THE POPULATION DYNAMICS OF SOME WOODY SPECIES IN THE KALAHARI SAND VEGETATION OF HWANGE NATIONAL ARK

Susan Lawley Childes

A Dissertation Submitted to the Faculty of Science University of the Witwatersrand, Johannesburg for the Degree of Master of Science

Hwange 1984

ABSTRACT

THE POPULATION DYNAMICS OF SOME WOODY SPECIES IN THE KALAHARI SAND VEGETATION OF HWANGE NATIONAL PARK

i

CHILDES, Susan Lawley, M.Sc. University of the Witwatersrand, Johannesburg, 1984.

The population dynamics and principal controlling factors of six woody species found in the Kalahari Sand vegetation of Hwange National Park are investigated. The populations from woodland and scrub areas of known human disturbance (logging) are compared with undisturbed sites. The effects of edaphic factors, frost, fire and elephant damage on the woody species are examined.

The results show the populations from the disturbed areas to be generally unstable with a decline in the woodlands. The estimated recruitment of <u>Baikiaea plurijuga</u> is 0,2 of the rate needed to maintain the woodlands in the present state. The influence of soil moisture is of major importance in determining vegetation physiognomy and species composition. Frost and fire also have a strong modifying influence on the vegetation through the differing sensitivities of each species. Frost, fire and elephant account for 57%, 24% and 19% of the damage (excluding unknown factors).

In conclusion a hypothesis showing the interaction of abiotic and biotic factors on the three stages of vegetation cycling : woodland, scrub and grassland, is presented.

DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the Unive ity of the Witwatersrand, Johannesburg. has not been submitted before for any degree or examination in any other University.

Susan hawley Chitdes

Susan Lawley Childes 20 day of March, 1984.

				Page
PRE	FACE .			iii
Cha	apter			
1.	INTRO	DUCTION		1
2.	THE S		A	5
	2.1.		on	5
	2.2.			5
	2.3.		phy and Geology	9
	2.4.		ion	9
	2.5.	Biotic	Influences	14
3.			VIEW	18
	3.1.		••••••	18
		3.1.1.	Geological History of the	
		1983	Kalahari Sands	18
			Pan Formation	19
		3.1.3.	Characteristics of Kalahari	
	1.2.1	Sec. Sec.	Sand	20
	3.2.	- 6.65 A	ion	21
		3.2.1.	Forestry Activities	21
		3.2.2.	Composition and	
			Classification	24
		3.2.3.	Succession	27
				2.5
4.			YSIOGNOMY, GROWTH AND MORTALITY.	36
	4.1.		ction	36
	4.2.		••••••	38
		4.2.1.	Vegetation Size Structure and	1 million
		Same and	Composition	
		4.2.2.		41
			Mortality	43
		4.2.4.	Coppice Competition Experiment.	43

A

Chapter

5.

D

er			
.3.	Results		43
	4.3.1	.1. Vegetation Composition	43
	4.3.1	.2. Size Structure	46
	4.3.1	.3. Quotients per Size Class	51
	4.3.1	.4. Disturbance Index	59
	4.3.2.	Growth Rates	59
	4.3.3.	Mortality	67
	4.3.4.	Competition	73
.4.	Discuss	ion	73
ETERI	MINANTS (OF VEGETATION CHANGE	76
.1.	Introdu	ction	76
	5.1.1.	Literature Review	76
	5.1.1	.1. Edaphic Factors	76
	5.1.1	.2. Frost	78
	5.1.1	.3. Fire	79
	5.1.1	.4. Elephant	80
	5.1.1	.5. Logging Activities	80
.2.	Methods		81
	5.2.1.	Edaphic Factors	81
		Soil Analyses	81
		Soil Moisture	81
		Hard Layer	88
		Root Systems	88
		Phenology	8.9
	5.2.2.	Frost	89
	5.2.3.	Fire	93
	5.2.4.	Frost, Fire and Elephant	
		Damage	93
.3.	Results		93
	5.3.1.	Edaphic Factors	93
		Soil Analyses	93
		Soil Moisture	98

Hard Layer Testing

Phenology

Root Systems 110

Page

106

116

Chapter

6.

		5.3.2.	Frost	125
		5.3.3.	Fire	135
		5.3.4.	Frost, Fire and Elephant	
			Damage Assessments	138
		5.3.4		
			the six main species	138
		5.3.4		
			other species	143
		5.3.4	.3. Heights at which damage	
			occurs	143
		5.3.5.	Logging Activities	146
	5.4.		lon	149
	e chanety	5.4.1.	Edaphic Factors	149
		6.000.00	Soil Moisture	149
			Root Systems	150
			Phenology	150
		5.4.2.	Frost Damage	151
		5.4.3.		152
		5.4.4.	Fire Damage	152
		5.4.5.	Elephant Damage	154
			Logging Effects	154
		5.4.6.	Hypothesis	100
· .	CENED	T DTCCU	SSION AND CONCLUSIONS	158
				158
	0.1.	6.1.1.	a plurijuga Dynamics	158
		6.1.2.	Introduction	164
		6.1.3.	Methods	166
		6.1.4.	Results	
	6.2.		Discussion	169
	0.2.	6.2.1.	Vegetation Dynamics	171
		6.2.2.	Introduction	171
			Dynamics and Succession	172
		6.2.3.	Factors affecting Dynamics	172
		6.2.4.	Stability and Resilience	178
	6.3.		e of Study	179
	6.4.		nce of Study	181
		6.4.1.	Management Guide	181
LIS	ST OF F	REFERENCE	S	184

. . .

PREFACE

This dissertation was undertaken as a part-time study while I was employed as an Ecologist by the Department of National Parks and Wildlife Management. The study was also listed as a Departmental project for Hwange National Park.

The purpose of the study was to test and develop earlier work by my supervisor, Prof. B.H. Walker, and my predecessor, Mr J.E. Rushworth, on the pattern and dynamics of Kalahari Sand vegetation. A further understanding of the Kalahari Sand ecosystem would provide a firmer base for Park management.

The study was limited to the population dynamics of six of the main woody species found in woodland and scrub communities on the Sands. It continued through three dry seasons and two wet seasons from 1980 - 1982.

I wish to thank Ms W. Knoop for her invaluable help with the computer program, Mr G.M. Calvert and the Forestry Commission for making data and reports available, Mrs J. Hussein and the Department of Research and Specialist Services for the loan of the soil moisture meter and the soil analyses, and Dr T. Smith for testing the <u>Baikiaea</u> population model. Assistance in the field from the Research Scouts at Main Camp is gratefully acknowledged. Finally, I am thankful to my supervisor for his stimulating discussions and guidance.

LIST OF TABLES

Chapter

4.

2. THE STUDY AREA

Table 2.1.	Meteorological data for Main Camp,	
	Hwange National Park	7
Table 2.2.	Frequency of severe frost at Main	
	Camp	10
Table 2.3.	Area of Kalahari Sands covered by	
	different vegetation communities	10
Table 2.4.	Population estimates for the main	
	herbivore species in Hwange	
	National Park	16
VEGETATION	PHYSIOGNOMY, GROWTH AND MORTALITY	

Table	4.1.	Stands sampled for vegetation	
		structure, composition and damage	
		assessments	40
Table	4.2.	Vegetation composition of the five	
		stands	45
Table	4.3.	Disturbance indices for the six	
		species in the five stands	61
Table	4.4.	Growth rates of the five main	
		species	65

5. DETERMINANTS OF VEGETATION CHANGE Table 5.1. Depth and siting of soil moisture blocks Table 5.2. Tree and shrub species marked for phenology records Table 5.3. Heights of thermometers placed in

		nine vegetation sites near Main Camp.	92
Table	5.4.	Laboratory analyses of Kalahari	
		Sand samples	94

Page

86

90

Chapte:

6.

Table	5.5.	Summary of mean monthly minimum	
		temperatures at Livingi and	
		Malindi sites	126
Table	5.6.	Mean monthly minimum temperatures	
		at Dopi	131
Table	5.7.	Annual rainfall and the proportion	
		of Kalahari Sand vegetation	
		burnt	136
Table	5.8.	Percentage weight damage of the	
		six major species	140
Table	5.9.	Percentage weighted damage for	
		other woody species	144
GENER	AL DIS	CUSSION AND CONCLUSIONS	
Table	6.1.	The life stages and corresponding	
		sizes of Baikiaea plurijuga	160
Table	6.2.	Seedling survivorship of Baikiaea	
		plurijuga	160
Table	6.3.	Life table for Baikiaea plurijuga.	163
Table	6.4.	Numbers of trees in each life	
		stage after running a matrix	
		population model for 50 years	167
Table	6.5.	Approximate time taken for	
		Baikiaea plurijuga trees to pass	
		through each life stage	168
Table	6.6.	Densities of <u>Baikiaea</u> plurijuga	
		in the five life stages in	
		woodland and scrub	168
Table	6.7.	Key to management types of scrub	
		vegetation	182

LIST OF FIGURES

Chapter

2.	THE STUDY	AREA	
	Fig.2.1.	Map of Hwange National Park showing	
		situation and study sites	6
	Fig.2.2.	Annual rainfall and potential	
		evapotranspiration for Main Camp	8
	Fig.2.3.	Parallel arrangement of dunes and	
		vegetation on the Kalahari Sands in	
		western Hwange National Park	11
	Fig.2.4.	Geology map of Hwange National Park	
		adapted from the Geology of Rhodesia	
		1:1 000 000 map, Surveyor General,	
		1971	12
	Fig.2.5.	Vegetation map at Hwange National	
		Park	1.3
	Fig.2.6.	Photograph taken from the bottom of a	
		fossil drainage line near Manga 3 Pan,	
		Hwange National Park	15
		a Margan And and and an arranged shake a shake a shake a	
3.	LITERATUR	E REVIEW	
	Fig.3.1.	Map of Forestry concessions in Hwange	
		National Park and adjacent areas	23
	Fig.3.2.	Photograph of Baikiaea plurijuga and	
		Colophospermum mopane growing in close	
		proximity, indicating the about soil	
		changes in the dunes	29
	Fig.3.3.	Boughey's (1963) hypothesis for the	
		derivation of various secondary	
		communities from Baikiaea woodland	31

Chapter

4.

VEGETATION PHYSIOGNOMY, GROWTH AND MORTALITY	
Fig.4.1. Photograph of dry season Baikiaea	
plurijuga woodland near Mitswiri	
Pan, Hwange National Park	39
Fig.4.2. Diagram showing positions of	
circumference measurements above	
and below ground	42
Fig.4.3. Photograph showing the use of	
weather resistant tapes for	
measuring the growth rates of trees.	42
Fig.4.4. Photograph of regenerating (after	
logging) <u>Baikiaea</u> plurijuga woodland	
near Caterpillar Pan, Hwange	
National Park	44
Fig.4.5(a)Above and below ground size	
structures of <u>Baikiaea</u> plurijuga	
populations in two woodland stands .	46 A
4.5(b)Above and below ground size	
structures of <u>Baikiaea</u> plurijuga	
populations in one woodland and one	
scrub stand	47
4.5(c)Above and below ground size	
structures of <u>Terminalia</u> sericea	
populations in two woodland and two	
scrub stands	49
4.5(d)Above and below ground size	
structures of <u>Guibourtia</u> coleosperma	
populations in two woodland and one	
scrub stand	50
4.5(e)Above and below ground size	
structures of <u>Burkea</u> africana	
populations in two woodland and two	
scrub stands	52

Chapter 4.

4.5(f) Above and below ground size structures of Erythrophleum africanum populations in two woodland and one scrub stand 4.5(g) Above and below ground size structures of Ochna pulchra populations in two woodland and two scrub stands Fig.4.6(a)Quotients for successive 2000cm2 size classes for three woodland stands of Baikiaea plurijuga 4.6(b)Quotients for successive 2000cm2 size classes for one woodland and one scrub stand of Guibourtia coleosperma and two woodland and two scrub stands of Burkea africana 4.6(c)Quotients for successive 2000cm² size classes for two woodland and one scrub stand of Erythophleum africanum 4.6(d)Quotients for successive 2000cm² size classes for two woodland and two scrub stands of Terminalia sericea and Ochna pulchra Fig.4.7(a)Growth of Baikiaea plurijuga using data from this study and Forestry Commission data 4.7(b)Growth of Guibourtia coleosperma using data from this study and Forestry Commission data

Page

53

54

58

50

63

64

57

Chapter 4.

5.

4.7(c)Growth of Burkea africana using data from this study and Forestry 68 Commission data 4.7(d)Growth of Erythrophleum africanum using data from this study and 69 Forestry Commission data 4.7(e)Growth of Terminalia sericea and Ochna pulchra using data from this 70 study and Forestry Commission data . Fig.4.8. Growth of coppiced individuals of Baikiaea plurijuga, Guibourtia coleosperma, Burkea africana and Erythrophleum africanum 71 Fig.4.9. Percentage of dead trees per 10cm circumference size class for the six species in six different sites 72 Fig.4.10. A comparison between the growth of . pruned and unpruned (control) coppiced stems of Baikiaea plurijuga. 74 DETERMINANTS OF VEGETATION CHANGE Fig.5.1. Photograph of a degraded sand dune near Dopi Pan 83 Fig.5.2. Photographs of the three main vegetation communities along the dune 84 Fig.5.3. Positions of the six soil moisture recording sites in the three communities along the dunc 85 Fig.5.4. Diagram showing the positions of auger holes in a soil pit for the installation of soil moisture blocks 87

Chapter 5.

Fig.5.5. Positioning of thermometers for the recording of minimum temperatures at different heights along the dune near Dopi Pan 91 5.6(a)Mean monthly changes in soil moisture in two Baikiaea woodland sites (nos. 3 and 4) on a dune cidge near Dopi Pan 99 5.6(b)Mean monthly changes in soil moisture in two Terminalia scrub sites (nos. 2 and 6) on a dune ridge near Dopi Pan 100 5.6(c)Mean monthly changes in soil moisture in two Burkea open woodland sites (nos. 1 and 5) on a dune ridge near Dopi Pan 101 Fig.5.7. The different drying rates at 1.0m depth of the three vegetation communities along a dune near Dopi Pan 102 Fig.5.8(a)Mean monthly changes in soil moisture in a Baikiaea woodland site near Livingi Pan where there was no obvious topographical changes 104 5.8(b)Mean monthly changes in soil moisture in a mixed scrub site near Livingi Pan where there was no obvious topographical changes 105 Fig.5.9. Photograph of 10m deep soil pit dug in Baikiaea woodland near Livingi Fan 107 Fig.5.10(a)Mean monthly changes in soil moisture in a Baikiaea scrub site near Malindi, where no hard layer was detected 108

Page Chapter 5. 5.10(b)Mean monthly changes in soil moisture in a mixed scrub near Livingi Pan where a hard layer was present at 2,3m depth 109 Fig.5.11 (a) - (i) Photographs of excavated root systems of the six species in woodland and scrub sites 111-115 Fig.5.12 (a) Phenological changes of two welldeveloped woodland species, Baikiaea plurijuga and Guibourtia coleosperma 117 (b) Phenological changes of two disturbed woodland species, Burkea africana and Erythrophleum africanum 119 (c) Phenological changes of two scrub species, Terminalia sericea and Ochna pulchra 120 (d) Phenological changes of two woodland shrub species, Croton pseudopulchellus & C. gratissimus 122 Fig.5.13. Photograph of Baikiaea plurijuga flowers 12 Fig.5.14. Photograph of Erythrophleum africanum flushing after a drought and late rains in April 1982 123 Fig.5.15. Photograph of Terminalia sericea flushing along a road verge 124 Fig.5.16. Mean monthly minimum temperature profiles in scrub and woodland sites near Main Camp for the period May -August 1982 127

Page Chapter 5. Fig.5.17. Absolute minimum temperature profiles in six scrub sites for July 1982 128 Fig.5.18. Absolute minimum temperature profiles along the dune study site for the period May - August 1982 1.30 Fig.5.19. Absolute minimum temperatures at different heights along the dune study site for July 1982 132 Fig.5.20. The relationship between mean weekly dewpoint and minimum temperature recorded at Main Camp from May -August 1982 133 Fig.5.21. Annual rainfall and absolute minimum temperature (May-Aug.) measured at Main Camp from 1951-1982 134 Fig.5.22. Monthly rainfall (histogram and percentage area of Kalahari Sand vegetation burnt (x --- x) from 1969-1982 137 Fig.5.23. Fire frequency map of the Kalahari Sand area in Hwange National Park for the period 1968-1982 139 Fig.5.24(a)Percentage total damage and the height distribution of Baikiaea plurijuga populations in three woodland and one scrub stands 145 5.24(b)Percentage total damage and the height distribution of Terminalia serice; opulations in two woodland and two scrub stands 147

			Page
Cha	pter		
5.			
	Fig.5.24(c)Percentage total damage and the	
		height distribution of Burkea	
		africana, Erythrophleum africanum,	
		Ochna pulchra and Guibourtia	
		coleosperma in woodland and scrub	
		stands	148
	Fig.5.25.	Photograph illustrating	
		facilitatory effect of Terminalia	
		sericea trees protecting Baikiaea	
		plurijuga seedlings and coppice	
		from frost	153
	Fig.5.26.	An hypothesis to explain the role of	
		edaphic features in controlling the	
		vegetation structure and	
		composition	156
6.	GENERAL D	ISCUSSION AND CONCLUSIONS	
	Fig.6.1.	Life cycle graphs of a Baikiaea	
		plurijuga population classified by	
		size/stage	162
	Fig.6.2.	Diagram illustrating the	
		hypothetical interactions of abiotic	
		and biotic factors on the	
		successional phases of vegetation	
		on deep, well-drained Kalahari	
		Sands	173
	Fig.6.3.	The dynamics or relative rates of	
		change between the various stages in	
		the three vegetation phases, woodland,	
		scrub and grassland	174
	Fig.6.4.	Dry season photograph of area around	
		Nyamandhlovu Pan, Hwange National	
		Park showing the effects of herbivore	
		pressure on grass and woody	
		vegetation	177

Chapter

6.

standing and there are not best for the and the training

CHAPTER 1. INTRODUCTION

Hwange (formerly Wankie) National Park is the largest National Park in Zimbabwe and the third largest in Africa.

Despite its recent history of human interference, much of Hwange still remains a comparatively untouched wilderness, particularly in the dry, flat Kalahari Sand country. A brief review of past disturbances and the problems associated with the establishment of the Park are given below. A more detailed historical perspective appears in Chapter 2.

At the beginning of this century the only inhabitants of the Kalahari Sands were nomadic Bushmen. European influence was initally centred around hunting the game which migrated from the waterless Sands to the Gwaai river during the dry months. Later, the value of in ligenous timber was realised and exploitation of the teak or 'mkusi' (Baikiaea plurijuga) commenced, with overall development of the country. Much of the timber extraction was uncontrolled and without any regard to the future of the slow growing forests. The direct and indirect effects of this disturbance are of major importance in the modification of Kalahari Sand vegetation. A second factor, responsible for much of the fire damage to the vegetation, was the construction of a railway line from Bulawayo to Victoria Falls. Steam locomotives were, and still are, a continual source of fire.

As with most protected wildlife areas, there arose a conflict between wildlife and domestic stock. In 1960 a fence was erected to prevent the spread of foot and mouth disease to cattle in the adjacent farming areas. The fence ran from the Gwaai river south to the Botswana border. Since it was habitually broken by elephant, buffalo and wildebeest, it became Veterinary Department and National Parks policy to shoot all game within a mile of the fence. This caused a heavy drain on the game population (Davison, 1977). The effects of this fence protection must have improved the balance between herbivore and predator populations, as it had been the practice for the previous 30 years to reduce lion, hyaena and wild dog numbers. In 1981/82 a 'game-proof' fence was erected by Botswana authorities along the south western boundary of the Park. The repercussions of this barrier on the movements of buffalo, elephant and other species remain to be seen, but will probably cause a further compression of game into the Park.

2

Another major problem in the Kalahari Sand region is the presence of widespread artifically supplied water during the dry season. Boreholes were first sunk in the 1940's in order to attract the game away from the farming areas. The permanent water supplies soon began to have an effect on game migrations and by 1945 elephant and buffalo appeared in greater numbers (Davison, 1977). Wankie Game Reserve was officially designated as a National Park in 1950 and following this, tourism became an important consideration in the Park. Pumped waterholes became popular game viewing spots, but because of game pressure the vegetation was heavily damaged. Further boreholes were then drilled in an attempt to alleviate the pressures around the older waterholes. The provision of additional water during the critical dry season did little to reduce vegetation damage but allowed herbivore populations, especially elephant, to increase. Levels of elephant damage became unacceptable and in 1970 a population reduction exercise began, and continued annually.

To summarize, the Kalahari Sand vegetation of Hwange has been subjected to a past eighty years of

disturbance through timber extraction and an increase in game populations and fire frequency. As most of the vegetation is dominated by woody plants (for explanation see Chapter 6), the effects of disturbance would be reflected in these species. The vegetation falls into two main physiognomic categories: woodland, dominated by Baikiaea plurijuga, and scrub, dominated by Terminalia sericea. The questions underlying this project were firstly, are the woodland and scrub areas inherently the same, i.e.: stages in a succession? Secondly, what factors cause changes in the vegetation, and what is the effect of past disturbance? The study focussed on the two dominant species B. plurijuga and T. sericea. Four other woody species were also considered as they are common components of woodland and scrub communities. Those were Guibourtia coleosperma, Burkea africana, Erythrophleum africanum and Ochna pulchra.

The objectives of the study were to determine:

- (i) The population status and dynamics of these six woody plants.
- (ii) What factors influence the vegetation structure, composition and dynamics. This would then provide an insight as to whether management was feasible or necessary to counter the effects of these factors.

The following is a resume of the work, outlining the arrangement and themes of the chapters. Chapter 2 introduces the study area, with details of past history, climate, soils, vegetation and animals. Chapter 3 provides the literary background with a discussion of the work of early botanists and forestry officers on Kalahari Sand vegetation, together with more recent research and ideas. In Chapter 4 the theme of a comparison between woodland

3

Author Childes S L

Name of thesis The Population dynamics of some woody species in the Kalahari Sand Vegitation of Hwange National Park 1984

PUBLISHER:

University of the Witwatersrand, Johannesburg ©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.