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ABSTRACT

This thesis is based on research which has been carried out on two sub

sampling methods, namely the jackknife and the bootstrap. A  typical 

problem in applied statistics involves the estimation of an unknown 

parameter 0. The two main questions asked are (1) What estimator 6 

should be used? (2) Having chosen to use a particular 6, how accurate 

is it as an estimator of 9?. The jackknife and bootstrap are resampling 

methods for answering the second question. The jackknife is a simple 

but powerful method for bias reduction and distribution-free estimation 

of the variance. The bootstrap can be viewed as a closely related method 

of the jackknife and is used to generate sampling distributions of statistics 

and thereby to draw inferences about parameters.

Chapter 1 of this thesis is a brief survey of the research which has 

been carried out on the jackknife method and also under consideration 

are open questions suitable for further research. Similarly, in Chapter

2, a review of the bootstrap method is undtrtaker. with future trends 

and possible new research topics discussed. In Chapters 3 to 5, three 

separate research areas are investigated mainly by rfonte-Carlo simulation 

studies to evaluate the performance of the jackknife and bootstrap methods 

against the standard parametric methods. The areas under consideration 

are (1) component and systeu availability (2) non-linear regression 

models and (3) simple time-series models. These areas were chosen with 

particular reference to their applicability in industrial situations.

Finally, in Chapter 6, the performance of the jackknife method is evaluated 

by considering several case studies which were undertaken at S.isol Two 

and Three between January lc<̂ 4 and December 1987 using acti.dl plant 

data.
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CHAPTEK 1

OVERVIEW OF THE JACKHIEE METHOD IN STATISTICS

I.1 Derivation and description of the jackknife estimator

The jackknife is a member of the family of resampling techniques 

which are feasible today because of the availability of high speed 

computers. In particular, the jackknife is a method for bias reduction 

and distribution free interval estimation. The jackknife method was 

first introduced by Quenouille (1949), in relation to bias reduction 

of a serial correlation estimator in time series by splitting the sample 

into two half samples. In a subsequent paper, Quenouille (1956), 

generalised this idea into splitting the sample into g groups of size 

h each, such that n = gh, and formally defined the jackknife estimator 

as follows:

Let Y^...,Yn be a sample of Independent and identically distributed 

(i.i.d.) random variables, and let the real-valued parameter 0 be 

associated with their distribution F(x,»). Let ( a be an estimator of 

che parameter 9 based on the sample of size n. The sample Y^...,Yn 

is split into g groups, each of size h. Then, let 9.^ be the 

corresponding estimator based on the sample of size (g-l)h, where the 

ith group of size h has been deleted. The jackknife pseudovalues are 

defined as:

®i “ 2®n * (g * 1)8.i (i = 1.....g) (1 .1 .1)

and the jackknife estimator of 9 is defined as follows:

( 1. 1. 2 )



If h * 1 and g = n, the jackknife estimators has the form!

A i ri

0 ” ~  V 9i (1.1.3)

" i-1

where = n6n - (n - 1 ) 8 . ( 1 . 1 . 4 )

The jackknifeestimator 9 has the interesting property (Quenouille, 

1956) that, if 9n is biased of order 1/n, then 0 reduces the bias to 

order V n ^ .

i.e. if E(9n ) = 9 +  2 < -  +  +... (1.1.5)

then,

E(e) - • a^ eJ - b- ^
n(9 + 1 1 2 2  +  + . . . ) -  (n-1) (9 +  l i i l  + M i I  + )

n n n-1 (n-l)J

8 ' nTn^T) + ----

and hence 9 is biased to order l/n* only.

In general, the most popular version of the jackknife method 

involves one-at-a-time omissions, since this is considered to be more 

efficient than h-at-a-time omissions tor h > 2 (Rao and Webster, 1966). 

However, with moderately large samples, and with thf- support of high 

speed computers, Mosteller and Tukey (l966)i showe { ibac the h-at-a- 

time omission scheme may possess valuable bias re'1 properties

and may also produce trustworthy confidence intervale for t).
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Tukey (1958) gave the name 'Jackknife' -o Quenouille's method, 

based on the idea that it would be a rough-and-re&dy statistical tool, 

which would be applicable in a variety of situations. Whereas Quenouille 

was concerned with the reduction of bias, Tukey's main objective was 

to obtain an estimator of variance. Hence, Tukey treated the pseudovalues 

in (1.1.4) as if they were a sample of i.i.d. random variables with 

distribution function F(0,x), and suggested the following estimator 

of the variance of the Jackknife estimator 9:

n ^
v a r O )  » 1 I (8i - e ) 2 (1.1.7)

n(n-l) i=l 

Tukey also conjectured that the statistic:

(e - ,■>)in(n-TT f  < î - «>* ( 1. 1.8)
i-1

should have an approximate t distribution with (n - 1 ) degrees of freedom. 

Approximate confidence intervals and tests can than be based on the 

above proposal.

1.2 An example of a jackknife estimator

Let X^(i = l,...,n) bo n i.i.d. random v a r i a b l e  with cumulative 

distribution function Nip,a2 ). An estimator of a 2 is given Hy:

9n * £  - <x i * * > 2 * £  - , (1.2.1)

n i-1 n i-1 1

-  1 " 

where X = —  £ X^

n i-1 

It is clear thati

F. (0n }“ (T2 * cr2 

n
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The ich partial estimator of �j2 is given byi

8 -i “ —  

l n •*

1 " 2 ,n5c - Xi, 2

n - 1 I  x -j - i  j

_ L  I ~ __ I__  (n2x2- 2nXtX + X?)

n-1 J-l J (n-l)2-

J«i

Further, it can be shovn that

I
n (n-l)2n 1 (n-l)2

n(n-2) a 

----------r °n

(n-1 )*

Therefore,

n(n-2) 

(n-l)2

E(0n )

(n-2) 2 

'(n-1) a

t2 -

(n-1)

The jackknife estimate of 9 = cr2 iss

j 9-i - I X2 - n X 2 - I X 2 - X 2

ii! 1 iii 1 (n-1)2 1 t (n-1)

(n2-n-n2+2n) S 2 (n2-n-n2+2n)

(n-l)n i. *i ' (n-1) X

1 * 1

n

.v>2

( n - D  t - 1I <x i‘

Hence, the jackknife estimator of cr2 is the minimum variance unbiased 

estimator of the variance in the case of the normal distribution.



1.3 Second order lackknifa

Thj bias of a Jackknife estimator 0, of order l/n2, may be eliminated 

by Jackknifing with weights n 2 the jackknife ertimator. In Quenouille's 

paper (1956), the second-order jackknife estimator is defined ass

92 . n2e-'n-l)2 y 0 .J/n

------------- Ill--------- , (1 .3 .1 ).

u 2 -(n*l )2
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where 0 is the Jackknife estimator of 8 from a sample of size n and 

6-j is the Jackknife estimator of 0 from a sample sire (n - 1) with 

the jt 1̂ observation reuoved. Equation (1.3.1) can also be rearranged 

to express tne second order Jackknife estimator in terms of the original 

: jiator 0n (see Miller, 1974a).

« n

i.e. 9 <2 ) - (n-1) (n30n - (2r.^2n+l) (n-i) (1 y 6 . t ) +

n i-1

(n-l)2 (n-2) I ® - i j H  , (1.3.2)

n(n-l; i<j

where 0.^ is the original estimator of 0 from a sample of site (n- 

1) with the ith observation removed and 0-ij is the original estimator 

of 0 from a sample of size (n-2) with the ic^ ?nd j ^  observations 

removed.

If E(0n ) = 0 + then E ( 0 < 2 h  > 0 + e(l/n 3),

n

but 0^2) is not unbiased. Schucany, Gray and Owen (1971),suggested 

modifying the weights to achieve complete unbiasedness when tha bias 

has only first and second-order terms in 1/n. Their estimator, which 

has simpler weights then Quenouille's (1.3.1) is

(1.3.3)

: ( 2 )
■2 (n-1 )2 (—

n

n

V
i-1
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1.4 The generalised jackknife

In order to handle more general fonns of bias, Schucany, Gray 

and Owen (1971)igeneralised the jackknife technique. Suppose there 

are two estimators 9^ and 63 with expectations

E ^ )  * 9 +  f x(n) .b(0) 

and E O 2 ) 3 9 + f2 (n).b(9 )

Then, the estimator 

01 ®2

9*

f^(n) f 2 (n)

1 1

f^(n) f2 (n)

(1.4.1)

is referred to as the second order generalised jackknife

Let R “ £ 2^ . -  * * an<* *

f2 (nT

the n ,

E(9*) = E(9i) - R.E(9t) 

___ L___________ fc-

1 - R

= 9(1-R) + fj(n) - Rfg(n) 

1 - R

=* 9



~ *

Hence, the estimator 0 is completely unbiased. The standard jackknife 

estimator, as given in (1.1.2), for g * n, can be considered as a partial 

case as follows:

i.e. put 0  ̂ * 0n , 02 * I 8-i/n, f^(n) * 1/n and f2 (n) = l/(n -i).

The same authors (Gray et el -1972) also considered k separate terms 

in the b.js, each of which factorized into distinct functions of n and 0. 

The expectation of esch estimator is of the form:

E(0^) - 0 h I (n) bj(0) (i « l,...,k+l)

j-1

(1.4.2)

The k th order generalised jackknife estimator of 0 is defined as follows:

e l - - - 0k+i 

fll(n) fk+l,l(r.)

flk ( n ) ---- fk+l,k<n > 

1 - - - 1 

f l l ( n )  fk+l , l<n>
I f

» I

I I

flk(n) - - - f;l+i,k(n)
(1.4.3)

The effect of the first and second order jackknife estimators 

on a general bias term has been investigated by Adams, Gray and Watkins 

(1971). In a subsequent paper (1972), the same authors highlighted 

an interesting relationship between the jackknife technique and the 

e transformation vhich is used in numerical analysis for increasing 

the -peed of convergence of a series. Given a slowly converging series 

of numbers

n

^n = ^ a i , (1.4.4)

i-1
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the transformation

> C«! \ ®n * p(n ) -Sn-l

•i' n) * ___ _______________ i

1 - p ( n ) (1.4.5)

for p(n) = an /arl.i V 1, will increase the rate of convergence to the 

limit ir. many cases. The analogy is Sn ~ E ( 0 n ), Sn _ i ~ E (  ^O.^/n),

Sm  ~  0 and p ( n ) ( n - l ) / n .  The jackknifeestimator is the linear extrapolation

* A
to 0 5 1/” from 0 plotted at 1/n and ^0_i/n at l/(n -l)-

1.5 Jackknifine the ratio estimator

Ratio estimation occupies an important place in sample surveys, 

and has become an area of application for the jackknife technique since

the simple estimator Y/X is biased. Given a sample (X^,Y^) (i=l.....n)

of paired random variables with E(X^) = y and E(Y^) = n > the problem 

is to estimate 0 = n/p* In sample surveys the auxiliary population 

mean y may be considered known, or at least estimated from a much larger 

sample. For this latter case, n = 0 y , where 9 is a ratio estimate

based on ( X ^ Y ^ )  (i=l..... n), is often a more precise estimator of

than the less sophisticated estimator ¥. Ratio estimation in scientific 

problems which have no connection with sample surveys also exists in 

many instances.

The application of the jackknife to ratio estimation was pioneered 

by Durbin (1959), in which the behaviour of (1.1.2) with g = 2 in 

the model

Yi * a + BXi + e* (1.5.1.)

was studied. The ej's are i.i.d. with either a normal of gamma distribution. 

For the normal distribution, neglecting terms of 0(n"^), Durbin established



that the jackknife estimator has both smaller bias and smaller variance 

than the simple estimator f/X. In the case of gamma distributions 

with coefficient of variation less than 1/4, the jacl knife reduces 

the bias, increases the variance, but reduces the mean squared error 

in comparison with Y/X. Rao (1965),proved that both the bi/s and variance 

of the jackknife estimator are in fact decreasing functions of g for 

the normal distribution, and therefore showed that g=n would be the 

optimum choice. Rao and Webster (1966),demonstrated through a combination 

of theoretical and numerical work that this also holds true for the 

gamma distribution. Finally, Tin (1965), Rao and Beegle (1967), Rao 

(1969) and Hutchison (1971) compared the jackknife ratio estimator 

with alternative competitors such as Mickey, Hartley and Ross. Tin 

and Beale estimators. Their findings favour the jacKknife and the 

Tin estimators.

1.6 The validity of Tukey's proposal

This section describes general problems in which it has been 

proved that Tukey's proposal i3 indeed valid. Namely, the statistic

(1.1.3) has an approximate t distribution or, for large n, an approximate 

normal distribution.

Consider the standard formulation in whicti the maximum likelihood 

estimate 0 * is a root of the equation

n

0 = I 3logf(X1 ,0)

_________________. ( 1 . 6 . 1)
30

- 9 -

where f(x;0 ) is the density function for the random variables X^



Brillinger (1964X jackknifed the maximum likelihood estimator 6 * of 

9 , by dividing the sample into g groups of size h each and investigated 

the case where g is held fixed and h ■* “ . In this case, Brillinger 

showed that the limiting distribution of the statistic:

- 10 -

g ^ e  - 0 )

f - i -  f (0t -  9)2 } H (1' 6‘ 2>
8 • l-l

is a t distribution with n-1 degrees of frredom. Reeds (1378),considered 

the case where g -*• co , with h=l as n ♦  00 , and showed the asymptotic 

normality of the jackknife version of the consistent root of the maximum 

likelihood equation. Reeds also showed that the jackknife estimator 

of the variance of the asymptotic distribution of the maximum likelihood 

estimator is consistent.

Miller (1964). investigated the case where the original estimator 

is a twice differentiable function of the sample mean. He showed that,

if X^, X 2 1 .....  Xjj are i.i.d. random variables with mean p=0 and variance

0 <o^ < «, and the jackknife estimator of 8=f(p), where f is a real 

function, is 9, then che statistic

N* (0-e) (1.6.3.)

is, as N +  • , asymptotically normally distributed with mean zero and 

variance o2{f(|i)}2. Miller assumed that the first derivative f‘ of 

f was bounded.

The class of statistics which Miller considered is rather limited. 

A broadening of the class was realised by considering statistics of 

the form f(U) where the argument is a U-statistic. Any statistic of 

the form



where the kernel function k(xi».....Xm) is symmetric in its m arguments

and the summation is over all the combinations of m variables ...... X im

out of the n variables X } , .....Xn , is called a U-statistic. Let p

* E {k(X^..... iX®)) and the parameter of interest be f(y), with corresponding

Jackknifc estimator, 0 = f(U). Then. Arvesen (1969) proved that (1.6.2) 

with g*n, has a limiting unit normal distribution as n -» ■» , provided 

that E (k 2 ( X j X ^ , ) j  is finite, and f has a bounded second derivati\e 

near 8 . Arvesen and Schmitz (1970) extended this result to the very

general case of a real-valued function of several U-statistics f(U^...... U r ),

where each U statistic has a different kernel function k^ for the

same set of basic i.i.d. variables X ^ ...... Xg which can now be p-dimensional

vectors. Examples of statistics falling into this framework, include 

ratios, the t-statistic, the Wilcoxon signed-rank statistic and the 

product-moment correlation coefficient.

Miller (1974b), widened the domain of applicability of 

the jackknife to the full linear model* He considered the model:

f “ X B  + e (1.6.5)

where f “ (fj, f 2 ,.... ,fn )', 8 * (0!, 8 3 ......Bp) . e ” («!• e2 ..

and X is an n x p matrix. The error variables e^, i“l, 2 .....n are

assumed to be i.i.d. with zero mean, variance cr2 , fourth moment J14, 

but not necessarily with a normal distribution. It is assumed that 

rank (X) ” p.

Miller estimated 0 * f(B) where f(.) is a smooth function of the regression 

parameters. The customary ad hoc estimator of 0 would be f(B)> where 

B is the least squares estimator (X'X)“1 X f. Applying the jackknife 

in the usual fashion by successively deleting each row of X and f, 

produces 9 .  ̂ * f C 8- 1 ) (i“l,...,n) and also the corresponding pseudo

values. Under the condition x'x/n •* £ , a positive definite matrix,



as n +  *  , Miller proved that the statistic (1.6.2) is asymptotically 

normally distributed, provided < <■ and f(.) has bounded second derivatives 

in a neighbourhood of 8 - This result can be extended to non-linear 

regression problems and will be discussed in Chapter 4.

The validity of the jackknife has also been extended to include 

stochastic processes with stationary, independent increments. Gaver 

and Hoel (1970) Jackknifed the reliability parameter 0=e *T for fixed t >0, 

where X is the intensity parameter of a Poisson process {Yt }. The 

standard estimator for X is X = Y^/T over the interval {0,T}.

The ad hoc estimator 0 = e *T , of 9, is jackknifed by dividing the 

time interval {0,T} into n equal-length sub-intervals. The estimator 

with the ic^ sub-interval removed is

" e • where Af^ a f^j - Y q _ i )j , d “ T/n and

= (f>r - Af<_)/(T-d). As n — , the limit of the jackknife estimator

9 is defined ass

lim » e'Xt {l - ft (el/l - 1 - t /t ) } (1.6.6)

In a subsequent paper, Cray,Watkins and Adams (1972)t restricted the 

stochastic processes {f t } to processes whose path functions are piecewise 

continuous and of bounded variation, the Wierer process component is 

eliminated, and {f c } reducss essentially to a sum of independent Poisson 

processes with different jump s i z e s f a n d  intensity parametersX. Let

0 “ f(A), where E(ft ) = At and \ ~  fj/T. The limit of the jackknife 

estimator 0 , obtained by dividing the interval into n equal length 

sub-intervals, is defined as:

lim 0 * f(A) - [Hy{f(A-x) -f(X) + f f (A)} , (1.6.7)

- 12 -



where is the number of Jumps of size p in |0,T} and f' is the derivative 

of £. The estimator (1.6.7) is asymptotically normally distributed 

v'th mean 0 and variance a2 { f ' ( * ) } 2 /T, as n — ► « , under the set 

of conditions that | = {y} is a Bounded set, f has a bounded second 

derivative near X, and

1  Iy2N -*■ ct“ * var (f^)<™ (1 .6 .8 )

T 1 p

in probability as T . The limit of the jackknife variance estimate 

S 2 /n * v O i  * A ) 2/ {n(n-l)} , as n-»- • , is

lim S 2/n - £n {f( X - *) - f(X)} 2 (1.6.9)

n-» .  p p T

As T +  “ , (1.6.9) multiplied by T converges in probability to ff2 {f'(x)} 2 , 

under the conditions (1 .6 .8 ), brunded and f' continuous near X.

Under these stated conditions, as T ♦  •  , T ^ d i m  8-0)/lim S2 /t�)*5 has 

a �imiting unit norma� distribution.

1.7 Examp�es of �ackknifing fai�ures

There are many counter examp�es where the jackknife does not 

work. A necessary 'ingredient' for the jackknife to work, is that 

the estimator 8n has to have a locally linear quality. Miller (1968), 

defines this linear quality such that, for an unmodified estimator

0n (Xi..... � jj) , it can be expanded in a power series for each observation

where

(i) the second and higher order terms are negligible and 

(ii) the first orKer term is linear in the observation or some 

simple function of X^.

Given these properties for 0n , then the jackknife estimate 8 

can be expanded in a power series so that the large sample theory can 

be applied to establish asymptotic normality with the correct mean 

and variance.



Asymptotic normality is preset.r_ hrough the linear quality of 0n , 

and thi normality is maintained i - jtr Jackkni ’’tig.

In an ear�ier psper, Miller (i.t ), showed that the largest order 

statistic 0n = f(n ) was .-.on-normal, and therefore vnsuitable for jackknifing.

He defined 0n to be the ma x ) f j ,f 2 •••,fn } such that

®n * *(n)

and *» f(n ) if i 4 (n), i.e. (n-1) times (1.7.1)

” ^ ( n - 1 ) if 1 ** (n), i.e. once

where the order statistics f(j_)<ft £ f ( n ) correspond to (f^,

f 2 ...,fn ).

The jackknife psetsdovalues are defined _n the normal manner:

”®i = f (n) if i ♦  (")

“ nf(n ) - (n- ) f , ^ ! )  if i - (n) (1.7.2)

The jackxnife estimator and variance estimator are thus:

- 14 -

• “ I «1 - f (n) +  {(n-l)/n}.(f(n) * f (n_ 1))}

i * l _________
n

and Var(0) = ( n - 1’- * I (S^-S)2 = {(n-�)2 /nf ^ ( n )  * ^ ( n - 1 ) ^  (1.7.3)

The t-^tatistic is:

t - ~ 9) = _n_ r *(n) + {(n-�)/n| {f(n)- f (n. 1) - 6 }

Var (0) H  n-1 ’ ------------ -------- ----------------------

f (n) - *(n-l)

~  ______  ( 1.7 .4 )

^(n' ^ (n- 1)

1 - An
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where ■ 9 - f(n )

^(n) * ^(n-l)

The upper tail of the distribution ol' t from (1.7.4) is not identical 

with the Student t distribution, since >0. Hence, this is not a 

valid case for jackknifiug, since t\e jackknife cannot create asymptotic 

normality.

Mosteller ard Tukey (1968), in unpublished notes by L.E. Moses 

jackknifed the sample medii.i with the interesting result that the jackknife 

estimatorwas the same as the original estimator. That is, if the sample 

is of size n = 2h and the i c^ observation (i=l, 2 ...,h) in the upper 

half of the sample is deleted, the median of the remaining sample will 

be the ht*1 highest random variable. Simi�ar�y, if the ic^ observation 

(i*l, 2 ...,h) in the lower half of the sample is deleted, the median 

will be the (h + 1)c order statistic in the original sample. Hence, 

the jackknife estimator is the sample median since the pseudovalues have 

two different values taking on each t times.

Wainer and Thissen (1975), applied the jackknife to estimating 

Fisher's Z transformation of the corre�ation coefficient between two 

variab�es in the case of non-norma�ity, and found that the jackknife 

estimator increased the bias of the estimate.

For a truncation point prob�em with 9n=f(n ), where the random 

variables are of a finite range, Robson and Whitlock (1984),had to 

modify -he definition of the jackknife because of the particular bias 

expansion and derived 2Y(n )-Y(n . i) as the estimator Instead. TV.ey 

also derived a corresponding confidence limit statement

Pr { f ( n ) +  { O r a l  « ( « )  - » (■ - ! ) ) } >  e l-«

a

(1.7.5)



Fina��y, an area where the jackknife has had very little application, 

is in time-series analysis. This is somewhat ironic since Quenouille 

(1949), originially proposed the Jackknife concept for a time-series 

problem. However, unless the number of deleted groups, g= 2 , then the 

re-'oval of data segments will violate the serially correlated sequence 

of observations. This particular application is discussed later in 

Chapter 5.

1 •8 Application of the lackknife in multivariate analysis

Tests of hypotheses and confidence intervals concerning the correlation 

coefficient p, in bivariate normal populations, are commonly based 

on Fisher's-Z transf orm.-ition of the samp�e corre�ation coefficient, 

tanh'^-r. This statistic is approximately normally distributed with 

mean tanh'^P and variance �/(n-J). The norma� theory test for p*0

based on the tanh'^-r * A  In 4 —

2 1*r

is asymptotica��y va�id for any popu�ation having finite fourth moments. 

Hcwever, if P^O, the asymptotic variance of tanh'^r is not, ir general, 

l/(n-3), unless the underlying distribution is normal. Duncan and 

Layard (1373),used Monte-Carlo simulation to compare the small sample 

performance of the usual normal theory procedures for inference about 

correlation coefficients with that of two asymptotically robust procedures, 

one of which is based on a grouping of the observations and the other 

on the jackknife technique. For differing cases of norma� and five 

non-norma� distribution!, Jackknifing the statistic r, was shown to 

work well in terms of the nominal 957. confidence intervals for the 

correlation coefficient p .

Another area of multivariate analysis in which the jackknife 

has found application is discriminant analysis. The jfickknife method 

has been employed by Lachenbruch and Mickey (1968), to estimate the 

discriminant coefficients and to assess their variability.
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They V r/e estimated the errors of misclassification probabilities as 

follows. First, the discriminant function has been computed from all 

the observations and, second, the it'11 'partial' discriminant functions 

have been found from all but the i ^  random variable. This is the 

tfell-knovn U-method and has been found to produce less biased estimates 

of the error rates. Mosteller and Tukey (1968), have applied the U- 

method for solving the 'Authorship' problem. This is a discriminant analys 

problem created by the Federa�ist papers and the dispute about their 

rea� author. Gray and Schucany (1972),have given a synopsis of the 

Mosteller-Tutcev work.

1.9 An example of an area of jackknife application ! Jackknifing

in biomedical studios

In an interesting paper, Sa�sburg (1971), considered the jackknife 

to test dose-response effects when the rasponses are binomial variates 

and when the underlying p values are near 0 or 1. The evaluation of 

a drug for either toxicity or efficiency often involves a set of ex 

post facto data in the form of percentages of individuals affected 

at different dose levels. For examp�e, 3 out of 50 might complain 

of dizziness at 25mg of drug per day, 2 out of 33 at 30mg per day, 

and 7 out of 84 at 50mg per day. The question to consider is whether 

this is a drug-related effect or a random somatic symptom. Simi�ar�y, 

consider the problem where all traces of a disease-causing organism 

are eliminated in 897. of patients given a low dose, in 100% of patients 

given a higher dose, and 96% given a still higher dose. Does this 

imply that a continuation of the therapy will improve the cure race 

or that there is a small resistant sub-strain of organism that will 

not be affected by any course of drug?

Given a set of doses and percentage responses, a standard procedure 

is to fit a sigmoid curve to the log-dose. Unfortunately, for the 

type of problems described above, this approach will not be very successful



The reasons are as fo��ows:

(i) the hypothesis is being tested that the regression has 'zero 

s�ope', rather than attempting to estimate the regression. The test 

statistic used for fitting a sigmoid to percentage responses is a Student 

t, with two fewer degrees of freedom that the number of doses tested.

In most experiments, the doses are seldom planned in terms of a good 

regression estimating experiment, and the number of doses tried is 

usually only between 3 and 5.

(ii) the observed percentages arc. usually near 0 or 1 , thus making 

the curve fitting very difficult. Nay�or (1964),showed that the usual 

sigmoid regressions did not produce good fits when this was the cise, 

and therefore the validity of the t distribution to test the regression 

coefficient is somewhat dubious. Sa�sburg thus considered the jackknife 

as a method for a test of hypothesis. In particu�ar if

f ifj = response of it*' individual, jc^ dose,

Xj ” j c^ dose

then, the least squares covariance estimator is:

B - £(Xj - x) (fij - y)/n (1.9.1)

The estimate B can be considered as a weighted sum of the vaiiates 

Y jj and fits Arvesen's (1969), criterion for valid ja;kknifing.

Sa�sburg considered a prob�em where an experimenta� drug was 

administered to a �arge group of patients infected with one of 3 organisms. 

The c�inicians were a��owed to choose any of 3 different dose �eve�s 

for a given patient. The drug was known to be effective against 2 

cf the organisms and margina��y effective against the third. The t* 

va�ue for each organism was computed from the pseudova�ues of the jackknifed 

covariance estimator, and the effect of the dose response for the different 

organisms was evaluated.

- 18 -



Sa�sburg extended the prob�em to consider how we�� the t-distribution 

fits for a finite number of observations N, and for what values of 

N the asymptotic resu�ts effective�y ho�d. The resu�ts indicated that, 

for small sample sizes, the procedure is a conservative alpha(a)level 

test with the true sire always less than nominal. Also, the lower a, 

the more conservative the test is.

A Motite Carlo procedure was carried out to evaluate the power 

of the test, under the alternative hypothesis of positive slope. The 

sample distribution functions were compared against the true distribution 

functions with Kolomogorov tests, all of them fitting with a> 0.30.

Although the jackknife produces a test with low power, there is no 

other easily available competitor.

In a subsequent paper by Fraw�ey (1974), he reinvestigated the 

problem considered by Sa� 3burg and found that the jackknife produced 

a hypothesis test, having better power than was previously indicated.

For a �arge number of subjects, the jackknife test was shown to b». 

quite useful. Also, Fraw�ey suggested an a�ternative test for sma��er 

groups of subjects, which was a more powerful procedure under the null 

hypothesis and various alternative hypotheses.

Heltshe and Forrester (1983), applied the jackknife to estimating 

the number of species in a community and also the variance of this 

number. The concspt of diversity has been used as a method for characterising 

the structure of species abundance in a community. Although Zahl (1977)i 

applied the jackknife technique to the estimation of species diversity 

indices, Heltshe and Forrester's paper considers the most fundamenta� 

concept of diversity, namely the number of species or the species richness 

in a community. Cood (1953), and Engen (1978), usea the number of species 

occurring with a frequency of one, to estimate the true number of species, 

based on a random sample of individuals. Their paper proposes an estimation 

procedure under the assumption that the sample of individuals is not 

necessarily random. The methodology is as follows:
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^et y° = S be the number of species found in a poo	 of n quadrats; 

y-i, ia li 2 ...,n be the number of species found in a pool of (n-1 ) quadrats 

with the itfl quadrat removed. The jackknife pseudovalues y^, i=l, 2...,n 

are defined as:

yi *= ny° - (n-l)y' 1 (1.9.2)

Let fj be the number of quadrats containing j 'unique' species with

- 20 *

s s

Y fj=n and £ jfj = k. (1.9.3)

j=o j=o

where k is the total number of unique species in a pool of n quadrats.

Since y”i=y°-j if the i ^  quadrat contains j unique specie#, 

the psoudovalues take on tue following distinct values:

yi = y° +  j(n-l) (1.9.4)

where j is the number of unique species in Quadrat i, Hence,

yi = y° with frequency f^

- p° +  (n-1 ) with frequency f^

= y° +  j(n-l) with frequency fj

The jackknife estimator for the number of species is thus: 

s

s “ 1  £ y i  " i  I f j fy° + J(n-l) } 

n n o

= y° +  (n - 1 ) k 

n

(1.9.5)
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with variance estimate,

A  1 1

Var(S) = 1 I (yi - y )2 

n(n-
) 1

n

s

■ n-
f£ j2 fj - k 2 / n } (1.9.6)

n 0

Monte Carlo simulation techniques were used to evaluate the behaviour 

of the jackknife estimators of species richness. 7or different clumped 

populations, the percentage cover of the two-sided 957. confidence intervals 

was generally high in all cases. In terms of bias, the jackknife estimator 

was better than the original estimator until the sample size increased 

to above 80 to 100 quadrats. At this point, the bias of the j.ickknife 

estimator exceeded che bias of the original estimator but the magnitude 

of this bias was negligible for these ssmple sizes.

In a paper by Frangos and Stone (1984), they considered the jackknife 

as well as other non-parametric methods, to estimate a proportion with 

batches of different sizes. In this case, M randomly drawn batches 

{ (n^, x^)s i=l,...,M } were considered, where n^ is the size of the 

i£h batch and x^ is the number of defectives in it.

Give >e pure binomial estimator 

M

u0 = I Xj^/N (1.9.7)

i-1

where N = £ n i • Gladen (1979),defined the jackknife estimator:

M

Go1 - I wt*i , (1.9.8)

i-1

where = x^/n^ and

(1.9.9)



Frangos and Stone (1984), as well as considering Che alternative 

estimator to u 0 ,

i.e. u ( ■ f P i / M  - p, (1.9.10)

also considered other estimators such as cross-validatory estimators, 

jackknife and bootstrap cross-validatory estimators, a minimum jackknife 

risk estimator and a variation of the 'classical' estimator defined 

by Southward and van Ryzin (1972). The relationship between the jackknife 

and cross-validatory estimators is discussed in Section 1.14.

Monte Carlo simulation techniques were used to evaluate each 

of the estimators. Random samples of (n,x) were generated, where for 

a given value of n, x was binomial (n,p) with p from a beta (a ,°) distribution.

In terms of aean square error, Gladen ' s jackknife estimator, and the 

estimatOLS with a jackknife 'element' did not show an improvement in 

results. Similarly, in terms of robust confidence limits, the jackknife 

estimator produced only modest results for small M. Much better results 

were obtained using the alternative estimator u , and Southwood and 

van Ryzin's (1972) amended classical estimator.

1.10 The infinitesimgl jackknife

The concept of ar infiiiitesimal jackknife estmator (I.J.E.) was 

introduced by L.B.Jaekel in an unpublished Bell Telephone Laboratories 

technical jiemorandum. Although it does not appear to be as practically 

useful as the ordinary jackknife estimator (O.J.E.), it does give a 

deeper insight into the nature of the jackknife procedure and, through 

the concept of the influence function, (Hampel,1974), establishes an 

important connection between the jackknife method and the theory of 

robust estimation (see Section 1.11).

In order to understand the connection between the I.J.E. and 

the theory of robust estimation, it is nscessary to summarise some 

relevant aspects of the latter. Under regularity conditions, an estimator 

9n = T(F),where F is the sample c.d.f., of 9 = T(F) can be expressed in the forms
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T(F) - T(F) +  J'T*(F,y)d(F-F)(y) + OpCn*^) , (1.10.1)

where T ’(F,y) if< a von Mises (1947) derivative defined by

lim T(F + eC) - T(F) = / T ’(F,y)dG(y) (1.10.2)

e-k ) e

The term influence curve has been associated with T*(F,y) by 

Hampel (1974)ibecause it quantifies the degree a change in the mass 

at y will change the estimate.

If T(cF) * T(F) for a�� F and c >0, then

JT*(F,y)dF(y) * 0, 

so that

* i n

T(F) - T(F) +  -  I T'(F,fi) +  0p (n*1*) (1.10.3)

i-1

From the Central Limit theorem, the average of i.i.d. random variables 

in (1.10.3) is asymptotically normally distributed with mean zero and 

variance

I � {t’( F ,y ) } 2dF(y) (1.10.4)

n

If T Is known, an empirical estimator of the asymptotic variance is

JL I { t V F ,f j ) } 2 (1.10.5)

n* i“l

Jaeckel defined the I.J.E. as fo��ows:

Let f^, f 2 «...., fn be i.i.d. random variables with distribution F.

Let the estimator 0n be a function T(f;w) of the observations f = (f^,...,fn )

I - m *

and arbitrary weights w * (wi,...,wn ) . If wj = V n ,  then 0n = T(F), 

where F is the empirica� distribution function. Suppose a�so that 

the function T is s e 1f-norma�izing in the weights so that T(f;cw)



■ '."(f|v) for all c »o.

For the O.J.E., the deleted observation is given a weight zero, 

i.e. 0 ^  - T(Yi,...,Yn i V n ..... 0 ..... V n )  (1.10.6)

In the case of the I.J.E., the deleted observation is given a

n

weight slightly less than the others such that £ W| does not necessarily

i»l

equal 1 .

i.e. 8 . t (t) » T(Yi,...,Yn j l^ n ..... */n - e ......V n )  (l.lu.7)

The I.J.E. for the asymptotic variance of 9n , is defined to be:

*1  " W  I n 2 ( 1 .1 0.8 )

If e * V n ,  then (1.10.4) equates with the O.J.E.

Assume that T(y;w) is differentiable with respect to the weights.

Let • 3T(y;w) and * 3^T(y;w) (1.10.9)

3wi

be the first and second derivatives, respectively, evaluated at y =f

and w “ ( V n .....V n ) ' .  Given the self-normalising condition on the

weights in T, this implies that £ Dj ■ 0.

Consider the expansion

-  24 -
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6 .i(e) = 0n - eD^ + —  e Dj^..., ( 1 .1 0.10)
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then , it follows that

" *2

S2 (0) * 11m S^Ce) » i  I D. (1.10.11)

n e-K) „ n2 i-1

However, since Dj equals T'(F,fi), then (1.10.11) equals (1.10.5) 

Therefore, the I.J.E. of the variance estimate (1.10.11) provides an 

estimate of the asymptotic variance (1.10.4)

For the O.J.E.,

A * 11 A A

9n - 0 - (n-l) ( V n  I 0-i - en ) (1.10.13)

i»l

estimates the bias of 0n .

Also, if

b(e) * W  {l/n Ie.t (e) - 0n } (1.10.14)

n e 2

then, (1.10.15) equals (1.10.14) when t = l/n. From the power series 

expansion (1 .1 0 .1 0), it follows that:

n
b(0) - lim b(e) - i. I D tl (1.10.15)

e -*• 0 2n i»l

where the I.J.E. is defined to be 0(0) = 0n - b(0)

In his paper, Jaekel proves, under general conditions, that for 

estimators which satisfy (1.10.3), S2(o) and nb(0) converge to the correct 

asymptotic constants as n->- <• . Jaeke aso shows that under the same 

conditions, the O.J.E. behaves correctly asymptotically.

Let 0n ■ T » -  £ (Xt - X )2 (1.10.16)

n i-1
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and denote 5 = M  (Xj,.....Xn i wj^,.......w n ) = £

w i

Then,

M(F) = JxdF(x) « X 

and M(F) - JxdF(x) * E(X)

Moreover,

T ( X j ..... . Xn ; w lt W 2 , ■ • • •, w n ) - y w  {X }

T(F) - J(x - M(F))2 dF(x) - 9n 

T(F) - J(x - M(F))2 dF(X) » var(X)

Differentiating T with respect to the weights w k , gives

_3_M

3»k ~ J w i  ‘ ^ ^  ’ < [ w i>;

31 = _ i _  j ^ W i ^ C X t  - M)(-3̂ )  + (Xk - M)2 | - _ J _

Since J wj^X^ = M^wj^, the differential equation simplifies

I I  « _ L _  {(Xk -M)2-T } 

3w k I wt

Hence

\  ” f£u I xk “ Xk> wk * 1/n> J ■ 1....  "

- (Xk - X) - i  I (Xi-X)2

The variance estimate of 0n is

V(0) • -  I (Xk -X )2 

n k

(1.10.17)

(1. 10.13)

(1.10.19)

][wi(Xi-M)2

tOi

( 1 . 10 . 20 )
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Differentiating again leads toi

32T . 1 {2(Xk -M) (- *M- ) - - T - i - v j  f(Xk-M)2-T }

— J T Z T  3«k 3Vk ( Zw i>3 w k  I  Wi

Sincc 3M = __ L .(Xk-M),
3wk Iw i

then

Qkk * i£� _  I xk " xk , w k " -  J “ 1 ..... "

3 w 2 I n *

k

» -4(Xk - X )2 + I  [ (Xt - X )2 

n i

Replacing n by (n-1) in the denominator, gives

b(0) - 1 I Q . » - 1 I (Xt-3C)2 

2n(n-l) k n(n-l) i

Hence, the T.J.E. is defined to be

en - b(0) » (-• + — nTij) I (Xi-S)2 - y — y y  I (Xi-X - (1.10.21)

where the estimate is known to be exactly unbias-c

1.11 The 1~ckknife method and the theory of ^ioo* . on

Let x p  X2 .....  xn be n i.i.d. randor. \ ..ria: *■ he distrit ton

P ( X ^ < x )  * F((x-0)/<r), when: the functional ora " ,ot exactly 

known. Let Tn be an estimator of P. Accorc g tt :un- 972), the 

estimator Tn is robust if it has one of tne llov ng p ■rertiasi

(i) A high efficiency relative to the mple mean t * 11 F.

(ii) A high efficiency over a strateg ly selectee nite set

{ Fi ] of distribution functions the norma ogistic, double

exponential, Cauchy and rectangi distribute

(iii) A small asymptotic variance over some neightbnurhood of a distribution 

function, in particular of the normal



(iv) The distribution of the estimator shou�d change �itt�e under 

arbitrary sma�� variations of the under�ying distribution F. 

(Hampel,1971,1974).

In a re�ative�y narrow sense, 'robustness' can S» interpreted 

as signifying insensitivity against sma�� deviations from the assumptions. 

Distributional robustness means insensitivity of the estimator if the 

shape of the true underlying distribution deviates slightly from the 

assumed model (usually the normal distribution). Robust statistics 

are not non-parametric statistics because, in the theory of robustness. 

there exists an ideal parametric model which ;.s evaluated, to make 

sure that the statistical methods work well in the model and in some 

neighbourhood of it. In an analogy with computers, robust estimators 

are a 'third generation' of statistics after parametric and non-parametric 

o n e s .

For a qualitative definition of robustness, the reader is referred 

to Hampel (1971). Huber (1972)>has distinguished three kinds of robust 

estimators which he named M, L and R estimators respectively. If Tn 

is an M, L or R estimator of 8 = T(F), then Huber (1972), found that 

n^(Tn -T(F)) is asymptotically normal with mean zero and asymptotic 

varia n c e :

<j2 ( f ) - /{ IC(x,F,T) | 2 F(dx), (1.11.1)

where the functioii IC(x,F,T) is the first order influence function 

of the functional T at the distribution F (Hampel,1974). The influence 

function IC(x,F,T) is an important characteristic of a robust estimate 

and a more detailed examination of it Will be given in the next section.
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1.12 Relationship between the jackknife statistic and the influence

- 29 -

function

Hampel's influence function (1974), and its relation with the 

jackknife statistic provides an important bridge between the jackknife 

method and '"he theory of robust estimation. The influence function, 

which is a very useful heuristic tool in robust statistics, is defined

as

1C _(x) = lim T {<l-e)F + e«x } - T(F) (1.12.1) 

e- * 0 ----------------e-----------

where <x is the distribution nich p�aces point mass 1 at the va�ue 

of an observation, and T(F) is the test statistic.

This function is a measure of the inf�uence an additiona� observation 

of va�ue x, has on the test statistic T(F).

If T is sufficient�y regu�ar, then it can be linearised near 

F in terms of the inf�uence function. Using a Taylor series expansioni

T(G) - T(F) +  J�C_ _(x)d(G-F)(x) +  ... (1.12.2)

i i *

where G is a distribution function.

Given J IC (x)dF = 0, by substituting the empirical distribution 

1 > *

Fn for G into (1.12.2), leads to 

J K  (T(Fn ) - T(F)) - n / I C T F (x)dPn +...

« 1 I IC_ _ (X i ) +  ... (1.12.3

jn I 1»r

Based on the central limit theore.r, the leading term on the right hand 

side of (1.12.3) is asymptotically normal with mean 0, if the x^ are 

independent with common distribution F. Assuming the other terms are 

asymptotically negligible, than JK (T(Fn ) - T(F)) is asymptotica��y 

norma� with mean 0 and variance:



V(F,T) - /{ICr T (x)} 2 dF(x)
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(1.12.4)

The Inf�uence function has tvo main use*. First�y, it is a tool 

which can be used to assess the relative influence of individual observations

towards the valus of an estimator or test statistic.

Consider an observation which is an outlier and unbounded. Hampel 

denoted its maximum absolute value:

� *  ” sup | ICT p (x) | 

x 1

and termed the value ' gross error sensitivity'.

If M  is a set of cumulative distribution functions, consider 

the 'gross error' model:

P 2 (F0 ) = { F / F * ( 1 - O F 0 +  CH, H E M }

Then, from Huber (1981),

T(F) - T(F0 ) = e f�C_ _ (x)dH(x) 

»*o

Hence,

b ^ e )  - sup | T(F) - T(F0 )|* ey * (1.12.5)

Second�y, since the influence function allows a guess of the 

explicit formula (1.12.4) for the asymptotic variance, then a simple 

and heuristic assessment of the asymptotic properties of an estimator 

can be made.

The 'sensitivity curve', (Tukey 1971), and the jackknife are 

two finite sample versions of the influence function. For the jackknife 

method, if F is rep�aced by Fn and c by ^ ( n - 1 )  in (1.12.1), then



fcT.r(xi) * T(^ I F° • A V  ~ T(F°)

- 1

(n-l)
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(n-1) I Tn ( x i ( , x^) “ T^^^(x||. *.. i *i- 1 ■ * i + l » « " i  xn ^  

6 t - Tn . ' (1.12.6

where 8 j - nTn - (n-l) Tn _|, is the i1*1 jackknife pseudovalue. Then, 

the jackknife estimate of 8 = T(F),9, is defined ass

0 = ^ ® i  - I(ICT i y (xt ) +  Tn )

* Tn +  I IC r <*i>

1-1 •

n (1.12.7)

to the first order, where 0 is the Jackknife estimate of 8 =T(F) and IC^ p(x^) 

is the finite sample version of the influence function, which is t iven by (1 .1 2 .6 ).

Frangos (1984) ca�cu�ated the inf�uence function of the samp�e mean 

as fo��ows :

Let T(F) = j xdF = be the samp�e mean Tn = _1 £ x^

n i

then the inf�uence function: Fo��owing Frangos (1984), the influence function 

of the sample mean, is derived as follows :

IC (x) - lim xdfa-EjF+tSy} - JxdF

c*o — ---------;------------

- �im (1-e) /xdF + ex - JxdF 

e-*0 ~

x - / xdF

x - T(F)

Fina��y, it should be noted that when the influence function 

c’--s not depend smoothly on F, the jackknife produces poor results, 

w ith usually a very inaccurate variance estimate. An example of this 

phenomenon is the »edian, which is based on a small sample of ordered
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statistics.

1.13 Relationship between the jackknife and bootstrap Methods

The bootstrap is another member of the family of resampling techniques, 

which provide estimators of bias and variance for an extremely wide 

class of statistics. The bootstrap method was developed by B.Efron 

in a series of papers (see Efron, 1979a, 1979b, 1981a, 1981b, 1982) 

and is described in detail in Chapter 2. Efron (1979a), attempted to 

explain the Jackknife in terms of the bootstrap by showing that the 

jackknife can be thought of as a linear expansion method for approximating 

the bootstrap. First�y, Efron considered the one-sample situation 

in which a random sample of sire n is observed from a completely unspecified 

probability distribution F.

x i * *i X i ~ ind F i - 1,2,.. .,n (1.13.1)

where X * (X^, X 2 .....  X„) and x » (x^, X 2 ,..., xn ) denote the random

sample and its observed realisation, respectively. The bootstrap method 

is described as follows :

Step 1 s Construct the sample probability distribution F, putting 

mass V n  at each point xj, X2 ..... xn

Step 2 : Draw a random sample of si-e n from F, say

X *  » x*, X* ~ indF 1 * 1 ,  2,... ,n

Call this the bootstrap sample, X* * (X*, x £ .....  X ^ ) ,

x* = (x*, x j 1•••, *n) • The values of X* are randomly selected

with replacement from the set { xj, X 2 .....  xn J .

As a point of comparison, the jackknife can be thought of 

as drawing samples of size n -1 without replacement.



Step 3 : Approximate the sampling distribution of R(X,F) by the bootstrap 

distribution of
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R* = R (X * ,F ) (1.13.2)

$

where the distribution of R* is induced by the random mechanism

(1.13.1) with F held fixed at its observed value. The difficult 

part of the bootstrap procedure is to actually calculate 

the bootstrap distribution. One method of calculation is 

to use a Taylor series expansion to obtain the approximate 

mean and variance of the bootstrap distribution of R*.

Let N* = i^{X* = XjJ be the number of times x^ is selected in 

the bootstrap sampling procedure. Define � * * N*/n, such that

under the bootstrap sampling procudere, where I is the identity matrix

and e = ( 1 , 1 ...., 1)

(Notations such as E* and Cov* indicate probability calculations relating 

to the bootstrap distribution of X*, with x and F fixed)

The abbreviated notation

(1.13.3)

Using the properties of the multinomial distribution, P* has mean vector

\
and covariance matrix

E+ P* = e/n , Cov* P* “ I/n 2 - e'e/n3 . (1.13.4)

R(P*) = R(X*,F) (1.13.5)



for the bootstrap rea�isation of R corresponding to P* , can then be 

used. Hence, expanding R(P*) in a Tay�or series about the va�ue P* * e/n 

gives an approximation of the bootstrap distribution of R(X*,F)
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i.e. R(P ) = R(e/n) +  (P*-e/n)U + hj(P*-e/n).V(P*-e/n) , 

whare

I

3R (P * ) and V

9P

i

P*=e/n

32r (P*) 

3p * ap*

(1.13.6)

(1.13.7)

P*=e/n

The restriction £P* = 1 has been ignored in (1.13.6) and (1.13.7).

This computationa� convenience is justified by extending the definition 

of R(P*) to all vectors P* having non-negative components, at least 

one positive, by the homogenous extension

(1.13.8)

n

I P*

i 1

The homogeneity of (1.13.8) �eads to!

eUa 0, eV = -nU* and e V e’ = 0 (1.13.9)

An approximation to the bootstrap expectation is obtained from (1.13.4) 

and (1.13.6)

i.e. E* R(P*) - R(e/n) + 4  trace v{I /n 2 * ee/n3 }

R(e/n) + 1 V 

I n

(1.13.10)



where

n

V - I V li/n (1.13.11)

1-1

An zpproximation for the bootstrap variance is obtained by ignoring 

the last term in (1.13.6)
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i.e. Var* R(P*) » u' ( ^ n 2 ’ ee/n3 ) U * ^  u 2 /n2 (1.13.12)

It can be shown that the jackknife expressions for bias and variance 

are essentia��y the bootstrap resu�ts obtained in (1.13.10) and (1.13.12). 

Based on the usual jackknife theory, consider R(X,F) = 0(F) - 0(F), 

the difference between the non-parametric estimator of some parameter 

0(F) and 0(F) itse�f. R(e/n) * 0(F) - 0(F) - 0, since R(X*,F) = 0(F*) - 

6 (F), with F* being the empirica� distribution of the bootstrap samp�e. 

Then, (1.13.10) becomes E* {0(F*) - 0(F)} - (1/2n)V, implying that 

Ep {0(F) - 0(F)} = (�/2n)^. Simi�ar�y, (1.13.12) becomes 

Var* j0(F*) - 0(F)} » £U 2/n2 , implying Varp0(F) = £ u 2 /n2 . Also the 

approximations :

n

Biasp0(F) * _1_ v anc* Var_0(F) * V U ?/n 2 (1.13.13)

2n i=l 1

exactly agree with those given by Jaekel's infinitesimal jackknife 

as defined in Section 1.10 (see Jaeke�,1972 and Miller, ]97&a).

Efron (1979b', demonstrated the conjecture that the jackknife is 

a linear approximation for the bootstrap, by a series of examples including 

the variance of the sample mean, error rates in a linear discriminant 

analysis, ratio estimation and estimating regression parameters.
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1. 14 Relationship betveen the jackknife and cross-validation methods

Stone (1974), applied a generalised form of a 'cross-validation' 

criterion to the choice and assessment of statistical prediction.

Basically, this involves the partitioning of the data sample into two 

sub-samples, the choice of a statistical predictor, including any necessary 

estimation on one subsample and then, the assessment of its performance 

by measuring its prediction against the other sub-sample. The cross- 

validation criterion usually corresponds to the division of the sample 

(size n) into a 'construction' sub-sample (size n - 1) and a 'validation' 

sub-sample (size 1) in all (n) possible ways. Stone deve�oped the 

genera� framework and definitions to this resamp�ing method as fo��ows!

Consider a data sample S, of measurements (x,y) on each of n items, 

where x and y are quite general, such that

Consider a new item for which only the x-value is known. It is then 

required to predict the y-va�ue by y, which is a function of x and 

s. The starting point is a 'prescription' (class of predictors)

element of choice in (1.14.2) lies in allowing S to determine a . The 

method of cross-va�idatory choice of a and the method of cross-va�idatory 

assessment of this choice is deve�oped in the fo��owing stepss

S “ { <*i.yi) I i- 1 .••••!> }
(1.14.1)

{y(x , a,S)

where the dependence of y(x,a,S) on x and S is prescribed. The

(1.14.2)

(i) A 'naive choice' of a is the value a°(S)e that minimises

i-L

(1.14.3)
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where L {y.yl is a selected loss function of y as a predictor 

of the actual value y. For examp�e, L { y ,y } = (y-y)2 would correspond

to a least squares fitting procedure.

(ii) The 'naive assessment of this naive choice' would employ L(a°(S)) 

over the n items in S of L { y,y(x; a°(S),S)}

(iii) The 'cross-va�idatory assessment of the naive choice' wou�d 

emp�oy

n

c. M I  I L { yi.y(*ii a0(sNi),ssi)j (1.14.4)

n i“ 1

(v) The 'cross validatory assessment of this cross-validatory choice' 

employs

where S s  ̂ denotes the samp�e S with it" item omitted and a°(SNi) 

is the naive choice of a which minimises

\i

I
(1.14.5)

where j ^  denotes the summation omitting the i^h item

(iv) The 'cross-va:idatory choice of a is the va�ue a+ (S)e

minimises

n

C ( a ) 4 = = ^  j. L {y i iy(x^ , a , S si)} (1.14.6)

n

C + 1 =  i  I L jyi,y(xi i a+ (SN i ), Sx i � 

n i-1

(1.14.7)



where a + ( S ^ )  is the cross-va�idatory choice of “ which minimises

C N�(o) M  [ L {yj ,y(xj , a , S N�j)� (1.14.8)

where S ^ j  denotes the samp�e with the i c^ and jt*1 iten>s omitted.

Two examp�es of a cross-va�idatory estimator are given by Frangos 

and Stone (1984), in estimating a proportion with batches of different 

sizes, as described in Section 1.9

i.e. consider the interva� of va�ues of the parameter of interest, y, 

defined by (jiQ.p^), wh»re y0 and are the pure-binomial and alternative 

estimator respectively. An estimator by cross-validatory choice of 

the index “ is obtained in the prescription.
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{ p(a) “ afl0 +  (l-o) pi 0< a < l} (1.14.9)

Let H o N i i denote the va�ues taken by p 0 , pi respectively when

the i6" batch datum (n^.x^) is omitted. Two different choices of a (

<*+ and are considered that minimises the cross-validatory assessment 

criteria.

I { P � - . p o M - U - « > ; i u l 2 • In i�p �*“Ho\i"^ 1_t»^Hl\i)2 (1.14.10)

respectively. These choices give, when applied with the whole data 

set, the unweighted cross-validatory estimator.

p+ - <i+ p 0 + (1- a+ )pi (1.14.11)

and the weighted cross-validatory estimator

(1. 14. 12)



Ceisser ( 1 9 7 l), described the cross-validatory approach as of 

'predictive jackknife type'. The cross-validation and jackknife methods 

both employ the device of omission of item? one or more at a time.

However, the component of Jackknifing that sharply distinguishes it 

from cross-validation is its manufacture of pseudovalues for the reduction 

of bias. Jackknifing the cross-validatory statistic is possible, although 

there is only one example of this, as yet, in the literature. This 

refers again to Frangos and Stone (1984), whers the cross-validatory 

estimators (1.14.11) and (1.14.12) were Jackknifed, in the 'proportion

i

w ith batches of different sires' example.

1•13 Improvements in the �ackknife method

Hinkley (1977b), considered a modified Student t-approximation

for the standardised jackknife estimator. If n=gh, where n is the

sample size, g is the number of groups and h is the number of omissions,

then Hinkley showed that, for small h, the jackknife variance estimate

2
 ̂ could behave quite unlike a multiple of Xg.j* In particu�ar,

the nominal g-1 degrees of freedom associated with V might lead

n i n

to inaccurate Student t approximations. Hinkely therefore considered

a simple modification to the degrees of freedom, as follows:

2

First�y, approximate the distribution on nV by ,/f. Then, estimate

* w r n , n t

f from the data and use f as a replacement for g -1 as tie

degrees of freedom in the Student t approximation for jackknife confidence

�imits. In order to estimate f, Hinkley considered the function gV

n i n

where

.  8

V . ■ { g(g-l) } I ( 6 r 0)2 (1.15.1)

n,h ' J

is the variance estimate of the Jackknife estimator 9, to to •’he sample

A

variance of g numbers 9j, and used the formula for the jackknife variance

of a sample variance to estimate the variance of gV^ This leads

to an estimate of var(V ), wher*

n i n

-  39 -
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K

2

(1.15.2)

g ( g * 1 )(g*2 ) 2
(g -2 ) 2

Hinkley then derived the estimator for f,

(1.15.3)

Although this approach is a rather crude use of double-jackknifing, 

the value fn>s is very easy to compute and should lend itself to the 

many Monte Carlo type simulations which can be used to evaluate the 

jackknife procedure. An evaluation of this approach with regard to 

jackknifing the 'availability'estimator is given in Chapter 3.

In a �ater paper, Hinkley and Wei (1984), considered improvements 

of jackknife confidence limits methods, by applying an Edgeworth expansion 

to the standard error, which was computed by a jackknife method.

Using the author's notation, they firstly defines

where Tyj refers to the estimate of 8 calculated from the sample with 

Xj omitted. The jackknife standard error S for an estimator T, is then 

defined byi

Ij « (n-1 ) (T-T/j) (j-�...... n) (1. ’.5.4)

S - {][ (X j — I )2 / jn(n-�) }}4 (1.15.5)

w ith I " n *£ Ij

Then, using the influence function It (x ,F) of T(F)

V(F) - var { It ( X , D }  , is estimated by V(F) * [{ ItCXj.F)

2

n

Hence, the I.J.E. for the standard error of T is

(1.15.6)
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