O N  A L G O R IT H M  94

Tabic of Contents vii



L IS T  OF I L L U S T R A T IO N S

Figure 1. General structure of a control system incorporating an op ­

timizing regulator .......................................  &

Figure 2. Hierarchical controller structure. ..................... 10

Figure 3. block diagram of tlie internal structure of the adaptive

optimizing regulator......................................... !'*

Figure 4. The Basic Deadzonc Function ..............................  20

Figure 5. Functional Structure of Optimizing Regulator .........  41

Figure 6. Simplified Ball Mill showing inputs and outputs . . . .  43

Figure 7. Ball Mill Simulation Block Diagram ..................... 45

Figure 8. Relationship between P and F showing the desired operating 

point and a shift in this point due to a disturbance 

Figure 9. Steady State relationship between P and F showing regions

of operation ..............................................

Figure 10. Simulation Resu.’.ts .......................................

Figure 11. Typical Autogenous Grinding Circuit .....................

Figure 12. Autogenous Grinding Circuit incorporating an Adaptive Op­

timizing Regulator ....................................... 72

Figure 13. Simulation result using setup file: setup.6 ...........  80

Figure 14. Simulation result using setup file: setup.7 ........... 81

List of Illustrations viii



L I S T  OF SYMBOLS

t ............. discrete time variable, where t “ n.time,

n is a positive integer

x (t ) ..... ....vector of system states

y (t) .... ..... measurable output vector

u(t) .... ..... vcctor of system inputs

z (t ) .... ..... vector of measurable disturbances

d .... .........j',int dead-time as a multiple of the sampling time

q‘‘ .... ...... backward shift operator

£ .... .........general variable representing ncise

d .... ........ vector of unmeasurable plant disturbances

d .... ....... vector of persistent plant disturbances

d^ .... ....... vector of high frequency plant unmeasurable disturbanc

r .. .. vector of plant deterministic disturbances

*

y .... ....... setpoint vector to control outputs y (t)

f .... .........objective function measurement

T .... .........model prediction of objective function value

0 .... matrix of plant parameters

6 .... .........matrix of estimated plant parameters

P .... .........covariancc matrix

♦ .... .........regression vector

List ot Symbols



A B B R E V IA T IO N S

SISO Single input single output system

Ml MO Multi-input multi-output system

PID Proportional Integral Derivative Controller

RLS Kecursive least squares parameter estimation

DARMA Deterministic autoregressive moving average model

ROM Run-of-mine

Abbreviat ions



N O M ENCLA TURE

Comminution

Autogenous milling

G r in d in g  media

Fines

Charge

Pulp 

Product  

Coarseness  

Required gr ind

The breaking down of ore into finer material for the 

purpose of extracting n mineral.

Comminution of ore without the use of ferrous grind­

ing media.

Components of mill load that c..use breakage of small 

part icles.

Components of mill load that are broken by grinding 

media.

Total contents of the mill. Includes grinding media, 

fines and water dilution.

Mixture of fines and water dilution.

Ore emitted from the mill.

Ratio of grinding media to pulp.

The mill material that has been ground to an accept­

ably small size.
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1 .0  IN T R O D U C T IO N

Thii chapter explains why the research into the theory nnd operation of 

an adaptive optimjzing regulator was undertaken and defines the aims of 

the dissertation. It also gives an overvieu of the report struc’ure.

For background material on digital computer process control the rc.ader 

is referred to the standard text by Smith(1972). The reader looking for 

an up to date introduction to adaptive control, and more specifically for 

this study, on-line dynamic model identification, is faced with a bewil­

dering array of intricate published papers. A fairly gentle, yet compre­

hensive survey paper (' >org et al. 1986) is an advisable starting point. 

Background material on process optimization can be obtained in the ref­

erences cited in the relevant sections.

1.1 M O T I V A T I O N  FOR T H IS  S T U D Y

The motivation for this research comes directly from the need in the South 

African mining industry for a solution to the autogenous run-of-mine 

milling problem. It is a practical problem characterised by the lack of 

reliable' measurements m  a harsh environment resulting in the need to use 

available measurements to their full potential. This involves taking ad - 

vantage of the computing power now available and using available on-line 

numerical techniques toi input-output modelling. Due to the large quan­

tity of ore processed, .i small improvement in mill control and hence a 

slightly more optimal operation is < ;otiomical ly worthwhile.

Introduction
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There is a need for a fresh look at this problem from a more global ar.d 

co-ordinated point of view to allow the synthesis of a systematic control 

strategy to achieve a given control objective.

A sensible route to take in tackling this problem with a new approach is 

first to provide solid theoretical foundations. The theory and design is 

approached from a general viewpoint because of its applicability to con­

trol problems other than autogenous mill control. It is beyond the scope 

of this research to develop the theory fully. The theory is developed as 

far as possible and then tested under predictable conditions in a sim­

plified case study. Before actual implementation the controller would 

need further testing, by simulation, under fairly realistic and variable 

conditions.

1.2 AIM OF T H IS  S T U D Y

This work aims to:

o Motivate and define a suitable sub-problem in relation to the global 

objective of inproving plant performance.

o Look at existing methods of solution and identify their shortcomings.

o Develop the theory to solve this sub-problem in the light of new de­

velopments in adaptive control.

o Show hou the adaptive optimising regulator fits into a global hi­

erarchical control system.

Introduction



o Choose a suitable simple example plant to test the controller under 

simulation.

o To apply the adaptive optimizing regulator, using simulation, to an 

example plant.

o Try to solve a real world problem with the adaptive optimizing regu­

lator. The chosen real world problem ii o improve the control of an 

autogenous grinding mill circuit.

1.3  OVERVIEW OF THE O R G A N IS A T IO N  OF T H IS  REPORT

Chapter 2 introdu.es the concept and puts the adaptive optimizer into a 

process control context. Starting with a sufficiently general problem, 

realistic assumptions are introduced to simplify the problem until a 

solution is plausible within the framework of existing techniques and 

technology.

Chapter 3 gives detailed theoretical and design considerations for a 

general adaptive optimizing regulator module. The regulator is broken 

down into functional entities and each is discussed individually. An 

outline of the design procedure is summarised at the end of this chapter.

Chapter U documents a case study of the application of the adaptive op ­

timizer theory to a simplified ball mill grinding circuit control and 

optimization problem. It. presents a representative simulation and dis­

cusses the results.

Int roduct ion
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Chapter 5 represents the culmination of the developments in previous 

chapters in solving the real world problem of autogenous mill control. 

Background to the milling problem is given, the autogenous milling control 

objectives are loo' ^d at in a new light, and the applicability of the 

adaptive optimizer is reinforced. The simulation environment used in this 

study is discussed as well as the details of the mill model and simulated 

implementation of the optimizer. Representative simulation runs are given 

and analyzed.

Finally, chapter b draws conclusions from the research. By carefully 

specifying the limitations and areas that need further research the future 

direction, namely to achieve, the goal of implementation on a mine, is set.

Introduct iou
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2 . 0  CONCEPT OF A GLOBAL C O N T R O L  SYSTEM IN C O R P O R A T IN G  AN

A D A P T IV E  O P T IM IZ IN G  REGULATOR

2.1 PROBLEM F O R M U LA TIO N

2 .1 .1  GENERAL P R O B L E M

A very general description of the acceptable operation of a dynamic system 

consists of a set of n differential equations, a set of q inequality 

constraints and a set of m output relationships given by:

d

-x = f(x, u, d,) ..........  (1)

dt

g ( x , u , d )  S 0 .....................  (2 )

y -  h ( x , u )  ...................  (3)

where »

x £ n-vector of model state variables

u = 1-vector of manipulablo control inputs

y = m-vector ot measurable outputs

d = i -vector of disturbance variables

Such a model can be us'd to obtain a current estimate ( at time t=0 ) of 

the optimum trajectory of the real system by finding control inputs uit) 

to minimi/.*' the integrated total of a specified objective function or

Concept of Adaptive Optimizer 5
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performance index, t, over the time period (0,T). This optimization 

problem may be written as:

min

u S
.T

f( y,u,d) dt (A)

0

such that (1), (2) und (3) are satisfied.

Note that Y is an economic objective function that is possibly measured 

directly or in the more general case t could be an arbitrary algebraic 

function of the control inputs u(t), plant outputs y(t) and measurable 

disturbances which are a subset of d(t). For particular values of the 

inputs, outputs and the measurable disturbances, Y is essumed to have an 

extremum, a minimum or maximum point which drifts due to the unmeasured 

disturbances. It is desired to keep the system operating at this extremum 

value while avoiding constraint violations. We call this safe tracking 

of the optimal operating point, optimizing regulation.

It is well-known that (A) represents an exceptionally difficult non­

linear dynamic optimization problem, and excessive amounts of computing 

are required for its solution. For the case where unmeaourab.e disturb­

ances do not affect the optimum significantly it may be possible to solve 

this problem off-line, but it is definitely not feasible for on-line ap­

plications. We therefore propose a simplification based on classifying 

process disturbances according to their frequency spectra.

Concept of Adaptive Optimizer
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2 . 1 . 2  PROBLEM S IM P L IF IC A T IO N

Practical optimization time periods (0,T) are typically largo relative 

to the dominant process time constants, and therefore only persistent 

disturbances, d , with periods larger than the process settling t ime have 

an important effect on t. Rapidly varying disturbances, d (., also called 

process noise, comparable to 01 faster than t\> dominant system time 

constants, are effectively non-existent relative to the optimization pe­

riod. Also, the influence ot these rapidly varying disturbances can be 

suppressed by using conventional single-variable or multi-variable regu­

latory control. Therefore the plant can be assumed to be at quasi-steady 

state during the time period (0,T) for optimization purposes.

In order to implement the conventional regulatory control subsystem, a 

subset of the inputs. u ( is selected to control a subset of the outputs, 

Yj, in the face of disturbances, d (. Using the quasi-steady state as­

sumption, optimization problem (4) can then be reformulated as a steady- 

state or static optimization problem, dependent on persistent 

disturbances d^:

min f( y ,, y 2, u,, u }, d $ ) (5)

*

such that

f(y*. y a, ds ) = o (6 )

(7 )

who re

Concept of Adaptive Optimizer



y * (y,,y2) T

u 5 ( u , ,  U j )  1
*

y, = vector of setpoints lor the conventional regulators 

y 2 = vector of remaining uncontrolled outputs

The resulting getierul control structure is shown in Figure 1.

SUPERVISORY CONTROL

Figure 1. General structure of a control system incorporating an 

optimizing regulator

The task of the optimizing regul itor is to repeatedly solve (">) for the

*

optimum input vari<il>li!s u 2 and y, The resulting control inputs, u 2

, are then applied directly to the plant while control inputs u, have

Concept of Adaptive Optimizer ft



been replaced by the sotpoints y, of lh<> associated conventional regu­

lators. The solution is ' dilated every T„ seconds where the choice of 

T a depends on the speed of v •' '< >on of the disturbances, d s .

In summary, the ta■ 1: of the optimi«:’ng regulator is to track a shifting 

opt . i jm that is affected by disturbances that vary slowly compared with 

the dominant plant time constants. The optimizer may have a number of 

direct plant inputs and conventional regulator setpoints to guide the 

plant to the optimum.

2 .2  H IE R A R C H IC A L  C O N T R O L L E R  S T R U C T U R E

This study locus s on the optimizing regulator, but it is important to 

understand the context in which it operates. A big attraction is its in­

herent flexibility ::id a vision of how it will fit into the global picture 

of a distributed I va.chical computer control system. The block struc­

ture in T;gure 2 on pa&< 30 gives an idea of how it might fit into a 

complete hi»t rch : al computer control system.

The envisaged ontroller will have a number of different levels of con­

trol. The lowest 1 i*ve 1 being conventional SISO controllers, the next level 

possibly being MIMG regulatory controllers. It is possible that these 

regulators are adaptive controllers, hut still have the same purpose of 

controlling the plant to setpoints. On a higher level, or supervisory 

level the optimizer uill determine setpoints for the lowei levels. The 

bandwidth of the higher level controller may be orders of magnitude lower 

than the tmdeilying regulators. This ensures safe operation of the plant 

while taking the pressure oft the higher optimizer level of control.lt

Concept of Adaptive Optimizer 9
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Figure 2. Hierarchical controller structure.

gives the optimizer time to converge to the new settings without the risk

of unpredictable operation or constraint violations.

The optimizer level is highly flexible. If the control objective changes 

then it is a simple mattei to re-define the optimization problem. All 

that needs to bo done is to give the estimator neu data calculated from

the new objective function. The estimator will then adapt the model pa­

rameters to the new data and new gradients will be calculated. An example 

where the objective function may change is when under normal conditions 

the objective is to maximize the throughput of a plant, but when there 

is a market surplus of the product one may wan to minimize plant energy

Concept of Adaptive Optimizer
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consumption. This flexibility in tlio choice of the control objective could 

be of enormous economic benefit. Ultimately the highest level of control 

w J 1 1 be an expert system that uses off-line information to choose the best 

control objective for the optimizer.

2 .3  T H E O R E T IC A L  F O U N D A T IO N S  FOR THE A D A P T IV E  O P T IM IZ I N G  

R EG U LA TO R

Now that the context of the optimizing regulator and its task have been 

specified we look at the theory behind it.

A wide variety of techniques have been proposed for use in digital process 

control computers for maintaining a process at its optimum steady-state 

operating point. In off-line methods (Savas, 1965, Webb et al. 1978, 

Maarleveld and Rijinsdorp, 1970), key process measurements are regularly 

supplied to a predetermined detailed steady-state process model and a 

static optimisation procedure is then performed to find the required 

control inputs. These are then applied to the plant. Although a detailed 

non-linear model can be used and fast static optimization algorithms are 

available, this method suffers from two serious disadvantages. Firstly, 

most economically important disturbances cannot be measured or modelled 

exactly. Secondly, even for processes of low complexity, off-line models 

are difficult to obtain and are always inaccurate owing to the impossi­

bility of modelling ,ill effects. Consequently, it is imperative that the 

optimizing regulator interacts with the operating process in some way so 

that all economically important disturbances are detected as soon as they 

affect the plant outputs, and a detailed tundam«nti. 1 model is not re- 

qu ired.

Concept of Adaptive Optimizer
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Numerous on-line methods for obtaining steady-state models through direct 

searches on the operat: g plant have been proposed. Edlor et al. (1970) 

compare the performai.ee cf different techniques. Since steady-state in­

formation is required, measurements should be taken only after the process 

has settled after each change in the control inputs. This results in a 

very slow search procedure. On the oilier hand, Sawaragi et al . (1971) have 

found that very complex stability problems arise if the control inputs 

are changed before process transients die away. Furthermore, these meth­

ods are very sensitive to process noise (Saridis, 1974).

In this research project we have selected an approach based on a two-step 

procedure of regularly determining the parameters of a steady-state 

mathematica1 model and then adjusting the control inputs so that the 

performance index is at its optimum vu ic This approach is very closely 

linked to adaptive control and first attracted attention in the 1960s 

(balckman, l'Jo2, Jacobs, I960), but lack of suitable computing hardware 

made practical implementation difficult. With the availability of micro­

processor1 there has recently been renewed interest in this approach 

(Sternby, 1980, Garcia and Norari, 1984). Also encouraging theoretical 

results concerning the stability and convergence properties of the algo­

rithms incorporating this adaptive two-step optimization procedure are 

now available (Haimcs and Wismur, 1972, Roberts and Williams, 1981).

In order to overcome the problems of having to wait for the plant to reach 

steady-state after each adjustnont to the control inputs and sensitivity 

to noise, the mos*. promising approach appears to be to determine the 

steady-sta'.e process mode I parameters by recursively estimating the pa­

rameters of a simple dynamic input-output model d m i n g  the transient re­

sponse, as suggested by Bamberger and Iserinann( 1978). It is then a simple 

matter to extract th<' corresponding steady-state model. This can be used 

to solve optimization problem (r>) and thereby determine how the control 

inputs s h o m d  be varied in ordnt to improve plant economic performance.

Concept of Adaptive Optimizer
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The procedure is then repeated at the new operating point with a dynamic 

process identification followed by an optimization step, and so on until 

the optimal point is reachod. Figure 3 on page 14 shows this closed-loop 

two step process.

Concept of Adaptive Optimizer
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Figure 3. lilock diagram o! the internal structure of the adaptive

optimizing regulator.

Concept of Adaptive Optimizer
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3 . 0  D E T A IL E D  T H E O R E T IC A L  AND DESIGN C O N S ID E R A T IO N S

3.1 C HO ICF  OF LOWER LEVEL REGULATORS

Detailed discussion on conventional regulatory process control, where the

process is controlled to setpoints, can be found in the standard texts.

The following points do however give some idea of the possible scopc of

setpoint regulators available.

o Lower level regulation is only required if higher bandwidth than the 

optimizer can provide is necessary.

o As far as the optimizer is concerned the lower level regulators have 

a dual function of eliminating high frequency disturbances and also 

avoiding constraint violations between optimizer plant moves.

o Chosen carefully according to the plant, a MINO plant with strong 

coupling requires a MINO decoupling regulato..

o Usually have S1S0 cascaded controllers with MIMO controllers to de­

termine their setpoints.

o Use MIMO decoupling design methods if an adequate model of that sub­

section of the plant is available.

o It may be necessary to use SI SO or MIMO adaptive control for a slowly 

time varying plant.

Detailed Theoretical and Design Considerations 15



o If the above two methods are not suitable and very little is known 

about the plant model then a method due to Garcia and Morari ( 1983) 

called Internal Model Control (IMC) might be of use.

3 .2  O N -L IN E  O B J E C T IV E  F U N C T IO N  I D E N T IF IC A T IO N

The optinuser neeus j djnamic r.athemacical modal of the objective function 

frcr.'. which a steady-state model is extracted and gradients are calculated. 

This puts stringent requirements on the choice of model and the estimation 

of the model parameters.

3 .2 . 1  CHOICE  OF MODEL

Here iss’ s are discussed concerning the choice of the form of a dynamic 

model to represent the objective function. It is not clear how the choice 

of a dynamic model affect* its derived steady state model, so for this 

section it is assumed that all that is required is a good dynamic objec­

tive function model. In a later section we look at the implications of 

extracting a steady state model fri>m the dynamic model.

For most processes n linear second order model with deadtime is an accu­

rate representation. For the optimizer we need to model the objective 

function and not just the plant output. Since the objective funit ion is 

non-linear and the controller operates around the extremum point one has 

to be more careful when assuming a linear model. If a linear model is 

assumed it means that at ea.;h operating point the estimator must be given
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sufficient time to change the ' parameters and only a new set of plant 

input moves is given after the estimator has converged. In other words 

if a general non-linear model is used then less demands arc made of the 

model parameter estimator and/or an increase in controller bandwidth is 

possible.

If reliable on-line measurements of plant disturbances are available it 

is imperative that these are included in the model. The models parameters 

should only have to be updated tor tiie following luu reasons:

o If unmeasurable disturbances change the plant significantly.

o If the operating point changes and the approximate model no longer 

fits the plant adequately. For example: a linear model is used on a 

plant that is non-linear over the operating range.

Unnecessary model adaption will obviously retard the overall performance.

The trade-off between the selection of a more simple linear dynai c model 

and a non-linear dynamic model, can at this stage, only be evaluated by 

a simulation study.

All that the stand.ird on-line estimators require is that the. model can 

be written in a certain form. Since the calculated objective is generally 

a scalar and a plant will typically have multiple inputs the model must 

be single output mu Iti-input. Ising the variables appropriate to the op­

timizer we write the model in the regressive form required by the param­

eter estimator:

Tft .) *= !(i-1 i"1 .6(t -1 ) .........  (I)

whe re
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t = discrete time variable as an integral multipls of the model ex­

ecution time

$ = regression vector or history vector of past t(t), y ,  (t), y 2 

(t) and u(t).

O(t-l) = parameter vector. This ie a vector of unknown model param­

eters that are estimated.

Writing the model in this form assumes it is linear in its parameters, 

but note that the regression vector can have non-linear functions of past

*

values of 'f(t), y 2 (t) and U(t).

The obvious choice for a linear model is ‘.he DAHMA model. It is widely 

used in adaptive control because it is the equivalent of an observable 

discrete state space representation (Goodwin and Sin, l^S* :32). Ob' 

servable and uncontrollable modes are ncluded in the model. The general 

form of the single output multiple input DARMA model is:

n m  r

£ a y ( t - i )  = I B u ( t - d - i )  + £ C z ( t - d - i )  + c ..........  v2)

id ml ill

f

or introducing the backward shift operator q" 1

Aiq‘‘)y(t) = B(q* 1 ) u(t-d) + C l q ' 1) Z(t-d' + c ..........  (3)

where y (t ) = output

u (t) = i ector of input s 

z (t ) = vector of me.isur iblc disturbances

and c is the d<. value about uhi<.li the incremental model operates.
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The a. coefficients and the B and C coefficient matrices are the unknown 

model parameter coefficients that need to be estimated using plant data.

n, m and r describe the order of the model, and d is the pure delay.

A general non-linear model that fits a larg<- class of non-linear processes 

is the Hammerstein model (Haber and Keviczky, 1978). It is linear in its 

parameters and can be written in regressive form for the estimator. 'In 

the backward shift operator notation q‘1 it ;s written as:

A(q"1)y(t) = B , (q*‘) U(t-d) + B, (q-‘) U v (t-d) + c ...... (4)

Note that measurable disturbances can be included in a similar vain to 

the above DARMA model.

This model can be tested against the DARMA modfl for a particular plant. 

The advantage of both the above models is that standard estimators as used 

in adaptive control can be used, and the models are relatively simple yet 

highly versatile and very general. The model is only expected to match 

the plant at a given operating point, such models are succinctly defined 

as point-parametric (Brdys, 1083).

The choice of the model order depends on the specific plant. For most 

plants second order v* i 11 suffice, this means two time constants, one to 

collect the fast dynamics and the other to collect the slow dynamics. If 

there arc otlmr dominant time constants then a higher order model may be 

needed.

Pure delay or transport d»• 1.iy d can easily be included in the discrett 

model but the approximate delay time needs to be known. For this study 

it is assumed the approximate plant pure delay is known and that it is
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constant. Work is being done on ways of estinating tho dead-timo on-line 

if it is unknown or if it changes with time (MacLeod, 1987).

3 . 2 . 2  E S T IM A T IO N  OF MODEL PARAMETERS

There are numerous on-line recursive parameter estimation methods ( see 

Soborg et al. 198o for a comprehensive survey ). The method most widely 

used and that has received the most attention is the recj.'sive least 

squares estimator (RLS). This is due to its fast convergence and good 

statistical properties, it gives unbiased estimates if ♦.he noise is un- 

correlated. There are modifications to the recursive least squares if the 

noise in the system is correlated, this could be the ease for intercon­

nected subsystems. An example of a modified RLS estimator is the in­

strumental variables estimator (Wong and Polak, 1967).

The standard RLS estimator (Goodwin and Sin, 1984 :49) for a single output 

multi-input plant has the following form:

6 (t ) = 0 (t — 1) + M(t-l)*(t-l) . e(t)

where

e(t) is the estimation error which is the difference between the

measured value and the value tne model predicts at time t. It is

T

written ts: y(t) - y(t), where y(t) = t(t-l) O(t-l)

0 is the vector or matrix of miknown model parameters..

M  is tin' «.iiii matrix for the estimator
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$ is the regression vector.

Tliis estimator ha-5 the problem that once it luts converged to the set of 

model parameters it "falls asleep" and will not converge if the plant 

parameters change again. This loss of sensitivity is due to M being 

non-increabing.

The RLS estimator con be modified to avoid the above problem. irious 

modifications exist (Seborg et al. 1986) and the choice is usually a 

trade-ofi between accuratc estimates and fast convergence to changing 

parameters. The convergence theory for the standard RLS can be applied 

to any modified RLS provided:

1. The covariance matrix P Cone of the terms in M) is only increasing 

in magnitude.

2. There is an upper bound on P

We look at some of the better known modified RLS estimator algorithms.

RLS with exponential  data weight ing: (Goodwin and Sin, 1<>84 :64).For 

the forgetting factor X<1 the estimator gives recent plant data a higher 

weighting so that old data, that may not bo accurate if the plant has 

changed, is forgotten. This is a popular method because X can be selected

according to how fast the plant is changing or what frequency plant 

cha ;es the estimator must track. It nevertheless has the following pit­

fall if X is not chosen carefully; Consider a plant under regulatory

contrul and in a steils state. If the physical plant does not change tno 

significant unmeasurable disturbances') and old plant data is being for­

go'tin ihen there might not lie sufficient information content in the plant 

input to estimate tin parameters. This condition of the plant input not 

being persistent.v exciting (Goodwin and Sin, '.9fi4 :'2) leads to doteri-
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