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ABSTRACT 

 

 

III 
 

HIV-1 integrase is an essential enzyme in the HIV replication cycle and is a 

validated target for antiretroviral drugs. Due to the inevitable emergence of drug 

resistance of HIV-1 strains to all currently approved FDA antiretroviral drugs, 

antivirals with new mechanisms of action are continuously investigated. As such, 

this study aimed to reposition existing drugs as HIV-1 integrase inhibitors by 

screening the NIH Clinical Collection compound library comprising 727 

compounds. Recombinant integrase was expressed in bacterial cells, purified by 

nickel affinity chromatography, and used to set up a Scintillation Proximity Assay 

(SPA). The SPA was subsequently amended to an automated system to allow for 

rapid screening of compounds. The complete compound library was successfully 

screened using the newly established automated SPA. Overall, only two 

compounds were identified as HIV-1 IN inhibitors: cefixime trihydrate and a 

previously identified HIV integrase inhibitor, epigallocatechin gallate. These 

compounds exerted IC50 values < 10µM in the automated SPA. Cefixime 

trihydrate was not toxic to mammalian cells (CC50 > 200µM) while no appreciable 

antiretroviral activity was observed in in vitro phenotypic inhibition assays (23% 

inhibition of viral replication), thus concluding that this compound was non-

selective. By contrast, epigallocatechin gallate was toxic to mammalian cells at 

the evaluated ranges (CC50 = 23 + 1µM) and therefore could not be validated as 

an integrase inhibitor in in vitro phenotypic inhibition assays. Overall, this study 

resulted in the establishment of an automated SPA, the successful screening of 

727 compounds, and the availability of a platform to expedite the future screening 

of potential HIV-1 integrase inhibitors.   
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CHAPTER 1 

Introduction 

 

1 
 

1.1. HIV/AIDS overview 

1.1.1. History of HIV/AIDS 

The human immunodeficiency virus (HIV) is a retrovirus that attacks and destroys 

the immune system by infecting vital cells in the immune defence system such as 

T-lymphocytes, more specifically CD4+ T-lymphocytes, and ultimately progresses 

to acquired immunodeficiency syndrome (AIDS).1–3 HIV/AIDS was recognised in 

the 1980’s however the first confirmed mortality attributed to HIV/AIDS is believed 

to have occurred in 1959 when a Congolese man died from a mysterious illness.4 

In 1986, preserved blood samples obtained from this man revealed that he was 

infected with HIV.4 AIDS was first recognised in 1981 in the United States of 

America (USA) when an outbreak of rare infections associated with the immune 

system such as Kaposi’s sarcoma (KS) and Pneumocystis carinii pneumonia 

(PCP) emerged among gay men.5–7 The Centers for Disease Control (CDC) 

reported this illness as gay-related immune deficiency (GRID).5 In 1982, this 

disease was then observed in heterosexuals, individuals who received blood 

transfusions and drug addicts which indicated that HIV/AIDS was not restricted to 

homosexuals.8 The CDC subsequently termed this deadly disease AIDS since 

the major opportunistic infections, PCP and KS, only occurs in individuals’ with 

weak immune systems. In 1984, the Pasteur Institute isolated a retrovirus 

lymphadenopathy virus (LAV) believed to be the causative agent of AIDS.1 

However, in 1984 Gallo and co-workers3 reported the isolation of human T-

lymphotropic virus (HTLV-III) which was also responsible for HIV/AIDS. LAV and 

HTLV-III were identified as the same virus and was named HIV in 1986. At this 

point, HIV/AIDS was found to be disseminated across at least 33 countries.9 The 

first HIV treatment, azidothymidine (AZT), was approved by the Food and Drug 

Administration (FDA) in 1987.10  

1.1.2. Epidemiology and phylogeny of HIV/AIDS 

In 2012, it was estimated that 35.3 million people were infected with HIV.11 Sub-

Saharan Africa is the region most affected by HIV with 25 million infected 

people.11 Of these, 6.1 million HIV infected people are living in South Africa, the 

country with the highest number of HIV infections across the world.11 Although 
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HIV incidence levels have reduced by 42% in South Africa, the epidemic 

persists.11  

HIV is believed to have originated from multiple cross-species transmission of the 

simian immunodeficiency virus (SIV) infecting non-human primates in Sub-

Saharan Africa.12–15 HIV is characterized into HIV type 1 (HIV-1) and HIV type 2 

(HIV-2).16,17 HIV-1, the more infectious strain, is derived from SIV that naturally 

occur in chimpanzees (SIVcpz) and gorillas (SIVgor).13,18 SIVcpz is classified into 

SIVcpz Pan troglodytes troglodytes (Ptt) and SIVcpz Pan troglodytes 

schweinfurthii (Pts) based on their sub-species lineages.19 The SIVcpzPtt and 

SIVcpzPts lineages resulted in viruses that differ by 30-50% in the viral gag, pol 

and env sequences.20 HIV-2 derived from SIV in sooty mangabey monkeys 

(SIVsmm).19,21,22 

HIV belongs to the Retroviridae family and falls within the Lentivirus genus as it 

consists of single stranded positive-sense RNA that is reverse transcribed by a 

virally encoded reverse transcriptase (RT).23,24 Phylogeny analysis of the HIV 

Lentivirus have elucidated the geographic location of the HIV-1 and HIV-2 

transmission across species. HIV-1 comprises four groups that are a result of 

distinct cross-species transmissions: M (Major), O (Outlier), N (Non M or Non O) 

and P.25,26 Group M is the most predominant group and is responsible for almost 

90% of HIV infections globally.27 Group O is less prevalent than Group M and is 

responsible for only 1% of HIV infections and is confined to Cameroon, Gabon 

and neighbouring countries.28,29 Only 13 cases of Group N infection have thus far 

been reported and they were restricted to infected individuals in Cameroon.30 

Group P, the most recently identified group, was documented in only two infected 

individuals from Cameroon.27,31 All four groups of HIV-1, derived from SIVcpz, as 

well as the SIVgor strain, cluster with the SIVcpzPtt lineage which infers that this 

subspecies was the original reservoir for human and gorilla infections.32 Group M 

and N are believed to have originated from chimpanzees in the south-eastern 

corner of Cameroon and south-central Cameroon, respectively.18,33 Group P is 

derived from the SIVgor lineage whereas the origin of Group O is not known 

since it is not closely related to ape viruses and hence could originate from either 

chimpanzees or gorillas.32 Group M comprise subtypes A (A1, A2, A3), B, C, D, 

F(F1, F2), G, H, J and K that represent different HIV lineages, geographical and 

phylogenetic associations.34,35 The migration pathways of these subtypes have 
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been described. Subtype A and D originated in central Africa and established in 

eastern Africa.36 Subtype B is believed to have originated from a single African 

strain that spread to Haiti and ultimately into America and Europe.36 HIV-1 

subtype C is responsible for most HIV infections and is predominant across 

Southern- and East Africa as well as India.35,37 Subtype F is prevalent in central 

Africa, eastern Europe and South America whereas subtype G is prevalent in 

West- and East Africa and central Europe.38 Subtype H has been observed in 

central Africa whereas subtype K has been observed in the Democratic Republic 

of Congo and Cameroon.38 Subtype J is only prevalent in central America.38 Inter-

subtype recombination is the result of co-infection with at least two different 

subtypes. When this occurs in only one individual, it is known as a unique 

recombinant form (URF). Upon transmission of a URF in many individuals that 

are not epidemiologically related, it is known as a circulating recombinant form 

(CRF). There are currently 51 CRFs characterized within the HIV-1 group M.34 

HIV-2 is less prevalent than HIV-1 and is mainly confined to West-Africa.39 Thus 

far, eight distinct HIV-2 lineages (A-H) have been identified that originated from 

independent host transmissions.40,41 HIV-2 is less infectious than HIV-1 and the 

number of infection caused by HIV-2 is declining, presumably due to its low viral 

load.42,43    

1.1.3. The HIV-1 virion and its genomic organization  

The HIV-1 virus particle (virion) is sphere shaped with a diameter of 90 to 100 

nanometer (nm).3,44 Figure 1.1 illustrates the three basic structures of the HIV 

virion: the viral envelope, HIV matrix proteins and the viral capsid. The viral 

envelope consists of a double lipid layer, formed upon budding of the capsid from 

the host cell, surrounded by 72 protrusions comprised of trimeric glycoproteins 

(Gp) 120 attached to a trimeric transmembrane Gp41 stem.8,17,18 The matrix 

comprises p17 proteins and is found between the viral envelope and viral core. 

The conical viral core consists of p24 proteins that encapsulate the viral genetic 

material, two copies of non-covalently linked single RNA positive strands, and 

essential viral replication enzymes such as RT, integrase (IN) and protease 

(PR).47,48 
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Figure 1.1: The structure and constituents of the HIV virus particle (virion). The illustration 

depicts the viral RNA genome and viral enzymes contained in a p24 viral core. The p24 viral core is 

then surrounded by the p17 matrix and the viral envelope. The viral envelope contains the 

transmembrane glycoprotein (gp) 41 stem attached to the surface gp120, arranged as trimers. 

Adapted and modified from www.stanford.edu/group/virus, accessed 1/09/2013.
49

 

The HIV genome consists of only nine genes: gag, pol, env, tat, rev, nef, vif, vpr 

and vpu depicted in Figure 1.2. The gag and env genes encode structurally 

related proteins, Gag and envelope glycoproteins (gp160) that are required to 

produce new virus particles. The Gag polyprotein is cleaved by the viral PR into 

smaller structural proteins such as p17, p24 and the nucleocapsid (p9).50 Cellular 

PR cleave gp160 into the transmembrane gp41 and the surface gp120.51 The pol 

gene encodes polymerase enzymes RT, RNAse H, IN and PR that are expressed 

as a Gag-Pol fusion protein (Figure 1.2). The virally encoded PR then cleaves the 

Pol polypeptide from the Gag-Pol fusion protein where the Pol peptide is 

subsequently digested further into RT, RNAse H, IN and PR that are responsible 

for DNA synthesis, viral DNA integration into host DNA and the cleavage of Gag-

Pol polyproteins during maturation of virions, respectively.52–54 The regulatory 

genes tat and rev encodes the transcription transactivator (Tat) and regulatory 

factor (Rev), respectively and aid in regulating viral replication. Tat is an RNA 

binding protein that binds to the transactivation response element (TAR) at the 5’ 

terminal end of HIV RNA thereby activating transcription.55 Rev is a sequence 

based RNA binding protein that regulates HIV gene expression by binding to a 
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complex RNA secondary structure, termed the Rev Response Element (RRE), 

subsequently facilitating the migration of unspliced or incomplete spliced viral 

RNA from the nucleus to the cytoplasm.56–58 Accessory genes nef, vif, vpr and 

vpu encode the virulence factors negative factor (Nef), viral infectivity factor (Vif), 

viral protein R (Vpr) and viral protein U (Vpu), respectively.47,48,59,60 These 

proteins while not essential for viral replication in vitro, are however vital for viral 

replication in vivo. Nef ensures HIV infection by perturbing T-cell activation, 

increases virulence by down regulating CD4+ lymphocytes as well as stimulating 

the infectivity of the HIV virion.61–63 Vif prevents the antiviral host protein 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) 

from entering the HIV virion by targeting it for cellular degradation.64 HIV 

replication does not rely on Vif in most cells suggesting that these cells host a 

protein similar in function to Vif.52 Vpr is involved in the nuclear localization of the 

HIV preintegration complex (PIC) in non-dividing cells such as macrophages.65 

Vpu plays a role in CD4+ down regulation and increases the release of HIV 

virions from the infected cell surface.66,67 

 

Figure 1.2: Representation of the HIV-1 genome and some of the essential proteins that 

these genes express. Adapted and modified from www.stanford.edu, accessed 1/09/2013.
49

 

1.1.4. The HIV lifecycle 

The human immune cells involved in HIV-1 infection and replication include 

macrophages, dendritic cells (DC) and T-lymphocytes where activated CD4+ 

lymphocytes are the major target for HIV infection.3,68 Upon HIV transmission, 

macrophages and DCs capture the cell free virus at the mucosal surface in vivo 

and present it to naive T-cells for infection and subsequent viral replication.68–72 

Since CD4+ T-lymphocytes are the major target for HIV infection, Figure 1.3 

briefly describes the HIV-1 life cycle in CD4+ lymphocytes. 
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Briefly, the HIV-1 life cycle , demonstrated in Figure 1.3, is carried out in multiple 

steps that begin when the gp120 of the virion binds to the CD4+ receptor on 

CD4+ lymphocytes as well as one of the co-receptors, CCR5 or CXCR4, 

consecutively.73,74 The binding of gp120 to the CD4+ receptors and co-receptors 

induces a conformational change that allows the gp41 to insert its hydrophobic 

terminus into the host cell membrane facilitating fusion of the host- and viral cell 

membranes (Step 2 in Figure 1.3). The HIV envelope subsequently propels the 

viral capsid into the cytoplasm of the host cell.75–77 Upon entering the host cell, 

the p24 capsid is digested, subsequently releasing the viral genetic material, viral 

replication enzymes and associated proteins into the cytoplasm of the host cell. 

The viral genetic material, two single RNA positive strands, is reverse transcribed 

to viral cDNA by error-prone RT (Step 3 in Figure 1.3).78 A tetramer of IN collates 

with Vpr, p6, p7 matrix, and host proteins such as BAF, Gemin2, HAT p300, 

HMGA1, HSP 60, Human EED protein, Importin 7, IN interactor 1, LEDGF/p75, 

and UNG2 thus forming the PIC.79–88 The PIC translocates into the nucleus of the 

host cell where IN catalyzes the irreversible integration of the pro-viral DNA into 

the host DNA forming the provirus (Step 4 in Figure 1.3). The viral transcription 

factors transcribe the integrated DNA and the resulting mRNA is exported to the 

cytoplasm (Step 5 in Figure 1.3). The mRNA is subsequently translated to 

polypeptide chains that are cleaved by viral or host proteases to synthesize viral 

proteins in the endoplasmic reticulum (ER).89 These viral proteins are transported 

to the surface of the cells and are embedded in the host cell membrane where 

these proteins collate with other viral proteins (Step 6 in Figure 1.3). The viral 

proteins cluster together with essential host proteins thereby forming an immature 

virion. The immature virion subsequently buds off from the cell surface and 

together with a portion of the host cell membrane forms the viral envelope. When 

the Gag polyprotein chains of the immature virion are fully cleaved by PR, it 

forms an infectious mature virion that has the ability to infect new host cells (Step 

7 in Figure 1.3).90  
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Figure 1.3: Schematic representation of the seven steps in the HIV-1 lifecycle: 1 - Binding and 

fusion of the gp120 on the surface of the HIV virion and the host CD4+ lymphocytes. 2 - Insertion of 

viral replication enzymes, RNA and accessory proteins into the host cell. 3 - Reverse transcription 

of viral RNA to DNA. 4 - Integration of pro-viral DNA into the host DNA in the nucleus. 5 - 

Transcription of pro-viral DNA to mRNA to synthesize viral proteins. 6 - Immature virions forms 

when viral proteins cluster together and buds off from the host cell membrane. 7 - Protease cleaves 

viral polyproteins into individual viral proteins and is known as mature virions. Illustration obtained 

and modified from www.niaid.nih.gov, accessed 12/07/2013.
91

 

1.2. HIV treatment and drug discovery 

1.2.1. Current antiretroviral treatment  

Each stage of the viral life cycle represents a potential antiretroviral drug target. 

There are currently four drug classes in the HIV life cycle namely; viral entry 

inhibitors, RT inhibitors, IN inhibitors (INI) and PR inhibitors (PIs).92,93 Highly 

Active Antiretroviral Therapy (HAART) is a combination of antiretroviral drugs that 

comprise at least two different drug classes that delay disease progression from 

HIV to AIDS by effectively suppressing the viral load and increasing the genetic 

barrier to the development of antiretroviral drug resistance.94  

 

Antiretrovirals targeting RT encompass Nucleoside RT inhibitors (NRTI), 

nucleotide RT inhibitors (NtRTI) and non-nucleoside RT inhibitors (NNRTI). AZT 

was the first NRTI approved by the FDA in 1985 and functions as faulty DNA 

blocks that are incorporated into the newly synthesized viral DNA, resulting in 
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chain termination.95,96 NRTIs and NtRTIs share a similar mechanism of action in 

that they are analogues of the naturally occurring deoxynucleotides required for 

DNA synthesis.97 These NRTIs and NtRTIs analogues differ from the naturally 

occurring deoxynucleotides as the analogues do not possess a 3’-hydroxyl on the 

deoxyribose moiety required for the formation of a 5’-phosphodiester bond that 

facilitate DNA chain extension.97–99 NRTIs and NtRTIs compete and replace the 

naturally occurring deoxynucleotides thereby impeding viral DNA synthesis. 

NRTIs require activation before they are incorporated into viral DNA.99 These 

NRTIs are activated when cellular kinase enzymes phosphorylate the 

deoxyribose moiety on the NRTIs.97 Current NRTIs available are lamivudine, 

AZT, emtricitabine, abacavir sulphate, stavudine, didanosine, dideoxyinosine, 

emtricitabine (FTC) and enteric coated didanosine.100 NtRTIs evade the 

conversion step of nucleosides to nucleotides. Current NtRTIs available are 

tenofovir disoproxil fumarate (TDF) and adefovir.100 NNRTIs bind to a site on RT 

distant from the binding site subsequently inactivating the enzyme 

allosterically.99,101,102 Currently available NNRTIs are nevirapine, efavirenz, 

delavirdine, etravirine and rilpivirine.100,103 

The discovery of PIs was pivotal as it was the beginning of combinational 

therapy, HAART. PIs are substrate analogues of the HIV aspartyl protease 

enzyme that bind to the active site of protease subsequently blocking the activity 

of the enzyme and therefore preventing the cleavage of viral proteins. These 

uncleaved viral proteins are then considered defective and therefore the virion 

cannot mature into an infectious particle.104 FDA approved PIs include nelfinavir, 

saquinavir, darunavir, ritonavir, fosamprenavir calcium, indinavir and tipranavir.100 

Entry inhibitors such as maraviroc, a co-receptor antagonist, inhibit viral entry into 

the host cell by blocking CCR5 on the host cell. FDA approved fusion inhibitor, 

enfuvirtide, prevents the fusion of the viral envelope and cell membrane by 

interacting with gp41 thereby inhibiting viral replication.100,105,106  

The latest class of antiretrovirals to obtain FDA approval inhibit viral integration 

into the host genome by targeting IN.107 As such, IN is considered to be one of 

the most favourable antiretroviral targets in the replication cycle of HIV. 

Raltegravir (RAL), an IN strand transfer inhibitor (INSTI), was the first INI that 

was FDA approved in 2007.108,109 Elvitegravir (EVG) was FDA approved in 2012 
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and dolutegravir (DTG) is the most recent INSTI that was FDA approved in 

August, 2013.110 RAL is further discussed in section 1.2.3.2. 

A single tablet regimen, QUAD pill (Gilead Science, USA), was approved in 2012 

that encompasses a fixed dose-combination of EVG, TDF, FTC and cobicistat.111 

EVG, TDF and FTC confers HIV antiretroviral activity by suppressing viral 

replication whereas cobicistat inhibits the EVG metabolizing enzyme cytochrome 

P450 3A consequently increasing the concentration of EVG in blood.100,112,113 

Despite the successful development of antiretrovirals, obstacles such as the 

transmission of HIV-1 drug resistant viruses loom. Due to its high mutation rate, 

as well as antiretroviral drug pressure, the HIV-1 virus ultimately develops 

resistance to all currently available antiretrovirals.114,115 As such, individuals who 

harbour these resistant strains have less antiretroviral treatment options resulting 

in an increase in mortality.116 By using drug combinations such as those 

recommended in HAART, the dosage required for effective treatment decreases, 

the genetic barrier to developing drug resistance mutations increases, and 

therefore the emergence of drug resistant HIV-1 viral strains is delayed.117 

Resistant viral mutations against RAL are further discussed in section 1.2.2.5. 

1.2.2. Drug discovery and development 

Drug discovery is the process whereby new therapeutics against a specific target 

is discovered. Figure 1.4 describes the lengthy and costly process of drug 

discovery and its low drug output rate. It is estimated that the entire drug 

discovery and development process ranges between 10-15 years with an 

approximate cost of up to $1.5 billion per successful drug.118 It is estimated that 

only one drug candidate of a possible 5000 -10 000 tested will be FDA approved. 

Drug discovery and development stages include: drug discovery, preclinical trials, 

clinical trials, and FDA review and post-FDA approval.119 As demonstrated in 

Figure 1.4, the typical steps involved in early drug discovery include: target 

identification and validation, development of a compound screening assay 

followed by the identification of a HIT compound through random- or rational 

approaches that ultimately leads to lead optimization.117 A HIT compound is 

defined, in the context of this study, as a compound that confers inhibition against 

a specific target. 
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Figure 1.4: Representation of the stages involved in drug discovery and development 

depicting the approximate success rate of the compounds, the average cost contributed to 

each stage and the duration of each stage.  

1.2.2.1. Random screening approach 

Random screening involves the biological screening of compound libraries and 

does not require any prior knowledge of the compounds that are screened 

against a specific target. Compound libraries are typically compiled through 

combinatorial chemistry, parallel synthesis, drug repositioning and natural 

product libraries as recapitulated in Figure 1.5.120 Combinatorial chemistry 

involves the compilation of molecules related to a particular scaffold that is active 

against a specific target (biased library) or a collection of randomly synthesized 

compounds that are not limited to a single target (unbiased library).121 Parallel 

synthesis involves the synthesis of compounds in parallel using spatially 

separated compartments.122 Furthermore, drug repositioning is based on existing 

drugs that are redistributed in novel drug targets (further discussed in section 

1.2.2.4).123 The compounds screened in random biological assays are not 

restricted to synthesized molecules but also low-molecular-weight natural 

products derived from plants that comprise natural product libraries.124 The 

screening of these compound libraries are often screened through High 
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Throughput Screening (HTS) where biological screening assays are amended to 

an automated system.121 

Random screening has been documented in HIV research in Africa where 

screening of natural products was predominant.125–127 Through random 

screening, a plant widely used in South Africa as traditional medicine, 

Sutherlandia frutescens, has been reported as a possible treatment for HIV/AIDS 

by increasing CD4+ counts, stimulating appetite and decreasing viral loads.128 

This plant extract is in phase II clinical trials and the results thereof are expected 

in 2013.117 High running cost is often associated with HTS and since compounds 

are randomly screened without prior knowledge of its interaction with the target, 

this random approach results in a high failure rate.117 As such, random 

approaches in early drug discovery are not conducive to cost effectiveness. 

However, random screening is the preferred approach when searching for HITS 

with novel mechanisms of action since these compounds are not designed 

against a specific target.120 

1.2.2.2. Rational design approach 

The rational design drug discovery approach is based on selecting compounds in 

available compound libraries that are likely to have activity against the specific 

target.129 These compounds are selected due to prior investigation with their 

target of interest.129 Rational design can be classified as ligand-based design or 

structure-based design summarized in Figure 1.5. Structure based design 

approach is where the 3 dimensional (3D) structure of the specific target is 

exploited in order to develop suitable molecules that would interact with the 

target.130 The structure of the target can be determined biologically through X-ray 

crystallography or nuclear magnetic resonance (NMR) spectroscopy. The 

structure of the target may also be elucidated through computational methods 

such as threading and homology modelling.131 Homology modelling relies on the 

known 3D structure of a homologous target that serves as a template for the 

prediction of the 3D structure of the new target.131 When there is no known 

structure available of an homologous target, the 3D structure of the target of 

interest is predicted using its amino acid (aa) sequence by comparing it to a 

database comprising known folds.131,132 De novo drug design is based on the 

structure and aa orientation of the active site. Ligands are then designed specific 

to the active site of the target.133 
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Figure 1.5: A schematic summation of the random and rational approaches in early drug 

discovery that ultimately lead to HIT optimization. Herein, some of the tools involved in random 

screening and rational design are listed that ultimately lead to HITcompounds that enter preclinical 

trials.  

Ligand-based design involves screening of molecules that are similar or related 

to the pharmacophore associated with a specific target. Figure 1.5 briefly lists the 

approaches used in ligand-based drug design. Pharmacophore modelling and 3D 

quantitative structural activity relationships (QSAR) are the most common ligand-

based design tools.134 Both structure- and ligand-based drug designs are typically 

linked with virtual screening (VS) that aid in HIT identification.135 VS has become 

an integral part of drug discovery as it predicts the interaction of ligands with a 

specific target through computational methods. Rational drug design is 

advantageous when linked to computational methods since it evaluates the 

interaction of compounds with a specific target through rapid and low cost 

simulation. An example of successful rational drug design include the discovery 

of PIs such as ritonavir and indinavir.136  

Furthermore, rational drug design can be extended to predictive ADMET 

(absorption, distribution, metabolism, excretion and toxicity) studies to describe 

the pharmacological properties of compounds before they enter preclinical 

trials.137 All ADMET descriptors of drugs can be tested in silico.137 The absorption 
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properties of drugs refer to the ability of compounds to enter the bloodstream via 

human intestinal absorption (HIA) after oral administration which is dependent on 

the solubility and permeability of the drugs.138,139 Chris Lipinski140 pioneered the 

Lipinski rule of 5 (Ro5) paradigm that identify the parameters that contribute to 

poor oral bioavailability of synthetic compounds. The Lipinski rule of 5 states that 

drug properties should adhere to the following rules for it to be considered as 

drug like: the molecular weight (MW) of the compound should be less than 500 

Daltons (Da); the water partition coefficient (cLogP) should be less than 5; there 

should be less than 5 hydrogen bonds donors; there should be less than 10 

hydrogen bond acceptors.140 The distribution of a compound determines ability of 

a compound to reach its specific target in the body such as the organs, muscles 

and crossing the blood brain barrier (BBB).141 In addition, the distribution of 

compounds includes the ability of the compound to bind to plasma binding 

proteins in blood consequently delivering drugs to its specific target.142 After oral 

bioavailability, most drugs are metabolized in the liver by CYP p450.143 Important 

metabolic drug properties include metabolic stability, drug-drug interactions and 

toxicity influenced by the metabolism of a drug.141,144 Drugs are then removed 

from the body through kidney excretion, biliary excretion or fecal excretion. Dose 

dependent studies of drugs are conducted to determine whether these drugs are 

toxic to cells in the body.142  

1.2.2.3. High Throughput Screening and automation  

HTS is a high-tech approach in drug discovery that has gained popularity in the 

last two decades due to its ability to screen large compound libraries against 

specific targets.121 As mentioned in section 1.2.2.1, HTS is a technique widely 

used in random drug screening. HTS used on an automated platform aims to 

reduce reagent use, human error and extensive methodology thus accelerating 

drug development.145 HTS laboratories have the ability to screen up to 10 000 

compounds per day whereas ultra HTS (uHTS) laboratories are more advanced 

in their screening capabilities and ≥100 000 compounds can be screened per 

day.146 In order to reduce cost, automation together with miniaturization has 

become popular. Miniaturization decreases the volume of the biological- and 

chemical reagents by using half-area well plates or plates with higher well 

densities. 147  
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Automation has rapidly become the driving force of HTS in drug discovery and 

can be classified into three types: hand-held automation, unit automation and 

integral automation.148 Hand-held automation includes devices that are held and 

controlled by a human operator. Such automation is widely used in laboratories in 

low throughput screening.149 Unit automation is the most common type of 

automation that includes automated benchtop systems that do not require 

constant control by a laboratory operator. Unit automated devices are generally 

integrated into fully automated workstations termed integral automation devices. 

These workstations comprise automated liquid handling systems on an X, Y and 

Z axis that have the ability to aspirate and dispense liquid. In addition, these 

workstations contain a robotic arm that has the ability to transfer microplates and 

test tubes to integrated unit automated devices. Fully integral automated 

workstations are programmed with software that controls and schedules 

experiments as well as identify errors made during the experiment. These fully 

integral automated workstations can ease complex HTS screening by amending 

biological screening assays to an automated robotic platform. Biological screen 

assays are optimized and amended to an automated system ensuring stable 

assay signal and sensitivity.120,150 Fully automated systems are advantageous as 

these systems provides higher data quality, rapid screening of small molecules 

and they are less laborious than manual assays.121,151 

 

1.2.2.4. Drug repositioning 

Drug repositioning is a method in drug discovery which involves the redistribution 

of FDA approved drugs or drugs that have been in clinical trials, into new disease 

models.123 Drug repositioning is advantageous in drug development since the risk 

profile and adverse effects of the drugs are already known thereby reducing cost 

as well as development time by 3-5 years.152 The average cost of a successful 

repositioned drug is estimated at $8.4 million compared to $1.5 billion when 

developing a new drug.153 Compound libraries comprising of repositioned drugs 

include the National Institutes of Health (NIH) Clinical Collection (NCC), the John 

Hopkins clinical compound library and the Developmental Therapeutics 

Programme (DTP) approved oncology drug set.154  
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1.2.2.4.1. The NIH Clinical Collection compound library 

The NIH have implemented drug repositioning by assembling a compound library 

comprised of the NCC I and NCC II that contain 446 and 281 small molecules, 

respectively. The NCC forms part of the NIH roadmap Molecular Libraries 

Screening Centers Network (MLSCN) in a mission to expand the bioactivity data 

on these compounds and to re-supply compounds that are FDA approved or that 

have undergone clinical trials. The compounds in the NCC are selected based on 

their purity, solubility properties and commercial availability. The molecules in the 

NCC have been classified according to their therapeutic categories and are 

depicted in Figure 1.6. Since most of these molecules have been in clinical trials 

phase I to III, they have well characterized safety profiles and high drug-like 

properties, hence easing drug development. These molecules can be used as a 

basis for medicinal chemistry optimization and might possibly be useful for new 

drug targets such as HIV-1 IN.154 The success of drug repositioning using the 

NCC has been reported in several studies.155-158 Corcoran and co-workers155 

have identified a novel mechanism of action of histone deacetylase inhibitors in 

protein aggresome models. Stavrovskaya and co-workers156 tested the NCC 

small molecules as mitochondrial permeability transition inhibitors and identified 

28 small molecules that delayed mitochondrial permeability. Lunn and co-

workers157 conducted a HTS study to identify a compound that increase the 

production of survival motor-neuron 2 (SMN2) luciferase reporter protein in 

patients with paediatric neurodegenerative disease spinal muscular atrophy 

where Ibuprofen was found to selectively increase the production of SMN2 

luciferase reporter protein. Rothstein and co-workers158 randomly screened 1040 

FDA approved drugs that included the small molecules from the NCC compound 

library to identify stimulators of the dominant astroglial protein, glutamate 

transporter (GLT1) that inactivates glutamate which is a neurotransmitter in the 

nervous system. They discovered that beta (β)-lactam antibiotics found in the 

NCC stimulated GLT1 expression which consequently conferred neuroprotection.  
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Figure 1.6: The NIH Clinical Collection (NCC) small molecule therapeutic indication. Drugs 

used in central nervous system (CNS) therapy (136) are predominant in the NCC while molecules 

used in renal, reproductive control, anti-lipemic, hematolic and dermatological therapy are minimal 

(< 10). Diagram extracted from www.nihclinicalcollection.com, accessed 20/10/2013.
154

 

1.2.3. HIV-1 integrase as a drug target 

1.2.3.1. The structure of HIV-1 integrase and its function 

The HIV-1 IN enzyme is one of three enzymes essential for HIV replication that 

belongs to the transposase family of DNA transferases. Its function is to catalyse 

the integration of newly synthesized viral DNA into the host chromosomal 

DNA.107,159 The 32 kilodalton (kDa) protein, depicted in Figure 1.7, is encoded 

from the 3'-terminus of the pol gene and is comprised of 288 aa sectioned into 

three functional domains: the N-terminal domain (NTD), the catalytic core domain 

(CCD) and the C-terminal domain (CTD).160–162 The NTD (aa 1-50) consists of a 

dimeric helix-turn-helix that has a conserved histidine (His) and cysteine (Cis) 

motif (HHCC) coordinated by zinc.163 The CCD (aa 51-212) is comprised of six β-

strands surrounded by six α-helices and contains the D64D116E152 (DDE) motif 

consisting of Asp64, Asp116 and Glu152 acidic residues essential to the catalytic 

activity of IN. The divalent metal cation Mg2+, coordinates Glu152, Asp64 and 

Asp116 making it a fundamental cofactor in the catalytic domain.107 These aa 

residues are conserved throughout the IN CCD domain of retroviruses.164–166 The 

CTD (aa 213-288) is less conserved and has a SH3-like fold that facilitates non-
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specific DNA binding.163 Overall, all three domains of IN are involved in DNA 

binding and multimerization that is important for integration.160 

 

 

Figure 1.7: The schematic representation of the HIV-1 structural domains: the zinc 

coordinated N-terminal domain, the Mg
2+

 coordinated catalytic core domain and the non-specific 

DNA binding C-terminal domain. Illustration obtained and modified from McCol and Chen, 2010.
167

 

When zinc binds to the HHCC motif in the NTD, it promotes multimerization 

resulting in the formation of tetramers which is the functional state of IN.168 Each 

tetramer consists of a dimer of dimers that is linked by the six α-helices of the 

CCD subsequently forming a flexible loop between the helices of each monomer 

that plays a vital role in the integration of DNA (Figure 1.8).107 The positive 

charge residues in the area spanning from the end of the CCD on one monomer 

to the CTD of the other monomer plays a crucial role in viral DNA stabilization for 

subsequent integration.  

  

Figure 1.8: The structure of the HIV-1 integrase (IN) dimer. The IN dimer comprise the C-

terminal domain and the catalytic core domain. Each monomer is denoted in a different colour. 

Structure obtained from mapdev.rutgers.edu, accessed 29/10/2013. 
169
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IN catalyses irreversible viral integration in a two-step transesterification reaction: 

3’-end processing and the ST reaction. Figure 1.9 briefly describes the integration 

of viral cDNA into host DNA. Firstly, the IN cleaves conserved dinucleotides, CA, 

at the linear 3’-viral DNA end in the cytoplasm resulting in CA overhangs 

subsequently exposing the hydroxyl groups (Step 1 in Figure 1.9). IN together 

with the processed viral DNA and other viral and host proteins forms a PIC and is 

transported into the nucleus where the ST reaction occurs (Step 2 in Figure 1.9). 

In the presence of Mg2+, the exposed hydroxyl groups of the processed viral DNA 

attack the phosphodiester bonds on the host DNA at the site of insertion. 

Integration is completed when the two unpaired nucleotides at the 5’-end of the 

viral DNA are removed, the gaps between the host- and viral DNA are filled and 

the strands are covalently ligated by the host DNA repair proteins.164,170–172 The 

host cell genome now contains the viral genetic material necessary to create 

progeny viruses.   

 

Figure 1.9: Schematic representation of HIV-1 integration catalyzed by integrase (IN). In the 

first step of integration, known as 3’-end processing, IN binds to the viral DNA subsequently 

cleaving the CA dinucleotides at the 3’-end thereby exposing hydroxyl groups. Secondly, the 

hydroxyl groups of the processed viral DNA attacks the host DNA resulting in integration. The DNA 

is ligated using host DNA repair proteins thereby forming a provirus. Adapted and modified from 

Suzuki and co-workers, 2012.
173
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1.2.3.2. The mode of action of the integrase strand transfer inhibitor, 

raltegravir 

RAL is derived from a class of inhibitors that contain a distinct β diketo acid 

(DKA), 4-Aryl-2,4-diketobutanoic acid, moiety that demonstrate ST inhibition. The 

most potent β-DKA compound, L-731,988, exhibited a half maximal inhibitory 

concentration (IC50) of 80 nanomolar (nM).174 By substituting chemical moieties of 

DKAs, Merck Research Laboratories discovered that dihydroxypyrimidine 

carboxamide was an effective ST inhibitor selective for HIV IN only. RAL, a 

pyrimidine carboxamide, was the most potent derivative of the 

dihydroxypyrimidine carboxamides identified and demonstrated nanomolar 

activity with an IC50 = 7nM.175 RAL inhibits the ST reaction by chelating the 

divalent metal cations in the active site that modulate IN activity.176 The binding of 

the RAL to the CCD of IN is depicted in Figure 1.10. The chemical structure of 

RAL possess a 5-hydroxy-3-methylpyrimidin-4(3H)-one (HMPO) chelator group 

that combines with an amide carbonyl oxygen atom providing the essential 

coplanar oxygen atoms that binds to the Mg2+ in the DDE motif of the 

CCD.108,177,178 

 

EVG and DTG are DKA derivatives with similar structural moieties as RAL and 

thus these derivatives exert ST inhibition in a similar mechanism of action as 

RAL. 110,179 RAL and EVG in the HAART regimen are currently at the forefront of 

HIV therapy that vastly reduces viral replication in HIV treatment-naïve patients 

as well as HIV treatment experienced patients. RAL and EVG are novel class 

inhibitors and are therefore active against viral strains resistant to NRTIs, 

NNRTIs, PIs and entry inhibitors.180  

                                       

Figure 1.10: The binding of raltegravir (RAL) to the active site of integrase (IN). Coplanar 

oxygen groups of RAL bind to the Mg
2+

 coordinated catalytic core domain of the HIV-1 IN binding 

site. Diagram extracted from Agrawal and co-workers.
181
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1.2.3.3. Resistance mutations against raltegravir and other integrase 

inhibitors 

The emergence of viral resistant mutations compromise the efficacy of the 

antiretroviral agents.182 Viral resistant mutations in relevant HIV-1 genes may 

confer cross-resistance to antiretroviral agents within a drug class and can 

therefore limit treatment options for treatment experienced patients.182 To 

overcome the drug failure concern, novel drug classes or second generation 

antiretrovirals within a drug class should be developed.182 Mutations in the viral 

genome, caused by the error-prone RT as well as drug pressure, attribute to viral 

resistance against antiretroviral agents. O’Neil183 described the frequency of 

mutations due to RT as 0.85bp/genome/replication cycle. Multiple viral mutations 

emerge with increase in replication cycles resulting in a quasispecies of viruses 

that may hinder viral replication or confer resistance against antiretrovirals.182 The 

extent of resistance can be quantified by analysing the properties of the virus 

such as the degree of resistance through fold-change IC50 (FCIC50) and the 

replication capacity (RC) of the antiretroviral drug resistant virus relative to wild 

type wild type.182 

Recent reports have indicated that virological failure due to RAL treatment is 

attributed to resistance mutations in the IN catalytic domain.184,185 Resistance 

against RAL is conferred in a stepwise process through mutations in one of three 

distinct pathways INN155H, INQ148H/R/K or INY143R/C/H.186,187 INQ148H is the predominant 

pathway in viral resistance against RAL followed by INN155H and INY143R/C/H.188 The 

mutations observed emerge consecutively where studies conducted by Malet and 

co-workers189 demonstrated that INN155H is most likely the initial mutation that 

shifts to the INQ148H mutation. The INQ148 pathway mutations have demonstrated 

stronger RAL resistance than INN155H pathway mutations.189 However, these 

primary mutations are often associated with impaired IN that subsequently 

reduce the RC of the virus. To deter this, primary mutations are usually coupled 

with secondary mutations that restore RC as well as confer strong resistance 

against RAL. INQ148 is usually associated with ING140S and INN155H is associated 

with INE92Q.190 Delelis and co-workers190 elucidated that INQ148H as a single 

mutation confers RAL resistance but impairs RC. ING140S as a single mutation 

does not confer resistance but restore RC when coupled to INQ148H. Therefore, 

INQ148H in combination with ING140S produces a virus that has a high RC and is 

greatly resistant to RAL.190 Likewise, INN155H in combination with INE92Q or INT97A 
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increase both RC as well as resistance against RAL.190 The primary mutation, 

INY143C/R, reduces RAL susceptibility 5-20 fold however when coupled with INT97A, 

RAL susceptibility decreases by >100 fold.191–193 Resistant mutations against 

RAL were also observed in patients failing EVG therapy indicating cross 

resistance mutations between RAL and EVG.194,195 Furthermore, DTG conferred 

the mutations, INE92Q and INQ148H/R, only in RAL-experienced patients.196 INT124A 

was observed in treatment-naive patients and conferred low-level resistance 

against DTG.196 In addition the primary mutation INR263K was observed in 

treatment-naive patients where viral replication decreased by 20% and a low-

level of DTG resistance was observed (2-6 fold).197 Secondary mutations INH51Y, 

INE138K or INM50I were observed that increased DTG resistance but decreased 

viral replication.198 

1.2.3.4. In vitro assays used to identify HIV integrase inhibitors 

Several assays have been developed to measure IN activity and identify 

inhibitors. Such assays include gel based assays; fluorescent resonance energy 

transfer (FRET)-based assays, microarray screening (mARSC) and in vitro 

microtiter plate assays that have been developed to recreate the integration 

process by using recombinantly expressed IN and double stranded (ds) DNA 

resembling viral DNA ends.199–201 Most HIV-1 IN assays follow similar principles 

where viral dsDNA is immobilized onto a solid phase-support thereby 

quantitatively measuring IN activity by monitoring the fusion of the viral dsDNA 

with a labelled target DNA (tDNA).145 These assays are used to screen HIV-1 IN 

activity in isolation and in the presence of possible inhibitors where ST and 3’-end 

processing can be measured consequently identifying or characterizing 

inhibitors.202,203  

1.2.3.5. HIV integrase assays amenable to automation 

Biochemical assays amended to HTS are desirable as it expedites the screening 

of small molecules and identification of INI. Such assays are responsible for the 

identification of several INI.204,205 For an assay to be suitable for automation it 

should possess the following qualities: homogenous assay, sensitive detection 

method, preferably conducted in microplates, rapid and minimal steps and 

incubation times.145 HIV-1 IN assays amenable to an automated system include 

time resolved FRET (TR-FRET), amplified luminescent proximity homogenous 
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assay (Alpha)-LISA, scintillation proximity assay (SPA) and more recently the 

cellular IN screening (CIS) assay.202,206,207  

1.2.3.6. Automation of an HIV integrase scintillation proximity assay 

(SPA) 

Although several assay formats can be adapted to automated systems, the SPA 

is the method that is highly compatible with automation since it is a homogenous 

biochemical assay used for biological screening of a large scope of biochemical 

processes in a rapid and sensitive approach. Since the bound and free 

radiolabeled molecules can be detected, the assay does not require any 

centrifugation, physical separation and filtration steps therefore easing robotic 

complexity when used in automation.208 The SPA is advantageous in automation 

with its high detection sensitivity, simplicity and fewer separating steps that 

reduce cost, time and potential errors.208 The principle of the assay is based on a 

radiolabeled molecule when in close proximity to the SPA bead, activates a 

scintillant that emits light thereby monitoring the activity of a biomolecule.208 The 

main components of the SPA are the radioactive isotopes and supportive 

material such as scintillation beads or scintillation microplates. The most common 

SPA beads are polyvinyltoluene (PVT) beads because they contain high 

efficiency scintillants within its matrix that are excited when in close proximity with 

a radioactive isotope. The PVT bead is coated in hydrophilic polyhydroxy film that 

masks hydrophobicity thus reducing non-specific binding.145 The coated film 

covalently couples generic capture molecules such as avidin, streptavidin, 

glutathione as well as polyclonal secondary antibodies. The SPA has been 

adapted to radioactive isotopes such as tritium (3H), 22P, 14C, 35S and 125I. 

However, 3H is the preferred radioisotope as the β-particles, released upon 

decay, has a short pathlength of 1.5 micrometer (µm) in aqueous solution that 

satisfies the energy transference distance criteria for SPA.145  

The principle of this HIV IN SPA, illustrated in Figure 1.11, is based on the 

binding of the 3H host/tDNA (3H-tDNA) to the IN-viral/donor DNA (dDNA) complex 

via a ST reaction bringing the 3H-tDNA in close proximity with the scintillant in the 

SPA beads. The β-particles emitted, when 3H decays, transfer energy to the 

scintillant resulting in light emission. If the ST reaction is inhibited by an inhibitory 

compound, the 3H-tDNA will not be captured by the IN-dDNA complex that is 

bound to the scintillation bead. The energy emitted by the 3H-tDNA will then 
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dissipate into the aqueous solution thus no light emission will occur. The intensity 

of radiation emitted is quantified through scintillation counting. The SPA in HIV-1 

IN studies have been reported where Hu and co-workers206 screened a large 

compound library of 1 million compounds using a SPA to identify possible IN 

inhibitors.  

 

Figure 1.11: The principle of the HIV-1 integrase (IN) scintillation proximity assay (SPA). The 

assay is based on radiolabeled host target DNA (
3
H-tDNA) that releases β-particles upon 

radioactive decay. When strand transfer (ST) occurs, the 
3
H-tDNA is in close proximity with the viral 

DNA attached to the SPA bead. The β-particles released activate the scintillant in the SPA bead 

consequently emitting light. When ST is inhibited, the 
3
H-tDNA is not in close proximity with the 

scintillant and thus its β-particles dissipate in the aqueous solution. Illustration extracted and 

modified from www.perkinelmer.com, accessed 31/07/2013.
209

 

1.2.4. Hypothesis 

There is no published data on screening the NIH Clinical Collection I and II for 

potential HIV-1 IN inhibitors. We hypothesize that screening of the NIH Clinical 

Collection I and II using an automated HIV-1 IN SPA may identify a possible IN 

ST inhibitor. 

1.2.5. Study aims and objectives 

The overall aim of this study is to adapt an HIV-1 IN assay onto an automated 

platform in order to screen a well-defined compound library for potential HIV-1 IN 

inhibitors. This will be achieved by completing the following objectives: 

1. Expression and purification of recombinant HIV-1 IN proteins (subtype B). 
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2. Optimization and validation of the HIV-1 IN inhibition SPA  

3. Adaption of the optimized HIV-1 IN inhibition SPA to an automated format 

4. Biological evaluation of the NCC using the automated HIV-1 IN inhibition 

SPA. 

5. Further development should HIT compounds be identified; including 

validation in secondary assays, mutation profiles, cell-based assays, 

ADMET evaluation and molecular docking. 
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2.1. Recombinant wild type HIV-1 subtype B integrase 

expression and purification 

The HIV-1 IN expression and purification protocol was extracted from Marchand 

and co-workers210, Bushman and co-workers211 and Fish212 to which several 

parameters have been modified.  

2.1.1. HIV-1 Pol gene induction 

Luria Bertani (LB, Laboratorios Conda, Spain) supplemented with 100 microgram 

per millilitre (µg/ml) ampicillin (AMP, Melford, UK) and 100µg/ml chloramphenicol 

(Dulfecha Biochemie, Spain) was inoculated with transformed Eschericia (E) coli 

BL 21 pINSD.His (NIH AIDS Research and Reference Reagents Programme; 

Catalogue number (Cat #) 2957) and incubated overnight shaking at 37°C. The 

overnight culture was diluted 100 fold in 350ml LB supplemented with 100µg/ml 

AMP and 100µg/ml chloramphenicol. The culture was grown in a shaking 

incubator at 37°C and the optical density (OD) thereof was intermittently read at 

600nm using the Spectramax Plus384 spectrophometer (Molecular Devices, 

USA) until an OD of 0.6 was reached. This OD was indicative of the logarithmic 

phase of the bacterial cell growth. The culture was then induced with 1 millimolar 

(mM) isopropyl β-D-1-thiogalactopyranoside (IPTG, Thermo Fisher Scientific, 

USA) and incubated for an additional three hours. The pellets of the induced cell 

lysate were collected after centrifugation at 3220 x g for 30 minutes at 4°C. 

2.1.2. Bacterial cell lysis 

The pellets collected after centrifugation of the induced cell lysate were 

resuspended in Lysis Buffer (10mM MgCl2, 0.25% 3-[(3-Cholamidopropyl)-

dimethylammonio]-1-propanesulfonate (CHAPS, Sigma Aldrich, USA), 1mM 

phenylmethanesulfonylfluoride (PMSF, Thermo Fisher Scientific, USA) and 200 

micrograms per microlitre (µg/µl) DNAse (Sigma Aldrich, USA)  made up in 

Binding Buffer, pH 7.2 (1M NaCl, 5mM imidazole, 20mM HEPES, 5% glycerol, 

2mM β- Mercapthoethanol (B-Me, Sigma Aldrich, USA). The cell suspension was 

homogenised until the solution was uniform and stirred at 4 °C for 30 minutes. 

The homogenous cell solution was sonicated for 1 minute at 75Hz and 0.6 cycles 

using the Labsonic M ultrasonic processor (Sartorius, Germany). The lysate was 

then centrifuged at 15 000 x g at 4°C for 30 minutes from which the supernatant 

was collected. 
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2.1.3. Nickel-Affinity column chromatography 

The Protino Nickel (Ni) NTA Affinity column (Macherey Nagel, Germany) used to 

purify the His-tagged recombinant HIV-1 IN was prepared on the ÄKTA 

PrimePlus (GE Healthcare, UK). The column was equilibrated with five column 

washes of Binding Buffer, described in section 2.1.2, at a flow rate of 3ml/minute. 

The supernatant containing protein was loaded onto the Ni-column through the 

super-loop at a flow rate of 1ml/minute and the flow through was subsequently 

collected. The column was washed with 20 column washes of Wash Buffer 1, pH 

7.2 (1M NaCl, 20mM HEPES, 60mM imidazole, 10% glycerol, 2mM B-Me) at a 

flow rate of 3ml/minute followed by 20 column washes of Wash Buffer 2, pH 7.2 

(1M NaCl, 20mM HEPES, 150mM imidazole, 10% glycerol, 2mM B-Me). The 

protein was eluted at a gradient with Wash Buffer 2 as the starting buffer and a 

set final target of 100% Elution Buffer, pH 7.2 (1M NaCl, 20mM HEPES, 600mM 

imidazole, 10% glycerol, 2mM B-Me). The elution fractions were collected at a 

flow rate of 1ml/minute and 3ml per fraction. The eluate containing the protein 

was pooled and concentrated under liquid nitrogen using an ultra-filtration 

vacuum system (Merck Millipore, USA) with a 10 000 Da filter membrane. 

2.1.4. PD-10 Sephadex column 

The concentrated protein sample in Elution Buffer was buffer exchanged into 

Storage Buffer, pH 7.2 (20mM HEPES, 1M NaCl, 4mM EDTA, 2mM dithiothreitol 

(DTT, Thermo Fisher Scientific, USA), and 50% glycerol) by desalting the protein 

using a PD-10 Sephadex column (GE Healthcare, UK). The concentration of the 

purified recombinant IN protein was quantified using the NanoDrop installation 

version 1.3.1 software on the NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific, USA) and calculated according to its molar extinction coefficient of 50 

460 using the equation: A=ε.c.l.   

2.1.5. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis  

Lysate samples were collected during the recombinant expression and 

purification of IN protocol, and analysed through Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE). The positive control was a 

recombinant HIV-1 IN protein received from the NIH AIDS Research and 

Reference Reagents Programme (Cat #9420).213,214 Samples were diluted 1:1 

with Sample Loading Buffer (1M Tris-HCL pH 6.8, 10% glycerol, 10% SDS, 
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0.05% bromophenol blue, 5% B-Me) and boiled for two minutes. Samples were 

loaded onto a Mini Protean TGX 10% SDS-PAGE precast gel (Bio-Rad, USA) at 

a volume of 10µl alongside a Protein Molecular Weight (Mr) Marker (Bio-Rad, 

USA). The gels were equilibrated using a 1x Tris-Glycine-SDS (TGS) buffer 

(25mM Tris, 150mM glycine, and 0.1% SDS) and separated at 120 volts. After 

completion of the run, the gel was stained with Coomassie (0.025% Coomassie 

Brilliant Blue, 40% methanol and 7% acetic acid) using a staining protocol 

extracted from Sasse and Gallagher.215 Following an overnight shaking 

incubation at room temperature with Coomassie, the gel was destained with 

Destaining Solution I (40% methanol and 7% acetic acid in dH2O) for 

approximately two hours followed by an additional destaining with Destaining 

Solution II (4% methanol and 7% acetic acid in dH2O) for 3-4 hours. Gel images 

were captured using the gel capture software version 5.8 on the MiniBIS Pro Gel 

Imager (DNR Bio-Imaging Systems, Israel). The purity of the recombinant IN was 

determined using the GelQuant 1D gel analysis software version 4.1 (Bio-

Imaging Systems, Israel).  

2.1.6. Western blot analysis of the recombinant HIV-1 integrase 

To verify the expression of the HIV-1 IN protein, a Western blot was conducted 

using protocols extracted and modified from Bronstein and co-workers216 and 

Gallagher and co-workers.217 SDS-PAGE gels were incubated in Towbin Buffer 

(20% methanol in TGS Buffer) for 15 minutes at room temperature before 

transferring to a polyvinylidene difluoride (PVDF) membrane using the iBlot gel 

transfer stacks (Life Technologies, USA) according to the IBlot Transfer System 

instructions, (iBlot Transfer System, Life Science Technologies, USA). The PVDF 

membrane was probed with 1:1000 diluted anti-His.H8 (Abcam, UK) primary 

antibodies and 1:10 000 diluted rabbit anti-mouse horseradish peroxidase (HRP) 

linked IgG secondary antibody using the automatic Western blot system 

(Benchpro 4100, Life Technologies, USA). Briefly, the membrane was blocked 

with Blocking Buffer (5% Bovine Serum Albumin (BSA) in 1x TBST (420mM Tris 

pH 7.6, 137mM NaCl, 0.1% Tween 20)) and washed with 1x TBST before and 

after probing the membrane with primary- and secondary antibody. The 

recombinant IN protein was detected using Supersignal West Pico 

Chemiluminescent substrate (1:1 Luminol and peroxidase, Thermo Fisher 

Scientific, USA) and exposed to X-Ray film for 30 seconds. To further verify the 
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presence of recombinant HIV-1 IN, the membrane probed with anti-His.H8 was 

stripped and re-probed with 1:2000 diluted HIV-1 HXB2 IN antiserum (NIH AIDS 

Research and Reagents Programme; Cat #757)218 that targets aa 22-34 on the 

IN protein and 1:10 000 goat anti-rabbit secondary antibody. The membrane was 

stripped by washing it with 1x TBST thereafter incubated for 15 minutes in 

Restore Western Blot Stripping Buffer (Thermo Fisher Scientific, USA) and 

washed 3x for 5 minutes with 1x TBST. This was followed by an overnight 

incubation at 4ºC with Blocking Buffer. The stripped membrane was re-probed 

according to the method described above. 

2.2. Radiolabeling 3’-target DNA with 3H-dNTPs 

2.2.1. Lyophilizing 3H-dNTPs  

3H-radionucleotides, deoxycytidine 5’- [5-3H] triphosphate (dCTP) and 

deoxythymidine 5’-[methyl-3H] triphosphate (dTTP) (American Radiolabeled 

Chemicals, USA), were lyophilized using the DNA 120 Savant Speed Vac 

Concentrator (Thermo Fisher Scientific, USA) for approximately 90 minutes until 

no liquid residue was visible. The lyophilized radionucleotides were reconstituted 

in 35µl dH2O. The concentration of the 3H radionucleotides was quantified using 

the Nanodrop 2000 and calculated using the Beer-Lambert law: A = εCl 

according to the molar extinction coefficients of 3H-dCTP and 3H-dTTP -  9.300 

and 9.600, respectively.  

2.2.2. Klenow fragment 3’-target DNA labelling with 3H-dTTP and 3H-

dCTP 

The complimentary target oligonucleotides to be radiolabeled, T 56-S 

(AAAAGGAGGAGAAGGAAAGGAGAGAGAGCGAATTAGCCCTTGGTC) and T 

56-A (AAAAGGAGGAGAAGGAAAGGAGAGAGAGGACCAAGGGCTAATTCG) 

(Inqaba Biotech, South Africa) were mixed in a 1:1 ratio at a final concentration of 

50 micromolar (µM) and annealed using the Eppendorf Mastercycler gradient 

PCR (Eppendorf, USA). The oligonucleotides were annealed under the following 

conditions: the reaction was heated at 95°C for two minutes then rapidly cooled 

to 68°C and held at 68°C for ten minutes. The reaction was then cooled down to 

storage temperature of 4°C over a 90 minute period. The 3’-end of the annealed 

linear tDNA was radiolabeled by inserting deoxynucleotides (dNTPs) at the 5’-

overhangs using the Fermentas Klenow fragment DNA labelling kit (Thermo 
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Fisher Scientific, USA). The reaction mixture consisted of 5µM linear tDNA, 150 

microcurie per millilitre (µCi/ml) 3H-dCTP, 150µCi/ml 3H-dTTP, 625µM mixed 

dNTPs, 1x kit Reaction Buffer, 10 units (U) Klenow fragment enzyme and was 

made up to a final volume of 20 microlitre (µl) with nuclease free water. The 

reaction mixture was incubated for four hours at 37°C and stopped by heating it 

at 75°C for ten minutes.  

2.2.3. Purifying the radiolabeled target DNA 

The QIAquick nucleotide removal kit (Qiagen, Germany) was used to purify 

unincorporated nucleotides from the 3H-tDNA. The high-salt concentration 

premixed kit Binding Buffer PNI was added to the 3H-tDNA mixture at a 10:1 ratio 

which was applied to a QIAquick spin column and centrifuged at 3800 x g for one 

minute. The flow through was discarded and the spin column was washed twice 

by adding 500µl premixed Buffer PE to the column and centrifuging it for one 

minute at 3800 x g. The spin column containing the 3H-tDNA was centrifuged for 

an additional one minute at 17 900 x g to remove residual ethanol from the 

premixed kit Buffer PE. The 3H-tDNA was eluted by adding 100µl dH2O to the 

center of the spin column membrane which was left to stand for one minute then 

centrifuged for one minute at 17 900 x g. The purified 3H-tDNA concentration was 

quantified using the NanoDrop 2000 and calculated using the MW of the tDNA 

(MW = 14136 grams per mole (g/Mol)).  

2.3. Scintillation proximity assay (SPA) 

The fundamental protocol for the SPA was derived from Grobler and co-

workers203 to which several parameters have been modified. All SPA experiments 

had the following controls: negative control (no IN), positive control (no 

test/inhibitory compound present) and 10µM RAL (Selleck Chemicals, USA). All 

test compounds were diluted in dimethyl sulfoxide (DMSO, Sigma Aldrich, USA). 

2.3.1. SPA optimization 

The SPA parameters that were modified include reaction buffers, divalent-metal 

ion cofactors (MgCl2 or MnCl2) and stop solutions. The reaction buffers were 

extracted from previously documented protocols described in Chow and co-

workers199 (20mM HEPES pH 7.5, 30mM NaCl, 10mM DTT and 0.5% IGEPAL 

(Nonidet-P40, Sigma Aldrich, USA), Dicker and co-workers219 (13.3mM DTT, 
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32mM MOPS pH 7.0, 0.067% IGEPAL (Nonidet-P40) and 12.8% DMSO), 

Grobler and co-workers203 (25mM HEPES pH 7.8, 50mM NaCl, 100µg/ml BSA 

and 5mM B-Me), and the Chow et al. buffer with 100µg/ml BSA. These buffers 

were further referred to as Buffer 1, Buffer 2, Buffer 3 and Buffer 4, respectively. 

The stop solutions and its constituents were extracted from Grobler and co-

workers203 and US patent no. 60/422,513.220 The stop solutions tested were 

62mM EDTA, 62mM EDTA with 63mM NaOH and 62mM EDTA with 63mM 

NaOH and 2.5M CsCl further refered to as stop solution 1,2 and 3, 

respectively.The optimized assay was validated by conducting dose-response 

experiments using RAL, EVG (Selleck Chemicals, USA) and 118-D24 (NIH AIDS 

Research and References Reagents Programme; Cat # 9957).221,222 

2.3.2. Preparation of the streptavidin coated SPA bead complex 

A 10x Reaction Buffer was prepared containing 200mM HEPES (pH 7.5), 300mM 

NaCl, 50mM DTT and 0.5% IGEPAL (Nonidet-P40). PVT streptavidin coated 

scintillation beads (GE Healthcare, UK) were reconstituted in 1x Reaction Buffer 

at a final concentration of 10mg/ml. Pre-processed biotinylated dDNA (U5 top 

strand, Biotin 5’-ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA-3’ and U5 

complimentary bottom strand 5’-ACTCCTAGAGATTTTCCACACTGACTAAAAG-3’) was 

added to the SPA bead suspension at a final concentration of 500nM and rocked 

at room temperature for one hour. The beads were washed twice with 1x 

Reaction Buffer by centrifugation at 1000 x g for five minutes. The SPA bead 

pellet was resuspended in 2x Reaction Buffer (with 20mM MgCl2) to a final 

concentration of 2mg/ml. Recombinant HIV-1 INWT was added to the amount of 

beads required for the experiment at a final concentration of 1µM and rocked for 

30 minutes at room temperature.  

2.3.3. The optimized SPA  

The SPA was carried out in 96-well microtiter plates (Perkin Elmer, USA) 

comprising of 50µl reactions per well. Each reaction consisted of 25µl of the 

prepared SPA bead-dDNA-IN complex, 50nM 3H-tDNA, 10µM test compound 

and was made up to 50µl with dH2O. DMSO replaced the test compound in the 

negative- and positive control. This reaction mixture was incubated at 22°C for 30 

minutes while shaking. Thereafter, ST reactions were initiated by adding 3H-tDNA 

to the reaction mixture at a final concentration of 50nM and incubated at 37°C 
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while shaking for 90 minutes. The enzymatic reaction was stopped with EDTA 

(without salt), a variable tested in section 2.3.1, at a final concentration of 62mM. 

The reaction product formation was subsequently measured in counts per minute 

(CPMs) using the Topcount NXT software version 2.54 on the Top Count 

scintillation counter NXT (Perkin Elmer, USA). 

The optimized SPA was used to screen the NCC compound library (Evotec, 

USA) and to conduct dose-response studies of cefixime trihydrate (CEF) and 

epigallocatechin gallate (EGCG). The optimized SPA was also used to screen 

CEF analogues against INWT. The CEF derivatives include: 7-

aminodesacetoxycephalosporanic acid (7-ADCA, Sigma Aldrich, USA), 7-

aminocephalosporanic acid (7-ACA, Sigma Aldrich, USA) and cephalothin 

sodium salt (CSS, Sigma Aldrich, USA). Mutation studies were conducted using 

the SPA where INWT was substituted with RAL resistant IN mutants, INQ148H and 

INQ148H/G140S that were previously prepared within our laboratories. DTG (Selleck 

Chemicals, USA) was used as a control. 

2.3.4. Handling of the Hamilton STARlet Robotic System 

Extensive training was undertaken on the Hamilton STARlet Robotic System 

(Hamilton Robotics, Switzerland) to gain experience and become familiar with 

operating and independent handling of the system. Training involved handling of 

the robotic system, programming protocols onto the system using the Hamilton 

method editor software version 4.2.0 7270 as well as troubleshooting of possible 

errors on the system.  

2.3.5. Amending the SPA onto the automated system  

A SPA protocol analogous to the optimized bench SPA was programmed on the 

automated system. To ascertain whether the automated SPA was on par with the 

manual SPA, dose-response experiments with RAL were conducted using the 

automated SPA and results thereof were compared with those obtained when 

conducting the manual SPA. 

2.3.6. Pooling of the NCC compound library 

In order to reduce cost and time, the NCC compound library was strategically 

pooled in an orthogonal method where one compound was present in two wells 

with different compounds (a row and a column pool).223 The Hamilton STARlet 
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robotic system was programmed to prepare the pooled compound dilution plates. 

Compounds were diluted to a final working concentration of 100µM in each pool. 

Figure 2.12 illustrates the assembly of pools comprised of eight or ten 

compounds. The eight-compound pools were comprised by combining an entire 

row of compounds from the NCC 96-well plates into a single well. The ten-

compound pools were comprised by combining the compounds of each column 

from the NCC 96-well plates into a single well. A total of 90 eight-compound 

pools and 72 ten-compound pools were generated.  
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Figure 2.12: A representative of the NCC 96-well compound plate illustrating the strategic 

orthogonal pooling of compounds. Pools were comprised of either eight- or ten compounds. The 

red oval demarcates the eight-compound pools constituted by combining the compounds of each 

column into a single well. The blue oval demarcates the ten compounds in a row that were 

combined to constitute the ten-compound pools. 

2.3.7. Screening of the NIH Clinical Collection 

The amended automated SPA was used to screen the prepared compound 

pools. Each automated experiment screened 18 pools (80 compounds). Overall, 

the entire NCC compound library consisting of 727 compounds was fully 

screened. 

2.4. Cell-based assays 

2.4.1. Cultivation of mammalian cells 

MT-4 cells (NIH AIDS Research and Reference Reagents Programme; Cat #120) 

were thawed at 37ºC and harvested in 20% growth media (Roswell Park 

Memorial Institute Medium 1640 (RPMI, Gibco, USA) containing 205mM L-
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glutamine (Thermo Fisher Scientific, USA) and supplemented with 20% 

inactivated fetal calf serum (FCS, Highveld Biologicals, SA), 20U/ml penicillin-

streptomycin (Gibco, USA) and 20µg/µl gentamycin (Gibco, USA). Cells were 

continuously sub-cultured every 2-3 days by centrifugation of the cell suspension 

at 360 x g for ten minutes and the subsequent pellet was resuspended in 10% 

growth media (RPMI 1640 media supplemented with 10% inactivated FCS, 

20µg/µl gentamycin and 20U/ml penicillin-streptomycin) for cell counting. Cells 

were counted by diluting the cell suspension 10x with 0.4% Trypan Blue stain 

(Gibco, USA) which cannot penetrate viable cells. The diluted cell sample was 

then added to the Countess Cell Counting Chamber Slide (Life Technologies, 

USA) and counted on the Countess Automated Cell Counter (Life Technologies, 

USA). Cells were then resuspended to 2 x 107 cells/ml in 10% growth media and 

incubated at 37ºC with 5% CO2. 

2.4.2. Cytotoxicity assays 

The protocol for the cytotoxicity assay was adapted from Mphahlele and co-

workers.224 Following sub-culturing and counting of cells, MT-4 cells were seeded 

at a final concentration of 1 x 105 cells/ml per well in 96-well plates. The cells 

were then incubated at 37ºC with 5% CO2 for one hour to stabilize. Dose-

response studies of CEF, EGCG and AMP were conducted using 2 fold serial 

dilutions with final concentrations ranging from 200µM to 1.56µM in 10% growth 

media. Auranofin (Biomol International, USA) was used as a control. These 

compound dilutions were added to the stabilized cells and incubated for four days 

at 37ºC with 5% CO2. The viability of the cells was determined using the Celltiter 

96 AQueous One Solution Cell proliferation assay (Promega, USA) that contains a 

tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS).225 The MTS solution was added to the cells at 

a volume of 10µl and incubated for two hours. Viable cells were quantified by 

measuring the reduction of the yellow tetrazolium dye in the MTS solution by 

metabolic active live cells to purple coloured soluble formazan. The absorbance 

of the formazan end-product was measured using the xMark spectrophotometer 

(Bio-Rad, USA) at 490nm.  
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2.4.3. HIV-1 phenotypic inhibition assay 

MT-4 cells were infected with HIV-1NL4-3 through spinoculation.226 Briefly, following 

sub-culturing of the cells, the resuspended cells were seeded at a volume of 

100µl at a working concentration of 2 x 105 cells/ml in a 50ml conical tube. HIV-

1NL4-3 was added to the cell suspension at a 0.1 multiplicity of infection (MOI). 

Cells that were not treated with virus were used as the negative control. The cell 

suspensions were centrifuged for 90 minutes at 1186 x g. The supernatant was 

discarded and the pellet was washed thrice with 10% growth media and 

centrifugation at 1186 x g for 10 minutes. The cells were resuspended in 10% 

growth media at a concentration of 2 x 105 cells/ml and were seeded in 96-well 

microplates at a final concentration of 1 x 105 cells/well. The seeded cells were 

then incubated at 37ºC with 5% CO2 for one hour. Compounds were serially 

diluted to final concentrations ranging from 200µM to 1.56µM in 10% growth 

medium and added to the cells following the one hour incubation. The treated 

HIV-1 infected cells were then incubated for four days at 37ºC with 5% CO2. RAL 

and 118-D-24 were used as positive antiretroviral controls. To determine whether 

the EGCG, CEF and AMP had antiretroviral activity, a p24 detection assay was 

conducted using the Vironostika HIV-1 Ab/Ag ELISA kit (Biomerieux, France). 

Following the four day incubation, 15µl of the supernatant cells was transferred to 

p24 microplate wells that contained HRP-labelled anti-HIV-1 p24. The reaction 

mixture was then made up to 150µl with a premixed Specimen Dilution Buffer 

followed by a one hour incubation period at 37ºC. The reaction mixture was 

discarded and the wells were washed 7x with a 1x Wash Buffer (25x propriety 

mixed kit phosphate buffer concentrate diluted in phosphate buffered saline 

(PBS, 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4 and 1.8mM KH2PO4) for 30 

seconds per wash. A chromogenic substrate, tetramethylbenzidine (TMB) was 

then added to the wells. In the presence of the p24 antigen, the HRP enzyme 

linked to anti-HIV-1 p24 cleaves the TMB substrate subsequently producing a 

blue colour. The enzymatic reaction was terminated using 10% sulphuric acid 

and subsequently measured at 450nm using the xMark spectrophotometer.  

2.5. HIV-1 integrase ELISA 

An HIV-1 IN enzyme-linked immunosorbent assay was used as a secondary 

assay to validate the HITS identified through SPA screening. The protocol for this 

ELISA was extracted from Mphahlele and co-workers.224 Stock biotinylated dDNA 
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(section 2.3.2) was diluted to 150nM with 1x ELISA Buffer 1, pH 7.2 (20mM 

HEPES, 75mM NaCl, 4µM ZnCl2 and 2% glycerol). The diluted dDNA was added 

to streptavidin coated microplate wells (R & D Systems, USA) and incubated on a 

shaker at 25ºC for one hour. The wells were then washed thrice with PBS. 

Recombinant expressed HIV-1 INWT (section 2.1) was diluted to a final 

concentration of 1µM in ELISA Buffer 2 (ELISA buffer 1 with 5mM DTT and 

10mM MgCl2). The diluted IN was then added to the microplate wells and 

incubated at 22ºC for 30 minutes. The negative control did not contain IN. The 

unbound IN was aspirated and the wells were washed 2x with 1x PBS for five 

minutes at 25ºC. The compound stock solutions were diluted to a working 

concentration of 10mM in DMSO. The test compounds were diluted to 100µM or 

10µM in ELISA Buffer 2 and added to the wells followed by a 30 minute 

incubation period at 37ºC. DMSO substituted the test compounds in the negative- 

and positive control. Annealed tDNA (5’-TGACCAAGGGCTAATTCACT-3’ 

fluorescein and 5’- AGTGAATTAGCCCCTTGGTCA-3’ fluorescein) (Inqaba 

biotech, South Africa) was added to the wells at a final concentration of 250nM 

and the mixture was incubated for an additional hour at 37ºC. The tDNA and 

unbound compounds were aspirated and the wells were then washed 3x with 2x 

saline sodium citrate (SSC) buffer pH 7 (0.15M Na3C6H5O7 and 1.5M NaCl) for 10 

minutes at 25ºC. Rabbit anti-fluorescein isothiocyanate (FITC): HRP antibody 

(AbD Serotech, UK) was diluted 1:10 000 in 1x PBS and added to each well. The 

wells containing the antibodies were incubated for 1-2 hours at 22ºC and were 

transferred to 4ºC for an overnight incubation. Following the overnight incubation, 

the antibodies were aspirated and the wells were washed 3x with 1x PBS for 10 

minutes at 22ºC. Sureblue TMB microwell peroxidase substrate (KPL, USA) was 

added to each well and the reaction was incubated at 37ºC for 15-30 minutes. In 

the presence of an HRP labelled conjugate, the reaction turns blue which was 

measured at 620nm using the xMark spectrophotometer.  

2.6. Reverse transcriptase activity colorimetric assay 

The effect of CEF, EGCG and AMP on RT activity was determined using the 

colorimetric Reverse Transcriptase Assay kit (Roche Diagnostics, Switzerland). 

The assay is based on a typical sandwich ELISA method and was carried out 

according to the kit instructions. All reagents used in the assay were provided 

with the kit. The reagents in the kit were prepared as follows: the nucleotide 
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mixture was prepared by diluting the nucleotide, digoxigenin (DIG)-dUTP, biotin-

dUTP and dTTP, 10x with Incubation Buffer, pH 7.8 (50Mm Tris Buffer with 

319mM KCl, 33mM MgCl2 and 11mM DTT). The reaction mixture was prepared 

by adding the primer template to the 10x prepared nucleotides at a final 

concentration of 0.9 A260/ml. The lyophilized anti-DIG-peroxidase (anti-DIG-POD) 

was prepared by reconstituting the antibody in dH2O to a final concentration of 

20U. The working dilution of anti-DIG-POD was prepared by diluting the 

reconstituted antibody to a final concentration of 200mU/ml with Conjugate 

Dilution Buffer (sodium phosphate buffer pH 7.4 containing a blocking reagent). 

The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) substrate 

was prepared by dissolving one ABTS tablet in Substrate Buffer (NaBO3•nH2O 

and citric acid/phosphate buffer). Sample mixtures were prepared in separate 

tubes for each test compound at a final volume of 60µl. Each sample comprised 

5 nanograms (ng) HIV-1 RT, 100µM or 10µM test compound, 20µl reaction 

mixture and the sample mixture was made up to 60µl with RT Lysis Buffer pH 7.8 

(50mM Tris, 80mM KCl, 2.5mM DTT, 0.75mM EDTA and 0.5% Triton X-100). 

The test compound in the positive control was replaced with RT Lysis Buffer. The 

negative control did not contain RT enzyme and was replaced with RT Lysis 

Buffer. AZT-triphosphate (TP) (GeneCraft, UK) was used as a control compound. 

The sample mixture was then incubated at 37ºC for one hour. After the 

incubation period, the sample mixtures were transferred to the streptavidin 

coated microplate modules and then further incubated for one hour at 37ºC. The 

sample mixtures were then removed from the wells followed by washing of the 

wells with the premixed kit Washing Buffer 5x for 30 seconds per wash at room 

temperature. The anti-DIG-POD was added to each well at a working dilution of 

200mU/ml and incubated for one hour at 37ºC. The wells were then washed 5x 

with the premixed kit Washing Buffer for 30 seconds per wash at room 

temperature. The ABST substrate was added to each well at a final volume of 

200µl and incubated at room temperature for 15 minutes. The absorbance of the 

green/blue colour was measured at 405nm. 
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2.7. Virtual screening of cefixime trihydrate and 

epigallocatechin gallate 

2.7.1. In silico evaluation of some ADME descriptors of cefixime 

trihydrate and epigallocatechin gallate 

The structures of CEF and EGCG were obtained from the standard database 

format (SDF) file on www.nihclinicalcollection.com for ADME studies using Osiris 

Property Explorer and Discovery Studio Software.154 The online software, Osiris 

Property Explorer (www.organic-chemistry.org/prog/peo/), was used to calculate 

drug-relevant properties such as the logarithm partition coefficient (cLogP), 

aqueous solubility (LogS) and drug score. The cLogP of a compound is a 

measure of the hydrophilicity of a compound. High cLogP values are indicative of 

low hydrophilicity and are associated with poor absorption and permeation. The 

LogS of a compound modulate the absorption and distribution of a compound 

where low solubility compounds are associated with poor absorption. The drug 

score of a compound is a single value that describes the overall potential of a 

compound as a drug. ADME descriptors such as absorption (HIA and aqueous 

solubility) and distribution (BBB penetration) properties of CEF and EGCG were 

predicted using the ADME Descriptor tool in the Discovery Studio version 3.1 

software (Accelrys, USA). The cLogP of CEF and EGCG used in Lipinski Ro5 

characterizations were retrieved from Osiris Property Explorer. The MW of the 

compounds and hydrogen donors and acceptors were retrieved from the SDF file 

on www.nihclinicalcollection.com.   

2.7.2. Molecular modelling of cefixime trihydrate and 

epigallocatechin gallate 

An HIV-1 IN monomer structure attached to viral DNA was previously prepared 

within our laboratory and was used in molecular docking simulations using 

Discovery Studio software version 3.1 (Accelrys, USA). The protein was 

automatically prepared for docking by inserting missing atoms, modifying missing 

loop regions and removing disorderly conformations. A binding site within a 

protein cavity defining a specific area where binding interactions may occur was 

created by selecting residues within a 7 angstrom (Å) radius surrounding the 

Mg2+. The small molecules of the NCC library were prepared using the Prepare 

Ligand Tool that generated isomers and tautomers and removed duplicate ligand 
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structures and ligands with undesirable properties. The structures of the control 

compounds RAL, EVG and DTG were obtained from the protein data bank 

(www.rcsb.org/pdb) and prepared using the prepare ligand tool. The LibDock tool 

was used to generate multiple conformations of the prepared ligands using the 

BEST conformation method. These conformations were then docked by locating 

the hotspots in the receptor binding site consequently generating numerous 

poses per ligand conformation. Poses with the best LibDock scores were 

selected for further optimization. The grid based CDOCKER tool that utilizes a 

CHARMm force field was used to refine the poses of the ligand by keeping the 

receptor binding site rigid whilst the ligands are more flexible. Thereafter, the 

scores of the refined poses, obtained from the CDOCKER, were calculated to 

select the best representative score that is indicative of the receptor-ligand 

interactions. 

 

2.8. Data analysis 

Microsoft Excel 2010 was used to calculate all averages and standard deviations 

(SD) as well as to construct bar- and pie graphs. Percentage inhibition was 

calculated using the following equation:  

 

Where testI represents the endpoint value of the inhibitor, neg the endpoint value 

of the negative control and pos the endpoint value of the positive control. p-

values were calculated to assess statistical differences within parameters and 

assay conditions. This was done using the online pairwise t-test 

(www.quantitativeskills.com/sisa/). Origin software version 6.1 (OriginLab, USA) 

was used to calculate the IC50, cytotoxicity change at 50% cytotoxic concentration 

(CC50) and the half maximal effective concentration (EC50) of the compounds. 

Origin software was also used to construct sigmoidal curves and to calculate the 

Hill-Slope of the curves. The FCIC50 values of inhibitors in mutation studies were 

calculated by dividing the IC50 of an inhibitor against a mutant integrase by the 

IC50 of an inhibitor against WT integrase. The Z-factor, used to describe the 

quality of the SPA, was calculated using an online calculator (www.screeningunit-

fmp.net/tools/z-prime.php).  
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3.1. Expression and purification of recombinant wild type HIV-

1 subtype B integrase 

Recombinant HIV-1 INWT was successfully expressed in E.coli after a three hour 

incubation at 37°C when induced with 1mM IPTG. Recombinant expressed INWT 

was verified on an SDS-PAGE (Figure 3.13) and compared to a positive- and 

negative control. The positive control was a recombinant HIV-1 IN received from 

the NIH while the negative control comprised E.coli BL21 pINSD.His that was not 

induced with 1mM IPTG. The expressed INWT was observed at its expected size 

of approximately 32kDa, which also corresponded with the positive HIV-1 IN 

control. No expressed INWT protein was observed in the negative control.  

 

                   

 

Figure 3.13: SDS-PAGE depicting the pINSD.His gene expression in E. coli BL21 after 

induction with 1mM IPTG. The samples were analysed alongside Protein Mr Weight Markers (Bio-

Rad, USA) that aid in determining the size of the expressed recombinant HIV-1 integrase. The 

SDS-PAGE was visualized using a Coomassie stain and the image was captured on the MiniBIS 

Pro gel capture imager. Lane 1 contained the positive control; Lane 2 contained the recombinant 

proteins expressed after induction with 1mM IPTG where the arrow indicates the protein that was 

predominantly expressed at the estimated size of 32kDa; Lane 3 contained the negative control 

(E.coli BL21 pINSD.His cells that were not induced with 1mM IPTG) where no bands were 

prominently expressed. Molecular weights in kDa, are indicated on the left. 
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After clarification of the 1mM IPTG induced crude extract, the pellet was 

discarded because it contained insoluble proteins and was therefore not used for 

further purification (data not shown). The supernatant, expected to contain the 

soluble recombinant INWT, was loaded onto the Ni-affinity column for purification.  

Figure 3.14 illustrates the elution profile of INWT from the Ni-affinity column at a 

gradient where Wash Buffer 2 (150mM imidazole) was the starting buffer and 

Elution Buffer (600mM imidazole) was the final buffer. The peak observed 

between fraction 14 and 23 is representative of the eluted INWT.  

        

 

 

Figure 3.14: Elution profile depicting the elution of the His-tagged proteins from the Ni-

affinity column. The blue, green, red, light blue and brown lines denote UV absorbance, imidazole 

concentration, conductivity, temperature and pressure, respectively. The elution profile, extracted 

from the ÄKTA Primeview 2 software, exemplified the elution of His-tagged proteins by measuring 

the UV absorbance of proteins per fraction (3ml/fraction) at a flow rate of 1ml/min for 3 minute 

intervals. A peak comprised of fractions 14 to 22 was observed during the elution period between 

39- and 63 minutes. 

The fractions (14-22), corresponding to the peak (Figure 3.14), were pooled and 

separated from other buffer components through ultra-filtration in order to 

increase the protein concentration. Recombinant expressed His-tagged protein 

samples were collected after each purification and concentration step to analyse 

the purity and intensity thereof through SDS-PAGE, as illustrated in Figure 3.15. 
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The recombinant expressed proteins were observed at approximately 32kDa 

which aligned with the positive control. The intensity of the bands depicted by the 

arrow in Figure 3.15, increased after Ni-affinity chromatography, ultra-filtration 

and PD-10 Sephadex size exclusion chromatography where each band 

demonstrated intensity of 145 298, 142 0994 and 196 839 after each step, 

respectively. The percentage purity of the recombinant proteins observed at 

approximately 32kDa was 73%, 70% and 77% after Ni-affinity chromatography, 

ultra filtration and size exclusion chromatography, respectively. Additional bands 

were observed between 50-75kDa. 

                   

 

               

  

 

Figure 3.15: SDS-PAGE depicting the purity and intensity of the recombinant expressed 

proteins. Samples were analysed alongside Protein Mr Weight Markers and verified using a 

recombinant HIV-1 integrase (IN) as a positive control. The gel was stained with Coomassie stain 

and visualized on the gel capture imager. Lane 1 contained the positive control; Lane 2 contained 

the E.coli BL21 pINSD.His after induction with 1mM IPTG; Lane 3 contained the crude extract after 

centrifugation; Lane 4 contained the fractions eluted from the Ni-affinity column; Lane 5 contained 

the concentrated His-tagged proteins using the Millipore ultra-filtration vacuum; Lane 6 contained 

the His-tagged protein after it was buffer exchanged into Storage Buffer using the PD-10 Sephadex 

column. The arrow denotes that the over-expressed recombinant protein was at the size (32kDa) at 

which INWT is expected. Additional protein bands were observed in lanes 4-6 between 50-75kDa. 

Molecular weights, in kDa are indicated on the left.   
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The presence of the recombinant His tagged protein was confirmed by a Western 

blot probed against the His-tag (using anti-His primary antibodies) (Figure 3.16 A) 

on the recombinant expressed INWT. The presence of recombinant INWT was 

further verified by stripping and re-probing the PVDF membrane with HIV-1 HXB2 

IN antiserum (Figure 3.16 B). The bands observed on the Western blot probed 

with anti-His primary antibodies correlated with the Western blot probed with IN 

antiserum. The bands detected also correlated with the HIV-1 IN positive control. 

           

A                 B 

Figure 3.16: Western blot probed with A - anti-His and B - anti-integrase primary antibodies 

verifying the expression of INWT. The Western blot images were visualized by means of 

chemiluminescence. The presence of recombinant expressed INWT was verified using a positive 

control HIV-1 integrase (IN). The presence of the recombinant expressed INWT was detected using 

antibodies against the His-tag on the recombinant expressed INWT as well as antibodies against the 

HIV-1 IN protein itself. Lane 1 contained the positive control; Lane 2 contained the pooled fractions 

(14-23) eluted from the Ni-affinity column; Lane 3 contained the concentrated INWT through ultra-

filtration; Lane 4 contained INWT after it had been buffer exchanged into Storage Buffer using the 

PD-10 Sephadex column. An additional band was observed that is demarcated with a white circle 

while the arrows denote recombinant INWT and positive control. 

3.2. SPA screening  

3.2.1. Purification of the radiolabeled (3H) target DNA 

Radiolabeled tDNA, 3H-tDNA, was purified to remove unincorporated nucleotides. 

The absorbance spectrum of the 3H-tDNA was extracted from the Nanodrop 

installation version 1.3.1 software where Figure 3.17 exemplifies the absorbance 

spectrum. A peak was observed at 260nm, the wavelength at which pyrimidines 

and purines of nucleic acids absorbs UV light. The purified DNA yielded a nucleic 

absorbance ratio of A260/A280 = 1.85 which is in the pure DNA ratio range. 

1        2          3           4                  1         2          3         4        
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Figure 3.17: The absorbance spectra of the 
3
H-tDNA extracted from the Nanodrop 

installation version 1.3.1 software obtained when quantifying the 
3
H-tDNA concentration 

using the Nanodrop spectrophotometer.  Absorbance was read at a wavelength ranging from 

220nm-345nm where a peak was observed at 260nm with a maximum < 1.05. 

3.2.2. Optimization of the HIV-1 integrase SPA 

The fundamental SPA protocol was extracted from Grobler and co-workers203 

where several parameters were modified such as the reaction buffer, metal 

cofactors and stop solutions. The optimal conditions were determined using the 

percentage ST inhibition attributed to RAL, the CPM signal and the Z-factor of the 

assay.  

The Z-factor of an assay is usually within a -1 < Z ≤ 1 range. When there is no 

data variation (SD = 0), and Z = 1, the assay is termed “ideal”. When the 

separation band is large (1 > Z ≥ 0.5), the assay is termed “excellent”. The assay 

is termed “marginal” when the separation band is low (0.5 > Z > 0). When there is 

no separation band between the positive- and negative control, the assay is not 

useful for screening.227 

Since the catalytic activity of HIV-1 IN is modulated by metal cofactors in the DDE 

motif of the IN active site, the optimal metal cofactor was determined by 

conducting experiments with MgCl2 and MnCl2. When comparing the CPM signal 

of the postive controls when conducting experiments using MgCl2 and MnCl2, 

MgCl2 rendered a higher CPM signal (97.5 ± 0.7) compared to experiments 

conducted with MnCl2 (78 ± 17.1). When comparing IN ST inhibition due to RAL, 
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experiments using MgCl2  demonstrated a significantly higher inhibition (65 ± 

15%, p = 0.02) compared to experiments conducted with MnCl2 (31 ± 8.5%). 

Figure 3.18 compares the IN ST inhibition attributed to RAL when experiments 

were conducted using MgCl2 and MnCl2. The Z-factor of the experiments, when 

using MgCl2 and MnCl2, were 0.952 and 0.497, respectively. MgCl2 was 

considered as the optimal metal chelator as it rendered the highest IN inhibition 

and the higher CPM signals and had the highest Z-factor when compared to 

MnCl2.  

 

Figure 3.18: Comparison of the percentage integrase (IN) strand transfer (ST) inhibition 

caused by raltegravir (RAL) when conducting experiments with metal cofactors, MgCl2 and 

MnCl2. SPA experiments using  MgCl2 demonstrated 65 ± 15% IN ST by RAL where experiments 

using MnCl2 only inhibited IN ST by 31 ± 8.5%. The asterisks indicate that the % IN ST in the 

presence of MgCl2 is significantly different from that of MnCl2. The error bars indicate the SD of the 

mean average of at least three experiments. 

To increase the CPM signal of the SPA, several reaction buffers, obtained from 

literature, were tested. The highest CPM signal was observed when using Buffer 

4 (278 ± 91.85), however the Z-factor (-0.277) was the lowest when compared to 

the Z-factor of the experiments conducted using Buffer 1, 2 and 3, respectively. 

The highest IN ST inhibition was observed when using Buffer 2 (85 ± 10%) which 

also rendered the highest Z-factor (0.445).  

Table 3.1 compared the reaction buffers and its effect on the CPM signal, the IN 

ST inhibition attributed to RAL as well as the Z-factor of the assay. The highest 
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CPM signal was observed when using Buffer 4 (278 ± 91.85), however the Z-

factor (-0.277) was the lowest when compared to the Z-factor of the experiments 

conducted using Buffer 1, 2 and 3, respectively. The highest IN ST inhibition was 

observed when using Buffer 2 (85 ± 10%) which also rendered the highest Z-

factor (0.445).  

Table 3.1: Comparison of the different reaction buffers tested in the SPA and its effect on the 

CPM signal, integrase strand transfer inhibition and the Z-factor of the assay.  

Buffer 

CPM signal ± 

SD 

(Positive 

control) 

CPM signal 

± SD 

(Positive 

control) 

Percentage 

integrase 

strand transfer 

inhibition ± SD 

(Raltegravir) 

Z-factor 

1 83 ± 19 11 ± 1.41 65 ± 0.17 0.22 

2 141 ± 49 13 ± 4.95 85 ± 10 0.45 

3 92 ± 7.41 17 ± 9.59 78 ± 12.2 0.20 

4 278 ± 91.85 21 ± 8.88 70 ± 4.3 -0.28 

 

The optimal stop solution was determined by terminating the reaction between IN 

and 3H-tDNA with different stop solutions. When comparing the CPM signal of the 

positive controls after the addition of the stop solutions, Stop Solution 3 

demonstrated the lowest positive control CPM signal (305 ± 29) as opposed to 

reactions stopped with Stop Solution 2 that had the highest CPM signal (589 ± 

39). The reaction terminated with Stop Solution 2 yielded a CPM signal of 484.5 ± 

16) for the positive control. RAL inhibited IN ST by 88 ± 4%, 74 ± 2% and 56 ± 

17% when the SPA enzymatic reactions were stopped with Stop Solution 1, 2 

and 3, respectively (Figure 3.19). RAL demonstrated no appreciable IN ST 

inhibition (0.209 ± 0.03%) when the reaction was not stopped.  
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Figure 3.19: Comparison of the integrase (IN) strand transfer (ST) inhibition by raltegravir 

(RAL) after the enzymatic reaction between IN and 
3
H-tDNA was terminated with different 

stop solutions: Stop Solution 1 (62mM EDTA), Stop Solution 2 (62mM EDTA with 63mM NaOH) 

and Stop Solution 3 (62mM EDTA with 63mM NaOH and 2.5M CsCl). The highest IN ST inhibition 

was observed when stopping the reaction with Stop Solution 1 (88 ± 4%) followed by Stop Solution 

2 (73 ± 3%) and Stop Solution 3 (56 ± 3%). The reaction that was not stopped demonstrated no 

appreciable IN ST inhibition (0.209 ± 0.03%). Error bars indicate the standard deviation within 5% 

of the mean of triplicate data. 

3.2.3. Validating the optimized SPA with known integrase inhibitors 

The optimized SPA was validated using known controls and inhibitors such as 

RAL, EVG, 118-D24 and AZT. Dose response studies of RAL, EVG and 118-D24 

were conducted subsequently determining their IC50 values. Figure 3.20 

represents the dose-dependent response of RAL, EVG and 118-D24. The IC50 

values obtained were 9.98 ± 0.83nM, 4 ± 1.04nM and 1.50 ± 0.81µM for RAL, 

EVG and 118-D24, respectively and were compared to literature to validate the 

authenticity of the optimized SPA. The results obtained correlated with 

documented IC50 values of RAL, EVG and 118-D24 which have been reported as 

7nM, 8.80nM and 1.53µM, respectively.110,222,228 AZT was used as the negative 

control where no IN inhibition was observed. The Z-factor of this experiment, 

0.93, further validated the quality of the SPA. 
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Figure 3.20: Representative sigmoidal curves of raltegravir (RAL), elvitegravir (EVG) and 

118-D24 obtained when conducting dose-response studies using an integrase inhibition 

SPA. Each point indicates the normalized average mean of triplicate results and its standard 

deviation within 5% of the mean. The Hill-Slope variable describes the slope of the curve. The 

sigmoidal curve of 118-D24 demonstrates a standard sigmoid dose-response curve with a Hill-

Slope close to -1. The slope of RAL and EVG are more shallow than the slope of 118-D24. The 

area under curve for RAL and EVG decreased with an increase in IC50. 

3.2.4. HIV-1 integrase SPA amended to the automated system 

A SPA protocol analogous to the optimized SPA was programmed onto the 

Hamilton Robotic STARlet System. The automated assay was validated by 

conducting a dose-response study using RAL and comparing the IC50 of RAL 

obtained when using the automated assay to the RAL IC50 obtained when using 

the manual assay. Figure 3.21 compares the sigmoidal curve of RAL obtained 

when conducting the automated SPA and when conducting the manual SPA. The 

IC50 of RAL obtained when using the automated SPA was 7.30 ± 0.35nM which 

was not significantly different from the IC50 of RAL when using the manual SPA (p 

= 0.99). It was also observed that the Z-factor obtained when conducting the 

manual SPA (0.96) was slightly higher than the Z-factor obtained when 

conducting the automated SPA (0.88), however not significantly different (p = 

0.85). 
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Figure 3.21: The sigmoidal curves depict the comparison between the raltegravir (RAL) 

dose-dependent response (0.001µM to 10µM) when using the automated SPA and the 

manual SPA. The IC50 of RAL when using the automated SPA was 7.3 ± 0.35nM which correlated 

with the IC50 = 9.98 ± 0.83nM (p = 0.99) obtained when using the manual SPA. The Hill-Slope for 

the automated SPA was -0.6 whereas the manual SPA demonstrated a Hill-Slope of -1.46 

indicating that the manual SPA curve is steeper with a higher IC50 value than the sigmoidal curve 

for the automated SPA. 

3.2.5. Screening of the NCC library 

Before the compounds in the NCC compound library were screened, they were 

diluted to a final working concentration of 100µM in their respective pools with 

DMSO. To validate whether the pooling method would be suitable in a SPA, 

10µM of RAL was added to two random pools containing eight and ten 

compounds, respectively. Pools that included 10µM RAL were compared to pools 

without RAL to determine if RAL in the presence of eight or ten other compounds 

inhibited IN ST. RAL maintained its inhibitory effect by inhibiting IN ST by 89 ± 

4% within the eight-compound pool and 90 ± 3% within the ten-compound pool.  

The entire NCC was evaluated by screening one NCC plate, containing 80 

compounds (18 pools), per experiment. A total of 171 pools comprising 727 

compounds in the NCC compound library were tested. Figure 3.22 is a 

summation of the percentage IN ST inhibition of each compound pool.  Amongst 

the 171 pools, 136 pools demonstrated 0-10% IN ST inhibition, six pools 
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demonstrated 10-50% IN ST, three pools demonstrated 50-80% IN ST inhibition 

and one pool yielded IN ST inhibition > 80%. The remaining 25 pools were 

undefined due to the colour of the compounds that may have influenced the CPM 

signal thus resulting in false positives.  

 

Figure 3.22: Pie chart representation of the screened NCC pools according to their 

percentage integrase (IN) strand transfer (ST) inhibition. A total of 171 pooled compounds were 

screened in an orthogonal method where each compound was present in at least two pools. 

Amongst the 171 pools, 136  had approximately 0-10% IN ST inhibition compared to only one pool 

that demonstrated IN ST inhibition exceeding 80%. Furthermore, only six pools showed IN ST 

inhibition between 10-50% and three pools demonstrated IN ST inhibition between 50-80%. 

Compounds that influenced the CPM signal through quenching were deemed undefined. 

The compounds comprising pools that demonstrated IN ST inhibition > 50%, 

were tested individually on the SPA to identify the compound responsible for the 

IN ST inhibition. A Cephalosporin Beta (β)-lactam antibiotic, CEF, and an 

antioxidant found in Green Tea, EGCG, were identified as the compounds that 

attributed to the IN ST inhibition.  

3.2.6. Dose response studies of cefixime trihydrate and 

epigallocatechin gallate 

Dose-response studies of CEF and EGCG were conducted to determine the 

concentration of compound required for 50% IN ST inhibition. IC50 curves were 

constructed using the optimized SPA and the IC50 values of CEF and EGCG 
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against INWT were determined. The IC50 values were 6.03 ± 1.29µM and 9.57 ± 

1.62µM for CEF and EGCG, respectively, as depicted in Figure 3.24.  

3.2.7. Integrase resistant mutation profiles of cefixime trihydrate and 

epigallocatechin gallate 

The activity of INWT and RAL induced mutants, INQ148H and INQ148H/G140S, was 

determined using the optimized SPA. The activity of the enzyme was determined 

using the CPM signal of the positive control for INWT, INQ148H and INQ148H/G140S. 

The activity of INQ148H decreased 6 fold (CPMs for INWT = 220 and INQ148H = 34 

with background CPM = 18) whereas the activity of INQ148H/G140S decreased 2.6 

fold (INWT = 311 and INQ148H/G140S = 117 with background CPM = 15). RAL, EVG 

and DTG were used as controls against INQ148H/G140S. The sigmoidal curves of the 

RAL, EVG and DTG dose-response studies are demonstrated in Figure 3.23. 

INQ148H/G140S demonstrated resistance to the known inhibitors with IC50 values of 

1.5 ± 0.50µM and 2 ± 0.20µM obtained with RAL and EVG, respectively. These 

findings  were comparable to previously documented IC50 values of 1.96µM and > 

1 obtained for RAL and EVG respectively against this integrase mutant.229,230 The 

FCIC50 of RAL and EVG was 214 and 200, respectively. INQ148H/G140S mutation 

demonstrated no appreciable resistance to DTG (IC50 = 3 ± 1nM). 

  

Figure 3.23: The sigmoidal curves demonstrate the dose-response studies of dolutegravir 

(DTG), raltegravir (RAL) and elvitegravir (EVG) controls against HIV integrase (IN) 

harbouring the Q148H/G140S mutation. DTG did not exhibit a sigmoidal curve and generated a 

steep Hill-Slope of -4. EVG demonstrated a standard sigmoid dose-response curve with a Hill-

Slope of -1. RAL demonstrated a steeper curve than EVG with a Hill-Slope of -3.  
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Figure 3.24 represents the dose-response studies of CEF and EGCG conducted 

to determine the IC50 of the HITS against INQ148H/G140S mutation. The IC50 for CEF 

and EGCG were 5.01 ± 0.3µM and 0.619 ± 0.5µM respectively, with FCIC50 

values of 0.8 and 0.065. 

   

A            B 

Figure 3.24: The dose response curves of A: Cefixime trihydrate (CEF) and B: 

Epigallocatechin gallate (EGCG) exemplifying their IC50 values when screening against HIV 

integrase wild type (INWT) and INWT harbouring the Q148H/G140S mutation. The IC50 of CEF 

and EGCG screened against INWT were 6.03 ± 1.29µM and 9.57 ± 1.62µM, respectively. The IC50 

values obtained when screening CEF and EGCG against the INQ148H/G140S were 5.01 ± 0.3µM and 

0.619±0.5µM, respectively. The curves represent experimental data in triplicate with error bars 

within a standard deviation of 5% of the mean. The slope of both CEF and EGCG against 

INQ148H/G140S are shallower than the slopes of CEF and EGCG against HIV-1 INWT. The IC50 values 

of CEF and EGCG against INQ148H/G140S and INWT increase as the area under the curve decrease. 

3.2.8. Screening of cefixime trihydrate derivatives 

The CEF derivatives, 7-ADCA, 7-ACA and CSS containing the distinct β-lactam 

ring (Figure 3.25), were screened against INWT using the SPA to identify the 

moiety on the CEF structure that attributed to the IN ST inhibition. 7-ADCA, 7-

ACA and CSS at 10µM yielded 2.45 ± 1.08%, 1.9 ± 1.46% and 5.28 ± 12.10% IN 

ST inhibition, respectively. In addition, a closely related β-lactam antibiotic, AMP 

(Figure 3.25), was screened against INWT and demonstrated 66.5 ± 1.44% IN ST 

inhibition at 10µM. 
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A     B 

 

C     D 

 

E 

Figure 3.25: The structures of cefixime trihydrate and its structurally related compounds. A - 

Cefixime trihydrate (CEF) B - 7-aminodesacetoxycephalosporanic acid (7-ADCA) C - 7-

aminocephalosporanic acid (7-ACA) D - Cephalothin sodium salt (CSS) E – Ampicillin (AMP). The 

β-lactam rings, consistent in all structures, are demarcated with the red blocks. Structures obtained 

from www.chemspider.com, accessed 19/09/2013. 

3.2.9. Further development of identified HIT compounds 

3.2.9.1. Evaluating the cytotoxicity of epigallocatechin gallate, 

cefixime trihydrate and ampicillin 

The cytotoxicity of CEF, EGCG and AMP in MT-4 cells was tested and CC50 

values were determined. CEF and AMP did not demonstrate toxicity (CC50 > 

200µM) within the range evaluated. The dose-response sigmoidal curve of EGCG 

is demonstrated in Figure 3.26. EGCG yielded a CC50 of 23 ± 1µM whereas 
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previous studies reported that EGCG did not demonstrate cytotoxicity at a 

concentration < 100µM in peripheral blood mononuclear cells.231 The control, 

auranofin, had a CC50 = 0.57 ± 0.16µM which correlated with a previously 

reported CC50 value for auranofin (CC50 < 1.652µM).232 

 

Figure 3.26: A representation of the dose-response studies of epigallocatechin gallate to 

determine the cytotoxicity of the compound in MT-4 cells. The viability of the cells was 

quantified through an MTS assay where the absorbance of the reduced formazan product was read 

at 490nm. The sigmoidal curve demonstrates the concentration that reduces cell viability by 50% 

(CC50 = 23 ± 1µM). A steep curve is observed with a Hill-Slope of -24. Each datapoint is the 

average of triplicate experiments with errors bars indicating the standard deviation of the average 

mean within 5%.  

3.2.9.2. Determining the effect of cefixime trihydrate, epigallocatechin 

gallate and ampicillin on reverse transcriptase activity 

CEF and EGCG were screened against RT to determine whether the compounds 

had an effect on RT activity. The absorbance value of the ABTS-peroxidase end-

product was indicative of RT activity. Figure 3.27 represents the absorbance 

value of each compound tested as well as the absorbance values of the controls. 

EGCG inhibited RT activity by 56% and 25% at 100µM and 10µM, respectively. 

CEF inhibited RT activity by 14% and 9% at 100µM and 10µM, respectively. AMP 

inhibited RT activity by 8% and 1% at 100µM and 10µM, respectively. It is evident 

that the effect of EGCG on RT activity was dose-dependent. 
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Figure 3.27: Representation of the absorbance values measured at 405nm when analysing 

the effect of cefixime trihydrate (CEF), epigallocatechin gallate (EGCG) and ampicillin (AMP) 

on reverse transcriptase (RT) activity. The absorbance values of CEF, AMP and EGCG (10µM) 

was not significantly lower than the absorbance value of the positive control (p > 0.05). The 

absorbance value of EGCG at 100µM was significantly lower than the absorbance value of the 

positive control (p = 0.023) indicating inhibition of RT activity. The AZT-tp control absorbance value 

was significantly lower than the positive control (p = 0.002). The asterisks (*) signify statistical 

differences.  

3.2.10. Orthogonal screening of the identified HITS 

3.2.10.1. Validation of the cefixime trihydrate and epigallocatechin 

gallate through HIV-1 IN ELISA  

The effect of CEF, EGCG and AMP against INWT ST activity was confirmed 

through an HIV-1 IN ELISA. Figure 3.28 represents the absorbance values 

obtained for CEF, EGCG, AMP and RAL. CEF demonstrated 21% and 15% ST 

inhibition at 100µM and 10µM, respectively. EGCG exhibited 29% and 26% ST 

inhibition at 100µM and 10µM, respectively. AMP inhibited ST activity by 53% 

and 27% at 100µM and 10µM, respectively. RAL at 10µM was used as a control 

and exhibited 97% IN ST inhibition. 

* 

* 
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Figure 3.28: The absorbance readings (A620) measured when conducting an HIV-1 integrase 

(IN) ELISA to confirm the IN strand transfer (ST) inhibitory effect of cefixime trihydrate (CEF), 

epigallocatechin gallate (EGCG) and ampicillin (AMP). The A620 measured was directly 

proportional to the ST activity. Although the absorbance values of CEF, EGCG at 100µM and 10µM 

were lower than the positive control, they were not significant (p > 0.05). The AMP absorbance 

value at 100µM was significantly lower than the positive control (p = 0.01). The absorbance values 

observed for AMP was dose-dependent since the absorbance values decreased with an increase in 

compound concentration. The raltegravir control absorbance values were significantly lower than 

the positive control (p = 0.0004). The asterisks (*) represent statistical differences. 

3.2.10.2. Further validation of cefixime trihydrate, epigallocatechin 

gallate and ampicillin through an HIV-1 phenotypic inhibition 

assay 

Phenotypic assays were conducted to further validate the effect of CEF, EGCG 

and AMP against HIV-1. The activity of the virus was determined by detecting the 

p24 expression within infected MT-4 cells. Figure 3.29 represents the absorbance 

values measured for each compound tested as well as the controls. EGCG at 

200µM demonstrated viral activity inhibition > 100% whereas CEF and AMP at 

200µM demonstrated viral activity inhibition of 23% and 51%, respectively. RAL 

inhibited viral actvity by 74% at 100nM and 118-D-24 at 100µM inhibited viral 

activity by 97%.  

* 

* 
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Figure 3.29: The absorbance values of cefixime trihydrate (CEF), epigallocatechin gallate 

(EGCG), ampicillin (AMP) and the controls measured at 450nm when detecting the level of 

p24 expression in an HIV-1 phenotypic assay. The absorbance value of EGCG, AMP, 118-D-24 

and RAL were significantly lower than the positive control (p < 0.05). The asterisks (*) indicate 

statistical differences.  

Dose-dependent studies of EGCG and the control, 118-D-24, yielded EC50 values 

of 24 ± 3µM and 9 ± 4µM, respectively. Previous phenotypic studies have 

reported EC50 values of 730nM and 2.1µM for EGCG and 118-D24, 

respectively.222,233 Figure 3.30 exemplifies dose-dependent response curves of 

EGCG and 118-D-24. 

 

* 

* * 
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Figure 3.30: Sigmoidal curves representing the dose-dependent inhibition of p24 expression 

attributed to epigallocatechin gallate (EGCG) and the control 118-D-24 in HIV-1 infected MT-4 

cells. EGCG exhibited an EC50 = 24 ± 3µM and 118-D24 an EC50 = 9 ± 4µM. The Hill-Slope of 118-

D24 demonstrates a standard sigmoid dose-response curve with a Hill-Slope of close to -1. The 

slope of the EGCG curve was steeper than the 118-D-24 slope with a Hill-Slope of -2.  

3.2.10.3. Determining the effect of cefixime trihydrate and 

epigallocatechin gallate in the presence of reducing agents on 

strand transfer inhibition  

The effect of reducing agents such as DTT and B-Me was tested using the HIV-1 

IN ELISA when screening CEF and EGCG. The DTT concentration was 

increased to 10mM as opposed to the optimal 5mM DTT used in this ELISA. In 

addition, the effect of a weaker reducing agent than DTT, B-Me at 10mM, was 

tested when screening CEF and EGCG against HIV-1 IN. The comparison of ST 

inhibition attributed to CEF and EGCG in the presence of 5mM DTT, 10mM DTT 

and 10mM B-Me is depicted in Figure 3.31. An increase in IN ST inhibition was 

observed with an increase in DTT concentration when screening CEF and EGCG 

against HIV-1 IN. CEF demonstrated 53% in the presence of 10mM DTT 

whereas 66% IN ST inhibition was observed for EGCG. CEF and EGCG in the 

presence of 10mM B-Me yielded no appreciable activity against HIV-1 IN with 

16% and < 0% ST inhibition in comparison to the positive control. 
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Figure 3.31: The comparison of the activity of cefixime trihydrate (CEF) and epigallocatechin 

gallate (EGCG) against HIV-1 integrase (IN) in the presence of 5mM and 10mM DTT as well as 

10mM B-Me. The absorbance values measured at 620nm when conducting an HIV-1 IN ELISA 

was indicative of the activity of CEF and EGCG against HIV-1 IN. T-test analysis indicated that 

there were no significant differences between the positive controls obtained in the presence of the 

5mM DTT, 10mM DTT and 10mM B-Me (p > 0.005). The absorbance value of CEF in the presence 

of 10mM DTT and 10mM B-Me was significantly lower than the absorbance value of CEF in the 

presence of 5mM DTT (p = 0.0001). Although CEF in the presence of 10mM B-Me was significantly 

lower than CEF in the presence of 5mM DTT, it was not significantly lower than the positive control 

(10mM B-Me). EGCG in the presence of 10mM DTT was significantly lower than the positive 

control (10mM DTT) and the absorbance value of EGCG in the presence of 5mM DTT (p < 0.005). 

The error bars indicate the standard deviation of the average n = 3.  

 

3.3. Computational studies of cefixime trihydrate and 

epigallocatechin gallate 

3.3.1. Molecular docking of compounds with HIV-1 integrase 

3.3.1.1. Validating the docking protocol using control compounds 

To validate the ligand-receptor docking method, structurally-related INIs such as 

RAL, EVG and DTG were used in the docking studies since they have similar 

interactions with the HIV-1 IN active site. The best docking poses for RAL, EVG 

and DTG were selected based on their docking scores such as binding energy. 

Compounds with the lowest binding energy are deemed as the most favourable 

* 

* 
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receptor-ligand interactions.234 The binding energy for RAL, EVG and DTG were -

89.92 kilocalorie per mole (kCal/Mol), -39.89kCal/Mol and -54.45kCal/Mol, 

respectively. Figure 3.32 A illustrates the interaction of RAL with the defined 

active site of the HIV-1 IN with viral DNA. The hydroxyl group that forms part of 

the heteroatom triad of RAL forms a hydrogen bond with the side chain of the Glu 

152 residue that is present in the DDE motif of the IN active site (1.9Å). A 

secondary hydrogen bond is formed between an imine group (1) and the hydroxyl 

group of the threonine (Thr) 66 side chain (2.3Å). Furthermore, the lysine (Lys) 

159 residues present in the active site of IN formed two Pi interactions with the 

benzene ring (2) and the amine ring group (3) of RAL.  

EVG and DTG (Figure 3.32 B and C, respectively) interact with the active site 

mainly through a heteroatom triad as with RAL. The O (1) of the heteroatom 

oxygen triad of EVG forms two hydrogen bonds with the amino group on the side 

chain of asparagines (Asn) 144 (1.9Å) and with the imidazole group present on 

the side chain of histidine (His) 114 (2.1Å), respectively. A hydrogen bond 

interaction is observed between the amino group on the main chain of aspartic 

acid (Asp) 116 and the hydroxyl group (2) on EVG (2Å). In addition, charge 

interactions occur between the positively charged side chain of His 144 and the 

deprotonated O (3) of the carboxylic acid in the heteroatom oxygen triad (3.8Å). 

The interaction between DTG (Figure 3.32 C) and the IN monomer occurs via a 

hydrogen bond between the O (1) of the heteroatom oxygen triad present on 

DTG and the amino group on the side chain of Asn 144.
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A              B       C 

Figure 3.32: Two-dimensional (2D) structural diagrams generated using Discovery Studio version 3.1 software, exemplify the 

interactions between the defined active site of the HIV-1 integrase (IN) and the control compounds A, B and C; raltegravir (RAL), 

elvitegravir (EVG) and dolutegravir (DTG), respectively. Residues involved in possible van der Waals interactions are represented as green 

circles. Pink and blue circles denote residues involved in hydrogen bonds, charge- and polar interactions, respectively. The blue arrows denote 

interactions between the HIV IN active site residues and the control compounds. The heteroatom oxygen triad is demarcated with red. The 

molecules on the compounds involved in interactions are denoted numerically.
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3.3.1.2. Molecular docking of cefixime trihydrate and epigallocatechin 

gallate with HIV-1 integrase  

Interactions between the defined HIV-1 IN active site and the HIT compounds identified 

when screening the NCC library were predicted via molecular modelling. CEF and 

EGCG were identified as INIs through SPA screening and their structures were 

subsequently obtained from www.nihclinicalcollection.com. Overall, 15 poses were 

successfully docked for CEF and 16 poses for EGCG through CDOCKER. These 

poses were ranked according to their binding energies and CDOCKER energies. Albeit 

many poses docked successfully, not all were favourable. The binding energy of CEF 

and EGCG were 183kCal/Mol and -74.57kCal/Mol, respectively. However, the 

CDOCKER scoring function rendered a more favourable result with CEF, -

439.55kCal/Mol as opposed to the CDOCKER energy of EGCG, -29.37kCal/Mol. The 

2D structures depicted in Figure 3.33 describe the interactions between the CEF (A) 

and EGCG (B) and the defined IN active site, respectively. Interactions between the 

residues in the IN active site and CEF mainly occur through hydrogen bonds within a 

3Å bond distance (Figure 3.33 A). The deprotonated carboxylic acid (1) forms two 

interactions with the aa residues of the IN active site: 1 - a hydrogen bond with the 

hydroxyl group on the side chain of the Asp 64 residue present in the IN active site 

(2.7Å) and 2 - charge interactions with the positively charged side chain of His 51 

(2.1Å). The highly reactive aromatic system is involved in the hydrogen bond 

interactions between the H31 of the amino group (2) attached to the amino-thiazoyl 

moiety and the carboxylic acid on the main chain of Thr 115 (2.1Å). The carboxylic acid 

on the main chain of Thr 115 forms an additional hydrogen bond with H36 that 

comprise the central imino group (3) (2.2Å). Furthermore, the deprotonated carboxylic 

acid at the terminal end of the chain (4) forms a hydrogen bond with the amino group 

on the side chain of glutamine (Gln) 148 (2.2Å). The O (5) of the carboxylic acid forms 

a hydrogen bond with the amino group on the side chain of Asn 144 (2.2Å). Figure 3.33 

B illustrates the interaction between the aa residues present in the IN active site and 

EGCG. The hydroxyl group (1) attached to the highly reactive benzopyran-diol interacts 

with the carboxylic acid on the main chain of leucine (Leu) 63 (2.3Å) via a hydrogen 

bond interaction. 
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A        B 

Figure 3.33: Two-dimensional (2D) structures demonstarting the predicted structural interactions between A - Cefixime trihydrate (CEF) 

and B - Epigallocatechin gallate (EGCG) and the defined HIV integrase (IN) active site. The 2D structural diagrams were constructed 

using the Discovery Studio version 3.1 receptor-ligand docking tool. All possible interacting amino acids (aa) of the active sites are 

indicated through the coloured circles. The pink and blue circles indicate the aa that are involved in possible hydrogen bonds, charge- or polar 

interactions, respectively. Aa residues with possible van der Waals interactions are represented by the green circles. The blue arrows denote 

possible bond formations between aa residues and the molecules comprising CEF and EGCG. The molecules of the compounds involved in 

interactions are numerically denoted.  
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3.3.2. Evaluation of the absorption and distribution properties of cefixime 

trihydrate and epigallocatechin gallate 

Osiris Property Explorer predicted the absorption, solubility and drug-like score of CEF 

and EGCG. Table 3.2 exhibit the predicted drug property values of CEF and EGCG. A 

good absorbed drug has a cLogP between -0.4 to 5.6 where CEF and EGCG exibited 

cLogP values < 5 thus indicating good absorption. The solubility of CEF and EGCG 

was -2.8 and -2.16, respectively, indicating moderate solubility of the compounds. LogS 

values greater than -4 are typically an indication of good solubility.  The drug-like 

scores of CEF and EGCG were 0.76 and 0.69, respectively. A drug-like score ranges 

from 0-1, where 1 indicates a good drug candidate while 0 indicates a poor drug 

candidate.  

Table 3.2: The predicted solubility, absorption and drug-like score of cefixime trihydrate and 

epigallocatechin gallate using Osiris Property Explorer. 

  Cefixime trihydrate Epigallocatechin gallate 

CLogP -0.65 2.65 

Solubility -2.8 -2.16 

Drug score 0.76 0.69 

 

In addition, absorption and distribution properties of CEF and EGCG were predicted 

using Discovery Studio version 3.1 software (Table 3.3). The predictive aqueous 

solubility model used predicts the solubility of compounds in water at 25°C which is 

expressed as logSw. The predicted logSw for CEF was -3.584 and the predicted logSw 

for EGCG was -6.104. These logSw values indicate that CEF is drug-like and highly 

soluble. The logSw value predicted for EGCG indicated that the drug-likeness of the 

compound was low but may still be soluble. The predicted HIA of CEF and EGCG were 

expressed according to their AlogP levels. Both compounds exerted an HIA level of 3 

with -2 ≥ AlogP98 ≥ 7. This indicates that CEF and EGCG are poorly absorbed after 

oral administration. The ADMET BBB model predicted the penetration of the 

compounds through the BBB after oral administration. The categorical BBB level of 

both CEF and EGCG were 4. This indicates that the BBB penetration predication of 

CEF and EGCG could not be defined because the compounds are not within the 99% 

confidence ellipse.  
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Table 3.3: The predicted human intestinal absorption, solubility and blood brain barrier penetration 

scores for the two HIT compounds obtained from Discovery Studio version 3.1 

  
Cefixime 
trihydrate 

Epigallocatechin 
gallate 

Human intestinal absorption 3 3 

Solubility -3.584 -6.104 

Blood brain barrier penetration 4 4 

 

The data obtained from Osiris Property Explorer and Discovery Studio version 3.1 was 

used to predict the oral bioavailability of CEF and EGCG using the Lipinski Ro5 

described in section 1.2.2.2. Data in Table 3.4 indicated that both CEF and EGCG do 

not fully adhere to these rules. 

Table 3.4: The predicted oral bioavailability of cefixime trihydrate and epigallocatechin gallate 

using Lipinski Rule of 5. 

  
Cefixime 
trihydrate 

Epigallocatechin 
gallate 

MW < 500 Daltons X √ 

cLogP < 5 √ √ 

Hydrogen bond donors < 5  √ X 

Hydrogen bond acceptors < 10 X X 
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The inevitable emergence of HIV-1 drug resistance mutations against the current 

antiretroviral agents has propagated investigations to identify novel antiretrovirals 

against enzymes and viral- or host proteins essential for HIV-1 replication. This 

study focuses on repurposing available drugs as HIV-1 INIs. By using 

recombinantly expressed HIV-1 INWT in an optimized SPA amended to an 

automated system, a small compound library, NCC, was screened to identify 

potential HIV-1 INIs. The expression and purification of HIV-1 INWT was confirmed 

through SDS-PAGE analysis as well as Western blot analysis. Binding and 

activity against the known INIs RAL, EVG and DTG confirmed that the purified 

recombinant IN was functional. Overall, two compounds were identified when 

screening the NCC compound library that yielded IN ST inhibition over 60%. 

These compounds were CEF and EGCG. Mutation studies indicated that the 

activity of CEF and EGCG were not affected by the viral IN mutations 

INQ148H/G140S. The binding mode of CEF and EGCG were predicted through 

molecular docking studies as well as through the screening of CEF derivatives. In 

silico studies indicated that CEF and EGCG were drug-like. The activity of CEF 

and EGCG could, however, not be confirmed through orthogonal assays. 

 

4.1. Successful expression and purification of HIV-1 subtype B 

integrase  

The HIV-1 NL4-3 IN sequence was cloned into pET15B which was subsequently 

transformed into E. coli BL21 (DE3) bacterial expression cells and induced with 

IPTG. SDS-PAGE gels indicated that the protein saliently expressed was HIV-1 

IN at approximately 32kDa.160 The His-tagged HIV-1 IN was purified through Ni-

affinity chromatography where the electron rich His-tag has a high affinity for the 

transitional metal, Ni2+. The single purification step has previously demonstrated 

protein purification of 95% expressed in E.coli 235 whereas the recombinant HIV-1 

IN in this study demonstrated 73% purity. Previous studies have indicated that 

the His-tag present on the recombinant HIV-1 IN did not affect the activity of the 

enzyme211 and therefore the His-tag was not cleaved in this study. Western blot 

analysis (Figure 3.16) confirmed the recombinant expression of HIV-1 IN with 

primary antibodies against the His-tag of the expressed HIV-1 IN as well as 

antibodies against the aa (23-34) sequence of HIV-1 IN. Additional bands were 
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observed at approximately 60kDa on a reducing SDS-PAGE gel which suggests 

dimerization of the HIV-1 IN enzyme.8,9 The Western blot analysis demonstrated 

an additional band higher than the prominently visible band when probed against 

the HIV-1 IN aa 23-34. However, the occurrence of dimerization on a reducing 

gel is unlikely since a reducing agent is added to perturb cysteine bonds involved 

in multimerization of HIV-1 IN enzymes. Since the additional band was also 

observed on a Western blot it can be assumed that dimerization may have 

occurred due to incomplete reduction of cysteine bonds. HIV-1 INWT is prone to 

aggregation and together with the fact that a high concentration of the protein 

was loaded on to the gel (75µM), the 5% B-ME used to reduce the protein may 

not have been sufficient. Parameters that influence dimer formation such as the 

reducing agent concentration, protein concentration and boiling duration of the 

sample can be tested. In addition, mass spectroscopy studies can be conducted 

to validate whether the additional band is indeed an HIV-1 IN dimer. Sufficient 

recombinant HIV-1 IN was expressed and purified for optimization of the SPA, 

the screening of the NCC compound library and HIV-1 IN ELISAs to minimize 

variability between experiments.  

4.2. The optimized SPA parameters 

In order to screen the NCC compound library, a suitable assay had to be 

developed that was able to screen multiple compounds simultaneously using an 

automated system. As described in section 1.2.3.5, the SPA was deemed the 

most suitable assay for this study and was therefore used to monitor IN ST 

activity. A protocol extracted from Grobler and co-workers203 was altered by 

modifying several variables in the assay such as buffer reagents, divalent metal 

cations, reducing agents and detergent concentrations which can compromise 

the efficacy of inhibitory compounds.236 The optimal conditions for the SPA were 

determined based on CPM signal, IN ST inhibition attributed to RAL and most 

importantly the Z-factor of the assay.  

Previous studies have demonstrated that the assembly of the IN viral DNA 

complex as well as 3’-end processing and IN ST requires a divalent metal cation, 

either Mg2+ or Mn2+, in order for it to exert its function.237,238 Although, Grobler and 

co-workers178 elucidated that Mg2+ was physiologically more relevant in vivo, 

Mn2+ is more compatible in in vitro experiments such as the SPA as IN activity is 

more robust in the presence of Mn2+.178 The Mg2+ was used in further SPA 
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experiments in this study, since this divalent metal cation is physiologically more 

relevant and RAL exerted a higher IN ST inhibition in the presence of Mg2+. 

In order to increase the CPM signal the stop solutions and buffer compositions 

were tested. When testing the buffer compositions, Buffer 4 (Chow199 buffer with 

100µg/ml BSA) demonstrated the highest CPM signal however the Z-factor was 

below zero which indicated that there was no separation band between the 

positive- and negative control and therefore the assay was deemed futile. This 

low Z-factor might be attributed to background signal indicating that the IN ST 

inhibition observed (70 ± 4.3%) when using Buffer 4 was possibly a false positive. 

For these reasons, Buffer 2 (Chow199) was used as the optimal assay buffer since 

this buffer demonstrated the second highest CPM signal (141 ± 49) and a 

marginal Z-factor of 0.4. However, the Z-factor indicated that the separation band 

between the positive-and negative control was low which suggested background 

signal. To further reduce background signal, various stop solutions were tested. 

Stop solution was added to the assay to terminate the enzymatic reaction and to 

float scintillation beads to the suface thus bringing the beads in closer proximity 

to the photomultiplier tube detectors thereby reducing background signal. EDTA 

at a final concentration of 62mM was found to be the optimal stop solution; likely 

due to the fact that EDTA is a Mg2+ chelator and therefore effectively terminated 

the activity of the enzyme. 

The fully optimised SPA was deemed an excellent assay with Z = 0.8 according 

to the screen assay quality category described by Zhang and co-workers.227 The 

assay was then further validated through dose-dependent studies of known 

controls. The SPA yielded IC50 values of 7.3 ± 0.3nM, 4.0 ± 1nM and 1.5 ± 0.8µM 

for RAL, EVG and 118-D24, respectively, which was statistically comparable (p > 

0.005) to the IC50 values previously documented in literature (described in section 

3.2.3). This then indicated that the optimised SPA was validated and could be 

used in subsequent HIV-1 IN activity screening experiments.  

In order to screen the entire NCC compound library, a SPA protocol analogous to 

the manual SPA protocol was amended to an automated system. The success of 

amending the manual SPA to an automated system was determined by 

comparing the IC50 values of RAL obtained from both the automated- and manual 

SPA. T-test analysis confirmed that the IC50 of RAL obtained when conducting 
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the manual SPA was statistically comparable (p = 0.99) to the IC50 of RAL when 

conducting the automated SPA indicating that this protocol was adequate for use 

on the automated system. The optimized SPA was used to screen the NCC 

compound library and subsequent compound derivative experiments. The SPA 

was then further used for mutant screening by replacing the HIV-1 INWT with the 

INQ148H/G140S. The SPA was validated by screening known controls such as RAL, 

EVG and DTG against the INQ148H/G140S mutant. Resistant profiles of RAL, EVG 

and DTG obtained through SPA screening against INQ148H/G140S correlated with 

previous reports as indicated in section 3.2.7 thus validating the SPA as a 

suitable assay for HIV-1 IN mutant screening. Since the INQ148H/G140S mutation 

decreased the activity of the enzyme, the concentration of the IN mutant was 

increased in order to increase the CPM signal that would yield a satisfactory Z-

factor. 

For mutation studies, the activity of the mutant IN, INQ148H/G140S, was tested and 

compared to the activity of INWT. The FCIC50 of INQ148H/G140S against control 

compounds was tested to determine the degree of resistance of the mutation. 

The activity of INQ148H decreased 6 fold when compared to the activity INWT which 

was in accordance with previous studies.229 The decrease in enzyme activity may 

be due to the INQ148H mutation that is present in the DDE motif of the HIV-1 IN 

active site and decreases the amount of viral DNA integrated into the host DNA 

consequently impairing the integration process.176 When pairing the primary 

mutation, INQ148H, with the secondary mutation, ING140S, the integration efficiency 

was restored and the activity of HIV-1 IN decreased by only 2 fold when 

compared to HIV-1 INWT. This data correlated with the results observed in the 

study conducted by Delelis and co-workers.229 

 

4.3. HITS identified when screening the NCC compound 

library 

This study focused on compounds exhibiting appreciable IN ST inhibition when 

screening the NCC compound library. Two compounds (out of a total of 727) that 

demonstrated IN ST inhibition > 60% were identified as a β-lactam antibiotic, 

CEF, and the Green Tea antioxidant, EGCG. Pooled compounds that contained a 

coloured compound within the group of compounds were considered false 
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positives. Due to quenching, these coloured compounds absorb the light emitted 

from the scintillant in the PVT SPA bead thereby decreasing the energy emitted. 

As such, these coloured samples appear to inhibit IN activity but may be artifacts. 

4.3.1. Cefixime trihydrate identified as a strand transfer inhibitor 

The notion of an antibiotic inhibiting the activity of a virus is uncommon, however, 

the β-lactam antibiotic, CEF, demonstrated IN ST inhibition with an IC50 = 6.0 ± 

1.2µM. CEF is a third generation cephalosporin antibiotic active against a wide 

range of gram-negative bacteria that is resistant to β-lactam antibiotics.239 CEF is 

renowned for its high affinity for its target, penicillin-binding protein (PBP) located 

in the bacterial cell wall that catalyses cell wall biosynthesis.240 The involvement 

of CEF in HIV antiretroviral activity has not been documented as yet, however 

cephalosporin oligonucleotides as well as monocyclic β-lactams have been 

reported as HIV PIs.241 To determine whether CEF was specific against HIV-1 IN, 

RT inhibition studies were conducted. CEF demonstrated no appreciable RT 

inhibition at both 10µM and 100µM which indicated that CEF may be specific to 

HIV-IN. Studies testing CEF against HIV-1 PR and other HIV-1 drug targets 

would confirm whether CEF is a specific HIV-1 IN inhibitor.  

4.3.2. The possible binding mechanism of cefixime trihydrate 

The activity of CEF against INQ148H/G140S was investigated since this mutation 

pathway is one of the main RAL resistance pathways. CEF maintained its activity 

against HIV-1 INQ148H/G140S (FCIC50 = 0.8) indicating that CEF does not share a 

genetic barrier with the RAL resistant mutation. This data suggests three 

theories: 1 - CEF may not bind to the active site of IN and its mechanism of 

action may differ from the mechanism of action of RAL and EVG, 2 - CEF may 

bind to viral DNA thereby disrupting the viral DNA-IN interaction which in turn 

interrupts the integration process, and 3 - CEF may influence the IN enzyme or 

the assay in a non-specific manner. Further studies to elucidate the mechanism 

of action of CEF against HIV-1 IN have to be conducted.  

Derivatives of CEF; 7-ACA, 7-ADCA and CSS were screened against HIV-1 IN to 

determine the moiety responsible for the HIV-1 IN ST inhibition. CSS, 7-ACA and 

7-ADCA are structurally related to CEF where a β-lactam ring structure attached 

to a dihydrothiazine ring is consistent throughout the structures of these 

compounds (Figure 3.25).242 Cephalosporin acylase hydrolyses cephalosporin C, 
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consequently producing 7-ACA and 7-ADCA which are intermediates in the 

production of semi-synthetic cephalosporin antibiotics such as CEF.243 No 

appreciable IN ST inhibition was observed with the CEF derivatives at 10µM and 

therefore it can be assumed that the β-lactam moiety alone is not responsible for 

the IN ST inhibition. AMP is a β-lactam antibiotic derived from penicillin and 

follows the same mechanism of action as CEF in preventing the synthesis of 

gram-negative and gram-positive bacterial cell wall.240 Both CEF and AMP 

possess β-lactam rings however they differ structurally where the dihydrothiazine 

ring on CEF is substituted with a thiazolidine ring on AMP. As such, the effect of 

AMP on IN ST activity was investigated. AMP demonstrated IN ST inhibition by 

66.5 ± 1.4%. Since our findings suggests that the β-lactam ring does not attribute 

to IN ST inhibition, inhibition may likely be due to interactions between the acyl 

side chain present on CEF and AMP or due to the terminal carboxylic acid group 

present on both CEF and AMP. 

Molecular modelling studies were conducted to predict the possible binding of 

CEF to the IN active site. RAL, EVG and DTG were docked into the modelled IN 

active site to validate the docking method. As described in literature, the 

coplanar, oxygen heteroatom triad was pivotal in the interaction with the IN active 

site and its subsequent chelation of Mg2+ (described in Section 3.3.2.1).244 

Molecular modelling data (depicted in Figure 3.33 A) demonstrated hydrogen 

bond interactions between the terminal carboxylic acid present on CEF and the 

Gln 148 residue attached to viral DNA. Since this carboxylic acid is present on 

both CEF and AMP, it can be conjectured that this moiety is responsible for IN ST 

inhibition as hypothesized above. However, the Gln 148 is attached to viral DNA 

indicating that CEF and AMP may disrupt the viral DNA-IN as previously 

mentioned. The theory of CEF as a DNA-binder is supported by the distinct 7-α-

iminomethoxycarboxy group of CEF that interacts via hydrogen bond interactions 

with the Thr 115 bound to viral DNA. CEF as a DNA binder has not been reported 

previously, and its mechanism of action solely relies on CEF binding to a 

transpeptidase enzyme. An additional hydrogen interaction was observed 

between CEF and the Asp 64 present in the DDE motif of the IN active site 

indicating that CEF might also perturb Mg2+. This predicted interaction is negated 

by resistant mutation profile results which suggested that CEF may not bind in 

the DDE motif of IN. The exact moiety responsible for IN ST inhibition is still 
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unclear however the predicted interactions and screening of CEF derivatives 

provide an insightful foundation. 

4.3.3.  In silico studies predicted that cefixime trihydrate is not drug-

like 

The focus of this study was to identify an INI through drug-repositioning as it 

would expedite the preclinical drug development phase since the compounds that 

were tested are in clinical trials or have already been FDA approved. CEF is an 

FDA approved drug used in bacterial infection treatment and as such it is 

expected to be drug-like. The drug-score of the compound was determined by 

evaluating the cLogP, aqueous solubility, MW and the overall drug-likeness of the 

compound. Prediction studies using Osiris Property Explorer exhibited a very low 

cLogP value (-0.65) which indicated high hydrophilicity. According to Osiris 

Property Explorer, a compound that is highly hydrophilic is easily absorbed, 

however, amendments to Lipinski Ro5 states that the cLogP of a compound 

should be between -0.4 and 5.6. Since the cLogP of CEF is not within the 

acceptable partition coefficient range, CEF is predicted as too hydrophilic and 

may not be able to cross the lipid membrane. CEF was predicted to be 

moderately soluble.  

A successful compound requires a solubility level that is concomitant with good 

absorption which is required for the systematic transportation of the compound. 

Discovery Studio software predictions confirmed that CEF is poorly absorbed 

after oral administration. Discovery Studio software utilises a model developed by 

Egan and co-workers245 that consists of a 182 compound training set. This 

training set includes 95% and 99% confidence ellipses generated by the 

ALogP98 and 2D polar surface area (2D_PSA) planes. Well-absorbed 

compounds are within these confidence ellipses where the absorption ability of 

compounds decreases outside the 95% ellipse. The absorption of CEF could not 

be predicted since CEF was not within the 95% confidence ellipse and was 

therefore deemed as a poor absorption compound.  

In addition, the oral bioavailability of CEF was predicted using Lipinski Ro5. By 

assessing the Lipinski Ro5 (Table 3.4), two of the four parameters were out of 

range (MW > 500 Daltons and hydrogen bond acceptors > 10) which indicated 

that CEF may be poorly absorbed or the permeability of the compound may be 
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low. Low MW of compounds are desirable in developmental stages of drugs 

since modifications during the developmental stages would likely result in an 

increase in MW. However, since CEF is an FDA approved drug where the MW > 

500 Daltons, it is likely that MW increased due to modifications during the 

development stages to optimize the drug-likeness of CEF. A high MW has been 

associated with low absorption, which corroborated the absorption prediction 

obtained using the Discovery Studio software and Osiris Property Explorer. In 

addition, in vivo testing of CEF confirmed the absorption predictions obtained 

through the Discovery Studio software which indicated that CEF is only 40-50% 

absorbed after oral absorption. Distribution studies in terms of BBB penetration 

after oral administration could not be determined because CEF was not within the 

99% confidence ellipse. This suggests that the ability of CEF to penetrate the 

BBB is low according to the BBB penetration criteria levels developed by Egan 

and Lauri.245 Therefore, through prediction studies, it can be concluded that CEF 

is not drug-like. 

4.3.4. Cefixime trihydrate was not active against integrase in 

orthogonal screening 

To validate whether CEF was a true IN ST inhibitor, it was screened in an 

orthogonal assay; the HIV-1 IN ELISA. CEF demonstrated no appreciable IN ST 

inhibition at 10µM and 100µM thereby contradicting the results obtained through 

the SPA. This was corroborated through HIV-1 phenotypic inhibition studies 

(Figure 3.29) suggesting that CEF does not directly inhibit IN activity. The 

discrepancy between the results obtained through SPA screening and the results 

obtained from the HIV-1 IN ELISA and phenotypic inhibition assay may be 

attributed to non-specific binding of CEF to IN when using the SPA. 

Cephalosporin C, that contains a β-lactam ring, has been reported as a non-

specific inhibitor against NADH dehydrogenase and murG enzymes when using a 

SPA.246 Cephalosporin C was considered a perturbing agent that causes enzyme 

inactivation. Since cephalosporin C and CEF are structurally related, CEF may 

perturb the IN enzyme in a similar manner and therefore CEF appeared to have 

inhibited IN activity. AMP inhibited IN ST reaction by 12% at 10µM and 51% at 

100µM, while the antiretroviral activity of AMP in the phenotypic inhibition assay 

was weaker but still apparent (51% IN ST inhibition at 200µM). The antiretroviral 

activity of AMP was not attributed to cytotoxic effects since AMP was not toxic at 
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the evaluated concentrations (section 3.2.9.1). This data indicate that AMP may 

play a role the inhibition of HIV-1 IN. The mechanism and binding mode of AMP 

to HIV-1 IN is yet to be elucidated.  

4.3.6. Epigallocatechin gallate is active against integrase and reverse 

transcriptase 

EGCG is potent antioxidant and forms part of the catechin group derived from 

Green Tea, Camillia sinensis.247 EGCG is the most abundant catechin in Green 

Tea and accounts for 50-80% of the catechin content.248 Previous studies have 

reported the involvement of EGCG in many therapeutic applications such as 

cancer, bacterial, viral- and fungal infections, diabetes, Parkinson’s disease, 

Alzheimer’s disease, stroke, inflammation, obesity and HIV.249–252 In 2011, EGCG 

phase 1 clinical trials in HIV-1 patients were initiated.253 The clinical trials were 

due for completion in July 2013 and the outcome thereof is still pending. 

(www.clinicaltrials.gov, accessed 1/10/2013). Interestingly, by independently 

screening the NCC compound library, EGCG was identified as IN ST inhibitor 

(6.0 ± 1.2µM). EGCG has been previously reported as an HIV-1 INSTI with IC50 = 

960nM.254 However, EGCG activity was not limited to IN where RT inhibition 

studies demonstrated that EGCG inhibited RT by 56% (Section 3.2.9.2). This 

result was expected since previous studies have reported that EGCG was active 

against several targets in the HIV-1 replication cycle such as the destruction of 

the virion, blocking of the gp120-CD4 interaction, as well as inhibition of HIV 

replication enzymes such as RT, PR and IN.254–257 

4.3.7. The galloyl moiety of epigallocatechin is involved in 

antiretroviral activity 

EGCG was tested against the HIV-1 mutant INQ148H/G140S and yielded a FCIC50 = 

0.06. This suggests that EGCG may bind to IN using a different binding site to 

which RAL binds as mentioned in section 4.3.2. The binding mechanism of action 

has not yet been defined however previous studies demonstrated that the galloyl 

moieties of catechins are pivotal in HIV-1 inhibition.254 EGCG is an ester of gallic 

acid and is comprised of a galloyl moiety (D ring) attached to a catechin 

backbone.258 Previous studies have reported that galloyl moieties are involved in 

HIV-1 IN ST inhibition as well as RT inhibition.233,254 According to Yang and co-

workers259, the electron rich polyphenolic structure of the galloyl moiety may 
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interact via hydrogen bond interactions with IN at a binding site that is still 

unknown.259 Molecular docking results in this study predicted that hydrogen bond 

interactions occurred between the hydroxyl group on the benzene ring of EGCG 

and the carboxylic acid group of Leu 68 in the catalytic core domain on IN. This 

predicted interaction suggests that EGCG may influence the activity of IN by 

binding to a residue within the active site of IN. The predicted interaction between 

EGCG and HIV-1 IN does not involve the galloyl moiety present on EGCG as 

identified through biological evaluation. This could be due to the stringent 

parameters used to dock the compound in the IN active site resulting in fewer 

poses docked or due to the active site on the prepared protein model that was 

not well defined. 

4.3.8.  Epigallocatechin gallate as a natural product is drug-like 

According to the Osiris Property Explorer predictions (Section 3.3.2), EGCG is a 

moderately soluble (-2.16) and well absorbed drug (2.6) and is therefore drug-like 

(0.69). As stated before, solubility of a compound is usually indicative of good 

absorption. However, Discovery Studio software predicted EGCG was a very low 

absorbed drug with a low solubility and therefore was not drug-like. The disparity 

between the solubility property and dug-likeness of EGCG obtained from Osiris 

property explorer and Discovery Studio may be due to the prediction models 

used. Osiris Property Explorer utilises the increment system that is based solely 

on atom type contributions, while Discovery Studio software utilises a predictive 

model that was generated using a training set comprising compound classes 

such as alkanes, alkenes, alkynes, halogens and amines to name a few.260 The 

Discovery studio software is more reliable than the Osiris property explorer since 

it does not include compounds that are not within the 99% and 95% confidence 

ellipse. As with CEF, the BBB penetration could not be predicted since the 

compound was not within the 95% and 99% confidence ellipsoids.  

By analysing EGCG according to Lipinski Ro5, EGCG does not fully adhere to 

the rules since the hydrogen bond acceptor is < 10 and hydrogen bond donor is < 

5. However, EGCG is a natural compound and therefore does not require 

stringent compliance to the Lipinski Ro5. Natural products have been de-

prioritized or in some cases eliminated from the drug discovery process due to 

the fact that some natural products do not comply to Lipinski Ro5 yet they can be 

excellent drugs.261 Although the Lipinski Ro5 may be evaded for natural products, 
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a low LogP property should be maintained as natural products are more readily 

absorbed than synthetic compounds. The LogP value of EGCG predicted was not 

ideal however it complied with Lipinski Ro5 which states that the logP < 5. On the 

premise of the compliancy of the LogP value of EGCG with Lipinski Ro5, it can 

be assumed that EGCG is drug-like. 

4.3.9. DTT influences the activity of epigallocatechin gallate and 

cefixime trihydrate 

As with CEF, a secondary assay was conducted to confirm the HIV-1 IN ST 

inhibitory effect of EGCG. Results from the HIV-1 IN ELISA exhibited no 

appreciable IN ST inhibition (Figure 3.28). It was evident that there was a 

component present in the SPA experiment that influenced the behaviour of both 

EGCG and CEF (Section 4.3.2) since both of these compounds did not evoke 

appreciable activity against HIV-1 IN in an orthogonal assay. Following this 

observation, it was then hypothesised that DTT in the presence of EGCG and 

CEF played a role in HIV-1 IN activity. Subsequently, DTT was used as a 

reducing agent in both biological assays to enhance IN activity in vitro by 

inhibiting the oxidation of free sulfhydryl residues. The concentration of DTT 

differed between the two biological assays where the HIV-1 IN ELISA reaction 

buffer contained 5mM DTT and the SPA reaction buffer contained 10mM DTT. 

The DTT concentration was increased to 10mM in the HIV-1 IN ELISA to 

determine whether this variable would influence the effect of EGCG and CEF on 

HIV-1 IN activity. A weaker reducing agent, B-Me (10mM), was used as an 

additional parameter to confirm whether an increased reducing agent 

concentration or the reducing agent itself had an influence on the behaviour of 

EGCG and CEF. The reducing agent, DTT at a high concentration, has 

previously been reported to weaken interactions between HIV-1 IN monomers.262 

EGCG and CEF in the presence of 10mM DTT yielded higher IN ST inhibition 

while EGCG and CEF in the presence of 10mM B-Me exerted no appreciable IN 

ST inhibition. This data suggests that EGCG and CEF in the presence of an 

increased DTT concentration inhibit IN ST. The controls (negative, positive and 

RAL) in the presence of 10mM DTT and 10mM B-ME were not significantly 

different (p > 0.05) from the controls in the presence of 5mM DTT (Figure 3.31). 

This indicated that an increased DTT concentration only affected the activity of 

HIV-1 IN in the presence of EGCG and CEF.  



 

Discussion 
 

76 
 

Studies have reported that a high concentration of DTT disrupts IN dimers where 

the thiol groups of DTT targets the CCD of IN and therefore decrease the activity 

of IN.262 DTT at a higher concentration may interact with EGCG and CEF in such 

a manner that enables the compounds to more efficiently disrupt IN dimers. B-ME 

is considered a weaker reducing agent than DTT because B-ME only comprises 

one thiol group whereas DTT comprise two thiol groups. Since thiol groups play a 

vital role in IN dimer disruptions, the weaker B-Me did not interrupt IN monomer 

interactions and therefore no appreciable IN ST inhibition was observed.262,263 

Altogether, the discrepancy between the results obtained from the SPA and the 

HIV-1 IN ELISA may be attributed to the DTT concentration difference.  

4.3.10. Epigallocatechin gallate is auto-oxidized at pH levels 

above 7 

Since EGCG activity could not be validated through an HIV-1 IN ELISA (Section 

4.3.9), the activity of EGCG was investigated in HIV infected mammalian cells. 

An EC50 = 23.5 ± 2µM was observed however cytotoxicity results indicated that 

EGCG was toxic to MT-4 cells within this concentration range (Figure 3.26). This 

suggests that the antiretroviral activity caused by EGCG may be attributed to 

cytotoxicity. According to previous reports, polyphenolic compounds such as 

EGCG are susceptible to auto-oxidation in cell culture medium such as DMEM 

and RPMI 1640 due to the pH of the cell culture medium (pH 7.2).264–266 Hou and 

co-workers267 proposed a possible mechanism of action of the auto-oxidation of 

EGCG. When EGCG undergoes auto-oxidation, it consumes O2 consequently 

producing superoxide (•O2
-) and EGCG radicals (•EGCG). The •O2

- is converted 

to H2O2 and •O2
- and in the presence of metal ions, unpaired electrons binds to 

EGCG and is localized at the B ring thus forming •EGCG and H2O2. The •EGCG 

reacts with another •EGCG producing an EGCG dimer and •O2
-. The EGCG 

dimers can be further oxidized consequently forming other compounds. Due to 

the extracellular H2O2 produced when EGCG undergoes auto-oxidation, the cells 

may have encountered oxidative stress leading to cell death.268 

4.4. Conclusion 

Overall, 727 compounds in the NCC compound library were screened with the 

aim of repositioning existing drugs as INIs. CEF and EGCG were identified as INI 

through SPA screening and were therefore further investigated. Computational 

studies confirmed the drug-like properties of CEF and EGCG as indicated by 
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previous studies. Molecular modelling studies predicted that CEF and EGCG 

interacted with HIV-1 IN via hydrogen bond interactions. No cross-resistance of 

CEF and EGCG was observed with RAL viral mutations which indicated that 

these compounds do not share a binding mechanism of action with RAL. 

Orthogonal screening indicated that the activity of both CEF and EGCG was 

dependent on the DTT concentration. The IN ST inhibitory effect of CEF was not 

significant in in vitro phenotypic inhibition screening and therefore it can be 

concluded that CEF was an IN dimer disruptor in the presence of 10mM DTT. 

Meanwhile, the antiretroviral effect of EGCG on HIV could not be validated since 

EGCG demonstrated cytotoxicity. This study could not validate whether EGCG 

was a true INI however, our results corroborate the findings from previous studies 

showing that EGCG is an INI with an unknown mechanism of action. 

4.5. Future studies 

The findings from the present study can be advanced by conducting experiments 

for: 

1) Generating a quench curve on the scintillation counter in order to screen the 

remaining NCC compounds that posses colour as potential INSTIs. 

2) Evaluating the resistance mutation profiles of CEF and EGCG against the 

remaining RAL resistance pathways (N155H, N155H/E92Q or T97A, 

Y143C/R, Y143C/R coupled with T97A) to determine whether IN mutations 

responsible for resistance to RAL confer cross resistance to CEF and EGCG. 

3) Further optimization of the manual SPA to evade the identification of non-

specific HITS. 

4) Conducting dimerization assays to determine the multimerization of IN in the 

presence of EGCG and CEF with a range of DTT concentrations. 

5) Identifying the structural moieties of CEF, AMP and EGCG involved in IN 

binding as well as the residues to which these compounds bind and the 

subsequent mechanism of action. 

6) Screening CEF against other HIV-1 drug targets to determine whether CEF is 

specific to IN.  
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