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Abstract

This dissertation consists of five chapters which deal with lattice paths such as

Dyck paths, skew Dyck paths and generalized Motzkin paths. These lattice paths

are discrete paths in the Cartesian plane made up of a finite sequence of steps that

may include up steps u = (1, 1), down steps d = (1,−1), horizontal steps q = (1, 0)

and left steps l = (−1,−1). They never go below the horizontal axis. We derive the

generating functions to enumerate lattice paths according to different parameters.

These parameters include strings of length 2, 3, 4 and r for all r ∈ {2, 3, 4, · · · },
area and semi-base, area and semi-length, and semi-base and semi-perimeter. The

coefficients in the series expansion of these generating functions give us the number

of combinatorial objects we are interested to count. In particular

1. Chapter 1 is an introduction, here we derive some tools that we are going to

use in the subsequent Chapters. We first state the Lagrange inversion formula which

is a remarkable tool widely use to extract coefficients in generating functions, then

we derive some generating functions for Dyck paths, skew Dyck paths and Motzkin

paths.

2. In Chapter 2 we use generating functions to count the number of occurrences

of strings in a Dyck path. We first derive generating functions for strings of length 2,

3, 4 and r for all r ∈ {2, 3, 4, · · · }, we then extract the coefficients in the generating

functions to get the number of occurrences of strings in the Dyck paths of semi-length

n.

3. In Chapter 3, Sections 3.1 and 3.2 we derive generating functions for the

relationship between strings of lengths 2 and 3 and the relationship between strings

of lengths 3 and 4 respectively. In Section 3.3 we derive generating functions for the

low occurrences of the strings of lengths 2, 3 and 4 and lastly Section 3.4 deals with

derivations of generating functions for the high occurrences of some strings .

4. Chapter 4, Subsection 4.1.1 deals with the derivation of the generating func-

tions for skew paths according to semi-base and area, we then derive the generating

functions according to area. In Subsection 4.1.2, we consider the same as in Section

4.1.1, but here instead of semi-base we use semi-length. The last section 4.2, we

use skew paths to enumerate the number of super-diagonal bar graphs according to

perimeter.

5. Chapter 5 deals with the derivation of recurrences for the moments of gen-

eralized Motzkin paths, in particular we consider those Motzkin paths that never

touch the x-axis except at (0,0) and at the end of the path.
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Chapter 1

Introduction

We divide this introduction into two sections, Section 1.1 considers various authors

contribution to the study of lattice paths. In Section 1.2 we derive some results from

[5], [6] and [19] for Dyck paths, skew paths and Motzkin paths, that we are going

to use in subsequent chapters.

1.1 Authors contribution to the study of enumeration of

lattice paths according to different parameters

In this section we look at the contributions of several researchers on lattice paths

i.e Dyck paths, skew Dyck paths and generalized Motzkin paths. We start with

Dyck paths. The enumeration of Dyck paths according to different parameters has

been studied by many researchers in the last three decades. In [3], [4], [5], [10], [11],

[13], [16], [17], and [19] enumeration of Dyck paths according to different parameters

has been studied extensively. These studies has shown that there are many ways of

counting Dyck paths using some combination of different parameters.

Every Dyck path can be encoded by a word in a language D on the alphabet

{u, d} and let {u, d}∗ be the set of words made up by letters in {u, d}. We define

a string τ to be a word in {u, d}∗, this word occurs in a Dyck path α if α = βτδ,

where β, δ ∈ {u, d}∗. A semi-length is the number of up steps in a Dyck path.

In Chapter 2 we study the enumeration of Dyck paths according to occurrences of

strings of length 2, 3, 4 and r by authors in [5], [16] and [19]. They use a string r

and semi-length n as parameters. The occurrences of strings of length 2 i.e du, ud,

uu, and dd in Dyck paths have been studied extensively and proved in [5] that their
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statistics follow the Narayana distribution (A001263 of [18]). In [17], general results

were studied for occurrences of strings of length 2 for k-colored Motzkin paths.

The occurrences of strings of length 3 i.e udu, uud, uuu, dud, ddu, ddd, udd,

and duu have been studied by several authors. The occurrence of the string uud in

Dyck paths has been studied in [15]; and it has been proved that the corresponding

generating function is

F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z),

and that

bn,k = [xkzn]F =
1

n+ 1

(
n+ 1

k

) n∑
j=2k

(
j − k − 1

k − 1

)(
n+ 1− k
n− j

)
,

where x marks the number of occurrences of the string uud and z marks the

semi-length.

The occurrence of the string udu in Dyck paths has been studied independently

in [13] and [19] and it has been proved that the corresponding statistic follows the

Donaghey distribution, i.e

zF 2(x, z) = (1− (x− 1)z)F (x, z)− (1− (x− 1)z)

and that

an,k =

(
n− 1

k

)
Mn−k−1,

where x marks the number of occurrences of the string udu and z marks the

semi-length.

The occurrence of the string duu in Dyck paths has been studied in [5]; and it

has been proved that the corresponding statistic follows the Touchard distribution,

i.e

xzF 2(x, z)− (1 + 2(x− 1)z)F (x, z) + 1 + (x− 1)z = 0,
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and that

an,k = [xkzn]F (x, z) = 2n−2k−1Ck

(
n− 1

2k

)
.

The generating function for the occurrence of the string uuu in Dyck paths is

know to satisfy the equation

z(t+ (1− t)z)F 2 − (1− (1− t)z)F + 1 = 0.

If we consider the symmetry according to the vertical axis, the generating func-

tions of the following pairs of strings {uuu, ddd}, {duu, ddu}, {uud, udd} and {udu, dud}
are the same.

The generating functions for the occurrences of all 16 strings of length 4 have

been studied in [16]. We notice that among these strings there is a symmetry with

respect to a vertical axis, the generating functions for occurrences for some of them

(given here in pairs) are equidistant:

{uuud, uddd}, {uuuu, dddd}, {uddu, duud}, {duuu, dddu}, {uudd}, {uudu, dudd},
{uduu, ddud}, {udud},{dduu}, {dudu}.

In Chapter 3, enumeration of Dyck paths according to occurrences of strings of

length 2, 3, and 4 at low level, even and odd levels, and high levels has been studied

in [15], [16] and [19]. In [19] only the string udu is considered.

Finally we look at Chapter 4 and 5. In Chapter 4 enumeration of skew Dyck

paths according to different parameters has been studied in [7], these approach is

the same with that of Dyck paths in Chapter 2 and 3. There are various authors

who contributed in the study of the area under the Dyck paths using different

methods [8], [9] and [12]. These methods are related to models in queuing theory

and Statistical physics [14]. In [1] a more general approach has been considered,

both the exact and asymptotic enumeration of area and average area below directed

lattice paths has been studied. In Chapter 5 the area and moments of Dyck paths

and generalized Motzkin paths has been studied extensively in [3], [20] and [21].

1.2 Definitions and Notations

The Lagrange Inversion Formula (LIF) is a widely used formula for solving functional

equations and can sometimes give explicit formulas. To apply LIF, our functional

equation must be of the form,

7



H(z) = zΦ(H(z)).

Here Φ is a function of H(z) and we are solving for H(z) in terms of z.

Theorem 1.2.1 (The Lagrange Inversion Formula)[5](Appendix A). Let A(z) be a

generating function satisfying the equation

A(z) = 1 + zH(A(z))

where H(λ) is a polynomial in λ. The above equation has a unique solution A(z)

and if G(λ) is a polynomial in λ, then

[zn]G(A(z)) =
1

n
[λn−1]G′(1 + λ)(H(1 + λ))n for n ≥ 1.

.

Where [zn]G(A(z)) is the coefficient of zn in the series expansion of G(A(z)).

Definition 1.2.2 [6]A Dyck path is a lattice path in the first quadrant, which

begins at the origin (0,0), ends at (2n,0) and consists of steps (1,1) (called rises),

(1,-1) (called falls) (see also Figure 1.1). We say n is the semi-length of the path,

which is the number of up steps.

Figure 1.1: The Dyck path uuduuddududduduudd.

Let Dn be all the sets of Dyck paths with semi-length n and let D =
⋃∞
n=0Dn,

we denote an empty path by ε or by • with | D0 |= 1.

A Dyck path can be an empty path or it can be uniquely decomposed as the first

return to the horizontal axis (see also Figure 1.2), γ = uαdβ (with α, β ∈ D).

From the decomposition in Figure 1.2, we get the generating function C(z) for

Dyck paths as follows,

C(z) = 1 + zC(z)2, (1.1)

where z marks the number of up steps. We now want to show that the coefficient

of zn in the series expansion of C(z) is Cn =
1

n+ 1

(
2n
n

)
.
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Figure 1.2: The first return decomposition of the Dyck path.

Using the quadratic formula in (1.1) we will show in lemma 1.3 that

C(z) =
1−
√

1− 4z

2z

=
∑
n≥0

1

n+ 1

(
2n

n

)
zn

= 1 + z + 2z2 + 5z3 + 14z4 + · · · .
(1.2)

In the above we use the negative square root since we get C(0+) = limz↓0C(z) =

0. The positive sign produces C(0) = 2
0

=∞.

Cn is called the nth Catalan number and | Dn |= Cn.

The first few numbers of the sequence given by the coefficient Cn for all

n ∈ {0, 1, 2, 3, · · · } are 1, 1, 2, 5, 14, · · · (sequence A000108 in [18])

If R and Q are finite sets of Dyck paths, then we define the concatenation RQ
of R and Q by

RQ = {αβ : α ∈ R, β ∈ Q}.
Lemma 1.2.3 [6] [zn]C(z) =

1

n+ 1

(
2n
n

)
as follows

Proof

[zn]C(z) = [zn]
1−
√

1− 4z

2z

= [zn+1]
1−
√

1− 4z

2

= [zn+1]
1−

∑
k≥0
( 1

2
k

)
(−4z)k

2

= [zn+1](−1)

∑
k≥1
( 1

2
k

)
(−4z)k

2
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= −1

2
[zn+1]

∑
k≥1

(−1)k−1(2k − 2)!

22k−1k!(k − 1)!
(−4z)k

= −1

2
[zn+1]

∑
k≥1

(−1)(2k − 2)!

22k−1k!(k − 1)!
4kzk

=
1

2

(2n)!

22n+1(n+ 1)!n!
4n+1

=
1

n+ 1

(
2n

n

)
, (1.3)

as required.

Lemma 1.2.4 [15] The powers for the Catalan number generating function C(z)

are.

[zn]Cs(z) =
s

2n+ s

(
2n+ s

n

)
.

Proof

We prove the lemma 1.2.4 by using the Lagrange inversion formula

[zn]G(A(z)) = 1
n
[λn−1]G′(1 + λ)(H(1 + λ))n for n ≥ 1.

where G(C(z)) = C(z)s.

[zn]Cs(z) =
1

n
[yn−1]s(1 + y)s−1(1 + y)2n

=
s

n
[yn−1](1 + y)2n+s−1

=
s

n

(2n+ s− 1)!

(n− 1)!(n+ s)!

=
s

2n+ s

(2n+ s)!

(n)!(n+ s)!

=
s

2n+ s

(
2n+ s

n

)
,

as required.

Definition 1.2.5 [5]A skew Dyck path (skew path) is a lattice path, which lies

in the first quadrant it begins at the origin, ends on the x-axis and consists of up

steps u = (1, 1), down steps d = (1,−1) and left steps l = (−1,−1), such that left

steps never overlap with up steps. It does not go below the x-axis.
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The length of skew path refers to the number of its steps and semi-length of skew

path refers to half the number of its steps. We notice that a skew path of length

2n does not necessarily stop at (2n,0). Figure 1.3 shows an example of a skew Dyck

path and Dyck path.

Figure 1.3: (a) a Dyck path and (b) a skew Dyck path

We denote an empty skew path by ε or by •. Let Sn be the set of all skew paths

of semi-length n and let S =
⋃∞
n=0 Sn.

Each skew path can be either empty or it can be uniquely decomposed as

uγ′dγ′′ (with γ′, γ′′ ∈ S) or uγ′l (with γ′ ∈ S, γ′ 6= •).
This decomposition can also be shown with a picture as follows

Figure 1.4: Main decomposition of skew Dyck paths.

From figure 1.4 we get the generating function s(z) for skew paths as follows

s(z) = 1 + zs2(z) + z(s(z)− 1), (1.4)

where z marks up steps u’s.

Solving (1.4) for s(z) by using the quadratic formula we get

s(z) =
−(z − 1)−

√
z2 − 2z + 1− 4(z)(1− z)

2z

=
1− z −

√
1− 6z + 5z2

2z
.

= 1 + z + 3z2 + 10z3 + 36z4 + 137z5 + 543z6 + · · · (1.5)

In the above we use the negative square root since we get s(0+) = limz↓0s(z) = 0.

The positive sign produces s(0) = 2
0

=∞.
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To get the coefficient of zn from the series expansion of s(z), we proceed as

follows,

sn = [zn]s(z) =
[yn−1](1 + 3y + y2)n

n
. (1.6)

for n ≥ 0. We expand (1 + 3y + y2)n and after writing the trinomial in the three

forms (1 + y)2 + y, (1− y)2 + 5y2 and (1 + 3y) + y2, then after applying the inversion

Lagrange formula we get,

Theorem 1.2.6 [5]

sn =
n∑
k=1

(
n− 1

k − 1

)
Ck, (1.7)

Theorem 1.2.7 [5]

sn =
n∑
k=0

(
n− 1

k − 1

)
(−1)k−15n−kCk (1.8)

and

Theorem 1.2.8 [5]

sn =
1

n

bn−1
2
c∑

k=0

(
n

k

)(
n− k
k + 1

)
3n−2k−1 (1.9)

respectively.

The first few numbers of the sequence given by the coefficient sn are

1, 1, 3, 10, 36, 137, 543, · · · (sequence A002212 in [18]).

Now we give proofs for theorem 1.2.6, theorem 1.2.7 and theorem 1.2.8, we start

with theorem 1.2.6,

[zn]s(z) =
1

n
[yn−1]((1 + y)2 + y)n

=
1

n
[yn−1]

n∑
k=0

(
n

k

)
yn−k(y + 1)2k

=
1

n

n∑
k=0

(
n

k

)
[yk−1]

2k∑
j=0

(
2k

j

)
yj

=
1

n

n∑
k=0

(
n

k

)(
2k

k − 1

)

12



=
n∑
k=0

(n− 1)!

k!(n− k)!

(2k)!

(k − 1)!(k + 1)!

=
n∑
k=1

(
n− 1

k − 1

)
Ck. (1.10)

Now for theorem 1.2.7

[zn]s(z) =
1

n
[yn−1]((1− y)2 + 5y)n

=
1

n
[yn−1]

n∑
k=0

(
n

k

)
(1− y)2kyn−k5n−k

=
1

n

n∑
k=0

(
n

k

)
[yk−1]

2k∑
j=0

(−1)j
(

2k

j

)
yj5n−k

=
1

n

n∑
k=1

(
n

k

)
(−1)k−1

(
2k

k − 1

)
5n−k

=
n∑
k=1

(n− 1)!

k!(n− k)!

(2k)!

(k − 1)!(k + 1)!
(−1)k−15n−k

=
n∑
k=1

(n− 1)!

k!(n− k)!

1

k + 1

(2k)!

k!k!
(−1)k−15n−k

=
n∑
k=0

(
n− 1

k − 1

)
(−1)k−15n−kCk.

(1.11)

Lastly theorem 1.2.8.

[zn]s(z) =
1

n
[yn−1]((1 + 3y) + y2)n

=
1

n
[yn−1]

n∑
k=0

(
n

k

)
y2k(1 + 3y)n−k

=
1

n

bn−1
2
c∑

k=0

(
n

k

)(
n− k

n− 2k − 1

)
3n−2k−1

=
1

n

bn−1
2
c∑

k=0

(
n

k

)(
n− k
k + 1

)
3n−2k−1.

13



(1.12)

The relationship between the skew path generating function s(z) and the Dyck

path generating function C(z) is as follows,

s(z) = C

(
z

1− z

)
. (1.13)

We prove the above relation as follows;

C

(
z

1− z

)
=

1−
√

1− 4z
1−z

2 z
1−z

=
1−

√
1−5z
1−z

2z
1−z

=
1− z −

√
1− 6z + 5z2

2z

(1.14)

as from equation (1.5) s(z) =
1− z −

√
1− 6z + 5z2

2z
therefore s(z) = C( z

1−z ).

Definition 1.2.9 [6]We define a Motzkin path to be a lattice path starting at the

point (0,0) and ending at the point (n,0), it never goes below the horizontal axis.

The steps are the up steps u = (1, 1), the horizontal steps q = (1, 0) and then down

steps d = (1,−1) (see Figure 1.5).

Figure 1.5: Two different Motzkin paths.

We define the length of a Motzkin path by the number of its steps. Let Mn be

the set of all Motzkin paths with length n, then M =
⋃∞
n=0Mn.

We now define the first return decomposition for Motzkin paths as follows, a

Motzkin path can be empty or it can start with a horizontal step or it can start

with an up step and return to the horizontal axis for the first time. Thus we get the

following decomposition,

14



M = {ε} ∪ qM∪ uMdM,

this translate to the following , where M(z) is the generating function for Motzkin

paths

M(z) = 1 + zM(z) + z2M(z)2,

where z marks each of the horizontal, up and down steps.

Now from this generating function we can derive the recurrence for Motzkin

paths i.e

Lemma 1.2.10 [19] Mn = Mn−1 +
∑n−2

k=0 Mn−2Mn−2−k where Mn is the nth

Motzkin number.

Proof

We consider the fact that by convolution rule M2(z) =
∑

j≥0
∑j

k=0MkMj−kz
j,

M(z) = 1 + zM(z) + z2M(z)2∑
k≥0

Mkz
k = 1 + z

∑
k≥0

Mkz
k + z2

∑
j≥0

j∑
k=0

MkMj−kz
j

[zn]
∑
k≥0

Mkz
k = [zn]

(
1 + z

∑
k≥0

Mkz
k + z2

∑
j≥0

j∑
k=0

MkMj−kz
j

)

= [zn−1]
∑
k≥0

Mkz
k + [zn−2]

∑
j≥0

j∑
k=0

MkMj−kz
j

Mn = Mn−1 +
n−2∑
k=0

Mn−2Mn−2−k,

as required.

We know that there is only one empty Motzkin path, that is M0 = 1, now from

the above recurrence we see that M1 = 1 and M2 = 2. Now we want to show that

Lemma 1.2.11 [19] Mn =
∑[n/2]

j=0

(
n
2j

)
Cj.

Proof : from above we have

M(z) = 1 + zM(z) + z2M(z)2

15



M(z)− 1 = zM(z) + z2M(z)2.

We use the following equation which is in the suitable form to apply Lagrange

inversion formula.

A(z) = 1 + zH(A(z)),

where H(γ) = γ+zγ2 and A(z) = M(z). Now using the Lagrange inversion formula

we get

[zσ]A(z) =
1

σ
[γσ−1](H(1 + γ))σ.

(1.15)

This gives us

(H(1 + γ))σ =
σ∑
j=0

(
σ

j

)
zj(1 + γ)2j(1 + γ)σ−j

=
σ∑
j=0

(
σ

j

)
zj(1 + γ)σ+j

=
σ∑
j=0

(
σ

j

)
zj

σ+j∑
v=0

(
σ + j

v

)
γv

=
σ∑
v=0

σ∑
j=(σ−v)+

(
σ + j

v

)(
σ

j

)
zjγv.

From (1.15) with v = σ − 1 we get

[zσ]M(z) =
1

σ

σ∑
j=0

(
σ + j

σ − 1

)(
σ

j

)
zj

M(z) =
∑
σ≥1

1

σ

σ∑
j=0

(
σ + j

σ − 1

)(
σ

j

)
zjzσ.
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Since we want zn, let n = σ + j then

M(z) =
∑
n≥1

n−j∑
j=0

1

n− j

(
n

n− j − 1

)(
n− j
j

)
zn

=
∑
n≥1

n−j∑
j=0

1

n− j
n!

(n− j − 1)!(j + 1)!

(n− j)!
(n− 2j)!j!

(2j)!

(2j)!
zn

=
∑
n≥1

[n/2]∑
j=0

(
n

2j

)
Cjz

n.

Now we see that

[zn]M(z) = Mn =

[n/2]∑
j=0

(
n

2j

)
Cj,

as required.

The first few numbers of the sequence given by the coefficient Mn are

1, 1, 2, 5, 15, 52, · · · (sequence A000110 in [18]).

It is known that

Cn+1 =
n∑
j=0

(
n

j

)
Mn−j.

We are now ready to apply these results of Chapter 1 into the following four

chapters.

17



Chapter 2

Counting strings in Dyck paths

In this chapter we study the paper titled Counting strings in Dyck paths in [16].

We take into account the number of occurrences of the string τ .

For the basic definitions we again refer the reader to Deutch [5].

In a Dyck path (Dn) we define a peak (valley) to be a point between an up

(down) step and a down (resp. up) step. A double-up (double-down) step is a point

preceded and followed by an up (down) step. The height of a point is defined to be

its y-coordinate. We call a peak (valley) low if it is of height 1 (0). We call a peak

(valley) small if it is not immediately preceded by a double-up (double-down) step

and immediately followed by a double-down (double-up). From the above definition

a low peak is a small peak. An ascent (descent) of a Dyck path is a maximal sequence

of consecutive up (down) steps. Every Dyck path can be encoded by a word in a

language D on the alphabet {u, d} and let {u, d}∗ be the set of words made up by

letters in {u, d}. For example the Dyck path α in Figure 2.1 is encoded by the word

α = uuduuddududduduudd ∈ {u, d}∗. We define a string τ to be a word in {u, d}∗,
this word occurs in a Dyck path α if α = βτδ, where β, δ ∈ {u, d}∗. For example

there are three occurrences of each of the strings uu and dd in Figure 2.1.

Figure 2.1: The Dyck path uuduuddududduduudd.

In this chapter we consider the number of occurrences of the string τ . We use
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the generating function Fτ (t, z) := F (t, z) := F where t counts the number of

occurrences of τ and z marks the semi-length. We define Fτ (t, z) as follows,

Fτ (t, z) =
∞∑
n=0

n∑
k=0

an,kt
kzn. (2.1)

Here ank is the number of all Dyck paths of semi-length n with k occurrences of

τ . We define an,0 = an to be an avoiding sequence of the string τ .

2.1 The strings of length 2.

We first consider strings of length 2, namely uu, ud, du and dd.

If we consider the symmetry according to the vertical axis, the statistics of the

following pairs of strings {uu, dd} are equidistant.

Theorem 2.1.1 [5] The generating function for occurrences of the strings uu and

dd is 1 + tzF 2 − (1− z + tz)F = 0.

Proof

To derive the generating function F (t, z) := F for the string τ = uu, we partition

D into {Ωi}, where Ωi is the set of all Dyck paths with the length of the first ascent

is equal to i, for all i ≥ 1. We define Ai(t, z) := Ai to be a generating function for

Ωi, where t counts the number of occurrences of the string τ = uu. All elements

α of Ωi can be written uniquely as α = uidα1dα2dα3....dαi, where αm ∈ D for all

m ∈ [i]. We conclude that there are (i − 1) new strings uu (in addition to those

contributed by αi’s ) if and only if i ≥ 2, since there are i (am’s) and also there are i

(u′s). These produce Ai = ti−1ziF i and if i ≤ 1 we get Ai = ziF i. Combining these

two possibilities we get∑∞
i=2 t

i−1ziF i and
∑1

i=0 z
iF i.

Hence we get

F =
1∑
i=0

ziF i +
∞∑
i=2

ti−1ziF i

= 1 + zF +
∞∑
i=2

ti−1ziF i.

19



(2.2)

Now we do some manipulations in the above equation as follows:

F = 1 + zF +
∞∑
i=2

ti−1ziF i

= 1 + zF +
∞∑
i=0

ti+2−1zi+2F i+2

= 1 + zF + tz2F 2

∞∑
i=0

tiziF i

= 1 + zF +
tz2F 2

1− tzF
F − tzF 2 = 1− tzF + zF − tz2F 2 + tz2F 2

1 + tzF 2 − (1− z + tz)F = 0.

Then the generating function for the string uu satisfies,

tzF 2 − (1− (1− t)z)F + 1 = 0. (2.3)

Theorem 2.1.2 [5]The number of Dyck paths with semi-length n, having k occur-

rences of the strings uu and dd is equal to.

an,k = [tkzn]F (t, z) =
1

n

n∑
j=0

(−1)k−j
(
n

j

)(
n+ j

n− 1

)(
n− j
k − j

)
. (2.4)

Proof of (2.4)

Let w(t, z) := w = F (t, z)− 1

w = z(t(w + 1)2 + (1− t)(w + 1)).

(2.5)

We now apply Lagrange inversion formula to get

[zn]w =
1

n
[yn−1](t(y + 1)2 + (1− t)(y + 1))n
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=
1

n
[yn−1]

n∑
j=0

(
n

j

)
tj(y + 1)2j(1− t)n−j(y + 1)n−j

=
1

n
[yn−1]

n∑
j=0

(
n

j

)
tj(y + 1)n+j

n−j∑
i=0

(
n− j
i

)
(−1)iti.

(2.6)

Then

[tkzn]w =
1

n
[yn−1]

n∑
j=0

(
n

j

)
(y + 1)n+j

(
n− j
k − j

)
(−1)k−j

=
1

n

n∑
j=0

(−1)k−j
(
n

j

)(
n+ j

n− 1

)(
n− j
k − j

)
,

(2.7)

as required.

To derive the generating function F (t, z) := F for the string τ = dd, we partition

D into {Ωi}Where Ωi is the set of all Dyck paths with the length of the last descent

is equal to i, for all i ≥ 1. We define Ai(t, z) := Ai to be a generating function for

Ωi, where t counts the number of occurrences of the string τ = dd. All elements

α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i, where αm ∈ D for all

m ∈ [i]. We conclude that there are (i − 1) new strings dd (in addition to those

contributed by αi’s ) if and only if i ≥ 2, since there are i (am’s) and also there are i

(u′s). This produces Ai = ti−1ziF i and if i ≤ 1 we get Ai = ziF i. Combining these

two possibilities we get∑∞
i=2 t

i−1ziF i and
∑1

i=0 z
iF i.

Then similar to the case uu the generating function for the string dd satisfies,

tzF 2 − (1− (1− t)z)F + 1 = 0. (2.8)

This quadratic equation for the generating function for dd is the same as for the

generating function for the string uu. We say that two or more strings are same if

the have the same generating function, thus dd and uu have the same generating

function.
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Theorem 2.1.3 [5]The generating function for occurrences of the strings ud is

zF 2 − (1 + (1− t)z)F + 1 = 0.

Proof

We now consider the string τ = ud, we derive its generating function F (t, z) := F

(where t counts the number of occurrences of the string τ = ud) by using the first

return decomposition of the non-empty Dyck path α = uβdγ where α, β, γ ∈ D. A

new occurrence of ud appears in α (in addition to those contributed by β and γ) if

and only if β = ε.

The path α can start with the string ud right from the start where β = ε, pro-

ducing z(tF ) or α can start with uu where β 6= ε producing z(F − 1)F . Combining

these two possibilities we get,

F = 1 + z(tF + (F − 1)F )

F = 1 + ztF + zF 2 − zF.

Then the generating function for the occurrence of the string ud is given by,

zF 2 − (1 + (1− t)z)F + 1 = 0. (2.9)

Theorem 2.1.4 [5]The number of Dyck paths with semilength n, having k occur-

rences of the string ud is equal to.

an,k = [tkzn]F (t, z) =
1

n

n∑
j=0

(−1)n−k−j
(
n

j

)(
n+ j

n− 1

)(
n− j
k

)
. (2.10)

Proof of (2.10)

Let w(t, z) := w = F (t, z)− 1.

w = z((w + 1)2 + (t− 1)(w + 1))

(2.11)

We now apply Lagrange inversion formula to get

[zn]w =
1

n
[yn−1]((y + 1)2 + (t− 1)(y + 1))n

22



=
1

n
[yn−1]

n∑
j=0

(
n

j

)
(y + 1)2j(t− 1)n−j(y + 1)n−j

=
1

n
[yn−1]

n∑
j=0

(
n

j

)
(y + 1)n+j

n−j∑
i=0

(
n− j
i

)
(−1)n−j−iti

(2.12)

Then

[tkzn]w =
1

n
[yn−1]

n∑
j=0

(
n

j

)
(y + 1)n+j

(
n− j
k

)
(−1)n−k−j

=
1

n

n∑
j=0

(−1)n−k−j
(
n

j

)(
n+ j

n− 1

)(
n− j
k

)
,

(2.13)

as required.

Theorem 2.1.5 [5]The generating function for occurrences of the strings du is

ztF 2 − (1− (1− t)z)F + 1 = 0.

Proof

We now consider the string τ = du, we derive its generating function F (t, z) := F

(where t counts the number of occurrence of the string τ = du) by using the first

return decomposition of the non-empty Dyck path α = βuγd where α, β, γ ∈ D. A

new occurrence of du appears in α (in addition to those contributed by β and γ) if

and only if β 6= ε producing z(t(F − 1)F ) or α can be such that β = ε producing

zF . Combining these two possibilities we get,

F = 1 + z(t(F − 1)F + F )

F = 1 + ztF 2 − tzF + zF

ztF 2 − (1− (1− t)z)F + 1 = 0.

Then the generating function for the occurrence of the string du is given by,

ztF 2(t, z)− (1− (1− t)z)F (t, z) + 1 = 0. (2.14)
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We see that the strings du and uu are the same, then for du

an,k = [tkzn]F (t, z) =
1

n

n∑
j=0

(−1)k−j
(
n

j

)(
n+ j

n− 1

)(
n− j
k − j

)
, (2.15)

as in uu.

2.2 The strings of length 3.

We now consider the strings of length 3, which are udu, udd, duu, uuu, uud, dud,

ddd and ddu.

If we consider the symmetry according to the vertical axis, the statistics of the

following pairs of strings {uuu, ddd}, {duu, ddu}, {uud, udd} and {udu, dud} have

the same generating function.

Theorem 2.2.1 [16]The generating function for occurrences of the strings duu and

ddu is xzF 2(x, z)− (1 + 2(x− 1)z)F (x, z) + 1 + (x− 1)z = 0.

We will derive the generating function for τ = duu in two different ways

The first way is as follows:

Proof

Let Ω be the set of all Dyck paths where the first ascent is of size at least 2, with

its generating function A(x, z) = A, where x counts the number of occurrences of

the string τ = duu. All elements α of Ω can be written uniquely as α = uα1dα2,

where α1, α2 ∈ D and α1 6= ε. The new duu occurs if and only if α2 ∈ Ω, this

produces xz(F − 1)A and if α2 does not belong to Ω then we get z(F − 1)(F −A).

Combining these two possibilities we get

A = z(F − 1)(F − A+ xA).

We know that every non-empty Dyck path α ∈ D can be written uniquely as a

first return decomposition, that is α = uβdγ, where β, γ ∈ D. We see that a new

string duu (in addition to those contributed by β and γ) occurs if and only if γ ∈ Ω,

producing xzAF , and if γ does not belong to Ω then we get z(F −A)F . Combining

these two possibilities we now get
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F = 1 + z(xA+ (F − A))F.

In the equation F = 1 + xzAF + z(F − A)F we solve for A and get

A =
F − 1− zF 2

xzF − zF
.

We then substitute the expression for A into A = z(F − 1)(F − A + tA), then

we proceed as follows,

F − 1− zF 2

xzF − zF
= z(F − 1)

(
F −

(
F − 1− zF 2

xzF − zF

)
+ x

(
F − 1− zF 2

xzF − zF

))
F − 1− zF 2 = z(F − 1)(xzF 2 − zF 2 − F + 1 + zF 2 + xF − x− xzF 2)

F − 1− zF 2 = z(F − 1)(−F + 1 + xF − x)

F − 1 = 2zF − 2xzF + xzF 2 − (1− x)z

xzF 2 − (1 + 2(x− 1)z)F + 1 + (x− 1)z = 0.

Alternatively we can derive the generating function for duu as follows: We derive

its generating function by using the first return decomposition of non-empty Dyck

paths α = βuγd where α, β, γ ∈ D, a new occurrence of duu appears in α (in

addition to those contributed by β and γ) if and only if both β, γ 6= ε.

Now if β, γ 6= ε we get z(x(F − 1)2) or if both β, γ = ε we get z and if one of β

and γ is empty and the other one is not empty we get 2z(F − 1). Combining these

three possibilities we get

F = 1 + z(x(F − 1)2) + 2z(F − 1) + z

F = 1 + xzF 2 − 2xzF + xz + 2zF − z
xzF 2 − (1 + 2(x− 1)z)F + 1 + (x− 1)z = 0.

Now the generating function of the string duu is

xzF 2(x, z)− (1 + 2(x− 1)z)F (x, z) + 1 + (x− 1)z = 0,
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as required.

The coefficient an,k of the series expansion for F (x, z) is,

an,k = [xkzn]F (x, z) =

1, if n = k = 0

2n−2k−1Ck
(
n−1
2k

)
if n ≥ 1,

(2.16)

Proof of (2.16)

z
(
xF (x, z)2 − (x− 1)(2F (x, z)− 1)

)
= F (x, z)− 1. (2.17)

Let w(x, z) = F (x, z)− 1 then

w = z
(
x(w + 1)2 − (x− 1)(2w + 1)

)
= z(xw2 + 2w + 1).

(2.18)

We now apply Lagrange inversion formula to get

[zn]w =
1

n
[yn−1](xy2 + 2y + 1)n

=
1

n
[yn−1]

n∑
j=0

(
n

j

)
xjy2j(2y + 1)n−j.

(2.19)

Then

[xkzn]w =
1

n
[yn−1]

(
n

k

)
y2k(2y + 1)n−k

=
1

n

(
n

k

)
[yn−2k−1]

n−k∑
m=0

(
n− k
m

)
2mym

=
1

n

(
n

k

)(
n− k

n− 2k − 1

)
2n−2k−1

= 2n−2k−1
(n− 1)!

k!(n− k)!

(n− k)!

(n− 2k − 1)!(k + 1)!
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= 2n−2k−1
(n− 1)!

(2k)!(n− 2k − 1)!

(2k)!

k!k!(k + 1)

= 2n−2k−1
(
n− 1

2k

)
Ck,

(2.20)

as required.

We now derive the generating function F (t, z) := F for ddu in two ways.

Using the first return decomposition of a non-empty Dyck path α = uβdγ where

α, β, γ ∈ D, a new occurrence of ddu appears in α (in addition to those contributed

by β and γ) if and only if both β, γ 6= ε.

Now if β, γ 6= ε we get z(x(F −1)2) or if both β, γ = ε we get z and if exactly one

of β and γ is empty and the other one is not empty we get 2z(F − 1). Combining

these three possibilities we get

F = 1 + z(x(F − 1)2) + 2z(F − 1) + z

F = 1 + xzF 2 − 2xzF + xz + 2zF − z
xzF 2 − (1 + 2(x− 1)z)F + 1 + (x− 1)z = 0.

Alternatively we can derive the generating function for ddu as follows:

Let Ω be the set of all Dyck paths where the last descent is at least 2, with its

generating function A(x, z) = A, where x counts the number of occurrence of the

string τ = ddu. All elements α of Ω can be written uniquely as α = α1uα2d, where

α1, α2 ∈ D and α2 6= ε. The new ddu occurs if and only if α1 ∈ Ω, this produces

xz(F −1)A and if α1 does not belong to Ω then we get z(F −1)(F −A). Combining

these two possibilities we get

A = z(F − 1)(F − A+ tA).

We know that every non-empty Dyck path α ∈ D can be written uniquely as a

first return decomposition, that is α = βuγd, where β, γ ∈ D. We see that a new

string ddu occurs (in addition to those contributed by β and γ) if and only if β ∈ Ω,
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producing xzAF , and if β does not belong to Ω then we get z(F −A)F . Combining

these two possibilities we now get

F = 1 + z(tA+ (F − A))F.

Now as for duu the generating function of the string ddu is

xzF 2 − (1 + 2(x− 1)z)F + 1 + (x− 1)z = 0.

This generating function for ddu is the same as the generating function for the

string duu, thus ddu and duu have the same generating function.

xzF 2(x, z)− (1 + 2(x− 1)z)F (x, z) + 1 + (x− 1)z = 0.

Theorem 2.2.2 [16]The generating function for occurrences of the strings udu and

dud is zF 2(x, z) = (1− (x− 1)z)F (x, z)− (1− (x− 1)z).

For the string udu we refer to the paper titled The statistic number of udu’s in

Dyck path by Yidong Sun [19].

Proof

We now consider the string τ = udu, We derive its generating function by using

the first return decomposition of non-empty Dyck path α = uβdγ where α, β, γ ∈ D.

A new occurrence of udu appears in α (in addition to those contributed by β and

γ) if and only if β = ε. Where γ 6= ε producing z(x(F (x, z) − 1)) or α can start

with uu where β 6= ε producing z(F (x, z)− 1)F (x, z) or we can have α = ud where

β = γ = ε producing z (where z marks up step u).

Now the non-empty Dyck path α have the generating function F (x, z) − 1 as

follows.

F (x, z)− 1 = z(x(F (x, z)− 1)) + z(F (x, z)− 1)F (x, z) + z

zF 2(x, z) = (1− (x− 1)z)F (x, z)− (1− (x− 1)z).

We now prove the following using two different methods,

an,k = [xkzn]F (x, z) =

1 if n = k = 0(
n−1
k

)
Mn−k−1 if k ∈ [0, n− 1].

(2.21)
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The first method.

Proof

We define Sn,k to be the set of all Dyck paths denoted by Dn of semi-length

n ≥ 2, with k udu’s, we now take Sn+1,0, that is a Dyck path of semi-length n + 1

with no udu’s. Let an+1,k be the cardinality of Sn+1,k. Let α = uβdγ be the first

return decomposition, where α, β, γ ∈ D, then both β and γ are udu-avoiding and

also, if β = ε, then γ = ε, otherwise if γ 6= ε then we have udu. Therefore we see

that for n ≥ 2 in α, we need to have β 6= ε. From the generating function

F (x, z)− 1 = z(x(F (x, z)− 1)) + z(F (x, z)− 1)F (x, z) + z,

for udu above where x marks the number of occurrences of the string udu. let x = 1

then

F (1, z)− 1 = z(F (1, z)− 1) + z(F (1, z)− 1)F (1, z) + z

F (1, z)− 1 = zF 2(1, z).

Now we consider F (1, z) =
∑

i≥0 ai,0z
i,we also know that

zF 2(1, z) = z
∑

k≥0
∑k

i=0 ai,0ak−i,0z
k by the convolution rule, now we get

∑
i≥0

ai,0z
i − 1 =

∑
k≥0

k∑
i=0

ai,0ak−i,0z
i+1.

Thus

[zn+1]

(∑
i≥0

ai,0z
i − 1

)
= [zn+1]

∑
k≥0

k∑
i=0

ai,0ak−i,0z
k+1

Therefore an+1,0 =
∑n

i=0 ai,0an−i,0.

and since a0,0 = 1

an+1,0 = an,0 +
n−1∑
i=1

ai,0an−i,0.
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We now use the above recurrence

an+1,0 = an,0 +
n−1∑
i=1

ai,0an−i,0, (2.22)

to apply a bijection with the Motzkin numbers Mn.

The number of Dyck paths with no udu’s and with semi-length 0, 1, or 2 is only

one, that is a0,0 = a1,0 = a2,0 = 1, thus from (2.22) a3,0 = 2.

In Chapter 1 we derived the recurrence for the Motzkin numbers Mn which gave

us M0 = M1 = 1, with a recurrence as follows:

Mn = Mn−1 +
n−2∑
i=0

MiMn−2−i. (2.23)

We see from (2.23) that M2 = 2.

The two recurrences (2.22) and (2.23) have the same initial conditions therefore

an+1,0 = Mn.

For a Dyck path α ∈ Sn−k+1,0 we look at n − k + 1 endpoints of its n − k + 1

up steps. In these n − k + 1 up steps, we choose k points, we can choose any

point with repetition allowed, and at each of the chosen points we insert a valley

du. We then obtain k udu’s and the semi-length increase from n − k + 1 to n + 1.

This produces a Dyck path of semi-length n+ 1 with k occurrences of udu’s that is

an+1,k. Alternatively we can cancel the k valleys du that follow immediately after

an up step u, this will result into k udu’s and again we get an+1,k. Since the number

of i-subsets of [n] with repetitions allowed is
(
n+i−1

i

)
, we get an+1,k =

(
n
k

)
an−k+1,0. If

we consider an+1,0 = Mn, then an−k+1,0 = Mn−k, this give us

an+1,k =

(
n

k

)
Mn−k. (2.24)

Thus

an,k =

(
n− 1

k

)
Mn−k−1, (2.25)
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as required.

Second method.

Proof

z(F 2 − F + xF + 1− x) = F − 1

Let w(x, z) = F (x, z)− 1. where w(x, z) := w then

z((w + 1)2 + (x− 1)w) = w.

Now we apply Lagrange inversion formula to get an,k = [xkzn]w as follows

[zn]w =
1

n
[yn−1]((y + 1)2 + (x− 1)y)n

=
1

n
[yn−1]

n∑
j=0

(
n

i

)
(y + 1)2i(x− 1)n−iyn−i

[xkzn]w = [xk]
1

n
[yn−1]

n∑
i=0

(
n

i

)
(y + 1)2iyn−i

n−i∑
j=0

(
n− i
j

)
(−1)n−j−ixj

=
1

n
[yn−1]

n∑
i=0

(
n

i

)
(y + 1)2iyn−i

(
n− i
k

)
(−1)n−k−i

=
1

n
[yn−1]

n∑
i=0

(
n

i

)(
n− i
k

)
(−1)n−k−i

n∑
m=0

(
2i

m

)
yn−i+m

=
1

n

n∑
i=1

(
n

i

)(
n− i
k

)
(−1)n−k−i

(
2i

i− 1

)
=

n∑
i=1

(−1)n−k−i
(n− 1)!

i!(n− i)!
(n− i)!

k!(n− i− k)!

(2i)!

(i− 1)!(i+ 1)!

(n− k − 1)!

(n− k − 1)!

=

(
n− 1

k

) n∑
i=1

(−1)n−k−i
(
n− k − 1

i− 1

)
Ci

=

(
n− 1

k

) n−k−1∑
i=0

(−1)n−k−1−i
(
n− k − 1

i

)
Ci+1

=

(
n− 1

k

)
Mn−k−1.
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where the last equality follows by applying the Möbius inversion formula to the

equation Cn+1 =
∑n

j=0

(
n
j

)
Mn−j in Chapter one.

We now consider the string τ = dud. We derive its generating function by using

the first return decomposition of non-empty Dyck path α = βuγd where α, β, γ ∈ D.

A new occurrence of dud appears in α (in addition to those contributed by β and

γ) if and only if γ = ε and β 6= ε producing z(x(F − 1)) or α can be such that

γ 6= ε producing z(F − 1)F or we can have α = ud where β = γ = ε producing z.

Combining these three possibilities we get

F − 1 = z(x(F − 1)) + z(F − 1)F + z

zF 2 = (1− (x− 1)z)F − (1− (x− 1)z).

This generating function for dud is the same as the generating function for the

string udu, thus dud and udu are equidistant.

The table below shows some values for an,k.

n\k 0 1 2 3 4 5 6

1 1

2 1 1

3 2 2 1

4 4 6 3 1

5 9 16 12 4 1

6 21 45 40 20 5 1

7 51 126 135 80 30 6 1

Table 2.1: The numbers an,k of the string τ = udu.

Theorem 2.2.3 [16]The generating function for occurrences of the strings uuu and

ddd is z(t+ (1− t)z)F 2 − (1− (1− t)z)F + 1 = 0.

Proof

To derive the generating function F (t, z) = F for the string τ = uuu, we partition

D into {Ωi}, where Ωi is the set of all Dyck paths with length of first ascent equal

to i, for all i ≥ 1, we define Ai(t, z) = Ai to be a generating function for Ωi, where
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t counts the number of occurrences the string τ = uuu. All elements α of Ωi can

be written uniquely as α = uidα1dα2dα3....dαi, where αm ∈ D for all m ∈ [i]. We

conclude that there are (i − 2) new strings uuu (in addition to those contributed

by αi’s ) if and only if i ≥ 3, since there are i (am’s) and also there are i (u′s),

these produce Ai = ti−2ziF i and if i ≤ 2 we get Ai = ziF i. Combining these two

possibilities we get∑∞
i=3 t

i−2ziF i and
∑2

i=0 z
iF i.

Hence we get

F =
2∑
i=0

ziF i +
∞∑
i=3

ti−2ziF i

= 1 +
2∑
i=1

ziF i +
∞∑
i=3

ti−2ziF i.

(2.26)

Now we do some manipulations in the above equation as follows,

F = 1 +
2∑
i=1

ziF i +
∞∑
i=3

ti−2ziF i

= 1 +
2∑
i=1

ziF i +
∞∑
i=0

ti+3−2zi+3F i+3

= 1 +
2∑
i=1

ziF i + tz3F 3

∞∑
i=0

tiziF i

= 1 + zF + z2F 2 +
tz3F 3

1− tzF
F − tzF 2 = 1− tzF + zF − tz2F 2 + z2F 2 − tz3F 3 + tz3F 3

z(t+ (1− t)z)F 2 − (1− (1− t)z)F + 1 = 0.

Then the generating function for the string uuu is given by,

z(t+ (1− t)z)F 2 − (1− (1− t)z)F + 1 = 0. (2.27)
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Now we derive the generating function F (t, z) = F for the string τ = ddd, we

partition D into {Ωi}, where Ωi is the set of all Dyck paths with length of last

descent equal to i, for all i ≥ 1, we define Ai(t, z) = Ai to be a generating function

for Ωi, where t counts the number of occurrences of the string τ = ddd. All elements

α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i, where αm ∈ D for all

m ∈ [i]. We conclude that there are (i − 2) new strings ddd (in addition to those

contributed by αi’s ) if and only if i ≥ 3, since there are i (am’s) and also there are i

(u′s). This produces Ai = ti−2ziF i and if i ≤ 2 we get Ai = ziF i. Combining these

two possibilities we get∑∞
i=3 t

i−2ziF i and
∑2

i=0 z
iF i.

Then as for uuu the generating function for the string ddd is,

z(t+ (1− t)z)F 2 − (1− (1− t)z)F + 1 = 0. (2.28)

This generating function for ddd is the same as the generating function for the

string uuu, thus ddd and uuu have the same generating function.

If we set t = 0 in the above equation we obtain the generating function for the

Motzkin numbers in Chapter one which is given by,

M(z) = 1 + zM(z) + z2M(z)2. (2.29)

Therefore the sequence for the path avoiding the strings uuu and ddd is the

sequence of Motzkin number Mn =
∑[n/2]

j=0

(
n
2j

)
Cj.

Theorem 2.2.4 [16]The generating function for occurrences of the strings uud and

udd is F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z).

In [15] it is shown how to derive the generating function for the string τ̄ := uud,

we know that the strings udd and uud are equidistant with respect to the vertical

axis.

Now we show the generating function F (x, z) for the string uud is given by

F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z).

Proof

Now let α = uβdγ be the first return decomposition of the non-empty Dyck

path D, where β, γ ∈ D. We see that the new occurrence of uud appears in α

34



(in addition to those from β and γ) if and only if β = udφ where φ ∈ D pro-

ducing z(xzF (x, z))F (x, z) or α can be such that β 6= udφ producing z(F (x, z) −
zF (x, z))F (x, z). Combining these two possibilities we get

F (x, z)− 1 = z(xzF (x, z))F (x, z) + z(F (x, z)− zF (x, z))F (x, z),

then we have

z(1 + (x− 1)z)F 2(x, z)− F (x, z) + 1 = 0

F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z),

(2.30)

as required.

In the paper [16], it is stated that the coefficient bn,k of the series expansion for

F (x, z) is

bn,k = [xkzn]F =
1

n+ 1

(
n+ 1

k

) n∑
j=2k

(
j − k − 1

k − 1

)(
n+ 1− k
n− j

)
(2.31)

We now consider the string τ = udd. We derive its generating function by using

the first return decomposition of non-empty Dyck path α = βuγd where α, β, γ ∈ D.

A new occurrence of udd appears in α (in addition to those contributed by β and γ)

if and only if γ = δud producing z(xzF (x, z))F (x, z) or α can be such that γ 6= δud

producing z(F (x, z)− zF (x, z))F (x, z). Combining these two possibilities we get

F (x, z)− 1 = z(xzF (x, z))F (x, z) + z(F (x, z)− zF (x, z))F (x, z)

F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z).

This generating function for udd is the same as the generating function for the

string uud, thus udd and uud are equidistant.

2.3 The strings of length 4.

In this section we will study the strings of length four, there are sixteen strings τ of

length four, we notice that among these strings there is a symmetry with respect to
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a vertical axis, the statistic ”number of τ ’s” for some of them (given here in pairs)

are equidistant:

{uuud, uddd}, {uuuu, dddd}, {uddu, duud}, {duuu, dddu}, {uudd},
{uudu, dudd}, {uduu, ddud}, {udud},{dduu}, {dudu}.
We will derive some generating functions F (t, z) = F (where t marks the number

of occurrences of a string τ and z marks the semi-length n) for several strings using

first return decomposition.

Theorem 2.3.1 [16]The generating function for occurrences of the string uudd is

zF 2 + z2(t− 1)F − F + 1 = 0.

Proof

We derive the generating function by using the first return decomposition of the

non-empty Dyck path α = uβdγ where β, γ ∈ D, a new occurrence of uudd appears

in α (in addition to those contributed by β and γ) if and only if β = ud.

The path α can have a new occurrence of uudd where β = ud producing z(tz)F

or α can be such that β 6= ud producing z(F − z)F . Combining these two cases we

get

F − 1 = z(tz + F − z)F. (2.32)

Then we have

zF 2 + z2(t− 1)F − F + 1 = 0. (2.33)

It is known that

an,k = [tkzn]F (t, z) =

[n/2]∑
j=k

(−1)j−k

n− j

(
j

k

)(
n− j
j

)(
2n− 3j

n− j − 1

)
. (2.34)

Proof of (2.34)

We use the following equation which is in the suitable form to apply Lagrange

inversion formula

A(z) = 1 + zH(A(z)), (2.35)

where H(γ) = (t− 1)zγ + γ2 and A(z) = F (t, z) is taken at be a function of z only.

Now using the Lagrange inversion formula we get
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[zσ]A(z) =
1

σ
[γσ−1](H(1 + γ))σ,

(2.36)

which gives us

(H(1 + γ))σ =
σ∑
j=0

(
σ

j

)
(t− 1)jzj(1 + γ)j(1 + γ)2σ−2j

=
σ∑
j=0

(
σ

j

)
(t− 1)jzj(1 + γ)2σ−j

=
σ∑
j=0

(
σ

j

)
(t− 1)jzj

2σ−j∑
v=0

(
2σ − j
v

)
γv

=
σ∑
v=0

σ∑
j=(2σ−v)+

(
2σ − j
v

)(
σ

j

)
(t− 1)jzjγv,

(2.37)

where (2σ − v)+ means we only consider non-negative integers.

We substitute (2.37) into (2.36)

[zσ]F (t, z) =
1

σ
[γσ−1]

σ∑
v=0

σ∑
j=(2σ−v)+

(
2σ − j
v

)(
σ

j

)
(t− 1)jzjγv

=
1

σ

σ∑
j=0

(
2σ − j
σ − 1

)(
σ

j

)
(t− 1)jzj

F (t, z) =
∞∑
σ=1

1

σ

σ∑
j=0

(
2σ − j
σ − 1

)(
σ

j

)
(t− 1)jzσ+j.

(2.38)

Since we need zn, let n = σ + j

F (t, z) =
∞∑
n=0

n−j∑
j=0

1

n− j

(
n− j
j

)(
2n− 3j

n− j − 1

)
(t− 1)jzn.
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Now with n ≥ 0, 0 ≤ k ≤ j and let j ≤ σ = n− j then

F (t, z) =
∞∑
n=0

j∑
k=0

n−j∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j − 1

)(
j

k

)
tkzn

= 1 +
∞∑
n=1

j∑
k=0

n−j∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j − 1

)(
j

k

)
tkzn.

(2.39)

For the maximum value of j we have n − j = j which implies j = [n/2], hence we

have

F (t, z) = 1 +
∞∑
n=1

[n/2]∑
k=0

[n/2]∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j − 1

)(
j

k

)
tkzn.

Then

an,k = [tkzn]F (t, z) =

[n/2]∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j − 1

)(
j

k

)
, (2.40)

as required.

Theorem 2.3.2 [16]The generating function for occurrences of the strings uudu, uduu, ddud

and dudd is z(1− (1− t)z)F 2 + ((1− t)z2 − 1)F + 1 = 0.

Proof

We first consider the string τ = uudu. We derive its generating function by

using the first return decomposition of the non-empty Dyck path α = uβdγ where

β, γ ∈ D. A new occurrence of uudu appears in α (in addition to those contributed

by β and γ) if and only if β = udφ, where φ ∈ D and φ 6= ε.

The path α can start with the string uudu right from the start where β = udφ

producing z(tz(F − 1))F or α can start without the string uudu in the beginning

producing z(F − z(F − 1))F .

Now we get the generating function F (t, z) = F (where t counts the number of

occurrences of uudu’s) as follows.

F − 1 = z(tz(F − 1) + F − z(F − 1))F, (2.41)
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which gives

z(1− (1− t)z)F 2 + ((1− t)z2 − 1)F + 1 = 0. (2.42)

We now prove that

an,k = [tkzn]F (t, z) =

[(n−1)/2]∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j + 1

)(
j

k

)
. (2.43)

Proof of (2.43)

As for the string uudd we use the following equation which is in the suitable form

to apply Lagrange inversion formula

A(z) = 1 + zH(A(z)).

Here H(γ) = (t−1)zγ2−(t−1)zγ+γ2 = (t−1)zγ(γ−1)+γ2 and A(z) = F (t, z)

considered as a function of z only. By the Lagrange inversion formula it follows that:

[zσ]A(z) =
1

σ
[γσ−1](H(1 + γ))σ,

(2.44)

which give us

(H(1 + γ))σ =
σ∑
j=0

(
σ

j

)
(t− 1)jzjγj(1 + γ)j(1 + γ)2σ−2j

=
σ∑
j=0

(
σ

j

)
(t− 1)jzjγj(1 + γ)2σ−j

=
σ∑
j=0

(
σ

j

)
(t− 1)jzjγj

2σ−j∑
v=0

(
2σ − j
v

)
γv

=
σ∑
v=0

σ∑
j=(2σ−v)+

(
2σ − j
v

)(
σ

j

)
(t− 1)jzjγv+j.

(2.45)
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Again we substitute (2.45) into (2.44)

[zσ]F (t, z) =
1

σ
[γσ−1]

σ∑
v=0

σ∑
j=(2σ−v)+

(
2σ − j
v

)(
σ

j

)
(t− 1)jzjγv+j

=
1

σ

σ∑
j=0

(
2σ − j
σ − j − 1

)(
σ

j

)
(t− 1)jzj

F (t, z) =
∞∑
σ=1

1

σ

σ∑
j=0

(
2σ − j
σ − 1

)(
σ

j

)
(t− 1)jzσ+j

(2.46)

Since we need zn let n = σ + j

F (t, z) =
∞∑
n=0

n−j∑
j=0

1

n− j

(
n− j
j

)(
2n− 3j

n− j + 1

)
(t− 1)jzn.

(2.47)

Now with n ≥ 0, 0 ≤ k ≤ j and let j ≤ σ = n− j then

F (t, z) =
∞∑
n=0

j∑
k=0

n−j∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j + 1

)(
j

k

)
tkzn

= 1 +
∞∑
n=1

j∑
k=0

n−j∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j + 1

)(
j

k

)
tkzn.

(2.48)

For the maximum value of j we have 2n− 3j = n− j + 1 which implies j = n−1
2

,

hence we have

F (t, z) = 1 +
∞∑
n=1

(n−1)/2∑
k=0

(n−1)/2∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 2j

n− j + 1

)(
j

k

)
tkzn.

We now get

an,k = [tkzn]F (t, z) =

(n−1)/2∑
j=k

(−1)j−k
1

n− j

(
n− j
j

)(
2n− 3j

n− j + 1

)(
j

k

)
. (2.49)
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We now consider the string τ = dudd. We derive its generating function by using

the first return decomposition of non-empty Dyck path α = βuγd where β, γ ∈ D.

A new occurrence of dudd appears in α (in addition to those contributed by β and

γ) if and only if γ = φud, where φ ∈ D and φ 6= ε.

The path α can have a new occurrence of dudd where γ = φud producing z(tz(F−
1))F or α can be such that γ 6= φud producing z(F − z(F − 1))F . Combining these

two possibilities we get

F − 1 = z(tz(F − 1) + F − z(F − 1))F. (2.50)

The generating function for dudd is the same as the generating function for the

string uudu. Thus dudd and uudu are equidistributed.

We now study the string τ = ddud we derive its generating function by using

the first return decomposition of non-empty Dyck path α = uβdγ where β, γ ∈ D.

A new occurrence of ddud appears in α (in addition to those contributed by β and

γ) if and only if β 6= ε and γ = udφ.

The path α can have a new occurrence of ddud where β 6= ε and γ = udφ

producing z(tz(F−1))F or α can be such that γ 6= udφ producing z(F−z(F−1))F .

Combining these two cases we get

F − 1 = z(tz(F − 1) + F − z(F − 1))F. (2.51)

This generating function for ddud is the same as the generating function for the

string uudu. Thus ddud and uudu are equidistributed.

Consider the string τ = uduu. We derive its generating function by using first

return decomposition of non-empty Dyck path α = βuγd where β, γ ∈ D. A new

occurrence of uduu appears in α (in addition to those contributed by β and γ) if

and only if β = δud and γ 6= ε.

The path α can have a new occurrence of uduu where β = δud and γ 6= ε

producing z(tz(F−1))F or α can be such that γ 6= udφ producing z(F−z(F−1))F .

Combining these two possibilities we get

F − 1 = z(tz(F − 1) + F − z(F − 1))F. (2.52)
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This generating function for uduu is the same as the generating function for the

string uudu. Thus uduu and uudu are equidistributed.

We see that the four strings uudu, uduu, ddud and dudd are all equidistributed.

Theorem 2.3.3 [16]The generating function for occurrances of the strings uuud

and uddd is (t− 1)z3F 3 + zF 2 − F + 1 = 0.

Proof

We show that the string τ = uuud have the same generating function to the

string uddd. We derive the generating function of τ = uuud using the first return

decomposition of non-empty Dyck path α = uβdγ where β, γ ∈ D. A new occurrence

of uuud appears in α (in addition to those contributed by β and γ) if and only if

β = uϕdδ with ϕ = udφ, where ϕ, δ, φ ∈ D. This produces z(z(tzF )F )F . If ϕ 6= udφ

this produces z(F − z2F 2)F .

So the generating function F (t, z) = F (where t counts the number of occurrences

of uuud’s) satisfies

F − 1 = z(z(tzF )F + F − z2F 2)F. (2.53)

Thus

(t− 1)z3F 3 + zF 2 − F + 1 = 0. (2.54)

In order to derive a formula for an,k from the above equation, we write

A(z) = 1 + zH(A(z)), (2.55)

where H(γ) = (t − 1)z2γ3 + γ2 and A(z) where A(z) = F (t, z) is a function with

variable z only. By using the Lagrange inversion formula it follows that

[zσ]A(z) =
1

σ
[γσ−1](H(1 + γ))σ

(2.56)

We have

(H(1 + γ))σ =
σ∑
j=0

(
σ

j

)
(t− 1)jz2j(1 + γ)3j(1 + γ)2σ−2j
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=
σ∑
j=0

(
σ

j

)
(t− 1)jz2j(1 + γ)2σ+j

=
σ∑
j=0

(
σ

j

)
(t− 1)jz2j

2σ+j∑
v=0

(
2σ + j

v

)
γv

=
3σ∑
v=0

σ∑
j=(v−2σ)+

(
2σ + j

v

)(
σ

j

)
(t− 1)jz2jγv,

(2.57)

we substitute (2.57) into (2.56)

[zσ]F (t, z) =
1

σ
[γσ−1]

3σ∑
v=0

σ∑
j=(v−2σ)+

(
2σ + j

v

)(
σ

j

)
(t− 1)jz2jγv

=
1

σ

σ∑
j=0

(
2σ + j

σ − 1

)(
σ

j

)
(t− 1)jz2j

F (t, z) =
∞∑
σ=1

1

σ

σ∑
j=0

(
2σ − j
σ − 1

)(
σ

j

)
(t− 1)jzσ+2j.

(2.58)

Since we need [zn] which is the coefficient of zn in the series expansion of F (t, z),

let n = σ + 2j, then

F (t, z) =
∞∑
n=0

j∑
k=0

n−2j∑
j=k

(−1)j−k
1

n− 2j

(
n− 2j

j

)(
2n− 3j

n− j + 1

)(
j

k

)
tkzn

= 1 +
∞∑
n=1

j∑
k=0

n−2j∑
j=k

(−1)j−k
1

n− 2j

(
n− 2j

j

)(
2n− 3j

n− j + 1

)(
j

k

)
tkzn.

(2.59)

From the above generating function we do the following manipulations

1

n− 2j

(
n− 2j

j

)(
2n− 3j

n− j + 1

)(
j

k

)
=

1

n− 2j

(n− 2j)!

(n− 3j)!j!

(2n− 3j)!

(n− 2j − 1)!(n− j + 1)!

j!

k!(j − k)!
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=
(n− 2j)!

n− 2j

(n+ 1− k)!

(j − k)!(n+ 1− j)!
(2n− 3j)!

(n− 3j)!(n− 2j − 1)!

n!

k!(n+ 1− k)!n!

=
1

n+ 1

(
n+ 1

k

)(
n+ 1− k
j − k

)
(2n− 3j)!

(n− 3j)!(n)!

=
1

n+ 1

(
n+ 1

k

)(
n+ 1− k
j − k

)(
2n− 3j

n

)
.

(2.60)

Therefore

F (t, z) = 1 +
∞∑
n=1

j∑
k=0

n−2j∑
j=k

(−1)j−k

n+ 1

(
n+ 1

k

)(
n+ 1− k
j − k

)(
2n− 3j

n

)
tkzn. (2.61)

For the maximum value of j, 2n− 3j = n which implies j = n
3
. Hence we have

F (t, z) = 1 +
∞∑
n=1

n/3∑
k=0

n/3∑
j=k

(−1)j−k

n+ 1

(
n+ 1

k

)(
n+ 1− k
j − k

)(
2n− 3j

n

)
tkzn

an,k = [tkzn]F (t, z) =
1

n+ 1

(
n+ 1

k

) [n/3]∑
j=k

(−1)j−k
(
n+ 1− k
j − k

)(
2n− 3j

n

)
,

(2.62)

as required.

We now derive the generating function for the string uddd by using the first

return decomposition of non-empty Dyck path α = βuγd where β, γ ∈ D. A new

occurrence of uddd appears in α (in addition to those contributed by β and γ) if

and only if γ = ϕuδd with δ = φud. Where ϕ, δ, φ ∈ D producing z(z(tzF )F )F or

α can be such that δ 6= φud producing z(F − z2F 2)F . Combining these possibilities

we get

F − 1 = z(z(tzF )F + F − z2F 2)F. (2.63)

This generating function is the same as that of uuud, therefore uuud and uddd

are equidistributed.
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Theorem 2.3.4 [16]The generating function for occurrances of the strings dddd

and uuuu is (1− t)z3F 3 + z(t− tz + z)F 2 + (z − tz − 1)F + 1 = 0.

Proof

To derive the generating function F (t, z) = F for the string τ = dddd, we

partition D into {Ωi}. Where Ωi is the set of all Dyck paths according to length

of last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a generating

function for Ωi, where t counts the number of occurrences of the string τ = dddd. All

elements α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i. Where αm ∈ D

for all m ∈ [i]. We conclude that there are (i− 3) new strings dddd (in addition to

those contributed by αi’s ) if and only if i ≥ 4, since there are i (am’s) and also there

are i (u′s). These produce Ai = ti−3ziF i and if i ≤ 3 we get Ai = ziF i. Combining

these two possibilities we get

∞∑
i=4

ti−3ziF i

and

3∑
i=0

ziF i.

Hence we have

F =
3∑
i=0

ziF i +
∞∑
i=4

ti−3ziF i

= 1 +
3∑
i=1

ziF i +
∞∑
i=4

ti−3ziF i.

(2.64)

Now we do some manipulations in the above equation as follows,

F = 1 +
3∑
i=1

ziF i +
∞∑
i=4

ti−3ziF i

= 1 +
3∑
i=1

ziF i +
∞∑
i=0

ti+4−3zi+4F i+4
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= 1 +
3∑
i=1

ziF i + tz4F 4

∞∑
i=0

tiziF i

= 1 + zF + z2F 2 + z3F 3 +
tz4F 4

1− tzF
F − tzF 2 = 1− tzF + zF − tz2F 2 + z2F 2 − tz3F 3 + z3F 3 − tz4F 4 + tz4F 4

(1− t)z3F 3 + z(t− tz + z)F 2 + (z − tz − 1)F + 1 = 0.

Then the generating function for the string dddd is,

(1− t)z3F 3 + z(t− tz + z)F 2 + (z − tz − 1)F + 1 = 0. (2.65)

This generating function is the same as for uuuu in [16]. Therefore dddd and uuuu

are equidistant.

Now we derive the generating function for the general string dr for r ≥ 2.

We proceed as in the case of r = 4 above.

To derive the generating function F (t, z) = F for the string τ = dr, we partition

D into {Ωi}. Where Ωi is the set of all Dyck paths according to length of the last

descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a generating function

for Ωi, where t counts the number of occurrences of the string τ = dr. All elements

α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i. Where αm ∈ D for all

m ∈ [i]. We conclude that there are (i− r + 1) new strings dr (in addition to those

contributed by αi’s) if and only if i ≥ r. Since there are i (am’s) and also there are

i (u′s) this produces Ai = ti−r+1ziF i and if i ≤ r− 1 we get ziF i. Combining these

two possibilities we get

Ai = ti−r+1ziF i for i ≥ r and ziF i for i ≤ r − 1.

Hence we get

F =
r−1∑
i=0

ziF i +
∞∑
i=r

ti−r+1ziF i

= 1 +
r−1∑
i=1

ziF i +
∞∑
i=r

ti−r+1ziF i.

(2.66)

46



Now we do some manipulations in the above equation as follows:

F = 1 +
r−1∑
i=1

ziF i +
∞∑
i=r

ti−r+1ziF i

= 1 +
r−1∑
i=1

ziF i +
∞∑
i=0

ti+r−r+1zi+rF i+r

= 1 +
r−1∑
i=1

ziF i + tzrF r

∞∑
i=0

tiziF i

= 1 + zF + z2F 2 + z3F 3 + ...+ zr−1F r−1 +
tzrF r

1− tzF
F − tzF 2 = 1− tzF + zF − tz2F 2 + z2F 2...− tzr−1F r−1 + zr−1F r−1 − tzrF r + tzrF r

= 1 + tzF 2 +
r−1∑
i=1

ziF i − t
r−1∑
i=1

ziF i

= 1 + tzF 2 + (1− t)
r−1∑
i=1

ziF i.

Thus the generating function for the string dr for all r ≥ 2 is,

F = 1 + tzF 2 + (1− t)
r−1∑
i=1

ziF i.

(2.67)

This generating function is the same as the one for ur in [16], therefore dr and

ur are equidistant.

Theorem 2.3.5 [16]The generating function for occurrences of the string udud is

z(1 + (1− t)z)F 2 − (1 + (1− t)z(z + 1))F + 1 + (1− t)z = 0.

Proof

To derive the generating function F (t, z) = F for the string τ = udud. We

let Ω to be the set of all Dyck paths that starts with a low peak (ud), with its

generating function A(t, z) = A. Where t counts the number of occurrences of the

string τ = udud. All elements α of Ω can be written uniquely as α = udβ, where
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β ∈ D. The new string udud occurs if and only if β ∈ Ω, this produces ztA and if

β does not belong to Ω then we get z(F −A). Combining these two possibilities we

get

A = ztA+ z(F − A). (2.68)

In addition, we form the non-empty first return decomposition α = uβdγ, where

β, γ ∈ D. The new occurrence of udud (in addition to those contributed by β and

γ) is possible if and only if β = ε and γ ∈ Ω, this produces ztA. If β = ε and γ does

not belong to Ω, then we have z(F − A) and if we consider the case where β 6= ε,

we then obtain z(F − 1)F . Combining these three cases we get

F = 1 + ztA+ z(F − A) + z(F − 1)F. (2.69)

From the above two equations we eliminate A and get the generating function

F as follows.

In the equation A = ztA+ z(F − A) we solve for A and get

A =
zF

1− tz + z
.

We then substitute the expression of A into

F = 1 + ztA+ z(F − A) + z(F − 1)F , then we proceed as follows:

F = 1 + zt(
zF

1− tz + z
) + z(F − zF

1− tz + z
) + z(F − 1)F

F − ztF + zF = 1− zt+ z + z2tF + zF − z2tF + z2F − z2F + (zF 2 − zF )(1− zt+ z)

(z − z2t+ z2)F 2 − (1 + z − zt− z2t+ z2)F + 1 + (1− t)z = 0.

Now the generating function of the string udud is

z(1 + (1− t)z)F 2 − (1 + (1− t)z(z + 1))F + 1 + (1− t)z = 0. (2.70)

Theorem 2.3.6 [16]The generating function for occurrences of the strings dudu is

zF 2 + ((1− t)(z − 1)z − 1)F + (1− t)z + 1 = 0.

Proof
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To derive the generating function F (t, z) = F for the string τ = dudu. We let Ω

to be the set of all Dyck paths with semi-length at least 2, that starts with a low

peak, having the generating function A(t, z) = A. Where t counts the number of

occurrences of the string τ = dudu. All elements α of Ω can be written uniquely as

α = udβ, where β ∈ D\{ε}. The new string dudu occurs if and only if β ∈ Ω, this

produces ztA and if β does not belong to Ω then we get z(F − 1− A). Combining

these two possibilities we get

A = ztA+ z(F − 1− A). (2.71)

In addition we form the first return decomposition α = uβdγ. Where β, γ ∈ D,

The new occurrence of dudu (in addition to those contributed by β and γ) is possible

if and only if γ ∈ Ω. This produces ztFA, if is not true that γ ∈ Ω, then we have

zF (F − A). Combining these two possibilities we get

F = 1 + ztFA+ z(F − A)F. (2.72)

From the above two equations we eliminate A and get the generating function

F as follows.

In the equation A = ztA+ z(F − 1− A) we solve for A and get

A =
zF − z

1− tz + z
.

We then substitute the expression of A into F = 1 + ztFA + zF 2 − zFA then

we proceed as follows:

F = 1 + ztF
zF − z

1− tz + z
+ zF 2 − zF zF − z

1− tz + z

F − ztF + zF = 1− tz + z + z2tF 2 − z2tF + zF 2 − z2tF 2 + z2F 2 − z2F 2 + z2F

zF 2 + (zt− z − z2t+ z2 − 1)F + (1− t)z + 1 = 0.

(2.73)

Now the generating function of the string dudu is

zF 2 + ((1− t)(z − 1)z − 1)F + (1− t)z + 1 = 0. (2.74)

Theorem 2.3.7 [16]The generating function for occurrences of the strings duud

and uddu is zF 3 − ((1− t)z + 1)F 2 + (1 + 2(1− t)z)F − (1− t)z = 0.

49



Proof

To derive the generating function F (t, z) = F for the string τ = duud. We let Ω

to be the set of all Dyck paths where the size of the first ascent is equal to 2, with

its generating function A(t, z) = A. Where t counts the number of occurrences of

the string τ = duud. All elements α of Ω can be written uniquely as α = uudα1dα2,

where α1, α2 ∈ D. If both α1 and α2 do not belong to Ω then we get z2(F − A)2.

If both α1 and α2 belong to Ω we get z2t2A2. If only α1 belongs to Ω we get

z2t(F −A)A and if only α2 belongs to Ω we get z2t(F −A)A. Combining these four

possibilities we get

A = z2(F − A)2 + 2z2t(F − A)A+ z2t2A2. (2.75)

We know that every non-empty α ∈ D can be written uniquely as a first return

decomposition, that is α = uβdγ. Where β, γ ∈ D, we see that a new string duud (in

addition to those contributed by β and γ) appears if and only if γ ∈ Ω, producing

ztAF . If γ do not belong to Ω then we get z(F − A)F . Combining these two

possibilities we now get

F − 1 = ztAF + z(F − A)F. (2.76)

From the above two equations we get the results similar to those of the string

uddu where its generating function is derived in paper [16].

Therefore the strings duud and uddu are equidistant.
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Chapter 3

Counting strings at even, odd, low

and high levels

In this Section 3.1 we continue to study the paper titled Counting strings in Dyck

paths by A. Sapounakis, I. Tasoulas, and P. Tsikouras [16]. Here we take into ac-

count the number of occurrences of the string τ at even and odd height.

We define the height m of the string τ , where m ∈ {0, 1, 2, 3, ...}, to be the

minimum height of the point(s) in which τ occurs. For example in Figure 3.1 there

is only one string uuu at height zero and one ddu at height zero and one.

Figure 3.1: The Dyck path uuudududdududduudd.

3.1 The relationship between strings of lengths 2 and 3

We now use the first return decomposition of the non-Dyck path α = uβdγ where

(α, β, γ ∈ D) to derive the generating functions for the occurrence of the string

τ at an even height Eτ (t, z) := E (where t counts the number of occurrences of

the string τ at even height) and at odd height Oτ (t, z) := O (where t counts the

number of occurrences of the string τ at odd height). In this section we will show

that Eτ (t, z) = Fτ1(t, z) and Oτ (t, z) = Fτ2(t, z), where Fτ1(t, z) and Fτ2(t, z) are
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generating functions for the strings τ1 and τ2 respectively defined in Chapter one.

Now the number statistic is the number of occurrences of τ at odd height can

occur at odd height in β and even height γ thus:

Oτ (t, z)− 1 = zOτ (t, z)Eτ (t, z)

Oτ (t, z) =
1

1− zEτ (t, z)
.

(3.1)

Theorem 3.1.1 [16]The generating functions for occurrences of the string ud at

even and odd height are z(z − zt + 1)E2 + (zt − z − 1)E + 1 = 0 and zO2 =

(1− (t− 1)z)O − (1− (t− 1)z) respectively.

Proof

We now consider the string τ = ud. We derive its generating function by using

the first return decomposition of non-empty Dyck path α = uβdγ where α, β, γ ∈ D.

The occurrences of ud at even height in α consist of the ones at odd height in β,

as well as the ones at even height in γ. A new occurrence of ud appears in α (in

addition to those contributed by β and γ) if and only if β = ε producing z(tE) or α

starts with uu where β 6= ε producing z(O− 1)E. Combining these two possibilities

we get,

E = 1 + z(tE + (O − 1)E).

Now using Oτ (t, z) =
1

1− zEτ (t, z)
from (3.1) we get

E = 1 + ztE + zOE − zE

E = 1 + ztE + zE
1

1− zE
− zE

E − zE2 = 1− zE + ztE − z2tE2 + zE − zE + z2E2

0 = z(z − zt+ 1)E2 + (zt− z − 1)E + 1.
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From (3.1) let E =
O − 1

zO
substituting this into E = 1 + ztE + zOE − zE we

get

O − 1

zO
= 1 + zt

O − 1

zO
+ zO

O − 1

zO
− zO − 1

zO

O − 1 = zO + zt(O − 1) + z(O − 1)O − z(O − 1)

O − 1 = (zt− z)O + zO2 + (1− t)z
zO2 = (1− (t− 1)z)O − (1− (t− 1)z).

We see that zO2 = (1− (t− 1)z)O− (1− (t− 1)z) is the same as the generating

function for the string udu which is

zF 2(x, z) = (1− (x− 1)z)F (x, z)− (1− (x− 1)z).

We conclude that the generating function for ud at odd height is equidistant to

the generating function for udu.

Theorem 3.1.2 [16]The generating functions for occurrences of the string du at

even and odd height are zE2 − (1 + (1 − t)z)E + (1 − t)z + 1 = 0 and z(t + z −
tz)O2 − (1− z + tz)O + 1 = 0 respectively.

Proof

We now consider τ = du. We derive its generating function by using the first

return decomposition of non-empty Dyck path α = βuγd where α, β, γ ∈ D. The

occurrences of du at even height in α consist of the ones at even height in β, as well

as the ones at odd height in γ. A new occurrence of du appears in α (in addition

to those contributed by β and γ) if and only if β 6= ε producing z(t(E − 1)O) or α

can be such that β = ε producing zO. Combining these two possibilities we get,

E = 1 + z(t(E − 1)O +O).

Now using Oτ (t, z) =
1

1− zEτ (t, z)
we get

E = 1 + ztE
1

1− zE
− tz 1

1− zE
+ z

1

1− zE
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E − zE2 = 1− zE + ztE − zt+ z

zE2 − (1 + (1− t)z)E + (1− t)z + 1 = 0.

We see that the generating function at even height for the string du i.e d̄u which

is

zE2 = (1− (t− 1)z)E − (1− (t− 1)z) is the same as the generating function for

the string udu and dud which is

zF 2(x, z) = (1− (x− 1)z)F (x, z)− (1− (x− 1)z).

From (3.1) let E =
O − 1

zO
substituting this into E = 1 + ztEO − tzO + zO we

get

O − 1

zO
= 1 + ztO

O − 1

zO
− tzO + zO

O − 1 = zO + ztO2 − ztO − z2tO2 + z2O2

z(t+ z − tz)O2 − (1− z + tz)O + 1 = 0.

We see that the generating function at odd height for the string d̄u which is

z(t + z − tz)O2 − (1 − z + tz)O + 1 = 0 is the same as the generating function

for the string uuu and ddd which is z(t+ z − tz)F 2 − (1− z + tz)F + 1 = 0.

From Theorem 3.1.1 and 3.1.2 we see that zO2
ud = (1−(t−1)z)Oud−(1−(t−1)z)

and zE2 = (1 − (t − 1)z)E − (1 − (t − 1)z) are the same generating functions

respectively.

We conclude that the generating function for d̄u is equidistant to the generating

function for udu.

Theorem 3.1.3 [16]The generating functions for occurrences of the string dd at

even and odd height are E − 1 = z(1 + (t − 1)z)E2 and tzO2(t, z) − (1 + 2(t −
1)z)O(t, z) + 1 + (t− 1)z = 0 respectively.

Proof

We consider the string τ = dd. We want to show that the generating function at

even height (Edd(t, z)) for dd is the same as the generating function for the string

τ = uud similarly the generating function for dd at odd height (Odd(t, z)) is the

same as the generating function for the string τ = duu.
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To derive the generating function E(t, z) = E for the string τ = dd, we partition

D into {Ωi}, where Ωi is the partitioning of all Dyck paths according the length

of the last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be the

generating function for Ωi. The number of dd at even height in all elements α of

Ωi, for α = α1uα2uα3....uαiud
i, include those at even height in every αm for i −m

even. Where αm ∈ D for all m ∈ [i], as well as those at odd height in every αm for

i−m odd, where αm ∈ D for all m ∈ [i], together with those that occur in the last

descent di. Thus

E = 1 +
∞∑
i=1

z2itiEiOi +
∞∑
i=1

z2i−1ti−1EiOi−1

= 1 + z2tEO
∞∑
i=1

z2i−2ti−1Ei−1Oi−1 + zE

∞∑
i=1

z2i−2ti−1Ei−1Oi−1

= 1 +
z2tEO + zE

1− z2tEO
E − z2tE2O = 1− z2tEO + z2tEO + zE

From (3.1) we have Oτ (t, z) =
1

1− zEτ (t, z)

E − z2tE2 1

1− zE
= 1 + zE

E − zE2 − z2tE2 = 1− zE + zE − z2E2

E − 1 = z(1 + (t− 1)z)E2.

Now the generating function at even height (Edd(t, z)) for the string dd is,

Edd(t, z)− 1 = z(1 + (t− 1)z)E2
dd(t, z).

The generating function for uud, derived from Chapter 2 is

F (x, z)− 1 = z(1 + (x− 1)z)F 2(x, z).

These two generating functions are the same. Therefore the string dd at even

height is equidistant to the strings uud and udd.

From (3.1) let E =
O − 1

zO
substituting this into
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E − 1 = z(1 + (t− 1)z)E2 we obtain

O − 1

zO
− 1 = z(1 + (t− 1)z)

(
O − 1

zO

)2

then

tzO2
dd(t, z)− (1 + 2(t− 1)z)Odd(t, z) + 1 + (t− 1)z = 0.

We see that this generating function of dd at odd height is the same as the

generating function for duu and ddu which is

xzF 2(x, z)− (1 + 2(x− 1)z)F (x, z) + 1 + (x− 1)z = 0,

therefore the string dd at odd height is equidistant to the string duu.

3.2 The relationship between strings of lengths 3 and 4

Theorem 3.2.1 [16]The generating functions for occurrences of the string duu at

even and odd height are (z + z2t− z2)E2 + (z2 − z2t− 1)E + 1 = 0 and z(t + (1−
t)z)O − (1 + (1− t)(z − 2)z)O + (t− 1)z + 1 = 0 respectively.

Proof

We consider the string τ = duu. We derive its generating function by using the

first return decomposition of non-empty Dyck path α = βuγd, where α, β, γ ∈ D.

The occurrences of duu at even height in α consist of the ones at even height in

β, as well as the ones at odd height in γ. A new occurrence of duu appears in α

(in addition to those contributed by β and γ) if and only if β, γ 6= ε producing

z(t(E − 1)(O − 1)) or α can be such that β = ε producing zO or γ = ε producing

zE or β = γ = ε producing z. Combining these four possibilities we get,

E = 1 + zt(E − 1)(O − 1) + z(O − 1) + z(E − 1) + z.

Now substituting Oτ (t, z) =
1

1− zEτ (t, z)
into

E = 1 + z(t(E − 1)(O − 1)) + zO + zE + z we get

E = 1 + ztE
1

1− zE
− zEt− zt 1

1− zE
+ zt+ z

1

1− zE
− z + zE

E − zE2 = 1− zE + ztE − ztE + z2tE2 − zt+ zt− z2tE + z − z + z2E + zE − z2E2
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(z + z2t− z2)E2 + (z2 − z2t− 1)E + 1 = 0.

Therefore the generating function at even height for duu is

z(1− (1− t)z)E2 + ((1− t)z2 − 1)E + 1 = 0.

Therefore the generating function at even height for duu is equidistant with

generating function for uudu, which is

z(1− (1− t)z)F 2 + ((1− t)z2 − 1)F + 1 = 0.

Let E =
O − 1

zO
, substituting this into E = 1+zEOt−zEt−zOt+zt+zO−z+zE

we get

O − 1

zO
= 1 + ztO

O − 1

zO
− ztO − 1

zO
− zOt+ zt+ zO − z + z

O − 1

zO

O − 1 = zO + ztO2 − ztO − ztO + zt− z2tO2 + z2tO + z2O2 − z2O + zO − z
z(t+ (1− t)z)O − (1 + (1− t)(z − 2)z)O + (t− 1)z + 1 = 0.

Therefore the generating function at odd height for duu is

z(t+ (1− t)z)O − (1 + (1− t)(z − 2)z)O + (t− 1)z + 1 = 0.

In paper [16] it is stated that the generating function for dduu is,

z(t+ (1− t)z)F 2 − (1 + (1− t)(z − 2)z)F + (t− 1)z + 1 = 0.

Therefore the generating function at odd height for duu is equidistant with gen-

erating function for dduu.

Theorem 3.2.2 [16]The generating functions for occurrences of the string udu at

even and odd height are (z− z2t+ z2)E2 + (zt− z+ z2t− z2− 1)E+ (1− t)z+ 1 = 0

and zO2 + (zt− z2t− z + z2 − 1)O + (1− t)z + 1 = 0 respectively.
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Proof

We now consider the string τ = udu. We derive its generating function at even

height by using the first return decomposition of non-empty Dyck path α = uβdγ,

where α, β, γ ∈ D, the occurrences of duu at even height in α consist of the ones at

even height in γ, as well as the ones at odd height in β. A new occurrence of udu

appears in α (in addition to those contributed by β and γ) if and only if β = ε.

Where γ 6= ε we have z(t(E−1)). If α starts with uu where β 6= ε we have z(O−1)E.

If α = ud where β = γ = ε we have z. Combining these three possibilities we get

E − 1 = z(t(E − 1)) + z(O − 1)E + z.

Now substituting Oτ (t, z) =
1

1− zEτ (t, z)
into E = 1 + ztE− zt+ zOE− zE+ z

we get

E = 1 + ztE − zt+ zE
1

1− zE
− zE + z

E − zE2 = 1− zE + ztE − z2tE2 − zt+ z2tE + zE − zE + z2E2 + z − z2E
(z − z2t+ z2)E2 + (zt− z + z2t− z2 − 1)E + (1− t)z + 1 = 0.

Thus the generating function at even height for udu is

z(1 + (1− t)z)E2 − (1 + (1− t)z(z + 1))E + 1 + (1− t)z = 0.

The generating function at even height for udu is equidistant with generating

function for udud, which is

z(1 + (1− t)z)F 2 − (1 + (1− t)z(z + 1))F + 1 + (1− t)z = 0.

From (3.1) let E =
O − 1

zO
, substituting this into E = 1+ztE−zt+zOE−zE+z

we get

O − 1

zO
= 1 + zt

O − 1

zO
− zt+ zO

O − 1

zO
− zO − 1

zO
+ z

O − 1 = zO + ztO − zt− z2tO + zO2 − zO − zO + z + z2O
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zO2 + (zt− z2t− z + z2 − 1)O + (1− t)z + 1 = 0.

Thus the generating function at odd height for udu is

zO2 + ((1− t)(z − 1)z − 1)O + (1− t)z + 1 = 0.

The generating function at odd height for udu is equidistant with generating

function for dudu which is,

zF 2 + ((1− t)(z − 1)z − 1)F + (1− t)z + 1 = 0.

Theorem 3.2.3 [16]The generating functions for occurrences of the string uud at

even and odd height are zE2 + (z2t− z2− 1)E+ 1 = 0 and z(1− (1− t)z)O2 + ((1−
t)z2 − 1)O + 1 = 0 respectively.

Proof

We now consider the string τ = uud. We derive the generating function at even

height by using the first return decomposition of non-empty Dyck path α = uβdγ.

Where α, β, γ ∈ D, the occurrences of uud at even height in α consist of the ones

at even height in γ, as well as the ones at odd height in β. A new occurrence

of udu at appears in α (in addition to those contributed by β and γ) if and only

if β = udδ. Where δ ∈ D producing z(t(zO)E) or α can be such that β 6= udδ

producing z(O − zO)E. Combining these two possibilities we get,

E = 1 + z(t(zO)E) + z(O − zO)E.

Now substituting Oτ (t, z) =
1

1− zEτ (t, z)
into E = 1 + ztOE+ zOE− z2OE we

get

E = 1 + z2tE
1

1− zE
+ zE

1

1− zE
− z2E 1

1− zE
E − zE2 = 1− zE + z2tE + zE − z2E

zE2 + (z2t− z2 − 1)E + 1 = 0.
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Thus the generating function at even height for uud is

zE2 + (z2(t− 1)− 1)E + 1 = 0.

The generating function at even height for uud is equidistant with generating

function for uudd which is,

zF 2 + (z2(t− 1)− 1)F + 1 = 0.

Let E =
O − 1

zO
, substituting this into E = 1 + z2tOE + zOE − z2OE we get

O − 1

zO
= 1 + z2tO

O − 1

zO
+ zO

O − 1

zO
− z2OO − 1

zO

O − 1 = zO + z2tO2 − z2tO + zO2 − zO − z2O2 + z2O

z(1− (1− t)z)O2 + ((1− t)z2 − 1)O + 1 = 0.

Thus the generating function at odd height for uud is

z(1− (1− t)z)O2 + ((1− t)z2 − 1)O + 1 = 0.

The generating function at odd height for uud is equidistant with generating

function for uudu which is,

z(1− (1− t)z)F 2 + ((1− t)z2 − 1)F + 1 = 0.

Theorem 3.2.4 [16]The generating functions for occurrences of the string ddd at

even and odd height are z(1− (1− t)z)E2 + ((1− t)z2− 1)E + 1 = 0 and z(t+ (1−
t)z)O2 − (1 + (1− t)(z − 2)z)O + 1− (1− t)z respectively.

Proof

Lastly we consider the string τ = ddd. We want to show that the generating

function for ddd at even height (Eddd(t, z)) is the same as the generating function

for the string τ = uudu similarly the generating function for ddd at odd height

(Oddd(t, z)) is the same as the generating function for the string τ = dduu.
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To derive the generating function E(t, z) = E for the string τ = ddd, we partition

D into {Ωi}. where Ωi is partitioning of all Dyck paths according to length of the

last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a generating

function for Ωi, where t counts the number of occurrence of the strings τ = ddd

at even height. The number of ddd at even height in all elements α of Ωi, for

α = α1uα2uα3....uαiud
i, include those at even height in every αm for i − m even.

Where αm ∈ D for all m ∈ [i], as well as those at odd height in every αm for i−m
odd, where αm ∈ D for all m ∈ [i]. Together with those that occur in the last

descent di. Thus

E = 1 +
∞∑
i=1

z2iti−1EiOi +
∞∑
i=1

z2i−1ti−1EiOi−1

= 1 + z2OE
∞∑
i=1

z2i−2ti−1Ei−1Oi−1 + zE
∞∑
i=1

z2i−2ti−1Ei−1Oi−1

= 1 +
z2EO + zE

1− z2tEO
E − z2tE2O = 1− z2tEO + z2EO + zE

E − z2tE2 1

1− zE
= 1− z2tE 1

1− zE
+ z2E

1

1− zE
+ zE

E − zE2 − z2tE2 = 1− zE − z2tE + z2E + zE − z2E2

z(1− (1− t)z)E2 + ((1− t)z2 − 1)E + 1 = 0.

The generating function at even height for ddd is equidistant with generating

function for uudu which is

z(1− (1− t)z)F 2 + ((1− t)z2 − 1)F + 1 = 0.

Let E =
O − 1

zO
, substituting this into E − z2tE2O = 1 − z2tEO + z2EO + zE

we get

O − 1

zO
− z2t

(
O − 1

zO

)2

O = 1− z2tOO − 1

zO
+ z2O

O − 1

zO
+ z

O − 1

zO

z(t+ (1− t)z)O2 − (1 + (1− t)(z − 2)z)O + 1− (1− t)z = 0.
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Thus the generating function at odd height for ddd is

z(t+ (1− t)z)O2 − (1 + (1− t)(z − 2)z)O + 1− (1− t)z = 0.

In paper [16] it is stated that the generating function for dduu is,

z(t+ (1− t)z)F 2 − (1 + (1− t)(z − 2)z)F + (t− 1)z + 1 = 0.

Therefore the generating function at odd height for ddd is equidistant with gen-

erating function for dduu which is,

z(t+ (1− t)z)F 2 − (1 + (1− t)(z − 2)z)F + 1− (1− t)z = 0.

We summarize our results in the following table

τ Eτ (t, z) Oτ (t, z)

dd uud duu

du udu ddd

ud d̄u udu

duu uudu dduu

udu udud dudu

uud uudd uduu

ddd uudu dduu

Table 3.1: The relationship between strings of different lengths
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3.3 Counting strings at low level

In this section we study the paper titled Dyck paths statistics by A. Sapounakis,

I. Tasoulas, P. Tsikouras [15]. Here we take into account the number of low occur-

rences of the string τ .

We say that a string τ is at low height (level) if its minimum point(s) occurs

on the horizontal axis. For example the string uuu in Figure 3.1 (page 51) is at

low level. We define the generating function for low occurrences of the string τ as

follows

L(t, z) =
∞∑
n=0

n∑
k=0

ln,kt
kzn, (3.2)

where t counts the number of low occurrences of the string τ with z marking the

semi-length.

In this section we are going to use the Dyck path generating function equation

C(z) = 1 + zC2(z), (3.3)

to simplify some manipulations, we are also going to use

[zn]Cs(z) =
s

2n+ s

(
2n+ s

n

)
, (3.4)

which was derived in Chapter one.

We use the first return decomposition of non-empty Dyck path α = uβdγ to

derive the generating function L(t, z) := L for low occurrence of the string τ . In

the decomposition α = uβdγ, β is not on the horizontal axis therefore it cannot

generate the low τ thus it is only a Dyck path C(z) := C. The path γ is at the

horizontal axis, thus it can generate the low τ producing L. Combining these cases

we obtain the generating function for the low occurrence of τ as follows,

L = 1 + zCL

L =
1

1− zC
.
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(3.5)

In the following Subsections we shall consider several strings of lengths 2, 3, 4

and r such as: ud, du, dd, duu, ddd, uudd, uudu, uduu, uuud, udud, dudu and dr.

Theorem 3.3.1 [15]The generating function for low occurrences of the string ud is

L =
1

1− zt− z(C − 1)
.

Proof

We consider the string τ = ud we first derive its generating function L(t, z) = L

(where t counts the number of occurrences of ud at low level). We use the first

return decomposition of non-empty Dyck path α = uβdγ where α, β, γ ∈ D. The

path α can start with the string ud right from the start where β = ε producing

z(tL) or α can start with uu where β 6= ε producing z(C − 1)L. Combining these

two possibilities we get

L = 1 + z(tL+ (C − 1)L).

Thus the generating function for the low occurrence of ud is,

L =
1

1− zt− z(C − 1)
.

Now we get [zntk]L = ln,k as follows,

L =
1

1− zt− z(C − 1)

Using equation (3.3) we see that C − 1 = zC2 then we get

L =
1

1− zt− z(zC2)

=
∞∑
m=0

(t+ zC2)mzm

=
∞∑
m=0

m∑
j=0

(
m

j

)
zjC2jtm−jzm
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[zn]L =
∞∑
m=0

m∑
j=0

(
m

j

)
[zn−j−m]C2jtm−j.

Now from equation (3.4) [zn]Cs(z) =
s

2n+ s

(
2n+s
n

)
we get

[zn−j−m]C2j =
2j

2(n− j −m) + 2j

(
2(n−j−m)+2j

n−j−m

)
, then

[zn]L =
∞∑
m=0

m∑
j=0

(
m

j

)
2j

2(n− j −m) + 2j

(
2(n− j −m) + 2j

n− j −m

)
tm−j

=
∞∑
m=0

m∑
j=0

(
m

j

)
j

n−m

(
2n− 2m

n+ j −m

)
tm−j.

Now let k = m− j, then

[tkzn]L = ln,k =
m∑
j=0

(
j + k

k

)
j

n− k − j

(
2n− 2k − 2j

n− k

)
.

For the maximum value of j in terms of n and k we have 2n− 2k − 2j = n− k,

then j =
n− k

2
thus,

[tkzn]L = ln,k =

[n−k
2

]∑
j=0

(
j + k

k

)
j

n− k − j

(
2n− 2k − 2j

n− k

)
.

Theorem 3.3.2 [15]The generating function for low occurrences of the string du is

L = 1 +
zC

1− ztC
.

Proof

We now do the string τ = du, we derive its generating function L(t, z) := L

(where t counts the number of low occurrence of the string τ = du) by using the

first return decomposition of non-empty Dyck path α = βuγd where α, β, γ ∈ D. A

new low occurrence of du appears in α (in addition to those contributed by β and γ

) if and only if β 6= ε producing z(t(L−1)C) or α can be such that β = ε producing

zC. Combining these two possibilities we get,

65



L = 1 + z(t(L− 1)C + C)

L− ztLC = 1− ztC + zC

L =
1− ztC + zC

1− ztC
.

The generating function for the low occurrence of du is,

L = 1 +
zC

1− ztC
.

Now we get [zntk]L = ln,k as follows,

L = 1 +
zC

1− ztC

= 1 + zC
∞∑
m=0

Cmzmtm

= 1 +
∞∑
m=0

Cm+1zm+1tm

[zn]L = [zn]
∞∑
m=0

Cm+1zm+1tm

=
∞∑
m=0

[zn−m−1]Cm+1tm

=
∞∑
m=0

m+ 1

2(n−m− 1) +m+ 1

(
2(n−m− 1) +m+ 1

n−m− 1

)
tm

=
∞∑
m=0

m+ 1

2n−m− 1

(
2n−m− 1

n−m− 1

)
tm

[tkzn]L =
k + 1

2n− k − 1

(
2n− k − 1

n− k − 1

)
.

Therefore

ln,k =
k + 1

2n− k − 1

(
2n− k − 1

n

)
.
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Theorem 3.3.3 [15]The generating function for low occurrences of the strings d2

and u2 is L =
C

1 + (1− t)z2C3
.

Proof

To derive the generating function L(t, z) = L for the low occurrence of the string

τ = d2. We define partition of D as {Ωi}, where Ωi is set of all Dyck paths according

to length of last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a

generating function for Ωi, where t counts the number of low occurrences the string

τ = d2. All elements α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i,

where αm ∈ D for all m ∈ [i]. A low occurrence for i ≤ 1 that is for α1ud produces

zL, since α1 is in the horizontal axis it produces L. The new low occurrence of d2

appears in α (in addition to those contributed by am’s) if and only if i ≥ 2, since

there are i (am’s) and also there are i (u’s), these produces
∑∞

i=2 tz
iCi−1L and if

i ≤ 1 we get zL =
∑1

i=1 z
iCi−1L. Combining these two possibilities taking into

account of an empty path we get,

L = 1 +
1∑
i=1

ziCi−1L+
∞∑
i=2

tziCi−1L

= 1 +
1∑
i=1

ziCi−1L+
∞∑
i=0

tzi+2Ci+2−1L

= 1 +
1∑
i=1

ziCi−1L+ t
z2CL

1− zC

From
∑1

i=1 z
iCi−1L we get the following

1∑
i=1

ziCi−1L =
∞∑
i=1

ziCi−1L−
∞∑
i=2

ziCi−1L =
zL

1− zC
− z2CL

1− zC
.

Thus we have

L = 1 +
zL

1− zC
− z2C1L

1− zC
+ t

z2CL

1− zC
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= 1 +
zCL

C − zC2
− (1− t) z2C2L

C − zC2
.

We know from C = 1 + zC2 that C − zC2 = 1, then

= 1 + zCL− (1− t)z2C2L

=
1

1− zC + (1− t)z2C2

=
C

C − zC2 + (1− t)z2C3

=
C

1 + (1− t)z2C3
.

Thus the generating function for the low occurrence of d2 is,

L =
C

1 + (1− t)z2C3
.

Now we get [zntk]L = ln,k as follows,

L =
C

1 + (1− t)z2C3

=
∞∑
m=0

C3m+1z2m(t− 1)m

[zn]L =
∞∑
m=0

[zn−2m]C3m+1(t− 1)m

=
∞∑
m=0

(t− 1)m
3m+ 1

2(n− 2m) + 3m+ 1

(
2(n− 2m) + 3m+ 1

n− 2m

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

3m+ 1

2n−m+ 1

(
2n−m+ 1

n− 2m

)

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

2n−m+ 1

(2n−m+ 1)!

(n− 2m)!(n+m+ 1)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

n+m+ 1

(2n−m)!

(n− 2m)!(n+m)!
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=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

n+m+ 1

(
2n−m
n+m

)
.

Now let k = m− j for the maximum value of m let 2n−m = n+m then m =
n

2
,

from k = m− j the maximum value of j is j =
n

2
− k thus,

ln,k = [tkzn]L =

[
n

2
]−k∑

j=0

(−1)j
(
j + k

j

)
3(j + k) + 1

n+ j + k + 1

(
2n− (j + k)

n+ j + k

)
.

Theorem 3.3.4 [15]The generating function for low occurrences of the string duu

is L = 1 +
zC2

1 + (1− x)z2C3
.

We derive the generating function L(x, z) := L for the low occurrence of the

string duu. Let Ω be the set of all Dyck paths where the first ascent is of size at

least 2, with its generating function A(x, z) = A, where x counts the number of low

occurrence of the string τ = duu. All elements α of Ω can be written uniquely as

α = uα1dα2, where α1, α2 ∈ D and α1 6= ε. The new low occurrence of duu occurs

if and only if α2 ∈ Ω, this produces xz(C − 1)A and if α2 does not belong to Ω then

we get z(C − 1)(L− A). Combining these two possibilities we get

A = z(C − 1)(L− A+ xA).

We know that every non-empty Dyck path α ∈ D can be written uniquely as a

first return decomposition, that is α = uβdγ, where β, γ ∈ D. We see that a new

occurrence of the string duu (in addition to those contributed by γ) appears in α

if and only if γ ∈ Ω, producing xzAC, and if γ does not belong to Ω then we get

z(L− A)C. Combining these two possibilities we now get

L = 1 + z(xA+ L− A)C.

In the equation L = 1+z(xA+L−A)C we solve for A and get A =
L− 1− zLC
zxC − zC

.
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We then substitute the expression of A into

A = z(C − 1)(L− A+ xA), then we proceed as follows:

L− 1− zLC
ztC − zC

= z(C − 1)

(
L− L− 1− zLC

ztC − zC
+ x

(
L− 1− zLC
ztC − zC

))
L− 1− zLC = z(C − 1)(zxCL− zCL− L+ 1 + zLC + xL− x− zxLC)

L− 1− zLC = z(C − 1)(−L+ 1 + xL− x)

L− zLC + z(C − 1)L− zx(C − 1)L = zC − z − xzC + xz

L =
1 + zC − z − xzC + xz

1− z − zx(C − 1)

=
zC + 1− z − zx(C − 1)

1− z − zx(C − 1)

=
zC + 1− z(C − zC2)− zx(zC2)

1− z(C − zC2)− zx(zC2)

= 1 +
zC

1− z(C − zC2)− zx(zC2)

= 1 +
zC2

C − z(C2 − zC3)− zx(zC3)

= 1 +
zC2

C − zC2 + z2C3 − xz2C3

= 1 +
zC2

1 + (1− x)z2C3
.

Thus the generating function for the low occurrence of duu is,

L = 1 +
zC2

1 + (1− x)z2C3
.

Now we get [znxk]L = ln,k as follows,

L = 1 +
zC2

1 + (1− x)z2C3)

= 1 + zC2

∞∑
m=0

C3mz2m(x− 1)m
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[zn]L =
∞∑
m=0

[zn−2m−1]C3m+2(x− 1)m

=
∞∑
m=0

(x− 1)m
3m+ 2

2(n− 2m− 1) + 3m+ 2

(
2(n− 2m− 1) + 3m+ 2

n− 2m− 1

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jxm−j

3m+ 2

2n−m

(
2n−m
n+m+ 1

)

Now let k = m − j for the maximum value of m let 2n −m − 1 = n + m then

m =
n− 1

2
, from k = m− j the maximum value of j is j =

n− 1

2
− k thus,

[xkzn]L = ln,k =

[n−1
2

]−k∑
j=0

(−1)j
(
j + k

k

)
3j + 3k + 2

2n− j − k

(
2n− j − k
n+ j + k + 1

)
.

Theorem 3.3.5 [15]The generating function for low occurrences of the strings d3

and u3 is L =
C

1 + (1− t)z3C4
.

Proof

We derive the generating function L(t, z) = L for the low occurrence of the string

τ = d3, We partition D into {Ωi}, where Ωi is partitioning of all Dyck paths accord-

ing to length of last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a

generating function for Ωi, where t counts the number of low occurrences the string

τ = d3. All elements α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i,

where αm ∈ D for all m ∈ [i]. A low occurrence for i ≤ 2 that is for α1ud and

α1uα2ud
2 produces zL and z2CL respectively, since α1 is in the horizontal axis it

produces L. The same happens for i ≥ 3, thus a new low occurrence of d3 appears

in α (in addition to those contributed by am’s) if and only if i ≥ 3, since there are

i (am’s) and also there are i (u’s), these produces
∑∞

i=3 tz
iCi−1L and if i ≤ 2 we

get
∑2

i=1 z
iCi−1L. Combining these two possibilities taking into account an empty

path we get,

L = 1 +
2∑
i=1

ziCi−1L+
∞∑
i=3

tziCi−1L
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= 1 +
r−1∑
i=1

ziCi−1L+
∞∑
i=0

tzi+3Ci+2L

= 1 +
2∑
i=1

ziCi−1L+ t
z3C3L

1− zC
.

From
2∑
i=1

ziCi−1L we get the following

2∑
i=1

ziCi−1L =
∞∑
i=1

ziCi−1L−
∞∑
i=3

ziCi−1L =
zL

1− zC
− z3C2L

1− zC
.

Thus we have

L = 1 +
zL

1− zC
− z3C2L

1− zC
+ t

z3C2L

1− zC

= 1 +
zCL

C − zC2
− (1− t) z3C3L

C − zC2
.

We know from C = 1 + zC2 then C − zC2 = 1 thus

= 1 + zCL− (1− t)z3C3L

=
1

1− zC + (1− t)z3C3

=
C

C − zC2 + (1− t)z3C4

=
C

1 + (1− t)z3C4
.

Thus the generating function for the low occurrence of ddd is,

L =
C

1 + (1− t)z3C4
.

Now we get [zntk]L = ln,k as follows,

L =
C

1 + (1− t)z3C4
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=
∞∑
m=0

C4m+1z3m(t− 1)m

[zn]L =
∞∑
m=0

[zn−3m]C4m+1(t− 1)m

=
∞∑
m=0

(t− 1)m
4m+ 1

2(n− 3m) + 4m+ 1

(
2(n− 3m) + 4m+ 1

n− 3m

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

(4m+ 1

2n− 2m+ 1

(
2n− 2m+ 1

n− 3m

)

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
4m+ 1

2n− 2m+ 1

(2n− 2m+ 1)!

(n− 3m)!(n+m+ 1)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
4m+ 1

n+m+ 1

(2n− 2m)!

(n− 2m)!(n+m)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
4m+ 1

n+m+ 1

(
2n− 2m

n+m

)
.

Now let k = m − j for the maximum value of m let 2n − 2m = n + m then

m =
n

3
, from k = m− j the maximum value of j is j =

n

3
− k thus,

ln,k = [tkzn]L =

[
n

3
]−k∑

j=0

(−1)j
(
j + k

j

)
4(j + k) + 1

n+ j + k + 1

(
2n− 2(j + k)

n+ j + k

)
.

Theorem 3.3.6 [15]The generating function for low occurrences of the string uudu

is L =
C

1 + (1− t)z3C3
.

Proof

We derive the string τ = uudu. We derive its generating function by using the

first return decomposition of non-empty Dyck path α = uβdγ where β, γ ∈ D, a

new low occurrence of uudu appears in α (in addition to those contributed by β and

γ) if and only if β = udφ, where φ ∈ D and φ 6= ε.

The path α can start with the string uudu right from the start where β = udφ

producing z(tz(C − 1))L or α can start without the string uudu in the beginning
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producing z(C − z(C − 1))L.

Now we get the generating function L(t, z) = L (where t counts the number of

low occurrences of uudu’s) as follows,

L− 1 = z(tz(C − 1))L+ z(C − z(C − 1))L

1 = L− tz2(C − 1))L− z(C − z(C − 1))L

L =
1

1− tz2(C − 1))− z(C − z(C − 1))
.

We now use the Catalan number generating function C where C = 1 + zC2 to

produce

L =
1

1− tz3C2 − (z + z2C2 − z3C2)

=
C

C + (1− t)z3C3 − zC − z2C3)

=
C

C + (1− t)z3C3 − zC(1 + zC2)

=
C

C + (1− t)z3C3 − zC2

=
C

1 + (1− t)z3C3
.

Thus the generating function for the low occurrence of uudu is,

L =
C

1 + (1− t)z3C3
.

Now we get [zntk]L = ln,k as follows,

L =
C

1 + (1− t)z3C3

=
∞∑
m=0

C3m+1z3m(t− 1)m
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[zn]L =
∞∑
m=0

[zn−3m]C3m+1(t− 1)m

=
∞∑
m=0

(t− 1)m
3m+ 1

2(n− 3m) + 3m+ 1

(
2(n− 3m) + 3m+ 1

n− 3m

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

3m+ 1

2n− 3m+ 1

(
2n− 3m+ 1

n− 3m

)

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

2n− 3m+ 1

(2n− 3m+ 1)!

(n− 3m)!(n+ 1)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

n+ 1

(2n− 3m)!

(n− 3m)!(n)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
3m+ 1

n+ 1

(
2n− 3m

n

)
.

Now let k = m − j for the maximum value of m let 2n − 3m = n then m =
n

3
,

from k = m− j the maximum value of j is j =
n

3
− k thus,

[tkzn]L = ln,k =
1

n+ 1

[n
3
]−k∑
j=0

(−1)j
(
j + k

k

)
(3j + 3k + 1)

(
2n− 3k − 3j

n

)
.

Theorem 3.3.7 [15]The generating function for low occurrences of the string uduu

is L− 1 = z(tz(C − 1))L+ z(C − z(C − 1))L.

Proof

We derive its generating function for τ = uduu by using the first return decom-

position of non-empty Dyck path α = βuγd where β, γ ∈ D. A new low occurrence

of uduu appears in α (in addition to those contributed by β and γ) if and only if

β = δud and γ 6= ε. Where δ ∈ D producing z(tz(C − 1))L or α can be such that

β 6= δud producing z(C − z(C − 1))L. Combining these two possibilities we get

L− 1 = z(tz(C − 1))L+ z(C − z(C − 1))L. (3.6)

This generating function for low occurrences of uduu is the same as the generating

function for low occurrences of uudu, thus the number of low occurrences for uduu

is equidistant to the number of low occurrences for uudu, thus as for uudu;
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[tkzn]L = ln,k =
1

n+ 1

[n
3
]−k∑
j=0

(−1)j
(
j + k

k

)
(3j + 3k + 1)

(
2n− 3k − 3j

n

)
.

Theorem 3.3.8 [15]The generating function for low occurrences of the strings uuud

is L =
C

1 + (1− t)z3C3
.

Proof

We study the low occurrence of the string τ = uuud. We derive the generating

function for the low occurrence of τ = uuud using the first return decomposition of

non-empty Dyck path α = uβdγ where β, γ ∈ D. A new low occurrence of uuud

appears in α (in addition to those contributed by β and γ ) if and only if β = uϕdδ

with ϕ = udφ. Where ϕ, δ, φ ∈ D producing z(z(tzC)C)L or α can be such that

ϕ 6= udφ producing z(C − z2C2)L.

Now we get the generating function L(t, z) = L ( where t counts the number of

low occurrences of uuud ) as follows,

L− 1 = z(z(tzC)C + C − z2C2)L

L− 1 = z3tC2L+ zCL− z3C2L

L =
1

1− z3tC2 − zC + z3C2

=
C

C − z3tC3 − zC2 + z3C3

Since C − zC2 = 1, then

=
C

1 + (1− t)z3C3
.

(3.7)

This generating function for low occurrences of uuud is the same as the generating

functions for low occurrences of uudu and uduu. Thus the number of low occurrences

for uduu is equidistant to the number of low occurrences for uudu and uduu, thus

as for uudu,
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[tkzn]L = ln,k =
1

n+ 1

[n
3
]−k∑
j=0

(−1)j
(
j + k

k

)
(3j + 3k + 1)

(
2n− 3k − 3j

n

)
.

Theorem 3.3.9 [15]The generating function for low occurrences of the strings uudd

is L =
C

1 + (1− t)z2C
.

Proof

We study the generating function for low occurrence of τ = uudd by using the

first return decomposition of non-empty Dyck path α = uβdγ where β, γ ∈ D. A

new low occurrence of uudd appears in α (in addition to those contributed by β and

γ) if and only if β = ud producing z(tz)L or α can be such that β 6= ud producing

z(C − z)L.

Now we get the generating function L(t, z) = L (where by t counts the number

of low occurrences of uudd) as follows.

L− 1 = z(tz + C − z)L

1 = L− z2tL− zCL+ z2L

L =
1

1− z2t− zC + z2

=
C

C − z2tC − zC2 + z2C

=
C

1 + (1− t)z2C
.

(3.8)

The generating function for the low occurrence of uudd is,

L =
C

1 + (1− t)z2C
.

Now we get [zntk]L = ln,k as follows,

L =
C

1 + (1− t)z2C

= C

∞∑
m=0

Cmz2m(t− 1)m

77



[zn]L =
∞∑
m=0

[zn−2m]Cm+1(t− 1)m

=
∞∑
m=0

[zn−2m]Cm+1(t− 1)m

=
∞∑
m=0

(t− 1)m
m+ 1

2(n− 2m) +m+ 1

(
2(n− 2m) +m+ 1

n− 2m

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

m+ 1

2n− 3m+ 1

(
2n− 3m+ 1

n− 2m

)

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 1

2n− 3m+ 1

(2n− 3m+ 1)!

(n− 2m)!(n−m+ 1)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 1

n−m+ 1

(2n− 3m)!

(n− 2m)!(n−m)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 1

n−m+ 1

(
2n− 3m

n−m

)
.

Now let k = m − j for the maximum value of m let 2n − 3m = n − m then

m =
n

2
, from k = m− j the maximum value of j is j =

n

2
− k thus,

[tkzn]L = ln,k =

[n
2
]−k∑
j=0

(−1)j
(
j + k

k

)
j + k + 1

n− k − j + 1

(
2n− 3k − 3j

n− k − j

)
.

Theorem 3.3.10 [15]The generating function for low occurrences of the strings

dudu is L = 1 + zC +
z2C3

1 + (1− t)zC
.

Proof

To derive the generating function L(t, z) = L for the low occurrence of the string

τ = dudu. We let Ω to be the set of all Dyck paths with semi-length at least 2,

which starts with the low peak, with its generating function A(t, z) = A. Where t

counts the number of low occurrences of the string τ = dudu. All elements α of Ω

can be written uniquely as α = udβ. Where β ∈ D\{ε}. The new low occurrence

of dudu occurs if and only if β ∈ Ω. This produces ztA and if β does not belong to

Ω then we get z(L− 1− A). Combining these two possibilities we get
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A = ztA+ z(L− 1− A). (3.9)

In addition we form the first return decomposition α = uβdγ, where β, γ ∈ D,

the new low occurrence of dudu is possible if and only if γ ∈ Ω this produces ztCA.

if γ does not belong to Ω, then we have zC(L−A). Combining these two possibilities

we get

L = 1 + ztCA+ z(L− A)C. (3.10)

From the above two equations we eliminate A and get the generating function L

as follows.

In the equation A = ztA+ z(L− 1− A) we solve for A and

get A =
zL− z

1− tz + z
.

We then substitute the expression of A into L = 1 + ztCA + z(L − A)C and

proceed as follows:

L = 1 + ztC(
zL− z

1− tz + z
) + z(L− (

zL− z
1− tz + z

))C

L− tzL+ zL = 1− tz + z + z2tCL− z2tC + zCL− tz2LC + z2LC − z2CL+ z2C

L =
1− tz + z − z2tC + z2C

1− tz + z − zC

=
C − tzC + zC − z2tC2 + z2C2

C − tzC + zC − zC2

=
C − tzC + zC − z2tC2 + z2C2

1 + (1− t)zC
.

We now multiply C = 1 + zC2 by zC and get zC2 = zC + z2C3

so zC2 − zC = z2C3, then we get

=
1 + zC2 − zC + zC − tzC + zC − z2tC2 + z2C2

1 + (1− t)zC

=
1 + z2C3 + zC − tzC + zC − z2tC2 + z2C2

1 + (1− t)zC
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=
1 + (1− t)zC + zC(1 + (1− t)zC) + z2C3

1 + (1− t)zC

= 1 + zC +
z2C3

1 + (1− t)zC
.

(3.11)

The generating function for the low occurrence of dudu is,

L = 1 + zC +
z2C3

1 + (1− t)zC
.

Now we get [zntk]L = ln,k as follows,

[zn]L = [zn−1]C +
∞∑
m=0

[zn−m−2]Cm+3(t− 1)m

=
1

n

(
2(n− 1)

n− 1

)
+
∞∑
m=0

(t− 1)m
m+ 3

2(n−m− 2) +m+ 3

(
2(n−m− 2) +m+ 3

n−m− 2

)
= Cn−1 +

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

m+ 3

2n−m− 1

(
2n−m− 1

n−m− 2

)

= Cn−1 +
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 3

2n−m− 1

(2n−m− 1)!

(n−m− 2)!(n+ 1)!

= Cn−1 +
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 3

n+ 1

(2n−m− 2)!

(n−m− 2)!n!

= Cn−1 +
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
m+ 3

n+ 1

(
2n−m− 2

n

)

Now let k = m−j for the maximum value of m let 2n−m−2 = n then m = n−2,

from k = m− j the maximum value of j is j = n− 2− k thus,

[tkzn]L = δ0kCn−1 +
n−2−k∑
j=0

(−1)j
(
j + k

j

)
j + k + 3

n+ 1

(
2n− j − k − 2

n

)
,

where δ0k is the Kronecker function, that is
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δnk =

1 if n = k

0 if n 6= k.
(3.12)

Theorem 3.3.11 [15]The generating function for low occurrences of the strings dr

and ur, where r ≥ 2 is L =
C

1 + (1− t)zrCr+1
.

Proof

We derive the generating function L(t, z) = L for the low occurrence of the string

τ = dr. We partition D into {Ωi}. Where Ωi is set of all Dyck paths according to

length of last descent equal to i, for all i ≥ 1. We define Ai(t, z) = Ai to be a

generating function for Ωi, where t counts the number of low occurrences the string

τ = dr. All elements α of Ωi can be written uniquely as α = α1uα2uα3....uαiud
i,

where αm ∈ D for all m ∈ [i]. A low occurrence for i ≤ 2 that is for α1ud and

α1uα2ud
2 produces zL and z2CL respectively, since α1 is in the horizontal axis it

produces L. The same happens for i ≥ r. Thus a new low occurrence of dr appears

in α (in addition to those contributed by am’s) if and only if i ≥ r, since there are i

(am’s) and also there are i (u’s). This produces
∑∞

i=r tz
iCi−1L and if i ≤ r − 1 we

get
∑r−1

i=1 z
iCi−1L. Combining these two possibilities taking into account an empty

path we get,

L = 1 +
r−1∑
i=1

ziCi−1L+
∞∑
i=r

tziCi−1L

= 1 +
r−1∑
i=1

ziCi−1L+
∞∑
i=0

tzi+rCi+r−1L

= 1 +
r−1∑
i=1

ziCi−1L+ t
zrCr−1L

1− zC

From
∑r−1

i=1 z
iCi−1L we get the following

r−1∑
i=1

ziCi−1L =
∞∑
i=1

ziCi−1L−
∞∑
i=r

ziCi−1L =
zL

1− zC
− zrCr−1L

1− zC
.
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Thus we have

L = 1 +
zL

1− zC
− zrCr−1L

1− zC
+ t

zrCr−1L

1− zC

= 1 +
zCL

C − zC2
− (1− t) zrCrL

C − zC2
.

We know from C = 1 + zC2 that C − zC2 = 1 thus

= 1 + zCL− (1− t)zrCrL

=
1

1− zC + (1− t)zrCr

=
C

C − zC2 + (1− t)zrCr+1

=
C

1 + (1− t)zrCr+1
.

Thus the generating function for the low occurrence of dr is,

L =
C

1 + (1− t)zrCr+1
.

Now we get [zntk]L = ln,k as follows,

L =
C

1 + (1− t)zrCr+1

=
∞∑
m=0

C(r+1)m+1zrm(t− 1)m

[zn]L =
∞∑
m=0

[zn−rm]C(r+1)m+1(t− 1)m

=
∞∑
m=0

(t− 1)m
(r + 1)m+ 1

2(n− rm) + (r + 1)m+ 1

(
2(n− rm) + (r + 1)m+ 1

n− rm

)
=

∞∑
m=0

m∑
j=0

(
m

j

)
(−1)jtm−j

(r + 1)m+ 1

2n− (r − 1)m+ 1

(
2n− (r − 1)m+ 1

n− rm

)

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
(r + 1)m+ 1

2n− (r − 1)m+ 1

(2n− (r − 1)m+ 1)!

(n− rm)!(n+m+ 1)!
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=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
(r + 1)m+ 1

n+m+ 1

(2n− (r − 1)m)!

(n− rm)!(n+m)!

=
∞∑
m=0

m∑
j=0

(−1)jtm−j
(
m

j

)
(r + 1)m+ 1

n+m+ 1

(
2n− (r − 1)m

n+m

)
.

Now let k = m− j for the maximum value of m let 2n− (r− 1)m = n+m then

m =
n

r
, from k = m− j the maximum value of j is j =

n

r
− k thus,

ln,k = [tkzn]L =

[
n

r
]−k∑

j=0

(−1)j
(
j + k

j

)
(r + 1)(j + k) + 1

n+ j + k + 1

(
2n− (r − 1)(j + k)

n+ j + k

)
.

3.4 Counting strings at high level

In this section we study the paper titled Counting strings in Dyck paths by [16].

Here we take into account the number of high occurrences of the string τ .

We say that a string τ is at high level if its minimum point(s) occurs above the

horizontal axis. For example the two strings udu in Figure 3.1 (page 48) occur at

high level. We define the generating function for the high occurrences of the string

τ as follows

H(t, z) =
∞∑
n=0

n∑
k=0

hn,kt
kzn. (3.13)

We use the first return decomposition of non-empty Dyck path α = uβdγ to

derive the generating function H(t, z) := H (where t counts the number of high

occurrences the string τ) for high occurrences of the string τ . In the decomposition

α = uβdγ, β is not at the horizontal axis therefore it can generate the high string τ

producing H(t, z) := H. The path γ is at the horizontal axis, thus it can generate

both high and low τ producing F (t, z) (defined in Chapter two as a generating

function for τ). Combining these cases we obtain the generating function for the

high occurrences of τ as follows,
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H = 1 + zHF

H =
1

1− zF
.

Now we consider the three strings τ , τ1 and τ2, from Section 3.1 we have

Eτ (t, z) = Fτ1(t, z) and Oτ (t, z) = Fτ2(t, z)

from H =
1

1− zF
we get

Hτ1(t, z) =
1

1− zFτ1(t, z)
,

and from Oτ (t, z) =
1

1− zEτ (t, z)
we have

Hτ1(t, z) = Oτ (t, z) = Fτ2(t, z) =
1

1− zFτ1(t, z)
,

thus we have

Hτ1(t, z) = Fτ2(t, z).

Now we find the generating functions at high level for the strings uud, udu, uduu,

uudd and udud using the above results.

Theorem 3.4.1 [16]The generating function for high occurrences of the string uud

is tzH2(t, z)− (1 + 2(t− 1)z)H(t, z) + 1 + (t− 1)z = 0.

Proof

We derive the generating function H(t, z) for the string uud by cosidering the

relation Hτ1(t, z) = Oτ (t, z) = Fτ2(t, z). From Sectiom 3.1 Edd(t, z) = Fuud(t, z) and

Odd(t, z) = Fduu(t, z), thereforeHuud(t, z) = Fduu(t, z). Since the generating function

Fduu(t, z) for duu from Chapter two is tzF 2(t, z)−(1+2(t−1)z)F (t, z)+1+(t−1)z =

0, then generating function Huud(t, z) for uud is

tzH2(t, z)− (1 + 2(t− 1)z)H(t, z) + 1 + (t− 1)z = 0
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Theorem 3.4.2 [16]The generating functions for high occurrences of the strings

udu, uduu, uudd and udud are as follows.

We know that from Section 3.1 Edu(t, z) = Fudu(t, z) and Odu(t, z) = Fddd(t, z),

then Hudu(t, z) = Fddd(t, z). We proceed as for the string uud above. Thus the

generating function Hudu(t, z) for udu is

z(t+ z − tz)H2 − (1− z + tz)H + 1 = 0.

If we do the same for the strings uduu, uudd and udud we obtain that,

(1) Eduu(t, z) = Fuduu(t, z) and Oduu(t, z) = Fdduu(t, z), thus

Huduu(t, z) = Fdduu(t, z), then the generating function Huduu(t, z) for uduu is

z(t+ (1− t)z)H2 − (1 + (1− t)(z − 2)z)H + (t− 1)z + 1 = 0,

(2) Euud(t, z) = Fuudd(t, z) and Ouud(t, z) = Fuduu(t, z), thus

Huudd(t, z) = Fuduu(t, z), then the generating function Huudd(t, z) for uudd is

z(1− (1− t)z)H2 + ((1− t)z2 − 1)H + 1 = 0,

(3) Eudu(t, z) = Fudud(t, z) and Ouud(t, z) = Fdudu(t, z), thus

Hudud(t, z) = Fdudu(t, z), then the generating function Hudud(t, z) for udud is

zH2 + ((1− t)(z − 1)z − 1)H + (1− t)z + 1 = 0,

respectively.
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Chapter 4

Skew Dyck paths, and

superdiagonal bargraphs

In this chapter we study the paper titled Skew Dyck paths, area, and superdiagonal

bargraphs by [7]. We enumerate skew Dyck paths according to different parameters.

4.1 Enumeration of skew Dyck paths according to different

parameters

In this section we enumerate skew paths according to area. We define the area

for skew paths, but first we define the area for Dyck paths. The region between

a path and the x-axis can be decomposed into right triangles with unit areas, we

can conclude that the area of Dyck paths is the number of these unit triangles. In

a similar way we can define the area of a skew paths as the region below the path

and above the x-axis (see Figure 4.1). Here we are interested in an enumeration of

skew paths according to area, semi-length (half of the skew path length) and semi-

base. We show bijectively that the number of skew paths of area n is the Fibonacci

number Fn. This provides a striking property about the occurrence of the Fibonacci

numbers.

4.1.1 Enumeration of skew paths according to area and semi-base

Here we compute the number ank of all skew paths having area n and semi-base k,

then we determine the number an of all skew paths with area n. In order for us
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Figure 4.1: (a) A Dyck path of area 16 and (b) a skew path of area 17

to be able to obtain these numbers by a bijective argument, we first describe the

following decomposition of skew paths according to the leftmost peak. The class of

all skew paths can be split into a class of all skew paths with a low peak (i.e skew

paths starting with ud) (see Figure 4.2(a)) and all skew paths with left most peak

at height at least two, like uuγ, where γ is a skew path (see Figure 4.2(b)).

Figure 4.2: (a) A skew path beginning with a low peak and (b) a skew path whose left

most peak is at least 2

If the low peak is deleted, the skew path in the first class turns out to be an

arbitrary skew path (where the semi-base and area are decreased by 1). If we

remove the square determined by the left most peak, the skew path in the second

class turns out to be the arbitrary skew path (here the semi-base does not change

but the area is decreased by 2).

We define a(q; y) to be the generating function for the class of all skew paths with

respect to their area, marked by q and to semi-base marked by y. The generating

function a(q; y) can be empty producing 1 or it can be of the class in Figure 4.2(a)

producing qya(q; y) or Figure 4.2(b) producing q2(a(q; y)− 1). Combining the three

cases we get

a(q; y) = 1 + qya(q; y) + q2(a(q; y)− 1)

a(q; y)− qya(q; y)− q2a(q; y) = 1− q2

a(q; y) =
1− q2

1− qy − q2
.

(4.1)
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Therefore

a(q; y) =
∑
k≥0

∑
n≥0

ankq
nyk =

1− q2

1− qy − q2
. (4.2)

Also if

ak(q) =
∑
n≥0

ankq
n, (4.3)

then from Figure 4.2(a) ak+1(q) = qak(q) or from Figure 4.2(b) ak+1(q) =

q2ak+1(q). Combining these two cases we obtain

ak+1(q) = qak(q) + q2ak+1(q)

ak+1(q) =
q

1− q2
ak(q).

(4.4)

We know that there is only one skew path with semi-base zero that is the empty

path, then

a0(q) = 1. (4.5)

It follows from equation (4.4) that

ak(q) =
q

1− q2
ak−1(q)

ak(q) =
q2

(1− q2)2
ak−2(q)

ak(q) =
qk

(1− q2)k
a0(q)

ak(q) =
qk

(1− q2)k
,

(4.6)

for every k ∈ N . If we do a series expansion in (4.6) we get the number ank for all

skew paths with semi-base k and area n.

We know that there is one each skew path of area 0, 1, or 2 i.e a0 = a1 = a2 = 1

respectively. These initial conditions give us the recurrence an+3 = an+2 + an+1.

88



Thus we obtain an = Fn, for every n ≥ 1, where Fn are the well known Fibonacci

numbers (defined such that Fn = Fn−1 + Fn−2 for F0 = 0 and F1 = 1).

Theorem 4.1. [6]The number of all skew paths having semi-base k and area n

is

ank =


(n−k

2
+k−1
k−1

)
if n ≡ k(mod 2),

0 otherwise.
(4.7)

Proof

ank = [qn]ak(q)

[qn]ak(q) = [qn]qk(1− q2)−k

= [qn]
∑
i≥0

(
−k
i

)
(−1)iq2i+k

= [qn]
∑
i≥0

(−k)(−k − 1)...(−k − i+ 1)

i!
(−1)iq2i+k

= [qn]
∑
i≥0

(k)(k + 1)...(k + i− 1)

i!
(−1)2iq2i+k

= [qn]
∑
i≥0

(k − 1)!(k)(k + 1)...(k + i− 1)

i!(k − 1)!
(−1)2iq2i+k

= [qn]
∑
i≥0

(
k + i− 1

k − 1

)
q2i+k.

Let n = 2i+ k

ank =

(
n−k
2

+ k − 1

k − 1

)
.

(4.8)

The number of skew paths with area n i.e an =
∑n

k=1 ank is equal to the Fibonacci

number Fn(n ≥ 1), therefore an =
∑n

k=1

(n−k
2

+k−1
k−1

)
= Fn.

It is easy to show that a3 = 2, a4 = 3, a5 = 5, a6 = 8 and a7 = 13, this

means that there are 2 skew paths with area 3, 3 with area 4, 5 with area 5 (this is

confirmed by Figure 4.3) etc.

Figure 4.3: The 5 skew Dyck paths with area 5
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4.1.2 Enumeration of skew paths according to area and semi-length

Let fn(q) be generating function for all skew paths with semi-length n, where q

marks the area of the skew path.

We derive fn(q) by first obtaining the generating function gn(q, y), of all skew

paths with semi-length n , where y marks the semi-base and q marks the area. This

gives fn(q) = gn(q, 1). Let H(x, y, q) be the generating function of all skew paths,

where x marks the semi-length, q marks the area and y marks the semi-base. From

Figure 1.4 (from Chapter one) we get

H(q, y, x) = 1 + qyxH(q, q2y, x)H(q, y, x) + x(H(q, q2y, x)− 1). (4.9)

Let

H(q, y, x) =
∑
n≥0

gn(q, y)xn. (4.10)

We know that there is only one skew path with area zero, then g0(q, y) = 1 and also

there is only one skew path of area 1 with both semi-length and semi-base equal to

1, i.e g1(q, y) = qy.

From (4.9) and (4.10) we get

H(q, y, x) =
∑
n≥0

gn(q, y)xn

= 1 + qyxH(q, q2y, x)H(x, y, q) + x(H(q, q2y, x)− 1)

= 1 + qyx
∑
n≥0

gn(q, q2y)xn
∑
n≥0

gn(q, y)xn + x
∑
n≥0

gn(q, q2y)xn − x.

(4.11)

By convolution rule we have

H(q, q2y, x)H(x, y, q) =
∑
n≥0

gn(q, q2y)xn
∑
n≥0

gn(q, y)xn

=
∞∑
k=0

k∑
i=0

gi(q, y)gk−i(q, q
2y)xk

(4.12)

then∑
n≥0

gn(q, y)xn = 1 + qyx
∞∑
k=0

k∑
i=0

gi(q, y)gk−i(q, q
2y)xk + x

∑
n≥0

gn(q, q2y)xn − x
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[xn]
∑
n≥0

gn(q, y)xn = [xn]

(
1 + qy

∞∑
k=0

k∑
i=0

gi(q, y)gk−i(q, q
2y)xk+1 +

∑
n≥0

gn(q, q2y)xn+1 − x

)

gn(q, y) = qy
n−1∑
i=0

gi(q, y)gn−1−i(q, q
2y) + gn−1(q, q

2y).

(4.13)

Using computer algebra such as Mathematica we get the following equations

g2(q, y) = q2y2 + q3y + q4y2, (4.14)

g3(q, y) = q3y3 + q4y2 + q5y + 2q5y3 + 2q6y2 + q7y3 + q8y2 + q9y3. (4.15)

Therefore to find fn(q) we use the fact that fn(q) = gn(q, 1) thus

f2(q) = q2 + q3 + q4, (4.16)

f3(q) = q3 + q4 + 3q5 + 2q6 + q7 + q8 + q9. (4.17)

Remark. We can interpret the two equations (4.16) and (4.17) as follows. In both

f2(q) and f3(q) the coefficient of q3 is 1. Summing up these coefficients we get 2.

This means that there are only 2 skew paths with area 3. This corresponds to a3 = 2

in the previous Section 4.1.1.

The coefficient of q4 is 1 in each f2(q), f3(q) and f4(q), again this means that

there are only 3 skew paths with area 4, this corresponds to a4 = 3 in the previous

Section 4.1.1.

If we continue in this way for q5, q6, q7 etc we get 5, 8, 13 respectively. This

shows that the two methods of counting skew paths using different combination of

parameters produce the same results. Again this is the Fibonacci sequence.

Remark. We note that equations (4.16) and(4.17) are divisible by q2, q3, and

they are polynomials of degrees 22, 32 respectively. In general fn(q) is divisible by

qn and is a polynomial of degree n2.

Let hn(q) be generating function for all Dyck paths with semi-length n, where q

marks the area of the Dyck path.

We derive hn(q) by first obtaining the generating function tn(q, y), of all Dyck

paths with semi-length n , where y marks the semi-base and q marks the area, then

hn(q) = tn(q, 1). Let T (x, y, q) be the generating function of all Dyck paths, where
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x marks the semi-length, q marks the area and y marks the semi-base. From Figure

1.2 (from Chapter one) we get

T (q, y, x) = 1 + qyxT (q, q2y, x)T (q, y, x).

Let

T (q, y, x) =
∑
n≥0

tn(q, y)xn.

We know that there is only one Dyck path with area zero, then t0(q, y) = 1 and also

there is only one Dyck path of area 1 with both semi-length and semi-base equal to

1, i.e t1(q, y) = qy.

From the two above equations we get

T (q, y, x) =
∑
n≥0

tn(q, y)xn

= 1 + qyxT (q, q2y, x)T (x, y, q)

= 1 + qyx
∑
n≥0

tn(q, q2y)xn
∑
n≥0

tn(q, y)xn.

then ∑
n≥0

tn(q, y)xn = 1 + qyx
∞∑
k=0

k∑
i=0

ti(q, y)tk−i(q, q
2y)xk

[xn]
∑
n≥0

tn(q, y)xn = [xn]

(
1 + qy

∞∑
k=0

k∑
i=0

ti(q, y)tk−i(q, q
2y)xk+1

)

tn(q, y) = qy

n−1∑
i=0

ti(q, y)tn−1−i(q, q
2y).

Using computer algebra such as Mathematica we get the following equations

t2(q, y) = q2y2 + q4y2,

t3(q, y) = q3y3 + 2q5y3 + q7y3 + q9y3.

Therefore to find hn(q) we use the fact that hn(q) = tn(q, 1) thus
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h0(q) = 1,

h1(q) = q,

h2(q) = q2 + q4,

h3(q) = q3 + 2q5 + q7 + q9.

We can explain the above four equations as follows,

(1) there is only one Dyck path with both semi-length and area equal to 0

(40 − 1
2

(
2(0)+2
0+1

)
),

(2) there is only one Dyck path with both semi-length and area equal to 1

(41 − 1
2

(
2(1)+2
1+1

)
),

(3) there are exatly two Dyck paths with each having the semi-length equal to 2

and the sum of their areas equal to 6 (42 − 1
2

(
2(2)+2
2+1

)
), and

(4) there are exatly five Dyck paths with each having the semi-length equal to 3

and the sum of their areas equal to 29 (43 − 1
2

(
2(3)+2
3+1

)
), respectively.

We now conclude by saying that given all Dyck paths with semi-lengths n the

sum of their areas is equal to 4n − 1
2

(
2n+2
n+1

)
[12].

We now use an alternative method from the above, by defining skew paths with

left most peak. Let Fk(q, x) be a generating function where k is the left most peak,

q marks the area and x marks the semi-length.

Let

f(q;x) =
∑
k≥0

Fk(q;x) =
∑
n≥0

fn(q)xn. (4.18)

Figure 4.4: The decomposition of skew paths according to the left most peak
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We know that if there is only one skew path with no left most peak, then

F0(q;x) = 1. We also know that a skew path with one left most peak can be decom-

posed as udγ′, where γ′ ∈ S (see Figure 4.4(a)), then we get F1(q;x) = qxf(q;x).

For all skew paths with left most peak at least two we get the two following cases.

1. γ = uk+2dlk−i+1γ′, with γ′, not empty, starting with a down step and i ≤ k

(see Figure 4.4(b)). The class of skew paths γ is the same as the class of skew paths

γ̄ = uiγ′ where the left most peak is at level i, with semi-length reduced by k+ 2− i
and the area reduced by 2k + 3, this first case produces q2k+3

∑k
i=0 x

k+2−iFi(q;x).

2. γ = uk+2dγ′, with γ′ starting with an up step or down step(see Figure 4.4(c)).

Now the class of skew paths γ is the same as the class of skew paths γ̄ = uk+1γ′

where the left most peak is at level k + 1, with semi-length reduced by k + 2 − i
and the area reduced by 2k + 3, this second case produces q2k+3

∑∞
i=k+1 xFi(q;x).

Combining these two cases we get

Fk+2(q;x) = q2k+3

k∑
i=0

xk+2−iFi(q;x) + q2k+3

∞∑
i=k+1

xFi(q;x)

= q2k+3

k∑
i=0

xk+2−iFi(q;x) + q2k+3x

[∑
i≥0

Fi(q;x)−
k∑
i=0

Fi(q;x)

]

= q2k+3

k∑
i=0

xk+2−iFi(q;x) + q2k+3x

[
f(q;x)−

k∑
i=0

Fi(q;x)

]

=
k∑
i=0

[xk+2−i − x]Fi(q;x)q2k+3 + q2k+3xf(q;x).

(4.19)

We know that F0(q;x) = 1 and F1(q;x) = qxf(q;x) now

F (q;x, y) =
∑
k≥0

Fk(q;x)yk. (4.20)

Here y marks the left most peak. We prove the following theorem by using (4.19)

and (4.20).

Theorem 4.2 [6]
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F (q;x, y) = 1 +
qxy

1− q2y
f(q;x)− q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x.q2y). (4.21)

Proof

F (q;x, y) = F0(q;x) + F1(q;x)y + F2(q;x)y2 + ...

= 1 + qxf(q;x)y +
∑
k≥0

Fk+2(q;x)yk+2

(4.22)

from (4.19)

∑
k≥0

Fk+2(q;x)yk+2 =
∑
k≥0

(
q2k+3yk+2

k∑
i=0

xk+2−iFi(q;x) + q2k+3xyk+2

[
f(q;x)−

k∑
i=0

Fi(q;x)

])

=
∑
k≥0

q2k+3yk+2

k∑
i=0

xk+2−iFi(q;x) +
∑
k≥0

q2k+3xyk+2f(q;x)−
∑
k≥0

q2k+3xyk+2

k∑
i=0

Fi(q;x)

(4.23)

then we get

F (q;x, y) = 1 + qxf(q;x)y+∑
k≥0

(
q2k+3yk+2

k∑
i=0

xk+2−iFi(q;x) + q2k+3xyk+2

[
f(q;x)−

k∑
i=0

Fi(q;x)

])

= 1 +
qxy

1− q2y
f(q;x)− q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x.q2y).

(4.24)

We first derive the middle term
qxy

1− q2y
f(q;x) of (4.24), in (4.23) from

∑
k≥0 q

2k+3xf(q;x)yk+2

we get,

∑
k≥0

q2k+3xf(q;x)yk+2 =
f(q;x)xq3y2

1− q2y
.
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Since F1(q;x) = qxf(q;x), then we have

F1(q;x)y = qxf(q;x)y

=
(1− q2y)qxf(q;x)y

1− q2y

=
f(q;x)qxy − f(q;x)xq3y2

1− q2y
.

Now we get the middle term as follows

qxf(q;x)y +
∑
k≥0

q2k+3xf(q;x)yk+2

=
f(q;x)qxy − f(q;x)xq3y2

1− q2y
+
f(q;x)xq3y2

1− q2y
=

qxy

1− q2y
f(q;x).

Having found the middle term of (4.24), we have to find the last term

− q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x, q2y), from (4.23) we get

∑
k≥0

q2k+3yk+2

k∑
i=0

xk+2−iFi(q;x)−
∑
k≥0

q2k+3xyk+2

k∑
i=0

Fi(q;x)

=
∑
k≥0

(
k∑
i=0

[xk+2−i − x]Fi(q;x)q2k+3yk+2

)

= y2q3
∑
i≥0

(
Fi(q;x)

∑
k≥i

xkykq2kx2−i − Fi(q;x)
∑
k≥i

xykq2k

)

= y2q3
∑
i≥0

[
Fi(q;x)x2yiq2i

1− xq2y
− xFi(q;x)yiq2i

1− yq2

]

= y2q3

[
x2

1− xq2y
∑
i≥0

Fi(q;x)yiq2i − x

1− yq2
∑
i≥0

Fi(q;x)yiq2i

]

= y2q3
[
x2
F (q;x, yq2)

1− xq2y
− xF (q;x; q2y)

1− yq2

]
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= y2q3
[
x2 − x2yq2 − x+ x2yq2

(1− xq2y)(1− yq2)

]
F (q, x, q2y)

= − q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x, q2y).

We now have prove that the last term is − q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x, q2y), thus

F (q;x, y) = 1 +
qxy

1− q2y
f(q;x)− q3(x− x2)y2

(1− q2xy)(1− q2y)
F (q;x, q2y),

as required.

Theorem 4.3 [6]

f(q;x) =

∑
k≥o

(−1)kqk(2k+1)(x− x2)k

(1− q2x)...(1− q2kx)(1− q2)...(1− q2k)∑
k≥o

(−1)kqk(2k−1)

(1− q2)...(1− q2k)
(x− x2)k

(1− x)(1− q2x)...(1− q2k−2x)

.

Proof

We see that to get F (q;x.q2y), we need to replace y by q2y in F (q;x, y) from

Theorem 4.2, then we get

F (q;x, q2y) = 1 +
qxq2y

1− q4y
f(q;x)− q3(x− x2)q4y2

(1− q2xq2y)(1− q4y)
F (q;x, q4y), (4.25)

then we substitute (4.25) into Theorem 4.2 and get

F (q;x, y) = 1 +
qxy

1− q2y
f(q;x)− q3(x− x2)y2

(1− q2xy)(1− q2y)

×
(

1 +
qxq2y

1− q4y
f(q;x)− q3(x− x2)q4y2

(1− q2xq2y)(1− q4y)
F (q;x, q4y)

)
.

(4.26)
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We simplify (4.26) and get

F (q;x, y) = 1 +
qxy

1− q2y
f(q;x)− q3(x− x2)y2

(1− q2xy)(1− q2y)

− q6(x− x2)xy3f(q;x)

(1− q2xy)(1− q2y)(1− q4y)

+
q10(x− x2)2y4F (q;x, q4y)

(1− q2xy)(1− q4xy)(1− q2y)(1− q4y)
.

(4.27)

We iterate and obtain

F (q;x, y) = 1 +
∑
k≥1

(−1)kqk(2k+1)(x− x2)ky2k

(1− q2xy)...(1− q2kxy)(1− q2y)...(1− q2ky)

+
∑
k≥1

(−1)k−1qk(2k−1)xk(1− x)k−1y2k−1f(q;x)

(1− q2xy)...(1− q2(k−1)xy)(1− q2y)...(1− q2ky)
.

Now we know that F (q;x, 1) = f(q;x), therefore

f(q;x) =

1 +
∑

k≥1
(−1)kqk(2k+1)(x− x2)k

(1− q2x)...(1− q2kx)(1− q2)...(1− q2k)

1−
∑

k≥1
(−1)k−1qk(2k−1)

(1− q2)...(1− q2k)
xk(1− x)k−1

(1− q2x)...(1− q2k−2x)

f(q;x) =

∑
k≥0

(−1)kqk(2k+1)(x− x2)k

(1− q2x)...(1− q2kx)(1− q2)...(1− q2k)∑
k≥o

(−1)kqk(2k−1)

(1− q2)...(1− q2k)
(x− x2)k

(1− x)(1− q2x)...(1− q2k−2x)

,

(4.28)

as required.

Using Mathematica to expand (4.28) we obtain the following polynomials

f0(q) = 1,

f1(q) = 1,

f2(q) = q2 + q3 + q4,

f3(q) = q3 + q4 + 3q5 + 2q6 + q7 + q8 + q9.
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4.2 Superdiagonal bargraphs

A bargraph is a colunm-convex polyomino where all the columns are bottom justi-

fied. Bargraphs are well know combinatorial objects, in this section we will study the

enumeration of bargraphs according to semi-perimeter. We consider a special case

of bargraphs called superdiagonal bargraphs, derived from skew paths in a natural

way. In each skew path γ from (0,0) to (2n,0) we can form a superdiagonal bargraph

B(γ) whose boundary is defined by the path γ itself, rotated anti-clockwise by π
4
,

and by the lines y = 0 and x = n (see Figure 4.5).

Figure 4.5: A skew Dyck path with corresponding superdiagonal bargraph

4.2.1 Enumeration of superdiagonal bargraphs according to semi-perimeter

In this Subsection we solve the problem of enumerating all superdiagonal bargraphs

according to their semi-perimeter. We easily see that the perimeter of a superdiag-

onal bargraph B(γ) is given by the skew path γ of semi-base n. Let u(γ), d(γ),

and l(γ) denote the numbers of up, down and left steps in γ respectively. Therefore

we have n = d(γ) and l(γ)+d(γ)=u(γ). Thus the perimeter of B(γ) is given by

l(γ)+d(γ)+u(γ)+2n=2(u(γ)+d(γ)).

We define S(x, y) to be the generating function for skew paths, where x marks the

number of up steps and y marks the number of down steps. The generating function

b(x) for super-diagonal bargraphs according to semi-perimeter, can be derived from

S(x, y) by setting x = y, so that b(x) = S(x, x). Using equation (1.4) for skew paths

we get the equation:

S(x, y) = 1 + xyS2(x, y) + x(S(x, y)− 1), (4.29)

from which we get
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S(x, y) =
−(x− 1)−

√
(x− 1)2 − 4(xy)(1− x)

2xy

=
1− x−

√
x2 − 2x+ 1− 4xy + 4x2y

2xy

=
1− x−

√
1− 2x+ x2 − 4xy + 4x2y

2xy
.

(4.30)

We let x = y in equations (4.29) and (4.30), this produces the generating function

b(x) as follows,

x2b(x)2 − (1− x)b(x) + 1− x = 0. (4.31)

From (4.29) we get

b(x) =
1− x−

√
1− 2x− 3x2 + 4x3

2x2
. (4.32)

We show that b(x) = C( x2

1−x), from the generating function of the Dyck paths

C(z) =
1−
√

1− 4z

2z
, we have that

C

(
x2

1− x

)
=

1−
√

1− 4x2

1−x

2 x2

1−x

=
1−

√
1−x−4x2

1−x
2x2

1−x

=
1− x−

√
(1− x− 4x2)(1− x)

2x2

b(x) =
1− x−

√
1− 2x− 3x2 + 4x3

2x2
.

(4.33)

Now we want [xn]b(x) = bn, we use b(x) = C( x2

1−x) and C(z) =
∑

k≥0Ckz
k.

bn = [xn]
∑
k≥0

Ck

(
x2

1− x

)k
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= [xn]
∑
k≥0

Ckx
2k
∑
j≥0

(
−k
j

)
(−1)jxj

= [xn]
∑
k≥1

Ck
∑
j≥0

(
k + j − 1

k − 1

)
xj+2k.

Let n = j + 2k then

bn =
n−1∑
k=1

(
n− k − 1

k − 1

)
Ck.

(4.34)

Now we conclude that the number of superdiagonal bargraphs with n columns are

counted by
∑n−1

k=1

(
n−k−1
k−1

)
Ck.
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Chapter 5

Moments of Generalized Motzkin

Paths

In this chapter we study the paper titled Moments of Generalized Motzkin Paths

by [20]. We consider the paths and their moments, the recurrences, enumerating

restricted paths, factorial moments, area, and second moments.

5.1 The paths and their moments

Let w be a non-negative integer. We consider the lattice paths in the Cartesian plane

with up steps u = (1, 1), down steps d = (1,−1), and horizontal steps q = (w, 0)

(where horizontal steps are a multiple of w). If we have w = 0, then only u steps

and d steps are allowed. The steps u and d are each weighted by assigning 1 in each

of them, the q step is weighted by assigning it with t. We have the t-weight of the

path P , denoted by |P |, which is the product of the weights of its steps and we have

the t-weight for the set of paths S, denoted by |S|, which is the sum of the t-weights

of the paths in the set S.

We define U(x, y) to be all unrestricted lattice paths using the allowed steps

starting from (0,0) and ending at (x, y). Let M(x, y) denote the generalized Motzkin

paths which is the set of paths in U(x, y) that starts at (0,0) and end on the x-axis.

In this chapter we are interested in the set of elevated paths, which is denoted by

E(x, y), we define E(x, y) to be those paths in M(x, y) that never touch the x-axis

except at (0,0) and at the end of the path. For an example, see Figure 5.1 and the

left column of Table 5.1 which shows the seven elevated Motzkin paths in E(6, 0)
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when w = 1.

Figure 5.1: The seven elevated Motzkin paths of E(6, 0)

Let fn(w) = |E(n, 0)| with n ≥ 2, and for all w, we define f0(w) = f1(w) = 0. If

we let t = 1, we find that there are three well known sequences from this notation,

we know that for w = 0, we only have the up u steps and down steps d. Then

we have the paths E(n, 0) which are called elevated Dyck paths the elevated Dyck

sequence is (fn(0))n≥2 = (1, 0, 1, 0, 2, 0, 5, 0, 14, ...), which is the sequence of (aerated)

Catalan numbers. If we let w = 1 and t = 1, then we get the sequence (fn(1))n≥2 =

(1, 1, 2, 4, 9, 21, 51, 127, 323, ..), which is the sequence of Motzkin numbers. Finaly

if we let w = 2 and t = 1, then we have the following sequence (fn(2))n≥2 =

(1, 0, 2, 0, 6, 0, 22, 0, 90, 0, 394, ...), which is called (aerated) large Schröder numbers.

Let the path P be the curve in E(n, 0). Let (j, P (j)) for j ∈ [0, 1, 2, ..., n], be

coordinates on the path P . Let the rth moment of the path P be
1

n− 1

∑n−1
j=1 p(j)

r.

We define the zeroth moment of P to be equal to 1. It is clear that
∑

0≤j≤n P (j)

is the area bounded by the path P and the x-axis.

Path Contribution Contribution Contribution Contribution

to f6(1) to g6(1) to Total Area to h6(1)

uquqdd t2 7t2/5 7t2 11t2/5

uuqdqd t2 7t2/5 7t2 11t2/5

uuqqdd t2 8t2/5 8t2 14t2/5

uudqqd t2 6t2/5 6t2 8t2/5

uqqudd t2 6t2/5 6t2 8t2/5

uqudqd t2 6t2/5 6t2 8t2/5

uqqqqd t4 5t4/5 5t4 5t4/5

Table 5.1: f6(1) = 6t2 + t4, a6(1) = 40t2 + 5t4, g6(1) = 8t2 + t4 and h6(1) = 12t2 + t4

For w ≥ 0 and n ≥ 2, we first define the sums fn(w), an(w), gn(w), hn(w) of the

t-weighted moments for the path set E(n, 0) as follows,
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fn(w) = |E(n, 0)| =
∑

P∈E(n,0)

|P |, (5.1)

an(w) =
∑

P∈E(n,0)

|P |
n−1∑
j=1

P (j), (5.2)

gn(w) =
∑

P∈E(n,0)

|P |
n− 1

n−1∑
j=1

P (j), (5.3)

hn(w) =
∑

P∈E(n,0)

|P |
n− 1

n−1∑
j=1

P (j)2. (5.4)

We now do an example for the case E(6, 0) using Table 5.1, where there are only

seven elevated Motzkin paths of E(6, 0) (see Figure 5.1).

Example 5.1

We start by finding f6(1). In Table 5.1 there is only one graph with 4 horizontal

steps q’s. The other 6 graphs all have 2 horizontal steps. Where each horizontal

step is marked by q.As each q is weighted by a t we have six t2’s and one t4 as shown

in Table 5.1.

Thus f6(1) =
∑

P∈E(6,0) |P | = t2 + t2 + t2 + t2 + t2 + t2 + t4 = 6t2 + t4.

For a6(1) we have

a6(1) =
∑

P∈E(6,0)

|P |
5∑
j=1

P (j).

Here we add all the unit heights in each graph in Figure 5.1. For example in the

graph uquqdd we have the heights

P (1) + P (2) + P (3) + P (4) + P (5) = 1 + 1 + 2 + 2 + 1 = 7.

But there are two q’s in uquqdd and thus we get t2. Hence uquqdd contribute 7t2

to a6(1). We do the same for all the other graphs. The results are shown in Table

5.1. For all seven graphs in Table 5.1 we get

a6(1) = 7t2 + 7t2 + 6t2 + 6t2 + 6t2 + 5t4 = 40t2 + 5t4.

We do the same for

g6(1) =
∑

P∈E(6,0)

|P |
5

5∑
j=1

P (j)

as for a6(1) except that we divide a6(1) by 5. Thus

104



g6(1) =
7t2 + 7t2 + 6t2 + 6t2 + 6t2 + 5t4

5
=

40t2 + 5t4

5
= 8t2 + t4.

Now for h6(1), using the graph uquqdd and from the formula

h6(1) =
∑

P∈E(6,0)

|P |
5

5∑
j=1

P (j)2. (5.5)

We get

t2(P (1)2 + P (2)2 + P (3)2 + P (4)2 + P (5)2)

5

=
t2(1 + 1 + 4 + 4 + 1)

5

=
11t2

5
.

Thus uquqdd contribute
11t2

5
to h6(1). Now adding the results from all the seven

graphs we get h6(1) =
11t2 + 11t2 + 14t2 + 8t2 + 8t2 + 8t2 + 5t4

5
= 12t2 + t4.

If we let t = 1 from the above discusion we obtain the following results,

(1) there are only 7 (f6(1) = 7) elevated Motzkin paths with n = 6,

(2) the total area for all elevated Motzkin paths with n = 6 is 45 (a6(1) = 45),

(3) the total average area for all elevated Motzkin paths with n = 6 is (g6(1) = 9),

and

(4) the total second moment for all elevated Motzkin paths with n = 6 is 2.2

(h6(1) =
11

5
).

5.2 The recurrences

Let w ≥ 0. We now state three recurrences for the sequences (fn(w))n≥2, (gn(w))n≥2
and (hn(w))n≥2 which we are going to prove in Sections 5.3 and 5.5,

nfn = 4(n− 3)fn−2 + (2n− 3w)tfn−w − (n− 3w)t2fn−2w. (5.6)

(n− 1)gn = 4(n− 3)gn−2 + (2n− 2w − 2)tgn−w − (n− 2w − 1)t2gn−2w. (5.7)

(n− 2)hn = 4(n− 3)hn−2 + (2n− w − 4)thn−w − (n− w − 2)t2hn−2w. (5.8)
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Proposition 5.2.1 [20] In the above three recurrences, let w = 0 and t = 0 then

the three sequences (fn(0))n≥2, (gn(0))n≥2 and (hn(0))n≥2 produce the following three

elevated Dyck paths recurrences ;

nfn(0) = 4(n− 3)fn−2(0), (5.9)

(n− 1)gn(0) = 4(n− 3)gn−2(0), (5.10)

(n− 2)hn(0) = 4(n− 3)hn−2(0), (5.11)

for any n ≥ 3, given the initial conditions fn(0) = gn(0) = hn(0) = 0 for all

n < 2 and f2(0) = g2(0) = h2(0) = 1.

From the above three equations (5.9), (5.10) and (5.11) we set n = 2k + 2 and

get

Proposition 5.2.2[20]

f2k+2(0) =
1

k + 1

(
2k

k

)
= Ck,

which is all the number of elevated Dyck paths with k + 1 up steps,

g2k+2(0) =
4k

2k + 1
,

which is the total average area for all elevated Dyck paths with k + 1 up steps, and

h2k+2(0) =

(
2k

k

)
,

which is the total second moment for all elevated Dyck paths with k + 1 up steps.

Proof of Proposition 5.2.2

We start with f2k+2(0) = 1
k+1

(
2k
k

)
, taking into account that f2(0) = 1.

From equation (5.9) we have

nfn(0) = 4(n− 3)fn−2(0)

= 4(n− 3)(4n− 5)
fn−4(0)

n− 2

=
42(n− 3)(n− 5)

n− 2
4(n− 7)

fn−6(0)

n− 4
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=
4

n
2
−1(n− 3)(n− 5)(n− 7)...(3)(1)f2

(n− 2)(n− 4)...(6)(4)

=
2× 4

n
2
−1(n− 2)!

[(n− 2)(n− 4)...(6)(4)(2)]2
.

(5.12)

Now for n = 2k + 2

fn(0) =
2× 4

n
2
−1(n− 2)!

n[(n− 2)(n− 4)...(6)(4)(2)]2

f2k+2(0) =
2× 4k(2k)!

(2k + 2)[(2k)(2k − 2)...(6)(4)(2)]2

=
2× 4k(2k)!

2(k + 1)22k(k!)2

=
1

k + 1

(
2k

k

)
.

(5.13)

Secondly we consider g2k+2(0) = 4k

2k+1
, taking into account that g2(0) = 1.

From equation (5.10) we have

(n− 1)gn(0) = 4(n− 3)gn−2(0)

= 4(n− 3)4(n− 5)
gn−4(0)

n− 3

=
42(n− 3)(n− 5)

n− 3
4(n− 7)

gn−6(0)

n− 5

=
4

n
2
−1(n− 3)(n− 5)(n− 7)...(3)(1)g2(0)

(n− 3)(n− 5)...(5)(3)

= 4
n
2
−1.

(5.14)

Now for n = 2k + 2

gn(0) =
4

n
2
−1

n− 1

g2k+2(0) =
4k+1−1

2k + 1

=
4k

2k + 1
.
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(5.15)

Lastly we consider h2k+2(0) =
(
2k
k

)
, taking into account that h2(0) = 1.

From equation (5.11) we have

(n− 2)hn(0) = 4(n− 3)hn−2(0)

= 4(n− 3)4(n− 5)
hn−4(0)

n− 4

=
4

n
2
−1(n− 3)(n− 5)(n− 7)...(3)(1)h2(0)

(n− 4)(n− 6)...(4)(2)
.

(5.16)

Now for n = 2k + 2

hn(0) =
4

n
2
−1(n− 2)!

[(n− 2)(n− 4)...(6)(4)(2)]2

h2k+2(0) =
4k(2k)!

[(2k)(2k − 2)(2k − 4)...(6)(4)(2)]2

=
4k(2k)!

22k(k!)2

=

(
2k

k

)
(5.17)

as required.

From equations (5.2), (5.3) and (5.15) we get the total area for all elevated Dyck

paths with k + 1 up steps to be a2k+2(0) = 4k see [21].

We illustrate the above discusion with the following two examples.

Example 5.2 We use the unit heights to calculate the areas of the Dyck paths

as in Example 5.1.

(1) Figure 5.2 shows that for k = 0 (with one up step) there is exactly one elevated

Dyck path (f2(0) = 1
0+1

(
0
0

)
= 1) with area equal to 1 (a2(0) = 40 = 1)(there is 1

unit height on the graph) satisfying the initial condition f2(0) = g2(0) = h2(0) = 1,

(2) for k = 1 (with two up steps) there is exactly one elevated Dyck path

(f4(0) = 1
1+1

(
2
1

)
= 1) with area equal to 4 (a4(0) = 4)(there are 4 unit heights on

the graph), and
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(3) for k = 2 (with three up steps) there are only two elevated Dyck paths

(f6(0) = 1
2+1

(
4
2

)
= 2) with area equal to 16 (a6(0) = 42)(there are 16 in total unit

heights on the two graphs).

Figure 5.2: The illustation of elevated Dyck paths using unit heights.

Example 5.3 Now from Chapter four we used unit triangles to count the areas

of the Dyck paths, using these unit triangles from Figure 5.3 we get the same results

as on the Example 5.2 as follows,

(1) For k = 0 (with one up step) there is exactly one elevated Dyck path

(f2(0) = 1
0+1

(
0
0

)
= 1) with area equal to 1 (a2(0) = 40)(there is 1 unit triangle on

the graph) satisfying the initial condition f2(0) = g2(0) = h2(0) = 1,

(2) for k = 1 (with two up steps) there is exactly one elevated Dyck path

(f4(0) = 1
1+1

(
2
1

)
= 1) with area equal to 4 (a4(0) = 4)(there are 4 unit triangles

on the graph), and

(3) for k = 2 (with three up steps) there are only two elevated Dyck paths

(f6(0) = 1
2+1

(
4
2

)
= 2) with area equal to 16 (a6(0) = 42)(there are 16 in total unit

triangles on the two graphs).

Figure 5.3: The illustation of elevated Dyck paths using unit triangles.
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We conclude by saying that these two methods give us the same set of solutions

when we use different parameters (unit heights and triangles) to enumerate the

elevated Dyck paths, and their areas.

5.3 Enumerating restricted paths

In this section we will derive the restricted paths recurrence

nfn = 4(n− 3)fn−2 + (2n− 3w)tfn−w − (n− 3w)t2fn−2w (5.18)

from the previous Section.

Let M(z) := M =
∑

n≥0 |M(n, 0)|zn be the generating function for the Motzkin

paths.

We note that M(n, 0) can be an empty path or it can start with an q-step or it

can leave the x-axis right from the beginning and return to the x-axis for the first

time.

Let L =
⋃∞
n=0M(n, 0). Then we have the decomposition shown in Figure 5.4.

Figure 5.4: The first return decomposition of the Motzkin path

We now form the equation from the first return decomposition

L =
⋃∞
n=0M(n, 0),

L = {ε} ∪ qL ∪ uLdL. (5.19)

We now assign z to mark each of the horizontal, up, and down units steps. t weight

each horizontal H = (w, 0)-step, and 1 weight each up and down steps. We have

M(z) = 1 + tzwM(z) + z2M(z)2. (5.20)

Solving the above equation for M(z) by using the quadratic formula (in 5.21 we

consider the negative square root since we get M(0+) = limz↓0M(z) = 0, and ignore

the positive sign since it produces M(0) = 2
0

=∞) we obtain

M(z) =
1− tzw −

√
1− 4z2 − 2tzw + t2z2w

2z2
. (5.21)

110



From the previous section we know that fn(0) = 0 for all n < 2. Consider the

generating function F (z) =
∑

n≥2 fnz
n. Then from fn+2 = |M(n, 0)|. Now

F (z) =
1− tzw −

√
1− 4z2 − 2tzw + t2z2w

2
, (5.22)

and we get Ψ(z) = F (z)− 1− tzw

2
. Then

Ψ(z) =
−
√

1− 4z2 − 2tzw + t2z2w

2
. (5.23)

We note that the coefficient of zn in the series expansion of both Ψ(z) and F (z) is

the same. Therefore they should have the same coefficients fn as F (z), unless n = 0

or n = w.

Taking logarithms and differentiating we have

ln Ψ(z) = ln

(
−
√

1− 4z2 − 2tzw + t2z2w

2

)
then we differentiate as follows:

d

dz
ln Ψ(z) =

d

dz
ln

(
−
√

1− 4z2 − 2tzw + t2z2w

2

)
Ψ′(z)

Ψ(z)
=
−8z − 2wtzw−1 + 2wt2z2w−1

2(1− 4z2 − 2tzw + t2z2w)
.

(1− 4z2 − 2tzw + t2z2w)Ψ′(z) + (4z + wtzw−1 − wt2z2w−1)Ψ(z) = 0.

(5.24)

expressing (5.24) as powers of z we obtain (5.25).

(1− 4z2 − 2tzw + t2z2w)
∑
n≥2

nfnz
n−1 + (4z + wtzw−1 − wt2z2w−1)

∑
n≥2

fnz
n = 0

(5.25)

We multiply both sides of (5.25) by z and extract coefficients of zn

(1− 4z2 − 2tzw + t2z2w)
∑
n≥2

nfnz
n + (4z + wtzw−1 − wt2z2w−1)

∑
n≥2

fnz
n+1 = 0

nfn − 4(n− 2)fn−2 − 2t(n− w)fn−w + t2(n− 2w)fn−2w + 4fn−2

+ wtfn−w − wt2fn−2w = 0
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nfn = 4(n− 3)fn−2 + (2n− 3w)tfn−w − (n− 3w)t2fn−2w.

(5.26)

as required by the first recurrence (5.18).

5.4 Factorial moments

In this Section we introduce factorial moments. This will help us to derive the last

two recurrences namely (5.27) and (5.28),

(n− 1)gn = 4(n− 3)gn−2 + (2n− 2w − 2)tgn−w − (n− 2w − 1)t2gn−2w (5.27)

and

(n− 2)hn = 4(n− 3)hn−2 + (2n− w − 4)thn−w − (n− w − 2)t2hn−2w. (5.28)

We consider the following falling factorial moment,

µ(n, r) =
∑

P∈E(n,0)

|P |
∑

0<j<n

(P (j))r. (5.29)

Here (n)r = n(n− 1)r−1, and (n)0 = 1

We first prove three lemmas that we will need in order to prove Proposition 5.4.3.

Lemma 5.4.1 [20]
z2M2

(1− z2M2)2
=

z2

(1− tzw)2 − 4z2

Proof

From the generating function M(z) = 1 + tzwM(z) + z2M(z)2, we get

(1− tzw)M(z) = 1 + z2M(z)2

(1− tzw)M(z)− 2 = −1 + z2M(z)2

((1− tzw)M(z)− 2)2 = (1− z2M(z)2)2,

hence we have

z2M2

(1− z2M2)2
=

z2M2

((1− tzw)M − 2)2

=
z2M2

(1− tzw)2M2 + 4− 4(1− tzw)M

=
z2M2

(1− tzw)2M2 + 4− 4(1 + z2M(z)2)
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=
z2M2

(1− tzw)2M2 − 4z2M2

=
z2

(1− tzw)2 − 4z2
,

(5.30)

as required.

Lemma 5.4.2 [20]
z2M2

1− z2M2
=

(1− tzw −
√

(1− tzw)2 − 4z2)

2
√

(1− tzw)2 − 4z2
.

Proof

From the equation M(z) =
1− tzw −

√
1− 4z2 − 2tzw + t2z2w

2z2
we derive the

following three equations.

Let

4 = 1− 4z2 − 2tzw + t2z2w = (1− tzw)2 − 4z2. (5.31)

This gives

2z2M(z) = 1− tzw −
√
4. (5.32)

Therefore

z2M2

1− z2M2
=

4z2(z2M2)

4z2(1− z2M2)

=
(2z2M)2

4z2 − (2z2M)2

=
(1− tzw −

√
4)2

4z2 − (1− tzw −
√
4)2

=
(1− tzw −

√
4)2

4z2 − (1− tzw)2 + 2(1− tzw)
√
4−4

=
(1− tzw −

√
4)2

−4+ 2(1− tzw)
√
4−4

=
(1− tzw −

√
4)2

−24+ 2(1− tzw)
√
4

=
(1− tzw −

√
4)2

2
√
4(1− tzw −

√
4)

=
(1− tzw −

√
4)

2
√
4

=
(1− tzw −

√
(1− tzw)2 − 4z2)

2
√

(1− tzw)2 − 4z2
,
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(5.33)

as required.

We define an Iverson I(B), where I(B) = 1 if B is a true and I(B) = 0 if B is

false. Let (i, k) be a point at the end of the path P or let (i, k) be a point inside the

horizontal step of the path P . This horizontal step will start from (j, k) and stops

at (j+w, k). Let Q be any path in E(j, k). Let R and R’ be two paths such that R

starts from (j, k) and stops at (n, 0) and R’ starts from (j+w, k) and stops at (n, 0):

By symmetry, R can be matched with a path in E(n− j, k). Let m(j, k) = |E(j, k)|
then m(n− j, k) = |E(n− j, k)|.

We now use Lemma 5.4.1, Lemma 5.4.2, µ(n, r) and the above definitions to

prove Proposition 5.4.3.

Proposition 5.4.3 [20] Let r be a positive integer then

∑
n≥2

µ(n, r)zn =
r!z2zn(1 + (w − 1)tzw)

(
1− tzw −

√
(1− tzw)2 − 4z2

)r−1
2r−1(

√
(1− tzw)2 − 4z2)r+1

. (5.34)

Proof

From equation (5.29) with n ≥ 2, we have

µ(n, r) =
∑

P∈E(n,0)

|P |
∑

0<j<n

(P (j))r

=
∑
P

∑
k>0

∑
0<j<n

(k)r|P |B(P (j) = k)

=
∑
k>0

∑
0<j<n

∑
P

(k)r|P |B(P (j) = k)

=
∑
k>0

(k)r
∑

0<j<n

∑
P

|P |(B((j, k) is the end of P ) +B((j, k)point inside of P )

=
∑
k>0

(k)r
∑
i>0

[
∑
Q,R

|Q||R|+
∑
Q,R′

(w − 1)t|Q||R′|]

=
∑
k

(k)r[
∑
i

m(i, k)m(n− i, k) + (w − 1)t
∑
i

m(i, k)m(n− i− w, k)].

(5.35)

Multiplying µ(n, r) by zn and summing up n from two to infinity we get,

∑
n≥2

µ(n, r)zn

114



=
∑
k

(k)r[
∑
n

∑
i

m(i, k)m(n− i, k)zn + (w − 1)t
∑
n

∑
i

m(i, k)m(n− i− w, k)zn]

=
∑
k

(k)r[
∑
n

∑
i

m(i, k)m(n− i, k)zn + (w − 1)tzw
∑
n

∑
i

m(i, k)m(n− i− w, k)zn−w]∗

= [1 + (w − 1)tzw]
∑
k

(k)r(zM)2k∗∗ From * to ** see comment at end of the proof.

By the Binomial Theorem

r!yr

(1− y)r+1
=
∑
k≥r

(k)ry
k

From ** we get [1 + (w − 1)tzw]
r!(z2M2)r

(1− z2M2)r+1

= r![1 + (w − 1)tzw]
z2M2

(1− z2M2)2
(z2M2)r−1

(1− z2M2)r−1
.R

Then by Lemmas 5.4.1 and 5.4.2
z2M2

(1− z2M2)2
=

z2

(1− tzw)2 − 4z2

and
z2M2

1− z2M2
=

(1− tzw −
√

(1− tzw)2 − 4z2)

2
√

(1− tzw)2 − 4z2
.

From R we get

r![1 + (w − 1)tzw]
z2

(1− tzw)2 − 4z2
(1− tzw −

√
(1− tzw)2 − 4z2)r−1

(2
√

(1− tzw)2 − 4z2)r−1

=
r!z2(1 + (w − 1)tzw)(1− tzw −

√
(1− tzw)2 − 4z2)r−1

2r−1(
√

(1− tzw)2 − 4z2)r+1
,

(5.36)

as required.

To establish this string we first note that each path in E(j, k) must depart from

each line y = d, for integer d, 0 ≤ d < k, for a last time, hence a simple convolution

argument shows that the generating function for m(j, k) (see Figure 5.5) satisfies∑
j

m(j, k)zj = (zM(z))k.

5.5 Area and second moments

In this Section we prove the total average area recurrence formula,

(n− 1)gn = 4(n− 3)gn−2 + (2n− 2w − 2)tgn−w − (n− 2w − 1)t2gn−2w, (5.37)
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Figure 5.5: This Figure shows the k Motzkin paths departing from line y = d

and the total second moment recurrence formula,

(n− 2)hn = 4(n− 3)hn−2 + (2n− w − 4)thn−w − (n− w − 2)t2hn−2w. (5.38)

5.5.1 The recurrence (5.37)

We start by proving the total average area recurrence formula

For r = 1 in µ(n, r) =
∑

P∈E(n,0) |P |
∑

0<j<n(P (j))r we get

µ(n, 1) =
∑

P∈E(n,0)

|P |
n−1∑
j=1

P (j).

We see that from equation (5.2) an(w) =
∑

P∈E(n,0) |P |
∑n−1

j=1 P (j) we get

µ(n, 1) = an(w) = an therefore for r = 1 in

∑
n≥2

µ(n, 1)zn =
z2(1 + (w − 1)tzw)(1− tzw −

√
(1− tzw)2 − 4z2)1−1

21−1(
√

(1− tzw)2 − 4z2)1+1
,

we have

∑
n≥2

anz
n =

z2(1 + (w − 1)tzw)

(1− tzw)2 − 4z2
. (5.39)

We now prove the recurrence (5.37) by using the two formulas from equations (5.2)

and (5.3),

an(w) =
∑

P∈E(n,0)

|P |
n−1∑
j=1

P (j),
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and

gn(w) =
∑

P∈E(n,0)

|P |
n− 1

n−1∑
j=1

P (j).

Relating the two equations we get

(n− 1)gn(w) = an(w)∑
n≥2

(n− 1)gn(w)zn =
∑
n≥2

an(w)zn.

(5.40)

We proceed as follows∑
n≥2

anz
n =

z2(1 + (w − 1)tzw)

(1− tzw)2 − 4z2

cross multiplying we get

((1− tzw)2 − 4z2)
∑
n≥2

anz
n = z2(1 + (w − 1)tzw)

substituting an = (n− 1)gn we get

((1− tzw)2 − 4z2)
∑
n≥2

(n− 1)gnz
n = z2(1 + (w − 1)tzw).

(5.41)

Now we extract the coefficients of zn as follows,

[zn](1− 4z2 − 2tzw + t2z2w)
∑
n≥2

(n− 1)gnz
n = [zn](z2(1 + (w − 1)tzw))

(n− 1)gn − 4(n− 3)gn−2 − 2t(n− w − 1)gn−w + t2(n− 2w − 1)gn−2w = 0

(n− 1)gn = 4(n− 3)gn−2 + (2n− 2w − 2)tgn−w − (n− 2w − 1)t2gn−2w,

(5.42)

as required in equation (5.37).

5.5.2 The recurrence (5.38)

We now derive the total second moment recurrence formula (5.38)
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We use the total second moment formula (5.4) hn(w) =
∑

P∈E(n,0)

|P |
n− 1

∑n−1
j=1 P (j)2.

Let hn(w) := hn

We consider the following falling factorial moment

µ(n, r) =
∑

P∈E(n,0)

|P |
∑

0<j<n

(P (j))r.

Here (n)r = n(n− 1)r−1, and (n)0 = 1.

Now let H(z) =
∑

n≥2 hnz
n be the generating function for the second moment

for hn. Then

H(z) =
∑
n≥2

hnz
n

=
∑
n≥2

1

n− 1

∑
P∈E(n,0)

|P |
n−1∑
j=1

P (j)2zn.

Now we use the following factorial moments

(P (j))1 + (P (j))2 = P (j) + P (j)(P (j)− 1) = P (j)2

to get∑
n≥2

∑
P∈E(n,0)

|P |
n− 1

n−1∑
j=1

((P (j))1 + (P (j))2)z
n

=
∑
n≥2

1

n− 1

 ∑
P∈E(n,0)

|P |
n−1∑
j=1

(P (j))1 +
∑

P∈E(n,0)

|P |
n−1∑
j=1

(P (j))2

 zn.

We know that

µ(n, 1) =
∑

P∈E(n,0)

|P |
∑

0<j<n

(P (j))1 and µ(n, 2) =
∑

P∈E(n,0)

|P |
∑

0<j<n

(P (j))2.

Therefore we get

H(z) =
∑
n≥2

1

n− 1
(µ(n, 1) + µ(n, 2))zn.

(5.43)

In Proposition 5.4.3 let r = 2 and r = 1. Then∑
n≥2

1

n− 1
µ(n, 2)zn =

∑
n≥2

1

n− 1

2!z2(1 + (w − 1)tzw)(1− tzw −
√

(1− tzw)2 − 4z2)zn

2(
√

(1− tzw)2 − 4z2)3
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and ∑
n≥2

1

n− 1
µ(n, 1)zn =

∑
n≥2

1

n− 1

z2(1 + (w − 1)tzw)zn

(1− tzw)2 − 4z2
(

√
(1− tzw)2 − 4z2√
(1− tzw)2 − 4z2

)

=
∑
n≥2

1

n− 1

z2(1 + (w − 1)tzw)zn(
√

(1− tzw)2 − 4z2)

(
√

(1− tzw)2 − 4z2)3

respectively.

We have

H(z) =
∑
n≥2

1

n− 1
(µ(n, 1) + µ(n, 2))zn

= z
∑
n≥2

1

n− 1
(µ(n, 1) + µ(n, 2))zn−1

= z

∫ ∑
n≥2

(µ(n, 1) + µ(n, 2))zn−2dz

= z

∫ ∑
n≥2

z2(1 + (w − 1)tzw)(1− tzw)√
((1− tzw)2 − 4z2)3

zn−2dz

from paper [20] it is stated that we get H(z) =
z2√

((1− tzw)2 − 4z2)
.

(5.44)

Let Ψ(z) =
∑

n≥0 hn+2z
n =

H(z)

z2
=

1√
((1− tzw)2 − 4z2)

and

ln(Ψ(z)) = −1
2

ln((1− tzw)2 − 4z2).

Now we differentiate ln(Ψ(z)) = −1
2

ln((1− tzw)2−4z2) with respect to z and get

Ψ′(z)

Ψ(z)
=

4z + twzw−1 − t2wz2w−1

(1− tzw)2 − 4z2

((1− tzw)2 − 4z2)Ψ′(z)− (4z + twzw−1 − t2wz2w−1)Ψ(z) = 0

((1− tzw)2 − 4z2)
∑
n≥1

nhn+2z
n−1 − (4z + twzw−1 − t2wz2w−1)

∑
n≥0

hn+2z
n = 0
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[zn−2](1− 4z2 − 2tzw + t2z2w)
∑
n≥0

nhn+2z
n − [zn−2](4z + twzw−1 − t2wz2w−1)

∑
n≥0

hn+2z
n+1 = 0

(n− 2)hn − 4(n− 4)hn−2 − 2t(n− w − 2)hn−w + t2(n− 2w − 2)hn−2w − 4hn−2 − twhn−w
+ t2whn−2w = 0

(n− 2)hn = 4(n− 3)hn−2 + (2n− w − 4)thn−w − (n− w − 2)t2hn−2w,

(5.45)

as required in (5.38).

120



Bibliography

[1] C. Banderier, B. Gittenberger, enumeration and asymptotics for the area, Dis-

crete Math. (2006) 345-355

[2] D. Callan, Two bijections for Dyck path parameters, preprint, 4pp, (2004).

{://www.arxiv.org/abs/math.CO/0406381}.

[3] R. Chapman, Moments of Dyck paths, Discrete Math, 204 (1999), 113-117.

[4] E. Deutsch, A bijection on Dyck paths and its consequences, Discrete Math.

179 (1998) 253-256.

[5] E. Deutsch, Dyck path emumeration, Discrete Math. 204, (1999), 167-202.

[6] E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, Journal of Statistical

Planning and Inference, 140, (2010), 2191-2203.

[7] E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, area, and superdiagonal

bargraphs, 140, (2010), 1550-1562.

[8] J. Furlinger, J. Hofbauer q-Catalan numbers, J.Comb. Theory Ser. 40 (1985)

248-264

[9] G. Kreweras, Aires des chemins surdiagonaux a tapes obliques permises. Cahier

du B.U.R.O. 24 (1976) 9-18

[10] T. Mansour, Counting peaks at height k in a Dyck path, J. Integer Seq. 5 (2002)

Article 02.1.1.

[11] T. Mansour, Statistics on Dyck paths, J. Integer Seq. 9 (2006) Article 06.1.5.

[12] D. Merlini, R. Sprugnoli, and M. C. Verri, The area determined by underdiago-

nal lattice paths, Proceedings of CAAP’96, Lecture Notes in Computer Science

1059 (1996) 59-71.

121



[13] D. Merlini, R. Sprungoli, M. Verri, Some statistics on Dyck paths, J. Statist.

Plann. Inference 101 (2002) 211-227.

[14] E.J.J Van Rensgurg, Statistical mechanics of directed models of polymers in

the square lattice.J.Phys.A Math.Gen. 36 (2003) R11-R61.

[15] A. Sapounakis, I. Tasoulas, P. Tsikouras, Dyck path statistics, Proceedings of

Ninth WSEAS Conference MATH06, Istanbul, Turkey, (2006).

[16] A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths,

Discrete Math, 307 (2007), 2909-2924.

[17] A. Sapounakis, P. Tsikouras, Counting peaks and valleys in k-colored Motzkin

paths, Electron. J. Combin. 12 (2005), R16.

[18] N.J.A Sloane, Online Encyclopedia of Integer Sequences, published electroni-

cally at {http://www.research.att.com/njas/sequences/}.

[19] Y. Sun, The statistic ”number of udu’s” in Dyck paths, Discrete Math. 287

(2004), 177-186.

[20] R. Sulanke, Moments of Generalized Motzkin Paths, Article 00.1.1 3 (2000).

[21] W.J Woan, L. Shapiro, and D. G. Rogers, The Catalan numbers, the Lebesgue

integral and 4n−2, Am. Math. Monthly, 104, (1997) 926-931.

122


