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Abstract 
 

This research report confirms the value of the Framework of Growth Points in a learner’s 

mathematical development in the area of functions in equation form. The study also shows that 

learners advance through the various growth points in a progressive, sequential fashion, which 

mirrors the results of Ronda’s study, on which a part of this study was based. The study was carried 

out in a high school in Johannesburg. Learners in Grades 9, 10 and 11 were required to do an 

assessment which tested for their achievement in different growth points. This study also explores 

the discourse of learners while they talked about the tasks in the assessment. A smaller sample of 

learners was interviewed so that the researcher could explore the nature of their discourse. This 

research report shows that there are patterns in the discourse of learners which can be related to 

the growth points that they achieve.  
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  Introduction Chapter 1

 

1.1 Introduction 

Learning trajectories, especially in mathematics, is an area of research that focuses on 

learners’ progression in their thinking about concepts. When teaching functions, 

mathematics teachers often know the outcomes they are expected to achieve, but do not 

necessarily know how to get there.  

South African teachers use the National Curriculum Statement (NCS) to inform their 

teaching, which has been provided by the Department of Education (DOE). Soon all South 

African teachers will use the Curriculum and Assessment Policy Statement (CAPS), which is 

currently being phased into schools, year by year.  

In 2013 the last cohort of matric learners wrote the NCS exams, and 2014 will see the first 

cohort of matric learners writing their exit exams according to the CAPS curriculum. The 

new CAPS curriculum does not differ vastly in terms of mathematical content, but is more 

prescriptive in the timing of what is to be taught and when.  

Both the NCS and CAPS provide statements as to the outcomes that learners are expected 

to reach in each learning area, but seldom do these curriculum documents map a path of 

development that guides teachers in their teaching of specific concepts. There is no mention 

of strategies or thinking that learners use in order to achieve the required outcomes. This 

leaves teachers free to figure out the best way to achieve these outcomes (Daro, Mosher & 

Corcoran, 2011). The trade-off for autonomy in reaching these outcomes may be 

uncertainty on the part of the teachers, as they do not necessarily have the time or skill to 

devise the best paths to these outcomes.  

To illustrate, in Appendix A, both the NCS and CAPS statements for “Functions” are shown 

for Grade 9. These curriculum statements show what outcomes are expected of a learner, 

but there is no clear learning path as to how learners may develop these concepts. CAPS is 

slightly more prescriptive than the NCS, but instead of showing progression through 

concepts in terms of learning trajectories, it is prescriptive on what outcomes to teach and 

assess, and when. Textbook designers have therefore become responsible for creating 
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lessons and tasks that correspond with speculated or implied trajectories of learning. 

However, there is little evidence to suggest that textbook writers are following learning 

trajectories that have been explicitly researched or tested.  

An increase of publications and articles about learning trajectories suggests that there is 

renewed interest in this area. Wilson, Mojica and Confrey (2013) suggest that learning 

trajectories are also very useful in helping teachers to understand how learners progress in 

their mathematical thinking, a process which may inform and improve teaching practices.  

There are some theoretical frameworks that propose to explain the process of the learning 

of functions, but few of these have been developed in conjunction with research, and 

remain rather theoretical and general (e.g. DeMarois & Tall, 1996; Slavit, 1994; in Ronda, 

2004). “In spite of the proliferation of educational studies on function, not much is known 

about the process of learning. Only a few researchers have tried to follow this process as it 

actually happens in the classroom.” (Walter & Gerson, 2000; Yerushalmy, 2006; in Nachlieli 

& Tabach, 2012). This demonstrates that there is a need for a research-based model that 

can reveal how learners develop their understanding of mathematical concepts – and in 

particular, functions. The upshot of such research will be to provide educators with more 

explicit guidelines for their teaching.  

Ronda (2004) has created such an empirically-based conceptual framework. It describes 

learners’ development of their understanding of functions, and refers to this path of 

development as learning trajectories. This Framework of Growth Points maps out the ‘big 

ideas’ that learners typically experience on their path to understanding functions (Ronda, 

2004; Ronda, 2009:31). These growth points are in approximately the order that they are 

expected to encounter these ideas. Ronda (2009) suggests that most learners follow a 

similar learning path or trajectory, reaching a set of defined growth points as they 

encounter functions. This research report uses Ronda’s (2004) study into growth points and 

their description as its basis.   

Algebra is claimed to be “... a great explainer” by Long, De Temple and Millman (2008: p. 

36). Algebra is a very broad area of mathematics, and even when confined to the limitations 

of high school mathematics there are many perspectives as to what constitutes elementary 



3 
 

algebra. In its simplest form, algebra can be seen as a generalised form of arithmetic, a way 

to solve problems, the study of relationships between numbers, and finding an unknown.  

Introductory high school1 algebra sets the foundation for higher level algebra, any aspects of 

calculus, and indeed tertiary study of mathematics. Some research, for example the CSMS 

study, suggests that the learning of algebra is not an easy task (Hart et al, 1981), and 

Watson (2009) has pointed out that algebra continues to be an area which causes dismay 

for many learners. The successful teaching of algebra at a high school level is seen to be 

important, because not only is it a major part of the mathematics syllabus, but the success 

in mathematics is also seen to be the gateway to many forms of tertiary education. Algebra 

and functions are important topics in school mathematics, and indeed in the critical thinking 

processes that are an aimed outcome of the process of schooling. Arcavi argues that:  

“thus, a knowledge of mathematics, and particularly a knowledge of algebra, is crucial 

for, among other things, the inspection, understanding, and development of a critical 

appraisal of the large amounts of information and arguments with which we are 

confronted at all times” (Arcavi, 2008: p. 37).  

While there are many opinions on what algebra is, I will mainly be using Caspi and Sfard’s 

(2012) definition of algebra as a discourse as a basis to my study. Caspi and Sfard (2012) 

categorise elementary algebra into two further meta-arithmetic discourses – solving 

equations, and generalisation – and these explain the use of symbolic representation which 

is at the heart of elementary algebra.  

Solving equations asks questions about unknown quantities, where a calculation is used to 

find an unknown. Generalisations look at number patterns, and, with the help of symbolic 

representations (usually called variables), shows that these number patterns can be 

represented in the form of an equation. These can also be seen as functions, and can be 

represented in other ways too, for example by table, graph or diagram. At school level there 

is much foundation work in algebra which leads to these two categories, such as the ways in 

which variables and exponents are used. Function is seen as a mathematical object, but 

learners do not necessarily see it this way when they are first introduced to the concept of 

                                                           
1
 In South Africa, high school is from Grade 8 to Grade 12 – the formal schooling exit point. High School is the 

same as secondary school, and these terms are used interchangeably.  
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function (Ronda, 2009; Nachlieli and Tabach, 2012). Hence the paradoxical situation occurs 

as learners struggle with talking about a concept which is not necessarily yet well-defined 

for them (Nachlieli and Tabach, 2012).  

This study also explores the way in which mathematics, algebra, and specifically functions 

can be expressed in terms of discourse. Sfard’s communicational framework provides both 

the theory and the tools to explore discourse in the mathematics classroom (Sfard, 2008).  

Mathematical discourse is seen as a human activity, unlike language, which is a set of 

passive tools (Caspi and Sfard, 2012; Lemke, 1990). Human activity evolves, which is 

mirrored by a change in a learner’s discourse when encountering new algebraic discourses. 

The development in algebraic discourse can be seen to progress through levels that have 

been described by Caspi and Sfard (2012) as “canonic”. This means that there is a hierarchy 

of levels of algebraic discourse, where each level of discourse builds on the previous level, 

and is hence more complex than the previous level (a meta-discourse of the previous level). 

Caspi and Sfard (2012) state that “transition from one level to another can be seen as 

developmental milestones”, and hence this can possibly be seen to link with meeting 

Ronda’s growth points on a learning trajectory.  

Sfard suggests that thinking is a form of communication and that learning a subject such as 

mathematics is modifying and extending one’s discourse (2007). Because, as many other 

authors have also shown (E.g. Caspi and Sfard, 2012; Ryve, 2011) discourse relates closely to 

the process of learning, I have investigated the link between the development of learners’ 

discourses and the growth points that Ronda has proposed in her framework of growth 

points.  

 

1.2  Aims of the study 

The aim of this study was to use Ronda’s Framework of Growth Points to investigate the 

learning of functions in equation form, in the South African context. This study also aimed to 

investigate learners’ discourses in relation to the growth points that have already been 

achieved.  
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1.3  Research questions 

 

1. Using Ronda’s Framework of Growth Points, where do selected South African 

learners fit in - especially in relation to functions in equation form?  

2. How do learners’ discourses relate to the growth points they have achieved? 

 

1.4  Background and rationale 

 

Mathematics is important to learners as it not only fosters a questioning approach to life, 

but opens doors to many areas of tertiary study (Arcavi, 2008). The study of algebra 

contributes a large portion of the current mathematical syllabus, and is therefore relevant 

to investigate.  

During my time as a mathematics teacher, I have observed that algebra is, more often than 

not, a struggle for many learners. This observation is backed by many large-scale 

international mathematics studies such as the CSMS study (Kuchemann; 1981) and the 

TIMMS study. National mathematical benchmarking tests, such as the Annual National 

Assessment (ANA), also support this claim. It was shown that Grade 9 learners achieved a 

pass rate of 13% in the 2012 test, the pass mark being set at 40%. A large part of this 

(approximately 40%) of the paper is algebra, or relies on algebraic knowledge. This points to 

difficulties in the learning of all areas of mathematics, including algebra. The 2013 ANA 

results did not differ much, with the pass rate being only slightly higher and only 2% of 

learners getting over 50% for this assessment.  

Functions are not an easy concept to grasp, especially considering their abstract nature. To 

understand function is to understand it in its various representations, but one should not 

confuse it with the representations themselves.  “A function is a relationship of dependency 

between variables … it is the relationship that is the function, not a particular representation 

of it.” (Watson, 2009: 30, own emphasis) Watson’s statement shows that functions should 

be seen as a relationship, but that this relationship manifests in different representations.  
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The Department of Education highlights the importance of being able to represent functions 

in different ways. “The mathematical models of situations may be represented in different 

ways – in words, as a table of values, as a graph, or as a computational procedure (formula 

or expression). (Department Of Education, 2003) 

As seen in Appendix A, the first outcome stated in the NSC shows that the learner has 

achieved the outcome if the learner “draws graphs on the Cartesian plane for given 

equations (in two variables), or determines equations of formulae from given graphs using 

tables where necessary”. (DOE, 2003)  

I have noticed that often the first encounter of functions (in textbooks) is in equation form. 

Equations are introduced as the relation between two variables which then dictate how 

ordered pairs can be found (usually represented in a table).  

The equation form of a linear function, which is represented in the standard form 

of        has both process and object properties – which will be further discussed in 

the literature review. The process of substitution of values into this equation creates a set of 

ordered pairs, which can be plotted onto the Cartesian plane. However, the equation can 

also be seen as an object when learners can interpret the invariant properties of the 

function it is representing (Ronda 2009).  

My own observations in the mathematics classroom have led me to believe that language 

plays an important role in the learning of mathematics. Indeed, there are many who have 

suggested that language is indeed important in the process of mathematics teaching (Sfard, 

2008; Arcavi, 2008; Lemke, 1990; etc).  

Lemke (1990, p. 12) reiterates that “classroom language is not just a list of technical terms, 

or even just a recital of definitions. It is the use of those terms in relation to one another, 

across a wide variety of contexts”. In this research report, I will use the word ‘discourse’ to 

refer to the human activity of using language.  

The development of gaining mathematical skills and knowledge is a function of increasing 

one’s prowess in the discourse associated with mathematics and its subsidiaries. One 

conceivable reason for the low achievement in mathematics is the struggle with the use of 
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mathematical discourse, and this discourse is needed for the successful study of high school 

mathematics.   

When looking at the big picture of education in South Africa, one realises that we as a 

nation are in a somewhat dismal state of educational disrepair. South Africa has a unique 

history laden with difficulties, especially in education, and our history has had and continues 

to have an effect on education.  

One of the ways in which education for the majority of the population was thwarted, was in 

the field of language. Under apartheid, the majority of South African learners were taught in 

a language which was not their first language. Social inequalities have been lessened over 

time, but the majority of teaching (at a secondary level) still happens in English, which is still 

not the mother tongue of the majority of learners in South Africa. This is another pertinent 

reason to be studying discourse in a mathematics classroom, especially a classroom in which 

not all learners many have English as their first language2.  Good teaching practices are 

learnt through research. If research goes into informing good teaching practices, the 

country’s education system stands to benefit (Taylor, personal communication: 2011).  

As an educator and education researcher, it will be beneficial to understand the paths 

learners take when they learn about functions, and the discourses that are associated with 

the learning of functions.  

 

Outline of the research report 

This first chapter has given an introduction to the research report, and also explains the 

rationale for the research. It has given the context of the research and explains why this 

research will be helpful in the South African educational system.  

Chapter Two gives an outline of the literature that was considered to be important to this 

study. The areas of algebra and functions are explored, and special consideration is given to 

functions in equation form. The two theoretical frameworks are also explained in this 

chapter. Ronda’s Framework of Growth Points gives the outline to the theoretical 

                                                           
2
 First language here is the same as mother tongue, or what some have called “main language”.  
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framework which will be used in answering the first research question. Sfard’s 

communicational framework is also considered, along with additional input from Nachlieli 

and Tabach (2012) and Ben-Yehuda et al (2005).  

The third chapter elaborates on how the research was conducted. Methodology, reliability 

and validity, sampling, data collection and analysis as well as ethical considerations are 

discussed.  

Chapter Four discusses the analysis of the data, which was done in order to answer the first 

research question. This part of the study showed that South African learners could be 

compared with the learners from Ronda’s study in terms of their achievement of growth 

points. Differences and similarities of the two sets of data are also discussed.  

Chapter Five elaborates on the findings of the second part of the study, which studied the 

discourse used by learners when talking about functions in equation form. This part of the 

study uses Sfard’s communicational framework to analyse learners’ discourses.  

Chapter Six offers a summary of the findings, recommendations for further research and 

then concludes the study.  
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  Literature Review Chapter 2

 

In this literature review, I will discuss the area of school algebra, with particular reference to 

functions, and the multiple representations thereof. I will subsequently discuss the dual 

nature of mathematical objects, which explains that algebraic objects can be seen to have 

properties which are different, yet compatible. I will explore learning trajectories and how 

they can inform teaching practice. I will then consider mathematics as a discourse, and 

specifically algebraic discourse. Finally, I will look at the teaching of algebra in South Africa.  

2.1  Algebra 

According to Watson (2009), algebra is the way we express generalisations about numbers, 

quantities, relations and functions. Algebra is seen as a means for the manipulation of 

symbols in order to solve complex problems (Kieran, 2007). The importance of seeing the 

link between arithmetic and algebra is highlighted by many, for example, noticing that 

algebra is a generalisation of arithmetic (e.g.:  Banerjee & Subramaniam, 2012).  

This is a reflection on Caspi and Sfard’s (2012, p. 45) work, which states that secondary 

school algebra is a “meta-discourse of arithmetic”. Algebra is seen to be a type of meta-

arithmetic, through the formalisation of numeric patterns. Instruction on function can also 

be, and usually is, approached in a similar manner, where learners explore patterns, and 

hence generate rules in the form of an equation or formula.  

The discourse on functions subsumes those discourses on algebraic expressions and graphs 

(A. Sfard, Personal communication, 5 September 2012). Caspi and Sfard (2012) categorise 

school algebra into two broad categories, based on earlier work by Sfard and Linchevski 

(1994). The first category – constant value algebra – concerns algebra where values, either 

known or unknown, are fixed and do not change. Within constant value algebra, Caspi and 

Sfard (2012) identify two sub-categories; solving equations refers to the process of finding 

an unknown variable in an equation, while generalisation refers to simplifying patterns or 

algebraic expressions. The second category – variable value algebra – describes processes of 

change or movement. This type of algebra may be represented by graphs or tables and 

hence results in a new mathematical object – functions (Caspi and Sfard, 2012).  
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2.2  Functions 

An early definition of functions from Euler states that; “One says one quantity is a function 

of another whenever the first quantity depends on the other in such a way that if the latter 

is changed then the former undergoes changes itself.” (Euler, 1755, in Sfard, personal 

communication, 2012) Over time the definition of a function has evolved and today’s formal 

definition of a function is as follows.   

The subset F of AxB is a function iff for every x ϵ A and y1, y2 ϵ B, 

if (x, y1) , (x , y2) ϵ F  then y1  = y2 

This formal notion of a function, however, is not the way in which functions are introduced 

to the first-time learner. In South African schools, learners are typically introduced to formal 

algebra in Grade 8, although some groundwork is usually laid at primary school level in the 

form of recognising patterns and filling in a missing “space” to ensure an equation is 

equivalent. There are some schools which introduce the notion of a variable at Grade 7 

level, but these are not the norm.  

High school learners are introduced to the idea of variables, and build skills which involve 

expressions and solving for one unknown (equations). These ideas and skills become 

building blocks for the notion of a function as a relationship between more than one 

variable. The notion of equivalence is introduced when looking at equations with one 

variable, where learners typically have to solve for an unknown variable. However, functions 

– at high school level - show the relationship between two variables. “A function is a 

relationship of dependency between variables … it is the relationship that is the function, 

not a particular representation of it.” (Watson, 2009, p. 30).  

Anderson, in Greenes & Rubenstein (2008), states that since functions have many real world 

applications, it is important that learners learn to do more than just manipulate the 

equation. Learners must develop proficiency using an equation to represent relationships 

among variables described in a mathematics problem. The nature of an algebraic function is 

such that its relationship can be represented in many ways (Kieran, 2007).  
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The multiple representations characterise functions. However, learners do not always grasp 

the connections between each representation. Learners may also view the representation 

as a function itself.  Van Dyke and Craine state this of learners:  

“We want them to realize that a function can be represented by a graph, by a 

table of values, and, in many of the instances they will consider, by an algebraic 

expression. We need to make learners see that a change in algebraic form does 

not necessarily mean a change in the relation that is represented but rather that 

an equivalent form may make a certain property of the relation become more 

apparent.” (Van Dyke and Craine; in Moses, 1999, p. 215) 

Seeing a function in many different ways can be helpful. As Even points out, “different 

representations give different insights which allow better, deeper, more powerful and more 

complete understanding of a concept” (Even, 1990, p. 524). Being able to select, use, move 

between and compare representations is a crucial mathematical skill (Even, 1998, in Kieran, 

2007). The understanding of a function as a whole, with its many representations, instead of 

just as a process is addressed in the next section entitled process/object duality.  

Wolloughby (in Moses, 1999: p. 197) suggests that “High school and College learners often 

have trouble with the function concept because of the abrupt and abstract way in which it is 

introduced.” The difficulty with introducing complex concepts very quickly is that learners 

take some time to become familiar with the new discourse, which may be associated with 

functions. As shown in this study, the understanding of functions is an ongoing process and 

the journey to understanding functions as an object is not an easy one.  

2.3  Functions in equation form 

In my experience as a teacher, functions are almost always encountered in equation form 

first. This experience corresponds to the ordering of the introduction of concepts in the 

curriculum statements (both NCS and CAPS). The equation provides the rule which 

represents the relationship between two variables. Function, when represented as an 

equation, can lend itself well to both process and object conceptions. For example, a linear 

function, in the form        can be used to generate a set of co-ordinates, as well as 

show properties such as the gradient (represented by m), as well as the intercept (c).  
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Although function in equation form lends itself to be seen as both a process and an object, it 

is important to note that the equation is not the function itself – it is a representation. The 

importance of the ability to link the function with its other representations is highlighted by 

Ronda (2009), as all representations have their own strengths and weaknesses.  

Functions in equation form are not without their own difficulties. Many learners first 

experience equations as a way to solve for one unknown value, in a “solving equations” 

sense. Learners are generally accustomed to seeing equations as containing a single 

unknown quantity. When functions are introduced, equations then become associated with 

the “generalisations” type of algebra, as an equation is thus a representation for a 

relationship between two variables (Ronda, 2009).  The equation is now a representation of 

an object – function – instead of a statement of condition. Learners also have to navigate 

the equals sign, which in earlier years of their schooling denoted a “do something” signal, 

whereas with functions the equals sign shows a relationship of equality (Ronda, 2009).  

2.4  Process-object duality  

Sfard and Linchevski (1994) introduce the idea that mathematical objects have a dual 

nature, which explains that functions can be seen in more than only one way. Reification is 

the process whereby a learner is able to understand that the result of a mathematical 

process is indeed a mathematical object (Sfard, 1991; Sfard, 1992; Sfard & Linchevski, 1994).  

Sfard’s (cf. 1994) earlier work speaks about the dual nature of algebraic objects – and points 

to the fact that there can be two ways of looking at functions. Functions can be seen as 

having both process and object conceptions, and these are different, yet compatible. Even 

though this is a difficult notion to grasp, it can be likened to Bohr’s concept of the nature of 

physical entities. Properties of light can be – and need to be – understood through both 

particle and wave theory (Sfard and Linchevski, 1994). Similarly, functions need to be 

understood both as both a process and an object.  

Sfard (1991) points out that, when encountering and acquiring a new mathematical 

concept, learners will see the concept as an operational conception before they graduate to 

having a structural conception (object conception). A function, when seen as a process (or 

as an operational conception), is interpreted in such a way that the person seeing the 
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equation would be inclined to ‘do something’ with the expression. Performing computations 

in a procedural way is what many learners will be inclined to do when seeing an equation.  

In a typical classroom, this process may be seen as what teachers often tell learners to do 

when faced with the equation form of a function: “generate a set of co-ordinates by using 

your equation”. This shows a one-dimensional approach to functions in equation form 

(Sfard and Linchevski, 1994). In the case of a standard linear equation         a learner 

may look at the equation purely as a procedure, in which case they might substitute values, 

in the position  , to generate co-ordinates. This shows that learners are approaching the 

problem from a point where they want to get an answer, but do not necessarily show 

understanding of the equivalence shown by the equation. Learners have learnt the 

procedure of generating a set of co-ordinates – in a point-wise manner, but have not 

grasped the relationship represented by the equation (Ronda, 2004).  

Reification occurs when a learner compresses a series of processes into one object, and 

therefore is able to see a lengthy string of processes as one thing. This one new 

phenomenological object can subsequently be used as a basis for new procedures, which 

take place on a higher level (Sfard and Linchevski, 1994). An example of this happening can 

be seen where a learner shifts their thinking about functions in equation form. Instead of 

seeing the function         as something which should be operated on, the learner 

shifts their thinking and is able to see the equation holistically, as a relationship of 

equivalence instead as a string of processes. It is also important to note that the process of 

reification would not be possible if the learner did not understand the function as a process 

in the first place (Sfard and Linchevski, 1994; Sfard, 1991). Sfard’s newer work calls this shift 

objectification (cf. Caspi & Sfard, 2012).   

While Sfard and Linchevski (1994) state that reification comes about when learners discover 

the link between the process and the object, the ‘object’ in this case signifies a structural 

understanding. A structural understanding comes about when one understands the object 

as both a part and a whole – meaning that the object is seen as a whole, but is also linked to 

the parts which constitute the whole. Sfard and Linchevski, (2004) maintain that reification 

needs to take place in order to understand the full meaning of an object. 
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The above shows issues of learning about function, but does not indicate how learners 

progress as they learn, or what stages are met through the learning process. Hence there is 

a need to investigate trajectories of learning in mathematics, especially function.  

2.5  Learning Trajectories 

The idea of learning trajectories was first put forward by Simon (1995, in Simon and Tzur, 

2004) when he constructed a hypothetical learning trajectory. This was an idea which was 

used to inform the planning of lessons which included the outcomes of the lesson, which 

tasks were to be used, and hypothesised about the process of learners learning (Simon, 

1995; in Simon and Tzur, 2004). Through research and further development on the learning 

processes in mathematics, this idea has shifted from the hypothetical to an empirically-

developed idea. The learning trajectories of some areas have been suggested, especially in 

primary school mathematics, as shown in a Consortium for Policy Research in Education 

report on learning trajectories in Mathematics (Daro et al, 2011). Actual learning trajectories 

may inform progression through key concepts or levels of thinking.  Confrey et al give a 

broad explanation of learning trajectories:  

“[Learning trajectories are] a researcher-conjectured, empirically-supported 

description of the ordered network of constructs a learner encounters through 

instruction (i.e. activities, tasks, tools, forms of interaction and methods of 

evaluation), in order to move from informal ideas, through successive refinements 

of representation, articulation and reflection, towards increasingly complex 

concepts over time.” (Confrey et al, 2009, p. 347, in Daro et al, 2011) 

The area of learning trajectories in many studies is rather broad, but has also been 

narrowed to the area of mathematics by some researchers. This is described by Clements 

and Sarama (2004) as: 

“descriptions of children’s thinking and learning in a specific mathematical domain, 

and a related conjectured route through a set of instructional tasks designed to 

engender those mental processes or actions hypothesized to move children through 

a developmental progression of levels of thinking, created with the intent of 

supporting children’s achievement of specific goals in that mathematical domain”. 

(Clements & Sarama, 2004, p. 83) 
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Wilson, Mojica and Confrey (2012) suggest that learning trajectories can help teachers in 

their teaching practice as they inform about learners’ progression through key concepts.    

Ronda (2004) has created a framework of growth points for the learning of functions which 

uses the idea of learning trajectories. The framework of growth points shows learning 

trajectories through meeting key growth points – which has been developed in conjunction 

with extensive empirical research. Her framework aims to articulate the way in which 

learners’ progress in their understanding of functions, and the route that they take to move 

to the ultimate goal of an objectified understanding of functions.  

2.6  Framework of growth points  

Ronda’s framework has been created after doing empirical research, and is concerned with 

the ‘big ideas’ that learners encounter while learning about algebraic functions, in particular 

linear and quadratic functions. These big ideas are called growth points, and serve as 

‘checkpoints’ or ‘milestones’ to identify the learning paths of learners.  The framework is 

based on research which shows the typical path many learners take when learning 

functions.  

Figure 1 below shows the entire framework of growth points – over four domains (Ronda, 

2004). I will be working specifically with the domain of Equations, which is shown in the far 

left column.            

Figure 2-1 The Framework of Growth Points 
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Ronda (2009) describes four growth points which can be associated with functions in 

equation form. The description of these growth points has subsequently been refined from 

the above table, taken from Ronda (2004). 

Growth Point 1: Equations as procedures for generating values 

A learner is coded at growth point one when they are able to see an equation as a means to 

generate values. This growth point corresponds to Sfard’s (1991) procedural conception of a 

function. In Ronda’s study, most learners who were coded at this growth point showed a 

preference for solving problems by point-by-point analysis, even though it is time 

consuming.   

Growth Point 2: Equations are representations of relationships 

Learners coded at this growth point were able to start investigating the relationship 

between variables in an equation. Here learners are aware of that “equations are a 

statement of relationship between the varying quantities”. (Ronda, 2009, p. 43)  

Growth Point 3: Equations describe properties of relationships 

Learners who were coded at growth point 3 were able to recognise, describe and interpret 

the properties of the function given in equation form. Properties include the gradient and 

the  -intercept.  

Growth Point 4: Functions are objects that can be manipulated and transformed 

Learners who were coded at this growth point were able to conceive an equation as a 

culmination of the previous growth points, as well as it being a mathematical object. This 

means that learners could perform an operation on the equation as a whole. This holistic 

notion of a function means that learners are able to see the function as an object and not 

just merely as a collection of co-ordinates. This growth point is consistent with Sfard’s 

notion of having an object conception of a function.   

The order in which these growth points are presented, are seen to be the order in which 

most learners are typically seen to reach the growth points. These four growth points can be 

used as the basis in the investigation of the trajectory of a typical learning path of learners 

encountering functions. Ronda’s framework has been piloted and refined in studies in 

Australia and the Philippines, but has not yet been used extensively. This study investigates 
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the use of the framework in a different educational context, and so can serve to confirm the 

potential generality of the framework in describing learners’ learning trajectories.  

Ronda (2004) was able to code learners at these growth points by way of an assessment. 

However, it may not always be practical for a busy teacher to assess learners constantly 

using a written assessment. Due to this, it may be possible to link up growth points with a 

learner’s discourse. Hence my interest in investigating how learners’ discourse relates to the 

growth points that they have achieved, and the dual focus of my study.  

2.7  Mathematical discourse and the Communicational Framework3 

As a precursor to discussing mathematical discourse, the clarification of acquisitionist and 

participationist theories of learning should be briefly discussed. In the past, Sfard (1998) 

talks about two metaphors – Acquisitionism and Participationism – and how they can be 

used to describe the process of learning. She highlights the mistake of using only one of 

these two metaphors to explain the process of learning.  

Recently, however, Sfard has changed her mind, and is now more in favour of the 

Participationist view of learning. In her paper, Sfard (2006) stresses the movement from the 

Acquisitionist view of learning, towards a Participationist view of learning. She deems the 

Acquisitionist view of learning unsuitable to wholly define thinking, because it does not have 

the adequate complex theoretical structures to deal with the fine nuances of learning that 

we are able to see today, with the help of advanced technological tools (Sfard, 2006).  

The commognitive approach is based on the view that the theory of Acquisition no longer 

suffices to adequately explain the process of learning (Sfard, 2007). Participationism, 

however, is able to adequately explain that learning take place as a result of the 

individualisation of patterned collective human activity (Lave 1993, Wenger, 1998, in Sfard, 

2007).  

“The study of discourse is the study of human communication; the most unique of this 

communication is language in use,” writes Ryve (2011, p. 169). Sfard explains thinking as “an 

individualised form of (interpersonal) communication”, and together, different types of 
                                                           
3
 Sfard’s refers to her framework as the Commognitive framework or the Communicational Framework in 

different pieces of her writing. I will use these two terms interchangeably. The word “Commognition” comes 
from a combination of the words Communication and Cognition, which indicate that these two are different 
expressions of the same phenomenon.  
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communication are said to be discourses (Sfard, 2008, p. 81). Sfard (2008) goes on to say 

that, within the commognitive framework, learning may then be defined as individualising 

discourse.  

A specialised discourse is needed to fully explain abstract mathematical concepts 

encountered during the learning of mathematics. Sfard (2007) defines mathematics as being 

a specific type of discourse. This specific discourse can be characterised by its specialised 

objects (technical register, visual representations), its rules and its mediators. The 

communicational view of learning suggests that discourses can change, and that learners 

need to keep up with these changes in discourse (Sfard, 2007). Mathematics learning, then, 

is the act of communication within the mathematical discourse (Sfard, 2006). 

Becoming fluent in the discourse of mathematics is not an easy process. As Sfard (2007) 

suggests, learning mathematics is synonymous to becoming fluent in the discourse which is 

specific to mathematics. Caspi and Sfard (2012) elaborate on the subject of mathematical 

discourse by stating that algebra is a sub-category of mathematical discourse.  

To answer my second critical question, I will be using Sfard’s communicational approach to 

explain the process of learning mathematics. It is an interpretive framework which aims to 

make sense of discourse in the classroom (Sfard, 2007, 2008).   

The communicational view of learning emphasises that mathematical thinking is a process 

whereby communication in social situations is individualised. Self-communication, which 

does not necessarily have to be in words, is therefore the product of internalisation of 

communication in a social environment (Sfard, 2007, 2008). Discourse is “recognisable by 

four characteristics, the first three of which are its specialised vocabulary, visual mediators 

and routines. All these, if applied properly, result in narratives that the [research] 

community endorses and regards as facts” (Sfard 2013, p.140). The four characteristics of 

discourse are discussed below.  

Mathematical words: these are the specific technical words which are used in discourse 

(Sfard, 2008). Word use is very important in that the use of the word constitutes its meaning 

(Wittgenstein, in Sfard, 2007, p. 571). In functions, some examples of these mathematical 

words may be “parabola”, “turning point” and “gradient”.  
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Visual mediators are the images (visual or imagined) which pertain to the mathematical 

objects that are the subject of communication. Examples of visual mediators are graphs, 

equations, diagrams, etc (Sfard, 2008). There are multiple visual mediators associated with 

functions: graphs on the Cartesian plane, an equation, table of values, special symbols, etc.  

Narratives are texts, either in spoken or written forms which are used to describe an object 

or the relationship between objects. Endorsed narratives are narratives which are seen to 

be true. Examples of endorsed narratives are definitions, proofs and theorems (Sfard, 2008).  

Routines are repetitive patterns seen by an interlocutor in their action, words, and 

discourses (Sfard, 2008). Typical routines include proving, performing a calculation and so 

on. Routines are governed by sets of rules. Rules about objects in the discourse are object-

level rules, whereas meta-level rules are less explicit, as they are rules about the discourse 

itself. For example, a meta-rule may say what a satisfactory proof is.  

Sfard (2008) also distinguishes between the how and the when of a routine. The how of a 

routine consists of meta-rules which constrain “the course of the patterned discursive 

performance” (Sfard, 2008, p,208). The when of the routine is made up of meta-rules that 

constrain when it is appropriate to use a particular routine.  

Sfard (2008) also categorises routines into three distinct categories; deeds, rituals and 

explorations. Explorations aim to further discourse by producing endorsable narratives. 

Examples of explorations are “routines of solving equations, of proving a mathematical 

result, or generating and investigating a mathematical conjecture” (Berger, 2013). 

Rituals are seen to be “creating and sustaining a bond with other people” (Viirman, 2011, 

Sfard, 2008, p 241). The goal of a ritual is a social reward, like attention or approval.  Rituals 

are identified by the imitation of speaker/participant with a colleague or a more 

experienced interlocutor. Rituals are associated with prompts, and are therefore usually 

highly situated in comparison to explorations (Sfard, 2008). Ben-Yahuda, Lavy, Linchevski 

and Sfard (2005) state that learning is often mimetic, where learning often takes place by 

“following the discursive patterns of more experienced interlocutors (Ben-Yehuda et al, 

2005, p.182).  
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Deeds aim to change actual objects (either physical or discursive). This is different to 

explorations, where the change happens in narratives. A deed may be the act of choosing a 

box with a larger number, or dividing sweets equally amongst friends (Sfard, 2008; Berger 

2013).  

For an in-depth comparison of deeds, rituals and explorations, see Table 2-1 (Sfard, 2008, 

p.243)  

 

 

The analysis of the discourse of learners, along these four categories, and especially the 

category of rituals, will be useful in investigating if there are any connections between the 

learners’ discourses and their achieved growth points. What is not clear is exactly how the 

above criteria in terms of discourse are able to demonstrate or connect to Ronda’s Growth 

Points. The answer may lie in Caspi and Sfard’s (2012) work on algebraic discourses.  

Table 2-1 Deeds, explorations, and rituals - comparison 
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Caspi and Sfard (2012) use the characteristics of discourse as a basis for creating a guideline 

on how algebraic discourse develops through the process of learning algebra. They define 

algebra as a meta-discourse of arithmetic, and hence can be analysed according to the same 

four characteristics presented above. Caspi and Sfard (2012) also differentiate between 

parallel forms of algebraic discourse, formal and informal, and how these are linked.  

Caspi and Sfard (2012) talk about three levels of algebraic discourse in the fixed-value 

algebra (constant-value algebra) field. Because I will be working with variable-value algebra, 

this is not quite applicable, but still holds some value in the comparison between types of 

discourse and the growth points. Caspi and Sfard (2012) have proposed a hierarchical 

development model of discourse for variable value algebra. It has only two levels – 

processual and objectified. At the time of this study, it was rather undeveloped and hence 

not much use to the study. See Table 2-2 for a complete outline of the hierarchical levels of 

elementary algebra as proposed by Caspi and Sfard (2012).   

The three levels of fixed-value algebra are processual4, granular and objectified. The 

processual level of algebraic discourse focuses on numerical calculations, which generally 

follow a linear order. This is similar to Ronda’s (2004) description of point-by-point analysis. 

This level has been based on Sfard’s earlier work showing the most basic level of 

understanding – the procedural conception of an object.  

The granular level includes numerical calculations, but these are no longer seen as a “one-

to-one reflection of the sequence of operations performed” in the course of calculations 

(Caspi & Sfard, 2012, p. 50). This shows that learners on this level are starting to see the 

relationship shown by the function. “Granules” are partially reified ‘chunks’ of information 

which are seen as intermediately objects.  

The third objectified level of understanding is when a learner is able have both a process 

and object conception of a mathematical object. This level is characterised by being a full 

participant of the mathematical discourse about the object (Caspi and Sfard, 2012). This 

level seems to correspond with Growth Point 4 in Ronda’s framework (2004). Caspi and 

Sfard’s (2012) research showed that many learners were showing the beginning signs of a 

                                                           
4
 In Sfard’s earlier work, she refers to this type of conception as procedural. In her later work, she prefers to 

call it a processual conception of a mathematical object.  
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formal algebraic discourse; however their participants were not yet near to the objectified 

levels in their discourse. 

All three levels shown above can be investigated by using the four characteristics described 

above; mathematical words, visual mediators, routines and narratives. Routines especially 

point to the achievement of different levels. Formal and informal discourses are 

differentiated by the rigorousness of the discourse. Formal discourse aims to prevent 

ambiguity by using strict meta-rules (grammar). These discourses run in parallel, but are not 

necessarily identical (Caspi and Sfard, 2012). These three levels of discourse may follow both 

a formal progression as well as an informal progression.   

“Whereas each of the columns can be seen as organized according to the 

developmental chronology, no claims are made about horizontal relations, that is, 

about how the stages in the growth of the informal discourse could be sequenced in 

relation to their formal counterpart. This abstention reflects out conviction that these 

two lines of development, the informal and formal, although mutually influential, can 

nevertheless be seen as quite independent. This assumption is what motivated our 

decision to present the two strands side by side rather than trying to create a unified 

linearly ordered scheme. If the corresponding levels of informal and formal discourses 

have been aligned with one another, it is not because the discourse in the right half of 

the row can be seen as the formal version of the one on the left”. (Caspi and Sfard, 

2012, p.47)  (These two columns are seen on Table 2-2) 

Caspi and Sfard (2012) in their paper did not point exactly to what would constitute an 

informal objectified discourse, although they do not say that this type of discourse is 

impossible. However, if a highly complex form of informal discourse were conceivable, it 

would follow that there is not necessarily a need for formal discourse in algebra.  

Ben-Yehuda et al (2005) differentiate between colloquial and literate discourses, which 

formed the basis for the development of the formal and informal discourses which were 

presented above. “Colloquial discourses are also known as every day or spontaneous as they 

often develop as if by themselves, as a by-product of repetitive actions” (Ben-Yahuda et al, 

2005, p.181).  



 
 

Table 2-2 Levels of Elementary Algebra Discourse 



24 
 

Nachelieli and Tabach (2012) introduce the idea of circularity in discourse, especially when 

learners talk about functions. They argue that mathematics is autopoetic or “a discourse 

that creates its own objects” (Nachelieli & Tabach, 2012, p.10). Learners often find 

themselves in the situation where they are required to talk about an object which they are 

not yet familiar. In their research, Nachelieli and Tabach (2012) showed that learners were 

able to participate in the discourse of function without necessarily having a full 

understanding of the object. Hence, the learners in the study showed that they were 

familiar enough with the discourse on functions to use it to perform some of the tasks on 

functions.   

Nachelieli and Tabach (2012) also suggest that the instructional sequence of functions 

should be such that lower levels of discourses should be fully attained before moving on to 

the next level. This speaks to Caspi and Sfard’s levels of algebraic discourse, discussed 

previously. They also found that the learning of functions – the move from level to level – is 

a gradual process, where the abstract notion of a function is something which cannot be 

grasped in a hurry. These theoretical ideas link up to Ronda’s Framework of growth points in 

that the attainment of knowledge and skills about functions generally follow a sequence. 

This is shown by Ronda because her framework was devised empirically after researching 

how learners learnt about functions.  

Ronda, in her research which was done in the Philippines and Australia, showed that most 

learners were achieving at Growth Point 1, and some at Growth Point 2. There were very 

few learners that were able to reach Growth Point 4 – a level which showed objectified 

thinking. Based on my experience as a mathematics teacher, I anticipated that these results 

would be mirrored in the South African context. There were, however, some slight 

differences in the results of my study. These results are discussed in Chapters 4 and 5.  

It is not apparent from Ronda’s Framework of Growth Points, though, how learners might 

talk about functions differently at different growth points.  By using the above framework, I 

will describe how learners’ discourses relate to the growth points which have been set out 

in Ronda’s framework.  This is significant as there is not always time to continually test 

learners’ attainment of growth points formally. However, an attentive teacher working in a 

discourse-rich class will be able to listen to the discourse of learners to see how they are 
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progressing, according to Ronda’s framework. This relation may also have implications on 

how teachers inform their teaching practices, by explicitly regarding the discourse of 

learners.   

2.8  Algebra teaching in South Africa 

The Department of Education announced at the end of 2012 that learners in Grade 9 were 

achieving at an average of a mere 13% in mathematics, according to the results of their 

Annual National Assessment (ANA). It further emerged that only 2,3% of learners achieved 

over 50% in the ANA. These figures have left the general public in South Africa appalled, and 

have left many wondering where teaching has gone wrong.  

Van Larden and Moore-Russo (2012), show in their research that teachers of high school 

mathematics have different ideas on what is important to teach in algebra. Van Larden and 

Moore-Russo questioned South African teachers on their beliefs and what they thought was 

important in the teaching of algebra in South Africa. The most important and frequent 

theme was “symbols and symbolic manipulation”, whereas “thinking and reasoning” 

featured very low down on the list of frequency. Other themes which came out as very 

important were “operations and computations” and “quantity and number”. This is 

disturbing as it shows that teachers in South Africa are most likely teaching in a very 

processual (procedural) way, and therefore do not seem to be placing much importance on 

the objectified properties of concepts in algebra. Van Larden and Moore-Russo state that:  

“This particular group of teachers seemed to value the development of 

(procedural) skills over the development of concepts. Moreover, the teachers also 

seemed to consider algebra as being more about using and manipulating 

symbols than applying, communicating or reasoning about algebraic ideas” (Van 

Larden & Moore-Russo, 2012, p. 55).  

Caspi and Sfard (2012) have shown in their research in Israel that Grade 7 learners were 

able to participate in an informal algebraic discourse when solving an algebraic task. Some 

of these Grade 7 learners were also showing evidence of moving over to formal algebraic 

discourse, and although this move was not complete, there were the beginnings of 

reification in their discourse. Caspi and Sfard (2012) mention that the beginnings of 
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reification were probably due to the Grade 7 learners having a well-developed arithmetic 

discourse, comparatively.  

In the South African context, Van Larden and Moore-Russo (2012) have shown that many 

South African teachers emphasise the importance of process in the teaching of algebra, 

rather than the understanding of concepts. Since reification is the move from a procedural 

discourse to a more formalised, conceptual discourse, this move would be very difficult if 

only the procedural discourse was taught. Considering the research done by Van Larden and 

Moore-Russo, it would not be surprising to find that South African learners opted for a more 

processual level of discourse. Perhaps an understanding of why many Grade 9 learners are 

not able to complete algebraic tasks – as demonstrated by the ANA results – will come from 

studying their algebraic discourse.   

In Ronda’s (2004) work, she showed that many of the learners Grade 8 and some in Grade 9 

were not able to progress beyond Growth Point 1 and 2. This was replicated to some extent 

in my results, but generalisations were not made due to differing sample sizes, and other 

factors. Results of the comparison with Ronda’s study are discussed further and can be 

found in Chapter 4.  

2.9  Framework 

My research report uses two theoretical frameworks, each of which pertains to one of the 

two critical questions I have put forward.   

For my first critical question: “Using Ronda’s Framework of Growth Points, where do South 

African learners fit in, especially in relation to functions in equation form?“ I will be using 

Ronda’s (2004, 2009) framework which identifies and describes learners’ understanding of 

functions in equation form.  

My second critical question: “How do learners’ discourses relate to the growth points they 

have achieved?” will be answered by using Sfard’s communicational framework. This 

framework is further developed by Caspi and Sfard (2012) to include algebraic discourse.  

Both frameworks have been extensively discussed in the literature review. In the following 

chapter, I discuss how the study was done.  
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 Methodology Chapter 3

 

The previous chapters provided an overview of the research, its aims and background, and 

gave a detailed account of the literature which relates to the study. This chapter will give an 

in-depth explanation of the methodology of the research.  

This research report is a study which focuses on describing the learning trajectory of 

learners according to the Framework of Growth points, with a focus on functions in 

equation form. The main objectives of the study were to use the framework developed by 

Ronda, and test this framework in the South African context. The results will then be 

compared to the results of Ronda’s study. The discourse a learner used was also explored 

with the intention to explore if the discourse of learners is in any way related to the growth 

points that they have achieved.  

The study was conducted in two phases, which can loosely be categorised as quantitative 

and qualitative. The first phase of the study was largely quantitative, where a relatively large 

sample of learners completed an assessment. The second stage of the study was more 

qualitative. Interviews, based on the assessment, were held with a small number of selected 

learners. However, these categorisations will take shape in this chapter.    

The study was guided by the following questions: 

1. Using Ronda’s Framework of Growth Points, where do selected South African 

learners fit in, especially in relations to functions in equation form? 

2. How do learners’ discourses relate to the growth points that they have achieved? 

3.1  Limitations and assumptions of the study 

Due to the nature of a master’s research report, this study was small, with a relatively small 

sample. This means that the results cannot be generalised to a large population, but rather 

give insight, and reasonable generalisability into this specific case.  

3.2  Describing the research methodology 

A thought paradigm informs the beliefs we have about the world that we live in. Research is 

situated in these paradigms to align the expectations of the outcomes of the study, and how 
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the study is carried out. I found it difficult to situate this study in one paradigm. However, 

let me explain where I positioned my research.  

The study was done on a continuum of the constructivist-pragmatic-commognitive 

paradigm. The constructivist in me aimed to explore the reality which was presented to me 

in the small case that I researched. However, in order to present the results as more 

generalisable than a case study; I aimed to use both quantitative and qualitative methods as 

a part of the study. This pragmatic approach acknowledged that traditional paradigms are 

restrictive and hence the methods that I used were appropriate for the information that I 

wanted to gather.  

The commognitive paradigm is an additional lens which focusses myself as a researcher 

onto the importance of the analysis of discourse to research on learning in mathematics. 

The unit of analysis for the second phase of the study is discourse, and the data is the 

verbatim discourse of the participant. The study switches from a largely dualist view of 

learning in the first phase, i.e. if an outcome is achieved or not, to a non-dualist view, which 

unifies thinking and behaviour (Sfard, personal communication, 2012). 

3.3  Conduct of the study  

As previously noted, the study was conducted in two phases. This was informed by the two 

research questions, with the first phase of the study pertaining to question 1, and the 

second phase of the study relating to question 2.  
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The diagram below gives an overview of the conduct of the study.  

Phase 1: Assessments  

 

 

Phase 2: Interviews  

 

 

 

Figure 3-1 The research process.  

3.4  Validity and Reliability 

The validity and reliability of a study show the extent to which the results of the study are 

well-founded and correspond to reality, and the extent to which the results are consistent.  

3.4.1  Validity 

Validity ensures that the study measures what it intends to measure, and that the study can 

then produce results which are generalisable to some degree (Bell, in Opie, 2004).  

Content validity, which is the degree to which the instrument fairly covers the topic is 

purports to measure, was ensured by using an instrument which had already been used 

successfully by Ronda (2004). Additionally, the assessment instruments, as well as the 

interviews were piloted and reworked to ensure appropriateness. This process was 

discussed extensively during supervision sessions.  
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3.4.2  Reliability 

Reliability is defined as “the extent to which a test or procedure produces similar results 

under constant conditions on all occasions” (Bell, in Opie, 2004). 

To ensure that my process of analysing the data from phase 1 was reliable, I requested the 

help of an inter-rater. Seeing that E. Ronda is a post-doctoral fellow at the University of 

Witwatersrand, I requested her to be the inter-rater, as she has experience with this type of 

data. She ensured that the coding of the data corresponded to the coding of her original 

data. I ensured that the rating of the data was done strictly according to the categories set 

out in framework. The methodology and procedures I have used are suited to my research 

question, which shows that my findings will be credible (Opie, 2004).  

Additionally, I ensured that all interviews were carried out in a similar manner, under similar 

conditions. I ensured that all learners were treated similarly. Trustworthiness was ensured 

as I have clearly explained my methodology and procedures. All data is accounted for, and is 

presented in a transparent and fair manner (Lincoln and Guba, and Schife, in Opie, 2004).  

3.5  Data collection 

3.5.1  Assessment Task 

The instrument used in phase 1 of the study was a partial adaptation of the instrument used 

in Ronda’s study. I used all the questions which were used to investigate the understanding 

of functions in equation form. Some questions were adapted after the initial pilot study.  

The pilot study was done approximately three months in advance of the main data 

collection.  

Table 3-1 provides a brief explanation of each question which was used in the assessment. 

For a copy of the assessment as it was given to the learners, please see Appendix B. The 

assessment items are also discussed in more detail in Chapter 4 in the discussion as to how 

learners answered each item.  
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Table 3-1 Description of Assessment task 

 Task Description 

1a Evaluating equation This task involves using substitution to find the level of the water 

in the tank.  

1b Rate This task involves interpreting rate from a given piecewise 

function.  

1c Intercepts  This task involves interpreting the intercept from a given piece-

wise function 

2 Rate This task involves determining the equation which gives the 

fastest change in x, when y takes on values from 1 to 10. The 

choices were all linear functions.  

3 Making equations  A table of values and its corresponding linear equation is shown. 

A second table showing the same x-values, but with y-values 

which are three more than the first table. The task requires the 

learner to find the equation which corresponds to the second 

table. 

4 Inverse A table of values and its corresponding linear equation are 

shown. The x and y values were swapped and shown in in the 

second table. The task was to write the equation for the second 

table.  

5 Relating 

equation/composition  

Two linear equations were given. The first relates to s and p, the 

second relates to p and n. The task was to find an equation 

which relates s and n.  

6 Generating values A table of values and its corresponding quadratic equation was 

shown. A second table showing the same x values as the first 

table, but with y-values which are two units more than the y-

values of the first table are also shown. The task was to 

construct the corresponding equation of the second table.  

7 Relating equations This question is similar to Question 5. The difference lies in that 

one of the variables was given a specific value.  
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The assessment questions were all taken from Ronda’s study. I modified some tasks slightly, 

although the essence of all questions remained the same. After piloting the assessment, 

some small changes were made. For example, Question 3 was originally a quadratic function 

in Ronda’s assessment task. I felt that the question could be changed to a linear function 

without compromising what was being tested, but also making it more accessible to Grade 9 

learners who would have the understanding to answer the question but might be 

intimidated by a quadratic function which they had not seen before. Other minor changes 

included slight wording changes to accommodate the South Africa context. For example, the 

word “swapped” was used instead of “interchanged” in Question 4. In the assessment itself, 

there are 8 test items, however only 7 are used in my analysis. I added Question 8 to the 

assessment as a possible question for analysis. It was also taken from the test that Ronda 

used in her study. Upon further reflection, Question 8 did not test understanding of 

functions in equation form, so it was not analysed.  

3.5.2  Interview 

Qualitative data, in the form of interviews, were collected from some selected learners in 

the study. Interviews involve the collection of data from direct spoken contact between the 

researcher and the participants of the study (Cohen and Manion, 1994). When interviews 

are well structured, they are able to provide in-depth data. Interviews also increase the 

chance of gaining valid information from the participants, because they allow both the 

participant and the interviewer to ask for clarification during the interview (Cohen and 

Manion, 1994). This characteristic of interviews may also be a downfall, as the validity relies 

on how the interviewer conducts the interview. In order to overcome this potential 

problem, I piloted the interview and discussed it extensively with my supervisors to find 

ways in which to conduct the interview in the best manner possible.  

The interview aimed to stimulate a conversation with selected learners in order to gather 

data on their discourse about functions. The interview was structured around the 

assessment which took place in phase 1 of the study. The questions in the interview asked 

learners how they completed selected tasks, and probed their thinking as to why they 

answered each question in a particular way. Learners were also encouraged to look at 

questions in a different way, to prompt them to see a different strategy for completing a 

question.  
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The interview did not require the learner to redo the entire assessment. Due to time 

constraints, this would have been rather difficult and also tedious for the learners partaking 

in the interviews. Rather, the interview was structured in a way that the learner was asked 

to start by answering question 3, and then tailored around how that question was 

answered.  

In some cases, where learners answered Question 3 in a procedural way, the interviewer 

asked the interviewee a leading question in order to probe if the learner was capable of a 

more holistic understanding of the task. A similar procedure was repeated with Question 6. 

The interviewer also asked the interviewee some questions on other tasks in the 

assessment, but these were usually in conjunction with the learners’ own completed 

assessment booklets. The learners referred to their assessments as the interviewer asked 

for clarification on how learners answered certain questions. This was done to get an idea of 

the discourse used by learners when they spoke about their answers.  

3.6  Participants of the study 

The study was done with Grade 9, 10 and 11 learners in a school situated in Johannesburg. 

The study took learners from three consecutive school years to see the progression of 

understanding through the years.  

My study was different from Ronda’s study in that I used a sample of Grade 9, 10 and 11 

learners, whereas Ronda’s study used Grade 8, 9 and 10 learners. I considered this 

necessary because I did not feel that Grade 8 learners would know enough about functions 

for their participation to be meaningful to the study. In Ronda’s study, she mentions that 

learners in the Philippines start working on functions in Grade 8, which is why her study 

started with Grade 8 learners.  

In Ronda’s study, participants are assessed twice over a three-month period. I did not have 

the timeframe to allow for a similar assessment strategy, so I assessed each cohort only 

once. I was still, however, able to see the movement of understanding across grade groups. 

I tested my participants towards the end of the school year, so they did have the benefit of 

completing the curriculum for the year before being tested.  
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3.6.1  Participants in the pilot study 

The original assessment book from Ronda’s study was piloted with a group of volunteer 

students who were at a Maths Enrichment Camp in July 2013. This group of students were a 

diverse set of Grade 11 learners. I did not use any data from this set of students in my data 

analysis. Their answers to the assessment however, were used to inform the final structure 

and coding for the main data collection. Their answers also helped revise the assessment so 

that it was better suited to South African learners.  

3.6.2  Participants in main data collection 

Description of the school and learners: 

The research was carried out in a secondary school in Johannesburg. The majority of 

learners come from middle-class backgrounds according to information from the school. 

Learners seem to have had a stable educational history. Permission was granted from the 

headmistress of the school for the research to take place. The research school was chosen 

by means of convenience sampling as the principal of the school in which the research was 

done is known to the researcher.  

Convenience sampling is defined the choice of a participant population due to it being close 

at hand (McMillan and Schumacher, 2010). Random sampling, the most desirable type of 

sampling which produces generalizable results, is not always possible in educational 

settings. Convenience sampling does not claim that the sample is representative of the 

population. While convenience sampling is not always conducive to generalising results, this 

was deemed to be inconsequential to the study, as the aim of the study was not to produce 

widely generalisable results (McMillan and Schumacher, 2010).  Once again, convenience 

sampling was used to choose the participants from the school population. For the sake of 

streamlining the data collection process, I used pre-arranged groups of learners in the form 

of school classes. I chose one class from each grade (9, 10 and 11).  

The participants in the main data collection were learners in Grades 9, 10 and 11.  
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Table 3-2 Number of participants in the study 

Number of respondents 

Grade 9 33 

Grade 10 25 

Grade 11 25 

Total 83 

 

3.6.3  Administration of instrument (Phase 1) 

The administration of the assessment took place in November 2013 at the selected school. 

The assessment was written during an extended break, so that it did not encroach upon 

lesson time. The learners were told that the test should not take longer than 45 minutes, 

and most learners finished within 30 minutes, although were able to carry on if they had not 

finished.  

3.6.4  Administration of interviews (Phase 2) 

After analysing the data from the assessments, I went ahead with the interviews. Learners 

had been categorised into groups according to the results from their assessments and these 

groups showed the highest growth point they has achieved. I purposively selected six 

learners from each of the four groups, and depending on their own availability, interviewed 

three learners per growth point group.  

Purposive sampling was used for the selection of the learners to take part in the interviews. 

“In purposive sampling, researchers handpick the cases to be included in the sample on the 

basis of their judgement of their typicality. In this way, they build up a sample that is 

satisfactory to their specific needs” (Cohen and Manion, 1994, p.89). In this research, the 

sample was chosen according to the answers from learners in their assessment booklet.  

I interviewed 13 learners in total, four from Growth Point 1, and three each from Growth 

Points 2 to 4. The interviews took place in an empty classroom after school hours, so that 

there was no time pressure to finish the interviews. Each interview lasted approximately 10-

15 minutes.  
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In the interview, learners were given a blank assessment book to work with. During some 

points in the interview, their original assessment was brought out for clarification of some 

questions.  

3.7  Data Analysis 

The data gathered from the study was gathered in two phases, as well as analysed in two 

phases. Data from the assessments was analysed according to the criteria set out by Ronda 

(2004). Ronda’s study was done to devise the framework of growth points. The aim of my 

study is to use the already existent framework of growth points, and confirm its value.  

The assessment was piloted to get an idea of the type of responses that would be given by 

learners. The types of responses matched the type of responses which were elicited in 

Ronda’s study. Hence there was no need to change the record sheet which recorded the 

responses and types of strategies used by each learner.  

Data from the interviews was analysed according to Sfard’s Communicational Framework, 

with additional input from Caspi and Sfard’s (2012) work on algebraic discourses. This part 

of the study is more exploratory as I have described and explained selected learners’ 

strategies and actions found in their discourse.   

3.7.1  Phase 1: Coding written responses for assessment tasks 

The questions in the assessment were devised in a way such that there may be a number of 

different strategies to get to the correct answer to a question. Different questions were 

used to ascertain different growth points that learners were able to achieve. Students’ 

answers were marked and their answers for each question were recorded on a spreadsheet.  

For the answer to be considered correct, the learners had to provide an explanation. 

However, there were very few learners who did not provide an explanation of their 

answers. If learners provided more than one explanation, they were coded at the higher 

level of the explanation. The answers were coded according to correctness, as well as which 

strategy was used to answer each question. More explanation on the strategies used, as 

well as the specific criteria for the achievement of different growth points is shown in 

Chapter 4.   
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Figure 3-2 is an example of a record sheet which shows how learners were coded and how 

the data were then recorded.  

 

Figure 3-2 Table showing how learners’ results were coded and recorded 

To ensure that the coding of the data were reliable, I gave a sample of the coded 

assessment scripts to Erlina Ronda, who confirmed that the data had been coded correctly. 

The rating of the data was done strictly according to the categories set out in framework. 

The methodology and procedures are suited to my research question, which shows that my 

findings will be credible (Opie, 2004).  

3.7.2  Phase 2: Coding spoken responses from interviews  

In Phase 2 of the study, interviews with 13 learners were conducted. All interviews were 

transcribed verbatim, and their written work, which was done during the interviews, was 

kept as a reference. The interview was piloted with one learner in Growth Point 3. Based on 

this interview, the interview structure was revised. Please see Appendix B for a basic 

overview of the interview.  

The interviews were analysed according to Sfard’s Communicational Framework which looks 

at discourse on four planes; Word use, Visual mediators, Routines, and Endorsed Narratives. 

A deeper explanation of these four characteristics can be found in the previous chapter. 

Additional ideas on the data analysis of the interviews came from Ben-Yehuda et al (2005) 
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and Nachlieli & Tabach (2012) which is also explained in Chapter 3. The analysis of the 

interviews is discussed in Chapter 5. 

3.8  Ethical Considerations 

“Ethics has to do with the application of moral principles to prevent harming or wronging 

others, to promote the good, to be respectful and to be fair.” (Siever, 1993, p. 14; in Opie, 

2004). Ethics is important in education, as the researcher is dealing with minors. The 

researcher has to ensure that the research is carried out ethically, and the resulting data is 

properly handled and processed. This means that the research has to be carried out while 

respecting the rights of all parties involved in the study.  

As a researcher, it was my responsibility to ensure that all parties involved in my research 

were protected, and that any potentially harmful situations are avoided. Opie (2004) urges 

researchers to consider all possible ethical issues that may arise from research before the 

research process has started, which I feel that I did adequately.  

In this study, ethical clearance was sought from the University of the Witwatersrand human 

research ethics committee (non-medical), which deals with approving research that involves 

human subjects. My ethical clearance was approved, and the protocol number is 

203ECE114M. The ethical approval from the University of the Witwatersrand human 

research ethics committee (non-medical) can be found at Appendix D.  

Since it is imperative for ethical conventions to be adhered to, I ensured that permission 

was sought from the school and the Department of Education. The school principal, 

teachers and all learners were all assured that all information gathered would remain 

confidential throughout the study. All learners have been referred to by pseudonyms in the 

research report to maintain their anonymity. The learners were informed of their choice to 

pull out of the study at any time if they felt uncomfortable, without any consequence. These 

conditions were clearly stated in the informed consent form. The learners taking part in the 

interviews were informed again at the beginning of the interview of this condition.  

Parents (or guardians) of participating learners were given an information sheet which 

explained exactly what would happen in the study; and their permission was requested in 

the form of a reply letter. They were required to give permission for their children to take 
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part in the research study, as all learners in the study were minors. These consent forms 

were to be signed by the learners’ parents or guardians, as a measure of prevention against 

psychological stress and emotional injury (Frankfort-Nichmias & Nichmias cited in Cohen & 

Manion, 1994). Parental and learner information sheets, as well as reply letters can be 

found in Appendix E and F and G respectively. Permission from the school can be seen at 

Appendix H. Permission given from the GDE can be seen at Appendix I.  

Raw data in the form of video recordings have been stored on a password-protected hard 

drive and will be destroyed three to five years after the study has finished. Transcriptions of 

the video recordings will be treated in a similar manner.  

This chapter has detailed how the data was collected and analysed. The next chapters give 

an analysis of the data and explore findings.  
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  Results Phase 1 Chapter 4

 

Phase 1 of the study was done in order to answer the question “Using Ronda’s Framework 

of Growth points, where do selected South African learners fit it, especially in relation to 

functions in equation form?” 

My focus on functions in equation form was decided because this is the way in which many 

learners in South Africa first encounter functions. In my experience as a teacher, and in 

looking at many textbooks at Grade 8 and 9 level, I have found that the most common way 

of introducing functions is the introduction of a string of single values, which lead to the 

recognition of patterns and the formulation of rules (generally being in equation form first). 

In general, equations are a very common, and arguably the most common representation of 

a function. Equations can be seen as both a process – a means for generating values – as 

well as an object: something which can be manipulated or transformed. The understanding 

of functions in equation form is therefore an important part of the overall understanding of 

functions.  

This chapter discusses the growth points in equations, and where selected South African 

learners fall into the framework which was set up by Ronda in her study (2004). 

 The first section of this chapter shows all the tasks in the assessment, discusses these tasks, 

and then discusses the different strategies which were used by learners to answer the tasks. 

This section also shows the success rate for selected questions, and also quantifies the 

number of learners using different strategies used in answering these selected questions.  

The second part of the chapter gives the criteria of how learners were coded at each growth 

point, which was done according to similar criteria in Ronda’s study.   

The last part of the chapter shows the overall results of where selected South African 

learners fall within the spectrum of growth points, and also compared this to the results of 

Ronda’s study which was done with Grade 8, 9 and 10 learners in Australia and the 

Philippines. 
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4.1  The questions in the assessment: strategies and analysis 

Seven tasks were used to assess learners to categorise them according to which growth 

points they were able to achieve. The tasks were designed to test learners’ understanding of 

functions in equation form.  

Each task is shown along with an explanation of the task. For a full copy of the assessment 

booklet; please see Appendix B. This section also shows how each question was answered 

typically, as some questions were answerable in more than one way. Some strategies 

showed a higher level of thinking in that the strategies were more holistic. For some 

questions, there is an analysis of the different strategies that are used by the learners to 

answer the question.  

4.1.1  Question 1 

Question 1 consisted of three parts, and was based on a real life situation of a container 

being filled with water. This task was used to assess Growth Point 3, as it tested learners on 

whether they were able to interpret properties of a function such as rate (Question 1b) and 

intercept (Question 1c). Question 1a didn’t have an explicit purpose in ascertaining the 

Growth Point of a learner, but was included in order to scaffold the learners understanding 

for Questions 1b and 1c.  
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Figure 4-1 Task 1a, 1b and 1c 

Although there was some variation in the strategies used to answer question 1b and 1c, the 

following analysis shows the most typical correct answers. In the responses of the learners 

in my study, I found there to be no distinct categories of answers for this question, although 

in Ronda’s study, there were learners who used point-by-point reasoning in their answers. 

In my study, there were a small number learners who attempted to use point-by-point 

reasoning for their answers, but none of these resulted in correct answers, and hence were 

not counted.  There were also some common misconceptions in some Grade 9s’ answers, 

which will be discussed later in the chapter.  

A typical solution to Question 1b is shown in the figure below.  

 

Figure 4-2 Typical Solution to Task 1b  

Question 1b was difficult because it entailed answering a question about gradient involving 

a piece-wise function. There was another question later on in the assessment (Task 2) which 
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provided a more straight-forward question involving gradient where the learner could 

demonstrate their knowledge about the gradient property of equations.  

A small number of learners, when answering Task 1b gave the correct answer, but 

incorrectly reasoned that the rates would be different because the equations were 

different. While this is partially correct, it was not accepted as a correct answer because the 

learners were expected to show their understanding of the gradient property of a function, 

which entailed reasoning that the co-efficients of x were different.  

Question 1c 

 

Figure 4-3 Typical Solution to Task 1c  

There were two correct methods for answering Task 1c. Evaluating the equation for t=0 

gave an answer of 8, or identifying the meaning of a constant in the equation. Both were 

correct.  

The table (Table 4.1) shows the number and percentages of learners who got Task 1a, 1b 

and 1c correct, as well as the number and percentages that got the all three questions in the 

task correct.  

There were very few Grade 9 learners who were able to answer Task 1 correctly in its 

entirety. In fact, only one learner from the Grade 9 cohort of participants was able to 

correctly answer all three sub-questions in this task. In Grade 11, 53% of learners answered 

this question correct in its entirety, and only two learners (8%) were not able to answer the 

question at all, meaning that most learners, if they weren’t able to answer all sub-questions 

correctly, they were at least able to answer some correctly. The movement between growth 

points over grade levels is discussed further later in the chapter.  
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Table 4-1 Numbers and percentages of learners getting Question 1 correct 

 Grade 9 Grade 10 Grade 11 

 n=33 % n=25 % n=25 % 

Task 1a 4 12 13 52 16 64 

Task 1b 12 36 13 52 20 80 

Task 1c 3 9 11 44 18 72 

       

Entire task correct  1 3 8 32 13 53 

 

Some very interesting misconceptions arose from Task 1. These are discussed later on in the 

chapter under the heading “Other Discussion”.  

4.1.2  Question 2 

Question 2 involves the interpretation of a set of linear equations. The learner is required to 

identify the equation which shows the fastest change in y. The question was seemingly 

straightforward and did not involve a context or piecewise functions like Question 1.  

 

Figure 4-4 Question 2 

Many learners struggled with the question. In Ronda’s study, she identified two strategies 

which were used in learners’ solutions. These two strategies were reflected in my study too. 

The first strategy was a point-by-point interpretation of the question (Strategy 1), and the 

second was a holistic solution where the learner identified the equation with the largest 

coefficient of x (Strategy 2). I identified a third category which I called Strategy 1.5. This 

category was where learners approached the question at first in a point-wise manner, and 

then saw that there was a constant difference in the change of each value of x, which then 

pointed them to working in a somewhat holistic manner.  
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Figure 4-5 Solution to task 2 – Strategy 1 (point wise analysis) 
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Figure 4-6 Solution to task 2 – Strategy 1.5 (Point Wise moving to holistic) 
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Figure 4-7 Solution to task 2 – Strategy 2 (Holistic Analysis) 

Question 2, along with Question 1b, was the question that tested for the achievement of 

Growth Point 3. This question required learners to use the property of rate to interpret 

which equation would show the fastest change over a set of y-values. Strategy 2 was the 

preferred strategy for this question, as it showed understanding of the gradient and its use.  

Despite thinking that this question would yield better results than Question 1b, this was not 

the case. This shows that learners still struggle with the concept of gradient, and how it 

relates to questions of this nature. 

Table 4-2 below shows a comparison of the different strategies used by learners in Question 

2. The table is organised according to grade groups.  

Table 4-2 Learners using different strategies for Question 2 

 Grade 9 (n=33) Grade 10 (n=25) Grade 11 (n=25) 

Achieved GP 3 2 6 19 

    

None 31 19 6 

Strategy 1 2 3 10 

Strategy 1.5 0 2 5 

Strategy 2 0 1 4 
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The table shows that Grade 9 learners had difficulty completing this task successfully.  Even 

though two learners were able to complete the task, they still used a piece-wise method, 

which shows a more procedural way of mathematical thinking. The number of learners who 

were able to complete the task successfully increased through the grade cohorts.  

Even though not all the Grade 11 learners achieved Growth Point 3, they still made a good 

effort at the question. Most were able to get it right using one strategy or another, but the 

results still show the preference for point-wise analyses (Strategy 1).  

 

4.1.3  Question 3 

Question 3 required learners to find the equation of a linear function, given a table of x and 

y values. This question from Ronda’s assessment was originally adapted from Moschkovich, 

Schoenfeld and Arcavi’s study (1993). The question was originally posed using a quadratic 

function, but was changed to a linear function to make it more accessible to Grade 9 

learners.  

Because Question 3 it could be answered by way of more than one strategy5, I found it to 

point to the attainment of different Growth Points.   

 

Figure 4-8 Question 3 

                                                           
5
 Many questions could be answered with more than one strategy, however Question 3 and later Question 6 

were particularly telling questions in terms of the differentiation between procedural vs objectified thinking. 
This is also discussed in Chapter 5.  
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Strategy 1 shows a “guess and check” method where the learner, by trial and error, finds the 

correct intercept and coefficient for x to satisfy the output values of y.  

 

Figure 4-9 Solution to Question 3 - Strategy 1 

Strategy 1.5 shows a little more understanding on the part of the learners. They are able to 

use some properties such as the definition of the intercept, and the formula to find gradient 

to get their answer. A typical answer for a learner coded at strategy 1.5 is shown in Figure 4-

10.  

 

Figure 4-10 Solution to Question 3 - Strategy 1.5 
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Learners who were coded at Growth Point 2 showed a holistic understanding of equations, 

as they were able to perform an operation on the equation. The explanation in Figure 4-11 

shows the answer which was typical of a learner coded at Strategy 2 for Question 3.  

 

Figure 4-11 Solution to Question 3 - Strategy 2 

Question 3 required learners to find an equation which represented a table of values. There 

was more than one way of finding this answer. The three distinct strategies identified in 

Ronda’s study, were discussed above, and were also found in the answers of the 

participants of my study. Shown in the table below are the numbers of learners using each 

strategy in their answers.  

Table 4-3 Learners using different strategies for Question 3 

 Grade 9 (n=33) Grade 10 (n=25) Grade 11 (n=25) 

None/Incorrect 16 1 1 

Strategy 1 9 9 2 

Strategy 1.5 5 13 17 

Strategy 2 3 2 5 

 

The table shows that the learners’ advancement through grades is related to their ability to 

use a higher strategy. There are still some learners at a Grade 11 level who are most 

comfortable thinking in a procedural manner about functions in equation form.  

 

4.1.4  Question 4 

This task required learners to find the inverse of a function. This question was included as it 

tested for the achievement of Growth Point 4.  
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Figure 4-12 Question 4 

Question 4 could be answered in a similar fashion to strategy 1 or 1.5 in Question 3, which 

involves finding the gradient and intercept of the equation in a procedural manner, and 

then equating it. Hence I have included only a typical response of a learner who has been 

coded at Strategy 2 for Question 4. This shows that the learner is able to conceive of the 

function as an object which can be manipulated.  

 

Figure 4-13 Solution to Question 4 - Strategy 2 
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Many learners found it very difficult to complete this question, as it required learners to 

have an understanding of functions as an object that can be manipulated or transformed.  

Many learners ignored the Table 1, and used strategy 1 or 1.5 to find the equation that 

would represent the values in the table. Very few learners were able to identify the object 

as an object and hence use Strategy 2 to complete the task. This is demonstrated by the 

small number of learners who were coded at Growth Point 4. The requirements for each 

growth point and the numbers of learners who achieved each growth point are discussed 

later in the chapter.  

4.1.5  Question 5 

This task was designed to assist testing Growth Point 2. It involved the analysis of the 

relationship between two equations, which did not have the same variables respectively.  

 

Figure 4-14 Question 5 

Learners typically answered this question in two ways. The first strategy involved 

partitioning; however, this strategy was not common. The second strategy used by learners 

was composition, which was the preferred strategy.  

 

Figure 4-15 Solution to Question 5 - Strategy 1 (Partitioning) 
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Figure 4-16 Solution to Question 5 - Strategy 2 (Composition) 

 

4.1.6  Question 6 

Question 6 required the generation of y-values for a given equation. This question was also 

originally adapted from Moschkovich, Schoenfeld and Arcavi’s study (1993). Two strategies 

were identified in the answer booklets of learners.  

The first strategy, shown in Figure 4-18, involved the substitution of x values into the 

equation to generate y values. This shows a point-wise interpretation of the equation.  

Strategy 2, shown in Figure 4-19, showed a more holistic interpretation of the equation, 

where the learner was able to show the relationship between the two equations, and then 

relate this to the values shown in the table.  
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Figure 4-17 Question 6 

 

Figure 4-18 Solution to Question 6: Strategy 1 (Point wise analysis) 
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Figure 4-19 Solution to Question 6: Strategy 2 (Holistic interpretation) 

Question 6 was similar to Question 3, but was slightly simpler, as it required the learner to 

generate a set of values instead of finding the equation which represented a set of values. 

There were two possible ways in which to answer this question, as explained previously.  

Table 4-4 Learners using different strategies for Question 6 

 Grade 9 (n=33) Grade 10 (n=25) Grade 11 (n=25) 

None 8 1 2 

Strategy 1 24 23 15 

Strategy 2 1 1 8 

 

As seen on the table, this was generally a rather well-answered task. Despite not being 

formally taught quadratic equations, there were many Grade 9 learners who were able to 

complete the task successfully. This reveals that value generation, when given an equation, 

is an easy skill to acquire. This table also shows that there are some Grade 9 learners who 

still struggle with this very basic task, which – according to CAPS – should be an acquired 

skill by the end of Grade 9 (earlier even, with linear equations).  

Grade 10 and 11 learners are able to generate values, but there are still very few who are 

able to do so using Strategy 2. A discussion about the preference for procedural working 

came up with one learner in her interview, and this will be discussed further in Chapter 5 

(See interview with learner 4.11.15 in Chapter 5).  
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Question 3 and 6 provided the basis of my interviews, as these two questions were able to 

demonstrate the movement between procedural and objective understanding of functions. 

This will also be discussed further in Chapter 5.  

 

4.1.7  Question 7 

Question 7 was very similar to Question 5, and the strategies present in answering Question 

5 were consistent with the strategies found in answering Question 7. Answers to Question 7 

were coded in the same way as Question 5. Question 7 was seen as easier than Question 5 

as there was an actual value assigned to t.  

 

Figure 4-20 Question 7  

After marking each task in the assessment, I went on to code each learner in term of which 

Growth Points they had reached. The coding of learners is discussed further. It was not 

necessary for a learner to be coded at a lower growth point in order to achieve a higher one. 

This is discussed further later in the chapter.  

 

4.2  Coding learners at different growth points 

In Phase 1 of the study, the questions in the assessments were coded according to the 

criteria shown above. All the questions in the assessment were marked and coded according 

to which strategies were used. Each Growth Point was derived according to the criteria set 

out in Ronda’s study, but I made some slight modifications in the criteria in some Growth 

Points. This will be explained in each growth point. Learners who did not meet the criteria of 

any growth points were coded as Growth Point 0.  

Growth Point 1: Equations as procedures for generating values.  

To be coded at Growth Point 1, learners needed to show that they were able to see an 

equation as a means to generate values. In the assessment, Questions 3 and 6 were used to 
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test this growth point, as well as other growth points. These questions asked for the 

equation, given a set of values (Question 3), or asked learners to generate a set of values, 

given an equation (Question 6). Learners had to answer either Question 3 or 6 correctly to 

be coded at Growth Point 1. However, Question 3 and 6 could have been answered using 

different strategies, which would indicate different growth points. If learners used ‘higher’ 

strategies in Questions 3 and 6, I made the assumption that they were also capable of using 

‘lower’ strategies and were therefore coded at Growth Point 1 (with the probability of being 

coded at a higher growth point too). 

 Growth Point 2: Equations are representations of relationships 

Growth Point 2 is reached when a learner is able to see that equations are not only a means 

for generating values, but also show a connection between two variables. Learners may 

start to see the equation holistically, but are not yet at the level of seeing an equation as an 

object.   

To be coded at Growth Point 2, learners had to have at least one of the following 

combinations of questions correct.  

 Question 5 and 7 correct 

 Question 5 correct and Question 3 or 6 correct.  

 Question 7 correct and Question 3 or 6 correct using strategy 1, 5 or 2 

Growth Point 3: Equations describe properties of relationships 

Growth Point 3 is the point at which learners are able to start seeing that functions in 

equation form have distinct properties (such as gradient and intercepts) and use these 

properties in interpreting the given task.  

To be coded at Growth Point 3, learners had to answer Question 1c correctly, as well as 

either question 1b, or 2. Alternately if learners answered Question 2 using Strategy 2, they 

were coded at growth point 3. This is a slight change from Rhonda’s criteria, which required 

that learners answer Question 1c correctly. When marking the assessments, I found that 

many learners had difficulty in answering all of Question 1 correctly. This may be due to the 

nature of the question, which is unusual in the South African context. Some learners even 
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commented that they expected this question to be from a science paper, rather than a 

mathematics paper.  

I decided that if learners answered Question 2 with Strategy 2, this showed adequately that 

they were able to interpret the equation based on the property of gradient.  

The presence of Growth Points 2 and 3 show that learners do not immediately move from 

an introduction of functions (or procedural conception of functions), to immediately 

understanding functions as an object. There is a course of learning which takes time.  

Growth Point 4: Equations are objects that can be manipulated and transformed.  

Growth Point 4 shows the highest level of understanding a function. To be coded at Growth 

Point 4 learners had to show an objective understanding of functions in equation form. An 

objective understanding of functions was characterised by: being able to perform an 

operation on an equation (Strategy 2 in Tasks 3 and 6), working with the composition of 

equations (Strategy 2 in Task 5), and finding the inverse of a function (Strategy 3 in Task 4).  

To be coded at Growth Point 4, learners had to meet at least three of the following four 

criteria in the assessment.  

 Question 3: Strategy 2 

 Question 4: Strategy 3 

 Question 5: Strategy 2 

 Question 6: Strategy 2 

The data from the assessments was recorded on a spreadsheet (as shown in Figure 3-2 in 

Chapter 3) and the results were used to code learners at different growth points according 

to the criteria set out.  

4.3  Learning trajectories  

To get an idea of how learners progressed year on year, a table was created with the results 

of the study (See Table 4-5 below). Looking at these data, it is clear that learners progress 

through the big ideas in a manner which is typical of learning about functions in equations 

form.  
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Learners coded at Growth Point 0 were not coded at any other growth point, whereas 

learners coded at Growth Points 1 to 4 could be coded at more than one growth point. 

Growth points are not mutually exclusive, hence the cumulative totals do not necessarily 

sum to 100%. While I observed that learners do progress through a typical trajectory of 

learning, it does not necessarily follow that learners always progress through the growth 

points in a set order. This is discussed later in the chapter under the heading “Overall 

achievement of growth points”. 

Table 4-5 Number (and percentages) of Learners coded at Growth Points for equations 

Growth 

Points 

Grade 9 

(n=33) 
%  

Grade 10 

(n=25) 
%  

Grade 11 

(n=25) 
% 

GP 0 6 18  0 0  0 0 

GP 1 27 82  25 100  25 100 

GP 2 8 24  18 72  22 88 

GP 3 1 3  8 32  21 84 

GP 4 0 0  1 4  7 28 

 

The data show that at a Grade 9 level, many learners have a basic understanding of 

functions. However there are some learners who have not even been able to grasp the most 

basic understanding of functions. This is shown by 18% of learners at Growth Point 0. Eighty-

two percent of Grade 9 learners achieved Growth Point 1, hence they had a basic 

understanding of functions in equation form.  

 In both Grade 10 and 11, all learners have managed to reach Growth Point 1; hence all had 

a basic procedural understanding of functions in equation form. The achievement of Growth 

Point 2 was also very high in Grade 10 and 11 with 72% and 88% of learners reaching it 

respectively.  

The difference between Grade 10 and 11 learners came in at the achievement levels of 

Growth Points 3 and 4. While the majority of Grade 10 learners were able to reach Growth 

Point 2 (72%), there were fewer that reached Growth Point 3 (32%) and very few that 

reached Growth Point 4 (4%). Grade 11s achieved well in Growth Point 3, with 84% of 

learners reaching this level.  
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This table shows that many learners, even at Grade 11 level, are still not able to see an 

equation of a function as a holistic concept. Only seven learners (28%) in Grade 11 reached 

Growth Point 4.  

Below, the data is shown in visual form as a graph (Figure 4-21) comparing the achievement 

of growth points over the cohorts of learners. Growth Point 0 was not included in this graph.  

 

Figure 4-21 Percentages of learners coded at Growth Points 

The following Table (Table 4-6) shows the results of Ronda’s study. It is important to note 

that the participants in Ronda’s study underwent two tests, approximately 5 months apart. 

The two tests happened during the first half of the school year in the Philippines. In all 

comparisons of my data to Ronda’s data, I have used the results from her second data 

collection (D2) as I thought it would be more comparable to the data collected in my 

collection.  
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Table 4-6 Results of Ronda’s study 

 

Comparing the results of my study with the results in Ronda’s study showed some 

interesting findings. Overall, the trend of growth is similar, with learners moving from 

growth point to growth point in an ordered manner, building on previous growth points. 

Each year there is a larger proportion of learners who are able to achieve successive growth 

points. However, there is a difference with the rate of development in the growth points in 

the two studies.   

Rendering the data from my and Ronda’s study into a graph (see Figure 4-22), the following 

shows a comparison of results between the two studies. I have taken data from the second 

data collection in Ronda’s study, as indicated by D2 in Table 4-6 above.  

In this following graph, I compare my Grade 9 group with Ronda’s Grade 8 group, and so on. 

This was done because the South African Grade 9 curriculum was seen to be somewhat 

comparable with the outcomes that Grade 8 learners in Ronda’s study had achieved (at least 

according to the curriculums on functions).  

In Ronda’s study, she mentions that Grade 8 learners in Science secondary schools are 

introduced to functions and learn about linear functions in Grade 8. In Grade 9, they further 

their study of functions with the introduction of quadratic functions. In Grade 10, 

exponential, polynomial and circle functions are taught (Ronda, 2004).  

In South Africa, a basic notion of function is introduced in Grade 8. This is a very informal 

introduction where learners are required to find an algebraic expression which can explain a 

number pattern (usually linear). In Grade 9, learners are introduced to linear functions and 

their different representations. In Grade 10, quadratic functions are introduced, along with 
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basic instruction on exponential and hyperbolic functions. In Grade 11, the instruction on 

linear, quadratic, exponential and hyperbolic functions is continued (DOE, 2003). 

Without going into an in-depth analysis and comparison of the curriculums in South Africa 

and the Philippines, the above shows that there can be a rough mapping between Grade 9 

in South Africa with Grade 8 in the Philippines, and so forth. This, however, is by no means 

exhaustive, hence the comparison is tentative.  

It should also be stated that the scale of the two studies was very different. Ronda’s study 

was a large scale study over many aspects of functions (as pointed out in Chapter 3) with a 

large number of participants (444 learners in total). My study was narrower in that it only 

focussed on functions in equation form, and had a smaller number of participants (83 in 

total).   

Figure 4-22 below shows a visual comparison of the two sets of data.  

 

 

 

Figure 4-22 Comparison between Ronda and Clark 
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This table shows the relationship among the Growth Points from the data from my study 

and Ronda’s study. Visually this shows the same basic trend – learners follow a trajectory of 

learning.  

4.4  Comparison of growth of learners 

Ronda started her study with Grade 8 learners, who at the end of the year (D2) fared better 

than the Grade 9 learners in my study. There is a larger proportion of Grade 8 learners (in 

Ronda’s study) in each growth point, than the Grade 9 learners in my study. This changes 

when comparing my Grade 11 learners with Ronda’s Grade 10 learners. In each growth 

point a larger proportion of my learners are achieving the respective growth points than the 

Grade 10 learners in Ronda’s study.  

The following series of graphs show the increase in the numbers of learners achieving each 

growth point over the Grades, and illustrates the point above.  

 

 

 

 

 

Figure 4-23 Comparison of movement through Growth Point 2 
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Figure 4-24 Comparison of movement through Growth Point 3 

 

 

 

Figure 4-25 Comparison of movement through Growth Point 4 
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In each of these three cases, the progression of learners through the growth points happens 

at a faster rate in my study than in Ronda’s study. A reason for this difference in rate of 

growth was not an aim for this study.  In both cases, the study was done comparing learners 

in three consecutive year-cohorts. The oldest cohort in Ronda’s study was Grade 10, 

whereas in mine, it was Grade 11.  

These results seem to indicate that the rate at which learners in my study gain an 

understanding about functions is faster than the learners in Ronda’s study. A reason for this 

was not speculated as this was not in the scope of my study. This may be a topic for further 

investigation.  

4.5  Overall achievement of growth points  

In the previous section of results, achievement of individual growth points was shown. The 

following table was included to show the trend of the order in which growth points are 

achieved.  

Table 4-7 Frequencies of Learners at the Growth Points under equations 

 Grade 9 (n=33) Grade 10 (n=25) Grade 11 (n=25) 

GP 0 6 0 0 

GP 1 19 5 1 

GP 1,2 7 12 3 

GP 1,2,3 1 6 12 

GP 1,2,3,4 0 1 7 

GP 1,3 0 1 2 

 

This table shows that learners do typically follow a learning trajectory, where growth points 

are reached in consecutive order. This table served to answer whether or not it was 

assumed that the achievement of a higher growth point implied the achievement of a lower 

one.   

There were some cases where learners did not seem to follow the typical path of learning as 

they were coded at Growth Points 1 and 3, but did not reach Growth Point 2. Upon further 
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investigation into these three learners it emerged that they showed some signs of reaching 

Growth Point 2, but did not completely satisfy the conditions set out for achieving Growth 

Point 2.  

Although most learners follow the typical path of progression through the growth points in a 

consecutive manner, this is not always the case as a learner may reach a higher growth 

point before having full understanding of a lower growth point. Interestingly, there were no 

instances where a learner had reached a growth point higher than GP 1, without first 

reaching Growth Point 1 itself. In all instances, learners who reached Growth Point 4 also 

reached Growth Points 1, 2 and 3. 

My data shows that learners progress through the four growth points in a manner where 

growth points are achieved progressively. The results of my study mirror the results of 

Ronda’s study. 

 

4.6  Other discussion 

There were some interesting misconceptions which came to light in the answers of the 

learners in the assessment. The most noteworthy was a misconception which was found in 

question 1b (See figure 4-26). Learners were asked to calculate the height of water in a tank 

three minutes after a pipe was opened. Although this task was included in the assessment 

to familiarise the learners with the context, it was still a task which proved to be 

problematic for some of them.  

 

Figure 4-26  Question 1a 

A table showing the number and percentages of learners who got this question right was 

provided in the analysis for Question 1 earlier in the chapter (See Table 4-1).  
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A common mistake in the question was learners not knowing which equation to use, as this 

was a piece-wise equation. The correct equation would be the first equation as it shows the 

level of the water within the first three minutes. Some learners combined both equations to 

get their answers, as they were unsure of which equation to use (See Figure 4-28).  

A more interesting misconception was the misinterpretation of the first equation in 

Question 1. Many learners seemed to “divide” the equation       by 4 (owing to the 

instruction “for the first four minutes”). They then assumed the equation to be       

for each minute, and multiplied that by 3, to get an equation of        because the 

question asked what the height of the water was after three minutes (See Figure 4-27 and 4-

29). This misconception shows that these learners do not fully understand the meaning of a 

constant in a linear equation.  

The figures below show three examples of learners work where answers which were 

incorrect. These examples further highlight that learners struggled with this task which 

tested the basic understanding of a linear function.  

 

Figure 4-27 Equation which has been ‘divided’ 

 

Figure 4-28 Combination of equations to find answer 
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Figure 4-29 ‘Division’ of equation and incorrect substitution 

During Phase 2 of the study (in the interviews), some learners also mentioned that the 

context in this question confused them.  

4.7  Conclusion 

This phase of the study aimed to replicate and confirm a part of Ronda’s study. The domain 

“Functions in Equation form” was chosen and researched. The results from my study 

showed an overall similarity to the results in Ronda’s study, in that the learners moved from 

growth point to growth point in a similar fashion.   

In Ronda’s study, the order of the growth points was established empirically by the 

frequency of learners who achieved growth points. This was mirrored in my study, as the 

frequency of learners who achieved growth points decreased from Growth Points 1 to 4. 

Both studies showed that learners who achieved higher growth points also achieved the 

lower growth points (with very few exceptions). The pattern was true to all grades in my 

study.  

The similarities between the two studies were in the way that learners progressed through 

the growth points. Ronda found that learners follow a typical learning trajectory when 

proceeding from Growth Point 1 to Growth Point 4. My findings were consistent with 

Ronda’s in that the participants in my study also progressed in the same typical learning 

trajectory from Growth Points 1 to 4.  

The differences became apparent in the rate at which learners progressed through growth 

points over the years. The learners in my study seemed to progress from Growth Points 1 to 

4 in a quicker manner than the learners in Ronda’s study. While there is no conclusive 

evidence to suggest a reason for this finding, it may perhaps be that the learners in the 

oldest cohort in my study were older than the oldest cohort in Ronda’s study. That the 
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learners in my study progressed faster may be a function of their age; however this is a topic 

for further study.  

The next chapter presents the findings of Phase 2 of the study.   
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 Results Phase 2 Chapter 5

 

The second phase of the study aimed to answer my second research question: “How do 

learners’ discourses relate to the growth points they have achieved?” In this chapter, I will 

be discussing the data which was collected in the second phase of the study. 

The aim of the interviews was to explore the discourse used by learners about functions in 

equation form. The interviews were based on the assessments which were given to all the 

learners, although interviews were conducted with selected learners. The interviews were 

conducted in such a way that learners were able to speak freely about the tasks that were in 

the assessment.  

My focus on discourse is important for several reasons. Discourse is the first way in which a 

teacher or teaching assistant can identify if a learner is not learning what they should at a 

certain level (or in the case of this study, where a learner is not achieving growth points 

appropriate to their school level). In my own experience as a teacher, I have realised that 

the way in which a learner speaks to a teacher or fellow classmate is one of the earliest 

ways in establishing if a learner has understood a concept or not.  

The first section of the chapter describes the interview process and how the interviews were 

analysed. The second section gives an in-depth analysis of the interviews that pertained to 

Questions 3 and 6 in the assessment. This section especially focusses on the routines that 

learners used in their discourses. I then discuss the extent to which the learners’ discourses 

were objectified or not. The last part of the chapter provided insight into some other 

interesting observations which were gleaned from other questions in the interviews.  

5.1  Summary of interviews 

The interviews were held two to three weeks after the assessments were done. Thirteen 

learners were interviewed in total; however one of these learners was interviewed first to 

pilot the process. Subsequently 12 learners were interviewed for the main data collection. 

However, I still used the data from the learner who took part in the pilot study, as the pilot 

study resulted in only minor revisions to the final interview structure.  
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Table 5-1 Table showing participants of the interviews 

Growth Point 1 Growth Point 2 Growth Point 3 Growth point 4 

Learner 9.3 Learner 10.5 Learner 10.7 Learner 11.15 

Learner 9.8 Learner 10.14 Learner 10.12 (Pilot) Learner 11.20 

Learner 9.22 Learner 10.23 Learner 11.9 Learner 11.25 

Learner 9.33    

 

The interviews took place with the researcher in a one-on-one situation. The interviews 

were audio recorded as well as videotaped in order to see the nuances of the learners 

beyond just their spoken words. The video also ensured that I was able to track the order of 

their written work, as well as references made to the written work by pointing and 

gesturing. The filming of the learners proved to be a good decision in this regard.  Ethical 

clearance was given for the filming of learners. This is discussed in Chapter 3.  

The interviews were created to elicit discourse by the learners about selected questions in 

the assessment. The interviews also made provision for the interviewer to examine and 

explore the learners thinking, and even scaffold the learners’ thinking by asking leading 

questions. This was done to see if a learner was able to move to a different growth point 

with the help of a more experienced interlocutor. An outline of the structure of the 

interview can be found in Appendix C. 

In the transcripts, learners are referred to by a coding number which I used to preserve 

anonymity. The coding number begins with their growth point, their Grade level, and an 

identifying number.  

5.2 Analysis of Questions 3 and 6 

After listening to and transcribing the interviews, I decided to focus my analysis on the 

learners’ explanations of Question 3 and 6. The interviews with the learners, in all cases, 

began by asking learners’ for their reasoning on Questions 3 and 6. This regularity provided 

a good starting point to the analysis, as all learners were asked the same questions at the 

beginning of the interview. In some cases towards the end of the interviews, the interview 

took a slightly different path. However, the consistency in questioning provided a good basis 
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for the analysis of Questions 3 and 6. An overall analysis of the discourse used by each 

learner in Questions 3 and 6 can be seen in Table 5-1. 

5.2.1  The task 

I first asked learners to complete Question 3 in a blank assessment booklet. Many of the 

learners in the interviews were able to do this easily. Learners had different reactions when 

asked to do Question 3 in the interview, as this is the question that I started each interview 

with. Most learners were confident with this task, except for the learners who achieved only 

Growth Point 1. Most learners in Growth Point 1 were unsure or tentative in their 

explanations.  

Question 3 requires a learner to find the equation given a table of values. Question 3 can be 

seen at Figure 4-8 in Chapter 4.  Figures 4-9, 4-10 and 4-11 show the strategies used to 

answer Question 3.  

Question 6 requires learners to find the y-values in a table of values given an equation. 

Question 6 can be seen in Figure 4-17. Figures 4-18 and 4-19 show the strategies used to 

answer Question 6.  

That more than one strategy could be used in answering Questions 3 and 6, revealed 

achievement in different growth points.  Some learners showed a movement between 

growth points during the interview. 

I structured the interview in such a way that I asked learners to explain how they did 

Question 3 first, with no other instructions. In many cases, especially with learners in the 

lower growth points, they used a procedural strategy to complete the question (Strategies 1 

and 1.5 in Chapter 3). If they answered using Strategies 1 or 1.5, I asked them a leading 

question to elicit the comparison of the y-values between the tables. This would often lead 

to the realisation that the question could be answered holistically. (Please refer to Appendix 

C to see the basic structure of the interview). For this reason, some learners answered 

Question 6 spontaneously, and hence used a different strategy to their original assessment.  

5.2.2  Words 

If the task were looked at in a holistic manner, the learners would have seen that the two 

equations/tables in each problem were the same, save for the constant value. This meant 

that in each case, the equation had shifted (In Question 3, the equation shifted down two 
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units, in Question 6, the equation shifted down three units.) This terminology comes about 

in Grade 11, when the transformation of functions is explicitly taught. The use of the word 

“shift” emerged only twice in the interviews, and only from Grade 11 learners; one from 

Growth Point 3 and one from Growth Point 4.  This process of using one word for a group of 

objects (i.e.: every y-value which has changed by the same value) is called saming.   

Interviewer: Can you see any relationship between the y-values? 

Learner 

4.11.15  

They have been…. Well, they are two smaller. So that would be…. Yeah. 

Interviewer  Ok, so is there another way that you could have worked out the equation [for 

table 2]? 

Learner 

4.11.15 

Would it just be a shift? So you just adjust accordingly by minusing 2. 

 

Interviewer  Yes, just explain to me as you go on. 

Learner 

3.11.9  

I’m not sure if I am right, but I am assuming that the x values are the same. 

And the y values have changed by 2 each time. So I am assuming, that because 

it’s going less each time, it’s… you’re minusing 2. So the graph is shifting down 

by 2. Must I write anything? 

 

The above excerpts show that the learners have used one word “shift” to refer to many 

different mathematical objects (all the y-values in the second table), and hence have been 

able to construct a new mathematical object – a function which had shifted vertically. 

“Saming, if applied to discursive objects that are all realisations of the same signifier, is part 

of the process of the learners’ construction of a new 

mathematical object.” (Berger, 2013:3) 

5.2.3  Visual Mediators  

Visual mediators did not play a large role in this study, as the 

focus of the study was functions in equation form. Indeed the 

written function itself can be seen as a visual mediator; however 

the equations were the same for all learners so this was not a 

Figure 5-1 Use of equation as visual 
mediator 
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differentiating factor in the discourse. There were some cases where learners used visual 

mediators to help them to complete Question 3. Two examples of visual mediators were 

found which were common to many students.   

The first was found in the assessments and in the interviews of learners who used a more 

procedural discourse. Figure 5-1 below shows the formula    
     

     
 ) which was used by 

learners to find the gradient of an equation. This can be seen as a symbolic visual mediator 

and it is used by learners as a part of their mathematical discourse (Sfard 2008). This 

formula is discussed below in the “rituals” section, as it not only is a visual mediator, it can 

also be seen as a ritual.  

 

Figure 5-2 Use of rough sketch graph as visual mediator (Question 3) 

Figure 5-2 shows that some learners attempted to use a rough sketch of a graph in order to 

help them solve question 3. No learners used a graph in the interviews, and hence no 

definitive conclusion can be made from this. It seems that the learner intended to use the 

sketches in order to check their answer, or help them find an equation in the assessment.  

5.2.4  Routines 

Routines are the patterned discursive activities and produce narratives about mathematical 

objects. There are three types of routines which exist; deeds, rituals and explorations, all 

three of which were present in the interviews with the participants of my study. According 

to Sfard “not every routine is explicably describable” however, I will endeavour to try to 

describe the routines found in these interviews to an extent which produces an adequate 

analysis of the discourse (Sfard, 2012, personal communication). 
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Deeds 

There were two learners who used deeds in their discourse about Question 3. These 

learners were not very comfortable in their understanding or explanation of the question. 

Both learners chose an equation, almost at random, to represent the table of values in 

Question 3. A deed constitutes a choice, without necessarily knowing what is being chosen 

or why (Sfard 2008). While these learners may have wanted to use a more ritualised 

discourse (as it does seem that they were anxious for social approval from the interviewer 

too), they were not always able to produce a mathematically correct routine. Furthermore 

this finding is supported by the fact that these learners did not imitate the rituals which 

would commonly be associated with this task (e.g. by using the formula for finding the 

gradient of a straight line). 

 Transcript Routines 

Learner 

1.9.22 

So the y-intercept is going to be where x = 0 so y equals 1. It’s a 

positive. Then to find the x, the gradient and the x, I think. I’m not 

sure about this. When y is equal….  

[silence] 

 I’m not sure. I remember doing this but I am not sure.  

Ritual to find y-

intercept 

 

 

 

Interviewer Ok, don’t worry. Let’s go back to your test so you have a bit of a hint. 

The first thing you said is “when x is 0, y is 1 in the equation,” and 

that’s what you got. And then it looks like you just tried a whole lot 

of different gradients until you found the right one. Am I right? 

Offering 

learner to look 

at assessment 

Learner 

1.9.22 

Oh yes. Ok so…  

[mumbling]  

Ok, so… mhmmm 

I said y = … cos I took… I tried different gradients every time, then I 

substituted x which was either of these, so I put, maybe 0, and then 

found out thingy, y would equal to.  

 

 

Deed: choosing 

different 

gradients at 

random  

Interviewer So I see here you tried 2x first, and then you substituted in -1, and 

you got 1, so you thought that’s wrong? 

Clarifying 

Learner 

1.9.22 

Yes.  Confirming 

Interviewer Then you tried 4x, you substituted in -1 and you got 5, and you Clarifying 
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thought that’s also wrong. And then you tried 3x, and you substitute 

in -1 and you got -2, and you thought great!  

Learner 

1.9.22 

Yes Confirming 

 

The excerpt above shows that the learner uses one deed in her discourse about Question 3. 

This deed was the apparent random choice of a co-efficient for x in finding the gradient for 

the function. The learner then fell back on a previous, very procedural ritual, which aimed to 

test if the chosen function was correct by using substitution.  

Rituals 

Learners who used rituals in Question 3 all started out by finding the gradient and the 

intercept to calculate the equation. This shows a procedural understanding of equations as 

learners use a ‘recipe’ to complete the task. These learners seemed to want to answer the 

questions correctly, and were in search of social approval from the interviewer.  

The following excerpt shows a typical interview of Question 3.  

 Transcript Routine 

Interviewer So the first question that I want you to do is question number 3. 

Please explain to me how you would go about completing it.  

 

Learner 

3.10.7 

Um. The standard form of this is       .  

And then.  

So that C is where the x-axis … where it is zero.  

The y-axis, the y intercept. So I see here where the x is zero, 

that’s 1.  

So immediately I would say,       , then       . 

Then I would work out the m. a lot of people use rise over run, 

but I can’t do that so I use  
     

     
. Then I would pick two points. 

Let’s go with these two because they are easy  

[points at two points in the table] 

y2 is 1, minus 4, over x2, 0-1. And 1-4 is negative 3. 0-1 is 

negative 1. So that is 3.  

Ritual: giving the 

standard form of 

the equation 

 

 

 

 

 

 

 

 

Procedural  

discourse  
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Interviewer Great.   

Learner 

3.10.7 

So then y equals 3x+1.  Giving the answer  

Interviewer Perfect.  

 

To find the gradient, learners who used ritualised discourse used the formula   
     

     
 in 

their calculation which can be seen as the imitation of their teacher’s routines. That many 

learners used this equation shows that this is typical routine; a repetitive and well-defined 

discursive pattern. Their use of these routines can be seen as the individualisation of the 

discourse, and hence these learners are learning to participate in the discourse.  

Many of the learners, during the interviews, said the equation   
     

     
 out aloud, as if it 

were a mantra. This is hard to convey in the transcripts, but as the interviewer, I took notes 

on this phenomenon during the interviews. This shows that there is mimetic nature to 

learning. Ben-Yehuda et al (2005) say that “more often than not, such learning is mimetic 

(cf. Diamonstone 2002; Seeger 1998), that is, it results from following discursive patterns of 

more experienced interlocutors”. 

Another common ritual which was seen was in Question 6 where learners used substitution 

to find the values for   in Table B. This, however, was not often seen in the interviews as 

many learners spontaneously used the more holistic strategy for answering Question 6 

(Strategy 2).   

Rituals have a narrow scope – this is shown in the ritualistic discourses where learners are 

able to perform calculations on a specific set of values only – unlike explorations, which can 

be applicable to a broad number of calculations.  

Explorations 

Explorative routines were seen in two different ways in the interviews. Firstly, there were 

learners who used explorative routines without any prompting. Explorations talk about 

objects as a whole, and this was seen in the discourses of learners in Growth Point 4. 

Secondly, explorative routines were seen in the discourses of learners who did not use these 
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routines in their assessments, but due to the prompts of the interviewer, were able to 

spontaneously use these discourses in Question 6.  

Learners in Growth Point 1 who were prompted to look for a pattern in the y-values of the 

two tables really struggled to see the pattern. Some learners did see the pattern but were 

not able to relate this back to the equations at all.  

The following excerpt from an interview shows that the learner is using an exploratory 

discourse which will result in an endorsed narrative – a narrative which is seen to be true.  

 Transcript Routine 

Interviewer If you could look at Question 3 for a little bit and then explain to me 

how you did it.  

 

Learner 

4.11.20 

Ok  

[silence]  

Ok well. I see that the x’s are all the same.  

The y’s are the ones that change. So I compare these two. [pointing to 

the y columns on each table] So, it’s kind of like number patterns. So, 

like, 0-2 will give you negative 2. Then I start to see the difference. 

And then because, the constant is what is affecting the y-value, 

moving up or down, that’s why I will take away 2 from this function.  

Exploratory 

discourse 

showing an 

operation on 

an object.  

 

The following two excerpts show learners who both used a ritual when answering Question 

3, but after the prompts from the interviewer, were able to use an exploratory discourse.  

The first learner explores the holistic view of question 3. This learner was able to see the 

holistic view of the equation when scaffolded by the interviewer.  
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This learner has shown that she is now able to see the function as an object which can be 

transformed or manipulated. In seeing that one can subtract 2 from all the y-values, she has 

shown that it is not necessary to perform a procedural. This can be seen as the start of 

reification, where the learner has moved from seeing the task as a series of processes, to a 

holistic object.  The shift in this case is the start of objectification.  

This learner has spontaneously used an exploratory discourse while answering Question 6.  

 Transcript Routines 

Interviewer

   

Now the next question I want you to look at is this 

question here. Number 6. 

 

Learner 

3.10.7 

Ok, well I would actually do it the long way, but from the 

previous table, where that, like, link thingy with the plus 3 

and all that, in the other one, I think you could do it from 

this table without any calculation, because that [table A] is 

exactly the same as that [table B], with no plus 3. 

Spontaneously using an 

exploratory routine 

Interviewer Alright  

Learner So, I would think that is this one [Pointing to Table B] has Justifying  

 Transcript Routine 

Interviewer: 

  

Now I want you to look at these two [points to tables]. And I want 

you to look, and see if you notice anything – we can see that all the x 

values are the same, but the y values are a little bit different. So do 

you notice a pattern or anything interesting? 

 

Learner 

2.10.5 

Every single value on this side [Table B] is minus 2 of this [Table A]. Beginnings 

of 

exploratory 

routine 

Interviewer OK, so do you think you would be able to find the equation in an 

easier way? Do you remember what it was? 

 

Learner 

2.10.5 

It was 3x+1. You can just minus 2 from the y values!   
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3.10.7 got no 3, so you would minus the three from it [pointing to 

table A], so you would do the same on this side. So that 

would be 0,0. And then 7-3 is 4. And 10 , 18, and then 28. 

Interviewer

   

That’s excellent. Maybe you want to substitute in one 

number to check that you have got the right answer. 

 

Learner 

3.10.7 

[writes] And yes that is! That’s pretty cool. Checking that answer is 

correct 

 

Learners who have been labelled as having exploratory rituals were all able to immerse 

themselves (some spontaneously) in the new discourse, and at the same time were trying to 

figure out the rules of the new discourse (meta-level learning). Each time the learner 

provided a rationale as to why they used the new objectified discourse, instead of a 

procedural discourse. 

5.2.5  Endorsed Narratives 

Narratives are the sequences of spoken or written texts about an object. These show a 

description of the object, associations between objects or processes with or by objects 

(Sfard, 2008). Narratives are subject to endorsement or rejection. Within school algebra, 

narratives are endorsed if they conform to the confines of school maths6.  Endorsed 

narratives are the result of explorative routines which are used to verify or produce this 

endorsed narrative, and are also discussed in the following section.  

In the above analysis of routines, I have shown that endorsed narratives result from 

exploratory routines.  

5.2.6  Overall analysis of Questions 3 and 6 

The table below (Table 5-1) shows an overview of the discourse used by each learner in 

Questions 3 and 6. This overview shows that learners in the lower growth points mainly use 

rituals in their discourse, and rely on procedural discourse to complete tasks. Learners in 

higher growth points are more and more able to use exploratory routines in their 

discourses, and hence their discourse is mainly objectified.  

                                                           
6
 For example, in school mathematics, the solution to a quadratic function may not exist if there are none real 

roots, whereas within a more formal mathematics discourse the solution of quadratic function may be found 
using complex numbers.  
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The table also shows that those learners’ discourses start off by being very procedural in 

nature, but as they progress to higher growth points, their discourse becomes more and 

more objectified. 

There was one learner (Learner 2.10.23) in Growth Point 2 who started using exploratory 

rituals in the interview. This did not surprise me, as this learner was in Grade 10. I would 

have thought it to be an anomaly if a Grade 9 learner achieving Growth Point 2 started using 

exploratory rituals spontaneously.  

There was one learner (Learner 3.10.12) who did not start using an exploratory discourse in 

the interview, where one would have expected this. The reason for this may be that she was 

the learner with whom the interview was piloted. For this reason, the interviewer did not 

ask the leading question “What did you notice about the y-values in the two tables”, and 

hence the learner did not get the opportunity to notice the holistic nature in which the 

question could have been answered.  
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Table 5-2 Figure showing the overall comparison in learners for Questions 3 and 6. 

Learner code Main type of language use  Routine (Question 3) Routines (Question 6) Type of discourse  

Growth Point 1 

Learner 1.9.3 Informal Ritual Ritual  Procedural 

Learner 1.9.22 Informal  Deed Ritual Somewhat Procedural 

Learner 1.9.8 Informal  Ritual Ritual   Procedural  

Learner 1.9.33 Informal  Deed Ritual Somewhat Procedural  

Growth Point 2 

Learner 2.10.23 Informal  Ritual then Exploratory Exploratory (Spontaneous) Becoming Objectified 

Learner 2.10.5 Informal Ritual Ritual  Procedural 

Learner 2.10.14 Informal Ritual Ritual  Procedural 

Growth Point 3 

Learner 3.11.9 Informal Ritual then Exploratory Exploratory (Spontaneous)  Becoming Objectified  

Learner 3.10.7 Informal  Ritual then Exploratory Exploratory (Spontaneous) Becoming Objectified 

Learner 3.10.12 (Pilot) Informal Ritual 

(Was not prompted – pilot interview) 

Ritual  Procedural 

Growth Point 4  

Learner 4.11.25 Informal Exploratory Exploratory Objectified 

Learner 4.11.15 Informal Ritual then Exploratory 

(Used Exploratory in assessment) 

Exploratory Objectified 

Learner 4.11.20 Informal Exploratory Exploratory Objectified 



 
 

5.3  Other observations 

During the interview, there were a few additional interesting observations which I shall 

discuss here.  

5.3.1  The informal nature of the discourse  

The excerpts of the interviews show that the word use of the learners in the study is often 

very informal. This informal use of words can create ambiguity but because the interviews 

were situated, the interviewer was able to gather the meaning of the discourse in its 

entirety by referring back to the videos of the interviews. Even though there were some 

learners who had objectified discourses, and some who were well on their way to having an 

objectified discourse, I found it interesting that many learners still used a very informal 

discourse in the interviews.  

The following two examples show the very informal nature of the discourse that was used in 

the interviews.  

Learner 

2.10.5  

: Every single value on this side [pointing at Table B] is minus 2 of this. 

[pointing at Table A] 

 

Learner 

3.10.7 

Ok, well I would actually do it the long way, but from the previous table, 

where that, like, link thingy with the plus 3 and all that, in the other one, you  

could do it from this table without any calculation, because that [points to 

table A] is exactly the same as that [points to table B], with no plus 3.  

 

Both the excerpts above show that even though the learners are able to talk about a 

function in a holistic way, their discourse is still very informal. Because the interviews were 

in the company of the interviewer, the learners perhaps thought that they did not 

necessarily have to formally explain their solutions to the task. This type of ambiguous talk 

also confirms that the use of a video recorder for the interviews was useful, as not only was 

rich data collected, but the videos also serve as references to the body language (Learners 

pointing to tables, etc).  

Ben-Yehuda et al (2005) explain that a literate discourse is one where there are no 

ambiguities. In the excerpts above, the discourse is clearly ambiguous, but the meaning 
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which was conveyed to the interviewer showed that the learner had made sense of the 

problem and was able to provide an accurate explanation of how to complete the problem 

in a holistic manner. However, Caspi and Sfard (2012) explained that the achievement of 

algebraic milestones is common to both the formal and informal strands of discourses, and 

that these “find their expression in different modalities – In the purely verbal form in the 

case of informal discourse, and in the form of symbolic expressions combined with 

additional visual constructs, such as graphs, otherwise.” (Caspi & Sfard, 2012, p.49) 

5.3.2  Flexibility and corrigibility in discourses 

Flexibility is the manner in which a student is able to produce more than one response on 

how to complete a calculation. Corrigibility is the ability to self-correct one’s discourse when 

an error is made (Ben-Yehuda, et al, 2005). These are both aspects of routines in 

mathematical discourse.   

Both flexibility and corrigibility were seen in the routines of learners in the interviews. 

Flexibility was seen in some interviews and assessments where learners provided more than 

one way in which they answered a task, however this was more apparent in the written 

answers from the assessment booklets, and not in the interviews – unless prompted by the 

interviewer (This was discussed earlier). 

Corrigibility – or the ability to self-correct – was seen in the interviews. There were many 

instances during the interviews when a learner would make a mistake and then self-correct 

after realising that there was a mistake. Some learners took longer than others, and some 

were prompted by the interviewer.   

See the following excerpt for an instance where a learner has self-corrected of her own 

volition.  

Interviewer So the next question I want you to look at is 6.  

Learner 

4.11.25 

I just said these answers [y values in Table A], plus 3, and then put them into the 

new table [Table B].  

[silence] 

Oh wait, it’s minus 3! Ok, 0, 4, 10, 18, 28.  
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This excerpt shows that the learner immediately was able to correct her own discourse 

without the interviewer pointing out her mistake (that she was adding 3 instead of 

subtracting 3). She has retraced to an earlier point in her discourse, found her mistake and 

corrected it (Ben-Yehuda et al, 2005).  

Interviewer Now I want us to go back to question 2. I want you to explain what you did 

over there.  

Learner 

2.10.5 

Ok so the first thing I did was I made up some values for x, from like 1 to 4, 

and so I used, I substituted x, as 1 into both of the equations I thought would 

end up giving the most, and then I compared the two differences. The 

answers between the two – after I substituted.  

Interviewer So I noticed you used a, and you also used d. Over here [for option a] it went 

99, 98, 97, 96… and here [for option d] it went 80, 85, 90. But you still told 

me that [referring to option 1] gave you the fastest change? 

Learner 

2.10.5 

Oh! The fastest CHANGE…. I see now where…. I think I just complicated it a 

bit to which one is going to give you the most.  

Interviewer Ah, I see. So you were looking for the highest answer instead of the biggest 

change. 

 

The learner then redid the task and successfully corrected her error. This excerpt shows that 

the learner retraced to find the source of confusion, and also switched mediation by 

recalculating her answers by writing down her calculations (Ben-Yehuda et al, 2005). 

5.3.3  Revoicing by the interviewer as a means for clarification 

There were instances in the interviews where I asked learners to explain their thinking for a 

question, and they weren’t able to do so. They had not been able to complete the task in 

the assessment so I was curious to ask them why they were not able to do the task. In these 

cases, I, as the interviewer, decided to revoice the question in order to see if the actual 

question in the task, and its wording had been the cause of the learners’ inability to 

complete the question. In the following case, I asked Learner 10.14 about Question 2 (See 

Figure 5-2). 
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Figure 5-3 Question 2 

The learner was coded at Growth Point 2 after the assessment, but the following excerpt 

shows that the learner does have a conception of gradient (one of the indicators of Growth 

Point 3), however this conception only came about after the interviewer revoiced the 

question.  

Interviewer That is your test. I want you to first look at Question 2, which you didn’t do at 

all on the test. I want to see if you can now do it. Because you have seen it 

before you may have thought about it, and can do it now? [silence] Or if you 

didn’t understand the question, maybe you can tell me why you didn’t 

understand it? 

Learner 10.14 I think I just looked at the question and I was like “what is this?” 

[silence] 

Interviewer Maybe if I reworded the question, and I said, which equation has the steepest 

gradient, would that help you?  

Learner 10.14 Yes it would. 

Interviewer Let see if that makes more sense to you now.  

Learner 10.12 So I put all of them in standard form. So this one would be {writes} And I 

arrange this one {writes}. 

 [The learner rewrote the equations so that they were all in standard form 

of        ] 

Interviewer So what would the answer be? 

Learner 10.14 I think the one with the highest “m” value.  

 

In this interview, the learner was not able to make sense of the question in the assessment 

to start with, but after the interviewer reworded the question, the learner quickly 

understood the question and was able to complete without much difficulty.  



87 
 

5.3.4  The difficulty of context/no-context  

A learner spoke of the difficulty of understanding some tasks which were abstract in nature 

and had no real life context. In the following excerpt, Learner 10.12 explains how she found 

Question 2 to be very difficult until she adapted it to her knowledge of a scientific context. 

She then was able to complete the question successfully.  

Learner 3.10.12 So in Question 2 I went and I put all the same constants on the same 

side, because you can’t work out that the gradient is if they are all in 

a different order. So I went and I got y on the same side, and I 

worked out what each of the gradients was, for each of the graphs 

that were there. I thought about it in terms of Science, because it 

makes more sense in a practical way to think about it in Science, 

because Maths is very one-dimensional. Besides you can think about 

it actually happening. And it meant that I could understand the 

whole idea of somebody moving along, from point 1 to 10, instead of 

just a graph going nowhere.  

Interviewer So what did the gradients tell you? 

Learner 3.10.12 The gradient told me how fast they … like …. The gradient is the 

slope, and the slope is telling me how fast they are moving. So if the 

gradient is a positive slope, it is getting faster. And if it is a negative 

slope, they are getting slower.  

 

The excerpt shows that some learners have difficulty in understanding an abstract context, 

and that a real-life example may provide assistance in the understanding of the question.  

This however is an incongruous observation as many learners also struggled with Question 1 

in the assessment which was a context based question. In fact, the same learner who 

complained about the abstractness of Question 2 struggled with the context in Question 1. 

This is discussed below in relation to visual mediators.  

5.3.5  Additional use of visual mediators 

This shows an excerpt from the interview with Learner 10.12. This particular interview was 

the pilot interview, and took a bit longer than some of the other interviews. While it was 

ambitious to ask so many questions in the pilot interview, I managed to get some very rich 

data from this interview.  
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In this particular section of the interview, we discussed Question 1. As shown in Chapter 4, 

Question 1 was a difficult question for many learners. In the assessment, Learner 10.12 did 

not get any of the tasks right in Question 1. I decided to use this question as a part of the 

interview anyway.  

 

Figure 5-4 Question 1 

Because the learner struggled quite a bit in the interview, I drew a small graph to represent the 

relationship between the height of the water and time.  It was a piece-wise function as shown in 

Figure 5-5.  

 

Figure 5-5 Graph which represents relationship between the height of the water and time. 

Interviewer [Draws graph as illustrated in figure 5-6] 

Learner 3.10.12 […..] and then I can work out what the height was? 

Interviewer Absolutely.  

Learner 3.10.12 I don’t know why I didn’t think of that sooner, it’s very simple. So then it 

would have been 11.  
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The resulting realisation from the learner as seen in the excerpt below showed that the 

visual mediator helped the learner to understand the question.  

The learner uses the graph to explain to help justify her reasoning for Task 1b. This indeed 

shows that visual mediators form a part of the learners’ mathematical discourse. This 

occurrence can also indicate a well-developed sense of “linking representations” which is 

another domain in Ronda’s Framework of Growth Points (See Figure 2-1 in Chapter 2).  

5.3.6  Preference for familiarity of procedural thought.  

The issue of familiarity of procedure seems to snag many learners as they move from 

procedural to objectified thinking. The learner in the excerpt below was graded at Growth 

Point 4 after the assessment. In the interview she used the gradient formula to work out the 

equation in Question 3 almost as if doing so automatically, even though she showed 

evidence of objectified thinking in the actual assessment by using Strategy 2 to answer 

Question3. I asked her about this in the interview.  

Learner 

4.11.15 

I just see the first thing that comes to mind, and do it even if it’s the longest 

way around.  

Interviewer Is it because you feel more comfortable with the traditional way? 

Learner 

4.11.15 

Yeah it’s just because we’ve done it so often. That we have been taught that 

when you need to work out an equation, you work out the gradient, and 

then substitute a point in, and then find the c value 

Interviewer I didn’t give you a unit, so it could be anything. Centimetres, meters 

whatever.  

We don’t know how big the tank is. 

Learner 3.10.12 So much simpler than I thought it was. I don’t know why I didn’t think of 

drawing a graph. It would have made it so much easier. Can I use the graph 

to show you my answers, right? 

Interviewer If you want to, sure 

Learner 3.10.12 (Learner 10.12 replying to question 1b) 

OK. No, again. Because if you look at the graph that you drew, it shows that it 

starts off with one gradient, which is obviously how fast it is going then it 

gets a steeper gradient, which shows that it’s going faster. So, in order for it 

to increase at the same rate, it would have to  be moving at a constant slope, 

but it’s not, so the answer would have to be no. 



90 
 

This excerpt has shown that even though learners may be able to partake in an objectified 

discourse, that this does not necessarily always take place.  

5.3.7  The Difficulty of Maths and Identity 

In many interviews, learners’ discourses about their explanations of the solution of a task 

were interspersed with talk about their identity, or utterances which were about 

themselves.  

This example below is an excerpt from a learner who began to talk about what they found 

difficult in the subject of mathematics. Although this was not in the scope of the study, I 

found this to be interesting. 

Learner 

2.10.5 

I just think that sometimes teachers make it seem so difficult, that you 

always think there’s something extra in there … so you start working out 

everything else except what you’re supposed to be doing, and you’ll have a 

page of working out but you can’t get anything cos everything else didn’t 

relate back, and in the meantime, it’s so easy.  

Interviewer So what you’re saying is, you learn a procedure – a recipe – of what to do, 

but you don’t actually understand? 

Learner 

2.10.5 

Yeah, something like that. And then you think that you do understand, then 

you confuse it with something else, cos then they put extra stuff on top of 

that, and then … In the meantime, you just have to look at it to see ... Oh, 

wait, you can do it like that.  

 

Additionally, there were many other instances where the talk about mathematics was 

interspersed with identifying utterances. Here are some more examples.  

Learner 

2.10.23 

I wouldn’t know it’s a straight line. 

Interviewer How did you do it last time, do you remember? 

Learner 

2.10.23 

I think I did a table.  

 

 

 



91 
 

Interviewer I’m going to ask you to go to Question 3 please.  

Learner 

2.10.5 

I had a bit of difficulty with finding the equations, because I get confused and 

then I confuse all the different concepts that I have together, and it all comes 

into one.  

 

There were cases of learners in Growth Point 4, who showed that they were able to work 

with functions, who still interspersed their explanations with identifying utterances of a 

somewhat emotional nature. These are bolded in the following excerpts.  

Interviewer And let’s look at Question 1. I want you to talk about b and c, what your 

reasoning was. I know you wrote it down, but I just want to understand your 

reasoning.  

Learner 

4.11.20 

 Oh ok. So for b) I thought that because, even though both of them [the 

equations] are talking about w it’s a (Option a in the question) 

 it’s an equation concerning w. But t+8 and 3t, they are… the one is an 

addition, and the other one is a multiplication, that’s why I think that… you 

will always get different answers for it.  

 

 

Interviewer What does that show? 

Learner 

4.11.15 

Agh, I don’t know. I really have no idea. It’s right there in my mind but I 

don’t know how to put it.  

Interviewer That’s ok.  

Learner 

4.11.15 

Yeah, I don’t know.  

 

These excerpts from interviews confirm the point which Heyd-Metzuyamin and Sfard (2012) 

have made about mathematical discourse – that it is somehow inextricably linked with the 

discourse of identity. Heyd-Metzuyamin and Sfard (2012) see affect and social meters as 

aspects of the discourse  

5.3.8  Other considerations of the study 

A shortcoming of this study may be that learners were interviewed one-on-one with the 

researcher, which may have enticed the learner to take on the discourse of the researcher 
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in some situations. However, the practice of one-on-one interviews was chosen so that 

learners would not be swayed by a classmates discourse. I also felt that one-on-one 

interviews were necessary because I wanted to ask the learner about the assessments 

which had been competed by them previously. Group interviews are more suited to 

situations where learners are completing rich tasks, generally unseen or novel.  

As shown in the interview with Learner 10.14 in the section entitled “Revoicing by the 

interviewer as a means for clarification,” it emerged that the learner was able to do the 

question after the interviewer clarified the question by rewording it. This shows that 

Question 2 may have been answered better if it were worded differently in the assessment. 

This again points to the difficulties learners may experience if they are not entirely fluent in 

the language that they are being educated in.  

5.4  Discussion and conclusion  

Overall, most of the learners were comfortable to be interviewed, and hence good data 

were collected on their discourses. The interviews were successful in that they did show 

that the discourse of learners is related to the Growth Points that they have achieved.  

Additionally, the interviews also brought other issues to light. For example, even though 

some learners seemed to have a holistic conception of functions in equation form, they 

still reverted back to a point-by-point analysis of the equations. Some learners said that 

this was due to familiarity. Another issue was that of context. Learners found the context 

on Question 1 to be confusing rather than helpful.  

“I also hypothesize that as long as school teaching focusses on how routines should be 

performed to the almost total neglect of when this performance would be most 

appropriate, it is more likely to result in the discourse of rituals than of explorations.” (Sfard, 

2008: p223). 
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 Conclusions Chapter 6

6.1  Summary of the research process 

The study was done on a continuum of the constructivist-pragmatic-commognitive 

paradigm in order to fulfil the expectations of the study – which were to firstly affirm the 

framework of Growth Points, and secondly to explore the mathematical discourse of 

learners within the overall structure of the framework of growth Points. The research 

process can be summarised as a mixed methods study in which both qualitative and 

quantitative methods were used. These were chosen to allow me to gather the data that I 

required in order to answer the questions that I set out to. In collecting both quantitative 

and qualitative data, my data set was rich, which meant I was able to draw good data from 

the research process.  

 

6.2  Summary of findings 

6.2.1  Findings: Phase 1 

The research question which guided the first phase of research was “Using Ronda’s 

Framework of Growth points, where do selected South African learners fit, especially in 

relation to functions in equation form?” 

The finding of the study showed that learners generally followed the same learning 

trajectories which were described in Ronda’s study. Learners in my study moved from 

growth point to growth point in a similar manner to Ronda’s study, and followed the growth 

points mainly consecutively with the exception of a few learners.  

The strategies used by learners in answering selected questions reflected the growth in 

learning of functions.  The strategies that learners used in questions showed growth over 

grades. Progression through grades showed a higher number of learners used more 

objectified strategies.  

Overall, it seemed like the learners in my study seemed to progress faster along the learning 

path over the duration of 3 years, than the learners in Ronda’s study. This however could be 

attributed to the fact that the learners in my study, at the highest grade-level for the study 
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were a year older than the learners in Ronda’s study. This opens up an opportunity for 

further research.  

6.2.2  Findings: Phase 2.  

The research question that guided this second phase of my research was “How do learners’ 

discourses relate to the growth points they have achieved?” I explored this question by 

conducting interviews with selected learners from each different growth point.  

Looking at the discourse of the learners, it is clear that their discourse somewhat mirrors 

their growth point levels. Their discourse cannot pinpoint their growth point exactly, but will 

indicate somewhat the degree to which their discourse is becoming objectified. I looked at 

the learners discourse with the end goal that they would be able to see a function 

holistically, instead of something which can be operated on in a point-by-point manner.  

All learners in Growth Point 4 demonstrated exploratory routines, and their discourse was 

objectified. This corresponded with the characteristics of Growth Point 4.  

The interesting finding of the study was the learners in Growth Points 2 and 3 who were 

able to spontaneously use an exploratory routine in the interview. This happened due to the 

prompting by the interviewer – who was, in this situation, an experienced interlocutor. This 

phenomenon verifies Sfard’s (2008) view that learning takes place through participation. 

“The participationist vision of human development implies that any substantial change in 

individual discourse, one that involves a modification in meta-rules or introduction of whole 

new mathematical object, must be mediated by experienced interlocutor” (Sfard, 2012, 

p.254). 

The fact that both Grade 9 and 10 learners were comfortable in using ritualistic routines to 

begin with shows that rituals are perhaps a precursor to exploratory discourses. Sfard (2008) 

explains that the transition from ritualistic to exploratory routines: 

“[The] transformation can happen quite abruptly, so that the stage of ritualization is 

hardly noticeable, or it can last for a long time, perhaps even forever. The transitory 

phase of ritualization corresponds to the period of individualising – the period during 

which the learner can participate in the collective implementation of the routine but is 

not yet capable of independent performance” (Sfard, 2012, p. 253).  



95 
 

Different types of exploratory routines were seen in the interviews.  

 “All the exploratory routines can be divided into three types: construction, which is a 

discursive process resulting in new endorsable narrative; substantiation, the action 

that helps mathematics decide whether to endorse previously constructed narratives; 

and recall, the process one performs to be able to summon a narrative that was 

endorsed in the past.” (Sfard, 2008, p. 225)  

Learners in Growth Point 4 who were able to use exploratory routines without prompting 

used either recall or substantiation, whereas the learners who spontaneously used 

exploratory routines in the interview for the first time used the construction type of 

exploration (Sfard, 2008).  

Sfard mentioned that there are conditions on the how and the when of the routine. 

Important to this study is the when of a routine. Schools seem to focus on the how of a 

routine, whereas the when of the routine isn’t given attention. The when of the routine is 

important as one needs to know the best time to teach a concept. This links in with learning 

trajectories. It was seen by the learners in Growth Point 1 that they were not able to 

spontaneously partake in exploratory routines, even with the mediation of an experienced 

interlocutor. This is perhaps a sign that learners are not yet ready to see the function as an 

object. The idea of function as an object, “as a static ‘thing’, when introduced too early is 

doomed to remain beyond the comprehension of many students” (Sfard, 1992, p.77). This 

further shows that learners should be comfortable with seeing a function as a process 

before seeing it as an object.  

 

6.3  Other findings of the study 

 

Preference for point-wise analysis 

In Ronda’s study, she found that many learners were not able to progress further than a 

point wise understanding of equations in function form. In my study, some learners, even 

though they seemed to understand functions as an object, opted to operate on the problem 
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in a point-wise manner. This shows that even though it is more tedious, some learners 

prefer to use a more familiar method, instead of an easier, objectified discourse.  

This is highlighted by learner 4.11.15 

Learner:   “I just see the first thing that comes to mind, and do it even if it’s the 

longest way around…. 

Interviewer: “Is it because you feel more comfortable with the “traditional way”?” 

Learner:  “Yeah, it’s because we have done it so often. We have been taught that 

when you need to work out an equation, you work out a gradient, and then 

substitute a point in, and then find the c-value.” 

This is highlighted in Ronda’s study too where she confirms the preference for point-wise 

thinking.  

“Although the percentage of students at the growth points was increasing from Year 8 

to Year 10, which was to be expected, the majority of students only achieved Growth 

Points 1 and 2. Both these growth points involved point-wise thinking. This finding 

seems to suggest that advanced students continue to operate using point-by-point 

interpretations, despite their experiences with other functions” (Ronda, 2004, p.167) 

Difficulty with Rate 

Many learners showed difficulty in understanding rate, which was shown by the results of 

Questions 1 and 2 in the assessment. Although most learners in Grade 11 (84%) and some 

learners in Grade 10 (32%) reached Growth Point 3, this is still not as high as I would have 

expected, especially at Grade 10. The notion of rate is taught from Primary School, and 

continues in high school from Grade 8 level, even if not formally associated with linear 

functions. This again corroborates Nachlieli and Tabach’s (2012) perception that functions 

are a topic which is not easily nor quickly comprehended.  

6.4  Contribution to Knowledge  

This research report has contributed to the field of mathematics education in the following 

ways.  
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Firstly, it has provided confirmation and clarification of the recently developed research-

based framework on learning trajectories which has been proposed by Ronda (2004). 

Results in my study mirrored those in Rondas study to an acceptable extent and hence 

confirmed its validity.  

Secondly, this study has explored learners’ discourse while completing selected tasks on 

functions. Hence, I have related the learners’ discourse strategies to the growth points 

shown in Ronda’s framework. I used Sfard’s communicational framework as a lens to look at 

the discourse of learners relating to their achievements in the framework of growth points. I 

found that Sfard’s communicational framework provided a comprehensive way in which to 

analyse discourse.  

6.5  Implications for teaching and learning 

This study has started to find the building blocks that will build the bridge to close the gap 

between theoretical and practical aspects of the learning and teaching of functions. This 

study has replicated an empirical study on learning trajectories, and found that the 

Framework of Growth Points does indeed match up with practical aspects of learning of 

functions in equation form.  

This study was done in a school which is well resourced, had good teachers, and had good 

leadership. Even though the results of this study cannot be widely generalised as the sample 

was small, I think that the findings will be able to inform some aspects of teaching.  

The learning of functions is not an easy process. By the results of this study which was done 

in a functioning school, it can only follow that the learning of functions will be an even more 

difficult process in schools that are not as well run as my research school.  

Because of the good teaching environment in the research school, I would argue that the 

results from this study showed a progression through the growth points which is standard to 

what should be happening in all schools. It may be a model of learning which schools could 

aim to replicate.   

Additionally, this study has shown that there are types of tasks which can accurately test the 

level of understanding of a learner. The assessment task used in the study can be replicated 



98 
 

or used as a template for other assessments which can point to the growth points of 

learners in everyday teaching.  

This study has shown that learners follow a trajectory of learning. Ronda’s framework of 

growth points can therefore be used in the design of the curriculum and the design of 

learning materials in the area of functions. This will ensure that learners are taught about 

functions in a sequence which is most likely to make sense to learners.  

Regarding the preference of the majority of learners to use point-by-point analysis in their 

solutions, I would recommend that teachers design and use tasks which require a holistic 

analysis; however this should not be done too soon in the learning process as this may 

alienate learners.  

6.6  Recommendations for further research 

Research has been done by Ronda into the learning trajectories of learners as they 

encounter functions. My study only covered one area of Ronda’s Framework of Growth 

Points and that was functions in equation form. Because there has been a renewed interest 

in the field of learning trajectories this area of research is topical and relevant. This study 

may provide the motivation for further research into learning trajectories in other areas of 

school mathematics. This study may also further provide a motivation for further research 

into the nature of learners’ discourses in other areas of algebra.   
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Appendix A – CAPS and NCS  

 

 

Figure A-1 NCS curriculum for Grade 9 Functions  

Figure A-2 CAPS curriculum for Grade 9 Functions 



104 
 

Appendix B – Assessment  

 

Question Booklet 

 

NAME:____________________________________ 

 

GRADE: ___________________________________ 

 

AGE: _____________________________________ 

 

 

 

Instructions 

 

 Please attempt to answer all questions in the booklet 

 For each question, please give an explanation as to how you answered each question 

o If you cannot answer a question fully – do not worry. Please do try to explain why 

you cannot do it, if possible.  

 

I hope you find the questions interesting.  

Thank you  
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1. Imagine water flowing through a pipe into a container for 10 minutes. The following equations 

show how the height of the water (w) in the container, and how the height is related to the 

number of minutes (t) when the pipe was opened.  

        for the first four minutes 

       for the remaining 6 minutes  

Please use the above information to answer the following questions 

a. What was the height of the water in the container 3 minutes after the pipe was opened? 

 

 

 

b. From the given information, do you think the height of the water in the container is 

increasing at the same rate throughout the 10 minutes? Circle the letter corresponding to 

your answer. 

a) Yes, the water level increases at the same rate throughout the 10 minutes.  

b) No, the water level is not increasing at the same rate throughout the 10 minutes.  

Please show or explain how you obtained your answer.  

 

 

 

 

 

c. From the given information, do you think the container already contains water before the 

pipe was opened? Circle the letter corresponding to your answer.  

a) Yes, the container already does contain some water before the pipe was opened.  

b) No, the container did not contain water before the pipe was opened.  

Please show or explain how you obtained your answer.  
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2. Which equation shows the fastest change in   when   moves from 1 to 10? Please show or 

explain how you got your answer.  

a.         

b.        

c.       

d.         
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3. Examine the two tables shown below. The set of values in the table on the left shows specific 

values of       .  

Please give the equation which will result in values shown in the table on the right. Please show 

or explain how you obtained your answer. 

 

x y  x y 

-1 0  -1 -2 

0 3  0 1 

1 6  1 4 

2 9  2 7 

3 12  3 10 

 

             _  ____________________ 

 

Explanation:  
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4. The relationship between   and   in Table 1 is       .  

 

In Table 2, the values of   and   in Table 1 were swapped. Please write the equation which 

shows the new relationship between   and   in Table 2. Please show or explain how you 

obtained your answer.  

 

Table 1     Table 2 

x y  x y 

0 1  1 0 

1 3  3 1 

2 5  5 2 

3 7  7 3 

4 9  9 4 

  

          _____________________ 

 

 

 

Explanation: 
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5. The relation of   with   is shown in the equation           . The relation of   with   is shown 

in the equation:        . From this information, please write the equation that will show the 

relation of   with  .  

Please show your working or explain how you got your answer.  
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6. Examine the two equations shown below. The specific values of            is shown on 

the table on the left.  

Fill in the table on the right with values for of         

Please show or explain how you obtained the y values.  

 

                       

x y  x y 

0 3  0  

1 7  1  

2 13  2  

3 21  3  

4 31  4  
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7. The relation of   with   is shown in the equation of        . The relation of   with   is 

shown in the equation      .  If     , what is the value of  ? Please show or explain your 

solution.  
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8. Circle the equations that show the same function or relationship.  

a.         

 

b.        ) 

 

c.   
   

 
 

 

d.        

Explanation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE END         THANK YOU! 
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Appendix C – Interview Structure  

 

Interview Schedule: The following proved a rough outline of the interviews 

Opening 

Hi, my name is Robyn and I am here to ask you a few questions about the assessment on 

functions you did 2 weeks ago. I am doing my Masters in Maths Education at Wits, and as a 

part of this course; I am doing a research report about how students learn about functions.  

I’m going to ask you these questions because I am interested in finding out about what you 

were thinking as you answering the questions in the assessment. 

The interview should take about 15 minutes, it that ok with you?  

Like I said in the letter which was sent to you and your parents, I will be video-taping this 

interview. Is this still fine with you? Remember that if you feel uncomfortable at any point, 

you can ask me to stop video-taping.  

Let me start by asking you these questions: 

1. What is your name? (for clarification) 

2. What grade are you in? 

3. Do you remember writing this test 2 weeks ago? 

Don’t worry if you thought it was hard. The aim of the assessment was to get you to think! I 

have chosen to interview you because you wrote down some very interesting answers, and I 

would like you to talk to me about them.  

I am going to give you some of the same questions that were in the assessment. What I 

want you to do is explain to me how you got to the answer, or how you would start to get to 

the answer.  

I have given you a pen and paper, so you are more than welcome to write, if you need to do 

some working out, but please remember to explain to me what you are doing at the same 

time.   

Body 

LEARNER IS GIVEN UNCOMPLETED ASSESSMENT SHEET 

4. Please look at this task 3. I would like you to do it for me, and as you do it, please 

explain your thinking and reasoning.  
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I let the learners complete the question and then asked the following:  

If the learner used point-point reasoning for Question 3 

5. Please look at the question and see that I have given you two tables. Do you notice 

any similarities between the tables? 

6. (Another prompt if needed: Look at the x-values in the table; do you agree that they 

are all the same? Now look at the x-values. Do you see any patterns or similarities?) 

7. (Another prompt if needed: Look at the x-values. Do you notice a common difference 

between them?) 

If the learner used holistic reasoning for Question 3 

8. How can you relate the two equations to each other? 

9. How does it work? 

 

Learners are given similar prompts and questions for Question 6.  

 

LEARNER IS GIVEN THEIR COMPLETED ASSESSMENT 

10. Please explain your thinking when you were doing this question.  

[A variety of the assessment questions will be clarified. Possible questions to ask 

about: 1, 2, 4, 5,7]  

Interviewer will use their discretion about which questions to ask according to 

Growth Point of the learner, and according to amount of time of the interview 

 

Closing 

Thank you so much for your time. It really has been interesting for me to find out how you 

think about functions!  
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Appendix D – Letter from Wits  
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Appendix E – Parent information letter 

 

 

 

 

 

       

Dear Parent or Guardian 

 

My name is Robyn Clark, and I am currently engaged in Master’s research in Mathematics Education 

at the University of the Witwatersrand. The study’s focus is on how students learn about functions, 

and the typical paths they follow when learning.  

I am interested in exploring the trajectories of learning that learners follow, especially when learning 

about functions. I am also interested in exploring the language used when learning about functions. 

The study involves myself as a Masters level student, along with my supervisor, Professor Jill Adler. 

We have a strong interest in issues related to mathematics teaching and learning. We believe that 

this research can make a meaningful contribution to current debates around learning trajectories 

and how this may impact the teaching of mathematics.  

To this end I would like to give learners a small assessment, which will take place during class. I 

would also like to interview (with videotaping) some learners to talk about how they have 

approached tasks in the assessment. I would like to videotape the interviews so that I can hear the 

explanation, as well as see what is being written at the same time.  

All data collected will be shared amongst the research team only. In discussions about the data and 

in all of our reporting of it, the anonymity of schools, teachers and learners will be upheld. Lessons 

will continue as scheduled throughout the process of our research. 

I would like to invite your child to take part in my research study. Your child will not be advantaged 

or disadvantaged in any way. There are no foreseeable risks in participating and your child will not 

be paid for this study. I stress that participation in this study is voluntary. Your child is under no 

obligation to participate and there will be no consequences should she choose not to partake in the 

study. Your child’s name and identity will be kept confidential at all times and in all academic writing 

about the study. His/her individual privacy will be maintained in all published and written data 

resulting from the study.  All participants also have the right to withdraw from the study at any point 

in the study. All research data will be destroyed between 3-5 years after completion of the study.  

We would be very grateful for this opportunity, and if you are agreeable to this process please read 

and complete the attached consent form and return it to school. If you have any questions or 

concerns or would like to discuss the aims of my research in more detail, please do not hesitate to 

contact myself on 082 432 8258 (Robyn Clark). 
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In addition to complying with the University of Witwatersrand’s ethical policies, permission has also 

been granted by the Principal of Jeppe High School for Girls for this research to take place. This 

permission is on condition that the research takes place in accordance with the School’s Educational 

Surveys & Research Policy. Results from this study may be published as a journal article, or at a 

conference.  

 

Yours sincerely 

 

_________________________ 

Robyn Clark  

082 432 8258 or robzclark@gmail.com 

Supervisor 

 

____________________   

Dr. Jill Adler



118 
 

Appendix F – Learner information letter 

 

 

 

 

 

Dear Learner 

My name is Robyn Clark and I am a Masters Student in the School of Education at the University of 

the Witwatersrand. I am doing research on how learners learn about functions.  

My investigation involves exploring how functions are learnt. I want to find out how, and in what 

order, learners progress through the concepts that are learnt in functions. I would also like to find 

out about the language that is used when talking about, and solving problems about functions.  

I would like to invite you to be a part of my study. You will have to complete an assessment on 

functions. You do not have to study for this assessment. This assessment is designed to get you to 

think, so do not worry if you find it difficult. The assessment will not count for marks, although I 

would like you to take it seriously. I would also like to interview a few learners, and will be 

videotaping the interview.  I will be videotaping the interview to hear the explanations, as well as 

see what is being written at the same time.  

Remember, this is not for marks and it is voluntary. Also, if you decide halfway through that you 

prefer to stop, this is completely your choice and will not affect you negatively in any way. 

In the write up of my research, I will be using pseudonyms, so that no one can identify you. All 

information about you will be kept confidential in all my writing about the study. All collected 

information will be stored safely and destroyed between 3-5 years after I have completed my 

project. Your parents have also been given an information sheet and consent form, but at the end of 

the day it is your decision to join us in the study. 

I look forward to working with you! Please feel free to contact me if you have any questions. 

Thank you   

Robyn Clark  

0824328258  

robzclark@gmail.com   
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Appendix G – Parent and learner consent forms  

 

 

 

 

 

Learner Consent form for participation in a research project (Phase 1) 

(Please circle your response) 

I have read the information sheet and give consent / do not give consent to participate in the 

Mathematics research project subject to the conditions laid out in the accompanying letter.  

(Please circle your response)   

I agree that data from a written assessment can be used in the study only.   YES   NO 

The conditions also include the use of the data for research purposes and in articles for publication 

in academic journals, or presentation at conferences on condition that the school is anonymous and 

all participants are referred to by pseudonyms.  

 

Name of learner: …………………………………………………………………………. 

 

Signature of learner:……………………………………………………………………… 

 

Date: ……………………………………………………………………………………….  
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Parent Consent form for participation in a research project (Phase 1) 

(Please circle your response) 

I have read the information sheet and give consent / do not give consent   for my child to 

participate in the Mathematics research project subject to the conditions laid out in the 

accompanying letter – This includes a small assessment written in test-like conditions, as well as 

video-taped interviews with the researcher. The conditions also include the use of the data for 

research purposes and in articles for publication in academic journals, or presentation at 

conferences on condition that the school is anonymous and all participants are referred to by 

pseudonyms.  

 

(Please circle your response) 

I agree that data from my child’s written assessment can be used in the study only.   

           YES   NO 

Name of parent or guardian: ……………………………………………………………… 

 

Signature of parent or guardian: ………………………………………………………….. 

 

Date: ……………………………………………………………………………………….  
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Learner Consent form for participation in a research project (Phase 2) 

(Please circle your response) 

I have read the information sheet and give consent / do not give consent to participate in the 

Mathematics research project subject to the conditions laid out in the accompanying letter.  

(Please circle your response)   

 

I agree to be interviewed in this study.        YES   NO 

I agree to be video-taped in the interview.       YES   NO  

The conditions also include the use of the data for research purposes and in articles for publication 

in academic journals, or presentation at conferences on condition that the school is anonymous and 

all participants are referred to by pseudonyms.  

 

Name of learner: …………………………………………………………………………. 

 

Signature of learner:……………………………………………………………………… 

 

Date: ……………………………………………………………………………………….  
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Parent Consent form for participation in a research project (Phase 2) 

(Please circle your response) 

I have read the information sheet and give consent / do not give consent   for my child to 

participate in the Mathematics research project subject to the conditions laid out in the 

accompanying letter – This includes a small assessment written in test-like conditions, as well as 

video-taped interviews with the researcher. The conditions also include the use of the data for 

research purposes and in articles for publication in academic journals, or presentation at 

conferences on condition that the school is anonymous and all participants are referred to by 

pseudonyms.  

(Please circle your response) 

I agree for my child to be interviewed in this study.      YES   NO 

I agree for my child to be video-taped in the interview.     YES   NO  

 

Name of parent or guardian: ……………………………………………………………… 

 

Signature of parent or guardian: ………………………………………………………….. 

 

Date: ……………………………………………………………………………………….  
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Appendix H – Permission from Research School 

 

 

 

RESEARCHER: ROBYN CLARK 

TO WHOM IT MAY CONCERN 

 

Ms Robyn Clark has requested permission to use Jeppe High School for Girls - a research site in a 

research project that she is conducting. 

This project serves to complete the Master’s Program that she is currently involved in at the 

University of the Witwatersrand. 

I hereby give consent for Ms Robyn Clark to conduct the research at this school and look forward to 

the findings and recommendations that such a study will deliver. 

Yours sincerely 

 

Miss Dina Gonçalves 
Headmistress 

 

  

School Logo (removed) 
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Appendix I – Permission from the GDE 

 


