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This body of work examines the plausibility of applying partial differential equations and

time-fractional partial differential equations to images. The standard diffusion equation

is coupled with a nonlinear cubic source term of the Fitzhugh-Nagumo type to obtain a

model with diffusive properties and a binarizing effect due to the source term. We ex-

amine the effects of applying this model to a class of images known as document images;
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tion on general purpose graphical processing units. The model is extended to include
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ics brought about by this generalization. We apply a semi-discrete method derived by

hybridizing the Laplace transform and two discretization methods: finite-differences and

Chebyshev collocation. These hybrid techniques are coupled with a quasi-linearization

process to allow for the application of the Laplace transform, a linear operator, to a

nonlinear equation of fractional order in the temporal domain. A thorough analysis

of these methods is provided giving rise to conditions for solvability. The merits and

demerits of the methods are discussed indicating the appropriateness of each method.
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Chapter 1

Introduction

“Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable

subhuman who has learned to wear shoes, bathe and not make messes in the house.”

Robert Heinlein

This thesis approaches image processing via an investigation of partial differential equa-

tions. Many researchers have presented algorithmic approaches to image processing

[1–4], defining techniques based on a set of rules with great success. Physically derived

methods also hold a place in the field varying from imposing a diffusion equation that

prefers to diffuse along a sharp gradient rather than across it [5] to reconstructing a

degraded image by treating the image gradient field as a fluid and allowing the fluid to

“fill-in” once lost information [6]. Ebihara et. al. [7] for instance implement a reaction-

diffusion model as a method for image segmentation and edge detection.

We follow the approach of applying physically meaningful models to an input image

by tailoring a model that exhibits desirable traits. The Fithugh-Nagumo equation [8, 9]

originally used to describe the propagation of an impulse exhibits thresholding proper-

ties. Interestingly this source term exhibits a binarizing property when applied to an

image. Diffusive processes are typically destructive, however coupling a diffusion pro-

cess with the aforementioned source-term results in a process which thresholds an input

image while smoothing noise and preserving details present in the given data.

Given our approach to the processing of an image we need to also consider the meaning

of concepts such as differentiation and integration within this context. The concept of a

derivative is perhaps one of the most fundamental in the field of mathematical sciences.

This concept has physical meaning and interpretation is direct and apparent; a rate

1



Chapter 1. Introduction 2

of change, the relationship of distance moved to velocity to acceleration. Seemingly a

completely different concept is integration, given the physical meaning of the area under

a curve. Obviously there are many different geometric and physical interpretations for

the concept of differentiation and integration, however that discussion is not relevant

for our current work. Rather we consider the slightly more uncommon concept of frac-

tional differentiation and fractional integration. The idea of fractional differentiation is

attributed first to a series of letters written between Leibnitz and L’Hopital in 1695, in

which L’Hopital asks the pertinent question when referring to dny
dxn ≡ D

ny:“What if n =
1
2?”, to which Leibnitz wrote prophetically, “...Thus it follows that d

1
2x will be equal to

x 2
√

dx : x, an apparent paradox, from which one day useful consequences will be drawn.”

[10, 11] A simple enough question to ask is does the operator D
1
2 exist, such that when

applied twice we get (D
1
2 )2 = D? The answer to this is yes. Another question that is

concisely answered is, given Dn what happens if n is negative? The operator described

is nothing other than a fractional integral similar to the duality of integer differentiation

and integration, where integration is the inverse operation to differentiation. This leads

us immediately to the term ‘differintegration’ or ‘differintegral’, as dubbed by Oldham

and Spanier in [11], notated by Dn where n is no longer constrained to be a positive

integer.

There are three main approaches to fractional derivatives; the Riemann-Liouville deriva-

tive, the Caputo derivative and more recently the modified Riemann-Liouville derivative

introduced by Jumarie in [12]. Jumarie substantiates the need for this derivative as a

means for overcoming some shortfalls of the other two approaches and it’s consistency

with integer order derivatives. For example in order to compute the first order Ca-

puto derivative one must already know the second order derivative [13]. The Riemann-

Liouville derivative also exhibits inconsistencies such as the derivative of a constant is

not 0. Jumarie has made extensive use of his modified Riemann-Louiville derivative and

accompanying generalized Taylor Series for investigations of Brownian motion and Pois-

son processes to a fractional order, for solving stochastic differential equations governed

by fractional Brownian motion, for solving fractional partial differential equations and

developing a Fourier Transform of fractional order [12–17]. With this in mind the focus

of our work is based primarily on the Caputo derivative due to its popularity amongst

researchers particularly in the field of partial differential equations. Moreover the use

of the Caputo derivative allows one to formulate problems with integer order boundary

conditions where the Riemann-Liouville derivative requires fractional order boundary

conditions which are difficult to interpret physically. The Caputo derivative also enjoys

an elegant transformation by the Laplace transform making it an appealing choice to

work with. These derivatives are discussed further in Chapter 2.
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By generalizing the order of differentiation we may begin looking at fractional order

partial differential equations and their applications. Hilfer collates a series of research

papers on the application of fractional calculus in physics in [18]. For example diffu-

sion in a disordered media can be interpreted as a fractional diffusion process. Many

researches have interpreted anomalous diffusion via Brownian motion which is simpli-

fied to the ordinary diffusion equation on a macro scale. Havlin [19] says in uniform

Euclidean space, the mean square displacement (MSD) of a random walker, 〈R2(t)〉 is

proportional to time for any number of spatial dimensions (Fick’s law). However, Havlin

goes on to mention that in disordered systems this law is not valid and the diffusion

process becomes anomalous. As such we find that

〈R2(t)〉 ∼ tα (1.1)

where for α < 1 we have sub-diffusion, α = 1 is the case of regular diffusion and α > 1

implies super-diffusion. This is another meaningful interpretation of fractional diffusion:

diffusion in a disordered media.

Chen and Holm [20] briefly allude to the physical significance of sub- and super-diffusion.

Compounding the physical meaning of diffusion equations, Cattaneo’s research [21] de-

rives a more accurate model for diffusion. One explanation of sub-diffusion is a medium

exhibiting diffusive memory, that is a medium that diffuses differently based on previ-

ous events. This may allow a more intelligent diffusion based denoising algorithm when

compared to the usual local linear diffusion, which is why considering the fractional

Fitzhugh-Nagumo equation is of interest.

The meaning and importance of fractional partial differential equations is wide rang-

ing. Compte and Metzler [22] for example give derivations of other fractional partial

differential equations, the generalized Cattaneo equations, which are used in the de-

scription of anomalous transport. Metzler and Klafter [23, 24] give excellent reviews on

developments within the field of anomalous transport with focus on the importance of

fractionality. Cattaneo [21] suggested that the classical heat equation is unphysical for

short time diffusion processes because of the fact that, according to the heat equation,

changes in temperature are instantly felt globally in the diffusive media, rather than

locally. This implies an infinite velocity of propagation. To remedy this apparent flaw

Cattaneo suggested introducing a wave term with small coefficient to model a finite

velocity of propagation. Compte and Metzler [22] also mention that some fractional

Cattaneo equations reproduce features that can be derived from other schemes such as

the continuous time random walk (CTRW) picture or a non-local flux concept. This

idea of non-locality is reiterated throughout the literature. In deriving the generalized
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Cattaneo equations, Compte and Metzler [22] also mention that when pertaining to

diffusion theory a time-fractional term would imply a non-conservation of heat or par-

ticle number. Several authors have investigated the use of fractional-order equations in

mathematical modelling [25–30]. Bonilla et. al. [31] suggest the use of fractional-order

models as a replacement for nonlinear models.

Chen and Holm [20] give a physical interpretation of the fractional diffusion-wave equa-

tion, attributing the fractionality of the equation to taking account of non-conservative

systems and potential non-local and memory effects on energy dissipations of which

medical ultrasonic wave propagation is an example. Fractional Differential Equations

by Igor Podlubny [32] reiterates this interpretation. Podlubny [33] echoes the sentiment

of non-local and non-conservative effects. Chen and Holm [20] go on to show that with

regards to the application of the diffusion-wave equation, sub-diffusion does not agree

with the power law except in physically rare circumstances. Furthermore they go on to

say that super-diffusion is physically meaningful, for example the diffusion of cellular

materials out of a cell aided by an active process.

In addition to his book [32], Podlubny published [33] which develops a new geometric

and physical interpretation of fractional differintegration. Podlubny gives the left-sided

Riemann-Liouville fractional integral, in the following form:

0I
α
t =

∫ t

0
f(τ)dgt(τ) (1.2)

where gt(τ) is given the physical meaning of mapping perceived time to absolute time.

This follows from an in depth discussion in support of this interpretation. The example

that Podlubny gives is based on the assumption that absolute time is not homogenous,

and so if one were to integrate the velocity of an object with regards to absolute time, we

can find the absolute distance covered, since the fractional integral is essentially integrat-

ing over the mapping of perceived (local) time to absolute (cosmic) time. Meerschaert

and Tadjeran [34] give the following physical meaning to the space fractional derivative:

Fractional space derivatives are used to model anomalous diffusion or dispersion, where a

particle plume spreads at a rate inconsistent with the classical Brownian motion model.

However, this work focuses on fractional ordered derivatives in the temporal domain and

not the spatial domains.

Within the context of this thesis we require computational methods for the solution

of fractional partial differential equations. Acedo and Yuste [35] present an explicit-

finite difference method for fractional diffusion equations as well as giving a new von

Neumann-Type stability analysis. The method is a foward time centered space (FTCS)
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discretization scheme, to which they perform the stability analysis. They conclude that

their method is unconditionally consistent, also mentioning that second-order accuracy

is attainable using the FTCS scheme for the standard diffusion equation but not for the

fractional case because of the fractional operator. Following this publication Tadjeran

and Meerschaert published “A second-order accurate numerical method for the two-

dimensional fractional diffusion equation” [36] in which they showcase a method con-

glomerating the alternating directions implicit (ADI) [37] scheme with a Crank-Nicolson

discretization and a Richardson extrapolation yielding a method that is unconditionally

stable and second-order accurate. By using the Lax equivalence theorem the authors

show this method to be convergent. Many other researchers have presented numerical

approaches such as predictor-corrector methods, high-order schemes, ADI schemes and

Runge-Kutta type methods [38–45]. In addition to numerical approaches, some authors

are able to derive exact solutions to some fractional order equations. El-Kalhout et.

al. [46] derive exact solutions to a class of time-fractional partial differential equations

via the Mellin transform. Saxena et. al. [47] give closed form solutions to the frac-

tional reaction and fractional diffusion equations in the form of Fox and Mittag-Leffler

functions via asymptotic expansion. Many researchers have extended analytic methods

such as the differential transform method, Adomian decomposition method and He’s

variational iteration method which provide closed form solutions to partial differential

equations to a fractional order in space and time as well as being able to handle some

nonlinearities [48–55]. While these methods are limited in some ways in terms of capabil-

ity of dealing with specific boundary conditions the analytic solutions obtained by these

methods provide an excellent framework with which one may compare numerical results.

Although diffusive partial differential equations have been thoroughly investigated in

image processing as denoising techniques [56–62] there has been very little work done on

the application of fractional partial differential equations to image processing. Bai and

Feng [63] present a fractional-order anisotropic process for image denoising by extend-

ing the Perona-Malik equation [5] to include fractional-order derivatives via the energy

functional. They then applied the algorithm using two dimensional discrete fourier trans-

forms. This opens a field of research wherein one can employ physically substantiated

diffusion-type processes in an attempt to obtain a desirable result in image processing.

Extending this concept, of applying partial differential equations to images, to include

fractional order derivatives broadens the scope of equations that are of interest. If we

consider a fractional order partial differential equation

∂αu

∂tα
=
∂βu

∂xβ
, (1.3)
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with α = 1 and β = 2 this equation reduces to the classical diffusion equation. However,

if β = 2 and 1 < α < 2 then the equation exhibits propagational effects as α approaches

2 and the equation, correspondingly, approaches the wave equation. Similarly if α = 1

and 1 < β < 2 the equation begins to resemble the simple advection equation, where

again propagational effects are observed. This is meaningful because preserving the spa-

tial topography of an image is imperative to maintaining the useful information in that

image. It is for this reason that we focus on the diffusion equation in two-dimensions,

since the introduction of an advective term into the model would propagate information.

Similarly considering the time-fractional diffusion equation with 1 < α < 2 we obtain

the diffusion-wave equation, which again has propagational properties. Hence we restrict

our model to being time-fractional only and 0 < α ≤ 1.

Although there has been extensive research done [64–71] on pseudo-spectral methods,

more specifically Chebyshev collocation there has been very little attention paid to

Chebyshev collocation applied to fractional order differential equations. Bueno-Orovio

et. al. [72] however, introduce a Fourier spectral method for the integration of space

fractional reaction diffusion equations.

This thesis is structured as follows: Chapter 2 presents the methods that are put to

extensive use throughout this work.

In Chapter 3 we present a novel diffusion based method for the binarizing of noisy

document images. Document images are images of text, either written or typed but

are typically noisy. This method is the marriage of the linear diffusion process, which

has denoising properties, and the Fitzhugh-Nagumo source term which has binarization

properties. The result is a method that is isotropic, i.e. it acts homogenously in all

directions, is insensitive to noise and produces excellent results when compared to the

state-of-the-art methods in the field.

Chapter 4 extends the binarization model presented in Chapter 3 to an adaptive scheme.

This extension allows the application of our method to images with non-uniform illu-

mination typically associated with photographed documents, where the flash from a

camera may light an image more intensely in the center of the image and less so at the

boarders. This adaptive structure also allows the method to perform consistently even

with shadows cast on to the document. Once more this process is isotropic, a simple

extension of the global case and produces excellent results.

We consider the linear time-fractional model in Chapter 5 and present the difficul-

ties associated with solving fractional-order partial differential equations. The Laplace
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transform is used to reduces the fractional-order derivative to an algebraic constraint.

Due to the linearity of the Laplace transform we are unable to apply the Laplace trans-

form to the nonlinear source term and hence Chapter 5 examines the feasibility of this

method for solving time-fractional partial differential equations as well as comparing two

discretization methods for different types of boundary conditions.

Extending the approach presented in Chapter 5 we introduce a quasi-linearization tech-

nique in Chapter 6 which enables us to apply the linear technique to a nonlinear time-

fractional partial differential equation. We employ Chebyshev collocation as a discretiza-

tion based on results presented in Chapter 5 and conclude by addressing some short-

comings of this method. The application of this new methodology within the context of

binarizing images is discussed.

Chapter 7 concludes by discussing the importance of this body of work as well as high-

lighting the cohesion between chapters.



Chapter 2

Methodologies

“Science is a wonderful thing if one does not have to earn one’s living at it.”

Albert Einstein

2.1 Introduction

The purpose of this Chapter is to introduce the methodologies used throughout this

work and as a reference. Definitions of some less common operators and results are

given as well as useful discretizations and descriptions of methods.

2.2 Fractional Calculus

The Riemann-Liouville fractional derivative and integral form the basis for the Caputo

derivative. The definitions of the Riemann-Liouville derivative and Caputo derivates are

given in [11] and [32].

2.2.1 Riemann-Liouville Integration

Definition 1. The Riemann-Louiville integral of order γ > 0 of a function u(t) is [32]

Jγu(t) =
1

Γ(γ)

∫ t

0
(t− τ)γ−1u(τ)dτ, x > 0. (2.1)

Therefore the Riemann-Liouville fractional derivative may be written as follows.

8



Chapter 2. Methodologies 9

Definition 2. The Riemann-Louiville derivative of order γ, where m ≤ γ < m + 1 of a

function u(t) is [32]

Dm+1Jγ−mu(t) =
dm+1

dtm+1

1

Γ(γ −m)

∫ t

0
(t− τ)γ−m−1u(τ)dτ, x > 0. (2.2)

2.2.2 Caputo Derivative

In this work we employ Caputo’s definition of a fractional derivative [73] over the

Riemann-Louiville derivative due to the fact that the Caputo derivative makes use of

the physical boundary conditions, whereas the Riemann-Louiville derivative requires

fractional order boundary conditions.

Definition 3. The fractional derivative of u(t) according to the Caputo definition with

m− 1 < α ≤ m, m ∈ N, is [32]

∂αu(t)

∂tα
= Jm−αDmu(t) = Dα

∗ u(t) :=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1u(m)(τ)dτ. (2.3)

If α = 1 the Caputo fractional derivative reduces to the ordinary first order derivative.

2.2.3 Modified Riemann-Liouville Fractional

Definition 4. Jumarie [12] introduces the modified Riemann-Liouville fractional deriva-

tive as

u(α)(t) = lim
4t→0

4αu(t)

4tα
, (2.4)

and

4αu(t) =

∞∑
k=0

(−1)k
(
α

k

)
u [t+ (α− k)4t] . (2.5)

2.2.4 Laplace Transform

Podlubny [32] illustrates the pleasing property of the Laplace Transform of a Caputo

derivative, as can be seen in Eq. (2.6). In our case where 0 < α < 1 we have,

L
{
∂αu(x, y, t)

∂tα

}
= sαU(x, y)− sα−1u(x, y, 0). (2.6)

This property allows one to treat fractional order derivatives algebraically.
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Definition 5. The Generalized Mittag-Leffler function of the argument z

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
. (2.7)

2.3 Finite-Differences

2.3.1 Explicit Finite-Difference Discretization

In two spatial dimensions we use a central finite difference scheme to approximate the

first and second derivatives. The first derivative is typically used to impose derivative

boundary conditions and the second derivative is used in the diffusion equation. The

first derivative in the x and y directions are

∂u

∂x
≈
uni+1,j − uni−1,j

24x
+O(4x2) (2.8)

and
∂u

∂y
≈
uni,j+1 − uni,j−1

24y
+O(4y2) (2.9)

respectively and for the second derivative we have in the x and y directions

∂2u

∂x2
≈
uni+1,j − 2uni,j + uni−1,j

4x2
+O(4x2) (2.10)

and
∂2u

∂y2
≈
uni,j+1 − 2uni,j + uni,j−1

4y2
+O(4y2) (2.11)

respectively where u(xi, yj , tn) = uni,j .

A forward-difference discretization may be used for the first order derivative in time

namely

∂u

∂t
≈
un+1
i,j − uni,j
4t

+O(4t) (2.12)

2.3.2 Crank-Nicolson Discretization

The more stable Crank-Nicolson discretization may be used in two dimensions in the x

and y directions we have

∂2u

∂x2
≈ 1

2

(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

4x2
+
uni+1,j − 2uni,j + uni−1,j

4x2

)
+O(4x2) (2.13)
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and

∂2u

∂y2
≈ 1

2

(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

4x2
+
uni,j+1 − 2uni,j + uni,j−1

4y2

)
+O(4y2) (2.14)

respectively. While the Crank-Nicolson scheme doesn’t improve the accuracy in the

spatial discretization it does yield a scheme that is unconditionally numerically stable.

When used in conjunction with an implicit discretization of the temporal derivate one

derives a scheme that is accurate to O(4t2) + O(4x2) + O(4y2) instead of O(4t) +

O(4x2) +O(4y2).

2.3.3 Alternating Direction Implicit Method

If we consider the discretization of the two-dimensional diffusion equation

uj+1 − uj

4t
= Auj+1 + uj+1B (2.15)

it is difficult to solve for uj+1. The Alternating Direction Implicit method [74] suggests

we treat each dimension implicitly in turn. Hence we reduce the above equation to

uj+1/2 − uj

4t
= Auj+1/2 + ujB (2.16)

and
uj+1 − uj+1/2

4t
= Auj+1/2 + uj+1B. (2.17)

The result is two linear systems that are readily solved.

2.3.4 Grünwald-Letnikov

Definition 6. The Grünwald-Letnikov discretization is given as

Dα
t u(t) = lim

4t→0

1

4tα
M∑
k=0

ωαk u(t− k4t), (2.18)

where

ωαk = (−1)k
(
α

k

)
. (2.19)

Since the Grünwald-Letnikov derivative is a generalization of the standard first order

finite difference derivative, the Grünwald-Letnikov derivative is also O(4t) accurate.

The parameter M , used in the above definition, is the maximum integer so that t −
M4t is nonnegative. Computationally speaking, for long simulations M may become
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unfeasibly large hence the short-memory principle may be employed. The short-memory

principle as described in [32] specifies that M may be chosen to represent the degree of

memory in the diffusive material. This means that we may truncate the sum to the past

M time steps to represent a short memory.

2.4 Chebyshev Collocation

Chebyshev polynomials form a basis on [−1, 1] and hence we dictate the domain of our

PDE to be Ω = [−1, 1]n where n indicates the number of spatial dimensions, here we

choose n = 2. We note here however, that any domain in R2 can be trivially deformed

to match Ω. We discretize our spatial domain using Chebyshev-Gauss-Labatto points,

xi = cos

(
iπ

Nx

)
, i = 0, 1, . . . , Nx, yj = cos

(
jπ

Ny

)
, j = 0, 1, . . . , Ny. (2.20)

Given this choice of spatial discretization we have x0 = 1, xNx = −1, y0 = 1 and

yNy = −1 indicating that the domain is in essence reversed and one must exercise cau-

tion when imposing the boundary conditions.

In mapping our domain to Ω we may assume that Nx = Ny, i.e. we have equal number

of collocation points in each spatial direction. We now define a differentiation matrix

D(1) = dkl,

dkl =



ck(−1)k+l
cl(xk−xl) , k 6= l,

− xk
2(1−x2k)

, k = l,

1
6

(
2N2

x + 1
)
, k = l = 0,

−1
6

(
2N2

x + 1
)
, k = l = Nx,

where ck =

{
2, k = 0, Nx,

1, k = 1, . . . , Nx − 1.

(2.21)

Bayliss et al. [75] describe a method for minimizing the round off errors incurred in the

calculations of higher order differentiation matrices. Since we write D(2) = D(1).D(1) we

implement the method, described in [75], in order to minimize propagation of round off

errors for the second derivative in space.

The derivative matrices in the x direction are

D̂(1)
x = D(1), D̂(2)

x = D(2), (2.22)

where D(1) is the Chebyshev differentiation matrix of size (Nx + 1)× (Ny + 1).

Because we have assumed Nx = Ny we derive the pleasing property that D̂
(1)
y =

(
D̂

(1)
x

)T
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and D̂
(2)
y =

(
D̂

(2)
x

)T
.

2.5 Boundary Conditions

2.5.1 Dirichlet Boundary Conditions

Boundary conditions may be in the form of Dirichlet conditions,

u(−1, y, t) = a, (2.23)

u(1, y, t) = b, (2.24)

u(x,−1, t) = c, (2.25)

u(x, 1, t) = d, (2.26)

discretized as

un(xNx , yj) = a, (2.27)

un(x0, yj) = b, (2.28)

un(xi, yNy) = c, (2.29)

un(xi, y0) = d, (2.30)

since xNx = −1, x0 = 1, yNy = −1 and y0 = 1. The parameters a, b, c and d are

potentially functions of the temporal variable and one of the spatial variables, i.e. a =

a(y, t). We assume that a, b, c and d are constant. Dirichlet boundary conditions can

be imposed directly by substituting directly into the governing equations.

2.5.2 Neumann Boundary Conditions

Alternatively Neumann boundary conditions give,

ux(−1, y, t) = a, (2.31)

ux(1, y, t) = b, (2.32)

uy(x,−1, t) = c, (2.33)

uy(x, 1, t) = d. (2.34)
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Neumann boundary conditions are discretized as

∂u

∂x
(xNx = −1, yj , tn) ≈

Nx∑
k=0

dNxku
n(xk, yj) = L{a} , (2.35)

∂u

∂x
(x0 = 1, yj , tn) ≈

Nx∑
k=0

d0ku
n(xk, yj) = L{b} . (2.36)

Similarly for the boundary conditions on y,

∂u

∂y

(
xi, yNy = −1

)
≈

Ny∑
k=0

dkNyu
n(xi, yk) = L{c} , (2.37)

∂u

∂y
(xi, y0 = 1) ≈

Ny∑
k=0

dk0u
n(xi, yk) = L{d} . (2.38)

By extracting the first and last terms in the sum, the discretizations can be written as(
dNx0 dNxNx

d00 d0Nx

)(
un(x0, yj)

un(xNx , yj)

)
=

(
L{b} −

∑Nx−1
k=1 d0ku

n(xk, yj)

L{a} −
∑Nx−1

k=1 dNxku
n(xk, yj)

)
(2.39)

and(
d0Ny dNyNy

d00 dNy0

)(
un(xi, y0)

un(xi, yNy)

)
=

(
L{d} −

∑Ny−1
k=1 dk0u

n(xi, yk)

L{c} −
∑Ny−1

k=1 dkNyu
n(xi, yk)

)
(2.40)

The solutions to these linear systems are then substituted into the governing equations.

2.6 Quasi-Linearization

The quasi-linearization technique is employed in Chapter 6 to obtain a quasi-linear form

of our time-fractional nonlinear diffusion equation to which a Laplace transform may be

applied.

The quasi-linearization technique can be viewed as a generalized Newton-Raphson method

in functional space. An iterative scheme is constructed creating a sequence of linear

equations that approximate a nonlinear equation and boundary conditions. Further-

more, this sequence of solutions converges quadratically and monotonically [76–78].

If we consider a general parabolic two-dimensional nonlinear PDE of the form

Φ(u, ux, uy, uxx, uyy, ut) = 0 (2.41)



Chapter 2. Methodologies 15

then the quasi-linear form is given by

Xn
1 u

n+1 +Xn
2 u

n+1
x +Xn

3 u
n+1
y +Xn

4 u
n+1
xx +Xn

5 u
n+1
yy +Xn

6 u
n+1
t = Xn

7 (2.42)

where

Xn
1 =

∂Φ

∂u

∣∣∣∣n , (2.43)

Xn
2 =

∂Φ

∂ux

∣∣∣∣n , (2.44)

Xn
3 =

∂Φ

∂uy

∣∣∣∣n , (2.45)

Xn
4 =

∂Φ

∂uxx

∣∣∣∣n , (2.46)

Xn
5 =

∂Φ

∂uyy

∣∣∣∣n , (2.47)

Xn
6 =

∂Φ

∂ut

∣∣∣∣n , (2.48)

(2.49)

and if u = (u, ux, uy, uxx, uyy, ut) indexed by j then

Xn
7 =

∑
j

unj
∂Φ

∂uj
. (2.50)

In Chapter 6 we derive the quasi-linear form of the time-fractional diffusion equation in

two dimensions with nonlinear source term. The purpose of obtaining a linear form is

the ability to apply the Laplace transform from which we derive the benefits described

above in Section 2.2.4.



Chapter 3

A Novel Approach to Text

Binarization via a

Diffusion-Based Model

“We especially need imagination in science. It is not all mathematics, nor all logic, but

it is somewhat beauty and poetry.”

Maria Montessori

This work has appeared in:

Jacobs, B. A., and E. Momoniat. “A novel approach to text binarization via a diffusion-

based model.” Applied Mathematics and Computation 225 (2013): 446-460.

This paper presents a new approach to document image binarization. The method is

based on the dynamic process of diffusion, coupled with a nonlinear Fitzhugh-Nagumo

type source term that exhibits binarizing properties. These desirable properties lead to

a method that is robust to noise and is able to successfully binarize an input document

image. We measure the efficacy of our proposed method against industry standards by

two methods, a pixel by pixel comparison with the ground truth image and a standard

optical character recognition test. Through these measures we illustrate a progressive

method that performs at the highest level in the field.

16



Chapter 3. Image Binarization via PDE Model 17

3.1 Introduction

This paper aims to present a new text binarization algorithm based on a linear diffusion

model with a nonlinear source term. The model is given as

ut = cd∇2u+ csu(1− u)(u− a) (3.1)

where u is our dependant variable initially set to our input image. The model then

dictates the evolution of this image with time, in a manner similar to the physical

diffusion or heat transfer process. ut = ∂u/∂t and ∇2 is the typical Laplacian operator,

taken to be

∇2u =

(
∂2u

∂x2
+
∂2u

∂y2

)
since our application has two spatial dimensions. We choose the coefficient of diffusion

to be cd, this coefficient determines how aggressive the diffusive property of the model

is and allows one to select the degree to which the image is denoised. Our source term

is a cubic polynomial and is discussed further in Section 3.2. Finally cs is the source

term scaling coefficient, this is analogous to the diffusion coefficient and determines the

degree to which the source term affects the process.

Our process is isotropic since there is no explicit dependence on the image direction-

ality. The source term is chosen based on the Fitzhugh-Nagumo (FN) [8, 9] source

term because of its thresholding properties. Diffusive processes have been thoroughly

investigated in image processing as denoising techniques [56–61], and the revolutionary

Perona-Malik [5] anisotropic diffusion model smoothes noise in an image while preserv-

ing the sharpness of edges. The application of diffusive processes to image denoising is

an intuitive one. If we consider our initial image as a height map, where pixel luminosity

corresponds to an (x, y) coordinate height, then by applying a diffusion process to this,

the peaks that exist in this height map will be softened and reduced. Figures 3.1(a),

3.1(b) and 3.1(c) show a 3D representation of the ground truth image, the image with

additive white gaussian noise and the corresponding diffused image respectively. From

this representation we may visualize the binarizing process as slicing this height map

with a plane to optimally separate the foreground and the background. Our method

benefits from the denoising property, inherent to diffusion processes, in that noise is

reduced by the diffusion term and image data is binarized by the source term simulta-

neously.
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(a) (b) (c)

There is a vast literature of binarization techniques and an exhaustive survey of these

methods has been done in [1–4]. Typically these methods are categorized as global or

adaptive thresholding techniques. Global techniques generally use a histogram analysis

to optimally choose a threshold so that we correctly classify as many pixels as possible,

as black or white. Adaptive methods locally threshold sub-images, which allows differ-

ent threshold values to be selected based on local properties. This gives a robustness to

noise and nonuniform illumination. He et al. [1] propose adaptive variants of Niblack’s

method and of Sauvola’s method. Recently Drira et al. [79, 80] proposed a modified

method based on nonlinear diffusion tensors, where this anisotropy aids in edge and cor-

ner preservation of the document image data. Moghaddam and Cheriet [81] introduce a

method based on reversing the physical process of document degradation. The authors

consider the physical process of ink diffusing into the paper and construct a model to

reverse the process via a backward diffusion. This method is tested on synthesized and

real test images with excellent results. The application of PDE based methods to low

quality input images is also investigated by Mahani et al. [82] where low quality camera

phone images are used as inputs. The aforementioned PDE methods all make use of

some anisotropy in the document image reconstruction, in contrast to this our method

uses an algebraic nonlinearity coupled with a linear diffusion to binarize a document im-

age effectively. Compounded by the simplicity of an algebraic nonlinearity the proposed

method still remains isotropic. These methods may involve a number of steps and can

become difficult to implement while computing diffusion tensors. The method proposed

in this paper is simple to implement, robust to noise and effective at image binarization.

This chapter is divided into the following sections: Section 3.2 substantiates our choice of

source term and diffusion process. We go on to present a one dimensional case in Section

3.2.1, this is used as an illustration of the degree of noise corruption introduced into our

images as well as showing efficacy of our method. The main two dimensional model is

showcased in Section 3.2.2, this has direct application to our given input images. We
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use two methods as a source of comparison of the presented methods: the first is using

Google’s open source optical character recognition package Tesseract [83] to determine

how frequently it is able to identify characters based on the preprocessing method. The

second source of comparison is a direct calculation of pixels correctly binarized using a

hand crafted binary image as a ground truth. An analysis of these results is given in

Section 3.3 and concluding remarks are made in Section 3.4.

3.2 Model Derivation and Discussion

The application of diffusive processes to image denoising is a well researched area. By

exploiting the denoising properties of the diffusion equation

∂u

∂t
= cd

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.2)

and combining the FN type source term, given as

f(u) = u(1− u)(u− a) (3.3)

where u is any given pixel’s luminosity, we can derive a process that will denoise and

binarize an image simultaneously. By combining (3.2) and (3.3) we obtain our model

(3.1). The FN type source term exhibits a binarizing property by ‘forcing’ any given

pixel toward a stable luminosity state, namely black or white. The direction of this

‘force’ is dependent on the pixel’s intensity relative to the threshold parameter a and

the cubic nature of the source term helps to stabilize pixels very quickly. We choose the

value for a by using Otsu’s method [84] for finding the threshold of our input image, but

a can be chosen in many ways being dependent on the mean intensity of the image or

even based on local information. Figure 3.1 illustrates the directionality and intensity

of the forcing effect of f(u).

For example, if a pixel, u, has intensity such that a < u < 1, then f(u) will contribute

energy to that pixel until it has an energy of 1. Note that f(1) = 0, so this represents

a stable state. If some pixel obtains a value greater than 1, u > 1, f(u) will then

withdraw energy from u to force it back into the stable state of 1. Similarly if 0 < u < a

then f(u) performs diametrically, withdrawing energy until u obtains the stable state

of 0. Furthermore, if u = a then f(u) = 0 and the process reverts back to a simple

diffusion model. This is desirable in that, if a pixel lies exactly on the threshold of

our binarization we are unsure of how to characterize it. We then look to the diffusive
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Figure 3.1: Fitzhugh-Nagumo Type Source Term with arrows indicating the direc-
tionality of the forcing effect.

process to inform us. If a pixel lies exactly on the threshold and all of its neighbours

are brighter than it, then the diffusive process will draw said pixel’s intensity toward its

neighbours, making it brighter. The source term can then do its job by forcing it in the

direction suggested by the diffusion process. This also aids in dealing with noise, since

generally noise will behave as an outlier, the diffusive process will blend the outlying

noise into its background colour and homogenize noisy areas.

Other binarizing processes [84–86] can be sensitive to noise and may classify a pixel

incorrectly due to this noise. The proposed method classifies points not only based on

their intensity but also based on their neighbourhood, this is simply a consequence of

the design of the diffusion process itself. If, for example, a noisy pixel is close to white

on a black background, then binarizing based solely on some threshold will classify the

noisy pixel as white. However, by diffusing by some small amount, the noisy pixel will

be drawn toward its neighbour’s intensity and hence will be more likely to be classified

correctly as black. Combining a linear diffusion model with the discussed source term

we derive equation (3.1).

For both the one-dimensional and two-dimensional case we perform a Von Neumann

stability analysis which is typically only applicable to linear problems. However, we

prove boundedness on u as well as on the source term f(u), so that the stability of

the linearized system is analyzed under the pathological cases of the source term and

appropriate conditions are derived.



Chapter 3. Image Binarization via PDE Model 21

3.2.1 One Dimensional Case

In this section we introduce the one dimensional application of our method. The aim

here is to illustrate how robust the algorithm is to noise. In one spatial dimension we

have
∂u

∂t
= cd

∂2u

∂x2
+ csu(1− u)(u− a) (3.4)

with the initial state defined as

u(x, 0) =

{
1 : 1

4 < x < 3
4

0 : otherwise,
(3.5)

We then corrupt the initial data with additive gaussian noise with a mean of zero and a

standard deviation of 0.15. Finally we impose zero sheer boundary conditions at x = 0

and x = 1

ux(0, t) = ux(1, t) = 0. (3.6)

3.2.1.1 Derivation

The first step in implementing our scheme is discretizing our model so that we may

operate on our discretized image. Our image can be thought of as a two dimensional

matrix with values corresponding to luminosity. In one dimension this matrix simply

becomes a vector of data points. We discretize our spatial dimension as xi = i4x where

i = 0, 1, . . . , p. In discretized form u(xi, t
n) is represented as uni , meaning the ith position

in x and the nth step in time, t.

We approximate the time derivative in (3.4) using the forward difference scheme

∂u

∂t
≈
un+1
i − uni
4t

(3.7)

and the spatial difference using the Crank-Nicolson Scheme

∂2u

∂x2
≈ 1

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

4x2
+
uni+1 − 2uni + uni−1

4x2

)
. (3.8)

Substituting (3.7) and (3.8) into (3.4) and taking λ = cd4t/24x2 we obtain an iterative

scheme

− λun+1
i+1 + un+1

i (1 + 2λ)− λun+1
i+1 =

λuni+1 + uni (1− 2λ) + λuni+1 +4tcsuni (1− uni )(uni − a). (3.9)
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or in matrix form

Aun+1 = Bun + cs4tun ◦ (1− un) ◦ (un − a), (3.10)

where ◦ denotes the Hadamard product or element-wise multiplication.

3.2.1.2 Stability Analysis

The presence of a nonlinear source term introduces a complication in analyzing the

stability of the proposed process. We may, however, provide a bound for the function

f(u). Given that initially u ∈ [0, 1] we require that the iteration formula

un+1 = A−1 (Bun + cs4tun ◦ (1− un) ◦ (un − a)) (3.11)

does not violate this bound. Since A is positive definite with eigenvalues in [1, 1 + 4λ], by

Gerschgorin’s Theorem, then A−1 is also positive definite with eigenvalues in
[

1
1+4λ , 1

]
.

Hence A−1 will never scale an argument beyond [0, 1]. Since a ∈ [0, 1] and at explicit

time u ∈ [0, 1], then by inspection it is easy to see that f(u) = u(1 − u)(u − a) is

maximized in a when a = 0 and minimized when a = 1. The turning points of f(u)

occur when f ′(u) = 0. Given this, f(u) is at a maximum when u = 2/3 and a = 0,

similarly f(u) is minimized when u = 1/3 and a = 1. Therefore

|f(u)| ≤ 4

27
. (3.12)

Considering the bounds of the right-hand side of (3.9) using (3.12) we have

|Buni + cs4tuni (1− uni )(uni − a)| ≤ |Buni + cs4t
4

27
|. (3.13)

This can be written as

Buni + cs4t
4

27
≤ 1 (3.14)

or

Buni − cs4t
4

27
≥ 0 (3.15)

which, in conjunction with (3.9), result in the same condition

cd
4t
4x2

+4tcs
4

9
≤ 1, (3.16)

which ensures u ∈ [0, 1]. This reduces to the standard C-F-L condition for the heat

equation with cs = 0 which implies convergence.



Chapter 3. Image Binarization via PDE Model 23

We perform a Von Neumann stability analysis by substituting

uni = UneIωi4x (3.17)

where I2 = −1, into (3.9). Then using the triangle inequality and the boundedness of

cos(θ), we may deduce the following

|Un+1| ≤
∣∣∣∣Un (1− 2λ+ 2λcos(ω4x))

(1 + 2λ− 2λcos(ω4x))

∣∣∣∣+∣∣∣∣ 44tcs
27(1 + 2λ− 2λcos(ω4x))

∣∣∣∣
≤
∣∣∣∣Un (1− 4λ)

(1 + 4λ)

∣∣∣∣+

∣∣∣∣ 44tcs
27(1 + 4λ)

∣∣∣∣ . (3.18)

We now define

|g| = |U
n+1|
|Un|

(3.19)

and then from the stability condition, |g| < 1, we derive a bound on the source term

scaling factor, cs.

− 54λ < cs4t < 54λ (3.20)

Therefore we may conclude that this numerical scheme is stable for the above values of

cs, but cs is chosen to be positive so that the direction of the ‘force’ of the source term

is preserved.

3.2.1.3 Implementation

Our initial data are given by (3.5), i.e. u0i is a known vector. Discretizing equation (3.6),

using a standard forward difference scheme, and evaluating it at x = 0 and x = 1, or

i = 0 and i = p respectively, we get un−1 = un1 and unp+1 = unp−1 which are needed in the

evaluation (3.9) at i = 0 and i = p. These criteria satisfy the boundary conditions of

the physical model.

We implement our numerical approximation of (3.4), (3.5) and (3.6) using (3.7) and (3.8)

where xi = x0 + i4x and tn = n4t and uni = u(xi, tn). By using a standard forward

difference scheme for ut and a Crank-Nicolson scheme for uxx we obtain the following:

Aun+1 = Bun + cs4tun ◦ (1− un) ◦ (un − a) (3.21)
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where A = 

1 + 2λ −2λ 0 . . . 0

−λ 1 + 2λ −λ . . . 0

0 −λ 1 + 2λ . . . 0
...

...
. . .

...
...

0 . . . 1 + 2λ −λ 0

0 . . . −λ 1 + 2λ −λ
0 . . . 0 −2λ 1 + 2λ


(3.22)

and B = 

1− 2λ 2λ 0 . . . 0

λ 1− 2λ λ . . . 0

0 λ 1− 2λ . . . 0
...

...
. . .

...
...

0 . . . 1− 2λ λ 0

0 . . . λ 1− 2λ λ

0 . . . 0 2λ 1− 2λ


. (3.23)

Implementing this scheme in MATHEMATICA and using cd = 1, cs = 1/4x2 and a = 0.5 we

obtain Figure 3.2. Figure 3.3 is obtained by using a simple binarizing technique based

on a mean global threshold. These figures illustrate the efficacy of the proposed method

in classifying points as 1 or 0. The dashed blue line is the initial noisy data and the

solid purple line is the result obtained after 150 iterations of our method.
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Figure 3.2: Efficacy of proposed method on a one dimensional example of a Heaviside
function with SNR of 10dB.
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Figure 3.3: Binarized result of proposed method (solid purple line) and binarized
noisy input (dashed blue line).

Figure 3.3 clearly illustrates several points have been incorrectly classified as 0 when

they should be classified with their neighbours as 1 or vice versa. This is an important

result since it illustrates that sensitivity to noise potentially leads to false classification,

this further substantiates our use of a diffusion based algorithm.

3.2.2 Two Dimensional Case

We now extend our model to two spatial dimensions and get

∂u

∂t
= cd(

∂2u

∂x2
+
∂2u

∂y2
) + csu(1− u)(u− a) (3.24)

where the initial state is dictated by the input image

u(x, y, 0) = Img(x, y). (3.25)

Img(x, y) is a matrix with pixel intensity at position (x, y). Given the image resolution,

p pixels by q pixels, we define our spatial discretization as xi = i4x where i = 0, 1, . . . , p

and yj = j4y where j = 0, 1, . . . , q. Our space steps are determined by the input image’s

dimensions, 4x = 1/p and 4y = 1/q. We choose our time step to be 4t = 0.014x4y
to ensure stability. We again impose zero sheer boundary conditions on

ux(0, y, t) = ux(p, y, t) = uy(x, 0, t) = uy(x, q, t) = 0. (3.26)
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3.2.2.1 Derivation

In two dimensions the discretized form of u(x, y, t) is u(xi, yj , t
n) and we represent it for

simplicity as uni,j . We again approximate the time derivative in (3.24) using the forward

difference scheme
∂u

∂t
≈
un+1
i,j − uni,j
4t

(3.27)

and the spatial differences using the Crank-Nicolson Scheme

∂2u

∂x2
≈

1

2

(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

4x2
+
uni+1,j − 2uni,j + uni−1,j

4x2

)
(3.28)

and

∂2u

∂y2
≈

1

2

(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

4x2
+
uni,j+1 − 2uni,j + uni,j−1

4y2

)
. (3.29)

We may now substitute (3.27), (3.28) and (3.29) into (3.24) to obtain the following

un+1
i,j (1 + 2λ1 + 2λ2)− λ1un+1

i+1,j − λ1u
n+1
i−1,j−

λ2u
n+1
i,j+1 − λ2u

n+1
i,j−1 = uni,j (1− 2λ1 − 2λ2) +

λ1u
n
i+1,j + λ1u

n
i−1,j + λ2u

n
i,j+1 + λ2u

n
i,j−1+

4tcsuni,j(1− uni,j)(uni,j − a) (3.30)

where λ1 = cd4t/24x2 and λ2 = cd4t/24y2. The above scheme is implemented using

an alternating direction implicit method, written as

A1u
n+1/2 = unBT

1 + cs4tun ◦ (1− un) ◦ (un − a) (3.31)

and

un+1BT
2 = A2u

n+1/2 + cs4tun ◦ (1− un) ◦ (un − a), (3.32)

where A1, A2, B1 and B2 are defined in the following section, which treats each direction

implicitly in turn, rather than at once. Since we effectively treat each dimension inde-

pendently, using the one dimensional argument that if un ∈ [0, 1] then un+1/2 ∈ [0, 1]

provided

cd
4t
4x2

+4tcs
4

9
≤ 1 (3.33)
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and if un+1/2 ∈ [0, 1] then un+1 ∈ [0, 1] provided

cd
4t
4y2

+4tcs
4

9
≤ 1. (3.34)

3.2.2.2 Stability Analysis

We may again exploit the boundedness of f(u), and perform a Von Neumann stability

analysis by substituting

uni,j = UneIijω4x4y = UneIijωh
2

(3.35)

where, for simplicity, h2 = 4x4y. Then by the triangle inequality and the boundedness

of cos(θ), we get

|Un+1| ≤∣∣∣∣Un 1− 2 (λ1 + λ2) + 2λ1cos(jωh2) + 2λ2cos(iωh2)

1 + 2 (λ1 + λ2)− 2λ1cos(jωh2)− 2λ2cos(iωh2)

∣∣∣∣
+

∣∣∣∣ 4cs4t
27(1 + 2 (λ1 + λ2)− 2λ1cos(jωh2)− 2λ2cos(iωh2))

∣∣∣∣
≤
∣∣∣∣Un 1− 4 (λ1 + λ2)

1 + 4 (λ1 + λ2)

∣∣∣∣+

∣∣∣∣ 4cs4t
27(1 + 4 (λ1 + λ2)

∣∣∣∣ (3.36)

again, from the stability condition, |g| < 1, we derive the following bound on the source

term scaling coefficient, cs,

− 54(λ1 + λ2) < cs4t < 54(λ1 + λ2). (3.37)

As in the one dimensional case this scheme is stable for the above values of cs. Typically

Crank-Nicolson schemes are unconditionally stable, however the inclusion of a source

term affects the bounds of stability.

3.2.2.3 Implementation

Our implementation is achieved using an Alternating-Direction Implicit (ADI) method

[74]. This is a two-step process in which we first approximate un+1/2 using an implicit

scheme in the x direction and an explicit scheme in the y direction. We then approximate

un+1 using an explicit scheme in the x direction and an implicit scheme in the y direction.

Our variables are defined as before, u0 is our initial image, we then solve two linear

systems to obtain u1 and continue as iterating procedure. In matrix form we have

A1u
n+1/2 = unBT

1 + cs4tun ◦ (1− un) ◦ (un − a) (3.38)
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and

B2v
n+1 = vn+1/2AT2 + cs4tvn+1/2 ◦ (1− vn+1/2) ◦ (vn+1/2 − a) (3.39)

where

vn = (un)T (3.40)

A1 = 

1 + 2λ1 −2λ1 0 0 . . . 0

−λ1 1 + 2λ1 −λ1 0 . . . 0

0 −λ1 1 + 2λ1 0 . . . 0
...

...
...

. . .
...

...

0 0 . . . 1 + 2λ1 −λ1 0

0 0 . . . −λ1 1 + 2λ1 −λ1
0 0 . . . 0 −2λ1 1 + 2λ1


(3.41)

B1 = 

1− 2λ2 2λ2 0 0 . . . 0

λ2 1− 2λ2 λ2 0 . . . 0

0 λ2 1− 2λ2 0 . . . 0
...

...
...

. . .
...

...

0 0 . . . 1− 2λ2 λ2 0

0 0 . . . λ2 1− 2λ2 λ2

0 0 . . . 0 2λ2 1− 2λ2


(3.42)

A2 = 

1− 2λ1 2λ1 0 0 . . . 0

λ1 1− 2λ1 λ1 0 . . . 0

0 λ1 1− 2λ1 0 . . . 0
...

...
...

. . .
...

...

0 0 . . . 1− 2λ1 λ1 0

0 0 . . . λ1 1− 2λ1 λ1

0 0 . . . 0 2λ1 1− 2λ1


(3.43)

and B2 = 

1 + 2λ2 −2λ2 0 0 . . . 0

−λ2 1 + 2λ2 −λ2 0 . . . 0

0 −λ2 1 + 2λ2 0 . . . 0
...

...
...

. . .
...

...

0 0 . . . 1 + 2λ2 −λ2 0

0 0 . . . −λ2 1 + 2λ2 −λ2
0 0 . . . 0 −2λ2 1 + 2λ2


. (3.44)
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Ultimately the process becomes a simple solution to a linear system, the righthand side

of equations (3.38) and (3.39) is always known and can be reduced to a simple vector.

The solutions to the linear systems (3.38) and (3.39) are found using MATHEMATICA for

a variety of sample images the results of which are shown Section 3.3.

3.3 Experimental Results

This section illustrates the results we obtained after applying a number of methods, Otsu

[84], Sauvola [86], and Perona-Malik [5], to the heavily-corrupted input images. These

results are given in Figures 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10. The input images were

corrupted with additive white Gaussian noise to give a signal to noise ratio (SNR) of

10dB with the exception of 3.10(a) which was left uncorrupted to illustrate the compar-

ative decrease in efficacy when noise is introduced, this can be seen in Tables 3.1 and 3.2.

This level of noise illustrates the excellent robustness to noise of our method, where the

sensitivity of other standard binarization algorithms tends to yield less desirable results.

We present the l1 error norms with respect to the ground truth images for each example

in Table 3.3. These results indicate a superior performance of the current method as

well as reiterating the robustness to noise corruption.

Isotropic diffusion equations tend to blur and lose important edge information. Figure

3.4 shows the binarization of a two dimensional Heaviside function. Typically the blur-

ring induced by diffusion will produce high local errors with regards to a l1 error norm

or a pixelwise comparison with the ground truth. However, the parameters cd and cs

are chosen so that the effect of the source term dominates the diffusion process, which

helps to prevent local errors introduced by diffusion and preserve edges in the image.

Figure 3.5 is an illustrative example for text denoising. Given a relatively small amount

of noise Otsu’s method and Sauvola’s method will binarize this example perfectly. How-

ever, due to the high level of noise in the image both of these methods suffer from

incorrect classification. This “proof of concept” allows us to move onto more practical

examples. Figure 3.6(a) gives an example of poor printing and ink smudging, which are

commonly difficult to overcome in binarizing printed text. By binarizing this image we

hope to better distinguish between noise and the actual text. Once more, the sensitivity

to this noise is evident in the comparative algorithms, and our proposed method achieves

a good result.

One potential application of our proposed technique is a mobile application for binarizing

text taken with a low quality camera. Typically low resolution cameras found on mobile

devices are extremely susceptible to noise from electronic components, particulary in low
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light scenarios. Figure 3.7 is a photographed restaurant bill taken on a mobile device in

low light. Our method is able to substantially reduce noise and binarize the text which

will aid in optical character recognition. When compared with Otsu’s method, Figure

3.7(b), and Sauvola’s method, Figure 3.7(c), our method has reduced noise and correctly

classified the majority of pixels in the image.

Figure 3.8 illustrates how Otsu’s method and Sauvola’s method are susceptible to noise.

The resulting binarized images are dotted with salt and pepper type noise due to incor-

rect classification of pixels. Once more, our method is robust to this noise and continues

to excel in the binarizing process.

The next example is a photograph taken of George Orwell’s novel Nineteen Eighty-Four

[87]. The print on the reverse side of the page has bled through and the shadow of this

text is apparent. This shadow could be perceived as faint text by a naive binarizing

process. Otsu’s method incorrectly classifies the shadow of the text on the reverse side

of the page and Sauvola’s method performs better. By comparing our result in Figure

3.9(f) and Figure 3.10(f) it is clear that our method produces similar results without

noise present.

Tables 3.1 and 3.2 illustrate the efficacy of our method compared to existing methods.

We have included the linear diffusion and Perona-Malik methods as a source of compar-

ing our method with other diffusion based methods. The superiority of our method in

this application therefore implies that the inclusion of our source term is necessary in

obtaining desirable results.

Table 3.1 measures the number of characters correctly identified by Google’s Tesseract

[83] optical character recognition engine using the textual information as a ground truth.

The method proposed in the paper consistently performs close to optimally and far

exceeds competition in the case of noisy images. The novel extract image with 10dB

of gaussian white noise and without noise, Figures 3.9(a) and 3.10(a) respectively, is a

prime example of this noise robustness. A further illustration of the effects of noise are

given in Table 3.3 where the novel extract is corrupted with various levels of noise and

the l1 error norm with respect to the ground truth is computed.

The second measure compares every pixel in the processed image with a corresponding

hand constructed ground truth image. Our method again consistently performs well for

all the tested images. One point to highlight is that Sauvola’s method and our method

achieve a similar level of performance for the novel extract image without noise. How-

ever, when noise is added to this image the performance of Sauvola’s method decreases

substantially while our method experiences only a small decrease in performance, this

is evident in Table 3.3 for incremental noise levels.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Binarization of an (a) initial noisy block, (b) result of Otsu’s method,
(c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e) result of

Perona-Malik method and (f) our result.

3.4 Conclusion

In this paper we have introduced a novel approach to document image denoising and

binarization via a modified linear diffusion process. This algorithm is able to achieve

excellent results in cases of extreme noise corruption. The proposed method produces

results comparable and superior to existing methods. The application of differential

calculus to document image binarization is in its infancy and our method has opened a

range of potential improvements to the field.

The diffusion process incorporated into our method dynamically changes the intensity

of noisy pixels, drawing them toward their neighbours which helps to homogenize noisy

areas and reduce the occurrence of outliers. Concurrent to this diffusion process our

source term either contributes to or withdraws energy from each pixel, based on its

intensity relative to the threshold parameter a.

In Section 3.3 we compare the results of our method with those of some other common

binarization techniques. Otsu’s method and our proposed method give the best results

in the illustrative examples. However, Otsu’s method still admits outliers where the
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Binarization of an (a) initial noisy text sample, (b) result of Otsu’s
method, (c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e)

result of Perona-Malik method and (f) our result.

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Binarization of an (a) initial noisy newspaper clip, (b) result of Otsu’s
method, (c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e) result

of Perona-Malik method and (f) our result.

algorithm has incorrectly classified pixels. In the cases of document image binarization

Otsu’s method exhibits an extreme sensitivity to noise. This is attributed to design of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Binarization of an (a) initial noisy restaurant bill, (b) result of Otsu’s
method, (c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e) result

of Perona-Malik method and (f) our result.

the method, in which a global threshold is chosen to binarize an image. In contrast

our method, in essence, dynamically adjusts the threshold of each pixel relative to our

globally-chosen threshold parameter, a, to achieve a binarized image with very little

noise sensitivity and a desirable result.

We have implemented the Crank-Nicolson discretization treating the nonlinear source

term explicitly at each step. The source term can be treated implicitly by using several

iterations of Newton’s method for nonlinear systems at each time step at an additional

computational cost.

The inclusion of a heuristic optimization algorithm to automatically determine param-

eters of the model could be pursued as further work.

Our method was applied to camera-captured images, scanned images, artificially and

naturally degraded images yielding excellent results as well as robustness to noise and

preservation of textual information.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Binarization of an (a) initial noisy newspaper article, (b) result of Otsu’s
method, (c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e) result

of Perona-Malik method and (f) our result.

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Binarization of an (a) initial noisy novel extract, (b) result of Otsu’s
method, (c) result of Sauvola’s method, (d) result of Linear Diffusion method, (e)

result of Perona-Malik method and (f) our result.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Binarization of a (a) novel extract, (b) result of Otsu’s method, (c) result
of Sauvola’s method, (d) result of Linear Diffusion method, (e) result of Perona-Malik

method and (f) our result.

Table 3.1: Table Listing Percentage of Character Correctly Identified.

Image/Method Original Otsu Sauvola Diffusion Perona-Malik Our Method

Newspaper clip 32.09 67.58 63.19 34.07 30.77 67.03
Newspaper article 67.04 83.33 94.44 95.19 88.52 94.81

Restaurant bill 52.69 39.78 78.49 68.82 60.22 80.65
Novel extract 37.04 29.63 70.37 70.37 44.44 81.48

Novel without noise 85.19 85.19 88.89 85.19 77.78 88.89

Table 3.2: Table Listing Percentage of Pixels Accurately Binarized.

Image/Method Original Otsu Sauvola Our Method

Newspaper clip 94.20 92.93 94.39 95.87
Newspaper article 93.96 93.95 93.69 95.44

Restaurant bill 84.43 77.80 96.46 97.90
Novel extract 93.09 90.28 95.23 97.95

Novel without noise 96.67 96.97 98.14 98.20
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Chapter 4

A Locally Adaptive, Diffusion

Based Text Binarization

Technique

“A mathematician, like a painter or poet, is a maker of patterns. If his patterns are

more permanent than theirs, it is because they are made with ideas.”

Godfrey Harold Hardy

This work has been submitted under:

Jacobs, B. A., and E. Momoniat. “A Locally Adaptive, Diffusion Based Text Binariza-

tion Technique.” Pattern Recognition.

This research proposes an adaptive modification to a novel diffusion based text bina-

rization technique. This technique uses linear diffusion with a nonlinear source term

to achieve a binarizing effect. This simple isotropic process is compared to the state-

of-the-art Document Image Binarization Contest (DIBCO) contestants and produces

remarkable results given the simplicity of the algorithm. Furthermore, the authors show

how using a simple discretization scheme allows for the massively parallel implementa-

tion of this process.

37
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4.1 Introduction

Document image binarization is a process in which an input image is segmented so that

the text is contained in one segment, represented by black, and the background infor-

mation is contained in the other, represented as white. This has become an important

preliminary step in document image analysis and allows optical character recognition

(OCR) algorithms to work more effectively.

In the recent years document image binarization has received a substantial effort. A

thorough survey of this work is presented in [1–4]. More recently there has been re-

search done on the application of tensor based anisotropic diffusion processes [79–82].

These efforts include performing backward diffusion to undo the effects of ink diffu-

sion on paper [81] which are typically associated with document degradation, as well

as applying an anisotropic process to a low quality input image captured by a low cost

imaging device or camera phone [82] to obtain a binary image. In stark contrast to these

processes the process presented here is extremely simple, isotropic and still effective.

In broadly describing the binarization process we begin by representing our initial data

as a two-dimensional matrix, or a height map, where the values at an (x, y) coordinate

indicate the height of that pixel. These binarization techniques construct a threshold

value such that if we slice the height map at this value we will segment the image in a

meaningful way. That is to say, all pixels above the threshold will be classified as fore-

ground and all those pixels below the threshold will be classified as background. Global

methods construct this threshold based on information derived from the entire image.

Using a globally defined threshold leads to the inadequacy of thresholding every pixel

according to irrelevant information. Locally adaptive methods improve upon this by

selecting a threshold based on local information.

The authors recently introduced [88] a novel approach to document image binarization

based on a diffusion model with a nonlinear source term. The model can be written as

∂u

∂t
= cd

(
∂2u

∂x2
+
∂2u

∂y2

)
+ csu(1− u)(u− a), (4.1)

subject to

u(x, y, 0) = Image(x, y), (4.2)
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and Neumann boundary conditions on the image boundary. Here cd represents the co-

efficient of diffusion, cs is the scaling coefficient of the source term, a is a thresholding

parameter and Image(x, y) is the initial image data. The first term in equation (4.1)

describes a diffusion process and the second describes a thresholding process. The ben-

efits of this model are outlined in [88] but perhaps the reactive behavior of this process

is the strongest asset. In [88] we choose the thresholding parameter a globally. In this

paper we extend the model by selecting a based on local information making the process

locally adaptive.

By localizing the process we are able to process each local sector independently. This

means that this process is inherently parallel. Furthermore we discretize our model ex-

plicitly so that we may operate on the discrete input data such that each iteration of

the method is dependant only on the immediately preceding iteration. Therefore the

use of a General Purpose Graphics Processing Unit (GPGPU) arises naturally. GPGPU

programming flourishes when an application is massively parallel in nature.

GPUs are becoming more and more a part of any computationally intensive research and

the benefits of GPGPU programming are evident in the literature. Cruz et al. [89] give

an introduction to GPU architecture and show the efficacy of this technique through

application of two fast summation algorithms (fast Gaussian Transform and fast Mul-

tipole Method). Su and Xu [90] implement a wavelet-based image denoising algorithm

on GPU hardware. The interested reader is directed to [91, 92] for a description of the

GPU architecture mechanics. By discretizing (4.1) we may reduce applying this PDE to

an image to a series of linear algebraic operations. Krüger and Westermann [93] develop

strategies for implementing these linear algebra operators on a GPU. Bolz et al. [94]

implement an efficient sparse matrix solver using GPU architecture for solving linear

systems, which arise in implicit discretization schemes. Typically large computational

costs are involved in the transfer of image data to and from the GPU memory. Fortu-

nately modern GPU hardware has enough memory to allow for a single transmission of

data in each direction, without the need to swap in sections of the data set. This makes

the problem of an isotropic, explicit scheme even more amenable to GPGPU program-

ming.

In Section 4.2.1 we further substantiate our construction of this model by discussing the

merits of a diffusion based model. We then go on to show how the model is localized in

Section 4.2.2. A simple implementation of our method is presented and applications of

GPGPU are highlighted in Section 4.3. The results in Section 4.4 illustrate the efficacy
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of our adaptive method. In the interest of brevity we choose not to compare our method

with the extensive range of binarization techniques that exist in the literature. Instead

we compute standard performance measures which are used in the Document Image

Binarization Competition (DIBCO) series as a benchmark. This allows us to compare

our method with the state-of-the-art methods without the need to compare our method

with a plethora of new techniques. We do, however, provide some illustrative examples

to indicate the performance of our method and subjectively compare with the seminal

method of Sauvola [86]. We finally make some concluding remarks in Section 4.5.

4.2 Model Derivation

4.2.1 Diffusion and a Source Term

The effect of image denoising has been well established in the literature and the interested

reader is directed to [5, 56–59, 61]. The basis of our model is the well known diffusion

equation in two-dimensions.

∂u

∂t
= cd

(
∂2u

∂x2
+
∂2u

∂y2

)
. (4.3)

We affirm the use of a diffusion based equation by means of a simple example. Consider

the small window of an image. 
0.82 0.93 0.87

0.90 0.49 0.95

0.93 0.95 0.88


If the threshold is determined to be 0.5 then the center pixel would be classified as back-

ground and the surrounding pixels as foreground. The diffusion model will circumvent

this and draw the center pixel’s value toward its neighbors, homogenizing the area and

classifying the outlying center pixel as a foreground element. The reactive nature of this

model was briefly alluded to in the introduction, but it is this dynamic behavior that

empowers the method.

A consequence of diffusion is the blurring of information and while some homogeneity

may assist in cementing the binarization process, too much may inhibit it. We therefore
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include the Fitzhugh-Nagumo inspired source term

csu(1− u)(u− a) (4.4)

which exhibits binarizing properties and arrive at the model described in equation (4.1).

The parameters cd and cs may be used to tweak the aggressiveness of each of the pro-

cesses, diffusion and binarizing respectively.

The source term is intelligently constructed so as to inject energy into a pixel provided

its energy is above the specified threshold and below maximum energy, 1. Furthermore

the source term will withdraw energy if the pixel’s energy is below the specified threshold

and above minimum energy, 0. The result of this behavior is that each pixel is binarized

either to 1 or to 0. The powerful dynamic of this model is that the fate of any given

pixel is not determined only by the initial information but the information contained

in its neighbors and the movement incurred by diffusion. A full stability analysis and

substantiation of this model is given in [88].

4.2.2 Localizing the Model

The first step in localizing this process is to divide the input image into smaller sub im-

ages. The size of this window is dependant on the input image, if the image is relatively

homogenous or has a small variance then we may assume a uniform illumination and

hence we may use larger windows. If the image has non-uniform illumination it will also

have a larger variance, and consequently we choose smaller windows.

By choosing a threshold based on local information we are able to binarize our data

more appropriately. If for example we have nonuniform illumination this means that

our background is not constant and that locally the threshold between background and

foreground is not constant across the image. Consider again a simple example of three

vertical stripes. The left and right most stripes are in the background and the center

stripe is in the foreground. 
0.52 0.63 0.53

0.59 0.69 0.55

0.51 0.70 0.58


This illustrates a case where the foreground is similar in intensity to the background,

like black text on a grey page. If we were to choose a global threshold of say 0.5 the

entire section would be classified as foreground, contrastingly if we choose the threshold
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based on this small window alone perhaps a threshold of 0.6 would be more appropriate.

Given this argument for a local threshold we simply adapt our model so that a is

computed based on local information. One caveat to this process is that if our local

window becomes too small we may lose perspective of the schematic of text and produce

a blocky binarization where the topological significance of the text is lost.

4.3 Implementation: A Massively Parallel Approach

In order to apply our model to discrete data we must discretize equation (4.1). We notate

the discrete approximation of u(xi, yj , tk) as uki,j . Using a standard forward difference

approximation for the first derivative term,

∂u

∂t
≈
uk+1
i,j − uki,j
4t

, (4.5)

and a central difference approximation for the second derivatives,

∂2u

∂x2
≈
uki+1,j − 2uki,j + uki−1,j

4x2
, (4.6)

and
∂2u

∂y2
≈
uki,j+1 − 2uki,j + uki,j−1

4y2
. (4.7)

Applying equations (4.5), (4.6), (4.7) to equation (4.1) we obtain the iterative scheme

uk+1
i,j =uki,j+ (4.8)

4tcd

(
uki−1,j − 2uki,j + uki+1,j

4x2

)
+

4tcd

(
uki,j−1 − 2uki,j + uki,j+1

4y2

)
+

4tcsuki,j
(

1− uki,j
)(

uki,j − a
)
.

We apply this iterative scheme to every pixel in the input image for k = 0, 1, . . . , N .

Recalling the massively parallel nature of this process, we highlight here that the above

scheme can be applied to every (i, j) pair simultaneously.

Although the explicit finite difference scheme requires 4t�4x2 to ensure stability this

scheme is parallelizable. Implicit schemes require matrix inversion or solutions to linear
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system, which may be optimized but are not inherently parallel therefore computational

bottlenecks will occur in the serial processes.

We select a as follows. For each sub image of the input image we construct an edge map

and compute the l2 or energy norm, ‖ · ‖2, of this edge map. The edge map can be found

in many ways, here we make use of the Shen-Castan [95] edge detection algorithm. The

l2 norm of this image essentially gives a metric for the ‘amount of detail’ contained in a

sub image. So a sub image that is homogenous will contain almost no edge energy, but

a sub image that contains text will have edge energy. If the sub image has a high edge

energy we assign a to be the Otsu [84] threshold otherwise we take a to be slightly above

the mean of the sub image, so that everything below a is pushed into background.
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4.3.1 Algorithm Description

Convert to grayscale

and contrast stretch
Image Partition Image Select subimage

Construct Edgemap

a(subimage) = ε

Is

||Edge Map||2 > δ

?

a(subimage) =

Otsu(subimage)

Time March

Finished?Stop

Yes No

Yes No

Algorithm 1 Text Binarization via Diffusion Based Model

1: procedure Input(image) . Input image to be binarized.
2: Convert image to grayscale.
3: Partition image into an image array.
4: for each subimage in the image array do
5: EdgeMetric = ‖subimage‖2
6: if EdgeMetric > δ then a(subimage) = Otsu(subimage)
7: else a(subimage) = ε
8: end if
9: end for

10: Perform N iterations for every (i, j) pixel. (Done on the GPU.)
11: end procedure
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4.4 Experimental Results

We present some binarized images in Figures 4.1, 4.2 and 4.3 as an illustration of the

efficacy of our new method as well as a subjective source of comparison. Our method

exhibits a robustness to noise which is evident in Figure 4.2 which has been corrupted

with Gaussian noise. We make use of a hand constructed ground truth images for these

example as well as the datasets provided by DIBCO 2009 through 2012. The following

evaluation measures are used as an objective measure of efficacy. The performance

measures are introduced and used in the Document Image Binarization Competitions

(DIBCO). We also make use of the data sets provided by the 2009, 2010, 2011 and 2012

[96–99] competitions as a benchmark.

4.4.1 Evaluation Measures

In following the evaluation measures implemented in the DIBCO for state-of-the-art

methods we make use of the following measures as described in [96–99], and the interested

reader is directed there for a full description of the implementations of these measures.

The F-Measure is a test of accuracy based on both precision and recall, where precision

is the proportion of true positives to true positives and false positives and recall is the

proportion of true positives to true positives and false negatives. The F-Measure is then

a weighted average of precision and recall, and is maximally 100.

The pseudo F-Measure was introduced by Ntirogiannisas et al. [100] and first used as

a performance metric in DIBCO 2010 [97]. It is based on the idea that each character

has a unique silhouette that can be represented by its skeleton. This method emulates

one’s natural interaction when identifying characters, by drawing a curve one pixel wide

approximately along the character’s medial axis. The skeletonized ground truth image

is then used in evaluating a method’s ability to reconstruct the most important features

used in identifying characters. As with the F-Measure, a score of 100 is perfect.

Peak signal-to-noise ratio (PSNR) is a commonly used performance measure of how

close one image is to another image. Hence a higher value indicates a higher similarity

between two images.

Finally the Distance Reciprocal Distortion Metric (DRD) measures the visual distortion

in binary document images. It was introduced in [101] and attempts to correlate the

performance of a method with the human visual perception of an image. A lower DRD

score indicates a better performance.
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4.4.2 Results

We present here a selection of sample images. Typically these results are susceptible to

subjective scrutiny. We provide images here for a qualitative source of comparison. We

have chosen to compare our method to the seminal method of Sauvola [86] as a means of

subjective comparison. While we recognize that Sauvola’s method no longer represents

the state-of-the-art it does represent a class of adaptive schemes, and particularly a sen-

sitivity to noise that our method exhibits robustness towards. Figure 4.1 illustrates the

efficacy of our method on an image with non-uniform illumination typically associated

with flash aided photographs. The effects of text bleed-through are tested in Figure 4.2

as well as noise corruption. Finally we show that the proposed method is able to handle

sharp shadows in Figure 4.3. These examples have been selected to cover an array of

image faults typically associated with text-binarization.

(a) (b)

(c) (d)

Figure 4.1: (a) Sample image of a novel excerpt taken with a mobile device. (b)
Ground truth image. (c) Sauvola’s binarized result. (d) Our proposed method.

(a) (b) (c) (d)

Figure 4.2: (a) Sample image of a novel excerpt taken with a mobile device. (b)
Ground truth image. (c) Sauvola’s binarized result. (d) Our proposed method.

Table 4.1 presents a quantitative measure for the DIBCO datasets and each score cal-

culated as an average over the whole dataset. The best and worst performances of the

contestants in the DIBCO are presented in Table 4.2. Our method consistently performs

well within the range of participants, and while we do not achieve results better than ev-

ery method the present method certainly performs admirably among the state-of-the-art

methods, most of which are quite sophisticated.
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(a) (b) (c) (d)

Figure 4.3: (a) Sample image of a restaurant bill taken with a mobile device. (b)
Ground truth image. (c) Sauvola’s binarized result. (d) Our proposed method.

Table 4.1: Table of various performance measures for a variety of datasets.

Dataset F-Measure p F-Measure PSNR DRD

Poem 94.5058 96.5595 18.9591 1.06575
1984 Excerpt 88.8768 90.9416 14.5885 2.40671

Restaurant Bill 87.2407 89.1336 15.9774 2.72693
DIBCO 2009 75.7127 76.4687 13.7456 7.45795
DIBCO 2010 67.6232 68.7829 14.6626 8.01906
DIBCO 2011 77.9079 74.6012 14.6867 6.27623
DIBCO 2012 81.5716 81.4511 16.2618 5.98124

Table 4.2: Table indicating the maximal and minimal performance measures of all
competition entrants for each year.

F-Measure p F-Measure PSNR DRD

Dataset min max min max min max max min

DIBCO 2009 35.28 91.24 - - 9.22 19.66 - -
DIBCO 2010 57.73 91.78 66.42 95.15 14.29 19.78 - -
DIBCO 2011 58.74 88.73 54.34 88.02 9.86 17.85 566.194 3.416
DIBCO 2012 75.23 79.41 79.41 95.09 15.94 21.80 23.107 2.660

The results presented in this section clearly illustrate the efficacy of the proposed method

for binarizing document images with non-uniform illumination, and high levels of noise

typically associated with low quality cameras, such as those found on camera phones

and mobile devices. The present method is exceedingly simple and intuitive while still

performing desirably. Furthermore the proposed method is novel in its derivation from

a partial differential equation as well as the isotropic nature. These features result in an

elegant yet simple method that is able to contend well with other methods. Approaching

the field of document image binarization from a partial differential equation model opens

the field to new and interesting approaches to solving this problem.
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4.5 Conclusion

This research has presented an elegant application of differential calculus to document

image binarization. We have shown how a physically derived equation may be tailored

to produce pleasing results in the field. A simple extension to the model that calculates

a adaptively, allows this method to be applied to images with nonuniform illumination

as well as high levels of noise and shadows as illustrated.

Furthermore this binarization algorithm enjoys the benefit of being derived from a phys-

ical model. This allows one to make use of the extensive numerical tools available for

solving partial differential equations. In this work we have employed a simple discretiza-

tion so that a massively parallel scheme may be exploited, leading to a computationally

efficient method. We omit a comparison of computational expense versus a serial im-

plementation of this method in the interest of brevity, however the gains in efficiency of

parallel implementations of finite difference schemes are well known, and go so far as to

compute real-time solutions of finite difference schemes [102–104].

We have compared our method with those that compete at the highest level in the

field and have achieved comparable results based on the DIBCO benchmark. This is

compounded with the fact that to the best of the authors’ knowledge the current method

is the only isotropic method derived from a partial differential equation.



Chapter 5

A Comparison of Two Hybrid

Methods for Solving Linear

Time-Fractional Partial

Differential Equations on a

Two-Dimensional Domain

“The mathematician does not study pure mathematics because it is useful; he studies it

because he delights in it and he delights in it because it is beautiful.”

Henri Poincare

This work has appeared in:

Jacobs, B. A., and C. Harley. “A Comparison of Two Hybrid Methods for Solving

Linear Time-Fractional Partial Differential Equations on a Two-Dimensional Domain.”

Abstract and Applied Analysis Special Issue: New Trends on Fractional and Functional

Differential Equations. Vol. 2014. Hindawi Publishing Corporation, 2014

A computationally efficient hybridization of the Laplace Transform with two spatial dis-

cretization techniques is examined for comparison in accuracy for the solution to time-

fractional linear partial differential equations on a bounded domain. The Chebyshev

Collocation method is compared with the standard Finite Difference spatial discretiza-

tion and the absolute error is obtained from the exact solution for select examples as a

49
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measure of performance. Extremely small errors are obtained in the Chebyshev Collo-

cation case under both Dirichlet and Neumann boundary conditions. The hybridization

with a transform allows a semi-analytic solution to be obtained that may be evaluated

anywhere in time without the need to time-march to a particular point in time.

5.1 Introduction

In recent years fractional derivatives and fractional partial differential equations (FPDEs)

have received great attention both in analysis and application (see [11, 32, 105] and ref-

erences therein). In spite of this there has been very little work done on solving FPDEs

on a bounded domain. Agrawal [106] makes use of the Laplace transform and the finite

sine transform to obtain an analytic solution to the fractional diffusion-wave equation on

a bounded domain. Many authors have applied He’s variational iterative method (VIM)

[107] to FPDEs with great success. However, like the differential transform method [108]

(DTM) and Adomian decomposition method [109](ADM), VIM assumes the FPDE to

lie on an infinite domain. To the best of the authors’ knowledge, these transform tech-

niques are unable to enforce Dirichlet or Neumann boundary conditions on a bounded

domain, and as such we investigate a new methodology to attempt to circumvent this.

The application of diffusion equations to images is abundant, [56–61]. However the

application of a time-fractional partial differential equation has not yet been thoroughly

examined. Preserving the spatial topography of an image is imperative to maintaining

what is deemed to be useful information in that image. It is with this application in

mind that we focus on the diffusion equation in two-dimensions, where the introduction

of an advection term into the model would propagate information. Similarly consider-

ing the time-fractional diffusion equation with 1 < α < 2 we obtain the diffusion-wave

equation, which again has propagational properties. We therefore restrict our choice of

α to be on [0, 1]. The introduction of a fractional-order derivative raises the question

of how to discretize or transform the derivative to produce a form that is amenable to

existing techniques.

The Grünwald-Letnikov discretization has been used for numerical schemes for frac-

tional partial differential equations [34–36] and is given by

Dα
t u(t) = lim

4t→0

1

4tα
j∑

k=0

ωαk u(t− k4t), (5.1)
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where

ωαk = (−1)k
(
α

k

)
, (5.2)

and M4t = t. Computationally this discretization becomes extremely expensive for

long time simulations as each subsequent step in time is dependant on every time step

that has preceded it.

The use of a transform method, such as the Laplace transform, allows one to circumvent

the problems that arise in the time-domain discretization. However, using the Laplace

transform for the fractional order derivative presents the problem of inverting the trans-

form to find a solution. Analytic inversion of the transform is infeasible and hence the

numerical scheme presented by Weideman and Trefethen in [110] is put to extensive use.

The algorithm presents a method for defining the parameters of the conformal mapping

to invert the Laplace transform by evaluating the Bromwich integral using the trape-

zoidal rule, achieving near optimal results (see [110] and figures therein). In this work

we make use of the parabolic contour due to the ease of use and the hyperbolic contour

only exhibits a slight improvement in performance over the parabolic contour.

We present here an extension to the work conducted by Jacobs and Harley in [111].

This paper extends the aforementioned work to the general form of a time-fractional

parabolic partial differential equation as well as including two types of boundary condi-

tions, dirichlet and neumann.

The to compare finite differences with Chebyshev collocation is largely informed by

the similarity in structure of numerical schemes juxtaposed by the dissimilarity in un-

derlying principles. The collocation technique makes use of global interpolants whereas

the finite difference interpolates linearly within local neighborhoods. There is an over-

head in complexity and computation associated with the Chebyshev collocation however

there is a gain in convergence rate and accuracy versus discretization resolution. It is

this idea of opposing yet similar approaches that justify the comparison of these two

specific discretization methods.

The following section introduces some preliminary definitions followed by a description

of the methods employed, including the different cases for boundary conditions in Sec-

tion 5.3. Section 5.5 presents the results for comparison based on three fundamentally

different examples of linear FPDEs. A discussion of the results and their relationship to

work beyond this research is presented in Section 5.6 and some concluding remarks are

made in Section 5.7.
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5.2 Preliminaries

In this work we employ Caputo’s definition of a fractional derivative over the Riemann-

Louiville derivative due to the fact that the Caputo derivative makes use of the physical

boundary conditions, whereas the Riemann-Louiville derivative requires fractional order

boundary conditions.

Definition 7. The Riemann-Louiville integral of order α > 0 of a function u(t) is

Jαu(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1u(τ)dτ, x > 0. (5.3)

Definition 8. The fractional derivative of u(t) according to the Caputo definition with

m− 1 < α ≤ m, m ∈ N, is

∂αu(t)

∂tα
= Jm−αDmu(t) = Dα

∗ u(t) :=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1u(m)(τ)dτ. (5.4)

If α = 1 the Caputo fractional derivative reduces to the ordinary first order derivative.

Podlubny [32] illustrates the pleasing property of the Laplace Transform of a Caputo

derivative, as can be seen in Eq. (5.5). In our case where 0 < α < 1 we have,

L
{
∂αu(x, y, t)

∂tα

}
= sαU(x, y)− sα−1u(x, y, 0). (5.5)

This property allows one to treat fractional order derivatives algebraically.

Definition 9. The Generalized Mittag-Leffler function of the argument z

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
. (5.6)

5.3 Methods: Semi-Discrete Hybrid Transform Method

This section introduces the methodologies used for a two-dimensional FPDE, where the

one-dimensional case is a simple reduction of the methods presented here.

Consider the time-fractional differential equation of the form

∂αu

∂tα
= L(u, ux, uxx, uy, uyy), (x, y) ∈ Ω ⊂ R2 (5.7)

with

u(x, y, 0) = f(x, y), (5.8)
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where L is a linear function of its arguments, Ω = [−1, 1]× [−1, 1] to satisfy the domain

required by the Chebyshev polynomials and f(x, y) is a functional representation of

our image data or a multivariable function. The boundary conditions may be taken to

be Dirichlet or Neumann and will be discussed later. We may now apply a Laplace

Transform to Eq. (5.7) to obtain,

sαU(x, y)− sα−1f(x, y) = L{L(u, ux, uxx, uy, uyy)} , (5.9)

sαU(x, y)− sα−1f(x, y) = L(U,Ux, Uxx, Uy, Uyy), (5.10)

where

L{u(x, y, t)} = U(x, y, s). (5.11)

Boundary conditions may be in the form of Dirichlet conditions,

u(−1, y, t) = a, u(1, y, t) = b, (5.12)

u(x,−1, t) = c, u(x, 1, t) = d, (5.13)

and hence,

U(−1, y) = L{a} , U(1, y) = L{b} , (5.14)

U(x,−1) = L{c} , U(x, 1) = L{d} . (5.15)

Alternatively Neumann boundary conditions give,

ux(−1, y, t) = a, ux(1, y, t) = b, (5.16)

uy(x,−1, t) = c, uy(x, 1, t) = d, (5.17)

with,

Ux(−1, y) = L{a} , Uy(1, y) = L{b} , (5.18)

Uy(x,−1) = L{c} , Uy(x, 1) = L{d} . (5.19)

The parameters a, b, c and d are potentially functions of the temporal variable and one

of the spatial variables, i.e. a = a(y, t). Without loss of generality however, we assume

that a, b, c and d are constant.

The spatial components of this model are discretized in two ways - by Cheyshev Collo-

cation and by finite differences.
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5.3.1 Chebyshev Collocation

Chebyshev polynomials form a basis on [−1, 1] and hence we dictate the domain of our

PDE to be Ω. We note here however, that any domain in R2 can be trivially deformed

to match Ω. We discretize our spatial domain using Chebyshev-Gauss-Labatto points,

xi = cos

(
iπ

Nx

)
, i = 0, 1, . . . , Nx, yj = cos

(
jπ

Ny

)
, j = 0, 1, . . . , Ny. (5.20)

Note here that x0 = 1, xNx = −1, y0 = 1 and yNy = −1 indicating that the domain

is in essence reversed and one must use caution when imposing the boundary conditions.

Given that our input function or image has been mapped to Ω we may assume that

Nx = Ny, i.e. we have equal number of collocation points in each spatial direction. We

now define a differentiation matrix D(1) = dkl,

dkl =



ck(−1)k+l
cl(xk−xl) , k 6= l,

− xk
2(1−x2k)

, k = l,

1
6

(
2N2

x + 1
)
, k = l = 0,

−1
6

(
2N2

x + 1
)
, k = l = Nx,

where ck =

{
2, k = 0, Nx,

1, k = 1, . . . , Nx − 1.

(5.21)

Bayliss et al. [75] describe a method for minimizing the round off errors incurred in the

calculations of the differentiation matrix. Since we write D(2) = D(1).D(1) we implement

the method, described in [75], in order to minimize propagation of round off errors for

the second derivative in space.

The derivative matrices in the x direction are

D̂(1)
x = D(1), D̂(2)

x = D(2), (5.22)

where D(1) is the Chebyshev differentiation matrix of size (Nx + 1)× (Ny + 1).

Because we have assumed Nx = Ny we derive the pleasing property that D̂
(1)
y =

(
D̂

(1)
x

)T
and D̂

(2)
y =

(
D̂

(2)
x

)T
.

Writing the discretization of Eq. (5.10) in matrix form yields,

D̂(2)
x U + UD̂(2)

y − sαU = −F, (5.23)

where

Fij = sα−1f(xi, yj). (5.24)
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By expanding Eq. (5.23) in summation notation we have

Nx∑
k=0

d
(2)
ik U(xk, yj) +

Ny∑
k=0

d
(2)
kj U(xi, yk)− sαU(xi, yj) = −sα−1f(xi, yj), (5.25)

for i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny. By extracting the first and last terms in sums we

obtain

d
(2)
i0 U(x0, yj) + d

(2)
iNx

U(xNx , yj) + d
(2)
0j U(xi, y0) + d

(2)
Nyj

U(xi, yNy)+

Nx−1∑
k=1

d
(2)
ik U(xk, yj) +

Ny−1∑
k=1

d
(2)
kj U(xi, yk)− sαU(xi, yj) = −sα−1f(xi, yj), (5.26)

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1. We use the form of Eq. (5.26) to impose the

boundary conditions.

The solution Ũ = {U(x1, y1), U(x1, y2), . . . , U(xNx−1, yNy−1)}, which is the matrix of

unknown interior points of U, can be found by solving the system

(Ã− sαI)Ũ + ŨB̃ = −F̃, (5.27)

where Ã is the matrix of interior points of D̂
(2)
x , and B̃ is the matrix of interior points

of D̂
(2)
y , so that Ã and B̃ match the dimensions of Ũ. Also

F̃ij = sα−1f(xi, yj) + d
(2)
i0 U(x0, yj) + d

(2)
iNx

U(xNx , yj) + d
(2)
0j U(xi, y0) + d

(2)
Nyj

U(xi, yNy),

(5.28)

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1. By using Kronecker tensor products, denoted

by ⊗, and a lexicographic reordering, or reshaping, of Ũ and −F̃ we may write this as(
(Ã− sαI)⊗ I + I⊗ B̃T

)
Ũ = −F̃, (5.29)

which is a linear system that is readily solved.

5.3.1.1 Dirichlet Boundary Conditions

Dirichlet boundary conditions can be imposed directly by substituting Eqs. (5.12) and

(5.13) into Eq. (5.26) and collecting all the known terms in F̃.
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5.3.1.2 Neumann Boundary Conditions

Neumann boundary conditions given by Eqs. (5.14) are discretized as

∂U

∂x
(xNx = −1, yj) ≈

Nx∑
k=0

dNxkU(xk, yj) = L{a} , (5.30)

∂U

∂x
(x0 = 1, yj) ≈

Nx∑
k=0

d0kU(xk, yj) = L{b} . (5.31)

Similarly for Eqs. (5.15)

∂U

∂y

(
xi, yNy = −1

)
≈

Ny∑
k=0

dkNyU(xi, yk) = L{c} , (5.32)

∂U

∂y
(xi, y0 = 1) ≈

Ny∑
k=0

dk0U(xi, yk) = L{d} . (5.33)

By extracting the first and last terms in the sum, the discretizations can be written as(
dNx0 dNxNx

d00 d0Nx

)(
U(x0, yj)

U(xNx , yj)

)
=

(
L{a} −

∑Nx−1
k=1 dNxkU(xk, yj)

L{b} −
∑Nx−1

k=1 d0kU(xk, yj)

)
(5.34)

and (
d0Ny dNyNy

d00 dNy0

)(
U(xi, y0)

U(xi, yNy)

)
=

(
L{c} −

∑Ny−1
k=1 dkNyU(xi, yk)

L{d} −
∑Ny−1

k=1 dk0U(xi, yk)

)
(5.35)

The solutions to these linear systems are then substituted into Eq. (5.26).

5.3.2 Finite Difference Discretization

Below we make use of the following finite difference formulae

∂U

∂x
≈ 1

24x
(Ui+1,j − Ui−1,j) , (5.36)

∂U

∂y
≈ 1

24y
(Ui,j+1 − Ui,j−1) , (5.37)

∂2U

∂x2
≈ 1

4x2
(Ui+1,j − 2Ui,j + Ui−1,j) , (5.38)

∂2U

∂y2
≈ 1

4y2
(Ui,j+1 − 2Ui,j + Ui,−1j) , (5.39)

where 4x = 2/Nx and 4y = 2/Ny.



Chapter 5. Laplace Transform-Chebyshev Collocation Hybrid Method of Solution 57

5.3.2.1 Dirichlet Boundary Conditions

Discretizing Eq. (5.10) using a standard central-difference scheme and writing in matrix

notation we deduce

(C̃− sαI)Ũ + ŨD̃ = −G̃, (5.40)

where C̃ and D̃ are tridiagonal matrices corresponding to the finite difference differential

matrix with dimension (Nx − 1, Ny − 1) and

G̃ij = sα−1f(xi, yj), i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1. (5.41)

We write this as a linear system to be solved as follows((
C̃− sαI

)
⊗ I + I⊗ D̃T

)
Ũ = −G̃. (5.42)

The boundary conditions, Eqs. (5.12) and (5.13), can be enforced directly onto the

matrix U, where the interior points of U are Ũ.

5.3.2.2 Neumann Boundary Conditions

By discretizing the boundary conditions Eq. (5.14) and Eq. (5.15) using a standard

central difference scheme we derive

U−1,j = U1,j − 24xL{a} , (5.43)

UNx+1,j = UNx−1,j + 24xL{b} , (5.44)

Ui,−1 = Ui,1 − 24yL{c} , (5.45)

Ui,Ny+1 = Ui,Ny−1 + 24yL{d} . (5.46)

Including the above conditions in the matrix C and D each with dimension (Nx+1, Ny+

1) we can write the entire system as

(C− sαI)U + UD = −G, (5.47)

where

Gij = sα−1f(xi, yj), i = 0, . . . , Nx, j = 0, . . . , Ny. (5.48)

This may be solved as a linear system by writing

(
(C− sαI)⊗ I + I⊗DT

)
U = −G. (5.49)
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5.4 Analysis

5.4.1 Solvability

We have reduced all four cases to a system of linear systems, presented in Eqs. (5.29),

(5.42) and (5.49). A system Mx = b has a unique solution, x = M−1b, provided the

matrix M has an inverse M−1 that exists. In the following analysis we denote the length

in one dimension of the respective matrix M by L, since this length is scheme dependent.

5.4.1.1 Finite Difference Scheme

The finite difference structure allows us to put to use the well known condition that a

positive-definite matrix is invertible. Therefore we derive a criterion on s that ensures

the matrix M, for the finite difference scheme, is always positive-definite. The structure

of the matrix on the right hand side of Eqs. (5.42) and (5.49) defines this criterion as

|mii| >
L∑

k=1
k 6= i

|mik|, (5.50)

which reduces to, in the pathological case,

|4 + sα| > 2. (5.51)

In approximating the Bromwich integral by the trapezoidal rule we truncate the limits of

integration from (−∞,∞) to [−Nt, Nt]. The contour path of the integral is defined to be

a parabola, denoted as s above, in the complex plane with a minimum proportional to the

truncation parameter Nt and inversely proportional to the final time we are integrating

to, t1. This means that provided the ratio Nt/t1 is sufficiently large the parabola will

traverse the complex space avoiding the lower bound required by the condition (5.51).

Hence the finite difference scheme is solvable provided one chooses parameters for the

evaluation of the Bromwich integral that satisfy the above condition. An example of the

above condition is illustrated in Figure 5.1 where the quarter-circle of radius 2 represents

the lower bound required by the above condition.
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Figure 5.1: Integration Contour in the Real-Imaginary Plane Non-Intersecting with
the lower bound for α = 0.75.

5.4.1.2 Chebyshev Collocation

In the case of Chebyshev collocation the solvability criterion is a little more difficult to

satisfy, and hence we are only able to derive a necessary criterion that our choice of

inversion parameters must satisfy.

Proposition 1. If M is an irreducible diagonally dominant matrix for which |mii| >
L∑

k=1
k 6= i

|mik| for at least one i, then M is invertible [112].

The proof to the above proposition may be found in [112]. A matrix is irreducible if it

is no reducible. The definition of a reducible matrix is given below.
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Definition 10. A square n×n matrix M = mij is called reducible if the indices 1, 2, ..., n

can be divided into two disjoint nonempty sets i1, i2, . . . , iµ and j1, j2, . . . , jν (with µ+ν =

n) such that

miajb = 0

for a = 1, 2, ..., µ and b = 1, 2, ..., ν.

All that is left is to show that our matrix M is always irreducible and satisfies Proposition

1 for some i. We note that the differentiation matrices are constructed to be dense and

hence, M is trivially irreducible. Once again the structure of Eq. (5.29) dictates the

condition which is required for the matrix M to satisfy Proposition 1. This condition,

given by

|mii| >
L∑

k=1
k 6= i

|mik|, (5.52)

reduces to

|2d(2)ii − s
α| >

L∑
k=1
k 6= i

2|dik|. (5.53)

The above condition is easy to verify in practice. However due to the dependence of

the derivative matrix on the resolution parameters Nx and Ny it is difficult to write

a general condition in closed form. Appropriate choices of parameters in the inversion

resolution ensure the scheme is solvable as described in the previous section. Given the

derivative matrix for Chebyshev collocation is full the right-hand side of the solvability

condition (5.53) produces a lower bound with a much larger magnitude than in the finite

difference case moreover the lower bound grows with Nx. Examples of contours are given

for Nx = 5 in Figure 5.2 and for Nx = 20 in Figure 5.3 illustrating the adherence of a

well constructed contour to the solvability condition (5.53).

5.4.2 Accuracy

5.4.3 Finite Difference Scheme

Theoretically the accuracy of the method is well-known to be O(4x2) +O(4y2) [112].

The errors obtained in Section 5.5 concur with theoretical bounds.

5.4.4 Chebyshev Collocation

The work of Breur and Everson [113] and Don and Solomonoff [114] both present ar-

guments on the accuracy of Chebyshev collocation. In practice the accuracy of the
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Figure 5.2: Integration Contour in the Real-Imaginary Plane Non-Intersecting with
the lower bound for α = 0.75 and Nx = 5.

method is measured by numerically differentiating a function and comparing the nu-

merical derivative with the analytic result. The results obtained in the current work

are consistent with the results presented in [113, 114] obtaining very good errors for

small values of Nx and Ny. The errors in Chebyshev collocation tend to increase rather

drastically for very large values of Nx contradicting the typical rule of thumb. The

aforementioned work explains that while the truncation error decreases as resolution

increases, the round-off errors accumulate dramatically and dominate.



Chapter 5. Laplace Transform-Chebyshev Collocation Hybrid Method of Solution 62

0 5000 10 000 15 000 20 000
0

5000

10 000

15 000

20 000

Re

Im

Figure 5.3: Integration Contour in the Real-Imaginary Plane Non-Intersecting with
the lower bound for α = 0.75 and Nx = 20.

5.5 Results

5.5.1 Example 1: One-Dimensional Time-Fractional Diffusion Equa-

tion with Homogenous Neumann Boundary Conditions

We consider first the time-fractional diffusion equation in one dimension

∂αu

∂tα
=
∂2u

∂x2
, (5.54)

subject to the boundary conditions

ux(−1, t) = 0, ux(1, t) = 0, (5.55)

and initial condition

u(x, 0) = cos
(π

2
(x+ 1)

)
. (5.56)
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The results obtained by finite differences and Chebyshev collocation were compared to

the exact solution given by Kazemi and Erjaeea [115] as

u(x, t) = cos
(π

2
(x+ 1)

)
(1− tαEα,1+α(−tα)) , (5.57)

where Eα,β(z) is the Generalized Mittag-Leffler function of the argument z. We select

α = 0.8 in line with [115], however experimental results indicate that the methods

are robust for virtually any value of 0 < α ≤ 1. We note here that the domain was

originally [0, π] and hence a linear transformation in the spatial variables is required to

map the domain to [−1, 1], which is in accordance with the domain of the Chebyshev

polynomials. The errors in the finite difference and Chebyshev schemes are tabulated

below in Table 5.1. Figures 5.4 and 5.5 illustrate the diminishing error incurred in the

Nx Error in Finite Difference Error in Chebyshev Collocation

5 0.009927020087821425 0.0009403962041890646
10 0.002471078174960284 2.5800430680789077×10−8

15 0.0010985435173019864 9.547918011776346×10−15

20 0.0006179865325516287 8.992806499463768×10−15

Table 5.1: Maximum absolute error in the presented method’s solution of the problem
described by Example 1 at time t = 0.5.

process of inverting the Laplace transform. Inversion of the Laplace transform, even in

the analytic case, can lead to a singularity at t = 0. This arises in the numerical inversion

and results in a relatively large error in the present schemes near t = 0. However this

error diminishes rapidly and our schemes obtain an accurate solution.

5.5.2 Example 2: Diffusion Advection Equation with Dirichlet Bound-

ary Conditions

This example considers the time-fractional diffusion-advection equation in one dimension

∂αu

∂tα
=
∂2u

∂x2
+
∂u

∂x
, (5.58)

subject to

u(−1, t) = e−1, u(1, t) = e−1. (5.59)

and

u(x, 0) = e−x
2
. (5.60)

To the authors’ knowledge no exact solution exists for the time-fractional diffusion-

advection equation. Comparing the present methods with NDSolve in Mathematica 9
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Figure 5.4: Log Plot Illustrating the Diminishing Average Error in the Chebyshev
Collocation Scheme with Time for Example 1.
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Figure 5.5: Log Plot Illustrating the Diminishing Average Error in the Finite Differ-
ence Scheme with Time for Example 1.

yields satisfactory results for α = 1, but no solution can be found for fractional α.

We instead compare our solutions in the Laplace domain, where we obtain an exact

solution to the transformed equation using DSolve in Mathematica 9. This allows one

to compare the performance of the present methods for various values for α. The errors

obtained, for α = 0.7, are presented in Table 5.2. Given that these errors are valid in

the transform domain we note that the numerical error of O(8.12−Nt) is incurred upon
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inversion of the Laplace transform, as presented by Weideman and Trefethen in [110]

and where Nt is typically 50.

Nx Error in Finite Difference Error in Chebyshev Collocation

5 0.0002846591036554467 0.000031320115677323235
10 0.0003424383347704913 5.981351275385904×10−9

15 0.00028950142395197005 5.763522471780025×10−12

20 0.0002476113730374256 5.538704044016907×10−12

Table 5.2: Maximum absolute error in the presented method’s solution of the problem
described by Example 2 in the Laplace domain at s = 50.

5.5.3 Example 3: Two-Dimensional Time-Fractional Diffusion Equa-

tion with Homogenous Dirichlet Boundary Conditions

We now consider the two-dimensional time-fractional diffusion equation

∂αu

∂tα
=
∂2u

∂x2
+
∂2u

∂y2
, (5.61)

with boundary conditions

u(−1, y, t) = 0, u(1, y, t) = 0, (5.62)

u(x,−1, t) = 0, u(x, 1, t) = 0, (5.63)

and initial condition

u(x, y, 0) = sin(π(x+ 1))sin(π(y + 1)), (5.64)

so that the boundary conditions are consistent with the initial condition. The parameter

α is taken to be 0.8. Momani [116] gives an exact solution as

u(x, y, t) = sin(π(x+ 1))sin(π(y + 1))Eα(−2tα) (5.65)

where Eα(z) = Eα,1(z) is the Mittag-Leffler function of order α. The efficacy of these

methods for fractional order derivatives is illustrated in Table 5.3.

5.6 Discussion

The results above strongly advocate the use of Chebyshev collocation as a spatial dis-

cretization method given the rapid error reduction with increasing spatial resolution.
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Nx Error in Finite Difference Error in Chebyshev Collocation

5 0.038120869340055985 0.0064580077147820825
10 0.009341572386976915 8.103172060291985×10−7

15 0.004521845750043552 3.937461467984349×10−12

20 0.002567981542938025 6.517009154549669×10−13

Table 5.3: Maximum absolute error in the presented method’s solution of the problem
described by Example 3 at time t = 0.5.

These hybrid methods present a robust way in which one can solve linear time-fractional

partial differential equations on a bounded domain with Neumann or Dirichlet boundary

conditions, particularly given discrete initial data.

Chebyshev collocation presents extremely small errors when compared to the exact so-

lution. We use numerical experiments as substantiation of the method for applying

discrete initial conditions where an exact solution may not exist.

The efficiency of the Laplace transform within the context of this hybridized method

over a time-marching scheme is three-fold. First we are able to treat the fractional-order

derivative algebraically. The error incurred in the temporal dimension is only attributed

to the evaluation of the Bromwich integral and furthermore, this error drops off rapidly

with increased resolution as illustrated in [110]. Finally the solution obtained is semi-

analytic in the sense that it is a function of time so that we may evaluate our solution

at any time rather than needing to march to that time. The Grünwald-Letnikov dis-

cretization presented in equation (5.1) is an example of a time-marching scheme. The

computational time required for a long time solution via the Grünwald-Letnikov dis-

cretization is enormous, due to the fractionality being dependant on every time step

that precedes the current time. Moreover every time step incurs a truncation error, so

that the further the solution marches the greater the error, contrastingly the present

method’s error diminishes as time evolves. As a counter-point, if one were seeking a

solution after a very short time, then a time-marching scheme may be better suited.

5.7 Conclusions

This research has presented a numerical experimental comparison between the standard

finite difference method and the Chebyshev collocation method as a means of spatial

discretization when hybridized with the Laplace transform. These methods enjoy the

benefits of an exact transform in temporal variable and furthermore allow one to easily

and efficiently deal with a fractional order derivative, at the cost of numerically inverting
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the Laplace transform.

The goal of these methods is to apply a fractional order diffusion equation to an image

on a bounded two-dimensional domain. The use of a discretization is therefore unavoid-

able given that the initial condition may in fact be discrete.

The solution to the discretized equations are found by writing a two-dimensional system

of size Nx×Nx and Ny ×Ny as a one-dimensional system of size NxNy ×NxNy. While

this is more computational expensive it does exhibit an elegance in construction. An

alternative approach would be to implement an Alternating-Direction Implicit (ADI)

type scheme [37], where each dimension is acted on in turn rather than at once.

Due to the Laplace transform being a linear operator this method is not suitable for

nonlinear problems, nor is it applicable to FPDEs with both fractional spatial deriva-

tives and fractional temporal derivatives.

We have shown a hybrid method combing an analytic transform and a spatial discretiza-

tion can be extremely effective at solving linear FPDEs on a two-dimensional bounded

domain with Dirichlet or Neumann boundary conditions.



Chapter 6

Application of Hybrid Laplace

Method to Nonlinear

Time-Fractional Partial

Differential Equations via

Quasi-Linearization

“The life of a mathematician is dominated by an insatiable curiosity, a desire bordering

on passion to solve the problems he is studying.”

Jean Dieudonne

This work has been submitted under:

Jacobs, B. A., and C. Harley. “Application of Hybrid Laplace Method to Nonlinear

Time-Fractional Partial Differential Equations via Quasi-Linearization.” Discrete and

Continuous Dynamical Systems - Series B.

This work considers a hybrid solution method for the time-fractional diffusion model

with a cubic nonlinear source term in one and two dimensions. Both Dirichlet and

Neumann boundary conditions are considered for each dimensional case. The hybrid

method involves a Laplace transformation in the temporal domain which is numerically

inverted and Chebyshev collocation is employed in the spatial domain due to its increased

accuracy over a standard finite difference discretization. Due to the fractional-order

68
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derivative we are only able to compare the accuracy of this method with Mathematica’s

NDSolve where possible, however a detailed discussion of the merits and shortcomings

of the proposed hybridization is presented. An application to image processing via a

finite-difference discretization is included in order to substantiate the method.

6.1 Introduction

This work examines the performance of a hybrid Laplace Transform - Chebyshev col-

location technique applied to the time-fractional diffusion equation in two-dimensions

with a nonlinear source term:

utα = cd (uxx + uyy) + csu(1− u)(u− a) (6.1)

where

utα =
∂αu

∂tα
, uxx =

∂2u

∂x2
and uyy =

∂2u

∂y2
. (6.2)

This model is explored subject to both Dirichlet and Neumann boundary conditions

on the bounded domain Ω = [−1, 1] × [−1, 1] to satisfy the domain required by the

Chebyshev polynomials with initial condition u(x, y, 0) = f(x, y). This method benefits

from the analyticity of the Laplace transform and efficient numerical inversion of this

transform, an accurate discretization approach through Chebyshev collocation and a

convergent linearization technique, which results in a robust method for solving nonlin-

ear time-fractional partial differential equations on a bounded domain. Following the

method detailed by Jacobs and Harley in [111, 117] we also employ a finite-difference

discretiaztion in applying this method to images. This is elaborated on further in Sec-

tion 6.5.

Recently fractional derivatives and fractional partial differential equations (FPDEs) have

received great attention both in analysis and application (see [11, 32, 105] and references

therein). Despite this large effort, very little attention has been paid to solving FPDEs

on a bounded domain through transformation techniques. Agrawal [106] makes use of

the Laplace transform and the finite sine transform to obtain an analytic solution to the

fractional diffusion-wave equation on a bounded domain. Other techniques such as the

variational iteration method, Adomian decomposition method and differential transform

method have all been applied to fractional partial differential equations but with a focus

on unbounded domains.

The linear diffusion model has been applied in many different fields including image

processing [56–61]. However, to the best of the authors’ knowledge, the application
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of a time-fractional partial differential equation has not yet been thoroughly examined

within such a context. It is from the standpoint of applying a fractional partial differen-

tial equation to an image that leads us to examine the time-fractional diffusion equation

in two-dimensions. In a recent paper Jacobs and Momoniat [88] show that the diffusion

equation with this nonlinear source term is able to binarize a document image with great

success. In extending this concept to fractional order derivatives, we seek to preserve the

symmetry of the diffusion equation. Values of α ∈ (0, 1] resolve the diffusion equation to

sub-diffusion, which preserves symmetry and exhibits some interesting dynamics which

are discussed later on in this work. Values of α > 1 introduce a transport effect which

then breaks symmetry. It is for this reason that we impose the restriction, α ∈ (0, 1].

In this work we make use of the Laplace transform which allows us to handle the

fractional-order derivative in an algebraic way, and incur no error in doing so. In-

version of the Laplace transform is however difficult to obtain analytically. We therefore

make extensive use of the numerical inversion procedure described by Weideman and

Trefethen in [110] which defines a contour of integration that maps the domain of the

Bromwich integral from the entire complex space to the real space, from which we can

approximate this integral with a trapezoidal rule. The authors present two contours, of

which we select the hyperbolic contour due to its superior performance.

With a robust method for inverting the Laplace transform we may then hybridize the

transform with a discretization technique. The Laplace transform of the temporal vari-

able avoids the need for a time-marching scheme as well as reducing the fractional order

derivative to an algebraic expression. The transformed model is then discretized by use

of Chebyshev Collocation due to its superior performance to finite differences as illus-

trated in [111, 117]. The resulting system is solved and the transform inverted to obtain

a semi-analytic solution, continuous in time and discrete in space.

In the following section we present some preliminary results which are put to use through-

out the paper. In Section 6.3 the implemented methods are described, including the

different cases for boundary conditions. Section 6.4 presents the solutions obtained by

the proposed method as well as an error comparison with Mathematica’s NDSolve for

the one and two dimensional cases of our model as well as both Dirichlet and Neumann

boundary conditions. In Section 6.5 we provide a real-world application of this method

and model in the form of document image binarization, illustrating the ability to ob-

tain a useful result with the present method when coupled with the finite-difference

discretization. A discussion of the results and their relationship to work beyond this

research is presented in Section 6.6 and some concluding remarks are made in Section

6.7.
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6.2 Preliminaries

In this work we employ Caputo’s definition of a fractional derivative over the Riemann-

Louiville derivative due to the fact that the Caputo derivative makes use of the physical

boundary conditions, whereas the Riemann-Louiville derivative requires fractional order

boundary conditions.

Definition 11. The Riemann-Louiville integral of order α > 0 of a function u(t) is

Jαu(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1u(τ)dτ, x > 0. (6.3)

Definition 12. The fractional derivative of u(t) according to the Caputo definition with

m− 1 < α ≤ m, m ∈ N, is

∂αu(t)

∂tα
= Jm−αDmu(t) = Dα

∗ u(t) :=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1u(m)(τ)dτ. (6.4)

If α ∈ Z the Caputo fractional derivative reduces to the ordinary derivative or integral.

Podlubny [32] illustrates the pleasing property of the Laplace Transform of a Caputo

derivative, as can be seen in equation (6.5). In our case where 0 < α < 1 we have,

L
{
∂αu(x, y, t)

∂tα

}
= sαU(x, y)− sα−1u(x, y, 0). (6.5)

This property allows one to treat fractional order derivatives algebraically.

Definition 13. The Generalized Mittag-Leffler function of the argument z

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
. (6.6)

6.3 Methods

This section introduces the methodologies used for the two-dimensional model previously

presented. We may write our model as

cduxx + cduyy + cs(a+ 1)u2 − csau− csu3 − utα = Φ(uxx, u, utα) = 0. (6.7)

The quasi-linearization technique can be viewed as a generalized Newton-Raphson method

in functional space. An iterative scheme is constructed creating a sequence of linear

equations that approximate the nonlinear equation (6.7) and boundary conditions. Fur-

thermore, this sequence of solutions converges quadratically and monotonically [76–78].
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The quasi-linear form is given by

cdu
n+1
xx + cdu

n+1
yy +Xn

1 u
n+1 +Xn

2 u
n+1
tα = Xn

3 , (6.8)

where n indicates the index of successive approximation. Moreover, u(x, y, t)n is known

entirely at the explicit index n. The coefficients are given by

Xn
1 =

∂Φ

∂u
= cs2(a+ 1)un − csa− 3cs(u

n)2, (6.9)

and

Xn
2 =

∂Φ

∂utα
= −1. (6.10)

If u = (uxx, uyy, u, utα) indexed by j then

Xn
3 =

∑
j

unj
∂Φ

∂uj
,

=

[
uxx

∂Φ

∂uxx
+ uyy

∂Φ

∂uyy
+ u

∂Φ

∂u
+ utα

∂Φ

∂utα

]n
,

=
[
cduxx + cduyy + 2(a+ 1)u2 − au− 3u3 − (utα)

]n
,

=
[
cduxx + cduyy + (a+ 1)u2 − au− u3 − (utα)

]n
+
[
(a+ 1)u2 − 2u3

]n
. (6.11)

Since the first term above satisfies the equation (6.7) it is replaced with 0 giving

Xn
3 =

[
(a+ 1)u2 − 2u3

]n
. (6.12)

Equation (6.8) can now be transformed by the Laplace Transform, a linear operator, to

obtain

cdU
n+1
xx + cdU

n+1
yy +Xn

1 U
n+1 − sαUn+1 =

Xn
3

s
− sα−1f(x, y), (6.13)

where

U(x, y, s) = L{u(x, y, t)} . (6.14)

Equation (6.13) may be discretized by Chebyshev Collocation, described in the following

section.

6.3.1 Chebyshev Collocation

Chebyshev polynomials form a basis on [−1, 1] and hence we dictate the domain of our

PDE to be Ω = [−1, 1]n where n indicates the number of spatial dimensions, which

in this case is n = 2. We note here however, that any domain in R2 can be trivially

deformed to match Ω. We discretize our spatial domain using Chebyshev-Gauss-Labatto



Chapter 6. Application of Hybrid Laplace Method to Nonlinear Time-Fractional Partial
Differential Equations via Quasi-Linearization 73

points,

xi = cos

(
iπ

Nx

)
, i = 0, 1, . . . , Nx, yj = cos

(
jπ

Ny

)
, j = 0, 1, . . . , Ny. (6.15)

Given this choice of spatial discretization we have x0 = 1, xNx = −1, y0 = 1 and

yNy = −1 indicating that the domain is in essence reversed and one must exercise cau-

tion when imposing the boundary conditions.

In mapping our domain to Ω we may assume that Nx = Ny, i.e. we have equal number

of collocation points in each spatial direction. We now define a differentiation matrix

D(1) = dkl,

dkl =



ck(−1)k+l
cl(xk−xl) , k 6= l,

− xk
2(1−x2k)

, k = l,

1
6

(
2N2

x + 1
)
, k = l = 0,

−1
6

(
2N2

x + 1
)
, k = l = Nx,

where ck =

{
2, k = 0, Nx,

1, k = 1, . . . , Nx − 1.

(6.16)

Bayliss et al. [75] describe a method for minimizing the round off errors incurred in the

calculations of higher order differentiation matrices. Since we write D(2) = D(1).D(1) we

implement the method, described in [75], in order to minimize propagation of round off

errors for the second derivative in space.

The derivative matrices in the x direction are

D̂(1)
x = D(1), D̂(2)

x = D(2), (6.17)

where D(1) is the Chebyshev differentiation matrix of size (Nx + 1)× (Ny + 1).

Because we have assumed Nx = Ny we derive the pleasing property that D̂
(1)
y =

(
D̂

(1)
x

)T
and D̂

(2)
y =

(
D̂

(2)
x

)T
.

Writing the discretization of equation (6.13) in matrix form yields,

D̂(2)
x Un+1 + Un+1D̂(2)

y +Xn
1 Un+1 − sαUn+1 =

Xn
3

s
− F, (6.18)

where

Fij = sα−1f(xi, yj). (6.19)
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By expanding equation (6.18) in summation notation we have

Nx∑
k=0

d
(2)
ik U

n+1(xk, yj) +

Ny∑
k=0

d
(2)
kj U

n+1(xi, yk)+

[X1]
n
i,j U

n+1(xi, yj)− sαUn+1(xi, yj) =
[X3]

n
i,j

s
− sα−1f(xi, yj), (6.20)

for i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny. By extracting the first and last terms in sums we

obtain

d
(2)
i0 U

n+1(x0, yj) + d
(2)
iNx

Un+1(xNx , yj) + d
(2)
0j U

n+1(xi, y0) + d
(2)
Nyj

Un+1(xi, yNy)+

Nx−1∑
k=1

d
(2)
ik U

n+1(xk, yj) +

Ny−1∑
k=1

d
(2)
kj U

n+1(xi, yk) + [X1]
n
i,j U

n+1(xi, yj)−

sαUn+1(xi, yj) =
[X3]

n
i,j

s
− sα−1f(xi, yj), (6.21)

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1. We use the form of equation (6.21) to impose

the boundary conditions.

The solution Ũ = {U(x1, y1), U(x1, y2), . . . , U(xNx−1, yNy−1)}, which is the matrix of

unknown interior points of U, can be found by solving the system

(Ã− sαI)Ũ + Xn
1 ◦ Ũ + ŨB̃ =

Xn
3

s
− F̃, (6.22)

where Ã is the matrix of interior points of D̂
(2)
x , and B̃ is the matrix of interior points

of D̂
(2)
y , so that Ã and B̃ match the dimensions of Ũ. We also use ◦ to denote the

Hadamard product between two matrices. Also

F̃ij = sα−1f(xi, yj) + d
(2)
i0 U(x0, yj) + d

(2)
iNx

U(xNx , yj) + d
(2)
0j U(xi, y0) + d

(2)
Nyj

U(xi, yNy),

(6.23)

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1.

6.3.1.1 Dirichlet Boundary Conditions

Boundary conditions may be in the form of Dirichlet conditions,

u(−1, y, t) = a, u(1, y, t) = b, (6.24)

u(x,−1, t) = c, u(x, 1, t) = d, (6.25)
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and hence,

U(−1, y) = L{a} , U(1, y) = L{b} , (6.26)

U(x,−1) = L{c} , U(x, 1) = L{d} . (6.27)

The parameters a, b, c and d are potentially functions of the temporal variable and one

of the spatial variables, i.e. a = a(y, t). We assume that a, b, c and d are constant.

Dirichlet boundary conditions can be imposed directly by substituting equations (6.24)

and (6.25) into equation (6.21) and collecting all the known terms in F̃.

6.3.1.2 Neumann Boundary Conditions

Alternatively Neumann boundary conditions give,

ux(−1, y, t) = a, ux(1, y, t) = b, (6.28)

uy(x,−1, t) = c, uy(x, 1, t) = d, (6.29)

with,

Ux(−1, y) = L{a} , Uy(1, y) = L{b} , (6.30)

Uy(x,−1) = L{c} , Uy(x, 1) = L{d} . (6.31)

Neumann boundary conditions given by equations (6.26) are discretized as

∂U

∂x
(xNx = −1, yj) ≈

Nx∑
k=0

dNxkU
n(xk, yj) = L{a} , (6.32)

∂U

∂x
(x0 = 1, yj) ≈

Nx∑
k=0

d0kU
n(xk, yj) = L{b} . (6.33)

Similarly for equations (6.27)

∂U

∂y

(
xi, yNy = −1

)
≈

Ny∑
k=0

dkNyU
n(xi, yk) = L{c} , (6.34)

∂U

∂y
(xi, y0 = 1) ≈

Ny∑
k=0

dk0U
n(xi, yk) = L{d} . (6.35)
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By extracting the first and last terms in the sum, the discretizations can be written as(
dNx0 dNxNx

d00 d0Nx

)(
Un(x0, yj)

Un(xNx , yj)

)
=

(
L{b} −

∑Nx−1
k=1 d0kU

n(xk, yj)

L{a} −
∑Nx−1

k=1 dNxkU
n(xk, yj)

)
(6.36)

and(
d0Ny dNyNy

d00 dNy0

)(
Un(xi, y0)

Un(xi, yNy)

)
=

(
L{d} −

∑Ny−1
k=1 dk0U

n(xi, yk)

L{c} −
∑Ny−1

k=1 dkNyU
n(xi, yk)

)
(6.37)

The solutions to these linear systems are then substituted into equation (6.21).

6.4 Results

In this section we consider only the results obtained by Chebyshev collocation due to

the enormous increase in accuracy obtained over the finite-difference method that was

presented by the authors in [111, 117].

6.4.1 Example 1

The first example we consider

u(x, 0) = e−x
2
, (6.38)

with Dirichlet boundary conditions consistent with this initial condition,

u(−1, t) = u(1, t) = e−1. (6.39)

Table 6.1 below illustrates the maximum absolute error between the solution obtained by

the present method and the solution obtained by NDSolve in Mathematica 9 for α = 1.

To the best of the authors’ knowledge no exact solution exists for the fractional case,

hence no comparison can be made. However, we present Figure 6.1 which illustrates the

Nx Error vs NDSolve

5 0.029145584018683945
10 0.00015607552473428932
15 0.00014992336248420557
20 0.00014949081096204964
25 0.0001494889958276735
30 0.00014948859870700382

Table 6.1: Maximum absolute error in the presented method’s solution of the problem
described by Example 1 at time t = 0.5.
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behaviour of the mid-point of the solution as time evolves for various values of α.
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Figure 6.1: Plot of u(x = 0, t) for various values of α.

6.4.2 Example 2

We now consider the one-dimensional case with initial condition

u(x, 0) = e−(x+1) (6.40)

and Neumann Boundary conditions

ux(−1, t) = 1 (6.41)

ux(1, t) =
−1

e2
(6.42)

Once again our solution converges with N moving from 5 to 10 but does not continue

to improve. Table 6.2 presents the errors in our method when compared to NDSolve

for α = 1. We present the behaviour of the mid-point u(x = 0, t) as time evolves for

different values of α in Figure 6.2.

6.4.3 Example 3

This example considers the two-dimensional case with initial condition

u(x, y, 0) = (x− 1)(x+ 1)(y − 1)(y + 1) (6.43)
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Nx Error vs NDSolve

5 0.18888552094993993
10 0.06402298769357995
15 0.06716933046894086
20 0.06886100702660541
25 0.0685232103205754
30 0.06782287252683938

Table 6.2: Maximum absolute error in the presented method’s solution of the problem
described by Example 2 at time t = 0.5.
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Figure 6.2: Plot of u(x = 0, t) for various values of α.

and consistent Dirichlet boundary conditions described as

u(−1, y, t) = u(1, y, t) = u(x,−1, t) = u(x, 1, t) = 0. (6.44)

We present here the errors in the present method when compared to NDSolve. Figure

6.3 describes the evolution of the mid-point in two-dimensions with time for various α

values.

6.4.4 Example 4

Finally we consider the case of a two-dimensional initial condition with Neumann con-

ditions,

u(x, y, 0) = cos(x)cos(y) (6.45)
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Nx = Ny Error vs NDSolve

5 0.000050581035499991776
10 0.00006478718535577835
15 0.00006310249073780343
20 0.00006478739642413641
25 0.0000642415234639226
30 0.00006478739639844785

Table 6.3: Maximum absolute error in the presented method’s solution of the problem
described by Example 3 at time t = 0.5.
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Figure 6.3: Plot of u(x = 0, y = 0, t) for various values of α.

and

ux(−1, y, t) = sin(1)cos(y) (6.46)

ux(1, y, t) = −cos(1)cos(y) (6.47)

uy(x,−1, t) = cos(x)sin(1) (6.48)

uy(x, 1, t) = −cos(x)sin(1). (6.49)

We present here the errors in the present method when compared to NDSolve. Figure

6.4 describes the evolution of the mid-point in two-dimensions with time for various α

values.
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Figure 6.4: Plot of u(x = 0, y = 0, t) for various values of α.

Nx = Ny Error vs NDSolve

5 0.00875011619006949
10 0.002380333748528196
15 0.002658963151695559
20 0.0027658847054590208
25 0.002819390822498269
30 0.0028497574705675377

Table 6.4: Maximum absolute error in the presented method’s solution of the problem
described by Example 4 at time t = 1.

6.5 Image Processing Application

Despite the impressive accuracy obtained by Chebyshev collocation for small values of

Nx the method suffers from severe round-off error for values of Nx > 100 due to finite-

precision arithmetic [113, 114]. In applying this scheme to an image, the dimensions of

the input image dictate the resolution of the scheme and in most cases the input image

dimensions will exceed 100. This forces us to employ a finite difference discretization

scheme instead of the Chebyshev scheme as described by Jacobs and Harley in [117].

Jacobs and Momoniat [88] present the results of applying the integer order model to

an image for the purpose of document image binarization. We present here some ex-

amples of the results obtained using the hybrid-transform method. The power of the

hybrid-transform method lies in the ability to immediately determine the solution at

any point in time as opposed to needing to iterate to a given point in time. Figure 6.5 il-

lustrates the solutions obtained, given an input image, at varying points in time. Figure
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6.6 shows the effects of the fractional term on the resulting image, wherein the steady

state has been altered as well as the transient phase being executed much more quickly.

This mirrors the effects illustrated in the examples above, Figures 6.1, 6.2, 6.3 and 6.4,

where the steady state of the equation is altered with changing values of α as well as the

equation reaching a steady state more rapidly. This suggests the order of the derivative

may be used as an extra dimension of control in image processing, where a smaller α

value actually brightens the background of the image, it also reduces diffusivity of the

model by altering the steady state away from a uniformly diffused image.

If we take for example Nx = Ny = 100 then the stability criteria for a standard time-

marching scheme would be 4t = (1/100)2/α. As α decreases from 1, 4t becomes so

small that the number of iterations required to attain a final time of t = 0.003 is unfeasi-

bly large. This further justifies the use of a hybrid transform method in the application

of image processing.

(a) (b) (c)

(d) (e)

Figure 6.5: Figures depicting results obtained at increasing time using the current
method and α = 1. (a) The original image, (b) Binarized original image at t ≈ 0 , (c)
Processed binary image at t = 0.003, (d) Processed binary image at t = 0.008, (e) Over

diffused image at t = 0.01.

6.6 Discussion

The results above indicate a strong convergence to a solution with increasing N . The

similar results obtained for N > 5 are attributed to the comparison being drawn between

two numerical methods which may be different from the true exact solution. Results



Chapter 6. Application of Hybrid Laplace Method to Nonlinear Time-Fractional Partial
Differential Equations via Quasi-Linearization 82

(a) (b) (c) (d)

Figure 6.6: Figures depicting results obtained at increasing time using the current
method and α = 0.2. (a) The original image, (b) Processed image at t = 0.01 , (c)

Processed binary image at t = 0.001, (d) Processed binary image at t = 0.01

obtained in [111] indicate that when the present method is compared with an exact so-

lution the accuracy increases dramatically with increasing N . Despite this, the present

method attains results similar to that of an industry standard, NDSolve, which is en-

couraging.

Figures 6.1, 6.2, 6.3 and 6.4 indicate the dynamic behaviour of the sub-diffusive process.

Interestingly the diffusive process becomes increasingly more aggressive as α decreases

from 1 to 0, however the final ‘steady-state’ achieved by these processes is typically less

severe than the standard diffusion model. In image processing terms we could achieve

a semi-diffused result extremely quickly by choosing α to be small, rather than using

α = 1 and diffusing over a longer period.

In both the one and two-dimensional cases, the Neumann boundary conditioned prob-

lems result in an accuracy two orders of magnitude worse than that of the Dirichlet

cases. In the linear case where an exact solution exists the accuracy of the present

method increases dramatically with increasing N [117], however due to the comparison

being drawn with another numerical method, NDSolve, the free ends affect the compar-

ative solution, rather than reinforcing a condition on the boundary as in the Dirichlet

case.

6.7 Conclusions

In addition to obtaining a high accuracy the present method is robust for 0 < α ≤ 1 and

is in fact exact in the transformation from a time-fractional partial differential equation

to partial differential equation or differential equation depending on the dimensional-

ity. The errors incurred are then discretization error and numerical inversion of the

Bromwich integral which is O(10.2−N ) [110].
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The application of this method to images introduces a computational hurdle since the

resolution of the image dictates the spatial discretization resolution. After the transfor-

mation one must solve a linear system that is of the same dimension as the input image.

This is exacerbated by the use of Chebyshev collocation, since the derivative matrices

are full and not tri-diagonal or banded as they are when using a standard finite-difference

scheme, where the Thomas algorithm can be put to use as in [76–78]. In such case a

numerical method should be implemented to improve the computational time required

for large input data. The Chebyshev collocation method is also known to have large

round off errors for large problems, Nx > 100, due to finite-precision [113, 114]. Al-

ternatively, for large systems a finite difference discretization may be used to speed up

computational time at the cost of accuracy in the solution. We have shown for example

the images obtained by employing the hybrid-transform method to illustrate that the

method does produce the expected results in a real-world application.

We have presented a method that is robust for a time-fractional diffusion equation

with a nonlinear source term for one and two-dimensional cases with both Dirichlet and

Neumann boundary conditions. We have shown through numerical experiments that in

the case of α = 1 our solution obtains a result similar to that of NDSolve in Mathematica

9 and extends trivially to fractional-order temporal derivative of order α ∈ (0, 1]. The

application to image processing substantiates this method for real world problems, high-

lighting the effectiveness of the fractional ordered derivative as a further dimension of

control which has a dramatic effect both on the transition time of the model as well as

the final state attained. Within the realm of image processing this opens new avenues of

research allowing more control over physically derived processes to construct methods

that are physically substantial.

Although this work has just begun to uncover the efficacy of applying FPDEs to images

the depth of understanding that belies the field of fractional order problems can add

enormously to the field of image processing and other data driven sciences. Moreover

the numerical analysis and computational hurdles associated with this deep extension

of PDEs also opens new avenues of research. Due to the subjectivity of images and

image processing there is a certain difficulty associated with developing and applying

new techniques within this framework. However this research goes a little way toward

developing effective tools making use of image processing as an illustrative platform.

To the best of the authors’ knowledge this hybridization of the Laplace transform, Cheby-

shev Collocation and quasi-linearization scheme has not yet been applied to FPDEs in

one or two dimensions. This collaboration yields a method that is accurate and robust

for time-fractional derivatives.



Chapter 7

Conclusion

“Mathematics is music for the mind; music is mathematics for the soul.”

Anonymous

This work explored the application of partial differential equations and fractional par-

tial differential equations to images and investigated effective methods of solving and

applying these.

7.1 Document Image Binarization

In Chapters 3 and 4 we introduced a novel approach to document image binarization

through a simple isotropic process with excellent results. The performance of our method

was compared with the state-of-the-art global and adaptive methods. A thorough sur-

vey of the field was performed and a comparison of the existing binarization processes

is given in [1–4]. Using the results from these reviews we selected the best perform-

ing methods for comparison. The isotropic nature of the scheme lends itself to being

parallelizable and a massively parallel implementation was described in Chapter 4. Fur-

thermore we were able to localize the method to further generalize the types of input

images that were permissible resulting in a method that is extremely robust to noise and

non-uniform illumination and produces results in a computationally efficient manner.

Our method also entertains some novelty in being based on a partial differential equation

as opposed to a set of algorithmic rules. This helps us to substantiate the efficacy of

our method given the physicality of the model. We are also able to draw from a vast

literature on analysis to provide strict bounds on performance and stability.

84
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In order to measure the efficacy of our method we are able to employ a number of

industry standard performance metrics. Perhaps most appropriate of these measures is

the l1 norm which when comparing binary images calculates the number of pixels that

differ between two images. In addition to this we employ the F-Measure, pseudo F-

Measure, the Distance Reciprocal Distortion Metric and finally the Peak signal-to-noise

ratio, all of which indicate a good score of our method. These methods were intro-

duced and used as standard measures in the document image binarization competions

(DIBCO) from 2009 to 2012 [96–99].

Although our method is not the best method in every situation and for all images,

an unreasonable request, it is competitive at the highest level. Moreover the novelty of

this method is perhaps the most intriguing aspect as well as the sheer simplicity, both

in its conception as well as its execution. It is because of these qualities that we chose

to generalize the model to fractional order as a means of introducing additional control

over the process and striving toward an even more effective method.

7.2 Fractional Order Partial Differential Equations

Fractional partial differential equations present some computational difficulties. In broad

terms if we consider, for example, the sub-diffusive process that is said to express some

diffusive memory and is interpreted through the Grünwald-Letnikov [11, 32] discretiza-

tion as an infinite sum of previous time steps. In essence what this is saying is: the

evolution of this equation is not only dependent on the current state of the media but

also on every state that has previously occurred. The “short-memory” principle that

Podlubny [32] discusses indicates that states that are sufficiently long ago have no bear-

ing on what may occur next. Computationally this is conducted by storing many more

states than just the current state and hence as time evolves computation becomes more

and more expensive.

It is this that supports the transformation of the temporal variable. The Laplace trans-

form allows one to treat the fractional derivative algebraically and only in the inversion of

this transform are temporal bounds imposed. We therefore implicitly take into account

all states in time. The result of the hybridization of a transform method and a spatial

discretization is the reduction of a multi-dimensional fractional partial differential equa-

tion to the solution of a system of algebraic equations, linear or nonlinear depending on
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the original equation. The resulting solution is a time-valued discrete function where the

solution may be evaluated at any point in time directly, without the need to march to

this time. If the final time required is extremely small say t = 0.001 then with a scheme

resolution of 100 the stability requirement of 4t ≤ 0.254x2 requires 4t = 0.000025

requiring a mere 40 steps in time to achieve t = 0.001. However in the fractional case

this stability requirement behaves as per 4t ≤
(
0.254x2

)1/α
. With α = 0.2 the number

of steps required to reach t = 0.001 is 1.024× 1024, substantially more than 40, making

the usefulness of a transform method apparent.

The Laplace transform was used in conjunction with both a standard finite difference

discretization as well as a Chebyshev collocation method as a means of discretizing the

spatial variables in one and two dimensions. The implementation of these methods was

done under both Dirichlet and Neumann boundary conditions on a finite domain, requir-

ing subtle but fundamental changes in the approach. Chapter 5 showed how extremely

accurate solutions may be obtained through the use of the Chebyshev-Laplace hybrid

technique. However due to the use of finite-precision the differentiation matrices, that

are dense, incur massive round-off errors as the size of the matrices exceed about 100.

This eliminates the Chebyshev method from image processing applications since the

resolution of the input image dictates the dimension of the scheme. Finally though, the

use of a finite difference-Laplace hybrid method is plausible due to the structure of the

differentiation matrices. The effects of a fractional order model applied to images was

then investigated in Chapter 6.

Due to the linearity of the Laplace transform the semi-discrete schemes described in

Chapter 5 could not be applied directly to the time-fractional Fitzhugh-Nagumo equa-

tion due to the cubic nonlinear source term. By employing the quasi-linearization scheme

we were able to apply the hybrid schemes to not only the linear case, but also the nonlin-

ear case subject to a discontinuous initial condition or an image. Once the methods were

in place the effects of the fractional-order nonlinear model on images was investigated.

Introducing the time-fractionality alters the steady state of the equation, as well as

the transient time to obtain the steady state. In many cases reducing the order of differ-

entiation below one dramatically reduces the transient time and this effect is increased

as the order tends to zero. Altering the steady state has dramatic effects on a resulting

image. This introduces a new dimension of control allowing one to brighten or darken

the image by changing α in a dynamic way, rather than directly increasing or decreas-

ing each pixel’s value. Furthermore by altering the steady state of the equation, the

fractional order drives an image away from a completely diffused state, as is the integer

order case. This means, in terms of image processing, that the structure of the image
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remains intact allowing for very fine control over details such as degree of diffusion, as

well as aggressiveness of the binarizing source term.

This research opens up new avenues of approach in the field of image processing. New

fractional order models may be implemented and their effects analyzed. By introducing

the extra dimension of control via the fractional ordered derivative we are able to dra-

matically change the effects of a model on the image as well as the transient time. We

have also derived an effective method for implementing such a model, in both the linear

and nonlinear case, that allows the practitioner to immediately jump to the state in

time rather than being required to march to that time, as is needed in many traditional

approaches.

7.3 Conclusion

This work aimed to derive systematic methods for the solution of two-dimensional dif-

fusion equations with a nonlinear source term for an arbitrary order derivative in time

under different boundary conditions. The application of the time-fractional diffusion

equation to images via the presented method is prohibitively expensive due to the re-

sulting algebraic systems being large, based on the resolution of the input image, and

needing to be solved multiple times. However we did show that the presented method

was effective at producing accurate solutions to the two-dimensional problem under dif-

ferent boundary conditions with a relatively small number of spatial discretization points.

The integer order case produced excellent results and ultimately culminated in an effec-

tive process for document image binarization compared with the state-of-the-art. We

proved this method to be stable under certain conditions as well as presenting a stable

efficient method that is massively parallelizable and implemented on GPUs.
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