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e ABSTRACT R

An adaptive controller is developed, comprising & robust parsmeter esti-

mator and an explicit pele assignment controller design. The controller

is reformulated to have a standard PID structure. A practical implemen-

tation is facilitated on a digital microcomputer, connected to a physical
process. Test results are presented for this real process subject to

variable dead-time and an external disturbance. Simulation results are

’ also presented, for a nominally nonminimum-phase process subject to var-
. ) iable dead-time and large open-loop gain changes. Robust performance is
3 demonstrated under all of these circumstances. Recommendations are given
for the choices and considerstions required in & robust practical imple- i

¥ wentation.

4
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S

SYNOPSIS

Much research has been done in the fiald of adaptive control over the past
few decades. Howevaer, a !ot needs to be learned about the robustness of
adap<ive control algorithms. This research investigates the implementa-
tion of & practical adaptive control algorithm, with numerous features
incorporated to improve the robust performsnce of such & controller. Pa-
rameter estimation is performed using Recursive Least Squares (RLS), with
virious signal conditioning filters to reduce estimator sensitivity to
noise and modelling errors. The control design is based on closed-loop
pole assignment, with adaptive feedfcrward compensation included. Fur-
ther, provision is made in both the estimation model and the feedback
control structure to eliminate deterministic unmeasurable disturbances,
end to track deterministic setpoint variations. This is based on the
Internal Model Principle. Measured random disturbance signals are in-
cluded in the estimation model, for whick "transfer function” polynomial
coefficients are estimated and then used in the feedforward control de-
sign. A new shift- operator, namely the b-operator, is used in all con-
troller and estimator formulations. This has been shown to have better
numerical properties and to correspond more closely to continucus-time
control, than the traditional q.1 operator of z-dumain discrete control.
A practicsl implementation on a digital computer is investigated, applied
to & real plant typical of an industrial application. Simvlation results
are also obtained for plant with nonminimum-phase zeros and variable

dead-time.
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1.0 INTRODUCTION

In simple terms, to “adapt" means to change bpehaviour to conform to new
circumstances. In the last two decades, there has been much interest in
control systems which automatically adapt or change themselves in re-
sponse to variations in process dynamics or disturbance conditions. Since
ordinary feedback control is intended to achieve the same purpose, a
stricter definition of adaptive control is desirable. While there is
consensus that constant-gain feedback does not constitute an adaptive
system, a clear definition has not been given. Seborg, Edgar and Shah
{1986) simply state that an adaptive controller is one for which a sat-
isfactory fixed model of the process to be controlled is not available
in advance, due to uncertain behaviour, nonlinearities or time-varying
system dynamics. Astrom (1987) takes the pragmatic view that adaptive

trol can be considered a specialised form of nonlinear feedback con-

ol, where the process states are seen in two categories, which change
at different rates. The more slowly varying ststes are viewed as model

parameters.

It is worthwhile to ~rudy ihe practical motivation for adaptive systems
in more detail, Fixed servomechanism controller design depends on rea-
sonably good system modelling. Since these models are difficult to gen-
erate in practice, & genervalised three-term (PID) controller is
frequently used in industrial applications, which can give aceptable
performance when the corresponding controller coefficients are correctly
set or "tuned" (Clarke). However, accurate tuning is often difficult or

impossible due to the following factors

o Many chemical processes have very complex dynamic characteristics,
due to large phase lags or dead time. High-order mathematical de-
scriptions of such processes are often necessary for accurate model-

ling.

Intreduction 3




o Nonlinear characteristics may alter the plant behaviour dramatically
with large setpoint variations, eg. in pH control the increment'l gain
can chsnge by many decades over a given pH range. Furthermore,
actuators such as valves exhibit nonlinear effects, viz. saturation,

hysteresis and dead-bands.

o The process Gynamics themselves may be time-varying, for example
during the decay of a catalvtic reaction, or with the gradual fouling

of physical plant such as pipes, ducts, filters or heat exchangers.

o When interacting control loops are tuned independantly, coupling ef-

fects may be such that tight control performance is not possible,

° Large disturbances are often present, such as variations in the mwa-
terial input to & process, as with ore milling and crushing. Envi-
ronmental disturbances are also present, such as changes in ambient

ai¢ temperature or coolant fluid temperature.

Adaptive control formulation goes some way towards a solution in these
difficult circumstances. A procedure is employed whereby an estimated
mode]l of the process is generated online, and 2 design procedure followed
to produce a suitable set of controller coefficients for some prespezified
controller structure. Thus the system adapts itself to unknown or time-
varying circumstances, incorporating many of the problems mentioned

above.

This concept is intuitively appealing because of its close kinship with
human capabilities for adaptation, and its conrotations of "artificially
intelligent"” systems assuciated with the mystique of automatic computer
control. The advent of inexpensive compter hardware possessing substan-
tial processing power has enabled the implementation of complex online
control algorithms, using supervisory real-time minicomputers. The emer-
gence of sophisticated programmable logic controllers (PLC's) and other
dedicated microprocessor-vased devices has alse allowed for f] xible,
rapid control system implementation. These factors possibly account for

the widespread interczst and research in the field of adaptive process

Introduction &




control. However, in the application of such a powerful and appealing
concept, many problems have arisen. The vast literature on the subject
addresses problems such as estimator convergence, parameter accuracy,
long-term closed-loop stability, disturbance rejection characteristics
and application to generalised systems with arbitrary structure, in par-

ticular nonminimum-phase processes.

Many constraints are imposed in the literature on the types of processes
to te controlled, the nature of system excitation, knowledge of disturb-
ance and noise characteristics, and re.trictions on model classes. The
large amount of prior process knowledge required by some formulations

negates many of the advantages hoped for with adaptive systems.

Certain control design procedures have also been shown to be non-iobust
under general circumstances. An example of this is the well known
minimum-variance controller, which minimises a quadratic cost function
involving the system input, cutput and disturbances to achieve minimal
variance of the controlled variable. Unfortunately, this attempt to
minimiZze output variance often resulis in excessive contiol effort, which
can revresent a problem from an engineering point of view, due to actuator
Jimitations. Another very popular technique used in adaptive control is
that of mcdel reference or model- following control. Part of the model
ref renze design procedure is to assign the open-loop system zeros tc the
c. sed loop system poles, thereby cancelling these zeros. This has the
wnplicit constraint that the open-loop zeros muct lie in the left-hand
half plane, for assymptoric stability of the closed Joop system. Thus
nowminimum phase systems cannot be controlled by this type of controller,

which is a severe limitation.

A need has thus arisen for o generalised robust theory, giving reliable
sytem identification under 2 wide range of process conditions, as well
as flexible and stable clread-loop contrcl for a large class of industrial
proceusas. Furtherr.re, such a theory should be self-contained and simple
enough to give sutisfacto-v performance with a minimum of vser-supplied

information. A'.hough thic research has not provided a complere solution,
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many of the robustness problems and stringent process requirements ob-

served in the literature have been removed.

1.1 RESEARCH GOAL

This research has attempted tc formulate a robust algorithm for the con-
trol of general time-varying systems. allowing for 4 broader class of open
loop transfer functions. The algorithm consists of a parameter estimator,
a controller design procedure and a controller. The parameter estimator
is made robust to modelling error, process noise and deterministic dis-
turbance inputs. The control design is based on <losed-loop pole assign-
went, which is shown by many authors to be more robust than other
strategles. (See "Current Approaches to Adaptive Estimation and Contral"

on page 9)

More specifically, this research investigates the practical {mplementa-
tion of such a controller, fnvolving the combination of the following
concepts:

o A new transform domain for control formulation.

o Signal conditioning (prefiltering) to imprave parameter estimation

robustness.

o A generalised explicit process model for parameter estimation, in-
corporating both unmeasured deterministic disturbances and measurable
load disturbances,

o A robust pole assignment technique for control design.

o Explicit feedforward compensator design for measurable disturbance

rejection.

Introduction 6




1.2 RESEARCH APPROACH

Ths axperimental implementation was evaluated using both a raal physical

process and a computer simulated plant model.

1.2.1 REAL PLANT

The physical implementation is facilitated using a4 microcomputer linked
through an analog/digital converter to & real plant typical of an indus~
trial situatica. The adaptive controller algorithm performance is evalu-

ated in chis environment in terms of:

¢ Estimator robustness, weasured by parameter convergence and/or sta-

bility under various conditions.
o Closed-loop control performance under both setpoint and load dis-
turbance changes, as well as plant parameter variations such as

open-loop gain.

o Deterministic disturbance rejection and variable dead-time compan-

sation under closed-loop control.

1.2.2 SIMULATION TESTS

The algorithms are also tested using simulated plant models, to allow
control testing for nonminimum-phase plants ana those with variable

dead-time.
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1.3

The

STRUCTURE OF DISSERTATION

layout of this report is as follows

Section 2 discusses the current approaches to adaptive estimation and

control.

Section 3 reviews some of the mathemetical preliminaries necessary
tc the development of the algorithm, notably those relsting

continijous-time to discrete-time system representation,

Section 4 develops the structure for the robust estimator.

Section 5 develops the theory behind the robust pole asuignment con-

troller.

Section 6 discusses the robust implamentation ‘equirements of the
algorithm on a real plant, 4s regards estimator parameter selectiu:,

signal conditioning and robust controller design.

Section 7 presents experimental results for the real plant .nder
closed-loop control, as well as simulation results for & few test
cazes.

N
Section 8 concludes the report and presonts some recommendations for

further work.
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2.0 CURRENT APPROACHES TO ADAPTIVE £STIMATION AND CC '/ "ROL

2.1 INTRODUCTION

Adaprive controllers were motivated initially by autopilot design re-
quirements for high performance aircraft and rockets (Seborg et al, 1986).
A simple form of adaptation is known as gain scheduling wvhersby the
controller gain Kc is varied in response to changes in process gain Kp,
50 as to keep the product Kch constant. This has found successful ap-
plicatjon particularly in pH control, and in fact standard industrial
controllers with gain scheculing options are commercially available
(Andreiev, 1981). However, gain scheduling is not always effective in the
presence of varying plant dynamics or unknown time delays. Thus current
approaches srn developed to cope with unpredictable process changes, by
relating the controller design to plant behaviour as imdicated by online

process variable measurements

Adaptive controllers are typically constituted of s parameter estimator
in combination with some feedback cuntrol dwsign prowedurs This is shown
in Figure 1 on page 10. Model parameters are derived by examining the
input-outpu: characteristics of the process. The approach of using the
model estimates thus derived as if they were the true plant parameters
for the purposes of control design, is knowz as certainty equivalence
adaptive control. A wide variety of such schemes have been proposed in
the theory, by crobining one of the many est:imaticn techniques with a

particular controller design method.

Thare are two possible formulations of the adaptive controller shown in
Figuie 1 on page 10. As it is detafl.’ in the block diagram, it iz an
explicit schome, since an explicit process model is estimated and these
parameters used in rthe control design. This technique is alsoc called in-
direct, s‘nce the control law {s indirectly obtained from a system model.

The qther formulation is in cases when the system can be direcly
t

Current Approsches to Adaptive Estimation and Conirol 9




i
; Control Desig: K Parameter <
H Caloulation Estimator |
i r
i Setpoint :;.._._&L
Controller ——> Process >
; N u(t) y(t)

Figure }. Block Diagram of a Generalised Adaptive Controller.

parameterised in terms of the control law parameters. This greatly sim-
plifies the design calculations required for the controller. Such algo-
rithms are known &s direct, since the controller coefficients are directly
estimated. These schemes are also called Implicit, bSecause the desigh irn-
cludes an imp'icit process model.

This section first considers some parameter estimation schemes, and then
details various types of control law design approaches with which the

cstimators can be used.

Current Approaches to Adaptive Estimation and Control 10




2.2 PARAMETER ESTIMATION

These procedures are employed to identify a system model which adequately
describes process behaviour in terms of dynamic and steady-state re-
sponse. Two main groups of algorithms can be used, namely onliné and
offline techniques. Offline algorithms consider measured historical plant
data in "batches”, and a one-pass solution for model parimeters is ob-
tained (Junkins, 1981 : 7). The larger the number of parameters tn be
estimated, the bigger "blocks” of plant data need to be given to the es-
timator for reliable identification. The second group of online aigorithms
is of greater interest in this work, since the plant model is estimated
using past and present process variable measurements at cach sample. The
estimates are thus a function of the process 'history", described as a
regressjon vector, and are continually updated online. This allows the
model to track process behavio' -, which is relevant in cases with time-

varying plant dynamics.

2.2.1 LINEAR DIFFERENCE EQUATION MODELS

A typic .l form of protess model feor the purposes of adaptive control is
known as the ARMAX (Autoregressive Moving Average with Auxiliary Input)
model, given by Seborg et al (1986) as

y(t) + aly(t‘l) + .+ Any(t-n) = bou(t-k) + blu(l-k'l) o+ bmu(t~k-m)

+ cOE(L\ + clﬁ(t-l) + o+ cni(t-n) + d(t) (2.1

where y is the plant output, u is the input, £ is a noise variable and d
is the load disturbance variable. The sampling time instant is denoted
by t, n and m are positive integers giving the order of the model, and k
is the time delay as an integral multiple of the sampling period.The model

paramaters ap, bi and ¢, are generally unknown, and need to he estimated.

Currernt Approaches to Adaptive Estimation and Control 1




The model is more compactly expressed using shift operator notation, thus:

y = 8(q " Hulek) + g HECe) + dle) (2.2)

"
where  AlqQTH) =1 *Zaiq'i
11

! . m
v -1 -
B = bt
1=0
. n
. ool -1
. Clg ) =Zciq
Fee ix0

E The coefficients ¢y denote & discrete filter which models the process

noise.

These linear discrete models are suitable for adaptive conr ol because

they vield algorithms easily implemented on a digitai computer.

2.2.2 ONLINE ESTIMATIO" SCHEMES

The general form for an »nline parameter estimation scheme is givan in
Goodwin and Sin (1984 : 49) as

Aty = B(t-1) + M{t-1)$(r-d)e(t) (2.3)

Where 8(t) is the parameter estimate at sample instant t,

comprising & vector of a, bi and ¢y confricients.
M{t=1}) is the estimation algorithm gain, possibly a matrix.

$(t-d) is a regression vector of historical process

B . MEASUrements .

. e(t) is the modelling error (often the prediction error
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resulting from 6(t~1)).

2.2.3 EQUATION ERROR ESTIMATION METHODS

These 4re based on the predictive model
y(t) = #(e-1)8(t-1) (2.4)
wnere y(t) is system output

#(t-1) is a history vector of plant measurements

8(t-1) is the estimated parameter vector

Such algorithms are generally used for deterministic adaptive estimation.

2.2.4 PROJECTION ALGORITHM

The first algorithm considered is also the simplest. The projection or
gradient algorithm is given by

ad(e-1)

8(t) = 8(c-1) + e{k)

Hf‘l)Tf(t-l) +c

This is of the form of 2.3, where

M1y = s
T

$(r-1)"8(t-1) + ¢

T

e(t) = y(r) » $(t-1) .th-U
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P .

and sampla delay 4 = 1.

This {s motivated geometrically, by minimising a quadratic error crite-

rion (Goodwin and S5in 1984 : 51)

1= d1e¢e) - ee-ni? (2.6)

The symbols all have the same meaning as before, with constan* ¢ > 0 to
prevent possible division by zero in M(t-1), and gain factor a, typically

chusen .2 the range 0 < a € 1.

The algorithm is also sometimes called Normalised Least Mean Squares
(NLMS). Although convergence is assured to a set of parameters §, these

may not be the correct process medel parameters.

2.2.5 RECURSIVE LEAST SQUARES ALGORITHM

This develops from the projection algorithm, by ensuring that each suc-
cessive estimate projects in 4 direction orthogonal to previous ¢(.)
vectors, which is shown to improve estimates (Goodwin and Sin, 1984 : 54).
The algorithm result.ng dates from the time of Jauss, and is given by

P{t-23¥8(t-1)

8(t) = 8(t-1) + e(t)

#(e-1TP(e-2)8(e-1) + 1

’ T) -
P(t-1) = P(t-2) - P(e-2)¥(t-1)#(c-1) P(t-2)

Q(t-l)TP(t-Z)§(L-l) + 1

(2.7)

with some initial 6(0) given and P(-1} anv positive definite matrix POA
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Goodwin and Sin (1984 : 59) show that this algorithm minimises the quad-

ratic cost function

n
3(® = 4 250 - 4D+ 40T 6000 (2.8)

or J = Z“_; e‘(t)z (Seborg et al 1986)
where e, (t) =y, (t) =~ # (t+1)78_(t-1)
i i i i

The form 2.7 contains the so-called covariance matrix P(t-1}, which gives
a measure of the estimation error. The diagunal elaments o¢ P(t-1) have
a direct bearing on the convergence rate of the algorithm, and the off-
diagonal elements should be small compared with the diagonal terms. As
.ne estimates converge and the parameter error decreases, the elements
of P become smaller.

The choices of 6(0) and Po are interdependant, since a large P_ implies

rapidly changing parameter estimetes initially and hence a pooor confi-~
dence in 8(0). On the other hand, if ‘0) is known to be a good estimate,
smaller values for P, are usually chosen, to "desensicize” the updates
earlier.

A significant problem with RLS algorithms is thait in the long-term, the
P-matrix will become very small after the parameters 8 have converged.
For processes with time-varying dynamics, the estimator is then insensi-
tive to changing plant parameters and the estimates do not "track" the
process as desired. This phenomenor is also known as "falling asleep”
(Seborg et al 1986), and requires that the covariance matrix be modified

to maintain algorithm sensitivity.
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2.2.6 MODIFICATIONS TO RLS ESTIMATION

2.2.6.1 Exponential Data Weighting

This method weights new data more heavily than old data. An exponential

forgetting factor or liscounting factor is used, giving the cost function

A
3= ;z; enTec -y
(2.9)

where 0 < A € 1. For X = 1, we have the standard RLS form given in 2.7,
as seen in the exponentially weighted update sequence
P(t-2)¥(t-1)

8(t) = 8(t-1}) + —c 8(T)

i(t~1)TP(t-2)9(c-l) + M)

e = 1 lpceeny - P(t-2)4(t-1)#(t-1)TP(t-2)
A #(e-1)TP(e-2)h(t-1) + A(e-1)

(2.10)
The Pematrix is prevented from becoming too small . X < 1, which main-
tains algoritam sensitivity. The smaller the value of X, the faster the

tracking speed of the algorithm.

Note in 2.10 that A(t-1) is time-dependant. Frequently a sequence is used

such as
A(t) = dgr(e~1) + (1 - Ay) (2.11)

with X(0) = 0.93 and A, = 0.99 typically.
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This hae the effect of discounting old data during initial estimation,
and then tending to norma) recursive least squares (A = 1). This is often

applied in noplinear estimation problems (Goodwin and Sin 1984 : 64).

Another technique for varying the forgetting factor is given by Fortescue
et al (1981). They suggest that ) be kept near unity unless the prediction
error becomes large, and then be decreased for several steps when larger
error is detected. This would increase algorithm sensitivity to new data
only when substantial moael-process mismatch was present. requiring pa-

rameter changes.

2.2.6.2 Covariance Resetting
This involves the perivdic resetting of the covariance matrix P to some
value Pi' Typically the resetting takes the form
P(tx -1 = kil (2.12)
where [ {s the identity matrix and ki some constant.

This is especially useful for fast tracking of rapidly time-varying

processes,

2.2.6.3 Covariance Modification
An additional term is added to the P-matyix when modelling error is de-
tected, thus

P(t-1) = P(t-1) + Q{t-1) (2.13)
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with 0% Q(t-1) < «

Checking should be performed to ensure that P(c-1) stays bounded. This

slgorithm has & very similar effect to covariance resetting.

2.2.6.4 Regularised Constant Trace Algorithms

Another method of preventing the covariance matrix from becoming too small
after parameter convergence is the constant trace algorithm. This tech-
nique is based on the knowledge that the diagonal elements of P determine
the algorithm sensitivity, and hence the traco o  the P-matrix is main-
tained ar scme predetermined value. This is facilitated by the following
recursion :

P'(t-1) = kyP(t-1)/trace(P(t-1)) + kT (2.14)

Where k, and k, are positive constants and I is the n x n identity matrix.
(After Goodwin et al, 1986).

The choices of k, and k, can broadly be made as follows

For an n-dimensional system model, we have after one step of the iteration that

P’ o= (ke/(nP(0)))I*P(0) + ¥,

and trace(P') = n{ke/n + k,)
= ke + nk,

then the constants should be chosen such that

kg + nk, = the desired trace value.

Choos ing this value as nP(0), say, we have
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k¢ + nk, = nP(()
and suitable values for the constants are
ky = (n/2)P(9) and k, = §P(0) (2.15)

The value used for P(0) will determine the algorithm gain at each iter-
ation, as with other methods. However, caution mus" be exsrcised in
choosing this value, since & large P(0) will maintain large covariance
matrix elements, and estimation may be very sensit’'ve Lo process noise.
An alternative approach has been suggested, that a large value of P(0)
be used initially without any covariance modification, to allow rapid
initial convergence. During this time trace(P) will become very small,
and t. en the constant trace algorithm can be switched on with sume value
P'(0) which is smaller than P(0), to maintain somc threshold of sensi-
tivity in the algorithm.

2.2.7 OUTPUT ERROR METHODS

Theze algorithms are widely applied in stochastic process identification.

They use & similar structure as that given in 2.3, namely
8(t) = B(t=1) + M(t-1)4(t-1)e'(t) (2.16)

The error is given by e'(t) = y(x) - y'(t)
= y(t) - ' (t-1)8(t)

where y'(t) {s the estimated process output, but #'(t-1) contains previous
estimates of y'(t), rather than the actual plant messurement y(t) (Goodwin
and Sin, 1984 . 82). All of the preceeding estimation schemws can be de-
veloped in exactly the same way for the stochastic case, simply using

e'(t) in place of e(t).
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2.2.8 ESTIMATION IN THE PRESENCE OF BOUNDED HNOISE

The "persistency of excitation" requirement for parameter convergence is
documented by many authovs, eg. Goodwin and Sin (1984 : 68), Andersca et
al (1985), Anderson (1985}, Boyd and Sastry (1986), Seborg et al (1986).
This basically means that the input signal to a process must be "suffi-
ciently rich” in spectr.l content to facilitate system identification.
Anderson (1985) discusses in depth the phenomenon known as “bursting”,
in which the estimation algorithm guin grows rapidly in the absence of
persistent excitation, cavsing large deviarions in parameter estimates.
To prevent this, many authors suggest the use of a deadzone, in which
tae algorithm update is switched off when the equation error signal e(t)
drops below a certain threshold. fGoodwin and Sin (1984 : 89) define &
simple fixed deadzone as follows :

P(r-2)¥(t-1)

8(t) = 8(e-1) + a{t-1}. - e(t)

Nt-l)TF(t-Z)'(t-l) +1

T
ith a(e-1y = |1 AF s8] = Iy(e) - #e-nTace-ny) > 2

[0 otherwise (2.17)

for some constant threshold 4.
More sophisticated “relative deadzone functions”" are proposed by

Kreisselmeier (1986) and Goodwin et gl (1986). These will be developed

in more detail in a later sectioa.

2.2.9 CONSTRAINED ESTIMATION

Frequently, the model parameter estimates csan be constrained a priorf to
lie within a given region in parameter space. The estimation algorithms

are then modified such that if the parameters move out of the predefined
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region, they are forced back by some linear projection. This {s accom-
piished generaliy by a linear coordinate transformation, effected by
modifying P(t-1} to change tue update direction. (See Goodwin and Sin 1984

92). De Larminat (1784) also suggests a type of parameter correction
procedure, whereby the persistency of excitation requirement is removed,

and stability of estimation is restained.

2.2.10 NUMERICAL SENSITIVITY

The implementation of KLS-type algorfthms on finite-wordlength digital
systems is susceptible to the problem of roundoff error. The P«matrix may
become indefinite under such conditions, causing the algorithm to become
uns® " le. One solution to the problem is called square-root filtering,

wheiv the covaridn-e wmatriax is factored as
T -
Pt} = §(t)S (v} {(2.18)

{Seborg et al. 1986; Strejc, 1980) Then by adjusting S(t) at each iter-

ation, the P-rmatiix will remain positive definite.

Another anproach is to decompose P into upper triangular and diagonal

matrices, thus
T
Plu)y = U(e)DioU () (2.1%)

(Biermon, 1977). By updating factors of P, stability is retained. Such
techniques are essential in certain civcumstances, as detailed by Ljung
and Soderstrom {(1982), Bierman (1977). Astrom (19823) recommends the use
of a factorization a.gorithm perticularly {f estimation is performed on

data with & high d.. offset level
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2.2.11 MODIFIED ESTIMATIOMN SCHEMES

For stochastic estimation models, the RLS algorithms detailed in
preceeding sectjons have been shown to produce good narameter estimates
only 1if the noise sequence E(t) and the equation error e(t) =zre
independant random variables. Howewver, if these two sequences are cor-
related, as in the case when {(t) is a coloured noise sequence, biased
estimates result. Modified schemes have been developed to ovcrcome this
preblem, such as Extended Least Squares (ELS), Generalised Least Squares
(GLS), and Instrumental Variaole (IV) methods. These will not be described
here, but a good survey of modified estimation techniques can be found
in St-ejc (1980},
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2.3 CONTROL DESIGN STPATEGIES

A number of possible control design technicues are presented in the lit-
erature. Most of the unique controller structures cited are special cases
of fairly general design procedures, which will be described in this
.ection. Broadly, the design techniques may be divided into two catego-
ries, namely minimum prediction error designs, and closed-loop pole as-
signment. The former attempt to minimise the output error given by a
predictive system description, often at the cost of large control effort.
The latter approach stems from closed-loop stability considerations, and
the overali transient response of the feedback system is significant in

the design.

2.3.1 MINIMUM PREDICTION ERROR CONTROLLERS

The control strategies to be developed in these sections will be based
on the well-known DARMA model (Goodwin and Sin 1984 : 120)

atq Hyte) = pq hucn) (2.20)
-1 -1 -1
with Alg ) =1 + a.q o, 4 an
B(Q‘I) = q.d(ba + bﬂq-l ot bmq'm)
-d -1
=q 8 )

where d = time delay
This can be expressed as a d-step ahead predictor, thus

yit+d) = afq Hye) + Ba Huo) (2.21)

1

where u(q.l) = q, + chul + ... ta q_("'l) = G(q. )

n~1

=
&
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&

“(mbd-1)

1
wrd-1d

Brahy =8, +Bq kL 48

=g @™
-1 -1
where F{q ') ard G(q °) satisfy
1=ra hah %@ oy

(Goodwin and $in 1984 : 107)

Note : The following control formulations use a deterministic process
model. Minimum prediction error control designs based on stocha . pre-
dictive models are known as minimum variance control laws .es8e are

fair1y widely documented in the literature on contol of stochastic proc-
esses. For the purposes of this research, all control formulations will

be restricted to the deterministic case

2.3.1.17 Ore-Step-Ahocad Control

Using the predictor form given above, we develop a feedback control law
which brings the system output y at time t+d, je. y{t+d), to a reference
value y*(ﬁ*d) in a 8i., le step. The name "output deadbeat" control is also
scmetimes used to describe such controllers. The control law is

characterised by
o -1 * -1
Bl Dufe) =y (t+d) - alg Jy(t) (¢.23)

This minimises a quadratic cost function comprising the squared prediction

error
e 2
Jit+d) = d{y(r+d) -y (r+d)]

in closed-loop, the output response obeys
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&
y(t) =y (&) t2d
and the control signal is characterised by
-1 .1,
B(g u(t)= A(g Dy (¥) tzd+n

Note that the control signal is generated by a transfer function whose
poles are the zeros of B(q-l)A The implicit constraint for bounded inputs
and outputs in closed-loop is that B(q-l) is stable, ie. that the plan:

is minimum-phase.

A characteristic of one-step-ahead control is that excessive contrel ef-
fort may be required to force the process output to the reference signal
at each sample, This can result in unpr.’‘ctable or oscillatory inter-

sample behaviour.

2.3.1.2 Weighted One-Step-Ahead Control

To reduce the excessive control effort required in one-step-shead con-
trol, a cost or weight is placed on the control signal u(t), giving the

modified cost function
* 12 2
Jp(e4d) = Hy(e+d) -y (4] + Hau()

The control law becomes

* -1 S
By y (r+d) - a(q y(t) - B'(q Hu(r-1)

u{t) =
(8,7 +3)
(2.24)
where
e -1
B'(q ") = qB@ ) - 8]
-1 “{m+d-2
=B, + Bag +m*8m+d_1q( )
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(Goodwin and Sin 1984 : 122).
In closed-loop, the system response is described by
- - -1, %
(Bra™ + assa@ H]yceed) = '@ Dy ey
and the control signal by
v ot -1 -1, *
@D+ osoae Hlue = a@hHy' e
Thus it is clear that the control effort has been "softensd" by the
inclusion of the weighting factor ), at the cost of a relaxed output re-
sponse to setpoint variations.
This control law can be made effective for all open-loop stable,
minimum-phase processes, as well as certain nonminimum-phase and open-
loop unstable plant, with sujitable choices of X {Goodwin and Sin 1584
123). The use of X in & one-step-ahead control law is also known as "de-

tuning”. Other more sophisticated techniques for detuning (such as

polynomial weighting factors) are given in Goodwin and Sin (1984 : 124).

2.3.1.3 Model-Reference Control

The system description of 2.20 is used, and & control law is designed to
enable the process output y(t) to track a setpoint y*(t)A However, the
desired output response is generated by a4 prespecified reference model
with & known transfer function, which is driven by a reference signal

r(t). Thus yﬂ(t) obeys
- * ~-q' -
E(q l)y (t) = q a Hiq l)r(t) {2.2%)

Then r{t} is the input to the reference model, which has transfer function
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¢
e’y = 2 HE e
The polynomials H(z.l) and E(z'l) are selacted to give desired performance

and stability. A clear constraint is that Egz'l) is stable.

The model-reference system iv detailed in Figure 2 on page 28. It can be

seen that the tracking error is defined as
*
e(t) =y (t) - y(t)
As before, we derive the model reference controller tirst by developing
8 prediction of the output, and then choosing a control law which sets
it equal to some function of the reference signal r(t). In this case,
however, we predict E(q‘l)y(t) and choose control to set it equal to
q.dﬂ(q-‘)x(t), to satisfy the objective
-1 -d -1
E(q )y(t) = q "H(q )r(r) (2.26)
L
(Note : this is the same as 2.25, with y(t) =y (t) }.
The predictor form is given as (Goodwin and Sin 1984 : 131)
~1 -1 -1
E(q "ly(t+d) = alq T)y(t) + Blq ulv)

(2.27)

where

a@™h = 6™

8a™h = rig™Hee™h

and F(q'l). G(q‘l) are polynomials of order d-1, n-1 respectively,
which satisfy the Generalised Prediction Equality

£l = raahae™h + %@ (2.28)

(Macleod, 1987)
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Figure 2. Block Diagram of Model Reference Control System.

This can be proved by multiplying 2.20 by F(q.l) and using 2.28.

The control signal is generated using
-1 - -1 N -1
B(q yu(t) = H(q )rit; - alq dy(r) (2.29)
which gzives the desired objective of 2.26.
Thus it is clear that model-reference control is a generalisation of
one-step-ahead control, with a different approach to "softening” the
transient response and hence the control effort. This technique is also

only applicable to minimum-phase processes. A comprehensive review of

adaptive model-reference contrel is given by Landau (1979;.
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2.3.2 POLE ASSIGNMENT CONTROLLERS

These controllers are designed by examining the closed-loop system, and
placing the closed-loop poles at desired locations. From Figure } on page
30, it is clear that the closed-loop system 'transfer function” can be

written as

-1 -1
G(q-l) = P(q )B(q )

pie™HBe™h + A HLE™

- - - - - - - e
or [Pa™hsa™) + a™hrw ]y = p s hy e
(Macleod, 1987)
By setting the denominator of G(q‘l) equal to a desired closed-loop

* -
polynomial A (q 1), the poles of the closed-loop system can be arbitrarily
positioned, thus :

sotve ata L™ + 8@ Hrgh = 4" ™h (2.30)

to give the controller polynomials P ;‘l) and L(q-x)

the expression 2.30 is known as the Diophantine equation. and its solution

involves the solving of a set of linear equations.

A condition on the solution is that A(q'l) and B\q—‘) are relatively
prime. However, since no attempt is made to cancel B(q‘l) in the closed
loop, nonminimum-phase processes can easily be controlled by such de-
signs.

The control law is then simply given by

L@ Hucey = e HIy e - v
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Figure 3. Closed-Loop System Structure

* .
The selection of a suitable A (g 1) is discussed in later sections.

2.3.2.1 Rapprochement with Minimum Prediction Error Control
It can be shown that the control design approaches of earlier sections
are merely special cases of the pole assignment procedure.
Considering the Diophantine equation 2.30, and setting
*oo-1 I
A(q )=B'(g ), 2.30 gives

aa Hre ™ s s hrah = w@h (2.31)
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Clearly 8’(q") must be a factor of L(q.l), 50 we set
tg™ = FHea™h

which gives from 2.31

Fiaha™ + 7% h =1

This is simply the d-step ahead prediction squality 2.22 used iu ons-
step-ahead control, with P(q-I) = G(q‘x)‘ Thus the one-step-ahead ap-
proach can be interpreted as pole assignment, where the closed-loop poles
are assigned the values of the open-loop zercs (Goodwin and Sin 1984
1543,

Similarly, model-refurence control can be achieved by choosing

-1

* - Sl
a*@™h =@ hea™.
Substitution in 2.30 results in

-1 -1 -d, -1 -1
Flq JAlq ") +q "Plq ) = 5@ ")
Which is the same as the Generalised Prediction Equality (2.28) as used

in model-reference .ontroller design. (Goodwin and Sin 1984 : 155).

2.4 CONCLUSION

This section has reviewed some of the current techniques in adaptive es-
timation and control for deterministic sampied systems. 1t must be noted
that many variants are documented in the literature, but these are almost
all based on the methods discussed here. The most popular and reliable
estimation technique is the Recursive Least Squares (RLS) with appropri-

i
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ate modificaticns to improve robustness, The controller design procedures

discussed have been shown to be special forms of a more general case,

namely closed-loop pole assignment.
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3.0 DELTA-OPERATOR FORMULATION OF DISCRETE-TIME CONTROL

Astrom, Hagander & Sternby (1984} have documented the relationship be-
tween continuous time transfer functions and their discrete-time
counterparts. In particular, they showed that for continuous-time trana-
fer functions with stable zeros of relative degree greater than two, the
corresponding discrete-time transfer function will contain a number of
additional zeros equal to the pole excess, which migrate from 2z=0 to
outside the unit circle, as the sampling rate increases. Thus a
continuous-time plant which has no unstable zer>s can become nonminimum-
phase during sampling. In addition, for plants with delays which are
fractional multiples of the sampling period A, at least one of the zeros

of the sampled system will become nonminimum-phase (Clarke, 1984).

Thus it would not be sensible to use discrete control strategies which
attampt to cancel all the open-loop plant zeros (see "Current Approaches
to Adaptive Estimation and Control” on page 9), since this would imply
an unstable set of controller poles. This could cause closed-locp insta-

bility since pole-zero cancellation will not be exsct in discrete time.

Scme authors have suggested very subtle approaches to the problem.
Gawthropy (1980) has proposed a "hybrid controller" which ensures that
continuous-time plants with stable zeros do not become nonminimum-phase
during sampling. This is effected by inserting a "bandlimitad
differentiator” after the plant output measurement in the closed loop,
which replaces the unstable discrete zeros predicted by Astrom et al
(1984) by =zeros near the origin. The plant model is formulated in
contiduous-time at a fast sampling rate, with a alscrete-tima control jaw
at a4 slower rate. The overall adaptive controller then contains beth
discrete and continuous components, whose closed-loop stability proper-
ties tend to those of a continucus-time system as the sampling rate in-

creases.

Delta-operator formulation of Discrete-Time Control 33
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However, more ty-.cally digital controllers are implemented with con-
straints on the sampling rate. Astrom, Hagander and, Sternby (1984) showed
that there is a critical sampling period h above which all zeros of the
sampled system are inside the unit circle in the z-domain. Thus many au-
thors advocate the use of lower sampling rates for discrete-time control
systems. This has the disadvantage of yielding a low-bandwidth control

law, and consequently a low-bandwidth closed-loop system.

By the very definition of the sampling operation, one would intuitively
expect better approximation to continuous-time systems as the sampling
became more rapid, since the discrete signals would be more accurate
representations of the continuous ones. This is in direct contrast with

the preceeding observations.

This apparent paradox has been resolved by Goodwin et al (1986), by in-
troducing a different shift operator to replace the usual inverse shift

operator. This has become known as the Pelts-operstor, and is defined as

g 3°1

(3.1)

where q is the usual shift operator and A is the sampling interval. This
has the advantage of giving a8 close connection between exact continuous
and exact discrete transfer function plant models at higher sampling

rates.
The §-opesator is not in itself a new mathematical concept. It has been
used in the control literature as a way of motivating z-transforms, and

is suggested in digital filtering d¢pplications to improve numerical

behaviour (see Goodwin et al, 1986).

we examine the physical realisation of the $-operstor as follows:
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So (1 - q Dy’ (k) = &q "y(k)
1 " or y' (k) = Ay(k-1) + y'(k-1) (3.3)
Equation 3.3 shows that we may interpret the 6.l-operator as a discrete
integrat~r, where y'(k) is the urea under the function y(k) up to sample
time k. Figure & on page 36 illustrates this concept,
The delta-operator may be implemented in practice as shown in Figure § .“x

on page 37.

This implementation is coded in pseudo-code as

YOUT:= DELTA®YOLD + YOUT;
YOLD:= Y;

We define the transform corresponding to the § -operator as the ¥-trans-
form. Further interesting properties emerge by examining this ¥-trans-
form domain. It is easily sbowr (Miduieton & Coodwin, 1986) that the
f stability regicn in rhe ¥-plane is a circle of radius 1/4, positvioned at
7-1/74,0). This region, &s the sampling interval A decreases, approximates
% . the Laplace-domain stability region, viz. the whole left-hand half-plane.

Thys is illustrated in Figure 6 on page 38.
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Figure 4. The Inverse Delta Cperator as an Integrator

Hiddleton and Goodwir {(1986) define the ¥-¢.ansform as follows:

Ll
Frlx) = 8F,(1+8x) = A2 ek (180 K
k=0
(3.4)

where FZ is the normal Z-transform. Sinze z has been replaced by (1+4x),
it is clear from 3.1 that 3.4 gives the natural transform for delta models
where q = (1 + Ad).

It is further shown that for the Laplace transform Fq(s)

Allg (FyGa)) = F ()] .
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Figure 5. Block Diagram implementation of the Delta-Operator

th

= £(t)e” 3 (3.5)

where the integral in 3.5 s a Riemann integral. Thus & close correlation
between th# continuous time Laplace transform and the discrete-time

¥-transform is established for fast sampling.

Middleton and Goodwin (1986} further demonstrate that the ¥-transform has
many similar properties to the Lavlace transform, including linearity,
final/initial value theorems, complex translation and real convolution.
Standard Laplace-domain transfer functions are expressed in the new do-

main as follows:
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if the continous plant is

AT(D)y(t) = B'(Dyu(r)

with Laplace-transformed m.al

A'(8)Y(s) = B'(s)U(s)

then the discrete-time &-operntor wodel is

A(8)y(k8) = B(Slu(ka)

and ity ¥-transformed model is

Delta-operator formulation of Discrete-Time Control
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Ax(x)Y‘(x) = BZ(X)UX(X)
with the transformation defined as

ASY = 1 A'(8a+1)
Aﬂ

1

[y

B(8) = 8'(8a+1)

(3.6)

It is importart to note that ths S-operator system model will have the
same order and relative degree as the inverse shift-operator model. This

will not be true of many othur possible substitutijons.

Also, Middleton and Goodwin (1986) demonstrate that the 8-model has su-
perior finite word-length characteristics as related to coefficient rep~
resentatijon, round-off noise and online control synthnesis. This last is
2 consequence of reduced eigenvalue sensitivity for finite word-length
systems using S-operutors. In an adaptive control application using a
numerically sensitive control design procedure (such as the solution of
a Diophantine equation during pole assignment), this is a significant

property

Furthermore, the plant modal derived by an online parameter estimator will
be ciosely related to the continuous-time plant. Feedback controller de-
sign can thus be performed using classical contrel engineering teche
niques, and the closed-loop numerical values obtained in practice will

be far easier to interpret.

Goodwin et al (1986) developed and implemented a model-reference adepiive
controlier using the 8-c.erator representation. Excellent control per-
formance was obtained for a wide range of disturbances, including large
changes ir open-loop system gain. This demonstrated che retention of

continuous-time properties in the sampi=1 system, ensuring stable con-

Jelta-operator formulation of Discrete-Time Cintrol 39

5



trol. A global convergence proof for the model reference adaptive case

using 8-operators is ilso presented by the authors.

The discussion of this section has demonstrated that & new transform do-
main bridges the gap between discrete- and continuous-time theory. This
means that all system transfer functions, especially with regard to pole
and zero positions, can be examined in the Laplace-domain or frequency-
domain. As long as the condition of fast sampling holis, the approximation
s = § ¢ 'n be made. This simplifies the analysis and design of the adaptive

control sysiem considerably.

The constraint of slow sampling normally advocated is now removed, al-
lowing for the design of larger bandwidth closed-loop systems. This is
desirable for better disturbance rejection and tracking performance.
Faster sampling also avoids two practical contrel problems, viz. for slow
sampling rates, control is open-loop between samples. This can yield
intersample ripples, which implies that the campled output is & poor
representation of tihe actual plant response. Secondly, to vield a desired
closed-loop bandwidth, the control signal for slow sampling rates will
often be a series of large step changes. This generates significant high
frequency energy ia the actuators, which can be undesirable. Faster sam-
pling will give a4 smoother sequence of small step changes for the same

banawidth.

All of the ensuing discussions of the estimator and usntroller are for-

mulated in terms of 8-operavors.
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4.0 ROBUST ESTIMATOR STRUCTURE

This section develops the structure for a robust parameter estimator. The
Recursive Least Squares method is used with some modifications, and .he

process model formulation is given in terms of 4-operators.

4.1 MODEL STRUCTURE

A linear difference equation system descripcion is used, as described in
"Linear Differunce Equation Models" on page 11. This is conveniently ex-
pressed as a “ARMA model (See "Minimum Prediction Error Controllers’ on
pags 23), t

A(8)y(ka) = B(8)u(ka) + §(ka) %.1n
For compactness of notation we drop the arguments, giving

Ay = Bu + §
The structure of equation 4.1 is generalised furi'ier to include both un-
measurable deterministic disturbances and measur .ie random disturbauce

signals, thus:

Ay = Bu + Fz + d + [

™
~a

where the symbole have the following meanings:

A ard F are monic polynomial operators, defined as

A

it 515 + 626“ o + 8

- ”
o - 2
1 2 bO + b15 + b25 oo + 8

Robust Estirator Ctructure 41




Fef +£6+€68%+ . ..., + 8"

2z : measurable random disturbance signal
d : unmeasurable deterministic disturbance signal

{ : modelling error and noise

The measured disturbance signal 2(kA) will be used to develop an acaptive
feedforward control block. This could be useful in many industrial process
applications, since the disturbance signal measurements are often readily
available online for monitoring purposes. One of the well-known problems
with the use of feedforward control is the necessity for a good dynamic
model of the disturbance-output relationship, for effective disturbance
compensation. Adaptive estimation wculd appear to be ideally suited to
such a situa.. n, allowing for the generation of a good model in the

presence of unknown or possibly time-varying disturbance behaviour.

The unmeasurable deterministic disturbance signal d(kA) is included to
model known waveforms such as d.c. offsets, ramps, sinuscidal and other
periodically varying disturbances which are introduced in the process
inputs and outputs from unmeasurable sources. This situation may typi-
cally emerge for example when contiguous processer sive coupled through
material flow, and a periodic variation upstream causes observable

detrrmiristic variations in the downstream process.
The deterministic disturbance d is characterised by
bd = 0 (4.3)
(Goodwin and Sin 1984 : 156)
where D is also a monic polynomial of tae form

D= d, + dlb + dﬁbz LI + 6
2

0

D is known as a “deterministic signal nulling polynomial”, since it

eiiminates the signal d when cperating on it. Some examples of
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deterministic signals and their nulling poulynomials are (after Macleod,

1987)
1. 4{ka) = constant
je. d(ka) = d{(k+1)4] for all k
taking d[(k+1)4) - dikd) = 0
(q - Dd(kd) = 0
Then  D(q) =q - 1
and in S-operator form
D(§) = 8§ using 3 1

(See "Delta-operator formulation of Discrete-Time Control” on page 33)

2. d(ka&) = A,sin{pkd + ¢) {sinusoid)
2
Then Diq) = (g~ - Zcospg + 1)

and D(§) = §2 & 2come)y | 2(1-iosp)
A IS

3. d(kd) = Asin(p,kd + ¢,) + Apsin{pkd + ¢,)

($um of sinusoids)

2 >
Then D(q) = (g~ - 2cosp,q + 1)(q" - Zeosp,q + 1)

2(1'cosp,)6 .
4 a?

and D&Y = [52 N 2(}%(}39,)} [52 . 2mcospyig 2(2-00391)]

N A a?
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Note: Since D represents some deterministic function, it will have pea-
riodic compounents. Thus the rocts of D lie on the stability boundary of
the ¥-plane.

To eliminate the deterministic disturbance d, we multiply hoth sides of
equation 4.2 by D. This is in accordance with the Intarnal Model Prin. ple
(Goodwin and Sin 1984 : 156). Thus :

ADy = BDu + FDz + D (6.4)

Now since D has roots on the stability boundary, the noise term §{ may be
amplified at high frequencies. Thus we introduce a stable polynomial op-~

erator D' which is “near to" D.

For example, 1: the disturbance d is a constant (d.c. offset disturbance

signal) then as before

D=8,

and we choose

D' =8+ (¢ is some small positive value).

We divide 4.4 by D' to give

133 y = lgl u+ sz z + ELZ
y v T d
D D D b (4.5)
The "transfer functior” spacified by
pesy . 8
D'(8) 5+
is effectively hepass filter as we would expect to null a constant
disturbance sig. The frequency response is detarmined by "how close”

the corner frequency € is to zero, as shown in Figure ™ on page 45, with
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Figure 7. Frequency Response of High pass Filter for Robust Esti-

mat fon

the approximation § = jw. For other deterministic disturbance:s, D/D' would
yield a "band reject" filter with the stopband simply a notch or tnstches

at the periodic frequency components of d(t).

We alsc bandlimit the estimated model by introducing a low-pass fiiter.

described by a monic stable polynomial operator E:

This filtering will effectively be applied to the u,y and 2 signals
measured, and will ensure that the signals used for estimation do not
contain high ‘{requency components. Thus the low-crder model! being esti-
mated is not influonced by the nnaccounted-for high-frequency system dy-

namics. Equation 4.5 becomes
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(4.6)

Note: y' is the output of the high pass filter operating on the measured

input y, where D and D' are defined as above for d = constant.

Also, define

Where Ve is the filtered output signal.
We zan then rewrite equation 4.6 as

Ayf = Bu, + Fz, + n (4.7)

f £ £

With the following quantities defined:

D
= Y
D'E
u=D u
e
D'E
?‘DZ
£ m—
D'E
AP :
D'E :
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This "filtered model” is in agreement with the signal conditioning or
prefiltering described in Goodwin and Mayne (1987). Thus a bandlinited
mode]l appears to be zssential in adaptive estimation for unknown, possibly

high-order or nonlinear processes.
Now, adding Eyf to both sides of 4.7 yields

Eyf=Eyf - Ayf+Buf+sz+nf (4.8)
Since y' = Eyf bv definition, we have the regression form

y' = (E - Ay, + Bug + Fz (4.9)

£ £t N

1f we neglect the bounded noise term Mgy we can formulate a standard

regression for y'(k):

v oo = saenT L a0

where
taenT = v, d0, 8y 00, o, 800 20, L 82 (0]
{4.10)
B(k) = [”O ey e ta) e A, bo .,bm,to fr]
(4.11)

This is compatible with the recursive least squares algorithm described

ir "Current approaches to Adaptive Estimation and Control” on page 9.
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" This "filtered model” is in agreement with the signal couditioning ar
I prefiltering described in Goodwin and Mayne (1987). Thus a bandlinited
f model appears to be essential in adaptive estimation for unknown, possibly
high-order or nonlinear processes.
PF
i .
4 Now, adding Eyf to both sides of 4.7 yields
Eyf=Eyf - Ayf+8uf+}'zf+ e (4.8)
Since y' = I'lyf bty definition, we have the regression form
y = (E -A)yf+Buf+sz+nf {6.9)
f If we neglect the bounded nnise term nf, we can formulate 8 standard
- regression for y'(k):
-
- . s T
y'(k) = #(k-1)" . 8(k)
R4 where
20T = 1y (0 &y 0, u k) 8™ k)2, (k) 8%z (k)]
£ [ NG R [ R f
(4.10)
8(k) = [e0 - 30' e - al Ae“_l an-l‘ bo ..bm,fo ‘fr]
(4.11)

This is compatible with the recursive least squares algorithm described

in "Current Appronaches to Adaptive Estimation and Control" on pags 9.

.
ey
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4.2 RELATIVE DEADZONE

As described ia "Estimation in the Presence of Bounded Noise' on page
20, robustness in recursive estimation is dependant on "persistency of
excitation”, which means that the input signal u must be "sufficiently
rich” in frequency content. Anderson (1985) has investigated the mech-
anism behind the so-cailed "bursting phenomenon”, in which the parameter
estimates (and consequently the estimated output y), exhibit "bursts" or
intervals of unbounded growth. This is due to the estimator attempting
to update the model estimates without any useful signal exciting the
system. Consequently, due to the low order of the model used, high fre-
quency noise cduses erronecus parameter updates. Various other mechanisms
for parameter divergence are explored by Anderson (1985). The robust
estimator developed in this section uses the relative deadzone function
described by Goodwin et al (1986), Kreisselmeier (1986), and Ortega and
Lozano~Leal (i987). This function turns off the estimator when the
equation error e(t; iz smaller thar some threshold. The threshold is
dynamically varied accoviing to che magnitudes of the input and output
signals. The relative deadzone arises from the reasoning tha® modelling
error is effectively a disturbance in the estimation systum, which is
directly correlatec with the magnitudes of the plant inpu: and output

signals. Thus the deadzone is incressed in the preser« of large process

signal measurements, since larger :rror terms are ant pated, and re-

duced when the plant inputs and outputs are small.

The relative deadzone used is iliustrated in Figure 8 on page 47, and is

defined as

e - g if e » g
flge) = 4 O if lel & g
e g if e S -g (6.1

The relative deadzone is now developed to vary the size of g.

We define the function mik) as
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Figure 8. The Baszic Relative Deadzone Function

mik) = gem(k-1) + €4 + £,|u'(k=1)] + £,]y' (k-1)] + e,f2' (k-1)]

{6.13)

Where the constants are chosen as

o, € (0,1);
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and we choose
o, € (9,',1), and m(0) = m,
s0 that
Ine(l € m(k) for all k.
m(k) is effectively a low-pass filtered function of the process input and
output, which m:st overbound the filtered noise term nf(k). This term

represents the filtered process noise and noise due to modelling error

Note: For a "unity-gain" deadzone filter the function &.13 should be

modified as
m(k) = ggm(k=1) + (1~0g)jeq + €, [u'(k-1)| + €,y (k=1)| + g, 02" (k=1)[]
Then choose ¢, > 0 and a € (0,1) to implement the deadzone a. follows:
§=lc0 ¥ 1/ (1m0 (6.14)
Finally, define the magnitude function a(k) as:
(o if le(k)| < Blk)
a(k) =
La . fletk); Bm(k))/e(k) otherwise
(5.15)
The relationships 4.14 and 4.15 emerge from convergence analysis ot the

estimator with the deadzone, as performed by Goodwin et al (1986),

Kreisselmeier (1986). Ortega and Lozano-Leal {1987}. For completeness 1
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simplified convergence analysis is included in Appendix A. The choicae

of suitable constants are discussed in a later section.

4.3 THE RECURSIVE LEAST SQUARES ALGORITHM

The Actual pavameter update is perfoimed at each iteration using a modi-
fied RLS algorithm, In §-operator notation, this is given by the following

twe stages

ooy = A0 P(k-2)¥(k-1) . el
s 2D TR 3k + 1
T
sp(een) = "800 o PR-2)H(k-1)#(k-1) 'P(k-2)

A f(k-l)TP(k-Z)O(k-l\ +1

(4.18)
Thu equations 3.16 can be rewritten in recursion form as follows.

P(k-2)#(k-1)

Q(k-l)TP(k-Z)Q(k-l) +1

8(k) = 8(k~1) + a(k) .oe(k)

Toryen
Plke1) = Plke2y - a(ky, PRI DEE-DP(-2)

$0eDTP-2)8 (k1) + 1
(h.175

The most important modification is the inzlusion of the factor a(k), which

turns off the update when the prediction arror e(k) falls below the bound

Bm(k), as described above.
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simplified convergence analysis is included in Appendix A. The choice

of suitable constante are discussed in a later section.

4.3 THE RECURSIVE LEAST SQUARES ALGORITHM

The Actual parameter update is performed at each iteration using a modi-

tied RLS algorithm. In d-operater notation, this is given by the folloving

two stages

53" (k-1) = a(k) . P(k-2)#(k-1) . e(k)
T

4 #(k+1) P(k=2)8(k-1) + 1

8P (k-2) =

a(k) . P(k=2)8Ck-DE(k-1)TP(Kk-2)
a $0-1 TP (ko1 + 1

{4.18})
The equations 3.16 can be rewritten in recursion form as follows:

8(k) = 8(k-1) + alk) . P21 (k1) e(k)

Q(R'])TP(k‘Z)Q(k-l) + 1

T
P(k-1) = P(k-2) - a(k), POCDIEDEGCD) Plk-2)

0(k-l)T7(k-2)§(k-l) + 1

(4.175
The most {.portat modificatica is the inzlusion of the factor a(k), which

turns of{ ne update whea the predicricon erver k) falls below the bound

Bm{k), as doscribed abi >
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4.4 NUMERICAL IMPLEMENTATION

As discussed in "Numerical Sensitivity" on page 21, for finite-wordlength
implementations of the RLS algorithm a covariance factorization technique
is more robust than the standard form. In this research, the UDUT
factorization proposed by Bierman (1977) is used to improve numericel
behaviour of the algorithm. The algorithm is described in Appendix B,

modified to include the relative deadzone and a forgetting factor.

4.5 COVARIANCE MODIFICATION

Meny possible schemes for modifying the covariance matrix P were proposed
in "Modifications to RLS Estimation” on page 16, thus maintaining algo-
rithm sensitivity to dynamic plant variations. This estimator uses the
exponential forgetting factor approach, since it is a well~proven proce-
dure and allcrs for many possible alternstives, eg. Goodwin and $in (1984

64), Fortascue et al (1981), Although the regularised constant trace
algorithm was considered, its implementation is extremely difficult in
conjunction with Bierman's covariance factorization method. The numerical
advantages of the factor/zation approach were deemed more significant

than the type of covariance modification used.
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4.4 NUMERICAL IMPLEMENTATION

As discussed in "Numerical Sensitivity" on page 21, for finite-wordlength
implementations of the RLS algorithm a covariance factorizatjion technique
is more robust than the standard form. In this research, the UDUT
factorization proposed by Bierman {1977) is used co improve numerical
behaviour of the algorithm, The algorithm is described in Appendix B,

modified to include the relative deadzone and a forgetting factor.

4.5 COVARIANCE MODIFICATION

Many possible schemes for modifying the covariance matrix P were proposed
in "Modifications to RLS Estimation” on page 18, thus maintaining algo-
rithm sensitivity to dynamic plant variations. This estimator uses the
exponential forgetting factor approach, since it is a well-proven proce-
dure and allows for many possible alternatives, eg. Goodwin and Sin (1984

64), Fortescue et al (1981). Although the regularised constant trace

algorithkm was considered, its fmplementation is extremely difficult {n

conjunction with Bierman’s covariance factorization method. The numerical
advantages of the factorization approach were deomed more significant

than the type of covarian-e modification used.
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PR 5.0 ROBUST CONTROLLER STRUCTURE

5.1 INTRODUCTION

Many cifferent controllar design procedures a.e possible. However, it has

been shown that the most general method is that of closed-loop pole as-
signment (See "Pole Assignment Controllers” on page 29). The other methods
described are all special forms of this technigue, and lose generality

in that they constrain the nature of the procnss to be controlled. Ex- ¥

tensive research has been dove on the adaptive control of nonminimum-phase
i systems in particu.ar, «g. M'Saad, “rtega and Landau (19853), Clarke
# ) {1984), Goodwin and Sin (1981), Kumar and Moore (1983), Elliott (i982).
E

In each of these cases, the control design appriach used can be inter-

preted as a form of pole-placement,

The closed .cep robustness of adaptive pole assignment algorithms has

» also been wall-established, as in Astrom {1980}, Anderson . Johnstone

(1985), Ortega et al (1985). Practical implementations of adaptive cone ‘\

trollers with pole-placement are documerted by Wellstead et al (1979,

Astrom and Wittenmark (198C), Wellstead and Sanoff (1981), Aliidina et
al (1981), Lin and Chen (1986).

Thus pole assignment is deemsd the rost general snd robust approach
wvailable, end is used in this research. An explicit focmulation is de-
veloped in this section, ie. the plant parameter estimator does not di-
rectly estimate the controller coefficients, but supplies them to a

separate contrel design procedure.

. ’ The control philosophy is based on certainty eguivalence, in that the
plant parameter sstimates are taken to describe the true plant, and thus
the closed-loop pole placement assunes the real plant poles are the same
as those of the estimared model. Thae design procedure is made robust in

the following ways:
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© No sttempt is made to cancel the open-loop zeros (whather stable or

unstable) in the closed-loop structure. This allows plants which are
s ; open-loop unstable or have unstaple inverses to be effectively sta-
‘ bilized and ¢ atrolled.

e Provision is made for deterministic disturbance nulling by the con-

troller, as well 2s deterministic setpoint tracking. This is facili-

tated by incorporating the monie zero pclynomial descriptions of the

deterministic signals in the controller denominator, to ensure high
feedback gain at critical frequencier. It is well known from classical
control that high gain feedback at a given frequency will eliminate
that component in tha plant output response, as in the Internal Model
Principle (Goodwin and Sin 1984 : 156). Such approaches are also
documentea by Puthenpura and MacGregor (1987), and Tuffs and Clarke
{1985), for the elimination of deterministic disturbances in the

closed loop.

_y

o Checking is performed to ascertain whether any of the estimated plant
. varameters are zero, which would not allow a solution of the pole«

placemant equations. If this is the case, alternative solutions are

used. B,

5.2 CONTROL SYNTHESIS

The controller structure is developed as follows:

£
Assume chat the setpoint y satisfies a model of

s the form
e
[ 8y = 5.1

where § is a monic polynomial of degree 53 and

has roots on the stability boundary.
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By the Internal Model Principle (Goodwin & $in, 1984 : 136)

the control law is

LDS.u = Py" - Gy (5.2)

where L= 1, + 1,8+ .... + 8%

D = deterministic disturbance nulling polynomial as defined
in the previous section. The in.'usion of 0 and § in the
controller renders deterministic modes in disturbances or
in the setpoint unobservable at the system output (Goodwin
and $in 1984 : 157)

Popy +pd+..... + 88
Gmg, + 8,6+ ..... + 8¢

1f we set L' = LDS and P = G (as is often done for convenience), we get
L'y = Pe (5.3)

*
where e = (y =~ )

The closed-loop system is detailed in Figure 9 on page 36. This shows che
polynomials P(8), L'(8), B(§) and A(8) in transfer function form, which
is not strictly accurate. However, this representation lends itself to
block diagram forms, and will be used in the ensuing development.

The closed-loop "transfer function” is

= G ®

where \
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Figure 9. Closed-Loop System Structure

.
6pp () = PR/L'A

14+ PB/L'A

]

1 A+ PB (5.4)
The closed~loop poles are clearly given by

R *
LA + PR = A 3.

o

where A is some desired closed loop characteristic polynomial. The

ko conrrolier design is accomplished by solving for a prespec-

¢ set of closed-loop poles, viz. for some defin
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As discussed earlier, the inclusion of both the D and the $ polynomials
in the closed-loop identity 5.5 allows perfect setpoint tracking for the

class of deterministic disturbance and/or setpoint signals described by

the polynomials.

we now include a feedforward component in the contrel signal, thus:

set u=u - Hz (5.6)

where H is some designed feedforward transfer function

z is t seasured plant disturbance signal

u' is the control input signal derived fromfeedback

Then taking e