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Abstract

The work in this thesis has been developed to facilitate understanding of lim-

itations in distillation, as well as to aid the design of ef cient distillation sys-

tems, by introducing useful methods, techniques, tools, and novel process

con gurations.

It is well-established that distillation is a very inef cient process (Mix et al.,

1978; Humphrey, 1995; Ognisty, 1995), yet it is by far the most industrially

widespread separation technique, accounting for some 90–95% of product

recovery worldwide (Humphrey and Siebert, 1992; Humphrey, 1995).

There are substantial environmental and nancial incentives to reduce the

energy requirements of distillation systems. To this end, several different ap-

proaches have been proposed over the last few decades, including diabatic

columns, complex columns, heat-pump assisted distillation, and heat-integr-

ated distillation columns.

These solutions have not yet been widely implemented, partly owing to

some practical hurdles, but also largely due to the dif culty of their design.

The work in this thesis addresses several of these problems.

The major approach used in this work is to consider the process limitations

in distillation systems imposed by entropy generation, pinch points, and the

relationships of these phenomena to minimum re ux.

Two methods are presented for locating pinch points in non-ideal distilla-

tion systems, with one focusing on nding all pinch points in a given search

space, and the other on ef ciently constructing pinch point curves. The con-

cept of nite-re ux distillation boundaries is also introduced. This, together

with pinch points and pinch point curves, can be used for effective design

of distillation systems using the column pro le map method (Holland et al.,

2004a; Tapp et al., 2004).

Heat-pump-assisted distillation is also considered, with particular empha-

sis on vapour recompression. A tool is derived for the rapid determination

of whether or not vapour recompression is favourable to conventional dis-
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tillation, and whether or not it can be implemented practically. The tool is

consolidated as a single chart, and requires only the product temperatures.

Novel vapour recompression con gurations are also devised, circumvent-

ing some of the major limitations of standard vapour recompression. These

new con gurations are applicable to light liquid feeds and heavy vapour feeds,

and typically result in energy savings in the region of 50–80% compared to

conventional distillation.
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Chapter 1

Introduction

This thesis deals with a number of related topics in continuous distillation,

with particular emphasis on the development of tools for the design of

more effective distillation systems, and on the synthesis of new distillation

arrangements, all with the aim of reducing energy and work requirements in

distillation processes. The thesis is structured as six working chapters, each

of which is in the form of a journal article, and is largely self-contained;

the chapters can thus be read independently of one another. Although each

chapter is in the form of an article, they all share common nomenclature and

reference sections to avoid repetition.

In this introduction, the fundamental purpose of the work is discussed, its

contribution to scienti c knowledge is summarised, and a brief overview of

each of the chapters that comprises the main portion of the thesis is given.

1.1 Background and motivation

Distillation is the most widely used separation technique in the process indus-

tries, accounting for approximately 90–95% of all separations (Humphrey

and Siebert, 1992; Humphrey, 1995), with approximately 40 000 distillation

columns in the United States alone (Humphrey and Siebert, 1992). It is also

one of the most energy-intensive processes. A number of studies have provided

estimates that help to contextualise the scale of energy usage in distillation

processes: they account for approximately 40% of the total energy usage on

chemical plants in Japan (Ohe, 2007) and in the US (Shinskey, 1977); about

10% of US industrial energy consumption (Humphrey and Siebert, 1992);

and 3% of all energy used in the US (Mix et al., 1978; Humphrey, 1995;

Ognisty, 1995). Mix et al. (1978) estimated that even a 10% reduction in

distillation energy usage would result in savings of 100 000 bbl/d of crude

1



CHAPTER 1 INTRODUCTION 2

oil; since industrial production has grown signi cantly since that report was

published in 1978, these savings would undoubtedly be even higher now.

There is clearly a strong incentive, both nancially and environmentally,

to reduce the energy requirements of distillation-based separations.

In order to achieve this goal, new plants, and particularly the distillation

sections thereof, have to be designed more ef ciently from the early design

phase.Many solutions have been proposed over the last few decades, including

heat-pump-assisted distillation (Null, 1976; Mészáros andMeili, 1994; Fonyó

and Benkő, 1998), diabatic columns (Fonyó, 1974; Le Goff et al., 1996),

complex columns (Rév et al., 2001; Hernández-Gaona et al., 2005; Agrawal,

2003; Caballero and Grossmann, 2003; Halvorsen and Skogestad, 2004;

Holland et al., 2010; Caballero and Grossmann, 2013; Shenvi et al., 2013),

and heat-integrated distillation columns (HIDiCs) (Glenchur and Govind,

1987; Nakaiwa et al., 2000; Olujić et al., 2003; Huang et al., 2006, 2008;

Mane and Jana, 2010; Chen et al., 2010; Suphanit, 2011).

One particularly attractive solution is complex columns, which have both

mass and heat integration for the separation of multicomponent mixtures.

For this purpose, Tapp et al. (2004) and Holland et al. (2004a) developed the

column pro le map (CPM) method, which allows for the graphical design and

synthesis of complex columns; this has previously been applied to the Petlyuk

(Holland et al., 2010) and Kaibel (Abbas, 2011) columns. A particularly

powerful feature of the CPMmethod is the ‘transform triangle’ (Holland et al.,

2004b), which has unfortunately been applicable only to constant relative

volatility systems until now. It is necessary to extend this to non-ideal systems

in order to access the full potential of the CPM method to design realistic

systems. This requires a fast way of nding all pinch points and pinch point

curves, as well as a non-ideal analogue of transform triangles.

While they are energetically and economically attractive, diabatic columns,

complex systems, and HIDiCs are held back from industrial implementation

by practical hurdles. A simpler solution is heat-pump-assisted distillation.

The two main disadvantages of heat-pump-assisted distillation are, rst, its

applicability only to close-boiling mixtures (which is a small subset of all

separations), and second, the fact that heat-pump-assisted models do not

generally come standard with simulation packages. Signi cant time and effort

are therefore required to model them, and it is dif cult to determine ahead of

time if that effort is likely to be worthwhile.

The work in this thesis addresses many of the above problems.



CHAPTER 1 INTRODUCTION 3

1.2 Contribution of the thesis

Themajority of the work in this thesis has been published in four international,

peer-reviewed journals: Computers & Chemical Engineering, Industrial &

Engineering Chemistry Research, Applied Thermal Engineering, and AIChE

Journal. Details of these publications are given in § 1.3.

The work in this thesis (1) presents new insights into the relationship

between entropy generation, pinch points, and minimum re ux; (2) provides

some crucial numerical pinch-point tools to aid the design of ef cient distil-

lation columns; (3) presents a synthesis tool for assessing the thermodynamic

favourability and practical feasibility of implementing standard vapour recom-

pression entirely graphically (with no calculations whatsoever); (4) introduces

two novel vapour recompression con gurations for energy savings in systems

where standard vapour recompression cannot be applied for practical reasons;

and (5) derives shortcut methods which have proved to be useful for rapid,

high-level analysis of distillation systems.

1.3 Thesis outline

Chapter 2 primarily serves as a backdrop for the rest of the thesis, as it shows

the relationships between various key concepts that are developed further in

the other chapters; namely, pinch points, entropy generation, and minimum

re ux. A new δS function is de ned for the analysis of entropy generation in

a generalised column section, and a mathematical proof is given showing that

the stationary points of this function correspond to pinch points. Numerical

experiments are performed to verify that this is indeed the case, after which

this characteristic is exploited to derive a novel minimum re ux equation for

zeotropic and azeotropic binary separations, thereby demonstrating the power

and usefulness of entropy generation analysis. It is especially noteworthy that

the pinch points are found without VLE calculations.

Chapter 3was published as: Felbab, N., Hildebrandt, D., Glasser, D., 2011.

A newmethod of locating all pinch points in nonideal distillation systems, and

its application to pinch point loci and distillation boundaries. Comp. Chem.

Eng. 35 (6), 1072–1087.

This chapter presents an algorithm which can automatically nd all pinch

points in non-ideal distillation systems, and which can be extended to plotting

pinch point curves (PPCs). This chapter also introduces a way of constructing
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‘ nite re ux distillation boundaries’, which are a non-ideal analogue of the

‘transform triangles’ used in the CPM method (Tapp et al., 2004; Holland

et al., 2004a), allowing that feature of the CPMmethod to be extended beyond

constant relative volatility systems. Using these three tools in conjunction with

the CPM method, graphical distillation synthesis of non-ideal systems and

‘smarter’ optimisation are possible. An example of a distributed-feed column

using these techniques is given. While the pinch point algorithm in Chapter 3

is effective, it is not the most ef cient method presented in this thesis.

Chapter 4 was published as: Felbab, N., 2012. An ef cient method of con-

structing pinch point curves and locating azeotropes in nonideal distillation

systems. Ind. Eng. Chem. Res. 51 (20), 7035–7055.

In this chapter, a very ef cient method is presented for the construction of

PPCs. This method has the additional bene t of being able to locate azeotropes

in addition to PPCs, all in a fraction of a second, thereby drastically improving

on the speed of some of the work presented in Chapter 3. Even disregarding

its ef ciency advantage, this method is an improvement over others in that

it can be implemented using tools that are readily available in all standard

mathematical software packages, since it is simply an ODE-based formulation

of the continuation problem; the same is not true of other PPC methods,

which require specialised solvers. The proposed method is also generalised,

such that it is applicable to all column sections, including those in complex

con gurations.

Chapter 5 was published as: Felbab, N., Patel, B., El-Halwagi, M.M.,

Hildebrandt, D., Glasser, D., 2013. Vapor recompression for ef cient distil-

lation. 1. A new synthesis perspective on standard con gurations. AIChE J.

59 (8), 2977–2992.

It presents an entirely graphical method—that is, one requiring no calcu-

lations at all—to assess whether or not the standard vapour recompression

(SVRC) con guration is thermodynamically favourable to conventional distil-

lation, and if it can be implemented practically. The entire tool is presented

as a single graph, and only requires the distillate and bottoms temperatures.

If the ideal gas heat capacity of the overhead vapour is known, this tool

can additionally estimate whether or not compressor inlet superheating is

required. This approach allows for rst-pass estimates to be used to discard

unfavourable options immediately if there is no possible bene t to using SVRC,

without the need for rigorous simulation, thereby saving considerable time and

effort. Bilal Patel was responsible for the basic thermodynamic approach used
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in this chapter; the rest of the work, including the thermodynamic analyses

at the various levels of detail, the practical limitations, explanations of the

observed behaviour, the rigorous simulation examples and validation, and the

writing, are my own.

Building on the relative strengths and weaknesses of standard vapour

recompression identi ed in Chapter 5, Chapter 6 develops two novel feed–

product vapour recompression con gurations for situations where SVRC is

not feasible, thereby greatly extending the range of systems to which vapour

recompression can be applied. While the proposed con gurations do have

limitations (one con guration is designed for light liquid feeds, while the

other is used for heavy vapour feeds), when they can be implemented, they

invariably result in a signi cant reduction in energy requirements in relation

to conventional distillation columns, as veri ed by detailed calculations and

rigorous simulation.

Chapter 7 presents two useful shortcut methods for rapid, high-level anal-

ysis of distillation systems. The rst these methods is a very simple criterion to

determine whether or not saturated vapours condense on compression. Should

they be found to condense, this work also provides a way of making a simple

estimate of the minimum required inlet superheating to avoid condensation

in the compressor. This part of the chapter was published as: Felbab, N.,

2013. Condensation of saturated vapours on compression and estimation of

minimum suction superheating. Appl. Therm. Eng. 52 (2), 527–530.

The other method presented is a simple, non-iterative method of estimating

the bubble- and dew-point temperatures of ideal binary mixtures, using

only the pure-component boiling points, and optionally the constant relative

volatility, if it is known. This approach can also be used for non-atmospheric

system pressures.

Both of these methods have proven to be useful for quick calculations.

Chapter 8 gives a summary of the overall conclusions of the thesis.



Chapter 2

Entropy, Pinch Points, and Minimum Reflux

Abstract

Entropy generation, pinch points, and minimum re ux all denote limits to real opera-

tion in distillation columns. While the latter two are often considered together, neither

has been investigated thoroughly in conjunctionwith entropy generation. This chapter

serves to unify all three of these concepts by showing that all three are highly related,

and not independent. This is demonstrated in two ways: rst, a proof is derived show-

ing that pinch points correspond to local minima or maxima of the entropy functions

presented in this chapter; second, a novel equation is derived to determine minimum

re ux in binary separations using solely entropy analysis. This chapter provides a

backdrop for the remainder of this thesis, which is concerned overarchingly with pinch

points and entropy generation analysis, speci cally with the aim of providing tools

for the design of ef cient distillation systems.

6
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2.1 Introduction

This chapter deals with three phenomena that are encountered in distillation,

and thermodynamics in general: entropy generation, pinch points, and mini-

mum re ux.

Entropy, unlike mass and energy, is a thermodynamic quantity that is not

conserved: all real processes generate entropy to some extent. The second law

of thermodynamics states that entropy generation must always be greater than

or equal to zero. A theoretically perfect process would be reversible, i.e. it

would generate no entropy; entropy consumption (negative entropy genera-

tion) is impossible, as it violates the second law. The practical implication of

this is that all real processes waste a portion of the work and energy that is

added to them, while reversible processes do not. As such, reversibility denotes

the limit of the practical operation of any process, and a target for which all

designs should strive.

More speci c to distillation are the concepts of pinch points and minimum

re ux. A pinch point occurs in a column when an increase in the number of

stages does not lead to a change in the compositions, which mathematically

amounts to the following in continuous/packed columns:

dxi
dn

= 0 (2.1)

or in tray/plate columns:

xn+1
i = xni (2.2)

where the superscripts ‘n’ and ‘n+1’ indicate stage number. If a pinch point is

encountered in a distillation column, the separation cannot progress beyond

that point regardless of how many stages are added, and it may become

impossible to reach the required product purity speci cation.

Related to pinch points is the concept of minimum re ux. Lower re ux ra-

tio is desirable because it correlates with lower energy requirements; however,

a minimum re ux exists, below which operation of the column is impossible

for the required product speci cation. In the minimum re ux state, at least one

column section encounters a pinch. Moreover, a column at minimum re ux

requires an in nite number of stages, and is thus clearly not practically viable.

Figure 2.1a shows this pinch at minimum re ux for a binary separation in the

form of a McCabe–Thiele plot, while Figure 2.1b presents the liquid column

pro les for a ternary split.
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Figure 2.1 Examples of pinch points that occur at minimum re ux for (a) a binary
separation, and (b) a direct split of a ternary mixture.

As such, entropy generation, pinch points, and minimum re ux all repre-

sent limits of operation.

Entropy generation has thus far been considered by a number of re-

searchers, either in that form directly, or in the variations of exergy, availabil-

ity, or lost work. Often, entropy generation is set to zero to provide a target

for distillation using the reversible distillation model (e.g. Petlyuk et al., 1965;

Fonyó, 1974; Koehler et al., 1991; Dhole and Linnhoff, 1993; Poellmann and

Blass, 1994; Aguirre and Espinosa, 1996; Ayotte-Sauvé and Sorin, 2010).

The purposes of these studies were typically goal-driven in the sense that

they were used to devise complex distillation arrangements (Petlyuk et al.,

1965), minimise energy requirements using reversibility (Koehler et al., 1991;

Ayotte-Sauvé and Sorin, 2010), to identify opportunities for feed precon-

ditioning, and intermediate reboilers and condensers (Dhole and Linnhoff,

1993; Aguirre et al., 1997; Bandyopadhyay, 2002; Bandyopadhyay et al.,

2003; Bandyopadhyay, 2007; Soares Pinto et al., 2011). The minimisation

of entropy generation for the design of diabatic columns has also been studied

(Sauar et al., 1997; Rivero, 2001; de Koeijer et al., 2002, 2004). Other work

has addressed the problem on a microscopic scale, by considering entropy

generation at the bubble level (Ratkje et al., 1995; Ray and Sengupta, 1996).

This chapter explores the relationship between the concepts of entropy

generation, pinch points, and minimum re ux, with the goal of gaining more

insight into the combined roles these phenomena play in limiting distillation.

The only directly comparable work can be found in Bausa et al. (1998), in

which those authors reach the same conclusion as in § 2.3 regarding station-
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ary points and stability. Nevertheless, the approach taken in this chapter is

different from theirs in that it is both more generalised, and delves into the

topic in greater depth.

The main purpose of this chapter is to provide a backdrop for the remain-

der of the thesis by tying together the concepts of pinch points, reversibility,

and entropy generation in distillation.

2.2 Entropy equations

In this chapter, notation from the column pro le map (CPM) method will be

used, as it applies to generalised column sections,1 and does not limit inter-

pretation to conventional rectifying and stripping sections. Details concerning

the CPM method can be found in Chapters 3 and 4, and, more completely,

elsewhere (Tapp et al., 2003; Holland et al., 2004a,b; Tapp et al., 2004;

Holland, 2005).

A bene t of the column pro le map method is that it considers all column

sections (CSs), including those in complex arrangements, in exactly the same

way. Several variables are de ned: Δ = V−L, which is the net molar ux in a

CS, rΔ = L/Δ, which is the re ux ratio of the CS, and XΔ = (VYT − LxT)/Δ,

which is the difference point of the column section. The lowercase variable x is

simply the liquid mole fraction vector. Uppercase Y is used represent the mole

fraction of the passing vapour stream (the vapour stream that is adjacent to

the liquid stream with composition x), while lowercase y is used to indicate a

stream that is in equilibrium with x.2 If the common constant molar over ow

(CMO) assumption is used, then XΔ is constant throughout the CS, and can

relate the compositions of the passing streams at any point; in other words,

it is also true that XΔ = (VYn − Lxn)/Δ at a cross-section at an arbitrary

stage n. Moreover, in column sections terminated by a reboiler or a condenser,

the interpretations of Δ, rΔ, and XΔ are directly related to traditionally used

variables: for example, it can be shown easily that in a conventional rectifying

section, Δ = D, rΔ = r = L/D, and XΔ = xD, and in a conventional stripping

section, Δ = −B, rΔ = −S− 1, and XΔ = xB.

1 A column section is de ned as a part of the column in which there is no overall addition or
removal of mass or energy.

2 Using conventional notation in staged columns, Yn = yn+1. Columns modelled in this chapter
are continuous/packed, which means that conventional notation does not suf ce, since the
(n+ 1)th stage is not related to the nth stage directly by equilibrium.
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Figure 2.2
Simple diagram of a generalised
column section, showing ow and
composition variables.

As the thermodynamic basis, pure liquids at 298.15K and 101325 Pa are

assigned zero enthalpy and entropy. In this chapter, the common CMO as-

sumption is made, which stipulates that: (1) sensible heat effects are negligible

in comparison with latent heat effects; (2) heat of mixing is negligible; (3) the

column is adiabatic; and (4) the latent heat of each of the components is the

same.

Consider the generalised column section shown in Figure 2.2, which

extends from an arbitrary stage m down to stage n, with a known Δ, rΔ, and

XΔ.

A mass balance on component i around this CS gives the following:3

Lxmi + VYn︸ ︷︷ ︸
Mole ow

of i in

= Lxni + VYm
i︸ ︷︷ ︸

Mole ow
of i out

VYm
i − Lxmi = VYn − Lxni

ΔXΔ,i = VYn
i − Lxni

Yn
i =

Δ
V
XΔ,i +

L
V
xni

Yn
i =

(
1

1+ rΔ

)
XΔ,i +

(
rΔ

1+ rΔ

)
xni

Yn
i =

XΔ,i + rΔxni
1+ rΔ

(2.3)

Equation (2.3) describes the operating line of the column section, and

3 The superscripts ‘m’ and ‘n’ indicate stage number, and not exponentiation.
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reduces to the standard operating line equations for conventional columns

when the variables are transformed to their traditional counterparts.

An entropy analysis over the column section gives the following:

Smliq + Snvap︸ ︷︷ ︸
Entropy
ow in

+ Sgen︸︷︷︸
Entropy
generated

= Smvap + Snliq︸ ︷︷ ︸
Entropy
ow out

Sgen = Smvap + Snliq − Smliq − Snvap

Sgen =
(
Snliq − Snvap

)
−
(
Smliq − Smvap

)
(2.4)

For convenience, a new variable, δSn, is de ned as the entropy of the liquid

stream minus the entropy of the passing vapour stream, at a chosen stage n.

Mathematically, this de nition is:

δSn ≡ Snliq − Snvap (2.5)

Substituting this new variable into Eq. (2.4) leads to:

Sgen = δSn − δSm (2.6)

Note that in this arrangement of the entropy analysis, the entropy genera-

tion term is the δS at the top of the CS subtracted from the δS at the bottom

of the CS.

In order to remove the material ux effects on the entropy generation, it

is useful to divide Eq. (2.6) through by Δ, and using underbar notation to

indicate a speci c ‘per-Δ’ quantity, the following is obtained:

Sgen
Δ

=
δSn

Δ
− δSm

Δ

Sgen = δSn − δSm (2.7)

Through calculations that are detailed in Appendix A.2, the expressions

for the δS terms in Eq. (2.7) are found:

δSn = rΔΔŜnmix,liq −

[
λ

N∑
i=1

(
XΔ,i + rΔxni

Tb,i

)
+ (1+ rΔ)ΔŜnmix,vap

]
(2.8)

where ΔŜmix is the entropy of mixing of the stream indicated by the sub- and

superscripts. Entropy of mixing is calculated as follows, assuming a vapour

phase that behaves like an ideal gas:
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ΔŜmix,vap = −R
N∑
i=1

Yi ln(Yi) (2.9)

ΔŜmix,liq = −R
N∑
i=1

xi ln(xiγi) (2.10)

In Eq. (2.9), Yi is related to xi by Eq. (2.3).

2.3 Important properties of the entropy equations

2.3.1 Path

Entropy, like enthalpy, is a state function. However, Sgen is not a state function,

but a path function: the actual path taken is signi cant. The second law of

thermodynamics stipulates that Sgen ≥ 0 in any feasible process. Consequently,

it cannot occur that Sgen < 0 in any part of the column, even if overall Sgen ≥ 0.

This means that not all paths for the separation are feasible, i.e. a column

composition pro le cannot be arbitrary; it is constrained by this Sgen condition.

It can be deduced that if entropy must always be generated, δSn is monotonic

along the height of the column. The effect of this is of great importance, and

will be considered later in § 2.4.

2.3.2 Stationary points

Knowledge of the maxima and minima of a function is often useful infor-

mation, as it represents the limits of what values a function can assume, and

where those extreme points occur.

When the derivative of Eq. (2.8) is taken with respect to n, Eq. (2.11) is

obtained (see Appendix A.3 for the derivation):

d
dn

(δS) = −rΔR
N∑
i=1

(ln(xiγi) + 1)
dxi
dn

+
N−1∑
j=1

((
∂ ln γi
∂xj

)
dxj
dn

)−
λrΔ

N∑
i=1

[(
1
Tb,i

)
dxi
dn

]
+ rΔR

N∑
i=1

[(
ln
(
XΔ,i + rΔxi

1+ rΔ

)
+ 1
)
dxi
dn

]
(2.11)

An interesting result is observed: each term on the right-hand side of

Eq. (2.11) contains a factor of dxi/dn. The signi cance of this is that when

the design parameters rΔ and XΔ are set, and a pinch point is encountered,

dxi/dn = 0 for i = 1…N, as per the de nition in Eq. (2.1); therefore, at
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a pinch point, d(δSn)/dn = 0. In other words, exactly at a pinch point, a

local maximum, local minimum, or in ection point in the δS function occurs.

For simplicity, a constant λ has been assumed, but it can be shown that the

derivative of a temperature-dependent λ also contains a dxi/dn factor (see

Appendix A.4). This is intuitive, since latent heat is a function of temperature,

and temperature is a function of composition, which in turn is a function of

the column stage number.

Since the difference between the δS values at the beginning and end of a

path in composition space within the column section gives Sgen, the maximum

entropy that can be generated in a column for xed rΔ andXΔ occurs when the

column pro le runs from one pinch point to another, where one is a maximum

in δS and the other a minimum.

Furthermore, according to the path argument outlined in § 2.3.1, in order

to satisfy the Sgen ≥ 0 condition, it cannot happen that two pinch points linked

by a column pro le are both at the same type of stationary point. For example,

if a column pro le were to go from one local maximum of δS to another local

maximum, logic dictates that it must go through a local minimum between

those two maxima. This, however, would lead to negative entropy generation

in some part of the column, which is impossible. It is theoretically possible

for a column pro le to run from an unstable node, through a saddle point,

and terminate at a stable node. Thus, given that the beginning and end of

a column pro le that connects stable and unstable nodes must be extreme

points, it can be deduced that saddle points must be in ection points. If the

stages are numbered from top to bottom, then stable nodes are local maxima,

and unstable nodes are local minima.

Entropy generation may provide at least a partial explanation of why pinch

points occur: they demarcate extremes within which a column can operate.

Operating past pinch points—if it were possible—would result in a violation

of the second law of thermodynamics by consuming entropy in some part of

the equipment.

2.4 Minimum reflux and entropy

It is of importance that δS, as given in Eq. (2.8), is a function of liquid

composition only, once the design parameters (rΔ and XΔ) are set. It allows

for the determination of δS at compositions that may not actually exist in the
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Values of δS as a function of
the light (benzene) liquid mole
fraction in a rectifying section
of the benzene–toluene system,
with rΔ = 4 and XΔ = (1, 0).

column at those chosen design parameters. Perhaps unintuitively, this provides

insight into what limits compositions in the column section’s operating line.

To illustrate this, a benzene–toluene mixture can be used as an example

of a near-ideal system. In the remainder of this section, the behaviour of the

δS function is explored. First, sharp splits in rectifying and stripping sections

are examined, after which non-sharp splits are treated brie y. Finally, a new

minimum re ux equation is presented, based solely on entropy generation.

2.4.1 Effect of rΔ on δS in rectifying sections

For simplicity, a sharp split is assumed in the rectifying section under con-

sideration, i.e. XΔ = (1, 0). By arbitrarily setting rΔ = 4, the only unspeci ed

variable is the liquid mole fraction, x. Figure 2.3 shows the behaviour of the δS

function as x is varied, for the xed design parameters. On this graph, points

A–E are marked, where A corresponds to pure toluene, C corresponds to the

maximum of the δS function, and E is pure benzene; B and D are arbitrary

intermediate points.

Since the horizontal axis of the graph in Figure 2.3 is the mole fraction of

the light component, in the context of a distillation column, it means that the

left side tends to the bottoms stream composition, and the right tends to the

distillate composition. Therefore, if two compositions are arbitrarily chosen,

the rightmost one in this gure would physically be located further up the

column.

It is important to take cognisance of the fact that Δ in rectifying sections

is positive, such that δS and δS have the same sign. As such, the entropy

generation per Δ in the column section, Sgen, is calculated as the difference

between the δS value at bottom of the CS, subtracted from the δS at the
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top, and in order for Sgen to be positive, as required by the second law of

thermodynamics, Sgen must also be positive.

With reference to Figure 2.3, if the bottom of the column section in

question had a composition at D and the top was at E, the entropy generated

would be the δS at D (−465.1 J/mol·K) minus the value at E (−473.0 J/mol·K),

which is 7.9 J/mol·K.

Since Sgen cannot be negative, the paths A → B, A → C, and B → C

are not possible. However, even though the value of δS at A and B is higher

than that at D and E, δS does not decrease monotonically between B and D,

but goes through a maximum at C. This means that in the part of the path

B → C, Sgen < 0, which is not feasible. Therefore, even if the column section

overall appears not to have negative entropy generation between A/B and D/E,

those paths are not possible due to negative Sgen. As a result of this, the only

feasible paths—with respect to the ve chosen points—are C → D, C → E,

and D → E, as this is where the function is monotonically decreasing.

Having speci ed that a sharp split is required, and assuming a conventional

rectifying section, the distillate composition (the liquid composition at the top

of that CS) is equal to XΔ, which corresponds to point E in Figure 2.3. With

the design parameters used for this graph, it can be seen that the composition

at the bottom of the CS can be anywhere between points C and E, i.e. the

light liquid mole fraction can range from 0.171 to 1. Note that if the light

mole fraction at the bottom of the CS were any lower, the path would not be

feasible. This limiting path C → E also corresponds to the maximum possible

Sgen with those design parameters.

One of the features unique to binary distillation is that the column pro les

of the rectifying and stripping sections always intersect at the feed composition

when the column is at its minimum re ux, i.e. it pinches at the feed. (In mul-

ticomponent distillation, this is a special case, rather than normal behaviour.)

Consequently, when considering a rectifying section in such a column, the

composition at the bottom of the section is that of the feed. The implication

is that for the parameters XΔ = (1, 0) and rΔ = 4, the limit of the composition

that can be fed to the column is xF = (0.171, 0.829). A feed composition

with a lower concentration of the light material would not be feasible with

those particular design parameters. This observation can also be stated in

a different way: for xF = (0.171, 0.829) and XΔ = (1, 0), the limiting (or

minimum) re ux is rΔ = 4. Indeed, the discussion in § 2.3.2 would suggest that

the composition (0.171, 0.829) is a pinch point, since δS is at a maximum.
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To investigate this hypothesis further, a greater number of sample points

must be considered. To this end, Figure 2.4 shows similar plots to Figure 2.3,

but for a range of rΔ values, from 0.5 to 10 in intervals of 0.5. The maximum

values are indicated by the dots for clarity. As rΔ → ∞, the maximum value

of δS tends towards the pure heavy component; conversely, as rΔ → 0.682,

this maximum value shifts towards the pure light component. At rΔ values

lower than 0.682, the composition stays at the pure light component, as that

is a physical limit—a composition higher than (1, 0) is impossible. (Although

the CPM method uses the information from negative compositions, entropy

analysis in these regions is impossible due to the logarithm in the entropy of

mixing term: negative compositions give complex values.)

Each of the maxima in Figure 2.4 has an associated composition and rΔ
value. These points can be plotted with composition on the horizontal axis,

and rΔ on the vertical axis, alongside results from the Underwood equations

(Underwood, 1948), which are used to calculate minimum re ux ratio, given

feed and distillate compositions, and the constant relative volatility of the

system. The Underwood equations are as follows:

N∑
i=1

αizF,i
αi − φ

= 1− q (2.12)

rmin + 1 =
N∑
i=1

αixD,i

αi − φ
(2.13)

where q is the molar liquid fraction of the feed, and φ is the Underwood root.

Equation (2.12) is solved to nd the root φ, which is then substituted into

Eq. (2.13) to nd the minimum re ux, rmin. The benzene–toluene system is
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well-approximated with the constant relative volatility model with α = 2.47.

The plots of rmin can then be compared to verify whether or not the maxima

in Figure 2.4 do indeed correspond to minimum re ux; such a comparison is

made in Figure 2.5, and it con rms this hypothesis.

This work has thus far only considered a liquid feed; in order to use a

vapour feed, the corresponding liquid composition in equilibrium with the

feed composition must be found (by means of a dew-point calculation) for use

in the δS equation.

2.4.2 Effect of rΔ on δS in stripping sections

Stripping sections can be analysed in much the same way as rectifying sections.

The main difference is that stripping sections have negative Δ values; as such,

for Sgen to be positive, Sgen must be negative. Also owing to the negative Δ value,

stripping sections have negative rΔ, and it can be shown easily that rΔ < −1

always.

Assuming a sharp split once again, such that XΔ = (0, 1), and arbitrarily

designating rΔ = −3, a plot of δS can be made, as is shown in Figure 2.6.

The dot indicates the local maximum that is monotonically linked to the XΔ
composition. For positive Sgen, the δS slope must be negative, such that valid

pro les range from the leftmost part of Figure 2.6 to the local maximum shown

by the dot; beyond that, negative entropy generation would occur.

Figure 2.7 shows plots of δS for a range of rΔ values, from −15 to −1.5 in

intervals of 0.5.

In a conventional distillation column, the rΔ in the stripping section can be

used to calculate the corresponding rΔ in the rectifying section through simple
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mass balance. The relationship between these two rΔ values is as follows,

assuming CMO and a saturated liquid feed:

rΔ,R = (rΔ,S + 1)
(
xF,1 − xD,1

xF,1 − xB,1

)
− 1 (2.14)

where the subscripts ‘R’ and ‘S’ denote the rectifying and stripping sections,

respectively. In the sharp-split case, xD = XΔ,R = (1, 0), and xB = XΔ,S =

(0, 1).

If the stripping rΔ points in Figure 2.7 are transformed to rectifying rΔ using

Eq. (2.14), the points align with the minimum re ux in Figure 2.5.

2.4.3 Non-sharp splits

Non-sharp splits of the benzene–toluene system are brie y considered here.

A non-sharp XΔ could being either a rectifying section (if the compositions

in the CS are heavier than the XΔ) or a stripping section (if the compositions

are lighter than the XΔ). As such, the rectifying and stripping sections can be
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considered simultaneously on the same graphs; Figure 2.8 shows the δS curves

for xedXΔ, and varying rΔ. For the rectifying section, the rΔ values range from

1 to 11 in increments of 2, and for rectifying sections, the rΔ ranges from −12

to −2 in increments of 2.

The behaviour for the non-sharp splits in Figure 2.8 is qualitatively similar

to the sharp splits examined in § 2.4.1 and § 2.4.2, and does not appear to

exhibit any unexpected characteristics.

2.4.4 Tangent pinches

Tangent pinches can be encountered in some zeotropic and azeotropic mix-

tures; in such cases, minimum re ux is not determined by a pinch at the

feed. As an example of a zeotropic system with a tangent pinch, consider an

equimolar feed of benzene–ethylenediamine system, split into a distillate of

xD = (0.99, 0.01), and a bottoms of xB = (0.02, 0.98). Figure 2.9a shows
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a McCabe–Thiele diagram for this system, with re ux that gives a pinch at

the feed. Because of the shape of the equilibrium curve, an operating line that

pinches at the feed must cross the equilibrium curve, which is not physically

possible. Therefore, the minimum re ux is determined by an operating line of

the rectifying section that is tangent to the equilibrium curve; this operating

line pinches at a lighter composition than the feed, and has a higher re ux

than in the feed-pinch case. Figure 2.9b shows the true minimum re ux.

Also included in Figure 2.9 are plots of the δS values for the rectifying

section for both of the scenarios mentioned above; it is important to note

that there is a corresponding stationary point in the δS function at each point

that the rectifying operating line intersects the equilibrium curve, as discussed

in § 2.3.2. The correspondence is not exact, owing to the fact that the two

approaches are inherently different in their simpli cations: while theMcCabe–

Thiele diagram assumes CMO, and thus omits the energy balance entirely,

the δS require values for λ and Tb, which affects the exact properties of

the δS curves. Appendix A.5 shows the exact correspondence using rigorous

thermodynamics in both.

2.5 New minimum reflux equation for binary
separations

The analysis of the benzene–toluene system has shown that for a given feed,

xF, the minimum re ux ratio is the rΔ that places a maximum in the δS function

at the composition xF. (The same is not true if a tangent pinch exists.)

This is an important observation that highlights the physical and practical

signi cance of entropy in distillation columns. The knowledge that a local

maximum in the δS function corresponds to minimum re ux means that an

equation based on Sgen can be derived, at least for binary systems without a

tangent pinch. First, the derivative of δS with respect to x1 is found, which

is then set to zero, i.e. d
(
δS
)
/dx1 = 0, which de nes the stationary point in

δS. Thereafter, the equation can be rearranged to make rΔ the subject of the

formula. This derivation is given in Appendix A.6, and the result is:

rmin =
(1− xD,1) exp(Ψ)− xD,1

xF,1 − (1− xF,1) exp(Ψ)
(2.15)

where
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Figure 2.9 McCabe–Thiele diagrams, and corresponding rectifying δS
curves, for the benzene–ethylenediamine system at (a) feed-pinch re ux, and
(b) actual minimum re ux at the tangent pinch.

Ψ = ln

(
xF,1γF,1

(1− xF,1)γF,2

)
+
xF,1

γF,1

(
∂γF,1

∂xF,1

)
+

(1− xF,1)

γF,2

(
∂γF,2

∂xF,1

)
+

λ(Tb,2 − Tb,1)

RTb,1Tb,2

The above equation is not particularly elegant, since it involves a de-

scription of the non-idealities of the system by the partial derivatives of the

activity coef cient with respect to x1 at constant T and P. These can either

be calculated analytically where possible (Taylor and Kooijman, 1991), or

numerically using nite differences.

For systems that exhibit ideal liquid mixing, γ = 1, such that Ψ simpli es

to the following:

Ψ = ln
(

xF,1

1− xF,1

)
+

λ(Tb,2 − Tb,1)

RTb,1Tb,2

As Eq. (2.15) above shows, the information required is the latent heat

of the system λ, the boiling points of the pure components Tb,1 and Tb,2 at
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system pressure P, and the activity coef cient model (in the case of a non-ideal

system).

2.5.1 Examples and validation

In order to test the Eq. (2.15), three examples without tangent pinches were

used: benzene–toluene as an example of a near-ideal mixture, chloroform–

methanol as an example of a minimum-boiling azeotrope (at 65.88 mol%

chloroform; 326.9K), and acetone–chloroform as an example of a maximum-

boiling azeotrope (at 34.52 mol% acetone; 337.3K).

Note that, in the case of the azeotropes, the simple distillation can take

place on either side of the azeotrope. For example, in the minimum-boiling

azeotrope case, the bottoms can be close to either pure component, with the

distillate close to the azeotropic composition. In the maximum-boiling case,

the reverse is true: the distillate can be close to the composition of the pure

components, and the bottoms is close to the azeotropic composition.

Figure 2.10 shows rmin as a function of feed composition for the benzene–

toluene system, as found by McCabe–Thiele approach, and by Eq. (2.15). The

distillate composition is xD = (0.99, 0.01).

Figures 2.11 and 2.12 show the same type of plot for chloroform–methanol

and acetone–chloroform, respectively. For the former, distillate compositions

on either side of the azeotrope are given: xD = (0.6, 0.4) and xD = (0.7, 0.3).

Similarly, the two rmin plots for acetone–chloroform are shown, for distillates

of xD = (0.01, 0.99) and xD = (0.99, 0.01).

Figures 2.10–2.12 show that the rmin calculations with Eq. (2.15) are

very close to those using the McCabe–Thiele method. There are some slight

differences, which result from differences in the two approaches, as explained

in § 2.4.4. Nevertheless, the two methods do align very well, for both ideal

and azeotropic systems.
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2.6 Conclusion

In this chapter, entropy generation in distillation column sections was exam-

ined, with equations derived for generalised column sections. Speci cally, a

new variable, δS, was de ned, which can be used to compare the difference

between the entropies of the passing liquid and vapour. Entropy generation

is simply the difference between δS at two points in the column sections. The

behaviour of δS was then analysed, and a mathematical proof was given that

the stationary points of that function correspond to traditional pinch points

in distillation.

An analysis of generalised rectifying and stripping sections was then

performed, and it was veri ed that the local extrema do indeed correspond
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to pinch points. This feature, along with the knowledge that binary columns

pinch at the feed, was used to derive a novel minimum re ux equation, in the

form of Eq. (2.15), which is applicable to ideal or non-ideal systems without

tangent pinches. Tangent pinches were found to be in ection points in the δS

function.

It should be noted that Eq. (2.15) is more complicated than the McCabe–

Thiele method, and is also limited to two components, since it exploits the

feed pinch that occurs at minimum re ux in binary distillation. As such, it is

admittedly not a practically useful tool, as it can be replaced by the McCabe–

Thiele for simpler calculation of minimum re ux. However, its purpose is to

demonstrate the power of entropy analysis, and the integral, often overlooked,

part it plays in distillation. Using the entropy analysis, an entirely new way of

nding minimum re ux was derived.

What is perhaps most remarkable, however, is the fact that entropy gener-

ation alone was used to nd pinch points, without VLE calculations. It could

be argued that VLE calculations are included in Eq. (2.15) implicitly through

the γ terms; however for ideal systems where γ = 1, the equation still gives the

correct minimum re ux, which clearly has no VLE calculation associated with

it. Overall, this suggests that VLE, entropy, and hence limitations in distillation

are more fundamentally linked than previously thought.



Chapter 3

Pinch Points in Non-Ideal Distillation
Systems and Finite-Reflux Distillation
Boundaries

The work in this chapter has been published in: Felbab, N., Hildebrandt, D.,

Glasser, D., 2011. A new method of locating all pinch points in nonideal

distillation systems, and its application to pinch point loci and distillation

boundaries. Comp. Chem. Eng. 35 (6), 1072–1087. This chapter is a repro-

duction of that publication, with some minor corrections, and changes in

style and formatting for clarity. It has also been updated somewhat to re ect

developments in the eld since that publication. Reproduced with permission.

Copyright © 2011 Elsevier. Computers & Chemical Engineering.

Abstract

A new method for automatically nding all of the pinch points in a user-speci ed

composition space in non-ideal distillation systems at any re ux is presented. It does

not rely on the solution of ODEs, and neither knowledge of the system topology, nor

rigorous simulation is required. Moreover, the method can be applied to any column

section, even those within complex con gurations. Themethodworks on the principle

of a systematic search over an area to nd where the conditions for a pinch point are

satis ed; this includes pinch points outside of the mass balance triangle, which, while

physically impossible, do provide useful information. This principle is extended to

re ux-parameterised pinch point loci and to nding distillation boundaries accurately.

Non-idealities are modelled with the NRTL model, although any model can be used.

Only ternary systems have been considered, but the method can, in principle, extend

to higher-order systems.

25
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3.1 Introduction

3.1.1 Residue curve maps

Traditionally, residue curve maps (RCMs) have been used as a graphical

method to perform shortcut heuristic synthesis of multicomponent distillation

systems (Fien and Liu, 1994). Residue curves are constructed mathematically

by solving a system of ordinary differential equations, the general case of

which is given by Eq. (3.1), for N− 1 components.

dxi
dn

= xi − yi (3.1)

The above is an initial value problem, which can be solved using any

combination of (xi,…, xN−1) that sum to unity as a starting point. When the

system of equations is solved, the result is a trajectory in composition space,

known as a residue curve (RC). Performing the integrationwith a starting point

that lies on a speci c RC yields that same RC. In a batch distillation system

(with changing time t, rather than n, in Eq. (3.1)), the physical signi cance

of an RC is that it shows how the composition of the liquid changes with

time as it is boiled in an open system, if it had the starting composition at a

known time t. Since RCs are unique, integrating Eq. (3.1) backwards from the

starting point can determine what the liquid composition would have been

prior to known time t.

All RCs terminate at a stable node, and originate at an unstable one, the

compositions of which are at pure components or azeotropes. These com-

positions are referred to as stationary points. Additionally, in ternary and

higher-order systems, saddle points can occur, which are simply points in the

composition space past which trajectories can run, but at which they can never

terminate. The above is also true of any azeotrope, which can either be a stable

or unstable node, or a saddle point.

Pinch points in distillation systems occur mathematically when dxi/dn = 0

in Eq. (3.1) for N− 1 components; since the mole fractions sum to unity, this

condition is automatically met for the Nth component.

By plotting a number of residue curves on the same graph, an RCM is

constructed, an example of which is given in Figure 3.1 for the acetone–

benzene–chloroform (ABC) system. It allows for various trajectories to be

considered simultaneously, which gives insight into the system behaviour. This

behaviour is known as the topology of the system, which is the structure of

how various stable and unstable nodes and saddle points are linked by residue
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Residue curve map of the acetone–
benzene–chloroform system.

curves. Note that in Figure 3.1, residue curves are plotted outside of the mass

balance triangle (MBT) as well, which is not traditionally done. Although this

is physically impossible, it is not meaningless. In his thesis, Holland (2005)

showed that these residue curves outside of the MBT are mathematically and

thermodynamically valid.

With regards to continuous distillation, if a distillation column is operated

at in nite re ux, that is, if all of the product is returned to the column, the

solution of Eq. (3.1) yields the composition pro le within the column, with

a known starting point at a stage n. Residue curves are identical to these

column pro les, such that RCMs describe both the batch distillation case and

the continuous in nite re ux one.

By using in nite re ux as a limiting case, it is possible to design separation

systems, or rather to get a starting point for column sequencing or for the

design of complex columns. Examples of the former can be found in Fien and

Liu (1994), as well as in many modern texts on distillation.

3.1.2 Column profile maps

While RCMs do have their uses, the assumption of in nite re ux is an

unrealistic and impractical one.

To circumvent this shortcoming, Van Dongen and Doherty (1985) intro-

duced an approach to express nite-re ux column pro les in traditional recti-

fying and stripping sections with an ordinary differential equation analogous

to Eq. (3.1). Tapp et al. (2004) built on the work of Van Dongen and Doherty

by extending the latter’s equation for use in generalised column sections, such

as those within complex con gurations like the Petlyuk column (Holland,
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2005; Holland et al., 2010). Tapp et al. termed their equation the difference

point equation (DPE). The DPE is given here as Eq. (3.2):

dxi
dn

=

(
1+

1
rΔ

)
(xi − yi) +

1
rΔ
(XΔ,i − xi) (3.2)

where Δ = V−L, rΔ = L/Δ, andXΔ = (VYT−LxT)/Δ. The last two are known

as the design parameters: rΔ is a ‘re ux ratio’ of the column section (CS), and

XΔ, the difference point, can be viewed as the pseudo-composition of the net

ow in the CS. Δ is the net ux of material in the CS. In a CS terminated by

a total condenser, rΔ is the standard de nition of re ux ratio, and XΔ is the

composition of the distillate. To relate the DPE to a conventional stripping

section, the stages are numbered in reverse, S = −rΔ−1 (where rΔ < −1), and

XΔ is the composition of the bottoms.

Note that constant molar over ow (CMO) is assumed for Eq. (3.2) to hold.

When these design parameters are xed, the solution of Eq. (3.2) is a

column pro le, which is entirely analogous to a residue curve, at nite re ux.

Again, completely analogously to RCMs, the DPE allows for construction

of column pro le maps (CPMs), which are essentially RCMs, but at nite

re ux. These maps trace the liquid composition pro le in a generalised column

section, de ned as a section of the column in which there is no addition or

removal of energy or mass. Since there is anXΔ value for each component,XΔ,i,

XΔ can be described as a unit vector that has the same number of elements as

components in the system, i.e.XΔ = (XΔ,1,XΔ,2,…,XΔ,N). It is noteworthy that

Eq. (3.2) collapses to Eq. (3.1) as rΔ → ∞, i.e. in nite re ux, which indicates

that RCMs can be seen as a subset of CPMs. Furthermore, the mathematical

conditions for a pinch point also remain the same as in RCMs: dxi/dn = 0 in

Eq. (3.2) for N− 1 components. An example of the CPM of the ABC system,

with rΔ = 6 and XΔ = (0.90, 0.05, 0.05), is given in Figure 3.2.

The relationship between CPMs and RCMs has been examined in some

detail previously (Tapp et al., 2004; Holland et al., 2004a,b), but even

comparing Figures 3.1 and 3.2 will give the reader some insight into this

relationship. CPMs are relatively new way of looking at distillation processes;

as such, not much literature on the topic is available outside of the COMPS

research group yet, although its use is becoming more widespread, e.g. see the

work of Linninger and co-workers (Linninger, 2009; Kim et al., 2010), and

Tian et al. (2009). Some of the more important characteristics of CPMs are

reiterated below.

Although this chapter deals predominantly with non-ideal systems, it is
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Figure 3.2
Column pro le map of the ABC
system with rΔ = 6 and XΔ =
(0.90, 0.05, 0.05).

convenient to rst consider a system exhibiting constant relative volatility

(CRV). Such a system might have, for example, relative volatility α = (2,

1, 1.5), such that the components are light, heavy, and intermediate, in that

order.

A rectifying section terminated by a condenser has the standard inter-

pretation of the design parameters: rΔ is the re ux ratio, and the column is

producing a distillate of, for example, xD = XΔ = (0.8, 0.1, 0.1). Figure 3.3

gives the RCM (i.e. CPM with rΔ → ∞) of this system, as well as the CPM at

rΔ = 5. It is important to note that the mass balance triangle has shifted at

nite re ux (this phenomenon is the ‘moving triangles’ that forms the basis

of Holland et al., 2004b), and the equivalence of the topology of the two

triangles, regardless of their different shapes and positions. The vertices of

this nite-re ux transform triangle (TT) are the pinch points. With respect

to the MBT, when re ux is lowered to a nite value, the topology changes.

However, with respect to the shifted or transform triangle, the topology

remains unchanged. In effect, all that has changed between the two scenarios

is that the pinch points have moved. Note that most of the pinch points that

make up the vertices of the two TTs are outside of the real space. Although

the compositions outside of the real space are physically unattainable, they

are topologically important, since knowledge of their positions allows for

insight into the behaviour of the column section and its structure. For example,

even though a pinch point is outside of the MBT, its position in uences the

behaviour of column pro les within the real space, and, e.g. if it is a stable

node, all pro les will run towards it, regardless of the physical impossibility

of reaching it.



CHAPTER 3 PINCH POINTS AND DISTILLATION BOUNDARIES 30

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Liquid mole fraction light

L
iq

u
id

 m
o
le

 f
ra

ct
io

n
 h

ea
v
y

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Liquid mole fraction light

L
iq

u
id

 m
o
le

 f
ra

ct
io

n
 h

ea
v
y

(a) (b)

Figure 3.3 Plot of (a) RCM, and (b) CPM with rΔ = 5 and XΔ = (0.8, 0.1,
0.1) for a constant relative volatility system with α = (2, 1, 1.5).

Bausa et al. (1998) and Tapp et al. (2004) both noted what has just been

illustrated, i.e. that when re ux is changed, the pinch points of a system move

in the composition space away from their in nite-re ux positions.

Figure 3.3 illustrates that CPMs are simply a transform of RCMs in compo-

sition space. This particular feature of the CPM method is one of its most pow-

erful. It allows for the synthesis of columns by manipulating these triangles of

known topology to achieve the behaviour that the designer requires. It departs

from, and improves on, the traditional design methods which consider only

one pro le at a time, since the column pro le map scans all possible pro les

and behaviours for the chosen design parameters.

‘Unusual’ behaviour can also occur at low rΔ values. For example, as the

pinch points move with decreasing re ux, their stability can also change. Past a

certain re ux, a stable nodemay suddenly become an unstable node or a saddle

point, thereby dramatically changing the behaviour within the distillation

column. Furthermore, as the pinch points move, they tend to move towards

one another, and can ‘collide’ and merge in the composition space, thereby

decreasing the number of unique pinch points. For example, if Figures 3.1 and

3.2 are compared, it can be seen that in the former (at in nite re ux) there are

seven pinch points, while in the latter, only ve exist. These phenomena have

been examined in more detail by Beneke et al. (2011a), and mentioned by

Bausa et al. (1998) and Holland et al. (2004a).

3.1.3 Pinch point loci

A pinch point locus (also known as a pinch point curve) is the locus that traces

the positions of pinch points, as an independent design parameter is varied.
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Usually, this parameter is rΔ, but XΔ could be used, depending on what is

more convenient for the particular design problem. This allows for the easy

determination of the parameter values that lead to the desired positioning of

the pinch points, in order to achieve the required behaviour within the column.

An example, which uni es all of the discussed concepts and proposed

methods into a practical application for the synthesis of a distributed-feed

column, is presented at the end of this chapter.

3.1.4 The aim of this work

The position and stability of pinch points in a system determine the topology

of CPMs of the various column sections that make up a column. It can be used

to the designer’s advantage with the CPM method, not only to synthesise a

feasible column, but also to gain a better understanding of the choices that

design parameters have on the nal design.

Pinch points in CRV systems are straightforward to nd; in fact, they can

be found by software with symbolic calculation capabilities.

However, for highly non-ideal systems that can only bemodelled accurately

by more complicated models such as NRTL or Wilson, this problem becomes

substantially more dif cult: not only is it mathematically far more dif cult to

solve, but, as discussed earlier, pinch points have highly complex behaviour at

low re ux ratios, and can merge with one another, or ‘disappear’ altogether,

because some of the roots become imaginary. Prior to this work, unless the

full CPM was plotted, it was not possible to know how many pinch points

actually existed, what their locations were, and what the structure of the CPM

was.

The algorithms presented here are intended as a tool to aid work with col-

umn pro le maps (and especially for automation thereof), but not as a stand-

alone synthesis/design technique. Tapp et al. (2004), Holland et al. (2004a),

andHolland et al. (2004b, 2010) have comprehensively covered their novel de-

sign method—most of which requires pinch points—but not a way of nding

pinch points or of constructing pinch point loci, which is what this chapter

aims to do. Naturally, the method can be used for any other application that

requires pinch points. One non-CPM example of such an application would be

for use with the recti cation body method (Bausa et al., 1996, 1998), which

relies on pinch points.

This algorithm for nding pinch points is a ‘brute-force’ one, which is

to say that it populates the given region with potential starting points in a
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systematic manner (although only the most promising are used). While this is

not computationally ef cient—in fact, it is only feasible due to the computing

power available nowadays—it is a requirement at this stage, as will become

apparent when the algorithm is described later in § 3.3. No claims are made

that it is the most ef cient way to nd a speci c pinch point, but it is an

effective method that can nd all of the pinch points in a CPM automatically,

given minimal information (as mentioned above, only rΔ, XΔ, and the bounds

of the search space).

The example provided in § 3.6 serves not only to show how the concepts

and methods presented here tie in with each other for the design of distillation

columns, but it also provides justi cation for nding all of the pinch points on

a CPM automatically.

3.2 Literature survey

A number of methods exist for nding the pinch points in a distillation system,

usually as a step towards nding theminimum re ux for a two-section column,

based on the fact that the minimum re ux is observed when the end pinch of

the stripping section just touches the rectifying pro le, or vice versa, depending

on the type of split (Doherty and Malone, 2001). It is immediately apparent

that these approaches are then limited to column con gurations for which they

are speci cally designed, most often conventional columns.

As a brief overview, some of these methods are listed below. The reader is

referred to the work of Lucia et al. (2008) and Hoffmaster and Hauan (2004)

for a more detailed discussion of many of these methods.

3.2.1 Pinch points

Levy and Doherty (1986) used pinch points to determine the minimum feasible

re ux ratio for a desired multicomponent split in a conventional column,

modelled with non-ideal thermodynamics. They found that the end-point of

the column pro le is a discontinuous function of the re ux ratio; that is, when

it moves past minimum re ux, it suddenly terminates at a tangent pinch, rather

than running past it as it would at a higher re ux ratio. In order to nd this

pinch point, Levy and Doherty applied bifurcation theory and ultimately used

standard root- nding techniques to solve a system of non-linear equations.

However, the thermodynamic models used were the van Laar and the two-

parameter Margules models, both of which are relatively simple and readily
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solved by root- nding methods. More complex models, such as the NRTL

model, do not lend themselves as easily to these methods.

To nd the pinch points in the rectifying section of a conventional column

with a speci ed distillate composition, Zhang and Linninger (2004) used an

equation presented by Doherty and Malone (2001) with a minor modi cation

to model vapour–liquid equilibrium (VLE) by means of an equilibrium con-

stant. The equation can then be solved iteratively to nd the pinch point

composition. Doherty and Malone also gave an equation for the stripping

section, which can be used in much the same way as the rectifying one, and

has been implemented in the work of Lucia et al. (2008).

Koehler et al. (1991) created a hypothetically reversible distillation model

(i.e. one that generates no entropy) by adding heat continuously throughout

the column at zero temperature difference, along with the other appropriate

assumptions that lead to reversibility. The purpose of this exercise was to nd

the minimum energy requirements of a conventional column, and from that

to calculate the minimum re ux, based on the understanding that the two

conditions correspond directly. It was found that the concentration pro le of

this reversible column corresponded exactly to the pinch point locus for an

adiabatic column at different re ux ratios, provided that the same amount of

heat is added at the end of the column section as the total heat added in the

reversible case. This approach led to a new criterion for nding tangent pinches

in conventional, multicomponent columns: as Koehler et al. state, ‘a tangent

pinch appears in an adiabatic rectifying section if there is a local maximum

in the reversible energy pro le between the distillate and the computed pinch

composition and if the energy demand at this maximum exceeds the energy

demand of the “conventional” saddle or end pinch.’

In his thesis, Halvorsen (2001) showed how the Underwood equations for

minimum energy can be used to calculate the pinch point compositions, but

this is limited to constant relative volatility systems, since that is a funda-

mental assumption of the Underwood equations. Despite this shortcoming,

Halvorsen demonstrated that this method can be applied to complex column

con gurations (the Petlyuk and Kaibel arrangements, speci cally), unlike the

other approaches discussed here.

Beneke et al. (2011b) developed a method of locating all pinch points,

which is the most similar in purpose to this work. The authors state that the

method is fast and robust. It operates on the principle of ‘multi-dimensional

de ation’, which is a way of de ning the objective function to eliminate
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previously found solutions by making the function tend to in nity at previous

solutions. In this way, the number of remaining solutions ‘de ates’. However,

as the authors state, that alone cannot guarantee location of all pinch points.

In order to locate all of them, the ‘hybrid sequential niche algorithm’ (Moon

and Linninger, 2009) is employed. This is effectively a hybrid, stochastically

initialised algorithm, with a genetic search component, followed by a local

deterministic search. The main disadvantage of this approach, however, is that

it is a complicated, non-standard algorithm, which the user needs to code from

the ground up in order to use; it is thus not suitable for non-expert users.

3.2.2 Pinch point loci

Based on the reversible distillation model, Poellmann and Blass (1994) created

a differential equation that satis es the collinearity criterion between the mate-

rial balance line and the equilibrium node, in order to determine the reversible

pro le. However, these pinch point curves are only valid for conventional

column sections, and are not directly parameterised by re ux or reboil ratio,

or heat duty, thereby making them useful in screening possible positions of

pinch points quickly, but not the design parameters that result in those pinch

points.

Pinch point loci or curves have been found by Hauan et al. (2000) by sat-

isfying the following criterion: the mixing and separation vectors are parallel,

of equal magnitude, and of opposite direction. This criterion is equivalent to

dxi/dn = 0 in Eq. (3.2). The same kind of approach was used by Wahnschafft

et al. (1992): ‘The pinch point curve for [the distillate] can be constructed

by nding the points on residue curves with their tangents passing through

the product composition.’ Poellmann and Blass (1994) also show a graphical

method of ‘stepping up’ from the bottoms up the column based on residue

curves, while Westerberg and Wahnschafft (1996) use this same method, but

to ‘step down’ from the distillate.

Pinch points are an integral part of the recti cation body method of Bausa

et al. (1996, 1998), and they have been found by those authors by solving

plate-to-plate mass and energy balances to plot column pro les, and then nd

the point where xni = xn+1
i , which is the discrete form of dxi/dn = 0. This

method is applicable to a conventional rectifying or stripping section (includ-

ing the condenser or reboiler), and it nds a speci c pinch point for a speci ed

load on the condenser or reboiler (which is the equivalent of setting the re ux

ratio, but it cannot be applied to a generalised column section). Alternatively,
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if the load is left as an unspeci ed parameter, pinch point loci can be plotted

with the used of continuation methods and bifurcation; the method in general

was explained by Seydel and Hlaváček (1987). Continuation methods were

also used by Fidkowski et al. (1991) to track pinch points (which they refer to

as ‘ xed points’, differentiated from pinch points by the fact that only the latter

lie on actual column pro les) in a similar manner, to overcome shortcomings

of multivariable equation solvers: ‘…many multivariable equation solvers will

fail to nd the xed points unless a very good guess for [the xed point] is

provided… We have found that improved performance can be obtained using

continuation methods for nding xed points.’

3.2.3 Differences between previous work and this work

It appears that all of the existing methods for nding pinch points do not

meet the goals of the proposed algorithm for one or more of the following

reasons: they (1) suffer from being too restrictive with the type of column

con guration to which they can be applied; (2) do not nd all of the pinch

points; (3) only nd one speci c type of pinch point (e.g. tangent pinch); (4) are

too limited in the complexity of system that will allow for convergence to a

solution; or (5) require more complicated hybrid solution methods than the

work presented in this chapter, which largely relies on standard mathematical

engineering methods.

3.3 Locating pinch points

A necessary and suf cient condition for the existence of a stationary point

(node) is that the derivative in Eq. (3.2) is zero for N − 1 components, as

has already been mentioned. In other words, in order to nd a pinch point

on a CPM, the liquid composition vector that satis es the following system of

equations must be found:

dx1

dn
=

(
1+

1
rΔ

)
(x1 − y1) +

1
rΔ
(XΔ,1 − x1) = 0

...

dxN−1

dn
=

(
1+

1
rΔ

)
(xN−1 − yN−1) +

1
rΔ
(XΔ,1 − xN−1) = 0
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On RCMs, there are at least three pinch points, meaning that there are

three or more different compositions which satisfy this system of equations;

on CPMs, the number of solutions is unknown ahead of time, making the task

of nding all of the solutions dif cult. In both cases, the solutions depends

on the initial guesses in the numerical method used to nd them. This must

be done numerically with non-CRV cases, since the temperature can only be

found by iteration (the procedure for bubble point calculations is well-known

and need not be repeated here).

When using amodel as complicated asNRTL (Renon and Prausnitz, 1968),

standard non-linear root- nding algorithms tend to fail. It may not be impos-

sible with some of these algorithms, but the computational effort required is

substantial, especially if no good initial guess is available; convergence cannot

be guaranteed. To reiterate Fidkowski et al. (1991), ‘… many multivariable

equation solvers will fail to nd the xed points unless a very good guess for

[the xed point] is provided.’

For all work in this chapter, the total system pressure, P, was set to

101 325 Pa, and the pressure was assumed to be constant throughout the

column section. Only ternary systems have been considered. The NRTL model

was used in the VLE calculations throughout.

Firstly, new functions based on Eq. (3.2) are de ned, as given by Eq. (3.3):

fi(xi,…,xN−1) =

(
1+

1
rΔ

)
(xi − yi) +

1
rΔ
(XΔ,i − xi) (3.3)

For a ternary system, a pinch point is found at a composition for which

f1(x1,x2) = f2(x1, x2) = 0, as this is equivalent to dx1/dn = dx2/dn = 0. (It

was explicitly stated here that f1 and f2 are functions of x1 and x2 for emphasis.

From this point on, it will be implied that this is the case.) At rst glance, it

may seem counterintuitive that this fi is not a function of temperature, but of

composition only; however, this arises since temperature is handled ‘internally’

within the function as it is not independent; that is, by xingN−1 liquid mole

fractions and the system pressure, there are no degrees of freedom, such that

T is set.

The closer an arbitrarily chosen point is to a pinch point, the closer to zero

f1 and f2 will be. In order to nd a pinch point, it is necessary that both of

these functions are equal to zero.

Root- nding is most easily performed on a single function, rather than on

several simultaneously. What is required is a single function whose value is
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Figure 3.4
Contour map of F0.25 values for
the same system as in Figure 3.2.
Note the correspondence between
the location of the pinch points and
F0.25 = 0.

zero if and only if both f1 and f2 are zero. A way of combining f1 and f2 into

a single, convenient function that ful ls this criterion is shown in Eq. (3.4):

F(x1,x2) =
∣∣f1(x1, x2)

∣∣+ ∣∣f2(x1,x2)
∣∣ (3.4)

Using Eq. (3.4), a pinch point can be described by F(x1, x2) = 0. To

verify this assertion, consider the commonly used example of the ABC system.

Figure 3.2 shows the CPM for this system with XΔ = (0.90, 0.05, 0.05) and

rΔ = 6, while Figure 3.4 provides a contour map of F0.25 values with the

same design parameters for visual con rmation of this notion. (F0.25 rather

than F is plotted, in order to exaggerate the contours and make them more

discernible visually. It has the effect of ‘ attening’ higher values of F, but the

ultimate meaning of the plot remains unchanged.) It is immediately apparent

that the zero-values of F correspond exactly to the pinch points (and no other

compositions) of the system. Thus, nding the compositions that give F = 0

will yield the location of the pinch points.

The objective is to nd all of the compositions within a speci ed area that

result in F = 0. All numerical methods require an initial guess, which has to

be suf ciently close to the root for convergence. Moreover, without knowing

the number of pinch points that a system has within the selected area, or the

approximate location of the pinch points, choosing initial guesses becomes

problematic. This method assumes that no information about the pinch points

is available, such that the search is ‘blind’.

The procedure for the search is as follows:

1 Split up the area for the search into a grid of squares. For example, a square

area of length 2, such as that in Figure 3.4, can be divided up into an array
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of 16 square blocks of length 0.5. Each of those blocks must be checked for

the presence of one or more pinch points. The purpose of the grid is to limit

the number of pinch points within each block to a maximum of one or two,

preferably, to decrease search time. The block being searched at any given time

is referred to as the ‘focus block’. Each block must be checked systematically

for pinch points. To begin the search, make the rst block in the main grid the

focus block.

2 In order to look for pinch points within the focus block, an initial guess is

required, but having assumed no knowledge of the topology, this guess cannot

bemade visually. Therefore, evaluate the F-values of, say, 300 points within the

focus block; the composition that gives the smallest value of F can be used as

the initial guess. In order to avoid unnecessary repetition of calculations when

recursion is performed (see step 4), these points should be stored in a global

database of points along with their corresponding F-values. The points can

either be equally spaced, or some combination of equally spaced and randomly

scattered. It is recommended to use the former, however, in order to exclude

nding pinch points by chance.

3 With this initial guess, perform a multivariate (for x1 and x2 in this case)

minimisation on the focus block to nd the smallest value of F and the

composition that corresponds to it. The multivariate minimisation algorithm

used in this work was the Nelder–Mead method (Nelder and Mead, 1965).

In order to limit the search to the focus block, F is introduced as a penalty

function by de ning it as in nity (or some very large number) for any point

outside of the focus block. Alternatively, a constrained optimisation method

could be used for the same purpose. The reason for using minimisation, rather

than root- nding, is explained later in this section.

4 If the minimum F-value found in the focus block is higher than a certain

tolerance ε1 for classifying a point as a pinch point (say, ε1 = 1 × 10−4),

then it is considered that there is no pinch point within the focus block, and

the next square on the grid becomes the focus block, for which steps 2 and

3 are carried out. If, on the other hand, the minimum value is found to be

below the tolerance, a pinch point has been found. However, the fact that

the algorithm converged to that pinch point does not necessarily mean it is

the only one within that focus block. In order to check if this is the case,

quarter the focus block itself into a new grid, and carry out steps 2 to 4

recursively on each focus block that contains a pinch point. This quartering
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Figure 3.5 Flowchart representing the algorithm.

and searching of pinch-point-containing focus blocks is performed until some

stopping criterion is ful lled, e.g. until a focus block is smaller than a set

tolerance ε2 for the minimum allowable distance between two pinch points,

say, 0.025, or some other user-speci ed number. Once the recursion stops,

make the next unsearched block on the original grid the focus block, and

repeat steps 2 to 4 until the entire area has been scanned for pinch points.

The above algorithm is represented by the owchart in Figure 3.5. An aid

for visualisation of the procedure is given in Figure 3.6, showing a comparison

of the pinch point locations for the ABC system (the topology in Figure 3.2

veri es that these are all of the pinch points that exist within the shown space),

the focus blocks that are used in the algorithm, and points that are evaluated

as candidates for the initial guesses. A list of coordinates and pinch point types

of the ABC system is given in Table 3.1. A way of determining the type of pinch

point by eigenvalue methods has been described by Holland et al. (2004a), and

others.

The parameters suggested above have been used in this work, but ne-

tuning these values may yield more ef cient location of the pinch points—for
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Figure 3.6 Plots showing (a) all of the pinch points of the CPM in Figure 3.2
found by the algorithm; (b) the focus blocks used in the algorithm; and (c) all
of the points at which F-values are calculated by the algorithm (excluding the
minimisation), as represented by the dots.

Table 3.1 Compositions and types of the ABC system pinch points
at rΔ = 6 and XΔ = (0.90, 0.05, 0.05).

No. Composition Type of pinch point

1 xp = (0.070, 1.229,−0.299) saddle point
2 xp = (0.078, 0.863, 0.059) stable node
3 xp = (−0.214,−0.009, 1.223) unstable node
4 xp = (0.569,−0.047, 0.478) saddle point
5 xp = (0.695,−0.155, 0.460) stable focus

example, in the recursions, only 50 or even fewer points instead of 300 can be

evaluated in step 2.

There is a huge variety of computer con gurations and programming

languages available, both of which affect the computational time, but as an

indication, it is in the order of seconds to minutes for a square area of 2× 2.

The grid of focus blocks is necessitated by the fact that for complex activity

coef cient models, it has been found that using an initial guess very close to a

certain pinch point can sometimes converge to a different pinch point; the grid

approach forces each part of the composition space to be searched rigorously

to ensure that all of the pinch points are found.

The reason that an optimisation algorithm has been chosen—rather than,

perhaps more intuitively, a root- nding algorithm—is because of the nature

of the search. The proposed algorithm nds all of the pinch points in a selected

area, which it must do with the use of focus blocks that have few or no pinch

points in them. Since there is no guarantee that there is a pinch point within a

focus block—indeed, most focus blocks do not contain a pinch point—a root-

nding method would have to terminate at the maximum number of iterations

if the focus block has no pinch point in it. A minimisation algorithm, on the
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other hand, terminates when it nds a minimum, which occurs in less than

the maximum number of iterations, thereby saving computing time. Unlike,

for example, the work of Drake and Manousiouthakis (2002), Burri and

Manousiouthakis (2004), or Kossack et al. (2006), the optimisation used here

is not for the purposes of optimising a distillation sequence/design, operation

of the column, energy requirements, etc.; its actual purpose is root- nding, but

in a more exible manner than algorithms designed for that speci c purpose.

One further detail which must be addressed is that sometimes the optimi-

sation algorithm might not converge to the minimum value, but to the value

of the penalty. With the F function, Nelder–Mead may fail even with the best

initial guess. Counterintuitively, however, it is useful then to repeat step 3, but

using the ‘second-best’ initial guess, ‘third-best’, and so on, until a satisfactory

minimum is found.

Finally, once the computations have been completed, the pinch point data

must also be consolidated—the search will repeatedly nd the same pinch

point during the recursive steps. Naturally, there will be some numerical

error (the magnitude of which is determined by the optimisation algorithm’s

tolerances), such that the pinch points may be described by a number of very

similar, but not identical, coordinates resulting from the numerous recursions.

In such a case, the coordinates with the lowest F-value in the set associated

with a particular pinch point are the best approximation of the pinch point

location.

This algorithm is not the most ef cient way of nding the pinch points

within the mass balance triangle (MBT) for the in nite re ux case: the three

pure component pinch points are known a priori, and the binary acetone–

chloroform azeotrope can be found by much simpler means, such as simple

one-dimensional minimisation or root- nding method to nd where xi − yi =

0. This algorithm’s true purpose becomes more apparent when (1) looking

outside of the MBT (multicomponent azeotropes may exist); (2) there are

multicomponent azeotropes within the MBT; or (3) the column section under

consideration operates at nite re ux, and the pinch points move away from

their well-known pure-component and azeotropic compositions.

3.3.1 Possible improvements

Although it has not been explored in this chapter (since absolute ef ciency

is not the goal), there are possible improvements that could be made to the

algorithm to enhance its speed. As stated earlier, the main setback of root-
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nding algorithms is that they require a good initial guess, which is why a

minimisation approach was used in this work instead. However, the possibility

of a hybrid algorithm exists, in which the minimisation is only used to nd a

good starting point using the grid approach above, and once that algorithm

has found a point with a suitably low F-value, switched over to a Newton–

Raphson-like algorithm to zero in on the pinch point.

3.4 Pinch point loci

When keeping XΔ at a xed composition (or un xed, but with some known

relationship to rΔ) and varying the rΔ parameter, the pinch points move in the

composition space. It is possible to trace a locus of all these pinch point com-

positions, parameterised by rΔ, thus providing information that is invaluable

for choosing parameters in the design of columns, as is demonstrated with an

example in § 3.6.

The same approach as for nding pinch points is applied, except that the

full algorithm does not have to be performed, provided that a suf ciently high

number of rΔ values is used.

The procedure is as follows:

1 Select an area for which the pinch points are to be plotted, and nd all of

the pinch points at in nite re ux (rΔ → ∞) using the pinch-point- nding

algorithm described earlier for that purpose, or any other method.

2 Decrease the rΔ value slightly.

3 Instead of repeating the rst algorithm for every increment of rΔ, which would

be a lengthy process, it is far more ef cient to use the previous iteration’s value

as a starting point for nding the pinch points of the current rΔ, in a type

of continuation method mentioned by Hoffmaster and Hauan (2004), and

Fidkowski et al. (1991). This can be done provided that the rΔ increments are

suf ciently small so as to cause only minor movements in the pinch points.

Thus, using the previous rΔ value’s pinch points as initial guesses, minimise

the function F as given in Eq. (3.4) to nd the pinch points at the current rΔ.

4 Repeat steps 2 and 3 until rΔ is nearly zero. Then, carry out steps 2 to 3 once

more, but starting the algorithm with rΔ → −∞ (which has the same pinch

points as for rΔ → ∞, so recalculation is unnecessary) and increasing until rΔ
is almost zero.
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Figure 3.7 (a) RCM of the acetone–chloroform–methanol system (SP =
saddle point; SN = stable node); the missing areas of the map are where
the ODE solver fails; and (b) pinch point curves of the ACM system.

To test the robustness of both the pinch-point- nding algorithm (since

the in nite-re ux pinch points must rst be found) and the PPL algorithm,

a ternary-azeotrope system will be used as an example of a highly non-

ideal system. For this purpose, consider the acetone–chloroform–methanol

(ACM) system, the RCM of which is given in Figure 3.7a, along with the

pinch points found by the rst algorithm, which are detailed in Table 3.2.

The RCM has been drawn where possible, but the system exhibits several

discontinuities outside of theMBT, thus limiting the areas where residue curves

can be constructed, since common ODE solvers fail. The reason for these

discontinuities is numerical instability in the bubble-point calculations; this is

explained and discussed in general terms by Tapp et al. (2004), and Holland

et al. (2004a). Note how pinch points have been found even in regions of the

composition space where topological information is unavailable. One further

point to address is that it may appear as though the upper part of Figure 3.7b

is inconsistent in terms of topology (Fien and Liu, 1994), with a residue curve

following a path from a stable node, past a saddle point, to another stable

node (see pinch points 2, 3 and 5 in Table 3.2). This, however, arises because

the residue curves are not continuous in that region; the discontinuities of

the model cause the prediction of a pinch point’s nature to change. If the

thermodynamic model did not contain discontinuities, the RCM would be

topologically consistent.

For an arbitrarily chosenXΔ vector of (0.15, 0.15, 0.7), the PPL is plotted in

Figure 3.7b, with the node types (or stabilities) indicated by different colours.

The discontinuities in the model do affect the PPL, as seen by the ‘jagged’
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Table 3.2 Compositions of the ACM pinch points as found by the
algorithm and their types.

No. Composition Type of pinch point

1 xp = (−0.145, 1.381,−0.236) saddle point
2 xp = (0.000, 1.302,−0.302) stable node
3 xp = (0.000, 1.000, 0.000) saddle point
4 xp = (0.000, 0.657, 0.343) unstable node
5 xp = (0.345, 0.655, 0.000) stable node
6 xp = (0.340, 0.231, 0.429) saddle point
7 xp = (0.000, 0.000, 1.000) stable node
8 xp = (0.775, 0.000, 0.225) unstable node
9 xp = (1.000, 0.000, 0.000) saddle point

portions of the PPL, or by points where they suddenly terminate.

The movement of the pinch points is a non-linear, but monotonic, function

of rΔ; that is, it is relatively insensitive to changes made at high rΔ, but very

sensitive to ones made at low values of rΔ, as it approaches zero. For example,

a change of rΔ = 400 to rΔ = 300 leads to a negligible movement of the

pinch points, whereas a change from rΔ = 5 to rΔ = 2 is appreciable. Thus,

the spacing of the rΔ values should not be linear, as that would result in either

unnecessary calculations (and much higher computation time) if the spacing is

too small, or jumps between the pinch points of consecutive rΔ to be too large

for the previous iteration’s pinch points to be a good initial guess if the spacing

is too large. It is dif cult to say what the best distribution of rΔ is, if indeed

there exists a general optimum spacing. As a guideline, the spacing of the rΔ
values in this work was 150 logarithmically (base 10) spaced points between

300 and 1.9, and 150 linearly spaced points between 1.89 and 1× 10−7. The

negatives of these values were used when increasing rΔ from −∞. Note that

rΔ = 0 cannot be reached, as it leads to a division by zero in Eq. (3.2).

Once all of the pinch point compositions have been found, the points can

be arranged and connected, if desired. The procedure for this is not entirely

straightforward, but it is also not essential, nor is it an engineering problem,

but a programming one; thus, it will not be detailed here.

From a plot of the PPL, the rΔ value corresponding to a pinch point of

interest can easily be calculated by letting fi as described by Eq. (3.3) equal to

zero, making rΔ the subject of the formula, and substituting in the coordinate

of the pinch point. The result is given as Eq. (3.5):

rΔ =
yi −XΔ,i
xi − yi

(3.5)
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It is of signi cance that the rΔ can be calculated by any one component i.

Provided that the coordinate that is inserted into Eq. (3.5) is exact, the same rΔ
can be obtained with any one of the components’ information (any component

can serve as i in this equation, but yi is still a function of N − 1 liquid mole

fractions, such that the full coordinates are required). However, it is unlikely

that the coordinate is known exactly from this or any other numerical method,

as rounding and convergence error will be present. Consequently, Eq. (3.5) will

yield slightly different rΔ values, depending on which component is chosen for

the calculation, and it is suggested to take the arithmetic mean of the rΔ values

as calculated by allN components as an attempt to mitigate these inaccuracies.

Naturally, depending on the thermodynamic model used and how well it

describes the system under consideration, pinch point loci and column pro les

will vary somewhat from model to model.

3.5 Finite-reflux distillation boundaries

Distillation boundaries are of great practical interest in designing distillation

columns, since they represent a limit to what paths a column pro le or residue

curve can follow. With the knowledge of pinch point compositions, it is

possible to nd the distillation boundaries (at in nite or, more importantly,

nite re ux) in a ternary system with a high degree of accuracy—one that is

more than suf cient for design purposes. Emphasis has been placed here on

nite re ux, because the traditional in nite-re ux distillation boundaries are

shifted at nite re ux, allowing for a different outlook on the limits posed by

distillation boundaries.

A distillation boundary is taken tomean the residue curve or column pro le

that originates at an unstable node, passes in nitesimally close to a saddle

point, and nally terminates at a stable node.

Unlike the algorithms for nding pinch points and constructing pinch point

loci, this one does rely on the simultaneous solution of the ordinary differential

equations (ODEs) describing the system, given by:

dx1

dn
=

(
1+

1
rΔ

)
(x1 − y1) +

1
rΔ
(XΔ,1 − x1)

dx2

dn
=

(
1+

1
rΔ

)
(x2 − y2) +

1
rΔ
(XΔ,2 − x2)

As shown by Tapp et al. (2004), the above ODEs can be integrated both

backwards and forwards in n to construct a complete column section pro le.
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The method described here, which also assumes no prior knowledge of the

system topology, centres around nding a starting point for this integration,

such that the resulting pro le passes suf ciently close to both a node (stable or

unstable) and a saddle point to provide an accurate numerical approximation

of a distillation boundary. However, in order to check that this criterion is

satis ed, the location of the pinch points must rst be known, which is where

the pinch-point- nding algorithm is required.

Since a complete column pro le will always run from an unstable node to

a stable one, the main factor that distinguishes a normal column pro le from a

distillation boundary is its proximity to a saddle point. Given this, it may seem

intuitive to use the coordinates of the saddle point as a starting point for the

integration, since it is the key criterion in distinguishing that column pro le

as a distillation boundary. However, using any exact pinch point coordinates

for this purpose is impossible, as they are stationary points; the pro le would

simply remain a point. Furthermore, owing to the numerical error inherent in

nding the pinch point compositions in the rst place, using those coordinates

would repeatedly yield the same distillation boundary, which is biased by

the error. Therefore, it is necessary to use a point close to the saddle point

(for which knowledge of the pinch point’s location—and hence the rst

algorithm—is needed), while making sure that it is on the same side of the

boundary as the node under consideration. This is achieved by the measures

taken in step 3 below.

The algorithm for nding distillation boundaries is as follows:

1 For chosen rΔ andXΔ parameters, nd all of the pinch points, using the method

presented in this chapter, or any other method. The area scanned for pinch

points should be large enough to include all of the pinch points necessary to

construct the distillation boundaries within the mass balance triangle, as it is

in that region that distillation boundaries are of practical use. For the in nite

re ux case, the area is simply that of the MBT; however, for nite re ux, it is

a system- and parameter-dependent one.

2 Select a saddle point and node combination. The node can be stable or

unstable.

3 Find the point z that is a small distance, say 1× 10−3, away from the saddle,

in the direction of the node. The chosen distance must be large enough to

overcome numerical errors in nding the pinch point. This ensures that the

initial guess is close to the true saddle point, but still in between the saddle and
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required by the algorithm for
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clarity.

the node. Determine the equation of the straight line that joins the node and the

saddle. Now nd the equation of the normal to this line, such that the normal

passes through z. See Figure 3.8 for an illustration of these constructions based

on the ABC system with rΔ = 6 and XΔ = (0.90, 0.05, 0.05).

4 Integrate the system of ODEs backwards and forwards for 100 (or some

suf ciently high number of) stages in each direction starting from point z to

obtain a curve that represents a column pro le. Let r be the shortest distance

between the curve and the node, and s be the shortest distance between the

between the curve and the saddle point. (If calculation speed is not critical, the

shortest distance between a point and a curve can be foundmost easily by trial-

and-error, i.e. computing the distance between the point and each available

coordinate that describes the curve, and then interpolating along the curve to

nd the minimum.) Finally, let h be the sum of r and s, i.e. h = r + s. (See

Figure 3.9 for a graphical representation of these quantities.)

5 Find a starting point z for the integration that lies on the normal andminimises

the function h. Again, Nelder–Meadmay be used for this purpose. The starting

points are restricted to the normal line because it allows the minimisation to

be done on only one variable—either x1 or x2—since the other variable is

xed by the equation. Moreover, the normal guarantees that there is a starting

point along it, which, when minimised, will reveal a distillation boundary, if

one exists.

6 If the minimum h that is found in step 5 is less than or equal to a certain value,

say 0.02, then a distillation boundary has been found; otherwise, it is not a

distillation boundary.
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Figure 3.10
Demonstration that the algorithm
applies to in nite re ux as well
to produce traditional distillation
boundaries. Pictured are the
distillation boundaries of the ACM
system as found by the algorithm.

7 Repeat steps 2 to 6 for other combinations of nodes and saddles until all of

them have been checked. If the distillation boundaries within the MBT are

incomplete, that is, they terminate suddenly at a point within the MBT, repeat

the entire algorithm, but with an extended search area for pinch points in

step 1.

In Figure 3.10, the result of the above algorithm when applied to the ACM

system at in nite re ux is shown, demonstrating that it is also applicable for

the construction of ‘traditional’ distillation boundaries.When compared to the

RCM of the corresponding system in Figure 3.7a, it is clear that the distillation

boundaries found correspond accurately to the ones observed in the RCM.

As an example of nite-re ux distillation boundaries (FRDBs), Figure 3.11

shows the distillation boundaries for the ABC system with parameters rΔ = 6

and XΔ = (0.90, 0.05, 0.05). Figure 3.2 gives the CPM of this system, and

can be used for the purposes of veri cation and comparison; its pinch point
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Figure 3.11
Distillation boundaries found by
the algorithm for the ABC system at
rΔ = 6 and XΔ = (0.90, 0.05, 0.05)
(dashed line = boundary outside
MBT; solid line = boundary inside
MBT).

compositions and types were provided in Table 3.1 earlier. There is only one

continuous boundary within the MBT, and it is this one that is of interest. The

nite re ux case also highlights the necessity of nding nodes outside of the

real space. Within the MBT, there is only one pinch point. This pinch point

alone can provide no information about the distillation boundaries; the ones

outside of the real space that are linked to it are required as well to allow the

boundary to be found.

A few further points must be addressed. First, given that in systems with

more than three components a distillation boundary is an (N−1)-dimensional

surface, a simple curve cannot describe it; thus, this approach is limited to

ternary systems. Second, depending on the parameters chosen when nite re-

ux is considered, pinch points required to provide a complete construction of

the distillation boundaries within the MBT may be signi cantly far away from

the MBT, which may require a large search area and thus be computationally

expensive. Third, with certain parameters, a speci c pinch point required

to nd the distillation boundary may be positioned behind a discontinuity,

thereby rendering the above algorithm impossible for the part of the boundary

that requires knowledge of that pinch point and continuity between the PPs.

3.6 Unifying example: distributed-feed column

An example is presented here to unify the concepts and methods discussed

in this chapter, i.e. column pro le maps, pinch points, pinch point loci, XΔ
points outside of the real space, and nite-re ux distillation boundaries, with

application to a practical problem.
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The CPM method does not have any particular advantages over traditional

methods for the design of simple columns, i.e. those with one feed stream, a

distillate and a bottoms stream, a condenser and a reboiler, and two column

sections. For more complex columns, however, it proves to be very useful.

Perhaps the simplest complex column is a distributed-feed column, and, as

such, it will be used for this example. An entire chapter is dedicated to

distributed-feed columns with CRV systems in Holland’s thesis (2005) with

any number of feeds; here, a simple non-CRV example is presented, where

the feed is split into only two streams, and is present as a saturated vapour.

A vapour feed is used in this example because, with that feed condition, the

mass balance dictates that the liquid pro les must intersect, thus simplifying

visualisation of the problem. Figure 3.12 shows a schematic diagram of such

a distributed-feed column. According to Holland, for sharp splits, distributed-

feed columns have no advantage over single-feed columns; however, for non-

sharp splits, it is possible in certain cases to obtain a reduction in re ux ratio

(and hence in energy requirements), and/or a reduction in the total number of

stages.

The design procedure byCPMs is the same for non-ideal systems as forCRV

systems, except for one aspect: real systems do not have transform triangles

as ideal systems do. With CRV systems, the lines linking the vertices of the TT

(stable node, unstable node, and saddle point), are straight; for real systems,

this is not true, since there is curvature in the boundaries linking the pinch

points. The boundaries that link the nodes to the saddle point are simply the

nite-re ux distillation boundaries discussed earlier, and account for two of

the three boundaries required for a non-ideal TT. However, at this point in

time, it is impossible to determine which pro le that links the unstable node

to the stable node represents the third boundary; as a surrogate for non-CRV

transform triangles, the FRDB can be used. This, although not a complete TT,

is suf cient for design purposes, as it demarcates the critical boundary.

Holland (2005) showed that distributed-feed columns are feasible in CRV

systems if the top and bottom sections’ transform triangles overlap (although

the actual pro les themselves need not). The real system equivalent of this

observation is that the FRDBs of the top and bottom sections must intersect.

This example will consider the benzene–m-xylene–toluene (BXT) system.

It should be noted that this system is very nearly an ideal one, whereas this

chapter deals with non-ideal systems. The reasoning behind this decision is as

follows: the previous sections have already demonstrated that the proposed
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methods work with non-ideal systems; this example, on the other hand, is

provided to demonstrate the use of nding all the pinch points, PPL, and nite-

re ux distillation boundaries in the context of the CPM design method. By

using a near-ideal system, the example is kept as concise as possible and avoids

complications that might otherwise obscure the fundamental purpose of the

example.

A saturated vapour feed with composition zF = (0.40, 0.10, 0.50) is as-

sumed, being split into a distillate of xD = (0.90, 0.01, 0.09), and a bottoms

of xB = (0.050, 0.163, 0.787); because of linear mixing rules, all three of

these points lie on a straight line. Typically, product speci cations are given as

inequalities based onmaximum allowable impurities; here, the problem is sim-

pli ed somewhat and exact compositions are chosen, in order to eliminate the

degrees of freedom associated with ‘looser’ product speci cation constraints.

Assuming a feed F = 100mol/s, it is easy to show by way of mass balance that

D = 41.18mol/s and B = 58.82mol/s.

The aim is to synthesise a distributed-feed column with a lower re ux

ratio than that of a conventional column performing the same split. See

Figure 3.12 for an illustration of the column arrangement, and as a guide to

the nomenclature.

Minimum re ux for the above split and feed in a simple distillation column

is observed when the stripping pro le just touches the rectifying pro le, as

shown in Figure 3.13a. This occurs at a re ux ratio of 10.7, i.e. rΔ,1 = 10.7.

Note that although CPMs contain all possible pro les for the chosen design

parameters, only a single column pro les for each section has been shown;

this is because the column pro les of sections terminated by a reboiler or

condenser must go through their respective XΔ points, and there exists only

one such pro le for each of these sections. FRDBs have been included for two
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Figure 3.13
Split of the BXT system from zF =
(0.50, 0.20, 0.30) into xD = (0.90,
0.01, 0.09) and xB = (0.05, 0.163,
0.787) in a conventional column (a)
at minimum re ux (rΔ,1 = 10.7);
and (b) below minimum re ux
(rΔ,1 = 3). The crosses denote pinch
points, and the FRDBs are included.

reasons: rst, they give an indication of how the topology has shifted from the

RCM; and second, they allow the feasibility of the distributed-feed column

to be assessed by verifying intersections of the FRDBs, before any further

calculations are performed. (Note that there is a jump between the start of

the stripping pro le and the bottoms composition, xB. This occurs because

the bottom product composition and the composition at the bottom of the

stripping section are not equal; they are related by equilibrium and the mass

balance around the partial reboiler. This is not true for the rectifying section,

where the total condenser ensures that the distillate composition is the same

as that of the re ux.)

The aim is to design the distributed-feed column to operate at a signi cantly

lower re ux ratio than the minimum, say, rΔ,1 = 3. Figure 3.13b shows the

column section pro les of a simple column at this re ux ratio; it is clear that

the pro les do not intersect, and thus the simple column is not feasible. With
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the middle section (column section 2 in Figure 3.12), the goal is to create a

‘bridge’ between these separate pro les.

First, the mass balance constraints must be applied. According to the

problem statement, XΔ,1, XΔ,3, and rΔ,1 have been speci ed as xD, xB, and 3,

respectively. Furthermore, it is known that Δ1 = D and Δ3 = −B. Since the

feed is saturated vapour, and CMO is assumed, the liquid ows throughout

the column are the same, i.e. L1 = L2 = L3. From rΔ,1 ≡ L1/Δ1, it is evident

that L1 = Δ1rΔ,1. Consequently,

rΔ,3 ≡
L3

Δ3
=
L1

Δ3
=

(
Δ1

Δ3

)
rΔ,1

such that rΔ,3 is also xed. For this problem, setting rΔ,1 = 3 as required results

in rΔ,3 = −2.1.

Therefore, the only parameters that still remain un xed are those of the

middle section, rΔ,2 and XΔ,2. However, these two parameters are not inde-

pendent, as shown in Appendix B.1. The relationship between them is:

XΔ,2 =
(
Δ3

Δ1

)(
rΔ,2
rΔ,1

)
(XΔ,3 − zF) + zF (3.6)

As such, the system has only one degree of freedom: either rΔ,2 or XΔ2.

Although either could be chosen as the independent variable, it is somewhat

simpler to use rΔ,2, since it is a scalar, whereas XΔ2 is a vector.

Having chosen rΔ,2 as the parameter to manipulate, it is important to

determine the range of values that rΔ,2 is allowed to assume. CS 2 can either

operate in ‘rectifying mode’ or in ‘stripping mode’. For the former, Δ2 > 0,

such that the net ux of material in the CS is upwards; for the stripping mode,

the opposite is true, i.e. Δ2 < 0. With mass balances around the feed points, it

can be deduced that rΔ,2 > rΔ,1 when CS 2 is in rectifying mode, and rΔ,2 6 rΔ,3
when it is in stripping mode. The proof of this given in Appendix B.2.

In order to bridge the gap between the rectifying and stripping pro les,

one option is to set CS 2 to rectifying mode, and place an unstable node to

the right of the rectifying pro le, such that there will be at least one column

pro le that runs through the rectifying pro le. CS 2 will be set to rectifying

mode arbitrarily. Figure 3.14 is provided as a qualitative description of the

desired pro le behaviour of CS 2, represented as the thick black line.

The question of how to nd the value or values of rΔ,2 that can produce

the required behaviour remains. To address this question, pinch point loci can

be used. For the two-distributed-feeds case, it has been shown that only one
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Figure 3.14
Qualitative description of the
desired column pro le behaviour
for column section 2 when it is in
rectifying mode, shown by the thick
black line.

independent parameter exists, which has been chosen here to be rΔ,2. Thus,

when the rΔ,2-parameterised PPL is constructed (and the stability at each point

noted), all of the pinch points can be examined to see if there is a value or

range of values of rΔ,2 that satisfy the desired behaviour in Figure 3.14; that

is, an rΔ,2 that places an unstable node to the right of the rectifying pro le.

Figure 3.15a shows a pinch point locus (indicated by the thickest lines)

for rΔ,2 ranging from rΔ,1 to 100, which is applicable to CS 2 when it is in

rectifying mode. The different colours of the PPL indicate the stability of the

nodes, where the colours have the samemeanings as in Figure 3.7b; the column

pro les are black, rather than coloured, for clarity.

As established earlier, it is necessary for an unstable node of the middle

column section be placed on the right of the rectifying pro le. For this, the

limiting re ux occurs when the unstable branch of the PPL intersects the

rectifying pro le at rΔ,2 ≈ 9.07, as shown in Figure 3.15a. There is a change

in the stable branch (as indicated by the change from green to lime) in that

the stable node becomes a stable focus as re ux is increased. Since both of

these are stable, however, it does not impact on the behaviour of the pro les

under consideration. The saddle point of the CPM must be roughly to the left

of the stripping section’s end-pinch, in order to ensure that the middle pro le

will intersect both end pro les; the PPL shows that saddle point moves up and

slightly to the left, which is acceptable. As such, 3 < rΔ,2 < 9.07 for a feasible,

non-pinched column.

Finally, a value for rΔ,2 must be set, which is greater than 3, and less than

9.07, but close to the latter, such as rΔ,2 = 7; for this re ux ratio, Eq. (3.6) gives

XΔ,2 = (1.5667,−0.1100,−0.4567), which is outside of the MBT, yet still a
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Figure 3.15 Plots of (a) pinch point loci showing the movement of CS 2’s
pinch points with changing rΔ,2 from rΔ,1 to 100, along with end pro les; (b)
magni cation showing intersection of the pinch point locus and the rectifying
section pro le.

perfectly valid choice. Figure 3.16 shows the two end pro les, and the CPM

for the middle section for this chosen rΔ,2. It can be seen from the CPM which

pro les are feasible; a few of these are shown as dotted pro les, but, naturally,

this represents only a subset of in nite possible pro les within the shaded

region. Once CS 2’s parameters are chosen, a mass balance can be performed

around either feed to determine the required split ratio of the original feed: in

this case, F1 = 0.235 F and F2 = 0.765 F. A speci c pro le in the CPM can be

chosen for CS 2 by changing where in the column the feeds are placed (which

also has an impact on the total number of stages required).

Thus, with the same feed and products, the re ux ratio has been reduced

from 10.7 (the minimum re ux in a simple column) to 3, which is substantially

lower, and would result in considerable energy savings. Moreover, the simple

column operating at its minimum re ux requires an in nite number of stages,

whereas the one produced in this example does not pinch, and thus has a nite

number of stages.

A distributed-feed column has been synthesised, and it has been shown

how it can reduce the re ux ratio of the column substantially. More impor-

tantly, this example illustrates the principle of the CPM design method, the

signi cance of pinch points, pinch point loci, their effect on the topology of

the CPMs, and their usefulness in the synthesis of complex columns. This

example is a relatively simple one; the synthesis of Petlyuk columns with the

CPM method is more involved, and has been shown by Holland et al. (2010).
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Figure 3.16
Final construction of the two-feed
column, showing the end pro les,
and feasible choices for the middle
one. The parameters are given in-
text. A magni cation is provided to
show clearly how all of the possible
pro les for the middle section cross
the rectifying pro le.

The above example gives one set of solutions to the problem, but it does not

give the optimal solution: it cannot nd the ‘best’, designer-speci ed compro-

mise between capital and operating costs, and if, for example, an inequality is

set for the product compositions, as is usually done, there are a great number

of solutions to the problem.

Obviously, manual trial-and-error attempts to nd the optimum would be

futile. A more realistic option is optimisation using a computer; however, even

for a ternary system, the number of parameters in the search space is large. Ide-

ally, insight into the system behaviour should be gained using the CPMmethod

in order to limit the range of parameters (recall the rΔ,2 < 9.07 limit that was

found in this example, which would change if the product speci cations, feed

composition, or rΔ,1 changed), and then apply the computerised optimisation,

leading to a ‘smarter’ optimisation approach.

Such an optimisation is not dealt with in this work; however, it is clear

that in order to optimise a complex column by a procedure such as the one

above with the use of a computer, an automatic method is required. One of

the greatest hurdles to overcome in this situation is nding all of the non-ideal

pinch points without human intervention; the proposed algorithm solves this

problem.

3.7 Conclusion

A new algorithm for locating nodes in generalised column sections has been

proposed. It has been demonstrated to locate all of the pinch points in highly

non-ideal systems successfully. An extension of the method was made to con-
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struct pinch point loci, which can give valuable insight into what nodes exist

in a system, even outside of the mass balance triangle, and how they can

be manipulated under nite re ux conditions, and moved into or out of the

positive space in the MBT.

The approach is versatile in that it can make use of any activity coef cient

model (as simple or as complicated as the designer deems necessary), and in

that it is applicable to any column section, which it owes to the difference point

equation. Moreover, no knowledge of the topology of the system is required.

No claims are made that the proposed algorithm is the most ef cient way

of nding nodes in certain circumstances, such as within the mass balance

triangle at in nite re ux, or when the knowledge of only a single, speci c

pinch point is required, but it is designed to be versatile and automated; that

is, it nds all of the pinch points at any re ux, for any generalised column

section, inside or out of theMBT, and without the need for human intervention

in achieving its goals once the design parameters are chosen. Furthermore, it

can largely be implemented using widely available numerical methods, e.g.

Nelder–Mead simplex minimisation.

While any method could be used to nd pinch points, and a large number

of starting points could be used in an attempt to nd all of them with that

given method as well, a critical issue remains: since the total number of pinch

points at nite re ux is unknown ahead of time, it is not possible to know if all

of them have been found. To address this, the proposed method introduces the

focus block grid, as well as the internal subdivision and recursion within these

blocks, in order to make sure that all of the pinch points are found. Indeed,

the method is not ef cient, but it is thorough in its search.

Finally, it was shown how the knowledge of pinch point compositions

can be used to nd nite-re ux distillation boundaries in ternary systems.

Furthermore, it strengthens the argument for searching for pinch points

outside of the mass balance triangle; at nite re ux, knowledge of the nodes

outside of the triangle is necessary in order to nd distillation boundaries. The

method works for all in nite re ux cases, but the movement of pinch points in

the composition space at nite re ux can prove to be problematic if the pinch

points required to nd the boundary are far from the mass balance triangle,

or if they lie behind a discontinuity in the thermodynamic model.

In this chapter, only ternary systems have been considered, but in principle,

the method can be extended to higher dimensions; it would simply involve

looking for pinch points in N− 1 dimensions, and using the generalised form
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of Eq. (3.4), as given by Eq. (3.7):

F(x1,…,xN−1) =
N−1∑
i=1

∣∣fi(x1,…, xN−1)
∣∣ (3.7)

Naturally, PPL of these higher-order systems can also be found, although

not graphically represented for systems of more than four components.

However, the number of calculations required by this method increases

exponentially with each added component (and hence dimension) and may

prove to be too intensive computationally for a large number of components

to be practical with readily available technology at this point in time, but the

principle still holds in all cases.

While this chapter has provided several useful concepts and tools, Chap-

ter 4 presents an improved approach to nding pinch points and pinch point

curves, which is more robust and orders of magnitude faster. Nevertheless,

it does not completely replace this work, nor does it render the work in this

chapter invalid, as many of the concepts that were developed here carry over

to that work.
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An Efficient Method of Constructing Pinch
Point Curves and Locating Azeotropes
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Abstract

An ef cient, robust, ODE-based formulation of the continuation problem is presented

for the automatic construction of all branches of the pinch point curves in any homo-

geneous distillation system (even highly non-ideal ones) that can be represented using

an activity coef cient model, with any number of components, and for any adiabatic,

non-reactive column con guration. Constant molar over ow is assumed. The curve is

parameterised by re ux ratio, making it particularly applicable to distillation design

and synthesis. Naturally, it can be used to nd pinch point locations at a given nite

re ux, as this is simply a subset of the pinch point curve. The method presented in

this chapter can also automatically locate allN-component azeotropes very ef ciently,

orders of magnitude faster than commercial process simulators. It has the additional

advantage of being solvable using tools already available in typical mathematical soft-

ware packages. A computer implementation of the proposed method is available.

59
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4.1 Introduction

Distillation columns are one of the chemical process industry’s most prevalent

separation units, and also one of the most energy-intensive. Successful design

of ef cient columns hinges both on the understanding of their behaviour,

and on the ability to model and predict their operation suf ciently well.

One particularly important phenomenon is the pinch point. Pinch points are

compositions which remain constant with an increasing number of stages

in the column; that is, if they are reached, no more separation is possible

within that column. They denote limits of operation for a given set of design

parameters.

The above criterion for a pinch point is expressed mathematically, for all

i, as:

dxi
dn

= 0 (4.1)

or, in its discrete form, as:

xn+1
i = xni (4.2)

Stability theory identi es different types of pinch points (Fien and Liu, 1994),

such as stable and unstable nodes, saddle points, and a few other peculiarities

that seem to exist only outside of the mass balance triangle (MBT) (Holland

et al., 2004a). All of these are described equally by Eq. (4.1).

There are effectively two main classes of column pro le modelling: con-

tinuous methods, which model packed distillation columns; and discrete

methods, which model tray columns. However, as long as a consistent set

of assumptions is used, the choice of modelling approach does not impact on

the location of the pinch points (Levy et al., 1985; Julka and Doherty, 1990;

Poellmann and Blass, 1994). Even the inclusion of mass transfer resistance

does not affect the pinch point locations (Baur et al., 2005).

4.1.1 Difference point equation (DPE)

The continuous modelling approach is used in this work, for reasons discussed

in § 4.3.1. This approach was pioneered almost a century ago (Lewis, 1922),

used by several workers throughout the early- to mid-20th century (Dodge and

Huffman, 1937; Tiller and Tour, 1944; Acrivos and Amundson, 1955), and

much later brought into its more popular, modern form by Van Dongen and

Doherty (1985), who presented an ordinary differential equation to describe



CHAPTER 4 CONSTRUCTING PINCH POINT CURVES 61

the column pro le in the rectifying or stripping sections of a conventional

column. Tapp et al. (2004) and Holland et al. (2004a) then extended this

equation to a form that describes a pro le inside a generalised column section

(CS);1 that is, within any column con guration, regardless of complexity

(Holland, 2005; Holland et al., 2010; Felbab et al., 2011). They termed this

equation the difference point equation (DPE), as given in Eq. (3.2):

dxi
dn

=

(
1+

1
rΔ

)
(xi − yi)︸ ︷︷ ︸−

1
rΔ
(XΔ,i − xi)︸ ︷︷ ︸ (4.3)

separation vector mixing vector

where XΔ,i = (VYT
i − LxT

i )/Δ (the difference point, which is effectively a

pseudo-composition of the CS), rΔ = L/Δ (the ‘re ux ratio’ of the column

section), and Δ = V − L (the net molar ux in the column section). XΔ
and rΔ are design parameters, and (along with knowledge of how the column

section ts into the overall column con guration) they are suf cient to specify

a CS. Furthermore, XΔ is a unit vector with the same number of elements as

components in the system.Note that theDPE assumes constant molar over ow

(CMO) and constant pressure in a CS, and is thus not appropriate for systems

and con gurations for which these assumptions cannot be justi ed.

The result of integrating Eq. (4.3) from n = 0 to an arbitrary stage n is the

column pro le in a CSwith the speci ed design parameters. For a conventional

column, or any CS terminated by a reboiler or condenser, the interpretation

of the design parameters is straightforward: XΔ is the product composition

(typically denoted as xD or xB), and rΔ is the re ux ratio. For a stripping

section, it can easily be shown that reboil ratio is S = −rΔ−1 (where rΔ < −1).

The variable Δ, as explained earlier, is the net ux of material in the CS, and a

positive value denotes a net ux upwards in the column section (i.e. V > L),

while the converse is true for a negative value. As such, a rectifying section has

Δ > 0 and a stripping section has Δ < 0 in any column con guration.

When a series of pro les based on Eq. (4.3) is plotted on the same graph,

the result is a column pro le map (CPM) (Tapp et al., 2004). Figure 4.1 is an

illustration of such a map for the acetone–benzene–chloroform (ABC) system

with arbitrarily chosen XΔ = (0.72, 0.13, 0.15) and rΔ = 9. Note the pinch

points on the gure. In the limit of rΔ → ∞, it is evident that Eq. (4.3) breaks

down to dxi/dn = xi − yi, which is the well-known residue curve equation.

As such, a CPM at in nite re ux is equivalent to a residue curve map (RCM).

1 A column section is de ned as a section of the column in which there is no overall addition
or removal of mass or energy.



CHAPTER 4 CONSTRUCTING PINCH POINT CURVES 62

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Acetone (liquid mole fraction)

B
en

ze
n
e 

(l
iq

u
id

 m
o
le

 f
ra

ct
io

n
)

Pinch point
Figure 4.1
CPM of acetone–benzene–
chloroform with rΔ = 9 and
XΔ = (0.72, 0.13, 0.15).

As the re ux ratio is lowered at a constant XΔ, the pinch points move in the

composition space. At low enough values of rΔ, these pinch points tend to

‘collide’ with one another and merge, resulting in fewer pinch points (Bausa

et al., 1998; Holland et al., 2004a; Beneke et al., 2011a). For a given XΔ, each

pinch point has a critical rΔ, past which the pinch point no longer exists. This

re ux ratio will be denoted in this chapter as rΔ,crit, and is the re ux ratio that

corresponds to the turning point as described by Fidkowski et al. (1991). For

non-ideal systems, it is not possible to know the number of pinch points that

exist at a certain re ux ratio a priori (Felbab et al., 2011).

It should be stressed that CPMs are typically plotted both within the

mass balance triangle and outside of it, as in Figure 4.1. These negative

compositions are physically impossible, but the information that they provide

has been used extensively in the CPM design method (Holland et al., 2004b;

Holland, 2005; Holland et al., 2010; Tapp et al., 2004; Holland et al., 2004a;

Felbab et al., 2011). Moreover, negative compositions have been shown

to be mathematically and thermodynamically consistent (Holland, 2005).

Ample justi cation for considering negative compositions has been provided

in the cited works and in Chapter 3; in summary, although a pinch point in

the negative composition space can never be reached, it does in uence the

behaviour of the column pro les within the MBT, exactly as a pinch point

within the non-negative space would. Thus, for example, if a stable node lies

outside of the MBT, the pro les within the MBT will still tend towards that

pinch composition, regardless of the impossibility of reaching it.
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Figure 4.2
Pinch point curve of the acetone–
benzene–chloroform system.

4.1.2 Pinch point curves (PPCs)

For a given set of the rΔ and XΔ parameters, certain pinch points exist. Their

exact locations, naturally, depend on the chemical system under consideration,

the chosen design parameters, and the thermodynamic model used to predict

the system’s behaviour. As rΔ is varied, with all other factors remaining the

same, the pinch points (PPs) move in the composition space in a continuous

manner. This movement of PPs can be traced as a locus, or curve, known

as the pinch point curve (PPC). Other terms for the PPC mentioned in the

literature include pinch point locus, pinch point trajectory and pinch point

branch. Given the equivalence of the residue curve equation and Eq. (4.3)

at in nite re ux, the PPC must pass (at in nite re ux) through the pinch

points on an RCM; that is, the pure components, as well as any azeotropes

that the system contains. There are usually multiple branches of PPCs, and

highly non-ideal systems (i.e. those exhibiting azeotropy) tend to have even

greater complexity, and therefore even more branches. An example of highly

non-ideal PPCs is given in Figure 4.2.

The locus of pinch points must terminate when it reaches rΔ,crit, thereby

describing a ‘PPC section’, which spans from rΔ → ∞ to rΔ,crit. Crucially, the

adjoining PPC section terminates at the same point.

In this chapter, a new ordinary differential equation (ODE)-based method

of constructing all of the branches of pinch point curves in any system—ideal

to highly non-ideal—is presented.

Pinch point curves have been used for a number of applications in

distillation design and analysis over the last few decades. There are three main

categories of application: (1) determination of feasible regions/compositions,
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(2) distillation system synthesis, and (3) reversible distillation. These appli-

cations are discussed in more detail below, highlighting the importance and

usefulness of pinch point curves. The methods of calculating PPCs, which are

the primary focus of this chapter, are covered in the literature review in § 4.2.

4.1.2.1 Determination of feasible regions

The impact of design variables on the possible operation of a distillation

column is undoubtedly an important consideration. Other researchers have

done extensive work on operating leaves (sometimes also called distillation

regions in the literature), on ways of extending or manipulating them, and

on applying them to systematic column sequencing (Wahnschafft et al., 1992;

Wahnschafft and Westerberg, 1992; Wahnschafft et al., 1994; Castillo et al.,

1998a,b; Hoffmaster and Hauan, 2002; Tapp et al., 2003; Modise et al.,

2005; Krolikowski, 2006; Tian et al., 2009). The principle of operating leaves

can be explained simply as follows: for a xed product composition in a

ternary system, there are two boundaries that demarcate which compositions

can be attained within a column section. One is at in nite re ux, and the

other is where the column pinches; both are at opposite ideal extremes

of operation. In other words, one boundary is the residue curve—or the

distillation line in staged columns (Castillo et al., 1998a)—that passes through

the product composition, and the other is the pinch point curve, which also

passes through the product composition. For relatively ideal systems, these two

curves also intersect at another composition and create a leaf-shaped region

in the composition space, hence the name ‘operating leaf’. Highly non-ideal

systems can exhibit more complex behaviour (Hoffmaster and Hauan, 2002).

4.1.2.2 Distillation synthesis and design

Broadly, pinch point curves have been used for distillation synthesis by scan-

ning the possible locations of all pinch points, and, if they are parameterised

by a variable that is useful for design, using that knowledge to change the

system behaviour as required.

An example of this is the recti cation body method (RBM) of Bausa et al.

(1996, 1998). A recti cation body is a manifold of all possible pro les for

a given column section that are contained between two related pinch points

(stable node, unstable node, and/or saddle point) and the product composition

in ternary systems. Systems not modelled with constant relative volatility

(CRV) have curved boundaries between these pinch points. The authors
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approximate these with straight lines, leading to triangular recti cation bodies

in ternary systems, and irregular tetrahedral ones in quaternary systems.

Minimum re ux for sharp splits, for example, is found when one recti cation

body just touches another. The use of pinch point curves (which the authors

parameterise with condenser duty and link to reboiler duty by energy balance)

allows the designer to nd the variables which lead to adjoining of the

recti cation bodies. Brüggemann and Marquardt (2004) used PPCs for the

synthesis of extractive con gurations in conjunction with the RBM.

The trajectory bundle theory that Sera mov et al. (1973a,b) introduced

and Petlyuk and Danilov (Petlyuk and Danilov, 2001a,b, 2002; Petlyuk et al.,

2007, 2008, 2009) developed further bears similarities to the RBM, but

with the ability to handle non-ideal systems and their curved boundaries. It

therefore relies heavily on pinch points: for example, the PPC is used to nd

the minimum re ux for multicomponent separations with trajectory bundle

theory (Petlyuk and Danilov, 2002).

Pinch point curves are also integral to the concept of shortest stripping lines

developed by Lucia and Amale (2006): their observation was that minimum

energy designs are found when the reboil ratio is selected such that the length

of the stripping pro le from the bottoms composition to the stripping pinch

point curve is minimised. PPCs were also used by Amale and Lucia (2008) to

make the observation that non-pinched minimum energy solutions exist when,

amongst other criteria, the system contains a stripping PPC with unstable

branches.

The CPM method uses PPCs to nd which re ux ratios correspond to

desired pinch point locations, as shown in Chapter 3.

4.1.2.3 Reversible distillation profiles

A reversible column (that is, one that generates no entropy) can theoretically

be achieved in an in nitely long column by the continuous addition or removal

of heat at the correct temperature (zero temperature difference with the

environment) and the elimination of other process variable gradients, e.g.

pressure. It is well-established that a reversible column pro le is identical to an

adiabatic pinch point curve (Koehler et al., 1991; Poellmann and Blass, 1994;

Petlyuk et al., 2008; Ayotte-Sauvé and Sorin, 2010). A column that pinches

at every point has zero driving force for separation due to vapour–liquid

equilibrium at every cross-section in the column, resulting in reversibility

(Petlyuk, 2004; Ayotte-Sauvé and Sorin, 2010).
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4.1.3 This work

This chapter proposes a new method of constructing pinch point curves: a

continuation method formulated as an ordinary differential equation. The

integration of this ODE results in the pinch point curve directly: a section of

the pinch point curve is constructed from a single integration of the ODE. The

proposed method uses the column section re ux ratio, rΔ, as the independent

variable. No other ODE-based method which is parameterised by the re ux

ratio (or another distillation design variable) to construct PPCs has been

presented in the open scienti c literature.

A novel transform is also suggested for the proposed ODE, which gives a

substantial increase in performance.

The advantages of the ODE approach over other methods are discussed in

§ 4.6.

The approach proposed here is not a standalone design or synthesis me-

thod, but rather is designed to be an ef cient and reliable way of obtaining

the PPCs for use with other methods which require them, some of which have

been mentioned in § 4.1.2.1–4.1.2.3.

There is only one otherODE-based method fromwhich PPCs result directly

(Poellmann and Blass, 1994), which, unlike the proposed ODE, is parame-

terised by temperature. This is discussed further in § 4.2.4.

Note that the integration of the ODE de ned in Eq. (4.3), which uses stage

number, n, as its independent variable, produces column pro les that can be

used to nd stable and unstable pinch points by driving them towards these

pinch points at a high number of stages, as explained later in § 4.2.1. However,

this is an indirect ODE-based way of locating pinch points, and computational

effort is required to generate information (the non-pinched parts of the pro le)

whichmay be unnecessary for the problem under consideration. The difference

between the direct and indirect ODE approaches is illustrated in Figure 4.3,

in which the separate column pro les are plotted over a range of rΔ values,

each integration terminating at a discrete point on the PPC. In this gure, the

blue line shows the pinch point curve resulting from one integration of the

proposed ODE, unlike the several integrations required using column pro les.

The method of Poellmann and Blass (1994) has shown greater ef ciency

and simplicity than other approaches, according to the authors.

The method proposed in this chapter, however, is even simpler and less

computationally intensive than Poellmann and Blass’s, while being more ro-

bust and arguably more convenient for design purposes. This claim is sup-
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Difference between this work (the
pinch point curve ODE), and the
standard column pro le ODE
in Eq. (3.2), illustrated with an
example using the ABC system.
The blue line gives the pinch point
curve, which is the goal of the
proposed method.

ported by a comparison of the proposed method and other major approaches,

which is given in § 4.4.1 and 4.4.2.

Throughout this work, the NRTL activity coef cient model was used,

unless otherwise speci ed, and system pressure was set to be uniform at

P = 101325Pa. The vapour phase was treated as an ideal gas.

In this chapter, § 4.2 provides a review of existing methods for nding

pinch point curves; § 4.3 describes the method proposed in this work; § 4.4

provides a comparison of the proposed method with some existing ones; and

§ 4.5 gives examples of results using the proposed method.

4.2 Literature review

A number of methods for constructing pinch point curves can be found in the

literature, all of which solve some formulation of dxi/dn = 0 in Eq. (4.3),

and many of which have common features. One of these features, parametric

continuation, is discussed in § 4.2.3. The methods detailed here can be divided

into four broad categories: (1) column pro le and residue curve methods,

(2) graphical methods, (3) non-linear root- ndingmethods, and (4) differential

equations.

4.2.1 Column profile and residue curve methods

Column pro les (or residue curves, at in nite re ux) can be applied to nd

pinch points. From an appropriate starting point in the column section,

the column pro le is constructed—either by integrating Eq. (4.3), or by
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performing tray-to-tray calculations—to a large number of stages, which

causes the pro le to approach a stable pinch point. Alternatively, negative

integration, or the equivalent ‘backward’ calculation of a trayed column, can

be used to approach an unstable pinch point. This principle was explained

graphically in Figure 4.3. The same idea applies to residue curves, which are

equivalent to a collapsed version of Eq. (4.3) at rΔ → ∞, i.e. dxi/dn = xi− yi.

This approach has been used by Lucia and Taylor (2006), who presented

an algorithm to construct distillation boundaries in azeotropic systems. It is

an optimisation-based method that determines the longest local residue curve

(maximum line integral) joining a selected pair of stable and unstable nodes,

as long as they are in the same distillation region. As a consequence of this

procedure, saddle nodes can also be discovered, as they must lie on at least

one distillation boundary.

The above method has been extended to nding four-component sepa-

ration boundaries by Bellows and Lucia (2007). In four-component cases,

the separation boundary is determined by the local maximum surface area

(as determined by triangulation), with the added constraint of Levi–Civita

parallelism. Bellows and Lucia stated that stable nodes were located by

integrating the residue curve equation (dxi/dn = xi−yi) using Euler’s forward

method with a xed step size of h = 0.01 for 30 000 steps. The method can

extend to any number of components, and can also be used for nite-re ux

applications. Moreover, because the method of Bellows and Lucia generates

distillation boundaries, it follows that azeotropes are found as well.

Lucia et al. (2008) generalised these methods to nd energy-ef cient

column designs by a two-stage optimisation technique. The rst of these stages

is a non-linear programming problem, which nds the shortest stripping line

in order to calculate the minimum reboil ratio. This optimisation can result

in the location of both a feed pinch and a saddle pinch, as shown in Figure

5 of Lucia et al. (2008). The fact that the optimisation algorithm must try

numerous reboil ratios in its search for the shortest stripping line means that

the natural course of Lucia et al.’s method will implicitly nd a stable section

of the PPC.

4.2.2 Graphical methods

The criterion for a pinch point is satis ed when the tangent to the residue

curve at that point passes through the product composition (Wahnschafft

and Westerberg, 1992; Wahnschafft et al., 1994; Poellmann and Blass, 1994;
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Westerberg and Wahnschafft, 1996; Petlyuk, 2004). The simplest—although

least accurate and least ef cient—method of constructing pinch point curves is

a graphical implementation of this principle, as was used by, e.g. Wahnschafft

et al. (1994), and Westerberg and Wahnschafft (1996). For this method,

a residue curve map is plotted, and points demarcated where the tangent

to a residue curve passes through the product composition (the proof is

straightforward, and can be obtained by setting dxi/dn = 0 in Eq. (4.3) and

rearranging the result). When these points are linked in the correct order, the

result is a locus of pinch points, i.e. a pinch point curve. A further disadvantage

of this approach is the limitation in the number of components that can be

considered: systems of more than four components cannot be represented

graphically.

4.2.3 Non-linear root-finding methods

Non-linear root- nding methods for PPCs effectively all have two things in

common: the roots of the pinch equations are found, and continuation is used.

The pinch equations that are typically used are Eq. (3.2) with dxi/dn = 0, but

in a less general form, e.g. speci ed only for the rectifying section.

Parametric continuation—or simply ‘continuation’—in the context of

pinch point curves is a means of solving the pinch equation by starting

at a known solution and gradually changing the value of the variable that

parameterises the PPC. In this case, the starting point is most often the pure

components and azeotropes, which correspond exactly to the pinch points in

a column at in nite re ux. Continuation then uses the (k− 1)th solution as a

starting point for computing the kth solution, with incremental changes in the

parameter of interest.

Pinch equations have been used to nd pinch points and construct PPCs

(Bausa et al., 1998). Details of how these solutions were found are not

provided in the cited paper, but since pinch equations are given, the reader

is led to assume that some sort of non-linear root- nding technique was

applied. The PPCs as considered by Bausa et al. are parameterised by reboiler

or condenser duty. While this does have speci c applicability in design, it is

limited to column sections terminated by a reboiler or condenser; in many

complex con gurations, there are column sections without any heat addition

or removal. For example, the Petlyuk column has six column sections, four

of which have no reboiler or condenser (Petlyuk et al., 1965; Halvorsen and

Skogestad, 2004; Holland et al., 2010); a PPC parameterised by reboiler
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or condenser duty is thus not applicable to such column sections. To cir-

cumvent this, von Watzdorf et al. (1999) parameterised the PPC in complex

con gurations with, for example, the sidestream ow rate in a column with a

sidestream; again, however, this lacks generality.

Krolikowski (2006) also applied a non-linear root- nding method, along

with continuation, but no speci cs are given about the algorithm.

Lucia et al. (2008) advocated the use of the pinch equations to nd pinch

points, which are useful in the interpretation of their shortest stripping line

optimisation procedure, discussed in § 4.2.1.

More information is provided by Fidkowski et al. (1991), who solved the

pinch equations along with an arc length equation. Effectively, this allowed

the authors to overcome the issue that a curve parameterised by re ux ratio

(or rather, inverse re ux/reboil ratio as used in the cited paper) has a singular

Jacobian at the turning point of the parameter. By adding the arc length equa-

tion, the inverse re ux ratio becomes an unknown, and arc length of the PPC

becomes the parameter, which—unlike inverse re ux ratio—is monotonic.

Fidkowski et al. applied a Newton–Raphson method (with optimisation of

the Newton step length) to solve the pinch and arc length equations. They

also state that, ‘… many multivariable equation solvers will fail to nd the

xed points unless a very good guess for [the pinch point] is provided.’

Aguirre and Espinosa (1996) developed a different method to solve re-

versible pro les. They echo the above statements that Newton’s method

requires very good initial guesses in order to be convergent and that the

near-singularity of the Jacobian in the vicinity of turning points can cause

failure. For constructing reversible pro les, they presented an improved, more

robust version of the algorithm given by Koehler et al. (1991). Because of

the shortcomings of Newton-type methods, Aguirre and Espinosa opted for

a derivative-free predictor–corrector method, where the prediction is done

with a secant of the last two points while the correction uses the improved

algorithm to compute the exact solution. PPCs resulting from this method are

parameterised by the liquid mole fraction of the heavy component.

Based on the reversible column model, a non-linear programming opti-

misation formulation was presented by Barttfeld and Aguirre (2002) for the

solution of the PPC, which is solved as a two-step process to guarantee the

optimal solution.

Hoffmaster and Hauan (2002) have reported the use of the software pack-
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age AUTO972 (Doedel et al., 1998) (software for continuation and bifur-

cation analysis of ODEs) to solve the collinearity criterion for pinch points.

The collinearity criterion is exactly equivalent to solving for dxi/dn = 0 in

Eq. (4.3), since it simply means that the mixing vector and separation vector

sum to zero.

A computerised algorithm of the graphical method discussed earlier has

been implemented by Castillo et al. (1998a). A circle in composition space

with a xed radius, and with a known pinch point at its centre, is constructed

mathematically. A search is then performed on a part of this circle to nd a

composition which satis es the appropriate interpretation of the collinearity

criterion, i.e. the condition that the pinch point and its equilibrium vapour

composition, as well as the product composition, all lie on a common straight

line.

An iterative, Underwood-like method was proposed by Terranova and

Westerberg (1989) for plotting pinch point temperature against condenser

duty in non-ideal distillation systems, implicit in which is the determination of

the pinch point location with varying re ux ratio, i.e. pinch point curves. As

with all such direct-iteration methods, it is simple to implement, but requires

a good initial guess and may not converge quickly.

Felbab et al. (2011) proposed a grid-search type method for automatically

locating all pinch points in non-ideal distillation systems by minimising a

function which represents the pinch condition. Using continuation, pinch

point curves can be plotted readily. Although the search is thorough, it is not

particularly ef cient, and extension to more than three components may prove

to be infeasible due to the computational effort required.

4.2.4 Differential equation methods

Poellmann and Blass (1994) presented an ODE that satis es the collinearity

criterion in order to determine reversible pro les. The appeal of anODE for the

purposes of constructing PPCs is that continuation is handled automatically by

the very nature of the ODE algorithm when the parameterising variable is used

as the independent variable in the ODE. In the cited work, the ODE was solved

using the Runge–Kutta–Fehlberg technique. It has a number of advantages

over other methods: for example, the method of Fidkowski et al. (1991) is

more complicated than theirs, and the methods of Petlyuk et al. (1981) and

2 AUTO is currently in its 2007 incarnation, known as AUTO-07p.
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Köhler (1991) have solutions that jump between branches of the PPCs that are

close together, whereas the ODE does not.

While the ODE method of Poellmann and Blass is indeed preferable in

many ways to other methods, it does have some drawbacks: it is parameterised

by pinch point temperature, which is a variable that is not particularly useful

for design. Furthermore, because of the formulation of their equation, inte-

gration cannot be initiated exactly at the product composition; this problem

is overcome by shifting the starting point of the integration off the product

composition in the direction of the equilibrium node instead. Using products

(essentiallyXΔ) on theMBT boundary requires that the integration be initiated

at a pinch point that is not on the same boundary as the product composition.

The authors also state that the integration cannot be initiated at product

compositions outside of the MBT.

Poellmann and Blass based their ODE on the function fc, which represents

the collinearity criterion, and is de ned as follows:3

fc,i = κNxN(xi −XΔ,i)− κixi(xN −XΔ,N)+

xNXΔ,i − xiXΔ,N = 0 (i = 1…N− 1) (4.4)

Implicitly differentiating Eq. (4.4) with respect to T yields a non-homoge-

neous system of linear equations with dxi/dT as the vector of unknowns. The

coef cient matrix comprises partial derivatives of fc,i with respect to xj, and

the non-homogeneity is the partial derivative of f⃗c with respect to T.

The method of Poellmann and Blass is the most obviously comparable to

the work presented in this chapter, and a detailed comparison will be made

later in § 4.4.1.

4.3 Ordinary differential equation

The ordinary differential equation that forms the basis of this chapter is

detailed below. A brief derivation is provided in the main text, although a

complete one can be found in Appendix A.4. The integration of the system

of ODEs using a single starting point yields a partial branch of the pinch

point curve; performing the integration numerous times using the appropriate

starting points—as discussed below—enables the complete branches of the

PPCs to be constructed.

3 Note that super cial modi cations have been made to Poellmann and Blass’s equation to
conform with the notation in this thesis.
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The minimum information required is the thermodynamic properties of

the system, speci cally vapour pressure and binary interaction parameters for

the activity coef cient model of choice. Knowledge of azeotropic compositions

also aids the calculation, and can be a once-off computation for each system. A

number of other techniques are available for nding azeotropes (Maier et al.,

1988; Bossen et al., 1993; Chapman and Goodwin, 1993; Fidkowski et al.,

1993; Maranas et al., 1996; Harding et al., 1997; Wasylkiewicz et al., 1999;

Gani and Bek-Pedersen, 2000; Bonilla-Petriciolet et al., 2009; Felbab et al.,

2011), or the proposed method itself can be extended to nd azeotropes.

A selection of practical considerations for the implementation of the

method are listed in Appendix C.3.

4.3.1 Brief derivation

As with all other methods, the de nition of a pinch point is the criterion used

as the basis for the proposed method, i.e. at a pinch point, xi = xp,i, and from

Eq. (4.3), the following is true:(
1+

1
rΔ

)
(xp,i − yp,i) +

1
rΔ
(XΔ,i − xp,i) = 0 (4.5)

Equation (4.5), in some form or other, is the basis for effectively every PPC

algorithm.

It is important to note the dependencies of the variables. By xing values

of rΔ and XΔ, and assuming a xed system pressure, all of the pinch points

on a CPM are de ned (Tapp et al., 2004); by xing those design parameters,

the liquid compositions corresponding to pinch points, xp,i, are set. In other

words, xp,i is a function of rΔ and XΔ only. In this brief derivation, XΔ is taken

to be constant; however, this is not the case in complex con gurations, such

as distributed-feed columns (Felbab et al., 2011). The full derivation allowing

for variableXΔ is included in Appendix A.4. xp,i is the dependent variable, and

rΔ is the independent variable. yp,i is the vapour mole fraction of component

i in equilibrium with the liquid mixture at the pinch point, xp,i, and it is a

function of xp,1,…,xp,N−1 only, as dictated by the bubble point calculation for

a set system pressure P.

By differentiating Eq. (4.5) with respect to rΔ and rearranging, the follow-

ing is obtained:

dxp,i

drΔ
−
(
1+

1
rΔ

)
dyp,i
drΔ

=
1
r2Δ
(XΔ,i − yp,i) (4.6)
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In Eq. (4.6), the derivative dyp,i/drΔ can be arranged into a convenient form

by taking the total derivative of yp,i and dividing through by drΔ, such that:

dyp,i
drΔ

=
N−1∑
j=1

(
∂yp,i
∂xp,j

)
dxp,j

drΔ
(4.7)

Upon substitution of Eq. (4.7) into Eq. (4.6):

dxp,i

drΔ
−
(
1+

1
rΔ

)N−1∑
j=1

(
∂yp,i
∂xp,j

)
dxp,j

drΔ

 =
1
r2Δ
(XΔ,i − yp,i) (4.8)

Equation (4.8) cannot be rearranged to make dxp,i/drΔ the subject of the

formula explicitly.

In order to better understand Eq. (4.8), it is useful to rst consider a system

of three components, i.e. N = 3. For this case,

dxp,1

drΔ
−
(
1+

1
rΔ

)[(
∂yp,1
∂xp,1

)
dxp,1

drΔ
+

(
∂yp,1
∂xp,2

)
dxp,2

drΔ

]
=

1
r2Δ
(XΔ,1 − yp,1)

dxp,2

drΔ
−
(
1+

1
rΔ

)[(
∂yp,2
∂xp,1

)
dxp,1

drΔ
+

(
∂yp,2
∂xp,2

)
dxp,2

drΔ

]
=

1
r2Δ
(XΔ,2 − yp,2)

The above system is simply a system of linear equations in dxp,1/drΔ and

dxp,2/drΔ. To make this more evident, it can be written as:

[
1−

(
1+

1
rΔ

)(
∂yp,1
∂xp,1

)]
dxp,1

drΔ
−
(
1+

1
rΔ

)(
∂yp,1
∂xp,2

)
dxp,2

drΔ

=
1
r2Δ
(XΔ,1 − yp,1)

−
(
1+

1
rΔ

)(
∂yp,2
∂xp,1

)
dxp,1

drΔ
+

[
1−

(
1+

1
rΔ

)(
∂yp,2
∂xp,2

)]
dxp,2

drΔ

=
1
r2Δ
(XΔ,2 − yp,2)

The general case of this linear system—for N components—can most

easily be expressed in matrix notation:

Ad⃗ = b⃗ (4.9)

where
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A = IN−1 −
(
1+

1
rΔ

)
J (4.10)

J =



∂yp,1
∂xp,1

∂yp,1
∂xp,2

· · ·
∂yp,1

∂xp,N−1

∂yp,2
∂xp,1

∂yp,2
∂xp,2

· · ·
∂yp,2

∂xp,N−1
...

... . . . ...
∂yp,N−1

∂xp,1

∂yp,N−1

∂xp,2
· · ·

∂yp,N−1

∂xp,N−1


(4.11)

IN−1 =



1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


(4.12)

d⃗ =



dxp,1

drΔ

dxp,2

drΔ
...

dxp,N−1

drΔ


(4.13)

b⃗ =
1
r2Δ



XΔ,1 − yp,1

XΔ,2 − yp,2
...

XΔ,N−1 − yp,N−1


(4.14)

The solution vector d⃗ of Eq. (4.9) gives the de nition of the proposed ODE.

The practical meaning of this statement is the following: ODE solvers used to

solve equations of the form dy/dt = f(t, y) operate on functions of the general

form dydt=ode(t,y). In this context, the t argument is rΔ, and the y argument

is the vector of pinch points x⃗p that corresponds to the given rΔ. On each call to

this ode function, the arguments rΔ and x⃗p are used to solve the linear system

given by Eq. (4.9), to produce the vector d⃗, which is the required output dydt.
Any activity coef cient model that satisfactorily describes the system can
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be used. The Jacobian matrix J can evaluated either by using numerical

derivatives directly with N − 1 bubble point calculations, or preferably, by

using the non-iterative method described in Appendix C.2, which yields much

higher ef ciency than the former. For constant relative volatility, (somewhat

lengthy) algebraic expressions can be obtained for the above.

If XΔ is not constant, but rather has a known relationship to rΔ, as

is encountered in complex columns (Holland, 2005; Felbab et al., 2011),

then the vector b⃗ is de ned as follows, the proof of which can be found in

Appendix A.4:

b⃗ =
1
rΔ



1
rΔ
(XΔ,1 − yp,1)−

dXΔ,1
drΔ

1
rΔ
(XΔ,2 − yp,2)−

dXΔ,2
drΔ

...
1
rΔ
(XΔ,N−1 − yp,N−1)−

dXΔ,N−1

drΔ


(4.15)

4.3.2 Independent variable transform

Solving the ODE as de ned above provides the correct result with good

ef ciency.

However, the effect of rΔ on xp,i is highly non-linear (Felbab et al., 2011),

where at high
∣∣rΔ∣∣, a large change in rΔ will have a very small effect on xp,i,

but at low
∣∣rΔ∣∣, tiny changes can lead to large movements in the pinch points.

This non-linearity leads to unnecessary solutions of theODE at high
∣∣rΔ∣∣where

pinch point movement is negligible.

A way of circumventing this is proposed here, by the introduction of a new

variable:

ρ+ ≡ rΔ
rΔ + 1

(rΔ ≥ 0) (4.16)

The reason for the superscript ‘+’ in Eq. (4.16) will become apparent

shortly. Note the behaviour of the variable ρ+: as rΔ → ∞, ρ+ → 1, and

as rΔ → 0, ρ+ → 0. This has the effect of limiting the variable ρ+ to the range

(0, 1) instead of rΔ’s range of (0,∞). Furthermore at high ρ+, a small change

in that variable leads to a large change in rΔ, which in turn moves the pinch

points by a small amount. As a result, xp,i is far more linearly dependent on
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ρ+, and the latter would serve much better as the independent variable to the

proposed ODE.

Unfortunately, however, a plot of ρ+ against rΔ reveals that the behaviour

of ρ+ is not symmetrical for positive and negative rΔ values, and indeed

approaches ∞ as rΔ tends to −1.

To achieve symmetrical behaviour, negative rΔ values must be transformed

with a different, although very similar, variable:

ρ− ≡ rΔ
rΔ − 1

(rΔ ≤ 0) (4.17)

Indeed, numerical experiments have shown that using ρ+ and ρ− as the

independent variables in the proposed ODE results in a speed increase of

approximately 40–60% compared to using rΔ as the independent variable.

In order to implement these new variables in the ODE, the matrix A and

vectors d⃗ and b⃗, given in Eqs (4.10), (4.13), and (4.14), respectively, are

rede ned, as shown below in § 4.3.2.1 and 4.3.2.2. The ODE is still de ned

by the solution of Eq. (4.9), but using these new de nitions of A, d⃗, and b⃗.

ρ± will be taken to mean either ρ+ or ρ−, whichever is appropriate to the

context.

4.3.2.1 Transform of ODE for rectifying sections (positive rΔ)

For rΔ > 0, Eq. (4.9) is solved for d⃗ using the following de nitions:

A =
(
ρ+ − 1

)2(I− 1
ρ+

J
)

d⃗ =



dxp,1

dρ+

dxp,2

dρ+
...

dxp,N−1

dρ+



b⃗ =

(
1− ρ+

ρ+

)2


(XΔ,1 − yp,1)

(XΔ,2 − yp,2)
...

(XΔ,N−1 − yp,N−1)
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4.3.2.2 Transform of ODE for stripping sections (negative rΔ)

For rΔ < 0, Eq. (4.9) is solved for d⃗ using the following de nitions:

A = −
(
ρ− − 1

)2[I− (2− 1
ρ−

)
J
]

d⃗ =



dxp,1

dρ−

dxp,2

dρ−
...

dxp,N−1

dρ−



b⃗ =

(
1− ρ−

ρ−

)2


(XΔ,1 − yp,1)

(XΔ,2 − yp,2)
...

(XΔ,N−1 − yp,N−1)


Note that the transform to ρ± that has just been proposed should be used

in favour of the approach in § 4.3.1 for improved ef ciency. The remainder

of the text, however, discusses rΔ values, for more intuitive interpretation. In

order to use those values with the ρ± transform, the rΔ values must rst be

transformed to the appropriate ρ± values using Eqs (4.16) and (4.17). The

solution of the ODE will return a vector of ρ± values, which can be converted

back to rΔ using the reverse operation.

4.3.3 Solution

In this section, it is assumed that all of the azeotropes are known; pure

components are known a priori. The problem can also be extended quite

easily to use only the pure components as starting points, and to discover the

azeotropes, if any exist, during the course of the integration; this is discussed

later in the text in § 4.3.4.

4.3.3.1 Starting point

The above system of ODEs can be integrated from the appropriate initial

value, which can be any known pinch point position at a known rΔ. The most
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convenient strategy is to use the knowledge that as rΔ → ±∞ , the pinch points

are located at pure components and azeotropes. (Note that the azeotropes

must correspond exactly to the activity coef cient model used, i.e. predictions

of azeotropes using one model should not be used with another model.)

Using these starting points has two main advantages: rstly, the information

is usually readily available or calculable, and secondly, as explained earlier in

this chapter, as
∣∣rΔ∣∣ is decreased, a given pinch point tends to ‘disappear’ or

‘merge’ with another pinch point below a certain critical re ux ratio for that

pinch point (Bausa et al., 1998; Holland et al., 2004a; Beneke et al., 2011a); as

such, at in nite re ux, the maximum possible number of pinch points exists,

which means that the most information is available to construct the entire

PPC.

Initiating the integration directly from in nity is not numerically possible.

However, at high
∣∣rΔ∣∣, the locations of pinch points are highly insensitive

to changes in rΔ (Felbab et al., 2011), such that a suf cient approximation

typically is to initiate the integration at
∣∣rΔ∣∣ = 1 × 1014. Therefore, when

considering stripping sections where the rΔ values are negative, the rΔ → −∞
starting point can be replaced with rΔ = −1× 1014.

A better starting point, however, is to set
∣∣rΔ∣∣ = 1 × 1014, but then to

calculate the pinch point at that rΔ value using Newton’s method. The offset

from the pure component or azeotrope is truly minuscule at such a high rΔ,

meaning that convergence of Newton’s method is practically guaranteed and

requires one or two iterations at most, but the increase in accuracy of the

proposed method is noticeable. As such, this offset starting point is suggested

in favour of the exact pure component or azeotrope, although it is not strictly

required.

4.3.3.2 Termination point

If the entire PPC is required, the integration should stop at rΔ → 0, or at the

smallest value of rΔ for which the pinch point still exists. The limit (rΔ → 0),

rather than the equality (rΔ = 0) is used, since division by zero would be

encountered with the latter in the ODE. A suf cient numerical approximation

is to use rΔ = ±1× 10−14.

Recall that there is a critical re ux ratio, rΔ,crit, for a pinch point before

it ‘disappears’. If the end-point rΔ is set such that a pinch point can never

reach it, theODE solver—depending on its design—may enter an in nite loop

trying to progress beyond that point. This phenomenon is the ‘turning point’
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mentioned in the literature (Fidkowski et al., 1991; Aguirre and Espinosa,

1996). A special provision must be made for this in the ODE solver routine: if

two successful successive steps are spaced suf ciently close together—that is,

if the relative difference between the two successive rΔ values is less than a set

tolerance—the integration must be terminated.

Therefore, integration for the full PPC is carried out from rΔ = 1× 1014 to

rΔ = max{1×10−14, rΔ,crit} and from rΔ = −1×1014 to rΔ = min{−1×10−14,

rΔ,crit}. Note that the signs of the integration bounds must be the same for a

given integration; also note that rΔ,crit cannot be known beforehand, such that

the zero approximation (±1×10−14) is only ever speci ed by the user. As such,

the ODE algorithm must have provision to exit at rΔ,crit when it is detected, as

described above.

If only pinch points at a speci c rΔ are required, the integration can be

terminated at the speci ed value. The nal composition reached at the end of

the integration gives the pinch point, with one caveat: the same potential issue

as with PPC exists in that the chosen re ux may be beyond the critical re ux of

a given pinch point section, and the integration—using the abovementioned

provision—will terminate at the critical re ux ratio, as it cannot reach the

desired one.

Inherent in the ODE algorithm’s output is information about the indepen-

dent variable, rΔ, values corresponding to each of the liquid compositions that

describes the PPC; if the nal rΔ is not the one that was set as the end-point

of the integration, it means that the integration terminated at rΔ,crit, and the

pinch point can be disregarded, as it does not correspond to the selected rΔ.

4.3.4 Automatic azeotrope discovery

If azeotrope information is not available, the proposed method can easily be

extended to nd the azeotropes automatically.

As explained earlier, integration from in nity stops at rΔ,crit, at which

matrix A becomes singular and a ‘turning point’ is reached. In order to ‘jump’

over this turning point onto the adjoining PPC section, a simple arc length

extrapolation can be performed.

The arc length is computed for the PPC from the in nite-re ux pinch

point (pure component or azeotrope) to the rΔ,crit, which is then extended by

a small calculated or xed value, such as 1 × 10−3, by means of non-linear

extrapolation. This provides a liquid composition which is on the adjoining
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section of the PPC, beyond the threshold of the turning point. Since the

extrapolation amount is so small, it is a very reliable approximation.

The rΔ corresponding to this extrapolated composition on the adjoining

PPC section can be calculated. In order to do this, Eq. (4.5) is rearranged to

make rΔ the subject of the formula, resulting in the following:

rΔ =
XΔ,i − yp,i
yp,i − xp,i

(4.18)

With a known pinch point liquid composition, xp, and the vapour in

equilibrium with it, yp, any component i can be used in Eq. (4.18). For the

exact pinch point, any component used as i will give the same rΔ. Because

of the inherent numerical error in both the integration and the extrapolation,

however, there will always be a slight difference between the rΔ calculated

using different components as i; in effect, N slightly different rΔ values can be

obtained using each of theN components as i. The best approach for choosing

the optimal rΔ from the available selection of values is to use the F function of

Felbab et al. (2011), de ned as follows:

F(x1,…,xN−1, rΔ,XΔ) =
N−1∑
i=1

∣∣fi(x1,…, xN−1, rΔ,XΔ)
∣∣ (4.19)

where

fi(x1,…, xN−1, rΔ,XΔ) =
(
1+

1
rΔ

)
(xi − yi) +

1
rΔ
(XΔ,i − xi) (4.20)

For a pinch point, fi = 0 for all i. The function F is formulated such that it

can only be zero if, and only if, all fi are zero. With this information—along

with the known values of xi, yi and XΔ—each candidate rΔ can be tried in

Eq. (4.19); the one resulting in the smallest F is the most accurate rΔ.

Alternatively, since xi, yi, and XΔ are xed, a simple one-dimensional

minimisation in rΔ can be performed on Eq. (4.19) to nd the optimal rΔ;

Eq. (4.18) provides an excellent initial guess for this minimisation. Both

approaches are computationally inexpensive.

Finally, integrating from this new point at its calculated rΔ to in nity, or

rather, the rΔ = ±1 × 107 approximation of in nity, ends at an azeotrope or

pure component. If this technique is used after integration has been performed

from all of the pure components, and if redundant calculation of PPC sections

is avoided, then this will only yield azeotropes.

It is suggested to re ne the located azeotrope using Newton’s method,
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which should converge in very few iterations, as the end-point of the inte-

gration is a very good approximation of the actual azeotrope.

Note that in highly non-ideal systems—which may have azeotropes both

inside and outside the MBT—there may be branches of the PPC which do

not pass through the pure components at all, depending on the choice of XΔ.

Consequently, discovery of those azeotropes, and indeed, the associated PPC

branches, cannot be guaranteed with this method, although these branches are

unlikely to have any practical use in conjunction with the selected XΔ.

The use of a variety of XΔ locations, and logging a database of the found

azeotropes, however, is likely to yield most or all of the azeotropes outside of

the MBT eventually.

4.4 Comparison with other methods

This section details how the proposed method compares with other methods

for constructing pinch point curves, as well as how it performs in methods

which use pinch points implicitly. The example used for the latter is the

minimum energy algorithm of Lucia et al. (2008).

Details are provided in the text below, but the results can be summarised

as follows:

• The proposed method is faster than the ODE of Poellmann and Blass (1994),

as well as more numerically robust, and is in a form that is more applicable to

distillation design.

• In comparison with traditional continuation methods, the proposed method

offers somewhat (10–30%)4 better performance, is not susceptible to branch

switching like the former, and is more readily solved with standard mathemat-

ical software packages.

• Use of the proposed method in conjunction with Lucia et al.’s (2008) algorithm

leads to appreciably faster computation of the minimum reboil ratio than the

original, but has the drawback that the results are only reliable for packed

stripping sections; for staged stripping sections—in some cases—too low a

reboil ratio leads to instability which is not observed in packed column. As

a result, only a subset of the full PPC is applicable to staged columns, and

there is no a priori way of determining this subset. Therefore, the use of the

4 These numbers are dependent on the algorithms used in either case, and should be considered
as indicative, not conclusive.
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proposed algorithm does not give the correct answer in all cases for a staged

stripping section, and the original method of Lucia et al. should be utilised in

that context.

4.4.1 Comparison with Poellmann and Blass’s method

As brie y described earlier, Poellmann and Blass (1994) presented an ODE-

based method for constructing PPCs which was superior to others. Since it is

the only other ODE-based method for this purpose, it serves as the most apt

subject for comparison with the proposed method.

By differentiating the fc,i function, de ned by Eq. (4.4), implicitly with

respect to T, Poellmann and Blass obtained a non-homogeneous system of

linear equations—similarly to the proposed method—except with the ODE

de ned in terms of the derivative dxi/dT. This system of linear equations is

de ned as follows:(
∂fc,i
∂xj

)(
dxi
dT

)
= −

(
∂fc,i
∂T

)
(4.21)

for i and j = 1…N− 1.

Mole fraction summation to one is ensured in the (∂fc,i/∂xj) matrix as well

as in (dxi/dT).

Poellmann and Blass expanded all of the partial derivatives in Eq. (4.21)

to expressions involving partial derivatives of κ, Pvap, γ, and xi with respect to

T and xj, all of which can be evaluated analytically. The exact expressions are

fairly complicated, and can be found in § 3.8, Appendix A of Poellmann and

Blass (1994).

One of the most signi cant differences in the derivation of the proposed

method and the Poellmann–Blass (PB) method is that the latter obtained a

constant c that relates the two vectors required for the collinearity criterion,

x−XΔ and y−x. They then cancelled out this c by using components i and k,

where i ̸= k, and equating the two expressions. This work, on the other hand,

recognises that the constant c is, in fact, −(rΔ + 1)—which can be proved by

simple manipulation of Eq. (4.5)—and does not attempt to remove it from

the calculation. As such, it is then possible to use rΔ (or its simple transform

to ρ±) as the integration variable.

These two different approaches lead to ODEs with very different charac-

teristics. A practical comparison of the proposed method and the PB method

is given below.
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Note that Poellmann and Blass obtained analytical expressions for their

entire calculation; this requires compositional and temperature derivatives of

the activity coef cient model (∂γi/∂xj and ∂γi/∂T, respectively), as well as

temperature derivatives of the vapour pressure model (dPvap
i /dT). While using

analytical expressions does increase numerical stability in the calculations, it

requires the user to have not only the chosen models available, but also their

various derivatives, which are often not easy to obtain for the more compli-

cated activity coef cient models (Taylor and Kooijman, 1991). Moreover, it

introduces an additional potential source of error, both in the mathematics and

in the programming. To avoid this, both methods are compared on the basis

of the abovementioned derivatives being evaluated numerically by forward

differences, thereby requiring the user to de ne only the appropriate models.

4.4.1.1 Parameterising variable

The parameterising variable used by Poellmann and Blass is temperature,

which has both inherent advantages and disadvantages. The most signi cant

advantage of having T as an independent variable is that it avoids bubble point

calculations altogether, because T never has to be calculated. On the other

hand, although the pinch point curves are obtained, the information that is

directly available from the ODE solution is the pinch point temperatures along

the PPC, which has only minor usefulness for design purposes.

The proposed method uses the ρ± variable (which is directly related to the

generalised column section re ux ratio, rΔ) for the parameterisation, which

is arguably more pertinent to design. Furthermore, the method presented in

this chapter need only use the pure components as starting points, whereas

that of Poellmann and Blass must be initiated at the pure components and

azeotropes, as well as at XΔ. Even if arc length extrapolation were to be

used in conjunction with the Poellmann–Blass method, azeotropes cannot be

identi ed using temperature, whereas the same is not true of re ux ratio, for

which rΔ → ±∞ (or equivalently, ρ± → 1) demarcates an in nite-re ux pinch

point, and therefore an azeotrope.

4.4.1.2 Calculations

For the evaluation of the vector b⃗, given by Eq. (4.14), one bubble point

calculation is required at every step of the integration. This adds some

computational effort in comparison with the PB method—which requires

none—but the result of the integration can, in this case, contain both the



CHAPTER 4 CONSTRUCTING PINCH POINT CURVES 85

rΔ and the T at every point describing the PPC. If the Jacobian matrix J is

evaluated using numerical differentiation directly, then an additional N − 1

bubble point calculations are required (one bubble point calculation for each

column of the Jacobian). These additional bubble point calculations, however,

can be avoided altogether by using the method in Appendix C.2, such that only

one such computation is required at every step. Both approaches are described

in Appendix C.2.

Since the movements in composition space between successive steps during

the integration are quite small, the temperature does not change markedly

from step to step; consequently, except for the initial point, the previous step’s

temperature can be used as a very good starting estimate for the current step’s

temperature, requiring very few iterations in the bubble point calculation even

for a low convergence tolerance.

4.4.1.3 Practical implementation

The proposed method can be integrated successfully with a number of ODE

solvers, but perhaps the simplest one that yields good results with reasonable

ef ciency is the 3(2) Runge–Kutta pair due to Bogacki and Shampine (1989),

which performs well at moderate to high integration tolerances.

The PB method, however, appears to give satisfactory results only at

lower tolerances, meaning that a more advanced ODE solver is needed for

ef cient calculation: for example, Poellmann and Blass used the Runge–Kutta–

Fehlberg method. As such, while computational ef ciency is gained by the PB

method in that it does not require bubble point calculations, some is lost in

the requirement of low integration tolerance.

The implication is that the proposed method is more numerically robust

than the PB method, which may suggest that the latter is not particularly

amenable to the use of numerical derivatives.

4.4.1.4 Performance

A direct performance comparison of the methods is not entirely straightfor-

ward, but endeavours have been made to compare the two as fairly as possible.

The performance of the methods was compared using the same ODE

solver with the same integration tolerance, and with step sizes in the various

numerical derivatives manually optimised for the best performance in each

case. Ideally, several stiff and non-stiff ODE solvers should be trialled; unfor-

tunately, however, few ODE solvers seem to perform reasonably with both the
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PB ODE and the proposed one. A solver that meets this criterion is the Adams–

Bashforth–Moulton PECE method (Shampine and Gordon, 1975), which was

implemented for this comparison.

The ABC system served as the subject of the analysis, and a number of

different XΔ points were used.

All integration was started from the pure components and azeotropes

(inside and outside of the MBT), meaning that the arc length extrapolation

described earlier was not used in the comparison. Owing to the different pa-

rameterising variables in the two cases, the ‘distance’ from the MBT that the

methods can reach before terminating is different, and usually longer for the

proposed method, with the consequence that its computation time is some-

what lengthened as it integrates further.

One way of somewhat lessening the effects of different integration ‘dis-

tances’ is to compare the two methods not on a direct computation time basis,

but on an adjusted computation time, de ned here as computation time per

arc length.

Finally, the two methods were compared using the best con guration of

solver, tolerance, etc. for each.

Using the same con guration (solver and tolerance), the proposed method

was approximately 10–15% faster than the PB method, despite the former’s

lack of bubble point calculations; the reason for this is likely that proposed for-

mulation is more numerically robust. When the two methods were compared

at their respective optimal con gurations, the proposed method was found to

be 45–55% faster.

4.4.1.5 Flexibility

The proposed method is able to accommodate both a xed XΔ, as well as

one that varies with rΔ, which is an important feature for complex column

design (Holland, 2005; Felbab et al., 2011). The PBmethod, however, does not

allow for this approach, as the authors focused their attention on conventional

columns only. The proposed method therefore has wider applicability than

does the PB method.

4.4.2 Comparison with other reflux-parameterised methods

The proposed method was also compared with continuation methods.
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Computation time is provided to give an indication of the performance;

the time pertains to Fortran 2003 code compiled to MATLAB executables

(mex les), running under Microsoft Windows 7 Professional 32-bit on an

Intel Core i5 430M (2533 MHz) with 3 GB of DDR3-1333 SDRAM. Parallel

processing was not used.

All calculations for the proposed method and the continuation algorithms

were started at pure components and azeotropes, and in both cases, the range∣∣rΔ∣∣ = 1000 to
∣∣rΔ∣∣ = 0.01 was used.

A few points should be made clear prior to considering the results: contin-

uation algorithms are a relatively specialised class of solvers, and are thus not

widely available. No major mathematical software package appears to come

with a built-in version of any continuation algorithm, and only a handful

of third-party tools are available for this purpose. Even in Fortran, which

probably has the greatest number of available algorithms, only a few appro-

priate professional options are available: AUTO (Doedel et al., 1998), PITCON

(Rheinboldt and Burkardt, 1983), and ABCON (Lundberg and Poore, 1991).

The latter is only available as a single-precision routine, which can only return

as values the nal point in the continuation; it is thus unsuitable for this

purpose. AUTO, on the other hand, is a well-known standalone tool, but it

is only available in a form that is not particularly amenable to incorporation

into a user’s own project without a great deal of effort. The only remaining

option, thus, is PITCON.

In light of this lack of real choice, a user may be forced to write his or her

own continuation algorithm if they wish to use continuation to nd PPCs.

As such, a custom continuation algorithm was devised to see how a user-

made algorithm might compare with the proposed method. It is summarised

in Appendix C.4.

PITCON was parameterised by λ = 1/rΔ (as suggested by Fidkowski et al.,

1991) and ρ±, while the custom continuation algorithm was parameterised by

rΔ and ρ±.

The proposed ODE was solved with the Adams–Bashforth–Moulton mul-

tistep PECE method.

In all of the cases above, all endeavours were made to minimise the compu-

tational effort in order to make a fair assessment. For example, the previously

calculated temperature was used as the initial guess for the next step in order to

accelerate the bubble point calculations. Moreover, all common subroutines

(bubble point calculations, Jacobian evaluations, etc.) were the same for all
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Table 4.1 Numerical results of various methods to calculate PPCs in Figure 7 of
Krolikowski (2006).

Method Parameter No. Points Time (s) Maximum F

This work ρ± 106 0.007028 4.6308×10−4

Continuation: PITCON λ 2094 0.050993 4.7832×10−3

Continuation: PITCON ρ± 1176 0.033645 3.5577×10−3

Continuation: Custom rΔ 143 0.009083 6.2063×10−5

Continuation: Custom ρ± 137 0.007639 2.4472×10−4

Table 4.2 Numerical results of various methods to calculate PPCs in Figure 5 of
Wahnschafft and Westerberg (1992).

Method Parameter No. Points Time (s) Maximum F

This work ρ± 122 0.008272 6.2000×10−5

Continuation: PITCON λ 130a 0.028243 6.7764×10−3

Continuation: PITCON ρ± 392a 0.169078 6.9027×10−3

Continuation: Custom rΔ 138 0.009960 2.1684×10−4

Continuation: Custom ρ± 152 0.010372 2.0868×10−4

a Some PPC branches were incomplete; the algorithm returned NaNs at some point.

methods where applicable.

The computation times presented here are the average values of 50 con-

secutive runs of each method, where the rst run was disregarded to exclude

additional time required to load the function into memory.

Finally, in order to assess the accuracy of each method, the maximum value

of F in Eq. (4.19) along the calculated PPC is reported. This is effectively the

same as the L1-norm of Eq. (4.5). The lower the F, the more accurate the

pinch points, but in most cases, F ≤ 1×10−3 is suf ciently accurate for design

purposes.

For these numerical tests, two examples from the open literature were

recreated: (1) the PPCs for the ABC system in Figure 7 of Krolikowski (2006),

the results of which are reported in Table 4.1; and (2) the PPCs for the ethylene

glycol–isopropanol–water (EGIW) system in Figure 5 of Wahnschafft and

Westerberg (1992), the results of which are reported in Table 4.2. Note that

Wahnschafft and Westerberg do not provide written values for the required

compositions, such that some error in reading from the graph must inevitably

be incurred. The XΔ was estimated to be (−1.893, 2.372, 0.5205).

The results in Tables 4.1 and 4.2 indicate that the proposed method is

the fastest, followed relatively closely by the custom continuation algorithm,

which is approximately 10–30% slower. The accuracy of the two methods is
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roughly equivalent, and not signi cantly different to have a practical impact;

neither method is consistently more accurate than the other.

The performance of PITCON is somewhat unexpected: it generates a

large number of points, and its ef ciency suffers as a result. Adjustment of

its parameters to try and improve performance led to larger steps initially,

followed by rapidly diminishing step sizes, which ultimately gave noticeably

incomplete PPCs. It took several times longer than the proposed ODE, and

produced PPCs that in some parts were too inaccurate. In the second test, two

of the PPC sections terminated prematurely because the algorithm returned

NaNs. It can, therefore, be concluded that PITCON is not well-suited to the

PPC problem.

While the ρ± transform has a universal bene cial effect on the proposed

ODE, its effect on the performance of continuation algorithms is not as

uniform: in some cases it is bene cial, and in others not.

4.4.3 Comparison with methods using PPCs implicitly

The proposed method was intended for use with other design methodologies,

and tests were performed to see how it would fare in a method that uses PPCs

only implicitly.

The method of Lucia et al. (2008) was brie y introduced in § 4.2.1. It is a

two-step global optimisation algorithm, the rst step of which is a non-linear

programming problem used to nd the minimum energy requirements for a

given distillation problem. The algorithm requires the following inputs: feed

composition, feed condition, the desired distillate compositions, the bottoms

compositions in a conventional column, and an initial reboil ratio. A purity

constraint is set on the distillate composition.

At a given reboil ratio, the stripping section is constructed, starting from the

bottoms composition and proceeding upwards, for a large number of stages

(n ≥ 300), such that it effectively pinches, i.e. terminates at a stable pinch

point. Lucia et al. considered staged columns, the mathematical construction

of which amounts to solving Eq. (4.3) using Euler’s forward method for

Δn = 1. The resulting stripping line has a piecewise length in the composition

space. Once the stripping section has been described, the rectifying section—

if present—is constructed, starting from the stripping section pinch point and

again proceeding upwards. The construction of the rectifying section continues

until it converges to a point, or leaves the mass balance triangle.
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An optimisation algorithm is applied to the above procedure to nd the

reboil ratio that minimises the length of the stripping line, with the constraint

that the end of the rectifying section (distillate) must satisfy the speci ed

minimum product purity. The reboil ratio that satis es these criteria is the

minimum reboil ratio, and therefore corresponds to the minimum energy

requirements.

The construction of the stripping section, as described above, nds the

stable pinch point from which the rectifying section is to be constructed,

and it also provides a convenient objective function for the minimisation.

However, the drawback to this is that it requires a large number of bubble

point calculations, which are the most computationally expensive parts of

distillation calculations.

The proposed ODE method can nd the same pinch points as used in Lucia

et al.’s algorithm; however, without the stripping line being computed, the same

objective function cannot be used. A modi cation to Lucia et al.’s algorithm

to incorporate the proposed method is described as follows:

Before the optimisation procedure commences, the proposed method is

used to determine the pinch point curve associated with the bottoms com-

position. This results in composition and reboil ratio information along the

PPC. The PPC also has an associated arc length, and at a given arc length, the

reboil ratio and pinch composition are known (interpolation is required for

intermediate values not present in the output of the ODE solver). In turn, once

the reboil ratio and pinch composition are known, the rectifying section can

be constructed exactly as in the original algorithm.

An optimisation algorithm can be applied to this modi ed procedure in

order to nd the arc length along the PPC that minimises reboil ratio without

violating the distillate purity constraint.

To summarise the difference between the two approaches, if the objective

function to be minimised is expressed as f=objfun(x), then Lucia et al.’s

original algorithm has f de ned as stripping line length, and x as reboil ratio,

while the version modi ed with the proposed method has f as reboil ratio,

and x as arc length along the PPC. The constraints are the same.

A comparison using the original algorithm and the modi ed one was

performed using two examples from Lucia et al. (2008). The rst of these is

from §6.6 of Lucia et al.: the ABC systemmodelled with UNIQUAC, with xF =

(0.17, 0.72, 0.72), xD = (0.9900, 0.0093, 6.666×10−4), and xB = (1×10−10,

0.86734, 0.13266). The column is considered feasible if xD,1 ≥ 0.99.



CHAPTER 4 CONSTRUCTING PINCH POINT CURVES 91

Table 4.3 Numerical results of the original Lucia et al. algorithm and the algorithm
modi ed using the proposed method; parameters given in text.

Algorithm Pinch Point
Re ning

Minimiser Min. Reboil Ratio Time (s)

Original – DIRECT 1.16082 0.464

Proposed None DIRECT 1.16109 0.163

Proposed 10 Euler steps DIRECT 1.16084 0.167

Proposed Variable no.
Euler steps

DIRECT 1.16082 0.217

Original – Nelder–Mead 1.16082 0.311

Proposed None Nelder–Mead 1.16106 0.094

Proposed 10 Euler steps Nelder–Mead 1.16084 0.121

Proposed Variable no.
Euler steps

Nelder–Mead 1.16082 0.186

Two minimisation algorithms were tried: the DIRECT algorithm, due to

Jones et al. (1993), and a bracketing scheme with bound-constrained Nelder–

Mead (Nelder and Mead, 1965) as the local minimiser.

For each test, 1 000 runs were performed; each time, a random value of

reboil ratio, S, between 5 and 20 was generated. This value was used as the

upper bound in the DIRECT algorithm (with the lower bound at S = 0.1),

and as the initial guess for the Nelder–Mead-based scheme. In all cases, the

search was limited to the interval [0.1, 20]. For the modi ed version, the initial

value of S was translated to an arc length along the PPC. The solution always

converged to the same value within six signi cant gures.

As observed in § 4.4.2, there is some small numerical error in the PPC

generated with either the proposed method or standard continuation methods.

These pinch compositions can be re ned by driving them closer to the true

pinch points using a few Euler steps of the stripping section; the modi ed

algorithmwas tested with no re ning, with ten Euler steps, and with a variable

number of Euler steps that matched the accuracy of Lucia et al.’s original

version.

Table 4.3 summarises the results of the tests, where the computing times are

averaged over the 1 000 runs. The same computing con guration as described

in § 4.4.2 was used.
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The minimum reboil value found—and veri ed—in this test was 1.16082,

which differs slightly from Lucia et al.’s published value of 1.159295. Although

the same UNIQUAC binary interaction parameters and vapour pressure con-

stants were used, the difference could potentially be caused by different

UNIQUAC structural parameters, different system pressures, or round-off

error in the set distillate and/or bottoms compositions. Nevertheless, this small

discrepancy does not impact on the present comparison.

Table 4.3 shows that in all cases, the modi ed version is faster; even using

pinch point re ning to achieve the same accuracy as the original algorithm, it is

approximately twice as fast. If slight error in the minimum reboil is tolerable,

then the unre ned modi ed algorithm yields signi cantly better performance.

These observations can be explained by the fact that by not generating the

stripping section at each step in the minimisation procedure, the proposed

modi cation avoids a great number of bubble point calculations.

The second test performed was another example taken from Lucia et al.

(2008): in § 6.12 of that paper, a split of ABC modelled with UNIQUAC is

described, with xF = (0.0330, 0.5275, 0.4395), xD = (0.033, 0.022, 0.945),

and xB = (0.0330, 0.6373, 0.3297). Unfortunately, the modi ed algorithm

gives an incorrect value that is lower than the one found by the original al-

gorithm. The reason for this is that staged column modelling is equivalent to

Euler forward integrationwith step size 1, which is not always a stable solution

scheme. At low values of reboil ratio, a packed column section modelled using

robust integration of Eq. (4.3) is numerically stable, but a staged one is not,

and its trajectory diverges and tends to another pinch point. As a result, the

staged column’s feasible pinch points are a subset of the continuous column’s,

and the proposed method has no way of accounting for this.

Consequently, the modi ed method—though faster when it does work—

does not give reliable results for staged columns; in this case, the original

method is preferred.

4.5 Examples

Some examples of the PPCs obtained by the algorithm are presented here for

ternary and quaternary systems. The computation times given here are for the

same computer con guration described in § 4.4.2.

Only pure components were used as starting points, such that azeotropes
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were discovered automatically by the method. For each example, the compu-

tation time for the entire procedure is given in the caption.

In order to assess the capabilities of the proposed method, the examples

below include some extremely complicated systems with interesting behaviour,

such as benzene–hexa uorobenzene–n-hexane (BHnH), and acetone–chloro-

form–methanol–benzene (ACMB). Despite being a ternary system, BHnH has

four binary azeotropes (within the MBT): two normal binary azeotropes, and

the well-known double binary azeotropes between benzene and hexa uoro-

benzene. ACMB on the other hand, has six azeotropes (within the MBT): four

binary, one ternary, and one quaternary.

The quaternary systems are given as parallel stereoscopic gures for three-

dimensional viewing. A brief guide on how to view these images is provided

in Appendix C.5.

Blue pinch points curves signify rΔ > 0, while red indicates rΔ < 0. The

order of the components of the XΔ vector corresponds to the acronym of the

system given in the caption.

Figure 4.4 shows the ABC system, while Figure 4.5 gives examples using

the acetone–chloroform–methanol (ACM) system. The last ternary example

given here is the aforementioned BHnH system in Figure 4.6.

One particularly noteworthy aspect is a comparison with the self-explanat-

ory ‘azeotrope search’ feature in AspenTech’s Aspen Plus (Aspen Technology,

Inc., 2007). To nd all of the six real azeotropes of the ACMB system,

Aspen Plus takes 33.1 seconds; on the same machine, in the same computing

environment, and using the same activity coef cient model, the proposed

algorithm nds all of those azeotropes—as well as some outside of the real

space—and all the branches of the pinch point curves, in 0.329 seconds.

For the BHnH system, Aspen Plus manages to nd only two of the four

real azeotropes, taking 32.8 seconds to do so. The proposed algorithm,

however, successfully locates all of the real azeotropes, along with the PPCs

and azeotropes outside of the MBT, in less than 0.117 seconds.

Although no examples of non-constant XΔ are given here—in order to

avoid a full column synthesis example, which would be required to give

context to the non-constant XΔ—it has been con rmed to work by recreating

Figure 3.15.
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Figure 4.4 Pinch point curves of the ABC system. (a) XΔ = (0.27, 0.28,
0.45); time: 0.084 s. (b) XΔ = (0.59,−0.30, 0.71); time: 0.081 s.
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Figure 4.5 Pinch point curves of the ACM system. (a) XΔ = (0.22, 0.43,
0.35); time: 0.089 s. (b) XΔ = (0.07,−0.20, 1.13); time: 0.090 s.
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Figure 4.6 Pinch point curves of the BHnH system. (a) XΔ = (0.50, 0.09,
0.41); time: 0.117 s. (b) XΔ = (−0.10, 0.46, 0.64); time: 0.109 s.
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Figure 4.7 Parallel stereoscopic view of the pinch point curves of
the BTmXC system with XΔ = (0.23, 0.38, 0.28, 0.11); time: 0.083 s
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Figure 4.8 Parallel stereoscopic view of the pinch point curves of
the ACME system with XΔ = (0.18, 0.22, 0.30, 0.30); time: 0.254 s
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Figure 4.9 Parallel stereoscopic view of the pinch point curves of
the ACMB system with XΔ = (0.12, 0.21, 0.58, 0.09); time: 0.329 s
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4.5.1 Software demonstration

Software demonstrating the work presented in this chapter can be obtained

freely from me. To obtain the software, simply send an email, blank or

otherwise, with the title PPC Software Request to Nik.Felbab@gmail.com,
and a URL for the download will automatically be sent in return.

4.6 Conclusion

This chapter has presented a new method of constructing all branches of

the pinch point curves in homogeneous, non-ideal (or ideal) multicomponent

systems. It takes the form of a non-stiff ordinary differential equation, the

solution of which is a partial branch of the pinch point curves. Initiating the

integration at the appropriate starting points (pure components and azeotro-

pes) leads to the complete pinch point curves. In effect, this is a continuation

method formulated as an ODE. Although the method has the ability to con-

struct the full PPC, it does not need to; if a user requires only a speci c subset,

integration can be carried out from a known pinch point to a speci c re ux/

reboil ratio, to generate only the part of the PPC that is of interest.

The method requires only the activity coef cient model and vapour pres-

sure model for the input of a new system, although it can make use of

azeotrope data, if available.

Novel variables, ρ+ and ρ−, which are simple transforms of rΔ, were

introduced. The use of these variables, instead of rΔ, linearises the PPC problem

somewhat, which has a signi cant in uence on the ef ciency of the proposed

ODE: when ρ± is used as the independent variable or parameter, it results in

a 40–60% speed increase compared to rΔ.

The choice of ODE solver is up to the user; all non-stiff ODE solvers that

were trialled worked with the proposed formulation.

In comparison with the ODE of Poellmann and Blass (1994), (the PB

method), the proposed ODE has the following advantages:

1 It is parameterised by re ux ratio, rather than temperature, making it more

applicable to design;

2 It is based on the difference point equation, allowing for use in any generalised

column section (including in complex columns);

3 Unlike the PB method, it allows for a non-constant XΔ, which is often encoun-

tered in complex columns;
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4 It is simpler, faster and more numerically robust than the PB method (using

numerical derivatives of γ and Pvap); and

5 It can locate azeotropes if required (marked by rΔ → ∞), whereas the PB

method has no way of identifying azeotropes.

In comparison with continuation methods, the proposed ODE has the

following advantages:

1 In the numerical experiments performed in this chapter, the proposedODEwas

found to be 10–30% faster. This, however, is not inherent to the approach, and

it is conceivable that a continuation algorithmwith a better predictor and step-

size control than the one used here could outperform the proposed method;

however,

2 ODE solvers are signi cantly more prevalent than continuation algorithms

(this is an important point which is expanded on below); and

3 Continuation algorithms suffer from branch-switching when two branches of

the PPC are close to one another. This was noticed in this work, as well as by

Poellmann and Blass (1994). ODEs, however, do not have this drawback.

The proposed method is the only method that formulates the PPC problem

as an ODE parameterised by the column section re ux ratio, or indeed, any

design variable. The signi cance of the parameter is that it is arguably more

useful for design than the ODE of Poellmann and Blass.

Continuation methods are also typically parameterised by re ux ratio, or

by a simple transform of re ux ratio (such as λ = 1/rΔ), but there is one

signi cant, albeit subtle, advantage to the ODE approach: continuation meth-

ods are a relatively specialised class of solvers. Currently, their use is not nearly

as widespread as that of ODEs, and compared to ODE solvers, relatively few

professional continuation solvers exist, none of which is available ‘out-of-the-

box’ with typical mathematical software packages. The integration of ODEs,

on the other hand, is a standard, everyday engineering problem. An important

consequence of this is that to generate pinch point curves ef ciently with the

proposed method, practising, non-expert engineers can easily use tools with

which they are familiar, and which are available in every major mathematical

software package (ODE solvers, linear system solvers, and, optionally, inter-

polation routines). The convenience of this brings ef cient and reliable PPC

construction to a much wider audience using the proposed method than with

standard numerical continuation.
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The proposed algorithm was also tested in conjunction with the algorithm

of Lucia et al. (2008) that, in its rst phase, nds the pinched, minimum energy

solution to a given distillation problem. The use of the PPC generated by the

proposed method as a modi cation to Lucia et al.’s original algorithm was

found to yield signi cant speed bene ts. However, when using staged—rather

than packed—columns, the proposed method has no way of discerning the

subset of the PPC that is applicable to staged columns; as such, its reliability is

not guaranteed, and Lucia et al.’s original method must be used in this context.

Optionally, the proposed method can be extended to nd azeotropes,

which it does more reliably and much faster than Aspen Plus, with the caveat

that for thermodynamic models that do not allow negative mole fractions,

several XΔ points must be tried to nd all of the azeotropes.

The proposed method has a number of important advantages over other

methods intended for the same purpose, and can be utilised in the design

and synthesis of distillation columns—in conjunction with methodologies

that require the use of pinch point curves or that are based on the reversible

distillation model—or, more broadly, in any application that requires the

ef cient location of azeotropes in anN-component system at a given pressure.
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Synthesis of Standard Vapour
Recompression Distillation
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Abstract

The vapour recompression distillation scheme is examined and compared with con-

ventional distillation in an analysis spanning fundamental thermodynamics, high-level

calculations, and rigorous simulation. The purpose of this chapter is threefold: rst,

it provides greater insight into vapour recompression distillation. Second, it provides

a process synthesis tool to rapidly assess whether vapour recompression is likely to be

more thermodynamically favourable than conventional distillation for a given split.

Third, it may be used to determine if vapour recompression can be implemented prac-

tically. The tool presented in the chapter is consolidated in the form of a single chart,

for which only the top and bottom product temperatures are required in order to

determine the outcome. Using this chart, rst-pass estimates can be obtained with no

calculations whatsoever. The tool, which appears to be the rst of its kind in this

context, is validated with examples and rigorous simulation.

99
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5.1 Introduction

Despite the well-established fact that distillation is an energetically inef cient

process (Freshwater, 1951; Flower and Jackson, 1964; King, 1980), it has seen

widespread industrial application for the separation of mixtures over the last

century: by Humphrey’s (1995) estimate, up to 90% of all product recovery.

Conventional, or simple, distillation columns (those with one feed, a distillate,

a bottoms, a condenser, and a reboiler; see Figure 5.1a) are the most prevalent,

even though they are often not the most ef cient distillation con guration.

Improvements in the energy ef ciency of distillation remain a challenge

for industry, especially due to the rising costs of energy and growing environ-

mental concerns. In an attempt to mitigate this, a large number of increasingly

complex modi cations to, and departures from, conventional distillation have

been devised over the last few decades. These include:

1 Complex distillation arrangements/column coupling (Rév et al., 2001;Hernán-

dez-Gaona et al., 2005; Agrawal, 2003; Caballero and Grossmann, 2003,

2013; Shenvi et al., 2013), e.g. Petlyuk (Petlyuk et al., 1965; Halvorsen and

Skogestad, 2004, 2011; Holland et al., 2010), multi-effect (Al-Elg and Pala-

zoglu, 1989; Agrawal, 2000; Engelien and Skogestad, 2005), and distributed-

feed columns (Soave and Feliu, 2002; Holland, 2005; Felbab et al., 2011);

2 Diabatic columns (Fonyó, 1974; Le Goff et al., 1996), in which heat is added

or removed on several or all stages, allowing the column to operate more

reversibly;

3 Heat-pumping techniques (Fonyó and Benkő, 1998), e.g. vapour recompres-

sion, and absorption heat pumps;

4 Heat-integrated distillation columns (HIDiCs) (Nakaiwa et al., 2000; Olujić
et al., 2003; Huang et al., 2006, 2008; Mane and Jana, 2010; Chen et al.,

2010; Suphanit, 2011), in which the rectifying section is compressed and

transfers heat to the stripping section, utilising a combination of the rst three

modi cations;

The literature covering these topics is vast (which is indicative of the urgency

to nd energy savings in distillation processes); thorough reviews and com-

parisons can be found in Rév et al. (2001), Nakaiwa et al. (2003), and Jana

(2010).

Research related to energy ef cient columns is on a trajectory of increasing

complexity, with simpler systems thought to be well-understood. One such
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Figure 5.1 Schematic representations of (a) conventional distillation, (b)
vapour recompression, (c) heat-pump-assisted distillation with an external
working uid, and (d) bottoms ashing.

class of ‘simple’ systems is heat-pump-assisted distillation, of which there are

three typically used variants: vapour recompression (VRC); the closed-cycle

process, which involves the use of an external working uid; and bottoms

ashing (Ferré et al., 1985; Mészáros and Fonyó, 1986; Annakou and Mizsey,

1995; Demirel, 2004). Figures 5.1b–d show the general schematics of these

con gurations, respectively. Of these three alternatives, vapour recompression

has been found to be the most advantageous and economical (Null, 1976;

Mészáros and Meili, 1994; Fonyó and Benkő, 1998).
The application of vapour recompression to distillation has been studied

extensively (Null, 1976; Quadri, 1981a,b; Carta et al., 1982; Omideyi et al.,

1984; Brousse et al., 1985; Flores et al., 1984; Ferré et al., 1985; Meili and

Stuecheli, 1987; Muhrer et al., 1990; Mészáros and Meili, 1994; Annakou

and Mizsey, 1995; Fonyó and Benkő, 1998). The literature to date has

focused mainly on the detailed analysis and simulation of various systems,
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on the economic optimisation of these systems and their operating conditions,

and on controllability. Many of these studies have found—for the various

systems studied—that vapour recompression is most bene cial for close-

boilingmixtures, systemswhich require high heat loads, small column pressure

drops, and low process temperatures (Carta et al., 1982; Cheng and Luyben,

1985).

Previous research has dealt with simulation or optimisation of standard

vapour recompression (SVRC), but has not considered a generalised process

synthesis approach. It is this gap in the literature that this chapter is aiming

to bridge; the main goal of this chapter is to develop a tool that can rapidly

provide insight into the operation of SVRC prior to rigorous simulation. This

tool can assess whether or not SVRC is inherently more ef cient for a given split

than conventional distillation at the most fundamental thermodynamic level,

and whether or not it is likely that SVRC could be implemented practically.

In this way, rigorous calculation, simulation, and optimisation effort—which

can be substantial—need not be wasted if there is no possible bene t to using

SVRC for a given problem. The presented methodology can be used to discard

clearly unfavourable alternatives immediately; unlike optimisation, its purpose

is not to nd the best possible alternative.

Previously, thermodynamic analyses utilising the rst (Freshwater, 1951;

Flower and Jackson, 1964; King, 1980) and second (Fonyó, 1974; Fitzmorris

and Mah, 1980; Itoh et al., 1980; Kaiser and Gourlia, 1985; Le Goff et al.,

1996; Taprap and Ishida, 1996;Hernández-Gaona et al., 2005) laws have been

performed on conventional distillation columns. A review of the application of

thermodynamic analyses to separation systems—and conventional distillation

in particular—can found in Demirel (2004).

In this chapter, fundamental thermodynamic principles are applied to

SVRC. The main innovation of this work is the presentation of the resulting

process synthesis tool as a single chart (see Figure 5.10), for which only

the distillate and bottoms temperatures are required. Using solely these two

temperatures, estimates can be made of whether or not SVRC is inherently

thermodynamically more ef cient than conventional distillation, and the min-

imum compression ratio (a technical deciding factor for practical implemen-

tation) can be determined. Moreover, if the ideal gas heat capacity of the

overhead vapour is known, it is possible to estimate whether superheating of

the compressor inlet is necessary to avoid condensation on compression. Using

this tool, the applicability of vapour recompression can be assessed completely
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graphically; that is, with no calculations at all. This appears to be the rst

approach of its kind for SVRC; previously, no general guidelines for rapidly

determining if vapour recompression is worthwhile have been presented in

the open scienti c literature. In this era, in which energy savings are becoming

more and more crucial, it is useful to have simple guidelines to aid the engineer

in the decision-making process; this applies equally to green eld projects and

to retro tting.

In the sections that follow, a thermodynamic analysis of conventional

columns is rst presented in § 5.3. This then provides a basis for comparison

with standard vapour recompression, which considers energy ows, as well

as work ows in § 5.4. Thereafter, a general thermodynamic criterion for

the rapid determination of the ef ciency of SVRC compared to conventional

distillation is presented in § 5.6. Additional indicators for two key variables—

compression ratio and compressor inlet superheating—are incorporated in

§ 5.6; these dictate whether or not it might be possible to implement the

SVRC practically. All of this information is consolidated in Figure 5.10, which

allows for entirely graphical estimation of whether or not SVRC is likely to be

favourable and feasible for a given problem. The results are con rmed with a

number of rigorous simulations in § 5.7.

Throughout this work, ambient pressure, P0, and temperature, T0, are

taken to be 101 325 Pa and 298.15K, respectively. As the thermodynamic

basis, pure liquids are taken to have zero enthalpy and entropy at ambient

conditions. vapours are treated as ideal gases, since the pressures used in

vapour recompression are suf ciently low to make effects of non-ideality

negligible. As a convention, component indices in a mixture are arranged in

order of volatility, with ‘1’ being the most volatile, e.g. xF,2 refers to the liquid

mole fraction of the second-lightest component in the feed.

5.2 Simplifying assumptions

The rigorous simulation and comparison of conventional columns and SVRC

can be a time-consuming endeavour, and a potentially wasted one if SVRC

proves not to be advantageous or even technically feasible. To reduce this

wasted effort, the main aim of this work is to derive a tool that gives a

preliminary indication as to whether SVRC might have bene ts over con-

ventional distillation; rigorous simulation is then only undertaken when this

preliminary indication shows evidence of potential bene ts. With this goal in
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mind, it is clear that the synthesis tool should be fast, simple, and analytical

(as opposed to computational). For the purposes of arriving at simple, high-

level calculations for easy analysis, a number of assumptions are made in this

chapter:

1 The reboiler adds work as a reversible heat pump, and the condenser re-

moves work as a reversible heat engine. As will be seen later, the purpose

of the thermodynamic analysis in this chapter is to compare the best inherent

performance of the conventional and SVRC con gurations; this reversibility

represents the limit of operation for these pieces of equipment, and is thus an

appropriate assumption;

2 The feed and products are liquid. This is a common scenario in distillation, and

here it serves the purpose of removing a degree of freedom, thereby reducing

the number of variables to one amenable to high-level analysis;

3 The feed mixture is a binary, ideal mixture. The fact that it is binary allows for

pure-component products in the con gurations considered in this chapter (see

the next point). Its ideality removes the complexity associated with non-ideal

mixtures, which would require iterative computations, and would thus render

the analytical equations derived in this chapter impossible; instead, the simple

constant relative volatility (CRV) model can be used;

4 The feed mixture is split into pure components, with the pure light com-

ponent recovered in the distillate, and the pure heavy component recovered

in the bottoms. The purpose of this complete separation is threefold: rst,

it represents the limit of operation in terms of degree of separation, and is

also a reasonable approximation of the most typical separation problems, in

which quite pure products are sought; second, it removes degrees of freedom,

and allows the analysis to focus on more important variables; and nally,

it allows for easier analysis, since the product vapour and liquid saturation

temperatures are simply the pure-component boiling points, eliminating the

need for iterative bubble- or dew-point calculations, and additional property

information;

5 The distillation column adheres to constant molar over ow (CMO): sensible

heat effects are negligible in comparison with latent heat, heat of mixing is

zero, all components have the same latent heat, and the column is adiabatic.

This is a very common simpli cation that is generally quite accurate for ideal

and near-ideal mixtures.
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The examples presented later in § 5.7 each deviate from one or more of

the above assumptions, and it would appear that the applicability of the pro-

posed approach does not diminish appreciably as a result of these simplifying

assumptions. Note that the assumption of a binary mixture in point 3, and

of pure-component products in point 4 above, are not strictly necessary for

the novel methodology proposed in this chapter, as long as the product tem-

peratures are known; these assumptions merely simplify the analysis in this

chapter.

5.3 Thermodynamic analysis: conventional
distillation columns

In this section, a brief, high-level thermodynamic analysis of conventional

distillation is performed. The foundation of this work is well-known (Kayihan,

1980; Henley and Seader, 1981; Gomez-Munoz and Seader, 1985; Glinos and

Malone, 1989; Skogestad, 2009), but it is included here to serve as a basis for

comparison with the standard vapour recompression scheme.

Conventional distillation columns can be thought of as a coupled heat

pump and heat engine, where the former adds work to the column (reboiler),

and the latter removes it (condenser). The input work is greater than the output

work, such that there is net addition of work to the column, part of which

is used to perform the separation, and the remainder of which contributes to

entropy generation. This is a well-established understanding of the fundamen-

tal work ows in distillation columns: they extract work from heat ows by

degrading the quality of the heat (Terranova and Westerberg, 1989; Chiang

and Luyben, 1983; Mullins and Berry, 1984; Smith et al., 2010).

In order to improve overall process ef ciency, the work ow that is re-

moved from the column can, in some cases, be reused in another part of

the process, as long as that part of the process can accept lower-quality heat

(Linnhoff et al., 1983). This is the preferred approach; however, in the absence

of the overall process context, this chapter will consider the distillation system

in isolation.

Work addition and removal in distillation columns

Figure 5.2 shows a schematic representation of the work inputs and outputs,

and also serves as a reference for the nomenclature used in this section. As-
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Figure 5.2
Schematic representation of a
conventional distillation column,
along with the mass, heat, and
work ows in and out of the
system, as well as the signi cant
temperatures.

suming a reversible heat pump, the work input is expressed mathematically

as:

Win = Qin

(
1− T0

TR

)
(5.1)

The work removed from the column by a reversible heat engine is:

Wout = Qout

(
1− T0

TC

)
(5.2)

Minimum theoretical energy input to effect separation
(reversible distillation model)

An entropy analysis over the column gives:

FŜF +
Qin

TR
+ Sgen = DŜD + BŜB +

Qout

TC
(5.3)

The temperatures of heat input and output are taken at the limit of

performance; that is, countercurrent heat exchangers with in nite heat transfer

area are assumed, such that the heating medium enters at the temperature of

the process stream outlet, and the cooling medium leaves at the process stream

inlet temperature. In other words, heat is added at the process stream outlet

temperature, and it is removed at the process stream inlet temperature.
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A reversible column is one that generates no entropy, i.e. Sgen = 0W/K. This

is the ideal case, in that no work is wasted, and it demarcates the theoretical

limit of performance: no distillation column could be more ef cient than a

completely reversible one. Consequently, a reversible column represents the

minimum theoretical heat requirement of a distillation column to perform a

given separation.

Assuming a column that generates no entropy (Sgen = 0W/K), and sepa-

rates the feed mixture into pure liquid components (ŜD = ŜB = 0), Eq. (5.3)

becomes:

FΔŜmix +
Qin

TR
=
Qout

TC
(5.4)

The assumptions made in this section also give an energy balance of Qin =

Qout, hence:

ΔŜmix =
Qin

F

(
1
TC

− 1
TR

)
(5.5)

Rearranging Eq. (5.5) and recognising that ΔŜmix = −R
∑

xi lnxi for ideal

mixtures, the following is obtained:

Qin,sep = −FR
∑

xF,i ln xF,i
1
TC

− 1
TR

(5.6)

Equation (5.6) represents the minimum theoretical heat input required to

perform the separation.

Furthermore, Eq. (5.5) can be substituted into Eq. (5.1) to give:

FΔŜmix =
Win,sep

TC

(
TR − TC

TR − T0

)
(5.7)

The relationship in Eq. (5.7) will be useful later in § 5.6.

Minimum practical energy input

In practice, distillation columns have a minimum heat input that is different

from Eq. (5.6) owing to their internal con guration, with the minimum heat

requirement corresponding to minimum re ux. Using a simple derivation

(which is given in Appendix D.1), with minimum re ux estimated by Under-

wood’s method (1948), the following equation gives the minimum practical

heat input into a distillation column:

Qin,min = Fλ
(

1
α − 1

+ xF,1

)
(5.8)
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Figure 5.3 Comparison of minimum theoretical heat input and minimum practical
heat input to a conventional distillation column for a sharp split as a function of
mole fraction of the light component in the feed.

Table 5.1 Binary systems and simple constant properties used in high-level calcula-
tions.

Light (1) Heavy (2) α λ (kJ/mol) ĈIG
p,1 (J/mol·K) TC (K) TR (K)

propylene propane 1.29 18.73 53.4 225.5 231.1
acetonitrile nitromethane 1.84 32.32 58.3 354.8 374.4
benzene toluene 2.47 31.98 104.9 353.3 383.8
n-hexane n-nonane 11.21 31.84 175.6 341.9 424.0
1-propanal 1-octanal 58.47 34.46 174.1 321.1 447.3

Comparison of theoretical and practical minimum energy

It is now possible to compare the practical minimum heat input, Eq. (5.8),

with the theoretical minimum, Eq. (5.6). To do this,Qin/F for the practical and

theoretical minima is plotted as a function of feed composition in Figure 5.3;

the systems considered and their (constant) properties are given in Table 5.1.

The chosen systems cover a wide range of relative volatilities (or differences

in reboiler and condenser temperatures, which are related) in order to assess

why some are amenable to vapour recompression, and others not.

Figure 5.3 not only shows that the separation of wider-boiling mixtures

requires less energy than that of narrow-boiling ones, but also that these

systems can operate closer to their theoretical minima using the conventional

distillation column. However, the most important insight that this gure offers

is that conventional distillation becomes less and less ef cient as the feed tends

to higher purity in either direction. This is intuitive, since theoretically, little

work addition is required to effect a small degree of separation. In reality,

however, the operation of a distillation column requires vaporisation in the

reboiler, which does not necessarily contribute to the separation process itself;

indeed, a feed with an in nitesimal amount of impurity requires effectively no

work of separation, yet vaporisation must still take place. This vaporisation

is not proportional to the degree of impurity in the feed.



CHAPTER 5 VAPOUR RECOMPRESSION SYNTHESIS 109

5.4 Thermodynamic analysis: standard vapour
recompression scheme

A simple diagram of the SVRC scheme is given in Figure 5.1b. vapour leaving

the top of the column is compressed isentropically, causing an increase in

both pressure and temperature. The purpose of the compression is twofold:

rst, it elevates the temperature of the overhead vapour in order to provide

a driving force for heat transfer to the bottom liquid; second, it elevates the

dew point of the overhead vapour, allowing its latent heat to be used at a

higher temperature. This overhead vapour stream—the temperature of which

exceeds that of the bottoms—is heat exchanged with the liquid leaving the

bottom of the column, partially vaporising the latter; in other words, the

overhead vapour stream uses its latent heat to vaporise the liquid, and in the

process, it itself condenses. This partially condensed stream is then subcooled

in the condenser to such a point that when its pressure is dropped back down

to the column pressure, it does not vaporise (ideally, it should be a saturated

liquid). Part of this liquid stream is re uxed to the column, and the remainder

is drawn off as the distillate. Overall, energy is only added to the compressor,

and it is removed in the condenser.

Figure 5.4 shows a schematic representation of the mass and energy ows

in the SVRC con guration; it also provides stream labels for the important

streams. Table 5.2 gives the relationship of T, P, and phase for these streams,

assuming complete separation of the binary feed. To aid understanding

further, a qualitative pressure–enthalpy plot relating to the process is given in

Figure 5.5. Note that while Figure 5.1b does not include a superheater prior

to compression, Figure 5.4 does, because some saturated vapours condense

on isentropic compression, which must strictly be avoided in a compressor

Meili and Stuecheli (1987); Patwardhan (1987); Gmehling et al. (2012). This

is discussed at greater length later in this section.

Minimum theoretical energy input to effect separation in SVRC
(reversible model)

The use of the superheater may be necessary for some uids, but will be

disregarded for the present, high-level analysis, i.e. Qsh = 0W, as it is not a

set feature of SVRC. Using the same assumptions as before, the energy balance
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Schematic representations of the
SVRC con guration, with stream
labels. See Table 5.2 for stream
information.

Table 5.2 Relationship of temperature, pressure, and phase in streams
in Figure 5.4, assuming complete separation of the binary feed.

Stream T P Phase

1 TC P0 saturated vapour
2 T2(> TC) P0 superheated vapour
3 T3(> T2) Pcomp superheated or saturated vapour
4 T4(> TR) Pcomp saturated vapour and liquid
5 TC Pcomp subcooled liquid
6 TC P0 saturated liquid
7 TR P0 saturated liquid
8 TR P0 saturated vapour and liquid
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Figure 5.5
Qualitative pressure–enthalpy plot
showing the vapour recompression
process relating to Figure 5.4, and
assuming minimum compressor
inlet superheating.
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around the system reduces to:

Wcomp = Qout (5.9)

The compression is performed isentropically, which, by de nition, means

that the compression step itself generates no entropy. As in the case of

the conventional distillation model, heat is removed at the temperature of

the process stream inlet to the heat exchanger, which in this case is T4.

Consequently, the entropy analysis (assuming reversibility) is:

FΔŜmix =
Qout

T4
(5.10)

On substitution of Eq. (5.9) into Eq. (5.10), the following relationship is

obtained:

FΔŜmix =
Wcomp

T4
(5.11)

The left-hand side of Eq. (5.11) is xed by the problem speci cation, but

the value of T4 is less obvious. Indeed, T4 can be manipulated using different

design parameters. In order to provide a driving force for the heat exchange,

T4 > TR; however, the limit of operation occurs in a heat exchanger with

in nite heat exchange area, in which case, T4 = TR. The latter also minimises

Wcomp according to Eq. (5.11). Consequently, the following interpretation is

used:

FΔŜmix =
Wcomp

TR
(5.12)

The minimum theoretical energy (and work) addition using a perfect

compressor, therefore, is given by:

Wcomp,sep = TRFΔŜmix (5.13)

Wcomp,sep = −FRTR

∑
xF,i lnxF,i (5.14)

Minimum practical energy input in SVRC

As with the conventional column, the mass balance and minimum re ux ratio

impose limitations on the minimum energy that is practically required to

operate the SVRC con guration. In this section, an idealised SVRC model is

derived, but with the inclusion of fundamental mass balance constraints that

are inherent to the operation of distillation columns.
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An important point to take into consideration is that the saturated vapours

of some uids become superheated on isentropic compression, while others

condense. The following criterion can determine which of those two outcomes

occurs (Felbab, 2013):

ĈIG
p,1TC < λ (superheated) ĈIG

p,1TC > λ (partially condensed) (5.15)

Besides the practical issue of liquid formation in the condenser, if some

of the uid condenses within the compressor, the stream’s full latent heat is

not available to perform the reboil duty. If the uid condenses, a superheater

is used prior to compression in order to avoid condensation. Figure 5.6

best illustrates the P–T behaviour in these instances, and the application of

superheating. Minimum superheating results in a saturated vapour at the

compressor outlet.

In either case, the pressure must be raised to a point where the condensing

temperature is greater than TR, or, in the limit, equal to TR. Since the minimum

energy input is sought in this section, this limit will be used.

If the saturated vapour superheats on compression, then, as derived in

Appendix D.1, the energy/work input in the compressor is given by:

Wcomp,min = FĈIG
p,1TC

(
1

α − 1
+ xF,1

)[
exp

(
λ

ĈIG
p,1

(
1
TC

− 1
TR

))
− 1

]
(5.16)
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Figure 5.7 Comparison of minimum theoretical and minimum practical energy
inputs to the standard vapour recompression con guration for a sharp split as
a function of mole fraction of the light component in the feed. The minimum
compression ratios are indicated.

The total energy (and work) input into the system in this case is simply

equal to Wcomp,min.

If the saturated vapour condenses, then superheating is required. The

minimum energy input to the superheater is, as shown in Appendix D.1:

Qsh,min = FĈIG
p,1

(
1

α − 1
+ xF,1

)[
TR exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))
− TC

]
(5.17)

After the superheater, compression takes place, the energy input of which

is given by the following:

Wcomp,min = FĈIG
p,1TR

(
1

α − 1
+ xF,1

)[
1− exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))]
(5.18)

The derivation for Eq. (5.18) is given in Appendix D.1. In the case of the

saturated vapour condensing on compression, the total energy input into the

system is the sum of Eqs (5.17) and (5.18).

Comparison of theoretical and practical minimum energy input

Using the above equations, it is possible to compare the minimum theoretical

energy input—Eq. (5.14)—with the practical minimum, for the same systems

as in Figure 5.3. For saturated vapours that superheat on isentropic compres-

sion, the minimum practical energy input is given by Eq. (5.16); for uids that

condense, it is the sum of Eqs (5.17) and (5.18). This comparison is shown in

Figure 5.7, with the minimum compression ratios indicated for each system.

Note that the range of the vertical axis is much smaller in Figure 5.7 than in

Figure 5.3. This illustrates that SVRC is more energy-ef cient in all of the ex-

amined systems, even when compressor inlet superheating is required. (There

is a cross-over point with very wide-boiling systems, for which conventional

distillation is more ef cient than SVRC; this is examined later in § 5.6.)
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It is also noteworthy that the observed trend using SVRC is the opposite

of that in conventional columns: wider-boiling mixtures require more energy

to separate fully, and cannot operate as close to the theoretical minimum as

close-boiling separations can.

5.5 Comparison of work inputs in conventional and
SVRC distillation

When comparing the same process with different parameters, as has been done

above, energy is a suf cient indicator of ef ciency. However, the comparison

of work input into different processes is more instructive than energy input,

as it correlates with actual resource consumption (coal, natural gas, etc.), and

takes the quality of heat into account. For example, a process could require a

large heat load that needs to be supplied at ambient temperature, in which case

that energy is effectively ‘free’; a process with a smaller heat load that requires

heat at 800K would need to consume resources to obtain that high-quality

heat.

The equations for work input can be deduced easily, as shown below.

Minimum theoretical work input in conventional distillation
columns

ΔŜmix = −R
∑

xi ln xi can be substituted into Eq. (5.7) and the result

rearranged to obtain the minimum theoretical work input into a conventional

distillation column:

Win,sep = −FRTC

(
TR − T0

TR − TC

)∑
xF,i lnxF,i (5.19)

Minimum practical work input in conventional distillation
columns

The practical minimum work input is found by substituting Eq. (5.8) into

Eq. (5.1) to obtain:

Win,min = Fλ
(

1
α − 1

+ xF,1

)(
1− T0

TR

)
(5.20)
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Figure 5.8 Comparison of minimum theoretical and minimum practical work
inputs to the conventional and standard vapour recompression con gurations for
a sharp split as a function of mole fraction of the light component in the feed.

Minimum theoretical work input in SVRC

In the SVRC scheme, the energy and work inputs in the compressor are

equivalent. Therefore, the minimum theoretical work input into the SVRC—

assuming no compressor inlet superheating—is given by Eq. (5.14).

Minimum practical work input in SVRC

For the SVRC when no superheating is necessary, the practical minimum work

input is given by Eq. (5.16).

If compressor superheating is necessary, the virtual work associated with

the heat in the superheater is obtained by substituting Eq. (5.17) into Eq. (5.1),

noting that the heat is added not at TR but at T2 (the expression for which is

given in Appendix D.1 as Eq. (D-10)):

Wsh,min = FĈIG
p,1

(
1

α − 1
+ xF,1

)[
TR exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))
− TC

]
[
1− T0

TR
exp

(
λ

ĈIG
p,1

(
1
TC

− 1
TR

))]
(5.21)

In this case, the work input in the compressor is simply Eq. (5.18), such that

the total work input, when superheating is required, is the sum of Eqs (5.21)

and (5.18).

Using the above equations, plots of the minimum theoretical and practical

work inputs for conventional and SVRC distillation as a function of feed

composition are made in Figure 5.8. The same mixtures as in Figures 5.3 and

5.7 are used, with the exception of the propylene–propane system, which has

normal boiling points below ambient temperature and thus requires elevated

pressures or a refrigeration system.
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Figure 5.8 shows that the scale of work input into the two con gurations

is much more comparable than that of energy input. This can largely be

attributed to the fact that the energy input in a compressor is ‘pure’ work,

while only a temperature-dependent fraction of heat input is virtual work, in

accordance with Eq. (5.1). The qualitative behaviour of minimum theoretical

and practical work as a function of feed composition is the same as with energy

input. In systems with small temperature differences between the distillate

and bottoms, the expected result is seen: SVRC is better than conventional

distillation. However, there is a cross-over point, where the work input in the

two cases is equivalent (see, for example, the n-hexane–n-nonane split, where

the two con gurations are nearly the same). For wide-boiling mixtures, such

as 1-propanal–1-octanal, the SVRC is worse than conventional distillation.

A quantitative description of this cross-over point is derived in § 5.6.

5.6 Thermodynamic and practical synthesis targets

For a xed feed, FΔŜmix is xed, and is the same in the conventional distillation

case, Eq. (5.7), and in the SVRC case, Eq. (5.12). Thus, FΔŜmix in the two cases

can be equated to obtain:

Win

TC

(
TR − TC

TR − T0

)
=
Wcomp

TR
(5.22)

In order to nd the region where SVRC is better than conventional distilla-

tion, a boundary must be de ned where the work input in the two cases is the

same, i.e. Win = Wcomp. Applying this to Eq. (5.22) and rearranging the result

leads to the following equation:

TC =
T2

R

2TR − T0
(5.23)

Equation (5.23) describes the relationship between TR and TC where the

work input into the conventional column and SVRC con guration is the same,

at a fundamental thermodynamic level.

Figure 5.9 shows a plot that demarcates the region where SVRC is more

thermodynamically ef cient than conventional distillation as a function of

the reboiler and condenser temperatures (boiling points of the feed mixture’s

constituent components, in the sharp-split case).

While this chapter focuses on SVRC, the same analysis can be performed on

the other con gurations in Figure 5.1, that is, heat-pump-assisted distillation
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with an external working uid, and bottoms ashing. A brief analysis of these

con gurations can be found in Appendix D.2.

5.6.1 Compression ratios

Despite the fact that the SVRC region in Figure 5.9 is quite large, vapour

recompression is used relatively seldom. This can be explained by the practical

consideration mentioned earlier: large differences between TC and TR require

a large increase in temperature in the compressor, which in turn translates

to a high compression ratio. Compressors with high compression ratios are

uneconomical and inef cient (Boyce, 2011). Consequently, it is useful to

represent this practical limitation alongside the fundamental thermodynamic

one.

Unfortunately, at least four variables need to be speci ed for a system: TC,

TR, ĈIG
p,1, and λ, yet not all four can be represented independently on a two-

dimensional plot. One way of overcoming this restriction is to use an approx-

imation for λ in the form of the Trouton–Hildebrand–Everett rule (Everett,

1960; Nash, 1984), which gives good estimates for non-polar hydrocarbons:

λ
RTC

= 4.0+ ln(TC/K) (5.24)

It can be shown, as has been done in Appendix D.1, that the minimum

pressure ratio can be estimated using the following equation:

Pcomp

P0
= exp

(
[4.0+ ln(TC/K)]

(
1− TC

TR

))
(5.25)

Equation (5.25) can be used to plot contours of speci c Pcomp/P0 values

in the TR–TC space. These have been included in Figure 5.10. It is important

to note that the practical compression ratios (say, Pcomp/P0 < 3) are almost
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entirely within the vapour recompression region. The implication of this is that

in almost all cases where vapour recompression can practically be applied, that

con guration is more ef cient thermodynamically than conventional distilla-

tion.

5.6.2 Need for superheating of compressor inlet

It is also useful to determine whether or not superheating of the compressor

inlet is required.

The vapour enters the superheater at TC and is heated to T2, the expression

for which is available in Appendix D.1. No superheating is required when

T2 = TC. The equation for zero superheating is derived in Appendix D.1; the

result is given here as:

TC = TR exp

(
R[4.0+ ln(TC/K)]

ĈIG
p,1

(
TC

TR
− 1
))

(5.26)

For a speci ed value of ĈIG
p,1/R, Eq. (5.26) can be solved numerically to plot

lines of zero superheating in the TR–TC space, which have also been shown in

Figure 5.10. This allows for rapid assessment of whether or not the inclusion

of a superheater before the compressor is likely to be required, if the ĈIG
p of

the overhead vapour is known.

5.6.3 Interpretation of Figure 5.10

To use Figure 5.10, the TR–TC coordinate is rst located on the chart. If this

point is within the vapour recompression region (see Figure 5.9), it means that

SVRC will likely be more thermodynamically ef cient than conventional dis-

tillation for that system. However, even if it is thermodynamically favourable,

it does not necessarily mean that SVRC can be practically implemented. To

address this issue, the Pcomp/P0 ratio corresponding to the TR–TC coordinate

is located on the appropriate isobar on the chart. This value represents an

estimate of the minimum pressure ratio that is required in the compressor; if

this is lower than a practical maximum (around 3, as a guideline), then it is

likely that the SVRC could be implemented practically, and rigorous simulation

should be used to verify this estimate. Note that if the TR–TC coordinate is

close to the Wcomp = Win line, and the pressure ratio is reasonable, rigorous

simulation should be performed, since estimates using Figure 5.10 are likely

to be inconclusive in this case.
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The above decision process is summarised in the owchart given in Fig-

ure 5.11.

Additionally, the TR–TC coordinate will also have a ĈIG
p,1/R value associ-

ated with it, which is located on the appropriate dashed line. If the actual

value of ĈIG
p,1/R is lower than the one corresponding to the TR–TC coordinate,

the vapour superheats on isentropic compression; otherwise, it partially con-

denses, and a superheater is required before to the compressor inlet. While

this is informative, it cannot provide information about the exact amount of

superheating required; as such, it is not necessarily part of the decision-making

process.

It should be reiterated that these are estimates only, since a number of
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simpli cations must be made to arrive at this entirely graphical, generalised

result. Consequently, it is used to assess whether SVRC is likely to be better

than conventional distillation, and whether it could be implemented, but the

result is not de nitive.

5.7 Rigorous simulation and validation

The usefulness of Figure 5.10 is tested here by means of a number of examples,

and validated using rigorous simulation in AspenTech’s Aspen Plus (Aspen

Technology, Inc., 2007). Figure 5.10 is intended only for rough, high-level

estimates due to its numerous simplifying assumptions. The examples also

serve to demonstrate how the results using Figure 5.10 should be interpreted.

Note that the compression ratio lines and the zero-superheating lines are

most accurate close to the TC = TR line, since the constant properties assumed

in the de ning equations lose accuracy over wide temperature ranges. Addi-

tionally, the use of Eq. (5.24) makes the results less reliable when the light

component is highly polar, e.g. contains H-bonds. The examples here include

systems that do not adhere to these restrictions.

The general connectivity of the simulated owsheets is given for the con-

ventional case in Figure 5.12, and in Figure 5.13 for the SVRC. The NRTL
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Figure 5.12
Aspen Plus owsheet for the rigor-
ous simulation of the conventional
distillation column.

Figure 5.13
Aspen Plus owsheet for the
rigorous simulation of the stan-
dard vapour recompression
con guration.

activity coef cient model (Renon and Prausnitz, 1968) was used for the VLE

calculations. The column was modelled using the RADFRAC block, and the

compressor was modelled as completely isentropic.

For each example, the simulation settings are given in Appendix D.3.

5.7.1 Design methodology

It is important to note that the purpose of these simulations was not to de-

termine the optimal design, but rather to compare a conventional column

with the SVRC, both of which have the same parameters (re ux ratio, product

compositions, number of stages, feed stage, etc.). The design methodology for

the Aspen Plus simulations was partially one of trial-and-error, using starting

estimates for some of the key parameters.

The conventional column was simulated rst. Once the feed and product

compositions had been chosen, the Aspen Plus shortcut distillation model,

DSTWU, was used to estimate the minimum re ux ratio, rmin. Thereafter, the

re ux ratio was chosen as r = 1.5 rmin. Through simple mass balance, using

this re ux ratio and the desired product compositions, the required split at
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SPL1, and the vapour fraction in REB1 (see Figure 5.12 for nomenclature) can

be estimated. The column (C1) was simulated using the RADFRAC model,

which initially had 10 stages. The feed stage was found to have little effect

in these simulations, and was thus set to half-way up the column in each

case, thereby eliminating a degree of freedom; had the optimal con guration

been sought, greater care would have been taken regarding the feed stage. The

simulation was run, and if—after some manual adjustment of the SPL1 and

REB1 settings—the approximate product compositions were not achieved, the

number of stages was increased, and the process repeated.

Once the conventional column had been simulated successfully, the SVRC

simulation (as shown in Figure 5.13) was set up such that the RADFRAC

column (C2) had exactly the same speci cation as in the conventional case.

Similarly, SPL2 had the same split fraction as SPL1, and the cold stream outlet

vapour fraction from HEX1 was the same as the vapour fraction in REB1.

These parameters ensured that the column internals, and thus the product

compositions, would be identical in both con gurations. The compression ra-

tio in K1 and the superheating in SH1 were estimated initially using a shortcut

method (Felbab, 2013), and then adjusted simultaneously, until both were at

a (rough) minimum which allowed the SVRC system to work, but resulted in

no condensation in the compressor.

Example 1: 1-butene–n-butane

The normal boiling point of 1-butene is 266.91K, and that of n-butane is

272.65K, both of which are below the assumed ambient temperature of

298.15K. In order to avoid the use of an external refrigeration system to

remove heat at a sub-ambient temperature, it is simpler to run the system at a

higher pressure, thereby raising the boiling points.

At a pressure of 400 kPa, 1-butene has a boiling point of 307.56K, while

n-butane has 315.09K, both of which can readily be serviced using steam and

cooling water. Consequently, the feed and column are set to this pressure. The

average ĈIG
p of 1-butene at these two temperatures is 88.73 J/mol·K.

First, the point at TR = 315.09K and TC = 307.56K is located on

Figure 5.10. This is well within the vapour recompression zone, indicat-

ing that vapour recompression should be thermodynamically preferable to

conventional distillation for this split. The isobaric lines indicate that the

minimum compression ratio of a bit less than 1.5—approximately 1.3—is

required, which can be readily achieved in a compressor, meaning that vapour



CHAPTER 5 VAPOUR RECOMPRESSION SYNTHESIS 123

recompression should be practically feasible. For this system, the value of

ĈIG
p /R is 10.67. The point for this system lies between the zero-superheating

lines for ĈIG
p /R of 9.6 and 9.8. Since the actual ĈIG

p /R value of 10.67 is clearly

higher than either of these, it is expected that superheating of the compressor

inlet is required.

For the rigorous simulation, a feed of 1 kmol/h of a mixture with 63 mol%

1-butene and 37 mol% n-butane was sent into both columns, each with a

re ux ratio of 14.38. The lowest compression ratio that could be used in the

compressor successfully was 1.43, which was estimated reasonably well with

Figure 5.10.

The simulation gave a distillate with xD = (0.9989, 0.0011) and a bottoms

with xB = (0.0041, 0.9959).

For the conventional column, the only energy input is at the reboiler, which

was found to have a load of 52.754 kW. From Eq. (5.1), the virtual work input

associated with this heat can be estimated at 2.830 kW.

The SVRC had a work/energy input in the compressor of 2.597 kW, and a

heat input in the superheater of 2.880 kW. The virtual work associated with

the latter was estimated at 0.193 kW. The total energy input, therefore, was

5.477 kW, and the total work input was 2.790 kW.

The energy requirements of the SVRCwere approximately ten times smaller

than for the conventional distillation column, with slightly lower overall work

input, the latter being crudely approximated.

Example 2: hydrogen cyanide–acrylonitrile

There is a small region in Figure 5.10where the compression ratio is practically

implementable, but is in the region expected to be thermodynamically un-

favourable with vapour recompression. This example is intended to determine

whether this is indeed the case.

Hydrogen cyanide has a normal boiling point of 298.85K, while that of

acrylonitrile is 350.50K.

At this TR–TC coordinate on Figure 5.10, the required compression ratio

is at least 4, which is relatively high, although it may be possible to achieve

the necessary compression in a single-case compressor. As mentioned above,

this system was chosen to lie in the region where vapour recompression is

unfavourable.

For hydrogen cyanide at its boiling point, ĈIG
p /R = 4.309. The zero-

superheating line corresponding to the coordinate for this system is at a value
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of approximately ĈIG
p /R = 9.0; since the actual value is signi cantly lower, it

is highly unlikely that compressor inlet superheating is required.

The rigorous simulation was performed with a feed of 1 kmol/h having a

composition of 71 mol% hydrogen cyanide and the balance acrylonitrile. The

entire system was isobaric at 100 kPa. The minimum compression ratio was

found to be 6.42, which is not lower than the estimated minimum. Moreover,

as estimated, compressor superheating was not necessary.

In both con gurations, the re ux ratio was set to 0.46, resulting in product

compositions of xD = (0.9996, 0.0004) and xB = (0.0001, 0.9999).

In the conventional column, the heat input was 8.140 kW (associated

virtual work input: 1.213 kW). The SVRC had work/energy input of 1.649 kW.

Consequently, while the SVRC has lower energy requirements, its work input

is higher than the conventional column’s, as predicted with Figure 5.10.

Example 3: 1-propanol–n-octane

This example deviates from three of the assumptions in Figure 5.10: rst, it

is highly non-ideal and contains an azeotrope; second, the overhead vapour

includes an H-bond, such that Eq. (5.24) is less accurate; and nally, the split

is not sharp.

The normal boiling point of 1-propanol is 370.35K, and that of n-octane is

398.83K. The azeotrope—as predicted with NRTL—occurs at 74.37 mol%

1-propanol, and has a temperature of 367.10K.

A feed of 1 kmol/h of 23 mol% 1-propanol and the balance n-octane is

to be separated into >70 mol% 1-propanol in the distillate, and >90 mol%

n-octane in the bottoms. Prior to simulation, the exact temperatures of the

distillate and bottoms are unknown, such that some assumptions must be

made about these temperatures; it will be assumed that the distillate is at the

temperature of the azeotrope (367.10K) and the bottoms is at the temperature

of the heavy key component (398.83K).

Using this TR–TC coordinate on Figure 5.10, it is expected that SVRC

should be more thermodynamically ef cient than conventional distillation,

and that the compression ratio should be at least 2.5, approximately. The

mole-fraction-weighted ĈIG
p /R of the overhead vapour at 367.10K is 15.97;

the zero-superheating ĈIG
p,1/R corresponding to the coordinate for this system

is 9.4. As the actual value is higher, it is expected that superheating will be

required.
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The simulation was performed using a re ux ratio of 0.547 in both the

SVRC con guration and the conventional distillation. The resulting distillate

had a composition of xD = (0.7189, 0.2811) and xB = (0.0088, 0.9912).

In the conventional case, the heat input was 6.567 kW, which has an

associated work input of 1.585 kW.

In the SVRC case, as predicted with Figure 5.10, superheating was required.

Since a fair amount of superheating is required, and since the amount of su-

perheating required is not independent of the compression ratio, the minimum

compression ratio is not straightforward; indeed, an optimisation could be

performed to minimise the work input. (Optimisation is not the objective here;

all that needs to be shown is whether or not the SVRC can be designed to

have lower work input than conventional distillation, as was estimated.) The

superheater was set to heat the overhead vapour by 65K; the corresponding

compression ratio could be no lower than 2.6.

The heat duty of the superheater was 1.266 kW, with an associated virtual

work input of 0.392 kW. The compressor had energy/work input of 0.471 kW.

Thus, the total work input was 0.863 kW, which is approximately half of the

work input in the conventional case.

The prediction with Figure 5.10 was again good, despite departures from

its inherent assumptions.

Example 4: multicomponent system

The nal example deviates from the base assumptions by having more than

two components, and not performing a sharp split. The feed in this problem is

a quaternary mixture of methanol, 2-propanol, 2,6,8-trimethyl-4-nonanone,

1-undecanal with a ow of 1 kmol/h and composition xF = (0.13, 0.22, 0.24,

0.41).

A rigorous simulation of a conventional distillation column with a re ux

ratio of 0.429 resulted in a distillate of xD = (0.371, 0.628, 7.4× 10−8, 2.3×
10−10), which has temperature 345.78K, and bottoms xB = (6.7×10−5, 9.0×
10−4, 0.369, 0.630) at temperature 497.64K. The activity coef cients were

modelled using UNIFAC.

The heat load obtained from the simulation is 15.431 kW, which has an

associated virtual work input of 6.186 kW.

The question to be answered is whether this split would bene t from a

vapour recompression system, and if such a system could realistically be imple-

mented. On Figure 5.10, the relevant point for this system is at TC = 345.78K



CHAPTER 5 VAPOUR RECOMPRESSION SYNTHESIS 126

and TR = 497.64K. At this coordinate, the system is in the region where

conventional distillation is more ef cient, such that no gains are expected

using vapour recompression. Moreover, the minimum compression ratio is

estimated at higher than 20, meaning that practical implementation is clearly

not feasible.

A rigorous simulation of the SVRC was not possible without excessive

settings (several hundred degrees of superheating and compression ratios in

excess of 100). A comparison of work inputs in the two con gurations was

thus not possible; however, Figure 5.10 correctly identi ed that the minimum

compression ratio was much too high for practical implementation of the

SVRC scheme.

5.8 Conclusion

The rigorous simulation, and subsequent comparison, of conventional distil-

lation and standard vapour recompression (SVRC) can be a time-consuming

exercise; without knowing ahead of time if there is potential bene t to SVRC,

this effort may be wasted. It is useful for the engineer to be able to gain insight

into whether SVRC is a realistic candidate for a given separation problem prior

to performing rigorous simulation. Previously, there were no general guide-

lines or rapid estimation methods for determining the potential applicability

of SVRC available in the open scienti c literature. The work in this chapter

bridges this gap: a novel, consolidated graphical process synthesis tool was

presented to estimate whether vapour recompression is likely to be thermo-

dynamically favourable to conventional distillation, and if so, whether it can

be implemented practically. This tool requires minimal information, namely

distillate and bottoms temperatures, and optionally the overhead vapour heat

capacity. It is entirely calculation-free, which makes it particularly useful for

rst-pass estimates during conceptual design and process synthesis.

A thermodynamic analysis and comparison was conducted on conven-

tional distillation columns and the standard vapour recompression con gu-

ration. When considering only the energy inputs to the systems, the energy

requirements for vapour recompression were found to be signi cantly lower

with narrow-boiling mixtures, and somewhat lower in much wider-boiling

ones.

However, a more thermodynamically accurate comparison using work

ows—rather than simply energy ows—revealed that the quality of heat
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has a marked impact on the true ef ciency of the two con gurations. The

thermodynamic bene ts of vapour recompression were found to be less clear

on this basis than when comparing energy loads directly.

A very simple quantitative description of the region where SVRC is thermo-

dynamically favourable to conventional distillation was given in Figure 5.9 as

a function of distillate and bottoms temperatures only. This chart serves as a

generalised, graphical estimate of the region in which SVRC is thermodynam-

ically preferred.

This chart also provides additional insight: the SVRC region is broad

enough to include many systems which have not had vapour recompression

applied to them in practice. The reason for this breadth is that some key factors

limit practical implementation of vapour recompression, despite thermody-

namic favourability. The most signi cant of these is the required compressor

pressure ratio, which in practice should typically be less than about 3 or 4. A

less signi cant factor is the need for superheating of the compressor to avoid

condensation that many saturated vapours undergo upon compression.

To address the rst of these concerns, an overlay of estimated minimum

compression ratio was added to Figure 5.9 to produce Figure 5.10. This shows

that the region where the compression ratio is reasonable is almost entirely a

subset of the SVRC-preferred region, resulting in a relatively narrow band on

Figure 5.10. The implication of this is that in almost all cases where the com-

pression ratio is low enough to be applied practically, vapour recompression

is thermodynamically favourable to conventional distillation.

If the ideal gas heat capacity of the overhead vapour is known, an estimate

can be made as to whether compressor inlet superheating is required. Lines of

zero superheating for various heat capacities are also overlaid on Figure 5.10

to estimate whether or not a superheater before the compressor is necessary

to avoid condensation in the compressor.

The usefulness of the presented process synthesis tool was tested using a

number of examples, each of which extended the application beyond the initial

set of assumptions used in deriving Figure 5.10. These examples were validated

using rigorous simulation with Aspen Plus.

While the key technical issues have been dealt with in this chapter, one

important practical consideration, which, unfortunately, cannot be easily gen-

eralised, and which has thus not been dealt with in this chapter, is the economic

impact of vapour recompression on the total capital expenditure. Speci cally,

the compressor tends to be an expensive piece of equipment, which bene ts
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from the economy of scale. Thus, once the technical viability has been estab-

lished, the economics surrounding its implementation must be considered on

a case-by-case basis; these costs are harder to quantify in advance. However,

as energy costs continue to rise, the bene ts of resource savings will begin to

outweigh the setbacks of higher capital costs.



Chapter 6

Novel Feed–Product Vapour Recompression
Configurations

Abstract

Two novel vapour recompression con gurations that can have signi cant energy-

saving bene ts are presented. These vapour recompression con gurations differ in

their range of applicability from standard vapour recompression: where the latter

is practically applicable only to the separation of close-boiling mixtures, the pro-

posed con gurations bene t wider-boiling systems. For a given system, the proposed

con gurations always have lower compression ratios than standard vapour recom-

pression. However, the energy-saving advantage of the proposed con gurations is

limited to certain feed types: one con guration is developed for liquid feeds that are

close in composition to the distillate, and the other for vapour feeds that are near the

bottoms composition. The novel con gurations are veri ed and compared to con-

ventional and standard vapour recompression distillation using rigorous analysis and

simulation.

129
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6.1 Introduction

In Chapter 5, standard vapour recompression (SVRC) was examined in some

detail, and a general comparison was made with conventional distillation

columns. A process synthesis tool was developed for rapid assessment of the

thermodynamic performance of those two con gurations. It was found that

for a wide range of systems, SVRC is thermodynamically favourable to con-

ventional columns; however, only a very small subset of these systems can

use SVRC in practice, due to the limiting factor of compression ratio: typical

single-stage compressors in the petrochemical industry are limited to pressure

ratios of about 3.5 (Boyce, 2011).

SVRC is attractive not only for its bene ts in terms of energy ef ciency,

but also because of its comparative simplicity: the trend in research is one

of growing complexity, from diabatic (Fonyó, 1974; Le Goff et al., 1996),

to complex (Rév et al., 2001; Hernández-Gaona et al., 2005; Agrawal, 2003;

Caballero andGrossmann, 2003, 2013; Shenvi et al., 2013), to heat-integrated

distillation columns (Glenchur and Govind, 1987; Nakaiwa et al., 2000;

Olujić et al., 2003; Huang et al., 2006, 2008; Mane and Jana, 2010; Chen

et al., 2010; Suphanit, 2011). Moreover, the SVRC con guration has the

advantage of being constructed using industry-standard units, while the same

cannot be said of all of the aforementioned complex modi cations, e.g. the

concentric column of Glenchur and Govind (1987).

The aim of the work in this chapter is to bring the relative simplicity and

energy-saving capabilities of vapour recompression to a wider range of sys-

tems than SVRC allows. The resulting con gurations meet this goal, and are

applicable to systems far outside of the reach of SVRC. However, while SVRC

can accept feeds of any type, but is limited to close-boiling systems, the novel

con gurations presented in this chapter are applicable to a much greater range

of systems. One of the novel con gurations is limited to light liquid feeds,

and the other to heavy vapour feeds. Nevertheless, in situations where the ap-

propriate feed is available, the proposed con gurations often yield signi cant

advantages in comparison to conventional distillation and SVRC.

It appears that the type of vapour recompression between products and the

feed that is proposed in this work has not previously been investigated.

The point of departure for this work is a parametric study of the effects of

feed preconditioning on the entropy generation and total heat input in a con-

ventional distillation column, which is shown in § 6.2. Thereafter, the results

of the preconditioning investigation are used to identify possible targets for
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Diagram of a conventional
distillation column with feed
preconditioning.

vapour recompression, which are then developed to produce the novel con -

gurations in § 6.3. By way of numerical experiments, a comparative analysis is

performed on conventional columns, SVRC, and the proposed con gurations,

to examine the lowest possible energy input, work input, entropy generation,

and compression ratios, under pinched conditions; this can be found in § 6.4.

Finally, rigorous simulations are used to demonstrate and validate the use of

the novel con gurations in four examples in § 6.5.

6.2 Developmental background

The point of departure for the novel con gurations is a parametric study of

the effects on entropy generation, Sgen, and total heat input, Qin,tot, that result

from changing the feed condition (preconditioning) in a conventional column,

while adjusting the column to be at minimum re ux in all cases (which is

a function of feed condition to the column). This is achieved by placing a

preconditioner on the feed stream, which is a heat exchanger that can either

add or remove energy to effect the condition change. A schematic drawing of

this arrangement is given in Figure 6.1, with the relevant variables labelled.

Preconditioning, and especially preheating, has previously been studied

by a number of researchers (Agrawal and Herron, 1997, 1998; Soave and

Feliu, 2002; Bandyopadhyay, 2002; Bandyopadhyay et al., 2003; Deshmukh

et al., 2005; Bandyopadhyay, 2007; Huang et al., 2008). However, none of

these studies has thoroughly investigated the effects of feed preconditioning

on entropy generation (or related quantities, such as exergy) alongside energy
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requirements in conventional columns, while accounting for the changingmin-

imum re ux that results from the preconditioning. Previous research has con-

sidered preheating in two-feed columns (Wankat and Kessler, 1993; Agrawal

and Herron, 1997, 1998; Soave and Feliu, 2002; Deshmukh et al., 2005), feed

preheating and controllability of heat-integrated distillation columns (Huang

et al., 2008), or have focused on column internals (Bandyopadhyay, 2002;

Bandyopadhyay et al., 2003; Bandyopadhyay, 2007). As such, none of these

previous studies has considered preconditioning in exactly the same way as is

required in this chapter.

The limit of thermodynamic ef ciency is zero entropy generation. Real

processes, however, generate entropy to varying degrees, with lower entropy

generation being favourable for ef ciency.

As a way of investigating the impact of preconditioning, a simple numer-

ical experiment was set up: a continuous column was rigorously modelled

to separate a feed mixture into products with 99.9 mol% purity. The feed

composition was xed, after which a feed condition was selected by de ning

the vapour fraction of the feed entering the system, fsys. For each fsys, an fcol was

also selected; the latter is simply the vapour fraction of the feed entering the

column, after the preconditioner. Therefore, if fsys > fcol, the preconditioner is

removing heat, i.e. cooling; conversely, if fsys < fcol, the preconditioner must

be a heater.

For each combination of fsys and fcol, it is possible to determine the effect on

entropy generation, as well as on total heat input. For this purpose, two new

variables are de ned. To evaluate the relative change in entropy generation

between cases with and without a preconditioner, the following variable is

used:

ζS ≡
Sgen (with preconditioner)− Sgen (no preconditioner)

Sgen (no preconditioner)
(6.1)

To evaluate the effects on total heat input, Qin,tot, the following variable is

de ned similarly to ζS:

ζQ ≡ Qin,tot (with preconditioner)−Qin,tot (no preconditioner)
Qin,tot (no preconditioner)

(6.2)

The symbol Qpc will be used to denote the energy transferred by the

preconditioner. If the preconditioner is cooling, then Qpc < 0, and the only

heat input into the system is at the reboiler, such that Qin,tot = Qin. If, on the

other hand, the preconditioner is adding energy, then Qpc > 0, and energy is
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added at two points in the system (at the reboiler, and at the preconditioner),

in which case Qin,tot = Qin +Qpc. The above conditions can be generalised as

follows:

Qin,tot = Qin +max{Qpc, 0} (6.3)

The values of Qin and Qpc can be determined from the mass and energy

balances around the con guration in Figure 6.1, while Sgen can be calculated

using an additional entropy analysis:

FŜF +
Qpc

TF,col
+
Qin

TR
+ Sgen = DŜD + BŜB +

Qout

TC
(6.4)

In Eq. (6.4), Qin and Qout are assumed to be positive values, with the

direction of heat transfer set by the side of the equation on which they reside;

Qpc, however, can be positive or negative, depending on its duty. While the

exact temperatures of heat input and rejection are seldom clear, they are

chosen in Eq. (6.4) so as to maximise the entropy generation, i.e. to consider

the conservative or worst-case scenario.

Further information on the energy and entropy balances can be found in

Appendix E.1.

For the purposes of this investigation, the well-known, near-ideal mixture

of benzene–toluene was used. Three feed compositions were considered: a light

feed with zF = (0.95, 0.05), an equimolar feed, and a heavy feed of zF = (0.05,

0.95). In all cases, the distillate composition was xD = (0.999, 0.001) and the

bottoms composition was xB = (0.001, 0.999). The properties used in this

model are given in Appendix E.1.

It is obvious, but important to note, that the temperature of the light feed

is close to that of the distillate, and the temperature of the heavy feed is close

to that of the bottoms.

For each of the feed cases, the ζS and ζQ surfaces were plotted as functions

of fsys and fcol, where the column is operated at minimum re ux corresponding

to zF and fcol. The plots for the light, equimolar, and heavy feeds are given in

Figures 6.2a, b, and c, respectively.

Wherever fsys = fcol, the feed remains unchanged; as such, ζS and ζQ are

zero along this line in all of the plots.

Figure 6.2b shows the ζS and ζQ surface for the equimolar feed; it is

observed that some slight reduction in entropy generation can be achieved

using preconditioning, but it is accompanied by quite a high increase in total

heat input. Opportunities for new con gurations do not appear forthcoming
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Figure 6.2 Surfaces of relative change in entropy generation when preconditioning
is used, ζS, and relative change in heat input, ζQ, as functions of the feed vapour
fraction into the system, fsys, and the vapour fraction into the column, fcol. Plots are
shown for a benzene–toluene feed of (a) zF = (0.95, 0.05), (b) zF = (0.50, 0.50),
and (c) zF = (0.05, 0.95). The column is always at minimum re ux.

for this case, and it will be disregarded from this point forth; nonetheless, it is

included here for completeness, and to indicate that possible bene ts are only

marginal.

6.2.1 Light feed

In the case with the light feed (Figure 6.2a), if the feed is condensed to any

extent (fcol < fsys), the total heat input increases (ζQ > 0), as does the

entropy generation (ζS > 0). However, it is seen that if the light feed is

vaporised, there is a slight increase in heat input, along with a large decrease

in entropy generation; i.e. at the expense of some additional heat input, the

column operates more reversibly. This effect is most pronounced when the

light, saturated liquid feed is vaporised completely, and it is this scenario that

will be of interest for the light feed in the rest of this chapter.

A light feed ow rate of F = 1mol/s is assumed. Without vaporisation of

the light feed (fsys = 0 = fcol), the minimum re ux is rmin = 0.6568, total heat

input into the system is Qin,tot = 48.995 kW, and entropy generation is Sgen =

9.367W/K. However, when the feed is vaporised completely (fsys = 0, fcol = 1),
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rmin = 0.7399, Qin,tot = 51.444 kW, and Sgen = 3.493W/K. As Figure 6.2a

shows, there is a 62.7% decrease in entropy generation, accompanied by an

increase in total heat input of 5.0%.

If the internal ows in the column were kept identical in the two cases, then

the energy balance would dictate that the overall heat input would remain the

same: there would be a reduction in reboiler duty equal to the vaporisation

duty on the feed. However, vaporising the feed leads to an increase in the

minimum re ux ratio in the column from 0.6568 to 0.7399, which increases

the overall heat input slightly. Nevertheless, a signi cant portion of this heat

is supplied to the system at a much lower temperature (that of the feed, which

is close to the temperature of the distillate in the case of the light feed). Thus,

instead of supplying a given amount of heat without preconditioning at the

higher bottoms temperature, slightly more heat is added when preconditioning

is used, but a large portion of it is introduced at a temperature near the (lower)

distillate temperature, which results in lower entropy generation, i.e. more

reversible operation.

6.2.2 Heavy feed

In the case of the heavy feed (Figure 6.2c), the trend observed is opposite to

that of the light feed: if the feed is vaporised to any extent, there is a sharp

increase in both heat input and entropy generation, but if it is condensed to any

extent, there is a relatively small increase in heat input, and a large decrease in

entropy generation. The greatest reduction in entropy generation for the heavy

feed occurs when a saturated vapour feed is condensed completely; this will

be the point of interest with the heavy feed for the remainder of this chapter.

As with the light feed, a feed ow rate of F = 1mol/s is assumed. Without

condensation of the feed (fsys = 1 = fcol), rmin = 37.589, Qin,tot = 24.819 kW,

and Sgen = 12.713W/K. When the heavy, saturated vapour feed is fully

condensed prior to entering the column (fsys = 1, fcol = 0), rmin = 16.545,

Qin,tot = 26.894 kW, and Sgen = 6.046W/K. This amounts to a decrease in

entropy generation of 52.4%, and an increase in total heat input of 8.4%.

While the results for the light and heavy feeds are almost the same—albeit

at ‘inverse’ conditions—the reason for the decrease in entropy generation and

the slight increase in heat input is very different.

In the case of the heavy feed, heat is removed from the feed stream. If the

internal ows in the columnwere to remain the same in the preconditioned and

non-preconditioned cases, the overall energy balance would stipulate that the
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reboiler duty would increase by the same amount as the heat load removed

from the feed. Overall, the heat input would be much greater. However,

condensing the heavy vapour feed results in a signi cant reduction in the

minimum re ux ratio: from 37.589 to 16.545, which has the effect of reducing

the heat load. In essence, there are two competing factors: an increase in

the reboiler heat input due to the offset of duty from the feed stream, and

a decrease due to the reduction in minimum re ux; the net result is that the

overall heat input is slightly increased. Despite this, there is a reduction in

entropy generation, since a fair portion of the overall heat rejection takes place

at a higher temperature (that of the feed, which, in the heavy-feed case, is close

to the bottoms temperature), compared to when no preconditioning is done.

In the case without a preconditioner, all of the heat is rejected at the lowest

possible temperature, i.e. that of the distillate.

6.3 Novel configurations

It was shown in the previous section that, at least for the benzene–toluene sys-

tem, vaporising a light saturated liquid feed, or condensing a heavy saturated

vapour feed, resulted in more reversible operation, as long as the re ux ratio

was adjusted to be proportional to minimum re ux in each case. However,

this preconditioning also resulted in somewhat increased heat input. The sig-

ni cant (>50%) reduction in entropy generation is promising, but to make the

modi cation truly compelling, a reasonable reduction in energy requirements

is also necessary.

The approach to achieving a simultaneous reduction of entropy generation

and heat input is discussed in this section. While the general principle for the

light and heavy feeds is quite similar, the resulting con gurations are different,

and will thus be treated separately.

6.3.1 Configuration for light feeds: FDVRC

The analysis of preconditioning has shown that it is desirable to vaporise a

light feed before it enters the column, at the expense of additional energy input.

Rather than including an additional external heat input, it would be preferable

to transfer the required energy to the feed stream from within the system, thus

conserving energy. The best candidate for this is the overhead vapour, which

has a large latent heat load that could be used for this purpose. Thus, in the

process of transferring energy, the feed would vaporise completely, and the
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Figure 6.3
Schematic drawing of the
novel con guration for
light, saturated liquid feeds:
FDVRC. The dashed line is
an optional partial bypass
stream.

overhead vapour would condense partially. (The uncondensed portion of the

overhead vapour would then be condensed fully in a conventional condenser.)

However, it is unfortunately not possible to transfer this energy by direct

heat exchange, since the overhead vapour is at a lower temperature than the

feed, i.e. the energy transfer would take place in the wrong direction. One

way of overcoming this problem is by introducing a heat pump to transfer

heat from the lower temperature to the higher one. For ease of interpretation,

a diagram of the proposed novel con guration is given in Figure 6.3, which is

explained below.

The heat pump system is achieved by compressing the overhead vapour,

thereby raising its temperature, and also lifting the dew point of the overhead

vapour, such that it will condense at a higher temperature than the feed, al-

lowing the vapour’s energy to be transferred to the feed. Since the feed ow is

smaller than the overhead vapour ow, there is sometimes no need to compress

the entire overhead vapour stream; it is more ef cient to use only a portion of

the overhead vapour stream to vaporise the feed. This partial bypass is shown

as the dashed stream in Figure 6.3.

After the heat exchange, the pressure of the partially condensed overhead

vapour is dropped back down to column pressure, after which it joins with the

bypassed overhead vapour; the combined overhead stream is then condensed

in the condenser. Finally, part of the liquid overhead product is re uxed back

to the column, and the remainder drawn off as distillate, as in a conventional

column. This new con guration is dubbed Feed–Distillate Vapour Recompres-

sion (FDVRC).

Note that the con guration in Figure 6.3 also contains a superheater be-
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fore the compressor. As explained in some detail in Chapter 5, the reason

for this superheating is that some saturated vapours—depending on their

properties—condense on compression (Patwardhan, 1987; Felbab, 2013);

liquid formation, however, must be strictly avoided in compressors to prevent

erosion (Meili and Stuecheli, 1987; Patwardhan, 1987; Gmehling et al., 2012).

To circumvent this problem, a superheater can be used prior to compression,

allowing the compressor outlet to remain uncondensed. The superheater does

introduce an additional heat input to the overall system, and must be taken

into account when considering the total energy input. Moreover, if the latent

heat of the overhead vapour is insuf cient to vaporise the feed stream, then the

full overhead stream is needed (i.e. no partial bypass), and the energy de cit

is added using the superheater.

6.3.2 Configuration for heavy feeds: FBVRC

The use of heat pumps to transfer energy from one part of the system to

another is not limited to light feeds. In § 6.2.2, it was found that if a heavy

saturated vapour feed of benzene–toluene was fed into the system, and con-

densed fully prior to entering the column, there was a signi cant reduction

in entropy generation, accompanied by a small increase in total heat input.

It would be advantageous if the bene t of lower entropy generation could be

retained, while reducing the heat input.

Since energy needs to be removed from the feed stream in order to condense

it, it would be most ef cient to use that energy in another part of the system

where energy input is required. The most obvious candidate for this energy

transfer is the reboiler. Since the feed is at a lower temperature than the bottom

liquid from the column, energy can only be transferred from the former to the

latter by means of a heat pump. This concept leads to the novel con guration

shown in Figure 6.4, which is dubbed Feed–Bottoms Vapour Recompression

(FBVRC).

The saturated vapour feed may need to be superheated to avoid conden-

sation on compression, as mentioned earlier. It is then compressed in order

to raise its temperature, along with its dew point; in this way, the feed can

condense at a higher temperature than the bottoms in order to transfer energy

to the latter in the reboiling heat exchanger. The liquid from the bottom of

the column is saturated, such that this addition of heat in the heat exchanger

causes it to partially vaporise. If the latent heat of the condensing feed is

insuf cient to provide the required reboil rate, additional energy can be added
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Schematic drawing of the
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using the superheater. If, on the other hand, the vapour feed can provide more

energy than necessary for the reboil duty, energy can be saved by using only a

part of the feed; the rest can be bypassed to the feed condenser, as indicated

by the dashed stream in Figure 6.4. The compressed feed leaves the heat

exchanger as a partially or totally condensed stream, which is then brought

down to column pressure using a throttling valve, and then combined with the

bypass stream. This combined feed stream is then fully condensed, and fed to

the column. The rest of the column is operated like a conventional column.

6.4 Comparison of various configurations

In Chapter 5, high-level thermodynamic analyses were performed on con-

ventional columns and SVRC using simple equations, based on a number

of simpli cations. Only a small number of constant properties are needed

in that approach. Using those equations, it is possible to gain a general

understanding of the behaviour of the con gurations, and to assess different

systems for which simple properties are available. The same sort of approach

can be used for the FDVRC con guration proposed in this chapter; unfor-

tunately, however, that sort of high-level analysis is impractical for FBVRC,

which requires compression and condensation of mixtures (as opposed to

pure components) and renders the high-level analysis counterproductively

complex. As such, in order to carry out the comparison in this section on

a consistent basis, the analyses of conventional, SVRC, FDVRC, and FBVRC

use detailed, rigorous calculations, rather than the high-level approach from
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Chapter 5. The properties used for these models are given in Appendix E.1.

The relevant equations for the high-level analysis of the FDVRC can be found

in Appendix E.2.

As in Chapter 5, the aim here is to determine the behaviour of the various

con gurations under the best theoretical circumstances in each case, from a

process point of view. Liquid and vapour feeds are treated separately, since the

FDVRC and FBVRC con gurations are applicable to different feed conditions.

In order to limit the number of variables being assessed, two conditions

are xed: only binary systems are considered, and the distillate and bottoms

in each case are set to 99.9 mol% purity of light and heavy component,

respectively.

The parameter that is varied is the feed composition. For each feed

composition—given the above xed conditions—a fully pinched, idealised

design is calculated, which entails the following:

1 The column is pinched, i.e. at minimum re ux, which is calculated rigorously

using mass and energy balances. This not only gives the minimum energy re-

quirement, but it also requires an in nite number of stages, thereby eliminating

another variable from the analysis;

2 The compressor pressure ratio is set to the minimum value at which the full

latent heat of the hot stream can be transferred to the cold stream, while giving

at least one temperature pinch in the heat exchanger. The heating and cooling

curves are calculated to ensure that this condition is met, and that there is no

temperature cross-over at any point in the heat exchanger; and

3 The compressor has an isentropic ef ciency of 100%.

There is a degree of freedom in how much energy is added via the su-

perheater, and how much via the compressor. For example, it is theoreti-

cally possible, though undesirable, to add the entire required boil-up duty via

the superheater, which entirely defeats the energy-saving capabilities of these

con gurations. As such, the chosen design philosophy is to use the minimum

compression ratio that allows the compressed stream to deliver its full latent

heat load to the cold stream; the superheater is used in only two situations: to

avoid condensation in the compressor, and to add additional energy when the

latent heat is insuf cient to provide the required heat duty.

Four near-ideal binary systems are examined using the above methodology.

For the purposes of this analysis, azeotropic systems were not considered, as
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they add additional complications. The systems were chosen to represent a

wide range of relative volatilities, which is the main characteristic that de nes

zeotropic separation problems; these systems are: acetonitrile–nitromethane

(α ≈ 1.84), benzene–toluene (α ≈ 2.47), 1-heptanal–1-decanal (α ≈ 4.96),

and n-hexane–n-nonane (α ≈ 11.21).

The performance and ef ciency of the different con gurations is deter-

mined using several metrics: the minimum energy input and its associated

work input, the entropy generation, and the minimum required compression

ratio (which is not applicable to the conventional column). The rst three are

given as values per unit feed ow, for generality. As discussed in Chapter 5, all

heat ows have associated virtual work input. Work is a useful metric because

it takes into account the quality of the heat, not just the quantity. If the best-

case scenario is considered, it is assumed that the virtual work is added using

a reversible heat pump. Therefore, the reversible work input, Win, associated

with a heat input, Qin, at temperature T is estimated as follows:

Win = Qin

(
1− T0

T

)
(6.5)

For each calculation, thorough checks were carried out to ensure that mass

and energy were in balance, that entropy generation in each part of the process

was positive, and that the direction of heat transfer was correct in all cases.

6.4.1 Liquid feeds

For liquid feeds, the conventional, SVRC, and FDVRC con gurations are

applicable. The plots of energy input, work input, entropy generation, and

compression ratio for these con gurations are given in Figure 6.5. Note that

the plots for SVRC in the n-hexane–n-nonane system are not shown for the

full feed composition range; points which required supercritical temperatures

in the compressor were omitted.

In comparison with conventional distillation, it is seen in Figure 6.5 that for

light feeds—the intended area of application of the proposed con guration—

FDVRC is indeedmore ef cient than conventional distillation, regardless of the

metric used: energy input, work input, and entropy generation are all lower

for the FDVRC.

The motivation behind the FDVRC con guration was an attempt to retain

the entropy generation advantages of preconditioning, while simultaneously

reducing the energy requirements. From the plots for the benzene–toluene
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Figure 6.5 Detailed comparison of the minimum energy requirements, associated
work input, entropy generation, and pressure ratio as a function of composition of
the saturated liquid feed, for conventional distillation (dashed line), SVRC (dot-dashed
line), and FDVRC (solid line). Plots are shown for various near-ideal binary systems,
in order of increasing relative volatility from left to right. Product purities of 99.9
mol% are xed in each case.

system in Figure 6.5, it is seen that the 95-mol%-benzene feed undergoes a

reduction in entropy generation of 62.6% compared with conventional distil-

lation, and a reduction in energy requirements of 58.5%. The FDVRC scheme

has thus been successful in its purpose.

It is clear that, in all cases, light feeds bene t from FDVRC compared to

conventional distillation. The approximate trend that is apparent in Figure 6.5

is that lower relative volatility systems bene t less from FDVRC than do higher

relative volatility systems.

Compared to SVRC, FDVRC is not as ef cient for systems with low relative

volatilities; indeed, those are the systems for which SVRC excels, both thermo-

dynamically and practically, as shown in Chapter 5. However, when systems

with higher relative volatilities are considered, the advantage of FDVRC for

light feeds becomes obvious.
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One crucially important advantage that FDVRC has over SVRC is that of

compression ratios. For practical implementation, a single-case compressor is

generally limited to a pressure ratio of 3.5 Boyce (2011); in many systems, this

is the deciding factor for implementation of vapour recompression. Moreover,

higher pressure ratios have a negative impact on the process economics, along

with a decrease in the compressor ef ciency (Boyce, 2011). While SVRC has

a xed minimum pressure ratio for a given system, the pressure ratio for

FDVRC tends to unity as the feed composition tends to that of the distillate.

Consequently, in systems where the practical implementation of SVRC is

limited by the pressure ratio, FDVRC can still be used successfully, at least

for light feeds.

It is thus obvious that FDVRC is applicable to a range of distillation

problems beyond the reach of SVRC, where it can yield signi cant ef ciency

bene ts.

6.4.2 Vapour feeds

Unlike FDVRC, FBVRC is designed for heavy vapour feeds. As such, conven-

tional distillation, SVRC, and FBVRC are compared in Figure 6.6. The FBVRC

line is absent from the acetonitrile–nitromethane system because, in all cases,

it requires a supercritical gas in the compressor to provide the required reboil

duty, and has thus been omitted. Another feature that should be addressed is

the sudden change in gradient in some plots for the FBVRC. This occurs due to

a change in the heat transfer regime, brought on by the feed vapour not having

suf cient latent heat to provide the reboil duty beyond a certain composition,

which thus requires additional energy input in the superheater.

The conclusions that can be drawn about FBVRC from Figure 6.6 are more

straightforward than for the previous analysis concerning FDVRC. First, it is

noted that for the acetonitrile–nitromethane system, for which SVRC excels,

FBVRC is not applicable at all. This can be attributed in part to the fact

that the mixture is close-boiling, and thus has a large re ux ratio, leading

to quite a high reboil rate. The problem is compounded by the fact that both

components have a very low ideal gas heat capacity, and thus superheat rapidly

on compression. Consequently, when the additional energy for reboil is added

in the superheater, the temperature rises rapidly, and becomes supercritical

when compression is performed. Moreover, as the temperature increases, the

latent heat decreases, and ultimately results in a lack of subcritical solution for

the con guration.
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Figure 6.6 Detailed comparison of the minimum energy requirements, associated
work input, entropy generation, and pressure ratio as a function composition of the
saturated vapour feed, for conventional distillation (dashed line), SVRC (dot-dashed
line), and FBVRC (solid line). Plots are shown for various near-ideal binary systems,
in order of increasing relative volatility from left to right. Product purities of 99.9
mol% are xed in each case.

Isentropic compression of saturated vapours in the other three systems

leads to partial condensation, which—counterintuitively—is favourable, in

order to avoid the problem of uncontrollable, excessive superheating on

compression that the acetonitrile–nitromethane system experiences. These

other systems use the superheater to ensure that no condensation takes place

in the compressor, and to add the additional heat for reboil.

In the cases where supercritical temperatures are not a concern, it is

abundantly clear that FBVRC is signi cantly better for heavy feeds than

conventional or SVRC distillation, as measured by any of the metrics.

The motivation leading to the FBVRC scheme was an attempt to obtain

similar entropy generation reduction bene ts as preconditioning heavy vapour

feeds, but accompanied by a suitable reduction in energy input. It is seen that

the FBVRC con guration is exceptionally effective in achieving this goal. For
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example, with a 5-mol%-benzene feed in the benzene–toluene case, using FB-

VRC instead of conventional distillation yields a decrease of 59.4% in entropy

generation, and a staggering reduction in energy requirements of 99.1%.

Moreover, not only is FBVRC more ef cient than SVRC for the heavy

vapour feeds, but it also requires much lower compressor pressure ratios than

SVRC in that feed composition region. Similarly to FDVRC, as the feed com-

position tends to that of the bottoms, the minimum pressure ratio tends to

unity. FBVRC is applicable to systems for which the SVRC’s pressure ratio is

prohibitive of practical implementation.

6.5 Rigorous simulation and validation

The previous section considered the minimum-energy case, and was useful

for identifying the relative strengths and weaknesses of FDVRC and FBVRC

compared to conventional and SVRC distillation. However, these minimum-

energy designs are not practically achievable, as they require an in nite num-

ber of stages, and in nite heat transfer area in the heat exchangers. It is thus

important to investigate whether the bene ts of the proposed con gurations

carry over to more realistic scenarios, by means of rigorous simulation with

a commercial process simulation package. The software used for this purpose

was Aspen Plus (Aspen Technology, Inc., 2007). Vapour–liquid equilibrium

(VLE) was modelled using its NRTL-RK property method: the NRTL model

for the liquid (Renon and Prausnitz, 1968), and the Redlich–Kwong equation

of state for the vapour (Redlich and Kwong, 1949). The owsheets and

associated nomenclature for the conventional and SVRC simulations can be

found in Figures 5.12 and 5.13, respectively. Figures 6.7 and 6.8 give the

owsheets and nomenclature for the FDVRC and FBVRC con gurations,

respectively.

The examples were chosen to validate some of the scenarios in which FD-

VRC and FBVRC were advantageous in Figures 6.5 and 6.6, and to investigate

the application of the novel con gurations to multicomponent systems. Note

that the examples in this section were speci cally chosen for scenarios in which

FDVRC and FBVRC are expected to perform well; the novel con gurations

are not applicable and advantageous in all problems. Azeotropic systems are

not considered, as they tend to require high boilup rates, which signi cantly

reduces the bene ts of the proposed con gurations.
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Figure 6.7
Aspen Plus owsheet for the
rigorous simulation of the
FDVRC con guration.

Figure 6.8
Aspen Plus owsheet for the
rigorous simulation of the FBVRC
con guration.

The settings for the simulations are provided in Appendix E.3, and the

results of the four examples are summarised in Table 6.1.

6.5.1 Design methodology

First, the feed composition and condition, and desired product compositions

were set.

For the binary separation examples, the minimum re ux, rmin, was rigor-

ously calculated by means of mass and energy balances; the re ux ratio was

set to r = 1.5 rmin. In order to determine the number of stages required, and to

identify the feed stage, a ‘rigorousMcCabe–Thiele’ approach was used: that is,

having speci ed the feed, products, and re ux ratio, mass and energy balances

were used to ‘step down’ from the top of the column, stage by stage, until the
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Table 6.1 Summary of the results of the rigorous simulation examples, showing the
energy and work input for all of the con gurations, as well as the compression ratio,
where applicable.

Conventional SVRC FDVRC FBVRC

Ex. Ein Win Ein Win Π Ein Win Π Ein Win Π

1 13.02 5.05 7.73 4.49 4.56 6.55 2.80 1.55 – – –
2 14.28 3.17 3.10 2.71 2.67 – – – 2.06 0.83 1.30
3 12.15 4.72 4.66 4.66 23.53 5.26 2.32 3.50 – – –
4 11.48 2.25 5.59 3.74 4.20 – – – 1.42 0.57 1.35

Total energy input, Ein, and total work input, Win, have units of kW.
Π ≡ Pcomp/P0.

liquid composition at the bottom of the column met the bottoms composition

criterion. This also provided a value for the required reboiler vapour fraction.

For the multicomponent examples, ChemSep (Kooijman and Taylor, 2013)

was used to estimate minimum re ux (using xed product speci cations and

300 stages). Thereafter, the re ux ratio was chosen as r = 1.5 rmin, and the

minimum number of stages was found by trial and error such that the product

speci cations were met using the chosen re ux ratio.

This preliminary simulation provided initial guesses for the Aspen Plus

input parameters. As a safety factor, one extra stage was added to the rectifying

section, and one to the stripping section in the Aspen Plus simulations. A

minimum approach temperature of 5K was speci ed in the heat exchangers.

Example 1: light 1-heptanal–1-decanal liquid feed

It is seen in Figure 6.5 that FDVRC appears to be thermodynamically superior

to conventional and SVRC distillation for light liquid feeds of 1-heptanal–1-

decanal; it also has the advantage of requiring a much lower compression ratio

than SVRC for these light feeds.

To test this by means of rigorous simulation, a 1 kmol/h saturated liquid

feed of 90 mol% 1-heptanal was selected, to be split into a distillate of >99.5

mol% 1-heptanal, and a bottoms of >99.5 mol% 1-decanal.

Because both the conventional column and the column SVRC are fed with

direct liquid feed, they are able to produce exactly the same products. For these

con gurations, the nal simulation produced a distillate with 99.55 mol% 1-

heptanal, and a bottoms with 99.91 mol% 1-decanal, both of which meet

the required purity speci cations. The FDVRC column is fed with a vaporised
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feed, which can thus not result in exactly the same products as the previous

two con gurations. For the FDVRC, the simulation gave a distillate of 99.51

mol% 1-heptanal, with a bottoms of 99.82 mol% 1-decanal.

The total energy input, total work input—as simply estimated using

Eq. (6.5)—and compression ratio for the SVRC and FDVRC are given in

Table 6.1. The result shows that FDVRC has 49.7% lower energy input than

conventional distillation, and 15.3% lower than SVRC. Work input is also

lowest in the FDVRC, with a 44.6% reduction compared to the conventional

case, and 37.6% lower compared to SVRC.

While the thermodynamic improvements of FDVRC over SVRC are less

pronounced than over conventional columns, a key differentiator is the

required pressure ratio. The SVRC requires a compressor ratio of 4.56, which

is too high to be implemented practically in a single-case compressor; the

FDVRC, however, needs only a low ratio of 1.55, which is easily achievable in

practice.

Consequently, not only is FDVRC the best of the three con gurations for

this problem, but it can also be implemented practically, whereas SVRC cannot.

Example 2: heavy benzene–toluene vapour feed

Figure 6.6 indicated that for a heavy vapour feed in the benzene–toluene sys-

tem, signi cant improvements over conventional and SVRC could be achieved

using FBVRC.

For the purposes of this rigorous simulation, a saturated vapour feed of 9

mol% benzene was chosen, with the aim of separating it into products with

>99.5 mol% purity.

The conventional column and SVRC can produce exactly the same prod-

ucts; for these con gurations, the simulation produced a distillate of 99.80

mol% benzene, and a bottoms of 99.78 mol% toluene. The FBVRC simulation

gave a distillate of 99.72 mol% benzene, and a bottoms of 99.65 mol%

toluene.

As for Example 1, the results are given in Table 6.1.

It is seen that FBVRC is signi cantly better than either the conventional

column and SVRC: in terms of energy requirements, FBVRC is better than

conventional distillation by 85.6%, and better than SVRC by 33.5%. The

reduction in work input is 73.9% compared to the conventional case, and

69.4% compared to SVRC.
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The thermodynamic bene ts are not as extreme as in Figure 6.6, which can

be attributed to the imposition of practical limitations: the speci ed approach

temperature requires the condensing temperature to be raised, leading to a

higher compression requirement, and consequently more superheating of the

compressor feed. Moreover, because the feed ow is xed, yet the reboil rate

changes with re ux, the advantage of FBVRC decreases as re ux increases.

Thus, by using r = 1.5 rmin, along with the other factors, energy/work load in

the FBVRC is increased compared to the minimum shown in Figure 6.6.

In this example, the SVRC scheme’s compression ratio is 2.67, which could

be practically implemented; nevertheless, FBVRC requires less than half of that

compression ratio.

As a result, it has been shown in this rigorous simulation that FBVRC was

signi cantly better than the other two con gurations, both thermodynamically

and practically.

Example 3: light water–monoethanolamine–diethylene glycol
liquid feed

A 1kmol/h saturated liquid feed mixture of water, monoethanolamine, and

diethylene glycol is to be split into a nearly pure water distillate of >99.999

mol% water, and a bottoms with <0.00001 mol% water.

The simulations of the conventional and SVRC con gurations gave a

distillate of xD = (0.99999, 8.8861×10−6, 1.7454×10−30), and a bottoms of

xB = (2.7137× 10−9, 0.27268, 0.72733). The FDVRC simulation produced a

distillate of xD = (0.99999, 6.6312× 10−6, 6.032× 10−17), and a bottoms of

xB = (1.1954× 10−6, 0.27269, 0.72731).

Table 6.1 summarises the results of these simulations. In terms of energy

requirements, FDVRC is 56.7% better than the conventional column, but

12.8% worse than the SVRC. If work input is considered, the FDVRC is

better than the other two schemes: it has 50.7% lower work input than the

conventional case, and 50.2% lower than SVRC.

Even though FDVRC requires slightly more energy than SVRC, the latter’s

practical implementation is clearly prevented by its very high pressure ratio of

23.53. The pressure ratio for the FDVRC is 3.50, which, although at the limit

of practicable single-case compression, could still be implemented.
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Example 4: heavy n-pentane–n-hexane–n-heptane vapour feed

A 1kmol/h saturated vapour feed of n-pentane–n-hexane–n-heptane with

composition zF = (0.05, 0.05, 0.90) is to undergo an indirect split to a bottoms

of >99.5 mol% n-heptane, and a distillate with <1 mol% n-heptane.

The conventional and SVRC simulations produced a distillate of xD =

(0.52305, 0.47634, 6.1495 × 10−4), and a bottoms of xB = (4.2735 × 10−7,

4.93354 × 10−3, 0.99507), both of which meet the speci cation. The simu-

lation of the FBVRC con guration resulted in a distillate of xD = (0.52219,

0.47506, 2.7469 × 10−3), and a bottoms of xB = (8.1726 × 10−7, 4.9911 ×
10−3, 0.99500), which also meets the product speci cation.

The results are summarised in Table 6.1, and it is seen that the energy

requirements of FBVRC are 87.7% lower than conventional distillation, and

74.7% lower than SVRC. In terms of work input, a decrease of 74.9% is

observed using FBVRC instead of conventional distillation, and a decrease of

84.9% compared to SVRC.

Furthermore, the SVRC’s minimum compression ratio of 4.20 is prohibitive

of practical implementation, whereas FBVRC requires a low pressure ra-

tio of 1.35. Consequently, not only does the FBVRC con guration require

signi cantly less energy and work input than the other two options, but it

can be applied in practice, while SVRC cannot.

6.6 Conclusion

Through the use of entropy generation analysis, potential targets for im-

provement in conventional distillation were identi ed, which ultimately led to

two novel feed–product vapour recompression con gurations: Feed–Distillate

Vapour Recompression (FDVRC), and Feed–Bottoms Vapour Recompression

(FBVRC). These novel con gurations are intended for situations in which

standard vapour recompression (SVRC) cannot be applied, due to either

thermodynamic or practical reasons.

In Chapter 5, it was shown that although SVRC is thermodynamically

favoured over conventional distillation for a wide range of systems, it is

practically limited to a narrow subset of these, where compression ratios

are small enough to be practically implemented in a single-stage compressor.

It was also identi ed in the Chapter 5 that distillation is least ef cient (i.e.

furthest from its theoretical minimum) when feed composition is close to that

of a product.
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FDVRC is designed for feeds in the liquid phase, where the feed composition

is close to that of the distillate; the closer these two compositions, the better

the energy ef ciency and the lower the required compression ratio in FDVRC.

Similar behaviour is exhibited by FBVRC, except that it is intended for

vapour feeds that are close in composition to the bottoms. For both of these

arrangements, the required compression ratio is always lower than that of

SVRC; when the novel con gurations are used with their intended feeds, the

compression ratio is signi cantly lower than in SVRC.

While SVRC can accept all feeds but is limited in the systems it can bene t,

FDVRC and FBVRC are applicable to a much wider range of systems, but can

only accept speci c feeds: light liquid feeds, or heavy vapour feeds.

Through rigorous calculations for a range of binary systems, as well as rig-

orous simulation for some binary and ternary separations, it was shown in this

chapter that the novel con gurations are always better than conventional dis-

tillation (for the appropriate feeds) in terms of energy and work requirements.

For situations where SVRC is practically applicable, it was seen that SVRC is

usually better than the novel con gurations; however, the range of systems

to which SVRC can be applied is very limited due to the required compression

ratios, as explained above. In these cases where SVRC is not a feasible option, if

the feed is a light liquid or a heavy vapour, one of the novel con gurations can

usually be used, yielding signi cant energy and work requirement bene ts over

conventional distillation. (Note that if the feed condition is not already xed

by an upstream unit operation, such as a reactor, changing the feed condition

in order to use it with the proposed con gurations is not bene cial.)

As such, for the appropriate feeds, the novel con gurations can greatly

expand the region in which vapour recompression can be implemented for

energy savings, beyond the very limited range of SVRC.

While the major process portion of the proposed con gurations has been

examined in this chapter, a number of aspects remain to be examined in future

work: simple, general guidelines or rules-of-thumb for when FDVRC or FBVRC

are better than SVRC need to be developed; the controllability and start-up

of the novel con gurations must be assessed; and an industrial case study

of the economics surrounding the novel con gurations should be performed,

showing how they compare to SVRC and conventional columns, and whether

the energy savings over the lifetime of the plant are worth the additional capital

expenditure.



Chapter 7

Shortcut Methods for High-Level Distillation
Analysis
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minor corrections, and changes in style and formatting for clarity.
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Abstract

This chapter presents two simple shortcut (estimation) methods, which were devel-

oped because comparable methods available in the literature were unsatisfactory. One

of the methods presented is used to determine whether saturated vapours will con-

dense or become superheated on compression. A simple way of estimating minimum

compressor inlet superheating to avoid condensation is given. The other problem that

is addressed is the non-iterative estimation of bubble- and dew-point temperatures of

ideal binary mixtures using only the pure-component boiling points and the constant

relative volatility. Although both methods assume that vapours behave as ideal gases

with constant properties, such simpli cations are often suf cient for initial analysis of

distillation systems, and have been used successfully in Chapter 5 and in the high-level

analysis of the FDVRC con guration in Appendix E.2.

152
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7.1 Introduction

In the initial stages of solving distillation problems, it is often useful to be

able to make quick, non-iterative estimates of values, in favour of detailed—

often iterative—calculations. Even for detailed calculations, it is useful to have

a simple way of obtaining good, convergent initial guesses for the iterations.

This chapter presents two newmethods that were developed during the course

of the work in this thesis, in order to ll gaps where methods in the literature

were unsatisfactory, for reasons discussed below.

The rst of these methods allows for the determination of whether a sat-

urated vapour will condense or become superheated on compression (taking

into account the compressor’s isentropic ef ciency), and, if it condenses, what

the minimum superheating of the compressor inlet must be in order to avoid

condensation within the compressor. It appears that there is only one previous

work on this topic in the open scienti c literature (Patwardhan, 1987), which

was found to be inadequate for the purposes of the work in this thesis for a

number of reasons:

1 It relies on liquid heat capacity, as well as temperature-dependent latent heat

(or critical temperature and acentric factor for use with a correlation that

Patwardhan suggests). Instead, it is preferred in this work to perform high-

level calculations using constant ideal gas heat capacity, and constant latent

heat;

2 Patwardhan (1987) does not provide a way of estimating the minimum suction

superheating that is required to prevent condensation;

3 It assumes 100% isentropic compression, whereas the presented method

allows for the inclusion of the compressor’s isentropic ef ciency. Although

this is not strictly necessary for this work, it still has more exibility than

Patwardhan’s method.

The second method presented addresses the issue of non-iterative (i.e. tem-

perature-explicit) estimation of bubble- and dew-point temperatures of ideal

binary mixtures. In essence, the goal is to obtain a good estimate of the equi-

librium temperatures that would result from calculations with Raoult’s law

and temperature-dependent vapour pressure, assuming ideal liquid behaviour,

i.e. γ = 1 for both components. For the proposed method, only the pure-

component boiling points and constant relative volatility are required. The

only other method that was found in the literature for achieving this was that
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given byHalvorsen (Halvorsen, 2001; Halvorsen and Skogestad, 2000), which

lacks a theoretical basis; the proposed work does not. More importantly, as

a result of its more theoretical basis, the proposed work has higher accuracy

than Halvorsen’s. However, Halvorsen’s approach has the advantage of ex-

tending tomulticomponent systems, whereas the work here is limited to binary

systems. Therefore, the proposed work is preferred for binary systems, while

Halvorsen’s should be used for multicomponent mixtures.

7.2 Compression of saturated vapours

When a saturated vapour is compressed isentropically, it may become super-

heated, or it may partially condense; which of these two outcomes will occur

depends on the properties of the uid being compressed and—to a lesser

degree—on the compressor ef ciency (Holland et al., 1982; McLinden and

Radermacher, 1987; Patwardhan, 1987; Gopichand et al., 1988; Srinivasan,

1991; Granryd, 2001; Radermacher and Hwang, 2005; Gmehling et al.,

2012). It is imperative to avoid any condensation, as liquid formation in the

compressor can rapidly damage the equipment by erosion (Meili and Stuecheli,

1987; Patwardhan, 1987; Gmehling et al., 2012).

Onemajor use of compressors is in heat pumps, which have a wide range of

industrial uses, typically in energy-saving con gurations, and in refrigeration

cycles. In refrigeration cycles, or in other heat-pumping techniques with closed

loops, the working uid is independent from the main process itself, and there

is a wide range of uids that can be chosen to best suit the process requirements

in terms of physical properties and economic considerations (Holland et al.,

1982; Durandet, 1983; Radermacher and Hwang, 2005).

However, in heat pump applications such as vapour recompression distil-

lation (Carta et al., 1982; Flores et al., 1984; Gopichand et al., 1988; Fonyó

and Benkő, 1998), or in heat-integrated distillation columns (Nakaiwa et al.,

2000; Jana, 2010), the uid to be compressed cannot be independently chosen;

moreover, the compressed uid is a saturated vapour in these applications, and

it is invaluable to know whether condensation will occur, and if so, how much

superheating of the compressor suction vapour is required to avoid this.

To answer the rst question, Patwardhan (1987) developed a criterion

to determine whether isentropic compression will lead to superheating or

partial condensation. This criterion requires the saturated inlet compressor

temperature, the uid’s liquid heat capacity, and its latent heat as a function of
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temperature. Patwardhan also proposed replacing the latter with a correlation

requiring the acentric factor and the critical temperature. With the assumption

of liquid incompressibility, the criterion is as follows:

Ĉliq
p

R
< β (superheated)

Ĉliq
p

R
> β (partially condensed) (7.1)

where

β = −T0

R
d
dT

(
λ(T)
T

)
T=T0

(7.2)

Equation (7.1) requires the liquid heat capacity, Ĉliq
p , while Eq. (7.2) re-

quires the saturated compressor suction temperature, T0, and the temperature-

dependent latent heat, λ.

Patwardhan suggested the use of a correlation in (Reid et al., 1977) to

obtain β as a function of acentric factor, ω, and critical temperature, Tc:

β = 7.08
(
1− T

Tc

)−0.646(
−0.646+

Tc

T

)
+

10.95ω
(
1− T

Tc

)−0.544(
−0.544+

Tc

T

)
(7.3)

This work proposes an alternative to Patwardhan’s (1987) method; it

uses only the ideal gas heat capacity and latent heat, both evaluated at T0.

Therefore, neither the temperature dependence of λ, nor ω, nor Tc is required.

It also allows for the inclusion of the effects of the compressor’s isentropic

ef ciency. Lastly, equations are derived for the estimation of suction superheat

required to ensure no condensation takes place in the compressor.

7.2.1 Isentropic and non-isentropic compression

An ideal gas, when compressed isentropically from pressure P0 to P1, experi-

ences an increase in temperature from T0 to some temperature T1,isentropic; the

relationship between these temperatures and pressures can easily be deduced,

assuming constant ĈIG
p :

P1

P0
=

(
T1,isentropic

T0

)ĈIG
p /R

(7.4)

If the compressor is not perfectly isentropic, its ef ciency, η, can be taken

into account, again assuming constant ĈIG
p :
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η ≡
Ws,isentropic

Ws,actual
=
H1,isentropic −H0

H1,actual −H0
=
T1,isentropic − T0

T1 − T0
(7.5)

T1,isentropic = η(T1 − T0) + T0 (7.6)

where T1 is the actual exit temperature from the compressor. Substituting

Eq. (7.6) into Eq. (7.4):

P1

P0
=

(
η
(
T1

T0
− 1
)
+ 1
)ĈIG

p /R

(7.7)

The vapour pressure curve describes the pressures and temperatures at

which a substance is saturated; if, at a given pressure, the uid’s temperature

exceeds the saturation temperature, the uid is superheated. The Clausius–

Clapeyron equation is useful for relating a known point on the saturation

curve to one at a similar temperature assuming constant λ:

ln
(
P1

P0

)
= − λ

R

(
1
T1

− 1
T0

)
(7.8)

If a new variable is de ned as τ1 = 1/T1, and the logarithm of Eq. (7.7) is

taken, the following is obtained:

ln
(
P1

P0

)
= −

ĈIG
p,1

R
ln
(

τ1T0

η − τ1T0(η − 1)

)
(7.9)

and using τ in Eq. (7.8) gives:

ln
(
P1

P0

)
= − λ

R

(
τ1 −

1
T0

)
(7.10)

First, the assumption is made that the saturated vapour becomes super-

heated on compression. If, for a given compressor pressure ratio (P1/P0), τ1 in

Eq. (7.9) is lower than the τ1 in Eq. (7.10), the assumption was correct, and

the compressed vapour will indeed be superheated. Otherwise, if the opposite

is found to be true, then the compressed uid must be condensed. This is

represented graphically in Figure 7.1, for benzene (partially condensed) and

propylene (superheated), with plots of Eqs (7.9) and (7.10). Note that in the

case of condensation, the actual compression pro le runs along the saturation

line; the representation of isentropic compression in Figure 7.1 assumes that

only vapour exists. If it enters the liquid region, it means that the assumption

is incorrect. Furthermore, propylene was included in this plot, and treated as

an ideal gas for illustrative purposes; in reality, it does not approximate an

ideal gas at these conditions.
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Since both equations pass through T0 and P0, it is suf cient to compare

their gradients at that point to determine whether condensation will occur.

Equation (7.10) is a straight line, and its gradient is already known to be−λ/R.

For Eq. (7.9), the gradient can be found by taking the derivative of ln(P1/P0)

with respect to τ1 to obtain −ĈIG
p T0η/R. Therefore, the proposed criterion is,

very simply:

ĈIG
p T0η < λ (superheated) ĈIG

p T0η > λ (partially condensed) (7.11)

Because only the gradient at T0 is considered, and ĈIG
p and λ are evaluated

at that temperature, it can be shown that the only assumptions in Eq. (7.11)

are that the gas is ideal and that the speci c volume of the saturated liquid

is negligible in comparison with the speci c volume of the saturated vapour.

Both of these are reasonable assumptions far from the critical point.

Durandet (1983) implicitly presented a similar criterion to Eq. (7.11), but

the derivation is based solely on the uid properties and can therefore not take

into account the compressor’s ef ciency.

7.2.2 Superheating before compression

If it is found that the saturated vapour condenses on compression, the problem

can be circumvented by superheating the inlet to the compressor by some ΔT.

In some cases, even if the uid does not condense at small pressure ratios, it

may condense prior to reaching the required pressure ratio. It is useful to be

able estimate the minimum ΔT required for this superheating (which should

produce a saturated vapour at the outlet of the compressor). The superheated

inlet temperature to the compressor, therefore, is T0,superheated = T0,saturated+ΔT,
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which makes Eq. (7.9):

ln
(
P1

P0

)
= −

ĈIG
p

R
ln
(

τ1(T0 + ΔT)
η − τ1(T0 + ΔT)(η − 1)

)
(7.12)

The vapour pressure expression, Eq. (7.10), remains unchanged, as it is

a function of the uid only, and not of the process. Therefore, equating

Eqs (7.10) and (7.12) and solving for ΔT gives:

ΔT =
η(T1 − T0) +wT0

η −w
(7.13)

where

w = 1− exp

(
λ(T1 − T0)

ĈIG
p T0T1

)
(7.14)

The form of Eq. (7.13) makes it suitable for problems where the compres-

sion is used to increase the temperature to a speci ed T1. With typical process

simulators (which do not allow speci cation of a compressor outlet temper-

ature) this problem is, in fact, a relatively dif cult multivariate optimisation

problem.

For applications where the compressor pressure ratio is speci ed, the

following form can be used:

ΔT =
T0
[ ηυ
λ−υ + σ

]
η − σ

(7.15)

where

υ = RT0 ln
(
P1

P0

)
(7.16)

σ = 1−
(
P1

P0

)R/ĈIG
p

(7.17)

If ΔT ≤ 0, no inlet superheating is required.

The estimates from Eqs (7.13) and (7.15) can be used as initial guesses for

the iterations required to obtain these numbers rigorously.

7.2.3 Examples

In all of the following examples, rigorous simulation was performed with

AspenTech’s Aspen Plus using the SR-POLAR (Schwartzentruber–Renon equa-

tion of state) property method.
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Example 1

Compressing saturated benzene vapour at 0.75 bar (P0 = 0.75 bar, T0 =

344.0K, ĈIG
p = 96.81 J/mol·K, λ = 31263.32 J/mol) in a perfect compressor

(η = 1) results in partial condensation according to Eq. (7.11). However, the

same feed in a compressor with η = 0.78 gives a superheated gas. Rigorous

simulation con rmed these results.

Example 2

Saturated 1-heptanol vapour at 1 bar (P0 = 1bar, T0 = 449.4K) needs to be

compressed to P1 = 1.6 bar in an ideal compressor (η = 1). Its properties

at T0 are ĈIG
p = 249.05 J/mol·K and λ = 46355.86 J/mol. From Eq. (7.11),

ĈIG
p T0η = 111923.07 J/mol > λ, which means that isentropic compression

leads to condensation. The minimum degrees of inlet superheating required,

as estimated with Eq. (7.15), are ΔT = 10.42K. Rigorous simulation gave

9.38K.

Example 3

A vapour recompression system requires saturated n-octane vapour at 0.7 bar

(P0 = 0.7 bar, T0 = 386.14K) to be compressed until it reaches temperature

T1 = 410.0K. At T0, ĈIG
p = 233.91 J/mol·K, and λ = 36113.82 J/mol. The

compressor is not perfect, and has η = 0.82. From Eq. (7.11), ĈIG
p T0η =

74064.05 J/mol > λ, which means that compression leads to partial condensa-

tion. The minimum ΔT according to Eq. (7.13) is 12.42K; rigorous simulation

gave this value as 11.80K.

7.3 Estimation of ideal binary equilibrium
temperatures

For high-level or shortcut distillation calculations, such as at early stages of

process synthesis or conceptual design when broad screening of alternatives

is performed, information that is typically available is the normal boiling

points of the pure components, Tb, and their constant relative volatility, α.

If temperature is a signi cant variable, it is useful to be able to estimate the

bubble- or dew-point temperatures quickly using the available information,

without performing the iterative calculations that are required for the accurate
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computation of vapour–liquid equilibrium (which also requires additional

information, such as vapour pressure as a function of temperature). There

appears to be only one comparable method that satis es the same criteria; it is

described in § 7.3.2, and a comparison with the proposedmethod is performed

later in § 7.3.5.

The equations presented here allow for the estimation of equilibrium

temperatures as a function of liquid or vapour composition, with the use of

only the normal boiling points of the pure components and a constant value

for the relative volatility. They are given as Eqs (7.38) and (7.39). The fact

that the proposed method is non-iterative makes it particularly useful for

spreadsheeting applications, and for the direct inclusion of bubble- or dew-

point temperatures as a function of composition in other equations.

The proposed method with normal boiling points can only be used to

estimate equilibrium temperatures at atmospheric pressure (101 325 Pa); at

different pressures, pure-component boiling points would be required at the

system pressure. An extension of the proposed method to other pressures is

given in § 7.3.6.

7.3.1 Theoretical background

Perfectly ideal mixtures obey Raoult’s law exactly:

yiP = xiP
vap
i (T) (7.18)

where Pvap(T) is the vapour pressure at temperature T, and P is the system

pressure; xi is the liquid mole fraction of component i, and yi denotes the

vapour mole fraction of component i in equilibrium with x.

For a given liquid composition, the bubble point is the temperature

that results in
∑
yi = 1 using Eq. (7.18); conversely, for a given vapour

composition, the dew point is located by nding the temperature that satis es∑
xi = 1. In order to nd these temperatures, an iterative approach is

required, since vapour pressure equations are typically pressure-explicit, and

cannot be rearranged into temperature-explicit form. The details of these

calculations are well-known, and can be found in most thermodynamics

textbooks (Smith et al., 2001; Sandler, 2006; Prausnitz et al., 1980). A typical,

near-ideal phase envelope is shown in Figure 7.2 in the form of a T–x–y

diagram for the classic benzene–toluene system. The fact that the bubble and

dew point curves are ‘anchored’ at either end by the boiling points of the

pure components means that the curves are, in a sense, special interpolations
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T–x–y diagram of the benzene–
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between those two anchor points. Roughly, the relative volatility dictates the

width of the phase envelope.

Note that using only the vapour pressures, any two substances can be

treated as an ‘ideal’ mixture with Raoult’s law; however, this does not mean

that the result corresponds to the real behaviour of the mixture, because the

activity coef cient (γi) must be taken into account. It is the engineer’s task

to understand when γi ≈ 1 in order to be able to reliably approximate the

mixture as ideal.

Relative volatility for an ideal mixture is given by:

α12(T) =
Pvap

1 (T)
Pvap

2 (T)

where Pvap
i (T) is the vapour pressure of component i at temperature T; ‘1’

refers to the light component and ‘2’ to the heavy component.

In this work, the subscripts associated with α will be dropped, and the

meaning of α will be taken to be the above. In the absence of α or Pvap data,

it is possible to obtain relatively good estimates of α from the normal boiling

points of a mixture’s constituent components using correlations (Melpolder

and Headington, 1947).

For high-level calculations, constant relative volatility (CRV) is typically

assumed, i.e. α is a constant. This is suf cient to get a relatively good idea of

the separability, or x–y relationship, of the mixture, if its behaviour is close to

ideal.

For a binary mixture,

y1 =
αx1

αx1 + 1− x1
(7.19)

where x1 is the liquid mole fraction of the light component, and y1 is the

vapour mole fraction of the light component in equilibrium with the liquid.
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Equation (7.19) can be rearranged to give:

x1 =
y1

y1 + α − αy1
(7.20)

The CRV model can give an idea of equilibrium compositions, but it can

provide no information about the bubble- and dew-point temperatures.

7.3.2 Standard approach

Halvorsen and Skogestad (2000) described a method of estimating the equi-

librium temperatures using only the pure component boiling points and their

constant relative volatility. The simplest possible approach is to use simple

weighting of pure-component boiling points by mole fraction. If weighting

is done with the liquid mole fraction, i.e. T ≈
∑

xiTb,i, the temperatures

are over-predicted. If the weighting is done on the basis of the vapour mole

fraction, i.e. T ≈
∑

yiTb,i, the opposite is observed: the temperatures are

under-predicted. Consequently, by using the arithmetic mean of x and y, a

more accurate estimate of T is obtained:

T =
∑(

xi + yi
2

)
Tb,i (7.21)

Equilibrium temperatures can be approximated using Eq. (7.21). For two

components, with y1 in Eq. (7.21) replaced with Eq. (7.19), the bubble point

is estimated as follows:

Tbubble =
x1

2
(Tb,1 − Tb,2)

(
1+

α
αx1 + 1− x1

)
+ Tb,2 (7.22)

Similarly, an equation for estimating the dew point in binary mixtures can

be derived by replacing x1 in Eq. (7.21) with Eq. (7.20):

Tdew =
y1
2
(Tb,1 − Tb,2)

(
1+

1
y1 + α − αy1

)
+ Tb,2 (7.23)

Equations (7.22) and (7.23) can be used to estimate the bubble and dew

points, respectively, given α,Tb,1, andTb,2. In this chapter, these will be referred

to as the ‘standard equations’.

7.3.3 Derivation of the base equations

The proposed equations are derived in a very different way to the standard

equations, with somewhat more of a theoretical foundation.
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The logarithm of vapour pressure, ln(Pvap), is most linear in reciprocal

temperature, 1/T, especially over relatively small temperature ranges (Poling

et al., 2001), far from the critical temperature (both of which are the case in

many distillation problems). This attribute has been exploited for accelerated

convergence of bubble and dew point calculations (Prausnitz et al., 1980),

and has been used to provide an initial guess of Pvap for Pvap calculations

using equations of state, when the critical and normal boiling points are

known (Sandler, 2006). The near-linearity has also been demonstrated in

many other cases, often for the graphical validation of predicted values against

experimental data points (Kudchadker and Zwolinski, 1966; Macknick and

Prausnitz, 1979; Campanella, 1997; Emami et al., 2008). More information

on this linear relationship can be found in (Poling et al., 2001).

Figure 7.3 shows plots of ln(Pvap) as a function of 1/T, in the temperature

range Tb to 0.7Tc, for a number of organic compounds, which con rms the

near-linearity of this relationship. Pvap data for all of the work in this chapter

was obtained from (Liley et al., 1997).

For a set system pressure P, rigorous VLE calculations result in corre-

sponding x, y, and T at equilibrium using Raoult’s law, as explained earlier. If

Raoult’s law, Eq. (7.18), is rearranged and the natural logarithm is taken on

both sides, the following is obtained:

yi
xi

=
Pvap
i

P
(7.24)

ln
(
yi
xi

)
= ln

(
Pvap
i

P

)
(7.25)

1/P on the right-hand side of Eq. (7.25) is simply a constant multiplier.

The implication of Eq. (7.25) is that the behaviour of ln(yi/xi) is directly pro-

portional to ln(Pvap), which in turn makes it quite linear in 1/T. Conversely,
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1/T is expected to be quite linear in ln(yi/xi). Figure 7.4 con rms this using

a plot of 1/T as function of ln(y1/x1) for a variety of ideal binary systems, in

the composition range (0, 1). The vapour compositions were calculated using

Raoult’s law, Eq. (7.18).

The linear relationship between these two variables in Figure 7.4 can be

represented by:

τ = mψ + c (7.26)

where

τ ≡ 1
T

(7.27)

ψ ≡ ln
(
y1
x1

)
(7.28)

with m as the gradient, and c as the intercept.

ψ can be approximated as a function of x1 and α by substituting Eq. (7.19)

into Eq. (7.28) to obtain:

ψ = ln
(

α
αx1 + 1− x1

)
(7.29)

In Eq. (7.26), m and c are unknown; however, there are two pieces of

information that can be used to estimate them: the two pure-component

boiling points. At x1 = 1, it is known that T = Tb,1, which leads to

ψ = ln(1) = 0 and τ = 1/Tb,1. Substituting these last two expressions into

Eq. (7.26) gives:

c =
1
Tb,1

(7.30)

At x1 = 0, it is known that T = Tb,2, or, transformed to the relevant
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variables, ψ = ln(α) and τ = 1/Tb,2. Using this information, along with

Eq. (7.30), in Eq. (7.26) gives:

m =

1
Tb,2

− 1
Tb,1

ln(α)
(7.31)

Finally, the bubble point as a function of liquid composition can be

estimated by substituting Eqs (7.27), (7.29), (7.30), and (7.31) into Eq. (7.26):

Tbubble =

[( 1
Tb,2

− 1
Tb,1

ln(α)

)
ln
(

α
αx1 + 1− x1

)
+

1
Tb,1

]−1

(7.32)

For the dew point as a function of vapour composition, Eq. (7.20) can be

substituted into Eq. (7.32) to give:

Tdew =

[( 1
Tb,2

− 1
Tb,1

ln(α)

)
ln
(
y1 + α(1− y1)

)
+

1
Tb,1

]−1

(7.33)

In Eqs (7.32) and (7.33), the values of Tb,1 and Tb,2 are unambiguous; the

value for a constant α is less so. The approach traditionally used in shortcut

distillation calculations is to determine the α at the top and bottom of the

column, and to use the geometric mean of the two, αmean =
√
αtop αbottom, as

the constant α value (Halvorsen and Skogestad, 2000). For separation into

pure components, αtop is evaluated at Tb,1, and αbottom is evaluated at Tb,2; this

is the value of α adopted in this work, as it is the average α for the entire

composition range.

7.3.4 Correction to the base equations

On analysis of the temperature estimations by Eqs (7.32) and (7.33) for a large

number of systems, a trend was observed: as α increases, the deviation of the

prediction from the rigorous values increases, even when the CRV model ts

the x–y data very well. (The appropriateness of the CRV model for the x–y

relationship was measured by comparing rigorous results to CRV-model pre-

dictions, and nding the coef cient of determination of R2
xy for the t, where

the subscript ‘xy’ indicates that the value corresponds to the x–y relationship

only.)

Moreover, the deviation in temperature prediction was found to be almost

always negative, indicating that Eqs (7.32) and (7.33) exhibit systematic error;

in other words, the CRV model on its own is not ideally suited for the predic-

tion of bubble- and dew-point temperatures using the proposed approach.
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To examine the nature of the error, Figure 7.5 compares 1/T as a function

of ln(y1/x1) for both the values obtained using Raoult’s law and those obtained

with Eqs (7.32) and (7.33). The most noticeable observation in this plot is that

the estimated lines have the correct intercept on the 1/T axis, but the gradient

of these lines differs from the correct value of the rigorous calculations. The

gradient of the predicted lines is determined by the α value used in the proposed

equations; from this, it can be inferred that there must exist an ‘optimal’ α that

gives the correct gradient, which is different from αmean.

For each binary system, this optimal α can be found by non-linear

regression to most closely match the rigorous data. In this work, 4 573 binary

mixtures were considered, all of which had α ≤ 30, and R2
xy ≥ 0.98. The latter

constraint ensured that the x–y behaviour of these mixtures was approximated

reasonably well by the CRV model. This limitation was imposed because the

proposed equations are intended for use in circumstances where the CRV

model is appropriate, and they cannot be expected to work well in cases where

this is not true.

It was found that the bubble point equation and the dew point equation

have different optimal α values: αbubble gives the best prediction of Tbubble in

Eq. (7.32), and αdew gives the best prediction of Tdew in Eq. (7.33).

The relationship between the natural logarithms of α and αbubble for the

4 573 mixtures is shown in Figure 7.6a; for the logarithms of α and αdew, it

can be seen in Figure 7.6b. The logarithms of these variables—rather than

the variables directly—are shown, as they were found to have a remarkably

linear relationship. Moreover, these linear ts almost exactly pass through the

origin, and, as such, the model that will be used for the tting is simply of the

y = mx variety. Regression for the two cases provides ln(αbubble) and ln(αdew)

as functions of ln(α) gives:



CHAPTER 7 SHORTCUT METHODS FOR DISTILLATION 167

0 1 2 3 4
−0.5

0.5

1.5

2.5

3.5

4.5

0 1 2 3 4
−0.5

0.5

1.5

2.5

3.5

4.5
(a) (b)

ln αbubble 0.77474 ln α ln αdew 1.20570 ln α

ln
α
b
u
b
b
le

ln α

ln
α
d
ew

ln α

Figure 7.6 Comparison of ln(α) and optimal (a) ln(αbubble), and
(b) ln(αdew), for 4 573 binary systems, along with linear ts to the
data, passing through the origin.

ln(αbubble) = 0.77474 ln(α) (7.34)

ln(αdew) = 1.20570 ln(α) (7.35)

If exponents are taken on both sides of Eqs (7.34) and (7.35), the following

is obtained:

αbubble = α0.77474 (7.36)

αdew = α1.20570 (7.37)

To apply the above correction, α in Eqs (7.32) and (7.33) is replaced with

αbubble and αdew, respectively, to obtain:

Tbubble =

[( 1
Tb,2

− 1
Tb,1

ln(α−0.775)

)
ln
(
x1 + α−0.775(1− x1)

)
+

1
Tb,1

]−1

(7.38)

Tdew =

[( 1
Tb,2

− 1
Tb,1

ln(α1.206)

)
ln
(
y1 + α1.206(1− y1)

)
+

1
Tb,1

]−1

(7.39)

T–x–y diagrams can be constructed with the standard equations, and with

the proposed equations. Figure 7.7 shows these for a number of mixtures,

along with the rigorously calculated values for comparison.

For the benzene–toluene mixture (α = 2.47; Tb,1 = 353.3K; Tb,2 =

383.7K), both the standard equations and the proposed ones give very

good agreement with the rigorous calculations, with the former incurring a

maximum absolute error of 0.38K, and the latter 0.048K.
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Figure 7.7 T–x–y diagrams for mixtures of (a) benzene–toluene; (b) n-pentane–
n-heptane; (c) 1-pentyne–m-xylene; (d) 2-methylpropene–ethylbenzene; showing rig-
orously calculated temperatures, and estimates using the standard and proposed
equations.

The differences between the two approaches start to become more evident

when α is increased. In the n-pentane–n-heptane mixture (α = 7.45; Tb,1 =

309.2K; Tb,2 = 371.5K), predictions with the standard equations show a

maximum absolute error of 3.60K, while the proposed equations give a lower

1.12K.

When the two sets of equations are applied to an even higher α, in this

case for the 1-pentyne–m-xylene mixture (α = 22.33; Tb,1 = 313.4K; Tb,2 =

412.3K), the standard equations incur a maximum error of 10.79K, while the

proposed equations have this value at 2.77K.

An example of an extreme case, which has an α value far outside of the

regressed range for the proposed equations, is the 2-methylpropene–ethyl-

benzene mixture (α = 148.4; Tb,1 = 266.1K; Tb,2 = 409.3K). For this

mixture, the maximum error with the standard equations is 33.57K; this

number is much lower for the proposed equations at 14.43K.
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Table 7.1 Summary of limiting values in temperature prediction errors
found across the 5 797 mixtures used in the analysis.

Equations AAE (K) ARE MAE (K) MRE

Standard <5.59 <1.46% <18.16 <4.30%
Proposed (this work) <2.95 <0.81% <9.43 <2.46%

AAE = average absolute error; ARE = average relative error; MAE = maximum
absolute error; MRE = maximum relative error

In all of the examples provided here, the proposed equations give more

accurate estimates of the equilibrium temperatures than do the standard ones.

It appears that the accuracy of the proposed equations is also considerably

less sensitive to α, and therefore provides considerably better estimates even

at high α values. The errors of both methods are considered in more detail in

§ 7.3.5.

A trend that is noticed—and best exempli ed in Figure 7.7d—is that the

standard equations inherently have a shape that is qualitatively ‘wrong’ for

the description of the phase envelopes. The effects of this are not obvious—

and are indeed of little practical concern—at low α values, but become very

prominent at high ones. The proposed equations, however, having more of a

theoretical foundation, are in a form that is more suitable for the description

of the phase envelopes, both quantitatively and qualitatively.

7.3.5 Deviation from rigorous ideal VLE calculations

In this section, the deviations from rigorously calculated values of the pro-

posed equations, Eqs (7.38) and (7.39), and the standard equations, Eqs (7.22)

and (7.23), are considered inmore detail. The analysis was performed on 5797

mixtures, with α ≤ 30, and with no limitation on the appropriateness of the

CRV model, in order to determine the range of error that can be expected from

the proposed equations, even when the CRV model does not predict the x–y

behaviour well.

In this analysis, for each mixture, the absolute errors (maximum and aver-

age), and the relative errors (maximum and average) are examined. Moreover,

the bubble- and dew-point temperatures were considered together, such that

only the worst error of both (across the entire composition range), is reported.

The limiting values of these errors are summarised in Table 7.1. Overall,

the proposed equations incur approximately half of the error of the standard

equations.
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7.3.6 Extension to non-atmospheric pressures

If the normal boiling points of the pure components are known, it is possible

to approximate the boiling points at different, albeit similar, pressures. This

affects the pure-component ‘anchor’ points in the T–x–y diagram, as well

as the α. In other words, the known values are the atmospheric pressure P0

(101 325 Pa) and the normal boiling points, Tb,1 and Tb,2; at a pressure of P1,

the boiling points change to T ′
b,1 and T ′

b,2.

Two simplifying models are employed: the Clausius–Clapeyron equation,

along with the Trouton–Hildebrand–Everett (THE) rule (Everett, 1960; Nash,

1984), both of which apply to pure components. The former was given as

Eq. (7.8), and with the present notation, is:

ln
(
P1

P0

)
= −λi

R

(
1
T ′

b,i

− 1
Tb,i

)
(7.40)

The THE rule was given as Eq. (5.24), and is expressed as follows with the

present notation:

λi = RTb,i[4.0+ ln(Tb,i/K)] (7.41)

Equation (7.41) estimates the latent heat of component i at its normal

boiling point; if Tb,i were replaced with T ′
b,i, it would be impossible to calculate

T ′
b,i explicitly in the next step. A compromise that yields signi cantly better

results for the estimation of T ′
b,i is the following minor change to Eq. (7.41):

λi = RT ′
b,i[4.0+ ln(Tb,i/K)] (7.42)

When Eqs (7.40) and (7.42) are combined and rearranged to make T ′
b,i the

subject of the formula, the following is obtained:

T ′
b,i = Tb,i

(
1+

ln(P1/P0)

[4.0+ ln(Tb,i/K)]

)
(7.43)

The α value also changes at different pressures; for this, it is possible to use

the correlation of Melpolder and Headington (1947), which can be expressed

as follows using the notation in this chapter:

α(T) = exp
(
T ′

b,2 − T ′
b,1

T

[
22.44− 1.15 ln(P1/Pa)+

T
33.76 ln(P1/Pa)− 165.19

])
(7.44)

where T is in K.
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Figure 7.8 T–x–y diagrams at system pressure of 250 kPa for mixtures of
(a) benzene–toluene; (b) n-pentane–n-heptane; (c) 1-pentyne–m-xylene; (d) 2-
methylpropene–ethylbenzene; showing rigorously calculated temperatures, and esti-
mates using the proposed equations.

The geometric mean α, as used in this work (and shown as α′ here, to

indicate that it is at the non-atmospheric pressure, P1), is obtained as:

α′ =
√
α(T ′

b,1) α(T
′
b,2) (7.45)

where T ′
b,1 and T ′

b,2 are obtained using Eq. (7.43), while α(T ′
b,1) and α(T ′

b,2)

are obtained from Eq. (7.44).

In order to test Eqs (7.38) and (7.39) with non-atmospheric pressure using

the method described in this section, the T–x–y diagrams in Figure 7.7 were

recreated, but at a system pressure of 250 kPa. These higher-pressure T–x–y

diagrams are given in Figure 7.8. It is seen that the proposed method works

approximately as well at the higher pressure as it does at atmospheric pressure.
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7.4 Conclusion

For preliminary investigations of distillation systems, shortcut methods are

a useful approach to gain insight into the behaviour of these systems. This

class of shortcut tool is typically simple and non-iterative, which tends to be

particularly useful for obtaining analytical solutions, or for spreadsheeting

applications. One well-known example of such a shortcut method is the

constant relative volatility model for describing VLE.

In this chapter, two methods were presented, which were developed to ll

gaps in the literature, where the methods that existed were either not suitable,

or not theoretically sound.

The rst of these methods was a very simple criterion for determining

whether a saturated vapourwill condense or be superheatedwhen compressed;

it is particularly suitable for easy memorisation and ‘back-of-the-envelope’ cal-

culations. The proposed criterion is simpler than Patwardhan’s (Patwardhan,

1987) approach, requires fewer uid properties, and needs no temperature

dependence information. Furthermore, it allows for the inclusion of compres-

sor ef ciency information, which Patwardhan’s (Patwardhan, 1987) method

does not. The proposed criterion works well when temperature and pressure

are well below the critical point, approximating an ideal gas. However, it

must be stressed that—as a rough guideline—the criterion should not be used

for T0/Tc > 0.6. Moreover, if ĈIG
p T0η/λ is close to unity, caution should be

exercised by using a rigorous simulation instead, since the ideal gas assumption

will seldom be exact.

Additionally, equations were derived for the estimation of minimum com-

pressor inlet superheating required to avoid condensation. The results were

validated through rigorous simulation, and the estimates found to be suf -

ciently good to be useful for modest compressor pressure ratios. The values

obtained are not exact since the equations do not account for the temperature

dependence of uid properties, or for departures from ideal gas behaviour. As

with the criterion, these equations should not be applied when T0/Tc > 0.6.

The second development in this chapter was novel, temperature-explicit

equations for the estimation of bubble and dew points of ideal binary

mixtures—given as Eqs (7.38) and (7.39)—using only the boiling points of

the mixtures and the constant relative volatility. At atmospheric pressure,

normal boiling points are used; for other pressures, the boiling points at the

system pressure are required. A way of extending the proposed method to non-



CHAPTER 7 SHORTCUT METHODS FOR DISTILLATION 173

atmospheric pressures was also developed in § 7.3.6, and shown to maintain

similar accuracy to the base atmospheric-pressure case.

The intended use of the proposed approach is principally for high-level

distillation calculations, at the synthesis or conceptual design stage when al-

ternatives are being screened to discard unfavourable ones. At this phase of

distillation design, it is convenient to simplify the problem to use only boiling

points and constant relative volatility (and perhaps some other rudimentary

information), which is why the proposed equations have been designed to use

this minimal information only. Unlike in rigorous calculations, the vapour

pressure as a function of temperature is not required.

The temperature-explicit nature of the equation makes the computation

of bubble- and dew-point temperatures non-iterative. This has the advantage

of easy application in spreadsheet calculations and direct inclusion in other

equations which may require the equilibrium temperature.

Using the proposed equations, the largest relative error (compared to rig-

orously calculated values) in the equilibrium temperature estimates for 5 797

mixtures (with α < 30) was 2.46%. The average relative error across the entire

composition did not exceed 0.81%. For the purposes of high-level estimates,

this margin of error is entirely acceptable, especially given that the errors are

typically much lower than these maximum values.

The accuracy of the proposed equations is appreciably better—especially

at higher α values—than that of the standard approach that uses the same

inputs to estimate the equilibrium temperatures. However, that method retains

the advantage of being applicable to multicomponent systems as well.

The proposed equations are designed to estimate the results of rigorous

ideal binary calculations, using basic information only; however, it is still the

role of the engineer to determine the suitability of the ideality assumption for

a given problem.



Chapter 8

Conclusions

8.1 Overview

The work in this thesis has been developed to facilitate understanding of

limitations in distillation, as well as the design of ef cient distillation columns,

by introducing useful methods, techniques, tools, and novel process con gu-

rations.

Inherent to all processes is the limit imposed by entropy generation, which,

according to the second law of thermodynamics, must always be positive.

Through the use of a new function, δS, the entropy generation in a column

section can be assessed between any two cross-sections in the column. It was

shown mathematically in Chapter 2 that the stationary points of δS corre-

spond to pinch points in the column, the implication of which is that max-

imum entropy generation and traditional pinch points are, in fact, the same

limitation in distillation columns. The pinch types were also characterised by

the type of stationary point: it was found that maximum δS corresponds to a

stable node and minimum δS to an unstable one, while an in ection in δS is a

saddle point or a tangent pinch.

The correspondence between extrema in the δS function and pinch points

was exploited to derive a novel minimum re ux equation for binary systems

based solely on entropy generation. This equation is drastically different from

previous approaches. Although it is not an elegant solution—indeed, it is

a more complicated approach than minimum re ux using McCabe–Thiele

diagrams—it is a strong demonstration of the usefulness of entropy analysis,

and of its intricate link to pinch points and minimum re ux. Perhaps most

interestingly, the entropy analysis nds pinch points without VLE calculations,

which further strengthens this argument.

174
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Pinch points are an integral feature (and limitation) of distillation in their

own right, and are critical for designing distillation systems, since they often

dictate the approach that needs to be taken for a particular problem. Some

design techniques, such as the column pro le method, require the knowledge

of all pinch point locations; there was previously no method that could ful l

this requirement, and that was solvable using common (non-specialised) nu-

merical techniques. In order to provide such a method, the work in Chapter 3

was developed, and then extended to some key areas that were lacking for

the column pro le map (CPM) method. The proposed algorithm can nd all

of the pinch points in a given search space; thereafter, with the knowledge

of these pinch point locations, nite re ux distillation boundaries (FRDBs)

were introduced. FRDBs are simply a non-ideal analogue for the transform

triangles used in the CPM method. This allows for one of the most powerful

features of the CPM method to be applied to more realistic, non-constant

relative volatility systems. Such an application was presented as a distributed-

feed example to demonstrate this approach, and the usefulness of nding all

pinch points.

By taking a radically different approach from that in Chapter 3, a very

ef cient method of constructing pinch point curves was presented in Chap-

ter 4. Not only is it faster than continuation algorithms, but it also does not

experience branch-switching like the latter, and it is directly parameterised

by a relevant design variable (re ux ratio), whereas continuation methods

are parameterised by arc length, with re ux ratio as a dependent variable.

Another major advantage of the method proposed in this chapter is that it

can be implemented using standard tools in common mathematical software,

whereas continuation methods require specialised, non-standard solvers. Ad-

ditionally, the proposed method can locate azeotropes during the course of

its run (identi ed at in nite re ux), whereas continuation methods, being

parameterised by arc length, have no way of demarcating azeotropes.

Having addressed pinch points and FRDBs in non-ideal systems—thereby

providing a tool for the CPM method to design realistic complex columns—

attention was turned to other ways of reducing energy requirements in distil-

lation systems. A relatively simple, and potentially under-utilised, option that

was considered in Chapter 5 was standard vapour recompression (SVRC). A

high-level analysis was performed to compare the behaviour of conventional

columns and SVRC; the main nding from this analysis was that as feed purity

increases in either direction, the disparity between minimum theoretical and
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practical work/energy input increases. An explanation for this was deduced: as

feed composition tends to the composition of a product, the required work of

separation tends to zero, as less and less separation must take place; however,

the column requires vapour reboil to operate, and even if the feed impurity

is in nitesimally small, reboil must still take place. In this case, the energy

input goes solely to vapour generation (and hence entropy generation), even

if effectively no separation is taking place.

Through the use of thermodynamics at the fundamental level, a compari-

son was made between SVRC and conventional distillation, and a region was

derived to indicate which is more thermodynamically ef cient, based solely

on the two product temperatures. It was found that the SVRC-favoured region

was surprisingly wide, and includedmany systems towhich vapour recompres-

sion had not been applied. To investigate this further, a practical constraint

was analysed, in the form of the required pressure ratio in the compressor.

Overlaying isobars onto the thermodynamic criterion resulted in a synthesis

tool, in the form of a single chart, which allows the designer to obtain a rst-

pass estimate of whether or not SVRC is worthy of further consideration for the

speci c problem, with no calculations whatsoever. In this way, the proposed

tool can be used for rapid assessment of SVRC, and saves substantial time and

effort that could otherwise be wasted on rigorous simulation in cases where

no possible bene t could be derived from the use of SVRC. The synthesis tool

itself was validated using a number of rigorously simulated examples, each of

which deviated from the inherent assumptions in the derivation of the tool, in

order to test its applicability and robustness.

In terms of general insight afforded by the tool, it showed that the practical

implementation of SVRC systems is determined almost exclusively by the re-

quired pressure ratios, and thus limits it to close-boiling systems, even though

thermodynamic favourability extends far beyond that constraint.

When SVRC is applicable, the energy savings are signi cant; however, very

few systems fall into this category. In Chapter 6, a parametric study was

performed on the effects of preconditioning in conventional columns (taking

into account the change in minimum re ux caused by the preconditioning),

with speci c focus on total energy input, and total entropy generation. From

this study, two opportunities were identi ed for energy integration, by means

of a vapour recompression heat pump (since energy needed to be transferred

from a cold vapour to a hot liquid), which led to two novel vapour recom-

pression con gurations: Feed–Distillate Vapour Recompression (FDVRC) and



CHAPTER 8 CONCLUSIONS 177

Feed–Bottoms Vapour Recompression (FBVRC). Through a series of numer-

ical experiments, it was determined that these con gurations are applicable

to much wider-boiling systems than SVRC, and that they always have lower

compression ratios than SVRC. Where SVRC is limited to the types of system to

which it is applicable, the novel con gurations are limited to the type of feed

they can accept: FDVRC is used for light liquid feeds, and FBVRC for heavy

vapour feeds. For feeds that are applicable, the novel con gurations can yield

signi cant energy-saving bene ts with respect to SVRC and conventional dis-

tillation, which was veri ed with a number of rigorously simulated examples.

Finally, Chapter 7 presented two simple shortcut methods for high-level

distillation analysis, which were developed during the course of this thesis,

since methods in the literature were not satisfactory. One of these methods is

used to estimate whether a saturated vapour will condense or become super-

heated on compression, using only the vapour’s latent heat and ideal gas heat

capacity at the saturation temperature. For cases where condensation occurs,

a simple method was derived for estimating the minimum compressor suction

superheating required to avoid condensation in the compressor. This is also

useful as an initial guess for the iterative procedure that is needed to calculate

the minimum inlet superheating rigorously with process simulators.

A second shortcut method was presented in the same chapter for the non-

iterative estimation of bubble- and dew-point temperatures in ideal binary

systems, using only the pure-component boiling points, and the constant rela-

tive volatility. If the latter is unavailable, Melpolder and Headington’s (1947)

correlation given in Eq. (7.44) can estimate it very well, such that only the

boiling points are required. Themethodwas also extended to non-atmospheric

pressures. Only one other method for this appears to exist (Halvorsen and

Skogestad, 2000), and the method proposed in this work was found to incur

about half the error of the former across 5 797 mixtures with α < 30.

Overall, this thesis has presented original research that focuses on pinch

points and entropy generation, with particular emphasis on supporting and

developing techniques and insights that facilitate the design of ef cient distil-

lation systems.

8.2 Recommendations for future research

There are a number of ways in which the work presented in this thesis can be

built upon in future research, some of which are more ambitious than others.



CHAPTER 8 CONCLUSIONS 178

The entropy generation analysis could be extended to multicomponent sys-

tems easily; particularly, contour maps of δS can be overlaid on column pro le

maps, such that various pro les’ reversibility can be compared graphically.

However, extension is required to fully integrate it with the CPM, to allow the

entropy generation between column sections, at feed points, and at reboilers

and condensers to be assessed with the same process.

It may also be possible to derive a multicomponent minimum re ux equa-

tion based on entropy generation, which would be particularly useful, since

a simple, satisfactory way of nding multicomponent minimum re ux for all

splits has not yet been found.

For the FRDB modi cation to the CPM method, an improved algorithm is

required for the construction of these distillation boundaries; one particular

suggestion would be to use eigenvectors at saddle points as initial guesses for

the boundary pro les.

It is also possible that the pinch point curve algorithm in Chapter 4 could

be improved further, using a hybrid approach, where arc length continuation

is used at high re ux ratio values to overcome slow pinch point movement,

and then switched over to the proposed ODE-based method at lower re ux

ratios.

For the SVRC synthesis tool, an excellent additionwould be away of graph-

ically assessing the economic impact on the capital and operating expenditure

of SVRC in comparison with conventional distillation.

Regarding the novel FDVRC and FBVRC con gurations, a generalised syn-

thesis tool, such as the one for the SVRC, would be extremely useful. This was

not possible at this phase, due to the fact that energy loads can be split between

the compressor and reboiler somewhat arbitrarily, and more information is

required than for SVRC. Nevertheless, the use of properties correlations as

functions of boiling points could go someway towards removing that obstacle.

Furthermore, some characteristics of the novel con gurations remain to be

determined; namely, the controllability and start-up must be assessed, and an

industrial case study should be performed to ascertain the economics (operat-

ing and capital expenditure, payback period, etc.) of the novel con gurations

in relation to conventional distillation and SVRC.
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Appendix A

A.1 Important thermodynamic relations

Perry and Green (1999) give the well-known equations for calculating changes

in enthalpy and entropy with readily available information:

dĤ = ĈpdT+

[
V− T

(
∂V
∂T

)
P

]
dP (A-1)

dŜ =
Ĉp

T
dT−

(
∂V
∂T

)
P

dP (A-2)

From Sandler (2006), the following thermodynamic relations are given

directly or can be deduced:

ΔĤmix = ĤE (A-3)

ĤE = −RT2
N∑
i=1

xi

(
∂ ln γi
∂T

)
P,x

(A-4)

ΔŜmix = ŜE − R
N∑
i=1

xi ln xi (A-5)

ŜE =
ĤE − ĜE

T
(A-6)

ĜE =
N∑
i=1

xiḠE
i (A-7)

ḠE
i = RT ln γi (A-8)

In the above equations, a caret represents a molar property, whereas an

overbar represents a partial molar property. The former is a per-mole value,

and the latter is de ned by Abbott and Van Ness (1989) as:
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M̄ ≡
(
∂(nM)

∂ni

)
T,P,nj

where M is an extensive property.

In order to evaluate the ΔĤmix and ΔŜmix terms as functions of composition

and temperature using readily available information, the following can be

deduced from Eqs (A-3)–(A-8):

ΔĤmix = −RT2
N∑
i=1

xi

(
∂ ln γi
∂T

)
x

(A-9)

ΔŜmix = −R

[
T

N∑
i=1

xi

(
∂ ln γi
∂T

)
x

+
N∑
i=1

xi ln(xiγi)

]
(A-10)

Finally, for expressions to calculate the enthalpy and entropy of vaporisation,

the former of which is also referred to as λi:

ΔĤvap,i = λi = −Rd lnPvap
i

d(1/T)
(A-11)

ΔŜvap,i(Tb,i) =
ΔĤvap,i(Tb,i)

Tb,i
(A-12)

Note that Tb,i (the boiling point of pure component i) is used rather than an

arbitrary T, since Eq. (A-12) is only valid when ΔĜvap = 0, i.e. at equilibrium

of the vapour and liquid, which occurs at saturation or boiling.

A.2 Full derivation of entropy equations

As the thermodynamic basis, pure liquids at 101 325 Pa and 298.15K have

zero enthalpy and entropy; these will be referred to as P0 and T0, respectively.

The equations that follow are founded on the common assumption of

constant molar over ow (CMO). The condition of CMO is based on four

underlying assumptions (Perry and Green, 1999):

1 The latent heat of each component in the system is the same.

2 There is no heat of mixing.

3 Sensible heat is negligible in comparison with the latent heat.

4 The column is adiabatic, i.e. there are no heat losses to the environment.
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The main implication of CMO is that liquid and vapour ows, L and V

respectively, remain constant throughout a column section.

Figure 2.2 is a useful reference for the nomenclature used in this section.

Equation (2.4) gave an expression for the entropy generation in a generalised

column section; the terms on the right-hand side can be evaluated as follows:

Snliq = Ln

[
N∑
i=1

xni Ŝ
liq
i + ΔŜnmix,liq

]
(A-13)

Snvap = Vn

[
N∑
i=1

Yn
i Ŝ

vap
i + ΔŜnmix,vap

]

= Vn

 N∑
i=1

Yn
i

 Tb,iˆ

T0

Ĉliq
p,i

T
dT+

λi
Tb,i

+

T n
vapˆ

Ti

Ĉvap
p,i

T
dT

+ ΔŜnmix,vap


(A-14)

Incorporating the CMO assumption leads to a number of simpli cations:

• The liquid and vapour ows remain constant throughout the column section,

such that Ln = L and Vn = V.

• The latent heats of all of the components are considered to be equal, such that

λ1 = λ2 = · · · = λN = λ.

• λi ≫ Ĉp,i, such that Ĉp,i can be considered to be negligible in terms where it

is added to or subtracted from λi. Moreover, since the basis states that liquids

at 298.15 K and 1 atm have zero entropy, the entropy of a liquid at any other

temperature would be found with the use of Ĉp,i. However, the entropy of a

vapour would, from that basis, require both a Ĉp,i term (see Eq. (A-2)) and a λ

term (see Eq. (A-12)). As a result, Ŝvap
i ≫ Ŝliq

i , such that the entropy of a pure

liquid is considered to be negligible compared to that of a pure vapour.

Finally, when comparing the sum of pure liquid entropies to the entropy

of mixing—such as in Eq. (A-13)—the former is considered to be negligible

in relation to the latter, since Ĉp,i/Tb,1 (see Eq. (A-2)) is much smaller than the

gas constant (R ≈ 8.314 J/mol·K) (see Eq. (A-10)).

Using the above simpli cations, Eqs (A-13) and (A-14) become:
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Snliq = LΔŜnmix,liq (A-15)

Snvap = V

[
λ

N∑
i=1

Yn
i

Tb,i
+ ΔŜnmix,vap

]
(A-16)

The δSn variable, de ned in Eq. (2.5), becomes the following with Eqs

(A-15) and (A-16):

δSn = LΔŜnmix,liq − V

[
λ

N∑
i=1

Yn
i

Tb,i
+ ΔŜnmix,vap

]
(A-17)

When Eq. (A-17) is divided through by Δ, with an underbar used to denote

a ‘per-Δ’ quantity, the following is obtained:

δSn = rΔΔŜnmix,liq − (1+ rΔ)

[
λ

N∑
i=1

Yn
i

Tb,i
+ ΔŜnmix,vap

]
(A-18)

Finally, substituting Eq. (2.3) into Eq. (A-18) gives the nal form of the δSn

equation:

δSn = rΔΔŜnmix,liq −

[
λ

N∑
i=1

(
XΔ,i + rΔxni

Tb,i

)
+ (1+ rΔ)ΔŜnmix,vap

]
(A-19)

The vapour is assumed to be ideal, such that its entropy of mixing is simply:

ΔŜnmix,vap = −R
N∑
i=1

Yn
i ln(Y

n
i ) (A-20)

The CMO assumption allows for simpli cation of the liquid entropy of

mixing given in Eq. (A-10). As shown in Eq. (A-6), the rst term is ĤE, or

equivalently ΔĤmix, which CMO sets to zero. Therefore, the liquid entropy of

mixing simpli es to:

Ŝnmix,liq = −R
N∑
i=1

xni ln(x
n
i γ

n
i ) (A-21)

A.3 Derivative of δS with respect to n

It is quite straightforward to show that differentiating Eq. (2.8) with respect

to n results in:
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d
dn

(δS) = −rΔR
N∑
i=1

[(
ln(xiγi) + 1

)dxi
dn

+
d ln γi
dn

]
−λrΔ

N∑
i=1

[(
1
Tb,i

)
dxi
dn

]
+

rΔR
N∑
i=1

[(
ln
(
XΔ,i + rΔxi

1+ rΔ

)
+ 1
)
dxi
dn

]
(A-22)

In order to change dγi/dn in Eq. (A-22) to a more convenient form, it is

important to recognise the variable dependence of γi. Generally, γi is a function

of N− 1 mole fractions (since the Nth is xed by mole fraction summation to

unity) and T. However, in VLE problems such as distillation, for a set system

pressure P, T is xed by the bubble point calculation. Therefore, γi is only a

function of x1, x2,…, xN−1. Taking the total derivative of γi gives:

d ln γi =
N−1∑
j=1

[(
∂ ln γi
∂xj

)
dxj

]
(A-23)

Equation (A-23) can be divided through by dn to give the required result:

d ln γi
dn

=
N−1∑
j=1

[(
∂ ln γi
∂xj

)
dxj
dn

]
(A-24)

Finally, substituting Eq. (A-24) into Eq. (A-22) gives Eq. (2.11).

A.4 Latent heat derivatives

For a xed system pressure, P, bubble point temperature is an implicit function

of liquid composition, which may be represented as follows:

T = fb(x1, x2, …, xN−1) (A-25)

If the total derivative of Eq. (A-25) is taken:

dfb =
(

∂fb
∂x1

)
dx1 +

(
∂fb
∂x2

)
dx2 + · · ·+

(
∂fb

∂xN−1

)
dxN−1

dfb =
N−1∑
i=1

(
∂fb
∂xi

)
dxi (A-26)

To obtain the derivative of bubble-point temperature with stage number,

Eq. (A-26) is simply divided through by dn:

dfb
dn

=
N−1∑
i=1

(
∂fb
∂xi

)
dxi
dn

(A-27)
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Latent heat is a function of temperature only; therefore, using the chain

rule, the following can be deduced:

dλi
dn

=
dλi
dT

dfb
dn

(A-28)

Upon substitution of Eq. (A-27) into Eq. (A-28), it is found that:

dλi
dn

=
dλi
dT

N−1∑
i=1

[(
∂fb
∂xi

)
dxi
dn

]
(A-29)

It is noteworthy that each term in Eq. (A-29) has a factor of dxi/dn, such

that, at a pinch point, dλi/dn = 0.

A.5 Rigorous McCabe–Thiele and δS

To de nitively assess the correspondence between pinch points encountered in

rectifying sections on a McCabe–Thiele diagram, and the points of maximum

δS as a function of x1, both must be treated with thermodynamic rigour.

For this, the rectifying section was modelled using mass and energy balances,

and was ‘stepped down’ plate by plate from the top of the column, once a

re ux ratio had been chosen. The stepping down procedure was stopped once

the rectifying section was very close to the equilibrium curve, and effectively

pinched. Unfortunately, this procedure, which does not assume CMO, cannot

extend the rectifying section beyond the pinch, such that hypothetical parts of

the rectifying section (those past the equilibrium curve) cannot be examined.

For rigorous δS, the entropy equations without simpli cations were used,

i.e. Eqs (A-13) and (A-14). These make use of the compositions and ow

rates from the McCabe–Thiele calculations, in order to make sure that the

two approaches correspond exactly. As such, the δS curve must terminate

where the rectifying section in the McCabe–Thiele diagram ends. Because

the δS values vary so much between the different rΔ values, the only way

to show them clearly on the same plot is as a normalised δS, de ned as

(δS − δSmin)/(δSmax − δSmin). This ensures that all of the curves are bound

between 0 and 1 on the vertical axis.

Figure A.1 gives these two plots for the benzene–ethylenediamine system

rst discussed in § 2.4.4; a distillate with composition xD = (0.99, 0.01).

A magni cation is provided for the δS values, which shows a clear local

maximum (d(δS)/dx1 = 0) at the pinch points.
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Figure A.1
(a) McCabe–Thiele diagram show-
ing rectifying pro les at various
re ux ratios; and (b) normalised
δS curves corresponding to the
rectifying pro les for the benzene–
ethylenediamine system with
xD = (0.99, 0.01). Magni cation
is provided for the δS in the vicinity
of the pinches.

A.6 Derivation of minimum reflux equation based
on Sgen for binary separations

The derivation requires d
(
δS
)
/dx1 = 0 to be calculated. By using N =

2, substituting the de nition of ΔŜmix into Eq. (2.8), and expanding the

summation, the following is obtained:

δS = −rΔR
2∑
i=1

xi ln(xiγi)− λ
2∑
i=1

(
XΔ,i + rΔxi

Tb,i

)
−

R(1+ rΔ)
2∑
i=1

Yi ln(Yi)

= −rΔRx1 ln(x1γ1)− rΔRx2 ln(x2γ2)− λ
(
XΔ,1 + rΔx1

Tb,1

)
−

λ
(
XΔ,2 + rΔx2

Tb,2

)
+ R(1+ rΔ)

(
Y1 ln(Y1)

)
+
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R(1+ rΔ)
(
Y2 ln(Y2)

)
(A-30)

Substituting Eq. (2.3) into Eq. (A-30), with some manipulation (recognis-

ing that x2 = 1− x1), gives:

δS = −rΔRx1 ln(x1γ1)− rΔR(1− x1) ln
(
(1− x1)γ2

)
−

λ
(
XΔ,1 + rΔx1

Tb,1

)
− λ
(
XΔ,2 + rΔ(1− x1)

Tb,2

)
+

R
[
(XΔ,1 + rΔx1) ln

(
XΔ,1 + rΔx1

1+ rΔ

)]
+

R
[(
XΔ,2 + rΔ(1− x1)

)
ln
(
XΔ,2 + rΔ(1− x1)

1+ rΔ

)]
(A-31)

The differentiation of Eq. (A-31) with respect to x1 is a lengthy procedure,

and is impractical to show here in detail. The result is:

d(δS)
dx1

= −rΔR

[
ln
(

x1γ1

(1− x1)γ2

)
+
x1

γ1

(
∂γ1

∂x1

)
T,P

+
(1− x1)

γ2

(
∂γ2

∂x1

)
T,P

+

λ(Tb,2 − Tb,1)

RTb,1
+ ln

(
XΔ,2 + rΔ(1− x1)

XΔ,1 + rΔx1

)]
(A-32)

In Eq. (A-32), d(δS)/dx1 can be set to zero and divided through by −R to

obtain the following:

rΔ

[
Ψ + ln

(
XΔ,2 + rΔ(1− x1)

XΔ,1 + rΔx1

)]
= 0 (A-33)

where

Ψ = ln
(

x1γ1

(1− x1)γ2

)
+
x1

γ1

(
∂γ1

∂x1

)
T,P

+

(1− x1)

γ2

(
∂γ2

∂x1

)
T,P

+
λ(Tb,2 − Tb,1)

RTb,1Tb,2
(A-34)

From Eq. (A-33), it is apparent immediately that one solution to the

equation is rΔ = 0, for any x and any XΔ. The other solution is found by

equating the contents of the bracket to zero:

Ψ + ln
(
XΔ,2 + rΔ(1− x1)

XΔ,1 + rΔx1

)
= 0

XΔ,1 + rΔx1

XΔ,2 + rΔ(1− x1)
= exp(Ψ)

XΔ,1 + rΔx1 = XΔ,2 exp(Ψ) + rΔ(1− x1) exp(Ψ)



APPENDIX A 205

rΔx1 − rΔ(1− x1) exp(Ψ) = XΔ,2 exp(Ψ)−XΔ,1

rΔ =
XΔ,2 exp(Ψ)−XΔ,1
x1 − (1− x1) exp(Ψ)

(A-35)

For minimum re ux in a conventional binary column, the variables in

Eqs (A-34) and (A-35) can be replaced with traditional variables: rΔ = rmin,

x1 = xF,1, XΔ,1 = xD,1, XΔ,2 = xD,2 = (1− xD,1), γ1 = γF,1, and γ2 = γF,2.
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B.1 Relationship between XΔ,2 and rΔ,2 for the
distributed-feed example

Consider the part of the column where the bottom-most feed enters, as shown

in Figure B.1.

1

2

3

F

zF

F1

F2

D

B

xD

xB

zF

V2 L2

Y3
T

Y2
B

X2
B

X3
T

V3 L3

F22

3

XΔ,1

XΔ,2

XΔ,3

rΔ,1

rΔ,2

rΔ,3

1Δ

Δ

Δ

Figure B.1 The nomenclature required for the derivation of the
relationship between XΔ,2 and rΔ,2.

An overall mass balance around this part of the column gives:

F2 + L2 + V3 = L3 + V2

F2 = (V2 − L2)− (V3 − L3)

F2 = Δ2 − Δ3 (B-1)

Similarly, a component mass balance on the same section, where X and Y

represent liquid and vapour composition vectors, gives:

206
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F2zF + L2XB
2 + V3YT

3 = L3XT
3 + V2YB

2

F2zF =
(
V2YB

2 − L2XB
2

)
−
(
V3YT

3 − L3XT
3

)
F2zF = Δ2XΔ,2 − Δ3XΔ,3 (B-2)

Substituting Eq. (B-1) into Eq. (B-2) gives:

(Δ2 − Δ3)zF = Δ2XΔ,2 − Δ3XΔ,3

Δ2zF − Δ3zF = Δ2XΔ,2 − Δ3XΔ,3

Δ2XΔ,2 = Δ3(XΔ,3 − zF) + Δ2zF

XΔ,2 =
Δ3

Δ2
(XΔ,3 − zF) + zF (B-3)

From the de nition of rΔ and the fact that, because of the vapour feed, all

of the liquid ows in the column are equal, it can easily be deduced that:

rΔ,2 =
L2

Δ2

rΔ,2 =
L1

Δ2

rΔ,2 = rΔ,1

(
Δ1

Δ2

)

Δ2 = Δ1

(
rΔ,1
rΔ,2

)
(B-4)

Finally, substituting Eq. (B-4) into Eq. (B-3) gives the relationship between

XΔ,2 and rΔ,2:

XΔ,2 =
(
Δ3

Δ1

)(
rΔ,2
rΔ,1

)
(XΔ,3 − zF) + zF

B.2 Limitations on valid rΔ,2 values for the
distributed-feed example

Consider the two envelopes shown in Figure B.2.

By a similar procedure to Eq. (B-1), using the de nition of rΔ and the
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1Δ

Δ

Δ

Figure B.2
Two envelopes around which mass
balances must be performed to
deduce the limiting values of rΔ,2.

equivalence of all the liquid ows in the column (due to the saturated vapour

feed and CMO assumption), an overall mass balance around envelope 1 gives:

F1 = Δ1 − Δ2 (B-5)

and for envelope 2:

F2 = Δ2 − Δ3 (B-6)

If it is assumed that the middle section (CS 2) is in rectifying mode, Δ2 > 0.

Since F1 > 0, it stands to reason by Eq. (B-5) that Δ1 − Δ2 > 0, which can

only be true if Δ1 > Δ2. From the de nition of rΔ and the equivalence of L1

and L2, it is easy to show that:

rΔ,2 =
(
Δ1

Δ2

)
rΔ,1 (B-7)

Since Δ1 > Δ2, it means that Δ1/Δ2 > 1, in which case, the constraint

imposed on CS 2 by CS 1 is that rΔ,2 must always be greater than or equal to

rΔ,1. The two constraints on Δ2 can be expressed more succinctly as 0 < Δ2 6
Δ1. As such, by Eq. (B-7), rΔ2 has no upper limit (as Δ2 → 0, so rΔ,2 → ∞).

CS 3 imposes no additional constraint on CS 2, since F2 > 0, Δ2 > 0 and

Δ3 < 0, meaning that both sides of Eq. (B-6) are always positive.

If CS 2 is assumed to be in stripping mode, that is, Δ2 < 0, it can be shown

in a similar fashion that CS 1 imposes no constraint on CS 2, but CS 3 dictates

that rΔ,2 6 rΔ,3 always in order to satisfy the mass balance.
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C.1 Full ODE derivation

First, the variable dependencies must be recognised: by setting rΔ and XΔ, the

pinch points on aCPM are set, such that xp,i = F(rΔ,XΔ). Because bubble point

calculations x T, and because liquid mole fractions sum to one, the vapour in

equilibriumwith a pinch point is a function ofN−1 liquid mole fractions only,

i.e. yp,i = H(xp,1,xp,2,…, xp,N−1). For this derivation, neither XΔ nor rΔ will

not be considered to be constant. However, having two entirely independent

and variable parameters is not suitable for PPCs, but is also unlikely to arise;

there will usually, if not always, be a known relationship between the two. For

example, Appendix B.1 gives a derivation of the relationship between the XΔ
and rΔ in a distributed-feed column. Since XΔ is a vector and rΔ is a scalar, it

is more convenient to express XΔ as a function of rΔ, i.e. XΔ = J(rΔ).

The derivation of the ODE begins at the de nition of the pinch point, that

is, setting dxi/dn = 0 at xp,i in Eq. (4.3).(
1+

1
rΔ

)
(xp,i − yp,i) +

1
rΔ
(XΔ,i − xp,i) = 0

xp,i − yp,i +
1
rΔ
xp,i −

1
rΔ
yp,i +

1
rΔ
XΔ,i −

1
rΔ
xp,i = 0

xp,i − yp,i −
1
rΔ
yp,i +

1
rΔ
XΔ,i = 0 (C-1)

Differentiating Eq. (C-1) with respect to rΔ yields:

dxp,i

drΔ
−

dyp,i
drΔ

− 1
rΔ

dyp,i
drΔ

+
1
r2Δ
yp,i −

1
r2Δ
XΔ,i +

1
rΔ

dXΔ,i
drΔ

= 0

dxp,i

drΔ
−
(
1+

1
rΔ

)
dyp,i
drΔ

+
1
r2Δ
(yp,i −XΔ,i) +

1
rΔ

dXΔ,i
drΔ

= 0 (C-2)

With the knowledge that yi is a function of N − 1 liquid mole fractions,

the total derivative can be taken, and divided through by drΔ:

209
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dyi =
(

∂yi
∂x1

)
dx1 +

(
∂yi
∂x2

)
dx2 + · · ·+

(
∂yi

∂xN−1

)
dxN−1

dyi
drΔ

=

(
∂yi
∂x1

)
dx1

drΔ
+

(
∂yi
∂x2

)
dx2

drΔ
+ · · ·+

(
∂yi

∂xN−1

)
dxN−1

drΔ

dyi
drΔ

=
N−1∑
j=1

(
∂yi
∂xj

)
dxj
drΔ

(C-3)

Substituting Eq. (C-3) into Eq. (C-2) gives:

dxp,i

drΔ
−
(
1+

1
rΔ

) N−1∑
j=1

(
∂yp,i
∂xp,j

)
dxp,j

drΔ
=

1
r2Δ
(XΔ,i − yp,i)−

1
rΔ

dXΔ,i
drΔ

(C-4)

Equation (C-4) can be seen as a non-homogeneous system of linear

equations in dxp,i/drΔ, as given in Eqs (4.9)–(4.14), except with b⃗ de ned as

follows for the non-constant XΔ case:

b⃗ =
1
rΔ



1
rΔ
(XΔ,1 − yp,1)−

dXΔ,1
drΔ

1
rΔ
(XΔ,2 − yp,2)−

dXΔ,2
drΔ

...
1
rΔ
(XΔ,N−1 − yp,N−1)−

dXΔ,N−1

drΔ


(C-5)

The evaluation of dXΔ,i/drΔ should usually be straightforward, because it

is likely that it will be an algebraic expression, such that a simple analytical

derivative will be readily available; if the function that relates XΔ to rΔ is more

complicated, numerical derivatives can be used.

For constantXΔ, dXΔ,i/drΔ = 0, such that Eq. (C-5) collapses to Eq. (4.14).

C.2 Evaluation of the Jacobian

The Jacobian matrix J, de ned as Eq. (4.11), can either be evaluated nu-

merically directly with N − 1 bubble point calculations, or with derivatives

evaluated without using the bubble point.

At each step of the integration, yp must be calculated for the evaluation of

the vector b⃗; J is also required.

If, for the bene t of programming ease, some computational ef ciency is

sacri ced, J can be calculated by direct numerical differentiation, noting that
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the increase in computational effort is roughly proportional to the number

of components when using this approach. The best way of doing this is by

forward differences. For calculation of perturbed yi, note that the perturbation

in xi must be accompanied by an equal and opposite shift in xN to ensure mole

fraction summation to unity.

A much better—albeit somewhat more complex—approach is to reduce

the problem analytically to a non-iterative one, at least to the point of

obtaining expressions involving ∂γi/∂xj, ∂γi/∂T, and dPvap
i /dT, which can

be computed numerically, but without iteration. The procedure is described

by Poellmann and Blass (1994), and is reproduced below, with some minor

modi cations for generality. Prausnitz et al. (1980) give a function that

describes the bubble point condition, which, for set P, is given by:

Gb(T = Tb,x1,…,xN−1) =

ln

(
1
P

N∑
i=1

xiγi(x1,…, xN−1,T = Tb)P
vap
i (T = Tb)

)
= 0 (C-6)

with

xN = 1−
N−1∑
i=1

xi

Poellmann and Blass (1994) explain how the bubble point criterion implic-

itly de nes a function Tb = fb(x1,…, xN−1) for xed P.

Differentiating Eq. (C-6) with respect to liquid mole fraction yields:

∂Gb

∂T
∂fb
∂xi

+
∂Gb

∂xi
= 0 (C-7)

Equation (C-7) can be rearranged to give:

∂fb
∂xi

= −∂Gb/∂xi
∂Gb/∂T

(C-8)

The necessary expressions for evaluating the right-hand side of Eq. (C-8)

are given as follows:

∂Gb

∂xi
=
Pvap
i γi − Pvap

N γN +
∑N

j=1

(
Pvap
j xj

∂γj
∂xi

)
∑N

j=1 xjγjP
vap
j

(C-9)

and
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∂Gb

∂T
=

∑N
i=1

(
xiγi

dPvap
i

dT + xi
∂γi
∂TP

vap
i

)
∑N

i=1 xiγiP
vap
i

(C-10)

Using Eqs (C-9) and (C-10), ∂fb/∂xi can be evaluated. Finally, using ∂fb/∂xi
and the required derivatives of ∂γi/∂xj, ∂γi/∂T, and dPvap

i /dT (evaluated

analytically or numerically), the elements of the Jacobian can be computed

with the following equation, which originates from the differentiation of

Raoult’s modi ed law (yi = xiγiP
vap
i /P) with respect to liquid mole fraction:

∂yi
∂xj

=
xi
P

[
γi
dPvap

i

dT
∂fb
∂xj

+ Pvap
i

(
∂γi
∂xj

+
∂γi
∂T

∂fb
∂xj

)]
+ δij

(
Pvap
i γi
P

)
(C-11)

where

δij =

1 if i = j,

0 if i ̸= j.
(C-12)

C.3 Some practical considerations

In this appendix, several practical considerations for the successful and

ef cient implementation of the proposed method are summarised. Some of

these are reiterations from the main text, while others are additional points.

• If required, besides pure components and azeotropes, a known starting point

for the integration is at rΔ = −1, where the pinch point location is exactly at

XΔ.

• The proposed method works well with several integrators, the simplest of

which is the 3(2) Runge–Kutta pair due to Bogacki and Shampine (1989).

It is available as part of RKSUITE for FORTRAN 77 (Brankin et al., 1992)

and Fortran 90 (Brankin and Gladwell, 1997).

• Both of the theoretical bounds for the integration (r → ±∞ and r = 0) are

impractical; numerical approximations of these must be used, e.g. rΔ = ±1×
1014 and rΔ = ±1× 10−14, respectively.

• As mentioned earlier, provision needs to be made for when the integration

reaches rΔ,crit; in this work, this was done by stopping integration when the

distance between the last two successful solutions is less than 5 × 10−5 and

the relative difference between the last two rΔ or ρ± values (corresponding

to the last two points) is less than 1 × 10−5. The latter quantity is de ned as∣∣ρ±[i] − ρ±[i−1]
∣∣/∣∣ρ±[i]

∣∣, where i indicates iteration number.
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• Bubble point calculations are required by the proposed method. One such

calculation is always required for the evaluation of the vector b⃗; depending

on the approach, the evaluation of the Jacobian J can either require N − 1

or zero additional bubble point calculations (see Appendix C.2). For bubble

point calculations, the algorithm described by Prausnitz et al. (1980) is recom-

mended. As the integration proceeds, the solutions from step to step are close

in composition space, meaning that the difference in bubble point temperature

from step to step is small; therefore, the previous step’s temperature should be

used as a starting point for the current step’s temperature for the best ef ciency.

• Numerical derivatives are used throughout this work, rather than analytical

derivatives, for reasons discussed earlier in § 4.4.1. A simple and ef cient

method for evaluating these is by forward (or backward) differences. Central

differences are not recommended, as they require twice as many calculations.

• After the PPC has been obtained, the stability and type of the pinch points can

be determined (see, e.g. p. 301 of Robinson (2004), or Holland et al. (2004a)).

• The proposed method can nd azeotropes by means of ‘jumping over’ turning

points using non-linear arc length extrapolation to continue the integration

on the adjacent PPC section. Although the approximation of the arc length

as multiple linear segments is crude, it is entirely suf cient for this purpose.

The non-linear extrapolation can be done by means of either the cubic spline

interpolation algorithm or piecewise cubic Hermite interpolation, although

the former seems to be more reliable. As with any extrapolation lacking a

theoretical model, points far away from the known data set are subject to

large uncertainty. In order for the extrapolated point to be meaningful, the

extrapolation must be very small. The distance by which to extrapolate the

arc length can be a xed value, say 1× 10−3, or a calculated value.

• To nd the azeotropes, the method relies, to some extent, on continuity,

and hence, on the ability of the activity coef cient model to handle negative

mole fractions. Some models, especially those containing logarithms of mole

fractions, have limited or no ability to handle negative mole fractions: the

Wilson model can extend outside of the positive space to some extent ,1

while UNIQUAC does not permit anything other than positive, non-zero mole

fractions. In systems where this is particularly restrictive, it may be necessary

to try several XΔ points to discover all of the azeotropes.

1 The distance outside of the MBT that it can ‘reach’ depends on the parameters for a given
system.
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• For best ef ciency, it is suggested to perform an initial run (or series of runs)

to nd all of the azeotropes using the arc length extrapolation technique

described earlier, and then to initiate integration from the pure components

and located azeotropes for subsequent runs.

• A few Newton iterations to determine a more accurate starting point that

corresponds to rΔ = ±1 × 1014, which is very near to a pure component

or azeotrope, is bene cial, although not strictly necessary for the algorithm.

Similarly, a few Newton iterations can help to re ne the approximation of an

azeotrope that is found by the proposed ODE.

C.4 Custom continuation algorithm

The success of continuation algorithms depends on the quality of the predictor,

and on the step-size control. The step-size control here is con gured to be

applicable to the PPC problem in particular. The vector-valued function that

describes the pinch points is Φ(x⃗, rΔ, X⃗Δ) = (1+ 1/rΔ)(x⃗− y⃗) +
(
X⃗Δ − x⃗

)
/rΔ

for which the roots must be found. A basic outline of this algorithm follows.

1 Start at a known rΔ and x⃗p, and set a target distance away from this point that

the next solution is required.

2 At the previously known solution, calculate the vector ∂Φ/∂rΔ and the matrix

∂Φ/∂x. Then nd dx/drΔ by solving the linear system (∂Φ/∂x)(dx/drΔ) =

−∂Φ/∂rΔ.

3 Use the tangent dx/drΔ to estimate the rΔ and x⃗ that would give a solution at

the target distance.

4 Fix the above rΔ, and use Newton’s method to correct the estimated x⃗ back to

the solution path.

5 If Newton’s method fails, decrease the target distance and return to step 1.

6 If Newton’s method is successful, move forward one step in the solution. If

Newton’s method took more than two iterations, decrease the target distance

by 30%; if it converged in one or two iterations, increase the target distance

by 30%.

7 Return to step 1 until the full section of the PPC has been calculated.
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C.5 Parallel stereoscopic viewing

Stereoscopic images work by giving each of the viewer’s eyes a slightly different

image to create the illusion of 3-D. To view these images, look at the pair of

pictures, and then defocus your eyes (or focus them at a point in the distance),

such that you see two somewhat blurry pairs of images, making four images

in total. Now, refocus your eyes gradually until the innermost two images

overlap and come into focus, which creates the desired 3-D effect. Note that

for electronic viewing, the image on-screen should be no larger than the printed

version.
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D.1 Derivations

Minimum practical energy input in conventional columns

The easiest way of estimating minimum re ux for an ideal mixture is to use

Underwood’s method (1948). For the split of a binary, saturated liquid feed—

with known relative volatility (α)—to pure components, minimum re ux

using Underwood’s method simpli es to the following (Branan, 2005):

rmin =
1

xF,1(α − 1)
(D-1)

Using the mass balance of the column internals, with a saturated liquid

feed and the CMO assumption, it can easily be shown that the vapour ow

through the column is given by:

V = D(r+ 1) (D-2)

For sharp splits, D = FxF,1; using this fact and Eqs (D-1) and (D-2), the

minimum vapour ow in the column can be estimated:

Vmin = F
(

1
α − 1

+ xF,1

)
(D-3)

The minimum practical heat input at the reboiler can be calculated as

follows:

Qin,min = λVmin (D-4)

Qin,min = Fλ
(

1
α − 1

+ xF,1

)
(D-5)

Minimum practical energy input in SVRC

The stream numbers used here are given in Figure 5.4.

The modi cations that SVRC makes to the conventional con guration are
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external to the column itself; for the same split of the same feed, the internal

speci cations of the column can remain identical. Consequently, the SVRC

has the same minimum vapour ow as the conventional con guration, given

in Eq. (D-3).

The energy input into the compressor is found with an energy balance:

Wcomp,min = VminĈIG
p,1(T3 − T2) (D-6)

The use of the superheater and the temperatures T2 and T3 depend on the

uid being compressed. The isentropic compression of an ideal gas is given by:

Pcomp

P0
=

(
T3

T2

)ĈIG
p,1/R

(D-7)

If the saturated vapour superheats on compression, then T1 = T2 =

TC. Assuming isentropic compression, and constant λ (in order to use the

Clausius–Clapeyron equation), the minimum T3 can easily be deduced:

T3 = TC exp

(
λ

ĈIG
p,1

(
1
TC

− 1
TR

))
(D-8)

Consequently, the energy input into the system is given by the compression

of the vapour from T3 to T2 only, sinceQsh = 0W. Therefore, from Eqs (D-3),

(D-6), and (D-8):

Wcomp,min = FĈIG
p,1TC

(
1

α − 1
+ xF,1

)(
exp

(
λ

ĈIG
p,1

(
1
TC

− 1
TR

))
− 1

)
(D-9)

The energy (and work) input into the system in this case is simply equal to

Wcomp,min.

If the saturated vapour condenses, then T1 = TC and T3 = TR, while T2 is

given by:

T2 = TR exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))
(D-10)

In this case, the energy input into the system is the sum of Qsh,min and

Wcomp,min. The superheater’s duty, using Eqs (D-3) and (D-10), is given by:

Qsh,min = FĈIG
p,1

(
1

α − 1
+ xF,1

)(
TR exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))
− TC

)
(D-11)
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From Eqs (D-3), (D-6), and (D-10), the energy input into the compressor

is:

Wcomp,min = FĈIG
p,1TR

(
1

α − 1
+ xF,1

)[
1− exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))]
(D-12)

Compression ratio

If the overhead vapour is superheated on isentropic compression, the process

is expressed as follows:

Pcomp

P0
=

(
T3

TC

)ĈIG
p,1/R

(D-13)

The expression for T3 is given in Eq. (D-8). Substituting this, along with

Eq. (5.24), into Eq. (D-13) ultimately gives:

Pcomp

P0
= exp

(
[4.0+ ln(TC/K)]

(
1− TC

TR

))
(D-14)

If the overhead vapour condenses on isentropic compression, the relation-

ship between compression ratio and temperature is as follows:

Pcomp

P0
=

(
TR

T2

)ĈIG
p,1/R

(D-15)

T2 is given in Eq. (D-10). Again, if this is substituted into Eq. (D-15) and

used along with Eq. (5.24), the compression ratio can be calculated as follows.

Pcomp

P0
= exp

(
[4.0+ ln(TC/K)]

(
1− TC

TR

))
(D-16)

It should be no surprise that Eqs (D-14) and (D-16) are identical; Figure 5.6

illustrates why the compression ratio must be the same in both cases.

Zero superheating of compressor inlet

The vapour enters the superheater at TC and is heated to T2, which is given in

Eq. (D-10). No superheating is required when T2 = TC. From Eq. (D-10), the

following can be deduced:

TC = TR exp

(
λ

ĈIG
p,1

(
1
TR

− 1
TC

))
(D-17)
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With the use of Eq. (5.24) in Eq. (D-17), the following is obtained:

TC = TR exp

(
R[4.0+ ln(TC/K)]

ĈIG
p,1

(
TC

TR
− 1
))

(D-18)

D.2 Heat pumps with external working fluid, and
bottoms flashing

Heat-pump-assisted distillation with an external working uid (Figure 5.1c)

and bottoms ashing (Figure 5.1d) and can both be analysed in the same

way as SVRC, using the assumptions listed in the § 5.2. In fact, both of these

con gurations reduce to the same problem, which is the same as SVRC, except

with heat rejection at TC, and not TR. Energy is added in the compressor as

Wcomp and rejected as Qout at TC in the trim condensers.

As with SVRC, the energy balance simply reduces to Wcomp = Qout.

In order to assess the best theoretical performance, the systems are assumed

to be reversible, such that Sgen = 0W/K. Similarly to Eq. (5.12), the entropy

analysis then reduces to:

FΔŜmix =
Wcomp

TC
(D-19)

If, as was done with SVRC, Eq. (5.7) is equated to Eq. (D-19), the following

result is obtained:

Wcomp

Win
=
TR − TC

TR − T0
(D-20)

The implication of this result is that these two con gurations are always

better than conventional distillation when the condenser temperature is higher

than ambient temperature. (If it is sub-ambient, then a heat pump is required

to remove the energy from the column, and the analysis changes.) Therefore, it

would appear that only practical concerns, not fundamental thermodynamic

ones, prevent the widespread implementation of these con gurations.

D.3 Aspen Plus simulation settings

Example 1

The feeds in either case (F1 and F2) are at their bubble point, at a pressure of

400 kPa, with a total ow of 1 kmol/h, and a composition of 0.63 1-butene
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and 0.37 n-butane.

C1 and C2 are identical: they have no reboiler or condenser in the

RADFRAC block (these are external). They have 100 stages, with feeds (F1

or F2, respectively) being fed on stage 50. RFL1 and RFL2 are added back on

stage 1, and VB1 and VB2 are added on stage 100. The column is isobaric at

400 kPa.

CON1 has zero pressure drop, and cools the stream to its bubble point.

V1 and V2 have zero pressure drop and zero heat duty.

SH1 is set to effect a 12K temperature increase, with no pressure drop.

K1 has isentropic andmechanical ef ciencies of 100%, and a pressure ratio

of 1.43.

SPL1 and SPL2 send fractionally 0.9350 of LT1 and LB6 toRFL1 and RFL2,

respectively. This results in a re ux ratio of 14.38 in both cases.

REB1 is set to heat LB1 to a vapour fraction of 0.9625. Similarly,HEX1 has

its cold outlet stream vapour fraction set to 0.9625, and a minimum approach

temperature of 5K.

SC1 has a heat duty of −5442.8014W.

PV1 reduces the pressure back to 400 kPa.

Example 2

The following settings were used in the simulation:

F1/F2: 1 kmol/h; 100 kPa; bubble point temperature; composition: 0.71

hydrogen cyanide, 0.29 acrylonitrile.

C1/C2: 20 stages; no condenser; no reboiler; RFL1/RFL2 on stage 1; F1/F2

on stage 10; VB1/VB2 on stage 20; 100 kPa condenser pressure.

CON1: zero pressure drop; bubble point.

V1/V2: zero pressure drop; zero heat duty.

SH1: zero pressure drop; zero heat duty.

K1: pressure ratio 6.42; 100% isentropic and mechanical ef ciency.

SPL1/SPL2: fractionally 0.3165 of LT1/LB6 sent to RFL1/RFL2.

REB1: zero pressure drop; vapour fraction 0.765.

HEX1: cold stream outlet vapour fraction 0.765; 5K minimum tempera-

ture approach.

SC1: zero pressure drop; heat duty −1287.8069W.

PV1: 100 kPa outlet pressure.
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Example 3

The following settings were used in the simulation:

F1/F2: 1 kmol/h; 100 kPa; bubble point temperature; composition: 0.23 1-

propanol, 0.77 n-octane.

C1/C2: 6 stages; no condenser; no reboiler; RFL1/RFL2 on stage 1; F1/F2

on stage 3; VB1/VB2 on stage 6; 100 kPa condenser pressure.

CON1: zero pressure drop; bubble point.

V1/V2: zero pressure drop; zero heat duty.

SH1: zero pressure drop; 65K temperature change.

K1: pressure ratio 2.6; 100% isentropic and mechanical ef ciency.

SPL1/SPL2: fractionally 0.3536 of LT1/LB6 sent to RFL1/RFL2.

REB1: zero pressure drop; vapour fraction 0.43.

HEX1: cold stream outlet vapour fraction 0.43; 5K minimum temperature

approach.

SC1: zero pressure drop; heat duty −513.51014W.

PV1: 100 kPa outlet pressure.

Example 4

The following settings were used in the simulation:

F1: 1 kmol/h; 100 kPa; bubble point temperature; composition: 0.13 me-

thanol, 0.22 2-propanol, 0.24 2,6,8-trimethyl-4-nonanone, 0.41 1-undecanal.

C1: 10 stages; no condenser; no reboiler; RFL1 on stage 1; F1 on stage 5;

VB1 on stage 10; 100 kPa condenser pressure.

CON1: zero pressure drop; bubble point.

V1: zero pressure drop; zero heat duty.

SPL1: fractionally 0.3 of LT1 sent to RFL1.

REB1: zero pressure drop; vapour fraction 0.5.
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E.1 Properties for rigorous calculations

For the detailed calculations in Chapter 6, the distillation columns and

auxiliary equipment are modelled using rigorous mass and energy balances,

although heat of mixing is excluded, as it is not signi cant in the near-ideal

systems used here. Although the systems chosen in Chapter 6 are intentionally

close to ideal, the slight non-idealities are modelled with the non-random

two-liquid (NRTL) activity coef cient model (Renon and Prausnitz, 1968).

Moreover, the gas is assumed to be ideal; this is not a perfectly accurate

representation in all cases, since high compression ratios will deviate from

ideality. However, only low compression ratios are of practical interest, in

which case, the ideal gas assumption is generally reasonable.

All pure-component properties were obtained from Liley et al. (1997),

except where unavailable, in which case they were obtained from Aspen Plus

(Aspen Technology, Inc., 2007), along with all of the NRTL parameters. All

temperatures (T) are in K.

Pvap = exp
(
C1+

C2
T

+ C3 lnT+ C4TC5

)
(E-1)

ĈIG
p = C1+ C2

(
C3/T

sinh(C3/T)

)2
+ C4

(
C5/T

cosh(C5/T)

)2
(E-2)

λ = C1
(
1− T

C5

)C2+C3T/C5+C4 (T/C5)2

(E-3)

The coef cients for these models are given in Table E.1.

In order to maintain thermodynamic consistency, a separate model for

liquid heat capacity was not used; instead, it can easily be shown that Ĉliq
p

is related to the already speci ed quantities as follows:

Ĉliq
p = ĈIG

p − dλ
dT

(E-4)
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Table E.1 Coef cients for pure-component property models for vapour pressure,
ideal gas heat capacity, liquid heat capacity, and enthalpy of vaporisation, Eqs
(E-1)–(E-3).

Prop. Component C1 C2 C3 C4 C5

Pvap acetonitrile 58.302 −5385.6 −5.4954 5.3634E−6 2
(Pa) nitromethane 57.278 −6089 −4.9821 1.2154E−17 6

benzene 83.918 −6517.7 −9.3453 7.1182E−6 2
toluene 80.877 −6902.4 −8.7761 5.8034E−6 2
1-heptanal 107.17 −9070.3 −12.503 7.4446E−6 2
1-decanal 201.64 −15133 −26.264 1.4625E−5 2
n-hexane 104.65 −6995.5 −12.702 1.2381E−5 2
n-nonane 109.35 −9030.4 −12.882 7.8544E−6 2

ĈIG
p acetonitrile 41.91 88.76 1581.80 50.32 699.80

(J/mol·K) nitromethane 42.267 108.42 1488.5 68.603 683.57
benzene 44.42 232.05 1494.60 172.13 −678.15
toluene 58.14 286.30 1440.60 189.80 −650.43
1-heptanal 140.40 259.07 831.50 131.20 2201.00
1-decanal 196.41 514.12 1898.90 412.78 862.51
n-hexane 104.40 352.30 1694.60 236.90 761.60
n-nonane 151.75 491.50 1644.80 347.00 749.60

λ acetonitrile 43511 0.34765 0 0 545.5
(J/mol) nitromethane 47417 0.3062 0 0 588.15

benzene 47500 0.45238 0.0534 −0.1181 562.16
toluene 50144 0.3859 0 0 591.8
1-heptanal 61299 0.37999 0 0 617.0
1-decanal 79073 0.4129 0 0 674.2
n-hexane 44544 0.39002 0 0 507.6
n-nonane 60370 0.38522 0 0 594.6

For the activity coef cients, the NRTL model (Renon and Prausnitz, 1968)

was used, which is expressed as (Aspen Technology, Inc., 2007):

ln γi =

∑N
j=1 xjτjiGji∑N
k=1 xkGki

+
N∑
j=1

xjGij∑
k xkGkj

(
τij −

∑N
m=1 xmτmjGmj∑N

k=1 xkGkj

)
(E-5)

where

Gij = exp(−cijτij) (E-6)

Gii = 1 (E-7)

τij = aij +
bij
T

(E-8)

τii = 0 (E-9)
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Table E.2 Binary interaction parameters for the NRTL activity coef cient model.

System a12 a21 b12 b21 c12 = c21

benzene (1) −2.8852 2.1911 1123.9501 −863.7308 0.3
toluene (2)

acetonitrile (1)
0.2239 −0.0946 31.1015 −75.5778 0.3

nitromethane (2)

1-heptanal (1)
0 0 84.2969 −78.0471 0.3

1-decanal (2)

n-hexane (1)
0 0 −222.5504 261.3854 0.3

n-nonane (2)

3

4

1 2

5

67

8

Qsh

Qout

Qin

Wcomp

Figure E.1
FDVRC con guration with
stream labels for relevant
streams.

The coef cients for Eqs (E-6)–(E-9) are given in Table E.2. These pa-

rameters were obtained from Aspen Plus’s database, or, where unavailable,

estimated by means of UNIFAC with Aspen Plus.

E.2 High-level FDVRC equations

Figure E.1 should be used as a reference for the stream numbers that are used

in the following derivations.

Heat and work input at reboiler

The feed enters the system as a saturated liquid, which is then vaporised

completely. This vaporised feed joins with the vapour rising through the
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stripping section to produced the vapour in the rectifying section. Owing to

the constant molar over ow (CMO) assumption, the ow rate of the overhead

vapour is equal to this sum of vapour feed and vapour from the reboiler, which

mathematically amounts to the following:

V3 = F+ V8 (E-10)

The column is (theoretically) operated at minimum re ux, which can be

estimated using Underwood’s method, assuming constant relative volatility.

For a binary, saturated vapour feed, separated to pure components, minimum

re ux using Underwood’s method simpli es to the following (Branan, 2005):

rmin =
α

zF,1(α − 1)
− 1 (E-11)

It can be shown through mass balance that:

V3 = FzF,1(rmin + 1) (E-12)

V3 = F
(

α
α − 1

)
(E-13)

Therefore, using Eqs (E-10) and (E-13), the following is obtained:

V8 = F
(

1
α − 1

)
(E-14)

Thus, the minimum heat input at the reboiler is estimated as follows:

Qin,min = λV8 (E-15)

Qin,min = Fλ
(

1
α − 1

)
(E-16)

Heat and work input at compressor and superheater

The energy input at the compressor and superheater is a somewhat more

complex consideration than in the reboiler.

The feed enters the system at T1, which is its bubble point. In the heat

exchanger, the feed is vaporised fully to its dew point, T2. This dew point

can be estimated using only the relative volatility and pure-component boiling

points by means of the following equation (see Chapter 7):

T2 =

[( 1
Tb,2

− 1
Tb,1

ln(α1.206)

)
ln
(
zF,1 + α1.206(1− zF,1)

)
+

1
Tb,1

]−1

(E-17)
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The compressor and superheater must be considered together, since their

operation is linked. First, the minimum compression ratio must be determined.

In the limit of operation, the condensing temperature of the vapour leaving

the compressor, T6, should be equal to T2; no heat transfer can take place if

T6 < T2. An easy way of estimating this with rudimentary information is using

the Clausius–Clapeyron equation:

P6 = P0 exp
[
λ
R

(
1
Tb,1

− 1
T6

)]
(E-18)

Since T6 = T2, the former can be estimated from Eq. (E-17).

The minimum degrees of superheating prior to compression, ΔT, can be

estimated using the following equation (Felbab, 2013), which ensures that

the outlet of the compressor is a saturated vapour (i.e. at the lowest possible

temperature before it condenses):

ΔT = max

{
Tb,1

[
υ

λ−υ + σ
]

1− σ
, 0

}
(E-19)

where

υ = RTb,1 ln
(
P6

P0

)
(E-20)

σ = 1−
(
P6

P0

)R/ĈIG
p,1

(E-21)

If ΔT = 0K, it means that no superheating is required, and as such, Qsh =

0W. In this case, the compression is merely an isentropic compression from

T4(= Tb,1) and P0 to T6 and P6. The compression work required for this is

calculated for this isentropic compression of an ideal gas with constant ĈIG
p as

follows:

Wcomp = V4ĈIG
p,1Tb,1

((
P6

P0

)ĈIG
p,1/R

− 1

)
(E-22)

If it is assumed that λ is constant throughout the system, as per the CMO

assumption, then to vaporise F completely, the required energy input to the

feed stream is λF. Since λ is constant, and the energy input for vaporisation is

provided by condensing the compressed vapour, it follows that V4 = F. Thus,

using this fact, and substituting Eq. (E-18) into Eq. (E-22), the energy/work
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input into the compressor, when no superheating is required, is:

Wcomp,min = FĈIG
p,1Tb,1

((
exp
[
λ
R

(
1
Tb,1

− 1
T6

)])ĈIG
p,1/R

− 1

)
(E-23)

However, if ΔT > 0 K, then the superheater is required. Therefore, since

the diverted overhead vapour has a ow rate equal to F, and the superheater

heats the vapour by ΔT, the heat input is simply:

Qsh,min = FĈIG
p,1ΔT (E-24)

Using Eq. (6.5), the virtual work associated withQsh,min is estimated by the

following equation:

Wsh,min = FĈIG
p,1ΔT

(
1− T0

Tb,1 + ΔT

)
(E-25)

Finally, the energy/work input to the compressor is calculated using an

energy balance. In cases where superheating is required, the minimum com-

pression results in a saturated vapour outlet, as mentioned earlier. Since the

limit of operation in the heat exchanger is being considered, this compressor

outlet is at T2, and the inlet temperature must be at Tb,1 + ΔT. Thus, the

minimum work input in the compressor is:

Wcomp,min = FĈIG
p,1(T2 − Tb,1 − ΔT) (E-26)

E.3 Aspen Plus simulation settings

The following settings were selected in the Aspen Plus simulations. The

nomenclature for the conventional column and the SVRC can be found in

Figures 5.12 and 5.13, respectively.

Example 1

F1/F2/F3: 100 kPa; bubble point; 1 kmol/h; 0.85 1-heptanal, 0.15 1-decanal.

C1/C2: no condenser; no reboiler; 12 stages; F1/F2 on stage 6; VB1/VB2 on

stage 12; RFL1/RFL2 on stage 1; 100 kPa column pressure.

CON1: bubble point; zero pressure drop.

SPL1/SPL2: fractionally 0.264667 of LT1/LT2 sent to RFL1/RFL2.

REB1: vapour fraction 0.874381; zero pressure drop.
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HEX1: cold stream outlet vapour fraction 0.874381; zero pressure drop;

5K temperature approach.

V1/V2/V3: zero heat duty; zero pressure drop.

SH1: zero pressure drop; 65K temperature change.

K1: discharge pressure 456.282 kPa; isentropic ef ciency 0.85.

SC1: zero pressure drop; heat duty −7137.0784W.

PV1: adiabatic; outlet pressure 100 kPa.

C3: 12 stages; F3B on stage 7; VB3 on stage 12; RFL3 on stage 1; no

condenser; no reboiler; 100 kPa column pressure.

HEX2: cold stream outlet at dew point; zero pressure drop; 5K tempera-

ture approach.

SPL3: fractionally 0.67 of VT6 to VT7;

SH2: zero pressure drop; 14K temperature change.

K2: 155 kPa discharge pressure; isentropic ef ciency 0.85.

PV2: 100 kPa outlet pressure.

CON2: zero pressure drop; bubble point.

SPL4: fractionally 0.404716 of LT5 to RFL3.

REB2: zero pressure drop; vapour fraction 0.804686.

Example 2

F1/F2/F4: 100 kPa; bubble point; 1 kmol/h; 0.09 benzene, 0.91 toluene.

C1/C2: 18 stages; F1/F2 on stage 12; VB1/VB2 on stage 18; RFL1/RFL2 on

stage 1; no condenser; no reboiler; 100 kPa column pressure.

CON1/CON3/CON4: bubble point; zero pressure drop.

SPL1/SPL2: fractionally 0.967859 of LT1/LB6 to RFL1/RFL2.

REB1: vapour fraction 0.628033; zero pressure drop.

HEX1: cold stream outlet vapour fraction 0.628033; zero pressure drop;

5K temperature approach.

V1/V2/V4: zero heat duty; zero pressure drop.

SH1: 6K temperature change; zero pressure drop.

K1: 266.851 kPa discharge pressure; 0.85 isentropic ef ciency.

SC1: zero pressure drop; heat duty −12320.387W.

PV1: adiabatic; 100 kPa outlet pressure.

SPL4: all of F4 to F5.

SH3: 45K temperature change; zero pressure drop.

K3: 130 kPa discharge pressure; 0.85 isentropic ef ciency.
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HEX3: cold stream outlet vapour fraction 0.562124; approach tempera-

ture 5K; zero pressure drop.

PV3: adiabatic; 100 kPa outlet pressure.

C4: 22 stages; F12 on stage 14; RFL4 on stage 1; VB4 on stage 22; no

condenser; no reboiler; 100 kPa column pressure.

SPL5: fractionally 0.931042 of LT6 to RFL4.

Example 3

F1/F2/F3: 100 kPa; bubble point; 1 kmol/h; 0.89 water, 0.03 monoethanol-

amine, 0.08 diethylene glycol.

C1/C2: no condenser; no reboiler; 30 stages; F1/F2 on stage 20; VB1/VB2

on stage 30; RFL1/RFL2 on stage 1; 100 kPa.

CON1: bubble point; zero pressure drop.

SPL1/SPL2: fractionally 0.10207 of LT1/LT2 sent to RFL1/RFL2.

REB1: vapour fraction 0.87077535; zero pressure drop.

HEX1: cold stream outlet vapour fraction 0.87077535; zero pressure drop;

5K temperature approach.

V1/V2/V3: zero heat duty; zero pressure drop.

SH1: zero pressure drop; 0K temperature change.

K1: discharge pressure 2353.259 kPa; isentropic ef ciency 0.85.

SC1: zero pressure drop; heat duty −3753.3505W.

PV1: adiabatic; outlet pressure 100 kPa.

C3: 15 stages; F3B on stage 9; VB3 on stage 15; RFL3 on stage 1; no

condenser; no reboiler; 100 kPa column pressure.

HEX2: cold stream outlet at dew point; zero pressure drop; 5K tempera-

ture approach.

SPL3: all of VT6 to VT7;

SH2: zero pressure drop; 47K temperature change.

K2: 350 kPa discharge pressure; isentropic ef ciency 0.85.

PV2: 100 kPa outlet pressure.

CON2: zero pressure drop; bubble point.

SPL4: fractionally 0.3157 of LT5 to RFL3.

REB2: zero pressure drop; vapour fraction 0.57757286.
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Example 4

F1/F2/F4: 100 kPa; bubble point; 1 kmol/h; 0.05 n-pentane, 0.05 n-hexane,

0.90 n-heptane.

C1/C2: 23 stages; F1/F2 on stage 8; VB1/VB2 on stage 23; RFL1/RFL2 on

stage 1; no condenser; no reboiler; 100 kPa column pressure.

CON1/CON3/CON4: bubble point; zero pressure drop.

SPL1/SPL2: fractionally 0.9623848 of LT1/LB6 to RFL1/RFL2.

REB1: vapour fraction 0.589; zero pressure drop.

HEX1: cold stream outlet vapour fraction 0.589; zero pressure drop; 5K

temperature approach.

V1/V2/V4: zero heat duty; zero pressure drop.

SH1: 21 K temperature change; zero pressure drop.

K1: 420.0 kPa discharge pressure; 0.85 isentropic ef ciency.

SC1: zero pressure drop; heat duty −14413.671W.

PV1: adiabatic; 100 kPa outlet pressure.

SPL4: all of F4 to F5.

SH3: 20K temperature change; zero pressure drop.

K3: 135.0 kPa discharge pressure; 0.85 isentropic ef ciency.

HEX3: cold stream outlet vapour fraction 0.53153456; approach temper-

ature 5K; zero pressure drop.

PV3: adiabatic; 100 kPa outlet pressure.

C4: 25 stages; F12 on stage 8; RFL4 on stage 1; VB4 on stage 25; no

condenser; no reboiler; 100 kPa column pressure.

SPL5: fractionally 0.91212059 of LT6 to RFL4.
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