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A BSTRA CT

An adaptive controller is developed, comprising a robust parameter esti­
mator and an explicit pole assignment controller design. The controller 
is reformulated to have a standard PID structure. A practical implemen­
tation is facilitated on a digital microcomputer, connected to a physical 
process. Test results are presented for this real process subject to 
variable dead-time and an external disturbance. Simulation results are 
also presented, for a nominally nonminimum-phase process subject to var­
iable dead-t:me and large open-loop gain changes. Robust performance is 
demonstrated under all of these circumstances. Recommendations are given 
for the choices and considerations required in a robust practical iatple- 
c.entat ion.



SYNOPSIS

Much research has been done in the field of adaptive control over the past 
few decades. However, a let needs to be learned about the robustness of 
adaptive control algorithms. This research investigates the implementa­
tion of a practical adaptive control algorithm, with numerous features 
incorporated to improve the robust performance of such a controller. Pa­
rameter estimation is performed using Recursive Least Squares (RLS), with 
v.Tious signal conditioning filters to reduce estimator sensitivity to 
noise and modelling errors. The control design is based on closed-loop 
pole assignment, with adaptive feedforward compensation included. Fur­
ther, provision is made in both the estimation model and the feedback 
control structure to eliminate deterministic unmeasurable disturbances, 
and to track deterministic setpoint variations. This is based on the 
Internal Model Principle. Measured random disturbance signals are in­
cluded in the estimation model, for which "transfer function" polynomial 
coefficients are estimated and then used in the feedforward control de­
sign. A new shift- operator, namely the 6-operator, is used in all con­
troller and estimator for-mlations. This has been shown to have better 
numerical properties and to correspond more closely to continuous-time 
control, than the traditional q operator of z-domain discrete control. 
A practical implementation on a digital computer is investigated, applied 
to a real plant typical of an industrial application. Simulation results 
are also obtained for plant with nonminimum-phase zeros and variable 
dead-time.
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1 .0  IN T R O D U C T IO N

In simple terms, to "adapt" means to change Behaviour to conform to new 
circumstances. In the last two decades, there has been much interest in 

control systems which automatically adapt or change themselves in re­
sponse to variations in process dynamics or disturbance conditions. Since 
ordinary feedback control is intended to achieve the same purpose, a 

stricter definition of adaptive control is desirable. While there is 
consensus that censtant-gain feedback does not constitute an adaptive 

system, a clear definition has not been given. Seborg, Edgar and Shah 
(1986) simply state that an adaptive controller is one for which a sat­
isfactory fixed model of the process to be controlled is not available 
in advance, due to uncertain behaviour, nonlinearities or time-varying 
system dynamics. Astrom (.1987) takes the pragmatic view that adaptive 

trol can be considered a specialised form of nonlinear feedback con- 
jl, where the process states are seen in two categories, which change 

at different rates. The more slowly varying states are viewed as model 
parameters.

It is worthwhile to •‘tudy the practical motivation for adaptive systems 
in more detail. Fixed servomechanism controller design depends on rea­
sonably good system modelling. Since these models are difficult to gen­
erate in practice, a generalised three-term (PID) controller is 

frequently used in industrial applications, which can give aceptable 
performance when the corresponding controller coefficients are correctly 
set or "tuned" (Clarke). However, accurate tuning is often difficult or 

impossible due to the following factors :

o Many chemical processes have very complex dynamic characteristics, 
due to large phase lags or dead time. High-order mathematical de­
scriptions of such processes are often necessary for accurate model­

ling.
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e Nonlinear characteristics may alter the plant behaviour dramatically

with large setpoint variations, eg. in pH control the increment‘1 gain 

can change by many decades over a given pH range. Furthermore, 
actuators such as valves exhibit nonlinear effects, viz. saturation, 

hysteresis and dead-bands.

o The process dynamics themselves may be time-varying, for example
during the decay of a catalytic reaction, or with the gradual fouling 

of physical plant such as pipes, ducts, filters or heat exchangers.

e Vh-m interacting control loops are tuned independently, coupling ef­
fects may be such that tight control performance is not possible.

e Large disturbances are often present, such as variations in the ma­
terial input to a process, as with ore milling and crushing. Envi­
ronmental disturbances are also present, such as changes in ambient 
air temperature or coolant fluid temperature.

Adaptive control formulation goes some way towards a solution in these 

difficult circumstances. A procedure is employed whereby an estimated 
model of the process is generated online, and a design procedure followed 
to produce a suitable set of controller coefficients for some prespecified 

controller structure. Thus the system adapts itself to unknown or time- 
varying circumstances, incorporating many of the problems mentioned 
above.

This concept is intuitively appealing because of its close kinship with 
human capabilities for adaptation, and its connotations of "artificially 
intelligent" systems associated with the mystique of automatic computer 

control. The advent of inexpensive computer hardware possessing substan­
tial processing power has enabled the implementation of complex online 
control algorithms, using supervisory real-time minicomputers. The emer­
gence of sophisticated programmable logic controllers (PLC's) and other 
dedicated microprocessor-uased devices has also allowed for fl xible, 

rapid control system implementation. These factors possibly account for 
the widespread interest and research in the field of adaptive process
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control. However, in the application of such a powerful and appealing 

concept, many problems have arisen. The vast literature on the subject 

addresses problems such as estimator convergence, parameter accuracy, 
long-term closed-loop stability, disturbance rejection characteristics 

and application to generalised systems with arbitrary structure, in par­

ticular nonminimum-phase processts.

Many constraints are imposed in tf.“ literature on the types of processes 
to be controlled, the nature of system excitation, knowledge of disturb­

ance and noise characteristics, and restrictions on model classes. The 
large amount of prior process knowledge required by some formulations 
negates many of the advantages hoped for with adaptive systems.

Certain control design procedures have also been shown to be non-iobust 

under general circumstances. An example of this is the well known 
minimum-variance controller, which minimises a quadratic cost function 
involving the system input, output and disturbances to achieve minimal 
variance of the controlled variable. Unfortunately, this attempt to 
minimize output variance often results in excessive contxol effort, which 

can represent a problem from an engineering point of view, due to actuator 
iimitations. Another very popular technique used in adaptive control is 
that of model reference or moddl- following control. Part ot the model 

ref -ence design procedure is to assign the open-loop system zeros tc the 
cl'sed loop system poles, thereby cancelling these zeros. This has the 
implicit constraint that the open-loop zeros must lie in the left-hand 
half plane, for assymptotic stability of the closed loop system. Thus 
noiminimum phase systems cannot be controlled by this type of controller, 
which is a severe limitation.

A need has thus arisen for v generalised robust theory, giving reliable 
sytero identification under a vide range of process conditions, as well 

as flexible and stable cln«»d-loop control for a large class of industrial 
proct-Lses. Furthers..re, such a theory should be self-contained and simple 
enough to give s .it is facto-y performance with a minimum of user-supplied 
information. A ’vhough U u r  research has not provided a complete solution.

Int rnduction 5



many of the robustness problems and stringent process requirements ob­
served in the literature have been removed.

1.1 RESEARCH GOAL

This research has attempted to formulate a robust algorithm for the con­

trol of general time-varying systems allowing for i broader class of open 
loop transfer functions. The algorithm consists of a parameter estimator, 
a controller design procedure and a controller. The parameter estimator 

is made robust to modelling error, process noise and deterministic dis­
turbance inputs. The control design is based on closed-loop pole assign­
ment, which is shown by many authors to be more robust than other 

strategies. (See "Current Approaches to Adaptive Estimation and Control" 

on page 9)

More specifically, this research investigates the practical implementa­
tion of such a controller, involving the combination of the following 

concepts:

o A new transform domain for control formulation.

o Signal conditioning (prefiItering) to improve parameter estimation

robustness.

o A generalised explicit process model for parameter estimation, in­
corporating both unmeasured deterministic disturbances and measurable 

load disturbances.

o A robust pole assignment technique for control design.

o Explicit feedforward compensator design for measurable disturbance

reject ion.
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1 .2  RESEARCH APPROACH

The experimental implementation was evaluated using both a raai physical 

process and a computer simulated plant model.

1 .2 .1  R EAL P LA N T

The physical implementation is facilitated using a microcomputer linked 
through an analog/digital converter to a real plant typical of an indus­

trial situation. The adaptive controller algorithm performance is evalu­
ated in this environment in terms of:

o Estimator robustness, measured by parameter convergence and/or sta­
bility under various conditions.

o Closed-loop control performance under both setpoint and load dis­
turbance changes, as well as plant parameter variations such as 
open-loop gain.

o Deterministic disturbance rejection and variable dead-time compen­
sation under closed-loop control.

1 .2 .2  S IM U LA T IO N  TE STS

The algorithms are also tested using simulated plant models, to allow 
control testing for nonminimum-phase plants and those with variable

Int roduc t ion 7



1 3  S TR U C T U R E  OF D IS S E R T A T IO N

The la>out of this report is as follows :

o Section 2 discusses the current approaches to adaptive estimation and

control.

e Section 3 reviews some of the mathematical preliminaries necessary
tc the development of the algorithm, notably those relating
cont-n’ious-time to discrete-time system representation.

o Section 4 develops the structure for the robust estimator.

e Section 5 develops the theory behind the robust pole assignment con­

troller.

e Section 6 discusses the robust implementation requirements of the

algorithm on a real plant, as regards estimator parameter selectiu; , 
signal conditioning and robust controller design.

o Section 7 presents experimental results for the real plant mder
closed-loop control, as well as simulation results for a few test
cas e s .

o Section 8 concludes the report and presents some recommendations for
further work.

i ntrodur c ion



2 .0  C U R R E N T APPROACHES TO A D A P T IV E  E S T IM A T IO N  AND CC - ROL

2.1 IN T R O D U C T IO N

Adaptive controllers were motivated initially by autopilot design re­

quirements for high performance aircraft and rockets (Seborg et al, 1986). 
A simple form of adaptation is known as gain scheduling whereby the 
controller gain is varied n response to changes in process gain K^, 
so as to keep the product constant. This has found successful ap­
plication particularly in pH control, and in fact standard industrial 
controllers with gain scheduling options are commercially available 

(Andreiev, 1981). However, gain scheduling is not always effective in the 
presence of varying plant dynamics or unknown time delays. Thus current 
approaches are developed to cope with unpredictable process changes, by 
relating the controller design to plant behaviour as indicated by online 
process variable measurements

Adaptive controllers are typically constituted of * parameter estimator 
in combination with some feedback control design prot-adur- This is shown 

in Figure 1 on page 10. Model parameters are derived by examining the 
input-output characteristics of the process. The approach of using the 
model estimates thus derived as if they were the true plant parameters 
for the purposes of control design, is know, as c e rta in ty  equivalence  

adaptive control. A wide v a r ie ty  of such schemes have been proposed in 

the theory, by combining one of the many e a t.mat ton techniques with a 
particular controller design method.

There are two possible formulations of the adaptive controller shown in 
FigUiA 1 on page 10. As it is d e t a i K J in the block diagram, it is an 
e x p lic it senna#, since an explicit process model is estimated and these 

parameters used in the rontrol design. This technique is also called in ­

d ire c t, s :nee the control law is indirectly obtained from a system model. 
The qther formulation is in cases when the system can be direcly

Current Approaches to Adaptive Estimation and Control 9



Set p o i n t

y(t)u(t)

E s t i m a t o r

Controller

Control Deei*i

Figure 1. Block Diagram of a Generalised Adaptive Controller.

paraoeterised in terms of the control law parameters. This greatly sim­

plifies the design calculations required for the controller. Such algo­
rithms are known as d ire c t, since the controller coefficients are directly 
estimated. These schemes are also called im p lic it, because the design in ­

cludes an iop’icit process model.

This section first considers some parameter estimation schemes, and then 
details various types of control law design approaches with which the 
estimators can be used.

Current Approaches to Adaptive Estimation and Control 10



2 .2  PARAM ETER E ST IM A T IO N

These procedures are employed to identify a system model which adequately 

describes process behaviour in terms of dynamic and steady-state re­
sponse. Two main groups of algorithms can be used, namely online and 

offline  techniques. Offline algorithms consider measured historical plant 
data in "batches", and a one-pass solution for model parameters is ob­

tained (Junkins, 1981 : 7). The larger the number of parameters to be 
estimated, the bigger "blocks" of plant data need to be given to the es­

timator for reliable identification. The second group of online algorithms 
is of greater interest in this work, since the plant model is estimated 
using past and present process variable measurements at each sample. The 

estimates are thus a function of the process "history", described as a 
regression vector, and are continually updated online. This allows the 
model to track process behavio’ -, which is relevant in cases with time- 
varying plant dynamics.

2 .2 .1  L IN E A R  D IFFERENCE EQ U ATIO N MODELS

A typi<. .1 form of process model for tne purposes of adaptive control is 
known as the ARMAX (Autoregressive Moving Average with Auxiliary Input) 

model, given by Seborg et al (1986) as

y(t) + a^y(t-l) + ... + a^y(t-n) * bQu(t-k) + b^u(t-k-l) + ... + b^u(t-k-m

+ Cq C (t) + c^(t-l) + .... + c^( (t-n) + d(t) (2.1)

where y is the plant output, u is the input, £ is a noise variable and d 
is the load disturbance variable. The sampling time instant is denoted 
by t, n and m are positive integers giving the order of the model, and k 
is the time delay as an integral multiple of the sampling period.The model 

parameters a ̂ , b and c , are generally unknown, and need to be estimated.

Current Approaches to Adaptive Estimation and Control 11



The mode 1 is more compactly expressed using shift operator notation, thus•

A"' ^ y U )  " B(q + C(q ^)(it) + d(t) I

where K(q S  “ 1 + i

B(q l) - S  1

c tq ’ S  » E  
1-0 1

The coefficients denote a discrete filter which models the

These linear discrete models are suitable for adaptive con’' ol 

they yield algorithms easily implemented on a digital computer.

2 -2 .2  O N LIN E  E STIM A TIO ": SCHEMES

The general form for an online parameter estimation scheme is 

Goodwin and Sin (1984 : 49) as

8(t) * 8(t-l) + M(t-l)*(t-d)#(t) (2.3)

Where 0(t) is the parameter estimate at sample instant t , 

comprising a vector of and c coefficients.

M( t -1) is the estimation algorithm g a m ,  possibly a mati

♦ (t-d) i s a regression vector of historical process

ett) is the modelling error (often the prediction error

Current Approaches to Adaptive Estimatior and Control
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2 .2 .3  E Q U A T I O N  ERROR E S T IM A T IO N  METHODS

These are based or. the predictive model

y ( t )  = ♦ ( t - l ) f l ( t - l )  (2 .4 )

wnere y(t) is system output
*(t-l) is a history vector of plant measurements 
8{t-l) is the estimated parameter vector

Such algorithms are generally used for deterministic adaptive estimation.

2 .2 .4  PRO JECTIO N ALG O R ITH M

The first algorithm considered is also the simplest. The projection or 
gradient algorithm is given by

8(t) = 8(t-l) + . elk)
<(r-l)T t(t-l) *■ c

This is of the form of 2.1, where

M(t-l) = ________!__________
* (t - 1 1) + c

e(t) = y(t) - t(t-1 )^6 t.t-1)

Current Approaches to Adaptivt Estimation and Control 13



and samplo delay d = 1.

This is motivated geometrically, by minimising a quadratic error crite­

rion (Goodwin and Sin 1984 : 51) :

j = i!9(t) - e u - n r (2.6)

The symbols all have the same meaning as before, with constan*- c > 0 to 
prevent possible division by zero in H(t-l), and gain factor a, typically 

ch^ien ..1 the range 0 < a < 1.

*

The algorithm is also sometimes called Norm alised Least Mean Squares  

(N L M S ). Although convergence is assured to a set of parameters 9, these 
may not be the correct process model parameters.

2 .2 .5  R E C U R SIV E  LEAST SQUARES ALG O R ITH M

This develops from the projection algorithm, by ensuring that each suc­
cessive estimate projects in a direction orthogonal to previous *(.) 
vectors, which is shown to improve estimates (Goodwin and Sin, 1984 : 54). 
The algorithm resulting dates from the time of Gauss, and is given by

8(t) = B(t-l) + . P(t-2)*(t-l)

♦ (t-1) P(t-2)#(t-1) + 1
e(t)

P(t-l) * P(t-2) - P(t-2)+(t-l)+(t-l)'p(t-2)

vith some initial 8(0) given end P(-2j anv positive definite matrix P..
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Goodwin and Sin (198-4 : 59) show that this algorithm minimises the quad­
ratic cost function

The form 2.7 contains the so-called covariance matrix P(t-I), which gives 

a measure of the estimation error. The diagonal elements of P(t-l) have 
a direct bearing on the convergence rate of the algorithm, and the off- 

diagonal elements should be small compared with the diagonal terms. As 
.ne estimates converge and the parameter error decreases, the elements 
of P become smaller.

The choices of 8(0) and Pq are interdependant, since a large P^ implies 
rapidly changing parameter estimates initially and hence a poor confi­

dence in 8(0). On the other hand, if '0) is known to be a good estimate, 
smaller values for are usually chosen, to "desensitize" the updates 
earlier.

A significant problem with RLS algorithms is that in the long-term, the 
P-matrix will become very small after the parameters 8 have converged. 

For processes with time-varying dynamics, the estimator is then insensi­
tive to changing plant parameters and the estimates do not "track" the 
process as desired. This phenomenon is also known as "falling asleep" 
(Seborg et al 1986), and requires that the covariance matrix be modified 
to maintain algorithm sensitivity.

- V * )  -  + $ (e-e (o )C p ," '(8 -0 (0 ):
•N t-1

(2.8)

(Seborg et al 1986)

where e^(t) = y^(t) - ^ ( t - O ^ V f t - l )



2 .2 .6  M O D IF IC A T IO N S  TO  RLS E S T IM A T IO N

2 .2 .6 .1  E xponentia l Data W eighting

This method weights new data more heavily than old data. An exponential 
forgetting factor or discounting factor is used, giving the cost function

^  xt‘iH(i-i)T e(i) - y(i)!2
(2 .9 )

where 0 < X S 1 . For X * 1, we have the standard RLS fora given in 2.7 , 

as seen in the exponentially weighted update sequence

6(t) * 8(t- 1) + • e(t)

P(t-2)

(2 .10)

The P-matrix is prevented from becoming too small . X < 1, which main­
tains algoritnm sensitivity. The smaller the value of X, the faster the 

tracking speed of the algorithm.

Note in 2.10 that X(t-l) is time-dependant. Frequently a sequence is used

X(t) = X,X(t-l) + (1 - X.) (2.11)

with X(0) = 0.95 and Xe = 0.99 typically.



This hat, the effect of discounting old data during initial estimation, 

and then tending to norma) recursive least squares (X =1). This is often 

applied in nonlinear estimation problems (Goodwin and Sin 1984 : 64).

Another technique for varying the forgetting factor is given by Fortescue 

et al (1981). They suggest that X be kept near unity unless the prediction 
error becomes large, and then be decreased for several steps when larger 

error is detected. This would increase algorithm sensitivity to new data 
only when substantial roooel*process mismatch was present requiring pa­

rameter changes.

2 .2 .6 .2  C ovariance Resetting

This involves Che periodic resetting of the covariance matrix P to some 
value P^. Typically the resetting takes the form

P(ti - 1) - kjl (2.12)

where I is the identity matrix and k^ some constant.

This is especially useful for fast tracking of rapidly time-varying 
processes.

2 .2 .6  3 C ovariance Modification

An additional term is added to the P-mat;-ix when modelling error is de­
tected, thus :

P(t-l) « P(t-l) + Q(t-l) (2.13)
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with 0 5 Q(t-l) < -

Checking should be performed to ensure that P(t-l) stays bounded. This 

algorithm has a very similar effect to covariance resetting.

2 .2 .6  4 R egu larised  Constant T race  A lgorithm s

Another method of preventing the covariance matrix from becoming too small 

after parameter convergence is the constant trace algorithm. This tech­
nique is based on the knowledge that the diagonal elements of P determine
the algorithm sensitivity, and hence the tracu o the P-matrix is main­
tained at some predetermined value. This is facilitated by the following 

recursion t

P ’(t-l) = k,P(t-l)/trace(P(t-l)) + k,I (2.14)

Where k, and k, are positive constants and I is the n * n identity matrix.

(.After Goodwin et al, 1986).

The choices of k, and k, can broadly be made as follows :

For an n-dimensional system model, we have after one step of the iteration that 

P' - (ke/(nP(0)))*P(0) + k,

and trace(P') ■ n(k,/n + k,)
== k, + nk,

then the constants should be chosen such that 

k, -*• nk, = the desired trace value.

Choosing this value as nP(0), say, we have
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k, + nk, * nP(('j

and suitable values for the constants are

k, = (n/2)P(0) and k, ■ jP(0) (2.15)

The value used for P(0) will determine the algorithm gain at each iter­
ation, as with other methods. However, caution mu$- be exercised in 
choosing this value, since a large P(0) will maintain large covariance 
matrix elements, and estimation may be very sensit ve to process noise. 

An alternative approach hao been suggested, that a large value of P(0) 
be used initially without any covariance modification, to allow rapid 
initial convergence. During this time trace(P) will become very small, 
and t, en the constant trace algorithm can be switched on with some value 

P'(0) which is smaller than P(0), to maintain som< threshold of sensi­
tivity in the algorithm.

2 .2 .7  O U T P U T  ERROR METHODS

Thece algorithms are widely applied in stochastic process identification. 
They use a similar structure as that given in 2.3, namely

6(t) » e(t-l) + M(t-1)*(t-1)e1(t ) (2.16)

The error is given by e'(t) * y(t) - y'(t)
* y(t) - ♦'(t* 1)8(t)

where y'(t) is the estimated process output, but ♦'(t-l) contains previous 
estimates of y'(t), rather than the actual plant measurement y(t) (Goodwin 
and Sin, 1984 . 82). All of the proceeding estimation schemes can be de­

veloped in exactly the same way for the stochastic case, simply using 
e '(t) in place of eft)
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2 .2 .8  E S T IM A T IO N  IN TH E  PRESENCE OF BO UNDED NOISE

The "persistency of excitation" requirement for parameter convergence is 
documented by many autho-s, eg. Goodwin and Sir. (1984 ; 68), Andersen et 

al (1965), Anderson f1985), Boyd and Sastry (1986), Seborg et al (1986). 

This basically means that the input signal to a process must be "suffi­
ciently rich" in spectral content to facilitate system identification. 

Anderson (1985) discusses in depth the phenomenon known as "bursting", 
in which the estimation algorithm gain grows rapidly in the absence of 
persistent excitation, causing large deviations in parameter estimates. 

To prevent this, many authors suggest the use of a deadzone, in which 
tie algorithm update is switched off when the equation error signal e(t) 
drops below a certain threshold. Goodwin and Sin (1984 : 89) define a 
simple fixed deadzone as follows :

8(c) - e(c-l) * a ( c - l ) . _____P(t-2)<(t-l)    .(c)

♦(t-l)T P(t-2)f(t-l) + 1

ulth .(c-1) - f' "  ' " ( f  " I*'" ' » 28
(0 otherwise ^  ^

for some constant threshold A.

More sophisticated "relative deadzone functions" are proposed by 

Kreisselmeier (1986) and Goodwin et al (1956). These will be developed 
in more detail in a later section.

2 .2 .9  C O N S TR A IN E D  E S T IM A T IO N

Frequently, the model parameter estimates ccn be constrained a priori to 
lie within a given region in parameter space. The estimation algorithms 
are then modified such that if the parameters move out of the predefined
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region, they are forced back by some linear projection. This is accom­

plished generally by a linear coordinate transformation, effected by 
modifying P(t-l) to change the update direction. (See Goodwin and Sin 1984 

: 92). De Larminat (1984) also suggests a type of parameter correction

procedure, whereby the persistency of excitation requirement is removed, 

and stability of estimation is retained.

2 .2 .1 0  NUM ER IC AL S E N S IT IV IT Y

The implementation of RLS-type algorithms on finite-wordlength digital 
systems is susceptible to the problem of roundoff error. The P-matrix may 
become indefinite under such conditions, causing the algorithm to become 
uns' !e. One solution to the problem is called square-root filtering, 
whe... the covariance matrix is factored as

(Seborg et a). 1986; Strejc, 1980) Then by adjusting S(t) at each iter­
ation, the P-mattix will remain positive definite.

Another approach is to decompose P into upper triangular and diagonal 
matrices, thus ;

P W - U W U I O u h t )  (2.It)

(Bierm.n, 1977). By updating factors of P, stability is retained. Such 
techniques are essential in certain circumstances, as detailed by Ljung 
and Sode i strom 1,1982), Bierman ( 1977 ). Astrom ( 1983) recommends the use 
of a fai torizat son algorithm particularly if estimation is performed on 

data with a high d.u offset level.
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2 .2 .1 1  M O D IF IE D  E S T IM A T IO N  SCHEMES

For stochastic estimation models, the RLS algorithms detailed in 

preceeding sections have been shown to produce good hirameter estimates 
only if the noise sequence ((t) and the equati >n error e(t) are 

independant random variables. Howewver, if these two sequences are cor­
related, as in the case wnen £(t) is a coloured noise sequence, biased 

estimates result. Modified schemes have been developed to ovu-come this 
problem, such as Extended Least Squares (ELS), Generalised Least Squares 
(GLS), and Instrumental Variable (IV) methods. These will not be described 

here, but a good survey of modified estimation techniques can be found 
in St -eje (1980).
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2 .3  C O N TR O L DESIG N STRATEG IES

A number of possible control design techniques are presented in the lit­
erature. Most of the unique controller structures cited are special cases 

of fairly general design procedures, which will be described in this
-action. Broadly, the design techniques may be divided into two catego­

ries, namely minimum prediction error designs, and closed-loop pole as­
signment. The former attempt to minimise the output error given by a 
predictive system description, often at the cost of large control effort. 
The latter approach stems from closed-loop stability considerations, and 

the overall transient response of the feedback system is significant in 
the design.

2 .3 .1  M IN IM U M  P R E D IC T IO N  ERROR CO NTROLLERS

The control strategies to be developed in these sections will be based 
on the well-known DARMA model (Goodwin and Sin 1984 : 120) :

A(q‘1)y<t) = B(q*1)u(t) (2.20)

with A(q *) = 1 + a,q * + , . . +  a^q n

8(q *) “ q ^(be + b,q 1 + ... + b^q m )

= q dB ’(q S
where d * time delay 

This can be expressed as a d-step ahead predictor, thus :

y(t+d) = o(q ^)y(t) + B(q Suit) (2.21)

-I -1 - (n -1) -1where o(q ) = e, * c,q ♦ . . . > •  _^q = G{q )
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whor^ F(q apd G(q S  satisfy

I - F(q"')*(q"') 4 q"^G(q"') (Z.22)

(Goodwin find Sin 1984 : 107)

Note : The following control formulations use a determ in is tic  process
model. Minimum prediction error control designs based on stocha ... pre­

dictive models are known as minimum variance  control laws ese are 
f ainy widely documented in the literature on contoI of stochastic proc­
esses . For the purposes of this research, all control formulations will 
be restricted to the deterministic case

2.3 .1 .1  O re -S te p -A h o a d  Control

Using the predictor form given above, we develop a feedback control law 
which brings the system output y at time t+d, i«. yCt+d), to a reference 
value y (t +d) in a si ie step. The name "output deadbeat" control is also 
sometimes used to describe such controllers. The control law is
characterised by

B(q Suit) = y*(t+d) - o(q S y U )  U.23)

This minimises a quadratic cost function comprising the squared prediction

Jft+d) * ||y(t*-d) - y (t+d) | ̂

In closed-loop, the output response obeys

!
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y(t) = y*(t)

and the control signal is characterised by

B(q l)u(t)» A(q I)y*(t) t > d + n

Note that the control signal is generated by a transfer function whose 
poles are the zeros of B(q ). The implicit constraint for bounded inputs 
and outputs in closed-loop is that B(q *) is stable, ie. that the plant 

is minimum-phase.

A characteristic of one-step-ahead control is that excessive control ef­
fort may be required to force the process output to the reference signal 
at each sample. This can result in unpr.-’'ctable or oscillatory inter­

sample behaviour.

2 . 3 . ! . 2  W eighted O n e-S tep -A h ead  Control

To reduce the excessive control effort required in one -step-ahead con­
trol, a cost or weight is placed on the control signal u(t), giving the 
modified cost function

J3 (t+d) = i[y(t+d) - y (t+u)]2 + iXu(t)2

The control law becomes

u(t) - y - a(q *)y<t) - B ‘(q l)u(t-I)
( 8 /  +

' (q l) - q[6(q 1) - 8,]
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(Goodwin and Sin 1984 : 122).

In closed-loop, che system response is described by

[e'Cq"1) <• (V5,)*(q'')]y(t*d) = B 1 (q"1)y*(t+d)

and the control signal by

[s'Cq"1) + (X/B,)A(q"S]u(tl » A(q"1 ly’ fttd)

Thus it is clear that the control effort has been "softened" by the 
inclusion of the weighting factor X, at the cost of a relaxed output re­

sponse to setpoint variations.

This control law can be made effective for all open - loop stable, 

minimum-phase processes, as well as certain nonminimum-phase and open- 
loop unstable plant, with suitable choices of X (Goodwin and Sin 1584 : 

123). The use of X in a one-step-ahead control law is also known as "de­
tuning". Other more sophisticated techniques for detuning (such as 
polynomial weighting factors) are given in Goodwin and Sin (1984 : 124).

2 .3 .1 .3 M odel-R eference Control

The system description of 2.20 is usei, and a control law is c 
' *

.. enable the process output y(t) to track a setpoint y (t). However, the
‘ desired output response is generated by a prespecified refer

with a known transfer 

r (t). Thus y (t) obeys

with a known transfer function, which is driven by a reference signal

: ' E(q"by*(c)"q"''M(q"brU) (2 25)

i,: Then r(t) is the input to the reference model, which has transfer functi
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The polynomials H(z and E(z are selected to give desired performance 

and stability. A clear constraint is that E(z ) is stable.

The model-reference system it" detailed in Figure 2 on page 28. It can be 

seen that the tracking error is defined as

e(t) ^ y it) - y(t)

As before, we derive the model reference controller first by developing 
a prediction of the output, and then choosing a control law which sets 
it equal to some function of the reference signal r(t). In this case, 
however, we predict E(q )y(t) and choose control to set it equal to 

q ^Hiq Sr(t), to satisfy the objective

E C q ' S y U )  - q'dH(q‘l)r(t) (2.26)

(No?e : this is the same as 2.25, with y(t) = y (t) ).

The predictor form is given as (Goodwin and Sin 1984 : 131) :

E(q h y U + d )  = o(q SyCt) + B(q 1)u(t)
(2.27)

otq"1) ■ GCq"1) 

etq"1) = FCq’^ B ' t q " 1)

and F(q , G(q are polynoffials of order d-1, n-1 respectively, 
which satisfy the Generalised Prediction Equality

E(q'1) " F(q"^)A(q"S > q ^ G i q " 1) (2.28)

(Macleod, 1987)
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y(t)u(t) S y s t e m  with
d e i e y  dController

1->
A d j u s t m e n t
M e c h a n i s m

Controller
P a r a m e t e r s

T r a c k i n g
Error

e(t)

*(t)

R e f e r e n c e  M o d e l

Figure 2. Block Diagram of Model Reference Control System.

This can be proved by multiplying 2.20 by F(q *) and using 2.28.

The control signal is generated using

f C q ' h u U )  - H C q ' h r U )  - «(q-1)y(t) (2.29)

which gives the desired objective of 2.26.

Thus it is clear that model-reference control is a generalisation of 
one-step-ahead control, with a different approach to "softening" the 
transient response and hence the control effort. This technique is also 
only applicable to minimum-phase processes. A comprehensive review of 
adaptive model-reference control is given by Landau (1979).
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2 .3 .2  POLE A SSIG NM EN T CO NTROLLERS

These controllers are designed by examining the closed-loop system, and 

placing the closed-loop poles at desired locations. From Figure 3 on page 
30, it is clear that the closed-loop system "transfer function" can be 

written as

GC,-') - ___
P t q 'SBCq"1) + A C q ' h K q " 1)

or [p(q"')l(q"h + A(q'*)L(q"^)]y(t) ■ P(q"1 )B(q"Sy’V t )

(Macleod, 1987)

By setting the denominator of G(q *) equal to a desired closed-loop 
polynomial A (q *), the poles of the closed-loop system can be arbitrarily 
positioned, thus :

Solve A(q~'iLtq"1) + B(q"')P(q"S - A*(q"1) (2.30)

to give the controller polynomials I \ and L(q S .

the expression 2.30 is known as the Diophantine equation, and its solution 
involves the solving of a set of linear equations.

A condition on the solution is that A(q *) and Biq ^) are relatively 
prime. However, since no attempt is made to cancel B(q ) in the closed 
loop, nonminimum-phase processes can easily be controlled by such de­

signs.

The control law is then simply given by

U q ' S u f t )  = P(q *) [y (t) - y(t)J

I
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Figure 3. Closed-Loop System Structure 

The selection of a suitable A (q *) is discussed in later sections.

2 .3 .2 .1  Rapprochem ent w ith Minimum Pred ic tion  E rro r  Control

It can be shown that the control design approaches of earlier sections 
are merely special cases of the pole assignment procedure.

Considering the Diophantine equation 2.30, and setting

A (q *) * B ’(q *), 2.30 gives

A k l ' h u q " ' )  * " B'(q"') (2.31)
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Clearly B'(q S  must be a factor of L(q ^), so we set 

LCq’1) « F(q"l)B'(q"1) 

which gives from 2.31

F ( q " h * ( q " h  +  S ^ P C q " 1 ) -  I

This Is simply the d-step ahead prediction equality 2.22 used iu one* 

step-ahead control, with P(q *) e G(q ^). Thus the one-utep-ahead ap­
proach can be interpreted as pole assignment, where the closed-loop poles 
are assigned the values of the open-loop zeros (Goodwin and Sin 1984 : 
154).

Similarly, model-reference control can be achieved by choosing

A q ' h  - : ' ( q " hE(q"h.

Substitution in 2.30 results in

F(q"')A(q"') + q ' h x q ' h  - M q " 1)

Which is the same as the Generalised Prediction Equality (2.28) as used 
in model-reference ontroller design. (Goodwin and Sin 1984 : 155).

2 .4  CO NCLUSIO N

This section has reviewed some of the current techniques in adaptive es­
timation and control for deterministic sampled systems. It must be noted 
that many variants are documented in the literature, but these are almost 
all based on the methods discussed here. The most popular and reliable 

estimation technique is the Recursive Least Squares (RLS) with appropri-
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ate modifications to improve robustness. The controller design procedures 
discussed have been shown to be special forms of a more general case, 
namely closed-loop pole assignment.



3 .0  D E LTA  O PERA TO R FO RM ULATIO N OF D IS C R E T E -T IM E  CO N TR O L

Astrom, Hagander & Sternby (1984) have documented the relationship be­
tween continuous time transfer functions and their discrete-time 
counterparts. In particular, they showed that for continuous-time trans­

fer functions with stable zeros of relative degree greater than two, the 
corresponding discrete-time transfer function will contain a number of 
additional zeros equal to the pole excess, which migrate from z*0 to 
outside the unit circle, as the sampling rate increases. Thus a 
continuous-time plant which has no unstable zei is can become nonminimum- 
phase during sampling. In addition, for plants with delays which are 
fractional multiples of the sampling period A, at least one of the zeros 
of the sampled system will become nonminimum-phase (Clarke, 1984).

Thus it would not be sensible to use discrete control strategies which 

attampt to cancel all the open-loop plant zeros (see "Current Approaches 
to Adaptive Estimation and Control" on page 9), since this would imply 
an unstable set of controller poles. This could cause closed-loop insta­

bility since pole-zero cancellation will not be exact in discrete time.

Seme authors have suggested very subtle approaches to the problem. 
Gawthrop (1980) has proposed a "hybrid controller" which ensures that 
continuous-time plants with stable zeros do not become nonminimum-phase 
during sampling. This is effected by inserting a "bandlimited 
differentiator" after the plant output measurement in the closed loop, 
which replaces the unstable discrete zeros predicted by Astrom et al 
(1984) by zeros near the origin. The plant model is formulated in 
continuous-time at a fast sampling rate, with a ouscrete-time control law 
at a slower rate. The overall adaptive controller then contains bcth 
discrete and continuous components, whose closed-loop stability proper­
ties tend to those of n continuous-time system as the sampling rate r ’.-
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discrete and continuous components, whose closed-loop stability proper­
ties tend to those of a cont inuous -1 ime system as the sampling rate in-
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However, more t y Acally digital controllers are implemented with con­
straints on the sampling rate. Astrom, Hagander and,Sternby (1984) showed 

that there is a critical sampling period h above which all zeros of the 

sampled system are inside the unit circle in the z-domain. Thus many au­
thors advocate the use of lower sampling rates for discrete-time control 

systems. This has the disadvantage of yielding a low-bandwidth control 
law, and consequently a low-bandwidth closed-loop system.

By the very definition of the sampling operation, one would intuitively 
expect better approximation to continuous-time systems as the sampling 
became more rapid, since the discrete signals would be more accurate 
representations of the continuous ones. This is in direct contrast with 

the preceeding observations.

This apparent paradox has been resolved by Goodwin et al (1986), by in­
troducing a different shift operator to replace the usual inverse shift 
operator. This has become known as the Celta-operator, and is defined as

where q is the usual shift operator and 6 is the sampling interval. This 
has the advantage of giving a close connection between exact continuous 
and exact discrete transfer function plant models at higher sampling

The 6-operator is not in itself a new mathematical concept. It has been 
used in the control literature as a way of motivating z-transforms, and 
is suggested in digital filtering applications to improve numerical 
behaviour (see Goodwin et al, 1986).

he examine the physical realisation of the 6-ope-aior as follows:
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(3.2)

and 6 \ ( k )  “ y' (k) , say.

Them y'(k) =  ^  y(k)
q - i

So (1 - q _1)y'(k) - flq’Stk)

or y'(k) * Ay(k-I) + y ’Ck-l) (3.3)

Equation 3.3 shows that we may interpret the 6 * -operator as a discrete 
integrator, where y'(k) is the area under the function y(k) up to samp’e 
time k Figure 4 on page 36 illustrates this concept.

The delta-operator may be implemented in practice as shown in Figure 5

This implementation is coded in pseudo-code as

YOUT:= DELTA*YOLD + YOUT;

YOLC:" Y;

We define the transform corresponding to the 5 -operator as the i-trans- 
form. Further interesting properties emerge by examining this i-trans­
form domain. It is easily shown (Micaieton & Goodwin, 1986) that the 
stability regicn in the J-plane is a circle of radius 1/A, positioned at 
'-1/A,0). llxis region, as the sampling interval A decreases, approximates 
the Laplace-domain stability region, viz. the whole left-hand half-plane. 
This is illustrated in Figure 6 on page 38.
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Figure 4. The Inverse Delta Operator as an Integrator

Middleton and Goodvir (1986) define the ? 

r , ( x )  -

where is the normal Z-transform. Since z has been replaced by ( ) ,  
it is clear from 3.1 that 3.4 gives the natural transform for delta models 

where q = (1 + A6).

It is further shown that for the Laplace transform F (s)

ii.

:an#form as follows:

(3.4)
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Figure 5. Block Diagram implementation of the Delta-Operator

f(t)e'Xt dt (3.5)
. 0

where the integral in 3.5 is a Riemann integral. Thus a close correlation 
between the continuous time Laplace transform and the discrete-time 

^-transform is established for fast sampling.

Middleton tnd Goodwin (1986) further demonstrate that the i-transforo has 
many similar properties to the Laolace transform, including linearity, 
final/initial value theorems, complex translation and real convolution.

Standard Laplace-domain transfer functions are expressed in the new do­

main as follows:
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Plane

Figure 6. The Stability region in the Gamaa-Pl e

if the continous plant is

A ’(D)y(t) = B 1(D)u(t) where DSd/dt

w.th Lap lace-transformed Di-^sl 

A'(s)Y(s) - B ’(a)UCs) 

then the discrete-time S-operrtor rued el is 

A(S);(kfl) = B(6)u(ki) 

and j.t i I-transformed model is
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A r(x)Y,(x) » By (x)UI (x)

with the transformation defined as

ACS) * J _  A* (fifi+1)
4n

B(5) » _1_ I'(16+1)
4n

(3.6)

It is important to note that the 6-operator system model will have the 
same order and relative degree as the inverse shift-operator model. This 
will not be true of many othur possible substitutions.

Also, Middleton and Goodwin (1986) demonstrate that the 6-model has su­
perior finite woid-length characteristics as related to coefficient rep­
resentation, round-off noise and online control syntnesis. This last is 
a consequence of reduced eigenvalue sensitivity for finite word-length 
systems using 6-oper.itors. In an adaptive control application using a 
numerically sensitive control design procedure (such as the solution of 

a Diophantine equation during pole assignment), t!i\s is a significant 
property

Furthermore, the plant model derived by an o n K n e  parameter estimatot will 
be closely related to the continuous-time plant. Feedback controller de­

sign can thus be performed using classical control engineering tech­
niques, and the closed-loop numerical values obtained in practice will 
be far easier to interpret.

Goodwin e» ai (1986) developed and implemented a model-reference adaptive 
control jer using the 6-o..erator representation. Excellent control per­
formance was obtained for a wide r.inge of disturbances, including large 
changes ir open-loop system gain. This demonstrated uhe retention of 
coneinuouj-time properties in the sampl-vi system, ensuring stable con­

Jc 1: i-operaior formulation of Discrete-Ti.nu Control



trol. A global convergence proof for the model reference adaptive case 

using 6-operators is i'. so presented by the authors.

The discussion of t.h,s section has demonstrated that a new transform do­
main bridges the gip between discrete- and continuous-time theory. This 

means that all system transfer functions, especially with regard to pole 
and zero positions, can be examined in the Laplace-domain or frequency- 

domain. As. long as the condition of fast sampling holis, the approximation 
s - 6 t 'n be made This simplifies the analysis and design of the adaptive 
control sysLem considerably.

Tne constraint of slow sampling normally advocated is now removed, al­

lowing for the design of larger bandwidth closed-loop systems. This is 
desirable for better disturbance rejection and tracking performance. 
Faster sampling also avoids two practical control problems, viz, for slow 
sampling rates, control is open-loop between samples. This can yield 
intersample ripples, which implies that the sampled output is a poor 
representation of the actual plant response. Secondly, to yield a desired 
c'.osed-loop bandwidth, the control signal fn r slow sampling rates will 
often be a series of large step changes. This generates significant high 
frequency energy in the actuators, which can be undesirable. Faster sam­
pling will give a smoother sequence of .small step changes for the same 
bandwidth.

All of the ensuing discussions of the estimator and ;-)ntroiler are for­
mulated in terms of 6-operators.

e 1La-coerator formulation of Di



4 .0  RO BUST E STIM A TO R  S TRUCTURE

This section develops the structure for a robust parameter estimator. The 
Recursive Least Squares method is used with some modifications, and -he 

process model formulation is given in terms of 6-operators.

4.1 MODEL S TR U C TU R E

A linear difference equation system description is used, as described in 
"Linear Difference Equation Models" on page 11. This is conveniently ex­
pressed as a ■'ARMA model (See "Minimum Prediction Error Controllers" on 

pagti 23), t

For compactness of notation we drop the arguments, giving

Ay » Bu + 5

The structure of equation 4.1 is generalised furi .er to include both un­
measurable deterministic disturbances and rr.easur.,ie random disturbance 

signa’s, thus:

A(6)y(kA) * B(5)u(kA) + C(kA) (4 .1 )

Ay = Bu + fz + d + £

uht-re the symbol? have the following meanings:

A . R  and V .’re monic polynomial operators, defined as

5
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+ 5r

7. : measurable random disturbance signal 

d : unmeasurable deterministic disturbance signal 

S : modelling error and noise

The measured disturbance signal z(kA) will be used to develop an adaptive 
feedforward control block. This could be useful in many industrial process 
applications, since the disturbance signal measurements are often readily 
available online for monitoring purposes. One of the well-known problems 

with the use of feedforward control is the necessity for a good dynamic 
model of the disturbance-output relationship, for effective disturbance 
compensation. Adaptive estimation would appear to be ideally suited to 
such a situa.. n, allowing for the generation of a good model in the 

presence of unknown or possibly time-varying disturbance behaviour.

The unmeasurable deterministic disturbance signal d(kA) is included to 
model known waveforms such as d.c. offsets, ramps, sinusoidal and other 
periodically varying disturbances which are introduced in the process 
inputs and outputs from unmeasurable sources. This situation may typi­
cally emerge for example when contiguous processes ,.e coupled through 
material flow, and a periodic variation upstream cau-ses observable 

deurmir.istic variations in the downstream process.

The deterministic disturbance d is characterised by

Dd = 0 (4.3)

(Goodwin and Sin 1984 : 156)

whvrn D is also a monic polynomial of w e  form

D ■ dQ + dj6 + d.)6<‘ + ....  + 6^

D is known as a "deterministic signal nulling polynomial", since it 

e-iminates the signal d when operating on it. Some examples of
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deterministic signals and their nulling polynomials are (after Macleod, 

1937) :

taking d£(k+l)&] - dikA) * 0 

(q - l)d(kA) * 0 

Then D(q) * q - 1 

and in 6-operator form

D(6) « 6 using 3 1 

(See ''Delta-operator formulation ot Discrete-Time Control" on page 2 3)

2. d(kA> = A.sin(pkA + $) uinusoid)

Then Dfq) = (q“ - 2cospq + 1)

1. d(kfl,) = constaut

e. d(kti) * d[(k+l)A] for all k

and D(6) = 6^ + 2(1-(.opp)̂ +
A

3. d(kA) * A,sin(p,kA + #,) + A,sin(pkA ♦ 4,) 
(Sum of sinusoids)

Then D(q) * :cosp,q + :):cosp,q

2(1-cospt)g +
A

2(i-cosp|)j |5.-ji; 2(l-co#p,
A

^ ^ 2(l-co#p,)

.
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Note: Since D represents some deterministic function, it will have pe­

riodic components. Thus the roots of 0 lie on the stability boundary of 

the l-plane.

To eliminate the deterministic disturbance d, we multiply both sidfs of 
equation 4,2 by D. This is in accordance with the Internal Model Prin- pie 

(Goodwin and Sin 1984 : 156). Thus :

ADy * BDu + FDz + DC (4.4)

No n since D has roots on the stability boundary, the noise term £ may be 

amplified at high frequencies. Thus we introduce a stable polynomial op­
erator D' which is "near to" D.

For example, n  the disturbance d is a constant (d.c. offset disturbance 
signal) then as before

D « 6,

and we choose

D' ** 6 + e (e is some small positive value) .

We divide 4.4 by D' to give

H , .
O' D' O' c

The ''transfer functior.' specified by

D(5) ^ 6
D ' (6) 6 + e

is effectively h-pass filter as we would expect to null a constant
disturbance si*. The frequency response is determined by "how close"

the corner frequency t is to zero, as shown in Figure ' on page 45, wirh
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D (jUj) 
f I>< | /

Figure 7. Frequency Response of High pass Filter for Robust Esti-

mat ion

the approximation 6 » jw. For other deterministic -iisturbanc is, D/D' would 
yield a "band reject" filter with the stopband simpl> a notch or notches 
at the periodic frequency components of d(t).

We also bandlimit the estimated model by introducing <1 low-pass filter, 
described by a monic stable polynomial operator E :

This filtering will ef f ect iv>. ly be applied to the u,y flnd ?. signals 
measured, and will ensure that the signals used for estimation do not 

contain high < requency components. Thus the low-order mode 1 being esti­
mated is not influenced by the unaccounted-for high-frequenc> system dy­
namics . Equation 4.5 becomes
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We rearrange the model, defining

y ’ * —  y 
D'

Note: y ’ is the output of the high pass filter operating on the measured 
input y, where D and D 1 are defined as above for d = constant.

Also, define

„ _ 1 ...

Where y^ is the filtered output signal.

We can then rewrite equation 4.6 as

Ayf * Buf + Fzf + nf (4.7)

With the following quantities defined:

- D--
D'E

= —  
D'E

'f ' —  
D'E

D'E

y
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This "filtered model" is in agreement with the signal conditioning or 
prefiltering described in Goodwin and Mayne (1987). Thus a bandlinited 

modal appears to be assential in adaptive estimation for unknown, possibly 

high-order or nonlinear processes.

Now, adding Eyf to both sides of 4.7 yields

Eyf = Eyf - Ayf + Buf + Fzf + nf (4.8)

Since y' = Eyf by definition, we have the regression form

y' ™ (E - A)yf + Buf + Fzf + nf (4.9)

If we neglect the bounded noise term n^, we can formulate a standard 

regression for y'fk ) :

y'(k) - »(k-l)T . 8 (k)

*(k-l)T. |y/k), ... u^(k), ... :'u,(k),l,(k), ...

(4.10)

B(k) - bg . ....(J

(4.11)

This is compatible with the recursivr least squares algorithm described 
’r. "Current approaches to Adaptive Estimation and Control" on page 9
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This "filtered model" is in agreement with the signal conditioning or 
prefiltering described in Goodwin and Mayne (1987). Thus a bandlinited 
model appears to be essential in adaptive estimation for unknown, possibly 
high-order or nonlinear processes.

Now, adding Eyf to both sides of 4.7 yields

Eyf = Eyf - Ayf + Buf + Fzf + nf (4.8)

Since y* = £yf by definition, we have the regression form

y = (E - A)yf + Buf + Fzf + nf (4.9)

If we neglect the bounded noise term n^, we can formulate a standard 
regression for y'(k):

y'(k) - «C<-1)T . 6<k)

... «°"\,(k), u^Ck), ... l"u^k),,g(k). ...

(4.10)

" l«, - ""o "  "  'r'

(4.11)

This is compatible witn the recursive least squares algorithm described 
in "Current Approaches to Adaptive Estimation and Control" on page '!.
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4 .2  R E LA T IV E  DEADZONE

As described in "Estimation in the Presence of Bounded Noise on page 
20, robustness in recursive estimation is dependant on "persistency of 

excitation", which means that the input signal u must be "sufficiently 
rich" in frequency content. Anderson (1985) has investigated the mech­
anism behind the so-called "bursting phenomenon", in which the parameter 
esvmates (and consequently the estimated output y), exhibit "bursts" or 

intervals of unbounded growth. This is due to the estimator attempting 
to update the mode 1 estimates without any useful signal exciting the 
system. Consequently, due to the low order of the model used, high fre­
quency noise causes erroneous parameter updates. Various other mechanisms 
for parameter divergence are explored by Anderson (1985). The robust 
estimator developed in this section uses the relative deadzona function 
described by Goodwin et ml (1986), Kreisselmeier (1986), and Ortega and
Lozano-Leal (1987), This function turns off the estimator when the
equation error e(t) is smaller than some threshold. The threshold is 
dynamically varied according to the magnitudes of the input and output 

signals. The relative deadzone arises from the reasoning that modelling 
error is effect ivp iy a disturbance in the estimation sysi'-m, which is 
directly correlatec with the magnitudes of the plant inpv and output 
signals. Thus the deadzone is incr>-ised in the prr \er ■ if large process 
signal measurements, since larger error terms are ant. i ;iated, and re­

duced when the plant inputs and outputs are small.

The relative deadzone used is illustrated 
defined as

F igure

The relative deadzone developed vary the size of g.

We define the function
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Figure 8 . The Basic Relative Deadzone Function

mfk) = o em(k-l) + t # + c ,|u'(k-1)| + e,|y'(k-l)| + e,|z'(k-l)|

(4.13)

Where the constants are chosen as 

o „ ' e (0,1);

e 0 > 0 ;

t , & 0;

t, 2 0;
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E, 5 0, 

m a > 0; 

and we choose

o, e (oe' , 1), and m(0) = m 9 

so that

|nf(k)I S m(k) for all k.

m(k) is effectively a low-pass filtered function of the process input and 
output, which nr.st overbound the filtered noise term n^(k). This term 
represents the filtered process noise and noise due to modelling error.

Note: For a "unity-gain" deadzone filter the function 4.13 should be
modified as

m(k) = o em(k-l) + fl-oe)|ee + e,|u'(k-l)| + t,|y'(k-l)| + e , fz'(k-3> | | 

Then choose > 0 and a e (0,1) to implement the deadzone a:, follows:

The relationships 4.14 and 4.IS emerge trom convergence analysis ot the 
estimator with the deadzone, as performed by Goodwin et a 1 (1986),
Kreisselmeier ( 1986). Ortega and Lozano-L«.i 1 ; 1987). For completeness i

6 = J e *  + 1 / ( 1-Q) (6 .1 4 )

Finally, define the magnitude function a(k) as

a . f(e(k); Bm(k)),'e(k) otherwise

(4 .1 5 )
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simplified convergence analysis is included in Appendix A. The choice
of suitable constants are discussed in a later section.

4 .3  THE R E CUR SIVE LEAST SQUARES A LG O RITHM

The Actual parameter update is perfovmed at each iteration using a modi- 
f led RLS algorithm. In 6-operator notation, this is given by the following 
twc stages :

_ « (K ) - P (k -2 )$ (k - i )  . * ( k )

5P(k-2

(4 .1 6 )

The equations 3.16 can be rewritten in recursion form as follows.

Oik) = eck-l) » a(k) . P (k -2 )» (k - l)________  , e (k )

P ( k - l )  "  P (k -2 ) -  a (k ) .

The most -mportant modification is the inclusion of the factor a (k ), which 
turns off the update when the prediction error elk) falls be low the bound 
3m(k), as described above.



simplified convergence analysis is included in Appendix A . The choici

of suitable constant? are discussed in a later section.

4 .3  THE R E CUR SIVE LEAST SQUARES A LG O RITHM

The Actual parameter update is performed at each iteration using a modi- 

t ted RLS algorithm. In 6-operator notation, this is given by the following 
two stages :

6 9 ' ( k - l )  -  a (k ) - M k - 2 ) $ ( k - n  ei>>

A ♦(k-l)rP(k-2)*(k-l) + 1

6P(k-2)

( 4 1 6 )

The equations 3 16 can be rewritten in recursion form as follows:

e (k ) .  + , ( k )  . P (k -2 1 # (k -u ________

P ( k . l )  .  P (k -2 )  - . ( k ) .  P ( k - 2 ) , ( k . l ) K k . l ) T p ( k - 2 ,

The me St i.,.porta- ». moiii f i>- it ir n is the inclusion of the factor at k ), which 
turns of ( he update wh i>a the nre-i: cr >cn er'f r .n k ) fa’. Is below the bound 
Bm(k) , as d.-s'-1 iber ab : ■ >
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4 .4  NUM ERICAL IMPLEMENTATION

As discussed in "Numerical Sensitivity" on page 21, for finite-wordlength 
implementations of the RLS algorithm a covariance factorization technique 
is more robust than the standard form. In this research, the UDU^* 
factorization proposed by Bierman (1977) is used to improve numerical 
behaviovir of th* algorithm. The algorithm is described in Appendix B, 
modified to include the relative deadzone and a forgetting factor.

4 .5  CO VARIANCE M O DIFICATIO N

Meny possible schemes for modifying the covariance matrix P were proposed 
in "Modifications to RLS Estimation" on page 16, thus maintaining algo­
rithm sensitivity to dynamic plant variations. This estimator uses the 
exponential forgetting factor approach, since it is a well-proven proce­
dure and alk./s foi many possible alternatives, eg. Goodwin and Sin (1984 
: 64), Fortescue et ml (1981). Although the regularised constant trace 
algorithm was considered, Its implementation is extremely difficult in 
conjunction with Bierm/tn's covariance factorisation method. The numerical 
advantages of the factorization approach were deemed more significant 
than the type of covariance modification used.
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4 .4  NUM ERICAL IMPLEMENTATION

As discussed in "Numerical Sensitivity" on page 21, for finite-wordlength 
implementations of the RLS algorithm a covariance factorization technique 
is more robust than the standard form. In this research, the UDU^ 
factorization proposed by Bierman (1977) is used co improve numerical 
behaviour of the algorithm. The algorithm is described in Appendix B, 

modified to include the relative deadzone and a forgetting factor.

4 5 CO VARIANCE M O DIFICATIO N

Many possible schemes for modifying the covariance matrix P were proposed 
in "Modifications to RLS Estimation" on page 16, thus maintaining algo­
rithm sensitivity to dynamic plant variations. This estimator uses the 
exponential forgetting factor approach, since it is a well-proven proce­
dure and allows for many possible alternatives, eg. Goodwin and Sin (1984 
: 64), Fortescue et al (1981). A 1though the regularised constant trace 
algorithm was considered, its implementation is extremely difficult in 
conjunction with Bierman’s covariance factorization method. The numerical 
advantages of the factorization approach were deemed more significant 
than the type of covariance modification used.



5 ,0  ROBUST CONTROLLER STRUCTURE

5.1 INTR O D U C TIO N

Many different controller design procedures a #  possible. However, it has 
been shown that the most general method is that of closed-loop pole A s ­

signment (See "Pole Assignment Controllers" on page 29). The other methods 
described are all special forms of this technique, and lose generality 
in that they constrain the nature of the process to be controlled. Ex­

tensive research has been done on the adaptive control of nonminimum-phase 
systems in particular, r.%, M'Saad, rrtega and Landau (1985), Clarke
(1984), Goodwin and Sin (1981), Kumar and Moore (1983), Elliott (i982). 
In each of these cases, the control design approach used can be inter­
preted as a form of pole-placemeat.

The closed .ocp robustness of adaptive pole assignment algorithms has 
also been ual 1-established, as in Astrom ( 1980), Anderson 4...4 Johnstone
(1985), Ortega et al (1985). Practical implementations of adaptive con­
trollers with pole-placement are documented by We I Istead et al ( 1979 j , 
Astrom and Vittenmark (1980, We 1 Istead and Sanoff (198'.), A 11 idina et 
al (1981), Lin and Chen (1986).

Thus pole assignment is deemed the irost general and robust approach 
1 able, end is used <n this research. An explic it formulation is de­

veloped in this section, ie. the plant parameter estimator does not di­
rectly estimate the controller coefficients, but supplies them to a 
separate control design procedure.

The control philosophy is based on certa in ty  equivalence, in that the 
plant parameter estimates are taken to describe the true plant, and thus 
the domed-loop pole placement aasunes the real plant poles are the same
as those of the estimated model. Tie design procedure is made robust in 
the following ways:
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o No attempt is made to cancel the open-loop zeros (whether stable or 
unstable) in the closed-loop structure. This allows plants which are 
open-loop unstable or have unstable inverses to be effectively sta­
bilized and c'.strolled.

%

Provision is made for deterministic disturbance nulling by the con­
troller, as well is deterministic setpoint tracking. This la facili­
tated by incorporating the monic zero polynomial descriptions of the 
deterministic signals in the controller denominator, to ensure high 
feedback gain at critical frequencior. It is well known from classical 
control that high gain feedback at a given frequency will eliminate 
that component in tho plant output response, as in the Internal Model 
Principle (Goodwin and Sin 1984 : 156). Such approaches are also
documented by Puthenpura and MacGregor (1987), and Tuffs and Clarke
(1985), for the elimination of deterministic disturbances in the 
closed loop.

Checking is performed to ascertain whether any of the estimated plant 
oarameters are zero, which would not allow a solution of the pole- 
placement equations. If this is the case, alternative solutions are

5 .2  CONTROL SYNTHESIS

The controller structure is developed as follows:

Assume that the setpoint y satisfies a model of 
the form

where S is a monic polynomial of degree g and 
has roots on the stability boundary.
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By the Internal Modei Principle (Goodwin & Sin, 1984 : 156) 
the control law is

LDS.u -  Py* - Gy ( 5 2 )

where L *  1, + 1,6 + . . . .  + 6C

D a deterministic disturbance nulling polynomial as defined 
in the previous section. The in.. fusion of D and S in tiie 
controller renders deterministic modes in disturbances or 
in the setpoint unobservable at the system output (Goodwin 
and Sin 1984 : 157)

P = p, + p,6 + ....  + 6a

G = ge *• g 16 + ....  *■ 6C

If we set L' * LDS and P ■ G (as is often done for convenience), we get

L'u - Pe (5.3)

wture e ■ (y -

The closed-loop system is detailed in Figure 9 on page 56. This shows the 
polynomials P(6), L ’(6), B(6) and A 1.6) in transfer function form, which 
is not strictly accurate. However, this representation lends itself to 
block diagram forms, and will be used in the ensuing development.

The closed-loop "transfer function" is

J _  " " W "
y
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C o m p e n s a t e d  F o r m

y" y
A(6)L(d) + P(d)B(cf)

E q u i v a l e n t  F o r m

Kixure 9. Cloh*d-Loop Sy#t## Scructur#

TB
A + PB (5.4)

Tltn (. losrd - loop pole* ar# clearly given by

L'A + - A* (3.5)

klxin A i» some d«&ir*d closed loop characcerimiic polynomial. Th# 
!p(db,;:x conrrolimr d##lgn m  accompli*li@d by solving 5.5 fnr a pr#»pec- 
i!."U sel of cloied-loop pole*, v:T. for mome di'fined A .
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As discussed earlier, the inclusion of both the D and the S polynomials 
in the closed-loop identity 5.5 allows perfect setpoint tracking for the 
class of deterministic disturbance and/or setpoint signals described by 
the polynomials.

We now include a feedforward component in the control signal, thus:

set u = u' - Hz (5.6)

where H is some designed feedforward transfer function
z is t ..easured plant disturbance signal 
u ' is the control input signal derived fromfeedback

Then taking equation 4.4 (see "Model structure" on page 41)

ADy = BDu + FDz + ADC

and multiplying through by LS:

ADLSy = BDLSu + FDLSz + ADLS£ (5 .7 )

Now, since ADLS = A BP (from 5.5)

and DLSl = P(y - y) (from 5.3)

We have (using 5.6)

A y * BPy* + DLS(F - BH)z + ADLS£ ( 5 8 )

Now to null the measured disturbance signal through 
feedforward, it is appropriate (from 5.8) to choose

(5 .9 )
BD,

where D, is some ‘ cable polynomial chosen to make H proper.

Robust Controller Structure



However, this would constrain the polynomial B(6) to be stable, ie. the 
process would have to be minimum-phase to ensure boundedness of the con­
trol signal.

Thus we factor B as

where all the zeros of B are well inside the ability region, and all 
the zeros of B are either outside the stability region or correspond to 
poorly damped or oscillatory modes. This idea is used frequently in the 
literature, eg. Astrom and Wittenmark (1980).

Then the feedforward transfer function is designed as 

F

(5.10)

H = .
B+r,

which ensures a stable control signal response. It is clear that if B * 
1, ie. there are some poorly damped or unstable zeros in 0(6), perfect 
disturbance rejection through feedforward is not possible, since- the 
polynomial term

(F - BH)z

is not exactly cancelled. However, general process models (both minimum- 
and nonminimum-phase) can be handled by this procedure.

5.3 C O N C L U S I O N

This secci’.n has developed ‘he overall structure for the pole placement 
controller. The feedback control coefficients are derived by solving
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equattcn 5.5, to give the coefficents I and in the L and P

polynomials. A closed-loop characteristic polynomial A must be deter­
mined before the adaptive control calculations are performed, to place 
the poles at desired locations. Deterministic disturbance nulling is 
performed in closed loop, by including nulling polynomials in the con­
troller. The feedforward transfer function H is determined by using 5.10, 
for some prespecified D t. This control design would be performed each time 
the parameters were updated, to give the new control coefficients corre­
sponding to the new plant model estimated. The selection of a suitable 
A , and the practical solution of the Diophantine equation is given in 
the next section.
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6 .0  P RACTICA L IMPLEMENTATION CO NSIDERATIONS

6.1 I N T R O D U C T I O N

This section discusses a^ects of the practical implementation of the 
robust estimator and controller. This encompasses the choice of prefil- 
teti.g, estimator parameter selection, and other user choices such as 
sampling frequency and model structure. A practical discrete algorithm 
for the controller is given t'nich corresponds to the familiar PID form. 
The rationale for selecting a suitable closed-loop polynomial A is also 
developed. Finally, some software considerations are described.

6.2 G E N E R A L  C H O I C E S

6.2.1 S E L E C T I O N  O F  S A M P L I N G  P E R I O D

Classically, the sampling frequency should be chosen according to the 
Nyquist criterion, namely

*  %

where w is the sampling frequncy
tip is the bandwidth of the plant model

However, Lju.ig : 382) suggemts that if data acquisition is costless,
then stapling should be performed as fast as possible. It is clear tr.at
s lot. sampling yields data sets which are less informative, but it must
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A '

-liso be realised that the cost effectiveness of new information will de­
crease as one samples faster and faster.

Furthermore, with the de Ita-operator formulation used in this implemen­
tation a higher sampling rate will not result in a nonminimum-phase dis­
crete modal (See "De1ta-operator formulation of Discrete-Time Control" 
on page 33). Thus fast sampling would be desirable, but a point is reached 
above which the advantages are negligible for faster sampling.

Ljung (198? : 382) describes a further tradeoff, in that the faster the 
sampling rate the more noise susceptible the measured signals. Thus one 
must balance noise reduction against relevance to plant dynamics. The same 
author further reminds us that the same sampling interval should be used 
for control as is used to build the discrete model. Katz (1981 : 229) 
suggests that this control output signal should use a fast sampling rate, 
to provide a "smoother" control action. He describes the nature of the 
zerc-order-hold control signal in terms of a "roughness function", to 
quantify its effect on the continuous-time system and actuators.

Finally, Seborg et a 1 (1986) recommend the selection of the sampling rate 
such that the dead time is an integral multiple of the sampling in­
terval, ie.

Tj " kT, k a (0;l;2; ....)

This is motivated to avoid nonminimum-phase discrete models (Goodwin and 
Sin 1984 : 229), and is vlearly only possible when the plant dead-time 
is known a priori. It would be advantageous only in circumstances where 
tu is not expected to be variable ovei a large range. This requirement 
also becomes insignificant when using a 5-operator process description 
(See "Delta-operator formulation of Discrete-Time Control" on page 33).
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6 .2 .2  SELECTION OF MODEL ORDER

ih» estimator uses a fixed model structure, but this is extensible to any 
order. Although real systems are infinite-dimensional, the advantages of 
higher-order models can be questioned. Ljung and Soderstrom (1983 : 264) 
describe a tradeoff between model complexity and adequate system de­
scription, involving the comparison of models of different orders to as­
certain whether higher-order descriptions are worthwhile. Generally, such 
a facility for parallel identification is not available.

A further consideration arises from the adaptive control law design. Using 
closed-loop pole assignment, the model order directly affects the order 
of the controller design. This gives increased computational overhead, 
as we '.1 as resulting in a complex controller structure. In this research, 
a simple second-order model has been used, to yield a controller which 
has a PID-related structure.

0.3 I M P L E M E N T A T I O N  O F  T H E  R O B U S T  E S T I M A T O R

6.3.1 I N P U T - O U T P U T  S I G N A L  N O R M A L I S A T I O N

Vittenmark and Astrom (1984) suggest that the inputs and outputs of the 
process should be scaled to lie within the same magnitude range. This will 
improve numerical behaviour of the estimator and control law. Astrom 
(1987) also uses a variable normalising factor on the measured plant 
variables to discuss estimator convergence.

In this work, the input and output signa'? are shifted and scaled such 
that they lie in the range
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0 S ( y fk A ) ,  u (k A )) S 1

This has the additional advantage of allowing estimator parameter set­
tings to remain fixed fo*- a fairly wide range of real systems. The signal 
spans and zeros used by the algorithm can then simply be adjusted to give 
the range used above for different plants.

6.3.2 S I G N A L  C O N D I T I O N I N G

6 .3 .2 .1  Low-Pass F il te r in g

It has been noted that in the implementation o f the filters used to
realise the 1/E transfer functions, while a standard controller form is
numerically well-behaved, the filters should be unity-gain. If th', is
not the case, and the filters are implemented as

then, the filter would have an effective d.c. gain of 1/e,. This scaling 
would render the internal variables of the estimator numerically sensi­
tive to finite-wordlength errors.

For unity-gain, the filters arc implemented as shown in Figure 10 on page 
65, to ensure that the signals are in "reasonable" ranges.

Phillips and Nagle (2984 ; 471) discuss the implications of finite
wordlengths in digital filter implementation, and suggest the use of 
scaling factors to ensure boundedness of the internal filter signals. 
Various techniques for determining suitable factor* are discussed. In
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chi* work if considwrmd auffic.i*nl to filtering in
conjunction with the icput -output norm* 1 i,.it .on di*cu***d emrlicr.

The melecc ion of "he cutoff fr#qu#ncv ^.for th# low-p&aa filter i* made 
by examining the deeir.id bandwidth ran*f of .ne closed- ioop ayetem. The 
E-filter dictate* th* bandwidth limit ' thr validity of the eatimated 
model, and (hue Wp should at leaet overcounc :he dominant plant dynamic* 
to be modelled. On tn* other hand, _hr of unmodellid high fre­
quency dynamic* and noise must be e 1 imi..,iteu : roe the eatimator, thu* 
whould noi be madn too high. A fundamental constraint ia that should 
obey the Syiuh.t Critprion, viz
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with ug = sampling frequency

Under normal operating cunditions, ŵ . would be selected in relation to

the closed-loop characteristic polynomial A . The fastest pole of A 
should not be faster than w^,, since the plant model may not be valid be­
yond this range.

6 .3 .2  2 H igh -P ass  F il te r in g

This filter emerged from the deterministic nulling concept detailed in 
"Model structure" on page 41, giving

to null a d.c offset or constant disturbance. This has a frequency re­
sponse as detailed earlier in Figure 7 on page 45. We briefly examine the 
validity of this approach by comparing it with some of the other tech­
niques for eliminating d.c. values.

Iserminn (1982) proposes three approaches :

1. A v e ra g in g  :

The d.c. value is given by 

i

N ^

or recursively

ydc(k} ^ ydc(k"U  " fr(>) ' ydc{k*!)^ /k
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Figure II. Frequency "Window" for Method of Differencing

is shown in Figure 12 on page 69. This latter is clearly more desirable, 
since it avoids the passband distortion which would be present with the 
method of differencing.

The choice of a suitable high-pass frequency e is not very critical. This 
can be observed in that the estimator generates a "transfei function"-type 
model, of the form

0 ( 6 ) .
u(kA) 

and w* are operating or. both the input and the output by the mame wind,.* 
W(6), thu#
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Figure 12. Frequency "Window" for High-Pass Filter

* ( a ) y ( U )  . .  c m
W (6)u(kA) u(k&)

A general guideline is that e should not be made so high as to become 
comparable with the slowest plant dynamics. On the other hand, t should 
not be too low since this would allow for very slowly varying components 
to be passed tc the estimator, which would be seen as d.c. offsets. As 
previously discussed, this is known to cause problems in estimation 
(Astrom 1983).
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6 .3 .2 .3  In itialisation of D iscrete Filters

The pseudo-code implementation of the discrete high-pass filter is simply

YOLT -  YIX -  EPS*XHP

XHP ~ XHP + DELTA*YOUT

This corresponds to the block diagram of Figure 13 on pagt- 71. XHP is an 
internal state variable of the filter. On startup, if XHP is initialised 
to zero, the input value to the filter will immediately be transferred 
to the output. If the estimator is started up when the plant is at rest, 
any d.c. value on the signals will be passed through to the estimation 
algorithm giving incorrect estimates. It would then take some time before 
the filter state XHP had "charged up" and canceled the d.c. value. To 
eliminate this phenomenon, the filter is initialised using the first 
signal value read, such that YOUT is zero on startup. This is accomplished 
by setting

XHP « YIXITIAL/EPS (6.5)

where YINITIAL is the first signal value read.

6 .3 .3  DEADZONE PARAMETER SELECTION

The choice of the constant values used by the relative deadzone is dif­
ficult. However, some general guidelines can be given:

1. o, : This value affects the rate of tracking of the error e , by the 
deadz me. magnitude function 8m(k) . This can be seen by examining 
equation 4.13, which indicates that o, is effectively the pole posi­
tion of a first-order response on m(k) . This is a digital filter, and 
thus we may approximate a value for o, by
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Y O U T

XHPYIN

Figure 13. Block Diagram o. Discrete High-Pass Filter

where z, = the discrete first-order pole
s = the continuous-time desired pole position 
L =» sampling interval

"’"he value for s may be chosen to be twice the fastest plant pole, say, 
which would ensure fast tracking of the error by the deadzone.

m e : It has been found that the initial value for m(k) does not affect 
the long-term performance of the deadzone. This value can be chosen 
as m, * 0, and m(k) will rapidly track the error (for fairly fast

o,).
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3. e e : This is the minimum value for the deadzone. It should be chosen 
with regard to m e  lowest expected noise threshold, as well as al­
lowing a minimum margin for piant-model mismatch. The choice of this 
value may be governed by -he maximum resolution of the analog/digital 
conversion process, sin this would limit the smallest noise level 
able to be discerned. On the other hand, if a process known to be of 
high order or to be nonlinear, is approximated by a low-order linear 
model, a larger value for t , is indicated since "modelling noise" is 
large. Similarly in practical circumstances where Signal/Noise ra­
tios are low, a larger t, should be chosen. For average conditions, 
typically e„ may be 0,5 % of the input signal range.

For 0 5 ufkA) 5 I one m i> use e, = 0,005 , say.

4. t ,, e, and e , : These values weight the measured signals. The input 
signal u(kd) is seen as most si& <ficant in determining the size of 
the deadzone, since "persistent "ation" implies a constantly ex­
citing in p u t. Thus the coefficient t f is chosen to give roughly the 
same effect as ct when u(kA) is a maximum. This is found by solving 
EiuCkA)^^ = For a normalised input signal, u(kA)^^ = 1, and a 
suitable value is given by e , -= t,. The values for cs and e , are se­
lected to be much smaller than t ,, typically

0,1c. £ (:, ; e,) S 0,5:..

5. a, ek : The value chosen for a strongly affects the convergence rate 
of tie estimator, as can be seen from equation 4.15 and 4.17. (a is
the maximum value of the magnitude function a(k), which is in tu-n
the gain value for both the parameter vector and P-matrix update). 
Thus it would seem that a value for a fairly close to unity is ap­
propriate. However, the relationship 4.14 shows that for large a, a 
large value for 8 results. Typically, if we take e„ to be negligibly 
smaU. we have
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/ X

a

Some approximate valu

a = 0 , 5  B = 1,4
e « 0,75 6 = 2
e = 0,9 B = 3,2
a » 0,95 6 * 4,5
a ■» 0,99 8 = 10

Thus it is clear that B increases dramatically as a approaches unity. 
From equation 4.15, it is clear that the algorithm update is turned 
off when

e(k) < Bm(k)

where m(k) is already calculated such that it overbounds the filtered 
error term e(k).

This is illustrated in Figure 14 on page 74. Since the £ ̂ coefficients 
have been selected in m(k) to account for process noise and modelling 
error, we do not wish to scale this deadzone up much more.

A tradeoff is clearly necessary between higher a Igor ithr gain (large 
a) and large deadzone size (large 8). This relationship is required 
by convergence (see appendix A), and means broadly that the larger 
the RLS gain, the mote the estimator must be protected from erroneous 
updating by increasing the deadzone.

Typically a smaller value for a is preferred, since although the al­
gorithm gain is smaller, more updates will be performed and conver­
gence is still assured. This effect is illustrated in the practical 
results of the next section.
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V

Figure 14. Relative Deadzone Function showing scaling

6.3.4 O T H E R  P A R A M E T E R S

6 .3 .4 .1  Choice o f F o rg e ttin g  Factor

It will be recalled that the forgetting factor approach minimises a cost 

function

For \ fairly do m e  to unity, which ia generally the came in practice, we
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This gives an exponential decay time constant of

T. "  1 /(1  - 1) (6 .6 )

(Ljung and Soderstrom i°d3 : 274)

T, can be seen to represent the number of historical samples which are 
significant to the present estimate Q(k).

Thu* fo r  X -  0,99 T , -  100

1 '  0,91 T , -  20

A value for T, between 20 and 100 samples appears to be satisfactory for 
general applications.

Alternatively, one of the variable forgetting factor approaches can be 
used, as discussed in ’’Exponential Data Weighting" on page 16.

6 .3  4 .2  Choice of In it ia l Values

As discussed in "Recursive Least Squares Algorithm" on page 14, the 
choices of the values of 0(0) and P(0) are Interdependent. If a good es­
timate of 0(0) is available, a smaller initial covariance matrix P(0) may 
be used. On the other hand, a large P(0) indicates poor confidence in 
0(0) . since high gain estimation updates will be performed initially.

Typically, for input and output signals normalised as

,1 & (u(kA) ; y(kA)) S 1 

and an unknown plant, w* simply mat 8(0) * 0 and chooaa
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i a P(0) a 100

Ljung and Sodersnrom (1983 : 299) give a statistical int 
these two choices, and document some simulation results 
different selections.

6 .4  IMPLEMENTATION OF THE ROBUST CONTROLLER

6 .4 .1  POLE PLACEMENT DESIGN

The pole placement problem is solved here for a specific 
second-order plant mode 1. This is a desirable approach s 
adequate modelling of many industrial processes. as well a 
a srcond-order control lev which is easily interpreted in F

The following polynomial orders are used :

d**r##(A) - 2
degree(B) * 1 
degree(F) « 2 
degree(E) * 2 
degree(D) « 1 
degree(S) ™ 0 
degree(P) * 2 
dagreatL) - 1

where all polynomials have the same meaning as used in "Me 
on pag# 41 and "Rubumt Controller Struceura" on pag# 53.

D and S arm amply

erpretation of 
to illustrate

case, using a 
ince it allows 
ts resulting in
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D » 6 (coniitant d.c. offxmt dlmturbmm;#j
S - . (no decerminisiic componmnt in th# metpolnt)

Th# utmctur# for th# controller im given by

c / H  ' P''' *

Note th# emergence of en integral t«,rm in the contru 1 ler. Tbi# im a na­
tural consequence of the Indumion oi the dimturbance nulling polynomial 
D in the controller denominator, am demcribed by Tuffm and Clarke (1985) 
and Allidina and Yin (1985) for elimination of mteacy-mtal# error.

The controller is designed by solving the Diophantine equation 5.5, thus:

ALD5 + BP " A* (6 .8 )

A im the demired clomed-loop characteristic polynomial, and it ametgem 
from 6.8 that degree(A ) " 4 in chim cam*. A general rule im that

degree!A ) " 2.degr«#{A)

Thus A = 6** + a,63 + a,5‘ *- a , S + a,

Equation 0.8 expanded givem

(6^ + a ,8 + a,)6 (l,; + 1,) + (b,5 + b,)(p,r + p,8 + p,)

s 5“ ' a,5' + a,6* * a 5 + Oi (6.9)

In matrix thim 1* am follows



D ” 6 (-.onstant d.c. offset disturhance)
S * I (no deterministic component in the setpoirt)

The structure for the controller is given b>

0^(6) -
6(1,6 + 1.) (6.7)

Note the emergence of an integral term in the controller. This is a na­
tural consequence of the inclusion of the disturbance nulling polynomial 
D in the controller denominator, as described by Tuffs and Clarke (i985j 
and Allidina and Yin (1985) for elimination of steady-state error.

The controller is designed by solving the Diophantine aquation 5.5, thus:

ALDS + BP - (6.8)

A is the desired closed-loop characteristic polynomial, and it emerges 
t'rem 6.8 that degree(A ) ™ 4 in this case. A general rule is that

degree(A ) = 2.degree(A)

Thus

Equation 6.8 expanded gives

(62 + a,6 + aa)6(l,6 + 1,) + (b.6 + be)(p,62 * p l6 + p,)

(69)

In matrix form, this is as follows
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'1 " 1,'

a, b, 1.

6 b* b i 0 |" =z

0 a. bg b - l
0 0 b.J

(6 .10 )

A unique sequential solution is obtained for p,, p ,, p,, I, and 2. as 
follows :

1 . 1 , - 1

2. pe * «• / b,

3. 1, - X/Y where

o X = o 8 - (b,/b,)a, - (b,/b,)a, - =, - iibe/b, )a,) 1, + (bi*/b,)p,

O Y ® a ,  -  b g / b ,  - ( b , / b g ) 8 g

4 .  p ,  »  (a, -  a e l g  - b , p g ) / b g

5. p3 = (a, - a , - la )/b,

It is possibla, however, that b, « 0 ie. there is no zero in the B- 
polynomial. In this case the solution above would give a division by zero 
error, and an alternative solution is required :

1 . 1 , - 1

2. p, - =, / b,

3. le » a, - a,

4. p, - (a, - agl,)/b,
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5. p, * (a, - at - a,l,)/b,

In practice, the c< 1 ; He r  design would be poorly conditioned if b, were 
very small, thus a test is required of the nature of

IF Ib./b,| < 2wg THCN
( Algorithm 1 )

ELSE
{ Algorithm 2 }

ENDIF

The feedforward block design would be relatively s imp 1■ a this case, 
since the root of BfS) is simply at

6 * -be/b,

Thus if both b, and be have the same sign, we can use

A i )  -
B (5) = 1 (all zeros stable)

and solve equation 5.10 thus :

S'ote : Since degree(T) = 2, we need Co choose D, such that

degree(D,) * 2 - degreeCB ) (6.11)

to make 11(6) realisable.

The system with controller is detailed in Figure 15 on page 80. Solutions 
for tigii.'.r order systems and controllers are given for completeness in 
Appendix C.
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Controller
Design

Parameter
Estimator

Figure 15. Closed-Loop System with Controller

6 .4 .2  INTERPRETATION AS A D IG ITAL PID CONTROLLER

The pole assignment solution of the previous section yields a controller 
structure compatible with traditional PID designs. This is appealing from 
an engineering point of view, due to the widespread usage of fixed- 
parameter PID controllers. As stated by Ortega and Kelly (1984) ;

"An overwhelming majority of the regulators used in industry are PID, 
because when properly tuned they general'y achieve satisfactory 
performance."

Digitally implemented PID controllers have been documented by many au­
thors, as in Astrom and Vittenmark (1984 : 180), Kuo (1980 : 509),
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Phi 11ips and Nagle (1984 : 254), Jacquot (1952 : 77), and Phillips and 
Parr (1984).

Practical adaptive  controllers with PID structure are also described in 
the literature, as by Cameron and Seborg (1963), Seborg et al (1986), 
Ortega and Kelly (1984), Andreiev (1981), and Kraus and Myron (1984). Most 
of these use techniques other than that of closed-loop pole assignment 
for controller design, however Ortega and Kelly (1984) develop both an 
implicit and explicit formulation based on pole placement.

There are many different descriptions of an analog PID controller. The 
standard "textbook" form is

or in Laplace domain

M(s) = [P(s) + I(s) + D(s)Ufs) 

where P(s)

Ks)

D(») " *,Jd" 1/20 S . : I/]

(Aft«r!Ucl«od, 19:7) (6.12)

The inclusion of the factor l/(aT.m+l) in the derivative term is to make 
it realisable, since a pure differentiator is non-causal. The constant a 
is usually fixed by the controller manufacturer and represents some low- 
pass filtering characteristic to bandlimit the overall controller fre­
quency response.
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Alternati"e formulations of the controller an 

M(s) - *c .(1 + 1/(T^,) + Tj:)l

(613)

This corresponds to all terms filtered by the fixed low-pass filter.

E(s)
aT.s + I (6.14)

This is a type of "cascaded" realisation, which is equivalent to the 
others if T. > 4T^, which is generally true in practice.

It is instructive to examine the frequency response of a PID controller. 
This is shown in Figure 16 on page 83, and indicates a special type of 
lag-lead compensation. It can be seen that T, and T^ both determine zero 
positions of the controller, with T. governing the low-frequency response 
and Tj the higher frequencies. A PI controller is in fact of phase-lag 
type, with high gain at low frequencies to reduce steady-state error, and 
an increase in stability. The PD form is a phase-lead controller, which 
advances the phase at higher frequencies to increase system bandwidth, 
thus speeding up the closed-loop response. Since the gain-crossover fre­
quency is shifted up, the stability margin is also improved. Noise am­
plification at high frequencies is limited by the pole at l/(aT.).

To find a suitable approximation to the continuous PID form, we use 6.13 
with all terms filtered. This is rearranged as

T.T.a ,(m + 1/(«T.))

and approximating with s = 6

K_ ,11.6" + T.6 + I) _ p,6? * p,6
,T.a 5,5 * l/(aTJ) 5(6

PRACTICAL IXPLEXENTA'

i



1
aTr

1

+  9 0 '

- 9 0 *

Figure 16 Frequency Response of PID Controller

Then p, = K /#

P, -  

P. -  

1, "

This gives the solution 

K(. “ Pi/l.

"  P ./P ,
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1 Pl/Pl

This solution appears reasonable, since the gain is determined by a ratio 
of p^/1^, and tho integral and derivative terms by the controller zeros 
given by the coefficients. The fixed constant a does not affect the 
P1D values, which seems acceptable since this value will vary from man­
ufacturer to manufacturer as previously discussed. Many other alterna­
tive solutiors can be found using the other continuous PID descriptions. 
Some of thes'j are provided in Appendix D.

F.xami"- the discrete PID form, a further modification is needed to 
suitably implement the integral and derivative terms. The integral term 
is approximated simply using an Euler forward difference. However, as in 
Astrom and Wittenmark (1984 : 180) find Jacquot (1981 : 79) a backward 
difference must be used for the derivative term. This is becsure a forward 
difference implementation would lead to an unstable discrete controller 
for small values of Tj.

Figure 17 on page 85 illustrates tho mippings of the stable region of the 
s-plane onto the z-plane using both forward and backward ierivative ap­
proximations (After Macleod, 1987).

Our definition of the 6-operator is derived using a forward difference 
(See "Delta-operator formulation of L screte-Time Control" on page 33). 
Hence we need to define a new backward difference 5-operator, thus :

8,
-1

The relationship with the normal 6-operator is as follows :

. 4 ' ' . ' . *_
qA q 6A + 1
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Z — Plane

Forward Difference 
Approximation 
z = 1 + As

Z— Plane

Backward Difference 
Approximation

z = 1/(1 — As)
Figure 17, 2-Plane Mappings for Forward i 

rivative Approximations

The discrete PID controller is then derived using 6 for the integral term, 
and 6, for the derivative term and fixed low-pass filter.

Then in 6.13 we have

" Kg(l + + I)

uting back from 3.1 and 6.16 to get shift -op-'rator for

M(q) - ̂ I f  A > Td (1 - q”1)! . q i

T ^ q  -  1}  4 J q t i  + a T j )
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A further refinement is now introduced, in accordance with Astrom and 
Wittenmark (1984 : 183'' to implement bumpiest trans fer. This means that 
the algorithm must ensure that the internal states of the regulator are 
such, that the control output does not undergo a step change on switchover 
between manual and automatic control. Such a step change could easily 
occur if the algorithm were implemented as in 6.18, since the value of 
the integrator may not give the same error-driven output as the manual 
control signal applied to the actuator. To overcome this phenomenon, the 
algorithm is implemented in an Incremental form, where M(q) only generates 
the change in control signal Au. This will guarantee a more gradual 
change if the calculated output differs from the manual setting on 
switchover.

n i w  * » " ( ! -  - u. - u. ,

We implement

M '(q) -  (1 -

: Ke [l - q*1 + q"IA/Ti + ( T y A H l  - 2q'! + q"2)]. qA

q(& + # 7 ,) - aT 

(6.19)

A problem in 6.19 is apparent, in that the integral term has a delay of 
on sample relative to the other two terms. This is overcome simply by 
asing the backward difference operator 5, for this term as well in 6.13, 
giving the incremental form

&/T, + (T ,/A )U
qA

q(A r aTd ) -"J
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The low pass filter on all terms is Implemented by rearranging as

p(q)-___
q(A + aTj) - aT^ 

Aq/(A + aTj)
q - aTd/(A + aT^

(1 - a,q !)

where a , * A A A  + aT^)

a, - aTd/(A >■ aT^) - (1 - a,)

In industrial PID v-ontrol levs, the cutoff frequency of this filter is 
fixed as mentioned earlier. Thus constant values for a, and a, are used 
in the implementation. The algorithm can be seen in the software listing 
of Appendix E.

6 .4 .3  CHOICE OF CLOSED-LOOP CHARACTERISTIC POLYNOMIAL

Pole assignment attempts to shift the open-loop system poles to desired 
locations - This may often be donm to increase bandwidth by "speeding up" 
the system poles, or improve stability by moving plant poles which are 
close to the stability boundary further away. For underdamped modes, pole 
assignment may also be used to alter the transient response. If the closed 
loop bandwidth is increased, caution should be exercised. If the shifted 
poles are made too fast, actuator saturation nay result. Furthermore, 
sine# ch# controller d**ign im based or, a bmndlimlced emtimated procmam 
mode 1, non 1 inear"t'es may be exhibited if the bandwidth is exceeded Tor



We then factor A as

where A' are the shifted plant poles to gtve the desired closed-loop response

A, are the remaining closed-loop poles

(After Goodwin and Sin, 1984 : 148) 

find \,, A' are of order n-1 and n respectively, to give 

degree(A ) ■ 2n

The rationale for selecting the other closed-laop pole locations A, 

emerges fro onsidering pole assignment in state-space terms. The con­
trol law is hen formulated as a state observer plus state-variable 
feedback (Goodwin and Sin 1984 : 148).

To facilitate this, factorise A 1(q *) further as

A1(q "1) - A (q *1) * KCq"1)

where K(q S  ■ x,q 1 + ... 4- k q n

A(q S  * process model denominator polynomial as before

Then
A*(q"1) ■ A,(q'l)[A(q'1) + KCq*1)] (6.22)

Define the filter polynomial R(q 1; as

R fq"1) » L ( q " ^  - A , ( q ' ^  (6.23)

where L(q S  is the control law polynomial used in the previous
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The generalised control law

L(q = M(q l)y (t*d) - ?(q Sy(C)

becomes
Ae(q 1)u(t) = M(q l)y (t+d) • FsCq l)u(t) + P(q S y d o j

The second terr on the right hand side of 6.24 can be expressed 
of a "state vector", by describing the system as

A(q *):(t) = u(t)

y U )  » B(q*1)z(t)

Using this form, 6.24 becomes

A, (.q 1) u (t) * M(q l)y (t+d) - |R(q ^ACq S  + P(q ^BCq
«

Using the Diophantine identity 

in conjunction with 6.22 and 6.23 gives

" A,(q"':K(q"') («

and 6.25 becomes

A, (q l)u(t) = M(q l)y (t*d) - A, sq 1.)K (q 1 >2i t)

This is expressed as a "transfev function" (for stable A,q 1)

u(t) * l!̂   ̂ y (t+d) - Kiq Ss(5.)
A,(q 1)

PRACTICAL IMPLEMENTATIOS COXSIDERATIO!<S
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The dynamics rer-esented by A0(q ) allow estimation of the state vector 
z(t), These are effectively observer dynamics.

The state feedback interpretation is detailed in Figure IS on page 91. 
This is a physically realisable syste..i, and is equivalent to the previous 
formulation (O'Reilly 1983 : 185). However, implementing th'i pole place­
ment as in "Robust Controller Structure" on page 53, we need to incorpo­
rate the dynamics into the control law design. This can also be seen in 
the fact that the closed-loop polynomial A (q is twice the dimension 
of the plant polynomial A(q ), ie, we are designing a state observer and 
feedback controller together during pole assignment. The observer dynam­
ics then emerge in the closed loop, seen by

f W  . P(q"b:(q"^)

where P(q *) * M(q tor simplicity in our case.

This is made clearer by re-e :amining thu Piophantine identity :

The inclusion ot observer poles in the r.losed-loop polynomial is described 
frequently in the literature on adaptive pole placement, eg. Samson and 
Fuch* (1981), Kraft (1979), Elliott and Wclovlch (1979). T,ay and Shi.h 
(1981), A*l:o* (1983).

Sow, l(q S  includes polynomial descriptions of deterministic signals, 
to null possible deterministic modes in disturbances or ir the setpoint 
(See "Control Synthesis" on page 54). In "Poio Placement Design" on page 
76, this resulted in integral action for nullmg constant signals. Thus 
A,(q S  will contain observer dynamics to estimate these deterministic 
signal nulling modes. This is also described by Kailath (1980 : 276).

However, the observer dynamics must be assymptot ica1 ly sra. i- for the 
observation errors to decay. Taking D and S to describe the deterministic
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z(t)u(t)

A0(q )K(q )z(t)

Figure 18. State /Redback Interpretation of Pole Assignment

signals, a suitable choice for observer pole®, may then be D' and S ’. These 
are stable polynomial operators "near to" D and S respectively, as de­
scribed in "Model structure" on page 41. Thus

A, » A.'D'S’

where A,' are the remaining observer dynamics corresponding to the plant.

Caution must be observed in the case of D " ( and D' ® 6 + t for some small 
r . Til is D ' corresponds to an "observer pole" near the origin. Such a mode 
would be unobservable in the system output under normal closed-loop con­
trol , thus it can be placed fairly flexibly. However, if mad-- u,3 slow,
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the mode could be excited by an initial condition. This would then exhibit 
a long decay time before the integral action eliminated the error.

Typically chon e 0, Iw 5 t 5 0,2w^ where is the speed of the shifted 
plant pol#a.

The choice for A,' (observer poles for the process itself) is made by 
considering the objective of state observation. The observer dynamics 
must be faster than those ot the process, to ensure assym^totic tracking 
of the system states (O'Reilly 1983 : 201). Thus it seems reasonable to 
place these observer poles to correspond co , the upper bandwidth limit 
for model validity. In the PID case this corresponds to a single low-pass 
filter pole, as described in "interpretation as a Digital PID Controliur ' 
on page 80. If this pole is fixed as for an industrial PID, this aspect 
of pole placement design is ignored.

6.5 S O F T W A R E  C O N S I D E R A T I O N S

6.5.1 S E Q U E N C I N G

For an y  adaptive real-time digital algorithm, an additional computational 
delay is introduced into the closed-loop system .s is due to the finite 
time requirements u :  the model estimation ind control law calculations.

Thu:, :he sequencing should be per formed as shown in Figure 19 on page 93 
(After Astrom and Littmmnark 1984 . 36j). The critical pa:t of the soft- 
wary cycle i# in the model estimation and control law calcuiac^ona, prior 
to the generation of a new control signal. This should be minimised 
through suitable refinement of the coding. The remaining updates such as 
the recalculation of gain matrices, filiei output values, etc can then 
be performed in the less critical part of the cycle. Execution will be
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Clock Signal v

A/D Plant Meesurertiente 
Co m p u t e  Control Signal 

D/A Control Signal

v .

Remeinder of 
Algorithm Updating

Graphic Interfacing 
Scan Input Devices

t 19. Digit#] Control Algo.ithm S#qu#n&#

haltwd jrT*r ' :ntil another clock mignal is r#c*iv*d co rmp#at th# 
mampHng proress, Th# ^dle of th# loop can also b« uaad to pmrfcrm
us#r interfacing, such interactive graphic update# or mcanning of input 
device# eg. ke>-pads.

It is clear that it tho sampling interval is long and the processing power 
of the digital system substantial, the computational delay will be neg- 
lijjible. However, for faster sampling .nd particularly when processes 
with short time constriis are controlled, careful software sequencing and 
optimisation i# desirable.

TXis sequencing ran be seen in the software listing of Appeclix E. The
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REPEAT

IF SAMPLETIME THEN
BEGIN

READVALL'E(Y)

ADAP1
WRITEVAU-E(U)

ADAP2

{A/D plant output signal)
{estimate model and calculate control) 
{D/A control signal)
{perform rest of updating)

END

{perform graphic interfacing, read keyboard) 
< FOREVER >

6 .5 .2  ALGORITHM IMPLEMENTATION

The most complex calculations involve the RLS estimation algorithm. This 
is  implemented using Bierman's UDlF ^variance factorization, and uses 
upper triangular and diagonal matrices. These are reformulated as vec­
to rs , to eliminate matrix operations for spans matrices. In this way, 
optimization of both processing time and variable storage is facilitated.

6 .6  CONCLUSION

This section has reviewed practical implementation requirements for the 
adaptive algorithm. The theory has been developed where necessary to 
support the arguments, and an attempt has been made to rationalise the 
implementation -hoices taken.
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7.0  EXPERIMENTAL RESULTS

7.1 INTRODUCTION

This section presents a series of results produced both by simulation and 
during tests on a physical plant. The adaptive controller is evaluated 
with regard to

o Estimator robustness in terms of parameter behaviour and prediction 
error reduction.

o Closed-loop control performance as observed by st-tpo+nt tracking, 
overall stability and the nature of the control signals.

These measures of performance are examined under normal plant conditions, 
during which the signals are subject to both noise and bias. Robustness 
to plant variations is also investigated, with variable dead-time intro­
duced artificially during closed-loop operation. Furthermore, the plant 
is subjected to an external disturbance, allowing observation of the 
closed-loop disturbance rejection of the adaptive system.

Si" ’ition results are discussed for nonminimum-phase plant with signif- 
icanc variable dead-time, and with forward-path gain changes introduced 
during closed-loop control.

7.2 PHYSICAL PLANT CONFIGURATION

The process and c  trilling micto-omputer is configured as in Figure 20 
on page 9b. The plant -.onsists of a metai strip which can be heated at
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D/A u ( t )

z(t)

1
Physical y ( t )

Process

u ( k A ) D i g i t a l
M i c r o c o m p u t e r

S y s t e m

>  A / D

y(kA)

F„‘&ure 20. Physical Process and Digital Controller

one end. The control objective is to maintain the temperature at a point 
on the bar at some desired reference value. The temperature measurement 
y(t) is effected using a platinum resistance thermometer via a resistance 
measurement brige, and the control signal u (t) is the voltage applied to 
the heater. The process disturbance z(t) is introduce ' by switching on s 
fan to increase air flow over the bar at the point of measurement, and 
thus alter the process dynami -.s. This disturbance signal was not directly 
measured, and thus the feedforward control block kas not been tested 
dur;ng these experiments. However, the feedback loop disturbance re­
jection was observed for a fairly severe external disturbance.



7.3  EXPERIMENT 1

The constant parameter values used by the estimates.; are 
this experiment:

follows for

E
(0)

0,0008 (high pass filter pole)
; U.025 (low pass filter cutoff frequency)

10 (initial value for P-matrix)
« 0,97 (forgetting factor)
= 20 seconds (sampling interval)
= 0,98 (fiist-order pole in dead^one function m(k))
a 0,0006 (deadzone threshold in m(k))
= 0,0008 (coefficient of u(k6) in m(k))
« 0,00008 (coefficient of y(k&) in m(k)j

" 0,95 (maximum value of estimator update &ain a(k))
= 3,5 (scaling factor to increase deadzone siza)

fhese choices are all as motivated in "implementatinn of the Robust Es­
timator" on page 63. However, a large value for o (o = 0,95 selected here) 
warn used to facilitate high-gain updating, which resulted in a large 
deadzcne scaling coefficient 8 = 3,5. Thin deadzone was found to be too 
large if the t ̂ scaling coefficients, were chosen as suggested in ‘'Imple­
mentation of the Robust Estimator" or page 63, severe'y inhibiting pa­
rameter updating. Thus for this exner.ient much smaller values for e ,, 
t, and £, were used to give pn over . deadzcne compatible with expected 
prediction error magnitudes.

T.ie setpoint sequence was generated as s! vn n figure 22 on page 102. 
Switchover from the "manual tuning phase" to automa' control was done 
at time TALTO = 4000 seconds. Prior to this, a rapialy varying input 
« l&nal warn gen#rated simply b; aattin* th* nput *qual aetpoint.
This is llusrra.ed in Figure 24 on page 103. This is to ensure parameter 
convergence during initial identification, .n accordance with persistent 
-xcitation requirements.



The control input signal during closed-loop operation shows large peaks , ^
at setpoint changes, decaying to a steady state value. There are also
larg# overshoots b*for* th# settling to a constant valu# occur#, which
Is i consequence of the controller design. It is believed that the
closed■loop objective may be a little too ambitious, namely in the choice
of A . Con##qumntly a (airly high-gain PID controller ha» r##ult#d, giving
overshoots on the control s ignfll. The plant output y(t) (See Figure 23 - ...
on page 102) also shows small deviations initially on rising and falling 
setpoint response. However, the control signal stabilises rapidly and the 
process output responds smoothly to the setpoint.

A further point to note is the small variations about the steady value 
of the control signal between setpoint changes. This is evidence of the 
derivative control tarn in the PID, responding to small changes in process 
conditions such as external disturbances.

Further examining thv system rutput y(t) in Figure 23 on page 102, it is 
cl#ar that fairly good ##tpoint tracking 1# achieved. Thar# 1* a mignlf-
icant d.c. leve 1 on the measured outpit signal, clearly visible in the 
initial value of y(t) . This level -oi e.,ponds to the ambient temoerature 
during th# #.'p#ri*#nt. and ham to b# treated a# an unkncwn constant dia- 
turbance in the adaptive system. Consequently the A/D measurement zero 
cannot mlmply b# adjuatmd to corr##pond to thim vilue, aince In practice 
it would vary slowly as the ambient temperature changed during long-term 
operation. Thia is a good teat of the signal conditioning elements in- 
.luded in the estimator for nulling constant disturbance*

The closed-loop characteris, ic polynomial A is sot using 

a, - 3.8E-02 
= , -

a, - ],IE-06 
a, - 5.1E-09

in A = 6* ♦ a , t * a2 61 *- a , 5 + a.



which corrnsponds to an s-plane diagram as shown in Figure 21 on page 
1 0 0 .

The roots are s, * -1.942E-03
#, " (-7.912 + j8,197)E-03 
m, » (-7.91: - j8,l97)E-03 
#. " -2.023E-02

s, is the ’’observer pole” near the origin corresponding to the 
deterministic mode D = 6 in the controller denominator polynomial, Sj 
a.id s. are the "shifted process poles" which govern the dominant closed 
loop performance. These correspond to a damped second-order response, 
with damping factor

( » cos(45") - 0.7

s* is the remaining "observer pole" for the process itself, and is placed 
fail ly close to These choices are made in accordance with the ra­
tionale given in "Choice of Closed-loop Characteristic Polynomial" on 
page 87. The closed loop objective detailed here was used for all exper­
iments discussed in this section.

Examining Figure 32 on page 107, Figure 33 on page 107, Figure 34 ots page 
508 and Figure 35 on p'ige 108, it is clear that very rapid parameter 
convergence occurred in.iiaily. In tact, almost no further parameter ac­
tivity is apparent after the switchover from manual tuning to automatic

This is further seen in Figure 26 on page 104, which details the function 
a(k) against vime. Since afk) obeys the relationship of 4. 15, the maximum 
possible magnitude for it is g:ven by a. In this case a(k) will always 
be less than unity. Fut the.-moie, a(k) only has a nonzero value when pa­
rameter updating occurs. Thus it is clear that fairly extensive activity 
occurred initial ly, as seen by the Urge t; (k ) values. This implies high- 
gain parameter updating. During automatic control a few updates are per-

Rxpenmental Results



S — Plane

S4

A Imsginery

» z X

- 0.008 - 0.002

" 3 X

-->

Figure 21. Pole Locations of Closed Loop Polynomial

formed, corresponding to setpoint changes and consequent changes in input 
signal. This is in accordance with persistent excitation considerations.

The prediction error signal e(t), shown In Figure 28 on page 105, further 
illuminates the parameter updating process. When this error is greater 
than the deadzone, the update gain a(k) is nonzero and a parameter change 
occurs. Larger prediction errors are present during initial identifica­
tion, with the error exhibiting smaller peaks during setpoint changes. 
The deadzone size itself is detailed in Figure 25 on page 103. The mag- 
m cud# function mlk; 1m mm defined in 6.13, and give# a firmt-ordmr fil- 
tered function of the ptocess input and output. The t iput is weighted far 
me strongly than the output, since t , is much larger than t,. The 

id value c, is also clearly visible. Thus the deadzone size 6m(k) 
am proportionally to the input signal primarily, with a larger 

deadzone initially when the input signal u, .
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Combining the deadzont! and the absolute prodiction error |e(k)| (See 
Figure 27 on page iG4), the u^iiting of the and the behaviour
of a(k) ( Figure 26 on paga iC4) becomes obvious.

The controller design parameters are given in Figure 29 on p. 
Figure 30 on page 106 and Figure 31 on page 106- These values , 
calculated after switchover ro automatic control. The PID co«f 
are fairly constant throughout the experiment, indicating stable 
loop cpdration and robust controller design. Some minor control p 
changes occur, corresponding to estimated modsl updates after a 
change (at discussed earlier).

Experimental Results
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Figure 24. Control Input u(t) for Experiment 1
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Figure 26. Estimation Gain Sequence afk) for Experiment 1
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Figure 27. Prediction Error ar.d Deadzone Size for Experiment 1
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Figure 28- Prediction Error e(t) for Experiment 1
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Figure 30. PID Integral Time Constant GK2 for Experiment 1
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Figure 32. Ksrimaced Pazameter aO /or Experiment 1
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Figure 33. Estimated Parameter bO for Experiment 1

Experimental Results



J*- -

Plot Of A1 vs TIME

-5

-1 0

-15,

TIME
Figure 34. Estimated Parameter al for Experiment 1
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7 .4  EXPERIMENT 2

1# The constant parameters used by the estimator are:

c - 0,0008 (high pass filter pole)
Wp - 0.025 (low pass filter cutoff frmi(iiency)
P(0) » 10 (initial value for P-matrix)
X - 0,97 (forgetting factor)
A * 20 seconds (sampling interval)
0 " 0,98 (first-order pole in deadzona function m(k))
*, - 0,002 (deadzone threshold in m (k ))
r, - 0,002 (coefficient of u(kA) in m(k))
c, - 0,0002 (coefficient of y(kA) in m(k))
a « 0,5 (maximum value of estimator update gain a(k))

y @ " 1,4 (scaling factor to increase deadzone size)

Effectively the only differences from Experiment 1 are the choices of a, 
8 and the t coefficients, The same setpoint sequence was used as in Ex­
periment I, shown in Figire 36 on page 112. Also, the same manual tuning 
phase was used as in Experiment 1 with switchover to cjtomatic control 
at TALTO = 4000 seconds.

Th* proc##m output ylt) 1m shown in Figure 37 on pag# 112. V#ry similar
pitformance to that of the previous experiment is observed, with good 
##tpoinc tracking according *o th# closed-loop polynomial A . Bxamining 
th# contro' input signal iSe# Figura 38 on page 113), howavfr, much highar 
amplitud# variations ar# present during rue controlled setpoint response. 
Tits  ̂ "arly to poor tuning of the controller, and is clarified

Thu process , Liue.er pit.=AL*s ..r* ho^n in f'A(,ri on pa*e XT, 
Figure 4? o:i page 11/ -M on psge 118. m d  Fi*ur" 49 or page 11A.
It is clear that tie Cbtim&cea convu-Rm mm.n morr slowly tliai .ir . ,e 
pri'ious experiJ-exi. "Hiis i.-. auprrrnt berauae thr us'imalioi 'on-
scant a »wt to.imuc: '.nallf vilu#" than previously (a = 0,5). Hotever,
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this has allowed the use of a much smaller deadzone scaling coeffient (B 

= 1,4) in accordance with convergence requirements. Furthermore, the re­

duced 8-value enabled the choice of much more reasonable t ,, £, and c* 

coefficients than in Experiment 1. These coefficients could be selected 

on engineering grounds to correspond to expected noise levels and signal 

ranges, and to overbound modelling error. Clearly, the price paid fcr 

these parameter choices ts slower convergence of the estimator, and a 

correspondingly oscillatory control input signal u(t) while the control­

ler is poorly tuned. However, it is believed that chese choices would be 

more robust in "difficult" process environments or for "poorly behaved" 
plants.

Figure 40 on page 114 illustrates the behaviour of tne function a(k). 

As before, a nonzero value of a(k) indicates that parameter updating is 

occurring. There is far more activity during the manual identification 

period than in Experiment 1, and more sustained parameter updating 

throughout the remainder of the experiment. This is borne out by the 

continued parameter changes discussed earlier. The peak magnitude of the 

function a(k) is mv. less than 0,5 as governed by the smaller a-value.

The deadzone magnitude function Bm(k) ( Figure 39 on page 113) is very 

similar to that in Experiment 1, since the input signals are similar for 

the two experiments. Note that rapid fluctuations in u(t) do not affect 

8m(k), since it is a low-pass filtered function of the process input and 
output.

The prediction error e(t) is shown in Figure 42 on pa^e 115. As expected, 

the error is substantially larger early in the identification stage, and 

exhibits rapid fluctuation corresponding tc. the variations in u(t). The 

combination of e(t) and 6m(k) is given in Figure 41 on page 114 for com­

pleteness, r,o clarify the behaviour of aik).

The PID coefficients shown in Figure 43 on page 115, Figure 44 on page 

116 and Figure 45 on page 116 also show more variation than in the 

proceeding experiment. The calculated gain value and derivative time are 

in fact very poor at switchover to automatic control, to the extent of

Experimental Results



Applying positive feedback to the plant. However, the resultant incot-set 
control input signal facilitates rapid parameter convergence just after 

switchover, and more reasonable controller values are obtained. The cor­
responding step changes in estimated parameters are clearly visible after 
time T « i.000 seconds. Once again, a high PID gain constant value ts ob ­
tained as well as j high derivative tine constant. This 1j believed to 

be i@L--t.ed to the choice of closed- loop polynomial A , as ment ioned pre­
viously.
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Figure 44. PID Integral Time Constant CK2 for Experiment 2 
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7 .5  EXPERIMENT 3

This is ,i short cxperiwnt illustrating the persistant excitation re- 
qu i rvment s of the estimator. The constant estimator parameters werf the 
same as those us«d in Experiment 1, honcp fairly rapid convergent.« is 
expected.

Curing this experiment, the setpoint sequence was generated as in 
Figure 50 on page 121, with switchover to avtomalic. control at TALTO = 
1200 seconds Thus a far shorter time period was available for parameter 
convergence before the loop was closed. The system output y(t) is shown 
in Figure 51 or. rage 121. It is clear that v»ry poor setpoint response 
is obtained initially, hut after two setpoint changes under automatic 
control the tracking is fairly good.

Examining the PID constant values in Figure 53 on page 122, Figure on 
page 123 and Figure 55 on page 123 it is clear that there are fairly large 
controller coefficient changes after swi tchorer. The effect of this is 
observed ir the control input u(t) ( Figure 52 on pag-- 122). The control 
signal is oscillatory over its full range for a certain time period (3000 
< T < 5500) , during which the controller is poorly tuned. However, this 
"richness" of controi signa' and hence process output response enrhles 
rapid parameter convergence and good redesign of the controller.

This experiment thus illustrates the effect of switchover to automatic 
control before adequate system identification has occurred. The number
of samples given for "pretun m g ” in this case was

N * 1200/20 = oO samples

for sampling i-u e~va. A = 2C seconds.

However, as seen m  th<> a r ; : v exper ir; i-tu s , it i s  more dcs ir le to have 
a longer "prwtunmg" period with a rich ::iwuc signal, :.o ousure a "g')od' 
controller on snichuvmr. Xf'v^rthei's*, thn cverall 'ibustnmss of the

Experimental Hi suits



adaptlv# symte* 1« effectively demonxtrateii j:i this experiment, mine# 
proce*# idontlficarion and controller tuning warn performed auccmnfully 
in closed loop. From a theoretical viewpoint this is true because esti- 
matinn i» independant of the cjntroller dem'an.
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Figure 50. Setpoint Sequence for Experiment 3 
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Plot Of CK2 VS TIME

Figure 54. PID Integral Time Constant CK2 for Experiment 3



7.G EXPERIMENT 4

Tlii* e x p e n m n n c  {wr^nrmod over a lon%wf cim# pmriod, m d  invemi.gnLn^

tl.c iblliLy of tl:» rontrollfr co r»jdjpc to procmgyms with vir-

: ab 1 ̂  t ime 'I* 1 iy

T1',' fNiimator conaLmnt parameter# umed war# mm in Experiment 2 , mince 

thtm* yifId m reamonabli tradeoff between robumtno## and convergence rate 

di.icimsmd earlier. The xetpoint sequence wa* generated am (n

H g u r e  5v on pag# 126, and a time deliy " 60 meconda was artificially 

introduced into th- myatem at T « 17500 mecondm through :he moftwdr* 

sampling in Lh# microcnmpuL#r.

"he control input signal is mhown in Figure 58 or page 127, and takes i
icry mimilar for* to that of marlier experiment#

1 * introdu- -ion of the time if lay at T  " 171)0 second# i# man!feated am 
a ,»«iak in predict ion mrror ^ IgnJ I mi t) Figuie 62 on page 129. A 
(.c.rrf'&pnndx.K pnjt- ;n Dir par-wtr: .pc_.:,- gain a(k) at thi& time
-m mho^n in F.gur*- *() on pagf U 8. For '.he pred.ction error w(t)
and deadzrnm m.i^itudm ^rm (amhu.- in Figure ri on pa*e
12A. H.is ' i*: tXa- thm la..?" pifdii' ":y»r exceedm thm daadzon*
aubatanli,]).)" when the L j me dmlnv i% i-:r- x..n, fiulting In a large 
parjaioter update ilk.).

Til# deadzone (unction Bmik) in on "a own .;i yigure 34 on paRm

127. and behaves aurli as discusxe^l ' iiu .v.

The emtimitHil pfirameters b,. .i. .i: i \  i:" s!:aki. m  F!*n,' OA on pa*# 

131. Figure 6 T n pag# 131. Fih^rn :12 i.l F:gui" r') on

132 r#Mpectlvels' A lar*p change i.l :.'u- ;'.ir,if*#tor nitt:Tat*m im i)- 

purent alter the introduciiou cf Mir : is mtnri's: :ioL,'

that thu b | c uw f !" i . i mnt tl. n.h ' " Mrmni's liiw ; :r ton of '.hr ; r n.psx ikxi" '.

Zwro kmuarfs np%.ii:v" Thih rxpAi.ted. the .r approx:-
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nut as the da lay tirae as in the well-known first-order Pid# approximation 
to a delay term (Ralston M65 : 278):

-86 _ 1 + 85/2

which has an unstable zero, ie. the process becomes nonminumun, phase.

T!.e PID controller coefficients and are detailed in Figure 63
on page 129, Figure 64 on page 130 and Figure 6_, on page 130 respectively. 
It is seen that while very little change occurs in the integral and de­
rivative constants after the d«lay has been introduced, the gain change 
substantially. This is due to the PID approximation used to derive the 
coefficients from the pole placement procedure. Although this controller 
design is difficult to interpret in terms of changing pole and zero po­
sitions, the overall closed-loop response y(t) (See Figure 57 on pige 
126) is not dramatically affected by the introduction of the delay.

These results demonstrate satisfactory performance of the adaptive con­
troller for processes with variable dead-time.

Lxpmnmeinl Result*
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Figure 58. Control Input u{t) for Experimer* 4
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Figure 62. Prediction Error e(t) for Experiment 4
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7.7  EXPERIMENT 5

This experiment was performed to investigate the feedback system's 
robustness to external process disturbinces. No disturbance easnrement 
ums m.ide, and hence feedforward control testing was not pe ormed.

Once agn in, the est imetor constants were set as in Experiments 2 and 4 
to ensure a robust system. The setpoint signal used is shown In 
Figure 70 on page 136. This sequence was generated to .ixamine the r eg u ­
latory nature of the adaptive system, since a constant setpoint was ap­
plied after the pretuning phase and a few setpoint step changes under 
automatic control. These dynamic set; j int changes ensured good conver­
gence and a fair controller design before disturbance testing was do-d. 
The disturbance was applied at time 1=20000 seconds, by switching on a 
fan to increase airflow over the heated bar at the point of temperature 
measurement.

The effect of the disturbance is clearly visible in the system output y(t) 
1 Figure 71 on page 136) However, the feedback system rapidly compensates 
for the disturbance and fairly good regulatory control is still, achieved. 
Figure 72 on page 137 details the control signal u(t) during the exper­
iment, which shows fairly similar b«ha\iaur to that of earlier experiments 
prior co cha introduction of the disturbance (cf. Experiment 2).

however, after the fan Is switched on large high frequency variations are
present in the control signal. These are explained by examining the con­
troller design, wheru the controller coefficients are given in Figure 77
on page 139. Figure 78 on page 
constant CKl is fairly large a 
This accounts for :h* large 
s*tpojnc tracking r e s u m e  (fo 
even larger amplitude 
However, the "richness" of

0 and Figure 79 on page 1-0. The PID gain 
thetime of switching on the disturbance, 
.riations in control signal durmgthe 
time T * 20000 seconds), as well as the 
after the disturbance was introduced, 
s supplied to the mstimator facilitated 
as a better process model was found.

Fxpei.nwntal Results 133



The robustness of the controller design is apparent here, since tha g.-iin 
of the controller CK1 is reduced in response to the disturbance and con­
sequently the amplitude of the variations on the control signal are de*
(.reds mg. At the same time, tie derivfiti'.e time constant CK3 incre.ises,
,il lowing thn controller to respond rapidly to higher frequency disturb- 
■Hici* variations. Similarly, the integral time CK2 dpproacnes a valuw 
nearer that of earlier experiments.

One* .iga in, the deadzone size fimi k) is ^iven in Figure 73 on page 137, 
m d  shows the low-pass filtered characteristic function dominated by 
u(t). As before, the high-frequency varia ons in control input do not 
substantially affect the deadzone, since it is band Iimited. This is par­
ticularly desirable in this case, since the high-frequency "noise” re­
sulting from the disturbance should not be passed through to the estimator

The error signal e(t) is given in Figure 76 on page 139, and shows a very 
similar pattern to earlier experiments. The disturbance results in a 
fairly large error signal, facil'tating substantial parameter updating. 
This is better seen in the combination of |e(k)| and frm(k) ;n figref 
re f! d=e5ebmz. , as well as in the behaviour of the parameter update gain
furv t ion a(k) ( Figure 74 on page 138).

The parameters themselves behave much as in Experiment 2 prior to  th*
application of the disturbance (See Figure 80 on page 14!, Figure 8 1 on

page Ul, Figure 82 on page 142 and Figure S3 on pige 162). They exhibit
iairly slow convergence, with large changes at each setpoint step charge.
Once the disturbance is introduced, further parameter changes occur de­
spite the setpoint remaining constant. As discussed earlier, this is a 
result of the rich control input signal in response to the disturba:ce. 
N o t a b l y  the b, and b, coefficients are subject to large changes. The in­
crease in bo implies a nett increase in forward-path plant gain, see: in
the ratio cf (b,/a,) at steady %tat*. Tha corresponding reduction in N D  

utroller gain ihum amem* correct, and i* evidenced in the r@duct;or of 
variations for bo'.h the control input signal u(t) and proems* output y t). 
The decreame in b, inplie: a faster plant model -fro. and is N'an:^"7.tAd

F.xp'ri&entjl Kesulta M 4



in incr*a»# in both ch* dcrivaciv* and Intfgraj timm constmnlm of th* " f-;'"
cnn:roller.

< /

ITiis oxr Ti ow nt  indicaiAS Lhat mxicrnai disturbances in ficc inprovm #5 
timAtur pprfrrmanc* in t.lie ajjpt.v* 'tystem. Robuscneis and dimiurbanca 
rrjpr.ti^n are ilao clearly illusintcd.
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Figure 76. Prediction Error e(t) for Experiment 5 
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Figure 80. Estimated Parameter aO for Experiment 5

Plot of 80 vs t i m e
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Experimental Results



4
T

t  ̂ .

" 6 -  - ' o . , - -  - ' ' T :  - T T
TIME

Figure 82. Estimated Parameter al for Experiment 5 

Plot of 01 vs TIME

"o ' "  0."' ' [ . M o m
":YE

Figure S3. kstimated Parameter bl for Experiment 5

Experimental Results



7.8  EXPERIMENT 6

These results were produced during a simulation run, in which the process 
was represented by a software model. The experiment was carried out to 
t-xamine estimator performance on a true nonminimum-phase plant, with 
variable dead-time and substantial parameter variations.

The estimator constants were retained as in Experiments 2, 4 and 5 Co 
yield a robust adaptive system in the long term. The only change was that 
a sampling internal A = 5 seconds was used. This faster sampling was found 
to affect parameter convergence, particularly the b, parameter governing 
the nonminimum-phase zero of the plant. The interval & == 5 seconds is a 
compromise between very fast sampling which may cause numerical problems 
(since the change in measured signals may be ve.y small from sample to 
sample), and poorer estimator convergence for slower sampling. Further, 
much smaller coefficients we-e used to scale the deadzone function 
m(k), since the noise levels and expected process-model mismatch could 
effectively be reduced to zero in the simulation.

The setpoint svquence ( Figure 84 on page 147) was exactly as for Exper­
iment 4, thus tMsting dynsmic setpoint tracking. The nominal process model 
used was

a, * 4E-06
b, " 4E-06
a, - 5E-03
b, ■ -5E-05

Thus the system is nonminimum-phase. At time T ” 12500 seconds, a dead 
time of * 120 seconds was introduced. Furthermore, at time T = 20000 
seconds the a, coefficient was reduced by a factor of 10. This resulted 
in a nett increase id open loop gain ot cen times. Such a situation may 
be encountered practically for example in pH control (Sohorg et al, 1966), 
ano is thus a good test for the adaptive* &y*iom.

Experimental Results



The signal ranges were normalised as in all previous experiments as

0 % y(t)) & 1

and a significant initial value was placed on the system output y(t). 
This is seen in Figure 85 op page 147). The setpoint tracking is good, 
with the nonminimum-phase characteristic clearly demonstrated as a slight 
deviation of the output in the opposite direction at each setpoint change, 
before the tracking response is followed. However, neither the introduc­
tion of the time delay nor the decadi change in open-loop gain affects 
the output response substantially. The nonminimum-phase characteristic 
is slightly more pronounced after the gain change, however this is to be 
expected since no attempt is made to modify the open-loop zero of the

Figure 86 on page 148 shows the control input signal for the experiment. 
The nonminimum-phase characteristic is manifested as a control signal 
"spike" in the opposite direction to that expected at a setpoint change, 
followed by the normal peak decaying to a constant input value. Note the 
absence of any fast oscillations on the control signal. This is a result 
of simulation, since although derivative control was applied no rapid 
external disturbances or fast process changes were present. After the 
decade change in gain, the steady-state value of the control signal is 
greatly reduced between setpoint changes. Thisis as expected, since the 
setpoint itself remained the same for a higher-gain plant.

The deadzone 8m(k) is described by Figure 87 on page 148. The large de­
viations in control input signal at setpoint changes result in small peaks 
on 6m(k), slightly desensitizing estimation during these periods. This 
is in accordance with the motivation for 0m(k), which is to overbound the 
process noise and modelling error which are correlated with the magnitude 
of the input.

The error signal ( Figure 90 on page 150) decays rapidly, and becomes very 
small by time T = 5000 seconds. Small spikes on the error are visible when 
the delay is introduced, and then quite a substantial error is present

Experimental Results
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after the gain change occurs. The plot of |o(k)| and Bm(k) combined ( 
Figure 89 on page U 9 ) , and a(k) ( Figure 88 on page 149) are included 
for completeness to describe parameter update behaviour. The peak magni­
tude of a(k) is again limited by a (a » 0,5), and it is clear that larger 
update gain is present both initially during convergence and when the gain 
chan## occurs.

The estimated parameters a,, b,, a, and b, are given in Figure 94 on page 
152, Figure 95 on page 152, Figure 96 on page 153 and Figure 97 on page 
153 respectively. The actual parameter values are superimposed for clar­
ity. It is seen for all parameters that they converge very closely to the 
real values in a short time. The b, coefficient shows a small steady-state 
error, related to the sampling interval & as discussed earlier. After the 
delay is introduced (T=12500 seconds) small changes occur in all the pa­
rameters . The b, becomes more negative, indicating a faster unscable zero 
which agrees with the Fade approximation to the delay term. The changes 
in the â, coefficients at this time are also due to the approximation of 
the delay by a pole-zero pair. The gain change (reduction of a, by a 
factor of 10) causes, rapid convergence of a, to its new value, and 
short-term deviations in the other parameters. The a, and b, coefficients 
remain unchanged in the long run, however, while the b, coefficient re­
aches A new value after fairly substantial deviations. These adjustments 
are due to the strong excitation observed in uft) at this time.

It is believed that convergence of the b , parameter for nonminimum-phase 
processes is strongly linked to the sampling interval A, since the 5-op­
erator approximation relies on fast sampling to yield discrete mode Is 
"close to" the continuous process. One of the effects discussed in 
"Delta-operator formulation of Discrete-Time Control" on page 33 is to 
alter the mapping of zeros from continuous to discrete-time, particularly 
ensuring that continuous minimum-phase zeros remain thus in the discrete 
equivalent. However, the approximation s = 6 is dependant on the sampling 
rate, and thus steady-state error in b , was found to decrease for sm/il !er 
it as discussed previously.

Experimental Results



The controller coefficients behave as in Figure 91 on page ISO, 
Figure 92 on page 151 and Figure 93 on page 151. Small adjustments in PID 
gain CK3 and derivative time CK3 are seen after the dead time is intro­
duced. Slightly larger changes in all three coefficients are seen after 
the gain change occurs, but none are very significant. In contrast to 
Experiment 5 where a plant gain change (b,/a,) resulted in a noticeable 
adjustment to the PID gain, the change in a, here only slightly affects 
the PID gain. This is difficult to interpret, however it must be remem­
bered that merely an approximation to a PID controller 1& developed here 
from a pole placement design. Thus the closed-loop performance is a better 
indicator of the success of the controller design, clearly demonstrated 
in the process output y(t). If better agreement with intuitive PID con­
troller settings is desired, a more suitable approximation may have to 
be found (See Appendix D).
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8 .0  CONCLUSION AND RECOMMENDATIONS

The implementation of a robust adaptive control system has been described. 
The need for adaptive systems has been discussed, and background to the 
problem of robust adaptive controllers has been examirei in a review of 
current approaches to estimation and control.

A new transform domain has been developed, and a novel operator, viz. 
the 5-operator, used for all formulations of process models and controller 
structures. This has been shown to have good numerical properties, as v il 
as exhibiting a close correlation between contin-ous-time system models 
and their discrete counterparts. Thus process models and controllers 
could be examined in a continuous-time framework, giving results which 
were intuitively easier to interpret. Furthermore, higher sampling rateu 
were possible which removed many of the control problems inherent with 
slow sampling.

Robust system identification has been facilitated using a general system 
model, allowing for unmeasurable deterministic disturbances and measured 
random process disturbances. This resulted in signal conditioning ele­
ments to "bandlimit" estimation and henca the validity of the estimated 
model. A sophisticated relative deadzone was used to prevent parameter 
estimation on meaningless data. This was seen to improve robustness to 
pc>-. es% noise aa well as "modelling error noisa'*, in the absence of per­
sistent excitation. 0-her techniques such as covariance modification 
(exponential data weighting) have been used to maintain algorithm sensi­
tivity to process variation-. The numerical robustness of the estimation 
algorithm was further enhanced by using a covariance factorization tech­
nique, namely Bierman's UDÛ " factorization.

The rohjst controller design has been accomplished by closed-loop pole 
assignment. This has been shown to have good robustness properties, in 
particular allowing for the control o' ncnminimum-phase processes. The 
xtructurp of the estimator has been exterded to allow the estimation of
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a "disturbance transfer function” , from which a feedforward control block 
was designed. A second-order pole placement solution was developed to 
yield an equivalent PID-controiler structure, providing an intuitively 
appealing form for industrial implementation.

A large part of this work has focused on real implementation issues, in­
volving estimator parameter selection, signal conditioning filter set­
tings, choice of closed-loop performance criteria and some software 
considerations. Fundamental choices such as model order and sampling rate 
have also been discussed.

Practical results have been presented from tests of the algorithm on a 
physical process, typical of an industrial temperature control applica­
tion. These results have demonstrated very good performance of the con­
troller under a wide range of conditions. Closed-loop ccntrol performance 
has been investigated for a real plant with varying dead-rime, as well 
as under the influence cf a strong external disturbance. The results in­
dicated very good robustness of the closed-loop system for all cases 
tested.

Furthermore, estimator parameter selection issues were highlighted during 
practical testing. A tradeoff became apparent between long-term system 
robustness under possibly "difficult" process conditions, and accuracy 
of process model in the short term. This was also found to relate to the 
choice of closed-loop performance objective It was seen that for tight 
performance specifications, an accurate process model was necessary to 
ensure \ood" controller design and well-behaved control signals. When 
the process mod_1 accuracy was lower, poor controller design resulted and 
the control signal exhibited large variations to satisfy the sar.ie per­
formance objective. Hence under these circumstances a further compromise 
may be necessary> in the relaxation of the closed-loop performance re­
quirement

A set of resul .s prcciced by simulation further showed good performance 
on a true nonminimum-phase plant, with variable dea<! time and subject to 
a large change in ouan-loop gain. Thuj the overall rcbustness of the
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adaptive controller has been thoroughly examined, under many practical 
circumstances which may be encountered in industrial processes.

It is believed that this research is significant in that a number or un­
tried theoretical concepts have been successfully combined to give a re­
bus t practical adaptive controller. These are summarised as:

» A new transform domain for control formulation, allowing better cor­
respondence between continuous- and discrete-time models.

e Robust estimation involving a generalised process model to include 
external disturbances, deterministic signal nulling and other signal 
conditioning, and a sophisticated relative deadzone. A covariance 
factorization technique is used to improve numerical stability of the 
algorithm.

» Robust pole assignment controller design with a PID-equivalent form 
used to give a simple implementation, and the facility for feedforward 
control.

The limitations of this research are evident in that the controller is 
not yet fully configured for industrial Implementation. Some areas which 
may require further work ate

e Investigation of the suit' -ility of the PID-equivalent form ns-wl, and 
experimentation witi >r possible approximations.

o A more complete understanding oV the choice of closed-loop poles for 
pole placement.

o Testing of the feedforward ccmpensatior a) .. eU for with the con­
troller.

e Eva'uation cf performance for a wider range of real rrocesses.
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Some ideas are given in the following discussion concerning possible forms 
for an industrial working version of the adaptive controller.

8.1 TOWARDS AN INDUSTRIAL IMPLEMENTATION

This controller could be implemented on a dedicated microprocessor-based 
controller such as a PLC or other device. Alternatively, it could be in­
corporated into a larger direct digital control (DDC) computer system. 
This would allow one software module to serve many control loops, pro­
viding substantial gain at small cost.

The algorithm could be applied merely in an automatic tuning sei.. •-, >
to estimate process models .nd calculate controller coefficients wir-h 
are downloaded to separate controllers, such as PID modules (either in 
software or remote hardware). On the other hand, the algorithm could be 
applied in a true adaptive senr.e, to continually track variable processes 
and adjust control law coeff.-ints online. This latter application would 
require careful attention to the usur interface as described by Astrom 
(1987), Wittenmark and Astrom (1981). They suggest that while a "black 
box" implementation is impractical and probably undesirable for general 
applications, one should reduce the number of user-specified parameters 
to a minimum.

One such possibility is to introduce performance related dials, is. dials 
relating to the ulceed-loop performance of the system. This may typically 
be closed-loop bandwidth, or possibly gain or phase margin. The user 
would then select a desired performance objective and the adaptive con­
troller parameters would be derivjd automatically. The constant parame­
ters to be set s priori are easily related to closed-loop bandwidth, fur 
example. The closed-loop polynomial A has been shown to be* limited by 
closed-loop bandwidth, and the ‘>andlimiting filter on the estimator also 
follows naturally. If the sampling interval is made variable, this too 
may be deteimined by the closed- loop bandwidth
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Such concepts have been documented by McDermott and Mellichamp (1984) who 
propose automatic setting of the sampling rate and closed loop polynomial 
for pole placement control design. This is done based on an optimization 
a‘ the sytem step response. Another application is given in Kraus and

on the transient setpoint step response. This uses an implicit design 
method based on a type of "expert system" approach, in which the control 
engineer’s expertise is utilised through knowledge-based rules built into 
the controller iesign. In our case, the explicit nature of the estimation 
and control requires a direct relation between the desired transient 
performance and the constan. parameters used by the adaptive system.

Finally, it must be remembered that the sophistication of an adaptive 
controller does not imply global applicability. Prior process knowledge 
may indicate in many cases that a fixed-parameter controller will be very 
successful. The adaptive controller, being inherent.y nonlicear, demands 
careful application to real processes. As stated by Wittenraark and Astrom 
(1984):

"The theory deals with idealized situations where all the conditions 
are under control. The theory thus gives the ultimate limit of what 
can be achieved and expected under idealized conditions. The prac­
tical situation is, however, such that, there are all kinds of vio­
lations of the theory."

However, good performance has been achieved on a real process luring this 
work. With <_arefui extension of the theory, it is believed that a prac­
tical industrial version of this adaptive controller is realisable. Fu­
ture work may also include testing of the feedforward compensation 
included with the controller, as well as application to nonlinear or even 
op#n-loop unmtabl# procmmmom. The suitability of other PID approximation# 
from a pole assignment design could also i - examined.
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9 .0  APPENDIX A : CONVERGENCE OF RLS ESTIMATOR WITH 

DEADZONE
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CONVERGENCE OP RLS ESTtMA OR WITH RELATIVE DEADZONE

\ brief convergence proof I# pr#:#nted for the RLS estimator wlch a 
deadzone aa defined In chi# work. The 6-operator fon# im retained. For 
more detailed prr-'fa, see Goodwin and Sin (1984 : 61), Goodwin at al 
(1986). Kreimmelmeier and Ander#on (198b). The treatment given here la
baaed largely on informal notes provided by Prof. 1.M . Macleod (19 57).

A .l  Lemma 1 (prelim inary lemma)

Given a process model defined by 

Ay,(k) - Bu,(k) + n,(k) 

wlch y,

Uf,,

D
f ---- '

D'E

D

D'E

There txiat conatanta o, a (0,1) 
2 0

Such that |n,(k 1 | ^

m(k) la the aolutr

dk) " o,mlt-l) + t, + t,|0'k-l)| f c,|y,k-l)| , m(d) » m,
(A.l)

o, a (o,',i).
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Proof: Rewriting the process model as

yf(k) * Hu{(k) 

where H - H,(l + H') ;k ]
the "error transfer function" is given by 

K,H' * BB'/AA'

We can then describe the filtered error as 

" D ^ AD .

h O' ED'

1 BB
E T

where £ is a bounded random dsiturbance term.

From Goodwin an Sin (1984 : 488), since E and A* are s".able thera exist 
constan’a K,, K,, X, < - and X e (0 ,1) such that

A closed-form solution for the equation A .1 is

m(k) ® mg d /  + Oe^  ̂ |D(k"j)l + t alvCk-J)!]

Ve resu 1 c follows by choosing

= X 
% K, 
k 0 
2 K,
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A .2 Assumption 1

Constants t ,, c,, t,, o a, m(0) and a filter 1/5(6) are 
that

i nf(k) | S m(k) for dll k

in accordance with the preliminary Lemma.

A.3 Lemma 2 (after Goodwin and Sin 1984 : 60)

The following properties hold for a RLS parameter es
any system described by

y ■ (B/A)u + d + (

subject to assumption 1.

1 + K k - l ) ‘»(k-l)

(b) lim )6(k) - eck-l)j - 0
k-«B

(c) For all k, |9(k) - 8,| i u(P,)-8(0) - 8,|

where u(P,) * condition number of matrix Pe

and is the maximum eigenvalue of P,

^min t^e u ^n ^mum eigenvalue of P e

9, denotes the parameter vector for a suitable

Note: A ke\ fact is that the above, properties hold
control law.

assumed known =‘:ch 

(A .2)

it.mator applied to

nominal model (B/A 

irrespective of the
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Proof: Consider the non-negative non-increasing Lyapunov function

(A.3)

Now, from the algorithm of RLS : 

6P(k-2) :

Applying the matrix inversion lemma gives

1 - (i-a(k))f(k-l) P(k-2)f(k-l)

Also from the RLS algorithm 

66(k-l) » ,(k) _____[

Furthermore

(A.6) 

(A.7)

(A.8)

where 8, is a vector of parameters satisfying the nominal process model 
as before.

r

ith 9(k-1) * 8(k-!) - 6, by definition

sing A.5 with A.6, A.7 and A.8 gives (in A.3)
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TP* \

\1 + (l-a)fTt ,

having dropped the argument k.

From the det Lnition of the deadzone

m(k)
0 if |e(k)| S Bm(k)

3f(Bm(k),e(k))/e(k) otherwise 

It is clear that a(k) is bounded by a S o for all k.

Also, using the definition of ft, viz.

9 = + l/(l-o) , > 0

1 * (l-a)4lP* 1 + (l-o)41?♦

S 8* - tk

Substituting in A.10 gives

66V S

since In,I S i

Also note that |e| > 8m for algorithm updating; deadzone definition pre­
vents update otherwise.
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Then 16V S\ * I” (8* - t. - S’)

But |f(Bm.e)| S |#| for Bm & 0

Thus 66V

s* b  + * pil

I S |e| for B®

! "'""I 1
s’ b  t  «Tp*i

Which implies that the Lyapunov function 

Result (a) follows directly from A.12. 

The remaining results follow as in Goodw

(A.12)

V ..a decreasing.

.n and Sin (1984 : 61).
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BIERMAN'S UDU COVARIANCE FACTORIZATION

The algorithm used in this work was taken from Ljung and Soderstrom (1983 : 
329). An analysis of part of the algorithm is presented to document the 
incorporation of a deadzone gain into the factorization sequence, which is not 
oovious c,t first glance.

The covariance matrix update is given by

(X is a forgetting factor)

We factorize P(t) as

" U(t)D(c)uht)

where U(t) is an upper triangular matrix with all diagonal elements equal to 
1, and D(t) is a diagonal matrix.

Then B.l becomes

u(c)Dmuhc) « p irt-uou-ouh t-i) -

where f(t) * U (t-l)f(t) 
git) * D(t-l)f(t)
Bit) * V + *T (t)P(t-l)t(t). 

* X + fT(t)git)

which given

I.jung and hodeistrom (1983 : 330) show that the term in brackets can be 
factorized as
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D(t-u - - Oic)n(c)o\t)

giving the relationshi{-»

U(t) - i'(t-i)Dif)
D(t) " D(c)/l

Their algorithm is summarised as follows :

At time t, compute vector L(t) and update U(t-l) and D(t-l) by performing

6, * X

2. For j * 1 ... d repeat steps 3 - 5 .

"j "j

i. For i a j ... j-i repeat step 5 (if j - 1 skip step 5)
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«. c m

A discussion is now &,lven to include the deidzcne update gain in the 
recursion. This is taken from the proof given in Bierman (197? . '?), and 
is based on informal notes provided by Prof, I.M. Macleod (1987). To avoid 
confusion, we call the deadzone update gain b(k).

For convenience, the equivalence in notation with Ljung and Soderstrom 
(1983) is tabulated be low.

Ljung and Soderstrom

V U
D 1)

a #
v 6
f f

3
X
K V

r X

T*e equivalent algorithm is then as follows in Bierman's notation

«T .

v * [f,

(ii) d, ■ d | r/a ,
o, * r + v,f, 
K /  - [«, 0 . .

I ■ 1

For j * 2 ... n cycle through steps (iii) - (vi) :
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\ '  " / ' j - .

where U * |Uj . . . , 0 - (Uj . . . G j

(vii) Kalman gain K is K * Kn>I/®n 

Further, in the notation of Bierman we then i

u66T - C[ff - (DOT «)(53T«)T /a]0T /r 

- Cp .
where U ■ U(k-I)

D - Dik-1)
U " U(k-2)
D - D(k-2)

If the bracketed term in B.4 is factored as UDU , then we have

„,Tu -  uu*
D ■ D/r (B.))

Lierman proceeds by using the Agee-Turner factorization update theorem 
(cf. Bierman 1977 : 44) to give the bracketed term in the above ex­
pressions , ending with a simple representation for U and D :

(B.6)
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= c /.v^/i4 for 1 - 1 .. j-1

(B.7)

(B. 8)

These expressions are backward recursive, from j * n down to j * 1. Now, 
c m u s t  include the deadzone update gain b(k), thus :

ii ierman continues to develop a different representation for d ., since at 
this point the recursions B.6 - B.8 update the diagonals d^ es d iffe r­

ences . Such calculations are susceptible to loss of numerical accuracy, 
c he prevention of which is the very motivation for covariance 
factorization. The equations B.6 and B.7 are rea ranged as

d, j.j

i / ^ _ ,  .  u Y , y , y  -  i / . j  *  y , "

■ A -
b/c^ . . . »  -(r +

(1.10)

( B . 1 1 )

it foilows that

1,'c = -o /b from B 11.

nlnate the from the algorithm, B.7 gives

w h i c h  is 'he same result as in step (iv) of the algorithm. 

Similarly, us inf. B.8 and realising that

X . » v.Cj/dj (from the algorithm)
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we have

(substituting from the algorithm)

The remaining developments are as in Bierman (1977 : 80), with the mociificat

Thus the algorithm is modified to include a deadzone update gain b(k), 
simpiy by replacing steps (v) and (vii) by B.12 and 8.13 respectively.

Going buck to the notation of Ljung and Soderstrom (1963), we modify the 
original algorithm by substituting in step 3:

where b still represents the deadzone update gain. 

Also add the following after step 5 :

which will effectively alter the normalised Kalman gain t  to update L(t) in 
step 6 as :

= bPv/a

(B.13)

L(t) = C ( t ) b / S d
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PULE ASSIGNMENT FOR HIGHER-ORDER CONTROLLERS

C. 1 Introduction

The impleme'itation of the pole assignment controller developed in this 
research can be extended to controllers of any order. A limiting case is 
presented ir this Appendix, using a third order estimator and a third 
order controller in both its proper and strictly proper forms.

This estimated model structure allocs for effective parameterization of 
up to a third orfer plant with no dead time, or a second order plant with 
dead time. This result is arrived at by using the well-known first-order 
Fade approximation to the element e in a system transfer function, to 
replace the delay element with a first-order pole-zero pair (Ralston 1965 
: 278).

C .2  S tric tly  Proper Implementation

We develop the plant model and controller using the following polynomial

degree(Al = 3 
degree(B) = 2 
degree(E) •* 3 
dcgree(D) ” 1 
degrec(S) * 0 
deg'-ee(P) = 2 
degree(L) = 2

where all polynomials have the same meaning as usee in the 
preceding discussions, and D and S are simply defined as

0 = 5  (for a constant d.c. offset disturbance)
5 = 1  (no deterministic component in the setpoint)
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POLE ASSIGNMENT FOR HIGHER-ORDER CONTROLLERS

C. 1 Introduction

The implementation of the pole assignment controller developed in this 
research can be extended to controllers of any order. A limiting case Is 
presented in this Appendix, -sing a third order estimator and a third 
order controller in both its proper and strictly proper forms.

This estimated model structure alleys lor effective parameterization of 
up to a third order plant with no dead time, or a second order plant with 
dead time. This result is arrived at by using the well-known first-order 
Fade approximation to the element, e in a system transfer function, tr 
replace the delay element with a first-order pole-zero pair (Ralston 1965 
: 278).

C .2  S trictly  Proper Implementation

We develop the plant model and controller using the following polynomial 
orders:

degree(A) = 3 
degree(B) =* 2 
degree(E) * d 
degree(D) » 1 
degree(S) * 0 
degree(P) = 2 
degree(h) * 2

where all polynomials have the same meaning as used in the 
preceding discussions, and D and S are simply defined as

D 86 6 (for - vonsv-’nt d.c offset disturbance)
S = 1 (no deterministic component ir. the setpoint)
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The controller order emerges from the solution of the Diophantine 
equation, which is presented Inter in this section.

The structure for the strictly proper controller is

Gc (6) = p,*' + p,g + p,
6 (0'"+ 1,6 +1 ,)"

r

Note the presence of a pure integral term in the denominator of G_(6),

To design the controller, the coefficients of the polynomials L and P must 
be found. This is done by solving the Diophantine equal ion (from 5.5)

ALDS + PB * A* (C.2)

where A is the desired closed loop characteristic polynomial, given by

A = 6* +• 8 ,6 *  *• .............  *  a,62 + a ,5  + oe

Note : the order of A is twice tne order o, the plant denominator
polynomial A This is used as n general rule in all cases.

The set of simultaneous equations represented by equating coefficients 
in C.2 can be expressed in matrix form as follows:

0 0 0 " " 1
1 0 0 1, **

a, a, 1 , 1, #.
a, a, .1, b, b. Pi 8,

a, a b9 b, b. Pi
0 0 a, b. b, .P'_ a ,

0 0 V
(C.J)
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Note : the matrix is rot square, in that an additional degree of freedom 
exists. This allows an easy closed-form solution, thus:

1. I, - 1

2 . p, " a , / b,

3 . 1, - e, - a,

4. p, » (X, + X, - X,)/Xe where

o X, - b1o1-b1a lak-bia 14bla,a,

o X, ■ b, (a , 1, -a,11,4-a, lz-a,a , 1,)

o X, - b1(ael,+b1p9-a,a1ll-al,l1)

e X, - b2be-b,,a 1-blz+a,blb,

5. Pi ™ (V, * Yjl/b, where

o Y , « a 1-a2ae-a1l,-a11l, 

o Y, =- a,a, 1 - a, 1,-b ,p,

6. la » (a, - b,p, - b,pj/a,

This solution assumes that none of the plant parameters are zero. However,
if any of the b^'s are zero, simpler solutions can be derived, thus:

l f b ; » 0 ; b , # 0 :

1. I, " 1

2 . p ,  = e ,  / b.
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3 .

U . 1„ = - n, 1, - a ,

5. p, - (a, - a,1, - b,p,)/b,

6. p, “ (o, - a, la - a,1, - b 1p,)/bl

If n, " 0 ; b, 0 :

1. 1 , - 1

2.  p e -  e c /  b 8

3. 1, = a, - a,

4. p. - (X, + X,5/X, where

" X, ■ b1(al-a,afc*fl,a,I,+8,3,)

o X, * bg(; , 1 , a,-a,+4:0*1

5. p, " (a , - a,a . + a,a,l| + a,a, + a,b,pi)/b,

6. 1„ = (a, - b.p, - b,p,)/g,

l f b , " 0 : b ,  " 0 :

2. p, " a, / b,

3. 1, " a, a,
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&. I , - * .  -a%l.

5 . p ,  " ( a ,  -  .1, 1 , ) / b ,

6. P: " (=% - #i),

C .3  P ro p e r C o n t r o l le r  Im p le m e n ta tio n

We develop che eetigmtor model uming the meme polynomiml ordere, vim. :

degree(A) - ]
degree(B) - 2
degreefE) " 3
degree(D) a 1

degree(S) - 0
degree(P) - 3
degree(L) - :

The only d ifference :*  mm allowLn% of e th ird  order numerator 

polynomi#! P in th» coirrm ilm r.

The e tructur* Per che proper contro ller 1#

G^(8) " P,&'+P:4' + P i * + P ,
5(g' + i,a + i.)

(C.^)

Again, we aolve the Diophmntine equation 

ALDS

The ^et of mimultaneoiw equacionm repremented by wi^uacing coefficientm 
in 5 .6 for LhiL c.i&e can be expremmed in matrix form a# (ol Iowa:
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Unfortunately, a closed-form solution for this matrix is extremely dif­
ficult to obtain. Thus numerical matrix methods are used to solve this 
system for the ccntroller coefficients.

This controller is the most general form possible with a third order 
system.

C .4  Software Realisation

The strictly proper and proper controllers may he implemented in many 
different forr : . The numerical robustness of each of these implement/i- 
tlens it similar, and depends on the relative magnitudes of the controller 
coefficients (p^'s and L's). The strictly proper structure is used to 
demonstrate three possible implementations, with the proper structure 
illus1 rated in a fourth implementation.
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C .4 .1  Controller Form

The block diagram for this form is given in Figure 98. The pseudo-code 
implomt-ntat ion is as follows:

C0XTR0I2RR = SETPOINT - Y 
U -  P0*C2 ,  P l*C l + P2*C0 

COD - CONTROLER& - L0*C1 - L1*C0
C1D ■ CO 
C2D - Cl
CO -  C0D*DELTA + CO 

C l -  C1D*DELTA + C l 

C2 -  C2D*DELTA + C2

u

p . po
C 2C lC O

Figure 98. Controller Form Implementation
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C.4.2 Controller Form with Cascaded integrator

The block diagram for this form is given in Figure 99. It is an intu- 
iviv«ly appealing implementation since the action of the integrator is 
-le.irly il lustrated. In pseudo-code this is:

C1D - CO - L0-+C2 - L1*C1 
U - P0*C2 + P1*C1 + P2+C1D 
COD - SETP3IST - Y
c :d ■ ci
CO - C0D*DELTA + CO 
Cl » C1D*DELTA + Cl 
C2 - C2D*DELTA + C:

u
i

p . P‘ p o

0 2C l

FiRur* 99. Controller form wlih Caacaded Integrator
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C .4 .3  Observer Form

The block diagram for this fora is given in Figure 100 In pseudo-code this 
becomes

U - C 2

CONTBOLERR » SETPOIXT - Y

COD ■ P0*C0STR0LERR
C1D "C 0  + n^CONTROLERR - L0»U
C2D = C 1 +  F2ACONTROLERR - L1*U
CO = C0D*DELTA + CO

Cl ■ C1D*DELTA + Cl
C2 » C2D->DELTA + C2

p 0 P"

u
c i C2

Figure 100. Observer Form

Appendix C : Pole Assignment For Higher-Crder Controllers



C.4.4 ARMA Form

The proper controller is illustrated in a form typically used for digital 
filtering applications, viz. the ARMA form. This is shown in Figure 101 
on page 188 _ and the pseudoj-code for software realisation is given as:

CONTROLERR = SETPQTMT - Y
V * P3*CO.VTROLERR + P2*C0 + Pl+Cl + P0*C2 - L1*C3 - L0WC4
COD » CONTROLERR
C1D = CO
C2D = Cl
C3D = U
CAD * C3
CO = C0D*DELTA + CO
Cl C W D E L T A + Cl
C2 * C2D*DELTA + C2
C3 C3D*DELTA + C3
C4 C4D*DELTA + ct
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C4
C O

- :> u

p a

Figure 101. ARMA Block Diagram Implementation of Controller
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PID Approximations from Pole Assignment

In addition to the PID approximation used in this work, many others are 
possible. Another two arc presented here by way of illustration.

D.1 Direct Formula

This approximation is based on equation 6.12, which is the direct formula

M(») " K^[ 1 + t/(Ty) +

Rearranging, and substituting s = 6 we have 

M(&) " U(5)/E(5)

:i*a)TiTd6i + (T i ^ Td}6 + r

6(5 + 1,)

Then p, » K (l+a)/a

P, ” Kc (T. + aTd )/(T.Tda) 

P, -

1, ■ 1/Tda

Giving the approximations 

Tj » l/(al,)

K " P:m/(l+a)

T ( * pi/p, - aTd

■ P»53 4 P»5 * Po
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"  P ,/P , - V I , (D.l)

Tt Is significant that this solution depends on the fixed constant a , where 

0,05 Sa S 0,2 typically.

D .2 "Cascaded" Form

The second alternative approximation comes from equation 6. 14, which 
corresponds tc a "cascaded” realisation. This is equivalent to the other 
continuous PID formulae if T > 4T^, as mentioned previously. Then

M(*) « K . U  *  ̂ '

L ' V  *

which is rearranged as follows (with the delta-operacor approximation s * 5): 

M(6) - U(*)/E(6)

- 'c P W  * "/Td" * '1
I d  + i/T,.) ]

» Pi6' ^ Pi6 + P*
+ 1.)

Then p, " K /a

P, - * Tj)/(T^.)

p. - v w

1. « l/Tj«

Giving the approximations
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These approximations are again dependant on thn fixed low-pass cutotf 
value a, which can vary from manufacturer to manufacturer in industrial 
PID'#. Further experimentation is require a to determine the suitability 
of these alternatives.
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PROGRAM ADAPT: ptive Cent’oiler)

M.L.
20 M.rch

(SR+)
($1 TYPEDEF.SYS) 
{51 GRAPniX.Syg) 
(SI KERNEL.SYS)

for Graphic#)

C0\ST ZERO - 0;
EPSHP - 0 .0001%^ 
UMAX - 1.0;
CTR2 » 10.0; 
SIGMA * 0.9N; 
EPSO - 0.002; 
ALPHA " 0 . % ;  
TAUTO " 4500; 
SPSl - 1.0; 
SPMAX » 1.0,
T2 - 400;
T4 « 1)00;
T6 - 3000;
M  » 500u;
LAMK - 0.97;
T10 - 10000; 
CFAC - 0.3;
MAXU - 1;
THIS » 0.0; 
TUIT = 0.0; 
XTEIOO « 0.0; 
TCOO - 0.0;

WE - 0.025;
UMIN - 0.0;
GAMMA - 600;
EPS1 - 0.002;
EPS2 » 0.0002; 
BETA - 1.4;
TSTOP - 32000; 
SPMIN - 0.0;
T' - 300;
T3 = 900;
T5 - 2500;
T7 - 3500;
TI2 " 15000;
T9 " 7500;
Til - 12500; 
vgPAX - 10.0; 
(."SPAN - # 7;
LZERO - 0.5402299 
DELTA - 20;
SIZE - 4;
YOO » U.O,

T13 
T14 
ri5 
Ti&
T17 m 27500; 
T1S - 30000;

' 17500; 
' 20000; 
' 22500;

TYPE AVEC - ARRAY!1..5| OF REAL;
THVEC * ARRAY[1..4| OF REAL;
EAVECTOR - ARRAY[l..2| OF REAL;
UVECTOR * A RR AY !I . 6] OF REAL;
VECTOR - ARRAY|1..7) OP REAL;
1XTVECT * ARRAY[1-.SI2L] OF INTEGER;
ST - STRISG(&)

VAR
(V#rl#bl#* for EmLlMCor and Controller)
Al. AO, Bl, BO : PFAL;
YHAT : RF.AL;
M P 1 .  XKP2 : REAL;
r.XIT. Aim), RFLAG BOOl^AX;
YLF. CDr. CDFl, CKl, CK^. CKT : Ki'AL; 
EIG1, NZO, AZOSE . REAL,
Y.U,LOUT,Y:\IT R::AL;
ASTAR A.Tl;
YBAK. E, UBAR <L.\L; 
yZ, H!IZ : M AL ;
SP. : REAL. I 
C M ,  CI/:, CPI, TJ : RIAL.
THETA, K. 'lAM, Y\Lll TIIVB:,
YBAk:. B T 1EAL;
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UVEC : IT.KCTOR;
EAVEC : EAVECTOR;
PHIK1, D. ETH : THVEC,
T, TO'J : DfTEGER;
{Variables for A/D, D/A Conversion)

V O L T M Z  : REAL;
COUNT : INTEGER;
BA3E_ADDRESS, CONMND.REGISTER. STATLX_REGISTER : INTEGER; 
DATAJtEGISTER, COMMAND.WAIT, VRITE.WAI", READ.WAIT : INTEGER; 
CSTOP, CCLEAR, CERROR, CADIS. GAIN.CODE : INrrcER;
RRANGE, ROFFSET, RFACTOR : REAL;
STATUS : INTEGER;
HIGH, LOW : INTEGER;
TEMP, DATA_VALUE, ERROR1, FRROR2 : REAL;
ERRFLAG : BOOLEAN;
CDAOUT, EXT.TRIGGER, INTVAL : INTEGER;
RANGE, OFFSET. FACTOR : VECTOR;
(Variables for Graphic Interface)

DRAWCOUNT : INTEGER;
NEWX.OLDX : INTEGER;
NEWY.OLDY . INTVECT;
OLDYVAL.NEVYVAL : INTVECT;
OLDSP.NEVSP : INTEGER;
FLASH : BOOLEAN;
CONSTAT : 5TRING(6j

(Variables for Real Time System Clock)

SYSTIME : ST,
INiTTIME : REAL;
CH : CHAR,
HR.MIN.SEC. NEWTIME. OLDTIME : REAL;
CD : INTEGER;

(Files for D a M  Logging)
OUTFILE : TEXT;
OUT?ARMS : TTXT;

(General Graphics Plott. 1:;̂  Proc-'dures)

PROCEDURE DRAWSP; (Plot* Setpoinc Dimplmy)

VAR I : INTEGER;
FILLING : BOOLEAN;

SELECTSCREEN(2);
CLEARSCREEN;
SELECTSCREEN(l);
COPYSUREEN;
SELECTSCREEN(2),
FILLING." TRUF;
GOTOXY(l,6);
WmiTCCSETPOINT');
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SELECTVINDOW(
SELECTVORLDC':
SETCOWRBLACK;
(DRAWSQUARE(0.0LDSP,R0l'NDiXMAXGLB/l2).0.FrLLING);)
DRAWLIXE(0,0LDSP.R0l'ND(\MA%CLB/12).0LDSP);
XEWSP:" ROUXD(SP*lOOO);
OLDSP:- XEWSP;
SETCOLORWHITE;
DRAWBORDER;
(DRAVSQLARE(0.XEWSP.R0l?m(XiAXGL:/12).0.FILLING);)
DRAWUNE(O.XEWSP.ROUND(XMAXCLB/12),SEWSP);
GOTOXY(2,7);
WRITE(SP:5:2);
COPYSCREEN;
SELECTSCRLEN(l);

END;

PROCEDURE DRAWTIME; (Plots System Clock Time)

BEGIN
SELECTVIND0WC8);
DRAWBORDER;
GOTOXY(2.2);
WRITEC'TIME');
GOTOXY(2.3);
WRITE(T);

END;

PROCEDURE ISITGRAF; Graphic Display}

VAR I : INTEGER;
BEGIN

INITGRAPHIC;

DCFISEW0RLD(1.0,0,XMAXGLB.1000);
DEFISEWINDOW(5 ,ROUND(XMAXGL8/9) ,0 .X-MAXGLS, (YMAXGL8 DIV 2>-10); 
DEFINEWINDOW(6,ROUND(XMA%GLB/9).(YMAXGLB DIV 2)+10.XMAXGLB, YMAXGLB);

DEFiSEWORLO(2,0,0,«X«D(XMAXGLB/12),1000);
DEFINEWINDOW(7,0,ROUN:(YMAXGLB/6).ROWD(XMAXGLB/12).YMAXGLB);
DEFINEVIXD0W(a,0.t,ROUND(XMAXGLB/12).ROL'XD(YMAXGLB/g));

SELECTWORLD(l);
OLDX:- 0,
O LD YV AL p] .-  0;
OLDYVAL|2|:» 0;
FOR I:- 1 TO SIZF Du 

0LDY|I):- 0;
DRALCOV^T:" 0;
SELECA'IXDOWC);
DKAWBORDER;
SELECTVISDOW(6);
DRAWBORDER;

END;

PROCEDURE D R A W O U T P V r m .  Y2 : REAL); (Plot* Tf c#a of
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-

Variables Y1 and Y2)

VAR I : IXTEGER
BEGIN

SZLECTWORLDU);
IF ABS(Y]) > 1000 THEN 

XEWYVAL(l|:- ROCXD(lOOO^Yl/ABf(Yl)) 
ELSE

WWYVALfll'" ROl'XD(Yl);
IF ABS(Y2) > 1000 THEN

NEWYVAH2|:" R0UXD( 1000*Y2/ABS(Y2))
ELSE

NWYVAL|2|:= BOLXD(Y2);
IF DRAWCOUNT > XtiAXGLB THEN 
BEGIN

SELF,CTSCREEN(2);
CLEARSCREEN;
SELECTVINDOW(5);
DRAWBORDER;
SLLECTWINOOW(6);
DRAWBORDER;
DRAWS?;
COPYSCREEN;
SELECTSCREEN(l);
DRAWCOUNT:* 0;
OLDX:- 0;

END;

KEVX:" DRAWCOUNT;
SELECTWIND0W(5);
DRAWLINE(OLDX.OLDYVAL[ 1) ,XEWX.XEWY\'AL( 11 X  
SELECTWIND0W(6); 
DRAWLINE(OLDX.OLDYVAL|2),XEWX,NEWYVAL|:]); 
OLDX:" NEWX;
OLDVVAL(l):" NEWYVAL[1|
OII.Y' AL[2]:" NEWYVAL(2]
DRAWCOUNT:* DRAWCOUST + 1;

END;

FUNCTION TIME : ST; {G*tm Symt«m Tim# from R#al-Tim* Clock) 
TYPE

REG1ST0RS " RECORD
AX,BX.CX,DX,BP,SI.DS,ES,FLAGS: INTEGER;
END;

VAR
REGISREC : REGISTORS;
HOUR , MINUTE . SECOND . STRING!2)
CX . DX : INTEGER;

BEGIN 
WITH REG:SREC DO 
BEGIN

AX S2C SRI. 8;
END;
MSDOSIREGISREC);
WITH RKGISREC DO 
1EGIN

STR(CX SHR 8 . HOl'R);
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<*' -

STR(CX HOD 256 . MINUTE);
STR(DX SHR 8 , SECOND);

ESO;
IF LEMmftNOCR) - 1 THE)f I\SERT('0\M0MX.]);
IF LEXGTH(MINUTE) - 1 THEN IXSERT('o',MINUTE,1);
IF LENGTH(SECOND) = 1 THEN INSERT('0'.SECOND,1); 
TIME HOUR MINUTE + + SECOND;

END;

PROCEDURE RLSO; {Inltimlimmtion of RLS Algorithm)
CONST NPAR = 4;

NUVEC = 6;

VAR
£0, El : REAL;
J : INTEGER;

YBAR1:= 0;
BJ:" 1;
FOR J:* 1 TO NPAR DO 
BEGIN

0;
THETAIJ):- 0; 
PHIK1|J]:- 0;
D[J]:« CTR2;

END;
FOR J:- 1 TO NUVEC DO 

W E C ; j | : »  0;
El:" 2*0.707*WE;
EO:* WE*VE;
EAVEC(l):- -El; 
EAVEC[21:- -EO;
GAM(1|:" GAMMA^EO; 
GAM(2]:" EO;
GAM[3]:« GAMMA*E0; 
GAM|41:" EO;
ETH[1]:" El/(GAMMA*EO); 
ETH12):- 1.0;
ETH(3):" 0.0;
ETH|4]:- 0.0;

PROCEDURE RLS1; {Part I of RLS Algorithm to give Model Parameter*)

CONST NPAR - 4;

VAR EE : REAL;
J : INTEGER;

BEGIN
EE:- E/BJ;
FOR J:= 1 TO NPAR DO

THETA|J|:- THETA[J| + EE*K(J] *
Al:" -THETA(1|*GAM(1|
AO:" 'THETA|2^GAM(2)
Cl » THETA(3|'GAM[3I
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BO:" THETA14]*GAM[4] 
END;

PROCEDURE KLS2(FLAG - BOOLEAN); (Part 2 of RLS Algorithm to update
Phi-vector, Covariance Matrix}

COXST SPA* - 4;
NA = 2;
NUl-EC - 6;

VAR PHIK : THVEC;
FJ, BJ1, GJ, MUJ, W, PY, PU : REAL;
J, I, LF. LU : INTEGER;

BEGIN
(Sc«p 1 : Updatm PHIKl(K-l) to PHIKl(K), Bmcoming

PHIKl(K-l) for next Iteration)

P\:* YBAR;
PL:" LEAR;
FOR J:" 1 TO NA DO
BEGIN

PY:= PY + EAVEC[J|*PHIK1[J!
PU:" ?U + EAVEC[J|*PHIK1[NA+J|

END;
PY:* PHIKX[11 + DELTA*PY;
PU:= PHIKl(NA+l] + DELTA*FU;
FOR J:= NPAR DOWNTO 2 DO

PHIKI[Jl :* PHIKl(J| + DELTA*PKIK1(J-U 
PHIK1[1|:- PY;
PHIKl(NA+1I:® PU;

{Step 2 : Apply Gamma Factors and store in "Local" Var PHIK)

FOR J:- 1 TO NPAR DO
PHIK(J|:- PHIK1(J]*GAM(J]

{Step 3 : Calc YBARl(K-H) (ie Predicted YBAA; "'or next Time -
Assumes that THETA has Already been Updated to give THETA(K))

YBAR1:* 0;
FOR J :- 1 TO NPAR DO

YBAR1:- YBAR1 + PHIK(J]*(THETA|J| + ETH(J!);
(Step 4 : RLS Algorithm., Uses PHIKjK} to Calculate the

Estimation Gain Vector K[K] and BJ[K}. These are, However, 
only used in the next Iteration as K|K-1] and BJIK -1 ]. 
Bierman's I,''*DV'U Covariance Update Algorithm is used.)

IF FLAG THEN 
BEGIN

FJ:" PHIK[1]
GJ." DIU +F J;
K[1|:"CJ;
BJ:- (1 + GJ*FJ);
Oil).- Dll|/(BJ^LAMK);
tAssume NPAR > ' from here on)
LF:-0;
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FOR j:= 2 TO SPAR DO 
BEGIN

FJ:" PHIK(J|
FOR I:" 1 TO J-l DO 
BEGIN

LF:- LF + 1;
FJ:- FJ + PHIK[I]*UVEC|LF] 

END,
(G:- D*F)

GJ:- FJ*D(J|
K(J|:- GJ;
BJ1:- BJ;
BJ:- BJ + (GJ*FJ);
D|J|:- (D(J]*BJ1)/(BJ*LMK); 
MUJ:- -(FJ*AZ0XE)/BJ1;
{Uj - U j +  MUj*Kj 
Kj+1 = K j +  GJ*UJ}

FOR I:- 1 TO J-l DO 
BEGIN

LU:" LU + 1;
W:» UVEC[LU] + K|I)*MUJ; 
K(I|:" K[I| + UVEC(LU|*GJ;
UVEC1LU]:= W;

END;
END;
BJ:" BJ/AZONE;

END
ELSE BEGIN 

BJ:" 1.0;
FOR J:- 1 TO NPAR DO 

K[J):" 0.0;
END;

EKD; (RLS2)

PROCEDURE WAITCPORTNUM, BITVAL1, BITVAL2 : INTEGER); 

{Waits for Signal at Input Port from A/D, D/A Hardware} 

VAR PORTVAL : INTEGER;
BEGIN

PORTVAL:- PORT(PORTXUM]
PORTVAL:- (PORT\'AL XOR BITVAL2) AND BITVAL1;
WHILE PORTVAL - 0 DO 
BEGIN

PORTVAL:" PORT|PORT\UM|
PORT\'AL:" (POR-.'AL XOR BITVAL2) AXD BITVAL1;

END;
END:

PROCEDURE ERRORTRAP;

Appendix E : Software Listing 200



{Illegal Status Register on A/D ; D/A Hardware}

BEGIN 
WRITELX;
kRITELXCFATAL ERROR - ILLEGAL STATTS REGISTER VALIT'); 
WRITELNl'STATUS REGISTER VALUE IS '.STATUS);

[XD;

PROCEOL-RE FATAURR;
(Fatal board error)

BEGIN
WRITELN;
WRITELN('FATAL BOARD ERROR'); 
WRITELNCSTATUS RFuISTER VALUE IS '.STATUS);
(Read the Srror Register}

PORT(CO*UWD_REGI8TER):- CSTOP;
TEMP:- PORT(DATA_REf* .STUR)

WAIT(STATUS_REGISTER. COMMAXD.WAIT, ZERO); 
PORT(COMMAXD_REGlSTER|:- CERROR;
WAlT(STA"n;S_REGISTER. READ.WAIT, ZERO); 
ERROR1:- PORT|DATA_REGISTER) 
WAIT(STA-nJS_REGISTER, READ.WAIT, ZERO); 
ERROR::- PORT[DATA_REGISTER|
WRITEL\('ERROR REGIS1ER VALUES ARE:'); 
W RI TE LN C  BYTE 1 - '.ERRORl);
WRI TE LN C  BYTE 2 ' '.ERROR2);

PROCEDURE IXITBOARD; (Initlmlimo A/D; D/A Board)

BEGIN
BASE_ADDRESS:" S2EC;
COMMAND.REGISTER:" BASF.ADDRESS + 1;
STATUSJIEGISTER:- BASE.ADDRESS + 1;
DATA.REGISTER:" BASE.ADDRESS;
C OMMAMLWAIT:- 94;
WRITE.WAIT:" $2;
READ.WAIT:- $5;
CSTOP:* SF;
CCLEAR:"S1;
CERROR;- $2;
CADIS:" SC;
GAIX.CODE:" 0;
RFACTOR:" 4096;
RRANGE:" 20;
RUFFSET:" 10;
ERRFLAG:" FALSE;
CDAOUT:" SB;
EfT.TRIGGER:" S80;
0FFSET|ll:-5; RAXGE|1|:- 10; F ACTORil|:-25%
OFFSET(2):" 0; RAXGE|2|:- 5; FACTOR;:):" 256;
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OFFSET!3) :- 10; RA.\GE[ jj - 2 0 ; FACTOR[3|
O FFSETS] :» 5; RAX3EI&] - 10; F AC T O R M = 4096
OFFSET!5 |:- 2 . % RANGE!5] - 5; FACTOR!!] - 4096
OFFSET!6 |:= 0; RAXGE!6| - 1 0 ; FACTOR[6 j - 4096
OFFSET!7 |:* 0; RANGE|7| " 5; FACTOR!7| = 4096

END;

PROCEDURE CLEARBOARD;
BEGIN

(Stop end clear the DT280\>

PORT[COMMAND.REGISTER]:■ CSTOP;
TEMP:- PORT (DATA. .REG I STER)
WAIT(STATUS_REGISTER, COMMAND.WAIT, ZERO); 
PGRT(COMMAND_REGlSTERI:= CCLEAR;

END;

PROCEDURE READVALtVAR VOLTS : REAL; CHANNEL : INTEGER); 
{Read a Voltage Value from A/D)

BEGIN
(Check for legal Status Register)

STATUS:- PORT(STATUS_REGISTER|
IF NOT((STATUS AND (70) - 0) THEN 
BEGIN

ERRORTRAP;
ERRFLAG:= TRUE;

END;
IF NOT ERRFLAG THEN 
BEGIN

{ Stop and clear the DT2801 }

{ Write READ A/D IMMEDIATE command }

*ATT(STATUS.REGISTER, COMMAND.WAIT, ZERO); 
PORT(COMMAXD_REGISTER|:- CADIN;
( Write A/D gain byte }

k'AIT(STATl3_REGISTER. WRITE.k'AIT, WIITE.WAIT); 
PCRT|DATA_REGISTER|:" GAIN.CODE;
( Write A/D channel byte )

WAIT(STATLS_REGISTER, WRITE.WAIT, WPITE_LAIT); 
PORT|DATA_REGISTER|:- CHANNEL;
( Read two bytes of A/D data from the Data Out Regi 

and combine the two bytes into one word }

WAIT(STATUS.REGISTER. READ_W' ZERO);
LOW:" PORT(DATA_REGISTER|
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WATT (STATL'S_REG I STER, READ.WAIT, ZERO);
HIGH:- PORT(DATA_REGISTER)
DATA_VALUE:- HIGH * 256 + LOW;

IF DATfLVALUE > 3:767 THEN DATA_VALUE:- DATA_VALUE - 6.5536E+0 

( Check (of ERROR )
WAIT(STATUS_REGISTER, COMMAXD.WAIT, ZERO);
STATL'S:- PORT | STATUS. REG I STER)
IF (STATUS AND S80) <> u THEN 
BEGIN

FATALERR;
ERRFLAG:" TRUE;

EKO;
{ Calculate the A/D reading in volts )

VOLTS:- ((RRANGE * DATA_VALUE/RFACTOR) - ROFFSET);
END;

LN'D;

PROCEDURE WRITEVAL(VOUT : REAL);
(Write a Voltage Value to D/A)

BEGIN

( Check for legal Status Register }

STATUS:- PORT|STATUS_REGISTER|
IF NOT((STATUS AND S70) - 0) THEN 
BEGIN

ERRORTRAP;
ERRFLAG:- TRUE;

END;
IF NOT ERRFLAG THEN 
BEGIN

VOLT:- VOUT + 0.03;

IF ((VOUT > (RAXGE(3|-OFFSET[3D) OR (VOUT < -OFFSET[3|)) THEN 
VOUT:" (ABS(VOUT)/VOUT)*OFFSET[3 1

DATA_VALUE:- (VOUT + 0FFSET[3|)*FACT0R[3|
1XTVAL:- ROUXD(DATA_VALLE / RAXGE(3|);
IF IXH'AL » ROUXD(FACTOR[3| - 1) THEN 

INTVAL:" ROUXD(FACTOR[3| - 1);

( Writ* WRITE D/A IMMEDIATE command )

WAITfSTATUS.REGISTER, COMMAXD.WAIT. ZERO). 
PORT(COMMAXD_REGISTER]:" CDAOUT;
( Writ# D/A SELECT bye# )

WAIT(STATL'S_REGISTSR. WRITE.WAIT. WRITE.WAIT); 
PORT(DATA_REGISTER|:" 1;
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( Writ* HIGH & LOW byt*& of DATA.VALUE )

HIGH:" INTVAL DIV 256;
LOW:" INTVAL - HIGH+256;
WAITCSTATLS.REGISTER, WRITE.WAIT, MITE.WAIT); 
PORT[DATA_REGISTER|:" LOW;
WAIT(STATUS_REGISTER. WRITE.WAIT, WRITE.WAIT); 
PORT[DATA_REGISTER|:- HIGH;

( Check for ERROR )

WAIT(STATUS_REGISTER. COMMAND_W/IT, ZERO); 
STATUS:- PORT(STATUS_REGISTEK|
IF (STATUS AXD $80) <> 0 THEN 
BEGIN

Yl T/LERR;
E}RFLAG:- TRUE;

END;
END;

EXD;

PROCEDURE INITIAL;

BEGIN
{Initialise Paramec

(General System Initialisation)

Estimation)

YHAT:- 0;
(Initialise Control 1#:

AUTO:- FALSE;
YEF:" 0;
CDFl:- 0;
CK1:- 0;
CK2:- 1,
CK3:- 0;
(Initialise Deadzone)

SIG1:- I - SIGMA; 
MZ0:- EPSO;
AZ0XE:- 1;

i n g  V e c t o r )

A S T A R | 1 | 1.0 
ASTAR[2]:- 3.8E 
ASTAR(3|:- 5.2

-02; (5.965E-0:
-04; (9.363E-04

ASTAR(4):» 3.3E-06; (<,.909E-06 
ASTARIS):- 5.1E-09; {#.0?(,E-09

{ I n Plant Signal* and Dia
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U : * 0;
READVAL(YINIT.O);
YIXIT:" -YINIT/YSPAN;
XHPl:- YIXIT/EPSHP;
XHP2:- SPS1/EPSHP;
{Initialise System Clock for A/D Timing}

SYSTIMC:" TIME; 
VALlC0PY(SYSTIME.1.2),Ha,CD); 
VAL(C0PY(SYST1ME,4,2),MIS.CD); 
VALCCOPrCSYSTI.ME.T.ZLgEC.CD);
NEWTIME:- 3600*10: + 60*MIN + SEC; 
OLDTIME:- NEWTIME;
INITTIME:* NEWTIME;
T:- 0;
(Initialise Setpoint Display)

SP:- 0;
OLDSP:" 0;
FLASH:* TRUE;
DRAWS?;
CONSTAT:- 'MANUAL';

END;

PROCEDURE ADAP1;
(First Part of Adaptive Controller Calculation to jive 

Control Signal U)

FUNCTION DEAD(LOWER. UPPER, IXVAL REAL) : REAL;
(Relative Deadzone Function}

BEGIN
IF INVAL <" L A T R  THEN 

DEAD:- ISVAL - U X E R  
ELSE BEGIN

IF INVAL » UPPER THEN 
DEAD:" IXVAL - UPPER 

ELSE
DEAD:- 0.0;

END;
END; (DEAD)

FUNCTION STEP(TIMEVAL : IXiEGER) : REAL;
{Generates a Init Step at the Speci(ied Timel 

BEGIN
IF T TIMEVAL THEN

STEP:- 1
ELSE

S T E P -  0;
EXD; (STEP)
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{High Pass Filter Measurement)

YBAR:" Y - EPSHP*XHP1;
XHPi:* XHP1 + DELTA*YBAR;

{Calculate Prediction Error)

YHAT:" YBAR1;
E:® YEAR - YHAT;

{Update the Parameter Vector!

HZ:" M Z O ,
BMZ:» BETA*M2;
RFLAG:® FALSE;
IF (ABS(E) > BMZ) THFN 
BEGIN

AZONE:- fALPHA/E)*DEAD(-BMZ, BMZ, E);
R U l l
RFLAG:- T RU E ;

END;
(Generate O r .>ing Signals)

IF NOT AUTO THEN 
BEGIN

SP:- S, X I  - STEP(Tl) + STEP(T3) . STEP(T3) + STEP(T*)
- «TEP(.i) + fTEPCTA) - STEP(T7) + 0.6*STtP(T8)
- 0.2+*TEP(T9) + 0.2*STEP(T10) - 0.2*STEP(T11) + 0.2*STEP(T12) 
-0.2*STEP(T13) + 0.2*STEP(T14) - 0.2*STEP(T15) + 0.2*STEP(T16) 
-0.2*STEP(T17) + 0.2*STEP(T18));
Da AWSP;

END;
YE:" (SP - Y);
IF T >■ TAUTO THEN 
BEGIN

ALTO.- TRUE;
CONSTAT:* 'AUTO ';

END
ELSE

CONSTAT:" 'MANUAL';
IF AUTO THEN 
BEGIS

(Controller on AUTO - First Synthesise Controller)

CPO:- ASTAR(5|/B0;
IF ABS(B0/Bl) < 2*VE THEN 
BEGIN

CLO:" (ASTAR(3;-(BO*ASTAR(%|)/Bl-(Bl*A&rAR[4|)/BO
-fAO-(BC*Al)/:l)+(Bl^CPO*Bl)/BO)/lAl-BO,Bl-(Bl*AO)/BO); 

CPI:- (ASTAR14)-A1*CLO-B1*CPO)/BO;
CP2:- (ASTAR(2|-A1-CL01/B1;

ESD
ELSE BEGIN

CLO:" ASTAR(2) - Al;
CPI:" (ASTAR(4| - A^CLO)/BO;
CP2:- (ASTAR|3| - AO - Al*CLOj/BO; I 

END;

(Convert Controller to PID Form)
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CK1:- CP1/CL0;
CK2:- CPI /C M;
CK3:- CP2/CP1;
{Calc. Control Input to Plant, Using Incremental PID 
Algorithm With First Order L.P. Filter on all Terms.
A Backward Difference Approximation to the Continuous- 
Time Equation is Used)

CDF " CFAC*(YE-YEF); (Filtered (1-Q*+-1)+YE}
YEF:= YEF + CDF; {Filtered YE)
U:- U 4 CKl*(CDt + (DEITAfYEF)/CK2 + CK3*(CDF-CDF1)/DELTA);
CDF 1:® O F;
IF U > UMAX THEN 

U:-UMAX 
ELSE IF U < UMIN THEN 

U:« UMTN;
END
ELSE

(Controller cn Manual)

U-” SP*MANU; {Scaled tr give Reasonable S-S Output)
END; {ADAP1}

PROCEDURE ADAP2;

(Second Part of Adaptive Controller Calculation to Update 
Remaining Variables)

BEGIN
{High-Pass Filtering of U)

UBAR:= -EPSHP*XHP2 + U;
X HP Z: «X HP 2+ DE LT A* UB AR ;
{Update Deadzone Function)

M20:" 3ICMA*MZ+SIG1*(EPS0+EPS1*ABS(UBAR)+EPS2*ABS(Y));
{Update Parameter Estimates)

RLS2(RFLAG);
END;

PROCEDURE DELAYPLAXT;
{Introduces a Delay of DELAYTIME Samples into Plant Output 

Measurement)

CONST DELAYTIMF. " 1;
VAR I : INTEGER;

DUMMY : REAL;
BEGIN

% F T » T 1 3 T H E X
BEGIN
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DUMMY:" Y
Y:» YVEC[DELAYTIME]
FOR I:" 1 TO DELAYTIME - 1 DO 

YVECH +l ]: -  YVEC(I] 
Y\TC|1|.- DUMMY;

E\D
ELSE BEGIN

FOR I:- 1 TO DELAYTIME - 1 DO 
Y\1C(I]:- Y;

EMD;

PROCEDURE SAMPLE;

{Main Adaptive Controller Calculation Performed at each Sampling 
T tme)

BEGIN
(Read Plant Output from A/0)

READVAL(Y.O),
Y:- -Y/YSPAN;
{DELAYPLANT;)

{Perform First Part of Adaptive Calculation)

ADAP1;

(Write Control Signal to D/A)

I'OUT:- (U - UZERO)*USPAN;
WRITEVAL(UOUT);

{Graphic Updating, Remaining part of Adaptive Algorithm Update, 
Data Logging tc. Diskfile)

GOTOXY(i2,l3); 
WRJTE LN CA O  : ',A0:7 A1 : '.Al:7,' BO :

DRAkOUTPlTT(500*(SP + 05),10(Xl*Y);
ADAP2;
OLDTIME:- SEWTIME;
WRITELN(OnT%LE,T:5.' '.SP:4:1,' ',U:6:3,' ',Y:6:3,' '.fZ0NE:7:5,

' '.CK1:7:3,' '.CK2:7:2.' ,CK3:7:2.' ',BMZ:9:7);
WRITELNCOUTPARMS.AOilO:?,' ',90:10:7,' '.Al:10:7,'

BEGIN (Main Program)
{Initial is.at ion)

IMTGRAf;
IXITBOARD;
CLEARBOARD;
ISITIAL;
ASSIGMCOLTFILE."ADAPT].DAT'); 
ASSICMOUTPARMS. 'ADAPT3PARMS D AT );  
REWRITE(OLTTILE):
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REWRfT -PAMS);
EXIT:" iE;
DRAtTlME;
SAMPLE;

RE?EAT
(Execute Adaptive Control at each Sampling Instant) 

IF (AEWTIXE - OLOTIME » DELTA) THEN SAMPLE;
(Get New System Time)

SYSTIME:= TIME;
VAL(COPY(SYSTIME,1.2).HR,CD);
VAI(C0PY(SYST1ME,4.2).MIS.CD); 
VAL(COPY(SY6TIME.7,2),SEC.CO);
NEWTIME:" 3600*HR + 60*MIN + SEC,
T:" ROUND(NEWTIME - INITTV'E);
IF T <> TOLD THEN

(Update Graphic Display Every Second)

’5EGIN
DRAWTIME;
TOLD:" T;
SELECTVINDOW(7);
OOTOXY(2.5);
IF FLASH THEN 
BEGIN

F L A M : -  'MT P U S H ;
WRITE(C;. STAT);

END
ELSE BEGIN

WKITEC' '),
FLASH:" NOT FLASH;

END;
END;
IF NEWTIME " 0 THEN OLDTIME." -DELTA;
(Reaa Keyboard for User Input)

IF KEYPREbSED THEN 
B M W

READ(KBD,C}'X 
CASE CH OF

: BEGIN (Increase Setpoiiit}
IF AUT0 THEN 
B M W

SP:" SP + 0.01;
IF SP » SPM..' THEN 

SP:" SPMAX;
DRAWSP;

LND;
END;

; BEGIN (Decreas® Setpoint)
IF ALTO TXEN 
BEGIN

SP:» SP - 0.01;
IF SP < SPMIN THEN 

SP:" SPMIN;
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DRAWS?;
END;

END;
'E' : EXIT:" TRUE; (Terminate Progiam}
'e ' : EXIT:- iTtUE; {Terminate Program)

END;
U X H L  (EXIT) OR l » IXT(TSTOP));
CLOSE(OVTFILE);
CLOSE(OLTPARMS);
LZAVEGRAPHIC;
WRlTEVAL(-5);
(WRITELN('AO: ',A0:7:5,' BO: '.B0:7:5,' A': '.Al:7:5,' Kl: ',B1:7:5);)
GOTQXYCM.IO);
WRITELN('RUN SUCCESSFULLY COMPLLHID AT TIME » '.T:5,' SECONDS'); 
GOTOXYUO.l]);
WRIT: N('MACHINE MAY BE SWITCHED OFF AT THIS P O I M ) ,
GOTOXY(1,22);
WRITELN;

END. {Adaptive Controller)
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