
PEER-TO-PEER NETWORK ARCHITECTURE FOR MASSIVE ONLINE
GAMING

BONGANI SHONGWE

SUPERVISED BY:
MR. BRYNN ANDREW, PROF. CLINT VAN ALTEN, DR. JOSÉ QUENUM

A Dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of
the requirements for the degree of Master of Science.

2014

Abstract
Virtual worlds and massive multiplayer online games are amongst the most popular applications on the
Internet. In order to host these applications a reliable architecture is required. It is essential for the
architecture to handle high user loads, maintain a complex game state, promptly respond to game inter-
actions, and prevent cheating, amongst other properties. Many of today’s Massive Multiplayer Online
Games (MMOG) use client-server architectures to provide multiplayer service. Clients (players) send
their actions to a server. The latter calculates the game state and publishes the information to the clients.
Although the client-server architecture has been widely adopted in the past for MMOG, it suffers from
many limitations. First, applications based on a client-server architecture are difficult to support and
maintain given the dynamic user base of online games. Such architectures do not easily scale (or handle
heavy loads). Also, the server constitutes a single point of failure. We argue that peer-to-peer architec-
tures can provide better support for MMOG. Peer-to-peer architectures can enable the user base to scale
to a large number. They also limit disruptions experienced by players due to other nodes failing.

This research designs and implements a peer-to-peer architecture for MMOG. The peer-to-peer ar-
chitecture aims at reducing message latency over the network and on the application layer. We refine the
communication between nodes in the architecture to reduce network latency by using SPDY, a protocol
designed to reduce web page load time. For the application layer, an event-driven paradigm was used to
process messages. Through user load simulation, we show that our peer-to-peer design is able to process
and reliably deliver messages in a timely manner. Furthermore, by distributing the work conducted by a
game server, our research shows that a peer-to-peer architecture responds quicker to requests compared
to client-server models.

Keywords: Peer-to-peer, latency, online gaming, SPDY, scalability, fault-tolerance

i

Declaration
I, Bongani Shongwe, hereby declare the contents of this dissertation to be my own work. This report
is submitted for the degree of Master of Science at the University of the Witwatersrand, Johannesburg.
This work has not been submitted to any other university, or for any other degree.

Bongani Shongwe
July 23, 2014

ii

Acknowledgements
I would sincerely like to thank everyone who has assisted me in completing this research. In particular,
I am very grateful to my supervisors Dr. José Quenum and Brynn Andrew for all the advice, motivation,
and investment given throughout this research. Through them I have obtained a set of skills and knowl-
edge which I would have likely never achieved. I would also like to thank Prof. Clint Van Alten for his
assistance during the final stages of my research. To my parents, Michael and Virginia, I’m grateful for
their constant advice and unwavering support in my education. I want to thank all of my proofreaders
-in alphabetical order- Sello Ralethe, Sonali Parbhoo and Thato Shebe. I appreciate your assistance and
support throughout the years. Furthermore, I would also like to thank the Mathematical Science IT lab-
oratories of the University of the Witwatersrand, specifically, Mr. Shunmunga Pillay, for the use of the
Hydra cluster and the other computing machines. Finally, I would like to thank the National Research
Foundation (NRF) for the financial assistance provided 1.

1Opinions expressed and conclusions derived in this documentation are those of the author and are not necessarily to be
attributed to the NRF.

iii

Contents

Abstract i

Declaration ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

List of Acronyms x

1 Introduction 1
1.1 Research Scope . 3
1.2 Dissertation Overview . 3

2 Background 5
2.1 Introduction . 5
2.2 Online Gaming . 5

2.2.1 Type of Games . 5
2.2.2 Online Gaming Background . 6
2.2.3 Transporting Data within Online Games . 9

2.3 Challenges in Peer-To-Peer Gaming Networks . 10
2.3.1 Game State Management . 10
2.3.2 Scalability . 11
2.3.3 Fault-Tolerance . 11
2.3.4 Delay Management . 11
2.3.5 Cheating . 11

2.4 Overview of Current Peer-To-Peer Gaming Protocols 12
2.4.1 Application Layer Multicast . 12
2.4.2 Supernode Control . 13
2.4.3 Mutual Notification . 13
2.4.4 Evaluation of Protocols . 14

2.5 Hybrid Gaming Networks . 14
2.6 Conclusion . 15

3 Research Questions and Methodology 16
3.1 Introduction . 16
3.2 Research Questions . 16
3.3 Research Aim . 17

iv

3.4 Research Methodology . 18
3.5 Conclusion . 19

4 Building Blocks 20
4.1 Introduction . 20
4.2 Communication Protocols . 20

4.2.1 Hypertext Transfer Protocol (HTTP) . 20
4.2.2 WebSocket . 21
4.2.3 SPDY . 21
4.2.4 Summary . 23

4.3 Distributed Data Systems . 23
4.3.1 Dilemmas Facing Distributed Database Systems 23
4.3.2 Types of Distributed Database Systems . 25
4.3.3 Project Voldemort . 28
4.3.4 Summary . 31

4.4 Models of Concurrency . 31
4.4.1 Overview . 32
4.4.2 Concurrent Programming Paradigms . 32
4.4.3 Actor model . 34
4.4.4 Akka . 35
4.4.5 Summary . 43

4.5 Conclusion . 44

5 System Design and Architecture 45
5.1 Introduction . 45
5.2 System Overview . 45

5.2.1 Communication Protocol between Nodes . 46
5.2.2 Akka dispatcher . 47
5.2.3 Routers . 47
5.2.4 Mailbox . 47
5.2.5 Fault-Tolerance . 47
5.2.6 System Configuration . 48
5.2.7 Communication Format Between Nodes . 48

5.3 System-Coordinator . 49
5.4 Storage . 49
5.5 Messaging . 51
5.6 Service Routing . 52
5.7 Supernode System . 55
5.8 Instructions For Running . 55
5.9 Conclusion . 56

6 Testing and Analyses 57
6.1 Introduction . 57
6.2 Communication Protocol Evaluation . 57

6.2.1 Evaluation Methodology . 58
6.2.2 Environment . 58
6.2.3 Results and Analysis . 59

6.3 Front-end Service Evaluation . 60
6.3.1 Evaluation Methodology . 61
6.3.2 Environment . 61
6.3.3 Results and Analysis . 62

6.4 Actor System Evaluation . 63

v

6.4.1 Environment . 64
6.4.2 Actor Scalability . 65
6.4.3 Varying User Loads . 67
6.4.4 Actor Fault-Tolerance . 68

6.5 Actor Reactive Monitoring . 70
6.5.1 Typesafe Console . 70
6.5.2 Evaluation Methodology . 70
6.5.3 Environment . 71
6.5.4 Results and Analyses . 71

6.6 Distributed Environment Evaluation . 73
6.6.1 Evaluation Methodology . 73
6.6.2 Environment . 74
6.6.3 Results and Analysis . 75

6.7 Conclusion . 76

7 Conclusions, Contributions and Future Work 78
7.1 Conclusion . 78
7.2 Contributions and Future work . 80

A API 82

B SPDY Benchmark Results 84

References 86

vi

List of Figures

2.1 General client-server game architecture, adapted from Bernier [2001]. 7
2.2 Region-based multi-server architecture, adapted from Yahyavi and Kemme [2013] illus-

tration. Each server manages a specific region in the game world. 8
2.3 Historic client hitboxes (red) versus rewound server hitboxes (blue) [Valve 2012]. 9
2.4 Illustration of the Supernode Control protocol. 13
2.5 An example of mutual notification taken from the Hu et al. [2006] demo. 14

3.1 An abstract idea of the distributed network. 18

4.1 The SPDY protocol stack, adapted from Google [2012]. 22
4.2 The different properties that a distributed system can guarantee based on the CAP theorem. 24
4.3 Simple relational database tables linked by an attribute. 26
4.4 Column store map based on the Apache Cassandra model [Sadalage and Fowler 2013]. . 27
4.5 A graph structure example, symbolizing relationships in a social network [Sadalage and

Fowler 2013]. 28
4.6 Volemort architecture containing modules for a single client and server [LinkedIn 2012]. 29
4.7 A Simple hash ring cluster topology for 3 nodes and 12 partitions [Sumbaly et al. 2012]. 30
4.8 A comparison of thread and event based systems [Ousterhout 1996]. 32
4.9 Illustration of the actor model, adapted from Ridgway [2011]. 35
4.10 Diagram exhibiting a tell message (left) and a ask message (right) [Gupta 2012]. 37
4.11 Akka actor state diagram [Typesafe 2013]. 38
4.12 The difference between the One-For-One strategy and All-For-One strategy. Adapted

from Gupta [2012] . 39
4.13 Illustration of Akka actors location transparency property. 40
4.14 Graphical explanation on the role of a dispatcher in Akka [Gupta 2012]. 42
4.15 A simple outline of Akka routers. Messages are received by the router and sent to a

routee dependent on the routing algorithm used. Adapted from Gupta [2012] 43

5.1 Overview of the peer-to-peer gaming system. 46
5.2 Basic overview of a node in the peer-to-peer gaming solution. 46
5.3 Design overview of the storage component. 50
5.4 Storage component state diagram. 50
5.5 Design overview of the messaging component. 51
5.6 Subscribe and publish messaging state diagram. 53
5.7 Design overview of the service routing component. 54
5.8 Service request state diagram. 55
5.9 Overview of the supernode system. 56

6.1 A comparison of the HTTPS and SPDY transfer schemes taken from the public network
test. 60

6.2 Average response times for request made to Apache, Nginx, Node.js and Socko web
servers versus increasing users. 63

vii

6.3 Response time comparison for the network gaming solution services against varying
routee numbers in each service. 66

6.4 Messaging state diagram. The shorter arrows represent other hosts performing subscrip-
tion and broadcasting requests. 67

6.5 Response time comparison for the network gaming solution services against varying user
loads. 69

6.6 Response time graph for the network gaming solution services during actor failure. . . . 70
6.7 Graphical representation of the multiple node setup. 73
6.8 Graphical response time comparison of the gaming network solution in a single node

environment versus a distributed environment. 76

viii

List of Tables

4.1 Lauer and Needham [1979] duality mapping of thread and event based systems adapted
from von Behren et al. [2003] and Li and Zdancewic [2007] to resemble current event-
driven systems. 33

6.1 Average download times (seconds) of different communication protocols in a private and
public environment. 59

6.2 Average response times for Apache, Nginx, Node.js and Socko webservers in millisec-
onds against various user loads. 62

6.3 Average response time for the network gaming solution services against varying routee
numbers in each service. 66

6.4 Average response time of the services (in milliseconds) in the peer-to-peer network so-
lution during varying user loads. 68

6.5 Average response time (in milliseconds) of the gaming network services during actor
failure. 69

6.6 Performance characteristics of the storage component actors. 71
6.7 Performance characteristics of the storage component actors retrieving values from the

Voldemort store. 72
6.8 Performance characteristics of the service routing component actors. 72
6.9 Performance characteristics of the messaging component actors. 72
6.10 Average response time comparison (in milliseconds) of the gaming network solution in

a single node environment versus a distributed environment. 75

A.1 The API for the storage component . 82
A.2 The API for the message dissemination component . 82
A.3 The API for the service routing component . 83

B.1 Average page load times for top 25 websites [Google 2012]. 84
B.2 Average page load times for top 25 websites by packet loss rate [Google 2012]. 84
B.3 Average page load times for top 25 websites by RTT [Google 2012]. 85

ix

List of Acronyms

ACID Atomicity, Consistency, Isolation, Durability

AOI Area of Interest

API Application Programming Interface

BDB Berkeley DB

CPU Central Processing Unit

DSL Digital Subscriber Line

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

JVM Java Virtual Machine

MMOG Massive Multiplayer Online Games

MSS maximum segment size

NIO Non-blocking Input/Output

NPN Next Protocol Negotiation

RDBMS Relational Database Management System

RTT Round Trip Time

SBT Simple Build Tool

SLA Service-Level Agreement

SLF4J Simple Logging Facade for Java

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UID Unique Identifier

URI Uniform Resource Identifier

x

VoIP Voice over Internet Protocol

XML Extensible Markup Language

xi

Chapter 1

Introduction

Over the past decade video gaming has become a fast growing industry, making it a multi-billion dollar
business [Biscotti et al. 2011]. A major attraction in video gaming is the ability to play and interact with
other players over the Internet. Today millions of videos gamers make use of online gaming commu-
nities, to play against people from different regions of the globe [Neumann et al. 2007]. One of most
popular online games, World of Warcraft, provides a perfect example of the growth of online gaming
communities. In 2006, World of Warcraft had over 6 million subscribers, in 2011, this number grew to
11.4 million subscribers [Ziebart 2011].

Videos games are also no longer just forms of electronic gaming designed for personal computers
or gaming consoles. Handheld devices such as cellphones and tablet computers can provide gaming
entertainment. The pursuit of entertainment is not the only reason for the rapid growth of video games.
Videos games also provide domains for education and social development. In recent years there has been
a rise in the number of organized video gaming tournaments, colloquially known as eSports (electronic
sports), in which professional video gamers compete. Popular tournaments (such as the World Cyber
Games1) have corporate sponsorship, media coverage and cash prizes for the competitors. At the 2013
International Dota 2 tournament, the winning team received over $1.4 million [Suszek 2013].

As online gaming communities continue to grow, game developers have to make provision for more
resources with the release of new games. Many Massive Multiplayer Online Games (MMOG) make use
of a central server or a cluster of servers to provide the multiplayer service. Recently, game developers
have also adopted the concept of content on demand through cloud-based game streaming services [Shea
et al. 2013]. Client-server architectures allow reliable computers to handle tasks such as player access
control, game state management, uniform updates, amongst other features.

However, the operation of a game server is costly and has numerous drawbacks. For instance, client-
server architectures generally do not scale well. Adequate resources must be provisioned in order to
support all the players. If the game servers are overloaded, the users cannot be supported. If the num-
ber of resources are above the current demand, the game company faces to lose money due to unused
resources. For example, the launch of Diablo III, a role-player game, illustrated the dilemma faced with
the provision of servers [Gilbert 2012]. The game was so highly anticipated that, during the week of re-
lease, many users were unable to log-in and play the game due to the heavy load the servers experienced.

The greatest drawback in the client-server architecture is that the server represents a single point
of failure. If the server fails, users are unable to play games online. A recent and well documented
event relating to game server failure is that of the PlayStation Network outage in 2011 [Richmond and
Williams 2011]. The PlayStation Network is an online multiplayer game and digital media delivery
service for the PlayStation 3, PlayStation 4, PlayStation Portable, and PlayStation Vita gaming consoles.
In April 2011, the PlayStation Network was “compromised” through external intrusion. This led to the
PlayStation Network being shut down for a month, leaving over 77 million PlayStation Network users
unable to play online multiplayer games or access other PlayStation Network services. Given the growth
of online gaming, scalability and reliability pose grim challenges awaiting the gaming industry.

1www.wcg.com

1

http://www.wcg.com

With increasing home bandwidth and computational power, decentralized peer-to-peer architectures
are becoming a viable option to solve the issues which can be experienced in client-server gaming ar-
chitectures. Peer-to-peer applications seek to use easily accessible commodity computers to provide a
service. Many of today’s traffic intensive applications are based on peer-to-peer architectures. These ap-
plications include content distribution (for example Gnutella, LimeWire, BitTorrent), Internet telephony
(Skype), and streaming of television content (PPLive). Peer-to-peer networks have the key characteris-
tic of being able to scale to a large number of nodes, distributing the computational and network load
between the peers. In a client-server architecture, the performance of an application will decline as the
number of users grow. Due to limited resources, such as hardware and bandwidth, a server can maintain
set number of user requests before the quality of service deteriorates. Peer-to-peer applications, such as
Chord (a distributed hash table) [Stoica et al. 2001], are able to maintain (or even improve) the perfor-
mance of a service as more users participate in the network. By distributing an applications services,
each peer contributes resources to maintain an applications quality of service. Hosts in peer-to-peer ar-
chitectures can also be self-organising [Knutsson et al. 2004]. As peers join and leave the network, peers
can organise themselves into ad-hoc groups to communicate, collaborate and share hardware resources
to complete a task [Ding et al. 2003; Rowstron and Druschel 2001; Stoica et al. 2001]. This dynamic
re-organisation of peers is often transparent to the users.

Peer-to-peer applications are cost efficient because the application utilizes existing user resources.
For example, file sharing and data storage services require high-end machines to serve the users [Sadalage
and Fowler 2013]. Peer-to-peer networks use commodity machines to host file sharing and data storage
services [Ding et al. 2003; Sadalage and Fowler 2013]. There is also no need for specialist staff such as
network administrators to maintain a peer-to-peer application. Users usually monitor and administrate
the usage of a peer-to-peer application, or a self-administrating protocol can be built into the peer-to-peer
application. BitTorrent, a peer-to-peer file sharing service, contains a self-administrating tit for tat pro-
tocol [Cohen 2003]. Users in the BitTorrent system are required to share files which they have obtained
from downloading from another user, this ensures that a copy of the file is always available. The tit for tat
protocol encourages fair file trading amongst the users by allowing a user to continue downloading files
from other peers as long as the user also contributes to sharing of files. Peer-to-peer applications also
aim to solve fault-tolerance. If a peer were to fail or exit the network, the application should continue to
operate. For example, BitTorrent systems are tolerant against peers leaving the network [Cohen 2003].
If a peer containing a specific file were to leave the system, the remaining peers contain a replication of
that file that can be retrieved by any requesting peer.

Based on the hypothesis that centralized online gaming architectures do not scale well, are costly
to maintain and present a single point of failure, peer-to-peer architectures provide intriguing proper-
ties to solve client-server based dilemmas. Despite the cost of affordable scalability and fault-tolerance
offered by peer-to-peer architectures, there are certain drawbacks that hinder certain applications being
implemented in a peer-to-peer environment. With respect to gaming, these include complex data man-
agement, preventing cheating, obtaining low latency and difficulty in adapting existing game applications
into a peer-to-peer environment. Also, different games have different requirements that should be met
by the underlying network architecture to ensure that the game can be played interactively online by
the users [Fiedler 2008; Yahyavi and Kemme 2013]. This makes it difficult to design a general purpose
peer-to-peer gaming architecture. Given the above challenges in utilizing peer-to-peer architectures for
online gaming, a growing interest has arisen in peer-to-peer architectures for MMOG and virtual worlds
[Krause 2008; Neumann et al. 2007; Schiele et al. 2007; Yahyavi and Kemme 2013]. However, there is
no consensus on which architecture design will serve a peer-to-peer online network best. Also, many of
the challenges for peer-to-peer online gaming have not been fully addressed.

2

1.1 Research Scope

This dissertation aims to extend the on-going research in peer-to-peer gaming networks. MMOG en-
counter frequent updates that must be propagated to the users under a set time frame to present a highly
interactive game world. If the online gaming network fails to process and disseminate messages under the
set time frame, players experience a decrease in game play interactivity that often halts the game [How-
land 1999]. This research focuses on minimizing the delay that can occur within peer-to-peer gaming
networks in order to present a smooth and natural interaction experience in an online game. Specifically,
we aim to reduce the time taken to process network messages and reliably propagate messages to the
players over the network. In context of network communication protocols, the standard protocols either
do not provide guarantee of message delivery or are likely to delay message transportation. The SPDY
protocol is used to refine communication on the delay prone Transmission Control Protocol, allowing for
messages to be delivered in a timely manner whilst providing message delivery guarantee.

In context of processing network messages, a highly concurrent paradigm is required to reduce the
time taken to process messages. We adopt the actor event-driven paradigm to complete tasks asyn-
chronously by passing messages between processes. Akka, an actor-based framework, is used to rapidly
process the network messages. Also, by implementing a peer-to-peer architecture, we face a challenge of
managing the game state in a distributed environment and ensuring fault-tolerance against nodes abruptly
leaving the network. The concepts of non-relational distributed systems are adopted to provide a highly
available and distributed data management system. From this, we employ a distributed key-value system,
Project Voldemort, to manage the game state data and automatically replicate data across several nodes
for fault-tolerance.

The main contribution of this research is a generic peer-to-peer network application aimed at hosting
MMOG. The peer-to-peer network application could also be used for other applications that have similar
requirements as online games. The peer-to-peer gaming network presented in this dissertation contains
three main functions: a distributed storage system to manage the game state and game date, a publish
and subscribe service used to propagate messages to the users, and a service routing function used to
direct messages to the game application for further processing. The network application uses SPDY
to reliably transport messages over the network. The Akka actor toolkit is used to rapidly process the
network messages and Project Voldemort is used to manage the game state data. By distributing a
game servers functions (such as message dissemination and game state management) into a peer-to-peer
architecture, this research shows that a distributed system can be used to decrease the message response
time on a system experiencing high user loads. The SPDY protocol, along with the Akka based network
application is evaluated. The evaluation shows that SPDY is able to reduce the delay experienced on the
Transmission Control Protocol by simultaneously retrieving requests and that Akka is able to reduce the
time taken to process a message simply by increasing the number of instances of an actor.

1.2 Dissertation Overview

This dissertation consists of 7 chapters in addition to the appendices and references. The dissertation is
structured as follows:

• Chapter 2 discusses the background related to the research. The background consists of two
segments. The Chapter provides an in-depth discussion of the design principles used in Massive
Multiplayer Online Games. In particular, the chapter presents design principles created to the
reduce latency in online games to provide high interactivity amongst the players and the game.
This chapter also presents the challenges facing peer-to-peer gaming architectures and the message
dissemination protocols designed for peer-to-peer games.

• Chapter 3 provides the specific aims of this research and a series of research questions on which
this work is focused on. An overview of the peer-to-peer gaming architecture is presented. Also,
the methodology used to answer the research questions is discussed.

3

• Chapter 4 discusses the building blocks of our peer-to-peer gaming solution. The chapter reviews
challenges and solutions from various computing applications that can be transferred onto peer-
to-peer gaming networks. In particular, we review distributed database systems, network delay
management of web applications and programming paradigms that support massive concurrency
demands. The methodologies used to manage distributed data, reduce network delay, and con-
currently process tasks form the basis of the peer-to-peer gaming solution discussed in Chapter
3.

• Chapter 5 provides a thorough discussion on the design of our peer-to-peer gaming network so-
lution. It also includes a section on how to run the peer-to-peer network.

• Chapter 6 presents the evaluation results performed on our peer-to-peer gaming solution. The
evaluation focuses on the time taken to receive a response from a request message. We examine
the following three aspects of our peer-to-peer gaming solution: the time taken to transport a
message over the network, the time taken for a single host to process requests and finally the time
taken to process requests in a distributed environment.

• Chapter 7 provides a summary of the research findings and a conclusion to the research document.
We also discuss some future research topics.

4

Chapter 2

Background

2.1 Introduction

In this chapter, we present the design principles of online gaming that form the basis of this research.
Section 2.2 presents the evolution of Massive Multiplayer Online Games (MMOG). We focus on the
design principles that were developed to reduce game disturbance caused by latency. We also discuss
the effects that transport layer protocols have on the interactivity of an online game. In Section 2.3 we
investigate the challenges facing peer-to-peer gaming networks. The discussion allows us to highlight
issues that we are required to address in this research. In Section 2.4 we extended the research into peer-
to-peer systems and discuss current peer-to-peer gaming protocols. We also provide a comparison on the
performance of each protocol. We conclude the chapter by briefly discusses hybrid gaming architectures
that mix client-server and peer-to-peer architectures.

2.2 Online Gaming

2.2.1 Type of Games

There are various categories which may be used to classify online games. As far as networking is
concerned there are four primary game categories: turn-based games, real-time strategy games, role-
playing games, and action games [Fiedler 2008]. Each category (and individual game) has a set of
requirements which a network must meet in order for the game to be played over the network. These
requirements often concern the bandwidth and latency network properties [Ng 1997]. The network
bandwidth indicates how much data can be transferred at any given time. This gives an indication of how
many players can be simultaneously supported. Network latency indicates the time it takes for a data
packet to travel across the network from the sender to the receiver. If packets do not arrive in time, the
game action will halt, resulting in a visual delay, also known as lag [Howland 1999].

Turn-Based Games

Turn-based games are games in which each player takes a turn playing. Traditionally, when a player is
making a move, no other player is allowed to interact with the game. Examples of turn-based games are
Chess and Checkers.

Real-Time Strategy Games

Real-time strategy games are centered on the user utilizing resources to develop units (such as an army)
in order to defeat other opponents. The term real-time is used because players must attempt to build
their resources, defend their bases and launch attacks while knowing that the opponent is doing the same
thing; whereas in turn-based strategy games, each player has the time to carefully consider the next move
without having to worry about the actions of their opponent. Some popular real-time strategy games are

5

the Starcraft series [Blizzard 2014], the Command and Conquer series [Bell 1998; Honeywell 2000] and
the Age of Empires series [Kent 1998; Microsoft 2014a].

Role-Playing Games

Role-playing games (sometimes referred to as RPG) are video games where the player controls the
avatar(s) of the protagonist (or adventuring party members) in a fictional world. The role-player video
game genre is said to be inspired from tabletop role-playing games such as Dungeons & Dragons [Bar-
ton 2007]. Similar to the tabletop counterpart, role-playing video games contain a complex story line,
character development, travelling to different places and communicating with other game avatars. Some
popular role-playing video games are Diablo [Blizzard 2014], World of Warcraft [Blizzard 2014] and
Final Fantasy [Enix 2014].

Action Games

Action-based video games are games that require rapid processing of sensory information and prompt
actions. This forces players to make decisions and execute a response in a short time span [Dye et al.
2009]. The action game genre itself is very diverse and can be subdivided into several sub-genres such as:
first-person shooter games (e.g. Unreal [Epic 2014], Quake [id 2014], Halo [Microsoft 2014b]), fighter
games (e.g. Mortal Kombat [Midway 2014], Street Fighter [Capcom 2014], Tekken [Bandai 2014]) and
racing games (e.g. Need For Speed [Arts 2014b], Burnout [Arts 2014a]).

2.2.2 Online Gaming Background

Online games were initially deployed on peer-to-peer architectures [Fiedler 2008]. The synchronisation
of player’s actions was achieved by separating the game into a series of turns and then ensuring the turns
happened in lockstep across the peers. On each turn, every machine sent its user’s actions to the other
machines. Once a machine had received all the messages, it calculated the game state and sent the new
user actions to every other machine. While this protocol proved successful for real-time strategy games
such as Age of Empires, it failed for action-based games such as Doom [Fiedler 2008]. The lockstep
mechanism was the main reason for this failure. In action-based games, the game state changes in short
periods of time. Using the lockstep mechanism resulted in action-based games experiencing an extensive
amount of lag. Since a machine had to wait to receive messages from every other player, the game action
would “halt” until all the messages were received.

The problem underlying the lockstep synchronisation was resolved by using a client-server archi-
tecture. Instead of exchanging messages with each other, the players would exchange messages with a
dedicated game server (often owned by the game developers). The server simulates the game in distinct
time steps referred to as ticks [Valve 2012]. During each tick, the server processes the users input, runs
a simulation step on the input according to the game rules, and updates the state of all objects affected
by the users’ actions. After the tick simulation, the server sends the new game state to the client, who
then renders and displays the new game state. Figure 2.1 shows the general processes between a client
and server in a networked game. If a player’s machine was unable to send or receive messages in time
for the next tick, the player would be the only one to experience lag, not every other player. The client-
server online gaming architecture grew in popularity and was quickly adopted across a range of games.
In the client-server architecture, the server holds all the data of the games mutable objects and maintains
a consistent view of the game state.

Server tick rates differ from game to game, mostly dependent on the amount of action that occurs
during game play. A higher tick rate increases the simulation precision of the game server, but it also
requires more processing power and bandwidth between the clients and the server as more messages
are generated and processed. Some common tick rates from first person shooter games are 33, 66 and
100 ticks simulated per second. Clients sample input from devices at the same tick rate as that of the
server. The game data sent by clients and servers is often compressed using delta compression in order

6

Figure 2.1: General client-server game architecture, adapted from Bernier [2001].

to reduce network load [Mulholland and Hakala 2004]. That is, the host does not send a full snapshot of
the gaming world on each tick, but rather only changes of state. For example, if a player were to press
a button and not release it, there is no need to send a message to the server on every single tick that the
button is still pushed down. The client could rather send a message when the user releases the button.
Similarly in the server case, if an avatar were not to move, the server need not notify all the clients about
the avatars location on each tick. It would be more sensible to send the avatars coordinates when it moves
to another location.

Due to the increase in popularity of online gaming, large game developing companies began incor-
porating clusters of servers (multi-servers) to host games. Multi-server architectures can be used in two
ways [Yahyavi and Kemme 2013]. First, each server runs its own independent instance of the game. Each
server is responsible for its own clients and generally the servers do not interact with each other. Several
servers of the multi-server are located in different regions around the world. Players are usually assigned
to play on the server nearby their geographical location to avoid packets travelling long distances. In the
second model, only a single instance of the game exists. The regions (or levels) of the game world are
divided, with each region being managed by a single server. Players are in the same game world but only
interact with players in the same region. Figure 2.2 gives a visual presentation of this multi-server model.
When a player proceeds to another region of the game world a hand-off process occurs between the two
servers, moving a player from one server to another. The hand-off process is not always transparent. It
often requires the player’s avatar to go through a special doorway, portal, or gateway that proceeds to
load the player into the next region.

Using clusters of servers is costly. Mulligan et al. [2003] notes that acquiring servers to support at
least 30,000 users simultaneously can cost upwards of $ 800,000. Furthermore, a single server can only
support a defined number of users. If a server becomes flooded with users, the game developers have
to make provisions for another server. With region-based multi-servers, bandwidth cost increase further
due to the inter-server communication when hand-offs occur.

With the increase of processing power in personal computers and game consoles, and the increase
in bandwidth available to homes, different ways of hosting games were envisioned. Instead of having
the game server hosting all the games being played, some games allow users to host a game on their
machine (acting as the server) [Agarwal and Lorch 2009]. This took some load off the dedicated game
server. Algorithms, known as matchmaking, were developed in order to select a player’s machine that
qualified best in hosting a game. Criteria often used in selecting which player’s machine to use to host
the game range from hardware specification, bandwidth availability and the reputation of the player. If
the host machine were to be (intentionally or unintentionally) disconnected, the game activity on all
the clients would end. Some matchmaking algorithms simply halt the game while a new host is being
selected. The newly selected host gathers game information from all the clients in an attempt to rebuild
the game state before resuming the game. This process can take upwards of 15 seconds. Matchmaking is
also used to allocate players to a server in terms of the round-trip time. A server that is measured to have
a small round-trip time communicating with the client is less likely to exhibit issues of latency. Many
matchmaking systems link players of the same skill level into the same game. This allows players to

7

Figure 2.2: Region-based multi-server architecture, adapted from Yahyavi and Kemme [2013] illustra-
tion. Each server manages a specific region in the game world.

enjoy a game with players of the same level, rather than being constantly beaten by players on a higher
skill level.
Game responsiveness, the latency between user input and its visible feedback in the game world, can
be influenced by a number of properties. These include server/client CPU load, simulation tick rate,
message data size, network bandwidth, and network packet travelling time. The latency, or the ping rate,
is the time taken between the client sending a user command, the server responding to it, and the client
receiving the server’s response. The lower the latency, the smaller the chances of experiencing lag. In
the following sections, we discuss some of the common techniques used in gaming networks to decrease
the latency.

Lag Compensation (Dead Reckoning)

During the early stages of client-server gaming systems, lag was often noted in action-based games
[Fiedler 2008]. This was caused by the quick transition rate from one game state to another. Latency still
proved to be an issue in many multiplayer online games. The time it took for a player to send actions to
a server, the server to calculate the next game state and then send the state back to the client would often
fall behind the time taken for the player to move on to the next game state.

This issue was resolved by allowing the client to predict the next possible game state [Fiedler 2008].
The client side of the game runs a subset of the server code which is able to predict the position and state
of objects in the next game cycle. For example, if a player is observing an object travelling down a hill,
by using the game physics engine1, the client can predict the position of the object from previous states.
This technique is referred to as dead reckoning [Murphy 2011]. There are instances where the server will
not agree with the client’s game state prediction. In such cases, the server always has the final decision.
A “rewind” technique is then implemented on the client.

Figure 2.3 shows a screenshot from a first person shooter game, Counter-Strike [Valve 2012]. The
red hitbox shows the target position on the client where it was before the hit was confirmed. Since then,
the target continued to move to the left while the user command about the shooting action was travelling
to the server. After the user command arrived, the server restored the target position (blue hitbox) based

1The game physics engine is usually implemented on the server side. It can also be available on the client side in order to
enable client-side prediction.

8

on the estimated command execution time. The server traces the shot and confirms the hit (the client sees
blood effects). The client and server hitboxes do not match-up exactly because of small precision errors
in time measurement. Even a small difference of a few milliseconds can cause an error of several inches
for fast-moving objects, though the user never notices due to the fast pace of the game [Valve 2012]. For
further explanation on how client prediction and lag compensation work, also how lag compensation is
unnoticeable to the player, we refer the interested reader to Valve [2012] and Bernier [2001]. Aldridge
[2011] discusses not only lag compensation methods used in Halo Reach, but other techniques such as
message prioritization used to reduce latency.

Figure 2.3: Historic client hitboxes (red) versus rewound server hitboxes (blue) [Valve 2012].

Area of Interest (AOI)

As discussed earlier, delta compression was used to decrease the size of messages exchanged between
the clients and the server. Another factor which affects latency is the number of messages exchanged
between the clients and server. Network congestion can be caused by a large number of messages being
exchanged between hosts, resulting in messages being dropped by the network routers. In certain games,
a player’s avatar only interacts with a small set of the gaming world. The Area of Interest (AOI) specifies
the scope of the gaming world that a player should receive information on [Boulanger et al. 2006]. This
decreases the amount of data a server sends to clients.

2.2.3 Transporting Data within Online Games

The transport layer provides end-to-end communication services for applications [Braden 1989]. There
are two primary transport layer protocols: Transmission Control Protocol (TCP) and User Datagram Pro-
tocol (UDP). TCP is a reliable, connection-oriented transport service that provides end-to-end reliable
data transfer, same order delivery and flow control [Braden 1989]. UDP is a connectionless transport
service [Braden 1989]. Unlike TCP, UDP does not guarantee that packets will arrive in the same order
they were sent. There is no flow control and most importantly it does not provide a reliable data trans-
fer service. If an application requires reliable data transfer using UDP, the reliability property is often
handled at the application layer.

The transport layer used in an online game is dependent on the type of game. Turn-based games use
TCP, also so do some real-time strategy games. For role-player games it is less clear which transport layer
protocol should be used as its dependent on the amount of action which may go on during game play

9

[Griwodz and Halvorsen 2006]. Action-based games such as first person shooters and racing games use
UDP [Fiedler 2008]. UDP is preferred over TCP in action-based games due to the cost of TCP’s reliable
service guarantee. When a TCP packet is discarded by the network, the sending host has to retransmit the
packet. But first the sending host has to detect that the packet was dropped. If an acknowledgement for
the packet is not received under a set time frame, the protocol on the sending host deduces that packet was
discarded and retransmits the packet. During this period, the receiving host may receive newer packets
sent before the packet retransmission. Due to TCP’s property of message order, segments are held in the
buffer until the original data stream can be reconstructed. The delay means a game is unable to receive
new messages until the missing packet is retransmitted and received. In action-based games where state
is rapidly changing, the delay in waiting for an “old” packet to be retransmitted can cause a huge amount
of lag. UDP does not present this issue because packets are not buffered in the transport layer and are
immediately sent to the application layer when received.

Action-based games tolerate a certain amount of packet loss when using the UDP transport layer.
Action-based games are interested in receiving the latest information. As long as new packets of infor-
mation are received, lag compensation methods may be used to predict past actions. Message delivery
guarantee and flow control are still desirable properties with games that use UDP. If an important event
(such as someone winning the game) was contained in a packet that was discarded, some form of reli-
ability would be required to ensure that the packet is delivered to a host. Flow control would also be
required in order to prevent hosts from burdening network nodes such as routers with messages, further
causing messages to be discarded. Games which use UDP need to implement their own form of mes-
sage delivery guarantee and flow control in the application layer. There are several UDP wrappers, such
as Enet2, HawkNL3, PLib/Medusa4, SDL net5, that offer message delivery guarantee, flow control and
other features specifically for online games.

2.3 Challenges in Peer-To-Peer Gaming Networks

Though peer-to-peer gaming architectures seem promising in solving scalability issues in client-server
networks, they also produce several requirements which must be addressed in order to provide a reputable
service. Challenges facing peer-to-peer gaming networks include distributed storage and game state con-
sistency, optimization of message delays, fault-tolerance management and protection against cheating
[Neumann et al. 2007]. These issues are not limited to peer-to-peer gaming architectures, but are shared
by various distributed computing applications such as file sharing services and distributed storage sys-
tems. We focus on the requirements of game distributed systems in terms of game state management,
scalability, fault-tolerance, delay management and cheating. In the following section, we discuss each
property in detail.

2.3.1 Game State Management

A game is characterized by a set of states [Neumann et al. 2007]. These states are modified as the game
progresses, for example a player’s actions will cause the game state to change. With multiplayer games,
it is important that the game state is consistent amongst all the players. That is, all the players must reflect
the same game world view. In a client-server architecture, it is easy to manage the game state. The server
is able to keep the game state consistent by being the only device interacting and modifying the game
state. The game state which players view is that state which was calculated by the server. In a peer-
to-peer architecture, it becomes difficult to manage the game state. More than one node could interact
with the game state, which could cause the game state becoming inconsistent. Section 2.4 discusses
peer-to-peer approaches for exchanging game state information.

2enet.bespin.org
3hawksoft.com/hawknl
4plib.sourceforge.net
5www.libsdl.org

10

http://enet.bespin.org
http://hawksoft.com/hawknl/
http://plib.sourceforge.net/net/index.html
http://www.libsdl.org/projects/SDL_net/

2.3.2 Scalability

Scalability is the ability of a computer system to continue to function well when it grows in size or
volume [Ding et al. 2003]. For a network application, peer-to-peer networks are enticing due to the
scaling property. Bandwidth, processing power and storage can be distributed among nodes allowing
more participants to utilize the application. Peer-to-peer applications can experience excessive inter-node
communication due to scaling, introducing excessive bandwidth consumption and latency. For example,
if a peer wished to retrieve data from the peer-to-peer network, but without knowledge of where the data
could be obtained, a query message could be sent out to all the peers. Given a large group of peers, this
option could easily clutter the network. Gnutella, a file sharing service, was one of the most well-known
applications to use this protocol [Ding et al. 2003]. Peer-to-peer protocols alleviate this issue by reducing
the scope of the query and exchanging messages with relevant neighbouring peers. Freenet adopted the
Gnutella system but used a key-based protocol (similar to a distributed hash table) to query nodes. The
key-based protocol reduces the number of queries, therefore reducing the bandwidth congestion.

2.3.3 Fault-Tolerance

Fault-tolerance is the property that allows a computer system to continue to operate correctly in the event
of one or more of the systems components fail. As more nodes join a peer-to-peer network, the possibility
of a node abruptly failing and leaving the network increases. Peer-to-peer applications must be resilient
to a peer’s failure in order to ensure service availability and provide smooth user experience. Napster,
one of the most well-known file sharing services exhibited the importance of fault tolerance [Ding et
al. 2003]. Napster allowed users to directly exchange files with other users. A central server indexed
the files which users shared. When the central server malfunctioned, the whole Napster application was
inoperable. Peer-to-peer gaming protocols often make use of replication as a form of fault-tolerance
[Hampel et al. 2006; Yahyavi and Kemme 2013]. A peer that maintains a portion of the distributed
state data will replicate the data to another peer. If the peer maintaining the data happens to fail, the
data can still be accessible from the peer containing a copy of the data. Various forms of replication
techniques exist which are dependent on the protocol used in the peer-to-peer gaming architecture. It is
also important to note that each player in the game contains a local copy of game state data pertaining to
the players AOI.

2.3.4 Delay Management

As discussed in detail in Section 2.2, delay in game responsiveness is often caused by latency. The delay
could be caused by the time taken to transport and process information over the network, network delay,
or the time taken to account for all the players actions and synchronise the state, state synchronisation
[Neumann et al. 2007]. A peer-to-peer network could add on to the network delay. With the client-server
model, a message takes a single hop (from client to server or vice versa) for the message to reach its
destination. In a peer-to-peer network, dependent on the network topology and messaging protocol, a
message may take several node hops before reaching its destination. A peer-to-peer gaming architecture
must seek to minimize this delay.

2.3.5 Cheating

In this research, we use the Neumann et al. [2007] definition of cheating: “an unauthorized interaction
with the game system aimed at offering an advantage to the cheater”. Cheating in general is a huge
problem in any game architecture. Players who cheat often gain an unfair advantage that could result in
frustrated legitimate players cheating as well or leaving the game. When players are found to be cheating
by the game developers, it often results in the player being banned from playing the game or resetting
the players progress. In 2010, over 5,000 players who were found to be cheating were banned from
playing Starcraft 2 [Entertainment 2010]. Disciplinary action, alongside game patches are some of the
techniques game developers employ to deal with players who cheat. There are several methods that can

11

be used to cheat, below we give three which are prone to peer-to-peer gaming networks [Neumann et al.
2007; Yahyavi and Kemme 2013]:

• Accessing unauthorized information: A player can intercept and examine information (for example
other players’ position) that is not supposed to be disclosed to the player. The player can use this
information to devise strategies in order to guarantee a win. Peer-to-peer architectures exhibit this
issue due to exchanging game state information with peers, whereas in server based architectures
the server communicates directly with the targeted client.

• Interrupting information dissemination: A cheater may target the game state of other players by de-
laying, dropping, corrupting, changing the rate of updates or broadcasting inaccurate information.
This results in other players computing an incorrect game state, likely decreasing the cheaters
chance of being targeted. Client-server architectures benefit from a single server managing the
game state, ensuring game state integrity. Peer-to-peer gaming architectures distribute the game
state amongst the peers, allowing a cheater to manipulate the game state of other players.

• Defying game rules: A cheater may target the game application by circumventing the game rules.
This can be done by reverse-engineering the game to obtain information on how it works and
modifying the game code. Cheating that involves hacking the game application or network system
can lead to instability and performance issues with the game, furthermore it raises security issues.
A player could also use third party software to gain an advantage. For example, an aimbot which
automatically aims a players weapon in the correct direction of an enemy’s avatar [Yu et al. 2012].

Cheat detection and prevention are common techniques used by game developers to battle cheating.
Cheat prevention methods eliminate (or at least reduce) the possibility of cheating. Cheat detection
methods actively seek and punish cheaters, deterring other players from cheating. In server-based gaming
architectures, cheat detection and prevention is relatively simple as a trustworthy server can perform the
operations. Peer-to-peer gaming architectures present issues such as finding methods to apply cheat
resistant operations on a large number of peers. Another issue is determining where the cheat resistant
mechanisms should be placed in the architecture. If a cheater has access to the cheat prevention and
detection mechanisms, the cheater could devise a method of being undetected. Reputation systems are a
form of calculating which peer is most trustworthy, and it also prevents false-positive cheat identification
resulting in a player being punished by mistake [Yahyavi and Kemme 2013].

2.4 Overview of Current Peer-To-Peer Gaming Protocols

In Section 2.3, challenges facing peer-to-peer gaming networks were addressed. In this section, we dis-
cuss peer-to-peer gaming protocols for message and state dissemination. The protocols are classified into
the following three categories: Application Layer Multicast, Supernode Control and Mutual Notification.

2.4.1 Application Layer Multicast

The Application Layer Multicast protocol segments the game world into regions, with each region con-
taining a dedicated multicast group. If an event occurs in a certain region, messages are sent to play-
ers who have subscribed to the region. Messages are delivered to players using a multicast tree. The
peer-to-peer gaming system discussed in Knutsson et al. [2004] is an example of a peer-to-peer gaming
infrastructures that uses the Application Layer Multicast protocol. Iimura et al. [2004] states that the
Application Layer Multicast protocol may incur unnecessary network delay due to the number of hops
messages take when broadcasting through the multicast tree. Therefore, the application layer multicast
protocol is unsuitable for latency sensitive games, especially when there are a large number of partici-
pants.

12

2.4.2 Supernode Control

As in the Application Layer Multicast protocol, the game world is segmented into regions. A node is then
selected to co-ordinate events within the region and becomes a supernode. Players who are in a certain
region send their status to a supernode to which they have registered. The supernode upon receiving the
status calculates the next game state and publishes the game state to the registered players. Although
this model shares some similarities with the client-server model, it differs in the scale of operations
in that multiple supernodes attend to the players as opposed to just a single node (the server). Figure
2.4 illustrates the Supernode Control protocol. The systems discussed in Bharambe et al. [2006] and
Yamamoto et al. [2005] are examples of gaming peer-to-peer infrastructures which make use of the
Supernode Control protocol. Supernodes may be overwhelmed with servicing crowded regions. If too
many players are inside a region the supernode will struggle to receive and deliver messages in time. In
such cases, the region will be divided further into smaller regions and new supernodes will be elected to
assist in balancing the load.

Figure 2.4: Illustration of the Supernode Control protocol.

2.4.3 Mutual Notification

In contrast to the Supernode Control and Application Layer Multicast protocols, the Mutual Notification
protocol does not segment the game world into regions. Instead, players send messages directly to
other players who are in their area of interest. The peer-to-peer gaming systems discussed in [Keller
and Simon 2002] and Hu et al. [2006] are examples of systems that use Mutual Notification. Figure
2.5 illustrates the mutual notification protocol. The player in the center of the circle sends messages
directly to its nearest neighbours (the solid circles). Messages about the player’s actions are ‘gossiped’
to the other players outside the circle (the hollow circles). Compared to the Application Layer Multicast
and Supernode Control protocols, the Mutual Notification protocol minimizes the delay of messages by
communicating directly with other players. Essentially, there is only one hop for a message to reach
its destination, unlike the other protocols where there will be at least two hops. However, the Mutual
Notification protocol faces a downside in cases of crowding. Nodes are forced to connect beyond the
available bandwidth in crowded areas. A solution to this would be to decrease the amount of connections

13

by reducing the player’s area of interest. Another solution would be to route messages through another
node which has sufficient bandwidth.

Figure 2.5: An example of mutual notification taken from the Hu et al. [2006] demo.

2.4.4 Evaluation of Protocols

An evaluation conducted by Krause [2008], relating to the performance of the peer-to-peer protocols
discussed in this section, revealed the following: The Mutual Notification protocol was shown to have the
best performance in minimizing message delays and the delay rate did not change as the test group size
got larger. It was also shown that the bandwidth requirements for exchanging messages were moderate as
long as a certain location was not densely populated. The Application Layer Multicast protocol initially
displayed results of reasonable delay and bandwidth requirements, but as the test group size got larger
the protocol did not cope well. It displayed attributes of high bandwidth consumption and unacceptable
message delays. The Supernode Control protocol did not suffer from unmanageable message delays
as the group size increased, though like the Application Layer Multicast, it did show that a densely
populated area will require more bandwidth. This was most likely due to the static division of the game
world and poor load distribution with the system tested. Although the Mutual Notification protocol had
the best performance, the protocol does not contain a “dominant” node to resolve situations when nodes
calculate different game states. If a single player were to compute a different game state this would lead
to a “butterfly effect”6 across the game.

2.5 Hybrid Gaming Networks

A combined approach of mixing peer-to-peer and client-server architectures is also possible. Negatives
in the peer-to-peer system can be alleviated by allowing specific operations to be handled by a server-
based implementation. For example, in peer-to-peer gaming networks the complexity of cheat detection
and prevention is one of the major reasons game developers avoid peer-to-peer architectures [Yahyavi
and Kemme 2013]. Therefore, a trustworthy server can be used to overlook the players’ actions in a
peer-to-peer network to ensure that there is no player cheating. Yahyavi and Kemme [2013] list three
possible combinations of client-server and peer-to-peer networks:

6The butterfly effect is a notion in chaos theory, where a small but sensitive change in a system (be it an ecological or a
computing system) causes a major (often undesired) change in later stages.

14

• Cooperative message dissemination: The game state is maintained by the server but messages
containing the state of the game are sent using multicast mechanisms constructed by the peer
nodes. This approach reduces the bandwidth requirements of the server.

• State distribution: The game state is distributed amongst the peers, and thus the peers are respon-
sible for the game functions. The server manages how peers communicate with each other. The
server is also responsible for centralized operations such as player authentication and keeping track
of players joining or leaving the game. This model achieves scalability by distributing the game
state amongst several nodes.

• Basic server control: This approach sets the messaging propagation and state distribution amongst
the peers. The server only maintains sensitive information such as: user login credentials, payment
information and the players’ progress. The server also handles the process of a player joining or
leaving a game.

OnDeGas (On Demand Gaming Service) is a hybrid network gaming architecture designed to solve the
scalability issue within client-based systems and latency within peer-to-peer architectures [Barri et al.
2010]. OnDeGas consists of a master server that carries out all the game functions. If a region in the
game world becomes crowded, slowing down the operation of the whole game, the region is zoned off
and handed to a pre-selected peer that becomes the supernode of that region. The master server also coor-
dinates region selection, supernode nomination, message communication methods between supernodes
and bootstrapping. Barri et al. [2010] do tackle the issue of fault-tolerance by replicating the supernodes
data to another node. If the supernode were to fail the node containing the replicated data can take over
as the new supernode. Barri et al. [2010] failed to examine or discuss if the game would be operable
if the master server failed. This likely means that the master server is the single point of failure for the
whole network architecture.

2.6 Conclusion

Modern MMOG use client-server models to provide online gaming. Significant development has gone
into ensuring the network architecture provides a highly interactive game environment without any delay.
The techniques used to decrease latency delay range from dead reckoning, delta compression, interest
management, and most importantly, transport layer selection. However, scalability within client-server
architectures is limited and costly. We argue that peer-to-peer architectures provide better support for
MMOG by allowing the user base to grow as large as possible. Peer-to-peer gaming architectures pro-
duce several challenges that must be addressed. These challenges are game state management, scalability,
fault-tolerance, delay management, message dissemination and cheating. Game state management ad-
dresses concerns with game state consistency and data persistence in a distributed environment. With re-
spect to delay management, the peer-to-peer application must process game play actions and synchronise
game state immediately in order to present an interactive game with no game play delays. Furthermore,
communication delays between hosts in the gaming network need to be kept to a minimum. We also
highlighted the performance of existing message dissemination protocols for peer-to-peer architectures.
The Application Layer Multicast protocol has moderate delays and bandwidth requirements which do
not complement peer-to-peer gaming networks; therefore, the Application Layer Multicast protocol is
eliminated from being used in this research, leaving the Supernode Control protocol and Mutual No-
tification protocol as our remaining choices to use for message dissemination. The chosen protocol is
based on our peer-to-peer gaming solution, discussed further in Chapter 3. Prevention against cheating is
another desired feature for peer-to-peer gaming architectures. However, the focus of this research is on
the delay management of peer-to-peer gaming architectures. For this reason, the aspect of cheating is left
for future work. The next chapter outlines the research questions, the aim of this research and research
methodology.

15

Chapter 3

Research Questions and Methodology

3.1 Introduction

In Chapter 2, we discussed the background of this research and the issues facing the design, implementa-
tion, and deployment of massively distributed online games. In this chapter, we present the methodology
used to conduct this research. In particular, the research question described in Chapter 1 is formalized in
Section 3.2 along with a subset of research questions. The aim of the research is presented in Section 3.3.
Subsequently, we provide an outline of the methodology that is used to answer the research questions in
Section 3.4. Specifically, we discuss the concept behind our peer-to-peer solution. The design concept
is related back to the research question. We conclude this chapter by formulating a number of tests to
answer the research questions.

3.2 Research Questions

The client-server architecture, where game execution and management is controlled by a dedicated
server, is currently the prevalent architecture for online gaming. However, client-server systems present
problems such as high server costs and limited user limits. Moreover, the server represents the single
point of failure. Peer-to-peer networks by nature are robust against component failure, reduce the cost of
deploying servers, and are highly scalable. Peer-to-peer architectures are therefore an attractive field to
host MMOG. The central question that we seek to address in this research is:

What is the best approach to reliably and timely deliver messages from one host to another in a peer-to-
peer architecture?

In order to address the central question, we also have to answer the following questions:

• How to deliver messages in a timely manner within a peer-to-peer network? From a commu-
nication point of view, the latency problem is related to network delays experienced during the
transportation of data over the network. In Section 2.2.3 of Chapter 2, we noted the choice in the
transport layer protocol is dependent on the type of game. Despite TCP’s reliable delivery and
network congestion prevention capabilities, UDP is used for action-based games. The reason UDP
is preferred over TCP in action-based games is due to the TCP property of packet arrival order
which may delay the delivery of messages to the application layer. Though the delays experienced
using TCP are undesired in “real time” applications, such as VoIP and IPTV, media streaming ap-
plications still seek the services which TCP provides. Protocols such as RTP (Real-time Transport
Protocol) have been developed to offer TCP services but on top of the UDP protocol [Schulzrinne
et al. 2003]. Despite the availability of such protocols most media streaming applications make
use of TCP, because data delivery for clients using the Transmission Control Protocol is less com-
plicated over traversed networks (such as proxies and firewalls) [Harcsik et al. 2007]. Also, TCP’s

16

flow control service avoids congesting the network by adapting the rate of transferring messages
dependent on the load conditions of the network [Kurose and Ross 2009]. There are other trans-
port layer protocols which have been developed to improve on the Transmission Control Protocol
delay, such as the Stream Control Transmission Protocol (SCTP) [Stewart et al. 2006]. How-
ever, these transport layer protocols require a change in the transport-layer protocol stack, which
makes SCTP and other newly developed transport layer protocols difficult to deploy across exist-
ing routers [Dukkipati et al. 2010; Google 2012]. Given the difficulty of improving transport layer
protocols without negatively effecting communication between nodes, the application layer must
be refined to reduce TCP delay. Taking from the ideas above, we seek to use TCP in a different
manner, which will allow messages to be delivered under a specific amount of time.

• Given the distributed nature of the system, how can the information about the game state be kept
consistent among the players (nodes), whilst guaranteeing availability of the system? In Section
2.3 of Chapter 2, we identified game state management as one of the challenges facing peer-to-
peer gaming systems. Firstly, peer-to-peer gaming systems need to present a consistent state to the
players. Given the scalability factor of peer-to-peer systems, mechanism are required to distribute
the data amongst the nodes. With respect to nodes abruptly leaving the network, a peer-to-peer
gaming system must ensure that the game state data is always accessible. Also, given the constant
changes that may occur in the game state, the peer-to-peer system needs to be highly available to
perform read and write operations on the game state data. We seek a highly available game data
management model that can maintain the game state in a distributed system.

• What concurrent programming paradigm can reduce the time taken to process numerous messages
retrieved during network exchanges? In Section 2.2 of Chapter 2, we discussed delay management
techniques within MMOG. We highlighted the methods used to reduce synchronization delays
within online games, for example dead reckoning. Another delay factor for online games resides
in the time taken to process a message packet received from another host. Hosts within a game
network exchange a number of packets, indicating actions taken or a change in the game state,
which a games application layer needs to process [Fiedler 2008; Valve 2012]. Given a large user
base, the number of message packets a server receives grows proportionally. In a MMOG, the
server is required to concurrently process a large number of incoming messages without delaying
game interactivity. We seek a highly concurrent model to process the network messages and reply
promptly to request messages.

3.3 Research Aim

The purpose of this research is to create a peer-to-peer system for hosting MMOG. The architecture was
designed to satisfy the following criteria:

• Consistency
MMOG operate on shared game states. The game states must be consistent between all players.
Consistency allows players to perceive events identically.

• Availability
The system must be available to meet all write and read requests with a response.

• Fault-tolerance
In distributed systems, a node may unexpectedly fail. The proposed system will be tolerant of
nodes dropping out at any point with no disruption to game play.

• Scalability
The architecture will be designed to handle a large number of concurrent users in the same game
world without experiencing loss to the quality of service.

17

• Low latency
Many games (such as action-based games) require that messages arrive under a certain time or the
user will experience lag. Therefore the time for a message to arrive at another node must be kept
below a threshold pertaining to the game.

3.4 Research Methodology

The research was completed by creating a distributed application solution that would be used for MMOG.
Aside from the networking application being specifically directed to MMOG, the network application
has the potential to be used for other applications such as Voice over Internet Protocol (VoIP), media
streaming, and instant messaging. The concept behind the design approach of the system was to separate
the business logic away from the networking. The network is designed for general online gaming and is
not constrained to meet specific requirements for a certain game. Rather the distributed gaming network
provides a set list of features, which if it satisfies the requirements for a game, can be used for an
online multiplayer game. Figure 3.1 gives the high level schematic design behind the distributed network
solution. The architecture adopts the design of the Supernode Control protocol, where a supernode co-
ordinates the message dissemination, game execution and state management of a selected region. The
Supernode Control protocol is able deliver messages in an adequate time frame, as noted in Section 2.4
of Chapter 2. Unlike the Mutual Notification protocol, that does not ensure that a local group of players
have a consistent view, the Supernode Control protocol warrants that players based in a specific region
have a consistent view.

Figure 3.1: An abstract idea of the distributed network.

Each node in the distributed solution offers three utilities that nodes in the system interact with through an
Application Programming Interface (API). The three utilities offered are a distributed storage system, a
messaging service and a routing service that enables hosts to interact with services outside the distributed
network application. The services were identified from issues facing distributed games and services

18

required in distributed gaming networks.
The storage service provides a distributed storage where game state (and other data) can be stored.

The second utility is a publish and subscribe service that allows neighbouring players or players in
a specific zone (dependent on the message dissemination protocol) to subscribe to a host and receive
relevant messages like game state changes. The third offering utility is a service routing component.
Within the business logic, there may be other services which the business logic contains which the
network application does not provide. The service routing component coordinates requests between
hosts and the services. For example, if a node is nominated as a supernode for a zone, the supernode
is required to calculate the game state after receiving players’ actions. The supernode could route the
actions to the logical service that computes the game state. After the game state has been determined, it
can be broadcast to the players. In Chapter 5, the design of the system developed is discussed in detail.

Validation of Research

In light of the questions discussed in Section 3.2, the validation methodology consists of experiments
to measure the latency of the peer-to-peer solution. To answer the research question, we measure the
performance of the communication model used to send messages between nodes. The results determine
if it is possible guarantee reliability and deliver messages in a timely manner. We also examine the time
taken for services provided by the nodes to respond to requests. The experiment provides us with insight
into the chosen model of concurrency performance. Furthermore, we compare the front-end service
of our peer-to-peer solution against web servers with the capabilities of hosting online games. The
experiment outlines a benchmark of our systems performance against existing online gaming solutions.
More importantly, we examine the response time of our solutions functions in a distributed environment,
in order to inspect if the system is able to scale as more supernodes are introduced.

3.5 Conclusion

In this chapter, we formalized the research questions and presented the design overview of our peer-
to-peer solution. Our solution builds on solutions from various domains. These include communication
protocols, distributed data systems and models of concurrency. In the following chapter, we present these
building blocks for our peer-to-peer gaming solution.

19

Chapter 4

Building Blocks

4.1 Introduction

Online games present a set of requirements that need to be satisfied to host a game in a peer-to-peer in-
frastructure. These requirements include managing game state consistency, reducing the delay of sending
and processing a messages, and techniques to handle cheating amongst players. In light of the research
questions discussed in Chapter 3, we investigate related approaches to the challenges facing peer-to-peer
gaming networks. The investigation presented in this chapter coincides with the solutions used within our
peer-to-peer gaming network. In particular, we investigate network delay management within web ap-
plications, synchronization delay management with regards to processing network messages in a timely
manner, and data management within distributed database systems. Section 4.2 presents communication
protocols designed to reduce web page load times. Section 4.3 illustrates the challenges of guaranteeing
consistency, concurrency and scalability in distributed database systems. We also explore distributed
database models created from the growth of web data. In Section 4.4, we discuss highly concurrent
programming paradigms that can be used to process numerous network messages.

4.2 Communication Protocols

In Section 3.2, we highlighted the research question, which is to seek a communication mechanism to
reliably and timely deliver messages between hosts in a peer-to-peer gaming network. We proposed the
use of TCP to deliver messages between hosts, because the TCP transport protocol can easily traverse
networks, guarantee message delivery, and control the flow rate of messages [Harcsik et al. 2007]. How-
ever, the message delivery guarantee provided by TCP may cause undesired latency. Therefore, we seek
to refine the TCP communication model to mitigate the retransmission delay. Web applications exem-
plify applications that use TCP for communication, but also seek to decrease the time taken to exchange
content. In this section, we present application layer protocols that refine communication models on the
web. Initially we present the HTTP application layer protocol used to transfer data. We then present two
application protocols, WebSocket and SPDY, that have been developed to improve the communication
model between web applications.

4.2.1 Hypertext Transfer Protocol (HTTP)

The World Wide Web (abbreviated as WWW, commonly known as the Web), is undoubtedly one of the
most used applications on the Internet. The Web contains information and objects of various mediums
[Kurose and Ross 2009]. These objects range from HTML files, images, video clips, video games,
and more. Information and objects are often accessed from sources called web pages documents, that
are addressable by a single URL [Kurose and Ross 2009]. The Hypertext Transfer Protocol (HTTP) is
the Web’s application layer protocol. HTTP is defined as an application-level protocol for distributed,
collaborative, hypermedia information systems which is run on top of TCP [Fielding et al. 1999]. HTTP

20

is a generic, stateless, protocol which can be used for many tasks beyond its use for hypertext, such as
name servers and distributed object management systems, through extension of its request methods, error
codes and headers [Fielding et al. 1999]. A popular feature of HTTP is the typing and negotiation of data
representation, which allows systems to be built independently of the data being transferred. Hypertext
Transfer Protocol Secure (HTTPS) is a secure communication protocol for exchanging HTTP messages.
HTTPS is layered on top of Secure Sockets Layer (SSL) or Transport Layer Security (TLS) [Dierks and
Rescorla 2008; Freier et al. 2011], with SSL/TLS lying in the session layer of the OSI model. Secure
communication over the Web was required to prevent eavesdropping and middleman attacks between
hosts exchanging sensitive information [Kurose and Ross 2009].

The first documented version of HTTP was in 1991, with HTTP 0.9. The second was in 1996 with
HTTP 1.0 [Berners-Lee et al. 1996]. The last revision of HTTP was made in 1999, HTTP 1.1, which is
still widely used. However, there has been consideration that this web protocol has become increasingly
out-of-date with the networking and computing resources used today [Fette and Melnikov 2011]. Over
the past years, web applications have become far more complex that a standard HTTP system could
not provide the services required by some applications. Below, advancements made in web application
protocols from the weaknesses in HTTP 1.11 are discussed.

4.2.2 WebSocket

A need for a simpler two-way communication between hosts came from the issue faced by certain web
applications that used bidirectional communication between the client and the server. When a browser
visits a web page, an HTTP request is sent to the web server. The web server would acknowledge the
request and respond with the requested web page. In many cases, the information contained on the web
page could be old by the time the web page is rendered. For example, stock exchange prices, news
reports, and traffic information are constantly changing. In order to obtain the latest information, the
user would have to refresh the web page manually. A better solution would be to have the web server
push down the new information to the web browser automatically.

Unfortunately, HTTP does not support full-duplex communication naturally. Web applications that
used bidirectional communication required an abuse of HTTP to poll the server for updates while sending
upstream notifications as distinct HTTP calls [Fette and Melnikov 2011]. This resulted in a number of
problems such as a sever being forced to use a number of different TCP connections, one for sending
information to the client and a new one for each incoming message. Each client-to-server message would
have an HTTP header, creating a high overhead. Also, the client application would be forced to maintain
a mapping from the outgoing connections to the incoming connection, in order to track replies.

As part of the HTML5 initiative, the WebSocket protocol was created to supersede existing bidirec-
tional communication technologies (such as Comet [Crane and McCarthy 2008]) that use HTTP. The
WebSocket protocol enables full-duplex communication between two hosts over TCP through a single
socket [Wang et al. 2012]. The WebSocket protocol is an independent TCP protocol, with its only re-
lationship to HTTP being its handshake that is interpreted by HTTP servers as an upgrade request. The
benefits from the HTTP handshake include the ability to traverse firewalls, proxies and authentication
servers. WebSockets also place less of a burden on servers, allowing existing machines to support more
concurrent connections.

4.2.3 SPDY

SPDY is an application protocol developed by Google to decrease web page load times [Google 2012].
SPDY was created to address the performance issues inherent in HTTP including HTTP’s lack of pipe
lining and message prioritization, the inability to send compressed headers and the absence of server
push capabilities [Thomas et al. 2012]. Belshe and Peon [2012] engineered SPDY to run over a SSL
connection, introducing a connection latency penalty, in the belief that the web should be secured by

1The Internet Engineering Task Force (IETF) is currently working on the next version of HTTP, HTTP 2.0 [Belshe et al.
2013]

21

default. SPDY does not replace HTTP, but modifies the way HTTP requests and responses are sent. This
allows content on servers to remain unchanged. The SPDY protocol is made up of a session layer on top
of a SSL, which facilitates multiple concurrent and interleaved streams over a TCP connection. Figure
4.1 shows the SPDY protocol stack.

Figure 4.1: The SPDY protocol stack, adapted from Google [2012].

SPDY has been implemented in several web servers, browsers and libraries including the Jetty Web
Server, Apache webserver, Netty library, Google Chrome and Mozilla Firefox. SPDY has also been used
on Google websites, Facebook and Twitter. The SPDY protocol is also being used as the base for HTTP
2.0 [Belshe et al. 2013]. SPDY uses the following three features to improve the web page load time
[Belshe and Peon 2012]:

i Multiplexed streams: SPDY allows for unlimited concurrent streams over a single TCP connection.
Because requests are interleaved on a single channel, the efficiency of TCP is much higher: fewer
network connections need to be made, and fewer, but more densely packed, packets are issued.

ii Request prioritization: A side-effect of multiplexed streams is congestion. If the bandwidth of a
channel is constrained due to multiple requests, critical requests might be delivered more slowly. To
solve this issue, SPDY implements request prioritization in which a client can assign priorities to
each request. This prevents the network channel from being congested with non-critical resources
when a high priority request is pending.

iii HTTP header compression: SPDY compresses request and response HTTP headers in order to de-
crease the number of packets and bytes transmitted.

Apart from these three features, SDPY also offers two more advanced features which can be used by a
server to accelerate content delivery:

i Server push: SPDY allows a server to push resources to a client which the client might request. The
data is kept in the client’s local cache and upon needing the data the client can retrieve it from there.

ii Server hint: Rather than forcibly pushing data onto the client, the server can rather send a suggestion
on the resource(s) that is required. This allows the client to be involved in making a decision if the
resource should be retrieved from the server. For example, the client could check its local cache,
requesting the resource if it does not reside in the client’s cache.

Tests conducted by Google have shown SPDY to have a 27% - 60% speedup when downloading web-
pages on a plain TCP connection (without SSL), and a 39% - 55% speedup over a SSL connection
[Google 2012]. SPDY’s header compression was one of the attributes which led to the improvement of
download time. The header compression resulted in the request headers being reduced by ~88% and the
response headers being reduced by ~85%. On lower bandwidth lines, the header compression reduced
page load times by 45 - 1142 ms. Further tests were conducted to examine the effect of packet loss

22

on SPDY’s timing on delivering packets versus that of HTTP. During packet loss tests, SPDY latency
savings proportionally increased up to 48% at the 2% packet loss rate. The increase stopped at the 2.5%
packet loss rate with a 44% speedup. The improvements in content delivery against packet loss were
attributed to following features in SPDY: SPDY approximately sends 40% fewer packets than HTTP,
meaning fewer packets are affected by loss. SPDY’s more efficient use of TCP triggers TCP’s fast re-
transmit instead of using retransmit timers. Given that SPDY uses fewer TCP connections, the chance
of losing a SYN packet decreases. The delay caused by the loss of a SYN packet is extremely expensive
(up to a 3 second delay) [Google 2012]. Another test examining the improvement on the Round Trip
Time (RTT) was also conducted. SPDY’s latency savings also increased proportionally with increases
in RTTs, up to a 27% speedup at 200 ms. The improvement on the RTT was due to SPDY being able
to fetch all the requests in parallel. If a HTTP client has 4 connections per domain, and 20 resources to
fetch, it would take roughly 5 round trips to fetch all 20 items. SPDY fetches all 20 resources in a single
round trip. Detailed results for the above mentioned tests can be found in Appendix B.

4.2.4 Summary

UDP may seem like the appropriate choice to deliver messages in a timely manner. However, UDP does
not provide any form of message delivery guarantee, has no congestion avoidance mechanism, and may
be difficult to traverse networks. Improving on the transport-layer is risky because devices such as routers
may not be able to use the new protocol, as is the case with SCTP. By using SPDY as the communication
model between nodes, we seek to use TCP in a different manner that would reliably deliver messages
under a specific time. SPDY’s multiplexing property allows multiple requests/responses to be sent over
a single channel, diminishing the delay experienced by TCP when packets are dropped. SPDY also
incorporates the advantage of HTTP to traverse proxies and firewalls.

4.3 Distributed Data Systems

Peer-to-peer online gaming networks face the challenge of maintaining a consistent game state across
several hosts. In this section we explore the properties of consistency, availability and data persistence
in distributed data storage systems. Section 4.3.1 presents the challenges of guaranteeing consistency,
scalability and availability in a distributed system. In Section 4.3.2, we introduce the two most common
distributed database systems, relational and non-relational database systems. In particular, we examine
the scalability limitation in relational database system. Finally, Section 4.3.3 concludes the section by
discussing a low latency distributed storage system, Voldemort. We outline some of internal concepts
of the Voldemort distributed database system and describe how Voldemort handles replication and parti-
tioning.

4.3.1 Dilemmas Facing Distributed Database Systems

A trivial method of storing data is on a single high performance machine. However, as with client-server
architectures, this methodology has a number of drawbacks. The machine can only serve a number
of read and write requests, often attributed to the hardware limitations of the machine. The machine
hardware specifications can be updated but this is costly and may lead to downtime as the upgrade
is being performed. Furthermore, the machine is the single point of failure. Distributed data storage
systems have become a prominent approach to address the above issues. Similar to peer-to-peer gaming
networks, distributed data systems have a number of requirements and challenges. The growth of web
storage application drove a rise in distributed systems that led to the correlation between availability,
consistency and scalability within distributed management systems.

The CAP theorem was a conjecture presented by Brewer [2000], which was later formally defined
and proven by Gilbert and Lynch [2002]. Large distributed database systems arouse issues and properties
that small data systems do not have to worry about. Brewer [2000] identified three distinct properties
which are desirable in distributed data systems:

23

• Consistency: All nodes in the distributed system have the same data; that is, a consistent transac-
tion is one that starts with a database in a consistent state and ends with the database in a consistent
state. For example, if a data value (say x) was added/updated, all the nodes in the system would
contain the same value for x.

• Availability: The system must guarantee that every read or write request is fulfilled.

• Partition-tolerance: A distributed system must provide some amount of fault-tolerance. This prop-
erty indicates that the system should operate despite a node failing.

From the above three properties, the CAP theorem states: Though it is desirable to have Consistency,
High-Availability and Partition-tolerance in every system, unfortunately no system can achieve all three
at the same time. Figure 4.2 shows the properties which a distributed system will guarantee according to
the CAP theorem. Only two of the three CAP properties can be guaranteed in a distributed database sys-
tem. The three distinct combinations which are achievable in a distributed database system are discussed
below.

Figure 4.2: The different properties that a distributed system can guarantee based on the CAP theorem.

Consistency and Availability without Partition-tolerance (local consistency)

A system that is not tolerant to network partitions can satisfy the availability and consistency properties.
This means the system has to be in one environment (a single machine or rack) for these properties to
hold. A drawback of this data storage model is that it does not permit scaling. It also creates a single
point of failure. Enforcing local consistency goes against the nature of distributed data systems as the
data cannot be distributed amongst several nodes. In order to obtain a large distributed-scale system,
network partitions are given; therefore consistency or availability must be dropped [Vogels 2009].

Consistency and Partition-tolerance without Availability (enforced consistency)

A system that employs consistency and partition-tolerance provides enforced consistency amongst the
distributed nodes, which means that at all times every node must have the same value for data contained

24

within the distributed system. However, employing enforced consistency decreases the availability of
the system to respond to requests. When a value is modified, all nodes in the system must conform to
this new value. Until all the nodes have a consistent state, the system may not be able to respond to
requests. Maintaining a consistent state is fairly complex when there are many nodes, especially in the
case of a partition failure. Paxos protocols introduce methods in maintaining consistency amongst nodes
[Lamport 1998].

Availability and Partition-tolerance without Consistency (weak consistency)

Systems that are always available and are tolerant to partitions do so by dropping immediate global con-
sistency. This allows a system to be readily available to requests, though responses may not contain the
correct value. Highly available and partition-tolerant systems employ a best-effort consistency technique.
Instead of enforcing consistency amongst nodes, updates are steadily spread across the nodes until all
the nodes contain the latest updated value. This is referred to as eventual consistency, a specific form of
weak consistency [Vogels 2009]. Eventual consistency guarantees that if no new updates are made to the
object, eventually all accesses will return the last updated value. The Domain Name System (DNS) is an
example of a system that implements eventual consistency.

4.3.2 Types of Distributed Database Systems

This section discusses two prominent database models, relational and non-relational database systems.
In particular, we look at the implications of increasing web data that has caused the move from relational
to non-relational database systems. Furthermore, we take a brief overview of the different types of non-
relational database systems.

Relational Database Management Systems

The most common model for storing data is based on the relational model, formulated and introduced by
Codd [1979] in the seventies. In the relational model data is stored in a tuple, forming an ordered set of
attributes. A relational database is a collection of data items organized as a table. The table columns are
referred to as attributes and the rows are called tuples, making a relational database table an organized
group of relational model items. Tuples in different tables can be referenced by using a foreign key,
see Figure 4.3. A foreign key is an attribute in a table whose value can match a unique primary key
in a related table. Structured Query Language (SQL) has become the standard programming language
for interfacing with relational database systems. Relational database management systems that use SQL
include Oracle Database, Microsoft SQL Server and MySQL.

Relational databases became the dominant storage model for a number of reasons. Transactional
mechanisms were employed to coordinate access to data and guarantee consistency. The relational model
also offered integration with different applications; that is, different applications could access the same
database system [Sadalage and Fowler 2013]. One of the major drawback for using a Relational Database
Management System (RDBMS) is that it requires substantial hardware and system software [Rob et
al. 2007]. They also run on a single node, making the relational database system the single point of
failure for any application dependent on the data. Relational databases provide solid, well-developed
services that adhere to the Atomicity, Consistency, Isolation, Durability (ACID) properties. But the
implications of the ACID paradigm make it difficult to build a distributed database system based on the
relational model [Erb 2012]. Enforcing the ACID properties on a distributed database requires complex
mechanisms that restrain low latency and high availability.

Relational database systems remained the standard storage model for many years despite research
being conducted into other forms of storage. This was due to the RDBMS integration property. An
organization with several applications interacting with the relational database would have to change
the interface of each application if the database model were to change. This drawback hindered other
database models being implemented. In the early 2000s as the web began to grow, popular websites

25

Figure 4.3: Simple relational database tables linked by an attribute.

received large amounts of traffic. This in turn meant that the data stored by websites grew proportionally.
For example, online shopping web sites needed larger databases to store new customer information. The
probable solution was to scale up the number of machines serving the users. Scaling a relational database
is costly as an RDBMS requires substantial amount of hardware to operate. Furthermore, scaling up
RDBMS would employ “unnatural acts” that would often cause loss in querying functions, referential
integrity, transaction and consistency control [Sadalage and Fowler 2013].

NoSQL Systems (Non-Relational Database Management Systems)

The mismatch between relational database systems and scalability led to development in simple and
flexible non-relational database systems. A solution to scaling up a database was to use a cluster of
commodity machines to handle the increasing user loads. This was more cost efficient than employing
a new powerful machine every time the user rate grew. Web-oriented companies such as Google and
Amazon began developing and publishing papers on non-relational database models that were used on
a large cluster of machines [Chang et al. 2006; DeCandia et al. 2007]. As several institutions also
developed non-relational databases, the term NoSQL was devised to describe distributed systems that
are designed to scale and are highly available. In context of the CAP theorem, NoSQL storage systems
trade consistency in favour of availability and partition-tolerance. There is no formal definition for a
NoSQL system, though Sadalage and Fowler [2013] notes that database systems with the following
properties commonly qualify as NoSQL systems:

• Not using the relational model: The system does not use SQL language, nor does it try to satisfy
the ACID properties.

• Designed to run on large clusters

• Designed to accommodate the storage needs for 21st century web applications.

• No schema: Relational data can only be stored in a database if it meets the schema of that database.
NoSQL systems do not use a schema, allowing fields to be added without having to define a
structure first and increasing the flexibility of migrating data.

26

• Open source: Though there exists NoSQL database systems that are closed-source, the phenome-
nal growth in NoSQL research lies with open-source systems.

There exists a wide range of NoSQL systems, each driven by a specific database model. A variety of the
models often overlap on their design. Below we list the four basic classifications on NoSQL systems.

• Key/Value Stores

Key-value databases are the simplest NoSQL data stores based on hash tables. Data is stored in a
tuple format with a unique key and value. The value is an arbitrary chunk of data that is indexed
and queried by the unique key. The simplicity of the key-value data model provides scalability and
performance. However, query opportunities are generally limited as the database only uses keys
for indexing [Erb 2012]. Some prominent key-value storage systems include Amazon’s Dynamo
[DeCandia et al. 2007], Redis [Carlson 2013], Riak [Fink 2012] and Project Voldemort (which we
discuss in detail in Section 4.3.3).

• Document Stores

Document store databases are related to key-value data stores. A single document contains a struc-
tured collection of key-value items such as JSON, XML and BSON. Against key-value stores, doc-
ument stores allow for more complex queries; therefore, a document can be used for indexing and
querying other values [Erb 2012]. Apache CouchDB [Anderson et al. 2010], MongoDB [Plugge
et al. 2010] and RavenDB [Ritchie 2013] are some of the most used document store databases.

• Column Stores

Column data stores are based on Google’s Bigtable; a sparse, distributed, persistent multi-dimensional
sorted map [Chang et al. 2006]. Bigtable handles petabytes of data across thousands of commodity
servers that are used for web indexing, MapReduce, Google Earth, Google Maps, YouTube, Gmail
and several other Google web projects. A map is indexed by a row key, column key. Column store
maps are characterized by row keys that are mapped to column families (see Figure 4.4). Bigtable’s
map is indexed by sorted row keys, column keys and timestamps, thus making it a three dimen-
sional map. Other common column family stores include Amazon SimpleDB [Habeeb 2010],
Apache Cassandra [Lakshman and Malik 2010] and Apache HBase [Konishetty et al. 2012].

Figure 4.4: Column store map based on the Apache Cassandra model [Sadalage and Fowler 2013].

27

• Graph Stores

Graph databases, based on graph theory, introduce the notion of relationships between nodes.
Nodes represent entities containing properties (data) and the edges represent a relationship be-
tween the nodes. The nodes are organized by relationships, revealing patterns between nodes. For
example, Figure 4.5 illustrates the relationship between entities in a social network. The graph can
be queried in a number of ways, such as finding out who is employed by Big Co. and likes NoSQL
Distilled. This information can be used to make a number of suggestions to the users (nodes),
amongst several other applications. A query made on a graph is also known as traversing the
graph. The requirements used to traverse a graph can be changed without changing the nodes or
edges of a graph. A notable benefit to using graph databases is the efficiency in traversing the rela-
tionships. The relationship between nodes is not calculated at query time but is persisted. That is,
the organization of the graph is stored and interpreted in different ways based on the relationships.
Nodes may have several different relationships between them. This allows for direct relationships
between nodes and secondary relationships that are used for paths, time-trees, quad-trees for spa-
tial indexing, or linked lists for sorted access [Sadalage and Fowler 2013]. Some well-known
graph databases are Neo4j [Webber 2012] and InfiniteGraph [van der Lans 2010].

Figure 4.5: A graph structure example, symbolizing relationships in a social network [Sadalage and
Fowler 2013].

4.3.3 Project Voldemort

In our peer-to-peer gaming solution, we require a distributed storage service that is fault-tolerant, highly
available and scales elastically to the number of users. Below, we present Project Voldemort, a non-
relational database management system we use to manage game state data in our peer-to-peer gaming
network. Project Voldemort, commonly referred to as Voldemort, is a low latency key-value distributed
system written in Java, that was developed by LinkedIn [LinkedIn 2012]. Tests conducted by LinkedIn
show that on a single node Voldemort can read 19,384 requests per second and write 16,559 requests
per second. Nodes in Voldemort are independent of each other, there is no coordination and no single
point of failure, allowing for node failures to be transparent from the user. LinkedIn uses Voldemort

28

for algorithms that derive insight from the social networks users. From this, LinkedIn is able to offer
features that make the social network enjoyable and easier to use. These features include: People You
May Know, where users are presented with set of other users they might know and would like to connect
with, collaborative filtering showcases relationships between users for various recommendations such as
collaborations.

Project Voldemort was inspired by Amazon’s Dynamo distributed system [DeCandia et al. 2007].
Some of the schemes inspired from Dynamo include:

• Data replication: Data is automatically replicated over multiple nodes. A factor can be chosen as
to the number of nodes each key-value data is replicated.

• Required reads: A set number of reads from nodes (performed in parallel) are required before a
read is declared successful. This is used to resolve inconsistent data, discussed in detail below.

• Required writes: The least number of writes that can succeed without the client getting back an
exception.

• Key-value serialization and compression: Voldemort can use different serialization structures for
key and value data.

• Pluggable storage engines: Voldemort supports various read-write storage engines, including
Berkeley DB (BDB) Java Edition and MySQL [Olson et al. 1999; Pachev 2007]. Voldemort also
offers its own custom read-only storage, memory storage and cache storage.

Voldemort consists of a modular pluggable architecture, as shown in Figure 4.6. Each module is respon-
sible for performing exactly one function. At the top of the architecture stack, there is the simple client
API. The conflict resolution and consistency mechanism modules are used to deal with inconsistent data,
discussed further in Section 4.3.3. The routing module handles the partitioning and replication of data,
discussed below. The serialization module translates data so it can be persisted. Voldemort currently sup-
ports the following serialization formats: JavaScript Object Notation (JSON), strings, Java- serialization,
Protobuf, Thrift, Avro and Identity. Voldemort also allows a programmer to code their own serializer for
Voldemort. The final module is the persistent storage engine. Since each module is a separate entity,
modules can be interchanged to meet different needs. For example, the routing module could be on the
client side (creating a “smarter” client) or on the server side (traditional routing method).

Figure 4.6: Volemort architecture containing modules for a single client and server [LinkedIn 2012].

29

Rabl et al. [2012] evaluated the performance of modern open-source storage systems, including:
Apache Cassandra, HBase, Voldemort, Redis, VoltDB and MySQL. Rabl et al. [2012] observed linear
scalability in Voldemort, Cassandra and HBase. Voldemort also exhibited the lowest latency out of the
three systems. Cassandra had a higher latency but displayed the best throughput. HBase had the least
throughput but showed low write latency in exchange for high read latency.

Partitioning and Replication

Voldemort partitions data across a cluster of nodes so that no single node holds the complete data set. If
the data were to be put on a single disk, disk access for small values would be dominated by seek time.
Partitioning improves cache efficiency by splitting the set of data into smaller chunks [LinkedIn 2012].
Servers in the Voldemort cluster are not interchangeable; therefore, requests need to be routed to a server
that holds the requested data. Voldemort uses a consistent hashing scheme to partition data and allocate
a partition of data to a node. The basic idea of consistent hashing is that data items and nodes are hashed
into a logical ring [Kurose and Ross 2009]. The hashing algorithm determines where each data value has
to be stored, see Figure 4.7. The same hashing algorithm is used to identify where the value is stored. If
the value is not found on the calculated node, the client tries each node in the hash ring until it encounters
the key-value tuple.

The consistent hashing algorithm works with a varying number of nodes. When a node fails or leaves
the hash ring, the partitions are distributed equally (at best) amongst the remaining nodes. In the case of
Voldemort, since data can be replicated amongst a number of nodes, the values of a failed node can be
recovered. When a node is added to the cluster, partitions are split further and shared with the new node.
Voldemort uses the MD5 hashing algorithm [Rivest 1992].

Figure 4.7: A Simple hash ring cluster topology for 3 nodes and 12 partitions [Sumbaly et al. 2012].

Voldemort has two forms of routing: server-side and client-side routing. Client-side routing retrieves
metadata required for routing upon the client bootstrapping to the server. Fewer hops are then possible
for retrieving values because the metadata allows the client to calculate the appropriate storage node.

30

Consistency and Versioning

Voldemort employs an eventual consistency data model. That is, Voldemort tolerates inconsistency in
exchange for availability and partition tolerance. When a key-value entry is stored on Voldmemort, the
tuple is replicated for availability and tolerance. Each value also contains a versioning vector clock
[Fidge 1988]. Along with versioning, Voldemort uses the read repair conflict resolution process to reach
consistency [Lakshman and Malik 2010]. The approach allows inconsistent values of data to be written
on the Voldemort stores. When data is read, a query is made to several store nodes on the key to detect
versioning conflict. If a conflict is detected, the values are updated to the latest value, thereby resolving
data inconsistency. Hinted handoff is another technique used in Voldemort to reach consistency. During
writes, if a destination node is down, the value is stored as a “hint” on a node that’s alive. When the node
which was down is restored, the “hint” is pushed onto the node to make the data consistent.

4.3.4 Summary

Large scale distributed systems require a solid persistent storage system. Essential requirements for a
distributed storage system are scalability, availability and consistency. The CAP theorem provided an ar-
gument that only two of the three above properties can be satisfied in a distributed system. Consequently,
distributed database systems have to trade-off one of the properties in favour for a weak or enforced con-
sistency system. Non-relational database systems trade-off consistency for availability and scalability.
Voldemort, a low latency, fault-tolerant, highly available, scalable key-value storage system contains
many features which we seek in a distributed game state management system. But we also require that
the game state be kept consistent.

Online multiplayer games face similar challenges to distributed data systems. They illustrate trans-
actions on shared state, involving write traffic. Though this would cause an issue in a distributed game
system where games states need to be highly available, there are two vital properties that are used to
resolve the issue of availability. Firstly, games tolerate weak consistency in the application state. Current
client-server game models provide a perfect example, where the implementations minimize interactive
response time by presenting a weakly consistent view of the game world to players. With a weak consis-
tency model, given a set period of time, the updates previously made to the data will propagate through
the system. Secondly, game-play is usually governed by a strict set of rules that make the reads and
writes of shared state highly predictable. For example, most reads and writes caused by a player occur
on objects which are in the players AOI [Bharambe et al. 2006]. At any single point, players can only
interact with a small portion of the game world. In most games, the notion of AOI focuses on a local view
of the game opposed to the global view. Building on the concept of area of interest, we intend to provide
a weak consistency globally in order to remain available. However, each area of interest will remain
strongly consistent. Besides providing low latency, the weak consistency model also contributes to im-
proving the overall performance of the system. The Supernode Control protocol that we base our system
model on, favours strong consistency locally but weak consistency (eventual consistency) globally.

4.4 Models of Concurrency

In this section, we present concurrent programming paradigms that we can use to use to simultaneously
handle a large number of network messages in our peer-to-peer gaming solution. In Section 4.4.1, we
discuss the problem that gave rise to concurrent programming practices. Section 4.4.2 explores two
forms of concurrent system paradigms, thread-based systems and event-based systems. We compare each
paradigm and highlight why an event-based paradigm is suitable for our peer-to-peer gaming solution.
We also briefly discuss research examining hybrid systems that combine thread-based and event-based
paradigms. In Section 4.4.3 and 4.4.4 we present the event-based actor programming paradigm and
introduce the Akka actor toolkit that we used to construct our peer-to-peer gaming solution. All the
essential Akka features used in this research are discussed.

31

4.4.1 Overview

Concurrent computing is a computing paradigm in which programs are designed as collections of inter-
acting computational processes that may be executed in parallel [Ben-Ari 1990]. An application that uses
the concurrent programming model breaks up the system into tasks. All the subtasks are permitted to
run in parallel with each other. Unlike sequential programming, the concurrent programming paradigm
allows an application to take advantage of a multi-core processor and complete computations quicker.
Within concurrent programs, concurrent components may require a form of communicating with each
other in order to complete a task. These communication models are separated into two classes: shared
memory and message passing communication. In the shared-memory programming model, processes
communicate with each other by reading or writing data from a shared address space. In the messaging
passing paradigm, processes exchange data by sending messages to each other.

4.4.2 Concurrent Programming Paradigms

There are traditionally two forms of concurrent computing systems: thread-based systems and event-
driven systems [Erb 2012]. Thread based programming is characterized by protection and addressing
mechanisms oriented towards procedure calls which take a process from one context to another [Lauer
and Needham 1979]. Cooperation among processes is achieved by locks, semaphores or other synchro-
nizing data structures. The event-driven programming model is a programming paradigm which consists
of processes that react to events. Events are actions which can be observed by the process. These events
could come from a number of sources, some of which are human input (for example clicking on a but-
ton), timers, observation upon shared state and receiving a message from a process. In an event-driven
program, a central event loop watches all external sources and invokes callback functions to process each
action as it occurs [Gustafsson 2005].

Figure 4.8: A comparison of thread and event based systems [Ousterhout 1996].

Threads versus Events

The debate between using threads or using events in a computing system is a very old one. In 1979,
Lauer and Needham [1979] published an empirical analysis on message-oriented (event driven) systems
and process-oriented (thread) systems. In the paper, it was shown that these two categories of computing
systems are duals of each other and that a system which is constructed according to one model has a
direct counterpart in the other. Lauer and Needham [1979] also state that both paradigms are logically
equivalent (though they may be diverging concepts and syntax) and the performance of programs written
in both models are identical (given that identical scheduling strategies are used). In other words, neither
model is inherently preferable, and the main consideration for choosing between them is the nature of
the machine architecture upon which the system is being built and the application which the system will
ultimately support. Lauer and Needham [1979] defined a dual mapping of the two system models, these

32

mappings are shown in Table 4.1. Despite neutrality the duality argument brought forth, it allowed many
authors to further pinpoint problems in each model when dealing with specific applications.

Event-driven system Thread-oriented system
Send message Procedure call

Send reply Return from procedure
Send message; await reply Executing a blocking call

Waiting for messages Waiting on condition variables (WAIT, SIGNAL)
Event handler Monitor

Events accepted by a handler Functions exported by a module
Event loop Scheduler

Table 4.1: Lauer and Needham [1979] duality mapping of thread and event based systems adapted from
von Behren et al. [2003] and Li and Zdancewic [2007] to resemble current event-driven systems.

The case for threads

Advocates of thread-based systems state that thread systems allow programmers to express control of
flow and encapsulate state more naturally [von Behren et al. 2003]. A programmer can reason about
the series of actions taken by a thread in the familiar way as with a sequential program. Event-driven
programming, in contrast, is more difficult to reason with. Most general-purpose programming languages
do not provide appropriate abstractions for programming with events [Li and Zdancewic 2007]. In order
for a programmer to understand the flow of the system, an event-driven system is decomposed into
multiple event handlers and represented as some form of state machine with explicit message passing or
in continuation-passing style (CPS). Also, some event-driven systems call a method in another process by
sending an event. A return from the process via a similar event mechanism is expected. These call/return
pairs often require the programmer to manually save and restore the live state. This procedure, known as
stack ripping, is a burden in programming languages that do not naturally support event-driven models
[Adya et al. 2002].

A thread’s run-time call stack encapsulates all live states for a task. This also allows a task’s state
to be easily cleared up after termination or debugging after an exception. Many programming languages
support the development and debugging of threaded applications, which often drives developers away
from event-driven applications. Threads are also well-known entities in operating systems, in which
the exploit of multi-threading and parallelism prospered in order to run multiple tasks simultaneously
[Silberschatz et al. 2008]. Most importantly, other concurrency methodologies rely on underlying thread-
based implementations, although they hide this trait from the developer in order to utilize a multi-core
CPU [Erb 2012; Typesafe 2013].

The case for events

Supporters of event-based systems state that event-driven systems provide better performance for high
concurrency applications. Event-driven systems expose the scheduling of interleaved computations ex-
plicitly to the programmer, thereby allowing the programmer application-specific optimization that can
improve performance [Li and Zdancewic 2007]. Thread-based systems often perform poorer for a num-
ber of reasons. The first case in threads poorer performance, when compared to event systems, is due to
the high context switching overhead. The overhead is due to preemption, which requires saving registers
and other states during context switches [Silberschatz et al. 2008]. Event handlers typically perform
small amounts of work, so they require very little amounts of local storage. Compared to threaded
systems, event-driven systems have minimal per-thread memory overhead and context switching costs.

Thread performance is also degraded by its shared state property. In order to avoid race conditions
on shared data, thread systems employ locks. The locking overhead causes other threads to wait while

33

a single thread operates on a specific set of data, in essence, blocking. With event systems, processes
communicate by sending each other messages in order to share data. By not using blocking methods,
event-driven systems allow full concurrency of processes. The use of locks and monitors in thread-based
systems require highly cautious programming skills. Using locks and monitors raises the possibility of a
system being deadlocked. In the context of using a concurrency model within a operating systems, event-
driven systems are likely to be more portable. Threaded code might not be easily portable to another
operating system due to different multi-threading libraries for different operating systems [Ousterhout
1996].

Li and Zdancewic [2007] state that event-driven systems are more flexible and customizable be-
cause the programmer has direct management to asynchronous operating system interfaces. Many high-
performance I/O (such as Asynchronous I/O, e-poll and kernel event queues) interfaces provided by
operating systems are asynchronous or event-driven [Li and Zdancewic 2007; Silberschatz et al. 2008].
With thread-based systems, the thread interface can be inflexible and the scheduler may also be hidden
away from the programmer. Hiding the scheduler prevents a system from making optimal scheduling
decisions based on a specific application. Through customization in event-driven systems, an application
can schedule tasks, favour certain request and other optimization techniques. Though it was stated that
thread stacks provide an easier way for debugging, threads stack are also an ineffective way to manage
a live state [von Behren et al. 2003]. Thread systems usually face a trade-off between wasting virtual
address space on large stacks and risking a stack overflow. Thread systems avoid this by using a dynamic
stack growth or unwinding (removing entries) a stack. Another advantage in event-driven systems is that
batch processing is possible by grouping similar events.

Summary

Thread-based systems naturally encapsulate state are widely used in existing systems [von Behren et al.
2003]. Multiple threads cooperate by accessing shared data. In order to prevent unanticipated system
behaviour from threads manipulating shared data, thread based systems employ locks. The use of locks
inadvertently decreases the performance of a system. Event-based systems do not use locks to share
data. Consequently, event-based systems tend to provide higher performance compared to thread-based
systems. Given that our network solution needs to process messages rapidly, we focus the rest of our
research on event-based systems. In the next section, we introduce the event-driven actor programming
paradigm.

Event-driven paradigms are able to provide higher concurrency performance compared to thread-
driven paradigms. Event-driven paradigms, unlike thread-driven paradigms, do not require locks or
monitors to share data. Event-driven models share data by passing messages between processes. By
virtue of adopting the highly concurrent event-based paradigm, our system reduces the time taken to
process network messages.

4.4.3 Actor model

The Actor model is a concurrent programming paradigm which uses autonomous and concurrent ob-
jects, called actors, to execute instructions asynchronously [Hewitt 2012]. In the actor model, actors are
lightweight processes that encapsulate state and behaviour. Actors communicate exclusively by exchang-
ing asynchronous messages (some actor models allow exchanging of synchronous messages). Messages
are buffered in a mailbox, from which an actor retrieves the message for processing. A message can
change the state and behaviour of an actor. Figure 4.9 shows the common properties of an actor.

Actor objects hold instance variables which can reflect the state of an actor. The state can be char-
acterized by a counter, set of listeners, pending requests, an explicit state machine and so forth. Since
actors are isolated from other processes, they do not have shared state. Because the internal state is vital
to an actor’s operations, having inconsistent state is fatal. Thus, when the actor fails and is restarted,
the state will be created from scratch, like upon first creating the actor [Typesafe 2013]. This signifies
a self-healing system. An actor’s behaviour defines the action to be taken when processing a message.

34

Figure 4.9: Illustration of the actor model, adapted from Ridgway [2011].

The behaviour of an actor may also change due to the reaction from a specific message. This implies
that a message can change an actor’s behaviour for a new behaviour. An actor defaults to the original
behaviour when restarted. Actors provide fault-tolerance in the sense that if one actor crashes the rest of
the actors continue to operate. Actors are also inherently concurrent, this allows actor systems to scale.

The actor model is not a new concept. In 1973, Hewitt et al. [1973] published a paper introducing
the concept of actors. Clinger [1981] states the development of the actor model was not only moti-
vated by the message-passing model of concurrent computation, but also the prospect of highly parallel
computing machines consisting of dozens, hundreds or even thousands of independent microprocessors,
each with its own local memory and communications processor, communicating via a high-performance
communications network. The actor model became the premise of programming languages that required
high level concurrency such as Erlang [Armstrong 2010]. Later on, Erlang was used in the AXD 301
telecom switch which achieved a reliability of 99.9999999 percent (nine nines) [Armstrong 2007].

4.4.4 Akka

Akka is an actor based toolkit for building highly concurrent, distributed, and fault tolerant event-driven
applications on the Java Virtual Machine (JVM) [Venners 2011]. Akka is designed to be used on systems
that are highly transactional, require high throughput and low latency. Akka was created by Jonas Bonér,
who was inspired by Erlang’s highly concurrent and event-driven applications [Bonér 2011]. Akka is
currently part of the Typesafe platform along with Scala and the Play Framework. Through experiments
conducted by Nordwall [2013a], Akka actors have exhibited a high transaction rate. The tests showed that
an Akka system can process more than 50 million messages per second (through configuration). Also,
Akka actors use a small amount memory, with an approximated 2.5 million Akka actors consuming a
single GB of heap memory.

Products/businesses which make use of Akka include Gilt (online shopping), The Guardian (news
media), 47 Degrees (mobile application development), Heluna (anti-spam email service) and many more.
Akka has been deployed in various systems for the following uses:

• Transaction processing: online gaming, finance/banking, trading, statistics, online betting, social
media and telecoms.

• Service backend: REST services, SOAP, CometD, WebSockets and so forth.

• Concurrency/parallelism.

35

• Simulation: Grid computing, MapReduce, master/slave etc.

• Batch processing: Apache Camel integration to hook up with batch data sources [Anstey 2009].

• Communication hubs: Telecoms, web sites, mobile media.

• Online game servers.

• Business intelligence and data mining.

Behind the scenes, Akka runs sets of actors on sets of real threads. Typically many actors share one
thread, and subsequent invocations of one actor may end up being processed on different threads. Akka
ensures that this implementation detail does not affect the single-threadedness of handling an actor’s state
[Typesafe 2013]. Akka implements actors as a reactive, event-driven, lightweight thread that shields and
protects the actor’s state. Akka actors provide the concurrent access to the state allowing programmers
to write code without worrying about concurrency and locking issues [Gupta 2012].

The Akka framework contains a number of features. For example, Akka offers transaction support
where Akka implements transactors that combine the actors and software transactional memory (STM)
into transactional actors. More features continue to be added with the rapid releases of newer Akka
versions. The following sections will only discuss Akka features and concepts which are related to our
peer-to-peer gaming solution.

Akka Hierarchy

The Akka actor system naturally forms a hierarchical actor model. An actor, which has a certain function
in a program, might want to split up its task into smaller more manageable pieces. For this purpose it
starts child actors which it supervises that handle the smaller tasks. These child actors may also have tasks
which can be further divided to its own child actors and so forth. This essential feature of the Akka actor
system allows tasks to be split up and delegated until they become small enough to be handled in one
piece [Typesafe 2013]. Not only does the Akka hierarchical model allow tasks to be clearly structured,
it also allows the resulting actors to be reasoned about in terms of which messages they should process,
how they should react normally and how failure should be handled. If one actor does not have the means
for dealing with a certain situation, it sends a corresponding failure message to its supervisor, asking
for help. The recursive structure allows failures to be handled at the right level. Section 4.4.4 discusses
supervision methods during an actor’s failure in detail.

Messaging Model

An actor reacts to a message which it has received through a mailbox. Akka consists of four primary
message types: tell, ask, kill and poison pill.

1. Fire and Forget - Tell

A one-way message, the producer of the message sends a message to the consumer. The producer
does not expect a reply from the consumer. If the consumer wishes to respond to the producer,
similarly it will send a tell message to the producer. Figure 4.10 illustrates a tell message between
two actors.

2. Send and Receive - Ask

A two-way message, the producer of a message expects a reply from the consumer. The ask
message naturally blocks a producer actor while it waits for a response from the consumer actor.
Blocking is discouraged as it causes performance issues. The Scala future library is used to solve

36

Figure 4.10: Diagram exhibiting a tell message (left) and a ask message (right) [Gupta 2012].

this issue. A future is an abstraction which represents a value which may become available at
some point. A future object either holds a result of a computation or an exception in the case
that the computation failed [Haller et al. 2013]. In Akka, a future is used to retrieve the result of
an asynchronous operation. The result from an ask request can then be accessed synchronously
(blocking) or asynchronously (non-blocking). Figure 4.10 illustrates an ask message between two
actors.

3. Kill

A kill message is a synchronous message. The message causes an actor to kill itself and throw an
exception, which can be handled by the actor’s supervisor.

4. Poison Pill

A poison pill is an asynchronous message which initiates an actor’s shut down. The poison pill
does not allow an actor to be restarted after it has been shut down.

Actor Lifecycle

Akka actors go through a set lifecycle, which is summarized as follows: An actor is created and started
with the actorOf() call. An actor’s incarnation is identified by a path reserved by the programmer and
a random Unique Identifier (UID). An actor can be restarted a number of times, replacing the actor’s
current state with the actor’s initial state. When an actor is restarted, the content of the actor’s mailbox is
unaffected. The lifecycle of an actor ends when the actor is stopped. Figure 4.11 displays a descriptive
diagram of an actor’s lifecycle.

Akka provides several hooks which can be configured to change an actor’s behaviour/state during
certain phases of its lifecycle:

• Start Hook: When an actor is started the preStart() method is called, allowing the initialization of
logic.

• Restart Hooks: When an actor restarts, the preRestart() method is called, including a message
with the cause of error if the restart was caused by an exception. The preRestart() method can
be used to notify services, prepare to hand-over data to the fresh actor instance [Typesafe 2013].
By default, the method stops all the actor’s children and then calls postStop(). After the actor
has been initialized with a new actor instance, the postRestart() method is called. By default, the
postRestart() method invokes the prestart() call just as in the normal start-up case.

• Stop Hook: After stopping an actor the postStop() method is called. The method may be used, for
example, deregistering the actor from other services; thus allowing for the clean-up of resources.

37

Figure 4.11: Akka actor state diagram [Typesafe 2013].

Fault-tolerance

Akka adopts Erlang’s actor supervision model and “let it crash” philosophy. Distributed applications are
bound to fail, not just from software errors but hardware failure as well. Instead of using a defensive
programming model, Akka allows actors to crash. By using supervisors and processes that monitor
actors, Akka is able to restart failed actors and return the system back into normal operation.

Supervision

As discussed in Section 4.4.4, Akka has a hierarchical relationship between actors. A parent actor may
break down a large task and delegate the sub-tasks to the child actors. The parent actor supervises and
manages the lifecycle of its subordinates. Therefore the parent actor must respond to the failure of its
subordinates. When a subordinate actor fails (for example, throws an exception), it suspends itself (and
all its subordinate actors) and sends a message to its supervisor signalling failure. When a supervisor is
informed of a subordinate’s failure, depending on the nature of the failure, the supervisor can take the
following actions [Typesafe 2013]:

• Resume the subordinate actor, keeping the actors state and resume operation as if nothing has
happened.

• Restart the subordinate actor, clearing out its accumulated internal state.

• Terminate the subordinate actor permanently.

38

• Escalate the failure to its own supervisor, thereby failing itself.

The actions above represent supervision strategy actions. Supervision strategies define how the failure of
the child actors are handled, how often the child is allowed to fail, and how long to wait before the child
actor is recreated [Gupta 2012].

Akka consists of two classes of supervision strategy: One-For-One strategy and All-For-One strategy.
The One-For-One strategy implies that in the case of any one actor under a supervisor fails, the failure
strategy is applied to that actor only. The All-For-One strategy implies that in the case of any one actor
under a supervisor fails, the failure strategy is applied to all the actors under the supervision. Figure 4.12
provides an example between the two Akka strategy classes. Actor A uses a One-For-One supervision
strategy, whereas actor B uses an All-For-One supervision strategy. Actors A2 and B2 both encounter a
failure. With subordinate actors of A, only the actor A2 is dealt with in resolving the fault. So actors A1
and A3 continue to operate normally. In this case of the actor B’s subordinate actors, the fault solution is
performed on all the subordinate actors of B.

Figure 4.12: The difference between the One-For-One strategy and All-For-One strategy. Adapted from
Gupta [2012]

The All-For-One strategy is applicable in cases where the ensembles of children have a tight dependency
among them, that a failure of one child affects the function of the others. For example, in a transaction
application where data is processed in a series of steps, a failure on one of the steps leads to inconsistency
of state in the other actors. In this case, it is appropriate to restart all the actors to make sure that they all
have a consistent state.

Lifecycle Monitoring

The monitoring strategy provides a mechanism in which an actor can listen for certain events from
another actor. In contrast to the special relationship between a parent and a child actor, in terms of

39

supervision, any actor may monitor another actor. Since actors emerge from creation fully alive and
restarts are not visible outside of the affected supervisors, the only state change available for monitoring
is the transition from alive to dead [Typesafe 2013]. Monitoring is thus used to tie one actor to another
so that it may react to the other actor’s termination. Examples of instances in which actor monitoring
should be used are:

• When a supervisor cannot simply restart a child actor and has to terminate it, for example when
errors occur during actor initialization. In this case, the supervisor should monitor the child actor
and re-create it or schedule itself to retry at a later time.

• When an actor stops because of an external event such as a poison pill.

• When an actor is not part of the hierarchy but wishes to be notified of an actor’s state.

Location transparency

Akka actors are location transparent in respect to their placement across multiple Java virtual machines
and network nodes. Akka actors allow an application to scale up and use all the processing power under-
lying a machine’s hardware. Once an Akka application reaches a machine’s hardware limit, Akka actors
can be distributed among multiple machines, further increasing the scalability on an Akka application.
This is referred to as remoting.

Figure 4.13: Illustration of Akka actors location transparency property.

Akka persistence

A recent, and experimental, feature added to the Akka library is Akka persistence. The Akka persistence
feature enables stateful actors to persist their internal state so that the state can be recovered when an actor
is started or restarted by a supervisor [Typesafe 2013]. For example, actors can recover their state after
the JVM crashes. Messages which actors receive are logged in a journal. by replaying these messages,
actors are able to rebuild their internal state. Snapshots of an actor’s state can also be used to recover the
actor’s internal state. The key concept behind Akka persistence is that only changes to an actor’s internal
state are persisted but never its current state directly (except for optional snapshots). These changes are

40

appended to storage, nothing is ever mutated, which allows for very high transaction rates and efficient
replication.

The Akka persistence also ensures message delivery to an actor after crashes. If an actor never
received a message which was logged in the journal before the crash, the persistence library can certify
that it will deliver the message. The Akka persistence feature is inspired by the Eventsourced library
[Krasser 2013]. The Akka persistence library follows the same concepts and architecture of Eventsourced
but significantly differs on API and implementation level, making actor persistence easier to implement
in Akka using the Akka persistence library.

Mailboxes

An Akka mailbox holds the messages that are destined for an actor [Typesafe 2013]. When an actor
sends a message to another actor, the message gets enqueued into the receiving actor’s mailbox. The
receiving actor proceeds to dequeue the message for processing. Normally each Akka actor has its own
mailbox, but there are Akka features which allow multiple actors to share a single mailbox. Akka offers
several mailboxes implementations, each targeting specific Akka user’s needs. The different mailbox
implementations are separated into two categories, bounded and unbounded. A bounded mailbox limits
the number of messages that can be queued in the mailbox, meaning it has a defined or fixed capacity for
holding the messages [Gupta 2012]. If an actor sends a message to a bounded mailbox that is full, the
sending actor would be blocked from sending messages to the receiving actor until the receiving actors
mailbox indicates that there is available space in the mailbox for the message to be received.

The Akka default is to dequeue messages from the mailbox in the order the messages were received.
For applications that require specific messages to be prioritized above other messages, a priority mailbox
may be used. The priority mailbox dequeue’s messages based on the priority assigned to the message.
Akka also offers a durable mailbox which stores mailbox messages in a persistence storage. Given an
actor which uses a durable mailbox, if the system were to crash and then restarted, the actor would be
able to continue processing the pending messages in the mailbox as if nothing had happened. If the given
Akka mailboxes implementations do not satisfy the needs for an application, one could create their own
mailbox implementation.

Dispatchers

Dispatchers are defined as communication coordinators that are responsible for receiving and transmit-
ting reliable messages. For example, an air traffic controller coordinates the use of a runway between the
various airplanes landing and taking off. In Akka, a dispatcher controls and coordinates the messages
sent to the actors mapped to underlying threads [Gupta 2012]. Dispatchers in Akka are based on the Java
Executor framework, which provides a structure for the execution of simultaneous tasks. Akka dispatch-
ers ensure the resources are optimized and messages are processed as fast as possible. The dispatchers
run on threads, in which they dispatch actors and messages from the attached mailbox and allocate on
heap to the executor threads [Gupta 2012]. Figure 4.14 shows the relationship between dispatchers, ac-
tors, mailbox and threads. The executor threads are configured and tuned to the underlying processor
cores that are available for processing the messages.

Akka provides four types of dispatchers, which can be customized [Typesafe 2013]:

• Dispatcher: The default dispatcher, an event-based dispatcher that binds a set of Actors to a thread
pool.

• Pinned dispatcher: The dispatcher dedicates a unique thread for each actor using it; that is, each
actor will have its own thread pool with only one thread in the pool.

• Balancing dispatcher: This is an executor-based event-driven dispatcher that will try to redistribute
work from busy actors to idle actors.

41

Figure 4.14: Graphical explanation on the role of a dispatcher in Akka [Gupta 2012].

• Calling thread dispatcher: The dispatcher runs invocations on the current thread only. This dis-
patcher does not create any new threads, but it can be used from different threads concurrently for
the same actor.

Routers

A router is a type of Akka actor that receives messages and routes the incoming messages to other actors,
known as the routers’ routees [Typesafe 2013]. An Akka router can create several instances of the same
actor class. This enables an application to spread the work load across multiple actors, see Figure 4.15.
Given a router with a pool of routees, there are several routing strategies which can be used by the Akka
router. Akka offers the following message routing strategies:

• Round Robin router: Messages are routed to each routee in a circular order [Silberschatz et al.
2008].

• Random router: The router randomly selects a routee and forwards the received message to the
routee.

• Smallest Mailbox router: The router identifies and sends a message to the routee with the least the
number of messages in its mailbox.

• Broadcast router: Messages are sent to all the routers routees.

• Scatter Gather First Completed router: The router sends the message to all its routees as a future.
It then waits for a routee to respond. Whichever routee responds first, the result from that routee
will be used.

• Consistent Hashing router: The router uses consistent hashing to select a routee based on the
received message [White 2007].

Routers that create multiple instances of routees can have the number of routees fixed or have the number
of routees change dynamically dependent on the load of messages. Routees provide a resize strategy in
which the number of routees can be increased or decreased on a set upper and lower bound. Resizing is
triggered by sending messages to the actor pool, but it is not completed synchronously; instead a message

42

Figure 4.15: A simple outline of Akka routers. Messages are received by the router and sent to a routee
dependent on the routing algorithm used. Adapted from Gupta [2012]

is sent to the “head” router to perform the size change [Typesafe 2013]. Consequently, the resizing of
routees does not happen instantaneously because the resize message is queued to the mailbox of a busy
actor. To remedy this, a balancing dispatcher could be used.

4.4.5 Summary

The challenge in processing a large number of messages received from several hosts is characterized by
the concurrency model of the receiving host. Our peer-to-peer solution needs to process and respond to a
large amount of messages without delaying the game play. Therefore, we examined different concurrent
programming paradigms. The event-based paradigm allows for highly available concurrent operations
and provides simplicity in developing applications without the use of locks; therefore, we focused on
the event-based paradigm as the message processing model for our peer-to-peer gaming solution. We
expressed interest in the actor the actor programming model that sends messages between processes
called actors to complete a task. In particular, we examined the Akka actor toolkit that is designed for
systems that are highly transactional, require high throughput and low latency.

The Akka toolkit is used for the implementation of the the proposed peer-to-peer gaming infrastruc-
ture given that the services offered by Akka (such as scaling and fault-tolerance) meet the requirements
that we seek. In addition, the Scala programming language (a functional language, which naturally suits
the actor model) is used to implement the system. There are several reasons why we choose to implement
the network application using Akka, the first being the event-based actor model Akka employs. Since
event-based systems pass messages and do not require locks to share data, an application is likely to be
highly available. The message orientated system displays attributes that can be mirrored to the Internet
Protocol suite. A message is passed on from actor to actor where the message is processed; similarly,
packets are passed on from one layer to another where a specific process takes place. Akka allows us to
create multiple instances of an actor that performs a specific function, and thereby distribute the workload

43

which in turn decreases the amount of time taken to complete a task. Another benefit to using Akka (and
Scala) is that it is independent from operating systems as it runs on the JVM. This means the distributed
network application can be easily ported to another system as long as there is Java support. Scala also
allowed easy integration of Voldemort, as Voldemort also runs on the JVM.

4.5 Conclusion

This chapter provided an overview of the key concepts that form the basis of our proposed peer-to-peer
gaming network. We reviewed distributed database models and concurrency programming models. We
also presented protocols designed to reduce resource consumption (WebSocket) and decrease the time
taken to transfer web content over TCP (SPDY). The next chapter provides a walk-through on the design
of our peer-to-peer gaming solution.

44

Chapter 5

System Design and Architecture

5.1 Introduction

In this chapter, we extend the abstract design of our peer-to-peer solution presented in Chapter 3 and
discuss the components of our peer-to-peer solution in detail using the building blocks from the previous
chapter. First, in Section 5.2 we give an overview of the components in the architecture and relate them
back to the research aims. We also discuss the overall setup of Akka attributes that affect the performance
and reliability of the system. In Section 5.3, we introduce the front-end component designated with
directly interacting with messages sent to the system and redirecting each message to the appropriate
system service. In Sections 5.4, 5.5 and 5.6, respectively we discuss the persistent storage, message
dissemination, and service routing functions of our peer-to-peer solution. The actors in each function are
also discussed. The design of the supernode setup is presented in Section 5.7. Finally, Section 5.8 details
how the peer-to-peer network application can be obtained and executed by the reader.

5.2 System Overview

As discussed in Section 3.4 of Chapter 3, three key services were identified which each node in the peer-
to-peer solution offers. The services offered are a distributed key-value storage system, a messaging
service and a message routing service. The storage service module within the system consists of actors
that are involved in the storage and retrieval of key-value data from a Voldemort storage database. The
messaging module contains actors that deal with the publish-subscribe protocol, which allows a host to
broadcast a message to several hosts. The actors contained in the service routing module provide a service
in which a node routes messages to a service outside the peer-to-peer gaming solution. In Chapter 3, we
also noted that our peer-to-peer solution is based on the Supernode Control protocol. Figure 5.1 extends
the abstract design from Chapter 3 and introduces the building blocks discussed in the previous chapter
into our peer-to-peer solution design. A Voldemort storage node may be placed in several locations
dependent on the requirements of the application and available hardware in the peer-to-peer system. For
example, the Voldemort storage node may be placed on the same machine as a supernode, or on any other
peer involved in the peer-to-peer gaming network. A peer-to-peer infrastructure may also choose to have
several machines dedicated to hosting the Voldemort storage, which can be used to store information
such as a player’s login details and a player’s total score. Figure 5.1 also shows the interaction between
the players and a supernode’s functions.

Given the services mentioned above, a front-end service is required for a node to direct any incoming
message to the correct service. Therefore, a fourth service, labelled as the System-Coordinator, is respon-
sible for directing messages to the correct service within a node. Figure 5.2 gives a high-level overview
of a node in the peer-to-peer gaming solution. More intricate details of the services are discussed further
in this chapter. The API used in the peer-to-peer gaming solution can be found in Appendix A.

45

Figure 5.1: Overview of the peer-to-peer gaming system.

Figure 5.2: Basic overview of a node in the peer-to-peer gaming solution.

5.2.1 Communication Protocol between Nodes

In Chapter 3, it was stated that the SPDY protocol would be used to reduce the latency of reliably
delivering messages from one node to another. Within SPDY, the WebSocket protocol was also used.
Besides providing bi-directional communication between nodes in the Application Layer, the WebSocket
protocol is required for the messaging service. The justification is discussed in Section 5.5.

46

Voldemort Limitations:

Voldemort services can use two types of network sockets for communication: a Java Non-blocking
Input/Output (NIO) TCP socket and an HTTP socket. Unfortunately during the research, Voldemort’s
HTTP socket service was still under development. Due to this, Jetty’s proxy service for SPDY could not
be used. An attempt was made to replace Voldemort’s TCP socket service with Jetty’s SPDY application
service, but due to time constraints, this task was abandoned. Voldemort’s NIO non-blocking TCP was
used for data communication with the Voldemort storage nodes.

5.2.2 Akka dispatcher

The default Akka dispatcher was employed in the network application, backed by the Java Fork/Join
executor, which gives the desired performance in most Akka based applications [Typesafe 2013]. The
default dispatcher assigns each actor with its own mailbox. If necessary, the dispatcher type and its
attributes can be reconfigured through the Akka configuration file, discussed further in Section 5.2.6.

5.2.3 Routers

Actors which are created as routers have several instances of child actors (routees) that perform specific
tasks. Initially, the Smallest Mailbox strategy was chosen to route messages to actors. The logic behind
choosing the Smallest Mailbox strategy was that a message would be sent to a routee which had a few
amount of items left to process. In doing so, a message had the chance of being processed in a much
shorter time than it would with the Round-Robin strategy. During preliminary tests, it was noted that as
the number of routees per router increases, the latency of the message response time actually grew. It was
deduced that the Smallest Mailbox strategy spends some time inspecting which routee has the smallest
inbox. The Smallest Mailbox strategy is likely more efficient when the time taken for a routee to process
a message is larger than the time it takes for the router to compute which routee has the smallest mailbox.
In our case, many of the actors do small and quick jobs, so the Smallest Mailbox strategy was not suited
for the application. Thus the Round-Robin strategy was used because the router strategy knows (without
any form of calculation) which routee is to receive the next message.

In the remaining sections of this chapter, actors that have several instances (a cardinality greater than
one) are indicated with a (∗) in the actor diagram models. Actors with a single instance (a cardinality of
one) are indicated with a (1).

5.2.4 Mailbox

Given that the system or host machine may fail, using a durable mailbox across the system would increase
the level of fault-tolerance. The durable mailbox stores mailbox items on a durable medium and allows
an actor to continue processing pending messages after a systems failure. However, it was discovered that
in exchange for increased message delivery guarantee, durable mailboxes disproportionately decrease the
time it takes to process a message (estimated to be 10 times slower) [Nordwall 2013b]. Given that the
main goal of this research is to deliver messages in a timely manner, durable mailboxes were not used.
The default Akka mailboxes, unbounded mailbox, were used across the whole system.

5.2.5 Fault-Tolerance

The actor fault-tolerance technique employed in the peer-to-peer gaming solution is taken directly from
the Akka supervision model, as discussed in Section 4.4.4 of Chapter 4. Each child actor in the peer-
to-peer solution is supervised by a parent actor. If an actor were to fail, the supervisor is to handle the
failure. The supervision strategy employed across the peer-to-peer gaming solution is as follows: all the
supervisors use a one-to-one fault solution strategy. If a child actor were to fail, the failure solution is
performed on that specific child actor only. This prevents an actor failure affecting the sibling actors as
well. When an actor encounters a failure, the default action is to restart the actor. Certain actors require

47

further attention, and not just an actor restart, when an actor fails due to specific reason. The strategy
taken with these actors is discussed further in the chapter.

In order to prevent an actor repeatedly failing, a limit is put on the number of times an actor may fail
in a given time frame. In the peer-to-peer gaming solution an actor is allowed to fail ten times under ten
seconds. If an actor were to fail more than ten times within the ten second time limit, the whole actor
system on a node is shut down. An actor repeatedly failing and being restarted shows a form of logical
error. Therefore, in order to prevent an actor being stuck in a restart loop, the system is shutdown so that
the user can troubleshoot the issue.

Apart from the Akka actor supervision, another form of fault-tolerance was sought to provide fault-
tolerance from sources outside the Akka system, such as the JVM crashing or machine failure. As stated
in Section 5.2.4, the durable mailbox was intended to be used on the system to provide message delivery
guarantee in the case of failure. However, it was also noted that the durable mailboxes decreases the
speed of processing messages, therefore unbounded mailboxes were used. Akka persistence can be used
to provide message delivery guarantee and actor state persistence.

At the time of this research, the Akka persistence library was in an experimental phase. Though it
could be used, it may contain bugs and performance issues. When the experimental Akka persistence
library was integrated into our existing system, the system began displaying errors which we could not
resolve. Due to this, the Akka persistence was abandoned but is planned on being integrated once the
final release of the library is finalized by the Akka team. Given the need to provide some form of outside
fault tolerance, we settled for the Eventsourced persistence library [Krasser 2013]. Though the Akka
persistence library is inspired by the Eventsourced library, the Eventsourced library contains certain
programming difficulties which have been resolved by Akka.

For example, when creating a persistent actor in Eventsourced, the persistent actor must be labelled
with a unique number. A problem arises in keeping track of which actor is assigned which number,
which becomes more difficult as the number of actors in different branches grow. The programmer has
to be mindful that a number given to a certain actor is not also assigned to another actor. This issue arose
in our implementation, it became difficult to maintain the persistent actor numbers when allowing the
user to define the number of routees. In the case of the Akka persistence library, it does not require that a
persistent actor be associated with a unique number. Given the above dilemma, a decision was made to
use the Eventsourced persistence library on actors that required their state to be maintained after an actor
restart. This minimized the amount of actors using Eventsourced, simplifying the number assignment of
each persistent actor.

5.2.6 System Configuration

The network application has a number of attributes that can be configured in order to improve perfor-
mance. The Akka configuration is used to change the default behaviour of the Akka system or adapt
the Akka system for a specific runtime [Typesafe 2013]. For example, attributes that can be configured
include the default mailbox type, actor remoting, tunning of routers and other attributes. In the network
application, the Akka configuration is currently only used for logging properties. Initially, the Akka
configuration was also used to declare the lower bound and upper bound of routee instances a router can
create. But due to using a custom supervision strategy for the routers, a separate configuration file had
been used. The routee’s lower bound and upper bound instances are declared in a separate user defined
Extensible Markup Language (XML) file(s). The files also configure the amount of time an actor will
wait for a response from a future message.

5.2.7 Communication Format Between Nodes

JSON is used to exchanged data between nodes because it offers a well-ordered and simple way of
organizing information. JSON is a light weight data-interchange format, which is easy for humans to
read and write [Crockford 2006]. Though Scala includes a JSON library, through investigation on various
forums it was noted that the Scala JSON parser is slow compared to other JSON parsers [Chen-Becker

48

2011]. The JSON library in Scala was created in the early days of Scala and hasn’t been updated since,
because several JSON libraries have been created that outperform the Scala JSON library. Lift-JSON is
a library, from the Lift web framework, which provides utilities for parsing and formatting JSON data
[del Pilar Salas-Zrate et al. 2012]. Besides the performance of parsing JSON data, we chose Lift-JSON
because of its ease of use in constructing JSON messages in our code.

5.3 System-Coordinator

A front-end interface is required to interact between the network application functions, the business logic
and hosts. The System-Coordinator acts as the required interface. Messages directed to the network
system, using a specific Uniform Resource Identifier (URI) are captured by the System-Coordinator.
The System-Coordinator proceeds to forward the message to the appropriate service.

Socko is an open-source Scala based web server that uses Netty’s NIO networking framework and
Akka’s actor paradigm [Community 2013; Imtarnasan et al. 2012]. By embedding Socko into our Scala
based network application, Socko exposes the actors in the application as HTTP and WebSocket end-
points. Incoming messages received by Socko are wrapped within a SockoEvent. A SockoEvent is used
to read incoming data and write outgoing data. SockoEvent’s are passed onto the Socko Routes, which
through a set of rules dispatch incoming events to specific actors. Socko uses pattern matching extractors
to decide which actor the Socko Route should pass the SockoEvent to. Socko currently supports the
following pattern matching extractors:

• Event matching by matching the type of SockoEvent e.g., WebSocket Handshake

• Host matching by matching the host name received in a HTTP request that triggered the Socko-
Event e.g., www.mydomain.com

• Method matching by matching the method received in a HTTP request that triggered the Socko-
Event e.g., GET

• Path matching by matching the path received in a HTTP request that triggered the SockoEvent
e.g., /client/login

• Match by using the query string received in a HTTP request that triggered the SockoEvent e.g.,
action=save

Socko also allows the usage of two or more Route extractors to match a specific pattern. Given that Socko
uses Netty’s NIO networking framework, Socko implements Netty’s capability to use HTTP and SPDY
transparently [Lee 2012]. To use SPDY in Socko the Next Protocol Negotiation (NPN), that negotiates
the protocol, is used in a manner that avoids additional round trips [Langley 2012].

5.4 Storage

The storage component consists of actors that interact with the Voldemort storage. Figure 5.3 displays the
design overview of the storage component. Figure 5.4 illustrates the sequence of actions when interacting
with the storage component.

StorageCoordinator

The StorageCoordinator is the top level actor in the storage block of the network system. The Stor-
ageCoordinator actor receives WebSocket transmissions from the System-Coordinator containing JSON
content. The actor then decrypts data contained in the message allowing the actor to route the message
to the corresponding child actor for the request given in the JSON message.

49

Figure 5.3: Design overview of the storage component.

Figure 5.4: Storage component state diagram.

StorageActionActors

The StorageActionActors block consists of actors that interact with the Voldemort storage and perform
storage operations. The PutActor uses the key and value given in the JSON message to create data on
the Voldemort storage. If the key already exists on the Voldemort storage the value associated with the
key is overwritten with the new value given in the JSON message. The DeleteActor deletes the data
associated with the key given in the JSON message. The GetActor asynchronously retrieves data from

50

the Voldemort storage associated with the key in a given period of time. Once the value is retrieved from
the Voldemort storage, the value is passed back to the StorageCoordinator actor, which then returns the
value to the host that requested the data. If the GetActor failed to retrieve the data in the given time,
noted in the configuration file, the StorageCoordinator actor returns a timeout message to the client.
The get operation between the StorageCoordinator and GetActor is non-blocking and asynchronous,
which allows the StorageCoordinator to perform other operations while waiting on a response from the
GetActor.

5.5 Messaging

The messaging component consists of actors that manage the publish-subscribe operations. A host pub-
lishes a message without explicitly specifying the recipients or having knowledge of the recipients. The
recipients are subscribed to a logical topic that delivers a specific class of messages. Figure 5.5 displays
the design overview of the messaging component.

Figure 5.5: Design overview of the messaging component.

MasterMessagingActor

The MasterMessagingActor is the top level actor in the messaging block. The MasterMessagingActor
simply creates the other actors in the messaging block according to the configuration file. The Master-
MessagingActor also supervises all the child actors it created.

TopicMessageDecoder

The TopicMessageDecoder actor receives JSON messages from the System-Coordinator which are meant
to create or delete a topic. The TopicMessageDecoder decodes the JSON messages and sends the decoded
message to the TopicManagerActor.

51

TopicManagerActor

Socko allows us to create a special actor, known as a WebSocketBroadcaster, which sends data to all
the clients who have registered to receive data from the actor. Messages received from the TopicMes-
sageDecoder actor are assigned to create or delete a topic. If the message directs the TopicManagerActor
to create a new topic, the TopicManagerActor will first check if the topic exists. If the topic already
exists, the TopicManagerActor sends a message back to the host that requested the topic, stating that the
topic already exists. If the topic does not exist, a WebSocketBroadcaster actor is created and inserted into
a map, linking it to the topic name. An Eventsourced message is then sent to the TopicManagerActor,
directing the actor to take a snapshot of its current state. A message is also sent to the client stating that
the topic was successfully created.

SubscriptionManagerActor

When a host wishes to subscribe to a specific topic, it must establish a connection with the WebSock-
etBroadcaster specific to that topic by using a URI. During the WebSocket handshake, the System-
Coordinator passes the handshake data to the SubscriptionManagerActor. The SubscriptionManagerAc-
tor checks if the topic exists. This is done by sending an asynchronous request to the TopicManagerActor.
If the topic does exist, the SubscriptionManagerActor receives the WebSocketBroadcaster actor related
to the topic. The SubscriptionManagerActor then proceeds to authorize the WebSocket connection and
register the host to receive messages broadcasted for the topic. If the topic which the host wished to
subscribe to does not exists, the SubscriptionManagerActor does not authorize the WebSocket connec-
tion. When a host wishes to unsubscribe from the topic, the subscribed host can simply disconnect the
WebSocket.

BroadcastManagerActor

A host that wishes to publish a message to other hosts subscribed to a topic simply needs to send text
data through its WebSocket that is registered to the relevant WebSocketBroadcaster. Once the System-
Coordinator receives the data it passes it onto the BroadcastManagerActor. The BroadcastManagerActor
uses the URI from the WebSocket connection to retrieve the topic’s WebSocketBroadcaster by sending
an asynchronous request to the TopicManagerActor. When the BroadcastManagerActor has obtained
the relevant WebSocketBroadcaster, it sends the text data from the client to WebSocketBroadcaster. The
WebSocketBroadcaster then proceeds to publish the message to all the subscribed hosts. The host that
published the message will also receive the same the message. Figure 5.6 shows the state diagram for a
host to subscribe to a topic and publish a message.

5.6 Service Routing

The service routing component consists of actors that manage connections to external services outside
of the network application. It also routes messages between hosts and the external services. Figure 5.7
presents the design overview of the service routing component. The service routing block is divided into
the three following blocks: ServiceRegistrar, ServiceRequest and ServiceResponse. The blocks were
created on the premise that a service must first register the service it is offering to the network. Once the
service is registered, other hosts can make requests. Moreover, the service may be required to respond to
the requesting host.

MasterServiceActor

The MasterServiceActor is the top level actor in the service routing block. The MasterServiceActor
creates and supervises the following actors: ClientRequestServiceActor, ServiceDispatcherActor, Clien-
tWebsocketLogActor and the AdminServiceActor.

52

Figure 5.6: Subscribe and publish messaging state diagram.

ServiceRegistrar

The ServiceRegistrar block consists of actors that record and maintain the list of services available. When
a service wishes to register or deregister its service, the AdminServiceActor needs to be notified. This is
done by directing a JSON message to the ServiceDispatcherActor from the System-Coordinator, along
with the WebSocket channel the service established the request with. When the ServiceDispatcherActor
receives a message it decodes the JSON message. The JSON message received contains instructions for
the ServiceDispatcherActor and data in the form of another JSON message. The instructions indicate
if the ServiceDispatcherActor should forward the data to the ResponseDecoderActor or the AdminDe-
coderActor. If the data is to be forwarded to the AdminDecoderActor, the AdminDecoderActor will
further decode the JSON data and then pass the data to the AdminServiceActor. The AdminDecoderAc-
tor would have also received the WebSocket channel of the service. The WebSocket channel is passed
along with data to the AdminServiceActor.

The AdminServiceActor maintains a map of all the services which have been registered for the net-
work application. By using a unique key, related to the service, the system is able to retain a connection
to each service. Messages which the AdminServiceActor receives from the AdminDecoderActor indi-
cate whether a service is to be registered or deregistered. If a service is to be registered, the WebSocket
channel is inserted into the map using the unique value contained in the message as the key. A message
is then sent to service indicating it was successfully registered. If the service wishes to deregister, the
WebSocket channel is removed from the map (along with the key) and a message is then sent to service
indicating it was successfully deregistered. Once the service receives the message that service has been
deregistered, the service can disconnect the WebSocket. In both cases of registration and deregistration,

53

Figure 5.7: Design overview of the service routing component.

the AdminServiceActor takes a snapshot of itself after performing each operation.

ServiceRequest

The ServiceRequest block contains actors that handle requests (or updates) from clients that require a
specific service. The ServiceRequest block finds the requested service and routes the request to the
service. The ClientRequestServiceActor receives JSON messages from the System-Coordinator, which it
proceeds to decode. The data obtained in the JSON message will indicate if the client expects a response
from the service. If a response is expected, the data is passed onto the ClientWebsocketLogActor; if no
response is expected, the data is sent to the ClientRequestRouter. The ClientWebsocketLogActor records
the client’s WebSocket channel in a map using a unique key obtained from the WebSocket constructor.
Once the WebSocket channel has been recorded the data obtained from the JSON message is passed onto
ClientRequestRouter along with the key associated with the clients WebSocket channel. The Client-
RequestRouter asynchronously retrieves the WebSocket channel associated with the service from the
AdminServiceActor. Once the ClientRequestRouter receives the WebSocket channel associated with the
service, the ClientRequestRouter sends the data obtained from the JSON message to the service.

ServiceResponse

The ServiceResponse block handles response messages for hosts expecting a response from a service.
The same WebSocket channel that the service is registered under is used to obtain a response from
the service. We stated earlier on that the ServiceDispatcherActor receives messages from the System-
Coordinator that are sent from services. Messages that contain a response for a client are directed to
the ResponseDecoderActor. The ResponseDecoderActor further decodes the JSON data contained in
the message and passes the data to the ServiceResponseActor. The ServiceResponseActor sends an

54

asynchronous request to the ClientWebsocketLogActor for the clients WebSocket channel. Once the
ServiceResponseActor obtains the WebSocket channel, the response message is sent to the client. The
ServiceResponseActor also sends an instruction message to the ClientWebsocketLogActor. The message
directs the ClientWebsocketLogActor to remove the clients WebSocket channel from the map. Figure
5.8 illustrates the sequence of actions when a host makes a request from a service.

Figure 5.8: Service request state diagram.

5.7 Supernode System

In Section 3.4 of Chapter 3, we decided that a supernode infrastructure will be used. The Supernode
Control protocol is able to deliver messages in an adequate time frame and is able to maintain local
consistency in a region of the game world. In the supernode solution, each node contains the storage,
messaging and service routing service. Along with the intention of managing the game state of a region
in the game world, the supernode also serves to relay messages between the nodes. Figure 5.9 gives an
overview of the supernode design. The sub-nodes establish a connection with the supernode using Jetty.
Jetty allows a host to establish a SPDY connection or a standard HTTP/HTTPS connection.

5.8 Instructions For Running

The peer-to-peer application network can be found on the following site: Sharingan Project 1. The
project was managed with Simple Build Tool (SBT), an automation build tool for Scala and Java, similar
to Apache Maven and Apache Ant [Harrah 2013]. The peer-to-peer system can be run within SBT, but
for portability it is best to create a fat JAR. A fat JAR is a single executable jar file, which not only
contains the executable application but also contains all the dependencies and referenced libraries. The
SBT-assembly plugin was used to build the fat JAR executable [SBT 2013].

1https://github.com/Bongani/sharingan

55

https://github.com/Bongani/sharingan

Figure 5.9: Overview of the supernode system.

5.9 Conclusion

In this chapter, we presented in detail the design and architecture of our peer-to-peer gaming solution.
The chapter focused on the design of the three central aspects of our system: persistent storage, message
dissemination and service routing. A front-end Akka based service, Socko, was also introduced. Socko
is used to route incoming messages to the correct function. The overall Akka attributes used in the
system and how each attribute effects the performance of the system was discussed. The next chapter
examines the performance of our peer-to-peer solution, evaluating the communication protocol, SPDY,
and the time delay in processing network messages.

56

Chapter 6

Testing and Analyses

6.1 Introduction

In the previous chapter, we presented the design of our system. In this chapter we assess whether our
peer-to-peer gaming solution can reliably deliver messages in a timely manner. The evaluation process
contains seven sections. The first test, in Section 6.2, evaluates the communication protocol between
nodes. We perform analysis on the response time when SPDY is used. We use the results to determine
if it is possible to reduce the latency on the reliable Transmission Control Protocol. In Section 6.3, the
front-end service, Socko, is benchmarked against web servers that can be used to host online games. The
results allow us to determine if Socko provides adequate performance compared to current web solutions
that handle multiple users at a time. In Section 6.4, we evaluate the actor-based network solution to
measure the response time for processing messages. The network solution is evaluated under three
different circumstances in sub-sections 6.4.2, 6.4.3 and 6.4.4. Sub-section 6.4.2 studies the response
time of the system under high user loads with varying number of actors handling the load. By increasing
the number of actors to complete a certain task, we examine if the system’s event-driven actor paradigm
can reduce the time taken to process messages retrieved from the network. Sub-section 6.4.3 studies
the latency of the system under varying user loads to determine when the performance of a service
decreases. Sub-section 6.4.4 analyses the system’s response time during actor failure to examine the
effect of component failure. Taking from the results obtained in Section 6.4, Section 6.5 compares the
individual performance of each actor in the system. The comparisons provide insight into identifying
bottlenecks within the system. Section 6.6 evaluates the response time of the network gaming solution in
a distributed environment. The results obtained determine if the peer-to-peer solution can scale as more
nodes are introduced into the network. Section 6.7 concludes the chapter by discussing how the results
obtained in this chapter answer the research questions formulated in Chapter 3.

6.2 Communication Protocol Evaluation

Many MMOG require that the time taken to transport a message over the network be minimized in order
to present a highly interactive game world with no lag. In Chapter 3, we proposed the notion of using
SPDY to reduce the delay experienced on the reliable Transmission Control Protocol. In this experi-
ment, we compare the time taken to download multiple items from the HTTP and SPDY communication
protocols. The test indicates whether our assumption in using SPDY as a communication protocol im-
proves message delivery time upon the reliable TCP transport layer. To compare the latency between
SPDY and HTTP we used the web performance tool, WebPagetest. WebPagetest is an open-source tool
developed and supported by Google that measures and analyses the performance of web page load times
[Meenan 2012]. The WebPagetest tool can analyse web pages from different locations, using several
web browsers, under different Internet connection speeds and other user specified conditions.

57

http://www.webpagetest.org/

6.2.1 Evaluation Methodology

SPDY uses the TLS encryption to provide a secure connection between machines. Similar to HTTPS,
SPDY requires additional round trips to setup a secure connection compared to a standard HTTP con-
nection setup. When a HTTPS connection has been established, there is no difference in packet delivery
time between HTTPS and HTTP [Sissel 2010]. In order to review the effect the connection setup has on
latency, SPDY was compared to HTTP and HTTPS. The evaluation was conducted in two environments,
the first being in a private local environment which we created our own WebPagetest client. The second
set of tests was conducted in a public environment using a WebPagetest client in London. The private
instance removed network activity that could influence the results. The public environment test displayed
real world results. The experiment consisted of measuring the load time from a web page that we created.
The web page consisted of text, a Cascading Style Sheets (CSS) file and 230 Portable Network Graphics
(PNG) images. The image sizes were all 48 × 48 pixels. The amount of requests simulated the number
of requests a game server would be required to serve at a single point. Given that the Socko web server
provides HTTP, HTTPS and SPDY communication protocols, Socko was used to host and serve the web
page. The private environment tests were conducted eight times from which we obtained the average
download time. The public test was also conducted eight times, but on four different occasions during
the day to obtain the average download time and to diminish the effect of network traffic during different
times of the day. Two tests were conducted in the morning, two tests were conducted in the afternoon,
two tests were conducted in the early evening and another two tests were conducted at midnight.

6.2.2 Environment

Below, we list the specification of the environment in which this experiment was conducted.

WebPagetest configuration
The WebPagetest client used in the experiments was set to the following configurations:

• Browser: Google Chrome

• First view only

• SSL certificate cache cleared on each run

• SSL certificate errors/warnings ignored

• Dial-up connection: 49 Kbps downlink, 30 Kbps uplink

• Digital Subscriber Line (DSL) connection: 1.5 Mbps downlink, 384 Kbps uplink

• Cable connection: 5 Mbps downlink, 1 Mbps uplink

WebPagetest private client
The machine used to host the private Web Pagetest client instance had the following specifications:

• Intel Core 2 Duo T5800 @ 2.00GHz

• 2 GB RAM

• 300 GB available hard drive storage capacity

• Windows 7 Ultimate (x86)

Web server
Below, we indicate the specifications of the machine used to host the Socko web server, containing the
web page requested by the WebPagetest client:

• Intel Core i5-2410M @ 2.30GHz

58

• 4 GB RAM

• 600 GB available hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.2.0-29-generic

• File descriptor: 512 000 for soft value; 1 024 000 for hard value

• Socko: version 0.3.1; Akka 2.2.0; Java 1.7.0 10 (3 GB heap memory)

• In the public test, the Internet connection used had a 8 Mbps downlink and a 2 Mbps uplink.

6.2.3 Results and Analysis

Table 6.1 lists the average web page download times achieved by the HTTP, HTTPS and SPDY com-
munication protocols in different environments. In the case where the test was conducted in a private
instance, SPDY exhibited a faster download time than HTTP and HTTPS. As better link connections
were emulated, the HTTP and HTTPS communication protocols showed a remarkable improvement in
download time, diminishing the improvement SPDY initially showed. In the public network test, the
HTTP communication protocol showed a better load time than SPDY and HTTPS on the dial-up connec-
tion. Using the DSL and cable connections, SPDY exhibited a faster download time than the HTTP and
HTTPS communication protocols. In the dial-up connection test, HTTP was able to experience an initial
faster download time due to the secure connection procedure SPDY and HTTPS endure. The connection
setup was slow enough to affect SPDY’s overall performance. In the cable and DSL tests, the speedup
in SPDY mitigated the time it took to establish a secure connection. From the results obtained from
Table 6.1, SPDY’s improvement on a network with no network traffic is minimal, given a better line
connection. In an environment with alternating network traffic, SPDY provides a significant reduction in
network delay on the TCP transport protocol. SPDY is less likely to provide any significant improvement
to games hosted on local area networks (LAN), but can reduce the delay of messages for games hosted
across the Internet.

Private Public
Connection Dial-up DSL Cable Dial-up DSL Cable

HTTP 99.2 4.09 2.02 112.71 18.5 17.43
HTTPS 101.02 5.41 2.43 121.67 21.24 20.37

SPDY 92.95 3.89 2.01 117.38 16.05 14.96

Table 6.1: Average download times (seconds) of different communication protocols in a private and
public environment.

Figure 6.1 displays screenshots of the download waterfall for HTTPS and SPDY. The waterfalls were
taken from the public test environment. In the SPDY waterfall, we note that multiple items were down-
loaded simultaneously, whereas in the HTTPS waterfall, items were downloaded in a small faction.
SPDY’s multiplexing stream property allows for transferral of multiple items over a single TCP con-
nection at any single point. Though it seems that the faction of items are downloaded more rapidly in
HTTPS (due to a less congested link), acknowledgements and requests of the next set of items still need
to be made once an item has been received by the client. The practice of downloading a single item at a
time was the attribute that contributed to HTTP and HTTPS poor performance against SPDY, especially
when a delay occurred whilst downloading an item. In Figure 6.1a, the HTTPS waterfall, we note several
items which take longer to download. Specifically, the tw.png image which took 2634 milliseconds to
download. The download delay experienced by these items had an impact on the request and retrieval
time of other items.

59

(a) HTTPS waterfall (b) SPDY waterfall

Figure 6.1: A comparison of the HTTPS and SPDY transfer schemes taken from the public network test.

6.3 Front-end Service Evaluation

In this experiment, we compare our gaming network to existing online gaming solutions. These compar-
isons provide insight into our gaming solutions performance. Most of the peer-to-peer gaming networks
we researched were simulations of peer-to-peer gaming communication models; in essence, no real work-
ing network existed. The network models which did have an existing peer-to-peer gaming network had
legacy issues. These networks were dependent on specific library versions which were no longer ob-
tainable. VAST was the only peer-to-peer gaming network which was available and working [Hu et al.
2006]. Unfortunately the VAST code was tied to its game demonstration package, which made it diffi-
cult to use for our evaluation. Through further investigation we discovered that several web servers were
suitable to host multiplayer online games. Comparing our systems’ front-end service, Socko, against
web servers that have online multiplayer gaming capabilities allowed us to gauge our systems response
time to requests against varying user loads. During game play, static data (such as sprites) and dynamic
information (such as player position) are exchanged between clients and servers. The above criterion
was used to choose the following three web servers for the experiment:

• Node.js

Node.js is an event-driven JavaScript environment for developing network applications. Node.js
is based on Google’s V8 runtime implementation, focusing on low memory and high performance
non-blocking operations [Tilkov and Vinoski 2010]. The Node.js event loop is handled by a single
thread. The event loop is not exposed to the developer, therefore properties such event notification
are hidden [Erb 2012]. Though Node.js is commonly used for server side applications (such as,
web servers), it can also be used to create client side applications (for example, a chat client).
Despite Node.js being a fairly new platform, it has a large library containing numerous plugins.
Node.js has been used for various applications such as web-based communication tools and gaming
applications [Crane 2013].

• Nginx

Nginx is an open-source high-performance web server, and reverse proxy for HTTP, HTTPS,

60

SMTP, POP3 and IMAP protocols [Brown and Wilson 2011]. Nginx uses a non-blocking event-
based model to handle requests. Nginx excels at serving static content, but does not show the same
high performance for serving dynamic content [Schroeder 2013; ServerStack 2012]. Nginx allows
requests to be handled by a backend server, in other words, Nginx becomes a reverse proxy. This
enables Nginx to deliver static content swiftly, and pass on dynamic requests over to a backend
server that can respond to dynamic content swiftly. The reverse proxy service also allows for
load balancing, distributing requests to multiple backend servers. Nginx can also act as a reverse
caching proxy, reducing the amount of requests to be processed by a backend server.

• Apache HTTP Server

The Apache HTTP Server, commonly referred to as Apache, is currently the most popular web
server [Netcraft 2013; W3Techs 2013]. Some of the features provided by the Apache server in-
clude support for CGI (Common Gateway Interface), SSI (Server Side Includes), URL redirection,
user authentication, proxy caching abilities, additional module support and so forth [Foundation
2010]. Apache is a thread-based web server, spawning a new thread for each request. Apache
has been shown to be slower than Nginx when serving static content, but faster with serving dy-
namic content [Schroeder 2013]. In order to improve performance, Apache has implemented a
Multi-Processing Module (MPM) that mixes the use of several processes and threads per process.

6.3.1 Evaluation Methodology

Apache JMeter, commonly referred to as JMeter, is an open-source tool used to simulate load on a
server, network or object; testing its strength or analysing the overall performance under different load
types [Foundation 2013]. JMeter can be used on web application servers such as Mail servers, FTP
servers, and SOAP services, amongst other servers. Apache JMeter also allows the use of community
developed plugins which increases the number of applications JMeter can benchmark.

The Apache JMeter tool was used to simulate user requests on the web servers. Each simulated user
in JMeter requested a web page from the server four times. The test was repeated four times to give an
average response time and to remove the presence of unforeseen network activity that could negatively
influence the results. The web page used consisted of text, a Cascading Style Sheets (CSS) file, twenty
images of varying sizes and a single dynamic script. The Apache, Nginx and Socko web servers can
be configured to optimize performance of each web server. Despite this, default configurations of each
web server were used. Configuring a web server is dependent on many parameters such as the hardware
capabilities of the machine. We wished to avoid unintentionally configuring one web server to perform
better than the others, thus predetermining the results.

6.3.2 Environment

Below, we list the specifications of the environment which this experiment was conducted in. The web
servers were installed on the same machine, but we ensured that only one web server was operational at
a single point to avoid resource consumption from the other web servers.

Webserver node:

• Intel Core i7 @ 3.40 GHz - 3770

• 8 GB RAM

• 500 GB hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.8.0-29-generic

61

• File descriptor: 512 000 for soft value, 1 024 000 for hard value

• Apache: version 2.4.7

• Nginx: version 1.5.6

• Node.js: version 0.10.24

• Socko: version 0.3.1, Akka 2.2.0, Java 1.7.0 10 (7GB heap memory)

Apache JMeter node:

• Intel Core i5 @ 2.00 GHz

• 2 GB RAM

• 100 GB hard drive storage capacity

• Apache JMeter 2.10 (1GB heap memory)

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.8.0-29-generic

6.3.3 Results and Analysis

Table 6.2 shows the average response time, in milliseconds, for different user loads against different web
servers. The results are graphed in Figure 6.2. From the results, it is immediately evident that Nginx had
the best performance compared to all other web servers. Nginx’s ability to handle high load request in a
short period is likely one of the reasons it can be used as a reverse proxy engine. The Socko web server
performed on par with the Apache web server. The Node.js web server had the poorest performance with
high load users, but had one of the fastest response times with low user numbers. Node.js performance
is said to lie within serving dynamic content [Virkki 2013]. Though the web page used contained some
dynamic content, it was fairly populated with static content. This could have led to Node.js exhibiting
poorer performance. Given that Socko’s performance matches Apache’s performance, currently the most
popular web server, Socko is therefore able to handle high user loads for an online game.

Number of users Apache Nginx Node.js Socko
1000 33 10 12 18
2000 34 12 18 28
3000 36 17 47 32
4000 44 20 92 38
5000 81 37 126 89
6000 115 49 364 91
7000 143 77 502 125
8000 259 102 623 209
9000 407 130 815 359

10000 709 152 1045 630

Table 6.2: Average response times for Apache, Nginx, Node.js and Socko webservers in milliseconds
against various user loads.

62

Figure 6.2: Average response times for request made to Apache, Nginx, Node.js and Socko web servers
versus increasing users.

6.4 Actor System Evaluation

In a MMOG, the time taken to process a large amount of messages retrieved from the network must be
kept to a minimum in order to avoid game play lag. In Chapter 3, we proposed using an event-driven
paradigm as it provides higher concurrency compared to thread-based systems. We adopted the Akka
actor toolkit to develop our system. Akka is designed to support fault-tolerant, low latency and high
throughput applications. Also Akka allows us to distribute the work load by creating multiple instances
of a specific actor, and thereby reducing the amount of time taken to process a batch of messages. In the
following experiments, we measured the time taken for messages to be processed by our network appli-
cation. The experiments measured (i) the actor scalability of the network application, (ii) the response
time during varying user loads, and (iii) the effect that a component’s failure has on the response time.
Each of the experiments consisted of evaluating the three functions that our system provides: the storage
component, the messaging component, and the service routing component. On each test, requests from
a numbers of users were sent to each specific component. We measured the time taken for the message
to traverse the module and respond to the requesting user. The description on how each module was
configured and tested is given below.

Storage component

The analysis of the storage component was based on the procedure of retrieving data from the Voldemort
storage. In context of the storage component tasks, the get procedure returns a message to the requesting
host. Furthermore, we separated the test on the storage module into two phases. The first phase tested
the storage module as it is, retrieving values from the Voldemort storage cluster. The second phase
consisted of disabling the connection to the Voldemort storage. Instead, when the GetActor receives a
request to retrieve data, the GetActor responds with a random message. The test allowed us to establish

63

the time difference in which a message should traverse the storage component and the time taken to
retrieve a message from the Voldemort storage. The following experiments were solely concerned with
the responsiveness of the actor system, therefore, only a single Voldemort store node was used during
this phase of the analysis. 200,000 randomly generated data values were stored on the Voldemort storage
system. Users were simulated through Apache JMeter to retrieve a value from the Voldemort storage.
Each user requested a value from the storage four times to obtain a justifiable average response time.

Messaging component

The analysis on the messaging component was centered on measuring the time taken for a user to sub-
scribe to a topic and broadcast a message. To analyse the time taken to publish and receive a message,
a topic was created that users subscribe and publish messages through. Users were simulated through
Apache JMeter. Each simulated user published a message four times after subscribing.

Service Routing component

In this experiment, we measure the time taken for a message to traverse the service routing component.
We do not measure the response time from a specific service. Given that a service is hosted outside
our gaming network solution, the response would be dependent on the service and no longer just the
peer-to-peer gaming solution. Also, the performance of each service application can vary; therefore,
we cannot obtain a general performance standard from a single service application. The experiment
provides a prediction on the response time, solely based on the service routing component. The following
amendments were made to the service routing component: When the ClientRequestRouter receives a
request message, the message is sent to the ServiceDispatcherActor, instead of sending the message
to a registered service. The ServiceDispatcherActor proceeds to process the response for the host in the
manner described in Section 5.6. Similar to the tests described above, users were simulated using Apache
JMeter, with each user making four requests.

6.4.1 Environment

Below, we list the specifications of the machines which were used during this experiment.

Gaming solution node:

• Intel Core i7 @ 3.40 GHz - 3770

• 8 GB RAM

• 500 GB hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.8.0-29-generic

• File descriptor: 512 000 for soft value; 1 024 000 for hard value

• Akka 2.2.0

• Socko 0.3.1

• Java 1.7.0 10 (7 GB heap memory)

64

Voldemort node:

The Voldemort storage was placed on a machine with the same specifications as the node indicated above.
The Voldemort storage node was allocated 7 GB of JVM memory heap. The following configurations
were used for Voldemort:

• Voldemort version 1.3.0

• Persistence storage engine: BDB

• Routing policy: client

• Replication factor: 1

• Required read and writes: 1

• Number of partitions: 1

Apache JMeter node:

Five nodes were used to generate the simulated users from JMeter. A sixth node serves as the master node
for the JMeter instances across the five nodes, coordinating the tests amongst the nodes and collecting
the results from each node. Each node consisted of the following specifications:

• Intel Core i5 @ 2.00 GHz

• 2 GB RAM

• 100 GB hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Java 1.6 (1GB heap memory)

• Apache JMeter 2.10

6.4.2 Actor Scalability

This experiment examined the scalability of the actor-based peer-to-peer gaming system. Some of the
actors in the system are created from router actors, allowing for multiple instances of a specific actor.
The premise behind this was that the router actor can distribute the incoming messages to several actors
(routees), and in turn this would distribute the work load and decrease the amount of time messages
spend in a mailbox. The purpose of this test was to determine if increasing the number of actors in the
system improves the message response time. In the storage component, the StorageCoordinator routees
were increased, this in turn also increased the number of StorageActionActors due to the hierarchical
structure of the storage component. In the messaging and service routing components, all the routees
were increased. 25,000 users were simulated through JMeter. The test was conducted four times to
obtain the average response time.

Results and Analysis

Table 6.3 shows the response times for a nodes services against the amount of routees each service uses
to fulfil requests. Figure 6.3 graphs the results. Except for the messaging service, it is evident that in-
creasing the number of routees decreases the response time. Take for example the actors responsible
for the retrieval of data from the Voldemort store. Simply by increasing the number of routees in the
storage component, the response time decreased dramatically (79% improvement factor from 1 actor to
10 actors). Instead of having a single actor performing a request on the Voldemort storage, multiple

65

actors were able to take advantage of Voldemort’s NIO non-blocking sockets and respond to requests
simultaneously. As more actors were used for retrieving data from the Voldemort storage, the response
time grew closer to that of storage actors where data was not retrieved from the Voldemort store. The
delaying factors which resided was the hop from one machine to another and the time taken for Volde-
mort to fulfill the request. Figure 6.3, reveals a similarity between the storage and service components.
Both components displayed a similar decrease in response time. Given a service that has a high through-
put such as Voldemort, we can expect a similar decrease in response time for requests on an external
application service.

Response time (ms)
Number of Routees 1 10 100 1000 10000

Voldemort Store 1272 255 171 112 110
Storage 222 161 136 100 103
Service 403 315 279 226 233

Messaging 4076 4126 3592 3881 4064

Table 6.3: Average response time for the network gaming solution services against varying routee num-
bers in each service.

Figure 6.3: Response time comparison for the network gaming solution services against varying routee
numbers in each service.

With regards to the messaging service response times, the service did not exhibit any significant improve-
ment as the number of routees were increased. As discussed in Section 5.5, there is a two-step process
for a host (which is not yet subscribed to a topic) to broadcast a message. First, the host has to subscribe
to the topic by requesting subscription from the SubscriptionManagerActor. Secondly, the host sends a
message to the BroadcastManagerActor, which handles the broadcast request. In order for the Subscrip-
tionManagerActor and the BroadcastManagerActor to fulfil these requests, they both need to request the
mapping of the WebSocketBroadcaster from the TopicManagerActor, making the TopicManagerActor
a possible bottle neck. As shown in Figure 6.4, the messaging service can have multiple requests for

66

subscription or broadcast during another host’s request phase. For example, a host’s subscription request
may be in line with other hosts broadcasting requests. The TopicManagerActor manager actor is a sole
actor, since its state cannot be shared unless locks are used. Consequently, the TopicManagerActor can
be bombarded with a line of requests. Another factor could be that Socko’s WebSocketBroadcaster is
not suitable for broadcasting messages to a large number of hosts. In Section 6.5, we examine the per-
formance of each actor in our network gaming solution to determine bottlenecks and identify where we
can improve the performance of the system.

Figure 6.4: Messaging state diagram. The shorter arrows represent other hosts performing subscription
and broadcasting requests.

6.4.3 Varying User Loads

In a MMOG, the amount of users playing from one set time period to another varies. For example,
the change in the number of players can be attributed to the games rise in popularity. This experiment
examined the response time of the system under varying user loads, indicating how the system performs
as more users participate in a game. That is, if more users utilize the network, does it dramatically affect
the performance of the system or can the system cope well with increasing user loads? A system with
one actor per router and 100 actors per router were used to compare the response time difference. Users
were simulated with JMeter and the test was conducted for times to get obtain the average response time.

Results and Analysis

Table 6.4 shows the results for the response times during user increase. Figure 6.5 displays the graphical
representation of the results. Apart from confirming that increasing the number of actors reduces the
response time, as in the previous section, the table also shows where a components response time starts
increasing as more users are introduced. This can be used to identify where the response time becomes
unsatisfactory in a single node and a distributed setting would be preferred. For example, in the messag-
ing component, the response time is initially similar to the other components response time. Depending
on the number of routee actors, in this case 100, we note that there is a large jump in response time from
200 users to 300 users. It is also evident that the response time was minimal until the number of users

67

exceeded the number of routee actors. This displays a near perfect producer-consumer situation, where
each actor serves a request from a single user.

Number of Users Storage Voldemort Service Messaging
1 Actor 100 Actors 1 Actor 100 Actors 1 Actor 100 Actors 1 Actor 100 Actors

10 3 5 6 5 6 6 7 8
20 4 4 6 5 6 6 8 8
30 5 4 6 6 7 7 13 8
40 6 7 7 7 7 6 18 10
50 6 5 8 7 7 6 19 11
60 8 5 10 7 7 7 17 11
70 9 5 12 8 8 7 23 18
80 9 5 15 9 9 10 24 25
90 9 5 36 9 10 9 25 30
100 8 6 79 9 18 9 53 27
200 13 9 94 10 23 13 90 26
300 15 11 104 14 24 15 129 75
400 17 11 151 16 20 25 163 137
500 20 18 209 19 22 29 198 198
600 20 20 239 21 27 31 341 261
700 26 24 308 25 29 34 421 299
800 27 25 357 23 35 32 616 316
900 31 23 371 31 40 36 827 695
1000 43 35 432 35 53 46 1093 741
2000 56 42 828 63 97 63 1086 1021
3000 65 53 956 53 102 56 985 1036
4000 90 81 1034 95 145 98 1114 1148
5000 137 106 998 153 194 153 1427 1307

Table 6.4: Average response time of the services (in milliseconds) in the peer-to-peer network solution during
varying user loads.

6.4.4 Actor Fault-Tolerance

This experiment examined how an actor’s failure affects the message response time. An actor restarting
is a sign that the actor has experienced some sort of error. The experiment was performed in a similar
manner to the test in Section 6.4.2, except specific actors were sent messages that would cause an actor
to fail and restart. A Node.js application was created that was connected to a specified component and
sent a message that caused an actor to fail. The interval of sending the failure message was every second.
In the storage component, the StorageCoordinator was targeted to experiencing failure. Originally, the
GetActor routee was set to experience failure but during preliminary tests no difference in response time
was shown for the GetActor experiencing failure versus that of a GetActor operating normally. This
was due to the GetActor being the bottom actor in the storage component hierarchy. If the GetActor
routee experiences failure, only a single routee is affected due to the one-for-one strategy taken. By
allowing the top actor in the hierarchy to fail, consequently causing all the StorageCoordinator children
to fail, the results would show the response time difference during an entire components failure. In
the service routing component and the messaging component, the ClientWebsocketLogActor and the
TopicManageractor respectively were selected for failure. Given that these actors are not part of routers,
we wished to examine how a sole actor’s failure affects the performance of the system. The actors were
chosen on the potential of being a bottleneck. As in Section 6.4.2, 25,000 users were simulated by JMeter
and the experiment was conducted four times to retrieve the average response time.

68

Figure 6.5: Response time comparison for the network gaming solution services against varying user
loads.

Results and Analysis

Table 6.5 shows the response time during actor failure, and Figure 6.6 graphs the results. The table
also lists the deviation compared to the results in Table 6.3. The storage service results (including the
Voldemort store service) shows an increase in delay regarding the response time compared to the stor-
age services not experiencing any failure in Table 6.3. The deviation increase stopped after a 1,000
routees per actor router. The delay increase was caused by the top level actor, the StorageCoordina-
tor actor. When the StorageCoordinator actor restarts, because of failure, the child actors also have to
restart. Given that a number of actors were restarting, the time taken to process a batch of messages
increased. Similarly, the service routing component results exhibited the same response delay increase
as more routees were employed. Though the reason for the deviation in this case is different from the
one mentioned above. Given that the ClientWebsocketLogActor processes messages from two different
Akka routers, the ClientWebsocketLogActor can be easily bombarded with messages from the routees.
Routees are producing more messages than the ClientWebsocketLogActor can consume. The Clien-
tWebsocketLogActor was target to be the only actor in the service routing component to be restarted,
the consistent restarts caused further delay in processing the messages. The messaging module, unlike
the storage and service routing modules, did not display a common deviation as routees were increased.
This could be due to the bottleneck issue noted in Section 6.4.2.

Number of
Routees

1 10 100 1000 10000

Time Deviation Time Deviation Time Deviation Time Deviation Time Deviation
Voldemort Store 1322 -3.93% 273 -7.05% 200 -16.96% 140 -25% 122 -10.90%

Storage 230 -3.60% 173 -7.45% 132 2.94% 120 -20% 105 -1.94%
Service 410 -1.74% 360 -14.29% 351 -25.81% 360 -59.29% 323 -38.63%

Messaging 4786 -17.42% 4348 -5.38% 4641 -29.20% 4989 -28.55% 4457 -9.67%

Table 6.5: Average response time (in milliseconds) of the gaming network services during actor failure.

69

Figure 6.6: Response time graph for the network gaming solution services during actor failure.

6.5 Actor Reactive Monitoring

In Section 6.4.2, it was stated that delayed response for publishing messages in the messaging component
may be due to bottlenecks in our peer-to-peer gaming solution. In this section, further examination is
done on the peer-to-peer gaming solution by using the Typesafe Console to identify bottlenecks and
analyse where the system can be optimized.

6.5.1 Typesafe Console

The Typesafe Console is a low overhead, transparent, real-time tracing and monitoring tool for Typesafe
systems such as Akka and the Play framework [Gupta 2012]. The Typesafe Console captures events
generated from an actor system. The events are linked together into a meaningful trace flow across actors
(including those in remote nodes). The Console provides insight into usage trends and performance
characteristics of the running system through a web browser-based interface. For Akka, the Typesafe
Console can monitor different nodes (JVM), actor systems, and individual or grouped actors.

6.5.2 Evaluation Methodology

This experiment examined the performance trends of the actors in our peer-to-peer gaming solution to
determine bottlenecks within the system. The Typesafe Console was used to monitor the actor perfor-
mance trends. Similar to Section 6.4, the Apache JMeter tool was used to simulate user requests. A
thousand users were simulated, with each user making a request four times. This experiment was con-
ducted four times to obtain an average response time. The services provided by the peer-to-peer gaming
solution were setup in the same manner discussed in Section 6.4, but with only a single actor performing
a specific task, in other words, no routees were used.

70

6.5.3 Environment

The Voldemort node used in this experiment was the same node from the experiment conducted in Sec-
tion 6.4. Only a single Apache JMeter node was used containing the specifications from the experiment
in Section 6.4. Below, we list the specifications of the machine that hosted the peer-to-peer gaming
solution.

Gaming solution node:

• Intel Core 2 Duo T5800 @ 2.00GHz

• 2 GB RAM

• 300 GB available hard drive storage capacity

• Ubuntu 12.04 (precise) 32-bit

• Kernel Linux 3.2.0-29-generic

• File descriptor: 512 000 for soft value; 1 024 000 for hard value

• Akka 2.2.0

• Socko 0.3.1

• Java 1.7.0 10 (1 GB heap memory)

• Typesafe Console 1.3.0

6.5.4 Results and Analyses

Tables 6.6, 6.7, 6.8 and 6.9 respectively provide usage trends of the storage module, the storage module
retrieving values from a Voldemort store, the messaging module and the service routing module. The
performance characteristics of the actors affected by the user requests, as well as the entire actor system,
are listed in the tables. The following attributes were monitored during the tests:

• Throughput (message rate): The rate at which messages are processed in a single second.

• Mailbox Size: The number of messages in a mailbox.

• Mailbox Time: The amount of time (in milliseconds) a message spends in a mailbox waiting to be
processed by an actor.

• Latency: Indicates the time duration (in milliseconds) from when a message was sent to an actor
until the message processing has been completed by the receiving actor.

Total
Throughput

(msg/sec)

Mean
Throughput

(msg/sec)

Max
Mailbox

Size

Max time
in Mailbox

(ms)

Mean Time
in Mailbox

(ms)

Mean
Latency

(ms)
StorageCoordinator 611.1 18.36 909 3284 0.35 1803

GetActor 618.7 18.27 70 90.63 0.18 9.252
System 926.3 40.18 909 3284 820.7 819.8

Table 6.6: Performance characteristics of the storage component actors.

Comparing Table 6.6 and 6.7, the results reflect those obtained in Section 6.4. When retrieving values
from the Voldemort store, throughput decreased and latency increased accordingly. By increasing the

71

Total
Throughput

(msg/sec)

Mean
Throughput

(msg/sec)

Max
Mailbox

Size

Max time
in Mailbox

(ms)

Mean Time
in Mailbox

(ms)

Mean
Latency

(ms)
StorageCoordinator 410.7 22.21 821 5592 4 1767

GetActor 457.15 27.77 810 5011.5 2 1760.5
System 565.6 60.99 821 5592 1525.5 1726

Table 6.7: Performance characteristics of the storage component actors retrieving values from the Volde-
mort store.

number of actors, as in Section 6.4.2, throughput should increase and latency should decrease. Table
6.8 indicates that the ClientRequestServiceActor and the ServiceDispatcherActor are the slowest actors
in the service module. Both actors had a fairly high latency compared to the other actors in the service
routing module. The ClientRequestServiceActor also had the maximum mailbox waiting time. Concern-
ing the actor hierarchy in the service routing component, both actors are the top children in the service
component. The delay in message processing is likely due to the JSON deserialization the actors per-
form. Given that several instances of the ClientRequestServiceActor and the ServiceDispatcherActor
can be created, distributing the JSON deserialization amongst sever actors would decrease the latency
experienced by the actors.

In Section 6.4.2, we assumed that the TopicManagerActor was the bottleneck in the messaging com-
ponent. Table 6.9 shows that the Socko WebSocketBroadcaster was responsible for the systems consider-
ably large time span in broadcasting a message. The table indicates that at some point a message waited
over 21 seconds in the WebSocketBroadcaster’s mailbox before it was processed. More importantly, the
average mean latency of the WebSocketBroadcaster was higher than any other actor observed during the
tests.

Total
Throughput

(msg/sec)

Mean
Throughput

(msg/sec)

Max
Mailbox

Size

Max time
in Mailbox

(ms)

Mean Time
in Mailbox

(ms)

Mean
Latency

(ms)
ClientRequestServiceActor 134.1 18 531 2500 1.0 993.4
ClientWebsocketLogActor 540.9 35.7 612 706.4 0.13 23.8

ClientRequestRouter 99.59 10.41 164 685.3 0.09 14.87
ServiceDispatcherActor 651.3 63.22 6704 1824 0.947 1083
ResponseDecoderActor 111.8 10.62 103 106.6 0.005 7.921
ServiceResponseActor 192.2 12.22 100 108.3 0.009 8.825

System 2026 155 6704 2500 490.4 547.5

Table 6.8: Performance characteristics of the service routing component actors.

Total
Throughput

(msg/sec)

Mean
Throughput

(msg/sec)

Max
Mailbox

Size

Max time
in Mailbox

(ms)

Mean Time
in Mailbox

(ms)

Mean
Latency

(ms)
SubscriptionManagerActor 16.63 4.766 59 250.7 0.07 55.86

BroadcastManagerActor 44.81 11.31 406 1902 0.752 153.5
TopicManagerActor 44.81 16 52 153.9 0.39 7.492

WebSocketBroadcaster 35.94 21.95 2830 21940 29.9 14560
System 63.82 87.12 2830 21940 5999 6247

Table 6.9: Performance characteristics of the messaging component actors.

72

6.6 Distributed Environment Evaluation

The experiment examined the response time of the gaming network solution in a distributed environment
to demonstrate that distributing a game server’s functions (such as message dissemination and state
management) reduces the response time to high user loads and allows more players to participate in
the game. The experiment gave emulated the peer-to-peer gaming solution we aimed to provide. The
experiment was conducted by placing our gaming network on several nodes. The test focused on the
response times of the services offered by the gaming network solution. The Nginx reverse proxy was
used to distribute requests amongst the nodes. The supernode system which we developed requires that a
specific backend node be given for each request. That is, we have to manually set a group of users to make
requests from a specific node. The Nginx reverse proxy evenly distributes requests without specifying
the backend node. Figure 6.7 shows a graphical representation of the test setup. The experiment also
observed the retrieval time of values from a distributed Voldemort storage. The comparison between
using a single storage node and multiple storage nodes gave us insight into the retrieval time of game
data in a distributed setting.

Figure 6.7: Graphical representation of the multiple node setup.

6.6.1 Evaluation Methodology

In this experiment, we examined the response time from the services provided by our gaming network
solution in a distributed environment. These services were the storage function, the message dissemina-
tion function, and the service routing function. As in Section 6.4, we examined the storage in two forms:
(i) when data is retrieved from the Voldemort storage, and (ii) when response values are generated by the
GetActor. Furthermore, we extend the number of Voldemort storage nodes, distributing the data across
several nodes. 200,000 values were generated and spread across the Voldemort storage cluster nodes.
The messaging and service routing components were configured in the same manner as in Section 6.4.
To ensure the response time comparison is only factored by the distribution of the gaming network across
several nodes, services containing router actors had a single route performing specific tasks. That is, mul-
tiple routees were not used in this experiment. 25,000 users were simulated through JMeter, with each

73

user making four requests. The tests were conducted four times to remove the presence of unforeseen
network activity.

6.6.2 Environment

Below, we list the specifications of the machines which were used during this experiment.

The Hydra Cluster

The Hydra cluster is a cluster of machines located at The University of the Witwatersrand. Five nodes
from the Hydra cluster were allocated to host the peer-to-peer gaming network. Each node in the Hydra
cluster had the following setup:

• Intel Core i7 CPU 3.0 GHz

• 6 GB RAM

• 200 GB hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.8.0-29-generic

• Akka 2.2.0

• Socko 0.3.1

• Java 1.7.0 10 (5 GB heap memory)

• File descriptor: 512 000 for soft value; 1 024 000 for hard value

Voldemort Nodes

Five nodes from the Hydra cluster were allocated for the Voldemort storage. Each Voldemort storage
node used 5 GB of JVM memory heap. Following the evaluation model of Voldemort conducted by
Sumbaly et al. [2012], the replication factor was set to 1. Sumbaly et al. [2012] states that latency is a
function of the data size and should be independent of the replication factor. Each Voldemort node had
the following configurations:

• Voldemort version 1.3.0

• Persistence storage engine: BDB

• Routing policy: client

• Replication factor: 1

• Required read and writes: 1

• Number of partitions: 1

Apache JMeter

The Apache Jmeter setup was the same as that in Section 6.4.1.

74

Nginx Reverse Proxy Node

The Nginx reverse proxy node contained the following specifications:

• Intel Core i7 @ 3.40 GHz - 3770

• 8 GB RAM

• 500 GB hard drive storage capacity

• Ubuntu 12.04 (precise) 64-bit

• Kernel Linux 3.8.0-29-generic

• File descriptor: 512 000 for soft value; 1 024 000 for hard value

• Version: 1.5.6

• Worker processes: 16

• Worker connections: 400 000

• Maximum file descriptors (worker rlimit nofile): 1 024 000

6.6.3 Results and Analysis

Table 6.10 and Figure 6.8 show the response time from a single node system versus a multi-node system.
The results indicate that by introducing more nodes, the time taken for a response decreases. Work load
was distributed amongst the nodes equally which allowed requests to be completed faster than with a
single node handling all the requests. More importantly, the messaging service exhibited a huge decrease
in response time, something which was unachievable by just increasing the router actors in Section
6.4.2. By distributing the message dissemination function amongst the five nodes, the distributed network
achieved a 79% reduction in response time. However, the response time in the message dissemination
service is still fairly high compared to the other services offered. Therefore, the bottleneck attributed
to Socko’s WebSocketBroadcaster is still prevalent. We also note an increasing delay for a response
from the Voldemort storage cluster when using a single storage node (208 milliseconds) versus that of
multiple storage nodes (388 milliseconds) in the distributed network results. The increased delay is likely
due to the Voldemort client in our system computing the location and searching for the value amongst
the Voldemort nodes. Replicating the data across several nodes is likely to decrease the time a Voldemort
client spends searching for a value in the cluster. In summary, the results obtained from this experiment
indicate that a distributed environment decreases the time taken to process network gaming messages,
particularly in the case where there is a large user base. Furthermore, we can use the results obtained
from Section 6.4.3 to determine when it is suitable to distribute a game servers functions amongst the
peers in the network.

Rate of Improvement
Number of Nodes 1 5

Storage Service 145 87 40%
1 Voldemort Storage Node 1651 208 87%

5 Voldemort Storage Nodes 1406 388 72%
Routing Service 207 116 44%

Messaging Service 4603 975 79%

Table 6.10: Average response time comparison (in milliseconds) of the gaming network solution in a
single node environment versus a distributed environment.

75

Figure 6.8: Graphical response time comparison of the gaming network solution in a single node envi-
ronment versus a distributed environment.

6.7 Conclusion

This Chapter focused on presenting the results used to evaluate our peer-to-peer gaming network. We
wished to provide a low latency and reliable communication mechanism for peer-to-peer MMOG. De-
spite TCP being a reliable transport protocol, TCP’s packet order guarantee property causes delays that
cannot be tolerated by certain games. With the Transmission Control Protocol, when a packet is dropped
by the network, an application cannot receive further messages from the network until the missing packet
has been retransmitted. By using SPDY’s multiplexing stream attribute, it was shown that the delay
factor of applications using TCP can be mitigated. SPDY’s multiplexing property allows for network
applications to continue receiving messages, in the event of packet loss. Furthermore, SPDY displayed
an improvement on data transfer time when compared to HTTP. We also noted that SPDY’s connection
setup could be a problem for online games operating on networks with low bandwidth. However, we
stated in Chapter 1 that the increasing interest in peer-to-peer network applications is due to the im-
provement of home bandwidth. Therefore, the majority of home networks have adequate bandwidth to
mitigate SPDY’s connection overhead.

The chapter also examined the performance of our peer-to-peer solution. The event-driven paradigm
provided high availability. In addition, the Akka toolkit provided high throughput and low latency in
processing network messages. By increasing the number of routees, for a specific instance of an actor,
the time taken to process messages was decreased. Given Akka’s fault-tolerance feature, we also ex-
amined the delay a fault can cause to operation of an online game. The results showed that faults that
constantly occur will delay the processing of messages. The delay factor was acceptable for some of
the system functions, which was dependent on which actor we selected to fail. Additionally, the option
of a fault occurring and being able to automatically restart specific service is more advantageous than
the entire system failing, requiring intervention by the user. With regards to the services provided by
our peer-to-peer gaming solution, we noted that the message dissemination function is unable to han-
dle high user loads, but performs adequately on a small user scale. Further investigation revealed that
Socko’s WebSocketBroadcaster was responsible for the delay in broadcasting messages in the message
dissemination function. We discuss solving this issue in Chapter 7.

To provide a comparison on our systems performance to other online gaming solutions, a benchmark
was performed comparing our solutions front-end service against other web servers with online gaming

76

capabilities. The web servers were Nginx, Apache HTTP and Node.js. The benchmark compared the
time taken to serve a web page to a varying number of users. Results showed that Socko performed
slightly better than Apache HTTP, currently the most popular web server, and outperformed Node.js as
the number of users increased. On the other hand, Nginx displayed resilient performance against the other
servers, even as the number of users were increased. Overall, Socko provides adequate performance for
hosting online multiplayer games. Tuning the Socko and Akka configurations will likely produce better
performance for online multiplayer games.

Finally, we examined our system in a distributed setting. One of the main desires in using a peer-to-
peer system for online games was to distribute the computational work and hardware requirements for
hosting an online game. By distributing the workload, we wished to increase the number of players that
can participate in an online game, a factor which is difficult and highly expensive to achieve in a client-
server architecture. The experiment compared the response time against multiple nodes in a distributed
environment versus that of a single node. The tests showed that the response time for serving requests
greatly improved in a distributed environment compared to a client-server setting. The improvement
shows that our system is able to scale as more nodes are added, achieving the goal of scalability set in
Chapter 3.

A reductionist approach was taken to evaluate the peer-to-peer gaming network developed. Rather
than evaluating the peer-to-peer infrastructure on a network game, discrete elements were identified
and evaluated in order to answer the research questions. Due to time constraints, we were unable to
investigate the performance of the peer-to-peer system as a whole, and not just the specific elements
given in this chapter. Except for the experiment presented in Section 6.2, the experiments presented
in this dissertation were conducted across a local area network. This exposes an issue for MMOGs as
nodes are likely to be distributed widely over a network. Investigation needs to be conducted on the
performance of the peer-to-peer solution for nodes located in different physical regions, or by simulating
a network which would appear to be connected over different locations.

77

Chapter 7

Conclusions, Contributions and Future
Work

7.1 Conclusion

The growth and popularity of Massive Multiplayer Online Games (MMOG) has introduced a range of
interesting challenges. MMOG use the client-server model to provide the online gaming infrastructure.
Client-server architectures do not scale well as more hosts use the network and are expensive to maintain.
Also, the server becomes the single point of failure for any application using the client-server architec-
ture. Given the exponential growth of the number of video games with online playability, there has been
a collective interest on the design of hosting online games over peer-to-peer networks. A peer-to-peer
architecture has the ability to reduce the cost of maintaining servers, increase the scalability of games
and provide fault-tolerance against a host failing. Though peer-to-peer architectures aim to resolve the
problems with client-server architectures, peer-to-peer architectures also yield some challenges that must
be addressed. Namely: game state management, distributed storage, message dissemination model, op-
timization of delays, player synchronisation and protection against cheating.

This research focused on the design and implementation of a peer-to-peer architecture that would
reliably deliver game messages in a timely manner. Games may experience delays in two forms: the
network delay, the time taken to transport a message over the network, and synchronisation delay, the
time taken to account for all the players’ actions and synchronise the players state. In online games, the
delay must be kept to a minimum to avoid lag. Most of the techniques used to minimize synchronisation
delays have been developed over the years for client-server game models, and can be adapted to peer-to-
peer architectures. Network delays are attributed to the transport layer and application layer protocol. In
context of the transport layer, UDP is often used to transport game messages across a network in action-
based games. TCP has been noted to cause delays for a number of games due to its property of reliably
delivering messages. UDP’s drawback was that it does not guarantee the delivery of messages and has
no flow control (congestion avoidance). Also, TCP can easily traverse networks with firewalls, proxies
and authentication servers. By using the application layer protocol SPDY, we showed that it is possible
to deliver messages over the Transmission Control Protocol in a timely manner.

The peer-to-peer gaming network we developed provides three functions: message dissemination,
service routing and distributed data storage. The peer-to-peer network application was built on top of
the event-driven actor paradigm. Unlike thread-based systems, actors do not require locks or monitors
to share data. Consequently, actors are likely to process tasks faster than thread-based paradigms. The
experiments conducted in the previous chapter showed that by increasing the number of actors to perform
tasks related to the data storage and service routing functionalities, thereby distributing the workload,
resulted in a decrease of the time taken to process a message. However, increasing the number of actors in
the message dissemination component did not provide any positive results. Through further investigation,
it was discovered the message dissemination component contained a bottleneck. The bottleneck was
caused by an actor in the Socko framework which publishes messages to hosts subscribed to a topic.

78

The research also revealed a relation between game state management and distributed data systems.
Modern non-relational database management systems, known as NoSQL systems, provide a weakly
consistent distributed storage system in exchange for availability and partition-tolerance. Video games
tolerate weak consistency of the game state. Most of the read and write operations occur in the players
Area of Interest (AOI), therefore game servers are able to present a globally weak consistent state. From
this, a low latency distributed storage system, Voldemort, was employed in the peer-to-peer gaming solu-
tion. The intent of the Voldemort storage system was to store game state data and provide fault-tolerance
against a node abruptly leaving the peer-to-peer system. Also, Voldemort’s eventual consistency property
allows the system to keep a regions state consistent and gradually propagate the state to other regions.

The peer-to-peer gaming solution developed was successfully examined on the University of the Wit-
watersrand’s Hydra cluster. The test aimed to simulate the case where a game world is partitioned into
regions and each node manages a region of the game world. The investigation revealed that distributing
the game network solution favourably decreased the time to receive a response from the network func-
tionalities. The distributed data storage, service routing and message dissemination functionalities all
exhibit a decrease in response latency.

Reviewing the research aims discussed in Chapter 3, we proposed a peer-to-peer network system for
hosting online multiplayer games as alternative to client-server architectures. This research presented a
peer-to-peer MMOG architecture with the following functionalities:

• Consistency and Availability
In MMOG, players’ game state must be consistent while allowing all read write request to be
fulfilled. Relating to the CAP theorem introduced in Chapter 4, we adopted the notion of eventual
consistency by guaranteeing local consistency and weak global consistency. Eventual consistency
provides high availability and partition-tolerance. The peer-to-peer gaming system was designed
around the Supernode Control protocol in order to acquire a dominant node that would maintain
local consistency. The Voldemort distributed storage system was used to store game state data.

• Fault-tolerance
In distributed systems, a node may unexpectedly fail which in turn may hinder the game playa-
bility. Voldemort automatically replicates game state data over multiple nodes. If a node were to
abruptly disconnect from the network, the game state of the failed node can be retrieved from the
copies contained on several nodes. The Akka actor toolkit also provided resistance against faults.
When a component in the system fails, Akka is able to restart the component back into a stable
state, allowing for game play to continue.

• Scalability
The architecture is designed to handle a large number of concurrent players. By distributing the
architecture functions such as message dissemination and game state management, the architecture
can support a large number of players compared to client-server architectures. Also, Akka’s load
distribution feature allows for more users to participate on a single host.

• Low latency
Many multiplayer online games require that messages arrive under a certain time to avoid the user
experiencing lag. SPDY was used to control how messages are sent across the network on top
of TCP. SPDY was shown to reliably deliver messages and diminish the delay associated with
the TCP transport protocol. The actor event-based paradigm was used to rapidly process network
messages. By increasing the number of routees (actor instances that perform a specific task) the
actor based system decreased the amount of time taken to process network messages.

In conclusion, the research question posed has been resolved. By using SPDY for network communica-
tion and actors to process messages, a low latency method was developed to reliably deliver messages
for peer-to-peer games.

79

7.2 Contributions and Future work

This work contributed a new extension to online gaming networks. Deciding on the transport layer is
dependent on the type of game. UDP is preferred over TCP in action-based games due to the cost of
TCP’s order guarantee property. In the case of TCP, when packets arrive at the receiving host, the data is
only passed onto the application-layer only if previous packets have arrived. If a packet was lost during
the transition from the sending host to the receiving host, other packets will be held in a buffer. These
buffered packets will only be passed onto the application-layer once the lost packet has been retransmit-
ted. With UDP, any data which is sent to the receiving host is immediately pushed onto the application
layer. In this research, it was shown that SPDY’s multiplexing property is able alleviate the issue faced
with TCP’s order arrival property. This observation is likely to open up further discussions concern-
ing the transport protocol and online gaming networks. Though the peer-to-peer solution we developed
is aimed at MMOG, the peer-to-peer network can extend beyond online gaming. Any application that
seeks a similar networking infrastructure that we developed may likely use our peer-to-peer network
application. A set of attributes in our network application make it easy to adopt for applications beyond
gaming; including the use of JSON, a platform independent serialization tool, and running the network
application on JVM, allowing for portability to different systems.

The research study tackled certain aspects facing peer-to-peer gaming networks. But many chal-
lenges still exist that were not addressed fully. A complete peer-to-peer gaming solution needs to be
developed. For example, issues surrounding cheating were not resolved. Also, protocols for managing
game world regions and determining when a region should be partitioned further need to be integrated
into our peer-to-peer gaming solution.

Throughout this dissertation, we noted issues that need to be addressed in the future. In particular:

• The bottleneck within the message dissemination function should be addressed.

• The connection between the network gaming application and Voldemort was noted to be a standard
TCP connection. A SPDY connection between the two systems should be implemented.

• In our networking solution, only a few actors state are persistent. All the actors states must be
persisted to ensure message delivery guarantee amongst the actors.

In this research, we evaluated the TCP network delay against SPDY and the HTTP communication pro-
tocol. Given that there are several UDP gaming communication protocols [Harcsik et al. 2007], each
with different performance statistics dependent on the type of game, we did not conduct any analysis
against these protocols due to time constraints. In future, we wish to examine the performance of SPDY
against other online gaming communication protocols. Prioritizing messages in the actor system is an-
other improvement that can reduce the latency. Certain games may require that specific messages have
a priority in being processed by the network application [Aldridge 2011]. For example, in a first person
shooter game, in order for the hit detection algorithm to accurately calculate if a player was hit or not, the
message indicating the shooting needs to processed as soon as possible. SPDY already has a messaging
prioritization property. Messages need to be prioritized on the actor side of our peer-to-peer gaming so-
lution. By assigning message priority, a message can be put in front of the queue of an actor’s mailbox,
ensuring it gets processed next.

Another task to pursue in the future is to ensure that peer-to-peer solution developed is suitable for
product use. Currently, to add node to the Voldemort storage cluster, while the cluster is operational,
requires a number of steps to be completed by the user. An easy and straightforward interface needs to
be developed to add/remove nodes from the Voldemort cluster. Applying the peer-to-peer solution on a
game and assessing the users gaming pleasure is the final benchmark in proving that peer-to-peer gaming
solutions are a viable option in solving issues facing current MMOG technology.

Recently, game developers have adopted the concept of content on demand through cloud-based
game streaming services. Cloud gaming, in its simplest form renders interactive games in the cloud
and streams the scenes as a video back to the player [Shea et al. 2013]. Players interact with the game

80

through a thin client. The thin client is solely responsible for displaying the video content rendered by
the cloud service, as well as collecting the player’s interactions with the game and sending the actions
to the cloud for rendering. Cloud computing is advantageous for less powerful computational devices
(such as mobile devices) that are incapable of running resource intensive games. Cloud computing also
resolves the issue of compatibility between games and devices.

Gaikai1 and OnLive2 are the two of the most prominent cloud-based gaming services [Shea et al.
2013]. Recently, Sony acquired Gaikai in plans to implement a game streaming service for Sony gaming
consoles (Playstation 3 and 4), televisions and smartphones [Hollister 2014]. Cloud-based games can
also benefit from peer-to-peer architectures [Yahyavi and Kemme 2013]. Cloud systems based on peer-
to-peer networks can resolve the problematic bottleneck often experienced in cloud computing systems
[Xu et al. 2009]. There is also the possibility of creating a fully decentralized cloud-based gaming
network [Babaoglu et al. 2012].

1www.gaikai.com
2www.onlive.com

81

https://www.gaikai.com
http://www.onlive.com

Appendix A

API

The application programming interface (API) used to interact with the functions in the peer-to-peer
gamin solution is presented below. Table A.1, A.2 and A.3 respectively contain the API for the storage
component, message dissemination component and service routing component. The message dissemi-
nation API is contains two interfaces. The first is used to create and delete topics for hosts to broadcast
messages through. The second is used to publish messages to a specific topic. The service routing API is
also separated into two interfaces. The Service interface is used by an external application to register its
service and respond to a client requests. The Service Client interface is used by clients to send requests
to a service.

Storage
URL /storage
sendMessage(operation : String, storeName : String, key : Object, value : Object)

operation delete Delete any version of the given key which equal to
or less than the current versions

get Get the value associated with the given key
put Associates the given value to the key, clobbering any

existing values stored for the key

responseMessage(status : String, operation : String, storeName : String, key : Object, value : Object)
status succes Operation was successful

failure Operation failed
operation getResponse The message contains a response from the get oper-

ation

Table A.1: The API for the storage component

Messaging
Topic Mangement

URL /topicmanagement
topicOperation(topicName : String, task : String)

task create create a topic for publication of messages
remove delete a topic for publication of messages

Message Broadcast
URL /messaging/topicName

Pass any message to the to the specified URL and the message will broadcasted
to the subscribed hosts

Table A.2: The API for the message dissemination component

82

Service Routing
Service

URL /service
serviceDispatchMessage(dispatcher : String, data : String)

data serviceManagement() JSON stringified message
responseMessage() JSON stringified message

serviceManagement(operation : String, workername : String)
operation add add a worker/service to the node

delete delete a worker/service from the node
responseMessage(worker : String, operationData : String, clientChannel : Int)
requestMessage(worker : String, operationData : string, clientChannel : Int, response : Boolean)

Service Client
URL /computation
servicerequest(worker : String, operationData : string, response : Boolean)
serviceResponse(worker : String, operationData : String)

Table A.3: The API for the service routing component

83

Appendix B

SPDY Benchmark Results

Table B.1 presents the results from an experiment conducted by Google, comparing the performance of
SPDY against HTTP [Google 2012]. The test consisted of downloading 25 of the top 100 websites over
a simulated home network connection, with 1% packet loss.

2 Mbps downlink,
375 kbps uplink

4 Mbps downlink,
1 Mbps uplink

Average ms Speedup Average ms Speedup
HTTP 3111.916 2348.188

SPDY basic multi-domain connection / TCP 2242.756 27.93% 1325.46 43.55%
SPDY basic single-domain connection / TCP 1695.72 45.51% 933.836 60.23%

SPDY single-domain + server push / TCP 1671.28 46.29% 950.764 59.51%
SPDY single-domain + server hint / TCP 1608.928 48.30% 856.356 63.53%

SPDY basic single-domain / SSL 1899.744 38.95% 1099.444 53.18%
SPDY single-domain + client prefetch / SSL 1781.864 42.74% 1047.308 55.40%

Table B.1: Average page load times for top 25 websites [Google 2012].

Tables B.2 and B.3 present results from experiments that measured if the packet loss rate and the RTT
had any effect on the performance of SPDY. The experiments were conducted on a simulated cable
link (4 Mbps downlink, 1 Mbps uplink). Like the experiments presented above, the tests consisted of
downloading 25 of the top 100 websites, but a variance in packet loss and RTT was simulated.

Average ms Speedup
Packet loss rate HTTP SPDY

0% 1152 1016 11.81%
0.50% 1638 1105 32.54%

1% 2060 1200 41.75%
1.50% 2372 1394 41.23%

2% 2904 1537 47.70%
2.50% 3028 1707 43.63%

Table B.2: Average page load times for top 25 websites by packet loss rate [Google 2012].

84

Average ms Speedup
RTT in ms HTTP SPDY

20 1240 1087 12.34%
40 1571 1279 18.59%
60 1909 1526 20.06%
80 2268 1727 23.85%

120 2927 2240 23.47%
160 3650 2772 24.05%
200 4498 3293 26.79%

Table B.3: Average page load times for top 25 websites by RTT [Google 2012].

85

References

[Adya et al. 2002] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur.
Cooperative task management without manual stack management. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical Conference, ATEC ’02, pages 289–
302, Berkeley, CA, USA, 2002. USENIX Association.

[Agarwal and Lorch 2009] Sharad Agarwal and Jacob R. Lorch. Matchmaking for online games and
other latency-sensitive P2P systems. SIGCOMM Comput. Commun. Rev., 39(4):315–326, August
2009.

[Aldridge 2011] David Aldridge. I shot you first: Networking the gameplay of HALO: REACH. In
Proceedings of the 15th Games Developers Conference. Bungie LLC, 2011.

[Anderson et al. 2010] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Definitive
Guide Time to Relax. O’Reilly Media, Inc., 1st edition, 2010.

[Anstey 2009] Jonathan Anstey. Apache Camel: Integration Nirvana. Dzone blog, 2009.
Retrieved November 2013, from http://architects.dzone.com/articles/
apache-camel-integration

[Armstrong 2007] Joe Armstrong. What’s all this fuss about Erlang? The Pragmatic Bookshelf blog,
2007. Retrieved October 2013, from http://pragprog.com/articles/erlang

[Armstrong 2010] Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, September 2010.

[Arts 2014a] Electronic Arts. EA. online, January 2014. Retrieved January 2014, from http://www.
ea.com

[Arts 2014b] Electronic Arts. Need for Speed. online, January 2014. Retrieved January 2014, from
http://www.needforspeed.com/

[Babaoglu et al. 2012] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design and imple-
mentation of a p2p cloud system. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, pages 412–417, New York, NY, USA, 2012. ACM.

[Bandai 2014] Namco Bandai. Tekken. online, January 2014. Retrieved January 2014, from http:
//www.tekken.com/

[Barri et al. 2010] Ignasi Barri, Francesc Gin, and Concepci Roig. A scalable hybrid p2p system for
mmofps. In Marco Danelutto, Julien Bourgeois, and Tom Gross, editors, PDP, pages 341–347.
IEEE Computer Society, 2010.

[Barton 2007] Matt Barton. The History of Computer Role-Playing Games Part 1: The Early Years
(1980-1983). Gamasutra Website, February 2007. Retrieved October 2013, from http://www.
gamasutra.com/view/feature/3623/the_history_of_computer_.php

[Bell 1998] Joe Grant Bell. Command and Conquer: Red Alert Retaliation. Prima Communications,
Inc., Rocklin, CA, USA, 1998.

86

http://architects.dzone.com/articles/apache-camel-integration
http://architects.dzone.com/articles/apache-camel-integration
http://pragprog.com/articles/erlang
http://www.ea.com
http://www.ea.com
http://www.needforspeed.com/
http://www.tekken.com/
http://www.tekken.com/
http://www.gamasutra.com/view/feature/3623/the_history_of_computer_.php
http://www.gamasutra.com/view/feature/3623/the_history_of_computer_.php

[Belshe and Peon 2012] Mike Belshe and Roberto Peon. SPDY protocol draft-mbelshe-httpbis-spdy-00.
In Network Working Group. Internet Engineering Task Force, 2012.

[Belshe et al. 2013] M. Belshe, Peon R., M. Thomson, and Melnikov A. Hypertext Transfer Protocol
version 2.0 — draft-ietf-httpbis-http2-04, 2013.

[Ben-Ari 1990] Mordechai Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[Berners-Lee et al. 1996] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0, 1996.

[Bernier 2001] Yahn W. Bernier. Latency Compensating Methods in Client/Server In-Game Protocol
Design and Optimization. In Proceedings of the 15th Games Developers Conference, March 2001.

[Bharambe et al. 2006] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a distributed
architecture for online multiplayer games. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages 12–12, Berkeley, CA, USA, 2006.
USENIX Association.

[Biscotti et al. 2011] Fabrizio Biscotti, Brian Blau, John-David Lovelock, Tuong Huy Nguyen, Jon
Erensen, Shalini Verma, and Venecia K Liu. Market trends: Gaming ecosystem, 2011. volume
2011, Stamford, NY, USA, 2011.

[Blizzard 2014] Blizzard. Blizzard Entertainment. online, January 2014. Retrieved January 2014, from
http://www.blizzard.com

[Bonér 2011] Jonas Bonér. Akka - an open source, event-driven middleware project. Electronic Design
Website, September 2011. Retrieved November 2013, from http://electronicdesign.
com/embedded/akka-open-source-event-driven-middleware-project

[Boulanger et al. 2006] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Verbrugge. Comparing in-
terest management algorithms for massively multiplayer games. In Proceedings of 5th ACM SIG-
COMM Workshop on Network and System Support for Games, NetGames ’06, New York, NY,
USA, 2006. ACM.

[Braden 1989] Robert Braden. Requirements for Internet Hosts - Communication Layers. RFC Editor,
United States, 1989.

[Brewer 2000] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, PODC ’00, pages 7–,
New York, NY, USA, 2000. ACM.

[Brown and Wilson 2011] Amy Brown and Greg Wilson. The Architecture Of Open Source Applica-
tions. lulu.com, June 2011.

[Capcom 2014] Capcom. The World of Street Fighter. online, January 2014. Retrieved January 2014,
from http://www.streetfighter.com/

[Carlson 2013] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT, USA,
2013.

[Chang et al. 2006] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley, CA, USA,
2006. USENIX Association.

87

http://www.blizzard.com
http://electronicdesign.com/embedded/akka-open-source-event-driven-middleware-project
http://electronicdesign.com/embedded/akka-open-source-event-driven-middleware-project
http://www.streetfighter.com/

[Chen-Becker 2011] Derek Chen-Becker. JSON parser. Scala Mailing List, 2011. Retrieved July
2013, from https://groups.google.com/d/topic/scala-user/P7-8PEUUj6A/
discussion

[Clinger 1981] William D Clinger. Foundations of Actor Semantics. Technical report, Cambridge, MA,
USA, 1981.

[Codd 1979] Edgar F. Codd. Extending the database relational model to capture more meaning. ACM
Trans. Database Syst., 4(4):397–434, December 1979.

[Cohen 2003] Bram Cohen. Incentives Build Robustness in BitTorrent, May 2003.

[Community 2013] Netty Project Community. Netty. Netty Website, 2013. Retrieved October 2013,
from http://netty.io/

[Crane and McCarthy 2008] Dave Crane and Phil McCarthy. Comet and Reverse Ajax: The Next-
Generation Ajax 2.0. Apress, Berkely, CA, USA, 2008.

[Crane 2013] Charlie Crane. Building fast scalable game server in node.js. In JSConf.Asia, 2013.

[Crockford 2006] Douglas Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, IETF, 7 2006.

[DeCandia et al. 2007] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulap-
ati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–
220, October 2007.

[del Pilar Salas-Zrate et al. 2012] Mar del Pilar Salas-Zrate, Giner Alor-Hernndez, and Alejandro
Rodrguez-Gonzlez. Developing lift-based web applications using best practices. Procedia Tech-
nology, 3(0):214 – 223, 2012. ¡ce:title¿The 2012 Iberoamerican Conference on Electronics Engi-
neering and Computer Science¡/ce:title¿.

[Dierks and Rescorla 2008] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2, 2008.

[Ding et al. 2003] Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya. Peer-to-Peer Networks
for Content Sharing. Technical report, Laboratory, University of Melbourne, Australia, 2003.

[Dukkipati et al. 2010] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert,
Amit Agarwal, Arvind Jain, and Natalia Sutin. An argument for increasing tcp’s initial congestion
window. SIGCOMM Comput. Commun. Rev., 40(3):26–33, June 2010.

[Dye et al. 2009] Matthew W.G. Dye, C. Shawn Green, and Daphne Bavelier. Increasing speed of pro-
cessing with action video games. Current Directions in Psychological Science, 18(6):321–326,
2009.

[Enix 2014] Square Enix. Square Enix. online, January 2014. Retrieved January 2014, from http:
//www.square-enix.com/

[Entertainment 2010] Blizzard Entertainment. StarCraft II Players Banned. Battle.net blog, September
2010. Retrieved December 2013, from http://us.battle.net/sc2/en/blog/882508

[Epic 2014] Epic. http://epicgames.com/. online, January 2014. Retrieved January 2014, from http:
//epicgames.com/

[Erb 2012] Benjamin Erb. Concurrent Programming for Scalable Web Architectures. Diploma thesis,
Institute of Distributed Systems, Ulm University, April 2012.

88

https://groups.google.com/d/topic/scala-user/P7-8PEUUj6A/discussion
https://groups.google.com/d/topic/scala-user/P7-8PEUUj6A/discussion
http://netty.io/
http://www.square-enix.com/
http://www.square-enix.com/
http://us.battle.net/sc2/en/blog/882508
http://epicgames.com/
http://epicgames.com/

[Fette and Melnikov 2011] Ian Fette and Alexey Melnikov. The WebSocket protocol. Technical report,
Internet Engineering Task Force, 2011.

[Fidge 1988] Colin J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial Order-
ing. In 11th Australian Computer Science Conference, pages 55–66, University of Queensland,
Australia, 1988.

[Fiedler 2008] Glenn Fiedler. Networking for Game Programmers, 2008.

[Fielding et al. 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[Fink 2012] Bryan Fink. Distributed computation on dynamo-style distributed storage: Riak pipe. In
Proceedings of the Eleventh ACM SIGPLAN Workshop on Erlang Workshop, Erlang ’12, pages
43–50, New York, NY, USA, 2012. ACM.

[Foundation 2010] Apache Software Foundation. Apache HTTP Server Reference Manual - for Apache
Version 2.2.17. Network Theory Ltd., 2010.

[Foundation 2013] Apache Software Foundation. Apache jmeter. 2013. Retrieved October 2013, from
http://jmeter.apache.org/

[Freier et al. 2011] Alan Freier, Paul Kocher, and Philip Karlton. The Secure Sockets Layer (SSL) Pro-
tocol Version 3.0, 2011.

[Gilbert and Lynch 2002] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[Gilbert 2012] David Gilbert. Diablo 3 server meltdown unable to meet demand. International Business
Times, May 2012.

[Google 2012] Google. SPDY: An experimental protocol for a faster web, 2012. Retrieved October
2013, from http://www.chromium.org/spdy/spdy-whitepaper

[Griwodz and Halvorsen 2006] Carsten Griwodz and Pål Halvorsen. The fun of using tcp for an
mmorpg. In Proceedings of the 2006 International Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video, NOSSDAV ’06, pages 1:1–1:7, New York, NY, USA,
2006. ACM.

[Gupta 2012] Munish K. Gupta. Akka Essentials. Packt Publishing, October 2012.

[Gustafsson 2005] Andreas Gustafsson. Threads without the pain. Queue, 3(9):34–41, November 2005.

[Habeeb 2010] Mocky Habeeb. A Developer’s Guide to Amazon SimpleDB. Addison-Wesley Profes-
sional, 1st edition, 2010.

[Haller et al. 2013] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,
and Vojin Jovanovic. SIP-14 - Futures and Promises. Scala Improvement Process Website,
February 2013. Retrieved October 2013, from http://docs.scala-lang.org/sips/
pending/futures-promises.html

[Hampel et al. 2006] Thorsten Hampel, Thomas Bopp, and Robert Hinn. A peer-to-peer architecture for
massive multiplayer online games. In Proceedings of 5th ACM SIGCOMM workshop on Network
and system support for games, NetGames ’06, New York, NY, USA, 2006. ACM.

[Harcsik et al. 2007] Szabolcs Harcsik, Andreas Petlund, Carsten Griwodz, and Pål Halvorsen. Latency
evaluation of networking mechanisms for game traffic. In Proceedings of the 6th ACM SIGCOMM
Workshop on Network and System Support for Games, NetGames ’07, pages 129–134, New York,
NY, USA, 2007. ACM.

89

http://jmeter.apache.org/
http://www.chromium.org/spdy/spdy-whitepaper
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html

[Harrah 2013] Mark Harrah. SBT. github, 2013. Retrieved November 2013, from http://www.
scala-sbt.org/

[Hewitt et al. 1973] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Pub-
lishers Inc.

[Hewitt 2012] Carl Hewitt. Actor Model of Computation: Scalable Robust Information Systems. Tech-
nical Report v24, July 2012. cite arxiv:1008.1459Comment: improved syntax.

[Hollister 2014] Sean Hollister. Sony announces PlayStation Now, its cloud gam-
ing service for TVs, consoles, and phones. TheVerge.com, 2014. Retrieved
January 2014, from http://www.theverge.com/2014/1/7/5284294/
sony-announces-playstation-now-cloud-gaming

[Honeywell 2000] Steve Honeywell. Command and Conquer Red Alert 2. Prima Communications, Inc.,
Rocklin, CA, USA, 2000.

[Howland 1999] Geoff Howland. What is Lag? Gamedev, September 1999. Retrieved
October 2013, from http://www.gamedev.net/page/resources/_/technical/
multiplayer-and-network-programming/what-is-lag-r712

[Hu et al. 2006] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON: a scalable peer-to-peer network
for virtual environments. IEEE Network, 20(4):22–31, July 2006.

[id 2014] id. id Software. online, January 2014. Retrieved January 2014, from http://www.
idsoftware.com

[Iimura et al. 2004] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned federation of
game servers: a peer-to-peer approach to scalable multi-player online games. In Proceedings of
3rd ACM SIGCOMM workshop on Network and system support for games, NetGames ’04, pages
116–120, New York, NY, USA, 2004. ACM.

[Imtarnasan et al. 2012] Vibul Imtarnasan, Dave Bolton, and Socko Contributors. Socko Web Server.
Socko Website, 2012. Retrieved October 2013, from http://sockoweb.org/

[Keller and Simon 2002] Joaquin Keller and Gwendal Simon. Toward a peer-to-peer shared virtual real-
ity. In In IEEE Workshop on Resource Sharing in Massively Distributed Systems, pages 595–601,
2002.

[Kent 1998] Steven L. Kent. Age of Empires. Microsoft Press, Redmond, WA, USA, 1998.

[Knutsson et al. 2004] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-peer support
for massively multiplayer games. In INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, volume 1, pages 96–107. IEEE, 2004.

[Konishetty et al. 2012] Vamshi Krishna Konishetty, K. Arun Kumar, Kaladhar Voruganti, and
G. V. Prabhakara Rao. Implementation and evaluation of scalable data structure over hbase. In
Proceedings of the International Conference on Advances in Computing, Communications and
Informatics, ICACCI ’12, pages 1010–1018, New York, NY, USA, 2012. ACM.

[Krasser 2013] Martin Krasser. Eventsourced. Github, 2013. Retrieved October 2013, from https:
//github.com/eligosource/eventsourced

[Krause 2008] Stephan Krause. A case for mutual notification: a survey of p2p protocols for massively
multiplayer online games. In Proceedings of the 7th ACM SIGCOMM Workshop on Network and
System Support for Games, NetGames ’08, pages 28–33, New York, NY, USA, 2008. ACM.

90

http://www.scala-sbt.org/
http://www.scala-sbt.org/
http://www.theverge.com/2014/1/7/5284294/sony-announces-playstation-now-cloud-gaming
http://www.theverge.com/2014/1/7/5284294/sony-announces-playstation-now-cloud-gaming
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/what-is-lag-r712
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/what-is-lag-r712
http://www.idsoftware.com
http://www.idsoftware.com
http://sockoweb.org/
https://github.com/eligosource/eventsourced
https://github.com/eligosource/eventsourced

[Kurose and Ross 2009] James F. Kurose and Keith Ross. Computer Networking: A Top-Down Ap-
proach. Addison-Wesley, Boston, MA, USA, 5th edition, 2009.

[Lakshman and Malik 2010] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[Lamport 1998] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998.

[Langley 2012] Adam Langley. Transport Layer Security (TLS) Next Protocol Negotiation Extension.
Technical report, May 2012.

[Lauer and Needham 1979] Hugh C. Lauer and Roger M. Needham. On the duality of operating system
structures. SIGOPS Oper. Syst. Rev., 13(2):3–19, April 1979.

[Lee 2012] Trustin Lee. Netty 3.3.1 released - SPDY Protocol ! Netty News Archive, February 2012.
Retrieved October 2013, from http://netty.io/news/2012/02/04/3-3-1-spdy.
html

[Li and Zdancewic 2007] Peng Li and Steve Zdancewic. Combining events and threads for scalable
network services implementation and evaluation of monadic, application-level concurrency prim-
itives. SIGPLAN Not., 42(6):189–199, June 2007.

[LinkedIn 2012] LinkedIn. Project Voldemort: A distributed database. online, March 2012. Retrieved
January 2013, from http://project-voldemort.com/

[Meenan 2012] Patrick Meenan. WebPagetest - Website Performance and Optimization Test, 2012. Re-
trieved July 2013, from http://www.webpagetest.org/

[Microsoft 2014a] Microsoft. Age of Empires Online. online, January 2014. Retrieved January 2014,
from http://ageofempiresonline.com

[Microsoft 2014b] Microsoft. Halo Official Site. online, January 2014. Retrieved January 2014, from
https://www.halowaypoint.com

[Midway 2014] Midway. Midway Games Inc. online, January 2014. Retrieved January 2014, from
http://www.midway.com

[Mulholland and Hakala 2004] Andrew Mulholland and Teijo Hakala. Programming Multiplayer
Games. Wordware Publishing Inc., Plano, TX, USA, 2004.

[Mulligan et al. 2003] Jessica Mulligan, Bridgette Patrovsky, and Raph Koster. Developing Online
Games: An Insider’s Guide. Pearson Education, 1 edition, 2003.

[Murphy 2011] Curtiss Murphy. Believable dead reckoning for networked games. In Eric Lengyel,
editor, Game Engine Gems 2, pages 307–328. A K Peters, 2011.

[Netcraft 2013] Netcraft. June 2013 Web Server Survey. Netcraft Website, June 2013. Re-
trieved October 2013, from http://news.netcraft.com/archives/2013/06/06/
june-2013-web-server-survey-3.html

[Neumann et al. 2007] Christoph Neumann, Nicolas Prigent, Matteo Varvello, and Kyoungwon Suh.
Challenges in peer-to-peer gaming. SIGCOMM Comput. Commun. Rev., 37(1):79–82, January
2007.

[Ng 1997] Yu-Shen Ng. Designing Fast-Action for the Internet, 1997.

91

http://netty.io/news/2012/02/04/3-3-1-spdy.html
http://netty.io/news/2012/02/04/3-3-1-spdy.html
http://project-voldemort.com/
http://www.webpagetest.org/
http://ageofempiresonline.com
https://www.halowaypoint.com
http://www.midway.com
http://news.netcraft.com/archives/2013/06/06/june-2013-web-server-survey-3.html
http://news.netcraft.com/archives/2013/06/06/june-2013-web-server-survey-3.html

[Nordwall 2013a] Patrik Nordwall. 50 million messages per second - on a single machine. Let
It Crash blog, 2013. Retrieved November 2013, from http://letitcrash.com/post/
20397701710/50-million-messages-per-second-on-a-single-machine

[Nordwall 2013b] Patrik Nordwall. Durable mailbox as a default mailbox. Akka Mailing List, 2013.
Retrieved October 2013, from https://groups.google.com/d/topic/akka-user/
X_CI9fafRmU/discussion

[Olson et al. 1999] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley db. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ATEC ’99, pages 43–43,
Berkeley, CA, USA, 1999. USENIX Association.

[Ousterhout 1996] John Ousterhout. Why threads are a bad idea (for most purposes). In USENIX Winter
Technical Conference, January 1996.

[Pachev 2007] Sasha Pachev. Understanding MySQL Internals. O’Reilly Media, Inc., 2007.

[Plugge et al. 2010] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to Mon-
goDB: The NoSQL Database for Cloud and Desktop Computing. Apress, Berkely, CA, USA, 1st
edition, 2010.

[Rabl et al. 2012] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor Muntés-Mulero,
Hans-Arno Jacobsen, and Serge Mankovskii. Solving big data challenges for enterprise application
performance management. Proc. VLDB Endow., 5(12):1724–1735, August 2012.

[Richmond and Williams 2011] Shane Richmond and Christopher Williams. Millions of internet users
hit by massive sony playstation data theft. The Telegraph, 2011.

[Ridgway 2011] Jamie Ridgway. Actor-based programming. In Code PaLOUsa, 2011.

[Ritchie 2013] Brian Ritchie. RavenDB high performance. Packt Publ., Birmingham, 2013.

[Rivest 1992] Ron Rivest. The MD5 Message-Digest Algorithm, 1992.

[Rob et al. 2007] Peter Rob, Carlos Coronel, and Keeley Crockett. Database Systems: Design, Imple-
mentation and Management. Course Technology Press, Boston, MA, United States, international
edition, 2007.

[Rowstron and Druschel 2001] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Middleware
’01, pages 329–350, London, UK, UK, 2001. Springer-Verlag.

[Sadalage and Fowler 2013] Pramod J. Sadalage and Martin Fowler. NoSQL distilled : a brief guide to
the emerging world of polyglot persistence. Addison-Wesley, Upper Saddle River, NJ, 2013.

[SBT 2013] SBT. sbt-assembly. github, 2013. Retrieved November 2013, from https://github.
com/sbt/sbt-assembly

[Schiele et al. 2007] Gregor Schiele, Richard Sueselbeck, Arno Wacker, Torben Weis, Joerg Haehner,
and Christian Becker. Requirements of peer-to-peer-based massively multiplayer online gaming.
In Proceedings of the Seventh International Workshop on Global and Peer-to-Peer Computing,
organized at the IEEE/ACM International Symposium on Cluster Computing and the Grid 2007,
CCGRID 2007, Rio de Janeiro, Brazil, May 2007.

[Schroeder 2013] Kevin Schroeder. Why is FastCGI /w Nginx so much faster than Apache /w mod php?
ESchrade blog, 2013. Retrieved October 2013, from http://www.eschrade.com/page/
why-is-fastcgi-w-nginx-so-much-faster-than-apache-w-mod_php/

92

http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine
http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine
https://groups.google.com/d/topic/akka-user/X_CI9fafRmU/discussion
https://groups.google.com/d/topic/akka-user/X_CI9fafRmU/discussion
https://github.com/sbt/sbt-assembly
https://github.com/sbt/sbt-assembly
http://www.eschrade.com/page/why-is-fastcgi-w-nginx-so-much-faster-than-apache-w-mod_php/
http://www.eschrade.com/page/why-is-fastcgi-w-nginx-so-much-faster-than-apache-w-mod_php/

[Schulzrinne et al. 2003] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications, 2003.

[ServerStack 2012] ServerStack. 5 Ways To Speed Up Your Website With Nginx Web Server. online,
2012. Retrieved October 2013, from https://www.serverstack.com/blog/2012/
02/07/5-ways-to-speed-up-your-website-with-nginx-web-server/

[Shea et al. 2013] Ryan Shea, Jiangchuan Liu, Edith C. H. Ngai, and Yong Cui. Cloud gaming: Archi-
tecture and performance. IEEE Network, 27(4), 2013.

[Silberschatz et al. 2008] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. Wiley Publishing, 8th edition, 2008.

[Sissel 2010] Jordan Sissel. SSL handshake latency and HTTPS optimizations. semicomplete web-
site, June 2010. Retrieved October 2013, from http://www.semicomplete.com/blog/
geekery/ssl-latency.html

[Stewart et al. 2006] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen. Stream Control
Transmission Protocol (SCTP) Specification Errata and Issues. RFC 4460 (Informational), April
2006.

[Stoica et al. 2001] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev., 31(4):149–160, August 2001.

[Sumbaly et al. 2012] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam
Shah. Serving large-scale batch computed data with project voldemort. In Proceedings of the 10th
USENIX conference on File and Storage Technologies, FAST’12, pages 18–18, Berkeley, CA,
USA, 2012. USENIX Association.

[Suszek 2013] Mike Suszek. Alliance wins The International 2013 Dota 2 tour-
nament, earns over $1.4 million. Joystiq Website, August 2013. Re-
trieved December 2013, from http://www.joystiq.com/2013/08/12/
alliance-wins-the-international-2013-dota-2-tournament-earns-ov/

[Thomas et al. 2012] Bryce Thomas, Raja Jurdak, and Ian Atkinson. Spdying up the web. Commun.
ACM, 55(12):64–73, December 2012.

[Tilkov and Vinoski 2010] Stefan Tilkov and Steve Vinoski. Node.js: Using javascript to build high-
performance network programs. IEEE Internet Computing, 14(6):80–83, November 2010.

[Typesafe 2013] Typesafe. Akka Scala Documentation. Typesafe Inc, 2.2.1 edition, August 2013.

[Valve 2012] Valve. Source Multiplayer Networking. Valve Developer Community, 2012. Re-
trieved 1 July 2012, from https://developer.valvesoftware.com/wiki/Source_
Multiplayer_Networking

[van der Lans 2010] Rick F. van der Lans. InfiniteGraph: Extending Business, Social and Government
Intelligence with Graph Analytics. Technical report, R20/Consultancy, September 2010.

[Venners 2011] Bill Venners. Writing Concurrent, Scalable, Fault-Tolerant Systems with Akka 1.0.
Artima Developer Website, 2011. Retrieved June 2013, from http://www.artima.com/
scalazine/articles/akka_jonas_boner.html

[Virkki 2013] Jyri J. Virkki. Using node.js for serving static files. online, 2013. Re-
trieved December 2013, from http://www.virkki.com/jyri/articles/index.
php/using-node-js-for-serving-static-files/

93

https://www.serverstack.com/blog/2012/02/07/5-ways-to-speed-up-your-website-with-nginx-web-server/
https://www.serverstack.com/blog/2012/02/07/5-ways-to-speed-up-your-website-with-nginx-web-server/
http://www.semicomplete.com/blog/geekery/ssl-latency.html
http://www.semicomplete.com/blog/geekery/ssl-latency.html
http://www.joystiq.com/2013/08/12/alliance-wins-the-international-2013-dota-2-tournament-earns-ov/
http://www.joystiq.com/2013/08/12/alliance-wins-the-international-2013-dota-2-tournament-earns-ov/
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://www.artima.com/scalazine/articles/akka_jonas_boner.html
http://www.artima.com/scalazine/articles/akka_jonas_boner.html
http://www.virkki.com/jyri/articles/index.php/using-node-js-for-serving-static-files/
http://www.virkki.com/jyri/articles/index.php/using-node-js-for-serving-static-files/

[Vogels 2009] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

[von Behren et al. 2003] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad idea
(for high-concurrency servers). In Proceedings of the 9th Conference on Hot Topics in Operating
Systems - Volume 9, HOTOS’03, pages 4–4, Berkeley, CA, USA, 2003. USENIX Association.

[W3Techs 2013] W3Techs. Usage of web servers for websites. W3Techs Website, 2013. Retrieved Octo-
ber 2013, from http://w3techs.com/technologies/overview/web_server/all

[Wang et al. 2012] Vanessa Wang, Frank Salim, and Peter Moskovits. The Definitive Guide to HTML5
WebSocket. Apress, December 2012.

[Webber 2012] Jim Webber. A programmatic introduction to neo4j. In Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications: Software for Humanity, SPLASH ’12,
pages 217–218, New York, NY, USA, 2012. ACM.

[White 2007] Tom White. Consistent Hashing. Java.net blogs, November 2007. Retrieved Octo-
ber 2013, from https://weblogs.java.net/blog/tomwhite/archive/2007/11/
consistent_hash.htmll

[Xu et al. 2009] Ke Xu, Meina Song, Xiaoqi Zhang, and Junde Song. A cloud computing platform
based on p2p. In IT in Medicine Education, 2009. ITIME ’09. IEEE International Symposium on,
volume 1, pages 427–432, Aug 2009.

[Yahyavi and Kemme 2013] Amir Yahyavi and Bettina Kemme. Peer-to-peer architectures for mas-
sively multiplayer online games: A survey. ACM Comput. Surv., 46(1):9:1–9:51, July 2013.

[Yamamoto et al. 2005] Shinya Yamamoto, Yoshihiro Murata, Keiichi Yasumoto, and Minoru Ito. A
distributed event delivery method with load balancing for mmorpg. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for games, NetGames ’05, pages 1–8, New
York, NY, USA, 2005. ACM.

[Yu et al. 2012] Su-Yang Yu, Nils Hammerla, Jeff Yan, and Peter Andras. Aimbot detection in online
fps games using a heuristic method based on distribution comparison matrix. In Proceedings of
the 19th International Conference on Neural Information Processing - Volume Part V, ICONIP’12,
pages 654–661, Berlin, Heidelberg, 2012. Springer-Verlag.

[Ziebart 2011] Alex Ziebart. World of warcraft dips to a mere 11.4 million subscribers. WoW Insider,
2011, May 2011.

94

http://w3techs.com/technologies/overview/web_server/all
https://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.htmll
https://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.htmll

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Scope
	Dissertation Overview

	Background
	Introduction
	Online Gaming
	Type of Games
	Online Gaming Background
	Transporting Data within Online Games

	Challenges in Peer-To-Peer Gaming Networks
	Game State Management
	Scalability
	Fault-Tolerance
	Delay Management
	Cheating

	Overview of Current Peer-To-Peer Gaming Protocols
	Application Layer Multicast
	Supernode Control
	Mutual Notification
	Evaluation of Protocols

	Hybrid Gaming Networks
	Conclusion

	Research Questions and Methodology
	Introduction
	Research Questions
	Research Aim
	Research Methodology
	Conclusion

	Building Blocks
	Introduction
	Communication Protocols
	Hypertext Transfer Protocol (HTTP)
	WebSocket
	SPDY
	Summary

	Distributed Data Systems
	Dilemmas Facing Distributed Database Systems
	Types of Distributed Database Systems
	Project Voldemort
	Summary

	Models of Concurrency
	Overview
	Concurrent Programming Paradigms
	Actor model
	Akka
	Summary

	Conclusion

	System Design and Architecture
	Introduction
	System Overview
	Communication Protocol between Nodes
	Akka dispatcher
	Routers
	Mailbox
	Fault-Tolerance
	System Configuration
	Communication Format Between Nodes

	System-Coordinator
	Storage
	Messaging
	Service Routing
	Supernode System
	Instructions For Running
	Conclusion

	Testing and Analyses
	Introduction
	Communication Protocol Evaluation
	Evaluation Methodology
	Environment
	Results and Analysis

	Front-end Service Evaluation
	Evaluation Methodology
	Environment
	Results and Analysis

	Actor System Evaluation
	Environment
	Actor Scalability
	Varying User Loads
	Actor Fault-Tolerance

	Actor Reactive Monitoring
	Typesafe Console
	Evaluation Methodology
	Environment
	Results and Analyses

	Distributed Environment Evaluation
	Evaluation Methodology
	Environment
	Results and Analysis

	Conclusion

	Conclusions, Contributions and Future Work
	Conclusion
	Contributions and Future work

	API
	SPDY Benchmark Results
	References

