MKNICONPUTERS APPETED TO DIGITAL PHOTOGRAMMETRY

Mark Edward Arbuckle

A Dissertation subnttea to the Faculty of Engineering os the Unifersity of the witwatersrand, fohanteaburg for the Degree of Master of Seience in Engineering.

I certify that the work contained in this dissertation is my own anc has rot been subnitted for degree purpases to any other university.

Johannesbuxg
20 July 1979

CONTENYS

	Page
Acknowledgements	vii
Synopsis	wisi
List of Tables	x
List of Figures	xifi
List oE Symbols Used	xvi

Page

CEAPTER 1 THTRODUCRTON I
1.1 General 2

Significant Events in the mistory of
Automatic pigitel Computers
$1.3 \quad$ Minicomputers and the Wang 2200 Systen 7
1.3.2 The WANG 2200 Minicomputer System 9
1.3.2 The WANG 22001 Central Proceseing Unit 9
1.3.3 The WANG 2200 Vp Central processing Unit 10
1.3.4 Auxiliary Disk storage Unit 11
1.4.1 Analytical photogrentuetry pxior to $1950 \quad 12$
1.4.2 Developments in Analyticel Photogramuetry $\quad 14$
$\begin{array}{ll}\text { 1.4.5 The Gevelopment of Andlytical Methos. Eot } \\ & \text { Strip and Block Adjustment }\end{array}$
CHAPTER 2 MATHENATLCS OF ANAZYTICAL AERIAE TRIANGUEATION 20
2.1 Introduction 21
2.2 Observed mage co-ordinate Refinement 22
2.3 Analytical Relative Orientation and $\quad 23$
2.4 Strip Formation from Inajepencent Models, 28
2.5 Transtormation of the strip and strip
2.5.1 Strip Transformetion 32
2.5.2 Strip Adjustment 34
2.6 Analyticai mlock Acjustment 36
2.6.1 Block Adjustment using the Model as the \quad Adjustment Unit $\quad 37$
2.6.1.1 The Linear conformal Transformations 37
$\begin{array}{ll}\text { 2.6.2 Biock Adjustment using the strip as the } \\ & \text { Adjustment Onit }\end{array}$
CHAPTYR 3 THE WANG 2200 MINICODPDIERR ANALXYTCAL AERIAL TRIANGULARION SYSREM 46
3.1 General Ovarvien 47
3.1.1 Operstion of the System 47
3.1.2 Organisation of the Data Files 48
3.1.3 Hazdware Configuration and the Software System Capacity 49
3.2 Relative Orientation and Model Formation 49
3.3 Strify Formation Using the independent Nodele 51
3.4 Transformation of the strip and strip Adjustment 53
3.5 The Blook Adjustment programs 54
3.5.1 Block Adjustinent Using strips as the Adjustment tinit. 54
3.5.3 Block Adjustment Using the Model as the Adjustment Unit 56
CAAPTER 4 DESCRIPTION AND REGHITS OF SYSTAM TESTS 58
4.1 General 59
4.2.1 She Durban Fret Area 59
4.1.2 The $\mathrm{sta}_{\text {. Faith }}$ * Test Area 61
4.1.3 The $3 . T, C$. Elock of Synthetic strips 62
4.2.1 Results of the Durban Fest Area 64
4.2.1.1 Relative Orientation and Model Formation 64
4.2.1.2 Strip Formation 67
4.2.1.3 Transformation of the strip and strip Adjustment 67
4.2.i.4 Biock Adjustment Using the Stzip as the Adjustment Unit 68
$4.2,1,5$ elook Adjustment Using the Model as the Adjustraent Unit 69
4.2.2 Results of the $S t$. Faith's Test Area 71
4.2.2.1 Relative orientation and Model pormation 71
4.2.2.2 Styip Formation 72
4.2.2.3 Transformation of the Strip and strif) Acjustment 73
4.2.2.4 Block Adjustment rging the Strip as the Adjustment unit 74
4.2.2.5 Block Adjustment zising the Model as the Adjustivent Unit 75
4.2.3 Sunwary of Block Adjustments of the purban and St. Faith's Test Areas 76
 78
4.2.4.2 Strip Pormation 78
4.2.4.2 Transformation of the strip and Strip Adjustment 79
4.2.4.3 Block Adjugtment. Jsing the Strip as the Adjustment Unit ह1.
4.2.4.4 Blook Adjugtment vsing the model as the Adjustment Unit 83
4.3 Analysis of Processing Times 85Page
CHAPMER 5 CONCLUSIONS 83
BIRLIOGRAPHY 93
AFPENBIX A - YANG 2200 MINICOMPUTER 103
ANALYTICAL AERIAL TRIANGULATION PROGRAM LISTHINGS
APRENDIX B = OUTVUX RROM THE SH FAITH'S TBST ARERA 212
APPERDIX C - OUTPUT FROM THE DUREAN TEST AREA 224
APPENDIX D - OUTHOT FROM 1.T.C. BLOCX OF SYNTHETIC DATA 294

Abstract

Work on this dissertation covered a period of alnost four years, the topic of thich was suggested in 2975 by br g s williams, who was then a senior Lecturer in the Department of surveying at the University of the Witwatersizand, Johannesburg. The writer is sincerely grateful to $D X$ Willians for this suggestion, for hie supervision of the project in its early stages and for proviaing an intronuction to WANG Computers of South Africa who made available, at times, a minicomputer aystem on which to develop and test the softwate on which much of the material for this dissertation is based.

The writer wishes to thank the management and all those employees of Wavg Computers who in any way provided the witer with assistance in connection with this project.

During the pertoci of study on this dissertation, the writer was awarded a Freda Lawenski Scholarship, for which the Bursaries Committee must be thanked.

The conclusion of this project was made possible owing to tha voluntary supervision of Mr D Clegg the so generousiy gave up many hours of his spare time during the period of the writing of this aisgertation. The writer woukd lifke to express his special thanks to MF Clegg for his astistance and valuable suggestions.

Abstract

Since the appearance of the minioumputers at the beginning of this decade (1970) these smali, versacila and izexperajve machines have been applied to almost every fleld of acience previously the domain of the Iarge, expensive computers. In many cases the minicomputer has divested new fiselds of applicakion where the Larger machines could not be tres.

Analytical photogrametry is one application which requires a large amount of high speed data processing capacity and wes a practical impossibility before the advent of the efectronic digital computer. In just over two decades since the appearance of the first computer, the minicomputer with the trocessing capabilities of many of the larger first generation computers is now applied to analytical aerial triangulation.

The puxpose of thls study is to investiyate the appiicability of a particular \quad Hinicomputer viz., the manf 2200, to severzl phases of aerial triangulation with block adjustment being the most important of these. A systen has been developed on the minicomputar to process photographic plate co-orainates of biock containing up to two hundred models from felative oxientation and model formation to gtrip and block adjustment. The oriteria for tho tests are (i) the data storage capacity of the system, (if) the accurnoy of the resultr obtalmer from the izock abjusments and (idi) the processing thmes of each phase of the afirial triangulation system.

The software gysterr has been thorrughly teated using data supplied
 and $g t_{\text {r. }}$ fath th's Test Areas. tite photographic plates of which were measured trilateratively and processed by Dr H Nilliams and T van Dijk on the univeriaty of the witwatexarand $33 x 360$ compater. The thyx tegt consisted of procesising two handred models of the I.T.C. syntretic tegt block,

This conciuded the system terots and demonstrated that the systern was capabie of processing a block of two hunared models with adequate speed and producing accurats renults*

Chapter 1 of this dissertation desis briefily with the history of analytical aerial triangulation and the development of electronic digical computers.

Chater 2 outlines the mathematics used in the various phases of the aerial triangulation system, while Chspter 3 discusses the suite of programs which have been developed on the NANG 2200 minicomputer.

The resuits of the tests processed using the system are compared where possible with the results obtained by others who have processed the same data. The results are shown and comparisons are nade in chapter 4.

LIST OF TABLES

Table	Title	Page
4.2.1.1.1	Durban Test Area. somparison of results of ralative orlentation and model formation using the same plate co-ordinates on two different systems.	65
4.2.1.1.2	Durban Test Area. Means of standard deviations of y-parailax for all the models in the block obtained from three alfferent experiments.	66
4.2.2.2.1	Eurban Tegt Area. stancara gevistions of strip formation.	67
4.2.3.3.2	Durban Test Ared. Comprrison of results of the strip adjustment processed on the Ima 360 and the Wang 2200 minicomputer.	68
4,2.1,4.1	Durbsen Test Area, Resurts of the block adjuatment using strips.	69
A.2.1.5.2.	Durban reat Area. Block adjustment rugults in microns at the scale of the photograph after every 10 iterations.	70
4.2.1.5.2	Durban Test Area. Comparison of retulte from the black agłjustment using the model as the adjustment unit after 10 iterationf.	70

	HTST OR TABLES	
Table	Witle	Page
4．2．2．1．3	St．Faith＇s Test Area．Comparison of results of relative oriantation and model Eonmetion using the game plate comordinates on two alfferent systens．	71
4．2．2．1．2	St．Faith＇s Test Area．Means of standard deviations of Ywarallak for all the models in the biock obtainea Erom three different experinents．	72
4.2 .2 .2 .1	St．Faith＇s Test Area．standard deviationa of strip formation．	73
4.2 .2 .2 .2	Comparison of matan standard deviations of model forstation over the whole block	73
4.2 .2 .3 .1	Comparison of results of strip adjustment of the st．Faith＇s rest area processed on the IRN 360 ana the W⿵⺆⿻二丨． 2200.	74
4.2 .2 .4 .1	St．Falth＇s Test Axea．Results of the biock adjustment using strips．	75
4．2．2．4．2．	Compasison of block acjustment results Eor Durban and $\$ t$, Faith＇s Test Areas．	75
4．2．2．5．2	St．Faith＇s rept Area．Results of the blook adjustrent meing the mofel．	76

LIST OF Thalies		
Table	Title	page
4.2.3.1	St Faith's reat Area. Comparison of results of vanfous adjustments on	
	different systems.	77
4.2.3.2	Durban rest Area. Comparison of results of various block adjustmente on aiffexent systens.	78
4.2.4.1.1	I.T.C. plock. Standara deviations of gtrip formation for each moded junetion.	79
4.2.4.2.1	I.T.C. Block. Comparison of results of strip adjustment on different systems.	80
4.2.4.3.1	+T.C. Block. Comparison of block istijuntment using strips on aifferent systems.	82
4.2.4.3.2	1.7.C. Block. Block adjustrient zesults for Five iterations.	82
4.2.4.4.2	I.f.C. Block. Comparison of results of block adjustments using sections as the adjustment. unit.	64
4.2.4.4.2	I.r.C. Block. Resuits of the iterative block adjustment using models after every twentym five Iterations.	84
4.3.1	Comparison of system processing times on the WANG 2200 T and the WANG 2200 VP minicomputers.	86
4,3.2	Average processing times per model or strip unit.	87

LIST OF FIGURES

Figure matle Page
2.6.2.1 Structure of the normal equation coefficient matrices for the biock adjustment using strips. 43
2.6.2.2 Structure of the collapsed normal equation coefficient matrices for the block adjustment using strips. 44
3.1.1.1 Flom diagram of the syetem operation. 48A
3.3.1 Strip formation - junction of model $(i+1)$ to model (i). 52
4.1.1.1 Durban Test Area. Control configuration for the block acjustment using models. 60A
4.1.1.2 Durban Test Area. Control configuration Eor the block afjustment using strips. 608
4.1.2.1 St. Fafth's mest Area, Control configuration for the block adjustment using models. 614.
4.1 .2 .2 613
4.1.3.1E.T.C. Block. Control consiguration for theblock adjuatment using models.

Figure	ctite	page
4.1 .3 .2	T.T.C. Block. Comtrol configuration for the block adjustment using strips.	648
4.2.1.3.1	Durben Test Area, Control configuration for the strip adjustment.	68A
4.2 .1 .4 .1	Durban Test Area. Residual vectors in planimetry at control and check points for the block adjustment using the strip as the adjustment unit.	69A
4.2.1.4.2	Durban Test Arsa. Residual vectors in hoight at control and chack points for the bilock adjustment using the gtrip as the adjustment unit.	698
4.2.1.5.1	Durban Test Area, Residual vectors in planfaetry at control and check points for the block adjustment using the model as the adjustrient unit.	70A
4.2.1.5.2	Durban rest Area. Resicual vectors in height at control and check poineq for the block adjustuent frsing the model as the adjustment unit.	708
4.2 .2 .3 .1	st. Faith's Test Area, Control configuration for the atrip afjustrent.	74A
4,2,2,4.1	St. Faithis Test Area, Residual vectors in planimetry at concrol and check points for the block adjustment using the strip as the afjustment unit.	75A

Figure sitle Page
4.2.2.5.1 5t. Faith'a Test Area. Resiáual vectors in planimetry at control ane check points for the block adjustment using the model am the adjustment unit. 76A
4.2.4.2.1 I.T.C. Block. Control configuration far the strip adyustment. 79A
4.2.4.3.1 I.T.C. Biock, Residual vectors in planimetry at control and selected cheak points for the block adjustment using the strip as the adjustment unit. 81A
4.2.4.3.24.2.4.4.1 I.T.C. Block. Regidual vectors inplandmetry at control and selegted cheakpoints for the blook afjustment using thenodel as the adfustment unit.85A
4.2.4.4.2 I.T.C. Block. Residual pectors in heighe at control and selectos cheak points for the block adjustment using the model as the acjuartanent unit. 85B

LIST OF SYMEOLS

SYMEOL DESCRIETION

A	Matrix of ccefficients of the restaual vector
a-c	coefficients of the plantmetric correction polynonidit
$a_{i}: 1=0.1$	coetficients of the planimetric correction polynomial
B	Matrix of coefticiente of the indepeneent parameters
B_{5}, O_{y}, A_{2}	Model base vectior
$b_{i}: i=0.4$	coefficients of the height correction polynomial
b_{i}	Base length of mocel
Δ	Unknown parameters
$d \lambda$	Scale factor diEferential
$d ?$	Rotation matrix differential
dX ${ }_{\text {shint }}$	Shift vector differential
e_{n}	Iterative adyustment precision threshold
t	Camera focal length
I	IGentity matrix
$i_{s},{ }_{\text {, }} k$	Rectangular unit vectors
	Vector of sample values
λ	Scale factor
i, $\mu, 4$	noarigues parameters
M.S.D.	Mean standard deviation
N	Wormal equation coefficient matrix
N^{-1}	Inverse of the normal equation coefficient matrix
π	product of terns
R	Orthogonal notation matrix
R^{T}	Transpose of the orthogonal notation matrix
R	Vecton of remiainder terns
$\begin{aligned} & p_{i ;} ; i=,\{j ;=t, J \\ & S \end{aligned}$	Elements of the orthogonal rotation matrix Skewrsymmetric matrix
Σ	Sum of terme
$\delta_{\text {Asight }}$	Standard deviation in beight
δ_{p}	Standard ©eviation in planimetry

$\delta_{\text {plan }}$	Stanoard deviation in planimetry
$\delta^{P_{y}}$	stanđard deviation of y-parallax
4, $0_{2}^{2}, 8$	standard deviations in X, Y and Z respectively
$\delta^{\prime} / y^{\prime} z$	Standard deviation of residuals in X, Y or z
δ_{0}	Standard deviation of an observation of whit weighit
$\delta_{\text {height }}$	standard deviation of a single observation of unit weight in height
$\delta_{\text {fian }}$	Standard deviation of a single observation of unit weight in planimetry
V	Vector of residuals
$V_{g_{y}(m x)}$	Haximum y-parailax
Wh	Matrix of weight coefficients for the height adjustment
W_{p}	Matrix of walght coefficients for the planimetric adjustment
X, Y, Z	Spatial model comordinates or terrain comordinates
$X_{s, t} y_{s}, Z_{s}$	co-ordinates of a point in the strip
X_{i}, Y_{i}, Z_{i}	co-orcinateg of a point in the ternain

CHAPTER 2

1. INTRODUCTICN

1.1 General

In less than three decades since the appearance of the first automatic electronic digital computer, advancements in the fields of computer technology and other allied Eields have resulted in a new generation of computer - the minicomputer.

These inexpensive computers are being applied to many fields, originally the conain of the larger maintrame oomputer. Digital. photogrametry which, prior to the advent of large capacity automatic computers, had littile practical importance is now within the realins of application on minicomputers.

The minicomputer, as the name implies, is physicelly a smail computer but is a giant in terms of the processing cabilities, mencory and aisk storage cepacities. For the purpose of this dissertation a minicomputer will be cefined as a computer with a memory capacity of 64K word or less. the minicomputer on which the anatytical aerial triangulation system for this dissertation was developed has a memory capacity expandability up to a maximur of $4 K$ pords, although all the prograns in the system were witten for a maximum menory capacity of 3R words.

The purpose of this study has been to investigate the applicability of the minicomputer to analytical aerial triangulation with the criteria for success being that the system should be capable of processing the block adjustment, within an adequate time, of at least a two hundred nodel block which is consldered to be a block of adequate practical size. In addition, the results of this study should show thet analytical aetial triangulation on the mintcomputer produces results which have accuracies comparable with similar solutions on large mainframe computers.

The wang 2200 minkconputer bas been used exclusively in this study and it is hoped that this particular make of minicomputer is representative of minicomputers in general. On this asnumgtion the results of the tests undertaken here will apply to the majority of the available miniconputers.

1.2 Significant Events in the Eistory of Automatic Digital Computers

The appearance of autonatic digital computers has peen late in the history of calculating and conputing and has been the result of developmants in science anc techinology by many people working together and Independently In Fields related and witelated to the act of caiculating.

Mechanical calculators mace their Eirst appearance in the nidine of the seventeenth century with the invertion in 1642 of a sinpla difgital chloulatof by the French seidentist and friter Blaisa Pagoak. In 1643 Liebnitz was motivated by the idea of automstion in digital ealculations. His sontribution to the science was a gtepped
 once whotes tit is umworthy of exceldent men to lose howts ifke
 to anyone elpe if machinea were used.

Ihe concept of n maghine capable of perforging numerical computations of a general king and not requiving the intervention of a human operator at every step in the caloulation 1s steributed to Chaz Les Babbage, an Engliak mathematician, Eif firgt inspirations Game to bid in 1日12. In 1822 he demonstrated a prototype of his Differenot Engine which wat to be capable of evaluating functions ftoin diffetstres. By 1.842 the stacwhot overmambitious Bubbege had
 Anslytieal Bnging, which was canceptuglly the foretinnet of the modern efgital conptuar although Babbage nevar complated qithar of his projects, he contributed largely to the science of calcutating ath zutodation in computing. 保e whs responsible for identifying two separate main parts rectuired by an amtomatic computer, viz, the store and the mili; or in modern terms, the main storaqe and the central procesaing unit. In acidtion it was Bablage who conceiverí of punched cards for the entry of data into the automatle computar, based on the idea of punched caids used gt that ting in the control. of weaving Ioomg.

Most of what Babbage attempted was impossible because of the underdeveloped or non-existent technologies on which he relied.

A large proportion of Babbage's time was spent in advanoing the theories and technologies he required, in developing new concepts in logical design and in improving lathes and gear cutiting tools to produce the vait quantity of highly precise cogwheels and levers needed for his Analytical Engine. It was almost seventy years after nis fanth before sufficiently developed technologies existed which enavis sefentigts to build the first automatic universmi digital computz

This next significant step in the develomment of automatic digital computers came in 1944 when Professor Howard Aiken of Harvard University (Eartree, D R. 1950) completed the first fully autcmatic digital computer m the Harvard Mk I, built of electrochemical components. This machine incorporated many of the basic concepts of Babbage's Analytical Engine. The Earvard Mk I_{r} or Automatic Sequence Contolled Calculator (AscC) was capable of ferforming two hundred operations per minute, a great advancement fire the autonatic handing of complex saloulations,

Fetween 1945 and 1947, the successor to the Earvard Mk I, the MK II, was began and completed. It was built entirely of specially fiesigned electromecianical relays which resulted in an improved monputation speed over the model uk I .

The first computer to be built consisting entirely of electronic componente was the Electronic Numerical Integrator and Calculator (ENEAC) designea and built in 2946 by professors of h Mauchly and J P Eckert at the Bniversity of Pennsylvania (Exoth, AD and Booth, K ㅍ W. 2956) as a apeoial puepose computer to be used in bellistic research. The pacuun tube, which was first discovered in 1 IN19 by W W Eecles and F W Jordan was the main component of the princ. The machine contained more than is 000 of theae components and all of them had to function simultaneously for an adequate period. Whe thachine's operation was controlled by means of a plugboard which required manual rewiring of each separate sequence of operations to be performed.

Dr John ven Neumann who worked on the ENIAC project is considered to be responsible for the next importent concept and perhaps one of the most important concepts in the history of the development of computers. In 1945 he proposed storing both the data

Verimbles and the computer*s operating sequencest in the menory of the computer. This concept was incorporateat in the Electronic Discrete Variable Autorstic Computer (BDVAC) on which work was begur in 1945 but was only completed in 1952 during which period two other projects were initiated, based on the gesigns of the EDVAC,

The assigners of the early antomatic computers experimunted With various devices to be used an memory etorage; the EnIAC uned vacuum tubee, the EOVAC and its muccessor EDSAC (Electronio Delayoa Storage Autconatic Conputer) used memory acoustio delay Iinew. Each successive device resulted in the mprovement in faster computing times. An invention by or A fang, via, core storage, made while working under H Aiken on the staif of the Harvard Conputational Inboratory praved to be far superior to all the earlier storate devices. This device was used extensively as the main storage component in many compuzers developed during the period 1956 to the mid $1960^{\prime \prime}$ and $^{\prime}$ and Eirst. used in the Massachusettes Institute of rechnology (MIT) Whirlwind i on which work was begun in 1947. The develogment of the transistor heralded the next major advancement in computer tachmology and the begining of a new generation of aomputers. Although the transistor had been developed in 1948 it was only in 1954, when philoo corporation produced the surface barster transistor, that khe txansistor becane recognised universaliy as a usefui component in high speed electronic compueets (Rogen, 5. 1969).

The transistorized generation of computers is also recognised by tha achievements of omputer technoiogies in the fieid of euper computers. the first of the ecmputer gianta was the Naval ordnance. Regnarch Calculator (NoRS) built by International Business Machines (IBN). The TORC was originajily degicned with an electrostatic storage gystem which was latar replaced by a magnetio core storage. Wwo other giant computers compissioned duxing this era were tha Livermore Atomic Reqearoh compoter (SARC) and the stretch on which design begran ift 2947 by kemington Rard univac and IEM respeetively, The IBM Stretch computer used over 150000 of the faster drift transistors which gave it a cyole time of two microseconds. One jurortant innovation which resulted from the Gtretch project was the look-ahead unit which enabled the computer
to operate on several instructions in advancer thus proviaing the possibility of controliting of one or more processing units faster than with a sequentiat system.

The ind 6600 computer built by Control Data Corporation was designed to be three times more powerful than the stretoh computer. An interesting desgin feature of the ebc 6600 is the ten peripheral processors, each of which is a small computer with an executive control which can direct, monitor and time share the very powerful oentral promessor. The CDC 6600 central processor has the capability of executing over three mijition oparations per gecond. In 1969 Control Data Corporation began marketing an Extended Core Storage (ECS) to be used as a peripheral menory device on the CDC 6600 and CDC 7000 series which enables hiock transfer to and from the main memory at a tate of ten million 60 bit worcis per second. It his been estimated that the CDC 7600 is capable of executing twenty-five million instructions per seconds.

The third generation of computers, most of which were manufactured after 1965 are characterized by the use of integrated circuits as control and storage gevices. Some interesting advanoements which save been made since 1965 incluade the toultiprogramaing and maltipiocessing systems which the Atlas Conmater, designed by Manchester University in eomperation with Ferranti, is one example of an earily time-sharing syster. The basic principle of such a syster is the commuications orientred method of the computer's use whereby two or more users can have sinultaneous access to the same computer fron diEzerent locations by means of on-1ine terminala. The timesharing concept was developed in order to reduce the time incompatibility of alow input/output devices and the fast central processor theroby optimizing the use of the expensive cenreal proceasing unit. mo a large extent, time-sharing repiaced the original batch proceasing method for handing a large volume of seperate jobs on a singie conputer installation, Multiprograming is the comon factor between the modern batch processing and the general time-sharing syatems, allowing for the stmuluaneous execution of two or more programs by the same central processing unit. The IEM OS/360 is an example of an operiting systen which controls a maltiprogremuling batch system and on-ine

Page 7

time-dharing from remote teminnals.
L. 3 Minicomputerg and the NXAG 2200 systern
 congutar with the more speoinic oharacteristics of a mhort woxa length a ita main memory of lests than 64k words.

Minicumplatex were first uned in 1962 In gerospace applioations (Kaenel, R A. 1970) , The earyier mecilnes were specific purpose computers ana it wes only it 1969 that manufacturetg like Honeswell and Scifentific Controi Corporation began mroducing meneral purpose miniopmputers to be sold gonmercialiy. The develompent of the Low cost, high speed miniccmputer had become posigible through the advent of Large scnie Integrated citcuits in tre farly 1960'g. By 1973 a wide range of minicomputers vas avai.able all of which had reached a injoh degzee of uniformity in cost, size, speed and intermal orgenisation (Gzlenberger; F and Babcock, 0. 1973).

The recant rapid inerease in the number of winiewmputer users may ba attributed not only to the lower computing costs sumolveä, but aiso to the accepted philosophy that corkain economies may be achievad through the deqentralization of oomputing faollities, particulariy in applications which lend themselves to deparfotital. scope and control.
athe power and diversity of miniconputers has led to their apgilcation to Iitearaliy thotsaridg of tasks to the ligt of which new appifcations are continnally being added. minicomputerg have been ksed successently in process control to efeleientiy direct und monitor automated production lines where gequence, timing and logic are requireg. An example of thig is the use of minicomputers in the maradeture of printed circuit logid boands which are used in
 meruory for the repeated accirate printing of the dirouit onto chemida 1.1 treated boards.

Whe besic minioumututer configuration comprises the Central Processing Jnit (CPU), a talaprinter although more commonly a Cathode Ray mube (CRT) display unit ans an output pidnter Most miniccapaters cun be interfaced with a number of peripheral cevicer,
the nore ingortant of which are auxiliary storage devices such as magnetic tapes, dinns and disk sturage units. Other interkaces include Digital to Analogue linkages in applications where minicomputers ary used to control, uonitor and simulate fast continuous real time systems.

The Central processing unit and the Main Menory of the minicomputex are generally housed in a franse which measures zpproximately 50 cx by 30 cm by 55 cm . Woxt lengths ranges from 8 bits to 16 bits, $\operatorname{mithough~several~miniccmputers~une~combined~words~for~}$ data representation and instruction addressing, which has the aisadvantage of reduding the cyole time and the overall performance of the machine. Most of the minicomputers available at the beginning of this dedace did not provide for floating point or decinal arithmetic nor bit and byte manipulation. Several did not even offer built-in multiply and divide in which case these oferations had to be inplemented by seftware. The present tange of minicomputers make extensive use of microprogranmed Read only Memories (rom) for hardwized functions such as arithnetic operations, trigoncmetric functions, matrix algebra and any freqeuntiy used aubroutines.

The earilier minicomputers used core memory exclusively for Randon Access Merrory (RAM) which has subsequently been replaced by Large Scale Integrated (LSI) semiconcuctor memories, Core menory ranged fran $3 \mathbb{K}$ to 65% capacities with access speeds ranging fron 0,5 to B microseconds. (Kaenel, R A. 1970).

Minicorputers reached a high level of sophistication in less than a decade from theic inception. The finst available minicomputers were assembly language machines. By 1974 machines were available which incocporated high level language compilera such as FCRTRAN, ALEOE and RFGIX. EASIC language interpreters are widely used on the smalier conputers and is particularly suited to on-line applications. Several manufacturers provide complex, highly developed software wuch as real-time disk operating aystens and timesharing oxecutive systens.

Of the auxiliary storage devices available for minicomputers the most reliable fatt access mass etor age unit is the single or Gual. plater moving head magnetic disk. Capacities of these units generally range from five megabytes to twenty megabytes.

Page 9

The flexible aiskette provides medium capacity random access storage at a substantialiy lower cout than the larger rigid ifsks. Access times and data transier rates are approximately one order higher for the flexible diskette than their lafger rigid counterpart. Other mags data storage aevices which can be supported by minicomputers include nint track tape units and the slower and lower capacity eape casaette unity.

1.3.1 The WANG 2200 Mindeomputer Systen

> Whe Analytical Aerial triangulation symten described in thie dissertation was programned and tested on the WANG 2200\% and later the WANG Z20ovP ainicomputer systens. The harduare configuraition comprised a 24K-byte Central Pracessing tnit, a CRT display and keyboard, a 10 Megabyte disk thit for aumiliery storage and a ine printer. Each of these devises will be described below (WANG 1375).

1.3.2 The WaNG 2200T Central Processing init

The CPU operates on a single user program written in tang 2200 Extended BASYC. BASIC, an acronym For Beginners All Purpose Symbolic Instruction code, was originally developed as a higt level interpretive Ianguage by $J G$ Rerney and in E Kurtz at Dartwouth College, New Hampshire for implementation on timensharing systems. It was first uged in 1965 on the 62225 computer and has since become one of the more widely used languages on minicomputers (Sanderson, P C. 1973).

The basic interpreter, also known as a translator or the machine'g Eizmare, is gtored permanently in 32k bytes of Instruction Read only Menory (ROM). The interpretex translates and exedutes one statement of the gasic source progran at a time. The interpreter as opposed to the compiler, has the advantages of requiring less time suring compilation and leas storage for source and object code but has the disacvantage of increasing the execution time. The microinstruction resulting from the interpretation phase is directed by the firwware through the Arithretic and Logic Unit (ALD) which is part of the central processing unit responsible for performing both arithnetio and logical functions.

There are three aistinct phases in CRU processing initithated by a treyboard comand, the first of thess phases, referred to as the Text Entry Phase analyses the syntax of a statement whieh has been entered via the keyboard and is currentiy in the Random Accems Memory Input/output buffer, The statement, With its associated Iine number, is simultaneously incluced in the program text currently in menory, The second phaze is the Lime Number Resclution Phase which is entersed prioy to the 耳oecution Phase. Duxing this phase the variable symbol table is generated, Randon Access Memory area in allooated to user fariables and progran gtatement Ine numbers are verified. Each entry in the symbol table, whech is generated during the Variable Resolution phase consists of the aymbol prefix and the symbol data. mhe symbol prefix conprises the nazue, the aton which flags variables as either scalar, \quad fector or array arid nmeric or aiphanumeric, and the thread to next symbol flag which reduces the searcin for varlable time during execution. On completion of the Variable and fine Nuber Resolution Phase, th , -atem attomatically enteres the Execution Phase.

During execution each statement is interpreted as it is scanned. this phase involves the required BRSTC microroutines as they are encountered in the Atom Muble information. This phase also activates thzee pushdown stacks, viz, the Called subroutine stack (CSS), the velue stack (VS) and the operator Stack (OS), which store subroutine return addrasaes, the results of expregsion evaluations and loop and subreytine information.

The read/white rentory cycle time of the WANG 2200 Central Procesging tinit is rated at 1.6 microseconds. She gystem operates on fuil preciation numeric variables that is, the equivalent of thinteen significant decimal digits within the änamic range of 10^{-99} so 10^{+99}. Addition or aubtraction of two variabies executes in 0,8 msecs, multiplication of two variable executes in 3 . $\%$ maces and division in 7,4 naseas. The slowest rated function is the evaluation of a tangent which has an average execution tine of 78,5 mseci.

2,3.3 The wang 2200 ve Central Procesming Unit The analytical photogramotry systen was developed for this
dissertation on the WaNG 2200\% Central Processing Unit. All initial testing and processing was carried out on this mode? prooessor. towaras the end of the project Fing Computers released a faster moden, the was 2200v5, also a minicompatex expandable up to 32k-bytes of Randon Access Memory. The two models of processor are software conpatible although the waik 2200 ve hag in enhanced gasic instruction get whioh is not downard compatible. A11 the tests processed on the WANG 2200 T were reprocessed on the WaNG 2200 yP in addition to another terst viz. the processing of the iterative block abjustrent of a block of data comprising two bundred models.

The Wakg 22oove firmware is not hardwired into whe aygten but is , loaded by a bootstrap into manory from a disk unit. Additional features offered by the VP firmware are mainiy intadiato mode inarugtions none of which could be incorporated into the orginally developed software to increase its power.

The architecture of the machine cantains certain improvements which have resulted in a processor which is rated at ten timen Faster than the WAKG 22001 processor.

1.3.4 Auxiliary Data storage Finit

The Wang 2260 Disk Jnit was used in the development of the software for this project. It was, at the time of this development
(1975/76), the largest disk unit quailable for the Wang minioonputer systerf. This disk unit has sufficient ospacity to contain the data of. a two hundred frodel block with approximately thirty points per model. Owing to the limited capacity of the Central processing finit Menory, the aisk unit is used extensively as auxillary memory and only certain information is retriever frcan the disk as and when it is reguilred to be processed.

The wavg 2260 disk unit has two platters - one fixed and the other removable, each of which contains five megabyteg of storage and thus has a total of ten megabytes of storzge space.

Tach platter if divided into tracks, elther one hundred or two hundred tracks per inch \{TPI\}, The individual tracks are diviand into twenty four sectors of two hundred and fifty-six bytes per sector, of which two hundred and fifty-three bytes are upable; the remaining thaee bytes ace used as oontrol bytes by the kaxdware.

The maximum capactty of a cen megabyte aisk is zpproximately 1,2 nillion fuil precision numerics (thirteen decimal digits). Since the systen allow for the compaction of numeric data, i.e. numeric data can be converted into alphanumeria variables at the rate of one wite per two digite, and with juaicious blocking of the data on the disk, the capacity of 1,1 million full precision numbers may be Increased if lower precision data is adequate for the current task. The disk platter has an iton oxida magnetic surface above which the read/write head moves while the disk rotates. Information is stored on the disk in the form of magnetized spots of iton oxide. The sectors are staggered on the concentric tracks in such a way that consecutively numbered sectors in a track are Iocated twelve physical sectors, or one-half track, apart. This arrangement makes it possible to access as many as four consecutively nurbered sectors in a single rotation sf the platter in certain operations. The two modes of storage on the aisk platters are:
i) Automatio file cataloguing in which the system recorâs both the location and sfere of each file contained on the disk platter, and
il) Direct absolute sector adaressing of a specific sector on aisk which is independent of the automatic file cataloguing.
the four disk specifleations which indicate the speed of the disk unit are:
3) The track access time (i.e. the time required to position the disk read/write head at a specific track) of 37 mseos,
ii) the average latency time (i.e. the time required to rotate a track to a particular ponition) of $22,5 \mathrm{msecs}$,
ifi) the raw transfer zate of data of 312500 bytes per aecond, anc iv) the read/write time of e msecs. The disk unit can be multiplexed simultaneously to up to four central processing units each of which can access data from the coman data base.

1.4.1 Analytical Photogramatry Erior to 1950

During the period of 1883 to 1950, analytical photogrametrists concerned themselves with the development of mathemetical solutions of the problems of the space resection in photogrammetry.

In 1883 R sturn and G fawck (Doyie, F. 1964) established the relation between projoctive gecmetry and photogrametry, However, it was more than sixteen years later before 5 Fingterwalder was to establish the mathematices of analytical photogrametry, He published the ficst of a serles of papers in 1899 which dealt with this subject and over the next thitty yeary, using vectorterminology, he investigated the photograminetric ainglemand-doublem point resection in space and the sormblation of the relative and abeolute oriantation.

Concurcent with the work of Finsterwalder, C pulftich developed the firat stereoconparator in 1901 to be used in the measurement of terrestial photographs and thug started the devezopment towatd Ingtrumental photogrametry, The suecensors of pulfrich's interument are the modern stereocomparator used in analytical photograrmetry.

The Eirst attempt at a practical application of analytical photogrammetry, the mapping of part of the Dutch coastifne and several off-shore islandis, was undertaken in 1920. Owing to the unsatisfactory results of this new technique, no other analytical photogrammetric projects we:s begun for alnost thirty years.

During this period interest in analytioal photogranuetry waned, owing to the poof results achleved in the first projects combined with the fact that there was no insmrumention ayailable that could process the wast amounts of data involved in an analytical mapping project.

However, photogrametists Iike Vori Gruber and Earl Thureb contintued their investigations into the theory of analytical photogramatry, Von Gruber is well known for his develogment of the differential formulae of the profection relation between planes. Ironically, not anticipating the development of high speed computers, he dimiseat the practicability of the analytical appromen in 1.924 and qubsequentiy coneentrated his efzorts on the development of analogue photogrameetric instruxents. Escl Churah, an Anerican applied mathematioian, revived a linated interest in analytical photogrametry in a paper published in 2930 whioh dealt With the single photograph space reacction as a two stage problem, viz. the determination first of the station co-orthnates and gecond of the rotational parameters. Subsectent papers published in 2936 .

1940 and 2941 discussed the extension of control using a four point control extension procedure, the determination of scale data from photographs without reference to their absolute positions in apace and the rectification of tilted aerial photographe, Church's work, presented in airection-cosine notation has been fritioized for its failuse to deal with reouruant observations and error analysis.

The work of Church was nevertheless a valuabie contribution to the developanent of analytical photogramotry and had a streng infiuence on E Merritt who in 1950 and 1951 and later in 1958, in a published book, presented a formal treatment of the analytical solutions for camera celibration, space resection, interior and exterior orientation, relative and absolute orientation of stereo pairs and amalytical control extention.

1.4.2 Developments in Analyticel Fhotogrametry since 1950

The appearance in the 1950's of the high speed electronic digital computer was largely responsible for a renaissance in the field of analytical photogrametry leading to investigations into practieal applications of digital methods of control extension using photogramuetry.

In schmid (1956/57, 1959) realised the potential ocraputing power of the newly developed automatic electronic computers. In anticipation of the aarge capacity computer, schmid developed the principles of modern multistation analytical photogrammetry. His work is further characterised by its generalized treatement of the problem which allows for the simultaneous solution of rigorous least squares adjustments of redundant observations.

The implementation of a rigorous anslytical adjustment based on Echmid's theory requires not only fast computing facilities, but also large tuenory which were not avallabie when schuid developed his theory. Ehotogrametrists realised the need for less rigorous solutions with could be implemented on the curcent egulpant. The resuit was to apply the computer to the analogue solution of strip formation and the edjustraent of strips and blocks based on small sections as the adjustment unit using iterative procedures (Davis, R. 1966).

The development of analytical solutions of the relative and
absolute orientations were largely owing to G schut (1955/56, 1960/61). E Thompson (1959) and C M van den Hout (1.961). Schut's approach to the analytical relative orientation was based on the coplanayity condition of homologous paixs of rays in space. This development was furthered by mithopson who used matrix notation for a solution particularly suited to suall capacity digital computers. In 1961 van den Hout published a solution to the relative orientation based on the same coplanarity condition Nut tising an alternative algebraic nethod and the initial ascumption of equal elevation of ajl pointa in acdel spaee.

The same three photogrumetriste, f Thompson (1959), C van den Hout ($1960 / 61$) and G Schut ($1960 / 61$) were responsible for the theories of analytical solutions to the pbsolute orientation. The method proposed by thompson (1958/59) resulted in an exact linear solution of the elments of the orthogonal rotation matrix. Schut (1960/6l) Zevised simpler forms of linear equations using two different approaches viz, matrix algebra with real elements which leads to three equations and quarternion algebra with complex elements which leads to four equations. Also in 1.961 ven den Hout proposed an alterntive solution to the absolute ofientation using a linearized observation equation. The application of tuiplets of photographs which was Eirst suggested by H Schnid in 1956 and 1957 was Eurther purgued by E Mikhail in 1962 resulting in a method of relative orientation which reduces the number of unknowns from eighteen to eleven.

The early years of the 1960's saw the development and irpleaentation of the Independent Model metiord of aerial triangulation based on a concept suggested by H rourcade in 1926. Both the semi-analytical technique which processes models formet on stereoplotters, and the fully analytical technigue which processes analytically formed models were considered by V williams and H Brazier, and G Inghilleri and R Galetto Guring the period 1964 to 1967 (Willians, V A and Bxazier H H. 1964, 1965, 1966 and Inghilileri, G and Gaietto R* 1967).

1.4.3 The Deveiopment of Analytical Methods of strip and Block Adjubtarnt

Investigations into analytical adjustments of strips based on least sctuares were first undertaken by k Roelofs in 1951 and 1952. The adjustment procedure was based on interpolation methods originally developed for hand computations. Several other photogrammetrists, notably A Nowichi and C Born (1960) and A J van der Weele \{1953/54\} proposed adjustrients which were extensions of the procedures developed by Rnelofs.

A more rigorous adjustament of sirip triangulation was proposed In 1960 by E Gothardt, a procedure which in the opinion of F Ackermann (1962) was reserved for large scale precision photogrammetry and only suitable for implementation on large cepacity computers.

Perhaps the nost exhaustive invegtigations into polynomial strip adjustinents were undertaken in the late $1950^{\prime} \mathrm{s}$ by G a schut at the NRC in Canada (Schut, G 日. 3.964). The adjustment was programaed as a sequence of conformal transformations in two aimensions as an alterative solution to a three aimensional conformal polynomial trangformation.

In an effort to further dmprove the resulits of strip aajustment by polynomial adjuatrent, photogyamatrists investigated the possibility of three aimensional conformal transformations of degree aigher than one, but found that they do not exist. Attempta were also made to nodel the erzars in the strip by polynomials of degree higher than three, but subsequently F Ackermann (1961/62) founa that the best results would be obtained by adfusting the strip in sections using composed second order polynomials.

The rigorous fisiy analytical block adjustments first suggested by Hi Scamid in 1.956/57 was not implemented on a coaputer until several years later in 1966 owing to the requitements for large amounts of conputer memory for the solution of the normal equations. The first block adjustment using this technique comprisec only twenty photographs. Thus, concurxent with the developaent of analytical blook adjustment auring the 1960 's, there wete several investigations by photogrammetrists and nimerical mathematicians into improves algorithms for the molution of the
normal equations by both direct and iterative methode.
Altarnative methods of analytical block adjustment which required leas computer renory and yet achieved a high degree of accuracy were researched in the early 1960 's by s Bervoets (1960), 6 schut (1964), F Amer (1962) and D Proctor (1962). The methods suggested by Bervoets and Schut consisted in applying sequential btzip adajostments pasing third order polynomials to each strip in the block, treating the tie points from the previous strip as control with a lower weighting in the next overlapping strip.

Amer, at the wniversity Colleye, Kondon, and Froctor of the Ordnance survey of great Britain, worked concurrently in the analytical block adjustment using the madei on groxps of modmis as the adjustant unit. The approach developed by bath Amer and Proctor was a numerical solution of the malogue finek adjustment of Jeris for planimetric acfustment which zes two bicriomodels as the basic adjustment unit. While this methed of blom adjuctment by applying sequential linear conformal trasformations to the sections In the block has a low computer memory requirement, it suffers from a slow rate of convergenoe, particulariv if lerge blecka are adjusted.

A further extension of the nurserime solution of blopk adjustment based on the Jerie-analogue Ejivstment, nabling the sinultaneous determinacion of the linear transformation potificients and tie foint co-ordinates was proposed in 2962 by Cm van den Gout (1966). The lineaz property of the norm aruatiens peanitm this banded and bordered matrix of equatione tim solved by a Finrect method. The symutric properties of then $=-21$ equation maficient matrix which allow for the treatreat of tio elition on a mplapaed mormal equation matrix were secognised wim ena Hout. Mhe handing of collapsed matrices greatiy rentan who computer memery requirements for a direct solution of thr bismit adjustment coefficients. The same adjustment implessited in 1963 by b Rekhart (1962/64) and J van Levden on the zEFEA Computer in the mathematical department of ITc. onte adjustant programp ANBLOCK, was originally developed for platimatric adjestment coly but was
 adjustruent or combined in a three dimensionel adjustment.

In 1963 and 1964 American phocogrammetwists 5 Mikhail and
sormal equations by both direct and iterative methods.
Alternative methods of analytical block adjustment which retzuirac less computer memory and yet achieved a high degree of accuracy were researched in the early $1960^{\prime} \mathrm{s}$ by S bervots (1960), G Schut (1964), F Aner (1962) and D Proctor (1962). The methods suggested by Bervoets and Schut consisted in applying sequential strip adjustments using thixa order polyncmials to each strip in the biock, treating the tie points grow the previous strip as control with a lower weighting in the next ovariapping strip.

Amer, at the Oniversity College, tondon, and Froctot ois the Ordnance survey of Great Britain, worked concurrently on the analytical block adjustrent using the model or groups of models is the adjustment unit. The approach developed by both Amer and Proctor was a numerjeal solation of the analogue block adjustment of Ierie for planimetria adjustment which uses two sterecmodels as the basic adjustrient unit. While this nethod of bleek adjustraent by appiying sequential innear conformal transformations to the sections In the blook has a low computer memory requirement, it suffers frow a slow rate of convergence, particuiarly if large block are adjusted.
A. Eurther axtension of the numerical solution of blook adjustment based on the Jerie-analogue adjustaent, enabling the aimuitaneous determination of the linear transformation woefficients and tie point co-ordinates was proposed in 1962 by C M van den Hout (1966). The linear property of the nomal equations permits this banded and bordered matris of equations to be solved by a direct method. The symmetric properties of the normal equation coefficient matrix which allor for the treatment of the solution on a collapsed normal equation matrix were recognised by van den Hout. The handing of collapsea matricea greatly reduces the computer memory requirements for a direct solution of the block adjustment coefficients. The same adjustrent was implemerted in 1963 by 0 Eckhart (1962/64) and J van Leyden on the zEBRA Compater in the matheratical department of itc. The adjustnent program, ANBLOCK, was originally developed for planimetric adjustment oniy but was latet revised to handle height adjustment efther as a separate adjustment or combined in a three aimensional adjustment.

In 1963 and 1964 American photogrametrists E Mikheil and

J Anderson, respectively, undertook investigations into the practicability of block adjustments using as the basic adjustinent unit sub-blocks comprising three overlapping triplet sets. Tests showed that comparable results were obtainable and that such adjustrents were indeed feasible for blocks of photography with sixty percent fore and aft overlaps.

The first prograta devaloped to adjust blocks of aeriai triangulation based on the collinearisy condition of image point, perspective centre, and object point suggested by H schuia (1959) became operational in 2966 at the united states Nationdi ocoan Survey (USNOS). The airect solution of the normal equations on the hardware available to DSNOS linited the elze of the blook to twenty-five photographs and thus was of ifttle practical ure (Keller, H 1967). Aa a result interept in the practical applications of the non-rigorous adjustments for conputational considerations continued to domina* ${ }^{*}$ developments in analytical block arjustments.

It was believed however, at that time that the optimal solution lay in the rigoxous simultaneous adjustzent of the block using Schnia's methou, D Brown and Associates under the sponsorship of the Rome air Development Centec (RaDC) began studies in 1963 into the adjustuent of large blocks using recentiy developed techniques in matrix iterative analysis for the solution of the normal equations (Devis, R. 1966). Threa iterative soilutions were investugated viz. Ganss-Seidel, Gauss-Seidel with Luisternick Acceleration añ Gauss-Seidel with successive Over Relaxation. It was found that the last of the three methods yielded results which compared favoutably with non-iterative techniques. The resultant progran syitem was initiality written to cater for the adjustment of a block involving a maximust of five hundred unknowns, with the aid of buffering procedures and auxiliary mass storage devices, it was envisaged that with the sarse antunt of nain computer menory the progran could be extended to handle up to 10000 unknowns with no Gignificant lose of efficiency.

Ey the late 1950 's it was genarally accepted thet acjustments of large blocks involving the simultaneous solution of more than 30^{4} unknowns was at least possible. An interesting application of
such $\bar{\pi}$ large block adjustment was theorlsed by D Brown (1968) Fof the establishment of a limear control network by photogrammetric mesns. It was believed that such a task woula involve the adjustment of 14700 photographs if a twelve Inch camera vere used to photograph the entire Iunar surface with fifty-five pexcent fore and att and twenty percent side orrerlaps, the bordered-banded nomal equation system wonla be solvea by the method of Recurrent Pactitioning. By 1971 such an application had seen mapieruented using a progran capable of a simultaneous adjustment of 2000 photogcaphs involving 10^{4} unknowne. The lunar mapping project fequifed the adjustments of axixy-four photographs involving 7000 point images. The adjustreat was processea on the 1 PM 7094 in less than two hours (Matos, E. 1971).

In the early 197e's attention was again focussed towards the avvelopnent and implerentretion of program packagen for strip and block adjustments by indepencent models, this tims allowing for gxeater generality of data in order to produce merketable analyeical aerial triangulation ayatemf. The systen developed, PAI-M oE which there are two versions viz. Entu-43 and parknt was done so tuder the direction of H Ebner and H Klein at the Photogramateric Institute of stuttgart iniversity (Zickermann, F, Ebner, E, Glein, E. 2973). The Cholesky solution, whith is partinularly suitable for the solution of the positive definitive bandec and bordered syatem of normal equations, allons for up to 10^{4} unkriowns.

The complete PATM syatens are suh-divided into four perts, each of which occupies less than 12 N words of main memory.

2.I Introduction

Subsequent to the photographic stages of photogrampetry there ore severai steps recuired to obtain the plate image co-orainates to be used as input to the amalytical aerial triangulation symeta. rite images must be identified on the photographic plates which, depanding on the procedure used may regtire point trangfer of artifical pointes between overlapping photographs viewed under etereo-observation using instrmants Iike the wild FuG or the Zeiss Snap Merker, The dyadic sets of plate image co-nrdinatas are referred to a plane comoralnate system with its origin at the principal point of the photograph and the x-axis approximately in the direction of Elight.

The plate image co-ordinates may be measured using either stereo or monomomparators. \#sing mono-comparator measuring instrumenta, each photographic plate is measured soparately with the plate co-ordinates being deternined in a cartesian reference frante In which the x and y axes are defined generally be mechanicai guide rails. Other metbods of obtaining mono-comparator plate comordinates which do not requine a mechanical definition of the axes of the comordinate system involve linear measurements and the deterraination of the comordinateg of plate inages in a po-orianate syaten waing the trilsterative principla**

The two sets of aata used in tegting the digital photogrammetric systers developed on the WANG 2200 minicomputer viz the Durban and St. Faith'思 Test Areas, Were measured using the mijateration Microscope developed by E कीillamb in 1971 and deEined as a Inear mono-comparator .

The Analytical Aerial Triangulation procedure developed on the HANG 2200 which is described in this chapter, provides for obtaining final block adjusted co-ordinates using the plate image co-ordinates as input. The stegy involved in obtaining the block adjusted oo-ordinates include:
a) Relative orientation and model formation,
b) Formation of the striph of the block using the independent model.s,
c) Transformation of the individual strips to a terrain comordinete system and strip adjustment of each strip to reduce systematic ertorss
d) Block adjustment using either the moiels or the strips as the adjugtment unit.
2.2 Obparved Intage Comordinate Refinement

Analytical Aerial Triangulation is based on the central projection theory in whitch the axis of the lens is normal to the piane of the atapositive, intersects it at the principal point and the plane of the photograph is a trie plane. However, since thege conditions are only theoretion? the measured image plate co-ordinates are seldom Hsen in their the form in anslytical photogremmetry but ate gubjected to qeveral correcticns and refinenents (Asp 1966). Comparator ealibxation corrections are generally insignificant but would be applied to compensate for any errors ininerent in the measuring instrument. The photocyraphic materiai which may be eitiner glass or Filn is arbject to deformation. Corrections for film deformation may be applied using one of the three following techndquen;

1) Linear scale changes in the x and y directions of the photoplane. The corrections are obtained from the calibrated focal plane distances.
2) Linear scale changes in any direction in the plane of the photogragh. A thinkama of four fiducial marke are requized to obtain the elght transfomation parameters of a projective transformation.
3) Dse af the reseati in the focal plane. The observed points may be refer e to the nearest reseat comordinate, or transformed by a projective transformation, the coefficients of which are determined from four ressau comordinates surcaunaing the point. A thitd alternative to this method is to apply a polynomial transformation to each point, The coefficients of the transformetion polynomial are determined from ail the, sseatu comordinates.

It is often convenient to refer the oo-ordinates to the principal point as origin which is defined by the photograph's fiducial axes. This correction constitutes shifts in the x and y directions.

Radial lens diatortion, which comprises symnetric and asymetric radial distortions, is corracted for by applying an appropriate distortion curve polynomial where the coefficienta of the polynonial are obtained from the camera calibration data.

The atmospheric refraction correction which is rindidl from the radit point is obtained from a function relating the nadir angle and the atmospheric constant to correction to the nedir angle. Hupirical equations for the atmospheric constant have been published by several authors.

The plate image co-ordinates processed by the systean developed for this dissertation were not subjected to any of the above corrections (with the exception of referring the comordinates to the principal point as origin) in order that a airect comparison of cesults could be obtained with results processed by H 5 williams (1974) and my van Dik (1975) who processed the sane unrefined data. However, it should be noted that f willians (1974) showed the magnitude of these corrections for the data from the Durban and st. Faith's Test Areas to have an insignificant effect on the absolute accuracies of the block afjusted data.

2.3 Analytical Relative orientation and Model Formation

The restitution of the rodel in space is obtained from the coplantrity oondition of norologous pairs of raye and the model base. A minimu of five plate image co-orainates from the overdapoing area of adjacent photographs are kequired for the solution of the elements of the relative orientation rotation matrix. For a well conditioned solution these points should i.je as close as possible to the Von Gruber points. In practice, however, more than the mininum of five points are selected and a least squares solution is applieã.

The methoid of Relative Orientation used in the program developed for this dissertation follows the tratatient of the problem outlined by E Thompson (1959).

The condition for coplamarity of honologous pairs of rays and
the model base may be expressed as follows:

$$
\left(B_{x} i+B_{y} j+B_{z} k\right) \cdot(x i j+y j+z k)_{1}\left(x_{2} i+y j+z k\right)=0
$$

where j, j and k are the unit vectors paraliel to the x^{\prime}, y^{+}and z^{*} axes of the mocel system. The problem is stmplified by considering the model system to be coincident with that of the left hand plate co-ordinate system and the model scale to be $1 / b$, phere b, is the length of the model base. This reduces the number of unknowns from nine to five. The expression for the condition of coplanarity may be expressed in the form:

$$
\left(\begin{array}{lll}
x_{2} & y_{2} & z_{2}
\end{array}\right) M\left(\begin{array}{ccc}
0 & -b_{z} & b_{r} \\
b_{z} & 0 & -1 \\
-b_{r} & y & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)=0
$$

where: $b_{r}=\beta_{v} / b_{x}$
$b_{r}=a_{r} / b_{x}$
$x_{1} y_{t} z_{1}$ are image point oo-ordinates in the left hand plate referred to the perspective aentre as origin.
$x_{2} y_{2} z_{2}$ are the corresponding image point comorainates in the right hand plate referred to the perspective centre as origin.
$z_{1}=z_{2}=f$ All points are refercea to the respective plate perspective centre as origin and therefore all z_{i}^{i} and z_{2}^{i} equal the cormon focal length.

R_{2}^{r} is the transpose of the orthogosial rotation matrix which can be expressec in terms of three independent parameters without the use of angular functions. E Thompson (1957 uses the Cayley matrix.

$$
R=(I-5)(1+5)^{-1}
$$

where S is a skew symuetric matrix expressed by means of the Rodrigues parameters $\lambda \mu$ and u thus

$$
S=1 / 2\left(\begin{array}{rrr}
0 & -v & \mu \tag{2,3.4}\\
v & 0 & -\lambda \\
-\mu & \lambda & 0
\end{array}\right)
$$

Since the focal length of each camera station is constant, $z_{1}=z_{2}=f$ equation 2.3 .2 may be written as

$$
\left(x_{2} y_{2} I\right) R_{2}^{T}\left(\begin{array}{ccc}
0 & -b_{z} & b_{y} \tag{2.3.5}\\
b_{z} & 0 & -1 \\
-b_{y} & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
y_{1} \\
f
\end{array}\right)=0
$$

Where the orainates $x_{2}, y_{2}, x_{1}, y_{1}$ are in the ratio of the measured co-ordinates to f.

Equation 2.3 .5 may be expanded and simplified to obtain the following exact condition equation which expresses the y-parailax in terms of parameters of the relative orfentation:

$$
\begin{aligned}
y_{1}-y_{2}+\left(1+y_{1} y_{2}\right) \lambda & -y_{1} x_{2} \mu-x_{2} u-\left(x_{1}-x_{2}\right) b_{y}+ \\
& +\left(x_{1} y_{2}-x_{2} y_{t} b_{z}+A_{2}=0\right.
\end{aligned}
$$

where \mathbb{R} represents the second and third order terms.

For aach image point observed there will be one such condition equation which for η observations mady be expressed in matrix notation as:

$$
A V+B \Delta+F=0 \quad: F=\mathbb{R}-1
$$

where: $A=I$ the identity matrix
B is the matrix of coefficients of the uiknown parameters $\lambda, \beta, U, b_{y}, b_{z}$
V is the vector of residuals
Δ is the vector of unknown parameters
1 is the vector of Y-parallax
\mathbb{R} is the remaincer eerm of second and third order terms,

The leagt equares solution for the unknowns, Δ. follows an iterative procedure wherein $\mathbb{R}_{i}=0$ (the null matrix) for the firat Ateration. Thus

$$
\Delta_{1}=N^{\prime} \theta^{r} F_{1}
$$

(2.3.8)
where:

$$
\begin{aligned}
& N=\left(B^{I} B\right) \\
& F_{1}=-1
\end{aligned}
$$

The vector of residuals $V=-B \Delta_{t}-\left(N_{t}-1\right)=\mathbb{R}_{1} \quad$ and i.s evaluated from the original condition eqaetions 2.3.5. In general:

$$
\begin{align*}
\Delta_{n+1} & =\Delta_{n}-N^{\top} B^{\top} V_{n} \\
\text { and } \quad V_{n+1} & =V_{n}+V_{n+1} \tag{2,3,9}
\end{align*}
$$

After convergence of the i terative procedure the right-hand plate co-ordinates arn rotated into the comordinate system of the Left-hand plate by the transfoxination:

$$
\left(\begin{array}{lll}
x_{2}^{\prime} & y_{2}^{\prime} & z_{2}^{\prime}
\end{array}\right)=R\left(\begin{array}{lll}
x_{2} & y_{2} & z_{2} \tag{2.3.10}
\end{array}\right)^{+}
$$

The spatial model co-ordinates X, Y and Z in the systen of the left-hand photograph are calcolated from the following equations:

$$
\left.\begin{array}{l}
x_{p}^{i}=z_{z}^{i} x_{1}^{i}=1-x_{2}^{i} \\
y_{1}^{\prime}=Z_{p}^{i} y_{1}^{i} \\
y_{2}^{\prime}=y_{2}^{i}\left(Z-b_{z}\right) / z_{z}^{i}+b_{y} \\
Z_{p}^{\prime}=\left(y_{2}^{i}-x_{z}^{i} b_{z}\right) /\left(x_{1}^{i} z_{2}^{i}-x_{z}^{i}\right)
\end{array}\right\} y_{p}^{i}=t_{2}\left(y_{z}^{i}+Y_{z}^{i}\right)
$$

$(2,3,21)$

The standard deviation of the y-parallax for the n points ($n \geq 5$) used In the Aeternination of the elements of the relative orientation at the scale of the photograph is given by:

$$
\delta_{\gamma_{g}}=\sqrt{\sum y^{\top} y /(n-u)}
$$

$$
\begin{aligned}
& \text { where: } n \quad \text { equals the number of conaition equations } \\
& \\
& u \quad \text { equals the number of unknowns t.e } 5
\end{aligned}
$$

2.4 Strip Formation from zmapendent wodels

The method of strip fomation to be described may be uned on mofels which have been Eormed either analytically or on andogue plotting instruments.

Strip formation is generally a variation of the absolute orientation applied sequentially throughout the strip to adjacent modeIs.

The method of strip formation used in the prograns written for this aissertation is based on the approach to the solution to the absolute orientation of a model developed by schut (1960) of which the principai aspect is his solution of the orthogonal rotation matrix.

The orthogonal rotation matrix expregsed in terms of a skew-symentrlc matrix is:

$$
r=(d l-5)^{-7}(d I+5)
$$

where:

$$
S=\left(\begin{array}{rrr}
0 & -c & b \tag{2.4.2}\\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

the rotation matrix is a Eunction of four paranetexs of which only threw are independent which aliows any one of the four parameters to be assigned an arbitrary value.

Whe orientation of each succesgive modiel to its pradecessor in the strip may be expregsed in matrix notation as follows:

$$
X^{\prime}=R X=(d I-5)^{\prime}(d I+5) X
$$

2.4 Strip Formation from Independent Modeis

The method of strip formation to be describad may be used on models whioh have been formed efther analyticaliy of on analogue plotting ingtruments.
strip formation is generally a variation of the absolute orientation appiled sequentially throughout the gtrip to adjacent models.

The method of strip formation used in the programe written for this dissertation is based on the approach to the solution to the absolute orientation of a model developed by Schut (1960) of which the principal aspect is his solution of the orthogonal rotation matrix.

The orthogonal rotation matrix expressa in terms of a skew-symatric matrix is:

$$
\left.P=(d i-S)^{-1}(d]+S\right)
$$

where:

$$
S=\left(\begin{array}{rrr}
0 & -c & b \tag{2,4,2}\\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

The zotation matrix is a function of four parameters of which oniy three are independent which allows any one of the four paxameters to be assigned an arbitrary value.
the orfentation of each euccessive model to its predecessor in the strip may be expressed in natrix notation as follows:

$$
\left.X^{\prime}=n X=(d l-s)^{-1}(d)+s\right) X
$$

where: X, \quad is the vector of comordinates prior to rotation
and $\quad X^{\prime} \quad$ is the vector of comordinates subsequent to rotation.

The common perspective centre to the two adjacent models is used to control the longituainal tilts of the mocels throughout the strip.

Premultiplying both Bides of equation 2.4 .3 by ($d /-5$), expanding and simplifyinty yields the following three Iinearly dependent equations of which anly two are Iinearly independest;

$$
\left(\begin{array}{l}
f_{n} \\
f_{2} \\
f_{3}
\end{array}\right)=\left(\begin{array}{cccc}
0 & -\left(Z^{\prime}+Z\right) & \left(y^{\prime}+Y\right) & \left(X^{\prime}-X\right) \\
\left(Z^{\prime}+Z\right) & 0 & -\left(X^{\prime}+X\right) & \left(Y^{\prime}-Y\right) \\
-\left(Y^{\prime}+Y\right) & (X+X) & 0 & \left(Z^{\prime}-Z\right)
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=0
$$

With d set abbitrarily equal to 1 there remian three unknowns to be solved. A least squares adjustment of the observations yields two sets of co-ordinatey for each point connon to the adjacent modelis and therefore two linsarly independent equations. B schmutier (1975) has shown that for smail variations in the seales of adjacent models the average of the two pets of co-ordinates for each point after transformation common to the adjacent models is an optinum solution.

The rigorous treatment of the jeast scuares solution is to consider the comordinates in both models to be observed. itinearisation of the observation equations $2,4.4$ regults in the following set of equations in matrix form for point $;$

$$
A_{1} V_{j}+B_{j} \Delta+F_{j}=0
$$

(2.4.5)

There: $A_{i}=\left(\begin{array}{llllll}\frac{\partial f_{1}}{\partial Z} & \frac{\partial f_{1}}{\partial Z} & \frac{\partial f_{1}}{\partial Y} & \frac{\partial f_{1}}{\partial Y} & \frac{\partial f_{1},}{\partial X^{\prime}} & \frac{\partial f_{1}}{\partial X} \\ \frac{\partial f_{2}}{\partial Z^{\prime}} & \frac{\partial f_{1}}{\partial Z} & \frac{\partial f_{2},}{\partial Y^{\prime}} & \frac{\partial f_{1}}{\partial Y} & \frac{\partial f_{2},}{\partial X^{\prime}} & \frac{\partial f_{2}}{\partial X}\end{array}\right)_{i}$

Therefore: $A_{t}=\left(\begin{array}{cccccc}-b^{\circ} & -b^{a} & c^{2} & c^{0} & 1 & -1 \\ a^{0} & a^{a} & 1 & -1 & -c^{0} & -c^{a}\end{array}\right)_{i}$
where $z^{\prime \prime}, b^{\circ}$ and c° are initital approximations to the rotation matrix elements.

$$
\left.\begin{array}{l}
B_{i}=\left(\begin{array}{lll}
\frac{\partial f_{1}}{\partial Z} & \frac{\partial f_{1}}{\partial b} & \frac{\partial f_{1}}{\partial c} \\
\frac{\partial f_{1}}{\partial a} & \frac{\partial f_{1}}{\partial b} & \frac{\partial f_{2}}{\partial c}
\end{array}\right)_{i}=\left(\begin{array}{ccc}
0 & -\left(Z^{\prime}+Z\right) & \left(Y^{\prime}+Y\right) \\
\left(Z^{\prime}+Z\right) & 0 & -\left(X^{\prime}+X\right)
\end{array}\right)_{i} \\
V_{i}=\left(d Z^{\prime}\right. \\
d Z
\end{array} d Y^{\prime} \quad d Y \quad d X^{\prime} \quad \sigma X\right)_{i}^{T}, ~(2.4 . \theta),
$$

$$
(2.4 .9)
$$

$$
\Delta=(d a \quad d b \quad d a)^{r}
$$

$$
\left.F_{i}=\left(f_{1} \quad f_{2}\right)_{i}^{y}=\left(1 y^{\prime}+y\right) \quad\left(-x^{\prime}-x\right)\right)_{i}^{r}
$$

For each of the n points there will be one set of equations of type 2.4.5. Thus

$$
\begin{align*}
& A_{V} V_{4}+B_{B} \Delta+F_{1}=0 \\
& A_{2} V_{2}+B_{2} \Delta+F_{2}=0 \\
& A_{n}-B_{n} \Delta+F_{n}=0 \tag{2.4.12}
\end{align*}
$$

which may be written in general as:

$$
A V+B \Delta+F=0
$$

On the assuraption thit there is no correlation between the comordinates of different poines and that the total eofactor matrix is equal to J, the identsty matrix, then the 2 esst scquares solution to the parameters of the rotation matxix is given by:

$$
\Delta=N^{-1} t
$$

where: $N=\sum_{i=1}^{n}\left(B^{\prime \prime}\left(A A^{T}\right)^{\prime} B\right)_{i}$
and $\quad t=\sum_{i=t}^{n}\left(B^{T}\left(A A^{T}\right) F\right)_{i}$

The corrections to the observed co-oraingtes is givin by:

$$
V=A^{T}\left(A A^{T}\right)^{-1}(-D A+F)
$$

In the syrian developed here the comordinates of the ith model were considered to have infinite weight in the joining of models i and $i+1$ in a strip. A more detailed description of the process of the foining of two model.s adopted in the programuing of the syatere is given in section 3.3.

2.5 Transformation of the strip and strip Adjustment

Nike triangulated strip comordinates subsequent to the fomation of
the 0 trip are gtill in thie model co-ordinate systen refarced to the principal point of the iirst model in the strip ag origin. The etrip co-ordinates in model apace may be used as finput to the biowk adjustrent procedures if they are to be block adyunted, otherwise they must be transformed to the terrain ob-ordingte aystem and adjusted accordingIy to eliminate systematic errors and raduce randon errors. Although the strip co-ordinates in the model systen are block adjusted by the systera developed here they are navertheless transformed and strip adjustea uding polynonial adjustments prior to block adjustment for the reasons stated. The method of strip transformation and strip adjustarent used will be discussed.

2.5.1 Strig ntansformation

A projective trangformation is used to transform the motel unfte (X Y 2) to the terrain unit (TV V) The projective transformation is thus:

$$
X_{\text {terrain }}=N R X_{m o d e t}+X_{\text {shijl }}^{2}
$$

where: $X_{\text {terrain }}$ is the vector of terxain co-osdinates (ov v W) r For os point in the atrip.
i. is the scale factor.
P is the orthogonal rotation matrix.
$X_{\text {mast }}$ is the vector of co-ordinates $\{X Y z\}^{T}$ in model space of the correspoiding point in she strip.
$X_{s h i f}$ is the vector $\mathrm{T}_{0} \mathrm{~V}_{0} \mathrm{~N}_{\mathrm{o}} t^{t}$ of constank terms to translate the model co-ordinate bystem to the same origin to which the terfala oomordinates are referied.

Intitial approximations to the unknown lements viz, the nine elements of the rotation matrix R, the scale factor λ and the three shift parameters $X_{\text {shif }}$ wre obtainea from the solution to the equation set 2.5 .1 .1 using two points which are known in (0 V W) ${ }^{\top}$ and $(\mathrm{Z} \Psi 4)^{t}$ and a third point known in $(00 \mathrm{~W})^{t}$ and $(00 \mathrm{Z})^{\top}$.

While in practice thrse initial approximations may be sufficientiy mecurate so transfora the strip-prior to strip adjusement where the daed are to be uieinately bionk adjurted, tha method of ztxip transformation involving a least gquares fterative procedure where sedundant observarions are pregent which provides iraptoved txprasiormation paranecers has been used.
size nine elements of the general orthogonal notation matrix may be exprecsed in terms of threc of the elements as follows:

(2.5.1.2)

After the initial approximation all subsequent rotations $d R$ will be small with the elements Γ_{21}, r_{31} and r_{32} tending to $d r_{2 t}$, $d r_{y}$ and $d r_{3,}$ respectively. The resulting rotation matrix $d R$ will become:

$$
d R=\left(\begin{array}{ccc}
1 & -d r_{31} & -d r_{31} \\
d r_{21} & 1 & -d r_{32} \\
d r_{31} & d r_{3 j} & 1
\end{array}\right)
$$

if all secc \hat{i} find higher order terms are fgnored. gimilarly after the Initial approximation to the stansformacion parameters the scale λ and the vector of ohifte $X_{3 n i f}$, will tead to the biaml quantities d, and $d X_{\text {shift }}$ reppectively.
gence, after fterating the solution n timas

$$
\begin{equation*}
X_{\text {terrain }}=X_{n} R_{A} X_{\text {model }}+X_{\text {shilt }} \tag{2.5.1,4}
\end{equation*}
$$

where:

$$
\lambda_{n}=\lambda_{0}+\sum_{i}^{n} d \lambda_{;}
$$

(2.5.1.5)

$$
R_{R}=R_{0} \tilde{n}_{t}^{n} d R_{i}
$$

$$
\begin{equation*}
X_{s A \text { str }}=X_{n_{s A H t}}+\sum_{j}^{n} d X_{s t i v t} \tag{2.5.1.6}
\end{equation*}
$$

2.5.2 Strip Adjustment

polynomials for strip adjustment have been investigated by several pitotogramatetriste notably G schut (1950, 1961, 2962,1964 , 2966) F Ackermann (1962/64) E Mikhail (1964) and M Keller and G C Tewinkel. (1954). Although the optimum polynomial for adjusting strips has not been found several definite conclusions have been drawn concerning the various polynomials and their uses. Perhaps the most important of these conclusions are that conformal three-ftrensional transformations of degree higher than the first do not exist (Shut, GE. 2964 and Mikhail., E. 1964); the aecturacy of strip adjustment goes not freprove frith high order polynomials; and composed polynomials of third order produce the most gatiaftactory results.

Thus most of the polynomial strip adjustments which have been used in practice hate been semi-empirical. The coast and Geodetic Survey (keller, M. and tewinkel, G. 1964) use the following formulae which contain terms to mater for the local tilts in the strip:

$$
\begin{aligned}
X_{\text {terrain }}= & X_{\text {model }}-\Delta z\left(3 h x^{2}+2 i x+j\right)+a x^{2}+b x^{2}+ \\
& +c x-2 d x y-e y+f \\
Y_{\text {terran }}= & Y_{\text {mode i }}-\Delta z\left(h x^{2}+(x+m)+3 a x^{2} y+2 b x y+\right. \\
& +c y+d x^{2}+a x+g
\end{aligned}
$$

$$
\begin{aligned}
Z_{\text {errain }} & =Z_{\text {model }}\left(1+\left(3 h x^{2}+2 i x+j\right)^{2}+\left(k x^{2}+(m+m)^{2}\right)^{1 / 2}+\right. \\
& +h x^{2}+i x^{2}+j x+k x^{2} y+m y+n
\end{aligned}
$$

D Arthire (1959) of the Oxdmance survey of aritain used the formulae:

$$
\begin{aligned}
& Y_{\text {terszin }}=Y_{\text {model }}+a_{z}+a_{4} y+a_{5} z+a_{7} x+a_{i} x y+a_{9} x z+t_{2} a_{i f} x^{2} \\
& Z_{\text {teratin }}=Z_{\operatorname{model}}+a_{3}+a_{4} z-a_{5} y-a_{6} x+a_{2} x y-\frac{1}{2} a_{10} x^{2}
\end{aligned}
$$

G Schut (1964) of the NRC in Canadia uses conformal polynomial tzansformations for the adjustments of the planimetric strip co-ordinates, which can be derived fron the following complex polynomial:

$$
\begin{equation*}
\left(X_{\text {terrain }}+i Y_{\text {tertas }}\right)=\sum_{i=i}^{n}(a+i b)\left(X_{\text {model }}+i Y_{\text {madel }}\right)^{i+i} \tag{2,5,2,3}
\end{equation*}
$$

where: $i=\sqrt{-j}$

The simplest method of polynomial strip adjustmant in threp dipensions is to treat the planimetric and height adjustments separately. This approach hag been aiogled in tha gysetm developed in this atudy, rite following third order confotmol polymondals:

$$
\begin{aligned}
& X_{\text {rarrain }}=X_{\text {moter }}+a x-b y+c\left(x^{2}-y^{2}\right)-2 d x y+c\left(x^{3}-3 y^{3}\right)-f\left(3 x^{2} y-y^{3}\right) \\
& Y_{\text {terpain }}=Y_{\text {mosei }}^{\prime}+b x+a y+d\left(x^{2}-y^{2}\right)+2 c x y+e\left(3 x^{2} y-y^{3}\right)+\left(x^{3}-3 x y^{3}\right)
\end{aligned}
$$

and the thira order polynomial:

$$
Z_{t e r r a n}=Z_{\text {modei }}+a_{5} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} x^{3}
$$

$(2,5,2,4)$
are the polynomial used in the strip adjustment program to adjust the planimetric and height co-ordinatea respectively.

The observation equatons 2.5.4.4 may be wxitten in matrix notation for each point i in the strip known in both the model and the terrain as:

$$
V_{j}+B_{j} \Delta+F_{j}=0
$$

where: V_{i} is the vector of reaiduais $\theta_{\text {, }}$ is the subatrix of coefifichents ot the unknowns Δ. Is the vector of unknouns or the polynomial coefficients which are to be determined and $\quad F_{i}$ is the subvector of absolute terms.

Since the planimetric and height agjustmenes are handied separately there will be two sets of normal equations to be solved for each atrip in the block.

2.6 Analytical Block Adjustment

Two approaches to analptical block acfjustruent have been applied in the systen developed on the WaNG 2200 minicomputer. The fixst is that suggeated by F Amer (1961) which is a numerical solution to the Jerie analogue block adjustment. This method has the advantage of being inplementea on mall capacity computers, but bectuse it is an itarative safjustment it suffers from the problem of slow convergence.

The second approach follows that favoured by G schut (1964, 1967) which uses the strip as the basic adjustment unit. This method is also suitaile sor smalil oapacity computers, the storage
requicemente being dependent on the number of strigs in the block and the degree of the correction polynomial. This method of block adjustment does not have the slow convergence problem of the iterative block adjustment procedure and produces a cesult only slightly less accurate than adjustments using the model as the adjustment unit. However, this adjustment method requires substantially more ground control than the previously mentioned block adjustment method.
2.6.1 Block Adjustment Osing the Model as the Adjusiment unit

This simple method of block adjustment developed by E Amer (1961) for the planimetric adjugtment of blocks consiats of a series of innear conformad transformations of each model or section of models In the block in an iterative adjustraent. A section msy comprise one or more models with the basic assumption that the geale throughout the section is uniform, The iterative adjubinent is required to mintuise the sum of the squares of the residuals at the section tie points in the block.

The bit ment follows this simple procedure:
i) Dach sitip in the block is transformed to the tervain and strip adjusted to obtain preliminary block co-ordinates in terrain relatively free fron systematic artors.
ii) The arithttetic theans of the comordinates of the section tie points of each saction are calculated.
iii) Wach section in turn is transformed to the respective tie points co-ordinate means using a ilnear conformin transformation. The coefficients of the transformation equations are compufed using a mininua varlance determingtion deacribed in 2.6.1.1.
v) Steps (ii) and (iii) are xepeated until the standard error of adjustment converges to within a sutisLactory tounance.

2.6.1.1 The finear Conformal Transformations

Consider the the point means of the j rh section in strip i in the block to be $\left(\bar{X}_{1} \bar{Y}_{1}\right),\left(\bar{X}_{2} \bar{Y}_{2}\right), \ldots\left(\bar{X}_{n} \bar{Y}_{n}\right)$ and the corrosponding tie points to be $\left(X_{1} Y_{1}\right),\left(X_{3} Y_{2}\right), \ldots\left(X_{3} Y_{y}\right)$ then the minimum variance
coefficients $\hat{a}, \hat{b}, \hat{c}$ and \vec{d} of the linear conformal transformation observation equations 2.6.1.1.1, of which there will be two for each section tie point,

$$
\begin{aligned}
& V_{1}=\bar{X}_{1}-a X_{1}-b Y_{1}+c \\
& V_{2}=\bar{Y}_{1}-b X_{1}+a Y_{1}+d
\end{aligned}
$$

(2.6.1.1.1)

are computed from:

$$
\begin{aligned}
& \hat{a}=\frac{\sum_{i n}^{n}\left(x_{i} \bar{x}_{i}+v_{i} \overline{F_{i}}\right)}{\sum_{i}^{2}\left(x_{i}^{2}+Y_{i}^{2}\right)} \\
& \hat{b}=\frac{\sum_{i}^{n}\left(x_{i} \bar{y}_{i}-y_{i} \bar{x}_{i}\right)}{\sum_{i}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)} \\
& \hat{c}=\sum_{i=1}^{n} \bar{x}_{i} \\
& \vec{d} \\
& \dot{d}=\sum_{i n}^{n} \bar{y}_{i}
\end{aligned}
$$

(2.6.1.1.2)

Where X_{1} and Y_{1} are referred to the centroid of the model under consideration.

The standard error of adjustment for $:$ single model is somputed from:

$$
\sigma_{0}=\left(\frac{v^{\top} v}{2 n-4}\right)^{1 / 2}=\left(\frac{\sum_{i}^{a}\left(\left(\overline{X_{i}}-\hat{a} X_{i}+\vec{b} Y_{i}-\hat{c}\right)^{2}+\left(\overline{V_{i}}-\hat{b} X_{i}-\hat{a} Y_{i}-\hat{d}\right)\right)^{b^{\prime}}}{2 n-4}\right)^{2}
$$

Where n is the number of tie pointa in the determination of the transformation coeftieients.

The height is adjusted separately after each pianimetric model transformation for the purpose of introducing a scale correction Into the adjustment. the height adjustment procedure follont that of the plenimetric adjustment ueing a IInear transformation,

$$
\bar{Z}=Z+Z_{o}+a X+b Y
$$

Abstract

where: \bar{Z} is the trangfonmed height of the point Z is the height of the point in the strip Z is a shift in the Z direction X and Y are the comorainaxes of the point a and b are the logitudinal and lateral tilt correction paraneters respectively.

The adjustment procedure involves the inversion of a three by three matrix for ach section in the block in order to solve for the three unknoms viz. Z_{y}, a and b. whe adjustment iterates as with the planimetric adjugiraent until the standard ertor of height adjustment. for the biock has converged to within an acceptable tolerance. The helght adjustment generally shows less stability than the planimetric adjustment and therefore converges at a siower rate.

2.6.2 Bleck Adjumment \downarrow aing the strip as the Adjustment Unit

This method of block adjustment is particularly well suited to meditim and salal scale mapping projects and will produce results Within the accuracy reguired for topographic mapping.

Subaequent to a preinminary transformtion of esch atrip in the block to the terrain co-ordinato gystem and strip afjustment of each strip, the block is adjugted using correction polynomiaie for each strip, taking cognizance of the tie points between strips. The tie points are treated as control points with a lower weighting than the ground control.

The planimetric and helght adjustments are treated separately for the reason that a combined adjustnent would not necessarily produce a better realit yet requires a large compoter menory for the solution of the normal equation system,

For each planimetric control point in the strip $;$ there will be two planimetric adjustment observation equations of the form:

$$
\begin{aligned}
& f_{1}^{i}=a_{0}^{i}+a_{2}^{i} X_{T}-a_{4}^{i} Y_{7}+a_{4}^{i}\left(X_{5}^{2}-Y_{T}^{2}\right)-a_{5}^{i}\left(2 X_{T} Y_{T}\right)+a_{6}^{i}\left(X_{T}^{2}-3 X_{7} Y_{T}\right)+ \\
& +a_{T}^{i}\left(Y_{T}^{*}-3 X_{T}^{*} Y_{T}\right)+X_{S}-X_{T}=0 \\
& f_{z}^{i}=a_{1}^{i}+a_{\mathrm{L}}^{i} Y_{T}+a_{3}^{i} X_{T}+2 a_{G}^{i} X_{T} Y_{T}+a_{S}^{i}\left(X_{T}^{2}-Y_{T}^{2}\right)+a_{6}^{i}\left(3 X_{T}^{2} Y_{T}-Y_{T}^{2}\right)+ \\
& +a_{T}^{i}\left(X_{T}^{\prime}-3 X_{T} Y_{T}^{2}\right)+Y_{S}-Y_{T}=0
\end{aligned}
$$

and for each height control point there will be a delight adjustment obeervation equation of the form:

$$
\begin{equation*}
f_{3}^{i} \therefore b_{0}^{i}+b_{1}^{i} x_{T}+b_{2}^{i} Y_{T}+b_{3}^{i} x_{T} Y_{T}+b_{4}^{i}\left(x_{T}^{i}\right)^{2}+Z_{3}-Z_{T}=0 \tag{2.6.2.2}
\end{equation*}
$$

where: a_{0}^{i} through a_{3}^{i} are the plandanetric adjustment polynomial. soefficients in strip i.
b_{0}^{i} throwgh b_{4}^{i} are the height adjustment polynomial coefflolents in strip $;$.
X_{T}, Y_{T} and Z_{T} are the control point co-ordinates i*x the terrain. X_{s}, Y_{s} and Z_{s} are the corxesponding control point comordiantes in the strip.

Sinnlar condition equations are applicable to the tie points between stripg in both the planimetric and helght adjustants, Thus for a tie print between stripg i and $i+1$ the respective condition equations are:

Elanimetry:

$$
\begin{aligned}
& f_{t}^{i}=a_{0}^{i}+a_{2}^{i} X_{s}^{i}-a_{3}^{i} y_{s}^{i}+a_{t}^{i}\left(\left(x_{s}^{i}\right)^{2}-\left(Y_{s}^{i}\right)^{2}\right)-a_{5}^{i}\left(2 X_{t}^{i} Y_{s}^{i}\right)+ \\
& +a_{5}^{i}\left(\left(X_{s}^{i}\right)^{1}-3 X_{s}^{i} Y_{5}^{i}\right)+a_{9}^{i}\left(\left(Y_{s}^{i}\right)^{1}-3\left(X_{s}^{i}\right)^{2}\left(Y_{s}^{i}\right)\right)+X_{5}^{i}-X_{5}^{i}=0
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}^{i}=a_{1}^{i}+a_{2}^{i} Y_{s}^{i}+a_{s}^{i} X_{s}^{i}+2 a_{4}^{i} X_{s}^{i} Y_{s}^{i}+a_{s}^{i}\left(\left(X_{s}^{i}\right)^{2}-\left(Y_{s}^{i}\right)^{2}\right)+a_{s}\left(3\left(X_{s}^{i}\right)^{2}\left(Y_{s}^{i}\right)+\right. \\
& \left.-\left(Y_{s}^{i}\right)\right)+a_{s}^{i}\left(\left(X_{s}^{i}\right)^{i}-3\left(X_{s}^{i}\right)\left(Y_{s}^{i}\right)^{2}\right)+Y_{s}^{i}-Y_{T}^{i}=0
\end{aligned}
$$

$$
\begin{aligned}
& +a_{s}^{i_{i}}\left(3\left(X_{s}^{i, j}\right)^{2}\left(Y_{s}^{i+1}\right)-\left(Y_{s}^{i+1}\right)^{2}\right)+a_{7}^{i+}\left(\left(X_{s}^{i+1}\right)^{2}-3\left(X_{s}^{i+1}\right)\left(Y_{s}^{i+1}\right)^{2}\right)+Y_{s}^{i+1}-Y_{T}^{i+1}=0
\end{aligned}
$$

Height:

$$
\begin{align*}
& f_{7}^{i}=b_{0}^{i}+b_{1}^{i} X_{5}^{i}+b_{2}^{i} Y_{5}^{i}+b_{3}^{i} X_{4}^{i} Y_{s}^{i}+b_{4}^{i}\left(X_{3}^{i}\right)+Z_{5}^{i}-Z_{r}^{i}=0 \\
& f_{3}^{i+1}=b_{0}^{i+5}+b_{1}^{i} X_{5}^{i+1}+b_{2}^{i+1} Y_{2}^{i+1}+b_{3}^{i+1} X_{3}^{i+1} Y_{5}^{i+1}+b_{4}^{i+1}\left(X_{3}^{i+1}\right)^{2}+Z_{5}^{i+1}-Z_{5}^{i+5}=0 \tag{2.6.2.3}
\end{align*}
$$

where: $X_{f}^{i} Y_{t}^{i}$ and Z_{z}^{i} are the tie point co-ordinates in strip $;$ $X_{3}^{i+} Y_{i}^{i+1}$ and $Z_{1}^{i, n}$ are the correeponding tie points co-oroinates in atrip $i+1$

Eron the above pairs of equations 2.6.2.3 new condition equations are derived with the added constraints that

$$
\begin{align*}
X_{T}^{i} & =X_{T}^{i+1} \\
Y_{r}^{i} & =Y_{T}^{i+1} \\
\text { and } \quad Z_{T}^{i} & =Z_{T}^{i+1} \tag{2.6.2.4}
\end{align*}
$$

Thug, the new planimetric observation equations are:

$$
\begin{aligned}
& f_{1}^{i, i+s}=a_{a}^{i}+a_{4}^{i} X_{s}^{i}-a_{9}^{i} y_{s}^{i}+a_{4}^{i}\left(\left(X_{5}^{i}\right)^{2}-\left(Y_{s}^{i}\right)^{2}\right)-a_{9}^{i}\left(2 X_{s}^{i} Y_{s}^{i}\right)+ \\
& \left.+a_{6}\left(\left(X_{5}^{i}\right)^{3}-3 X_{t}^{i} Y_{s}^{i}\right)+a_{r}^{i}\left(Y_{s}^{i}\right)^{3}-3\left(X_{i}^{i}\right)^{2}\left(Y_{i}^{i}\right)\right)+
\end{aligned}
$$

$$
\begin{aligned}
& f_{z}^{i+1+1}=a_{1}^{i}+a_{2}^{i} y_{8}^{i}+a_{9}^{i} X_{s}^{i}+2 a_{4}^{i} X_{s}^{i} Y_{s}^{i}+a_{5}^{i}\left(\left(X_{*}^{i}\right)^{i}-\left(Y_{s}^{i}\right)^{i}\right)+ \\
& +a_{b}^{i}\left(3\left(x_{s}^{i}\right)^{2}\left(Y_{s}^{i}\right)-\left(Y_{s}^{i}\right)\right)+a_{1}^{i}\left(\left(x_{s}^{i}\right)^{i}-3\left(X_{s}^{i}\right)\left(Y_{s}^{i}\right)^{n}\right)+ \\
& -a_{1}^{i+1}-a_{2}^{m+1} Y_{5}^{i+1}-a_{3}^{i+1} X_{s}^{i+1}-2 a_{4}^{b+1} X_{5}^{(i+1} Y_{5}^{i+1}-a_{5}^{j+1}\left(\left(X_{5}^{i+1}\right)^{2}-\left(Y_{s}^{j+1}\right)^{2}\right)+ \\
& -a_{s}^{i_{1}}\left(3\left(X_{s}^{i+1}\right)^{2}\left(Y_{s}^{i+1}\right)-\left(Y_{s}^{i+t^{i}}\right)-a_{s}^{i n}\left(\left(X_{s}^{i+j}\right)-3\left(X_{s}^{i+1}\right)\left(Y_{s}^{i+1}\right)^{i}\right)+Y_{s}^{i}-Y_{s}^{i+}=0\right.
\end{aligned}
$$

and the new height observation equation is:

$$
\begin{aligned}
f_{1}^{i+1}= & b_{5}^{i}+b_{1}^{i} X_{3}^{i}+b_{2}^{i} Y_{2}^{i}+b_{3}^{i} X_{5}^{i} Y_{3}^{i}+b_{4}^{i}\left(X_{1}^{i}\right)^{2}+ \\
& -b_{0}^{i+1}-b_{i}^{i+1} X_{1}^{i+1}-b_{2}^{i+1} Y_{1}^{i+1}-b_{3}^{i+1} X_{1}^{i+1} Y_{s}^{i+1}-b_{4}^{i+1}\left(X_{s}^{i+1}\right)^{2}+Z_{s}-Z_{5}=0
\end{aligned}
$$

rpise above observation equations 2.6.2.1, 2.5.2.2 anci 2.6.2.5 may be expressed in matrix notation as:

$$
\begin{align*}
& V_{\beta}+B_{p} \Delta_{p}=F_{\beta} \\
& V_{A}+B_{A} \Delta_{A}=F_{b} \tag{2.6.2.6}
\end{align*}
$$

[^0]\[

$$
\begin{aligned}
& \left(B_{p}^{\top} W_{n} B_{p}\right)+\Delta_{p}+B_{p}^{T} W_{p} F_{p}=0 \\
& \left(B_{n}^{T} W_{n} B_{n}\right)+\Delta_{n}+B_{n}^{T} W_{n} F_{n}=0
\end{aligned}
$$
\]

$(2.6 .2 .7)$
where: B_{p} and B_{h} are the matrices of coefficients of the unknowns $a_{j},(j=0,1 \ldots 7)$ and $b_{k},(k=0,4)$ for planimetry and haight
respectively
W_{p} and W_{h} are the weight coefficient may:icts for planimetry and theight respectively
Δ_{ρ} and Δ_{k} are the vectors of unknowns $z_{j},(j=0, f \ldots 7)$ and $b_{n},(k=0.4)$
for planimetry and beight respectively.
F_{p} and F_{s} are the vectors of constant terms for planimetry and seight respectively.

Eoth the planinetric and height adjustment normal equation systems have siminar ptructures in that the cogaticisnt matrices are syanetzic bandea matrices with band widths of fifteen and nine reppectively shom diagramati, cally in pigare 2,6.2.1.

Figure 2.6.2.1: Structure of the normal equation soefzicient胿保ices for the block adjustments using strips. n is the number of steips in the block.

Strip No.

Height:n(5) xn(5)

The sparse structure of the normal equation coefficient matrices can be exploited to reduce both memory space and computation time for the solution of the normal equation gysten by collapsing the matrix to ratain the minimun of zexo tornts possible and operating on the notsmero terms oniy. Moreover since the normal equation comficient matria is symmetric only the upper or lower diagonal terpas heed be considered. In the gystern developed for this dissertation, the coefficient matrlces were collapsed to columan merices of the forfa ghown diagzamaticsily in F゙igure 2, 6.2.2.

The solution of the system of nornal equations may be obcained by efther an iterative ar a direct solution. The direct method using the Cholesky decomposition of symuetric positive-defint te matrices into upper triangular matriges has been used in this gystem.

Piegure 2.6.2.2 : Structure of the Collapsed Normal Equation Coftyaient Matrices for the Block Adjustment Uaing strips.
a is the munber of gtrips in the block.

Heighl
$n(5) \times 9$

Planimetry $n(8) \times 1$.

The standard errors of adjustrent of an observation after adjustuent are given by:

$$
\begin{aligned}
& \Delta_{p l a n}=\left(\frac{y_{\rho}^{T} W_{p} V_{p}}{(2 m-B n)}\right)^{1 / 2} \\
& \delta_{\text {ieight }}=\left\{\frac{1 p^{7} 1 / w^{1 / p}}{(m-5)}\right)^{1 / 2}
\end{aligned}
$$

$$
(2.6 .2 .8)
$$

where: n if the number of strips in the block
m is the number of tie and control points in the slock.

CEAETER 3

THE WANG 2200 MINICOMPTTER

3 THE ANAEYILCAE PHOTOGRAMMENRZ SYSTEM DEVELORED FOR THE WANG 2200 MINTCOMPUTIMR

3.1 General Overview

An analytical photogrammetry systen was developed for the kang 2200 minicomputer system with the intention of producing a workable system and not merely a set of unconnected programs to test the applications of a minicomputer to individual phasen of analytical aerial triangulation. The complete systen comprises thirty-seven subprogranx, the core of which consists of the main data processing programs viz. relative orientation and medel formation, strip formation using the independent nodels, strip dajustnent and two block adjustment programs. The other subprogranss are the data input and output routines and other support routines recessary to the system. The entire system was developed ab initio as no software existed which could be incorporated into it either wholly or paxtiy. The syztem has three distinct phason, viz.
I) Input of the plate comordinates and the adjustment control data, and amendments thereto,
2) processing of the data, and
3) Output of the final adjusted co-ordinates and atatistical anaวyses.

Being an interactive system, the various subseotions of the system are accessed by the operator via menus displayed on the Cathode Ray Tube (CRII) sereen, whe interaetive syatem has the adivantage of allowing the operator to review the input data aither on the sereen or the printer and anend the fata imediately if necessary. Thus the delay between data input and data processing is greatly reduced over the large delays inherent in a batch orientated remote terminal system.

3.1.1 Operation of the system

Drocessing of the system is initiated by a startup routine which is loaded manuelly into the computer's memory by the operator.

The startup routine leads to the main menu whtch displays the various submenus available For entering the three main phases of the system. A diagranmatic representation of the opecation of the sygtem is shown in figure 3.1.1.1.

3.1.2 Organisation of the Data Files

The WaNG 2200 miniconputer ten Negabyte aidk drive model 2260 has 19584 directly addragsable geotors each 256 bytea in length. A single platter therafore can contain 5013504 byted of Information. The user may specify the number of aectorg tw be allocated for the index and the catalogued files; anything beyond the catalogued file area may be used as a temporary work area. Data may be accessed from the disk using either catalogued data file procedures or by the direct sector addressing methe? which is the fasker of the two accessing riethods.
rogical records on the disk may be of any length, but because each new logical record begins with a new physical record, thet is, a Iogical recors in always an integral number of physical records, it is inportant that the data be biocked in a manner which optimises the use of sectors, Consequentiy, numeric daka is concerted to nore ppace econcmical alphanumetic pariables before belng wittan to the disk with sufficient significant figures being retained throughout for the aerial trlanguiation and adjustment.

The system aveloped for thia ainsertation utilizen the direct sector addressing facility of the WANG minteomputer in order to achieve greater procegsing speeds than would othergise be achieved using oatalogued mequential files. However, the input data are stored in catalogued files and prior to the procesting phase the dat 7 are transterted from these cataloguea files to the uncatalogued work axeas and are subsequently acceased by direct sechor addressing With the model data being the logical record unit. Eacin routine in the propescint phase produces output to a new area of the disk. Thus no procpasing routine overwrites the input fata which enables any routine to be restarted should an interrupt occur without heving to recover fron the initial temporary work area setup routine.

$$
\text { Page } 48 \mathrm{~A}
$$

Figure 3.1.1.1 Flow Dtagram of Sys*em Operation

3.1.3 Hardware Configuration and the Software System Capacity

The analytieal serial triangulation software syatem has been written to operate on the following minimu hardware configurationt

1) A 24K byte Central grocessing Unit
2) A 20 Mes.abyte Disk Drive
3) A 132 Character Line Printer
4) A CRF Screen and Keyboard

A block containing up to two hundred models, each model containing up to twenty-nine model points each with three co-ordinates and a six digit point identifier can be processes using the current softwere.

3. 2 Relative Orientation and Model Formation

One of the requirements of the sysem for its successeul operation is that the plate coordinate data be entered according to a preaefined sequence via. the zodel number, the two perspective centre identiflers, well aistributed wing points and Einally all other points in the model,

A minimum number of six points are used for the relative orientation and model formation using a leagt squarea adjustrent of the data in the deterisination of the elements of the relative orientation. The observation equation coefficient matrix, described in section 2.3 is generated from the iffot n points in the model whare n is deteruined by the routine from the number of available points in the motiol. Bxteraive use is made of the Matrix ROM (Read Only Memory) to fom the set of normal equations viz. ($\left.B^{\top} B\right) \Delta=B^{\top} F$ invezt the normal equation coefficient matrix viz. $\left(B^{\top} B\right)^{1}=N^{-t}$ and oalculate the firgt mproximations to the five unknom parameterm of the relative orientation, that is $\left.\Delta_{i}=N^{-1} / B^{\top} F\right)$. The formation and solution of the nornal equations is achieved using the following five BASIC matrix statements:

L0 MAT AT $=\operatorname{TEN}(\mathrm{A})$	- calculation of B^{\top}
20 MAI A2 = A $2 * A$	- calculation of $B^{\prime} B=N$
$30 \mathrm{MAT} \mathrm{A}^{3}=\mathrm{mWV}(\mathrm{A} 2)$	- inversion of N^{-1}
40 MART A4 $=\mathrm{A} 3 * \mathrm{AI}$	- calculation of $N^{\prime} b^{\prime}$
$50 \mathrm{MAJT} \mathrm{X}=\mathrm{A4*F}$	- calculation of $\Delta=N^{+} B^{\top} F$

The matrix inversion is performed using Gaussian elimination done in place on the wang 2200 T and Gaussion dismination with partial pivoting on the WANG 2200 VP . The results of the numerical relative orientation and motei fomation using either of the modela of the machine showed no significant difference.

The orthogonal rotation matrix is generated in the first and subsequent iterations from the molution to the unknows Δ_{i}. The residual vector V_{i} is determined from the relationship;

$$
V_{i}=\left(\begin{array}{lllll}
x_{2} & y_{2} & 1 \tag{3.2.1}
\end{array}\right)_{i} R_{i}\left(x_{t} \quad y_{t} \quad 7\right)_{i}^{T}
$$

where: $\left(x_{z} y_{y} \mid\right)_{i}$ and $\left(x_{t} y_{T} \mid\right)_{i}^{r}$ ere the rescaled co-ordinates of
the right-hand and left-harid plates respectively after the i th iteration.
R_{i} is the orthogonal rotation snatrix after the i th itteration.

A new approximation to the vector of renainder terms is obtained from the vector of restauals after the ith itearation.

The above proceature involves one inversion of the nomal equation coefficient matrix N. The solution to the relative orientation elements is deteriained in subsequent lierations from the relationship:

$$
\begin{equation*}
\Delta_{i}=\Delta_{i-1}-N^{-1} B^{r} V_{i-1} \tag{3.2.2}
\end{equation*}
$$

The solution will iterate untik the following convergence eriterion hes been satisfied;

$$
\begin{equation*}
\left|\frac{\theta_{i}}{\theta_{1}} \delta_{i-1}\right| \leqslant e_{n} \tag{3.2.3}
\end{equation*}
$$

where e_{n} is an axbitrarily defined precision threshold, a value for which is chosen a priori based on previous experience.
> o_{j} and δ_{j-1} are the standard errors of unlt weight for fterations

i and $i-1$ respectively.

Subsequent to the determination of the elements of the relative orientation the independent model co-ordinates are determined using equation 2.3.11. The results of the model formation of both the Durban and St. Faith's Test Areas given in section 4.2.2.1 and section 4.2.2.1. respectively shows that the method used 9 delds a maximum standard ecror of Y-parallaz of less than twenty mierons at the scale of the photograph for any nodel in the strip.

3.3 Strip Formation tising the Independent Models

The right-hand parspective centre of the first roodel In each serip is adopted, for the sake of convenience, as the origin of the strip co-ordinate systen in model space. Each successive model in the strip is translated, scaled and rotated to itp predecessor using the method of determination of the elements of the rotation matrix outlined in section 2.4 and the following prosedure:

1) Mocel $(i+1)$ is translated in three prizary orthogonal airections so that the right-hand prespective centre of model (i) and the left-hand parspective centre of model ($i+1$) colncide.
2) Corresponding distancea in each nocis $\psi i z$, the distances between the two wing points A-B and $A^{\prime}-B^{*}$, sinf distances $P C_{A}^{i}-C$ and $P C_{t}^{i+}-C^{\prime}$ are ocmpared and the trestage ecale factor \hat{h} is adopted. (Refer Etgure 3.3.1). Thise ins scale factor $\vec{\lambda}$ is given simply by.

$$
\bar{\lambda}=\left(\frac{A-B}{A^{\prime}-B^{\prime}}+\frac{P C_{R}^{i}-C}{P C_{L}^{j-1} C^{\prime}}\right) / 2
$$

3) The elements of the rotation matrix ar. deternined using a least squares adjustment based on the four points viz. $P C_{R r}^{i} A, B, C$ in nodel (i) and $P C_{i}^{i+1} A, B, C \quad$ in model $(i+7)$.

Figure 3.3.1 Strip Poraation - Junction of model $i+1$ to Model ;

The solution to the system of normal equations viz. $\Delta=N^{-1} B^{r} F$ requires the inversion of a 3 by 3 coefficient matrix.
4) Model $(i+j$) is rotated using the rotation matrix, the elements of which were determined in step (3).
5) Averaga trangalation parameters ara calculated from the fout corresponding points used in the a 0 justment procedure and model $(i+1)$ is again translated by these amall amounts in order to achieve a mean fit at comiton points.

Abstract

Although not entirely rigorous in the determination of all the transformacion parameters, the regulis obtained, using the above procedure for strig formation, ghow that the methed is acceptabie. The results of the strip formation of the purban ane St. Faith's Test Areas and the IIC synthetle block gata art given in section 4.2.1.2, section 4.2.2.2 and section 4.2.4.1 réspectively.

3.4 Trangformation of the strip and strip Adjustment

The co-ordinates ontained from the atrip formation procedure are in model unfts and unzelated to any terrain co-ordinate system. The strip is fransformed to the terrain co-ordinate systen by means of a three Almensional linear conformal transformation using a minimwir of four control points in X, X ano z in sach step for the least squeres determination of the transformation parameters. The control points must have a suitable distribution within the strips in order to avola the probler of solving an 111 -conditioned normal equation system. The three dinensional 1 亿near conformal transformation from the morit ${ }^{\prime}$, to the terrain systera is given as follows:

$$
\begin{equation*}
X_{\text {brrain }}=\lambda R X_{\text {modete }}+X_{\text {shit }} \tag{3.4.2}
\end{equation*}
$$

wheze: $X_{\text {terrain }}$ is the co-ordinate vector $(x y z)^{T}$ of the point in terrain units aftex transformation, λ is the scale factor from the moalel to the terrain units, $X_{\text {model }}$ is the comordinate vector $\left(\begin{array}{lll}x & y & z\end{array}\right)^{\top}$ of the point honologue in the modek system.

$$
X_{\text {shiff }} \text { is the vector of constant terma in terrain units, }
$$

Three points known in the terrain in planimetry and height are used to obtain initial approximations to the transformation parameters. Thereafter, the least squares solution is obtained from four pointa known if planimetry and helght. It was found that one iteration of the lesat gquares solution was aufficient to obtain transformanion parameters which produced terrain co-ordinates with adequate aceuracy for strip adjustment.

The strip zajustrint follow Inmedilately after the transformation of each strip to the terrain co-ordinate system. In order to reauce the effects of machine round-off, particularly in this case where the elements of the co-efficient matrix are large; the strip adjustment is performed m rescsied and translated terrain co-orafnates, The approximate centre of the strip in adopted as tha origin of the co-ordinate syster for the purpose of $s t r i p$ adjustrant.

All available noatrol points in the strig are used in the least squares aeterminteion of the strip adjustment polynomial coefficienter . The current system allows for up to twelve control points in X, X and Z_{2} subsequent to the determinetion or the polynomial ooefficsents all the points in the etrip are corrected using the correction polynomial. The atrip aajustment provides a goos approximation to the block co-ordinates free fron large systematic errors, which are still to be biook adjusted and as atch reduces the number of iterations required for convergence by the iterative block adjustrnent procedure. The resulta obtained from the strip adjustment procednze on the wang 2200 compared favourably with those obtained by E Williams (1974) and T van Dijik (1975) using the same data on a large computer. The comprorison of results is givan in section 4.2.1.3 and section 4.2.2.3.

3.5 The Block Adjustment Erograms

3.5.1 Block Adjugtrent Uging Strips as the Adjustrient Tnit

One of the nain objectives of this dissartation was to deyelop a complete analytical photogrametry system on a minicomputar which would have practical applications and block affustment is necessarily the most faportant aspect of this and any other analytical photogrametric system, Although block adjustments such as anBLock (van den Hout, c M. 1966) or the fully rigorous block adjustment by means of bundies of rayg (schnida, H, 1959) are degirable for the high accuracy thet oan be achieved they are more readily implemented on large oomputers because of their large menory requirements. An alternative bicols aajustinent using the strip an the adjustrant unit with adjustment polynomials is extremely well suited to minicompater appligation, despite the fact that it yielda
a less accurate sesult. The suitability of this block adjuatment wethod is oning to twi, inportant factors vix. the speed of computation and the low mencry reguirements evan for the adjustment ef large blocks.

The block adjusement program consitts of five suloprogranas each of mheh autornaticaily chains irto memory the subsequent subprogran. It was necessary to Civide the adjustment inte four separate units in orier to achieve an adjustatent procedure requiring the minimum practical amount of computer memory. As a regulty it is possible to adjust a block of data conpcising ten strips with less then 24 R byteg of memory. Auxiliary storage is used during the phases of the formation of the observation equations and the formation of the normal equations, but this is kept to a minimun by atilizing the maximum anount of available computer memory, The primary function of the disk storage in this adjustment procedure is to page common flata fion one nubprogran to the next,

The following functions are performed by the different modulesi
I) Nodule 1 : Locates the tie points and control polnt homologues In the unadjugted block and generates a tablw containing the block tie point control data.
2) Module 2 : Forms the nemi-collapsed observation equations and mpplies weighting factorg to the observation equations: tie and control pointe are weighted 0.5 and 1,0 respeotivaly.
3) Module 3 : Forma the collapsed get of normal equations from the observation equations and gtoces the collapged matrix in a work ares.
4) Module i : Waing a Cholesky for squate rook] method of solution this module eolves the normal equation set; the polynonial coafficients are passed via common manyy to the mext modale.
5) Module 5 : mhe entige block is adjusted using the adjustment polynomals with the coefficients which have been determined using the above coutines.
ghoule it be necessary, it is possible to iterate the adjustment asing the adjusted block data of the current iteration in the formetion of the new ohservation and normal equations. It was foumd for blocks with short strijs, as wete used in testing the aysten, that the solution converged rapldiy and that oniy one iteration was perhaps necessary for each block of Gata that was ndjusted.

3.5.2 Block Adjustment Using the Model es the Adjustment Unit

An alternative block acijustment procedure to that described above has been provided in the system for those applications which require higher accuracy block adjustrants. This adjustment, baing Iterative, suffers from the problem of slow convergence but does produce results which have accuracien comparable with both the AnBLock and rigorous block adjustment procedures (Van Dijk, T J. 1975).

As a general rule of thunb, the number of iterations required for convergence is equal to the number of models in the block. The exact criterion for convergence is sonewhat subjective and for this reason the required number of iterations ia entered as data in the program developed for this dissertation. The advantage of this approach is to avoid the situation where the result may never converge and in some eases may even diverge. The adjustrent program has been written in a manner which enables the operator to periodicaliy reviek the atatus of the adjustment and elther to accept the resulas or to continue processing until satisfactory convergence has been achieved. In addition, the progran autematicelily details the residuals at tie and control poines after equal iteration intervals during the adyustment procedure.

The adjustment program is a aingle progran which chains into menory the ourtput procadure for printing residuals at tie and control points when required.

The progat ham been designed to reduce saarch and computing thate using the following procedure:

1) The block of data is scanned and tabies are generated which contain the absolute eector addresses and the element position within the rociel of control polnts and tie points comanon to adjacent models.
2) The location tables are referred to in each lteration to locate the common tie and control points from which the tie point means are calculated and stored as a block of data in the work area on the disk.
3) The transformation paraneters are calculated for each model from the control and tie points of each model and the respective tie point means.
4) The tie and control points of each section are \&ransformed using the linear conformal equations whose coefficients were deterrained in step (3).
5) Up until the last iteration only the tie and control pointa in each section are transformed to the model tie point mesns and the control points. After the last iteration the final transformed control points and tie points of eceh model are referred to the original control points and tie polints and a new set of coefficients for the transformation equations is determined for each model in the block.
6) All points in each model, including the original tie and controi points are transformed using these new equations.

The above procedure whereby the tie and control points are extracted and the model is treated as though it containea oniy these points for the purpose of the adjustmont is approximately thixty percent faster than a sinilar adjustnent procedure which trangforms the entire model after each iteration. The technique described above dia not result in any appreciable refuction in the accuracy of the Etnal adjusted black.

4.1 General

The suite of programs qeveloped for analytical aerial triangulation on the WANG $2200 \mathrm{w}^{2}$ nicomputex were tosted extensively using two test areas and one block of synthetice data, The two test areas used were the Durban and st Faith's test areas and the block of synthetic strips was the FTC blook published by the International praining Centre for Aerial Survey (ITC), Delft in the Natherlands (Jerie, H G. 1964).

The Durbaly and $5 t$ Faith's test areas were measured by $\mathrm{H} \mathbf{s}$ WiIlians of the University of the Witwatersrand and $7 \mathrm{~J} M$ van mijk, who used the same data as a basis for testing the aecuracy of points measured with a Trilateration Microscope (Willitams, E S. 1974) and the accuracy of aerial triangulation using points of natural detail (van Dijk, T II M. 1975). The ITC synthetic block was used in the teats primarily because it was the only data available on which to test the specified capacity of the software system of two hundred models. The reaults obtained from these tests are compared where positible with the results obtained by $\#$ F Soehngen (1967) and \# F Soenngen, C C Tung and J W Leonard (1967) who paocessed the ITC test block on strip and block adjustratit programs developed at the University of Illinois.
unless otherwise stated all resulits tabulated in this section are in microns at the scale of the photograph.

4.1.1 The Durban west Area

The Durban Test Area, located near Durban, covers an area of approximately $7,5 \mathrm{~km}$ by 5 km at an altitura varying from abcut sea level to 170 m above sea level. At a scale of approximately $1: 8000$ the test area photography consists of four strips of thirteen or fourteen photographs each. oniy forty-one models of the test area were used in testing the system.

The test area contains elghty premarkea points iocated in pairs, each deternined in planinetric position by triangulation tron
the existing trigononetric control in the region of the Durban test area and in height by spirit levelling from the Durban Corporation benchnark system. unfortunately, there is no available information regarding the accuracy of the positions of the pighty pre-marked points, However, this does not affect the tests processed on the HANG 2200 since the objective in processing the data of the test area was to compare the results with those obtalned by others processing the same data on different softwase and hardware systems.

The Durban teat area was photographed at a scale of $1: 8000$ using a wild ncs camera fitted with a 1.52 , 86 mm focal length wild Avtogon Iens No 150Ag.RII. The photographic plates were neasured by \# s Willitan and T van Dijk using the Trilateration Mioroscope developer by \quad E Wilifans (1974). the trilaterated points were processed by a leagt squares adjustment routine on the Oniversity of the Witwatergrand IBM 360 computer to obtain image co-orainates in a rectangular co-orainate systen with the local origin at the principal point of each photograph. The X and Y co-ordinates ware positioned to within an accuracy of under three microns.

Two control configurations were used in the two different block adjustrents viz. the iterative adjustment using the model as the adjustant unit and the polynoralal block adjustuent using the strip as the ajjustment unit. The distribution of the control in each case is shown in Figure 4.1.1.1 and Ftgure 4.1.1.2.

In the first case the control configuration is essentially the same as that used by T van Dijk when processing the same data with several block adjustment procedures. The secona control configuration is that used by the strip adjustment program for the same data.

With reference to Figure 4.1.1.1 it can be seen that the planimetric control is generality perigheral with a base length of approximately five mociels. Two additional control points situated within the block were used primarily to control the beight adjustiment of the block. The total number of control points used was thirteen.

With reference to Figure 4.1.1.2, geveral more control points were used than in the previous case. A total of twenty-four control points in both planimetry and height were used in the strip and

DURBAN TEST AREA
 CONTROL CONFIGURATION

block adjustment using the mojel fo the mbjustment unit

DURBAN TEST AREA CONTROL CONFIGURRTION

BLOCK FDJUSTMENT USING THE STRIP AS THE RBJUSTMENT UNIT

FIGURE 4.1.1.2
block adjustments. In both adjustment procecures, all other known points were used as check points subsequent to the reapective block adjustment procedure.

4. I. 2 The st. Faith's test Area

The st. Faith's test area, located in Rhodesia, was originally established for testa involving the application of digital photogrametry to cadastral murveys fa rural area. The test area coveas an area of approximately $4,8 \mathrm{~km}$ by $6,4 \mathrm{~km}$ with an average altitude of approximately 17430 m above sea leve1.

This test aren comprises two strips of seven photographs each, tlown at a scale of 1,15000 . The photography was taken using a Hilger and watts EXLOS cajera fitted with a wild Aviogon wide-angled leng with a fixend foral lengti of $152,23 \pi n a$, The aperture setting was 5.6 ane the zilm used was Ilfora high resolution film.

A total of one hundred and seventy-three pre-marked points are fixed in planimenry but fer of these points are fixed in height and other points for which the heights were determined provide only suffielent information for the levelling of the strips of photographs. Owing to identification probleans, several of the height data are probably inaccurate and therefore are of Intte value. These inaccuracies predude quoting the results of height adjustments of this block with any confidence,

The premarked planimetric ground zontrol was fixed to an accuracy of 1:ls 000 and $81 x$ of the perimeter control were heighted by vertioal angle measurements from the secondary triangulation stations (van Dijk, T J. 1965).

As with ther Durban megt Area data the St. Faith's Test Area data were obtained from $\# 5$ Villiams and IT van Dijk who measured the photographic plates and uged the saxim data in their experiments. two different control configurationg were used in the two block. afjustment proceaures developed an the WANG 2200. The control configurations in mach oase are shon in Figure 4.2.2.1 and Figure 4.2.2.2. In the former case five control points in planfmetry only and tix control points in planimetry and height were tued while in the letter ame, ten control points in both height and planfmetry

ST. FAITH'S TEST AREA CONTRCL CONFIGURATION

ELOOCK ADJUSTTMENT USING THE MODEL RS THE GDJUSTMENT UNXT

FIGURE 4, 1,2. 1

ST. FAITH'S TEST RREA
 CONTROL CONFIGURATION

BLOCK FDJUSTMENT USING THE STRIP RS THE FDJUSTMENT UNIT

Were wed. All other known points were therefore used as check data with the result that the statistios of the cheok point data are known with substantially more degrees of freedon than in the testa Invoiving the Durban meat Area.

4.1.3 The ITC glonk of Sqnthatic strips

The THC block of synthetic stripe consiste of a block of dath of enixty strips of sixty models each. The dath used in this dissertatyon were part of the ten strips of thirty mociels each published by Imc in the Netherlands (Jerie, $\mathcal{F} G$. 1964). The data used here consisted of a block of ten stripa of twenty models each. In each strip the first twenty models were used. Although only two hundred models were processed in the tests undertaken here this is not the absolute maximum capacity of the systen which is estimated to be nearer three hundred models.

The fictitious data were ofiginally generated to provide a block of data to be used in the development of analytical aerial triangulation procedures and a common data base againat which varlous users may compare thetr adjustment methods. The main advantage of such a block of data is that the absolute value of each comordinate is known thus Eacilitating the separation the errors owing to the adjuatment program, the geanetry of the ficgure and the data. Such blocks of fata muat have inherent weaknesses in modelifing the true situation and ara therefore of ingited value in assessing the absolute acouracy of an adjustment procedure. Fhin factor does not affect the tests undertaken here since the obyective is not to detemmine the absolute accuracy of aldital photogramaetry. The data has been of vital inportance in testing the capacity and speed of the sathware developed on the waNg 2200 minicomputer system.

The FirC block of data has a major disadvantage in that relief Was not introáseed into the original models. The regular format of the data has been noted as another diaadvantmge (Jerie, Fi. 1964) but the wijter feels that this need not be so provioed no simplifinations are rade in the software syster to accomuodate the regular pattern of principal points, tie points and minor control points.

The aynthetio data were generated taking into account the following general assurptions:

1)	principal distance	152,007IEM
11)	plate format	230ıma by 230 man
iil)	Flying height above mean spa lewel	7609 m
1v)	Flying height above ground	6 609m
v)	Scale of photegraphy	1 In 43500
vi)	Lengituafnal over Iap	60\%
vii)	Lateral overlap	20%
8iil)	Phote base	9, 21020
18)	ALE bate	4000 ma

Each model conglets of eighteen pointa; each point has been sublegeted to rancoin perturbations to intzoduce the infiuence cwing to:
i) Earth curvature
ii.) Refraction
iii) Lent aistortion
iv) Onflatness of the negatives
v) Pilm shrinkage
vi) Erfors of stereosecpic point transfer yii) Obsexvational errors.

The published data consists of models which have been formed from the orlginal plate co-ordinatez procesged on the Stantec Zebra contuter .

In the data used to teat the programs developed for this aistertation, the scale transfer points located at the nadit points Were tranmlated to asaured parspective centres. This provided data compatible with the programs deteloped for atrip formstion and block adjustinent: In adeition, the effects of block adjustment routimes on the hypothetical perspective centres could be analysed having provided better control of the longitudinal tilts of the model.s in the strip.

Whe eontrol configuration for the iterative block adjustment
using the mocel as the adjustment unit conslsted of thirty-two control. points in both planimetry and height selected in a semi-regular arrangement. This control configuration is shown in Figure 4.1.3.1. The block adjustment using the strip as the adjustment unit had a control configuration consisting of sixty pianimetric and height control points again selected in a semi-regular arrangenent as shown in Figure 4.1.3.2. In both cases all other known points in the block were used as check points. The semi-regular control configugation was selegted as a matter of convenfence for subsequent comparisons with other test and is in no way a linatation of the syatem,

In 1967 the IFC synthetic test blook wag applied in extensive testa to several adjustment procedures at the University of JLinols, Urbana, milinois (Soenhgen, \# F 2967 and Soehngen, \boldsymbol{F}, Tung, c C, Leonard, J W. 1967) the published reatits of which have been used as a comparison with the resuits of the tests ungertaken in this study.

4.2.1 Results of the Durban Test Area

4.2.1.1 Relative orientation and Model Formation

The data fron the fortp-one nodels of the Durban Test Area were the mono-measured plate co-ordinates measured by T J M van Dijk. Table 4.2.1.1.1 conpares the results of model formation obtained by T van Dijk using the University of witwaterstand IEM 360 computer and by the writer using the fanc 2200 minicomputer. In both cases the plate comordinate data were not subjected to insge comoxdinate refinments. It must be noted that 7 van Dijk used consistentiy six polntsk in the relative orientation of each model, whereas the wasg 2200 realtive orientation used a variable number of points ranging from aiz to twelve paints.

[^1]
I.T.C. BLOCK

CONTROL CONFIGURATION
BLOCK FIDULSTMENT USTNG THE MODEL RG THE RDJLGSTHENT LNIT

ETGURE 4. 2.3 .2

I.T.C. BLOCK

CONTROL CONFIGURATION
Block antustment using The strip as the fnjustment tinit

FIGURE 4. 1×3.3

Table 4.2.1.1.1 Durban Test Area, Comparigon of Rergits of \&elative Orfentation and Model Formation IJing the same plate co-ordinates on two bifferent systems.

STRIP NO	MODEL NO	$\delta_{y_{p}}$	$\delta_{y_{p}}$	$\begin{aligned} & V_{\text {cp }} \\ & (M A X) \quad B \end{aligned}$
1.	12/11	5,7	15,0	32,0
	11/10	3,1	19,0	24.0
	10/9	2,4	16.0	28,0
	9/8	0.4	15.0	26,0
	B/7	3,3	10.0	23,0
	7/6	3,7	18,0	35,0
kenits		3.1	15,3	28.0
2	90/89	3,7	6,0	17.0
	89/86	9,5	11.0	22.0
	88/87	5,2	21.0	37,0
	87/06	2.4	18,0	39.0
	$86 / 85$	11,9	12.0	27.0
	15/84	5.7	7,0	13,0
	84/83	6.0	5.0	10,0
	83/02	12.1	11,0	27,0
	82/81	5.4	14.0	27.0
	81/80	5,7	8,0	20,0
	80/79	5,6	12,0	29,0
Means		6,7	11,4	24, 4
3	63/64	0,4		
	64/65	3,2	14,0	24,0
	65/66	4. 5	11,0	29.0
	66/67	3.9	6.0	12,0
	67/68	3,0	10,0	19.0
	68/69	4.7	9.0	21,0
	69/70	1,0	16,0	34,0
	$70 / 71$	E, 0	12,0	16,0
	71/72	4.7	12,0	20,0
	72/73	6.9	10,0	13,0
	73/74	4,3	9.0	13,0
	74/75	4,5	9,0	21,0
Keans		4,0	II, 3	21,5
4	36/37	3, 3	13,0	20,0
	37/36	3,4	10.0	21,0
	38/39	3,5	22,0	22,0
	39/40	4.0	11,0	22,0
	40/61	0.8	11,0	17,0
	41/42	3.1	6.0	13,0
	42/43	4.9	8,0	10.0
	43/44	1,0	10,0	17,0
	44/45	2,0	13,0	24,0
	45/46	1,5	10,0	18,0
	16/47	1.2	7.0	11,0
	47/48	5.7	11.0	18,0
Meanis		2,9	10,2	17,8
Means fot	lock	4.2	12,1	22,9

A - Results of relative orientation and moded formation obtained by m van bijk.

3 - Reaults of relative orientation and model formation obtained on the Wang 2200.
$b_{y_{p}}$ - Standara deviation in y-perallax after medel formation. V_{p} inart Maximura reaidual in y-parallax after model formation.

In the relative orfentation performed oy 5 tan $D i j k$ only points of natural detail were used for the datermination of the elemtents of the relative oxientation, whereas the writer has used combinations of points of natural detail and premarked points. The results obtained by the latter are consfatent with those obtained by If S Willians (1974)* who used premarked and put-narked points. Table 4.2.1.1.2 compares the means of the standard deviations of Y-parallax for the entire block obtained by $\$ \mathbf{F}$ Willians, T van Dijk and the wifter.

Although the standard error of y-parallax for the relative orientation and model formation processed on the Wang 2200 appear to be constderably poozer than those obtained by T van Dijk using the IEM 360 conputer, the results for the block adjustment using the itarative gdjustment of nodels do not show any deterioration in accuracy as a resuit of using these models, Fhe results are shown and compared in table 4.2.1.2.2.

Table 4.2.1. 4.2 Durban rest Area. Means of Standard Deviations of y-parallax for a.2l the Models in the glock obtained from Three Different Experiments,

Exper iniment	$d_{y_{p}}$	$y_{y_{p}}(m a x)$
H s Williams	8,9	9,0
T van Dijk	3,3	6,4
WANG 2200	22,1	22,9

[^2]$d_{\gamma_{p}}-$ Standard deviation of y-parallax for the relative

orientation over the whole block
$V_{p} \max -$ Average maximim y-perallax regidual over the whole block.

4.2.3.2 Strip Formation

 their strip Eormation programs, but for the sake of eompleteness, the reaults of the strip formation uging the wing 2200 are given in Fable 4.2.2.2.1 without comparison with other exper inente.

Table A.2.1.2.1 Durban rest Azea. Standard Deviations of strip Forration*

SMRT		STRIP \$ 2		STRIP 3		STRIP * 4	
HODEL	$\delta_{x / 2 / 2}$	MODEL	$0^{+1}+1 / 2$	HOD ${ }^{\text {a }}$	Sxutz	MODEL	Strite
12/11-11/10	13,0	90/89-89/88	25,0	63/64-54/65	33,0	36/37-37/38	28, 0
11/10-10/09	18,0	89/88-38/87	17,0	64/65-65/66	26,0	37/38-38/39	16,0
10/09-09/08	23,0	88/87-87/86	10,0	85/66-66/67	19.0	38/39~39/50	37,0
09/03-08/07	17.0	67/86-86/85	22,0	66/67~57/68	14*0	39/40-40/41	16,0
08/07~07/06	25,0	86/85-85/84	26,0	67/68-68/69	11.0	40/41-41/42	10,0
		85/84-84/183	20.0	68/69-69/70	24,0	41/42-42/43	10.0
		84/83-83/82	11,0	69/70-70/71	14:0	42/43-43/44	9,0
		83/82-82/91	15,0	70/71-71/72	19.0	43/44-44/45	29,0
		82/81-81/90	27.0	71/72-72/73	31,0	44/45-85/46	13,0
		81/80-80/79	14,0	72/73-73/74	12,0	45/46-45/47	15,0
				73/74-74/75	22.0	46/47-47/48	21,0
Means	19,2		18.7		20,5		18,6

$O_{\text {xhf }}=$ standaza deviation of junctiof. of dajacent mobels in x, y or 7.

4.2.2.3 mrangeormation of the Strip and strip Adjustment

Subsequent to the formation of the strips each strip in the biock was transformed to the terrain co-ordinate systen using a threa dimensional linear conformal tranmformation. The individual strips were adjugted using thixd oiler conformed polynamials for the planimetrie adjustment and a separate third order polynomial for the hejght adjustment.

The control configuration for each strip is ghown in Figure 4.2.1.3.1. The results of the adjustments compared with those obtained by T 5 van Dijlt are shom in Table 4.2.1.3.1, only strip two had sufficient check points from which to obtain meaningiul eatimate of the accuracy at oheok points after the atrip adjuatment.

Table 4.2.1.3.1 Durban Test area. Comparison of Results of the Strip Adjustment processed on the IBM 360 and the WING 2200 Miniccmputer.

$\begin{aligned} & \text { STRIT } \\ & \text { NO } \end{aligned}$	2. VAN DICJ							
	CONTROL				CHECK			
	ϕ_{x}	Oy	O.	δ_{p}	Δ_{x}	Oy	Δ_{z}	6
2	12,4	13,3	17,4	18,2	-	-	-	-
2	13,1	12,8	19,2	18,3	14,2	16,1	20,1	21,5
3	10,5	15,4	21.7	18,6	11,8	15,3	22,4	19, 3
4	11,8	13,2	20,3	17,7	12,2	12,9	21, B	17,7

$\begin{aligned} & \text { SIRIP } \\ & \text { No } \\ & \hline \end{aligned}$	WAXG 2200							
	CONTRAL				Caxck			
	0_{0}	D_{y}	δ_{7}	δ_{B}	${ }_{6}$	by	ϕ_{z}	0_{0}
1	5,3	10,9	7.5	32,1	\square	$\bar{\square}$	-	\square
2	5,3	4,1	20,6	6,6	6,1	$7{ }^{7} 1$	28,6	9,4
3	6,5	10,0	16,3	11.9	-	-	\cdots	-
4	10,1	6,3	12,9	12,0	-	-	-	-

$0_{x} \sigma_{y} O_{X}$ Standard deviations in X, Y and z reapectively
$\delta_{p}-$ Standard deviation in planimetry $\left(\delta_{p}=\sqrt{\delta_{x}^{1}+\delta_{y}^{2}} \quad\right.$.
4.2.1.4 Block Adjustment Using the strip as the Adjuturent Onit

The atrip adjusted comordinates of the Durban Test Area were block adjusted using a procedure aeveloped by G schut (1961). The adjustment was iterated and the resuits showed absolute convergenc* after one iteration. This can be seen from Table 4.2.1.4.1.

DURBAN TEST AREA CONTROL CONFIGURATION

 STRIP ADJUSTMENT

Pable 4.2.1.4.1 Durban Test Area. Results of the Block Adjustment Uefing strips.

$\begin{aligned} & \text { TWERATION } \\ & \text { NO } \end{aligned}$	d PLAN			d HETGHT		
	CON2RROL	TIE	CRECK	CONTROL	TIE	CHECK
1	13,5	20,9	16,6	7,0	35, 1	21,6
2	13,5	20.9	16.6	7.0	35.2	21.6

$O_{\text {plan }}{ }^{-}$Standard deviation in planimetry.
$d_{\text {hright }}$ stancara deviation in height.

The accuracy of the results obtained using this min-rigorous block adjustment procedure compare well with the essults obtained froz adjusting the same data with the more rigorous procedure using the mocel as the adjustment unit. This can be explained by two factors. vix:

1) The strips in this particular block ase short, and
2) the number of control points used in the former adjustment is substantially more than used in the latter adjustment.
The residual vectors in planimetry ana height after afjustment using the gtrip as the adjustment unit are show in figure 4.2.1.4.1 and Figure 4.2.1.4.2 respectively.

A somplete comparison of varfous methods of block adjustment using the Durban rest Area data and processed by if van pijk and the writer is given in Table 4.2.3.2.
4.2.1.5. Bloek Adfustment Using the Model as the Adjustraent Enit.

The strip adjusted co-ordinates of the Dutban Test Area were processed using a second block adjustrent procedure viz. the iterative block adjustment developed by P Marer \{1962\}. The adjustrent was fterated one hundred and twenty times but frow the results shown in rable 4.2 .1 .5 .1 it appears that convergence took place after the fietieth iteration.

DURBAN TEST AREA

RESIDUAL VECTORS IN PLANIMETRY
BLOCK FDIUSTMENT USINE THE STRIP AS THE PRIULSTMENT UNTT

DURBAN TEST AREA

RESIDUAL VECTORS IN HEIGHT
BLOCK ADJUSTMENT USING THE STRIP AS THE RDTUSTMENT UNIT

ETGURE 4.2.21.4.2

Table 4.2.1.5.1, Durban Test Area. Bock Adjustment Results After Every Ten Iterations.

$\begin{aligned} & \text { YTHRATHON } \\ & \text { NO } \end{aligned}$	S PLAN			6 HEIGET		
	COMEROL	TIE	CEECK	CONTENEL	TIE	CIECEX
10	10,5	9.0	13,8	9.0	6,0	18,9
30	10,1	8.8	14.9	7.1	5.5	18,5
30	10,1	8,7	15,6	6,5	5,3	18,4
40	10,1	8,7	15.9	6.1	5.1	18,3
50	9,9	8.7	16.3	6.0	5,0	18,3
60	9,9	8,7	16,4	5,9	5,0	18,4
70	9,9	8,7	16.6	5,8	5,0	16,5
80	9,9	8.7	16,6	5,6	4,9	18,6
90	9,9	8.7	16,8	5,6	4,9	18,8
100	9.9	8,7	16,8	5,6	4,9	19.0
110	9,9	8.7	16.8	5.5	4.9	19,2
120	9,9	8, 7	16,8	5,5	4,9	19,4

$\Delta_{\text {atミi }}$ - Standara deviation in planimetry.
Oheight Standand deviation in height.

The reaul te after ten iterations are compared with those obtainad by T J van Dijk in Table 4.2.1.5.2. The resicual vectort at control and check points after the tenth iteretion for the planimetric and beight adjustments are shown in Figure 4.2.1.5.i and Figure A.2.1.5.2 respectively.

Table 4.2.1.5.2 Durban Iest Area. Comparison of Regules from the Blcck Adjustment Using the Noalal as the Adjustaent Unit After Ten Iterations,

TYPE	6 PEAN			O HEIGPT		
	COMPR 2	TIE	CIECK	CONTEROL	TIIS	CHECK
I van Dijk	10, 1	8.3	14,4	4.0	8,3	25,1
WINNG 2200	10,5	9,0	13,8	9,0	6,0	18,9

$O_{\text {plan }}$ - Standaxd deviation in planimetry.
$S_{\text {fright }}$ - standard deviation in height.

DURBAN TEST AREA

RESIDUAL VECTORS IN PLANIMETRY

BLOCK RDJUSTMENT USING THE MODEL RS THE RDJUSTMENT LNAT 10 Itenations

DURBAN TEST AREA

RESIDUAL VECTORS IN HEIGHT
BLOCK RDFLISTMENT USTNG THE MODEL AS THE RDJUSTMENT UNIT 10 Itorations

4.2.2 Reaults of the St. Eajth's pest Area

4.2.2.1 Relative Orientation and Model Formation

The St. Faithts rest Area data sere made available from the tests undertaken by \# S willians (1974) and T J van Dijk (1975) who also measured the photographic platen. As with the teste involving the Durban Test Area, the data was processed by the aforementioned on the Univeratty of the Witwatersiand IBM 360 computer. Although thit get of aata is mich maller than that of the Durban Test Area, the results from processing it on the WANG 2200 miniecruputer provides an Indication of the consiatency and generality of the software developed on this hatdware.

The results of the relative orientation and model formation on the fRNG 2200 are compared with those obtained by T van Dijk in Teble 4.2.2.2.1.

Table 4.2.2.1.1. St Faith"s Test Area, Comqarison of Results of Felative Orientation and Model Formation Using the Same Plate Comordinates on Two fifferent systems.

SIRTP NO	MODET NO	$\delta_{y_{*}}{ }_{A}$	$\delta_{y_{g}}$	$V_{Y_{p}}(\underline{H A X X}) \mathrm{B}$
1	51/62	4,6	13,0	22,0
	62/63	5,1	9,0	20,0
	63/64	3,6	a,0	15,0
	64/65	6.5	10.0	23.0
	65/68	7.6	21.0	23,0
	66/67	6,5	28,0	39,0
Means		5,7	21,5	23,3
2	70/71	6,6	9,0	17.0
	71/72	4,2	5.0	20.0
	72/73	5,0	B, 0	16.0
	73/74	4.8	日, 0	18,0
	74/75	6,1	11,0	30,0
	75/76	5,6	10.0	17.0
Means		5.4	B,5	28,0
Means for the block		5,6	10,0	20.7

A－Resulta of the model formation obeained by rg van pijk．
B－Results of the model formation obtained en the FANG 2200.
$\delta_{r_{p}} \quad-\quad$ Standard deviation in y－parallax after model formation．
V_{f}（masim Maximum resicual in y－parallar after model formation．

The standard deviationd of y－paralhax after selative orientation and model Formation on the FhNG 2200 see rignificantly poorer then those obtained by T van Dijk．This is contributed to the fact that，as witif the Durban Test Acea．T van Dijk used points of natural detail only in the relative orientation，whereas a corabination of pre－marked points and points of natural detall were used in the test
 NANG 2200 syster was set so that relativaly fewer iterations were required for an adequate convergence．The results obtained here are conststent with those obtained previously，using the Durban Test Area（refer Table 4．2．1．1．1）．Table A．2．2．2．2 compares the means of the standard deviations for the entire biock obtained by $⿴ ⿱ 冂 一 ⿱ 一 一 厶 心$ S Williams（1974），T van Difk（1975）and the writar using the Wave 2200.

Table 4．2．2．1．2 st Faith＇s Test axea．Neans of standari peviations of y－Payallax for mil the models in the Blook Obtained from three Different Experiments．

Experiment	Δ_{y}	$V_{y}(m a x)$
H S Willians	5,8	11,2
T van Dijk	5,5	12,2
FAPG 2200	10,0	20,7

$\Delta_{y_{p}} \rightarrow$ Standard deviation of y－parallax for the relative orientation over the whole block
V_{p} max－Averege maximam y－parallax residual over the whole blook．

4．2．2．2 strip Formation

The standard deviations of the residuals at points coman to affacent models in the strip after strip Eormation are ghown in Table 4．2．2．2．7．

Table 4.2.2.2.i gt Faith's Test Axea, Standard Deviations of Strip Formation.

Surip 1		StiRIP 番2	
HODRL	6*/Hy	MODEL	$\Delta_{x / y / z}$
61/62-62/63	28,0	70/71-71/72	16,0
62/63-63/64	9.0	71/72-72/73	13.0
63/64-64/65	16,0	72/73-73/74	15,0
64/65-65/56	29,0	73/74-74/75	38,0
65/66-66/67	26,0	74/75-75/76	25,0
Meana	19,4		17.4

$o_{z / y t}-$ standard deviation of realduals in X, Y or z.

The mean of the atandara deviations obtained in this test in compared with the mean of tre Btandard deviations obtalnea fircm the serip formation of the Durban Test Area in mable 4.2.2.2.2. It oan be seen Erom this table that the torlp formation produces resulty of consimtent acouracy and sufficiently acourate to be used for Etrip and block adyustment.

Trable 4.2.2.2.2 Comparison of Mean Standard Deviations of Model Formation Over the Whole Block

TEST AREA	$\Delta_{x / X I}$
Durban	19,1
St. Faith's	18,4

$\theta_{y / f / x^{\prime \prime}}$ Mean standard deviation in X, Y or z.
4.2.2.3. Transformation of the Strip and strip Adjustenent

Whe two strips in this block were adjusted by the same program used to adjusc the Durban gest Area in which the planimetry was adjusted by a conformal thite order polynomial and the height by a separate thima order polynomial.

The control configuration for the strip adjustmant is shown in Figure 4, 2.2.3.1. The strip adjusted results conipare favourably in planimetry with those obtained by \ddagger van Difk as can be seen from Table 4.2,2,3.1. No results are given for the height adjustment at check points owing to insufficient height data, The standard deviation in height at control for the second strip appears to be high but this in fact tas not affected the results of the block adjustment which can be seen from rable 4.2.2.4.1 and Table 4.2.2.5.3.

Mrable 4.2.2.3.1 Comparison of Resulte of Strip Adjugtment of the st. Faith's Fegt Area procesed on the IBR 360 and the wang 2200

$\begin{aligned} & \text { SyRTP } \\ & \text { NO } \end{aligned}$	T YAN DIJR							
	COMTROT				CHECX			
	d_{x}	Δ_{1}	S_{2}	6_{p}	δ_{x}	Of	ϕ_{z}	Δ_{p}
1	9,3	10,5	16.2	14,0	10,8	12.1	-	16,2
2	8.7	7,9	18,5	11,8	11,2	13,4	-	17,5

$\begin{aligned} & \text { SHPIR } \\ & \text { NO } \end{aligned}$	WRPS 2200							
	COMTROL				Cater			
	δ_{x}	$\delta{ }_{y}$	O_{2}	ϕ_{p}	$\delta_{\text {d }}$	${ }^{8}$	δ_{z}	σ_{p}
1	6,3	9,1	14,5	11,1	10,2	9,6	-	14,0
2	5,1	4,1	33,7	6,7	9,2	9.2	-	12,9

$\phi_{x} \sigma_{y} \delta_{z}$ Gtandard deviations in X, Ψ and z respectively.
$\delta_{p}-$ Standard deviation in planfmetry $\left(\phi_{p}=\sqrt{\phi_{f}^{2}+\phi_{\gamma}^{2}}\right)$.
4.2.2.4 Block Adjustrent using the strip as the Adjustment Whit

This adjustment was iterated and converged after one iteration to a planimetric accuracy of seventeen microns at the scele of the photograph at the check points as shown in trable 4.2.2.4.1. The small rumber of beight check points and their unknown accuracy and Aoubtful reliability auggest that the standard deviation of 31,4 microns at the check points in height is not a true indication of the obtainable height accuracy using this method. The residual

ST. FAITH'S TEST AREA CONTROL CONFIGURATION
 strip pojustuent

FIGURE 4.2 .2 .3 .3 .1
vectors aftex the planimetric adjustment at control and chack points are ahown in Figure 4.2,2,4,1.

Table 4.2.2.4.1 st Faith's rest Area. Results of the Block Adjustment 0aing strips.

$\begin{aligned} & \text { ITERATION } \\ & \text { NO } \end{aligned}$	- PLA ${ }^{\text {P }}$			¢ FEI GHT		
	CONTROL	T 15	CEmCR	CONTROL	TIE	CZECK
1	17,8	21.7	16.9	11,5	24,1	31.4
2	17.8	21.7	16,9	11,5	24,1	31, 4

$o_{p l a n}-$ Standard devlation in planimetry $\quad \delta_{f}=\sqrt{\delta_{x}^{2}+\delta_{y}^{2}} \quad 1$.
$O_{\text {height }}{ }^{-}$Standard deviation in height.

It should be noted that the block adjusted results of the Durban and St. Faith's Test Areas obtained using this adjustment program have comparable accuracies as can be spen from Table 4,2,2.4.2.

Table 4,2.2.4.2 Comparison of Block Adjustment Resulte for Durban and St. Eaith's Test Aceas.

TEST AREAA	d PLAR			O HEIGET		
	CONTROL	TITi	CHECK	CONTROL	TIE	CAECR
Durban	13,5	20.9	16,6	7,0	35, 1	21.6
St Faith's	17,8	21.7	16,9	12,5	24,1	31.4

$\Delta_{p l a n}$ - Standard deviation in planimetry ($\Delta_{p}=\sqrt{\delta_{x}^{2}+\delta_{y}^{2}} \quad$).
$\delta_{\text {heighr }}$ Standard deviation in height.
4.2.2.5 Block Adjustnent uaing the Model as the adjustrent Unit

The atrip adjusted co-ordinates of the St. Faith's Test Area were processed using the iterative block adjustment procedure. The adjustment was iterated one hundred times. Convergence wos rapid, the adjustraent having converged somewhere between the tenth ana twentieth iterations.

Table 4.2.2.5.1 shows the results of the block adjustiaent of the 5t. Faith's Test Area after every ten Iteracions A comparison

ST. FAITH'S TEST AREA
 RESIDUAL VECTORS IN PLRNIMETRY

ELOCK ADJUSTMENT USING THE STRIP RS THE RDJUSTMENT UNIT

of these reaulto with the results of the block data after strip adjustment seens to suggest that the block adjustmmit does not Improve the aceuracy of the aata which may be attributed to the small number of models in che blook. Figure 4.2.2.5.1 shows the realdual vectors in planimeticy at control and cheok poinks after the adjustment.
rable 4.2.2.5.1. St. Faith ${ }^{1}$ a Tenct Area. Reaults of the Block Aujustrent Dising the Model.

$\begin{aligned} & \text { freration } \\ & \text { no } \end{aligned}$	\triangle PLAN			¢ HREGFP		
	COASEROL	WIT	CHECK	CONHEOL	WIE	CHick
1	-	4	12, 1	-	-	24,9
20	$a_{1} 3$	9.9	14,2	14,4	6.3	24,7
20	8,2	9, 8	14, 8	13.9	6,4	24,8
30	8,2	9,8	15,0	± 3.8	6.4	25.2
40	8.2	9,8	15,1	$13 \% 7$	6,3	25,1
50	8,2	9,6	15,1	13.6	6,3	25.2
60	8,2	9,8	3.5.1	13,6	6.2	25.4
70	8,2	9,8	15,1	13,6	6.2	25,6
80	日, 2	9,8	15.1	13.5	6.2	25,8
90	8,2	9,8	15,1	13.5	6,2	25,9
100	8,2	9, 8	15,1	13,5	6,1	26.1

$\delta_{p l i n}-$ stangare deviation in planimetry $\left(\delta_{F}=\sqrt{\delta_{s}^{h}+\delta_{y}^{2}}\right)$.
$\phi_{\text {htight }}$ Stanafard deviation in height.

4.2.3 Sumary of Block Adjuatments of the Durban and st

 Faith'g Test AreasIn the tests maiertaken for this dissertetion two block adjugtment procedures were used to procmss the data of the Durban and St. Faith's Test Areas, both of which had also been processed by block adjustment proyrams developer by man Dijk (1975) . The block adjustratit methods tused by T van Dijk weref

ST. FAITH'S TEST AREA

RESIDUAL VECTORS IN PLANIMETRY
ELOCK RBJUSTMENT USING THE MODEL AS THE RDJUSTMENT UNIT
10 Iteratana

a) The Bundle adjustment (Schaid, \boldsymbol{H} H. 1959),
b) The aNBLOCX adjustment, (var den Hout, C M. 1966), and
0) Whe Ather adjustrent (Amer, F, 1962).
whereas the block adjustment prograns developed for this study were;
a) The Atter adjustment, an iterative adjustment using the model as the adjustment unit, and
b) The Schut ajjustment (Schut, G H. 1961/1966) which uses the strip as the adjustruent undt.

Table 4.2.3.1 sumarises the st. Fafth's Area bloek adjustment resulte of the various methoes used by Tr van dift and the writer,

Table 4.2.3.1 St. Faith's Test Area. Comparison of Results of Various BLock Adjustments on Different Systems.

SYSTEM	ADJUSTMENTI	6 PLAN			6 EEIGET		
		COMTROL	TIE	CHECK	CCWIROL	TTE	CHECK
T van Dijk	Aner	8,7	9.8	15,3	6,8	10.2	20,4
	amblock	9,2	7.9	16,9	9.8	12,4	24,2
	Bundle	13,4	-	15,7	19,0	-	23,6
KANG 2200	Amex	23,5	20,9	16,6	7,0	35,1	21,6
	Sehut	13,8	21,7	15,9	11,5	24,1	31,4

$\delta_{\text {pian }}$ - Standard deviation in planimetry ($\delta_{f}=\int_{x}^{\delta_{x}+d_{y}^{2}} \quad$).
$\delta_{\text {height }}$ - standard deviation in height.

Table 4.2.3.2 is a similar sumary to thet of rable 4.2,3.1 for the Durban test Area.

Trable 4.2.3.2 Durban test Area, Comparison of Rempla of various Biock Rdjustments on Different systems.

SYSIEX	ADTUST:-MEST	\triangle DIAN			6 HETCAT		
			TIE	Cfiecx	COMminet	T 5	CAECX
T van Dijk	Amer	10,1	8.3	14,4	4,0	8,3	25,1
	ANELOCK	10,6	6,3	19,0	\$,8	9,7	21.6
	Bundie	9.9	-	16.9	16.6	-	29,8
Wang 2200	Biner	9.9	8.7	16.3	6,0	5,0	29,3
	\% wut	13,5	20,9	16,6	7.0	35.1	21,6

$\delta_{p l a n}-$ standard ceriation in planimetry $\left(\sigma_{\rho}=\sqrt{\delta_{2}^{1}+\delta_{\gamma}^{2}}\right)$.
$\delta_{\text {height }}$ - Standard deviation in height.
4.2.4 The ITC Block of Synthetic Strips

4.2.4.1 Strip Formation

The pubilshed data of the tre block consists of models formed from the sictitious plate co-prdinates which were percurbed to simulate the systematic and ranpon errors inherent in acturl serial photography and the measurcizent of the photographic plates.

Unilke H Sowhrgen ($196 \pi / 2=7 \mathrm{~A}$) who ugci the same aata to test strip and block adjustrent ptocedures and acopted the soale eranster factor of 1,0000 betwoen successive mexiols in sach strip, the witex has approached the problem in a $\begin{gathered}\text { jightly difforent manner. }\end{gathered}$ percpeotive eentres were asfuned for each nodol and sarh model was rescaled, translated and rotated parallel to its pledecessor in the steip using the progran developed to foria the strips from the models of the limban and St. Faith's Test Areas.
ghe xesulen of the strip formations for the two hundred motela used in the test are given in Table A. \%.4.2.1.

Sable 4.2.4.2.1. 27c Block. Standard Deviations of Strip pormation for Each Model Junction.

$\Delta_{x}+y_{\prime}=$										
STRTP NO	1	2	3	4	5	6	7	8	9	10
MODEIT SO										
1/2-2/3	53	24	55	35	21.	40	41	18	23	36
2/3-3/4	19	07	15	21	19	39	33	17	15	20
3/4-4/5	36	34	30	27	29	38	33	25	29	16
4/5m5/6	42	18	10	10	19	34	36	24	38	34
5/6-6/7	28	46	13	21	25	20	30	30	25	35
6/7-7/8	38	2.9	13	35	2.9	27	29	24	33	06
7/9-8/9	12	52	41	17	31	24	41	42	41	63
8/9-9/10	38	68	46	41	21	24	55	28	33	44
9/10-10/11	55	12	30	27	18	42	11	11)	52	35
10/11-11/12	12	70	26	07	21	12	44	3.2	32	14
21/12-22/13	46	20	98	26	39	18	12	20	18	23
12/13-13/14	18	49	11	08	41	23	21.	24	05	36
13/14=14/15	09	18	1.6	13	15	15	19	42	31	31
14/15-15/16	36	27	20	72	24	18	14	32	29	80
15/16-16/17	27	06	17	44	09	12	24	1.6	33	29
16/17-17/18	12	29	25	21	32	25.	58	22	39	11
17/18-18/19	38	13	15	28	51	57	10	42	19	08
18/19-19/20	16	07	12	36	17	17	08	48	10	29
29/20-30/21	31	16	16	39	33	26	23	25	13	25
Means	29,7	29,7	22,5	27,8	24,4	26,9	28,5	26,5	27. 3	27,8

$\epsilon_{x / y / z}-$ standard deviations in x, y or $z \quad\left(\delta_{x / y / z}=\sqrt{\left(5 v_{z}^{2}+\sum v_{y}^{3}+\sum v_{z}^{2} /(3 n-3)\right.}\right.$ where n is the number of model junctions).

4.2.A.2 Transizormation of the $\operatorname{str} 1 \mathrm{p}$ and Strip Adjustmant

The progren used to trangform and adjust gtrips was used without modification to adjust the planinatay and helght separately of the ITC block. Each strip was controlleć by twelve control points Afstributed as shown in Figure 4,2.4.2.1. The results of the strip

I.T.C. BLOCK CONTROL CONFIGURATION strip adjustment

adjustment are compared in Table 5.2 .4 .2 .1 with those obeained by k Soekngen (1967) who used a third oxaer adjustuent polynomial and twelve control points with a similar distribution to that used by the writer.

Table 4.2.4.2.1
ITc Block. comparison of Results of strip Adjustrient on Different Systems. All Results are in Metras in the Terrain.

$\begin{aligned} & \text { STRIP } \\ & \text { No } \end{aligned}$		H SOEFNGGAN							
		COMTEOL				CEECK			
		0°	0_{y}	Op	-	Δ_{x}	Δ_{y}	Δ_{λ}	a_{z}
	1	1,31	2,03	2,41	2,00	0,98	2,43	2,64	2,24
	2	0,85	3,51	1,73	0,95	0,88	1.13	1,54	1,96
	3	0,80	1,67	1,85	0,72	1,68	1,56	2,30	1,93
	4	0,98	1,20	$1{ }_{1} 55$	0,83	0,88	1,26	1,55	1,89
	5	0,92	0,72	1, 17	0.49	1,17	1,16	1,66	2,04
	6	1,20	1,40	1, B ¢	0,94	1,48	1,34	2,00	3.22
	7	0,48	2,00	2,05	1,00	0.98	1,48	1.79	2,35
	8	0,94	1,13	1,47	0,90	1,29	1,49	1,98	1,60
	9	0,85	1,50	1,73	0,71	1,39	1,68	2,20	1,47
	10	0.65	1,09	1,27	1,12	1,48	1.14	1,88	1,86
Means		0,93	1,48	1,74	0,67	2,25	1,51	1.98	2,08

$O_{y} \delta_{y} \delta_{z}=$ Standard deviations in X, Y and z respectively.
$\theta_{p}-$ standard deviations in planimetry $\left\{\theta_{p}=\sqrt{\Delta_{k}^{2}+\delta_{r}^{x}}\right.$

Hhe repults of the strip adjustment on the WANG 2200 are not as accurate as those obtained by A Soehngen. The sesults obtained here are more congistent with those obtained by if soehngen in a test with the aame control configuration anc secono orfer adjuetment polynomialis.
4.2.4.3 Block Adjugtment Jeing the gitiP as the Agjustanent Unit

The major part of this progran consists of the formation and abosequently the solution of the normal acyuation syater. The uncollapsed normal equation coefficient matrix for a block of ten strips using a chird order conformal polynornial to adjust the planimetry consists of an 80 by 80 matrix which therefore has 64000 elements. Owing to the structure of the normal equation matrix it was possibie to collapse the matrix into an 00 by 25 matrix and solve for the elghty unknown gimultaneousiy in a 24 b byte mempry. Allowance has been made for a solution based on twanty-five plantmetrid control and tie points per atrip or fifty observation equations.

The tests undertaken by H Scehngen (1957) ire compared in Table 4.2.4.3.) , th those undertaken here. H soehngen has ured a peripherit control conetguration with a few internal control points. The control eonfigucation used here and shown in figure 4.1.3.2 2 more evenly dintributed throughout the block.

The bloek adjustment processed on the WANG 2200 was iterated and convergence was achiever after the fifth iteration. The reanlts After each iteration are thown in Table 4.2.4.3.2. Figure 4.2.4.3.1 and Figure 4.2.4.3.2 show the residusi vectors at control and selected check points in planimetry and height respectively fiter block adjustreant.

I.T.C. BLOCK

RESIDURL VECTORS IN PLANIMETRY AT CHECK POINTS block mojustment using the strip as the qdoustment unit

cheok polnt	

I.T.C. BLOCK

RESIDUAL VECTORS IN HEIGHT AT CHECK POINTS
block adjustment using the strip as the adrustuent unit

EIGURE 4.2.4.3.2

Table 4.2.4.3.1 IRC glock. Comparison of Rlook Adjustments Using strips on Different Systerns, All Restilts are in Metres in the trearain.

$\begin{gathered} \text { STRY } F \\ \text { NO } \end{gathered}$	H SOEFINGEN								
	CONTMOL			2IE			CHECK		
	${ }_{0}$	dy	$0 x$	0_{8}	dy	δ_{2}	Δ_{x}	${ }^{6} y$	6
1	0,77	0,90	*	0,64	0,92	\cdots	1, 16	0,98	\cdots
2	0,58	0,97	-	0.98	0, 62	-	1,00	1. 18	-
3	0,89	0,44	-	0,78	0,80	-	1,57	1,64	-
4	0,74	0,46	-	0,66	0.84	-	0,85	1,33	-
5	0,5\%	0,58	\cdots	0,68	1,02	-	1,29	1,21	-
6	0,63	0,45	-	0,47	1,37	-	1,33	1,36	\cdots
7	1,05	0,36	\cdots	0,63	0,79	-	1,68	1,26	-
8	0,36	0,27	-	0,85	0,83	-	1,39	1,24	-
9	1,1.4	0,47	*	1,22	1,14	\cdots	1,40	5. 28	-
10	0,80	0.91	\cdots	\cdots	-	-	1,20	1,10	
MSn	0,79	0.63	\cdots	0.80	0,97	-	2,23	1,27	-

$\begin{gathered} \text { SRFIE } \\ \text { No } \\ \hline \end{gathered}$	WhNG 2200								
	CONTROL			IIIE			CHECK		
	0_{x}	sy	\square_{2}	6	dy	02	0_{x}	dr	Q2
1	1,4 4	3,79	1,65	1,16	2,78	3,27	1,61	2,14	3,11
2	1,37	0,98	1,27	2, 06	2,59	2,94	1.88	0,80	2,17
3	2,17	1,20	1,78	2,93	1. 90	3,59	2,12	1,63	3,22
4	1,70	1,00	0,58	2,47	1, 37	3,76	1,89	1,63	3,00
5	0,97	0,80	1, 63	2,10	1, 16	0,38	0,96	1,28	2,35
6	1, 29	0,75	1, 05	1,98	2, 31	2,45	1,56	1,19	2,00
7	1,32	1.02	1,30	1,60	2,53	2.75	1,27	1,44	2,50
3	1,93	0,62	1,07	2,38	2,47	2,43	1,74	1,69	1.98
9	1,15	1,45	2,08	2,25	2,12	2,85	1,46	1,66	1,90
10	0,91	1,43	2, 50	0,92	1,97	3,74	1,36	1,23	4,01.
MCD	1,45	1,12	1,33	4,05	2,12	2,87	1,59	1,48	2,62

MoD - Mean Standard Deviation.

Table 4.2.4.3.2 TTC Block. Block Adjustment Results for Five
Iterations. The Results are Given in Metres in the Terrain.

ITGRATION NGABER	δ_{δ} PLAN	δ_{3} HBIGHT
1	1,587	2,128
2	1,588	2,124
3	1,591	2,121
4	1,592	2,139
5	1,593	2,117
6	1,593	2,217

© pian ${ }^{-}$Standard deviation of a single observation of unit weight in planimetry.
$O_{\text {shight }}$ Standard aeviation of a single observation of unit weight in height.
4.2.4.4 Biock Adjustment Uaing the wodel as the Adjustment Unit

The basic computation in this itex, ive adjustment procedure is that of the four parameters of the linear conformsl transformation for the planimetric adjustment and the three coefficients of the helght transformetion for each section in the block each iteration. Therefore, for a block comprising two hundred models there are 1400 unknowns to be silved for ach iteration. Since the numater of iterations required for convergence is approximately equal to the number of models in the block an equivalent of 280 000 unknowns are solved for during the processing of the block adjustment.

H F soehngen (1.967A) adjusted the rrc Block using section units of two or three model.s. The method of adjustment used was the simultaneous solution of all the unknowng of the linear conformal equations using both direct and iterative solutions of the normal equation syatem, whe largeat nornal equation set consisted of one hundred and ninety-six unknowns for a seven strip block comprising forty-nine sections.

The best planinetric adjustrent achfeved by if Scebngen (1967A) was obtained using a Block successive Over-Relaxation method for the solution of the normal equation gystem. The direct solution of the normal equations by the Gausgian elimination method produced comparable results. Table 4.2.4.4.1 compares the results obtained by H Soehrigen using twenty-four ground control points with the iterative adjugtament procegsed on the WaNG 2200 using the control configuration shown in Figuze 4.1.3.2.

Fable 4.2.4.4.1 EmC Elock. Compariscn of Resulte of glock Adjustments Using sections as the Adjuetment Units. All Regults axe in Metres in the Tertain.

SKRTP 10	I SOEFINGEN			GANG 2200		
	CFECK POINTS			CHECK POTNTS		
	A_{x}	S4	O_{2}	08	dy	δ_{z}
1	-	-	-	1,58	1. 53	3,28
2	-	-	-	0,90	0,79	2,49
3	*	-	-	0,86	0.95	2,48
4	1,30	1,08	-	0,83	1,00	2,41
5	1,32	1,15	-	0, 65	0,93	2.42
6	1.23	2.24	-	0,80	0.85	2,01
7	1,08	1,05	-	0,95	0,75	2,14
8	3,25	1. 25	\cdots	0.84	0.69	1.95
9	1×24	1.42	-	1,00	1,15	1,87
10	1,52	1,98	-	2,54	1,64	3,41
Mas	1.28	1, 32		1,00	1.03	2,35

$\phi_{z} \delta_{y} \delta_{z}$ Standard deriations in X, Y and z respectively.
4SD - Mean Standaxd Deviation.

Table 4.2.4.4.2 ITC Block. Results of the Iterative Biook Adjustment Uaing Models After Every Twenty-Five Iterations. All Results are in Metres in the Terxain.

ITERATIOL NO	CONTROL		TTE					
	dx/t	σ_{y}	0.15	O_{2}	Δx	$d y$	O_{p}	d
1	1,71	2,18	2,96	2,20	1,34	1.23	1,82	2,38
25	0,47	0.31	0,70	0,45	0,93	0,98	1,35	2,24
50	0,47	0.25	0.69	0,41	0,96	1,01	I, 39	2,27
75	0.47	0,23	0. 69	0,40	1,00	1,04	1,44	2,31
100	0.47	0,21	0,69	0, 38	1,02	1,06	1,47	2,38
125	0,47	0,20	0,69	0,34	1,03	1,06	1,45	2,42
250	0.47	0,20	0,69	0,37	1,03	1,07	1,48	2,44
175	0.47	0.19	3,69	0,37	1,03	1,07	1,49	2,47
200	0,47	0,19	6, 69	0.37	1,03	1; 07	1. 49	2,49

$\delta_{x} \delta_{y} \delta_{z}-$ standard deviations in X, Y and z respectively.
$\phi_{p}-$ standard deviations in planimetry $i \delta_{p}=\sqrt{\delta_{x}^{2}+\delta_{y}^{2}} \quad$ Je

page 85

grable 4.2.4.4.2 gives the results for two hundred iterations of the block afjustrent on the WANG 2200. Eron this table ig can be geen that convergence in the planimetric adjustment took place scmewhere between iterations 150 and 175, while in the height adjustment convergence occurred between iterations 175 and 200, the resiaual vectors in height and planimetry at control and selected check pointe are shom in Figure 4.2.4.4.2 and pigure 4.2.4.4.2 respectively.

4.3 Analysis of processing Times

One of the critical aspants of large data processing systems on minicomputers is the processing time. The fractical application of miniecmputers to systems such as the one designed here is determined thy this factor. The processing time thas limits the size of the block to be adjusted within the upper limit of the capacity of the minicomputer hardware and determines the type of block adjustment to be weed.

At the time of the development of the analytical aerial triangulation systen on the minicomputer the Why 2200 T was available. The Central procossing पnit (CPO) of this model hes a read/write menory cycle time of 1,6 micro seconds. As was expected and subsequently proved to be true, iterative block adjustments using the nodel or sections of models consisting of more than thirty or forty sections are too slow for implementation on mintcomputers With memory cyole times of more than 200 nanoseconds.

Towarcis the end of the developsant stage of the analytical aerial triangulation system, the wang 2200 VP was released. The Central Processing 0nit of this model is rated at approximately one order faster than that of the Wang 2200 T . Most of the tests processed on the model T were reprocessed on the model VR in order to obtain a comparison of processing times. In addition, it beceme feasible to process the iterative block adjustment usting the two hundred models of the ITC Block which previously had been impossible on the WANG 2200 T owing to the thme reguired to process the block for two hundrec iterations in order to test the convergence rate of the adjustment.

I.T.C. BLOCK

RESIDUAL VECTORS IN PLANIMETRY AT CHECK POINTS block hojustment using the model re the mbjustment linit 200 Iterations

6heck potit		

I.T.C. BLOCK

RESIDURL VECTORS IN HEIGHT AT CHECK POINTS block fdjustment using the model as the mdjustment lintt 200 Iterations

The processing times on the WANG 2200 t and the MANG 2200 VP for the various intermediate phases of the analytical aerial kriangulation systan using the three sets of test data viz. st. Faith's and Furban mest Areas and the InC Block are compared in Table 4.3.1.

Table 4.3.1 Comparison of System Processing Tinea on the wang 2200 T and WaNG 2200 VP Minicomputers.

TEST DATA	Program	CVU Processing Times (Secs)	
		NANG 2200 T	FRanc 2200 VP
st. Faith ${ }^{\text {c }}$	Model Eormation	978	35
Tebt Area	Strip Formation	108	9
12 Models	strip Adjustment	45	6
2 Strigs	Elock Adjustment using Strips	540	45
	Block Adjustment using Models	1350	129
Burban	Model Formation	2280	190
Teat Are3	Strip Formothion	150	1.4
41 Models	Strip Adjustment	45	6
4 strips	BLock Adjustment using strips	1101	92
	Strip Adjustment using Fodels	6840	653
ITC Blook 200 Models 10 Strips	Strip Formation	3183	278
	Strip Adjustrisent	45	6
	Elock Adjustment using Strips	G 133	544
	日loek Adjustment using Models	25322	2678

Strip Adjustment - The tineg guoted in the table are for the least squates golution of the polynomial coeftidienta of a singie strip. giock Aejustment - The times quoted are for ten iterations of the adjustment.

The ITC Block was procesped using the tterative block adjugiment of models on the WANG 2200 vp for two hunarec itarations which toots approximately fifteen hours. The estimated time for a similar adjustrant using the wang 2200 T is approximately one homdred and fifty hours.

Table 4.3.2 details the calculated average processing times based on the results of rable 4.3.1:
a) Per model for tie model and strip formation prograns and for the block acjustrant using the atrip as the adjastrient unit,
b) Per strip for the strip adjustment program, and
c) Per model per iteration for the block adjustment program using the model as the adjustment unit.

Table 4.3.2 Average Processing Time per Model or Strip Jnits

PRORGAM	CFU Processing Time (Seconds)		
	FRANG 2200 T	WRANG	2200 VP
Model Formation	69		5
Strip Formation	10		0.8
Strip Adyustment	45		6
Elock Adjustment using Strips	34		3
Block Adjustment using Modnis	13,5		1,3

The average time of 1,3 seconds per model per iteration for the Slock adjustment using the model as the adjustment anit is approximately ten times slower than a similar adjustment using a large IDM $360 / 50$ or IEM $370 / 145$. T van Difk (1975) estinated the average time per iteration per model for a forty-one model blook to be in the region of 0,1 to 0,2 geconds, using the LRM $360 / 50$ and the IBM 370/145 respectively. The time taken for this adjustment on the WANG 2200 VP miniocmputer is somparable with the processing tiate estimated by J J Therrien (1963) using the $\operatorname{zBM} 1620 / 1$ for the 1terative solution of the simuthaneous adjustment of a one hundred section block. G C Tewinkel (1965) of the Coast and Geodetic Survey eatimated the rigorous adjustment of a biock of two hundred photographs to take about 6,5 hours (or 117 seconds per photograph) using the IEM 7030 (STRETCH) computer and auxiliary disk storage which compares with the time quoted by M Keller (1967). Based on the assumption that the nuber of iterations reguired for convergence is equal to the number of models in the block for the iterative block adjustment using the motel, the processing time of 260 seconcus per model for a two hundred model block is substantially slower than that of most of the large meinframe conputers. However, when equipment and processing costs of
mainframe computers and minicomputers are compared, then minicomputers used for iterative block adjustments of blocks of the order of two hundred models become econonically competitive.

The alternative block adjustment which uses the strip as the adjustment unit has definite practical application particularly to small scale topographical mapping. The main advantage of this adjustment procedure over the iterative edjustment using the nodel is the substantially faster processing speed. This adjustment method hes in the past been favoured by G Schut (1965, 1967) of the National Research Council in Canada because of its ease of application, the low number of control requizements and the economy of processing particularly on small computers. These factors become particularly important when applying minicomputers to analytical photogramnetry. The above results and processing tines substantiate the economic viability and practicability of minicomputers for bients adjugtrent using atrips.

5. Concensions

The study of the application of minicomputers to analytical aerial triangulation described in this dissertation and the results Obtained from processing the data of two test areas and one block of syathetic data on the gystem developed on the wanc 2200 minicomputer make it possible to araw the following conclustions:

1) Resitution of the rodel from meatured plate co-oratnated is efficiently processed on the ninicomputer particularly on the Wang 2200 ve which required sive seconds per model for the solution. However, even using the WANG 2200 , it in possible to process a biock of two hundred moiels in approximately two hundred minutes. If the system were used solely as a front end procedure to a large computer systen for the formation of the independent moiels, it is possible to accomodate a block consisting of 2500 models with a wANG 2200 10 Megabyte disk drive.
2) Strip formation is as equally efficently handled on the minicomputer as the relative orientation and rodel formation process. The results of the strip formation indicate that the semi-rigorous approach is an afequate solution to the problen and provides for quick processing, an haportant factor to be taken into account when using sioner computers.
3) For strips of up to twenty rodels the polynomials used in the gtrip transformation and adjugtment program has provided adequate correction to the strips which is confirmed by the resulte obtained from the two block adjustment procedures, It is possible that the syaten be used up to and including the transformation and oteip adjustment prograns an a front enc procacuure to the large ocmputer in order to trap any incousistencies in the data before processing a large block adjustment on a mainframe computer. Used for this purpose, the minicomputer system would be able to accomasiate very long stripg particularly if each atrip was spooled off the minicomputer disk onto some other medium before processing subsequent titips.
4) Block adjustment on the WANG 2200 t for biocks containing two hundred inodel.s of more must be restricted to the method of
adjustment using strips as the adjustnent mit. It is howevar, conceivabily econonical, even at lifteen touxs for the processing of bleck adjustment using the model as the adjustment unit for blocks of two hundrea models, to use the WrmG 2200 VP . On either the wang 2200 T or Wance 2200 ip the method of block adjustment using the strip as the adjustment unit provides a fast method of block adjustment and yields regults which are suffieiently acourate for topographical mapping purposes,
5) Wich reference to Table $4.2,3.1$ and mable $4,2.3 .2$ which compare the results of block adjustment using the model on the IBM 360 and the whing 2200 , the consistency of the results indicate for these two test areas processed that the WANG 2200 operates with sufficient internal accuracy to ignore accimulation of round-off errors.

In conclusion it must be said that for small photogramnetric companies the application of minicorputers to photogrametry has several economical and practical advantages over batch processing of data on large conputers. These advantages may be enamerated as follows:

1) The minicomputer is simple to operate, with the resuit that the usex does not have to face the problen of becoming involued with oomplex operating systems encountered in bateh processing on large computers.
2) A. will gesigned minicomputer systen which optimizes the interactive features of the minicomputer can aave many costly hours in the data dapture, data editing and init:al processing stagea of the measured data.
3) Reprocessing of individual phases of the aerial triangulation system aubsequent to oorrecting the input data does not suffer from the long delays which are so muck: is part of batch processing syatems.
4) The Inexpensive harämare is gentralijy sobust and therefore doew not require special temprature controllen and dust free conaitlons under which to operate successf:- 1 ly .
5) Interactive programing and aditing facilities provide for rapid and easy development of software systens. It is therefore posstble for the user to aevelop or modify his own syw eri
without the need for costiy, highly skilled personnel.
6) The overali low cost of data processing using the miniccmputer is perhaps the most limpottane argument in favour of rainiconputers applied to analytical nex ial triangulation.
\cdots,

	On Strip Adjustraent witi Polynomials of \＃igher Degree photogrametria，18（4）：130－139
$\begin{gathered} \text { Ackermann, } \mathbb{F} \text {. } \\ 2982 \end{gathered}$	A Procedure for Analytical Strip Adjustment ITC publication，Series $A_{\text {，No }} 17$
$\begin{gathered} \text { Ackermann, F. } \\ 1942 / 64 \end{gathered}$	A Short Discusgion of Mine Developruent of gtrlp and Biock adjuetments during $1960-1964$＂ Photogramaneisia，19（8）；431－435
Ackermann， F ． 1962／64A	A Wethod of Analytical Block Adjugtaent for Heights Photogramametria， 19 （8） 4 457－462
Ackermann，F．，韩ner，耳．and Klein H． 1573	Block 7riangulation with Independent Modela Photogrametric Briginearlitg，39（9）：967－991
$\begin{array}{r} \text { Arer, } \\ 1.962 \end{array}$	Digital Block Adjustment photocyrametric Record，4（19）：34－49
	Gnalytical Aetotriangulation ：mpiplets ana Sub－Blocks photogrampetricie， 21 （6）！ 197 －218
	Recent Developrents in Analytical Aerial Trianyrilation at the orcinance survey Photory 苗metric Recnid，3（14），112－124
${ }_{1966}$	Manual of photogranmetry，3ra ed， 2 vol．s． ASP，Falls Churon，Va．
$\begin{gathered} \text { Bablatge, } \mathrm{C} . \\ 1961 \end{gathered}$	Charles Eablage and his Caiculating Engines－ Selecteđ Wifings by Charles Babliage and Others． Junroácicion by Morcionon P．anc Morsisone En） Dover，Nest York
$\begin{aligned} & \text { Baetrie, } P \cdot L . \\ & I 966 \end{aligned}$	Conformsl Tranaformations in three Dimenstors Photogrametric Engineering， $32(5) ; 816 \mathrm{~m}$ 824
$\begin{gathered} \text { Beliling, } \\ 1966 \end{gathered}$	composea strip sections in Digital Blook Aajustment South African Journal of Photogrammetry，2（4）： $262-27 I$
$\begin{gathered} \text { झervoets, S.G. } \\ 1.960 \end{gathered}$	Block Adjustment Developitents and Exper iments Cartography，3；123－128
Boniface， P．R．J． 2967	Analytical Triangulation Using a Stereomplotter and Reseau plate Holaers Photogrammetric Record，5（30）：492－497
$\begin{aligned} & \text { Booth, A.D. } \\ & \text { \& Booth, } \mathrm{K} . \mathrm{H} . \mathrm{V} . \\ & 1956 \end{aligned}$	Automatic Digital Calculators Butterworths Scientific Pablications，isendon

$\begin{gathered} \text { Bowden, B.v. } \\ 1971 \end{gathered}$	Faster than Thought (A Symposium on Digital Computing Machines) Extran, London
$\begin{gathered} \text { Brandt, R.S. } \\ 1955 \end{gathered}$	vse of Large capacity Computers in photogrametry Photogrametric Engineering, 21(5): 695-696
$\begin{gathered} \text { Brown, } \mathrm{D} . \\ 2.968 \end{gathered}$	A Unified Lumar Control Network Photogranmetric Enjineering, 2a(12), 1272-1292
Eual, G.M. and Packhan, S. \mathbf{F}.G 1971	$\frac{\text { Tine Sharing_systems }}{\text { McGraw-till, London }}$
$\begin{aligned} & \text { Butler, J.L. } \\ & \text { 1970 } \end{aligned}$	Comparative Criteria for Minicomputers Instrument qechnology, 171, 67-82
$\begin{gathered} \text { Chandor, } \\ 1970 \end{gathered}$	$\frac{\text { A pictionary of ccmputers }}{\text { Renguin Books Ltal. Midaleex }}$
Church, E. $19 \$ 1$	Analytical Computations in Aerlal Photogrammetry Photogrammetric Engineering, 7(4); 212-252
Coury, E.R. 1972	A Practical Guide to Minicomputer Applications TEKE Press, New York, 1972
D'autuane, G. de Masaton 1968	The Perapective Bundle of Rays as the Basic Element in Aerfal mriangulation photogramety 4 a , 23(2)1, 55-56
Davis, R.G. 1965	Analytical Adjustment of Latge mlocks Photogrametric Engineering, 32 (1), $87-97$
Davis, R.G. 1967	Advanced Tpctaniques for the Rigorous analytical Adjuetment of Large Photogramuetric Nets Photogrammetria, 22 (1); 191-205
$\begin{gathered} \text { Doyle, F.J. } \\ 1955 \end{gathered}$	Photogrametric Applications of small Capacity Compaters Photogrametric Engineering, $21(5)$; 685-692
$\begin{gathered} \text { Doyle, F.J. } \\ 1964 \end{gathered}$	Historical Develognents of Analytical Photogrammetry photogrampetric Engineering, 30 (2) 2 $259-265$
Ebner, E. and Mayer, R. 1967	Nunerical Accuracy of Block Adjustment Photogramnatria, 32 (1): $101-109$
$\begin{array}{r} \text { zekhart, D. } \\ 1962 / 64 \end{array}$	The effect of the tase of Analytical Block Adjustant on the Administrative side of the photogrametric work, as Experfenced at the Ministry of Transport and Water Control photogramanatifa, 19(8), 538-540

Eden, J.A. 1967	A New Faat Working Approach to Analytical Photogrammetry photogrammetric pecord, 5(30): 479-491
$\begin{gathered} \text { Elassal, } \\ 1963 \end{gathered}$	Analytical Aecotriangulation at the Univerity of Iminois Photogrametric Engineering, 29(1); 199-206
$\begin{gathered} \text { Riassal; A. A. } \\ 1966 \end{gathered}$	Simuitaneous Multiple Station Anelytieal Triangulation Program Ehotogranmetria, 21(3): 83-94
$\begin{gathered} \text { Faddeeva, V.N. } \\ 1959 \end{gathered}$	Confutational Methoas of Hinear AIgebra Dover ; 1959
```Forsythe,G. and Moler, C.B. 3967```	Computer solution of Linear Algebraic Systens   Prentice-Zall, Englewood Cliffs; New Jersey
$\begin{gathered} \text { Frank, A.E.E } \\ \text { E Manten, A.A. } \\ \text { I969/70 } \end{gathered}$	W. Schermerhorn and His Role in the Developmant of Photogramietry Photogramaetria, 25(1): 41-60
```Gautier, J., O'ponneli, J. and EOW, E. 1973```	The Planinetric Adjustitent of Very Large Elocks of Models : Its Application to Topographical Mapping in canada   Canadian Surveyor, $27(2)$; 99-118
$\begin{gathered} \text { Gracie, } \text { G. } \\ 1967 \end{gathered}$	Analytical Block Mriangulation with Sequential Inaependent Models photogr מूinetrifa, 22(1): 171-180
```Grmenberger, F. & Babcock, D. 1973```	Speaking of Minis   Datamation, $19(7)$; $57-59$
Gruenber ger, F   $\&$ Babcoek, D. 1973A	$\begin{aligned} & \text { Computing with Minicomputers } \\ & \text { Melville, } 1973 \end{aligned}$
Ggchwinct, E. W. 1967	Design of Digital Comptaters Springer-Verlag, New York
$\begin{gathered} \text { Eadiey, } G . \\ 1961 \end{gathered}$	```Etnear Algebra Addison-Wpsley Publiahing Company Inc., Reading, Masmachusettes```
$\begin{gathered} \text { Hartree, } 0 . R . \\ 1946 \end{gathered}$	The ENHAC, an Electronic Computing Machine Nature, $158(4015): \quad 500-506$
$\begin{aligned} & \text { Hartree, D.R. } \\ & 1947 \end{aligned}$	


Hobbs, L.c. $*$ Mchoughlin, R.A. $1974$	Minicompater Survey   7atamation, $20(7)$; 50-61
$\underset{1970}{\text { Eol. } 1 \text { and, }}$	Minicomputer $I / O$ and Peripherals   IEFE Computer Group News, 3; 10-14
$\begin{aligned} & \text { Eollingatale, } \\ & \text { S.H. }{ }_{1965} \end{aligned}$	$\begin{aligned} & \text { Eleotronio Compaters } \\ & \text { Penguin, } 1965 \end{aligned}$
$\begin{gathered} \text { Inghilieri, } \\ 1.964 \end{gathered}$	Scne Experiments on Seni-Analytical Trianguiation photogr ampetria, $19(7), 273-274$
Inghilleri, G. \& Galettc, R. 1967	Further Develoynents of the Method of Aerotriangulation by independent models Photogrametria, 22(1): 13-28
$\begin{aligned} & \text { Jacobs, I.5. } \\ & 1964 \end{aligned}$	Practical Analytical Aerial Triangulation South African Journal of Photogrammetry, 2(2); 118-136
$\begin{gathered} \text { Jaksic, } \mathrm{z} . \\ 1967 \end{gathered}$	Solution of Aerial Triangulation Froblems Using the A.R.C. Analytical Plotter   Photogramaletria, 22(1); 59-71
$\begin{gathered} \text { Jerie, } \mathrm{F}_{0} \mathrm{C} . \\ 1.964 \end{gathered}$	A Simplified Methed of Block Adjuatatent of Helghts Photogranmetria, 19(B) : 450-456
$\begin{gathered} \text { Jerie, E.G. } \\ 1968 \end{gathered}$	Theoretical Height Accuracy of Strip and block Triangulation with and Without Ose of Auxiliary Data photogrannetria, 23(1): 19-44
$\begin{gathered} \text { Kaene1. R.A. } \\ 1970 \end{gathered}$	Minicomputers - A Profile of tonorrow's Component IEES Trans Augio Electroacoust. AO-18; 354-379
Keller, M. Tewinkel, G.c. 1964	Rerotriangulation Strip Adjustment ESSA Technical Report © \& GS, No 23
Eeller, M. \& Tewinkel, G.c. 1965	Aerotriangulation : Mage Co-ordinate Refinement   ESSA trechnical Report c \& GS, No 25
$\begin{aligned} & \text { Heller, M. \& } \\ & \text { Tewinkel, G.C. } \\ & 1966 \end{aligned}$	Space Research in Photograutaetry ESSA technical keport © \& GS; No 32
$\begin{gathered} \text { Keller, } M . \\ 1967 \end{gathered}$	Block Adjustment Operation at Coast and Geodetic Survey   Photogrammetric Engineering, 33 (11): 2.266-1275
$\underset{\text { Reller, } M .}{1967 \mathrm{~A}}$	Three Photo Solution to Analytical Aerotriangulation photogxammetria, 22(1): 117-125


Keller, M. 8 Tewinkel, G.C. 1967	Block Adjustrent Aerotriangulation EsSA Technicai Report $C \&$ GS, NO 35
King: C.W.B. $1967$	A Method of Block Aajustment Photogramsetric Record, 5(29): 381-384
$\begin{gathered} \text { Korn, GaA. } \\ 1973 \end{gathered}$	$\frac{\text { Miniconputers for Engineerg and Scientistg }}{\text { Mosrab- inill, } 1973}$
Kratky, $V$. 1967	On the Solution of Analyltical Aerotriangalation by Weans of an Iterattve Procedure   photogramnetria, 22(1); 1.61-199
$\underset{1970}{\text { Lapidus, }}$	Minicomputers Abroda - What's Available Control Engineering. 77 (21) $166-75$
Light, D. L. 1366	The Orientation Natrix   Photegranuetric Engineeting, 32(3): 434-438
```Mahajan, S.R. & simgh, Y. 1972```	```Comparison of Analytical Relative = Oxfentation Hethods American Society of Elvil Engineers - Surveying and Mapping: 73-86```
Matos, R.A. 1963	Analytical Triangulation with Small or Large Computers Photogr anmetric Bngineering, 29(2)] 263-270
$\begin{gathered} \text { Matos, R.A. } \\ 1971 \end{gathered}$	Multiple-stacion Analytical Triargulation Photogrametric Engineering, 37(2): 173-176
MeNair, A.J. 1955	Medium Capapedty Electronic computers in Photogrammetry photogranmetric Ergineering, 21(5): 692-695
Mcratir, A. J. 1962/64	Triplets : A Baste Unit for Analytical Aerctrianguiation ghotograwnetria, 19(7): 357-380
Mikhail, E.M. 1962	Uge nf yripietis tor Analytical Aerotriangulation Photogramnettic Engineering, 28(4); 625-632
$\begin{gathered} \text { Mithati, } \\ 1964 \end{gathered}$	Shmutaneoun 3-D Txansformations of Higher Degres Photogrenmetric Engineering, 30(4): 588-593
$\underset{1976}{\text { Mikhat1, E.M. }}$	Observations anci Least squares TEP, New York
$\begin{gathered} \text { Morris, } \\ 2970 \end{gathered}$	What to Expect When You Scale Down to a Minicoraputer Control Engineerling, 17 (9); 65-71
Mosasd Allum, M. 1973	A Progran for Analytical Aerial Triangulation Canadian Survevor, $27(4)$: 301-307

Nowicki, A.C. \& Born, C.J. 1960	Independent Stereotriangulation Adjustrents with Eleetronie Computers, Photograminetric Fngineering, 26(4) : 599-604
$\begin{gathered} \text { O'Brien, L.S. } \\ 2964 \end{gathered}$	A Method Engployed by the Canadian Anny for Mapping Axctic Areas with Electronic Computer Assitance Canadian surveyor, 18 (1): 22-33
$\begin{aligned} & \text { Proctor, D.W. } \\ & 1962 \end{aligned}$	The Adjustment of Aerial Triangulation by Electronic Digital Computers Photogranmetric Record, 4 (19) f 24-33
$\begin{gathered} \text { Ralaton, } A, \\ 1971 \end{gathered}$	Introutuction to programaing and computer seience MoGraw-illil, New York
$\begin{gathered} \text { Ral itton, } \\ 1965 \end{gathered}$	$\frac{\text { A First Courge in Numerical gnalysis }}{\text { MoGraw-HIll, }}$
$\begin{gathered} \text { Reid, J.K. } \\ \text { I9\% } \end{gathered}$	Large Sparse fots of Limear Equationa : Proceeaing Acaderic, London
$\begin{array}{r} \text { Roelofs, } \mathrm{R} . \\ 1949 / 50 \end{array}$	Systematic or Accidental Errors photogrametria, 6(1): 69-41
$\begin{array}{r} \text { Roelofa, } \\ 1951 / 52 \end{array}$	Adjustment of Aerian Triangulation by the Metbod of Least \$quarea Photogrametria, 8(4), 232-256
Rosen, S . 1969	Blectronic Computers : A Historical survey Computer Suxpeyd, 2 (2): 7-36
$\begin{aligned} & \text { Sanderson } \\ & \text { E.G. } \\ & 1.973 \end{aligned}$	Interactive Computing in EASIC Butterworths, 1973
Saxema, EnC. $1974 / 75$	Independent Model Triangulation Using Different Txansformations photogrannetria, $30(2): 67-74$
Schnid, H - m . 2954	An Analytical Treatment of the Orientation of a photogrammetric Camera Photogrammetric Engineering, 20(4); 765-781
schaid. H.H. 1956/57	An andyrical Treatmont of the problem of Triangulation by stereophotogranometry Photogranmetria, $23(2) ; 67 m 77$ and $13(3)$: $91-116$
$\begin{aligned} & \text { schania, } \\ & 1959 . \end{aligned}$	```A General Analytical Solution to the Problem of photogrammetry International Archives of photosrammetry, 13(5),1961```
$\begin{array}{r} \text { Schat, } G, \text { F, } \\ 1955 / 56 \end{array}$	Analytical Aarial Triangulation and Comparison Between fit and Instrunental. Aerial Triangulation photogranmetria, $12(4): 311-318$

$\begin{aligned} & \text { Schut, G. } \mathrm{X} . \\ & 1958 / 59 \end{aligned}$	Construction of Orthogonal Matrices and their Application in Analytical photogramatetry Photogramuetria, $15(4)$: 149-162
$\begin{array}{r} \text { schut, G. } \mathrm{H}, \\ 1959 / 60 \end{array}$	Remarks on the Theory of Analytical Aerial Triangulation photogrammetria, 16(-1, 57-66
schut, G. H , 1960/61	On Exact Ilnear Equations for the Computation of the Rotational Elerents of Abgolute Orientation Photogremmetrid. 17 (1), 34-37
schut, G. H . 1961	A Method of Block Adjustment for Horizontal Co-ordinates Canadian Surveyor, $15(7)$) $376-385$
Schut, G.F. 1962	The tuse of polynomitals in Three-Dimensional Adjustment of Triangulated strips Canadian Surveyor, 16(3); 132-136
$\begin{gathered} \text { Schut, G, } \mathrm{H}_{*} \\ 1964 \end{gathered}$	Developant of Programs for strip and Block Adjustment at the National Research Council of Canada photogrametric zngineering $30(2)$; 283-291
Schut, G. \boldsymbol{H}. 1964A	```Practical Methods of Analytical Block Adjustment for Strips, Sections and Models Canadian Surveyor, 18(5); 352-372```
Schut, G.H. 1965	A Hethod of Biock, Adjuatment for Hedghts with Resules obtalfed in the Intenational rest photogramperika, 20 (I)) 35-51
Schut, G.E. 1966	Conformal Transformations and polynorials Photogranmetric zngineering, 32(5); 826-829
Schut, G.H, 1967	Block Adjugtment by polynomial pranstormations Photogrametric Engineering, 33(9); 1042-1053
Sohut, G.H. 1967A	Polynomial Transformation of strips Versus infear Transformation of Models : A Theory and Experiments Photograminetria, 22\{1]; 241-262
Schut, G.H. 3.958	Review of Strip and Block Adjustant During the period 1964 ~ 1967 Photogramaetric Engineering, 34(4); 344-355
Schat, G.E. 196日A	Formation of strips Erom Independent Mođels Photogrametic Engineering, 34(7): 690-695
```Schwacz, B,R., gutishausez, H. & Stiefel, E. 1973```	Numarioal Analysis of Symetric Matrioed Prentice-Hall, 1973
Scimutter, $B$. 1975	Connecting Adjacent Kodels   Photogrammetric Engineering, 41(5); 617-619


```Smith, A.D.N., Miles, M.3. % Ferrall, 2. 1.966```	Analytical Aerial Triangulation Block Adjustroent : The Direct Height Solution Incorporating Tie Strips photogrammetrio Fecord, $5(29)$; 327-348
$\begin{gathered} \text { Soehngen, H.F. } \\ 1967 \end{gathered}$	Strip and Block Aajjustment of the ITC BLock of Synthetic Aerial Tifangulation Strips Civil. Ingineering studieg, Photogrametry Series No 5, University of Illinois
```Scehngen, E.F.; Tung, C.C. & Leonard, J.W. 1967```	Invegtigation of Block Adjustants on the ITC Plotitious Block Being Sections and the Iterative and Direct Solutions of the Normal Equation System Civil Engineering Studies, Photogrammetry geries No 8, tniversity of illinois
$\begin{gathered} \text { Soucek, } \\ 1972 \end{gathered}$	Miniconputers in Data Rrocessing and Simulation Wiley, 1972
$\begin{gathered} \text { Tewinkel, G.C. } \\ 1966 \end{gathered}$	Block Analytic Aerotriangulation Photogranuetrio Engineering, 32(6); 1056-1061
rhompgon, S. ${ }^{\text {rin }}$. 1958/59	An Exact Ifnear solution of the Problem of Absolate Orientation   Photogramatrila, $15(4)$; 163 -179
$\begin{aligned} & \text { Thompson, E.H. } \\ & 1959 \end{aligned}$	A Method for the construction of Orthogenal Matrices登hotogrametric Record, 3(13) : 55-59
$\begin{gathered} \text { Thompson, E.R. } \\ 1.959 \mathrm{~A} \end{gathered}$	A Rational Algebraic Formulation of the Problen of Relative Orientation   Photogr anmetric Record, 3(14): 152-159
$\begin{gathered} \text { Therepson, } \text { E. }^{\text {F. }} \\ 1959 / 60 \end{gathered}$	Some Observations on Aerial Triangulation Photogrampetria, 16(2); 286-190
Thonspson, E.E. 1965	Revelw of Mathods of Independent Model Aerlal Triangulation   Ehotograftatetic Record, $5(26) ; 72-79$
$\begin{gathered} \text { Thompson, E.f. } \\ 1968 \end{gathered}$	The projective mheory of Relative orientation Photcgranmetria, $23(1)$; 67 m 75
$\begin{gathered} \text { Thoapson, E.K. } \\ 1969 \end{gathered}$	$\begin{aligned} & \text { Introduction to the Algebra of Matrices with Some } \\ & \text { Applications } \\ & \text { Adar Ifilger, } \end{aligned}$
Thorepson, E.E. 1956	A Method of Relative orlentation in Anslytical Rerial mriangelation   photegramuetric Record, 2(8):145-150
$\begin{gathered} \text { Therrien, } 1 . J . \\ 1963 \end{gathered}$	A simultaneous Section Adjustoent for small Computers   Canadian Suryeyor, 17(5); 405-4.17


$\begin{gathered} \text { Tienstra, M. } \\ 2.969 \end{gathered}$	Calculation of Orthogonal Matrices ixC publication, Series $A$, 坫 48
van den Hout,	Analytical orientation Methods
c.M.A. $1961$	Boll. di Geod. e Science Affini, 20(3): 418-624
Van den Hout,	The AnBLCCK Method of Planimetric slock
C.M.A.	Adjustrant : Mathematical Foundation and
1966	Organisation of its practical Applications
	Ftotogramatiria. 21 (5); 272-178
Van der Weele,	Adjustment of Aerial Triangulation
A.S.	photogrampetria, in(2): 58-67
1953/54	
Van Dijk,	Transfer Points and Absolute Accuracy in Digital
T.J.M. 1975	Aerial Triangulation   H. Se. Thesis, University of the Witwatersrand,
	Johannesburg, 1975
Vircent, L.w.	Peripheral Equipment for Miniecmputers   A Practical Guide to Minicomputer mpoilications, IEEE
	prassi 57-58
Von Gruber, 0.	Photoqrametry, Collected Eectures and Essays
1930	Jema 1930 (English Edition - Chapman and kall, London 1932)
Wang	Model 2200 Systars Maintenance Mrniga
1975	Wang Laboratorles Inc, Tewkesbury, Massachusettes
Weightman, J.A.	Analytical procedures in Phetogrammetry
1961	Photogrametric Record, 3(18): 483-502
Willims, H.s.	Hybrid Conforrat folynen ills
$\underset{1967}{\text { seiling, }} \text { G.E. }$	Photogrammetrio Engineering, $33(5)$ ) $627 \times 634$
Wlilians, H.S.	A Controlled Investigation of the Metrical
2974	Hequirements and Practical Accuracies of Analytical Photogrammetra
	Ph. D. Thegis, univerayty of the fitwatersrand,
	Johannesburg, 1974
Williane ${ }^{\text {V }}$, A.	Aerctriangulation by the Observation of
© Brazier, H. H . 1964	Independent Models   Photogrametriay 19(7): 275-278
Williams, V.A. f Brazier, 目. H .	The Method of Adjustment of Independent Models on the Hudderafield Test Strip
$1965$	photorgrametric Record, $5(26) ;$ 123-130
WiLSLams, $V$, $A$.	Aerotriangulation by Independent Models :
© Brazier, H.H.	A Comparison with Other Methods
1966	Photogrammetria, 21 (3): $95-99$
2leglex, J,R.	Time Sharing Data procesging systems
1967	Prentice-Hall, Englewood Cliffs

## preporavis A

WANG 2200 MTAICOMPGUZR ANBLYPICAL AERIAL TRIMNGULATITN

PROGRAM LISTINGS


```
10 REY *--- "GTART" --- DATE #. PRDSECT NAN{E ENTRY RHMTINE
CO REH #URITTENH OG/1977 M. AROUCKLLE
```



```
100 ##LECT #1B10
190 LOAD DC F*"IN&UT" 198, E3E
1000 DATA LIDAD DC DPEN T#N, FHHGTGDO1*
IBATA LIDAD DC 脌,N,F\,NS{?,N9% DDD#
1010 PFIHT HEX{030A0A);TAB[S]; "ANALYTTCCAL PHOTLTGRAMA位TRV"
```



```
PPRINT HEX(OAOA);TAS{S};*PRDSECT **NO&
#PRINT TAB(5): "DATE **DO*
```



```
O)
:IF Z&く<"Y* FHWN 1040
1030 GOSUE *9717, 5,1,"PROJECT", ES,0)
:N97=2訪
```



```
IFF 7市स"N" THEN 10G0
:IF Z㗭 `"Y" THEN4 1040
1050 GOSUI'g7(0,5,1,"DATE (DD/AM/L9YY:",10,0)
:D0%=Z专
10E0 DAACKSPACE #1,BEG
: DATA SA&'E WC #1,N,FI,NIU,NG%,DOs
ILOAD DC R"PHDTCBORO
```

10REA
1 SREA PHOTOGRAMFETRY GY星TEM


 64



 E（AMER）＂，＂PHGTOLOS＂，＂INPUTV TEE／CA4ERL＂OT GTATUS＇（SCHUT）＂，＂PHTTULO色＂，＂RETUFN TO WAIN＂＊ENU＂，＂FHOTDQG4＂
100 SELECT LXSK E10
150 cOTO 5000
199RETURN
 IF 25＊0 THEF EO3 ：25025－1

－IF Z5＝0 THEN 203

：PRINT GTR（Z1＊，I，Z5）
E03．LF $27=0$ THEN 204
$\because$ FiPR $2=1$ To 27
IPRINT TABEGG
：HEXT $Z$
I IF Z7＝0 THEN 204
：EMITIOC） 21 \＄
：PRINTT STR！Z1中， 1,271
204FN $26=0$ THEN 199 ：26＝26～1
：PRI标 Hex（ON）
：IF ZE～0 TH IEN 1.99

：PRINT E＇Y（Z ：RETURT
 ：RETUR4
 HOTOROO＂tHEXtEe ：RETURA 4

：RETURN





：工


： 2 es w w
CHPRIAT HEX（OD）；


YFDR $z=1$ YO $z 4+1$
E\＆
sgatg tex


：GOGUB $9 \mathrm{GE}(21,2 \mathrm{Z}+2+3,0)$


＝

： $2=2$～2
：IF $Z=0$ THEN ETE

：PRINT HEX（08eFOB）：
960tT E：7

：FRINT HEX\｛OgREO日）；
：GOTO 217

：IF STR12



：SE ZBくらO THEN E1E
：RETURN
 －工新 $=100$

SCONVERT Z＊TO Z
：IF Z． TRETURN


zgosus is（0）

：EOSUR
：GDTO 1000
ERIPRINT HEX 6.074
：KEVIN Z＊，eet． 210
－scont eal

：EELEET FRINT 005（67）
：PRINT HEX IOBOAOADAOAOAS






－RETURF
4000SELECT PRIHT 005（64）


15REM PJOTDGRAATMETRV BYETEM EDIT ROUTINES
EOREM WRITTEN BYIM M．ARBUCKLE BATEM OEj0日／77
 E． 4
30 DATA＂EDIT PRDJECE NAME，FGCAL LEFMCTH ETC．＂＂PHCTUEOO＂＂EDAT PL


71 BATA＂EDIT CHECK PODNTG＊：＂PHOTOEC4＊，＂EDIT TIE／CNTRL PT QTATUS
 ＊RETURM＇TB WAALN MEHU＊＊＂PHDTOEOY＂
5 OOSELECF DISK BLO
190 GETO 1000
193REYUF？
20entiffr 9 （25，26，27）
：IF Z Z500 THEN 203
： $25=25-1$
IPRINT HEX（030D）
：IF Z5＝0 THEN IMOS
AINYT 1 OA 3 Z1
：PRPINT STR（214，1，त5）
203IF $37=0$ THEN RO4
：FロR Z＝1 TOR 27
：PRENT TAB\｛69）
：AFEXT $Z$
：IF ZT＊O THEN 204

：PRTHYT STRTZ1中，1，Z7）
EOAKF ZG＝0 THEN 159
＊ 7525 26－1
：PRINT HEX（SOD）
：IF Z台 $=0$ THEN 199


：RETUHM

SRETUR
 HDTOB01＊：HEX（EP） ：RETYIF：
207DEFFN：0＂LIST E 1000，9999＊
GRETURN







：PRINT Z1家：
： 29 茄世HEX 100 ）
EI1PRIFT HEX（OD）；


：FDR $\mathbf{Z}=1$ TE $\mathrm{ZA}+1$

：gDTO 21E

：154 Z3s 代EX（40）THEN 214
：GGEUR 9日（Z1，22＋2＋3，0）
；Z35＝ 1 H区（00）
2141F gTr（Z

：IFF Z $=1$ THEN RIE
： $\mathrm{Z}=\mathrm{Z}-\mathrm{F}$
：IF $\mathrm{Z}=0$ THEN 215

：PRINT HEXIO日EEOB！
：G6Tj 217

：PRINT HEXIOGREOR）
：geyta el7


： $2 \times 2 \times 4+1$
ELTHEXT Z



：RETURN
 $: z \$={ }^{*} 0$＂
EIGIF MUM（Z）（Z4 THEN R10
－CCWNVRT 2部
if
IRETUPR
R
ReOIF GFeiz
：TF ZA\＄くら＂1 THEN EIE
16004月 94 （0）
：7anaflex（00）
：G05th sacos
$: 60501000$
ERIPRENT HEX（07）
－KGYiM 2s，2e1， 210
：GOTD Mex

：SELECT PR2NT 005（64）
：PHITAT HÉx（OBOAOAOAOADA）
：PRIF：T TAB（S）：＊＊＊＊＊

Eeaprant TABASI：＂＊
SYETEM LGADING


 ：飾TUf期
1000 EELECT PRZNT OO5：54：
\＆ПН，

# FHTOTロ日G1 <br>  

1010 EEM N＝NO CF OPTIBASS AVAILASLE
： $\mathrm{N}=\mathrm{B}$
（RESTORE
TFGR I＝S TO N
：READ R1 ${ }^{\text {P }}$ R
：PRINT TAB（5）；Y；＊＊R1
：NEXT I

：RESTGRE
：READ R1 ${ }^{\text {，R }}$ 中
1000FRIMT HEX（GA）：＂YDU HAVE EELECTEO＊Q＂；R1＊

IIF 24m＂Y＂THEN 1050
！IF Z＊く＊＊N＂THEN 1040
：00tra 1000
1050GDSUB＂gS（R1＊）
ILIAD DC TRF

คトツTロ日ロロ
$01 / 10 ノ フ ァ ソ 1$
10 REM－－－－＊FHOTOBO2＂．．．．．．．YERSION＝\＆


 6．
70 DATA＂PRYNT N，F1＂，＂PHOTOSOO＂＂PRINT FLATE CIORDJNATEE＂，＂PHOTDS
 ＂＂Рtontazaz＂
71DATA＂PRIANT CHECK PDINTE＂，＂PHOTDEO4＂，FPRINT TIE／CNTRL PT GTATUS


73 DATA＂PRIMT RESIDUALS AT CHECK FOIATE＂，＂PHOTOSO7＂＂PRINT FIMAL
BLDCK CODRDINATES＂，＂PHOTOBDE＂，＂RETURN TO MAZN MENL＂，＂PHDTCBO4＂
1005ELECT DISK B10
19060 TO 1000
199R든갑
20 DDEFFN＇
－IF $25=0$ TW旗 EOT
$: 25=75-1$
：PRINT HEX（O10D）
：IF 25＝0 THEN 205
－INIT（OA）Z．14
：PRINT STR（ZZ東， 1,25 ）
2OJIF $47=0$ THEN 204
$\leq F O R \quad z=1$ TO 27
：PRINT TAB（码）
：N NEXT Z
：IF Z7＝0 THE\＃Z04
：INIT（OC）ZI象
：PRIFT GTR（Z1s，1，ス7）
2041F 26 2 THEN 199
：Z $2=$ Z6－1
：PRINT HEX（OD）
IIF $Z 5=0$ THME 159
－fratr（093zis

－RETURN
 IRETURI

 ：PETEFRN
207DEFFN＇0＂LIET S 1000，9989＂ ：RETURH

210
こと业ができ





： 23 事 $=H E x(00)$


：2\％＝＂
$\rightarrow$ FOR $Z=1$ TO $\quad 24+1$
21EKEYKN STR（Z央，Z，i），213，R20
tcota uia
ELSADD（Z3） 01 ）
－1F Z3末＜
：GOSUB SB（ $z 1,2, z e+z+3,0)$


：STR（Z\＄，Z
：IF $\mathrm{Z}=1$ THEN Ets
：Z＂z－2
：IF $Z=0$ THEN E15

：FFIENT HEX（0azede）；
：6trg 217
2L55TR $\left(Z^{*}, 1,1\right)=H$ HEX（20）
：PRIMT HEXCOBEEO日）：
：6bto el7
ELGPRINT GTRIZs，Z，Il：

$=\mathrm{Z}=\mathrm{Z} 4+1$
217MEXT Z


：IF Ze ¢）THEH 21B
：RETURN



：CONVERT Z\＃TD Z

REOIF STR（Z \＆，$Z, 1$ ）（ （HEXIOF）THEN R12

：COSN日＇94（0）

：gigeus＇g3re：
：cata 1000
EDSRINT HEX（07）
KKYIN Z6，2at， 210
：G019 22
2ETMEFFH＇95（R14）
：BELECT PRINT 005（64）
： FR InT HEX（OSOADACAOAOA）

：PRINT TAE（5）：＊＊＊＂TAB（51）；＂\＃＂



Resprint TABS5：＊＊＊＊＊＊＊＊＊＊
：RETURH
1000SREGCT PRINT OOSTE4）

$$
\begin{gathered}
\because- \\
\cdots \\
\cdots \\
\cdots \\
\because=
\end{gathered}
$$

 ：PRENTM

$\mathrm{S}=10$
－PESTOFE
：MOR I＝1 T0 N


：NEXT I


：READ RIt，Kit
1039PRINT REX（Oa）；＊YOU HAVE SELECTED＊＊＂；RI＊

＊IF Z象的＂Y＂THE\＆ 1050
＂FF Zक $\rangle$＂Nय THEN 1040
：20T0 1000
1050G0sub＂25（R1＊）
：LDAD DC TRS

10R营1
15REM PHDTEGRANHETRV SVETEM PRUGESEING RUUTIMES
COREN LURITTEN BV＝ 11 ．AREUCKLEE DATE
 64
70 DATA＂TRANSFER DATA TG WORK AREAG＂＂ 7 PHDTDOO1＂，＂PLATE CODRDWAAT

75 DATA＂FIODEL FQRMATIOR＂，＂PHOTEAKO＂，＂STRIP FGRMATIDN＊＂PHETQAOI＂
 4＊＂BLOCK ADJUGTMENT（SCHUT）＂，＂PHOTGAO3＂
72 DATA＂RETLHRN TD MAIN MENU＂，＂PHDTDRO4＂
$1005 F^{3} G T$ DIEK R10
15060701000
1gQRETURH


： $\mathrm{z5}=25-1$
：PREMT HEX（d10D）
：IF Z5WC THEN EOG
：INTT（OA）Kid
－FRINT STR（Z1
20，31F 27：THTKM EO4

：PRENT TAB（63）
SAEXT 2
IIF 27＝0 THEN 204


RO41F ZE＝0 THEA 1 名
976xiz．-1
：SRINT HEXCOD
YIF Z5\＃D THEN 1.99
EIHET 6OSIZL．

－䑚ETURN

IRETURTH
 HDTD日03＂：HEX（2as） ：RETUSH
E0\％DEFFN＇0＂LXET $81000.9999^{4}$
：RETUR14
2090）

：Z1 $\$=2$ 2e ．
：ZECiLEN（Z1\％）+1



：PRENT Z．1
123क FHEX （06）
EIJFRYMT HEX（OD）：
：©OBU
をてもま＂

## 円トロナロロ <br> 01ノ10ノフワ 己

：FOR Z Z L TO $\mathrm{Z4+1}$
日1
：COTD E10
2amADD（235，5：
：IF Z，3 $\$$ CHEX（40）THEN ELS 4

： $238=H E X(00)$


IIF Zo1 THEN 212
：$Z=$ 安一至

：StR \｛Z
：PRINT HEX（OBmetat：
GOTO 217

：PRENT MEX（OBEFOB）：
：GETO E17
21GPRINGT STR（Zも；Z，1）；
：IF STR（Z事，Z，i）（3HEX（0））THEN 217
：Z＝Z4＋1
R17NEXT 2


：IF ZBく＞0 THEN 218
IRETMRH
 ：Z ${ }^{\text {q }}={ }^{1010}$

1COHVERT $z$ Tit $z$

：RETURN


1g0mus $94(0)$


$:$ GOTO 1000



：SRLECT PRINT OOSEGA
：PRINT HEX（OFOAOAGAOAGA）
：PRXNT TAE（5）：＊＊＊＊＊



：FRIFT TAB（S）；＊＊＂TAB（S1）；＂\＃n
 ：RETUURN
1000SELECT PRENT OOE（ES 1
 INES＂
：PRLINT

1RESTORE
：FOR $\mathrm{I}=\mathrm{J}$ TD N
IREAD RIq，时


－REATORE 2AZM1
PREAD RX1 1 ，R中
103OPRIHT HEX（OS）：＂YO甘 HAVE SEL ECTED＊＊＂：R1事

：IF Z象＝＂Y＂THEN 1050
：IF Z Z CS＂Fタ＂THEN 1040
：G0TD 1000
1050gasub＇95\｛R1＊
：LOAD DC TR＊



```
 1SREHY FHHOHGGRAMOSETRY SYSTENK
 CORER WfITrTEN EY= N, ANHUCKLE DATE=# OE/OB/77
```



```
 EE
 70 DATA "INPUT ROUTINES*, "PMOTOSOO*, "EDITT RDUTINAES", *PHDTOEOL", "D
 UTFUT ROUTINES", MPHLTOSDE", "PROCESSING RCUUTINES", "PHOTTOGOS"
 100SELEECT DISK EIO
 190G0T0 1000
 1g日RETLSR!
```



```
 IIF 25=$ THEN 203
 :25=25-1
 :PRINT HEx(010D)
 :5F Z5=0 THEFY EOS
 :INITIOAIZ1E
 :FRINTT STR(Z1&,1,25)
 2031F= 27m0 TflEN E04
 #FOR z=1 TO z?
 : PRINT TAB(68)
 HW*:T Z
 OIF ZTHO THEN EOA
 : ENITF(0C)\Z1*
 :PRZNT G5R(Z1推,1,Z7)
 2042F ZG=0 THEN 159
 :Z6=Z6-I
 :PRINY HEX\OOD,
 :IF Z6=0 THEN 15S
 &INIT\0%)Z゙!
 :PRINT STR(Z14,&,Z5)
 &RETUHRM
```



```
 IRETURN
```



```
 TO4O4";(1)X\{EP)
 :R#TURN
2070EFFN*O"LIST S 5000,9993"
 FHETURH
```



```
P10E0S|H 198(z1,ZR,Z3)
 :Z1%=7年悉
```






```
 :PRLAT EI**
```



```
 21IPRINT MFX(OD):
```



```
 :Zあご"
 :F[1R 2*1 T0 24+1
```




```
F|!TOgo4.
0』ノ直かノづ㐘
:IF Z3क<4EX(40) TH&RN E14
:COSNB =90(21,2R+2+3,0)
Z2**=HEX (00)
```




```
 |DF Z*I THENH R1E
 :Z=2-2
 ;IFE Z=0 THEN 2ES
```




```
 ;0070 217
21SSTR(Z事; 2,1)=HEX(20)
 :PRINT HEX(0GEEOS);
 ;G0T0 E17
```




```
 :Z=Z.4+1
2:TNESTYZ
 #IF POS(Z**OOD)=0 THEN RE1
 :gTR{Z#, PDS{Z峟m0D},1}=HEX(R0)
 IIF Zab<<O THEN 218
```




```
:Z哣"0"
```



```
 COUIVERT Z相 TO
```



```
 SRETURN
 2201F STRU*&,Z,i)<>HEX(0F) THEN Ela
```



```
 ODSUS (97(0)
```




```
 :GOTO :000
 2f1PRIMT HEX:07)
 :KEYIN Z$, 221, ELO
 :GDFO EPS:
 EC7DEFFN'S5(R1*)
 :ETELECT PRYIRT 005(E4)
 I PRINT HEX (OSOAOAOAOAGA
```



```
 :PRIAT TAB(5);"&"FTAB(51);***"
 #2EPRINT TAE(5);"** SYSTEMA LOADING
```



```
 #PRINT TAB{5;;**##TAR{51);"##
```



```
 : RETURN
1000SELECT FRXNT 00%(G4)
 :PRINT HEX(03CAOA);TAB{\xi):"DIGITAL PHOTGERAM&NETRY MAIN MENW"
 :PRINT
1010REM NNow+D OT DPTIDINS AYAILAELEF
 5 \
 REGTMRE
 TFOQ T=t TH N
```


## 



ANEXT I.

: FESTEFE E*Z~1
:READ R19,R*
1030RRTNT \{
1040EOSUR $97(2,1,1$,"IS THIS CORRECT (Y/N)": 1,01

:IF Zकくら"N" THEN 1040
:GOTO 1000
1050GOSUB 95 (RLT)
:LOAD DC TR



$\$ 90$ EUTO 1000

 HOTHOOO"; HEx (2를)
4000 PRINT HEX(030AOA); TAE (S); "SETTKNG UP KIME AREAS"


1010 DATA SAVE DC ERD
: DATA SAVE DC OfEEN R 1000, PHHTODDER
:data save de end
:DATA SAVE DC CPEN R 300."FHETTIDO3"
:DATA SAVE DC EMD
:DATA GAVE DC DPEN R 10 , "PHomodoci"
:data gave de enid
:DATA SAVE DC GFEM R to, "pFtotocos"
IDATA BAVE DC END
1020 DATA SAVE DC DPEN F450, "PHKTHEOE"
: data save de end
:DATA SAVE DC EPEN R15, "FADTODO7"
:DATA SAVE DC END
1030 LDATA SAVE RPHDTORE4"


```
 t0 REM --- "FO-DTDODS" ---~ PROGRAM TO TRAHSFER DATA TO WLIRK ARE
 AS
 AO REM WRTTTEN OS/AST7 M. ARDUCILE
```




```
 130 GOTO 1000
```




```
 TOOO1";HEX (2E)
```



```
 1001 DATA LOAD DC DPEN R"FHDTODO."
 #DATA LDAD DC F,F1,N1t3,NS$.E
 IDATA SAVE DA R{4001,LIN,FF, wLS 1,NGS,ND&%
 101.ODATA LGAD DC OPEN R*PHOTODOE"
 \=$000
 $020 #ATA LIFAD DC X% ()
 :IF EN4D THEN LOSO
 EDAFA GAVE DA R(L.IIX\$()
 :GDT0 10E0
IN30 DATA GAVE DA RIL.,LIEND
 DATA LDAD DC OPEN R"FHDTDDOE"
 L=4002
1040 DATA LIAD DC AIO C:
 IFF END THEN 1OSO
```



```
 :GOTO 1040
IOSE DATA SAVE DA RIL,L.3END
 :PATA LDAD DC DPEM R"FHOTODOQ"
 #DATA LDAD DG AE# ()
 :DATTA SAVE DA R{4711,L)AR&(!
 :DATA SAVE DC ZND
1060 DATA LCAD DC OPPN4 R"FHCTDDOS"
 :DATA LOAD DC ABE,
```



```
 :DATA SAVE DC EFHO
107O DATA LLIAD DC OPEAN R"PHOTODOE"
 H2*4201
 10BO DATA LOAD DC f44*()
 :IF END THENN 10.OO
 #DATG SANE DA RIL,L\A4*\
 :GOTD iv*0
1050 DAT゙A SAVE DA RUS,LIEND
 DATA LDAD DG OPEN R"PHUTODGO7*
 :L"&ose
1200 DATA LOAD DC AS*:)
 IIF Erm THEN 115O
 :DATA SAVE DA 友位,WFASW{!
 :GOTD 1100
1110 DATA BAVE DA ROL,L,'ENB
 LLCAD DL: R"PHOTOEOE"
```

```
FHMロT*100
01<10ノつ7
J.
```



```
AL LENGTH，MODELS PER STRIF，PRCLIECT NAME
```




```
190 LQAD DC A IMPUTH \(19 B\) ，EAO
```



```
EOEDEFFH／31＂SAVE DC R（＂；HEX TD100＊：HFX（E2）
1000 PRINT HEXCOSOAOA）ITAR（5）：＂DATA INPUT＂
\(: J=0\)
：DATA LOAR DC TPEM R＊FHOTODNA＊
```



```
1010 GUBUB＇ \(97(5,6,0,11\) ．EHYER THE PRRDECT NAME＂，25，0）
```



```
：IF \(\mathrm{J}=1\) THEN 1040
```



```
\(: \mathrm{H}=\mathrm{Z}\)
iIF J＝1 THEN 1040
1030 GDEAS＊9717．5．0．＂3，FOCAL LENGTH．．．．．．．．．．．．．．．＂， \(5+2001\)
```



```
\(10403=1\)
```



``` （3）
：IF \(\mathrm{Z}=0\) THEN 1050
： 11 NZ
：IDM ZGDTO 1010．1020，1030
```



```
3 PER STRTP
：PRINT
```



```
1060 FOR \(\mathrm{L}=1\) T0
```




```
IIF \(Z<=0\) THEN 1051
：N1 \((1)=\) Z
INEXT 3
```



``` \(:{ }^{301}\)
IF \(\mathrm{Z}=0\) THEN 1090
```




```
：IF Z \(6=0\) THEN 1080
（NI（P1）\(=7\)
：GETE 1070
10907＝0
；FDR Imi 7 N
THFT＋N1（I）
：NEXT \(x\)
IF T T POOD THEN 2000
：DATA LDAD DC GPEN R＂PHOTODO1＂
```



```
16OO LOAD DG RAPHDTOgOD＂
```



$$
\begin{gathered}
\because- \\
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\cdots
\end{gathered}
$$

$$
\begin{aligned}
& \text { РНロTロィ00 0.,10ハフ7 ミ }
\end{aligned}
$$

```
ットC!FC1%O!
 01.^゙20ノブフ
 l
 10 RE%
```

$\qquad$

```INPUT FLLATE COLRDINATES
 ID REM WRITTENN OB/ESY7
 M. ARBUCIKLE
```





```
 *)###****###
```



```
 8Ex PT. NO.
 #####4
 <i
 Yi
 Xi
 MEX PT.
 100sElEGT #1Ba
 190LOAD IC R"INFUT" 199, EPE
```




```
 TOLO1*:HUX\EC)
 1000 DATA LDAD DC OPEN T#!,"PPGOTODO1"
 : DATA LDAD DC 知,N+FI,NL{,NSS,DOS
 :DATA l.SAD DC DPEN F "PHGTODOE"
 : DSKLP END
1005 PRKNT HEX(0301):"SNITCH ON PRINTER"
 :SELEECT PRINT EI5(13E
 :PRIMNT HEX{OCOAGA}
 &y9-INT(166-LEN(14St))/2)
```



```
 : PRINT
```



```
 :PRILHT
 #PRITTT TAB\SG);DO#
 :PRIMT
1002 %NLECT PRINY GOSIGA)
1010 5#0
 :J1.4%="0001*
 i Je%=n0005x
```



```
 1030G0SUS '97(G,6,i, "END 0F BLDCK (Y/N)", 2,0)
 :IF Z$w"Y"\THENT $430
 1040 Ens
 : }\textrm{J}=,\textrm{J}+
 1050 GOSUP 'G7(E,E,1,"PLATE NO,N,6,999M99)
 :P=2
 1060 PACK{(########)
 :PACK!4****: स####)
```



```
 : P1*Z
 10日0 PACKC(#####*)
```




```
 :IF 士く》3 THEN 1500
```




```
 *Paz
```



```
#XI =2%
```




```
 : Y1=Z
```




```
LIM0 EMI+1
 ;IF P=1 THEN 1:EO
 IF P=5 THEN :160
 :IF I=D9 THEN 1151
 {m0Ta 10, f
1151PRINT HEX(01):TTA日(S);"FO HORE SRACE - END MODELm/BLOCK"
 GyTO 4100
1160 IF Jea THiEN $17%
 ; IF P=S THEN 1170
 GAAT COPY AEZ$() TOS AS$()
 :G0TC IOE0
$\0 #AAT GOPY AB%() TO A4#{}
```



```
 #MAT COPYY A4$() TD ABF()
```



```
1190 1=9
```



```
1210 (#NPACK(######)
```




```
 FACK(t)
```








```
 :IF P=1 THEN 1370
 EFFP*S THEN 1370
```



```
 :IF LO$(1)=HEX(0000) THEN 13%30
```



```
1300 J=(K_-1)f1% %+1
```




```
1330 I=I+1
1340 FACK(##**####)A1$(K)FRCHMP
```



```
1360 K=K+1
 :GOTG 1E70
1370 GGESB 15:0
```




```
14CO DATA GAVE DC AL$()
 :IATA GAVE DC E\HD
 :DARCKPPACE 15
1430 GOSLPB 1440
\4%O J=1
 |FF PE=1 THEN 1040
```

```
FM-sDTO&O1
01/10/77
 #IF PRM 5 THEFH 1010
 1430 DATA GAVE DC END
 :LOAD DC R*PHDTBG00*
1440 Ime
 SELECT PRXNT 215t,Me)
 :PRTNT
 :PRINT
 !UNPACK(######)A1#(1)TO P
 :PRINT TABt30:;
 sPRINTUSING GL,"MODEL ND",P
 :PRIMT
 EPRINT TAE(30):
 :PRINTUSINGG Ge
 :PRINT
1450 UNPACK(4#####)A1#(1) TV A
1460 UHPACKt+##*#,*###)STR(AI#(I),4,员) TO E,C.D.E
1470PRXNT TAD{30);
 :PRIMTUEING 80,A,B,C,D,E
1480 IF A=1 THEN 1500
 :IF A=5 THEN 1500
450 I=「+1
 :0070 1450
1500 GELECT PRINT 005664)
 :RETUR\\
1510 J=3
```



```
1530 IF PE=\ THEH 1540
 IIF PR=5 THER 1540
 : J=J+1.
 EGOTC 1520
1540 REFURM
```

$\qquad$

```
PMロTO10#
OxなょOノブ 1
 10 REM -.--- *PHOTOLOE" ---- INFUT STRIP CDANRRL
```







```
 100%%ELECT #SB10
 15OLOAD SC 品 INFUF" 19a, ESE
```



```
 20GDEFFN'31"GAVE DC R (";NEX(RE);"PHCTOLOE";HEX(E2);")";HEX(2a);"FHD
 TOL0R";HEX\E2
2000 BATA LDAD DC DPEN T#1,"FROTHDOL"
 :LATA LOAD DC #L,N,F1,N1 11,H56,DOF
 "DAYA LIAD DC OPEN R mphitTDDO3"
1010 PRINT MEX103O1);"BUITCH ON PRINTER*
 :SEEECT PRINT E15:13㥯)
 #PRINTT HEX (OCOAOAF
 JGGINT(156-LEN(NAN)1/2)
 :PRINT HEX(OE);TAB/391;H9*
 :PRINT
 :PRTNT HEX(OE);TAB;E7!;"STRIP CONTROL"
 :PRINT
 :PRINT TAB(碞);BO%
 :PEINT
1020 SELECT PRINT OOSC64
1030 DATA LEAD DG M14!!
 :IF END THEN 1040
 {妾 =5 51+1
 OGOTO 10G0
1040 3.工{100
 :J15*"0001"
 |52&=0005"
1050 PRINT" HEX{OSOAOA);TAB\S\;"STRIP CONTROL INPUT"
 EPRINT
 :PRINT TAB(5):"INFUT CONTRDL FOR STRIP ND "{JI+1
10GOGDSUP (97{E,5,1,"EGO DS STRIF (Y/N)",2,0)
 :IF z申="Y" THEN
 :\F Z Z#<\"\\" THEN\ 1060
1070 In1
 ;(005:N3 '08(5,5,1)
10GOPRENT HEX(OL);TAB(5);"SPACE FDR ";15-I;" DOINTS"
1090 GO5U# '97(7,6,5,"pT liN.",5,4y9999)
 FP=Z
```



```
 :x9=2
1110605w- '9749,5,1,*Y4",11,595999.593)
 :Y乌=7
2120 COENG '97t10,5,1,"Z1",11,990599.999)
 :29##
```



```
 :M*Z
```



\{190 PACK(+\#\#\#\#\#\#, \#\#\#)

1: $60^{\circ} I * I+1$
:IF $P=1$ THEN 1180
IIF P㤩 THAKN 1180
IIF $I=14$ THEN $1: 70$
-60TD 1080

:GOTM 1050
11日0 DATA GAVE DC AI* ()
-DATA EAVE DC END
:EDBACKGPACE 19
$\mathbf{~} J 1=51+1$
1200 gagun 5 2m0
121060 ra 1050
IERO AATA SAVE DC EAN
:LOAD DC R"PHOTOEOD"
1230 I=1
: 1 = $=11+1$
:SELECT PRIMT 215(1स2)
: PRIENT
:PRIAT
:PRINT TAB(30):

© PRINT
:PRINT FABGOOH:
:PRINTUSING 日E
:PRINT




:PRINTUS筷 $80, A, B, C, D, M$

12s. $\quad \mathbf{x}=\mathrm{x}+\mathrm{t}$
6ロTM 1240

: RETURN


```
 01ノ10バアク
 1
```



```
 IE REM4 WRSTMTE: O9/19777 M, ARBUCKLE
 I5 EELEET PRRNTT 005(64)
```




```
 82% PT, Nta, X1
 100GELECT *1810
 190LOAD DC R R"INFUT* 199, ERE
 COSDEFFN'30"5CRATCH R *;HEX(2E); "PHDTGI03":HEX(2己)
```



```
 HOTOL os"; HEX(EP)
1000 DATA LOAD DO OPENH T#N, "FHOTGDO1"
 :DATA LUAD DC #1,N,F1,N1 (%,N!a, तO%
 :DATA LDAD DC DPEN R "FADTDDOG"
 1010 PRINT HEX(0301); "GWITCH [HN PRENTER*
```



```
 :PRINT HEX <0COAOA)
```



```
 :PRINT HEX(OE);TAE (TG);NGS
 :PRINT
 :PRINT HEX(OE);TAB(E3);"RLNOCK CONTRRLL (AMFR)"
 :PRINT
 #PRYNT TAB(5S);DO#
 IPRINT
1020 SELECT FRINT OOS(64)
1040 J,工1=0
 : 51&="0001"
 :Ј索唽0005"
 1050 PGINT" HEXIOS0AOA);TAE(5);"Em(HEK CLNTROL. INPUT"
1070 I=1
10BOPRTNY HEX(01);TAB(5); "gPaCE FOR ":*O-I;" FOXNTS"
```



```
 #FEZ
```



```
 4\9%2
1110GOSU祭'97(9,6,1,'V1',11,m90990.899)
 :Y%=2
1400.908年 '97{10,6.1:"21*,51,599595.999)
 :Z9##
```




```
1160 I=I+1
 :IF F}=1\mathrm{ THEN 1:100
 :IF F=5 THEN 1180
 :2, x=30 THEN 1&70
 :EDTD 1080
1:70PRINT HEX(O1):TAG(5); "ND MRRE ERACEE - END IN&PUT"
 :GOTD 1090
1380 DATA SAVE DC A1% (?
 :DATA EAVE DC END
1m0t goblum tego
12%OLOAD DC RR"FHOTDAOO*
1030 I=1
```

: I $1=11+1$
1
: PRINT
: FRINT
: FRINT TAB(30): PRINTUSTMG
: PRINT


12SOPRINT TAB(BO):
:PRINTUSING BO, $A, B, C, D$
1270 IF $A=1$ THEN 1290
:IF A=5 THER 1290
$1280 \quad I=1+1$
:GOTO 1240
1250 GELECT PRIMT 005(64)
I RETURN


```
40 REM --.- "PHMTOIOS" IHPITT BLDCN TIE/CNTRL. PT STATUS {AME
 R)
```



```
 M. Argucki.E
15 Emelect PRON&T O05(454)
```





```
gex PT, NO.
#**年籼埌
1005EEECT $1810
19QLDAD DC R"IF护UTN 196, こ3R
```




```
 TD105*;HEX(己䍃)
5000 DATA LOAD DC IFEN T#, "PHOTQUQ1"
 #GATA LDAD DC %L,N,FL,N&!,NSM,DO$
 #DATA LDAD DC DPEFR R "FHDTGDDOS"
1010" PRIKTT HEX{03013:"GUHITCH ON PRINTER"
 IGEIECT PFINT EZ15(132)
 :PRINT HEX (OCOAOA)
```



```
 :PRINT HEX(OE);TAB {.99);NS*
 PRRINT
 :PRINT MEX(OE);TAB(EL);"TIE/CLARMOL PGINT GYATUS"
 EPRINT
 HPRINT TAB(55):D0午
 IPRINT
10EO GELECT PRINT OOS(G4)
10so nekzP END
 #DAACKEPPACE 1
 :DATA LDAD DE A1;!?
 ILF END THEN 1031
 GaTG $040
1091. N1 =0
```



```
 1050 PRINT HEX(GSOAOA);TAB{5):*TבE/ENTRL FT ETATUS*
 : PRINT
 PRINGT TAR{S!;"LAST NBDEL. INPUT - :3\
 :INIIT{OO\AI堷}
1060GDSUS '97{5,5,3,"END DF YNPUT (V/N'*,&,0)
```



```
 :IF Z*<< NN" 3HEN 10ES
10% x=1
 :GOSUE '40(6,d,1)
10日0MRINT HEXX(01);TAB:5);"SPACE FOR ";紹m%" {OUTHTE"
```



```
 :P=Z
1100GDSU日 '97(9,5,1."STATUG*+1,4)
 < X9- Z
```




```
1160 I= I+ 1
 |LF P=4 THEN 1180
 !IF P=S THEN 11BO
```


##  <br> $01 \times 10 \times 7 \rightarrow$ 而

：सF I＝11 THEN 1170

－G0TE 1090
L1．60 DATA SAVE DC Altc
IDATA GAVE DC END
：DIEACKSPACE 19

1200 CDSUB 1830
1210coto 10so
1ZEO DATA SAVE DC END

1230 I＝2
SUNBACK（弗\＃胡\＃\＃）A1中（1）3D J1
：SELECT PRI＊TT E15（2当e）
：PRITMT
：PRINT
；PRCNY JAB\｛ 30 ）：
：PRIHTUSING B ，＂MODEL ND＂：」1
PREINT
：PRENT TAB\｛30）：
：PRINTUSENG 日E
PPRIH：I

1250 UHPACK（\＃\＃）
12E6PRINT TABISO：

1270 IF At1 THEN 1290
：部 $A=5$ THKN 1290
12ep $I=x+1$
－cato 1280
1293 日ELEET PRIFT OO5（54） FEETURH

IE REW GURITTEN OS／1977 M．ARBLCKLE
15 GELFET PRENT 005（64）


日2x FT，AMA．
$11 \quad 21$
1003ELECT \＃1D10



TO104＂
sO09 DATA LDAD DC OFEN TR1，＂PHITGDO：＊

SDATA LDAD DC DPER R＂PHOTUDOS＂

：SELEECT PRXNT 215（63E）
：PRINT MEX（OCOADA）
iJ9＝INTT（ 65 （GEN（N）

：PRITNT

：PREAT
：PRINT TAR（56）；DO事
aPRINT
1020 SELECT PRINT OOSTG4）
$1040 \mathrm{~J}, \mathrm{II}=0$

－J2\＄$={ }^{\circ} 000 \mathrm{~g}^{*}$

1070 I＝1


＋PrzZ

：$\times 9=7$
1150GDSU日 97 （9，6，1，＊Y1＂，11，999999．999）
：Y5 $=2$
1120 GCleve＇97：10，6，i，＂21＂，11，299999．599）
$: 25 * Z$


1150 $I=I+1$
：IF $P=1$ THE 1280

：IFIEDG THEN 1170
－GOTD 1060
1170PRINT HEX
＝6070 1090
$11 B O$ DATA GAVE DC ASS $)$
：DATA SAVE DC EMD
1E00 GUSUR 3E30
1E2GLOAD DC R＂FHAT0日OO＂
1230
：$\sum=1=1$


```
{SELECT PRINT E15(t32)
:PRINT
:PRIMT
:PRINT TAG(30)
:PRINTUSING 昭
:PRINT
 12G0 U|#PAGK(#######)
```



```
 1[60PRINT TAS&30);
 PRINTUSINSE
 1270 IF A=1 THEN {FFg%
 *IF Am5 THUNN 1250
 12s0 I=I+1
 :GCTO \240
 1250 SELECT PRINT 005{6&)
 4 RETURY
```



```
 10 AEM --mm "FHTTOLOG* ---* INPUT RLOEK TME/CHTRL PT ETATUS \ECH
 UT)
 12 REM WRIFTEN 0g/1977 M. ARBUCILE
 15 EELECT FRINT 00今(S4)
```



```
 B0x ###掠##*
 自15 ###**#####
 6即 PT, 10%,
 100%EL5CT #1E10
 190: DAD DC R"INPUT" 19B, ##2,
```




```
 TO106";HEX(己E)
1000 DATA LIDAD DG GFEN TA1,"PHGTTODO1"
 :DATA LDAD DC #1,N,FL,N1{?,N9$,DO$
 :DATA LDAD DC OPEN R "PHOTODOT"
```



```
 :SELECT PRINT 215(1J2)
 :PRINT HEX{OCOMOAS
 ;JSGIMT (66-k.##N(2NP年))/E)
 :FFRINT HEX(OE);TAB(JS)$N招
 : Pf\w%
 :PRENT HEX(QE);TAB{R&):*IIE/GONTROL POLNT STATUS"
 #PRINT YAB(56);DO*
 MPRINT
1020 SELECT FPENT 005(64)
1030 DATA LOAD DC A1%()
 #IF END THENN 1040
 :J1=J5+1
 :G0TO 1020
1040 J,I1=0
 :\1%="0001"
 * 勏$="0005"
LOSO PPIFTT HEX(OSOAOA):TAB{E): "FLE/CNTRLL PT ETATUS"
 :FMRINT
```





```
 :IF
1070 I=&
 ceasum 90(6,6,1)
```





```
 : X9=Z
```




```
1150 ImI+1
 :IF Pa1 THEN 11E0
```



```
 &GOTD 10BD
```




```
1:TOPRINT &GEXIO13;TAE(5);"ND MORE SPACE - EAD STRXP"
 1100 WGTA 1090 DAVE AL*!)
 :DATA SAVE DC END
 :DBACK㮩ACE IS
 :T1=J1+1
1200 60SUS I2G0
1Et0E0TO 1050
1EEO DATA SAVE DC ENND
:LCADD DG R"PHOTDEOO"
```




```
 :ENLECT FPRINT 2A5(23R)
 :PRIKT
 PRI*FT
 :PRINT TAE{30);
 :PRINTUFING G1,"STRIP NG*:IL
 SPRINT
 %PRINT TABIBO);
 PRINTENTNG -
 :PRINT
```



```
12EOPRINT TABtGOS:
 :PRINTUSIN* BO,A,B
```



```
12日0 I=I $1
 :EOTO11840
1RGO SELEGT PRINT 005(E4)
 ; RETUNKN
```

```
PHOraiol 0i/10<7つ 1
```



```
 CT
 20 REM GFITFEN 0日/1977 M, AREUCKLE
```



```
 150 E0rán 1000
```




```
 ##TG107** H2x(EP)
```



```
 1001 BATA LOAD DC DPEA'R "FH\DTGDO1"
```



```
 10.0 DATA EAVE DC EFID
 DATA LDAD DC gPEN & "PHDTODOE#
 DATA SAVE DC EIND
 DATA LOAD DC LPEN f "FHOTODOS"
 DATA SAVE DO INNO
 :DATA LEAD DE DFEN R "PHOTDDOAN
 DATA SAVE DC END
 :DATA LDAD DC DPENN R "PHETODOS"
 :DATA SAVE DC END
1020 DATA LDAD DC GFEN R*PFMOTODOG"
 idATA SAVE DC EN&D
 :DATA LDAD DG OPEN R"PHGTGDDOT*
 :DATA GAVE DC END
 10SO LIADD DE R*PHFTOROO"
```


10 REM－－－＂PHDTOUOO＂－－w－PREGRAM TO EDIT ND DF STRLPS，FDCA 1 LENGTH，MDIPE S PFR STRIP，PROJECT NAME



190 LDAD DC R＂INPUT＂ 199,230

 TDE00＂；HEX（2
1000 PAINT HEX（OBOAOA）；TAE（5）：＂BATA EDIT＂
$; \mathbb{F}=0$
：DATA LDAD DL OPEN R＂PHDTODOA＂ ：DATA LCAD DC M，F1，N1 $\}$ ，NG＊，DOF
1001 PRINT
：READ R

：READ R
：PRIFT TAB（5）；P中：TAB（30）；N
：READ R
：PRINT TAB（5）：RR\＆FTAE（30）；F1
：GOTO 1040


： ATHF 1040
10206050（97（5，G，1，R世，2，99）
$: \mathrm{N}=\mathrm{Z}$
：G070 1040

4040 FEgrone
$: 5 \times 1$

，37
：IF Z＝0 THEN 1050
：P1EZ
：RESTGRE 2
：REAP R
－DN 2GUTU 1010．1020．1030
1050 FRINT HEX（03OA）；TAB（S）：DDATA EDIT＂
：PRINT
：PRIAT TAB（S）；＂ETRUP MO／MODELS PER GTRIP＂
1060FRR I＝1 TG N
：CCNNERT I TO ZROC，（\＃\＃）

：NKMT I
 ， $\mathrm{E}, 10$ ）

10日b cotvert Pi TD Zew，（\＃＊）

TRF $Z<\pi 0$ THEN $20 日 0$
1H1（P1） Z Z
160TO 1070

```
PHMDTロロ0%
01ノ10ノ7% 己
 1080T=0
 :FOPIF## TDN
 TmT+N1:(I
 :NEXT I
 IF T>EOQ THEN 2000
 &DATA LOAD DC DPEN R*FHMTODOF:
 IDATA SHVE DE N,FL,N1才,ND&,DOS
 1100 LOAD DC R'pHCFHEOS*
 2000 PRINT HEXYOSOAOAIITAG{5); NMO OF MONELS EXCEEDS 200 - RE-ENTEER
 DATA"
 AFOR I=1 TD E50
 If担午 I
 :GOTG 10s0
```

10 REM $\qquad$
 $\qquad$ UPDATE FLATE CDOURDENATES ZOREF WRITTEN 05／1977 M．AREUCNE

100SELEECT \＃1B10
190LOAD DC $R^{\prime \prime}$ INFUT＂29月，ese

 HOTDEO1＂；HEXIEP：
300 DEFFH ＇ 200

：PRINT HEX（070707
f FDR I＝1 TO Eseo
：$A=x+2$
INHEXT I
：RETURH
100CPRINT HEXIOIOAOA）；TAD\｛5：PEDIT PLATE CDDRDINATES＂
：FRIENT

：PRENT TAB（5）；${ }^{\circ}$ ．DELKIE A POINT＂
：FPINT TAB（5）：＂3．INGIERT A PGINT＊
：PRENHT TAE（5）；＂4．CHANGE A PEINT＊
：PRINT TAB（S）：＂E，RETURN TE EDIT MENU＂


1050 DATA LDAD DC OFEN FAS，＂FHMTODOE＂
1070 PRYHI HEX（OTOADA）：TAB（E）：＂DATA EDIT＂

：P1 $=$ Z
：IF $Z=0$ THEN 1000

$\{100$ DAFA LDAD DC \＃1，ABC
：IF END THEN 5101
：GOTD 1510
401 gncula re00
：9010 1000

 7 Pa゙wz

1140 IHIT 100 \＆

：AF LOS（1）HEX（0000）7HELM 1160
－G0TO 1170

：FRENT HEX（070707）
：FOR I＊はTD ESOO
；$A=I+2$
MEXTI
：GDTO 112 eg
 ：$I=\{I-1\} / 23+1$



： $\mathrm{FP}^{2} \mathrm{~F}_{1}$

：X1\＃Z

－V1 $=2$

$1 \times 2=2$

： 1 学配


 1
1F330 IF Z
1240 FRINT HEX（OSOAGAOA）
FGDTD 1129
1250 DGACKEPACE 11，1，

FGETO 1004
HEEO DATA LADAD DC［3FEN T非，＂PHOTCDDOS：
1PE1PRINT HEX（G30AOA）TTABiS）＂DATA EDIT＂
 － 1 1＝ 2
－IF $\mathrm{Z}=0$ THEN 1000


： P 븐․․



－GPTD 12990
1293EO5U日＇登OO
FETO 1000


$-\mathrm{Fanz}^{2}$

－De mCkepace 牛I， 1

－GDTS 1000
13IODATA LEAD DC TFEF THL，＂PHCTTDBDR＂


－P1 ${ }^{\circ} \mathrm{Z}$
IF Z＝0 T\％䃘N 1000


TF END THEN 1SBI

：GDTE 1000


：PE＝Z

```
Fッ1DTGFP%1
01人10/*ブァ
```


1350 IHIT（00）LO 0 （）


－60TO 1370
 IPRINT HEX（070707）
：FDR I＝1 TP R500
： $\mathrm{A}=\mathrm{I}$ 4 ？
：NEXT
：GDTO
1350
 ：$x=(3,-1) / 23+1$



：INIT（OO）TBI\＃
： 1 ？$=0$
14.10 FOR II＝9 5030

：工色＝1 +1

1420 NEXT $¥ 1$
1430 3RALASPATE \＃1， 1
IDATA SAVE DC
GOTO 1000

1441PRINT HEX（OJOAOA）；TA日\｛5）：＊EDIT DATA＂

： $\mathrm{P} 1 \times \mathrm{Z}$
：IF $Z=0$ THEN 1000

1450 DATA EDAD DC \＃1，A\＄${ }^{\circ}$
IIF END EHEH 1451
：c0T0 1470
1451GQEUS＇ 200
：GOTD 1000


$:$ PREZ

1450 INIT CDOH20＊（）


YGOTO 2500
1491PRINT HEX APRENF HEX（070707）
$: F O D R=1$ TO 250
：$A=1 \times 2$
：AEEXT I
： 6 GTO 1480
1500 工w25 ：I m（1－1）／23＋1


## 

01 ノ゙ロノアノ
1SEO PRINT＂XI＝＂\＃X1，＂Y1＝＂；Y1，＂XE＝＂；XR，＂YZ＝＂；YZ
1590 INTIT（001B1叓 6
1540 FOR 1151 TO

：NEXT II
：18 $=11+1$
：$=1+1$
1550cosub＇9719，5，1，＂X1＂，10，9959，9999）
：$\times 1 \times 7$

－VAMZ

：xenz
：G6：
：Y2mz

 ：I2\＃12 +1
1550 FDR If：I TO ES

：I2 $=$ If
－NEXT 11
1570 DEACKGPACE \＃1，1

1EDTO 1000
15日0 LOAD DE R＂PHOTEGOL＊

PHOTロFo己 O1イエロノブ 1.
10 REM－－－－＂MHITGROE＂－－－UPDATE STRIP GCRTROL


$1005 E L E C T$ 等1B10
1901DAD DC R＂IFFUT＂158， 202

 HDTBEg2＂；HEX（2e）
SOODEFFN＇POO

：PRINT HEX（070707）
：FOR $\quad \mathrm{I}=1 \mathrm{~TB}$ TS00
：$A=I \neq 2$
：NEXTI
：RETURN
1000PRENT HEX（OSOAOA）；TAR（S）：＂EDXT STRIP CDNTRO：
：PRISTT

：PRINT TAB（5）；＊2．INSERT A POINT＊
UPRINT TAB（S）；＂B．CHANGE A POINT＂
：PRINT TAB（51；＂A．RETUFRN TO EDIT MENU＂
1020GロSUk ta7 $15,6,1$ ，＂ENTTER THE SEL．ECTED NUTRER＊， 1,43
：CON ZGBTE 1310，1440，1050，1590

1070 PRINT HEX（OBOAOA）：TAE（5）；＊DATA EDITH

$\begin{array}{ll}\text { PP1 }=Z \\ : I F & Z=0 \text { THEN } 1000\end{array}$
IIOOFOR $=$ TO \％

：YF ERID THEN 1101
： NEXT 1
：GOTO 11 起
$1101 I=\mathrm{P}_{1}$
：NEXT $\mathbf{I}$
100 mrg 200
：Gcro 1000

$: P \mathrm{P}=\mathrm{Z}$

1140 INIT（DO）LOक！？

：YF LO\＄（1）＝HEX（0000）THEN 1150
：EgTo 1170
116OPRINT FIEXGOGOADA：TTAB（E）：＂PT NO＂\＄PE：＂NOT IN THIS STRX： ：PRONT PEX 1070707
：FOR I\＃1 TD 2500
：AmIte
：NEXT 1
： 4 OTO $\ddagger 1$ ？




## 円НロTロロの＂ <br> 011.0 ・アファ


： $6051 / 197(9,6,1, "$ POENT Na＂， 6,99 gevg
$\mathrm{P}=\mathrm{Z}$

：X az Z

：$Y=Z$
119760ews（97（12，6，1，＂Z＂，10，999639．999）



$: M=Z$


1230 IF Zक $\quad$＂N＂THIEN 1250
$1 E 40$ PRINT HEX（O3OAOADA）
GDTD 1129
teso Disackspace \＃t，
：DATA SAVE DC＊ 1 ，A話引
GOTG 1000
L3IODATA LILAD DC OPEF THI，＂PMOTCDOS＇


$P_{1}=Z$
IF $\mathrm{Z}=0$ THEN 1000
1330 FDR $\mathrm{I}=1$ TV P 1
PDATA MOAD DC \＃1，A\＃（
IF END THEN 13BI
：HEXT I．
－GDTO 1350
15211＝

fonsur rape
$\$ 60 T 0 \pm 000$

1P己动

13ต0 INIT
＝MAT GEARCH AS（\％，$=P \&$ TO LOW（）STEFP EA

 ：PRIMTH HEX（070707）

$: A=I 42$
：NEXT I
：GOTD 1950







IIF ZS（）＂NN＂THEN 12G1


```
01ノ土0ノフ7% 3
 :COTD 1350
```





```
 :I2=0
1410 FOR I1=1 T0 15
```



```
 :I2=5R+1
```



```
1920 NEXT II
1430 DGACKSPACE #1.1
 :DAT'A GAVE DC 非,01*()
 :GOTD 1000
1440DATA LIAD DC EFEN T*I, "FHDTHONOS"
144! FRTNT HES(OGOAOA);TAS(5): "EDZT DAFA"
```



```
 !PI听
 IIF Z*0 THEN 1000
14G0FOR I=1 TO FI
 : mata LISAD DNC ##,A&l?
 IIF END THEFS 14E!
 :NEXT I
 GGOTO 14B0
1461I=F1
 SNEXT I
 :G05UB'e00
 &GロT0 2000
 1480 GOSUB'S7{5,6,1, "AFTEER PT. ND, *,6,999999)
 :P2#Z
```




```
 MMAT SEARC:` A$(%,#P$ TD LO$\) BTEF E4
 IF L0%(1)<>HEX(0000) TH-NEN 1500
1491阬NHT HEX603OAOAS;TAR(S):"MT HO "#PE;" NETT IN THIS STRIR"
 :PRINT HEX(070707)
 :FOR I=1 T0 2500
 :A=I+2
 INEXT I
 *GgT0 1480
```



```
 :IF{I-1)/24+1
```





```
1E30 INIT {00)B1${)
1540 FOR II=1 TOII
 :BM*(II)=&&(II)
```



```
 :IE=\!+1
 :I=2+1
```



```
 :P=Z
```




```
 1551605U3 *97(11,6,1,"Y = *,10.959599.359)
 :Y=Z
```





```
 GOEUE '97(13,6,1,'HCDEL NO",6,999999)
 :M=7
```



```
 |2m[E+!
 1560 FOR II=\ TO 14
```



```
 :IE=#E+1
 \NEXT II
 1570 DBACKSPACE #1,1
 DATA SAVE DC #1*E1#()
 60T0 1000
 1580 LDAD DC R*PHDTD501*
```


2OREM WZITTEN 09／1977 M．Areuckle

100SELECT 1210
190LDAD DE R＂INPUT＂19日，已32

 HDTDE03＂；HEX（2马

：PRRİ4T
：PRINT TAB（5）；＊1．DELETE A POYNT：
：PRINT TAB（5）；＂己．IH5ERT A POINT：
：PRINT TAE（5）；＂3．CHANGE A PDENT：
：PRINT TAE（5）；ne：RETLSAN TD EDIT MENU＂

：aN ZGUTO $1310.1440,1050,1580$
1050 DATA LCAD DC DPEN TH1，＂FHOTODOA＂
：EATA LDAD DC W 1 ，AA（！
1070 PRYNT HEX（OSOAOA）MTABIS1I＂PATA EDIT＂

：PABZ

1140 IMITT 00 扎 O \＆（）

IF LOあ（1）＝FHEX（0000）THEN 11.80
GOTL 1170

：PRINT HEX（070707）
：FGR Iat TC
－$A=1$ 地
：MEXT
3 cato 1129
1170 ra己ssavain（gTR $\mathbf{Y}=(\mathbf{I}-1) / 24+1$



$P=2$
119560548＇97110，6，1，＊X＂，10，999999．9991
$: \mathrm{x}=2$


LEOOFACK（\＃\＃\＃\＃\＃\＃）A（I）FRTM F


We5o DgACKEPACE \＃1，I
－DATA SAVE DE 觪，AF 引
seafo 1000
LB10DATA LGAD DC TPEN THI，＂PHDTODO4＂
\＃DATA LDAD 1c \＃1，Aw

1350GOSUB＇9717，6，1，＂RDINT ND＂，6，959999）
： 9 Cl

## FHCTC3  ？


1360 INIT $1001408(1)$
：MAT SEARCH AF $!$ ，工P＊TB LOW！STEF 24
：IF LOF（1）C＞HEX（0000）THEN 1370
 ：PRINT HEX（070707）
：FOR I＝1 TD ESOD
：AI 48
：NEXT I
：GOTD 1350

－Im（Imi）／24＋



：5F Z家＂＂Y＂THEN 1400
：3F Z象く＞＂N＂THEN 1391
3 COTD 1350
1400GOSUB＇99（5．5，1，1）

：3NI3（00）B1＊（）
： $\mathrm{xP}=0$
1410 FOR $11=1 \quad 7070$


：B1世（İ）＝A（I 1 ）
1480 HEXT It
1430 DBACKGPACE \＃，\＃， 1
：DATA EAVE DC 部，B1 $\$ 12$ ：GOTO 1000

：DATA LDAD DC \＃1，A䗆（）
1441PRRINT HEX（OGOAOA）FTAB（S）＂EDIT DATA＊
1490 G0ETM＇ $97(6,6,1$ ，＂AFTER PT．NO．＂， 6,999999 ） ：PR＝Z

1490 INIT 1001 LOF （）
 ：TF LOS（1）（SHEX（0000）THEN 1500
 ：PRINT HEx （070707）
：FAR Y＝1 TO 2500
－$A=\mathbb{Z} 12$
：NEEXT 1
：tota 14a0

$: \pm=(I-1) /$ 右 $4+1$



1540 FOR $11=1$ TO I

TIEXI

```
Fトリロリロㄹㅇㅗ
```



```
3
```

$: 1=I+1$


$: X=Z$

： V 口 Z


 －I2 $=12+1$
1560 FOR IIAI TO PG

： $12=120+1$
：TYEXY 1
1570 DEACKSPACF \＃1．1
：DATA SAVE DG 倠1，DE\＃
：EGJB 1000
1500 LOAD DC R＂FHOTAEO1＂

## 

10 REA－－－＂PHOTOECY＂－．－－UPDATE CHECK FOINTE EOREM WRITTHEN 09／1577 M，ARBUCKLE

100select tabio
190LOAD DC R＂IMPUT＂198，ase

 HOTbIOq＂：HEX（eas）

：PRINT
：PRRINT TAB（5）：＂き DELLETE A PGINT＂
：PRIMT TABIS1；＂2．IMGEERT A POINT＊
：PRINT TAB（5）：＂3．CHANGE A POINT＊
：FRINT TAB（E）；＂4．RETURM TO EDIT MENU＂

：ON ZEOTO $1310 ; 1440,1050,1580$
LOSO DATA LGAD DC GPEN TH1，＂PMLDTODGE＊ ：DATA LOAD DC 4.1 ，A象（）
1070 PRINT HEX\｛O30AOA）：TAE\｛S！：＂DATA EDIT＂
1129605is＇97t6，6，1，＂PDINT N0＂ 6,99999 ） ：＋\＃Z
1130 9ACK（\＃\＃\＃\＃\＃\＃）FSFROM NEA



：50T0 1.170
11EOPRINT HEX（OJOADA）；TAG\｛5）；＂PT NE＂TPP；＂NLTT IN BLOCK＂
：PRINT HEX（070707
： $\mathrm{FBR} \mathrm{IF}=1$ T0 E 500
：$A=\mathbf{x}+己$
：ज ：Gato 1129
 ：Ix（I－1）／24＋1



：F＝Z
1175gesue＇97110， $5,1, " X "=10,999999.9991$ ： $\mathrm{X}=\mathrm{Z}$
1196ccisub $97111,4,1, " Y "+10.999599 .999)$ － $\mathrm{V}=\mathrm{Z}$

1200PACK（\＃\＃\＃\＃\＃）AA（X）FRLM？


1250 DPACKERACE $\neq 1,1$
：DATA SAVE DC．＊1，A＊ 1
：Gitd 2000
1310 DATA LDAB DC DPEN T＊1，＂PHOTDDO5＂

1311PRINT HEX 10 ODOADA）；TAB：5）：＂DATA ELIT＊＊
1350608UB＇97t7．5．1，＂PDINT NO＂， 6,959599 ） ：PREZ
 1360 ThITT（OUJLOW？


 ：PRINT HEX（070707）

：$A=1$ t a $_{2}$
ANEXT I
－GDTO 1350
 ；$\Sigma=\{$－ 1 ）／ $24+1$





：60T0 1350
1400GOSUA＇98（15，1，1）


：İDa
1410 FDR I1＝1 TG 30

：12゙ロエ＋1

1420 IUEXT 111
1430 DBACKEPACE \＃1，
DATA EAVE DC \＃1，BI（ 1
：Gata 1000
1440DATA LEAD DC EPEN TB1，＂FHOTODUS＂
＝DATA LOAD DC \＃L，A⿻（）

1480 GOSU： 97 （6，6，1，＂AFTER PT，HO，＂， 6,999999 ）
： $\mathrm{Pa}=2$



：IF LOW（1）くらHEX（0000）Thar 1500

：PRINT HEX（0．70707）
：FDR I＝\＆TO 2500
：A＊I＊
：NEXT I
－60TO 1480




1530 INIT $(00$ ） 1 白事 $\{$（


NEXT 2.
：I2 $=1$ I +1

```
PH%TMm%O4
```



```
:I@I+!
```



```
 :P=Z
 *6051f19 '97(10,6,1,"X * * *0.959999.995)
 :X=Z
 1551G05UB '97(11, 6, 1, "Y = "+10,9995959.990)
 :Y=Z
 155RGOSUUG '97(12,6,1,"2Z = *, 10,999999.999)
 1559PACK(######),B1#(ID)FRRM P
```



```
 :I2mご姩
 15G0 FOR H{=1 T0 Rg
```



```
 :IE=12+1
 :迮次 II
 1570 OEACKSPACE ##1,1
 IBATA SAVE DC #1,AIC()
 =00%6 1000
 15%C LOAD DC R"PHOTGBOA"
```

```
PNOTD#OS 0i<10<77y 1
```





19OLDAD DC R＂YNPUT＊13A，ESE



300 DEFFN 500

：PRINT HEX\｛07G707！
：FOR I＝1 TE 2500
$: A=I+m$
： AEXT I
2RETURN
190OPRINT HEX（OJOAOA）；TAB（5）：＂EDIT TIE／CNTRL FT BTATUS＂
：PRINT

：PREFTT TAB（S）；＂ER．INEERT A POIMT＊

：PRINT TAB（5）5＂4．RETURN TD EDIT MEN：

：OK ZGOTO 1310，1440，1050， 2580
1050 OATA LOAD DC GFEN T\＃1．＂PhGotudac＂



1100DATA LIAAD DC＊ $1, A \$()$
：IF END THEN 1101

：IF P1《＞PE THEN 1100
： 50101189
1101EDSUR
1 GOTD 1000

：限政


I150 MAT SEARCH A\＆（），OPS TO LO\＄（）ETEP 41
Ifr Lo
2GOJO $1: 70$

：PRINF MEX（670707）
：FOR IMI TO 2500
： $\mathrm{A}=\mathrm{I}$ 中
SHEXT I

$: I=\{Y-1) /(4 t+1$

1190 PRIMT TME（S）；＂STATUS $={ }^{2} ;$ P 2


115500SUR＇97（10，6，1，＂STATN太＂，1．4） ：X 2 Z
12OOPACK（＊）（4）



L240 FRIMY HEXIOBOADAOA：
＂Fitg 1．
1250 DBACKSPACM \＃1，i ：DATA SAVE DC \＃i，A贵 1 ECDTD 1000
L310DATA LOAD DC OPEN T\＃1，＂PHETODO6＂
1311FRINTT HEX（OSOAOA）：TAS（5）；＂MATA EDIT＂
 ： $\mathrm{p}_{1}=\mathrm{Z}$
＊IF Z $\rightarrow 0$ THEN 2000
1330DATA LLDAD DC \＃\＃，A末（）
SIF END THEN 1831
 ：IF PIく）FE THEN La30
－ $60 T \mathrm{~T}$ 1350
133160518＇z00 ：gota 1000
 ：PE＝Z

13 GO INIT $100 \mathrm{LO}+1)$

：IF L O 中（ 1 ）$\langle 3 H E \times(0000$ J THEN 1370

EPREFI HEX（070707）
：FDR $2=1$ TD E500

ONKXT
：※ロTO 1350
1370 工地
$: L=\{I-1) / 41+1$

1390 PRENT TAPIS）；＊STATUS $m$＊；

\＃2F Z制＂Y＂THEN 1400
：IF Z＊くら婦＂THEN 135上
－EDTM 1350



－IR＝0
1410 FOR $1 \pm$ 雨 12



1420 NEXT HI
1430 M19ACIGPPACE 41,1

：adta 1000
1440DATA LDAD DC OFEN T\＃I，＂PRCTODOE＂
1441PRINTT HEX COJOAOA：；TAE（5）：＂EDIT DATA＂

$:$ PI $=Z$
： $15 \mathrm{Z}=\mathrm{FO}$ THEN 1000
1460 DATA LOAS BC \＄1，A\＄（
：IFF END THEN 14E1

－IF P1〈〉PE THEN 1450
1 607 1460
145160ํํㅂ 200
：GOTO 1000

$: P Z=Z$

1450 INIT（00 1LO ${ }^{\circ}(3)$
：MAT SEARCH A＊（），FP\＄TO ROS（）STEF 41
：IF LO क（t）＜＞HEX（0000）THEN 1500

＊PRINT HEX（070707）
：FFB I $=1$ T0 2500
：AIt？
SNEXT I
： 407 TH 1480

$: I=(1-1) / 41+1$

1520 PRINT TAB（5）：＂STATUS $=$＂；$X$

1540 FER II＝1 TD

：WEXT II
－だざい1＋
： $\mathrm{Im} \mathrm{I}+1$

； $\mathrm{F}^{7}=2$

： $\mathrm{x}=\mathrm{Z}$

 － $12=12+1$
1560 FOR T1\＃1 T0 if
：IE＝IP＋1
：NEXT XI
1570 DBACKSSPACE 1,1
IDATA SAVE DC $42, \mathrm{Bl} \ddagger()$
：160TO 1000
1590 LBAB DC R＂FHOTDEO1＊

## 

 "Fhotrens* UPDATE TIE/CHTRT PT STATUS (SGHUT)*10 REN $\qquad$

1005ELECT W1B10
190LOAD DC R"IAPUT' 198, P 3 E



30GDEFFM 200
:FRINT HEX(DJOAOA);TABIE):"BTRIF ";FI;"NDT IN BLOCK RE-EMTER"
:PRENT HEX(a70707)
:FDR IT1 TR 2500
$: A=1+{ }^{2}$
INEXY I

- RETURM

1000PRIMT HEX (OSOAGA);TAB(5): "EDIT TIEJCNTRL PT STATUS" : PRINT
:FRINT TAB(E):"I. DJELEEE A PGIINT"
PPRINT TAE(S):"E. INKERT A PDINT*
:FRINT TAB (SI: MB. CHAKGE A POINT:


:DF ZGGTO $1310,1440,1050,1580$

1070 PRIHT HEX(OSOAOA):TAB (5): DATA EDIT"

: FI=X
: YF $Z=0$ THEN 1000
1100FGR Ix1 TGFI
: DATA LQAD DE \#1,A\# ()
IIF END THEN 1102
:NEXT I
: Gyth 1 1 空
110tIFP!
:NEXY I
: ©Ctsub '200
:GOTO 1000

: $\mathrm{PE}=$ Z

1140 INKY(00) Low 6

IIF 40 ( 0 (1) $=$ FHEX(0000) THEN 1.100
: 60to $1: 70$

: PRIVIT HEX1070707:
: FOR I 12 L FT 2500
Ans I te
NEXT 1

$; I=(I-1) / 4+1$

1.50 PRINT TAB(S);*GTATUE $=\mathrm{m}_{\mathrm{T}} \mathrm{X}$



```
 : Roz
```



```
 :x=z
```





```
 IE30 IF Z婁="N" THEN 1E50
 1240 PRENT पEX (030AOAOA)
 :8व7口 112a
 1250 DBACKmpACE #1,1
 :DATA SAVE DC **,A$!)
 :DATA SAVE
 1AIODATA LDAD DC OPEN T#F, "PHOTODOT"
 IGI1PRIHTT HEX(030AOR); TAS{5); "DATA EDIT"
```



```
 :P1=2
 IF Z=0 THEN }100
 1330 FOR I=1 TO FI
 :IATA LOAID DC #1,AS()
 SIF END THEN 13B:
 :NEXT I
 :NSEXT I
 SEBAT, P1
 :NEXT I
 :GgSum '200
 :GOTG 1000
```



```
 :PC=Z
```



```
1360 INIT(00)LOW!
```



```
 :IF LO&(1)<>HEX(0000) THEN 2370
1*G1PRIRTF HEX(OZOAOA);TAB{S);"PT NO *:PE;" NOT IN THYXS ETRIP"
 :PRINT HEX1070707)
 :PGR I*1 TD E500
 :A=I悟
 :NSxT I
 :COTO 12%0
```



```
 :I=(I-1)/4+\
```




```
 :IF Z$*"Y* THEN i400
```



```
 COOTD :350
 140060$4, 98,55,1,1)
```




```
 :42=0
 1410 FOP I1m1 TO 40
```



```
 12*12+1
```



```
01ノ1.0ノ゙グ゙
z
```



```
1420 ! |mxt Il
```



```
:DATA GAVE DC #1,B.14!
GGETE 1000
1440DATA LGAD DC IPGN T#1 "PFHGTGDOT
1441FRINT HEX(OGOAOA);TAB(5);*EDIT DATA"
1450 EDSUP *97(5,6,1:"STRIF NJ. {0 TO END)",N,59)
#P1=\
:IF Z=0 THENN 1000
1440FOR I=1 TO P1
: BATA LDAD DC #1,A#()
EYF END THEN 1AES
MNEXT I
1.4511mPI
:NEXT I
:gOSum '200
EGOTD 1000
140% GOSUE *974G,G,9,"AFTER PT. NO. ",6,999999)
:PP=Z
:PACK(*)######)FFAFRCM 此
1490 INIT(00)LOW()
:MAT EEARCH AS{1,=P& TO LO$() BTEP 4
```



```
1491PRINT HEX(OSQAOA,FTABTS:;"PT NL "{PE%* NET IN THIS STRIP"
:PRINTT HEX:070%07)
:FDR I=& TO ESOO
:A={#己
:%泡\ I
IGOTG 1480
```



```
:I={\-1)/4+1
```





```
1540 FQR I1m& T0 y
##1%{II\####(II)
#NEXT IL
:IN=I&+1
#T=T+1
```



```
:P=Z
:Cogus '97(10,6,1,"ETATU年",1,3)
; X=Z
```



```
:PACR(年#)STR(B1$(IE), 4,1 IFRDM X
:I田目己+1
1560 FOR L1=工 TD 3S
```



```
:I#
:HEXT II
1570 DBACKSPACE #1,士
```



$$
\begin{gathered}
\text { ? } \\
\cdots \\
\cdots \\
\cdots
\end{gathered}
$$

```
РHロTG:00
O土ノ10ノ゙ブ% 1
```


HODELE P PR STRI聿, PRDJECT NAMK
20 REM WRITTEN OB/OS/77 M, ARBUCKLE

B0x
FS

ER\% ETRIP
B3x
3\% NO OF MODELS
日4*
\#\#素

100EnLECT \＃5B10
190GOTD 1000

 TESDO＊：HEX（2E）
1000FRINT HEX（03GAOA）：＂PRINTING THE PROSECT HAME．NO EGF BTRIPS ETC＂ 1010FRIMT HEX（JI）：＂Sturch CN THE FRINTER＂
：BELEECT PRENT 2E5\｛13Z！
－PRWHT HEX（OCOAOA）
ESELECT PRINT 005（64）
©PRILET HEX（01）：TAB（54
：SELECT PRINT E15\｛13E）


：If9＝INT（66－LEN（N9\＄））f2
1030PRIFT HEX（OE）；TAB\｛JS）；NSt
：PREFT
：PRINT TAG（59）；DO
：PRINT
：PRETHTUSLNG BD，N
：PRNㅏT
PPRITHOLSNG 日L，Fは
4 PRIMT
－FPRINTVENG AR
：PRIRTUUSING ES
5
1040FDR $\mathrm{I}=1$ TR N
：PRIFTTUSIHG 日4，I，WA（I）
ANEXI
10SOEFLEGT PRUNT 005（54）
！LOAD DC R＂PHDTORDR＊

## Fサーヅロ＝ <br> 01 ノ10ハブ7 1



100sELECT＊1810，\＃2B10
19060701000

 HDTG30：＂：HEX（2Z）
1000 DATA LOAD DC DPEN T＊＊，＊FHDTODOE＊

：TIATA LDAD DC DPEN T\＆

：GELECT PRINT EIS（132）
：FRINT HEX（OCOAOA）

IPRINT HEX（0EI：TAB（J9）；NE\＆
：PRINT
：PRINT HEX（OE）；TAB（E4）；＂FLATE COORDINATEG＂
：PRINT

：PRINTT
1005 gELECT PRINT OOS（E4）
$1010 \mathrm{~J}=0$
 ：SELECT PRINT 215（13a己）
1.440 I $=2$
©DATA LOAD DC \＃E，AL（ ()


：PRIFAT

：PRENT TAB（50）：
：PRINTUSEMG BL，＂MODEL ND＂，P
EPRINT
：PREINT TAB（30）：
OPRINTUSING EE
：PRINT


1470FRI！ 4 T TAE（30）
APRIATUEINGE DO，A，B，C，D，E
1489 IF $A=1$ THEN 1440
：IF AmS THEN 1440
14영 $I=x+1$
：EEFED 1450
I500 GEELECT PRINT OOS（EA）
GLGAD DC R＂PHDTCQOR＂


1005E1．ECT＊1810
$19060 T 31000$



1000 DATA LEAD DC UPEN T\＃1，＂PHJTCDDLI＊
：DATA LDAD DC \＃1，H，Ft ，WA（1，NS\＄，DOs
＂DATA LDAD DC DIPEN R＂PHGTCDQ：3：
1010 PRINT HEX（CIGR 1：＂SIUSTCH CM PRINTER＂
：PELEECT PRI EIS！（532）
© FRENY HEX COCDADA）


：PRyN
：PRINT HEX（OE）：TAB：ED）；＂ETRIP CDNTRCL＂＊
：PRINT
：PRXNT TAB：56）：DO＊
PPRINT
1011GEELECT PRTHT 005 （54）

：SELECY PRINT 21S（13a）
logodata load dC aito
：KF EHD THEN 1090
1030 Im
：ItPrit1
TPRINT
：PREAT TAB（50）：

：Print
PPRINT TAB／aO）：
：PRIMTUSING 日
：PR2NT
1090 （TPPACK（t）


20EOPRINT TAE（30）

$1070{ }^{\circ} \mathrm{IF} A=1$ ．Then 1020
$1080 \mathrm{I}=\mathrm{I}+1$
－GinTC 1040

JLOAD DC R＂fflTonos＂

## PトFOT：30空

$01 / 10 \times 7$
1
10 REM …－＂PKOTGZOS＂…－DUTPUT TIE／CNTRL PT ETATUS \｛AHER！
10 RA WRITTEN 09／1977，


日e\％所．NG．
＊）
1005ELEET 荣18：50
190 gota 1006



1000 IATA LDAS DC GPEM T\＃L，＂PHOTCIDE1＂

：DATA LDAD DU OPEN R PPHTODOE＂
3010 PRINT HEX（0301）；＂GtaTTCH ON PRIMTER＂
：SELECT FRINT EI5（I； 3 ）
：PFINT HEX（OCOAOA）

：PRINT HEx（0a）：TAB（J9）；NG\％
PRINT
（PRIFT HEX（OE）：TAB\｛2：）：＂TIE／CONTREL POENT ETATUSG＂
：PRINT

：PRINT


：CELEGT PRINT 2A5（1aR）
iompDATA LOAD DC AIs（）
：7F 靱起 THEN 1090
$10301=2$

：PRZINT
：PRINT TAD（50）：
PRINTUSING 自，＂MODEL NO＂：T1
：PRZNT
：PRINT TAB（⿹ㅑ0）：
：FRINTUESING a
：PREAT



PPKNOLKBXNG 日O，A，B
1070．TF A $=1$ THEN 1020



1070 IF AB1 THEN LOEQ
1080 I $=1$
：©DTC 1040
10مOBMEECT MRINT OOSGGF ：LIADO DC R＂FHOTDGOE＊

# 10 REM --..- "FHDTDEOS* -..- OUTPUT DLack COHTRCL <br>  




Be\% PT. .d.
XI Y1
100BELECT *IS10
190 GOTO 1000

 TO303"; MEX (2己)
1000 DATA LCOAD DC DPEN T\#1, "PFHTTDDO1*


$10: 0$ PRNHT HEX 10901 ): "GUTTCCH OH PRINTER"
:SELECT PRINT Ei5\{13E:
: PRINT HEX(DCDACA)

: PRINT WEX(OE) TJAE(Jミ) INB4
:PRINT

:PRINT
: FRTNT TAB 156 ;:D0w
:PRINTH

:PRITH HEX(OSOAOA):TAB(S);"PRZNTING BLDCK CONTRDL"
: GELEET PRXNT 215(13E)
1020 DATA LDAD DC A1\$ ()
SIF 판 THE 1090
$1050 \mathrm{I}=1$
: PR
:PRINTUSIME ge : PRCNT


2050pRINT TAB(30);

1070 IF A A
$2080 \mathrm{IEx+1}$
$: 69701040$
2090BELECT PRINT OOE (G4)
:LOAD DC R"PHDTGBOR-





100 EFLE ET $\# 1810$
1906010

 TO20＂${ }^{2}$ HEXIE2
1020 DATA LCAD DC GPR TH1，＂FHOTODO1＂
 ＂DATA LOAD DC DPEN R＂PFIOTODOS＂
2010 PRINT HEX（0301）＊＊WUTCH CN FWINTER＂ ：SELECT PRINT 215：132） 1 PRINT HEX IOCOADA
 ：PRINT HEX（OE）；TAB（JG）FiN9 IFRIMT
：PRTNTT HEXIOE；；TAB（2す）；＂CHECK FロINTS＂
：PRINT
：PRINT TAP（56）：DOX
：PRRNT
1．011EELECT PRJNTT OOS（E4）


1020 DATA LIOAD DC A1 $\$ 1\}$
2030 ${ }^{\text {AF }} \mathrm{LF}=1 \mathrm{END}$ THEF 1090
$0.080 \mathrm{I}=1$
：PR1HTT TAE1G0）：

：PRINT


10GOPRINT TAB（くり）；


－IF A＝5 THIEN 1020
000 ImI +1
180 TO 1940
10993FLECT PRINT 005（54）
：LGmD DC R＊PHETDBOR＂


```
－1ノさロノ゙フフ
.1.
```


15 RFI ECT PRTNT OOS
15 EEEECT PRINT DOS（E4）



\＃\＃
昭 PT．NO．
gTATUS
100SEEECT＊1日10
190GOTO 1000

 TOOD5＂；（EX（E2）
1000 DATA LDAD DC OPEA THE，＂FPHDTODOL＂



：EEtECT FRINT 2IS（13美）
：PRINT FEXYOCOAOA：


：PRINT HEX：OES；TAE\｛EL ；＂TIEE／CBNTRGL POINT GTATUS＂
：PRITHI
：PRINT TAB（56）；DO\＄
：Fring
1011砛EGT FRINT 005：64）


102ODATA LCAD DC A1＊（）
：IF END THEN 189O
2030 I＊1
： $11=11+1$
：PRINT
：PRINH TAB（SO）：

：PEINT
（PREAT YABG50）：


1050 UNPACK（\＃＊）STR（A1 $=(x), 4,1)$ T0 E


1070 IF AWI THEN 1020
$1080 \quad \mathrm{I} \pm \mathrm{I}+1$
$=00701040$


ほッロ゙ロッ30フ



1

20REM $\square$ ＂PHOTREQ7＂－ RESXDUALS AT CHECK FDTHIS 20REM WRITTEN $07 / 76$ M AREUCKLE


日ox FT．ND，$X Y Y$
$\begin{array}{cccc}Y & Z & V \times & V Y \\ B L Y & & \text { MUDER COORINATES }\end{array}$
$v z$
X

INATE REs．spual．s




100 SELECT＊1E10
190 LDAD DC R＂INPUT＂199，2an
1000 PRIFY HEX（OBOADA）：TAB\｛5）：＂REBIDUALS AT CHECK PUINTFTH＂ ：PRIFTT
：PRIMT TAB（S）；＂4，AMER ADJUSTMENT＂
＂PFITHT TAB\｛SI：＂E．SCJUT ADNUSTMENT＂

：IF $\mathrm{Z}=0$ 7hent 1001
EAN ZGOTC 1002， 1003
$10022=9000$
$: 1 \times 12000$
：gato 1004
1003L－17000
：$M=12000$
1004 DATA LDAD DA RtL．LSCI\＄（）
：IF END THEN 1005
：DATA SAVE DA R（M，H）Clit $)$
：EDTG 1004
1005 DATA SAVE JA R（ti，TH）END
 EDATA LOAD DC OFEN T羍1．＂FAOTCDO1＂ ＝IATA LTDAD DC \＃L，N，FL，N1（1，NSE，DO\＄
1010 EELECT PRIty 215 （13世

：PRINT HEX（OCOE）；TAB（JE）INS\＄
sppizf
：PREMT HEX（OE）；TABTEO）：＊REGITUAKE AT CHECK PGINTS＂
：PRENT
：PRIENT TAB（SG）；DO\％
：PRIEAT
3030 PRINTUSIH 91
：PRIHT HEX（OA）
：PERNTUESAKG 0a
：PRINT HEX（GA）
1050 DATA LOAD DA R（47E1，LSA4\＄（）
：IF END THEH 1840
1070 Mニズア00
： $\mathrm{E}=\mathrm{p}$
：DATA LOAD DA R（4051，L：PSE（）

1080 Ex5 +1

：IF S＝N $\mathrm{H} 1+1$ THEN 1090

```
F!-1DTOEO?
 01ノ10バブ7 2
 :N3=N"+81 (5+1)
 :G0TG 1100
1090:9=N1
 :NB=51 65)
1100 DATA LGAD DA E隹,M)CI旃()
 :IF END THEN 1310
 ; =%=
1110 UFIPACK(䇎####)(C1&(I) TO A
 iIF A=0 THEN LaDO
 :IF A=1 THENN 2100
 :TF A=S THEN lOBO
 :35=0
1f20 INIT10O/LO*(
```



```
1130 IF LO# (1)=HEX(0000) THHN ES00
 K{=2SG*VAL{STR{LO*{1},未,i})+VAL_(GTR(LOW{1),2))
 :K2*(k1-1)/24+1
```



```
 \\6,V6,Z5 m0)
1150 H4-5P2(5)+4000
 :FOR J#1 TO NB
1160 DATA LOAD BA R(N4,NS5)CE&()
1570 TMET(00)LOW()
 ;MAT SEARCH CU#{), =STR{Clg(I),1,3) TO LOW() STEF 24
1100 IF LO& (1)=HEX(0000) THEN L240
```







```
1200 X6=x6+\2
 :VG=YG+V音
 ;76=2G+Z2
 1,15=15+1
1240 N4=:45
 :NEXT J
1250 X=XG/15
 :Y=y%/15
 :2=20/55
1250 V1 =x-x1
 :VE=Y-\\1.
 :Va=z-Z1
 :V4=V4+V1 te
 :V5mvS+VE+e
 :VG=V6+V3&2
 :17*17+1
```



```
 1RSD PRINTUSING EE,A,X,Y,Z,X1,Y1,Z1,V1,VE,VG
 :GOTO 1300
 1290 PNINTUSING SE,A,X,V,Z
1900 I=I+1
 100TD $110
```




1320 PRINT MEX (OMOAOA,


## \％トロナTM゙30日 <br> O1．バロバフフ


EOREM URITTEN 07／76 M．ARBUCKLE


80\％
$y \quad z$
sex
PT．NO．
$\times$

314 \＃\＃\＃\＃）


100 SELECT \＃1910
190 LOAD DC R＂INFUT＂19日， 239
 ：PRINT

；PRINT TAB（5）：＂R．SCHUT ADJUSTRUENT＂

ERN 230TD 2020,1030
10 尝枟 $=9000$ $712=12000$ $:$ COTO 1040
$4030 \mathrm{~L}=17000$ ：Mm 12000
 CIF END THEN 1050
：DATA GAVE DA 只代，M）C15！ ：5070 1040
1050 BATA BAVE DA R（M，AT）ENKD
\＃PRINT HEX（OSOASA）；TAB（5）：＂FINAM CCDRDINATE LIST：
1060 GELEET PRIKT ELETsa己
1070 DATA LDAD DC DPEF4 TH1．＂MHDTODO1＂



：PRIMT
 ：PFRIMT ：PRINT TAB（59）；D04

$1090 \quad 12=12000$
 ：IF HITD THEN 1150
：Inc

：PRIHt
：PRIEVTUSING 日R，A
：PRENT
PRIFTUSIFGG 80
：PRENT
 IIF $A=1$ THEN 1100
IIF $A=5$ THEN 1100



```
 1130 PRINTUGINSE G3, \(A, X 2, Y a, Z 2\)
\[
: E O T 01140
\]
 \(\mathrm{I}=1+1\)
 : GロTロ 1110
 1150 LDAD DC R"PHDTCEOE*
```

```
FHOT0400
```



```
 1
```

10 REM MODEL FORTVATION
1：REFA WFITTEN $10 / 1975$
1 C PRINT HEX（OC）


 $0,2)$

51 SEIECT WAR10


59 SELECT PRINT OOS（E4）
54 FRINT HEXIOSDAOAOAOAOADAOAOA）：TAE\｛10：＊＊MDIEL FGRMA T10护＂
55 gELECT PRINT E1S（192）
$60 \mathrm{NE}=5000$
； $\mathrm{N} 4=6000$
110 Em 1
：19＝1
$155=0.0000001$
INTAT A＝ZEER
：MAT F＝ZER
：MAT AT＝ZER
：MAT AB＝7ER
YMAT AE＝ZERR
ITHAT AI $=2 E R$
iMAT $Y=2$ ER
120 DATA LDAD DA R（4AE，NBIX事（）
：IF END THEN 930
121 $\begin{gathered}\frac{1}{2} \mathrm{Jm7} \\ \mathrm{~J}=0\end{gathered}$


：YF PmS THEN 124
123 JこJ＋1
$: I=I+1$
：60TO 1 2e
1． $\mathrm{E} 4 \mathrm{~N} 1=5-6$
： $\mathrm{N} 2=141+3$

191 Ji＝I－3

$150 \times 2=\times 1 / F i$
$150 \quad \mathrm{VI}=\mathrm{Y} \mathrm{I} / \mathrm{F}$
$170 \times 2=\times$ 尼
180 Yeaye／F 1
1m0 A（31，i）＊1＋Y1＊Ye

2eo A $1.11,4) *-(\times 1-\times 2$


E5O MEXT J
260 MA＇T AI $-T R H(A)$

```
FHOTE\4OO
 01ス10ノフフ
 C70 HAT AP=AI*A
 "#0 MAT AB=INV\(AR)
 200 NAT A4=A3*A1
 300 MAF X=A4*F
 310 MAT X
```



```
 3!50 S(i,1)#0
```



```
 350 E(1,3)=-0.5*)(2,1)
 350 S(E,1)=m0.5*x(A,1)
 ヨフ0 学隹思々=0
 3日0 5(2,3)=0.5#x(1,1)
 390 5(3,1) =0,5* X(2,1)
 400 S(3,2)= =6.55x(1,1)
 410 $(3,3)=0
 4#0 MAT S1=11-5
 430 MAF EC*S*G:
 440 Twe/D1
 450 MAT ER=(T)*EE
 460 MAT R=1]1-5m
 470 MAT R1=TRN(R)
 400 C{1,1%*0
 450 E(1,:)=-X(5,1)
 500 C{1,3)= x(4,1)
 sio e(t, 1)=x(5,1)
 5%C c(2,卫)*0
 5a0 c(2,*)=-1
 $50 C{(B,1)=-X(4,1)
 500 C(%⿻夕丶~(,P)=1
 550 C(G,3)=0
 5'70 MAT D=RI*C
 500 FOR 3at T0 W:
 5&& J1=r-3
```



```
 S00 X1=X1/F1
 610 Y1=Y1/F1
 6(0, 标准作:
 630 Ye=`空/F1
 640 Lilif1)%x杞
 650 L: (1, R)=Y民
 650 Li(1,0)=1
 670 Le{(1, 1}=\{
 6
 690 LE{3.1)=1
 700 FGR J=1 T0 3
 710 T*0
 720 FORK=1 T0 G
 730 T=Y+D(J,K)*LLe(K.d)
 7 4 0 ~ N T E X T ~ K
 750 Ra{{J,& }=T
```



```
 7%0 T=0
 TBO FRR M=1 T0 3
```



```
##GT&&&O
01r10;7%
```

g00 NEXT M
日10 V（JI，d） $2=$
8ta $I y_{3}=I 9+1$



日70 1F ABS（E）（ 50.0001 THEN AEO
080 GOTD 5
990 EDPUF 1030


500 GOTD 110
G／O DATA SAVE DA R才N4，$N S$ IEND
940 N4 $=6000$

：PRINT HEX（OCOE）；YAB\｛J\};NG:
：PRIM

：PRINT
：PRINT TAB（59）：D05
：PRIMT
9421 2 2
！ 5 － 0

；IF ENA THEN 1010

949 PRINFT

：FRIMT

 IIF END THEN 1010




9 90 T＝テッソフ体
$\boldsymbol{i} \boldsymbol{x} \pm \mathbf{I}+1$
1GOTO 950

：PRRTKT
FRRINTUSIKIG 1310，E．
1000 1 $14=145$
＊ $\operatorname{cogrog} 94 \mathrm{E}$
10t 5 EELECT PRXAT 005（G4

$10 \mathrm{ENO} \mathrm{F}=4$ ； $1=0$



```
PHCTMO400
\(01 / 10177\)
```



：IF $\mathrm{p}=\mathrm{E}$ 解


$\frac{1}{1} 110 \mathrm{RE}\{3,1\}=5$
11 D MAT REmRER
$1190 X_{1}=X_{1} / F_{1}$

$1160 \times 4=\times 1$ K
$1 \pm 70 \quad y 4=\mathrm{V} 1 \mathrm{kz}$

1190 V6世． $5 *(\mathrm{Y} 4+\mathrm{V} 5)$

1201 T～T＋Yフt？


：6070 1060

129．RETURH！

$13008$	 		－－非，程段
13015			MODEE Na



E ECAI．E
$1400 \mathrm{~T}=0$
1405 FOR $I=4$ TD N1

14き0 Rヨ（i，1）＝xerfi

$1440 \mathrm{Fa}(3,1)=1$
1450 MAT RE＊R＊R
1460 $\mathrm{K} 1 \times 21 / \mathrm{Fi}$
：Y 1 w $1 /$／F1



1500 Y7＝（Y母－Y5）$/ 2$
$: T-Y+Y 7+2$


15己0 Eaf54－95）／G4
1530 55m 54
：RETURK

```
FHOTC401 01/10/ブY 1
10 REM ---- "PHDTO401* ---\ JUNGTION OF ADJACENY MODELS
11 REMY URITTEN 11/2975 M. ARBUCKLF
ag DATA LOAD DA R+4001,L3)N,F1
```





```
3,1),Ne(3,1),A4(3,3)
7i SELECT PRTNT 00S(E4)
:PEINT HEX 1OJOAOA:%TARIEI: "STEXP FOMMATIDN*
72 SELECT 4$Bio
 IDATA LDAD DC DPEFH T#L, "PHCOTCDDOL"
 :DATA LEAD DC #1, 2,F1,N1!1,NG4,DO*
 :JA=INT (BE-LENHNS我)MS
 7a SELECT PRINT E15(13a)
 :PAINT MEX(OCOE);TAB{JE);NSM
 :PRINT
 :PRINT HEX(OE):TAG(R5):"STRIP FGRMATION"
 :MRINT
 :PRINT TAE(59);DO**
 :PRINT
 90. = =6090
90 INIT (00)X1%()
 \DATA lobd da k(l,Liam!)
 IFFEND TMEN 150
100%1:1
110 UNPACK(#######SA$(I)TTP
```





```
190 IF Fas THEN 140
:IF P#1 THEN 140
: :=3+1
0GOTa 110
140 DATA SAVE DA R(MMM\1$(%)
 :G070 90
150 DATA gAVE DA R(H,M&ENE
160 M,L~7000
170 L=M
```



```
:L1=0
{DATA LIAD DA R(L,M|MIOG)
19=0
150 DIATA LDAD DA RIM,MEIXEも!
 :IF E4D Thim 1340
 :MAT A*ZZER
 :MAT F=ZER
 :MAT AI =ZER
 MMAT AE*ZEF
 :MAT AGEZER
 NAAT A4=2EF
200 V4,v5,V6=0
210 : \=4 4
```

```
#だロロ401 01/土0ハブ%
```




IIF Pi＝1 THEN G3i
：IF P2 55 THEN TOA


：IF L0．




300 IF $I 1=4$ THEN 331
$3: 0$ I．$=I 1+1$
：I＝T +1
16ロ50 240
3a10 $1=2 \div 1$
： $\cos \mathrm{E} 40$
350 11 ㅍI $1-1$
$3 \mathrm{~B}+\mathrm{I} 4$
$350 \mathrm{H}=\mathrm{Xi}_{1}(3)$

$340 \mathrm{HBEZ2}$（3）
$: 144=x 2$（ 3 ）

370 FIRR I\＃1 10 II
$380 \times \mathrm{Xe}(\mathrm{x})=\mathrm{xe}(\mathrm{I})-\mathrm{H} 4$
390 Ye（ 1 ）＝Va（ 1 ）－HS
400 ze $(I)=2 n\{5)-16$
$450 \times 1$（I）$=X 1(I)-H 1$
：Z1（I） ZZ （I）
4EO MEXT,$~$
 ：I9＝I\＆2





6 EO NEXT 1


540 ZE（I）
550 NEXT X

$570 \mathrm{~J}=2 * 1-1$



## РНにTE34OI

6e $A(K, 1) \times 21\{1)+Z Z^{2}(I)$
$66_{0} A\{K, 2\}=0$
640 A（K， 3 ）$=Y($（ 5 ）MYe（I）
$650 \mathrm{~F}(\mathrm{~J}, \mathrm{I})=-(\mathrm{Y} \perp(\mathrm{I})+\mathrm{YR}(\mathrm{I})\}$
$\left.660 \mathrm{~F}_{\{ } \mathrm{K}_{4} 1\right\} \times \times 1$（I） $4 \times \mathrm{Xe}(\mathrm{I})$
670 WEXT I
5日G MAT A1＝TRN（A）
590 MAT AD＝A1＊A
700 MAT ABEA1＊F
710 MAT A4 $=1 \mathrm{HV}(\mathrm{AB}$ ）
720 MAT $\mathrm{X}=\mathrm{MAF} \mathrm{\# AB}$

$750 R\left(2^{2}, 1\right)=E^{*}(x(1,1) * x(2,1)-x(3,1))$








840 MAT $\mathrm{R}=\{T 1\}$ ） R

日G0 FJR Im 1 TO II


900 MAT REmR＊R1


940 NEXT I

：tereノI．
：T3＝T3／Ix
$970 \mathrm{~F} \boldsymbol{7 5 1 / H 3}$
$: 1 \mathrm{HL}=\mathrm{HI}+\mathrm{F} 1$
； $42 \mathrm{~L}=+\mathrm{He}+7 \mathrm{~T}$
 ：UNPACK（\＃\＃\＃\＃\＃）Xes（1）TO Be
990 PRINT ${ }^{\circ}$

：PRINT
：PRINTUSINE 132． ：PRINT
1000 I ta ㄹ
：12ロ0

1020 IF F1＝1 THEN 1250
1030 IF $\mathrm{F} 1=5 \mathrm{E}$ THEN 1250

$1050 \times 3 \mathrm{~F} \times \mathrm{E}-\mathrm{H} 4$ $: 83 * 43-45$

## PHETTC． 4.01 <br> $01 \% 10$ ソブン 4

$: 23=23-H 6$


1080 R 1 （3，1）$=23$ 24．
1090 MAT RE $=$ R 2 RR




 ：IF LOW（1）arfextoono）THEEA 1220



$1150 V 1=\times 3-\times 2$
；$V 2=v 3-v z$
：$V 3=23-72$
3160 PRINTUEING $1520, f 4, \times 3, V Z, 23, \times 2, V 2,2 E, V 1, V 2, V 3$
$1170 \times 3=(x 9+\times 2) * 0.5$


11日0 V4 k V $4+\mathrm{V} 1+\mathrm{C}$
VG＝V5＋VE？
1V6V․ $6+4342$



1210 G070 1240
1E20 PRINTUSING 1320 ， $71, \times 3, Y 3,23$

3240 I\＃I4
： 50701010

1260 DATA SAVE DA R（L，M）X1\＄t）

4PRIVFTT

：PRRNNT
：PRINT
1270 IF PIm5 THEN 1290
12906070470

$1320 \%$ ＋
13E1：
PT NO．





1330x EIGMA X／Y／Z m \＃，\＃\＃\＃MN AT PHOTC SCALE
1340 SELECT PFINTH 005（64）
：PRINT HEX（OS）
LDAD DC ：＂FHOTHBCS＂

 8. STRIF ANJUSTMENT

1:RREM $x$ WRITTEN OE/:976 M. AROUCKLE
15 EELECT PRINT 005(64)

15 SELLECT PRINT Ex (isel: intBta
:DATA LIAD DC IPEM TA1,*PHOTDDD 2 *


14), NE(44), Low (1):





$59 \mathrm{J9}=0$
60 Re=4

:PRINT HEXIOCOE):TAE (S):A9*
:PRINT
:PRANT HEX (OE); TABIESS; "STRIF ADJUSTMENT"
:PRINTT
:PARNT TAKG (59);DOW
PREINT
$62 . \operatorname{LaHODO}$
:L3=4,002
: $54=8000$
69 St

: B(I3) 4.
: $04,14,6440$

: $Z \exists=0$
64 17-Ni (I3)
:MAT A:ZEER
:MAT $\mathrm{F}=$ ZER
:MAT A3=ZER
MMAT $X=Z E R$
651 Blo

:"DR Ie=d To 4
65 18-194
 :H0 (IE) ma


$: 32 \times 5$
69 Sicge
:DATA LoAD DA R(El, geixipl)



## FHETTD4OR <br> ロ1ハォロハフフ 巴

 ：IF LO\＃ 11 ）＝HEX（0000）THEN 79
 ：IG＊（Ki－1）（283＋1

77 Bi（18）心ス
：5e（I8）＝
SS（IB）＝Z

$=\llcorner\times 3 * 27+$ L


71＝5れは（1）
fex Xem


日 $83=51(9)$
ソ－6，
$2 \mathbf{2 3}=53(3)$
84 Unact \｛1
：V1sce（1
：W1＝cali
05 yew



：V＝Ce（3）
110 Gi＊Ut－ME
－ $93=1 d 1 .-4{ }^{2}$

$5 \mathrm{G} 5=\mathrm{Y}+\mathrm{Ve}$
530 67av4－ 83



150 L1 mEgrat（Li）
SS1 Le：～イ 1

270 A
180 815（G4＊FB－GTH H ）ALE
190 B2wG4＊H1－G6＊トた
200 C『G4＊G7－G5＊HE
EOA Clwifc
E10 D1 WA己 $+2+$ Btata＋C4E
2act bermet（A己＊Al＋BE＊B1）




PHETW340』

$01 \times 10 \neq 77$




$300 \mathrm{~A}(1,1)=\mathrm{Xi} 1-\mathrm{x} 2$
310 A $(1,2) \# Y 1-Y 2$

330 A\｛E， 1$\}=\{(3,1)$
$340 \mathrm{~A}(\mathrm{Z}, 2)=\mathrm{R}(3,2)$
350 A（2，3）$=$ R $(3,3)$
350 A（3，13 $=E 1$
$370 \mathrm{~A}(\vec{a}, \mathrm{Q})=E \mathrm{E}$
380 A $(3,3)=E 3$

$400 \mathrm{~F}\left\{\mathrm{E}^{2}, 1\right\}=0$

429 MAT $A B=I N Y(A)$
430 HAT $X=A 3 * F$
440 F口R $1=1$ to 3

490 texT I






530 MAT R4＊R
：MAT ASEZZEAR
：FAT $F=7{ }^{2}$
：HAT $A 己=$ ㄹEER
：MAT AG＝ZER

：MAT A＝ZEER
AMAT REDIM F $\{14,1$ ），$A\{7,14\}, A 5(14,7), A(\{7,7), A 4\{7,7\}, A E(7,1)$
570 FDR $\mathrm{I} 1=1$ T04
$: K=3 * 1 i$
：Iak－e
580 斎（1，i）＝91（1）


581 U7＝01 IIt ）
AY7ace $\{111$ ）
590 MAT V $=R * \times 3$
610 AS（I，i）w－LI＊V（8，1）

E99 AS（ $\{, 4)=4(1,1)$
640 AS（X，5）＝1





```
 E日0 AS (5:6)mi
 690 AS(K,E)"LI*V\1,1)
 700 A5(K,马)=[.*V(T,.1)
 710 AS{K,4)##{3,1)
 7a0 As{K,7)m=1
 750F(5,1)=U0(1,1)+L_1*V(1,1)-UT+U|4
 740 F}(J,1)=10(R,1)+L_1*V(e,1)-V7+V/
 750 F{K,1)=40{3,1)+L&*V(2;1)-w %)w4
 #N拉XT I2
 7EO HAT ATTRN(AS)
 :MAT AED=A*A5
 MAT AS=A*F
 :MAT AM mINVV(AD)
 850 NAT X9=A4*AE
 #60 MAT X: =(-1)* }\times
 B70 R3(1, 1)=1
```



```
 B90 RS(1,2)=-x9(2,1)
 500 RG{(2,1)=\9(1,1)
 910 确(2,䍃)=1
 980 RO{2,3)=-x9{3,2}
 940 R2(2,2)-X9(3,1)
 550 %% (3,3)=1
 SE0 MAT G*RS*R4,
 LEL=L\+x
 900 Uq=444+x9:5,1)
 $90 Y4,N4+X9(%,1)
 2000 244=w44+\times99:7,1)
 1010 REM ATRIP ADNHSTIEAFT BEGINS AT LTHE 1050
```



```
 8)
 1040 MAT A4mZER
 :NAT AR=ZER
 **AT AM=2゙&R
 *MAT EJ=2EF
 :FAFT F2R=ZER
 :\AFT
 MAT 昭=ZER
 HAT BGEZER
 MMAT X =ZER
 MAT XBMZER
 ##ATM F=ZER
 1050 vo (1,1) xaj0(1,1)+U4,
```



```
 1079 N0{%;1; #10(%;1)+544
 1080 I=44(%)
 :I=I+1
 SUNPACK(4######)
 1:100 IF A=1 THEN 1240
```



1290 IB＊1日 +1
＊
1140 CI（IA）$=11$
：Ce（IG）wvi
（cs（xg）＝柆1
：NO（1G）mA


1180 IF BFM THEN 1190
FBDTD 1460
2190 INIT（00）L（0）（）






：Sㄹㄹㄹ（IB）
：5a（5g）$=2$
： 4 170 $\$ 100$
1天4のG，，GEw \％

： $61=G 1+C, 1(31)$
$: G 2=6 \mathrm{C}+\mathrm{JE}(51)$
NNEXT 51
$\because \mathrm{CL=G1/I日}$
1247 FDR $I=1$ TD I日

12年 $\mathrm{X}_{1}=51$（I）
：Y1wse（T）
：Z1\＃5s（I）
1849 W1wCi（I）
：V1＝Ce（I）
thitacin）
：UL＝\｛U1－G1 ）／1000
：V1～（V1－GR）／ 1000
1月30 bogub 2160

$1270 \mathrm{AB}(N 2,3)=\times 5$







1355 1 A3




1400 F（N2，i）$=x(5-141$

```
ットMTO40%
01410<ブフ
6
$410 F(HFs,1)=\5-V1
14巴0 Ea|I,33*1
1430 83(I,E)=\5
1440 日3{I,3)=\4
1450 E3{I,4}=\554Y
1460 E3(\frac{1}{1,5)=\5**85}
```




```
148! NEXT ? T-TRNTAIS)
 :MAT AE-AS*AS
 :MAT AGUINVV(AD)
 :SAAT AS=A5*FF
 #MAT X=A4*AE
1500 PAAT REDIMM AS(E,12),AR(E,G),A4(E,6)
1510 MAT A5=T|N(EG)
 :HAT AE=AS*日G
 :MAT BEmA5FFF
 :MA'T AMFINNV(AE)
 :MAT XOmA4*BG
1790 PRINT TABGS1}F*RLANLMETRIC ANE HEEENT CONTRGL:*
 :PRINT
```




```
5); "VZ"
```




```
1BEO FR,VSIVG#O TO IS
1040 X2 -51(11)
:Y&mSt(It)
:21**S(11)
1日EO LIECL(IL)
:V1=CD(31)
```



```
1060 gasua 2160
```




```
1990 Y5w(x己-41)+24+V5
```



```
1910 VG=(2D-W1) \巳+V6
1920 NEXT II
```






```
1970 V/#SGRTV5*2*Va+2+V5%23
1990FR1HT
```



```
2000 PRINTUSING 2aG0.v%,V7
:PRTNT
HOEO PRINY TAG(ED): "ADJUGTED CIOROINATES"
EFRINT
```



```
MFRIN%T
```

```
#HDTE440E
01/10/77
7
 2050 5-5(I3)
 : 53=0
 2060 1立星
 DATA LDAD DA RTG,8IXI早(
```



```
 :PRINT HEX(OAOA)
```



```
 20G3 FRINT TAB(S);"SECTIDNN ND. ";A
 :PRINTT HEX(OAOA)
```



```
 {IF A=1 THEM 214E
```



```
 E1IO gOSU日 R100
 g120 GLENG REB0
 Z130 PRINTUSING Re70, A,Xe,ye,zE
```




```
 E14% II#II+1
 :60%50005
 8:41 J9-35+1
 :PACK(覀****#)CE%(I2)FRRMM A
```



```
 :GOTO P14E
```




```
 #145 DATA SAVE DA R{(G4,EA)CEEs{}
 :IF 5>#1, THENN 2150
 :FOTM #060
 ELSO PRINT REX(OG)
 : %DTO 63
 #15t EATA SAVE DA R{4051,LINE{)
 :DATA GAVE TA R(34, 54)EIND
 ILOAD nC R"FHFYOgos"
 2150 yas, ,1)m>{
 $170 xa{白,\}=y1
 2180 *3(自,1)##1
 @590 MAT U=F%*3
```



```
 \mathrm{ eata V5m(1*U(2,1)+U0(E,1)}
```




```
 VS=1Yg-0%:/1000
 EEgo"mETURH
```







 5＊45

 $5-38(5,1) 3 * \times 5 \times 55 * \times 5$
Eke1 Xerxet1000＋61
：Y2ㅍY ${ }^{2} 1000+6 E$
NOSO kituma


```
5 gem .---- "PFH0TG403" ..
 -m+m-
 gLDCK ADJUGTMENT BY SCHMT'S METHIDD
 MCDLLE 1
```



```
11 CO& Xi(t00),X2(日0),Q1,GO
12PRINT HEX(OSOAOA):TAB{5):"ELOCK ADJUETMENT**
 :PRINT
 :IF Q1<>0 THFEN 15
 :PRIMFT TAE(S);
 :INPUF "ENTER THE KD OF ITERATIDNG RESULRED",OP
 IF GE<wo THEN IS
 :LF GE>10 THEN 13
 IGOTD $4
#3mRYNT
 **RINT TAB(S);#MIN = 1 ; MAX = 10"
 :FOR I=I TO E5O
 :NEXT I
 gorb 1E
14EELECT PRINT OOS(E4)
 :FRINT HEX(OSQAOAY:TAE{5):"BLOCKN ADUUSTMENT*
15PRINTT
 :PRIPTT TAR(5);"ITERATILDN NOD *;Q1+1
g0 DIM C14(40)24,A1$$140)4, C%(30)24,N1\10), L0$(1)2
EO DATA L.DAD DA R{EOSI LLHFL()
 :J=0
 LE=407%
 4=405己
45 Jwjul
 IDATA LDAD DA R(L,Lu)A1%\)
 IF KNDD THEN ITO
50 I=I+1
 #1#\\& (J)
 :UNPACK(**##**#)A1*!5. TO 户
 IIF %=\ THEN 150
60 DATA LRAN DA R(LL,L1)C=S!
 = EndT C00%LOsw(2)
```



```
90 IF LO${1)mHEX{0000) THEN GO
```





```
120 PACK(*#####)C14(I)FRODMP
```



```
140 EDTG W0
```



```
 BGOTD 35
1%o DATA SAVEE VA R泣E,LeIMNM
 *LDAD DC R*PHGYD413"
```

```
PHロTロ413 0^/1.0ノブ\ 1.
 10 REM --mm "PHOTD413" -.-- ELOCK ADJUSTMENT RY SGHUT'S METHON
 MIDULE E
 ILREM FDRMATSLM OF THE MIRMAL EGUATIDNG
 I2 RE|t WRITTEM 04/1.976 M. ARGUCKLE
 E3 gELECT PRXNT 005(54)
 BOPRINT HEX (0,ZOAOA); TAB(5); "FORMATION DF THE NOGMM: ERUATIONS"
 :SELECT PRI (T 00S(E4)
 40 DIM AS(50,46, AG(ES,10),2#G,52(10)
```



```
 i|)
 60 DAT'A LOAD DA R(4051,LG)SE!)
 70 DATA LOAD DA R(40DI, LE)N,F:
 B0 L. =405e
 1L0*4002
 :L401.3000
 :1.5=13m04
90L1*4076
100 I=I+1
 :IF I=N+1 THEEV年 350
 :DATA LOAD DA R{LO,LOMC4#()
 :MAT AG*ZER
 :MAT AG=ZER
 :MAT FE=ZER
 :MAT FG=ZER
```



```
 :W1=0
1EO DATA LOAD DA R(LI,LA)C:TFO
 :DATA LIDAD DA R(K,M\AI年()
 :DATA lDAD DA RGLe,llizs
 :IF END THEN 140
```



```
 :L1*LZ
 :LTM
130 caro }15
140 己⿻="END"
150 UNFACK({呩####)A1#(II) TD P1
 :IF P1m1 THEN 340
1E0 UNPACK(#*)STR(A1*(I1):4,1) TO PR
 :11*11+1
 :IF Z象"END" THEM 170
 :EOTO 180
170 IF PE=1 THEN 150
100 TMIT(00)LO$(S)
```




```
 ! te己m\K1-1) / E4:1
```



```
250 ON PE GLTIS 226, 280, 2%0
```






```
 :15={K1-1)/24+1
```



E50 wmo． 5
$: \mathrm{H}=\mathrm{H} 1+1$
250 casur 370
270 G0T0 150
EBO INIT $\{00310.04(1)$


： $14=1 \mathrm{KI}-\mathrm{I}) / \mathrm{C} 4+1$

310 w 1
： $\mathrm{H} 1 \times 4 \mathrm{~m}$ ；+1
329 gastis 930
2コO GOTD 150
340 DATA SAVE DA R（LC4，LAIHI，A5（），FSi ）

5 ¢отロ 100
G50 DATA SAVE DA R（L4：L4）END ：DATA BAVE DA RULS：GSIEAD
$350 L D A D$ DC $\$$＂PHDTG423＂

：H
： $101=5 \mathrm{G}$（（x ）
$380 \mathrm{~A} 5 \mathrm{HE}, 1 \geqslant=1$

$400 \mathrm{AS}(\mathrm{HS}, 5)=-\mathrm{Y} 1$






480 A5（H3，13）\＃y



总 $20 \mathrm{AS}(1-2,2)=1$.





590 AS（HE，10）$=-1$
500 AS（He，11）$=-\mathrm{V}$ ？
610 AS （HE，12）$=-\times \times 2$





$670 \mathrm{FG}(\mathrm{HE}, 1.1 \mathrm{VY} 1-\mathrm{Y}$ ．


```
『|-1%7ロ&13
\(700 \mathrm{AG}(\mathrm{H} 1,3 \mathrm{~B})=\mathrm{Y} 1\)
\(710 \mathrm{AE}(\mathrm{H} 1,4)=\mathrm{X} 2+\mathrm{Y} 1\)
```



```
\(730 \mathrm{AE}(\mathrm{N} 1, \mathrm{~B})=-1\)
740 AG（th ，7）\(=-x D^{2}\)
```



```
\(760 \mathrm{AG}(\mathrm{H} 1,9)=-\mathrm{XE}\)＊Y Y
770 A6（H1，10）\(=-\times 2\) 2 2
```



```
790 FOR \(34=15016\)
```




``` ：NEXT J4
000 FOR J4Fi TO 10
```



``` ：NEXT \(J 4\)
B10 FS（HIG， 1\()=\mathrm{FE}(\mathrm{Ha}, 1) * \mathrm{~W} 1\)
```




```
geo RETURN
930 HE＝2＊H1 ， \(: \omega 1=\) SOR（lu）
\(040 \mathrm{A5}(\mathrm{H3}, 1)=1\)
850 AS \((\mathrm{HB}, 3)=\times 3\)
060 AS（H3：4）\(=-43\)
```







```
med \(\mathrm{A} 5(1+\mathrm{P}, \mathrm{B})=\mathrm{V}\)
\(930 \mathrm{AS}(4 \mathrm{P}, 4)=\mathrm{Xa}\)
```





```
970 A5（148，日）※x
990 F5（Ha， 1 ）\(\times 1-\times 3\)
990 F5（f2， 1 ）\(=\mathrm{V}_{1}-\mathrm{Y} 3\)
\(1000 \mathrm{AG}(\mathrm{HI}, 1) \mathrm{H}_{1}\)
```




```
\(1050 \mathrm{FG}(\mathrm{H} 1,1)=\mathrm{Zs}-\mathrm{za}\)
1060 FOR \(54=1 \quad\) FTO
```




``` ：NEEXT J4
1070 F5（ \(\mathrm{H} 3,1\) ）\(=\mathrm{Fs} \mathrm{t}(\mathrm{Ha}, 1) *(\mathrm{~d} 1\)
```



```
1000 FOR \(54 \times 1\) TO 5
```



``` ：NEXT J4．
```

- ・ノロバブフ

$$
\begin{array}{r}
\because- \\
\because- \\
\because=
\end{array}
$$

# P4TOTC41： O． 110 Oーブア 4 1090 R 

 MODULE 3

 （16，1）
25 1 －$=13000$
FLE $=13500$
－13．414000
$: L A=14500$
30 DATA LIAAD DA R（LI，L1）H1，AE（1， $\operatorname{m5}()$
；He＝eztit


TMAT FGEAGHFS
E0 MAT ATEAS＊AS
70 MAT $A B=A 7$
EHAT FB＝Fg
：DATA SAVE DA R（L马，L3）A7f），FE（）
80 PAT REDIN AS $\{50,167$, FS $\{50,1\}$

ITF ERN THEN 570

So MAT REDIF AS（He，16），FS（HR，1\％，A6（15，HE）
106 MAT A7EZEN
－MAT FG＝ZER
110 MAT AG\＆TRN（ASS）
MAT FG＝AE MFS
$130 \mathrm{FOR} I=3 \quad 7016$ ：FDR y＝9 to ic
140 K． 21 －
： $82-3-8$

THEXT $y$

：NEXT I
160 JATA SAVE DA R（LJ，L3IATO，FES：
：MAT $A E=A 7$

 10），F゙E（10， 1$)$


200 PAT $A 7=2 E R$
HAAT FG＝ZER
210 MAT AGeTRNSAS：
EMAT FGIACKFS
：MAT A7mAG＊AS
$\because M^{\wedge} A T \quad A B=A 7$
2PAT FGEFE
？DATA GAVE DA R（LA，L4才A＇7（），FGi）




```
 :IF EFDD THEN 300
 E3O MAT REDLM AS(H1, $0),FS{H1,5),AE(10,H1)
 ZAO PAT A7=ZER
 ESG MAT AEOTRN(A5)
 : HAT FE=AG#F5
 :MAT ATMAETAS
 250 FOR I*5 TO 10
 F(mR J=g T0 10
 E70 K1mI-S
 *K2-j-5
```



```
 :NEXT J
```



```
 {HEXT :
```



```
 #MAT AB=AT
 MAT FByFg
 :00t0 eea
 zOO DATA GAVE DA RILG,L3IEND
 : DATA GAVE DA R(L4,L4, END
```


 MIDEULE 4
5 RKB SOLUTION DF THE NORMAL EGLAATIGNE
15．$D \mathrm{IM} A(90,15), F(80), Y(80), F 5(26,1), A 5(16,16)$
： $12=15000$
15．DATA LOAD DA R14001，LBA．F：
： $\mathrm{N} 33+4 \mathrm{C}$

zo $L=14000$
： $\mathrm{N} 1=0$
－18 $=0$
：
：MAT $A=$ ZER
30 ：MATA LOAD DA R（L，L）A5（1，F5（1）
：IF END THEN 80


：K $\mathrm{F} \mathrm{N} \mathrm{E}+\mathrm{I}$
：＜1～0
：FDR Jin T0 13
$: K 1=K 1+1$
$50 \mathrm{~A}(\mathrm{~K}, \mathrm{KL})=\mathrm{AS}\{1,3)$
：NEXT I
：$F=(K)=F 5(I, 1)$
：MEXT I
60 $\mathrm{N}_{1}=\mathrm{N} 1+1$
： EDFD 30
Ho $14=13-1$
$: \mathrm{Ma}_{1}=13$

$100 \mathrm{~A}(\mathrm{I}, 1)=\operatorname{sar}(\mathrm{A}\{1,1))$
110 FDR $5=2$ T0 M1
120 $A(1,1)=A(1, J) / A(x, 1)$
ANEXT $\$$

140 綰 $=1+14$
：GOTD 160
$150 \mathrm{MR}=\mathrm{A} 4$
155 IF ME－I－1＜0 THEN 230
160 FDR M $3=1+1$ TG Miz


：NEXT J
： MEXT M
2an NExT I
240 知 $\mathrm{K}=1$ TO NB
250 E＝F（K）
250 IF $[K-1 ;=0$ THEN 320


：6Ftio 300


```
 290 ME=M1
 700 FORRI=2 ram le
 #10 S=S+A(J,I)*Y(J)
 :NEXT I
 3E0 Y(K)=-B/A(K,1)
 FNEXT K
 325 *12"g
 330 FDR KaNM TO i STEP -
 335 5mY(k)
 340 4F (N:3-K)=0 THEN 400
 350 IH 谁-K+1)<=0 THEN
 66#TO 365
350 IF ME=2.3+i THEN 3E5
 GMTD 370
 365 %2%15
 3'70 FMR I=* T0 ME
30 5=8-A{K,I}\times2{(K+I-1}
 :NEXT I
4t:0 xet(K)=5/A(K.1)
 :IF K-b/a THEN 40:
 MME= 愮+1
401NHEXT K
700 14414+1
 :IF {4*& THEN 740
70 L= =14900
 :N1=1
 :N+4BmN+NS
 \:\=10
 :MAT X1=X2
 :1205
```



```
 IMAT A*ZERR
 :MAT F=゙ZER
30 5[TD 30
740 LIDAD DC R"PHDTO44%"
```

F＊－1CTO4．4．3	Oれメ10ノブ

4 REN－－－－＂PHDTO442＂－－N BLDCK ADJLETMENT GV SCHUT＇S METHKD MDDHLE 5
5 REFY TRAKSGFORHATION DF WHE 日LOCK

：DATA LEIAD DC DPEN TA1，＂FHOTODODO1＂





：PRYNT HEXIOCOE FTAR（JE）：NG
：FRINT

：PRINT
：PRINIT TAE（SO）F＂REGIDUALS AT TLE AND CONTRCL．POINTS：
：PRINT
：FRXNT TAB（S9）；DOt
：PRENT

：PRTNT
－PRENTUSENG MES
：P⿸厂⿱二⿺卜丿口
141 L．1．LE＝4076
：LOM4002
：L $=40$ 它
$: 11=0$
149 LF II\＃N THEN 306

（

： $\mathrm{CH} 4=\mathrm{F}$ 繥 +4
： $\mathrm{K}=\mathbf{0}$

$: K=k+1$

：NEXT I
：K＝40
：FOR 1 सNE
$: K=k+1$
（ $\mathrm{X} 4(\mathrm{~K}) \mathrm{ax} \mathrm{E}(\mathrm{II})$
：NEXT I

$144 \mathrm{~N}= \pm 1 * \mathrm{~B}+1$
： $\mathrm{NE}=\mathrm{IITH}+1$


$\rightarrow K=0$
ITOR $I=11$ TO NB

：$\times \mathbf{x}(\mathrm{K})=\times 1(\mathrm{I})$
INEKT I
－ 1 ＂$=0$
：FOR I WH⿰亻 TO N4

```
F1,0TO444:5
O&ノ!0ノファ
E
:K2水+1
```



```
#NExT I
 145 DATA LEGAD DA R(L,L)AESG)
 150 LI=LS
 112#5[E+1
```



```
 :DATA LDAD DA RILI,LEJCI$()
 :DATA LGAD DA R(LO,LO\CA&()
 : DATA LIAN DA RILE,LJ)CE:N{
 IDF END THEN 151
 :TOTD 160
 151 㞯出"EMD"
 160 J"\
 170(HNPACK(#####*)A1系{J)TOPP
 :IF P=1 THEN 142
```



```
 ;1F Z$= "END" THEN 181
 :GOTO 200
 LBL IF M=2 THENA EzO
 : (x) =0.5
 GgTf 80:
 207 M%=1
 e0g IMIT(00)LG#%)
```



```
 EPO IF L6क(1)=HEx(0000) THEN 230
```



```
 : K2*(<1-1))
```



```
 18054日 77%
 \x[=X
 :\%=\gamma
 :Z๕=2
 ERS ONM GOTC Ee4, EE4, E4O
 #24 mayT(00)LO*()
 Z2E MAT EEARCH CE*(),mBTR{AL隹(J),d,3) TD LO&!) BTEP 2A
 E25 IF L0$(1)mHEX{0000) THEN 230
```



```
 ; K2m{K1-1)/P4+4
```



```
 E2S GOSUA B70
 :E1mE1+(x)-x) +E*|a
 ER=Eこ+(Y己-V)+&***
```



```
 :19=1341
```



```
 230 Jaj+1
 :ल0TO
 EAO INZT (00)LO* ()
```




```
 ;(###(K1-1)/24+1
```





： 13 mI3 +1

290 JwJ
：GOTO 170

＊

BLO FRXTH HEX（9AQA）


31E PRINT
：PRINT
：PRILIT TAB（7）：＂（＊CONTRGL FOINT）＂


492 1 ＝$=8000$
：271819000
$: x_{1}=0$
430 ITF II＝N THEN 4月7
： $\boldsymbol{H}= \pm \mathrm{N}=\mathrm{B}+1$


$5214=142+4$
：K＝0

：$K=K+1$
$5 \times 3(\mathrm{~K})=\times 11 \mathrm{I})$
：TAEXT I
：K＝O
：FOR T＝1虹 TIT N4
；$K=k+1$
：$\times 44$（K）$=\times 2$（I）
：NEXT I
： I 1 m I $1+1$
440 31 ${ }^{2}$ 를
：DATA LDAD DA r（L．t．）A末（）

：PACK（
TIF ENT THEN 467



461 GOEJI 770


$: J 1=51+1$

```
FHFTC!4&4F
Oュタミノつ
EEOTS 450
```




```
：DATA SAVE DA R（M， 1 （1）Bet）
466 IF PE1 THEN 440
：IF PDES THEN 430
4GY DGTA SAVE DA R（M，NJEND
SEELSCTT PRIFTT 0OS\｛64）
\(=01=01+1\)
\(468 \mathrm{M}=16000\)
：L＂E000
\(: 工 F\) OAく THEN 470 ： 5 ＊ 17000
470 DATA LOAD DA R（MPH13A中（） ：IF END THEN 471 EBATA SAVE DA RtL，LJAC（） \(=\) COTO 470
471 DAFA EAVE DA R（L，LJEHD ：IF G1《3GE THEN 490 ©COM CLEAR ：LDAD DE R＂PHDTESO日＂
490MAT REDTM \(X 1\)（ 80, ，\(x e(60)\)
＊LDAD DC R＊PHDFDAO3＂
```




```
\(771 \mathrm{X}=\mathrm{X1} 1+\mathrm{C1}\)
```




```
791 \(\mathrm{Y}=\mathrm{Y} 1+\mathrm{cc}\)
```



```
\(71 \mathrm{z=21+cy}\)
```





```
\(871 \times 14 \times 1\)
```






```
6．51 \(\mathrm{z}=\mathrm{z} 1+\mathrm{CH}\)
```



```
FH0T0404 0#/10イフ7% I
10EELECT PRENT 005（64）
```



Metr
30 REM WRITTEA GG才157

41CCHE 00,01




 M9午25，D0家10
ERPRINT HEX（OZOAOA）FTAB（ 5 ）：＂ELUOKK ADUUSTMENT＂
70 DATA LDA1 DA R $4711, L\} C E=()$

$77 .{ }^{\text {a }}{ }^{14} x^{n}$

71PRENT
PRRINT TAG（5）
IINPUT＊DQ Y［UU WICH TD RESTART（Y／N）＊＊Z．

－FRINT HEX（GC）：TAB（54）
SPR却相 HEX（GCOC）
AEOTQ 71
BOPRINF
PRINT TAB（5）


：PRTNT

FinR I\＃1 TL 750


90 25
$: 910=00+1$


IF grom THEN 1 公
＊tUTD 430
110 OOHF C CLEAR
－MAD DC R RF゙NDTMAOE＊

$314=9000$
 IT BND THAN 150

＊GロTM 1 30

160 I $=4201$
： $5 \times 9000$
：29＊－4
1701边 $=2$
CDATA LロAD \＃A R（IT；FIA串 ？

```
PHOQTEAO4. O1/10イM゙\ 己
 :IF END THEN 250
 :13=53+1
 180 LNPACK (#4###)A&(IS) TD Y\
 :UNPACK(*))
 190 [F Y1=1 THEM 240
 IF Y2=5 THEN 240
 200 DATA LGAD DA R(%)
```



```
 -1F
```



```
 :16=(K1-13/24+2
 :G0TO 2z0
 E11UHF'ACK(#####)at(1) TD 10
 :PRINT HEX(03DAOA); YAB(5);"ERROR IN MHDDEL NO ":MO
 :Srop
```



```
 G00%0 230
```



```
 :I2=72+1
 %:070 1:0
 E40 DATA SAVE IM RII,DIA$O
 :I=P
 :G0T0 170
250 N3(1)=4201
 :C=0
 :A5=1
 : =4201
 250 53=0
 :mDR TE=1 TD N-1
 :SR=N|(IE)
 :83-53+82
 :NO(IE+1)=4201+E*SS
 MNEXTIE
```



```
 :IF G=0 THEN EBO
 IFF
 :LF GON THEN 4EN
 :A5=G*2
 :3i=5
 :comp 300
280 A5-5+2
 :4145+1
 :01405+1
850 A5=5+1
 #B1-5
 300 FUR TEmS1 TD AS
 :NEWHE+Nf(IE)
 {t|XT IE
 310 IE"#
 sDATA LDAD DA R(I.P\AM#)
 :IF ENND THEN 430
 320 57#0
 ILNNPACK(年#####1A#(IE) TO A4
```


##  $0 \pm>10 \times 77$

$: I \bar{F}$ A4＊ 1 THEN 410
－IF A4＝5 THEN
$33011=\mathrm{Ns}$（SI）
：FUR IG＝t TO 㸱
340 TKIT（00）SLO出（）
：DAFA LDAD DA R（La ile ials！）
 ：IF E．O（ 1 ）$=$ HEX（0000）THEN 370


： $57=17+1$
：M9（I7）$=1$

$370 \mathrm{~L} 1=\mathrm{L} 2$
：Nㅡㅈ 13
360 PACK（\＃\＃\＃\＃）ITTR \｛A生\｛1E），E7，10）FREM MS（\}



85070320
410．DATA GAVE DA R（I，PIAS\｛\} ： $1=\mathrm{P}$
－GDTO 310
420 DATA EAVE DA R（I，F）AF\｛ ：I＝
－5゙55＋1
：GOTD 270
43OIF UICDO THEN 431

431 IFF $29=10$ THEN 930
－F抧新析 Z9
：PRINT HEX（0c）
440 x＝420： tLE＝10500
450 rema
：DATA LDAB HA R（I．I）A\＄（）
：IFF E\＆D THPN E40
－M3＝




：154 $=0$


：EIN X1 G0TO $500,510,500.510$
500 ID＝IE＋1
：$\times 9$（ 18 ）$=X$
： Y 9 （IR）$=\mathrm{Y}$
$: 29(I B)=$ Z
：5070 520
510 核二德 +1


```
 =x>(13)=x
 :Y7(MB)=\
 :77介住)ご
Le0 X,Y,Z=0
 FDR I3=1 TH Z
 IDATA LDAD DA R(%t9(IN),LS)A1要隹
```



```
530 14=54+1
 -x=x+)(F
 :
 :z=z+zz
 #NEXT I3
540 X=X/14
 :YFY/1,4
 7m/154
550 04y X' GOTO 590,560, 570,600
560 <6(M13)=>X
 :VG(%5#)=\
 25(1)
 :1m=ᄃN+1
 FOTD 460
570 INITT(00%)䄱()
 MAT SEARCH CE%()**STR(AS(IR),上,3) TD LO&() STEP R4
```



```
 -56=(kI-1)/aza+1
```



```
590 X日(I日)暗
 :र年(IG)=个
 :Z゙8(18)mZ
 :12=12+1
 GgTO 460
600 IMIT (00)LO%t)
```




```
 :I5=(k{-1)/R2+1
```



```
E20 XE(ME)=X
 !V6(m3)=4
 F26(M3)=Z
 I2mI2+1
 *SOTD 460
```




```
 60TO 450
G40 DATA GAVE mA RCER,L.EJEND
E50 LE = = 0500
```



```
 \9(),Y5(),Z91),18,143
 OIF END THEN 9e口
670 DATA LQAD DA R\I,P\A⿻⿱口口丨心\
GO0 FOR I4=1 T0 13
 M2=IB+14
690 X8(17纪) =X6(14)
```


## 

01 110ノ゙グタ 5


：X5 体己）$-\times 7$（I4）
－Y9（ME）＝Y7\｛I4）
：Z9（x））＝Z7（I4）
：NEXT 14
700 91，53，53， $24,2 \mathrm{E} 5,36,57=0$
710 FOR $54=1$ TD IO

352452＋49（24）

： $84=53+\mathrm{y}$（14）
HFEXT I4

：5ex
＋83－4s／59
$\because 54=54 / 19$
$7 \% 0^{\circ}$ FOR 14＝1 J0 I

：T2 $=4$（14）－5P
$7 T 3=\times 8(14)-53$
：T4 $=$ Y 3 （14）－54
760 55 $55+T 1$＊FI＋TR＊TR
$: 56=50+74+78+$ TE
 ：NEXT IS
770 H1 $=46 / 55$
－1 1


790 E1～BGR（H1＊＊
：MAT F1＝Zたた
－MAT FR $=$ ZFIR
－MAT 罳 Z ZER

HMAT R5 $=2$ CER

：MAF AO～ZER

$000 \times 5 * H 14 \times 9(.51)+1+2 \times 59(51)+43$

E10 A $\{51,2\}=1$

$\div A 0(31, E)=\gamma 5$

INEXT JI
G0 MAT RA＝TRN（AO）
EMAT R R
：MAT RG표IV（RR）
日30 MAT R4＝R1＊F0


：Z0 $20 \mathrm{RE}(1,1)$
© 0 R5（ $\mathrm{A}, 1)$

```
PHET@404
01ノ10ハブッ E
 #D=RS(3,1)
 B40 I2*巳
```



```
 :IF A4=1 TMMN S10
 IF AG=S THEN 910
G60 \HPACK\年3STR1PA4(IE},9,1) T: X1
```



```
8,0 X5=X品H1+Y*H2+HG
 YF=-X&HC}+\mp@subsup{Y}{}{*
```



```
900 IE=I!+1
 :GOTO 850
gi0 DATA SAVE DA R&I,P\A隹!
 :I#P
 :Agro 560
g20 Z9=Zツ+1
 #G070 430
900 12=9090
 :L1=4201
 T23=10550
940 I1 =2
 DATA LDAD DA R{LI,L1/AG()
 IF EMD THEN 1amo
 :IF EMND THEN 1:320
 \DATA LDAD DA R{L3,L3)
 :FOR IS=1 T0 ME
 **隹#エ゙#+15
 =X8 (Me)=X{(I5)
```




```
 TAEXT I5
 *I5=0
 550 DATA LDAD DA R{IE,IG\C#{}
```



```
 :IF F=1 THEN 1040
 IF PmS THEN 1040
 :UNPACK(*#)STR(A${エ1),4,5)TD (
970 INIT400HLOW\
```




```
 :IG=(K1-1)/24+E
```



```
 20N a coTD 1010,1070,1010,1020
1010 I4mI4+1.
 *x9(14)=X
 #YG(I4)=Y
 Z29(I.4)wZ
 80%TO 1030
1000 I5=25+1
 :27(15)*x
 :Y7(XG)=Y
```

$1030 \quad 3.1=1 \%+1$ ：605 560

3．059 FOR I4＊1 TU IH
1060 BI $=514 \times 9\{14$ ）


 AREXT 14

：9B25s／IB
：5aberill
： $104=54 / 18$
1080 FOTR 14－5 TO 18

：TE世Y9（14）－GE
：T3 欧（14．）－53 ：T年ッY日（14）－54
 ＊565E6＋T13T34T24754 ：S7wE7＋T2＊T3－T1＊T4 ：AWXT 14
1110 H1 $\because 86 / \mathrm{BS}$
：He＝


1129 MAT R1 $=2 \mathrm{ZER}$
：HAT RP m ZEER
：NAT RBGZFR
SMAT R4＝ZER
：MAT F 5 uz Z E R

：MAT FOXZER
 FIVR I5＝1 TCL 13 ：＊ $\therefore \times 9$（记）$=\times 7$（I5）

 INEXT 15

：A0（15，1）ल1




SIEO MAT R1 WTRM（AO）
：TAAT RE＝RE＊AO
：MAT ROEINA（RE）
：MAT R4ㅍNRHFO
SHAT RTHRF＊RA
IMAT REmi－1 ）＊RS
300RR（1）

```
PHDT:44,04
01/10,7>
 :D^R51䍃1)
 11,60 x4=e
 1.70 UNPACK(%#####)C&(IA) 50 P
```



```
 IF P=S THE4 1F10
```



```
 1190 }x=H2*\times5+5+1R*Y乡+H+H
 :V=-HP*X5+Hi*V5*H4
 :Z*25*S1+Z0+C= X + D* Y
```



```
 : 54-144+1
 l:\4=I4+1
 1210 DATA GAVE DA RIIE,I3\C&!%
 IEaf3
 :GOTD 940
 EROLOAD DC R*PHDTO414"
```

50gELECT PRINT 215(i3ミ)
GOPRINT HEX (OCOE); TAB(JE) ; N9
:PRINT
:PRIMI HEXCOE);TAE(1E);"RESIDLALS AT TIE AND CHECK PLINTG"
:PRINT
:PRINT TAB(Sg);DO*
: PRTNT
:PRINT TAB(59):"ITERATION NKO "; OO* 10
70 PRIHT
:PRINT

"; TAB (203);"RESTVUALS"
BO PRINT
:PRINT


- "VZ*
100 PRINTT
: PRINT
$1207 \% 4201$
:61=10500
$: 1-14=0$
130 DATA LOAD DA R(I,IJAS ()
1IF END THEF 400
:M4 ${ }^{4} 14+1$

), $\times 9(1, y 5(1,29()$, 2e
150 Ta=a
: $x=1$

$: 170=13+1$
170 PRINT
160 FRINT TABC59): *SECTIAN ING ":A4
190 PRINT
200 M3 1

210 UNPACK (*)

; $15=1351$
290 IF A4 25 THAN 130
IIF A4EI THEN 130

Es0 V1=X日 (Ma)-X9(MB)


```
尸Н毋゙T04x4
```



```
:VB =26(19%)-29(MG)
```



```
 270 V4=V4+V14E
 :V54V5+4E+E
 :VG=VE+VB+E
 :J1=|1+1
 20% GOTD 340
 E90 1.14=434+V1 +e
 :W5-6|5+VE+2
 :405 wfitm+V3*己
 |F250+1
 SN*Jm+1
 300 G070 340
 320 Y%=Z6(Me1-Z7 (ME)
```



```
 : J3=53+4
 $50 G0m% 360
```



```
 VE,V3
 443=153+1
 350 60%% &10
```



```
 #1杞={杞*1
```



```
390 GחFO 210
```







```
：PRTIn
：PRIVT
440 PRIFIT
：PRINT
```



```
APRINT HEX（OADAL
：8BLECT Fifitt obs（44）
```



``` GMA X／Y CDNTROL \(=\)－H．
```



Appandix B

## 





0.0000000 $-0.0204915$ 0.9851 .61 .2 $-0.0609784$ $-1.0583199$ 0.9594191 － 0 ． 1824813 －1．03！ 643 y 0．70R6956 0.9602015   $0.5255^{5} 03$   0.0208593   0.0954441   －0． 2314714   $-0.1717736$   －0．2241131   $-0.5373558$   －0．9252795   －1．10872   －1． 0724039   $-0.9763046$	



Y PARALLAX
0.000
0.000
0.002
-0.001
0.000
0.009
0.004
-0.000
0.007
0.015
0.017
0.012
0.001
-0.009
0.000
0.021
0.022
0.017
0.009
0.007
0.022
$Y$ PARALEAX S7U ERR $=0.9 E 3$ HM AT PHCTIT GCALE
MODEL N 5 KOET

	E0¢3
	$6{ }_{6} 4$
	Eटes
	628
	521
	6 E
	13
	15
	虹
	17
	634
	636
	63 B
	3 B
	37
	596
	33
	54
	45
	42
	194
	11
	L9B
	25


X
0.0000000
1． 50000000
－0，030983
0．1444901
－0．1689068
－0．0404582
－0．0404582
0.2676855
0.0514616
0.0416434
－0． $2 \pm 38289 ~$
0．9tG3839
5．166ㄹ504
1．0락N4537
0.7898377
0.633701 .5
0.8467457
0．4㻤76点
0.9436510
0．844708
0.646817 t
1．0427544
$0.477{ }^{\text {\％}}$


0.0007000 $-0.0173750$ 1．02270954 $-0.1837084$ －1．0885097 1．0284559 1．0284559 6． 112.3857   － 0.22883984 $-0.5616800$ $-9.7739193$ 1.0746633 0.04080 .35 －1．2642772R 0.2507443 －0．2引15654 －0．4780655 $-1.2271448$ $-0.9467008$ $-1.178129$ －0．0．304577    0.5977877 0.2571657 $-0.8404724$	





I. 2298105   0. 5756096	


-0.5129954	1.7680100
0.3104251	1.7959972

0.009
0.003
$Y$ PARALLAX BTD EAR $=0.009$ Wh AT PHITID SCALE
MOOTA. NOD 5063


0
0,6000000
1.0000000
-0. 388.530
0.157 .3360
0.0318787
-0.3644810
-0.0452exi
-0.1390868
0.15E2985
0.2118431
0.5213125
0.9640215
0.9304082
1.0812685
0.10050905
0.4451850
0. 5830948
0.955
0.44 eezes
0.9354864
0.4713981
0.6375809
0.3808093
0.7349904
O. 821408 c
1.0754296



$Y$ PASALL,AX BTO ERR $=0.008$ MA AT PHOTTG EKALE
MODEI_ NO 50t4

$\begin{aligned} & 6054 \\ & \text { EO45 } \end{aligned}$	
	644
	646
	648
	E2
	81
	78
	107
	+6\%
	554
	656
	A58
	102
	12 B
	1.05
	$2 \pm 3$
	98
	삔
	125




577945934760608258937600011994336016860052


$\qquad$

0.599896
0.2998969
-0.3158086
0.394097
-0.174966
-0.4115622
-1.1850674

1．5307728	0.009
1.5345998	0.010
1．9965056	－0．005
1． 5359534	－0．007
1．5837918	－0．002
1.5875955	0.016
1.5315975	0.016

Y PARALLAX ETD MERR $=0.010$ MA AT PNOTD ECALE
MCEL NO EOE5
PT NR
6065
6066
654
656
658
129
219
204
121
131
128
125
664
465
568
185
158
155
162
144
143
147
135
139

	$\frac{x}{0.0000000}$
	1.0000000
	$0.035 \mathrm{c} 3 \%$
	－0．041829\％
	0.1577584
	－0．2900738
	0.0415514
	－0．2863327
	－0．2851554
	－0，01322］5
	－0．007Chte
	－0．1265155
	1．096ades
	1.2045643
	0.8580
	0.7475571
	1.042 P 014
	1.0538168
	0．6929077
	0.8903071
	0．46414E0
	1．03531积
	0.5032484
	1－202亏18\％



	$060000$
	0.0129142
	1．78边等獘
	1.7779567
	1．7743143
	1．7879：92
	1.776371 .5
	1．7819712
	1．7795406
	1．7847797
	1．77683鸲
	1.7775965
	．765．j4E5
	1．7753025
	1．7946豆3．8
	1.7731200
	1．7247485
	1．794806\％
	1．7925x02
	1．75E0315
	1．7694407
	1．770．5137
	1．78ご502
	¢51 963

Y PARALI．AX
0.004
0.090
-0.002
-0.012
-0.014
-0.001
0.006
0.002
0.007
0.004
0.005
-0.004
0.004
-0.021
-0.001
0.010
-0.001
0.018
-0.015
0.014
0.007
0.014
-0.004
-0.014

MCHEL WUC EOES
PT $M 0$
6066
6057
664
656
668
159
154
141
187
139
674
676
648
928
144
145
156

$\begin{array}{r} 0.0000000 \\ 1.0000000 \\ 0.0950592 \\ 0.2048295 \\ -0.1129770 \\ 0.0613359 \\ 0.0554992 \\ -0.0910137 \\ 0.0465984 \\ 0.1959282 \\ 1.9276124 \\ 0.7441948 \\ 0.8719999 \\ 0.9949908 \\ 0.5099564 \\ 0.8043489 \\ -0.1022589 \end{array}$	




Z	$Y$ PARALIJ＿AX
0．0000600	0.000
0.0083 E47	0.000
1．5336136	$-0.002$
1．6448705	0.1302
1．6520560	－0．0ㄹㄷ
1．6508442	0.011
1． 660.3778	－0．00年
	0.001
1．63\％79989	－0．004
1．5304417	0.010
1．6420）4107	0.004
1． $54.4{ }^{4}$	0.909
1．6421．721	0.007
1．6383597	－0．008
1．6343855	－0．006
	－0．098
1．5606747	0.014

$\qquad$

330	0.8971095
147	0.6807607
149	0.3221423
145	0.4285173
671	1.0333345
672	1.0074349

-0.1533504
0.41164340
-0.2464404
0.2830914
0.8915757
-0.0322721

1.6443344	0.003
1.6354106	-0.013
1.6541765	-0.000
1.6446575	0.008
$1.620219!$	0.039
1.6400562	-0.043

$Y$ FARALLAX STB ERR $=0.018$ MI AT FHCIFG SCALE
WIDEL Nコ EOTO


$\begin{gathered} x \\ 0.0090000 \end{gathered}$	
1.0000000	
0.0812683	
0.0695165	
－0．0564888	
6.8895853	
1．0791585	
1．$\pm 469854$	
0.7012150	
1.0303034	
O．1官14667	
C．$\pm 433037$	
1．$\$ 509774$	
0． 3750848	
5－1300324	
－ 0.28855037	
－0．2797947	
0．1015319	
0．1147c49	
0.1790204	
0．7671453	
	．080E357


Yomo
0.80000070
O． $94 \pm 5691$
5． 08.47649
O． 04404027
－0． F 215499
0．0599438
－0．3592840
1.0410360
0.0515691
－0．0029517
－0．8032］92
－0， 6080517
0．8735421
O． 3717145
－0． $76.4934 \%$
O．14＊）
－0．12017B0
0.9674324
O． $3 \mathrm{BL5} 58 \mathrm{~B} 9$
1．1825087
1．0809378


7	$Y$ FATALLAX
0.0005000	0.000
－0．0018588	0.000
1.8065713	－0．901
1 － 91235377	－0．001
1.8134313	－0．003
1．82056R8	0.008
1．7932¢54	0.004
1．790P151．	－0．012
1＊205556n	0 O 01
1． 793 Ecta	－0．004
1．8270699	$-0.004$
1．81942巴0	0.004
1．7980313	0.017
1． 5073197	－0．011
1． 80411 25	－0．001
1．8618010	C．000
1．7959370	0.604
	－0．016
1．81085月2	－0．091
1.8082361	0.913
1．8161203	0.003
1．7991860	－0．007
1．80ヶ5	－0．002

Y FAliALLAS STD ERR $\approx 0$ ，OOS MIN AT PHISTG SCALE
MRDEL ND 6ATJ


$0.00 \mathrm{con00}$   1． 0000000	
0．0265439	
0.1044140	
－0．2441519	
O． 0 eram50	
O． 11662230.0007808	
O． 1285731	
－0．2041675	
1．0481550	
9．3581883	
0．6572347	
0.635859   0. बcssan	
6．ASsymat   L． 0 Sgens 4	
0．4675636	


， 000
OE21
．0ıE
0.047
－0． 84
． 94
． 03
． 579
0.331136
． 04
0.38

2
0.0000000
0.0040520

1． 5697385
1．6497598
1.6580209

1． 6.58 Ba ．
1.6658871
1.6489499

1． 6.615113
1．6519945
1． 6547618
1.6655008
$1+6244832$
1． 63141236

1． $041 \mathrm{Enc9}$
1． 64931575

2． 6485736
Y PARAL＿AX
0.000
0.000
-0.002
-0.000
0.005
-0.003
0.004
-6.010
0.007
0.004
-0.002
0.002
-0.003
0.002
-0.001
-0.002
0.000
-0.009
-0.040




E0ter	＋1．0000049	－0．0203276	＋0．0114249
5053	＋1．94＊5853	－0．0450806	＋0．0205：58
6.34	$+0.9808428$	＋0．9590807	＋1．65011碞
$6{ }_{6}$		0．182ア3．3＊	41.7083289
628	＋0．63393 ${ }^{\text {c }}$	－1．0378267	＋1．7072575
621	＋0．9713809	＋0．3604495	＋1．6E11010
621	＋0．9713809	F0．7604495	＋1．EE1 1010
13	＋1． $\mathrm{H542782}$	70.0956181	＋1．7075319
15	＋1．047735	－0．2239960	41．70755942
15	＋1．0360163	－0．5373681	＋1．70788を夏
17	＋0．7931315	－0．3354256	＋1．7087259
634	＋1．8728557	＋0．396E060	＋1．7013738
636	＋2．0932217	－0．0560337	＋1．6787964
6．je	＋1．9549773	－1． 2070354	＋1．6854492
32	＋1．7470931	10．2215660	＋1．6967745
37	＋5．5958230	－0．2312895	＋1．6973970
196	＋1．794306＂	－0．4840852	＋1，6807818
33	＋1．3886899	－1． 1633727	＋1．7025033
54	＋1．${ }^{\text {cene3525 }}$	－0．3072700	＋1．6935081
55	＋1．7973259	－1．1244498	＋1．6993329
$4{ }^{2}$	＋2．0983713	－0．046e803	＋1．6790488
104	＋2． 85039914	－0．2359160	＋1．6798021
11	＋2．6149598	＋0．5496850	＋1．7036528
198	＋4．9853971	＋0．2350nc9	＋1．6930948
75	＋1．4464593	－0．8035773	＋1．6860437
49	＋2． 1553021	－0，5011293	＋1．6790609
12	＋1． 5451496	$+0.3172704$	$\rightarrow 1.6594545$

$+1.0000000$
$+0.9807056$ $+1.135916$
$+0,6336740$
$+0.9712572$ $+0.9713190$
 $+1.0477313$ $+1.035046$ $+0.7902759$

10.011 劳苞2B $\quad 4.4$
+1.6510453
+1.7084469 $+1.70659 \mathrm{ma}$ ＋1，E．EOSE54
 1，66J0．3R $+2.7075374$ $+1.7078597$ $+1.7074122$ ＋1．7080431
$1.43 Э \mathrm{E}-0$ $+.137 E-03$
$+784 E-05$ $1.754 E-03$
$-.150 E-03$ + 1学仾 03 ＋． $6.9 E-04$

$+430 E-65$
－，BOSE－04
$-.154 E-65$

 +4 荧475－03 -17 登 +03 $+2435-0^{3}$ $+.243 E-03$
$1.124 E-02$ $+.124 E-Q 2$
,$+ ~ 204 E-03$ $+, ~ 304 E-03$ +.117 E－03
$+.175 E-04$ $\rightarrow$－ 146 E － 05
＊．9е15～04
－．933E－03 ＊$+13 \mathrm{BE}-03$ ＋－65돈E 03 $+1.35{ }^{2}-63$ ＋E7EE－04 -10 도－03 $+.398 \mathrm{~F}-03$
$+.470 \mathrm{E}=0 \mathrm{~F}$
＋．6naE－03

SICMA $X / Y / Z=0.028 \mathrm{MM}$ AT PHOTO SCALE

JUNCTICN OF WODEIS EOEX－EQGS

6063	＋1．9445823
C0E4	＋2．935 9773
634	＋1．4723437
6，${ }^{\text {ce }}$	
63	＋1．9549344
38	＋1．7470387
54	
55	＋1，7973421
4 C	＋2．0983510
194	＋2． 2503949
安家	
E44	＊${ }_{\text {d }}^{4}$ 9174954
6.45	
64 年	＋${ }^{\text {P }}$－0046103
5 学1	
39	＋2．3967049
83	＋${ }_{\text {c }}$ 6333043
22	中島，95， 775
41	4 ${ }^{\text {a }} 3$
n．	


－0．04512ㄹㄹ	＋0．0805307
－0．0¢ 06581	＋0．029＋5ad 4
10.9967005	＋1．7014587
－0．05607／4	＋1． 6787311
－1． 207045	＋1．6854175
so． 3 壁172S4	－1．6971745
－6．3072510	＋ 5.5935261
	＋1．6893838
－0．0465056	＋1．6788091
－0． 2759 m 104	＋1．5797892
－0．5011840	41． 877 Cl 4
＋0．trege774	ヶき，6020059
－0．1134413	＋1． 6755396
－0，501024，	＋1．6800
40．865987管5	＋1．6908950\％
40．547E073	＋1．677己®日E
＋0．545165\％	＋1．5747\＃83
40.5414780	＋1．6722929
＋0，3372450	＋1．680\％${ }^{\text {cos }}$


＋1．9415853	－0．0480805
＋1．8728557	＋0．3960050
＋2．09922d	－0． 5560737
＋1．95497\％	－ $1 \times 2070304$
＋1．7470831	40． 23.15650
＋1．88823E5	－ 0.9072700
＋1．7973ㄱt9	－1． 3244498
	－0．0462RO4
＋2．1503914	－0．2359160
＋E．25魩OE1	－0，50112a己


	－ 23 SF	$16, E_{5}+04$	04
＋1．7013738	－．1E3E＂O4	＋． 34 EE－ 04	r－849i－04
	－337E－05	－． 437 E －04	－6525－04
＋1． 685448 E	＋ッ1过E－04	－ $2915{ }^{\text {2 }}$	－ $34 \mathrm{EE}-94$
$+1.6967745$	－ $4435{ }^{\text {c }}$	＋．6．34E－04	＋． 400 ECO
＋1．6935281	小－ $176 \mathrm{E}-04$	＋+1895 Fc	5 2 － 4 S
－1． 5892339	＋．1525－04	－．718E－ 54	＋．497E 04
＋1．6790488	$\cdots$－203E－04	－ $2476 \cdot 04$	
＋1．6796021	＋．3502－65	＊．443E－05	－128E＋64
＋1．872050\％		$\cdots$－5EE－04	＋．157年－53

Jangtiok ge madels goex－eobe

s0ga	－1．0006098	－0， O 209276	＋0．0144249
6063	＋1．3415853	－0．045086\％	＋0．6005158
$6{ }^{6} 4$	＋0．9803428	＋0．9590897	＋1．660112
626	＋1．1359931	－0． 182.2333	＋1．708
628	＋0．833¢839	－1．0E19267	＋1．7072595
621	10.9713805	10．9604 4，95	＋1．65110t0
E21	＋0．9717809	＋0． 9804496	＋1．66：1010
13	＋1．2542792	＋0．0956141	＋1．7075319
15	＋1．0477356	－0．22399	＋1．7076582
16	＋1．0360169	－0．5373581	＋1．7078
17	＋0．7521215	－0．9254236	＋1．7047259
634	＋1．8728557	＋0．9365060	＋1．7013738
$5 \cdot 95$	＋2．0932317	$-0.05603$	＋1．6787
638	＋1．9549773	－1．2070364	＋1．6854482
$3{ }^{3}$	＋1．7470832	＋0．eziekeo	＋1．6367745
37	＋1．5958230	－0．2312895	＋1．6973970
195	＋1．7943062	－0．4840853	＋1．6807815
37	＋1．3886899	－1．1533727	＋1．7025033
54	＋1．88e3ez5	－0． 9072700	＋1．6935281
55	＋1．7873359	－1．1244499	＋1．6893339
42	＋2．0963713	－6．0462809	＋1．6790488
194	＋2．1503914	－0．2359160	41.6798021
11	＋1．6143938	to． 549685	＋1．703662E
198	＋1．9853971	＋0．23508．23	＋1．6936948
36	＋1．4464593	－0．8035773	＋1．6860437
49	＋2．1553021	－0．5012282	2790509
12	． 5461495	0．3172708	\＄1．6994545

\＃IGMA X／Y／Z $=0.0 E B \mathrm{MM}$ AT PHOTD ECALE

JUNCTICN OF MEDELE EOES－ 5005

$+0.0205307$
$+0.02 \mathrm{Fg} 2 \mathrm{PT4}$
$+1.7014597$ +1.1014587
+1.6787311 +1.6787311
+1.6894135 $12: 6894135$
$+1.597+745$ 11．69352E1 ＋1．6893598 +1 ．E7890\％I $+1.6757832$ $+1.6620059$ $+1.620095$ $+1,6850=83$ $+1,6800281$ +1.677 2088 $+1.6747323$ 1． 67 Fratz $+1.6851059$ 4， 5454598 ＋1．47817淢
＋1． 272755 ＋R．099P己「7 ＋2．09pref7 11.9549773 ＋1．7476m31 ＋1．8及管5E25 ＋1．7安7 2 259 $+2.0983713$ ＋さ，150З®を4

-9.045 ghce
10.3950050 $-0.0 \mathrm{E} 403 \mathrm{~B}$ － 1.0 .057035
 － 0.3072700 $-1.3244495$ -0.046 PRO9 $-0.2359160$ $-0.5011282$

＋0．0205153	－ $333 \mathrm{SE}-0 \mathrm{~S}$	－41， $5 E-04$	$F=14+9$
＋1．70137 ${ }^{\text {a }}$	－L2JE－04	＋． 34575	
＋1．E787364	－337E－05		－ESt ${ }^{\text {a }}$
	＋． 5 S1E－04	－ $315 \mathrm{E}-\mathrm{OS}$	－346E－44
＋1，6．9E7745	－ 44.85 Fb	4． 534 E－04	＋．400E－，
＋1．6935ㄱํㄱ	$t+1788-04$	＋． $18.8 \mathrm{E}-04$	
	＋ $16.7 E-04$	－． 712 돈 04	$4.438 \mathrm{c}-04$
41.57304005	$\cdots-202 E-04$	－． 247 7 ${ }^{\text {－}}$－ 4	
41.679301	$5-350 E \sim 05$	－ 44 \＃E－cts	
＋1．6790609		－． $553 \mathrm{E}-04$	－．15TE－03


	to		14＊ャがarat
呂		－ 0.6484977	
107	＋2．7415429	－I，1732413	＋1＊6859973
205	＋ 2.4535139	－0．932095	1．6E593E5

SKGMA $X / N / 2 * 0.009$ mA AT PHOTD GLALE

SLNCTION WF NCWELS E063－6054

E0E4	＋${ }^{\text {E }}$－ 3757885	－0．0535342	＋0．0295165	＋2．9357973	－O．OESETS！	＋0．029a274	＊＊自75E－05	＋． 438 E （0） 9	－107e－04
ENES	－3．37012t5	－0．11617 ${ }^{\text {a }}$	＋0．0400713						
644	4 ${ }^{\text {W．}} \mathbf{3 1 7 4 9 4 8}$	＋0．85685 ${ }^{\text {c }}$	＋ 5 －EE15390	＋2．9174854		＋ $\mathrm{i}_{n}$ E6tionc	＊．942x－05	－ $2355-0.7$	$\rightarrow .45 E E-03$
646	4ㄹ． 85715175	－0．123a9\％0	＋5．676Ex90	＋2．85716碞	－0．113．4．13	＋i．cters	－922E－05	＋． 42 c	4． 2509003
645	＋2． 00046188	－0．${ }^{\text {a }} 0009741$	＋1．6863553	＋3．0045103	－0．3010r．41	＋1．egerens	＋8545－05	＋．49畐E－04	＋．3ご事－03
BE	4 4．9027748	＋0．5415937	＋1．E734，18）	＋2．9027755	40．54：4780	11．67，${ }^{1}$	－617E－06	＋． 11.5 ESOR	＋－125E－03
81	＋${ }^{\text {2－}}$－ 782507	40．${ }^{\text {ch4 }} 39784$	＋1．E－864E5s	＋2．8782579	－0．242－7573	＋1．6．953513	－ $713 \mathrm{E}-05$	＋．11CE－03	＋．21等 $\mathrm{E}-13$
78	42．8558388	－0．0507035	41．6785705	＋2．F6554104	－0．0507．327	＋1．6781780	－185E－04	＋． 315 E －04	
107	＋2．7415564		＋1．6858401	＋2．74，154き9	－1．23 54，	41．6559374	＋13 \％${ }^{\text {c }}$－ 04	1．13笑 0.3	
205	＋2－9789831	－0．722it319	＋1．6843234		－0．9131099	＋1．5959．36．	＋$+3905-625$		＋3 3 ¢ ¢ ¢
E54	＋1．0425290	＋0．7452293	＋1．6709899						
E56		－0．0034144	＋1．6737031						
Q5E	＋4n0558405	－1．197ESEE	＋1．58307 14						
102	＋3． 379 acco	－6．6747306	＋1．63843317						
129	43．TごEE671	＋9．3632949	＋1．6794250						
105	－3． 3488146	－1．1005132	＋1． 5 E3539						
219	＋3． 3507604	－0，9509099	＋1．6814298						
配	＋3． $38 \pm 3443$	－0．1374180							
201	＋3．7e15881	＋0．1700059	＋1．6757479						
121	＋3．6T01394	－0．7937932	＋1－6E28554						
84	＋3．2508575	＋0．550， $0^{1058}$	＋1．6711						
87	小3． 14.4515	＋0．1569952	＋1．姐17695						
101	－ 3.1406728	－0．396．5e7t	＋1．6827585						
172	＋3．9830397	40．3351039	＋1． 6770005						
128	4，	－6．8゙529751	＋1．67749451						
204	＋3．9323437	－0．4977379	＋2．6780854						
出这	＋3．7841109	－2，29763路	＋1．6日2อ己 10						

SIGMA $X / Y / Z=0.015$ HUN AT PHDFC $\triangle C A L E$

## JUNCTIOM OF MOCEIES ENE4－ECES

6055	＋7．97018 ${ }^{\text {2 }} 4$	－0．11602t ${ }^{\text {2 }}$
EOEE	＋4．8974415	－0．17E54EE
ES4	＋4．049007E	＋0．74\％254．20
556	＋3． 3972597	－0．0033010
E59	14．0950585	$-1.1979484$
12 ${ }^{\text {d }}$	＋3． 72 ETOOS	$+0.363334 .5$
119	＋3． 3607489	－0． 38988887
E04	＋3．7216054	16．1700195
121	＋3．6701638	－0．7926674
131	＋3，98200ce	10．3300405
1拖荷	＋3．9556727	
$12{ }^{4}$	13．8323440	－0，49767Es
Eeqs	＋5．O2EEEs9	＋0．7538845
E¢¢	＋5．0672a＇96	$\cdots 0.3241504$
E69	＋4， 7110189	－0， 53.255
1.8	44，5，可4419	
159	＋4．465：3634	－1． 0743 Saz
15 s	＋4．301EES1	
16.8	14． 5447407	－2．26T37t

$40.0400=19$
+0.952 m 754
+1.6707682
+1.6734143
+1.691 .5905
+1.6790755
$+1,6814042$
+1.6754775
1．6763567
+1.674734
41.6747385
+1.6778976
+1.6775033
＋1．5\％61925
＋1．6750775
+1.5317413
＋2． 6955971
$+1,6 y y n c t$


$+4.042095$ $+7.037 \mathrm{ckec}$ $+4.0553405$ ＋3．72vers71 17.9507694 $+3.7215831$ $+3.57017{ }^{2} 4$ ＋3．解 0 ，37 $4.1 .355644 x$
+3.832347


＋0．0409713	－． 311 E－05	＋ $213 \mathrm{E}-03$	－．423E－04
＋1．67039	－darber04	＋	＊（2）tEM）
＋1．E737031	－31CE－05	7－113	－3 2tere－3
＋1．6810714	＋ 2 250e－04		
$+1.674460$		$\mathrm{t}_{\mathrm{n}}$ 3） 3 4E－04	$\sim 4$
＋1．633430．9	－114E－ 24		$\cdots$－24，
＋1．6757478		＋1365－04	－27C以－－03
＋1． 5 50305	$4.3045-64$		$\cdots{ }^{(2)}$
＋1．67300nc	－172F－04	－E3F3C－04	$\cdots+40 \mathrm{Cl}$
＋1．6．748．45． 1		＋． 7 Trer－04	
		－54 $2=04$	－1， 235023



85GMA X／N／7＝ 0.015 MF AT PHOTO SCALE

SUNCTIEN OF PRTHLS EO71－6072

607\％	＋2．0871594	$+0.1027644$	＋0．0021370	＋2．0871㗔1	＋0．10E774s	＊0．0081439	＋． 1088 OE	－．114玉－044	－．12ase－06
5073	＋3． 1338860	＋0．1323653	＊0．0013783						
638	＋2．0733413	＋0． 3357571	＋1．7774084	＋E．07933゙の		1．1．7774504	－．303F－05	－． $2500 \mathrm{E}-04$	－ 41 枵 ${ }^{\text {c }}$
7 ES	＋2． 144143 ma	＋0．0048434	＋1．7735962	＋E． $144141 \%$	70.0048544	＋1．772514	＋． 10 碂－05	－．109F－04	＋．7E1E－04
7 B	＋2．073552？	－0．75004A5	＋1．7761352	＋avategair	－0． 7500980	＋1．7761537	＋．572t－0t	4．517E－04	$\rightarrow 274{ }^{-64}$
55	＋1，9015907	＋2． 0239568	4．7852115	＋1．9015551	＋1．6275150	＋1．785e0．97	4．35EE－04	－eltat－03	－ 738 cc －63
63	＋1．94938巴0	－0．4402442	＋1．78590：	＋1，9433573	－0．4403437	＋1．7863047	＋．309E－04	＋．294E－04	－ 40 达－03
57	＋2．1468148	＊0． 2793888	＋1．7585\％	＋ E ． 14 EB 党70	＋0． 1793 mec	＋1．7649517	－．1212－04	＋． 3 3939－04	－． 260503
54	＋2．003003	＋1．2536614	＋5．79145：	2． 0028010	＋1， 2 ［ 37034	＋1．7916239	＋，198E－05	－．419E－04	－ $1655-0.3$
548	\％ $3.13385 E 1$	＋1．25941．14	＋1，7676155						
736	＋2n1957092	＋0．2173334	＋1．7509449						
7 78	＋3．O2Fssez	－G．767es30	＋1．7657343						
71	＋2． a 1 E5579	＋0．4EECE5	＋1．751248：						
108	＋3．0414075	＋0． 53 Store 1	＋1．753e185						
5000	＋ $\mathrm{m}_{\mathrm{n}} 1704085$	－0．82e5938	＋1．7633872						
206	＋ヨ．1877493	＋1．3473698	＋1．7559744						
315	＋2． 3768019	－0．1004 $0^{0} 4$	＋1．7575181						
107	＋2．914ゴ昭	＋1．013904S	＋1．7675638						
50e4	＋3． 1.586015	－0．50935es	＋1，7563387						
916	＋9．1712343	－0．032345	＋1．7476333						
＂／4	＊2．448temg	＋0．9585126	＋1．7745607						
914	＋2．816E951	－Q 7351785	＋1．7750971						



JLNCTTGM OF MDRELS 5072－6073

9073	＋3．1330日03
6074	＋4．116E215
644	＋3．1326495
736	＋3．1957634
738	
71	13－81663017
108	＋ 3.0423984
5009	4 4－1703863
EOE	＋3．1和7535
915	＋2． 535657
50.34	
915	
914	
ES9	
745	
742	44－1338810
215	
こ13	＋4．20， 3508
175	＋4．932］3475
173	＋4．340113E．
211	13．4538020
$1{ }^{\text {cin }}$	＋3．3003941
109	
댑	＋4．0200015
747	＋4．1放1130

$\begin{array}{ll}+0.1313404 & +0.0014440 \\ +0.1482264 & +0.000445\end{array}$
$+1.259385{ }^{2}+\mathbf{0 . 0 0 0 9 4 5 2}$
+1.2593852
$\begin{aligned} & +0.2177074 \\ & -0.7575060\end{aligned}$
$\begin{aligned} & -0.7678060 \\ & +0.4 \pi 0243\end{aligned}$
$\begin{aligned} & -0.8243556 \\ & +1.2474700\end{aligned}$
－ .100485 .4
-5.5032357
－0．0323ez4
0.7350183
-0.0136133
-0.013613 g
$\begin{aligned} & -6.8 .757561 \\ & +0.7930350\end{aligned}$
+1.7434086
－ 1.7465145
－0．045675－$-7 \times 57687$
40． $571731 \quad$－ 7444133
+0.2038418 ， 7431192
$1.047 \mathrm{nHEa}+.7564275$
$+0.8373641+1.7453061$

$$
\begin{aligned}
& \begin{array}{l}
+1.7877649 \\
+1.7 E \pm 1001
\end{array} \\
& \begin{array}{l}
+1.75 \pm 1001 \\
+2.7 E=3537
\end{array} \\
& \begin{array}{l}
+2.75=3537 \\
+1.75
\end{array} \\
& +1-7 E=32 \in 1 \\
& +1.7 E_{5}-5903 \\
& +1.7 E=7678 \\
& \text { +1.757593 }
\end{aligned}
$$

$$
\begin{aligned}
& +5.7475740 \\
& \begin{array}{l}
+1.77450 \\
+1.744098
\end{array} \\
& +1 .-419098 \\
& \begin{array}{l}
+1-7515620 \\
+1-744086
\end{array}
\end{aligned}
$$

	10．1213633
＋2．193062	＋1．2
＋3． 17570 棠	＊0．2173544
＋3．02as682	3．7ETES30
＊	＋1．42．E0656
＋3．6414074	＊0．5530931
＋3． 2704059	－6， Fin $^{4} 7853$
＋3．1577493	
＋2．8360019	－ 0 － 1004204
＋3．1482015	
＋3．171．3243	－0．0323445

+2.8165751

$$
\begin{aligned}
& + \\
& + \\
& + \\
& + \\
& + \\
& + \\
& + \\
& +
\end{aligned}
$$

$$
+0.0013733-=56 \angle-65 \quad-2425-04
$$

$$
+2.7675155
$$ $+4.52 \mathrm{yss} 20$ $+3 .+403573$ +4.2042508

+4.92253472 $+443401132$ $+3.300 \mathrm{Cr} 31$ +4.3249415
$+4+0200015$ ＋4． 1 放上 $199^{\circ}$


$$
\therefore=
$$

jLANCTICN DF MODEES 6073－ 6074

6074	＋4．110684？	＋0．1482623	＋0．0009369	＋4．1166215		＋0，000246	＋． $323 \mathrm{~cm}-05$	$\mathrm{t}_{4} 359 \mathrm{E}-04$	－．9R7E－05
6075	＋5．209：2e3	＋0．191：447	＋0．0002E31						
658	44.3091025	＋0．9435103	＋1．741\％02	＋4．2081213	＋0． 7434637	＋1．7419093	－． 7 70E－O5	－ $470 \mathrm{E}-04$	＋．504E 04
745	＋4．0138562		＋1．761388年	＋4．0138530	－0．019018日	H1．7615E20	＋．3285－05	＋ $363 \mathrm{E}-04$	$\cdots 173603$
749	＋4．1388841	－0． 2359760	＋1．7435／10	＋4．1398210		＋1．7434085	＋．319E－${ }^{\text {ct }}$	$-119 \mathrm{E}-\mathrm{O}$	＋13，
E19	＋4．2083524	＋1．1735357	＋1．7488800	＋4．	－1．17390189	＋1．74E5145	＋．1695－05	＋．2ETE－03	＋． $36.55^{\circ}-03$
375	＋4．0283082	－0．0457877	＋1．7570094	＋4．02933275	－0．0456755	＋1．7567697	－．193eE－04	－52ex +04	＋． 240503
183	＋4．3400740	＋0．6591552	＋1．7422037	＋4．3401138	＊0， 65931781	＋1．74t419	－． $355 \mathrm{SE}-04$	－	－． 215 SE O3
218	＋4， 02059545	＋0．8373555	＋1．7452g5e	44．020602	＋0．8373641	＋1．745396．	－．683E－05	－． 15.54 C －05	－110E－03
743	＋4．184．31513	－0．826．3038	＋1．7403E95	＋4．1881199	－0．Ex59120	＋1．7396558	＋．314E－64	－．391E－03	＋．723E．0．3
669	＋5．0054679	－1．1544E74	＋1．7533336						
756	＋S．14m1榢	＋0．0455453	＋1．7304483						
758	＋5． 2197830	－0．7692807	＋1．7109130						
1488	＋4， 8543692	＋0． 2875400	＋1，75054．37						
177	＋4．4679595	－0，5747310	＋1．7294109						
155	＋5．0217927	＋1．188E069							
155	＋5．20\％1109	＋1．3421283	＋1，7512920						
753	＋5．2941706	－0．日206460	＋1．7087395						
162	＋4，8280067	＋0．8691942	＋1．75e17 ${ }^{\text {d }}$ 目						
75.	＋5．4079377	＋0．0153937	＋1．735094E						
15	＊5．1697317	＋0．8613175	＋1．7399480						



JUNCTIDN CF MWPAㄴ․5 6074－ 6075

6075	＋5． 2091314	$+0.1910172$	＋0．0002580	＋5．309123	$+0.1911447$	＋0．0002631	＋．914E－05	－．12TE－03	
607t	＋6． 1816588	＋0． 2106776	40.0014543						
869	45．00E4E43	＋1．1545011	＋1．75777889	＋5．0054573	＋1．3544794	＋1．7533336	－．13CEE -04	＋．737E－04	＋．395E－03
758	15．1421971	＋0，0454204	＋1．7355E02	＋5．14浐教出	＋0．0455458		1．MBEE－05	－，125E－63	＋T16E． 44
788	45． $2 \times 97785$	－0．7681017	41.7105190	$\rightarrow$ 成，出197930		＋ 1.7109910	－． $44 \mathrm{BE}-05$	＋．478E－93	
156	$45.01 \pm 7824$	＋1．1887715	＋1．750゙50年	＋类．0127927	＋1．1596069	＋1．752．35s		＋．1E4E－0才	＋．465E－0．
155	＋5， 3071448	＋1．3485564		＋5．2071109		＋1．7512920		$+.424 \mathrm{E}-\mathrm{O}_{3}$	
759	＋5．2E4 574	－0． 0.806959	＋1．7080232	＋5，38介170	－0．8306450		＋，381发－25	$\cdots, 439 E+04$	＋．84cters
758	＋5． 2079509	＋0．01 5 ¢E973	＋1．7355d号	＋5．2079377	＋0．0．159937	＋1．7350946	＋． $232 \mathrm{E}=04$	－．36．EE－04	＋．437E－0］
15 yc	＋5．1687529	＋0． 86.4097	＋1．7402383	＋5．169737	＋0．36：3175	＋1．7．79\％480	＋．211世4004	4．90茞－04	＋． $390 \mathrm{E}-\mathrm{CO}$
678	＋6．0215450		＋1．7252ste						
765	＋6．\＃7\％at5	40．0924315	＋1，72190295						
760	＋6．1389422	－0． 0.05466	＋1．702g961						
4000		－0．7\＄00s76	＋2．6977709						
4024	＋6．1450199	－0．692746日	＋生．7095176						
	＋5．857925s	－0．82 \＃nder	＋1．7016841						
762	＋6．2515490	＋0． 2158973	＋1．722343！						
SE］	15．1551655	＋0．9904803							
¢ ¢¢	＋5．70こ074	＋0．7841999	4 ：72ae54						

G1GNA XIY／Z \＃O．OES NH AT PHDTG BCALE

## APPEnDIK C


 $01 / 01 / 1928$

PT inn	$x$	$\gamma$	2	$Y$ PARALLAA
4912	Q． 0 000000	0．0060mo	0.00006000	0.000
495.1		0.02 Cos 04		0.000
3124	0.6072464	0.7484054	1.5764 .371	0.000
312．E	0.0 .1284008	－6．0540044	1．585mens	－0．004
923017	C． 304 cor 3	1． 18 crazas	J． 5446485	0.01 c
9114	0.8923593	0.9724042	1．5156245	0.00 .3
9116	0.367920 2	－． 300.185 F	1．57054，34	－0．000
F1：	1．070737\％	0．mespher	1．5717597	－0．000
$5{ }^{51085}$	－． 3535173	－1．629835	1．539．1136	－0．0ic
101	0．53ac777	0． 5 magras	1．5024．760	0.007
S＊ay	－G．0170Es\％	－0．930143	1．59eさti4	0．0．0．
9312	Q． 25.328934	－1．0597593	1．5c．01183	0.00 g
91 Es	－0．Dorerser	0，67 33400	1． $5885{ }^{2} 594$	0.028
92：	0. Fozacus	0.0281933	1．57푸27］	0.003
23：1	0． 1703933	0.629515	1．5373ssaz	0.010
9121	－0．6193563	0． 58.794 Hz	1.5531454	0.000



F\％No
4311
4910
9114
加ご碞
91ic
3194
9106
3108
301
3241
9107
9115
3111
3 Saz
$910{ }^{\text {c }}$


$x$	$Y$	$z$	Y PARALLLAX
0．00\％0mpa	0．00600xn	0．0006mon	$0.00 \%$
1． 0000000	0.01 gax 4 a	0.0047 mac （	0.000
－0．0741213	0.8136531	1，5351927	0.000
	0.1082754	1． 50066114	－0．00）
0.110003	－1．7234454	1．6．E3113	$0.00 \%$
D． 5472643	0.8977410	1．543830	0.000
0.937064	0．0422725	3． 5748 mag	0.005
0.9357130	－0． 9 ¢635103	5．51182ss	－0．003
1．10こ1323	0.3145183	1．553？${ }^{\text {de3 }}$	－0．005
0.3247146	0.9441537	1.544836	0.024
		1．E．130956．	0.041
－0．cont19\％	－1．688554 4	1． 50394423	0．020
0.6009377	0．720974683	1．55，34．30）	0.02 c
0.05031803	0.5025637	1．50185．86	0.002
0.3963645	0． 0 ¢4ther	1．571481d	O．cters


「 F

4910 4909 3106

MOTVEL H0 $1000 \%$			
x	$\gamma$	2	$Y$ PARALLAK
D．000000n	0.0000000	0．0006000	0.000
1．00\％roxi	0． 133420931	0.00033879	0.000
	1．00．487\％	1． 246.545 ？	－ 0.001
		1．8611＂＊0	－0．002




PT Wer	$x$	Y	$z$	Y Pbinmalax
4.307	D. 06000006	0.0400000	0,0000000	0.000
4306	1. Danowi	0.00304383	-0.00ediss	-.000
0074	0.0280034	1.12caung	1.34954,433	0.004
3076	0.1000133	0.0169848	1.3745935	0.000
307\%	-. 30cre70	-2.1190145	1.3301535	-0. Cas
74.4	1.012803]	1.4973119	1.3355715	-0.000
Sthea	1.0230426		3.94374 3 3	0.000
9059	1.0940\%12	-0.937205	1.8003101	0.000
102	0.0777735	0.7932000	1. 3 206\%10	-0.004
103	0.0877476	1.0012330	3, Be7C0.34	-0.00
504	D. erenetw	-1.0150503	1.8233605	0.007
gosi	0.374516 .4	1. \#cabyen	1.236 c	0.030
90.3	1.0032715	-2. 34785083	5,80443585	0.002
30\%	-0.00233Fa	- 0 - 016para	1. $\mathbf{6 6 6 5 5 5 5}$	0.018
9074	0.0440177	1.0394200	1.8E71352	0.013
sobe	1. 003esat	0.0094138	3.9507764	0.021
9073	-0. Cheve3sh	$-1.3540745$	1.816719	0.035








0． $344,4.568$
0.04077834
0．9704691
－0． 873.31 .14
－1．0476350
1．0776053
1．0854800
1.05963313
0． 07 H204，${ }^{\text {a }}$
0.11 ce．77
－1，0148109


1．7203410	－0．002
1．84）3483	－0．00\％
1.79459705	0.001
1．724．59\％	－0．002
1．772esse	$\cdots 0.001$
1．7641203	0.006
1．858744：	－0．000
1.8043634	0.005
1．3535bad	0.603
1．0500319	－0．criz
1．805，0\％2a	－0．02e
1.7851721	－0．008
1．7300483	0.010

Y PARALLAX BTD ETAR $=0.011$ HA AT PHOTD SCALE
fotntel Ma gan？

PT ND	H	$Y$	2	Y PARFLLAX
4858	0．00coon	0.0000000	0.0000000	9.000
4 ART	1．00000s	0.0073556	－0．0018324	0.000
8804	0.024585	0．90009372	1． 7838050	0.002
5826		0．6．1420	1.7389770	－3．005
2803	－0．0113F47	－0． 2511973	1．73EPE642	0.002
5074	1．06127420	0.7083056	2．736669\％	－0．003
H8\％5	0．3907358	－0．61976431	1．6493423	0.007
687	1．04003st．	－0．¢796．0．03	1．7198993	－0．004
8871	$1.0331 \% 64$	1．06C5735	1.7640861	0.037
cter	0．0275203	1．1968550	$1.793{ }^{\text {P }}$ NP8	0.021
3872	1．622．26\％ 3	－0．0165921	1．6717638	－0．0n5
588\％	－0．06．43454．	－ 1048585	1.7309447	－0．003
4883	0.0311935	－0．394n398	1．7353456	－0．007
52373	1．007203＊	－1．10032\％	1．74888009	－0．033


PT 50	$x$	$\checkmark$	$z$	y Paralliax
4837	0． 00300 cm	0．bonomot	0.0000000	0.000
4385：	1．00rounh	0．OPERST4	0.00014 .73	0.000
3874	0.04359001	0． 750 cos 3	1．7きコうら兵	－0．000
8376	－0，0174571	$\cdots \mathrm{O} .1004 \% \%$	1－64420x3	0.000
1878		－0．6789：70	f．7157983	0.003
ctat－4	9．34ne748	6． 3 St mes	1.7473899	0.000
3006	1．0976540	－0．164R647	1．709aras	－0，000
gask	1．1737449	－0．E．392397	1.720 .5354	D．001
507	0.31 .22150	－0．67m943	1． 634985	－0．00E
5\％	$0.923300 \%$	1．0771477	1．7260040	0.003
	1．1113449	－1．0159734	1.7538106	－0．030
887	0.0162569	－0．0172740	1． $\operatorname{cec} 4108$	－0．600
48913	0.010 erea	－1．093mada		0.008
81362	1．oresaza	0．0020893	1．70terex	0．005
gici	0.015 2xm	1.08183941	1．7554712	－0．035

$\because$ PARALILAK STV ERR $=0.018$ MOM AT PITITES SCALE

> Honel foll Rexit
$\qquad$



PARAKLAX HTO ERR $=0.014$ M AI PHOTO MCALE
MDTEL ND BARE

4331	0．00nomon	0.0000000	0.0000700	0.000
4895	1．00¢00\％	0.04023171	－0．0146470	O．OUC
203t	0.04271 m	1．1015154	1．6074．554	0．002
23it：	0． 12.56 max ．	$0 . \mathrm{Echensit}$	1．57804ia	0.605
2818	－0．12515 $\mathrm{Sa}_{3}$	－0．5031006．	1， $1.90740 \%$	0.00 ，
3078	0．sbiures	3.0850031	1．6039\％7	0.003
（140\％	1．0394，234	0.1372583	1． 59.1578	0.003
3 com	1.1346 .371	－0．63734393	1．704517 ${ }^{\text {a }}$	0.000
3744	0． 53159378	－0． $315 \mathrm{ECS3}$	2．CE03142	0.001
906		0．40\％Y767	1.5375047	－0．002
510	0.268 .3297	－0．47462 28	1．Emgamil	0.0013
3501	1，077892	0.7764346	1．5867627	－0．002
320za	2．05izzeen	－0．76atint	$1.7179 \mathrm{al4}$	－0．001
2032	0.1120063	0.069562	1． 60 ¢739	0.002
3811	0．04：49\％	0.3015083	1．5616047	0．013
9073	0．6776E00	0.9717540	1，6007634	0．020
380	1.0003304	0.1538831	1.5976115	－0．0．03
8813	$0.08 t a t m y$	－0．2074865	1.7463101	0.010

$Y$ PARALLAX GTD ERR $=0.003$ HWM PHDTC SCALE

PI Not	$x$	$\checkmark$	$z$	Y fatallax
4 Han	0.0006006	10．0060¢ก0	0.00000006	0.000
4879	1 －Donema	－0．03\％ $0^{0011}$	0.0113135	0.900
3078	－0．0nesitil	0.3073671	1．53538．73	－0．000
3805	0．05P53？1	0.0247180	1．4452503	0．001
38 CH	$0.04408181{ }^{\text {a }}$	－0．7e79467	1．561．3468	－0．000
3over	O．EEDO3\％3	0.9 Pasec 5	1． 5309463	0．002
B790	O． 7304593	0.230054	3．58．5n78	－0．003
g79］	O． 510075	－0．36．7．7cci	1．59wns	0.003
5084	－0．0473474	0.33 armeo	1．5393＊）39	－0．000
511	－ 2410404	－0．entsizor	1．55931386	$\cdots .0 .001$
8791	1＋0640787\％	D．semsua	2．570458？	0.000
\％\％9\％		－0．3tindekat		0.029
grat	0.055030 ck	0.0440355	1.4319900	－0．000
820：	6． 0704855	D． $2 \times 0 \mathrm{n} 76$	1．5033¢97	－0．000
30s． 3	OnSE010：3	0． 2182937	1．Secsisi	0.013
9753	1，053200	－0．0393822	1． $\mathrm{moghrat}^{\text {a }}$	0.016

V FARALLAX STD FRR $=0.012$ BHF AT PFOTCI EAPLE


PT Nㅔㅇ	$X$	$\gamma$	$z$	Y PARALLAX	
沵下式	D．Drowaria	O．0090000	0.00000000	0．000	0
4 4 64	1．0000013	0.02084640	0.01160004	0.000	4
1834	－0．12）cens	D． 31548 yc	2．7700134	－0．0206	$\xrightarrow{+}$
	O． 0 W5A5 57	－ 0.01534739		0.001	
尤成施	C． 19.9 GALE．	－0． $3^{3} 4 \times 4.35$		0.012	
890\％		2．74505\％	J． 7847755	0.001	
36ate	1．biscilic	D．G7FAPJG	1．3 3aryocs	－0． 00 de	
13648	O． 7 H0athe	$-1.035 \sim 160$	1．7285 100	0.001	
304		－0．79244083	1．74．37100	O．502	
0230	0．054－4ack	－0．79976106	1．7759774	－0．025	
（5）17	－0．0cialsme	D． $72 \mathrm{ccs}=106$		$\cdots 0.006$	

RE4 1
줃． 0.7
54
新 42
5T0

> 1. 15604, $1+051615$ 0.025025 $0.953+160$

 1．716there
773 y 1． 71355445

### 0.5025 -0.014 -0.029 <br> $-0.019$ <br> 0.001

$Y$ PARALAAX BTD SRR $=0.017$ MM AT FHETM DCALE

		｜nalctic rit 5455		
PT fult	$x$	$Y$	7	Y FARAELLAX
48c．7	6．000000\％	0.6007000	0.0200006	0.000
48 C	1.000000179	0.0741985	－0．009 ${ }^{\text {ches }}$	0.000
3508		G．7441127	1．76924445	0.002
『gat	O．0E90gita	0． 01670705	1.7078083	－0．004
585		－1． 7 \％ 26.56	3．76471195	0.001
$8{ }^{5}$	O．${ }^{\text {anaju }}$	0.7624516		＊0．000
Prst		－0．3abchis？	1．6899157	0．005
7ESC	0.7601044	－1．0cti 70Fris		－0．002
505	0．5\％⿹\zh26灬cill	0． 888585	1．6885499	$-0.000$
如気	1.0394603	0．74Fthre		－0．006
2551	1．0742t75	0.9717597	1． 68811448	C． 004
3653	0． $5 \times 24435$		1．${ }^{120} 4707$	－0．024
发64，	－0．01177第	0.60 ¢9954	1．67934491	－0．018
88.41	0.1570775	1．04ПE．0n	4.3555083	－0．0．01
807	O．	0． 3976.347		－0．003
texsct	5．0049385	0． 059778		$-0.000$
28．43	0.0481473	－1．0721023	1．＊－ 236671	－0．632


WHOEL F HO ESES

Pr	h	$Y$	2	Y PARALLAX
4865	6． 0000000	D．roburng	$0.0000 \% 00$	Q．O00
48E免	土 00060n	0.6370547		0.000
빈ํa		0． 73960 Cb		$\cdots 0.005$
865	0.0704059	－6． 1 2．39165	1－6694433	－0．007
745	－0． $11 \pm 7377$	－1．cispinso	1．7RORE5020	O．tocie
30ar	O．Righern	0.6010353	1．F9， 78098	－0．007
3065	1．653 itos	－．G3160Es	1．G4DJF07	0.004
SEES	0．35c－2cse			－0．002
506	0.0157534	D．755tk	1．6．3863等定	D．004
jort	0． $276+6$ spry	O．539156，	$1 \times 61578$.	0.008
：${ }^{\text {cta }}$	1．0340006	0．3004504	1．601473？	－0．001
$\underline{8}$		－1．035Ex35	1． 686.14479	－0．029
866	1．007esyas	0．Ontiven	1．${ }^{1} 407304$	0.003
Esfor	D．06，7e7	0． 0 ¢rame 0	1－6ssone？	0.005
34st	0． 04832035	0．30r7］ity	1.55047 .33	$\cdots \mathrm{O} .006$
边近 3	O． 8758 c	D． 5 FAS4㐌		－0．009
3653		－1＊0158517	1．27150794	0.006
	$Y$ PGRAL	WR $=0.012$	170 Ematat	
FT NSL	$x$	$Y$	$z$	$\checkmark$ FARALLAX




Y PARALZAX STO EAR $=$ OLOJE M AT PHTNO SCALE

PT MT	$x$	$\gamma$	$z$	Y Parrallax
48 O	0.0000000	0.0000000	0.0000000	0.000
4aty	1．0000000	0.0457407	0.0035023	0.000
8゙禹	0.03180338	0.628 .19770	1．7531007	0.004
3706	－0．1331830	0.0007002	4．7956．493	－0．003
3708		－0． 3638003	1， 3355324	0.005
crat	1．23r0330	0.5472000	1.7425077	－0．C01
8716	4．06．23al	－0．0．03147	1． 200535 ？	0.007
87．03	0．80rsizes	－0． $35.74{ }^{4647}$	1．83\＃207a	D． 000
$3 \pm$	0.3964000	－1．1534054	1．79763．99	－0．009
50 A	1．enatures	c．9u47and	1．7429514	－0．00s
［3711	1，iomeres	1．MEPand	1．72，969\％	0.001
8713	0.3435040	1．0171囩云	1．8414．930	0.021
5702	0.0518354	c． 013 BO 7 za		0.0173
B\％01	O．1005」E゙	0.595 .7340	1.7013742	0.012
皆438	－0，Datyasa		1．7774470	0.000
日\％15	0， $38 \%$ \％3n	0． 10988727	1．7257963	0.016
8703	－0．026115：4	$\cdots 1.600469$	1． 8.3855	－0．014
－MEIELS NIt 7170				
FT M	$x$	$\gamma$	2	Y FPRRALLAK
4 er 1	0.000060	0.0000000	0.0000000	0.000

$$
\therefore=
$$

$\begin{aligned} & 1716 \\ & 718 \\ & 120 \\ & 3726 \\ & 1728 \\ & 509 \\ & 5721 \end{aligned}$




mendel i4n 7273				
PT WE	K	$\gamma$	7	$v$ frifaliax
4872	0. 000 MMO	0.0000000	$0.0000 \%$	$\therefore 795$
4573	1. 0 coskxon	-0,0075055	0.0006 : 7	n COH
E823	-0. coecrese	0. 595coss	1.737.7.2	-003
97as	©, O9EAR774		1.87लa: 16	$3+014$
B7en	-0.1051930	-0.751608	1.8547 7	4.3.00r
3818	1-13009m9			- $0.60{ }^{\text {a }}$
8736	0.2738974	-0.0406074	1.3756ede 4	0.00 .2
				9. 505
314		-0, EBFO147	1.874030	W. $20 \%$
9\%3.	0.34325010	0. 097973		O. ERE
3739	0.3176354	-1.075654. 4	1.850r	-0.002
5723	6.0.776459	0.1007783	1. 1.657 - -	$0.60{ }^{-6}$
8123	0.1620076	- E5ETE50	1.850ti	0.6013
3731	0.629545 .8	0.86417 F	1.725 ...	0.005
97n*	1.0056911	0.0476080	1, $27{ }^{\text {a }}$	C.0s5
8723	O.01 2 2-35	-1. DiPesmit	1.85:	0.059



519 \%	$x$
4873	0. 000000 m
	1. 060000005
761818	$0.183630 \%$
略738	
$\mathrm{Al}_{7} 44$	0.3776 .350
374.	7-21'31343
crata	3.04555170
540	O. mercric.
-it 4	9. 2 2030511
8741	$0.530460 \% 1$
97478	1.0511514
8ソ ${ }^{3}$	0.0430044
673	$0.007771{ }^{3}$
203, 1.7	$0.40 \mathrm{HzCa}_{4} 1$



$\gamma$	2	Y PARALLAX
$0.60000 \%$	0.70) $\sim$	Q.ive
- $0.0337534 ?$	$\cdots$	0.060
		O. $0 \times 6$
	$1+9$.	-0. 5237
-0. 04.7420	1. C \%	0. 20.2
0. ${ }^{10211295}$	1. ${ }^{\text {a }}$ : 17	$\cdots \mathrm{O} .1207$
-0.04377+0	4. B Pas	O. 30]
	1.- ${ }^{\text {a }}$ \%	-0.60)
0.73744514	1. $\quad 172 \mathrm{c}$	$\cdots 10.108 \%$
	1. 2 , S 7	12. 3 d, ${ }^{2}$
$0.31 \mathrm{Fta}+43$	1. तt..6	$0.00)_{1}$
-0.91\%3005	1.tans!	Q. 013
0. $0 \mathrm{Kr} \times 1067$	1 - ${ }^{\text {21 }}$ -	0.010
0. 3i*ematy	2.19	0.01 .1
	- . $700^{\circ}-1$	-0.063



Y Prtithtax






P7＋4，	$x$	$v$	7	Y PAMALIAX
42940	0.0000000	0.0000000	0.0000000	0.000
4341	1．coronem	0.06543 Sa	－0．003604．	0.600
3678	0.0974385	1． $0003 \mathrm{~A} \times 15$	1．E077E0\％	$\cdots$－0the
8445	－6．062AEs ${ }^{\text {c }}$	0.2389843	1．6418G75	0．05］
8408		$\cdots$－ 71 A ¢fas	1． 6455548	－0．0．01
TCrat	2．Sc－ustre	1，036，7942	1．Gzerss81	－0．010
3ヶ16	0．3E．7369\％		1．6．5푹ㄱ45	－0．004
g418	1.0181505		J．E4EMPR	0.001
84を1	0． 3541488	0.3494354	1．62440595	0.015
84.3	1．0313157	－0．55当1788	1．645400\％	0.007
2403	0．Oexorat	0.0963342	1.64337841	－0．001
8501		0．Wester 10	1．615P445	－0．01？
C873	$0.1445 .71 \%$	0．937549	1．EOPC718	－0．010
34 ta		0． 3 アก74 78	1．638\％789	$\cdots 0.005$
840）	O．129065i	－0．462．32．59	3．648ctex	0.017


PT NAT：	$x$	Y	$z$	$Y$ PARALL $A X$
4841	$0.005000 \%$	0.0000000	$0.0006 \% 00$	10．000
	1． 00009000	－0．0ç55，43	－0．0015s7e	0.000
d5tb	0.1507743		2.6368759	－0．001
3416	0.0068231	0.34210 .35	1．6472379	0.002
TA18	－6．058649\％	－0． 6 － 2 －	1．55719兵	－0．004
cextig	5． $056364{ }^{3} 1$	0．3E4，1577	1． 6.400050	－0．0n0
84 Cos	0.372303	C． 0015965	$1.6434+17$	－0．005
14．${ }^{\text {\％}}$		－0． 5 ¢ ¢zata	1．64773\％8	0.000
312	0． $3 \times 3 \times 54$	1．0564327	1． 5037285	－0．003
旡を	1．0378933		1.6429 gets	0.001
513	0.06 .15113	－0，53g3aj	1．6500126	0.000
305		－0．5053055	1．5540R0S	0．0．05m
9402	1＋08．EREうに	0． 5514343	1．640 13318	Q．0624
84875	0.9179390	$\cdots$	1．6495393	0．005
8412			1．6533380	0.005
9411	0.0744500	0． $08355 \%$ 2	1．6414423	－0．005
0603	C． 7 T53613		1．$\frac{81679}{}$	－0．013
9423	1．04E1506	$0.1664^{10} 7$	1． 4.451450	0.011
2413	－0．0460973	－0．Ex－stas	1．6577574	－0．000
MMSEl． 5 K）4E4．3				
FT NKO	X	＇	7	$Y$ FAARALLAX
$434 \times 3$	T，K000000\％	0.00060600	O．O0\％\％0\％r	0.0 an
4 Ba 9	． 00015000	－0．03057c1	－0．0104432	0.000
cring	－\％－0ntris	0.9104010	1． 592005020	－0．006
3475	－0．05753m，	0.0359181	1．611430k	b．006


3425	－5． 231.3707	－0．452\％oma	1．621pers	－0．003
8705	$0.95 \% 7675$	0.1034835	1.5747874	0.005
54.38	1．043nctis	－0．0eseoh 7	1．554537．30	－c．009
5435	0.997565	－n 6．terma	1．6102333	0.005
51a	0.0656463	0，6．37）	1．6043¢71	0．0064
513	$0.03174 y$	－9．477m4	1.6279593	－0．00t
84.31	1．0040345	0.799313 i	1.5732415	－0．001
84.33	－． 3953085	－0．6354036	2．E118077	0.005
84 롤	0.0376013	0.26 .7 mas 7	1．E107abl	0.010
8424	0.0145467	0.3787393	2．59314．18	0.009
8693		0.8763514	1． 5340600	－0．005
84.30	1．0484959	0.16 Fete74	］． 5988 sc 10	0.003
84.2 .7	－0．035，2793	－0．9486743	1.6336373	0.003



HT Amo	\％	$\gamma$	2	$Y$ PGAEALILAX
4843	0．00nopeo	0．00theoc	0.0000600	0.0001
$4 \mathrm{Pr}_{5} 4$	1．000000	－0．02594735	0.0073442	0.000
B7C8	－0．031076．7	0．357483t	1．6i4151E	0.001
2436．	0.0374667	－0．049aris	1． 6.156100	0．001
843	－0．003 4115	－0．6072393	2．6333470	－0．00\％
8718	0.9 T 056.31	O．Sterate 7	1.6025743	－0．006
2446	D． 567615	0.2008759	1．6009bas	－0．906
24－8	0.8614588	－0．7403560	1．600324P	0.000
313	0．7\％3t3393	0． 6854573	1．5710736．	－0．006
8713	1．0．93\％ 1857	$0.815 \times 727$	$1.610{ }^{2} 160$	0.0 .0
2443	0，5690604	－9．7057398	1.6284499	0.005
8433	0.02 c 57 m	0．17009RS		0.005
9431	0.0475517	0.323 ¢ajea	1．6141607	0.017
8703	0.1305689	O．2037857	1．6．144138	0.013
94423	0． $383747 \times 1$	$0.072 \pi s 74$	1．E2eome 34	0.010
843.3	－D．oesosos	－0．6．2300さ7	1，633973？	－0．0．1



－1 MS	$x$	Y	2	$Y$ PARALLAX
48445	D．nomomat	a．bormem	0.0000000	$0.00 \%$
4845	1．0000000	0.016 .4455	0.0024433	0.000
E713	0.053541 F	2．0106793	1．6072190	0.001
2425	－0．0 2－3xas			－0．003
8448	－0．1176314	－0．7307694	1．647900\％	0.001
8788	0．9006729	1． 14985073	1，6374203	－0．001
2456	4，02739\％5	0．0．724？ 37	2．59as30y	0.009
84.53	0．9ntw 3 \％	－0．57e31边	1．610．teas	－ 0.001
87e3		0.8910486	2． 54000733	－0．010
8453	1．01．209\％	$0.7310741^{34}$	1．650wne3	0.017
8442	－0．015c．g7	0.10 Fici4	1．EaEigal	0.013
8713	0．Ureatick		1． $6.55-1988$	0.00.
8484	－0．DOV7arin	－0．69\％2478	1．659ak7	－0．03A
분댈	1．0082ヶ7\％	0．036：848	1．6．14C34	0.007

$Y$ PGRALLAX $\operatorname{GrTO}$ ERA $=0.033$ MN AT PHOTD SCALE
$\qquad$

Morest Hus 454t

PT res	$x$	$\gamma$	$z$	$Y$ Patamilax
4845	0.0000600	o．comomos	0.000000	0，000
4 tras	1．0000x\％	0.076		0，000
ater	－0．133373	1．tismay	1．634732	0.000
34 SGG	0.04693008	－0． 017 max 4	1.5744168	－0．002
345	0 0．040693	－0．57035\％	1．5838gica	0.001
8738	0.8549 \％e：	－．20577310	1． $505+409$	O． $\mathrm{OCH}_{4}$
gace	1．010634\％．	0.0035185	1，conome	O．cor
3468	1．020127a	－0．54r3me	1．59577\％	$-\mathrm{Dr} 033$
3.7	1．123am49	－0． 444600313	1．596．72ea	C．002
246：	0． 3760030	0.3708568	1.6124434	－0，003
84103	3．14E3075	－0． 7519731	1，59713073	0.015
845		0.6393087	1．5177537	0.509
878	0.0008376	0.33403335		0.014
8733	－．socants	0.0061 .15 .4	1．6117395	－0．012
ater		0.1936000	1．60e5070	0.004
9453	0．0saspar	－0．7636503	1．6ist80e	0．005

7 PARALLAX RTD ERR $=$ Q． 010 MA AT PMBTR ECALE

		MOLPE Wh HE47		
PT ${ }^{\text {P\％}}$	＊	$y$	7	Y Parillax
4 4 46	0． 0 cocomen	－． 0000000	0，0000000	0.000
42 A 4	1．006006n＇	0.0231070	0.0035393	0.000
8738	－0．16mbass	0．7esse3	1． 6763173	－0．000
3465	－0．045e764	－0．0728589	1.6777765	0．ceo
84ea	－0．0440503	－0．044839	1.67317 mb	0.001
8749		0． 0.770994		－0． 004
［1475	0．9732036	－0．MEAFAA	1． 69314.34	O，001
［4478	1．Cetressia	－D．aselaj 3	1．58388740	－0，000
317	0.0535 cm 21	－0．54443044	1．6773710	－0．co2
8471	0．340533＊	0． $74 \pm 2 \mathrm{Ca} 5$	1． 5964893	0.005
8473	1．0059587	－0．0333095	1．EBCTIE：	0.008
840			1．673316．	－0．cos
34.1	－0．0．0．31232	0.93 mata	1．6380037	－0．006
¢7a3	0．31tabrat	0.3139144	1．685P367	－0．021
847	0.56 .9442045	0.0513384	1．Ercanas	0.010
arss	0.0567653	－9．06．1535 ${ }^{\text {a }}$	1．473120）	0.007


NORTR NO 4748

PT NT	$\check{\chi}$	$Y$	$z$	Y FAIALLAEA
4847	D．Onmonm	0.0000000	0．0000006	0.000
	1．00noun	0．02EA 385	－0．00eras	0.000
可积	－D．cedtucifo	－． 3 ¢，7extis	1．7044047	－0． 001
3476．	－0．00゙3try．	－0．tuenay	1．7104709	6．009
BATL	$0.06305 y$	－0． 24.27204	1．71481部	－6．120
3759	0.8043831	0.65046319	1．7064593	－0，014
34，${ }^{\text {a }}$	3．Cotther		3．713773e	0.060
24as	D． 2156759	－0．0．316157	1．719ast5	－0．002
315	0.3512 kc 44	0． 2 ¢naters	1． 7 OEAE ${ }^{\text {\％}}$	0.000
J 58	D．E－96GELS	0.213 man a	1．7129P？${ }^{\text {\％}}$	0.000



1.7075924
1.7117854
1.9117863
1.7415047 1．7041306 1.714 .7841
 1．71E．4ヶ7K


##  <br>  <br> 4601／1978

			11.110						
FT Wat．	$x \geq$	13	$23^{2}$	$x 1$	Y．	21	VX	$V Y$	$v 7$
4911		b0．0176458			＋0．0169704	40．0．31c337		＋．784E－0．4	4，1 O2E－04
4910		10．67ES1析	40．0091540		－01＊3				
3114	$10.585 \times 76$	＋0．8743417	＋1－53 Sirgra		20．28724040	4\％S 5 5F345	－．1045－04	－6．54E－04	
		＋0．10¢4．55，			＋0．10\％imis	1.5905434	$\cdots 595$	＋．7415－04	－${ }^{\text {PTEE }}$－04
3118		－0．371．7：318	＋1．5714779	1．］．c大巳tars		＋1．57125：${ }^{\text {ch }}$	＋．2845－04		＋． $442 \mathrm{C}-5.3$
3104		10．Ersighac．	＋1． 5.45 taT						
910	41． 5054510	＋10，6373104							
910\％	1，m569900	－0．3389776							
3 m 2	12．DJateres	40．moteres	＋1． 585						
9101		＋0．407EEN	41． 5468473						
9163		－0． 309155	11．Suthery ${ }^{\text {ch }}$						
3113	＋1－7595174		＋1－Edatoti		－1．0567593	4］．5601783	1． 7 TME -04	－E．10E－04	－ $395 \mathrm{CO}-04$
\＄111	10．970\％613			＋0．970．39，1．3	＊0．E95nt 1 t	＋1．833ntis	$\rightarrow 31$ 돚 04		
\＄112		＋C． 0 ceant 74	＋1．57at5iri	＋6． 907 －6\％		＋1．57e3 5ipl	－． $26.75-64$	＋．4135005	＋．उロex－－
1209		40．606846rat	11． T ¢00745：						

StoMA


险 N．	$X{ }^{\text {e }}$	$\mathrm{V}^{2}$	23	K1	$\gamma 1$	21	$v x$	VY	v2．
4316	41．305＋35， 40	＋17．03¢5414	10．049 \％${ }^{\text {2 }}$		10．0．42．5185	＊0．0493948	＋． 7 Ef 或－05	t．E37t－04	$=-3{ }^{-14} 5 \cdot 04$
4＊＊＇s	4ア．j7\％ 170	＋6．0Eलg7）	＋0， 67338215						
31010	＋1－\％rtarsiou	＋0．Rewazis	11．5457\％）？	11．87atists	＋0， 1503874	14．54．7007	－12．9F－0s	＋．57314．94	$\cdots-37854$
9105	1］． 56584510	＋0．037．3417		61．Fificario	＋0． 6.173104	＋3．56，7r3al4	＋． $10076-04$	＋，31，限－64	
spor	1） 5 E6732．74	－0．33reast	41，543\％5 5c	4． 1.867940	－0．74738710	＋1，5t5s900．	$\cdots .165{ }^{-104}$	$\cdots+1 \frac{1}{\text {－}}$ 的－03	
50.34	＊2． 7770264		11．534ntem						
		＊0． 260784			＊				
कn）${ }^{3}$	＋2． 5 crayc．7）								
361			－1．Exancla		16． 2007783	＋1．55rese4	－．347E 0\％	＊+16 EE －04	－．${ }^{\text {ces }}$ 可－07
9091	＋2， 713 F	41， 0 P3m 4 \％						＊，1kneon	－
$5 \times 93$	＋＊． 80.371931		＋1．55174ic）						
97 ca	＋1．231479n	＋0．OGEzEx：3	＋1．5C0 25.45	1．9．6314．04，		＋1． $5060074 \pi$	－．Tiporen 04	$\cdots$ 13大E゙ OJ	4．153哭－03
9103	43． $30 \mathrm{CH} 4 \times 7$	－9．9P95tisiz	＋1．5xdets			61． 58.00645	－．18F\％－04	$\checkmark 410503$	－501E－${ }^{\text {－}}$
3 xal	＋3． 25 ct．4711	＋9．90734340	＋1．54tenese			＋1．54624／7	＊7 7ereren		－101F－63
5643	$13+803065$	＋0．106E1\％7	11．56．04，mit				＊＊だ寺	－¢	－．」U2F－0．




50934	
\％0\％	
＇09\％	Traseratilo
9018.4	1．7．4－24．735
$90{ }^{\text {ch }}$	＋3．605s．343
20atis	＋3．7741278
3 m	
9081	＋．1．51．156\％
5083	133．5096rat
30＂3ie	
30＇si1	
－${ }^{\text {ande }}$	13．5454913
$30 \times 1.3$	$44^{3}+503 \% 1330$



42．754．9645	＊0．165171\％
1．7． 54.478	－ $0.3558[449$






10．10ERE177 v． 12 ） 3545
－Q．M24？EN1

	－5rek	$-{ }^{\text {ancoch }}$	
			＋ $71+154$
1．	＋．13E O4	4 C	


1．56， 4.787	3 \％ 05	4．${ }^{4} 5635004$	
＋1． 56947635	$\cdots$－2REE 05	－． 160503	＋5EOE－04
$+1.5517439$	＋．12776．04	－． $4975-05$	7 年



FT NIT．

430	＋3．5674．430
4907	14．39ande 7 ？
Pbrat，	154．453436R
9ure	＋4． 60513433
00123	1．7．7730327
3074	14．3317554
307 76	
3075	14．61EAT31
F30	13．Enel ${ }^{\text {ateo }}$
\＄03	
15）	6A．Thesatuch
504	4．5－74172
Wr？ 1	14.3578051
907\％	44－．30464．806
「以世边	13．5465182
35\％1	
$907 ?$	14．3364863
50\％	





71	UX	U＇	$V 7$.
$+0.0833474$		－．1093－0．3	4．312E－04
＋1．5443） 827	－， $660 \mathrm{OE}-05$	－，至框－05	1． 23.1503
＋1．597914，39	＊．204E2－04	－．1045－0．3	＋． $\mathrm{e} 40 \mathrm{CE}-03$
＋1．5975107	$-.350 \%-64$	＋．玉1代－03	－．503F－07
41．SExargas	＋．154E－04	－．54， $\mathrm{HE}_{5}=04$	4．12846－07
＋1．593076t	＋ $27755-64$	$\cdots$－М1®\％ $0 \rightarrow$	－． $134 \mathrm{FF}-0.1$
	4－83可：05	－－2aticb	4． $2955-03$
＋1． 5484372			



P7 Po．

43¢
30
20\％
成75
53064
206．8
102
02
50



9061	13．115284くら	11． 3 Futses 23	＋1． 15.313144
5xa 3	－5．15x－7024	－0， $75 \times$ Culig	
5072		40， 140 OH15	
8074	44．35771 ${ }^{\text {4，}}$	41.012 cms \％	
90\％${ }^{-3}$			11.720 .150
勺ゆア」	44． 5 ［54．24 73		

$$
\begin{aligned}
& \text { 14-Mrimike } \\
& \text { +A. Ti Búsul }
\end{aligned}
$$


－U．Ur•31 972

11，E45li 78		－ 100 cit 03	F． 1
	4．790 0 N	$\cdots$－SFE O＋	$\cdots+10350$
	－ 300 Ec 04	． $7 \mathrm{MrO}^{\text {a }}$	



PT N0．	W2		2 E,
4ES3	40．3590928	＋0．0077870	
423tis	12．99xicher		
－${ }^{5} 54$	＋1．609 Arast		
	13.00500 .44	＋0．00432	＋2xハ1アj） 76
उthes	11．07\％4736	0．\％ncatari	＋1． H ［6efrsin
	12.0097347	10．23sfurc	
割极	1.3017345		11．En3 3 35
SECs	＋3．07505 57	－01． 3 な 6 965	
$51 \%$	19．2331055		＋1．774．45．
3108	6．3．46athte 6		－1．7意广「17
502	12．072：7619	\＄1．05129x\％	11．85ccatict
T83\％	60． 3 \％e 34.77		＋1．0031 15\％
2yiva	＋1．0029597		＋1．Sechiar，
Stust	＋r＋．01J JR11		
¢93］		＋0．073Gus	＋1． 2083575
		＋0．111そ2！	
	＋6．0charical	－1．01716．74	



FT MO．
9res步
Absi
 Tr85
 12514
$185 / 50$




Ex． 5

X2	Y1	21	$v \mathrm{x}$	VY	W2
＋2．0030515	10．0077 204	＋0． $000 \mathrm{grg7}$		－ 9 －3tic． 08	－ $1 \pm 4 \mathrm{E}-104$
－2．04， $\mathrm{ifCg}_{4}$			4，34EEO5	4．E3EE（\％）	
		＋1，812．734	－5EDE－08	－． 105 ELE － 94	－E．TF O4
13．077473．		＋1，7807160	－15惰－6E．	$\cdots .33 \mathrm{Fr}$	
		＋1．74\％99\％	－30， $00-04$	＋ 242 Ec －03	
41．072tcise			4．2258－54	＋ 3 378F－U7	＋．56， $6-0.3$
	$\cdot 1$. cetiesta	＋1．8033918	－${ }^{\text {4．3eE－04 }}$		
1\％．03．35\％	＋1．0513F43		－，JCFE O5	$\sim .403 E .494$	$\cdots=\cos 3 \times 514$
10．9673215	40．0733775	41． 20823740	4．482E－05		－6SEE－0\％


X1	Y1	Z	UX	VY	$\cdots$
41.95358046	－6．01272at			－．61Ex－94	
＋2．0639343	－0． 93518084	＋1．8心13447		＋．775E－0\％	＋．364x－47
＋2．93． $7 \rightarrow 4 \times 5$	＋0．0．350931	＋1，＋009 1735	－． 14.3 2－65	－chfte－04	
＋1．3F5ustit	－0． 57 ctibs	＋1．73n 7641	＋E9NE－05	＋，ABEIE OA	$\cdots$－ 2794003
5＊－6t15010	41．FJ3Erat	＋1，8cisj 5027	－ 272 Cos		
41． 3 2104647	10，1112 ${ }^{\text {chbo }}$	＋1．730asts	＋7 7actich	－，317t 04	－6， $24-04$
	1． 0.1515 .74	＋1．79930494	1，吅E OS	$\cdots$ 64E404	




FT Mrs，	¢	re	ze	\％ 1	Y1	21	$v x$	vY	$v 7$
4730	＋3．0c．aver7	10．1023n275	10．005R205	＋3．06231384	10．623tute	＋0．0esenos	－．104E－G\％	－TCOEO4	＋ $174 \mathrm{H}_{5}-04$
	＋4．0F43204	＊0．047 E6．7	10.0254307						
90674	13.07 ctuch	＋0．8326003		1．3．07ticut	（1）Mesinis3	＋1．61．6mat	＋． 20 cre－04	1，8756em	＋－E儿EE－03
51875	17.0047612	－G．03E718E	＋2．7eswerici	1．3－0047iade	－0．0．5eketa	＋1．7203537	－．154E 05	－ 030 E O4	－155或－05
18\％	ta．0573851	－0．6801445t	12． 7 \％nema	1．7．0574 ${ }^{\text {a }}$	－0．69320．5 4	＋1． 29003838	$\cdots, 270404$	＋，号）岳	
	44．0037345	＋0．33234477	19．83347931						
	14． 11.31896	－0． 306 paz 7							
2essi	＋4．2E5cher	－0．716092us	1． 2 acoekl＇						
$5 \square^{517}$		－0．60354．20\％	＊1．7elatic：						
96\％1	13．974 48.95	H．11mest	－ 2.817 .74514						
3anc		－1．0463029	＋1．82ensta						
98373	＋3．040， 4.74	－ 0.02734350	＋2．744 3 \％ 6 的．	43.040 .464	－0， 0604164	＋1，7442702	$\cdots$－647E－08	－193E－04	＋．3758．04
20473	13．03443．71		＋2．817\％ex	43.3043 mbs	－1．35abla	＋1．81773en	－．193E－04	－．1201－05	＋．1065－0．1
3mes	＋4．11E9394	＋0． 1637238	$41 \times$ 7excs 63						
Harl	＋3．0441295	＋1．1037021	11．3－4494397	＋3．0481\％ 70	＋1．104000	＋1．9445855	＋．1906－94	－．TEJEOS	
PTors．	xp	Ye	27	$x_{3}$	Y1	21	$v x$	vy	vz
43835	14.05047053	10．0410512	10．6nsemsit	＋4．0543304	＋0．04356\％\％	＋6．Centalo	－．156E－04	t． 3 3323－64	－．3SEE．04
4 Cas	＋5．03．37094	40.0654791	40．5．2295，54						
Sna	15．24397c3	＋1，2467367	12．1508473						
5018	＋5．277128P？	＊0．6364RTE	＋1．87354193						
235	P5．0034308	＋6．Or910at							
209\％		－0．E409712	41． 2.345435						
gexf 4	＋4．06972475	＋0．mizariva	$42+83 t 61^{2} 2$	14．0033419．	＋0．98599477	＋1．2349991	＋，60，	－． 767 F －04	－346E－0．3
gatas	14．1131737	－0．104492）	＋1．7374170	＋4．113tite	－0．105539？	11． 7874791	－ .15 mE －64	＋．377e－04	－6．025 +04
astis			＋2．8031085		－0．7105ala	＊＋ 2006647	$+.24965$	－116E－03	$+.444 \mathrm{E} \cdot 03$
9120	＋5．18657R6	14．142760	＋2．8369727						
47851	45.06 68891	＋1．3－343141	＋1．2944zerel						
9950：	15．0993．716	＋0．1037360	\＄1．734．2339						
74t53	45.1237065	－0．8613432	＋1．88440155						
1356，	＋3．9846869\％	＋1．114E5ES	＋1．7130660	＋．7． 2846454	＋1．1148597	＋1．2179594	4， 234508	－2a3m－9a	－ $5915-03$
8560］	＊4． $116 . \mathrm{sc}^{3} \mathrm{Ca}$	＋0．1033850	＊2．74cteren		10． 1098338	＋1．7836169	＋．10nt－0s	＋． 31 鳥－04	1．353F－03
3 max	＋4． 3 EVREOS	$-9.0471537$		14．180\％s：35	－1．046363	＋1．4250673	1．764E－05		＋．5725．07
32ぜす	＋4．315850．	＋1．2690548	－ 1.20058414						
PT Hols．	xe	ver	2tr	$x_{1}$	$\%$	71	VX	VY	V7
93535	＋5．03249331	192．0055174				10．03才35544	$\cdots .13 \times 2504$	1，3896－04	
frltior	150．12036．76	10． 108 Cl 416 T	19．047．298						
304	15．63514．70		＋1．6．3intoit						
	45． 24.30376	＋1． i $^{2} 154759$	＋1．SMyPifus		＋1．enteras	＋2． 10001479	1．19n5－05		＋． $6.50 \mathrm{CO}^{2}-03$
5iot			11.3334354		－ 0.0 .164336	＋1． 3354123	$\cdots$	1．सutk of	－ 10 ¢
52346			4． 21725459						


984，	4－6，1377617
dexty	
1385	
3110	
912p	
5041	
$8 \mathrm{CHF}_{4}$	＋6． 1459768
匂速高	1嗅，12th391
ES5：	
＋185	
935 3	＋5．12d756：
－¢ 〕 \％	

$$
\begin{array}{r}
+5+5 \\
+5 . \\
+5.1 \\
+5.6 \\
4+1.5 \\
+4.21
\end{array}
$$

$$
\begin{aligned}
& \text { +0.02gincs } \\
& -0.409711 \\
& +5.14 \% 760 n
\end{aligned}
$$

－1．74503tis	＋ 196004	－，1565－03	－22－3F－03
	4.1515 .64	$\sim 423544$	－－354F－93
＋1．415xjunt		$4.102 \mathrm{t}-03$	4.5435003
		＋301E 0.3	4，ATEECOS
＋1．70443339		－．77起－04	$\cdots 2185003$
41.8640153	－5hereor		

ATGNA $X / Y / Y \Rightarrow Q$. 万RE

丞 $\mathrm{Na}^{\boldsymbol{T}}$

42854
A12323
92127
9217\％
다난
3245
310 R
31 MR
단열
53
505



303：



$x 1$	Yi	21	$v x$	$v \gamma$	V2
＋7． 1598 mbir	40． 257185.1	10．050462\％			$\cdots-404 \mathrm{4}-04$
16．0．2ts 717	12.2070100	$1+1+580209$			
17－364 619	＋0．1 5ickjert		$\rightarrow$－143E O5	－DESH20．04	－2hratis
47．as．354．al	－．Suthou	＋1．92129593	+.115 E O4	－． 3 ¢0，	＊－ $23.3+-03$
＋7atajist	－D．Wraturis		－．\％hecoos	＋．	－
	10． 7 TE．4．4．7	＋1．B1RCJTi！	－－Ander ory	－1015－07	46，4803
		11．732．60n？	＋ 219 Fl	－4\％75－144	－TVre Oni




	Juncul		R3RH2－Wact
$\boldsymbol{F 1}$ mit．	Hiz	Yi	$\mathrm{Zi}^{4}$
43き2		106， $214 \%$ \％ 67	10．00s．icmes
6，3721		10． 10	＋0．04Fincos
3 9－36	＋ 4.1433 F 4 L		
29\％	48． 3191444	10.2 Prastic5	＋1．842094．0）
		－6．97．03142	
－304ts	18． 19.25543	＋2． $4 \mathrm{Nr}^{174 \mathrm{cta}^{3}}$	11．Piplesal
2435	1\％3715944		＋1．7192404
6th18	1：9． 11.178	－ 0.2 .2300108	
56，	15， 53.73604	15.3053515	
710			11．
なalt	＋19． 2 2013R172	＋1． 1.5242 F 3	
3nt3		－0．7．116936	
5 Sal	10.213 .34 .724	＋1．12．15421	15．74473574
2593		－6．7．77246．7	＋1．Extator
			＋1．7374
43672	＋9．3130014	10． 0.36 .6 .9477	＋1． $\mathrm{Br}^{2} 13$ H．4
915035		4．1．3．13513\％	＋1．76：3，209





吅 Mrio	$\mathrm{Xa}_{2}$	Yit	23］
4 4－3 31	17．Ex－x．ta	$50.39057 i 5$	
$4 \pm 5010$	410．30adoty	＋0． 7873508	＋6．nitlicaj
Sorts			
\％dy	＋9．771595	10．459357．14	＋ 4.770780
2thts			（1．crion 3tr
3078	110．1643775	11．463ituk	＋1．33735
－		＋10．45 $63134 x^{2}$	11．730314．7
EECTE	＋13．NESG72	－ 0.88 .05070	12．5000933
374．	＋7．06572－594	－0．0480．0．6is	
j06	418．1．3F9342	＋0．Ya 50.10 .14	
510	＋19．4249300	－0． $\mathrm{V}_{4}$	＋1． 15.4 .4 .10
3tatil	＋10． 315.1774	＋1．143titid	
2405	＋10．2877 545	6．Cintupazs	＋1，9106614
2812		40． 3 Sisurit	
¢519	＋9， $20354500^{2}$	＋5．15．15491	
3087			
7taz		＋0．4ntictita	
略13		9．71201 51	


$x 1$	Y1	2！	Vx	W\％	UY
	＋0． 2.304360	＊ 6.0431501	－ $1095-05$		－60¢EM
$4 \% .10$ atitish	＋1－42゙745is	42．8936441	＋n518⿷匚0．04	$\cdots 54480 \cdot 04$	－30¢E－03
4\％．	10．4834793	＋2．77514．54	1－156－05	＋1006－03	$\cdots$－1EACC．g\＃
		＋1．85900\％7	$\cdots$－5 3 迷 04	$\cdots$－12EE－0．7	＋，돚to ${ }^{\text {a }}$
			ヶ． 585		
	40． 7 －${ }^{1347155}$	＋1．7973860	＋．40235 0.04		
	＋1．1514939	－ 1.7680900			－683515＋94
	－0．71．18865	11．382ctish			




1 Fr ＋6．	＊2
$4 \mathrm{~F}^{2} \mathrm{E}^{\prime}$	10．30．1040
$4{ }^{4}$	
3588	
TSTE	
	［10．46407］
364］	
だず矿	＊ 10.3501 \％${ }^{\text {a }}$
509	＋10．14：3chs
世11	＋10．6439：37
－7\％1	1.11 .415076
4.9	
［5\％ $0^{2}$	＋10．3E）${ }^{\text {\％}}$
2601	＋10．31518以
－ 06.1	
［＇s？	＋13．510073

${ }^{*} 1$

11.4640010
+0.45 Fin 4 a.
$-0.400 \mathrm{ES} \mathrm{F}_{7}$

10． 042150151 0．CHE $2=11$ $1,53 \% 615$


 1．RDicescr 1． $124,25^{2} 2810$
 11． 1714237 1．it 14cki？ 1.5302415 1．7月4） 1 ！ 5





13） $\mathrm{N} / \mathrm{l}$	$\mathrm{X}_{1}$	90	$\chi^{\prime}$
4 C	：1．0000，	10．9324 23	＋0．611＊＊
Wh6es	ER．Daychar	50，6estmix	
120， 318	15．7cichis？	10．7470454	＋1．7E50105
可乐気	11．DEDA1\％	60．072 0 ¢6， 9	＋1．7377945
			＋1．7314－35
20．4．3	17．3206434		
14605	18.15757774	－6． $610 \% \mathrm{Fa} 7$	＋1．\％¢ Wricy
	11．76tersis	－1．0331505	＋1．7733624
$55^{5}$		＋0． $2 \% 14207$	＋1．760345－15
${ }^{6}$			4 1．6044749
FtEsil			＋1．7577438
115	11．054 20.27	0.3770174	$+1.7744387$
3645			
H641	11．750．1430	＋1．1043145	41． 7 16474
k ${ }^{\text {col }}$	11．15324754	＋0．06545310	
WETE	4\％， 0585	10．13ETAF＇	$+1.7119 .040$
8647	11．0340017	$\cdots 1.6 \mathrm{~m} 45445$	


［1 24.6

JLRHCTIUN	$W^{-1}$ Wramain	chise	ceste
Xe1	Yi		2\％＊
	f $1.2 \times .45751$		O． $017 \mathrm{ar} 17 c_{5}$
	10．0n4ticus		$14 .(115 y, 54$
＋1． 7 FCO Ct 45			1＋6，${ }^{4}, \mathrm{~J}^{\text {r }}$ ， 7
	－ $0.07075 \%$		1．76\％471．4
11．7674805	－1．033450		1．713Eras．
			1．POwfers？

110.2651419
+10.21161774


71	Vx	$W$	VT
＋0．063 504．3	＋．145－04	－．9F．75－6， $\mathrm{S}_{4}$	－． 115 5 －05
＋1．4973．350	$\cdots 3045.014$.	＋ 2 2013F－07	＋4 4282
	＋． $1670 \cdot 04$	－19E25 03	－3E5fm04
11．90000，	－-683 Cac	1．EStitut．on	－．354E－03

$+0.485 .58 \mathrm{~A}$ $+1.142 \mathrm{BEf} 515$




$x 1$	Y1	21	$V \mathrm{x}$	$V 4$	V7．
＋1．00406KC	＋0．03tatiso	10．0110004	＋ $344^{2} E-68$		－． 116 E －05
40．76035644	10.745050	＋1．7－47745	－305：2－64		1． 2.755
＋1 +0404772	＋0．07242	41．75， 7630			－世675．04
＋ 0.8002250	－1． 0.75490	＋1．7－295109	＋．29．3E－94	3． $37.2 \mathrm{E}-04$	－．3145－63
＋0． 36.31 ck	＋0．14tryen	＋1．716．983		＋．4958－04	4.12 Sl
＋2． 2 Ecily 16	4.10303414	＋1．7504797	1．106E\％ 03	1．47\％	2． 11 EE OE
＋1．03t0j53	－1．0750742	t2． 7 （195433		4.5504003	－$\cdot$－7515－0．3

## 248

施为近		10．0．30
Cticti		
59		19．3983304
3¢4		
SEFE： 1	$19.0799 \% 4$	
13E43		－1．0．4．3327
5tua	4，\％－09ncrer	50．C－12035：
Ecta		＋0． 116.50 Fr
3 BL		＋0． 904530
9\％3\％	＋2，\％－56\％	＋0，5839360
	＋1．2517630	




		＋1．6） $3447 \times 3$	4．35\％ 5	$\cdots+53 / 5-04$	－ $.3400-077$
${ }_{1}$					
13．0406tict	＋0． $11670^{3}$	＋1．7113：40n	4．	＋．12退．07	＋ $486 \mathrm{EF-03}$
		＋1．7077537	4．19J6－0．04	－S7CE：－97	$\cdots$－ $34685-07$



CT 193．	Y ${ }^{\text {a }}$	V	23	$x 1$	Y1	21	VX	VY	$V 7$
4855	$+3.0341775$	＋0，0450cne	10．0137057	＋3．0．4．91703	40.0444505	＋0．0．37095	＋．736E－05	1．प6．E－04	－．377E－OS
4 Sch		16．0103419							
7453			4．1．7034313		＋0． $03 \mathrm{Fa}^{4} 5$		＋$+458 \mathrm{E}-04$	7，1965－04	
MatE		＋6．0762007	11．723－9tst	＋3．054thion		＋1．72⿺𠃊117	4，107E－04		
家速	$6{ }^{\text {E }}$－ 7378583	－0． $3.00 \%$ \％		4．3．7ッフパy	－0．9707057	＋1．7644t5	$\cdots .54084$	－．199E－09	＋$+5504-113$
3678	13．956105	10.7506357	＋1．Fㄷ․ㄱㄴㄷ．47						
85：76	＋3．3cc．sfits	－0． 6194488 C							
边湤	13,2135	－0，＊29043754	11．750号3311						
Sciz			＋2， $\operatorname{ceskn}^{\text {cose }}$						
967		66t． 597 cova 4	12．0．206050						
920．73		－0．9680	－1．J50．345s						
H6ral	13．0448997	＋0．6221465	＋1．7394406	＋3．006tistras	＋0．magal 3	＋1．7197255	＋．1975－0．4	＋．902＞54	－． 3 2gser－03
管兵1	＋2．073n4P54	＋0．3F72176	1－1．Fabitas		＋0．3273 60	＋1．0306543	＋． 384 E －05	－138た－03	－．4E8F－03
	44．072xuso	＋0．04天ए3\％	61．7013\％．57，						
E6，		－1．0¢Erta		＋2，93yoctur	－1－0529．375	＋1．7543592	＋．113E－04	4.249808	＋ 2 200E－04
24；73		$+0.7606 .154$							
ftht Ition if mextate cest－Eicts									
F1 Ho．	$\underline{4}$	v	Z ${ }^{\prime}$	\％ 12	$\bigcirc 1$	12	$v x$	VV	VT
$4 \div 4 x \cdot 7$	14．0245：793	19．0103．75	－G． $1 t^{\prime}$		＋0．0103919	＋0．0150110		，114n 04	4， 7954
4 tan		0．6454ctis							
込成碞	43， 35.51316	10．770ESEO		1518	10．7706amb			－ 0 た1 04	－，3034t－05
30．75	53． 3 （555764	0．004\％nを5	11． $70 \% \cdot 1743$		O． 10.044 ctst		－904E－05	＝1404， 09	$\text { b. } 7515-05$
26，74		－ 0 －－3 3 ）rsiad	＋1．750 71057			＋2．750rasic	+112 F －0．4	＋．672E 04	t． $9378 \mathrm{CO4}$
T13054	S．111さ9c7	＋0，ractueti，	11．632．25／00		－．	＋．750n－ut		＋．67k ${ }^{\text {a }}$	\％4．47E＂04．
		－0．Or，\％erins	＋1．Fankropla 34						
565046	4． 7 \％rymb\％	－0．0181737\％							
311	4．4．337ら447		＋1．75：105\％						
E，07		10．7334789	＋1．56－6．4．45		10．72053046	＋3． 4.48 cha	$-3974$	$\cdots 484$	$\cdots 2954$
									． $43+6$
desta			：1．76973n3						
15177	＋ $7, \cos 5^{2} 10$	－0．9638755	4．1．7uuserin		$-0.4685454$	$+1.75003623$	$-3411.04$		
FCi， 1	44．0rskery	PD． $4 \times 377040$		＋4．05945M．	＋0．377295\％	＋1．67695090	$\cdots 2050$	－1038－07	$-, 151 E-04$
Ectriz	＋5． 5 Mactiol		1．1．7．112143						，－619－04


2cria	240，	10．02033344	
（3）			






PT PITS	8	viz	2 2．
4835		0， 81214463	40．0．32781：3
4863			
むuker	十5．111151\％		
13605		－0．0cc ${ }^{2} 040$	11．7503930
36.833	＋4．75954206．	－ 0 －52016103	＋1．75（14＊）
E\％SE		10．65＇mas	ti． 71770 ， 36
369E．			＊1．7479土．53
8093	1．5．4N7t593	1．03）．52\％ 54	＋1．7＇6．416
	＋6．15\％	10，5is32a	11．71350 97
112		O． 3045200	二4．74．301307
Etras	＋6．04E04．183	＋0．3734670	
W6．43			
HCre	47． 4 44990\％	＋0．015342．4	＋1．7423 32－
2651		＋0．329＋7168	
tatse	＋6，37！ 3131	$40.75,7354$	
156\％${ }^{\text {a }}$		10．6erneut	＋1．7435ito
	$+4.0744 .3544$	－9．＇コゴメ1年「7	


$41$   15．0．6．3nan	


＋5．6454ins ${ }^{4}$	40．04\％${ }^{2}$
	10． －$_{\text {＊5 }}$
＋4．974636？	


4－3， 342143	$\cdots 1176{ }^{\text {a }}$	－．102E－94	＋．2035 064
	－． 1154	－．7空E04	$\rightarrow$－ 3 ． 1 E－04
＋1．7697323	－ $272 \mathrm{~F}-\mathrm{OS}$		． 2 234 67



or wh．

48159	＋5．79turetar	
－ 6179		
䞨5		＋5． 5 ，
呺旬		
Efxal	＋5．ceris 716	－1．583－ $2 \times 3$.
2134．3		10．4584595
－		
270\％	15．4	
$4{ }^{5}$		
CiPO4		
E75：3		
285． 3	45．975．0453	＋0． 5131476
Stise	$4{ }_{4}$	
3443	＋6．9．397：77\％	10． 15054
S7thip	＋7．0ㄴ） 74	
Beime		
S［1］		－1．05－3448


＊1	Y1
	－0．0574\％
40.1 .750973	
45．959\％stata	
＋	－1，0pmerot
46．04tiditit	＋0．7．73407\％
	＋0．6边：4．0．


7	VX	Us	vz
＋0．04tsta00	＋．37PE－04	4．106を 03	－，41SE－04
＋1．71770ご	4．1．3尝 04	＋．3F5F－04	－式1进－03
11．747．3533	4．4045－04		$\cdots .401 E-03$
$\pm 1.7764169$		－34．85－07	
	$\cdots$ ．	＋．T2SE－OS	＊－377
＋1．7247731			
＋1．6tanisis	－． 3 3＇3E－ 0 S	$-1.34 \mathrm{~L}-03$	－6395－03
＋1． 74.368163	＊．P4，	$\cdots$－ 18980	
＋1．7Y4TV5E． 3			＋．437E＋0．3




## 



71
-0.0496209

71	vx	UF	V7．
－0．0323311	－．78480－05		4．501E 0\％
＋1．659－em	－．15xE－04	－ 533 E － 04	
＋1．72994．79	－－론E－05	－E93退－04	＋． $2.859-03$
－1．7E\％4239	＋．37习习1处	＋．13 $\mathrm{PF}-93$	－． $2735-60$

03． 0426775

## 4．0． 5384596

O．0SRE：74B
－0．3R17737

$\qquad$

mition	x：	6	$\therefore$
4 c 70		－ 0.11081	
$4{ }_{4}^{4} \times 7$	＋7．9246835	－0．15ck 3 c	，mer
85843	＋7．6055：131	10．4tichat	
07\％		0.15123	
378；	16.6812397	1．000733	＋1． 6 ： 1
\％ 3	＋R．150700：	10.40740	＋1．7c
\％710		－0．206ter	P1．75
atic	17．74445	－0．372sia	． 75
319	17.5424038		＋1．730．ners
5 mm	46． 14.40376	20．4ctici3r	＋1．7070400
871］	＋88．5：1013	＋0．81593101	43．6034406
4713	＋7．875．315	－1．17034．20	＋1．76．47545
870e	＋7．0237404	－0．13k01\％	11.746 chs
［3703	17．0773is？	＋0．746259	＋1．FP115
	［4． 34789817	＋6．1904e9：	＋1．7351
B712	＋7．219313	－0．06tam	＋1．7471112
	45.	－1．1311938	＋1．765356



	SUMETIDN OFP Mmels		70？－717\％
	xz	Y	27
48781	＋7．30464545	－0．3t57316	－0．mixambs
485			＋0．01167363
8838	42．1587539	＋0．41774700	－1． 700 Hz 30
1714	＋7．326．674 4	－0．2067409	＋1． 7545497
を號	－7．74．44049	－0．973025	＋1．7694＊95
5x－4	＋R．2041327	＋0． 315.5850	11，F967ent
314．		－0． 7213 se	＋1．7750942
B7is！	\％\％－4taters	－0．8723am	＋1．7730\％以
$5 \mathrm{~F} \%$		＋0．3051370	＋2．7029538
27－1		10．4367134	＋1．masenoz
87.3		－1．1397032	＋1． 7354.476
等为		O．0ctorte	＋1．747＊
ficcit	170．0：5\％34	60.0931423	＋1．7410617
8711		\＄0．41574	
	156， 217756	－0．06981：7	
2713	＊7， 27 cincs	1.1207481	1， 76.9724


$x^{3}$	Y1	31	$v x$	W	$V I$
	－Q．15¢REEES	＋0．00556\％	＊．217E－04	＋． $715 \mathrm{E} \cdot \mathrm{OH}$	
＋Ft．196780：	$+0.50748498$	＋4，7095834	＋\％Wene	4.236864	－34．3E5－OR
＋7．996t5 ${ }^{3} / 4$		＋1．73Cmoriz	＋2ifis or	4．TEAE 04	－．15Sx＋011
1．1．1445944				$\cdots$－．13＊＇-91	1．45：6－ 03
		＋1．70703013			－6EVEE－94
＋ $7.91930 \%$		． 471130	＊－t 014		－，Ei57F－60
＋5．0．7019697	＋0．20153001	1：A．$\rightarrow 10$ c			
47.7753159	－1．1 1 H： 14.10			－3teters3	＊．4．720．0．3



	Whatctila	Of morkitu								N H   m
$\mathrm{r}^{\prime} \mathrm{N}$	Y＇	Yis	$\therefore 3$	$x$.	V1	21	Vx	＊－	$V 7$	
$417 \%$	$+2.2721407$	$0.4 \rho 73481$	40．103645：					＋atutat ${ }^{\text {a }}$	4．734．04	
$4 \mathrm{E}^{7} 5$		$-0.2 \mathrm{rasuc} 0$	4．0．0151 tait			－mintil		＋ature US	＋．7コ， 04	
家家第		＋6，F1G47294	41.61274	1i AMr		＋1．6idtincti	． 4 － 5 发 64	$\cdots 37450.04$	－ 493 m －0．	
3795	＋6，9514E3？	－0．7313010	＋1．77Rass		－6． 59.7 OEA	＋1－77sckisti	－ 518 F	t．3过 ${ }^{\text {a }}$	$\cdots 5060.04$	
2798	＋R，72alfil	－0． 37 cexay	$+1.7734102$	＋9．72432d		－1．7140゙0\％\％．		$\cdots$－1025－53	＋．453－03	
Exsidx	\％1．97854	＋0．3763570	＋1．724tcil				＊．ora	，10：	＋．453－6．	

$\qquad$

3）796			
E738	17．crab icy	－1． 2416104	
314	M0．02アズリ		
9731			
9\％3		－1．3079304；	1．7．7493t3
豆？	＋18－3177）16	－ 0.0 （1） 57545	11．PEESNET
9435	13．04F35＊		
Prat		＋0．744865	
近7．7n	＋2． 2135.946	－ $0_{+1}+2500_{6}$	＊1． 776478
包吅7	＊\％Erumber		＋1．776．7804


＋1t．917\％ 78.1


－0．0837917	11． 76.5633	$+.135 E \cdot 04$	－A A ESE－ 04	2tac－03
10．7247354	＋1．6392000		－．4056－0．2	－．735F－07
1． 133783 F	＋1．7754475	－．8616－94	$\cdots 4450$	－ $936 \mathrm{E}-\mathrm{D}$



	TLRVTICPH SF		7373－7374
FT FM．	W	$v 2$	$20^{3}$
43813	49.81425050	－0．－77e－2RS．7	＋0．019763A
4974	1.10 .777 .3 3273	－0．3460473	70．6．aray en
3tar	4\％ 97 （F63）	＋0．3703391	
B736	＋9，7441554	Q． 274 $_{\text {2 }}$	$4 \mathrm{In}^{-760.3698}$
27造	＋3．626t097		＋1．7675519
3744		10．Fatcsifo	3：－70529500
9745	110．94烍s， 77	－ 0.3 Macrs	4． 7 Ecmom
8754s	＋10．7359630		＋5．7：37057
G40	＋10．2326317		12．7670ts
314	＋ $10.017175 B$		＋1．7514740ct
8741		＋0． 5.4473077	＋2．706．34．4S
9\％43	＊10．7406895	$-1.2{ }^{2}$	12.77417 L 5
8\％2．	＋3， 3136 ctr	－0． －$^{1} \mathrm{~F}$	＋1．77316＊SK
97\％1	＋4． $316 \times 642$	10．35435794	f1． $4+364438$
	＋10． 174.3517	－560701\％	
國75		－ 5.20473 F	＋1．76Exats
chtais			




FTrersor	$x 2$	VE	22	XI	$V 1$	3.5	VK	2 Y	YZ
45774	＋10．777 7212	0．TaEtmity	\＄5．93menes	450．777377	－0． 346.44 .37	40，0．3E0408	$-6.545^{\circ}-95$	＋．3F，\％$\%$－04	$\cdots 113 \mathrm{~F}-\mathrm{ob}$
4875	111．736－765S				p．${ }^{\text {a }}$		＋6．44％．02	＋．3F，	＊113．－0．7
8744			＋1．705\％atra	150． 16.34 ccs	10．Fencrera	＋1． 20.34470	＋，\＃395		
5745		6．Disumin	11．76才」6゙ア4	＋10，24－34		＋1．764\％293	$\cdots$－SPEE－6G	＋． 37 注－04	－1225－03
57448	＋10．775987\％		4． $77 \rightarrow 1518$	＋10．7644ENO		＋${ }^{\text {¢ }}$ 7787057	－．117E－94	－． $\mathrm{mag}^{\text {cos－04 }}$	＋ 4450.63
翟？	¢13－2：20¢444．		＋1．0．970942	－1．7．0．1	－1．2inkut		－．1176－04	－．8nction	－4450－03
97ES	4．1］－735470 ${ }^{\text {a }}$								
「ち篤	＋11．Exichas	－1－91）${ }^{\text {a }}$（050							
工tani		10．0．24， $2 \times 17$	12．75．143 740						
513	＋11．		11．7．1546，${ }^{\text {at．}}$						
715	415．	－1．3Ftithfst	＋1．775 3\％ 3 ，						
8751		16．5173tsm							
arsa		－1． 3011770	＋1．77amia 51						－
8 Ec	＋11． 2 ctitact	0．01642110	\＄2．7611CGM						
575		－0． 7 F6E 1330	11．74．40cm						
．	－．．．．	－．．．．．．－	－．	－					


3744		1， 5 2：36．3＇	11． 12404 atis	＋10．74．6riters
17743	＋10． 5 Serer	－0．3474270		
8341	1－10．763239	$+0.544501134$	＋1． 204383	

-4.2370173
-0.2574976
$+6.54+7068$

＋1．77412\％	$\cdots 9.95$	－ 3 356주주－07	$\cdots 715 r-0.7$
＋1．754．736		－çEEV O4	
	＋． 1 R5c．04	－ $12 \mathrm{ELE}-03$	－．4150－03



X 2	11
＋1．0000070	＋0， 0 S1151\％
40．Yindethen	＋1．1502ers
41.0470435	－0．0443REs．
15 47460519	－6．6504， 08


7,1	V	VY	42
49．0002325	－ 3 34E－4E	$\cdots$－960－04	$-.4364504$
＋1．7577－47	－．TaOEMOS	$\sim .7650 .04$	
41－795－ans		4.935 运 904	－． $314 \mathrm{H}-04$
＋1．779\％32	＋． $1.4 \times 8$－ 04	$\cdots-112 \leq+03$	＋． $\operatorname{cis}_{3}$


＋1．0044335：	10.0042048	41．737876		$-11230003$	4
	$42.96300^{\text {do }}$	＋1．7590983		$\checkmark 4715003$	$\cdots$－901E－03
＋1． $212038{ }^{\prime}$	＋1．2845650	＋1．774398R	－． A 13 3\％－04	－160E－03	－．643）－03
1．04E417？		＋1．7）${ }^{\text {a }}$ 760	＋1748－6	－3076e	＋． 56.9

EDGMA XIYSZ $=0, O 2 E$ HN AT PHOTH GCALE

X 1	VI	21	$v x$	Vr	V2
	$+0.224302 \pi$	－0．0143535	－+10450.04	＋－335－04	－． 24.18 .04
4 台－01003\％3	＋4．9574783	＋1．7497483	－ 148 ErOA	$7=698 E-04$	$\rightarrow 3106-03$
＋1．982335：	10．30359\％	＋1．7658024	－． 9 \％ 4 F $2-05$	－5 5 $76-04$	－L2IE－05
＋	－9．388 \＆ 3 37	$+1.7535394$	$+.351 E-04$	－．477E－04	
＋2． 3107476	10．7250 53		4． $502 \mathrm{E}-\mathrm{CH}$	＋．114c－07	1． 6 Hege－04
＋ $\mathrm{Ha}_{\text {a }}$	－6． $3367 \times 6$	＋5．74学184	$43 \mathrm{CLE} \times \mathrm{O4}$	－ $3173{ }^{+1} \cdot 04$	$+374 k^{*}-0.3$
＋2．04．30776		＋1． 76.3 F ＇759		＋ $5775-04$	＋．4760 04
		＋1．7701744	$-.1045-04$	$\rightarrow$＋198E OS	－EUCE－07
＋2． 2			$4.4608-64$	－ 203 EL －07	－6．0304－03



			）－5040
PTrit．	$x^{\prime}$	－「	$2 i^{3}$
4337	＋3．4603s5a	14．3315t\％	
$4 \cdot 140$	14．0057\％as	1．5． $17 \% 017 \%$	
20\％	17.1447135		
［5］	＋7．1029544	0．7108500	＋1． 7.3 Stuct
敋\％			11．Coskemm
\＄40¢．	14．0172：1，24		4．1． 11706.37
Ertus	＊4．1410．75	＋5．1040304	
54151	1．7．0485650．02	＋1．42160\％5	41．7024 4150
3403	14，277ay20	－0．04832eg	
包ら31	－D，onelers		13.7459571
8ESil	＋9， 2070633		＋1，7－NJTM，
EF9\％	17．11．3 4113	－0，E753774	11．7atant
$13+183$	＊4．12－36．ans		41，71．3343



	－UrFCTIEN：	Cf：Maplercis	$31340-41041$
戉（4）	$x$	Y	22
45000	＋4．02， 4750	50．4729488：	－0．temRSes
44.4		＋0．6．144545	－0．0858940
367t		41．53きご79	1－1．65344602
8409	＋4．0172736	＋0．74564538	＋1．7163469
Btos	44， 15043987	10．100008号	\＄1．7004960
EETRE	＋1． 1347188	1． $1.6-137 \%$	＋1． 5348577
34， 6		10．85，17ニア0	＋1．4643） 10
\＄4．13	45．Rathesge	－0．079an30	＋1，67965Ex
OH1，			＋1．59320541
［54］ 3	19．255936？	－0．0finmary	
8403	14．1206150	10．5485424	＋1．7130304
家401		11． 4 4214100	＋1．7083450
9543		＋1．Gerfin91	＋1．59502443
3412	t5．184「至35	10.7723965	41． 58.5515
3493	14．27709t9	＋0．0671354	＋1．70975\％${ }^{\text {c }}$




X 1	Yt	21	VX	$W$	U．
	＋0． 80.46595	－0．Cessex ${ }^{\text {and }}$	1．726E－05	$\cdots 5375$	$1+587 \%$－04
15．1．747143		＋1．＊EかE273	H． $2 \mathrm{DEFF}-05$	7． 2 23．as－04	＊＊11をだOS
	10．8517540	＋1． 84245710	$4.8478-05$	$\cdots+5415+54$	＊．12SF 0 O
＋55． 241515063	－0．07982380	＋1．67mens	$\cdots .18450-04$	1．8Sem－94	－300E－05


217		1－1．5719．3	
512	1F． 2097016	1 1．35000\％	
［3］		＋51． 20.104846 ．	
319	． 64.400485		＋1，（．70）${ }^{\text {a }}$－ 1
Cbs 1		＋1．709sebs．	14．5．717＋3．4
14427		$10.1 \times 174031$	
$5 \mathrm{E}+\mathrm{t} 12$	＋5． 184548		
3411	1S．0．SE？${ }^{\text {ch }}$		
SE43 3		＋1．7116\％34	\％1．wizlor
542 F 2	＋F．2305100		
4413	15． 5 559\％	－0．0st 70 Ser 1	＋1． $\mathrm{Fighs}^{\text {ces }} 3$

5ighbity

	JLMCTIT．${ }^{\text {a }}$	4r Mracls	$4142-4343$
PT Wrn．	妇	va	2.7
$4 \mathrm{Cb} \mathrm{c}^{2}$	4．E．	＋0．735327\％	－0． 1050.450
41743	＋7．297673 ${ }^{2}$	10．34，4642P	－0．lacory
864	＋5，09740929	11．76324y	
THE6	＋6． $15.186,20$	4．0．78p33ts	1．1－F60731s．
安42才	$+5.150754$	10．1021545	＋1．656Ex．js
27094		＋2．735969	＋1．7337491
24，${ }^{2}$	＋7＋3819534	$10.77{ }^{2}+972$	14．517\％\％管4
04.78	＋7．3\％71353	40.1649084	＋1．64377－934
51゙	＋6．20971595	1．1． 3839218	
¢1．	＋5．1301303	＋4． 20.54301	＋1．655724．3
24．31	17，36） 6 \％		＋1． $\operatorname{Cos} 01470$
	17．3577\％	＋0．1715019	＋1． 510104
34 ${ }^{\text {a }}$		＋0．734 493 s	
答がら	16．．1113113	1． 3.7006715	＋1．9．7a0731
geds	16．404． 1.379	15， 631335	
［46－7．）		＋1．015，${ }^{\text {chta }}$	11．5．3374\％ 7
			＋1．45才4）${ }^{\text {ra }}$



Frimo
 2544 1245 ＇TCLE 8尔 35 84－72 2738 2445 34645 コ1 8713 6413 5443
1243 12437 2703

X色
 －＋251Tー 17．15－7n $17: 1512$ 17.4317212 $17.397130 \%$ 1 x － 27 accatix 1家．3．
 18． 07545
 $+8.435936 \pm 3$





22
－D． 1 Hactr －0．1414天， 155 $+\frac{1}{2} 6,1314430$

 4．5． 1． 1.64 L 7671
 $+1.5 x^{2} 4 x^{2} y{ }^{2}$ 1．Frbirskr

 ＋1．6 6.54414 11．f．302．J\％1 the（untsintiry
$x_{2}$

Y 1	21	UX	WV	V7．
＋0． 54.46428	－0．12200907	－． $15 \times 25$	F． $135 \mathrm{~F}^{\prime}-04$	1，BJTF OS





1．． 7355613 40.77 F 40． 1 f． 502024







P1 Now．	気	re	22
$4 \mathrm{C}+4$		10．2417 \％\％	0． 14146515
－48345	\％ 7.47 Hagm		
最1复	4里，Expensm	41．9597ev5	＋1．5）rajce
		＋8．172434	＊1．F．0stats＇3
［14．438	12．34044， 32		1． 5.503015
B7erts	－3，36401715		
を近5	49．4800\％40	4． 0 － 705	＋1，5］ 5 ［4E +3
54\％${ }^{\text {a }}$	－9．4771515	40．A0s6is 5 ？	
S729	40．4．35R40）	＋5．3135076	＋1． $58927 / 35$
34.93	＋3．5410162	70．1704t 140	
6444iz		＋1．043764，	＋1． $6.00^{-1535}$
973 3	＋8．4 433214	11， $2+4839$	＋1．6．02844：
［444．3	18．45375\％		11．51363 ${ }^{\text {¢ }}$
84E？	19．54：30104	32.0603954	42.575974



Y1
＋2．30966， 10
＋1．133．6\％＇s5


21	$V \%$	$V Y$	V2
－0．1414．598	1．7c5erof	－．963504	1．S20E－04
	$\cdots$－609t－05	＋． 6.657	＋．344 78.0 .7
4．1．eosiali	＋． $21 \mathrm{lax} \times 03$	$\cdots+345 \mathrm{E}-94$	$t=92465-04$
	＋．4105－05	4.121807	－．438E－0\％
＋1． 80375854	t． $1445 E-04$	－ロ4FE．03	＋．起52－07
＋1．E05 272 c		＋－2antiol	＋． 3 costo 03
＋1． 5954515	＋．10SE－04	－．342E－07	



PT 513	$8{ }^{2}$	Ye	7 H	81	Y1	21	$v x$	519	$V \mathrm{Z}$
fitzes	＋9．43048\％	1：01235x		＋3．4．30220c	4.10136398	－6． 1583460	1．52ers－05	－．52\％－04	－ 1 165\％－05
＋3146		＋1． 10.06480	0． 11545 smb						
5tar	19．3040432	＋2． 17 \％asch	11．50n ${ }^{\text {a }}$ ，	49.2040125	12.1786934	＋1．592encs	～，롵․04		
5459	－3．43tantht	－1．6402tita	＋1．5307171		＋1．00709日	＋1．5703G4．7	1．EOHE－05		－ $1476-0.3$
845	$\pm 7.4871593$	40．406f， 49	＋1．54， $5 \cdot 78$	19．48374733	＋0．4066715	＋1．9425390	＋． $117 \mathrm{LE}-04$	－．125E－04	
2738	＋10．346716	11． $\mathrm{Sa}_{3} 304{ }_{4}$	41， $5 \times 78000$						
Effer		5． 1 ， 033725	41．5547\％${ }^{157}$						
	＋10．5弥13第	10．4396m0	11．55\＃4 57						
317		10． 0.5494758	－1．5rıvolai						
94た1	＋10．4748，${ }^{5}$	＋ご，070468	1．1．Ex．425iff						
¢4¢3	＋10．6720	＋ 0 ． $\mathrm{c}=3.000$	F1．54inilich						
54.9	＋3．4020 27 ？	＋1． 0100379	＊1．5771430	＋9．4600103	1．3．05093905	11． 576974.3	＋169\％－04	－ 1 SNE OS	＋．1685：－03
2723	19．42924 ${ }^{2}$	$+1.91 .351 .37$	＋1．5itcoces	＋5．4．204450	＋1．9 9 3507e				＋． $1345+03$
	＋10． $4,000747 \mathrm{c}$		＋1．5645154－						
$54{ }^{\text {ckin }}$	1．40． 6.314445	7． 3 2－464603	1－1． $5.5 \pm 5483$						
军4云	＋3．5410446	10．19\％36．703	－1．Etrictici4		10.1938848	＋2． 5721050	＋． $364 \mathrm{E} \cdot 04$		＋．149E－03




P\％ FH	X $\mathbf{z a}_{\text {c }}$	Ẏㅡㄹ	$3 \%$	X1	71	21	VH	$v \Downarrow$	V2
	110．Ethersm	＋9．10ctut	$-10.18455_{4} 3$	＋10． 50.654 .37	＋1． $10 \leq 5840$	－0．12455，	－40yE－05	＋．7598－05	140：－ 04



```
 , \because-'
 \therefore\therefore=
```



03 न01ヵ378


FT No．	K	$\checkmark$	2	$\%$	$Y$	$z$	$\checkmark \mathrm{h}$	$V Y$	$V 2$
$1 \mathrm{Cl}_{1}$	2969．370	2enac． 0 ¢	1.37 .300	12597．367	E1580．041	137．377	－0．0003	－0．0ne	－0．03m
104	－30． 4.0	1615.820	124．48）	－3）．Cb5	1011，战5	126．037	－0．015	0.015	0.007
504	7： 7.610	－123\％－3ti0	30． 340	317．5\％		30．343	－0．047	0.0260	0．0tys
503	30¢E．	1RES． 2 EO	124．950		1869．243	24．956	0． 023	M0．00\％	0．006．
301	1810． 5 E0	1297\％030	117．4．0	1810．FA边	180゙も．738	\＄ 57 ＋4E1	0.013	－0．0ns	0.051
3 SHE	S3E4．710	9233．710	14C．m 450	5.34 .677	12939，544	146．444	－0．035	－0．1E．5	－0．035
103	$-7 \% .850$	1015．44			1015．478	12．5． 274	－0．04？		$0.0 n 4$
3693	1979，ExS	Si46．fiets	1才をづく	190．3．744	594．ctly	138． 384	0.115	¢． 25	－0．00゙5




Ftive	x	Y	I

SECTITN KR，bell

4932	3］7x．65：	2705． 237	13545．073
4911			1353．400
9124		$3 \pm$ E9．471	72.093
3146	329．3．369		\％．7．90
9135		1254．364	74． 3142
2］ 14	32934．773	2737．74	137．6ev
3116	2tist－ASt	2557．009	84， 310
\＃118		1511．965	71.397
503		1败65． 54.8	74．35\％
101	calita 3 l	76090．641	127．877
96\％			14.4875
511：	3575\％		7\％．7c3
31边		275ı．15	41． 5 \％ 50
31：2		3230．40	20． 584
1112		72759．507	127.312
S14，	20\％\％．5＇s	3457，	B7．024



421.7	21539，7iju		13：3．40\％
4310			1347．717
2114	3anz．7\％3	3757．747	127．6E3
9215	2351．46f．		3 B －12\％
9315	30FPr． 7159	1511．796	71．
＇3104	1602． $165^{\circ}$	bemerat	$1,2 \mathrm{~s}$ ． 630
910\％	Burid． 044	1746．843	1194．27．
9106		1130.702	7．5．6ア！

$\qquad$

3 x 1	包10．6．tat		117．4251
3151	1\％（x） CO	3299，56，	
610？		1115．37\％	72i．c．e？
9117	2195， 2185	1539，76－4	77．74．3
＊111			12ら．020
9112	76， 1 －P6t	． 340.45$]$	
315\％	20 $0+1 \times 4$	1777．943	



ASJO	2024． 207	1646．211	1547.712
4703）	1434． 753	20184．9才1	134č． 537
9104	160\％ 365	1238：391	123． 640
91045	20ct 1314	134E－347	104．${ }^{\text {a }}$ \％$\%$
3102t	356．1．1古	1，30．70，	
90n4	104，1，5EC．1	1740．643	1729．464
30rser		$1356.83{ }^{\circ}$	
903912	1999．724	¢\％）	113．${ }^{\text {cost }}$
3 ll	1810．nec		137．4．61
（40）	993． 54.44	1393． 357	171．008
20．3 7	1305．6．33		118.605
910¢	206．7．45，${ }^{\text {a }}$	1777．34．3	100．52？
3105	$2531 \times 750$	1 1151534	7 m .617
9101	16．60，（3：20	20：39．50A	
Surit	14．4．4．350，	1397．31世	117．70\％

SHCIIThy Nin mors

4559	1494．1935	1．284．971	1342． 597
4503		12850.101	1．34\％．5\％
3 O 74	3097.561	1790．$\times 1.1$	1394．0E5．
503\％	142592027	13世6．923	150．05m
90\％ta	13919．734	534.351	1513， 518
908t	6011．663	1440．339	175.117
－	912．${ }^{\text {cks }}$		10解． 5.51
90P\％	1299，${ }^{2} \mathrm{Ca}$	P15．84	\％3，705
Jats，	S＇4．Gr7	12．7\％．5月4	146．444
904\％	5．59． 20 \％	1474．458	1． 为，746 4
	1476－519		
－		1337．318	$117.70 \%$
999\％			1\％11．002
3093．4	3413， 451	319.553	111．018
4 cos 9	1955，6，\％	CA3． $5^{5} 5$	110．003

MECIIRN ND．En7

4＊50\％	＇）	2020， 101	
47307	$4.15 \cdot 5 \cdot 7$ ．	491.500	
506：4	t01．Ficit	1440．E2\％	17E． 115
SOFE	$912.3{ }^{\text {a }}$	［453．517	1084．5r． 1
		215.341	49.705
2074	$\cdots 76.77$	107\％．419	
7076s	2itu．092	$4{ }^{4} 5$	
－ 0 \％	7 10，508	－7\％ 7176	34.677


$\because$,	1－34．ciss	12．43＋344	14， 6.444
1：	is．${ }^{\text {a }}$ ，	1015．475	$11^{4} 54.674$
UR．	If．miat．	1011－875	
：	717．545	192．77	90． 2 2\％
，$\because, 1$		10712．5\％	126．0．39
1行，		$-143.024$	1［14． 510
	$\cdots 4)^{5}, 4,4 \leq 1$	713． 5 5\％	111．018
吅；		14．74．4E4	
－ 4.2 ，	$\therefore$ Pracel	513．3等	［40．${ }^{2}$
	1454－214	P64．0tir	175． 2603
		93n 50	1340， 6339
$\because 2 \cdot$	－111．046		1344.1773
30：$: 4$	4， 7 \％	1073．413	
־？7t	36t，（19020	48 c 5． 515	H0．B．7］
$\because \because r$	75．，5xas	20\％ 780	34．677
$1 \because \%$		73ヶ．312	8．433
＇1号		27\％．59\％	3.75
O－8：	ぐたづくす1	$\cdots$ MEA． 710	107.002
1120	90，${ }^{\text {a }}$	1012.305	126.097
1－：	－3．3）	1 ¢15．4．7t	125． $\mathrm{E}_{6}$
$\cdots$	717，	－327．779	90． 249
Fi，	［．17tic 134	$75 \%$ 5\％4	B． 500
$\because \times$	132．746	$\cdots 109271$	107．${ }^{\text {cinc }}$
吅号	4＋3，式	攻3．173	$5{ }^{5}$
$\because: 1$		1 ¢5 1.501	1420．349
$\cdots$,	11こ， 971	104， 50 mz	Fly
$\because \because \%$	306，76	$-145.083$	104．305



H488	E．34．5．513		70．364
506	E773．	92050．3Y\％	25.453
30\％	6）crix． 503	こन1E．Tis	95．33］
502	5929， 334	35.55 .954	26， 1973
6 \％ 69	29040， 44	E533．203	67，tsio
259］	5954．5， 34	3657.415	数，比运
2゙ぢ！	5353.307	3354．5¢，	204ts
83	64 己e，『3\％	3504．709	65，30\％
	5891． 5 56	2747．603	754076
			74．1531

SHCTINN WH．2BR7

4 CaH	5\％00． 503	266E．eワ2	2337， 351
4829	［373）， 340	1203－447	13，${ }^{\text {a }}$ ，156
29394		3162.347	32．373
		د673．742	6．E，793
Dtest	6354．6964	2t33．756	76．894
Ete74	4939\％－393	式氏ず示13	6.5153
53784	53\％ 307	2149．692	175，487
88878		175E，57\％	85． 835
ETG71	483\％Cris	2731．Gidf	4 4 .372
\％asi	533\％，207	33－4．5EC	36， 86.5
Byiz	T3．7．${ }^{\text {a }}$	2173．6E4	113．030
如近3	5571．055	2747．4를	75.070
82Es	E340．45E	2079－7\％	74．431
Ety	S838．041		$65+534$



	5379．8440	230n3．477	1336．${ }^{\text {c }}$［59
4ast．	4793．177	1759，${ }^{\text {＋}}$	1343．962
45874	4372.787	2EEG－313	69.515
5376	53plac．30	2149．692	1．35， 687
8878	FEN3．704	1795．573	
8654	4344.977	2392． 507	（53． 174
20cc	47544.104	1645． 3 ¢ 2	93， 25
365ct		1239，	83.818
507		1673．313	102，550
\＃tras．			75.203
8 Ec 3	5175.037	1105．3ヶ9	E4， 648
8874	53ch．36\％	\＄179．54．4	119，0tw
2973	S8159．041	15\％3－ 59	E5，6，74
	4E0134．17\％	1700．175	躴，告等
3931	43，${ }^{\text {a }}$ ． 035	2791，車近	40，27t



4空部6	4753.177	1756．455	13ヵが， 302
$4 \mathrm{as5}$	426\％． $66 \%$	1303．369	$13+4.4 .34$
563	3504.347	1055．837	抱， 537
T0\％		B31－567	6， ，$^{5} 76$
䞨5	419ns． 215	13512047	142．${ }^{\text {chen }}$
SEGFs	4983.770	839．054	（15． 015


$\qquad$

$4 \times 5{ }^{4}$	2Fran ${ }^{\text {ara }}$
3103	2581．936
¢563F：	4956．
afes	
9038	1375.487
8䞨	34纪．833
嗗安Fis	
E\％3	2311.593
23831	1353.573
5res	2794．772
戓次空	2357．
H630	롤ㄹㄷ．789
和政31	2594．544
3193	1396．5\％
9\％33	39301.7244


0． 598	134－5－3；4
3130．45．1	77.14 \％
403.421	173．597
2．5n3	73ヵかっ！
504．6ale	
－${ }^{\text {¢ }}$	$91.62 ?$
$-730.643$	73.327
6.476	$73 \times 85$
432.041	174．53t，
－5， 4 ． 5.5	35.710
3.8 .37	20．11发
AOA，15E	78，337
921．2－3	
1447.354	\＄17．870
－130．439	44.340



48935	至学篤，2565	0.583	134.2 .3948
4295	178\％ 3140	－4çay 3ict	121trabats
$\cdots 3$	1353．687	5944，642	115.294
88，	24］ㄹ． 739	68．001	21． $\mathrm{E}_{2} 7$
		－ 388.543	79.5 放3
Soyse	12305．177	F2玉．054	13945
81545	1515．54\％	－765．4042	1350505
	21063.374	－ 700.69	E－己．Es？
205	1853－5ly	75\％．EES5	$1{ }_{4}^{4} 2 \times 504$
510	1912，745	－710．548	2d．Sil
d982：	1408． 383	56． 544	1320515
Eせ13		－1044． 277	76.120
9831．	1963－573	492．041	174．503
咹3	2704，773	－5．44．657	313．710
吅哏	1700.441	－453． 101	116.356.
［93ncil	275\％\％${ }^{\text {a }}$	7.697	92.116
9087		きくれ，Kく1	175．855



4881	17 x 1.316
Arsed	11－7．4．45
S0AE	1：357n 7 73
935\％	
6\％15	2103－．374
－ 017	7384， 397
	1067，513\％
	1405s，
［7944	1573．740
3 E	1076014．49
510	
2E0y	735.74
8007	1503．呺
912	2700.441
Et11	1405． 799
9073	357．102
	1024．18
を成〕	

$\square$

Saction Nis． 23070

4880	1147．425	－046．357	1341．E172
4573	465.336		13\％6．5ent
9078	736．6．93	－701．376	94． 5110
8095	1057．653	1747．451	
Eror	1405．975	－1363，${ }^{\text {F26 }}$	50.433
Stioft	2EJ．以樲	－4란1．9， 5	107.144
S7Me	$4 \mathrm{EL}, 478$	－ 15.5047	105．540
S798	975－3 37	－1314．2゙す	［43． 1.70
$\mathrm{H}_{5}$	717－461	－12？．205	穿．－，13
511	22A50．4E3	$-1413.040$	$56.54 \%$
2791	13．4．903		79.141
37.37	5th7． EDH	$-1751.560$	42.086
890］	1064－182	－250． 203	11\％．327
8 Can	754．784	－440．91．7	115．680
3065	374．735	－510．473	107．613
87\％	414．464	$-1316.385$	117.043



PTont	$x$	$Y$	2	$x$	$\gamma$	2	$v x$	$V \gamma$	$V Z$
20\％	9504．3\％0	さ134．306	27．370		アも54＋81？	27． 2 ºs	0.080	0.015	－0．016
要需	17513．470	－ 3 Э 31.510	11．270	17592，4， 4	－2ty ${ }^{2} 7.45$		－0．OP5	0.048	$-0.007$
505	70et． $3 \times 0$	2ris．63t	76.470	2033．304	2319．567	76．559	－0．045	－0．042	0.089
5ge	67\％3．E10	3FCO． 170	\％ 5.530	C．773．501	2560．120	85．593	＋0．008		－0．011
508	©－702． 540	N316，1440	95． 6976	6rone 5ri	ぎ15．649	95.050	0.0177	0.009	－0．012
507	5463－400	167ㄱ．300	102． 310	5606．508	167ミ．23a	102.167	0.042	－0．0go	－0．142
31	53Eta， 10	F95．670	19．18t）		595.754	12．103	－0．004	O．0S6	－0．071
300	$43753-430$	931．550	EA． 710	4ir） 5.47 a		64．7PB	0.00 c	9．002	0.018
ゴ2	5399.160	F46．540	70． 770			30．973	－0．015	0.083	0.3003
家主	3at］－250	（2， 53	73． max	DP1才，7 M	6．A24	73．2月6	－0．111	－G．205	0.036
ご号	4201.370	－78t－ 3 98	43.450	42001．3543	－781． 259	4．381	0.038	0.1 .30	－0．074




## ADJLETV：D CRUPDTEATF：

FT M
$x$
$Y$
$z$


454E］	95357－702	2793， 539	1－635，044
A	$77^{64} 400$	P442， F 7？	
86．34		3477，cex	34.471
E5．36		5756－365	11．3．39
战36	¢ 76 ¢， 138		16． 473
traus	7574．505	2975.54 .5	P0． 377
3te4t		2400．021	43.803
Stisir	Brote kis	1872． 146	2 E ． 135
30：	5305． 140	E134．813	－7， 753
TE ${ }^{3}$		2390．475	7．5459
5113	3929，5\％		$4 \% .804$
55643	7204t．50id		43．包4
8648	En7t－3？14	1000．022	
䊽娧	3351．5ら5	2875－6省	40.364
10品号			64.124
3063	7545．757	9\％44．483	c50， 405

Sictirn tion Eders

4313：4	7799．6．30		127rata
4 565	70：34．F．54	12081＊30．4	12＊3．371
Proor	7574．506	4975.541	40． 7.17
B6at	7554.31421	34E0，055	41． 4003
S248		1F7C．149	94． 23
			134．74te
	－111． 210 la	2005－L04	52.574
	760．0．033	151， 73.1	C． 3 ¢ 4
7205	702\％． 3 cht	式下19，Lix	7\％．55\％
50\％	6773．601		8引，碞3
cet ${ }_{2}$	6503\％	－444ㄹ．475	73．006

$\because=$

gers	7490．033	14564.464	B．342
	Peisarim	25356，96，	6.5 .174
3541	7204．fice	3043.301	48.1343
8897	6353－2eb	cresen 771	67．093
8 EGF	70a71．394	3111.343	64．263
864 ${ }^{\text {a }}$	8087．394，	146nome	17．24．4



4365	702 Cmas	2031，52\％	1257．9\％
ASES		16045．279	1276， 716
$43 \% 8$	6807． 428	2m62．EOS	84．735
8654	7112．asa	3005.603	51．57e
3654	76．30．0．ts	1511．731	E． 334
48368	6349731	2123．74	7e． 797
8fsg	64.48 .586	1087．79\％	家．415
36．at	8931．701	1171.437	13.171
50\％	6773.601	2560．1an	RE．5ck
30\％	6709．563	2310．649	35.050
84Et	5100．003	2300．483	146．009
8063	63TE． 197	1074．65．	1．1． 601
形気运	E45ts． 123	1740．512	58.16 .3
哗5，	703\％．344	2111. 란ㄱ3	2\％．0． 63
3581	6693． 8 \％		73．086
20\％	E3T0．41．	2079.514	74．617
3655	7473.033	1484.464	B． 3 4．a

BGCTILTN TAD．E6ET

426em	64E8．481	1585． 397	1278．416
4367	5s37．6．8？	1352．73	1274．787
31980	6394.723	212． 741	76． 727
B6tc	C448．544．	1637．${ }^{\text {20，}}$	5x．415
比第第	69itu． 10.1	1171.433	13.2 \％11
\＄3976	56E3．370	1794．47\％	45，471
2576	5\％308．431	1381． 513	cte． 3605
8678	C3¢7－019	784．731	23．345
507	5406.503	1673.234	16ct．14．7
3s\％1	65st．gee	1795.725	9s． 350
8873	6440． 338	762.070	23．20s
	54585．124	1740．514	莐． 16.3
BEG1	6100.609	2030．420	36，009
867	51820.570	1311.713	70．57\％
ctes	6935． 197	107\％，CEE	11.601
3873	5895	＋aterfos	6． 174


4136.7	51877．6．58	1292．730	1274．707
4853	50773.538	9100.165	
	cenax．a70	1796.577	36，431
\％${ }^{\text {ch }} 7$	500ts．631		\％，365
\＄67\％	6ss\％．ott	754．427	23，945
\％3\％	497\％． 2 Ex	1259． 240	63．574





4973	2that ，76ata	$-15343+34$.	1274＊－3503
$4{ }^{4}{ }^{\text {cha }}$	19世0． 757	$\cdots 14 \mathrm{e}$ 故，（60）	
data	2314， $3, \mathrm{~L}$	－701．400	$6{ }^{6}+1 \times 1$
BT：		$-1005434$	15.510
97\％8	［4．33， $\mathrm{Frl}_{1}$	－157，0855	13，54，
U144	1577，75	－＊N0，2\％ 7	
Stres	16683．		21．5it
3740			11． 2 200
E10		－311．E゙き	6．9．${ }^{485}$
315		－1317x	4， 485
8．74．1	15\％1． 3 3 3		0.041
2743	23441．5．41	－190．6，3r9	
	24 33.76	－TJB 411	23，372
873：	212．1． 34	902． 476	91， 203
Etas 3	13154．nit	－19A3－6®4	P6，175
8f\％	3xtex． 217	－ 1 它 5 3， 3 可	7． 8358
1742	6844．87\％	－1443．433	27，${ }^{5} 5$

wrerimes str． 7475

$4{ }_{4} 974$	1200，32＇		120m，
$4{ }^{175}$	$3 \mathrm{3} 50.544^{4}$	$-1759.746$	1－59，692
8774．4	157\％． 3 3t	－300．884	50．35i\％
ty\％	13049，193	－15645998	F\％，50\％
8763		$\cdots 1.750 .154$	11． 270
57939	5anc． 100	－1715．5443	［灾，9\％7
象管6	12ts． $\mathrm{Tc}^{2 / 5}$	－1839．579	30．1049
7， 78	1773．101	－4．794．035	10．189
	1405， 977	－134－5．${ }^{3}$	50.876
戓1	13ヶ46．W61	$\sim 1413,4.94$	55． 56.8
315	17513.444		11． 2 ch
2754	N281．735	－ $1: 71.147$	
47 x －		－ 2748.751	2＋14E
30ヶ3	15れら，天巴边		42．4084
87513	23592．471	－1309．725 3	－3才4．35．13
		－1959．${ }^{\text {dr }}$	10．Ectu
71／4E		$\cdots 1442.4 \% 3$	
1374，	15 51.35		13． 0.05

PA AHPECRSC ANO HESOAT OMNTRTL

PT NFT．	$x$	7	2	X	$Y$	2	$v x$	Y	V2
310	7730.4831	1344．6．10	3．370		1．44， 6.15	3． 767	0.017	0.005	$-0.10 \mathrm{e}$
317			4.920		－2915． 345	4.297	0.074	0．074	$0.05$
104	9016．${ }^{\text {3 }}$	1170．150	5． 3 它 0	Gotfow 18 y	1170．554	5． 362	－0．042	－0，035	0.012
316	2150．770	F61，670	6.390		562．743	6.440		0.672	0.050
313		4．46． 3 280	（36． 770			30． 3 92	0.057	－0，057	0． 137
S12	$5315+540$	$-141.180$	3.330	둔두T05	－141． 198	3． 370	－0．034	0.017	0.040
513	5siE． 190	－76．－600	2.940		－767．6044	2．967	－0．034	0.045	－0．032
317	42001． 3 F	－785－3\％	43.9513	4391－27ct	－781．415	43， 346	0.000	－0．03．	－0． 117
315	175\％，470	－27．17．510	11．470	1450）．439	－2\％37．53n	11． 257	－0．050	－0．012	－0，D）
105	（1世3．3）	－62 1.5	3.090	61的3．334	$\cdots 81+891$	3.058	－0．065	$-0.041$	0.002
10E	240\％．51\％	$\cdots 389+40$	＊．080	24093435	－3189．412	S． 11 IF	－0．014	0.017	0．05E

GTD ENR IH Y


ADTETKO COTHOTNAFET
NT Ni $X \quad z$
sectinn NH．Braz

45965	2193，502	15036．917	123n9．177
4运娐7		1376．053	1210． CH
WG，	日76E．E79	2740469	15：
	50S1．608	1596． 745	5．403
	9127．513	1397.453	5－590）
		11715．35	$31.77 \%$
S37E	WEs\％．	$12093+730$	5．5．134
B37\％		70\％． 973	4.912
104		1174.154	5.368
	2502．104	113ำข， 473	E．狏如
岳新）		2SW0．${ }^{\text {² }}$	E．123
8371	8P59．714	513c9．243	15．71．3
237.	3015．843	7t7．94t	4．315
63Er	3170.931	126t3－505	E．44， 3
763］	उCr\％pay	LEJM． 143	C．743
匂643	8077． 543	3794.695	16．ctas
9atie	饇．75．709	$1300.7 \% 1$	4.347



4807			1210． 50 云
4 433		Pouentit	1－2tas． 548
BEta	11210.102	1871．9r4	71.777
		1393．330	5． $14^{4 / 4}$
3374	3915．813	［65．073	4． 3 \％
3654	7620．036	1512．570	6．333
832f	P03c． $6: 37$	1012.701	3．7isc
달）		545． 56015	E．48退
316	E150，${ }^{515}$	561． 74 总	6．440
310	$77 \times 0.54 \%$	1144．6．15	7． $75 \%$


		1454．93i3	5.501
53			$\cdots$
边㤩		$7 \pm 00.771$	4.247
「37	$20251+54$	$1543 \times 14$	15．713
8 C 4.8	1077，5－61	17396	16．4．75
3．at	13taras 515	＊）${ }^{\text {cos }}$	3．4．17
S37：		\％7．35	$4 \times 215$



A6）${ }^{\text {a }}$		3074	1206．5ct
$4 \mathrm{E}_{3} 39$	7445．5054	5nO．Edx	
$4 \mathrm{CH}_{4}$	7569\％ODi	1511－570	6． 3 312
3 Farc	\＆6をた． 489	1012．701	\％．725
	815d．6．23	「05以59\％	2．484
55 CC .4	8581．718	1174．＊83	13．图策
	7395	545．606	9． 547
Amb		87\％．037	3.465
310	7796.557	1145，天15	F．76\％
316	E150．toc	76．1．745	c． 440
2tst	717E．351		4．743
$33^{\circ} \mathrm{F}$ ，		2．3． 577	E．712
	80．44． ¢ 3	333.778	3．437
3351	$76.544^{4} 44$	1762043	5.
8 Cc 23	7493． $0^{3} 36$	1484.354.	8． 400
9 y ＋it3	这375．．Jan	\％\％0． 135	2． 300
35\％		2.33 .968	3． 100

WCOIISN Nf1 3440

4535	7445． $0^{2}$	Such．23tk	
$41: 40$			1401．760
GEEST	6的2）－717	1171，${ }^{\text {ch3 }} 3$	13．533
B396	7F\％E．337	T4．5．60\％	3，5．f 7
$83 \% 8$	7637．e51	\＃7f．03\％	3． 4 E ， 3
5trm	65\％\％．194	744．525	23．Esa
3406	6753．0ch	$4.15 .87{ }^{\text {\％}}$	3．${ }^{\text {cin }}$
3atys	63945．72\％	15．745	3． $\mathrm{E}_{6}$
9tat	（692） 411	0.0 .405	15． 503
640：3	6740．Fati	－117－434	3． 256
5393	7474．，85：5	533．954	3． 100
起コ1	7116．3E1	1082－56	4． 34.1
856，	EOHE． 3131	1774．50，	52． 142
83\％			8．114
9404	$5775 \times 74$	T62．047	3． 16 位

SrCTIMN NOM 4041

43659	68tazaris	20르․ 764	1509， 700
48－1	61为）	$\cdots 141.373$	1149， 7 汉
26＇75	台367． 780	75ts． 519	73.54
\％405	675． 308	4.15	3．\＃1芯
$\pm{ }^{5}+10 \%$		15.745	3，3！5y
f3ter	57：31．699	470．409	11．206


2496	6．12，45：	15．713	7.055
8418	64\％ 3 \％	530.977	3， 15.5
2431	gato． 3 Ber	40 C .785	3.237
8413	6，\％0，9\％3	5\％3．5\％	3．Eh？
：3403	6．75．e．44	26．2．cat	3． 462
2401	64，53，411	R20．6s5	12．603
5673	6，346．384	7tit 315	35．554
3412	6113.034	50.75	3.187
6403	6S40．est	－117．434	2．333



4124：	6193．279	－941～973	＋173．733
484 P	5515．84．7	－515．975	1175.373
$3{ }^{3} \mathrm{E} 58$	5791． 538	$430.200 ?$	11． 309
341F	8157．45\％	15．713	7.055
8515	6407.397	－ 3 30， 977	3.15 .5
8ts	53\％ 403	77，己゙も家	4.6 .33
3＋ict		－439．732	5．ESi4
54，	593\％的4	－7Ex－616	4．392
きき	\＃4\％3039	346． 597	30． $9 \times 72$
517	5315．605．	$-142.132$	3.370
513	5tic．1E．5	－787．644	2．30\％
105	皆161， 984	CR1．393	3，053
342를	5937． 994	70.459	4.405
ESC3	钽71．546	－79\％．037	3．605
7＊12	6112．034	－50． 7 T18	3．117
स411		405.375	9．3第
8687	5647．12\％	3132．731	10．543
84．32］	5470.650		3.2 ¢
84.13		－5igit SEd	2． 847

SECTIGN HAD．424

4832	SEES． 5 E7	－515－735	1235437
4543	4318．815	－904． 55.3	1192－125
Esan	5946，503	77．${ }^{\text {ces }}$	4．645
342E	2ts93．443	－473．732	5.684
B438	51537． 894	－762．616	4．85\％
－\％\％R	4564． $\mathrm{\#}$ 21	－34＊．Eら2	12．335
84．36	4940.836	－ 253.402	14.174
8438	5131.303	－1784．412	2．217
¢92	$5.619 .60 \%$	－141．192	2． 370
517	5612，160	－767．644	5．907
28931	$45 \% 6.5$	－417．ざワ7	12．743
3433	5194．736	－1297．543	3－437
84te	5470．650	－ 360	3.75
8421	5737.6984	70．459	4．405
B698	5021.703	－65．02ts	5．7E5
	4	－806．904	犬．${ }^{\text {¢ }}$
342．7		－758．032	2．635

SFCTIEAN MR， 4344




$01101 / 1275$
2TERATIDN W 20
BLOCK ADJUSTMENT USING MODELS
2ECTVCN COFNETS
STCTMON CREAKR WHANS
RESTDLALT:



$$
\therefore
$$

4.384	＋5ictsk	26m． 333	1540．ceso			1340.035			－0．004	
31817	303a．${ }^{\text {ara }}$		72． 234		1514．23	74．432	0．043	0．014	0.028	
4307	3rcest．645	fri4．4Ex	6.457		$40.4 .4,5 \mathrm{Cl}$	6.1 .457	0.034	0.020	0.000	
5013	45.45 .445	631.825	cticm	4375.430	\％ 31.550	6．4． 710	$\sim 0.033$	－0．03s	0.010	
				STCTIT34 141	T24i3					
45689		REGW E69	1340.011			1340．056			0.004	
3138			71.440	Fhas， 515	151.2067	71.43 S	－0．048	－0．029	－0．034	
\＄5．48	3585．7al	464.496.	E．1．ts：		484．45\％	61.457	－0．047	－0．037	0.006	
－363		4 ER ，3， 3 9	1743.36			2344.275			－0．0065	
9103	2068．793	1．30，4in	73.530	2561．${ }^{3}$	1.30 .505	73．556．	0．099	0.023	0.0 eti	
88．73	अ	R．473	73．55tb	3FO2． 125	2． 4 S8	73.503	0.05 .3	－0．024	－0．0．017	
				cratron 40	23：3					
4383		4 CR .976	1343.870			1343.375			0.005	
3103		17 70.48 c		21963．333	1.130 .506	73.585.	－0．097	0.037	0.908	
B838	3 T	3．48e	73．594	3ces． 125	2.458	73.500	－0．010	－6．003	－0．025	
4330 ${ }^{\text {a }}$		0． 540	1.343 .312			1．543． 380			－0．015	
9099	5278，	59x．604	110.408	1399，735	594.698	112.414	0．055	0.008	0.006	
7＊seg	E7\％${ }^{\text {che }}$	－392． 700	20． 303		－373． 725	20.334	0.017	－0．03．3	0.051	
				suctum ND	ถอง 3					
4asp	2096，3i3	$0.504_{4}$	1343.2 arc ．			1343．302			0.015	
30038	1939．74	594．${ }^{\text {ckita }}$	113.487	1933．715	594．as 3	118.414	－0．083	0－070	$\cdots \mathrm{O}, \mathrm{gSp}$	
8838	E7x2，${ }^{187}$	$-272.735$	89．3R5	E7ar．anc	－337．729	20.334	－0．0．04	0.090	0.015	
4 am	1781．353	－4E3．454	1333， 605			17334．954			－0．007	
3083	123才．157	215.313	－9\％．641	1321．230	F15．7098	\＄9．607	0.073	－0．014	0.005	
Bata	2108．4．ter	－700．944	6z．${ }^{\text {3P3 }}$	E105．440	－701．015	42． 759	0．00t	－0．071	－0．063	
				SECTICN NO	6.180					
4231	12551.421	－4me3．4cs	1334.790			1334.953			0.007	
9043	1\％31．301	215.98 t	73.678	1＊91．p30	215．nsa	93－607	－0．070	－0．083	－0．064	
63313	2108．45！3	．．701． $0 \times 6$	$6 \mathrm{CW} \times 19$		－703．015	62． 759	－0．015	－0．015	0.039	
4 tc 80	1147．397	B4t．435	234，大弓			1341．539			0.011	
3774	736.743		34.590	736055	－201．730！	97．597	－0．0es	0.047	O．0EG	
29093	2405．792	－1354．038	50.121	1405.297	－1764． 585	50．036	0.000	－0．0E5	－0．073	
306	1075， 1 柯	－582， 703	160． 355	107ts． 310	－58，580	$169 \times 430$	0.180	0． 145	0.08	
8744	1579．746	－900．376	13， 331	1579．753	－700．404	73.305	0．006	－0．0．98	－0．0．68	
				3－ctinm na	3079	，				
4820	12047， 35.7	－346．475	1.341 .585			1341． 3 约			－0．011	
3078	776， 56.3	\％01．856	34．6，50	736.6875	－201．837	94．587	0.012	0．045	－0．042	
Hisor	1405.277	－13th． CKI	49.154	1405.703	$-13 \sin 4.84$	50.678	8.016	0.046	0.397	
239a	3a4． 237	＋1315．090	\＄1．4E3	924．67：7	－1315．076	877．404	－0．004	－0．0en	－0．053	
ABN	465，mij	$-205.305$	1346.005			1346．003			0.000	1
Socis	TEAD， 8 c	－431．764	1064．304		4421.783	106．300	0.007	－0．029	0.3915	0
511	12468	1413．171	［4． 713	1545．020	－1413．300	55．750	－0．031	－0．008	－0．183	
				arctidn No	coca					
4953	8930874	1793． 519	1237．cint			12017．647			0.000	
4054	7709.63	2446． $66:$	1273．246			127）			－0．037	
309	3805． $12{ }^{\text {a }}$	213．760	87．37	7504n 39	［13 3 ，son	丞． 310	－0． 2 沰	0．p．39	0.134	
4x\％	876w， 313	2． 44.108	15．044	376．5． 37	1348．024	15．010	0.057	On． $\mathrm{OL}^{7}$	－0．023	
解禹		1072，mbi	$33^{2} .14 \mathrm{~F}$,		1270．020	\＄2．089．	0.093	－0．03	－9nntia	

$$
\because=
$$



（

thets	Stamers	－A	2.450	2142，64E	545，553	2.433	0.002	－0．602	0.038	$\pm$
					2R39					－
ABH5	Wuatione	512.608	1205.6 .71			12050545			－0．02s	
Brera	TEcers． 601	$\underline{1511 . c o s}$	6.163		$1511 . \mathrm{ffz}$	5．463	－0．005	－0．017：	0.055	1
	21844		2．5int		945－553	E． 488	－0．062	0.008	－0．0．0．88	3．
4837	7445，7	20．30．307	1002，144			$5207+151$			0.608	
$3 \in 6 n$	6931．［6，	：181， 6 \％	13．4．4．	$6 \times 31.647$	317．－408	13.407	－6．008	0.015	－0．0s． 1	t．
B3\％	7637．179	237．5\％	D． 3	7637． 1127	777.101	3.366.	0.008	0．006	0.023	．
				stersion im：	13246					1
435	3445．735	5160.304	12037，17\％			1207.151			－0．020	
185．68		1171．4．45	13．364	C＋514．6x	1171．40\％	13.407	0.017	－0．013	0.073	，
［3F30	7637．19\％	277．10：	3． 3 Fi 3	$\therefore$ 1\％1697	177． 101	3． 3 E6	－0．00313	－0．002	－0，032	
4845	Emestori		1202．605			1201.610			0.004	
816， 3		7134.654	23． 3 ［83		784．faxt	Eइ． 348	－0．041	0.012	－0．039	1
840\％	centiris：	15.832	3.109	694\％＊＊44	15．82t 7	3.126	9．Dat	0.0134	0.016	．
				SFCEIEM 5	4091.					
4 traca	crane	ateratu	1201－415			1201.810			－0．004	\％．
LEir	E．347．0．ty	744．62\％	23．381	236．037	764．604	29．343	－0．009	0.040	0.007	
3itats	5145．6．7？	15．471	3． 3442	Ci365．5，44	15．847	3． 120	－0．02\％	－6．00s	－0．016	，
$4{ }^{2}+1$	6187．204	－141．21pt	1593．6．11			1199.593			－0．013	
Ext	5751	430.7	11．477	5 c 91.57	430.230	11.473	0.010	－0．01］	－0，003	
34182	Crantial	－650，3：7	$3.0{ }^{3}$	6497． 388.7	－20．31：	7．057	0.021	0．00\％	0.005	
				FFCTICN ATE	4145					
48641	6．393，m63	－143．0172	113\％．373			1193．592			0.018	
9488	E791．653	4 FB ．त29	21.585	$5 \mathrm{Fr31}$－	430.8080	11.473	$\cdots 8.089$	0.000	－0．0．045	
94418	64.37 .403	－590． 3 （104	3.063	64\％3． 45	－590．011	3.057	－0．021	－0．006	－0．005	
$49^{3} 3$	Sterneditio	515．312	1129.434			1135．4，14			－0．020	I．
acoz	$5{ }^{3} 4 \times 2.4$	77.258	4． $54 \times 2$	3x，5，m	77．237	4．569	0.104	－0．092린	0.026	；
513	541， $1 \%$	P\％．0．03	2． 3545	S－12．179	＂767－6n＇1	2． 3 CH	－0．023	－0．017	－0．022	；
105	－161．：44：	－641．4．13	3.030	4515.1 .293	－51．250	3．UF9	0.045	－0．216	0.019	！
713	－ 5 5\％，17．	3745	9， 758	5＊50．16\％	246．5tio	＋ 0.750	－0．015	0.081	0.011	
				Staction Mm	$4{ }^{2} 43$					
＊＋		545.91	15＊5＊5			2405， 4.14			0.080	！
4CSid	－245．571	T7－25；	4.615	5ituc．s．a	77n 397	4．5E．9	0.085	－0．059	0.045	
513	1－1 ${ }^{2}$ ， 15	$-767 \times 4$	2．84，	4512． $17 \%$	－767．592	2．904	0.022	0.017	0.02 E	
$4 \mathrm{AB4} \cdot$	4 \％． 416	－704．－14	1 均， 1 ？			1399．130			－0．005	！
4．70\％	4． 4.872	356，143	22.155	4595．30	$-386.127$	12．3．4．7	0.054	0.037	0.091	＋
［15 $3^{3}{ }^{3}$	c）3，＋6\％	12044． 5	9，343	5141．475	－1樓4．304	2．B23	0.005	0.017	－0．0221	
					4.344					
488.3	$49.42+415$	74．53	11．2048			11932．12．3			0.005	
Brots	4 Com 4.3 y	$\therefore 8$ \％ $1: 3$	1．．2－20．15	468.38	－766954	12.94	0.039	0.015	－0．0021	
24，58	¢121－4\％	－1： 21019	$\cdots 3$	S101．075	12゙14．32）	2． 30.8	$\cdots$	0.017	0.021	
4 4tyat		－59305	11815			1185.343			0.000	
4712	3 yc 117	4\％ater	y 5 －ata	3アざ，175	－6taren	13.200	\％．03\％	$0.0 \pm 7$	0.013	$\cdots$
34＋72		$-160.105$	11，cot	4，\％1．469	－1／2R，RCN	11．0．64	0.010	－0．000	－0．041	
				HECEI ION NK	4145					


45144		$\cdots 1305.75$	1106534			1185.347			－0．000
A718	3973.174	․－585．58）	17．325	3197．3．175	－696．002	13.30 e	0.000	－0．013	0.617
3643	Aft？．1．9	$-1690.167$	11．tsey	4637．120	16363．160	11．6．64	－0．010	0.006	0.001
4845	3727nご可	－1680．73\％	11130.476			1190.491			0.015
Sta	$3.344 .70 T$	－959\％ 480	4．240	33344，114	989．456	8．${ }^{\text {a }} 10$	－0．0．03e	0.023	－0．023
13458	3\％\％3．0．9\％	－ 514.16 ，	275．344		－2014．111		0.020	＋0．004	－6．003
S				SFCTICNM	4546				
4 4945		－1493．504	1．150．50E						－0．015
dismar	1．3\＃4．793	9819．478	8．215	$33.340_{6} 024$	－983． 2,54	8． 2 210	0.010	0.021	－0．005
845	7．9E3．336	－20．20．115		36， 3.345	－2054．11）		－0．000	0.004	0.003
48称	$3115.10{ }^{\text {a }}$	－3080．878	12181．344			1181．332			－0．012
83738	Er93， 121	－1570．276．	13．445	2093，	－1570．2437	13－4．65	0.0 int	－0．01 1	0.012
S4Ed	7387． 311	－3497\％．438	도． $\mathrm{EOH}^{\text {a }}$	3317－${ }^{\text {amb }}$	42427.440	5.351	0.017	－0．00\％	c． 011
，				STCTIOR Nat	4E，47				
484＊	3115．115	－2080． 302	1131．319			3181．33ar			O．0ic
＋37313	2893． 134		13．849	2dese 130	－1570．897	13．454	6．006	0.033	0.0085
884 Ca	33037n45	－24．7．441		可距7．308	－2423．440	5.351	－6．0\％7	0.901	$-0.014$
48947	PGr？7．764	－2459．845	1138． 3 注			1138．308			－0．02P
87745	$2{ }^{2} 45,543$	－13c8s 208	11.204	2an5．617	－1759．020	11．ras	0.034	－0．017	0.004
8 8473	2650， 013	－ 2374.473	3.034	＊1501．073	－2974，489	3.113	0.003	－0．01］	0.014
				Etectiven ma	4740				
4024	2ack 7 \％ 78	2trcks man	1180，cas			15188．3043			0.03 ac
874is	2 ELS 540	－1753．070	11.277	2445．637	－1954， 2 FeO	11．2835	－0．0．83	0.650	－0．011
5 E 4.75	2503．676．	－2374．500	T． 127	2391．673	－ 2974.489	3.153	－0．003	0.011	$\sim 0.034$
10S	2409．53S	－3189． 314	5．OE， 1	240\％．530	－3129．430	5．060	－0．025	－0．035	－0．03s
E 315	1759.450	$-2537.484$	11．2c． 7	175\％3．470	－2937．510	12.2370	0.068	－0．025	0.002
4842	1345．540	－203 ${ }^{\text {a }}$ 435	1191．023			$1131.0{ }^{\text {ata }}$			0.000
51 C	ぐきぜく	41 51	2 TJ゙世		Constat．	0．056	cmal 2	Hrix．$=$	0.057



$01 / 01 / 137 \%$


7	\％	Y	$\geq$	Vx	V	V2．
127．30\％	1［10．eso	$1298+045$	117．850	0.050	－0．192	－0．433
345.378	634．730	1＋39．700	146．430	0．©OE	－0．16．7	－0． 106
194．Eti	734．－Fid	－ 20.95	94.500	D． 0 985	O．Cxich	O．OEx
	－73． 350	1015.440		－0．037	$0.0 \pm 2$	－0．001
30．838	717.640	－1\％7． 380	1 13.2480	0.087	0.000	－0．101
1告，D＂3	Es4m． 720	＂有70．330	12．250	－0．112	－0．030	－0．171
25，こ¢ ${ }^{\text {2 }}$	59 －3．3 30		235，305	－0．015	－0．030	O． 0.47
76，A \％	707\％，3i 0		76．470	－4．0．042	－0．037	－0．0．72
	6775．716	2＋i65． 170	85． 580	－0．123	－0．625	－0．044
	6326． 20	7270．5\％0	65． 520	－0．032	－0．00． 9	O． C 70
95． 1 \％${ }^{\text {ck }}$	6rbor 540	－3 16.640	95．676	－0．0115	0.080	O． 0 学
102．51\％	S46E．469	1673．390	102－310	－0．057	－0．094	0． 200
C4．679	4375．678	9，71． 5	64．730	－0．007	0.002	$\cdots 0.070$
IEx．Es，	3740－270	1231．g70	158， 5 STS	－0． 115	－0，128	0.172
73． 515	$3 \mathrm{H} 11 \times \mathrm{F}$	6．530	73．700	－0．065	－0．067	－0．0．93
15 Ec ，846	14E3． 730	$\cdots \mathrm{F}$ \％．3nत	1E3．016	－0．008	$-0.158$	
63.240	1291．650	$-946.760$	68．720	0．123	0.050	0.230
34.5173	124E．R30	－1413．36\％	55．730	－ 5.0094	0.058	0.183
13.413	5918	6035，6－7	19．189	－0．011	0.064	0． 337
$75.83 t$	5P5\％ 160	己 46.5	30.770	－6． 0115	－0．000	O．051
43． 36.4	4302，${ }^{\text {a }}$ \％	－781，39	43.460	6． 0.38	0.150	－0．093
8．850		－1717． 300	8．750	$0.1+10$	0．034	\％． 100
E． 437	3150.770	565.670	6．390	－0． 0.08	0.1 号1	0.047
3.3841	7730.480	1 1444.610	3.870	0．025	0.074	－0．023
3.348	5715．640	－341．2．20	3.300	－0．007	0.001	O．Of
2．319	381 2． 140	－367．890	2． 340	－0．013	0．059	O．fers
4.7884	3579.156	－1，415．E430	4.200	0．635	0.171	－0．0．05

APPENDIX D

OUTPUT FROM THE ITC bIOCK OE SANTHETIC STRIES


$\therefore=$


＊	6711	－0．0¹	32002.568	1000．743	0.000	32000.000	1000．000	－0．031	1．506	0.742
＊	G心2゙11	79999．978	37993． 2 24	959， 2 규	800000．000	40000.000	1000.000	－0．001	$-0.775$	－0．7E6
＊	67211	80000－535	32090.003	1009.797	$80000 \cdot 000$	32000.000	1000．000	0．6．35	0.003	O．797
＊	EESI	15\％79． 491	35959．040	1000.846	160100．006	36000.000	1000.006	－0．508	－0．959	0， 846
＊	6751	16001．231	31938．755	997.706	15000，050	32000.000	1000.000	5 － 298	－1．274	－2．293
4	E6351	58000，57	3599\％．017	1000.143	500000.000	360000.000	1000.000	0.577	－4．99ㅛㄹ	0.163
＊	67151	56000.230	31999，563	999.433	56000.000	$3{ }^{3} 0000000$	1000．000	0.736	－4．436	－0． 56
	6782	3998．697	$32000.45 \times$	977．932	3997． 385	31998.847	999．203	0.712	－ 1.605	－1n 272
	6742	12000．73？	$3 \mathrm{P00} \mathrm{\%}$ ． 346	978.544	12001－300	31938.677	997，493	－1－047	1.589	1.051
	576	20001．364	32001.368	1000.891	29999.204	31997，156	999， $\mathrm{g}_{2}$ d 1	E． 160	4.212	1.070
	678 P	27999．413	$32001+$ 250	959.954	27999， 426	31997.894	97E．135	＊－012	1.555	3． 757
	67102	36001.068	31936．976	994．910	35998． 533	32000.205	928．081	2．535	－1．2륭	－3．170
	6712セ	44000．8＇76	3200． 939	1008－008	43999.231	32000.557	1002．535	1.445	2． 313	－0． 526
	6.7142	31599 ＋479	$3 \times 000.443$	969－902	52000.267	31998， 459	999．550		1．983	0．7．7ら込
	67162	60000．525	3 COOL .005	3001．583	59938．601	31998．707	958，40．4	1.973	2．2ag	3.112
	87182	67398．	73000．954	1002． 460	67999．801	71999．156	1001．424	－1． 51 ？	1．758	1．035
	67203	75999.963	71995．048	653.670	76000.294	31999．354	1003．699	$-0.3,30$	－0．306	－4．059
	67卫3己	80000.98 R	32000．025	1000． 369	79998.563	31999.974	1000．075	E．4E4	0.050	0.294
＊	5711	$-1.430$	31999．109	1000．235	0．000	33600．000	1000.000	－5．430	－0．890	0.325
＊	7at	0.459	2400E． 111	1000，6R5	0.000	24000．000	1000．000	0.459	2.111	O． 689
＊	67212	79938．475	32009.194	929．725	80000．000	32000.0000	1000.000	－1．594	0.134	－0．284
＊	Teret1	50002． 181	쿠3935，	997．767	500000.000	24000.000	1000．000	$\mathrm{E}_{-181}$	－0．379	－3．232
$*$	7751	16．000． 377	27993．002	3001.645	16000．060	28p00． 000	1000．000	O． 3 良	－0．997	1－64E
＊	7851	15999．933	24000.106	999．25s	15000.900	24000.000	1000，000	－0．066	0.106	－0．743
$\pm$	77151	56000． 105	28060．438	1000．12］	56000.600	28000．000	1000.000	O． 105	0.438	C．121
4	78551	5t000．EES	$24000+472$	100N．206	56000.000	24000.000	1000．000	0．506	0.472	2．206
	782 E	3999． 344	2400． 408	1040．751	4000.311	235s9．782	999． 119	－0．357	E．6ed	1．631
	7942	12001． 803	24000． 808	999.689	32002.551	23939．EES	1601．735	$\cdots 0.947$	0.98 S	－2．045
	76EE	20001．354	23999． 320	997.398	20000．830	23958．655	359．940	0.503	0.664	
	$788{ }^{\text {7 }}$	27993－832	123999．6프	997－Et5	$274960-710$	239999． 729	993．EM7	3－122	－0．091	－E． 391
	78102	35989， 999	24002．275	1064．761	35995.709	27999，063	1004．477	3.290	4．롤	D． 2984
	7812゙	45999.135	24002－024	$3003-113$	43998.409	2393E，497	1094．601	0.786	3.507	－1．488
	78142	50000.259	2400，E84	1003．308	51．999．878	23988．93d	1004．509	0． 3 ［19	1.751	－1－200
	78352	59999． 361	24009．254	1005．956	60600.371	34000.064	999.824	$-1.533$	2.183	6． 131
	78202	76000.469	239\％9．742	1001． 369	75998．819	24031．932	998．ᄅa	1．650	＋e． 190	\＃．747
	78セさ己	EC00t．745	2399， 3 Sc	935－915	80001．796	279999．480	\＄000．642	$-0.051$	$-0.087$	$-3.727$
4	7811	－3， 133	23993．982	998．635	0.000	24000．000	1000．000	－3－313	－0．017	－1， 35.4
$*$	8921	$4000 \cdot 451$	15980．089	10\％6．219	4000.000	16000．000	1000．000	0．491	$-0.920$	c． 819
＊	782．1）	guode 318	23999．${ }^{\text {¢ }}$ 2 2	1000． 357	10000． 0000	2.4000 .000	1000．000	2． 318	－0．47T	0． 357
＊	89］1	79998． 5 ？	15999．529	1000．598	80000．000	16000，000	1000．000	－7．742	－0．370	0.695
＊	E85：		1999\％． 964	523．481	16000.900	20000．000	1000．000	E．obe	－0．093	－0．5ta
＊	g951	3E002． 121	16000.723	998.057	16900.600	10000．000	1000．000	2． 311	0.788	－1．942
4	Bat51	56061.675	19999．327	1000．930	56070.000	\＃0000．000	1000．000	1．E．75	－0．672	0． 930
＊	89151	56001．944	15959.768	999.173	56.063 .600	16000．000	1000．000	1．944	－0．${ }^{\text {ele3 }}$	－0．82E
	89⿷ㅡㄹ	4000.907	1593\％ 175	1000．65\％	＋604．648	15958.630	1003．867	－7．741	0.544	－6．动㤩
	89 Ber	8002． 159	16000．132	993．65s	7599．643	15993．${ }^{\text {TE }}$	977，870	E． 520	6．Ens	1．784
	g953	16002．56．	16000.859	9777.843	15988．016	15999． 686	9951．064	4.551	1．773	－0． 2.20
	8972	23993．648	16002．820	995．741	年999．384	16001． 855	998．575	－0．675	0.965	1－16s
	8992	91996．845	16001． 353	1001.979	32001．051	16001． 635	999.462	$-4.245$	－0．2．2as	2．516
	991发艺	39997.997	15988．549	958，751	40003.941	15599．${ }^{\text {\％}}$ 3	1601．045	－5． 544	$-1.083$	－${ }^{\text {er．e94 }}$
	时132	42000．7艺，	16000.540	1000－76\％	48001.02 el	15998．020	1000． 609	－0．300	2．519	0.159
	8915	5600\％． 355	15999， $\mathrm{EP}^{1}$	959．143	55907．988	15998．769	998.993	3．305	0.951	0.150
	自管己	E4000．534	16003． 181	998． 587	65997－946	15998． 0477	1000．820	E．Estr	5． 3.34	－7．
	89192	71996．922	1600E．448	9748.200	72000．7E3	15001．139	996．947	$-4.075$	0.309	1． 2.0 \％
＊	82el	400．3．570	15938．43t	1000．40t	40000．060	16000．000	1000．000	3， 370	－1．5es	C． 401


	* 91021	3995.046	8002.030	999.33\%	4000.000	8000.000	1000.000	-4.953	2.030	-0.64E
	* siceld	7999.695	15998,389	999.569	80000.000	\$ 80000.0100	1000.000	-0. 504	-1.610	
	* 910211	80001. 68.1	8001.354	598.049	80000.000	W000.000	1000.000	1.661	1. 357	$-1.950$
	* 9951	15939.737	13000.3E5	1001.551	36000.000	12000.000	1000.000	-0.20e	0. 328	1.551
	* 91051		3001,748	1000.803	16000.000	8000.000	1000.000	1.552	1.748	0.303
	- 93151	55338. 302	12000.045	1000.585	560000.000	12000.000	1000.000	-1.637	0.045	0.596
	* 910151	5599a, 日es	9003.564	1000.696	56000.000	5000.000	1000.000	-1. 314	1. ${ }_{\text {der }}$	0.526
	9102E	3394.630	8001.645	389.342	3998.055	8000. 100	745. 795	-3.364	1.545	-0.5S2
	91033	7998.532	7995.653	999.903	7939. 297	7999.971	997.137	-0.764	-4.709	\%-765
	aiose	150001.552	8002.022	1000.913	154499.534	8000.867	988.580	1.918	1.154	2. 333
	31072	23998.909	9004.449	1002.449	2-9938.184	7999.695	1004.519	0.72s	4.754	-2.079
	51092	35999.382	8001.10E	998.513	32000.797	6000.203	1005.104	- 0.614	0.858	-0.590
	91017 F	40001.193	80¢2. 3 들	1003.479	40001.2134	8000.4区1	1005.63\%	$\cdots 0.101$	1.691	-2.148
	91013	48000.310	5001, 213	1004.340	48000.789	$79 \mathrm{F9}$.614	1004.332	-0.478	1.403	-3.0E3
	91anse		8001. 280	1000.404	5s598.aㄹ	7999.023	1000.3E5	1.075	2. 355	0.029
	91017 T	64000.250	2002. 3.36	1001-303	63998.473	8001.9298	992.931	0.77	-0.591	8. 371
	910192	72002.182	7397.983	3 3 7-684	7200s. 311	E600. 308	794. 394	-1.129	-2. 525	3. 270
	910213	8000e. 776	8001.234	998. 334	E0001. 7 \%	7997. 539	1000.598	0.531	3.701	-2.264
	* 910Et	3297.515	8000. 255	999,	4000.000	8000.000	1000.000	$-2_{1} 184$	0.255	-0. 379
	* 101521	4001. 28.8	-1.144	1000. 768	4000.000	0.000	1000.000	1.187	-1. 148	0.768
:	* 910211	80001.477	2997.533	1000.595	9\%000.000	5000.000	1000.000	1.477	-2.465	0.595
	* 11215	80000. 5 mo	3.eai	$100 \pm .318$	80000.000	0.000	1000.000	0.680	9.281	2. 318
	* 91053	15999.517	0001.703	997.900	26000.009	8000.000	1000.000	-9. 38 B	1.703	-2.099
	- 10155	59933.050	4000.887	1001.661	56000.000	4000.000	1000.000	-2.939	0.387	1.651
	* 11185	59939.646	0.848	995.080	60000.000	0,000	1000.000	-0.313	0.848	-3.919
	* 91061	20000.3e2	8001.623	1000.890	20000.000	8000.000	1000.000	0.332	1.623	0.890






PT Nu $x \quad y \quad z \quad$ x1
$Y 1 \quad Z 1$
$v x$
$W^{\prime}$
$v 2$

POTEL THT 10102

11011	1.106	80000.323
1111	0.855	76008.071
1211	0.571	72003.874
11021	5999.441	79998.656
$11 \geqslant 1$	3999.318	76000.846
1231	3993.507	72001.426


394.900	0.000	80000.000
1000.092	0.000	76000.000
999.366	9.000	72000.000
1001.684	4000.000	10000.000
1002.065	4000.000	76000.000
1001.228	4000.000	72000.000

1000.000
1000.000
1000.000
1000.000
1000.000
-1.105
-0.855
0.571
0.558
0.881
1060.000

1.099

$0.6 \pm 3$
-1.614
$-7.0 E t$
－马．DE5
$-1.22 t 5$
2．55\％51GPOS＝E．941

1.343	-1.684
-9.540	-2.055
-1.425	-1.228
1.805	0.223
0.858	-1.563
0.431	-0.928

$4.552516 \operatorname{POS}=3.252$
1000.000
1000.000
1000.000
1000.000
1000.000
1000.000
0.099
2.806
0.858
0.431
2.437
1.075
1.079
$0.2 E 3$
-1.562
-0.928
-7.610
-1.189
-0.294
2． 3 ES EIE POS＝引． 5
HEL NU 10405

11041	11993．153	79996． 5
－ $1+41$	1199 宾 71	75988
134）	16997．121	71998＊．920
14052	15998．988	79937．57
1151	15997． 176	75999．
12゙い	16000.330	71950.


1008.610	12000.000
1001.189	12000.000
1000.790	12000.000
398.873	16000.000
999.928	16000.000
397.271	16000.000

80000.000
76000.000
72000.000
80000.000
76000.000
72000.000
1000.000
1000.000
1000.000
1000.000
1000.000
1000.000
0.845
1.8289
1.878
1.013
$0.82 \pi$
-0.330
$-2.610$
3.437

1.075	-1.189
1.079	-0.298
2.424	1.128
6.519	$0.07 \pi$
1.296	2.128


11051	15908.998	79997. 575
1151	15959.176.	75999.080
$\pm 251$	1500008336	71998. 703
11061	19959.232	$7 \% 999.463$
$\pm 161$	-0000.412	75998.505
1861	20001.745	71997.598

STD ERRS FDR THE MODEL FIG $x=$
FWCYEIN ND 10607

998.873	14000.000	90000.000
995.923	12000.000	76000.000
997.871	18000.000	72000.000
373. 3 a!	20000.000	30000.000
936. 447	30000.000	76000.000
937.747	20000.000	72000.000


1000.000	1.013
1000.000	0.83.
1000.000	0.330
1000.000	0.767
1000.000	-0.412
1000.030	-1.745


2.424	1.126
0.959	0.953
1.295	2.129
0.537	6.118
1.434	3.552
2.407	2.25

FWCOE ND 10607

11061	19999. P3P $^{\text {a }}$	79999. 46x
1161	70000.412	75998.505
185:	20001.745	71997.593
21071	24000.691	79897.604
1171	2400) 6001	75998.254
1471	24001. 368	71998.534


993.251	20000.000	800000.000
996.447	20000.000	76000.000
997.747	20000.000	72000.000
995.233	24000.000	80000.000
999.576	24000.000	76000.000
2001.6 .51	24000.000	72000.000


1000.000	0.767	0.537	6.118
1000.000	-0.412	1.494	3.592
1000.000	-1.745	2.407	3.252
1000.000	-0.681	2.335	4.766
1000.000	-1.601	1.745	0.429
1000.000	-1.968	1.465	-1.621

HEDEL NU 1070B

11071	24000.681	79997.604
1171	24001.601	75998.654
1271	24001.968	71998.534
11081	28000.451	79997.046
1181	36001.545	75998.257
1281	88002.356	71998.474

5T0 ERRS FOR THE MOCEL $216 \mathrm{X}=$
1.734 M
995.299
999.576
1001.621
995.855
959.376

24000.000	100000.000
24000.000	76000.000
24000.0000	72000.000
28000.000	80000.000
28000.000	76000.000
28000.000	72000.000


1000.000	-0.581
1000.000	-1.501
1000.000	-1.568
1000.000	-0.451
1000.000	-1.542
1000.000	-2.356


2.395	4.766
1.745	0.423 .3
1.465	-1.639
2.939	4.134
1.748	0.623
1.525	-2.132


31588	28000. 451	79997.060
1:81	28001.542	75993. 25
1281	78002. 358	71998.474
31091	23001. 253	79998.E83
1191	32001.E33	76000. 805
$1{ }^{\text {¢9\% }}$	72003.255	71999.836

STD ERFS FCR TEE MROEL SIG $x=$

985. 865	20000.000	80000.000
953.376	28000.000	76000.000
1002.	28000.000	72000.000
996,99E	3E000.000	80000.000
1000. 365	32000.000	76.000 .000
1000.3*7	33000.000	7 $7 \times 00.000$


1000.000	-0.451
1000.000	-1.542
1000.000	-2.355
1000.000	-1.253
1000.000	-1.239
1000.000	-2.255


2.939	4.134
1.748	0.623
1.525	-2.135
1.316	3.063
0.305	-0.365
0.161	-0.317

1.807 m sic $\mathrm{Y}=1.781 \mathrm{MESE} \mathrm{Z}=$
2.S1S SIG PL_AN $=$ ㄹ.53 EIG POS 3.573 MLDEL ND fogio

11001	$32001-753$	$79998.6 B 3$
1191	$7300 \pm .233$	76000.305
1691	32002.254	$7599.83 \$$
101	7000.014	79999.423
11101	36002.933	7600.133
12101	36004.420	72000.423

996.938
3000.365
1000.317
996.206
999.771
1000.820
32000.000
35000.000
32000.000
$3 E 000.000$
36000.000
36000.000
80000.000
76000.000
77000.000
90000.000
76000.000
72000.000
-1.253
-1.439
$-\mathbf{2 . . 2 5 5}$
-0.014
-6.935
-4.420

1.315	3.063
-0.305	-6.385
0.161	-0.317
0.530	3.793
-0.139	0.228
-0.423	-0.820

2. 695 M SIG $Y=0.691 \mathrm{M}$ STG $Z=$

3. 000
2.223
2.1tz 5IG P0s= $4.080^{\circ}$


BTD ERRS FCR THE MLOEL
WOUEL NO 11132

111	40000．923	75900，맄	593－404	40000．000	80000．000	1000.000	－9．923	1.787	6.159
11111	40001.430	76000． 264	1001． 134	40000．600	76060．000	1000.000	－1．430	－0．254	$-1.134$
12111	40001.788	$7 \times 0003.739$	1004．087	400000.000	78000.000	1000.000	－1．720	－3．738	－4．CE7
123	44000.898	80000.733	990． 188	44000.000	\＄0000．000	1000.000	－0．898	－0．739	9.811
1112 x	$4400 \%$－505	76001．315		44000．000	76000.000	1000．000	－2．505	$- \pm .115$	7．852
12121	44001.190	72001．938	956．589	44000．000	72000．000	1000．000	－1．190	－7．928	3．410
ERRS	R THE MP	SLG X	． 708 m	$Y=$ an	M SIG	6.723	ANM	Tect SIG	$=$


121	44000.398	80000． 733	990． 188	440000.000	80000.000	1000.000	－0．89日	－0．733	9.811
111 21	44000.505	76001．115	993． 147	44000．000	76000．000	1000.000	－2．505	－1．115	7．85］
」ごこう	44001－190	72001．92eg	396．589	44000．000	720000．000	1000.000	－1． 130	－1．928	3.410
131	48001－312	79998． 295	993.370	48000．000	80000．000	1000．000	－1．312	1.703	C．6es
11131	48601.574	76000．574	497.310	48000．000	36000．000	1000.000	$-1.574$	－0．574	2－68\％
j213』	48001．284	72002．816	999． 5.65	49000．000	72000.000	1000．000	$-7 \times 2 \mathrm{c} 4$	－2．815	0.337

 manel．No $1: \ddagger 14$

131	48001.352	79356．Es6	293． 770	48000．060	80000．000	1000．000	－1．312	1.703	6.603
11132	48001＋574	76000.574	997.310	48000.000	26000．000	1000．000	－1． 574	－0．574	2.689
12231	4800t． 284	7200．2．81E	999.5 .65	48000.000	72000.000	1000．000	－1．234	－2．816	0.334
143	52000．55E	79998．Es1	994．942	52000.600	80000.000	2000.000	－0．536	1.15 z	5.157
1：141	53000.420	75999．9415	998．300	52000.000	76000.000	1000.000	－0．423	0.051	1．574
221.41	51999．931	72002.702	1000．075	53000，000	72000.000	1000．000	0.068	－2．302	－0．035

HRDEL．HC 13415
141
32141
12141
151
11151
12151

58000， 5	79598.861	994．842	54000．800	80000．000
59000．422	T59998，948	988．730	57000.000	76000.000
\＄199\％．931	7200e． 305	1006\％．075	53000.000	72000.000
55999．	79997．672	997.308	56000．000	80000．000
5599\％．514	75998．912	995．634	56000．000	76000，000
5593\％ 335	72000．471	398－343	56000．000	72000．000

1000.000
1000.000
1000.000
1000.000
1000.000
1000.000
-0.556
-0.422
0.068
0.860
1.485
1.764

1.138	5.157
0.051	1.679
-2.302	-6.075
2.337	2.691
1.087	0.385
-0.471	1.056

 WOUEL NO 11516


$$
\text { MODEE NO } 11617
$$

151	59993．069	75997．087	997.105	80000．000	80000．000	1000.000	1.930	2.972	E．894
1115	59998． 253	75907.903	997.928	50000．000	78000.000	1000.000	3－346	2．096	2.071
12.61	5995\％． 330	71988.445	997．500	20000．000	70000，000	1000.000	2.109	1.554	류․ 499
171	63998.812	7995k． 707	\＄97．041	64000．000	10000．000	1000．000	1.187	3．292	2.558
11171	63 yyg ． 30	75997．520	908． 283	$54000-000$	75000．000	1000．000	1.095	\＃． 479	1．815
12173	E3998．弱艺	719 \＄4．486	998． 357	64000.000	73000．000	1000.000	1.017	2.513	1． 5 －${ }^{\text {r }}$ 2

 MCHEL NE 3171 F

174	63096． 912	75996．797	997．041	64000．1000	80000．000	1000．000	1.187	3.292	4．358
1：171	63998．504	75997．580	998．183	54000． 900	78000.000	1050.000	1.095	2．479	1.816
12171	63998． $8_{82}$	71997．486	999．357	64000． 00	70000．000	1000．000	1．017	2． 513	1．542
181	68060．536，	75997．214	959．941	68000．000	80000．000	1000．000	－0． 5 5if．	2．785	2．058
11：81	68000.559	75997．256	998．473	68000.000	76000．000	1000．000	－0．659	2．733	1．
1E！E！	E．82500．340	71396．339	935．	58000．000	72000．000	1000，000	－0．340	3.670	4．376

 Mroct No 11819

181	68400．536	79997． 314	997.981	68000．000	80000.000	1000．000	－0．5．36	2 n 785	E． 058
	5，88000． 559	75997． 2 E6	994．473	68000.006	76000.000	1000.000	－0．593	E．733	4.525
1218！	68000． 340	71995． 389	995． 523	67000．000	78000，000	1000.000	－0． 340	3.670	4.376
191	78000.423	79354．${ }^{\text {c7 }}$	1003， 338	72000.600	80000.000	1000.000	－0．4 4	5．72？	－3． 3 38
： 1191	72000.718	75997－5さ己	100e． 331	73000.000	75000． 000	1000.000	－0．718	2.477	－2．831
¢t219：	7200e．030	75398．384	1001． 501	72000.000	72000．000	1000．000	－2．9\％0	1.015	$-1.201$


191
1.151
12191
201
11202
122001

MOWEL WN	11920
73000.424	79994.277
72000.718	75997.522
72002.030	72998.984
75993.275	75955.922
76000.901	75999.545
76000.907	71958.986


1003．338	72000.000	810000．000	1000.000	－0．423 4	5．722	－3ヵ338
1003．83	72000．000	78000．000	1000.000	－0．715	2． 477	－2．831
1000． 201	72000．000	7120000.900	1000.000	－2．030	1.015	－1．201
	76000．000	80000．000	1000．000	0.724	2.077	－2．128
1003．E12	76000.000	76000.000	1000.000	－0．301	1.484	－2．632
95\％ 063	76000.900	$7 \mathrm{co00.000}$	1000.000	－0．90\％	1.013	0.137


MEDEL MIT 1 ZOED


201	75399．${ }^{\text {20］}}$
11201	76000.901
$12 \mathrm{Ea1}$	76066． 907
211	75998，D6．
1t2゙13	79339．${ }^{\text {P83 }}$
3 己己口 3	90001－듀륭

79997.328
75998.515
75938.988
79998.091
78000.974
72000.598

100E． 2 28	76000．000	80000，000	1000．000	0.72 .4	2．077	－2． 120
100\％${ }_{\text {ckiz }}$	75000， 000	76000．000	1000.000	－0． 0.701	1．484	－2．512
995．86P	$7 E 0000+300$	TE000．000	1000.000	－0， 007	1．013	Q． 137
1005．J2P	80000．000	20000，000	1000．000	1－7鉒6	1.998	－6．12른
1004．086	80000.006	78000．000	1000.000	0.716	－0－74	4.086
3 301． 2 E6	30000.000	73000，000	1000．000	$\rightarrow 1.5$ Fesis	－0．598	－1．

官TD ERRS FOR THE MOEL EIG $x=$


3．6E4 FIG PLAN $\pm$ 2．OT9 SIC PDS $\because 4$. 云1
ETD ERRS FDR THE STRIP SIG $x=$

3.145 SIG PLAN $\times .476$ BIG FOS＝
4.003

HROEL NE EOICR

1211	-2.079	73000.298
2211	$-1-984$	67999.045
2311	-0.209	64000.279
1221	3958.745	73000.527
22231	4009.284	67992.816
2321	4000.380	64000.974


1000.328	0.000	$7 \pi 000.000$
598.511	0.000	68000.000
997.526	0.000	64000.000
1001.750	4000.090	70000.000
1001.387	4000.000	68000.000
1000.553	4000.000	64000.000


1000.000	迆 679	－0．4ng	－0．328
1000.000	1－384	0.954	1．488
1000.000	0．209	－0．2．279	空 273
1000.000	1． E S4		$-1.760$
1000．600	－0． 284	0.183	－1，987
1000．000	－0． 380	－0．974	－0．50．

STD ENRS FCR THE MOOEL GIE $X=$
1.271 bit $\mathrm{Y}=$
.584
$-0.380$
1．44
3FG POS
3． 2 \＃as


\＄221	3998．745	7，3000．E
2des	4000.584	67973.816
3med	$4 \mathrm{4OO} .3 \mathrm{BCO}$	g4000．9\％\％4
1231	7399.305	72000． 137
2037	5000．762	69000． 26.5
2331	8000． 6.36	6．4000．144

GTD ERRS FCR THE MDDE SIG $X=$

 Manel No 20304

1231	7999.905	74000.137
2231	8000.752	65000.263
2331	2000.534	64000.144
1241	11999.822	71999.311
2241	12001.457	67999.348
2341	12000.908	63999.867

STD ERRG FLR THE MOEEM SIS $x=$

1003． 789	8000.000	72000．000	1000．000	0.094	－0． 237	－3．789
1002．912	\＄000．000	58000．000	1000．000	－0．7EP	－0．263	－E．51艺
999．3mz	88000.000	644000．000	1000.000	－0．536	－0．144	0.046
100 F ．6er	12000.000	72000.000	1600．000	0．187	0．688	－2．583
1002－417	12000.000	68000．000	1000．000	－3．${ }^{\text {\％}}$ 57	$0.05{ }^{0}$	－p，427
1000.387	120000000	\＄4000，000	1000．000	－0．908	0．123	$-0.327$


0.915 M	sre $\gamma$	0.347 M	SIS 2	2.68	SIC PLAK	0.979	SIC PG唃 $=$	

MFTOEL NOL 2OHOS

12あ1	11999－83P
	1200t． 567
＋341	12000．9018
2est	16000． 59
22\＄5	150002．955
2351	16002．0ES


7159.311	1002，E－E
67999.948	1002．417
63799．863	1000．387
72000．805	999．033
67993． 96.4	1001．024
6．400\％． 71	1000.957


12000.000	72000.000
12000.000	69000.000
22000.000	64000.000
16000.000	72000.000
16000.000	68000.000
16000.000	64000.000



MoDel ND 30506

2251	16000.192	72000.805
2251	16001.955	67990.968
2351	16002.054	64000.171
4251	20002.549	71999.834
2251	20001.737	67995.649
2361	20001.845	64000.989


999.033	16000.000	72000.000
1001.024	16000.000	68000.000
1000.939	16000.000	64000.000
1000.402	20000.000	72000.000
1000.862	20000.000	68000.000
1000.782	20000.000	64000.000


1000.000	-0.192	-0.805	0.965
1000.000	-1.355	0.321	-1.024
1000.000	-2.088	-0.171	-9.939
1000.000	-2.549	0.1 .55	-0.802
1000.000	-1.737	0.350	-0.862
1000.000	-1.845	-0.989	$-0.72 R$

ETD ERRS FCR THE MDOA．SIC $X=$
2．OLe M
EIG $y=$
0.601 ＊ $\operatorname{sic} 2=$
0.910 EIG PLAN 피

ㄹ． 13 B 5IG POM 4
2．324
MEOEL PRC SCEOT

1261	20002.549	71399.894
2351	20001.797	67999.649
2361	20001.845	64000.989
1271	74001.659	71995.729
2571	24001.540	68000.246
2971	24001.930	64000.256


1000.102	20000.000	72000.000
1000.752	24000.000	50000.000
1000.722	40000.600	64000.000
1004.087	24000.000	72000.001
1001.377	24000.000	68000.000
599.371	24000.000	64000.000

1000.000

0.185	-0.102
0.750	-0.862
-0.589	-0.722
1.270	-1.687
-0.246	-1.377
-0.755	0.658

GID ERRS FOR THE NHORL SEC $X=$

1000.000
1000.000
1000.000
1000.000
-2.513
-1.727
-1.845
-1.669
-1.540
-1.830

O．9go EIG PL＿FN＝
ᄅ． 264

1.279	-1.087
-0.246	-2.377
-0.255	0.668
1.247	4.814
1.397	0.492
0.411	-0.123



935．185	28000． 900	72000．00\％
999．507	2 2000.000	E8000． 000
1000．229	23000．000	64000.000
595．07\％	F23000．000	TFOCO 000
998．592	32000.000	65000．000
988．774	32000．600	64000．060

STD ERRS FCR THE MCDEL．SI $X X=$

72000.900

6gowe．000 54050.000 54000.000
720000.000 68000.000 504000.000
-1.869
$-\$ .540$
-1.530
-0.347
-5.794
-3.777
1000.000

$1000.000 \quad-3.77$
：000．950
1000.950
1000.020
$1000.0,0$
1000.620
1005.620
10.400
-0.347
-1.704
-4.774
-3.64 .3
-2.464
-1.048

1.213	4.814
1.307	0.492
0.211	-0.129
0.350	4.929
1.353	1.417
0.784	1.525


1． 583 STG PHS＝
3．05\％

3． 393 ETS FLAN

2． 311 m 边男

998．077	32000.000	72000.000
398．582	Sm004．006	62000．000
998.774	32000.000	64000.000
913．917	96000．000	74000．000
999．579	38000.000	68000.000
996．010	5000．000	64000，000

$\pm 000.000$
1500.000
＝0．000
-3.000
-3.000
3.000
.9 .006
-3.043
-2.404

-2.404
$-1-020$
-1.313
$-1-929$

0.30	4． 3 3 ${ }^{\text {年 }}$
1．553	1－417
0.784	1．325
$2.76{ }^{2}$	0． 182
0.618	0．4R20
0.858	\＃u 5\％9

MONEL ND 210：1


MOCEL MOT 21213

12』き！	44000.584	71988，864	992.357	44000．000	72000．000	1000.000	－0．584	1.135	7.642
르렐률	44000.955	6792d． 196	998．571	44000．006．	88000．000	$\pm 000.000$	－0．965	1．803	1．428
こヨさきさ	44001．305	63998． 3 ¢ ${ }^{\text {2 }}$	S990． 787	44000，000	64000.000	1000．000	－1．905	1．057	O． 21 E
を姩ぢ	42999.357	747\％7．651	955.440	48000．000	77000.000	1000.000	$0.64 \pm$		3.555
2コ131	47998． 35	67989.110	999.877	48000．000	68000.000	10200.000	1.047	O．HEAs	0． 1 己党
2913！	47999．307	E4001－369	999．974	48000.000	64000．000	1000．000	0．692	－1．36．9	0.025



3．8e5 SIC PLAN＝
2.034 5IC Pbs $=$ 4． 332 PRDEL．NO EY314

1213\％	47939.357	71957，65］	998．440	48000．000	$7 \mathrm{7a000.060}$	1000.000	O．64E	2． 338	3.559
	47998．95	67959.110	999．877	48000．000	68000．000	1000．000	1.047	0.853	0.12 L
753 31	47999． 307	64001．369	959．674	48000．000	64000， 400	1000.000	3．${ }^{\text {ces }}$	－1．389	O．0ㄷㅡㅢ
12941	S1597．430	71098.739	999． 165	52000.000	72000.800	1000.000	2． 5.59	1．260	0.835
2214．4	5，1997．525	67999.348	599． 558	5 57000．000	68000．000	1000.000	E． 074	O．OS1	0.441
23141	51998.867	65999．845	998． 689	52000.000	E4000．000	1000.000	1.037	0.154	1.510

GTD ERRG FUR TEE MGDEL SIG $x=$

4． 177 SIC POS $=$ 2． 56
MODEL N 21415

12141	51997．430	71998.73
愛き141	5 5937.925	67993．94
出苗141	51992．967	69793．84
12151	55997．499	73000．47
2elt	55993． 57	67999.90
23151	56000． 310	63999.80


999． 565	59000.000	72000.000	1000．000	2．569	1.250	0.835
999．5Es	52000.000	68000．000	1000.000	2.074	0.051	0.441
998.083	5	64000．005	1000．000	1.03 Br	0.154	1－910
359．35	56000.000	7e000．000	1000．000	E．500	－0．473	0.640
1000． 973	58000．000	68000.000	1000．000	0.847	0.091	－0．973
1006． 977	\＄6000．060	64000.000	1000．000	－0．350	0.174	－0．977

NEDEL ND 21516

1erss		72000.473
22151	59993． 257	57993． 908
P3：51	56000.310	63995．
12．	60000.579	72000．14：
Mel6	E0ctod． 730	88000． 153
23461	C0002． 3 33	CH000． $6=6$


$\begin{array}{lr}1000.000 & 0.500 \\ 1000.000 & 0.842 \\ 1000.000 & -0.310 \\ 1000.000 & -0.579 \\ 1000.000 & -0.770 \\ 1000.000 & -1.529\end{array}$

-0.473	0.540
0.092	-0.973
0.374	-0.977
-0.141	-0.731
-0.155	-3.903
-0.645	-3.715

1.482 SIG POS＝2．927

MWDR ND 216：7

12361	$60000.57 \%$	72900.141	1000.731
22161	60000.730	53000.155	1003.305
23161	60001.529	64000.646	1001.711
12171	64002.214	71999.596	1002.416
22171	64002.349	67939.894	1004.327
23175	64009.719	54000.747	1003.517


60000.000	72000.000
60000.000	68000.009
60000.000	64000.000
64000.000	72000.000
6400.000	68000.000
64000.000	64000.000


1000.000	-0.579	-0.141	-0.735
1000.000	-0.730	-0.155	-3.707
1000.000	-5.579	-0.446	-3.711
1000.000	-8.214	0.46 .9	-2.416
1000.000	-2.340	0.203	-4.313
1000.000	-1.713	-0.747	-3.517

MEOEL NO 21718

12171	E－40OE．स14	73997． 536
221र1	640092.340	ETs99． 9 F
23171	E－4001．719	64000．747
12181	58003．447	71999． 272
嘘18	5800e． 438	65000．444
2G181	6－800 ． 550	（5）601．574


1002． 416	54000．000	76000.000
300x，313	64000.000	－680\％ 0.650
1003.527	64000．000	E4000．000
1002．004	58000．000	72000．000
$1003 . \pm 60$	68000．009	68900.000
1001．510	58000．000	5.4000 .000


1000.600	-2.2 .4	0.447	-3.416
1000.000	-2.340	0.103	-4.313
1000.000	-1.719	-0.74 .7	-3.517
1000.600	-3.447	0.827	-3.006
1000.000	-2.498	-0.444	-2.260
1000.000	-2.350	-1.574	-1.516

STD ERHS GIR THE MCDEAT，SIG $x=$
MCOEL NO EJR！9

12181	62003.447	71893.172
2．2181	60002.439	68000.444
23181	68002.550	64001.574
12191	72001.686	71999.129
23491	72002.072	68000.370
23191	72002.523	64001.500


100\％ 808	6\％000．000	72000．000	1000．000	－3． 457	0.857	$-2.008$
1002． 760	68000． 000	56000．000	1000.000	－2．438	－0．444	－2．260
1001． 510	68000.009	640097． 9	1000.000	－只－550	－1．574	－1．E10
4001． 3 ［54	72000.000	720\％ 00	1000.000	－J． $5: 6$	0.870	－1．3s ${ }^{4}$
1001．710	$3 \mathrm{TO00.000}$	Efoll 000	1000.000	－2．072	－0．370	－1．720
1001．024	72000.000	64060.000	1000.000	－3．53	－1．306	－1．024


 MODEL NO Cl SRO

13.191	72601－6E6	$71999+129$
22191	7700e．072	E＊ロ00．370
33191	72002.583	64001．300
I 2eわ！	76001.782	71997． 517
22391	76000.933	67999.377
「3201	76001，415	E4001．155


1001.354	72000.000	72000.000
1001.710	72000.000	68000.000
1001.024	70000.000	54000,000
1000.485	76000.000	72000.000
1001.473	78400.000	58000.000
999.15 .3	78000.000	54000.000


1000.000	-1.686
1000.000	-2.072
1000.000	-2.523
1000.000	-1.728
1000.000	-0.937
1000.000	-1.4 .15


0.879	-1.354
-0.370	-1.710
-1.300	-1.044
3.197	-0.463
0.663	-1.479
-1.155	0.351




12 Pal	78001．768	71997．817	1000．463	76000.000	770000，000	1000.000	－1．768	E．182	－0．463
ㄹํㄲํํ	78000． 937	67979.337	1001．475	78000.000	68000．000	1000.000	－0．933	0．56－2	－1． 4 －79
	76001－415	E4001． 35	999．197	76000，000	64000．000	1000．000	$-1.415$	－1．155	O．BQE
1료료1）	75999．592	71597． 529	2000． 063	10000．000	73000.000	1004．0007	0.497	2．479	－0．66E
2？R！	79999． 559	6799\％．43	1000．9P9	80000，000	69000．000	1000.600	0． 140	0．551	－0．929
きコセ11	20001－2z7	6，1001． 342	998，350	90000，000	C6F00．000	10000.000	－1 1 2RE7	－1．142	1.649





3311	-0.312
3321	-1.437
3411	-1.273
3321	4005.297
3321	4001.409
3421	4001.686

64001.008
60900.884
55949.080
54000.32
59999.92
55942.38

$1000-447$
1000.632
997.527
998.704
995.693
1000.182
0.000
0.000
0.000
4000.000
4000.000
4000.000
64000.000
50000.000
58000.000
64000.000
50000.000
56000.000

1000.000	0.318	-1.005	-0.447
1000.000	1.433	-0.984	-0.633
1000.600	1.273	0.915	3.472
1000.000	-1.197	-0.132	1.695
1000.000	-1.443	0.076	0.316
1000.000	-1.836	1.044	-0.182

NLOEL ND 30203

2321	4001.197	64090.132
3331	4001.445	59399.523
3421	4001.886	55998.955
3331	8003.357	53998.480
39791	8002.882	59993.894
34.31	8003.700	56000.252

STD ERRK FCR THE MIDEL SIS $X=$
2．601 m

398.794	4000.000	64000.010
939.689	4000.000	50000.000
1000.782	4900.000	56000.000
1600.351	8000.000	84000.000
1002.838	8000.000	50000.000
1002.350	8000.000	56000.000


1000.000	-1.197	-0.172	1.295
1000.000	-1.449	9.076	0.316
1000.000	-1.896	1.044	-0.102
1000.000	-3.337	1.519	-2.351
1000.000	-2.890	0.105	-2.928
2000.000	-2.700	-0.250	-2.990

MCOEL NE 30304

1239	8003.337	63998． 480
3331	800쥬‥32	59595， 394
3431	8002． 700	56000 ． 3 － 5
2341	$120022^{3} 41$	53597．673
3敞4	5	50960．cet
3447	120pI－6．73	5600 ${ }^{\text {\％}} 169$


1000.351	6000.000	54000.000
1002.838	8000.000	60000.000
1002.990	5000.000	56000.000
1001.710	12000.000	54000.000
1002.6 .35	10000.000	50000.000
1003.402	13000.000	56000.000


M以要L MD 30405

2341	15003 ${ }^{\text {a }} 342$	63＊53．6is
33.41	12003＋55\％	E0DONJ．0E7
3441	12001－E＇	56002． 169
르s	18000．0\％0	（6395］
3351	15000．509	500000003
3451	156600．492	

1501.710
1003.632
10033.402
2008.844
1002.077
409.848
12000.000
12000.000
12000.000
16000.000
16000,000

64000.000	1000.000	-1.342
60000.000	1000.000	-1.559
56000.000	1000.000	-1.539
64000.000	1000.000	-0.480
60000.000	1000.000	-0.500
68000.000	1000.000	-0.491


\＃．刀et	－3．710
－\％．OEM	－3．4．3
－3．169	－3．402
4， 537	－23．844
－0．0胢	－2．07T
－1，512	6．157

$\qquad$
＊
STO ERRS FOR THE MODEL SIS $x \neq$ 1.489 BH GIG IG $\mathrm{y}=$

 4.019 HWCOEL NO BOSOS

2351	15000．080	63985． 363
3751	16000.509	60000．033
3451	1 （1000．491	56001－512
23es	19986．747	63997．996
37361	15997．210	59999．834
346：	19998． 515	54001.460

STD EARS FOR THE PHOM BIG $x=$
MECEL MW 30E07

2761	19996.747	65997．39	999.034
3゙发1	15937.810		983．930
346.1	19998．${ }^{\text {515 }}$	$56002+450$	998．305
2371	3359k． 876	E4ACOO． 301	995．537
337：	³997．698	60000． 140	497．388
347\％	23998．750	54000.204	995.023


20000.000	64000.000	1000.000	3.252	2.003	0.365
30000.000	60000.000	1000.000	2.289	0.155	0.059
20000.000	56000.000	1000.000	1.194	-1.400	3.092
24000.000	54000.000	1000.000	3.123	-6.301	4.460
24000.000	60000.000	1000.000	2.300	-0.140	2.211
24000.000	56000.000	1000.000	1.249	-0.204	4.374


1002.844
1092.077
399.842
393.034
$35 \% .414$
3.308

18000.060	54000.000
$1 E 000.000$	60000.000
18009.000	56000.060
20000.000	64000.000
20000.000	60000.000
20000.000	56000.000


1000.000	-0.080	4.137	-5.844
1000.000	-0.508	$m 0.023$	-3.077
1000.000	-0.491	-1.512	0.157
1009.000	3.652	2.007	0.565
1000.000	2.289	0.165	0.059
1000.000	1.194	-1.460	1.591


2． 583 M S1GY $Y$ 1．124M $57 G Z=$
3.357 SIGFLAN $=$ 2． $81 \pi$ SIG POS
$=4.383$

	MPDEL M 40700	
2371	23996．576	64000． 301
3371	23997．698	60000． 140
3471	27998．750	56000． 204
238：	27998．299	
3581	28000．014	59999．874
$3 \div 85$	39000．16！	560000.504

STD ERRS GOR THE MOQELL BIE $*=$ MOLEL ND $308 C 9$

2゙581	E793R． 399	
3381	29000．014	59999.874
3481	28000.161	56000－50．4
2391	32000． 381	63998．412
3391	91059．377	500000.3124
3491	31988．704	56002］．017


992.006	28000.000
994.604	28000.000
955.470	28000.000
795.024	37000.000
997.671	32000.000
998.455	32000.000


995.539	24000.000
937.179	24000.000
995.023	24000.000
992.006	28000.000
994.604	29000.000
995.475	28000.000

84000.030
64000.030
50000.000
56000.000
54000.000
50000.000
56000.000

1000.000	3.127	-0.301	4.460
1000.000	2.300	-0.140	2.811
1900.060	4.249	-0.204	4.976
1000.000	1.700	-6.825	7.393
1000.000	-0.014	0.125	5.795
1000.000	-0.161	-6.504	4.549


 ＋anch No 30910

239\％	36030． 381
쾨쿵	31599．377
	31598． 794
23501	3595\％．944
33101	36999．092
	コロッ9 4지

69998.412
60000.224
56002.017
54000.327
00000.506
56000.017

395.028	35000.000
997.671	32000.000
998.453	38000.000
995.335	36000.000
996.655	36000.000
395.674	38000.000


1000.000	-0.381	1.587	3.971
1000.000	0.622	-0.324	3.327
1000.000	1.295	-2.017	1.544
1000.000	0.654	-0.397	4.684
1000.000	0.901	-0.005	3.344
1000.000	0.514	-0.054	4.325


0.8117
EIG $Y=$
1.7日T A SIG 7
3. B7G SEC FLAN $=1.445$ FIG FGS $=$


23101	35399.344	64000.397
33501	35903.059	50000.609
34101	35993.485	$56000.01 E$
28111	40000.906	53999.137
33111	40000.979	59989.189
34111	40000.391	55398.502


	78000．000	E4000．006	1000．000	0． 055	－0．397	4． 564
9P6．6．5s	35000.000	50000．000	1000．000	0.301	－0． 505	3． 344
935．674	37000.000	58000.000	1000．000	0.514	－0．012	4． 3 즈s
994.990	40000.000	E4000． 000	1000．000	－10．906		5．069
996． 390	40000.000	60000．000	1090．080	－0．075	0.810	3 －803
994．730	400000.000	56000．000	1000.000	－0． 391	1．397	S． 269



4．87ら SIC FLANL＝
1．174 SI台 PGS： 5.018

23114	$40000.90 \%$	53999.132
33111	40000.979	59999.189
34111	40000.391	55998.602
33121	44001.297	53956.574
37121	44001.424	59398.599
34131	44000.733	55999.711


994.990	40000.000	54000.000
996.190	40000.000	60000.000
994.730	40000.000	56000.000
395.334	44000.000	64000.000
998.753	44000.000	60000.000
957.379	44000.000	50000.000


1000.000	-0.905
1000.000	-0.979
1000.000	-0.391
1000.000	-1.027
1000.000	-1.424
1000.000	-0.739


0.865	5.009
0.810	3.809
1.397	5.269
3.029	0.665
1.300	1.646
0.288	8.626

5.009
3.809
5.869
0.665
1.646
8.626

STD ERRS FGQ THE MODEL SIG $X=$
inO 07 m
516 \％



1000.000	-1.227	3.029	$0.6 E 5$
1000.000	-1.1224	1.300	1.646
1000.000	-0.739	0.288	2.626.
1000.000	-2.713	0.989	2.941
1000.000	-5.550	1.297	2.331
1000.000	-2.201	1.573	3.978



MOELL NO 3334

23131	48002.713	63595， 015
33131	$48003-550$	Ss998． 703
34131	480003.201	55598．426
包：43	5゙003，16？	65997．963
33141	52002.868	59999．를
74141	5－004． H －5s	55998． 55


397.358	48000.600
397.668	48000.000
996.021	48000.000
1000.402	32000.000
999.174	52000.000
395.839	52000.000

54000.000
50000.000
58000.000
64000.000
60000.000
58000.000
1000.000
1000.000
1000.000
1000.000
1000.000
1000.000
-2.713
-2.560
-2.201
-8.167
-2.869
-4.254

0.987	2.841
1.237	2.371
1.573	3.978
2.037	-0.402
0.778	0.825
1.444	4.100

3.066 5IG PLAN $=$ 3．ESE EIC $\mathrm{POS}=4.404$ HODEL ND 31435

33541	52003.167
37141	52002.865
34141	52004.252
63151	56000.628
33153	50002.005
34151	5003.340

59997.962
55989.321
55998.159
53597.468
50600.184
56004.715
1000.409
999.174
995.999
1003.081
1003.799
1000.978

52000.000	64000.000
52000.000	60000.000
52000.000	50000.000
56000.000	64000.000
58000.000	60000.000
56009.000	$5 E 000.000$

1000.000
1000.000
1000.000
1000.000
2000.000
1000.000
-7.167
-4.869
-4.259
-0.609
-2.005
-4.340

3.037	-0.408
0.775	0.835
1.844	4.100
2.531	-3.081
-0.16 .4	-3.199
-1.315	-0.878



－$\underset{\sim}{2}=$

 NROEL WHO 40506
 MCDEL NO 40507


MEAEL ND 40708

3471	23992050	50001－728	997． 305	20000．000	54000．000	：000．000	0.939	－1．782	2．694
4471	24000． 794	52001． 755	1000．330	24000．000	52000．000	1000．000	－0．794	$-1.755$	$-6.3 \mathrm{BE}$
45351	24001.416	48002． 037	1000．497	24000．000	48000．000	1000．000	－ 4.416	－2．039	－0． 297
3481	2799\％－349	$55000 \cdot 296$	987．3EP	28000，000	56000．000	1000． 000	1.6 .50	－0．236	2．647
4481	ㄹ7999．628	53009.037	$1001+810$	20000.600	52000.007	1000．000	0.371	－2． 087	－t． E 10
4582	77993．k58	48005.729	1004．729	28000.000	48000.030	1000．000	0.341	$\rightarrow 3.725$	－4．729

Probet N0 40 4009

3489	27959．349	56000＊	997．352	20000．000	560060.000	1000．000	1．650	－0． 3 P9	E．647
4481	17999－Eอ8	5＊ON2．QR7	1001． 810	룡000．000	SEC00．000	1000．000	0．371	－2．047	－ 1.310
$44^{512}$	27993．6．98	48003． 725	1004．729	2E009．060	48000．000	1000．000	0.341	－3．7E5	－4．729
3491	31989．877	5600ㄹ． 519	\＄97． 870	3 F 000.000	56000.600	1000．000	0.123	－2．529	6． 3 \％
4491	3E000．056	52000.444	998.727	32000.000	52000.000	1000．000	－0．058	－0．444	1.270
4581	32000.503	47598.808	1000.459	3rp00．000	48000，000	1000．000	－0．50ㅍ	1．197	－0．45s

 Mank MO y 090

3491	91989．877	56003． 519	993． 570	32000.000	58000.600	1000.000	0．12ct	－2．519	E．${ }^{\text {3 }}$［ 9
4491	32000.056	50600．444	398.723	92000．000	52000．000	1900．000	－0．05s	－0．444	4． 470
4591	起世0．50．59	47998，803	5000.459	36000． 0000	48000．000	1000.000	－0．003	1．1547	2.470 -0.459
3ヵ101	35002.936	56000，184	597．073	30000.000	$5 \times 000.000$	1000．000	－E． 336	＋0．154	－ m － 92 g
44101	35002.344	51939．411	2002． 340	38000.000	52000.000	1000．000	－2．344	0．588	

4530136002.32547999 .762

MEDEL ND ASOIL

34101	36002.976	56000.154
44101	5002.344	51999.411
45101	35002.325	47999.762
34111	4000.7 .971	55998.692
44111	40004.540	51999.921
45111	40005.150	47299.744

STD ERAS FER THE MOLSEL BIC $x=$
Mront , whotic

34111	46003.971	55998.692
44111	40004.240	51992.934
45111	40605.160	47999.744
34131	44002.443	59097.939
44121	44004.198	51999.737
45121	44003.293	48000.603

STD ERRS Fiar Thi M MOER SIG $x=$


34121	44003.449	55997.959
44121	44004.188	51999.737
45121	44009.393	48060.909
34131	48001.085	55496.574
44131	48601.850	51993.538
45131	48002.504	48090.403

30OR.EN4 1005.150 1003.818
1002.743 1005.559 1005,401
$997-073$ 1002 F .56 1003. 1002.604 1005-1 1003.858
36000.000 35000.600 35000.000 400009.000
40000.600 40000.600

58000,000
52000.000
48000.000
56000.000
52000.000
48000,000

1000.000	-3.936	-0.154	E.92E
100\%.000	-2.344	0.588	-2. 140
1004,000	-7.3es	O. ${ }^{\text {ant }}$	-3. 3 38
1000.000	-3.971	1.307	-7.604
1000.000	-4.240	0.078	-5.150
1000.000	$\cdots 5.50$	0. 2 起 5	-3.818

56000.000

### 52000.000 48000.000

### 56000.000

52000.000 420000.000

1000.000	-3.971	1.307	-8.604
1000.000	-4.240	0.078	-5.159
1000.000	-5.280	0.855	-3.818
1000.060	-3.449	2.060	-3.743
1000.000	-4.188	6.256	-5.559
1000.000	-3.293	-0.908	-5.401

4.51) 5IGPGS = 6.592

1002.743	44000.000
1005.559	44000.000
1005.401	44000.600
1003.651	48000.0000
1003.855	40000.000
1002.162	48000.600

### 58000.000 8000.000

 5 F 000.00048000.000 48000.000
56000.000

### 52000.000 <br> 48000.000

1000.000	-3.449
1000.000	-4.198
1000.000	-3.298
1000.000	-1.065
1000.000	-1.850
1000.060	-3.504


2. 060	-2.743
0.266	-5.559
-0.908	-5.401
3.425	-3.451
$0.4 E 1$	-3.455
-0.403	-2.168

3. 537 SIA PUS $=$ 5.710
MODFLE NM 41314

34137	48001.055	55996.574
$4413:$	48001.850	51599.534
45131	48002.504	48000.493
34141	51998.896	55996.872
44141	52000.256	51999.573
45141	53000.532	48001.594

GTD ERRS FLDR THE WROSL GIO $x=$

1007.651	42000.000
1002.255	48000.000
1002.162	48000.600
1001.293	52000.000
1083.673	52000.000
1001.678	52000.000


1000.000	-1.085	3.425	-3.651
1000.000	-1.850	0.461	-3.855
1000.000	-2.504	-0.403	-2.162
1006.000	1.101	3.136	-1.287
1000.000	-0.256	0.426	-3.579
1000.000	-0.532	-1.894	-1.876

MDCEIS MCD $\$ 1435$

$3 \times 1141$	5
44141	5
45141	5
74151	5
44151	5


5 5998i. 898 52000. 255 520000.532    55997. 2 k 2

55996.873
51999.573
$48001-894$
55997.942
51998.649
1001.288
1003.679
1001.674
305.847
1000.327

### 50000.000 50000.000 50000.000 50000.000

56000.0000
5.2000 .000
48000.000
56000.000

1000.000	1.101	3.126	$\cdots$
1000.600	-0.256	O.4Es	-3.679
1000.000	-0.533	- $3.58{ }^{\text {a }} 4$	-1.676
1000.000	4.446	te.05\%	3.159
1000.060	E. 57	1.750	-0.3F?


 MCDERL ND 41516

큐4151	55905.553	55997．942	996． 8 年7	55000．000	56000．000	1000．000	4．44E	2．057	3． 15
$44^{451}$	59997．3㥯	51998， 545	1000．727	550000.000	52¢00．000	1000.000	2． 675	1．350	－0．3ざ
4515 I	55989－	480000.551	1000.435	$5 E 0 \$ 0.000$	48000.000	1000．000	0.727	－0． 0.51	－0．435
3416	59996． 577	55998，638	994．978	60000．000	56000．000	1000．000	\％．634	1．361	5.091
4．16．1	599ら゙\％－ 430	51997． 994	998．607	60000．0col	520000.000	1000．000	2．569	2．007	1－392
4516：	59396．75：	48000．863	1000.758	60000．000	48000.000	1000．000	3.248	－0．95＇3	－0．758

BTD GRAS FDR fHE MOUEL SIC $x=$

2． 755 SIC $P W_{4} A N_{2}=$
3．761 SIG PDS $=$ 4－6ER MOOEL AD 416.77

34161	59996.375	$55933 . E 39$
44161	59997.430	51997.992
45151	59394.751	48000.863
34171	63936.190	55997.449
44171	55397.087	51998.817
45171	63997.029	47999.781

STD ERRE FLR THE MUDEL SIO $x=$
MODEL ND 41718

34171	63996.180	55997.440
44171	63997.087	51998.617
45171	63997.029	47998.781
24181	67987.454	55999.723
44181	67997.689	51999.258
45181	67999.742	47997.373


994， 378	60000.000	560000.000	1000.000	3． 624	3． 3 61	S．021
998．607	60000．000	$52000+000$	1000．000	2．569	2.097	1．3．392
1000．75日	600000.000	48600．000	1000．000	3． 248	－0．883	－0．758
996， 824	54000.000	56000.300	1008． 000	3.819	2.559	3． 375
957．	64000．000	5P000．000	1000．000	E．91芭	1．382	E．Eic
995．704	64000．000	48000．000	1000.000	2．970	2．218	4－295



996．624	640000．000	54000．000	1000.000	3.813	2．559	3． 375
497．383	54000． 9000	52000.000	1000.000	2．912	1． 3 392	2．616
995．704	699000．000	48000．000	1000.000	を．970	1．e18	4.295
995．300	58000．000	55000.000	1000．000	2．545	0.276	4．693
355．475	58000．005	5000．000	1000.000	P． 310	0.741	4.524
994．6．14	6.8000 .000	42600．000	1000．000	0.357	2．625	5.385


MEOEL Nal 41819

34181	679 ${ }^{\text {6 }} 7.454$	5599\％－7e7
44181	67997．689	51999．로당
45121	67959．743	47997．375
34191	713958－5 7	55998.734
44191	73000.173	51999．409
45191	7EOO1－RP3	4EDO1－79E


995.700	68000.000	56.000 .000
995.475	69000.000	52000.000
994.614	68000.000	48000.000
997.755	70000.000	56000.000
999.782	72000.000	52006.000
1091.547	70000.000	48000.000


1000.000	2．545	0.275	4.6 .99
1000.000	2.310	0.741	4.524
1000.000	0.257	2.626	5.385
1000.000	1.477	2.265	2.244
1000.000	-0.179	0.530	6.277
1000.000	-1.229	$-1.79 E$	-1.547

STD ERRS FOS THE MOOEL SIG $x=$ MOLEL MW 42950
34191
44191
45191
34201
44201

71992.537	55998.734
72000.173	51595.409
72001.273	48001.796
75999.795	56000.314
75090.165	51999.890


997.785	73000.000
993.782	70000.000
1001.547	70000.000
958.978	75000.000
1000.898	76000.000




1.245	2.244
0.590	0.217
-1.734	-1.547
-0.314	1.021
0.109	-6.838

$\therefore=$
$450176000.337 \quad 49000.731 \quad 1001.009 \quad 7600.000 \quad 48000.000 \quad 1000.000 \quad-0.029$
 MCDER NEI 42021


4551	15998.612	47999.992
5551	16000.534	44000.247
5651	16001.387	39995.683


998.597	16000.000	48000.000
1000.458	15000.000	44000.000
999.873	15000.000	40000.000


1000.000	1.381	0.407	1.402
1000.000	-0.534	-6.247	-0.458
1000.000	-1.383	0.336	0.121

（D

MEDEL WD 505OK

4551	75998.618	$47999-392$
5551	25000.504	44000.247
5651	16001.722	39999.695
4551	20000.472	48000.703
5561	$20000.42 E$	44000.782
$565:$	20001.745	40002.058


998.597	16000.000	48000.000
1000.458	16000.000	44000.000
999.978	16000.090	40000.000
1001.110	20000.000	48000.000
1003.567	20000.000	44000.000
1003.863	20000.000	40000.000


1000.000	9.381	0.007	1.402
1000.000	-0.534	-0.247	-0.458
1000.000	-1.382	0.316	0.121
1000.000	-0.472	-0.703	-1.110
1000.000	-0.428	-0.782	-3.507
1000.000	-1.345	-2.058	-3.56 .7

STD FRRE FGA THE MEDEX，BIG $X=$
1．124 m $516 \mathrm{Y} \Rightarrow \quad 4.049 \mathrm{M}$ sJe $Z=$
2．492 SIG FLAN＝3． 533 SIC POS
4． 9203 MIUEL NO 50 507

4561		48000.703
5531	30000.420	44000 －762
ESE1	F006：－345	40000 Cl －05
4571	34000,302	18001－715
5S71	24000， 0004	44001．
5671	23999．829	40002 c 4 H

1001.310
1009.567
1009.869
1000.232
1002.750

200000.000	48000.0000
20000.000	44000.000
20000.000	40.000 .000
24000.000	48000.000
24000.000	44000.000
24000.000	40000.000


5000,000	$-0.47 \%$	-0.703	-5.110
1000.000	-0.426	-0.782	-3.567
2000.000	-1.345	-2.054	-3.853
1000.000	-0.104	-1.715	-0.225
1000.000	-0.004	-1.225	-7.750
1000,000	0.171	-2.429	-3.055

STD ERRE FGR THE MEDGL SIG $x=$

3．031 SIG PLAN $=1, \mathrm{BaB}$ S26 POS $=3,573$ Mbyel NO 50708

4571	24000.100	48001.715
5571	24000.2944	$44001-729$
5671	27998.623	40002.422
4581	28000.853	48001.460
5581	27799.860	44002.342
5681	27535.767	40002.426


1000.2223
1002.760
4003.055
1003.161
1003.328
1001.587
24000.000
24000.000
34000.000
28000.000
28090.200
28000.000
48000.000
44000.000
40000.000
48000.000
44000.000
40000.000

10020，000	－0，20E	－1，715	－0．${ }^{\text {2 }}$
1000，．000	－0．004	－2．22．9	－2．76\％
1000．000	O． 171	－2． 4 㱏	－7．0ES
1000，0000	－0． 863	－1．460	－3．181
1000． 0400	0.139	－2，142	－3．3答
1000.000	0．232	－2．424	－1．597


4581	26000． 963	45 c
5584	37595.360	44003， 142
5面宜1	27599．767	40002－4㐍
4294	32999，148	45001．3気
\＄591	Y1793． 174	4400 2e．E．84
顽9	21958，972	40003.7804

GTL ERRS FGR THE MCOFL，SIC $x$＊ MADEL．ND 50g10

4531	31999．148	48001.335
5591	\＄1999．274	44002， 564
\＄691	ㅎ． 1993.972	40003.224

1003.161
1003.828
2001.527
1004.464
1007.335
1000.155
EBOON .000
88000.000
28000.000
32000.000
32000.000,
32000.000
0. E10 $\quad \mathrm{SyG} Y=3.525 M S J C 2=$
1004.464
1003.325
1000.155
32000.020
32900.000
32000.000
48000.0000
44000.000
42000.005

1000.009	0.851	-1.335	-4.464
1000.000	0.325	-2.654	-9.335
1000.000	1.027	-3.254	-0.155

，

45101	35599.710	$48002-618$
56102	36000.2322	49002.143
54101	36600.104	40001.043


1000.840
999.975
995.912
36000.0000
36000.000
36000.000
48000.000
44000.000
40000.000

1000.000	0.39
1000.000	$-0.2 p$
1000.000	-0.10


-0.840
0.034
3.087

MROER NOD 5.1012

45101	35999.720	48002.818
59301	$30000.42 c$	44002.143
56101	76000.104	40001.093
45111	40001.595	47999.444
$5 \$ 111$	40001.122	44000.987
56111	40000.303	40000.544


1000.740	36000．000	48000，090	1000.000	0． 2.29	－2．61宜	－0．840
599．935	76000.000	44000.000	1000， 000	－0． 2 2］	－2．143	0.024
994． 912	3E0020．ODG	400000.000	1000.000	－0．104	$-1.093$	3．087
1003．117	40000.000	48000.000	1000．000	$-1.695$	0． 535	$-3.112$
1001． 295	40000.000	44005．000	1006．600	－1．122	－0．9et	$-1.597$
9998．356	40000.000	40000.000	1000．000	－0．903	－0． 5444	1.643

GTD ERRG F［CR THE MROES EIC X m



45111	40001.495	47993.444
55111	40001.122	44000.967
58.111	40000.307	40000.544
45121	44000.478	47597.488
55121	44000.345	43999.584
55121	44001.497	59999.308

STD ERFS FCR THE MORES SIE $x=$
MCOE N K 51きゝヨ

45181	44000．473	47997.458
S\＄12］	4.4000 .845	43999．539
551 ${ }^{\text {\％}}$	44001.487	79990．305
45， 31	48000.373	47999，454
55131	$484004-534$	437788.890
59.131	48001．734	35999.031


1003.118	40000.000
1001.997	40000.000
958.358	40000.000
1003.391	44000.000
1001.835	44000.000
999.970	44000.000


48005.000	1000.000	-1.695	0.585	-3.112
44000.000	1000.000	-1.122	-0.987	-1.997
40000.000	1000.060	-0.907	-0.544	1.643
40000.000	1000.000	-0.478	2.541	-3.331
44000.000	1000.000	-0.945	0.410	-1.835
40000.000	1000.000	-1.487	0.693	0.103



| 1009.331 | 44000.000 | 48000.000 | 1000.000 | -0.478 | 2.541 | -3.331 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1001.835 | 44000.000 | 44000.000 | 1000.000 | -0.945 | 0.430 | $-1-835$ |
| 999.870 | 44000.000 | 40000.000 | 1000.000 | -1.427 | 0.583 | 0.127 |
| 999.354 | 48000.000 | 46000.000 | 1000.000 | -0.973 | 0.545 | 0.645 |
| 1000.165 | 48000.000 | 44000.000 | 1000.000 | -1.584 | 1.109 | -0.165 |
| 393.897 | 48000.000 | 40000.000 | 1000.000 | -1.794 | 0.368 | 6.102 |

STD Effit FOR THE MaxEL SHO $X=$

MODEL．NG 51314

45131	48000.973	47993.454
55131	48001.884	43995.891
56131	48001.794	39999.091
45141	95006.824	47997.631
55141	58001.146	45000.096
55141	53001.862	40091.376


999.354	28000.000
1060.155	48000.000
993.897	48000.000
1003.135	52000.004
1001.786	5000.000
999.394	52000.000

48000.000
44000.000
40000.000
48000.000
44000.000
40000.000

1000．000	－0．973	0.545	0.645
1006．000	－1．6．84	1.109	－0．1ES
1000．000	－1．794	0.968	6．103
1000.000	－0．824	3．3ntis	－3．135
1000.000	－1．196	－0．056	－4．726
1000.000		－1．378	0.055

MCOEA．ND 52415

45141	52900.824	$47997 . E 31$
55141	52001.145	44000.066
56141	$52001-862$	40001.778

$1003_{n} 135$
1005.786
999.394

42000.000	48000.000
52900.000	44000.000
52000.000	40000.000


1000.000	-0.8224
1000.000	-1.145
1000.000	-1.864


2.358	-3.135
-0.056	-1.766
-1.378	0.605


-

45001	75959.643
55001	76000.457
56001	76000.531

47993.7
43999.0
39999.6

1000.2727	76000.000	48000.000
1001.045	75000.000	44000.000
995.736	76000.000	40000.000


1000.000	0.355	0.262	-0.271
1000.000	-0.267	0.937	-1.045
1000.090	-0.533	0.392	0.263



THOLEL MO 5EMPI

ASEO1	75959， 64.43	47995． 738
55801	76009．${ }^{\text {E57 }}$	43959.005
56 EDO	76000， 531	39995． 597
452］	9000 +559	48900.490
S5E11	80000.363	43998．こe0
5631）	79958．629	39999\％． 74.8
STD ERR兵	FCR THE M M	$516 \times$
STE ERRS	FLR THE STFIP	$5 \pm 6 x=$
	MOOEL N0 6010	
5E11	－1． 9775	3959E，592
EEII	－0． 769	35995－249
6711		3200j．565
SER1	F9998． 487	3939\％．061
GE2］	3993． 177	35933． 541
6721	3998.409	3 E001．\％\％

STC ERRG FCR HAE MOCEL．BIG $x=$ MOUEL NOT 60203

	3998，6E7	39999， 052
GE2 1	3993． 177	35999． 5.41
6721	3978．409	320041－085
E631	7493.065	39599． 495
6E3I	79.37 .097	359999． 85 \％
6731	7639．783	3199\％． 518

999.794
$395.14 e$
990.506
1001.054
949.854
955.563

1000，000	40000．000
4000.000	3EG00，000
4000.000	三20c9．000
	$400 ¢ 0.009$
8000． 000	16400．000
0600．000	²m000． 1000


3000.000	1.512	0.358	0.605
1000.000	0.827	0.458	0.857
1000.000	1.590	-1.086	1.499
1000.000	0.914	0.303	-1.054
1000.000	0.902	0.148	0.685
1000.000	0.311	0.481	4.4 .78

GTS ERRS FOR THE MDCLL Sis \％
MADEL．ND 60304

5631	7993.085	39999.695
5631	7999.097	35995.851
6721	7998.755	35999.518
5644	11957.550	39998.398
6641	12993.111	35999.795
6741	12000.832	32000.411


1001.055	8000.000	40000.000
993.314	8000.000	35000.000
995.563	8000.000	32000.000
1003.806	12000.000	40000.000
1009.682	12000.000	36000.000
998.508	12000.000	32000.000


1000.000	0． 314	ก． 303	－1．054
1000.000	0． 30 2	C． 148	0.685
1290.000	9，211	0.4 Et	4．436
1000．000	C． 449	1．601	－3， 200
1000.003	0．${ }^{\text {ceg }}$	日． $2 \times 4$	－－3，28\％
1000．000	－0．882	－0．415	1．59］

STG ERRE FDG THE MDQES GIG $X=$


1.557 SIG $\operatorname{POB}=$

```
O=
```

6641	11999.111	35999.79
6741	$12000.82 e$	36000.41
5651	15997.992	40000.53
6651	15999.491	35999.04
6751	16001.291	31958.75

1003.892
398.308
998.769
1000.846
997.704

12000．000	36000．000	1000．04＊0	9． 288	0.2044	－3．${ }^{\text {enem }}$
42000.000	3 F 000.000	1000．000	－0．802	－0．411	1．491
16000． 000	40000．000	1000.000	2．007	－0．532	5． $\mathrm{Bl3}$
15000．000	300900.000	1000.000	0，508	0.959	－0．845
15000，006	FEOOO，00」	11000．000	－1－291	1．344	む．ट33

SID ERR客 FLT THE MECEL SIG $x=$
HODEL NE ERSOE

555．	15997．992	40000． 531
6E51	15393．491	35939．040
¢75）	16001－29）	31998． 755
SEE1	19999． 13	40060． 549
E6x 1	सOCOO， 372	35090．129
6761	80001．337	$37001+473$


998．76\％	16000．000	400000， 000
1000.846	18000.000	Hencol 000
997．706	16000.000	37000，000
1000.587	20005．000	40050.000
$1000 \sim 784$	20000.000	36000.000
1001．El 1	20000．000	$3 \pm 0000000$


1000．000	2.007	－0．5．51	1－2．20
1000．000	0．58） 8	0.985	－6．846
1000.000	－1－25	5． $2 \times 4$	E．ES3
10047.000		－0．249	－0．537
1000．000	－0． 372	$\cdots 0+1 \pm 9$	－0．784
1000．000	－1．377	$-1.433$	－1． 211


MCOEL NO SOEC？

5661	19999． 17.7	40000.249
\％ESI	20500．373	35005 119
6761	20001．337	3EtOr．473
5571	2999\％－253	39399．3k
66．7\％	ご4000．456	35953．564
671	P4000．69\％	32001．076


1000.527	20000．000	40000．000	1000．000	D．88E	－0．249	－0． $0^{\text {a }}$－ 7
1000．744	20090．000	30000．000	1000.000	$-0.372$	－0．129	－0．764
1001－211	20000.6000	3\＃200．000	1000．00）	－1． 337	－1．473	－1，${ }^{\text {2 }} 11$
1000，를	24，000．000	40000.000	1000．000	0.726	0.646	－0． 2 2es
599． 393	24000.000	$3 \times 000.004$	1009．000	－0．456	O． 435	0.000
	24000.000	\＄2000．000	1000．000	－0．ESP	－1．076	$0.15 \%$

STD ERAS FCZ THE MODEX．SLG $X=$

O．691 5．16 PLAM
MCOL N 50703

SET1	23599．353	39999． 353
6ET1	24000.459	3599\％． 564
6771	24000．698	32001.076
5681	E79se．365	3934\％．091
6881	78000．192	35953． 375
6783	27S59．8US	32001．475

 HTDE ND E0BOS

508\％	27998． 365	39999．091
6681	28000．192	35393． 375
G7EI	\＃7－99．805	$3 \mathrm{BCO1.475}$
5591	31992－751	ㄱ93999．371
EES1	319988.278	35999．745
6793	等1998．19t	31999．583


998.038	28900.000	40000.000
999.376	28000.000	36000.000
999.570	28000.000	32000.000
$993-076$	32000.000	40000.000
298.853	32000.000	36000.000
996.049	32000.000	32000.000


\＄000．000	1.0 .84	0.909	1． 146
1000．960	$\sim 0.192$	0.684	0．0．e3
1000.000	0．124	－1．475	－0．7E3
3000．000	f． 148	0.685	0.80
1000．000	1．727	0．354	1．106
1000.040	1.807	0.410	3． 930

SIO ERRE FLR THE MODEL EIG $X=$

2000．ezt	24000， 0000	40000．000
999．539	24000．000	36000.000
999．346	2.4000 .000	32000．000
998．838	28000．000	40000.000
999.876	22009．000	36000.000
995．670	28000．000	Э2000．004


1000．000	0.730	O．645	－0．${ }_{\text {che }} 1$
1000．000	－6．454．	0.4575	0.500
1000.000	－0．69\％	$-1.076$	C． 1 告3
1000．000	1.034	0.909	1．162
\＄000．000	－0．192	9．634	0．즐
1000.000	0． 134	－1，475	O． Her 3

0.695 in $5[G=1.015 m$ sig $2=$
0.553 SIG PL．AN

1．ट25 Si6 F觡
1.347 MCOESL NO 60910

Gefs	3190\％，¢7¢	ジッヂ・75				1000.1000	1.727	0.234		
6791	31998.193	31598.58	796.049	3 tata ， 100	3200ureot	1000.000	3.507	0.410		
56101	35959.043		934.687	3E6rr．ento	40000． 1000	1000．000	0． 350	－2．277		
E6101	35000．359	7600．508	995．753	35000 ¢\％	35000.400	$100 \%$ ．000	$-0.359$	－0．g．28		
67101	35001．007	$71392.3 \%$	394．339	36000．00\％	37000.000	1\％\％．000	－1．060	1.667		
STD EfRE	FER THE MHID	SIG $\mathrm{SI}=$	$1+387 \mathrm{M}$	$\mathrm{y}=\mathrm{i} .3$	145192	$4.3 \% 5$	PLAN $=$	33 SIP	＝	4.798
	MPDEL ND 61014									
56101	75999.043	4000e． 27 \％	994． 5.27	360006.080	40000.400	1000．000	0.355	－2．$\overline{4} 7$		
66101	360000.359	30000．524	205．753	36000.000	36000．006	1000．000	－0．359	－0．354		
E¢101	36001.007	31598.335	994.333	3s0co． 0 （\％）	\＄3F000．000	1000．000	${ }^{-1.007}$	1．E67		
56111	40001．7633	$40000+116$	\％95． 123	4，0000．000	40000．000	1000．000	－1．76	－0．815		
ES151	40001.753	프5000． 388	1． 13.435	40002.000	36000.000	1000.060	－1．752	－0． 3 37	－0．	
67111	40001．75E	32001．984	164．$\cdot 3.34$	40000．000	zel00．000	1000．000	－3．756	－1．93／4	－0．	
5 TO \＃Res	For That mico	cic $x=$	1．505 $!$ ！	\％$Y=1.5$	\＃sids 2	4.083	Phast $=$	75 EmC	＝	$4 \times$ E里
	MEEEL NO 51112									
SE311	400031.765	40000 － 116	998． 1 7	\％．00．000	40000.000	1000.000	－1．76료	－0．11F		
65111	40001.752	36000．382	1000．4316	40．．． 200	36000．000	1000．000	$-1.75$	$\bigcirc$－ 3 Ea	－0．	
67113	40001．755	920001－984	1000． 2 A	400w，． 20	32000.000	1000．000	－1．75s	－1．984	－0．	
5512	44000.503	39999.445	1000.37	44000.45	40000.000	1000．000	－0．502	0．554	－	
65.21	44000.975	35001.084	1001.048	44000．000	38000.000	1000.000	－0．875	－1．084	－9．	
67121	$44000 \cdot 351$	习2903．154	1001.86 T	44000.000	73000．000	1002．000	－0．351	－3．154	－1．	
STD ERES	Fan THE THOL		1．442 m	． $\mathrm{r}=2.7$	的 516 t	1.350	FLAN $=$	Sto SIC	＝	2． 250
56123	44000.502 48000.875	39959．445	1000,377 1002.048	44000．000	40000，000	1000.000 1000.000	－0．509	0．954	$\cdots$	
$6{ }^{6} 121$	44000.351	3е003．164	1001.867	44000.000	350000000	1000.000	－0．875	－3．164	－1．	
56191	47993． 358	39999．e59	S97．E1E	48000.000	40000.000	1000.000	0.647	0.740		
681．3：	47994.905	35989.573	990．517	48000.000	35000.000	1000．000	0.094	$0.02{ }^{\text {cos }}$		
62：33	47997， 879	32001．516	959．787	48000.000	38006.000	1000.000	0.320	－1．5\％5		
STD ERRe	FCR THE med	516 $x=$	0.578	$r=1.6$	M SIG 7	1．458	PLAN＝	at9 Elc	＝	2． 307
55131	47293．35\％	39995.259	997.615	4， 9000000	400\％0．000	1000.000	0.1047	0.740		
EST31	47999．305	35999.973	999．6．17	48000，000	Ityta00	1000.009	0.094	0.026		
6.7172	4799\％．E79	33001.515	998． 787	48000.000	$3 \mathrm{tats} \times \mathrm{m}$	1000．00，	0.320	－1．516		
SE141	52000．4221	5939－3．798	396． 853	$5 \mathrm{Se000} 000$	4 cow ，\％	1000.000	－0．423	9．${ }^{\text {a }}$ 091		
E5141	51999.208	35929－6．76	993．537	52000.000	3 O 006.4	100\％， 070	0.791	0.323		
67141	51595.765	7e600．643	337． 3 93	52000.060		rense，orst	0．0，	－0．0．04		
SYD Enta			0.525 M	SIG $Y=0.7$	M SIG 7	1．857 5	F 1 綮 $=$	0．973 516	$=$	E．OsO
	MODEL NO E	415								
56141	52000.421	59399．758	996．459	52000．000	40000.000	1000.000	－6．421	0.202		

$\qquad$

E6141	51999－20R	35993．	S99．537	52060．006	36000.600	1000.000	0.791	0.323	0.462
57141		32000．04，	993， 939	S2000．000	3 EOOO .000	1000．000	0.230	－0．043	0.060
561.51	50000.719	39999.040	997． 5 －20	5400\％．000	40000.000	1000．000	$-0.519$	0.959	C． 380
ES151	SE000． 577	\＃5999．017	1080． 143	St0r9．000	750000.9010	1000．000	－0．577	0．988	－0．143
67351	56000． 230	31999.563	393.433	50000．000	32000.000	1000．000	－0．230	0.43 F	0．EES


 MCDEL ND E1536

56151	55000． 519	53959．040
ES151	56000.577	\＃5593．017
67151	56000\％ 270	31599．563
58161	59959．108	5999E． 785
EStat	50000.052	35995．484
ET？${ }^{\text {a }}$	E0000． 175	72000． 875

997.620
1000.143
999.433
1000.954
1002.375

56000.000	40000.000	1000.000	$-0.91 \%$
50000.000	36000.000	1000.000	-0.577
50000.000	32000.000	1000.000	-0.230
60000.000	40000.000	1000.000	0.891
60000.000	76000.000	1000.000	-0.021
50000.000	72000.000	1000.000	-0.175


0.959	3.380
$0.589 \%$	-0.143
0.436	0.566
3.357	-0.954
0.515	-0.716
-0.375	-1.440

 MONEL NO 5\＄617

56161	59939．108	79995．70
E616）	20000．0201	35999．48
67161	60000． 175	32000 5
気171	63998． 570	39399．40
矿171	53799.404	35959．
67171	54000.283	31923.


1000.954	60000.000	40000.000
1002.376	60000.000	36000.000
1001.470	60000.000	72000.000
996.262	64060.000	40000.000
1000.239	64000.000	36000.800
1000.232	64000.000	72000.000


1000.000	0.391	3.213	-0.954
1000.000	-0.021	0.515	-7.376
1000.000	-0.175	-0.875	-1.440
1000.000	1.4 .39	0.593	3.737
1000.000	0.537	1.232	-0.309
1009.000	-0.383	0.275	-0.332

 MEOER ND 61713

58.71	63908． 570	39999．404
	E゙5993．4E6	25993．767
67171	64005．283	51999．733
56181	67938．795	
EE584	ETS93． 142	35998．647
而1豆1	67948． 372	32001.185

996.350
1000.305
1030.238
1000.653
1002.127
1002.496

64000.000	40000.000
64000.000	$36,000.000$
64000.000	32000.000
62000.000	40000.000
68000.000	$\$ 2000.000$
68000.000	32000.000


1000.000	$\$ .429$	0.595	3.737
1000.000	0.5 .79	1.238	-0.309
1000.000	-0.289	0.275	-0.232
1000.000	1.104	2.075	-0.063
1000.009	0.957	1.353	-2.127
1000.000	1.627	-1.185	-2.496

STV ERIRG FCR THEE ？

2．230 SIG PLoft＝1．217 GLG $\mathrm{PCS}=$
2.273 HLOEL NW 63819

［6281	57988.895	39997．923	1000．053	S6000．000	40000．000	1000．000	1． 104	3．075	－6．CE 3
56181	\＃7953． 143	35958．547	1007． 1 27	68000.000	36．000．000	1000．000	0.857	1．75喆	－\％\％＋ざ7
67181	E7948．372	32001－1E5	100． 496	543000．000	32000．000	1000．000	J． 5 ［27	－1． 285	－
E6191	71997.513	39999．493	1000．218	72050.600	40000.000	1000.000	3．481	0.506	－0． C （88
66194	71987．Sede	35999， 35	1000．e3G	1EOta． 000	3 3 .000 .000	1000.000	2．077	0.146	－0．236
67193	71993．021	31999．	999．14．	72000．000	32000，060	1000．000	0．974	0.407	0.354



6.691	71997\％ 9 크e	35709．893
6．2191	71995．${ }^{\text {a }}$	31990．592
5 SeO	75998.697	39395．433
GEEO）	75999．518	35999.556
67201	7600d． 002	31943＊408

SID ERFE FRA THE MCOAL SIG $X=$ MOREL 140021

5E201	75999.697	39999.433
FE20．	75999.518	35999.556
67201	76000.602	31999.408
56211	79399.999	39999.224
66211	86000.195	35395.770
67214	80000.625	32000.003

ETD ENFE FLR THE MOPEL SIG $X=$ SID ERFES FLDR THE STHE SIG $x=$

1000.236<br>999．1442 397.381 999.778 999.778 998．81：



2．077 0.979 1.302
0.481 $-0.002$

0.146	$-0.43 E$
0.407	0.857
0.565	2.017
0.443	$0.22 x$
0.591	1.128



997．381	76000．000	40000，000	1000.000	1． 302	0.565	2.018
999．773	76000.000	36000．000	1000.000	0．481	0.447	0．2롤
998，811	7 6000.000	$3 \mathrm{EOOO}, 000$	1000．000	－0．002	0.898	1． 188
999． 337	80000．000	40000．000	1000．000	0.001	0.775	0．756
100ご，77あ	80000.000	35000．000	1000.600	－0． 195	0.8129	－こ．776
$1000+797$	80000．000	32000.000	1000．000	－0．635	－0．003	－0．797



MEREA NO 7010

6T13	－1．430	31999． 109
711	－0． 045	EgOOO． 574
7811	Q． 459	24002． 111
6721	3590．093	71394． 707
772 ，	399Er．474	Petcots－461
78 3 2	3595，040	24C02．438

 MDO NL ND 7020E

6721	3999．092	31998．797
77ミ1	3598．474	EPGOD．451
781	3999．040	FN003， 438
6731	8000.870	32000． 0 込 3
7731	8000．085	27999．972
72531	7998． 741	2－9999．257

STD ERPS FGR THE PHDELU STG $x=$

1000.325	0.000	32000.000
1001.491	0.000	28000.0000
1000.689	0.000	-24000.000
399.529	40007.000	32000.000
1000.137	4000.000	23000.000
1000.640	4000.000	24000.000


2000.000	1.430
1000.000	0.945
1000.000	-0.459
1000.000	0.305
1000.000	1.525
1000.000	0.353


0.890	-0.225
-0.574	-1.891
-2.111	-0.699
1.292	0.470
-0.461	-0.137
-2.438	-0.840

 Maper no 70.004

6731	8000． 210	32000． 683
7731	1000．085	37959．372
7831	7595． 741	23999．${ }^{\text {en7 }}$
5741	12001，E6S	31999．637
7741		27999．827
7841	32001．40	24003

STV ERRG FCH THE MLYEL SIG $x=$


$$
\therefore=
$$

    -
    | 6741 | 12001n6ER | 31999，637 | 996． | 2\＃000．000 | 32000．000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7741 | 12001，出家家 | 主7499．E27 | $7000+256$ | ： 2000.000 | \＃8000．000 |
| 7841 | 12001．407 | 24000． 708 | 1000.077 | 12000.000 | 34000.000 |
| 6751 | 1600：－009 | 31355．425 | 1001－203 | 1EOCt．OOO | SE000．006 |
| 7753 | 16000． 378 | 27993．00］ | 2001． 6.46 | 16000．00\％ | 28000．090 |
| 7851 | 15959． 93.5 | 24000．106 | 999．256 | 16000．000 | 24000，000 |


$\$ 000.000$	-1.668	0.362	3.141
1000.000	-1.286	0.172	-0.296
1000.000	-1.407	-0.708	-0.037
1000.000	-1.009	4.574	-1.202
1000.000	-0.378	0.347	-1.646
1000.000	0.056	0.106	0.743

 HCOE ND 70506

6751	16001． 003	31595． 425	100：－ 302	15000．000	72000．000
7751	18000．378	皆7599．00ㄹ	1001． 64.	16000．000	28000．000
7851	15999． 3 F3	240630．10E	999 25G	16000，000	24000，000
6761	15998． 230	31996， 935	795．751	20060．000	320000000
7761	20000．478	27993． 081	545．833	c0000．000	E2000．000
72E1	50000． 943	23999， 766	996．717	20000.000	24000.000


1000.009	－1．009	4． 574	$-1.20 \overrightarrow{E C}$
1000.000	－0．378	0.597	$-1.645$
1000．000	D． 0 Es	－0．165	O．743
1000．000	0.769	3.063	O． 246
1000.000	－0．478	0.912	O． 366
1000．000	－0．943	1．3ワ7	3． 287


O．758M $516 Y=2.595 \mathrm{H}=3192=$
1.764 S16 PLAN $=$
3.703 OIG PGS
3.238

MEDER．ND 70607

676.1	19599．290	31295． 935
7761	70000．472	27999．087
7 7 St ${ }^{\text {d }}$	20000．843	7 73998.786
6771	23968．220	31997.584
7711	E7909．5日？	77993．035
7871	24001.045	23999． 815


999.755	20000.000	32000.000	1000.000	0.769	3.053	0.248
999.835	20000.000	28000.000	1000.000	-0.472	0.912	6.256
996.717	20000.000	24000.000	1000.000	-0.943	1.273	3.282
997.636	24000.000	32000.000	1000.000	1.779	2.415	2.353
989.401	24000.000	28000.000	1000.000	0.417	0.964	0.598
998.399	24000.000	24000.000	1000.000	-1.045	0.193	1.600

ETD ERRS FQR 7 H 届 MDDCL SIG $x=$
4.108 m sig $Y=1.925 \mathrm{H} \operatorname{sig} Z=$

2.328肘E ND 70708

6771	23998.320	31997.584
7771	23999.582	57939.095
7871	24001.046	23999.818
6781	27999.821	32000.056
7781	27399.522	27399.888
7881	27993.201	23959.717



997.636	24000.000	32000.000
999.401	24000.000	27000.000
998.399	24000.000	24000.000
996.159	28000.000	32000.000
998.005	23000.000	28000.000
997.757	28000.000	24000.000

1000.000
1000.000
1000.000
1600.000
1000.000
1000.000
1.779
0.417
-1.046
0.118
0.677
0.798

2.415	2.363
0.964	0.598
0.143	1.600
0.058	3.840
0.311	1.394
0.282	2.242

 TMOEL ND 7080\％

6781	77393－881	32000．06\％
778：	27999． 5729	27999．588
7831	27393． 201	23939．717
6゙191	319938．${ }^{\text {che }}$	
779：	3E000． 142	29000． 337
7891	3200，－ $0^{\text {H }}$	84001．483


956． 159	EE000．000	2P000，000	1000.000	0.118	－0．068	3．840
998．005	28000．000	28000．000	1000．000	0.477	0.311	3．944
997．757	39000．000	24000．000	1000，000	0.798	O＋EX2	己． $2 ⿰ 口 口$
1000． 355	32000.000	32000.000	1000．000	1.777	0.578	－0．35
1002．O64	32000，000	18000．000	1000．000	－0．142	－0．37．7	－\％．964
	3 3 000.000	34000.300	1000．000	－1．310	－1．489	－1．cctis





 MGDEL NO 71112

 arget. Nut 7tels

 Manel wi 73314



67141	52000.507	31998.913
77141	52600.442	28000.045
78145	52009.022	24001.258
67151	55959.347	31999.897
77151	56000.105	28000.498
78151	56000.566	24000.472

999.407
1002.472
1003.708
397.495
1000.121
1002.406

52000．006	330000.000	1000.000	－0．507	2．096	0.597
S茐600．900	20000．000	1000.000	－0．442	－0．045	－2．472
520000.000	24000，000	1000.000	－0．082	－1．358	－3．708
56000．000	\＃E000．000	1000．000	0.652	0.102	2．504
5600． 5000	400000，000	1000.000	－0．105	－0．4sc	－6． 221
56000.000	24000，000	1000．00\％	－0．56E	－0．472	－E．こ06


	NODEL ND	55.
67151	55599． 347	315959.897
7713	50000.105	38000.498
78151	58000.586	E＇4000．472
CTJG	59899.351	31398． 256
77161	59393．6．45	27995．88起
78961	צ9588．867	2400］．263

SIC $Y=0.805 \mathrm{M}$ gIG $z=$
H． 504 SIG PLAN $=$
0.944 SIG FCS
2.677

997．485	58000.000	330000.000	1000.000	0.653	0.102	는．504
10002121	56000.000	28000． 900	1000.000	－0．105	－0．4．4t3	－0．121
1002．Eag	560\％40．000	34000．000	1000.000	－0． 58 E	－0．472	－$\square_{4}$
998． 28.2	60000．000	32000．000	1000.000	9．748	1．743	1．717
1005．624	\＄0000．000	28000.000	1000.000	0． 354	0.117	－2．624
1005． 347	60000．000	24000.000	1000.000	1.132	－2．MEs	－6．347

GPD ERRS FLR THE MODEL SIG $x:$

0． 738 B GEG $Y=1.317 \mathrm{M} \mathrm{SJc} Z=$

3． 501 STC PR A
1.510 EYG PCS $=$
3.813

MHOEL NE 73E27

67161	54938.251	31998.296
77161	59999.645	37999.892
78161	59598.867	24002.263
67171	57999.941	31998.780
77171	53798.653	37997.764
78171	63998.624	24000.527


	50000．000	32000.000	1000.000	0.748	1．74才	2.717
1002．E24	6，9000．000	29000．000	1000.020	0． 354	0.117	－2． 6.234
1003．347	60000．000	24006．000	1000.000	1． 133	－2．2．26s	－6．347
998．039	64000， 000	32000．000	1000．000	0.058	0.318	1． 360
4001．716	64000.000	28000．000	1000.000	1．3446	0.355	－1．715
1004． 390	54000.000	7 400000000	1000.000	4－975	－0． 5 E7	－4．390




67171	63999.941	31903.780
77171	53998.653	27959.764
78171	63998.024	24000.527
67131	67999.695	31999.475
77181	67999.575	26000.472
78181	6499.675	23999.639

STD ERPS FDR THE MODEL SI6 $x=$

950.039	64000.000
$\pm 001.710$	54000.000
1004.390	64000.000
1001.639	68000.000
1003.819	68000.000
1001.557	58000.000


32000.000	1000.900	0.058	0.213	4．760
료000．000	1000．${ }^{100}$		0.235	－1．716
24000，000	100\％ 400	1.375	－0．523	－4．590
32000.000	1000.006	0． 304	0． 5 可 3	－1， 539
290004．000	1000．000	9，424	－0．472	－2．${ }^{2} 18$
24000．000	1000．000	1．4．34	0.310	－ 1.557



67181	67999.694	31999.476
77181	67999.575	42009.472
78111	67998.675	29999.689
67191	72000.205	31999.329
77191	72001.393	27998.814
78191	72000.293	24000.249


1001．639	68000．009	32000． 000	1000．000	0．3044	0．풀ㄹ	－1．699
100m－319	60000．000	랠000．000	1000．000	0.424	－0．472	－2．8）
1001－557	68000．000	24000．000	10000.000	1．324	0.340	－1．557
1000.394	72000.000	77n900．000	1000．000	－0．EOS	0.670	－0．994
1002． 684	73000．600	2．aOco． 000	1000.000	－0．38）	0.285	－＋
1003.187	77000.000	384000.000	1000．000	－0． 293	－0．249	－3．187

ST＇D ERRS FOR THE MEREL SIG $x=$

[^3]0.830 5TG मin

```
67191 72000.205 #1990.324
77191
78191
67201
77E01
78201
\begin{tabular}{ll}
72000.205 & 31990.229 \\
72000.389 & 37599.314 \\
72000.293 & 34000.249 \\
7599.880 & 31999.170 \\
76000.431 & 38000.344 \\
76000.404 & 34000.254
\end{tabular}
```


### 1000.99

 100こ，E月茄 1003． 367 1002. E．56， まロ可7． 1002． 045| 78000.000 | 32000.000 |
| :--- | :--- |
| 75000.000 | 22000.000 |
| 78000.000 | 24000.000 |
| 78000.000 | 20000.000 |
| 76000.060 | 28000.009 |
| 70000.000 | 24000.000 |

1000.000
1000.000
$\$ 000.000$
1000.000
1000.000
1000.000

-0.205	0.670
-0.389	0.185
-0.297	-0.249
0.119	0.829
-0.431	-0.274
-0.404	-0.256

0．358 M SIG
$\mathrm{V}=0.534 \mathrm{~m}$ g1e 2
2． 95 5 SIG PL

PLAN ：
0.635 E16 P0

Motitl ND रeopl

57 EO	75997880	31999.170
T7301	76000.421	28000． 274
78201	76006．404	E4000．सEt
¢72］ 11	79998．475	2 za 000.15 .4
77E1 1	80000.024	28001．143
78211	80002．18，	
stio ERRS	FIR THE MODEL EIG $x=$	
ETC EFR		$\operatorname{sig} x=$
	MGOEL NO S0203	
7811	－3．113	23999.982
\％tis	－1．105	19997．590
8911	0.010	75999．918
7821	$4000 . \mathrm{ER7}$	23998． 467
kg를	4001－ 2149	29989．496
89른	4000.491	15399，089

STD EnsS FOR THE MOCEL GIG $K=$ NCOFE ND 80203

$7{ }^{7}$	4000.28	23399．467
85E1	4005 － 240	19593，498
8931	5000．49！	15998－089
7891	E001． 8 E\％	24000－ 3 29
8831	8002．018	1999\％．
8931	8001． 639	16000． 40 z

STO ERRS FER THE MROL AI $x$
MCLEL MOD BOZSO

7831	B001－835	せ4000．3ご
B931	800\％．019	19999． ¢12 $^{\text {a }}$
8931	9001．823	16000．402
7842	12003．0ㅇ0	23938．78，
5141	12002．${ }^{\text {251 }}$	20000.10 品
8941	10001－440	16001． 57


999.827	8000.000	24000.000
1001.448	2000.000	20000.000
999.654	2000.000	16000.000
1002.130	12005.000	24000.000
1060.558	12000.000	20900.000
903.241	120000.000	16900.000


－000． 060	－1．836	－0．32］	0.572
1000.000	－2．018	0.387	－1．448
1000.000	～J． $\mathrm{BE} \mathrm{c}_{\text {P }}$	$00.40{ }^{0}$	9．30S
1000．000	－3．050	1.254	
1000．000	－ F ．2b1	－0．102	－0．558
1000．000	－1．450	－1．57\％	








MWOL TW EDOTO

7891	31997，754	23998．935	1001.835	72000.000	24000.000	1000.000	2.245	2.064	－1．235
ER91	31997.805	19999． 3 35	1002.194	3e000．000	20000.000	1000.000	2．194	0.664	－2．194
\＃901	31996．516．	16001．398	1001．692	32000.000	10000．000	1000.007	3．483	－1． 138	－t．G9P
78101	38996． $\mathrm{Fa}^{\text {a }}$	23598．063	1004.551	16．000．000	24000.000	1000.060	3．456	1． 936	－4．551
83103	6．997	19993．253	1003．54．	$\pm 6000.000$	20000.000	1000．000	3.002	0.790	－3．145
E3s01	1．47．145	16000.050	$1000.55 E$	36000.000	12000．000	1000.000	2．854	－0．090	－0．5s5

gTD ERRS FOR THE MCDEL ETG $x=$


78101	35995． 533	28998.063
88101	35395．． 997	15999.269
8930：	95997． 245	16000.090
$7{ }^{\text {a }} 111$	39997． 338	23593． 308
E8J11	39997．573	19999． 555
E911：	39593，471	15958.974

STD ERRS FRR THE MOKEL STG $x=$
Mane k 8 时 81112

78111	39997． 3 29	23399.
88111	39597．573	19993．：56
cestil	79598． 471	1 ES
78121	43598． 594	23998， 365
Extas		19993．40
89189	44000.055	155

STO ERRS FGR THE MLEDEL SIG $x=$


7ascl	43938.194	23998．36
צ¢y ${ }^{\text {a }}$	42998．853	13999.403
8953	44000.055	15993．306
78131	47998.633	23999．ए17
88131	47999.894	נ7395．
89131	48000	


1004． 580	45000.609	E4000．000	1000．000	1．80s	1．634	$-4.560$
1004．503	44000.009	20000，000	1000.000	3． 375	0， 5 F6	－4．803
1000.559	44000．009	16006．000	1000．000	－0．05s	0.033	－0． 559
1004.844	48000.000	24000．000	1000．000	1.366	0.7 Pa	－4．844
1004.012	48000.600	20000．000	1000.000	0.105	0.182	－4．012
1000.577	48600.009	1F1000．000	1000.000	－ 7.571	－0．795	－0．877

STB ERSS FOR THE MIMEL SIG $X$ Mant No 8x B14

78191	47938．634	23999．こ17
Egi31	47998.894	19993． 177 $^{\text {d }}$
89331	48000.571	16000， 785
78141	51993 954	27899．484
8834	5xacon． 597	19399， 397
可9141	52061．808	15999

1004.824
1004.012
1000.847
1004.006
1004.964
1000.980
 36000.000

1000.000	1.389	0.792
1000.000	0.105	0.182
1000.000	-0.571	-0.785
1000.000	0.015	0.515
1000.000	-0.537	6.608
1000.000	-1.808	0.235

24，S28 PROM


MONEL．PV 814 15

78141	51999.984	23999．464	100＊．005
88141	53000．537	19995．397	2003.96 .4
89141	52001． E $^{\text {cis }}$	15999． 764	1000． 580
78151	55001.397	23999－412	1000．99E
88151	58001．${ }^{\text {E73 }}$	19550．漦？	1000．930
89151	EE001． 944	15999．766	999，17푸



1000．000	0.015	0.515	－4．006
1000.000	－0．537	0．6的碞	－3．984
1000.000	$-1.808$	0.335	－0．980
1000．000	－1．797	0.587	－0． 398
\＄000．000	－1．675	O．${ }^{\text {¢ \％\％}}$	－0．5R，
8000．000	－1． 544	6．${ }^{2}$	C．${ }^{2}$

1．65t 日1G F酸＝3．127 Mizec ND EJS16

78151	58001.397	23939.412
88151	56001.675	19999.327
$8915!$	55001.344	15999.766
78161	60000.392	34000.330
81261	60401.699	20000.698
$89 \pm 51$	60002.078	18001.138

STD ETHR FOR THE WHEL SIG $X=$
MECEL NC 51627

78さ61	60000．99］	$34000{ }_{*} 330$
8816）	A0001．E95	E0000．488
gsif！	60000E．078	16CD1－139
78171	69399.575	23998．957
昭17：	6.7999 .956	E0000．951
89172	64000.730	58002．743

STM ERAS FDR THE MODFL．SIG $X=$


77171	63999.575	27998.357
89121	65999.956	20000.951
89171	64000.730	16002.743
78181	67997.962	23999.621
79182	67978.906	50001.034
89181	67999.137	16003.019

STD EKNS FOR THE MODEL SIG $x=$ Naces．Mro 安1819

78151	67397． 367	
89185	ET998． 9 PE	E009：－034
㓏：81	6．7\％99． 337	15007．019
79191	71998，ถ3	24000． 100 ¢
78191	71．997，6．31	20009． 589
世出191		186a0 370



1000.000	E． 037	0． 375	Q．P2e
1000．000	1．093	－1．034	
1000．000	0.86	－3．015	D． 343
1000， 000	1． 473	－0．102	9．ここE．
1000．000	2．${ }^{6} 8$	－0．${ }^{\text {¢ }}$ 等	－1．158
1000.060	巴．E6\％	－0．870	2． 384



MODEL NIT G19EO

781合1	71998．5こ飞	24000．103	999．783
88191	71997．6．1	20000．533	1001． 378
99297	71397n 13 K	16000． 370	
78 ¢01	75997－886	24001． $93 \pm$	997． 59
98201	75998． 143	19399． 985	998．315
的島免1	75997． 939	15000． 235	937．\＃28



1000.000	1.479	-0.102	0.236
1000.000	2.369	-0.539	-1.138
1000.000	3.859	-0.870	2.324
1000.000	2.315	-1.382	2.140
1000.000	1.850	0.017	1.694
1000.000	2.000	-0.235	2.671

STO ERRE FCR THE MDOEL SIG $x=$
2．36y it SIG $Y=1-008$ 时 S19 $7=$
2．077 SIG PLAN $F$ 2． 567 BIG PMS $=$
3.303 HLDES．ND BEOE1

78209	75997．838．	34001．992
gatay	75998． 149	19999．982
89EO1	75997．905	16000． E 3 E
78211	90002． 318	73999，53
58で11	10000n 141	19398． 139
892］1	79998． 257	15999．E29

S：D ERRS FLR THE MODEL SIC $X=$
STL ERRS FLR THE STRIF SIG $x=$
MCOEL ND 90102

5911	4.893	16004.936
9311	0.694	32005.354
51011	3.334	8006.048
8921	4003.570	3599.435
9921	3993.491	12000.634
91021	3955.046	8002.096


957.859	76000.000	24000.000
398.315	70000.000	20000.000
907.378	76000.000	16000.000
1000.357	60000.000	34000.000
1001.373	80000.000	20000.000
1000.698	80000.000	16000.000


1000.000	2.113	-1.993	2.140
1000.000	1.850	0.017	1.684
1000.000	$\ddots .50$	-0.235	2.671
1000.000	$\ddots 21$.	0.477	-0.357
1000.000	$\ddots$.	1.860	-1.173
1000.000	.1	0.770	-0.698


 MOOEL NOD 90203

892：	4003.570	15998．491
9921	4993．491	
G102］：	3985．076	8002， 090
8931	7999.415	
93n1	7999．455	$11994 . \mathrm{FEO}$
95031	7999，097	7935085


1060．401	4000.000	18000．000	1000．000	－3． 570	1．5E8	－0． 401
$993+768$	4000．000	12000.000	1000－000	0.509	－0．536	D． 133
799.337	4000.000	2000．000	1000.006	4.953	－2．096	$0 . \mathrm{ESE}$
997．Ex	R000．000	18000．000	1000.000	0.584	6．507	2．379
999．858	8000.000	$\pm 2000.000$	1000.000	0.544	5．379	0．142
99 E － 338	8000.000	30000.000	1000.000	0.932	4.137	0.051


MOCEL NO SOAOA

E933	7999．4．55	15997．492	997． 520	8000，000	10000.000	1000．000	0.584	6.5007	4－779
9331	7999．455	11994．630	979．858	8000.000	12000.000	1000.000	0.544	5.379	0．141
91031	7999.097	7395．862	999.738	8003．000	19000．000	1000.000	0.902	4.137	0.081
8345	11794.837	15998． 778	993．${ }^{\text {cid }}$	$\pm$ \＄2000．090	1 2000.000	1000.000	5， 25 E	1，del	E． 108
9941	11999．673	11997－475	997．式己	12000.000	120000.000	1000.000	0.320	2． 564	E． $3 \%$
\＄1041	12003．883	7998．559	950，085	12000.000	8000．000	1000.000	－3． 889	1．430	0．\％13



MOOR．NO 90405

8941	11994.837	15992.778
9941	11959.673	11997.475
91041	12003.893	7998.569
8951	15997.754	15998.510
9551	5599.797	12000.324.
91051	16001.752	8001.748

GTD ERRA FQT THE MROEL GIG X
MLEFEL，MD SCEDE

8951	15997.754	15998.610
9951	15999.797	32000.326
91051	16001.542	8001.748
8951	19997.878	16001.255
9951	15998.628	12006.023
91061	20000.021	9003.227


MEDEL ND 90607

8961	19997.878	16001.256
$996:$	19298.628	12002.023
$9105!$	20000.021	8003.923
$897!$	27999.192	16000.559
9971	27999.128	12002.553
$9167:$	23999.045	日c03．995

STD ERRG FOR TWE MADE： $316 x=$

WMEL NO 9OTOB

8971	$23999.19 E$	16000.559
9971	23999.120	12002.563
91071	23999.045	8003.995
8981	29998.981	16001.900
9981	27999.247	12002.106
91081	$2799 R .364$	8003.455

ETD ERRS FGR THE MZOEL SI电 $x=$ MKOEL 现 30809

8981	27998． 987	16001－900
9981	E7999． 347	12002－106
91681	4799E． 364	\＄003．455
8931	32061－091	16903．345
9991	23000．039	
S1091	31999， 597	8000.358


993． 591	12000．000	16000.000	3000.000	5．163	1．221	E． 708
997．62e	13000．000	12000．000	10000.000	0．3ect	2．5E64	2．377
999.086	22000．000	8000.000	1000．000	－3\％8RE	1．430	0.913
998．415	18009.060	16000．000	1000.000	E．24S	1．389	1．531
1001．55］	15000.000	22000．000	1000.000	0． 2007	－0． 3 EE	$- \pm+$ \＄5
1000.308	15000.000	8000．000	1000，000	－1．55］	$\cdots 1.748$	－0．803





397． 358	20000.000	10000.000	1000.000	2． 221	－1． 26.5	C．6．41
1000．596．	26000．000	12000：000	1000.000	1．371	－틍．023	－0．585
1001． 791	20005．000	8000．000	1000．000	－0．021	1－3． ¢ $^{\text {e3 }}$	－1．191
398．828	24000．000	16000．000	1000．000	C． 407	－6．559	1.171
1001．505	24000．000	12005．600	1000.000	0.871	－e．56，	－1．605
1002． 155	24000．000	8000．000	1000．000	0． 854	－3．935	$-2.135$

$\qquad$


MaDt ND 90910

8993	$32001-091$	16002.345
9991	32000.039	42002.489
91093	31999.697	8000.455
99103	38001.728	16001.762
93101	36002.705	12001.509
910301	3002.283	8002.035

ETD ERAG FCGF THEF MEREL SIE $x=$
599.423
1000.183
998.440
9969.704
1002.328
1002.290

3 y 000.060	18000.000	1000.000	-1.091	-2. 345	0.578
\$3000.000	12000.000	1000.000	-0.029]	- ${ }^{\text {a }}$ 45	-0. 189
E2000.000	8000.000	1000.000	0. 300	-0. ESS	1. 595
350000.000	16000.000	1000.000	-1.728	-1.3F3	0.395
3E000.009	12000.000	1000.000	-흔 - 709	-1. EOO	-2.958
30000.000	8000.000	1000.000	-3. 383	-2.036	+2.290


Disy

89301	30001-723	150031. 3 E-
99105	36002-705	12001. E00
910101	36co2. 283	260‥036
59111	$40003-379$	16001.162
F3111	40002.024	13000.604
980171	40001.350	8501. SEE


993.704	390000.000	1E.000.000	1000.000	-1.729	-1.36e	0.235
1002. 959	$3 \mathrm{Co00.000}$	12000.000	1000.000	-2.705	-1. ECO	$-2.958$
1002. ${ }^{\text {20 }} 90$	36000.000	8000.000	1000.000	-ㄹ. 185	-2.075	-2.E®9
1000. 780	40000.000	28000.000	1000.000	-3. 379	-1. $16 \cdot \mathrm{C}$	-0.760
1003.732	400000.000	42000.000	1000.600	-2.084	-0.E04	-3.762
1003.859	40000.000	2000.000	1000.000	-3.360	-1.953	-3.869

ETD EHES FLR THE MEDEL SIG $x=$
相

2.96E sic PLAN

3.05E GIG PRG = 4. 257
mong ND 9itic

E9111	40003.379	16001.162
99115	$40003 \mathrm{E}=084$	12000.604
910111	40001-350	8061.952
ㅂ9ㄱ른	$4900 \mathrm{e}-595$	15999. 214
993?1	$44002.00 \%$	12000.769
$910 \times 21$	44001-295	8000.407

$1000-760$
1003.772
1003.859
$1009-845$
1003.449
1000.810

40000.000	16000.000	2000.000	-5.379	-1.168	-0.760
40000.000	12000.000	1000.000	-2.084	-0.604	-3.772
40000.000	8000.000	1000.000	-1.750	-1.358	-3.865
44000.000	16000.000	1000.000	-2.596	0.785	-1.845
44000.000	12000.000	1000.000	-3.005	-0.769	-2.440
44000.000	8000.000	1000.000	-7.095	-0.407	-0.810

STC ERTE FGR THE MODEL. EIT $X=$
NHEDEL ND 91223

89121	44002.596	15999.214
99121	44002.508	12000.769
910121	44001.245	8000.407
69131	48000.977	15997.584
99131	48000.490	12000.227
910131	48000.225	8000.935

$1001-845$
1002.440
1000.810
1000.548
$1001-405$
1001.259

440000,500	16000.000	10000.000	- ${ }^{\text {2 }}$, 598	0.785	-1.845
44000.000	12000.009	1000.000	-2.006	-0.769	-2.440
44000.000	8000.000	1000.000	-1.	-0.407	-0.810
48000.000	2\%000.050	1000.000	-0.977	2.415	-0.568
48000.000	12000, 00\%	1000.000	$-0.490$	-0.302	-3,405
48000.000	8000.0009	1000.000		-0.835	-1. 36

STO ERAG FCR THE MEOEL GIG $\times$ ㅍ



891.71	48000.377	15997.584
99! 31	48000.430	12000.
910923	$48000-235$	8000.335
E9341	51595-548	13597.594
991年1	5199\%-372	12cos. ${ }^{3} 4$
930141	51958.654	900t-127


1000.563	48000.000	16000.000
1001.495	48000.000	10000.000
1001.369	48000.000	8000.000
1000.683	52000.000	16000.000
1000.210	52000.000	12000.000
997.111	52000.000	8000.000


1000.000	-0.977	2.415	-0.568
1000.000	-0.490	-0.427	-1.405
1000.700	-0.235	-0.835	-1.269
1000.000	0.457	2.405	-0.088
1000.000	0.687	-0.424	-0.210
1000.000	1.9445	-1.127	0.888

$$
\because \dot{\sim}=
$$

 MCREL ND G1415

59142	51999，54B	15997．594
9G141	51997． 338	$12000.3{ }^{3}$
910141	51898 E ． 654	8001－t27
59151	559978 830	15993．86\％
29：51		12000\％O4\％
91015：	55998．885	8 501.554


1000．ORE	Senoco． 005	16000.000	1005．000	0.453	2． 405	－0．098
1000.314	S 5000.000	12000．000	1000.000	0.657	－0．324	－0．210
999.511	F200，000	\＄000．000	1000．000	2.345	$-1.278$	0.858
998.777	$5 E 000.000$	16000．000	1000．000	E． 180	1．139	1－라쓔룰
1000，596	56000.000	10000.000	1000．000	1.557	－0．045	－0．5g6
1000． 6.35	SE000．000	8000.000	$\pm 000.000$	1．114	－1． 564	－0．695




99151	55997.820	15990.960
99151	55998.302	22000.045
910151	55992.889	8001.564
35161	59997.971	15999.237
99163	59999.098	12000.405
310154	59999.013	7999.744

STO ERRS FTR THE FHTEL SIG $x=$
MLRQE MLI 91627

鸲1复1	59947．971	15959．237
59］${ }^{\text {¢ }}$	53999．008	12000．406
910161	59998．013	7393．744
89171	153997．877	15998－552
99171	63595．54픈	11999．746
910371	64000． 0 912	EOOL－OES

## 997． 8 E23 <br> 398． 569 <br> 999.498 1000.716 <br> 1001.515 <br> 1000.835

56000.020	16000.000
58000.000	18000.040
56000.000	8000.000
60000.000	16000.000
50000.000	12000.000
60000.090	8000.000


1000.000	2.180
1000.000	1.69
1000.000	2.11
1000.000	2.62
1000.000	0.99
1000.000	1.98


1.139	1.277
-0.045	-0.596
-1.564	-0.695
0.762	2.278
-0.405	0.330
0.255	9.501

2．120 SIGPOS $=2.445$
998.777
1000.596
1000.696
997.823
999.568
999.496

3.180
1.597
4.114
2.028
0.991
1.986
$3.659 \mathrm{EIG} Y=0.50 \mathcal{M} \mathrm{~m}$ sic $2=$

1000.000	2.028	0.722	E． 178
1000.000	0.991	-0.405	0.370
1000.000	1.985	0.255	0.501
1000.000	$\vdots .122$	1.437	-0.71
1000.000	0.457	0.853	-1.525
1000.000	-0.092	-1.065	-0.836

GTD ERRS FRF THE EKTDEL SIG $x=$ OENEI．N 31718

59\％71	83997．${ }^{\text {E }} 7$	15958．56e
38171	63999.542	11999.746
910171	¢A0AO．OSE	8001.056
491星1	E7939．458	15993－052
99182	67989.331	$11992-384$
5！0．18：	65000． 139	7393．880


1000.715	64000.000	16000.060
1001.515	64000.000	18000.000
1000.235	64000.000	8000.000
939.34,	88000.000	16000.000
1000.962	68000.000	12000.000
$1060.67 \%$	58000.000	8000.000

1000.000
1000.000
1000.000
1000.000
1000.000
1000.000

$\begin{array}{r} \text { e. } 122 \\ 0.457 \\ -0.693 \\ r_{1} .543 \\ 3.858 \end{array}$


1.437	-0.716
0.257	-1.515
-1.066	-0.856
0.947	0.658
0.615	-0.352
0.1 .29	-0.678


FOOEL ND 93815

89181	6.999 .459	15999.052
99181	67599.331	11993.384
910181	68000.139	7995.880
89191	78001.309	16901.083
99191	72001.648	11959.763
910191	72001.898	7997.627

999.341
$\$ 000.362$
$\$ 000.676$
992.195
997.827
997.765

88000.000	16000.000
88000.000	12000.000
68000.000	8000.000
78000.000	16000.000
78000.000	12000.000
72000.000	8000.000


1000.000	0.541	0.347	C．E58
1000.009	0.689	0.615	－0．352
$1000+000$	－0．139	0.119	－0．675
1000.000	－1．30\％	－1．083	2．804
1000.000	－1． 548	0.235	2．172
1000.000	－1．835	E． 34 E	2．234

```
\(\therefore=\)
```

STL ERRS FTIR THE MOOEL. SYG $x=$
MGNEL MSC S15゙C

19191	72001.703	16001.083
99191	72001.648	11999.763
910191	72001.596	7997.657
89201	76001.148	15997.739
99201	76048.765	11999.738
970801	76003.689	9001.346


MOQEL NO sEOE1

89201	76000.148	15397＊73
9920］	7EOOL． 768	119099．738
G10 ${ }^{\text {a }}$	76003．609	8001．346
9921）	79093．区ら3	1599\％ 379
99룬14	g0000．911	$12000.6 \times 9$
91021）	ECOOH．Est	8c01－354

ETD EARS FWh THE MODEL $53 G \%=$ GTD ERRS ROR THE STRTF SIE $M=$ MDOE NO 100102

91011	-3.599	7999.245
101011	-2.818	3398.201
101111	-1.275	-4.575
94021	3997.215	8000.155
101021	7999.650	3999.538
102121	4001.187	-1.144

GTD ERRS FDR THE HCORL GIG $x=$ MOELL NO 300 OOS

9taed	7997．815	8000． 155	399， 920	4000．000	8000．000	1000.000	2． 184	－0．15s	0.179
101031	7999．650	7999．532	1001－597	4000.000	4000.000	1000.000	0.349	0.467	－1．537
10x121	4601.127	－1．144	1000．768	4000.000	0．000	1000．000	$-1.187$	1．144	－6．7E8
91031	7799．345	8000． 137	995．572	8000.009	8000．000	1000.000	O．E54	－0．137	3． 467
101031	7999．417	4006．067	999，210	8000．000	4000.000	1000.000	0.588	－0．067	0.789
101171	7999．954	\％． 739	997． 9 ¢ ${ }^{\text {a }}$	8000．000	0.000	1000.000	0.045	－0．739	0.047
gTh ERRS	（ ${ }_{\text {O }}$ THE MKO	976 $x=$	3.189 m	$\gamma=0.55$	$\cdots$ SIG 7	1．7588	L－AN $=$	馬畐 \＄16	$=$


91031	7979.345	B000． 137	998，与3	8000．000	8000．000	1000．000	0． 654	－0．237	3． 467
101031	7999．417	4000.067	999． 210	8000．000	4000.000	1000．200	O． 5 Se	－0．4．067	0.789
301：31	7999.954	0.739	999．95゙	2000．004	0.000	1000．009	C．045	$-0.789$	0.047
91041	11999．${ }^{119}$	$8001+424$	396． 978	18000.000	9000． 000	1000．000	0.780	－1．424	3.021
10104：	11998．569	4000.342	997．794	27000.004	4000．000	1000.000	1．08E	－0．943	2． 205



```
~=
```

,


HOOEL N 100910

91091	32000． 355	8000．602	1004．29：	32000.900	goco． 000	1000．000	－0．225	－0．603	－4．281
101091	32000.764	4000.369	1007.209	320004000	4000.000	1000．000	－0．764	－0．969	－7．309
101991	こecoo． 7 ca	1．8ata	1006．97a	31000．000	0.003	1000．00\％	－0．72e	－1．EE3	－5．872
9joscis	36000.840	7999．208	1007． E6E $^{\text {c }}$	35000，064	19000．000	1000．000	－0．846	0.191	－7nge
10105	36000.769	4000．871	1007－680	35000．000	4000． 200	1000.000	－0．869	－0．871	－7．680
11108	36002.279	2．559	1006． 494	76000．000	0.000	1000.000	－2．27\％	－3． 559	－6．494

 MEDFL ND $10: 013$

910101	36000.840	7399.809
10105	36000．85s	4000.871
11105	36002.273	E． 553
910111	40001． 269	8000．12．
10115	40003－307	4001.460
11115	4000：．6．6EE	2.447

STO ERRG FUR THE MROEL SIC $x=$
madel no torlke

910111	40001.263	8000.121
10115	40001.907	4001.460
$1 \pm 115$	40001.625	9.447
910321	44000.872	7999.421
10125	14001.778	40011.252
11125	44002.401	3.677


1005.307	40006.000	7000.000
1006.319	40009.000	4000.000
1005.614	40000.009	0.000
1005.835	44000.000	8000.000
1007.046	44000.000	4000.000
1006.678	44000.000	0.000


1000.000	-1.899	-0.121	-5.307
1000.000	-1.907	-1.460	-5.319
1000.000	-1.606	-2.447	-5.614
1000.000	-0.812	0.578	-5.835
1000.000	-1.778	-1.262	-7.046
1000.000	-2.401	-3.677	-6.678

STO ERRS FOt THE MHOEL SH0 $x=$
MOEL NU 101233

910121	44000.812	7999.421	1005.835
10125	$44001-778$	4001.262	1007.045
11125	44002.401	3.577	1006.678
910131	48001.283	7998.890	1004.788
10196	48000.373	4001.534	1007.457
11135	47999.287	3.837	1006.936


44000.000	8000.000
44000.000	4000.090
44000.000	0.000
48000.900	8000.000
48000.000	4000.000
48000.000	0.000


1000．000	－0．812	6． 578	－5．835
1000．000	－1．788	－1．2ES	－7．046
1000，000	$-2.401$	－第．6．77	－6． 678
1000．000	$-1.283$	1．109	－4．788
1000.000	$-0.371$	$-145.74$	－7．457
1000．000	0．112	－3．887	－6．936

HOOM．ND 101314

910，31	48001－파ㄹㅡㅡㅡ	7998． 890	1004.788	48000．000	8000．000	1000．000	－1＊ 2 23	1.109	－4．788
10135	48000＊371	4001534	1007.457	48000.600	4000．000	1000．000	$-0.371$	－1．534	－7．457
11335	47399， 887	3． 987	1006．936	48000.090	0.000	1000．000	0.112	－3．8E7	－5．97e
930145	51998.734	7399.300	1001．591	荎党000．000	E000．000	1000，000	1， 275	0.659	－1－598
10145	51993.089	400．39\％	1003.944	50000.000	4000．000	1000.000	0.910	$-1.197$	－3．944

 MROEL AOL 1014.15

310141	51398.724	7399.500	1001.591	52000,000	8000.000	1000.000	1.275	0.599	-7. 591
10145	S1959.089	4001.137	1003.944	52000.000	4000.000	1000.000	0.910	-1, 197	-3.944
11445	51993.257	3. 3 \#31	1003.256	52000.000	0.000	1000.000	0.742	-3. 332	-3.256
950151	55998.032	7998.818	1000. 173	56000.000	8000.000	1000.000	1.977	1.031	-0.173
10155	55998.050	4000.887	1001.664	56000.000	4000.000	1000, 000	1.9389	-0.E87	-1.661
11555	55987. SEE	$\bar{\epsilon} .855$	1000.924	SE6,00.000	0.000	1000.000	20.047	-3.655	-0.924
ITC ERRS		$810 \times$	. 734 M	$Y=3.0$	m sIf 7	2.543	AN\% $=$	12 SI	$=$


910151	55998.0.02	7998.378	1000.173	55000.000	2000.000	1000.009	1.977	1.0.01	-0.173
10155	5ssea. 060	4000.827	1001.6e1	56000.000	4000.000	1000.000	1.939	-0.387	$-1.661$
11255	55947.353	E. ES5	1000. 324	55000.000	0.000	1000.000	2.047	- e -655	-0.924
910551	59396. 738	8000.081	996.603	60000.000	8000.000	1000.000	3.201	-0.081	3.395
10165	59398. 302	4000.863	396. 393	60000.000	4000.000	1000.000	1. 697	-0.863	3.008
17155	59997*525	0.843	796.080	60000.000	0.000	1000.000	0, 373	-0.848	3.719

 MROEL ND 101627
 MEOEL NO $\pm 01718$

$\qquad$

 WOEEL NaI 1019ea

910191	72003.333	8001.377	995.081	78000.000	8000. 000	1000.000	-3.3.337	-1.2.77	4.918
10195	72004-261		\$97. Jag	70000.600	4000.000	1000.000	-4.2.761	0.073	2.891
11195	72003.746	0. Ext	995.013	72000.000	0.000	1000.000	-3.746	-0.6.13	4 - 9EG
51080:	75003. E15	7998.518	999. 13	76000.000	8000.005	1000.000	-3.815	1.48.	O.EE2
30295	75094.512	4000.118	1000.923	76000.000	4090.000	1000.000	-4.513	$-0.118$	-0.923
12305	75003.458	2. C (\%)	1000.520	78009.000	0.500	1000.000		- सेinta	-0.520

 MNAEL NO 102021

910201	76003.815	7798. 518	999.137				$0000,090$	1000.000		$-3.815$	$1.482$			0.8EE	
10205	76004. 517	4000.118	1000. 923		$\begin{aligned} & 76000.000 \\ & 76000.000 \end{aligned}$			1000.000		-4. 513	$-0,118$			-0.923	
11205	"19009. 46		1000. $52 \times 1$		75000.000		0.000	1000.000		-3.465	-2.2¢G				
9103: 1	80001. 477	7957.589	1000.596		FCOOO. 000		8000.000	1000.000		-1.477		4 EG			S96
10 mel 5	700001. 551	3399.474	1002.537		80000.000		4000.000	1000.000		-1.551		SE5		-2.	37
11215	80000.580	$3-188$			50000.000		0.000	1000.000		-0.580	-3, 281		-2. 318		
57O End	FOfe THE MCDEL	$\operatorname{sic} x=$	3.324 M	SIG	$Y \Rightarrow$	2.2L己	M SIG $2=$	1.675	516	PLAtl $=$	7.911	EIG	POS	$\square$	4.254
STC ERRS	FDR THE SIRIP	EIG $\mathrm{X}=$	1.376 M	宜IG	$y=$	1.654	M SIC $\mathrm{z}=$	4.048	RIG	PLANX $=$	2.503	EIG	POS		4.793
STD ERPS	Cof THE ELOCK	Sxt $\mathrm{x}=$	1.697 M	S16	$Y=$	2.851	M SIG 2	2.811	$1 *$	LAN	3. 384	SIC	05		4.

Author Arbuckle Mark Edward
Name of thesis Minicomputers Applied To Digital Photogrammetry. 1978

## PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

## LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.


[^0]:    Treating the planimetric and height adjustmente teparately the above observation equations 2.6 .2 .6 result in tho seta of mormal equations of the forms:

[^1]:    * Model $81 / 80$ is an exception with seven points used in the relative orientation.

[^2]:    *The data quoted were processed by both it $\$$ williams and II 3 van Dijk on the undversity of the Witwatergrand Imm 360 uging the relative and absolute orientation progran code-named REABO.

[^3]:    

