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Abstract

Unmanned Aerial Vehicles(UAVs) provide a versatile platform for the

automation of a wide variety of tasks such as powerline inspection,

border interdiction, search and rescue e.t.c. The success of these UAV

platforms relies heavily on the development of control algorithms that

can cope with the harsh and uncertain environments in which the

UAVs will operate in. This dissertation focuses on the development

of robust trajectory tracking control algorithms for a quadrotor UAV

platform. Robustness in this context refers to the ability of the con-

troller to guarantee system performance in the presence of uncertain-

ties such as unknown system parameters or some other unmodeled

effects. By exploiting the strict feedback form of the quadrotor dy-

namics a backstepping based control strategy for the system which

comprises of two sub-controllers namely a translational controller and

an attitude controller is developed. For the translational controller

of the UAV a novel robust bounded controller is developed. This

novel controller is developed by combining A.R Teel’s nonlinear sat-

urated controller with sliding mode techniques to achieve bounded

error tracking in the presence of disturbances while at the same time

ensuring bounded control which captures the limited nature of the

UAV’s thrust actuators. Additionally conditions on the controller

parameters are identified which ensure that the UAV does not over-

turn during flight. The controller for the vehicle attitude is based

on a modified backstepping method. Conventional backstepping con-

trol is formulated under the implicit assumption of a perfectly known

system, thus in instances where uncertainty exists the performance of

conventional backstepping deteriorates. To improve on the robustness

of conventional backstepping control, methods of combining it with



adaptive and/or sliding mode techniques are considered. Adaptive

backstepping control is robust against parametric uncertainty how-

ever its performance deteriorates in the presence of disturbances. An

adaptive backstepping controller with nonlinear damping is proposed

as a solution to this problem, Lyapunov based analysis shows that

this controller achieves bounded error tracking in the presence of

parametric and non-parametric uncertainty. A second modification

of the backstepping method that is considered involves combining

sliding mode control with conventional backstepping control. Sliding

backstepping control is a powerful control method in that it is able

to achieve asymptotic tracking in the presence of uncertainty. How-

ever this is only achieved if the upper bounds of the uncertainty are

known a priori, this requirement is very difficult to meet in prac-

tice. Thus an adaptive sliding backstepping controller is proposed

which removes the requirement of a priori knowledge of the upper

bounds. In conclusion the key features of this work are a novel robust

bounded translational controller, an adaptive backstepping attitude

controller with nonlinear damping and an adaptive sliding backstep-

ping attitude controller with guaranteed asymptotic tracking. Thus

a comprehensive robust trajectory tracking controller for a quadrotor

UAV is developed.
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Chapter 1

Introduction

Man’s interest in unmanned flying vehicles is as old as manned flight. Unmanned

aerial vehicles(UAVs) can be traced back to 1916 when American inventor Elmer

Sperry of Sperry Gyroscope Company successfully implemented a stabilising con-

trol system for the Curtiss Flying boat [2],[3]. During the First World War much

effort was put into development of ”flying bombs” however the efforts of the time

were met with limited success. Success in this front was finally achieved by the

Germans with the deployment of the V-1 ”Buzz-Bomb” during the course of the

second World War. The V-1 bomb was the first successful cruise missile and was

a precursor to the modern UAV.[3]

The age of the modern UAV began in the late 1940s with the development

of the BQM-34A ”Firebee” drone which was mainly used as a target drone for

missile testing[4]. The shooting down of the American U2 spy plane over Russia in

1960 spurred military strategists to consider using UAVs for surveillance missions.

However it was not until the Vietnam conflict that UAVs were used enmasse

in combat situations. During the Vietnam war UAVs flew over 3 400 combat

missions in which they were mostly used for intelligence gathering[3]. After the

Vietnam war UAV technology continued to advance evidenced by the successful

development of the Israeli Pioneer UAV. By the mid 1990s UAV technology had

matured with the development of Northrop Grumman’s Global Hawk (see Figure

1.1a) and General Atomics’ Predator drone(Figure 1.1b), two UAVs that have

become synonymous with the term ”drone”.

From this brief history it is evident that the development of UAV technology
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(a) Northrop Grumman Global Hawk[5] (b) General Atomics Predator[6]

Figure 1.1: UAV systems

has been largely driven by military needs. According to a comprehensive UAV

application survey [7] civilian applications accounted for only 3% of the total

UAV revenue in 2000. However developments in micro-electro mechanical sys-

tems(MEMS) and IC miniaturisation has driven UAV development costs down

making UAVs economical for civilian use. UAVs possess a lot of potential in the

civilian market with possible uses ranging from border interdiction, search and

rescue missions, wild fire suppression, industrial plant inspection e.t.c. Most of

these applications are performed in cluttered and constrained enviroments which

differ from the open terrain of the battlefield. This difference in operating enviro-

ments means that the fixed wing UAVs that are very successful in the battlefield

enviroment cannot be used in most of these civilian applications. As such rotary

wing UAVs have become the mainstay of civilian UAV applications as they are

highly manueverable and their high thrust to weight ratio means that smaller

UAVs can be used.

1.1 Background

According to the survey paper by Chen et al[8] an autonomous UAV should be

capable of not just automated operation but should also be able to detect and re-

spond to unanticipated changes in the environment. Such a system will comprise

numerous subsystems that perform tasks of trajectory planning, fault detection
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and toleration, trajectory tracking and learning. The scope of this research is

restricted to only the trajectory tracking system of the autonomous UAV with

the investigation being of a theoretical nature. Experimental verification of the

developed algorithm was not undertaken as the design and construction of a UAV

testbed covers extensive knowledge areas and would have made the scope of the

work too big to be finished within the time frame of the research.

Over the past decade a lot of research has been done in the control engineer-

ing community with regards to quadrotor trajectory tracking control. Trajectory

tracking control of quadrotors presents a challenge due to the nature of the dy-

namics of the quadrotor. Quadrotor dynamics are highly coupled, nonlinear and

the quadrotor is underactuated making the controller design a significant chal-

lenge. Despite these complexities a number of successes have been achieved,

these include Stanford University’s STARMAC project [9], ETH Zurich’s OS4

[10] project and University of Pennsylvania’s GRASP UAV testbed[11]. It is the

aim of this research to provide a starting point for the possible development of a

UAV testbed at the University of the Witwatersrand

1.2 Research Motivation

Quadrotor UAVs are perfectly suited to operations in cluttered indoor environ-

ments because of their light weight and high manoeuverability. Successful op-

eration in such environments requires near perfect trajectory tracking as any

deviations from the planned trajectory might result in collisions with obstacles.

To achieve these requirements the trajectory tracking controller must tackle the

complexities that arise due to nonlinearities and uncertainties.

In designing control algorithms the algorithm is only as good as the system

model on which it is based. Thus in order to design controllers for the quadrotor

UAV one has to consider nonlinear models which can fully describe the UAV’s

dynamics in all the flight regimes. This presents a significant challenge in the

controller design as the nonlinear model is described by highly nonlinear and

highly coupled differential equations. Another difficulty that arises is due to the

underactuated nature of the quadrotor dynamics, underactuation refers to the

fact that the quadrotor has more degrees of freedom than it has control inputs.
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The behavior of a system is greatly influenced by the values of the parameters

that appear in the differential equations that describe it. Ideally the values of

these parameters should be known before hand. Unfortunately for the quadrotor

this is not the case, the irregular shape of the quadrotor body means that the

values of the vehicle’s inertia cannot be exactly determined thus introducing

uncertainties in the vehicle model. Another source of uncertainty is due to wind

disturbances which act on the quadrotor in flight. Thus the controller that will

be designed needs to guarantee the system’s performance against both of these

unknowns, such ability of the controller is referred to as controller robustness.

1.3 Contributions

The nature of the work covered in this dissertation is of a theoretical nature

and as such the contribution of the work has a theoretical emphasis. The main

focus of the contributions of this research is in the development of novel control

methods for the quadrotor trajectory tracking problem. Additionally the major

contributions of this work are of a general nature and as such their applicability

is not limited to the quadrotor UAV system. The key findings of this work are

summarised as follows:

1. Development of a novel robust bounded control method for multiple inte-

grator systems with matched uncertainty which is presented in section 5.3.2.

This bounded controller is used to control the translational dynamics of the

quadrotor UAV.

2. Conditions for the selection of controller parameters for the translational

controller so as to ensure that the UAV does not overturn. This is neces-

sary as the Euler angles rotation parameterisation breaks down in such a

manoeuvre.

3. In chapter 6 an adaptive sliding backstepping control algorithm is developed

for strict feedback systems with matched uncertainty. To combine sliding

mode control and backstepping control two methods are investigated, the

first one uses the conventional Lyapunov based approach while the second
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approach relies on the selection of an appropriate sliding manifold. The

second approach is shown to result in a simpler controller than the conven-

tional Lyapunov based approach

4. To achieve adaptation of the sliding gain in the adaptive sliding backstep-

ping controller in section 7.3 a unique adaptation law is used. This differs

from the conventional adaptation rules in that it gives the minimum gain

estimate that will sufficiently counteract the effect of the uncertainties.

5. A novel adaptive sliding backstepping control scheme is developed using the

results highlighted in points 4 and 5. This controller is used to develop an

attitude controller for the quadrotor UAV

1.4 Dissertation Outline

This dissertation is organised as follows. Chapter 2 gives the literature review

in which the problem is contextualised within the framework of existing works.

The mathematical model for the quadrotor UAV is developed in chapter 3. A

high level description of the proposed control solution is given in chapter 4, the

following three chapters give a detailed account of the proposed solution. Chapter

5 focusses on the translational control while chapters 6 and 7 focus on the attitude

control problem. Simulation results of the proposed controller are presented in

chapter 8 with concluding remarks and reccomendations being given in chapter

9.

1.5 Conclusion

UAVs possess great potential to drastically change how our modern world oper-

ates. Realisation of this potential has driven the interest of numerous researchers

all over the world into the vast field of UAVs. Huge strides have been thus far

made in the area of UAVs but however a lot still remains to be done in order to

achieve fully autonomous UAVs. The work that is presented in this dissertation

is focused on studying the trajectory tracking problem for the quadrotor UAV.

Special emphasis being placed on robustness of the control algorithms.
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Chapter 2

Literature Review

2.1 Chapter Overview

This chapter provides a broad summary of some of the methods that have been

employed in the literature for the Modelling and control of quadrotor UAVs. The

literature review also serves to motivate for the research areas that this work

focuses on. Some of the issues discussed in this chapter are treated in depth in

the relevant chapters of the dissertation.

2.2 UAV Modelling

A quadrotor UAV can be viewed as a rigid body in 3 dimensional space and thus

possesses 6 degrees of freedom, three translational and three rotational degrees

of freedom. Description of the translational position of the UAV is a trivial task

however the description of the vehicle orientation is fairly complicated and has

implications on the derived model. A number of methods exist for describing the

orientation of a general rigid body in space such as quaternions, Euler angles, axis-

angle, Cayley-Klein parameters and Euler-Rodrigues parameters[12],[13], [14],

[15]. Quaternions and Euler angles are the most used in aeronautical applications

and thus shall be the focus of this discussion. Euler angles comprise three angles

yaw, pitch and roll which are used to describe the orientation of a rigid body. One

of the advantages of Euler angles is that they are intuitive and it is easy to visualise
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rotations described in this way. On the other hand Euler representation has a

disadvantage in that it exhibits singularities, this phenomenon is called ”gimbal

lock” which restricts the trajectories that the quadrotor can track[16]. Thus if

Euler angles are used to model the UAV the control algorithms that are designed

using that model are not capable of executing aggressive aerobatic manoeuvres.

Quaternions represent a rotation by a four element vector, this method does not

suffer from the singularity issues of Euler angles and thus provides a globally

valid way of representing UAV orientation. Additionally in comparison to Euler

angles quaternions are computationally efficient as they use a 4 element vector to

describe rotations compared to a 3×3 matrix in the case of Euler angles. Despite

these advantages quaternions are used less in modelling quadrotors because they

are conceptually challenging to understand and are not very intuitive. In this

work Euler angles are used for representing the quadrotor UAV’s orientation.Due

to the limitations of Euler angles the controller is designed in such a way that

gimbal lock is avoided. More detailed discussion of quaternions and Euler angles

is contained in chapter 3 of this dissertation.

In deriving the equations of motion of the quadrotor it is common to assume

that the vehicle is a rigid body. The motion of a rigid body in 3-D space is

governed by the Newton-Euler equations[17]. Using these equations the dynamic

model of the quadrotor can be derived as shown in the books on helicopter flight

theory [18],[19]. The models developed in [18] and [19] are quite comprehensive

as they take into consideration the complicated aerodynamic phenomena at play

during flight such as blade flapping. Such a model however is very complicated

which results in complicated control algorithms which are computationally inten-

sive and difficult to implement on DSPs. A common simplification is to assume

that the flight of the quadrotor will be in the low velocity regime in which the

aerodynamic effects are negligible[20]. Another simplification is to lump all the

aerodynamics forces and torques and consider them as disturbance inputs this

is the approach that is taken in this dissertation. The nonlinear Newton-Euler

equations can be further simplified by assuming that the time derivatives of the

Euler angles and the body frame angular velocities are equal[21]. Taking this rea-

soning a step further it can be assumed that the Coriolis terms that appear in the

nonlinear model are negligible[22],[23] which results in the orientation dynamics
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being decoupled into three forced double integrator systems. This simplification

is very popular in the literature but however it results in a very limited operation

area in the flight envelope as the assumptions are only satisfied if the quadrotor

flies at low speeds and small angles of attack. As such these assumptions are not

employed in this work.

2.3 Quadrotor Trajectory Tracking Methodolo-

gies

2.3.1 Linear Methods

Control methods for UAV trajectory tracking can be grouped into two general cat-

egories, linear and nonlinear methods. In this brief survey linear control methods

refers to control methods that make use of linear system models. Linearisation

of the nonlinear quadrotor model is achieved using the Jacobian method, in this

method an operating point is first identified and the system is then linearised

about that point. For the quadrotor three major operating regions exist, these

are take-off/landing, hover and forward flight. Michael et al[11] implemented a

PID controller for the quadrotor system linearised about hover point, this con-

troller was successfully tested on an experimental platform. In their work Michael

et al[11] showed that even though the model they use is linearised about hover the

PID control algorithm is even capable of executing waypoint trajectory tracking.

Similar results are shown by the work presented in [24] and [25]. The work pre-

sented in [25] and [24] goes a step further as they showed that the PID controller

is superior to the LQR based controller. Despite all these advantages because

the PID controller is based on a linear model which neglects important nonlinear

components of the dynamics it shows poor disturbance rejection qualities as is

shown in [26]. To try and improve robustness of the LQR controller it is proposed

in [27] to add feedforward terms and a robust filter to the controller, this attempt

showed marked improvement in the controller. A linear method that has been

shown to have good robustness qualities is the H∞ loop shaping method. H∞

loop shaping methods are used in [28] and [29] to successfully control a 3-DOF
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quadrotor bench model. In [30] and [31] full model controllers are designed using

H∞ techniques with satisfactory results. The superior performance of H∞ meth-

ods above other linear methods[28] is primarily due to fact that with the H∞

framework it is possible to incorporate the nonlinearity as disturbances rather

than totally ignoring them as in other linear control methods. From this brief

survey of linear UAV control methods it might seem that linear methods are suf-

ficient for the task of UAV trajectory tracking. Using models derived by making

near hover assumptions full authority trajectory tracking controllers have been

developed using such simple algorithms as PID control[11]. However it should be

noted that in order to achieve waypoint tracking using a near hover model based

controller it is necessary to restrict the UAV to low velocities and small angles

of attack so as to meet the near hover assumption. The result is that such con-

trollers do not fully take advantage of the strengths of quadrotor platforms such

as their agility and high thrust to weight ration. It is this fundamental limitation

of linear methods which makes nonlinear methods preferable in this application.

2.3.2 Nonlinear Methods

Numerous types of nonlinear control methods have been developed and applied

to the UAV trajectory tracking problem. As such the review done in this section

does not claim to be exhaustive. For a more comprehensive survey of the field

the interested reader is directed to the survey paper [32].

One of the areas that has been extensively studied within UAV control deals

with the development of constrained controls for the UAV trajectory tracking

problems. Constrained controls are advantageous as they capture the limited

nature of the UAV actuators. Constrained optimal control is one method that has

been investigated in this regard. In [33] an optimal time controller is developed in

which a constraint is placed on the rotational speed of the rotors. Alexis et al[33]

do show via simulations the feasibility of this approach however optimal control is

known to be very computationally intensive which is a huge drawback. Another

approach to constrained control makes use of the theory of nested saturated

control algorithms for multiple integrator systems. A major result in this field

is the nonlinear feedback controller developed by A.R. Teel[34]. This result was
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exploited in [1] to design a translational controller for a conventional helicopter,

in [35] and [36] this method is further extended to the quadrotor helicopter. Teel’s

control is elegant and simple but however has two major drawbacks, firstly it is

inflexible as there is no way to shape the transient response secondly the method

has poor disturbance rejection. A number of extensions to Teel’s control have

been put forward to try and improve its response [37],[38],[39]. The improvements

in [39] were incorporated in the quadrotor trajectory controller developed by

Hably et al[40]. In chapter 5 a novel extension to Teel’s control is developed with

the aim of improving the robustness characteristics of the controller.

In developing trajectory tracking control algorithms for UAVs robustness con-

siderations are very important because of the uncertainty introduced in the sys-

tem by unknown parameters such as inertia and unmodeled dynamics such as

air drag, wind loading e.t.c. Sliding mode control is a powerful control design

technique which is capable of handling such uncertainties as are present in the

UAV system. Bouabdallah et al[41] developed a sliding mode controller for the

quadrotor’s orientation, in [42] and [43] the sliding mode technique is applied to

the whole UAV system. The work presented in [42] develops the sliding mode

controller so as to achieve fault tolerant performance of the UAV. Xu et al[44]

develop a new design method for sliding mode control for underactuated systems

which is applied successfully to the quadrotor UAV system. It is a well known fact

that controls synthesized using the sliding mode method exhibit high frequency

chattering[45], in [41] this chattering is reported as causing a deterioration of

the system performance. Another drawback of sliding mode control is the fact

that the designer is required to know the upper bounds of the uncertainties a

priori, this requirement is very difficult to meet in practice if for example the

uncertainty is wind gust disturbances. The chattering in the sliding mode con-

trol can be eliminated by using the boundary region method however this tends

to compromise performance since the sliding manifold is not reached[45]. The

relaxation of the a priori upper bound requirement presents an area of active re-

search with promising results coming from the adaptive sliding mode approach.

In [46] and [47] fuzzy logic is used to come up with adaptation laws for the sliding

gain however this approach fails to guarantee the tracking performance. Huang

et al[48] devised a gain adaptation law in which the rate of growth of the gain
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estimate is proportional to the sliding manifold error, a major drawback of this

work is that it leads to an over estimation of the gain leading to unnecessarily

large controls. An alternative method which limits the sliding gain is proposed

in [49] however this method requires a priori knowledge of the uncertainty upper

bounds. Chapter 7 of this dissertation deals with these issues in a more in depth

and rigorous manner.

Backstepping control is a Lyapunov based recursive control design method de-

veloped in the early 1990s first appearing in [50] and [51]. This method is applica-

ble to the class of systems that are in strict-feedback form of which the quadrotor

system is a member. Another characteristic of this method which makes it suited

for quadrotor control is the ease with which controls for underactuated systems

can be developed within the backstepping scheme. As such numerous researchers

have developed backstepping controllers for the quadrotor UAV, in [52] a back-

stepping controller is developed for the altitude control subsystem. Full model

controllers based on the basic backstepping method for UAV trajectory track-

ing were developed in [53],[41],[54]. To improve the transient performance PID

control can be incorporated into the backstepping scheme. Bouabdallah et al[55]

implemented an Integral Backstepping based trajectory tracking control to reduce

steady state errors in [56], the effectiveness of the full PID backstepping controller

is demonstrated. Amidst the numerous successes of backstepping control in the

quadrotor trajectory tracking problem the method suffers from one major draw-

back. In the formulation of the backstepping method it is implicitly assumed

that an exact model is available, thus the method performs poorly when uncer-

tainties are present in the model. To improve the robustness of backstepping one

avenue that has been investigated involves coupling backstepping with adaptive

elements to cater for parametric uncertainties. This approach has been extremely

successful with the first adaptive backstepping algorithm being developed for the

matched case in [57]. Extension to the extended matching case was done in [58]

but the proposed method had the disadvantage of over-parameterisation of the

unknown term. A solution to this overparameterisation was presented in Kristic

et al[59] with the development of the tuning function method. The theoretical

advances in adaptive backstepping control have been successfully implemented for

the quadrotor UAV[24],[60]. One weakness of the adaptive backstepping method
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is that the performance of the adaptive element deteriorates in the presence of

disturbances[61]. Another avenue of achieving robust backstepping involves the

amalgamation of backstepping control and sliding mode control[62],[63]. The ro-

bustification of backstepping control is further addressed in chapters 6 and 7 of

this dissertationOne of the areas that has been

2.4 Conclusion

From the brief review of the literature provided it is evident that nonlinear control

methods provide a more comprehensive solution to the quadrotor UAV control

problem. As such this approach will be adopted in this work. Special empha-

sis will be placed on robust control methods, some of which have already been

highlighted in this chapter.
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Chapter 3

Quadrotor UAV Modelling

3.1 Chapter Overview

It is well known that the effectiveness of any control system is dependent on how

accurate the controlled system is modeled. Developing a model that incorporates

all the system dynamics is very difficult and even if it were possible the controls

synthesized using such a model will likely be too complicated to be implementable.

Therefore in developing a model one has to balance between model accuracy and

simplicity. The aim of this chapter is the development of a quadrotor UAV

model to be used for the controller synthesis. This is achieved by assuming the

quadrotor to be a rigid body and derivingthe vehicle dynamics from the Newton-

Euler equations. To simplify the model aerodynamic effects such as drag are

not explicitly modeled but are treated as disturbances to the system however the

small angle approximation which is common in the literature is discarded. The

result is the development of a more comprehensive model which is tractable at

the same time.

3.2 Preliminaries

In deriving the equations of motion of the quadrotor UAV two assumptions are

made:
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1. The Earth is assumed to be flat and non-rotating which is valid for the

quadcopter as the distances it moves are relatively small in comparison to

the Earth’s radius.

2. The quadrotor UAV is assumed to be a rigid body.

Assumption 1 allows any Earth fixed frame of reference to be considered as an

inertial frame of reference. Due to the second assumption dynamic effects caused

by the elastic distortions of the vehicle structure under aerodynamic loading can

be neglected.

To model the motion of the quadrotor UAV it is necessary to use different

frames of references, specifically an Earth fixed inertial frame and a body fixed

frame is needed. This is required because:

• desired trajectories are given in the inertial frame

• sensors measure quantities in the body frame

• actuators exert forces and torques in the body frame

The body fixed frame corresponds to a coordinate system whose origin coincides

with the centre of mass of the quadrotor UAV. For both the inertial and body

fixed frame the North-East-Down(N.E.D) coordinate system is used, figure 3.1

shows the relationship of the inertial and body fixed frame.

3.3 Rotation Matrices

Now that the two coordinate systems that are needed for deriving the mathe-

matical model of the quadrotor UAV have been identified, a method to relate

the two frames needs to be established. It should be clear that the body fixed

frame can be viewed as a linear transformation of the inertial frame where this

transformation is composed of a translation and a rotation. Representing the

translation part of the transformation is trivial as this is just the position vector

of the quadrotor UAV in the inertial frame. This section is going to focus on the

representation of the rotational part of the transformation.

14



Z
I

X
I

Y
I

Z
B

X
B

Y
B

Figure 3.1: Inertial frame(superscript I) and Body fixed frame(superscript B)

Consider the 2D vector p = [1 1], if p is multiplied by a 2× 2 matrix T :

T =

[
1 -1

1 1

]

The resultant vector is p′ = [2 0] which is as is shown in figure 3.2. The

matrix T can be interpreted as a transformation of the vector p which comprises

of a rotation and a scaling, the scaling factor is equal to the square root of the

determinant of matrix T. Thus a pure rotation can be represented by a square

matrix with determinant equal to 1. Matrices with determinant of -1 correspond

to a rotation and a reflection and as such are not used. The vector p′ can also

be regarded as the vector p observed from the co-ordinate system (Ox′y′) which

is the result of transforming the coordinating system (Oxy) by the matrix T as

is shown in figure 3.3 below.

3.3.1 The SO (3) Group

It has been shown that rotations in n-dimensional space can be represented by

n×n matrices with determinant of 1.This family of matrices is termed the special

orthogonal n group SO(n), in fact SO(n) is a Lie group i.e a manifold that
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Figure 3.2: Transformation of p to p′ by matrix T

possesses a group structure[64]. In this work the concern is with rotations in 3-D

therefore the interest will be in elements of the SO(3) group. Elements of SO(3)

have the following properties[1] :

• special i.e have a determinant of 1

• orthogonal i.e if R ∈ SO (3) , RRT = 1 where T denotes matrix transpose

• each column(row) of R is a unit vector

As stated earlier SO(3) forms a manifold. To ”visualize” the structure of this

manifold requires first Euler’s Rotation Theorem[65].

Euler Rotation Theorem. Any finite rotation can be achieved by a single ro-

tation about some axis

Consider a body that is rotated about the origin, according to Euler’s theorem

such a rotation can be described by a unit vector for the rotation axis and a scalar
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Figure 3.3: Matrix T as a coordinate system rotation

quantity for the rotation angle. Thus each such rotation can be associated to a

line through the origin where each line corresponds to an axis of rotation and

the length of each line is equal to the angle of rotation. The set of lines through

the origin of R3 form a manifold structure called the real projective plane RP 2,

this manifold is topologically similar(i.e homeomorphic) to the 4 dimensional

sphere (S3) with antipodal points identified[66]. Identification of antipodal points

means that points on S3 that are opposite each other will correspond to the same

rotation. Thus SO(3) can be viewed as being topologically similar to the 4

dimensional sphere S3.

3.3.2 Quaternion Representation of Rotations

Quaternions were devised by the 19th century Irish mathematician William Rowan

Hamilton. The subject of quaternions is very vast so this section will present only

a brief summary. A quaternion q ∈ H is a vector with a scalar component(q0)
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and a vector component (q1:3) :

q = [q0 q1 q2 q3]
T =

[
q0

q1:3

]
(3.1)

Consider the unit quaternion q′, the components of q′ will satisfy the equations

q′20 + q′21 + q′22 + q′23 = 1 (3.2)

This is the equation of a 4 dimensional sphere. From the previous section

it was established that SO (3) is homeomorphic to the 4 dimensional with anti-

podal points identified. As such the quaternions can be used to represent ro-

tations in 3 dimensions. However since the unit quaternions describe the unit

sphere they provide a double cover for the SO (3) manifold which means that

two quaternions(q and -q) will represent the same rotation. Quaternions have a

number of advantages for attitude representations:

1. Quaternions provide a globally valid way of representing rotations

2. Quaternions are computationally efficient since only 4 parameters are used

rather than the 9 in the rotation matrix representation

Despite these advantages quaternions do present some challenges in implementa-

tion, some of them are:

1. since quaternions are a double cover of the SO (3) manifold they do not

provide a one-to-one relationship with rotations

2. quaternions are not intuitive as one cannot easily visualize rotations in

quaternion form

3. the requirement of unit magnitude on the quaternions presents computa-

tional challenges especially if one is to perform an optimization as the unit

norm requirements translates to a quadratic constraint on the optimization
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3.3.3 Euler Angle Representation of Rotations

Euler angles are a way of representing the orientation of a reference frame (such

as the body frame) relative to another fixed frame(such as the inertial frame)

by considering a sequence of rotations about the axes of the frame. There are

twelve possible sequences that one can use however in this work the focus is on

the Z-Y-X sequence. The three Z-Y-X/Tait-Bryan angles are the yaw, pitch and

roll (ψ, θ, φ) angles, figure 3.4 shows the angles with respect to the quadrotor

UAV body.

Z

X

Y

yaw

roll

pitch

Figure 3.4: Z-Y-X Euler angles

Given the three Z-Y-X Euler angles one can express the rotation matrix that

transforms the body frame to the inertial frame as [67] :

R =



cosψcosθ cosψsinθsinφ− sinψcosφ sinψsinφ+ cosψsinθcosφ

sinψcosθ cosψcosφ+ sinψsinθsinφ sinψsinθcosφ− sinφcosψ
−sinθ cosθsinφ cosθcosφ




(3.3)

A derivation of this rotation matrix is given in Appendix A. The Euler param-

eterisation of SO (3)(which is similar to the 4 dimensional sphere) is very similar
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to the latitude-longitude coordinates of the 3-dimensional sphere. The latitude-

longitude system uses 2 angles to represent a point on the 3-dimensional sphere

while the Euler parameterisation uses 3 angles to represent a point on the 4 di-

mensional sphere. The latitude-longitude system breaks down at the poles where

the longitude becomes degenerate and there is no unique value for the poles, a

similar thing also happens with the Euler angles. If the pitch = 900 one degree

of freedom will be lost this phenomenon is commonly known as gimbal lock. To

clearly see the cause of gimbal lock consider the inverse map of the Z-Y-X Euler

parameterisation.

EZY X : R3 → SO (3) EXY Z = [rij] i, j = 1, 2, 3 (3.4)

E−1ZY X =



φ

θ

ψ


 =



atan2 (r23, r33)

−arcsin (r13)

atan2 (r12, r11)


 (3.5)

where atan2(y, x) is the four quadrant inverse tangent function. From equa-

tion 3.5 it can be seen that the inverse mapping has a singularity at φ = 900 which

is the source of the gimbal lock. In this research the Euler angle representation

will be used despite the singularity problems since Euler angles are more intuitive

and they are commonly used in the aeronautical community.

3.4 Quadrotor UAV Kinematics

3.4.1 Translational Kinematics

The vehicle position and velocity in the inertial frame are represented by the

vectors:

pI = [px py pz]
T (3.6)

vI = [vx vy vz]
T (3.7)
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It should be clear then that the translational kinematics are governed by the

trivial equation:

ṗI = vI (3.8)

3.4.2 Rotational Kinematics

The vehicle attitude and its angular rates are represented by the vectors Θ and

ωB such that:

Θ = [φ θ ψ]T (3.9)

ωB = [p q r]T (3.10)

It should be noted that the angular rate vector ω is measured in the body fixed

frame. To see how the Euler angles and the angular rates relate consider the

infinitesimal rotations dφ, dθ and dψ, this rotation can be represented by a vector:

n = dφiB + dθjv2 + dψkv1 (3.11)

Note that the components of the vector n̂ are measured from different frames see

Appendix A for more detail. The angular velocity can then be expressed as [1]:

ω =
dn

dt
= φ̇iB + θ̇jv2 + ψ̇kv1 (3.12)

ω = piB + qjB + rkB (3.13)

where the superscripts B, v1 and v2 denote the vehicle frame, vehicle 1 and 2

frames respectively. For more details on this notation see Appendix A. Using
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equations 1-3 from Appendix A gives:




p

q

r


 =



φ̇

0

0


+RB

v2 (φ)




0

θ̇

0


+RB

v2 (φ)Rv2
v1 (θ)




0

0

ψ̇


 (3.14)




p

q

r


 =




1 0 −sinθ
0 cosφ sinφcosθ

0 −sinφ cosφcosθ






φ̇

θ̇

ψ̇


 (3.15)

This equation can be expressed in a more convenient form as :

Θ̇ = Ψ (Θ)ωB (3.16)

where:

Ψ (Θ) =




1 sinφtanθ cosφtanθ

0 cosφ −sinφ
0 sinφ

cosθ
cosφ
cosθ


 (3.17)

In general the rotation matrix is time varying, the derivative of the rotation

matrix is given by[68]:

Ṙ = Rω̂B (3.18)

where ω̂B is the skew symmetric matrix of the vector ωB. For ωB = [p q r]T the

skew symmetric matrix is defined as:

ω̂B =




0 -r q

r 0 -p

-q p 0


 (3.19)

3.5 Quadrotor UAV Dynamics

3.5.1 Translational Dynamics

According to Newton’s 2nd law the acceleration of a body is proportional to the

applied force. For the quadrotor the forces are applied in the body frame while

the vehicle’s position and velocity are measured in the inertial frame. Thus the
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forces need to be transformed via the rotation matrix RI
B (φ, θ, ψ) to the inertial

frame. Thus the translational dynamics become:

v̇I =
1

m
RI
B (φ, θ, ψ) fB + ge3 (3.20)

where fB =
[
fBx fBy fBz

]T
is the force vector exerted on the quadrotor in the body

frame, e3 = [0 0 1] and g is gravity. Note that gravity is positive because in the

North-East-Down(N.E.D) frame vertical downwards is positive.

3.5.2 Rotational Dynamics

For rotational motion Newton’s 2nd law of motion states that the rate of change

of angular momentum is equal to the net torque acting on the body. This can be

expressed as :
dHB

dtI
= τ (3.21)

The angular momentum HB = IωB with I being the 3×3 inertia matrix given

by :

I =




Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


 (3.22)

The inertial matrix elements are given by :

Ixx =
∫

(y2 + z2)dm

Iyy =
∫

(x2 + z2)dm

Izz =
∫

(x2 + y2)dm

(3.23)

Ixy = Iyx =
∫
xydm

Ixz = Izx =
∫
xzdm

Iyz = Izy =
∫
yzdm

(3.24)

Assuming the quadrotor to be perfectly symmetrical about all of its three

axis the inertia cross terms become Ixy = Ixz = Iyz = 0 and the inertia matrix
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becomes.

I =



Ixx 0 0

0 Iyy 0

0 0 Izz


 (3.25)

In equation 3.21 a body frame vector is differentiated in the inertia frame.

Using the equation of Coriolis[17]:

dHB

dtI
=
dHB

dtB
+ ωBb/i ×HB (3.26)

Applying this to equation 3.21 the rotational dynamics become:

Iω̇B = −ωB ×
(
IωB

)
+ τB (3.27)

where τB =
[
τBφ τBθ τBψ

]T
is the torque acting on the quadrotor expressed in

the vehicle frame. In expanded form the rotational dynamics are given by the

equations: 

ṗ

q̇

ṙ


 =




Jyy−Jzz
Jxx

qr
Jzz−Jxx
Jyy

pr
Jxx−Jyy
Jzz

pq


+




1
Jxx
τφ

1
Jyy
τθ

1
Jzz
τψ


 (3.28)

3.6 Full Quadrotor Model

Combining the quadrotor equations for the kinematics and dynamics, the com-

plete quadrotor model is given by:

ṗI = vI (3.29)

v̇I =
1

m
RI
B (φ, θ, ψ) fB + ge3 (3.30)

Ṙ = Rω̂B (3.31)

Iω̇B = −ωB ×
(
IωB

)
+ τB (3.32)

The pose of the quadrotor is defined by the pair
(
pI , R

)
∈ SE (3) where SE (3)

is the Special Euclidean group. The orientation dynamics of the quadrotor are
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equally described by both equations 3.16 and 3.18 however the rotation matrix

equation will be used more as this has advantages when it comes to control

synthesis. Figure 3.5 shows how these equations connect in the model.

1

fB v̇I = 1
m RI

B (φ ,θ ,ψ) fB +ge3 ṗI = vI

τB Ṙ = Rω̂B

Iω̇B =−ωB ×
(
IωB

)
+ τB Θ̇ = Φ(Θ)ωB

R

vI

ωB

Figure 3.5: Full quadrotor model[1]

3.7 External Wrench Model

In the previous section the full nonlinear model of the quadrotor UAV was de-

rived. In this section expressions for the torques and forces that are acting on the

quadrotor are derived, these forces are referred to as the external wrench acting

on the quadrotor body. The modelling approach presented here is adapted from

that presented in [1], [69].

Consider the force vector fB =
[
fBx fBy fBz

]T
acting on the quadrotor frame in

the body frame, the quadrotor’s rotors do not flap and thus the thrust from the

rotors will always be along the z-axis of the body frame. Now if the aerodynamical

forces(e.g air drag, rotor hub forces) are assumed to be negligible then the force

vector will only consist of the kB component equal to the thrust. Based on these

assumptions the quadrotor translational dynamics can be approximated by the

equations:
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v̇ = − 1

m
RI
B (φ, θ, ψ)




0

0

TT


+




0

0

1


 g (3.33)

where TT is the total thrust generated by the four rotors. The total thrust being

the sum of the thrust generated by the four rotors.

TT =
i=4∑

i=1

Ti (3.34)

where Ti is the thrust generated by the ith rotor.

The torques that are exerted on the quadrotor body are due to the thrust

from the rotors. Consider the schematic of the quadrotor shown in figure 3.6

with the given rotation directions for the propellers. If the quadrotor’s arms are

T 1

T 2 T 3

T 4

positive roll

positive pitch

positive yaw

l

Figure 3.6: Quadrotor UAV schematic showing propeller rotation directions

of length lm each then the torques can be calculated. The rolling torque is due
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to the forces of the second and fourth propellers and is given by:

τφ = l (T2 − T4) (3.35)

The pitching torque is produced by the action of the third and first propellers

and this torque is :

τθ = l (T3 − T1) (3.36)

The yawing torque is produced due to the counter torque that is produced by the

rotating propellers. Thus the yawing torque will be:

τψ = τc1 − τc2 + τc3 − τc4 (3.37)

where τci is the counter-torque produced by the ith rotor. The counter torque

produced by a rotor rotating with angular velocity Ω is proportional to Ω2:

τci = cQΩ2 (3.38)

The constant of proportionality cQ can be experimentally determined using static

thrust tests[70].

The thrust generated by a propeller rotating with speed Ω in steady state(i.e

the rotor is not moving vertically or horizontally) is given by[70] :

Ti = CTρArir
2
iΩ

2
i (3.39)

where for the ith rotor, Ari is the rotor disk area, ri is the radius, Ωi is the an-

gular velocity, CT is the thrust coefficient of the propeller and ρ is the density

of the air. In general the constants in equation 3.39 can be lumped up into one

thrust constant(cTi) which can then be experimentally determined. The relation-

ship between the torque, total thrust and the propeller angular velocity can be
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compactly represented using matrices by:




TT

τφ

τθ

τψ




=




cT cT cT cT

0 lcT 0 −lcT
−lcT 0 lcT 0

cQ -cQ cQ -cQ







Ω2
1

Ω2
2

Ω2
3

Ω2
4




(3.40)

3.8 Simplified Model

In the previous section using a number of simplifying assumptions expressions for

the torques and forces that are exerted on the quadrotor frame are developed.

Applying these to the quadrotor model of section 3.6 the resulting simplified

model is given by:

ṗI = vI (3.41)

v̇I = − 1

m
Re3TT + ge3 (3.42)

Ṙe3 = Rω̂Be3 (3.43)

Iω̇B = −ωB ×
(
IωB

)
+ τB (3.44)

1

Iω̇B =−ωB ×
(
Iω̂B

)
+ τB Ṙe3 = Rω̂Be3 × v̇I =− 1

m Re3TT +ge3 ṗI = vI

Θ̇ = Ψ(Θ)ωB

[
TT

τ

]
=

[
. . .

.. .
]



Ω2
1

...
Ω2

4




Ωi=1...4

Attitude Dynamics Translational Dynamics

ωB Re3 PI

ωB

τ
TT

Figure 3.7: Quadrotor simplified model

Figure 3.7 shows a diagram of the simplified model and how the system can be
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divided into attitude and translational subsystems. From figure 3.7 it can be seen

that the attitude subsystem is totally decoupled from the translational subsystem

as such the attitude subsystem can be viewed as a kind of actuator system for the

translational subsystem. In most quadrotor models that are used in the literature

the angular velocity(ω) is assumed to be equal to the Euler angular rates(Θ̇). In

the model that is presented here such a simplification is not employed as it is

strictly only valid for hover conditions.

3.9 Conclusion

A derivation of the mathematical model of the quadrotor UAV has been devel-

oped in this chapter under the assumptions of a rigid quadrotor UAV body and

negligible aerodynamic forces. Euler angles are used for attitude representation

and it is also discussed at length why Euler angles only provide a locally valid co-

ordinate chart for the SO (3) manifold. In as much as the derived model follows

the approach used in most literature the model that has been derived is more

comprehensive in that it does not assume the angular velocity(ω) to be equal to

the Euler angle rates(Θ̇).
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Chapter 4

Control Strategy Overview

4.1 Chapter Overview

This section provides a high level description of the approach that is taken in

the design of the quadrotor controller. By exploiting the strict feedback intercon-

nection of the translational and rotational subsystems a backstepping inspired

control strategy is developed. The mathematical details of the control procedure

are left for the next chapters, however in this chapter the focus is on how the

different subsystem controllers connect and are related to each other.

4.2 Quadcopter Dynamics

For convenience the quadrotor model equations derived in the previous chapter

are restated here.

ṗI = vI (4.1)

v̇I = − 1

m
Re3TT + ge3 (4.2)

Ṙe3 = Rω̂Be3 (4.3)

Iω̇B = −ωB ×
(
IωB

)
+ τB (4.4)

Θ̇ = Ψ (Θ)ωB (4.5)

The configuration space of the quadrotor UAV is the 6 dimensional Special
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Euclidean group SE (3) = R3×SO (3), however looking at the system equations

above the quadrotor has only 4 actuator inputs(TT , τB = [τφ, τθ, τψ]). This

means that the quadrotor is an underactuated system as it has more degrees of

freedom than actuators. Now consider the subsystem divisions of the quadrotor

model that were introduced in 3.8. The translational subsystem is described by

equations (4.1) and (4.2) while the attitude subsystem is described by equations

(4.3)-(4.5). Now from this it can be seen that the attitude subsystem is fully

actuated having three actuators(τφ, τθ τψ) and three degrees of freedom(φ, θ, ψ).

On the other hand the translational subsystem is underactuated having just one

actuator(TT ) while having three degrees of freedom(xI , yI , zI).

Looking at the quadrotor dynamics as depicted in figure 3.7 the attitude sub-

system can be viewed as actuating the translational subsystem with the actuating

inputs being the total thrust TT and the vector Re3. From the properties of the

rotation matrix, Re3 is a unit vector and thus the vector Re3TT is just the thrust

vector where the magnitude is given by TT and the direction by the unit vector

Re3.

4.3 Problem Statement

Here a formal statement of the control problem which is investigated in this work

is presented.

Problem Statement. Given a trajectory in 3 dimensional space defined by the

pair
(
pId(t), ψd(t)

)
where pId(t) is the desired position and ψd(t) is the desired yaw,

find a set of admissible controls
(
TT , τ

B
)

such that the tracking error pair (ep, eψ)

defined by ep = pI − pId and eψ = ψ − ψd tends asymptotically to zero

4.4 Control Strategy

The translational and the attitude dynamics can be viewed as subsystems that

are interconnected in a strict feedback form as depicted in figure 4.1 and so a

backstepping type of control can be used. The vector Re3TT can be viewed as a

form of pseudo-control for the translational subsystem. This has the advantage of
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1

ṗI = vI

v̇I = − 1
m Re3TT +ge3

Ṙe3 = Rω̂Be3
Iω̇B = −ωB ×

(
IωB

)
+ τB

TT

τB

Re3

Translational subsystem

Attitude subsystem

Figure 4.1: Attitude and Translational subsystem interconnection that shows the
”partial” feedback form

solving the underactuation problem of the translational subsystem as it provides

2 extra ”controls” thus making the subsystem ”fully” actuated. Noting that Re3

is a unit vector this means that only 2 of the 3 terms in Re3 are required in

order to uniquely identify this vector thus providing 2 not 3 extra controls for the

translational subsystem. Once the pseudo-control for the translational subsystem

is designed a controller for the attitude subsystem can be designed such that the

unit vector Re3 tracks a reference value defined by the translational pseudo-

control. The general structure of the control strategy that will be adopted is

shown in figure 4.2 where Re31d and Re32d are the first and second elements of

the desired unit vector Re3d generated by the translational controller.

4.5 Conclusion

It has been shown in this chapter that the dynamics of the quadrotor UAV are

underactuated. Exploiting the strict feedback form of the interconnection of the

attitude and translational subsystems a backstepping based control strategy is

devised for the whole system. This approach solves the problem of the system

being underactuated by introducing pseudo-controls into the system. The follow-

ing chapters shall delve into the detailed design of the translational and attitude

controllers.
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1

QUADCOPTER

Attitude
controller

Translational
controller

(xd , yd , zd)

thrust

Re31d

Re32d

ψd

τφ

τψ

τθ

Figure 4.2: Backstepping based control strategy
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Chapter 5

Translational Control

5.1 Chapter Overview

The translational controller’s task is to ensure at the very least bounded error

trajectory tracking. Given that such environmental phenomena like wind are un-

avoidable the controller should be robust enough to withstand such disturbances.

Other disturbances that are present in the system are introduced by the high

order dynamics such as air drag that have been neglected in the modelling stage.

It is imperative that the designed controller be robust if it is to be of any practical

use. In this chapter we present two important results in this regard, firstly we

present a novel robust bounded controller based on the result of A.R Teel[34]. By

adding sliding mode like terms to Teel’s nonlinear saturated control a more ro-

bust controller with improved disturbance rejection characteristics is developed.

The second result is the development of conditions on the controller gains that

ensure that the quadrotor UAV’s attitude is always non-singular which translates

physically to requiring that the UAV does not overturn in flight.
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5.2 Translational Dynamics

For convenience the dynamic equations of the translational subsystem are restated

here.

ṗI = vI (5.1)

v̇I = − 1

m
Re3TT + ge3 + ∆ (t) (5.2)

where ∆ (t) is an unknown bounded function of time that models all the uncer-

tainties. The control problem that is to be solved for the translational subsystem

can be stated as:

Translational Control Problem Formulation. Given the time parameterised

vector of the desired trajectory pd (t) find Re3 and TT such that for the tracking

error ep = pId (t)− pI (t) there exists ε > 0 such that ∀ t > 0, ‖ ep (t) ‖< ε.

Thus from the formulation of the control problem the requirement is that

at least bounded error tracking of the desired trajectory should be achieved.

Considering the translational subsystem dynamics given by equations (5.1) and

(5.2) the error dynamics can be formulated as:

ėp = ev (5.3)

ėv = −p̈d −
1

m
Re3TT + ge3 + ∆ (t) (5.4)

Applying the input transformation Re3TT = m (−ν + ge3 − p̈d) where ν becomes

our new control, the translational dynamics are then transformed to the double

integrator system given by :

ėp = ev (5.5)

ėv = ν + ∆ (t) (5.6)
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5.3 Stabilization of Multiple Integrator System

with Bounded Controls

Practical control systems have actuators that can produce limited control effort

as such it is desirable that designed controls be bounded also. The control of

systems with bounded controllers is not a new concept but has been used for

a long time. One of the popular methods that uses bounded controls is the

bang-bang optimal controller. It was shown in [71] that for a general linear

system of order n ≥ 3 a bounded linear feedback controller cannot achieve global

stabilization and thus one needs to consider nonlinear feedback control laws. Teel

[34] proposed a bounded nonlinear feedback control scheme that achieves global

stabilization of integrator chains. The construction of Teel’s control law is fairly

simple and as such is going to be the basis for the translational controller which

will be developed in this chapter.

5.3.1 Teel’s Method

This section presents the result and proof of Teel’s bounded controller[34]. The

proof will follow closely the method presented in [34]. Before stating the result

consider the saturation function definition:

Definition. Given two constants L and M such that L,M > 0 and L < M , a

function σ : R → R is a saturation function if it is continuous, non-decreasing

and satisfies the following conditions:

1. sσ (s) > 0 ∀s 6= 0

2. σ (s) = s when |s| < L

3. |σ (s) | ≤M ∀s ∈ R

From condition 3 in the definition M defines the saturation level of the func-

tion σ, the constant L from condition 2 defines the linear region of the saturation

function. Condition 1 constrains the saturation function to the first and the third

quadrants. To illustrate the kind of functions that satisfy the definition consider
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two functions σ1 and σ2 for M = 2 and L = 1 which are plotted in figure 5.1.

σ1 (s) = sign (s)min (|s|,M) (5.7)

σ2 (s) =





s if |s| ≤ L

L+ (M − L)
(

1− e− (s−L)
τ

)
if s > L

−L− (M − L)
(

1− e− (−s−L)
τ

)
if s < −L

(5.8)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

s

 

 

σ1

σ
2

Figure 5.1: Saturation functions σ1 and σ2

Now let us consider the nth order system given by :

ẋ1 = x2, . . . , ẋn = u. (5.9)

According to [34] the control law given by the following theorem will globally

asymptotically stabilize the system given in (5.9).

37



Theorem. There exists a function hi : RN → R such that for a set of saturation

functions σi for i = 1, . . . , n defined by positive constants (Li,Mi) for which

Li < Mi and Mj <
1
2
Lj+1 for j = 1, . . . , (n− 1). The bounded control

u = −σn (hn (x) + σn−1 (hn−1 (x) + · · ·+ σ1 (h1 (x))) . . .)

makes the system in (5.9) globally asymptotically stable.

Proof. Assume that there exists a linear coordinate transformation y = Tx that

transforms the system given by (5.9) into the form ẏ = Ay +Bu where A and B

are given by:

A =




0 1 . . . 1
...

. . . . . .
...

0 . . . 0 1

0 . . . . . . 0



, B =




1
...

1




The control from the stated theorem is then:

u = −σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)

The closed loop dynamics of the new transformed system become:

ẏ1 = y2 + · · ·+ yn − σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)

...

ẏn−1 = yn − σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)

ẏn = −σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)

Now consider the dynamics of the state yn which is described by the equation:

ẏn = −σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)

Let Vn = 1
2
y2n be a candidate Lyapunov function, the time derivative of which is:

V̇n = −yn [σn (yn + σn−1 (yn−1 + . . .+ σ1 (y1)) . . .)]
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From the definition of the saturation function ynσn (yn) > 0 will be positive if:

• when yn is positive yn + σn−1 (. . . ) is also positive

• when yn is negative yn + σn−1 (. . . ) is also negative

This condition is satisfied in the region |yn| > Mn−1, from the theorem this region

can be expressed as |yn| > 1
2
Ln. Thus V̇n will be negative ∀ yn /∈ Qn = {yn :

|yn| ≤ 1
2
Ln}. This implies that yn will enter the set Qn after some finite time and

will remain therein, we can also safely assume that during this time the other

states(y1, . . . , yn−1) will remain bounded.

Now consider the dynamics of yn−1. Note that it has been established that

after some finite time yn ≤ 1
2
Ln, the argument of the function σn becomes also

bounded :

|yn + σn−1 (yn−1 + . . .+ σ1 (y1)) | ≤
1

2
Ln +Mn−1 ≤ Ln

(
recall Mi ≤

1

2
Li+1

)

From the definition of the saturation function σ (s) = s when |s| < L thus once

yn enters Qn, σn enters it linear region according to the definition. Thus after

some finite time the dynamics of yn−1 become:

ẏn−1 = −σn−1 (yn−1 + . . .+ σ1 (y1))

Defining another candidate Lyapunov function Vn−1 = 1
2
y2n−1 the time derivative

of which is given by

V̇n−1 = −yn−1σn−1 (yn−1 + σn−2 (yn−2 + . . .+ σ1 (y1)) . . .)

Applying the same reasoning as in the analysis of the dynamics of yn after some

finite time yn−1 will be trapped in the set Qn−1 = {yn−1 : |yn−1| ≤ 1
2
Ln−1}. This

reasoning can be applied to all the states yi and it will be seen that after some

finite time all the saturation functions σi will be linear and the complete system
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dynamics will become

ẏ1 = −y1
ẏ2 = −y1 − y2

...

ẏn−1 = −y1 − y2 − . . .− yn−1
ẏn = −y1 − y2 − . . .− yn−1 − yn

Thus after some finite time the system dynamics become exponentially stable.

It is interesting to note that the control law that has been laid out in the

theorem above is such that all the eigenvalues of the closed loop system when it

enters the linear region are equal to -1[38].

Example. To illustrate Teel’s bounded control consider the third order integrator

system given by:

ẋ1 = x2, ẋ2 = x3, ẋ3 = u (5.10)

We want to find a u that makes the system globally asymptotically stable.

First we must find a linear transformation y = Tx as stated in the proof.

According to [72] such a transformation is given by:

yn−i =
i∑

j=0

i!

j! (i− j)!xn−j (5.11)

Applying this formula yields the following transformation in matrix form



y1

y2

y3


 =




1 2 1

0 1 1

0 0 1






x1

x2

x3


 (5.12)

Thus the control will be given by :

u = −σ3 (y3 + σ2 (y2 + σ1 (y1))) (5.13)
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The following combination of constants for the saturation functions are chosen.

These values where arrived at by trial and error.

M3 = 4 L3 = 3
M2 = 1.4 L2 = 1.2
M1 = 0.5 L1 = 0.4

Simulations of the controller described by (5.13) were done using MATLAB,

the results of the simulation are shown is figure 5.2. The simulations were done

for different initial conditions, the blue plot corresponds to the initial conditions

(x1 = 0.5, x2 = 0.2, x3 = 0.1)and the green plot to (x1 = 0.5, x2 = 0.5, x3 =

0.5). For the blue plot the initial conditions are such that y1, y2 and y3 start

within the sets Qi for i = 1, 2, 3 respectively while for the blue plot y1,y2 and y3

start outside these sets. From the simulations it can be seen that in both cases

the controller does ensure asymptotic stability however the transient response of

the states is greatly affected by how far out of the Qi sets the states are initially.

This deterioration of transient response in Teel’s controller is highlighted in the

work of Marchand[72] where a modification is proposed in which the saturation

levels for the saturation are no longer static but vary depending on the states.

Consider the performance of Teel’s control in the presence of a bounded matched

disturbance input in the form of a sine wave. With initial conditions of (x1 = 0,

x2 = 0, x3 = 0) the system was simulated in MATLAB and the results are shown

in figure 5.3.

From the simulation results shown in figure 5.3 it can be seen that the effect

of the disturbance input is quite marked, for x1 the input to state gain with

regards to the disturbance in nearly equal to 0.5. The poor disturbance rejection

performance of Teel’s controller is also discussed in the author’s work [?] in which

Teel’s controller is used to design a controller for UAV trajectory tracking.

5.3.2 Modified Teel’s Method

Given the relatively poor disturbance rejection performance of the controller pre-

sented in the previous section we propose a modification to the control in order

to improve the controller’s robustness. For the modified controller, saturation

functions as defined in Teel’s controller are used.
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Figure 5.2: System response with Teel controller. Blue is for initial condition (x1
= 0.5, x2 = 0.2, x3 = 0.1) and green (x1 = 0.5, x2 = 0.5, x3 = 0.5)
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Figure 5.3: State trajectory of system with a sinusoidal disturbance input of
amplitude 0.1
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Theorem. Consider the nth order integrator system with a bounded disturbance

input δ (t) such that |δ (t) | < ∆ ∀ t where ∆ is a positive constant.

ẋ1 = x2, , ẋn = u+ δ (t) (5.14)

Then there exists a set of functions hi : RN → R such that for a set of

saturation functions σi for i = 1, . . . , n defined by the positive constants (Li,Mi)

the bounded control :

u = −σn (hn (x)−Kn−1sign (hn−1 (x)) + σn−1 (hn−1 (x)−Kn−2sign (hn−2 (x)) + . . .

+ σ2 (h2 (x)−K1sign (h1 (x)) + σ1 (h1 (x))) . . .))−Knsign (hn (x))

where sign (.) is the signum function defined as :

sign(x) =

{
1 when x > 0

−1 when x < 0

ensures that for the system (5.14) X ∈ Q ∀ t > t0 where X = (x1, . . .), Q is a

closed set in which the origin is an interior point if the following conditions are

met.

Kn = ∆ + η1
Kn−j = −∑j−1

i=0 Kn−1 −∆− ηj+1 for j = 1, . . . , n− 1
Li < Mi and Mj <

1
2
Lj+1 for i = 1, . . . , n

2Kn−j +Mn−j <
1
2
Ln−j+1

where ηi > 0 fori = 1, . . . , n.

Proof. Assume that there exists a linear coordinate transformation y = Tx that

transforms the system given by (5.14) into the form ẏ = Ay + Bu where A and

B are given by:

A =




0 1 . . . 1
...

. . . . . .
...

0 . . . 0 1

0 . . . . . . 0



, B =




1
...

1



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The bounded control from the theorem can be expressed as:

u = −σn (yn −Kn−1sign (yn−1) + σn−1 (. . .) . . .)−Knsign (yn)

The closed loop dynamics of the system then become:

ẏ1 = y2 + . . .+ yn + δ (t)− σn (yn −Kn−1sign (yn−1) + σn−1 (. . .) . . .)−Knsign (yn)
...

ẏn−1 = yn + δ (t)− σn (yn −Kn−1sign (yn−1) + σn−1 (. . .) . . .)−Knsign (yn)

ẏn = δ (t)− σn (yn −Kn−1sign (yn−1) + σn−1 (. . .) . . .)−Knsign (yn)

Now consider the dynamics of yn which are given by the equation:

ẏn = δ (t)− σn (yn −Kn−1sign (yn−1) + σn−1 (. . .))−Knsign (yn)

Let Vn = 1
2
y2n be a candidate Lyapunov function the time derivative of which

is equal to:

V̇n = −ynσn (yn −Kn−1sign (yn−1) + σn−1 (. . .))+ynδ (t)−Knynsign (yn) (5.15)

Consider the last two terms in equation (5.15).

ynδ (t)−Knynsign (yn) ≤ |yn|∆−Kn|yn|
= |yn|∆− |yn|∆− |yn|η1
= −η1|yn|

The whole expression of V̇n is required to be negative. To achieve this we

require −ynσn (. . .) to be negative also. It should be noted that this requirement

is somewhat quite conservative as it should be clear that strictly speaking the

condition for negativity of V̇n is that −ynσn (. . .) < ηn|y|n.

For −ynσn (. . .) to be negative from the definition of the saturation func-

tion this amounts to requiring that the argument of σn (yn −Kn−1sign (yn−1) +
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σn−1 (. . .)) should have the same sign as yn.

|y|n > | −Kn−1sign (yn−1) + σn−1 (. . .) | which is satisfied if

> | −Kn−1sign (yn−1) |+ |σn−1 (. . .) |
= Kn−1 +Mn−1

= Kn−1 +
1

2
Ln

Thus V̇n ≤ 0 for all yn /∈ Qn where Qn = {yn : |y|n < Kn−1 + 1
2
Ln}. This

means then that after some finite time yn will be trapped inside the set Qn. Now

consider what happens once yn enters the set Qn, we have inside Qn:

|yn −Kn−1sign (yn−1) + σn−1 (. . .) | < |yn|+ |Kn−1sign (yn−1) |+ |σn−1 (. . .) |

= Kn−1 +
1

2
Ln +Kn−1 +Mn−1

= 2Kn−1 +
1

2
Ln +Mn−1

< Ln recall 2Kn−j +Mn−j <
1

2
Ln−j+1

Thus once yn enters the set Qn, σn (. . .) enters also its linear region and the

dynamics of yn−1 become:

ẏn−1 = −σn−1 (yn−1 −Kn−2sign (yn−2) + σn−2 (. . .)) +Kn−1sign (yn−1)

− Knsign (yn) + δ (t) (5.16)

Let Vn−1 =
y2n−1

2
be a candidate Lyapunov function whose time derivative is:

V̇n−1 = −yn−1σn−1 (yn−1 −Kn−2sign (yn−2) + σn−2 (. . .)) +Kn−1yn−1sign (yn−1)

− Knyn−1sign (yn) + yn−1δ (t) (5.17)
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Consider the last three terms of equation (5.17):

Kn−1yn−1sign (yn−1)−Knyn−1sign (yn)

+ yn−1δ (t)

}
≤ Kn−1|y|n−1 +Kn|y|n−1 + ∆|y|n−1

= −η2|y|n−1from theorem Kn−1 = −Kn −∆− η2

To ensure that V̇n−1 ≤ 0 the requirement is that −yn−1σn−1 (. . .) < 0, as was

the case for V̇n. This is satisfied if:

|yn−1| > | −Kn−2sign (yn−1) + σn−2 (. . .) | which is satisfied if

> | −Kn−2sign (yn−1) |+ |σn−2 (. . .) |
= Kn−2 +Mn−2

= Kn−2 +
1

2
Ln−1

Thus V̇n−1 ≤ 0 for all yn−1 /∈ Qn−1 where Qn−1 = {yn−1 : |yn−1| < Kn−2 +
1
2
Ln−1. After some finite time yn−1 will be trapped in the set Qn−1 and once

inside Qn−1 we have:

|yn−1 −Kn−2sign (yn−2) + σn−2 (. . .) | < |yn−1|+ |Kn−2sign (yn−2) |+ |σn−2 (. . .) |

< Kn−2 +
1

2
Ln−1 +Kn−2 +Mn−2

= 2Kn−2 +
1

2
Ln−1 +Mn−2

< Ln−1 from theorem 2Kn−j +Mn−j <
1

2
Ln−j+1

Thus once yn−1 enters the set Qn−1, σn−1 (. . .) also enters its linear region. Ap-

plying the same analysis to the whole system it will be seen that after some finite

time yj will be trapped in the set Qj = {yj : |y|j < Kj−1 + 1
2
Lj}. Once all the
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states have entered the set Qj the system dynamics become

ẏ1 = −y1 −Knsign (yn) +Kn−1sign (yn−1) + . . .+K1sign (y1) + δ (t)

ẏ2 = −y1 − y2 −Knsign (yn) +Kn−1sign (yn−1) + . . .+K1sign (y1) + δ (t)
...

...

ẏn = −y1 − . . .− yn −Knsign (yn) +Kn−1sign (yn−1) + . . .+K1sign (y1) + δ (t)

It still remains to be proved if the above system dynamics are stable in the

Lyapunov sense or not.

Example. To illustrate our controller consider the third order integrator system

given by:

ẋ1 = x2, ẋ2 = x3, ẋ3 = u (5.18)

Using the transformation stated in the previous example:



y1

y2

y3


 =




1 2 1

0 1 1

0 0 1






x1

x2

x3


 (5.19)

The control u can then be expressed as:

u = −σ3 (y3 −K2sign (y2) + σ2 (y2 −K1sign (y1) + σ1 (y1)))−K3sign (y3)

(5.20)

Assuming that the disturbance is a sinusoid of amplitude 0.1 and choosing

the following values for the controller parameters by trial error.

K1 = 0.05 M1 = 0.5 L1 = 0.4
K2 = 0.03 M2 = 1.4 L2 = 1.2
K3 = 0.15 M3 = 4 L3 = 3

The controller was simulated in the MATLAB/SIMULINK environment for

both cases in which disturbances are present and absent. For the case where dis-

turbances are absent the controller was simulated for two sets of initial conditions

(x1 = 0.5, x2 = 0.2, x3 = 0.1) and (x1 = 0.5, x2 = 0.5, x3 = 0.5), results of which

are shown in figure 5.4.
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Figure 5.4: State trajectory of system without disturbance. Blue is for initial
condition (x1 = 0.5, x2 = 0.2, x3 = 0.1) and green (x1 = 0.5, x2 = 0.5, x3 = 0.5)

It can be seen that the system response does not differ much from the re-

sponse of the controller based on Teel’s method. The proposed controller does

have a longer settling convergence period. The controller was also tested for the

case where there is a sinusoidal disturbance of amplitude 0.1 and for the initial
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conditions (x1 = 0.5, x2 = 0.5, x3 = 0.5) and (x1 = 0, x2 = 0, x3 = 0) results of

these simulations are shown in figures 5.5 and 5.6.
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Figure 5.5: System response with zero initial conditions and sinusoidal distur-
bance amplitude 0.1

The simulations show that the modified controller out performs the original

controller, for the case with zero initial conditions we can see that for the modified

controller the states are bounded to within 5 × 10−3 from the origin as opposed

to the original controller in which the states are bounded to within 4×10−2 from

the origin. Also in figure 5.6 it can be seen that the modified controller is able

to stabilise the system for non-zero initial conditions with little variation in the

performance compared to the case where the disturbance is absent.

5.4 Translational Controller

In section 5.2 it was shown how the translational dynamics could be transformed

into a simple double integrator by the following input transformation Re3 =

m (−ν + ge3 − p̈d) where ν is the new control to be designed. Let χ =
∫
epdt

be the integral position error. The transformed translational dynamics will be
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Figure 5.6: System response with initial conditions (x1 = 0.5, x2 = 0.5, x3 = 0.5)
and sinusoidal disturbance amplitude 0.1

described by the third order system:

χ̇ = ep (5.21)

ėp = ev (5.22)

ėv = ν + ∆ (t) (5.23)

Applying the controller developed in section 5.3.2 results in the following expres-

sion

Re3TT = m [Σ3 (y3 −K2sign (y2) + Σ2 (y2 −K1sign (y1) + Σ1 (y1)))−K3sign (y3)

− p̈d + ge3] (5.24)

where: 


y1

y2

y3


 =




1 2 1

0 1 1

0 0 1






χ

ep

ev


 (5.25)
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Σi is a 3 × 1 vector of saturation functions [σi1 σi2 σi3]
T and Ki is a 3 × 3

diagonal matrix of gains diag(Ki1 Ki2 Ki3) for i = 1, 2, 3. Now recall that one

of the properties of the rotation matrix is that its columns/rows are unit vectors

thus Re3d should be a unit vector for it to be a valid rotation matrix column.

Using this knowledge we can extract from (5.24) expressions for Re3 and TT .

Re3d =
−p̈d + ge3 + Σ3 (. . .)−K3sign (y3)

‖−p̈d + ge3 + Σ3 (. . .)−K3sign (y3)‖
(5.26)

TT = m ‖−p̈d + ge3 + Σ3 (. . .)−K3sign (y3)‖ (5.27)

Since Euler angles are being used to represent the attitude, the commanded

attitude(Re3d) must be such that it avoids gimbal lock. Consider the unit vector

Re3 which from the rotation matrix is given by :

Re3 =




sinφcosθ + cosφsinθcosψ

−cosψsinφ+ sinψsinθcosφ

cosθcosφ


 (5.28)

As was stated earlier the Euler representation of the vehicle attitude breaks

down when φ, θ = 900. Consider the third element of the vector Re3 = cosθcosφ

now if Re33 = cosθcosφ > 0 this is sufficient to guarantee that φ, θ 6= π
2
. Thus

when tracking the orientation command generated by the translational controller

Re3d, the same condition should be met. In the proposition below it is shown

that this can be done by appropriately selecting the parameters of the controllers.

Proposition. Consider the saturation function σ33 which is defined by the con-

stants M33 and L33. R33d which is the third element of the vector Re3d is strictly

positive if:

g −M33 −K33 > max (p̈dz) (t)

which implies that |θ (t) |d, |φ (t) |d < π
2
∀ t > t0

Proof. To verify the above proposition consider the third element of the vector
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Re3d which we shall denote as Re33d we have:

Re33d (t) > 0 =⇒ −p̈dz + g + σ33 (. . .)−K33sign (y33) > 0

=⇒ −max (p̈dz) + g −M33 −K33 > 0

=⇒ g −M33 −K33 > max (p̈dz) ∀ t > t0

5.5 Conclusion

In this chapter a translational controller whose design is based on Teel’s bounded

controller was developed. Teel’s control strategy has been modified leading to

the development of a novel robust bounded controller with superior disturbance

rejection qualities. Also in this chapter conditions have been formulated on the

controller parameters that ensure that the vehicle rotation matrix is always de-

fined. Physically these conditions ensure that the UAV does not over turn in

flight.
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Chapter 6

Attitude Control 1

6.1 Chapter Overview

In the previous chapter a translational controller which generates a desired ori-

entation of the vehicle by defining the desired value of the unit vector Re3 was

developed. It is the task of the attitude controller to ensure that asymptotic

tracking of the desired attitude as generated by the translational controller is

achieved. One of the major difficulties in designing the attitude controller is the

fact that the inertia of the quadrotor UAV is difficult to accurately determine

given the irregular shape of the vehicle. As such the designed controller is re-

quired to be robust against parameter uncertainty as well as disturbances from

torques produced by wind and other aerodynamic forces. The strict feedback

form of the orientation dynamics makes backstepping control an ideal method to

use, however as was highlighted in section 2.3.2 the backstepping method does

not cater for the presence of uncertainties. The main result of this chapter is the

development of a robust backstepping controller based on the adaptive control

method and nonlinear damping.

6.2 Backstepping Control

Backstepping control is a recursive design technique which was developed in the

1990s by the concerted effort of several researchers. The backstepping technique
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in its present form first appeared in the work of Saberi,Kokotovic and Sussman[50]

with further developments being made by Kanellakopoulos et al[51]. To introduce

the idea of backstepping control let us consider a system given by the equations

(6.1) and (6.2).

ẋ = f (x) + g (x) ξ (6.1)

ξ̇ = u (6.2)

where x ∈ RN and ξ, u ∈ R and f (0) = 0. This general system can be viewed as

being some general nonlinear system defined by (6.1) which has been concatenated

with a simple integrator system as is shown in figure 6.1. 1

×u
∫

g(x)

∫

f (x)

ξ + x

+

Figure 6.1: Block diagram of the system

The fundamental idea behind the backstepping technique is that if one can

consider the system described by (6.1) and (6.2) and assume that the subsystem

described by equation (6.1) can be stabilised if ξ is taken as the control. Back-
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stepping allows the use of this knowledge to design the overall control(u) of the

system by stepping back as it were past the integrator from the ”pseudo-control”

ξ. The power of this approach is in the fact that it can easily be recursively

applied to higher order systems as long as they are in strict feedback form.

Backstepping Lemma. [73] Consider a system described by equation (6.1).

Consider ξ as the control for this system then there exists a continuously dif-

ferentiable function α (x) and a smooth, positive definite and radially unbounded

function V : RN → R such that

if ξ = α (x) , α (0) = 0 then (6.3)

∂V

∂x
[f (x) + g (x)α (x)] ≤ −W (x) , ∀x ∈ RN (6.4)

where W : RN → R is a positive semidefinite function. If the stated assumption

is satisfied then for the complete system described by equations (6.1) and (6.2)

the control:

u = −λ (ξ − α (x)) +
∂α

∂x
(x) [f (x) + g (x) ξ]− ∂V

∂x
(x) g (x) , λ > 0 (6.5)

will ensure that if W (x) is positive definite then x = 0, ξ = 0 will be globally

asymptotically stable. Otherwise if W (x) is positive semidefinite then x (t) and

ξ (t) will converge to the largest invariant set Ma contained in the set Ea =

{x, ξ|W (x) = 0, ξ = α (x)}

Proof. This proof follows from closely the proof in [73]The assumption contained

in the first part of the lemma states that if ξ was the actual control then the

system given by equation (6.1) could be stabilised by choosing α(x) as the control.

However since in actuality ξ is not the control, let z = ξ − α(x) be an ”error”

variable. Thus the system equations can be transformed from the (x, ξ) space to

(x, z) in which case the dynamics become:

ẋ = f(x) + g(x) [z + α(x)] (6.6a)

ż = u− ∂α

∂x
[f(x) + g(x) (z + α(x))] (6.6b)
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Consider now the function Va(x, z):

Va(x, z) = V (x) +
z2

2
(6.7)

Va(x, z) is a candidate Lyapunov function which is formed by augmenting the

Lyapunov function V (x) with the radially unbounded and positive definite func-

tion z2

2
. The derivative of this augmented candidate Lyapunov function along the

solutions of (6.6) is

V̇a (x, z) =
∂V

∂x
(x) [f(x) + g(x)α(x) + g(x)z] + z

[
u− ∂α

∂x
(x) (f(x) + g(x) (z + α(x)))

]

=
∂V

∂x
(x) [f(x) + g(x)α(x)] + z

[
u+

∂V

∂x
(x) g(x)− ∂α

∂x
(x) (f(x) + g(x) (z + α(x)))

]

≤ −W (x) + z

[
u+

∂V

∂x
(x) g(x)− ∂α

∂x
(x) (f(x) + g(x) (z + α(x)))

]

(6.8)

Choosing the control u as :

u = −λz − ∂V

∂x
(x) g (x) +

∂α

∂x
(x) [f (x) + g (x) (z + α(x))] , λ > 0 (6.9)

then the derivative of the augmented candidate Lyapunov function becomes:

V̇a (x, z) ≤ −W (x)− λz2 (6.10)

Now if W (x) was positive definite then Va(x, z) will be negative definite and by

Lyapunov’s theory this is sufficient to guarantee global asymptotic stability of

the origin(x = 0, z = 0). Since z = ξ − α(x) this implies that:

lim
t→∞

z = lim
t→∞

(ξ − α(x)) = 0

=⇒ lim
t→∞

ξ − α
(

lim
t→∞

x
)

= 0

= lim
t→∞

ξ − α(0) = 0

=⇒ lim
t→∞

ξ(t) = 0 (6.11)
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Thus showing that the choice of control (6.5) ensures global asymptotic stability

of the origin(x(t) = 0, ξ(t) = 0). To analyse the case when W (x) is positive

semidefinite requires La Salle’s Invariant set theorem[45] which states that

Invariant Set Theorem. Consider the system ẋ = f(x) and let V (x) be a scalar

function. If there exists a region Ωl in which V (x) < l, l > 0 and V̇ (x) ≤ 0 ∀x ∈
Ωl then every trajectory x(t) starting in Ωl will tend to the largest invariant set

Ma ⊂ Ea where Ea = {x |V̇ (x) = 0}

For the case when W (x) is positive semi-definite the set Ea = {x, ξ |V̇a(x, z) =

0} = {x.ξ |W (x) = 0, z = 0} = {x, ξ |W (x) = 0, ξ = α(x)}.

The backstepping lemma has been presented for a somewhat simple system

however this same result can be applied to the larger class of systems that are

in strict feedback form[73]. To illustrate this point consider the general strict

feedback system:

ẋ = f(x) + g(x)ξ1

ξ̇1 = f1(x, ξ1) + g1(x, ξ1)ξ2

ξ̇2 = f2(x, ξ1, x2) + g2(x, ξ1, ξ2)ξ3
...

ξ̇k−1 = fk(x, ξ1, . . . , ξk−1) + gk−1(x, ξ1, . . . , ξk−1)ξk

ξ̇k = fk(x, ξ1, . . . , ξk) + gk(x, ξ1, . . . , xk)u

(6.12)

This system is said to be in strict feedback form because the nonlinear functions

fi,gi for(i = 1, . . . k) depend only on x, ξ1, . . . , ξi. If the x-subsystem satisfies

the assumption of the Backstepping Lemma with ξ1 as the control the recursive

design starts by first defining the error variable z1 = ξ1 − α1(x). The (x, z1)

dynamics then become:

ẋ = f(x) + g(x) (z1 + α1(x))

ż1 = f1 (x1, ξ1)−
∂α1

∂x
[f(x) + g(x) (z1 + α1(x))] + g1(x, ξ1)ξ2

(6.13)
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Constructing the augmented Lyapunov candidate function for (6.13):

V1(x, z1) = V (x) +
z21
2

(6.14)

Taking ξ2 as the control for the system (6.13), the task now is to find a stabilising

function α1(x, z1) for ξ2 such that the derivative of (6.14) is nonpositive when

ξ2 = α1.

V̇1 =
∂V

∂x
(x) (f(x) + g(x)α(x)) + z1

[
∂V

∂x
(x) + f1(x1, ξ1)

− ∂α

∂x
(x) [f(x) + g(x) (z1 + α(x))] + g1(x, ξ1)ξ2

]

≤ −W (x) + z1

[
∂V

∂x
(x) + f1(x1, ξ1)−

∂α

∂x
(x) [f(x) + g(x) (z1 + α(x))] + g1(x, ξ1)ξ2

]

(6.15)

Thus α1(x, z1) can be chosen as:

α1(x, z1) =
1

g1(x, z1)

[
−λ1z1 −

∂V

∂x
(x)g(x)− f1(x1, z1) +

∂α

∂x
(x) (f(x) + g(x) [z1 + α(x)])

]

(6.16)

with λ1 > 0 which gives V̇1 ≤ −W1(x, z1) where W1(x, z1) = W (x)+
z21
2

. The next

step is to now augment (6.13) with the dynamics of ξ2, to do this define another

error variable z2 = ξ2 − α1(x, z1). The (x, z1, z2) can be expressed compactly as:

Ẋ = F1(X) +G1(X)z2

ż2 = f2(X1, ξ2) + g2(X1, ξ2)ξ3
(6.17)

where:

X1 =

[
x

z1

]
, G1(X1) =

[
0

g1(x, ξ1)

]

F1(X1) =

[
f(x) + g(x)ξ

f1(x, ξ1)− ∂α
∂x

(f(x) + g(x)ξ) + g1(x, ξ1)α1(x, z1)

]
, g2(X1, ξ2) = g2(x, ξ1, ξ2)
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f2(X1, ξ2) = f2(x, ξ1, ξ2)−
α1

∂x
[f(x) + g(x)ξ]

− ∂α

∂z1

[
f1 (x, ξ1)−

∂α

∂x
(f(x) + g(x)ξ) + g1(x, ξ1)ξ2

]

Following the approach used for the (x,z1) subsystem the augmented candidate

Lyapunov function V2(x, z1, z2) is constructed as:

V2(x, z1, z2) = V1(X1) +
z22
2

= V (x) +
z21
2

+
z22
2

= V (x) +
2∑

i=1

z2i
2

(6.18)

Having constructed the candidate Lyapunov function V2(x, z1, z2) the stabilising

function α2(x, z1, z2) can be chosen such that ξ3 = α2 ensures that the derivative

of V2 is nonpositive. This procedure can be applied recursively to the system

(6.12) and will terminate at the kth step when the actual control u appears in the

dynamics. At the kth step the dynamics have the following structure:

Ẋk−1 = Fk−1(Xk−1) +Gk−1(Xk−1)zk

żk = fk(Xk−1, ξk) + gk(Xk−1, ξk)u
(6.19)

Construct a candidate Lyapunov function for the whole system which is of the

form:

Vk(x, z1, . . . , zk) = V (x) +
k∑

i=1

z2i
2

(6.20)

Using this candidate Lyapunov function the control u can be chosen such that V̇k

is nonpositive. From this illustration it becomes clear then that the backstepping

technique is actually a method of constructing a Lyapunov function for the whole

system from a Lyapunov function of some simpler subsystem. The approach

that has been outlined for applying backstepping to strict feedback systems can

also be applied to wider classes of system such as pure-feedback systems and

block-strict-feedback systems[73].

Example. To illustrate the backstepping technique consider the system given by
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(6.21). The objective is to regulate x(t) for all x(0) and ξ(0).

ẋ = cosx− x3 + ξ (6.21a)

ξ̇ = u (6.21b)

The first step is to find a Lyapunov function V (x) and a stabilising function

α(x) such that if ξ = α(x) then (6.21a) will be rendered globally asymptotically

stable about the origin. If V (x) = x2

2
then the derivative along the solutions of

(6.21a) is given by:

V̇ =
∂V

∂x
(x)ẋ = x

[
cosx− x3 + ξ

]
(6.22)

To ensure negative definiteness of V̇ (x) let ξ = α(x) = −cosx which results in

V̇ (x) = −x4. Let the error variable be z = ξ − α(x), the system dynamics can

thus be expressed in terms of (x,z) as:

ẋ = −x3 + z (6.23a)

ż = −sinx(z − x3) + u (6.23b)

Constructing a Lyapunov function by augmenting V (x) with a quadratic term of

the error variable z:

V1(x, z) = V (x) +
z2

2
=
x2

2
+
z2

2

V̇1 = x(−x3 + z) + z
[
u− sinx

(
z − x3

)]

= −x4 + z
[
u+ x− sinx

(
z − x3

)]
(6.24)

Let the control u be given by:

u = −x− λz − sinx(x3 − z), λ > 0 (6.25)

This ensures that V̇1 = −x4 − λz2 which implies that (x = 0,z = 0) is globally

asymptotically stable. To determine the behavior of ξ with time consider the

61



limit:

lim
t→∞

z = lim
t→∞

(ξ + cosx) = 0

=⇒ lim
t→∞

ξ + cos
(

lim
t→∞

x
)

= 0

=⇒ lim
t→∞

ξ = −1 (6.26)

The choice of α(x) in this example is such that α(0) 6= 0, the effect of this choice

is that ξ does not settle to zero as shown in the above analysis.The controller was

simulated using the MATLAB/SIMULINK environment, results of these simula-

tions are shown in figure 6.2 for different values of λ

Integral control action can be easily incorporated into the backstepping control

strategy. For the example system (6.21) this can be accomplished by introducing

the integral error variable χ =
∫
xdt such that the system dynamics become:

χ̇ = x (6.27a)

ẋ = cosx− x3 + ξ (6.27b)

ξ̇ = u (6.27c)

The system (6.27) is still in strict-feedback form and thus the backstepping

approach can be used with the requirement being the regulation of χ(t) and x(t).

With the choice of V (χ) = χ2

2
the following stabilizing functions and control will

guarantee the regulation of χ(t) and x(t).

α(χ) = −λ1χ, λ1 > 0, z1 = x− α(χ)

α1(χ, Z1) = −cosx+ x3 − λ1z + λ21χ− χ− λ2z1, λ2 > 0, z2 = ξ − α1(χ, z1)

u = −z1 − (λ21 − 1)(λ1χ+ z1)− (λ1 + λ2)(z2 − χ− λ2z1)− λ3z2, λ3 > 0

(6.28)

Figure 6.3 shows the response of the system with the integral backstepping con-

troller, from these graphs one can see that the integral backstepping controller

can achieve faster settling times though there is an increased overshoot which is

characteristic of integral control.
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time(s)

x

(a) x plot

time(s)

ξ

(b) ξ plot

time(s)

control

(c) control input

Figure 6.2: Backstepping example simulation results. Blue = (λ = 0.5), green =
(λ = 1), red = (λ = 1.5), black = (λ = 2)
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time(s)

x

(a) x plot

time(s)

ξ

(b) ξ plot

time(s)

control

(c) control input

Figure 6.3: Integral Backstepping example simulation results. Blue =(λ1 =
0.7, λ2 = 1, λ3 = 0.8, green = (λ1 = 0.5, λ2 = 0.6, λ3 = 0.4), red = (λ1 =
1.2, λ2 = 1.6, λ3 = 1).
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6.3 Backstepping with Uncertainty

So far the focus has been on systems in which the dynamics are fully known,

however in real life this is rarely the case as uncertain terms will invariably exist

due mainly to simplifying assumptions made in the modelling process. These

uncertainties can be grouped into two categories, parametric and non-parametric

uncertainties. Parametric uncertainties as the name suggests are uncertainties in

the values of the system’s parameters such as the inertia of the quadrotor UAV.

Non-parametric uncertainties describe those uncertainties that act as disturbance

inputs to the system. In the case of the quadrotor UAV aerodynamics forces

such as drag can be viewed as non-parametric uncertainties. The backstepping

technique can be modified to take into account these uncertainties. The rest

of this chapter will be devoted to developing such a backstepping technique.

To achieve robustness against parametric uncertainty adaptive techniques are

employed while nonlinear damping via Lyapunov redesign will be used to achieve

robustness against disturbances.

6.3.1 Adaptive Backstepping Control

Adaptive backstepping control for the matched uncertainty case first appeared

in the work of Taylor, Kokotovic, Marino and Kanellakopoulos[57] the extended

matching case was later solved in [58] both cases are considered in this chapter.

Adaptive backstepping for the matched case is presented first as this is more

relevant to the attitude control problem. Consider the system given by (6.29) in

which ϑ is an unknown constant scalar quantity.

ẋ = f(x) + g(x)ξ (6.29a)

ξ̇ = ϑh(x, ξ) + u (6.29b)

Assume that there exists a continuous function α(x) such that if ξ = α(x) then

the subsystem (6.29a) would be globally asymptotically stable with a Lyapunov

function V (x) such that the following inequality is satisfied:

V̇ (x) =
∂V

∂x
(f(x) + g(x)α(x)) ≤ −W (x), W (x) is positive definite (6.30)
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Following the backstepping approach that has been outlined in the previous sec-

tion let the error variable be defined as z = ξ − α(x), the system dynamics

expressed in terms of (x,ξ) become:

ẋ = f(x) + g(x) (z + α(x)) (6.31a)

ż = ϑh(x)− ∂α

∂x
(x) [f(x) + g(x) (z + α(x))] + u (6.31b)

Constructing the augmented Lyapunov function V1(x, z) :

V1(x, z) = V (x) +
z2

2
(6.32)

V̇1 =
∂V

∂x
(x) [f(x) + g(x) (z + α(x))] + z

[
ϑh(x)− ∂α

∂x
(f(x) + g(x) (z + α(x)) + u)

]

(6.33)

≤ −W (x) + z

[
ϑh(x)− ∂α

∂x
(x) (f(x) + g(x) (z + α(x))) +

∂V

∂x
(x)g(x) + u

]

(6.34)

If the parameter ϑ was known then the choice of the control u in (6.35) would

ensure that V̇1 is nonpositive.

u = −ϑh(x) +
∂α

∂x
(x) (f(x) + g(x) (z + α(x)))− ∂V

∂x
g(x)− λz, λ > 0 (6.35)

Since ϑ is actually not known the control (6.35) is not feasible making the ren-

dering of the candidate Lyapunov function V1(x, z) impossible. As an alternative

instead of just augmenting V (x) with the quadratic term z2 consider the esti-

mation error ϑ̃ = ϑ − ϑ̂ where ϑ̂ is the estimate for ϑ[73]. Constructing a new

candidate Lyapunov function by augmenting a quadratic term of the estimation

66



error to V1(x, z).

Vad(x, z, ϑ̃) = V (x) +
z2

2
+
ϑ̃2

2γ
, γ > 0 (6.36)

V̇ad ≤ −W (x) +
∂V

∂x
(x)g(x)z +

ϑ̃ ˙̃ϑ

γ

+ z

[
ϑh(x)− ∂α

∂x
(x) (f(x) + g(x) (z + α(x)))

]
(6.37)

≤ −W (x) + z

[
ϑ̂h(x)− ∂α

∂x
(x) (f(x) + g(x) (z + α(x))) +

∂V

∂x
(x)g(x) + u

]

+ ϑ̃zh(x) +
ϑ̃ ˙̃ϑ

γ
(6.38)

To make V̇ad nonpositive let the control u be given by:

u = −ϑ̂h(x)+
∂α

∂x
(x) (f(x) + g(x) (z + α(x)))− ∂V

∂x
(x)g(x)−λz, λ > 0 (6.39)

This choice of control leaves V̇ad as :

V̇ad ≤ −W (x)− λz2 + ϑ̃

(
zh(x) +

˙̃ϑ

γ

)
(6.40)

To complete the design of the adaptive backstepping controller an update law

is chosen such that the last term of (6.40) is zero.

˙̃ϑ = −γzh(x) (6.41a)

˙̂
ϑ = γzh(x) (6.41b)

Thus the control and update law for the adaptive backstepping controller are:

u = −ϑ̂h(x) +
∂α

∂x
(x) (f(x) + g(x) (z + α(x)))− ∂V

∂x
(x)g(x)− λz (6.42a)

˙̂
ϑ = γzh(x) (6.42b)

It should easily be seen that the outlined adaptive backstepping technique can
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be applied to higher order systems with matched uncertainties by recursive ap-

plication of the procedure. The effectiveness of adaptive backstepping is however

shown in the case where the uncertainties enter the system dynamics one integra-

tor or more before the control, this is the extended matching case. Even though

the extended matching case is not encountered in the attitude dynamics it shall

be presented for the sake of completeness.

Consider the second order system given by (6.43) where ϑ is an unknown

constant scalar.

ẋ = ϑf(x1) + x2 (6.43a)

ẋ2 = u (6.43b)

Equation (6.43a) contains the unknown parameter ϑ and hence an adaptive con-

troller has to be designed for this subsystem in which x2 is taken as the pseudo-

control. Let V (x, ϑ̃1) be a candidate Lyapunov function where ϑ̃1 is the estimation

error given by ϑ̃1 = ϑ− ϑ̂1.

V (x, ϑ̃1) =
x2

2
+

ϑ̃2
1

2γ1
(6.44)

Let x2 = α(x1, ϑ̂1), then the choice of α(x1, ϑ̂1) and the update law in (6.45) will

make V̇ = −λ1x21 where λ1 > 0.

α(x1, ϑ̂1) = −ϑ̂1f(x1)− λ1x1 (6.45a)

˙̂
ϑ1 = γ1x1f(x1) (6.45b)

Now following the backstepping procedure let the error variable be given as z =

x2−α(x1, ϑ̂1), the dynamics of the system expressed in terms of (x1, z) become:

ẋ1 =
(
ϑ− ϑ̂1

)
f(x1)− λ1x1 + z1 (6.46a)

ż = u− ∂α

∂x1
x2 −

∂α

∂x1
ϑf(x1)−

∂α

∂ϑ̂1

γx1f(x1) (6.46b)

Construct a Lyapunov function and design for u to make its derivative nonposi-
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tive. Consider the candidate Lyapunov function V (x1, ϑ̃1, z).

V (x1, ϑ̃1, z) =
x2

2
+
ϑ̃2
1

2
+
z2

2
(6.47)

V̇ = x
[(
ϑ− ϑ̂1

)
f(x1)− λ1x1 + z

]
+
ϑ̃1

˙̃ϑ1

γ1

+ z

[
u− ∂α

∂x1
x2 −

∂α

∂ϑ̂1

γ1x1f(x1)−
∂α

∂x1
ϑf(x1)

]
(6.48)

Substituting (6.45b) and also recall that ϑ̃1 = ϑ− ϑ̂1 gives:

V̇ = −λ1x21 + z

[
u+ x1 −

∂α

∂x1
x2 −

∂α

∂ϑ̂1

x1f(x1)−
∂α

∂x1
ϑf(x1)

]
(6.49)

From equation (6.49) it can be seen that it is impossible to cancel out the indef-

inite term ∂α
∂x1
ϑf(x1). As an alternative consider a different candidate Lyapunov

function V1(x1, ϑ̃1, ϑ̃2, z) which is constructed by augmenting V (x1, ϑ̃1, z) with a

quadratic term of a second estimation error ϑ̃2 = ϑ − ϑ̂2 where ϑ̂2 is the second

estimate of ϑ.

V1(x1, ϑ̃1, ϑ̃2, z) = V (x1, ϑ̃1, z) +
ϑ̃2
2

γ2
, γ1 > 0

= −λ1x21 + z

[
u+ x1 −

∂α

∂x1
x2 −

∂α

∂ϑ̂1

x1f(x1)−
∂α

∂x1
ϑf(x1)

]
+
ϑ̃2

˙̃ϑ1

γ2

= −λ1x21 + z

[
u+ x1 −

∂α

∂x1
x2 −

∂α

∂ϑ̂1

x1f(x1)−
(
ϑ̃2 + ϑ̂2

)
f(x1)

∂α

∂x1

]
+
ϑ̃2

˙̃ϑ2

γ2

= −λ1x21 + z

[
u+ x1 −

∂α

∂x1
x2 −

∂α

∂ϑ̂1

x1f1(x1)− ϑ̂2f(x1)
∂α

∂x1

]

− ϑ̃2

(
f(x1)

∂α

∂x1
−

˙̃ϑ2

γ2

)
(6.50)

Now eliminating the unknown term with the update law:

˙̂
ϑ2 = γ2f(x1)

∂α

∂x1
(6.51)

The control law and the update laws for the adaptive backstepping controller for
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the extended matching case are given by:

u = −x1 +
∂α

∂x1
x2 +

∂α

∂ϑ̂1

x1f(x1) + ϑ̂2f(x1)
∂α

∂x1
− λ2z, λ2 > 0 (6.52a)

˙̂
ϑ1 = γ1x1f(x1) (6.52b)

˙̂
ϑ2 = γ2f(x1)

∂α

∂x1
(6.52c)

This choice of control law and parameters update laws results in V̇1 = −λ1x21 −
λ2z

2. Applying La Salle’s theorem it can be seen that x1, z → 0 as t → ∞
since z = x2 − α(x, ϑ̂1) this implies that x2 → α(0, ϑ̂1) as t → ∞. It can

also be seen that the presented controller requires two estimates for the single

unknown parameter, this over-parameterisation is characteristic of this technique

as such the technique is also called the over-parameterised adaptive backstepping

scheme[73]. By recursively applying this technique one can stabilise systems that

belong to the class of parametric strict-feedback systems of the form:

ẋ1 = x2 + f1(x1)ϑ1

ẋ2 = x3 + f2(x1, x2)ϑ2

...

ẋn−1 = xn−2 + fn−1(x1, . . . , xn−1)ϑn−1

ẋn = g(x1, . . . , xn)u+ fn(x1, . . . , xn)ϑn (6.53)

For a nth order system with p unknown parameters the over parameterised adap-

tive backstepping scheme may require as many as pn parameter estimates which

becomes problematic for large systems. It is because of this drawback that Kris-

tic, Kanellakopoulos and Kokotovic[59] introduced the tuning function method

which eliminates the over-parameterisation. The details of the tuning function

method are not covered here however the interested reader can consult [73] for a

detailed account.

Example. Consider the second order system given by (6.54) where ϑ and ϕ are
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unknown scalar parameters.

ẋ = ϑcosx− x3 + ξ (6.54a)

ξ̇ = ϕx2 + u (6.54b)

The task is to regulate the system about x = 0.

Firstly an adaptive controller is designed for (6.54a) by choosing the candidate

Lyapunov function V (x, ϑ̃1) where ϑ̃1 = ϑ − ϑ̂1 with ϑ̂1 being the first estimate

of ϑ.

V (x, ϑ̃1) =
x2

2
+

ϑ̃2
1

2γ1
, γ1 > 0 (6.55)

The function α(x, ϑ̂1) and the parameter update law is chosen such that if ξ =

α(x, ϑ̂1) the derivative of (6.55) would be nonpositive.

α(x, ϑ̂1) = −ϑ̂1cosx (6.56a)

˙̂
ϑ1 = γ1xcosx (6.56b)

Let z = ξ−α(x, ϑ̂1) be the error variable then the system dynamics are expressed

as:

ẋ =
(
ϑ− ϑ̂1

)
cosx− x3 + z (6.57a)

ż = ϕx2 −
(
ϑcosx+ ξ − x3

) ∂α
∂x
− γ1xcosx

∂α

∂ϑ̂1

+ u (6.57b)

Select a u that ensures that the derivative of some Lyapunov function is nonpos-

itive. For the Lyapunov function consider the function:

V1(x, z, ϑ̃1, ϑ̃2, ϕ̃) =
x2

2
+
z2

2
+

ϑ̃2
1

2γ1
+

ϑ̃2
2

2γ2
+
ϕ̃2

2γ3
, γ2 > 0, γ3 > 0 (6.58)

where ϑ̃2 is the estimation error (ϑ̃2 = ϑ− ϑ̂2) with ϑ̂2 being the second estimate

of ϑ and ϕ̃ is the estimation error for ϕ given by ϕ̃ = ϕ − ϕ̂ with ϕ̂ being the
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estimate. The derivative of the candidate Lyapunov function is:

V̇1 = x
[(
ϑ− ϑ̂1

)
cosx+ z − x3

]
+ z

[
ϕx2 −

(
ϑcosxz + ξ − x3

) ∂α
∂x
− γ1xcosx

∂α

∂ϑ̂1

+ u

]

+
ϑ̃1

˙̃ϑ1

γ1
+
ϑ̃2

˙̃ϑ2

γ2
+
ϕ̃ ˙̃ϕ

γ3

= −x4 + z

[
x+ ϑ̂2x

2 −
(
ϑ̂2cosx+ ξ − x3

) ∂α
∂x
− γ1xcosx

∂α

∂ϑ̂1

+ u

]

− ϑ̃2

(
zcosx

∂α

∂x
−

˙̃ϑ2

γ2

)
+ ϕ̃

(
zx2 +

˙̃ϕ

γ3

)
(6.59)

Choosing the control law and parameter update laws as:

u = −x− ϕ̂2x
2 +

(
ϑ̂2cosx+ ξ − x3

) ∂α
∂x

+ γ1xcosx
∂α

∂ϑ̂1

− λz (6.60a)

˙̂
ϑ1 = γ1xcosx (6.60b)

˙̂
ϑ2 = −γ2zcosx

∂α

∂x
(6.60c)

˙̂ϕ = γ3zx
2 (6.60d)

The controller was simulated in the MATLAB/SIMULINK environment in which

the true values of the unknown parameters were ϑ = −2 and ϕ = 2. The following

values for the controller parameters where used. The system response shown in

γ1 = 1 γ2 = 2
γ3 = 3 λ = 3

figure 6.4 corresponds to the initial conditions (x(0) = 1, ξ(0) = 1).
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Figure 6.4: Adaptive Backstepping example simulation results
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6.4 Nonlinear Damping

Nonlinear damping is a control technique that achieves bounded response when

the system is perturbed by a bounded disturbance. The major advantage of

this technique is that no knowledge of the upper bounds of the disturbance are

required. This technique can be traced back to the work of Feuer and Morse [74]

it was then explicitly developed by Barmish et al[75] and Sontag[76].

To illustrate how nonlinear damping works consider the general nonlinear

system (6.61).

ẋ = f(x) + g(x)u+ Γ(x)∆(t) (6.61)

where f(x), g(x) and Γ(x) are continuous functions also g(0) 6= 0, f(0) = 0 and

∆(t) is a bounded function. Consider the nominal version of (6.61), assume that

there exists a function α(x) which stabilises the origin of the nominal system with

Lyapunov function V (x) such that the inequality (6.62) is satisfied.

∂V

∂x
(x) (f(x) + g(x)α(x)) ≤ −W (x) (6.62)

where W (x) is a positive definite function. Now further consider the derivative

of V (x) along the solutions of the actual system (6.61):

V̇ =
∂V

∂x
(x) (f(x) + g(x)u+ Γ(x)∆(t)) (6.63)

Let u = α(x) + ν(x) which gives:

V̇ =
∂V

∂x
(x) (f(x) + g(x)α(x)) +

∂V

∂x
(x)g(x)ν(x) +

∂V

∂x
(x)Γ(x)∆(t)

≤ −W (x) +
∂V

∂x
(x) (g(x)ν(x) + Γ(x)∆(t)) (6.64)

It is required that V̇ be negative definite outside some compact region so as to

achieve boundedness, choosing ν(x) = − K
g(x)

(Γ(x))2 ∂V
∂x

(x) where K is a positive
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constant.

V̇ ≤ −W (x)−K (Γ(x))2
(
∂V

∂x

)2

+ ∆(t)Γ(x)
∂V

∂x
(x)

= −W (x)−K
[(

Γ(x)
∂V

∂x
(x)− ∆(t)

2K

)2

− ∆2(t)

4K2

]
completing the square

= −W (x)−K
(

Γ(x)
∂V

∂x
(x)− ∆(x)

2K

)2

+
∆2(t)

4K
(6.65)

Thus V̇ will be negative definite outside the compact set R defined as:

R =

{
x :

∣∣∣∣∣W (x) +K

(
Γ(x)

∂V

∂x
(x)− ‖∆‖∞

2K

)2
∣∣∣∣∣ >
‖∆‖∞

4K

}
(6.66)

Thus x(t) will be bounded to the set R. It is interesting to note that x(t) will

be bounded despite of the size of the gain K that is chosen, the set R is finite

as long as ‖∆‖∞ is finite however the size of the set R can be made arbitrarily

small by selecting the right K.

The action of the nonlinear term ν(x) can be viewed as a dynamic gain which is

large when Γ(x) is large and correspondingly small for small Γ(x). Γ(x) multiplies

the disturbance ∆(t) as such it is some kind of a disturbance gain thus the

nonlinear damping term acts to reduce the effective disturbance gain.

6.5 Attitude Control

Having developed the tools needed to achieve robust system performance the next

step is to design the attitude control. For convenience the attitude kinematic and

dynamic equations are restated.

Θ̇ = Ψ(Θ)ωB (6.67a)

Ṙe3 = Rω̂Be3 (6.67b)

Iω̇B = −ωB ×
(
IωB

)
+ τB (6.67c)

75



In chapter 5 a translational controller was developed which generates a desired

orientation in the form of the unit vector Re3d. It is the task of the attitude

controller to therefore ensure asymptotic tracking of this reference vector. Also

the trajectory of the quadrotor UAV is defined as being specified by the pair

(pd(x, y, z), ψ(t)) as such a yaw controller is required that ensures asymptotic

tracking of the reference yaw. Thus the attitude controller will comprise two

sub-controllers: the orientation controller and the yaw controller.

6.5.1 Orientation Controller

Firstly the attitude dynamics in (6.67) are expressed in their expanded form. Let

R = [ρij] where ρij is the element in the ith row and jth column.




˙ρ13

˙ρ23

˙ρ33


 =



−ρ12 ρ11

−ρ22 ρ21

−ρ32 ρ31



[
p

q

]
(6.68a)



ṗ

q̇

ṙ


 =



Iφqr

Iθpr

Iψpq


+




∆φ(t) + 1
Ixx
τφ

∆θ(t) + 1
Iyy
τθ

∆ψ(t) + 1
Izz
τψ


 (6.68b)

where:

Iφ = Iyy−Izz
Ixx

Iθ = Izz−Ixx
Iyy

Iφ = Ixx−Iyy
Izz

Recall that since Re3 is known to be a unit vector it only requires two of its

elements to be fully determined, thus only the equations related to the elements

ρ13 and ρ23 are used. However only a detailed presentation of the design for

the controller of the ρ13 dynamics is presented because of the symmetry of the

problem. Let 1
Ixx

= 1 + 1−Ixx
Ixx

then the dynamics of ρ13 can be expressed as

ρ̇13 = qρ11 − pρ21 (6.69a)

ṗ = Iφqr + δφ + τφ (6.69b)
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where δφ(t) = ∆φ+ 1−Ixx
Ixx

τφ is an unknown bounded function. The task is to design

a control τφ to ensure that ρ13 tracks some reference signal ρ13d(t). To that end

let the tracking error variable be eρ13 = ρ13 − ρ13d and its integral χφ = eρ13 such

that now the system dynamics are given by:

χ̇ = eρ13 (6.70a)

ėρ13 = −ρ̇31d + qρ11 − ρ21p (6.70b)

ṗ = Iφqr + δφ(t) + τφ (6.70c)

Taking eρ13 as the pseudo-control for (6.70a) let the candidate Lyapunov function

be given by V1(χ) = χ2

2
. It should be easy to see that if eρ13 = α1(χ) = −λ1χ

where λ1 > 0 then the derivative of V1 will be rendered negative definite. Follow-

ing the backstepping procedure the error variable is given as z1 = eρ13 − α1(χ)

which gives the (χ, z1) dynamics :

χ̇ = −λ1χ+ z1 (6.71)

ż1 = − ˙ρ13d + qρ11 + λ1z1 − λ21χ− ρ21p (6.72)

Taking p as the pseudo-control for the (χ,z1) system and choosing the candi-

date Lyapunov function V2(χ, z1) such that:

V2(χ, z1) =
χ2

2
+
z21
2

(6.73)

It should be easy to verify that the function α2 makes the time derivative of

V2(χ, z) negative definite if p = α2.

α2 =
1

ρ21

[
−ρ̇13d + χ+ qρ11 + λ1z1 − λ21χ+ λ2z1

]
, λ2 > 0 (6.74)

This choice of pseudo-control makes V̇2 = −λ1χ − λ2z21 . Defining the new error
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variable z2 = p− α2 the dynamics of the (χ, z1, z2) system becomes:

χ̇ = −λ1χ+ z1 (6.75)

ż1 = −χ− λ2z1 − ρ21z2 (6.76)

ż2 = Iφqr − (z1 − λ1χ)
∂α2

∂χ
− (−χ− λ1z1 − ρ21z2)

∂α2

∂z1
+ δφ(t) + τφ (6.77)

The dynamics of the (χ, z1, z2) system contains uncertain parameters(Iφ) and a

disturbance input(δ(t)). As such the techniques that have been developed in this

chapter(i.e. adaptive backstepping and nonlinear damping) shall be made use of

to stabilize the system. Consider the candidate Lyapunov function V3(χ, z1, z2, Ĩφ)

with Ĩφ = Iφ − Îφ where Îφ is the estimate and Ĩφ is the estimation error.

V3(χ, z1, z2) =
χ2

2
+
z21
2

+
z22
2

+
Ĩφ
2γ1

(6.78)

V̇3 = −λ1χ2 − λ2z2 + z2qrĨφ +
Ĩφ

˙̃Iφ
γ1

+ z2

[
−ρ21z1 + Îφqr − (z1 − λ1χ)

∂α2

∂χ
+ (χ+ λ1z1 + ρ21z2)

∂α2

∂z1
+ δφ(t)

]

(6.79)

Consider the nominal control(τφnom) and update law which would have made V̇3

negative definite for the nominal case :

τφnom = ρ21z1 − Îqr + (z1 − λ1χ)
∂α2

∂χ
− (χ+ λ1z1 + ρ21z2)

∂α2

∂z1
− λ3z2, λ3 > 0

(6.80a)

˙̂
Iφ = γz2qr (6.80b)

Let the actual control be τφ = τφnom + τND where τND = −Kz2 substituting this
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and the update law into (6.79) gives:

V̇3 = −λ1χ2 − λ2z21 − λ3z22 + z2 [τND + δφ(t)]

= −λ1χ2 − λ2z21 − λ3z22 −Kz22 + z2δφ(t), K > 0

= −λ1χ2 − λ2z21 − λ3z22 −K
(
z22 −

z2δφ(t)

K

)

= −λ1χ2 − λ2z21 − λ2z22 −K
(
z2 −

δφ(t)

2K

)2

+
δ2φ(t)

4K

≤ −λ1χ2 − λ2z21 − λ2z22 +
δ2φ(t)

4K
(6.81)

From (6.81) V̇3 will be negative outside the ellipsoidal ball R in the (χ, z1, z2)

space where R is given by:

R =

{
χ, z1, z2|λ1χ+ λ2z

2
1 + λ3z

2
2 ≤
‖δφ(t)‖2∞

4K

}
(6.82)

Thus from (6.82) it can be seen that the size of the ellipsoid R can be decreased by

the right selection of the controller gains. One simple case is to make λ1 = λ2 = λ3

and then just increase the value K. A similar approach can be applied to the

dynamics of ρ23 so as to design for the control torque τθ.

6.5.2 Yaw Control

The equations of the yaw dynamics are obtained from equations (6.67a) and

(6.68b). Let ψd(t) be the desired yaw, the yaw tracking error is given by eψ =

ψ − ψd. Also let the integral of the tracking error be χψ =
∫
eψ. Thus the yaw

dynamics are given as:

χ̇ψ = eψ (6.83a)

ėψ = −ψ̇d +
sinφ

cosθ
q +

cosφ

cosθ
r (6.83b)

ṙ = Iψpq + δψ(t) + τψ (6.83c)
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The design of the τψ control for the yaw dynamics does not differ much from that

of τφ which has already been outlined, as such a summary of the major points of

the design procedure is given. Constructing the candidate Lyapunov function for

(6.83a) V1(χψ) =
χ2
ψ

2
and choosing eψ and r as the pseudo-controls applying the

backstepping procedure gives the stabilising functions:

α1(χψ) = −λ1χψ, z1 = eψ − α1(χψ)

α2(χ, z1) =
cosθ

cosφ

[
ψ̇d −

sinφ

cosθ
q − λ1z − 1 + λ21χψ − χψ − λ2z2

]

z2 = r − α2(χψ, z1)

From applying the adaptive backstepping and nonlinear damping procedure the

following control and parameter update laws are derived:

˙̂
Iψ = γ1z2pq (6.84a)

τψ = −cosφ
cosθ

z1 − Îψpq + (−λ1χψ + z1)
∂α2

∂χψ
+

(
−χψ − λ2z1 +

cosφ

cosθ
z2

)
∂α2

∂z1

− λ3z2 −Kz2 (6.84b)

As was the case for the ρ31 controller the yaw controller will ensure that the states

(χψ, z1, z2) will be bounded to the ellipsoidal ball Rψ defined as:

R =

{
χψ, z1, z2

∣∣ λ1χψ + λ2z
2
1 + λ3z

2
2 ≤
‖δψ(t)‖2∞

4K

}
(6.85)

6.5.3 Simulation Results

The attitude controller that has been developed in this chapter was simulated in

the MATLAB/SIMULINK environment to verify its performance. Two scenarios

were simulated in which the attitude system was required to:

1. track a time varying reference attitude (φd(t) = 0.2sin(πt), θd(t) = 0.2sin(0.5πt),

ψd = 0) in the absence of disturbances

2. track a time varying reference attitude (φd(t) = 0.2sin(πt), θd(t) = 0.2sin(0.5πt),

ψd = 0) in the presence of disturbances (δφ(t) = 0.1sin(2πt), δθ(t) =
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0.1sin(5πt), δψ(t) = 0.1sin(7πt))

The gains that were chosen for the controller are:

φ controller θ controller ψ controller
λ1 = 5 λ1 = 10 λ1 = 4
λ2 = 10 λ2 = 9 λ2 = 8
λ3 = 4 λ3 = 8 λ3 = 4
K = 5 K = 5 K = 5

It should be noted that these gains were chosen by trial and error.The results

of these simulations are shown in figures 6.5 - 6.9 where it should be clear that

the controller does achieve bounded error trajectory tracking for the attitude

subsystem.

6.6 Conclusion

The backstepping technique for the control of nonlinear systems in strict feedback

systems has been presented. The backstepping technique was developed as a

tool for constructing Lyapunov functions for systems in which the designer has

knowledge of a Lyapunov function for a simpler subsystem and uses it to construct

a Lyapunov function for the whole system. Using adaptive techniques a modified

backstepping technique is presented which can be employed in parametric-strict

feedback systems with the parameters being unknown. Further robustness is

achieved by adding a nonlinear damping term to the control which guarantees

bounded error tracking in the presence of a bounded disturbance without the

need for knowledge of the disturbance’s upper bounds. Finally simulation results

for the attitude control system are presented to demonstrate the feasibility of the

controller developed in this chapter.
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time(s)

angle(rad)

(a) φ plot without disturbance, green = φd, blue = actual trajectory

time(s)

angle(rad)

(b) φ plot with disturbance, green = φd, blue = actual trajectory

time(s)

angle(rad)

(c) θ plot without disturbance

Figure 6.5: Reference signal φd = 0.2sin(πt), θd = 0.2sin(0.5πt), δφ(t) =
0.1sin(2πt) 82



time(s)

angle(rad)

(a) θ plot with disturbance, green = θd, blue = actual trajectory

time(s)

angle(s)

(b) ψ plot, with disturbance = green, without disturbance = blue

time(s)

Inertia Estim
ate

(c) Îφ plot, with disturbance = green, without disturbance = blue

Figure 6.6: Reference signal θd = 0.2sin(0.5πt), ψd = 0, δθ(t) = 0.1sin(5πt),
δψ(t) = 0.1sin(7πt)
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time(s)

Inertia Estim
ate

(a) Îθ plot, with disturbance = green, without disturbance = blue

time(s)

Inertia Estim
ate

(b) Îψ plot, with disturbance = green, without disturbance = blue

time(s)

Torque(N
m

)

(c) τφ plot without disturbance

Figure 6.7: Îθ, Îψ and τφ plots
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(a) τφ plot, with disturbance

time(s)

Torque(N
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)

(b) τθ plot without disturbance

time(s)

Torque(N
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)

(c) τθ plot with disturbance

Figure 6.8: τθ and τφ plots
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(a) τψ plot, without disturbance
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)

(b) τψ plot with disturbance

Figure 6.9: τψ plot
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Chapter 7

Attitude Control 2

7.1 Chapter Overview

In this chapter a second attitude controller is developed for tracking the refer-

ence attitude generated by the translational controller. The attitude controller

developed in the previous chapter could only ensure the bounded error tracking

of the reference attitude in the presence of disturbances. Thus in this chapter the

task is to develop a controller that can theoretically guarantee asymptotic track-

ing of the reference attitude in the presence of disturbances. To accomplish this

the backstepping method is modified by combining it with sliding mode control.

As highlighted in section 2.3.2 sliding backstepping control has the disadvantage

of requiring a priori knowledge of the upper bounds of the uncertainties. In

an effort to mitigate this problem an adaptive sliding backstepping approach is

considered in which the sliding gain is no longer static but is varied according

to the sliding manifold error. Lyapunov based analysis shows that the adaptive

sliding backstepping controller is able to guarantee asymptotic tracking even in

the presence of unknown disturbances. The work developed in this chapter will

be presented at the IFAC World Congress 2014[?]Tinashe2
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7.2 Sliding Mode Control

Sliding mode control has its roots in the work of Russian researchers led by

S.V.Emelyanov[77] in the 1950s. The research at that time was mainly concerned

with variable structure control. The notion of discontinuous controls was not a

new phenomenon as researchers had come across it while solving optimal control

problems(i.e bang-bang control) but then it had been viewed as a nuisance that

needed to be eliminated. However it was the Russian mathematician A.F. Filipov

in his 1961 seminal paper[78] that provided the mathematical foundation for what

is now called sliding mode control.

The basic idea behind sliding mode control is the notion that 1st order systems

are easier to control compared to general nth order systems1. Thus in sliding

mode control the requirement is to drive the system to a manifold in the state-

space defined by stable 1st order dynamics, strictly speaking it is when the system

reaches this manifold that sliding mode occurs. Sliding mode control has desirable

robustness characteristics since the dynamics of the system on the sliding manifold

are independent of any plant parameters.

Consider the second order system(7.1) in which f(x) is an unknown but

bounded function.

ẍ = f(x) + g(x)u (7.1)

Assume that the uncertainty can be expressed as f(x) = fnom(x) + f̂(x) where

fnom(x) is the nominal value and |f̂(x)| < F is the unknown part with upper

bound F . The requirement is to make the system asymptotically stable about

the origin(x = 0), thus let the sliding manifold be defined as s((x), t) = 0[45].

s(x, t) = ẋ+ λx = 0 (7.2)

It is important to take note of the properties of the chosen sliding manifold.

• the system dynamics on the sliding manifold are exponentially stable being

governed by the 1st order differential equation ẋ = −λx.

• the system dynamics on the sliding manifold do not depend on any plant

1this does not apply for higher-order sliding mode
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parameters, it is from this property that sliding mode derives its robust

characteristics

• the convergence of the sliding mode regime to the origin can be varied by

varying the parameter λ

In designing the control u the equivalent control method[45] shall be used in

which the control u is given by:

u = ueq + usw (7.3)

Where ueq is the control that would maintain ṡ = 0 if the uncertainty was absent

while usw is a discontinuous term that ensures that the system reaches the sliding

manifold. Designing for ueq we have:

ṡ = ẍ+ λẋ

= g(x)u+ λẋ+ fnom(x) for ṡ = 0 we need ueq given by

ueq = −fnom(x)− λẋ

g(x)
(7.4)

The next step is to now design for the discontinuous component usw such that

the following inequality is satisfied[45].

1

2

d

dt
s2 ≤ −η|s| (7.5)

The meaning of this condition can be understood from two points of view.

1. Consider the candidate Lyapunov function V = s2

2
it is evident that (7.5)

translates to requiring that the ṡ dynamics be stable in the Lyapunov sense

2. the s2 term can be viewed as a measure of the distance from the sliding

surface as such the requirement in (7.5) can be thought of as requiring the

distance from the sliding manifold to be always non-increasing
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Applying (7.5) gives:

1

2

d

dt
s2 = s [f(x) + g(x) (ueq + usw) + λẋ] recall ueq = −fnom(x)− λẋ

g(x)

= s
[
f̂(x) + g(x)usw

]
(7.6)

Choosing usw as :

usw = − K

g(x)
sgn(s) (7.7)

where sgn is the signum function:

sgn(s) =





+1 if s > 0

−1 if s > 0

And the gain K is chosen such that:

K = F + η, η > 0 (7.8)

Substituting all this into (7.6) gives:

1

2

d

dt
s2 = s

[
f̂(x)−Ksgn(s)

]

= sf̂(x)−K|s|
≤ η|s| (7.9)

Thus the control u is given by :

u = −fnom(x)− λẋ

g(x)
−Ksgn(ẋ+ λx) (7.10)

The typical behavior of a system under sliding mode control can thus be

divided into two regimes. If the initial conditions are off the sliding manifold the

system enters the first regime which we call the reaching phase. In this regime

because of the sliding condition (7.5) the system takes some finite to reach the

sliding manifold. On the sliding manifold the system enters the second regime in

which the dynamics are governed by sliding manifold equation. Figure 7.1 shows
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a simplified phase portrait of a system under sliding mode control.

s = 0

reaching
 phase

sliding
mode

Figure 7.1: Sliding mode controlled system phase portrait[45]

The discontinuous nature of the sliding mode control presents problems since

in practice actuators cannot switch instantaneously but have some finite time

delay. The effect of this is that there will be high frequency chattering in the

control as is depicted in figure 7.2.
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s = 0

chattering

Figure 7.2: Chattering in practical sliding mode control[45]
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To try to alleviate the chattering a boundary layer can be defined around the

sliding manifold in which the control discontinuity is smoothed out. Effectively

this amounts to using some continuous approximation of the signum function such

as the inverse tangent function or the hyperbolic tangent function as is shown in

figure 7.3. This approach however has the drawback that the slide mode is lost

since this approach makes the boundary layer attractive not the sliding manifold.

Instead of achieving asymptotic convergence using the boundary layer approach

translates to bounded error tracking in which the bounds are proportional to the

size of the boundary region[45].

Figure 7.3: Signum function approximation, blue = sgn(.), green = tanh(.), red
= π

2
arctan(.)

Example. Consider the second order system (7.11) in which I is an unknown

parameter and δ(t) is a bounded but unknown function.

ẍ = Isinx+ δ(t) + u (7.11)
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Also it is known that I < Imax where Imax > 0 and |δ(t)| < ∆ ∀t > 0. The

requirement is to regulate x about the origin.

Comparing the structure of (7.11) with (7.1) it is clear that:

f(x) = Isinx+ δ(x), g(x) = 1

Assuming that there is no information about the uncertainties except the upper

bounds this implies that fnom(x) = 0. The control u is chosen as:

u = −λẋ−Ksgn (ẋ+ λx) , λ > 0 (7.12)

K = Imax + ∆ + η, η > 0 (7.13)

To illustrate the effect of the continuous approximation of the signum function

two different scenarios are simulated in which the signum function is replaced

by tanh(10x) and tanh(500x). These two functions are plotted in figure 7.4 for

comparison.

The two controls were simulated with the initial conditions x = 0.1, ẋ = 0,

from the results depicted in figure 7.5-7.7 it is clear that in as much as a bigger

boundary layer removes the chattering however this deteriorates the controller’s

performance.

7.3 Adaptive Sliding Mode Control

Sliding mode control has been shown to be a powerful robust control method

however the requirement of knowledge of the uncertainty upper bounds is difficult

to satisfy in real life. As such a lot of effort has been put to research into methods

in which this requirement is relaxed, adaptive sliding mode control is one such

method which seeks to remove the requirement of a priori knowledge of the

uncertainty bounds. The general approach of adaptive sliding mode control is to

make the gain dynamic such that it is adapted in a way that it can counteract

the effect of the uncertainties. To achieve this adaptation one of the methods

that has been used is intelligent controllers.
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Figure 7.4: Signum function approximation: Green = tanh(10x) and blue =
tanh(500x)

time(s)

x1

Figure 7.5: x plot: Green = tanh(10x) and blue = tanh(500x)
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time(s)

x2

Figure 7.6: ẋ plot: Green = tanh(10x) and blue = tanh(500x)

time(s)

control

Figure 7.7: u plot: Green = tanh(10x) and blue = tanh(500x)
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Fuzzy logic based adaptive sliding mode controllers were developed in [47],[79]

neural networks were considered in the work of Hu et al[80]. In this chapter the

focus is on two adaptive sliding mode control methods developed in [48] and [81].

7.3.1 Method 1

To illustrate the first method consider again the general second order system de-

scribed by equation (7.1). Also assume that the upper bounds of the uncertainty

are unknown. The choice of the sliding manifold is still unchanged and thus also

the equivalent control will still be given by (7.4). Since the upper bound of f̂(x)

is unknown assume that there exists a positive constant K∗ such that:

|f̂(x)| < K∗, ∀t > t0 (7.14)

Recall the sliding condition in (7.5), augmenting it with a quadratic term of

the estimation error of the constant K∗ where the estimation error is given by

K̃ = K∗ − K̂ with K̂ being the estimate. The new sliding condition becomes:

1

2

d

dt

(
s2 +

K̃2

γ1

)
< −W (x), γ1 > 0 and W (x)is positive definite[81] (7.15)

Evaluating (7.15) along the solutions of (7.1) gives:

1

2

d

dt

(
s2 +

K̃2

γ

)
= sṡ+

K̃ ˙̃K

γ

= s [f(x) + g(x)u+ λẋ] +
K̃ ˙̃K

γ
(7.16)
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Let u = ueq + usw with ueq being the same as in (7.4) and usw = − K̂sgn(s)
g(x)

.

Substituting u into (7.16):

1

2

d

dt

(
s2 +

K̃2

γ

)
= s

[
fnom(x) + f̂(x) + g(x) (ueq + usw) + λẋ

]
+
K̃ ˙̃K

γ

= s
[
f̂(x)− K̂sgn(s)

]
+
K̃ ˙̃K

γ

= s
[
f̂(x)−K∗sgn(s)

]
+ K̃|s|+ K̃ ˙̃K

γ
(7.17)

Choosing the update law for K̂ as:

˙̂
K = γ|s| (7.18)

Finally gives :

1

2

d

dt

(
s2 +

K̃2

γ

)
≤ −η|s| (7.19)

Application of La Salle’s theorem to (7.15) shows that x(t) will converge to the

largest invariant set M = {x|W (x) = 0}. In the case of (7.19) W (x) = η|s| and

thus it is guaranteed that x(t) will converge to the sliding manifold s(x, t) = 0.

A closer look however at the adaptation law (7.18) shows that this adaptation

law tends to over-estimate the sliding mode gain K. Consider the case where

the system’ s initial conditions are off the sliding manifold, from (7.18) K̂ will

continue to increase even though the system trajectory might be getting closer

to the sliding manifold. Even when s(x, t) = 0 the sliding gain estimate does not

go to zero which is an over-estimate of the effect of the uncertainties. Another

problem that comes with the developed update law is that if the boundary layer

method is used the sliding mode is never reached (i.e s(x, t) 6= 0) meaning that

the estimate K̂ will always be increasing.
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7.3.2 Method 2

The disadvantages of the adaptive law (7.18) were also highlighted in the work of

Plestan[81] in which they proposed an improved adaptive law which is presented

here. Consider the parameter update law:

˙̂
K =




γ|s(x, t)|sign(|s(x, t)| − ε) if K̂ > µ

µ if K̂ ≤ µ
(7.20)

with K̂(0) > 0, γ > 0, ε > 0 and µ > 0. Note that the parameter µ represents

the lower limit of the estimate K̂ thus K̂ > µ ∀ t, also by making µ positive

this guarantees that the estimate K̂ is always positive. The parameter ε defines

a boundary region B(x) about the sliding manifold B(x) = {x|s(x, t) − ε < 0}.
Outside the boundary region B(x) with the additional condition that K̂ > µ, the

update law (7.20) is similar to that in equation (7.18). Inside the boundary region

B(x) however the update law is such that the estimate is decreasing, this avoids

the gain over-estimation that is characteristic of the first update law. Again it can

be seen that the parameter µ guards against the estimate decreasing to become

negative which would lead to instability.

Example. Consider the system given by equation (7.21).

ẍ = Isinx+ δ(t) + u (7.21)

where I is an unknown constant parameter and δ(t) is an unknown bounded func-

tion. The requirement is to regulate x about the origin.

Using the two adaptive sliding mode control methods that have been devel-
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oped gives the control and update laws:

s(x, t) = ẋ+ λx (7.22a)

u = −λẋ− K̂sgn(s(x, t)) (7.22b)

˙̂
K = γ|s(x, t)| (7.22c)

˙̂
K =




γ|s(x, t)|sgn (|s(x, t)| − ε) if K̂ > µ

µ if K̂ ≤ µ
(7.22d)

The following values for controller and update law parameters are chosen:

The controller with the two update laws was simulated in MATLAB for the case

λ = 2 ε = 0.1
µ = 0.01 γ = 5

were the disturbance δ(t) is a sinusoid of unit amplitude and initial conditions =

(x = 1, ẋ = 0). The results as shown in figure 7.8-7.11 show that both controllers

have nearly the same regulation performance however the adaptive scheme of the

second method utilises lower gains than the first method as was expected.

7.4 Sliding Backstepping Control

Two techniques for integrating sliding mode control with backstepping control are

developed in this section. The first method relies on a Lyapunov based approach

while the second method hinges on the appropriate choice of a sliding manifold. It

was stated earlier in the previous chapter that the backstepping technique strictly

speaking is not a control synthesis technique but rather a way of constructing a

Lyapunov function. From this viewpoint the backstepping method can be used to

construct the Lyapunov function and other methods such as sliding mode control

can then be used to make the derivative of the Lyapunov function nonpositive

even if uncertainties are present.
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time(s)

x1

Figure 7.8: x plot: Blue = method 1 adaptation, green = method 2 adaptation

time(s)

x2

Figure 7.9: ẋ plot: Blue = method 1 adaptation, green = method 2 adaptation
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time(s)

gain(K)

Figure 7.10: K̂ plot: Blue = method 1 adaptation, green = method 2 adaptation

time(s)

control

Figure 7.11: u plot: Blue = method 1 adaptation, green = method 2 adaptation
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To illustrate this approach consider the second order system described by

(7.23).

ẋ1 = f1(x1) + x2 (7.23a)

ẋ2 = f2(x1, x2) + u (7.23b)

Let f2(x1, x2) be an unknown but bounded function with upper bound F such

that (7.23) has a matched uncertainty. Applying the backstepping technique with

the following choice of Lyapunov function and stabilising function:

V1(x1) =
x21
2
, α1(x1) = −f1(x1)− λ1x1, λ1 > 0

Defining the error variable z = x2 − α1(x1) the system dynamics can be trans-

formed to:

ẋ1 = −λ1x1 + z1 (7.24a)

ż1 = f2(x1, x2)− (z1 − λ1x1)
∂α1

∂x1
(x1) + u (7.24b)

According to the Backstepping lemma a control Lyapunov function exists for this

system and is given by:

V2(x1, z) =
x21
2

+
z2

2
(7.25)

The control u can be designed such that the derivative of (7.25) nonpositive.

V̇2 = xẋ+ zż

= x1 [−λ1x1 + z1] + z

[
f2(x1, x2)− (z − λ1x1)

∂α

∂x1
(x1) + u

]
(7.26)

Using the equivalent control approach let u = ueq + usw.

V̇2 = −λ1x21 + z1

[
x1 + f2(x1, x2)− (z1 − λ1x1)

∂α1

∂x1
(x) + ueq + usw

]
(7.27)
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If usw and ueq are chosen as:

ueq = −x1 + (z1 − λ1x1)
∂α1

∂x1
(x1)− λ2z, λ2 > 0 (7.28)

usw = −Ksgn(z), K = F + η, η > 0 (7.29)

Substituting in (7.27) gives:

V̇2 = −λ1x21 + z [f2(x1, x2)−Ksgn(z)]

≤ −λ1x21 − η|z| (7.30)

From (7.30) it can be seen then that the requirement of regulation of x1 about

the origin is achieved by the sliding backstepping control given by (7.31).

u = −x1 + (z1 − λ1x1)
∂α1

∂x1
(x1)− λ2z −Ksgn(z) (7.31)

An alternative approach of formulating the sliding backstepping involves defining

z = 0 as our sliding surface. This choice of the sliding manifold is reasonable

since z = 0 implies that x2 = α1(x1) which stabilizes the x1 subsystem described

by (7.23a). Applying the sliding mode technique, the equivalent control ueq is

designed by considering the nominal dynamics of ż.

ż = − (z − λ1x1)
∂α1

∂x1
(x1) + ueq

ueq = (z − λ1x1)
∂α1

∂x1
(x1), to ensure that ż = 0 (7.32)

For designing the discontinuous control component usw the following sliding con-

dition should be met:
1

2

d

dt
z2 ≤ η|z|, η > 0 (7.33)
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Evaluating the left hand of the sliding condition:

1

2

d

dt
z2 = s

[
f2(x1, x2)− (z − λ1x1)

∂α1

∂x1
(x1) + u

]

let u = ueq + usw, usw = −Ksgn(z), K = F + η

= z [f2(x1, x2)−Ksgn(z)]

≤ −η|z| (7.34)

The second sliding backstepping controller formulated using the alternative method

is therefore given by :

u = (z − λ1x1)
∂α1

∂x1
(x1)−Ksgn(z) (7.35)

Comparing the two controllers (7.31) and (7.35), the second controller is seen

to (7.35) have a simpler structure only requiring one gain parameter. Although

simplicity is desirable it might also be viewed as a handicap in this case as there

being only one parameter to vary reduces the designer’s freedom. To compare the

performance of these two controllers consider the performance of the controllers

when controlling the system given in the previous example. In this example it is

assumed that the upper bound for I and δ(t) is known. Let x1 = x and x2 = ẋ

the system will be described by the equations:

ẋ1 = x2 (7.36a)

ẋ2 = Isinx1 + δ(t) + u (7.36b)

Comparing this to the form of the general system (7.23) gives the following cor-

respondences.

f1(x1) = 0, f2(x1, x2) = Isinx1 + δ(t)

F = Imax + ∆

where Imax and ∆ are the upper bounds of I and δ(t) respectively. Thus applying
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the two sliding backstepping techniques gives the two controls:

u1 = − (1 + λ1λ2)x1 − (λ1 + λ2)x2 −Ksgn(x2 + λ1x1) (7.37a)

u2 = −λ21x1 − λ1x2 −Ksgn(x2 + λ1x− 1) (7.37b)

The two controls were simulated in MATLAB for the case where δ(t) is a sinusoid

of unit amplitude and the true value of I is 2 . For the controller gains the

following values were used.

λ1 = 2, λ2 = 0.5, K = 6.5

From the plots of the simulation results shown in figures 7.12-7.14 one can see

that there is little difference in the controls both have nearly the same responses

for x1(t) and x2(t).

time(s)

x1

Figure 7.12: x1(t) plot: Blue = u1, green = u2

It should be easy to see that the sliding backstepping control that has been
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time(s)

x2

Figure 7.13: x2(t) plot: Blue = u1, green = u2

developed here can be modified by combining it with the adaptive techniques of

the previous section to come up with an adaptive sliding backstepping scheme

in which a priori knowledge of the uncertainty bounds is not required. Such a

controller is what is used in the next section for the attitude controller.

7.5 Attitude Control

In this section all the techniques that have been developed through out the chap-

ter are combined providing the main result of this chapter, an adaptive sliding

backstepping attitude controller. For combining sliding mode control and back-

stepping control the second method presented in the previous section is used, the

adaptation rule will be developed using the method in section 7.3.2. The general

approach however follows that developed in the previous chapter and thus some

non-essential steps will not be explicitly stated.
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time(s)

control

Figure 7.14: Control input plot: Blue = u1, green = u2

7.5.1 Orientation Controller

From section 6.5.1 the error dynamics of ρ13 are:

χ̇ = eρ13 (7.38a)

ėρ13 = −ρ̇13d + qρ11 − ρ21p (7.38b)

ṗ = Iφqr + δφ(t) + τφ (7.38c)

Applying the backstepping technique and choosing the following stabilising func-

tions:

α1(χ) = −λ1χ, z1 = eρ13d − α1(χ)

α2(χ, z1) =
1

ρ12

[
− ˙ρ13d + χ+ qρ11 + λ1z1 − λ21χ+ λ2z1

]
, z2 = p− α(χ, z1)

where λ1 > 0 and λ2 > 0
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Thus the plant dynamics can be expressed in terms of χ, z1 and z2:

χ̇ = −λ1χ+ z1 (7.39a)

ż1 = −χ− λ2z1 − ρ21z2 (7.39b)

ż2 = Iφqr − (z1 − λ1χ)
∂α2

∂χ
+ (χ+ λ2z1 + ρ21z2)

∂α2

∂z1
+ δφ(t) + τφ (7.39c)

Assume that there exists a positive constant K∗ such that:

K∗ > Iφqr + δφ(t) (7.40)

Let the sliding manifold be defined by z2 = 0. The sliding manifold is made

attractive if the following sliding condition is satisfied:

1

2

d

dt
z22 ≤ −η|z2| (7.41)

Applying the sliding and adaptive techniques developed in the previous section

gives the following control and adaptation law:

τφ = (z1 − λ1χ)
∂α2

∂χ
− (χ+ λ2z − 1 + ρ21z2)

∂α2

∂z1
− K̂sgn(z2) (7.42)

˙̂
K = γ|z|2 (7.43)

However as stated in section 7.3 this kind of update law tends to over estimate

gains the alternative update law that was presented in section 7.3.2 will be used.

Thus the complete control and update laws for the ρ13 dynamics are:

τφ = (z1 − λ1χ)
∂α2

∂χ
− (χ+ λ2z − 1 + ρ21z2)

∂α2

∂z1
− K̂sgn(z2) (7.44)

˙̂
K =




γ|z2|sgn(|z2| − ε) if K̂ > µ

µ if K̂ ≤ µ
(7.45)

7.5.2 Yaw Controller

The procedure for designing the yaw controller is very similar to the one described

above for the orientation controller thus for brevity’s sake the yaw controller and

109



update law is only stated.

τψ = (z1 − λ1χψ)
∂α2

∂χψ
−
(
z2
cosφ

cosθ
− χψ − λ2z1

)
∂α2

∂z1
(7.46a)

˙̂
K =




γ|z2|sgn(|z2| − ε) if K̂ > µ

µ if K̂ ≤ µ
(7.46b)

where z1,z2 and the stabilising functions are given by:

α1(χ) = −λ1χψ, z1 = eψ − α1(χ)

α2(χ, z1) =
cosθ

cosφ

[
−χφ + ψ̇d +

sinφ

cosθ
q − λ1z1 + λ21χψ − λ2z1

]

z2 = r − α(χ, z1)

7.5.3 Simulation Results

The attitude controller developed in this chapter was simulated in MATLAB/SIMULINK,

the task was to track the time varying reference trajectories for the attitude angles

given by:

φd(t) = sin(πt)

θd(t) = sin(0.5πt)

ψd(t) = −0.75sin(πt)

The system was perturbed by a sinusoidal input with unit amplitude and the

hyperbolic tangent function was used as the continuous approximation of the

signum function . The following values were chosen by trial and error for the

controller parameters.
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Parameter φ controller θ controller ψ controller
λ1 6 6 6
λ2 4 4 4
λ3 0 0 0
γ 5 5 5
ε 1 1 1
µ 0.01 0.01 0.01

Looking at the plots of the angles in figures 7.15-7.17 it can be seen that

there is almost no difference between the system’s response when disturbances are

present and when they are absent thus showing the strong disturbance rejection

characteristics of the controller. Also from the plots of the gains in figures 7.18-

7.20 the adaptation law is seen to ensure that the gains are not just increasing

but rather gives the smallest estimate which will counteract the effect of the

uncertainties.

time(s)

A
ngle(rad)

Figure 7.15: φ plot: Green = reference signal, blue = without disturbance, red
= with disturbance

111



time(s)

A
ngle(rad)

Figure 7.16: θ plot: Green = reference signal, blue = without disturbance, red =
with disturbance

7.6 Conclusion

The attitude controller that was developed in chapter 6 only guarantees bounded

error tracking in the presence of disturbances, in this chapter the task was to

improve on the results of chapter 6 and develop a controller that can still achieve

asymptotic tracking in the presence of uncertainties. To that end two approaches

of incorporating sliding mode control into the backstepping scheme are presented.

Sliding mode control has the advantage of being able to guarantee asymptotic con-

vergence of tracking errors even in the presence of uncertainty. However sliding

mode control has two major drawbacks, firstly one needs to have a priori knowl-

edge of the bounds of the uncertainty to design the controller. Secondly sliding

mode controllers exhibit high frequency chattering which is not desirable. To

counteract these drawbacks an adaptive sliding backstepping controller is devel-

oped in which the adaptive component is used to do away with the requirement

of knowing the uncertainty upper bounds. An update law is developed which

is designed to ensure that the minimum possible gains are used thus avoiding
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time(s)

A
ngle(rad)

Figure 7.17: ψ plot: Green = reference signal, blue = without disturbance, red
= with disturbance

any over-estimation of gain. For alleviating the chattering phenomenon in the

developed controller continuous approximations of the signum function are used.

Simulations of the developed adaptive sliding backstepping attitude controller

show that asymptotic tracking is indeed achieved even in the presence of distur-

bances.
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time(s)

Figure 7.18: K̂φ plot: Blue = without disturbance, green = with disturbance

time(s)

Figure 7.19: K̂θ plot: Blue = without disturbance, green = with disturbance
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time(s)

Figure 7.20: K̂ψ plot: Blue = without disturbance, green = with disturbance

time(s)

T
o

rq
u

e(N
m

)

Figure 7.21: τφ plot: Blue = without disturbance, green = with disturbance
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time(s)

Torque(N
m

)
Figure 7.22: τθ plot: Blue = without disturbance, green = with disturbance

time(s)

Torque(N
m

)

Figure 7.23: τψ plot: Blue = without disturbance, green = with disturbance
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Chapter 8

Quadrotor UAV Trajectory

Control

8.1 Chapter Overview

In the previous three chapters controllers have been developed for the transla-

tional and orientation subsystems with simulations being done for each subsystem

independently. In this chapter the subsystems are combined and simulations of

the complete quadrotor system are presented. For the orientation subsystem the

control algorithm developed in chapter 7 is used as this is to guarantee asymptotic

trajectory tracking as opposed to bounded error tracking of the controller devel-

oped in chapter 6. The simulations whose results are presented in this chapter

are for the quadrotor executing two maneuvers. The first maneuver is a simple

hover in which the quadcopter is required to attain a given height and hold that

height. The second maneuver consists of the quadcopter rising to a given height

and then performing a figure ”8”. For both these maneuvers the simulations were

performed with and without disturbances in the system.

8.2 Simulation Results

For the translational controller the following gain parameters are chosen.
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M1 = 3 L1 = 1.2 K1 = 0.5

M2 = 3 L2 = 1.2 K2 = 0.3

M3 = 3 L3 = 1.2 K3 = 1.5

As stated in the preceding section for the orientation control the algorithm

developed in chapter 6 s used. The gains of which are chosen as:

Parameter φ gains θ gains ψ gains

λ1 3 12 3

λ2 2 6 2

λ3 1 6 1

K 5 5 5

µ 0.01 0.01 0.01

ε 0.1 0.1 0.1

To simulate the effect of disturbances a disturbance torque vector and a distur-

bance force vector are included. For the simulations presented here the elements

of both the torque and force disturbance vectors are sinusoids of unit amplitude.

8.2.1 Hovering Maneuver

For the hovering maneuver the reference trajectory is given by:

xId = 0

yId = 0

zId = −(1− exp(
t

10
))

From the results shown in figures 8.1-8.11 it can be seen that in the ideal case

where disturbances are absent the controller achieves perfect tracking of the ref-

erence even though the inertia is unknown. In the presence of disturbances the

controller manages to track the reference with a maximum deviation of only 0.1m.
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time(s)

x(m)

Figure 8.1: Hover maneuver x plot: Green = without disturbance, red = with
disturbance

time(s)

y(m)

Figure 8.2: Hover maneuver y plot: Green = without disturbance, red = with
disturbance
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time(s)

z(m)

Figure 8.3: Hover maneuver z plot: Blue = reference trajectory, green = without
disturbance, red = with disturbance

time(s)

A
ngle(rad)

Figure 8.4: Hover maneuver φ plot: Blue = without disturbance, green = with
disturbance
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time(s)

A
ngle(rad)

Figure 8.5: Hover maneuver θ plot: Blue = without disturbance, green = with
disturbance

time(s)

A
ngle(rad)

Figure 8.6: Hover maneuver ψ plot: Blue = without disturbance, green = with
disturbance
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time(s)

Torque(N
m

)

Figure 8.7: Hover maneuver τφ plot: Blue = without disturbance, green = with
disturbance

time(s)

Torque(N
m

)

Figure 8.8: Hover maneuver τθ plot: Blue = without disturbance, green = with
disturbance
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time(s)

Torque(N
m

)

Figure 8.9: Hover maneuver τψ plot: Blue = without disturbance, green = with
disturbance

time(s)

Thrust(N
)

Figure 8.10: Hover maneuver Thrust plot: Blue = without disturbance, green =
with disturbance
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x(m)

y(m)

z(m
)

Figure 8.11: Hover maneuver 3D plot: Green = without disturbance, red = with
disturbance
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8.2.2 Figure 8 Maneuver

For the figure 8 maneuver the reference trajectory is given by[1]:

pId(t) =

(
0 0 − (1− exp(

t

10
))

)T
for t < 50

pId(t) =




sin(π(t−50)
150

)

sin(π(t−50)
37.5

)

−(1− exp( t
10

))


 for t ≥ 50

time(s)

x(m
)

Figure 8.12: Figure 8 maneuver x plot: Green = reference trajectory, blue =
without disturbance, red = with disturbance
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time(s)

y(m
)

Figure 8.13: Figure 8 maneuver y plot: Green = reference trajectory, blue =
without disturbance, red = with disturbance

time(s)

z(m
)

Figure 8.14: Figure 8 maneuver z plot: Green = reference trajectory, blue =
without disturbance, red = with disturbance
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time(s)

A
ngle(rad)

Figure 8.15: Figure 8 maneuver φ plot: Blue = without disturbance, green =
with disturbance

time(s)

A
ngle(rad)

Figure 8.16: Figure 8 maneuver θ plot: Blue = without disturbance, green =
with disturbance
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time(s)

A
ngle(rad)

Figure 8.17: Figure 8 maneuver ψ plot: Blue = without disturbance, green =
with disturbance

time(s)

Torque(N
m

)

Figure 8.18: Figure 8 maneuver τφ plot: Blue = without disturbance, green =
with disturbance
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time(s)

Torque(N
m

)

Figure 8.19: Figure 8 maneuver τθ plot: Blue = without disturbance, green =
with disturbance

time(s)

Torque(N
m

)

Figure 8.20: Figure 8 maneuver τψ plot: Blue = without disturbance, green =
with disturbance
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time(s)

Thrust( N
)

Figure 8.21: Figure 8 maneuver Thrust plot: Blue = without disturbance, green
= with disturbance

x(m)y(m)

z(m
)

Figure 8.22: Figure 8 maneuver 3D plot: Green = reference trajectory, blue =
without disturbance, red = with disturbance
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From the results shown in figure 8.12-8.22 it is shown that the controller tracks

the reference trajectory in an acceptable way. It should be noted that the gains

that are used for these simulations are not optimised values and thus do not

represent the best performance of the controller. Despite this the results do show

the robustness of the controller as the response does not differ much for the case

when disturbances are present and when they are absent.

8.3 Conclusion

In this chapter simulation results are presented which serve to demonstrate the ef-

fectiveness of the controllers that have developed in this work. The controller that

is demonstrated in this chapter combines the translational controller of chapter

5 and the adaptive sliding backstepping attitude controller of chapter 7. Simula-

tion results of this controller show that the controller does exhibit the expected

robustness and tracking qualities.
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Chapter 9

Conclusions and
Recommendations

9.1 Conclusions

A robust nonlinear trajectory tracking controller has been developed for a quadro-

tor UAV in this work. By taking advantage of the strict feedback inter-connection

of the translational and orientation subsystems a backstepping based high level

control strategy is devised for the quadrotor system. The controller is divided

into two sub-controllers a translational and an attitude controller.

For the translational subsystem a novel robust bounded controller is devel-

oped based on the result of A.R Teel. This is achieved by adding to the nonlinear

saturated controller of Teel sliding mode like terms. The boundedness of the con-

troller perfectly captures the limited nature of the thrust that can be developed

by the quadcopter’s rotors. Also the boundedness of the controller allows for the

development of conditions on the gain parameters which ensure that the quad-

copter does not overturn during flight. This requirement is necessary because the

Euler angle parameterisation which is used will not be defined if the quadcopter

is upside down. Simulations of this robust bounded controller showed that com-

pared to A.R. Teel’s control law it performed better with regards to disturbance

rejection.

Two controllers were developed for the attitude subsystem. The first con-

trol law is based on the adaptive backstepping technique. The formulation and
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application of the adaptive backstepping control technique is rigorously covered

especially with regards to cases in which the uncertainty is both matched and

unmatched. To improve on the performance of this technique a modification via

nonlinear damping is presented. Integrating the adaptive backstepping controller

and nonlinear damping provides a controller that can guarantee bounded error

tracking in the presence of parametric and unmodeled uncertainties.

To improve on the performance of the adaptive backstepping attitude con-

troller an alternative controller is developed in chapter 7 in which backstepping

techniques are combined with sliding mode control methods. The advantage

of this approach is that theoretically it can guarantee that the tracking error

can tend to zero asymptotically which is better than the bounded tracking error

guarantee of the adaptive backstepping based controller. However sliding mode

control has two major drawbacks which are the chattering of the sliding controller

and also the requirement of a priori knowledge of the uncertainty upper bounds.

To eliminate the chattering effect continuous approximations of the signum func-

tion are used. The relaxation of the upper bounds requirement is achieved by

making use of adaptive techniques to provide real time estimation of the upper

bounds. Conventional parameter adaptation laws were successfully applied but

despite achieving successful tracking without knowledge of the uncertainty upper

bounds this adaptation law was found to over estimate the upper bound leading

to unnecessarily large control effort. To improve its performance modifications

are made to the adaptation law such that it gives the smallest estimate which

makes the system stable. The combination of backstepping control and sliding

mode control is achieved via two approaches one is a Lyapunov based technique

while the other is based on the right choice of a sliding manifold. It is shown

using simulations that the two approaches give similar responses but the method

based on choosing a sliding manifold is found to result in simpler controls with a

reduced number of gain parameters. Finally the developed adaptive sliding back-

stepping control is applied to the attitude control problem and simulation results

show that this control law ensures asymptotic tracking even in the presence of

disturbances.

Having developed the controllers for the translational and orientation subsys-

tems the controllers are integrated to form the complete quadcopter trajectory
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controller. Simulation results of the integrated system which are presented in

chapter 8 show that the controller exhibits robustness as was expected providing

good trajectory tracking for the quadcopter system.

The lack of any experimental verification might appear as a huge over sight

in the development of this work. It should be noted however that development

of the necessary hardware platform for testing is in itself a major undertaking.

A typical UAV testbed would require a high performance vision based motion

capture system to enable location of the UAV. Also proprioceptive sensor sys-

tems comprising of an assortment of sensors such as accelerometers, gyroscopes,

barometers , magnetometers and cameras would be needed to make the UAV

aware of its environment. The multitude of sensors would require development of

advanced fusion algorithms such as kalman filters, particle filters e.t.c. It should

be evident then that the development of a UAV testbed presents a formidable

challenge which is best tackled as an independent research in its own right. Its

the author’s strong believe that the simulation results provided do serve to ad-

equately verify the feasibility of the methods that have been developed in this

work.

9.2 Recommendations

The results of simulations for the controllers developed in this work have given

good results. However in order to fully test the feasibility of the proposed con-

trollers a quadcopter testbed needs to be constructed to provide physical verifi-

cation of the results we have developed. The development of such a testbed will

allow the extension of this work to involve such areas as cooperative control of a

team of UAVs, SLAM based UAV control and sensor fusion for UAV navigation.

Euler angles that were used in this work introduce restrictions in the kind of

manoeuvres that the quadcopter can execute due to their local validity. As such

the developed controller does not cater for aerobatic manoeuvres such as flips.

As an extension to the work already done investigations into tracking aerobatic

trajectories can be done by considering for example using several Euler angle

sequences to represent the attitude or considering the use of quaternions. Another
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approach that can be investigated to achieving aerobatic manoeuvering is to use

geometric control methods which involves coordinate free representation of the

UAV dynamics.

Finally another possible line of extension of the work presented here is in

developing a fully bounded controller for the quadcopter system. In this work

bounded control is used for the translational subsystem only however it should

be easy to see that if the thrust is bounded so also will be the torque such that it

makes sense to require not just the translational controller but also the attitude

controller to be bounded.
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Appendix A

In this Appendix the rotation matrix for the Z-Y-X Euler angle representation is

derived.

.1 Vehicle Frame

Consider the setup where the body fixed frame is such that its axes are aligned

with the inertial axes as is depicted in figure 1 below.This shall be denoted as the

vehicle frame(Fv).

kB

jB

iB

kv

jv

iv

Figure 1: Vehicle and body fixed frame
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.2 Vehicle-1 Frame(F v1)

The vehicle-1 frame is the result of rotating the vehicle frame about the Z axis

by the yaw angle(ψ) such that if the pitch and roll were zero then îv1 would point

in the îB direction. The transformation matrix from F v to F v1 is given by:

Rv1
v (ψ) =




cosψ sinψ 1

−sinψ cosψ 0

0 0 1


 (1)

.3 Vehicle-2 Frame(F v2)

The vehicle-2 frame is obtained by rotating the vehicle-1 frame about the ĵv1 axis

by the pitch angle θ such that if the roll angle was zero ĵv2 would point in the ĵB

direction. The transformation matrix from F v1 to F v2 is given by :

Rv2
v1 (θ) =




cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ


 (2)

.4 Body Frame F b

The body frame is finally obtained by rotating the vehicle-2 frame about the îv2

axis by the roll angle φ such that îb points in the airframe nose direction, ĵb points

out the right wing and k̂b points downwards. The transformation matrix from

F v2 to F b is given by :

Rb
v2 (φ) =




1 0 0

0 cosφ sinφ

0 −sinφ cosφ


 (3)

The transformation from the vehicle frame to the body frame is the composite of

all the above rotation and is given by:
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Rb
v (φ, θ, ψ) = Rb

v2 (φ)Rv2
v1 (θ)Rv1

v (ψ)

=




cosψ sinψ 1

−sinψ cosψ 0

0 0 1







cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ







1 0 0

0 cosφ sinφ

0 −sinφ cosφ




=




cosθcosψ cosθsinψ −sinθ
sinφsinθcosψ − cosφsinψ sinφsinθsinψ + cosφcosψ sinφcosθ

cosφsinθcosψ + sinφsinψ cosφsinθsinψ − sinφcosψ cosφcosθ




The inverse transformation from the body frame to the vehicle frame is given

by:

Rv
b (φ, θ, ψ) =




cosψcosθ cosψsinθsinφ− sinψcosφ sinψsinφ+ cosψsinθcosφ

sinψcosθ cosψcosφ+ sinψsinθsinφ sinψsinθcosφ− sinφcosψ
−sinθ cosθsinφ cosθcosφ



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