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Abstract

Resolving the trade-offs between suspension travel, ride comfort, road holding,

vehicle handling and power consumptions is the primary challenge in designing

Active-Vehicle-Suspension-Systems (AVSS). Controller tuning with global

optimization techniques is proposed to realise the best compromise between these

conflicting criteria. Optimization methods adapted include

Controlled-Random-Search (CRS), Differential-Evolution (DE), Genetic-Algorithm

(GA), Particle-Swarm-Optimization (PSO) and Pattern-Search (PS). Quarter-car

and full-car nonlinear AVSS models that incorporate electrohydraulic actuator

dynamics are designed. Two control schemes are proposed for this investigation.

The first is the conventional Proportional-Integral-Derivative (PID) control, which

is applied in a multi-loop architecture to stabilise the actuator and manipulate the

primary control variables. Global optimization-based tuning achieved enhanced

responses in each aspect of PID-based AVSS performance and a better resolve in

conflicting criteria, with DE performing the best. The full-car PID-based AVSS

was analysed for DE as well as modified variants of the PSO and CRS. These

modified methods surpassed its predecessors with a better performance index and

this was anticipated as they were augmented to permit for efficient exploration of

the search space with enhanced flexibility in the algorithms. However, DE still

maintained the best outcome in this aspect. The second method is indirect

adaptive dynamic-neural-network-based-feedback-linearization (DNNFBL), where

neural networks were trained with optimization algorithms and later feedback

linearization control was applied to it. PSO generated the most desirable results,

followed by DE. The remaining approaches exhibited significantly weaker results

for this control method. Such outcomes were accredited to the nature of the DE

and PSO algorithms and their superior search characteristics as well as the nature

of the problem, which now had more variables. The adaptive nature and ability to

cancel system nonlinearities saw the full-car PSO-based DNNFBL controller

outperform its PID counterpart. It achieved a better resolve between performance

criteria, minimal chatter, superior parameter sensitivity, and improved suspension

travel, roll acceleration and control force response.
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Scope and Contribution

• Implementation of global optimization methods including novel ground

breaking ideas to select controller gains with the aim of improving suspension

performance and resolving conflicting design trade-offs.

• Applying heurestic global optimizaition approaches to train neural networks

as opposed to the function based methods that are commonly used.

• Conducting research on complex systems such as quarter-car and full-car

nonlinear electrohydraulic active vehicle suspension systems.

• Learning the dynamics of the 11 Degrees-of-Freedom coupled nonlinear

system through the use of dynamic neural networks.

• Developing an intelligent controller that performs feedback linearization of

the trained dynamic neural network which in its entirety aims to cancel the

effect of nonlinear dynamics with the system.

• Generation of a hybrid linear and intelligent controller which is tuned using

heurestic optimization approahces to augment system performance.
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1 Introduction

1.1 Background

Vehicle suspension systems are a mechanical arrangement of dampers, springs and

actuators that are placed between the wheel and the chassis with the objective

of adding value to vehicles by improving ride comfort, suspension travel, vehicle

handling, road holding and power consumption [Gillespie (1992)]. Enhanced ride

comfort requires that inertial accelerations are kept below the threshold of human

discomfort [International Organization for Standardization 2631 (2003)]. Lowering

of the suspension travel is paramount so that it does not permanently deform or

damage any vehicle components and exceed the physical constraints of the vehicle.

Suspension systems reduce the roll and pitch accelerations and subsequently min-

imise the forces that adversely affect vehicle handling characteristics. They achieve

improved road holding by absorbing and dissipating the forces exerted on the wheel,

which is an important factor in wheel grip.

However, these tasks are in constant conflict with each other and a compromise is

needed to manage these trade-offs. These conflicts are depicted in Figure 1.1 where

a stiff suspension with minimal play is required to maintain adequate road holding

and vehicle handling properties, whereas a soft and flexible suspension with greater

allowance is desired to obtain improved ride comfort [Pedro et al. (2013a)]. Hence,

the challenge in designing a vehicle suspension system is resolving these trade-offs

for a given vehicle.

1.2 Types of Suspension Systems

Three types of suspension systems are currently employed to manage these afore-

mentioned trade-offs. These include Passive-Vehicle-Suspension-Systems (PVSS),
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Figure 1.1: Trade-offs associated with suspension systems [Pedro et al. (2013a)]

Semi-Active-Vehicle-Suspension-Systems (SAVSS) and Active-Vehicle-Suspension-

Systems (AVSS).

A PVSS comprises of a spring and damper assembly positioned between the chassis

and wheel. Springs are designed to absorb and release forces transmitted from the

road, whilst the dampers lower the rate at which these forces are transmitted to the

chassis. Such a setup improves ride comfort and dampens out the system vibrations

in a sinusoidal manner once the disturbance is removed. It has the potential ability

to inevitably subdue any force that is transmitted to the vehicle. However, it takes

considerably long to dampen out and produce a large number of oscillations once

the disturbance is removed. It also tends to push the suspension travel to its limits

with large peaks and root-mean-square (RMS) values; and its ride comfort proper-

ties usually fall into the ”discomfort” range when the vehicle is subjected to severe

but realistic disturbances [Gillespie (1992)].

SAVSS attempts to improve system performance by placing a controlled damper

into the system. This device adjusts the damping ratio of the system in real time
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and this offers the advantage of improving transient performance and settling time.

However, it cannot absorb the forces transmitted from the road and hence it does

not considerably improve upon ride comfort [Metered et al. (2010), Zapateiro et al.

(2009)].

AVSS introduces a controlled actuator between the chassis and the wheel that pro-

vides a balancing force which attempts to cancel out any dynamics that were ini-

tiated by external disturbances or noise. The magnitude of this actuator force is

regulated based on improving selected performance criteria. Figure 1.1 illustrates

this concept where a selected performance criteria is observed and fed back to the

controller which computes the necessary force required to dampen out the effect

of an external disturbance. As a result, it possesses the strength of bringing the

system to its desired setpoint significantly quicker after disturbances are removed.

Additionally, it cancels out the forces that are transmitted to the vehicle and hence

improves ride comfort. Furthermore, it may be manipulated in a specified manner to

accomplish various design objectives. Optimization of AVSS may also be performed

with the intent of finding the best compromise between the performance trade-offs

associated with it for a specific application.

1.3 Challenges Associated with AVSS

In theory, the application of AVSS is promising, but designing an effective AVSS

presents several challenges. This is due to the nonlinear nature of AVSS and com-

plexities that arise from actuator dynamics. The major challenges in AVSS design

include [Pedro and Dahunsi (2011)]:

1. Parameter uncertainties.

2. Limitations in power supply.

3. Actuator dynamics.

4. Degradation in system components due to chattering of actuators.

5. Rigorous tuning to acquire a suitable trade-off between conflicting performance

criteria.
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These challenges demand a well-designed linear, nonlinear or intelligent controller.

A number of such controllers have been proposed in the literature by various authors.

1.4 Literature Review

The advent of soft computing, microprocessors and sensors has introduced a vast

magnitude of both numerical and experimental studies on various AVSS control

methodologies that can manage the challenges associated with it. These investiga-

tions are centred on specifically selected mathematical models that address certain

design specifications and are aimed at finding a better compromise between various

AVSS trade-offs. Control techniques employed up to date include linear, nonlinear,

intelligent and optimal control policies, each of which possesses positive outcomes

and shortfalls. The selection process of appropriate controllers may be synthesized

into the following steps:

1. Choice of a mathematical model that can adequately capture the specified

dynamics of the plant.

2. Selection of realistic design specifications.

3. Analyses of current AVSS controllers and associated gaps in literature.

4. Proposed controller architecture.

1.4.1 Classification of Mathematical Models

There are effectively three types of mathematical models used in AVSS design. They

are quarter-car, half-car and full-car models; which aim to capture the dynamics of

a single wheel, two wheels and four wheels respectively as shown in Figures 1.2 to

1.4 respectively. x1 and x2 are the vertical displacements of the chassis and the

wheel respectively, ks and bs are the stiffness and damping of the suspension system

respectively, and kt denotes the stiffness of the tyre. zc and θ denote the verti-

cal displacement and angular rotation of the chassis respectively, ztf and ztr are

the front and rear tyre vertical displacements, Fksr, Fksl, Fbsr, Fbsl, are the spring

and damper force contributions of the respective suspension systems, and Fktr, Fktl

are the corresponding spring and damping force load experienced within the tyre.

Quarter-car models provide information on the vertical motion of the chassis and

wheel and hence they provide information on the heave-related ride comfort, road
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Figure 1.2: Graphical representation of the quarter-car suspension system model

Figure 1.3: Illustration of the half-car configuration [Ekoru and Pedro (2013)]
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Figure 1.4: Schematic of the full-car model [Pedro et al. (2013a)]

holding and suspension deflection. The simple quarter-car models as opposed to

its complex and realistic full-car counterpart has been considerably used in AVSS

research, and this makes it a suitable platform to compare various control methods.

Thus, a quarter-car study will be conducted in this investigation. Moreover, ex-

tensive analyses of quarter-car models are paramount when designing independent

suspensions as such systems are effectively a combination of 4 quarter-car systems

present at each wheel. Passenger seat dynamics may be also added to these models

to enhance the realism of these studies [Spentzas and Kanarachos (2002)].

Quarter-car suspension system models do not capture lateral and longitudinal dy-

namics of the vehicle. Hence, its handling and sway-based ride comfort cannot

be analysed from quarter-car suspension models. Half-car suspension models over-

come this problem by extending the quarter-car framework into two coupled wheels.

Thus, they are capable of capturing the pitch dynamics of the vehicle. Full-car mod-

els extend the quarter-car concept even further by interlacing four wheels such that

information pertaining to both the roll and pitch dynamic of the vehicle may be

obtained. Therefore, they can successfully acquire relatively more realistic data on

the vehicle handling, suspension travel and ride comfort [Sapinski and Rosol (2008),

Eski and Yildirim (2009)].

The coupling and large number of output parameters of the half-car and full-car

models add further complexity to the mathematical relations and this adds new

challenges in formulating a suitable control law and increases the multiplicity of
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the optimization algorithm. However, these models are more representative of the

actual vehicle suspension system dynamics compared to quarter-car models and con-

trol schemes based on the more complex full-car model will be investigated in this

research project as well.

With regards to the modelling of the suspension components, spring and damper

force contributions as well as the tyre dynamics contain both linear and nonlin-

ear elements. Considerable research has been performed on linear systems as they

provide a basic overview on the resulting performance of the vehicle. However, inclu-

sion of nonlinearities is necessary to acquire a better understanding of these systems

since springs and dampers are nonlinear by nature, contain hysteresis qualities, and

are subject to degradation and deformation. Therefore, a nonlinear model will be

utilised in this research [Pedro et al. (2011)].

Another fundamental issue pertaining to AVSS modelling is the inclusion of actuator

dynamics. The vast majority of literature pertaining to AVSS tends to neglect

actuator dynamics as it introduces nonlinearities, instabilities and complexities that

are fairly cumbersome to deal with [Ekoru and Pedro (2013)]. In certain publications

the actuator dynamics was partially ignored by replacing it with a time delay [Du

and Zhang (2007)]. However, a complete mathematical description is necessary if it

is desired to fully capture the realistic dynamics of the AVSS plant. Actuators that

are currently employed in AVSS include:

1. Electrohydraulic: An electromechanical device such as a motor regulates the

valve motion of the hydraulic cylinder, which in turn alters the flow and con-

sequently affects the pressure and hence the force applied by the actuator onto

the suspension system.

2. Electromagnetic: An electromechanical device adjusts the current flowing

through the magnetic coils, which subsequently manipulates the magnetic force

applied by an electromagnet against the suspension system.

3. Electromechanical: An electromechanical device forces a solid mechanical ob-

ject to translate and consequently apply a restoring force to the suspension

system.

Electrohydraulic suspensions are relatively sensitive in comparison with other ac-

tuators as a small change in input voltage produces a considerably large actuator
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force, and this is desired in AVSS as it will reduce power consumption and im-

prove precision. Moreover, considerable research has been dedicated to hydraulic

actuator dynamics, which provides basis for comparison [Pedro and Dahunsi (2011),

Aldair and Wang (2011)]. Hence, an electrohydraulic actuator will be utilised in

this project.

1.4.2 Selection of Design Specifications

In order to evaluate the performance of an AVSS, the key performance criteria must

be established and their design specifications and tolerances must be defined. The

core factors that affect the performance of a vehicle suspension system are quantified

as follows [Gillespie (1992)]:

1. Ride comfort: Body-heave acceleration.

2. Suspension travel: Degree of suspension extension and compression.

3. Road holding: Dynamic tyre load and tyre deflection.

4. Vehicle handling: Pitch and roll accelerations.

One of the methods in which the International Organization for Standardization

2631 (2003) quantifies ride comfort is by taking its root-mean-squared (RMS) value

for body-heave acceleration for a specific time span as shown in Figure 1.5. The

resulting RMS value is qualitatively described in terms of comfort for specific ranges

of RMS values listed within Figure 1.5. For satisfactory ride comfort, the Interna-

tional Organization for Standardization 2631 (2003) indicates that the RMS value

for body-heave, pitch and roll accelerations fall within the the ”Fairly Uncomfort-

able” or ”Not Uncomfortable” ranges described in Figure 1.5. Failure to fall within

the ”A little uncomfortable” range for the duration of the disturbance may cause

serious harm to the human anatomy and may tend limit to the driver’s concentration.

The degree of suspension travel should lie within the physical constraints of the sus-

pension, and it should not cause the suspension system to damage and degrade. The

tyre deflection should be kept close to zero as larger tyre deflections can cause the

tyre to lift off the ground, which consequently reduces road holding. Adequate ve-

hicle handling necessitates minimal pitch and roll accelerations. These accelerations

tend to transfer the weight unevenly across the vehicle wheels and this consequently

increases under-steer and over-steer, which results in poor handling.
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Figure 1.5: Graph summarising ride comfort as per ISO standards (Griffin (2007))

1.4.3 Analysis of Current AVSS Controllers in Literature and As-

sociated Shortcomings

The primary objective of an AVSS is to manipulate the dynamics of the system in

real time with the intent of achieving the desired performance. AVSS are closed-loop

systems where feedback is relayed from the plant in the form of its controlled vari-

able. Thereafter, the controllers alter the input based on the deviation between the

actual value of the controlled variable and its corresponding setpoint. The structure

of an AVSS control system is shown in Figure 1.6, where y is the controlled variable

of the system and yd is the desired input signal. The deviation between the set-

point and regulated variable is created from internal system noise, or disturbances

induced upon the system. This may be due to the road profile or change in vehicle

parameters such as mass, which occurs due to fuel and passengers. The controller

may be linear, nonlinear or intelligent and the choice depends on the nature of the

system as well as design specifications.

This control system has been setup up as either a Single-Input-Single-Output (SISO)

or Multi-Input-Multi-Output (MIMO) configuration, where the input to the system

is the control input in the form of a voltage to the actuator or a control force to
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Figure 1.6: Basic AVSS control structure

Figure 1.7: Schematic of multi-loop AVSS controller

the system without actuator dynamics. The output of the system may include sus-

pension travel, body acceleration or road holding terms, depending on which output

holds the greatest significance and best suits the design problem. In certain cases

only suspension travel output was used and controller gains were tuned based on a

performance index that included all other major system outputs. [Ekoru and Pedro

(2013)]. This is an alternative method that involves all major system outputs while

maintaining simplicity. This approach has been largely used for the additional rea-

son that suspension travel is the major factor that is used to model the system.

Other investigations included multiple regulated system outputs to address all con-

flicting criteria together in real time [Amani et al. (2004), Turaky and Ackay (2011),

Tuan et al. (2001)]. However, this adds complexity to the system in both the

mathematical model and to intuitive reasoning in understanding the sensitivity of

controller gains. Additionally, when dealing with nonlinear coupled systems, the

conflicting performance criteria are increasingly rigorous to deal with and monitor.

Furthermore, most of such control methods including H2, H∞ and linear matrix in-

equalities are linear control methods, and have proven fairly complex to tune when

applied to nonlinear systems [Lin and Huang (2004)].

As previously discussed in section 1.4.1, actuators tend to destabilise the system

and an inner loop that regulates the actuator force Fa to ensure that the desired

actuator force is adequately tracked (see Figure 1.7) may be added to ensure that

the system is not destabilized [Ekoru and Pedro (2013)]. The controller gains are
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traditionally altered through a rigorous manual tuning process or by optimal rou-

tines which have received considerable attention since the advent of soft computing

[Crews et al. (2011)]. These controllers may be further divided into 3 categories:

linear, nonlinear and intelligent. Linear controllers formulate a control signal based

on the control error and system states, whereas nonlinear controllers generate a

control signal based on the mathematical relations, and the intelligent controller

derive the control signal based on artificial neural networks, intuitive knowledge and

mathematical relationships [Pedro et al. (2013a)].

1.4.3.1 Linear Control

Linear control methods such as Proportional-Integral-Derivative (PID) [Ekoru and

Pedro (2013), Wai et al. (2011), Crews et al. (2011), Chiou et al. (2012), and Ra-

jeswari and Lakshmi (2010)]; optimal linear control laws (LQR and LQG) [Pedro

and Mgwenya (2004), He and McPhee (2005), Chen et al. (2011), and Kloiber et al.

(2010)]; robust linear control methods (H∞ and H2) approaches [Fallah et al. (2009),

Ryu et al. (2008), Du and Zhang (2007), and Poussot-Vassal et al. (2006)] have been

incorporated in AVSS.

PID-based controllers are the most widely used in industry as they offer simple solu-

tions to linear control systems, where system overshoot and rise time may be altered

by adjusting the gains. However, their applicability to nonlinear systems is limited

as nonlinearities limit system performance robustness against parameter variations.

As a result, adaptive linear controllers are often required to overcome these obstacles.

LQG and LQR utilise the Ricatti and Jacobi-Bellman and Guassian formulations

to derive an optimal policy that forces the system to reach its goal while incurring

the lowest cost in specific performance criteria [Chen et al. (2011)]. Hence, they

are suitable for resolving the inherent AVSS trade-offs if applied correctly [Hrovat

(1997)]. The success of these optimal control techniques on linear systems has seen

the development of reinforced variants of LQG and LQR controllers [Marzbanrad

et al. (2004), Lu et al. (2007), Corona et al. (2004)]. However, these aforementioned

formulations are derived on the assumption that the system is linear and thus their

applicability breaks down once nonlinearities are introduced. H∞ and H2 controllers

compute the control law based on the state with the largest control error and the

root-mean-squared control error of all the states respectively. These controllers did

prove to be rather sensitive and attaining a stable system proved rather challenging
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[Yamashita et al. (1994)]. Furthermore, when dealing with a coupled multi-degree

of freedom system; additional decoupling procedures had to be introduced to de-

sign the control system [Hayakawa et al. (1999)]. A hybrid H∞ and linear matrix

inequality strategy was proposed by Chen and Guo. (2005), and Tuan et al. (2001)

to augment and improve the performance of conventional H∞ controllers. This

method offered the advantage of addressing all system states individually as well as

the root-mean-squared control error of all system states. This level of accountability

effectively achieved a better resolve between the various conflicting performance cri-

teria of AVSS. In each of these investigations, the system was approximated as linear

and hence the realism and applicability of such control methods is highly limited

unless the system is linearized.

Nevertheless, extensive research into the applications of linear control schemes to

AVSS has been investigated as they are simple by nature and they tend to provide

reasonably acceptable results. In the majority of these cases, the actuator dynamics

are often neglected. Such a model is not accurate as AVSS are highly nonlinear by

nature and are often destabilised by the inclusion of actuator dynamics [Ekoru and

Pedro (2013)].

The simplicity and success of PID controllers in enhancing AVSS performance have

made them suitable candidates for optimization techniques which incorporate cost

functions to resolve conflicting performance criteria. Hence, extensive research has

been conducted to optimise PID-controlled AVSS using evolutionary algorithms such

as Genetic-Algorithms (GA), Particle-Swarm-Optimization (PSO) and Differential-

Evolution (DE). Most of these algorithms are heuristic procedures, which have been

inspired by nature and do not require any function based methods to find minima

[Crews et al. (2011)]. Moreover, evolutionary algorithms have been applied to select

controller gains to augment the performance of AVSS which were based on LQG

and impedance control [Fateh and Zirkohi (2011) and Lu et al. (2007)]. In addi-

tion, the success of these methods has been extensively examined and analysed for

nonlinear systems and it has been found that these optimization approaches are

indeed applicable to Multi-Input-Multi-Output (MIMO) systems. Moreover, global

optimization algorithms such as those of evolutionary algorithms have proven useful

in computing problem variables and dealing with parameter changes for nonlinear

systems [Menon et al. (2008)].
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Wai et al. (2011), Crews et al. (2011), Chiou et al. (2012), and Rajeswari and Lak-

shmi (2010) implemented evolutionary algorithm-based optimization techniques to

select PID gains for single loop AVSS. They managed to improve upon the AVSS

trade-offs better than conventional tuning methods. However, these authors only

considered linear components and did not account for actuator dynamics. Fur-

thermore, the cost functions of these algorithms did not address all the trade-offs

associated with AVSS but rather focused only on some compromises. In relation to

optimal LQG design, He and McPhee (2005), Chen et al. (2011), and Kloiber et al.

(2010) utilised GA to select LQG parameters whilst searching for the optimal policy.

This method proved successful with an improvement to the conventional approach,

but these investigations also lacked realism as linear elements were only used and

actuator dynamics were not considered.

Apart from AVSS, heuristic optimization algorithms have been applied to select

controller gains for servo-hydraulic actuators. Sarkar et al. (2013) and Kim and Lee

(2006) implemented GA to select PID gains for tracking control of an electrohy-

draulic system, where the performance index was aimed at minimizing the integral

tracking error. Results proved to be superior to the non-optimized PID controllers

with a 50% improvement in system performance. Elbayomy et al. (2008) proposed

a GA-based PID control to improve system response to a step input. Aly (2011)

extended this concept for a tracking problem as well. They both used the inte-

gral control error as the performance index and attained favourable results with the

GA, which performed better than its non-optimized counterpart. Wu et al. (2012)

developed a modified variant of GA to select controller gains of a PID-based elec-

trohydraulic system to manage a step input. The performance index in this case

addressed both power consumption, control error and the rate of change of the con-

trol error. Both the GA and its modified variant attained reasonable results with the

modified GA performing better. It may be concluded from these research studies

that global optimization methods performed reasonably well in computing controller

gains for both active vehicle suspension systems without actuator dynamics as well

nonlinear electrohydraulic systems with varying performance indices. Thus, they

do possess the potential to simultaneously improve system performance as well as

resolve conflicting trade-offs challenge in nonlinear AVSS with electrohydraulic ac-

tuator dynamics.
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In light of the preceding discussion, the following conclusions may be drawn: firstly

PID have been used extensively in linear AVSS and will thus serve as a good bench-

mark for comparison. Secondly, AVSS is a multi-objective design process since there

are several trade-offs associated with AVSS that need to be resolved. Hence in order

to better resolve AVSS trade-offs, the cost function needs to be refined to include

all the AVSS compromises: ride comfort, road holding, vehicle handling, suspension

travel, and power consumption. Thirdly, no application of global optimization-based

PID controller tuning to nonlinear AVSS that includes actuator dynamics could be

found. It is therefore concluded that this area has not been investigated thoroughly

or not investigated at all. This is therefore a gap in literature that needs to be

explored.

Additionally, several other optimization algorithms such as Pattern-Search (PS) and

Controlled-Random-Search (CRS) have never been applied to AVSS, but have shown

promising results for optimization of various control systems. Kolda et al. (2003)

in particular proved that pattern search is an effective routine in solving problem

variables for nonlinear system. ElMadany et al. (1990) incorporated PS to find the

optimal gain matrix for a semi-active suspension.

Price (1983) first introduced the concept of CRS and applied them to select opti-

mal design parameters for various electrical systems. Convergence characteristics of

CRS has been discussed by Ali (1994), who argued that optimization through CRS

is an effective approach in dealing with complex nonlinear and coupled systems. Ali

et al. (1997) performed CRS-based optimization to control a nonlinear continuously

stirred tank reactor (CSTR), whilst Jeżowski et al.(2005) implemented CRS to lo-

cate the minimum of a nonlinear multimodal problem. These findings suggest that

CRS is an adequate optimization algorithm that can be applied to nonlinear prob-

lems such as AVSS. This research will be much complex than previous AVSS linear

controllers and other nonlinear control systems as it will include actuator dynamics

and hence possess more states and will therefore contain a greater degree of coupling

which cannot be handled effectively by linear control laws.

A shortfall of linear controls in general is that they are non-adaptive by nature, and

this makes them unreliable and sensitive when dealing with nonlinear systems which

contain a vast degree of parameter variations. Sensitivity to parameter variations

is a major design challenge in AVSS design as vehicles are subjected to variations
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in mass since passengers and fuel alter the weight of the vehicle substantially. Fur-

thermore, tyres lose air pressure, components degrade over time, and different road

disturbances are encountered. Hence an adaptive intelligent controller is required to

make the AVSS increasingly robust under these conditions.

1.4.3.2 Nonlinear Control

Nonlinear and intelligent controllers are adaptive by nature and this gives them the

inherent qualities to deal with nonlinearities and subsequently produce a control

system with a satisfactory sensitivity to parameter uncertainties variations. These

controllers limit the effects of system nonlinearities and this makes it simpler to

resolve the AVSS trade-offs and enhance system response.

AVSS have been designed based on nonlinear control policies such as backstepping,

Sliding-Mode-Control (SLMC) and Feedback-Linearization (FBL) [Yagiz and Sak-

man (2005), Shi et al. (2010), Huang et al. (2000), Lin and Huang (2004), Sam and

Hudha (2006), Koshkouei and Burnham (2008), Yahaya et al. (2004), Chamseddine

et al. (2006), Yagiz and Hacioglu (2008)]. In contrast to linear controllers, nonlinear

control methods generate an input that aims to remove or significantly reduce the

effects of nonlinearities in the system. As a result, nonlinear induced issues such as

sensitivity to parameter variation and instability are significantly resolved. However,

these methods contain added issues such as complexity and instability.

FBL and backstepping control laws are structured on lie algebra and recursion re-

spectively. In order for them to be applied, the system should be input-output

linearizable; and secondly zero dynamics are created which may be unstable, which

in such cases may be impossible to resolve. When backstepping control is applied

to nonlinear systems with a degree greater than 3 and which contain actuator dy-

namics, there is a large degree of coupling between states and complex interlaced

backstepping is required to generate a suitable control law, which in some cases may

be impossible to compute [Kaddissi et al. (2009)]. Furthermore, the dynamics of the

system needs to be fully understood as the control law is based entirely on the math-

ematical model of the system. In reality, the system cannot be modelled perfectly

due to lack of experimental data and the degradation of components. Nevertheless,

these control laws have been used in AVSS design.
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Shi et al. (2010) incorporated SLMC to a nonlinear hydro-pneumatic AVSS model

which was linearized using FBL. Their results showed significant improvements in

both ride comfort and road holding as compared to the PVSS case. There was also

an improved level of parameter sensitivity, where system response was adequate for

a variety of road disturbances. Minsta et al. (2012) applied FBL to improve tracking

control of an electrohydraulic servo system with pressure uncertainty. These results

highlight the fact that nonlinear control greatly reduces the effects of parameter un-

certainties and variations. Yagiz and Sakman (2005) and Chamseddine et al. (2006)

conducted SLMC on a nonlinear full-car system and were able to achieve superior

responses in each performance facet as compared to linear control laws. However,

in these studies, a large degree of chattering was reported and this was attributed

to the sudden change of control surfaces that is often done in SLMC.

Huang et al. (2000) and Lin and Huang (2004) controlled a half-car magnetic AVSS

using an adaptive backstepping control scheme. Their model additionally provided

a satisfactory bandwidth that was able to reject a large range of road disturbances,

which drastically improved the operating range of this suspension system as com-

pared to an AVSS that was controlled using linear control schemes.

Yagiz and Hacioglu (2008) utilised a backstepping controller for a full-car suspension

system. The ride comfort of the vehicle improved significantly as compared to pas-

sive suspension systems for a variety of input disturbances. This again highlights

the fact that nonlinear controllers improves the system’s sensitivity to parameter

variations. However, the actuator forces were significantly high at low input fre-

quencies. These results show that there is a need for an optimal control policy that

can reduce the high power consumption of currently employed controllers.

The major drawback of nonlinear control policies is twofold. Firstly, deriving the

control law ensuring stability is challenging and not always possible. This is be-

cause non-trivial zero dynamics may arise when the system output is forced to zero

and the system may possess positive real roots causing the system to diverge. This

adds further complications in selecting controller gains. Secondly, the mathematical

model of the system and each component must be fully understood. However, this

may not be possible due to the lack of experimental data and intuitive knowledge.

Hence, a control law that can easily bypass these limitations is often desired. In-

telligent control laws have been suggested and successfully implemented to resolve
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these issues.

1.4.3.3 Intelligent Control

Intelligent control laws such as Fuzzy-Logic-Control (FLC) and neural network-based

control (NN) may be utilised to solve the problems associated with both linear and

nonlinear controllers and have been applied to AVSS [Tang et al. (2009), Eski and

Yildirim (2009), Alfi and Fateh (2011), Aldair and Wang (2011), Guclu and Gulez

(2008), Pedro and Dahunsi (2011), Pedro et al. (2011) , Zapateiro et al. (2009),

Yildirim (2004), Lin et al. (2009), Al-Holou et al. (2002), Rajeswari and Lakshmi

(2010), Pekgökgöz et al. (2010), Moon and Kwon (1998), and Chiou et al. (2012)].

Both these policies emulate the human brains ability to control highly nonlinear

processes.

FLC uses intuitive reasoning to derive an adaptive control law that regulates nonlin-

ear systems more effectively. However, sufficient intuitive knowledge is required to

formulate such laws and these may be limited by lack of experimental data [Behera

and Kar (2009)]. However, due to a vast amount of experimental and numeri-

cal modelling, sufficient insight into AVSS has been established. Hence intuitive

reasoning-based control such as FLC has been applied to AVSS.

In relation to FLC, there has been an improvement in system performance as com-

pared to passive suspension systems and PID-controlled AVSS [Lin et al. (2009)].

It has achieved an improvement in ride comfort and road holding for a range of

disturbances compared to linear controllers, and this highlights the ability of FLC

to deal with different operating conditions.

FLC has been used in hybrid control schemes to attain improved performance. It

has been combined with neural networks to improve its robustness. Lian (2013) and

Aldair and Wang (2011) proposed a hybrid neuro-fuzzzy controller. They realised

that the control structure performs better than a PID-based control architecture,

which makes it more suitable for active suspension systems. Furthermore, consid-

erable knowledge of the mathematical model is not fully required since the neural

networks can easily be trained to learn the system dynamics. Al-Holou et al. (2002)

and Yagiz et al. (2008) utilised a hybrid SLMC and FLC which generated improved
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performance as compared to a conventional SLMC. Moreover the chattering that

occurs due to the switching of control surfaces was substantially reduced.

In order to resolve the issues of nonlinear control schemes with regards to adequate

modelling, coupling and zero dynamics, a neural network is trained to learn the

dynamics of the system and nonlinear control techniques are subsequently employed

on theses neural networks to formulate a suitable control law. Neural networks pos-

sess two major advantages: firstly, it has the ability to both accurately predict any

nonlinear system provided there are enough inputs and neurons; and secondly, its

simplicity allows for various nonlinear control laws to be formulated based upon it

without considerable complexity and issues associated with conventional nonlinear

control. However, the coupling of higher-order systems causes the identification pro-

cess to become increasingly cumbersome and rigorous [Garces et al. (2003)].

There are two types of neural networks: static and dynamic. Static networks are

feedforward neural networks whose neurons are modelled using algebraic equations

and those of DNN models contain feedback or recurrent elements and are modelled

using differential or difference equations.

With regards to the application of neural network-based control to AVSS, intelligent

controllers using multilayer neural networks in system identification and control have

improved the vehicle’s response as compared to the PVSS. Tang et al. (2009) inves-

tigated the performance of a half-car AVSS that was controlled using a multilayer

feedforward neural network and GA. There was an improvement in the passenger’s

vertical displacement response as compared to that of the PVSS.

In terms of training a multilayer neural network through particle swarm optimiza-

tion for an AVSS, Alfi and Fateh (2011) showed that this method performs better

than the conventional neural network training algorithms with quicker convergence

speeds, improved accuracy, and had no premature convergence problem.

Guclu and Gulez (2010), and Aldair and Wang (2011) utilised network inversion to

control a full-car nonlinear suspension system with actuator dynamics. The neural

network controllers for each case displayed superior performance as compared to the

PVSS. Eski and Yildirim (2009) also used an adaptive multilayer neural network to
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create a robust PID controller for a full-car AVSS model. Their model displayed

high identification and tracking capabilities as compared to offline supervised learn-

ing algorithms.

Pedro et al. (2011) designed a direct adaptive neural network-based FBL controller

for nonlinear quarter-car AVSS using radial basis function neural network (RBFNN).

However, the model did not contain any actuator dynamics and ignored zero dynam-

ics that may exist as a result of FBL. The ride comfort and road holding improved as

compared to the PVSS and PID-based AVSS. Additionally, the power consumption

(or actuation force) was larger for the direct-adaptive neural network case. Pedro

and Dahunsi (2011) later utilised a multilayer feedforward neural network to per-

form direct adaptive control of a servo-hydraulic nonlinear AVSS using FBL. They

considered subsequent zero dynamics and their resulting system displayed superior

performance as compared to the case where linear controllers were used. The fact

that they were able to ensure stability of the zero dynamics for such a system infers

that FBL control is possible for both quater-car and full-car AVSS.

Due to the success of FLC and neural network-based control in AVSS, they have

been augmented with optimization algorithms to improve system performance. Ra-

jeswari and Lakshmi (2010), Pekgökgöz et al. (2010), Moon and Kwon (1998), and

Chiou et al. (2012) used evolutionary algorithms such as PSO and GA to derive the

membership functions of a FLC. This method was successful in improving a partic-

ular performance criterion such as body-heave acceleration with larger success than

a PID controlled system. However, the cost function of these investigations was cen-

tred on one objective only such as ride comfort or suspension travel, whereas AVSS is

a multi-objective design problem as it contains various trade-offs and compromises.

As previously mentioned, this research project will improve upon this weakness by

including all the AVSS trade-offs in the objective function of these optimization al-

gorithms. In relation to electrohydraulic systems, Wang et al. (2011) applied GA to

determine FLC controller gains for a hydraulic excavator which addressed a complex

performance index containing control error, fuel consumption, excavator power out-

put and motor power output. The conflicting trade-offs between these performance

criteria were better resolved than what was attained through manual tuning. Such

results infer that evolutionary algorithms do indeed have the potential to find a

compromise between conflicting performance criteria of a typical vehicle suspension

system. Yao et al. (2013) made use of PSO to both learn the system dynamics of the

plant and to tune the resulting neuro controller of an electrohydraulic system. They
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reported positive results which highlight than heuristic global optimization methods

are effective tools for tuning of intelligent controllers.

With regards to DNN models, the advantage of using differential equations in con-

trast to algebraic equations is that the neuron would then represent a band-pass

filter. This will improve its performance since it can now filter out a range of un-

wanted road disturbances. It also has the advantage of modelling a large range

of nonlinear characteristics such as oscillations, chaos and outliers. The problem

with static neural networks is that it cannot account for outliers whereas a DNN is

able to do so since it filters out the signals that create these outliers. The feedback

associated with DNN models allows it to store information in memory. Moreover,

it is mathematically simpler to formulate nonlinear control laws such as FBL on a

DNN as opposed to conventional static neural networks. Furthermore, stability can

be guaranteed much easier as compared with static neural networks [Garces et al.

(2003), Nφrgaard et al. (2000), Gupta et al. (2003)].

Research into the effectiveness of DNN models in AVSS applications is limited. This

is because the less complex static neural networks have performed adequately well

for a wide range of vehicles. On the other hand, DNN models have been incorpo-

rated into various control systems, which will be discussed in the remainder of this

subsection. Hence, in order to fill this gap in AVSS design, a DNN will be considered

for this investigation.

With regards to the use of neural networks that included recurrent elements for

AVSS, Yildirim (2004) designed a recurrent neural controller for a linear quarter-car

bus suspension without any actuator dynamics. Zapateiro et al. (2009) performed

neural network-based backstepping control on a semi-active suspension that utilised

a magnetorheological (MR) damper. Metered et al. (2010) performed neural net-

work inversion control of a MR-based semi-active suspension that was learnt using a

recurrent neural network. However, these recurrent neural networks were structured

using algebraic equations as opposed to differential equations used in conventional

DNNs.

In terms of the applications of DNN models in control system applications, a pos-

itive view has been established. Research has been done on a class of nonlinear

systems. These include continuously stirred tank reactors (CSTR), flexible robotic

20



manipulators and evaporator systems. Becerikli et al. (2003) presented a DNN to

identify and control a CSTR using a feedback controller. The system displayed ad-

equate performance in the presence of a wide range of disturbances. The start-up

and regulation problems of CSTR were resolved better with this configuration as

compared to the currently employed control schemes for CSTR tanks.

Al Seyab and Cao (2008) created a DNN to identify a double CSTR plant. They

thereafter controlled the system using a robust controller. The identification and

system performance were compared to other model predictive control techniques. It

was concluded that the DNN decreased the training time and improved the accuracy

in the identification process as compared to conventional model predictive control

configurations. Li (2011) successfully identified a distillation plant with DNN mod-

els and applied it in conjunction with a nonlinear H∞ controller to augment system

performance.

Nanayakkara et al. (2002) utilised a DNN to identify an evaporator. The network was

trained using an evolutionary algorithm. This network performance was compared

to static networks architectures. The results were then verified using experimental

data. It was concluded that the DNN needed less nodes and inputs to accurately

predict the plant.

Tian and Collins (2004) introduced a DNN to identify a flexible manipulator sys-

tem that was controlled using FLC. The neural network was able to identify the

plant to a large degree of accuracy and it was also able to track a given trajec-

tory. Their results showed improved performance as compared to conventional con-

trollers. Rodriguez and Yu. (2012) applied an adaptive DNN-based control scheme

for a two-link robotic manipulator and achieve improved performance compared to

currently employed controllers. Garces et al. (2003) utilised DNN-based FBL con-

troller (DNNFBL) for a variety of control systems. In each case, the network was

trained using genetic algorithm and the response of the system displayed superior

results as compared to conventional control architectures. Additionally they noticed

that this control law can be implemented with linear control such as PID to improve

system response. Wang and Chien (2012) developed a generic DNN to be applied

with iterative learning control for a class of nonlinear systems.
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It is worth mentioning that the complexity of the models used in the DNN-based

control methods were fairly simple with a few number of system states. On the

other hand, DNN-based control of complex nonlinear coupled systems with a large

number of system states such as those of the quarter-car and full-car models have

never been attempted before. Thus, it will be worth investigating how these DNN

models cope with such systems.

In light of the foregoing discussion, an intelligent controller that can deal with this in-

herent lack of intuitive and experimental knowledge is required to sufficiently model

the AVSS plant. Artificial-Neural Networks (ANN) have been suggested by many

authors as they can be trained to learn the dynamics of any nonlinear plant. Fur-

thermore, they can be incorporated with nonlinear control strategies to negate the

effects of nonlinearities and they may be further augmented with optimized lin-

ear controllers to achieve superior performance [Pedro and Dahunsi (2011), Garces

et al. (2003)]. DNN models which apply differential equations in contrast to alge-

braic equations in particular have not been applied to the AVSS. Thus, in order to

add novelty to this project, a DNN modelled on differential equations is proposed. It

is also argued that the simple structure of DNN allows it to be easily linearized using

FBL with the goal of attaining superior performance [Garces et al. (2003), Gupta

et al. (2003)]. Hence, DNNFBL would be an innovative and potentially excellent

control methodology for AVSS.

In conclusion, a hybrid control strategy involving PID and DNNFBL could be an

effective tool in AVSS design. Furthermore, optimization algorithms may be applied

to this control law with a cost function including ride comfort, road holding, vehicle

handling, suspension travel, and power consumption to best resolve the inherent

compromises of AVSS.

1.4.4 Gaps in Literature

The gaps in the current literature that need to be adressed may be summarized as

follows:

1. A vast amount of research concerning FBL and neural networks is limited

to quarter-car AVSS and insufficient research has been conducted on full-car

models.
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2. Nonlinearities and actuator dynamics are often neglected.

3. Optimization-based control laws for systems which included nonlinear AVSS

with actuator dynamics have not been considered.

4. Currently employed optimal control techniques do not simultaneously address

all the conflicting performance criteria of vehicle suspension systems.

5. Nonlinear electrohydraulic AVSS quarter-car and full-car models have not been

identified using DNN techniques.

6. FBL has not been applied with DNN for vehicle suspension systems in partic-

ular.

1.5 Proposed Controller Architecture

In this research study, examination of both quarter-car and full-car models will be

conducted. The case of the quarter-car is a single-input single-output (SISO) system

where the input will be the control voltage supplied to the actuator and suspension

travel will be selected as the output or controlled variable. For the full-car model,

the control system is a multi-input multi-output (MIMO) system shown in Figure

1.8. The controlled variables y from the plant will be suspension travel output at

each wheel. The setpoints of the system outputs yd will be set to zero and will

address a regulation problem.

An indirect adaptive intelligent control will be implemented for the AVSS. A Dynamic-

Neural-Network (DNN) will be used to identify the dynamics of the plant. The DNN

will be trained using evolutionary algorithms. Thereafter, FBL will be performed on

the DNN model in order to obtain a feedback law that will remove all nonlinearities

in the system. The deviation between the outputs and their setpoints will be passed

through a multi variable PID controller. The controllers will be tuned manually or

through optimization methods which operate by minimising a performance index J

with the objective of achieving a compromise between road holding, ride comfort,

vehicle handling and power consumption. In the case of PID-based optimization,

the DNN and FBL controller are bypassed and optimization is conducted on the

PID controllers only.
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Figure 1.8: Proposed network architecture

1.6 Research Objectives

In accordance with the gaps in current AVSS design, the following objectives are

proposed to resolve these issues:

1. Implement an optimal PID controller for the AVSS to improve upon the most

widely used PID-based AVSS with the intention of resolving its trade-offs.

2. Successfully identify the nonlinear system using DNN techniques in order to

predict the response of the system without the need of any mathematical

modelling.

3. Develop an intelligent controller that performs FBL on the identified system

with the purpose of removing system nonlinearities and system instability.

4. Augment the neural network-based FBL controller with a PID controller with

the intent of achieving improved performance.

5. Optimise the hybrid PID and DNNFBL controller in order to better resolve

AVSS trade-offs.

6. Test the designed intelligent controller for sensitivity to parameter variations

and uncertainties.
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1.7 Design Assumptions

The constraints imposed due to the schedule of the project as well as the lack of

experimental data dictate that several assumptions be made to form a compromise

with these margins. Such assumptions include:

1. The wheel and chassis are rigid structures.

2. The chassis and wheel assembly has a uniform mass distribution.

3. Ideal components are used and the connections between joints are ideal.

4. Vibrations that are induced by the engine and other components apart from

the suspension system are ignored.

5. The nonlinear dynamics of the tyre are neglected.

1.8 Research Questions

Based upon the objectives of this project, the following research questions will be

thoroughly investigated:

1. Can global optimization-based controller tuning for PID and DNNFBL con-

trollers improve vehicle suspension performance criteria.

2. What is the most effective global optimization method to be used for controller

tuning.

3. Are DNN models capable of learning the nonlinear quarter-car and full-car

suspension dynamics.

4. How does the optimized PID-based and hybrid intelligent DNN controllers

perform relative to one another.

1.9 Research Strategy and Methodology

This project can be broken down into several tasks which include literature review,

system modelling, controller design, simulation and the dissertation writing. The

following tasks will be carried out:
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1. The mathematical modelling will be performed for a quarter-car and full-car

system. The model will include nonlinear elements and consider electrohy-

draulic actuator dynamics.

2. The performance specifications, disturbance inputs and the model parameters

will be selected based on real life scenarios.

3. A linear PID controller will be tuned using global optimization algorithms

with the aim of improving the trade-offs that is associated with the AVSS.

4. An indirect adaptive optimal intelligent controller will then be designed to

improve upon the linear controller. The plant will be identified using a DNN

approach.

5. FBL will then be employed to linearize the dynamics of the system.

6. Linear control techniques such as PID control will be incorporated to control

the system.

7. The resulting controller will be tuned using an evolutionary algorithm.

8. Numerical simulation will be carried out in Matlab/Simulink.

9. The performance of the intelligent controller will be compared to the optimized

PID controller.

10. A dissertation will be drawn up.

Figure 1.9 shows the methodology to be followed in this investigation.

1.10 Contributions to Knowledge

The envisaged contributions to knowledge from this research are as follows:

1. Optimization of PID control scheme for a electrohydraulic nonlinear AVSS

with the aim of attaining optimal trade-offs amongst the conflicting perfor-

mance criteria.

2. Learning of the dynamics of the full-car electrohydraulic AVSS using DNN.

3. Training of the DNN using global optimization algorithms.

4. Application of an indirect adaptive DNN approach based on FBL controller.
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Figure 1.9: Road map to be followed in this research investigation
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5. Augmentation of the proposed intelligent controller with PID control to en-

hance performance

6. Tuning controller gains with various global optimization techniques.

1.11 Layout of Dissertation

This research study begins with a detailed mathematical description of the quarter-

car and full-car suspension models as well as input disturbances. Thereafter, the

benchmark PID controller is presented and subsequently global optimization tech-

niques are applied to improve the AVSS performance. Detailed development and

analyses of an intelligent controller for the quarter-car and full-car systems are then

presented and compared to the PID benchmark. The outcomes of this study are

then presented with a short list of recommendations for future work.
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2 System Description and Mathematical

Modelling

2.1 Description of the Quarter-Car Model

A schematic of the quarter-car model used in this investigation is presented in Figure

2.1. The mass of the wheel assembly is mu and that of the chassis is ms. These two

components are coupled through the suspension elements (spring ks and damper bs)

which in essence aim to add value to the vehicle by assisting to improve ride com-

fort, road holding and vehicle handling. In the case of AVSS, an actuator is placed

in parallel with the suspension elements and supplies an actuator force Fa which

supports the passive suspension components in fulfilling their tasks. The flexural

nature of the wheel as well as its interaction with the road is captured by coupling

the wheel to the road by means of a spring with stiffness kt.

With regards to the co-ordinate system, several state variables are appointed with

the intent of capturing the heave kinematics of the arrangement. Hence, a reference

frame is created at the wheel, chassis and road surface with xw, xc and w denoting

the vertical movement of the wheel, vertical movement of the chassis and the road

profile respectively. The associated velocity and accelerations of these bodies are

represented as ẋ and ẍ respectively. The governing equations of the system are

derived by applying Newton’s laws to both the wheel and chassis. The free-body-

diagrams illustrating the forces acting on these bodies are shown in Figures 2.2 and

2.3 respectively, where Fks and Fbs are the respective spring and damping forces

exerted by the suspension, Fw is the force produced by the disturbance and Fa is

the force supplied by the hydraulic actuator. Application of Newton’s second law

to both these components yields the following equations:

msẍc = Fks + Fbs − Fa (2.1)

muẍw = −Fks − Fbs + Fa + Fw (2.2)
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Figure 2.1: Graphical representation of the quarter-car configuration [Pedro et al.

(2011)]

Figure 2.2: Free-body-diagram describing the forces acting on the chassis

Figure 2.3: Free-body-diagram describing the forces acting on the chassis
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Through close intuitive deduction of the free body diagrams, several conclusions

regarding the mechanics of the system may be drawn. Firstly, it is evident that a

road disturbance such as bump would drive the tyre into compression and conse-

quently force the wheel to deflect vertically upward. Thereafter, the wheel would

force against the suspension systems and force its elements into compression as well

and hence move the chassis upward. In order to counteract these dynamics and

bring the system to equilibrium, the actuator produces a force that opposes the

motion produced by the suspension rattle. According to this reasoning, it is appar-

ent that the wheel and suspension elements compress such that w > xw and xw > xc.

Both the spring and damping forces are functions of the suspension travel (xw −
xc) and suspension travel velocity (ẋw − ẋc) respectively. In order to account for

nonlinearities, the suspension components are set to have linear, symmetric and

nonlinear elements which are fundamentally a function of the suspension travel and

its velocity and are described as follows [Pedro and Dahunsi (2011)]:

Fs = kls(xw − xc) + knls (xw − xc)3 (2.3)

Fb = bls(ẋw − ẋc) + bnls
√
|(ẋw − ẋc|sgn(ẋw − ẋc)− bsyms |(ẋw − ẋc| (2.4)

where kls and bls are the linear spring stiffness and linear damping constant of the

suspension system, knls and bnls are the corresponding nonlinear spring stiffness and

damping constant of the suspension system, and bsyms is the associating symmetric

damping constant. The elastic behaviour of the tyre is assumed linear and the force

produced due to its interaction with the road is as follows:

Fw = kt(w − xw) (2.5)

where kt is the spring stiffness of the tyre and (w− xw) is the deflection of the tyre.

Whilst monitoring the behaviour of the passive or uncontrolled system, the control

force Fa is set to zero and the governing equations are reduced to:

msẍc = Fks + Fbs (2.6)

muẍw = −Fks − Fbs + Fw (2.7)

In the case of control, the actuator force Fa is manipulated through an electrohy-

draulic actuator which aims to return the system to rest after the vehicle is disturbed

by the profile of the road or any disturbance for that matter. A schematic of the

actuator explaining the flow of hydraulic fluid and pressure changes in the system is

shown in Figure 2.4. The actuator essentially consists of two subcomponents which

are a voltage-regulated-electro-mechanic device and a three land four-way spool-

valve hydraulic system. The system operates as follows: firstly, a controlled voltage
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Figure 2.4: Depiction of the fluid flows and pressures within the hydraulic actuator

[Pedro et al. (2011)]

produce by a specific control law drives an electro-mechanical device which regulates

the spool valve. This consequent motion of the spool valve induces flow inside the

hydraulic cylinder and this subsequently develops a pressure difference across the

piston of the hydraulic cylinder. This pressure difference gives rise to the actuator

force Fa which attempts to bring the system to a specific setpoint. The dynamics

of the actuator are described through Newtonian fluid mechanics and these laws

demand that continuity be maintained. Therefore, the variation of the applied hy-

draulic force is derived as follows [Jelali and Kroll (2003), Merritt (1967)]. Firstly,

steady flow produces the following continuity equation:

ṁf = ρυA = constant (2.8)

where ṁf is the mass flow rate through a specified control volume, ρ is the density

of the working fluid, υ is the velocity of the liquid, and A is the cross-sectional area

of the control volume. Application of the conservation of mass equation to a control

tube of elemental length ds may be written in differential co-ordinate free form as

follows:

(dρ)/dt+ div(ρυ) = 0 (2.9)

where div is a shorthand for the vector field operator ”divergence”. For example,

div.F = ∇.F =

(
∂

∂x
+

∂

∂z
+

∂

∂y

)
.F =

∂U

∂x
+
∂V

∂y
+
∂W

∂z
(2.10)

where F is a vector field give by: F = Ui+V j+Wk, and i, j and k are unit vectors

in the Cartesian coordinate directions x, y and z respectively.

To account for all mass flowing through a control volume V , the rate at which mass

is stored has to be equivalent to the difference of incoming and outgoing mass. This
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reasoning yields the following:∑
ṁfin −

∑
ṁfout =

∂ρV

∂t
= ρV̇ + V ρ̇ (2.11)

Since the volume of the hydraulic cylinder remains fixed, the rate of change of the

volume i.e. V̇ is set to zero. Additionally, the density of the hydraulic fluid varies

with pressure and bulk modulus at constant temperature according to:

ρ = ρi +
V

β
Ṗ (2.12)

with initial density ρi, bulk modulus β, pressure P and the rate of change of pressure

Ṗ . Dividing Eq. (2.11) by Eq. (2.12) produces:

Ṗ =
β

V
(Qin −Qout) (2.13)

where Qin is the volumetric flow rate of the fluid entering the control volume and

Qout is that of the fluid leaving the control volume. Application of the above relation

to the hydraulic cylinder produces the following:

Ṗ =
β

V
(Ql −Qleakage −Qpiston) (2.14)

with hydraulic flow Ql, losses Qleakage, and flow induced as the result of the motion of

the piston Qpiston. The hydraulic flow is effectively the flow through the spool valve

which may be modelled using Euler’s equation and may be further approximated as

flow through an orifice. This results in the following relation:

Ql = sgn[Ps − sgn(xv)PL]CdΩxv
√
|Ps − sgn(xv)PL| (2.15)

where Ql is the flow out of the spool valve, xv is the spool-valve displacement,

Ps − sgn(xv)PL is the pressure differences that induces the flow, where Ps is the

supply pressure and PL is the pressure load within the hydraulic cylinder; sgn(xv)

accounts for direction in which the valve displaces, Cd is the co-efficient of discharge

out of the orifice approximated spool valve, and Ω is the spool-valve gradient. The

leakage flow is modelled using Euler’s equation and is described as [Jelali and Kroll

(2003), Merritt (1967)]:

Qleakage = CtpPL (2.16)

with coefficient of discharge Ctp. The flow induced by the motion of the piston is

given as:

Qpiston = Ahyd(ẋw − ẋc) (2.17)

The preceding equations pertaining to hydraulic actuator dynamics may be struc-

tured to a simpler form that is suitable for feedback linearization using the following

relations:

ṖL = γΦxv − βPL + αA(ẋw − ẋc) (2.18)
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where

Φ = φ1 × φ2, with φ1 = sgn(Ps − sgn(xv)PL) and φ2 =
√

(Ps − sgn(xv)PL),

α = 4β
V , β = αCtp, γ = CdΩ

√
1
ρ

In order to reduce complexity, it is assumed that the electro-mechanical device that

controls the motion of the spool valve is a first-order element with a time constant

τ and is defined as:

ẋv =
1

τ
(Kvu− xv) (2.19)

where Kv is the valve gain and u is the control input voltage. Values of the pa-

rameters used in the quarter-car model are given in Table 2.1. The system may

Table 2.1: System parameters for the quarter-car model

Parameter Numerical Value

Chassis or Sprung mass ms 290kg

Wheel or Unsprung mass mu 40kg

Suspension spring linear stiffness kls 2.35×104N/m

Suspension spring nonlinear stiffness knls 2.35×106N/m3

Tyre stiffness kt 190×105N/m

Suspension linear damping coefficient bls 700Ns/m

Suspension nonlinear damping coefficient bnls 400Ns0.5/m0.5

Suspension symmetric damping coefficient bsyms 400Ns/m

Actuator Parameters (α, β, γ) 4.515×1013, 1 , 1.545×109

Piston Area A 3.35×10−4m2

Supply Pressure Ps 10342500Pa

Time constant τ 1
30s

Servo valve gains kv 0.001m/V

be further rearranged into a form that is suitable for formulating control laws by

defining the following state variables: ẋ1 = x3, ẍ1 = ẋ3, ẋw = x4, ẍw = ẋ4, x5 = PL,

and x6 = xv. The system may then be represented in state-space form as follows

[Pedro and Dahunsi (2011)]:

x=f(x)+g(x)u +w(x) (2.20)

y = h(x) = x1 − x2 (2.21)

where the state vector is given by x =
[
x1 x2 x3 x4 x5 x6

]T
, The system

matrices f and g are denoted by:

f(x) =
[
f1 f2 f3 f4 f5 f6

]T
(2.22)
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g(x) =
[

0 0 0 0 0 kv
τ

]T
(2.23)

The disturbance matrix w on the other hand is represented by:

w(x) =
[

0 0 0 w(t)
mu

kt 0 0
]T

(2.24)

The elements of these matrices are as follows [Pedro and Dahunsi (2011)]:

f1(x) = x3 (2.25)

f2(x) = x4 (2.26)

f3(x) =
1

ms
[kls(x2 − x1) + knls (x2 − x1)3 + bls(x4 − x3)−

bsyms |x4 − x3|+ bnls
√
|x4 − x3|sgn(x4 − x3)−Ax5] (2.27)

f4 (x) =
1

mu
[−kls(x2 − x1)− knls (x2 − x1)3 − bls(x4 − x3) +

bsyms |x4 − x3| − bnls
√
|x4 − x3|sgn(x4 − x3) +Ax5] (2.28)

f5(x) = γΦx6 − βx5 +A(x3 − x4) (2.29)

f6(x) =
1

τ
(−x6) (2.30)

2.2 Development of the Full-Car Model

A representation of the full-car model is presented in Figure 2.5. The chassis is

supported by four wheels, which are connected to it through four individual suspen-

sion systems. These suspension systems are aimed at enhancing ride comfort, while

maintaining adequate road holding and vehicle handling capabilities. In contrast

to the quarter-car model, it provides information relating to both the lateral and

longitudinal dynamics of the vehicle. As a result, data concerning pitch and roll and

consequently squat, under-steer and over-steer may be obtained. Hence, full-car

models provide extensive details pertaining to the vehicle handling characteristics

[Noura et al. (2009)].

In relation to the model architecture, full-car systems are approximated as a rectan-

gular chassis of mass Ms that is supported at its respective corners by a suspension

system which in turn is linked to one of the vehicle’s wheels of mass muij , with i and

j representing the position of the wheel. As in the case of the quarter-car model,

each suspension system comprises of a spring component, a damper element and
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Figure 2.5: Schematic describing the full-car model

a hydraulic actuator. Furthermore, the flexural nature of the tyre is captured by

coupling the wheel to the road surface through a damper and spring. In order to

make the model more realistic in terms of weight distribution, the model geometry

is set accordingly with most of the vehicle weight concentrated at the front. This

is because analytical reviews of vehicles in general dictate that the centre of gravity

be closer to the front of the vehicle to account for the weight of the engine. Further-

more, the tyre damping ratios at the front and rear of the vehicle are adjusted to

account for the variation in tyre pressure between the front and rear of the vehicle

[Ekoru and Pedro (2013)].

For adequate analysis of a full-car model, several reference frames are established to

capture the ride comfort, road holding and vehicle handling characteristics. Similar

to the quarter-car model, these include the road profiles at each wheel wfl, wrl, wfr

and wrr, where the first subscripts f and r denote the front and the rear longitu-

danal positions of the vehicle respectively, and the second subscripts l and r refer to

the left and right lateral positions of the wheel respectively. Moreover, the displace-

ments at each corner of the chassis are denoted as: zlf , zlr, zrf and zrr. The vertical

displacement at the centre of gravity (COG) is denoted as z, and the pitch and roll

angles of the vehicle are given by θ and α respectively. The longitudinal and lateral

moment of inertias are represented as Iθ and Iα respectively. The corresponding

velocities and accelerations at each of these positions are represented as ż and z̈.

Additionally, the vertical displacement of each wheel is defined as: ztfl,ztrl,ztfr and

ztrr, where the first subscript t denotes the vertical displacement of the tyre being

considered, the following subscript takes either f or r which denotes the front or rear
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longitudanal position of that wheel. The third subscript takes either l or r which

denotes the left or right lateral position of the wheel.

In relation to the forces acting on the system, Fij denotes the force generated within

the suspension system at the (i, j) longitudanal and lateral positon of the vehicle

as a result of disturbances. This force includes the damping force contribution Fbij ,

spring force Fkij and the compensating actuator force Faij . Similarly, Fktij and Fbtij

are the damping and stiffness forces experience within the various wheels respec-

tively. The governing equations of the model are derived through Newton’s laws.

The free-body-diagram of the chassis presented in Figure 2.6 shows the forces and

moments acting upon them.

Figure 2.6: Free-body-diagram depicting the forces acting on the full-car chassis

The forces generated within each of the suspension systems at the front right, front

left, rear right and rear left corners of the chassis are given as:

Ffr = Fkfr + Fbfr − Fafr (2.31)

Ffl = Fkfl + Fbfl − Fafl (2.32)

Frr = Fkrr + Fbrr − Farr (2.33)

Frl = Fkrl + Fbrl − Farl (2.34)

These aforementioned forces induce vertical forces and moments on the chassis. Ap-

plication of Newton’s second law to the chassis gives following governing equations.

Body-heave acceleration at the chassis centre of gravity:

Msz̈ = Ffr + Ffl + Frr + Frl (2.35)
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Figure 2.7: Free-body-diagram showing the forces acting on each wheel

Pitching motion of the chassis about the centre of gravity:

Iθθ̈ = −Ffrlf − Ffllf + Frrlr + Frllr (2.36)

Rolling motion of the chassis about the centre of gravity:

Iαα̈ =
af
2

[Ffr − Ffl + Frr − Frl] (2.37)

The vertical displacements at each corner are computed as follows:

zfr = z − lfsinθ +
af
2
sinα (2.38)

zfl = z − lfsinθ −
af
2
sinα (2.39)

zrr = z + lrsinθ +
af
2
sinα (2.40)

zrl = z + lrsinθ −
af
2
sinα (2.41)

A free-body diagram depicting the dynamics at each wheel is presented in Figure 2.7

and the application of Newton’s second law to this system produces the following

equation:

muij z̈tij = −Fkij − Fbij + Faij + Fktij + Fbtij (2.42)

Furthermore, to account for nonlinearities, the springs and dampers within the

system are set to have linear and nonlinear components which are described as

follows[Ekoru and Pedro (2013)]:

Fkij = klsij(ztij − zij) + knlsij(ztij − zij)3 (2.43)

Fbij = blsij(żtij − żij) + bnlsij

√
|żtij − żij |sgn(żtij − żij)− bsymsij |żtij − żij | (2.44)

Fktij = ktij(wij − ztij) (2.45)

Fktij = btij(ẇij − żtij) (2.46)
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where klsij and knsijl denotes the linear and nonlinear spring force contributions

of the suspension system at location (i, j) on the chassis with iε(front, rear) and

jε(left, right). blsij ,b
nl
sij and bsymsij are the linear, nonlinear and symmetric damping

contributions of the suspension system located at (i, j). Similarly ktij and btij are

the spring and damping contributions of the wheels.

The hydraulic actuator dynamics that give rise to the control force Faij at each

wheel is the same as in the case of the quarter-car model. The forces produced by

the hydraulic actuators are as follows:

Ḟaij = AijṖLij = Aij [γijΦijxvij − βijPLij + ΘijAij(żij − żtij ] (2.47)

where Θ = 4Γ
Vt

, β = ΘCtp, γ = CdS
1
ρ where(i, j) relates to the actuator components

in the (i, j)th suspension system with iε(front, rear) and jε(left, right), Aij are

the surface areas of each hydraulic cylinder, PLij are the pressure drops across

the hydraulic cylinders,γijΦijxvij are the pressure changes produced as a result of

spool-valve displacements xvij , βijPLij are the pressure losses that occur due to

leakages, and ΘijAij(żij−żtij) are the induced pressures created by the motion of the

suspension systems. The spool valves are controlled by electro-mechanical devices

that are regulated by input control voltages. First-order differential equations are

used to model the dynamics of these devices, which are given by:

ẋvij =
1

τij
(Kvijuij − xvij) (2.48)

where Kvij are the valve gains and uij are the control input voltage of the (i, j)th

actuator.

A list of system parameter values is presented in Table 2.2. This model may be

reduced into state-space form, which is necessary for incorporating feedback lin-

earization control. This form is as follows:

ẋ = f(x) + gfr(x)ufr + gfl(x)ufl + grr(x)urr + grl(x)url + w(x) (2.49)

where the state vector is given by x =
[
x1 x2 . . . . . . . . . x22

]T
, and is

defined as follows:

x =
[ztfr żtfr PLfr xvfr ztfl żtfl PLfl xvfl ztrr żtrr PLrr . . .

. . . xvr ztrl żtrl PLrl xvrl z ż θ θ̇ α α̇]T

(2.50)

The system matrices f and g, and the road disturbance matrix w are of the form:

f(x) =
[
f1(x) f2(x) . . . . . . . . . f22(x)

]T
(2.51)
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Table 2.2: Values of the system parameters for the full-car AVSS

Parameter Numerical Value

Chassis or Sprung mass Ms 1060kg

Wheel or Unsprung mass mufr, mufl, mubr, mubl 40, 40, 35, 35kg

Pitch Moment of inertia Iθ 2200kg.m2

Roll Moment of inertia Iθ 460kg.m2

Length from vehicle front to centre of gravity lf 1m

Length from vehicle rear to centre of gravity lr 1.5m

Lateral length of vehicle af 1.5m

Suspension spring linear stiffness at each wheel klsij 2.3×102N/m

Suspension spring nonlinear stiffness at all wheels knlsij 2.35×104N/m3

Tyre stiffness at each wheel ktij 190×105N/m

Tyre damping at each wheel btfr, btfl, btrr, btrl) 80,80,70,70Ns/m

Suspension linear damping coefficient bls 700Ns/m

Suspension nonlinear damping coefficient at all wheels bnlsij 400Ns0.5/m0.5

Suspension symmetric damping coefficient at all wheels bsymsij 400Ns/m

Actuator Parameters (Θij ,βij ,γij) 4.515×1013

1, 1.545×109

Piston Area Aij 3.35×10−4m2

Supply Pressure Ps 10342500Pa

Time constant τ 1
30s

Servo valve gains kvij 0.001m/V

gfr(x) =
[

0 . . . g4(x) . . . . . . . . . 0
]T

(2.52)

gfl(x) =
[

0 . . . . . . g8(x) . . . . . . 0
]T

(2.53)

grr(x) =
[

0 . . . . . . . . . g12(x) . . . 0
]T

(2.54)

grl(x) =
[

0 . . . . . . . . . . . . g16(x) 0
]T

(2.55)

w(x) =
[

0 w2(x) . . . w6(x) . . . w10(x) . . . w14(x) . . .
]T

(2.56)

The system matrix f can be broken down into several subsets, namely the dynamics

at each of the four wheels and the dynamics at the centre of gravity of the chassis,

each of which are of the following forms [Noura et al. (2009)]:

Front Right Wheel Dynamics

f1(x) = x2 (2.57)
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f2(x) =
1

mufr
[klsfr(x1 − [x17 − lfsinx19 +

af
2
sinx21]) + knlsfr(x1 − [x17 − lfsinx19 +

af
2
sinx21])3 + blsfr(x2 − [x18 − lfx20cosx19 +

af
2
x22cosx21])−

bnlsfr

√
x2 − [x18 − lfx20cosx19 +

af
2
x22cosx21]×

sgn(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])

bsymsfr |x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21]|

= −Afrx3 − ktfrx1 − btfrx2] (2.58)

f3(x) = γfrΦfrx4−βfrx3 + ΘfrAfr(x2− [x18− lfx20cosx19 +
af
2
x22cosx21]) (2.59)

f4(x) =
1

τfr
(−x4) (2.60)

Front Left Wheel Dynamics

f5(x) = x6 (2.61)

f6(x) =
1

mufl
[klsfl(x5 − [x17 − lfsinx19 −

af
2
sinx21]) +

knlsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21])3 + blsfl(x6 − [x18 − lfx20cosx19 −

af
2
x22cosx21])−

bnlsfl

√
x6 − [x18 − lfx20cosx19 −

af
2
x22cosx21]×

sgn(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])

bsymsfl |x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21]|

−Aflx7 − ktflx5 − btflx6] (2.62)

f7(x) = γflΦflx8 − βflx7 + ΘflAfl(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21]) (2.63)

f8(x) =
1

τfl
(−x8) (2.64)

Rear Right Wheel Dynamics

f9(x) = x10 (2.65)
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f10(x) =
1

murr
[klsrr(x9 − [x17 + lrsinx19 +

af
2
sinx21]) +

knlsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21])3 + blsrr(x10 − [x18 + lrx20cosx19 +

af
2
x22cosx21])−

bnlsrr

√
x10 − [x18 + lrx20cosx19 +

af
2
x22cosx21]×

sgn(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])

bsymsrr |x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21]|

−Arrx11 − ktrrx9 − btrrx10] (2.66)

f11(x) = γrrΦrrx12−βrrx11+ΘrrArr(x10−[x18+lrx20cosx19+
af
2
x22cosx21]) (2.67)

f12(x) =
1

τrr
(−x12) (2.68)

Rear Left Wheel Dynamics

f13(x) = x14 (2.69)

f14(x) =
1

murl
[klsrl(x13− [x17 + lfsinx19 −

af
2
sinx21]) +

knlsrl(x13− [x17 + lrsinx19 −
af
2
sinx21])3 + blsrl(x14 − [x18 + lrx20cosx19 −

af
2
x22cosx21])−

bnlsrl

√
x14 − [x18 + lrx20cosx19 −

af
2
x22cosx21]×

sgn(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])

bsymsrl |x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21]|

−Arlx15 − ktrlx13 − btrlx14] (2.70)

f15(x) = γrlΦrlx16−βrlx15 +ΘrlArr(x14− [x18 + lrx20cosx19−
af
2
x22cosx21]) (2.71)

f16(x) =
1

τrl
(−x16) (2.72)

Centre of gravity Dynamics Heave motion

f17(x) = x18 (2.73)
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f18(x) =
−1

Ms
[klsfr(x1 − [x17 − lfsinx19 +

af
2
sinx21]) +

knlsfr(x1 − [x17 − lfsinx19 +
af
2
sinx21])3 +

blsfr(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])−

bnlsfr

√
x2 − [x18 − lfx20cosx19 +

af
2
x22cosx21]×

sgn(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])

bsymsfr |x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21]| −Afrx3 +

klsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21]) +

+knlsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21])3 +

blsfl(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])−

bnlsfl

√
x6 − [x18 − lfx20cosx19 −

af
2
x22cosx21]×

sgn(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])

bsymsfl |x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21]| −Aflx7 +

klsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21]) + +

knlsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21])3 +

blsrr(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])−

bnlsrr

√
x10 − [x18 + lrx20cosx19 +

af
2
x22cosx21]×

sgn(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])

bsymsrr |x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21]| −Arrx11 +

klsrl(x13− [x17 + lfsinx19 −
af
2
sinx21]) + +

knlsrl(x13− [x17 + lrsinx19 −
af
2
sinx21])3 +

blsrl(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])−

bnlsrl

√
x14 − [x18 + lrx20cosx19 −

af
2
x22cosx21]×

sgn(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])

bsymsrl |x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21]| −Arlx15] (2.74)

Pitch motion

f19(x) = x20 (2.75)
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f20(x) =
−1

Iθ
[−lf [(klsfr(x1 − [x17 − lfsinx19 +

af
2
sinx21]) +

knlsfr(x1 − [x17 − lfsinx19 +
af
2
sinx21])3 +

blsfr(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])−

bnlsfr

√
x2 − [x18 − lfx20cosx19 +

af
2
x22cosx21]×

sgn(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])

bsymsfr |x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21]| −Afrx3]−

lf [klsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21]) +

knlsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21])3 +

blsfl(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])−

bnlsfl

√
x6 − [x18 − lfx20cosx19 −

af
2
x22cosx21]×

sgn(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])

bsymsfl |x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21]| −Aflx7] +

lr[k
l
srr(x9 − [x17 + lrsinx19 +

af
2
sinx21]) +

knlsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21])3 +

blsrr(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])−

bnlsrr

√
x10 − [x18 + lrx20cosx19 +

af
2
x22cosx21]×

sgn(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])

bsymsrr |x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21]| −Arrx11] +

lr[k
l
srl(x13− [x17 + lfsinx19 −

af
2
sinx21]) +

knlsrl(x13− [x17 + lrsinx19 −
af
2
sinx21])3 +

blsrl(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])−

bnlsrl

√
x14 − [x18 + lrx20cosx19 −

af
2
x22cosx21]×

sgn(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])

bsymsrl |x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21]| −Arlx15] (2.76)

Roll motion

f21(x) = x22 (2.77)
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f22(x) =
af
2

−1

Iα
[+[(klsfr(x1 − [x17 − lfsinx19 +

af
2
sinx21]) +

knlsfr(x1 − [x17 − lfsinx19 +
af
2
sinx21])3 +

blsfr(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])−

bnlsfr

√
x2 − [x18 − lfx20cosx19 +

af
2
x22cosx21]×

sgn(x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21])

bsymsfr |x2 − [x18 − lfx20cosx19 +
af
2
x22cosx21]| −Afrx3]−

[klsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21]) +

knlsfl(x5 − [x17 − lfsinx19 −
af
2
sinx21])3 +

blsfl(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])−

bnlsfl

√
x6 − [x18 − lfx20cosx19 −

af
2
x22cosx21]×

sgn(x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21])

bsymsfl |x6 − [x18 − lfx20cosx19 −
af
2
x22cosx21]| −Aflx7] +

[klsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21]) +

knlsrr(x9 − [x17 + lrsinx19 +
af
2
sinx21])3 +

blsrr(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])−

bnlsrr

√
x10 − [x18 + lrx20cosx19 +

af
2
x22cosx21]×

sgn(x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21])

bsymsrr |x10 − [x18 + lrx20cosx19 +
af
2
x22cosx21]| −Arrx11]−

[klsrl(x13− [x17 + lfsinx19 −
af
2
sinx21]) +

knlsrl(x13− [x17 + lrsinx19 −
af
2
sinx21])3 +

blsrl(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])−

bnlsrl

√
x14 − [x18 + lrx20cosx19 −

af
2
x22cosx21]×

sgn(x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21])

bsymsrl |x14 − [x18 + lrx20cosx19 −
af
2
x22cosx21]| −Arlx15] (2.78)

The constituents of the input matrices g1(x), g2(x), g3(x) and g4(x) are of the

form:

g4(x) =
Kvfr

τfr
(2.79)
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g8(x) =
Kvfl

τfl
(2.80)

g12(x) =
Kvrr

τrr
(2.81)

g16(x) =
Kvrl

τrl
(2.82)

The terms of disturbance matrix w(x) is as follows:

w2(x) =
1

mufr
(ktfrwfr + btfrẇfr) (2.83)

w6(x)) =
1

mufl
(ktflwfl + btfrẇfl) (2.84)

w10(x) =
1

murr
(ktrrwrr + btrrẇrr) (2.85)

w14(x) =
1

murl
(ktrlwfr + btrlẇrl) (2.86)

2.3 Model of Realistic Road Disturbances

The performance of the proposed systems in terms of ride comfort, road holding,

vehicle handling, suspension travel, and power consumption will be analysed as the

vehicle passes over a deterministic road bump. For the case of the quarter-car model,

the vehicle is set to travel at a steady speed of 40km/h and pass over an 11cm high

and 5m long road bump.

The road bump is a sinusoidal profile as this profile adequately fits the nature of

road bumps [Pedro and Dahunsi (2011), Pedro et al. (2011), and Ekoru and Pedro

(2013)]. With regards to modelling it, a typical sin wave is described as follows:

W = a sin(2πf) (2.87)

The frequency f of this wave is the inverse of the time t taken to cross the bump

(i.e. 1
t ). Since the vehicle is moving at constant speed, it can be described through

the half-wavelength λ of the bump and the vehicle speed V as follows:

t =
λ

V
(2.88)

The height of the bump is essentially the amplitude of this sinusoidal wave a. To

create a specific bump that appears at certain point in time, some mathematical

manipulation is required. This resulting profile is modelled according to Eq. (2.89).

The specifications of the road bump are aimed at capturing the worst case scenario
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Figure 2.8: Road disturbance input for the quarter-car suspension system study

and if the system performs adequately for this case, it should perform adequately

for various other road bump disturbances as well. [Pedro et al. (2011)]

w(t) =

a
1−cos 2πV t

λ
2 if 0.45 <= t <= 0.9.

0 otherwise.
(2.89)

with bump amplitude a, vehicle speed V , and bump wavelength λ. A schematic

of the road profile is presented in Figure 2.8. This specific road profile is chosen

as bumps are one of the major sources of ride discomfort and they also have the

tendency to minimise vehicle handling and they increase the degree of suspension

rattle, and hence they address the broad spectrum of trade-offs associated with sus-

pension systems.

The road profile for the full-car model is more complex as it is required to produce

both roll and pitch dynamics which are the key issues associated with vehicle han-

dling. To generate roll, a bump amplitude 6cm is used for the right hand side of the

vehicle as compared to the left hand side of the vehicle where the bump height is

4cm. As the rear tyres pass over the bump sometime after the front tyres do, pitch

is naturally induced. The respective road profiles are described as follows:

wfr(t) =

a1
(1−cos 2πV t

λ
)

2 if 0.45 <= t <= 0.9.

0 otherwise.
(2.90)

wfl(t) =

a2
(1−cos 2πV t

λ
)

2 if 0.45 <= t <= 0.9.

0 otherwise.
(2.91)
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Figure 2.9: Road disturbance input for the full-car suspension system study

Table 2.3: Parameter values for the deterministic road bumps

Parameter Numerical Value

Bump height a1 6cm

Bump height a2 4cm

Vehicle forward velocity V 40km/hr

Bump wavelength λ 5m

wrr(t) =

a1
(1−cos 2πV t

λ
)

2 if 0.45 + λ
V <= t <= 0.9 + λ

V .

0 otherwise.
(2.92)

wrl(t) =

a2
(1−cos 2πV t

λ
)

2 if 0.45 + λ
V <= t <= 0.9 + λ

V .

0 otherwise.
(2.93)

This disturbance is graphically explained in Figure 2.9. The parameter values for

the above road profiles are listed in Table 2.3.
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3 PID Benchmark Controller Design and

Optimization

3.1 Quarter-Car PID-Based Control

3.1.1 Introduction

PID control is of prime importance in this study as it is widely applied in industry

and hence serves as a suitable benchmark of comparison for the proposed optimal

and intelligent controllers. Furthermore, the simple structure of a PID controller

makes its implementation easy and consequently provides reasonable intuitive un-

derstanding into AVSS control. Moreover, optimal control of PID controllers and

hybrid PID-Intelligent controllers are of prime importance in this research study

and in order to develop these proposed controllers, sufficient knowledge pertaining

to basic PID control is required. As opposed to the dominant trend in PID-based

design, actuator dynamics will be included in this research. This will subsequently

increase the number of system states and add complexity to the model. Further-

more, the nature of hydraulic actuators is such that a small change in displacement

produces a large variation in force. This sensitivity causes the system to become

increasingly unstable under various conditions. A multi-loop PID controller is in-

corporated to track the control force such that the system does not become unstable.

3.1.2 Controller Design of Quarter-Car AVSS

The control system for the nonlinear electrohydraulic AVSS comprises of two control

loops of which the outer loop regulates the controlled variable and the inner loop

maintains actuator stability. Force feedback is incorporated into the inner loop as

it has been proven successful in previous applications. Suspension travel, xw − xc
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Figure 3.1: Schematic describing the PID-based AVSS for quarter-car model

has been selected as the controlled variable y of the outer control loop since it is

the primary parameter that captures the dynamics of the suspension system as it is

the chief constituent of the spring and damping forces. A schematic of the control

system is presented in Figure 3.1. The setpoint yd reference command input, which

is set to zero to address a regulation problem, e1 and e2 are error signals that will be

minimised in the outer and inner control loops respectively, Fa is the actuator force

that will be regulated in the inner control loop with Fd being its respective setpoint,

y is the suspension travel that will be manipulated through the outer control loop,

and u is the control input voltage that is passed into the hydraulic actuator of the

AVSS, and is regulated by the proposed controller. PID controllers operate according

to the following equations:

e1(t) = yd − y(t) = yd(t)− xw(t) + xc(t) (3.1)

Fd(t) = KP e1(t) +KD
de1(t)

dt
+KI

T∫
0

e1(t)dt (3.2)

e2(t) = Fa(t)− Fd(t) (3.3)

u(t) = kpe2(t) + kd
de2(t)

dt
+ ki

T∫
0

e2(t)dt (3.4)

where KP and kp are the proportional gains of the outer and inner loops respectively,

KI and ki are the corresponding integral gains of the controllers, and KD and kd

are the derivative gains of the respective control loops.

The proportional P constituent of the PID controller produces a command signal

that is proportional to the control error and a consequent increase in its associ-

ated gains tends to bring the system to rest quicker. However, the amount that

the proportional gain may be increased is limited by the power supply. Moreover,

the characteristic delay that is present in all control system creates instability if

the chosen gains are significantly high. Additionally, increasing higher proportional

gains tend to increase the steady state error of the system. On the other hand, the
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integral gain I generates a control signal that depends primarily on the error history

of the system. This component of the PID controller possesses the added advantage

of a guaranteed zero steady-state error, but it deteriorates the system performance

by introducing a large degree of oscillations. [O’Dwyer (2006)]

In contrast to the P and I components of the PID controller, the derivative D gains

produce a control signal that is based on the rate of change of the error signal, and

hence it has the ability to predict the future response of the system and produce

a control signal that deals with the error before it actually occurs. An optimistic

outlook of derivative gains argues that they improve rise time and reduce settling

time, whereas another pessimistic viewpoint debates that it tends to add oscillatory

behaviour to the system. [O’Dwyer (2006)]

In accordance with these findings, it is clear that PID tuning requires both intuitive

reasoning and experience to acquire improved system performance without incurring

instability and weak transient qualities.

3.1.3 Design Specifications of Quarter-Car AVSS

The design specifications chosen for the quarter-car system are as follows [Dahunsi

and Pedro (2010)]:

1. The suspension travel must be limited to 0.1m as this is the maximum sus-

pension travel for a typical sedan vehicle.

2. The control input voltage is constrained to 10volts which is primarily based

on the restrictions of the power supply.

3. The actuation force must be less than the static weight of the vehicle so the

vehicle wheels do not leave the ground, which would otherwise render the

mathematical model inadequate, Fa ≤ msg

4. The maximum body-heave acceleration: ẍc ≤ 4.5m/s2 and the associated

Root-Mean-Squared (RMS) acceleration should be less than 1m/s2 so ride

comfort lies in ”Little discomfort” region of the International Organization for

Standardization 2631 (2003).
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In order to cope with the suspension trade-offs, the performance index used to select

controller gains given in Eq. (3.2) and (3.4) and is principally based on minimising

each of the suspension performance criterion is as follows: [Ekoru and Pedro (2013)].

J =
1

T

T∫
0

[(
y

ymax

)2

+

(
Fa

Famax

)2

+

(
ẍc

ẍcmax

)2

+

(
u

umax

)2

+

(
(xw − w)

(xw − w)max

)2
]
dt

(3.5)

where y and ymax are the suspension travel and maximum allowable suspension travel

respectively and this subcomponent is added to the performance index to minimise

suspension rattle. Fa and Famax are the actuator force and maximum allowable

actuator force respectively which are placed to address work done. ẍc and ẍcmax

are the body-heave acceleration and maximum allowable body-heave acceleration

respectively and these terms draws attention to ride comfort. u and umax are the

control voltage and limiting control voltage respectively and they represent power

consumption. Finally, (x2−w) and (x2−w)max are the tyre deflection and maximum

allowable tyre deflection respectively and they are augmented to J to enhance road

holding.

This performance index J is specifically setup to also account for design specifica-

tions. To keep the suspension travel y, heave acceleration ẍc, voltage u, force F and

tyre dynamic load xw − w below its limits, the associating weighting factor of each

term in Eq.(3.5) is chosen to be the inverse of its limits [i.e. 1
ymax

, 1
ẍcmax

, 1
umax

, 1
Fmax

,
1

(xw−w)max
]. If the systems maintains these limits imposed by the specifications, the

terms y
ymax

, u
umax

, F
Fmax

, (xw−w)
(xw−w)max

, and ẍc
ẍcmax

in Eq.(3.5) will be a fraction with

a value less than 1. Since each of thes terms are squared, the magnitude of these

values will be even smaller. This essentially keeps the performance index compara-

tively small if specifications are met. However, if the limits are exceeded, each term

will produce a value greater than 1 and when squared produces an even greater

value which makes the value of the performance index significantly larger. Since

the optimization methods aim to minimise the performance index, responses that

do not meet specifications produce significantly larger performance index values and

are thus automatically discarded by the algorithm

The controller gains are chosen by firstly using Ziegler-Nichols rules in order to

acquire a sufficient starting point, after which rigorous fine tuning is conducted with

the aim of improving the performance index J and resolving the trade-offs between

conflicting suspension performance criteria.

The resulting gains obtained through manual tuning are given in Table 3.1. Sev-
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Table 3.1: PID gains obtained using manual tuning for the quarter-car AVSS

Control Loop Outer PID Loop Gains Inner PID Loop Gains

Gain KP KI KD kp ki kd

Manual Tuning 17000 50 1400 0.002 0.004 0

eral comments may be made concerning the gains that were computed in Table 3.1.

Firstly, the high KP gains in the outer loop is anticipated and PID controllers in

general possess the shortfall of generating large proportional gains that will raise the

control input and may lead to actuator saturation [O’Dwyer (2006)]. Secondly, the

integral gains in both control loops are necessary to achieve zero steady-state error

for both regulating the control variable y and ensuring that the actuator follows its

desired trajectory with minimal chattering [Pedro et al. (2011)]. The derivative gain

of the inner control loop kd was set to zero as this gains proved to be rather sensitive

where small variations created large changes in the system response.

It is also worth commenting that small variations in the gains of the inner control

loop have a major impact on the response of the system. Furthermore, these gains

have the tendency to affect chattering and system stability as divergence was ob-

served when the magnitude of these values fall out of a certain range. This is in

accordance with the literature, which argue that the inner loop maintains stability.

3.1.4 Comparative Study between Passive and PID-Based AVSS

Response

Plots showing the response of both the PVSS and AVSS as the quarter-car vehicle

passes over a deterministic road bump described by Eq. (2.89) are shown in Figures

3.4 to 3.6, respectively. These plots describe the behaviour of the system in each

of its performance benchmarks and quantitative data extracted from these plots are

listed in Table 3.2.

From the results obtained, it is clear that the PID-based AVSS was able to signifi-

cantly improve the performance of the suspension system in each of its performance

aspects in both peak and RMS values. Furthermore, it displayed improved transient

behaviour, where the system oscillated to a lesser extent before it settled to steady-

state. However, the system failed to meet the design specification relating to ride
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Figure 3.2: Suspension travel response for both PVSS and manually-tuned PID-

controlled AVSS

Figure 3.3: Sprung mass acceleration response for both PVSS and manually-tuned

PID-controlled AVSS
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Figure 3.4: Road holding characteristics of PVSS and manually-tuned PID-

controlled AVSS

Figure 3.5: Actuator force supplied for manually-tuned PID-controlled AVSS
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Table 3.2: Performance characteristics of PVSS and manually-tuned PID-controlled

AVSS

Cases Passive Manual Passive Manual

Performance Criteria Suspension Travel m Ride Comfort m/s2

RMS 0.025 0.023 4.1 1.62

Peak 0.087 0.064 13.3 5.3

Performance Criteria Road Holding m Control Voltage V

RMS 0.0064 0.0024 N/A 0.784

Peak 0.0206 0.0098 N/A 2.9

Performance Criteria Actuation Force N Settling Time s

RMS N/A 300 N/A N/A

Peak N/A 2100 2.8 2.5

Performance Criteria Performance Index

Passive 12

Manual 5.2

Figure 3.6: Control input voltage supplied for manually-tuned PID-controlled AVSS

comfort and peak body acceleration. In addition, its settling time did not improve

considerably from that of the PVSS and it dampened out relatively slowly after the

disturbance was removed. These drawbacks may be overcome by implementing a

constrained optimization policy or by applying intelligent control.
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Figure 3.7: Closed-loop diagram for optimal PID controller design

3.1.5 Application of Global Optimization Methods to Controller

Tuning of Quarter-Car AVSS

To improve upon the deficiencies and complexities associated with manual PID tun-

ing, global optimization methods used for controller tuning have been suggested

for this task with the aim to best manage the performance index. Evolutionary

and global optimization algorithms such as Differential-Evolution (DE), Genetic-

Algorithm (GA), Particle-Swarm-Optimization (PSO), Controlled-Random-Search

(CRS) and Pattern-Search (PS) are proposed to determine controller gains which

best minimise the performance index and simultaneously remove the drawbacks and

rigorous tuning routine associated with manual PID tuning. Moreover, these meth-

ods are heuristic and random search methods and do not require any function-based

methods to locate minima. However, it is worth noting that these algorithms pos-

sess several shortcomings. Firstly, the absolute minimum cannot be guaranteed, but

rather a solution that is close to the minimum. Secondly, the choice of the bounds

and optimization parameters must be such that the solution does not get caught

in a local minimum and premature convergence problems not occur. Nevertheless,

the optimization algorithms have been used in a variety of nonlinear constrained

optimization problems and display potential to solve the nonlinear AVSS trade-offs.

The control structure for this algorithm is shown in Figure 3.7. It is essentially

the same as the non-optimal PID-controlled manually-tuned case, except that the

performance index or objective function J presented in Eq.(3.5) is computed within

the loop and fed to the optimization routine which subsequently computes the PID

gains for both the inner and outer control loops. Hence the total number of prob-

lem variables used for a quarter-car AVSS is six namely KP ,KI ,KD, kp, ki, kd. The

optimization is performed offline using DE, GA, PSO, CRS and PS algorithms re-

spectively. With regards to the general notation used in these algorithms, a given

set of problem variables or each set of controller gains or a set of neural network
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parameters (as in the case of system identification described in intelligent control

applications) are represented by a vector of size m, where m is the total number of

controller gains or network parameters that are being computed using the respec-

tive algorithms. These vectors are given the notation xn where n corresponds to the

nth individual or set of controller gains (vector) in the population. The fitness of

each individual is denoted as f(xn). Hence for the quarter-car AVSS, the number

of problem variables is six and each individual x is a 6×1 vector.

3.1.5.1 DE Global Optimization Method

Evolutionary algorithms which include DE, GA, and PSO are random search op-

timization methods where the optimal solution is produced through the evolution

of a random population set S = {x0,x1,x2, .,xN} with each individual denoted as

xi. These individuals are vectors with each of its elements pertaining to a specific

controller gain for the case of controller tuning or a network parameter in the case

of system identification. Each of the proposed algorithms only differ in the manner

in which the population changes through each generation as well as the conditions

that must be satisfied in order for the respective individuals to change. The search

space may be predefined to operate within a feasible region in order to improve

computation time and convergence characteristics. Such a search space is chosen

through intuitive reasoning and experience gained through manual tuning as in the

case of PID controller tuning. [Kaelo and Ali (2007), Wu et al. (2012), Nagaraj and

Vijayakumar (2011)]

In each generation step of DE, an associated trial individual yi is generated for each

targeted individual xi in S. This trial individual yi is a function of xi and a mutated

individual x̂i. x̂i is a mutation that is generated from three distinct randomly chosen

individuals xα, xβ, and xγ from the population set S with xα being the fittest of the

three. Each problem variable k (namely each PID gain or neural network weighting

parameter for the case of system identifications) of the mutated individual x̂i is

determined using the following relation:

x̂ik = xαk + F (xβk − xγk) (3.6)

where, α, β, and γ are representative of the three distinctive randomly selected

individuals from the population S, k signifies the kth parameter, gain, or network

weighting of these individuals, i is the ith individual that is currently being mutated,
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and F is the primary DE scaling parameter.

Crossover is thereafter performed between the targeted individual xi and its mutated

counterpart x̂i to produce a corresponding new trial point yi. In crossover, each

parameter k within yi either equals the associating kth parameter in xi or x̂i. This

decision is made by producing a random number Rk and if Rk exceeds a predefined

threshold number CR the kth parameter of yi becomes the kth parameter of xi.

Conversely, if this condition is not met the kth parameter of yi is given the same

value as the kth parameter of x̂i. These relationships are explained mathematically

as follows:

yik =

x̂ik if Rk ≤ CR.

xik otherwise.
(3.7)

The trial vector yi of the targeted individual xi from S is only accepted and replaces

its predecessor or previous values xi(t−1) if and only if it possesses a superior fitness

to that of xi(t− 1) which may be summarised as:

xi =

yi if f(yi) < f(xi).

xi otherwise.
(3.8)

where f(yi) is the fitness value of the trial vector, and f(xi) is the fitness of the

targeted individual. After the whole population S has evolved the process is repeated

until the stopping criterion is met. Thereafter, the optimal solution is chosen to be

the individual in S with the best fitness value. In the case of this investigation, the

algorithm was set to stop after a predefined number of iterations. This routine may

be shortened in the ensuing steps [Kaelo and Ali (2007)]:

Step 1 Create a random population, S = {x0,x1, ..,xN} and let x0 be the initial

condition which in the case of controller tuning matches the set of controller

gains attained through manual tuning.

Step 2 If stopping criterion has been met, select the fittest individual in S as the

optimal solution; otherwise continue to the next step.

Step 3 In each iteration, evolve the ith individual xi in population S as follows: Ran-

domly choose three mutually independent individuals from S and denote them

as xα, xβ and xγ .

• Create a mutated individual x̂i according to Eq. (3.6).

• Compute the trial candidate yi by applying crossover with the individual

xi and the mutated individual x̂i according to Eq. (3.7):
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Figure 3.8: Schematic illustrating the search capabilities of DE-based optimization

• Replace the ith individual xi in S with the candidate solution yi if and

only if yi contains a better fitness value than its predecessor.

• Repeat the process for each individual within S and return to step 2.

In relation to the structure of the DE, it is worth commenting on its potential

to solve the problem from a computational point of view. Firstly, this algorithm

has the ability to search the solution space more efficiently than most optimization

algorithms. This is because the mutated individual x̂i for each individual xi is de-

termined based on only 3 randomly selected mutually independent individuals xα,

xβ and xγ from the solution space S. Such a setup creates excellent flexibility that

permits candidate individuals to form anywhere in the solution space. Hence, many

portions of the solutions space are expected to be explored with this configuration.

This concept is further explained in an analogous 2-dimensional plot shown in Fig-

ure 3.8.

The simulation was performed using the first two memenbers in S. Each individual

in the population is represented as a dot. The subscripts 1 and 2 in Figure 3.8

correspond to the first and second individuals in the populations respectively. From

Figure 3.8, it is evident that the trial points yi which is represented as squares,

can fall anywhere in the search space depending on the random selection of its

respective parental individuals xα, xβ and xγ from which they were determined

as per Eq. (3.6). Therefore, it is evident that DE possesses excellent exploration

abilities. The second quality of the DE that makes it stand out compared to other

optimization algorithms is the fact that the xi individual is replaced only if its

respective candidate solution yi has a better fitness value. This condition basically
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only allows progression or evolution of the individual if its fitness improves. Such

a rule guarantees that the algorithm will converge to a solution. However, this

condition does tend to slow down convergence speed.

3.1.5.2 GA Global Optimization Method

After the random population S has been generated as in the case of DE, a new set of

NN offspring Of(y0,y1,y2, .,yNN) are produced through the reproduction of par-

ent individuals from S. Each pair of parents reproduces two offspring. The choice of

parents is based on tournament selection where the individuals with a better fitness

value are more likely to reproduce. Tournament selection operates by randomly

choosing two random individuals xaj and xbj from S and the individual with the

superior fitness is chosen as the paternal parent P1j of two future offspring that will

be created from the jth reproduction. Thereafter, two additional individuals xcj and

xdj are randomly selected from S and the corresponding fitter individual is chosen

as the maternal parent P2j . Tournament selection may be summarised through the

following relations:

P1j =

xaj if f(xaj) ≤ f(xbj)

xbj otherwise
(3.9)

P2j =

xcj if f(xcj) < f(xdj)

xdj otherwise
(3.10)

Two new offspring are generated from the jth maternal and paternal parents [P1j

and P2j ] according to the following equations:

y1j = P1jrand(1, N) + P2j(1− rand(1, N)) (3.11)

y2j = P1j(1− rand(1, N)) + P2jrand(1, N) (3.12)

where rand(1, N) is an N -dimensional vector of random numbers, N is the num-

ber of parameters or problem variables being determined through the optimization

routine, and y1j and y2j are the two new offspring that are produced as a result of

reproduction.

The process of tournament selection and subsequent reproduction is repeated until

all offspring in Of are computed. The set of NN offspring thereafter replace the NN

worst individuals in S. The aforementioned process is repeated for each generation

until the stopping criterion is met. Thereafter, the optimal solution is chosen to be
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the individual in S with the best fitness value. This routine may be summarised as

follows [Crews et al. (2011)]:

Step 1 Generate a random set of individuals, S = {x0,x1, ..,xN}, in addition to

the initial condition x0which in controller tuning corresponds to the set of

controller gains obtained through manual tuning.

Step 2 If stopping criterion has been met, select the fittest individual in S as the

optimal solution; otherwise continue to the next step.

Step 3 Check if the specified number of offspringNN has been produced. If so proceed

to step 8, otherwise continue to step 4.

Step 4 Randomly select two individuals xaj and xbj from the population S and there-

after choose the individual with the superior fitness value as the paternal parent

P1j as described in Eq. (3.9).

Step 5 Randomly select two individuals xcj and xdj from the population S and there-

after choose the individual with the superior fitness value as the maternal

parent P2j as described in Eq. (3.10).

Step 6 Produce two new offspring by applying crossover between the paternal P1j and

maternal P2j parents as outlined in Eqs. 3.11 and Eq. (3.12) and continue to

step 7.

Step 7 If the offspring set O is completed, continue to the next step, otherwise return

to step 3.

Step 8 Replace the NN individuals with the weakest fitness values in S with the

newly produced NN offspring and return to step 2.

With regards to the strengths and weakness of this algorithm, there are several char-

acteristics that assure convergence but there are also some aspects that limit the

efficiency of the algorithm. Firstly, parental selection which is depicted in Figure

3.9 is an effective method in finding good offspring for the next generation. This is

primarily due to the fact that offspring (represented as triangles) are produced from

the superior individuals in the solution space. This mandate secures successively

fitter generations. In Figure 3.9, each individual in the population is represented as

a dot. Randomly selected individuals xaj and xbj undergo tournament selection to

obtain the paternal parent P1j , whereas randomly chosen individuals xcj and xdj

also go through tournament selection where the fitter individual is chosen as the ma-

ternal parent P2j . From the process of reproduction, an offspring y1j (represented
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Figure 3.9: Vector plot showing the process of reproduction

as a triangle) is created which resides in the vicinity of the fitter individuals within

the population and hence close to the optimal solution O, which is represented as a

square.

However, due to the nature of nonlinear problems and the multi-dimensional vector

space used in this investigation, superior offspring may not always be generated.

Sometimes the offspring may be weaker than all the discarded individuals from the

previous generation. Furthermore, since GA replaces the NN individuals with the

weakest fitness values regardless of the fitness of the offspring, the overall grade of

the new generation may be weaker. Such a scenario will lead to the same parents

reproducing repetitively due to the probabilistic nature of parental selection. This

would lead to similar weak offspring being produced during each generation and this

would subsequently create premature convergence

3.1.5.3 PSO Global Optimization Method

In the case of PSO, the search space is reflected as an n-dimensional world (n-

represents the number of parameters being optimized) where swarms of animals or

particles of a random population set S = {x0,x1,x2, .,xN} flock to search for food

or in this case the optimal solution. After the initial population or swarm in this case

has been defined as in the case of DE and GA, the fittest individual or particle is

registered and every particle in the swarm is programmed to travel to a new position
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described as:

x(t+ 1) = x(t) + V(t+ 1) (3.13)

where x is the population position matrix with each row containing the set of prob-

lem variables or parameters pertaining to each particle. V is the matrix of particle

velocity and holds the velocities at which each particle travels in each direction in

the n dimensional world. In essence this refers to the amount at which the particles

increment by in each direction. t signifies information relating to the previous iter-

ation and t+ 1 denotes the information concerning the next iteration.

The velocity at which each particle travels in each direction depends on the particle’s

previous velocity in that specified direction, the corresponding position of the fittest

particle in that direction, and on the corresponding position of the particle’s per-

sonal best position. To record the personal best results of each particle, the matrix

Pbest which contains the personal best parameter values for each particle is created

and updated for all iterations.

In each iteration, every particle converges to some extent towards both the fittest

individual in the population Gbest, and in the direction of its personal best solution

Pbest. The convergence towards the global best particle is known as the global search

and that towards its corresponding personal best particle is known as local search.

The rate of convergence in these neighbourhoods are primarily factors of how much

weighting is placed on local and global search. The PSO weighting parameters may

be adjusted to attain optimal convergence. The velocity matrix is constructed on

local and global search vectors and their associated weighting and is described as

follows:

V(t+ 1) = w1V(t) + w2rand1(1, N)× (Pbest − x(t)) +

w3rand2(1, N)× (Gbest − x(t)) (3.14)

where, Gbest is the position of global best solution, Pbest is a matrix containing

positions of the personal best solution for each particle in the swarm, (Pbest − x(t))

represents the local search and (Gbest−x(t)) denotes the global search contributions.

w1 is the weighting factor of the previous velocity and determines how much the par-

ticle’s previous velocity affects the particle’s new velocity; w2 is the social weighting

and regulates how much the local search affects the particle’s new velocity; w3 is the

global weighting and controls how much the global search affects the particle’s new

velocity; and rand1(1, N) and rand2(1, N) are vectors of random numbers with a

size of that of the swarm and these vectors ensures the local and global searches for
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each particle occurs at different rates.

By changing the position of each particle according to the aforementioned equations,

each particle has the potential to improve upon its personal best location and has

the ability to become the global best particle. Hence after each iteration, the fitness

value of each particle is analysed and if it improves from its personal best solution, its

personal best location is replaced with its current location. This is further explained

as follows:

Pbesti =

xi(t+ 1) if f(xi(t+ 1)) < f(Pbesti)

Pbesti otherwise
(3.15)

where Pbesti is the personal best location of the ith particle in the swarm, and

xi(t+ 1) is the corresponding position of the ith particle that has been computed in

the most recent iteration.

Moreover, the global best particle may be defined as the fittest particle from personal

best matrix. The process is repeated in each iteration and terminates once the

stopping criterion has been met and the optimal solution is chosen as the global

best particle at the end of that iteration. The tasks involved in this algorithm are

further clarified in the following steps:

Step 1 Produce a random swarm of particles S = {x0,x1, ..,xN}, as in the case of

DE and GA.

Step 2 Define the global best particle as the fittest particle in the swarm and let the

personal best particles be the same as the initial population

Step 3 If stopping criterion is met, advance to step 7, or else carry on to step 3.

Step 4 Calculate the new set of positions x(t+ 1) for the various particles using Eqs.

3.13- 3.14.

Step 5 For each particle perform the following actions: If the fitness of the newly

computed particle is better than its personal best location, then replace the

personal best particle’s location with those of the newly computed particle as

described by Eq. (3.15)

Step 6 Register the best particle in the personal best matrix as the global best particle.

Step 7 Use the global best particle as the optimal solution.
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Figure 3.10: Vector plot demonstrating the process of Particle Swarm Optimization

In relation to expected performance of the PSO routine, several comments may be

made by drawing an analogy of a 2-dimensional with 2 variables shown in Figure

3.10. In this figure, each particle xi is represented as a dot, the correpsonding per-

sonal best particle position Pbesti is represented as a circle, the global minimum is

a square, that of the global best particle computed thus far Gbest is a diamond, and

the position of the particle in the next iteration xi(t + 1) is a triangle. The first

performance aspect worth noting is that each particle in the solution space explores

potentially successive regions where an optimal solution may be. Areas around the

global best particle and personal best position of each particle are potentially plau-

sible areas to search as they are known to contain superior fitness values than other

regions in the search space. Hence, searching these regions creates a successful and

efficient searching routine which assures convergence to a solution.

However, each particle will continue to change or move in the solution space even if

they are continuously producing a weak solution. Such particles would add no value

to the algorithm and only reduce the speed of the algorithm. The region explored

particle x1 is around the vicinity of the particle’s x1 personal best solution P1 is

the area enclosed by the upper circle in Figure 3.10, whereas the section inspected

around the global best solution Gbest is the neighbourhood enclosed by the lower

circle. The resulting particle’s new position x1(t+ 1) will lie within one of the two

circles and as shown in the Figure 3.10, it may be closer to the optimal solution or

drift further away from it. [Chiou et al. (2012), Nagaraj and Vijayakumar (2011)]
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3.1.5.4 CRS Global Optimization Method

Firstly, an initial population S = {x0,x1, ..xN} is the number of problem variables

being computed) is generated as in the case of DE, GA and PSO; but in contrast to

the preceding algorithms, the size of this population N is set to be exactly ten times

larger than the number of variables present in the problem (i.e. N = 10n). Each

iteration consists of several steps, the first of which involves randomly selecting n+1

distinct individuals {v1,v2, ..vn+1} from the population set. Next, the median or

centre of gravity G of the first nr selected individuals {v1,v2, ..vn} is computed

with G denoting the median of the ith problem variable. Thereafter, a candidate

individual y is calculated based on G and the individual vn+1 that was earlier chosen

from the population set and not incorporated in calculating G. The governing

equation for the candidate individual is as follows:

y = 2G− vn+1 (3.16)

This candidate solution y is accepted and replaces the weakest individual in the

population if and only if its fitness is superior to that of the weakest individual xw

in the population. This reasoning can be modelled mathematically as follows:

xw = minS (3.17)

xw =

y if f(y) ≤ f(xw)

xw otherwise
(3.18)

After the above steps are completed, the procedure is continued until the stopping

criterion is met. The procedure for CRS global optimization algorithm is summa-

rized in the following steps:

Step 1 Generate a randomly distributed population set that uniformly spans the

search space.

Step 2 Check if the stopping criterion is met and if not continue to the next step,

otherwise proceed to step 7.

Step 3 Randomly select nr + 1 distinct individuals from the population set S.

Step 4 Compute the median for each problem variable from the first nr individuals

that were chosen in the previous step.

Step 5 Formulate a candidate individual y according to Eq. (3.16).

Step 6 Replace the weakest individual in the population xw with the candidate indi-

vidual y if the y incurs a lowest cost than xw, and thereafter return to step

2.
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Figure 3.11: Impact of the centre of gravity on the Controlled Random Search

algorithm

Step 7 Select the individual with the best fitness value as the optimal solution.

Several points may be made regarding the strengths and defects of this algorithm.

Firstly, the candidate solution y is only accepted if it produces a satisfactory fitness

value that is better than the worst individual in the population. Like the DE, this

condition will guarantee progression towards better solutions, but will however tend

to slow down the convergence speed of the algorithm. Eq. (3.16) suggests that the

centre of gravity G plays a major role in computing the candidate solution y . This

relationship may have an adverse effect and create early convergence. Such a situ-

ation plays out if the particles begin to clutter around one another and this would

consequently cause G to be bounded to a certain region no matter what individuals

from the population are used to compute G. Consequently, early convergence will

occur and the algorithm will be stuck in a local minima. This scenario is further

explained in Figure 3.11, where each individual in the population is represented as

a dot.

The circles in Figure 3.11 are the regions where the centre of gravity G may lie within

for a specific scenario. The centre of gravity of n + 1 randomly selected particles

G can reside anywhere over a greater range as the population is distributed across

a greater area as illustrated in Figure 3.11a. In this case there is more flexibility

in the search exploration of the CRS, which gives it a better probability of finding

the optimal solution O. However, if the population is cluttered in a certain region

as shown in Figure 3.11b, the centre of gravity G will be restricted to a certain

range of values which are relatively far from the optimal solution O. This will

ultimately limit the flexibility of the algorithm and consequently the algorithm will
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never approach the optimal solution. [Price (1983), Ali (1994), Ali et al. (1997),

Jeżowski et al.(2005)]

3.1.5.5 PS Global Optimization Method

In contrast to the aforementioned optimal policies, pattern search (PS) is not population-

based and no initial population set is created but rather a trial solution continuously

travels within the search space with the aim of attaining a better fitness value. This

algorithm operates by first discretizing the search space into an n-dimensional mesh

with n indicating the number of problem variables as in the case of PSO. In other

words, each problem variable is associated with each coordinate axis. The incremen-

tal spacing along each dimension within this mesh is scaled according to the order of

magnitude of the problem variable that each dimension signifies. The incremental

spacing of the ith problem variable is denoted as Ai with A being a one-dimensional

vector containing the incremental spacing of each problem variable. An initial con-

dition x0 is entered and is now defined as the trial solution y. In each iteration, the

trial solution migrates along one of its axis by one step and thus is at new position

w, which is calculated as:

w = y +Aiei (3.19)

where ei is the ith unit vector. If the solution does not improve through this re-

location i.e. f(w) ≥ f(y), the trial solution returns to its original location y and

proceeds along the next unexplored dimension. As soon as the solution improves

f(w) ≥ f(y), its new position w becomes the best solution y. Thereafter, the in-

cremental spacing of each of the dimensions increases by a scaling factor ε and the

iteration is complete [Kolda et al. (2003)]. However, if the solution did not improve

after each dimension had been explored, the step size of each dimension is scaled

down by ε and the next iteration proceeds. The mathematical equivalence of these

decisions is represented as follows:

y =

w if f(w) ≤ (y)

y otherwise
(3.20)

The scaling factor is defined as:

ε =

ε× 2 if f(w) ≤ (y)

ε× 0.5 otherwise
(3.21)

A(t+ 1) = A(t)× ε (3.22)
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Figure 3.12: Demonstration of the Pattern Search local optimization technique

where (t + 1) denotes the next iteration and t signifies the current iteration. The

algorithm continues until the incremental step size of the scale factor ε falls below

its threshold values. PS optimization routines may be summarized as follows:

Step 1 Discretise the search space into an n-dimensional mesh and specify the initial

incremental spacing along each its dimensions.

Step 2 If the scaling factor ε drops below its threshold value, stop the algorithm, and

use y as the optimal solution; otherwise continue to the next step.

Step 3 Check if all dimensions have been explored, if not continue to the next step;

otherwise proceed to step 7.

Step 4 Migrate the best solution y along one of its unexplored dimensions to a new

position w which is computed using Eqs. 3.19.

Step 5 If the new position w has a superior fitness than its original location f(w) ≤
(y), let the new position w replace the best position y (refer to Eq. (3.20);

and increase the scaling factor ε according to Eq. (3.21)

Step 6 Return to step 3 if f(w) ≤ (y), otherwise continue to the next step.

Step 7 If the solution has not improved after each dimension has been explored, de-

crease the incremental spacing according to Eq. (3.21) and return to step 2

and reinitiate the exploration process.

Figure 3.12 presents a graphical representation of the algorithm for the case of a 2-

variable system. The trajectory of the solution y is made of discrete steps as shown

in Figure 3.12b and if the solution improves the steps sizes are decreased as shown

in 3.12a and the opposite occurs if the solution does not (see Figure 3.12c). This

simple set of condition will cause the algorithm to converge to the optimal solution.

Furthermore, the solution only moves if the fitness improves. This will tend to slow

the convergence speed but will guarantee efficient exploration. However, the sheer
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number of variables to be computed in AVSS design as well as the nonlinear nature

of AVSS and the dynamic neural networks may not be easily captured by these

simple conditions. As a result, early convergence may occur where the solution gets

trapped in a local minimum. [Kolda et al. (2003), ElMadany et al. (1990)]

3.1.5.6 Optimization Set Up and Initialization

The performance index presented in Eq. (3.5) aims to minimize four vehicle trade-off

qualities and hence this task is an iterative design process. Furthermore, the pres-

ence of nonlinearities, the nonlinear and comparatively severe deterministic road

disturbance explained in Eq. (2.89), as well as actuator dynamics add further com-

plexities to the investigation. In order to prevent inherent difficulties associated

with these issues, the bounds of the search space is defined with the aim of attaining

minimal computational expense, improve speed and prevent early convergence of

the various routines. Before global optimization was performed, the search space

or range of values where each gain is set to lie is determined through the process

of manual tuning. This is to ensure that areas that are known to produce a result

that contradicts the design specifications is not searched. Furthermore this search

space is refined to regions where the global minimum is intuitively anticipated to lie.

Moreover, as the objective of these optimization routines is to improve the results

obtained through manual tuning, the initial condition used in each algorithm will

correspond to the set of PID gains attained through manual tuning.

A complete list of the parameters of each algorithm is listed in Table 3.3.

Table 3.3: Global optimization parameter settings for the suggested routines

Routine DE GA PSO CRS PS

Population 100 300 100 60 1

Size

Stopping 100 100 100 100 Scaling

Criteria Generations Generations Iterations Iterations factor ε ≤
Criteria 1× 10−8

Optimization F=2 K=100 w1=0.5 n=6 A1=8000

Parameters w2 = 2 A2=200

w3=2 A3=200

A4=0.005,

A5=0.005

A6=0.00001
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Figure 3.13: Performance index convergence history of the DE, GA and PSO algo-

rithms

3.1.6 Examination of System Response Attained through the use

of Global Optimization Methods

The convergence history of the DE, GA, PS and PSO algorithms are superimposed

in Figure 3.13 and that of the CRS optimization routine is presented in Figure 3.14.

Several issues are worth discussing regarding the convergence histories of the op-

timization algorithms. Each of the optimization algorithms produced a significant

lowering of the performance index from that of the manually-tuned case. From all

the optimization routines, the DE tuning method obtained the best performance

index value followed by the GA, PSO, PS and CRS respectively. The effective per-

formance achieved by DE was expected due to two reasons: DE possesses efficient

exploration capabilities; and it contains a hard constraint where trial individuals

are only accepted if they produce a better performance index value. GA and PSO

performed slightly weaker than the DE. This is because they do not apply hard

conditions in accepting trial individuals or particles, but rather the particles in the

PSO continue to move regardless of the variation in fitness values; and the weakest

individuals in the population set of the GA are replaced by offspring irrespective of

their fitness values.
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Figure 3.14: Convergence history of performance index when applying CRS-based

controller tuning

Nevertheless, GA, CRS, PS and PSO did perform well as compared to the manually-

tuned PID controller with a substantially superior performance index. From a GA

standpoint, this is anticipated as tournament selection and its reproduction sub-

routines ensure that the fittest individuals in the population are most likely to re-

produce. This inherently creates offspring which are either slightly weaker or fitter

than their parent individuals. Furthermore, the fittest individuals in the population

are retained in successive generation until they are surpassed by a great number of

offspring. These characteristics certify that the GA will converge to an adequate

solution as was observed in this investigation.

With regards to the PSO performance, both explorations in the vicinity around each

particles best position Pbesti in search space S and around the neighbourhood of the

fittest particle Gbest improves the flexibility and efficiency in searching the solution

space S. This in turn yields effective convergence and guarantees an acceptable

optimal solution. The gains computed through each case are presented in Table 3.4.

Some of the gains reported were negative and others were of a low order of magni-

tude. The kd gains of the inner loop are smaller than 1 × 10−9 may effectively be

replaced by zero and such reported values also indicate the high sensitivity of these

gains. The negative gains reported were nothing more than a consequence of the

optimization. The KP gains in the outer-loop are substantial and these high loop
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gains are not unusual for PID-based control. It must be ensured that these high loop

gains do not cause the power supply to saturate. The outer loop integral gains KI

computed through the optimization algorithms are important as they ensure that

the steady-state error of the controlled variable is effectively zero, and those of the

inner loop ki are necessary to ensure that the desired actuator force is adequately

tracked.

Table 3.4: PID gains computed using the various global optimization schemes

Control Loop Outer Loop Inner Loop

Gain KP KI KD kp ki kd

DE 23681 10 1597 0.00193 0.00389 3.348×10−9

GA 23518 15 2507 0.00134 0.00282 4.612×10−9

PSO 23005 -3 1681 0.00195 0.00527 3.319×10−9

CRS 23188 198 3174 0.00118 0.00241 3.319×10−9

PS 2400 -200 1700 0.00209 0.00374 3.122×10−9

The convergence to a better performance index indicates that global optimization

methods improve the overall system performance. However, these plots do not ex-

plicitly show whether the conflicting trade-offs of AVSS have been resolved. Hence,

as in the case of the PID-based AVSS; the response of the various AVSS trade-offs

namely suspension travel, sprung mass acceleration, road holding and power con-

sumption are presented Figures 3.20 to 3.24, respectively for further examination.

Quantitative information relating to these various plots as well as those used in pre-

vious investigations is presented in Table 3.5 and are graphically summarized in bar

graphs presented in Figures 3.15 to 3.19. The analysis of the these controllers in re-

lation to other controllers is an important aspect of this investigation as it highlights

the performance of the proposed controller architecture to those of linear, optimal

and intelligent controllers.

In relation to these groups of controllers, Amani et al. (2004) applied an optimal

policy through QFT control, and Kumar and Vijayarangan (2007) incorporated

PID control but for a system that did not contain actuator dynamics, whilst Lin

et al. (2009) utilised an intelligent controller which is a hybrid of sliding mode and

fuzzy logic control.

However, in contrast to this investigation Kumar and Vijayarangan (2007) and Lin

et al. (2009) measured the performance of a vehicle travelling at a horizontal speed
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Figure 3.15: Bar graphs depicting the variation in suspension travel for each control

law

Figure 3.16: Bar graphs illustrating the difference in heave acceleration for the

proposed controllers

of 40km/h as it passed over a less severe bump with height of 4cm. Moreover, Amani

et al. (2004) based their investigation on a vehicle with a horizontal speed of 20km/h

and a 5cm bump amplitude. As in this investigation, Amani et al. (2004) incorpo-

rated actuator dynamics which makes his model a better benchmark for comparison.
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Table 3.5: Summary of selected suspension performance incorporating the various

optimization routines

Technique
Suspension Sprung Mass

Travel(m) Acceleration(m/s2)

RMS Peak RMS Peak

PVSS 0.025 0.087 4.1 13.35

CRS 0.022 0.069 0.99 4.2

PS 0.021 0.071 0.93 4.1

GA 0.019 0.069 0.98 4.4

DE 0.018 0.071 0.99 4.1

PSO 0.017 0.068 0.96 4.2

Ling N/A N/A N/A 2.5

Kumar N/A 0.0048 N/A 3.1

Amani N/A 0.0045 N/A 6

Technique
Control Input Force

Voltage(V ) (N)

RMS Peak RMS Peak

CRS 0.99 4.2 749 2746

PS 0.93 4 631 2369

GA 0.98 4.4 593 2289

DE 0.99 4.1 631 2369

PSO 0.96 4.2 659 2509

Technique
Settling Wheel

Time(s) Deflection(m)

Peak RMS Peak

PVSS 2.8 0.0064 0.0206

CRS 1.9 0.0025 0.0104

PS 2.4 0.002 0.0090

GA 1.9 0.0021 0.0089

DE 1.8 0.0023 0.0090

PSO 1.8 0.0022 0.0093

Ling 1.8 N/A 0.0060

Kumar 3.01 N/A 0.0080

Amani 3.5 N/A N/A

Performance Index J

CRS PS GA DE PSO

0.148 0.145 0.13 0.092 0.134
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Figure 3.17: Bar graphs summarizing the road holding data for each control case

Figure 3.18: Bar graphs summarizing the results obtained for global optimization

for the case of actuator force
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Figure 3.19: Quantitative information pertaining to the control input voltage re-

sponse

Suspension travel plots clearly indicate that each of the optimal policies apart from

the CRS completely remove the effects of the disturbance within 1.8 seconds, which

is additionally better than that obtained in previous investigations which had less

severe disturbances (namely Amani et al. (2004), Lin et al. (2009), and Kumar and

Vijayarangan (2007)). Secondly, each of these PID-based routines displayed a valu-

able transient characteristic, where oscillations immediately dampened out as soon

as the disturbance was passed, whereas the manually-tuned case exhibited an ad-

ditional peak before it settled. This subsequently reduced the RMS value of the

suspension travel. The only drawback is that, the peak suspension travel for the

optimal cases was greater than that of the manually-tuned case, but they never ex-

ceeded their stipulated limit.

The ride comfort and road holding responses of optimal policies shown in Figures

3.21 and 3.22 clearly point out that they were far superior to the manually-tuned

case and PVSS with reduced RMS and peak values, but their peak values were still

greater than those obtained in previous studies. However, these studies included less

severe road profiles, which suggest the response obtained here is still a significant

improvement to previous investigations. Furthermore, the optimal-based PID rou-

tines displayed a large degree of chattering where the PSO was the worst followed

by the CRS, PS, GA and DE respectively. This may be as a result of the high

derivative gain KD computed for the outer loop using these optimal routines, since
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derivative gains create rapid rise time which may incur larger oscillations for more

sensitive outputs (such as the wheel deflection) in the system.

Body-heave acceleration plots (see Figure 3.21) which characterise the ride comfort

experienced by the passengers show that the force experienced by the passenger was

most severe as the vehicle passed peak of the bump. The manually-tuned PID and

PVSS cases could not manage this facet particularly well whereas every optimal

policy brought down this peak to 4.5m/s2 and was thus able to meet the desired

ride comfort specifications with DE and PS performing the best in this respect. Fur-

thermore, the optimal policies greatly reduced the RMS acceleration and brought it

to the ”Fairly uncomfortable” range of the International Organization for Standard-

ization 2631 (2003). In relation to the ride comfort response of previous studies,

Kumar and Vijayarangan (2007) and Lin et al. (2009) investigations had lower

acceleration peaks but these investigations did not include actuator dynamics and

used less severe road disturbances which must be taken into account.

These positive performances may be attributed to the objective function which

placed considerably large weightings on suspension travel, ride comfort and road

holding. The large peaks obtained for suspension travel are expected as it is required

to help drive the ride comfort lower such as to meet the ride comfort specifications.

With regards to power consumption, actuator force and control input voltage in-

curred a greater cost for global optimization based-controller tuning as compared to

that of the manually-tuned case. This infers that the advantageous aspects of opti-

mal AVSS design are attained at the cost of power consumption. This is expected

for one of two reasons, firstly, the ratio of control voltage to its respective weighting

factor was much smaller than the other suspension performance criteria and hence

did not contribute significantly to the performance index. Secondly, in order to meet

the desired acceleration specifications, a larger actuator force is needed to cancel out

the effects of the road disturbance and hence a larger actuator force was needed to

improve ride comfort. Furthermore, it is worth mentioning that even though the

optimization algorithms computed high outer loop gains (see Table 3.4), they did

not cause the control input to saturate.
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Figure 3.20: Suspension travel response for optimized PID-based AVSS

Figure 3.21: Sprung mass acceleration response for optimized PID-based AVSS

With regards to the best optimal policy, DE incurred the least cost with the best

ride comfort, road holding, suspension travel and least degree of chattering. Hence,

DE will only be used for the case of the full-car optimal PID design.
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Figure 3.22: Road holding characteristics for optimized PID-based AVSS

Figure 3.23: Actuator force supplied for the optimized PID-based AVSS
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Figure 3.24: Control input voltage supplied for optimized PID-based AVSS

3.1.7 Sensitivity to Parameter Variations and Frequency-Domain

Analysis for PID-Based AVSS

Figures 3.4 and 3.20 clearly indicate that the control system is stable in the Bounded-

Input-Bounded-Output (BIBO) sense as the system clearly settled with a steady-

state error in the order of magnitude of 0.0001m. Investigation into the effects of

parameter changes is also studied for the cases of changes in mass, tyre stiffness

and speed to further examine the stability of the system. These specific parame-

ters are altered as these changes will occur in reality, as passengers and fuel will

alter over time, tyres will lose pressure and the vehicle will be travelling at different

speeds. As the DE performed best, stability sensitivity will be carried out for the

DE-optimized PID-controlled AVSS. Parameter variation plots relating to suspen-

sion travel are presented in Figures 3.25 and 3.26.

With regards to the variation in vehicle speed, the steady-state error increased for

both a 20% increase and decrease in vehicle speed. An increase in vehicle speed pro-

duced weaker transient behaviour with an additional peak. The order of magnitude

of the steady-state error for this parameter uncertainty is comparatively high but is

acceptable considering the large degree of nonlinearities as well as the adverse effects

of actuator dynamics. Variation in vehicle mass up to 20% did produce a steady-

state error but it was 7% of the peak value and this is within an acceptable tolerance.

The same may be concluded for the case of a 20% variation in tyre stiffness as the
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Figure 3.25: System response for a -20% variation in some selected system parame-

ters

Figure 3.26: System response for a +20% variation in some selected system param-

eters

largest steady-state error was only 12% of the peak value. Moreover, the system

remained BIBO stable for all the considered cases and this implies that the system

is stable and has an acceptable degree of sensitivity to parameter variations. Imple-

mentation of gain scheduling for variation in vehicle speed may resolve this weakness.

83



European Commission (2002) demands satisfactory ride comfort for human expo-

sure to Whole-Body-Vibration (WBV) frequencies ranging between 0.5Hz to 80Hz.

Hence, it is paramount that vehicle ride comfort be studied for these frequencies.

The European Commission (2002) and International Organization for Standard-

ization 2631 (2003) argued that the high/low frequencies of vibrations in the range

of 1Hz to 8Hz typically cause the most discomfort to the human body. The Inter-

national Organization for Standardization 2631 (2003) and Griffin (2007) quantify

ride comfort in terms of the RMS value of body-heave acceleration and have pro-

vided the range of RMS values that are satisfactory for human comfort. On the

other hand, European Commission (2002) provided specifications for WBV. The

frequency-domain plots for ride comfort and road holding for the various cases are

presented in Figures 3.27 and 3.28 respectively. These plots were generated using

the Power-Spectral-Density (PSD) estimates which were performed in the signal

processing toolbox of the Matlab/Simulink environment. The PSD was estimated

using the Fourier analysis. This essentially captures the response in the complex

plain where thereafter the behaviour may be studied in terms of frequencies. The

transformation is as follows:

X =
NNFT−1∑

n=0

xne−2iπk n
NNFT k = 0, ....., NNFT − 1 (3.23)

The resulting transformation in the complex plain (xn) is computed through the

welch algorithm with a configuration listed in Table 3.6. Stability or convergence is

ensured as long as the exponent in the above terms stays negative, which is the case

for the current study.

Table 3.6: PSD configuration settings for frequency-domain study

Parameter Setting

Computation Algorithm Welch

Windowing Function Hanning

Number of points included in fourier transform (NNFT) 1024

Length of Window (NWind) 256

Sampling Frequency 80Hz

The worst ride comfort experienced by the vehicle was at the lower frequencies which

ranged from 0.1Hz to 0.8Hz. The frequency weighted RMS acceleration of the

PVSS case exceeded the maximum Exposure-Limit (ELV) stipulated by the Euro-

pean Commission (2002) for this range, whereas the AVSS cases stayed comfortably
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Figure 3.27: Frequency response for body-heave acceleration of the passive system

and the proposed control schemes

below them. In this respect, the AVSS cases were able to achieve a considerable im-

provement from the PVSS case, with the optimal AVSS case being the better of the

two. Additionally, the AVSS cases produced RMS values that fell in the ”less dis-

comfort range” of the International Organization for Standardization 2631 (2003) At

the onset of 2Hz, the signals were successfully attenuated for all cases with marginal

differences between them. Beyond 8Hz the passive system performed the best. In

this range AVSS cases displayed a resonance peak and a minor peak at 15Hz and

80Hz respectively.

With regards to road holding, the frequency response for the range between 0.01Hz

to 80Hz resembled that of a high pass filter. From 20Hz onward signals for each

case were attenuated, whereas the highest peaks occurred in the range 0.01Hz to

1Hz. The AVSS cases did outperform the PVSS case in this range with a minimal

difference between the two of them. Furthermore, as both road holding and ride

comfort frequency plots indicated an improvement from the passive system, it infers

that the proposed AVSS schemes have found a better compromise between these

conflicting performance criteria as compared to that of the passive system.
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Figure 3.28: Road holding frequency response for passive, PID-controlled and DE-

controlled cases

3.1.8 Summary

Optimal design of PID control is an effective tool in meeting hard design specifica-

tions such as those placed on ride comfort. They tend to improve suspension travel,

and road holding as well as transient behaviour. However, this is attained at the

cost of power consumptions as a greater force and control input is needed to im-

prove ride comfort, road holding and suspension travel. Furthermore, they tend to

produce large derivative gains whose inherent ability to increase rise time tends to

add chattering to the more sensitive outputs of the system. DE is the best optimal

routine and also exhibits a satisfactory robustness to parameter changes. In terms

of frequency response, each case was able to attenuate signals from 5Hz to 80Hz. In

the lower frequencies (0.01Hz to 5Hz) the exposure levels were the worst. However,

the AVSS cases did produce a significant improvement in this domain with RMS

ride comfort values falling within the ”Less Discomfort” range of the International

Organization for Standardization 2631 (2003).
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3.2 PID-Controlled Full-Car System

3.2.1 Introduction

Numerical studies of full-car AVSS design are better than those of quarter-car AVSS

as they provide insight into the lateral and longitudinal dynamics of the vehicle. Such

information is necessary to qualitatively describe the vehicle handling characteristics.

Full-car models also contain coupling between the wheels, where a disturbance at

one wheel affects the dynamics of all the vehicle’s states. Consequently, this model

has more system states and more Degrees-of-Freedom (DOF) and these features

tend to make the model more complex. However, studies using this model must be

conducted as it is the most realistic model that captures all the major dynamics of

the vehicle namely pitch, roll and heave.

3.2.2 Controller Design

As in the case of the quarter-car PID-based AVSS design discussed in section 3.1,

the suspension travel dynamics at each wheel is regulated by an individual electro-

hydraulic actuator. A schematic of the control law is illustrated in Figure 3.29. The

suspension travel at each wheel is chosen as the controlled variable for the same

reasons previously discussed. As before, a two-loop PID controller is used where

the outer loop ensures that the system returns to its desired set point and the inner

loop maintains actuator stability.

yijd corresponds to the equilibrium set point of the i, jth wheel, which is set to zero to

address regulation problem; the subscripts ij are representative of the front right fr,

front left fl, rear right rr and rear left rl wheels respectively; e1ij is the outer loop

control error of the i, jth suspension whereas e2ij denotes that of the respective inner

loops; Faij is the actuator force applied at the i, jth actuator present at the i, jth

suspension with Fdij signifying its respective desired force which is being tracked

using the inner PID controllers. yfr, yfl, yrr, and yrl are the suspension travel that

are manipulated through the outer control loops, and ufr, ufl, urr, and url are the

control signals that are passed into the respective actuators of the AVSS. As in the

case of the quarter-car model, the PID controllers operate according to the following

equations:

e1ij = yij − ydij = zij − ztij − ydij (3.24)
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Figure 3.29: Schematic of the PID control architecture for full-car AVSS

Fdij = KPije1ij +KDij

de1ij

dt
+KIij

T∫
0

e1ijdt (3.25)

e2ij = Fdij − Faij (3.26)

uij = kpije2ij + kdij
de2ij

dt
+ kiij

T∫
0

e2ijdt (3.27)

where yij is the suspension travel experienced at the ith forward longitudinal position

and jth lateral position of vehicle, where i may take either f(front) or r(rear), and j

is either r(right) or l(left); kpij and KPij are the proportional gains of the controllers

regulating the i, jth suspension and they correspond to the inner and outer control

loops gains respectively; similary kiij and KIij are the corresponding integral gains

of the controllers; kdij and KDij are the derivative gains of the respective control

loops; and T is the simulation time. The dynamics of each suspension is controlled

by six controller gains and as there are four suspensions, the total number of con-

troller gains stands at 24.

Manual tuning of the PID controllers is performed to select controller gains and to

provide insight into the effects that each gain has on the system performance. With

such knowledge, the bounds of the optimal routines may be chosen intuitively with

the aim of speeding up the process of the selecting gains through optimal policies.
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3.2.3 Performance Criteria and Design Specifications

The design specifications chosen for the full-car system are as follows [Dahunsi et

al. (2011)]:

1. The suspension travels yij is constrained to a maximum of ±0.1m.

2. The control input voltage is limited to ±10volts due to the limitations of the

power supply.

3. The total actuation force must be less than the vehicle weight to ensure that

the vehicle does not leave the ground. Faij ≤Msg

4. Body-heave acceleration: z̈ ≤ 4.5m/s2 and the corresponding (RMS) accelera-

tion should be as low as possible, typically in the range of 0−1m/s2 for the ride

comfort to lie in the ”less discomfort” region of the International Organization

for Standardization 2631 (2003).

5. The controller gains are chosen on the basis of minimising the performance

index presented in Eqs. (3.28) to (3.33). This performance index addresses

vehicle handling, road holding, ride comfort, power consumption and suspen-

sion travel. [Ekoru et al. (2011)].

J = J1 + J2 + J3 + J4 + J5 (3.28)

J1 =
1

T

T∫
0

( z̈

z̈max

)2

+

(
θ̈

θ̈max

)2

+

(
α̈

α̈max

)2
dt (3.29)

J2 =
1

T

T∫
0

[
(Fktij + Fbtij)

(Fktij + Fbtij)max

]2

dt (3.30)

J3 =
1

T

T∫
0

[
yij

yijmax

]2

dt (3.31)

J4 =
1

T

T∫
0

[
Faij

Faijmax

]2

dt (3.32)

J5 =
1

T

T∫
0

[
uij

uijmax

]2

dt (3.33)

where: the performance index J is the cumulative sum of J1, J2, J3, and J4. J1

addresses both vehicle ride comfort and vehicle handling which are characterised by
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body-heave acceleration and, rotational accelerations respectively. J2 aims to min-

imise the road holding properties which are captured through the wheel dynamic

load, J3, J4 and J5 pertain to the suspension travel, actuation force, and control in-

put voltage at each wheel respectively. The maximum permitted heave acceleration,

pitch acceleration, roll acceleration, tyre dynamic load, suspension rattle, actuation

force and control input voltage are denoted by z̈max, θ̈max, α̈max, (Fktij + Fbtij)max,

yijmax , Faijmax and uijmax respectively. The controller gains are determined manu-

ally or through optimization techniques. Manual tuning is largely based on intuitive

reasoning and the optimization algorithms will include DE, and a Modified PSO and

CRS schemes.

3.2.4 Global Optimization Tuning Methods Applied for Gain Se-

lection

Optimal PID controller tuning for the case of the quarter-car model was the most

successful through the use of DE. Therefore, DE is a suitable candidate for comput-

ing gains for the case of full-car AVSS, which possesses a more complex performance

index with a greater number of controller variables, namely the twenty four PID con-

troller gains. On the other hand, the PSO routine produced favourable results that

were almost as good as the DE. Hence, it deserves the opportunity to be tested in

the intricate full-car AVSS model as well. Moreover, the PSO is open to modification

and may be augmented with certain rules or conditions such that it attains better

convergence. CRS is another algorithm which may be altered to achieve better per-

formance. Although it behaved the worst for the case of the quarter-car AVSS, it

still managed to meet hard design specifications and generated a decent solution.

However, it is anticipated that the proposed CRS modifications will produce some

improvement and it is a novel approach whose performance will be interesting from a

computational point of view. Furthermore, since the full-car model is more complex

and requires more variables to calculate, it serves a better platform to analyse the

CRS modifications as opposed to the quarter-car model.

In accordance with the preceding argument, four optimal policies will be used to

select the controller gains for the full-car AVSS. These include DE, PSO, modified

PSO (MPSO), CRS and modified CRS (MCRS). In this section the resulting system

performance of the AVSS will be studied as well and the performance of the optimal

routines in terms relative to one another.
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Figure 3.30: Schematic illustrating the effect of the proposed modified PSO

The DE, PSO and CRS routines are exactly the same as the ones described in the

quarter-car case discussed in section 3.1.5. The only variations is that the number of

problem variables to be calculated are now twenty four, and secondly the objective

function or performance index is now in accordance with the full-car model and

hence has the form presented in Eqs. (3.28) to (3.33). The rest of this subsection is

devoted to explaining the MCRS and MPSO algorithms.

3.2.4.1 Modified Particle Swarm Optimization (MPSO)

To explain the modification and its resulting impact in comparison to the PSO, the

analogy of a swarm of particles in 2D search space with two variables is drawn and

presented in Figure 3.30. Further study of both the PSO governing equations pre-

sented in Eqs. (3.13) to (3.14), and the analogous PSO two-dimensional vector plot,

several inferences can be made regarding convergence on the basis of the search in

the neighbourhood of each particle (i.e. Pbest − x(t)).

In Figure 3.30, O denotes the position of the optimal solution, xi(t) signifies the

position of the ith particle in the search space L denotes the personal best position

that the ith particle had previously passed through, G is the global best position

attained thus far, xi(t + 1) is the next position of the particle which is computed

using the PSO equations as presented in Eq. (3.13) to (3.14).

According to the PSO equations and vector plots, each particle is programmed to

search for the optimal solution in the vicinity of its personal best solution, in the

region around the particle in the solution space which has the best solution, whilst

subjected to the momentum of its velocity from the previous iteration. In the vector
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plot, the vector of local search, global search and velocity are represented as L, G

and V; and the resultant position vector is denoted as xi(t + 1). Moreover, the

particles sizes of these vectors are dictated by the inertial weightings (w1, w2) and

random numbers used in Eq. (3.14). Subsequently, the local and global search vec-

tors L, G and V will randomly fall within the ranges LL, GG and VV respectively.

In relation to convergence properties, it is evident from the vector plots in Figure

3.30a that the resultant vector and hence the resulting particle position may be con-

siderably swayed by the local search vector L based on the ratio rand1
rand2 . Moreover, if

the personal best position of the particle happens to be poor, the resulting position

of the particle may fall even further away from the optimal solution O. Such a

scenario is highly possible as early iterations have shown poor convergence [Alfi and

Fateh (2011)].

In accordance with this reasoning, it would be appropriate to alter Eq. (3.14) by

replacing the personal best position of the particle of interest with the personal best

position of any particle in the solution space which has a superior personal best

result than that of the particle of interest(which is denoted as Pj). This is achieved

by arranging the personal best matrix Pbest according to fitness value. This new

matrix is dentoed as P, with P1 being the weakest one. Pjε (Pa, ......,Pz) taken

at random, where f(Pa), ......, f(Pz) ≥ f(Pbesti). In light of these alterations, Eq.

(3.14) now becomes:

Vi(t+ 1) = w1Vi(t) + w2rand1(1, N)× (Pj − xi(t)) +

w3rand2(1, N)× (Gbest − xi(t)) (3.34)

where Vi, and xi are the velocity and position of the ith particle in the solution

space; Pj is the personal best position of any particles in the solution space whose

personal best position is fitter than the ith particle. Such a modification would

tend to bend the resultant vector closer towards the optimal solution O and hence

improve convergence. This alteration is also depicted in the vector plot in Figure

3.30b. The algorithm is summarized in the following steps:

Step 1 Produce a random swarm of particles S = {x0,x1, ..,xn}, as before.

Step 2 Define the global best particle as the fittest particle in the swarm and let the

personal best particles be the same as the initial population

Step 3 If stopping criterion is met, advance to step 7, or else proceed to step 3.
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Step 4 Calculate the new set of positions x(t+ 1) for the various particles using Eqs.

3.13 and 3.34.

Step 5 For each particle perform the following actions:

• If the fitness of the newly computed particle is better than its personal

best location, then replace the personal best particle’s location with those

of the newly computed particle.

Step 6 Register the best particle in the personal best matrix as the global best particle.

Step 7 Use the global best particle as the optimal solution.

3.2.4.2 Modified Controlled Random Search (MCRS)

In the fundamental CRS equations presented in Eqs. (3.16) to (3.18) the centre of

gravity G has a major impact on the candidate solution y. As G is primarily de-

pendent on the nr selected individuals (v1,v2, ..vn), its value may become fixed and

hence the routine will lack flexibility if the individuals in the solution space become

relatively cluttered as shown in Figure 3.11. Consequently, this will lead to early

convergence and limit the success rate (number of times the weakest individual xw

is replaced) of the algorithm.

To overcome this shortfall, the 3 random individuals will be selected from the so-

lution space S, as opposed to the n + 1 individuals that were previously chosen.

Secondly these individuals will be in ascending order according to their fitness val-

ues with the x1 being the fittest individual followed by x2 and x3 respectively. G

will correspond to the mean of x1 and x2, and the candidate solution y will be

computed as follows:

y = 2G− x3 (3.35)

By doing so, the flexibility of the G and hence the flexibility in the candidate solution

will improve. Furthermore, the weakest of the randomly selected individual x3 shows

greater potential in improving as argued in the vector plot shown in Figure 3.31,

where the candidate solution y is driven closer to the fitter solutions of x1 and x2

and may randomly fall closer to the optimal solution O. Hence, the success rate

of the algorithm will improve. This MCRS algorithm may be summarized in the

following steps:

Step 1 Generate a randomly distributed population set S that uniformly spans the

search space.
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Figure 3.31: Illustration of the contributing effect of the modified CRS routine

Step 2 Check if the stopping criterion is met and if not continue to the next step,

otherwise proceed to step 7.

Step 3 Randomly select 3 distinct individuals from the population set S.

Step 4 Order these individuals in ascending order according to their fitness values

with x1 being the fittest individual followed by x2 and x3 respectively.

Step 5 Set the centre of gravity G to be the mean of the two fittest individuals x1

and x2.

Step 6 Determine the trial individual using Eq. (3.35).

Step 7 Replace the weakest individual in the population xw with the candidate indi-

vidual y; if the candidate solution y incurs a lower cost than xw, then return

to step 2.

Step 8 Select the individual with the best fitness value as the optimal solution.

The parameter settings for each of the optimization routines are listed in Table 3.7.
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Table 3.7: Optimization parameter settings for full-car PID-based AVSS optimal

polices

Routine DE PSO MPSO CRS MCRS

Population 100 100 100 24×10 24×10

Size

Stopping 150 150 150 6000 6000

Criteria

(Iterations)

Optimization F=2 K=100 w1=0.5 n=24 n=3

Parameters w2=2 w2=2

w3=2 w3=2

Figure 3.32: Evolution of performance index using the suggested evolutionary algo-

rithms

3.2.4.3 Analysis of the Convergence of the Various Routines

The convergence histories of the fitness value using the proposed optimal routines

are plotted in Figures 3.32 and 3.33. The modified CRS and PSO algorithms out-

performed their predecessors with improved fitness value and quicker convergence.

Hence, it may be concluded that the suggested modifications made improve the re-

spective policies with the CRS becoming more flexible and the PSO showing better

convergence of weaker particles. Performance of the CRS routines may also be

evaluated in terms of success rate. It measures the ratio of how often the weakest
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Figure 3.33: Comparative plot depicting the variation in performance index between

the CRS and MCRS routines

individual in the population xw is replaced and is hence given as:

success rate =
number of times xw replaced

number of iterations
(3.36)

The resulting success rate of the CRS was 0.075 and that of the MCRS was 0.15,

and this infers that MCRS produces more improved solutions than its counterpart.

It is evident from Figures 3.32 and 3.33 that the suggested modifications in the CRS

and PSO routines yielded superior results. This infers that the hypotheses debated

in relation to these modifications are indeed correct. Hence, it may be established

that by altering the local search characteristics of each particle in the PSO method

improves the effectiveness and efficiency of the algorithm. Furthermore, it may also

be concluded that increasing the flexibility of the CRS using the proposed method

outlined in section 3.1.5.4 adds value to the algorithm with a better success rate, and

prevents early convergence and produces a better resulting fitness value. Moreover,

the DE produces the best results followed by the MPSO and MCRS respectively. The

controller gains computed by these superior algorithms in addition to the manually-

tuned controller are listed in Table 3.8. A number of gains obtained through the

various routines have negative values. From a computational standpoint, this is

acceptable as it is solely a consequence of the optimization algorithms. However,

when applying in an actual system, this will require a compatible microprocessor
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that can deal with it or with the aid of specific digital circuits. Moreover the outer

loop proportional gains KP proved to smaller than the high loop gains attained for

the quarter-car case. The inner loop derivative controller gains kd is of a small order

of magnitude and may be ignored for practical purposes.

Table 3.8: Gains computed through the various optimization algorithms for full-car

PID controller

Front Right Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 1100 360 140 0.002 0.001 0

DE 1692 267 166 0.0038 0.0010 3× 10−9

MCRS 17251 −145 −92 0.0029 0.0700 5× 10−9

MPSO 7270 320 −769 0.0061 −0.00063 3.× 10−9

Front Left Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 1050 170 220 0.002 0.001 0

DE 1692 267 166 0.0038 0.0010 3× 10−9

MCRS 16003 184 158 0.0028 0.0665 4× 10−9

MPSO 5025 −1250 −1350 0.0080 0.0024 3× 10−9

Rear Right Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 1200 340 150 0.002 0.001 0

DE 1692 267 166 0.0038 0.0010 3× 10−9

MCRS 6723 −87 19 0.0020 0.0182 3× 10−9

MPSO 8566 −1274 −5 0.0033 0.0046 4× 10−9

Rear left Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 1000 200 200 0.002 0.001 0

DE 1692 267 166 0.0038 0.0010 3× 10−9

MCRS 4579 302 178 0.0030 0.0233 2× 10−9

MPSO −788 −372 950 0.0055 −0.0002 6× 10−9
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Figure 3.34: Bar graphs depicting the variation in suspension travel for each control

law

3.2.5 Simulation Results and Discussion

The evolution of the performance index through the use of the proposed tuning rou-

tines presented in Figures 3.32 and 3.33 clearly illustrates that the DE routine gave

the best performance index followed by the MPSO and MCRS respectively. How-

ever, these plots cannot provide information on how well the suspension trade-offs

have been resolved. Hence plots for each suspension performance criterion will be

plotted for the non-optimized, DE, MCRS and MPSO cases respectively.

Simulations were performed in the Matlab/Simulink environment and the simula-

tion time was set to 5 seconds. Suspension travel performance; road holding which

is captured through the tyre dynamic load; and power consumption which is charac-

terised by the control input voltage are plotted in Figures 3.38 to 3.40 respectively.

These plots focus on the rear left suspension corner only as the worst behaviour in

these facets were observed at this location. Vehicle handling, which is primarily a

function of roll and pitch accelerations is presented in Figures 3.41 and 3.42 respec-

tively. Ride comfort, which is centred on body-heave acceleration is shown in Figure

3.43 and the cumulative hydraulic force applied to the vehicle body is plotted in

Figure 3.44. The peak and root-mean-square (RMS) values pertaining to these cri-

teria are summarised and compared in Table 3.9 and 3.10 as well as the bar graphs

in Figures 3.34 to 3.37.
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Figure 3.35: Bar graphs illustrating the difference in control input voltage for the

proposed controllers

Figure 3.36: Bar graphs summarizing the road holding aspect for each control case
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Figure 3.37: Quantitative information pertaining to vehicle handling, ride comfort

and actuator force supplied

Figure 3.38: Illustration of the variation in suspension travel response using the

proposed tuning methods
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Figure 3.39: Variation in the tyre dynamic load experienced at the rear left suspen-

sion system for the various tuning policies

Figure 3.40: Difference in control input voltage produced using the suggested tuning

approaches
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Figure 3.41: Vehicle body pitch acceleration for each of the tuning routines

Figure 3.42: Vehicle body roll acceleration for the various tuning policies
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Figure 3.43: Ride comfort experienced for each of the proposed tuning methods

Figure 3.44: Effective hydraulic force applied to the vehicle chassis for the various

tuning algorithms
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Table 3.9: Summary of selected suspension performance incorporating the various

optimization routines

Technique
Front Right Front Left

Suspension Travel(m) Suspension Travel(m)

RMS Peak RMS Peak

Passive 0.038 0.0107 0.048 0.0131

Manual 0.039 0.0091 0.029 0.0066

MCRS 0.040 0.0099 0.032 0.0077

MPSO 0.036 0.0085 0.029 0.0065

DE 0.039 0.0094 0.025 0.0067

Technique
Rear Right Rear Left

Suspension Travel(m) Suspension Travel(m)

RMS Peak RMS Peak

Passive 0.033 0.0079 0.033 0.0076

Manual 0.034 0.0086 0.025 0.0055

MCRS 0.032 0.0076 0.027 0.0062

MPSO 0.027 0.0064 0.024 0.0051

DE 0.028 0.0067 0.024 0.0054

Technique
Front Right Tyre Front Left Tyre

Dynamic Load(N) Dynamic Load(N)

RMS Peak RMS Peak

Passive 1594 395 1254 321

Manual 1531 321 1295 263

MCRS 1432 299 1139 245

MPSO 1587 310 1375 275

DE 984 189 713 132

Technique
Rear Right Tyre Rear Left Tyre

Dynamic Load(N) Dynamic Load(N)

Passive 1194 248 81158 240

Manual 1234 248 1096 218

MCRS 1010 214 913 184

MPSO 1183 233 1267 245

DE 1196 229 930 185

The suspension travel response obtained when implementing each of the optimal

routines displayed reduced peak and RMS values in comparison with PVSS and

manually-tuned PID cases respectively. Moreover, they exhibited better transient
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Table 3.10: Summary of selected suspension performance incorporating the various

optimization routines

Technique
Front Right Control Front Left Control

Input Voltage(V ) Input Voltage(V )

RMS Peak RMS Peak

Manual 1.49 0.316 1.07 0.225

MCRS 1.56 0.333 1.16 0.255

MPSO 1.43 0.300 1.04 0.220

DE 1.61 0.318 1.18 0.225

Technique
Rear Right Control Rear Left Control

Input Voltage(V ) Input Voltage(V )

RMS Peak RMS Peak

Manual 1.34 0.265 1.04 0.212

MCRS 1.52 0.315 1.15 0.234

MPSO 1.36 0.277 1.03 0.201

DE 1.37 0.278 1.01 0.204

Technique
Pitch Acceleration Roll Acceleration

(rad/s2) (rad/s2)

RMS Peak RMS Peak

Passive 2.36 0.516 0.588 0.130

Manual 2.26 0.463 0.538 0.116

MCRS 1.88 0.421 0.340 0.083

MPSO 2.30 0.479 0.484 0.076

DE 1.62 0.314 0.328 0.066

Technique
Heave Acceleration Effective Hydraulic

(m/s2) Force(N)

RMS Peak RMS Peak

Passive 2.44 0.648 N/A N/A

Manual 1.59 0.429 849 498

MCRS 1.33 0.413 786 189

MPSO 1.52 0.410 1072 222

DE 1.72 0.306 1363 342

Performance Index J

Passive Manual MCRS MPSO DE

5 3.2 1.8 1.75 1.1

behaviour by damping out with no further peaks immediately after the road distur-

bance was removed. These results were anticipated as the performance index did
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indeed address suspension travel with a fair and considerable weighting factor. How-

ever, there were shortfalls as well using these policies as their respective damping

rates were considerably low and appear to lag the passive case once the disturbance

was removed. Consequently, they each had slightly higher settling time than that

of the PVSS case.

The road holding capabilities acquired for the DE and MCRS cases were similar and

superior to those of the PVSS and manually-tuned cases with lower peaks, better

RMS values, quicker settling times, and improved transient response that had fewer

peaks and reduced oscillations where the system dampened out immediately once

the disturbance was taken away. This favourable response is attributed to its inclu-

sion in the performance index where road holding was given a substantial weighting.

This greatly affected the performance index J and this was exploited in such a way

as to ensure that the subsequent lowering of the performance index J would produce

an improvement in road holding. On the other hand, the MPSO case did manage

to improve the RMS value, transient behaviour and settling time; but still produced

the largest peak values. Such an occurrence is expected to be suppressed as the

performance index aims to minimize the RMS value of road holding. However even

with the inter-relationship between RMS and peak values, it is not guaranteed that

reducing the RMS value will always reduce the peak values and hence such a shortfall

is possible. It is suggested that like settling time of suspension travel, peak values

in each performance criteria be added to the performance index such that its value

improves.

Regarding vehicle handling and ride comfort, the optimal policies produced lower

peak and RMS values with quicker settling times than those of the manually-tuned

and PVSS cases. However, each policy contained a greater degree of chattering

which would tend to deteriorate system components. In terms of ride comfort and

handling performance, the MPSO case was the worst from the optimal methods fol-

lowed by the MCRS and DE cases respectively. Its weak performance is due to the

fact that this routine produced a lower performance index value as compared to the

DE case. It is worth noting that although the MCRS had a similar performance in-

dex; it did perform adequately in vehicle handling, but lacked quality in suspension

travel. In conclusion, both algorithms produced a weaker performance index than

DE; but they did exhibit desired responses in certain performance aspects whilst

performing weaker in other aspects. This implies that these algorithms were not as

good as the DE in resolving the trade-offs between the various performance criteria.
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Furthermore, DE produced the best performance index which was approximately

40% better than its counterparts.

The comparative plot pertaining to control input voltage and cumulative hydraulic

force showed that all the optimal tuning policies produced lower peak and RMS

values than the manually-tuned case whilst at the same time they were able to

enhance the RMS values and response of ride comfort, road holding and vehicle

handling criteria. From a computational standpoint, this is projected as control

input voltage and supplied hydraulic forces are substantial factors of the performance

index. However, from an engineering point of view, such data is rather contradictory

to both typical quarter-car models and linear control techniques as a larger force or

voltage is demanded to improve the various performance benchmarks. These results

infer that the coupling and nonlinearities of the full-car nonlinear system is a major

factor that supplements the outcomes of the system and it is thus imperative that

they are thoroughly investigated.

3.2.6 Sensitivity to Parameter Variations and Frequency-Domain

Analysis

Simulation results presented in the previous section indicate a marginally low steady-

state error with an order of magnitude ranging within 0.001% of the peak values.

This signifies that each of the proposed tuning methods produced a resulting control

system that is bounded-input-bounded-output (BIBO) stable. It has been reported

that PID-based systems such as the ones proposed in this study have a weak sensitiv-

ity to parameter variations. Thus, it is imperative that this problem be investigated

in order to ensure that the parameter sensitivity lies within a satisfactory region to

anticipated parameter variations. In this stability study, parameters such as mass,

inertia, tyre damping, tyre stiffness and vehicle speed are altered as this will occur

in reality due to the changes in mass and inertia as a result of passenger movements

and fuel variations, fluctuations in tyre pressure, and variability in vehicle speed.

With regards to the preceding argument; plots showing a -20% and +20% variations

in mass, roll inertia, pitch inertia, tyre stiffness, tyre damping and vehicle speeds for

the DE case are presented in Figures 3.45 and 3.46 respectively. Figures 3.45 and

3.46 clearly show that the control system remains BIBO stable within an accept-

able steady-state error for all anticipated parameter variations. For all cases apart

from an increase in vehicle speed, the suspension travel response showed low peaks,
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Figure 3.45: Suspension travel response of the DE+PID case for a -20% variation

in selected parameters

Figure 3.46: Suspension travel response of the DE+PID case for a +20% variation

in selected parameters
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Figure 3.47: Frequency response comparative plot for the body-heave acceleration

good transient behaviour and quick settling times. However, the case of a 20% in-

crease in vehicle speed deteriorates transient behaviour producing multiple peaks

before settling. A gain scheduling approach for variations in vehicle speed may be

implemented to overcome this issue. On a whole, it may be concluded that the op-

timal DE-based PID controller has an acceptable sensitivity to parameter variations.

The International Organization for Standardization 2631 (2003) argue that human

exposure to frequencies ranging from 0.5Hz to 80Hz significantly affects human

comfort. Thus it is imperative that relevant AVSS performance criteria be analysed

in this range. Bode plots pertaining to ride comfort, vehicle handling and road

holding for the passive, PID and PID+DE cases are illustrated in Figures 3.47 to

3.50. These plots were generated using the power spectral density (PSD) estimates

of the Matlab/Simulink signal processing toolbox. The relevant parameter settings

are summarized in Table 3.11.

In terms of ride comfort which is characterised by body-heave acceleration, the pas-

sive system effectively behaved as a high-pass filter, whose high frequency signals

were successfully attenuated. It possessed the worst attenuation at the onset where

it had a magnitude of approximately 1 in the range of 0.01-1Hz. On the contrary,

the AVSS methods produced a significant improvement in this range as they were
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Figure 3.48: Comparative plot of frequency response pertaining to body pitch ac-

celeration

Figure 3.49: Roll acceleration frequency response comparative plot for relevant cases
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Figure 3.50: Frequency response for road holding

Table 3.11: Configuration settings used to obtain frequency response

Parameter Setting

Computation Algorithm Welch

Windowing Function Hanning

Number of points included in fourier transform (NNFT) 1024

Length of Window (NWind) 256

Sampling Frequency 80Hz

able to successfully attenuate signals therein, with the optimal controller perform-

ing best. Thereafter, the PVSS case possessed superior attenuation properties up

until 2Hz. Afterwards, the AVSS cases performed similarly and produced better

attenuation results up to 10Hz, where a resonant peak developed.

In relation to pitch acceleration, the PVSS performed the worst at the onset which

is by the standard regarded by the European Commission (2002) as the most sen-

sitive frequencies experienced by humans. The AVSS cases showed an improvement

in comparison with PVSS in this regard, with the optimal case performing the best.

In this range the power ratio did increase with increasing frequency but was still

able to perform better than the PVSS case. At the onset of 1Hz the power ratios

of each case dropped off sharply inferring successful signal attenuation. The AVSS

cases did however experience a resonance peak later at around 12Hz, but the power
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ratios were comparatively low at these high frequencies, which implies successful

attenuation.

With regards to roll acceleration, there was only a marginal variation between the

PID-controlled and PVSS cases at the sensitive low frequencies. The DE-optimized

case performed significantly better than its predecessors in this range but it pro-

duced an increasingly higher power ratio with increasing frequency. Thereafter, at

around 1Hz it began to perform worse than the other cases. From 11Hz onwards

the power ratio dropped off substantially indicating that the signals were henceforth

attenuated considerably. A resonant peak did however develop for the AVSS cases

at 10.5Hz, but the power ratio was low enough which saw the continued attenuation

of input signals.

Road holding frequency plots resemble that of a high-pass filter where the sensitive

low-frequencies produced the largest peaks and the less sensitive high frequency sig-

nals were successfully attenuated. The PID-controlled and PVSS cases produced

similar results for the whole range of frequencies where the optimal DE case per-

formed significantly better. The continued superior performance of the optimal PID

controller in relation to its counterparts for all suspension criteria in the sensitive

low frequency ranges suggests two things. Firstly, it was more successful than both

its predecessor in resolving the conflicting trade-offs in ride comfort, road holding

and vehicle handling as outlined in Figure 1.1. Secondly, it was successful in man-

aging the sensitive low-frequency signals for all suspension criteria. These results

imply that controller tuning through global optimization methods does play a sig-

nificant role in both resolving AVSS trade-offs and improving parameter variations

sensitivity.

3.2.7 Summary

The proposed modified CRS routine performed better than its predecessor with im-

proved flexibility and convergence. Similarly, the MPSO accomplished a superior

performance index and hence overcame its shortfall pertaining to early convergence.

The DE produced the best performance from both a computational and engineering

standpoint as it gave a more enhanced performance index than the other tuning rou-

tines and resolved the compromises in all performance aspects to a superior extent.

On the other hand, the MCRS and MPSO did not show significant improvements

in every performance criteria. Vehicle handling, road holding and ride comfort were
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better attenuated in the sensitive low-frequency range as compared to the passive

and non-optimal PID schemes.
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4 Dynamic Neural Network-Based Feedback

Linearization Control of a Nonlinear

Quarter-Car Electrohydraulic Vehicle

Suspension System

4.1 Introduction

As discussed in the literature review (Section 1.4), the primary shortcoming of PID

control is that it is a linear control strategy whose non-adaptive nature limits its

robustness when dealing with nonlinear systems. Such a setback makes it unsuitable

to deal with a vast range of disturbance inputs, parameter variations, and chattering

when controlling nonlinear systems. Moreover, system performance is limited and

hence in relation to AVSS, its inherent ability to resolve the conflicting performance

criteria is limited as its linear control structure is inadequate for nonlinear AVSS.

Such characteristic behaviour had been observed when comparing it to intelligent

control schemes. Hence, an adaptive control law such as nonlinear control or intelli-

gent control is proposed by many researchers for AVSS control [Pedro and Dahunsi

(2011)].

Feedback linearization (FBL) is a nonlinear control technique whose objective is to

develop a linearizing feedback law which removes the detrimental effects of system

nonlinearities and hence achieve better control when augmented with linear con-

trol laws such as PID. The drawbacks of FBL controllers are that they require the

model to be fully understood, which in reality may be impossible due to modelling

uncertainties, parameter variations, and the lack of experimental data. To overcome

this hurdle, an intelligent controller that implements neural network models in con-

junction with FBL is formulated. In order to add novelty to AVSS design, ensure

114



stability without considerable complexity and as well as to simplify the mathemat-

ical procedure, dynamic neural networks (DNN) are utilised to assist in predicting

the next control action. This method of control will be named dynamic neural

network-based feedback linearization (DNNFBL) control.

This above mentioned control method may be conducted using two approaches, one

of which is to follow a direct adaptive control method in which the DNN is trained

to predict and FBL law. The second is an indirect adaptive methodology where

the system response is predicted using a DNN and subsequently FBL is performed

on the trained DNN to produce a linearizing feedback law. In this investigation an

indirect adaptive policy is carried out for one of several reasons. Firstly, there is no

need for any mathematical model when deriving this control law and secondly FBL

is less complex when applied to DNN models as opposed to the nonlinear electrohy-

draulic suspension system used in this research.

4.2 Stability Analysis

Before the control law is developed, it is imperative to test whether feedback lin-

earization is applicable to such a system and secondly to ensure stability of the

system is guaranteed and the steady-state error is limited to an acceptable value.

Stability is analysed by applying the input-output feedback linearization method

(FBL) on the actual system. [Shi et al. (2010), Pedro and Dahunsi (2011), Isidori

(1989), Jelali and Kroll (2003)]

A block diagram of a control system which incorporates FBL is shown in Figure 4.1.

In this methodology, the actual plant input u is formulated through FBL such that

there exists a linear mapping between the virtual input υ and the system output

y. Additionally, the virtual control υ may be the product of any linear control law

which may be formulated on the basis of the control error e.

The state-space representation of the quarter-car AVSS model presented in Eqs.

(2.20) to (2.30) and the resulting control law that creates a linear mapping between

the new virtual input υ and output y is as follows:

u = P (x) +Q(x)υ (4.1)
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Figure 4.1: General structure of FBL control scheme

This is known as the feedback form with P (x) and Q(x) being functions of the

system states x. However, for Eq. (4.1) to hold true, the following conditions must

be met [Shi et al. (2010)]:

1. State vector xεRn.

2. Input vector uεR1.

3. Output yεRm.

4. System output y: Rn → Rn) are smooth functions on the state-space Rn.

For the quarter-car state-space system, the above conditions hold true and hence

the suggested control technique may be employed. FBL controller design may be

summarised in the following steps:

Step 1 Continuously take the time derivative of the output y until a corresponding

derivative yr is explicitly a function of the system input u such that:

yr = a(x) + b(x)u (4.2)

where a(x) and b(x) are nonlinear functions that have been produced as a

consequence of the above computation.

Step 2 In order for the rth derivative of the output y and all subsequent derivatives

to be linearly related to the virtual control input υ, u must take the ensuing

form:

u =
υ − a(x)

b(x)
(4.3)

In accordance with step 1 of FBL, the first derivative of the output is computed as:

y(1) =
∂y

∂t
=
∂y

∂x

∂x

∂t
=
∂y(x)

∂x
ẋ

=
∂y

∂x
[f(x) + g(x)u]

= Lfy(x) + Lgy(x)u = Lfy(x) = x2 − x1 (4.4)
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where ∂y
∂xf(x) is defined as Lfy(x), which is referred as the Lie derivative of y(x)

along f . In this case, Lgy(x) was calculated to be zero, which subsequently infers

that the first derivative of the output y(1) is not explicitly dependent on the control

input u, i.e.

y(1) = Lfy(x) (4.5)

Computation of the latter derivative yields:

y(2) =
∂2y

∂2t
=
∂ ∂y∂t
∂x

∂x

∂t
=
∂ ∂y∂t
∂x

ẋ

=
∂Lfy(x)

∂x
[f(x) + g(x)u]

= L2
fy(x) + Lgy(x)Lfy(x)u = Lfy(x) = x4 − x3 (4.6)

As in the case of the preceding derivative, y(2) is not explicitly a function of u and

thus LgLfy(x) = 0. The next derivative y(3) produces:

y(3) =
∂3y

∂3t
=
∂ ∂

2y
∂2t

∂x

∂x

∂t
=
∂ ∂

2y
∂2t

∂x
ẋ

=
∂L2

fy(x)

∂x
[f(x) + g(x)u]

= L3
fy(x) + LgL

2
fy(x)u = Lfy(x) = ẋ4 − ẋ3 (4.7)

y(3) is also independent of u as LgL
2
fy(x)u = 0. The subsequent derivative of the

output generates:

y(4) =
∂4y

∂4t
=
∂ ∂

3y
∂3t

∂x

∂x

∂t
=
∂ ∂

3y
∂3t

∂x
ẋ

=
∂L3

fy(x)

∂x
[f(x) + g(x)u]

= L4
fy(x) + LgL

3
fy(x)u (4.8)

However, the above relation is explicitly dependent on the control input u with

LgL
3
fy(x)u 6= 0. Hence, the system possesses a relative degree r of 4. Furthermore,

since the relative degree is less than the number of system states ns = 6, the sys-

tem is therefore input-output linearizable. Thus, the control law described by Eq.

(4.3) may be applied to create a linear mapping between the new virtual input υ

and output y. Moreover, the coordinate system may be transformed into a new

differential homeomorphic coordinate system which is described by Eq. (4.9). This

co-ordinate system essentially separates the observable and non-trivial or influential

dynamics that remain in the system once the output is forced to zero. The relative

degree indicates the number of observable dynamics that lie within this control sys-

tem. Furthermore, the difference between the system states and the relative degree

corresponds to the number of unobservable dynamics present in the system.

z = Ψ(x) =
[
ξ η

]T
(4.9)

117



where ξ is the observable dynamics of the system which corresponds to 4 states as

the relative degree is 4 with ξ = [ z1 z2 z3 z4 ]T , and η is the unobservable or

zero dynamics of the system which contains 2 states since the difference between

the number of states and relative degree is 2, and hence: η = [ ψ1(x) ψ2(x) ]T .

In accordance with Eq. (4.9), observable system states are thus defined as: z1 =

y, z2 = y(1), z3 = y(2), z4 = y(3), and the zero dynamics are represented as: z5 =

ψ1(x), z6 = ψ2(x). The new differential homeomorphic coordinate system may also

be expressed in state-space with:

η̇ = f0(ξ,η) (4.10)

ξ̇ = Acξ + Bcυ + p̄(w) (4.11)

ξ̇ = Acξ + Bc

[
u(t)− a(x)

b(x)

]
+ p̄(w) (4.12)

y = Ccξ (4.13)

where the system matrices are defined as follows:

Ac =


0 1 0 0

0 0 1 0

0 0 0 1

λ0 λ1 λ2 λ3

Bc =


0

0

0

1

Cc =
[

1 0 0 0
]T

p̄(w) =
[

0 0 0 1
]T

(4.14)

However, in order for the diffeomorphism to successfully produce differential home-

omorphic coordinate system, the following condition must be ensured [Pedro and

Dahunsi (2011)]: Ψ must be invertible such that:

Lfψi = dψi
dx g(x), r + 1 ≤ i ≥ ns (4.15)

With regards to guaranteed stability, both the observable ξ and unobservable η

system dynamics must be stable. To reiterate, the unobservable system dynamics

η are defined as non-trivial internal dynamics that remain once the output and

observable system dynamics are forced to zero such that ξ = 0 and hence η̇0(η, 0).

Such dynamics may be also termed as the zero dynamics, and they tend to have

a significant impact on the stability of the system. Asymptotic stability of the

system is confirmed if the origin of the transformed system (η = 0, ξ = 0) is an

equilibrium point. Such stability reduces the dynamics of the rth derivative of the

output described by Eq. (4.8) to:

λ4y
(4) = υ (4.16)

The above relation implies that the control law u is of the form

u =
1

λ4LgL3
fyx

[
υ − λ4L

4
fyx

]
(4.17)
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Application of this control law to the system’s feedback form described in Eq. (4.3)

produces a linear mapping between the output y and the virtual input υ or V (s) and

this creates a linear input-output affiliation according to Eq. (4.18) with a transfer

function given by:

G(s) =
Y (s)

V (s)
=

1

λ4s4
(4.18)

Designing the virtual input v according to a linear control law such as pole placement

yields:

υ = −λ3y
(3) − λ2y

(2) − λ1y
(1) − λ0y + ῡ (4.19)

where ῡ is the new external input, which may be based on any linear control law.

In this investigation, it is set to be a function of the reference signal yref and the

output signal y and hence the control signal e. Hence, the new transfer function

mapping the new external input ῡ to the system output y is given as:

G(s) =
Y (s)

V̄ (s)
=

1

λ4s4 + λ3s3 + λ2s2 + λ1s1 + λ0
(4.20)

The resulting closed-loop polynomial is of the form:

p(s) = λ4s
4 + λ3s

3 + λ2s
2 + λ1s

1 + λ0 (4.21)

To ensure the stability of this system, the coefficients of the closed-loop charac-

teristic polynomial described by Eq. (4.21) is selected such that the roots of this

polynomial are strictly in the left-half of the complex plane. In accordance with

the aforementioned equations, the control input u may be further simplified into the

following:

u =
1

λ4LgL3
fyx

[
ῡ − λ4L

4
fyx−

4∑
i=1

λi−1L
i−1
f yx

]
(4.22)

As previously discussed, the external input ῡ must be a function of the control error

e and hence a PID output feedback controller is selected to produce the external

input ῡ. This PID operates in the outer-most control loop and the external input ῡ

may be written as:

ῡ = Kpe+Ki

∫ T

0
e.dt+Kd

de

dt
(4.23)

where Kp, Ki and Kd are the proportional, integral and derivative gains of the PID

controller respectively.

4.3 Proposed Control Structure

The suggested indirect adaptive design of DNNFBL controller is illustrated in Figure

4.2 and essentially comprises of two stages, namely system identification and con-

troller implementation. During system identification, the DNN learns the dynamics
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Figure 4.2: Controller architecture of the DNNFBL-based AVSS

of the plant with the sole intent of predicting the response of the plant for a given set

of input data. In controller implementation, FBL is carried out on the DNN model

with the objective of producing an adaptive control signal that linearizes the plant

and hence eliminates the detrimental issues that occur as a result of nonlinearities.

Furthermore, the DNNFBL controller may be augmented with a linear controller

(such as the multi-loop PID controllers that were earlier employed) with the intent

of supplementing system performance. Additionally, the gains of each of the con-

trollers may be tuned manually or through an optimization algorithm. The rest of

this subsection is devoted to providing a detailed analysis into system identification

and controller design.

4.4 System Identification

A DNN is a neural network that includes recurrent or feedback elements. This

neural network is modelled using differential equations in contrast to the algebraic

equations that are used to describe static neural networks. The structure of a DNN

is further explained in Figure 4.3. The dynamics of the neurons are mathematically

described as a first-order differential equation with a time constant β. Additionally,

each neuron receives feedback from neurons in its respective hidden layer x̄t−1 of

the neural network, as well as from the input layer of the neural network ut. Both

the network and neuron to neuron inputs are essentially added to the right hand

side of the differential equation that describes the dynamics of the neuron. However,

the output of each neuron is passed through an activation function σ(x) before it is

fedback to each neuron in the corresponding hidden layer. Additionally, each neuron

has two external inputs, namely control input u and one delayed system state x̄t−1,

each of which possesses its own associating weighting value. Hence, a neuron in the
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Figure 4.3: Schematic describing the operation of a DNN

first hidden layer of the neural network is described by the following mathematical

relationship:

ẋ = −βx + Wσ(x) + γut + ζx̄t−1 (4.24)

where x is a vector denoting the outputs of each neuron, β is the matrix containing

the time constants of each neuron in the hidden layer, σ(x) is the vector containing

the neuron outputs after it had passed through the activation function, W is the

inter-connecting neuron weights, ut is a vector that holds the various control input

signals that are being passed into the real system, γ is a matrix which holds the

weighting contributions that each control input has on each neuron, x̄t−1 is a vector

that holds the actual system output or delayed output at the previous time step,

and ζ is the contribution of these aforementioned outputs on each neuron.

The output layer of the DNN comprises of a single neuron and is fundamentally an

algebraic equation, which is essentially the weighted sum of the neuron outputs from

the preceding hidden layer x. Thus, the neuron in this layer is described as follows:

ŷ = hn(x) =

nn∑
i=1

wixi (4.25)

where xi is a vector comprising of the output of the ith neuron from the hidden

layer, wi is the associating weighting contribution of the ith neuron in the hidden

layer, nn is the number of neurons in the hidden layer.

In order, to further simplify the model and subsequent computation, the output of

the neural network y will depend solely on the output from the first neuron in the
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Figure 4.4: Method explaining the process of system identification [Dahunsi and

Pedro (2010)]

preceding hidden layer. Consequently, the output layer will be simplified to:

ŷ = h1 = w1x1 (4.26)

Furthermore, the selection of network parameters such as the number of hidden

layer, size of the hidden layer nn and the activation function σ(.) will be based on

two items, namely network stability and through the method of pruning outlined

by Nφrgaard et al. (2000). In pruning, the primary network parameters such as the

hidden layer size are increased until the predicted system output ŷ stops changing

topology with further increase in the hidden layer size. Garces et al. (2003) argues

that σ(.) should be bounded to within ±1 so that the free response of the DNN

converges to zero and thus stabilises once the networks inputs are removed. Hence,

the hyperbolic tangent function is chosen as activation function σ(.) so that this

condition is met. The next condition may only be fulfilled after the selection of

appropriate input-output data.

An important step in system identification is to select a range of input-output data

that covers the range of signals that will be anticipated in reality. In indirect adaptive

control the DNN must predict the output of the suspension system for a given set

of control input voltage. As in the case of PID-based control, suspension travel is

chosen as the output as it is the fundamental property used to model the suspension

system. White-Band-Limited noise (WBL) is used to create a set of input data,

specifically because WBL can successfully create a random set of input signals which

span the space of the expected input signals. Figure 4.4 illustrates the process of

system identification. Selection of an appropriate data set is a rather rigorous process

that requires several conditions to be met. Firstly, the dynamics of the subsystem

with the smallest time constant must be captured and this demands that the seed

strength of the WBL be significantly high. Secondly, the input data must span the

space of all possible input voltages, which is known to be in the range of ±10V .

Similarly, the set of suspension travel output must span the region in which it is

expected to operate, which corresponds to ±0.1m. From Figures 3.27 and 3.28, it
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Figure 4.5: Quarter-car AVSS control input voltage supplied for system identification

is evident that both the PVSS and AVSS are sensitive in the frequency range of

0.5Hz to 80Hz, and it is thus paramount that the system identification input covers

these frequencies [Dahunsi and Pedro (2010)]. In order, to satisfy the preceding

conditions, the WBL may be set as follows:

i. Control input u operates within ±10V .

ii. WBL has the following properties:

• Seed strength of 22641.

• 0.001s sampling time.

iii. Hyperbolic Tangent is used for the activation function σ(x) as this ensures the

DNN stability [Garces et al. (2003)].

Plots showing the input and corresponding output data sets are presented in Figures

4.5 and 4.6 respectively. With regards to pruning and the choice of hidden layer size

nn the response of the DNN is analysed for a range of nn starting from one. The

network size increased until satisfactory results are attained for a credible range

of randomly selected network parameters. Figure 4.7 shows the general trend of

the suspension travel output for the various hidden layer sizes. From the preceding

figure, it is evident that a hidden layer size nn of 8 is capable of capturing the sensitive

dynamics of the system as it can pick up the sudden rate of change of suspension

travel more adequately than the 4-neuron and 6-neuron configurations. Hence, it is
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Figure 4.6: Quarter-car model suspension travel output for the training phase of

system identification

Figure 4.7: Quarter-car suspension travel output for different hidden layer sizes
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Table 4.1: Configuration of applied dynamic neural networks for the quarter-car

system

Property Numerical Value

Number of hidden layers 2

Number of neurons in first hidden layer 8

Number of delayed system inputs 1

Number of delayed system outputs 1

suitable for system identification. The structure of the DNN is summarised in Table

4.1. DNN training is performed with the aid of various optimization algorithms

including CRS, DE, GA, PS and PSO described in section 3.2.4. In this learning

process, the DNN parameters namely β, W, γ, and ζ are the problem variables

that are determined by the same approach in which the PID-based AVSS controller

gains were selected using the proposed optimal routines. β is a 1× 8 vector with βn

denoting the time constant of the nth neuron from the 8 present in the first hidden

layer. The same applies to γ and ζ as well. W is the weighting matrix that connects

each of the neurons of the hidden layer to each other and it is a sqaure 8× 8 matrix

with Wjh denoting the feedback weighting of the hth neuron into the jth neuron.

The problem variables computed by the optimal routines are now the network pa-

rameters as opposed to the controller gains that were computed in the optimal PID-

based AVSS. Furthermore, the performance index or objective function of these

optimal policies will now be changed to suit system identification instead of sus-

pension performance. The objective function will measure the extent of deviation

or error between the network output ŷ and the real suspension output y. Pedro

et al. (2011) chose the mean squared error (MSE) of this deviation as the objective

function and the same approach will be followed in this investigation as well. Hence,

the objective function will be:

J = MSE =
1

2N

N∑
i=0

(y − ŷ)2 (4.27)

where N is the total number of samples used in the input-output data. The set-up

of these optimal policies is altered to better meet the need of system identification as

opposed to controller tuning. The new set-up is reported in Table 4.2. The progres-

sion of the objective function through the various training techniques involving CRS,

DE, GA, PS and PSO are plotted in Figure 4.8 and that of the CRS-based training

method is shown in Figure 4.9. These results are relevant as it will determine which

algorithms are successful for system identification. Furthermore, they will also pro-

vide insight into the performance of these algorithms from a computational point of
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Table 4.2: Optimization parameters used in each optimal policy for system identifi-

cation of the quarter-car system

Routine DE GA PSO CRS PS

Population 100 300 100 60 1

Size

Stopping 50 50 50 6000 Scaling factor

Criteria Generations Generations Iterations Iterations factor ε ≤
Criteria 1× 10−8

Optimization F=2 K=100 w1=0.5 n=89

Parameters w2 = 2

w3=2

Figure 4.8: Convergence history of the various training algorithms used in system

identification of the quarter-car AVSS

view such as information pertaining to convergence speed and accuracy.

Figures 4.8 and 4.9 infer that evolutionary algorithms such as DE, GA, PSO are

adequate polices to use for DNN with improved accuracy and convergence speeds

whilst CRS and PS are clearly deficient in this regard with considerably lower accu-

racy and longer convergence speeds . However, it is worth mentioning that CRS and

PS did perform adequately well for PID controller design where fewer variables were

optimized, and this implies that the CRS, and PS optimization algorithms in general

are not effective in computing a large amount of problem variables as in the case

of DNN training. Additionally, the PSO performed the best from the evolutionary
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Figure 4.9: Convergence history of the MSE value when incorporating CRS-based

system identification

algorithms with the best MSE value followed by the DE and GA respectively. The

performance of the GA is still significantly weaker with a noticeably larger MSE

as compared to the DE and PSO. The identification and validation results of the

DE, GA and PSO routines plotted are in Figures 4.10 and 4.11 respectively. It is

worth mentioning that the PSO’s results show greater structure and display superior

accuracy in picking up the rate of change of the system output as opposed to the

DE data. It is also worth noting that the system identification results for the same

quarter-car electrohydraulic system learnt with static neural networks that were

trained using various currently employed function-based algorithms [Dahunsi et al.

(2011)]. The results of these identification methods produced MSE values ranging

within an order of magnitude of 1 × 10−6, which is equivalent to the MSE values

obtained in this research study. Thus, the proposed DNN model and its training

scheme is as good as those static neural networks. Before controller design can

begin, the stability of the DNN model must be ensured. Isidori (1989) and Garces

et al. (2003) argue that network stability is ensured if the following conditions hold:

Step i. The activation function σ(x) is continuously differentiable.

Step ii. σ(x) is bounded to 0 ≤ σ(x) ≤ 1

Step iii. Given utεR+, there is a symmetric and positive solution P to the Eq. (4.28)

βTP−Pβ = −µI (4.28)
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Figure 4.10: DNN identification results for quarter-car intelligent controller using

proposed global optimization methods

Figure 4.11: DNN validation results for quarter-car intelligent controller using pro-

posed global optimization methods
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where I is an identity matrix and µ is a scaling factor, which Garces et al.

(2003) suggested should have a value of 1.

Step iv. The inequality of Eq. (4-28) must be satisfied:

||W||2 ≤ µ− 2||P ||
||P ||

(4.29)

where ||.|| signifies the Euclidean norm of the specified matrix.

As the activation function σ(x) is the hyperbolic tangent function, conditions i. and

ii. are fulfilled. With both the networks computed through DE and PSO algorithms,

both Eq. (4.28) and the inequality of Eq. (4.29) are satisfied. Hence, it may be

concluded that the DNN models attained through training are indeed stable.

4.5 Control Law Formulation

The control law is formulated using the same approach used in the stability analy-

sis of the system (Section 4.2). The only modification is that an indirect adaptive

control, the method will be applied to the DNN model rather than the actual sys-

tem as was done in the stability analysis. Firstly, the DNN is rearranged into the

compatible affine form that is required to derive the feedback law as follows:

ẋ = f(x) + g(x)ut + ζx̄t−1 (4.30)

where f(x) = W(x)−βx, and g(x) = γ. The following steps involve computing the

consecutive derivatives of the DNN model outputs until a corresponding derivative

is explicitly a function of the control input ut. The first derivative of the network

output is computed as follows:

ŷ(1) =
∂ŷ

∂t
=
∂ŷ

∂x

∂x

∂t
=
∂h1(x)

∂x
ẋ

=
∂h1

∂x
[f(x) + g(x)u] = Lfh1(x) + Lgh1(x)u

=
[

∂h1
∂x1

∂h1
∂x2

... ... ∂h1
∂x8

]
[f(x) + g(x)u]T

= w1

[
−β1x1 +

8∑
i=1

W1iσ(xi)

]
= Lfh1(x) (4.31)

g(x) is nothing more than the consequent of DNN training, and its resulting matrix

has its first element g1(x) = 0. Furthermore, ∂h1∂x1
.....∂h1∂x8

are zero as h1 is a function of

x1 only as per Eq. (4.26). Such values give rise to the Eq. (4.31), where clearly the
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first derivative of the DNN model output ˙̂y is not a function of the control input ut.

Subsequent computation of the second derivative of the network output produces:

ŷ(2) =
∂2ŷ

∂t
=
∂ ∂ŷ∂t
∂x

∂x

∂t

=
∂Lfh1(x)

∂x
[f(x) + g(x)u]

= w1[−β1x1 +W11(1− σ(x1)2) +W12(1− σ(x2)2).........

= +W18(1− σ(x8)2)] [f(x) + g(x)u]

= d(x) + e(x)ut

= L2
fh1(x) + LgLfh1(x)ut (4.32)

where d(x) or L2
fh1(x) is the free response of the system and e(x)ut or LgLfh1(x)ut

is the free response of the system. In the above derivative of the output, the DNN

of both the PSO and DE training yielded a matrix where g1(x),g2(x)....g3(x) were

considerably large constants. Hence the computation of the second derivative of

the network output ŷ2 produced a solution which was explicitly dependent on the

control input ut. Hence, the relative degree of the system is two, which infers that

the DNN is input-output linearizable as its relative degree is less than the number of

states of the DNN (which corresponds to 8 as there are eight neurons in the hidden

layer).

The next step in controller formulation demands that the DNN dynamics now be

transformed into a co-ordinate system which separates the observable and zero dy-

namics. As in the case of input-state feedback linearization outlined in section 4.2,

the DNN may be described in terms of its observed and unobserved zero dynamics

using the diffeomorphism as follows:

η̇ = f0(ξ,η) (4.33)

ξ̇ = Acξ + Bcυ + p̄(w) (4.34)

ξ̇ = Acξ + Bc

[
u(t)− a(x)

b(x)

]
+ p̄(w) (4.35)

ŷ = Ccξ (4.36)

As the relative degree of the DNN is 2, the transformation yields a slightly different

set of system matrices which are:

Ac =

[
0 1

λ0 λ1

]
Bc =

[
0

1

]
Cc =

[
1 0

]T
p̄(w) =

[
0 1

]T
(4.37)

The control law aims to create a linear mapping between the virtual input υ and

the system network output ŷ as explained in Figure 4.3 such that:

λ2ŷ
2 = υ (4.38)
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Ψ must be invertible such that:

Lfψi = dψi
dx g(x), r + 1 ≤ i ≤ ns (4.39)

With regards to guaranteed stability, both the observable ξ and unobservable η sys-

tem dynamics must be stable. To reiterate, the unobservable system dynamics η are

defined as non-trivial internal dynamics that remain once the output and observable

system dynamics are forced to zero such that ξ = 0 and hence η̇0(η, 0). Such dy-

namics may also be termed the zero dynamics, and they tend to have a significant

impact on the stability of the system. Asymptotic stability of the system is con-

firmed if the origin of the transformed system (η = 0, ξ = 0) is an equilibrium point.

Such stability reduces the dynamics of the rth derivative of the output described by

Eq. (4.8) to:

λ2ŷ
(2) = υ (4.40)

Hence the FBL control law required to linearize the DNN and to acquire the linear

mapping preferred in Eq. (4.40) is of the form:

u =
1

λ4LgLf ŷ(x)

[
υ − λ4L

2
f ŷx

]
(4.41)

As discussed previously, the virtual input υ may be designed using pole placement

such that:

υ = −λ1ŷ
(1) − λ0ŷ + ῡ (4.42)

Consequently, the actual control law will take the following form:

u =
1

λ1LgL1
f ŷ(x)

[
ῡ − λ2L

2
f ŷ(x)−

1∑
i=0

λi−1L
i−1
f ŷx

]
(4.43)

As per Figure 4.2, multi-loop PID control can be applied with the proposed feedback

linearizing control. As previously explained in section 4.2, the new virtual control

input ῡ is determined through a multi-loop PID control system described in Figure

4.2 for one of two reasons. Firstly, PID is the most widely used controller in in-

dustry and a hybrid formulation with it will be received in a more favourable light

as opposed to other linear or nonlinear controllers. Secondly, it is to maintain con-

sistency and to create an effective basis of comparison with the optimal multi-loop

PID controllers that were previously used in this research project.

With regards to controller gains, there are now 9 gains to be controlled; namely

the 6 PID gains of the multi-loop PID controller, and the 3 FBL controller gains

(λ0, λ1, λ2). The performance index used to select this gains is the same as that

of quarter-car PID-based AVSS design presented in Eq. (3.5). The process of fine

tuning the intelligent controller was rather cumbersome and rigorous as very small

131



variations in λ0, λ1, and λ2, cause a considerable variation in system response. The

best gains that could be obtained through manual tuning are listed in Table 4.4.

4.6 Controller Tuning Approaches

The nine controller gains of the DNNFBL may also be tuned using optimal policies

such as those implemented in the PID-based AVSS. In order to maintain consistency

the controller gains are computed through PSO and DE as they were the only al-

gorithms that produced satisfactory identification results. The initial values chosen

correspond to those acquired through manual tuning. The bounds for each variable

or controller gain are chosen based on the intuitive knowledge gained through rig-

orous manual tuning. The configurations of these policies is further summarised in

Table 4.3. Figure 4.12 shows the convergence of the performance index J through

the use of both the DE and PSO algorithms.

The results obtained on the migration history of the particles in the PSO and the

Table 4.3: Optimization parameters used in the selected optimization algorithms for

controller tuning of the quarter-car DNNFBL controller

Routine DE PSO

Population Size 100 100

Stopping Criteria 100 Generations 100 Iterations

Optimization F=2 w1 = 0.5

Parameters CR = 0.5 S w1 = 0.5

w1 = 0.5

evolution of individuals in the DE in the controller tuning case clearly indicate that

the PSO converges faster with a superior fitness value. The slower convergence of

the DE is expected as DE only permits the replacement of an individual if the fitness

of its respective trial individual is better. This condition slows the convergence of

DE, but it is expected to produce a much better result than the other algorithms.

Similar to the DE, the PSO stores information on the best position of each particle

or individual. However, unlike the DE each particle is free to move (each individual

is free to change to its new trial point) without needing to satisfy the conditions

of replacement implemented in the DE. This consequently produces quicker con-

vergence than that of the DE. However, the replacement condition of the DE is
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Figure 4.12: Convergence history of evolutionary algorithms used for intelligent

controller tuning of the quarter-car AVSS

specifically set to prevent premature convergence towards a local minimum and is

thus expected to converge to a better solution.

In contrast to the aforementioned theory, the PSO produced a better result. This

may be due to one of three reasons. Firstly, the variation in the network weights

values of the DNN between the DE and PSO could have had an effect on the vari-

ation in results. This is because the control law is an indirect adaptive law and is

thus dependent on the weighting matrices of the DNN. Furthermore, since the PSO

produced better results in the identification phase, it is expected to track the system

output better and hence produce better results than that of the DE. Secondly, the

success of the PSO over the DE may be attributed to the nature of this problem.

Thirdly, due to the fact that the evolutionary algorithms are heuristic search meth-

ods; the PSO may have produced a better result on randomness alone. The optimal

controller gains obtained for each of the algorithms are listed in Table 4.4.
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Table 4.4: Controller gains acquired for the proposed DNNFBL controllers

Control Outer Inner FBL

Loop Loop Loop Gains

Gain Kp Ki Kd kp ki kd λ0 λ1 λ2

Manual 15000 0 0 0.001 0.002 0 0 0 0.1

DE 21500 35 3 0.001 0.0006 5×10−7 0.001 0.013 0.02

PSO 23500 220 45 0.001 0.0009 3×10−8 0.002 0.008 0.015

4.7 Simulation Results and Comparative Examination

of Tuning Approaches

The proposed global optimization methods did indeed improve overall system per-

formance, but there is no evidence that the conflicting performance criteria of

AVSS have been resolved. Hence, each performance facet of AVSS must be in-

vestigated. Figures 4.13 to 4.17 shows the response of the DNNFBL and optimally-

tuned DNNFBL systems in all aspects of suspension performance, namely suspen-

sion travel, ride comfort, road holding, power consumption and actuation force.

This is done to compare the performance of the manually-tuned DNNFBL, DE-

based DNNFBL and the PSO-based DNNFBL. Furthermore, the data is compared

to those of the best PID-based AVSS with the aim of evaluating the performance of

an intelligent controller relative to a linear PID controller. The results are further

summarised in Table 4.5 as well as the bar graphs in Figures 4.18 to 4.22.

The suspension performance response (see Figures 4.13 to 4.22) was weak for the

manually-tuned case which behaved only better than the uncontrolled system pre-

sented in section 3.1.4. This may be due to the intuitive approach used in manual

tuning and its associated difficulty as small variations in DNNFBL gains generated

a large variation in system outputs. As this tuning was rigorous, a satisfactory

compromise could not be attained through manual tuning. On the other hand,

global optimization-based tuning attained superior results which closely match the

PID+DE case (Section 3.1.6).

These results are coherent with optimal PID control, as the use of optimal policies

produced better results than the manually-tuned with a superior performance in-

dex, smoother ride comfort and better road holding and improved suspension travel.

These results were obtained due to the placement of high weighting values on each
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Figure 4.13: Comparison of suspension travel response for the proposed intelligent

controllers

Figure 4.14: Comparison between the various controllers on the basis of ride comfort
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Figure 4.15: Wheel deflection characteristics obtained through the various control

methodologies

Figure 4.16: Comparison of actuation force applied between the chassis and the

wheel for each case
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Figure 4.17: Variation of control input for each control methodology

Figure 4.18: Bar graphs depicting the variation in suspension travel for each control

law
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Figure 4.19: Bar graphs illustrating the difference in body-heave acceleration for the

proposed controllers

Figure 4.20: Bar graphs summarizing the road holding data for each control case
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Figure 4.21: Actuator force bar graphs summarizing the results obtained for the

various control schemes

Figure 4.22: Quantitative information pertaining to the control input voltage re-

sponse
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Table 4.5: Summary of selected suspension performance incorporating the various

optimization routines

Technique
Suspension Control Input

Travel(m) Voltage(V )

RMS Peak RMS Peak

PID+DE 0.018 0.071 0.8 3.4

DNNFBL 0.024 0.079 0.84 3.67

DNNFBL+DE 0.017 0.068 0.757 2.9

DNNFBL+PSO 0.0175 0.070 0.813 3.4

Technique
Sprung Mass Force

Acceleration(m/s2) (N)

RMS Peak RMS Peak

PID+DE 0.98 4.1 631 2369

DNNFBL 1.3 7.2 386 1200

DNNFBL+DE 0.96 4.2 659 2509

DNNFBL+PSO 0.98 4.8 744 2800

Technique
Settling Wheel

Time(s) Deflection(m)

RMS Peak RMS Peak

PID+DE N/A 4.1 0.0023 0.0090

DNNFBL N/A 2.5 0.0027 0.0101

DNNFBL+DE N/A 2.1 0.0022 0.0093

DNNFBL+PSO N/A 2.1 0.0023 0.0090

Performance Index J

Passive PID+DE DNNFBL DNNFBL+DE DNNFBL+PSO

12 0.092 7 0.11 0.92

of these performance criteria in the performance index. However, as in the case

of the PID-based AVSS, these advantageous results were obtained at the cost of

power consumption, actuation force and peak suspension travel. This may be ac-

credited to the very same reasons that were discussed in the PID-based AVSS design.

In relation to the performance of DNNFBL+DE controller relative to that of the

PSO-based DNNFBL controller, the PSO-based case indicated a better performance

index (see Figure 4.12). However, the use of PSO controller tuning only produced

significantly better results in ride comfort and road holding, whereas the DE case

performed marginally superior in suspension travel, actuator force and input voltage
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and settling time. This further infers that the conflicting performance criteria were

resolved differently through these algorithms, but it may be concluded that the

PSO performed better as it reported an overall lower performance index. The lower

performance index of the DE implies that the DE was either caught in a local

minimum or did not fully converge due to a limited number of iterations. The

variation in performance between DE and PSO may be ascribed to the same reasons

that were discussed at the end of the previous subsection (section 4.4) which include:

the nature of the problem, the consequent effect of the weaker DNN that was trained

by DE, and the randomness characteristics on the input signal that favours the PSO-

based case.

With regards to the literature and previous studies that were reported in Table 3.10,

this DE and PSO-based DNNFBL outperformed previous studies of which induced

weaker disturbances than the one included in this research study. They possessed

better transient behaviour with quicker settling times, less chattering and fewer

peaks. The ride comfort fell into a more comfortable zone as per International Or-

ganization for Standardization 2631 (2003) as compared to Amani et al. (2004). For

the other counterparts from literature, the ride comfort and suspension travel of the

proposed controller were worse than in the literature, but this may be attributed to

the weak nature of the disturbances used in those investigations.

4.8 System Robustness to Parameter Variations and

Frequency-Domain Analysis

In order to analyse the system robustness to parameter variations, certain system

parameters of the system will be altered in a realistic manner. This is done in

exactly the same way as that of the PID-based AVSS (see section 3.2.6), where

vehicle mass, tyre stiffness and vehicle speed are altered by 20%. These results are

plotted in Figures 4.23 and 4.24.

From the parameter sensitivity plots, it is evident that the steady-state error in-

creases as the parameter is varied more extensively. Variation in system mass had

the most detrimental impact on the steady-state error followed by the variation in

speed and tyre load respectively. However, the system remained BIBO stable to

acceptable limits and hence the performance of the controller may be deemed suc-

cessful.
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Figure 4.23: Suspension travel response for a +20% variation in selected parameters

Figure 4.24: Suspension travel response to -20% variation in selected parameters
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Figure 4.25: Ride comfort frequency response of the proposed intelligent controllers

The frequency responses of the system in terms of ride comfort and road holding

are presented in Figures 4.25 and 4.26 respectively. As in the case of the quarter-

car PID-controlled system, the intelligent controller exhibited its worst behaviour

when subjected to low frequencies ranging from 0.1Hz to 0.8Hz. Both the optimized

and non-optimized controllers improved upon the passive system in this range with

the optimal-based controller producing considerably lower body-heave accelerations.

At higher frequencies all signals were attenuated to a desirable degree with the

non-optimal intelligent controller producing better results than the passive system

up until 20Hz, after which it displayed a resonant peak. In contrast, the optimal

controller experienced a resonance peak earlier at 8Hz and behaved the weakest at

these high frequencies.

The road holding properties shown in frequency-domain bear similar resemblance to

a high-pass filter, where the weakest road holding characteristics were observed at

low frequencies. The proposed intelligent controllers indicated better road holding

properties than that of the passive system at lower frequencies with the optimal

controller being slightly better. At higher frequencies each system performed more

or less similary and were each able to drastically attenuate high frequency signals.

The fact that the proposed controller schemes generated both improved road holding

and ride comfort than that of the passive system in the more sensitive low frequency

range implies that the intelligent controllers were successful in finding a better com-

promise to these conflicting performance criteria than that of the passive system.

Moreover, the improved response of the optimal intelligent controller concludes that
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Figure 4.26: Road holding frequency response of the proposed intelligent controllers

optimization algorithms such as DE, GA and PSO does indeed play a significant

role in improving the AVSS overall performance.

4.9 Comparison Study on PID and Intelligent Controllers

Comparison of the best intelligent controller to that of the best optimal linear con-

troller (PID+DE) presented in section 3.1, shows that both controllers have an edge

over the other each other in various aspects. Firstly, the linear control law produced

quicker settling time and consequently better RMS values for suspension travel and

actuation force. This behaviour is anticipated as the intelligent control is adap-

tive by nature and transmits control inputs that is function of the neural network

output, which is always greater than zero until the system comes to rest. This

neuro-control contribution remains considerably high for a significant period after

the disturbance is removed and this tends to increase the settling time of the system.

However, the intelligent controller contained a much lower degree of chattering than

the linear control law and this consequently gave it superior ride comfort where it

fell in a much more comfortable region of the International Organization for Stan-

dardization 2631 (2003) standards. The road holding and control input voltage was

better as well. The intelligent controller maintained a lower degree of chattering,
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which is desirable as less chattering is less likely to cause actuator and motor fail-

ure, will produce better forward acceleration if the tyre deflection does not oscillate

extensively [Gillespie (1992)] and provide a more comfortable ride as the system

dampens out more smoothly. Additionally, the suspension travel output for varia-

tions in selected vehicle parameters generated a significantly lower steady-state error

that its counterpart with less chattering. This infers that the intelligent controller

contained a superior sensitivity to parameter variations than that of the PID con-

troller.

The degree of the steady-state error was better for the intelligent controller, where an

increase in speed did not result in further oscillations as in the case of the PID+DE

case. Furthermore, lower steady-state errors were reported for the case of the intelli-

gent controller. These results highlight that intelligent controllers have an improved

sensitivity to parameter variations than linear controllers such as PID. Such be-

haviour is in agreement with literature and this further justifies the effectiveness of

the proposed intelligent controller.

4.10 Summary

The proposed method of training dynamic neural networks through heuristic search

algorithms was successful when implementing PSO and DE, but was ineffective

when using CRS, GA and PS. The indirect adaptive DNNFBL control methodology

proved more challenging to tune manually and hence as a result produced weaker

results than the benchmark manually-tuned PID case. However, the implementation

of random search methods such as PSO and DE overcame this drawback with both

producing better response than the PID in all aspects of the AVSS performance and

was able to find a better compromise in conflicting performance criteria than the

passive and PID cases. The intelligent controller remained BIBO stable for a range

of parameter variations. It possessed better signal attenuation properties than those

of the passive system within aspects of road holding and ride comfort.
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5 Dynamic Neural Network-Based Feedback

Linearization Control of a Nonlinear

Full-Car Electrohydraulic Vehicle

Suspension System

Intelligent control of the full-car model is considerably complex as compared to the

quarter-car model because the system is now a multi-input multi-output system

(MIMO) as opposed to the single-input single-output (SISO) configuration of the

quarter-car model. Additionally, there is coupling between system inputs and out-

puts, and this increases the difficultly in both learning the system dynamics as well

as deriving a suitable control law. Nevertheless, an indirect adaptive DNN-based

feedback linearization technique that was performed for the quarter-car model will

be employed here as well as it has proven to be successful for MIMO systems [Garces

et al. (2003)].

The controller basically works by primarily creating a linear mapping between the

virtual inputs υ and the system outputs y. This linear relationship is created by an

intelligent dynamic neural network based feedback linearizing controller DNNFBL.

This controller operates by training a dynamic neural network (DNN) to learn the

nonlinear mapping between the actual control inputs u and the output y of the

AVSS. Thereafter, a feedback linearization law is applied to the DNN to determine

a feedback law that will approximate a linear mapping between the virtual control

input υ and the system outputs y, and to simultaneously decouple the system. The

DNNFBL control is combined with the multi-loop PID control scheme previously

utilized in PID-based AVSS with the intention of attaining superior performance.

Furthermore, the performance index is computed and fed into an optimization al-

gorithm which computes the optimal controller gains. A schematic of the proposed

control system is shown in Figure 5.1. The aim of the proposed controller is twofold.

The first is to learn the dynamics of the plant with a DNN model through a global
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Figure 5.1: Schematic of the proposed full-car indirect adaptive intelligent controller

optimization-based learning algorithm. Subsequently, the second objective is to cre-

ate a control based on the DNN model that creates a decoupled system and a linear

mapping between the virtual system inputs V and the system outputs O. With this

achieved, linear controllers such as PID controllers can be incorporated to acquire

desired system performance.

This section begins with an analysis of the system to verify that it is indeed input-

output feedback linearizable as well as stable under such a control method. Later,

a detailed development of the DNN is presented, followed by the formulation of the

control law. Thereafter, methods for controller tuning are explained, and afterwards

the simulation results and discussion are drawn up. This chapter concludes with a

comparative analysis between the intelligent controller and the best optimal PID

controller, and a brief summary is given at the end of the chapter.

5.1 Input-output Linearization of Full-car AVSS

Before DNN-based feedback linearization may be performed, it is necessary to ensure

that the full-car system is both input-output feedback linearizable and input-state
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stable. To perform these tests, the relative degree rij of each suspension system

output yij needs to be computed, with subscripts i, j denoting the longitudanal

(front f or rear r) and lateral (left l and right r) positions of each suspension system

respectively. To recap, relative degree basically indicates how many times the output

yij needs to be differentiated with respect to time to have at least one of the systems

inputs uij explicitly appearing. Conversely, it may be also interpreted as the number

of times the control input uij to the i, jth suspension system has to be integrated to

reach the output yij . For the system to be input-output feedback linearizable, the

following condition must be satisfied:

• The relative degree rij of each output yij must be less than the number of

system states P . i.e.: rij ≤ P .

Before the stability study is performed, the system inputs and outputs need to be

defined. The control inputs are the voltages supplied into the front right, front left,

rear right and rear left hydraulic actuators (ufr, ufl, urr, url). Suspension travels at

each wheel are chosen as the system outputs as suspension travel is the fundamental

property that governs suspension dynamics. Hence, the outputs yfr, yfl, yrr and yrl

are given by:

hfr(x) = yfr = x1 − (x17 − lf sinx19 + af/2 sinx21) (5.1)

hfl(x) = yfl = x5 − (x17 − lf sinx19 − af/2 sinx21) (5.2)

hrr(x) = yrr = x9 − (x17 + lf sinx19 + af/2 sinx21) (5.3)

hrl(x) = yrl = x13 − (x17 + lf sinx19 − af/2 sinx21) (5.4)

As the definition explains, the relative degree of the system is determined by continu-

ously taking the time derivative of the output yij until a corresponding rth derivative

of that output yrij is explicitly a function of at least one of the system inputs uij

such that:

yrij = aij(x) + bij(x)uij (5.5)

where aij(x) and bij(x) are nonlinear functions that have been produced as a conse-

quence of the above computation. Moreover, the resulting dynamics of the coupled

nonlinear system may be expressed in matrix form as [Ha and Gilbert (1986)]:

yrij = f(x,u) = A(x) + B(x)u (5.6)

where A(x) is the characteristic matrix, vector yr is the respective derivative of the

outputs at which one of the system input explicitly appears, u is the input vector

containing all the system inputs, and B(x) is the coupling between system states
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and system inputs.

The first derivative of the system outputs y
(1)
ij which are described through state-

space form given in Eqs. (2.51) to (2.86) is determined as follows:

y
(1)
ij =

∂yij
∂t

=
∂yij
∂x

∂x

∂t
=
∂hij(x)

∂x
ẋ

=
∂hij
∂x

[f(x) + gfr(x)ufr + gfl(x)ufl + grr(x)urr + grl(x)url]

= Lfhij(x) + Lgfrhfr(x)ufr + Lgflhfl(x)ufl

+Lgrrhrr(x)urr + Lgrlhrl(x)url (5.7)

Therefore:

y
(1)
fr = Lfhfr(x) +

∑
Lgijhfr(x)uij = x2 − (x18 − lfx20 cosx19 + af/2x22 cosx21)

= Lfhfr(x) (5.8)

y
(1)
fl = Lfhfl(x) +

∑
Lgijhfl(x)uij = x6 − (x18 − lfx20 cosx19 − af/2x22 cosx21)

= Lfhfl(x) (5.9)

y(1)
rr = Lfhrr(x) +

∑
Lgkhrr(x)uij = x10 − (x18 + lfx20 cosx19 + af/2x22 cosx21)

= Lfhrr(x) (5.10)

y
(1)
rl = Lfhrl(x) +

∑
Lgijhrl(x)uij = x14 − (x18 + lfx20 cosx19 − af/2x22 cosx21)

= Lfhrl(x)yij (5.11)

where f(x), g(x) and u are the full-car system matrices described in Eq. (2.51) to

(2.86).
∂hij
∂x f(x) is defined as Lfhij(x), which is referred to as the Lie derivative of

output hij along f . For the first derivative of the outputs, Lghij(x) (x) was zero,

which subsequently infers that y
(1)
fr , y

(1)
fl , y

(1)
rr , and y

(1)
rl are not explicitly dependent

on any of the system inputs ufr, ufl, urr or url.

Therefore, computation of the latter derivative is carried out and this yields:

y
(2)
ij =

∂2yij
∂t2

=
∂
∂yij
∂t

∂x

∂x

∂t
=
∂Lfhij(x)

∂x
ẋ

=
∂Lfhij(x)

∂x
[f(x) + gfr(x)ufr + gfl(x)ufl + grr(x)urr + grl(x)url]

= L2
fhij(x) + LgfrLfhfr(x)ufr + LgflLfhfl(x)ufl

+LgrrLfhrr(x)urr + LgrlLfhrl(x)url (5.12)
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y
(2)
fr = L2

fhfr(x) +
∑

LgijLfhfr(x)uij

=
∂x2 − (x18 − lfx20 cosx19 + af/2x22 cosx21)

∂t
= L2

fhfr(x) (5.13)

y
(2)
fl = L2

fhfl(x) +
∑

LgijLfhfl(x)uij

=
∂x6 − (x18 − lfx20 cosx19 − af/2x22 cosx21)

∂t
= L2

fhfl(x) (5.14)

y(2)
rr = L2

fhrr(x) +
∑

LgijLfhrr(x)uij

=
∂x10 − (x18 + lfx20 cosx19 + af/2x22 cosx21)

∂t
= L2

fhrr(x) (5.15)

y
(2)
rl = L2

fhrl(x) +
∑

LgijLfhrl(x)uij

=
∂x14 − (x18 + lfx20 cosx19 − af/2x22 cosx21)

∂t
= L2

fhrl(x) (5.16)

Again, the second derivative of each output y
(2)
ij is not explicitly dependent on any

of the control inputs ufr, ufl, urr or url. Computation of the succeeding derivative

produces:

y
(3)
ij =

∂3yij
∂t3

=
∂
∂2yij
∂t2

∂x

∂x

∂t
=
∂L2

fhij(x)

∂x
ẋ

=
∂L2

fhij(x)

∂x
[f(x) + gfr(x)ufr + gfl(x)ufl + grr(x)urr + grl(x)url]

= L3
fhij(x) + LgfrL

2
fhfr(x)ufr + LgflL

2
fhfl(x)ufl

+LgrrL
2
fhrr(x)urr + LgrlL

2
fhrl(x)url (5.17)

y
(3)
fr = L3

fhfr(x) +
∑

LgijL
2
fhfr(x)uij

=
∂3x2 − (x18 − lfx20 cosx19 + af/2x22 cosx21)

∂t3

= L3
fhfr(x) (5.18)

y
(3)
fl = L3

fhfl(x) +
∑

LgijL
2
fhrr(x)uij

=
∂3x6 − (x18 − lfx20 cosx19 − af/2x22 cosx21)

∂t3

= L3
fhfl(x) (5.19)

y(3)
rr = L3

fhrr(x) +
∑

LgijL
2
fhrr(x)uij

=
∂3x10 − (x18 + lfx20 cosx19 + af/2x22 cosx21)

∂t3

= L3
fhrr(x) (5.20)
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y
(3)
rl = L3

fhrl(x) +
∑

LgijL
2
fhrl(x)uij

=
∂3x14 − (x18 + lfx20 cosx19 − af/2x22 cosx21)

∂t3

= L3
fhrl(x) (5.21)

Once more, the third derivative of each of the system outputs y
(3)
fr , y

(3)
fl , y

(3)
rr and y

(3)
rl

is also independent of any of the system inputs ufr, ufl, urr and url as LgjL
2
fhj(x)uj =

0. The subsequent derivative of the outputs generates:

y
(4)
ij =

∂4yij
∂t4

=
∂
∂3yij
∂t3

∂x

∂x

∂t
=
∂L3

fhij(x)

∂x
ẋ

=
∂L3

fhij(x)

∂x
[f(x) + gfr(x)ufr + gfl(x)ufl + grr(x)urr + grl(x)url]

= L4
fhij(x) + LgfrL

4
fhfr(x)ufr + LgflL

3
fhfl(x)ufl

+ LgrrL
3
fhrr(x)urr + LgrlL

3
fhrl(x)url (5.22)

y
(4)
fr = L4

fhfr(x) +
∑

LgijL
3
fhfr(x)uij (5.23)

y
(4)
fl = L4

fhfl(x) +
∑

LgijL
3
fhfl(x)uij (5.24)

y(4)
rr = L4

fhrr(x) +
∑

LgijL
3
fhrr(x)uij (5.25)

y
(4)
rl = L4

fhrl(x) +
∑

LgijL
3
fhrl(x)uij (5.26)

However, the fourth derivatives of the system outputs y
(4)
fr , y

(4)
fl , y

(4)
rr , and y

(4)
rl are

explicitly a function of one of the system inputs uij . Thus, the nonlinear dynamics

of the full-car system may be expressed in terms of the control inputs and the char-

acteristic matrix A(x) as follows [Ha and Gilbert (1986) and Garces et al. (2003)]:

y4 = f(x,u) = A(x) + B(x)u (5.27)

with:

A(x) =


L4
fhfr(x) L4

fhfr(x) L4
fhfr(x) L4

fhfr(x)

L4
fhfl(x) L4

fhfl(x) L4
fhfl(x) L4

fhfl(x)

L4
fhrr(x) L4

fhrr(x) L4
fhrr(x) L4

fhrr(x)

L4
fhrl(x) L4

fhrl(x) L4
fhrl(x) L4

fhrl(x)

 (5.28)

B(x) =



y
(4)
fr

y
(4)
fl

y
(4)
rr

y
(4)
rl

rfl


==


L4
fh1(x) +

∑
LgijL

3
fhfr(x)

L4
fh2(x) +

∑
LgijL

3
fhfl(x)

L4
fh3(x) +

∑
LgijL

3
fhrr(x)

L4
fh4(x) +

∑
LgijL

3
fhrl(x)

 (5.29)

Moreover, the vector of relative degrees is given as:

r =
[
rfr rfl rrr rrl

]
=
[

4 4 4 4
]

(5.30)
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where rfr, rfl, rrr, and rrl are the relative degrees of output yfr, yfl, yrr, and yrl

respectively. Since the relative degree of system is less than the number of system

states (r ≤ P ), the system is input-output linearizable. As in the case of intelligent

quarter-car control, the system coordinate system may be transformed into a new

differential homeomorphic coordinate system which is described by Eq. (5.31). This

co-ordinate system basically expresses the system in terms of its observable and un-

observable dynamics with the intent of simplifying the stability study. In relation to

this new coordinate system, the relative degree indicates the number of observable

dynamics that lie within this control system. Furthermore, the difference between

the system states and the relative degree corresponds to the number of unobservable

dynamics present in the system.

z = Ψ(x) =
[
ξ ηT

]
(5.31)

where ξ is the observable dynamics with (total systemstates− rij) = (22− 4) = 18

states as the relative degree rij of output yij is 4 with ξij =
[
zij1 zij2 zij3 zij4

]T
,

and ηij is the unobservable or zero dynamics of the system which contains 18 states

since the difference between the number of states and relative degree rij is 18, and

hence: ηij =
[
ψij1(x) ψij2(x) ...... ψij18(x)

]T
. In accordance with Eq. (5.31),

observable system states are thus defined as: zij1 = yij , zij2 = y
(1)
ij , zij3 = y

(2)
ij ,

zij4 = y
(3)
ij and the zero dynamics are demarcated as: zij5 = ψij1(x),zij6 = ψij2(x),,

zij22 = ψij18(x) The new differential homeomorphic coordinate system may also be

expressed in state-space form in terms of a virtual control input υ as follows:

ξ̇ij = Acijξij + Bcijυij + p̄ij(w) (5.32)

yij = Ccijξij (5.33)

In order to create a linear mapping between the virtual control input υij and the

system outputs yij , and a decoupled system such that:

Acij =


0 1 0 0

0 0 1 0

0 0 0 1

λ0rij
λ1rij

λ2rij
λ3rij

Bcij =


0

0

0

1

Cc =
[

1 0 0 0
]T

p̄ij(w) =
[

0 0 0 1
]T

The virtual control vector υ and hence the individual virtual control inputs υijmust

be determined through the subsequent relation which is essence computes the a

linearizing decoupling law based the systems untransformed characteristic matrix

A(x) presented in Eq. (5.27).

u = P(x) + Q(x)υ (5.34)
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where u =
[
ufr ufl urr url

]
, υ =

[
υfr υfl υrr υrl

]
, P(x) = −A(x)−1B(x),

and Q(x) = −A(x)−1. When applying control, the characteristic matrix may im-

plore design parameters λ0rij
, λ1rij

, λ2rij
, λ3rij

, and λ4rij
to augment and stabilise

system performance [Garces et al. (2003)]. Hence, A(x), and B(x) take the ensuing

forms:

A(x) =


λ4r1L

4
fhfr(x) λ4r1L

4
fhfr(x) λ4r1L

4
fhfr(x) λ4r1L

4
fhfr(x)

λ4r2L
4
fhfl(x) λ4r2L

4
fhfl(x) λ4r2L

4
fhfl(x) λ4r2L

4
fhfl(x)

λ4r3L
4
fhrr(x) λ4r3L

4
fhrr(x) λ4r3L

4
fhrr(x) λ4r3L

4
fhrr(x)

λ4r4L
4
fhrl(x) λ4r4L

4
fhrl(x) λ4r4L

4
fhrl(x) λ4r4L

4
fhrl(x)

 (5.35)

B(x) =


y

(4)
fr

y
(4)
fl

y
(4)
rr

y
(4)
rl

 ==


λ4rfr

L4
fh1(x) +

∑
λjrfrLgijL

3
fhfr(x)

λ4rfl
L4
fh2(x) +

∑
λjrflLgijL

3
fhfl(x)

λ4rrrL
4
fh3(x) +

∑
λjrrrLgijL

3
fhrr(x)

λ4rrl
L4
fh4(x) +

∑
λjrrlLgijL

3
fhrl(x)

 (5.36)

where λ0rij
, λ1rij

, λ2rij
, λ3rij

, and λ4rij
are design parameters. However, in order

for the diffeomorphism to successfully produce differential homeomorphic coordinate

system, the following condition must be guaranteed [Shi et al. (2010),Garces et al.

(2003)]:

Ψ be invertible which infers that:

Lgψij =
dψij
dx g(x), rij + 1 ≤ i ≤ ns (5.37)

After this feedback linearizing control law is applied to the system, the linearized

decoupled system may be described as follows:

rij∑
k=0

λkrij
dkyij
dtk

= υij (5.38)

with a closed-loop transfer function given as:

Gij(s) =
Yij(s)

Vi(s)
=

1

λ4rijs
4 + λ3rijs

3λ2rijs
2λ1rijs+ λ0rij

(5.39)

The proposed transformation is valid if the relative vector r is well defined, A(x)

is defined such that Eq. (5.34) is solvable and design parameters must be selected

such that:

det
[
diag

(
λ1rfr

λ1rfl
λ1rrr λ1rrl

)]
6= 0 (5.40)

To ensure system stability, both the observable ξij and zero ηij system dynamics

must be stable. Asymptotic stability of the system is ensured if the origin of the

transformed system (ξij = 0,ηij = 0) is an equilibrium point. Careful study of the

linearized decoupled system modelled according to Eq. (5.39) bears similar resem-

blance to pole placement control. Therefore, to guarantee global system stability
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Routh-Hurwitz criterion is applied to the characteristic polynomial. This principle

requires that all poles of the system described by Eq. (5.39) to lie in the negative

half plane. Hence, the design parameters λ0rij
, λ1rij

, λ2rij
, λ3rij

and λ4rij
are specif-

ically chosen to meet this condition and guarantee stability.

This feedback linearizing law may be augmented with any control method with the

aim of attaining better system performance. As there is a linear mapping between

the virtual controls υij and their respective system outputs yij , the virtual input

υij may be computed using linear control laws. The virtual control υij may be

designed around a linear control law as the system has now been linearized. The

resulting hybrid control method will significantly improve system performance with

satisfactory parameter sensitivity and disturbance attenuation. Hence, the virtual

input υij may be chosen:

υij = −
rij∑
k=0

λkrij
dkyij
dtk

+ ῡij (5.41)

where ῡij is the new external input for the i, jth output yij , which may be based on

any linear control law. In this investigation, it is set to be a function of the reference

signal ydij and the output signal yij and hence the control error e. Therefore, the new

virtual control input ydij may be determined with a PID output feedback controller

as follows:

ῡij = KP e+KI

∫ T

0
e.dt+KD

de

dt
(5.42)

5.2 System Identification

The next step in the controller design involves system identification. System iden-

tification begins by capturing a relevant input-output data set which best captures

most of the expected dynamics of the plant. As in the case of quarter-car model

White-Band-Limited noise (WBL) that is bounded to ±10V is used for each of the

input data. However, the settings of each WBL are slightly varied so that the sys-

tem’s coupling is captured. From Figures 3.47 and 3.50, it is evident that both the

PVSS and AVSS are sensitive in the frequency range of 0.5Hz to 80Hz, and it is

thus paramount that the system identification input data covers these frequencies

[Dahunsi and Pedro (2010)]. Thus the settings of the WBL are listed in Table 5.1

and the corresponding input data is shown in Figures 5.2 to 5.5. The suspension

travel at each of the wheels is chosen as the system outputs to be learnt. This is

because these outputs are the primary factor upon which the model is based. The

154



Table 5.1: Configuration setting of input data for system identification for the full-

car model

Input WBL Configuration Input WBL Configuration

ufr Bounds of ±10V ufl Bounds of ±10V

Seed strength of 23341 Seed strength of 22641

Sampling Time of 0.001s Sampling Time of 0.001s

Noise Power of 0.1 Noise Power of 0.08

urr Bounds of ±10V url Bounds of ±10V

Seed strength of 22641 Seed strength of 22641

Sampling Time of 0.001s Sampling Time of 0.001s

Noise Power of 0.07 Noise Power of 0.05

Figure 5.2: Front right actuator input data used for system identification

respective output data are shown in Figures 5.6 to 5.9. The output data is bounded

to ±0.01m, which is acceptable as the suspension travel was limited to this range in

the case of the full-car PID-based AVSS.

In contrast to the quarter-car intelligent AVSS, this DNN is a MIMO system. In

the proposed controller four neural networks will be trained to learn the dynamics
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Figure 5.3: Front left actuator input data used for system identification

Figure 5.4: Rear right actuator input data used for system identification
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Figure 5.5: Rear left actuator input data used for system identification

Figure 5.6: Front right suspension travel output data used for system identification
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Figure 5.7: Front left suspension travel output data used for system identification

Figure 5.8: Rear right suspension travel output data used for system identification
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Figure 5.9: Rear left suspension travel output data used for system identification

of the four system outputs. Each DNN has the following form:

ẋij = −βijx + Wijσ(xij) + g1ij (x)ufr + g2ij (x)ufl + g3ij (x)urr + g4ij (x)url

+γ1ij (x)yfr(t− 1) + γ2ij (x)yfl(t− 1) + γ3ij (x)yrr(t− 1)

+γ4ij (x)yrl(t− 1) (5.43)

ŷij = hij(x) =

nn∑
L=1

wijLxij1 (5.44)

where subscript denotes the i, jth dynamic neural network at the i, jth suspension

system with i denoting the longitudanal position (front f or rear r) and j signifying

the lateral position (right r or left l) of the suspension system, x is a vector denoting

the outputs of each neuron, β designates the matrix containing the time constants

of each neuron in the hidden layer, σ(x) is the vector containing the neuron outputs

after it had been passed through the activation function, Wij is the inter-connecting

neuron weights, uij are the various control input signals that are being passed into

the real system, gkij is a matrix which holds the weighting contributions that the

kth control input uij has on each neuron, yij(t− 1) holds the system outputs at the

previous time step, and γkij
is the contribution of these aforementioned outputs on

each neuron. wij is a vector containing the associating weighting contribution of

each neuron in the hidden layer, nn is the number of neurons in the hidden layer.

The i, jth DNN may be also described in terms of a pseudo function fij such that

159



Figure 5.10: Schematic of the applied MIMO DNN

feedback linearization may be employed. The ensuing form is given as:

ẋij = fij + g1ij (x)ufr + g2ij (x)ufl + g3ij (x)urr + g2ij (x)url +

γ1ij (x)yfr(t− 1) + γ2ij (x)yfl(t− 1) + γ3ij (x)yrr(t− 1)

+γ4ij (x)yrl(t− 1) (5.45)

with:

fij = −βijxij + Wijσ(x) (5.46)

A schematic of the DNN is shown in Figure 5.10 and the configuration of the applied

DNN is summarized below.

1. Number of hidden layers is 2.

2. Number of neurons in the first hidden layer nn is 13.

3. 4 delayed state inputs.

4. 4 delayed control inputs.

5. Number of neurons in the second hidden layer is 1.

This specific configuration was selected using pruning such as was done for the

quarter-car model. This was achieved using the method of pruning which operates

by comparing the topology of the output data obtained by DNN for various hid-

den layer configurations and subsequently selecting the best configuration [Nφrgaard

et al. (2000)]. Each of the DNN models were set to have similar network parameter

values so that the comparison would be credible. The results for the various configu-

rations are plotted in Figure 5.11. Figure 5.11 indicates that the output data of the
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Figure 5.11: Network output data for various DNN configurations

3 neuron and 8 neuron configurations are relatively poor and are unable to capture

the rate of change of the output data. The 13 neuron configuration is however able

to perform effectively. Hence, a DNN with 13 neurons in the first hidden layer was

selected for this investigation.

The dynamic neural network is trained using the PSO learning algorithm that was

used in quarter-car intelligent control. PSO-based system identification will only be

performed as it achieved the best results for the quarter-car intelligent controller.

However, there are only two variations in this learning algorithm, which is required

so that the DNN may be adapted to the full-car model. Firstly, the number of control

variables to be computed by the PSO routine has now increased due to the greater

number of neurons and the additional neural network inputs. Secondly, there are

now four objective function Jij which is the MSE value for each suspension travel

output yij . Hence, the objective function has the following form:

Jij = MSE =
1

2N

N∑
i=0

(yij − ŷij)2 (5.47)

where ŷij is the predicted DNN suspension output for the yij . The configuration

settings of the PSO learning routine are listed in Table 5.2. The convergence history

of the training algorithm is plotted in Figure 5.12 and the identification results are
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Figure 5.12: DNN training results obtained through PSO learning

superimposed with the output data in Figures 5.13 to 5.16 respectively. The cor-

responding validation results are plotted in Figures 5.17 to 5.20 respectively. The

MSE values obtained were as good as those reported by Dahunsi et al. (2011) who

controlled quarter-car nonlinear electrohydraulic AVSS using static neural networks.

Hence, this system identification results are acceptable and have performed compar-

atively efficient.

Table 5.2: PSO settings for the full-car system identification

Routine PSO

Population Size 100

Stopping Criteria 50 Iterations

Optimization w1 =0.5, w2 =2

Parameters w3 =2

It is worth noting that formulation of the control law may only be possible if the dy-

namic neural network itself is stable. To ensure this stability the following conditions

must be satisfied: [Garces et al. (2003)]

Step i. The activation function σ(x) is continuously differentiable.

Step ii. σ(x) is bounded to 0 ≤ σ(x) ≤ 1
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Figure 5.13: Identification results obtained for the front right suspension system

Figure 5.14: Identification results obtained for the front left suspension system
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Figure 5.15: Identification results obtained for the rear right suspension system

Figure 5.16: Identification results obtained for the rear left suspension system
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Figure 5.17: DNN validation results for the front right suspension system

Figure 5.18: DNN validation results for the front left suspension system
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Figure 5.19: DNN validation results for the rear right suspension system

Figure 5.20: DNN validation results for the rear left suspension system
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Step iii. Given utεR+, there is a symmetric and positive solution P to Eq. (5.48)

βTPij −Pijβ = −µIij (5.48)

where I is an identity matrix and µ is a scaling factor, which Garces et al.

(2003) argued should have a value of 1.

Step iv. the inequality of Eq. (5.49) must be satisfied:

||Wij ||2 ≤
µ− 2||Pij||
||Pij||

(5.49)

where ||.|| signifies the Euclidean norm of the specified matrix.

where ||.|| signifies the Euclidean norm of the specified matrix. As the activation

function σ(x) is the hyperbolic tangent function, conditions i. and ii. are fulfilled.

Every DNN model satisfied both Eq. (5.48) and the inequality of Eq. (5.49). Hence,

it may be concluded that the DNNs attained through training are indeed stable.

5.3 Controller Development and Tuning

Before, the controller is developed, a specific condition must be guaranteed. A

feedback linearizing law can only be developed if the DNN is input-output feedback

linearizable. This requires the relative degree rij of each output yij to be less than

the number of system states rij < n. The respective relative degrees are computed

in the same manner as done for the actual full-car model as presented in section 5.1.

The only difference is that it is now applied to the trained DNN models instead of

the full-car model. The system outputs based on each dynamic neural network are

given as follows:

ŷfr = hfr(x) (5.50)

ŷfl = hfl(x) (5.51)

ŷrr = hrr(x) (5.52)

ŷrl = hrl(x) (5.53)

with ŷij denoting the output from the i, jth DNN which learns the suspension travel

dynamics at the i, jth wheel. The relative degree of the system is determined by

continuously taking the time derivative of the output hij until a corresponding the

rth derivative of that output y
(r)
ij is explicitly a function of at least one of the system

inputs uij such that:

ŷ
(r)
ij = aij(xij) + bij(xij)uij (5.54)
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where aij(xij) and bij(xij) are any nonlinear functions that have been produced

as a consequence of the above computation. Moreover, the resulting dynamics of

the coupled nonlinear system may be expressed in matrix form as [Ha and Gilbert

(1986)]:

ŷ(r) = f(x,u) = A(x) + B(x)u (5.55)

where A(x) is the characteristic matrix, vector y(r) is the respective derivative of the

outputs at which one of the system input explicitly appears, u in the input vector

containing all the system inputs, and B(x) is the coupling between system states

and system inputs.

The first derivative of the system DNN outputs ŷ
(1)
ij which are described using Eq.

(5.43) and (5.44) is determined as follows:

ŷ
(1)
ij =

∂ŷij
∂t

=
∂ŷij
∂xij

∂xij
∂t

=
∂hij(x)

∂x
ẋij

=
∂hij
∂xij

[
fij(x) + g1ij (x)ufr + g2ij (x)ufl + g3ij (x)urr + g4ij (x)url

]
=

[
∂hfr
∂xij1

∂hfr
∂xij2

... ...
∂hfr
∂xij8

] [
fij(x) + g(x)ufij(x) + g1ij (x)ufr+

g2ij (x)ufl + g3ij (x)urr + g4ij (x)url
]T

= wij1

[
−βij1x1 +

13∑
k=1

Wij1kσ(xk)

]
= Lfijhij(x) (5.56)

where
∂hij
∂x fij(x) is defined as Lfijhij(x), which is referred to as the Lie derivative

of hij along fij . For each of the DNN’s at each suspension system, Lgkhij(x) is

zero, which subsequently infers that ŷ
(1)
ij , ŷ

(1)
ij , ŷ

(1)
ij , and ŷ

(1)
ij of the i, jth suspension

systems are not explicitly dependent on any of the system inputs uij . Therefore,

computation of the latter derivative is carried out and this yields:

ŷ
(2)
ij =

∂2ŷij
∂t2

=
∂
∂ŷij
∂t

∂xij

∂xij
∂t

=
∂Lfhij(xij)

∂x
ẋij

=
∂Lfijhij(xij)

∂xij

[
fij(x) + g1ij (x)ufr + g2ij (x)ufl + g3ij (x)urr + g4ij (x)url

]
= L2

fij
hij(xij) + Lg1ijLfijhfr(x)ufr + Lg2ijLfijhfl(xij)

= ufl + Lg3ijLfijhrr(xij)urr + Lg4ijLfijhrl(xij)url

= wijk1 [−βij1x1 +Wij11(1− σ(xij1)2) +Wij12(1− σ(xij2)2).........

= +Wij13(1− σ(xij13)2)]
[
fij(x) + gkij (x)uij

]
= dij(x) + eij(x)uij

= L2
fij
hij(x) + LgijLfijhij(x)uij (5.57)
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where dij(x) or L2
fij
hfr(x) is the free response of the system and eij(x)uij or

LgkijLfijhij(x)uij is the free response of the system. Hence, for each DNN, the

second derivative of the output is thus:

ŷ
(2)
fr = L2

ffr
hfr(x) + Lg1frLffrhfr(x)ufr (5.58)

ŷ
(2)
fl = L2

ffl
hfl(x) + Lg2flLfflhfl(x)ufl (5.59)

ŷ(2)
rr = L2

frrhrr(x) + Lg3rrLfrrhrr(x)urr (5.60)

ŷ
(2)
rl = L2

frl
hrl(x) + Lg4rlLfrlhrl(x)url (5.61)

In the preceding computations, the each of the four DNN models generated a matrix

where g1fr(x), g2fl(x), g3rr(x), and g4rl(x) were considerably large constants. Thus,

the second time derivative of the network output ŷ
(2)
ij produced a solution which

was explicitly dependent on at least one of the control input uij . Hence, the relative

degree of each DNN model is two. This is less than the 13 states of the DNN models.

Hence the vector of relative degree r is:

r =
[
rfr rfl rrr rrl

]T
=
[

2 2 2 2
]T

(5.62)

The resulting nonlinear dynamics of the DNN configurations may be expressed in

terms of its characteristic matrix A(x) as follows:

y2 = f(x,u) = A(x) + B(x)u (5.63)

with:

A(x) =


Lg1frL

2
ffr
hfr(x) Lg2frL

2
ffr
hfr(x) Lg3frL

2
ffr
hfr(x) Lg4frL

2
ffr
hfr(x)

Lg1flL
2
ffl
hfl(x) Lg2flL

2
ffl
hfl(x) Lg3flL

2
ffl
hfl(x) Lg4flL

2
ffl
hfl(x)

Lg1rrL
2
frr
hrr(x) Lg2rrL

2
frr
hrr(x) Lg3rrL

2
frr
hrr(x) Lg4rrL

2
frr
hrr(x)

Lg1rlL
2
frl
hrl(x) Lg2rlL

2
frl
hrl(x) Lg3rlL

2
frl
hrl(x) Lg4rlL

2
frl
hrl(x)


(5.64)

B(x) =


ŷ

(2)
fr

ŷ
(2)
fl

ŷ
(2)
rr

ŷ
(2)
rl

 =


L2
ffr
hfr(x) +

∑
LgijL

1
ffr
hfr(x)

L2
ffl
hfl(x) +

∑
LgijL

1
ffl
hfl(x)

L2
frr
hrr(x) +

∑
LgijL

1
frr
hrr(x)

L2
frl
hrl(x) +

∑
LgijL

1
frl
hrl(x)

 (5.65)

As the relative degree of system is less than the number of system states (rij ≤ n),

the system is thus input-output linearizable. The system coordinates can be trans-

formed into a more friendly differential homeomorphic coordinate system which is

described by Eq. (5.66). This co-ordinate breaks down the system dynamics into

its observable ξ and unobservable η. This new co-ordinate system is as follows:

z = Ψ(x) =
[
ξ ηT

]
(5.66)
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where ξ is the observable dynamics with (N − rij) = (13 − 2) = 11 states as the

relative degree rij of DNN output ŷij is 2 with ξij =
[
zij1 zij2

]T
, and ηij is

the unobservable or zero dynamics of the system which contains 11 states since the

difference between the number of states and relative degree of each DNN model is

11, and hence: ηij =
[
ψij1(x) ψij2(x) ...... ψij11(x)

]T
. In accordance with Eq.

(5.31), observable system states are thus defined as: zij1 = ŷij , zij2 = ŷ
(1)
ij and the

zero dynamics are demarcated as: zij5 = ψij1(x),zij6 = ψij2(x),, zij13 = ψij11(x)

The new differential homeomorphic coordinate system may also be expressed in

state-space form in terms of a virtual control input υ as follows:

ξ̇ij = Acijξij + Bcijυi + p̄ij(w) (5.67)

yij = Ccijξij (5.68)

In order to create a linear mapping between the virtual control input υij and the

system outputs yij , and a decoupled system such that:

Ac =

[
0 1

λ0rij
λ1rij

]
Bc =

[
0

1

]
Cc =

[
1 0

]T
p̄(w) =

[
0 1

]T
(5.69)

The virtual control vector υ must be determined through the following computation

which generates a linearizing decoupling law by solving the control law that removes

the linearities present in Eq. (5.63). This gives rise to the following linearizing

control signal

u = P(x) + Q(x)υ (5.70)

where u =
[
ufr ufl urr url

]
, υ =

[
υfr υfl υrr υrl

]
, P(x) = −A(x)−1B(x),

and Q(x) = −A(x)−1. When applying control, the characteristic matrix may im-

plore design parameters λ0rij
, λ1rij

, and λ2rij
to augment and stabilise system per-

formance[Garces et al. (2003)]. Hence, A(x), and B(x) take the ensuing forms:

A(x) =


λ2rfr

Lg1frL
2
ffr
hfr(x) λ2rfr

Lg2frL
2
ffr
hfr(x) λ2rfr

Lg3frL
2
ffr
hfr(x)

λ2rfl
Lg1flL

2
ffl
hfl(x) λ2rfl

Lg2flL
2
ffl
hfl(x) λ2rfl

Lg3flL
2
ffl
hfl(x)

λ2rrrLg1rrL
2
frr
hrr(x) λ2rrrLg2rrL

2
frr
hrr(x) λ2rrrLg3rrL

2
frr
hrr(x)

λ2rrl
Lg1rlL

2
frl
hrl(x) λ2rrl

Lg2rlL
2
frl
hrl(x) λ2rrl

Lg3rlL
2
frl
hrl(x)

.. λ2rfr
Lg4frL

2
ffr
hfr(x)

.. λ2rfl
Lg4flL

2
ffl
hfl(x)

.. λ2rrrLg4rrL
2
frr
hrr(x)

.. λ2rrl
Lg4rlL

2
frl
hrl(x)

 (5.71)

B(x) =


ŷ

(2)
fr

ŷ
(2)
fl

ŷ
(2)
rr

ŷ
(2)
rl

 =


λ2rfr

L2
fh1(x) +

∑1
j=1 λjrfrLgjL

3
fhfr(x)

λ2rfl
L2
fh2(x) +

∑1
j=1 λjrflLgjL

3
fhfl(x)

λ2rrrL
2
fh3(x) +

∑1
j=1 λjrrrLgjL

3
fhrr(x)

λ2rrl
L2
fh4(x) +

∑1
j=1 λjrrlLgjL

3
fhrl(x)

 (5.72)
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where λ0rij
, λ1rij

, and λ2rij
, are design parameters or controller gains which are

tuned with the aim of improving system performance. However, in order for the dif-

feomorphism to successfully produce differential homeomorphic coordinate system,

the following condition must be ensured [Shi et al. (2010),Garces et al. (2003)]: Ψ

be invertible which infers that:

Lgψi = dψi
dx g(x), r + 1 ≤ i ≤ ns (5.73)

The resulting decoupled linear system now has the ensuing form:

rij∑
k=0

λ+ krij
dkyij
dtk

= υij (5.74)

and its resulting close loop transfer function of each DNN controller is given as:

Gij(s) =
Yij(s)

Vi(s)
=

1

λ2rij
s2λ1rij

s+ λ0rij

(5.75)

The proposed transformation is valid if the relative vector r is well defined, A(x)

is defined such that Eq. (5.34) is solvable and design parameters must be selected

such that:

det
[
diag

(
λ2rfr

λ2rfl
λ2rrr λ2rrl

)]
6= 0 (5.76)

To ensure system stability, both the observable ξij and zero ηij system dynamics

must be stable. Asymptotic stability of the system is ensured if the origin of the

transformed system (ξij = 0,ηij = 0) is an equilibrium point. Careful study of the

linearized decoupled system modelled according to Eq. (5.75) bears similar resem-

blance to pole placement control. Therefore, to guarantee global system stability

Routh-Hurwitz stability criterion is applied to the characteristic polynomial. This

principle requires all poles of the system described by Eq. (5.39) to lie in the neg-

ative half plane. Hence, the design parameters λ0rij
, λ1rij

, λ2rij
, are specifically

chosen to meet this condition and guarantee stability.

This feedback linearizing law may be augmented with any control method with the

aim of attaining better system performance. As there is a linear mapping between

the virtual controls υij and the predicted system outputs ŷij , the virtual input υ

may be computed using linear control laws. Linear control laws can be successfully

incorporated to any linear system will significantly improve system performance with

satisfactory parameter sensitivity and disturbance attenuation. Hence, the virtual

input υij may be chosen:

υij = −
rij∑
k=0

λkrij
dkyij
dtk

ῡij (5.77)
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where ῡij is the new external input for the i, jth DNN predicted output ŷij , which

may be based on any linear control law. This control law will be the multi-loop PID

control scheme that was implemented in full-car PID-based AVSS in section 3.2. A

schematic of the control structure is shown in Figure 5.1. The inner loop aims to

stabilise the actuator and the outer loop manipulates the control variable, which as

in the case of the PID-based AVSS is the suspension travel at the respective wheels.

In this figure, ydij signifies the equilibrium set point of the i, jth wheel, which is set to

zero to address the regulation problem; numbers 1 to 4 are representative of the front

right, front left, rear right and rear left wheels respectively; e1ij are the outer loop

control error of the i, jth outer loop, whereas e2ij denotes that of the respective inner

loops; Faij is the actuator forces supplied at the i, jth actuator with Fdij signifying

its respective desired force which is being tracked using the inner PID controllers.

yfr, yfl, yrr, and yrl are the suspension travels that are manipulated through the

outer control loops; and ῡfr, ῡfl, ῡrr and ῡrl are the respective control signals that

are passed into the FBL portion of the DNNFBL law. The PID controllers operate

as follows:

e1ij = yij − ydij (5.78)

Fdn = KPije1ij +KDij

de1ij

dt
+KIij

T∫
0

e1ij .dt (5.79)

e2ij = Faij − Fdij (5.80)

ῡij = kpije2ij + kdij
de2ij

dt
+ kiij

T∫
0

e2ij .dt (5.81)

with yij is the suspension travel experienced at the ith forward longitudinal position

and jth lateral position of vehicle, where i may take either f(front) or r(rear), and

j is either r(right) or l(left); are the KPij and kpij are the proportional gains of

the controllers manipulating the i, jth wheel and they correspond to the outer and

inner loops respectively; similary KIij and kiij are the corresponding integral gains

of the controllers; KDij and kdij are the derivative gains of the respective control

loops; and T is the simulation time. In retrospect, the dynamics of each suspension

is controlled by 6 PID controller gains and 4 feedback linearization gains. This gives

a total of 40 controller gains or problem variables.

The FBL is augmented with same multi-loop PID controllers used in PID-based

AVSS design with the objective of meeting the design specifications and performance

index listed for full-car PID control (see section 3.2.3). As in the case of PID-based
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Figure 5.21: Convergence of performance index through PSO-based optimization for

full-car intelligent controller

AVSS, the controller gains may be selected manually or through an optimization

policy. In this control architecture, PSO-based controller tuning is performed as it

produced the most consistent results in this research study as a whole. The algo-

rithm steps are summarized in section 3.1.5.3. The only variation in this application

is the number of control variables are now 40 and the cost function corresponds

to the performance index of the full car model presented in Eq. (3.28) to (3.33):

The controller gains are tuned manually and with the aid of PSO-based optimiza-

tion. The configuration settings of the PSO algorithm are given in Table 5.3. The

Table 5.3: Optimization parameters for the PSO routine for the full-car intelligent

controller

Routine PSO

Population Size 100

Stopping Criteria 150 Iterations

Optimization w1 =0.5, w2 =2

Parameters w3 =2

convergence history of the performance index through the implementation of PSO

is presented in Figure 5.21. The initial condition for this routine corresponds to

the set of gains attained through manual tuning. Figure 5.21 clearly indicates that
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Figure 5.22: Bar graphs depicting the variation in suspension travel for each control

law

optimization through PSO was successful in lowering the performance index by ap-

proximately 40%. However, careful study of each performance criterion must be

studied to examine if the conflicting performance criteria have been resolved. The

controller gains attained through both manual tuning and feedback linearization are

listed in Table 5.4.

5.4 Simulation Results

This analysis conducts a study on the system response to a deterministic road bump

disturbance with a profile described by Eqs. (2.90) to (2.93). A summary of the

system performance through intelligent control is presented in Tables 5.5 and 5.6 as

well as the bar graphs in Figures 5.22 to 5.25. As in the case of the full-car PID-based

controller, suspension performance including suspension travel, tyre dynamic load

and control input voltage are graphically reported in Figures 5.26 to 5.28 respectively

for the rear right wheel as the system response was the worst at this wheel.

The suspension travel response for both the intelligent and optimal augmented in-

telligent controller produced a significant improvement to that of the PVSS. In both

these cases the peak and RMS suspension travel was reduced substantially with

the optimal case showing the best results with a further improvement of 10% in

suspension travel RMS value and displayed noticeable lower peaks in the third and

fourth oscillations. Additionally, the intelligent controller exhibited quicker settling
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Figure 5.23: Bar graphs illustrating the difference in control input voltage for the

proposed controllers

Figure 5.24: Bar graphs summarizing the road holding aspect for each control case
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Figure 5.25: Quantitative information pertaining to the vehicle handling, ride com-

fort and actuator force

Figure 5.26: Suspension travel response through the implementation of intelligent

control
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Figure 5.27: Comparative plot of the tyre dynamic load response for the proposed

intelligent control schemes

Figure 5.28: Ride comfort observed through the use of intelligent control and opti-

mized intelligent control
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Table 5.4: List of controller gains selected for full-car intelligent control

Front Right Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 1114 205 −694 0.0025 0.00179 0

PSO 2540 103 −1051 0.0034 0.01102 3× 10−9

Feedback Linerization Controller Gains

Gains λ0r1 λ1r1 λ2r1

Manual 0 0 0.24

PSO 0.001 0.001 0.24

Front Left Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 3071 21 769 0.0045 0.00334 0

PSO 2293 441 1421 0.0050 −0.00104 3× 10−9

Feedback Linerization Controller Gains

Gains λ0r2 λ1r2 λ2r2

Manual 0 0 0.24

PSO 0.031 0.021 0.239

Rear Right Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 662 171 −650 0.0042 0.00252 0

PSO 11091 −1123 −606 0.0023 0.00818 3× 10−9

Feedback Linerization Controller Gains

Gains λ0r3 λ1r3 λ2r3

Manual 0 0 0.24

PSO 0.003 0.001 0.0241

Rear left Suspension System

Outer PID Loop Gains Inner PID Loop Gains

Technique KP KI KD kp ki kd

Manual 7393 356 142 0.0043 0.00474 0

PSO 9211 229 1213 0.0009 0.00487 1× 10−9

Feedback Linerization Controller Gains

Gains λ0r4 λ1r4 λ2r4

Manual 0 0 0.24

PSO 0.025 0.037 0.24
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Table 5.5: Summary of selected suspension performance incorporating the proposed

intelligent controller

Technique
Front Right Front Left

Suspension Travel(m) Suspension Travel(m)

RMS Peak RMS Peak

Passive 0.038 0.0107 0.048 0.0131

DNNFBL 0.040 0.0097 0.031 0.0075

DNNFBL+PSO 0.041 0.0100 0.033 0.0083

PID+DE 0.039 0.0094 0.025 0.0067

Technique
Rear Right Rear Left

Suspension Travel(m) Suspension Travel(m)

RMS Peak RMS Peak

Passive 0.033 0.0079 0.033 0.0076

DNNFBL 0.033 0.0077 0.032 0.0072

DNNFBL+PSO 0.027 0.0066 0.023 0.0048

PID+DE 0.028 0.0067 0.024 0.0054

Technique
Front Right Tyre Front Left Tyre

Dynamic Load(N) Dynamic Load(N)

RMS Peak RMS Peak

Passive 1594 395 1254 321

DNNFBL 1562 340 1271 280

DNNFBL+PSO 1374 292 1227 279

PID+DE 984 189 713 132

Technique
Rear Right Tyre Rear Left Tyre

Dynamic Load(N) Dynamic Load(N)

Passive 1194 248 81158 240

DNNFBL 1335 279 1211 249

DNNFBL+PSO 1182 226 1000 201

PID+DE 1196 229 930 185

time than the PVSS. Moreover, the proposed intelligent controllers improved the

system’s transient response with fewer oscillations where it was observed that the

response dampened out as soon as the disturbance was removed. Similar responses

were observed at each of the wheels and this infers that the intelligent controllers

were successful in improving suspension travel. These results are anticipated as the

performance index used in both optimization and manual tuning placed large em-

phasis on suspension travel and hence as a consequence of lowering the performance
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Table 5.6: Summary of selected suspension performance incorporating the proposed

intelligent controller

Technique
Front Right Control Front Left Control

Input Voltage(V ) Input Voltage(V )

RMS Peak RMS Peak

DNNFBL 1.52 0.333 1.15 0.248

DNNFBL+PSO 1.62 0.345 1.18 0.267

PID+DE 1.61 0.318 1.18 0.225

Technique
Rear Right Control Rear Left Control

Input Voltage(V ) Input Voltage(V )

RMS Peak RMS Peak

DNNFBL 1.75 0.329 1.48 0.279

DNNFBL+PSO 1.34 0.276 1.02 0.197

PID+DE 1.37 0.278 1.01 0.204

Technique
Pitch Acceleration Roll Acceleration

(rad/s2) (rad/s2)

RMS Peak RMS Peak

Passive 2.36 0.516 0.588 0.130

DNNFBL 2.24 0.523 0.483 0.108

DNNFBL+PSO 2.06 0.414 0.301 0.0784

PID+DE 1.62 0.314 0.328 0.0668

Technique
Heave Acceleration Effective Hydraulic

(m/s2) Force(N)

RMS Peak RMS Peak

Passive 2.44 0.648 N/A N/A

DNNFBL 1.75 0.499 820 167

DNNFBL+PSO 1.75 0.466 1074 185

PID+DE 1.72 0.306 1363 342

Performance Index J

Passive DNNFBL DNNFBL+PSO PID+DE

5 3.2 0.98 1.1

index meant a reduction in suspension travel.

In relation to the tyre dynamic load, the non-optimized intelligent control scheme

was unsuccessful in improving upon the PVSS in both RMS and peak values. The

optimal-based intelligent controller did however produce a slight improvement in
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peak tyre dynamic load. On the other hand, it did manage to substantially improve

the RMS value and transient behaviour where its latter peaks were considerably

lower than its counterparts. It also possessed a significantly less degree of chatter-

ing. At the front wheels, the tyre dynamic load of both intelligent control methods

produced a noticeable augmentation from the PVSS. However, the rear left wheel

produced the same outcome as the rear right wheel where the non-optimized case

had not enhanced the PVSS. Even though the performance index has a considerable

weighting on peak tyre dynamic load and other performance criterion, it does not

necessarily imply that lowering the performance index would reduce that criterion.

This is because these criteria are in conflict with one other and substantially low-

ering one criterion such as suspension travel might limit the degree of reduction

in another criterion such as tyre dynamic load. However, the marginally positive

results obtained for the optimized case infers that optimization was more successful

in resolving the conflicting suspension performance criteria than the conventional

manual tuning approach.

The control input voltage required to manipulate the output variables for the op-

timized case contained a marginally superior peak, RMS value and damping rate.

A similar trend was detected at each wheel and this suggests that optimization

was successful in both improving suspension performance and resolving the inherent

conflicts associated with them. In contrast to control input voltage, the cumulative

input force presented in Figure 5.29 was greater for the optimized case. In a sense,

this is anticipated as larger control forces are required to inherently cancel out the

detrimental effects of disturbances.

In relation to ride comfort, Figure 5.30 indicates that both intelligent controllers

performed desirably well in this aspect with a considerable reduction in RMS and

peak acceleration values. The the optimal intelligent controller outperformed the

non-optimal controller by a sizeable extent. Additionally, the transient behaviour

pertaining to the latter peaks, system damping rate and settling time of the imple-

mented intelligent methodologies was superior to the passive case with the optimal

scheme producing the best results in these aspects.

With regards to vehicle handling, Figure 5.31 illustrates that the non-optimized in-

telligent controller performed marginally better than the passive case with a slight

decrease in peak and RMS values for pitch acceleration. Furthermore, no substan-

tial enhancement in transient response was observed. Conversely, the optimized case
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Figure 5.29: Cumulative actuator force produced in the employment of intelligent

control

Figure 5.30: Ride comfort observed through the use of intelligent control and opti-

mized intelligent control
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Figure 5.31: Vehicle handling characteristics as captured by pitch acceleration for

the intelligent control scheme

was successful in lowering the peak and RMS values of pitch acceleration extensively.

In addition, the implementation of optimality saw improved transient performance

with a quicker settling time, less chattering and lower secondary peaks.

Pertaining to roll acceleration, Figure 5.32 shows the intelligent controller generated

a significant improvement to that of the passive case with lower peaks, reduced RMS

and improved transient characteristics. Furthermore, the application of optimization

appreciably minimized the roll acceleration with a lower degree of chattering. The

successful reduction in ride comfort and vehicle handling was projected as each of

these criteria had significant weightings in the performance index. Moreover, the

improvements of each suspension system performance criterion with optimization,

infers that PSO and intelligent control was successful in resolving the trade-offs

associated with suspension systems.
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Figure 5.32: Vehicle handling features observed through roll acceleration for the

intelligent control techniques

5.5 Sensitivity to Parameter Variations and Frequency-

Domain Analysis

The response observed for the sinusoidal bump road profile was BIBO stable as all

steady-state values ranged below 0.0001% of the peak values. One of the funda-

mental purposes of invoking intelligent control is to produce a system with a low

sensitivity to parameter variations. Hence, it is vital that proposed intelligent con-

trol scheme be examined in relation to parameter variations. For a typical vehicle;

inertia, tyre stiffness and damping, and vehicle speed are expected to change with

variations in fuel, passenger numbers, tyre pressure and horizontal speed. These

parameters tend to change by ±20%.

Figures 5.33 and 5.34 show the response of the rear right suspension travel when the

vehicle is subjected to the same road disturbance but with a variation of ±20% in

mass, pitch inertia, roll inertia, tyre damping and stiffness coefficients and vehicle

speed. These results clearly depict a BIBO stable system with steady-state values

ranging below 0.0001% of peak values. For all variations except that of increased ve-

hicle speed, transient behaviour was comparatively good with quicker settling times,

damping rate and minimal oscillations. The poor transient response observed for
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Figure 5.33: Suspension travel response for +20% variations in selected parameter

Figure 5.34: Suspension travel response for −20% variations in selected parameters

the 20% increase in vehicle speed may be resolved by implementing gain scheduling.

It is also worth mentioning that the DNNFBL AVSS indicated quicker settling times

than that of the PID-based AVSS case presented in section 3.2.6.

As in the case of full-car PID control (see section 3.2.6), frequency-domain analysis

is performed in the range of 0.5Hz to 80Hz for ride comfort, vehicle handling and
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Figure 5.35: Frequency response of ride comfort for the full-car intelligent system in

the region of anticipated sensitive frequencies

road holding. These cases are presented in Figures 5.35 to 5.38. The relevant pa-

rameter settings are summarized in Table 5.7.

Table 5.7: PSD frequency configuration for full-car intelligent controllers

Parameter Setting

Computation Algorithm Welch

Windowing Function Hanning

Number of points included in fourier transform (NNFT) 1024

Length of Window (NWind) 256

Sampling Frequency 80Hz

Each of the frequency-domain plots indicated the 0-1Hz frequency range as the most

sensitive as it contained the greatest power ratios. A sharp fall in power ratios were

observed which indicated that the signals were almost completely attenuated in the

high frequency range. However, a resonance peak did occur for ride comfort and

vehicle handling in the vicinity of 10Hz. Nevertheless, the power ratios were still

low enough not to create any significant impact.

In the low-frequency region, which has the most significant impact; intelligent control

showed the best improvement from PVSS. It achieved considerably better vehicle
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Figure 5.36: Frequency-domain analyses of vehicle handling for the full-car intelli-

gent system with respect to pitch acceleration

Figure 5.37: Examination of frequency response for roll acceleration for the full-car

intelligent system
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Figure 5.38: Road holding frequency-domain analyses

handling and road holding, whereas the non-intelligent case performed marginally

better than it in ride comfort. Moreover, the optimal intelligent controller main-

tained a strong compromise between these conflicting criteria for this sensitive re-

gion.

5.6 Assessment in Relation to Benchmark PID Design

The proposed optimal intelligent controller outperformed each of the PID-based

controllers in certain aspects of AVSS performance whilst performing marginally

weaker in other. Its positive features include enhanced roll acceleration and suspen-

sion travel, and a lower degree of system chattering. With the intelligent control

scheme, the suspension travel transient behaviour and settling time are consider-

ably superior to that of all the PID-based controllers. Intelligent control produced

a significant improvement in peak and RMS values of the roll acceleration and thus

possessed better vehicle handling capabilities. Although the pitch acceleration of

the intelligent control scheme had a similar peak as the best PID controller (the

DE-based PID), it possessed improved transient behaviour with reduced settling

times, quicker damping and smaller subsequent peaks. Thus, it may be concluded

that the optimal intelligent controller was more successful in resolving the trade-offs

between suspension travel, vehicle handling and ride comfort as opposed to all the
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PID-based controllers.

The drawbacks of the proposed intelligent controller include a higher peak for body-

heave acceleration than the PID, PID+MPSO and PID+CRS cases. It is however

worth mentioning that this peak was marginally better than the PID+DE case,

which was the best PID-based controller as it not only had the lowest overall per-

formance index but was able to best resolve the AVSS trade-offs. However, even

though the optimal intelligent control performed marginally better than the PID,

PID+MPSO and PID+CRS in road holding at each wheel, it was still completely

surpassed by the PID+DE case. Hence, the optimal intelligent controller was not

able to resolve the AVSS trade-off between road holding and ride comfort to the

extent to which the best PID-based controller (PID+DE) did. Nevertheless, it did

perform marginally better than the other PID controllers in this respect.

In relation to control input voltage and cumulative actuator force, the optimal

intelligent controller achieved marginally better results as compared to the PID,

PID+MPSO and PID+MCRS cases. It had lower RMS and peak values with a

lesser degree of chattering as compared to the best PID+DE case. This infers that

the intelligent controller attained a better resolve between power consumption terms

and other AVSS performance criteria. With regards to parameter sensitivity, the

optimal intelligent controller showed a better sensitivity to parameter variations,

lower settling time, RMS and peak values of suspension travels for both +20% and

-20% change in selected suspension parameters.

The overall better characteristics of the intelligent controller may be attributed

to several reasons. Firstly, the cancellation of system nonlinearities through the

process of feedback linearization could have played a major role in improving system

behaviour. Secondly, the nature of the optimization routine used for controller

tuning is solely based on randomness and hence the results may be purely random

and based on the nature of the problem. The latter reason does hold strong ground

as the non-optimized intelligent controller produced poor road holding and ride

comfort as compared to the PID cases. It did however contain superior suspension

travel, and power consumption characteristics which may be credited to the first

reason suggested. In addition, the adaptive nature of the controller gives it the

ability to adapt based on the nature of the disturbance, system response and input

frequencies. As a result, this inherent characteristic provides a major improvement

in system robustness and performance.

189



5.7 Summary

The intelligent-based controller design was deemed successful in improving AVSS

performance from that of the passive case. Implementation of the optimization al-

gorithms saw a considerable improvement in system response with a better resolve

between conflicting performance criteria than its non-optimal counterpart. The best

intelligent controller was proven to be superior to the best PID-based controller as

it produced better settling time, less chattering and enhanced roll acceleration with

similar control input voltage and actuator force produced. Sensitivity to parame-

ter variations was kept low and the system remained BIBO stable for a wide range

of changes in inertia, tyre pressure and vehicle speed. The system performed ad-

equately and maintained a good compromise between the conflicting performance

criteria in the low frequency ranges.
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6 Conclusions and Recommendations

6.1 Conclusions

The study of this research involves developing a nonlinear electrohydraulic AVSS

which aims to resolve the conflicts in performance criteria (i.e. ride comfort, road hol-

ing, vehicle handling, suspension travel, and power consumption). Two controllers

have been proposed for this task and analysis was performed on both quarter-car

and full-car models. The quarter-car model was investigated as it serves as a foun-

dation for the development and implementation of the more realistic full-car model.

Moreover, numerous studies have been performed on the quarter-car AVSS as hence

it will provide an adequate basis of comparison. The models include nonlinear com-

ponents and incorporate actuator dynamics such that realism, which is lacking in

most research studies is achieved.

The first control scheme involves the most widely implemented PID controller, which

is now tuned using global optimization methods which is based on a performance

index that addresses all the vehicle conflicting performance criteria. Optimization

algorithms implemented and later compared include CRS, DE, GA, PSO, and PS;

of which DE performed the best in addressing suspension design trade-offs. These

algorithms operate by randomly searching a defined space where a potentially good

solution might exist. In each iterations the new solutions are generated and older

ones are discarded according to certain criteria. To account for stability and chatter

of the actuator, multiple control loops are formulated to both regulate the control

variable and maintain actuator integrity. For full-car analysis modified versions

of PSO and CRS were implemented with successful improvements over their pre-

decessors. However, DE still achieved superior performance over all the proposed

optimization methods with both superior performance index and better compromise

between suspension trade-offs.
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The second control technique involved an intelligent control method that follows

an indirect adaptive approach, where dynamic neural networks are set to learn the

dynamics of the plant. Network training was achieved through global optimization

approaches. Thereafter, the feedback linearization nonlinear control law is applied

to the trained dynamic neural network in conjunction with conventional PID con-

trol. The resulting hybrid controller is tuned through global optimization technique

with the intent of improving system performance and finding a suitable compromise

between design criteria.

Application of the second control law achieved certain improvements over the PID

control systems, whilst suffering drawbacks in others. Similar performance indices

were attained through both methods, but the manner in which inherent conflicts

were addressed, and the system’s response in terms of transient behaviour varied

substantially.

6.2 PID Control through Global Optimization-Based

Tuning

The application of global optimization strategies to a multi-loop PID controller pro-

duced improved performance index and yielded a better compromise between con-

flicting suspension performance criteria for both the quarter-car and full-car models

as compared to the its uncontrolled and manually-tuned counterparts. DE in par-

ticular proved to be the best optimization procedure for improving system perfor-

mance and resolving design trade-offs as compared to other proposed optimization

algorithms for quarter-car and full-car AVSS. The performance of GA, PSO and

CRS followed marginally close with slightly weaker performance indices and notably

larger peak and RMS values in each performance aspect. PS on the other hand pro-

duced a solution with improved ride comfort, but poorer transient behaviour with

increased settling times and chattering. In each algorithms enhanced ride comfort,

road holding, transient behaviour and settling time from those of the manual and

PVSS was achieved at the cost of larger control input voltage and applied force,

which is anticipated as larger control inputs and controller forces are required to in-

creasingly cancel out the effects of disturbance signals. System performance through

optimization achieved comparatively superior results for more severe disturbance as

those that were reported in previous studies. In the frequency domain, the DE still
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manage to maintain an edge in ride comfort and road holding over its manual and

PVSS counterparts. System response also showed consistency in transient behaviour

and performance for variations in parameters that occur due to the influx of fuel,

payload, tyre pressure and vehicle speed.

In the full-car configuration, DE still proved to be the most consistent as it was

the only algorithm that maintained a desirable compromise and satisfactory perfor-

mance in ride comfort, vehicle handling, suspension travel, road holding and power

consumption. Even though the modified variants of PSO and MCRS outperformed

their predecessors with considerably better performance index. They did not how-

ever achieve the effectiveness of the DE algorithm. Like the manually-tuned case,

they displayed the inability to resolve all conflicting performance criteria, but only

managed an improvement over the manually-tuned and PVSS in aspects of ride

comfort, vehicle handling and suspension travel, whilst suffering a major drawback

in road holding. Nevertheless, their positive output was as a result of greater flexi-

bility in searching the solution space, where regions around the best solution in each

iteration was efficiently explored. The successful performance of DE was attributed

to the structure of its algorithm; which permits efficient exploration of the search

space, and through certain acceptance conditions only replaces weaker solutions if

and only if better solutions are found. In contrast the other algorithms lack these

properties and replace and add new solutions according to weaker formulations with-

out any conditions for these tasks.

6.3 Intelligent Control

DNN were able to successfully learn the quarter-car’s system dynamics through

PSO and DE-based learning algorithms. The training results were close to those

achieved for static neural networks that were reported in the literature. GA, CRS

and PS could not train these algorithms to sufficient level and were discarded. As

opposed to quarter-car and full-car controller tuning, DNN training involves signif-

icantly larger degree of variables that are to be computed and the scope proved too

challenging for GA, CRS and PS to manage. This was inherently due to the na-

ture of these algorithms, which poses limited exploration capabilities, where solution

are not necessarily generated to directly move closer to the regions of better solu-

tions. The PSO performed noticeably better than the DE in this aspect and this was
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attributed to the nature of the DNN model and the random nature of the algorithm.

Controller tuning of the hybrid DNNFBL with PID control proved rather cumber-

some and did not produce a significant improvement to the uncontrolled system.

Augmentation of the hybrid neuro-PID controller with global optimization-based

tuning enhanced system performance and better resolved the conflicting performance

criteria as compared to its manually-tuned counterparts for both quarter-car and

full-car models. PSO performed better and this was attributed to the randomness

of these algorithms and the better performance of PSO in system identification,

which had a more pronounced impact on the indirect adaptive control law than

that of the DE-trained DNN. As the PSO performed the best it was solely incor-

porated in the full-car intelligent controller, of which system identification matched

that of the quarter-car system and intelligent control yielded a suitable compromise

between conflicting performance criteria, which was substantially better than PVSS.

In relation to PID control, the quarter-car intelligent controller attained smoother

response with minimal chattering. The system response in each aspect remained

marginally similar to that of PID control, but the settling time of the intelligent

controller was considerably better than the PID-controlled case. In full-car config-

uration the intelligent controller performed better in certain aspects such as vehicle

handling, suspension travel, control force, transient behaviour and settling time;

and lacked over the PID in terms of road holding. Moreover, in terms of parameter

variations, the intelligent controller produced lower steady-state errors in parameter

variations in the case of the quarter-car systems, and maintained better transient

performance over the PID-based controllers. In the frequency domain, they also re-

ported a better compromise between vehicle handling, ride comfort and road holding

over that of the PID controller. These results indicate that the adaptive character-

istic of the DNNFBL controller as well as its task of cancelling system nonlinearities

are a pivotal properties that improve AVSS performance.

6.4 Recommendations

The proposed improvements and further research that is essential to see this work

implemented in real life systems involves:
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1. Creating an experimental rig to validate the results of the computational so-

lutions. A single wheel rig could be used to validate quarter-car control laws,

but full-car models that included vital coupling, pitch and roll dynamics would

be more realistic.

2. Implementing gain scheduling to resolve the steady-state errors and transient

behaviour associated with variations in vehicle speed.

3. Testing the controllers for various types of disturbances included rough road

disturbance inputs, potholes, multiple bumps and high speed cornering.

4. Designing a fault-tolerant control that accounts for system uncertainties, de-

teriorations and failed components that can be implemented as it addresses

the most troubling issues in implementation of AVSS.

5. The entire research may be re-conducted to simultaneously handle various

types of disturbances including a variety of bumps, rough roads and pot holes.

In this case, the performance index will contain additional terms which mea-

sure the systems performance subjected to various disturbances as opposed to

just a single disturbance.

6. As an alternative to using PID after feedback linearization is complete, linear

control methods that includes multiple feedback terms such as H∞ and H2

control may be used to improve system performance. Optimal control policies

such as LQG and LQR may be also applied after feedback linearization to find

the best compromise between conflicting performance criteria.
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Minsta, H.A., Venugopal, R., Kenné, J-P. and Belleau, C. (2012) “Feedback

Linearization-Based Position Control of an Electrohydraulic Servo System With

Supply Pressure Uncertainty.” IEEE Transactions of Control Systems and Tech-

nonlogy, vol. 20, no. 4, pp. 1092–1099.

Moon, SY and Kwon, WH (1998) “Genetic-based Fuzzy Control for Half-car Active

Suspension Systems.” International Journal of Systems Science, vol. 29, no. 7,

pp. 699–710.

Nagaraj, B. and Vijayakumar, P. (2011). “A Comparative Study of PID Controller

Tunning using GA, PSO, EP and ACO.” Journal of Automation, Mobile Robotics

and Intelligent Systems, vol. 5, no. 2 pp. 305–313.

Nanayakkara, V.K., Ikegami, Y. and Uehara, H. (2002). “Evolutionary Design of

Dynamic Neural Networks for Evaporator Control.” vol. 25, pp. 813–826.

Nφrgaard, M., Ravn, O., Poulsen, N.K. and Hansen, L.K. (2000). “Neural Networks

for Modelling and Control of Dynamic Systems.” London: Springer.

201



Noura, H., Theilliol, D., Ponsart, J-C. and Chamseddine, A. (2009). “Fault-tolerant

Control Systems, Design and Practical Applications.” Advances in Industrial

Control, Chapter 5, Sensor Fault-tolerant Control Method for Active Suspension

System, pp. 157-209, 1st Edition, Springer, London.

O’Dwyer, A. (2006). “Handbook of PI and PID Controller Tuning Rules.” London:

London: Imperial College Press.

Pedro, J.O. and Mgwenya, T. (2004). “LQR Control of a Full-car Active Suspension

with Actuator Dynamics .” Proceedings of the 4th South African Conference on

Applied Mechanics (SACAM’04 ), Johannesburg, South Africa, pp. 1–9.

Pedro, J.O., Dahunsi, O.A. and Baloyi, N. (2011). “Direct Adaptive Neural Control

of a Quarter-Car Active Suspension System.” Proceedings of the 10th IEEE Inter-

national Control Conference (Africon 2011 ), Livingstone, Zambia, 13-15 Septem-

ber 2011, pp. 1–6.

Pedro, J.O. and Dahunsi, O.A. (2011). “Neural Network Based Feedback Lineariza-

tion Control of a Servo-Hydraulic Vehicle Suspension System.” International Jour-

nal of Applied Mathematics and Computer Science, vol. 21, no. 1, pp. 137–147.

Pedro, J.O., Dangor, M., Dahunsi, O.A. and Ali, M.M. (2013a). “Differential

Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspen-

sions.” Mathematical Problems in Engineering, vol. 2013, pp. 1-13.

Pedro, J.O., Dangor, M., Dahunsi, O.A. and Ali, M.M. (2013b). “CRS and PS-

Optimised PID Controller for Nonlinear, Electrohydraulic Suspension Systems.”

Proceedings of the 9thAsian Control Conference (ASCC2013 ), Istanbul, Turkey,

23-26 June 2013.
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