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ABSTRACT 

 

Increasing global energy demand as well as air quality concerns have in recent years led to 

the search for alternative clean fuels to replace fossil fuels. One such alternative is the 

blending of petrol (gasoline) with ethanol, which has numerous advantages such as ethanol’s 

ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of 

internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a 

major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led 

to the study of ways of homogenizing the petrol-ethanol mixtures. Therefore, this thesis 

aimed at enhancing the homogenization of petrol-ethanol mixture.  

 

Ethanol concentration in ethanol-water mixture plays a key role in enhancing the 

homogenization of the fuel, thus the bioethanol employed in this study was dehydrated with 

silica gel using ultrasonication-enhanced adsorption. Afterwards, the dehydrated ethanol was 

used in studying the homogenization of the fuel blend.  

 

Water removal from the bioethanol using ultrasonication-enhanced adsorption shows a 28% 

increase when compared to the water removal using magnetic-stirring-enhanced adsorption, 

During ultrasonication-enhanced adsorption, the estimated adsorption enthalpy was – 

1 592.82 J/mol (exothermic) and the entropy was -5.44 J/ K mol, indicating a non-ordered 

loading of water molecules in the adsorption site. In addition, a modified pseudo second order 

kinetic model given by 
    

         
   

 

  
                          was proposed for the 

ultrasonication-enhanced adsorption process. Effect of temperature during ultrasonication-

enhanced adsorption was found to be directly proportional to the amplitude and the pulse 

rate. However, increase in the amplitudes at lower pulse rates resulted in better cavitation, 

and hence better adsorption.  

 

Furthermore, during phase behavior of ethanol-petrol blend, volume fractions of ethanol and 

petrol were studied with respect to t the depth within the storage container to confirm 

homogenization of the blend and time of storage. The binodal curve of the ternary diagram 

shows an increase of homogeneous region indicating an improved interaction between water 

and petrol. Therefore, the interesting results regarding the homogenization of the fuel blends 
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resulted from using ultrasonication-enhanced blending were very promising, and could be a 

platform upon which further research efforts could be built on. 

 

The concentration distribution in the reactor showed proof of cavitation formation since in 

both directions, the variation of concentration with both time and distance was found to be 

oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion 

flux, and energy and diffusion rates were found to be higher in the vertical direction 

compared to the horizontal direction. It was therefore concluded that ultrasonication creates 

cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The 

horizontal direction was found to be the diffusion rate limiting step which proposed that the 

blender should have a larger height to diameter ratio. It is however recommended that further 

studies be done on the rate-limiting step so as to have actual dimensions of the reactor.  

 

Testing of the blended fuel in internal combustion engine showed an optimal performance of 

this fuel at 60 % volume ethanol content with higher fuel power. The results of fuel 

consumption and emissions (such as CO2 and CO) trends confirm various reports in literature 

on the performance of ethanol/petrol blended fuel.  
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CHAPTER 1: RESEARCH BACKGROUND 

 

1.1 Introduction 

 

Increasing demands in alternative clean fuels have resulted in different modifications on the 

existing production processes of well-known fuels, such as, petrol. These modifications 

include the blending of petrol with alcohols, such as, ethanol, pentanol and methanol. 

Alcohols are usually blended with petrol to increase the octane number, by acting as 

oxygenator to increase the fuel additive and as a replacement for compounds like Methyl 

Tertiary Butyl Ether (MTBE) (Hughes, 2009). Among the above mentioned alcohols, the 

mostly used alcohol is ethanol due to its significantly higher research octane number. In 

addition, ethanol adds oxygen to the blends, contains zero benzene and aromatics, and has 

low sulphur content, which increases the hydrocarbon blending value relative to petrol 

(DOESA, 2009). The ability of ethanol to act as an oxygenate reduces the carbon monoxide 

emissions and thus resulting in less greenhouse effects like global warming and this makes 

this research topic a relevant field of study. 

 

In South Africa, ethanol is produced locally, thereby making it an easily accessible 

alternative source as a fuel blend. Ethanol is produced through fermentation process using   

renewable carbon source, such as, sugars as feedstock (Rutz et al, 2008; Walker, 2010). The 

use of ethanol is environmentally friendly due to its very low toxicity (Walker, 2010). At the 

same time, commercial production of synthetic ethanol from the Fischer-Tropsch process is 

undertaking by Sasol produces at Secunda, thus making ethanol readily available for petrol-

ethanol blend process (DOESA, 2009).  In spite of the enormous benefits of ethanol as a 

source of fuel, authors have complained that the use of ethanol is hampered by its high 

volatility, high cost of production, distribution issues, market complaints, quality assurance, 

and its hygroscopic nature (DOESA, 2009). .   

 

However, despite these concerns, ethanol is the most promising octane-raising additive for 

petrol (Rasskazchikova et al., 2004).  An evaluation made by Da Silva et al. (2005) shows the 

positive effect of the  addition of oxygenates, such as, ethanol on the Reid vapor pressure 

(RVP), the anti-knock properties of gasoline, and octane ratings. The use of oxygenated 

additives led to improved burning in the combustion process, and reduction of emission of 



21 
 

carbon monoxide and the levels of aromatics compounds. Holley et al. (2006) conducted a 

study on the extinction of premixed flames of mixtures of liquid fuels (such as ethanol, 

methanol and hydrocarbon fuels) with air at atmospheric pressure. The mixture was 

considered because of their relevance to spark ignition engine. The experiments were 

performed in the counterflow configuration and the extinction strain rate was determined 

through the use of laser Doppler velocimetry and digital particle image velocimetry, and was 

numerically simulated using chemical kinetics and molecular transport. The results indicate 

that, for the same equivalence ratio, the ethanol and methanol flames are more resistant to 

extinction than the hydrocarbon flames under fuel-lean conditions.  

 

Furthermore, blending bio-fuels with a petroleum-based fuel has dual advantage:  (i) addition 

of a relatively small percentage will result in a substantial total volume of gasoline 

substitution, and (ii) the existing infrastructure for distributing fuels can be used without any 

modifications to it. When ethanol is mixed with water, liquid or in the form of humidity, 

ethanol absorbs some or all water until saturation point is reached. When a saturation point is 

reached, the ethanol-water phase separates, and petrol-ethanol solution form distinct layers in 

the tank. The change in temperature can also stimulate the phase separation.  

 

Sonochemistry studies the methods for the generation of power ultrasound. It is used in liquid 

as the medium because sonochemistry is driven by acoustic cavitation which can only occur 

in liquids. The device is capable of converting mechanical or electrical energy into high 

frequency sound called transducer. There are four main types: liquid driven, gas driven, 

electromechanical and magnetically-driven vibrating bar. 

 

The spectacular effects of cavitation phenomena (high temperature and pressure locally, 

strong acoustic streaming, high shear stress near the bubble wall) has been successfully 

exploited for various applications such as chemical mixing (in homogenous and 

heterogeneous systems), waste water treatment, biotechnology, polymer chemistry, etc.  

 

I.2 Research problem and motivation 

 

Of highest concern however is the hygroscopic nature of ethanol which leads to moisture 

being taken up by the fuel. The fact that water and alcohol are fully miscible means that this 
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nature can cause the alcohol and water to separate from petrol and form two distinct layers. 

This is a process commonly termed phase separation. During this process, alcohol and water 

are partially removed from petrol. These two are much denser than petrol and thus they tend 

to form a dense bottom layer consisting of some alcohol-soluble hydrocarbons. The petrol 

partially depleted of alcohol forms the upper less dense layer (Hughes, 2009). This behaviour 

of petrol blend can result in the bottom layer being stirred up and pumped into the vehicle 

thus stalling the engine. The second problem is that the upper layer will be reduced in octane 

value and not meet the specifications (Hughes, 2009).The process of phase separation is 

therefore a field of study in the fuel industry, and looking at the demand of fuel, there is an 

urgent need to control the effect of phase separation on the ethanol and petrol blend.  

 

Several research reports have appeared in literature on various ways of mixing/blending fuels 

(Wilks, 2008), however, a few research has been conducted to investigate the relationship 

between mixing technique and water content during fuel blending  

 

1.3 Objective 

 

The main objectives of this research involving fuel blending and internal combustion 

processes are to: 

 Investigate the effect of the ultrasonication on the phase behavior of ethanol-petrol 

blend; 

 Develop ethanol dehydration process using adsorption enhanced by 

ultrasonication; 

 Discuss the kinetic model of adsorption of water enhanced by ultrasonication; 

 Study the horizontal and vertical ethanol-petrol blending profile using 

ultrasonication; 

 Discuss the mixing hydrodynamic of ethanol-petrol mixture during the blending 

process; 

 Study the internal combustion of ethanol-petrol fuel; 

 Analyse the level of pollutants and emissions arising from the use of ethanol-

petrol fuel that may cause environmental and health problems. 
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1.4 Research approach 

 

A conceptual approach was taken to achieve the main goal of this study. The approach 

involves several steps. The steps are depicted in Figure 1.1.  It is essential to dehydrate 

distilled bioethanol to meet required water content for homogeneous ethanol-petrol blend. 

The dehydrated ethanol was then blended with petrol, followed by testing of the ethanol-

petrol fuel in the internal combustion. 

 

                                         

 

 

 

 

 

            

 

 

 

 

 

                                                                                                            

 

Figure 1.1: Conceptual approach employed in the study 
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1.5 Thesis outline 

 

The layout of the thesis is as follows: 

 

This thesis addressed problems related to the blending process enhanced by ultrasonication, 

and investigated the effect of the blend percentage and operating variables. The following 

chapters will discuss the issues related to the pre-process (dehydration of bioethanol), main 

process (blending of bioethanol-petrol mixture) and testing of fuel produced. 

- Chapter 1   provides information on the background, and a short overview of fuel blend 

to understand the remainder of the thesis. This chapter discuss the research problem, 

objective of the research and the approach used to achieve the main goal of this study. 

- Chapter 2 presents the necessary background on phase behavior of the possible fuel 

content such as water, bioethanol and petrol; the dehydration process by adsorption with 

summary of adsorption kinetics and adsorption mechanism; review of ethanol-petrol 

blend and ultrasonication process; and finally the internal combustion of blended fuel.  

 

- Chapter 3 provides details of the experimental methods and analytical procedure used in 

this project. This chapter presents the range of blends used for phase behavior study 

through a ternary diagram and the sampling method for dehydration and blending 

processes.  

 

- Chapter 4 presents the experimental results of the phase behavior of ethanol-petrol blend 

enhanced by ultrasonication, this include the dehydration process, and the testing of the 

blend in internal combustion engine. 

 

- Chapter 5 lays out the discussion of the results presented in chapter 4, which can be used 

to better the understanding of the production of the bioethanol-petrol blend using 

ultrasonication-enhanced blending.  

 

- Chapter 6 concludes this research project by proposing the fitting dehydration kinetics 

model and presents the mixing behavior of bioethanol/petrol blend. This analysis 
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provides a set of recommendations for better understanding of the blending process 

enhanced by ultrasonication. 

 

During the course of this project two journal patents were filed and three papers were sent for 

publication 

 

- Filed Patents: 

a. Blending bioethanol and petrol using cavitation for internal combustion engine 

“IYUKE 9 Pat”, which explores the new technique of mixing two fuels components. 

Details of the blending technique enhanced by ultrasonication were discussed 

including the effect of the ultrasonication on the phase behaviour. 

 

b. Purification of ethanol “Iyuke Pat 14.1”. This work explores the adsorption technique 

enhanced by ultrasonication.                        

 

- Manuscripts under review in scientific journals: 

 

1) Dehydration of bioethanol by adsorption enhanced by ultrasonication: 

 

This paper discusses the effect of the adsorbent mass and ultrasonicator setting on the 

enhancement of adsorption of water.  

 

2) Mixing hydrodynamics of bioethanol and unleaded gasoline using ultrasonication: 

 

The effect of operating variables such as pressure, temperature, concentration of ethanol at 

different positions from the ultrasonicator horn and time during ultrasonication-enhanced 

blending were discussed. 

 

3) Thermodynamics studies of bioethanol- gasoline blend using cavitation in internal 

combustion: 

 

The exhaust gases such as CO2, CO and NOx were analyzed and discussed as function of 

ethanol content in the blended fuel. 

 



26 
 

CHAPTER 2: LITERATURE REVIEW 

 

2.1 Phase behavior of ethanol-petrol blend using ultrasonication 

Ethanol dissolves both in gasoline and water, so when water comes into contact with ethanol-

petrol mixture, it is more likely that some of the ethanol dissolved in the petrol will move to 

the water side, decreasing the octane content of gasoline. The mixture of petrol and ethanol is 

capable of absorbing a certain amount of water and this eventually leads to a change in 

crucial properties of the mixture. 

2.1.1 Characteristics of ethanol-petrol-water mixture 

Due to increasing demand of new environmentally friendly fuels, ethanol is a good 

alternative fuel since its combustion produces less greenhouse gases emissions. The 

disadvantage of using ethanol instead of petrol is that ethanol has a low heating value 

compared to pure gasoline. The use of ethanol as a fuel source can reduce total dependency 

on crude oil. The addition of ethanol to petrol increases the octane content of the petrol and 

the formation of photochemical smog. The higher the ethanol content of the ethanol-petrol 

blend,   the higher the rate of combustion (Anderson et al, 2010). 

Ethanol is the hydrophilic substance; therefore it has a great attraction for water molecules. 

Water removes or decreases the ethanol content of gasoline and thus the octane content of 

gasoline is severely affected. Water has a negative effect on the engine of the vehicle, while 

small amounts of water in the solution with gasoline cannot cause any significant damage 

(Badrana et al, 2011). 

As water dissolve in gasoline, the maximum amount of water that gasoline is capable of 

absorbing is reached and this indicate the equilibrium being achieved. At this point any 

excess water will not dissolve and this results in the formation of two separate phases with 

different composition of ethanol. The amount of water that gasoline is capable of absorbing 

depends on the temperature as well as on pressure of the fuel system (Hughes, 2009). 

Water is denser than gasoline, so when water is mixed with gasoline, water settles to the 

bottom of the tank. In processing plants this requires the installation of control system at the 

bottom of the tank so that the operator is alerted when water is present at the bottom of the 

tank. The problem with these sensors is that if water is dissolved in the gasoline, it cannot be 
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detected and thus no further action can possibly be taken by the controller/ operator (Ejikeme, 

2013). 

Some ways of controlling phase separation include making a good choice of alcohol, using 

required amount of alcohol, using suitable solvents, using optimum blending temperature, 

blending appropriate hydrocarbon composition of petrol, and the amount of water (Hughes, 

2009). In this study, mixing techniques were studied in order to enhance homogeneous 

mixing of water, ethanol and petrol. Ethanol is industrially produced with a purity of 95 to 

99.9% with the balance being water and thus it is of importance to ensure a homogeneous 

mixture of petrol and ethanol prior to pumping into an engine. 

The use of ethanol blended gasoline is specifically beneficial in winter due to absorption of 

water to prevent gas line freeze. Important point is that water in the gasoline should not be 

present in large amounts to cause damage to the engine. The contamination of gasoline by 

water in stations in most cases is caused by the rain and the seepage of ground water in the 

underground tank through tiny holes on the tank (Ejikeme, 2013). 

Stirring is the most used method of blending petrol and ethanol, and this relies on the bulk 

movement of the fluids. Several research results comparing different mixing methods, such as 

impinging-jet micro mixing method, the use of stirred tank and high pressure homogenizing 

method, have been reported in literature (Donsi et al, 2010; Thoma et al, 2013) . These 

techniques are however compared in terms of energy demands in the emulsification of oil and 

water (Siddiqui, 2011). The results showed that for a given energy dissipation rate, 

ultrasonication gives the smallest emulsion drop size and this was comparable to that of the 

high-pressure homogenizer at a lesser ultrasonicator energy (Siddiqui, 2011). Silverson rotor-

stator device was found to give the biggest droplets for similar energy dissipation rate while 

Impinging-jet micro mixer gave intermediate drop sizes (Siddiqui, 2011). It can be concluded 

from the information above that ultrasonication has the ability to produce a homogeneous 

mixture at low energies. 

Hydrous gasoline may be advantageous since its use reduces amount of greenhouse gases that 

are released from the engine, for example CO2 and NOx emissions due to slow burning inside 

the engine. Depending on the amount, the addition of ethanol in gasoline causes significant 

damage on the metals that are in use in gasoline engines due to decreased polarisation. The 

same comment applies when water is present in the gasoline as a contaminant. The corrosion 

caused is localized type corrosion (Lou, 2010). 
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2.1.2 Phase behavior of ethanol-petrol blend 

 

A chemically and structurally stable system can be homogeneous or heterogeneous 

depending on the miscibility or immiscibility of phases involved in the blend (Vukovic et al, 

1999). These behaviours are influenced by chemical composition, temperature and 

interactions between substances. The higher the free energy the more the system shows a 

homogeneous mixture.   

Ethanol-petrol mixture is essentially immiscible with water, while ethanol can mix in both 

water and petrol due to its polar and non-polar groups (Bridgeman, 1933). The mixture 

formed two phases depending on the water content; therefore the phase behavior depends on 

the qualitative description and quantitative phases in the mixtures. The phase behaviour is 

represented in a diagram (ternary diagram) that reflects the compositions of the substances 

involved in the system. The nodal curve shows the limit between phases (Homogeneous and 

heterogeneous phases) in the ternary diagram, which determines at which compositions the 

phases separate.  

Breaux (2012) found that the increase of water in the blended fuel reduce the ignition 

probability and the exhaust gas temperature. Egebäck (2005) stated that during the phase 

separation, water absorbs ethanol from the blended fuel, and may compete with the petrol-oil 

to reduce the lubricating ability of the lubricating oil in two-stroke engine. Therefore water 

content needs to be controlled to avoid negative effect of the fuel blend. 

 

2.1.3 Ternary diagram for ethanol-petrol blend 

 

The convenient way of studying phase behavior is by the use of the triangular diagrams. The 

ternary diagram essentially contains sloping straight lines which are referred to as tie lines, 

and the curved line known as the binodal curve. The points on this line and above represent 

the single phase that does not split into two immiscible phases whereas the area that lies 

below this curve represents the formation of two phases that are at equilibrium with each 

other. 
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Triangular diagram 

 

The physical phase behavior of ternary systems for mixing, distillation and liquid-liquid 

extraction can be represented, at constant temperature and pressure, on an equilateral triangle 

ternary diagram. This representation uses the fact that the sum of the three distances that 

represented the component concentrations of the ternary system, from an inner point is 

constant. The ternary-phase diagram shows a completely mixed system at equilibrium and 

does not explain the mixing process. The binodal curve indicates the limit at which the three 

liquid components exist as a single phase. Let note that petrol is a complex mixture of 

hydrocarbons, therefore the phase behavior when mixed with water and ethanol may be 

influenced by its composition. 

 

Figure 2.1 shows water-ethanol-petrol ternary diagram at 18 
0
C developed by kyriakides et al. 

(2012) in term of volume fraction. 

 
 

Figure 2.1: Ternary diagram for water-ethanol-petrol mixture  

(Kyriakides et al., 2012) 
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Phase behaviour of a mixture is affected by some variables, which eventually result in 

different binodal curves in a ternary diagram. These factors are (De Oliveira et al, 2000): 

 The volumetric ratio or the composition of the representative point of the 

system in the ternary diagram; 

 Temperature which has a significant effect on the phase behavior (increase in  

temperature increases the miscibility of petrol-water system); 

 Chemical nature of the ternary components 

 

2.2 Ethanol-petrol mixture using ultrasonicator-enhanced blending 

 

Addition of oxygenates to petrol can increase the octane number of petrol to the required 

level. According to Rasskazchikova et al. (2004), the spectrum of oxygenates used is broad 

such as ethers- methyl tert-butyl, methyl tert-amyl, ethyl tert-butyl, and diisopropyl. Alcohols 

such as methanol, ethanol, and some higher alcohols have been used to boost the octane 

number of petrol (Felton et al, 1987). Additionally, these additives have a high blending 

octane number, low volatility, minimum carbon formation, and low petrochemical activity 

(Furey et al, 1991). The most used oxygenates are alcohols because alcohol-petrol blends 

have properties comparable to traditional petroleum fuels. The commonly used alcohols are 

methanol and ethanol. The use of methanol, despite its high blending octane number, is 

discouraged in many countries, due to its high toxicity, volatility, and hygroscopicity 

(Rasskazchikova et al., 2004).  

Rasskazchikova et al. (2004) further states that ethanol became more competitive as a result 

of the introduction of new continuous fermentation manufacturing processes instead of the 

old cyclic/ batch in one hand, the gradual increase in petrol price (Rodrigo et al, 2009) in the 

other hand. In addition, ethanol is less hygroscopic, less toxic and possesses higher heat of 

combustion and lower evaporation rate when compared to methanol. The above mentioned 

advantages of ethanol contributed towards its use. It is therefore obvious that the use of 

ethanol in fuel blending could contribute to the   reduction of air pollution, while at the same 

time, maintaining, and perhaps, also improving engine performance in the modern vehicle. 

The growing interest in ethanol is also due to the possibility of manufacturing it from 

renewable plant feedstock (Rasskazchikova et al., 2004).  
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2.2.1 Dehydration of bioethanol by ultrasonication-enhanced adsorption 

 

As discussed in Chapter 1 of this thesis,   removal of water is essential to enhance the   

homogeneous mixing of ethanol-petrol blend. Therefore, dehydration of ethanol (bio-

ethanol), whereby water is removed is required before fuel blending.  

 

In this study, dehydration of bioethanol using adsorption process was investigated. Industrial 

adsorption techniques are employed for largely separation processes such as: gas recovery, 

solvent recovery, ultra-purifications, fine chemicals and bio-separations. The industrial 

adsorption techniques may be classified as follow: 

 

- Adsorbate concentrations, these techniques are based on the removal of trace 

contaminants from a bulk process; 

- Adsorption process, this type may use a cyclic batch or continuous counter-current 

process and it is based on the modes of operation in the adsorption phenomena;   

 

- Adsorbent regeneration processes: Regeneration methods use a chemical or physical 

agent that reverse the process, and the industrial techniques employed for this type are 

Temperature swing adsorption (TSA) and Pressure swing adsorption (PSA). 

 

One of the current industrial methods, based on adsorption, applied for the dehydration of 

ethanol is pressure swing adsorption (PSA) and some drawback (Cavalcante, 2000) with TSA 

and PSA are:  

 

 TSA: The mechanical energy is more expensive than the heat of adsorption, the 

operation is done at very low pressure, and the desorption occurs at low purity; 

 PSA: There is inefficient usage of the energy available and the adsorbent activity 

is less efficient. Also in the liquid system, high latent heat flux of interstitial fluid 

should be added. 

 

Due to the challenges facing the use of TSA and PSA, this study investigates the adsorption 

process under pressure waves and temperature generated by cavitation process. The system 

uses an adsorbent disperses in the liquid phase. To enhance the dehydration of bioethanol via 



32 
 

adsorption technique, two mixing-enhanced methods, mixing with magnetic stirrer and 

mixing with ultrasonication, were investigated and compared. The ultrasonication-enhanced 

dehydration of bioethanol uses ultrasound energy in liquid phases to promote the mixing. In 

addition, silica gel was used as adsorbent in the dehydration process. 

 

2.2.1.1 Adsorption of water on silica-gel 

 

Adsorption is a mass transfer process, in which molecules (adsorbate) from gas or liquid 

phase interact with and attach to surface of a solid (adsorbent) (Wu, 2004). The transport 

process of water toward the adsorbent in this case is driven by attraction force. The polar 

bond formed between the adsorbate and the adsorbent as seen in Figure 2.1 allows 

purification or dehydration of ethanol by removing undesirable material such as water in 

gaseous or liquid phase. 

 

 

Figure 2.2: Adsorption process 

 

Based on the type of contact between adsorbate and adsorbent and the quantity of energy 

involved during the adsorption process, two types of adsorption have been identified: 

physical adsorption (physisorption) and chemical adsorption (chemisorption) (Rachidi, 1994; 

Mechrafi, 2002). Due to low energy exchange between the adsorbent and the adsorbate on the 

solid surface, physical adsorption occurs and is mainly caused by van der waal forces 

between the adsorbate and the adsorbent (Desjardins, 1990). The attraction is not fixed to a 
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specific site and the adsorbate is relatively free to move on the surface.  This is relatively 

reversible and capable of multilayer adsorption.Since physisorption is reversible; it does not 

affect the chemical nature of the adsorbate molecules (Madani, 2004). 

 

Chemical adsorption occurs via chemical interaction between the adsorbate and certain 

functional groups on the surface of the adsorbent.  Therefore the adsorption process depends 

on the functional groups present on the adsorbent and not the surface area. Adsorbed 

molecules are not free to move on the surface.  There is a high degree of specificity and 

typically a monolayer is formed.  The process is seldom reversible due to a stronger 

perturbation of the molecular electronic structure with formation of chemical bonds between 

adsorbate and adsorbent. Chemisorption occurs at higher temperature and required more 

energy. Table 2.1 presents the comparisons between physical adsorption and chemical 

adsorption. 

 

Table 2.1: Comparison between physisorption and chemisorption 

Physisorption Chemisorption 

Molecules are adsorbed on available sites Molecules are adsorbed on active sites only 

Adsorbates are molecules Adsorbates are atoms or radicals 

Multiple layers Single layer 

Attraction is a result of Vander Waal’s force Attraction is a result of bonds 

Forces are weak but act on long distance Forces are strong but act on short distance 

Reversible Irreversible 

Adsorption temperature must be below the 

boiling point of the adsorbate 

Occurs at any temperature 

Heat of adsorption is less than 50 KJ/ mol Heat of adsorption can be more than 100 

KJ/ mol (Christmann, 2012) 

 

 

2.2.1.2 Adsorption mechanism 

 

The adsorption mechanism that dominated the ultrasonication-enhanced dehydration of 

bioethanol via adsorption technique is physisorption of water onto silica gel. It is probable 

that the mechanism employed had also some potential of chemical adsorption, but the 
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contribution of chemisorption to the overall adsorption is negligible. The attractive forces 

depend on the adsorbent geometry and electronic properties of the adsorbent and adsorptive. 

Adsorption occurs when the attraction between the solute and the solvent is less than the 

interaction with the adsorbent. The adsorption process of solute on the solid adsorbent 

involves

 the transport of the solute in the fluid phase to the adsorbent surface through diffusion 

or bulk motion (mass transfer);  

 the transport of the solute from the surface to the adsorbent pores (Intragranular 

diffusion). 

 

The attachment of solute to the adsorbent and transfer of the solute into adsorbate pores; this 

mechanism depends on (Cheremisionoff et al, 1978; Wu, 2004):   

1. the physical and chemical properties  of the adsorbent; 

2. the physical and chemical properties  of the adsorbate; 

3. the amount of the adsorbate, and the process parameters. 

 

Intraparticle (intragranular) diffusion can be characterized by an effective diffusivity (Deff), 

given by:   

                                      Deff = DAB εp / τ                                                                               (2.1) 

 

Where DAB is the solute diffusivity in the fluid, εp is the adsorbent void fraction, and τ is its 

tortuosity. If the adsorbent radius is given by r (in metre), (Deff /r
2
) can be approximated by 

the following relationship:  
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Where Ct, C0, and Cf are the adsorbate concentration at time t, the initial adsorbate 

concentration, and the final adsorbate concentration, respectively.  

 

Therefore the effective diffusivity may be determined from the gradient of the graph of 
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]                given by the following equation. 
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2.2.1.3 Factors affecting water adsorption 

 

A number of factors can influence the adsorption process, including the adsorptions capacity 

and kinetics (Perrat, 2001; Mekaoui, 2001). The adsorbate molecule size, polarity and its 

solubility affect the transport process toward the adsorbent surface. In addition, pressure (for 

gas-phase adsorption), surface area and structure of the adsorbent, temperature of the medium 

do influence the adsorption process.  

If the size of the adsorbate is less than the pore diameter of the adsorbent, the solute can 

diffuse easily in the porous and reach the adsorption site. Lundelius’ rule state that adsorption 

of a solute is inversely proportional to its solubility in the solvent.  The greater is the 

solubility of adsorbate molecule in the solvent, the smaller is its extent of adsorption.  At the 

same time, the selectivity domain in which adsorption occurs may depend on the type of 

interaction between the adsorbate and the adsorbent. Therefore the adsorption of water (polar 

molecule) on a solid with polar terminal on the adsorption site will show higher adsorption 

capacity. In term of the surface area of the adsorbent, the greater the specific area of the solid, 

the greater would be its adsorbing capacity. Adsorption processes are generally exothermic 

therefore the increase in temperature decreases the attachment adsorbate – solid. Also, an 

increase in pressure causes an increase in the magnitude of adsorption of an adsorbent 

 

2.2.1.4 Adsorption models for water-silica gel 

 

Various models are used to discuss the adsorption process of water on silica gel (Hui et al, 

2002), but the thermodynamic and the kinetic models were used to discuss the effect of 

ultrasonication on the adsorption process of water-silica gel.  
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Thermodynamics of surface adsorption 

Adsorption process is exothermic and the heats released might be the result of the 

energetically favourable interactions (the electrostatic attractions and the intermolecular 

forces) between the adsorbate and adsorbent species. The adsorption energy (En) required to 

the transfer of the solute molecules from the liquid phase to the solid phase can be expressed 

as:  

                                      
                         

               
                                                            (2.3) 

Polanyi’s theory 

 

The existing of potential field around the adsorbent surface facilitates the adsorption process, 

and the adsorption potential needed to compress the vapour from its equilibrium pressure to 

the saturated pressure is given by (Zoubir, 2007; Dubinin et al, 1947; Polany et al, 1970):  
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Equation of Dubinin and Radushkevich 

 

Dubinin and Radushkevich (Zoubir, 2007; Dubinin et al, 1947; Polany et al, 1970) proposed 

the relationship between the fraction of the molar volume occupied by the adsorbate and 

adsorption potentials. The proposed equation is applied to micropores and is given by the 

following: 
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Where V0, V, D and β are the maximal adsorption capacity, the adsorbate volume in solid 

phase, the constant which depend on the micropores distribution of the adsorbent, and 

adsorbate affinity coefficient, respectively. 
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The adsorption thermodynamics is characterized by the temperature, energies and pressures. 

This process is spontaneous; therefore ∆G is negative and is given by the following 

expression: 

                                                                                                                   (2.6) 

 

The thermodynamic quantities may be determined from the heat released during the process 

and the adsorbate amount. The measured heat corresponds to the molar enthalpy which can 

be measured at different temperature using isosteric method (Zoubir, 2007). The adsorbate 

potentials at equilibrium in both phases become equals for a given filling of adsorbent and the 

isosteric adsorption enthalpy and entropy can be determine from the gradient and y-intercept 

of   
 

  
          

 

 
  from the following equation: 
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The above relation from isosteric method resembles the differential equation in respect of T 

of the Clausius-Clapeyron relation given by: 
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)                                                                   (2.8) 

 

Design of adsorption process 

 

Batch adsorbers are suitable for liquid phase adsorption, where the specific area of the 

adsorbent, the temperature and the adsorption time are determining factors for the separation 

process. The adsorption time depends on the adsorbate concentration, adsorbent size, mixing 

energy and the viscosity of the liquid phase. The first step on the adsorption design is to find 

an expression from the mass balance equation followed by the optimal time for the adsorption 

process. 
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If the adsorbate volume is negligible compare to the liquid phases; the total volume may be 

assumed to be constant. Also if CSo, CSt, are the adsorbate concentration in the liquid phase at 

t = 0, and at time, t, respectively; and CAo and CAt are the adsorbate concentration in the liquid 

phase on the adsorbent at t = 0 and at time t, respectively; then the mass balance equation can 

be written as follow: 

 

                             m CAo + V CSo  =  m CAt  + V CSt                                                                                           (2.9) 

 

Where m is the mass of the fresh adsorbent in mg, and V is the volume of the liquid phase in 

mL. 

Equation (2.9) can be written as follow: 

 

                                      m (CAo  - CAt )  =  V (CSt  - CSo )                                                    (2.10) 

 

If Equation (10) is divided by by V CSo, it gives: 

  

                       
 

 
 ( 

   

   
   

   

   
)    

   

   
                                                                           (2.11) 

 

Further simplification of Equation (11) gives: 

 

                                   τ yo – τ y = x – 1                                                                              (2.12) 

and,                        

                                      
 

 
                                                                                  (2.13) 

 

where       
   

   
            

   

   
        

   

   
      

    adsorbate concentration in the adsorbent 

phase initially (t = 0) ,     
  

 adsorbate concentration in the adsorbent phase at time t                                            

and τ   distribution rate  =    
 

 
 
   

  

   
. Therefore the distribution rate can be determined by 

graphical method using Equation (2.13). 
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With the use of Equation (16), the contact time during the adsorption can be determined. The 

adsorption rate in term of mass transfer in the liquid phases is given by following expression: 

 

                 
    

   
       (        )                                                                                             (2.14) 

 

By integrating the differential Equation (2.14) and solve for time t gives the expression of the 

contact time (2.16).  

 

                                                 
    

          
                                                                      (2.15)    

                                                

  And,                                         

                                                   
 

  
  ∫

    

           

   
  

   
                                                        (2.16) 

 

Also the mass transfer coefficient can be determined by solving the differential equation 

(2.15) at a time t.  

 

Adsorption mechanism during ultrasonication-enhanced adsorption 

 

The adsorption of water molecule from liquid phase to a solid phase may be explained by 

heterogeneous mechanism; the adsorbates diffuse to the adsorbent disperse in the reactor as 

depicted in Figure 2.3. The mechanisms involved during   the ultrasonication-enhanced 

adsorption process are: 

 

- Solute transport from the solvent (liquid phase) to the solid surface;  

- Transport of the solute molecule through the adsorbent pores; and 

- Adsorption on the adsorbent site.  

 



40 
 

 

Figure 2.3: Schematic of adsorptions mechanism 

 

Kinetic studies facilitate the understanding of the adsorption mechanism. The adsorption time 

depends on the factors discussed above, but it may be optimized by the adsorption kinetics. 

The rate at which the solute adsorbed on the solid surface gives the kinetic models of the 

process. At an isothermal condition, the kinetic model is given by the following expression 

(Qiu et al, 2009):  

 

 

   
   

   
                  

                                                                                                                          (2.17) 

 

Where Cs t, Cs eq, kAd and n are the adsorbate concentration at time t, the equilibrium adsorbate 

concentration, the rate constant and the order of reaction, respectively. 

 

If the adsorption reaction is zero order, the kinetic model should be written as: 

 

                                                                                                                                 (2.18) 

                                                                                                                       (2.19) 

At initial stage, time t = 0, the concentration of the solute in adsorbate phase is zero, i.e. 

Cst(t=0)=Cs0=0, therefore the above equation become: 

 

                                                                                                                    (2.20) 
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Then the adsorption rate constant can be determined from the gradient of the linear graph of 

the concentration plotted against time. 

 

The equation of the first order adsorption shows the proportionality relationship between the 

rate of concentration and the concentration of the solute in adsorbate phase, and is given by 

the following expression (Ho, 2004): 

 

                                                     
   

   
                                                                                          (2.21) 

 

The solution of Equation (2.21) is given as follow: 

 

                                                                                                                   (2.22) 

 

Applying the boundary conditions:   

 

              ;                 

 

Equation (2.22) becomes: 

 

                                                                                                                (2.23) 

 

 

Therefore the adsorption rate constant can be determined from the gradient of the straight line 

graph of                 against time.This model was presented by Ho (2004) to describe the 

adsorption kinetic process of liquid-solid, where the kinetic equations were based on the 

adsorption capacity.  This model is also referred to as pseudo-first-order rate equation. 

 

The adsorption model of the second order express the rate of adsorption as a function of 

squared of the concentration of the solute in the adsorbate phase, and is given by the 

following expression: 
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                                                                    (2.24) 

 

Solving Equation (24) gives: 

 

                                          ∫
      

(      –     )
   ∫                                                                 (2.25) 

 

                                           
 

              
                                                                    (2.26) 

 

Applying the boundary condition (                  ) to Equation (2.26), the second 

order adsorption model become: 

 

                                     
 

              
           

 

     
                                                           (2.27) 

 

                                      
 

    
  

 

     
    

 
 

 
   

 

     
                                                                (2.28) 

 

The adsorption kinetic constant can be determined from the gradient of the graph 

 

    
          

 

 
   

 

This model was introduced by Ho (2006), and was called pseudo-second order rate equation 

to distinguish kinetic equations based on adsorption capacity from concentration of solution. 

 

Zeldowitsh kinetic model (Elovich equation) 

 

This model was established by Zeldowitsh (Qiu, 2009) to describe the adsorption of gases on 

the solid surface; but in recent years, researchers had used that model in liquid-solid 
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adsorption. This kinetic model describes the rate of the adsorbate concentration as 

exponential function of time. The Elovich’s equation is given by the following expression: 

 

 

                                                 
   

   
                                                                               (2.28) 

 

 

                                              ∫         
    

 
  ∫      

 

 
                                                      (2.29) 

 

 

                                                                                                                             (2.30) 

 

If α γ t >> 1 as suggested by Chien and Clayton (1980), α and γ can be determined from the 

gradient and y-intercept of the graph                  given by the following expression: 

 

 

                                                    
 

 
        

 

 
                                                           (2.31) 

 

 

The adsorption kinetics is thermodynamically limited describing the relationships between 

the adsorbed species and the fluid phase. All the above models were investigated for 

ultrasonication-enhanced adsorption process to describe the process, and also estimate the 

kinetic parameters for the suitable model for the process.   

 

2.2.2 Ultrasonication technique and ethanol-petrol blend 

 

 This section provides a short overview of ethanol-petrol blend and ultrasonication process. 

With the use of ultrasonication, ethanol-petrol blending is dramatically enhanced. 
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2.2.2.1 Chemical and physical characteristics of ethanol and petrol blends 

 

In order to understand the nature of ethanol-petrol blended fuel it is essential to understand 

the characteristics of polar solvent and hydrocarbons, their differences, and how these 

products interact. Petrol is hydrophobic and has a flash point of approximately - 43 
0
C, with 

variation in octane rating (IAFC, 2008). Petrol has a specific gravity ranging between 0.72 

and 0.76, indicating that it is less dense than water and thus floats on top of water. Its auto-

ignition temperature is between 280 °C and 456 °C, and it has a boiling point between 38 °C 

and 204 °C depending on fuel composition (IAFC, 2008). Ethanol is a polar substance, which 

is water-soluble and has flash point of 13°C.  Ethanol is less dense than water with a specific 

gravity of 0.79. However, its hydrophilic nature makes it to be miscible with water. Ethanol 

has an auto-ignition temperature of 423°C, and a boiling point of 78°C. Ethanol is less toxic 

than gasoline or methanol (IAFC, 2008). 

 

According to Chen et al. (2011), ethanol has been used in automobile engines since the 

nineteenth century. However, the discovery of cheaper, petroleum based petrol, ultimately 

replaced it. Table 2.2 presents a comparison of the chemical and physical properties of 

bioethanol and petrol fuel.  

 

Mueller et al. (2009) describes how, during the late 1970s, the phase-out of leaded gasoline 

began. In the late 1970s, when the use of leaded gasoline was prohibited, Methyl tert-butyl 

ether (MTBE) and ethanol were then added to the gasoline to improve the octane rating and 

to reduce emissions. However, ethanol recently surpassed MTBE as the additive of choice, 

becoming the most attractive oxygenate due to the environmental and health concerns 

associated with MTBE. The use of MTBE and ethanol as oxygenates enhances the octane 

number of gasoline (Da Silva et al., 2005) . However, the use of MTBE has been restricted 

due to its high solubility in water, its toxic effect and degradation products, which are causes 

for environmental concern (da Silva et al., 2005). 
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Table 2.2: Chemical and physical properties for bio-ethanol and petrol fuel (IAFC, 

2008; Sheet, 2008) 

Fuel property Bio-ethanol Gasoline 

Molecular formula  C2H5OH C4–C12 

Molecular weight (g/mol)  46.07 100–105 

Carbon (mass %)  52.2 85–88 

Hydrogen (mass %)  13.1 12–15 

Oxygen (mass %)  34.7 2.7 

Density15/15 °C (kg/l)  0.79 0.72–0.775 

Boiling point (°C)  78 27–225 

Vapour pres.(kPa) at 38 °C  15.9 48–103 

Specific heat (kJkg_1K_1) 2.4 2 

Viscosity (mPa s) at 20 °C  1.19 0.37–0.44 

Low heating val., 103 (kJ/l)  21.1 30–33 

Auto ignition temp. (°C)  423 257 

Research octane number  108.6 98 

Motor octane  92 87 

(R + M)/2  100 92.5 

Cetane – 5–20 

Flammability lim. (Vol %) 4.3/19 1.4/7.6 

Water tolerance (Vol %)  Compl. miscible Negligible 

Stoichiometric air/fuel  9 14.7 

Aromatics (Vol %)  – 35 

Carbonyl (ppm) as C–O  567 – 

Carbonyl (ppm) as acetone  1117 – 

Carbonyl (ppm) as 

acetaldehyde  

893 – 

Sulphur (mg/kg)  <0.8 10 

Copper (mg/kg)  <0.1 – 
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Blending ethanol with petrol has multiple effects. Ethanol increases the heat output of the 

unleaded petrol, which produces more complete combustion, resulting in slightly lower 

emissions from unburned hydrocarbons (Chen et al., 2011). The higher the concentrations of 

ethanol, the more the fuel has polar solvent-type characteristics with corresponding effects on 

conducting fire suppression operations (Chen et al., 2011). However, even at high 

concentrations of ethanol, minimal amounts of water will draw the ethanol out of the blend 

away from the petrol. Ethanol and petrol are very similar in specific gravity and thus the two 

differing fuels mix readily with minimal agitation, but the blend is more of a suspension than 

a true solution. Ethanol has a greater affinity for water than it does for petrol, which means 

that over time, without agitation, petrol will be found floating on a layer of an ethanol/water 

solution. Table 2.3 shows the characteristics of different ethanol-petrol blends (Tangka et al., 

2011). 

 

Table 2.3: Properties of gasoline fuel blended with various percentages of ethanol 

(Average values) (Tangka et al. 2011)                                                                      

sample  

code 

% Ethanol % Gasoline Flash point 

(⁰C) 

vapour pressure 

(kpa at 37.8⁰C) 

Energy density 

(MJ/L) 

Octane 

number 

Specific 

gravity 

E0 0 100 -65 36 34.2 91 0.7474 

E10 10 90 -40 38.9 33.182 93 0.7508 

E20 20 80 -20 39 32 94 0.7605 

E30 30 70 -15 38 31.5 95 0.7782 

E40 40 60 -13.5 35.6 30 97 0.7792 

E50 50 50 -5 34 29 99 0.7805 

E60 60 40 -1 31 28 100 0.7812 

E70 70 30 0 28 27 103 0.7823 

E80 80 20 5 24 26.5 104 0.7834 

E90 90 10 8.5 18 23.6 106 0.784 

E100 100 0 12.5 9 23.5 129 0.789 
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Bayraktar (2005) highlights the most attractive properties of ethanol which include the fact 

that it can be produced from renewable energy sources such as agricultural feedstock. It also 

has a high octane number and flame speed. According to Anderson, et al. (2012), the octane 

rating of fuel refers to the fuel's ability to resist auto-ignition and knock in a spark-ignited 

engine. The higher the octane rating of the fuel, the greater its desirability. Therefore an 

ethanol-gasoline blend fuel is more practical than ethanol alone (more fuel consumption) and 

could improve engine performance and decrease exhaust emissions. Turner et al. (2011) 

further corroborates this by describing how bio-ethanol is an attractive fuel for internal 

combustion engines due to its renewable nature and resultant reduction of CO2 emissions. It 

also has a higher octane rating and enthalpy of vaporization when compared to standard 

gasoline.  

 

This then allows for use of increased compression ratios and the possibility of more favorable 

spark timings, thereby increasing engine efficiency (Aina, 2012). Anderson, et al. (2012) also 

reported that the physical properties of ethanol provide significant improvement when added 

to petrol. A number of studies have been conducted on correlations between oxygenate 

additives to petrol, and the corresponding pollutant concentrations in the engine exhaust gas. 

It has been reported that the addition of oxygenates resulted in a decrease in exhaust 

emissions (Song, et al., 2006). Da Silva, et al. (2005) further reported that pollutants of 

greatest significance when considering an operation of an internal combustion engine are 

carbon monoxide (CO), unburned (or partially oxidized) hydrocarbons, nitrogen oxides and 

particulate matter. According to Da Silva (Da Silva et al, 2005) the use of oxygenated fuels 

decreases the emission of carbon monoxide (CO) and unburned hydrocarbons from car 

exhausts. Furthermore, studies conducted by Al-Hasan (Al-Hasan, 2003) have shown that 

ethanol as a fuel additive to unleaded petrol results in improved engine performance and a 

significant decrease in the exhaust emissions of CO and unburned hydrocarbons. The 

addition of ethanol results in an increase in the thermal efficiency of engine operation 

(Anderson, et al., 2012). Mirom et al (1986) showed that the completeness of fuel combustion 

increases in the presence of oxygenates, and emission of carbon monoxide and hydrocarbon 

(partly burnt) is reduced by 32.5% and 14.5%, respectively. Also, due to the use of 

oxygenates, the environmental and performance characteristics of gasoline are improved and 

motor fuel supplies are broadened due to use of non-petroleum feedstock (Rasskazchikova et 

al., 2004).  

 



48 
 

According to Anderson, et al. (2012), there are some disadvantages associated with the 

addition of ethanol to petrol. These disadvantages include potential increase (or decrease) of 

the RVP, alteration of distillation properties, and prevention of transportation in pipelines due 

to the risk of water-induced phase separation. Furthermore, the net heating value of ethanol is 

less than that of petrol, and there is also a reduction in the volumetric fuel economy and travel 

range on a tank of fuel (Anderson, et al., 2012). The most appropriate feedstock for the 

production of bioethanol are agricultural products, such as, sugar cane and grains, agricultural 

solid wastes, and cellulosic materials (such as wood and coal) (Bayraktar, 2005). 

Lignocellulosic biomass can be converted to bioethanol by hydrolysis and subsequent 

fermentation (Binod, 2011). Thermochemical processes may also be employed in the 

production of bioethanol in which gasification is followed either by fermentation or by a 

catalyzed reaction.  

 

Ethanol-gasoline blends are, however, sensitive to moisture and have a tendency to separate 

into two layers when exposed to relatively small volumes of water. On exposure to water, the 

ethanol-petrol blend will at first absorb the water until a point at which the quantity of water 

added is greater than its solubility in the blend. Then a separate layer forms. The problem 

associated with this phase separation is that the ethanol preferentially partitions into the 

aqueous layer, resulting in an ethanol-rich aqueous layer and ethanol-deficient petrol layer. 

This ethanol-deficient gasoline layer then has a reduced octane rating and may not function 

satisfactorily as a fuel (Mueller et al., 2009). Therefore, the problem is not the formation of 

the aqueous layer, but with the resulting change in the fuel composition and the negative 

impact this has on its performance as a fuel.  

 

2.2.2.2 Ultrasonication process for producing ethanol-petrol blended fuel 

 

Ultrasound is defined as sound waves at high frequencies >20 KHz and this sound is 

normally transmitted through a medium by inducing vibration of the molecules through 

which it is traveling (Karshafian, 2010). Ultrasound can be classified into two distinct types: 

low amplitude type ultrasound and high amplitude ultrasound. Of interest in this study is the 

high power ultrasound, which usually involves lower frequencies of around 20-100 KHz and 

high amplitudes of range 12-320 μm. At these ranges, greater acoustic energy can be 

generated, inducing cavitation in liquids (Tabada, 2008).  
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When ultrasound wave propagates in a medium, such as, a liquid or slurry, it produces 

cavitation. Cavitation is an important aspect of ultrasonication since it has the capacity to 

generate powerful hydro-mechanical shear forces in the bulk liquid, which disintegrate 

nearby particles by extreme shear forces (Tabada, 2008). The disintegration of these particles 

will therefore result in perfect mixing between the two liquids (Tabada, 2008). Another 

important aspect of ultrasonication in mixing is acoustic streaming which has been shown to 

enhance heat and mass transfer, reaction rates, emulsification, and depolymerization (Tabada, 

2008). The enhancement in mass transfer and reaction rates is therefore of importance in this 

study, and makes ultrasonication a relevant field of study in solving the problems highlighted 

in the previous sections of this Chapter. 

 

Ultrasonic cavitation is a very effective type of dynamic agitation based on the growth and 

implosive collapse of bubbles in liquid due to ultrasonic vibrations (Jansen et al, 2010). 

Cavitation results from pre-existing weak points in the liquid, such as gas-filled crevices in 

suspended particulate matter or transient micro bubbles from prior cavitation events 

(Kenneth, 1994). As ultrasound passes through a liquid, the expansion cycles exert negative 

pressure on the liquid, pulling the molecules away from one another. Where the ultrasonic 

energy is sufficiently intense, the expansion cycle creates cavities in the liquid when the 

negative pressure exceeds the local tensile strength of the liquid, which varies according to 

the type and purity of liquid (Jansen et al, 2010 ). Under the proper conditions, these bubbles 

undergo a violent collapse, generating very high pressures and temperature as shown in 

Figure 2.4. It is this behaviour that makes this study relevant to the solution of phase 

separation. 

 

 

Figure 2.4: Growth and imploding cavitation bubbles (Suslick, 2004) 
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Furthermore, during cavitation a temporary localized hot spot is created due to the 

compression of bubbles. Hence, the collapse of these bubbles results in intense local heating 

and high pressures, suggesting that cavitation rarefaction can be used to generate 

extraordinary physical and chemical conditions in otherwise cold liquids (Suslick et al., 

1999). Similarly, Vanhille et al (2012) described acoustic cavitation as the effect which takes 

place when a sufficiently high-amplitude ultrasonic signal is propagating in a liquid. The 

authors also described the stable cavitation as the creation and oscillation of gas bubbles in 

the liquid whilst inertial cavitation is characterized by the release of a large amount of energy 

when bubbles collapse. Neppiras (1984) also described cavitation as an event which occurs 

whenever a new surface, or cavity, is created within a liquid. A cavity can be described as 

any bounded volume, be it empty or containing gas or vapor, with at least a part of the 

boundary being a liquid . The presence of a sound field precipitates not only the formation 

and expansion but also contraction of cavities. According to Neppiras (1984), acoustic 

cavitation is a term primarily used to describe cases involving both expansion and contraction 

of cavities or bubble nuclei. In addition, cavitation can be described as the generation, 

subsequent growth and collapse of the cavities releasing large magnitudes of energy over a 

very small location, thus causing very high energy densities which could be instrumental in 

the intensification of chemical processing applications (Gogate, 2008). Furthermore, the 

generation of free radicals during the cavitation process, as a consequence of the dissociation 

of vapors trapped in the cavitating bubbles, results in either the intensification of chemical 

reactions or the propagation of a particular reaction under ambient conditions (Gogate, 2008). 

The cavitation may also cause the generation of local turbulence and liquid micro-circulation 

(acoustic streaming) in the reactor, resulting in the improvement of the rate of transport 

processes (Gogate, 2008). It is this particular aspect of cavitational reactors which intensifies 

physical processing applications and chemical processes, which are mass transfer limited.  

 

There are a number of ways in which ultrasonic radiation differs from conventional energy 

sources (heat, light or ionizing radiation) including duration, pressure and energy per 

molecule (Suslick et al., 1999). Indeed, the exceptionally large local temperatures and 

pressures combined with the heating and cooling rates resulting from the collapse of bubbles 

generated by cavitation provides a unique mechanism for generating high energy chemistry 

(Suslick, et al., 1999). The generation of acoustic cavitation involves the superimposition of a 

time-varying, generally sinusoidal, pressure on the steady ambient pressure (Neppiras, 1984). 
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Two types of cavitation are highlighted by Neppiras (1984): transient and stable. Transient 

cavitation is used to describe the violent response to an applied sound field whilst stable 

cavitation applies to a rather gentle response, depending on the pressure levels and other 

ambient conditions. Additionally, Gogate (2008) highlighted four main types of cavitation as 

acoustic cavitation, hydrodynamic cavitation, optic cavitation and particle cavitation. In 

acoustic cavitation, the pressure variations in the liquid are altered using sound waves, 

typically ultrasound. Sonochemistry is the term applied to the chemical changes taking place 

as a consequence of cavitation resulting from the passage of sound waves. Hydrodynamic 

cavitation is the term applied when pressure variations are used to induce cavitation while 

optic cavitation results from the rupturing of the liquid continuum using photons of high 

intensity light (laser) (Gogate, 2008). Particle cavitation describes the cavitation which is 

generated by the beam of the elementary particles. However, any acoustic and hydrodynamic 

cavitations produce the intensity necessary for chemical or physical processing (Gogate, 

2008).  

 

According to Gogate (2008), there are two primary effects associated with cavitation in 

homogenous liquid phase reactions. Foremost, it is highly improbable that the resultant cavity 

would enclose a vacuum. It is far more likely that the cavities will instead contain vapour 

from the liquid medium or dissolved volatile reagents or gases. On collapse, these vapours 

will be subject to extreme conditions of high temperatures and pressures, resulting in the 

fragmentation of molecules and the generation of highly reactive radical species. These 

radical species then either react within the collapsing bubble or after they have travelled into 

the bulk liquid. Gogate (2008) then describes the second effect associated with cavitation in 

homogenous liquid phase reactions as the in-rush of the liquid to fill the void, which is 

formed on the sudden collapse of the bubble. This phenomenon then produces shear forces in 

the surrounding bulk liquid, which have the capacity to break the chemical bonds of any 

materials that are dissolved in the fluid, or agitate the boundary layer facilitating the 

transport.  

 

According to Suslick, et al. (1999), there are a number of chemical and physical 

consequences associated with high intensity sound. Figure 2.5 is a schematic representation 

of these chemical and physical effects. 
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Figure 2.5: Classification of the chemical and physical effects of ultrasound (Suslick et 

al, 1999) 

 

The primary benefit associated with acoustic cavitation is its ability to concentrate acoustic 

energy in small volumes which then results in temperatures of 1000 K, pressures in the GPa 

range, local accelerations 12 orders of magnitude higher than gravity, shock waves, and 

photon emission (Louisnard et al, 1999). However, acoustic cavitation involves an extensive 

array of temporal and spatial scales, and is thus highly complex to measure. Acoustic 

cavitation is difficult to control, to predict, and to scale up (Louisnard et al, 1999).  
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2.2.2.3 Diffusion mechanism in ethanol-petrol blending 

 

Diffusion is the movement of molecules from medium of higher concentration to medium  of 

lower concentration. The rate of diffusion can be affected by many parameters including 

temperature, molecular weight, and bulk convection. Transverse and vertical diffusion are the 

most relevant mechanisms of mass transfer in the mixing of ethanol and gasoline using an 

ultrasonicator. The effect of horizontal and vertical diffusion on ethanol-petrol blend was 

investigated in this study to determine the dominant diffusion. The one with the slow 

diffusion rate is the limiting step in the process and therefore it can be controlled to alter the 

system. 

 

On studying diffusion in liquid- liquid phase mixture, the driving force for the diffusion 

mechanism is the temperature of the system and composition (Pertler et al, 1996). Diffusion 

has been studied in the turbulent mixing of rivers, ocean and lakes and it has been shown that 

horizontal diffusion is normally faster compared to vertical diffusion (Imboden et al, 1988). It 

is also shown that vertical diffusion is dependent of the depth and stratification of the lake, 

ocean or river (Imboden et al, 1988). This fact about horizontal and vertical diffusion will 

therefore serve as a hypothesis for this research. 

 

Fick’s first law relates the diffusive flux to the concentration field, by postulating that the flux 

goes from a region of higher concentration to region of lower concentration, with a 

magnitude that is proportional to the concentration gradient. The equation below describes 

Fick’s first law of diffusion: 

 

 

                                .    
  

  
                                                                                          (2.32) 

 

Equation (2.32) explains that the diffusive flux is proportional to the existing concentration 

gradient. Figure 2.6 gives an illustration of Fick’s law. 
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Figure 2.6: Graphical representation of gradient of concentration 

 

The negative sign in Equation (2.32) indicates that flow occurs from regions of higher 

concentration to region of lower concentration. The flux (J) can be given in units of 

moles.cm
-2

s
-1

, atoms.cm
-2

s
-1

 or other similar equivalents. The diffusivity (D) is expressed in 

cm
2
.s

-1
. 

 

Fick's second law predicts how diffusion causes the concentration to change with time thus 

the fuel mixing process can be quantified by the diffusivity coefficient (D)  after which the 

rate of diffusion is described according to Fick's second law: 

 

 

                                   
  

  
    (

   

    
   

   )                                     (2.33) 

 

Equation (2.33) can therefore be used to calculate the overall rate of diffusion of a certain 

material that diffuses in both directions that is vertical and transverse directions. Since the 

mechanism behind ultrasonic mixing is diffusion, the time taken for diffusion of a liquid until 

a point where a homogeneous mixture is achieved can be related to the diffusion length of the 

liquid. This relationship is shown in Equation (2.34) below where the diffusivity of the liquid 

can be obtained from Equation (2.33). Equation (2.34) below was adapted from Goksen, 

(2004):  
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                                     (2.34) 

 

Where TD is the diffusion time (s), L is the diffusion length (m); and D is the diffusivity. 

Equation (2.34) shows that, industrially it is possible to improve the kinetics of mixing  by 

reducing the diffusion length required for mixing  or increasing the contact area between the 

two different liquids while keeping the volume constant (Goksen, 2004). This way of 

controlling the kinetics of mixing may therefore be applied on the limiting diffusion that is 

either the horizontal or vertical diffusion. The length that maximises the kinetics will 

therefore be used to directly determine the geometry of the mixing tank. One way of 

increasing the contact area between the two liquids is to inject one liquid into the other 

through nozzles and this creates micro plumes of the injected fluid in the host fluid and thus 

decreasing the diffusion length (Goksen, 2004). 

 

2.2.2.4 Energy distribution during the blending process 

 

One of the most important aspects of sonication is the intensity of the sonication energy 

distribution within a reactor. More often, the energy knowledge about the ultrasonic energy 

transferred to the cell is available; however this knowledge is insufficient for describing the 

situation within the sonication reactor (Klima, 2007). The intensity distribution of the 

sonication energy can however be predicted based on the knowledge of the spreading of the 

ultrasound which includes reflections and superposition.  

 

Different studies have shown that the sound field is strongly non-uniform and thus describe 

the formation of standing waves whose position depends strongly on the liquid level in the 

sonication reactor. Kimura et al (2000) has confirmed the validity of this theory by showing 

that almost all the ultrasonic energy is consumed within a small volume near the ultrasonic 

horn (Klima et.al, 2007). The experimental setup in this study is similar to the one described 

by Klima,et.al (2007), and thus for such an arrangement it can be assumed that the highest 

local intensity value is reached in the close vicinity of the horn. The energy intensity value is 
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therefore given by the power transferred to the reactor through the tip of the transducer 

divided by the active surface area of the tip as given by Equation (2.35):  

 

                                           
   

 
                    (2.35) 

                                                                                      

Where     is the energy intensity of ultrasonication;     is the power transferred to the 

reactor; and A is the active surface area. 

From Equation (2.35) it can be shown that the intensity is inversely proportional to the area it 

spreads into, and thus a decrease in the intensity is expected with an increase in distance from 

the sonication horn. This approach however limitation has and thus the behaviour can be 

changed significantly due to multiple reflections at the cell boundaries. Hence for specific 

cell dimensions, higher intensities can be recorded at regions further away from the horn, thus 

resulting in a non-linear energy profile. The intensity distribution is also equivalent to the 

distribution of acoustic pressure amplitude in the reactor (Klima, 2007) and this relationship 

is shown in Equation (2.36): 

 

                                                              
  

    

   
               (2.36) 

 

Where r is the spatial variable (r = [x, y, z]), ρ is the density of medium, c is the sound 

velocity in this medium and   
   is the ultrasonic pressure amplitude. 

 

This relationship shows that by measuring the pressure distribution in the reactor, the energy 

intensity can also be analysed from the results. In this study, pressure distribution in the 

reactor was measured as a means to investigating the energy intensity distribution (see 

Chapter 4 for details).   

 

2.3 Testing of ethanol-petrol blended fuel in internal combustion engine  

 

Numerous studies on the testing of ethanol-petrol blended fuel in internal combustion engines 

have been done, and results have shown that ethanol-petrol-based engines are more efficient 
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than pure gasoline-based engines. Bayraktar (2005) investigated the effect of ethanol on the 

engine performance and the carbon monoxide emissions. In his investigation, he looked at the 

effect of ethanol composition in the ethanol-petrol blended fuel. From the study, he 

discovered that ethanol composition of 7.5% led to better engine performance, and reduction 

in carbon monoxide emissions. Using theoretical model, the author also speculated   that 

better engine performance and less CO emissions were achieved when the ethanol 

composition of the ethanol-petrol fuel was 16.5%.  

In the same vein, Lin et al. (2012) also conduct a study on the effect of different ethanol-

petrol composition on the performance of internal combustion engine. This study focused on 

fuel energy efficiency and pollution analysis under different loadings. The efficiency was 

expressed as thermal efficiency of the generator. From the study, the researchers found that 

ethanol addition to petrol reduced the emissions. In addition, it was found that particle 

number concentration increased with the load and decreased with the increase in the 

percentage of ethanol in the ethanol-petrol blend. The reduction in CO, NOX and total 

emission when E60 (fuel blend with 60 % ethanol) was used was found to be 86%. They also 

found that small generator thermal efficiency increased with the increase in the content of 

ethanol in the blend. 

Similarly, Koc et al (2009) showed that ethanol addition does not only improve efficiency 

and emission reduction but also increase the compression ratio of the engine without knock 

occurrence. Other studies that were also done showed similar results. For example, 

Rakopoulos et al (2005) reported an improvement in the efficiency of internal combustion 

engine when ethanol-petrol blended was used. Yacoub et al (1998) also showed an 

enhancement in the performance of an engine operated with ethanol-petrol blend and even 

showed the characteristic performance of C1 (methanol) to C5 (pentanol) petrol blends. Sung 

et al (1983), Award et al (2012), and Hasan (2002) reported a similar deduction from their 

studies.  

 

2.3.1 Thermodynamic Models of Internal Combustion Engine 

 

Performance of an internal combustion engine using different fuels can be analyzed using 

first and second laws of thermodynamics .In a combustion process, fuel and oxidizer react to 

obtain products of different composition.  The actual path by which this transformation takes 

place is understood only for simple fuels, such as hydrogen and methane.  For fuels with 
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more complicated structure, the details are not well defined.  First law of thermodynamics 

can be used to relate the end states of mixtures undergoing a combustion process; its 

application does not require that the details of the process be known.  Energy balance in the 

cylinder is made with the aim of obtaining power and efficiency with the aid of first law. The 

Otto cycle is a popular way of analyzing an engine using first law of thermodynamics. 

 

The Otto Cycle 

 

It is well known that the performance of an engine is analyzed using the engine cycle 

depicted schematically in Figure 2.7 and Figure 2.8. The engine cycle enables easy 

determination of engine performance parameters, such as, mean indicated pressure, mean 

effective pressure, thermal efficiency and fuel consumption 

 

 

Figure 2.7: Ideal Otto Cycle (Hago W. and Morin A., 2010) 
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Figure 2.8: Real Otto Cycle (Hago et al, 2010) 

In Figure 2.7 and Figure 2.8, Process 1-2 represents isentropic compression as the piston 

moves from bottom dead center to top dead center.  

Process 2-3 is a constant volume heat transfer to the air fuel mixture from an external source 

while the piston is at top dead center. This process is the ignition and the subsequent rapid 

burning. 

Process 3-4 is an isentropic expansion and Process 4-1 completes the cycle with constant-

volume heat rejection. 

Once the cycle has been determined for each fuel mixture, the mean effective pressure (mep) 

and thermal efficiency are determined as follows: 

 

                                      
                      

                   
             (2.37) 
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                                    (
 

 
)
   

               (2.38) 

        , for constant heat capacities  

The net work for one cycle is given by: 

 

                                       -                           (2.39) 

 

Where   = is the internal energy 

 

Theoretical determination of the Otto cycle from first law 

 

Thermodynamic models of the real engine cycle have served as effective tools for complete 

analysis of engine performance and sensitivity to various operating parameters 

( akopoulos,  2006). From first law of thermodynamics, the Otto cycle, which is mostly used 

for analyzing the performance of the engine in the generation of electricity from various 

fuels, can be produced using mathematical models. The mathematical models which have 

been developed include zero-dimensional models or single-zone models, two-zone, four-zone 

or even multi-zone models (Borgnakke, 1986). The single zone models are simple as they 

consider the engine to be made up of a uniform mixture of gases while the two zone models 

divide the working fluid in the engine into two zones (burned and unburned) (Rakopoulos, 

2005). 

 

Computer simulations of internal combustion engine cycles are used because they aid in 

design studies, in predicting trends, in serving as diagnostic tools, in analyzing the data that 

are obtainable from experiments, and in helping one to understand the complex processes that 

occur in the combustion chamber (Maher et al, 2004). The most frequently used model is the 

quasi-dimensional model which is the double zone model. It is used because it is believed to 

predict the performance of the engine well when compared to the single zone models 
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(Rakopoulos, 2005). The equations governing the rate of fuel consumption, temperatures and 

pressures for the quasi–dimensional model are shown below. 

 

The mass burning rate was modelled by the following equation (Heywood, 1988): 

 

                    
   

  
                                    (2.40) 

 

The turbulent flame front speed (ST) was modelled by the following equation (Heywood, 

1988): 

 

                               
     

                
                         (2.41) 

 

Where   is the turbulent flame factor, defined as:  

 

                                                        (2.42) 

The laminar flame front speed for mixtures of hydrocarbon and/or alcohol, air, and residual 

gas could be modelled by the following equation (Yu et al., 1986):  

 

                            (
  

  
)
 

(
 

  
)
 

(        
    )                       (2.43) 

 

Where: 

                                                        (2.44) 

 

                                                                       (2.45) 

 

                                                                                        (2.46) 

 

Values of B1, B2 and B3 are given by Heywood (1988) for both ethanol and petrol. 

 

Using Equation (2.40) to Equation (2.46), the rate of change of mass of fuel in the engine’s 

cylinder can be estimated. 
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As mentioned above, the Otto cycle is useful for analyzing engine’s performance. Assuming 

ideal gas behavior, the compression stroke of the spark ignition engine can be simulated 

using the following equations: 

 

                                                                               (2.47) 

                                                                                                                                                                                                               

  

  
 [ (  

 

  
) 

  

  
 

 

  
]                                                                         (2.48) 

 

From Heywood (1988), the volume of the cylinder at any crank angle can be defined as: 

                          {  
 

 
                              }                     (2.49) 

Where   = the clearance volume. 

                                 
 

 
                           (2.50) 

  =Connecting rod length  =crank radius 

Differentiating Equation (48) with respect to the crank angle gives: 

                         
  

  
   {

 

 
                         }           (2.51) 

Equation (2.47) to Equation (2.51) can be simulated using computer software like MATLAB 

and the obtained results can be compared with the experiment results. 

The following simplifying assumptions are made in order to model the performance of the 

combustion engine according to the first law of thermodynamics. 

Assumptions: 

(a)Spatial homogeneity of pressure (for two-zone models) 

(b) Spatial homogeneity of temperature (for the whole cylinder or for each zone considered) 

(c) Working fluid is considered an ideal gas 
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(d) Gas properties (enthalpy, internal energy, etc.) are modelled using polynomial relations 

with temperature (and pressure) 

(e) Heat released from combustion is distributed evenly throughout the cylinder 

(f) Blow-by losses are not taken into account 

(g) Enthalpy associated with pressure of injected fuel is usually not significant and hence 

ignored 

(h) Spatially averaged, instantaneous (time resolved) heat transfer rates are used to estimate 

heat transfer to the cylinder walls 

(i) Dissociation is neglected 

(j) No heat transfer occurs between burned and unburned zones 

(k) Work required to transfer fluid from the unburned zone to the burned zone is negligible. 

 

Models for mixture properties 

 

Combustion of the fuel-air mixture inside the engine cylinder is one of the processes that 

control engine power, efficiency, and emissions (Heywood, 1988).  The gas species (e.g. 

oxygen, nitrogen, fuel vapour, carbon dioxide, carbon monoxide, water vapour) that make up 

the working fluids in the internal combustion engines can usually be treated as ideal gases by 

using an Ideal gas equation:  

                        
 

 
                   (2.52) 

Where   is the pressure,   the volume,   the mass of gas,   the temperature, R the universal 

gas constant,   the molecular weight, and   the numbers of moles. 

The mixture of petrol and ethanol properties can be determined from individual properties if 

they are known using the following equation: 

 

                              ∑                   (2.53) 
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   is the property of the mixture,    is the property of pure ethanol or petrol and    is the 

fraction of ethanol or petrol.  

Fuel to air ratio is defined by: 

 

                         (
 

 
)
  

 ∑
           

    
              (2.54) 

 

The low heating value of the fuel mixture as given by Bayraktar (2005) is: 

 

                                   
∑        

∑    
              (2.55) 

 

Fuel-air equivalent ratio is given by: 

                                 
       

       
√

  

  
              (2.56) 

 

The chemical reactions occurring in the cylinder can be approximated by the following 

reactions: 

 

Petrol combustion 

 

                                                              (2.57) 

 

                                          (∆Hrxn = 90.43kJ/mol)            (2.58) 

 

Bio-ethanol combustion 

 

                                                                       (2.59) 
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Overall combustion reaction 

 

                                                                      (2.60) 

 

Thermodynamic of internal combustion engine from second law of thermodynamics 

analysis models 

 

An internal combustion engine can be analyzed as an open system which exchanges heat and 

work with its surrounding environment.  By applying second law of thermodynamics, an 

expression for the maximum useful work that the engine can deliver can be derived.  

According to the first law of thermodynamics, 

 

                                                                                                               (2.61) 

 

Where     is the useful work transfer to the environment and           

From the second law of thermodynamic, the heat transfer    is given as follows: 

 

                                     
  

  
                  (2.62) 

 

Where    is the temperature of the surrounding and    is the entropy 

Combining the above Equation (2.61) and Equation (2.62) results in: 

 

                                                               (2.63) 

 

Maximum work will be obtained when the pressure and temperature of the products equal 

that of the atmosphere. 

Under these conditions: 

                                                  
              (2.64) 
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Where:          
is the Gibbs free energy at atmospheric temperature, and pressure and it 

will be at its maximum at the complete combustion of the fuel. 

A measure of the effectiveness of any internal combustion engine is the ratio of the actual 

work delivered compared with this maximum work.  This ratio is termed, the availability 

conversion efficiency: 

 

                                
  

       
 

  

         

                    (2.65) 

 

The performance of internal combustion engine in producing power using different fuels can 

also be analysed using the second law of thermodynamics. The second law of 

thermodynamics analysis applies availability (exergy) equations in the engine cylinder. 

Availability exists in the form of chemical availability, flow availability, thermal availability, 

mechanical availability and fuel availability.  

 

Availability of a system in a given state is the maximum amount of useful work that can be 

produced due to the interaction with the environment. Exergy unlike energy can be destroyed 

by processes such as combustion, friction and mixing.  

 

Different models for estimating fuel chemical availability are: 

 

                         
        

    

             
  

  

                     (2.66) 
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          ]         (2.67) 

                           (                
 

 
 

     

 
)            (2.68) 

 

Equation (2.66) is used to estimate chemical availability for octane (Caton, 2000), Equation 

(2.67) is used for fuels of the form         (Rakopouloset al, 2005), and Equation (2.68) is 

used for liquid fuels of the form      (Stepanov, 1994, Rakopouloset al, 2005). 

 

Another form of availability that is often considered is thermochemical availability and it is 

given by: 
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                                                     (2.69) 

 

When the system moves from one state to another, the change in exergy can be defined by 

(Lior et al, 1988): 

 

                                                [    (
    

  
)     (

  

  
)]          (2.70) 

The availability balance can be made on the inlet manifold and the exhaust manifold for each 

fuel composition and the results can be used to estimate the efficiency of the engine for 

different fuel composition using Equation (2.71) (Rakopoulos et al, 2005): 

 

                             
                            

               
             (2.71) 

 

The efficiency for one cycle for a four stroke engine using second law is defined as 

(Heywood, 1988, Rokopoulos et al, 2005): 

 

                               
    

      
                (2.72) 

 

Using these equations different types of fuels can be investigated and compared to increase 

the economical use of the fuel. 

 

Theoretical determination and analysis of the Otto cycle from second law 

 

Lior and Rudy (1988) discussed the use of the second law to analyze spark ignition engines. 

The efficiencies they found using the second law of thermodynamics can be compared with 

the results obtained from first law and the experimental results to determine the models for 

engines performance. The thermodynamic states (state 1, 2, 3 and 4 in Figure 2.7) are 

determined as follows: 
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As mentioned above, the second law of thermodynamics deals with exergy when the analysis 

of the internal combustion engines is being performed. Therefore, the exergy of the feed fuel 

is found first using Equation (2.66) and Equation (2.67): 

Since there is no transfer of mass in or out of the engine’s cylinder during a single cycle, the 

exergy of the fuel enclosed in the cylinder needs to be found as follows (Lior et al, 1988): 

 

                                                     
              (2.73) 

Where: 

 = specific volume (volume/mol) 

  = the partial pressure of the components (ethanol and petrol once vaporized) determined 

using  oult’s law as follows: 

 

                                                 (2.74) 

 

The specific volume is calculated from equations of state like the ideal gas equation for ideal 

gases: 

                           
  

 
                (2.75) 

Where: R is the ideal gas constant 

 T is the temperature 

 P is the pressure in the cylinder 

 

The compression stroke (1 – 2) is often assumed to be an isentropic process and the following 

equations are therefore used to find the pressure and temperature at state 2: 

 

                  
        

                              (2.76) 

 

                   (
  

  
) (

  

  
)                (2.77) 

Where:  

T2 = Temperature at state 2 
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   and    = Pressure at state 1 state 2 

  = ratio of specific heats i.e. 

                       
  

  
                                       (2.78) 

Where: 

  = is the specific heat at constant volume 

  = is the specific heat at constant volume 

 

  and   as a function of temperature for the components involved which are: Unleaded 

petrol (C8H18), Bio-ethanol (C2H5OH) , water (H2O), carbon dioxide (CO2), carbon monoxide 

(CO), nitrogen oxide (NO), Nitrogen (N2), Oxygen (O2) have been presented in Appendix D. 

 

   is related to the    by the following expression: 

 

                                                          (2.79) 

 

The    expressions are also presented in Appendix J as temperature dependent.  

 

If during combustion, the cylinder is assumed to be a perfect insulator i.e. adiabatic system, 

the maximum temperature which results as a consequence of combustion can be used to 

determine the pressure at state 3. Equation 2.80 is used to determine the temperature. 

 

                                                      (2.80) 

Where;   

   = enthalpy of the reactants (Ethanol and petrol) 

   = enthalpy of the products 

The enthalpies are related to temperature by the heat capacities as follows: 

                                               ∫      
 

  
                                                         (2.81) 
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Where: 

  = enthalpy of species   

     = enthalpy of formation 

   = mass of species   

And the enthalpy of the mixture (reactants (  ) or products (   ) is defined by: 

 

                                       ∑                            (2.82) 

 

Knowing the temperature allows the determination of pressure from Equation (2.77), which 

results from the division of ideal gas equations at state 2 and state 3: 

The final part of the ideal cycle, process 3 – 4, involves an isentropic expansion of the 

combustion products. This is the expansion which is the work producing phase of the cycle. 

The temperature and pressure of the isentropic expansion are estimated the same way as the 

temperature and pressure were estimated at the end of isentropic compression.  

Knowing the pressure and the temperature at each state allows the determination of the total 

exergy (thermochemical and chemical) using Equation (2.69) and Equation (2.70).From the 

exergies calculated at each state the effectiveness of the system for each type of fuel can be 

determine using Equation (2.84): 

 

                                 
               

   
                         (2.84) 

Where: 

      = Exergy added during compression 

      = Exergy lost during combustion  

      = Exergy extracted during expansion  

   = Exergy lost from exhaust  
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CHAPTER 3: EXPERIMENTAL AND RESEARCH METHODOLOGY 

 

The bioethanol used in this study was produced in the Biotechnology laboratory of the school 

of chemical and metallurgical engineering/ university of the Witwatersrand by fermentation 

of pre-treated corn cobs produced between 12-15 % ethanol which was distilled to 85% v/v 

ethanol using Syawala (2013) and Kiss (2013) methods. However, further dehydration of the 

bioethanol was necessary before ethanol-petrol blending in order to produce homogeneous 

blend that falls within homogenous region of the ternary diagram. The following 

experimental steps were used to meet the objective of this project. 

 

- The first step of this study was to investigate the effect of ultrasonic energy on the 

bioethanol-petrol-water phase behaviour; this provides the qualities of the ethanol needed to 

be used for the blending process with an ultrasonicator; 

- The second step was the pre-treatment of distilled bioethanol by adsorption of water with 

silica-gel stimulated by ultrasound;  

- The third was the blending process with its profile on the vertical and horizontal directions;  

- Finally the investigation of the ultrasonicated ethanol-petrol fuel in the performance of 

internal combustion engine. 

 

Figure 1.1 describes schematically the processes used in this project to meet the research 

objective. The pre-process allows dehydration of bioethanol required for homogeneous 

water-ethanol-petrol fuel. The main process consists of mixing the blended components in the 

first place and finally the testing of the fuel blend in internal combustion. Engine unleaded 

petrol 95 used in this study was purchased from Braamfontein TOTAL filling station, 

Johannesburg – South Africa. Bioethanol were characterized in terms of ethanol 

concentration measured by high performance liquid chromatography (HPLC). The bioethanol 

and petrol used were characterised in terms of viscosity, density and colour as seen in table 

3.1. 
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Table 3.1: Characteristics of bioethanol and petrol used in this project 

 Ethanol 

concentration % 

(Using HPLC) 

Viscosity 

mPa s at 26 
o
C 

(using Ostwald 

viscometer) 

Density at 26 
o
C Colour 

Bioethanol 84.00 ± 2.01 1.16 0.77 Transparent 

Petrol  - 0.38 0.75 Greenish 

 

 

3.1 Determination of phase behavior of ethanol-petrol blend using ultrasonication 

 

The setup to investigate the phase behaviour consisted of a glass blender, a thermometer and 

an ultrasonicator. The ultrasonicator horn is 33 cm high with diameter of 0.7 cm, and operates 

at 24 kHz. The thermometer was placed at 3 cm from the ultrasonicator horn which was 

placed in the center of the reactor. The experimental set up for the phase behaviour of petrol-

ethanol-water is depicted in Figure 3.1. 

 

 

Figure 3.1: Experimental set up for determination of phase behaviour of ethanol-petrol 

blend  
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The experiment was performed using a desired composition of the mixture. Two hundred and 

seventy-two samples were prepared from estimated binodal curves on the region above and 

below the existing curve as plotted on the work done by Kyriakides (2012) and De Oliveira 

(2000). The ternary components were mixed using ultrasonicator-enhanced blending in 

various proportions according to the data presented in Table A.1 in the Appendix A. The 

ternary diagram of the mixtures used to investigate the phase behaviour is provided in Figure 

3.2. 

 

Figure 3.2: Ternary diagram of the investigated petrol-ethanol-water mixture 
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3.2 Production of ethanol-petrol blend using ultrasonication-enhanced blending  

 

Details of the procedure employed in the production of ethanol-petrol blend in this study can 

be obtained from Figure 1.1; the procedure includes dehydration of ethanol before blending 

of the dehydrated bioethanol with petrol. In addition, parameters affecting the blending 

process, such as, pressure and temperature were investigated. 

 

3.2.1 Dehydration of bioethanol by ultrasonication-enhanced adsorption process 

 

During the dehydration, four different concentration of water in ethanol were investigated. 

The resulting bio-ethanol concentrations were 85, 90, 95 and 98% by volume. Silica gel was 

used as the adsorbent, and the adsorption was enhanced using magnetic stirring and 

ultrasonication to evaluate adequately the effect of ultrasonication on the adsorption.  

 

3.2.1.1 Magnetic-stirring-enhanced water adsorption on silica-gel 

 

Figure 3.3 shows the experimental setup for magnetic-stirring-enhanced adsorption of the 

dehydration of bio-ethanol. The stirring was expected to enhance mass transfer between 

adsorbate and adsorbent. Before performing the experiment, the beaker was insulated with 

foil to reduce heat loss, then ethanol-water mixture was stirred, and the temperature was 

recorded at intervals of 5 minutes for 30 minutes.  

 

Figure 3.3: Adsorption-enhanced with magnetic stirrer  
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3.2.1.2 Ultrasonication-enhanced dehydration of bio-ethanol on silica-gel 

 

Figure 3.4 depicts the experimental setup for ultrasonication-enhanced dehydration of bio-

ethanol via adsorption on silica gel. The ultrasonicator probe was immersed in the solution 

and switched on, and then silica gel was added in the adsorption reactor. The time was 

recorded at intervals of 5 minutes for 30 minutes. The temperature in the adsorption reactor 

was also recorded, and the samples were kept for analysis. Every run was conducted using 

fresh solution of water-ethanol mixture and silica gel. 

 

 

Figure 3.4: Experimental setup of ultrasonication-enhanced adsorption 

 

3.2.2 Ethanol-petrol blend via ultrasonication techniques 

 

The approach taken in the experimental section focussed on meeting the objectives outlined 

in Chapter 1. This included setting up a batch blender with marked points at different radii 

and height ranging from 1 to 4 cm. Thermometers were then placed at the 1 cm, 3 cm, and 4 

cm marks. The ultrasonicator horn was place in the center of our blender. The experimental 

set up for the ultrasonication-enhanced blending of ethanol and petrol is depicted in Figure 

3.1.  
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From ultrasonicator probe                                                         Horizontal position 

Petrol and ethanol were then blended in various proportions ranging from 10 to 30 % ethanol. 

For each experiment, the volume of petrol under investigation was first poured into the batch 

blender. The ultrasonicator horn was then lowered to approximately 2 cm below the surface 

of the petrol before being switched on. The temperature of the petrol was maintained at 26 

°C, and then the appropriate volume of ethanol was added to the petrol at a constant rate. The 

temperature readings and the times were recorded for blending analysis.  

In all the experiments performed, the horizontal and vertical axis was defined with respect to 

the ultrasonicator horn as outlined below. 

 Horizontal direction  

Samples were taken using pipette at horizontal distance from the ultrasonicator probe moving 

outward to the blender wall, as depicted in Figure 3.5. 

 

 

Figure 3.5: Horizontal position for measurement  

 

To study the horizontal mixing profiles, samples were collected in the horizontal direction at 

different points. To determine the distance between the points, circles of different diameters 

were drawn on a piece of paper and the paper was placed underneath the blender. The radii 

were varied from 1 to 4 cm from the center of the blender as explained above. At each 

distance, samples were collected at different ultrasonication times of 60, 120, 180, 240, 300 

and 360 seconds. After collecting the sample a new sample was prepared for the next 

position. The procedure was repeated for the other points. 

 

 Vertical direction 

Samples were taken at vertical distance from the tip of the ultrasonicator probe moving 

upward to the mixture surface as depicted in Figure 3.6.  
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Vertical position 

 

From bottom of the ultrasonicator horn 

Figure 3.6: Vertical position for measurement. 

 

To study the vertical mixing profiles, the samples were collected in the vertical direction 

using pipette. A vertical marked at different height varying from 1 to 4 cm was displayed on 

the side of the blender. The same procedure of sample collection was observed as discussed 

on the horizontal direction sample collection. In all the samples, the temperature and pressure 

of the mixture were measured at each collected sample point and time specified above. 

 

3.3 Combustion of Ethanol-petrol blend  in internal combustion engine  

 

More ethanol-petrol blend with different composition of ethanol (0 %, 20 %, 40%, 60 %, 

80 %, and 100 %) were prepared using ultrasonication-enhanced blending method for internal 

combustion test. A liter of the blended fuel was added in the generator tank and then the 

engine was switched on. The volumes of the fuel in the tank were measured at different time 

for fuel consumption using a meter deep in a fuel tank, and the temperatures of the exhaust 

pipe were also measured to map the change in temperature with times. The exhaust gases 

were collected and its compositions were analyzed using a gas chromatography(GC) 

equipped with a flame ionization detector (FID) and  a thermal conductivity detector (TCD). 

The internal combustion engine (AC generator) shown in Figure 3.7 was used to study the 

combustion process during the internal combustion of the blended fuel. The engine 

specifications were summarized in Table 3.2. 
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Figure 3.7: Power generator (Sinemaster IG2600 BUNDU POWER) 

 

Table 3.2: Specification and characteristics of the internal combustion engine  

Model type KG166 

(Single cylinder, air-cooled 4 stroke, gasoline engine) 

Displacement (Borex Stroke) 171 cc (66x50 mm) 

Compression ratio 8.5:1 

Rated power (kW/(r/min)) 3.3/3600 

Ignition system Transistor-Controlled Ignition (TCI) 

Spark plug Bosch - WR7DC 

Starting system Recoil starter 

Fuel type Automotive unleaded gasoline 

Fuel consumption (g/kW-h) 500 

Lube oil CD grade or SAE 10W-30, 15W-40 

Fuel tank capacity (L) 4.6 

Continuous running time 3 hours (at rated output) 

Overall dimension (L x W x H) 

mm (inches) 

564 x317 x 453 (22.2 x 12.5 x 17.8)  

Dry weight (kg (lbs)) 26 (57.2) 
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3.4 Quantification and analytical techniques 

 

The data collected were analyzed in terms of concentrations, pressure and temperature of the 

blended fuel. The concentrations in liquid and gas phases were analysed using the High 

Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), respectively.  

The pressure in the blender was measured with the oscilloscope (Tektronix 2445B). 

 

3.4.1 Analysis with high performance liquid chromatography (HPLC) 

 

An Agilent HPLC (Agilent 1200 Series HPLC System) was used for the analysis of 

samples collected during the blending experiments. The HPLC used is shown in Figure 3.8. 

 

                                                                

Figure 3.8: A High-Pressure Liquid Chromatography (HPLC)  

1. Mobile phase: the solvent reservoir bottle was filled up to 90 ml of acetonitrile as the 

mobile phase for ethanol analysis. HPLC grade of acetonitrile was 99 % pure for 

mobile phase, with a dilution factor of 2. 

2. Pump: The role of the pump is to force the mobile phase through the liquid 

chromatograph at a specific flow rate, expressed in millilitres per min (mL/min). For 

the analysis the flow rate was 10 mL/min. 

 

Mobile phase 

                    Pump 

Injector 

Column 

              Detector  
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3. Injector: The injector serves to introduce the liquid sample into the flow stream of 

the mobile phase. The injector sample volume was set to 20µL. 

4. Column: An Eclipse XDB-C18 column (Length x internal diameter: 4.6 ×150 mm, 

particle size: 5 µm) maintained at 25⁰C was used.  

5. Detector: The detector provides an output to a computer that result in the liquid 

chromatogram (i.e., the graph of the detector response). An example of the graph of 

the detector response can be found in Appendix C. 

 

Before using the HPLC for the analysis, the equipment was calibrated using the method 

described in Appendix C. The concentration samples that were collected were poured into 

sample bottles of about 1.5 ml using a pipette and placed on the HPLC loading tray. To 

perform the analyses for the horizontal sampling, all 72 vials were firstly loaded into the 

HPLC loading tray and placed in the HPLC. The pump was then switched on and a purging 

time of 10 minutes was allowed to let the pump warm up and stabilize. Once the pump 

stabilized and all the icons on the computer screen turned green, the analysis was started. The 

same procedure was done for the vertical direction samples. The retention time for the 

analysis of ethanol was set to be between 1.7-1.8 min. The results given by the HPLC are in 

terms of the area under the curve thus using the calibration curve described in Appendix C 

below the area obtained was automatically interpolated to find the concentration that lies 

within the calibration curve for the given area and the results obtained from the HPLC can be 

found in Appendix C  

 

3.4.2 Measurement with oscilloscope 

 

The pressure distributions in the blended fuel and the blender were measured indirectly using 

an oscilloscope shown in Figure 3.9 and the full method of how the equipment was used is 

described in details in Appendix C.  
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Figure 3.9: Typical oscilloscope used for pressure analysis (Tektronix 2445B 

Oscilloscopes) 

 

The  oscilloscope  signal sensor probe was used to sense the voltage distribution in the 

mixture. The oscilloscope voltage reading was given in volts /division, and thus prior to the 

experiment, the equipment volatage reading was set to 1 division. The time was also given as 

seconds /division and this reading was also set to 1 division. The waves shown in the screen 

give the voltage reading as the probe senses the voltage distribution in the solution per time. 

Ethanol and petrol mixtures of 30%, 20% and 10 % ethanol were prepared as explained in 

3.2.2. During the sonication period, the oscilloscope probe was first held in the reactor at a 

1cm horizontal distance from the ultrasonication horn. At this specific position, the voltage 

was read and recorded from the oscilloscope for different sonication times of 60, 120, 180, 

240, 300 and 360 seconds. This procedure was repeated for a 2 cm, 3 cm and 4 cm horizontal 

distances while the ultrasonicator and oscilloscope settings were kept constant. The same 

experiment was performed for the same vertical distances from the horn and the voltage was 

read from the oscilloscope. The voltage readings for all samples were then converted to 

pressure using the conversion factor given as: 

 

                                                                                                                                       (3.1) 
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3.4.3 Analysis with Gas Chromatography (GC) 

 

The exhaust gases from the internal combustion engine were analyzed as a function of the 

blended ratio using a Bruker GC 430 with schematic shown in the Figure 3.10. 

 

Figure 3.10: Schematic of the GC used for the analysis 

 

The experiments were carried out on a Bruker 430gas-chromatograph. The separation was 

performed on a Shincarbon ST 80/100 packed column, with a length of 2 m, inner diameter 

of 2.00 mm. Nitrogen was used as a carrier gas with an initial flow of 20 ml/min. Samples 

were injected in splitless mode through the injector set at 100 °C. In the GC temperature 

program the initial temperature was 100 °C and was raised to 250 °C with a rate of 15 

°C/min, and maintained for 3 minutes. 

Before the analysis, the GC was calibrated and the detailed calibration procedure is provided 

in Appendix C. The GC provides the composition of gases as area percentage (the area under 

the peak which result as a consequence of gas detection divided by the sum the areas under 

all the peaks). The area percentages were converted to concentration percentages which were 

used in the mass balance.  
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CHAPTER 4: RESULTS 

 

4.1 Phase behavior of ethanol-petrol blend using ultrasonication 

 

The results of the investigation of the phase behavior of bioethanol-petrol blend are given in 

term of ternary diagram and water tolerance profile plot.The blended fuel was stored in water 

bath at 26
 O

C controlled by a thermostat for two weeks. The data in Table A.2 of Appendix A 

gives the composition of the binodales curve of the stable blend at the end of the storage time. 

The ternary diagram and the water tolerance against petrol content are given in Figure 4.1 

through Figure 4.3. 

 

Figure 4.1: Ternary diagram of ultrasonicated and stirred ethanol-petrol-water mixture 

at 26 
O

C 
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Contour plot and surface plot depicted in Figure 4.2 and Figure 4.3, respectively.  

 

 

Figure 4.2: Contour plot for water content as function of petrol content  

 

 

Figure 4.3: Surface plot for water content as function of petrol content  
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During the storage of ethanol-petrol blend, the volume fraction of ethanol and petrol were 

measured at different points within the storage container and times for homogeneity test, 

Figures 4.4 and Figure 4.5 show the volume fraction measurement of E50 and E60 with depth 

and time in the storage container.    

 

Figure 4.4: Ethanol and petrol volume fraction with depth  

 

Figure 4.5: Volume fractions of ethanol-petrol blend with time during the storage at 2 

cm depth 
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4.2 Ethanol-petrol mixture using ultrasonication-enhanced blending  

 

The blending process was studied in terms of concentration, bulk pressure and temperature. 

The results of ultrasonication-enhanced adsorption were first reported followed by the results 

of the blending process, which are given below.  

 

4.2.1 Dehydration of bioethanol mixture prior to blending 

 

 

4.2.1.1 Ultrasonication-enhanced dehydration via adsorption methods 
 

The effect of ultrasound on dehydration of the bioethanol was investigated by comparing the 

adsorption of water by silica gel using ultrasonicator and stir bar, both reactors operating with 

the same amount of ethanol. The ultrasonicator was set at 0.5 pulse rate and 50 % of 

amplitude. Figure 4.6 shows that the relative amount of water adsorbed is higher with the use 

of ultrasound energy.      

                                                                                                                                                                                                                                                                                                                                                                                             

 

Figure 4.6: Relative amount of water adsorbed against time 
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4.2.1.2 Enthalpy change during ultrasonication-enhanced adsorption of water 

 

The enthalpy change during the adsorption process was also investigated, and Figure 4.7 

gives the estimation of the adsorption enthalpy and entropy changes. Figure 4.7 was plot from 

the data collected at 0.5 amplitude and 0.5 pulse rate (ultrasonicator setting) which can be 

found in Appendix B.2. This data cannot be compared to literature because no such 

experiments have been reported. 

 

 

Figure 4.7: Calculated adsorption enthalpy and entropy changes 

 

4.2.1.3 Effect of operating variables on enhancement of dehydration of bioethanol  

 

Figure 4.8 and Figure 4.9 show the ethanol concentration profile and temperature during the 

dehydration of bioethanol using ultrasonication-enhanced adsorption  
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Figure 4.8: Ethanol Concentration profiles at varied ultrasonicator settings 

 

 

Figure 4.9: Temperature profiles at varied ultrasonicator pulse rate and amplitude 
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4.2.1.4 Kinetics of ultrasonication-enhanced dehydration using adsorption  

 

In order to fit the kinetic model describing the process, a second order kinetic model was 

chosen based on studies done by Qiu et al. (2009) and Sekharao et al, (2011).  They also 

claimed that second order kinetic is best suited for organic mixtures, such as high 

concentration bio-ethanol mixtures. In order to fit the kinetics,  the adsorptive capacity was 

calculated using equation (2.28), the linear plot of the adsorption as a function of time was 

found using the equation below . 

 

        
 

  
 

 

  
 

 

  
   Pseudo second order kinetic model re-arranged)                            (4.1) 

 

 derived from, 
     

  
           

   and intergrated with the boundry conditions :    

          at t = t and 0, respectively. Where q is the adsorptive capacity, k is the adsorption 

capacity constant and V0 = KP2(qe)
2
 and the subscribts ‘0’, ‘e’ and t are at time = 0, 

equilibruim and time rerspectively. 

 

By plotting t  against  t/qt, the linear plot shown in Figure 4.10 should give the corrected 

constants of the kinetic model, from which the model can be checked if it agrees with the 

experimental results. 



90 
 

 
Figure 4.10: Time over adsorptive capacity (t /qt) versus time (t) 

 

From Figure 4.10, the constants of the kinetic model were estimated. Figure 4.11 compares 

the experimental and the estimated adsorptive capacity. 

 

 
Figure 4.11: Calculated and experimental adsorption capacity  
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4.2.2 Effect of ultrasonicator position during ultrasonication-enhanced blending 

 

4.2.2.1 Pressure profile 

To investigate the ultrasonicator energy distribution in the blender, the pressure was 

measured at different distances from the horn using an oscilloscope as explained in the 

experimental method of this thesis. The relationship between pressure and intensity of energy 

is given by the Equation (2.35) in Chapter 2. This equation shows that the pressure 

distribution in the reactor is directly proportional to the energy and thus the pressure profiles 

describe the energy profiles. The data used to plot the figures for pressure profile with 

positions can be found in Appendix C.1. To understand the energy distribution, horizontal 

and vertical pressures were measured and the results are given below. The pressure profiles 

were obtained at different horizontal positions using the ultrasonic probe. Figure 4.12, Figure 

4.13 and Figure 4.14 (obtained from data presented in Tables C.1, C.2 and C.3 of Appendix 

C.1) are the experimental results. The figures show that the pressure decreases with 

horizontal position from the ultrasonicator probe.  

 

 

Figure 4.12: Variation of pressure with horizontal distance for E10 blend 
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Figure 4.13: Variation of pressure with horizontal distance for E20 blend 

 

Figure 4.14: Variation of pressure with horizontal distance for E30 blend 
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blend. In all the figures, it can be seen that the E30 blend has the highest pressures followed 

by E20 blend and the lowest being E10 blend. Figure 4.15, Figure 4.16, Figure 4.17, Figure 

4.18 and Figure 4.19 show the pressure profile against horizontal position for ethanol- petrol 
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Figure 4.15: Variation of pressure with horizontal distance at 120 seconds  

 
Figure 4.16: Variation of pressure with horizontal distance at 180 seconds  
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Figure 4.17: Variation of pressure with horizontal distance at 240 seconds  

 
Figure 4.18: Variation of pressure with horizontal distance at 300 seconds  
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Figure 4.19: Variation of pressure with horizontal distance at 360 seconds 

The pressure distribution in the vertical direction was also analysed as done in the horizontal 

direction where the tables used to plot the figures of pressure as function of time and distance 

can be found in Appendix C.1. Figure 4.20 through 4.22 show the change in pressure with 

depth for E10, E20 and E30 using ultrasonication-enhanced blending. It can be seen from the 

figures the pressure increases with the distance.  The mixing time yield the highest pressure 

when mixing was done for 360 sec and the lowest when mixing was done for 60 sec. This is 

evident in the Figure 4.20 and Figure 4.22. In Figure 4.21 a slight deviation of pressure is 

seen for 360 sec sonication, which is initially higher and gradually decreases. 

 

 
Figure 4.20: Variation of the pressure with vertical distance for E10 
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Figure 4.21: Variation of the pressure with vertical distance for E20 

 
Figure 4.22: Variation of the pressure with vertical distance for E30 
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Figure 4.23: Variation of the pressure with distance at 60 seconds 

 
Figure 4.24: Variation of the pressure with distance at 120 seconds 

 

 
Figure 4.25: Variation of the pressure with distance at 180 seconds 
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Figure 4.26: Variation of the pressure with distance at 240 seconds 

 
Figure 4.27: Variation of the pressure with distance at 360 seconds 
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Figure 4.28:  Variation of temperature with distance for blended fuel E10 

 

 

Figure 4.29: Variation of temperature with distance for blended fuel E20 
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Figure 4.30: Variation of temperature with distance for blended fuel E30 
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Figure 4.31: Temperature as function of vertical distance for blended fuel E10 

 

Figure 4.32:  Temperature as function of vertical distance for blended fuel E20 
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Figure 4.33: Temperature as function of vertical distance for blended fuel E30 

 

4.2.2.3 Concentration gradient during ultrasonication-enhanced blending  
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Chapter 3.  
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Figure 4.34: Concentration as function of distance for E10 blend 

 

Figure 4.35: Concentration as function of distance for E20 blend 

 

Figure 4.36: Concentration as function of distance for E30 blend 
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The effect of ethanol volume in the mixture on the concentration profile was also analysed 

Figures 4.37 through 4.41 show that the highest concentrations were recorded for the E30 

blend followed by E20 blend and lastly E10 blend having the lowest concentration. The 

concentration profile depicted by the E30, E20 and E10 blends were also seen in the plot of 

concentration with distance at a specific time. Below are the figures for the effect of amount 

of ethanol on the concentration with time and distance, and the data used to plot the graphs 

can be found in in appendix C.  

 

Figure 4.37: Ethanol concentration as function of horizontal distance for 60 seconds 
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Figure 4.38: Ethanol concentration as function of horizontal distance for 180 seconds 

 
Figure 4.39: Ethanol concentration as function of horizontal distance for 240 seconds. 
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Figure 4.40: Ethanol concentration as function of horizontal distance for 300 seconds. 

 

Figure 4.41: Ethanol concentration as function of horizontal distance for 360 seconds. 
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consistent relationship between the waves amplitude and the sonication times as shown 

below.  

 

Figure 4.42: Ethanol concentration as a function of vertical distance for E10 blend 

 

Figure 4.43: Ethanol concentration as function of vertical distance for E20 blend 
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Figure 4.44: Ethanol concentration as function of vertical distance for E30 blend 

 

As done in the horizontal direction, the effect of the amount of ethanol in the mixture on 

cavitation was also investigated in the vertical direction. Figures 4.45 through 4.50 below 

give the variation of concentration with time and distance for the three ethanol blends of 

different viscosity and density due to the amount of ethanol in the mixture. The highest 

viscosity is witnessed as the amount of ethanol is increased as explained in the horizontal 

profile of this thesis. 

 
Figure 4.45: Ethanol concentration as function of vertical distance for various blend 
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Figure 4.46: Ethanol concentration as function of vertical distance for various blend 

composition for 120 seconds 

 

 

Figure 4.47: Ethanol concentration as function of vertical distance for various blend 

composition for 180 seconds 
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Figure 4.48: Ethanol concentration as function of vertical distance for various blend 

composition for 240 seconds 

 

 

Figure 4.49: Ethanol concentration as function of vertical distance for various blend 

composition for 300 seconds 
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Figure 4.50: Ethanol concentration as function of vertical distance from the 

ultrasonicator horn for 360 seconds 

 

4.2.2.4 Effect of ultrasonication on the vertical and horizontal concentration gradient 

 

The figures 4.51 through 4.53 show the relationship of concentration profile with distance in 

a horizontal and vertical distance. Contour plots (with Akima’s polynomial method) of 
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at 360 seconds. Figures at different time which show similar profile can be found in appendix 
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Figure 4.51: Concentration as function of horizontal and vertical distance for E10 

 

 

Figure 4.52: Concentration as function of horizontal and vertical distance for E20 



113 
 

  

Figure 4.53: Concentration as function of horizontal and vertical distance for E30 

 

4.2.3 Effect of time on the performance of ultrasonication-enhanced blending 

 

4.2.3.1 Change in pressure with time 

 

The change of pressure with time during ultrasonication-enhanced blending was also 

investigated to understand the variation of pressure during the process. Figures 4.54 through 

4.56 show the relationship between pressure and time for different horizontal positions at a 

specific ethanol-petrol blend. This relationship describes the distribution of the intensity of 

energy with time. 
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Figure 4.54: Horizontal variation of pressure with time for blended fuel E10 

Figure 4.54 shows a nearly as wave like trend for pressure at the horizontal direction, the 

trend is more visible on the 1 and 2 cm distance. As the sonication time increased a constant 

pressure is reached. The constant pressure for all the position can be seen when sonication of 

the mixture was done for about 300 seconds. 

 

Figure 4.55: Horizontal variation of pressure with time for blended fuel E20 

Figure 4.55 shows that pressure increase with time in a non-linearly relationship then after 
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Figure 4.56: Horizontal variation of pressure with time for blended fuel E30 

 

Figure 4.56 shows that at the beginning of the sonication of the mixture pressure increases 

then as time progresses the pressure shows a small change until it reaches a constant. For 1 

and 2 cm at 240 seconds the pressure starts to increase with sonication time while for 3 and 4 

cm the pressure at about 240 seconds it reaches a constant. 

 

The pressure distribution in the blender was also studied to show the rate of pressure 

distribution in the vertical direction. The pressure distribution is also related to the energy 
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tables in the pressure of Appendix C.1 give the data used to plot the graphs. 
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Figure 4.57: Vertical variation of the pressure with time for blended fuel E10 

 

Figure 4.58: Vertical variation of the pressure with time for blended fuel E20 

 

Figure 4.59: Vertical variation of the pressure with time for blended E30 
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 Figures 4.60 through 4.63 show a plot of pressure as a function of time for different ethanol 

and petrol blends at specific position. It can be depicted that pressure increase in a non-linear 

relationship with sonication time. Also the solution of 30 vol % ethanol has the highest 

pressures in comparison to the 20 and 10 volume % ethanol solutions. 

 

 

Figure 4.60: Variation of the pressure with time at 1 cm 

 

Figure 4.61: Variation of the pressure with time at 2 cm 
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Figure 4.62: Variation of the pressure with time at 3 cm 

 

Figure 4.63: Variation of the pressure with time at 4 cm 

 

4.2.3.2 Variation of temperature with time 

 

The variation of temperature with time was also studied so as to investigate the heat transfer 
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Figure 4.64: Horizontal variation of temperature with time for E10 

 

Figure 4.65: Horizontal variation of temperature with time for E20 
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Figure 4.66: Horizontal variation of temperature with time for E30 

 

The rate of heat transfer in the vertical direction was also studied to show how fast the energy 

is propagated through the solution in the vertical direction. The data collected during the 

experiment can be found in appendix C.2 and this data was plotted to show the rate of heat 

transfer shown in figures 4.67, 4.68 and 4.69. Also it can be seen from figures 4.67 through 

4.3.46 that the temperature is highest for 1 cm and lowest at 4 cm. 

 

Figure 4.67: Temperature on the vertical as function of time for E10 blend 
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Figure 4.68: Temperature on the vertical as function of time for E20 blend 

 

Figure 4.69: Temperature as function of time for E30 blend 
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Figure 4.70: Horizontal variation of ethanol concentration as function of time for E10 

blend 

 

Figure 4.71: Horizontal variation of ethanol concentration as function of time for E20 

blend 

 
Figure 4.72: Horizontal variation of ethanol concentration as function of time for E30 

blend 
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The formation of cavities in the vertical direction was also studied as done in the horizontal 

direction and thus the data given in Appendix C.3 was used to generate the graphs shown in 

Figures 4.73, 4.74 and 4.75. 

 

Figure 4.73: Vertical variation of ethanol concentration as function of time for E10 

blend 

 

Figure 4.74: Vertical variation of ethanol concentration as function of time for E20 
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Figure 4.75: Vertical variation of ethanol concentration as function of time for E30 

blend 

 

4.2.3.5 Diffusion rate limiting step 
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Figure 4.76: Horizontal pressure against vertical Pressure at different time for E10 

 

 

Figure 4.77: Horizontal pressure against vertical Pressure at different time for E20 
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Figure 4.78: Horizontal pressure against vertical Pressure at different time for E30 

 

 

Figure 4.79: Horizontal mixing efficiency against vertical mixing efficiency for E10 
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4.3 Testing of ethanol-petrol blend in internal combustion engine 

 

 

During combustion, heat is released and this heat is then converted to work by one means or 

another.  Substances, which can undergo combustion, are called fuels.  Ethanol and petrol are 

examples of these fuels.  A good fuel is one that is readily available, cheap, burns easily, has 

a high calorific value and is environmentally friendly.  Results of the thermodynamic studies 

of the testing of blended fuel in an internal combustion engine are presented in this section.  

 

Equation (4.1) and Equation (4.2) give the combustion reactions of ethanol and petrol, 

respectively. In addition, Equation (4.3) gives the overall combustion reaction. Reactions 4.1 

and 4.2 show the combustion reactions of both the ethanol and petrol.  Reaction 4.3 is the 

overall reaction of the fuel blend. 

 

C2H6O + 3O2 → 2CO2 + 3H2O                            (4.1) 

2C8H18 + 25O2 → 16CO2 + 18H2O                            (4.2) 

C2H6O + 2C8H18 + 28O2 → 18CO2 + 21H2O                           (4.3) 

 

Due to difference in composition, the different fuel blends will be consumed at different 

rates.  The fuel consumption rate is directly affected by the heating value of the particular 

fuel.  Figure 4.80 shows the fuel consumption rate at different proportions of ethanol and 

petrol. 
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Figure 4.80:  Fuel consumption rate as a function of fuel composition 

Figure 4.81 shows the exit gas temperature of fuel and the consumption rate with some 

Ethanol composition.  

 

Figure 4.81: Consumption rate and temperature profile 
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the globe. Figure 4.82 shows the composition of CO2 in the exhaust mixture as a function of 

ethanol content in the fuel blend. 

 

Figure 4.82:  CO2 and CO emissions as a function of ethanol composition in the fuel 

blend 
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Figure 4.83:  Concentration of nitric oxide in the exhaust gas as a function of ethanol in 

the fuel mixture 

 

Figure 4.84 shows the fuel power of the different ethanol/petrol blends.  Fuel power is a 
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                                                                    (4.5) 

Where:    is the Fuel power, in kW;    is the mass of fuel consumed, in kg/s;    is the 
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Figure 4.84:  Curve showing the fuel power as a function of ethanol composition in the 

fuel blend 
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CHAPTER 5: DISCUSSION 

 

5.1 Phase behavior of ethanol-petrol blend using ultrasonication 

 

From Figure 4.1, the binodal curves show the effect of ultrasonication in blending ethanol 

and petrol. The increased in homogeneous region indicates higher tolerance of water compare 

to the non-sonicated blended fuel, indicating an improved interaction between water and 

petrol. The effect of ultrasonication on phase separation and eventually on the stability of the 

blend is shown also in Figure 4.2 and Figure 4.3, where the petrol content decreases 

exponentially with an increase of water tolerance. The increase of water tolerance in ethanol-

petrol blend could be as attributed to the following: 

 

- The water solubility in organic phase depends on the temperature; therefore the 

increase in temperature improves the compatibility of the petrol-ethanol-water 

mixture (Gramajo et al, 2004; Johanem et al, 2009) which was achieved during the 

ultrasonication process by implosion of cavities; 

- Aromatics and alkenes interact with water through π bonds (Neagu et al, 2010). The 

cavitation process induced during the ultrasonication was able to break the bond 

(Gong et al., 1998), and increase the alkene content of the fuel. The gases collected 

show higher concentration in hydrogen and the test in saturated hydrocarbon show an 

increase in unsaturated hydrocarbon.  

 

The decrease in water and ethanol content were observed in some of the sample, this could be 

attributed to the breakage of water or ethanol molecules. Therefore more research needs to be 

done on the free radical mechanism and the storage stability at different temperatures for 

logical conclusion. 

In order to visualize the interaction effects of water with petrol mixture during the 

ultrasonication-enhanced blending, contour and surface plots are used (see Figure 4.2 and 

Figure 4.3). An increase in petrol content showed a negative trend on water tolerance, 

whereas a minimum water tolerance was seen around 40 % petrol content with 

ultrasonication and 20 % with magnetic-stirring enhanced blending. Water tolerance was 

similar for ultrasonicated blend with higher petrol content and for stirred blend with low 

petrol. The water interaction with more organic content is explained above. These results 
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suggested that ultrasonication-enhanced blending could sufficiently increase water tolerance 

in ethanol-petrol-water blends. 

Density of the mixture during storage was employed to quantitatively characterize the 

homogeneity of the blended fuel. A homogenous fuel should be defined as a mixture where 

the chance of picking a fuel component is equal throughout the whole fuel mixture (i.e. the 

density distribution does not change with position and time [ 
        

  
  ]). Egermann (1980) 

and Yip et al. (1977) reported that ordered mixtures do not show concentration variation of 

components when sampling at different points.  

Equations (5.1) through (5.7) were used to estimate the density of the blended mixture, which 

was compared to the average density of the sample obtained at different positions in the 

storage tank. 

                                     ∑             
 
                                                        (5.1) 

                                       ∑                            
             (5.2)                                                                                               

                                                                                                  (5.3) 

                                                                                                      (5.4) 

                                                                                                   (5.5) 

                   
      

  
          

   

  
            

   

  
                                                   (5.6) 

    or            
      

  
          

   

  
            

   

  
                                                   (5.7) 

 

The ethanol-petrol blends with 
   

  
       

   

  
   are homogeneous mixture because the 

ethanol and petrol distributions are the same in the blended fuel. Therefore the volume 

fraction of ethanol and petrol are constant. Figure 4.4 and Figure 4.5 show the volume 

fractions of ethanol and petrol for E50 and E60. The      and      were respectively 0.49960 

and 0.59904, with the coefficients of variation (CV) 1.6 x 10
-6

 and 3.0 x 10
-4 

respectively. 

The CVs are closer to zero indicating the uniformity of data. The volume fractions of ethanol 

and petrol were fairly constant at any point and at different times in the storage tank. 
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Therefore, the blended fuels above the binodal curve were homogeneous as the 
      

  
 

      
      

  
  , and Equation (4.6) and Equation (4.7) may be used to estimate the 

parameters of the homogeneous mixture.  

 

5.2 Ethanol-petrol mixture using ultrasonication-enhanced blending  

 

The blending process discussed in this section including the dehydration of bioethanol 

enhanced by ultrasonication. Pressure, temperature and ethanol concentration profile describe 

the characteristics of the ethanol-petrol mixture. The energy and concentration distribution 

during ultrasonication-enhanced blending was also discussed in this section. 

  

5.2.1 Dehydration of bioethanol-water mixture using adsorption prior to blending 

 

Figure 4.6 shows that the ultrasonication enhances adsorption more than using a magnetic 

stirrer to enhance adsorption of water on the silica gel. The generated pressure and 

temperature in the adsorption vessel system allow water molecules adsorption on the 

adsorbent surface. The trend of ultrasonication enhanced adsorption shows a wave function 

due to the ultrasound energy distribution in the adsorption reactor, which has been proven in 

the literature to be a wave functions (Mason et al, 2002). Assuming the adsorption occurs in 

ideal solution, the adsorption enthalpy (∆HAds) of 1,592.82 J/ mole of water was determined 

from the slope of the graph in Figure 4.7. The constant ∆HAds can be explained by a uniform 

potential field providing a homogeneous adsorption site at the sorbent surface. The sign of 

∆HAds (-) and ∆SAds (- 5.44 J/ K moles) show that the adsorption enhanced by ultrasonication 

is a non-spontaneous process (∆GAds > 0) at temperature T greater than 292.792 K. The 

dispersion force due to the interaction between adsorbate molecules with oxygen atoms of the 

silica-gel contributed to this energy (as the polarizability of Si
+4 

is smaller, i-e 0.048 x 10
-2

 

compared to the polarizability of oxygen (Ridha, 2009; Lasaga, 1982); the negative value of 

the entropy shows that the loading manner of water molecules in the adsorption site involves 

gain in disorder. The adsorption entropy obtained during the ultrasonication-enhanced 

adsorption in this study contradicts the sign of the entropy reported by Ridha (2009) where 

filling of adsorbate in adsorbent pore occurred in an ordered way. The contradiction could be 

attributed to the conditions at which Ridha (2009) performed the experiment. For Ridha 



135 
 

(2009), the adsorption was carried out at a constant temperature without ultrasonication. But 

in this study, ultrasonication was used to enhance the adsorption and during the process 

temperature distribution was not constant.   

 

The influence of the pulse rate was observed in Figures 4.8 and 4.9 whereby an increase in 

the pulse rate decreases the oscillations in results and they follow a more consistent nature in 

terms of how they increase and  decrease, thus being more constant. At a higher pulse rate the 

cavitations are less aggressive as seen on Figure 4.8 thus the changes seen are less as said by 

Hesson (2003). And at a lower pulse rate the cavitations are more aggressive and this can be 

seen from Figure 4.8 for the pulse rate of 0.5 series whereby the oscillations in results are the 

greatest thus showing the cavitations effect (Hesson, 2003). 

As shown in Figure 4.9 the temperature rise of the curve with a pulse rate of 0.5 and 

amplitude of 0.5 was the lowest of all the curves. It is followed by the curve with pulse rate 

of 0.5 and amplitude of 1. The temperature rise for the pulse rate of 1 and amplitude of 0.5 is 

higher than that of pulse rate of 0.5 at amplitude of 0.5 and 1. The temperature rise for pulse 

rate of 1 and amplitude of 1 was higher than the rest. The temperature for the pulse rate of 1 

and amplitude of 1 became constant after 15 minutes at 66.5 ºC. 

The temperature rise as stated from the literature was due to cavitation. When the cavities 

implode in liquids heat escapes the cavity during the collapse which is quenched by the low 

temperature liquid. Thus temperature rise was proportional to amplitude. This was supported 

by literature that at high amplitude temperature increase is faster. But as stated in the 

literature review care must be taken as high amplitude can lead to rapid deterioration of 

ultrasonic transducer resulting in liquid agitation instead of cavitation (Santos et al., 2009).  

 

From Figure 4.10, it can be seen that the experimental data almost gave a perfect linear fit 

with the model except for two points when the pulse was increased to 1 at 25 and 30 minutes.  

The linear equations of 
 

 
 against t, at different operating conditions, fitted the second order 

kinetic with coefficients of determinations (R
2
) greater than 0.8.  
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Table 5.1: Trend line equations with coefficient of determination values 

y = 0.0222 x + 0.0283 

R
2 

= 0.8955 Ampl. = 0.5 & Pulse rate = 0.5 

y = 0.0195 x + 0.0699 

R
2 

= 0.8744 Ampl. = 0.5 & Pulse rate = 1 

y = 0.0238 x + 0.0122 

R
2 

= 0.9338 Ampl. = 1 & Pulse rate = 0.5 

y = 0.0442 x + 0.2123 

R
2 

= 0.8858 Ampl. = 1 & Pulse rate = 1 

  

From Figure 4.11, it was observed that the calculated kinetics was found to resemble the 

behaviour of the adsorption with sonication but without the oscillating concentrations. In 

order to achieve the oscillating concentrations as viewed by the experimental results, one 

would need a trigonometric function such as sine or cosine added to the kinetic model.  

What can be seen in the model is that at a higher pulse rate, the amount of water removed 

decreases with time. This could be attributed to the constant vibrations during the process, 

resulting therefore in a breakage of water molecule due to the effect of cavitation as reported 

by Costa (2009). Costa stated that the energy released during the implosion of cavities is 

sufficient for the following reaction to occur: 

                                                                                                                          (5.8) 

                                                                                                                    (5.9) 

                                                                                                                       (5.10) 

                                                                                                                         (5.11) 

                                                                                                                             (5.12) 

This regeneration of water molecule may have a negative effect during the dehydration 

process.  The broken pulse allows the molecule of water to reach the adsorbent surface and 

better adsorption as observed. 

 The pseudo second order model did not fit the experimental data perfectly (R
2
 = 0.26) but 

followed the same pattern as the experimental model, in a linear fashion and asymptotes at 

the average concentration, at lower sonication pulse rate of 0.5.  Based on the kinetic model 

at higher sonication pulse rates, the absorptivity is expected to decrease. This can be seen to 
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agree with the experimental data depicted in Figure 4.8, where the concentration seems to 

decrease at higher pulse rates. In order to quantify the degree of fit of the model onto the data 

the coefficient of determination was calculated to be 0.26, indicating that the model and the 

data do not agree with each other. , based on the equation given by (Investopedia, 2013) to 

calculate the R
2
. 

 

Proposed kinetic model of ultrasonication enhanced adsorption 

 

The proposed kinetic model of adsorption enhanced by ultrasonication is a modified pseudo-

second order equation (Qiu et al, 2009) given by the following equation: 

                                       
    

         
   

 

  
                                                  (5.13) 

The solution of the above equation by considering the boundary conditions (qt = 0 at t =0 and 

qt = qt at time t) is given as follow: 

                                                                    
 

     
   

 

  
  

 

  
                                  (5.14) 

                                                                
  

               
                                             (5.15) 

The solution of the proposed kinetic model was obtained using Eureqa Pro (Nutonian 

software). This solution satisfied the experimental data and gives the values of the constants 

of the model. 

                                                                  
    

                
                                       (5.16) 

The graph of the adsorptive capacity in Figure 5.1 compares the experimental plot and the 

calculated from equation 5.16, with R
2
 goodness of fit = 0.9208, maximum error = 0.0141, 

mean absolute error = 0.00204 and complexity = 15.    
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Figure 5.1: Calculated and experimental adsorptive capacity curve (Amplitude: 0.5 and 

pulse rate: 0.5) 

 

5.2.2 Effect of ultrasonicator position during ultrasonication-enhanced blending 

 

As shown in the Figures 4.12 through 4.14, the pressure decreases non-linearly with 

horizontal position from the ultrasonicator probe. This behaviour can be explained by the 

relationship between pressure and intensity of energy as shown in Equation (2.35). Equation 

(2.35) shows that the intensity of energy decrease as the area in which the wave spread into 

increases. The acoustic energy is more concentrated close to the ultrasonicator probe. 

Therefore as the distance increases from the probe to the surface of the reactor, the energy 

intensity is less concentrated. Similarly, Kimura et al. (1996) reported that almost all the 

ultrasonic energy is consumed within a small volume near the ultrasonicator horn, attributed 

to the non-consistent behaviour with respect to ultrasonication time due to non-uniform 

formation and growth of cavities within the reactor. Furthermore, several reports in literature 

have shown that the behaviour can be described by the formation of standing waves whose 

position depends strongly on the liquid level in the sonicated cell (Klima et al, 1999). . Thus, 

the results presented in this report are in agreement with results of Kimura et al (1996). 

However, the experimental results show a non-linear and a decrease in pressure when moving 

horizontally away from the ultrasonicator horn. This behaviour may be due to multiple 

reflections at the reactor boundaries (Klima et al, 1999) resulting in high pressures at the 

reactor edges. Despite the non-wave behaviour of horizontal pressure with distance, it can 
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however be concluded that the highest local intensity value is reached in the close vicinity of 

the horn. 

The results shown in Figures 4.15 through 4.19 show that the E30 blend have the highest 

pressures compared to E10 blend. Thus this behaviour can be explained by the effect of 

physical properties of the mixture such as viscosity, density and surface tension. A liquid at 

high viscosity and density if the energy is sufficient to initiate cavitation, the solution has the 

ability to store high energy compared to a low viscosity mixture. When the bubbles in the 

mixture implode, they release this high energy which in turn results in high temperatures and 

high pressures as seen in the above graph for a 30% ethanol. This phenomenon therefore 

explains the high pressure recorded for a 30% mixture compared to the low viscous 20% and 

10% ethanol. Therefore this also indicates that the energy supplied by the ultrasonicator with 

the settings mentioned in the method section delivered enough energy to induce cavitation.   

 

The decrease in pressure with vertical distance from the bottom of the ultrasonicator probe to 

the top (see Figures 4.20 through 4.22) could be attributed to the rapid mixing at the bottom 

of the ultrasonicator probe when compared to the mixing at the top of the probe.  Thus more 

cavitation occurs at the tip of the ultrasonicator probe and results to higher pressure. The 

energy dissipation by the oscillation of bubbles in the vertical direction is assumed to be by 

irreversible process of heat and mass transfer. Therefore lower pressure and temperature were 

recorded at a distance away from the tip of the probe. 

 

The relationship between pressure and vertical distance shown in Figures 4.23 through 4.27 is 

the same as the one seen in the horizontal results and thus the trend is also due to that high 

density liquid can store a large amount of energy once cavitation is initiated. The imploding 

cavitation bubbles have tremendous amount of energy to be released when it implodes 

(James, 2012) thus resulting to high pressure and temperature. The 30% ethanol solution has 

a higher density compared to the 20 and 10 % ethanol solutions which explains the high 

pressures recorded for that mixture (see Figures 4.23 through 4.27). The energy supplied by 

the ultrasonicator for this experiment was sufficient to initiate cavitation thus the 30% 

solution showed high pressure due to its ability to store more energy. However, further 

research should be conducted to determine the factors that contribute to the behavior shown 

by high viscous and dense solutions of ethanol and petrol blends.  
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The wave profile shown in Figures 4.28 through 4.30 was expected since the ultrasonic 

energy is a wave of compressions and rarefactions that propagate through the liquid mixture. 

It was however expected that the waves would show a temperature decrease with the 

horizontal distance from the horn as obtained by Saez et.al (2006).This expectation could be 

attributed to higher energy experienced close to the energy emitter source, which in this case 

is the ultrasonicator horn, resulting in low temperatures away from the horn. However, the 

experimental results show no consistent decrease in the temperature with distance and this 

thermal distribution within the reactor can be explained by the existence of a reflection on the 

walls of the reactor, which means that high temperatures can also be recorded at distances 

close to the reactor walls. 

 

The amplitude size of the oscillations describe the gradient of heat transfer with distance and 

thus the Figures 4.28 through 4.30 do not show a specific trend in amplitudes since 

amplitudes are almost of the same size at specific times and specific blends. The equality of 

the amplitudes may be due to the same sonication settings used during the experiment, 

indicating that the intensity was the same through all mixtures. 

 

The energy input delivered by sonicator to the liquid is sufficient to initiate cavitation, and 

the cavitation formed will store large amount of energy. Therefore when the cavitation 

bubbles implode, tremendous amount of energy will be released. Each collapsing bubble can 

be considered as a microreactor in which local temperatures of several thousand degrees, and 

pressures greater than one thousand atmospheres (>1000 atm) are created instantaneously 

(Hugo, 2009). The behaviour can also be explained by the effect of fluid properties on heat 

transfer rate. Heat transfer is often better in liquids of low viscosity than in liquids of high 

viscosities (Abdou, 2012; Moorthy, 2012). This means that Liquids that have a low viscosity 

generally allow heat to pass through them faster, and thus the heat from the E20 and E10 

blends was lost faster, resulting in low temperatures (see Figures C.1 through C.6 in appendix 

C). High viscous liquids like the E30 ethanol-petrol blend on the other hand do not allow 

swift transfer of heat. 

 

As shown in Figures 4.31 through 4.33, the ultrasonicator probe was placed 1 cm above the 

base of the reactor, thus the mixing happens much more frequently at the bottom of the probe 

because more cavitation occurs and rapid collision of the molecules with the base surface of 

the reactor in comparison to when moving upwards from the ultrasonicator probe. The 
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temperature is higher at the bottom of the ultrasonicator probe because rapid vibration occurs 

at the tip of the ultrasonicator probe thus causing cavitation; the formation and violent 

collapse of microscopic bubbles occurs which produce local hot spot thus increasing 

temperature in the liquid medium (Jarupan, 2002). The temperature is the highest for when 

the mixing was done for 360 seconds because as the time of sonication increases, the energy 

input increases. The occurrence of cavitation is more and therefore the temperatures are 

higher when time of sonication is increased. 

 

Report from Tangka et al (2011) on  the physical properties of different petrol and ethanol 

blends showed that density E10, E20 and E30 were   750.8 kg/m
3
, 760.5 kg/m

3
  and 778.2 

kg/m
3
 , respectively. Therefore it is expected that highest temperature will be recorded for 

E10 when compared to E30 because of the lowest density of E10 since temperature of a 

liquid is inversely proportional to its density as shown in Figures C.7 through C.11. Also 

another reason for this expectation could be attributed to the higher energy content of petrol 

when compared to the energy content of ethanol. The temperature is the highest for the E30 

blend compared to the other two ethanol-petrol blends. This is because in a solution of high 

density and viscosity, when the energy is sufficient to cause initial cavitation, the formed 

cavitation bubbles store large amount of energy that is released when the cavitation bubbles 

implode, thus resulting in high temperatures. 

 

As shown in Figures 4.34 through 4.36, the concentration variation with the horizontal 

distance from the horn is a wave at specific sonication times and ethanol volumes. This 

concentration profile can be explained by the ultrasonic mixing phenomenon of cavitation. 

During the sonication of the ethanol and petrol mixture at high intensities, the sound waves 

propagate into the mixture resulting in alternating high pressure and low pressure cycles. 

During the low pressure cycle, waves create small vacuum bubbles or voids in the mixture 

and these bubbles can reach a point where they can no longer absorb energy and thus collapse 

violently during a high pressure cycle (Hielscher, 2005). The growth of bubbles results in 

higher concentration while the collapse results in low concentration due to ethanol splitting 

and thus the combination of this effect is a wave concentration profile. 

 

The concentration gradient for all Figures 4.34 through 4.36  can be related to the size of the 

amplitudes of the oscillations but however the graphs do not show any generalised amplitude 
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size variation with either distance or sonication times. Energy can be lost at different points 

due to friction.  In addition, the growth and implosion of bubbles are non-uniform, which also 

can affect amplitudes at different points. The other reason why the amplitude size is not the 

same is that reflections of the reactor walls lead to the wave superposition effect that results 

in an increase and a decrease in wave amplitude at a point where multiple waves are 

combined (Raman, 2006). In case of an ultrasonic transducer, the amplitude of oscillation 

describes the intensity of acceleration, and thus factors affecting intensity distribution also 

affect the amplitude size. 

 

The behaviour depicted in Figures 4.37 through 4.41 was expected because E30 blend 

contains a large amount of ethanol in comparison to the other blends, though the sonication 

was operated at the same settings. In Figures 4.37 through 4.41, the wave amplitude is much 

smaller for E30 when compared to the other two blends, indicating that the concentration 

gradient is much smaller for 30% ethanol. The amplitude generally shows that the 

concentration gradient is quite low for E30 sample and thus mass transfer due to diffusion is 

affected. Due to the time limit of this study, factors influencing concentration gradient during 

ultrasonication-enhanced blending could not be investigated.  As a recommendation, further 

studies are necessary to determine factors that might be influencing the concentration 

gradient. 

The wave behaviour witnessed in the vertical direction (see Figure 4.42 through 4.44) is due 

to the fact that as the ultrasound energy is emitted into the blender, bubbles form at the 

emitter point and propagate throughout the blender, and the propagation is affected by bubble 

size, external pressure amplitude and surrounding environment(Xi, 2012). These bubbles can 

explode at any point in the reactor due to the liquid compressibility through acoustic radiation 

that shows a damping effect of the bubble oscillation (Brennen, 1995). The damping effect 

means that the bubble oscillation is non-uniform and thus at a specific point in the reactor, the 

amplitudes of the wave is not equal due to the non-uniform intensity of cavitation. The 

concentration gradient in the vertical direction however does not show any specific trend for 

the different sonication times and this may be due to the random loss of energy due to 

turbulence and friction at some points in the vertical direction. 

 

The behaviour seen in Figures 4.45 through 4.50 was expected as mention in the effect of the 

amount of ethanol blends on the concentration as discussed on the horizontal direction. The 
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E30 blend has a higher viscosity and density compared to the other two mixtures and thus the 

intensity of ultrasonication was expected be lower in a more viscous mixture. Assuming 

cavitation had already been initiated however, the more vicious mixture was expected to have 

had the ability to store more energy compared to the other two mixtures. The experimental 

results however do not show any of these expectations and this might be due to energy loses 

experienced differently thus showing no clear effect of the physical properties on cavitation. 

 

The highest gradient in the vertical direction can indicate that the flux is greater in the vertical 

direction than the horizontal direction according to Fick’s first law, and this is more 

pronounced for E.20 (see Figures 4.51 through 4.53). The gradient can be related to the rate 

of diffusion by Fick’s second law, which shows that concentration within a volume is directly 

proportional to the local curvature of the concentration gradient. Thus the rate of diffusion 

will be faster in the vertical direction.  

  

5.2.3 Effect of time on the performance of ultrasonication-enhanced blending 

  

The increase in pressure with time witnessed in Figures 4.54 through 4.56 can be explained 

by the intensity of mixing. As the mixing is done for a longer time, more energy intensity is 

applied resulting in high pressures in the mixture as well as high temperatures as the 

cavitation bubbles explode. This explosion of bubble is more violently compared to a shorter 

ultrasonication time, indicating that the pressure in the reactor will be higher with time. 

Therefore more cavitation bubbles are formed when sonication is done for a long period, and 

as a result the pressure increases. The increase in pressure was witnessed more in the 20% 

and 30% mixtures compared to the 10% mixture. In Figures 4.54 through 4.56, the pressure 

in the reactor seems to reach a constant value at each specific position in the last three or two 

minutes.  

As shown in Figures 4.57 through 4.59, the increase in pressure with the ultrasonication time, 

while keeping all the ultrasonicator settings constant, is because as time for sonication is 

increased the amount of energy input is increased and more cavitation bubbles are formed. 

The increase in the sonication time increases the number of cycle, and thus increasing the 

number of bubbles formed in the solution. When the cavitation bubbles collapse they release 

energy, and conditions of high pressure and temperature are created. The constant pressure is 
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an indication that the energy distribution in the solution is uniform and a true solution may be 

achieved. The constant pressure also indicates the stopping time for the sonication. 

 

The E30 blend has the highest pressure in Figures 4.60 through 4.63 and this may be high 

density liquid requires additional energy to initiate cavitation but once cavitation is initiated 

the imploding cavitation bubble have tremendous amount of energy to be release when it 

implode thus resulting to high pressure and temperature. The E30 solution was found to have 

a density of 778.2 kg/m
3
 and E10 density of 750.8 kg/m

3
 according to Tangka (2011). The 

energy supplied by the ultrasonicator for this experiment was sufficient to initiate cavitation 

thus the E30 solution showed high pressures compared to E10. 

 

Similarly, the same behavior was observed for the variation of pressure with horizontal 

distance, and thus the trend is also due to that high density liquid can store a large amount of 

energy once cavitation is initiated. The imploding cavitation bubbles have tremendous 

amount of energy to be release when it implode (James, 2012.) thus resulting to high pressure 

and temperature. The 30% ethanol solution has a higher density compared to the other two 

blends which explains the high pressures recorded for that mixture. The energy supplied by 

the ultrasonicator for this experiment was sufficient to initiate cavitation thus the 30% 

solution showed high pressure due to its ability to store more energy.  

  

The increase in temperature with time as seen in figure 4.64, 4.65 and 4.66 was expected 

since the more the mixture is exposed to the ultrasonicator the more the energy introduced in 

the mixture. This energy is directly proportional to temperature since bubbles exposed to this 

energy tend to explode more violently resulting in higher temperatures experienced in the 

mixture as the sonication time increases. When the mixing using the ultrasonicator was done 

for a long period of time the number of cycle increase thus resulting to more cavitation 

bubbles being formed. The increase in temperature is as a result of the cavitation bubble 

imploding and releasing the energy which contributes to high pressures and temperatures. 

Similarly, Figures 4.67 through 4.69 show an increase of temperature with ultrasonication 

time, this is due to the increase in the energy input. As the sonication time is increased the 

more cavitation occurs thus when cavitation bubbles implode they result to an increase in 

temperature.  
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The wave function shown in Figures 4.70 through 4.72 is due to the ultrasonic energy 

distribution in the reactor which has been proven in literature to be a wave function. Despite 

the formation of waves as explained, the concentrations of ethanol in the reactor seem to be 

increasing with time at some specific positions from the horn. This increase in concentration 

is not evident in all the profiles as a decrease in concentration is also witnessed especially for 

the 30 % ethanol-petrol blend. This non uniform behaviour is due to the fact that the ethanol 

cavities grow and explodes in a non-uniform pattern. This gradual decrease of concentration 

with time might be due to the disintegration of ethanol bonds due to cavitation thus resulting 

in low concentrations at some positions. As the ultrasonication process, water bonds in the 

mixture also break and this result in low concentration of ethanol being recorded with time at 

some positions. 

 

The amplitudes size of the oscillations in these three graphs gives the concentration gradient 

with time which in turn describes the rate of diffusion in the horizontal direction. 

Ultrasonication is known to increase the rate of diffusion and thus the wave function shows 

that cavities occur in the mixture which means diffusion rate is affected throughout the 

mixture. 

 

The wave function seen in Figures 4.73 through 4.75 shows that cavitation occurs in the 

mixture enhancing mass transfer. The amplitude sizes define the rate of change of 

concentration with time which can in turn be linked to the rate of diffusion. The lowest 

amplitude sizes for each blend are however witnessed at the 4cm distance from the horn and 

this is due to that energy of ultrasonication is lower at that point. 

 

5.2.4 Diffusion rate limiting step 

 

The contour plots seen in figures 4.76 through 4.79 and Appendix C.25 show that the rate of 

pressure distribution is higher on the vertical direction compared to the horizontal direction. 

However the pressure reaches on the horizontal shows higher amplitude due to the transport 

direction, growth and collapse of bubbles. The mixing efficiency (α) is defined as the ratio of 

energy gradient to kinetic energy (Holford et al, 1999). At depth point and around the 

ultrasonicator horn, the mixing was more efficient (α ≈1), and α horizontal was higher 

because the low rate of energy on this direction.  This conclusion can also be related to 

energy distribution which supports the results obtained for concentration showing that the 
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rate of diffusion is faster in the horizontal direction compared to the vertical direction. Below 

the diffusion on the horizontal will be discussed for different ethanol content in the fuel 

blend. 

 

Coefficient of diffusion 

 

The mass transfer equation combines gross fluid motion (convection) with diffusion (ruled by 

Fick’s law) to promote the transport of the minor component (ethanol) through the major fuel 

element (petrol). And is given by an homogenous second differential equation as follows: 

 

                                 
  

  
 
  

  
    

   

         
  

  
                                                          (5.17) 

Where C = C(x,t) denotes a permeate concentration, with x the longitudinal distance and t 

time, and the constants D, v, and µ are respectively diffusion, longitudinal fluid velocity, 

decay coefficient.  

 

                                             
  

  
     

   

                                                                  (5.18) 

The solution of differential Equation 4 using the Laplace transform is given by the following 

steps:  
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The theoretical and the experimental convection and diffusion equation were plotted in figure 

5.2. Perturbation was observed at 
    

      , this could be due to a wave behavior from 

ultrasonication. The  
2 
values suggest that theses equations could explain the observed 

phenomena.   

 

Figure 5.2: 
   

   
 against 

   

     for experimental and theoretical coefficient of diffusion 

 

The various ratios of ethanol and petrol blended for 420s using the ultrasonicator and the 

experimental coefficients of diffusion for each blend are presented in Table 5.2: 

 

Table 5.2:  Coefficient of diffusion for various ethanol-petrol blends 

Ethanol petrol blends 

(Vol %) 

Experimental 

Coefficient of 

diffusion 

Theoretical 

Coefficient of 

diffusion 

% deviation 

5% Ethanol 37 x 10
-4

 54 x 10
-4

 31 

10% Ethanol 20.9 x 10
-4

 18 x 10
-4

 17 

15% Ethanol 47.3 x 10
-4

 53.7 x 10
-4

 12 

20% Ethanol 60.2 x 10
-4

 69 x 10
-4

 13 

25% Ethanol 68.1 x 10
-4

 72 x 10
-4

 5 

 

Table 5.2 suggests that the increase of ethanol in the blend increase the diffusion coefficient. 

Therefore, the 25 % ethanol fuel blend had the highest Coefficient of diffusion. 
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5.3 Testing of ethanol-petrol blend in internal combustion engine 

 

Figure 4.80 shows that as the ethanol content increases in the fuel mixture, there is an 

increase in the rate of fuel consumption rate.  The rate of consumption of gasoline was 0.178 

mL/min, whereas the consumption rate of pure ethanol was 0.405 mL/min, indicating an 

increase of 126 % in the consumption of fuel. Ethanol contains an oxygen atom, therefore it 

is said to be a partially oxidised fuel.  As a result, it has a lower heating value.  Because of 

this, more fuel is required to obtain the same performance when ethanol or ethanol-gasoline 

blends are used. 

 

Figure 4.82 shows the emission of pollutants during the fuel testing. It can be seen from the 

figure that as the ethanol composition increases in the blend, there is a decrease in the CO2 

emissions.  The emissions decrease until an optimal value is reached at 40 % ethanol, after 

which there is a steady increase in the emission.  There was a 25.33 % decrease in CO2 

emissions when an ethanol (40 %)/petrol (60 %) blend was used as a fuel as compared to the 

emission for the usage of pure petrol. At lower compositions of ethanol in the fuel blend, 

there is formation of carbon monoxide, which competes with the formation of carbon 

dioxide, thus leading to a reduction in the formation of carbon dioxide.  However at 40 % 

ethanol, the formation of carbon dioxide reaches its lowest value and starts to increase 

steadily.  This increase is as a result of improved combustion in the engine.  The improved 

combustion could be attributed to the increase of ethanol content in the fuel blend, which 

lowers the heating value of the fuel, leading to its complete combustion. 

Another compound that has adverse effects on the people’s health and the environment is 

carbon monoxide.  This compound forms together with carbon dioxide during incomplete 

combustion of fuel during the combustion process. A chromatogram of a typical exhaust gas 

obtained from a GC showing that   addition of ethanol to the fuel blend leads to a significant 

reduction of carbon monoxide from the exhaust emissions is included in Appendix D.   The 

chromatogram of an exhaust gas formed from a fuel with 0 % ethanol and a carbon monoxide 

peak with a retention time of 1 minute (see Appendix D). 

 

The addition of ethanol to petrol reduces the formation of carbon monoxide to levels that are 

beyond the detectable limit of the gas chromatography (see Appendix D).  The composition 
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of ethanol in the fuel blend is increased to 60 %, there is no distinct carbon monoxide peak at 

a retention time of 1 minute. 

 

When the ethanol percentage was increased, the CO2 concentrations also increased as shown 

in GC spectrum (see appendix D), indicating more complete combustion with ethanol 

percentage increase in the blends. It was expected that the composition of carbon dioxide 

would increase steadily as ethanol percentage was increased (Yusaf et al (2009), Hsieh et al 

(2001), Al-Hasan (2001)).  The concentration of CO2 was expected to increase because of 

decreasing carbon monoxide concentration in the exhaust. However, during the analysis of 

the gas samples using the GC, the concentration of CO could well be detected when there 

was no ethanol in the blend as shown in Appendix Figure D.1 and Figure D.2. Figure D.3 of 

the Appendix shows a CO peak while Appendix Figure D.4 shows none. There were a 

number of things that could have caused the CO2 concentration to decrease when ethanol 

percentage was increase from 0% to 40%. These include the contamination of the gas by air 

during collection, also during the analysis of the gas samples the contamination of the gas 

could have resulted from the presence of the air in the tube connected to the GC at which the 

gas was introduced. 

From Figure 4.83 it can be seen that there is an increase in the nitrogen oxide (NO) as the 

composition of ethanol in the fuel blend is increased.  This is a result of increased in 

combustion efficiency by increasing ethanol in the fuel. As the increase in temperature favour 

the formation of NO, which could react with CO (produced by incomplete combustion) to 

regenerate N2. NO emissions depend on the combustion chamber condition such as 

temperature and fuel additive (Yusaf et al, 2009; Turner, 2010). 

The concentration nitrogen oxide (NO) could not be measured as it was present in very small 

amounts hence no peak indicating the presence of NO during gas analysis was observed. 

Therefore, the concentration of NO was estimated from equilibrium data as shown in 

appendix D. It was expected that the concentration of NO would increase as the percentage of 

ethanol was increased (Bayraktar (2005); Yusaf et al (2009)). The increasing temperature 

favoured the formation of NO since this formation was found to be endothermic as shown by 

reaction (4.4). 

From Figure 4.84, the indicated power increases with increasing ethanol %. The indicated 

power was expected to increase due to an increase in mean effective pressure in the cylinder, 
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resulting from the temperature increase with increasing percentage of ethanol in the blend. 

From the ideal gas law (see Equation (2.47), an increase in temperature results to an increase 

in pressure. Thus, increase in temperature in the cylinder with increasing ethanol percentage 

led to increase in mean effective pressure.  

Fuel power was also used to analyze the effect of varying ethanol/petrol blends during 

combustion. Fuel power is defined as the product of fuel consumption and calorific value.  

The exhaust gas temperature depends on the combustion temperature which is influenced by 

the heating value of the fuel. As ethanol has a low heating value compared to petrol, the 

results of exhaust gas temperature showed a decrease with an increase of ethanol content 

(Ansari, 2002). However the fuel consumption showed an increase with increasing ethanol 

content in the blend and with time (see Figure 4.81). This could be explained by the low 

energy content of ethanol compare to petrol. The energy’s power decrease at higher ethanol 

content, due to the dependency of energy power over the energy content; therefore the fuel 

consumption is affected (Egeback et al, 2004-2005)  

Figure 4.84 shows an increase in the fuel power with increasing ethanol percentage from 0% 

to 60% and a decreased from 60% to 100% ethanol content in the blends. This decrease could 

be attributed to the high calorific value of petrol compared to ethanol. From 60% to 100% 

ethanol in the blend, fuel consumption becomes outweighed by the decrease in the calorific 

value of the mixture resulting from the decrease in petrol percentage in the blends resulting to 

the decrease in fuel power.  

The fuel power increased as the composition of ethanol in the blend increased. However,  the 

fuel power reached an optimal value at 60 % ethanol content in the fuel bend and declined 

slightly thereafter (see Figure 4.84).  The reason for the increase is mainly due to the fact that 

ethanol is an oxygenated fuel and it is therefore consumed much more rapidly during 

combustion process (Launder, 2001).  Since the calorific value of ethanol (26.828 MJ/kg) is 

much lower than that of petrol (44.125 MJ/kg), there is a decrease of the fuel power as the 

fuel becomes richer in ethanol and leaner in petrol (Bartok, 2004). Thermal efficiency is not 

affected to a large extent by increasing ethanol content in the petrol/bio-ethanol blend. From 

the definition of thermal efficiency (heat converted to work), it was observed that the heat 

produced at any blend was converted to heat at almost the same ratio resulting to a constant 

thermal efficiency as depicted in Figure 4.84 despite the increase in ethanol percentage in the 

blends. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. Conclusions 

This study shows that the ultrasonication process enhances the blending of petrol-ethanol-

water mixture, and the homogeneity of ethanol-petrol blend was characterized by the density 

distribution of the mixture within the storage container and with time. 

 Ultrasonication improves adsorption capacity of silica gel by 35% when used to adsorb water 

from solutions of 85% vol. ethanol on average. It was found that an increase in the amplitude 

of the ultrasonication seemed to reduce the amount of water being adsorbed and the 

calculated adsorption capacity. This was due to desorption and adsorption which was 

continually occurring due to the pulse generated by the ultrasonication, and also the breakage 

and regeneration of water.   

Under increased amplitudes (higher sound pressure) the pressure effects of adsorption are 

observed to increase the adsorption, at lower concentrations of ethanol, and induce the 

adsorption at higher concentrations. The amplitude can thus be seen as the breakthrough 

variable for adsorption, because by increasing the amplitude at higher concentrations 

adsorption and desorption behaviour of the system occurs. This agrees with what is 

obtainable from literature as the amplitude of the waves has to be sufficient in order to break 

the molecular bonds. Increasing the amplitude increases the force by which the cavitation 

occurs and in so doing increases the adsorption capability of the silica gel. 

Based on the kinetic model at higher ultrasonication pulse rates, the absorptivity is expected 

to decrease. The modified pseudo second order model proposed 
    

         
   

 

  
         

                 fitted the experimental data. 

The pressure in both horizontal and vertical direction was found to be decreasing with 

distance in a non-linear relationship. The mixture of high viscosity and density (E30 blend) 

had the highest temperature and pressure in both directions. The concentration profile is a 

wave function for both horizontal and vertical direction. It can therefore be concluded that 

ultrasonication has an impact on both the horizontal and vertical diffusion since the 

concentration profiles are waves confirming the formation of cavitation in the mixture. 

Ultrasonication increases temperatures and pressures which in turn enhances diffusion rate 
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and thus mixing possibilities of ethanol and petrol. The experimental results on the 

concentration gradient concludes that if the reactor geometry was to be proposed, it will have 

a greater height than the radius since the vertical diffusion seem to be favoured. 

The lower energy content of ethanol affect the fuel consumption, but it compensates by the 

improved of combustion efficiency and environmental pollution. The addition of ethanol to 

petrol increases the fuel power and indicated power and also leads to a decrease in carbon 

monoxide and increase in carbon dioxide, NO emissions.  Optimal performance of the fuel is 

observed when the blend contains 60 % ethanol.  At this proportion, the highest fuel power is 

observed and moderate carbon dioxide and nitric oxide emissions are also observed. 

                                                                                                                                                                              

6.2 Recommendations   

 

It is recommended that further studies should be undertaken on such as: 

 

1. The influence of ultrasonicator parameters and mixing mechanism should be done in 

order to understand the effect of ultrasound on the phase behaviour; 

 

2.  Stability of different blends of ethanol-petrol at different temperature; 

 

3. Establishment of optimum operating variables, such as, the amplitude, the pulse rate, 

the temperature, the pressure, the blending time and the frequency, that could be related to the 

force required to break the molecular bonds of ethanol-water mixtures at various 

concentrations; 

 

4. The geometry of the mixer and the rate of diffusion in horizontal and vertical 

directions have to understand the effect of the ultrasonicator probe position on mixing. The 

effect of density and viscosity on ultrasonication-enhanced blending should be investigated. 
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Appendix 

 

Appendix A: Tables of data for ternary systems 

 

Table A.1: Percentage of ternary components used for phase behavior studies 

Sample 

No 

Ternary components 

(%) 

Sample 

No 

Ternary components 

(%) 

Sample 

No 

Ternary components 

(%) 

 ethanol water petrol  ethanol water petrol  ethanol water petrol 

 Curve 1  Curve 5 cont.  Curve 9 

1 0 0 100 93 29.0 11.0 60.0 181 0.0 0.0 100.0 

2 10 1.75 88.25 94 33.0 12.0 55.0 182 2.5 2.5 95.0 

3 17 3 80 95 36.6 13.4 50.0 183 5.5 4.5 90.0 

4 20 3.5 76.5 96 40.0 15.0 45.0 184 12.0 8.0 80.0 

5 30 5 65 97 43.5 16.5 40.0 185 18.0 12.0 70.0 

6 40 7 53 98 46.6 18.4 35.0 186 25.0 15.0 60.0 

7 50 11 39 99 49.5 20.5 30.0 187 27.5 17.5 55.0 

8 60.0 16.5 23.5 100 52.0 23.0 25.0 188 31.2 18.8 50.0 

9 62.0 18.0 20.0 101 53.0 24.5 22.5 189 34.0 21.0 45.0 

10 63.0 24.0 13.0 102 54.0 26.0 20.0 190 38.0 22.0 40.0 

11 62.0 28.0 10.0 103 53.8 28.7 17.5 191 41.0 24.0 35.0 

12 60.0 32.5 7.5 104 53.0 32.0 15.0 192 43.0 27.0 30.0 

13 55.0 40.0 5.0 105 51.0 36.5 12.5 193 46.0 29.0 25.0 

14 50.0 47.0 3.0 106 47.8 42.2 10.0 194 46.5 31.0 22.5 

15 40.0 57.5 2.5 107 43.0 49.5 7.5 195 46.0 34.0 20.0 

16 30.0 68.2 1.8 108 37.0 58.0 5.0 196 44.0 38.5 17.5 

17 20.0 79.0 1.0 109 27.5 70.0 2.5 197 41.0 44.0 15.0 

18 10.0 89.5 0.5 110 0.0 100.0 0.0 198 37.5 50.0 12.5 

19 0.0 100.0 0.0      199 32.5 57.5 10.0 

          200 28.0 64.5 7.5 

 Curve 2  Curve 6 201 22.0 73.0 5.0 

20 0.0 0.0 100.0 111 0.0 0.0 100.0 202 13.0 84.5 2.5 
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21 7.6 2.4 90.0 112 3.4 1.6 95.0 203 0.0 100.0 0.0 

22 16.3 3.7 80.0 113 6.9 3.1 90.0     

23 25.0 5.0 70.0 114 14.0 6.0 80.0     

24 32.7 7.3 60.0 115 21.0 9.0 70.0  Curve 10 

25 37.0 8.0 55.0 116 28.0 12.0 60.0 204 0 0.0 100.0 

26 41.0 9.0 50.0 117 31.0 14.0 55.0 205 2.5 2.5 95.0 

27 44.5 10.5 45.0 118 35.0 15.0 50.0 206 5 5.0 90.0 

28 48.0 12.0 40.0 119 38.5 16.5 45.0 207 11 9.0 80.0 

29 52.0 13.0 35.0 120 42.5 17.5 40.0 208 17 13.0 70.0 

30 55.5 14.5 30.0 121 45.7 19.3 35.0 209 24 16.0 60.0 

31 57.7 17.3 25.0 122 48.0 22.0 30.0 210 27 18.0 55.0 

32 59.0 18.5 22.5 123 50.7 24.3 25.0 211 30 20.0 50.0 

33 60.0 20.0 20.0 124 52.0 25.5 22.5 212 32.3 22.7 45.0 

34 60.5 22.0 17.5 125 52.5 27.5 20.0 213 36 24.0 40.0 

35 61.0 24.0 15.0 126 52.0 30.5 17.5 214 38 27.0 35.0 

36 60.5 27.0 12.5 127 50.7 34.3 15.0 215 41 29.0 30.0 

37 60.0 30.0 10.0 128 48.0 39.5 12.5 216 42.5 32.5 25.0 

38 57.5 35.0 7.5 129 45.0 45.0 10.0 217 42 35.5 22.5 

39 52.0 43.0 5.0 130 40.0 52.5 7.5 218 41.5 38.5 20.0 

40 43.5 54.0 2.5 131 33.0 62.0 5.0 219 39 43.5 17.5 

41 0.0 100.0 0.0 132 24.0 73.5 2.5 220 37 48.0 15.0 

     133 0.0 100.0 0.0 221 33 54.5 12.5 

 Curve 3      222 30 60.0 10.0 

42 0.0 0.0 100.0      223 24.5 68.0 7.5 

43 3.6 1.4 95.0      224 20 75.0 5.0 

44 7.4 2.6 90.0  Curve 7 225 15 82.5 2.5 

45 16.1 3.9 80.0 134 0.0 0.0 100.0 226 0 100.0 0.0 

46 24.0 6.0 70.0 135 3.1 1.9 95.0     

47 32.0 8.0 60.0 136 6.0 4.0 90.0     

48 36.0 9.0 55.0 138 13.0 7.0 80.0  Curve 11 
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49 40.0 10.0 50.0 139 20.0 10.0 70.0 227 0 0.0 100.0 

50 43.0 12.0 45.0 140 27.0 13.0 60.0 228 2 3.0 95.0 

51 47.0 13.0 40.0 141 30.0 15.0 55.0 229 4.9 5.1 90.0 

52 50.2 14.8 35.0 142 33.0 17.0 50.0 230 10 10.0 80.0 

53 53.2 16.8 30.0 143 37.0 18.0 45.0 231 16 14.0 70.0 

54 56.6 18.4 25.0 144 40.0 20.0 40.0 232 21.5 18.5 60.0 

55 57.5 20.0 22.5 145 43.0 22.0 35.0 233 25 20.0 55.0 

56 58.1 21.9 20.0 146 47.0 23.0 30.0 234 27.5 22.5 50.0 

57 58.4 24.1 17.5 147 49.0 26.0 25.0 235 30 25.0 45.0 

58 58.4 26.6 15.0 148 49.9 27.6 22.5 236 33 27.0 40.0 

59 58.3 29.2 12.5 149 50.0 30.0 20.0 237 36 29.0 35.0 

60 56.4 33.6 10.0 150 49.0 33.5 17.5 238 38 32.0 30.0 

61 52.5 40.0 7.5 151 47.5 37.5 15.0 239 39 36.0 25.0 

62 47.2 47.8 5.0 152 45.0 42.5 12.5 240 38 39.5 22.5 

63 35.0 62.5 2.5 153 41.5 48.5 10.0 241 37 43.0 20.0 

64 0.0 100.0 0.0 154 36.5 56.0 7.5 242 35 47.5 17.5 

     155 30.0 65.0 5.0 243 32.5 52.5 15.0 

     156 21.5 76.0 2.5 244 29 58.5 12.5 

 Curve 4 157 0.0 100.0 0.0 245 26 64.0 10.0 

65 0.0 0.0 100.0      246 22.5 70.0 7.5 

66 3.5 1.5 95.0      247 18 77.0 5.0 

67 7.3 2.8 90.0      248 12 85.5 2.5 

68 15.7 4.3 80.0  Curve 8 249 0 100.0 0.0 

69 22.8 7.2 70.0 158 0.0 0.0 100.0     

70 30.5 9.5 60.0 159 3.0 2.0 95.0     

71 34.5 10.5 55.0 160 5.8 4.2 90.0  Curve 12 

72 37.7 12.3 50.0 161 12.5 7.5 80.0 250 0 0.0 100.0 

73 41.7 13.3 45.0 162 19.0 11.0 70.0 251 2 3.0 95.0 

74 45.5 14.5 40.0 163 26.0 14.0 60.0 252 4.5 5.5 90.0 

75 48.0 17.0 35.0 164 29.0 16.0 55.0 253 9.4 10.6 80.0 
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76 51.5 18.5 30.0 165 32.3 17.7 50.0 254 15 15.0 70.0 

77 54.0 21.0 25.0 166 35.0 20.0 45.0 255 20 20.0 60.0 

78 55.0 22.5 22.5 167 39.0 21.0 40.0 256 22.5 22.5 55.0 

79 56.5 23.5 20.0 168 42.4 22.6 35.0 257 25.5 24.5 50.0 

80 56.7 25.8 17.5 169 45.5 24.5 30.0 258 27.5 27.5 45.0 

81 56.0 29.0 15.0 170 48.0 27.0 25.0 259 30 30.0 40.0 

82 54.0 33.5 12.5 171 48.5 29.0 22.5 260 32 33.0 35.0 

83 51.5 38.5 10.0 172 48.0 32.0 20.0 261 33.5 36.5 30.0 

84 47.3 45.3 7.5 173 47.7 34.8 17.5 262 34 41.0 25.0 

85 41.0 54.0 5.0 174 45.0 40.0 15.0 263 33.5 44.0 22.5 

86 31.0 66.5 2.5 175 42.5 45.0 12.5 264 32 48.0 20.0 

87 0.0 100.0 0.0 176 37.5 52.5 10.0 265 30.5 52.0 17.5 

     177 33.0 59.5 7.5 266 28 57.0 15.0 

     178 26.5 68.5 5.0 267 27 60.5 12.5 

 Curve 5 179 18.0 79.5 2.5 268 23 67.0 10.0 

88 0.0 0.0 100.0 180 0.0 100.0 0.0 269 20 72.5 7.5 

89 3.5 1.5 95.0      270 16 79.0 5.0 

90 7.0 3.0 90.0      271 10 87.5 2.5 

91 15.0 5.0 80.0      272 0 100.0 0.0 

92 22.3 7.7 70.0         
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Table A.2: Percentage of ternary components that show the effect of ultrasonication in 

enhancing blending 

Sample No Ternary components (%) Sample No Ternary components (%)  

 ethanol water petrol  ethanol water petrol 

 None sonicated binodal curve  Sonicated binodal curve 

1 0 0 100 20 0.0 0.0 100.0 

2 10 1.75 88.25 21 3.5 1.5 95.0 

3 17 3 80 22 7.3 2.8 90.0 

4 20 3.5 76.5 23 15.7 4.3 80.0 

5 30 5 65 24 22.8 7.2 70.0 

6 40 7 53 25 30.5 9.5 60.0 

7 50 11 39 26 34.5 10.5 55.0 

8 60.0 16.5 23.5 27 37.7 12.3 50.0 

9 62.0 18.0 20.0 28 41.7 13.3 45.0 

10 63.0 24.0 13.0 29 45.5 14.5 40.0 

11 62.0 28.0 10.0 30 48.0 17.0 35.0 

12 60.0 32.5 7.5 31 51.5 18.5 30.0 

13 55.0 40.0 5.0 32 54.0 21.0 25.0 

14 51.5 47.0 1.5 33 55.5 23.0 21.5 

15 41.5 57.5 1.0 34 58.5 22.0 19.5 

16 31.0 68.2 0.8 35 59.0 24.0 17.0 

17 20.4 79.0 0.6 36 58.4 26.6 15.0 

18 10.1 89.5 0.4 37 54.0 33.5 12.5 

19 0.0 100.0 0.0 38 51.5 41.0 7.5 

     39 47.5 48.5 4.0 

    40 41.0 57.8 1.2 

    41 31.0 68.1 0.9 

    42 0.0 100.0 0.0 
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Appendix B: Dehydration of bioethanol by ultrasonication-enhanced adsorption 

 

B.1 Amount of Silica required for the adsorption of water 

As a basis for the experiment the amount of silica gel required to remove water was measured 

based on literature. (Sorbent systems, 2006) stated that the adsorption capacity of silica gel on 

water was 40% of the mass of the silica, thus the silica gel could adsorb up to 40% of its own 

mass. Assuming a 30ml solution was to be used the mass of silica was calculated based on 

the adsorptive capacity of 40% as follows; 

Assume: 

 100% adsorption of water 

 Density of water is 1g/ml at standard temperature and pressure, given that of silica gel 

is 2.2g/ml 

By applying a mass balance over a batch system of 30ml solution at concentration of 85% 

volume ethanol, the mass of the water can be calculated as follows; 

                                     ̇                     

                      ̇                     

 ̇                                   

This is the water that is to be adsorbed onto silica-gel, which is equivalent to the 40% of the 

dry mass of silica-gel. By applying the mass balance over the batch system, the mass of the 

silica gel could be calculated. 

                                                     

But it is given that the mass of water adsorbed accounts for 40% of mass of the dry silica-gel 

the above equation can be written as follows assuming all the water is adsorbed; 

                       

                 
   

   
       , it was done similarly for all other concentrations. 
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B.2 Ethanol Concentration calculations 

The solutions where analysed using High Pressure Liquid Chromatography (HPLC) in order 

to detect and quantify the amount of water and ethanol in each sample. The samples were 

diluted, in a ratio of 1:2 (sample: dilatant) using methanol, which was also used as the mobile 

phase, in order to give a clearer distinction between the ethanol and water peaks. 

The concentration results given by the HPLC were relative to the sample with units given as 

g/l, and had to be converted to volumetric concentrations using the densities of the liquids. 

Example calculation, given from HPLC results; 

Table B.1: concentrations of both ethanol and water obtained from the HPLC 

Water (g/l) Ethanol(g/l) 

        58.04       364.21  

 

By dividing by 1000ml/l (conversion factor) then multiplying by the volume of sample and 

dividing by their individual densities the volumetric amounts of ethanol in the sample were 

calculated as follows; 

Table B.2: Volume of the sample with the concentrations of ethanol and water 

Volume of sample (ml) 0.5 

density (g/ml) 
ethanol 0.79 

water 1 

 

                       (
      

 
)
  

                        
 

  
     

                    
 

 
  (

      

 
)
  

           
 

  
     

                   

Similarly the amount of ethanol which would represent the same concentration as that given 

by the sample from the HPLC was found, to be 0.24ml, thus giving a combined total volume 

of 27ml. 

The volume concentration was then calculated by dividing the volume of ethanol/water by 

the total volume as follows:       
      

    
                                     . 
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B.3 Concentrations of ethanol using ultrasonicator from the readings obtained from the HPLC 

Table B.3: Concentrations of ethanol using ultrasonicator  

Initial concentration of 85% vol. 

  

reading 

Concentration 

(g/ml) mass Volume 

Concentration 

(vol. %) 

Sample 

No. time water ethanol water ethanol water ethanol water ethanol total water ethanol 

 

0 

         

0.15 0.85 

1 5 50.36 

 

0.05 0.38 0.03 0.19 0.03 0.24 0.27 0.09 0.91 

2 10 58.04 364.21 0.06 0.36 0.03 0.18 0.03 0.23 0.26 0.11 0.89 

3 15 50.36 383.79 0.05 0.38 0.03 0.19 0.03 0.24 0.27 0.09 0.91 

4 20 90.01 563.63 0.09 0.56 0.05 0.28 0.05 0.36 0.40 0.11 0.89 

5 25 49.95 347.57 0.05 0.35 0.02 0.17 0.02 0.22 0.24 0.10 0.90 

6 30 50.49 377.79 0.05 0.38 0.03 0.19 0.03 0.24 0.26 0.10 0.90 

             

 

0 

          

0.85 

7 5 54.02 389.09 0.05 0.39 0.03 0.19 0.03 0.25 0.27 0.10 0.90 

8 10 53.84 370.25 0.05 0.37 0.03 0.19 0.03 0.23 0.26 0.10 0.90 

9 15 84.95 573.72 0.08 0.57 0.04 0.29 0.04 0.36 0.41 0.10 0.90 

10 20 56.33 404.66 0.06 0.40 0.03 0.20 0.03 0.26 0.28 0.10 0.90 

11 25 62.72 397.67 0.06 0.40 0.03 0.20 0.03 0.25 0.28 0.11 0.89 



175 
 

12 30 55.46 395.40 0.06 0.40 0.03 0.20 0.03 0.25 0.28 0.10 0.90 

             

 

0 

          

0.85 

13 5 55.71 367.86 0.06 0.37 0.03 0.18 0.03 0.23 0.26 0.11 0.89 

14 10 48.81 355.23 0.05 0.36 0.02 0.18 0.02 0.22 0.25 0.10 0.90 

15 15 57.60 384.08 0.06 0.38 0.03 0.19 0.03 0.24 0.27 0.11 0.89 

16 20 61.49 387.77 0.06 0.39 0.03 0.19 0.03 0.25 0.28 0.11 0.89 

17 25 71.73 370.88 0.07 0.37 0.04 0.19 0.04 0.23 0.27 0.13 0.90005 

18 30 48.55 374.96 0.05 0.37 0.02 0.19 0.02 0.24 0.26 0.09 0.91 

             

 

0 

          

0.85 

19 5 65.72 423.49 0.07 0.42 0.03 0.21 0.03 0.27 0.30 0.11 0.89 

20 10 53.11 358.57 0.05 0.36 0.03 0.18 0.03 0.23 0.25 0.10 0.90 

21 15 58.76 407.59 0.06 0.41 0.03 0.20 0.03 0.26 0.29 0.10 0.90 

22 20 61.42 408.26 0.06 0.41 0.03 0.20 0.03 0.26 0.29 0.11 0.89 

23 25 57.05 349.51 0.06 0.35 0.03 0.17 0.03 0.22 0.25 0.11 0.89 

24 30 67.00 371.68 0.07 0.37 0.03 0.19 0.03 0.24 0.27 0.12 0.88 
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B.3 Relative amount of water adsorbed 

The amount of water adsorbed was calculated as the difference between the initial 

concentration and the concentration at each time interval. This gave the actual change in 

amount of water from the start till that point in time. This was then represented as a 

percentage in order to eliminate the varying water concentrations between the solutions. 

                
                   

            
 

                
         

    
 

                               

This shows the amount of water that has been removed relative to the amount which was 

there. 

B.4 Adsorption Capacity Calculations 

The adsorption capacity of an adsorbent, silica gel in this case, can be expressed as    

         

          
   thus by using the amount of silica gel used and the amount of water adsorbed onto 

the surface.  Using the above concentrations of the 85% initial concentration experiments as 

an example this is how adsorptive capacity was calculated 

   
         

          
 

   
(                       )                      

                            
 

   
                         

      
 

 

        , similary it was done for all other experiments. 
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B.5 Effect of Temperature on Kinematic Viscosity  

 

 

Figure B.1: Influence of temperature on kinematic viscosity 

 

Table B.4: Viscosity calculations at initial concentration and final concentrations 

 

Viscosity 

 

Viscosity 

Temperature ethanol water Temperature ethanol water 

5 2.0205 1.57 25 1.387 0.8 

10 1.82 1.79 25 1.3913 0.73 

15 1.6724 1.52 25 1.3965 0.66 

15 1.676 1.31 25 1.4023 0.6 

15 1.6812 1.14 30 1.27 0.56 

20 1.519 1.01 30 1.28 0.51 

20 1.527 1 35 1.1616 0.48 

20 1.574 0.89 35 1.176 0.44 
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B.6 Raman spectrum 

Figure B.2: The Raman spectrum of silica gel before and after the experiment 
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Table B.8: Calculation of model constants 

 

m 1/Vo Vo q[e] K 

85(0.5 Pulse Rate; 50% Amp.) 2.233 2.126 0.470 0.448 2.345 

85(0.5 Pulse Rate; 100 % Amp.) 2.451 -0.298 -3.351 0.408 -20.139 

85(1 Pulse Rate; 50% Amp.) 3.639 -4.433 -0.226 0.275 -2.988 

85(1 Pulse Rate; 100% Amp.) 3.970 -11.376 -0.088 0.252 -1.385 

 

Appendix C 

C.1 Pressure profile 

C.1.1 Horizontal variation of pressure with distance at different time  

Table C.1.1: Horizontal variation of pressure with distance for E30 

30% ethanol horizontal         

  Pressure(KPa) 
   

  

Distance 60sec 120sec 180sec 240sec 300sec 360sec 

1 cm 102.3622 118.1102 125.9843 125.9843 133.8583 141.7323 

2 cm 94.48819 110.2362 110.2362 110.2362 118.1102 125.9843 

3 cm 86.61417 102.3622 102.3622 102.3622 102.3622 102.3622 

4 cm 70.86614 78.74016 86.61417 86.61417 94.48819 94.48819 

 

Table C.1.1 above gives the data for a 30 % ethanol mixture and this data was plotted to give 

a graph of pressure variation with distance at specific sonication times as shown in the figures 

discussed in the results and discussions.  

Table C.1.2: Horizontal variation of pressure with distance for E20 

20% ethanol horizontal         

 
Pressure(KPa) 

   
  

Distance 60sec 120sec 180sec 240sec 300sec 360sec 

1 cm 86.61417 102.3622 110.2362 118.1102 118.1102 118.1102 

2 cm 62.99213 94.48819 102.3622 102.3622 102.3622 102.3622 

3 cm 55.11811 78.74016 86.61417 94.48819 94.48819 94.48819 

4 cm 39.37008 62.99213 70.86614 70.86614 78.74016 78.74016 

 

Table C.1.2 above gives the data that was plotted for the pressure profile at different position 

for 20% ethanol blend. 
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Table C.1.3: Horizontal variation of pressure with distance for E10 

10% ethanol horizontal         

  Pressure (KPa) 
   

  

Distance 60sec 120sec 180sec 240sec 300sec 360sec 

1 cm 110.2362 94.48819 102.3622 110.2362 110.2362 110.2362 

2 cm 86.61417 86.61417 94.48819 86.61417 94.48819 94.48819 

3 cm 78.74016 70.86614 78.74016 78.74016 78.74016 78.74016 

4 cm 55.11811 55.11811 55.11811 55.11811 70.86614 70.86614 

 

Table C.1.3 above gives the data for the 10 % ethanol blend and this data was plotted to give 

the pressure profile at different position. 

C.1.2 Horizontal variation of pressure with time at different position  

Table C.1.4: Horizontal variation of pressure with time for E30 

30% ethanol        

  Pressure(KPa)     

Time (sec) 1cm 2cm 3cm 4cm 

60 102.3622 94.48819 86.61417 70.86614 

120 118.1102 110.2362 102.3622 78.74016 

180 125.9843 110.2362 102.3622 86.61417 

240 125.9843 110.2362 102.3622 86.61417 

300 133.8583 118.1102 102.3622 94.48819 

360 141.7323 125.9843 102.3622 94.48819 

 

Table C.1.4 above gives the data that was plotted for the 30% mixtures and this graph 

showing this relationship between the pressure and time at different position. 

Table C.1.5: Horizontal variation of pressure with time for E20 

 

20% ethanol        

  Pressure(KPa)     

Time (sec)  1cm 2cm 3cm 4cm 

60 86.61417 62.99213 55.11811 39.37008 

120 102.3622 94.48819 78.74016 62.99213 

180 110.2362 102.3622 86.61417 70.86614 

240 118.1102 102.3622 94.48819 70.86614 

300 118.1102 102.3622 94.48819 78.74016 

360 118.1102 102.3622 94.48819 78.74016 

 

Table C.1.5 above gives the data that was plotted for the pressure profile with time at 

different position for 20% ethanol blend. 
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Table C.1.6: Horizontal variation of pressure with time for E10 

10% ethanol        

  Pressure(KPa)     

Time (sec)  1cm 2cm 3cm 4cm 

60 110.2362 86.61417 78.74016 55.11811 

120 94.48819 86.61417 70.86614 55.11811 

180 102.3622 94.48819 78.74016 55.11811 

240 110.2362 86.61417 78.74016 55.11811 

300 110.2362 94.48819 78.74016 70.86614 

360 110.2362 94.48819 78.74016 70.86614 

 

Table C.1.6 above gives the data for a 10% ethanol-petrol blends which was plotted to give 

the pressure profile with time at different position. 

C.1.3 Vertical variation of pressure with distance at different time  

The following data was used to plot the vertical pressure profile with distance at different 

times for E10, E20 and E30. 

Table C.1.7: Vertical variation of pressure with distance for E10 

10% ethanol vertical         

      Pressure (kPa)     

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 70.86614 94.48819 110.2362 118.1102 125.9843 125.9843 

2 47.24409 78.74016 78.74016 78.74016 94.48819 94.48819 

3 31.49606 55.11811 55.11811 62.99213 62.99213 62.99213 

4 23.62205 47.24409 47.244094 55.11811 55.11811 55.11811 

 

Table C.1.8: Vertical variation of pressure with distance for E20 

20% ethanol vertical         

      Pressure (kPa)     

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 78.74016 102.3622 125.9843 125.9843 133.8583 141.7323 

2 70.86614 86.61417 94.48819 102.3622 110.2362 118.1102 

3 39.37008 62.99213 62.99213 70.86614 70.86614 70.86614 

4 23.62205 55.11811 55.11811 55.11811 55.11811 55.11811 
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Table C.1.9: Vertical variation of pressure with distance for E30 

30% ethanol vertical         

      Pressure (kPa)     

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec  360 sec 

1 86.61417 110.2362 133.8583 141.7323 149.6063 149.6063 

2 78.74016 102.3622 102.3622 110.2362 118.1102 125.9843 

3 55.11811 86.61417 86.61417 94.48819 94.48819 110.2362 

4 47.24409 70.86614 78.740157 86.61417 86.61417 94.48819 

 

C.1.4 Vertical variation of pressure with time at different position  

The following data was used to plot the pressure profile with time for different ethanol-petrol 

blends at different position. 

Table C.1.10: Vertical variation of pressure with time for E10 

10% ethanol        

  Pressure (kPa)     

Time (sec) 1cm 2cm 3cm 4cm 

60 70.86614 47.24409 31.49606 23.62205 

120 94.48819 78.74016 55.11811 47.24409 

180 110.2362 78.74016 55.11811 47.24409 

240 118.1102 78.74016 62.99213 55.11811 

300 125.9843 94.48819 62.99213 55.11811 

360 125.9843 94.48819 62.99213 55.11811 

 

Table C.1.11: Vertical variation of pressure with time for E20 

20% 

ethanol          

  Pressure (kPa)     

Time (sec)  1cm 2cm 3cm 4cm 

60 78.74016 70.86614 39.37008 23.62205 

120 102.3622 86.61417 62.99213 55.11811 

180 125.9843 94.48819 62.99213 55.11811 

240 125.9843 102.3622 70.86614 55.11811 

300 133.8583 110.2362 70.86614 55.11811 

360 141.7323 118.1102 70.86614 55.11811 
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Table C.1.12: Vertical variation of pressure with time for E30 

30% ethanol        

  Pressure (kPa)     

time (sec) 1cm 2cm 3cm  4cm 

60 86.61417 78.74016 55.11811 47.24409 

120 110.2362 102.3622 86.61417 70.86614 

180 133.8583 102.3622 86.61417 78.74016 

240 141.7323 110.2362 94.48819 86.61417 

300 149.6063 118.1102 94.48819 86.61417 

360 149.6063 125.9843 110.2362 94.48819 

  

C.2 Temperature profile 

C.2.1 Horizontal variation of temperature with distance at different time  

Table C.2.1: Horizontal variation of temperature with distance for E30 

30 vol% ethanol            

      Temperature(⁰C)     

Distance (cm) 60 sec  120 sec 180 sec 240 sec 300 sec 360 sec 

1 28 31 34 36 38 39.5 

2 27.5 30 33 35 36.5 38 

3 30 32 34 36 38 40 

4 29 30 32 35 38 39 

 

Table C.2.1 above gives the data of the temperature variation with the horizontal distance for 

E30. This data was plotted to give the horizontal temperature profile at different positions and 

at different times.   

Table C.2.2: Horizontal variation of temperature with distance for E20 

20 vol% ethanol            

    

 

Temperature(⁰C)     

Distance (cm) 60 sec  120 sec 180 sec 240 sec 300 sec 360 sec 

1 27 30 33.5 35.5 37 39 

2 26 28 32 35 36 37.5 

3 28 32 34 36 37.5 39 

4 26 30 32 35 37 38 

 

Table C.2.2 above gives the data for a 20 % ethanol mixture and this data was plotted to give 

the relationship between the temperature in the reactor and the horizontal distance from the 

horn.  
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Table C.2.3: Horizontal variation of temperature with distance for E10 

10 vol% ethanol            

 
    Temperature(⁰C)     

Distance (cm) 60 sec  120 sec 180 sec 240 sec 300 sec 360 sec 

1 27 28 33 35 36.5 38 

2 24 26 30 32 34 36 

3 26 29 32 34.5 36 37 

4 24 29 31 34 36.5 37 

 

Table C.2.3 above gives the data plotted to give the temperature profile for 10% ethanol. 

C.2.2 Horizontal variation of temperature with time at different position  

Table C.2.3: Horizontal variation of temperature with time for E30 

30 vol% ethanol       

     Temperature (⁰C)   

Time (sec) 1 cm 2 cm 3 cm 4 cm 

60 28 27.5 30 29 

120 31 30 32 30 

180 34 33 34 32 

240 36 35 36 35 

300 38 36.5 38 38 

360 39.5 38 40 39 

 

Table C.2.3 above gives the `data for the variation of the temperature in the reactor with time 

for E30.  

Table C.2.4: Horizontal variation of temperature with time for E20 

30 vol% ethanol       

     Temperature (⁰C)   

Time (sec) 1 cm 2 cm 3 cm 4 cm 

60 27 26 28 26 

120 30 28 32 30 

180 33.5 32 34 32 

240 35.5 35 36 35 

300 37 36 37.5 37 

360 39 37.5 39 38 

 

Table C.2.4 above gives the data that was used to come up with the temperature profile in the 

reactor with time for E20.  
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Table C.2.5: Horizontal variation of temperature with time for E10 

10 vol % ethanol       

  Temperature (⁰C)     

Time (sec) 1 cm 2 cm 3 cm 4 cm 

60 27 24 26 24 

120 28 26 29 29 

180 33 30 32 31 

240 35 32 34.5 34 

300 36.5 34 36 36.5 

360 38 36 39 37 

 

Table C.2.5 above gives the data that was used to plot the relationship between temperature 

and time in a 10% mixture. 

C.2.3 Vertical variation of temperature with position at different time  

The following data was used to plot the temperature profile with distance for different times 

in the reactor for different ethanol blends.  

Table C.2.6: Vertical variation of temperature with position for E10 

10 vol % ethanol             

  Temperature (⁰C) 

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 27.5 31 33 36 38.5 40 

2 26.5 28 30 34.5 35 37 

3 25.5 26 28 32 32 35 

4 22 24 25 28 30 32 

 

Table C.2.7: Vertical variation of temperature with position for E20 

20 vol% ethanol             

  Temperature (⁰C) 

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 28 31.5 33.5 37 39 40 

2 27.5 29 32 35 37 38 

3 26 27 30 32.5 34 36 

4 22.5 25 27 28.5 32 34 
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Table C.2.8: Vertical variation of temperature with position for E30 

30 vol% ethanol             

  Temperature (⁰C) 

Distance (cm) 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 29 33 34 37.5 40 40.5 

2 28.5 30 33.5 35.5 37.5 38 

3 27.5 28 31.5 33 35 36.5 

4 25 25.5 28.5 30 33 35 

 

C.2.4 Vertical variation of temperature with time at different position  

The following data was used to plot the temperature profile with time for different ethanol-

petrol blends and distance is presented below 

Table C.2.9: Vertical variation of temperature with time at 1cm  

1cm      Temperature (⁰C) 

Time (sec )  10 vol% 20 vol% 30 vol% 

60 27.5 28 29 

120 31 31.5 33 

180 33 33.5 34 

240 36 37 37.5 

300 38.5 39 40 

360 40 40 40.5 

 

Table C.2.10: Vertical variation of temperature with time at 2cm 

2cm      Temperature (⁰C) 

Time (sec )  10 vol% 20 vol% 30 vol% 

60 26.5 27.5 28.5 

120 28 29 30 

180 30 32 33.5 

240 34.5 35 35.5 

300 35 37 37.5 

360 37 38 38 
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Table C.2.11: Vertical variation of temperature with time at 3cm 

3cm      Temperature (⁰C) 

Time (sec )  10 vol% 20 vol% 30 vol% 

60 25.5 26 27.5 

120 26 27 28 

180 28 30 31.5 

240 32 32.5 33 

300 32 34 35 

360 35 36 36.5 

 

Table C.2.12: Vertical variation of temperature with time at 4cm 

4cm      Temperature (⁰C) 

Time (sec )  10 vol% 20 vol% 30 vol% 

60 22 22.5 25 

120 24 25 25.5 

180 25 27 28.5 

240 28 28.5 30 

300 30 32 33 

360 32 34 35 

 

C.3 Concentration profile 

 

C.3.1 Horizontal variation of ethanol concentration with distance at different time  

 

Table C.3.1: Horizontal variation of ethanol concentration with distance for E30 

30 % ethanol( horizontal)         

  Concentration(g/L)         

Distance(cm)  60sec 120sec 180sec 240sec 300sec 360sec 

1 162.2418 162.5444 167.1059 163.0219 165.4609 161.1366 

2 164.2368 161.5726 165.1176 164.9237 167.102 159.3166 

3 162.8189 162.8041 166.1176 165.4771 163.815 162.5257 

4 165.5456 162.8204 164.5218 166.8342 166.5612 162.5259 

 

Table C.3.1 gives the data for a 30 % ethanol mixture and thus this data was plotted to show 

the concentration profiles with horizontal distance. 
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Table C.3.2: Horizontal variation of ethanol concentration with distance for E20 

20 % ethanol( horizontal)         

  Concentration(g/L)         

Distance(cm)  60sec 120sec 180sec 240sec 300sec 360sec 

1 129.3081 130.9255 135.0105 132.6833 138.6904 137.1553 

2 135.1375 130.3603 124.5252 133.6432 136.4754 133.1533 

3 132.5938 134.9851 131.5383 137.4912 133.1785 134.3593 

4 133.2884 132.5313 124.6966 135.0564 135.9352 132.8366 

 

The above table gives the data of ethanol concentration in a 20% ethanol mixture at different 

sonication times and horizontal distance from the sonication horn. 

 

Table C.3.3: Horizontal variation of ethanol concentration with distance for E10 

10% ethanol( horizontal)         

  Concentration(g/L) 
   

  

Distance(cm)  60sec 120sec 180sec 240sec 300sec 360sec 

1 4.96766 87.02344 89.92571 91.75116 89.61368 92.05339 

2 90.86672 85.83117 92.06314 92.65269 90.4556 90.67527 

3 89.08688 89.03055 87.95571 90.15207 88.53809 91.57969 

4 90.78374 86.61147 89.85564 92.01336 91.77212 89.64076 

 

Table C.3.3 above was used to plot the ethanol concentration data in a 10 % ethanol mixture 

of ethanol and petrol at different positions and times.  

C.3.2 Horizontal variation of ethanol concentration with time at different position  

Table C.3.4: Horizontal variation of ethanol concentration with time for E30 

30% ethanol        

  Concentration (g/L) 
 

  

Time (sec) 1cm 2cm 3cm 4cm 

60 162.2418 164.2368 162.8189 165.5456 

120 162.5444 161.5726 162.8041 162.8204 

180 167.1059 165.1176 166.1176 164.5218 

240 163.0219 164.9237 165.4771 166.8342 

300 165.4609 167.102 163.815 166.5612 

360 161.1366 159.3166 162.5257 162.5259 
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Table C.3.4 above gives the data used to plot for the variation of ethanol concentration with 

time in a 30% ethanol mixture. 

Table C.3.5: Horizontal variation of ethanol concentration with time for E20 

20% ethanol        

  Concentration (g/L) 
 

  

Time (sec) 1cm 2cm 3cm 4cm 

60 129.3081 135.1375 132.5938 133.2884 

120 130.9255 130.3603 134.9851 132.5313 

180 135.0105 124.5252 131.5383 124.6966 

240 132.6833 133.6432 137.4912 135.0564 

300 138.6904 136.4754 133.1785 135.9352 

360 137.1553 133.1533 134.3593 132.8366 

 

Table C.3.5 above gives the data used to plot the concentration profile for 20% ethanol-petrol 

blend. 

Table C.3.6: Horizontal variation of ethanol concentration with time for E10 

10% ethanol        

  Concentration (g/L)     

Time (sec) 1cm 2cm 3cm 4cm 

60 4.96766 90.86672 89.08688 90.78374 

120 87.02344 85.83117 89.03055 86.61147 

180 89.92571 92.06314 87.95571 89.85564 

240 91.75116 92.65269 90.15207 92.01336 

300 89.61368 90.4556 88.53809 91.77212 

360 92.05339 90.67527 91.57969 89.64076 

 

Table C.3.6 above gives the data that was used to plot the relationship between ethanol 

concentrations with time in E10. 

C.3.3 Vertical variation of ethanol concentration with position at different time  

The following data was used to plot the concentration profile with distance for different times 

for different ethanol blends. 
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Table C.3.7: Vertical variation of ethanol concentration with position for E10 

E10  Concentration (g/L) 

 Distance 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 cm 95.15284 88.94209 94.27186 94.63677 90.15356 93.93143 

2 cm 90.51039 87.5017 95.88538 92.31549 90.10341 91.26224 

3 cm 94.67654 88.99639 94.22356 94.3785 91.25351 92.3222 

4 cm 87.85585 88.51967 87.24617 86.37765 85.7189 88.18081 

 

Table C.3.8: Vertical variation of ethanol concentration with position for E20 

E20  Concentration (g/L) 

 Distance 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 cm 136.16596 136.60641 138.03549 138.8186 138.3498 139.9149 

2 cm 134.33341 135.27277 134.1232 136.5738 136.9077 136.9953 

3 cm 137.11112 138.03582 138.61878 138.5328 138.0589 139.8697 

4 cm 135.37317 138.0482 136.48179 137.5409 136.6613 137.0741 

 

Table C.3.9: Vertical variation of ethanol concentration with position for E30 

E30  Concentration (g/L) 

 Distance 60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

1 cm 171.18605 169.932794 167.8434 171.2918 170.8465 171.7805 

2 cm 168.17846 167.52382 164.24318 168.3043 165.3645 165.9089 

3 cm 172.96838 171.45747 172.61268 172.0844 169.2246 173.0986 

4 cm 172.22127 170.5812 170.95922 171.2996 174.983 172.3839 

 

C.3.4 Vertical variation of ethanol concentration with time  

The following data was used to plot the concentration profile with time for different ethanol-

petrol blends and distance is presented below. 

 

Table C.3.10: Vertical variation of ethanol concentration with time at 1 cm 

1cm                  Concentration (g/L) 

Time (sec )  10 vol% 20 vol% 30 vol% 

60 95.15284 136.16596 171.18605 

120 88.94209 136.60641 169.932794 

180 94.27186 138.03549 167.8434 

240 94.63677 138.8186 171.2918 

300 90.15356 138.34979 170.84648 

360 93.93143 139.91493 171.78053 
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Table C.3.11: Vertical variation of ethanol concentration with time at 2 cm 

2cm                  Concentration (g/L) 

Time (sec)  10 vol% 20 vol% 30 vol% 

60 90.51039 134.33341 168.17846 

120 87.5017 135.27277 167.52382 

180 95.88538 134.1232 164.24318 

240 92.31549 136.57379 168.30431 

300 90.10341 136.9077 165.36453 

360 91.26224 136.99533 165.9089 

 

Table C.3.12: Vertical variation of ethanol concentration with time at 3 cm 

3cm                   Concentration (g/L) 

Time (sec) 10 vol% 20 vol% 30 vol% 

60 94.67654 137.11112 172.96838 

120 88.99639 138.03582 171.45747 

180 94.22356 138.61878 172.61268 

240 94.3785 138.53275 172.08436 

300 91.25351 138.05886 169.22462 

360 92.3222 139.86971 173.09858 

 

Table C.3.13: Vertical variation of ethanol concentration with time at 4 cm 

4  cm                  Concentration (g/L) 

Time (sec) 10 vol% 20 vol% 30 vol% 

60 87.85585 135.37317 172.22127 

120 88.51967 138.0482 170.5812 

180 87.24617 136.48179 170.95922 

240 86.37765 137.54092 171.29961 

300 85.7189 136.6613 174.98301 

360 88.18081 137.07408 172.38394 

 

C.4 Horizontal and vertical pressure profile 

 

Figure C.1 to C.6 below gives the pressure variation with time comparison graphs at positions 

of 2cm to 4cm from the ultrasonicator horn. 
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Figure C.1: Variation of pressure with time in both directions (E10 at 2 cm) 

 

Figure C.2: Variation of pressure with time in both directions (E20 at 2 cm) 
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Figure C.3: Variation of pressure with time in both directions (E30 at 2 cm) 

 

Figure C.4: Variation of pressure with time in both directions (E10 at 3 cm) 
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Figure C.5: Variation of pressure with time in both directions (E20 at 3 cm) 

 

 

Figure C.6: Variation of pressure with time in both directions (E30 at 3 cm) 
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C.5 Horizontal and vertical Concentration profile  

C.5.1 Horizontal and vertical Concentration profile with distance   

 

Figures C.7 to C.9 below give the comparison for the variation of concentration with distance 

at different ultrasonication times. 

 

Figure C.7: Variation of concentration with time in both directions for E10 at 1 cm 

 

Figure C.8: Variation of concentration with time in both directions for E20 at 1 cm 
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Figure C.9: Variation of concentration with time in both directions for E30 at 1 cm 

 

 Figures C.10 to C.13 below show the concentration variation with time in both directions for 

different at 2 cm 

 

Figure C.10: Variation of concentration with time in both directions for E10 at 2 cm 
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Figure C.11: Variation of concentration with time in both directions for E20 at 2 cm 

 

Figure C.12: Variation of concentration with time in both directions for E30 at 2 cm 
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Figures C.13 to C.15 below show the concentration variation with time in both directions for 

different at 3 cm 

 

Figure C.13: Variation of concentration with time in both directions for E10 at 3 cm 

 

Figure C.14: Variation of concentration with time in both directions for E20 at 3 cm 
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Figure C.15: Variation of concentration with time in both directions E30 at 3 cm 

 

Figures C.16 to C.18 below show the concentration variation with time in both directions for 

different at 4cm 

 

Figure C.16: Variation of concentration with time in both directions for E10 at 4 cm 
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Figure C.17: Variation of concentration with time in both directions for E20 at 4 cm 

 

 

Figure C.18: Variation of concentration with time in both directions for E30 at 4 cm 
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HPLC calibration curve is given in Figure C.19 which gives the relation between area under the curve 

and amount in g/L 

 

 

Figure C.19: Calibration curve to determine the concentration 
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C.6 Refractive index signal for ethanol-HPLC spectrum 

 

 

Figure C.20: Refractive index signal for ethanol-HPLC spectrum 
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- Effect of the amount of ethanol on the temperature profile as function of distance  

 

 

Figure C.21: Temperature as function of distance for 60 second  

 

Figure C.22: Temperature as function of distance for 120 second  
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Figure C.23: Temperature as function of distance for 180 second  

 

Figure C.24: Temperature as function of distance for 240 second 
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Figure C.25: Temperature as function of distance for 300 second  

 

Figure C.26: Temperature as function of distance for 360 second  
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Figure C.26: Mixing efficiency against distance 

 

 

Figure C.27: horizontal mixing efficiency against vertical mixing efficiency
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Appendix D 

 

Table D.1:  Data obtained from the combustion experiment 

Ethanol composition (vol %) 0 20 40 60 80 100 

Time (min) Temperature (ᵒ C) Temperature (ᵒ C) Temperature (ᵒ C) Temperature (ᵒ C) Temperature (ᵒ C) Temperature (ᵒ C) 

2 55 80 109 80 118 110 

4 76 95 131 111 131 134 

6 90 108 144 130 140 150 

8 101 116 145 139 143 162 

10 108 120 146 146 147 165 

12 112 122 150 148 149 168 

14 115 124 150 148 151 170 

16 118 126 152 148 151 171 

18 119 127 152 148 152 173 

20 120 127 152 

 

151 175 

22 121 126 

   

174 

24 122 

    

177 

26 126 

    

180 

28 126 

    

180 

30 126 

    

180 
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 D.1 Fuel Consumption  

Table D.2:  Data showing the consumption of fuel as the ratio of ethanol in the mixture 

is increased 

Ethanol Ratio Consumed Fuel  (mL) Run time (min) Fuel Consumption rate (mL/min) 

0 5.5 30.83 0.178 

20 6.5 23.80 0.273 

40 6.5 20.83 0.312 

60 7 18.33 0.382 

80 8 20.42 0.392 

100 13 32.13 0.405 

 

D.2 Exhaust emissions 

D.2.1 Chromatograms 

The following chromatograms were obtained from a Bruker Gas Chromatographer.  The 

analysis was aimed at checking the composition of the exhaust gas from the combustion 

process. 

Figure D.1 shows a chromatogram of an exhaust gas formed from a fuel with 0 % ethanol and 

a carbon monoxide peak with a retention time of 1 minute. 
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FiguD.1:  Chromatogram showing exhaust gases from the combustion of petrol 

Figure D.2:  Chromatogram obtained from the analysis of the exhaust gas that results from 20 

% ethanol fuel blend 
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Figure D.3:  Chromatogram obtained from the analysis of the exhaust gas that results from 40 

% ethanol fuel blend 

 

Figure D.4:  Chromatogram obtained from the analysis of the exhaust gas that results from 60 

% ethanol fuel blend 

 



211 
 

Table D.3:  Data showing the Carbon dioxide composition in the exhaust gas 

Ethanol composition %  CO2 % CO 

0 94.43 23.5 

20 83.24 9.6 

40 69.10 5.4 

60 87.63 1.3 

80 94.39 4.2 

100 97.44 3.3 

 

D.3 Fuel power 

 

The fuel power was determined according to equation 2.37 in the results section.  The volume 

of fuel consumed was converted to mass of fuel consumed by using the mass and density 

relations: 

  
 

 
      

Where: m is the mass of the fuel 

 V is the volume of the fuel 

  is the density of the fuel, ethanol has a density of 789 kg/m
3
 and petrol has a density 

of 737.22 kg/m
3
 

The mass of the fuel consumed is then multiplied by the calorific value of the fuel and that 

gives the fuel power.  Table D.4 shows the calculated fuel power of the different fuel blends. 
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Table D.4:  Fuel power data 

Ethanol Ratio 

Consumed Fuel 

(mL) 

Run time 

(min) 

Fuel Consumption rate 

(mL/min) 

Mass of fuel consumed 

(kg) 

Mass consumed per second 

(kg/s) Fuel power 

0 5.5 30.83 0.178 0.0041 2.1917E-06 0.0973 

20 6.5 23.80 0.273 0.0049 3.4028E-06 0.1411 

40 6.5 20.83 0.312 0.0049 3.9412E-06 0.1518 

60 7 18.33 0.382 0.0054 4.8891E-06 0.1740 

80 8 20.42 0.392 0.0062 5.085E-06 0.1660 

100 13 32.13 0.405 0.0103 5.32E-06 0.1580 
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D.4 Indicated power calculation 

The evaluation of Indicated power requires the evaluation of mean effective pressure (mep). 

As shown in 2.4.2 by equation 2.37 and 2.39 that mep is a function of internal energy at all 

the states during one cycle, the indicated power estimation required that the temperature at 

each state in the cycle be known. Unfortunately the temperature at the end of the compression 

stroke and combustion could not be measured due to availability of equipment. Hence the 

temperature at these states in the cycle was obtained theoretical using equation 2.76 and 

equation 2.79. The evaluation of equation 2.79 was handled by MATLAB because of large 

amount of data that needs to be handled. The code has been attached in appendix F. Equation 

2.76 was applied a follows; 

The fuel entered the cylinder at 25 degrees Celsius and atmospheric pressure. From Table D.5 

showing internal energies and critical volumes, the critical volume of air at 25 degrees 

Celsius and 1 atm was found and used to find the critical volume when the volume of the 

cylinder occupied by air/fuel mixture had reached the minimum after isentropic compression. 

The following equation D.1 was used to calculate the critical volume: 

 

    
  

  
                                 (D.1) 

 

A temperature value corresponding to     was then found from Table D.5 of appendix D.4. 

This temperature was used as T2 in equation 2.76 to find the pressure at state 2 in Figure 2.6. 

 

The temperature of the exhaust gas was measured during the experiment to complete the 

cycle. After determining the temperatures at all the states of the cycle, the internal energy at 

each state was interpolated from appendix D.4. The internal energies were then plugged into 

equation 2.39 to find work of one cycle which was the used in equation 1 to determine the 

mep. The calculated mep was then used in equation D.2 for determining the indicated power 

(IP) for ethanol-petrol blend at different component content? 

 

IP = mep×L×A×N                                           (D.2) 
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Table D.5: Ideal gas properties of air (Moran et al, 2005) 
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D.5 MATLAB codes 

D.5.1 MATLAB codes used to find the maximum temperature in the cylinder 

 

This code calculates the maximum temperature reached in the cylinder during combustion for each 

blend: 

syms T 

Cv = constant ('Cv'); % call the constant volume heat capacities stored in the file named 'constant' 

Hf = constant ('Hf'); % enthalpies of formation 

xE0 = [0.016; 0; 0.209; 0.775; 0; 0; 0; 0]; % composition of the air fuel mixture in the cylinder 

xf = [0; 0; 0; 0; 0.462; 0.077; 0.3077; 0.154]; % composition of products from equation 21 

Reactants = sum (Hf.*xE0); % the internal energy of the reactants 

T1 = 298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 

%temperature (T) 

products1=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

products2=Hf.*xf; 

Products = sum (products1+products2); 

To solve = Products-Reactants; % Change in internal energy due to reaction 

Y = solve (to solve); % solve for the maximum temperature  

%20Ethanol blend 

 

%E20 

xE20=[0.0218; 0.01253; 0.2048; 0.760845; 0; 0; 0; 0];% composition of the air fuel mixture in the 

cylinder 

Reactants E20 = sum (Hf.*xE20); % the internal energy of the reactants 

T1=298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 

%temperature (T) 

productsE201=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

productsE202=Hf.*xf; % the internal energy of the reactants 

ProductsE20 = sum (productsE201+productsE202); 

tosolveE20=ProductsE20-ReactantsE20; % Change in internal energy due to reaction 

yE201=solve (tosolveE20); % solve for the maximum temperature  

yE202=double (yE201); 
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%E40 

xE40= [0.01101; 0.0169; 0.2062; 0.760845; 0; 0; 0; 0]; % composition of the air fuel mixture in the 

cylinder 

ReactantsE40= sum (Hf.*xE40); % the internal energy of the reactants 

T1=298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 

%temperature (T) 

productsE401=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

productsE402=Hf.*xf; 

ProductsE40= sum (productsE401+productsE402); 

tosolveE40=ProductsE40-ReactantsE40; % Change in internal energy due to reaction 

yE401= solve (tosolveE40); 

yE402= double (yE401); 

 

%E60 

xE60= [0.0163; 0.05625; 0.19672; 0.731; 0; 0; 0; 0]; % composition of the air fuel mixture in the 

cylinder 

ReactantsE60= sum (Hf.*xE60); % composition of the air fuel mixture in the cylinder 

T1=298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 

%temperature (T) 

productsE601=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

productsE602=Hf.*xf; 

ProductsE60= sum (productsE601+productsE602); 

tosolveE60= ProductsE60-ReactantsE60; % Change in internal energy due to reaction 

yE601= solve (tosolveE60); % solve for the maximum temperature  

yE602= double (yE601); 

                                               

%E80 

xE80=[0.00768;0.0706;0.1955;0.7262;0;0;0;0];% composition of the air fuel mixture in the cylinder 

ReactantsE80= sum (Hf.*xE80); % the internal energy of the reactants 

T1=298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 
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%temperature (T) 

productsE801=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

productsE802=Hf.*xf; 

ProductsE80= sum (productsE801+productsE802); 

tosolveE80= ProductsE80-ReactantsE80; % Change in internal energy due to reaction 

yE801= solve (tosolveE80); % solve for the maximum temperature  

yE802= double (yE801); 

 

%E100 

xE100= [0.0; 0.077; 0.1957; 0.7271; 0; 0; 0; 0]; % composition of the air fuel mixture in the cylinder 

ReactantsE100= sum (Hf.*xE100); % the internal energy of the reactants 

T1= 298.15; % temperature of the fuel entering the cylinder 

%Internal energy of the of the products at the unknown maximum 

%temperature (T) 

productsE1001=((Cv(:,1)*(T-T1)+(0.5)*Cv(:,2)*(T
2
-T1

2
)+(1/3)*Cv(:,3)*(T

3
-T1

3
)+(1/4)*Cv(:,4)*(T

3
-

T1
3
)).*(xf/1000)); 

productsE1002=Hf.*xf; 

ProductsE100= sum (productsE1001+productsE1002); 

tosolveE100= ProductsE100-ReactantsE100; % Change in internal energy due to reaction 

yE1001= solve (tosolveE100);% solve for the maximum temperature  

yE1002= double (yE1001); 

  

Tf= [y2; yE202; yE402; yE602; yE802; yE1002]; % arrange the results in column form 

xlswrite('newfile.xls',Tf,'Sheet1','A1')% Export the results to Microsoft excel 
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Figure D.5: maximum temperature in the cylinder as a function of ethanol percentage in the 

blends 

D.5.2 MATLAB code used to calculate the amount of nitrogen oxide at different 

percentages of ethanol. 

 

This code calculates the amount of NO produced during combustion 

syms x 

PN=7.78E+06; % the partial pressure of oxygen after isentropic compression  

PO=1789401.366; % the partial pressure of nitrogen after isentropic compression  

c=PO/PN; %Oxygen partial pressure divided by nitrogen partial pressure 

% the equilibrium constant of reaction forming NO at different ethanol % 

% starting with zero % ethanol at the maximum cylinder temperatures already 

% calculated 

For k= [2.96353E-30 2.92785E-30 2.83E-30 2.65384E-30 2.53913E-30 2.47223E-30]; 

  

F=4*c*x
2
-k*x

2
+2*k*x-k; % equilibrium constant as a function 

B=solve (F); % Solve for the conversion of Nitrogen and Oxygen 

C= B(2); % obtains the real solution found above 

L= double(C); % converts the solution from fraction to scientific notation 

Ans= L(:)*2*1E15% exports the calculated values to the command window 

end 
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D.6 Fuel consumption Tables 

 

Table D.4: Fuel consumption 

Ethanol % 

Final 

Depth (cm) 

final Vol 

(ml) 

Volume 

consumed(ml) 

Total run 

time (min) 

consumption per 

min 

0% 4.2 396.23 103.77 30.83 3.37 

20% 3.8 358.49 141.51 28.80 4.91 

40% 4 377.36 122.64 30.83 3.98 

60% 3.5 330.19 169.81 22.33 7.60 

80% 3.4 320.75 179.25 20.42 8.78 

100% 3 283.02 216.98 23.00 9.43 

Initial depth (cm)     5.3 

Area (cm
2
)               94.34 

Initial volume (mL) 500 

 

 

D.7 Procedure for calculating each value in table: 

 

Ethanol percentage was in the first column is the volume percentage of ethanol introduced 

into the engine tank. Once poured into the tank, the level was measured by a ruler. The initial 

depth was found to 5.3 cm for 500 ml of fuel poured into the fuel tank.  

 

Using the 500 ml and 5.3 cm as initial volume and fuel level respectively, the area of the tank 

was calculated by dividing the volume by the level of the fuel in the tank as follows; 

 

  
 

 
 

   

   
            (Shown in Table D.4) 

 

After running the engine for the time shown in column 5 of Table D.4, a constant temperature 

of the exhaust gas was obtained and this was assumed to be the time the generator stabilized. 

After this time the engine was stopped and the new level of the fuel was measured. This level 

was then used to determine the remaining fuel in the tank by multiplying it with the area 

calculated above as shown below; 
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Final Volume of fuel at time t                             

 

For example the final volume for 0% ethanol composition was calculated as follows: 

 

Fuel level at 30.83 minutes was 4.2 cm. Therefore the Final Volume of fuel at time t      

                as shown in row 2 and column 2 of Table D.4.  

 

Fuel consumption  
                                                        

        
 

          

     
 

            as shown in the first row of the last column of Table D.4. 

 

D.7 Gas Chromatograph (GC) Calibration 

 

The calibration of the GC which enabled the conversion of the percentages provided by the 

GC to usable percentages was done using air. The GC provided composition of each gas 

present in the sample as the area under the peak divided by the sum of the areas under all the 

peaks arising as a consequence of gas detection by the GC.  The calibration curve developed 

related the area to volume percentage as shown in Figure D.5. The calibration using air was 

done as follows: 

 

Air was assumed to contain nitrogen (79%) and oxygen (21%) because the peaks of other 

gases present in air like carbon dioxide and argon did not appear as they exist in small 

amounts. The GC used nitrogen as carrier gas hence the present of nitrogen was not shown by 

the presence of any peak within the time range used during analysis. So by varying the 

concentration of oxygen/nitrogen in air by adding nitrogen into it before ejecting into the GC, 

various peak areas of oxygen were obtained. The volume of nitrogen added was measured to 

give the exact volume % of oxygen after the addition of nitrogen which was then related to 

the peak area obtained as shown in Figure D.5.  The data obtained during the calibration has 

been shown in Table D.6. 
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Figure D.6: volume percentage as a function of Area under a peak (GC Calibration curve) 

 

Table D.6: Areas under the peaks corresponding to volume percentages of oxygen 
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D.8 Specific heats at constant pressure (CP) and volume (Cv) (kJ/kmol. K) 

Reactants 

 

Petrol (C8H18):                   

Ethanol (CH5OH)                                             

Oxygen (O2):                   

Nitrogen (N2):                   

 

Products (Sinnott, 2005; Lioret al, 1988) 

 

Carbon Dioxide (CO2):                 

Carbon monoxide (CO):                                            

Water (H2O):                   

Nitrogen oxide (NO):                                            

The specific heat at constant volume is expressed as a function of the specific heat at constant 

pressure: 

                          (D.3) 
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D.9 Estimation of nitrogen oxide in the exhaust gas 

 

The effects on NO concentration have been determined theoretically from the equilibrium 

calculation because of the lack of equipment to measure the low NO emission as follows: 

 

The formation of NO follows the following chemical reaction: 

 

                      ∆Hrxn = 90.43kJ/mol,  ∆G0=86.75 kJ/mol given at 25 
0
C 

 

From Levenspiel (1999), the equilibrium constant is calculated using the standard Gibbs free 

energy at temperature T1 using the equation D.4: 

 

      
    

   
                     D.4 

 

The equilibrium constant at temperature T is related to    and        by equation D.5  

 

       
       

 
(
 

 
 

 

  
)                                  D.5 

 

Where: T the temperature at which combustion occurred (maximum Temperature) and is 

calculated using the MATLAB code in appendix D.5.2.       is the enthalpy of reaction and 

R is the ideal gas constant (R=8.314 J/mol K) 

  

       , T and R are known, the equilibrium constant can be calculated for all blended fuel. 

 

The calculated equilibrium constant is then related to the production of NO at equilibrium by 

the following equation: 

 

  
   

 

      

                       D.6 

 

In terms of conversion and as oxygen was the limiting reactant, equation D.6 can be 

expressed as: 
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                      D.7 

 

The partial pressures of oxygen and nitrogen were estimated as follows: 

 

The amount of air introduced into the cylinder was assumed to be theoretical amount which is 

the same as the volume of the cylinder when the piston is at bottom dead center.  

 

The amount of oxygen available for formation of NO was estimated from the results as 

follows: The amount of oxygen consumed during combustion of ethanol and petrol is equal to 

the theoretical amount because there was a complete combustion which can be expressed as 

oxygen reacting in equation 2.59: 

 

O2 reacting                                                                                      D.8 

 

Where          and         is the number of moles of ethanol and petrol fed to the cylinder at 

the beginning of each cycle and this was calculated by fuel consumption per minute and 

dividing by 180 (revolution per min/2) since it takes two revolutions for a four stroke engine 

to complete one cycle. 

 

The number of moles of oxygen reacting by reaction in equation 2.59 is converted to partial 

pressure using equation 2.52. 

 

Once partial pressure are known equation D.7 could then be solve using MATLAB as shown 

in D.5.2 for X. NO formed is found by multiplying X by 2 according to reaction in equation 

2.59.  

 

Once NO has been found, the number of moles of oxygen not reacted was found by: 

 

Oxygen in the exhaust gas =                                                  D.9 

 

As the molar % is the same as the volumetric %, and based on the results (% of O2) obtained 

from gas analysis, the total number of moles in the exhaust gas was estimated by: 
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                             D.10 

 

The concentration of NO was then calculated by: 

 

%NO=2X/                           D.11 

 

 

 


