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This thesis aims to provide a summary on computational approaches to solving the

Compressed Sensing problem. The theoretical problem of solving systems of linear

equations has long been investigated in academic literature. A relatively new field,

Compressed Sensing is an application of such a problem. Specifically, with the ability to

change the way in which we obtain and process signals. Under the assumption of sparse

signals, Compressed Sensing is able to recover signals sampled at a rate much lower than

that of the current Shannon/Nyquist sampling rate. The primary goal of this thesis, is to

describe major algorithms currently used in the Compressed Sensing problem. This is done

as a means to provide the reader with sufficient up to date knowledge on current

approaches as well as their means of implementation, on central processing units (CPUs)

and graphical processing units (GPUs), when considering computational concerns such as

computational time, storage requirements and parallelisability.
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Chapter 1

Introduction

1.1 Overview

Our continued voyage into an ever deepening digital world shows no sign of slowing down.

Armed with consumers possessing insatiable technological thirst and businesses

demanding the competitive edge, the digital revolution spreads to every corner of the globe.

With such demands increasing day by day, significant pressure has been placed on the

development of new and continually improving technology.

One such area, is the development of new sensing systems. Today’s society has become

accustomed to a manner and means of instant information acquisition as well as high

definition media consumerism. Many of these enjoyed liberties are provided off the back of

various forms of Signal Processing.

Numerous Signal Processing based applications, are under severe strain to keep up with this

modern deluge of data and digitisation. However, a timeous and emerging field has

garnered a significant amount of attention in the fields of Signal/Image processing and

Information theory. Compressed Sensing or Compressive Sampling, a field in its relative

infancy, has shown to have tremendous potential for future applications.

Compressed Sensing has a plethora of applications, such as tomography, radar,

communication and astronomy to name a few [3]. This notion of Compressed Sensing is a

new form of sampling theory. Deviating from the established theory developed by

Shannon/Nyquist by making use of sparse signals, and thus allowing for the reconstruction

of signals and images from what was previously understood to be insufficient information.

1



1.2: What Is Compressed Sensing 2

The traditional approach to sampling was one that obeyed the Shannon/Nyquist theorem,

which states that an analogue signal can be reconstructed perfectly from its samples:

providing it was sampled at a rate at least twice the highest frequency present in the signal1.

Although the Shannon/Nyquist sampling theorem specifies to avoid a loss of information in

the signal, we are required to sample at this aforementioned Nyquist rate [5, 6]. This

potentially has serious repercussions. A prominent concern for example, is the application

of digital imagery and high-definition video, where the Nyquist rate is simply too high. The

current process of acquiring the entire signal and subsequently compressing it, often

requires vast resources when considering extremely large signals. To which the majority of

the captured information is to be thrown away during compression. The quintessential

question then would be, “why don’t we simply combine these processes and just sense the

essential information in the signal directly?" (ie. fewer measurements). Compressed Sensing

appeals to this notion, with results showing promising indications of success [7].

1.2 What Is Compressed Sensing

“Compressed Sensing," a term coined by David Donoho in [8], attempts to allow for exact

signal reconstruction at sample rates well below the expected Nyquist rate.

Particularly, Compressed Sensing deals with sparse signals. Generally speaking, signals

aren’t sparse. However, it is possible for such a signal to be sparse in some predetermined

basis (where most of the coefficients are zero). The use of a traditional measurement

technique would heavily oversample such a signal since the bulk of the signal has little to no

important information.

The ground breaking and pioneering work conducted in this area belonged not only to

Donoho, but also the work done by Candés, Tao and Romberg [7, 9]. The fundamental

papers by Candés and Tao [10, 11] and Donoho [8], showed the use of linear programming

to efficiently and successfully reconstruct signals with high levels of accuracy.

Following these initial strides forward, numerous alternative methods have been developed.

Claiming faster, possibly superior techniques to those of pioneering linear programming

algorithms. Tropp and Gilbert [12] proposed Orthogonal Matching Pursuit (OMP), an

extention of the original Matching Pursuit techniques developed by Mallat and Zhang [13]

already in 1993. This was advanced further with Stagewise Orthogonal Matching Pursuit

1This rate is known as the Nyquist rate [4].

University of the Witwatersrand



1.2: What Is Compressed Sensing 3

(StOMP) [14], and even more so by Needell and Tropp [15] who proposed Compressive

Sampling Matching Pursuit (CoSaMP). Even gradient pursuit methods have been developed

by Blumensath and Davies [16], who also proposed the idea of Threshold Based Algorithms

[17].

1.2.1 Importance

The above techniques represent the immense speed at which the field of Compressed

Sensing is expanding. In the space of 7 years the spectrum and size of published papers is

simply staggering. Combining the disciplines of mathematics, applied mathematics,

computer science amongst others has shown massive cross-discipline usage and definitely

provides credence to Compressed Sensing as a viable theory to combat the present day

concern of data deluge.

Compressed Sensing proposes numerous advantages to a multitude of fields. Areas such as

error correction, image processing, radar, seismology, tomography and astronomy are just

few [3, 18], which may benefit from what Compressed Sensing has to offer.

Further a major advantage to Compressed Sensing is how these potentially improvable

fields can all be formulated down to the same mathematical problem. Thus, solving this

problem in a general case, solves arrays of problems in completely different fields.

University of the Witwatersrand



1.3: Important Theory 4

1.3 Important Theory

Before we may begin formally describing the Compressed Sensing problem, it may be frugal

to address some important mathematical requirements.

1.3.1 Sparsity and Compressibility

The concept of sparsity can be illustrated by introducing the set {1,2, ..., N } or notionally [N ],

along with the corresponding cardinally of set S, card(S)2. Formally, the definition follows,

Definition 1.1. ([19]) The Support of a vector x ∈ RN is the index set of its non-zero entries,

ie;

supp(x) = { j ∈ [N ] : x j ̸= 0}. (1.1)

Further, the vector x ∈RN is called s-sparse if at most s of its entries are non-zero, ie, if;

||x||0 = card(supp(x)) ≤ s. (1.2)

Often, sparsity itself is a strong constraint to impose. Therefore, it is perhaps shrewd to make

use of a weaker concept entitled compressibility. This then, allows for the consideration of

vectors which are close to those of s-sparse nature. The compressibility of a vector may be

measured by the error of best s-term approximation. Consider the following definition [19].

Definition 1.2. For p > 0, the ℓp error of best s-term approximation to a vector x ∈ RN is

defined by;

σs(x)p = inf{||x − z||p , z ∈ RN is s-sparse }. (1.3)

In the above definition, σx (x)p achieves its infimum by an s-sparse vector z ∈ RN whose

nonzero elements are equal to the s largest absolute value elements of x.

Thus we may call x ∈ RN a compressible vector if the error of its best s-term approximation

decays in s. That is to say sparsity decays according to a power law described by the ℓp -ball

to be discussed later.

In generality, signals found and used in reality are often not exactly sparse. Importantly,

both sparse and compressible signals can be represented with a high degree of accuracy by

only preserving the values and locations of the largest coefficients of the signal. Thus,

2The cardinality of a set is a quota of the number of entries or elements found within the set

University of the Witwatersrand



1.3: Important Theory 5

should x be sparse, then this signal can be efficiently approximated from only a few

significant coefficients [20]. This process is called sparse approximation which forms the

basis of transform coding [21].

University of the Witwatersrand



1.4: Organisation 6

1.4 Organisation

This thesis aims at to provide the reader with a comprehensive review and knowledge base

in terms of the main Compressed Sensing problem. This is then built upon, by approaching

major recovery algorithms and methods with a computational concern. This allows for

direct comparison and analysis of the various methods taking into account the importance

of speed, computational complexity and storage costs.

More specifically, Chapter 1 considers the outlying idea behind Compressed Sensing. This is

done on a more conceptually based approach and slowly introduces the fundamental

problem in its simplest mathematical form.

Chapter 2 deals with the many recovery algorithms previously mentioned. A thorough

literature review on these techniques is executed. This is done to provide the reader with

knowledge on the specific tools to be wielded when tackling Compressed Sensing.

Chapter 3 involves the implementation of these methods and algorithms with specific

results targeted. These can then be analysed to classify the specific use and effectiveness of

each approach.

Chapter 4 allows for a discussion of the above implemented methods and draws some

concessions and possible extensions through the use of different computational hardware.

A final conclusion for a qualitative performance metric is drawn.

1.5 Problem Formulation

1.5.1 Goal of Compressive Sensing

Consider a real valued, finite length, one-dimensional, discrete time signal x ∈ RN (which

can be regarded as an N ×1 column vector). Compressive Sensing’s claim is then: given M

measurements, where M ≪ N , often we may reconstruct the original signal x in manner

which the measurements are chosen at random or rather non-adaptively.

Now given that any signal within RN may be represented in terms of some basis of N × 1

vector {ψ}N
i=1 [2]. For the purpose of simplicity we may assume the basis to be orthonormal3.

We may now construct an N × N orthonormal basis matrix Ψ = [ψ1,ψ2, ..,ψN ] where the

3i.e. two vectors in an inner product space are orthonormal if they are orthogonal.

University of the Witwatersrand



1.5: Problem Formulation 7

i−th column is the i−th basis vector ψi [2]. This allows us to express any signal x ∈ RN as a

linear combination of these basis vectors by,

x =
N∑

i=1
ziψi or x =Ψz, (1.4)

where z ∈ RN is the vector of inner products zi = 〈x,ψi 〉. Note that x and z are equivalent

representations of the same signal, however in different domains [2]. Typically we say that x

is in the time domain (time dependent signals such as audio) or in the spatial domain (for

spatially dependent signal like images), z is referred to be in the Ψ domain.

Measuring the given signal x is undertaken by sampling it with respect to a measurement

matrix Φ ∈ RM×N , where Φ pertains to rows ϕi for 1 ≤ i ≤ M . As such, there is a

corresponding observation yi which relates to the respective rows from Φ [2]. That is it say,

yi = 〈ϕi , x〉, (1.5)

which written in vector notation returns,

y =Φx. (1.6)

Clearly, if M ≥ N and given that the rows of Φ span RN then we can completely reconstruct

the signal x from its observations y . Thus substituting x =Ψz into equation (1.6) we obtain,

y =Φx =ΦΨz =Θz, (1.7)

where Θ=ΦΨ.

The major question asked by Compressed Sensing is the case when M ≪ N ? This case

outlines the fundamental problem of an under-determined system as can be seen in Figure

(1.1).

Since we are assuming the inner products z are sparse, specifically that it is a linear

combination of only s ≪ N basis vectors (i.e a linear combination of s columns of Φ as can

be seen in Figure (1.2)), then we may say that z is s-sparse with respect to the basis Ψ. These

columns correspond to the location of non-zero entries. Note the equivalence to equations

(1.4) and (1.7). By solving equation (1.7) for z, we are equivalently solving for x as Ψ is a

predetermined basis.

One of the simplest ways theoretically to recover a vector from its measurements y = Φx is

to solve the ℓ0-minimisation problem [18],
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s

FIGURE 1.1: Undetermined System [1]

FIGURE 1.2: Linear Combination [1]

min
x

||x||0 subject to y =Φx. (1.8)

This provides precise reconstruction since the ℓ0 norm calculates the sparsity of every vector

x and finds the sparest vector. However, due to the unavoidable combinatorial search, this

algorithm is NP-Hard [22].

1.5.2 NP-Hardness

Since the major vein of interest of this thesis involves the computational approach to the

Compressive Sensing problem. A small discussion on the notions of computational

complexity would prove fruitful. To begin with, the idea of an algorithm with a polynomial

runtime, is one in which the algorithm performs its task in a number of steps which are

bounded by a polynomial expression within the size of the input [19].
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The various classes of decision problems can be listed as follow [19],

• P- problems consist of problems where there exists a polynomial-time algorithm

finding a solution.

• N P-problems pertain to problems where there exists a polynomial-time algorithm

certifying a solution.

• N P-hard problems encompass all problems for which a solving algorithm could be

transformed in polynomial time into a solving algorithm for any N P-problems.

• N P-complete problems consist of all problems which belong to both N P and N P-hard

classes. This can be seen in figure 1.3.

FIGURE 1.3: Visual Summary of Decision Problem Classes

We may now reduce the goals of Compressed Sensing to two pertinent points. To design a

matrix Φ, along with a reconstruction algorithm, for which s-sparse signals require a much

smaller number of measurements (M ≈ s) to reconstruct the given signal.
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Chapter 2

Main Algorithmic Approaches

Compressed Sensing has provided numerous methods and techniques to solve the sparse

recovery problem outlined above. The initial work, undertaken by Donoho, Candés, Tao,

Romberg, et al., was essentially an optimisation problem solved using linear programming.

While this differs from the later developed methods such as greedy algorithms, all

approaches have their own advantages and disadvantages. The first method developed in

this field, basis pursuit, was essentially a linear programming method. We consider this first.

10
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2.1 Basis Pursuit

It was briefly mentioned with equation (1.8), that sparse recovery problems can be

formulated as an NP-Hard problem. In the late eighties, Donoho and others [14, 23], proved

that in the case of certain measurement matrices Φ, the NP-Hard problem can be relaxed to

the equivalent problem,

min
x

||x||1 subject to y =Φx. (2.1)

Later Candés and Tao proved that equations (1.8) and (2.1) are equivalent for certain

measurement matrices providing the satisfaction of a particular property [10].

2.1.1 The Recovery Algorithm

Knowing that the vector x is sparse, how does one aim to recover x from the corresponding

observations y? An intuitive approach when generally dealing with problems such as these

is to obtain the best possible x. The common avenue for such an objective would be the

involvement of a least squares approximation through the minimisation of the ℓ2 norm. In

terms of the problem at hand. The minimisation of the ℓ2 norm would essentially be

searching for the smallest energy found on the hyperplane of the underdetermined system

as can be seen in Figure (2.1).

FIGURE 2.1: Insufficient ℓ2 Representation [2]
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Unfortunately, this approach yields the incorrect answer as can be seen in Figure (2.1). Due

to the fact that sparse signals are always found close to or on the coordinate axes. This is in

part due to the fact that the ℓ2 geometry is not the optimal norm to construct the signal x.

Since the closer the ℓ2 norm approaches the hyperplane, the worse the reconstruction

becomes.

FIGURE 2.2: 3D Norm Representations. ℓ1 left, ℓp centre and ℓ2 right.

Clearly then this is not the norm to overcome our initial NP-Hard problem. Chen, Donoho

and Saunders were the first to establish the idea of substituting the ℓ0-norm with the closet

convex norm, the ℓ1-norm [24]. This paper lead to the minimisation problem described by

equation (2.1).

Thus the shape of the ℓ1 ball and its subsequent minimisation promotes sparsity. This can

be seen in Figure (2.3), with the ℓ1 ball intersecting the hyperplane directly on the

coordinate axis.

Therefore, Basis Pursuit employs the geometry of the octahedron to recover the required

sparse signal x whilst the measurement matrices Φ satisfy the deterministic property to

follow.

2.1.2 The Measurement Matrix

Being a primary goal of Compressed Sensing. We require an apt description on the design of

the matrix Φ. The main property of the matrix Φ, is the guarantee that any original

information in the signal x is not destroyed through measurement. However, due to the fact

that M < N and we have an underdeterminded system, the process of solving x is an
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FIGURE 2.3: Correct ℓ1 Representation [2]

ill-posed one.

As already mentioned, by restricting the problem to s-sparse signals, we can reduce the

ill-posed problem to a more manageable one as seen in the right of Figure (1.2). The

concern here is that we assume the positions of s non-zero entries of s are known

beforehand. In this particular case, we could then form the M × s matrix Φ where M ≫ s and

solve the least squares problem associated to the non-zero positions of x. A sufficient

condition for any s-sparse vector v ∈RN to be well conditioned is,

1−ϵ≤ ||Φv ||2
||v ||2

≤ 1+ϵ, (2.2)

for some ϵ > 0, with the matrix Φ preserving the length of these s-sparse vectors. Again,

as previously mentioned, the positions of the non-zero coefficients are not known a priori.

Fortunately, it can be shown that a sufficient condition for a stable inverse for s-sparse signals

is for Φ to satisfy not only equation (2.2) but also the Restricted Isometry Property [9].

2.1.3 Restricted Isometry Property

In an attempt to providing a parameter to determine the quality of the measurement matrix,

a primary aim of Compressed Sensing. Candés and Tao proposed a concept refered to as the

Restricted Isometry Property [10, 11, 25]. The definition follows;

Definition 2.1 (Restricted Isometry Property, RIP). dummy text

For all x so that ||x||0 ≤ s, it is said that Φ satisfies the RIP with the isometry constant δs , if δs
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FIGURE 2.4: Distance Preservation through Dimensionality Reduction

is the smallest value satisfying,

(1−δs)||x||22 ≤ ||Φx||22 ≤ (1+δs)||x||22. (2.3)

This measurement matrix Φ, can be thought of as the mapping of the signal from the higher

dimensional signal space, down to the lower dimensional measurement space. More

specifically, we can consider the RIP as the property that dictates distance preservation or

lack there of between two particular entries x1 and x2. Visually we can see this in Figure

(2.4). Through the dimensionality reduction, we ideally would like

||x1 − x2||2 ≈ ||Φx1 −Φx2||2. That is to say, when reducing from N to M dimensions, we

would like the distance between two arbitrary signals to remain roughly the same.

Now given this RIP, we are still not able to know if a matrix Φ has this property since testing

the matrix computationally for the RIP is combinatorial.

Fortunately, it has been shown that many types of matrices satisfy the RIP with high

probability. More specifically, that M × N matrices can be randomly generated in

accordance to the following:

• The entries of Φ must be i.i.d. normal.

• Or the entries of Φ are i.i.d. symmetric Bernoulli distributed (i.e. ± 1 matrix), or any

other subgaussian or Fourier distribution.

Any matrix adhering to the above satisfy the RIP with high probability so long as the

measurements taken satisfy,

M ≥ cslog
( N

s

)
, (2.4)

where c is just a constant. The proofs corresponding to above matrices satisfying the RIP are

credited to Baranuik et al. [26], and Mendelson et al. [27].
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It is ideal to use the RIP as a means of analysing the performance of different Compressed

Sensing recovery algorithms. This however, is not easily done due to the difficulty in finding

δs for any given measurement matrix [28]. An alternative is to establish a bound on δs with

mutual coherence.
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2.1.4 Mutual Coherence

Donoho and Hou introduced the concept of mutual coherence as another property of the

measurement matrix. Essentially, mutual coherence is a measure of the ability of suboptimal

algorithms1 to efficient and correctly identify the true representation of a sparse signal [29,

30]. The definition of mutual coherence follows.

Definition 2.2. (Mutual Coherence)

Let ϕi and ϕ j be two columns of Φ. Then the mutual coherence is defined as,

η(ϕi ,ϕ j ) = sup{|〈ϕi ,ϕ j 〉| : ∀i , j , where i ̸= j }. (2.5)

Sufficiently small values of functional η(ϕi ,ϕ j ) guarantees the possibility of ideal atomic

decomposition. So should two bases (columns) have a small value of η, then they are

mutually incoherent. Since 0 ≤ η ≤ 1, if two orthobases have an element in common then

η = 1 [31]. This restriction is easier to calculate than the RIP parameter due to its

computational complexity scaling exponentially with the number of columns in Φ [28].

2.1.5 Stability

In practice, the vectors required to recover via basis pursuit, or others for that matter, as

already previously mentioned are sparse only in ideal cases. Those cases not included above

involve the recovery of x with an error controlled by its distance to s-sparse vectors [19].

This property then, can be considered as the stability of the reconstruction algorithm with

respect to the sparsity defect. Firstly, it can be shown that basis pursuit proves stable under a

more rigorous adaptation of the null space property (NSP). The definition follows,

Definition 2.3. ([19]) A matrix Φ ∈ RM×N is said to satisfy the stable null space property with

constant 0 < ρ < 1 relative to a set S ⊂ [N ] if,

||vS ||1 < ρ||vS̄ ||1 for all v ∈ ker Φ, (2.6)

where v ∈ RN , while vs is the vector in RS (i.e. the restriction of v to the indices in S) and v s̄

its complement. It is also said to satisfy the null space property of order s, if it satisfies the

null space property relative to any set S ⊂ [N ] with card(S) ≤ s.

1e.g matching pursuit and basis pursuit.
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Fortunately, as shown by Cohen, Dahmen and DeVore in [32], the RIP and NSP are linked

closely. Now, a major concern is that of creating a matrix Φ given the basis Ψ, resulting in Θ

pertaining to high order.

As such that stability of the measurement matrix can also be ensured by demanding a high

level of incoherence between the measurement matrix Φ and the basis matrix Ψ. We may

formally define this as follows:

Definition 2.4. (Stability Coherence)

The coherence between the sensing(measurement) basis Φ and the basis matrix Ψ is

defined as,

η(Φ,Ψ),
p

N max
i≤ j ,k≤N

|〈ϕi ,ψ j 〉|. (2.7)

For any pair of orthonormal matrices Φ and Ψ, 1 ≤ η(Φ,Ψ) ≤ p
N . Conceptually, this

coherence is measuring the largest correlation between any two elements of Φ and Ψ.

Should this coherence value be small, then this implies that the basis vectors cannot

sparsely represent the vectors in Φ and similarly the converse is also true [8, 9, 33].

2.1.6 Remarks on Basis Pursuit

We know that although solving the ℓ0 minimisation problem is guaranteed to return the

correct solution, being an NP-compete problem, it is infeasible computationally. Thus, the

pertinent point here is that Compressed Sensing shows there exists substantially faster

algorithms, that with high probability, solve this problem.

A large amount of the early work in Compressed Sensing involved the use of the ℓ1 norm as

a substitute in the ℓ0 minimisation problem. Candés and Romberg showed [34], that if x is

s-sparse and provided the number of measurements M taken satisfy,

M ≥ cslog
( N

δs

)
, (2.8)

then with probability exceeding 1−δs , the solution to the problem,

x = arg min||x̂||1, subject to Φx̂ = y, (2.9)

is x̂ = x [33]. So far, all the cases have dealt with the noiseless scenario. Fortunately

Compressed Sensing is robust in the ℓ1 minimisation problem, as small error or noise does

not increase throughout the ℓ1 minimisation. Generally speaking, error and noise

propagation before and after the use of Compressed Sensing is often of the same order.
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Mathematically, in the case with noise, ||Φx̂ − y ||2 ≤ ϵ, where ϵ is a tolerance parameter. The

ℓ1 minimisation problem can be reformulated as the convex optimisation problem,

argmin
x̂∈RN

||y −Φx̂||1, (2.10)

accountable from a theorem by Candés et al [35]. This can be stated as a linear program,

min
N∑

i=1
ti subject to − ti ≤ x̂i ≤ ti , y =Φx̂ (2.11)

which is officially known as basis pursuit. The above problem has a computational

complexity of O (N 3) [33, 35, 36].
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2.2 Greedy Algorithms

The earlier work covered in Section 2.1, showed that Compressed Sensing could rely on the

solution to the ℓ1 minimisation problem being the correct solution as well as providing this

within computationally acceptable runtimes. However, an alternative approach using

different algebraic tools has also been developed. “Greedy Algorithms," are alternative

algorithms that attempt to find faster or superior performance in the signal reconstruction.

Most greedy algorithms attempt to first find indices which correspond to the non zero

values in x and then assign the correct values to theses indices [28]. The majority of these

techniques are extremely robust in the presence of noise and work with considerable

efficiency. A major advantage to greedy algorithms is speed. However, this alternative

approach is not without challenges of its own. Greedy algorithms often rely on signal

processing heuristics, a result of this is difficulty in proving the performance of these

methods over the convex relation based approaches as discussed in Section 2.1.

The large majority of these techniques can be classified into two main groups. Those that

belong to variations of the matching pursuit technique or those belonging to thresholding

algorithms [33].
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2.2.1 Some Mathematical Requirements

As already said, greedy algorithms are harder to analyse than the convex optimisation

methods. However, these greedy algorithms offer computational efficiency and easy

implementation, often with the potential for better performance.

Before we can formally define our first greedy method, it would be prudent to dispense with

some important theory. Revisiting the idea of the support set mentioned in Chapter 1

Section 1.3, we redefine the notion of the support set to effectively describe greedy

algorithms. The definition follows:

Definition 2.5. (Support Set)

The support set I is a set of indices corresponding to the non-zero elements in the sparse

signal vector x [28],

I , { i : xi ̸= 0}, (2.12)

with the complement,

Ī , { i : xi = 0}. (2.13)

The union of the support set, I ∪ Ī = {1,2, ..., N } is the entire set of indices, while the

intersection of the I ∩ Ī is just the empty set ;.

As such, we are able to pick all the non-zero elements in x and place them sequentially into

the column vector xI = {xi : xi ̸= 0}. The ℓ0 norm of this vector, ||x||0 = |s| ≤ s, is equal to the

magnitude of the support set [28].
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2.2.2 Solution Approaches

The main approach by greedy methods, is that given some measurement vector, it attempts

to either detect or estimate the support set of a sparse signal vector and subsequently

evaluating the associated signal values [28].

Throughout the array of various greedy algorithms, two main approaches are used to

estimate the support set. One such approach iteratively detects the support set elements to

be added to the support set estimate sequentially, one at a time, until the support set itself is

full. More specifically, the algorithm introduces an initial estimate for x (x̂[0] = 0̄), an initial

residual error r [0] = y −Φx̂[0] = y and the empty set I = ∅ (since the number of non-zero

entries in x̂[0] = 0).

Thus each iteration will update these values by adding respective entries to the support I

and subsequently updating the estimate for the signal x̂, whilst decreasing the overall

residual error r . Algorithms using this approach are known as serial pursuit (s-pursuit)

algorithms.

The other approach, establishes an initial guess for the entire support set and iteratively

refines it until such a point that the support set no longer improves through additional

iterations [28]. Algorithms employing such an approach are known as parallel pursuit

(p-pursuit) algorithms.
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2.2.3 Matching Pursuit

The first look at greedy algorithms, takes form in a procedure known as Matching Pursuit

(MP). Matching Pursuit iteratively selects elements which correlate most with the signal.

Matching Pursuit brings the possibility of speed to the table but can require numerous

additional vectors (columns), should it have selected non ideal elements in previous

iterations [37].

Matching Pursuit makes use of matched filter detection. We can define this as follows [28].

Definition 2.6. Let Φ be a matrix containing normalised (orthogonal) columns ϕi and given

the measurement vector y . Then the matched filter detection calculates the magnitude of

the corresponding correlation vector,

|ϕT
i y |, ∀i , (2.14)

and systematically selects one or more indices which index the largest elements.

Although we were not able to use the ℓ2 norm in the original Compressed Sensing problem

due to the underdetermined system, if we were able to have the correct support set I of x,

then we are able to make use of a least squares approximation [28]. Thus, y = ΦI xI

constitutes an overdetermined system. A system which least squares obtains a unique

solution to. Since our vector x pertains to not just non-zero coefficients, we can see that we

can obtain the full reconstruction by filling the remaining indexed entries with zeros, or

rather the complement of xI (x̄I = 0).

We may now formally define the least squares as the subsequent definition [28],

Definition 2.7. The least squares estimation of a signal is the x̂I which minimises the

following,

min
x̂I

||y −ΦI x̂I ||22. (2.15)

Since we are concerned with ΦI possessing full column rank, an estimate can be

reconstructed as,

x̂I =Φ†
I y, (2.16)

where we can define the pseudoinverse as,

Φ†
I = (ΦT

I ΦI )−1ΦT
I . (2.17)
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Clearly in application the true support set I is not known but instead an estimate Î is

generated through the respective greedy algorithm.

In the unique case of having the true support set I , then the reconstruction from equation

(2.16) returns the correct non-zero components, x̂I = xI . As a result in such a case, equation

(2.15) would return zero, with the optimal solution on the hyperplane being found.

Finally, by multiplying equation (2.16) by ΦI ,

ΦI x̂I = Φ†
I yΦI

= (
Φ†

IΦI
)
y

= y, (2.18)

the orthogonal projection, yp of y is found.

The MP algorithm is summarised in Algorithm 1.

Algorithm 1 Matching Pursuit (MP)

1: procedure MP(Φ, y, s) ◃ Required Inputs
2: Initialisation: r [0] = y, x̂[0] = 0̄ ◃ Initialising the residual and support set
3: for i = 1; i = i +1 till stopping criteria is met do
4: g [i ] =ΦT r [i−1]

5: j [i ] = argmax
j

|g [i ]
j |/||Φ j ||2

6: x̂[i ]
j [i ] = x̂[i−1]

j [i ] + g [i ]
j [i ] /||Φ j [i ] ||22

7: r [i ] = r [i−1] −Φ j [i ] g [i ]
j [i ] /||Φ j [i ] ||22

8: end for
9: return x̂[i ],r [i ] ◃ Required Outputs

10: end procedure

Analysing the algorithm above we can see that the approximation of MP is incremental and

one column of Φ is selected at a time and subsequently at each iteration, only the coefficient

associated with the selected column is updated [38].

More specifically, at each iteration, the update x̂[i ]
j [i ] = x̂[i−1]

j [i ] + g [i ]
j [i ] /||Φ j [i ] ||22 will minimise the

approximation cost of ||y −Φx̂[i ]||22 with respect to that particular coefficient.

Importantly, MP often will repeat the selection of the columns of Φ in attempt to improve

the quality of approximation. Should the norm of residual r [i ] be used as the stopping

criteria then the algorithm will terminate within finite iterations. This is due to the fact that

the norm of the residual converges linearly to zero in the cases where the columns of Φ span

RM [38].
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In terms of computational implementation. The matching pursuit algorithm involves heavy

use of matrix multiplication. Thus, it is advisable to impose MP with matrices which allow

for fast implementation such as those based on fast Fourier transforms (FFT). Presently,

there exist packages with impressively quick implementations of MP for problems involving

columns with restricted support [38, 39].
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2.2.4 Orthogonal Matching Pursuit

An extension of Matching Pursuit is Orthogonal matching Pursuit (OMP). Initially proposed

by Mallat et al [13]. OMP rose to early prominence in the 1950’s, hailing from the statisitics

community, albeit under the name stagewise regression [28].

Used in many fields such as machine learning and signal processing, it was first used to

solve the Compressed Sensing problem by Gilbert and Tropp [12].

OMP reduces the disadvantages of MP. Although it is similar to MP, it makes use of a

Gram-Schmidt process orthogonalising the dictionary after each iteration [37]. This ensures

that no elements in the direction of a previously selected column are selected, something

which may happen through use of Matching Pursuit.

Importantly, OMP unlike its predecessor MP, will never reselect a given entry with the

residual orthogonalised to all current entries throughout all iterations.

The algorithm itself fulfils a large computational bias towards matrix-vector multiplication.

However, many computational package exist where these operations are optimised, leaving

the step of orthogonalisation particularly taxing in terms of computational time [38].

More work has been undertaken in regards to the least squares solution in the algorithm.

Methods involving Cholesky factorisation [40], QR factorisation [41] and gradient methods

have been proposed. OMP provides a fast algorithm, both computationally as well as

theoretically but cannot offer guarantees to match those of Basis Pursuit [18]. OMP however,

still has the property to recover a s-sparse signal completely, provided the number of

measurements taken are closely proportional to s [42].

Orthogonal Matching Pursuit is summarised in Algorithm 2 below.

Algorithm 2 Orthogonal Matching Pursuit (OMP)

1: procedure OMP(Φ, y, s) ◃ Required Inputs
2: Initialisation: I [0] =∅,r [0] = y, x̂[0] = 0̄
3: ◃ Initialising the residual and support set and estimate for x̂
4: for i = 1, i = i +1 till the stopping criteria do
5: g [i ] =ΦT r [i−1]

6: j [i ] = argmax
j

|g [i ]
j |/||Φ j ||2

7: I [i ] = I [i−1] ∪ j [i ]

8: x̂[i ] =Φ†
I [i ] y

9: r [i ] = y −Φx̂[i ]

10: end for
11: return x̂[i ],r [i ] ◃ Required Outputs
12: end procedure
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Elaborating on the OMP algorithm, the approximation for x gets updated per iteration by

the projection of y orthogonally onto the columns of Φ accompanied with the present

support set I [i ]. Importantly, this allows OMP to minimise ||y −Φx̂||2 over all x̂ with support

I [i ]. Therefore the major difference from MP to OMP, is the fact that minimisation is

undertaken with respect to all currently selected coefficients [38].

Tropp and Gilbert successfully showed that OMP recovers a fixed signal with high

probability by proving the following [12]:

Theorem 2.8. (OMP) Signal Recovery [12]

Fix the RIP parameter δ ∈ (0,0.36) and let Φ be an N × s Gaussian measurement matrix with

measurements M ≥ cMlog(s/δ). Let x be a s-sparse signal in RN . Then with probability

exceeding 1−2s, OMP correctly reconstructs signal x from its measurements Φx.

Similar results are found in the case of a subGaussian measurement matrix Φ. A

disadvantage is that the above probability holds only for fixed signals. It is also unknown as

to whether OMP works in the case of random Fourier matrices [18].

Additional concerns with the use of OMP, especially to that of large scale data, is that of

computational and storage costs of a single iteration being quite high for large scale

problems.

Recently there has been progress in the use of the RIP to analyse the performance of OMP in

regards to non sparse signals [43], however this RIP analysis remains an area of open work.

Performance improvements can also be made by considering restrictions imposed on the

smallest non zero value in a signal, done in [29].
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2.2.5 Stagewise Orthogonal Matching Pursuit

Stagewise Orthogonal Matching Pursuit (StOMP) is an extension of OMP. Devised by

Donoho et al [14]. Inspired by ideas used in the wireless communications industry [44].

StOMP signifies an improvement over OMP and has established itself as one of the frontier

algorithms within Compressed Sensing [45].

Its main difference with OMP, is the manner in which it selects columns from the

measurement matrix. Specifically by allowing for multiple coefficients to be added within

one iteration. This is done by fixing a specific threshold value. Any column whose

correlation value is found to be over this value is selected as a matching column. As such,

this highlights the paramount importance in the selection of a correct threshold value, with

the performance of the algorithm dependent upon it. More specifically, a threshold

parameter λ[i ] regarding StOMP may be defined with,

λ[i ] = t [i ] ||r [i−1]||2p
M

. (2.19)

Donoho [14] et al., suggest ideal values for t [i+1] hold in the domain 2 ≤ t [i ] ≤ 3, as well as

providing specific formulae for the calculation and derivation of t [i ] [14].

The idea behind the thresholding strategy is that it allows many terms to enter at each

iteration, with the algorithm halting after a fixed number of iterations.

The noise level ξ is proportional to the Euclidean norm of the residual at each respective

iteration [18]. Formally, should the measurement matrix Φ have columns sampled from the

unit sphere and provided M and N are large, then the entries z =ΦT y − x =ΦT Φx −x have a

histogram which is approximately Gaussian with the standard deviation,

ξ≈ ||x||2p
M

, (2.20)

as proved by Donoho and his collaborators in [14].

We may now discuss the algorithm with more rigour. Consider I , the support set of x, and Is

the support set of x̂ = xs . Then the elements of Is are known as discoveries, conversely, the

complement of Īs have elements known as false discoveries. Should an element of the true

support set I not appear in Is , then this referred to as a missed detection. On the other hand,

should an element be present in Is but not I , then this is aptly named a false alarm.
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As a result of this distinction, the determination of the threshold parameter can be done

with one of two ways. As detailed by Abramovich et al [46]. The selection may be either,

1. A guarantee made on the number of false alarms, Ensuring the number does not exceed

M−s over all iterations. This allows for a threshold parameter to enforce the false alarm

rate by means of a per-iteration allowance.

2. Alternatively, the use of false discovery can be used to determine the threshold, By

choosing a value which does not exceed a particular fraction of the total number of

elements summed over all iterations.

Algorithm 3 Stagewise Orthogonal Matching Pursuit StOMP

1: procedure STOMP(y, t , s)
2: Initialisation: r [0] = y, I [0] =∅, x[0] = 0̄
3: for i = 1, i = i +1 till the stopping criteria do
4: g [i ] =ΦT r [i ]

5: α[i ] = { j : |g [i ]
[ j ]|} ◃ Selection of elements larger the given threshold value t

6: I [i ] = I [i−1] ∪α[i ] ◃ Update the support set
7: x[i ] =Φ[T ]

I [i ] y
8: end for
9: return x̂[i ] ◃ Required Output

10: end procedure

Although StOMP has a structure similar to that of OMP. Due to the fact that StOMP selects

many coefficients at each iteration, the computational complexity is vastly improved.

Specifically, the problem can be reduced to a runtime of K nkN +O (N ), where n is the fixed

number of iterations and K a constant dependent upon the accuracy level of the least

squares problem [18].
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2.2.6 Iterative Hard Thresholding

Although we have seen that greedy methods are simple in terms of implementation as well

as the advantages of fast speeds. They suffer in terms of recoverability guarantees unlike the

more stringent convex optimisation methods.

Thresholding offers to bridge the gap between the two above approaches. An overview of

thresholding algorithms can be found in [47]. The primary algorithm under question in this

section is that of Iterative Hard Thresholding (IHT) found in [17].

The IHT algorithm surfaces separately in [17] and [48] after initial developments by

Kingsbury and Reeves found in [49].

Although IHT does fall under the umbrella of greedy algorithms, it attempts to iteratively

solve a local approximation to the following [38],

min
x̂

||y −Φx̂||22 such that ||x̂||0 ≤ s. (2.21)

Instead of solving (2.21) however, a substitute objective function is found. This local

approximation is derived upon optimisation transfer framework found in [50]. The cost

function,

C S
s (x̂, z) =µ||y −Φx̂||22 −||Φx̂ −Φz||22 +||x̂ − z||22, (2.22)

or alternatively,

C S
s (x̂, z) ∝∑

[x̂2
j −2x̂ j (z j +µΦT

j y −ΦT
j Φz)], (2.23)

where Φ j represents the columns of Φ.

Equation (2.23) shows that the optimisation of each x̂ can be done independently. Further,

the consideration of the ||x̂||0 ≤ s constraint implies that (2.22) has the minimiser [38],

x∗ = z +µΦT (y −Φz). (2.24)

Interestingly, at this minimum value, the cost function assumes a value proportional to,

C S
s (x̂, z) ∝||x∗||22 −2〈x∗, (z +µΦT (y −Φz))〉 =−||x∗||22. (2.25)

The constraint can then be reintroduced by selecting the s largest coefficients of x∗ and

assigning zero to all other coefficients.
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The cost function found in (2.22) is therefore minimised to the constraint ||x||0 ≤ s at,

x̂ = Hs(z +µΦT (y −Φz)), (2.26)

with the operator Hs being the nonlinear projection that assigns all except the s largest

elements to zero [38].

Algorithmically speaking, the required conversion from the optimisation to an iterative

approach is done by substituting z = x̂[i ]. The Iterative Hard Thresholding algorithm follows;

Algorithm 4 Iterative Hard Thresholding (IHT)

1: procedure IHT(Φ, y, s,µ)
2: Initialisation x[0] = 0̄
3: for i = 0; i = i +1 until stopping criteria do
4: x̂[i+1] = Hs(x̂[i ] +µΦT (y −Φx̂[i ]))
5: end for
6: return x̂[i ]

7: end procedure

IHT shows to be a computational efficient algorithm . Major computational steps involve

vector-matrix multiplication. As such, it provides a low storage approach with Φ and ΦT

multiplication done extremely efficiently when well constructed [38].

When considering the convergence of the IHT algorithm, the prominent conditional

parameter is that of the step size µ. This step size is reliant on the matrix Φ and the value β2s

[38], which is the smallest value such that,

||Φ(x1 − x2)||22 ≤β2s ||x1 −x2||22, (2.27)

holds for all s-sparse vectors x1 and x2. This is related back to the RIP constant where,

β2s ≤ (1+δ2s) ≤ ||Φ2
2||. (2.28)

In [17], proof within, Blumensath and Davies state the convergence formally as;

Theorem 2.9. if β2s <µ−1, s ≤ M and assume Φ is of full rank, then the sequence {x̂[i ]}, defined

by the IHT algorithm converges to a local minimum of (2.21).

1Note that C (Y ) =C S (Y ,Φ)
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2.2.7 Compressive Sampling Matching Pursuit

So far this dissertation has covered two major categories concerning the Compressed

Sensing recovery problem. The mathematically elegant optimisation approach provides

robustness and strong guarantees but lacks the computational speed compared to the

greedy methods. Conversely, the greedy methods have so far been unable to provide the

guarantees of the Basis Pursuit method.

Needell and Vershynin changed this however, by introducing a new algorithm possessing

the speed of the greedy approaches, while also providing strong guarantees akin to that of

the optimisation approach. They did this through Regularised Orthogonal Matching Pursuit

(ROMP) [51], the first algorithm to bridge the divide between the two major approaches.

Although ROMP made massive strides towards an ideal recovery algorithm, due to its heavy

requirements imposed upon the RIP (see [51]), this opened weaker bounds on error when

dealing with noisy signals.

This was rectified however, with the development of Compressive Sampling Matching

Pursuits (CoSaMP) [18].

The difference between ROMP and OMP was that at each iteration, ROMP selects more than

just one element to join the support set. Although this allowed for mistakes to be present

within the support set, it is still able to reconstruct the signal correctly. This was achievable

due to bounds on the number of mistakes the algorithm can make [51].

Similarly to Subspace Pursuit (to be discuss later), CoSaMP monitors the required support

set I , while adding and removing elements each iteration.

Each iteration begins with an s-sparse estimate x̂[i ], which in term is used to calculate the

residual, y −Φx̂[i ], with the inner products of the column vectors of Φ calculated [38]. The

particular indices of columns found within Φ related to the largest inner products are

selected and added to the support set I [i+0.5] for the estimate x̂[i ]. An additional

intermediate step is made with an estimate for x̂[i+0.5], the solution to the least squares

problem argmin
x̃I [i+0.5]

||y −Φx̃[i+0.5]
I [i+0.5] ||2. Finally, the largest s entries of x̂[i+0.5] are selected and used

as the new support set I [i+1] [38]. The main CoSaMP algorithm outlined by Needell and

Tropp can be written as found in algorithm 5 below.

Needell and Tropp [15] also introduced faster implementations of CoSaMP, primarily with

the replacement of the least squares problem x̂[i+0.5]
I [i+0.5] = Φ†

I [i+0.5] y with either a conjugate

gradient technique or specifically a three iteration gradient decent.
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Algorithm 5 Compressive Sampling Matching Pursuit (CoSaMP)

1: procedure COSAMP(Φ, y, s)
2: Initialisation x[0] = 0̄, I [0] = supp(Hs(ΦT y))
3: for i = 0, i = i +1, until stopping criteria is met do
4: g [i ] =ΦT (y −Φx̂[i ])
5: I [i+0.5] = I [i ] ∪supp

(
g [i ]

2s

)
6: x̂[i+0.5]

I [i+0.5] =Φ†
I [i+0.5] y

7: I [i+1] = supp
(
x̂[i+0.5]

s
)

8: x̂[i+1]
I [i+1] = x̂[i+0.5]

I [i+1]

9: end for
10: Output x̂[i ] and r [i ]

11: end procedure

Notably, the original algorithm as well as Needell and Tropp’s proposed alternative

implementations all possess the guarantees given by the following theorem.

Theorem 2.10. [15] For any x, given y =Φx +ϵ where Φ satisfies the RIP with,

0.9 ≤ ||Φx1 −Φx2||22
||x1 −x2||22

≤ 1.1, (2.29)

for all 2s-sparse vectors x1 and x2 after,

i∗ = (
log

( ||xs ||2
||e||2

)
log 2

)
, (2.30)

iterations, the CoSaMP algorithm calculates a solution x̂[i ] which satisfies,

||x − x̂[i∗]||2 ≤ 21

(
||y −xs ||2 + ||x −xs ||1p

s
+||e||2

)
. (2.31)

Although a negligible difference in the Euclidean norm of two successive estimates,

||x̂[i ] − x̂[i+1]||2 could be used as a stopping criterion, this does not guarantee convergence.

Alternatively, a stricter approach guaranteeing no presence of instability would be in the

case where the error, (||y −Φx̂[i ]||2 < ||y −Φx̂[i+1]||2) begins to increase [38].
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2.2.8 Subspace Pursuit

Subspace Pursuit marks a p-pursuit algorithm. Developed by Dai and Milenhovic [52]. It

hails from the initial algorithmic idea used in the A∗ order statistic algorithm [53]. Subspace

Pursuit (SP) is similar to the CoSaMP algorithm and was under development

simultaneously.

The difference between SP and CoSaMP arrives in the extension phase of the algorithm.

Although SP has larger computational work per iteration as opposed to OMP, it has been

empirically shown to require fewer iterations [28].

In SP, Dai and Milenhovic [52] apply the stopping criteria on the difference of two successive

iterations; ||y −Φx̂[i ]||2 − ||y −Φx̂[i+1]||2, thus ensuring stability even in cases when the RIP

condition doesn’t hold [38].

The primary difference from CoSaMP to that of SP, lies in the addition of entries to the

support set I [i ] within each iteration. A further difference, requires the SP algorithm to have

an additional least-squares solution. This leads to an implementation efficiency matter,

whereby the least-squares solution used in the CoSaMP algorithm has the potential to be

replaced by three gradient-based updates [38], a distinct advantage over SP.

The SP algorithm follows in algorithm 6.

Algorithm 6 Subspace Pursuit (SP)

1: procedure SP(Φ, y, s)
2: Initialisation x[0] =Φ†

I [0] y, I [0] = supp(Hs(ΦT y))

3: for i = 0, i = i +1, until ||y −Φx̂[i+1]||2 ≥ ||y −Φx̂[i ]||2 do
4: g [i ] =ΦT (y −Φx̂[i ])
5: I [i+0.5] = I [i ] ∪supp

(
g [i ]

2s

)
6: x̂[i+0.5]

I [i+0.5] =Φ†
I [i+0.5] y

7: I [i+1] = supp
(
x̂[i+0.5]

s
)

8: x̂[i+1] =Φ†
I [i+1] y

9: end for
10: Output x̂[i ] and r [i ]

11: end procedure
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SP, CoSaMP as well as IHT all offer near optimal performance guarantees provided the

conditions of the RIP are satisfied. Dai and Milenhovic [52] have the performance derived

and proved in [52] with,

Theorem 2.11. [19] For any x, given y =Φx+ϵ where Φ satisfies, for all s-sparse vectors x1 and

all 2s-sparse vectors x2, the RIP with,

0.927 ≤ ||Φx1 −Φx2||22
||x1 −x2||22

≤ 1.083, (2.32)

then SP calculates a solution x̂ satisfying,

||x − x̂|| ≤ 1.18
(||y −xs ||2 + ||x −xs ||1p

s
+||ϵ||2

)
(2.33)
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2.3 Alternative Approaches

Although the algorithms covered in Sections 2.1 and 2.2 are discussed in detail, they certainly

are not the only family and groups of algorithms that are available for use in the Compressed

Sensing problem. This Section briefly makes mention of these additional approaches for

the purpose of establishing the already large depth of the field. Since these algorithms are

not following with implementation in the numerical results, their specific algorithms are not

listed for the sake of brevity.

2.3.1 Combinatorial Algorithms

Combinatorial algorithms historically developed in the computer science community prior

to the inception of Compressed Sensing are highly relevant to sparse signal recovery.

These combinatorial methods make use of group testing to recover sparse signal. Real world

examples of these algorithms can be found in [54–57]. Further usage of combinatorial

algorithms have surfaced within the field of data streams [58, 59]. These problems often

relate to the recovery of some x from a system Φx, presenting its similarity to the

Compressed Sensing problem [21].

Coming back to the Compressed Sensing problem however, combinatorial algorithms have

some important inherent differences. Namely, the reconstruction algorithms allow for the

choice of Φ be one which reduces the computation required to achieve recovery. That is to

say, a case where Φ has minimal non-zero elements, i.e the sensing matrix is itself sparse

[21, 60].

Algorithms making use of such an idea are Fourier Sampling Algorithm [61], Chaining

Pursuits [62], and Heavy Hitters on Steroids (HHS)[63].

Although these methods involve specific construction of the sensing matrix, there does exist

methods which can make use of general sparse matrices as can be found in [64].

Combinatorial algorithms unlike its convex optimisation and greedy algorithm

counterparts, whose computational complexity is at best minimally linear in terms of N due

to the fact that the recovery of x requires at least the computational cost of reading out all N

entries of x. These methods suffer immensely once the signal length N becomes extremely

large. Rather, one would invest in an algorithm whose complexity is only linear in the length

of representation of the signal, for example the signal sparsity [21]. Algorithms such as these

do not return a signal reconstruction of x but instead return the largest s largest entries and
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their specific indices, requiring a simple remaining step to the construction of the signal

approximation. Examples of such methods can be found here [65–67].

2.3.2 Bregman Iterative Algorithms

Yin, Osher et al [68], proposed a simple yet efficient method for solving the Basis Pursuit

problem. Originating from Bregman Iteration Regularisation, it poses the idea of achieving

the exact solution of constrained problems by iteratively solving a succession of

sub-problems which are unconstrained. Yin, Osher et al [68], show that in most cases, no

more than two to six iterations are required to achieve an exact solution. Theoretical and

numerical guarantees can be found in [68].

2.3.3 Non Convex Minimisation Algorithms

Non convex optimisation algorithms are heavily used in real world applications. Focal

Underdetermined System Solution (FOCUSS) [69, 70], for example is a Compressed Sensing

framework used in medical MRIs. Other algorithms, such as Iteratively Reweighed Least

Squares along with Sparse Bayesian Learning Algorithms [71], have also found merit in the

medical tomography community [72, 73].

Further examples of real world applications of non convex minimisation algorithms include

the processing of sparse music and audio signals making use of Monte-Carlo based

algorithms as found in [74].

2.3.4 Message Passing Algorithms

It has already been mentioned that convex optimisation methods scale heavily in expense

when considering large scale applications, as such quick iterative thresholding algorithms

have been under heavy study as alternatives when dealing with large set problems. Often

however, the investment of speed comes with poorer sparsity-undersampling tradeoffs

relative to convex optimisation approaches like that of BP.

Fortunately, Donoho et al, proposed a new idea of algorithms based off a modification of

iterative thresholding [75]. Animated by idea of belief propagation, they developed Message

Passing Algorithms (MPA). These MPA techniques allowed for a sparsity-undersampling

tradeoff to match that of convex optimisation approaches.

This approach has numerous advantages such as its low computational complexity and

importantly, the potential to be easily implemented in parallel computation, an area which
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is becoming of increasing importance as the GPU programming paradigm establishes itself

as a computational norm.

Some examples of these algorithms can be found with Expander Matching Pursuits [76], as

well as Sparse and Sequential Sparse Matching Pursuits [77, 78].
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Chapter 3

Results

The results of implementation now follow, Matching Pursuit (MP) has not been considered

due to its extension in OMP.

All algorithms have been implemented in MATLAB. The hardware used for empirical runs

consisted of the following: ASUS Rampage Extreme 4 motherboard, Core i7-3930K CPU @

4.25 GHz, 64 GB RAM @ 1666 MHz and 1× Nvidia GTX 680.

Firstly, the algorithms were implemented on the CPU. Algorithm recovery and computation

time was investigated as well as the Kolmogorov-Smirnov test for analysing a goodness-of-fit.

An extension of the computation time was undertaken with the GPU.

38



3.1: CPU Results 39

3.1 CPU Results

Numerical results were obtained using the CPU to investigate the efficiency and ability of

the methods listed in Chapter 2.

The investigations listed pertain to a small sample of empirical studies undertaken. Further

extensions and results that are not listed here are available for each algorithm. Major results

for BP can be found in the following [7, 10, 79]. Tropp and Gilbert probe OMP deeply in [12].

Needell lists large numerical investigation into CoSaMP with [18]. Subspace Pursuit (SP) is

empirically analysed by Dai and Milenkovic in [80]. StOMP is detailed in [14] by Donoho et

al. While IHT is covered in detail in [17, 38, 81].

The recovery itself was tested with the following computational runs:

We denote the number of measurements by M and a signal length ny N . The original signal

x, is generated to be a random vector containing s nonzero elements. These nonzero

elements are generated randomly from the standard normal distribution and placed in

random locations within the signal vector. Although numerous other signals could be used

for testing, and undoubtedly performance of the algorithms to follow may differ from signal

to signal. The aim of the empirical results recorded here is to serve only as a guideline to

their performance. For extensive experimentation could be conducted with alternative

signal types such as, periodic/aperiodic, ±1 signals, causal, anti casual signals etc, with

useful comparisons to be drawn.

The measurement matrix Φ of size M ×N is also generated randomly in accordance to i.i.d.

Gaussian entries. That is to say the matrix has entries populated from N (0, M−1).

Next, three specific configurations were chosen. Setting the number of measurements M to

a fraction of N , we consider M/N = 1/8,1/4,1/2, while keeping the length of the signal N

fixed with a value of 256.

Following the selection of these configurations. Numerical trials are run over varying

sparsity to test the efficiency and accuracy of the algorithms. In configuration 1, where

M/N = 1/8, we consider a sparsity s ranging between 1 and 20. The second configuration

M/N = 1/4 is run with sparsity changing from 1 to 40. While the third configuration,

M/N = 1/2 is a sparsity range of 1 to 80. All three configurations ran with sparsity increasing

in steps of 1.

Recovery for the above configurations was considered successful when the relative error

between the recovered signal and original signal is less than 10−5, i.e. ||x̂ − x||/||x|| < 10−5,

where x̂ is the reconstructed signal and x is the exact signal. Each configuration was run for
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200 trials and the recovery measured accordingly. This was repeated for each algorithm

under investigation.

Another area under investigation was the speed of each algorithm. To test this, trials were

computed and timed with varying signal lengths. Using the above ratios of M and N , we

increase the signal length in the base 2 power from 28 to 215 (i.e. N = 256 to N = 32768). The

number of measurements M increases accordingly to the configurations being tested (i.e.

1/8,1/4,1/2). The sparsity in all timing trials is set to s = 1/8×M (1/8 of the measurements

taken). Again 200 trials were run for all values of N and the results averaged for each

algorithm.
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3.1.1 Algorithm Recovery With
M

N
= 1
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FIGURE 3.1: The percentage of signals recovered with the signal length N = 256 and fixed
measurements M = 32, with varying sparsity levels.

When dealing with the above configuration, it is important to point out that this is the

sparsest numerical trial. Importantly however, since the number of measurements is the

lowest here as well, this configuration would represent the most ideal recovery case. That is

to say, when dealing with extremely sparse signals, the best performing algorithm

corresponding to the least number of measurements is sought. Consider Figure 3.1, the

immediate result of interest is the performance of StOMP. Compared to all other methods

under consideration, it under performs immensely. The implementation of StOMP itself

involved the usage of the SparseLab [82, 83], by Donoho et al. The SparseLab code makes

use of a threshold parameter as discussed in Chapter 2. This parameter is defaulted to 0.5 in

the code, however, as mentioned the ideal range for this value is on the domain [2 ≤ t ≤ 3].

As such, choosing alternative values for this in the code found even worse results. Judging

by this it would seem that this value is in fact the reciprocal. Thus certain refinement on this

parameter could lead to some better performance. SparseLab itself is a MATLAB toolbox

consisting of numerous sparse optimisation techniques. Indeed the BP implementation is

also a modified run from SparseLab, this seemingly provided better results (at least

computational run times) over the ℓ1-magic toolbox [84, 85], written by Romberg et al. With

regard to the other algorithms, SP was implemented with a modified version of Igor Carron’s

code found here [86]. As we can see, SP out performs all other techniques overall. This holds

true with results obtained by Maleki and Donoho showing SP outperforming CoSaMP [87].

IHT however, appears to under perform under the above conditions. Blumensath and

Davies show in [38], that IHT both out performs and under performs against CoSaMP
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depending on whether CoSaMP is implemented with a pseudo inverse or alternatively a

conjugate gradient step respectively. The implementation of IHT here is taken from a

toolbox written by Blumensath named sparsify [88], sparsify is a collection of MATLAB files

which may be used to implement a wide variety of different Compressed Sensing

algorithms, ranging from greedy methods to thresholding algorithms. The hard

thresholding itself keeps exactly M elements in each iteration. As such, with further

numerical trials no doubt this result could be improved with an optimal number of

elements kept per iteration. McCoy provides updated code based off the original CoSaMP

and OMP implementation of Needell and Tropp [89]. Modifying this to the specific

numerical configuration above, we see that OMP performs extremely well and only begins

to lose out to CoSaMP, BP and SP once the sparsity has reached approximately 1/5 of the

measurements taken. Basis Pursuit (BP) also performs adequately above too, however, as

will be shown later, BP struggles in regards to computational time as the signal length

increases.
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3.1.2 Computational Time With
M

N
= 1

8

The following table and plots illustrate the computational runtimes involved in the first

numerical configuration. Each algorithm was run with 200 trials and the time averaged.

Table 3.1 follows with the reported times.

.....

M/N(1/8)

.

Signal Length (N) 28 29 210 211 212 213 214 215

BP 0.0202 0.0445 0.1578 0.5877 3.5797 18.8230 103.7727 762.0937

OMP 0.0012 0.0034 0.0106 0.0229 0.1045 0.4693 3.0236 22.8810

CoSaMP 0.0009 0.0013 0.0027 0.0059 0.0220 0.0858 0.3697 3.7458

StOMP 0.0011 0.0019 0.0085 0.0486 0.1973 0.6917 3.2107 17.1235

IHT 0.0036 0.0076 0.0133 0.0282 0.1171 0.4258 1.6181 6.0168

SP 0.0029 0.0032 0.0052 0.0168 0.0638 0.2927 1.4904 9.210

TABLE 3.1: Computational Times in Seconds (s)
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FIGURE 3.2: Log Scale of Computation Time for M/N = 1/8

As expected, all the algorithms appear efficient on small signal lengths (i.e. N = 28 − 210)

however, from 211 we begin to see massive computational differences. BP begins to show a

sharp increase in time compared to all other methods. Indeed relatively speaking so does

StOMP and OMP. It is also worth noting other interesting behaviour, CoSaMP appears the

strongest overall, but IHT scales well with an increase in signal length, becoming the second
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fastest by N = 215. This seems to imply that IHT is an algorithm that definitely improves when

larger signals are considered, while CoSaMP reigns supreme in the case of extremely sparse

signals.
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FIGURE 3.3: Log Scale Bar Graph for Computation Times When M/N = 1/8

Figure 3.3 shows the scaling between each algorithm as the signal size increases. It is

interesting to see the greedy algorithms and thresholding algorithms clump together within
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some neighbourhood while the convex optimisation is orders of magnitude larger in

runtime.

3.1.3 Algorithm Recovery With
M

N
= 1

4
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FIGURE 3.4: The percentage of signals recovered with the signal length N = 256 and fixed
measurements M = 64, with varying sparsity levels.

We now consider the configuration of M/N = 1/4. In this case sparsity ranged from s = 1 to

s = 40. Again we notice that StOMP is the worst performer. Subspace Pursuit (SP) again

performs the best overall. We can also see that CoSaMP has now began to pull away from

OMP, with it achieving the second best results. BP still continues to perform well, albeit at

much longer computation time. IHT performs better here as opposed to the first

configuration but still lags behind the others, again suggesting the importance of the

selection of the number of nonzero elements to keep per iteration.
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3.1.4 Computational Time With
M

N
= 1

4

Again we tabulate and plot the resulting computational times with regard to the

signal/measurement configuration. We begin to notice some expected trends as well as

some new interesting developments.

.....

M/N(1/4)

.

Signal Length (N) 28 29 210 211 212 213 214 215

BP 0.0273 0.0834 0.3318 1.8457 10.1041 56.4383 385.3201 2908.2

OMP 0.005 0.0093 0.0226 0.0689 0.3410 1.9466 14.6318 120.5985

CoSaMP 0.0013 0.0019 0.0045 0.0175 0.0701 0.3139 3.1661 26.8067

StOMP 0.0025 0.0041 0.0322 0.1140 0.3964 1.6751 12.2695 39.0968

IHT 0.0061 0.0081 0.0134 0.0345 0.1876 0.7030 2.6377 10.1864

SP 0.0032 0.0039 0.0133 0.0507 0.2437 1.3390 7.3405 44.3120

TABLE 3.2: Computational Times in Seconds (s)
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FIGURE 3.5: Log Scale of Computation Time for M/N = 1/4

Unsurprisingly, BP continues to scale badly with computational times orders of magnitude

larger than the others under investigation. OMP worsens slightly when considering larger

signals, while CoSaMP yet again continues to shine. The slight increase in performance, in

regards to runtime saw in the first configuration by IHT is amplified further here as it
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becomes the quickest algorithm by N = 214 onwards, suggesting its performance ties in

better with a larger number of measurements and signal length.
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FIGURE 3.6: Log Scale Bar Graph for Computation Times When M/N = 1/4

Figure 3.6 again highlights what is happening in Figure 3.5 in a more visual manner,

especially the increase in performance of the IHT algorithm as a small discrepancy in the
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graph corresponds to a large discrepancy because of the log scale. Again the greedy

algorithms continue to cluster with one another while BP is magnitudes slower.

3.1.5 Algorithm Recovery With
M

N
= 1

2

We now consider the final configuration. This case deals with the largest number of

measurements taken and as such considered a much larger array of sparsity values. Figure

3.7 shows the recovery efficiency of each algorithm. Yet again, we see that SP achieves the

best results and similarly StOMP the worst. With regard to the other algorithms, we finally

see OMP being clearly overtaken by the others, while BP and CoSaMP achieving strikingly

similar results. IHT again trails behind the top three although it does appear to be reaching a

better level of performance. It is interesting to see that in all 3 configurations, StOMP

constantly landing between 60 to 80% recovery, while all the others in eventuality reach

100%. Possible reasons for this are discussed later in more detail.
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3.1.6 Computational Time With
M

N
= 1

2

Table 3.3 lists the computational times recorded for the final configuration on the CPU. We

can now really begin to see the increased workload on the algorithms as the times are

substantially larger than that of the first configuration which is to be expected. BP in

particular has reached, relatively speaking, an immense amount of time per trial. Even the

greedy methods have begun to reach large computational times. Interestingly however, IHT

now show its superiority in regards to computation time when dealing with large signal sizes

and increased measurement value.

.....

M/N(1/2)

.

Signal Length (N) 28 29 210 211 212 213 214 215

BP 0.0297 0.0857 0.4205 2.3542 12.6919 82.0171 617.2454 4732.4

OMP 0.0128 0.0224 0.0633 0.2628 1.3753 10.2961 87.6122 694.5822

CoSaMP 0.0017 0.004 0.01045 0.0620 0.2826 2.9926 22.5482 174.5490

StOMP 0.0054 0.0189 0.0758 0.2791 1.2920 8.4087 44.1666 192.1980

IHT 0.0065 0.0091 0.0167 0.0792 0.3185 1.2249 4.6273 17.6595

SP 0.0065 0.0106 0.0407 0.2078 1.0572 6.4544 39.6360 261.1395

TABLE 3.3: Computational Times in Seconds (s)
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FIGURE 3.8: Log Scale of Computation Time for M/N = 1/2

Figure 3.8 shows this improved IHT result nicely. CoSaMP still maintains an edge over IHT

until the signal length reaches N = 212, after that IHT vastly outperforms CoSaMP with IHT 10

times faster by the time the signal is of length N = 215. From the trend observed in Figure 3.8,
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it would seem acceptable to say that this behaviour should be expected to continue, hinting

that IHT would be the method of choice when confronted with large signal lengths.

...

.

.

.

10−5

.

10−4

.

10−3

.

10−2

.

10−1

.

100

.

101

.

102

.

103

.

104

.

256

.

512

.

1024

.

2048

.

4096

.

8192

.

16384

.

32768

.

Computation Time s

.

Si
gn

al
L

en
gt

h
N

.

. ..BP

. ..OMP

. ..CoSaMP

. ..SP

. ..StOMP

. ..IHT

FIGURE 3.9: Log Scale Bar Graph for Computation Times When M/N = 1/2

University of the Witwatersrand



3.2: Kolmogorov-Smirnov Test 51

3.2 Kolmogorov-Smirnov Test

In the reconstruction trials we measured success by relative error. This is indeed the most

useful way when measuring the distance between an original signal and a reconstructed

one.

We can however, consider a statistical analysis. Using the Kolmogorov-Smirnov test for a

“goodness-of-fit", we can test whether two samples come from the same distribution [90]. In

terms of our signals, this means we can see how well the reconstructed signals fit the

original, or rather summarise the discrepancy between the two.

The test works by comparing the empirical distribution functions of the two signals. The

comparrison is calculated with,

D∗ = sup
x

|F1(x)−F2(x)|, (3.1)

where F1 and F2 are empirical distribution functions of the original and reconstructed signals

respectively. The Null Hypothesis under test is rejected at some significance level α if,

D∗ >Cv (α)

√
n1 +n2

n1n2
, (3.2)

where n1 and n2 are the lengths of the original and reconstructed signal [90].

The significance levels under investigation for our tests are α = 0.05(5%) and α = 0.01(1%).

The critical value Cv (α) is 1.36 at α = 0.05 and 1.631 at α = 0.01. For consistency we

investigate the goodness-of-fit for all algorithms tested with reconstruction. Again the signal

length was fixed at N = 256. The signal was generated in the same way, with the

measurements taken at the ratios of M/N = 1/8,1/4 and 1/2. For each of these ratios the

sparsity was also varied with, s/M = 1/8,1/4 and 1/2. These values were chosen to see if any

conclusions could be drawn against the reconstruction results, while also investigating a

wider array of configurations.

MATLAB was used to compute the test on all the aforementioned configurations, with the

corresponding graphs found in Appendix A. The graphs plot the results of 200 trials per

configuration.

The magenta curve represents the difference between distributions (i.e. D∗). The blue and

red vertical lines are the critical values for α = 0.05(0.12) and α = 0.01(0.144)2 respectively.

Should D∗ pass these values then the Null hypothesis (that the signal x and the

1These values are obtained using tables found in [90].
2These values are calculated using equation 3.2.
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approximation x̂ are from the same distribution) is rejected.

The critical values indicate the maximum deviation possible between F1 and F2 at each level

of significance. That is to say a significance level of α= 0.05 implies that 95% of the time, the

maximum deviation will be 0.12.

The blue curve found on the graphs, plots the probability of each particular trial passing the

Hypothesis test. It is noteworthy to add, that if no curves are visible, that D∗= 0 and

consequently the Hypothesis will always be accepted. This implies the signals are identical.

Looking at the results, we can see that BP starts well, passing the test for M/N = 1/8 and

s/M = 1/8,1/4 and 1/2. With Figure A.2, we see that BP begins to struggle at M/N = 1/4,

failing the test often when sparsity is 1/4M . Interestingly this improves when the sparsity

increases to M/N = 1/2. The final configuration for BP sees a 128 measurements taken and

as such at s = 1/8M and s = 1/4M appears to perform well. Once s = 1/2M however, BP fails

at both significant levels.

With regards to OMP, we see good performance at M/N = 1/8 with acceptance at all sparsity

levels. With M/N = 1/4, we see a perfect fit at s = 1/8M , with a few rejections at s = 1/4M

and 1/2M . At M/N = 1/2, full acceptance is seen at s = 1/8M and 1/4M while there are

some accepts at α= 0.05 but almost complete failure at α= 0.01 when s = 1/2M .

CoSaMP has vastly superior performance over OMP and BP in this test, with the only

rejections occurring at M/N = 1/2 with s = 1/2M .

StOMP, while it may appear to perform decently at M/N = 1/8 and M/N = 1/4, suffers

immensely at M/N = 1/2 with numerous rejections at all sparsity. Again, the thresholding

value must play a large role here. No doubt tuning this parameter would lead to a better

goodness-of-fit.

By far, the two superior algorithms with regards to goodness-of-fit are IHT and SP. IHT

appears to have the slight edge at M/N = 1/2, however both perform exceptionally well.

Comparing these results with those of the reconstruction, we note the similar tread with BP

and StOMP seemingly the worst performers. Interestingly, IHT shows the most

improvement in this test, possibly due to its thresholding of the reconstructed signal x̂.

OMP and CoSaMP while similar in performance with regards to the reconstruction results,

differ with goodness-of-fit. Here CoSaMP clearly has the edge. SP performs the best overall

but as previously mentioned, many of the other algorithms under investigation can be

tuned and improved under certain conditions and parameters.
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3.3 GPU Results

In this section we consider the results obtained through the use of the GPU. The

reconstruction efficiency would be expected to be the same, regardless whether this is

computed on the CPU or GPU and as such is not presented again in this chapter. The

computational times however, should be expected to differ tremendously. The GPU

involved in the computational runs was a Nvidia GTX 680 with 1536 shader cores, thus large

speed-ups should be expected.

Furthermore, not all algorithms were implemented on the GPU. Rather the best performers

were selected. IHT, CoSaMP and SP are investigated. Blanchard and Tanner have written a

software package and MATLAB toolbox especially for the GPU implementation of these

algorithms with [91–93]. GAGA or in full, GPU Accelerated Greedy Algorithms was

developed for Compressed Sensing problems involving millions of unknowns, most likely

incapable or too slow to be computed on conventional CPU hardware. The package itself

does not implement CoSaMP or SP directly, but rather a two stage projection that is

essentially equivalent to CoSaMP and SP, aptly named CSMPSP [92].

3.3.1 GPU Parallelisation and Implementation

When considering any iteration of any of the algorithms under investigation, at least one

support set identification and one matrix-vector multiplication is computed. As a result, all

the major algorithms discussed and by extension the algorithms found in the GAGA toolbox

follow a similar structure:

• The initialisation: A routine for the generation of the measurement matrix Φ, and the

original signal x.

• Support Set Detection and Thresholding:

1. Support Detection: A routine returning the index set I of s largest (in magnitude)

elements found in the signal x.

2. Thresholding: A routine where all elements not indexed by I are set to zero.

• Iterative Procedure: An iterative procedure of ever increasing approximations until a

designated stopping criteria is met. Each algorithm differs in the manner in which they

update the approximation.
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3.3.1.1 Initialisation

GAGA generates measurement matrices in three different ways. Firstly, it can generate a

DCT (discrete cosine transform) matrix given inputs M and N . Secondly, sparse matrices

can be randomly generated with M and N . These matrices have p nonzero elements per

column and with each nozero element ±1 in value. The columns are then normalised by

dividing by
p

p. This option could offer significant speedups for algorithms which make use

of sparse sensing matrices such as the combinatorial algorithms discussed in Section 2.3.1.

The third option is the generation of generic Gaussian matrices given inputs M and N .

These generic matrices are used in the GPU implementation to provide consistency with the

CPU results.

For comparison with CPU computation times. The same configurations are tested. Starting

with N = 28 to N 15. The measurements are set to the ratios M/N = 1/8,1/4 and 1/2. The

sparsity of the original signal x is fixed at s = 0.125M , with these nonzero elements sampled

from the standard normal distribution. The initial measurement vector, y is generated with

the matrix-vector multiplication y =Φx. Tables 3.4, 3.5, 3.6 list the recorded results of each

algorithm on the same configurations as the CPU averaged over 200 trials.

3.3.1.2 Support Detection and Thresholding

The general approach to support detection involves a sorting routine to obtain the sth

largest magnitude of the signal x and construct its corresponding support set. Previously,

finding the support set was not a computational concern as the vector-matrix operations

were far more taxing. With GAGA however, the computational burden of vector-matrix

operations is reduced to that of the support set identification. Importantly, for larger

speedups, GAGA has reduced the cost of the support detection with their GPU

implementation. They initially did this using the highly efficient radix sort routine by Merrill

and Grimshaw [94]. The radix sort is available with the Thrust library and is included in

CUDA 4.0 and all subsequent releases3 [95, 96]. With this, the act of thresholding and

identifying the support set is done simultaneously [91].

Blanchard and Tanner improved on the performance of the support set identification by

making use of a novel method. Similar to distributive partitioning [97], a sorting algorithm

which makes use of n buckets of equal length to partition n data. This new approach

identifies the support set using the approximate s-selection technique found in [92]. This is

done by taking a linear projection of elements in the vector x into linearly spaced bins,

3The latest version being CUDA 6.0 at the time of writing.
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where the number of bins is the maximum value of either 1000 or N /2. The partitioning of

the bins itself is done on the interval of 0 to the maximum absolute value of x (i.e.

[0,max(abs(x))]).

With regards to the iterative procedure of each algorithm, the CUDA based implementations

depend upon GPU-accelerated libraries. Specifically, GAGA makes heavy use of the CUBLAS

library (the GPU library within the Basic Linear Algebra Subroutines (BLAS) library). The

BLAS libray consists of a set of subroutines which perform common linear algebra

operations such as vector dot product, matrix multiplication, vector scaling and linear

combinations. The CUBLAS variant is an optimised version of BLAS for NVIDIA based GPU

cards.

The GPU implementation itself manifests in the form of kernels. These kernels assign work

to the respective GPU cores. The work to be done is divided into blocks in which each block

is given an equal number of threads. CUDA has built in functions to povide the user with the

maximum number of threads available, dependent to the user’s hardware.

3.3.2 GPU Computational Times With
M

N
= 1

8

We begin again with the first configuration of M/N = 1/8, with the results tabulated in 3.6

and plotted in Figure 3.10.

.....

M/N(1/8)

.

Signal Length (N) 28 29 210 211 212 213 214 215

IHT 0.0036 0.0076 0.0133 0.0282 0.1171 0.4258 1.6181 6.0168

IHT-GPU 0.0058 0.0103 0.0114 0.013937 0.028851 0.073104 0.232367 0.937411

CoSaMP 0.0009 0.0013 0.0027 0.0059 0.0220 0.0858 0.3697 3.7458

SP 0.0029 0.0032 0.0052 0.0168 0.0638 0.2927 1.4904 9.210

CSMPSP-GPU 0.0074 0.00827 0.016001 0.01732 0.041457 0.110370 0.431023 1.697272

TABLE 3.4: Computational Times in Seconds (s)

Looking at the times and specifically the above plot, we see that the GPU is actually

outperformed by the CPU for smaller signal lengths. Although this is interesting, it perhaps

is not surprising. The hexacore i7 used is an extremely powerful 12 core processor and it is

not uncommon for powerful CPU’s to beat GPU counterparts on smaller computational

problems. However, once the signal length begins to increase, i.e. N = 213 the GPU begins to

overtake the CPU in speed. This trend will no doubt continue on larger signal sizes, with the

GPU brining larger and larger speed-ups the bigger the signal gets.
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FIGURE 3.10: Log Scale of Computation Time for M/N = 1/8

3.3.3 GPU Computational Times With
M

N
= 1

4

Moving onto the second configuration we find the tabulated results in Table 3.5 and plotted

in Figure 3.11.

.....

M/N(1/4)

.

Signal Length (N) 28 29 210 211 212 213 214 215

IHT 0.0061 0.0081 0.0134 0.0345 0.1876 0.7030 2.6377 10.1864

IHT-GPU 0.00878 0.01241 0.01549 0.015997 0.037781 0.12052 0.456144 1.37641

CoSaMP 0.0013 0.0019 0.0045 0.0175 0.0701 0.3139 3.1661 26.8067

SP 0.0032 0.0039 0.0133 0.0507 0.2437 1.3390 7.3405 44.3120

CSMPSP 0.008068 0.008456 0.01614 0.021477 0.056959 0.197231 0.78846 2.8145

TABLE 3.5: Computational Times in Seconds (s)

We can now clearly see the performance of the GPU coming through. From signal lengths

N = 211 onwards the GPU times appear to be substantially lower than to that of its serial CPU

counterpart.
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3.3.4 GPU Computational Times With
M

N
= 1

2

We now consider the final configuration. It is here where we should expect to see the greatest

performance of the GPU over the CPU as the problem size begins to become too large for the

CPU to handle in manageable time. The results are tabulated in Table 3.6 and are plotted in

Figure 3.12.

.....

M/N(1/2)

.

Signal Length (N) 28 29 210 211 212 213 214 215

IHT 0.0065 0.0091 0.0167 0.0792 0.3185 1.2249 4.6273 17.6595

IHT-GPU 0.008982 0.012479 0.01579 0.02018 0.075414 0.2369 0.9248 2.7926

CoSaMP 0.0017 0.004 0.01045 0.0620 0.2826 2.9926 22.5482 174.5490

SP 0.0065 0.0106 0.0407 0.2078 1.0572 6.4544 39.6360 261.1395

CSMPSP 0.009229 0.009556 0.017051 0.030581 0.091979 0.322689 1.516474 4.13562

TABLE 3.6: Computational Times in Seconds (s)

As expected the GPU results have now begun to differ by orders of magnitude on larger signals

as we begin to see the large speed-ups capable on the GPU. Again this speed-up ratio will only

continue to grow as the signal lengths increase.
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FIGURE 3.12: Log Scale of Computation Time for M/N = 1/2

3.3.5 Average Ratio Speed-Ups

To highlight how much of a speed-up the GPU provides, we list the Tables 3.7, 3.8 and 3.9.

At the largest tested signal length of 215 we observe speed-ups of 6 to 63 times faster than

the serial implementation. These ratios also seem to lay in agreement with Blanchard and

Tanner’s results in [92], in which larger signal lengths (N = 220) are reported to be over 1000

times faster.

University of the Witwatersrand



3.3: GPU Results 59

.....

Speed-Up For IHT

.

Signal Length (N) IHT (s) IHT-GPU (s) Speed-Up Ratio

210 0.0167 0.01579 1.050
211 0.0792 0.02018 3.925
212 0.3185 0.075414 4.223
213 1.2249 0.2369 5.171
214 4.6273 0.9247 5.004
215 17.6595 2.792594 6.324

TABLE 3.7: GPU Speed-Up Ratios for IHT when N
M = 1

2

.....

Speed-Up For CoSaMP

.

Signal Length (N) CoSaMP (s) CSMPSP (s) Speed-Up Ratio

210 0.01045 0.017051 0.613
211 0.0620 0.030581 2.027
212 0.2826 0.091979 3.072
213 2.9926 0.322689 9.274
214 22.5482 1.516474 14.869
215 174.549 4.13562 42.206

TABLE 3.8: GPU Speed-Up Ratios for CoSaMP when N
M = 1

2

.....

Speed-Up For SP

.

Signal Length (N) SP (s) CSMPSP (s) Speed-Up Ratio

210 0.0407 0.017051 2.387
211 0.2078 0.030581 6.795
212 1.0572 0.091979 11.494
213 6.4544 0.322689 20.002
214 39.6360 1.516474 26.137
215 261.1395 4.13562 63.144

TABLE 3.9: GPU Speed-Up Ratios for SP when N
M = 1

2
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Chapter 4

Discussion of Results

All the results listed in Chapter 3 for the most part provide expected results. We saw that the

greedy algorithms were much faster than traditional Basis Pursuit albeit if some were

slightly less efficient by means of recovery. StOMP underperformed throughout all

configurations. This may perhaps be improved through use of a different threshold

parameter. Alternatively, this poor performance is possibly linked to the idea of recovery

itself. The assumption that recovery is consider complete when the relative error is less than

10−5 is problem specific. In the computational runs conducted here, this was chosen for two

reasons. Firstly, this value is commonly used and accepted as a stopping criterion and

secondly, the influence it had on BP. Interestingly, BP could not manage any form of success

rate below 10−8, StOMP as well suffered with regard to this. Algorithms such as OMP,

CoSaMP, SP and IHT were able to obtain similar reconstruction behaviour as listed in

Chapter 3 even when the recovery criterion was set to 10−15. It seems fair to conclude that

the success rate of the algorithms in question is then a matter dependent upon each

respective problem. If a problem allows for a looser bound on the relative error then this will

be relevant in which algorithm to make use of.

With regards to the recovery results obtained under the above conditions, it is noted that SP

performs the best in each configuration, maintaining dominance over the other algorithms

regardless of signal size and measurements taken as is seen with Table 4.1. OMP performs

well with low measurement and sparsity but struggles as the measurement matrix increases

in size. CoSaMP and BP appear to be highly competitive with each other in all three

configurations. IHT does not perform as well as expected but it seems highly likely that

numerical investigation into the correct parameters for this specific problem set could see

large improvement.
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.....

Reconstruction Performance

.

Sparsity Range (s) M/N = 1/8 M/N = 1/4 M/N = 1/2

[1−20] SP SP SP
[1−40] - SP SP
[1−80] - - SP

TABLE 4.1: Best Performing Algorithm over Sparsity Ranges Considered

The use of the Kolmogorov-Smirnov (KS) test provided some interesting results. For the

most part, the KS plots (as seen in Figures A.1 through A.18) echoed the performance we saw

with reconstruction. However, there were some differences. IHT for example, experienced a

massive improvement in this test, outperforming all other algorithms. SP continued to

impress and certainly established itself as one of the most successful algorithms by this

measure. Another interesting result, was the difference between OMP and CoSaMP. They

performed quite closely when considering the reconstruction trials, but the KS test shows

CoSaMP providing much better goodness-of-fit. StOMP and BP continued to under perform

with BP showing more promise than StOMP.

Considering tests which measure the reconstruction as a distance metric such as the relative

error used here. It seems recoveries which have small values oscillating at indices of zero

elements with respect to the original signal, that performance isn’t impacted too severely.

However, the use of the KS test of similar recoveries doesn’t appear to agree with this, as

these small oscillations seem to have a large affect on the difference between the two

empirical distribution functions.

.....

Computational Complexity

.

Algorithm Complexity

BP O (N 3)

OMP O (sM N )

StOMP O (N logN )

CoSaMP O (sM N )

SP O (sM N )

IHT O (M N )

TABLE 4.2: Typical Computational Complexities For Implemented Algorithms

Table 4.2 lists the expected computational complexity of each algorithm investigated.

Considering this as well as the computational runtimes obtained we can see for the most

part that the results are consistent. The complexity of BP being O (N 3) is definitely noted as

the worst performing algorithm when considering time per run both theoretically and with

the empirical results above. StOMP theoretically should be the second worst in regards to

time taken which for the most part is true from the results. SP does appear to require more

time when M/N = 1/4 and M/N = 1/2 but this was influenced heavily by MATLAB’S struggle
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to calculate inverses. The other greedy methods of order O (sM N ) appeared to behave

accordingly except for OMP which did not scale duly with an increase in signal length.

Finally, IHT of order O (M N ), definitely satisfied its theoretical expectation by running

substantially faster than all the other algorithms.

Importantly, it is worth noting that the algorithms making use of matrix-vector products Φx

and ΦT x, will have had this dominate the computational cost regardless of fast transforms

used. It is therefore paramount to keep the number of these operations to a minimum.

Another concern when making use of these algorithms is the storage cost involved. Table 4.3

.....

Storage Cost

.

Algorithm Storage

OMP 2(M +1)s +0.5s(s +1)+Φ+N

StOMP 2M +Φ+2s +N

CoSaMP 2M +Φ+2s +N

SP 2M +Φ+2s +N

IHT 2s

TABLE 4.3: Typical Storage Cost For Implemented Algorithms

lists the typical storage costs of the algorithms involved. Again IHT shows its worth by

having the lowest storage requirement. The signal x excluded, IHT need only store 2s non

zero elements.

Finally, the implementation of the GPU in Chapter 3 showed the potential of massive

speed-ups when considering large signal sizes. Blanchard and Tanner’s package provides

the potential to solve large Compressed Sensing problems in reasonable amounts of time.

This package in tandem with large GPU arrays or SLI/CrossFireX systems could be used to

obtain solutions to massive values of N . The speed-ups seen in [91, 92], show massive

acceleration. The results themselves were obtained on a Nvidia Telsa GPU. Nvidia’s new

Kepler and Maxwell architecture found on their flagship cards could see these results

improved dramatically.
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Chapter 5

Conclusion

In conclusion, Compressed Sensing appears to be a modern and sensible approach to

combat the ever present data deluge. A multitude of algorithms have already been

developed as the field is investigated by numerous different disciplines, that in itself must

highlight its importance.

This thesis took interest into the computation of CS algorithms specifically and attempted

to provide a broad spectrum study. The discussion and results were not meant to be major

investigations into the depths of each method, but rather provide an overview of expected

and empirical results. Although a few perturbations were observed, the results themselves

satisfied numerical expectancy. We saw that greedy algorithms, as expected achieved much

more manageable computation times as well as strong recovery performance opposed to

that of the convex optimisation found in BP. It was also noted how well IHT algorithm

performed in computation time but surprisingly did not do as well in terms of

reconstruction recovery. However, it saw vast improvement with the KS test implying strong

goodness-of-fit. Looking at all the results across the board, SP is the best overall performer

especially at reconstruction as was concluded with Table 4.1, while it also maintained

decent computation times. Importantly, as mentioned numerously already, these tests are

extremely sensitive input configurations. I hope the interested reader seeking more detail

on any specific algorithm has enough references provided so that they may continue their

own investigations accordingly. In addition I hope that the importance of GPU technology is

emphasized as a modern shift in computation begins. The computational speed ups

illustrate this with orders of magnitude increases in computational time. The greedy

algorithms in particular were improved immeasurably with up 63 times speed ups.

Furthermore, I hope that this thesis provides a solid overview of the computational

concerns involved with Compressed Sensing, while also providing a modicum of theoretical
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knowledge. As big data continues to grow and society continually demands more, the use of

GPUs will become paramount to the success of meeting these modern requirements. The

improvement of hardware cannot be expected to satisfy this alone. However, the collusion

of new, exciting and clever mathematics with the exponential surge in modern architecture

posses the potential to reach these objectives.

University of the Witwatersrand



Appendix A

Kolmogorov-Smirnov Tests

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.1: BP KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.2: BP KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.3: BP KS Test with M/N = 1/2 and varying sparsity.
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(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.4: OMP KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.5: OMP KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.6: OMP KS Test with M/N = 1/2 and varying sparsity.
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(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.7: CoSaMP KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.8: CoSaMP KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.9: CoSaMP KS Test with M/N = 1/2 and varying sparsity.
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(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.10: StOMP KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.11: StOMP KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.12: StOMP KS Test with M/N = 1/2 and varying sparsity.
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(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.13: IHT KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.14: IHT KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.15: IHT KS Test with M/N = 1/2 and varying sparsity.
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(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.16: SP KS Test with M/N = 1/8 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.17: SP KS Test with M/N = 1/4 and varying sparsity.

(A) s = 1/8 (B) s = 1/4 (C) s = 1/2

FIGURE A.18: SP KS Test with M/N = 1/2 and varying sparsity.
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Appendix B

MATLAB Code

The following appendix lists the code used along with any external code referenced in the

Chapters above.

B.1 Basis Pursuit

B.1.1 Recovery

....

1 % The following script tests the computation time involved with BP.

2 % Makes use of the outside function SolveBP found in SparseLab

3 % written by Donogo et al.

4 N = 256;

5 M = 64;%32,128

6 % number of spikes in the signal

7 T = 1:1:20;%1:1:40 1:1:80

8 % number of observations to make

9 maxIters=300;

10 lambda=0;% Default value

11 OptTol=1e−3;
12 trials = 200;

13 disp('Creating measurment matrix...');

14 A = (1/sqrt(M))*randn(M,N);

15 disp('Done.');

16 successrate=zeros(length(T),1);

17 tic

18 for i = 1:length(T)

19 normval = zeros(trials,1);

20 count = 0;
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B.1: Basis Pursuit 72

....

21 for j = 1:trials

22 x = zeros(N,1);

23 q = randperm(N);

24 x(q(1:T(i))) = randn(T(i),1);

25 % observations

26 y = A*x;

27 % solve the LP

28 xp = SolveBP(A, y, N, maxIters, lambda, OptTol)

29 normval(j,1) = norm(xp−x)/norm(x);
30 if normval(j,1) <= 10^−5
31 count = count +1;

32 end

33 end

34 successrate(i,1) = 100*(count/trials);

35 end

36 results = [successrate,T'];

37 toc

B.1.2 Computational Time

....

1 % The following script tests the computation time involved with BP.

2 % Makes use of the outside function SolveBP found in SparseLab

3 % written by Donogo et al.

4 N = 256;% 512 1024 2048 4096 8192 16384 32768

5 M = 0.125*N;% 0.25*N 0.5*N

6 % number of spikes in the signal

7 T = 0.125*M

8 maxIters=300;

9 lambda=0;% Default value

10 OptTol=1e−3;
11 trials = 200;

12 disp('Creating measurment matrix...');

13 A = (1/sqrt(M))*randn(M,N);

14 disp('Done.');

15 tic

16 for i = 1:length(T)

17 normval = zeros(trials,1);

18 count = 0;

19 for j = 1:trials

20 x = zeros(N,1);

21 q = randperm(N);

22 x(q(1:T(i))) = randn(T(i),1);

23 % observations
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B.1: Basis Pursuit 73

....

24 y = A*x;

25 % solve the LP

26 xp = SolveBP(A, y, N, maxIters, lambda, OptTol)

27 normval(j,1) = norm(xp−x)/norm(x);
28 if normval(j,1) <= 10^−5
29 count = count +1;

30 end

31 end

32 end

33 time = toc/trials
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B.2: Orthogonal Matching Pursuit OMP 74

B.2 Orthogonal Matching Pursuit OMP

B.2.1 Recovery

....

1 % This scrip tests the recovery performance of CoSaMP.

2 % It makes use of an outside function written by

3 % Micheal McCoy.

4 N = 256;

5 ntest = 200;

6 sVals = 1:1:20;%1:1:40 1:1:80

7 mVals = 32;%64 128;

8

9

10 [success,results]=...

11 run_test('cosamp_vs_omp',{N,ntest,mVals,sVals},global_debug_opts

{:});

12

13 % Required Outputs

14

15

16 FinalOMP_N256M32SR = results.test_output.psOMP

17 %FinalOMP_N256M64SR = results.test_output.psOMP

18 %FinalOMP_N256M128SR = test_output.psOMP
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B.2: Orthogonal Matching Pursuit OMP 75

B.2.2 Computational Times

....

1 % This scrip tests the recovery performance of CoSaMP.

2 % It makes use of an outside function written by

3 % Micheal McCoy.

4 N = 256;

5 ntest = 200;

6 sVals = 1:1:20;%1:1:40 1:1:80

7 mVals = 32;%64 128;

8

9 tic

10 [success,results]=...

11 run_test('cosamp_vs_omp',{N,ntest,mVals,sVals},global_debug_opts

{:});

12 time=ntest/trials

13 % Required Outputs

14

15

16 FinalOMP_N256M32SR = results.test_output.psOMP

17 %FinalOMP_N256M64SR = results.test_output.psOMP

18 %FinalOMP_N256M128SR = test_output.psOMP
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B.3 Compressive Sampling Matching Pursuit CoSaMP

B.3.1 Recovery

....

1 % This scrip tests the recovery performance of CoSaMP.

2 % It makes use of an outside function written by

3 % Micheal McCoy.

4 N = 256;

5 ntest = 200;

6 sVals = 1:1:20;%1:1:40 1:1:80

7 mVals = 32;%64 128;

8

9

10 [success,results]=...

11 run_test('cosamp_vs_omp',{N,ntest,mVals,sVals},global_debug_opts

{:});

12

13 % Required Outputs

14

15

16 FinalCosamp_N256M32SR = results.test_output.psCosamp

17 %FinalCosamp_N256M64SR = results.test_output.psCosamp

18 %FinalCosamp_N256M128SR = results.test_output.psCosamp
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B.3.2 Computational Times

....

1 % This scrip tests the recovery performance of CoSaMP.

2 % It makes use of an outside function written by

3 % Micheal McCoy.

4 N = 256;% 512 1024 2048 4096 8192 16384 32768

5 ntest = 200;

6

7 mVals = 0.125*N;

8 sVals = 0.125*M;

9 tic

10 [success,results]=...

11 run_test('cosamp_vs_omp',{N,ntest,mVals,sVals},global_debug_opts

{:});

12 time = toc/ntest

13 % Required Outputs

14

15

16 FinalCosamp_N256M32SR = results.test_output.psCosamp

17 %FinalCosamp_N256M64SR = results.test_output.psCosamp

18 %FinalCosamp_N256M128SR = results.test_output.psCosamp
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B.4 Stagewise Orthogonal Matching Pursuit StOMP

B.4.1 Recovery Performance

....

1 % This script evaluates the recovery of StOMP

2 % It calls the outside function SolveStOMP found in SparseLab

3 % written by Donoho et al.

4 N = 256;

5 M = 32;%64 128

6 Phi = (1/sqrt(M))*(randn(M,N));

7 K = 1:1:20;%1:1:40,1:1:80

8 trials = 200;

9 successrate = zeros(length(K),1);

10

11 for j =1:length(K)

12 count = 0;

13 for i =1:trials

14 S = K(j);

15 T = randperm(N);

16 T = T(1:S);

17 xsig = zeros(N,1);

18 xsig(T)= randn(S,1);

19 y = Phi*xsig;

20 thresh = 'FDR';

21 param = 0.5;

22 maxiter = 10;

23 optTol = 10^−16;
24 verbose = 1;

25 [sol, numIters] = SolveStOMP(Phi, y, N, thresh, param, maxIters,

verbose, OptTol);

26

27 if norm(sol−xsig)/norm(xsig) <= 10^−5
28 count = count +1;

29 end

30

31 end

32 successrate(j,1) = 100*(count/trials);

33 end

34 plot(K,successrate,'−−ro')
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B.4.2 Computational Time

....

1 % This script evaluates the recovery of StOMP

2 % It calls the outside function SolveStOMP found in SparseLab

3 % written by Donoho et al.

4 N = 256;% 512 1024 2048 4196 8192 16384 32768

5 M = 0.125*N;% 0.25*N 0.5*N

6 Phi = (1/sqrt(M))*(randn(M,N));

7 K=0.125*M

8 trials = 200;

9

10 tic

11 for j =1:length(K)

12 count = 0;

13 for i =1:trials

14 S = K(j);

15 T = randperm(N);

16 T = T(1:S);

17 xsig = zeros(N,1);

18 xsig(T)= randn(S,1);

19 y = Phi*xsig;

20 thresh = 'FDR';

21 param = 0.5;

22 maxiter = 10;

23 optTol = 10^−16;
24 verbose = 1;

25 [sol, numIters] = SolveStOMP(Phi, y, N, thresh, param, maxIters,

verbose, OptTol);

26

27 if norm(sol−xsig)/norm(xsig) <= 10^−5
28 count = count +1;

29 end

30 end

31 end

32 time = toc/trials

33 plot(K,successrate,'−−ro')

University of the Witwatersrand



B.5: Subspace Pursuit 80

B.5 Subspace Pursuit

B.5.1 Recovery Performance

....

1 % This script evaluates the recovery of SP.

2 % It calls the function SP(K, phi, y,nn) written

3 % by Ogor Carron

4 % % −− Measurement matrix "A"

5 N = 256;

6 M = 128; %32,64

7 A = (1/sqrt(M))*randn(M,N);

8 S = 1:1:80; %1:1:20,1:1:40

9 tol = 10^−5;
10 trials = 200;

11 successrate = zeros(length(S),1);

12 KvalnormMat = zeros(length(S),1);

13 tic

14 for j = 1:length(S)

15 Kvalnorm = zeros(trials,1);

16 count = 0;

17 for i = 1:trials

18 K = S(j)

19 T = randperm(N);

20 T = T(1:K);

21 x = zeros(N,1);

22 x(T)= randn(K,1);

23 y = A*x;

24 [xh,That]=SP(K, A, y)

25 Kvalnorm(i,1) = norm(xh−x)/norm(x)
26 if Kvalnorm(i,1) < tol

27 count = count + 1;

28 disp('Satisfactory Reconstruction')

29 else

30 disp('Reconstruction Fail')

31 end

32 end

33 count

34 successrate(j,:) = 100*((count/trials))

35 results=[successrate,S']

36 toc

37 end
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B.5.2 Computational Time

....

1 % This script evaluates the recovery of SP.

2 % It calls the function SP(K, phi, y,nn) written

3 % by Ogor Carron

4 % % −− Measurement matrix "A"

5 N = 256;%512,1024,2048,4096,8192,16384,32768

6 M = 0.125*N;%0.25*N,0.5*N

7 A = (1/sqrt(M))*randn(M,N);

8 S = 0.125*M;

9 tol = 10^−5;
10 trials = 200;

11 KvalnormMat = zeros(length(S),1);

12 tic

13 for j = 1:length(S)

14

15 Kvalnorm = zeros(trials,1);

16 count = 0;

17 for i = 1:trials

18 K = S(j)

19 T = randperm(N);

20 T = T(1:K);

21 x = zeros(N,1);

22 x(T)= randn(K,1);

23 y = A*x;

24 [xh,That]=SP(K, A, y)

25 Kvalnorm(i,1) = norm(xh−x)/norm(x)
26 if Kvalnorm(i,1) < tol

27 count = count + 1;

28 disp('Satisfactory Reconstruction')

29 else

30 disp('Reconstruction Fail')

31 end

32 end

33 time = toc/trials

34 end
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B.6 Iterative Hard Thresholding IHT

B.6.1 Recovery

....

1 % This code implements the IHT algorithm. It calls a outside function

2 % named hard_10_Mterm from the toolbox sparsify written by Blanchard

3 % and Tanner

4 N = 256;

5 M = 0.125*N; % 0.25*N, 0.5*N

6

7 Phi = 1/sqrt(M)*(randn(M,N));

8

9 K = 1:1:20;%1:1:40 1:1:80

10 successrate = zeros(length(K),1);

11 trials = 1;

12

13 for j = 1:length(K)

14

15 count = 0;

16 iter = 0;

17 for i = 1:trials

18

19

20 S = K;

21 T = randperm(N);

22 T = T(1:S);

23 x = zeros(N,1);

24 x(T)= randn(S,1);

25 y = Phi*x;

26 Meas =S;

27

28 [s, err_mse,correct]=hard_l0_Mterm(y,Phi,N,Meas,'maxIter',N^2,'verbose'

,true);

29 %if correct == 1

30 % count = count +1;

31 %end

32 if err_mse <1e−5
33 count = count + 1;

34 end

35

36 end

37

38 successrate(j,1) = 100*(count/trials)

39 end

40 %time = toc/trials
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....

41 results = [successrate,K']

B.6.2 Computational Time

....

1 % This code implements the IHT algorithm. It calls a outside function

2 % named hard_10_Mterm from the toolbox sparsify written by Blanchard

3 % and Tanner

4 N = 256;

5 M = 0.125*N; % 0.25*N, 0.5*N

6

7 Phi = 1/sqrt(M)*(randn(M,N));

8

9 K = 1:1:20;%1:1:40 1:1:80

10 successrate = zeros(length(K),1);

11 trials = 200;

12 tic

13 for j = 1:length(K)

14

15 count = 0;

16 iter = 0;

17 for i = 1:trials

18

19

20 S = K;

21 T = randperm(N);

22 T = T(1:S);

23 x = zeros(N,1);

24 x(T)= randn(S,1);

25 y = Phi*x;

26 Meas =S;

27

28 [s, err_mse,correct]=hard_l0_Mterm(y,Phi,N,Meas,'maxIter',N^2,'verbose'

,true);

29 %if correct == 1

30 % count = count +1;

31 %end

32 if err_mse <1e−5
33 count = count + 1;

34 end

35

36 end

37

38 %successrate(j,1) = 100*(count/trials)
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....

39 end

40 time = toc/trials

41 %results = [successrate,K']
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