
A Reinforcement Learning Design for HIV

Clinical Trials

Sonali Parbhoo

School of Computer Science

University of the Witwatersrand

Private Bag 3, Wits 2050, Johannesburg, South Africa

A dissertation submitted for the degree of

Master of Science

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39673744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For Bhavnafoi

Abstract

Determining effective treatment strategies for life-threatening illnesses such as HIV is

a significant problem in clinical research. Currently, HIV treatment involves using

combinations of anti-HIV drugs to inhibit the formation of drug-resistant strains. From

a clinician’s perspective, this usually requires careful selection of drugs on the basis of an

individual’s immune responses at a particular time. As the number of drugs available for

treatment increases, this task becomes difficult. In a clinical trial setting, the task is even

more challenging since experience using new drugs is limited. For these reasons, this

research examines whether machine learning techniques, and more specifically batch

reinforcement learning, can be used for the purposes of determining the appropriate

treatment for an HIV-infected patient at a particular time. To do so, we consider using

fitted Q-iteration with extremely randomized trees, neural fitted Q-iteration and least

squares policy iteration. The use of batch reinforcement learning means that samples

of patient data are captured prior to learning to avoid imposing risks on a patient.

Because samples are re-used, these methods are data-efficient and particularly suited to

situations where large amounts of data are unavailable. We apply each of these learning

methods to both numerically generated and real data sets. Results from this research

highlight the advantages and disadvantages associated with each learning technique.

Real data testing has revealed that these batch reinforcement learning techniques have

the ability to suggest treatments that are reasonably consistent with those prescribed

by clinicians. The inclusion of additional state variables describing more about an

individual’s health could further improve this learning process. Ultimately, the use of

such reinforcement learning methods could be coupled with a clinician’s knowledge for

enhanced treatment design.

Keywords: Batch reinforcement learning, fitted Q-iteration, extremely randomized

trees, neural networks, least squares policy iteration, treatment simplification, HAART,

CD4+ T-lymphocyte, viral load.

iii

Declaration

I declare that this is my own work. It is being submitted for the Degree of Master of

Science to the University of the Witwatersrand, Johannesburg. It has not been submit-

ted before for any degree or examination to any other university.

Signature

Date

iv

Acknowledgments

I am very grateful to my supervisor Prof. Clint Van Alten for sharing his knowledge,

and for his guidance and support throughout this research. I am also thankful to

my co-supervisor Pravesh Ranchod for his advice and comments on drafts of this dis-

sertation. I am especially thankful to Dr Sarah Stacey from The Charlotte Maxeke

Johannesburg Academic Hospital and Dr Minakshi Jivan for their assistance in obtain-

ing patient data. This research would not have been possible without the hard work of

counsellors Sibongile Radebe, Hlengiwe Mtshali and Buyisiwe Bhengu at The Charlotte

Maxeke Johannesburg Academic Hospital, who have spent numerous hours gathering

and recording patient information – for this, I am extremely grateful. Many thanks

to Raphael Fonteneau from the University of Liège for answering questions about ex-

tra trees and Louis du Plessis from the Theoretical Biology group at ETH Zürich for

helpful discussions regarding this research. I have benefitted from interactions with

the Artificial Intelligence and Machine Learning (AIML) group at the University of the

Witwatersrand. My sincere thanks go to Raymond Phillips for insightful comments on

my simulations, and Bongani Shongwe for proofreading versions of this dissertation at

its later stages. I acknowledge financial support from the National Research Foundation

(NRF).1 Finally, I would like to thank my father, Anant, for his constant support and

interest in this research; my mother, Nisha, for accompanying me on many trips to the

hospital; my aunt, Bhavna, to whom this dissertation is dedicated, and especially my

sister, Priya, for all the little things.

1Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to

be attributed to the NRF.

v

Contents

Contents vi

List of Figures ix

List of Tables xii

List of Algorithms xiii

1 Introduction 1

2 Biological Background 5

2.1 Introduction . 5

2.2 The immune system . 5

2.2.1 The innate immune system . 5

2.2.2 The acquired immune system . 6

2.3 The Human Immunodeficiency Virus . 11

2.3.1 Viral structure of HIV . 11

2.3.2 The HIV replication cycle . 12

2.3.3 Subtypes and strains of HIV . 14

2.4 The immune response to HIV . 15

2.4.1 Innate immune response to primary HIV infection 16

2.4.2 T-cell and antibody response to primary HIV infection 16

2.4.3 Immunologic events during clinical latency and AIDS 17

2.5 Drug therapy for management of HIV 18

2.5.1 Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 18

2.5.2 Nucleoside reverse transcriptase inhibitors (NRTIs) 19

2.5.3 Protease inhibitors (PIs) . 20

2.5.4 Fusion inhibitors . 21

2.5.5 Integrase inhibitors . 21

2.6 Initial treatment strategies: HAART and STIs 22

2.6.1 Rationale for intermittent therapy 22

2.6.2 Assessing the efficacy of treatment interruption 23

2.6.3 Controversy following the SMART study 23

2.7 A treatment simplification approach to HAART 24

vi

CONTENTS vii

2.7.1 PI-sparing approaches for treatment simplification 24

2.7.2 PI-boosting approaches for treatment simplification 24

2.7.3 Implications for HAART . 25

2.8 Exploring the alternatives: vaccine development 26

2.9 Conclusion . 28

3 Reinforcement Learning Background 29

3.1 Introduction . 29

3.2 The reinforcement learning paradigm . 29

3.2.1 Markov decision processes . 30

3.2.2 The return function . 31

3.2.3 The value function . 31

3.3 Model-based value iteration . 33

3.4 Model-free value iteration: the Q-learning framework 34

3.5 Batch reinforcement learning methods 35

3.6 Fitted Q-iteration . 36

3.6.1 The algorithm . 38

3.7 Extremely randomized trees . 39

3.7.1 Single tree regression . 39

3.7.2 Ensembles of extremely randomized trees 39

3.7.3 The extra trees algorithm . 40

3.8 Neural fitted Q-iteration . 44

3.8.1 The multilayer perceptron as a function approximator 45

3.8.2 The algorithm . 46

3.9 Least Squares methods for approximate policy evaluation 47

3.10 Projected policy evaluation . 49

3.10.1 Least Squares Temporal Difference learning for Q-values 50

3.10.2 Least Squares Policy Iteration . 52

3.11 Benchmark domains . 53

3.11.1 The swing-up acrobot . 53

3.11.2 The mountain car . 54

3.12 Conclusion . 54

4 Research Methodology 56

4.1 Introduction . 56

4.2 Aim of this research . 56

4.3 Research questions . 57

4.4 Research methodology . 57

4.5 Data collection and simulation . 57

4.5.1 HIV patient data collection . 58

4.5.2 Simulating HIV patient data using a mathematical model 58

4.6 Modelling the HIV drug scheduling problem as an MDP 61

4.6.1 An MDP formulation for the simulated case 62

viii CONTENTS

4.6.2 An MDP formulation for the real data case 62

4.7 Implementation of batch reinforcement learning techniques 65

4.8 Conclusion . 66

5 Results and Discussion 67

5.1 Introduction . 67

5.2 System specifications . 67

5.3 Benchmark domain experimentation . 68

5.3.1 Performance assessment metrics 68

5.3.2 Comparison of algorithmic outcomes for mountain car 68

5.3.3 Discussion of results for mountain car domain 77

5.3.4 Comparison of algorithmic outcomes for swing-up acrobot 78

5.3.5 Discussion of results for the swing-up acrobot domain 85

5.4 Experimentation on simulated data . 86

5.4.1 Discussion of results from testing batch RL on simulated HIV

patient data . 93

5.4.2 A note about the size of the sample set used for simulated data

testing . 94

5.5 Experimentation on real patient data . 94

5.5.1 Discussion of results in a real HIV setting 96

5.5.2 A note about supervised learning 99

5.6 Discussion in relation to research questions 101

5.7 Conclusion . 102

6 Conclusions and Future Work 104

A Benchmark Domains 106

A.1 The Acrobot Swing-Up Control Problem 106

A.2 Mountain Car . 107

B Additional Results 108

B.1 Experimentation using a set of simulated HIV data of a smaller size . . 108

References 115

List of Figures

2.1 Summary of humoral and cell-mediated immune responses (Carter, 2011). 10

2.2 Structure of the HI virion (Mann & Ward, 2006). 11

2.3 The HIV replication cycle (Figure modified from Archer (2008)). 12

2.4 Phases of acute HIV infection (Borrow, 2011). 15

3.1 Stages of batch reinforcement learning. 35

3.2 Multilayer perceptron structure for neural fittedQ-iteration (Figure adapted

from Riedmiller (2010)). 44

3.3 The swing-up acrobot (Boone, 1997). 53

3.4 Illustration of the mountain car problem (Figure modified from Tanner

(2009)). 54

5.1 Average run times of each algorithm when applied to the mountain car

task using sample sets of varying sizes. 70

5.2 (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps of

neural fitted Q-iteration, where N = 10, 20, 30, 40 and 50 respectively.

(f): Trajectory from s0 = (−0.5, 0) under policy π̂∗50. 73

5.3 (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps

of fitted Q-iteration with extra trees, where N = 10, 20, 30, 40 and 50

respectively. (f): Trajectory from s0 = (−0.5, 0) under policy π̂∗50. 74

5.4 (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps

of LSPI, where N = 10, 20, 30, 40 and 50 respectively. (f): Trajectory

from s0 = (−0.5, 0) under policy π̂∗50. 75

5.5 Example of the trajectory resulting from an unsuccessful policy on the

mountain car domain. 76

5.6 Average run times of each algorithm when applied to the swing-up ac-

robot task using sample sets of varying sizes. 80

5.7 Policy π̂∗50 obtained from applying neural fitted Q-iteration to the swing-

up acrobot task. 81

5.8 Policy π̂∗50 obtained from applying fitted Q-iteration with extra trees to

the swing-up acrobot task. 81

5.9 Policy π̂∗50 obtained from applying LSPI to swing-up acrobot task. . . . 81

5.10 Positioning of acrobot at various steps under π̂∗50 using neural fitted Q-

iteration. 82

ix

x LIST OF FIGURES

5.11 Positioning of acrobot at various steps under π̂∗50 using fitted Q-iteration

with extra trees. 83

5.12 Positioning of acrobot at various steps under π̂∗50 using LSPI. 84

5.13 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using neural fitted Q-iteration. 87

5.14 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using fitted Q-iteration with

extra trees. 88

5.15 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using LSPI. 89

5.16 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady

state when applying neural fitted Q-iteration. 90

5.17 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady

state when applying fitted Q-iteration with extra trees. 91

5.18 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady

state when applying LSPI. 92

5.19 Frequency of recommended drug combinations when applying neural fit-

ted Q-iteration to the validation set used for trial 5. 98

5.20 Frequency of prescribed drug combinations in the validation set used for

trial 5. 99

B.1 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using neural fittedQ-iteration

with |F| = 2 000 samples. 109

B.2 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using fitted Q-iteration with

extra trees where |F| = 2 000 samples. 110

B.3 Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using LSPI and |F| = 2 000

samples. 111

B.4 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady

state when applying neural fitted Q-iteration across a smaller sample set

of |F| = 2 000 samples. 112

B.5 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady

state when applying fitted Q-iteration with extra trees across a smaller

sample set of |F| = 2 000 samples. 113

LIST OF FIGURES xi

B.6 Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state

when applying LSPI across a smaller sample set of |F| = 2 000 samples. 114

List of Tables

2.1 List of currently approved NNRTIs with their dosages (Smith, 2013). . . 18

2.2 List of currently approved NRTIs with their dosages (Smith, 2013). . . . 19

2.3 List of currently approved PIs with their dosages (Smith, 2013). 20

2.4 List of currently approved fusion/entry inhibitors with their dosages

(Smith, 2013). 21

2.5 List of currently approved integrase inhibitors with their dosages (Smith,

2013). 21

2.6 List of current single tablet regimens and the contents of each tablet. . . 25

4.1 Parameters used in Equations 4.5.1 – 4.5.6 (Adams et al., 2004). 60

5.1 Run times of neural fitted Q-iteration on mountain car sample sets of

varying sizes over 5 trials. 69

5.2 Run times of fitted Q-iteration using extra trees on mountain car sample

sets of varying sizes over 5 trials. 69

5.3 Run times of LSPI on mountain car sample sets of varying sizes over 5

trials. 70

5.4 Number of successful policies computed under each learning technique

over 30 sample sets. 76

5.5 Number of steps taken by each algorithm to reach goal state under opti-

mal policy over 10 trials. 77

5.6 Run times of neural fitted Q-iteration on acrobot sample sets of varying

sizes over 5 trials. 79

5.7 Run times of fitted Q-iteration using extra trees on acrobot sample sets

of varying sizes over 5 trials. 79

5.8 Run times of LSPI on acrobot sample sets of varying sizes over 5 trials. 79

5.9 Number of steps taken by each algorithm to reach goal state of acrobot

task under optimal policy over 10 trials. 85

5.10 Average consistency between learned actions and actions taken by clini-

cians using FQI with extra trees, NFQ and LSPI respectively. 96

5.11 Average consistency between learned actions and actions taken by clini-

cians using neural networks alone. 100

A.1 Parameters of the swing-up acrobot control problem. 107

xii

List of Algorithms

1 Pseudocode for the Q-value iteration algorithm (Buşoniu et al., 2010). . 34

2 Pseudocode for the Q-learning algorithm (Sutton & Barto, 1998). 35

3 Pseudocode for the fitted Q-iteration algorithm (Ernst et al., 2005). . . 38

4 Pseudocode of the extra trees algorithm (Geurts et al., 2006). 41

5 Pseudocode of the algorithm used to predict the output of a tree (Buşoniu

et al., 2010). 44

6 Pseudocode of the neural fitted Q-iteration algorithm (Riedmiller, 2005a). 47

7 Pseudocode of the LSTD-Q algorithm (Lagoudakis & Parr, 2003). . . . 52

8 Pseudocode of the LSPI algorithm (Lagoudakis & Parr, 2003). 52

xiii

Chapter 1

Introduction

Determining suitable treatment regimens for life-threatening illnesses such as HIV, re-

mains one of the key aims of medical research. Typically, patients suffering from these

chronic illnesses are prescribed a series of treatments in order to maximize positive

outcomes. This usually involves selecting the optimal sequences of treatment or com-

binations of drugs for the patient over time and specifying the duration of individual

drug use. Because of the differences between individuals and their responses to therapy,

this task is difficult and ultimately relies on a clinician’s judgement to be performed.

In situations where newly developed drugs are used for treatment such as clinical trial

testing, the task becomes even more challenging since it is difficult to judge how an

individual will respond to a treatment with very little experience using the drug.

The Human Immunodeficiency Virus (HIV) is a retrovirus that potentially causes

Acquired Immune Deficiency Syndrome (AIDS). Having been identified 29 years ago,

HIV remains a worldwide threat after approximately 33 million people have been in-

fected with the virus (Douce et al., 2012). Once an HIV particle comes into contact with

and includes itself into certain cells of the immune system such as CD4+ T-lymphocytes,

a series of intracellular events occur that result in rapid viral reproduction, death of in-

fected immune cells and eventually a loss of immunity. To date, the only effective way

to treat HIV-infected individuals makes use of a combination of anti-HIV drugs in the

form of Highly Active Antiretroviral Therapy (HAART) (Adams et al., 2004). These

drugs operate by targeting various phases of the viral life cycle in an attempt to prevent

the virus from replicating. Because of advances made in these drug therapies since the

introduction of HAART in 1996, many individuals have been able to maintain viral

loads below detectable limits (< 40 copies/ml) and sustain high T-lymphocyte counts

for extended periods of time. Combination therapy is based on the premise that all

virions are not homogenous (Abadi et al., 2006). Instead, variants of the original virion

present in different proportions may exist within an HIV sufferer. Each of these vari-

ants has its own level of fitness that determines its chances of survival. While certain

strains may be resistant to a particular drug, it is less likely for a strain to be resistant

to a combination of two or more drugs. There are currently approximately 24 FDA-

approved anti-HIV drugs available (Smith, 2013). These drugs operate specifically by

1

2 INTRODUCTION

targeting the stages of viral entry, reverse transcription, integration of the viral genome

into the host cell and viral protein formation and maturation in the virus life cycle.

In particular, anti-HIV drugs may fall into one of five classes: (i) Non-nucleoside re-

verse transcriptase inhibitors (NNRTIs), (ii) nucleoside reverse transcriptase inhibitors

(NRTIs), (iii) protease inhibitors (PIs), (iv) entry inhibitors or (v) integrase inhibitors

(Stayley, 2012). Both categories of reverse transcriptase inhibitors prevent the conver-

sion of viral RNA into DNA to prevent the virus from successfully integrating into the

host’s genome (Stayley, 2012). Protease Inhibitors interfere with the protease enzyme

contained in an HIV particle; usually the protease enzyme dissects HIV proteins into

smaller pieces that can be used to create new virus particles. PIs thus prevent proper

cutting and structuring of these viral proteins (Stayley, 2012). In doing so, PIs effec-

tively reduce the number of infectious virus particles released by a cell. Entry inhibitors

prevent infection in cells of the immune system by preventing virus particles from bind-

ing to host cells. This binding process is crucial for the genetic material and enzymatic

content of a virus to be inserted into an immune cell and cause infection. Integrase

inhibitors interfere with the action of the integrase enzyme that enables viral DNA to

be incorporated into the host’s original genome (Stayley, 2012). Without this step, it

is impossible for the virus to replicate.

Despite the fact that HAART has helped manage the virus for many HIV-infected

individuals, it has not allowed for an outright cure. While eradication of HIV using

HAART may not be possible because of the manner in which the virus establishes

reservoirs within its host, there are a few other problems that have been encountered

with HAART use. Perhaps the most significant of these problems are the issues of poor

patient adherence to medication and the development of drug-resistant HIV strains in

certain situations. In addition, when antiretrovirals are used poorly, patients can expe-

rience many negative side effects, such as gastrointestinal disturbances, hepatotoxicity

and metabolic abnormalities (Abadi et al., 2006). As a result, it has become necessary

to determine how to schedule these drugs according to how a patient responds to their

treatment. To do so, a patient’s individual needs and immune responses need to be

taken into consideration. In a clinical trial setting, where newly developed anti-HIV

drugs are tested, this is even more important since experience using the drug is limited.

A strategy for sequencing anti-HIV drugs that gained popularity during earlier years

of HAART was the use of Structured Treatment Interruptions (STIs). During STIs,

patients were cycled on and off different drug therapies (Bonhoeffer et al., 2000). It

was initially thought that using STIs would prevent continued use of the same drugs

and hence inhibit the formation of drug-resistant strains. In addition, it was thought

that allowing patients periods of relief from treatment would elicit a stronger adaptive

immune response that would prove more effective once treatment was re-initiated. The

Strategies for Management of Antiretroviral Therapy (SMART) trial was conducted in

2001 to compare the use of continuous HAART and STIs amongst approximately 6 000

patients from 33 different countries worldwide (Lawrence & El-Sadr, 2006). Initially

the trial was aimed at collecting follow-up patient data for eight years unless a patient

progressed to AIDS, experienced very serious complications or died. Entry into the trial

INTRODUCTION 3

was eventually stopped in 2006 after several safety concerns were raised. Overall, it was

concluded that the use of STIs in HIV-infected individuals is inferior to continuous

HAART as patients experienced more complications, had poorer immune responses and

were more likely to progress to AIDS under STIs (Lawrence & El-Sadr, 2006).

A newer strategy for HAART has since emerged known as treatment simplifica-

tion. Treatment simplification is targeted specifically at improving patient adherence to

medication by either reducing the number of tablets a patient has to take or by attempt-

ing to mitigate the negative side effects experienced from the medications prescribed

(Pozniak, 2007). The former requires suitable drug combinations to be determined in

advance such that the drugs can be reformulated to reduce the number of pills a patient

is given. The latter requires proper assessment of the side effects experienced by an in-

dividual to determine which drugs are suitable for use and which are not. The difficulty

in combining different drugs into single tablets for a patient lies in the fact that not all

combinations of drugs are suitable for all patients. The introduction of new anti-HIV

drugs from advances in HAART research further complicates the process.

This research is aimed at determining suitable actions to take when treating an HIV-

infected individual based on their treatment history and their immune responses under

HAART. Specifically, we examine the use of reinforcement learning techniques to do so.

Reinforcement learning is a machine learning paradigm for choosing the best sequence

of actions in a system that changes over time (Sutton & Barto, 1998). In the context of

treatment design, reinforcement learning enables us to determine the long term effect of

a given treatment and hence determine an appropriate drug strategy over time. This is

particularly important since a treatment that produces favourable outcomes from short

term use is not necessarily guaranteed to do so in the long term. The hope is that using

machine learning techniques can provide some insight as to what combinations of drugs

are suitable for particular patients. In the context of clinical trials, this knowledge

can be combined with a clinician’s expertise to produce a judgement of how well a

particular drug works. A similar approach to design HIV treatment strategies has been

used by Ernst et al. (2006). Here, the authors propose the use of reinforcement learning

specifically for computing STI control strategies for simulated HIV patient data. It may

be possible to adapt the methods in this research to apply to treatment simplification.

The remainder of this thesis is structured as follows. Chapter 2 presents the bio-

logical background related to HIV. In particular, we examine the structure of an HI

virion; this viral structure is fundamental to understanding the manner in which HIV

is able to attack and weaken the immune system. We also present the detailed series

of events that occur once HIV infects an individual as well as existing strategies for

treating the virus. This includes the various classes of drugs that are currently in use

under HAART. The chapter concludes with a discussion on attempts at developing a

vaccine as a potential cure for HIV-infection and the implications this would have on the

global pandemic. Until a successful vaccine is developed, improved HAART strategies

are still necessary for managing the virus.

In Chapter 3, we present the reinforcement learning framework that forms the basis

of this thesis. We specifically focus on a class of learning techniques called batch rein-

4 INTRODUCTION

forcement learning methods that are suited to the problem of determining the suitable

course of action to take when treating an HIV patient. We also provide examples of

benchmark domains that have been used to compare the relative performances of each

learning technique under consideration.

In Chapter 4, we provide a detailed description of the specific aim of this research

and develop a series of research questions on which this work is focused. We also discuss

the methodology followed to complete this research which includes a description of how

we have formulated the HIV drug therapy problem as a Markov Decision Process.

We present, in condensed form, the main results obtained from applying the research

methodology from Chapter 4 to various data sets in Chapter 5. These results are

discussed with reference to the research questions posed. The overall outcomes of this

research and potential future investigations are summarized and presented in Chapter

6.

Chapter 2

Biological Background

2.1 Introduction

In this chapter, we explore the biology of the HI virus and its effect on the immune

system. Section 2.2 presents the basics of the immune system and how it works. We

focus specifically on the two major responses in place for acquired immunity namely,

humoral immunity and cell-mediated immunity. In Section 2.3, we discuss the struc-

tural details of HIV and its attack of the immune system, as well as differences between

strains of the virus. Section 2.4 presents the specifics of the immune response to HIV. In

particular, we examine the immunologic events occurring in the acute infection, clinical

latency and AIDS stages of the disease. In Section 2.5, the current antiretrovirals used

in treating HIV are introduced. These antiretrovirals are classified according to the

stages of HIV infection they inhibit. Section 2.6 explores early treatment strategies and

attempts at combatting HIV. Here, we focus on the introduction of HAART, and the

use of treatment interruptions as a method for stimulating an immune response among

HIV infected individuals. In Section 2.7 we examine a newer treatment simplification

approach to HAART which aims to reduce medication costs and improve patient ad-

herence. Finally, Section 2.8 concludes the chapter by discussing an entirely alternative

approach to HAART in the form of vaccine design as an attempt to eradicate the virus.

2.2 The immune system

In order to understand the process by which HIV infects the body, it is important to

have an understanding of the immune system. Any animal should be able to defend

itself against viruses, pathogens and bacteria that it may encounter during the course of

its life. For these reasons, two major defense mechanisms exist, namely innate immunity

and acquired immunity.

2.2.1 The innate immune system

The innate immune system is non-specific as to which organisms to defend the body

against and hence acts as its “first line of defense” against any invading pathogens

5

6 2. BIOLOGICAL BACKGROUND

(Mayer, 2011). That is, innate defenses usually respond quickly to a large variety of

micro-organisms, regardless of their specific nature or identity. Innate defenses are

usually in place from the time of birth and do not have to be developed. The innate

immune system consists of anatomic barriers formed by the skin and mucous mem-

branes, as well as a group of chemical and cellular defenses that protect against those

infectious agents that may bypass the external barriers (Mayer, 2011). Examples of

such internal cellular and chemical defenses include phagocytic cells, dendritic cells,

natural killer cells, inflammatory responses and antimicrobial proteins. Phagocytic cells

such as macrophages are responsible for attaching to and destroying pathogens through

enzymatic action (Campbell & Reece, 2005). They may also be responsible for pre-

senting pathogens to members of the acquired immune system. Natural killer cells are

responsible for the removal of virus-infected immune cells or cancer cells. This usually

occurs using a process called apoptosis whereby the killer cells release chemicals that

induce the death of an infected cell (Campbell & Reece, 2005). Antimicrobial proteins

operate in the innate defense by either attacking microbes directly or by hampering

their reproduction (Mayer, 2011).

Unlike the innate immune system, acquired immunity is adaptive and hence develops

only after exposure to foreign substances. These defenses are highly specific and are

hence slower in their response time in comparison to innate defenses (Campbell &

Reece, 2005). The major components of acquired immunity include antibodies and

lymphocytes although certain components of innate immunity may also function in the

acquired immune system. Next, we examine the details of acquired immunity.

2.2.2 The acquired immune system

When the first line of defense fails, it becomes necessary for the acquired immune system

to take control and eliminate any existing pathogens. Adaptive or acquired immunity is

a defense mechanism that is based on specific cellular targeting. While it is slower in its

response time than innate immunity, the adaptive response is more successful because

of its precision (Fisher, 2011). Specificity of acquired defenses is made possible by white

blood cells in the immune system. There are many different kinds of white blood cells

each with their own associated functions. The most important group of white blood

cells are referred to as lymphocytes and are responsible for recognizing and eliminating

any foreign substances or antigens that the body may encounter. This is done using a

range of distinct receptors. Lymphocytes originate from stem cells in the bone marrow

and may relocate to other parts of the body where they differentiate and mature (Fisher,

2011). There are three major groups of lymphocytes namely B-lymphocytes (B-cells), T-

lymphocytes (T-cells) and natural killer cells1. T-lymphocytes may further be classified

as either helper T-cells or cytotoxic T-cells. Helper T-cells may also be referred to as

CD4+ cells since they express the CD4 protein on their cell surface. Similarly, cytotoxic

T-cells may also be referred to as CD8+ cells.

B-cells remain in the bone marrow until they are mature. Upon maturation, they

1Natural killer cells also play a role in the innate immune system as discussed in Section 2.2.1.

2.2. THE IMMUNE SYSTEM 7

circulate through the bloodstream in search of antigens that they can recognize and

interact with. Once a B-cell attaches to an antigen, it begins replicating. The newly

formed B-cells can then differentiate into specialized B-cells known as either plasma

cells or memory B-cells. Plasma cells are responsible for the secretion of antibodies

that neutralize and defend against any pathogens that may be present in extracellular

fluid (Abbas & Lichtman, 2009). Memory B-cells are long-lived B-cells which may sur-

vive for several years after an infection (Fisher, 2011). These cells are responsible for

maintaining a record of which antigens the body has previously encountered. In doing

so, they are able to provide faster and more effective action against those antigens,

should they be re-encountered (Kumar et al., 2007). T-cells mature in the thymus into

effector cells before they circulate the lymph and blood in search of antigens (Abbas &

Lichtman, 2009). Effector cells can either assist other cells in counteracting antigens or

can directly kill infected cells, depending on their type (Fisher, 2011). Upon encoun-

tering an antigen, helper T-cells inform other cells such as macrophages, to assist in

eliminating the pathogens. Cytotoxic T-cells are specialized to secrete substances that

destroy the cells to which they have attached. This is particularly useful and important

for killing those cells that have been infected by a virus to prevent it from spreading fur-

ther. Like B-cells, certain helper and cytotoxic T-cells may differentiate into long-lived

T-cells that are able to respond rapidly to any secondary encounter with an antigen.

The acquired immune system may be divided into two parts: humoral immunity

and cell-mediated immunity. Humoral immunity is governed by B-cells (with assistance

from T-cells) and involves managing infectious agents that may be present in the blood

or tissues of the body (Fisher, 2011). Cell-mediated immunity is accomplished by T-

cells. Together, both parts of the immune system are able to provide a suitable immune

response to almost any antigen encountered. We examine each of these reactions in

turn.

The humoral immune response

The humoral immune response begins with the activation of a B-cell. There are two

ways in which a B-cell may be activated namely T-cell independent activation and T-

cell dependent activation (Fisher, 2011). During T-cell independent activation, antigens

interact with antigen receptor molecules on B-cells and activate the B-cells (Kumar

et al., 2007). This usually occurs for sugar or fat-based antigens. However, certain

protein antigens may not be able to bind to antigen receptors on B-cells. In these cases,

it may be necessary for helper T-cells to assist. Here, the B-cells typically ingest the

protein antigens, break them down and present the broken down peptides to the helper

T-cells to recognize. The helper T-cells then secrete chemical cytokines which assist in

activating the B-cells to elicit a suitable immune response (Kumar et al., 2007).

The activation of a B-cell is known as clonal selection. That is, once an antigen

activates a B-cell, it also activates all the B-cells that are capable of recognizing the same

antigen (known as a “clone”) (Fisher, 2011). Once the cells of a clone are activated,

they begin to proliferate by dividing. The division of activated cells is necessary to keep

8 2. BIOLOGICAL BACKGROUND

up with the rate at which the antigen proliferates. This process is referred to as clonal

expansion (Fisher, 2011).

Once the B-cell clones expand, the B-cells differentiate into plasma cells that produce

antibodies to combat the antigen. Each plasma cell secretes antibodies that are specific

to the antigen that was initially recognized during the activation step (Kumar et al.,

2007). These antibodies are capable of binding to the antigen which in turn, prevents

it from attaching to and infecting cells. Alternatively, the antibodies may mark a

particular antigen for destruction by members of the innate immune system such as

macrophages (Fisher, 2011). In this way, the antibodies are able to neutralize the effect

of any particular antigen. As the humoral immune response declines, some plasma cells

undergo ‘cell-suicide’ or apoptosis and die.

While the majority of the plasma cells die, certain plasma cells migrate to the bone

marrow where they continue to secrete antibodies for many years (Fisher, 2011). That

is, certain cells develop into memory B-cells following an infection. Should the body be

re-exposed to such an antigen, the memory cells will be able to respond more effectively

than naive lymphocytes.

Cell-mediated immune response

The second type of adaptive immune response is governed by T-cells. Unlike B-cells that

are able to recognize antigens with various chemical structures, T-cells are only able to

recognize particular fragments of peptides (Fisher, 2011). These peptide fragments are

exhibited by specialized molecules known as major histocompatibility complex (MHC)

molecules (Kumar et al., 2007). MHC is a protein-complex that is expressed on the

surfaces of cells of the body; that is, MHC molecules serve as identifiers for cells belong-

ing to the body. This is particularly important since it enables the body to distinguish

between ‘self’ and ‘non-self’, i.e. which substances belong to the body and which do not.

In general, MHC molecules function by exhibiting the antigens present in different cells

(Tamarkin, 2011). That is, when a cell comes into contact with a particular antigen, it

decides what course of action to take. The MHC molecules of the surface of that cell in

turn exhibit properties of the antigen on which the cell acts.

Consider the simple example of a virus invading cells of the stomach, as in gastroen-

teritis. Upon invasion, MHC molecules on the cells of the stomach display pieces of

the invading virus at the cell surfaces so that they may be recognized and acted on by

T-cells. This provides a scheme for labeling which cells should be acted on.

MHC molecules may be classified as either MHC I or MHC II molecules. MHC I

molecules are located on all the nucleated cells of the body and are responsible for

exhibiting those peptide antigens found within the cytoplasm of cells. MHC I molecules

are recognized by receptors on CD8+ cells (Fisher, 2011). In contrast, MHC II molecules

are located on antigen-presenting cells (APCs) and lymphocytes. These molecules are

responsible for displaying antigens from within the vesicles of the cells and are recognized

by receptors on CD4+ cells (Fisher, 2011).

There are five major steps in cell-mediated immunity: antigen presentation, anti-

2.2. THE IMMUNE SYSTEM 9

gen recognition and binding, differentiation and co-stimulation, antigen destruction and

elimination, and memory (Tamarkin, 2011). We examine each of these steps in turn.

1. Antigen presentation:

When a cell is recognized as ‘non-self’ because of its lack of MHC, immediate action

is required. This action is usually brought about by the innate immune system

through APCs such as macrophages or dendritic cells. Macrophages phagocytose

or ingest these foreign substances to eliminate any immediate threat they may

pose to the body. During this process, MHC molecules on the macrophage surfaces

exhibit fragments of the ingested antigen. The display of an antigen at the surface

of a cell is known as the “presentation” of an antigen (Tamarkin, 2011). It enables

the antigen to be seen safely and alerts the adaptive immune system to eliminate

any copies of the antigen that may be present.

2. Antigen recognition and binding:

APCs travel to the lymphoid tissue and exhibit antigens using MHC molecules on

their cell surfaces. T-cells with receptors that are specific to an antigen come into

contact with these APCs, bind with them and are activated (Fisher, 2011).

3. Differentiation and co-stimulation:

Once a clone of T-cells is activated, it expands by secreting a number of factors.

These factors are necessary for the growth, proliferation and differentiation of the

cells in the clone (Fisher, 2011). Certain members of the T-cell clone differentiate

into effector cells that release cytokines that perform different functions. The effect

of these cytokines is many-fold: cytokine secretion may increase phagocytotic

activity, encourage T-cell proliferation and differentiation and stimulate further

cytokine secretion (Tamarkin, 2011).

4. Antigen destruction and elimination:

The manner in which an antigen is destroyed is largely dependent on the kind of

cytokines released during co-stimulation. The kind of cytokines that are secreted

is in turn dependent on the kind of T-cells that have been produced following dif-

ferentiation. In general, there are 4 subsets of T-cells that may be produced during

differentiation: Th-1, Th-2, Th-172 and cytotoxic T-cells (Fisher, 2011). Th-1 and

Th-17 cells secrete factors that activate B-cells and stimulate macrophages whereas

Th-2 cells secrete special cytokines called interleukins (Kumar et al., 2007). These

interleukins are primarily responsible for antibody production and activation of

other white blood cells such as eosinophils. Eosinophils in turn, are capable of

destroying pathogens non-specifically. Cytotoxic T-cells produce a chemical called

perforin that destroys other T-cells that have already been infected by a pathogen

by inducing apoptosis (Tamarkin, 2011). In doing so, a given antigen or antigen-

infected cells may be destroyed and removed.

2Th-1, Th-2 and Th-17 are all types of helper T-cells.

10 2. BIOLOGICAL BACKGROUND

5. Memory:

Activation of T-cells stimulates the production of memory T-cells. These memory

T-cells, like memory B-cells, have the ability to survive for many years after an

infection and are capable of responding more effectively to a secondary encounter

of an antigen (Fisher, 2011).

Figure 2.1: Summary of humoral and cell-mediated immune responses (Carter, 2011).

Figure 2.1 presents a summary and comparison of both the humoral and cell-mediated

immune responses. The key stages of each response are illustrated.

Having examined the basic functioning of the immune system, we now explore the

structural details of HIV and the pathogenesis of the virus. In particular, the rest of the

2.3. THE HUMAN IMMUNODEFICIENCY VIRUS 11

chapter presents some insights as to how the virus brings about changes in the human

body ultimately to override its defense system. We also look at existing treatment

strategies being implemented to control the spread of the virus.

2.3 The Human Immunodeficiency Virus

The Human Immunodeficiency Virus (HIV) is a lentivirus belonging to the group of

viruses known as retroviruses. Retroviruses are those viruses that characteristically

contain ribonucleic acid (RNA) as their genomic content. This is enclosed in a protein

capsid and lipid envelope (Mann & Ward, 2006).

2.3.1 Viral structure of HIV

Figure 2.2: Structure of the HI virion (Mann & Ward, 2006).

The HI virus is roughly spherical in shape and contains two copies of positive single-

stranded RNA. This RNA encodes for the virus’s nine genes. Differences in strains of

HIV may be attributed to differences in the genetic sequences encoded in the RNA.

The RNA is enclosed in a conical shaped capsid composed of a number of viral proteins

(Mann & Ward, 2006). The RNA is, in turn, tightly bound to a number of nucleo-

capsid proteins and enzymes that are necessary for the ultimate development of the

virion. These enzymes include reverse transcriptase, proteases, ribonuclease and inte-

grase (Chinen & Shearer, 2002). The capsid of the virion particle is surrounded by a

matrix of other viral proteins to ensure its integrity. Finally, a viral envelope composed

of two layers of phospholipids or fat molecules surrounds the entire virion. A number

12 2. BIOLOGICAL BACKGROUND

of glycoproteins, including gp120 and gp41, are embedded in this viral envelope (Chi-

nen & Shearer, 2002). These glycoproteins are critical for the correct fusion with, and

attachment to, target cells during the infectious cycle.

Figure 2.2 shows a diagram of the structure of an HI virion (Mann & Ward, 2006).

The bilayered viral envelope and glycoproteins on its surface are visible. The genetic

content and viral enzymes are also included.

2.3.2 The HIV replication cycle

Figure 2.3: The HIV replication cycle (Figure modified from Archer (2008)).

The HIV replication cycle consists of 6 different phases: binding and fusion, reverse

transcription, integration, transcription, assembly and budding. We examine each of

these stages in turn.

1. Binding and fusion:

HIV commences its life cycle through recognition of the viral glycoprotein gp120

with the CD4 cell surface molecule (Chinen & Shearer, 2002). That is, HIV

begins its life cycle with CD4 receptors on the surface of a CD4+ T-lymphocyte

2.3. THE HUMAN IMMUNODEFICIENCY VIRUS 13

identifying the gp120 glycoprotein on the HI virus. Interaction of the proteins

causes the gp41 viral protein to interact with other molecules on the host’s plasma

membrane which in turn induces the viral envelope to fuse with the host cell

membrane (Chinen & Shearer, 2002). Following fusion, the virus releases its capsid

into the host cell. This includes all its genetic material, reverse transcriptase,

integrase and the viral proteins that initially comprised the virus.

2. Reverse transcription:

Entry of the capsid into the host cell results in the immediate release of the viral

genome and proteins into the cytoplasm. Reverse transcriptase converts the single-

stranded HIV RNA into complementary DNA (cDNA). In general, this process

integrates an incorrect nucleotide every 1 500 to 4 000 bases (Chinen & Shearer,

2002). This rapid rate of mutation may explain why the virus is more capable of

surviving and developing drug-resistant strains.

3. Integration:

Following the conversion of HIV RNA to cDNA, the viral cDNA is transported

across the nucleus where the HIV enzyme integrase masks the cDNA within the

host cell’s DNA. This enables the viral cDNA to integrate randomly into the host

genome. The newly integrated HIV DNA is called a provirus. In this form, the

provirus may remain inactive for a number of years, and may or may not produce

new copies of HIV.

4. Transcription:

After integration, certain transcription factors are able to trigger the host cell to

activate viral gene transcription (Chinen & Shearer, 2002). This is done using the

enzyme RNA polymerase to create multiple copies of the HIV genomic material.

In addition, a number of shorter strands of messenger RNA (mRNA) are produced.

The mRNA transcripts provide a blueprint for the HIV proteins that are to be

produced.

5. Assembly:

The components of the viral core are initially translated into pre-proteins each

consisting of a long chain of peptides. HIV protease mediates the cleavage of

these pre-proteins into smaller individual protein particles (Chinen & Shearer,

2002). These proteins move to the cell surface where they combine with the viral

RNA to form a new immature virus particle.

6. Budding:

The newly assembled virus particle is pushed out of the host cell. This process is

known as budding. At this stage, the virus merges with part of the cell’s outer

envelope. The cell envelope is embedded with glycoproteins. By including these

glycoproteins into the new virus particle, the virus is able to bind with and infect

other cells.

14 2. BIOLOGICAL BACKGROUND

Figure 2.3 is taken from Archer (2008). Here, the HIV cycle within a host cell is indicated

by the black arrows. The red and blue lines represent viral RNA and reverse-transcribed

cDNA respectively. Each of the phases of the viral replication cycle are shown.

This description is a gross simplification. The interested reader should refer to Cann &

Karn (1989) for a more detailed explanation.

2.3.3 Subtypes and strains of HIV

One of the characteristics of HIV that makes it particularly difficult to treat is its

ability to mutate. These mutations mean that the virus is highly variable and hence

different strains of HIV may exist even within an infected individual. There are two

phylogenetically distinct groups of HIV known as HIV-1 and HIV-2 (Archer, 2008).

Both forms of HIV are thought to originate from non-human primates: HIV-1 has

been linked to chimpanzees, whereas HIV-2 exhibits close similarity to viruses found in

sooty mangabeys (Cercocebus atys), a monkey species in west Africa. (Lihana et al.,

2012). Both groups of HIV have the same means of transmission and may result in

AIDS; however there are certain differences: HIV-2 is less easily transmitted, results

in a slower decline of T-cells and has a better clinical forecast (Sousa et al., 2002).

Within each group, different viral subtypes and strains may exist. The subtypes may

be associated with varying degrees of transmissibility and virulence (Chinen & Shearer,

2002). Strains of HIV-1 may be classified into three types: Majority (M), Outliers (O)

or New (N) (Archer, 2008).

Group M accounts for the majority of the global HIV pandemic and consists of

at least ten genetically distinct subtypes or clades of HIV-1 (Archer, 2008). These are

clades A through to K. Subtypes A, C, D and E predominate the developing world; clade

B is more common in Europe, America and Australia; clades H, K and J are limited to

parts of central Africa, west Africa and central America respectively (Chinen & Shearer,

2002). Many of the new strains do not have a high chance of survival individually but

rather as circulating recombinant forms (CRFs)3. These CRFs have arisen as a result

of genetic recombination between HIV strains in a particular host (Archer, 2008). The

overall outcome is a new hybrid virus that is capable of replicating and invading more

cells. It is this rapid ability of HIV-1 to recombine, mutate and generate extensive

diversity that results in continuous infection within a host in spite of the actions of the

immune system.

There are currently 8 known subtypes of HIV-2 (Santiago et al., 2005). These clades

are A through to H. Of these, only subtypes A and B are widespread. Clade A is common

in west Africa as well as Angola and parts of Brazil. Clade B is almost entirely confined

to west Africa. Subtypes C and D, E and F, and G and H are very rare and have been

found in parts of Liberia, Sierra Leone and the Ivory Coast respectively (Santiago et al.,

2005).

3Subtype I is a CRF that is a recombinant of subtypes A, G, H and K. As a result, it may not

necessarily be viewed as a subtype on its own.

2.4. THE IMMUNE RESPONSE TO HIV 15

For purposes of this research, we focus entirely on the treatment of HIV-1. This is

largely because of its prevalence in South Africa and the data resources that we have

access to.

2.4 The immune response to HIV

Figure 2.4: Phases of acute HIV infection (Borrow, 2011).

Having examined basic immune functionality, we now examine the impact of HIV in-

fection on the immune system. The clinical course of HIV infection consists of three

stages namely, (i) acute/primary infection, (ii) clinical latency and (iii) AIDS (Pantaleo

& Fauci, 1996). Primary infection refers to the initial period of infection during which

viral RNA is detected by the immune system, and is characterized by a rapid rate of

viral reproduction; it ends once HIV antibodies begin developing several weeks after

infection (Mogensen et al., 2010). It is comprised of three phases: (i) the eclipse phase,

(ii) the viral expansion phase and (iii) the viral containment phase (McMichael et al.,

2010). The eclipse phase is a short period of time before viral RNA is detectable in the

blood plasma (McMichael et al., 2010). Typically, acute infection is characterized by a

rapid rate of viral reproduction. This occurs during the viral expansion phase. Because

of this, CD4+ counts can fall rapidly during this phase. Ultimately, the overall immune

response enables the virus level to be brought down to viral set point during which the

virus stabilizes and its rate of reproduction settles (Weber, 2001). At this point, the

CD4+ count may begin to increase. This is the viral containment phase (Borrow, 2011).

Figure 2.4 is taken from Borrow (2011). It presents a typical example of a patient’s

16 2. BIOLOGICAL BACKGROUND

viral load during the acute stage of infection. The peak viraemia is shown during the

viral expansion phase.

Clinical latency refers to the stage where despite being active, HIV reproduces at a

very low level. As a result, an HIV-infected individual may present few or no HIV-related

symptoms for many years during this phase. The clinical latency phase typically has a

variable length and depends largely on an individual’s immune responses and medication

used. Clinical latency may also be termed chronic HIV infection or asymptomatic HIV

infection. Once the clinical latency phase reaches completion, it is common for the viral

load to increase hence resulting in a depletion of CD4+ cells. If an individual’s CD4+

count falls below 200 cells/mm3, the individual is diagnosed with AIDS (Weber, 2001).

At this point, an individual’s immune system is severely compromised and becomes

particularly vulnerable to opportunistic infections. Next, we examine the clinical course

of HIV and the immunologic events associated with each stage of infection.

2.4.1 Innate immune response to primary HIV infection

The most basic innate defenses at the initial stages of HIV infection consist of epithelial

tissue and the mucosal membrane at the site of HIV transmission (Paranjape, 2005).

The mucosal epithelium is a physical barrier that provides protection against invading

virus particles. In addition, the presence of certain receptors at the epithelial layer

enables the early detection and recognition of molecular patterns specific to the virus

(Sivro et al., 2010). This detection promotes cytokine secretion which, in turn, ensures

the recruitment of other innate defenses such as dendritic cells and natural killer cells.

Following the entry of HIV into the bloodstream, adaptive immune responses may also

come into play. Dendritic cells, macrophages and other members of the innate immune

system may serve as APCs to induce adaptive immunity (Tamarkin, 2011). Geijtenbeek

et al. (2000) observe that dendritic cells also have the ability of transmitting the virus

without being infected through a process called transinfection. This particular situation

is an example of how HIV is able to use the immune defenses for its benefit. At this

stage, it is also common for natural killer cell counts to be elevated and for natural

killer cells to exhibit increased activity. This is largely because these cells have the

ability to kill any infected T-cells from the adaptive immune system, should the need

arise. As the acute phase of HIV infection progresses, dendritic cells are significantly

reduced (McMichael et al., 2010). Possible reasons for this include migration of activated

dendritic cells to the lymph nodes or dendritic apoptosis.

2.4.2 T-cell and antibody response to primary HIV infection

The acute phase of HIV infection is typically characterized by a rapid rate of viral

replication and hence high viral load. As a result, HIV-specific cell-mediated responses

can be detected at the extremely early stages of primary infection (Pantaleo & Fauci,

1996). That is, the acute phase may be dominated by large increases in the number of

CD8+ T-lymphocytes in order to control the spread of infection. A spike in the CD8+

T-cell response usually causes the virus to undergo mutation making it more difficult

2.4. THE IMMUNE RESPONSE TO HIV 17

to control (McMichael et al., 2010). This response is usually accompanied by a marked

decline in the number of circulating helper T-cells corresponding to the peak in viraemia

(Paranjape, 2005). During the entire infection process, HIV depletes the immune sys-

tem of memory T-cells however, the exact mechanism(s) by which HIV kills T-cells is

controversial. It is thought that a combination of direct killing of infected cells and

indirect killing of uninfected cells contributes to the weakening of the immune response.

Indirect killing may be made possible by the participation of certain HIV viral proteins

in apoptotic pathways. That is, certain HIV viral proteins may engage in activities

that induce apoptosis in T-cells (Streeck & Nixon, 2010). In other instances, indirect

T-cell destruction involves damaging the cell membrane through continual budding of

the virus. This procedure is believed to increase cell permeability thereby promoting

the entry of more pathogens into the cell, and ultimately contributing to cell death

(Paranjape, 2005).

The initial spike in viraemia eventually ends with a decrease in viral RNA levels as

a result of CD8+ cells targeting the HIV. Once this occurs, the RNA levels establish

a viral set point. It is widely believed that CD8+ T-cells are critically important for

the maintenance of this viral set point. Pantaleo & Fauci (1996) observe that patients

with a stronger early cytotoxic T-cell response experience lower viral loads over longer

periods resulting in slower progression of the virus.

2.4.3 Immunologic events during clinical latency and AIDS

Clinical latency during HIV is used to describe the generally asymptomatic stage of

HIV infection during which viral replication slows down considerably. One possible

explanation for the decline in the viral load during this phase is provided by Siliciano

& Greene (2011): it is likely that during the clinical latency phase, certain actively

infected CD4+ T-lymphocytes survive long enough to revert back to their previously

inactive state. In this state, any gene expression of the virus is terminated and is hence

unaffected by any immune responses or antiretroviral drugs. At the end of the clinical

latency phase, these T-cells can be reactivated and latency can be reversed (Siliciano &

Greene, 2011). In this way, latency reservoirs enable viral copies to begin re-circulating.

If this is true, HIV latency enables the virus to exploit the most critical aspect of

immunity namely the memory in long-lived T-lymphocytes. The implications of this

are tremendous for any attempts to eradicate the virus.

Innate immune activation during the chronic phase of HIV is thought to be a signif-

icant contributor to the destruction of the immune system (Sivro et al., 2010). Many

innate responses that serve as protective mechanisms during acute infection can be

harmful in the chronic phase where they may be ‘too little too late’. A particular ex-

ample of this is the secretion of a chemical called interferon by dendritic cells; these

secretions have deleterious effects as they induce cell death in both infected and unin-

fected T-lymphocytes - an undesirable response at this stage, that ultimately leads to

a state of immune deficiency (Boasso & Shearer, 2008).

As the immune system weakens an individual increasingly becomes at risk of devel-

18 2. BIOLOGICAL BACKGROUND

oping opportunistic infections or cancers, resulting in the diagnosis of AIDS.

The explanation provided in this section has been simplified considerably. The reader

should refer to Walker & McMichael (2012) and Swanstrom & Coffin (2012) for a more

rigorous treatment of the immune response to HIV.

2.5 Drug therapy for management of HIV

Currently a variety of HIV treatments exist with over 20 FDA-approved anti-HIV drugs

available for use. These drugs when combined are termed antiretrovirals (ARVs). Typ-

ically, ARV drugs function by inhibiting certain phases of the HIV life cycle in an

attempt to stop replication and further spread. There are five main classes of ARVs: (i)

Non-nucleoside reverse transcriptase inhibitors (NNRTIs), (ii) Nucleoside reverse tran-

scriptase inhibitors (NRTIs), (iii) Protease inhibitors (PIs), (iv) Fusion inhibitors, and

(v) Integrase inhibitors (Stayley, 2012). As attempts have also been made to reduce the

number of tablets a patient has to take daily, several single tablet regimens exist that

combine drugs from these classes together in a single dose.4 We examine each of the

drug classes in terms of their functionality.

2.5.1 Non-nucleoside reverse transcriptase inhibitors (NNRTIs)

Name Drug Combination Dosage

Edurant rilpivirine hydrochloride

(RPV)

One 25mg tablet daily.

Intelence etravirine (ETV) One 200mg tablet daily, or one

100mg tablets twice daily.

Rescriptor delaviridine (DLV) Two 200mg tablets three times

a day.

Sustiva efavirenz (EFV) One 600mg tablet daily, or

three 200mg daily.

Viramune nevirapine (NVP) One 400 mg tablet once a day.

Table 2.1: List of currently approved NNRTIs with their dosages (Smith, 2013).

Enzymes are typically specific in terms of the substrates they interact with and the

reactions that they catalyze. Complementarity of the shape of the enzyme and the

shape of the substrate is partly responsible for this specificity. NNRTIs operate by

binding to the reverse transcriptase enzyme and inducing conformational changes in

the structure of the enzyme (Stayley, 2012). This, in turn, affects the catalytic ability

of the enzyme and inhibits the transcription of viral RNA. The implications are that

4While these single tablet regimens are designed to make HIV treatment easier, many patients in

South Africa still do not have access to such medication.

2.5. DRUG THERAPY FOR MANAGEMENT OF HIV 19

viral RNA cannot be reverse transcribed into cDNA correctly, and integration of the

virus into the host genome is not possible.

Table 2.1 lists the major NNRTIs as of 2013 and their daily dosages.

2.5.2 Nucleoside reverse transcriptase inhibitors (NRTIs)

Name Drug Combination Dosage

Combivir lamivudine/zidovudine

(3TC/AZT)

One tablet (150mg lamivu-

dine/300mg zidovudine), twice

daily.

Emtriva emtricitabine (FTC) One 200mg tablet daily.

Epivir lamivudine (3TC) One 300mg tablet daily, or one

150mg twice daily.

Epzicom abacavir/lamivudine

(ABC/3TC)

One tablet (600mg aba-

cavir/300mg lamivudine)

daily

Retrovir zidovudine (AZT) One 300mg tablet, twice daily.

Trizivir abacavir/lamivudine/

zidovudine

(ABC/3TC/AZT)

One tablet (300mg aba-

cavir/150mg lamivu-

dine/300mg zidovudine),

twice daily.

Truvada emtricitabine/tenofovir

disoproxil fumarate

(FTC/tdf)

One 300mg tablet daily.

Videx EC didanosine (ddl) One 400mg capsule daily.

Viread tenofovir disoproxil fu-

marate (tdf)

One 300mg tablet daily.

Zerit stavudine (d4T) One 30mg capsule, twice daily.

Ziagen abacavir sulphate (ABC) One 300mg tablet, twice daily.

Table 2.2: List of currently approved NRTIs with their dosages (Smith, 2013).

NRTIs may also be referred to as nucleotide reverse transcriptase inhibitors, nucleotide

analogues or nucleoside analogues which inhibit the reverse transcription of viral RNA

into cDNA (Stayley, 2012). NRTIs do so by incorporating faulty nucleotides into the re-

verse transcription process. The implications are that the new DNA is not constructed

correctly. In this way, the genetic content of HIV cannot integrate with the genetic

material already in the host cell thereby preventing the cell from reproducing the virus.

Generally nucleoside analogues and nucleotide analogues have small structural differ-

ences but perform in much the same way: nucleoside analogues need to undergo an

extra phosphorylation step in order to be activated for use; nucleotide analogues do not

need this step (Stayley, 2012).

20 2. BIOLOGICAL BACKGROUND

Table 2.2 lists the major NRTIs as of 2013 and their dosages per day.

2.5.3 Protease inhibitors (PIs)

Name Drug Combination Dosage

Aptivus tipranavir (TPV) Two 250mg capsules with two

100mg tablets ritonavir, twice

daily.

Crixivan indinavir (IDV) Two 400mg capsules every

eight hours, or two 400mg

capsules with 100mg ritonavir

twice a day.

Invirase saquinavir (SQV) Two 500mg tablets with 100mg

ritonavir twice daily.

Kaletra lopinavir/ritonavir

(LPV/r)

Four tablets (200mg

lopinavir/50mg ritonavir)

once daily, or two (200mg

lopinavir/50mg ritonavir),

twice daily.

Lexiva fosamprenavir calcium

(FPV)

Two 700mg tablets with 100mg

ritonavir daily.

Norvir ritonavir (r) 100-400mg dosed once or twice

daily with another PI.

Prezista darunavir (DRV) One 800mg tablet or two

400mg tablets with 100mg ri-

tonavir daily.

Reyataz atazanavir sulphate

(ATV)

One 300mg capsule and 100mg

ritonavir daily.

Viracept nelfinavir (NFV) Two 625mg tablets, twice daily.

Table 2.3: List of currently approved PIs with their dosages (Smith, 2013).

PIs prevent the process of viral replication by binding to viral proteases that are criti-

cal for the production of new virus particles during the budding phase. In particular,

these drugs operate by binding selectively to HIV-1 protease thereby blocking the cleav-

age process of many of the protein precursors needed for the formation of new virions

(Stayley, 2012). The majority of virions produced in the presence of PIs contain major

defects and cannot cause further infection.

The major concern with use of PIs is their specificity in terms of their target. That

is, PIs are very specific about the viral proteases they interact with. Because of this

specificity, it is common for patients to develop drug-resistant strains of HIV that are no

longer affected by PIs. In order to reduce this risk, PIs are most often used in conjunction

2.5. DRUG THERAPY FOR MANAGEMENT OF HIV 21

with other anti-HIV drugs, each targeting a different aspect of viral replication.

Table 2.3 provides a summary of the current PIs in use and their dosages.

2.5.4 Fusion inhibitors

Fusion inhibitors, also termed entry inhibitors, interfere with the ability of HIV to bind

with, fuse and enter healthy host cells in the body. This is the key difference between

entry inhibitors and other anti-HIV drugs that are active only after HIV has infected a

cell (Stayley, 2012). The process by which fusion inhibitors prevent HIV from entering

immune cells involves attaching to the gp41 and gp120 proteins at the surface of CD4+

cells or proteins on the surface of the HIV virion. If entry inhibitors are fully functional,

they can be successful in preventing the binding and entry of HIV to immune cells.

Patients who have developed resistance to other antiretroviral drugs could benefit

from using fusion inhibitor drugs.

Table 2.4 provides a list of the current fusion inhibitor drugs and their dosages.

Name Drug Combination Dosage

Fuzeon enfuvirtide (ENF or T-

20)

90mg subcutaneous injection

twice daily.

Selzentry maraviroc (MVC) 150mg, 300mg or 600mg twice

daily, depending on other med-

ication used.

Table 2.4: List of currently approved fusion/entry inhibitors with their dosages (Smith,

2013).

2.5.5 Integrase inhibitors

In order for HIV to take control of a host cell’s machinery to produce more virions, viral

DNA must be incorporated with the cell’s original DNA. This is the integration step of

viral replication. Integrase inhibitors operate by inhibiting the action of the integrase

enzyme during this phase of viral replication (Stayley, 2012). In doing so, integrase

inhibitors may block the formation of a provirus.

Table 2.5 lists the integrase inhibitors in use in 2013 and their dosages.

Name Drug Combination Dosage

Isentress raltegravir (RAL) One 400mg tablet twice daily.

elvitegravir elvitegravir (EVG) 150mg once a day with 150mg

cobicistat.

dolutegravir dolutegravir (DTG) One 50mg tablet daily.

Table 2.5: List of currently approved integrase inhibitors with their dosages (Smith,

2013).

22 2. BIOLOGICAL BACKGROUND

Having examined the various kinds of drugs available for treatment of HIV, we now focus

on previous attempts at combating the virus and the outcomes of these approaches.

2.6 Initial treatment strategies: HAART and STIs

Conventional treatment for HIV patients makes use of highly active anti-retroviral ther-

apy (HAART) (Bartlett, 2006). This treatment consists of using a mixture of multiple

drugs, typically from more than one class, and is hence commonly referred to as com-

bination therapy. The overall aim of HAART is to help patients maintain functionality

of the immune system, decrease their overall viral load, and reduce risk of those oppor-

tunistic infections that usually result in death. Combination therapy is based on the

premise that all virions are not homogeneous (Adams et al., 2004). Different variants

may be present in varying proportions. Each variant has its own corresponding fitness

which determines its chances of survival. While certain strains may be resistant to a

particular drug, it is less likely for a strain to be resistant to two or more drugs.

The advent of HAART can be dated to the 11th International Conference on AIDS

at British Columbia, Vancouver, during July 1996 (Bartlett, 2006). Findings at this

conference indicated that an HIV-infected individual produces on average 10 billion

virions per day (Bartlett, 2006). This conference was followed by subsequent publica-

tions in The New England Journal of Medicine by Gulick et al. (1997) and Hammer

et al. (1997) in which the benefits of using a cocktail of three drugs (also known as triple

drug therapy) were highlighted. The concept of combination therapy has since been in-

corporated into most hospital treatment plans and has been of considerable importance

in the progression of combatting HIV. Typical combinations of ARVs in HAART in-

clude using 2 NRTIs in conjunction with 1 PI or using 2 NRTIs with 1 NNRTI, although

new combinations are emerging since the introduction of entry inhibitors (Gulick et al.,

1997).

2.6.1 Rationale for intermittent therapy

Despite the general worldwide success in managing the virus through HAART, concerns

about the side-effects and costs of continual drug therapy as well as the possibility

of developing drug resistance led to the design of intermittent therapy as a possible

means of combatting these concerns (Lawrence & El-Sadr, 2006). Structured Treatment

Interruptions (STIs) were an experimental approach designed specifically with the goals

of (i) boosting the immune response in both the acute and chronic phases of infection,

(ii) improving adherence to treatment (ii) regaining drug-sensitive forms of the virus

in patients that had previously experienced virologic failure and (iii) reducing drug-

toxicity levels and mitigating the negative side effects of ARV therapy. In patients

suffering acute HIV infection, interruptions were thought to stimulate innate immune

responses to antigens; in patients with chronic HIV that had developed drug-resistant

viral types, interruptions were thought to allow drug-sensitive viral types to reappear.

2.6. INITIAL TREATMENT STRATEGIES: HAART AND STIS 23

2.6.2 Assessing the efficacy of treatment interruption

Many studies have been conducted in order to investigate the impact of treatment

interruption on managing HIV. The Stacatto trial was one such study in which 430

candidates received randomized treatment either in the form of continuous therapy or

in the form of intermittent therapy (Lawrence & El-Sadr, 2006). The patients in the

group receiving intermittent therapy were only given treatment if their CD4+ count was

below the 350 cells/mm3 mark. The major results from this trial were that adverse side

effects such as diarrhea, were experienced more frequently by the patients undergoing

continuous therapy, and a 62% reduction in ARV costs was reported for patients using

treatment interruption (Lawrence & El-Sadr, 2006). While the results of this study

were encouraging for treatment interruption, the study gave no indication of the clinical

efficacy of each procedure.

Another such study more focused on the value of each treatment strategy, was the

ANRS 1260 Trivican trial (Lawrence & El-Sadr, 2006). 326 patients with CD4+ counts

over 350 cells/mm3 received randomized ARV therapy in the form of either continuous

therapy or one of two treatment interruption strategies: (i) CD4+ count guided or (ii)

time guided. In CD4+ count guided therapy, patients stopped anti-HIV drugs when their

T-lymphocyte counts were over 350 cells/mm3 and re-started drug therapy when cell

counts fell below 250 cells/mm3 (Lawrence & El-Sadr, 2006). In time-guided therapy,

patients were cycled on and off drug therapy every two months. Results from this trial

indicated that patients under CD4+ count guided intermittent therapy were particularly

at risk of further disease progression.

2.6.3 Controversy following the SMART study

Perhaps the most significant study comparing intermittent therapy to continuous HAART,

is the SMART trial. The SMART trial is the largest treatment interruption clinical trial

to date (Lawrence & El-Sadr, 2006). Pre-requisites for entry into the trial were a CD4+

count above 350 cells/mm3. Approximately 6 000 patients from 33 countries and over

318 sites were recruited providing several years of followup data (Lawrence & El-Sadr,

2006). Each patient was randomly assigned a treatment strategy i.e. continuous ther-

apy or treatment interruption. The aim of intermittent therapy was to keep candidates

off ARVs until CD4+ counts were below the 250 cells/mm3 mark and then continue

treatment until cell counts increased above 350 cells/mm3. Patients were removed from

the trial in certain special cases such as if HIV had progressed to AIDS, death or other

serious complications. Comparisons concerning the side effects, complications, drug re-

sistance, cost, patient adherence and overall clinical efficacy of each strategy were made

(Lawrence & El-Sadr, 2006).

Results from the SMART study showed significant differences between both types

of treatment particularly concerning death among the groups. A total of 117 AIDS or

death occurrences were reported in the group of patients using STIs; 47 such events were

reported in the continuous HAART group (Lawrence & El-Sadr, 2006). In addition, a

lower incidence of cardiovascular, hepatic and renal complications was reported among

24 2. BIOLOGICAL BACKGROUND

patients belonging to the continuous therapy group. Investigators from the SMART

trial eventually deemed treatment interruption strategies as risky for patients suffering

HIV with few benefits. Dr Wafaa El-Sadr from the SMART trial concluded: “Episodic

use of antiretroviral therapy based on CD4+ cell counts, as utilized in the SMART

study design, is inferior to continuous antiretroviral therapy for the management of

antiretroviral-experienced patients,” (Lawrence & El-Sadr, 2006).

2.7 A treatment simplification approach to HAART

Assuring good patient adherence to HAART may require treatment regimens to be sim-

plified. Among other techniques, this treatment simplification may be in the form of

reducing the number of pills a patient needs to take, or reducing use of drugs from a

particular class according to their relative toxicities (Pozniak, 2007). The overall ben-

efits of simplifying HAART thus include improving adherence, mitigating negative side

effects, and reducing the costs of medication. Currently, there are two popular methods

of treatment simplification that have been investigated: (i) PI-sparing approaches and

(ii) PI-boosting approaches (Pozniak, 2007). We examine both of these techniques in

turn.

2.7.1 PI-sparing approaches for treatment simplification

The aim of PI-sparing approaches for treatment simplification is to sufficiently suppress

the virus using fewer pills. PIs are known to have several side effects including gastroin-

testinal disturbances, lipohypertrophy, and cardiovascular problems. PI-sparing drug

combinations hope to reduce such side effects (Pozniak, 2007). Since the introduction

of NNRTIs, there have been a number of clinical trials in which PIs were substituted

with this class of drug in the hope of reducing toxicity levels and improving quality of

life for HIV infected individuals. One such trial used 498 PI-treated patients who were

randomized to substitute their PI with one of two NNRTIs namely EFV, NVP or the

NRTI ABC. It was observed that after 48 weeks viral loads were lower in patients using

NNRTIs and NRTIs in place of PIs, but negative side effects were more frequent: 84%

of patients using PI-free therapy maintained viral suppression in comparison with 73%

of patients using PI-inclusive strategies (Pozniak, 2007).

2.7.2 PI-boosting approaches for treatment simplification

Reduced-pill regimens are being investigated as a means of maintaining viral suppres-

sion in HIV patients. Certain ARV drugs have been re-formulated for once-daily use

(Pozniak, 2007). In particular, the NRTIs ddl, FTC, 3TC and tdf and boosted PIs, ATV

and fosamprenavir, are currently used in this form. In addition, certain drugs have been

coupled with others; examples of this include lopinavir which is now used only in con-

junction with ritonavir. Use of a single boosted PI is thought to have the associated

advantages of reducing lactic acidosis, mitochondrial malfunctioning and lipoatrophy

among others (Pozniak, 2007).

2.7. A TREATMENT SIMPLIFICATION APPROACH TO HAART 25

Table 2.6 provides a list of the current single tablet regimens in use.

Name Drug Combination Dosage

Atripla efavirenz/emtricitabine/

tenofovir disoproxil

fumarate (EFV/FTC/tdf)

One tablet (600mg efavirenz/

200mg emtricitabine/300mg

tenofovir df) daily.

Complera rilpivirine/emtricitabine/

tenofovir disoproxil fu-

marate (RPV/FTC/tdf)

One tablet (25mg rilpivirine

/200mg emtricitabine/300mg

tenofovir df) daily.

Stribild elvitegravir/cobicistat/

emtricitabine/tenofovir

disoproxil fumarate

(EVG/COBI/FTC/tdf)

One tablet (150mg

elvitegravir/150mg co-

bicistat/200mg emtric-

itabine/300mg tenofovir

DF) daily.

“572-Trii” dolutegravir/abacavir/

lamivudine

(DTG/ABC/3TC)

One tablet (50mg dolute-

gravir/600mg abacavir/300mg

lamivudine) once a day for first

time HIV therapy patients; two

times a day for patients who

have developed resistance to

Isentress and elvitegravir.

cobicistat COBI 150mg daily. Cobicistat is not

an HIV drug, but is used to in-

crease the levels of elvitegravir

and HIV protease inhibitors.

Table 2.6: List of current single tablet regimens and the contents of each tablet.

2.7.3 Implications for HAART

While treatment simplification regimens for HAART aim to reduce pill burden in pa-

tients and mitigate negative side-effects, using such strategies has a number of implica-

tions.

1. Suitable drug combinations for a reduction in pill burden need to be determined.

2. Typically this would involve a series of clinical trials to be conducted to determine

the safety of certain combinations.

3. Clinical trials are expensive to conduct and are usually conducted over a long

period of time.

For these reasons, it may be necessary to couple clinical trials with other methods of

predicting the effects of certain drug combinations on the immune system.

26 2. BIOLOGICAL BACKGROUND

2.8 Exploring the alternatives: vaccine development

Despite advances made in developing antiretrovirals suited to suppressing HIV infection

and preventing its progression to AIDS, an effective vaccine for eradicating the virus has

not been established. Developing a successful HIV vaccine that is capable of inactivating

the virus as a whole, is perhaps one of the most significant global health challenges to

date. Scientists have attempted developing classic prophylactic vaccines, as used for

polio and measles, to combat HIV infection. These vaccines make use of inactive or

live attenuated virus particles in which the major viral genes contain deletions (Lai &

Heeney, 2012). Both types of prophylactic vaccines have failed since inactive HI virus

particles are poorly immunogenic and introducing live attenuated virus particles into

a system has proven to increase chances of HIV progressing to AIDS (Lai & Heeney,

2012).

Unlike the polio virus or measles, HIV has two distinguishing features which have

complicated the process of discovering a suitable vaccine. The first is that HIV uses

a DNA intermediate, specifically a provirus, to establish itself and replicate (Lai &

Heeney, 2012). In this form, the virus can integrate with a host’s genome and remain

inactive for years until an unknown series of events triggers the onset of viral replication.

Once replication begins, the virus starts invading T-cells and other APCs. The most

severe implication is that the virus establishes reservoirs which are used to continuously

attack and invade more immune cells. The second feature that distinguishes HIV from

similar viruses is its ability to mutate at a high frequency. The mutations produced are

a direct result of a lack of proofreading mechanism incorporated into the reverse tran-

scriptase enzyme. Traditionally, enzymes that catalyze such reactions have a built-in

mechanism of correcting any erroneous nucleotide bases that are transcribed to prevent

the occurrence of mutations; the HIV reverse transcriptase enzyme does not have this.

The implications of this are significant: the cDNA that is transcribed contains many

mutations resulting in altered viral protein production. This variability of HIV makes

developing a protective vaccine extremely difficult since such a vaccine would have to

be able to provide protection against all viral strains.

Newer strategies for vaccine development have differed according to the ways in

which they seek to combat HIV. The majority of these strategies can be broadly clas-

sified into three categories. The first category is a set of vaccines that have aimed

to utilize a class of antibodies termed broadly neutralizing antibodies to combat the

spread of the virus. These antibodies, unlike traditional antibodies, are not specific in

the antigens they can neutralize; instead they can neutralize a broad spectrum of viral

variants by attaching to regions of antigens that do not change upon viral mutation.

The discovery of such antibodies could prove extremely important for determining a

suitable means of combatting the virus in the future. The second set of vaccines are

aimed at using certain properties of T-lymphocytes to sustain an adequate immune

response in situations where antigens are not capable of inducing broadly neutralizing

antibody responses (Lai & Heeney, 2012). The third set of vaccines are based on using

gene therapy to produce an immunization against the virus. Briefly, gene therapy steps

2.8. EXPLORING THE ALTERNATIVES: VACCINE DEVELOPMENT 27

away from developing a T-cell or B-cell based vaccine for HIV-1. Instead, the focus is

on targeting the virus using intracellular immunization (Lai & Heeney, 2012). The goal

of intracellular immunization is to prevent viral replication by modifying target cells of

the immune system to express antiviral genes. Gene therapy vaccination would involve

collecting T-lymphocytes, genetically modifying each cell to include an antiviral gene,

and injecting the infusion back into a HIV-infected individual (von Laer & Brandenburg,

2001).

Vaccine research is typically a lengthy process that is conducted in phases. At

each phase of a clinical trial, the candidate vaccines are tested on human volunteers.

Despite scientists exploring numerous strategies for HIV vaccine development, only three

potential candidate vaccines have completed large-scale clinical trial testing to date.

These are the AIDSVAX by VaxGen, STEP by Merck and the RV144 which combines

two previous vaccines that have failed individually. The AIDSVAX was an experimental

prophylactic HIV vaccine that was initially developed by Genentech in 1991 and tested

later by VaxGen (Billich, 2001). At its core, the vaccine made use of proteins that are

recombinant forms of the surface protein gp120 from two types of HIV. In particular, the

primary goal of the AIDSVAX was to induce a broadly neutralizing antibody response

which could potentially provide protection against infection (Billich, 2001). Clinical trial

testing for the vaccine began in 1998 across the United States with 5403 participants, the

majority of whom were homosexual men. Phase II of the trial started in 1999 in Thailand

and reached completion in 2003. Results from the clinical trial showed that neither

version of the vaccine succeeded in preventing HIV infection (Lai & Heeney, 2012). The

STEP vaccine, also known as Merck’s V520-023, was a T-cell based vaccine containing a

weakened adenovirus such as a common cold virus, in addition to three HIV-1 subtype

B genes (Sekaly, 2008). The vaccine was aimed at targeting cell-mediated responses.

These responses are believed to be particularly important in the early stages of viral

infection. It was thought that the addition of an adenovirus could elicit stronger cell-

mediated responses which could in turn be used to eliminate HIV-infection. The vaccine

was tested on 3 000 participants until September 2007 where use was discontinued

following substantial evidence that the vaccine failed to provide protection against HIV

and potentially increased chances of developing infection (Lai & Heeney, 2012). The

closest attempt thus far at developing a suitable vaccine for HIV is the RV144 vaccine

from a Thai trial in 2009. This vaccine was based on combining two previously failed

vaccine attempts to form a new vaccine. In particular, a bird virus containing three HIV

genes was combined with a modified version of the AIDSVAX vaccine in the hope of

eliciting a boosted immune response (Rerks-Ngarm et al., 2009). The vaccine was tested

on 16 402 individuals making the trial the largest clinical trial for HIV vaccination to

date (Rerks-Ngarm et al., 2009). It was initially thought that such a vaccine would

be unsuccessful since both components of the vaccine had failed individually. However,

results from the trial indicated otherwise: overall the vaccine combination proved to be

somewhat effective and reduced the risk of HIV infection among participants by 31%

(Rerks-Ngarm et al., 2009). While this figure is too small for a feasible vaccine, it is

still significant.

28 2. BIOLOGICAL BACKGROUND

The expansion of the HIV pandemic has highlighted the need for a suitable HIV

vaccine to be developed in the future. A number of scientific advances have been made

in the field of HIV vaccine development in recent years. The majority of these advances

have been based on having a better understanding of the viral structure of HIV and the

human immune response to the virus. It is likely that future success in this field will come

from a vaccine that is able to elicit an immune response consisting of both neutralizing

antibodies that target regions of the virus that are conserved during mutation, as well

as cytotoxic T-cells that target a variety of antigens. Overall, progress in the field will

require continued commitment of researchers as well as adequate government support.

2.9 Conclusion

This chapter provided an overview of the key role players in the immune system and how

they interact during HIV interaction. The major components of the acquired immune

system are particularly important for keeping the virus under control and are usually

good indicators of a patient’s state of health. These members of the acquired immune

system may be used to model the HIV drug scheduling problem as a reinforcement

learning task which we explore in Chapters 3 and 4. We also presented an overview of

the different classes of drugs that are currently in use for HIV treatment and discussed

treatment simplification as a strategy in place to reduce pill burden and improve ad-

herence among HIV sufferers. Treatment simplification strategies require determining

suitable drug combinations usually through a clinical trial basis. Coupling these studies

with the batch reinforcement learning techniques that we examine in Chapter 3 could

provide a reasonable basis for solving the drug scheduling problem. The next chapter

discusses the reinforcement learning paradigm which has been used to model the HIV

drug scheduling task in this research.

Chapter 3

Reinforcement Learning

Background

3.1 Introduction

In this chapter, we discuss the reinforcement learning framework that forms the basis of

this research. Section 3.2 presents the specifics of the reinforcement learning paradigm in

terms of how an agent and environment interact to achieve a specific goal. In particular,

we examine how a reinforcement learning problem can be formulated in terms of a

Markov decision process and introduce the concept of a value function to assess the

overall performance of the agent relative to the environment at a particular time. Section

3.3 explores how basic value iteration may be performed when the dynamics of agent-

environment interaction are available. In Section 3.4 we extend this to the model-free

case by examining the online Q-learning algorithm that forms the basis of the batch

reinforcement learning techniques we use throughout this research. The subsequent

Sections 3.5 - 3.9 discuss the need for batch reinforcement learning methods within

the context of traditional reinforcement learning and present the various techniques

being used in this research namely fitted Q-iteration, neural fitted Q-iteration and

least squares policy iteration. In particular, we focus on the specifics of the function

approximation techniques employed by each of the algorithms by discussing extremely

randomized trees, the multilayer perceptron and least squares methods respectively.

We conclude the chapter by presenting two popular benchmark domains, other than

the HIV domain, that we will be using for experimentation.

3.2 The reinforcement learning paradigm

The material in this section is based on Chapters 2 and 3 of Sutton & Barto (1998).

Reinforcement learning (RL) is a machine learning paradigm in which a decision

maker or agent interacts with an environment to learn a particular task. Typically,

agent-environment interaction involves three signals: a state signal describing the cur-

rent situation of the environment, an action signal that allows the agent to influence

29

30 3. REINFORCEMENT LEARNING BACKGROUND

the environment, and a reward signal produced by the environment to provide the

agent with feedback on its immediate performance or to evaluate the quality of taking

a particular action at a certain time (Buşoniu et al., 2010). The aim of the agent is

to make decisions optimally by determining those actions that maximize accumulated

future rewards.

Agent-environment interaction may be broken down over a sequence of discrete time

steps, t = 0, 1, 2, At each of these points in time, the agent receives a summary of

the conditions of the environment in the form of its state at time t, st. Here st ∈ S where

S is the collection of all possible states. Based on the environment’s situation, the agent

selects an action at time t, at ∈ A, where A is the set of all available actions. Applying

a particular action causes the environment to transition to a new state st+1. The agent

receives a scalar reward rt+1 ∈ R assessing the quality of the transition to the new state.

Negative rewards may be viewed as penalties for making a poor choice of action at a

particular time. Once the agent receives information about the new conditions of the

environment, the whole cycle of agent-environment interaction repeats.

The behaviour of an agent is governed by the sequence of actions it takes following

each state it finds itself in. This is known as the agent’s policy, π : S → A. Alternatively,

in cases when policies are non-deterministic, the agent’s policy may also be viewed as

a mapping of states to probabilities of actions. The behaviour of the environment may

be described in terms of its dynamics which dictate how the state changes as a result

of the agent’s choice of actions. In a deterministic setting, taking a given action from a

given state always results in the same next state; in a stochastic setting, the next state

may vary (Buşoniu et al., 2010). Together, the states, actions, rewards and environment

dynamics constitute a Markov Decision Process.

3.2.1 Markov decision processes

The interaction between an agent and its environment can be modelled in terms of a

Markov Decision Process (MDP). Formally, an MDP is a tupleM = (S,A,P,R), where

S is the set of all possible environmental states and A is the set of actions the agent

can take. P is the set of transition probabilities defining the likelihood of ending up in

each possible next state, s′, having taken any action, a, from any state, s. R is the set

of numerical rewards received after each transition. Given a particular state, s, and an

action a, the probability of moving to a state, s′, is given by

P (s, a, s′) = P
[
st+1 = s′|st = s; at = a

]
. (3.2.1)

Similarly, the expected reward for taking an action a from a state s and ending up in a

state s′ is given by,

R(s, a, s′) = E
[
rt+1|st = s; at = a; st+1 = s′

]
. (3.2.2)

Here, the set P consists of all transition probabilities P (s, a, s′) and the set R consists

of all numerical rewards R(s, a, s′).

3.2. THE REINFORCEMENT LEARNING PARADIGM 31

3.2.2 The return function

The agent’s goal is to maximize the accumulated future rewards. The return function, or

simply the return, Rt, is a long-term measure of rewards. We can distinguish between

finite-horizon and infinite-horizon models. In a finite-horizon model, the return is

calculated over a finite number of time steps. The following equation gives the return

over a finite-horizon:

Rt = rt+1 + rt+2 + . . .+ rt+K−1. (3.2.3)

Here, K is the number of steps before the terminal state.

In certain complex tasks where the sequence of actions taken by an agent is long

or infinite, immediate rewards may be valued more than those in the future. In these

cases, a discount factor γ ∈ (0, 1) is introduced. This discount factor is a measure of

how much foresight the agent has in considering its rewards (Buşoniu et al., 2010). The

return may then be expressed as

Rt =
∞∑
k=0

γkrt+k+1. (3.2.4)

Note that we need γ < 1 to ensure that the infinite sum converges. In what follows, we

shall use the infinite-horizon model for the return.

3.2.3 The value function

It is possible for some states of the environment to be more advantageous than others.

When following a policy π, we can estimate how good it is to be in a certain state

in terms of a value function. That is, we can value a state under a particular policy

by the expectation of future reinforcement or rewards an agent receives. Using this

information, the value, V π : S → R, of a given state s at an arbitrary time t, if an agent

follows a policy π, is given by

V π(s) = Eπ
[
Rt

∣∣∣∣ st = s

]
= Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s

]
. (3.2.5)

Here, the operator Eπ[·] represents the expected value given that the agent follows policy

π.

A key property of the value function is that it satisfies a recursive relationship.

Formally, this relationship may be expressed according to the Bellman operator under

a policy π, Bπ(·), as follows:

Bπ(V π) = V π. (3.2.6)

The existence of this recursive relationship means that we can rewrite the expectation

in Equation 3.2.5 as a summation over states and hence express the value of a particular

state in terms of the value of its successor states (Sutton & Barto, 1998)1:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
{
R(s, a, s′) + γV π(s′)

}
. (3.2.7)

1The interested reader should refer to Sutton & Barto (1998) for this proof.

32 3. REINFORCEMENT LEARNING BACKGROUND

Here π(s, a) is the probability of taking an action a from the state s. Equation 3.2.7

is known as the Bellman equation for V π. Intuitively, an agent can take a number of

actions from a given state s, each of which may result in different subsequent states s′ and

different rewards. Equation 3.2.7 averages the outcomes by weighting each according to

its probability of occurring.

We can also define the optimal value for a state, V ∗(s) in terms of the Bellman

optimality equation, i.e.

V ∗(s) = max
π

V π(s) = max
a∈A

∑
s′∈S

P (s, a, s′)
{
R(s, a, s′) + γV ∗(s′)

}
. (3.2.8)

Here, determining the optimal value involves selecting the policy and hence actions,

which maximize the value of a particular state.

The Bellman optimality equation is a central construct in RL algorithms. Given the

optimal value function for a particular RL problem, we can derive the optimal policy by

considering those actions that maximize the Bellman optimality equation. The optimal

policy for a particular RL problem is

π∗(s) = arg max
a∈A

∑
s′∈S

P (s, a, s′)
{
R(s, a, s′) + γV ∗(s′)

}
, (3.2.9)

where arg maxa∈A finds the action which maximizes the expression.

It is not always possible to compute an optimal policy directly from the Bellman

optimality equation. In these cases, it is useful to estimate the value of a state-action

pair (s, a) in terms of a Q-function, Qπ : S × A 7→ R. Qπ(s, a) defines the expected

long-term return of applying action a when in state s under a policy π. That is,

Qπ(s, a) = Eπ
[
Rt

∣∣∣∣ st = s; at = a

]
= Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s; at = a

]
. (3.2.10)

Like the value function V π, it is possible for us to express Qπ recursively and use this

recurrence relation to compute the exact Q-value for all state-action pairs (s, a). Here,

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)

{
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

}
, (3.2.11)

where π(s′, a′) is the probability of taking action a′ from a state s′ under the policy π.

For notational purposes, we can define R : S ×A → R as the expected reward for a

state-action pair (s, a) where,

R(s, a) =
∑
s′∈S

P (s, a, s′)R(s, a, s′). (3.2.12)

Then we can rewrite the Bellman equation for Qπ in matrix form as,

Qπ = R+ γPΠπQ
π, (3.2.13)

where P is a stochastic matrix of the transition probabilities of size |S||A| × |S| such

that P((s, a), s′) = P (s, a, s′), and Ππ is a stochastic matrix with dimensions of size

3.3. MODEL-BASED VALUE ITERATION 33

|S| × |S||A| describing the policy π. That is, we can choose to write the policy matrix

Ππ in the following form,

Ππ(s′, (s′, a′)) = π(s′, a′). (3.2.14)

In this case, the optimal value for a state action pair, Q∗(s, a) is

Q∗(s, a) = max
π

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)

{
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

}
. (3.2.15)

Here, the optimal policy can be written as

π∗(s) = arg max
a∈A

∑
s′∈S

P (s, a, s′)

{
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

}
. (3.2.16)

RL algorithms can typically be classified into one of three categories, depending on the

strategy they employ to determine an optimal policy. These are: value iteration, policy

iteration and policy search (Buşoniu et al., 2010). Value iteration methods search for

the optimal value function by iteratively computing the maximal returns for each state

or state-action pair; the optimal policy is then derived from the optimal value func-

tion. Policy iteration methods determine an optimal policy by constructing a sequence

of monotonically improving policies and evaluating the performance of each of these

policies. Policy search algorithms use optimization methods to explicitly search for an

optimal policy. In this study, we will be focusing on value iteration methods and policy

iteration methods only.

3.3 Model-based value iteration

When a model of the MDP dynamics and reward function is available, it is possible for

the Bellman optimality equation to be solved directly. In this case, the optimal value

function may be computed iteratively and can be used to derive an optimal policy.

Model-based value iteration begins by arbitrarily assigning an estimate to either the Q-

function or V -function and progressively refining this value until no further refinement

is required. At each iteration, the relevant value function is updated by transforming

the original associated Bellman equation into an update rule. We present a Q-value

iteration algorithm here (Buşoniu et al., 2010). We use the notation Qk to denote the

value of the Q-function after k iterations of the learning algorithm, where k = 0, 1, 2,

34 3. REINFORCEMENT LEARNING BACKGROUND

Algorithm 1 Pseudocode for the Q-value iteration algorithm (Buşoniu et al., 2010).

Input: Transition dynamics P , reward function R and discount factor γ .

Output: Optimal Q-function, Q∗.

Q iteration(P , R, γ):

Initialize Q arbitrarily everywhere on S × A. For example, Q0(s, a) ← 0 for each state-

action pair (s, a)

k = 0

repeat

for each state-action pair (s, a) do

Qk+1(s, a)←
∑

s′ P (s, a, s′) {R(s, a, s′) + γmaxa′∈AQk(s
′, a′)}

end for

until Qk+1 = Qk
return Q∗ = Qk

3.4 Model-free value iteration: the Q-learning framework

In most situations, a complete model of the MDP dynamics will not be available. In

these cases, the agent is required to learn a task without prior knowledge of the en-

vironment’s transition function or the probability distribution of the random variables

concerned. The Q-learning framework due to Watkins (1989) is one of the most im-

portant and widely used model-free off-policy techniques developed in the context of

reinforcement learning, whereby an optimal policy can be learned while evaluating an-

other policy. Since Q-learning is an off-policy method, an optimal Q-function, Q∗, can

be approximated directly, independent of the policy being evaluated at a certain time

(Sutton & Barto, 1998). In particular, the algorithm operates by learning a Q-function

which gives us an estimate of the expected return given that a particular action is taken

from a certain state and the optimal policy is followed thereafter. Typically a tabular

representation of the Q-values for each (s,a) pair is maintained. Initially, these Q-values

are assigned arbitrary values which are then modified throughout the learning process.

During Q-learning an agent’s experience is divided into subsequences of repeated inter-

action called episodes. Learning progresses in a manner analogous to temporal difference

(TD)-learning (Sutton, 1988) where an agent takes an action at a certain state, eval-

uates its immediate reward and then updates its current estimate of the value of the

state based on the value of the resulting state (Watkins & Dayan, 1992). That is, the

value of a (s,a) pair is updated using the immediate reward that an agent receives with

the discounted estimated optimal future value. An episode reaches completion once the

resulting state st+1 is an absorbing or terminal state.

In its simplest form, the Q-learning algorithm makes use of a standard value iteration

type update where a previous value is modified on the basis of newly available data.

The Q-learning update rule is given by

Q(st, at)← (1− α)Q(st, at) + α

[
rt + γmax

at+1

Q(st+1, at+1)

]
. (3.4.1)

3.5. BATCH REINFORCEMENT LEARNING METHODS 35

Here rt represents the reward at time t, γ is the discount factor and α ∈ (0, 1] is the learn-

ing rate which measures the rate at which new information influences previously learned

values. The (1 − α) weight can be viewed as an inverse learning rate that is attached

to the old estimate of the value of the state-action pair (st, at). maxat+1 Q(st+1, at+1) is

an estimate of the optimal future value of the subsequent state st+1.

By rearranging terms, the Q-learning update rule 3.4.1 can be rewritten as follows:

Q(st, at)← Q(st, at) + α

[
rt + γmax

at+1

Q(st+1, at+1)−Q(st, at)

]
. (3.4.2)

We refer to Sutton & Barto (1998) for the Q-learning algorithm presented here as

Algorithm 2.

Algorithm 2 Pseudocode for the Q-learning algorithm (Sutton & Barto, 1998).

Input: Q(s, a) initialized arbitrarily; start state s0.

Output: Q(s, a) for all pairs (s, a)

Q learning(Q, s0):

repeat

Choose a for the current s on the basis of Q(s, a)

Take action a, observe reward r and resulting state s′

Q(s, a)← Q(s, a) + α {r + γmaxa′∈AQ(s′, a′)−Q(s, a)}
s← s′

until the end of the learning episode

return updated list of Q values

3.5 Batch reinforcement learning methods

Figure 3.1: Stages of batch reinforcement learning.

36 3. REINFORCEMENT LEARNING BACKGROUND

Conventional reinforcement learning uses online learning to update policies. In this ap-

proach, the agent interacts with the environment dynamically and updates its control

policy at each time step (Sutton & Barto, 1998). However, in many medical domains

this may not be possible: the effects of having an untrained agent may be potentially

hazardous and impose an unacceptable risk to the patients concerned. In these situa-

tions, the agent and system cannot interact directly during learning, hence interaction

must be decoupled from the learning step (Lange et al., 2012). That is, experience from

agent-environment interaction must be collected beforehand through a series of experi-

mental trials. The agent is then trained on this set of previously recorded information

containing state, action and reward data. The policy that is learned from the samples

collected can be applied back to the environment for further sample collection and policy

refinement. Learning techniques that make use of pre-recorded data are termed batch

reinforcement learning or simply batch learning methods. Figure 3.1 shows the main

steps involved in the batch reinforcement learning problem.

As with the standard reinforcement learning problem, the aim of batch reinforcement

learning is to determine a policy such that the expected cumulative reward is maximized.

In general, the agent cannot make any assumptions about the manner in which transition

data is collected, since sampling may be completely random or in accordance to an

arbitrary policy (Lange et al., 2012). Popular examples of batch reinforcement learning

methods are the fitted Q-iteration algorithm due to Ernst et al. (2005) and the least

squares policy iteration method due to Lagoudakis & Parr (2003). We examine each of

these learning techniques at length in the rest of this chapter.

3.6 Fitted Q-iteration

The fitted Q-iteration (FQI) algorithm is a batch reinforcement learning technique in-

spired by the online Q-learning framework where an agent learns a Q-function without

explicit knowledge of the transition probability function. Unlike the Q-learning algo-

rithm, the exact Q-function representation is replaced by an approximation, and a set

of predetermined four-tuples, F = {(sit, ait, rit, sit+1)}i=1,...,|F|, is used. Here, |F| is the

cardinality of the set F and each tuple is an example of the one-step transition dynamics

of the system.

Typically, in domains with small or finite state and action spaces, it is possible for

the Q-function to be represented as a table where one entry exists for each state-action

pair. Deriving an optimal policy for the Q-function in this case, is straightforward.

However for larger problems where state or action spaces are continuous, this is not

feasible since an infinite number of states or actions may exist. In these instances,

the Q-value function must be approximated to generalize similar circumstances and/or

actions. Furthermore, in situations where batch reinforcement learning methods such

as fitted Q-iteration are used, an approximation of the Q-function must be derived

using sparse sets of four-tuples (Ernst et al., 2005). This problem is common in large

reinforcement learning systems and is referred to as the generalization problem (Sutton

& Barto, 1998).

3.6. FITTED Q-ITERATION 37

To overcome the generalization problem, function approximation techniques are

used. Function approximators attempt to use examples from the Q-value function to

generalize the Q-values over a larger subset (Sutton & Barto, 1998). When attempt-

ing to estimate a value function, examples of available Q-values are used to construct

an approximation of the entire Q-function. Currently, a number of supervised learn-

ing techniques have been used as function approximators. In particular, Ormoneit &

Sen (1999) apply the idea of kernels to the fitted value iteration method due to Gordon

(1999). Here, the problem of approximating a Q-function is reformulated into a sequence

of kernel regression problems. Kernels are a non-parametric function approximator that

map two elements from a space of input patterns to a real number. This number may be

viewed as a similarity measure between the patterns on the input space (Bethke et al.,

2008). A formal definition of the kernel is provided below (refer to Buşoniu et al. (2010)

and Taylor & Parr (2009)) for details).

Definition 3.6.1. A kernel κ(·, ·) is a map that is defined over two state-action pairs

where κ : S ×A× S ×A → R. A symmetric kernel matrix, K, stores the kernel values

for all input pairs in a dataset. If K is a positive semi-definite matrix2, the kernel

function may be viewed as the inner product between two points (i.e. two state-action

pairs) in a higher dimensional space.

As with other non-parametric approximators, kernels are highly flexible since their

shape is dependent on the data used when running the associated reinforcement learning

algorithm (Buşoniu et al., 2010). By expressing the Q-function in terms of a series of

regression problems, Ormoneit & Sen (1999) allow for various regression algorithms to

be applied to the same problem.

The fitted Q-iteration algorithm builds on the idea of fitted value iteration pre-

sented in Ormoneit & Sen (1999). In particular, it constructs an approximation of the

Q-function iteratively. That is, on the first iteration, the algorithm produces an approx-

imation of the Q1-function, Q̂1, which corresponds to a one-step optimization (Ernst

et al., 2005). This approximation is produced by applying a regression algorithm to

training data where the input consists of the pairs (st, at) and the target output, y,

consists of the rewards rt (Ernst et al., 2005). Similarly, the N th iteration produces an

approximation of the QN -function, Q̂N , which corresponds to an N -step optimization.

This approximation is calculated in the same manner as before except the target out-

put values are obtained from applying a value-iteration based update to the Q-function

approximation from the previous time-step. That is, the output values, y, are updated

using,

y = rt + γmax
a∈A

Q̂N−1(st+1, a). (3.6.1)

We note that any regression algorithm may be used to determine the mapping Q :

S × A → R. Examples of techniques employed to learn this mapping include using

extremely randomized trees (Geurts et al., 2006), neural networks (Riedmiller, 2005a),

sparse Gaussian processes (Rasmussen & Williams, 2006) and kernel-based methods

2We refer the reader to Hoffman et al. (2008) for a description of this mathematical property.

38 3. REINFORCEMENT LEARNING BACKGROUND

(Ormoneit & Sen, 1999). For the purposes of this research, we focus on extremely

randomized trees and neural networks only. Reasons for this are based on results from

Ernst et al. (2005) where the advantages of extremely randomized trees are highlighted in

comparison to classical approaches such as tree-bagging, pruned CART trees, KD-trees,

and other supervised learning techniques such as k-nearest neighbours. In particular,

Ernst et al. (2005) demonstrate that ensembles of extremely randomized trees perform

significantly better when dealing with large state spaces. Reasons for using neural

networks as opposed to other supervised learning techniques are based on the popularity

of the technique. Fitted Q-iteration has often been used with neural networks in the

past and these results are well-documented and frequently cited.3

As N → ∞, the approximation, Q̂N , is refined and converges to the actual Q-

function. The interested reader should refer to Ernst et al. (2005) for the proof of

convergence of the fitted Q algorithm.

3.6.1 The algorithm

We refer to Ernst et al. (2005) for the following fitted Q-iteration algorithm.

Algorithm 3 Pseudocode for the fitted Q-iteration algorithm (Ernst et al., 2005).

Input: A set F = {(sit, ait, rit, sit+1)|i = 1, . . . , |F|} of four-tuples, discount factor γ,

maximum number of iterations Nmax and a regression algorithm.

Output: Q̂∗ = Q̂N .

Fitted Q-iteration(F , γ, Nmax):

Initialize number of iterations N to 0

Initialize Q̂N everywhere on S ×A
repeat

N ← N + 1

Build a training set T S from F where T S = {(xi, yi), i = 1, 2, . . . , |F|} based on

Q̂N−1 and on the set of four-tuples F . Here (xi, yi) are given by

xi = (sit, a
i
t) (3.6.2)

yi = rit + γmax
a∈A

Q̂N−1(s
i
t+1, a). (3.6.3)

Deduce the value Q̂N (s, a) using non-parametric regression on (xi, yi).

until Q̂N is satisfactory or Nmax has been reached.

return updated Q̂N values

The algorithm builds a training set T S using a set of one-step transitions and calculates

a new target Q-value with each transition. A supervised learning technique is used to

train a function approximator on the training set. The resulting approximation Q̂N
is an approximation of the Q-function after N -steps of value iteration performed on

the state-action value function (Lange et al., 2012). Consecutive runs of the regression

3See for instance Riedmiller (2005a).

3.7. EXTREMELY RANDOMIZED TREES 39

algorithm are entirely independent (Ernst et al., 2005). The implications of this are

that it is possible to adapt the model learned at each step so as to find a Q-function

that best models the input data.

The learning process continues until a certain predefined number of iterations, Nmax

has been reached or the difference between the Q-functions from successive iterations

is significantly small i.e. the Q-function has converged reasonably. Once an accurate

enough representation of the actual Q-function has been obtained after N steps where

N is arbitrarily large, an optimal stationary control policy, π̂∗N , can be determined using

π̂∗N (s) = arg max
a∈A

Q̂N (s, a). (3.6.4)

The existence of such a policy is a classical result from dynamic programming theory

(see for instance Bellman (1957)).

3.7 Extremely randomized trees

Typically when dealing with continuous state spaces consisting of numerous features that

interact in a complex way, determining a suitable representation for the Q-function is

difficult. In such situations, it may be necessary to use non-linear regression techniques

to subdivide the space into smaller regions to which we can apply simple models and

derive an approximation. Each subregion is partitioned into successively smaller regions

until an acceptable level of interaction between features is observed. This procedure

is referred to as recursive partitioning. Recursive partitions may be represented as

regression trees where each leaf node represents a cell of the overall partition with a

particular model or label associated with it; the branches represent the combining of

features that ultimately result in these labels (Strobl et al., 2009).

3.7.1 Single tree regression

Single tree regression grows one regression tree from a training set and uses it for the

classic purposes of prediction and classification. Trees are grown by splitting a sample

set into smaller subsets on the basis of certain attributes. Splitting occurs in accordance

with certain criteria: most often, the split which optimizes the associated node’s entropy

is chosen. Informally, entropy is a measure of disorderedness or information content of a

set. When we split a set of samples into two smaller subsets on the basis of a particular

attribute, we choose the attribute which maximizes the difference between these two

sets. That is, we select the split that reduces the disorderedness the most or maximizes

the information gained from performing the split. Popular regression techniques that

produce a single tree are CART, KD-tree, ID3, C4.5 and QUEST (Marsland, 2009).

These trees are often pruned to improve their prediction accuracy (Ernst et al., 2005).

3.7.2 Ensembles of extremely randomized trees

Extremely randomized trees, also called extra trees, refer to a class of unpruned regression

trees used for the purposes of prediction and classification. As with standard regression

40 3. REINFORCEMENT LEARNING BACKGROUND

trees, extra trees approximate the relationship between an input x and output y using

a set of samples. They do so by employing a top-down approach to growing trees: the

input space is divided into several partitions that are refined progressively to produce

a reasonable approximation. Specifically, within the context of fitted Q-iteration, extra

trees can be used to partition the input space of a set of samples to produce a suitable

Q-function approximation (Wehenkel et al., 2006). Extremely randomized trees may be

viewed as an ensemble tree-based method for regression since sets of trees are grown

to derive an approximation. In particular, the extra trees algorithm constructs a forest

of regression trees at each iteration and averages the outputs of each tree to produce

a prediction. It is thought that the predictions of multiple classifiers can be used to

produce a single classifier that exhibits improved prediction accuracy in general (Geurts

et al., 2006). Unlike classical tree-based ensemble methods, extra trees are constructed

by selecting cut points at random. That is, each tree grows by choosing k random split

points at each node. This, in turn, requires k random candidate attributes or input

variables comprising the state and/or action space to be selected, and determining a

random split on each of these attributes (Geurts et al., 2006). The best split which

maximizes a certain score measure is retained (Wehenkel et al., 2006). Trees are grown

recursively until the outputs are constant or contain less than a specified number of

samples, nmin. Furthermore, the entire training sample is used to grow trees at each

iteration as opposed to the bootstrapping techniques employed by similar methods such

as tree-bagging (Geurts et al., 2006). We discuss the details of the extra trees algorithm

in the next section.

3.7.3 The extra trees algorithm

The complete extra trees algorithm is presented in Algorithm 4 (Geurts et al., 2006).

The algorithm uses three parameters, nmin, k and M to build an ensemble model of

extra trees recursively from a given training set, T S. nmin is the smallest sample size

required to split a node of a tree in the ensemble; k is the number of attributes selected

at each node of a tree that are used to determine a split point; M is the number of

trees in the ensemble (Geurts et al., 2006). To construct an individual tree, a root

node is initially created containing the entire training set of samples. The root node is

subsequently split to produce left and right child nodes respectively. Splitting involves

selecting an attribute or direction to split on, a, as well as a corresponding scalar cut

value, ac. Once a node is split, the set of samples associated with the node is divided

into two disjoint sets, T S l and T Sr, containing the samples to the left and right of the

split-point respectively. Using set theoretic notation, we can denote the sets T S l and

T Sr as,

T S l = {(xi, yi) ∈ T S|xia < ac}, (3.7.1)

T Sr = {(xi, yi) ∈ T S|xia ≥ ac}. (3.7.2)

Here (xi, yi) is the ith input-output pair of the initial training set where i = 1, 2, . . . , |F|,

3.7. EXTREMELY RANDOMIZED TREES 41

Algorithm 4 Pseudocode of the extra trees algorithm (Geurts et al., 2006).

Pick a random split(T S, a):

Input: A training set T S and an attribute to split on a.

Output: A split [a < ac].

Determine the maximal and minimal values, aT Smax and aT Smin, of the attribute a in T S
Select a splitting point ac uniformly from [aT Smin, aT Smax]

return the split [a < ac]

Build an extra tree(T S, nmin, k):

Input: A training set T S, parameters nmin, k.

Output: A tree T .

return a leaf node whose value is given by the average output in T S if

(i) |T S| < nmin, or

(ii) the output is constant in T S, or

(iii) the candidate attributes are constant in T S
else

Choose k non-constant attributes {a1, a2, . . . , ak} at random in T S
Create k random splits {ac1 , ac2 , . . . , ack} where aci = Pick a random split(T S, ai),

∀i = 1, 2, . . . , k

Pick an attribute a and split ac such that Score(a, ac, T S) = maxi=1,2,...,k Score(ai, aci ,

T S)

Split T S into two subsets, T S l and T Sr, according to a and ac.

Build trees Tl = Build an extra tree(T S l, nmin, k) and Tr =

Build an extra tree(T Sr, nmin, k) using the subsets T S l and T Sr
Build a node with split ac with T S l and T Sr as left and right subtrees of the node

return the resulting tree T .

Build an extra tree ensemble(T S, M , nmin, k):

Input: A training set T S, parameters M , nmin, k.

Output: An ensemble of trees E .

for j = 1 to M do

Tree Tj = Build an extra tree(T S, nmin, k)

Add Tj to ensemble E
end for

return E = {T1, T2, . . . , TM}

42 3. REINFORCEMENT LEARNING BACKGROUND

xia is the ith input value at the attribute a and ac is the split value (Buşoniu et al., 2010).

The splitting process continues at each child node produced thereafter. Each leaf node

containing more than nmin samples, where nmin ≥ 2, is split.

To determine precisely how a node is split, k non-constant attributes, ai, with k

corresponding cut-points, aci , where i = 1, 2, . . . k, are selected. These cut-points are

drawn uniformly in the range of their associated attribute. That is, for an attribute,

ai, we randomly choose the cut point, aci , such that aci ∈ [aimin , aimax], where aimin

and aimax represent the minimal and maximal values of the attribute ai respectively,

∀i = 1, 2, . . . k. Ultimately the cut point, ac, corresponding to the attribute, a, that

maximizes the score

Score(a, ac, T S) =
Var[y|T S]− |T Sl||T S| Var[y|T S l]− |T Sr||T S| Var[y|T Sr]

Var[y|T S]
, (3.7.3)

is retained. Here, Score(a, ac, T S) denotes the score of splitting the training set T S
on the attribute a according to the split value ac, and Var[·] is the variance of the

output y in the associated training set (Geurts et al., 2006). The score may be viewed

as a variance reduction over time on the output of the original training set based on

the Shannon entropy: we continue to split nodes of the tree until the output observed

remains constant or until the variance of the output is reduced sufficiently. To perform

a single split, we evaluate each of the k randomly selected cut points according to the

information gained and choose to split the attribute which maximizes this information

gain. In doing so, we can determine which attributes are most relevant: attributes with

a higher mutual information tend to be tested first and are hence used for splitting

earlier than others. Intuitively, we aim to select those attributes that split the data

in such a way that the samples of each successor node belong to a single class or are

as “pure” as possible. When this occurs, the splitting procedure reaches completion

since no new information can be gained from further splitting. We refer the reader

to Wehenkel (1996) for a detailed treatment of uncertainty measures such as Shannon

entropy, that are used for decision tree construction.

The parameters k, nmin and M serve different purposes: M dictates the degree of

variance reduction when aggregating the results from the ensemble of trees while nmin
determines the influence of averaging output noise and influences the size of the trees

produced. Larger nmin values produce smaller trees with less variance (Wehenkel et al.,

2006). The parameter k determines how attributes are selected (Geurts et al., 2006).

In particular, it is a direct measure of the randomization strength of the attribute se-

lection process: a lower k results in trees with stronger randomization; for the specific

case of when k = 1, the resulting splits are entirely independent of the output values

of the training samples (Geurts et al., 2006). This results in the production of totally

randomized trees which are a special instance of extra trees. The values of the param-

eters k, nmin and M should be adjusted according to the problem at hand. However,

larger k-values are suited to problems with a large number of input variables, few of

which are pertinent; larger nmin values are used in domains where the output variable

is particularly noisy (Wehenkel et al., 2006).

3.7. EXTREMELY RANDOMIZED TREES 43

Once a tree is constructed, determining its output is relatively straightforward: start-

ing at the root node, a test consisting of the node’s split value and cut-point are applied

to the node. The result of this test determines which subtree to traverse. This continues

until a leaf node is reached. The value of the leaf is returned as the average output of

the samples associated with it. This procedure is outlined by Algorithm 5 (Buşoniu

et al., 2010).

It is possible to express the structure of the extra trees approximator in terms of

kernels. If we consider the jth regression tree, Tj , in the ensemble of trees E , we can

define a function pj(x) that assigns each input x to the region or partition it belongs to

given by the tree Tj . Assume the prediction or approximate output of the jth regression

tree in an ensemble is given by ŷj(x). The prediction may be viewed as the average

output of the samples belonging to the region pj(x). Using kernels, this can be written

as:

ŷj(x) =

|F|∑
i=1

κ(x, xi)yi. (3.7.4)

The kernel κ(x, xi) is given by

κ(x, xi) =
1{xi ∈ pj(x)}∑|F|
i′=1 1{xi

′ ∈ pj(x)}
, (3.7.5)

where 1{·} denotes the indicator function that produces 0 if its argument is false and 1

if it is true (Buşoniu et al., 2010).

Using Equation 3.7.4, we can express the final prediction or output produced by the

ensemble of regression trees as an average of the predictions of each tree. That is,

ŷ(x) =
1

M

M∑
j=1

ŷj(x). (3.7.6)

The final output can also be expressed in terms of kernels where the kernel function

κ(x, xi) is given by

κ(x, xi) =
1

M

M∑
j=1

1{xi ∈ pj(x)}∑|F|
i′=1 1{xi

′ ∈ pj(x)}
. (3.7.7)

44 3. REINFORCEMENT LEARNING BACKGROUND

Algorithm 5 Pseudocode of the algorithm used to predict the output of a tree (Buşoniu

et al., 2010).

Input: A tree T and a point x.

Output: The output of the tree T .

while T is not a leaf

(a, ac) ← test corresponding to root node of T .

if xa < ac then

T ← Tl
else T ← Tr
end if

end while

Return the output of T

3.8 Neural fitted Q-iteration

Figure 3.2: Multilayer perceptron structure for neural fitted Q-iteration (Figure adapted

from Riedmiller (2010)).

Neural fitted Q-iteration (NFQ) is a batch reinforcement learning technique based on the

fitted value iteration algorithm due to Ormoneit & Sen (1999). Like other batch learning

techniques, neural fitted Q-iteration is based on the principle of storing and reusing

transition experiences; in particular, this method may be viewed as a modified version

3.8. NEURAL FITTED Q-ITERATION 45

of the experience-replay technique since value iteration is executed on all the transition

samples collected at a time (Riedmiller, 2005b). In Section 3.7, we introduced the idea of

fitting training data to a value function using ensembles of regression trees. Neural fitted

Q-iteration attempts to solve the same approximation problem using the multilayer

perceptron as opposed to regression trees to perform non-parametric regression on a

set of input-output pairs. A multilayer perceptron (MLP) is a feedforward artificial

neural network with one or more hidden layers that maps a set of input data to a set

of corresponding outputs. Here, the aim of an MLP is to learn an optimal Q-function

successfully from a relatively sparse set of samples without requiring explicit knowledge

of the system’s dynamics (Riedmiller, 2005a). That is, the neural fitted Q-iteration

algorithm attempts to provide a model-free data-efficient alternative to approximating

the Q-function. The optimal Q-function can in turn be used to derive an optimal policy

for the domain of interest.

Although Riedmiller (2005a) demonstrates that neural networks may be applied di-

rectly to the online Q-learning problem by introducing an error measure that can be

minimized using gradient descent techniques, this procedure is slow and is not suited to

domains where the agent and system cannot interact directly during learning. Instead,

the neural fitted Q-iteration algorithm uses a set of transition experiences F collected

through prior agent-environment interaction. The Q-function update is then performed

offline on the basis of these transitions. Riedmiller (2005b) observes that the use of

previously collected transition samples enables advanced supervised learning techniques

to be used to derive an approximate Q-function; this ultimately leads to faster con-

vergence than applying standard gradient-descent techniques to the online Q-learning

framework.

3.8.1 The multilayer perceptron as a function approximator

In order to model a set of observational data and determine an adequate approximation

of the value function, non-linear regression models need to be used. Non-linear regression

is a form of regression analysis in which a set of training data is modelled as a non-linear

combination of input variables and parameters. The basic idea is to adequately express

the relationship between a set of input and output values.

The multilayer perceptron (MLP) is a feedforward neural network which can serve as

a value function approximator within the context of RL. Typically, an MLP consists of

multiple layers that direct information flow (Marsland, 2009). The first layer is termed

the input layer ; the last is termed the output layer ; layers between the input and output

layers are termed hidden layers. Each layer is comprised of a pre-specified number of

nodes that are connected by a set of weighted edges to form a weighted directed graph.

The input nodes are responsible for distributing signals to the nodes of the first hidden

layer. Each node at a particular hidden layer is responsible for transforming the signal

from the previous layer to an output signal that can be distributed across the next

layer. Changing a signal from one hidden layer to the next involves using an activation

function. That is, the output from a hidden node is calculated as a weighted sum of the

46 3. REINFORCEMENT LEARNING BACKGROUND

signals from the previous layer that is transformed using an activation function. Exam-

ples of activation functions include the sigmoid function, the Heaviside step function and

the Gaussian function (Marsland, 2009). Training a neural network involves comparing

the output values and targets for a given set of inputs to determine an error value; this

error can be used to determine how to update the weights of the directed edges within

the MLP. A variety of training algorithms exist, most of which apply some modified

form of gradient-descent to determine the weights of the edges within the network; pop-

ular examples include the backpropagation algorithm and the resilient backpropagation

algorithm. The interested reader should refer to Rumelhart et al. (1986) and Riedmiller

(1994) or Riedmiller & Braun (1993) respectively, for detailed descriptions of each of

these training techniques.

Within the RL framework, it is possible to use the multilayer perceptron to represent

a Q-function. Here, a simple backpropagation neural network would suffice with one

input node corresponding to each dimension of the state space and action space and one

output node corresponding to the approximate Q-value. The number of hidden layers

and nodes would depend on the problem being solved. Using MLPs in this context

offers certain advantages over other function approximation techniques: in particular,

the MLP makes no assumptions about how the data is distributed. As a result, the

MLP can be used to model highly non-linear functions and is capable of adapting to

new circumstances or suitably generalizing unseen data. Figure 3.2 has been adapted

from Riedmiller (2010) and shows the structure of an MLP when applied to the neural

fitted Q-iteration algorithm. In particular, the set of inputs used by the neural network

consists of the state-action pairs made available from the sample set; the output consists

of the corresponding Q-values.

3.8.2 The algorithm

The neural fitted Q-iteration procedure is given by Algorithm 6. We observe that the

algorithm largely follows the fitted Q-iteration algorithm presented in Section 3.6. Here

the non-parametric regression step is realized by the multilayer perceptron (Riedmiller,

2005a). In particular, the multilayer perceptron is trained on the set of input-output

pairs, (x, y), consisting of state and action information for the transition, and our current

estimate of the Q-function respectively. The structure of the multilayer perceptron used

is largely dependent on the problem at hand; training from the set of patterns occurs

repeatedly for a specified number of epochs or until the training pattern is learned

(Riedmiller, 2005b). We use the notation B to represent any MLP training algorithm

of the user’s choice.

3.9. LEAST SQUARES METHODS FOR APPROXIMATE POLICY EVALUATION 47

Algorithm 6 Pseudocode of the neural fitted Q-iteration algorithm (Riedmiller, 2005a).

Input: A set F = {(sit, ait, rit, sit+1)|i = 1, . . . , |F|} of four-tuples, discount factor γ, max-

imum number of iterations Nmax and an algorithm B to train the multilayer perceptron.

Output: Q̂∗ = Q̂N .

Neural fitted Q-iteration(F , γ,Nmax):

Initialize number of iterations N to 0

Initialize Q̂N everywhere on S ×A (i.e. initialize multilayer perceptron.)

repeat

N ← N + 1

Build a training set T S from F where T S = {xi, yi), l = 1, 2, . . . , |F|} based on Q̂N−1
and on the set of four-tuples F . Here (xi, yi) are given by:

xi = (sit, a
i
t) (3.8.1)

yi = rit + γmax
a∈A

Q̂N−1(s
i
t+1, a) (3.8.2)

Apply algorithm B to train neural network with the pattern set T S to deduce Q̂N (s, a)

until Q̂N is satisfactory or Nmax has been reached.

return updated Q̂N values

3.9 Least Squares methods for approximate policy evalu-

ation

An alternative to the class of approximate value iteration algorithms presented in the

previous sections is the class of approximate policy iteration methods. Traditional pol-

icy iteration methods work by iteratively evaluating and improving policies on the basis

of computing either the value function or state-action value function directly (Buşoniu

et al., 2012). Here, the state-action space is finite and hence exact representations of

the value function and the policy under consideration, are possible. The generalization

problem in most practical applications of reinforcement learning means that explicit

representation of the policy and value function is not feasible. In these cases, approxi-

mate policy iteration methods must be used. Usually this requires the Bellman equation

for the value function to be solved approximately.

Existing approximate policy iteration algorithms typically exploit the linearity of the

Bellman equation for a particular value function. By doing so, it is possible for the value

function to be represented using linear architectures. Consider the approximation for

the Q-value function under a linear approximation architecture: here, a single Q-value

for the state-action pair (s, a), may be expressed as a linear parametric combination of

k basis features or functions using,

48 3. REINFORCEMENT LEARNING BACKGROUND

Q̂π(s, a;w) =
k∑
j=1

φj(s, a)wj . (3.9.1)

Here, φj(s, a) are the basis functions of the state-action pairs and wj are the weights

associated with these functions, ∀j = 1, 2, . . . , k. The basis functions may be viewed as

arbitrary non-linear functions of state-action pairs that are used to capture the under-

lying structure of the Q-function in an attempt to reduce the dimensionality of large

state-action space to Rk where k ≤ |S||A| in general. Note that selection of appropriate

basis functions is critical for good performance of approximate policy iteration meth-

ods; these basis functions must be linearly independent to prevent redundant parameters

(Lagoudakis & Parr, 2003). Common choices for basis functions include Gaussian radial

basis functions and polynomial bases of varying degrees (Lagoudakis & Parr, 2003).

Assume Q̂π is a vector of approximate state-action values determined using a linear

approximation with basis functions φj , ∀j = 1, 2, . . . , k and corresponding parameters

weighting the basis functions wj . We can define φ(s, a) to be column vector of length

k where the jth entry coincides with the basis function φj at the same state-action pair

(s, a). That is, φ(s, a) is given by

φ(s, a) =

φ1(s, a)

φ2(s, a)

. . .

φk(s, a)

 . (3.9.2)

We can then rewrite Q̂π in vector form for all state-action pairs using,

Q̂π = Φwπ, (3.9.3)

where wπ = (w1, w2, . . . , wk) is the set of weights for the set of basis functions under a

policy π, and Φ is the matrix obtained by considering all the basis functions for every

state-action pair (s, a). That is,

Φ =

φ1(s1, a1) φ2(s1, a1) · · · φk(s1, a1)

φ1(s2, a2) φ2(s2, a2) · · · φk(s2, a2)
...

...
. . .

...

φ1(s|S|, a|A|) φ2(s|S|, a|A|) · · · φk(s|S|, a|A|)

 . (3.9.4)

In particular, the rows of the matrix Φ correspond all the basis functions used for rep-

resenting the value function for a particular state-action pair; the columns correspond

to the value of a particular basis function for all state-action pairs (Lagoudakis & Parr,

2003). The resulting system of equations of parameters 3.9.3 can then be solved using

least squares methods. We can distinguish between two classes of least squares methods

on the basis of their approach used to approximate a solution to the Bellman equation

for a value function. These are (i) projected policy evaluation and (ii) Bellman Resid-

ual Minimization (Buşoniu et al., 2012). Projected policy evaluation methods seek to

3.10. PROJECTED POLICY EVALUATION 49

determine an approximation for the value function by examining the projection of the

value function under the Bellman operator onto the space of representable value func-

tions (Buşoniu et al., 2012); Bellman Residual Minimization methods attempt to solve

the Bellman equation directly by calculating a Bellman residual (Buşoniu et al., 2012).

Informally, this residual can be seen as a minimization of the difference between the

approximation of a value function and its approximation under the Bellman operator.

Lagoudakis & Parr (2003) and Munos (2003) demonstrate at length that projected pol-

icy evaluation methods have certain advantages over Bellman Residual Minimization

methods and are hence a preferred method for approximating the value function. As a

result, we restrict our study to projected policy evaluation methods in this chapter.

3.10 Projected policy evaluation

We refer to Lagoudakis & Parr (2003) for the material in this section.

Recall the Bellman operator Bπ(·) that was introduced in Section 3.2.3 of this chap-

ter. A fundamental property of the value function Qπ that enables the existence of the

recursive Bellman Equation 3.2.11 is that it is a fixed point under the Bellman operator.

Formally, Qπ may be written as,

Bπ(Qπ) = Qπ. (3.10.1)

Hence if we are to determine a sufficient approximation for the value function, Q̂π, the

approximation should be a fixed point under the Bellman operator and lie in the space

of representable Q-functions. That is,

Bπ(Q̂π) ≈ Q̂π. (3.10.2)

Intuitively, this means that for the approximation of the value function to be easily

representable, it must be forced to lie on the space spanned by the basis functions

Φ. This requires projecting the approximation of the value function onto the space

of representable value functions using the orthogonal projection (Φ(Φ>Φ)−1Φ>) that

minimizes the distance between the approximate value function and the projected ap-

proximation of the value function under the Bellman operator. That is, the projected

approximation of the value function under the Bellman operator should be as close to

approximate value-function as possible to prevent loss of information. By using Equa-

tion 3.2.13 and applying it to the approximate Q-function, this can be written in matrix

form as,

Q̂π = Φ(Φ>Φ)
−1

Φ>(Bπ(Q̂π)) = Φ(Φ>Φ)
−1

Φ>(R+ γPΠπQ̂
π), (3.10.3)

Substituting Equation 3.9.3 for Q̂π and rearranging the terms makes it possible for the

50 3. REINFORCEMENT LEARNING BACKGROUND

solution of the system of equations to be represented as,

Φ(Φ>Φ)
−1

Φ>(R+ γPΠπΦw
π) = Φwπ

⇒ Φ((Φ>Φ)
−1

Φ>(R+ γPΠπΦw
π)− wπ) = 0

⇒ (Φ>Φ)
−1

Φ>(R+ γPΠπΦw
π) = wπ

⇒ Φ>(R+ γPΠπΦw
π) = Φ>Φwπ

⇒ Φ>(Φ− γPΠπΦ)wπ = Φ>R. (3.10.4)

Hence we can deduce,

wπ =
(
Φ>(Φ− γPΠπΦ)

)−1
Φ>R. (3.10.5)

It is possible to replace the standard orthogonal projection with a weighted projection

that determines how the error of the overall approximation is distributed. Assuming

ρ represents the matrix of the projection weights for each state-action pair, then the

solution to the system of equations can be rewritten as,

wπ =
(
Φ>ρ(Φ− γPΠπΦ)

)−1
Φ>ρR. (3.10.6)

In this way, projecting the approximation of the value function leads to an easily rep-

resentable solution to the Bellman equation.

3.10.1 Least Squares Temporal Difference learning for Q-values

Recall the problem of determining a reasonable approximation Q̂π for the state-action

value function under a particular policy using a set of previously collected samples.

The approximation may be expressed in terms of a linear architecture using k linearly

independent basis functions each weighted according to the weight vector wπ using

Equation 3.9.3. Least squares methods for approximate policy iteration typically make

use of parametric function approximators in the form of basis functions to determine

an optimal policy. Parametric approximators are mappings from a parameter space to

the space of functions that they attempt to represent (Buşoniu et al., 2010). The choice

of basis functions required is independent of the data for a particular problem and is

decided in advance. This means that determining a suitable approximation for the

state-action value function only requires us to learn the parameters wπ from Equation

3.9.3. In particular, the values of wπ may be deduced by solving the linear equations,

Awπ = b, (3.10.7)

where the matrices A and b can be calculated according to

A = Φ>ρ(Φ− γPΠπΦ), (3.10.8)

b = Φ>ρR. (3.10.9)

In general, it is not possible for A and b to be computed directly since this requires ad-

vance knowledge of the transition probability function and reward structure. However,

3.10. PROJECTED POLICY EVALUATION 51

the values for A and b can be computed using a set of samples. This computation in

turn, makes it possible for the linear system 3.10.7 to be solved to produce a learned

estimate of parameters w̃π and ultimately learn the value function.

By expanding A and b over the sum of all states s ∈ S and actions a ∈ A, Lagoudakis

& Parr (2003) demonstrate that A and b have special structures; given a set, F , of pre-

collected samples, it is possible to deduce learned estimates, Ã and b̃, using,

Ã =
1

|F|

|F|∑
i=1

φ(sit, a
i
t)
(
φ(sit, a

i
t)− γφ(sit+1, π(sit+1))

)>
, (3.10.10)

b̃ =
1

|F|

|F|∑
i=1

φ(sit, a
i
t)r

i
t. (3.10.11)

For computational purposes the factor 1
|F| may be dropped without changing the so-

lution of the system. Moreover, the system of equations 3.10.10 - 3.10.11 can easily

be transformed into update rules for Ã and b̃ respectively. For a particular sample

(st, at, rt, st+1), these are,

Ã(t+1) = Ã(t) + φ(st, at) (φ(st, at)− γφ(st+1, π(st+1)))
> , (3.10.12)

b̃(t+1) = b̃(t) + φ(st, at)rt, (3.10.13)

where Ã(t) and b̃(t) are the current learned estimates for A and b under a certain policy

π.

Using the incremental update rules 3.10.12 - 3.10.13, Lagoudakis & Parr (2003)

construct an algorithm that learns a value-function approximation. The Least Squares

Temporal Difference learning method for Q-values (LSTD-Q) learns an approximation

for the Q-function under a fixed policy π using a batch of pre-recorded samples F . The

algorithm takes as input the set of samples used for learning, a discount factor γ, the

initial policy to be evaluated π and the set of basis functions φ used to approximate

the state-action values. In return, it produces a vector of weights w̃ corresponding to

each basis function. This set of weights, when multiplied by the set of basis functions

can be used to determine Q̂. Selecting the action that maximizes the value Q̂ results

in an improved policy. When π(st+1) is available for each resulting state st+1 in the

sample set, the approximate value function can be determined simply by determining

which basis function φ(st+1, π(st+1)) to add to the matrix Ã. The implications of this

for sample-efficiency are tremendous: we can compute the approximate value function

for all policies considered in a single iteration of the algorithm using only one sample

set. Like the fitted Q-iteration method presented in Section 3.6, LSTD-Q makes no

assumptions about the way in which these samples are collected from an actual process.

The complete LSTD-Q algorithm is given by Algorithm 7. The key step of the algo-

rithm consists of updating the matrix Ã upon encountering a new sample (st, at, rt, st+1).

52 3. REINFORCEMENT LEARNING BACKGROUND

Algorithm 7 Pseudocode of the LSTD-Q algorithm (Lagoudakis & Parr, 2003).

Input: A set F = {(sit, ait, rit, sit+1)|i = 1, . . . , |F|} of four-tuples, discount factor γ,

policy π, number of basis functions k, and basis functions φ.

Output: Vector of weight parameters w̃.

LSTD Q(F , γ, π, k, φ):

Initialize Ã to the k × k matrix of zeros.

Initialize b̃ to a k × 1 column vector of zeros.

for i = 1 to |F| do

Ã← Ã + φ(sit, a
i
t)
(
φ(sit, a

i
t)− γφ(sit+1, π(sit+1))

)>
b̃← b̃+ φ(sit, a

i
t)r

i
t

end for

w̃π ← Ã
−1
b̃

return w̃π

3.10.2 Least Squares Policy Iteration

The Least Squares Policy Iteration (LSPI) technique makes use of LSTD-Q to determine

an improved policy. The algorithm takes as input a set of samples F , a discount factor

γ, a set of basis functions φ and some initial policy to evaluate π0. Repeated calls are

made to the LSTD-Q method discussed in the previous section using the chosen set of

basis functions and the policy under consideration. This produces an improved weight

vector for the selected basis functions at each iteration. The process continues until

the difference between the weight vectors produced by successive calls to the LSTD-Q

method is significantly small; this is representative of the fact that the policy can no

longer be adequately improved. The final policy is returned in the form of a weight

vector which, using the basis functions, can be used to produce an approximation of the

value function.

The LSPI algorithm is given by Algorithm 8. The major steps involved in policy

iteration namely, policy evaluation and improvement, are shown.

Algorithm 8 Pseudocode of the LSPI algorithm (Lagoudakis & Parr, 2003).

Input: A set F = {(sit, ait, rit, sit+1)|i = 1, . . . , |F|} of four-tuples, discount factor γ, initial

policy π0, number of basis functions k and basis functions φ.

Output: Policy π.

LSPI(F , γ, π0, k, φ):

Initialize policy π′ to initial policy π0
repeat

π ← π′

π′ ← LSTD Q(F , γ, π, k, φ)

until π ≈ π′

return π.

3.11. BENCHMARK DOMAINS 53

3.11 Benchmark domains

This section describes the benchmarks that are used for testing and comparing algorith-

mic performance in Chapter 5. Although the purpose of this research is to apply batch

reinforcement learning techniques specifically to the problem of HIV drug scheduling,

testing on benchmark domains can give us some indication of whether the implemen-

tations of the algorithms are working correctly in domains exhibiting similar properties

where larger data sets are available.

3.11.1 The swing-up acrobot

The swing-up acrobot is a two-link underactuated robot arm analogous to a double-

inverted pendulum or acrobat swinging on a bar. Like other underactuated systems,

the acrobot has fewer control inputs or actuators than degrees of freedom (Spong, 1998).

The first joint corresponding to the shoulder of the acrobot has no actuator; the second

joint at the elbow has an actuator and hence exerts a torque (Spong, 1995). The

acrobot’s state can be described in terms of four continuous state variables: two joint

positions, θ1 and θ2, and two corresponding joint velocities, θ̇1 and θ̇2 (Sutton & Barto,

1998). The aim of the agent is to swing the tip of the pendulum above the first joint

by an amount equal to the length of one of the links as quickly as possible (Sutton &

Barto, 1998). The actions of the agent can be described in terms of the torque. The

torque, τ , applied to the second joint can either have a fixed positive magnitude (a =

1), a fixed negative magnitude (a = -1) or no magnitude at all (a = 0). A reward of

-1 is given for every time step, t = 0.05, until the goal state is reached. The swing-up

acrobot control problem is illustrated in Figure 3.3 (Boone, 1997). The reader should

refer to Appendix A.1 for the system dynamics of the swing-up acrobot.

Figure 3.3: The swing-up acrobot (Boone, 1997).

54 3. REINFORCEMENT LEARNING BACKGROUND

3.11.2 The mountain car

Figure 3.4: Illustration of the mountain car problem (Figure modified from Tanner

(2009)).

The mountain car task is a two-dimensional task where an underpowered car must

accelerate to the top of one side of a valley in a minimum amount of time. In many

cases, the acceleration of the car alone is not enough to move the car directly to the top

of the hill so the car has to move in the opposite direction first to gain enough potential

energy. Figure 3.4 illustrates the mountain car task (Tanner, 2009).

Within the reinforcement learning context, the car can be modelled as a point trav-

elling on a hill whose state can be expressed as a two-tuple (pt, vt) containing the car’s

position, pt, and its speed, vt, at some time t. At each time step, t = 0.1, the agent is

given a choice of 2 possible actions namely full throttle (at = 4) or reverse full throttle

(at = -4) (Sutton & Barto, 1998). That is, actions are restricted to the values {−4, 4}.
The initial velocity of the car is set to 0 while its position is fixed to -0.5. During

the course of learning, the velocity of the car is drawn from the interval [-3, 3]. The

agent’s goal is to reach the position 1 at the top of the valley. The reader should refer

to Appendix A.2 for the system dynamics of the mountain car task.

3.12 Conclusion

In short, this chapter has among other things, (i) introduced the reinforcement learning

paradigm using MDPs, (ii) discussed the need for batch reinforcement learning for

certain domains, (iii) presented the fitted Q-iteration algorithm (within the class of

value iteration methods) using both extremely randomized trees and neural networks

as function approximators, and (iv) presented the least squares policy iteration method

for batch learning based on policy iteration. The algorithms discussed in this chapter

are the core of our research and have been implemented for learning within the HIV

3.12. CONCLUSION 55

domain. The next chapter examines exactly how the HIV drug scheduling task has been

formulated as an MDP and how the techniques presented here have been applied to this

problem.

Chapter 4

Research Methodology

4.1 Introduction

In this chapter, we present the methodology that was used to conduct this research. In

particular, the research problem described in Chapter 1 will be formalized in Section

4.2. Using the material provided from Chapters 2 and 3 as a basis along with the

problem definition, we formulate a series of specific research questions in Section 4.3.

Thereafter, we provide an outline of the methodology that has been used to answer these

questions. Specifically, we discuss the data that is used to test the performance of our

implementation in Section 4.5. This data is of two forms: the first is a set of simulated

data of a large scale that is used to compare relative performances of the algorithms and

test whether the outcomes of the learning techniques can potentially improve patient

wellness. The second is a set of real data that has been used to determine whether

RL techniques can provide suitable drug scheduling strategies for existing patients and

whether these strategies are consistent with those currently in place. Section 4.6 gives

a detailed description of how the HIV drug scheduling problem may be formulated as

an MDP; we examine MDP construction for both real and simulated data sets. We

conclude the chapter in Section 4.7 where we provide a summary of how each batch RL

technique was implemented to give the results presented in Chapter 5.

4.2 Aim of this research

Current HIV treatment regimens are focused at reducing pill burden for patients in an

attempt to reduce side-effects and improve overall patient adherence to drug therapy.

Typically, HIV drug therapy involves use of multiple drugs for treatment in order to pre-

vent the development of drug-resistant HIV strains. For these purposes, suitable drug

combinations need to be determined. Traditionally, this would involve conducting nu-

merous lengthy and expensive clinical trials. We propose modeling this drug-scheduling

problem as an MDP and using RL techniques to determine effective drug combinations.

The use of such techniques could be coupled with clinical trial investigations in the

future.

56

4.3. RESEARCH QUESTIONS 57

4.3 Research questions

We can delineate the scope of this research by formulating the following research ques-

tions:

1. Is it possible to model the HIV drug scheduling problem as an MDP? If so, how

can this modelling be adapted to include newly developed drugs?

2. How do batch RL algorithms compare in terms of outcomes when applied to the

HIV drug scheduling problem? Are the drugs recommended by the batch RL

algorithms consistent with the strategies currently in place for a particular real

patient?

3. Does applying a particular batch RL algorithm improve patient wellness for sim-

ulated patients?

4. How do the batch RL algorithms under consideration compare in performance

when applied to benchmark domains?

4.4 Research methodology

This research has been completed in a number of phases. The initial phase focused pri-

marily on gathering real HIV patient data from hospitals in Johannesburg and preparing

this data for testing purposes. The next phase involved simulating HIV patient data

using a mathematical model in MATLAB. We discuss the details of this model and

the simulated data in the next section. After collecting and generating the necessary

data, the HIV drug scheduling problem was formulated as an MDP. This involved con-

structing a suitable reward function for the real data case and choosing relevant state

variables from the data available. This reward function should ultimately reward those

situations in which a patient’s health shows an adequate improvement under a par-

ticular drug combination and penalize those that do not. For the simulated case, we

are restricted to constructing the MDP in the same way as Adams et al. (2004). We

discuss the details of this MDP construction in Section 4.5.2. Once the construction

of the MDP was completed, each of the batch RL techniques under consideration was

implemented in MATLAB. A brief description of the implementation is provided in the

final section of this chapter. The code was tested on both the real and simulated data

sets. These results and the resources used for testing purposes are given in Chapter 5.

Finally, data sets for the mountain car and acrobot domains were generated using the

dynamics provided in Appendix A.1 and A.2. These data sets were also used to test

relative performances of the learning techniques.

4.5 Data collection and simulation

This research required us to use both real and simulated data for training and testing

purposes. Simulated data can be generated to determine algorithmic performance on

58 4. RESEARCH METHODOLOGY

large scales. We can also apply the policies learned by the algorithms back to the model

used for data generation to generate more samples and see whether these samples ex-

hibit any improvement. That is, we can determine whether the policies learned by the

algorithms result in improved health among the patients generated according to the

model. Availability of real data is limited hence resulting in a much smaller sample set.

However, this real data contains much more specific drug information for each patient.

This information is crucial for determining the suitability of specific drug combinations

in a real context rather than a generalized prediction of what combinations of drug

classes can be useful. We can draw comparisons between the drug combinations sug-

gested by the algorithms and the drug combinations currently in place. The subsequent

sections discuss how data has been collected and simulated for this research.

4.5.1 HIV patient data collection

We would like to express our thanks to the staff of the Charlotte Maxeke Johannesburg

Academic Hospital and Dr Minakshi Jivan for assisting us in the collection of patient

data. All patient data has been collected having obtained ethics clearance and is in

compliance with the rules stipulated by the Human Research Ethics Committee at the

University of the Witwatersrand.1

The data of 250 HIV-infected patients comprising of CD4+ counts, viral loads and

drug therapy was collected from a period of up to ten years to produce a set of 2 560 sam-

ples in total. Patient selection was entirely random and based on limited data sources.

Data preprocessing and reasons for examining these specific variables are discussed in

Section 4.6.2 where we formulate an MDP for the real-world HIV drug scheduling prob-

lem.

4.5.2 Simulating HIV patient data using a mathematical model

We introduce the mathematical model we used to generate artificial HIV data for exper-

imentation. In general, modelling HIV infection and its impact on the immune system

requires many factors to be considered; despite the existence of complex interactions

between many biological components, only a small subset of these biological indicators

can be chosen for modelling. For the purposes of this research generating suitable HIV

patient data requires using a model of the HIV infection dynamics that includes pa-

tient wellness indicators that adequately describe a patient’s condition at a particular

time. These indicators can in turn be used to model the HIV domain as an MDP and

constitute the state space for the reinforcement learning problem. Perhaps the most

obvious choice of a wellness indicator for an HIV-infected individual is the viral load;

this is a direct measure of the number of HIV particles contained in the blood. The

HIV viral load is measured as the number of copies of RNA per millilitre of blood.

Other indicators that can be used to determine the health of an HIV-infected individual

include the numbers of infected and uninfected CD4+ cells and macrophages. Immune

1These rules specify the maintenance of strict patient confidentiality

4.5. DATA COLLECTION AND SIMULATION 59

effectors such as CD8+ cells, can be used as an indicator of the body’s immune response

to the presence of infected T-cells and the pathogen itself. Ideally, a suitable HIV data

generation model should at minimum take these wellness indicators into account.

A model used to simulate HAART in HIV-infected patients should also include

the action of commonly used antiretrovirals and allow for the use of multiple drug

combinations at each time. Ideally, we wish to use a model that accounts for specific

drug combinations such as the popular EFV, FTC, tdf combination (now being sold as

Atripla), however this is unrealistic, so we settle for a model that simulates action of the

major classes of antiretroviral drugs instead. Unfortunately this means that the action

of one member of a particular drug class is considered to be identical to another member

of the same class which is not always the case and is something we would ideally like to

determine.

The model we used to simulate HIV data under HAART is based on work from

Callaway & Perelson (2002). The model itself may be found in Adams et al. (2004)

and Adams et al. (2005). While it was originally constructed to take into account

possible treatment interruptions in HAART, here we ignore the case when patients

are completely removed from medication. The complete dynamics of the model are

described by the set of Equations 4.5.1 - 4.5.6.

dT1
dt

= λ1 − d1T1 − (1− ε1)k1V T1 (4.5.1)

dT2
dt

= λ2 − d2T2 − (1− fε1)k2V T2 (4.5.2)

dT ∗1
dt

= (1− ε1)k1V T1 − δT ∗1 −m1ET
∗
1 (4.5.3)

dT ∗2
dt

= (1− fε1)k2V T2 − δT ∗2 −m2ET
∗
2 (4.5.4)

dV

dt
= (1− ε2)NT δ(T

∗
1 + T ∗2)− cV − [(1− ε1)ρ1k1T1 + (1− fε1)ρ2k2T2]V

(4.5.5)

dE

dt
= λE +

bE(T ∗1 + T ∗2)

(T ∗1 + T ∗2) +Kb
E − dE(T ∗1 + T ∗2)

(T ∗1 + T ∗2) +Kd
E − δEE (4.5.6)

Here, T1 (T ∗1) denotes the number of non-infected (respectively infected) CD4+ T-

lymphocytes (in cells/ml), T2 (T ∗2) the number of non-infected (respectively infected)

macrophages (in cells/ml), V the number of free HI viruses (in copies/ml) and E the

number of cytotoxic T-lymphocytes (in cells/ml). The values of the various parameters

of the model are taken directly from Adams et al. (2004) and Bonhoeffer et al. (2000).

These are listed in Table 4.1.

60 4. RESEARCH METHODOLOGY

Parameters Value Units Description

λ1 10 000 cells
ml.day production rate of CD4+ cells

d1 0.01 1
day death rate of CD4+ cells

ε1 ∈ [0, 1) - efficacy of RTI

ε2 ∈ [0, 1) - efficacy of PI

k1 8.0× 10−7 ml
virions.day infection rate of CD4+ cells

λ2 31.98 cells
ml.day production rate of macrophages

d2 0.01 1
day death rate of macrophages

f 0.34 - reduction of treatment efficacy for macrophages

k2 1.0× 10−4 ml
virions.day infection rate of macrophages

δ 0.7 1
day death rate of infected cell

m1 1.0× 10−5 ml
cells.day immune-induced clearance rate for CD4+ cells

m2 1.0× 10−5 ml
cells.day immune-induced clearance rate for macrophages

NT 100 virions
cell virions produced per infected cell

c 13 1
day natural death rate of virus

ρ1 1 virions
cell average number of virions infecting a CD4+ cell

ρ2 1 virions
cell average number of virions infecting a macrophage

λE 1 cells
ml.day production rate of immune effector/cytotoxic T-cell

bE 0.3 1
day maximum birth rate for cytotoxic T-cell

Kb 100 cells
ml saturation constant for cytotoxic T-cell birth

dE 0.25 1
day maximum death rate for cytotoxic T-cell

Kd 500 cells
ml saturation constant for cytotoxic T-cell death

δE 0.1 1
day natural death rate of cytotoxic T-cells

Table 4.1: Parameters used in Equations 4.5.1 – 4.5.6 (Adams et al., 2004).

The model consists of two populations of target cells representing CD4+ T-cells and

macrophages respectively (Adams et al., 2004). In particular, the classes of RTIs and PIs

are modelled. The manner in which NRTIs and NNRTIs operate is largely similar hence

they are grouped together as one class of drug. Like most other mathematical models of

HIV-infection under HAART, the model includes parameters for the drug efficacy of each

class of ARV under consideration. These parameters are ε1 and ε2. They describe how

effective the RTI and PI classes of drugs are in reducing infection respectively (Adams

et al., 2004). The model assumes that the RTI class of drugs is more effective in the

CD4+ population of cells than in macrophages where the efficacy is reduced by a factor

of f , f ∈ [0, 1]. The PI class of drugs is only included in equations describing the change

in the viral load under HAART, since these drugs operate by directly interfering with

the formation of viral proteins that are necessary for viral production. Infected T-cells

result from direct interaction between uninfected T-cells and free virus particles; these

cells are removed from the system via natural death or through the action of cytotoxic

T-cells. The model assumes both T-cells and macrophages have the same death rates,

d1 = d2. The immune effector cells are produced in response to the presence of infected

4.6. MODELLING THE HIV DRUG SCHEDULING PROBLEM AS AN MDP 61

cells and existing immune effectors. The action of these immune effector cells triggers

lysing of infected T-cells and macrophages which results in their removal from the system

of equations at the rates of m1 and m2 respectively. The rate at which the virus infects

both types of cells is assumed to be different and is given by the parameters k1 and

k2 respectively. Free virus particles are produced by both infected macrophages and

infected T-cells; the model assumes these are produced at the same rate.

Adams et al. (2004) demonstrate that when both ε1 and ε2 are zero, the dynamic

model has three physical equilibrium points where all the variables are non-negative.

These equilibria are:

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (106, 3 198, 0, 0, 0, 10), (4.5.7)

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (967 839, 621, 76, 6, 415, 353 108), (4.5.8)

(T1, T2, T
∗
1 , T

∗
2 , V, E) = (163 573, 5, 11 945, 46, 63 919, 24). (4.5.9)

Note that Equation 4.5.7 is an unstable equilibrium point representing an uninfected

individual; Equations 4.5.8 and 4.5.9 are the stable equilibrium points representing

an infected individual. Specifically, Equation 4.5.8 represents an individual with good

immune control over the virus. This individual has a low viral load and high CD4+

and CD8+ counts; a patient is considered to be in a healthy steady state or stationary

equilibrium here. Equation 4.5.9 represents an individual in an unhealthy steady state

whose viral load is considerably elevated and T-cells are in short-supply in the absence

of treatment.

Using this dynamic model, we generate HIV data in the same way as Ernst et al.

(2006). That is, we assume the variables T1, T2, T
∗
1 , T ∗2 , V and E are measured every

five days and each patient is monitored for a period of 1 000 days. We consider 50

patients in the infected unhealthy steady state and randomly select medication for the

patient every five days. The values of ε1 and ε2 are modified according to whether the

associated class of drug is in use. Using Euler’s method to solve the system of equations,

the resulting T-cell counts, macrophage counts and viral load are recorded. In this way,

each patient produces 200 samples. For a total of 50 patients, 10 000 samples are

generated. In Chapter 5, we consider a number of experiments using this simulated

data. Some of these experiments require larger sample sets to be used, or require us to

generate more samples of data iteratively after applying RL to the problem domain; we

discuss this iterative data generation procedure in Chapter 5 where necessary.

4.6 Modelling the HIV drug scheduling problem as an

MDP

In this section we formulate the HIV drug scheduling problem as an MDP to which the

RL techniques under consideration can be applied for learning purposes. We distinguish

between different MDPs for the simulated data and real data cases respectively as some

of the variables modelled by Equations 4.5.1 - 4.5.6 are not directly observable in reality.

62 4. RESEARCH METHODOLOGY

4.6.1 An MDP formulation for the simulated case

For the case of simulated data, we have modelled the HIV drug scheduling problem as a

MDP in a manner almost identical to Ernst et al. (2006). Here our state space S consists

of six state variables corresponding to the number of healthy CD4+ T-cells (T1), healthy

macrophages (T2), infected CD4+ T-cells (T ∗1), infected macrophages (T ∗2), free virus

particles (V) and cytotoxic T-cells (E) respectively. Our action space A is comprised

of three actions representing the possible drug combinations available. That is, at each

time step, we consider one of three on-off drug combinations. These are:

1. Use both RTI and PI class drugs

2. Use only an RTI

3. Use only a PI

Note that we have ignored the case when both classes of drugs are turned off since this

is the equivalent of cycling a patient off drugs completely and constitutes a treatment

interruption. As mentioned in Section 2.6.3 of Chapter 2, intermittent therapy has

proven dangerous under the SMART trial. Unfortunately we are limited to examining

only two classes of drugs here because of the manner in which HIV-infection has been

modelled.

Like Ernst et al. (2006), we are looking for those drug strategies that minimize the

cumulative instantaneous costs of taking various drug combinations over an infinite time

horizon. Here the instantaneous cost of taking a particular drug combination at a time

t is calculated according to

c(st, at) = QVt +R1ε1t
2 +R2ε2t

2 − SEt (4.6.1)

where Q = 0.1, R1 = 20 000, R2 = 2 000 and S = 1 000. The variables Vt and Et
represent the number of free virus particles (copies/ml) and cytotoxic T-cells (copies/ml)

at time t respectively. The parameters ε1t and ε2t correspond to the efficacies of the

RTI and PI under consideration at time t respectively. When an RTI is being used for

treatment, ε1t = 0.7; when a PI is being used, ε2t = 0.3; otherwise, these values are

0. Intuitively, a combination of drugs that results in a raised viral load increases the

cost function; conversely, taking a combination of drugs that results in a better immune

effector response, decreases the cost function. The cost function may be viewed as

an inverse reward function. That is, a higher cost would be the equivalent of a lower

reward in the context of RL and would result in the agent being penalized for taking

the associated action. The interested reader should refer to Adams et al. (2004) and

Adams et al. (2005) for the precise reasoning behind this cost function for the system

of Equations 4.5.1 - 4.5.6.

4.6.2 An MDP formulation for the real data case

Moving from the simulated case to dealing with real data sets requires us to consider

a number of issues pertaining to the data available. Firstly, when simulating how HIV

4.6. MODELLING THE HIV DRUG SCHEDULING PROBLEM AS AN MDP 63

interacts with a group of patients, each patient is assumed to have the same dynam-

ics. When using real data, this is not necessarily the case since the dynamics may

vary significantly from patient to patient. Reasons for differing dynamics can often

be attributed to existence of different HIV types and strains or differences in patients’

immune systems. A possible means of addressing this issue is to consider including an

attribute such as the HIV type or specifics regarding a patient’s case in the state space.

In our research, we have tried to eliminate differences that result from varying types

of HIV by considering only those patients infected by HIV-1. We restrict our study to

HIV-1 since our sources of HIV data are limited and HIV-2 is not prevalent in South

Africa. However, because of the large number of clades in HIV-1, this is not necessarily

the best solution as variation between individual strains of HIV is still unaccounted for.

In an ideal situation, it might be useful to consider adding a state variable for the HIV

strain to the Markov model. With restrictions to the data we have access to, this was

not possible.

One of the issues associated with using real data is defining a time step for modelling

an MDP. In the simulated case, we can assume that the values of the state variables

determined according to the system of ODEs 4.5.1 - 4.5.6 are recorded at regular time

steps that are equidistant from one another. For real data, patients are typically required

to visit the hospital for blood tests every six months however, this does not always

happen. To overcome this issue, we have defined a single time step to be a period

of six months from the previous date of visit and interpolated the values of the state

variables from the data where regular six-month data was unavailable. In addition,

we have normalized all state variables using a logarithmic transformation. Reasons for

normalizing the real data are based on the fact that it is easier to define a reward function

on reduced data range. This problem does not exist when using simulated data since

we use the same cost function as defined by Ernst et al. (2006). There are also several

cases in the real data set where the values of the state variables are larger than those

in the simulated data set, despite being expressed in the same units. Normalization is

useful for these cases. The values of the state variables are all plotted on a logarithmic

scale in both the experimentation using simulated and real data sets. This is for easier

visualization and interpretation.

Perhaps the most significant challenge that arises when using real data is the problem

of partial observability (Ernst et al., 2006). In the simulated case, we assumed that all

the state variables can be observed and recorded directly with current technology. In

reality however, this is not the case: current blood tests conducted by hospitals for HIV-

infected individuals do not measure macrophage counts and existing technology cannot

distinguish between infected and uninfected CD4+ T-lymphocytes; in addition, CD8+

lymphocytes are only recorded once in a few years if at all. With these limitations in

available data, we are forced to consider only the CD4+ count and viral load data when

constructing a state space for the MDP.

Having discussed the major difficulties when using real data for training, we can

formally define how we have constructed an MDP for the real data case. Our state

space S consists of a patient’s CD4+ T-cell count (T) and viral load (V) normalized by

64 4. RESEARCH METHODOLOGY

applying a logarithmic transform. Unlike when using simulated data that was generated

according to a model that could not take into account specific drugs, for real data we

consider seven major drugs that are currently used in South Africa in ARV treatment.

These are EFV, 3TC, tdf, d4T, LPV/r, NVP and AZT.2 Reasons for restricting our

study to these seven drugs are based on the fact that these drugs are widely available

in the country and are commonly used; another major reason is the real patient data

we have accessed makes use of combinations of these drugs. We can represent the seven

drugs under consideration as a seven-tuple vector of binary values where each value

corresponds to whether the associated drug is being used at a certain time or not.

This seven-tuple vector represents the action taken by a patient at a particular time.

Theoretically, our action space A consists of 128 possible actions based on the drugs

being used in a multi-drug combination. Practically, certain combinations of drugs are

not taken together because of the side-effects they may produce when combined, and

since this research does not consider the use of STIs, we do not allow for the possibility

of a patient not receiving any treatment. By taking this into consideration, we can

eliminate a few actions from the action space. While we have only considered the use

of these seven drugs, it is possible to extend the action space to include more drugs

or newly developed drugs for a clinical trial setting. In the case of clinical trials, the

patient data obtained from a particular phase of the trials can be used to train the batch

RL algorithms we consider in this research; here, the action space would include the

developed drug. Results from using batch RL algorithms between phases of a clinical

trial could provide medical researchers with insight into the efficacy of the new drug(s)

fairly quickly before the subsequent phase begins. This is particularly useful since

phases of a clinical trial are usually very lengthy and typically last a number of years.

We are aware that the action space is exponential in the number of drugs considered,

however there are ways in which this problem can be overcome. Subtle variants of the

fitted Q-iteration method exist that demonstrate how the algorithm can be extended to

large and/or continuous action spaces. These procedures are discussed by Antos et al.

(2007) and briefly by Ernst et al. (2005). The same can be said for LSPI (see Pazis &

Lagoudakis (2011) for details).

Like Zhao et al. (2009), we use a composite function to define the reward the agent

receives at each time step during learning. This reward function is comprised of two

functions, rt1 and rt2, based on the changes observed in a patient’s T-cells and viral

loads respectively. We penalize an increase in the viral load or decrease in the CD4+

count. We give a large positive reward when a patient’s viral load is below detectable

limits i.e. less than 40 copies/ml (Vt = -1). If a patient’s T-cell count neither decreases

nor increases, we do not give a reward since there is no change in immune response.

However, if the viral load stays the same, we give a penalty of -1. This assists in making

the algorithms learn to choose those actions which improve the viral load as quickly as

possible. The values for rt1 and rt2 are given by,

2We consider LPV and r together since LPV must be taken in conjunction with r.

4.7. IMPLEMENTATION OF BATCH REINFORCEMENT LEARNING TECHNIQUES 65

rt1 =

5, if Tt > Tt−1
−5, if Tt < Tt−1
0, otherwise

(4.6.2)

rt2 =

5, if Vt < Vt−1 and Vt 6= −1

−5, if Vt > Vt−1 and Vt 6= −1

25, if Vt = −1

−1, otherwise.

(4.6.3)

Here, the time step t is a period of 6 months between patient visits to the hospital. The

final reward is given by the following equation:

rt = rt1 + rt2. (4.6.4)

In this form, we place equal emphasis on both state variables. It would, however,

be possible to introduce weights to this sum if we wanted one variable to have more

influence on the actions selected than the other.

4.7 Implementation of batch reinforcement learning tech-

niques

For this research, all algorithms and data generation methods have been implemented in

MATLAB. For comparative purposes all learning algorithms need to be implemented in

the same language. We chose MATLAB primarily because of its Neural Network Tool-

box that allows us to create and customize neural networks easily for the neural fitted

Q-iteration algorithm. Data visualization is also fairly straightforward since MATLAB

has an extensive set of graphics options available to the user. Furthermore, matrix

manipulation is important for methods such as LSPI; MATLAB is particularly good at

this.

For the fitted Q-iteration with extra trees algorithm, we chose to represent each tree

as a four-tuple (f1, f2, f3, f4) where the first element of the tuple corresponds to the

attribute selected at the root node to split on; the second element corresponds to the

value of the split, and the third and fourth elements represent the index of the left and

right subtrees respectively. Each of the subtrees produced were represented in the same

way. In this way, a tree could easily be represented recursively.

Coding the neural fitted Q-iteration method consisted of executing the standard

fitted Q-iteration algorithm using neural networks to perform the regression step. Our

specific implementation used the resilient backpropagation algorithm (RPROP) (Ried-

miller & Braun, 1993) to train the network. RPROP is an improved version of classical

backpropagation method that is used to train neural networks. The main advantage

of using RPROP is the performance gain. This gain is largely a result of the manner

in which weights are updated during training: weights are updated by combining the

current gradient and the gradient from the previous step in training (Hatzigeorgiou &

66 4. RESEARCH METHODOLOGY

Megraw, 2006). Network structures were varied according to the specific experiment

performed.

Implementation of the LSPI algorithm mainly involved coding methods for calcu-

lating suitable basis functions for the problem at hand. We have used Gaussian radial

basis functions which we mention in the next chapter. These basis functions were used

by the LSPI algorithm to perform standard matrix multiplication and derive a suitable

policy for the domain of interest. While it is possible for tilings to be used for the same

purposes, preliminary testing revealed that Gaussian radial basis functions performed

better across all the domains we considered.

4.8 Conclusion

In this chapter, we presented the methodology that was carried out to complete this

research. This involved formulating the drug scheduling task as an MDP, collecting and

generating patient data, cleaning the data, and applying the learning techniques under

consideration to these data sets. The next chapter presents the results obtained from

each of the experiments conducted and a discussion of what these results mean for drug

scheduling in the HIV domain.

Chapter 5

Results and Discussion

5.1 Introduction

In this chapter we present the major results of this research. We begin by providing

the specifications of the machine we have used for testing purposes in Section 5.2. In

Section 5.3, we examine the performance of each of the batch reinforcement learning

techniques discussed in Chapter 3 on the benchmark domains of mountain car and the

swing-up acrobot. Specifically the results from the benchmark domains can give us some

insight as to how the algorithms perform on well-behaved domains. In Section 5.3, we

apply the same techniques to the set of simulated data that was discussed in Chapter 4.

We use each of the policies determined on this set of simulated data to generate more

patient samples for learning in Section 5.4; these samples allow us to ascertain whether

the learned policies result in improved patient outcomes for the simulated case. When

experimenting using real data, it is not possible to implement the policies suggested

by the algorithms on real patients and observe the outcomes. For these reasons, we

perform a match test, to observe how many times the suggested policy matches those

policies currently in place from the patient data available. These results are provided

in Section 5.5. Section 5.6 concludes the chapter by discussing how the results obtained

in this chapter can be used to answer the research questions formulated in Chapter 4.

5.2 System specifications

We have used MATLAB 7.11 (R2010b) to implement all of our code for this research.1

All experimentation has been performed on a MacBook Pro ’11 with the following

specifications:

• Mac OS X Lion Version 10.7.5 (11G63b)

• 2.66 Ghz Intel Core 2 Duo

• 4GB 1067 MHz DDR3

1All the code written for this research is available upon request at sonali.parbhoo@students.wits.ac.za.

67

68 5. RESULTS AND DISCUSSION

• 3MB Cache

5.3 Benchmark domain experimentation

In this section, we present the results of the performances of each batch RL technique

when applied to the benchmark domains of the mountain car and acrobot task respec-

tively. Specifically, we examine how the algorithms compare in terms of their run times

for data sets of differing sizes as well as their outcomes in terms of the policies they

determine.

5.3.1 Performance assessment metrics

In order to compare the performances of each batch RL technique under consideration

when applied to the benchmark domain tasks, we require certain metrics to assess

the quality of the policies determined. In our case, we use (i) the number of times a

successful optimal policy2 is generated and (ii) how quickly the learning task at hand

is fulfilled under a successful optimal policy. The former requires us to run a number

of trials on different sample sets and determine what percentage of these trials produce

a policy that accomplishes the task. The latter requires us to assess how many steps

are required to fulfill a certain task under a successfully computed optimal policy. The

learning technique that reaches the goal state most often and/or requires the smallest

number of steps to reach the goal state exhibits the best performance overall.

5.3.2 Comparison of algorithmic outcomes for mountain car

In this experiment we compare the outcomes of each batch RL technique under consid-

eration when applied to the mountain car task. Specifically, we divide the experiment

into three parts. Part (i) is based on comparing the run time performances of each

algorithm when applied to sets of mountain car samples of varying sizes. We acknowl-

edge using code by Fonteneau (2009) for generating these mountain car samples. In

particular, we have generated sample sets of sizes 5 000, 10 000, 15 000, 20 000, 25 000

and 30 000 respectively. Each episode within the set of samples begins at the initial

state (p, v) = (-0.5, 0) representing a stationary car at the bottom of a hill; an episode

ends once the car reaches the top of the hill or if either p < -1 or v leaves the interval

[-3, 3]. We execute 50 iterations of each learning technique and measure the time it

takes for each method to reach completion. This is repeated over a set of five trials

from which we can obtain an average run time. While run time is not an indicator of

the quality of the solution obtained, it is of practical significance if the batch of samples

available is quite large. It can also give us an indication about the performance of each

method relative to the training time required. In part (ii), we determine the optimal

policy from the start state at the bottom of the hill for each algorithm using a sample

2Hereafter, we use the term optimal policy to refer to the approximate optimal policy after N -steps,

π̂∗N .

5.3. BENCHMARK DOMAIN EXPERIMENTATION 69

set of 10 000 samples after 50 iterations and illustrate these results. In part (iii), we

first execute each algorithm on 30 sample sets each containing 10 000 samples. For each

of the algorithms, we determine an optimal policy after 50 iterations. From the opti-

mal policies determined, we calculate the percentage of policies that are successful in

reaching the goal state. Thereafter, we select 10 sample sets for which all three learning

methods are able to produce successful policies. We record the number of steps taken

to reach the goal under π̂∗50 from the learning techniques across each of the 10 sample

sets. Each part of this experiment has been performed using sample sets that are gen-

erated according to a random policy. We use the parameters M = 50 and nmin = 2

for fitted Q-iteration with extra trees. A neural network consisting of 4 input nodes, a

layer of 50 hidden nodes and 1 output node are used for neural fitted Q-iteration.This

neural network structure has been chosen after significant testing. For LSPI, we use 100

randomly centered Gaussian radial basis functions with σ2 = 5. We present the results

for (i) - (iii) hereafter.

(i) Run time comparison of learning techniques using sample sets of varying

sizes

Tables 5.1 - 5.3 show the running times of the three batch RL techniques under consid-

eration for sample sets of varying sizes. The average of these times are computed over

5 trials.

|F| 1 2 3 4 5 Average time (mins)

5 000 12.38 15.81 16.19 16.73 14.62 15.15

10 000 55.76 51.87 46.38 49.29 52.71 51.20

15 000 55.83 56.92 48.27 44.02 62.50 53.51

20 000 61.46 48.97 57.91 63.82 67.25 59.89

25 000 66.70 68.79 89.12 59.32 64.81 69.75

30 000 69.71 63.14 78.72 78.93 83.95 74.89

Table 5.1: Run times of neural fitted Q-iteration on mountain car sample sets of varying

sizes over 5 trials.

|F| 1 2 3 4 5 Average time (mins)

5 000 98.72 102.49 116.27 99.36 108.58 105.08

10 000 126.34 120.10 132.74 121.67 121.23 121.42

15 000 136.00 138.21 131.29 131.03 137.96 134.90

20 000 138.71 142.11 139.43 139.82 139.41 139.67

25 000 148.33 141.71 144.00 148.39 148.52 146.19

30 000 145.67 152.71 148.88 149.72 147.19 148.83

Table 5.2: Run times of fitted Q-iteration using extra trees on mountain car sample sets

of varying sizes over 5 trials.

70 5. RESULTS AND DISCUSSION

|F| 1 2 3 4 5 Average time (mins)

5 000 3.18 3.19 3.24 3.11 3.07 3.16

10 000 6.36 6.42 6.79 7.02 6.21 6.56

15 000 10.11 9.59 9.71 10.28 9.02 9.74

20 000 12.45 12.92 11.63 12.22 11.73 12.19

25 000 18.31 18.76 19.20 16.72 18.19 18.24

30 000 24.26 24.19 24.18 23.72 24.84 24.24

Table 5.3: Run times of LSPI on mountain car sample sets of varying sizes over 5 trials.

Figure 5.1: Average run times of each algorithm when applied to the mountain car task

using sample sets of varying sizes.

The run times of each algorithm increase with an increase in the size of the sample sets

used for learning as is expected. For both versions of fitted Q-iteration, the majority

of the time is spent on the regression step to determine a Q-function of approximation.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 71

That is, for the fitted Q-iteration algorithm with extra trees, we spend the most time

actually constructing the ensembles of trees recursively; for neural fitted Q-iteration,

most time is spent training the neural network. The major computational step for LSPI

involves computing the basis functions for each pair state (p, v). Overall, the extra

trees implementation is extremely slow in comparison to the other two methods. LSPI

outperforms the other two methods significantly in terms of its run time. This is based

on the fact that once the basis function calculation step of the algorithm is complete, the

Q-values can be determined from a straightforward matrix multiplication step. Figure

5.1 shows a summary of these times for each algorithm as the size of the sample set

used for learning increases. While changing the parameters M and nmin would result

in significantly different performances, Ernst et al. (2005) demonstrate that M = 50 is

large enough to ensure that the accuracy of the models produced for this domain cannot

be improved further by increasing the number of trees. Hence we have chosen the same

parameter values for this experiment.

(ii) Optimal policies determined by batch RL techniques for mountain car

task.

In this part of the experiment, we determine an optimal policy from the start state (p, v)

= (-0.5, 0) for the mountain car task. To do so, we run 50 iterations of each learning

technique on a sample set of 10 000 randomly generated mountain car samples. Figures

5.2, 5.3 and 5.4 give a representation for the optimal policy after a different number of

iterations, N . The points in blue correspond to those states where Q̂N ((p, v),−4) >

Q̂N ((p, v), 4); the points in red represent states where Q̂N ((p, v),−4) < Q̂N ((p, v), 4);

points in green correspond to states where Q̂N ((p, v),−4) = Q̂N ((p, v), 4).

We observe that for the particular sample set used, each algorithm is able to generate

a successful policy however, the policies obtained differ slighty. Results from NFQ

show that the policy changes quite remarkably between iterations (see Figure 5.2 (a) -

(e)). The policies obtained using fitted Q-iteration with extra trees and LSPI tend to

stabilize and change less frequently at some point (see Figures 5.3 and 5.4 (a) - (e)).

The trajectory obtained from applying the optimal policy from LSPI to the start state

(p, v) = (-0.5, 0) is longer than the trajectories obtained from applying fitted Q-iteration

and neural fitted Q-iteration to the same sample set. Both versions of fitted Q-iteration

are able to determine similar optimal policies that are more efficient since they require

fewer and smaller steps to reach the goal state. For the particular sample set used here,

neural fitted Q-iteration produces the most effective trajectory to the goal state using

only 21 steps in comparison to the 24 steps and 40 steps required by fitted Q-iteration

with extra trees and LSPI respectively. This is shown in Figure 5.2 (f).

We note that applying the learning techniques to this sample set has produced a

successful optimal policy for each case. However, since an episode in the mountain car

task ends either when the goal state is reached, or when p < -1 or v leaves the interval

[-3, 3], it is possible to obtain an unsuccessful policy when using other sample sets.

Figure 5.5 shows an example of a trajectory produced by an unsuccessful policy where

72 5. RESULTS AND DISCUSSION

the position of the car, p < −1. In addition, it is possible that one learning method

outperforms the others on a particular sample set, but not in general. For these reasons,

we perform part (iii) of this experiment.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 73

(a) arg maxa∈A Q̂10(s, a) (b) arg maxa∈A Q̂20(s, a)

(c) arg maxa∈A Q̂30(s, a) (d) arg maxa∈A Q̂40(s, a)

(e) arg maxa∈A Q̂50(s, a) (f) Trajectory from initial state s0 = (−0.5, 0)

Figure 5.2: (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps of

neural fitted Q-iteration, where N = 10, 20, 30, 40 and 50 respectively. (f): Trajectory

from s0 = (−0.5, 0) under policy π̂∗50.

74 5. RESULTS AND DISCUSSION

(a) arg maxa∈A Q̂10(s, a) (b) arg maxa∈A Q̂20(s, a)

(c) arg maxa∈A Q̂30(s, a) (d) arg maxa∈A Q̂40(s, a)

(e) arg maxa∈A Q̂50(s, a) (f) Trajectory from initial state s0 =

(−0.5, 0)

Figure 5.3: (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps of

fitted Q-iteration with extra trees, where N = 10, 20, 30, 40 and 50 respectively. (f):

Trajectory from s0 = (−0.5, 0) under policy π̂∗50.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 75

(a) arg maxa∈A Q̂10(s, a) (b) arg maxa∈A Q̂20(s, a)

(c) arg maxa∈A Q̂30(s, a) (d) arg maxa∈A Q̂40(s, a)

(e) arg maxa∈A Q̂50(s, a) (f) Trajectory from initial state s0 = (−0.5, 0)

Figure 5.4: (a) - (e): Graphical representation of optimal policy, π̂∗N , after N steps of

LSPI, where N = 10, 20, 30, 40 and 50 respectively. (f): Trajectory from s0 = (−0.5, 0)

under policy π̂∗50.

76 5. RESULTS AND DISCUSSION

Figure 5.5: Example of the trajectory resulting from an unsuccessful policy on the

mountain car domain.

(iii) Number of steps to goal state of mountain car task for each learning

technique

For the final part of this experiment, we record the number of successful policies pro-

duced by each learning technique after 50 iterations when applied to 30 sample sets of

10 000 samples each. From these 30 sample sets, we select 10 sample sets which allow

for a successful optimal policy to be computed across all three learning techniques. We

compute the average number of steps to reach the goal state from the initial state for

each method.

Table 5.4 gives the number of times the learning technique considered produces a

successful policy over 30 sample sets.

NFQ FQI LSPI

Number of successful policies 21 28 23

% success 70.00 93.33 76.67

Table 5.4: Number of successful policies computed under each learning technique over

30 sample sets.

In Table 5.5 we record the number of steps required to reach the goal state for each

batch learning method over 10 sample sets or trials and compute an average.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 77

Trial Steps taken by NFQ Steps taken by FQI Steps taken by LSPI

1 23 20 36

2 19 35 40

3 174 21 92

4 40 16 61

5 39 32 67

6 27 29 69

7 138 21 78

8 273 22 105

9 46 22 73

10 20 24 40

Average 79.90 24.20 66.10

Table 5.5: Number of steps taken by each algorithm to reach goal state under optimal

policy over 10 trials.

5.3.3 Discussion of results for mountain car domain

Results from experimentation on the mountain car task demonstrate that each learning

method has its own associated advantages and disadvantages. In terms of speed, LSPI

and neural fitted Q-iteration are both significantly faster than the extra trees version of

fitted Q-iteration. This is a direct consequence of the function approximation structure

that is used for each technique. For the particular set of samples used in part (ii) of

this experiment, the trajectories obtained as a result of the optimal policy demonstrate

similar performance between both versions of fittedQ-iteration. The resulting trajectory

produced by applying LSPI to the same set of samples, is almost double in length. This

means that for the sample set used in part (ii), it takes LSPI significantly longer to reach

the goal state than neural fittedQ-iteration and fittedQ-iteration with extra trees. From

part (ii), we would expect similar results when applying each of the learning methods

to different sample sets in part (iii). However, this is not necessarily the case. While

fitted Q-iteration with extra trees and neural fitted Q-iteration are essentially variations

of the same learning technique, the extra trees implementation is far superior in terms

of the number of successful policies it is able to produce. In fact, despite the results

from part (ii), LSPI is able to generate an optimal policy with a higher success rate

than neural fitted Q-iteration, regardless of the length of the resulting trajectory. These

results are reinforced by the fact that when we apply all three learning methods to sets of

samples that generate successful policies in each case, neural fitted Q-iteration tends to

produce trajectories that vary considerably in length. In some instances, the trajectories

are much shorter than those produced by LSPI and FQI with extra trees whereas in

other cases, the opposite is true. This means that neural fitted Q-iteration produces

trajectories that are on average longer than those produced by both other techniques.

Overall, the performance of neural fitted Q-iteration is somewhat unpredictable and

78 5. RESULTS AND DISCUSSION

largely dependent on the sample set used. A possible explanation is that the neural fitted

Q-iteration algorithm may require more iterations to be run to refine its approximation

of the Q-function adequately enough. In our experimentation, we have run 50 iterations

using each method however, the number of iterations required to converge to an optimal

Q-function may be significantly different for each method. This is further demonstrated

by (a) - (e) in Figure 5.2 where the policy differs significantly between iterations. In

contrast, the optimal policies for LSPI and fitted Q-iteration with extra trees remain

largely stable after 20 iterations (see Figures 5.3 and 5.4 (a) - (e)). It is also possible

that a better neural network structure is required. In general, despite its speed, fitted

Q-iteration using extra trees tends to produce the most effective optimal policy that

results in a trajectory with the shortest number of steps.

5.3.4 Comparison of algorithmic outcomes for swing-up acrobot

This experiment is more or less identical to the experiment performed on the mountain

car task that was discussed in the previous section. We have generated samples starting

from the initial state (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0) representing the acrobot lying in

the vertical position using a random policy. In part (i), we compare the run time

performances of neural fitted Q-iteration, fitted Q-iteration and LSPI on sample sets

of sizes 5 000, 10 000, 15 000, 20 000, 25 000 and 30 000 respectively. At each time

step in an episode within the set of samples, we choose a random action from the set

of 3 possible actions {−1, 0, 1}. These actions correspond to the torque applied to the

second joint of the acrobot. An episode reaches completion once the acrobot is able to

swing its tip above the first joint by an amount equal to the length of its links which

in this case is 1. That is, the acrobot reaches its goal state when its tip lies above a

height of 1. As with the mountain car task, we execute 50 iterations of each learning

technique and measure the time it takes for each method to reach completion. The test

is repeated over five trials from which an average run time is calculated. In part (ii), we

use a sample set of 10 000 samples to calculate the 50th step optimal policy, π̂∗50 under

each learning technique, and compare the outcomes. Finally, in part (iii), we repeat

part (ii) over ten different sample sets each containing 10 000 samples. Here, we obtain

a policy π̂∗50, for each method across each sample set. We apply these policies to the

initial state and calculate the number of steps required to reach the goal state for each

sample set. We use the parameters M = 50 and nmin = 2 for fitted Q-iteration with

extra trees. The number of trees is once again adequate to obtain a suitable model of

the data. A neural network consisting of 7 input nodes, one hidden layer of 100 hidden

nodes and 1 output node are used for neural fitted Q-iteration. For LSPI, we use 1 050

randomly centered Gaussian radial basis functions (350 basis functions per action) with

σ2 = 5. We present the results for (i) - (iii) hereafter.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 79

(i) Run time comparison of learning techniques using acrobot sample sets of

varying sizes

Tables 5.6 - 5.8 show the running times of the three batch RL techniques under consid-

eration for sample sets of varying sizes. The average of these times are computed over

5 trials.

|F| 1 2 3 4 5 Average time (mins)

5 000 25.71 22.19 28.27 24.85 24.93 25.19

10 000 43.15 49.81 54.72 46.11 46.82 48.12

15 000 42.71 48.92 51.47 51.33 51.67 49.22

20 000 49.93 56.49 53.19 53.83 59.71 54.63

25 000 57.96 59.21 63.94 63.60 58.13 60.57

30 000 61.97 65.74 66.81 62.39 65.00 64.38

Table 5.6: Run times of neural fitted Q-iteration on acrobot sample sets of varying sizes

over 5 trials.

|F| 1 2 3 4 5 Average time (mins)

5 000 67.68 72.19 73.47 64.44 71.26 69.81

10000 121.71 121.84 125.92 127.88 123.32 124.13

15 000 129.33 134.45 132.29 132.25 141.73 134.01

20 000 137.21 139.48 145.60 157.83 137.74 143.57

25 000 149.77 149.91 145.38 148.20 148.34 148.32

30000 146.79 141.24 148.17 156.69 169.92 152.56

Table 5.7: Run times of fitted Q-iteration using extra trees on acrobot sample sets of

varying sizes over 5 trials.

|F| 1 2 3 4 5 Average time (mins)

5 000 78.87 73.29 73.81 76.95 68.47 74.28

10 000 105.38 112.31 108.64 108.77 108.90 108.80

15 000 126.98 124.01 124.73 121.35 112.51 121.92

20 000 137.67 139.42 139.28 141.74 140.06 139.63

25 000 148.98 149.20 149.27 149.43 151.72 149.71

30 000 152.29 152.34 150.88 157.46 155.53 153.70

Table 5.8: Run times of LSPI on acrobot sample sets of varying sizes over 5 trials.

The run times of each algorithm increase with an increase in the size of samples sets

used for learning. As before, both versions of fitted Q-iteration spend the most time

calculating the regression step to obtain a suitable Q-function approximation. The

80 5. RESULTS AND DISCUSSION

main computational step for LSPI consists of computing the basis functions for each

state (θ1, θ2, θ̇1, θ̇2). We observe that the extra trees implementation is very slow even

across a different domain. The higher dimensionality of the state space in this case

may contribute to the fact that run times are slower than when using the mountain

car domain as there are more attributes to test and potentially split when using fitted

Q-iteration with extra trees. Neural fitted Q-iteration outperforms both other methods

in terms of speed. LSPI performs significantly slower when applied to the swing-up

acrobot task as opposed to its performance on the mountain car domain. This is a

direct consequence of using a larger number of basis functions to approximate the Q-

values. It is interesting to observe that the average run times of LSPI on the smallest

set of 5 000 samples and the largest set of 30 000 samples are higher than those of

fitted Q-iteration with extra trees. Figure 5.6 shows a summary of these times for each

algorithm as the size of the sample set used for learning increases.

Figure 5.6: Average run times of each algorithm when applied to the swing-up acrobot

task using sample sets of varying sizes.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 81

Optimal policies determined by batch RL techniques for the swing-up ac-

robot task

Figure 5.7: Policy π̂∗50 obtained from applying neural fitted Q-iteration to the swing-up

acrobot task.

Figure 5.8: Policy π̂∗50 obtained from applying fitted Q-iteration with extra trees to the

swing-up acrobot task.

Figure 5.9: Policy π̂∗50 obtained from applying LSPI to swing-up acrobot task.

82 5. RESULTS AND DISCUSSION

Figure 5.10: Positioning of acrobot at various steps under π̂∗50 using neural fitted Q-

iteration.

In this part of the experiment, we determine the 50th step optimal policy from the

start state for the swing-up acrobot task. To do so, we run 50 iterations of each learn-

ing technique on a sample set of 10 000 randomly generated acrobot samples. Be-

cause of the dimensionality of the state space, it is impossible to graphically represent

arg maxa∈A Q̂(s, a) for each pair (s, a) as we did for the mountain car task. Instead, we

provide figures for the positioning of the acrobot at different steps having followed the

policy π̂∗50 from the initial state. In particular, Figures 5.10, 5.11 and 5.12 demonstrate

the acrobot at different positions in an episode following learning under neural fitted

Q-iteration, fitted Q-iteration with extra trees and LSPI respectively. The goal states

are indicated. The corresponding sequence of actions taken are given in Figures 5.7, 5.8

and 5.9 respectively. We observe that for this particular sample set, it takes the acrobot

136 steps to reach the goal state using the policy π̂∗50 obtained from neural fitted Q-

iteration. For the same sample set, it takes the acrobot 77 steps and 105 steps to reach

the goal state using π̂∗50 from fitted Q-iteration with extra trees and LSPI respectively.

If we compare the policies π̂∗50 obtained from each learning technique by looking at

the sequence of actions the acrobot takes to reach the goal state, we can see that all

5.3. BENCHMARK DOMAIN EXPERIMENTATION 83

three policies are very different. The sequence of actions taken by the acrobot having

applied π̂∗50 from both versions of the fitted Q-iteration algorithm involve many more

oscillations between applying a torque and applying a torque in the opposite direction.

As a result, we see the acrobot swinging back and forth more rapidly. This is not the

case when using the LSPI learning technique; here, a positive torque is continuously

applied after the 28th step. There are also more instances where zero torque is applied

in both versions of fitted Q-iteration than in the policy obtained from using LSPI.

Figure 5.11: Positioning of acrobot at various steps under π̂∗50 using fitted Q-iteration

with extra trees.

84 5. RESULTS AND DISCUSSION

Figure 5.12: Positioning of acrobot at various steps under π̂∗50 using LSPI.

Number of steps to goal state of acrobot task for each learning technique

As in the final part of our experimentation on the mountain car domain, we compare

the average number of steps taken by each algorithm to reach the goal state from

(θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0) under their respective optimal policies. Note that since

the acrobot task only has one terminal state i.e. when the goal state is reached, we

omit calculating the percentage of successful policies generated which we did for the

mountain car task. For this experiment, we conduct 10 trials using 10 sample sets

of 10 000 samples each. The samples are generated according to the random policy

as before. We determine the optimal policy after 50 iterations from the initial state

for each of these sets for each learning technique considered. Again, we compute the

number of steps each algorithm takes to reach the goal state from the initial state under

the optimal policies obtained. Table 5.9 shows these results.

5.3. BENCHMARK DOMAIN EXPERIMENTATION 85

Trial Steps taken by NFQ Steps taken by FQI Steps taken by LSPI

1 48 39 148

2 36 35 180

3 42 42 105

4 54 27 135

5 51 29 94

6 136 80 105

7 37 31 83

8 58 32 129

9 21 48 101

10 62 37 98

Average 54.50 40.00 117.80

Table 5.9: Number of steps taken by each algorithm to reach goal state of acrobot task

under optimal policy over 10 trials.

5.3.5 Discussion of results for the swing-up acrobot domain

Results from experimentation on the swing-up acrobot control task reveal some differ-

ences in the performances of each learning technique in comparison to the results from

the mountain car task. In terms of speed, we observe once again that the extra trees

version of fitted Q-iteration is very slow. However, the speed advantage demonstrated

by LSPI when applied to the mountain car task, is not observed here. On the contrary,

there are instances where LSPI takes longer to run than fitted Q-iteration with extra

trees. This is because of the fact that a substantial number of basis functions are calcu-

lated. Ultimately, it is the method used to calculate these basis functions that largely

dictates the speed of the LSPI algorithm. Neural fitted Q-iteration is significantly faster

than both other learning techniques. In terms of the optimal policies obtained when

applying each technique to sample sets of 10 000 samples, both versions of fitted Q-

iteration have similar performance with a similar number of average steps required to

reach the goal state. LSPI takes on average double the number of steps to reach the

same goal. This is suggestive of the fact that more basis functions should possibly be

used to improve the quality of the Q-function approximation. Alternatively, it could

be worthwhile investigating the use of different basis functions, other than randomly

centered Gaussian radial basis functions, for Q-function approximation on this task.

Overall, the policy determined by the extra trees version requires the fewest steps to

reach the goal state. In doing so, the acrobot swing-up task is accomplished sooner than

when using neural fitted Q-iteration or LSPI.

86 5. RESULTS AND DISCUSSION

5.4 Experimentation on simulated data

In this experiment, we compare the outcomes of each batch RL algorithm when ap-

plied to HIV data simulated using the model discussed in Section 4.5.2 of the previous

chapter. In particular, we make observations about whether or not a patient’s health

status improves after taking the actions recommended by each of the learning techniques

following training.

To perform this experiment, we use an iterative data generation and testing proce-

dure analogous to Ernst et al. (2006). We assume that patients are monitored every five

days for a period of 1 000 days. At the first iteration, we generate the data for fifty pa-

tients all in the unhealthy steady state. Thereafter, every five days the patient’s health

status is assessed according to the quantities of the state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

and we select a random treatment action from the set of actions {RTI on and PI on,

RTI on and PI off, RTI off and PI on}. By recording a patient’s state of health every

five days, we obtain a trajectory (s0, a0, s1, a1, . . . , s200) corresponding to the course of

action taken on the patient over 1 000 days. This trajectory produces 200 samples of

the form (st, at, st+1). Hence, by the end of the first iteration, a total of 10 000 samples

are available. At this point we run each of the batch RL algorithms on the set of 10 000

samples for 50 iterations to produce a policy π̂∗50(s0) where s0 is the unhealthy steady

start state.

During the second iterative step, we generate the data for 10 new patients again

from unhealthy stationary equilibrium and record their state data every five days for

exactly 1 000 days. Instead of randomly selecting the medication taken by a patient

every five days, we consider the optimal action suggested by the policy π̂∗50 that was

obtained from the original set of 10 000 samples. We take this optimal action 70% of

the time and choose a random action for the remaining 30%. Once again we apply each

of the batch algorithms to the new set of 12 000 samples for 50 iterations and obtain a

new optimal policy for the larger sample set.

At the third iterative step, we generate the data for another set of 10 new patients

from the unhealthy steady state and record the necessary state data. We consider the

action suggested by the optimal policy obtained from the set of 12 000 samples and

take this action 85% of the time; for the remaining 15%, we choose a random action.

We repeat the iterative procedure ten times to produce a total of 30 000 samples. After

the tenth iteration, we use the optimal policy π̂∗50 that was obtained from the set of

30 000 samples to generate the data for one patient (once again starting at unhealthy

stationary equilibrium). This time, we take only the action suggested by π̂∗50. The

resulting trajectory obtained represents the evolution of a patient’s health condition

under the policy π̂∗50 from a 30 000 sample set. We determine such a trajectory for each

of the learning methods under consideration.

By alternating between sample generation and testing using the batch RL algo-

rithms, we are able to determine whether the policies learned by the RL techniques

eventually improve a patient’s state of health overall. For the fitted Q-iteration algo-

rithm using extra trees, we build a set of 50 trees at each iteration like Ernst et al.

5.4. EXPERIMENTATION ON SIMULATED DATA 87

(2006); for the neural fitted Q-iteration algorithm, we use a neural network with 9

input nodes corresponding to the state and action variables, 100 hidden nodes and 1

output node. When applying LSPI, we use 9 000 randomly centered Gaussian radial

basis functions with σ2 = 4.

Figure 5.16 represents the changes in the state variables for a patient being treated

from unhealthy stationary equilibrium for a period of 1 000 days following π̂∗50 from using

neural fitted Q-iteration. We note that over the course of treatment an improvement in

the CD4+ count and a decrease in the overall viral load are observed. We also observe

decrease in both infected macrophages and infected T-cells with a reduced viral load.

Figure 5.13 shows the corresponding course of action taken for the patient when neural

fitted Q-iteration was applied. We observe that initially extensive drug cycling occurs

between using RTIs and PIs. This is followed by a period of using only PIs. After 730

days of treatment, the patient begins using RTIs again but this time without the use of

any PIs.

Figure 5.13: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using neural fitted Q-iteration.

Figures 5.17 and 5.14 show these results for a patient being treated from unhealthy

stationary equilibrium for a period of 1 000 days under π̂∗50 from fitted Q-iteration with

extra trees. Once again, we observe an improvement in overall health in terms of the

CD4+ count, viral load, macrophage counts and cytotoxic T-cell counts; however, the

course of action in this case involves many more periods of drug cycling than in the

previous case. Similarly, Figures 5.18 and 5.15 show the results for a patient being

treated from unhealthy stationary equilibrium for 1 000 days under π̂∗50 from applying

LSPI to a set of 30 000 samples. The courses of action obtained using LSPI and fitted

88 5. RESULTS AND DISCUSSION

Q-iteration with extra trees are quite similar in the sense that more drug cycling occurs

with fewer periods of drug stability in comparison to the results from using neural fitted

Q-iteration. Nonetheless, all three methods allow for an improvement in a patient’s

health condition.

Figure 5.14: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using fitted Q-iteration with extra trees.

5.4. EXPERIMENTATION ON SIMULATED DATA 89

Figure 5.15: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using LSPI.

90 5. RESULTS AND DISCUSSION

Figure 5.16: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

neural fitted Q-iteration.

5.4. EXPERIMENTATION ON SIMULATED DATA 91

Figure 5.17: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

fitted Q-iteration with extra trees.

92 5. RESULTS AND DISCUSSION

Figure 5.18: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

LSPI.

5.4. EXPERIMENTATION ON SIMULATED DATA 93

5.4.1 Discussion of results from testing batch RL on simulated HIV

patient data

In general, all three methods of learning produce policies after 50 iterations that demon-

strate an improvement in the immune outcomes for an infected individual. The results

from using neural fitted Q-iteration show a more gradual change in the state variables

than the results from the other two methods. The policy obtained using neural fitted

Q-iteration has larger periods of stability where no drug cycling occurs. This seems

realistic since it allows the patient periods where they can acclimatize to using a par-

ticular drug (assuming only one drug from the particular drug class is used). However,

despite the improvement in a patient’s condition after 1 000 days, in comparison to the

results from using LSPI and fitted Q-iteration with extra trees, the overall condition

of a patient remains slightly weak. This is evident from the fact that after 1 000 days,

a patient following π̂∗50 from neural fitted Q-iteration has a lower CD8+ T-cell count,

a higher infected CD4+ count and a higher infected macrophage count than a patient

following π̂∗50 from LSPI and fitted Q-iteration with extra trees after the same period

of time. There is also a period within the 1 000 days where a patient under π̂∗50 from

neural fitted Q-iteration experiences a blip in their viral load. This occurs after a con-

sistent decrease in their viral load between 400 and 700 days (see Figure 5.16). While

this is unlike the results obtained from applying both other learning techniques, it is

not unlike situations in real life. Often, a patient’s viral load may fluctuate despite an

improvement in their overall health status. In these situations, it is more useful to look

at other state variables as an indication of the patient’s condition. Overall, results from

using neural fitted Q-iteration suggest that using the learning technique to schedule

RTIs and PIs can result in improved patient outcomes in the simulated case. However,

within a period of 1 000 days, a patient is still unable to reach a healthy steady state.3

Similar observations can be made from the results obtained from using fitted Q-

iteration with extra trees and LSPI. In general, fitted Q-iteration with extra trees is

able to produce a policy π̂∗50 that results in the largest improvement in a simulated

patient’s health status overall after a period of 1 000 days. This is evident from the

steadily decreasing infected cell counts and decreasing viral load in a patient simulated

from unhealthy stationary equilibrium. In both these cases however, drug cycling oc-

curs very frequently (see Figures 5.14 and 5.15). If this drug cycling involves switching

between classes of drugs as well as different drugs within a particular class, it is not

entirely realistic nor advisable since frequent switching can have many side-effects in

the real world. If the drug cycling involves switching between drug classes but does not

necessarily involve changing the drugs used from a particular class, this may not be the

case. In these instances, switching between drug classes would involve taking a previ-

ously used drug but from a different class. By using the model provided in Chapter 4 to

simulate patient data, it is impossible to distinguish between these cases. Other issues

that arise from using this model to simulate patient data include the fact that every

3Subsequent experimentation has shown that by extending this period to 2 000 days, a patient is

able to reach a state that is slightly closer to the healthy steady state.

94 5. RESULTS AND DISCUSSION

patient is simulated from the same initial state, which is not realistic. It is debatable

that the efficacy parameters for the classes of RTIs and PIs are fixed to the values of

either 0 or 0.7, and 0 or 0.3 respectively, throughout a period of treatment for each

individual. These values are specified before before performing a simulation however, in

reality we would like to determine these values to be able to ascertain which drugs are

more suitable for treatment at a particular time than others. Whether the efficacy of a

particular drug should be fixed to a particular range of values is questionable; it may

be the case that a drug’s efficacy in fact changes over time in accordance to a patient’s

infection, viral strain etc.

Ultimately, if we are to address the efficacy of frequent switching and some of the

other points raised, a more detailed mathematical model that considers variations within

each drug class, would be required. Alternatively, modelling the MDP for reinforcement

learning in a slightly different way and applying it to real data could allow us to gain

some insight about switching between individual drug types as opposed to drug classes.

All in all, the results from this experiment suggest that the model used for data sim-

ulation is too general and should incorporate more drug classes or individual drugs to

produce more telling results. For these reasons, we perform experimentation using batch

reinforcement learning techniques on real data in the next section.

5.4.2 A note about the size of the sample set used for simulated data

testing

In this experiment we have used a large sample set consisting of the data from several

patients. This is motivated by the fact that using a larger sample set of more patients

allows for more opportunities for variation to exist between samples. This variation

is especially interesting for the purposes of learning and is reasonably important if we

consider the fact that the model for data simulation uses only three actions. However, in

reality it is possible that a significantly smaller sample of the population is available as a

result of restricted data sources. For these purposes, it may also be worth investigating

how the learning techniques perform on a significantly smaller sample set to be able

to make a fair comparison between performances on both real and simulated data sets.

The results of this experiment may be found in Appendix B.

5.5 Experimentation on real patient data

In this section, we extend our experimentation using batch reinforcement learning tech-

niques further to a real HIV data setting. Unlike the sets of generated HIV data used

in the previous section, real HIV data does not conform to a specific model and behaves

significantly more unpredictably.

As described in Section 4.6.2 of Chapter 4, using real data introduces a number of

issues that need to be carefully considered. In addition, the application of batch RL

techniques to real data requires a different MDP formulation. For this experiment, we

make use of our complete set of HIV data consisting of data from 250 random HIV-

5.5. EXPERIMENTATION ON REAL PATIENT DATA 95

infected individuals corresponding to 2 560 samples. The data has been preprocessed

and prepared according to the discussion in Section 4.6.2. This is smaller than the

data sets used in all previous experimentation based on our limited access to real data

sources.

The outcome of this experiment corresponds to one or more action(s) in terms of

drug therapy that the patient can take at a certain time step. Since we have no way of

implementing these actions in real life, it is impossible to predict what will happen to

the patient as a result of the action and use this information to determine subsequent

actions. Hence for this experiment, we perform a ten-fold cross validation test in which

the actions suggested by the learning techniques for a certain sample are validated

against those actions or drugs used by the individual at that particular time. While

this does not necessarily guarantee the best course of treatment, it allow us to determine

the number of times the outcomes of the algorithm are consistent with the treatments

followed by doctors.

In particular, we divide our data into ten validation and training sets respectively.

Validation sets are constructed by selecting 256 samples from the original sample set and

using the remaining samples as corresponding training data for an individual test. That

is, we partition the sample set into ten sets of size 256 samples each. For a single trial,

we use one of the sets as validation data while training on the remaining 2 304 samples

comprising the other sets. The process is repeated over ten trials, each time using a

different set of 256 samples to validate against. Training sets are used to train the

batch algorithms while validation sets are used for purposes of measuring the number of

times a match occurs between the outcomes of a particular learning technique following

training, and the current course of treatment for a patient. The results are averaged over

the ten sets to produce the average number of matches that occur under each learning

method. Using ten-fold cross validation is advantageous since it allows for the possibility

of selecting each individual sample from the original set once for testing. We note it is

possible that the learning techniques suggest more than one suitable action. Here, the

approximate Q-values for these actions is the same. In these cases, if a match occurs

between one of the suggested actions and the originally prescribed action, we regard

this as a successful match. While using matching accuracy as a performance measure

assumes a symmetric loss in getting a prescription wrong which is most certainly not the

case in reality, the results from using these learning algorithms are intended to serve as

clinical-decision support, rather than a means of automating decision-making in clinical

practice.

We have performed this experiment using M = 50 and nmin = 2 for fitted Q-iteration

with extra trees, however preliminary testing revealed similar results when using larger

values of M for this domain. Using neural fitted Q-iteration required us to construct

a much larger neural network for training and testing purposes. Specifically, we use

9 input nodes (corresponding to the two state variables and seven dimensional binary

actions), 350 hidden nodes in the first hidden layer, 300 hidden nodes in the second

hidden layer and 1 output node corresponding to the Q-value of a particular state-

action pair (s, a). For LSPI, we use 2 560 randomly centered Gaussian radial basis

96 5. RESULTS AND DISCUSSION

functions with σ2 = 2. We have run 50 iterations of each learning technique for training

purposes. We present our results for each validation set in Table 5.10.

Trial Matches using NFQ Matches using FQI Matches using LSPI

1 190 211 203

2 181 209 174

3 213 199 192

4 220 174 227

5 96 158 145

6 179 191 198

7 102 111 82

8 203 207 141

9 194 194 215

10 178 143 86

Average 175.60 179.7 166.30

% consistency 68.60 70.20 64.96

Table 5.10: Average consistency between learned actions and actions taken by clinicians

using FQI with extra trees, NFQ and LSPI respectively.

5.5.1 Discussion of results in a real HIV setting

Results from this experiment have demonstrated that batch reinforcement learning tech-

niques can be applied to real HIV data with reasonable success. We observe that despite

the use of a relatively straightforward reward function and a state space consisting of

only two state variables, all three learning techniques are able to produce outcomes that

are consistent with the actions prescribed by clinicians a large number of times. This is

quite interesting since medical professionals usually perform a number of different tests

to assess a patient’s health before prescribing a particular treatment. The information

gained from these assessments is vastly more specific than what we use to train the

learning methods for this experiment. On average, fitted Q-iteration with extremely

randomized trees produces an outcome that matches the action taken by a clinician

most frequently. The results from performing the same experiment using neural fitted

Q-iteration and LSPI are fairly similar but less successful.

It is evident that choosing drugs for a patient involves considering their health status.

This is dictated by time. That is, it may be reasonable to take certain combinations of

drugs at one particular point in time but not at another. For these reasons, it is not

necessarily the case that drugs that are used frequently among most patients are the

best choice for every infected individual. This means that we cannot use the frequency

at which a particular drug combination is suggested by the learning methods as an

overall indicator of the quality of learning. We can however, compare the combinations

of drugs recommended to those commonly used in treating HIV to see how realistic the

learning is in terms of the suggested actions.

5.5. EXPERIMENTATION ON REAL PATIENT DATA 97

In this particular experiment, the most frequently occurring combination of drugs

suggested by FQI with extra trees is EFV, 3TC, tdf. This is perfectly reasonable given

the data used for training the algorithm and the fact that this combination is one that is

regularly prescribed by medical professionals to HIV-infected individuals. Consider the

validation set used in trial 5 in Table 5.10. This set of data produces a poor number of

matches when used with neural fitted Q-iteration. Figure 5.19 shows the frequency at

which combinations of actions are recommended. Figure 5.20 shows the actual frequency

of drug combinations used in the same validation set. It is evident that the results

are vastly different which ultimately means that a poor number of matches occur. It

is obvious that neural fitted Q-iteration does not identify all the drug combinations

prescribed for the data set. In particular, the NFQ algorithm fails to suggest the most

frequently used drug combination for this validation set - AZT, tdf, LPV/r. One possible

explanation for this is that having extracted the data used in this validation set from the

original sample set, there are not enough samples using this action in the training set.

There is only one instance where the action prescribed almost certainly produces a match

using NFQ. This occurs when using the 3TC, LPV/r combination. NFQ suggests using

this action 23 times in the validation set; in reality, this action was prescribed 20 times.

It is also possible that there may be more than one suitable action available to a clinician

at a particular time which could account for the number of mismatches that occur here.

Based on the smaller number of matches that occur when using NFQ and LSPI on the

validation set in trial 5, one would presume that the combinations of drugs suggested

by these methods are not standard. However, this is certainly not the case. Instead,

the actions that are suggested are not unusual in terms of the combinations of drugs

used in reality. Most combinations of drugs are not recommended at all (demonstrated

by the gaps between actions that are selected in Figure 5.19). We observe that the

most frequently occurring drug combination suggested by neural fitted Q-iteration is

EFV, 3TC, d4T. This is a standard drug combination that is prescribed 21 times in

the validation set used for trial 5. Similar results are observed in the other validation

sets where matching is poor too. Despite observing a poor number of matches in these

validation sets, the actions recommended by the learning techniques are realistic in

comparison with the drug combinations typically used by doctors every day. This is

extremely promising if we are to consider using RL techniques in treatment design in the

future. From the perspective of treatment simplification, these combinations of drugs

may be suitable candidates for re-formulation to reduce patient pill burden and improve

adherence to medication.

98 5. RESULTS AND DISCUSSION

Figure 5.19: Frequency of recommended drug combinations when applying neural fitted

Q-iteration to the validation set used for trial 5.

We have used a fairly sparse set of HIV samples to train and test each of the learning

techniques in this thesis. For this reason, it may be more practical to perform leave-

one-out cross validation instead of ten-fold cross validation in order to train the learning

methods using as many samples as possible. It may also be interesting to train using all 2

560 samples and observe the outcomes produced when testing using samples comprising

the actual training set. We have done this and tested the outcomes on the samples that

comprised the validation set used in trial 1 previously. In this case, FQI using extra

trees produces a match 219 times; NFQ produces a match still only 190 times, and

LSPI produces a match 211 times. While one would expect the number of matches to be

improved by training using more samples and testing on samples comprising the training

set, the improvement is only a slight one. In fact, the number of matches produced by

NFQ is identical to when the validation data was separated from the original set of

samples in trial 1. This is very interesting since it suggests the performances of the

learning methods from training using a complete sample set are very similar to the

performances from training using a partial sample set. Perhaps this is indicative of the

fact that to observe an improvement in the number of matches, a significantly larger set

5.5. EXPERIMENTATION ON REAL PATIENT DATA 99

of samples is required. Alternatively, it suggests that better neural network structures

or basis functions should be considered in NFQ and LSPI to improve training. It is

also possible that the parameters used in FQI with extra trees could be better tuned to

produce an improved number of matches.

Figure 5.20: Frequency of prescribed drug combinations in the validation set used for

trial 5.

5.5.2 A note about supervised learning

A natural question that arises after investigating the use of batch RL techniques to

identify suitable treatments for HIV-infected individuals at specific times, is whether or

not using supervised learning techniques alone would be able to produce similar results.

To investigate this, we consider comparing the outcomes produced by a standard neural

network with those produced by the reinforcement learning techniques under consid-

eration. Here, our neural network is structured to take as input a patient’s wellness

indicators in the form of a log-normalized CD4+ count and viral load. The output of

100 5. RESULTS AND DISCUSSION

the neural network corresponds to the action identified as a suitable treatment for a

patient for a particular sample. Hence our neural network structure consists of 2 input

nodes, one hidden layer with 300 nodes and an output layer of 7 nodes. These 7 nodes

correspond to whether a particular drug is selected for treatment or not. In this experi-

ment, we use the data that was used for validation in trial 1 of the previous experiment

as test data, and observe the number of times the output of the network corresponds

to a match in treatment. That is, we consider the 256 samples used in trial 1 of our

real data experimentation as test data for the neural network. The remaining 2 304

samples are used for training the neural network. We train the neural network using

the resilient backpropagation technique that was also used for neural fitted Q-iteration

for 20 000 epochs. We observe that the neural network produces an outcome that is

consistent with prescribed treatments only 82 times. This corresponds to a matching

accuracy of 32%. Similar results are obtained when using the data from trials 2 - 10

from the previous experiment as test data. These results are shown in Table 5.11. There

are also a few cases where the neural network produces a single drug as output. This is

unusual as most HIV-infected individuals are prescribed combinations of antiretrovirals

to prevent the development of drug-resistant HIV strains.

Trial Matches using an artificial neural network

1 82

2 97

3 64

4 75

5 79

6 78

7 94

8 62

9 64

10 86

Average 78.1

% consistency 30.51

Table 5.11: Average consistency between learned actions and actions taken by clinicians

using neural networks alone.

Upon closer investigation, a number of comparisons can be made between using su-

pervised learning alone and using RL methods. Perhaps the most interesting of these

comparisons arises when we examine the case where a patient suddenly transitions from

a very good state of health to a very bad one or vice versa. Consider the specific exam-

ple of a patient with a CD4+ count of 350 cells/mm3 and a viral load of 40 copies/ml

currently being treated with EFV and 3TC. The patient’s condition under this treat-

ment deteriorates rapidly resulting in a new CD4+ count of 120 cells/mm3 and a viral

5.6. DISCUSSION IN RELATION TO RESEARCH QUESTIONS 101

load of 310 064 copies/ml.4 At this point the the patient’s treatment is altered to a new

combination of drugs 3TC, tdf and NVP. The fact that a patient’s treatment is altered

at this point is not unusual as the viral load changes from being virtually undetectable

to being reasonably high. While it is not always the case, a change of this magnitude

in the viral load, is usually the first indication that a patient is developing drug resis-

tance to one or more of the prescribed drugs.5 Because there are several examples in

the training data where a patient is under the treatment of EFV and 3TC, the neural

network method is able to detect this and hence suggests using the same combination

of drugs that was initially prescribed, as opposed to switching to the new combination

of drugs prescribed. The same patient is suggested a combination of 3TC, tdf and d4T

when using neural fitted Q-iteration and fitted Q-iteration with extra trees, while we

observe an exact match in the treatment suggested by LSPI. Similar results can be seen

when dealing with longer patient trajectories. This example highlights a key difference

between classical supervised learning techniques and RL methods for HIV drug schedul-

ing: supervised learning methods have no way of identifying what happens to a patient

after taking a particular course of action since each sample of data is treated separately

without any reference to another. Conversely, RL methods use state and subsequent

state information to learn the value of making a particular transition between these

states. This is crucial since a patient’s history may be embedded into their state infor-

mation. The fact that RL methods make use of a long-term horizon means that at each

iteration of the learning techniques, we can look further and further into the future to

choose actions appropriately. This is a crucial piece of information as an action that is

beneficial in the immediate future may not necessarily be beneficial in the long run. It is

not possible to make such an assessment using standard supervised learning techniques.

5.6 Discussion in relation to research questions

Having completed experimentation, we can now answer the research questions posed in

Section 4.3 of Chapter 4.

1. It is possible to model the problem of HIV drug scheduling in terms of an MDP

where the state space S is comprised of variables that serve as indicators of a

patient’s health at a particular time. In this research, we have chosen CD4+ T-

lymphocyte counts and viral loads as our variables however, it is also possible to

extend the state space to include several other wellness indicators. The action

space A consists of the drugs used to treat a patient at a particular time. We

have constructed a seven-tuple indicating whether the drugs EFV, 3TC, d4T,

TDF, NVP, LPV/r and AZT are at use at a certain time in treatment. Like

the state space, these drugs may be exchanged for other drugs. The inclusion of

newly developed drugs into the action space would require the dimensionality of

4These are the values of the state variables without normalization.
5At this point a doctor may choose to run one or more drug resistance tests to ascertain whether

such resistance exists.

102 5. RESULTS AND DISCUSSION

the action vector to be increased. The introduction of more state variables to the

MDP may mean that features must be extracted from the set of data first before

applying the batch algorithms to these features.6 Alternatively, dimensionality

reduction techniques could be applied to the state space if necessary. A reward

function for this MDP is based on rewarding those instances where actions result

in improved T-cell counts or lowered viral loads and penalizing those that do not.

2. The performances of the learning techniques vary when applied to the problem

of determining suitable drug combinations for a real patient. By performing ten-

fold cross validation on sets of patient data, we observe that all three learning

methods are capable of producing outcomes that are consistent with strategies

that are currently in place. Fitted Q-iteration using extremely randomized trees

produces these outcomes the most frequently in comparison to the other two

learning methods. However, strategies to improve overall learning among all three

methods can be introduced. All three learning methods demonstrate the ability

to suggest drug combinations that are not unusual and are commonly used in the

real world. This highlights their potential to be coupled with clinical research to

enhance treatment design.

3. When we apply the learning techniques to simulated patient data, we observe that

all three methods are successful at improving patient wellness. The strategies

determined by LSPI and fitted Q-iteration using extra trees are fairly similar as

opposed to the strategy determined using neural fitted Q-iteration. Despite the

overall improvement observed, the strategies determined by LSPI and fitted Q-

iteration involve a lot of switching between using RTIs and PIs with few periods

of stability. This may not be feasible since frequent switching can have adverse

effects on real patients. Overall, the model used to simulate patient data is too

general in terms of the actions it considers, and would need to be modified to

include more drugs or classes of drugs for more meaningful results.

4. The batch RL techniques considered in this research have demonstrated good per-

formance, in general, when applied to the benchmark domains. All three methods

are able to produce optimal policies that succeed in reaching the goal state for

the mountain car task. Experimentation on the acrobot task demonstrated the

performances of the learning methods in a higher-dimensional state space. Re-

sults revealed similar performance between both versions of fitted Q-iteration. In

terms of speed, the extra trees implementation is very slow. The speeds of the

other learning methods vary with the size of neural network and number of basis

functions used. For large data sets, it may be worth considering using better hard-

ware to run these learning methods on. The use of benchmark domains in this

research has not only helped compare the batch RL techniques on relatively well-

behaved data sets, but also allowed us to gain a better understanding of learning

in continuous state spaces.

6The interested reader should refer to Lange et al. (2012) for these details.

5.7. CONCLUSION 103

5.7 Conclusion

This chapter presented the major results of this research. Results reveal that batch

reinforcement learning methods vary in their performances across different domains.

For the case of simulated data, all three methods have shown the ability to improve

a patient’s outcomes by scheduling appropriate drug use. In a real medical setting,

results suggest that batch learning methods have the potential of assisting clinicians

in decision-making however, more testing using larger data sets and inclusion of more

state and action variables is recommended.

Chapter 6

Conclusions and Future Work

Discovering effective treatment strategies for HIV-infected individuals remains one of

the main challenges in medical research. Existing treatments combine anti-HIV drugs

under HAART to inhibit the development of drug-resistant HIV strains. Despite the

fact that eradicating the virus using HAART may not be possible, improved strategies

for choosing suitable drug combinations and scheduling drugs are necessary for better

control of viral infection. Such strategies may also enable treatments to be simplified,

and drug combinations to be re-formulated to reduce a patient’s pill burden and improve

adherence to medication.

In this dissertation, we have demonstrated the application of batch reinforcement

learning to the problem of drug scheduling and HIV treatment design. Specifically, we

have used the techniques of fitted Q-iteration with extremely randomized trees, neu-

ral fitted Q-iteration and LSPI to address this problem. In particular, we have shown

that it is possible to formulate the problem of HIV drug scheduling as an MDP by

using a patient’s wellness indicators as state variables and considering drug combina-

tions as actions. Results from experimentation on real data suggest that each learning

technique has its associated benefits and disadvantages. However, all three techniques

have the potential of suggesting drug combinations that are reasonably consistent with

those prescribed by medical professionals for HIV patients. The implications of this are

tremendous: overall, these techniques could be coupled with the expertise of clinicians

to improve treatment design.

We have also addressed the research questions formulated in Chapter 4. The perfor-

mances of all three batch reinforcement learning techniques were recorded and compared

when applied to the benchmark domains of mountain car and swing-up acrobot. Re-

sults demonstrate varied performance among all three techniques in terms of speed and

the quality of solutions produced. Testing these methods using simulated HIV data re-

vealed that all the techniques were suitable in determining drug strategies that improve

the health status of an infected individual however, limitations in the model used for

simulation mean that the strategies determined are not entirely realistic nor practical.

This research opens many avenues for future work. From a theoretical perspective,

it would be worth investigating the use of a more complex reward function that takes

104

105

into account variations or perhaps smaller differences in the state variables. It would

also be worth looking into using more basis functions for the LSPI technique or improve

basis function selection in general. The inclusion of more suitable basis functions could

allow for better function approximation particularly when applying LSPI to real data.

Similar improvements could be made to neural fitted Q-iteration by considering changes

to the neural networks used for training.

From a practical perspective, HIV is a virus that invades and infects the body

using a number of mechanisms. Each of these mechanisms involves a series of complex

interactions between several biological components of the immune system. Furthermore,

an individual’s response to HIV is dictated by a number of factors such as cytokine

production, the presence of other infections and whether there is repeated exposure to

the virus. For these reasons, perhaps the biggest avenue for future research in this area

involves extending the MDP we have used here to include many more state variables

such as complete white blood cell counts, HIV strain information, information about

the occurrence of other infections such as tuberculosis, and even variables that take

into account differences between individuals such as age, sex, etc. These differences

may play an important role in explaining why some individuals have better responses

to viral infection than others. It is more than likely that including more variables would

improve quality of learning overall. We have only considered the use of seven major

drugs for the treatment of HIV however, the same techniques can be applied to the

complete list of HIV drugs, if larger data sets using each of these drugs are available.

Finally, we have shown the potential for batch reinforcement learning techniques to

be used for improving treatments for people suffering from HIV, largely because of its

prevalence in South Africa. These techniques, if used in a clinical trial setting, could

provide insight into the combinations of drugs that are suitable for these individuals and

identify candidates of drugs for treatment simplification. However, the application of

these techniques to other medical domains such as treatment of epilepsy, types of cancers

or other life-threatening illnesses is also possible, and may prove incredibly useful for

treatment design.

Appendix A

Benchmark Domains

A.1 The Acrobot Swing-Up Control Problem

The dynamics of the acrobot swing-up control problem may be described by the system

of Equations A.1.1. In particular, the robot arm contains two links: the first rotates

freely about the joint whilst the second is actuated by a torque applied to the joint.

The state space can be described in terms of the four continuous state variables, θ1, θ2,

θ̇1 and θ̇2 where θ1 is the angular position of the first link in relation to the joint, and

θ2 is the angular position of the second link in relation to the first; θ̇1 and θ̇2 are the

angular velocities of each link respectively. A reward of -1 is given at each time step,

t = 0.05, until the goal is reached.

θ̈1 = −d1−1(d2θ̈2 + φ1) (A.1.1)

θ̈2 =

(
m2l

2
c2 + I2 −

d22
d1

)−1(
τ +

d2
d1
φ1 − φ2

)
d1 = m1l

2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos θ2

)
+ I1 + I2

d2 = m2

(
l2c2 + l1lc2 cos θ2

)
+ I2

φ1 = −m2l1lc2θ
2
2 sin θ2 − 2m2l1lc2θ̇2θ̇1 sin θ2 + (m1lc1 +m2l1) g cos (θ1 − π/2) + φ2

φ2 = m2lc2g cos (θ1 + θ2 − π/2)

Here g = 9.8 is the gravitational force. The joint positions θ1 and θ2 can take any value;

the angular velocities θ̇1 and θ̇2 are restricted to [−4π; 4π] and [−9π; 9π] respectively.

The rest of the parameters are described in Table A.1

106

A.2. MOUNTAIN CAR 107

Parameter Description of parameter Value

m1, m2 masses of links 1.0

l1, l2 lengths of links 1.0

lc1, lc2 lengths to mass centre 0.5

I1, I2 link inertias 1.0

τ torque {-1.0, 0.0, 1.0}

Table A.1: Parameters of the swing-up acrobot control problem.

A.2 Mountain Car

The mountain car system dynamics can be expressed in terms of the following set of

equations (directly as in Ernst et al. (2005)):

dp

dt
= v (A.2.1)

dv

dt
=

a

m+Hill′(p)2
− gHill′(p)

1 +Hill′(p)2
− v2Hill′(p)Hill′′(p)

1 +Hill′(p)2
.

Here m = 1, g = 9.81 and the function Hill(p) is defined as:

Hill(p) =

{
p2 + p p < 0

p√
1+5p2

p ≥ 0 (A.2.2)

For simulation purposes we choose t = 0.1s and generate sample sets using Euler’s

method with 0.001s as an integration step.

Appendix B

Additional Results

B.1 Experimentation using a set of simulated HIV data of

a smaller size

This appendix presents the results from using smaller sample sets of simulated data

for learning. As in Section 5.4 of Chapter 5, we compare the outcomes of each learn-

ing algorithm when applied to HIV data simulated using the model in Section 4.5.2

in Chapter 4. We are particularly interested in whether performance of the learning

methods degrades as a result of using a smaller set of samples for learning.

To perform this experiment, we use an iterative data generation and testing proce-

dure virtually identical to the experimentation in Section 5.4. Once again we assume

that patients are monitored every five days for a period of 1 000 days. At the first iter-

ation, we generate the data for two patients in the unhealthy steady state. Thereafter,

we record the status of each patient’s health every five days according to the quanti-

ties of the state variables (T1, T2, T
∗
1 , T

∗
2 , V, E). At each time step, we select a random

treatment action from the set of actions {RTI on and PI on, RTI on and PI off, RTI off

and PI on}. From this, we obtain a trajectory (s0, a0, s1, a1, . . . , s200) corresponding to

the course of action taken on the patient over 1 000 days. This trajectory produces 200

samples of the form (st, at, st+1). Hence, by the end of the first iteration, a total of 400

samples are available. At this point we run each of the batch RL algorithms on the set

of 400 samples for 50 iterations to produce a policy π̂∗50(s0) where s0 is the unhealthy

steady start state.

At the second iterative step, we generate the data for two new patients, again from

the unhealthy steady state. We once again record their state data every five days for

1 000 days. Instead of randomly selecting the medication taken by a patient every five

days, we consider the optimal action suggested by the policy π̂∗50 that was obtained

from the original set of 400 samples. We take this optimal action 70% of the time and

choose a random action for the remaining 30%. Once again we apply each of the batch

algorithms to the new set of 400 samples for 50 iterations and obtain a new optimal

policy for the larger sample set.

At the third iterative step, we generate the data for another two new patients from

108

B.1. EXPERIMENTATION USING A SET OF SIMULATED HIV DATA OF A SMALLER SIZE 109

the unhealthy steady state and record the necessary state data. We consider the action

suggested by the optimal policy obtained from the set of 600 samples and take this action

85% of the time; for the remaining 15%, we choose a random action. We repeat this

procedure of training on the sample set, determining an optimal policy and using this

policy to generate the data of 2 new patients (whose data is added to the original sample

set) five times. After the fifth iteration, we use the optimal policy π̂∗50 that was obtained

from the set of 2 000 samples to generate the data for one patient (once again starting at

unhealthy stationary equilibrium). This time, we take only the action suggested by π̂∗50.

The resulting trajectory obtained represents the evolution of a patient’s health condition

under the policy π̂∗50 from a 2 000 sample set. We determine such a trajectory for each

of the learning methods under consideration. For the fitted Q-iteration algorithm using

extra trees, we build a set of 50 trees at each iteration like Ernst et al. (2006); for

the neural fitted Q-iteration algorithm, we use a neural network with 9 input nodes

corresponding to the state and action variables, 100 hidden nodes and 1 output node.

When applying LSPI, we use 9 000 randomly centered Gaussian radial basis functions

with σ2 = 4 as before.

Figure B.1: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using neural fitted Q-iteration with |F| =

2 000 samples.

110 B. ADDITIONAL RESULTS

Figure B.2: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using fitted Q-iteration with extra trees

where |F| = 2 000 samples.

B.1. EXPERIMENTATION USING A SET OF SIMULATED HIV DATA OF A SMALLER SIZE 111

Figure B.3: Representation of the treatment strategy, π̂∗50, in terms of ε1 and ε2 for a

typical patient in an unhealthy steady state using LSPI and |F| = 2 000 samples.

Figures B.4, B.5 and B.6 represent the changes in the state variables for a patient being

treated from unhealthy stationary equilibrium for a period of 1 000 days following π̂∗50
using neural fitted Q-iteration, fitted Q-iteration with extra trees and LSPI respectively.

The corresponding courses of action under each learning method are provided in Figures

B.1, B.2 and B.3 respectively.

Overall, the results from using a smaller sample set for learning are fairly similar to

those results produced from using a significantly larger set of samples as in Chapter 5.

This probably serves as evidence that there are many repetitions in the larger sample

set used for experimentation in Section 5.4, as a result of a small action space. We still

observe an improvement in the overall health of a patient in terms of the CD4+ count,

viral load, macrophage counts and cytotoxic T-cell counts across all three learning

techniques. However, the courses of action suggested by each learning method are

significantly less erratic. While these sort of treatment strategies are certainly more

realistic, this may also be a direct result of using fewer samples with less variation

between them.

112 B. ADDITIONAL RESULTS

Figure B.4: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

neural fitted Q-iteration across a smaller sample set of |F| = 2 000 samples.

B.1. EXPERIMENTATION USING A SET OF SIMULATED HIV DATA OF A SMALLER SIZE 113

Figure B.5: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

fitted Q-iteration with extra trees across a smaller sample set of |F| = 2 000 samples.

114 B. ADDITIONAL RESULTS

Figure B.6: Graphs representing the evolution of state variables (T1, T2, T
∗
1 , T

∗
2 , V, E)

over 1 000 days for a patient being treated from an unhealthy steady state when applying

LSPI across a smaller sample set of |F| = 2 000 samples.

References

J. Abadi, M. Rosenberg, J. Dobroszycki, J. Sansary, G. Fennelly & A. Wiznia. Partial

treatment interruption of protease inhibitor-based highly active antiretroviral therapy

regimens in HIV-infected children. AIDS, 41(3):298–303, 2006.

A. Abbas & A. Lichtman. Basic Immunology: Functions and Disorders of the Immune

System. Saunders Elsevier, Philadelphia, 3rd edition, 2009.

B. Adams, H. Banks, M. Davidian, H. Kwon, H. Tran & S. Wynne. HIV dynamics:

Modeling, data analysis, and optimal treatment protocols. Journal of Computational

and Applied Mathematics, 184(1):10–49, 2005.

B. Adams, H. Banks, H. Kwon & H. Tran. Dynamic multidrug therapies for HIV:

Optimal and STI control approaches. Mathematical Biosciences and Engineering, 1:

223–241, 2004.

A. Antos, R. Munos & C. Szepesvari. Fitted Q-iteration in continuous action-space

MDPs. NIPS, 2007.

J. P. Archer. The Diversity of HIV-1. PhD thesis, University of Manchester, 2008.

J. G. Bartlett. Ten years of HAART: Foundation for the future. The 13th Conference

on Retroviruses and Opportunistic Infections, February 2006.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ., 1957.

B. Bethke, J. P. How & A. Ozdaglar. Kernel-based reinforcement learning using bellman

residual elimination. Journal of Machine Learning Research (to appear), 2008.

A. Billich. AIDSVAX. vaxgen. Current Opinions in Investigational Drugs, 2(9):1203–

1208, September 2001.

A. Boasso & G. Shearer. Chronic innate immune activation as the cause of HIV-1

immunopathogenesis. Clinical Immunology, 126(3):235–242, March 2008.

S. Bonhoeffer, M. Rembiszewski, G. Ortiz & D. Nixon. Risks and benefits of structured

antiretroviral drug therapy interruptions in HIV-1 infection. AIDS, 14:2313–2322,

2000.

G. Boone. Minimum-time control of the acrobot. In Proceedings of the 1997 IEEE

International Conference on Robotics and Automation, pages 3281–3287, New Mexico,

1997.

P. Borrow. Innate immunity in acute HIV-1 infection. Current Opinions in HIV AIDS,

115

116 REFERENCES

6(5):353–363, September 2011.

L. Buşoniu, R. Babuška, B. De Schutter & D. Ernst. Reinforcement Learning and

Dynamic Programming using Function Approximators. Taylor & Francis CRC Press,

Boca Raton, FL, 2010.

L. Buşoniu, A. Lazaric, M. Ghavamzadeh, R. Munos, R. Babuška & B. De Schutter.

Least-squares methods for policy iteration. In Reinforcement Learning, pages 75–109.

Springer, 2012.

D. Callaway & A. Perelson. HIV-1 infection and low steady state viral loads. Bulletin

of Mathematical Biology, 64(1):29–64, 2002.

N. Campbell & J. Reece. Biology. Pearson Education Inc. as Benjamin Cummings, San

Francisco, CA, seventh edition, 2005.

A. Cann & J. Karn. Molecular biology of HIV: New insights into the virus life-cyle.

AIDS, 3:19–34, 1989.

P. Carter. Midlands technical college - specific defenses of the host: The immune

response, 2011. URL: http://classes.midlandstech.edu/carterp/Courses/

bio225/chap17/.

J. Chinen & W. T. Shearer. Molecular virology and immunology of HIV infection. J

Allergy Clin. Immunol., 110(2):189–198, August 2002.

V. Douce, A. Janossy, H. Hallay, S. Ali, R. Riclet, O. Rohr & C. Schwartz. Achieving a

cure for HIV infection: do we have reason to be optimistic? Journal of Antimicrobial

Chemotherapy, February 2012.

D. Ernst, P. Geurts & L. Wehenkel. Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research, 6:503–556, 2005.

D. Ernst, G. B. Stan, J. Gonçalves & L. Wehenkel. Clinical data based optimal STI

strategies for HIV: A reinforcement learning approach. In Proceedings of the 45th

IEEE Conference on Decision and Control, volume 25, pages 2302–2308, 2006.

P. Fisher. UCSF Immunology Module, August 2011. URL: http://missinglink.ucsf.

edu/lm/immunology_module/prologue/objectives/obj05.html.

R. Fonteneau. Raphael fonteneau - home page, 2009. URL: https://sites.google.

com/site/raphaelfonteneau/code.

T. Geijtenbeek, D. Kwon, R. Torensma, S. van Vliet, G. van Duijnhoven, J. Mid-

del, I. Cornelissen, H. Nottet, V. Kewalramani, D. Littman, C. Figdor & Y. van

Kooyk. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-

infection of T-cells. Cell, 100(5):587–597, 2000.

P. Geurts, D. Ernst & L. Wehenkel. Extremely randomized trees. Machine Learning,

63(1):3–42, April 2006.

G. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis, Computer

Science Department, Carnegie Mellon University, Pittsburgh, PA, 1999.

http://classes.midlandstech.edu/carterp/Courses/bio225/chap17/
http://classes.midlandstech.edu/carterp/Courses/bio225/chap17/
http://missinglink.ucsf.edu/lm/immunology_module/prologue/objectives/obj05.html
http://missinglink.ucsf.edu/lm/immunology_module/prologue/objectives/obj05.html
https://sites.google.com/site/raphaelfonteneau/code
https://sites.google.com/site/raphaelfonteneau/code

REFERENCES 117

R. M. Gulick, J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, D. D.

Richman, F. T. Valentine, L. Jonas, A. Meibohm, E. A. Emini, J. A. Chodakewitz,

P. Deutsch, D. Holder, W. A. Schleif & J. H. Condra. Treatment with indinavir,

zidovudine, and lamivudine in adults with human immunodeficiency virus infection

and prior antiretroviral therapy. New England Journal of Medicine, 337(11):734–739,

1997.

S. M. Hammer, K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S.

Currier, J. J. Eron, J. E. Feinberg, H. H. Balfour, L. R. Deyton, J. A. Chodakewitz &

M. A. Fischl. A controlled trial of two nucleoside analogues plus indinavir in persons

with hiv infection and CD4 cell counts of 200 per cubic millimeter or less. The New

England Journal of Medicine, 337:725–733, 1997.

A. Hatzigeorgiou & M. Megraw. Global Optimization: Scientific and Engineering Case

Studies, chapter 7: Computational Analysis of Human DNA Sequences: An Applica-

tion of Artificial Neural Networks, pages 172–173. Springer, New York, NY, 2006.

T. Hoffman, B. Schölkopf & A. J. Smola. Kernel methods in machine learning. The

Annals of Statistics, 36(3):1171–1220, 2008.

V. Kumar, A. Abbas, N. Fausto & R. Mitchell. Basic Pathology. Saunders Elsevier,

Philadelphia, 8th edition, 2007.

M. Lagoudakis & R. Parr. Least squares policy iteration. Journal of Machine Learning

Research, 4:1107–1149, 2003.

R. P. Lai & J. Heeney. Perspectives in HIV vaccine development: What we have learned

and how we proceed forward - review article. J AIDS Clinic Res, S8(004), 2012.

S. Lange, T. Gabel & M. Riedmiller. Batch Reinforcement Learning, volume 12 of

Adaptation, Learning and Optimization, chapter 2, pages 45–73. Springer, Berlin,

Heidelberg, 2012.

S. Lawrence & W. El-Sadr. New perspectives in HIV treatment interruption: The

SMART study. The PRN Notebook, 11(2):8–9, October 2006.

R. Lihana, D. Ssemwanga, A. Abimiku & N. Ndembi. Update on HIV-1 diversity in

africa: A decade in review. AIDS, 14:83–100, 2012.

D. Mann & M. Ward. Virology lecture synopsis, 2006. URL: http://www.southampton.

ac.uk/~ceb/teaching/2005/206-8.htm.

S. Marsland. Machine Learning: An Algorithmic Perspective. Machine Learning and

Pattern Recognition Series. Chapman and Hall/CRC Press, Boca Raton, FL, 2009.

G. Mayer. Microbiology and Immunology Online - University of South Carolina, 2011.

URL: http://pathmicro.med.sc.edu/ghaffar/innate.htm.

A. McMichael, P. Borrow, G. Tomaras, N. Goonetilleke & B. Haynes. The immune

response during acute HIV-1 infection: clues for vaccine development. Nat. Rev.

Immunol., 10(1):11–23, 2010.

T. Mogensen, J. Melchjorsen, C. Larson & S. Paludan. Review: Innate immune recog-

http://www.southampton.ac.uk/~ceb/teaching/2005/206-8.htm
http://www.southampton.ac.uk/~ceb/teaching/2005/206-8.htm
http://pathmicro.med.sc.edu/ghaffar/innate.htm

118 REFERENCES

nition and activation during HIV infection. Retrovirology, 7(54), 2010.

R. Munos. Error bounds for approximate policy iteration. In Proceedings of the Twenti-

eth International Conference on Machine Learning (ICML03), pages 560–567, Wash-

ington, District of Columbia, 2003.

D. Ormoneit & S. Sen. Kernel-based batch reinforcement learning. Machine Learning,

49:161–178, 1999.

G. Pantaleo & A. Fauci. Immunopathogenesis of HIV infection. Annual Review of

Microbiology, 50:825–854, 1996.

R. Paranjape. Immunopathogenesis of HIV infection. The Indian Journal of Medical

Research, 50:240–255, 2005.

J. Pazis & M. Lagoudakis. Reinforcement learning in multidimensional continuous

action spaces. In Adaptive Dynamic Programming and Reinforcement Learning (AD-

PRL), pages 97–104, April 2011.

A. Pozniak. Advances in highly active antiretroviral therapy – simplified treatment

regimens. Touch Briefings - European Infectious Diseases, 2007.

C. Rasmussen & C. Williams. Gaussian Processes for Machine Learning. MIT Press,

Cambridge, MA, 2006.

S. Rerks-Ngarm, P. Pitisuttithum, S Nitayaphan, J. Kaewkungwal, J. Chiu, R. Paris,

N. Premsri, C. Namwat, M. de Souza & E. et al Adams. Vaccination with ALVAC and

AIDSVAX to prevent HIV-1 infection in thailand. New England Journal of Medicine,

361(23):2209–2220, 2009.

M. Riedmiller. Rprop - description and implementation details. Technical report, Insti-

tution f. Logik, Komplexität u. Deduktionssysteme, University of Karlsruhe, Frank-

furt, Germany, January 1994.

M. Riedmiller. Neural fitted Q-iteration - first experieces with a data efficient neural

reinforcement learning method. Machine Learning, ECML 2005:317–328, 2005a.

M. Riedmiller. Neural reinforcement learning to swing-up and balance a real pole.

2005b.

M. Riedmiller. Unit 12: Optimizing learning - (neural) fitted q iteration. Lecture Slides,

October 2010.

M. Riedmiller & H. Braun. A direct adaptive method for faster backprop- agation

learning: The RPROP algorithm. In H. Ruspini, editor, Proceedings of the IEEE

International Conference on Neural Networks (ICNN), pages 586 – 591, San Francisco,

CA, 1993.

D. E. Rumelhart, G. E. Hinton & R. J. Williams. Learning representations by backpro-

pogating errors. Nature, 323(6088):533–536, 1986.

M. Santiago, F. Range & B. F. Keele et al. Simian immunodeficiency virus infection

in free-ranging Sooty Mangabeys from the Täı forest, Côte d’Ivoire: Implications for

the origin of epidemic HIV-2. Journal of Virology, 79(19):12515–27, 2005.

REFERENCES 119

R. P. Sekaly. The failed HIV merck vaccine study: a step back or a launching point

for future vaccine development. The Journal of experimental medicine, 205(1):7–12,

2008.

R. Siliciano & W. C. Greene. HIV latency. Cold Spring Harbor Perspectives in Medicine,

1(1), 2011.

A. Sivro, D. Stein & L. McKinnon. Purple Paper: Innate Immunity to HIV. National

Collaborating Centre for Infectious Diseases, August 2010.

R. Smith. 2013 HIV drug chart, February 2013. URL: http://positivelyaware.com/

2013/13-02/pdfs/2013DrugChart.pdf.

A. Sousa, J. Carneiro, M. Meier-Schellersheim, Z. Grossman & R. Victorino. CD4 T-

cell depletion is linked directly to immune activation in the pathogenesis of HIV-1

and HIV-2 but only indirectly to the viral load. The Journal of Immunology, 169(6):

3400–3406, 2002.

M. W. Spong. The swing up control problem for the acrobot. IEEE Control Systems

Magazine, 15(2):45–55, 1995.

M. W. Spong. Underactuated mechanical systems. In Control Problems in Robotics and

Automation, pages 135–150. Springer, Berlin Heidelberg, 1998.

P. Stayley. AIDSMEDS: Your ultimate guide to HIV care, November 2012. URL:

http://www.aidsmeds.com/archive/.

H. Streeck & D. F. Nixon. T-cell immunity in acute HIV-1 infection. The Journal of

Infectious Diseases, 202(S2):S302–S308, 2010.

C. Strobl, J. Malley & G. Tutz. An introduction to recursive partitioning: rationale,

application, and characteristics of classification and regression trees, bagging, and

random forests. Psychological methods, 14(4):323, 2009.

R. Sutton. Learning to predict by methods of temporal differences. Machine Learning,

3(1):9–44, 1988.

R. S. Sutton & A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

R. Swanstrom & J. Coffin. HIV-1 pathogenesis: The virus. Cold Spring Harbor Per-

spectives in Medicine, 2(12):doi: 10.1101/cshperspect.a007443, November 2012.

D. A. Tamarkin. Cell-mediated immunity, 2011. URL: http://faculty.stcc.edu/

AandP/AP/AP2pages/Units21to23/immune/cellmedimm.htm.

B. Tanner. The mountain car task, October 2009. URL: http://library.

rl-community.org/wiki/Mountain_Car_(Java).

G. Taylor & R. Parr. Kernelized value function approximation for reinforcement learn-

ing. In Proceedings of the 26th International Conference on Machine Learning (ICML-

09), pages 1017–1024, Montreal, Canada., 2009.

D. von Laer & G. Brandenburg. Gene therapy for HIV infection by intracellular immu-

http://positivelyaware.com/2013/13-02/pdfs/2013DrugChart.pdf
http://positivelyaware.com/2013/13-02/pdfs/2013DrugChart.pdf
http://www.aidsmeds.com/archive/
http://faculty.stcc.edu/AandP/AP/AP2pages/Units21to23/immune/cellmedimm.htm
http://faculty.stcc.edu/AandP/AP/AP2pages/Units21to23/immune/cellmedimm.htm
http://library.rl-community.org/wiki/Mountain_Car_(Java)
http://library.rl-community.org/wiki/Mountain_Car_(Java)

120 REFERENCES

nization with antiviral genes. AIDS Rev, 3:169–177, 2001.

B. Walker & A. McMichael. The T-cell response to HIV. Cold Spring Harbor Perspec-

tives in Medicine, DOI: 10.1101/cshperspect.a007054, 2012.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University,

Cambridge, England, 1989.

C. J. C. H. Watkins & P. Dayan. Q learning. Machine Learning, 8:279–292, 1992.

J. Weber. The pathogenesis of HIV-1 infection. British Medical Bulletin, 58:61–72,

2001.

L. Wehenkel. On uncertainty measures used for decision tree induction. In Information

Processing and Management of Uncertainty in Knowledge-Based Systems, Granada,

Spain, 1996 1996.

L. Wehenkel, D. Ernst & P. Geurts. Ensembles of extremely randomized trees and

some generic applications. In Proceedings of Robust Methods for Power System State

Estimation and Load Forecasting, 2006.

Y. Zhao, M. R. Kosorok & D. Zeng. Reinforcement learning design for cancer clinical

trials. Statistics in Medicine, 28:3294–3315, 2009.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Biological Background
	Introduction
	The immune system
	The innate immune system
	The acquired immune system

	The Human Immunodeficiency Virus
	Viral structure of HIV
	The HIV replication cycle
	Subtypes and strains of HIV

	The immune response to HIV
	Innate immune response to primary HIV infection
	T-cell and antibody response to primary HIV infection
	Immunologic events during clinical latency and AIDS

	Drug therapy for management of HIV
	Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
	Nucleoside reverse transcriptase inhibitors (NRTIs)
	Protease inhibitors (PIs)
	Fusion inhibitors
	Integrase inhibitors

	Initial treatment strategies: HAART and STIs
	Rationale for intermittent therapy
	Assessing the efficacy of treatment interruption
	Controversy following the SMART study

	A treatment simplification approach to HAART
	PI-sparing approaches for treatment simplification
	PI-boosting approaches for treatment simplification
	Implications for HAART

	Exploring the alternatives: vaccine development
	Conclusion

	Reinforcement Learning Background
	Introduction
	The reinforcement learning paradigm
	Markov decision processes
	The return function
	The value function

	Model-based value iteration
	Model-free value iteration: the Q-learning framework
	Batch reinforcement learning methods
	Fitted Q-iteration
	The algorithm

	Extremely randomized trees
	Single tree regression
	Ensembles of extremely randomized trees
	The extra trees algorithm

	Neural fitted Q-iteration
	The multilayer perceptron as a function approximator
	The algorithm

	Least Squares methods for approximate policy evaluation
	Projected policy evaluation
	Least Squares Temporal Difference learning for Q-values
	Least Squares Policy Iteration

	Benchmark domains
	The swing-up acrobot
	The mountain car

	Conclusion

	Research Methodology
	Introduction
	Aim of this research
	Research questions
	Research methodology
	Data collection and simulation
	HIV patient data collection
	Simulating HIV patient data using a mathematical model

	Modelling the HIV drug scheduling problem as an MDP
	An MDP formulation for the simulated case
	An MDP formulation for the real data case

	Implementation of batch reinforcement learning techniques
	Conclusion

	Results and Discussion
	Introduction
	System specifications
	Benchmark domain experimentation
	Performance assessment metrics
	Comparison of algorithmic outcomes for mountain car
	Discussion of results for mountain car domain
	Comparison of algorithmic outcomes for swing-up acrobot
	Discussion of results for the swing-up acrobot domain

	Experimentation on simulated data
	Discussion of results from testing batch RL on simulated HIV patient data
	A note about the size of the sample set used for simulated data testing

	Experimentation on real patient data
	Discussion of results in a real HIV setting
	A note about supervised learning

	Discussion in relation to research questions
	Conclusion

	Conclusions and Future Work
	Benchmark Domains
	The Acrobot Swing-Up Control Problem
	Mountain Car

	Additional Results
	Experimentation using a set of simulated HIV data of a smaller size

	References

