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Abstract

A magnetoencephalogram (MEG) is a non-invasive tool for measuring neuronal activity
with millisecond temporal resolution. In this study, MEG measurements were recorded as
a subject carried out a simple, repetitive, numerical task: deciding whether a number is even
or odd. Signal processing techniques were applied to the MEG data so as to characterise
the spatial and temporal dynamics of the brain during the decision-making process. The
data is first preprocessed using Independent Component Analysis (ICA) and other semi-
automated methods. The data is then segmented into trials. Evoked fields or event-related
fields (ERFs), the classical measure of brain activity, are found by averaging all the trials
in the time domain. These responses are typically phase locked to the stimulus. Induced
potentials or oscillatory rhythms that are not necessarily phase-locked to the stimulus are
found by averaging the time-frequency representations (TFRs) over all the trials. The TFRs
were found using the Wavelet Transform.

The results show that typical ERF components are present just after the onset of each
stimulus. These waveforms indicate that the following sequence of cognitive events occur:
mental matching of the stimulus with previously experienced stimuli (N100); higher-order
perceptual processing modulated by attention (P200); and “Go-NoGo” control procedure
which initiates or inhibits the motor response (N200). The P200 response also indicates that
parity information may be retrieved directly from memory rather than being extracted by
means of a mental calculation strategy. Time-frequency plots of the data show pronounced
synchronisation in the beta-band as the subject is actively concentrating on the mental
task. Thereafter, beta band desynchronisation occurs as the motor response is carried out.
Activity is pronounced in the left general interpretive area with a latency of around 650ms.
This confirms the fact that the brain is lateralised according to function.
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One important avenue for further research would be to explore source reconstruction
using beamforming techniques. This would enable researchers to pinpoint neuronal sources
with greater accuracy. Furthermore, functional connectivity analysis may be a useful means
of elucidating how information is transmitted and integrated across brain networks. Over-
all, there is much scope for future work.
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Chapter 1

Introduction

The human brain is arguably the most complex organ in the body, and we know little about
its structural and functional complexities. It contains tens of billions of neurons organised
into hundreds of neuronal pools that carry out a bewildering number of functions [6]. Over
the last few decades, significant effort has been put into understanding how the brain car-
ries out complex cognitive tasks. Magnetoencephalography (MEG) is an excellent tool for
measuring the activity of the brain so as to understand its spatiotemporal dynamics. MEG
devices measure the magnetic fields produced by the brain using an array of superconduct-
ing interface devices (SQUIDs). The SQUID sensors are capable of measuring fields as
low as 10 f T [3].

In this study, subjects were monitored by an MEG device while being shown a series
of three digit numbers. The subjects were asked to determine whether the numbers were
even or odd, and to push a button to indicate their choice. The objective of the study is to
use signal processing techniques to characterise the spatial and temporal dynamics of the
magnetoencephalogram (MEG) during a cognitive decision-making process, and so gain a
deeper understanding of the aspects of brain function.

The temporal resolution of MEG is in the order of milliseconds; much higher than fMRI
and PET [3]. Standard analysis of MEG data involves the use of stimulus-locked averaging
over epochs of time to produce an evoked response [3, 7, 8]. During complex cognitive
tasks, evoked responses are generated throughout the cortex. Amplitude fluctuations in
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CHAPTER 1. INTRODUCTION 2

these responses is indicative of underlying brain activity. For example, a negative deflec-
tion around 100ms (N100) is indicative of mental matching of the stimulus with previously
experienced stimuli [9]. Recently there has also been a great deal of interest in analysis
of the so-called “induced response”, which corresponds to stimulus-related variations in
power in different frequency bands as a function of time [3]. These oscillations themselves
are not phase-locked to the stimulus or response [10]. Induced responses are typically anal-
ysed using a time-frequency decomposition such as the Morlet wavelet transform. Averag-
ing over epochs of the power in the time-frequency maps gives one an estimate of induced
components, which can then be tested for experimental effects [3, 11, 12]. These two forms
of processing, stimulus-locked averaging and averaging of time-frequency power maps, are
the two basic approaches used in this study for analysing evoked and induced components
respectively in the MEG data.

Chapter 2 of this dissertation begins by introducing background concepts relating to
the brain and magnetoencephalography. Evoked and induced responses are also discussed
together with the signal processing techniques that are used in the analysis. The purpose
and rationale of the study are presented in chapter 3. Chapter 4 continues with a detailed
discussion of the specifics relating to the computational algorithms. This section also ad-
dresses the data acquisition, preprocessing and analysis procedures, and the computational
tools used to carry out these procedures. Finally, the results of the analysis are presented in
chapter 5, followed by a discussion of the results in chapter 6.



Chapter 2

Background

2.1 Physiological Basis for MEG signals

2.1.1 The Brain

A thorough understanding of the anatomical and functional areas of the brain is critical
to properly interpret MEG results. The human brain is divided into the cerebrum, dien-
cephalon (thalamus and hypothalamus), cerebellum and brain stem (mesencephalon, pons,
and medulla oblongata) [6]. The cerebrum can be divided into two large, paired cerebral
hemispheres. The surface of the hemispheres is covered by a superficial layer of grey mat-
ter, the cerebral cortex, which is folded into ridges (gyri) and grooves (sulci) that increase
the surface area. Roughly one tenth of all neurons are found in the cerebral cortex. The
main focus of MEG studies is the cerebral cortex because of its functional role in cogni-
tive processes and because, as it is the most superficial layer of the cerebrum, it is in close
proximity to the MEG sensors [3].

The cerebrum is divided into four topographical regions, as shown in figure 2.1. On
each hemisphere, the central sulcus, a deep groove, divides the anterior frontal lobe from
the posterior parietal lobe [1, 6]. The lateral sulcus separates the frontal lobe from the tem-
poral lobe. Posteriorly, the parieto-occipital sulcus separates the parietal and occiptal lobes.
The two cerebral hemispheres are separated by the longitudinal fissure. Each hemisphere
is connected by a band of white matter called the corpus callosum [1, 6].

3



CHAPTER 2. BACKGROUND 4

Central sulcus

Parieto-occipital 
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Figure 2.1: Lobes of the left cerebral hemisphere (public domain image adapted from [1]).

The cerebrum is the seat of most higher mental functions, including conscious thoughts,
sensations, intellect, memory and complex movements [6]. The visual cortex, located pos-
teriorly in the occipital lobe, is involved in the conscious perception of visual stimuli [13].
The primary motor cortex is located anterior to the central sulcus, while the primary sensory
cortex is located posterior to it. These areas are responsible for the control of skeletal mus-
cles, and the perception of somatic-sensory information such as touch or pressure [6, 13].

The sensory and motor areas are connected to nearby association areas, which interpret
incoming data or coordinate responses. The visual association area, located in the occipital
lobe, anterior to the visual cortex, monitors and interprets visual input. The premotor
cortex, located in the frontal lobe, anterior to the primary motor cortex, coordinates learned
movements [6].

Integrative centres are areas that receive information from the association areas and
direct complex motor activities. For example, the prefrontal cortex of the frontal lobe has
been implicated in planning complex cognitive behaviour and in decision making. The
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general interpretive area (Wernicke’s area) is associated with speech, language and mathe-
matical computation [6, 13]. This area is present in the left (dominant) hemisphere only and
is located at the border of the temporal, occipital, and parietal lobes. This is an example of
hemispherical lateralisation, where different hemispheres are responsible for different func-
tions. Typically, the left hemisphere is important for performing analytical tasks such as
calculations or logical decision making. The right hemisphere is responsible for analysing
sensory information and relating the body to the sensory environment [6].

2.1.2 Neuronal Currents and External Magnetic Fields

Neurons form the basic building blocks of the nervous system. Neurons are electrically
excitable and transmit information through electrical and chemical signals. When acti-
vated, they generate time-varying transmembrane electrical currents, as shown in figure 2.2.
Rapid depolarisation of the neuronal membrane mediated by voltage-gated ion channels
embedded in the membrane results in an action potential (AP). The AP propagates as a
wave along the axon of the neuron. Each axon connects to the dendrites of other neurons
by a connecting junction called a synapse. Chemical neurotransmitters are released into
the synaptic cleft; these initiate an electrical response or a secondary messenger pathway
that either excites or inhibits the postsynaptic neuron [2, 6].

The neuronal currents generate electromagnetic fields that can be measured using imag-
ing modalities such as EEG or MEG. As mentioned above, there are two sources of neu-
ronal activation: action potentials and post-synaptic potentials (PSP) [3]. MEG is used to
measure PSPs because of three factors:

• Field Decay. Intracellular currents flow in two directions from the site of the action
potential. The resultant quadrupolar field decays as 1/R3, where R is the distance
from the site. In the case of the PSP, current flows in only one direction, so the
source of the field may be viewed as a dipole. The field therefore decays as 1/R2, so
it persists at distances further away from the source than the quadrupolar field [2].

• Spatial summation. Pyramidal neurons of the cortex give the main contribution to
MEG measurements since they are arranged in parallel with the apical dendrites
aligned perpendicular to the cortical surface. When several neurons in the same
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Figure 2.2: Illustration showing neuronal currents: action potential in presynaptic neuron
and postsynaptic current induced by synaptic activation (adapted from [2]).

vicinity receive a signal, the PSPs sum spatially, resulting in a stronger field measur-
able by MEG [2, 3].

• Temporal summation. The duration of an AP is approximately 1ms, whereas that
of a PSP is approximately 10ms. Typically, it takes several thousand synchronised,
spatially-close PSPs to generate a magnetic field strong enough to be detected outside
the head. Because the duration of APs is shorter, they would have to be extremely
well synchronised to have a marked effect [3].

Because the cortex of the brain is folded, some populations of neurons have apical dendrites
that are arranged perpendicular to the skull, i.e., those at the top of the gyrus. Others lie
parallel to the skull on the wall of the sulcus [14]. The specific orientation relative to the
skull influences the resulting MEG signal recorded outside the skull: MEG only measures
fields that have components perpendicular to the device sensors [14]. These fields are
generated by neuronal currents that have a component that is tangential to the skull, as
shown in figure 2.3.
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Figure 2.3: Schematic drawing of a piece of cortex showing the crown of a gyrus and a
sulcus. Arrows inside the cylinders indicate the direction of PSP flow. Radial and tangential
magnetic fields are indicated by arrows (after [1–3]).

2.2 Magnetoencephalography

Magnetoencephalography (MEG) is a technique for measuring the magnetic fields gener-
ated by brain activity. MEG signals recorded at the scalp are generated by the synchronous
activity of tens of thousands of neurons in the cerebral cortex [3]. Neuronal currents induce
weak magnetic fields in the order of femtoteslas which can be measured by an array of very
sensitive magnetometers. The only sensor that provides sufficient sensitivity for practical
MEG work is the Superconducting Quantum Interference Device (SQUID). A SQUID is
an ultra-low noise detector which uses a superconducting ring to measure the magnetic flux
and convert it into a voltage [3, 15].

SQUIDs require cryogenic temperatures for operation because they rely on quantum
mechanical phenomena found in superconductors. A modern MEG device has an array of
often more than 300 SQUIDS mounted in a vessel containing liquid helium. The sensors
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allow for simultaneous measurements over the entire cortex. The MEG system is operated
in a shielded room that minimises interference from external magnetic disturbances such
as the earth’s magnetic field, noise generated by electrical equipment and low frequency
magnetic field noise sources like elevators, cars, and trains [3].

MEG is different from other modalities such as fMRI, PET and SPECT in that it is a di-
rect measure of brain function instead of secondary measures reflecting brain metabolism.
The great strength of MEG (and EEG) is that it provides a very high temporal resolution
in the order of milliseconds [15]. Because magnetic fields are less distorted than electric
fields by the skull and scalp, MEG provides a better spatial resolution than EEG [3]. How-
ever, whereas scalp EEG is sensitive to both tangential and radial components of a current
source in a spherical volume conductor (see figure 2.3), MEG detects only its tangential
components. In practice, however, this feature is a great asset in source localisation, since
it greatly simplifies the “inverse problem” associated with the reconstruction of intracranial
neuronal current sources [3].

MEG is primarily used in research as a non-invasive means of measuring the time
course of activity in the brain. It has been used to study cognitive processes such as vi-
sion, audition and language processing in foetuses and in adults [11, 12, 16]. Other studies
have reported successful classification of diseases such as Alzheimer’s [17], indicating that
MEG may also be used as a diagnostic tool. MEG has also been used in clinical practice to
map areas of the brain involved in language performance in order to assist surgery [18].

2.2.1 Dynamic Range and Artifacts

The dynamic range of MEG signals is highly variable between individuals. It is usually a
few femtoteslas or picoteslas. Factors that affect the dynamic range are the extent of the ac-
tivated area, level of neuronal activity, anatomical location and orientation of the neuronal
sources, and the amount of destructive interference due to nearby activations. MEG sig-
nals are usually several orders of magnitude smaller than unwanted artifacts, which makes
artifact removal an essential part of MEG signal preprocessing [3]. Artifacts are unwanted
components of data that contaminate the signals of interest. They can be classified into
three categories [19]:
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1. System related artifacts which are due to electronic SQUID jumps or noisy, broken
or saturated sensors.

2. External artifacts, arising from generators of magnetic fields outside the human body
such as power lines and other environmental noise sources (elevators, air condition-
ers, nearby traffic, mechanical vibrations transmitted to the shielded room, etc.).

3. Physiological artifacts caused by eye movements, eye blinks, cardiac and muscular
activity, and head movements. The movement of magnetic objects or particles at-
tached or implanted to the body may give rise to artifacts (e.g. eye make-up, hair
spray, magnetised dental fillings).

Methods for eliminating these undesirable signals are discussed in section 2.3.

2.2.2 Evoked and Induced Responses

The classical measure of task-related brain activity is the evoked response that is phase-
locked to a stimulus [20]. Evoked responses are a subclass of event-related fields (ERFs).
ERFs are manifestations of information processing activities, and different types of ERF
waveform components are associated with different functions in this process [21]. Studies
have shown that in simple motor or sensory tasks, evoked responses arise from the motor
or sensory areas of the brain [3]. During more complex cognitive tasks, evoked responses
are generated throughout the cortex. For example, an EEG study demonstrated that when a
subject carried out a series of selective tasks (differentiating between a real/non-real word
or an acute/obtuse angle), an evoked potential occurred in the frontal and parietal regions
160ms after the onset of the stimulus [22]. Researchers have also used MEG to show
that during arithmetic tasks, neural activity occurs in the frontal and pre-frontal regions
with latencies of around 700� 900ms [23]. To test for an evoked response, the subject
must carry out a task multiple times. The MEG data are averaged over these trials so as
to estimate the underlying neural activity [3, 11]. Evoked responses are typically rapidly
transient, lasting for less than one second [24].
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The brain also produces synchronous oscillatory activity (an induced response) that
is not necessarily phase-locked to the stimulus [20]. These rhythms manifest as time-
dependant variations of amplitude oscillations within a frequency band of interest [3]. They
typically last over a period of several seconds. This extended temporal scale suggests
that induced responses are useful in processing sequential events by keeping information
available over longer periods of time [24]. Table 2.1 compares the frequencies bands,
locations and mental states associated with various types of oscillatory rhythms.

2.3 Signal Processing Methods for MEG

The brain is a complex, dynamic system, so multichannel measurements are necessary
to gain an understanding of its behaviour. There are three problems associated with the
analysis of multivariate time series [10]:

1. Preprocessing is necessary to remove nuisance components from the data (such as
those mentioned in section 2.2).

2. The data must be appropriately represented for the purposes of analysis and visuali-
sation.

3. The underlying features of the signals must be extracted, mostly in the absence of
strong models for the dynamics of the relevant parts of the brain.

With increasingly powerful computational resources, it is possible to carry out these steps
in a semi-automated way. Parts of the analysis must be automated because the large dimen-
sionality of the data effectively precludes exhaustive manual inspection of the data by the
human experimenter. It is important to choose appropriate analytical and computational
tools for the analysis. Superficial application of complex signal processing or statistical
techniques can lead to erroneous results or conclusions [3]. The techniques chosen for this
analysis are discussed below.
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Table 2.1: Rhythmic activity in different frequency bands.

Band Frequency
(Hz)

Location Normal Mental State

Delta
(d)

 4 Broad or diffuse; may be
bilateral or widespread.

Drowsiness; lack of attention;
sleep [25].

Theta
(j)

4�8 Regional; may involve
many lobes; can be
lateralised or diffuse.

Drowsiness; creativity and
intuition in adults [6, 25].

Alpha
(a)

8�12 Regional; usually
involves entire lobe;
strong occipital with eyes
closed.

Relaxing; meditation; closing
eyes [26].

Beta
(b)

12�15
(low-b)

Symmetrical distribution,
most evident frontally;
localised.

Relaxed and focused. Low-b
decreases with motor action;
physical restraint increases low-b
activity [20].

15�18
(mid-b)

Alert, thinking, aware of self &
surroundings [26].

18�30
(high-b)

Alertness; intense, active
concentration; mental activity, e.g.
math, planning [6, 20, 26].

Gamma
(g)

30�100 Somatosensory cortex. Cross-modal sensory processing
(e.g. sight and sound), short-term
memory matching, high-level
integrated thinking/information
processing [12].

Mu (m) 8�13 Sensorimotor cortex. Mu suppression when performing
a motor action [26].
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2.3.1 Artifact Removal

There are two general strategies for dealing with artifacts. First, one may identify data seg-
ments contaminated by artifacts through visual inspection, by means of an automatic de-
tection procedure, or a combination thereof. The contaminated data segments are excluded
from further analysis [19]. The second strategy involves the use of signal processing tech-
niques to reduce artifact components that are not caused by brain activity while preserving
signals originating from the brain. These methods often make use of linear transformations
or regression techniques applied to the sensor data [19]. For example, linear transforma-
tions can be obtained from Principal Component Analysis (PCA), Independent Component
Analysis (ICA), Signal Space Projection (SSP) or Signal Space Separation (SSS). The ap-
plicability of these techniques relies on the assumption that the spatial topographies of the
artifacts are stable across time, and that these spatial signatures can be described with a
limited number of spatial components [19].

Independent Component Analysis

Independent component analysis is a multivariate statistical technique which aims at find-
ing linear projections of the data that maximises their mutual independence. In MEG, it
is frequently used for the identification and extraction of unwanted artifacts. The data are
no longer represented at the level of recorded (scalp) channels, but as a set of virtual chan-
nels or components. Certain artifacts are often reflected by a few components which may
be identified and then removed. The remaining components can be projected back to the
sensor level [3].

In ICA, the data are represented by a random vector x(k) = [x1(k),x2(k), ...,xm(k)]T ,
where m is the number of variables (channels) and k the number of observations. For
the noiseless case, the observed data is transformed using the following linear transforma-
tion [27]:

x(k) =
m

Â
i=1

aisi(k) = As(k)

where A is the mixing matrix composed of constant elements ai, j. The source signals or
components in the random vector s(k) = [s1(k),s2(k), ...,sm(k)]T are stationary, statistically
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independent and are non-Gaussian. ICA techniques are used to solve for the mixing ma-
trix, A, from which the independent components, s(k), can be obtained through the matrix
inversion:

s(k) = A�1x(k)

The determination of the independent components begins by centering the data (remov-
ing the mean values of the variables) and then whitening or decorrelating the data [27]. The
mixing matrix is found by applying a linear transformation to the whitened data. There are
numerous approaches for estimating A, but they all make use of an objective function that
is related to variable independence. The function is maximised or minimised by an optimi-
sation algorithm [28]. Implementing the entire ICA algorithm is a nontrivial task. In this
analysis, an existing ICA method based on Bell Sejnowski’s Logistic Infomax algorithm
[29] was applied. The details of this algorithm are beyond the scope of this dissertation.

2.3.2 Spectral Analysis

Rhythmic or oscillatory activity is rarely phase-locked to a stimulus or event [3, 20]. For
this reason, averaging cancels out these fields and a different analysis method is required.
Oscillatory neuromagnetic signals are typically analysed by examining the spectra of the
MEG signals, which are inherently non-stationary [10]. Averaging over epochs in time-
frequency maps gives one an estimate of induced components which can then be tested for
experimental effects. Methods that are commonly used for spectral analysis are the Fourier
Transform, Wavelet Transform, and Hilbert Transform [10, 19]. The choice of the specific
spectral analysis method is less critical than its application. In fact, it has been shown that
all three methods yield equivalent results in their application to neuronal signals [30].

For this experiment, the Wavelet Transform (WT) is chosen. The Continuous Wavelet
Transform (CWT) of a continuous function x(t) is written as [28]:

W (a,b) =
•Z

�•

x(t)
1p
|a|

Y⇤ (t �b
a

)dt
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where Y is a continuous function in both the time and frequency domains called the
mother wavelet, a is the scale factor and b is the translation factor. The factor

p
|a| is for

energy normalisation across the different scales. A popular wavelet, the Morlet Wavelet, is
defined by:

Y(t) = e�t2
cos(p

r
2

ln2
t)

Intuitively, the wavelet coefficients describe the correlation between the waveform and
the wavelet at various translations and scales. One significant problem with the CWT
is redundancy which is caused by oversampling the original waveform. This problem is
addressed by the Discrete Wavelet Transform (DWT), which is often written in terms of its
inverse transform:

x(t) =
•

Â
k=�•

•

Â
l=�•

d(k, l)2�k/2Y(2�kt � l)

where k is related to a as a = 2k; b is related to l as b = 2kl; d(k, l) is a sampling of
W (a,b) at discrete point k; and Y is the wavelet function [28].

Wavelet analysis is particularly useful in that there is a built-in trade-off between time
and frequency resolution. It provides a better frequency resolution (poorer time resolution)
when a is large, but better time resolution (poor frequency resolution) when a is small.
This makes wavelet analysis useful in analysing non-stationary signals with rapidly varying
high-frequency components superimposed on slowly varying low-frequency components
[28].



Chapter 3

Aims and Objectives

The objective of this research study is to use computer-based signal processing techniques
to characterise the spatial and temporal dynamics of the magnetoencephalogram (MEG)
during the cognitive decision-making process - in this case, deciding if a number is even
or odd. These characteristics are found by observing evoked responses and synchronous
oscillatory rhythms produced in various regions of the brain during the decision-making
process.

As this study is an engineering study, the primary objective is the development of suit-
able computational approaches to analyse the data. The secondary objective is to provide
some insight into MEG aspects of the cognitive process, and thereby gain a deeper under-
standing of how the brain works.

Research Questions

The following research questions must be answered:

• What are the most effective methods and tools for analysing MEG signals? Specif-
ically, what preprocessing and analysis algorithms may be used, and how can the
results be visualised? Can current approaches be improved?

• Is an evoked response elicited during each trial period? If so, over what duration does
it last, and what frequencies are present? Can event-related field components such

15
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as N100 or P200 be observed, and what does this reveal about the functioning of the
brain?

• Can synchronous oscillatory rhythms be observed during each trial period? If so,
over what duration do they last, and what frequencies are present?

• Which regions of the brain are most active during selective arithmetic operations?
Does this confirm other research findings?

Assumptions

The following assumptions are made:

• At a certain time after the presentation of the stimulus, the brain will process the
stimulus. The brain will process repeated stimuli similarly.

• Electrical activity generated by the neurons in the brain has certain properties that
distinguish it from artifacts, such as amplitude or distribution. Background noise is
stochastic and independent of the triggering events [3].

• The scalp distribution of the MEG depends on the location of the underlying activity.

• Oscillatory activity and evoked responses are produced by specific functional brain
regions [3].

Rationale for the study

Neuroscience, the study of the brain, is one of the most exciting and rapidly advancing
areas of modern science. Advances in cognitive neuroscience have helped to unravel puz-
zles of brain development, function and disease. MEG is a particularly useful tool for
analysing the brain because it provides a very high temporal resolution and good spatial
resolution. This is of great importance when seeking to understand how the brain carries
out rapid operations such as arithmetic calculations, object recognition, executive planning
and cognitive decisions. Other techniques such as fMRI and PET do not provide real-time
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information of neural involvement and are therefore not ideal to track brain activity related
to rapid decision-making [3]. The specific objective of this study is to gain a deeper under-
standing of the time course of neural organisation associated with number processing. The
research output will contribute to the field of quantitative neuroscience.



Chapter 4

MEG Data Analysis

4.1 Data Acquisition

A 4D Magnes WH-3600 MEG device located at Bar Ilan University was used to acquire
MEG data. The MEG device comprises 248 radial magnetometers covering the entire
cerebral cortex. The sampling frequency is 2.0345kHz. The final MEG data structure
contains raw MEG data, acquisition parameters, “trigger” event information, and a list of
3-D coordinates describing the participant’s head shape.

4.2 Data Preprocessing

The raw MEG data must first be preprocessed before it can be analysed. Preprocessing
refers to reading the data, segmenting it around interesting events such as triggers, and
removing unwanted artifacts. There are two approaches to preprocessing MEG data. The
first is to read continuous data into memory, apply filters, and subsequently segment it. The
second approach is to first segment the data, then read those “interesting” segments into
memory and apply filters. The first approach is used, as it eliminates the need to deal with
edge effects and zero padding of the trials. The disadvantage, however, is that it is memory
intensive. The details of the preprocessing procedures are discussed below.

18
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Figure 4.1: Trial-based MEG analysis (after [4])

4.2.1 Trigger-based Trial Selection

A trial-based analysis procedure is used to analyse the MEG data. As figure 4.1 shows,
the technique involves segmenting the data with respect to stimulus or condition markers
recorded in the data. These segments (trials) are defined by their first and last samples in
the dataset. Each trial has an offset that defines where the relative t = 0 point (usually the
point of the stimulus/trigger) is for that trial. In this analysis, trials begin 0.5s before the
stimulus onset and 1.5s after the stimulus onset. Only trials where the subject chose the
correct answer (even/odd) were considered. Trials and channels contaminated by artifacts
were eliminated through visual artifact detection, as discussed below.
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4.2.2 Artifact Removal

As stated in section 2.2, artifacts are unwanted components of data that contaminate the
signals of interest. These components reduce the accuracy of subsequent analyses. Since
artifacts can never be completely eliminated through careful preparation and instruction of
participants, it is essential that they are removed using various signal processing methods.

In addition to the techniques discussed below, a script supplied by the Gonda Brain
Institute at Bar Ilan University was used to clean the MEG data [31]. The script makes
use of environmental magnetic noise from distant magnetic sources using an array of refer-
ence sensors mounted in the MEG device. These additional signals are used as regressors
for cleaning the main MEG signals using signal processing techniques similar to adaptive
filtering. For example, the script eliminates noise due to building vibrations based on ac-
celerometers recording. It also cleans the data based on reference channels by applying
different sets of weights for different frequencies. Lastly, it cleans the data of any remain-
ing cardiac or eye blink artifacts or saccades.

Baseline Correction

During the recording, MEG signals often undergo slow shifts in time with respect to the
zero level. These shifts may be due to increased background brain activity, muscle activity
or other noise sources. A “baseline interval” is defined where one may assume that the brain
is not producing any stimulus-related activity. Any shift from the average over this interval
is interpreted as a spurious D.C. offset caused by some noise source. In this study, the
baseline interval is defined from �500ms to �100ms relative to the t = 0s (stimulus onset)
point. This interval is safely within the 1s pause between the response and the following
trigger. For each channel, the mean of this baseline interval is recorded and subtracted from
the rest of the signal at all points.

Filtering

MEG responses typically contain frequencies up to about 100Hz with a roll-off towards
higher frequencies. The frequencies of interest are found between 0�100Hz [3]. For this
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reason, a fourth order bandpass filter with cutoff frequencies at 1Hz and 100Hz has been
chosen. The following artifacts are also present in the data:

• 24Hz noise due to the air conditioning system in the building.

• 50Hz noise of the electricity system supplied to the MEG.

• Noise due to the building’s elevator.

The 24Hz and 50Hz noise is eliminated using two notch filters at these frequencies. The
elevator’s noise is ignored since the elevator movement is erratic and unknown. It should
be noted that the filters are applied before segmenting into trials - i.e., to continuous data.
In this way, one does not have to worry about edge effects and zero padding the trials.

Visual Data Inspection

A common manual artifact detection method involves visually inspecting data and identify-
ing the trials and channels that are affected and should be excluded from the analysis. The
visual inspection results in a list of noisy data segments and channels, as shown in tables
A.1 - A.2 in Appendix A. An example of noise caused by muscle contractions is shown in
figure 4.2. The figure shows the signals for all channels for a single trial period. One can
clearly see that high amplitude, high frequency noise has contaminated the trial. Two other
examples of noise caused by head movements and electronic SQUID jumps are shown in
figures B.1 and B.2 in appendix C.

The number of remaining clean trials for all conditions for all four subjects is larger
than the suggested minimum of 60 trials [3]. However, because the number of clean trials
for each condition and subject is not identical, the statistical comparison (section 4.3.2) is
slightly biased.

After the most obvious artifacts are identified and the contaminated trials removed, the
data are also inspected by viewing a plot of the variance for each trial and channel. Trials
or channels above a certain variance threshold are eliminated. The variance thresholds for
all subjects and conditions are shown in table 4.1. There is no standardised method for
choosing the threshold. In this experiment, a threshold was chosen such that a minimum
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Figure 4.2: Data segment for all channels showing noise caused by muscle contractions.

Table 4.1: Variances for all conditions and subjects.

Subject 1 Subject 2 Subject 3 Subject 4
Even 3⇥10�25 4⇥10�25 5⇥10�25 3⇥10�25

Odd 3⇥10�25 4⇥10�25 5⇥10�25 3⇥10�25

No Number 3⇥10�25 4⇥10�25 5⇥10�25 3⇥10�25

number of trials were removed (minimum data loss), and a maximum amount of noise was
eliminated.

Subtraction of Spatio-Temporal Artifact Contributions

Severe contamination of MEG activity by eye movements, blinks, muscle, heart and line
noise is a serious problem for interpretation and analysis. Simply eliminating all contami-
nated trials results in a considerable loss of information. Other techniques like independent
component analysis (ICA), introduced in section 2.3, can eliminate these artifacts without
resulting in a significant loss of information. ICA results are generally more favourable
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Figure 4.3: ICA components reflecting an eye artifact.

than principle component analysis (PCA) or regression-based methods [32]. ICA is used
to represent the data as a set of virtual channels or components that are maximally tem-
porally independent. Certain artifacts, such as those caused by eye blinks or the heart, are
often reflected by a few components which are easy to identify visually. These components
can then be removed from the data and the remaining components can be recomposed or
projected back to the sensor level.

Figure 4.3 shows four ICA components. The second components (runica012) clearly
demonstrates an eye blink artifact. This is confirmed by the pronounced ERF activity over
the two frontal regions above the eyes. This is probably due to contraction of the extraocular
or levator palpebrae superioris muscles. Figure 4.4 also shows four ICA components. The
second component (runica006) shows the cardiac artifact. The QRS complex is clearly
visible, and there is a period of approximately 0.9 seconds between each pulse, which
translates to a heart rate of around 54 beats/min.
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Figure 4.4: ICA components reflecting a cardiac artifact.

4.3 Analysis of Event-Related Fields

4.3.1 Time-locked Averaging of all the Trials

When analysing MEG signals, the aim is to investigate the modulation of the brain with
respect to the given event. The assumption is made that the effect of focused mental selec-
tion is time-locked to the triggering event (display an even/odd number). Figure 4.5 shows
the analysis protocol for analysing event-related fields. Signals from multiple trials are av-
eraged and time locked to the event. This process yields an event-related field (ERF) with
a higher signal-to-noise ratio (SNR) [3, 19]. The noise is reduced by a factor of 1p

N
, where

N is the number of averaged trials. After averaging, the results are visualised graphically:
ERFs for all sensors are plotted topographically according to their position on the MEG
helmet. An example of a topographical map is shown in figure 5.1. Individual or spatially
averaged ERFs may also be plotted so as to identify interesting signal features.

4.3.2 Statistical Analysis

The objective of a statistical analysis is to determine whether there is a difference in the data
for the different conditions (even, odd or no number). A result is statistically significant if
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Figure 4.5: Analysis Protocol for Event-Related Fields (ERFs) (after [4]).

it is unlikely to have occurred by chance - i.e., if the probability of its occurrence is greater
than some predefined probability threshold, the significance level.

There are two types of statistical methods: descriptive and inferential [33]. A descrip-
tive statistic describes the main features of a dataset. For example, a descriptive statistic
may be the maximum magnetic field value within a certain time frame, the average al-
pha band power of multiple trials, or the latency of beta rhythm onset. Once descriptive
statistics have been found for the dataset and a probability distribution assumed, inferential
statistics may be used to compare datasets and test hypotheses [33].

In this experiment, a dependent t-test for paired samples is used to test the null hypoth-
esis that there is no statistical difference between pairs of conditions: H0 : µ1 = µ2 [3],
where µ is the mean for a certain condition. This approach has also been used by previous
researchers to evaluate the difference between “baseline” and “active” intervals [2]. The
assumption has to be made that the data fits a normal distribution, which is reasonable for
averaged responses due to the central limit theorem [3]. As equation 4.1 shows, the t-test
compares the means of pairs of conditions [33]:
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t =
XD

sD/
p

n
(4.1)

where XD is the average and sD the standard deviation of the difference between sam-
ples, and n is the number of samples. The resultant p-value is compared to the significance
level (a = 5%) to test the validity of the hypothesis.

An important feature of MEG data is that it has temporal and spatial characteristics.
It is fairly trivial to carry out a t-test on a single channel; however, the statistical anal-
ysis is complicated by the fact that there are multiple channels. The so-called “multiple
comparisons problem” (MCP) arises when one considers a set of statistical inferences si-
multaneously [34]. The MCP arises out of the fact that the effect of interest (a difference
between conditions) is evaluated at an extremely large number of channel/time pairs [3].
Because of the large number of comparisons, it is difficult to control the false alarm or
family-wise error rate (FWER) - the probability of falsely concluding that there is a differ-
ence between the conditions at one or more channel/time pairs [3]. With an alpha of 5%,
there is a 5% chance of rejecting the null-hypothesis. That false alarm rate applies to each
test that is performed, so the chance of making a false alarm with 248 subsequent tests is
much larger than the desired 5%.

The classic approach to the multiple comparison problem is to control the FWER by
applying the Bonferroni correction [34]. Instead of choosing a critical p-value for signif-
icance of 0.05, a lower value is used. The significance level (alpha) for an individual test
is found by dividing the FWER (0.05) by the number of tests (n). Thus, the new signifi-
cance level is 0.05/248 = 0.0002. The disadvantage of this method is that it increases the
probability of false negatives; i.e., falsely concluding that there are no differences between
conditions.

4.4 Spectral Analysis of Induced Potentials

As mentioned in section 2.3.2, induced oscillatory activity in the brain is rarely phase-
locked to the stimulus. Oscillatory activity cannot be observed in event-related fields be-
cause averaging cancels out the induced signals [3]. Instead, the event-related changes of



CHAPTER 4. MEG DATA ANALYSIS 27

induced activity are analysed by computing and visualising the time-frequency represen-
tations (TFRs) of the power. The power spectra for each trial are calculated and finally
averaged. To visualise the event-related power changes, normalisation with respect to a
baseline level must be performed. There are three ways to graphically present the data [35]:

1. Time-frequency plots of all channels, in a quasi-topographical layout.

2. Time-frequency plot of an individual channel.

3. Topographical 2-D map of the power changes in a specified time-frequency interval.

The spectral analysis is carried out using wavelets. Wavelet analysis is applied to each trial,
and time-frequency representations (TRFs) of powers are then averaged across trials [3, 12]
in order to visualise the induced fields.

An important consideration impacting the implementation of the wavelet algorithm is
the effect of boundary artifacts. The wavelet transform is found by calculating the con-
volution between the input signal and wavelet function. As the wavelet gets closer to the
edge of the signal, the computation requires the presence of non-existent values beyond
the boundary [36]. If the resultant boundary effect is not dealt with correctly, it may lead
to a considerable loss of information. One may simply accept the loss and truncate un-
favourable results at the boundaries. However, crucial frequency information is then lost:
one would not be able to ascertain whether low frequency induced potentials are present.
Another approach is to extend the boundaries before processing the signals [36]. This could
be done artificially or by simply increasing the length of trial on either side of the period of
interest. The latter approach was used in this analysis. The disadvantage of extending the
boundaries, however, is that it is computationally expensive. In this analysis, the total com-
putation time required to find the TFRs for all subjects and all conditions is approximately
6-7 hours. Overall, however, the result is good - there is only a minimal loss of information
at 1Hz and 2Hz as shown in figure 5.5 in chapter 5.

4.5 Computational Tools and Techniques

Numerous open source toolboxes are available for MEG analysis. The Gonda Brain In-
stitute at Bar Ilan University provides stable working versions of FieldTrip and the pdf4D
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package for reading, writing and analysing 4D-neuroimaging format data files [31]. The
FieldTrip toolbox is MATLAB-based, and was used extensively to implement all the anal-
ysis procedures described above.

MEG analysis procedures are complex and computationally demanding because data
from multiple trials, channels, conditions and subjects must be analysed. A single trial
lasting approximately 3s has approximately 6100 samples. There are around 350 trials per
subject. Four subjects were used in the experiment. This translates to a total number of
about 8.5 million samples.

Because of this, it was necessary to distribute the computations over multiple proces-
sors. Analysis of multiple subjects or conditions is carried out independently on multiple
cores. To accomplish this, the MATLAB code was parallelised using the MATLAB Parallel
Toolbox. Overall, the total computation time was around six hours when the computations
were split over four 2.9 GHz i7 cores. The vast amount of data also introduces memory
issues. It is necessary to save the intermediate data of each step to disk, and to load it upon
the next (parallel) step in the analysis.

Distributing the code is not the only issue that must be considered when writing MEG
algorithms. “Batching” refers to a method of automating and streamlining the algorithm
steps into a single protocol which can be repeated over all subjects and/or conditions.
The batch algorithm should be executed with a single command and is usually left to run
overnight. This method not only increases the efficiency of the algorithm, but it also en-
sures that the results are reproducible for all subjects and conditions [5]. Figure 4.6 shows
an example of a typical analysis pipeline.
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Figure 4.6: Simplified Analysis Pipeline (after [5])
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Results

5.1 Experimental Setup

Two separate MEG recordings (7�8 minutes long) were taken using a 4D Magnes WH-
3600 MEG device located at the Gonda Brain Research Centre at Bar Ilan University in
Israel. The experiment was designed and carried out by researchers at the Gonda Brain
Research Centre prior to the start of the present study and without the involvement of the
author of this dissertation.

Four anonymous subjects were used in the experiment. All subjects are perceived to
have no known pathology. The subjects were seated in a relaxed position in the MEG.
Three-digit numbers were displayed one after another. A total of 200 numbers were shown
and the subjects had to push one button for an odd number and another for an even number.
Each repeating trial therefore includes the following sequence of events:

• Subject sees the number.

• Subject cognitively assesses "even vs odd."

• Subject pushes a button to register the choice.

The numbers were displayed for as long as needed (until a button press). There was a one
second break between a button press and the screening of the next number. During this

30
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Figure 5.1: ERFs for all conditions over the whole scalp.

break, a small cross was shown to the user to keep their attention. Occasionally, no number
is displayed. In this case, the cross is not displayed.

It should be noted that stimulus markers for the “even”, “odd” and “no number” con-
ditions are recorded together with the raw MEG data. The time t = 0s corresponds to the
onset of a stimulus, as indicated by the appropriate marker. Markers enable one to carry
out time-locked analysis of the data.

5.2 Event-related Fields

Figure 5.1 shows a plot of the event related fields (ERFs) for all sensors arranged topo-
graphically according to their position in the virtual helmet of the MEG chamber. The
ERFs are averaged over all four subjects. By viewing the ERFs in this way, it is easy to
identify where significant amplitude variations occur and where differences exist between
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conditions. The shaded regions in figure 5.1 show areas where there is a pronounced dif-
ference between conditions. Figure 5.2 shows the ERFs for each individual subject.
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Figure 5.2: ERFs in the left parietal region for all conditions and all four subjects.
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Figure 5.3: ERFs for all conditions averaged over regions of the brain (left/right frontal and
left/right parietal).

These signals are averaged over all the ERFs in the left parietal region (i.e., a regional
average). There are marked differences between individuals. While certain signal features
are common to all subjects, subject 3 demonstrates pronounced oscillatory activity before
the onset of the stimulus at t = 0s.

The averages of all the ERFs in the shaded regions is shown in figure 5.3. The chosen
time interval for the trials was from -0.5s to 1.5s. The stimulus is presented at t = 0s. For
significant portions of time, signals on opposite hemispheres are inverted in amplitude. It
should also be noted that ERFs for “number” (even or odd) and “no number” conditions are
similar in shape, but time-shifted by approximately 0.61s, as indicated in figure 5.3 (left
parietal region). Lastly, one can see that significant amplitude variations occur before the
onset of the stimulus. This anticipatory response or “readiness field” is discussed in the
following chapter.

Typical event-related field components are also present. ERFs are manifestations of
information processing activities, and different types of ERF components are associated



CHAPTER 5. RESULTS 34

with different functions in this process and complimentary brain activity [9, 21]. For ex-
ample, considering the “no number” condition in figure 5.3 (left frontal and left parietal
regions), one may observe negative deflection around 100ms (N100 wave), followed by
a positive deflection around 200ms (P200), and a negative deflection around 200-350ms

(N200) [9, 37]. The P200 and N200 waveforms are slightly larger than over the frontal
region than over the parietal region. According to current research findings, these waves
may be indicative of the following sequential events in the brain:

• Mental matching of the stimulus with previously experienced stimuli (N100) [9]. The
N100 depends upon the unpredictability of the stimulus: it is weaker when stimuli
are repetitive, and stronger when they are random [38]. In this experiment, the stimuli
are repetitive but not completely predictable. This is likely the reason for the small
N100 amplitude.

• Higher-order perceptual processing modulated by attention (P200). This wave is
typically elicited as part of the normal response to visual stimuli. P200 may be
a part of the cognitive matching system that compares sensory inputs with stored
memory [39].

• “Go-NoGo” control procedure which initiates the motor response (button press) [37].

It is surprising that these waveforms are elicited at all when no number is displayed; the
brain still seems to carry out computational procedures despite there being no number. This
phenomenon may be the result of expectation associated with short-term memory - i.e.,
prior monotonous repetition of a logical operation may lead to the subconscious execution
of the same procedures in subsequent trials, even when the procedures are inconsequential.

For the even/odd conditions, similar waveforms appear approximately 610ms later in
time. Because the waveforms are so similar, it is assumed that the same events occur but
that they are merely delayed in time. This is not surprising since other research findings
show that during arithmetic tasks, neural activity occurs in the frontal and pre-frontal re-
gions with latencies of around 700-900ms [23]. One possible explanation for this is that the
presence of an actual number may introduce additional complexities into the computation
procedure, thereby slowing down the response.
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5.2.1 Statistical Analysis

A statistical test is useful to determine whether there is a significant difference between
conditions. A dependent paired samples t-test was carried out on the ERFs shown in figure
5.3 (left parietal region). The difference between the “even” and “no number” trials was
evaluated first. The p-value is consistently lower than the significance level (5%) for the
entire trial period, except at the following intervals:

• 0.30-0.55s: t =�1.574, p = 0.116.

• 1-1.25s: t =�0.930, p = 0.353.

During these intervals, there is no statistically significant difference between conditions
since the p-value exceeds the 5% level. Visual inspection of the waveforms in figure 5.3
is consistent with this fact. At other time intervals, there is a clear statistical difference
between conditions.

The second test evaluated the difference between “even” and “odd” trials. The p-value
exceeded the 5% level for almost the entire trial period showing that there is no significant
difference between the two conditions. This is also evident in figure 5.3.
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Student Version of MATLAB

(a) Even condition

Student Version of MATLAB

(b) “No number” condition

Figure 5.4: Topographical distribution over the head of ERFs from -0.51s to 1.49s for the
even and “no number” conditions.
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5.2.2 Topographical Maps of ERFs

A topographical map of the ERFs over the scalp provides useful information about activity
in the functional regions of the brain. Figure 5.4a shows a topographical distribution over
the head of event related fields from -0.51s�1.49s for the even condition. Observe, firstly,
that a clear dipole is present across both hemispheres, particularly in frontal and parietal
lobes (-0.41s to -0.31s). The dipole then disperses into isolated regions of activity. Imme-
diately prior to the onset of the stimulus (-0.21s to -0.01s), the dipole polarity switches.
This is assumed to be an anticipatory response. Thereafter, there is a brief increase in ERF
amplitude in the left parietal region (P200), and the frontal dipole switches back to its orig-
inal polarity. The brain continues in this state until 0.7s, when a second non-symmetrical
dipole develops over the general interpretive area (junction of temporal, parietal and frontal
lobes). Since this area is involved in logical decision making, the brain is likely involved in
carrying out the mathematical operation during this time period. Almost immediately after
this (0.79s to 0.89s), there is a marked increase in ERF amplitude in the right motor and
premotor cortices in the frontal lobe. This indicates that a motor action is occurring (button
press) on the contralateral side (left hand).

A topographical map for the “no number” condition is presented in figure 5.4b. The
most significant difference is that the frontal dipole polarity does not switch and no parietal
dipole persists at the 200ms (P200).

5.2.3 Power Spectrum of ERFs

Figure 5.5 shows a time-frequency representation of the ERFs averaged over the parietal
region. There is a clear correlation between the time-domain signals presented above and
the frequency information presented in figure 5.5. In particular, there is an increase in
5-6Hz activity immediately prior to the stimulus onset (the readiness potential), followed
by a suppression thereof. After that, there is an increase in 5-6Hz and 8-12Hz activity at
0.7s, which characterises the delayed P200 wave. It should be noted that this TFR does not
provide any information about induced activity (oscillatory rhythms). It represents only the
frequency information of evoked fields.
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Figure 5.5: Time-frequency representation of ERFs averaged over parietal region.

Boundary effects are present for the lower frequencies (the white time frequency points
in figure 5.5). The cause of these boundary effects is discussed in section 4.4. These effects
are minimised by increasing the length of the trials beyond the region of interest.

5.3 Induced Fields / Oscillatory Rhythmic Activity

As with the ERF analysis, it is useful to plot the time-frequency representations (TFRs)
for all sensors arranged topographically according to their position in the helmet. This is
shown in figure 5.6. In this way, one can easily identify induced fields or other interesting
effects.

The two bilateral areas of interest are shaded in figure 5.6. Averages of all the TFRs
in these regions are shown in figure 5.7 for both the even and “no number” conditions.
The TFR for the odd condition is not shown as it is practically identical to that of the even
condition.
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Figure 5.6: Topographical map showing TFRs for all conditions over the whole scalp (even
condition).

5.3.1 Even and Odd Conditions

The frontal region (shaded grey) lies over part of the motor and premotor cortices, as shown
in figure 5.6. In this region, beta activity (12-30Hz) occurs from -0.25s to 0.6s . From
0.75s to 1.25s, the beta activity is suppressed. These two frequency changes correspond
to two events. According to table 2.1 in section 2.2, the first event shows that the subject
is relaxed, focused, alert and actively concentrating on the mental task. The second event
(beta suppression or desynchronisation) is characteristic of a motor response - pressing
the button to select even or odd. It is interesting to note that there is a brief increase in
delta/theta activity (0-8Hz) from -0.5s to -0.4s which would indicate that the subject is
possibly inattentive during the delay between numbers. Thereafter, delta/theta activity is
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Figure 5.7: TFRs over the frontal and parietal regions for the “even” and “no number”
conditions.

dramatically reduced as the subject carries out the cognitive task. The TFRs are limited to
0-30Hz as no gamma activity is observed above 30Hz.

Posteriorly, the blue-shaded region shows low-b and mid-b activity over the parietal
lobe, close to the general interpretative area. High-b activity is not as apparent as in the
frontal region. There is also a similar suppression of beta activity after 0.75s. Furthermore,
there is an identical change in theta activity.

5.3.2 “No Number” Condition

The average TFR in the left frontal region corresponding to the “no number” condition
is very different. There is a momentary increase in beta activity followed by a prolonged
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suppression of beta activity. This would usually suggest that motor activity is occurring;
however, since the subject is inactive during the period, there is likely another reason.
One study suggests that beta-band desynchronisation can occur during categorical action
planning [40]. The author proposes that the brain subconsciously plans for the next event
during periods of idleness (when no number is displayed). Interestingly, however, there
is also a marked increase in delta and theta activity during the same period. This would
indicate that the subject is possibly inattentive as he/she waits for the next trial.

5.3.3 Topographical Distribution of Beta Activity

The analysis above is further elucidated by the series of topographical maps shown in figure
5.8. This figure shows the time-course of beta activity over the brain. From -0.3s to 0.4s

beta activity occurs over most of the parietal lobe and part of the frontal lobe. ERF findings
in section 5.2 suggest that this activity indicates cognitive activity as the user determines the
parity of the number. For 200ms after this, the beta activity concentrates around the motor
cortex (medially) and motor association area (laterally). Activity in the motor association
area is indicative of a motor readiness potential (RP) [3]. Since RPs last for several seconds,
it may be possible that the RP in this experiment starts earlier (between 0�0.4s) and that
during this period it is “masked” by other cognitive activity associated with the mental
calculation. Thereafter, the beta activity is suppressed as the subject presses the button.
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Student Version of MATLAB

Figure 5.8: Topographical distribution over the head of beta activity (12-25Hz) from
-0.5-1.5s for the even condition.



Chapter 6

Discussion and Analysis

6.1 Summary of Findings

The results presented in chapter 5 are summarised graphically in figure 6.1. This figure
shows the relationship between ERFs (the blue and red traces) and induced potentials (time-
frequency plots) for even and “no number” conditions over the left temporoparietal region.
ERFs and TFRs are practically identical for even and odd conditions. Prior to the stimulus
onset, a readiness field is observed in the ERF when a number is about to be displayed.

For the “no number” condition, beta-band desynchronisation and delta/theta-band syn-
chronisation occurs from 0-0.7s. The latter is indicative of a state of drowsiness and inat-
tentiveness as the subject waits idly for the next trial. However, the former is probably
indicative of subconscious categorical action planning in anticipation of the next trial. Dur-
ing this period, it is important to note that the N100, P200 and N200 ERF waveforms occur
just after t = 0s. This series of events indicates that the brain is not completely idle, but
carries out higher-order perceptual processing followed by the Go-NoGo control procedure
which inhibits a motor response (button press).

For the even condition, event-related synchronisation in beta activity occurs throughout
both hemispheres, but particularly so in the temporoparietal and frontal regions (not shown
in figure 6.1). The topographical maps show an increased ERF amplitude near the left gen-
eral interpretive area which is responsible for the execution of logical and mathematical
operations. From 0-0.7s, the subject is relaxed, focused, alert and actively concentrating

43
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Figure 6.1: Diagram comparing ERFs, TFRs and topographical maps for even and no
number conditions
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on the mental task. It is important to note that the ERF waveform is nearly identical to that
of the “no number” condition, but shifted in time by about 610ms. One may therefore infer
that the N100, P200 and N200 ERF waveforms occur later in time. This inference is con-
firmed by other research findings which showed that during arithmetic tasks, neural activity
occurs in the frontal and pre-frontal regions with latencies of around 700�900ms [23].

The ERF waveform components are indicative of three sequential events in the brain:
mental matching of the stimulus with previously experienced stimuli (N100), higher-order
perceptual processing and comparison to stored memory (P200), and finally, the Go-NoGo
control procedure which initiates the motor response (N200). During the mental calcula-
tion process, pronounced beta-band synchronisation occurs. As the motor action is sub-
sequently carried out, one naturally observes desynchronisation within the beta band, and
an ERF magnitude increase in the right frontal and pre-frontal regions. The entire mental
calculation and response occurs within a period of 1s post-stimulus.

6.1.1 Parity and Memory

The complexities of the human brain are only vaguely understood, though many different
models have sought to explain its behaviour. For example, some studies have proposed that
numbers are represented as notation-independent forms in the memory [41]. Others suggest
that arithmetic facts such as number magnitude and parity are stored in phonological form,
semantic form or in multiple formats [42]. Overall, there is a consensus that neurons in the
intraparietal sulcus (IPS) in the parietal lobe form a complex network that enables humans
to attach arbitrary spoken or written symbols to an internal representation of the number
stored in memory. This is evidenced by the fact that lesions in the IPS lead to impairments
in basic numerical magnitude processing [43]. Furthermore, it is recognised that natural
intelligence is memory-based [44].

It is no wonder, then, that evidence in this experiment points to the fact that memory
plays an important role in the execution of the arithmetic task. The presence of the P200
wave is indicative of the use of stored memory. The author proposes that parity information
is simply recalled from long-term memory - i.e., “parity information is retrieved directly

from memory rather than being extracted by means of a mental calculation strategy” [45].
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This would naturally be the case, since the mental calculation is simple and does not require
complex cognition. Regardless of how large the number is, one can simply check the
units digit to determine the parity of the entire number. The absence of gamma activity
unilaterally and high beta activity in the parietal lobes is consistent with the view that
mental parity selection does not require the use of higher mental processes.

The physiological foundation of long-term memory is the pre-motor cortex in the
frontal lobe [46]. The supplementary and primary motor cortices are also involved in
the regulation of “action buffer memory” which denotes memory functions for output-
orientated actions [46]. In light of this, it is overly restrictive to limit the functional respon-
sibilities of the motor cortices in the frontal lobe to only the coordination of movements.
The induced and evoked fields present in the frontal lobe during the trial period (see figures
5.8 and 5.4a) may therefore be indicative of the use of memory as well as the coordination
of the motor response.

6.1.2 Readiness Potential

One interesting finding is that a readiness potential (RP) - or in the context of MEG, a readi-
ness field - is observed before the onset of the stimulus. Figure 6.1 shows the readiness field
before t = 0s in the “even” condition ERF. This is seen in the amplitude variations of the
ERFs, the dispersion and subsequent polarity switch of the frontal dipole, and the increase
in beta activity before t = 0s (for the even and odd conditions). These observations indi-
cate some sort of anticipatory response similar to the Bereitschaftspotential (or readiness
potential) demonstrated by Libet et al. [47]. The readiness potential is traditionally a mea-
sure of activity leading up to voluntary muscle movement. More recently, fMRI and direct
electrode recording have borne out the readiness potential experiments. Soon et al. [48]
allowed subjects to decide to press either a left or right button whenever they felt the urge
to do so. It was shown that there was spatially organised activity in the polar frontal cortex
and parietal cortex that predicted the conscious left/right decision and preceded it by sev-
eral seconds. Furthermore, one could even use fMRI to predict which button will be used
well before any conscious decision is reported.
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In this experiment, it is also possible to predict whether a number or no number is
displayed by looking at the ERFs and TFRs before the stimulus onset. The reason for
this is trivial. A small cross is displayed before a number, and is not displayed before no
number. As the cross is displayed, the subject elicits a readiness field in anticipation of
carrying out the task.

Section 5.3 shows that beta synchronisation occurs around the motor cortex (medially)
and motor association area (laterally), followed by desynchronisation as the user presses
the button. Activity in the motor association area prior to the motor action is indicative of
a motor readiness field. This field is distinct from the pre-stimulus ERFs discussed above.
The author proposes that the former is a readiness field associated with anticipation of
carrying out the motor action (pressing the button), while the the latter is a readiness field
associated with anticipation of carrying out the cognitive procedure (choosing between
even or odd). Alternatively, one could argue that both readiness fields are associated with
the motor action, since these fields may occur several seconds before the action is carried
out [48].

6.1.3 Brain Lateralisation

It must be acknowledged that ERF or TFR topographical maps are only an estimate of the
location of neuronal sources. Without proper source reconstruction, one cannot determine
the exact location of neuronal sources with great accuracy. However, based on regional es-
timates, the results do confirm previous research findings regarding the functional regions
of the brain. In particular, the ERF findings presented in section 5.2 confirm the well-
established fact that the brain is lateralised according to function. This finding challenges
the notion that brain lateralisation is not observed in MEG signals associated with men-
tal arithmetic tasks [49]. Lateralisation refers to the functional specialisation of the brain
in different hemispheres. While induced potentials are very similar in both hemispheres,
ERFs are not; significant ERF variations are clearly observed in only one hemisphere. The
results show that the left general interpretive area and right motor/premotor areas are in-
volved in the calculative and motor aspects of the task. There are also anterior and posterior
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differences that confirm other research findings [49] - activity associated with the computa-
tional task occurs mainly in the parietal lobes, whereas motor activity occurs in the frontal
lobes.



Chapter 7

Conclusion

In this study, magnetoencephalography is used as a means of studying the spatial and tem-
poral dynamics of the brain as subjects carry out a simple numerical task - choosing be-
tween an even or odd number. Data are recorded using a 248 channel MEG device. The
data are first proprocessed using graphical methods and semi-automated methods like in-
dependent component analysis (ICA). The rest of the analysis involves finding, visualising
and analysing evoked fields that are phase-locked to stimuli and background oscillatory
rhythms that are not necessarily phase-locked to the stimuli. The evoked responses are
found by averaging the MEG signals in selected brain regions over hundreds of trials. In-
duced responses are determined by averaging the time-frequency representations (TFRs)
over trials. The TFRs were found using Wavelet analysis.

The N100, P200 and N200 event-related field (ERF) waveforms occur just after the
onset of the stimulus. These waveforms indicate that the brain is involved in the following
sequence of events: mental matching of the stimulus with previously experienced stim-
uli (N100), higher-order perceptual processing modulated by attention (P200), and “Go-
NoGo” control procedure which initiates or inhibits the motor response (N200). The P200
response is also indicative of the use of stored memory, leading to the conclusion that parity
information is retrieved directly from memory rather than being extracted by means of a
mental calculation strategy. There is also clear evidence of a readiness field associated with
the numerical task and motor action, as well as brain lateralisation. The research findings
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confirm that the general interpretive area (Wernicke’s area) in the left cerebral hemisphere
is involved in the execution of simple mathematical tasks.

With regard to induced fields, the results show pronounced synchronisation in the beta-
band close to the general interpretative area. During this period, the subject is relaxed,
focused, alert and actively concentrating on the mental task. Thereafter, beta band desyn-
chronisation occurs, as is normally the case when a motor response is carried out.

Recommendations

The field of computational neuroscience is vast, and there are many possible avenues of
future work. The following recommendations are made for future work:

• Carry out source reconstruction using a technique such as beamforming. The MEG
spatial estimation of primary neuronal currents (source estimates) is usually super-
imposed on top of an MRI of the subject or onto a normalised space such as Montreal
Neurological Institute (MNI) standard brain [3]. Source reconstruction will enable
one to identify functional regions of the brain more accurately than by simply using
2D topographical maps of ERFs/TFRs.

• Carry out a functional connectivity analysis which describes brain function in terms
of the way information is transmitted and integrated across brain networks. Infer-
ences about connectivity can be made from the correlations between source time-
courses [50]. One study suggests that arithmetic processing depends on crosstalk
between and within the parietal cortex and that this crosstalk contributes to one’s
numerical competence [51].

• Investigate whether there is coherence or phase synchronisation between frequency
bands or between different functional regions. One study suggests that cross-spectral
integration between neuronal oscillations in the gamma and alpha bands plays a com-
pletely distinct or even complementary roles in stimulus processing [52].

• Further investigate the relationship between evoked responses and induced rhythms.
Some studies adduce reasons in support of an independent or additive model [53]
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while others support a dependent model [2]. Some suggest that there is dependence
via phase resetting and asymmetry of the rhythms [54].

• A promising direction for future research appears to be a combined use of fMRI and
MEG performed separately on the same subject [10]. This would help to overcome
the inverse problem which is significant in MEG due to the poorer spatial resolution.
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Appendix A

Contaminated Trials and Channels

Tables A.1-A.4 show the trials and channels contaminated by artifacts, and the total number
of remaining trials after elimination through visual inspection.

Table A.1: Trials/channels removed through visual artifact rejection (subject 1).

Trials Removed Channels
Removed

Number of
Remaining Trials

Even 10, 11, 35 A204, A74, 175,
176, 113, 153

106

Odd 8, 16, 29, 30, 32,
57, 91

A204, A74, 153,
176

84

No Num 13, 15, 23, 32,
120, 158, 167, 200

A204, A74, 153,
176

193

59
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Table A.2: Trials/channels removed through visual artifact rejection (subject 2).

Trials Removed Channels
Removed

Number of
Remaining Trials

Even 12, 13, 54, 57, 58,
63, 80, 100

A204, A74, A228,
A194, A193,
A227, A195

97

Odd 7, 20, 22, 76, 77 A204, A74, A228,
A194, A193,
A227, A195

90

No Num 11, 15, 57, 90,
106, 117, 155,

156, 190

A204, A74, A228,
A194, A195

191

Table A.3: Trials/channels removed through visual artifact rejection (subject 3).

Trials Removed Channels
Removed

Number of
Remaining Trials

Even 3, 4, 5, 6, 7, 58,
68, 85

A204, A74, A228,
A194, A227, A195

103

Odd 4, 6, 7, 16, 17, 32,
68, 69, 72

A204, A74, A228,
A247, A194,
A227, A195

80

No Num 1, 47, 78, 87, 101,
120, 144, 153,
154, 155, 157

A204, A74 191

Table A.4: Trials/channels removed through visual artifact rejection (subject 4).

Trials Removed Channels
Removed

Number of
Remaining Trials

Even 87, 92, 94, 100,
108

A204, A74 107

Odd 23, 47, 68, 76, 77,
84

A204, A74 82

No Num 58, 64, 65, 88,
121, 133, 147,
163, 175, 176,

191, 195

A204, A74, A114,
A32

190
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Statistical Parameters

Figures B.1 and B.2 show examples of noise caused by movement of the subject and elec-
tronic SQUID jumps.

��� �� ���� ���� ���� ���� ��� ��	 �
� ��
 ���� ��� �	� �
 �� �
�

���� ���� ��	 ���� ��� ��
� ��� ���� ���� ���� ���� ��� ���� ���� ���� ���

���
 ��� ��	� ���� �
� ��� ��� ��� ��� ��� ��	� �	� �� ���� �	� ����

��� ���� �	� ���� ���� ���� ��
� �� ���� ���	 ��� ��	� ��� ���� ���� ���


��� ���	 ���� ���� ��	 ��� ���� ���� ��� ���� �

 ���� ���� ���� ���� ���

���� �
� ���� ��� �		 ��� �
	 ��� ��	 ��	 ���	 ���� ���� ���� ���
 ���

���� ���� ���� ��� ���� ���� ��	� ��� ���� ���	 ���� ���� ���� ��� ���� ����

���� ���� ��

 ���� ��
 �	� ��� ���
 ��� ���� ��� ��� ��� ���	 ��� �	�

��� ��
 ��	
 ��� ���� ���� ���� ��	� ���
 ��
 ��		 ���	 ���� �	� ���
 ���	

��	� ���� �� �	� �	 ���	 ��� �
� ��� ��
� ���� ���� ��
 ��	 ���� ��
�

��� ���
 ���� ���� ��� ���� ���� ���� ���� ��
 ��	� ���� ���� �	
 ���� �
�

���� ���� ���� ��� ���� ���� ���� �� ���
 ��� ���� ���� ���� ��� ��
 ����

���
 ��� ���� ���� ��
� ��� ��
� ��� ���	 ���	 ���� ��� ���� ��� ���
 ����

��
� ��
� ���� ��	 �
� ��� �
� �� ��� ��� ���� ��� ��� ��� ���� ���


���� ���� ���� ���� ���� ���
 ���� ���� ���� ���� ���	 ��	� ���	 ���� ��� ����

��
	 ���� ���� ��� ���� ���	

Figure B.1: Data segment for all channels showing movement artifacts. Note the negative
D.C. shift across a large number of channels.
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Figure B.2: Data segment for all channels showing SQUID jumps. Note the sharp positive
spike present across a large number of channels.



Appendix C

MATLAB Code

The MATLAB code used in preprocessing and analysing the data is presented in this ap-
pendix. Listing C.1 contains the script used to preprocess and analyse the MEG data using
parallel processing in MATLAB. Listing C.2 contains a separate script used for removing
visual artifacts and for visualising ICA results. An example of how to implement Bar-Ilan’s
cleaning script is shown in Listing C.3. Lastly, Listings C.4 and C.5 show the code used
in calculating grand averages for all subjects and plotting the averaged evoked and induced
potentials.

Listing C.1: Code used to preprocess and analyse the MEG data using MATLAB’s Parallel
toolbox.

1 % -------------------------------------------
2 %
3 % MEG Analysis Protocol: Even and Odd Numbers
4 %
5 % Author: Graham Peyton
6 % Markers:
7 % TRIGGERS: 40 (even), 50 (odd), 2048 (nothing happens)
8 % RESPONSES: 256 (even), 512 (odd)
9 %

10 % Notes:
11 % The numbers were displayed for as long as needed (until button

press).
12 % There was 1 second break between a press and the next number

screening.
13 %
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14 % -------------------------------------------
15

16 % addpath(genpath(’/Users/Graham/Documents/MEG analysis/cleanMEG_BIU
’));

17 addpath(genpath(’/Users/Graham/Documents/MEG analysis/FieldTrip ’));
18

19 % Prepare the parallel Processing
20 matlabpool open local 3 % Quad core
21

22 % These path are to data processed with the Bar -Ilan script
23 subjectlist = {
24 % Subject A
25 ’/Users/Graham/Documents/MEG analysis/odd08_2 /,14d2 /16.11.10

@_10_57 /1/xc,lf_c1 ,rfhp0.1Hz’
26 % Subject B
27 ’/Users/Graham/Documents/MEG analysis/odd06/,14d2n /10.11.10

@_10_24 /1/xc,hb,lf_c ,rfhp0.1Hz’
28 % Subject C
29 ’/Users/Graham/Documents/MEG analysis/odd04/oddDi /15.02.10 @09_21

/1/hb,lf_c1 ,rfhp0.1Hz’
30 % Subject D
31 ’/Users/Graham/Documents/MEG analysis/odd03/oddDi /09.02.10 @09_58

/1/lf_c ,rfhp0 .1Hz’
32 };
33

34 conditionlist = {
35 ’even’
36 ’odd’
37 ’noNum ’
38 };
39

40 triggercode = [
41 40
42 50
43 2048
44 ];
45

46 % Definition of all the noisy trials and channels for all subjects.
47 % Note that the repeated 0s or ’-A204 ’s are simply to make the size

nxm
48 %% Odd08_2
49 noisyTrialsA = [
50 [10, 11, 35, 10, 10, 10, 10, 10] % Variance

3.2e-25
51 [8, 16, 29, 30, 32, 57, 91, 8] % Variance

0.29e-24
52 [13, 15, 23, 32, 120, 158, 167, 200] % Variance

2.5e-25
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53 ];
54 channelsA = {
55 {’MEG’,’-A204’,’-A74’, ’-A175’, ’-A176’, ’-A113’, ’-A153’}
56 {’MEG’,’-A204’,’-A74’, ’-A176’, ’-A153’, ’-A204’, ’-A204’}
57 {’MEG’,’-A204’,’-A74’, ’-A176’, ’-A153’, ’-A204’, ’-A204’}
58 };
59 %% Odd06
60 noisyTrialsB = [
61 [12, 13, 54, 57, 58, 63, 80, 100, 12] % Variance 0.5e-24
62 [7, 20, 22, 76, 77, 7, 7, 7, 7] % Variance 0.5e-24
63 [11, 15, 57, 90, 106, 117, 155, 156, 190] % Variance 0.5e-24
64 ];
65 channelsB = {
66 {’MEG’,’-A204’,’-A74’, ’-A227’, ’-A228’, ’-A193’, ’-A194’, ’-

A195’}
67 {’MEG’,’-A204’,’-A74’, ’-A227’, ’-A228’, ’-A193’, ’-A194’, ’-

A195’}
68 {’MEG’,’-A204’,’-A74’, ’-A194’, ’-A195’, ’-A204’, ’-A204’, ’-

A204’}
69 };
70

71 %% Odd04
72 noisyTrialsC = [
73 [3, 4, 5, 6, 7, 58, 68, 85, 3, 3, 3] % Variance

3.2e-25
74 [4, 6, 7, 16, 17, 32, 68, 69, 72, 4, 4] % Variance

0.29e-24
75 [1, 47, 78, 87, 101, 120, 144, 153, 154, 155, 157] % Variance

2.5e-25
76 ];
77 channelsC = {
78 {’MEG’,’-A204’,’-A74’, ’-A228’, ’-A194’, ’-A227’, ’-A195’, ’-

A204’}
79 {’MEG’,’-A204’,’-A74’, ’-A228’, ’-A247’, ’-A194’, ’-A227’, ’-

A195’}
80 {’MEG’,’-A204’,’-A74’, ’-A204’, ’-A204’, ’-A204’, ’-A204’, ’-

A204’}
81 };
82 %% Odd03
83 noisyTrialsD = [
84 [87, 92, 94, 100, 108, 87, 87, 87, 87, 87, 87, 87]

% Variance 5e-25
85 [23, 47, 68, 76, 77, 84, 23, 23, 23, 23, 23, 23]
86 [58, 64, 65, 88, 121, 133, 147, 163, 175, 176, 191, 195]
87 ];
88 channelsD = {
89 {’MEG’,’-A204’,’-A74’, ’-A204’, ’-A204’}
90 {’MEG’,’-A204’,’-A74’, ’-A204’, ’-A204’}
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91 {’MEG’,’-A204’,’-A74’, ’-A32’, ’-A14’}
92 };
93 %% Group all the channels and noisy trials
94 noisyTrials = { noisyTrialsA noisyTrialsB noisyTrialsC noisyTrialsD

};
95 channels = { channelsA channelsB channelsC channelsD };
96

97 % start with a new and empty configuration
98 % cfg1 = {};
99 avg = {};

100

101 %% Main computation loop
102 for subj =1: length(subjectlist)
103 parfor cond =1: length(conditionlist)
104 %% Preprocessing
105 cfg = [];
106 cfg.dataset = subjectlist{subj};
107 cfg.trialdef.eventtype = ’TRIGGER ’;
108 cfg.trialdef.eventvalue = triggercode(cond); % Even
109 cfg.trialdef.prestim = 2.5;
110 cfg.trialdef.offset = -2.5;
111 cfg.trialdef.poststim = 2.5;
112 cfg.trialdef.powerline = ’yes’; % takes into account triggers

that contain the electricity in the wall (+256).
113 cfg.trialfun =’BIUtrialfun ’;
114

115 cfg1 = ft_definetrial(cfg);
116 cfg1.blc = ’yes’;
117 cfg1.continuous = ’yes’; % Interpret the data as

continuous (this is before segmenting)
118 badTrials = noisyTrials{subj}(cond ,:);
119 cfg1.trl(noisyTrials{subj}(cond ,:) ,:) = [];
120 cfg1.channel = channels{subj}{cond};
121 cfg1.bpfilter = ’yes’;
122 cfg1.bpfreq = [1 100]; % Default fourth order
123 cfg1.baselinewindow = [-0.5 -0.1];
124 cfg1.demean = ’yes’;
125 cfg1.dftfilter = ’yes’; % line noise removal

using discrete fourier transform
126 cfg1.dftfreq = [24 50 100]; % Aircon and mains
127

128 data = ft_preprocessing(cfg1);
129

130 %% Time -locked analysis
131 cfg = [];
132 avg{cond} = ft_timelockanalysis(cfg ,data);
133

134 % %% Time -Frequency Analysis (Multitapers)
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135 % cfg = [];
136 % cfg.output = ’pow ’;
137 % cfg.channel = ’MEG ’;
138 % cfg.method = ’mtmconvol ’;
139 % cfg.foi = 1:2:30; % Frequencies of interest
140 % cfg.t_ftimwin = 5./cfg.foi; % Length of sliding window

(5 cycles per time window)
141 % cfg.tapsmofrq = 0.4* cfg.foi;
142 % cfg.toi = -0.5:0.05:1.5; % Time interval of

interest (50ms)
143 % cfg.pad = ’maxperlen ’;
144 % TFRmult{cond} = ft_freqanalysis(cfg , data);
145

146 %% Time -Frequency Analysis (Wavelets)
147 cfg = [];
148 cfg.channel = ’MEG’;
149 cfg.method = ’wavelet ’;
150 cfg.width = 5;
151 cfg.output = ’pow’;
152 cfg.foi = 1:1:30;
153 cfg.toi = -1.5:0.05:1.5;
154 TFRwave{cond} = ft_freqanalysis(cfg , data);
155

156 end
157 Average{subj} = avg;
158 % AllTFRmult{subj} = TFRmult;
159 AllTFRwave{subj} = TFRwave;
160 end
161 % save(’/Users/Graham/Documents/MEG analysis/Variables /0-30 Hz_2/

AllTFRmult.mat ’);
162 save(’/Users/Graham/Documents/MEG analysis/Variables /0-30 Hz_3/

AllTFRwave.mat’);
163 save(’/Users/Graham/Documents/MEG analysis/Variables /0-30 Hz_3/

Average.mat’);
164

165 matlabpool close

Listing C.2: Script used for visual artifact removal and Independent Components Analysis
(ICA)

1 % -------------------------------------------
2 %
3 % MEG Analysis Protocol for rejecting visual artifacts
4 %
5 % Author: Graham Peyton
6 % Markers:
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7 % TRIGGERS: 40 (even), 50 (odd), 2048 (nothing happens)
8 % RESPONSES: 256 (even), 512 (odd)
9 %

10 % -------------------------------------------
11

12 addpath(genpath(’/Users/Graham/Documents/MEG analysis/FieldTrip ’));
13

14 subjectlist = {
15 ’/Users/Graham/Documents/MEG analysis/odd03/oddDi /09.02.10 @09_58

/1/lf_c ,rfhp0 .1Hz’
16 };
17

18 cfg = {};
19

20 prestim = 0.3;
21 poststim = 1;
22 offset = -0.3;
23

24 for subj =1: length(subjectlist)
25 cfg = [];
26 cfg.dataset = subjectlist{subj};
27 cfg.trialdef.eventtype = ’TRIGGER ’;
28 cfg.trialdef.eventvalue = [2048]; % All conditions together
29 cfg.trialdef.prestim = prestim;
30 cfg.trialdef.offset = offset;
31 cfg.trialdef.poststim = poststim;
32 cfg.trialdef.powerline = ’yes’; % takes into account

triggers that contain the electricity in the wall (+256).
33 cfg.trialfun = ’BIUtrialfun ’;
34

35 cfg1 = ft_definetrial(cfg);
36 cfg1.blc = ’yes’;
37 cfg1.continuous = ’yes’; % Interpret the data as

continuous (this is before segmenting)
38 cfg1.channel = {’MEG’,’-A204’,’-A74’};
39 cfg1.bpfilter = ’yes’;
40 cfg1.bpfreq = [1 100]; % Default fourth order
41

42 cfg1.baselinewindow = [-0.5 -0.1];
43 cfg1.demean = ’yes’;
44 cfg1.dftfilter = ’yes’; % line noise removal

using discrete fourier transform
45 cfg1.dftfreq = [24 50 100]; % Aircon and mains
46 data = ft_preprocessing(cfg1); % reading the

data
47

48 %% Visual Artifact Rejection
49 cfg = [];
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50 cfg.method = ’trial’;
51 cfg.alim = 1e-12;
52 dummy = ft_rejectvisual(cfg ,data);
53 cfg.method = ’summary ’;
54 cfg.alim = 1e-12;
55 cfg.megscale = 1;
56 dummy = ft_rejectvisual(cfg ,data);
57

58 % % Independant Component Analysis Visualisation (uncomment if
necessary)

59 % cfg = [];
60 % cfg.resamplefs = 300;
61 % cfg.detrend = ’no ’;
62 % dummy = ft_resampledata(cfg , data);
63 %
64 % cfg = [];
65 % cfg.channel = ’MEG ’;
66 % ic_data = ft_componentanalysis(cfg ,dummy);
67 % cfg = [];
68 % cfg.channel = [1:10]; % components to be plotted
69 % cfg.layout = ’4D248.lay ’; % specify the layout file that

should be used for plotting
70 % figure ();
71 % ft_databrowser(cfg , ic_data)
72

73 end

Listing C.3: Implementation of Bar-Ilan’s MEG cleaning script.

1 % An example of how to use Bar Ilan ’s cleaning script
2 addpath(genpath(’/Users/Graham/Documents/MEG analysis/cleanMEG_BIU ’)

);
3 cd ’/Users/Graham/Documents/MEG analysis/odd03/oddDi /09.02.10 @09_58

/1’;
4

5 fileName = ’c,rfhp0 .1Hz’;
6

7 p=pdf4D(fileName);
8 cleanCoefs = createCleanFile(p, fileName ,...
9 ’byLF’ ,256 ,’Method ’,’Adaptive ’ ,...

10 ’xClean ’ ,[4,5,6],...
11 ’chans2ignore ’ ,[74 ,204] ,...
12 ’byFFT ’ ,0,...
13 ’HeartBeat ’ ,[],... % use [] for automatic HB cleaning , use 0 to

avoid HB cleaning
14 ’maskTrigBits ’, 512);
15
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16 cd ’/Users/Graham/Documents/Dropbox/Grahams Stuff/PostGrad/MEG Code’

Listing C.4: Code used for calculating the grand average of evoked potentials.

1 set(0,’DefaultAxesFontName ’, ’Times New Roman ’)
2 set(0,’DefaultAxesFontSize ’, 12)
3 set(0,’DefaultTextFontname ’, ’Times New Roman ’)
4 set(0,’DefaultTextFontSize ’, 12)
5

6 % Left frontal
7 cfgLF.channel = {’A40’, ’A41’, ’A64’, ’A65’, ’A66’, ’A92’, ’A93’, ’

A94’, ’A95’, ’A124’, ’A125’, ’A126’, ’A127’, ’A128’, ’A153’, ’
A154’, ’A155’, ’A156’, ’A177’, ’A178’, ’A179’, ’A196’, ’A212’, ’
A213’, ’A229’, ’A230’}

8 % Right frontal
9 cfgRF.channel = {’A35’, ’A36’, ’A58’, ’A59’, ’A60’, ’A85’, ’A86’, ’

A87’, ’A88’, ’A115’, ’A116’, ’A117’, ’A118’, ’A119’, ’A147’, ’
A148’, ’A149’, ’A150’, ’A174’, ’A175’, ’A176’, ’A193’, ’A194’, ’
A195’}

10 % Left parietal
11 cfgLP.channel = {’A11’, ’A26’, ’A27’, ’A45’, ’A46’, ’A47’, ’A48’, ’

A70’, ’A71’, ’A72’, ’A73’, ’A74’, ’A99’, ’A100’, ’A101’, ’A102’,
’A103’, ’A131’, ’A132’, ’A133’, ’A134’, ’A159’, ’A160’, ’A161’, ’
A182’}

12 %Right parietal
13 cfgRP.channel = {’A29’, ’A51’, ’A52’, ’A76’, ’A77’, ’A78’, ’A79’, ’

A106’, ’A107’, ’A108’, ’A109’, ’A110’, ’A140’, ’A141’, ’A142’, ’
A143’, ’A168’, ’A169’, ’A170’, ’A190’, ’A191’, ’A208’}

14

15 figure; hold on;
16 subplot (2,2,1); ft_singleplotER(cfgLF , grandEven , grandOdd ,

grandNoNum);
17 ylabel(’Average Magnetic Field (T)’); xlabel(’Time (s)’); title(’

Left Frontal ’)
18 xlim ([ -0.68 1.5])
19 subplot (2,2,2); ft_singleplotER(cfgRF , grandEven , grandOdd ,

grandNoNum);
20 %l = legend({’Even ’, ’Odd ’, ’No Number ’},’Location ’,’Best ’); set(l,’

FontSize ’,14);
21 ylabel(’Average Magnetic Field (T)’); xlabel(’Time (s)’); title(’

Right Frontal ’)
22 xlim ([ -0.68 1.5])
23 subplot (2,2,3); ft_singleplotER(cfgLP , grandEven , grandOdd ,

grandNoNum);
24 %l = legend({’Even ’, ’Odd ’, ’No Number ’},’Location ’,’Best ’); set(l,’

FontSize ’,14);
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25 ylabel(’Average Magnetic Field (T)’); xlabel(’Time (s)’); title(’
Left Parietal ’)

26 xlim ([ -0.68 1.5])
27 subplot (2,2,4); ft_singleplotER(cfgRP , grandEven , grandOdd ,

grandNoNum);
28 %l = legend({’Even ’, ’Odd ’, ’No Number ’},’Location ’,’Best ’); set(l,’

FontSize ’,14);
29 ylabel(’Average Magnetic Field (T)’); xlabel(’Time (s)’); title(’

Right Parietal ’)
30 xlim ([ -0.68 1.5])
31 legend ({’Even’, ’Odd’, ’No Number ’},’Location ’,’Best’); set(l,’

FontSize ’ ,14);

Listing C.5: Code used for calculating the grand average of induced potentials.

1 addpath(genpath(’/Users/Graham/Documents/MEG analysis/FieldTrip ’));
2 % Change default axes and text fonts.
3 set(0,’DefaultAxesFontName ’, ’Times New Roman’)
4 set(0,’DefaultAxesFontSize ’, 14)
5 set(0,’DefaultTextFontname ’, ’Times New Roman’)
6 set(0,’DefaultTextFontSize ’, 14)
7

8 cfg = [];
9 cfg.baseline = [-0.5 -0.1];

10 cfg.baselinetype = ’absolute ’;
11 cfg.zlim = [-3e-24 3e-24];
12 % cfg.showlabels = ’yes ’;
13 cfg.layout = ’4D248.lay’;
14 cfg.interactive =’yes’;
15 cfg.fontsize = 12;
16 figure
17 ft_multiplotTFR(cfg , grandEven)


