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A b stra c t

Let A  =  (ay) be an m  x  n  matrix. There is a natural way to associate a 

poset Pa with A. A jump in a linear extension of Pa is a pair of consecutive 

elements which are incomparable in Pa - The jump number of A is the min

imum number of jumps in any linear extension of Pa - The maximum jump 

number Over a class of n x n  matrices of zeros and ones with constant row and 

column sum k, M(n, k), has been investigated in Chapter 2 and 3. Chapter 

2 deals with extremization problems concerning M (n,k) .  In Chapter 3, we 

obtain the exact values for M ( l l , k ) ,  M(n,Q), M (n ,n  —3) and M ( n ,n  — 4).

The concept of frequency hyperrectangle generalizes the concept of latin 

square. In Chapter 4 we derive a bound for the maximum number of mutually 

orthogonal frequency hyperrectangles. Chapter 5 gives two algorithms to 

construct mutually orthogonal frequency hyperrectangles.

Chapter 6 is devoted to some enumerative results about Carlitz compo

sitions (compositions with different adjacent parts).
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C h ap te r  1

A G eneral In tro d u c tio n

Combinatorics is concerned with arrangements of the objects of a set into 

patterns. Three general types of problems occur repeatedly:

(i) Existence of the arrangement,

(ii) Enumeration or classification of the arrangements, and

(iii) Study of a. known arrangement.

In this thesis, three combinatorical problems are discussed:

(i) Jump number of a matrix,

(ii)Frequency hyperrectangles, and

(iii)Enumeration of Carlitz compositions.
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1.1 Jump numbers

In real life, the following question occurs: a single machine performs a  set of 

jobs one at a time; precedence constraints prohibit the start of certain jobs 

until some others are already completed; a job which is performed immedi

ately after a job which is not constrained to precede it requires a "setup” 

or ’’jump”—entailing some fixed additional cost. The schedule problem is 

to construct a schedule to minimize the number of jumps. The junm num

ber problem is the precedence constrained scheduling problem written in the 

language of ordered sets.

Let P  be a finite poset, and |P | be the number of vertices in P. A chain 

C in P is a subset of P which is a linear order. The length of the chain C is 

\C\ — 1. A linear extension L of a poset P is a linear ordering a q ,^ ,  

of the elements of P such that ay <  Xj in P implies i < j .

Let i (P )  be the set of all linear extention of P. E. Szpilrajn [Szl930] 

showed that l(P )  is not empty. Algorithmically, a linear extention L of P 

can be defined as follows:

1. Choose a minimal element aq in P.

2. Given aq,aq,...,aq, choose a minimal element from P\{aq,%2,...,a,-} 

and call this element aq+i.
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A consecutive pair (xi,xi+x) of elements in L is a ju m p  (or setup) of P 

in L if is not comparable to x;+i in P. If X{ < Kj+i in P, then (x,-,a;;+1) 

is called a stair (or bump) of P in L. Let s(L,P) [b(L,P)j be the number of 

jumps [stairs] of P in L, and let s(P) [b(P)] be the minimum [maximum] of 

s(L,P) [b(L,P)] over all linear extensions L of P. The number s(P) is called 

the ju m p  number of P, and the number b(P) is the stair number of P.

We have s (L ,P )+ b (L ,P )= |^ f -1

and s(P )+ b(P )= |P [ — I for every poset P.

Each of jump number and stair number determines the other. If s(L,P)=s(P) 

[equivalently, b(L,P)—b(P)], then L is called an optimal linear extention of 

P. The ju m p  number problem is to compute s(P) and to find an optimal 

linear extension of P.

In Figure 1 there is given a poset and three of its linear extention; the 

first linear extention is not optimal, but the second and third are optimal.

x 3 

3 ,
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&

■*3 1 ^3 ' ^

' * 2
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The jump number problem was introduced by Chein and M artin [ChMal972]. 

This problem has been shown to be NP-hard (see [BoHal987]). In the past 

twenty years, many papers have been devoted to the. study of this problem 

(Cf. [Br.JuTrl994], [ChHal980], [DuRiWil932], [Mil991] and [ShZal992]).

Now we define the jump number of a matrix. Let A=(a^j) be an m x 

n matrix. There is a natural way to associate a poset Pa with A. Let 

X={a,'i, and Y={?/1, ...,yn} be disjoint sets of m and n  elements, re

spectively, and define x: < yj if and only if a,-3- ^  0. In P a  are

minimal elements and i/i,..., yn are maximal elements. The poset Pa is the 

usual bipartite poset [the Hasse diagram of Pa is BG(A) drawn with the y ’s 

above the x's]. We use s(A) [b(A)] for the jump [stair] number of Pa instead 

0fs(PA) [b(?A)].

Two matrices Ai and A2 are said to be permutation equivalent, denoted 

by At =  A^, if one can be obtained from the other by independent row and 

column permutations.

It is clear that b(Ai) =b(Ao) and s(Ai) =s(A 2) if Ai =  A2. Therefore the 

jum p r.uiiiLrr of a matrix does not change under arbitrary row and column 

pennu"

The following formulas have been noticed in [BrJul992],
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max{7n,n}-l<s(A ) <  m +  n ~  1,

0<b(A) <  min {m,n},

s(A )= s(At ), where AT is the transpose of A,

s(A® B) =s(A)+s(£?) +  1, b(A© B) = b (A ;+ b (B ), where $  denotes the 

direct sum of matrices.

In the following we will concentrate on (0,1) matrices.

Let R={r*i, and S={si, ...,sn} be nonnegative integer vectors with

ri +  ... +  rm =  s t +  ... +  5„. We denote by A(R,S) the set of all m  Xn matrices 

A—(a,-j) of 0’s and I ’s such that o.ij =  r,- (i =  1,.. . ~n) and =  -Sj

(j  =  1, Suppose M(R,S)=max{s(A):A6  A(R,S)}, 

m(R,S)=min{s(A):A€ A(R,S)}.

The necessary and sufficient conditions for the set A(R,S) to be nonempty 

were given in [Gal957j and [Ryl957], In this thesis, we assume that A(R,S) 

is nonempty and R (or S) is not; a zero vector.

In section 2 of chapter 2, we derive an upper bound and a lower bound 

for s(A), where A€ A(R,S).

Let A(n, k) be the set of all (0,1) matrices of order n with fc I ’s in each row 

and column. Suppose m(n, fc)=min{s(A):A£ A(n, k)}, M(n, «j=max{s(A):A€ 

A{n,k)]-. [«] ([a j) is used for the smallest (greatest) integer no less (more)
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than a.

The minimum jump number is easy to compute.

T h eo rem  1.1.1 ([BrJul992]). If 1< k < n. then m(n, k) = n + k — 2.

The determination of the maximum jump number is much more difficult, 

and Brualdi and Jung ([BrJul992]) offered some partial results:

T h eo rem  1 .1.2 ([BrJul992]). M(n, fc)< 2n — l ~  fn/fc] for 1< k <  n.

The following question is immediate.

Q u estio n  1.1.3. Characterize the extremal regular matrices classes at

taining the upper bound 2n -l-fn /& j.

In order to answer this question, Brualdi and Jnr rr. stated a conjecture.

C o n jec tu re  1.1.4. If k  j n  and (n mod k  for l<  & <  n, then 

M(n, k)<2n — 1 — [n /k ] .

In Chapter 2, we prove this conjecture.

From Theorems 1.1 and 1.2, we have

T h eo rem  1.1.5. If A€ A(n, k), where 1< k < n, then n+lc—2 <s(A)<2n- 

l - \n /k ]  .

Two natural questions are as follows.

Q u estio n  1 .1 .6 . Characterize the extremal reguhr matrices attaining 

the upper bound 2n-l-fn/fc],
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Q uestion  1.1.7. Characterize the extremal regular matrices attaining 

the lower bound n  + k — 2 .

We answer Questions 1.1.6 and 1.1.7 in Chapter 2.

Brualdi and Jung have obtained the exact values of M (n,k)  for 1< fc < 

n <  10 in [BrJul992], In chapter 3, we continue to get M(ll,fc).

M(n, k)

n k = I 2 3 4 5 6 7 8 9 10 11

1 0

2 1 2

3 2 3 4

4 3 5 5 6 —

5 4 6 6 7 8

6 5 8 9 9 9 10

7 6 9 10 10 10 11 12 — — -

8 7 11 11 13 12 13 13 14 - - -

9 8 12 14 14 14 15 14 15 16 - -

10 9 14 15 16 17 16 16 17 17 18 -

11 10 15 16 17 18 17 18 18 18 19 20

Fig.2
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The following formulas are derived in [BrJul992].

M (n, l) =  m —1, (1.1)

M (n>2) =  2n - l - [ n / 2 l ,  (1,2)

M(n,  3) — !iln — I — [n/3J — a 

where a = n (mod 3) and 0< a <  2, (1.3)

Af(n,4) =  2n — 1 — fn/4] — « 

where a =  1 if 4| n — 3 and 0 otherwise, (1.4)

M (n,n) = 2n — 2, (1.5)

M {n,n  — 1) — 2n — 3, (1.6)

2 n --3  if n is even 
M (n ,n  — 2) — < , (1.7)

2n — 4 if n is odd
and M(qk + 1, k) — 2qk — qr for qr >  1. (1.8)

In Chapter 3 we deduce

M ( n ,6) = 2n — 1 — [n /6] — a

0 if 6 | n or (n mod 6) | 6

1 if (n mod 6) = 4  or 5, and n ^  11 

2 if n  =  11 

2n — 3 if 3 | n

where a — <

M(n,n — 3) for ri >  4,
271 — 4 if 3 I n



2n —3 if 4 | M 
M ( n ,n  — 4) =   ̂ for n > 5,

2n — 4 if 4 j  n

M  (qk + 2,k) =
2qk — q + 2  if k is even 

2qk — q + 1  if k  is odd
, where q > l  and k  >  1,

Moreover, two other conjectures in [BrJul992] are also discussed in Chap

ter 3.

1.2 Frequency hyperrectangles

A latin square of order n  is an n  X n  matrix L whose entries are taken from 

a set S of n  distinct symbols and which has the property that each symbol 

from S occurs exactly once in each row and exactly once in each column of 

L.

Two latin square L% =  (/ay) and La =  (%) on n  symbols, say 0.1, —1,

are said to be orthogonal if every ordered pair of symbols occurs exactly once 

among the n2 pairs (ay, 6y ), i  =  l , 2 , .. .,n  and j  =  1 , 2,..., n.

The question of existence of orthogonal latin squares was discussed by
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Euler ([Eul779]) in the following problem of the 36 officers:

Is it possible to arrange 36 officers of 6 different ranks and from 6 different 

regiments in a square formation of size 6 by 6 such th a t each row and each 

column of this formation contains exactly one officer of each rank and exactly 

one officer from each regiment?

This problem asks for two orthogonal latin squares of order 6, Euler 

was unable to find such a pair of latin squares and conjectured that no pair 

existed. Euler had been able to construct pairs of orthogonal latin squares 

of every odd order and of every order divisible by 4 but not of any order 

congruent to 2 module 4. He conjectured that pairs of orthogonal latin 

squares do not exist for such orders.

Tarry ([Tal901]) verified that the conjecture was true for the order six. 

Much later, Bose, Shrikhande and Parker ([BoShPal96Q]) proved that the 

Euler Conjecture was false for all orders n  of the form 4fc +  2 except n  = 2  or 

6 by providing a constructive method of obtaining pairs of orthogonal latin 

squares of all of these orders.

The applications of latin squares to statistical designs, projective geome

try and information theory are discussed in [DeKel974] and [DeKel991], 

The idea of generalizing the concept of latin square to that of frequency
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square was introduced by P. A. MacMahon ([Mal898], pages 276-280). The 

same idea was discussed anew by Finney ([Fil945], [Fil946a], [Fil946b]), 

Addelman([Adl967]) and Freeman ([Frl966]). The formal definition of fre

quency square was first given in A. Hedayat's Ph. D. thesis of 1969 and the 

properties of such squares were developed by A. Hedayat, D. Raghavaro and 

E. Seiden ([HeSel970], [HeRaSel975]).

D efin itio n  1.2.1. Let A =(ay) be a n n x n  matrix and let 53 =  {ci, Cg,.... cm}, 

to <  71, be the set of distinct elements of A. Suppose further that, for each 

i, where i  — 1,2, ...,m , the elements c, appears precisely Ai times (A; >  1) in 

each row and column of A. Then A is called a frequency square (F-Square) 

of order n  on the set 53 with frequency vector (Ai, A2, ..., Am).

Note that, by virtue of the definition, n  =  Ai +  A2 +  ... +  Am.

D efin ition  1.2.2. The two F-squares F ](n ,n ; Ai, A2, ..., Ag) defined on 

the set 53i =  {ai,a2, ...,ag} and F 2(n,n; ...,/7m) defined on the set

532 =  {61, 62, ■■•] b,n} are orthogonal if each ordered pair atbj appear A ir

times when the square Fi and F2 are placed in juxtaposition.

The generalized concepts of frequency rectangles and frequency hyperrect

angles have crept into the literature quite naturally. The following definition 

was given in [Chl980] and [MaFel984].
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D efin ition  1.2.3. Goordinatize the H iti n i cells of a d-dimensional hy

perrectangle of size ni x  . . . x n d by the (/-tuples of integers j j )  where

1< j i  < n i .  A frequency hyperrectangle (F-hyperrectangle) is an arrange

ment of m  symbols into the cells, if m  | nj for i= l,...,d , such

that each of the m  symbols appears rij) times in each of the ri{ sets

where H'- is the set of all cells with j  as the %-th coordinate,

=  1 ,

Suchower [Sul989] and Cheng [Ch2] gave the definition for a frequency 

hyperrectangle which allows different frequencies for different symbols, gen

eralizing the above definitions.

D efin ition  1.2.4. An F-hyperrectangle of size ni  X ... x rid , denoted by 

F (n i,... ,n d;Aa|1,..., A,,,!,..., Ad|tn) where for each i, 1< i  < d, ]%,'_% %

=  A,,! +  ... +  Aj>m, is an ni x ... X rid array consisting of m >  2 symbols, say 

{1 , with the property tha t for each i and j ,  l < i < d ,  1 <  j  < m, the

symbol j  occurs exactly A,j times in each of the % sub arrays where

is the subarray of all cells with k  as the i-th  coordinate, fc =  1 ,

Laywine,'Mullen and W hittle [LaMuWhl995] introduced the definition 

for a hypercube with a prescribed type.

D efin ition  1.2.5. For d >  2, a d-dimensional hypercube of order n  is
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an n  X ... x  n array with nd points based upon n  distinct symbols. Such a 

hypercube has type j  with 0<  j  <  d — 1 if, whenever any j  of the coordinates 

are fixed, each of the n  symbols appears nd-3~1 times in that subarray.

In this thesis, we provide a versatile definition for a frequency hyper

rectangle that allows different frequencies for different symbols and has a 

prescribed type.

For a natural number n, we use n  for the set {1, 2, ...,n}. Pk(S) denotes 

the set consisting of all /j-subsets of the set S. We define Po(S) as {<p} where 

(f) is the empty set.

D efin itio n  1.2.6. A frequency hyperrectangles (F-hyperrectangles) of 

size rii x  ... x  Tid, and type t, 0< t  <  d — 1 , denoted by H R (n i,..., nd\ t; A =  

...,fr), j)) , where A =  $ ((ii. is a function with the domain

-Pt(d) X m  and  =  EjLi $ ( ( % ! , for each (fr, e  Pt(d),

is an Tii X ... x na array consisting of m  >  2 symbols with the property that 

whenever any t  of the coordinates, say i i , ..., i t, are fixed, the symbol j  occurs 

exactly times in that subarray.

Counting the number of times that the symbol j ,  1< j  < m, appears in 

the array, we obtain

ni lx...xn<tx $ ( ( i i , . . . , i t),y)=Tii,x . . .x n i-x<$((i,1,...,T't), j)). (1.9)
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This means that all j ) ’s are determined by 3?((1, 1),...,

$((1, . . . ,i) ,m)  and n i : ...,nd. We can use this fact to simplify the notation to

if t  >  0
H R ( n i , n d; t; A i , A m). where A, =  {

if t  — 0
Let us look at some examples. '

O i l  1 1 0  1 0 1

O i l  1 1 0  1 0 1 .

1 1 0  1 0 1  0 1 1
F i =HR(6,3,3;2;1,2):

1 1 0  1 0 1  O i l

1 0 1  0 1 1  1 1 0

1 0 1  0 1 1  1 1 0

0 1 2  2 0 1 1 2 0

0 1 2  2 0 1  1 2 0

1 2 0 0 1 2 2 0 1
F 2 —-HR(61313;2;1,1,1):

1 2 0  0 1 2  2 0 1

2 0 1  1 2 0  0 1 2

2 0 1  1 2 0  0 1 2

Frequency squares and hyperrectangles have numerous statistical prop

erties and as a result, there has been considerable interest in various as-
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pects of the theory and construction of such objects (See [DeKel974] and 

[DeKel99l]).

Now we give the definition for mutually orthogonal F-hyperrectangles.

D efin ition  1.2.7. Two F-hyperrectangles nd; t; A i , A mi)

and are orthogonal if upon superposition, each

ordered pair (£, j ) .  1< i <  m i, 1<  j  < m 2, appears exactly 

(niLi ni;)2 times.

A set of F-hyperrectangles is called mutually orthogonal if every pair of 

F-hyperrectangles are orthogonal.

It is easy to verify that the above examples F% and F2 are orthogonal.

In Chapter 4 of this thesis, we derive a bound for the maximum number 

of such mutually orthogonal frequency hyperrectangles. This result simul

taneously generalizes Suchower’s bound in [Sul989] and LMW’s bound in 

[LaMuWhl995], as well as some results in [Chl980], [PeMal986], [MaLeFel981], 

[HeRaSel975].

In Chapter 5, v/e give two algorithms to construct mutually orthogo

nal frequency hyperrectangles, which generalize Bose [Bol938] and Mullen 

[Mul988] construction, and Laywine, Mullen and W hittle’s Algorithm 

[LaMuWhl995], respectively.
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1.3 Carlitz com positions

A composition, of an integer n  is a sequence (aq, $2, of integers such 

that

n  = x 1 + x z  + ... +  xk , where Xi > 1 .

A partition of an integer mis a sequence ( x x . x i , of integers such 

that

n  =  xi +  3:2 +  ... +  % and 1< xx <  x2 <  ... < z*.

In both cases, the Xi’s are called the summands or the parts. We refer 

to ra as the size and to k as the number of summands of the composition 

(partition). It is convenient to extend these definitions by regarding 0 as 

obtained by an empty sequence of summands.

Partitions and compositions of integers are, besides their intrinsic inter

ests, usually used as theoretical models for evolutionary processes in differ

ent contexts: statistical mechanics, theory of quantum strings, population 

biology, nonparametric statistics, etc.. Therefore properties (Statistical, al

gebraic, analytic,...) of these objects have received constant attention in the 

literature ([Anl976], [HwYel997], [KnMaJ, [OdRil979], [RiKnl995]).

We know that there are 2n_1 compositions of the integer n  with generating 

function t — . The average number of summands in a random composition
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of size n  is

Carlitz [Cal976] first discussed the following restricted composition, which 

is called a Carlitz composition in [KnPrl998].

D efin itio n  1.3.1. A Carlitz composition of an integer n  is a sequence 

(xi,X2,...,Xk) of integers such that

n —Xi +  22 +  ... +  a;*, where Xi > 1 and Xj ^  Xj+X 

for 2 =  1, ...,k  and j  =  1.

Let c(n) denote the number of Carlitz compositions of size n. Carlitz 

[Cal976] found the generating function

C(z):=En>o c{n)zn =  j — y, where cr(z) =  E i>i

Here are the first few values of c(n):

l  +  z +  z2 +  3z3 + 4 z4 +  7z5 +  U z G + 23z7 +  39z8 +  71zQ +  124z10 + ...; it 

is sequence A003242 in [S1PU995].

Carlitz [Cal976j noted only that the radius of convergence of C(z) is 

at least 1/2. Knopfmacher and Prodinger [KnPr] showed tha t there is a 

dominant pole p, where p =  0.571349....

Therefore c(n) ~  0.456387 • (1.750243)".

Knopfinacher and Prodinger [K LiPrl998] also proved th a t the average 

number of summands in a random Carlitz composition of size n  is asymptotic

17



to 0.350571-n.

For ordinary compositions, the statistic ’’largest summand of a composi

tion” has obtained a lot of attention.

It is noted in [OdRil979] that the average value of the. largest summand 

in a random composition of size n  is asymptotic to 

log2n  +  7 / In 2 —3 / 2+A(log27i) +  o(l)

where 7  is Euler’s constan' 'numerically 7  =  0.577216), and A(a;) is non

constant continuous functions periodic with period 1 and mean 0.

Knopfmacher and Pro dinger [KnPrl998] carried out the analogous anal

ysis for the case of Carlitz compositions. The average number of the largest 

summand in a random Carlitz composition of size n  is asymptotic to

logi/pn —log1/pa-'(p) logx/p(1 -  p) - 7 / k ip  + l/2+A (log1/pn) where 

A(a;) is a periodic function that has period 1, mean 0 and small amplitude.

For ordinary compositions it is meaningless to allow the x {s to be zero, 

since then there would be infinitely many compositions for each n. However, 

in the context of Carlitz compositions, it makes sense, so the number d(n) 

of Carlitz compositions with zeros allowed is meaningful. Such compositions 

have been discussed in [Cal976] and [KnPrl998].

Knopfmacher and Prodinger [KnPrl998] obtained the generating function

18



D(z)  Zn>o d(n)zn —

Therefore d{ri) ~  1.337604 • (2.584243)".

In Chapter 6 of this thesis, we derive:

the average number of summands in a random Carlitz. composition with 

zeros allowed of size n , and show th a t this is asymptotic to 0.871626x1, and 

the average size of the largest summand in a random Carlitz composition 

with zeros allowed of size n, and show this to be asymptotic to

logi/rn -lo g 1/r (j/( r ) - lo g i/r ( l -  t ) -  7 / l n r  + l / 2+<5(log1/Tn ' where 

r  =  0.386960 and 6(x) is a periodic function tha t has period 1, mean 0 and 

small amplitude.

In the last section of Chapter 6, we introduce another related object: the 

Carlitz wcrd, which is a generalization of Carlitz composition.
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C h ap te r  2

E x trem iza tion  P rob lem s

In this chapter, we mainly consider extremal matrices concerning Questions 

1.1.6 and 1,1.7 and extremal matrix classes concerning Question 1.1.3. In 

section 2 .1, the symbiotic relationship of bipartite posets and (0 ,1) matrices 

is discussed. We derive an upper bound and a lower bound for s(A) in section 

2.2. A special class of matrices is constructed in section 2.3. This class of 

matrices is useful in answering Question 1,1.6. In section 2.4, we give the 

main results of this chapter, a proof of Conjecture 1.1.4 and answers to 

Questions 1.1.3, 1.1.6 and 1.1.7,
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2.1 Bipartite posets and (0,1) matrices

In this section, we will introduce the symbiotic relationship between bipartite

posets and (0,1) matrices.

A poset P is bipartite if its vertices may be partitioned into two subsets X

and Y such that each ordered pair of P is of the form z  < y  where x  eX  and

y  GY. Such a partition (X,Y) is called a bipartition of the poset. A bipartite

poset P with a partition (X,Y) is denoted by P(X,Y).

Let P(X,Y) be a given bipartite poset, where X ={zi, and Y={yi , . . . , yn}.

We define a,, =  1 if z,  < yj, otherwise a,, =  0. The resulting m-by-n matrix

A =(ay) is called the reduced adjacency matr ix  of P(X,Y). The matrix A

characterizes P(X,Y).

For example, consider the bipartite poset P(X,Y) is in Figure 1, where

X = { x i , x',(} and Y={i/i, y2}. The reduced adjacency matrix of P(X,Y) is

1 1 

0 1 

0 1 

1 0

On the other hand, let A=(a,-j) be a (0,1) m-by-n matrix. There is a 

natural way to associate a bipartite poset P(X,Y) with A. Let X = { $ i,..., xm}



and Y = { y i , j / n} be disjoint sets of m  and n  elements, respectively, and 

define x,- < yj if and only if ay ^  0. In P(X,Y) are minimal

elements and yi , . . . , yn are maximal elements.

Two bipartite posets P i(X i,Y 1) and P 2(X2,Y2) are isomorphic if and only 

if there are two bijections 8 : X i  X 2 and q> •. Y\ Yi such that x < 1/ in 

P i if and only if 8{x) <  ^(y) in P 2.

We see that two bipartite posets P i(X i,Y i) and P ^ X a ^ )  are isomorphic 

if and only if their resulting reduced adjacency matrices are permutation 

equivalent.

Two bipartite posets P i(X i,Y 1) and P)(X2,Y2) are disjoint  if they have 

no vertex in common. The union of P 1(Xi,Yi) and P 2(X2,Y<2) is the poset 

with the vertex set X1UY1UX2UY2 and the ordered pair set consisting of 

all ordered pairs in Pi and P2. If Pi(X i,Y i) and P2(X2,Y2) are disjoint, we 

denote their union by P i(X i,Y i)+ P 2(X2,Y2).

We always designate a zero matrix by 0 , a matrix with every entry equal 

to 1 by J. • a order to emphasize the size of these matrices we sometimes 

include subscripts. Thus JmtTl denotes the all Vs matrix of size m  by n,  and
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this is abbreviated to Jn if m =  n. The notations 0,„,n and On have similar 

meanings. In displaying a matrix we often use * to designate a submatrix of 

no particular concern.

We define the direct sum of matrices Ai and A; to be the matrix 

Ai 0
Ai 0  A<i —

0  Az
and the oblique direct sum of Ai and A) to be the matrix

_ J
A].©^2 —

At J
Suppose A,- is the reduced adjacency matrix of P;(X,■,¥;), where 1< 

i < m,  then Ai ® ... © A m is the reduced adjacency matrix of the poset

Since the Hasse diagram of P(X,Y) is the usual bipartite graph drawn 

with the y’s above the x’s, terms related to bipartite graphs, such as vertex 

degree, isolated vertex, etc., carry over directly to bipartite posets. Their 

definitions can be found in [BoMul975, Chapter 1-10].

A completed bipartite poset is a simple bipartite graph with bipartion 

(X, Y) in which each vertex of X is joined to each vertex of Y; if |X| =  m and 

|Y| =  n, such a poset is denoted by Pm,n.
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The bipartite complement of a bipartite poset P(X,  Y) ,  denoted by P(X,  Y),  

is a bipartite poset with partition (X, Y )  in which x < y hi P{X,  Y)  if and 

only if x is not comparable with y in P{X, Y),  where x & X  and y e.Y.  For

The reduced adjacency matrix of Pm,„ is ,/W|n. Let A and B  be the reduced 

adjacency matrices of P ( X , Y )  and P (X ,Y ) ,  respectively, then 

B  =  /|x |,|y | -  A.

In this section, we will write some results in poset language as well as in 

m atrix language.

Matrices (bipartite posets) whose stair number is 1 or 2 have been char

acterized in [BrJul992]. The assumption in the following theorems that A 

has no rows or columns consisting of all 0’s or all Vs involves no essential 

loss of generalization.

example, Figure 3 shows a given poset P(X,Y) and its bipartite complement.
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T h eo rem  2.1.1 ([Br.Jul992]). Let A be a (0,1) matrix having no rows 

or columns consisting of all 0’s. Then b(A )= l if and only if A = ,/.

T h eo rem  2.1.1'. Let P(X,Y) be a bipartite poset with no isolated vertex. 

Then b(P(X ,Y ))=l if and only ifP (X ,Y )=  P\x \,\y \-

T h eo rem  2.1.2 ([BrJul992]). Let A be a (0,1) matrix having no rows 

or columns consisting of all 0’s or all 1’s. Then b(A)=2 if and only if the 

rows and columns of A can be permuted to give an oblique direct sum 

0 ® . . m  of zero matrices.

T h eo rem  2.1.2'. Let P(X,Y) be a bipartite poset with no isolated vertex, 

and each vertex degree satisfies d(#)< |Y | where x  GX, 

and d(7/)< |X | where t/ 6 ^.

Then b(P(X,Y))=2 if and only if P(X ,Y)= Pmunx +  ... +  F,nfc,7ifc, where 

m i +  ... +  mfc =  |X| and ni -r ... +  =  |Y |.

2.2 Normal forms

The following theorems show the relations between matrix structure and 

jump number.
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T h eo rem  2 .2.1  ([BrJul992]). Let A be a (0,1) matrix with no zero row 

or column. Let b(A)=p. Then there exist permutation matrices P and. Q 

and. integers and rti, ...,n p such that PAQ equals

•An i  ,ili A-12 A iP

A'i■ip

0 0 iiip.rtp

(2.1)

A matrix (2.1) satisfying the conclusion of Theorem 2.2.1 is called a nor

mal form of A.

The next result is straightforward from the above theorem.

T h eo rem  2 .2 .2 . Let A be a (0,1) matrix with exact hi  zero rows and 

h‘2 zero columns. Let b(A)=p. Then there exist permutation matrices P and 

Q and integers and n j ,. . . ,n p such that

"All 1,711 -̂12

PAQ=A'=

Omi ,h.2

2p 0 ;m2,hz

0  0  ... Aiippip fAnj,,/"2

Oh,i,ni Ohi,ri2 ••• Ohi,np Oln ,/i2

(2.2)
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Now we prove the main theorem of this section.

T h eo rem  2.2.3. Let R = (r1)..., 7-m) and S = (s i,..., sn).

Define r m;„ — min{r; \ I < i < rn, r,- ^  0}, hi — |{i | 71,- =  0, 1 <  z <  m } |, 

Smin =  min{.S{ | 1 <  * <  ra, s,- ^  0}, h? = |{i | f- =  0, 1 <  i <  n } |,

7’max =m ax{rt'} and s,nax =  max{s;}.

Suppose Ag A(R,S), then

s(A)> m  + n - l — rnin{m — hi -  sm;n +  1, n  — /i2 — r min +  1}

(i.e., b(A) < m.in{m -  hi -  +  1, n -  /i2 -  7-min +  1}),

and s(A)< ?n + n -  l -  max{[(m -  h i ) / smliX] , [(n -  

(i.e., b(A) >  max{f(m -  / i i ) / jmaxl , \ { n -  li2) /r lrmx]} ) .

P ro o f. Let b(A)=p. Then A = A'  of the form (2.2).

Since A has at least smj„ 1’s in each nonzero column, the first stair occurs 

in row s,,,;,, or later. Hence there are at most m  — hi — (smjn — 1) stairs, 

and hence s(A)> m  + n — l-[m — hi — (smjn — 1)]

=  m +  n — 1 — (m — hi — smin +  1).

Since s(A)=s(AT), we may get s(A)> m  + n — 1—(n — /i2 — 7’min +  1).

So s(A)> m  + n — 1 — min{m — hi — smi„ + l , n  — hi — 7-mi„ +  1}.

In the form (2.2), we have m i  + . . . + m p + hi — m,  where each rnj satisfies 

m{ < smax> and hence pxs,nax+/H >  m, i.e., p > \ (m -  /ii)/.smax] .
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Then s(A)< m  + n — 1 — |"(m — /ti) /smaxl •

Similarly s(A)< m  + n - l - \ ( n -  /i2) / r max] .

Hence s(A)< m + n - 1 —max{f(m -  /i i) /smaxl , f(n ~  h2) / rmax]}. □

The following corollaries are clear.

C oro lla ry  2.2.4. Let R = (7-i, .».,~m) and S=(s1, ...,sn).

Define r min =  m.in{r,- | 1 <  z <  m , r,- ^  0}, hi  =  |{z | r,- =  0, 1 <  i <  m } |, 

s,nin =  min{si | 1 <  z <  n, s; ^  0}, A; — |{z | s,- =  0 , 1 <  z <  n } |,

7 ' , n a x  =max{?'i}, and smax =  max{.s,-}.

Then

m(R,S)> m +  n - 1  — min{m — hi — smi„ +  1, n — h i — +  1}, 

M (R ,S)<m  +  n -  1 ~ m ax{f(m  -  /ii) /smaxl , [(n -  /i2) / r maxl}. 

C o ro lla ry  2.2.5. Let A be an m x n (0,1) matrix without any zero row, 

if there are at most k 1’s in each column, then b(A )> [m/fc] .

C o ro lla ry  2 .2 .6 . Let A be an m  x n  (0,1) matrix without any zero 

column, if there are at most k I ’s in each row, then b(A)> [n/A;] .

In A(n,k) ,  m  = n, h x = h2 — 0, smax =  7'max =  k, then we have 

C o ro lla ry  2.2.7 ([BrJul992]). M(n, A')< 2n — 1 — fn/fc] .

28



2.3 A sp ec ia l class of m atrices

We say matrix A contains m atrix B if there exists distinct integers i i , is and 

distinct integers rmch that the new matrix consisting of the iV

th, ,.. ,i5-th rows and the j j - t h , j i - t h  columns of A is B. For example, ma

trix A -

0 0 0 

0 1 0 contains matrix B  =
1 1 

0 1
, since the new matrix

1 JL 0
consisting of the third, second rows and the first, second columns of A  is B. 

First we prove some lemmas.

L em m a 2.3.1. Let A be a (0,1) matrix.

J s ,t
(i) If A has no zero column, then b(

(ii) If A has a zero column, then b(

P ro o f. Let b( 

the normal form

Js ,t
) =  p ,  then

A . A  .

)=b(A).

)= b(A )+ l.

is permutation equivalent to
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B=

J,mi.ni /112 A ip

0

m2,7i2

0

A,'2p

77lpf7lp

O/H'tn O/ii.nj ••• Ohltnp
It is clear that the first mi rows of the normal form B must contain s all

1’s rows. Hence nil >  s.

In (i), since A has no zero column, it implies nij > s. Therefore after we

delete these s all Vs rows from B, the stair number does not change.

J s ,t
Then b(

A
In (ii), we have mi >  s.

Since A has a zero column, it follows that mi =  s.

Hence after we delete these s all Vs rows from B, the stair number de

creases by 1.

J s tt
There b( )=b(A )+ l. □

Similarly, we have

L em m a 2.3.2. Let A be a (0,1) matrix.
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(i) If A has no zero row, then b( j sf a  )=b(A).

(li) If A has a zero row, then b( j  ^  )=b(A )-fl.

L em m a 2.3.3. Let A and B be (0,1) matrices, and assume that either

(i) b(A)>b(B)+2, and A has no zero column or row, or (ii) b(A)>b(B)=2, 

both A and B have no zero column or row. Then b(A©B) =b(A).

,h
P roof. (1) Let b(A@B) =  p, then A@B =

tion equivalent to the normal form

*Ani,ni A 12 ... v4ip

0  'Jmi ,ii2 '' • A'ip
C=

is permuta-

0 O ... V,mp,7ip
The following claim is clear.

Claim 2.3.4. Any two-row submatrix of k@ B  consisting of one row from

J,si.il B and one row from A J,33,(2 has no zero column.

Due to Claim 2.3.4, we see that the first mi  rows of C contain 

A  J  si ,(2

If the first mi rows of G contain

B or

Jsi.ti 5

mi =  si implies A has a zero column, a contradiction.)

, then nii > si.  (Because
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Hence after we delete 

change.

from C, the stair number does not

A  J.S2thTherefore b(A@5) =b(

Since A has no zero row, we have b( 

Hence b(A@)S) =b(A).

If the first mi rows of C contain 

Therefore b(A©B) <b(

A J.S2,h

A  Js2,t2 

) +  1

) =b(A) by Lemma 2.3.2.

, then m i > s2-

<b(B ) +  1 +  1 (by Lemma 2.3.2) 

<b(B) +  2<b(A).

Since b(A©B) >b(A), it implies b(A©B) =b(A).

(ii) can be proved in a similar way. □

We now recursively construct a particular class of matrices A,,,;, which 

have occured in [BrMaRol986].

Set ni = n and ki =  k. We now apply steps 1 and 2 below, beginning 

with step 1 and alternating between steps 1 and 2.

Step 1. Suppose n,- and fc; have been defined where n,- >  k{ > 0 and i is 

odd.

Let n,- =  qtki + ri, where 0< r{ < ki and %>0. If 7',-=0 , we set A,—© , , ,
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a direct sum of <?,■ copies of -4,, and stop. Otherwise A,'=(®gi_i J fc|.) 0  A;+i, 

and Ai+i € A(n,'+1, is defined in step 2, and where n ;+1 =  &, +  r,- and 

fc-:+i =  A;;.(when qi—l,  the direct sum is an empty matrix.)

Step 2. Suppose and ki+l have been defined where ?j;+1 >  >  0

and i +  1 is even. Let n i+1 =  qri+1(n{+1 - h  ^i) +  r i+1, where 0< ?'i+i <  n,>i -  

ki+i and If r1> 1=0, we set At-+1=:@gi+l 0 ni>1 - t i.H, an oblique direct

sum of qi+i copies of 0 „H,1_i..i.+ l and stop. Otherwise , Ai+1=[@,,l+l- i  0 n,+1 ]@Ai+2,

where Ai+2 6  A(n;+2, with n ;+2 =  (n;+1 -  ki+i) +  r;+! and fci+2 =  n +\.

Note that for odd i, q,-+1 >  2 and q,+2 >  2 whenever they are defined.

That is so because n ;+1 =  +  >  2r,- and hence Ui+i >  2(n,-^i — Also

n ,>2 =  (n;+i — fci+j) +  r ,-+1 > 2tv+i =  2fc;+2. It follows that this construction 

terminates after a, finite number of steps. Let t be the smallest positive 

integer such that rt =  0.

"We set An,fc equal to At .

Now we evaluate the stair number of A nth-

L em m a 2.3.5. If i  >  3, then b(A,t|t) =b(A 3) +  ?i — 1.

P roof, A,,^. =  ) © A2 where A2 =  0 7l2 ©.. .@Qn2 © A3.

b (  A n ,* .')  = b ( v 4 2 )  - f  <71 — 1 .
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According to the way of constructing An]/:, A3 has no zero column or row. 

Due to lemma 2.3.3, b(Az) =b(A 3).

Then b(An-fc) =b(A 3) +  gi — 1. O

T h eo rem  2.3.6.

i f 2 | f
b(A„,fe) =

P roof. The proof is by induction on t.

If then A.û k ™ ®q\Jki b(Anifc)=Q'i.

If i= 2 , then A„,fc=(@?1- i  Jfc1)®A2, where A2 =@t t On2_*2, hence b(An,fc) =

Qi — l  +  2 =  gi +  l.

Then when t= l  or 2, we are done.

Assume that we have proved the result holds for £ <  m, m >  2. Then

when £ =  m +  1, by Lemma 2.3.5,

b ( A n ,fc) =  ^ ( A s )  +  q i  — l .  ( 2 . 3 )

By the induction assumption,

E ^ % _ i - ( C - 4 ) / 2  i f 2 | t '

where t' — t — 2 .

Combining (2.3) and (2.4), we prove the statement. □

b(A3) =  - (2.4)
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2.4 M ain results

For a matrix A in block form, we use A[n,*2, i 3 | j t] for the sub-

m atrix consisting of the ii-th , i2-th, i s-th block rows and j i-th,  jVth,..., 

it-th  block columns of A. A(ii,Z2, j  is used for the subma

trix of A obtained by deleting the ?i-th, ij-th , z's-th block rows and ji-th , 

j 2-th,..., jt-bh block columns from A. Instead of A[ii ,z2, |  11, 12, 

and A (ii,t2, . . .4*a | we write A [ii,i2, and A (ii,i2, re

spectively.

A square matrix is called upper triangular if all the elements below the 

main diagonal are zero.

Firstly we consider Question 1.1.6.

T h eo rem  2.4,1. Suppose AG A(n, k) where 1< k < n. Then s(A)< 

n +  fc — 2, and the equality holds if and only if A has an order n — k + 1 non

singular submatrix which is permutation equivalent to an upper triangular 

matrix.

P roo f. Brualdi and Jung have proved s(A)< n  +  — 2 in [BrJul992],
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s(A )= n + k — 2 (i.e., b(A) = n — k + 1) if and only if A contains an order
f  \

1 -K ... ^

n — k + 1 submatrix of the form
0 1 ... *

V 0 0 ••• 1 /

if and only if A has an

order n — k + I non-singular submatrix which is permutation equivalent to 

an upper triangular matrix. □

Now we discuss Question 1.1.7.

If AG A(n, k) where k| n and b(A )=^, then from the form (2.1), we see 

that mi — ... =  nip = m  — ... =  nv = k.

Thus we obtain the following assertion.

T h eo rem  2.4.2. Let A€ A(n,fc) where k  | n, then s(A)=2n — 1 — |  iff 

A = An]fc.

In order to investigate the case fc \ n, we first prove the following lemmas.

L em m a 2.4.3. Suppose that Ae A(n, A;) and k < n  < 2k, then s(A)=2n— 

3 iff (n — fc) | fc, and A= A,tfi.

P ro o f  . If (n — fc) | fc and A= A,,^, then A= On_fc©...©On_fc and thus 

s(A)=2n 3.
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If s(A)=2n — 3, then b(A )=2 .

By Theorem 2.1.2, we see that A = OmuniW--WOmt,nt-

Since Ag A(n, k), it iinphes that mi =  ni = ... = m t = nt = n — k.

Hence (n — | n, A=

Since (n — A:) | (n — k), we have (n — k) \ k. D

L em m a 2.4.4. If A is permutation equivalent to the block triangular 

form

An Ai2 . . .  Ait A n 0  . . 0

0 A22 . . .  A2(
or

A21 A22 • . 0

0 0 ... A« An A (2 - ■ Au
then b(A)> E L ib (A ,) .

P roof. Since A can achieve at least b(A ii)+b(A 22)+ ...+b(A it) stairs, it implies 

that b(A)> ELib(A ii). D

L em m a 2.4.5. Let A be an m X?i (0,1) matrix having no rows or columns 

consisting of all 0’s or 1’s and b(A )=2 . Then the number of 0’s in any two 

unequal columns is not more than m.

P roof. Due to Theorem 2 .1.2, A=Omii,Vlf6 ...@Cl,nl,nn where t >  2 and 

m i +  ... +  m< =  m.
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The number of 0’s in any two unequal columns equals m,-, -f <  m,  

where 1<  zq,:? < t  and ^  zd- D

For the case & { n, we have the following result.

T h eo rem  2.4.6. Suppose that pfc < n <  (p +  l)fc, AG A(n, /s), then 

s(A)=2n — 1 — (p +  1) iff (n mod &)( fc and A=

P roof. The sufficiency is clear.

To prove the necessity, when p = l, we are done.

Suppose when p <  h, h >  2, the statement holds.

Then when p =  /i, b(A )=h +  1.

According to Theorem 2.2.1, we may assume A is in the normal form 

Jmi ,m Ajo ... A\

0  Jm.2,n2 A'jqiq-i
(2.5)

0  0  ... Jmh+i ,n/,+1

where ni; < k, m  < k, i = 1, ..., /i +  1.

In the form (2.5), hk < n < (h + l )k  and Ag A(n,k),  the following 

assertion is clear.

Claim 2.4.7. For any two distinct integer i, j ,  1< i , j  <  /i +  1, we have 

A; < m,- +  my <  2A:, A; < n; +  nj  <  2A;.
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In the form (2.5), suppose D; =  (A;,;+i ... i = 1,

Let hi be the smallest integer of set {i + 1, ...,A +  1} such that A,- ,̂ ^  0.  

If D,- =  0 ,  then let /i,- — i.

Suppose F, —

A,-_i-U
Let tj be the largest integer of set {1,..., j  — 1} such that A(jj  ^  0 . If 

Fj =  0 , then let tj = j.

Claim 2.4.8. If hi > i, then b(At-i/li) =  2.

Proof of claim. If b(A,-i/,i)>2, then it is clear that b(A(/i; | i)) >  /i +  1, 

hence b(A)>/t +  1, which contradicts the assumption that b(A)=A +  1.

■Ju,b 0
If b ( A , =  1, by Theorem 2.1.1, A;,/,; =

0  0
Assume a=rrii, then m; +Tn;lt. <  k, where i hi, which contradicts claim 

2.4.7.

Then o<m,. Similarly, 6<n;l;.

Since A[i,/ij] =  Omjl. @ A,-,/,,, A[i,/i»] has at least three stairs.
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A(z", hi, hi +  1, h +  1) * *

Since () *

0  0  A \h i +  1 ,..., /z +  1]
it implies that

b(A)>b(A(z, hi, hi +  1, h +  l))+b(A[z,/i,-]j+b(A[h,- +  1, •••, h +  1])

>  [hi — 1 — 1) +  3 +  [/i + 1  ~  (hi +  !) +  !]

=  A, +  2 >  /i +  1, a contradiction.

Hence b(Ai1h;) =  2. D

Here we can get the following statements, whose proofs are given in the 

next section.

Claim 2.4.9. If hi > 1, then A;,/,, — 0 ,  i =  2 ,..., hi — 1.

Claim 2.4.10. If \<^hi <c A-b 1, then Axt — 0 , I — hi -11,..., A 4-1.

Applying the above assertions, we now finish the proof of Theorem 2.4.6. 

In the form (2.5), if D; =  0 ,  then mi = ni — k, A=J* © A (l), A (l)e  

A(n — k,k).

Let n' = n — k, then (A — l)fc <  n ' <  hk, 

and s(A(l))=s(A)-s(.Ji ) — 1 

— [2n — 1 — (A -f-1)] — (2A — 1 — 1) — 1
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=  2(n — k) — 1 — h 

=  2n' — 1 —■ /t.

Due to the induction assumption, A (l)=

((n — fc) mod fc)| k.

Then (n mod k)\ k  and A = A n<k.

If Di 7̂  0 ,  i.e., h\ > 1, then we distinguish the following two cases.

Case 1, hi ~  h + I. Then =  A13 =  ... =  Aih =  0.

Due to claim 2.4.9, A2,a4- i ...— —0.

Therefore A= A[l, A + 1] © A (l, h +  I).

Then we have A[l,/i +  1] 6  A(u',fc), A (l, A, +  1) 6  A(n", fc) where k < 

n1 < 2k, [h — 2)fc <  n" < /zfc, n' +  n" =  n.

We get b(A[l, A, +  Ij) >  2, b (A (l, h + 1 )) >  /i — 1 by corollary 2.2.5. 

Since b(A[l, h +  l])+ b(A (l, A +  1)) =  /t +  1, :t implies that 

b(A[l, ft. -f 1]) =  2, and 

b(A (l, h + I)) ~  h — 1.

Due to corollary 2.2.5, n" <  (h — l)k,  then (h •- 2)k< n" <  (A — 1)&. 

Suppose that n" <  (A — l)k.

By the induction assumption, (n' mod &)| fc and (n" mod fc)| fc.

Then k < n ’ < k  + k j 2 and {h — 2)k < n" < { h — 2)k +  k / 2 .
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Hence (/i — \ )k  < n  < hk> which contradicts hk < n  < (h + l)k.

So n" =  (h — l)k.

It implies that m 2 =  n2 =  ... =  =  n/, =  fc,

therefore A (l,/i+ l)=  B a-i J/l-, A{1}A+1]= An_(;l-i)<,.|fc.

Then A =  A n , i ,  (n mod fc)| fc.

Case 2. 1 <  /ii <  A -j-1. Then A12 =  A13 =  ... =  Ai./^-i =  0 .

Due to claim 2.4.9 and 2.4.10, A1|/ll+1 =  ... =  Ai,/l+1 =  0  and 

A 2,/h  =  .. .  =  A /n - i , / , !  =  0.

Next, we will prove D/tl =  0 .

Suppose not, by claim 2.4.8, we have b(Ai,;ll) =  2 and b(A/llt/lh ) = 2.

A1/11
It implies that b(

17•'/il

0
) >  4. Then b(A(/i;ll | I) >  ft +  1,

hence b(A)>ft +  1, a contradiction.

Then D/tl =  0 , A= A[l, fti] ® A (l, fti).

Similar discussion as case 1, we have A= A n,k and (n mod k) \ k. D

The next result follow? from Theorems 2.4.2 and 2.4.6,

T h eo rem  2.4.11. Suppose that Ag A(n, k) where 1<  k < n, then 

s(A )=2n — 1 — fn/fc] iff k | n or (n mod k) | k, and A= A n,k-
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C oro llary  2.4.12. Suppose that AG A(n, k) where 1< fc <  n, then 

s(A )=2n — 1 — \n/k]  iff k | n and A= ®^Jki or {n mod fc) | k and AS

®fn/k"}— © (CB— 1 modk) •

The following corollary shows Conjecture 1.1.4 is true.

C oro llary  2.4.13. If k{ n and (n mod fc)f k  for 1 <  & <  n, then 

M(n, k) < 2 n  — l ~  fn/fc].

C o ro lla ry  2.4.14. Suppose that n >  2fc. Let Ae A(n,k)  satisfy 

s(A)=M (n, fc) =  2n — 1 — [n/fc].

Then there exits Be A(n — fc, fc) such that A is permutation equivalent 

to Jk @ B  where s(B)=M (n — fc, fc).

The next corollary give an answer to Question 1.1.3.

C o ro lla ry  2.4.15. M(n, fc)=2n -  1 — [n/fc] iff fc j n  or (n mod fc)| fc.

2.5 Completion of proofs

In this section, we will prove claim 2.4.9 and 2.4.10 in order to complete the 

proof of Theorem 2.4.6.

From claim 2.4.7, we see that
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Claim 2.5.1. If A, > i, then A,-,;., has no column or row consisting of all

1’s.

Claim 2.5.2. If /t,- > i, then A;,/,,, has no column or row consisting of all

0’s.

Proof of claim. Suppose A;,/,,, has a column or row consisting of all 0’s. 

Due to claim 2.4.8, A[i, /i,-] has at least three stairs, then b(A)>/t +  1, a 

contradiction. D

Since b(A)=b(AT), we can obtain the following claims.

Claim 2.5.3. If tj < j,  then b(At],j) =  2.

Claim 2.5.4. If tj < j,  then A tj,j has no column or row consisting of all 

0zs or Vs.

Now we prove claim 2.4.9,

Proof of claim 2.4.9. Suppose not, then there exists tiH, such that 2< 

hi  < h i -  I and b(A,hi,/1I) =  2.

By claim 2.4.8, 2.5.1, 2.5.2 and Theorem 2.1.2, we have 

=  C p i ,© • • ■© 0 pu, ^  — 2-

There exist two unequal columns in Ai,^ opposite two unequal columns 

in A(Ai , otherwise we see that all columns of A thvin are identical, which
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contradicts b(A(/iii/11) =  2.

Without loss of generality we assume the numbers of 0’s in these two 

unequal columns of A^/n are pi, p2 respectively, there are m, a2 0’s in their 

respectively opposite columns of A ^ .

Due to lemma 2.4.5, a t +  a2 <  m th , pi +  P2 < m i.

Now consider the numbers of I ’s in these two columns.

Since each column sum of A is &, and =  A;, we have 

m/t, +  (m thi -  ai) +  (mi -  pi) <  A;, 

rn/,, +  (mtki -  a2) +  (mi -  p2) <  fc, 

equivalently m/,, +  mthl -  ai <  p ;.

TTik, +  m tAi -  <z2 <  p2.

Then m/„ +  m (hi <  2m/,, +  m t(ll

<  2m/,, +  2m<Ai — ai — a-i

<  Pi +  p2

<  A;, contradicting lemma 2.4.7.

This completes the proof. O

Prom claim 2.4,9, we ha/e the following assertion.

Claim 2.5.5. If h\ > 1, then A^/,, =  0 qiqiW...®0giqw, w >  2 , wq=k,

45



m/M =  <? <  fc/2 .

Finally we will consider claim 2.4.10.

In the form (2.5), if 1 < hi < h + l,  we suppose that (A , i/,1+1 ...Aj^+j) ^

O. Let .s be the smallest number of the set {hi + 1,..., h +  1} such that

Ais #  0 .

By claim 2.4.7, m/,, + m s — q + m 3 > k.

Due to claim 2.5.5, m;„ <  k/2,  hence m s > k — miH > k/2.

We see that b(Ais) <  3, otherwise we contradict b (A )= d+ l.

The following statements can be deduced.

Claim 2.5.6. b(Ais) ^  1.

V.,6 O
Proof of claim. Suppose that b(A is) =  1. Then k \ s =

Since each column sum is fe, and m s > k/2,  it implies that a<k/2.  

Due to claim 2,5.5, we have b([Ai,A1 Ais])> 3.

Ay,, A u

man.
By claim 2.4.7, b < n s, then b(

contradiction.

So b(A ls) ^ 1. O

Claim 2.5.7. If Ais has no zero row, then bfAiA

) >  4, hence b (A )> /i+ l,
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If A,., has a zero row, then b(Ais) =  2.

Proof of claim. If Ais has no zero row, due to the fact that column sum 

of Ais is at most k — m s < k/2,  then we have

b(Aia) >  \ k / ( k  — ma)] >  k / ( k  — m s) > 2  by corollary 2.2.5,

So b(Ais) =  3.

If Aia has a zero row, then b(Aia) <  3, otherwise we. contradict b(A)=ii +

1.

Due to claim 2.5.6, we have b(Ai3) =  2. □

Due to claim 2.5.3, 2.5.4 and 2.5.7, we have the following assertion. 

Claim 2.5.8. l<f» <  s, and b(A{>is) =  2.

Claim 2.5.9. Aia has no zero column.

Proof of claim. Assume that Ais has a zero column.

Now consider whether Ais has a zero row or not.

Case 1. Aia has a zero row, then b(Aia) = 2  by claim 2.5.7.

So b(
0  J,mstn.

) >  4, therefore b(A)>/i +  1, a contradiction.

Case 2 . Aia has no zero row, then b(A ia) =  3 by claim 2.5.7. 

Ala
So b( ) ^  4) therefore b (A )> /i+ l, a contradiction.

Hence Ai5 has no zero column. □
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Claim 2.5.10. Let the numbers of 1’s in any two unequal columns of Als 

be Oj and ay, respectively, then a,- +  ay >  k/2.

Proof of claim. Suppose not, then there exist two unequal columns of Als 

such that cti + a 2 < fc/2 , where cij and ai are the numbers of 1’s in these two 

unequal columns of Ai3, respectively. We denote by B the submatrix of Als 

consisting of these two columns, then b(B)=2 by claim 2.5.9.

Since ai +  a2 < /c/2, it implies that the number of zero rows of B is greater 

than &/2, hence b( J41 ( )>  4 by claim 2.5.5.

Therefore b(A)>/i +  1, a contradiction. Q

Next we will complete the proof of claim 2.4.10.

We see that there exist two unequal columns in Ai|S opposite two unequal 

columns in AtllS) otherwise we see that all columns of are identical, which 

contradicts b(Als) ^  1.

Without loss of generality we assume the numbers of I ’s in these two 

unequal columns of Als are c ,, eg respectively, and there are p: , p2 0’s in 

their respectively opposite columns of At„a.

Due to lemma, 2.5.10, ci +  C2 >  k/2.

Due to claim 2.5 8 , b(Ai,|S) a  2, and we get pt + p 2 <  m-t, by lemma 

2.4.5.
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In matrix A we consider the numbers of I ’s in these two columns, then 

m s +  (m f„ -  pi) +  c i <&,  m ,  +  (m t, — p2) 4- c2 <  k .

Hence 2mB +  mt,  +  (m,, — pi ~  p2) -r ci +  c2 <  2fc.

So 2ms +  m t, +  &/2 <  2k.

Due to m s > kj2,  then m s +  m t, <  fc, a contradiction.

Hence Ai; =  0 , i = hi +  1. D

49



C h ap te r 3 

Some exact values concerning 

m axim um  ju m p  num bers

In the first section of this chapter, we get the exact values for where

1< k  <  11. Two types of recursive constructions are .discussed in section 2. 

Consequently we derive some inequalities for M(n, k). In the last section, we 

deduce exact values for M(n, 6), M(n, n — 3), M(n, n — 4) and M(qk +  2, k).

3.1 M (ll,k )

T h eo rem  3.1.1. The following hold:
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(a) M (ll ,  1) =  10, M (ll,2 )  =  15, M (ll ,3 )  =  16, M (ll,4 )  =  17, M (ll,5 )  =  

18, A f(ll, 9) =  18, M (ll ,  10) =  19, M ( ll ,  11) =  20.

(b )M ( ll ,7 )  =  18, M (ll ,  8) =  18.

(c) At (11, 6) =  17.

P roo f, (a) can be obtained from formulas (1.1)-(1.8) in Chapter 1.

(b) By Corollary 2.4.13, M (ll ,7 )  <  18 and M ( l l ,8) <  18.

Let Ai =  (J3 © (Oi@Oi@Oi®Oi))@C>4; then we see s(Ai)=18. Thus 

M (ll,7)=18.

Let Aj =  ((1/2 © (0 3©02 @0 i))@03 )© 0 3 , then we see s(A2)= 18. Thus 

M (ll,8)=18.

(u) Now we determine the value of M (ll,6).

The following lemma is quoted from [BrJul992].

L em m a 3.1.2 ([BrJul992]). M(2k +  l , k - f - 1)> 4k — [v/fc].

By lemma 3.1,2 and Corollary 2.4.13, 17< M ( l l ,6) < 19. We only need 

to prove M (11,6)t^ 18.

For any matrix Ae A ( ll ,6), if b(A)=3, then from Theorem 2.2.1, we have

^ 6 ,5—q A 12 A 13

A = 0 A 23 (3 -1 )

0 0 Js—piG
where 1< p < 4, 1< q < 4.
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Since b(A)=b(A'r ), we may assume b(Ai2)<b(A 23) in the form. (3.1),

In the form (3.1), b(Ai2)>  1, otherwise b(Ai2)= 0 , then A12 =  O, hence 

p = 6, a contradiction.

Moreover b(A23)<  2 and b(A13)<  3, otherwise b(A)>3, a contradiction. 

Then l< b (A i2) ^b (A 23) ^  2 and 0^b (A i3) <  3.

L em m a 3.1.3. In A (ll ,6), there does not exist a matrix of the form

(3.1) whose stair number is 3, and b(A i2)= l-

P ro o f. Suppose there exists a matrix A of the form (3,1) and A€ A ( l l>6), 

b(A)=3 and b(Ai2)= l.

Since Ag A (ll,6) and b(A i2)= l,  we see that Ai2 =
J6-p,q

0

•^6—p,5—.7 Js-p,q Cl

Jpfi-q 0 c .

0 Jp<<l A 23

0 0 p ,6

Therefore A = B \  =

Claim 3.1,4. Ci has a zero column.

Proof of the claim. Suppose Ci has no zero column. By the fact that Ci 

has 6 columns, then the number of 1’s in Ci is not less than 6 .

Since each row of Ci only have one 1 ’s, we see that the number of 1 's in
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Ci is 6 — p < 6, a contradiction.

Thus, we have

Claim 3.1.5. b (C i)= l or 2.

We distinguish the following two cases.

Case 1. b(C1)=2. Then Ci = T S)tl  @  J 52,1 C q—p(4 , where si +  si

V-

•fs—p,5—I '^6—p,7 ^ s i , !  ®  *^S2,1 Os-p

Therefore S 2 =
Jpfi-q 0 D l Di

0 •Jp,q D 3 d 4

0 0 J 5—P

Since b(A)=3, we see that b(
D 2

) <  1, then b(
D i

D , D,
) = L

Due to the fact that the column sum of B2 is 6, we have

Claim 3.1.6. D2 has no zero column. D4 has no zero column. 

Di
Claim 3.1.7. has no zero row.

Proof of the claim. Suppose D2 has a zero row, then =  1. Hence D2 

can not have an all I ’s row. Therefore D2 =  0 . Then the last column sum 

of B2 is at most 5, a contradiction.

Therefore D2 has no zero row. Similarly, we can prove that D4 has no
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zero row. □

Since b(
D2

A
) =  1, by claim 3.1.6, 3.1.7 and Theorem 2.1.1, we have

D4
- 2p,4*

We choose any one row from the second and the third row blocks of 

B2, respectively. Those two rows sum> (5 ~  7) +  4 4- <7 -f 4 - 1, a contradic

tion.

Case 2. b (C i)= L  Then A = 63 =

f1 Vs-p.g Ve-p.i Oe—p,5

Jp,5-q 0 E i £2

0 J p, q £3 £4

0 0 '^5-p,l Vs-p,5
of B3 is 6, we have

E4 has no zero column.

Due to the fact that the row sum of B3 is 6, we have 

£2
Claim 3 1.9.

£4

has no zero row.

Claim 3.1.10. E2 has no all 1’s row.

Proof of the claim. Suppose E2 has an all Vs row, then 5 — 7 =  1, i.e., 

7 =4. Hence there are at most two Vs in each row of E4.

Since E.i has 5 columns and E4 has no zero column, we see that
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b(E4)>  |"|] =  3 by Corollary 2.2.6.

Thus b(Ba)> 4, a contradiction. □

Similarly, we have

Claim 3.1.11. E-t has no all 1’s row.

We see that the number of Vs in any one column in the third column 

block of B3 is at least 6 — p +  5 — p. Then 6 — p +  5 —p < 6 , i.e., 2p >  5. 

Therefore p >  3, Hence p is 3 or 4.

Claim 3.1.12.
E2

£4

has no all Vs column.

Proof of the claim. Suppose
£2

£4
i.e., p = l, a contradiction. □ 

£ 2

has an all Vs column, then 6 — p=5,

By Theorem 2.1.2,

Then p — 1 j 2p.

Therefore p ^  4. Hence p =3, and

=  where ii  +  ... +  4  =  5.

£ 2

£ 4

=  @02,(2 @02 is"

Due to claim 3.1.8, we have b(E2)=2 and b(E<j)=2.

£1
We see that there is only one Vs in 

or E3 =  0 .
£3

. So we may assume E t =  0
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If Ei =  0 ,  then b([JPtq % ])—2.

O E\ Ei
Since b(E2)=2, we see b( ) >  4, thus b(Ba)>  4, a con-

Jp,q E 3 £ 4

tracliction.

If E3 =  0,  then b( ) > 3 .

Therefore b(B3)>  4, a contradiction.

We complete the proof of Lemma 3.1.3. □

L em m a 3.1.13. In A (ll ,6), there does not exist a matrix of the form

(3.1) whose stair number is 3, and b(A12)=b(A23)= 2.

P roo f. Suppose there exists a matrix A of the form (3.1) and A6  A (ll,6), 

b(A)—3 and b(Ai2)—b(A23)—2.

Let A22 be a p x q matrix. Since b(A)=b(AT), without loss of generality, 

we may assume p < q. (3.2)

A12 has no zero row, otherwise we contradict b(A)=3.

Suppose A12 has exactly s rows which consists of all 1’s.
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Then A= B
Je-s.s-q G\ C3

j wliere 0 ] — @p,gi
0  Jptq A'23

0 O </g—p,6
kp + s = 6 and k > 2 .

Hence 2p < 6, thus p <  3.

Since b(A23)=2, we see that p >  2.

Hence p=2 or 3.

Similarly, we can have q=2 or 3.

Distinguish the following two capes.

Case 1. p=2. Then k—2 or 3, hence s=0 or 2.

The following two subcases will be discussed.

Subcase 1.1. s=0. Then k=3.

Since 2< q <3, we see that Oi =  and g=3.

Thus A23 =  Oi,3@Oi,3.

6̂,2 O2,1®O2,10O2,1 D

Then A ^ =  Q ,/2|3 O l ,3 0 O i ,3

0  o
Then De A(6, 2).

By Corollary 2.2.5, we have b(D)> 3.
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by Theorem 2.2.1.

Since b(D)< 3, we see b(D )= 3.

&12 Di3

ThusDS Q o%,

o  0  Jm z ,r  

Since De A(6, 2), we have m i =  m 2 =  m3 =  m  =  n2 =  n3 =  2

and Djj =  Dw  =  D23 =  0 .

D

0l,3©0i,3
)>  4, a contradiction.

□

Thus D =  J 2 © J 2 © J-2, therefore b(

Subcase 1,2. s=2. Then fc=2.

Thus C l  =  C*2,91 ©02 ,1/2•

Claim 3.1.14. 0% has zero column.

Proof of the claim. Similar to the proof of claim 3.1.4.

Thus we have b(C2) =  1 or 2.

Claim 3.1.15. b(C’2)= l.

Proof of the claim. Suppose b(C2) ^ l ,  then b(C2)= 2 .

Without loss of generality, we may assume

Due to the fact that the column sum of Bi is 6, we have E has no z~ 0 

column.

Since b (E )= l, we see that E has at least one all I ’s row, and we may 

assume this row is the i-th row of Bi-
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Since Ci has no zero row, the number of I ’s in the i-th row of Bi >5 —

contradiction. D

•■̂2,5—q J2,q ^2,1 02,5

J4,5-q 02,,, @02,52 F f 2

0  J2,q f 3 f 4

0  0 Ja,! Jz,s

Then A= S 3 =

Claim 3.1.16. q =  3.

Proof of claim. Suppose <J =  2 , then qx = q2 = 1.

Therefore there are at most two Vs in each row of Eg.

Since the column sum of B3 is 6, it implies that has no zero column. 

By Corollary 2.2.6, b(F2)>  = 3 , thus b(B3)>  4, a contradiction. D

Now we may assume qi = 1 , q? — 2 in B 3 .

Consider the following sub-matrix B of B 3 ,

O2,l@02,2 ^2

^2,7 F3 F4

F2

B=

It is clear that

I ’s.

F* f 2
Then b( ) ^  1. Thus b(

F, f 4

has no rows or columns consisting of all 0’s or all

) =  2. Hence, by Theorem 2.1.2,
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O3.it ©03,(2-

Then B S  (Gi G2 Os.^ffiOs,^), where Oi is obtained from
02 ,1002,2

by independent row permutations and G2 

There is only one 1’s in G'2, hence we have

* 1 Ji,t[ o ht.

B = B ' =  0 , ,  j , , ,  0 , , ,  where

£2 Os.i 0 3|i/ J3î

Fi

F3

Lx

L2

consists of 5 rows of

02 ,1©0 2,2 II

the matrix , and ■ or
J l,q f 2 =  t'2

Since L2 consists of three rows of the matrix

t'\ — 2̂ 

t'i = h  

02 ,i ©02,2

b(L2)>  2, thus b(B ')>  4, therefore b(B3)>  4, a contradiction. 

Case 2. p =3.

By (3-2), we have <7 =3.

^ 6 ,2  03,2003,1 A 1 3

Then we may assume A = B.{ = q  J 3 3 0 i,3©0 2,3

0  0  ^2,6

, we see that

Here we
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may suppose Ai3 is

°i,3  1 1 0

(i)

Oi)

H i H-i

Hz I-h

1 0 0 1 0  0

Hz H z * * # *

1 1 0  0 0 0

H 7 * Ha * *  *

or

or

Oii)

In case (i), we see that any row of

0l,3

, where Hi and H2 consist of two rows.

erwise
A13

0l,3$02,3

f fi

Hz

H 2

h 4 

1 1 0

1 1 1  0 0 0  

1 1 1  0 0 0  

0 0 0 1 1 1

must be (0 0 0) or (1 1 1), oth-

Hi f h

%

1 1 1  0 0 0  

1 1 1  0 0 0  

0 0 0 1 1 0

0 0 0 1 1 1

A 13
thus b( )>3, then b(B4)> 3 , a contradiction.

01,3002,3
Due to the fact that the row sum of B4 is 6, then we have Hi =  0 2̂ .



W ithout loss of generality, we may assume H3 =

0 0 0 

0 0 0 

1 1 1

Thus b (H a #  1, hence b(H2)>  2.

<h,3

Oi,3

then FL —

Therefore b(
Ja.i Hz Hi  

So b(B4)>  4, a contradiction.

) > 4 .

In case (ii), there is only one 1’s in Hs, thus there exists one row in 

/7S f/ 6 of the form (0 0), otherwise the number of 1’s in the seventh 

column of B4 is greater than 6 , a contradiction. Assume this row is the i-fch 

row of B 4 .

Therefore B4 has the sub-matrix

L=

1 1 0  1 0  

h I3 0 0 

1 1 1 1 1

1 1 1 0  0 
column 3 4 5 6 7

the f i r s t  row 

the i-th row 

the 8-th row 

the 9-th 7'oto

where (li I2 /3)=(1 1 0) or (0 0 1).
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Therefore b(L)> 4, thus 4, a, contradiction.

In case (iii), similar to the case (ii), discuss column H7 and Hg instead of 

H5 and Hg, then we also have b(B4)>  4, a contradiction.

We complete the proof of Lemma 3.1.13. O

By Lemma 3.1.3 and Lemma 3.1.13, we see there does not exist a matrix in 

A (ll ,6) whose stair number is 3. Hence M (ll,6) ^  18. Therefore M (ll,fi)=17.

□

Brualdi and Jung stated the following conjecture in [BrJul.992]. 

C o n jec tu re  3.1,17. M(2A: +  1,/c +  l)=4A:-^\/^].

The fact that M (ll,6)=17 demonstrates that conjecture 3.1.17 holds for 

&=5.

3.2 Recursive constructions and som e inequal

ities

Our recursive constructions are based on the next two facts.

Fact 1. If Ai € A(ni,k)  and A; 6  A(n2, k), then A1@A2 6  A(ni +  n2, k).
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Fact 2. If A€ A(fc, 2k — n) where k < n < 2k, then A©On_fc 6  Afn, k). 

From Fact 1, we have the following theorem.

T h eo rem  3.2.1. If ni > k > 1 and > k > 1, then M(ni  +  n2, k) > 

M { n i , A:) +  M  (ji2, k) +  1.

P ro o f. By definition, there exists a matrix Ai 6  A(ni, k) such that 

s(Ai)—M(ni ,k) .

Similarly, there exists a matrix A; G A(n2,k) such that s(A2)= M (n2, fc). 

Since s(Ai © A2)=M (tii, fc) +  M{ni ,  fc) + 1  and Aj © A2 G A(ni +  n2, fc), 

we have iV/(rii +  n2, >  M(ni , k)  +  M{n2, k) +  1. □

C o ro lla ry  3.2.2. M(17,6)= 29.

P ro o f. M(17,6)> M (9 ,6) +  M(S, 6) +  1 

=  15-1-13 +  1 

=  29.

By Corollary 2.4.13, M(17,6) < 2 x 1 7 - 1 - 3  

=  30.

Then M(17,6)=29. □

C c ro lla ry  3.2.3 ([BrJul992]). M(n, k)> 2k — I + M(n — k, k) where

n

Brualdi and Jung conjectured that equality in Corollary 3.2.3 holds in
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general. The following conjecture appeared In [BrJul992].

C o n jec tu re  3 ,2 .4  ([Br.)ul992]). Suppose n > 2k. Let AG A(n,k)  satisfy 

s(A)=M (n, k). Then there exists BG A(n — k ,k)  such that A is permutation 

equivalent to B  where s(B)=M (n — k,k).

P ro p o s itio n  3.2.5. Conjecture 3.2.4 does not hold.

P roo f. If Conjecture 3.2.4 holds, then M(n,k)=s(./t )+M(n  — k, k) -f 1

= 2k — 1 + M(n  — k, k).

Let n = 17 and k  ~  6 . Then M(17,6)= 6) =  28, a contradiction

to Corollary 3.2.2. O

Therefore the equality in Corollary 3.2.3 does not hold in general.

From Fact 2, we have the following theorem.

T h eo rem  3.2.6. M(n, k)> 2n — 2k -f M(k,  2k — n <t where k < n < 2k,

P ro o f. By definition, there exists a matrix A<£ A(fc, 2k — n) such that 

s(A)=M(k,2k  — n), i.e., b(A)=2A; — 1 — M(k, 2k — n).

Due to Lemma 2.3.3, b(A@On- i )  =b(A ) = 2k ~ l  — M(k,  2k — n).

Then M(n, k)> 2n — 1—b(A@(9n_fc)

^  2 — 2k  -|- M{k) 2k  — u). D

We note that equality in Theorem 3.2.6 does not hold in general. For
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exam ple, M (ll ,6 )~ -1 7 > 2 x 5  -|- M ( 6 ,1).

3.3 Some exact values

From Corollary 2.4.13, Theorems 3.2.1 and 3.2.6, we can get exact values for 

M ( n , 6), d f(n ,n  —3), M ( n ,n  — A), M ( n ,n  — 2) and M(q/c +  2, fc).

T h eo rem  3.3.1. Suppose 0 < & < |, k \ n  and (n mod fc)f k. If there exist 

natural numbers ni and such that n  =  Bi +  n2, (rti mod A;)| k and (n2 

mod fc)| k, then M (n ,k)— 2n — 2 — [n//c] .

P roo f. Since n > 2k, without loss of generality, we may assume n i > 

k and n2 >  k.

Then M (n, k) > M{n \ , k )  +  M {n 2,k)  +  1

=  2m - l  -  [ f ]  +  2n2 - l -  [ f ]  + 1  

=  2n — 2 — .

On the other hand, M(n, k) < 2n — 2 — [n/fc] by Corollary 2.4.13.

Hence M(n, k)= 2n — 2 — • D

C o ro lary  3.3.2. M ( n , 6) =  2n — 1 — [n /6] — a,

0 if 6 | n or (n mod 6) j 6

1 if (n mod 6) =  4 or 5, and n 11 •

2 if n =  11
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Proof. If 6 | n or (n mod 6) j 6, it is clear.

For n =10  and 11, we can verify it directly.

If n  >  16 and (n mod 6) =  4, let ni =  8 and n 2 =  n — 8. Therefore we

get Af(n, 6) =  2n — 2 — [n /6] by Theorem 3.3.1.

If n >  17 and (n mod 6) =  5, it is similar to the above case. □

C o ro lla ry  3.3.3 ([BrJul992]). M (n,3) =  2n — 1 — [n/3j — a where 

a =  n (mod 3) and 0< a <  2.

C o ro lla ry  3 .3 .4  ([BrJul992]). M (n,4) =  2n — 1 — [n/4] — a where 

a =  1 if 4| n — 3 and 0 otherwise.

T h eo rem  3.3.5. If 9 >  1 and fc >  1, then

!2qk — (7 +  2 if fc is even
.

2qk — q + I if & is odd 
P roof. If k is even, by Corollary 2.4.15, then

MCgfc 4" 2, fc)=2(o,fc +  2) — 1 — (<? +  l)

-- 2qk — <7+ 2 .

If k is odd and q >  2, let =  k +  1 and U2 — (q — l )k  + 1.

Then +  2, k^—2{qk +  2) — 2 — ((? +  1)

=2qk — qr +  1 by Theorem 3.3.1.

If k is odd and <7= 1, then the conclusion follows by formula (1.7) in 

Chapter 1.
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Hence if k  is odd, M(qk +  2, A;) =  2qk — <7 +  1. D

Let g=2 , we have a corollary.

C o ro lla ry  3.C.6 ([BrJul992]). M(2fc +  2,fc)=
Ak if k  is even 

A k — 1 if t  is odd

2m — 3 if & j m
T h eo rem  3.3.7, If M(m, m — k)—  ̂ , where l<  k <

2m — 4 if & { m 
m — 1,

then M(m + qk ,m + (q— l )k)=
2(m + qk) — 3 if k | r,i 

2(m +  qk) — 4 if fc |  m
for q > 0.

P ro o f. If fc | m, then

M(m + q f c , m + ( q -  l )k)=2{m 4- qfc) -  1 -  

=  2(m +  9/;) — 3 .

If fc f m, we prove it by induction.

When 5 =  1, M(m + k , m ) > 2 k  + M{m,  m — k) (by Theorem 3.2.6) 

> 2 k - r  2m — 4 .

On the other hand, M(m + k, m)<2(m  +  A:) — 1 — 12^ j  

=  2(m +  fc) —• 3.

Hence M(m +  k, m )=  2(m +  fc) — 4.

Assume when q = p, the statement holds.
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Then when q — p+1, M(m+(p+l)A:,m+pfc)> 2fc+M(m+pfc,m+(p—l)fc)

=2(m  +  (p +  l)fc) -  4. 

On the other hand, M (m +(p+l)fc,m +pfc)<2(m +(p+l)fc) —1—

=  2(m +  (p +  l)k)  — 3.

Hence M(m +  (p +  l)fc, ?n +  pfc)=2(rn +  (p +  l)fc) — 4.

Therefore if k  f m, we get M(m +  qk, m  (q — l)fc)=2(m +  qk) — 4. D

C o ro lla ry  3.3.8 ([Brjul992]). M ( n ,n  -  2) =
2n — 3 if n is even 

2n — 4 if n is odd 

2n -  3 if 3 | n
C o ro lla ry  3,3.9. M ( n ,n  — 3) =  •i for n>4.

2n — 4 if 3 I n 
P roof. Let &=3 in Theorem 3.3.7. Due to the fact that

M(5,2)=6= 2 x 5 - 4 ,

M(6,3) =  9 =  2 x 8  — 3, and

M(7,4) =  1 0 = 2 x 7 - 4 ,

2n — 3 if 3 | n 
we get M(t2, it — 3) =  for n>4.

2n — 4 if 3 { n

2n — 3 if 4 | n
C o ro lla ry  3.3.10. M (n ,n  — 4) =  < for n>5.

I 2n — 4 if 4
P roof. Let &=4 in Theorem 3.3.7. Due to the fact that

D

M (6,2)=8= 2 x 6 - 4 ,
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M (7,3) =  10 =  2 x 7 - 4 ,

M (8,4) =  13 =  2 x 8  — 3 and

M (9,5) =  14 =  2 x 9 - 4 ,

2 n —3 if 4 | n
we get M (n, n — 4) =

2n — 4 if 4 { n
for n>5. □
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C h ap te r 4 

M axim um  N um ber of M u tu a lly  

O rthogonal F requency 

H yp errect angles

In this chapter, we derive a bound for the maximum number of mutually 

orthogonal frequency hyperrectangles that simultaneously generalizes Su- 

chower’s bound [Sul989] and L M W ’s bound [LaMuWhl995]. Before it we 

state a simple necessary condition for an F-hyperrectangle of size n i x ... x na 

and type t  to exist.
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4.1 A  necessary condition

Firstly we give the following necessary condition for an F-hyperrectangle of 

size rii X ••• x Ttd and type t  to exist.

T h eo rem  4.1.1. If there exists an F-hyperrectangle H R (n i,..., t; A i,..., Aro), 

where 1< t  <  d -  1, then lc.m.{Y[^=l n it j { i i , ..., it} G Pt (d )}< n ii i  n«.

P roo f. Suppose not, then Z.c.m.{nfc£=1 nik \ 6  P t( i)} = r ii l i

by the fact that

Lc.m.{rijfe=i 'Hj,. j { ii , . . . ,  G Pt(d)}| H ili  

Set Q=(n,Li ThiAi =  (n j .1 f), 1).

By formula (1.9) in Chapter 1, we have

/•c.m.dljtLi nik | { ii,..., if} G Pt(d)}| Q, 

then n i i  rii | Q.

Therefore Q> n i l  (4.1)

Since Ai +  ... +  Am =  H # i  t nj,  we have

<3 =  n i i « i (  A i/n#i,...,t7 ij) < n i l which contradicts (4.1).

□

Let t  =  1, then we have a corollary.

C o ro lla ry  4.1.2. If there exists an F-hyperrectangle F (n i , ..., rid', A i,..., Am), 

then Lc.m.{ni, . . . ,n d } < n ii^ i-
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Secondly we correct some errors in [Sul989].

In order to generalize Definition 1,2.3, the following definition was stated 

in [Sul989].

D efin itio n  4.1.3. An F-hyperrectangle of size % x ... x rid , denoted by

F (n i , ..., ndi A ^i,.... Ai-ro; ...; Ad,i,..., Ad,m) where for each i, 1< i  < d , n i  =  

At,i +  ... +  Ai,mi is an % x  ... x  nd array consisting of m  > 2 symbols, say 

{1,. . . ,  m}, with the property th a t for each i and j ,  l < i  < d ,  1 < j  < m ,  the 

symbol j  occurs exactly A;,3- times in every subarray consisting of the n< cells 

fed) where all coordinates but the i-th  coordinate are fixed.

Let’s look a t an example.

0 0 1 1  0 0 1 1  0 0 1 1  0 0 1 1

0 0 1 1  0 0 1 1  0 0 1 1  0 0  1 1
Fq '•

1 1 0 0  1 1 0 0  1 1 0 0  1 1 0 0

1 1 0 0  1 1 0 0  1 1 0 0  1 1 0 0
It is easy to verify th a t Fq is an F-hyperrectangie of size 4 x 4 x 4 by Defi

nition 1.2.3. But according to Definition 4.1.3, it is not an F-hyperrectangle. 

So Definition 4.1.3 is not a generalization of Definition 1.2.3. Definition 1.2.4, 

which is a generalization of Definition 1.2.3, corrects Definition 4.1.3.

Concerning the definition of mutually orthogonal F-hyperrectangles, the
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following one corrects Definition 2 in [Sul989].

D efin ition  4.1.4. Two F-hyperrectangles F (n l , A t , A mi) and 

F(ni,, yUi , /Um2) are orthogonal if upon superposition, each ordered 

pair (i, j ) ,  1 <  2" <  mt, 1 < J  <  m 2, appears exactly nlXiHj/Ylf=lni times. 

A set of F-hyperrectangles is called mutually orthogonal if every pair of F- 

hyperrectangies are orthogonal.

4.2 An upper bound

Now we give the main result of this chapter.

T h eo rem  4.2.1. If there is a set of mutually orthogonal F-hyperrectangles

then

-  1) <  a - l i  o< -  E L i  n U m j  -  1) - 1.

P r o o f  Set iV=ni x. . .xnj  and M =  m i+ ...+ m r. For theF-hyperrectangle 

F t, 1< k < r, we define an jV x rttk matrix A& =  (“ (iftLy.j)

1 if j  occurs in position (z'i, of F*.

0 otherwise 
Construct an N  x M  m atrix B — (A1jA2j...|Ar).

In any subarray of an F-hyperrectangle of type i defined by fixed k co-
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ordinates, say i u h ,  ■■■H, 1< fc <  t, one element will be determined if the 

others are known. For example, after we determine a subarray by the values 

of coordinates the element with the rest d — k coordinates equal to

their respective dimensions n*,where h ^ i i ,  12, —ik, can be interpreted as the 

last element of the above subarray. There are ]C{il,...,u}g Ptto Fl/LiOn, — 

element of B  are dependent for a fixed k.

Summing over fc, there are

U L i  £{.-v ;fc} eP 4 i)n /=-L(n;, -  1) such elements.

Then rank(3 )<  n ,4 in i -  Z L i  Z {„  {n i, ~  !)•

Now we see that for 1 <  &, / <  r. A^Aj =  (/y ) is an m* x mi matrix where 

/y=num ber of times the ordered pair (f, j )  occurs when is superimposed 

onto Ff. Then

Ajt A; — 1 ,
UVym & H if k ^  f

where Lk — diag(X[h\  ...,/\W ) and J  xm is an rrikx mi  m atrix consisting 

of all l ’s.

Thus the M  x M  matrix B TB  is given by
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B TB =

!  A fA t A’f  A-i ... A j A r ^ 

AjAi ATA2 ... ATAr

A^A] A J A 2 ... A j A r

rii=t+l n i^ l  'AniXmj ̂ 2

^J m i  X f T - t  ^ 1  H i = ( 4 . 1  7 ^ : ^ ' 2

Ll'JiniXinrhr

L'lJmixmrLr

\

^r'^rnrXmt ,̂r'/mrxm2̂ -,2 •••

Set the iV/ x Af nonsingular diagonal matrix G=

Ai 0

i 2

Then
0 £,

n i==t+, n,-/mi LlJnnxmi

Bl Jm’i X  m  t  n , , , ^  T I f  A n

Tr t/inrx7ni h r Tjir xmj .. n ;=i+1 Kiln
Next v/e find the eigenvalues of B T B C ~ l .

\

Observe that the sum of each column of B TBC 1 is 7'N/(n^lt+i n i)i then 

r t yO l i i t+ i  n<) is one eigenvalue of B TBC~l . For the eigenvalue /V /dfiit+i n i)i
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there are mi — 1 eigenvectors (a,,,,, 6m2, Qmr)T m r — 1 eigenvectors 

{Smi, 8m2, . . . ,amr)T where 8mk = (0 ,...,0) and a„lk havem* coordinates, and 

the coordinates of a mk sum to 0.

Hence rank [BT BC~l)> 1 + M  — v.

Then rank(B1 B )=rank (B TBC~l)> I + M  — r.

Due to the fact that rank(BTB )<rauk(B ),

then we have

1 + M  - r  < U L  ni ~  E L i  E {u -ye PAd) (n;, -  1),

Le-> E y = i ^  n ,4 i n ,--E l= i E{i, it}ePt(ii) D

The above theorem generalizes many previous results.

When we reduce to the following cases:

(1) f =  i;

(2) m i =  ... =  m r ;

(3) (hypercubes case) mi =  ... =  m r , n : =  ... =  rid, =  ... =  

A$t , where i =

(4) t  = 1, mi  =  ... =  m r , — ... =  AM where i =  1, ...,r;

(5) (F-squares of type I) d =  2, nj =  n-2, t =  1;

(6) (F-squares of type 1 with constant frequency vectors) d = 2, ni =  

n2, t  =  1, A^1 =  ... =  A% for i =  1, ...,r;
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(7) (F-squares of type 1 wit-h constant frequency vectors and based on 

the same number of symbols) d =  2, n i =  712, t =  1, m i  =  ... =  m r , =

... =  AW where i =  1, ...,r;

we have some corollaries, which appeared in the literature.

C o ro lla ry  4.2.2 ([Sul989]). If there is a set of r  mutually orthogonal 

F-hyperrectangles of type 1

F i = F (n i, ...,nd; A ^ , ..., AW),..., Fr F (m , .„ ,n d; A ^ , .... AW), 

then IT^=i('/rtj — 1) <  I lL i ni ~  — 1) — 2.

Corollary 4.2.3. If there is a set of r mutually orthogonal F-hyperrectangles 

F i = H R ( » i , A ^ , A ^ ) ) , . . . ,  F r = H R (n i,...,n d;t; A^,...,AW ), 

then r  < % -  E L i  pfc(i) -  1) — 1).

Corollary 4.2.4 ([LaMuWh.1995]). If there is a set of r ^-dimensional 

mutually orthogonal hyper cubes

F i =H R(n, Fr —HR(n, n*-*"1, nd- t-'1),

then r < g )(n  -  1)' -  1).

Corollary 4.2.5 ([Chl980]). If there is a set of r  mutually orthogonal 

F-hyperrectangles of type 1 based on the same number of symbols, m,

F i =H R (n1, ...,n<i; 1; A ^ \ ..., A ^),..., Fr ==HR(n1, ...,nd\ 1; A ^ ,..., A ^), 

then r <  n, -  E L iW  -  1) - 1 ) .
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C o ro lla ry  4.2.6 ([PeMal986]). If there is a set of r  mutually orthogonal 

F-squares of type 1

F i =H R (n,n; 1; A p , a W ) , . . . ,  F r =HR(n,n;

then -  1) <  (n -  I)2.

C o ro lla ry  4.2.7 ([MaLeFelSSl]). If there is a set of r  mutually orthog

onal F-squares of type 1

F j —HR(n, n; 1; A ^),..., F,. —HR(n, n; 1; Â r), A W ) ,  where A^ =

... — A^. for i — 1 , ...,r,

then - ! ) < ( « -  I)2-

C o ro lla ry  4.2.8 ([HeRaSel975]). If there is a set of r  mutually orthog

onal F-squares of type 1 based on the same number of symbols, m,

F j =H R (n ,v: 1; A,..., A),..., Fr = H R (n,n; 1; A,..., A), where A =  

then r < ~ ( n  -  I )2.

Theorem 4.2.1 also motivates the following definition.

D efin ition  4.2.9. A set of mutually orthogonal F-hyperrectangles

F i =HR(%i Md!% A p , ..., AW),..., Fr =H R(n1, ..., nd]t; A ^ , ..., A ^ ) is

called complete if the equality holds in Theorem 4.2.1.

At this time, complete sets of F-hyperrectangles are only known to exist 

when the frequency vectors are constant and, except for a few sporadic cases,
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when N  =  nl ...n,i is a prime power.
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C h a p te r  5 

C onstruc tions  for M u tua lly  

O rthogonal Frequency 

H yp  e rr ect angles

In this chapter, we provide two different ways of constructing mutually 

orthogonal frequency hyperrectangles of a prescribed type. We concen

trate on frequency hyperrectangles based on m  symbols with constant fre

quency vector, So we simplify

H R ( n ! , nd] t; ±  Fl.dt+i n i) to FHR(nu . .. ,nd\ t \ m).

Firstly, we exhibit sets of linear polynomials over finite fields that repre-
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sent complete sets of mutually orthogonal frequency hypeiTectangles(MOFHR) 

of a prescribed type and of prime power order, which generalize Bose [Bol938] 

and Mullen [Mul988] construction.

Secondly, we give a recursive algorithm to construct (d +  l)-dimensional 

MOFHR of type t+ 1  from d-dimensional MOFHR of type i, which generalizes 

a recursive procedure described in [LaMuWhl995].

5.1 Polynomial representation of orthogonal 

F-hyperrectangles

Let Fq denote the finite field of order q, where q is a prime power. Fol

lowing Niederreiter in [Nil971], we say that a polynomial f ( x i ,  ... ,xn) with 

coefficients in Fg is a ‘permutation polynomial in n  variables over Fg if the 

equation /(% , . . . ,xn) =  a  has exactly g'”-1 solutions in F"  for each a  6 Fg. 

More generally, we say tha t a system . . . ,xn) of poly

nomials with 1< m  < n  is orthogonal in Fq if the system of equations 

..., xn) =  O'; {i =  has exactly cfl~1n solutions in Fg for each

(o;x,..., o;m) 6 F^1.

As indicated by Niederreiter in [Nil971], the system
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f m(xi , . . . ,xn) is orthogonal if and only if for all (b1,...,bm) 6  F™ with 

ih ,  •••> W  ^  ( 0 , 0 ) ,  the polynomial rc„) +  ... +  bmf m(xu

is a permutation polynomial in n  variables over Fq.

Let m  — q, a prime power, and let n; =  gSi, where Si >  1 is an integer. 

Now we have the following theorem.

T h eo rem  5.1.1. The ^  - ^ L i  E f t  it}ePfc(d) Uj=i(<l3ii ~  1) ~

1) polynomials

/(oil “lai adh-Oj t j )  •••! X l s i )  ; •••) =  Ei=l E jL j d i j X i j  (5.1)

over Fg, where

(a) a t least t+ 1  of the subvectors (an , ...,Oisl) , ..., (ot i , ...adSi) are nonzero;

(b) No two sets of a’s are nonzero Fq multiples of each other, i.e.,

(a l l i  •••) ^Isi j •••> ^dli •••°dsrf) 7  ̂ •••> ttlsu •••; adli •••a dsd) f ° r aIiy  e 7̂

o e  Fg

represent a complete set of MOFHR(gS1, gSd; q) of dimension d and 

type t.

P ro o f. There are st~ Z l =1  ik}<=PM

polynomials over Fq defined by (5.1) and conditions (a), (b).

Label the i-th  coordinate with all s^-tuples ( j n, jiSi) over Fq, for 1 <  ?" < 

d. Now we may view an F H R ( n i , i ;  m)  as a function /  : fg  '=1 —> -Fg,



where th e  element ( i n , •••, j i 3lI Jdi, ■■■,jdad) becomes the  element

‘" j j d l j  ' " j j d S t t )  G IPq,

If (jik,U—>3ik,sik )> f°r  * =  1, - , t ,  is fixed, then

/(o)(®ll)"*,®lsi) ■■■ix d h  ■■■,Xdall) |(aifc|1 Bifcl.<fc)=&‘lfc,i,...,%,»ifc)> fc=li..‘,*=  Q

has the  same num ber of solutions in  for each a  £  Fq. so  th a t

in the  subarray obtained by fixing the ii- th , . . . , i r th  coordinates, each ele

m ent of Fq is picked up  equally often. Hence f (a)(xn , x l8l , . . . , x dl, . . . , x dSd) 

represents an F H R ( n x , n d] t; m ) .

Clearly the F-hyperrectangles represented by / i  =  f(a)( x u , —,XiSl,...,

%di, ■■■,%d3d) and f 2 -  f ( a ' ) ( x i i , . . . , x l31t . . . , x d l ) . . . , x dSd) are orthogonal if and 

only of / i  and /a form an orthogonal system of polynomials in  s i variables

over Fq, By the Corollary of [Nil971, p.417j, / i  and /a  form  an orthogonal 

system  over Fq if and only if for all (61,62) 7̂  (0, 0) 6  F%, the polyno

mial 61/1 +  62/2 is a perm utation polynomial in £]?=i % variables over Fq. 

Any linear polynomial of the  form S J=1 CjXj is a  perm utation polynomial in 

r  variables provided a t least one cj ^  0.

Let (61,62) 7̂  (0 , 0) 6  Fq. If 61 =  0, then  62/2 is a perm utation polyno

mial since 6% ^  0 while if 62 =  0, then b j f i  is a perm utation polynomial, 

Suppose 6162 7̂  0, so 61/1 +  62/2 is a perm utation polynonial unless all

84



E i=i Si coefficients vanish, in which case &ia'- =  —62% for j  =  1 , £ f =i Si, 

i.e., unless — —62^/61 for j  =  1 ,..., s,, a contradiction of condition

(b). Hence f i  and /2 form an orthogonal system and the  proof is complete.

□

Theorem  5.1.1 is a generalization of the  M ullen and Boss construction.

Corollary 5 .1.2  ([M ul988]) The ~ j ( q s — I )2 polynomials

f(ax aj»)(®i, ...,2:2s) =  0,1X1 +  ... +  a,2-X2S over Fq, where

( a )  ( < 3 . 1 , . . . ,  a,s')  y ^ ( 0,  . . . , D ) ;

(b) (c-s+i, ci2a) 7̂  (0, 0);

(c) No two sets of a ’s are nonzero Fq multiples of each other, i.e.,

W . - . O  f  e(a i. - a2s) for any e ^  0 €  N,

represent a complete set of m utually orthogonal F-squares F(gs, A,..., A), 

where A =  g3""1.

C o ro lla ry  5 .1.3  ([Bol938]) The g - 1  polynomials =  a® i+a;2

w ith a 0 £  Fg represent a complete set of g ~  1 m utually orthonogal Latin  

squares of order q.

For example, Theorem  5.1.1 gives the  complete sets Hi of 9 M OFHR(4 ,4; l ;2);
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2 of 3 MOFHR(4,2;l;2); and S 3 of 3 MOFHR(4;0;2).

Consider the 9 polynomials over GF(2) given by 

f x ( % l , X 2 ,  X 3 ,  x 4 )  =  X \  + x 3 

M x U X 2 , X 3 , X 4 ) =  X 2 + X 3

M x u X 2 , X 3 , X 4 ) =  X i  +  X 2 +  X 3 

f 4 ( x l , X 2 , X 3 , X 4 ) =  X i  +  x 4 

f s ( x i , X 2 , X 3 , X 4 )  =  + Z 3 + Z 4

f G ( x l t X 2 , X 3 , X 4) =  X2  + X 4 

f 7 ( x l , X 2 , X 3 , X 4 ) =  X 2 +  X 3 + X 4 

f s ( x i , X 2 , X 3 , X 4 ) ~  X i Jr X 2  +  X 4 

f 3 ( x u X 2 ,  X 3 , X 4 ) =  x 4 - r  X 2 +  $ 3  +  z 4 .

These 9 polynomials represent the complete set of 9 MOFHR(4,4;l;2):

0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0  0 1 1 0  0
H-i = H3 =

1 1 0  0 0 0 1 1 1 1 0  0

1 1 0  0 1 1 0  0 0 0 1 1
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0 1 0  1 0 1 1 0  0 1 0 1

0 1 0  1 0 1 1 0  1 0 1 0
i£j =  Hs =  H6 —

1 0 1 0  1 0 0 1  0 1 0 1

1 0 1 0  1 0 0 1  1 0 1 0

0 1 1 0  0 1 0  1 0 1 1 0

1 0 0 1  1 0 1 0 1 0 0 1
Hr = Hs =  Hg =

0 1 1 0  ' 0 1 0  1 0 0 1

1 0 0 1  0 1 0 1  0 1 1 0

Consider the 3 polynomials over GF(2) given by 

f l ( x U X2!X3) =  Xi + x 3

h { x u  Z2, X3) = x t + x 2 + X3

f3 (x i , x2, x 3) =  X2 + X 3.

These 3 polynomials represent the complete set of 3 MOFHR(4,2;l;2): 

0 1 0 1 0 1

0 1 1 0  1 0
E2 : Qi — Q2 = 0.3 =

1 0  1 0  0 1

1 0  0 1 1 0

Consider the 3 polynomials over GF(2) given by

f i { x i , x 2) -  Xi
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M x i , x2) — x2 

faixux-z) = x i +  x2.

These 3 polynomials represent the complete set of 3 MOFHR(4;C);2):

: 0 0 1 1 0 1 0  1 0 1 1 0 -

5.2 Type 0 canonical F-hyperrectangles

The following construction gives type 0 canonical FHR(n1, .,.,71^; 0; m) from 

MOFHR(nj; 0; m),...,MOFHR(nrf; 0;m). Furthermore, adding a set of MOFHR 

of type 1, we will have an enlarged set of MOFHR of type 0. If the set of 

MOFHR of type 1 and the sets of M OFHR(nl;0;m),...,M OFHR(nIf;0;m) 

are both complete, then the enlarged set of MOFHR of type 0 is also com

plete.

Suppose X is an FHR(ni, ...,nd\ t;m).  Let X ( x i , x 2,...,xd) denote the 

entry in position ( z i , T h e  subarray obtained by assigning some 

fixed values ax, a t  to the z ' l - t h , i (-th coordinates, where 0 <  a, < n; —

I for I < j  < t, will be called a hyperplane and denoted by X(x{} = a.j, j  —

1, The class of hyperplanes into which X is partitioned by coordinates
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X , Z , - ,  is denoted by { X  (x,-, =  ai, =  ot)| 0 <  aj <  — 1 }.

A set 'P; of type 0 canonical FHR can be constructed from a set A of 

MOFHR(n,-;0;m).

Suppose Le A, then define a size ni x ... x FHR, L* as follows:

L (x^,X2, . . . , L(x{).

It is clear that L* is a type 0, d-dimensional FHR. The set Uf_1\P; is 

called the set of type U canonical FHR.

For example, from the set Eg of MOFHR(4;0;2) in section 5.1, we can 

construct two sets $1 and '$2- The set 'Hi U $ 2 is the set of type 0 cononical 

FHR(4,4;0;2). Furthmore, ($iU 'I,2)UE[ is a complete set of MOFHR(4,4;0;2).

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1II C3
1 1 1 1 0 0 0 0 : 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0
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0 0 1 1  0 1 0 1  0 1 1 0

0 0 1 1  0 1 0 1  0 1 1 0
^2 • Cvt =  G5 =  Cg =

0 0 1 1  0 1 0 1  0 1 1 0

0 0 1 1  0 1 0 1  0 1 1 0

T h eo rem  5.2.1. Given a set of Zj MOFHR(n1; 0;m), a set of ld 

MOFHR(n(j; 0; m), there exists a set $  of 2 f=1 ^ type 0 canonical 

FHR(ni, 0; m). Furthermore, adding a set A of ft. M O F H R ( n i , r i d ;  1; 

m), the enlarged set $  U A is a set of 4 +  /!• MOFHR(n1 ) nd; 0; m). 

P ro o f. We only need to show tha t the members of $ U  A are orthogonal. 

' ot X and Y  be members of #  U A. If X, Y 6 A, then X and Y are 

orthogonal,

Otherwise, we may assume X6 which implies tha t there exists k,  where

1< k < d ,  such that X e

If Y e  we assume that X is constructed from X ' ,  Y is constructed from

Y ' ,  where X ' ,  Y '  are MOFHR(n*; 0; m ).  By the fact that each ordered pair 

occurs —|  times in { X ’, Y ') ,  where ( X 1, Y ' )  denotes the F-hyperrecfcangle 

obtained by superimposing X 1 and Y \  we have that each ordered pair occurs 

=  times in (X,Y). Hence X and Y are orthogonal.
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r r r f  n
If 'tfc, then each element occurs t 'irne® ’m sach hyperplane

rrd ^
Y(xk =  a), 0< a < nfc —1. Hence each ordered pair occurs exactly ^  ‘ =

times in (X,Y). Therefore X and Y are orthogonal. □

C oro lla ry  5.2.2. If the initial sets of MOFHR(nl ; 0; m), ...,MOFHR(n,j; 0; m) 

and the set of MOFHR(n1, l ; m)  are both complete, so is the enlarged 

set of MOFHR(ni, 0; m).

P ro o f. If h =  and / i = ^ r f ( n t i  -  Z jL iK ' -  1) ~  1) i then

5.3 A recursive procedure

The following procedure constructs MOFHR(n1, . ..,nd,nd+i;i +  1;m)  from 

M O F H R ( n i , n , ; ;  i; m) and MOFHB.(nrf+i,m; l ;m).

Given a set fi of ft M OFHR(n1, we can divide the set into

two classes, f2i and The class fij consists of all FHR(?' iu— +  1;m),  

and n 2 consists of the rest. Let hi be the cardinality of Hi.

Given a set T of I MOFHR(nrf+!, m; 1; m), we append the following n ^ i  X
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m  rectangle

0 1 ... m — 1

0 1 ... m — 1
R =  to F. We denote this new set as F+ .

0 1 ... m — 1

Using this we now construct Id +  hi M O F H ^ n t,. ..)n ,i,nIj+1;t  +  1;m).

Suppose X 6  n , and LG r + , then define the (d +  1)-dimensional hyperrect

angle X L as follows:

X l (x i,X2, =  L ( X ( x i ,X 2, ■■■,xd),xci+i)- The expression is in

terpreted to mean that X L is partitioned into the hyperplanes { X L{xd+i = 

0 ) , X L(xd+i =  1),..., X L(xd+i — nd+i — 1)}, where X C/(x!t+i = i )  i s X  with a 

permutation applied to its symbols as defined by the z'-th row of L. We can 

view each row of L as the image of a permutation from S,„, the symmetric 

group on m  letters, 0,1,..,,m — 1.

T h e construction  gives a  new se t <& — { X 1* : X  6  iU , L G F+ } U { X L : 

X  G f2‘j) i  G r} .

Note that | $  |= j Q.\ | x (| F j + 1 )+  | | x I i" |=  hi[l + l) + [h — hi)l =

hi + hx, as earlier claimed.

Let us look at an example. Set f2 =  ..., #g, C i , C g } ,  and F =
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{QiiQs.Qa}. From the above procedure we can construct a complete set of 

54 MOFHR(4,4,4;l;2). The following is H ^ 2.

$3 =  0 33 =  1 $3 =  2 33 =  3

3 2 =  0,1,2,3

3 t =  0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

31 =  1 o i i o  1 0 0 1  : 0 0 1 0 1 1 0

3 t =  2 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

21 =  3 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

Before showing that $  is a set of MOFHR(n1,.. . ,n t{,n,/+i ; i  +  1;m), we 

make some observations about the hyperplanes of members of

Let ( i i b e  an arbitrary element in Ptj.<(d + 1). Now we con

sider two classes of hyperplanes in X L, a typical member of 0.

Class 1 hyperplanes are of the form X L{xil = <zi, =  «(, 3;[+1 =  at+i), 

where i t+i =  d +  1. By definition this is ,Y(3,\ =  a t , 3;, =  at) with the 

permutation determined by row ctf+i of L applied to the symbols.

Class 2 hyperplanes are of the form X L(xil = a i , 2 ,-t =  at, 2 ,-{+1 =  a(+i), 

where it+i < d +  1. Say P =  X L{Xil =  a t , . =  a (l3,-t+1 =  at+i). Partition 

P  into {P(3,t+i =  0 ) , P(xj+i =  n^+i -  1)}. Further P(x j^ i  =  h) is ob-



tained from X ( x i t =  Q], =  o/,a;{t+1 =  a1+i) by permuting the symbols

in X (x ; l =  ai, = a t , X i t + l  = a t+i) according to the permutation defined 

by the fc-th row of L.

L em m a 5.3.1. The members of 0  are of type t  + 1.

Proof. Suppose X 1, E 0, and let (ii, *t+i) be an arbitrary element 

in Pt+i(d+_l). We have to show that each symbol occurs an equal number 

of times in the hyperplane X L(x{x =  ax, =  at,Xi1+1 =  a i+1), where

0<  a*.- <  nik -  1, 1 <  fc <  f +  1.

This is obvious if the hyperplane is in class L

Consider a hyperplane P  in class 2. Then P  consists of nj+i copies of 

hyperplane ATfa?;, =  n i , ..., x-lt =  ot, $ie+1 =  a l+L) with the &-th copy having 

the symbols permuted by the. fc-th row of L.

If XE fli, then each symbol occurs equally often in X ($,•, =  ax,.. . ,x;t = 

at, a:{t+1 =  Oh-i) and therefore each symbol occurs equally often in P since 

permutations of the symbols of X(x ; t = ai ,. .r,x;. =  at, x ; t + l  =  oi+1) leave 

the number of occurrences of each symbol unchanged. So if XE Oi, then

is an FHR(ni, ...,rid,nd+i-,t +  1; m).

If X^ fit, then XE fig. Hence LE P. Hyperplane P has partition
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{ P { x d + l  =  0 ) ,  P ( x d + 1  =  1 ) , P ( x d + i  =  n d + l  -  1 ) } ,  

where P ($ j+i =  6 ) is %(%(, =  at, =  at,Xit+l =  a (+i) with the

symbols replaced according to row k of L. For any element e, 0  <  e <  m  — 1,

the first row of L permutes e t to e,..., the rtj+i row of L permutes eniJ+1 to e,

where 0 < ex,.. . ,end+x <  m ~  1.

By the fact that L6  P, we see that the multi-set

{ e i , e „ <(+1}={01...,0,1,...,1,771 — 1,. . . ,m —1} (each element with mul

tiplicity Hence the number of times that symbol e appears in P is

(the number of times that symbol e& appears in X (x;t =  a;t-t = 

ah xit+i =  Oi+i)) =  X Z%IoXkhe number of times that symbol 7 appears
yrd

in %(z,\ =  01, ...,z,-, =  a t) X{t+l = a(+i)) = 2̂ J- x ■Myi1' ”''-. Thus each symbol
ll/c=l n'k

occurs equally often in P. □

L em m a 5.3.2. The members of $ are mutually orthogonal.

Proof. Let X6 and Y M be members of $ , and assume X ^Y . Then X and 

Y are orthogonal, and X1, and Y M, respectively, have partitions {vY^Zd+i = 

0) , . . . ,X I'(x'i+i — nj+i -  1)} and { ^ ( x d + i  =  0) , . . . ,^ ( a v x !  =  nrf+l -  1)}. 

Each member of these partitions is obtained from X or Y by a permuta

tion of the symbols, an operation that does not affect orthogonality. Hence
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X L(z j+i =  k) is orthogonal to Y M[xi+i — k) since X is orthogonal to Y. 

Therefore X L is orthogonal to Y M .

Assume X=Y. Then L is orthogonal to M. Let (L,M) denote the F- 

hyperrectangle obtained by superimposing L and M,

If the ordered pair (a ,/)) appears in the position (z, j )  of (L,M), then (a,/3) 

appears in [ X 1 , X M){xd+i — :) n<~- times by the fact that element j

appears times in X.

Since L and M are orthogonal F-hyperrectangles, we see that each ordered 

pair occurs exactly times in (L,M). Hence each pair occurs

exactly times in ( X L, X M). Q

The following theorem follows from Lemmas 5.3.1 and 5.3.2.

T h eo rem  5.3.3. Given a set of h MOFHR(ni, . . . ,nd;t;m),  which con

sists of hi MOFHR(rti, ...,7̂ ; t-f  1; rn), and a set of I MOFHR(nj+1,m; 1; m), 

there exists a set of hi +  hi M O F H R ^ ,...,nd, n,i+i ; t  +  l;m ).

We note that Theorem 5.3,3 provides a generalization of Theorem 3.6 of 

[LaMuWhl995].

Given a complete set <f> of MOPHR(%i,..., t;m),  where 0< i < d — 2,

if the subset of consisting of all type (t +  1) F-hyperrectangles, is also
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complete, then we call the set $  is strongly complete.

C o ro lla ry  5 .3 .4 . (1) Given a complete set of M O F H R ( n i , rid] d — 

1; m) and a complete set of MOFHR(nti+i, m; 1; m), then the above recursive 

algorithm gives a complete set of M O F H R ( m ,nj, ; d; m).

(2) Given a strongly complete set of M O F H R ( n . i , n ^ ;  t \ m), where 0< 

t  < d — 2, and a complete set of MOFHR(n(f+1, m; 1; m), then the above 

recursive algorithm gives a complete set of M O F H R ( n i , n ^ ,  n,;+1; i + 1; m).

Proof. (1) If A =  ^ _ ( n L  n; -  E t i   - ! ) - ! )  =

-  1)), hi =  0 and l=nd+l -  1, then

=  ^ r rd lf c i1 ni -  T L x £ { i1,...,tj..}ePfc(d±D -  1) -  !)•

(2) If A=— Y (n f= i^  -  E [.= i E { i ,  WEPt(d) 0 = 1  ~  1) ~  1)j -

ni ~  Efeti E {i, H ^ i K  -  1) -  1) and <=nd4-i -  1, then

n (-E l+ \ E{,-, W Efuay H k K  °

It is easily seen that the complete set of MOFHR(gSl, qSd; t ;m)  con

structed by Theorem 2.1.1 is strongly complete. So the polynomial construc

tion (Theorem 2.1.1) gives a strongly complete set of MOFHR of prime power 

order.

97



C h ap te r 6

C arlitz  C om positions

In the first two sections, we discuss Carlitz compositions with zeros allowed 

(CCWZA). The following two parameters: number of summands, largest 

summand are analyzed. In the third section, we introduce the Carlitz word 

which is a generalization of Carlitz composition.

6.1 The number o f summands

Firstly we recall some results in [KnPrl998].

Let d(n) be the number of CCWZA of size n. Then the generating 

function D(z) := £ n>o d(n)zn =  (1 +  2cr(z))/(l — 2cr(z)), 

where cr(z) =  ]Cj>i (— — z*).
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There is a dominant singularity r, which is the solution in the interval 

[0,1] of the equation a(z)  =  1/2. Numerically t  =  0.386960.

Therefore d(n) ~  At ""  =  1.337604 (2.584243)" where A =  { l + 2 (r{ r ) ) / (2r a ,(T)).

Now we consider the average number of summands in a random CCWZA 

of size n by a method that has appeared in [FlPrl9S7] under the nickname 

"adding a new slice”.

Let ,s(n) denote the summands number of CCWZA of size n.

We proceed from a CCWZA with k  summands to one with fc+1  summands 

by allowing the (& +  l)-th  summand to be any positive integer and 

subtracting the forbidden case x^+i =  Xk- In terms of generating functions 

this reads as follows.

Let fk(z ,u)  be the generating function of those CCWZA with k  sum

mands where the coefficient of refers to size n  and the last summand 

Xk =  j .  We dissect the set of compositions into those with the last summand 

>  1 (counted by gk(z,u))  and those with the last summand =0  (counted by 

hk(z)). Clearly, hk(z) = gk-i(z,  1) (k >  2).

Then gk+i(z, u) =  gk(z, 1) — gk(z, zu)

for & > 1, 51 (z,u) =  and hi{z)  =  1. (6.1)

We use another variable, w, to label the number of summands. Let
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G{z,u,w):~'£lk>l wkgk{z,u) and F{z ,u,w):=Ylic>iwkfk{^,u)- 

Multiplying (6.1) by tufc+1 and summing over k > l ,  vve get

G(z,u ,w)=(w + w2)G(z , l ,w )  ■ ^  +  (uj +  to3) ^  -  wG{z, zu, w). 

Iterate it, and consequently we have

G(z, l ,w)=(w  +  l ) r ( z ,w ) / ( l  -  (w + l)r(z,w)),  

where r(z.w)=J2i>i z W (—1)'"Y(^ ~  z ’)- 

Therefore F (z, 1, to) =  iu +  (ru +  l)G’(z, l,tu)

=(w -h (w +  l )r(z,  to))/(l -  (w +  w)).

Hence the generating function f7’(z):=5Z)n>o s(n) • z” =  ^ F ( z ,  l , w)  |u,=i

=  (1 +  4 u (z))/[l — 2cr(z)]2 with

u(z) =  “  z i )-

Therefore F(z)  ~  .5/(1 — z / r )2 =  1.16589/(1 — z / r ) 2, 

where 5  =  (1 +  4u(r))/(2rcr/(r))2.

Hence s(n) ~  B n  ■ r~n.

Then the average number of summands in a random CGWZA of size n 

is ~  =  0.871626n.
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6.2 The largest summand

First we consider F ^ ( z ) ,  the generating function of those CGWZA with the 

largest summand <  h, where the coefficient of zn refers to size n.

Let be the generating function of those CGWZA with k sum

mands and all summands <  h, where the coefficient of znu^ refers to size n 

and the last summand — j .  We dissect the set of compositions into those 

with the last summand >  1 (counted by u)) and those with the last

summand =0 (counted by 4 ^ (z))- Clearly, l ^ ( z )  =  1) ^  2).

Then essentially the same idea as in (6.1) works, except that we only use 

a factor

(zu) +  ... +  (zu)h = zu( l  — (zu)h) / ( l  — zu) instead of the 

full geometric series.

B.ence g l ^ z ^ )  =  g[h) ( z , l ) z u ( l - ( z u ) li) / ( l ~ z u } + l ^ ) ( z ) z u ( l - ( z u ) h) / ( l -  

z u ) - g l h)(z,zu)

for k > l ,  g |^ (z , w) =  zu( l  — (s:it),1) / ( l  -  zu) and Z^(z) =s 1.

Setting GW(z,u):=J2k>i9kl){z,u)l we get 

GW(z, l)=2o-W(z)/(l -  2cr(4(z)),

where crW(z) =  Ei >i ( — “  2^fc+1̂ )/(l — z').

Therefore =  1 +  2GW(z, 1)
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= ( l  +  2<rW(*))/(l -2o-W (z)).

The dominant pole Th. is now the real solution of the equation 

erW(z) =  1/2.

It is clear that tends to r, but we have to determine how fast. We will 

use the "bootstrapping method” from [Knl978].

Mow, a,round z =  t  we have approximate equation 

l / 2«  17(7-/,) -  r h+1/ ( l  — r).

Let ry, =  t(1  +  £&), and use Taylor’s Theorem, then we get

0% Te/tcr'lr) — t /i+1/(1  — r )  or 

~  r 'Y ((l -  r )^ '( r ) ) .

Therefore the number of CCWZA with the largest summand < h is ap

proximated by

[(H-2cr(T;l))/(2T;lcr'(T,1))] -T[n «  [(l+ 2o-(T ))/(2rcr'(r))]r -n(l-!-e/l)“n. 

Thus the probability that the largest summand is <  h is approximated

by

=  (1 +  Sh)~n «  (1 -  T,l/((1 -  r)o-'(r)))n.

For the probability that the largest summand is >  h, we have approxi

mately 1 — (1  — — r ) c r ' ( T ) ) ) n .
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Summing this up over /i >  0, we get the desired average value E n, the 

average number of the largest summand in a random CCWZA of size n.

The next step is to use the exponential approximation (1 — a)n ~  e~an. 

Then ^  e

This quantity is quite well studied in [FlGoDul995]. Set N :=n/((1 — 

T)a'(r)). Therefore

En ~  logi/TN  — 'y/lnr + 1/2 +  5(logi/TN) ,  with a certain periodic 

function 5(x) tha t has period 1, mean 0, and small amplitude.

Rewriting this we get 

E n ~  logi/Tn  -  l o g y ^ ^ )  -  Zo51/r ( l  -  r)  -  'y/lnr +  1 / 2 +  6(Zo51/Tn), 

where 5{x) =  5{x — logi^-a^r) -  Zoflr1/T(l — r)), which has the same property 

as 5(x).

The numerical constant is 

—loSi /r^  — t )  — 7 / ln r  + 1/2  =  0.929718.

6.3 Car lit z words

In this section we discuss words (strings) over an alphabet with symbols 

Pi, f a , - , P m  ( m  >  2).
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The number of words of length n over an alphabet with m symbols is 

found to be m n. Each word may be decomposed into a succession of blocks 

each formed with a single symbol maximally (as long as possible). Each block 

is called a run. For each block, the block length is called run length.

If a word has run lengths 4  sequencely, then we call it a (li, /g,..., /&)—

wwd.  For example, m =  3; PifiiPiPiP-ifoPxPifafcPaPi is a word of length 

12. {32020202, 01, 03, 0101, 02, 0303, 0i are its runs. Their lengths are 4,

1, 1, 2, 1, 2, 1 respectively. It is a (4, 1, 1, 2, 1, 2, l)-words.

For a (^i, ^ )“Word, if /; ^  (i — 1,..., k  — 1), then we call it a 

Carli tz  word.

Let cm(n) be the number of such Carlitz words of length n over an alpha

bet with symbols 0\,02,  ...,/9,n. For convenience, we define cm(0) =  1.

From the definition, we see that C2(n) =  2c(n), i.e., c(n) =  jc ^ n )  for 

n >  1 where c(n) is the number of Carlitz compositions defined in section 

1.3.
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n\m

Cm M  

2 3 4

0 1 1 1

1 2 3 4

2 2 3 4

3 6 15 28

4 8 27 64

5 14 51 124

6 28 159 520

7 46 339 1372

8 78 699 3100
Fig.4

In this section, we deduce the generating function

Cm{z)  :=  En>0 Cm(n)2rn

= ' 1/(1 -  E & M M m  -  l)'zV(l -  a')) -  (6-2)

=  -1/(1 -  & :i(m  -  l)z '/( l + (in -  ^  (6-2')

and the recurrence Cm(n) =  E " ii  Fm(j) • c,n( n - j )  +  Fm(n) • — r (n >  1), 

where cm(0) =  1 and Pm(n) =  E i|n(_ l ) '_1( ^  -  1)‘- (6.3)
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Now we deduce the generating function (6.2).

Let fk}m{z,u) be the generating function of those Carlitz words with k 

runs where the coefficient of z71̂  refers to size n and the last run length

=  j.

Then f k+hm(z, u) = f kiVl(z, 1)^ 1 ^  -  (m -  zu)

for > 1 and f hm{z,u)  =  m • (6.4)

Define f^ (z ,u ) := E t> i fk,m{z >u).

From (6.4), we get

1). m ^  -  (rn -  zu).

Iterate it, and consequently we have 

Fm(z, 1) = ^ T crm(^} +  Fm(z, l)crm(z),

where crm(z) =  ~  2‘)-

Hence Cm(z) =  1 +  Fm(zy 1)

' V(1 -  °m{z)) ~  •

This finishes the proof of (6.2).

Since £ i > i ( - l ) ,-1(m -  -  zx)

=  +  (m -  1 > ') ,
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we get (6.2') from (6.2).

In the following, we derive (6.3).

(m -  1)' E A

Define Pm(n) =  E < |n (-l)’~1(™ ~  1)'-

Then q » (» X  =  ^  -1/(1 -  ^  fm(»)z") -

Hence 1+—  En>i Cm(n)zn =  1/(1 -  E„>i Pm(n)zn).

It follows that cm('n) satisfies the recurrence

c,n(n) =  E*=i Pmti) 1 rin(n-  j ) +  P,n(n) ■ ~  (n > 1), where ^ ( 0 )  =  1 

and Pm(n) =  E i|m (-I ) '^ (m  -  I)1'.

Finally, we state some asymptotic results for c ^ n ) ,  2 <  m  <  10.
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m Pm Am

2 0.571349 0.912774

3 0.434461 0.920266

4 0.360573 1.012713

5 0.312720 1.061314

6 0.278582 1.105405

7 0.252707 1.145457

8 0.232258 1.182073

9 0.215596 1.215771

10 0.201697 1.246993

Pig.5

Here pm is the dominant pole of the generating function Cm(3). Therefore 

cm(n) ~  Amp -n, where A,n =  ■£bi!{pm(r'm{pm))<
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