JUMP NUMBERS, HYPERRECTANGLES

AND CARLITZ COMPOSITIONS

Bo Cheng

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg

Abstract

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix. There is a natural way to associate a poset P_{A} with A. A jump in a linear extension of P_{A} is a pair of consecutive elements which are incomparable in P_{A}. The jump number of A is the minimum number of jumps in any linear extension of P_{A}. The maximum jump number over a class of $n \times n$ matrices of zeros and ones with constant row and column sum $k, M(n, k)$, has been investigated in Cbapter 2 and 3. Chapter 2 deals with extremization problems concerning $M(n, k)$. In Chapter 3, we obtain the exact values for $M(11, k), M(n, 6), M(n, n-3)$ and $M(n, n-4)$. The concept of frequency hyperrectangle generalizes the concept of latin square. In Chapter 4 we derive a bound for the maximum number of mutually orthogonal frequency hyperrectangles. Chapter 5 gives two algorithms to construct mutually orthogonal frequency hyperrectangles.

Chapter 6 is devoted to some enumerative results about Carlitz compositions (compositions with different adjacent parts).

Declaration

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

Bo Cheng
23rd day of December 1998
to my parents and my wife

Acknowledgements

I would like to thank my supervisor, Professor Arnold Knopfmacher, for his guidance. I am indebted to Professor Doron Lubinsky and Professor James Ridley for their help and encouragement. I am also grateful to Professcr Bolian Liu and Professor Gary Mullen for their helpful discussions and instructions.

Lastly, I would like to thank the University of the Witwatersrand for the financial support in the form of Postgraduate Merit Award / Postgraduate Bursary from 1996 to 1998, and the Foundation for Research and Development for the financial support from 1997 to 1998.

Contents

Abstract i
Declaration ii
Acknowledgements iv
1 A General Introduction 1
1.1 Jump numbers 2
1.2 Frequency hyperrectangles 9
1.3 Carlitz compositions 16
2 Extremization Problems 20
2.1 Bipartite posets and (0,1) matrices 21
2.2 Normal forms 25
2.3 A special class of matrices 29
2.4 Main results 35
3 Some exact values concerning maximum jump numbers 50
$3.1 \mathrm{M}(11, k)$ 50
3.2 Recursive constructions and some inequalities 63
3.3 Some exact values 66
4 Maximum Number of Miutually Orthogonal Frequency Hy- perrectangles 71
4.1 A necessary condition 72
4.2 An upper bound 74
5 Constructions for Mutually Orthogonal Frequency Hyper- rectangles 81
5.1 Polynomial representation of orthogonal F-hyperrectangles 82
5.2 Type 0 canonical F-hyperrectangles 88
5.3 A recursive procedure 01
6 Carlitz Compositions 98
6.1 The number of summands 98
6.2 The largest summand 101
6.3 Corlita words 103
Bibliography 109

Chapter 1

A General Introduction

Combinatorics is concerned with arrangements of the objects of a set into patterns. Three general types of problems occur repeatedly:
(i) Existence of the arrangement,
(ii) Fnumeration or classification of the arrangements, and
(iii) Study of a. known arrangement.

In this thesis, three combinatorical problems are discussed:
(i) Jump number of a matrix,
(ii).Frequency hyperrectangles, and
(iii) Enumeration of Carlitz compositions.

1.1 Jump numbers

In real life, the following question occurs: a single machine performs a set of jobs one at a time; precedence constraints prohibit the start of certain jobs until some sthers are already completed; a job which is performed immediately after a job which is not constrained to precede it requires a "setup" or "jump"-entailing some fixed additional cost. The schedule problem is to construct a schedule to minimize the number of jumps. The jumn number problem is the precedence constrained scheduling problem written in the language of ordered sets.

Let P be a finite poset, and $|P|$ be the number of vertices in P. A chain C in P is a subset of P which is a linear order. The length of the chain C is $|C|-1$. A linear extension L of a poset P is a linear ordering $x_{1}, x_{2}, \ldots, x_{n}$ of the elements of P such that $x_{i}<x_{j}$ in P implies $i<j$.

Let $\ell(P)$ be the set of all linear extention of P. E. Szpilrajn [Sz1930] showed that $\ell(P)$ is not empty. Algorithmically, a linear extention L of P can be defined as follows:

1. Choose a minimal element x_{1} in P .
2. Given $x_{1}, x_{2}, \ldots, x_{i}$, choose a minimal eleınent from $\mathrm{P} \backslash\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$ and call this element x_{i+1}.
A. consecutive pair (x_{i}, x_{i+1}) of elements in L is a jump (or setup) of P in L if x_{i} is not comparable to x_{i+1} in P. If $x_{i}<x_{i+1}$ in P , then $\left(x_{i}, x_{i+1}\right)$ is called a stair (or bump) of P in \mathcal{L}. Let $s(L, P)[b(L, P)]$ be the number of jumps [stairs] of P in L, and let $s(P)[b(P)]$ be the minimum [maximum] of $s(L, P)[b(L, P\}]$ over all linear extensions L of P. The number $s(P)$ is called the jump number of P , and the number $\mathrm{b}(\mathrm{P})$ is the stair number of P .

We have

$$
\begin{aligned}
& s(L, P)+b(L, P)=|P|-1 \\
& \text { and } s(P)+b(P)=|P|-1 \quad \text { for every poset } P
\end{aligned}
$$

Each of jump number and stair number determines the other. If $s(L, P)=s(P)$ [equivalently, $b(L, P)=b(P)$], then L is called an optimal linear extention of P. The jump number problem is to compute $\mathrm{s}(\mathrm{P})$ and to find an optimal linear extension of P.

In Figure 1 there is given a poset and three of its linear extention; the first linear extention is not optimal, but the second and third are optimal.

Fig. 1

The jump number problem was introduced by Chein and Martin [ChMa1972]. This problem has been shown to be NP-hard (see [BoHa1987]). In the past twenty years, many papers have been devoted to the study of this problem (Cf. [Br.Ju'Tr1994], [ChHa1980], [DuRiWi1982], [Mi1991] and [ShZa1992]).

Now we define the jump number of a matrix. Let $A=\left(a_{i j}\right)$ be an $m \times$ n matrix. There is a natural way to associate a poset P_{A} with A. Let $\mathrm{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathrm{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ be disjoint sets of m and n elements, respectively, and define $x_{i}<y_{j}$ if and only if $a_{i j} \neq 0$. In $P_{A} x_{i}, \ldots, x_{m}$ are minimal elements and y_{1}, \ldots, y_{n} are maximal elements. The poset P_{A} is the usual bipartite poset fthe Hasse diagram of P_{A} is $\mathrm{BG}(\mathrm{A})$ drawn with the y 's above the $x ' s]$. We use $s(A)[b(A)]$ for the jump $[s t a i r]$ number of. P_{A} instead of $s\left(\mathrm{P}_{A}\right)\left[\mathrm{b}\left(\mathrm{P}_{A}\right)\right]$.

Two matrices A_{1} and A_{2} are said to be permutation equivalent, denoted by $A_{1} \cong A_{2}$, if one can be obtained from the other by independent row and columa permutations.

It is clear that $b\left(A_{1}\right)=b\left(A_{2}\right)$ and $s\left(A_{1}\right)=s\left(A_{2}\right)$ if $A_{1} \cong A_{2}$. Therefore the jump nimin of a matrix does not change under arbitrary row and column permu" itacs.

The following formulas have been noticed in [BrJu1992].
$\max \{m, n\}-1 \leq s(A) \leq m+n-1$,
$0 \leq \mathrm{b}(A) \leq \min \{m, n\}$,
$s(A)=s\left(A^{T}\right)$, where A^{T} is the transpose of A,
$\mathrm{s}(\mathrm{A} \oplus B)=\mathrm{s}(A)+\mathrm{s}(B)+1, \mathrm{~b}(\mathrm{~A} \oplus B)=\mathrm{b}(4,+\mathrm{b}(B)$, where \oplus denotes the direct sum of matrices.

In the following we will concentrate on $(0,1)$ matrices.
Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$ and $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be nonnegative integer vectors with $r_{1}+\ldots+r_{m}=s_{1}+\ldots+s_{n}$. We denote by $\Lambda(\mathrm{R}, \mathrm{S})$ the set of all $m \times n$ matrices $\mathrm{A}=\left(\mathrm{a}_{i j}\right)$ of 0 's and 1 's such that $\sum_{j=1}^{n} a_{i j}=r_{i}(i=1, \ldots n)$ and $\sum_{i=1}^{m} \mathrm{a}_{i j}=s_{j}$ $(j=1, \ldots, n)$. Suppose $M(R, S)=\max \{s(A): A \in \Lambda(R, S)\}$,

$$
\mathrm{m}(\mathrm{R}, \mathrm{~S})=\min \{\mathrm{s}(\mathrm{~A}): A \in \Lambda(\mathrm{R}, \mathrm{~S})\}
$$

The necessary and sufficient conditions for the set $\Lambda(R, S)$ to be nonempty were given in [Ga1957] and [Ry1957]. In this thesis, we assume that $\Lambda(R, S)$ is nonempty and R (or S) is noti a zero vector.

In section 2 of chapter 2, we derive an upper bound and a lower bound for $s(A)$, where $A \in \Lambda(R, S)$.

Let $\Lambda(n, k)$ be the set of all $(0,1)$ matrices of order n with k 's in each row and column. $\operatorname{Suppose} \mathrm{m}(n, k)=\min \{\mathrm{s}(\mathrm{A}): \mathrm{A} \in \Lambda(n, k)\}, \mathrm{M}(n, \vec{k})=\max \{s(A): A \in$ $\Lambda(n, k)\} .\lceil a\rceil(\lfloor a\rfloor)$ is used for the smallest (greatest) integer no less (more)
than a.
The minimum jump number is easy to compute.
Theorem 1.1.1 ([BrJu1992]). If $1 \leq k \leq n$, then $\mathrm{m}(n, k)=n+k-2$.
The determination of the maximum jump number is much more difficult, and Brualdi and Jung ([Br.Ju1992]) offered some partial results:

Theorem 1.1.2 ([BrJuI992]). $\mathrm{M}(n, k) \leq 2 n-1-\lceil n / k\rceil$ for $1 \leq k \leq n$. The following question is immediate.

Question 1.1.3. Characterize the extremal regular ratrices classes attaining the upper bound $2 n-1-\lceil n / k\rceil$.

In order to answer this question, Brualdi and Jux ${ }^{r}$ stated a conjecture.
Conjecture 1.1.4. If $k \nmid n$ and $(n \bmod k) \nmid k$ for $1 \leq k \leq n$, then $\mathrm{M}(n, k)<2 n-1-\lceil n / k\rceil$.

In Chapter 2, we prove this conjecture.
From Theorems 1.1 and 1.2, we have
Theorem 1.1.5. If $\mathrm{A} \in \Lambda(n, k)$, where $1 \leq k \leq n$, then $n+k-2 \leq \mathrm{s}(\mathrm{A}) \leq 2 n$ -$1-\lceil n / k\rceil$.

Two natural questions are as follows.
Question 1.1.6. Characterize the extremal regul r matrices attaining the upper bound $2 n-1-\lceil n / k\rceil$.

Question 1.1.7. Characterize the extremal regular matrices attaining the lower bound $n+k-2$.

We answer Questions 1.1.6 and 1.1.7 in Chapter 2.
Brualdi and Jung have obtained the exact values of $\mathrm{M}(n, k)$ for $1 \leq k \leq$ $n \leq 10$ in [Br Ju1992]. In chapter 3 , we continue to get $\mathrm{M}(11, k)$.

The following; formulas are derived in [BrJu1992].

$$
\begin{align*}
& M(n, 1)=n-1 \tag{1.1}\\
& M(n, 2)=2 n-1-\lceil n / 2\rceil \tag{1,2}\\
& M(n, 3)=2 n-:-\lfloor n / 3\rfloor-a \tag{1.3}
\end{align*}
$$

where $a \equiv n(\bmod 3)$ and $0 \leq a \leq 2$,

$$
M(n, 4)=2 n-1-\lceil n / 4\rceil-a
$$

where $a=1$ if $4 \mid n-3$ and 0 otherwise,

$$
\begin{equation*}
M(n, n)=2 n-2 \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
M(n, n-1)=2 n-3 \tag{1.5}
\end{equation*}
$$

$$
M(n, n-2)=\left\{\begin{array}{cc}
2 n-3 & \text { if } n \text { is even } \tag{1.6}\\
2 n-4 & \text { if } n \text { is odd }
\end{array}\right.
$$

In Chapter 3 we cleduce

$$
\begin{aligned}
& M(n, 6)=2 n-1-\lceil n / 6\rceil-a \\
& \text { where } a= \begin{cases}0 & \text { if } 6 \mid n \text { or }(n \bmod 6) \mid 6 \\
1 & \text { if }(n \bmod 6)=4 \text { or } 5, \text { and } n \neq 11 \\
2 & \text { if } n=11\end{cases} \\
& M(n, n-3)=\left\{\begin{array}{ll}
2 n-3 & \text { if } 3 \mid n \\
2 n-4 & \text { if } 3 \nmid n
\end{array} \text { for } n>4,\right.
\end{aligned}
$$

$$
\begin{aligned}
& M(n, n-4)=\left\{\begin{array}{ll}
2 n-3 & \text { if } 4 \mid n \\
2 n-4 & \text { if } 4 \nmid n
\end{array} \text { for } n>5,\right. \\
& M(q k+2, k)=\left\{\begin{array}{l}
2 q k-q+2 \text { if } k \text { is even } \\
2 q k-q+1 \text { if } k \text { is odd }
\end{array}, \text { where } q \geq 1 \text { and } k>1 .\right.
\end{aligned}
$$

Moreover, two other conjectures in [BrJu1992] are also discussed in Chapter 3.

1.2 Frequency hyperrectangles

A latin square of order n is an $n \times n$ matrix L whose entries are taken from a set S of n distinct symbols and which has the property that each symbol from S occurs exactly once in each row and exactly once in each column of L.

Two latin square $\mathrm{L}_{1}=\left(a_{i j}\right)$ and $\mathrm{L}_{2}=\left(b_{i j}\right)$ on n symbols, say $0,1, \ldots, n-1$, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n^{2} pairs $\left(a_{i j}, b_{i j}\right), i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.

The question of existence of orthogonal latin squares was discussed by

Euler ([Eu1779]) in the following problem of the 36 officers:
Is it possible to arrange 36 officers of 6 different ranks and from 6 different regiments in a square formation of size 6 by 6 such that each row and each column of this formation contains exactly one officer of each rank and exactly one officer from each regiment?

This problem asks for two orthogonal latin squares of order 6. Euler was unable to find such a pair of latin squeres and conjectured that no pair existed. Euler had been able to consiruct pairs of orthogonal latin squares of every odd order and of every order divisible by 4 but not of any order congruent to 2 module 4. He conjectured that pairs of orthogonal latin squares do not exist for such orders.

Tarry ([Ta1901]) verified that the conjecture was true for the order six. Much later, Bose, Shrikhande and Parker ([BoShPa1960]) proved that the Euler Conjecture was false for all orders n of the form $4 k+2$ except $n=2$ or 6 by providing a constructive method of obtaining pairs of orthogonal latin squares of all of these orders.

The applications of latin squares to statistical designs; projective geometry and information theory are discussed in [DéKe1974] and [DéKe1991].

The idea of generalizing the concept of latin square to that of frequency
square was introduced by P. A. MacMahon ([Ma1898], pages 276-280). The same idea was discussed anew by Finney ([Fi1945], [Fi1946a], [Fi1946b]), Addelman([Ad1967]) and Freeman ([Fr1966]). The formal definition of frequency square was first given in A. Hedayat's Ph. D. thesis of 1969 and the properties of such squares were developed by A. Hedayat, D. Raghavaro and E. Seiden ([HeSe1970], [HeRaSe1975]).

Definition 1.2.1. Let $\mathrm{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix and let $\sum=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$, $m \leq n$, be the set, of distinct elements of A. Suppose further that, for each i, where $i=1,2, \ldots, m$, the elements c_{i} appears precisely λ_{i} times $\left(\lambda_{i} \geq 1\right)$ in each row and column of A. Then A is called a frequency square (F -Square) of order n on the set \sum with frequency vector $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$.

Note that, by virtue of the definition, $n=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m}$.
Definition 1.2.2. The two F -squares $\mathrm{F}_{1}\left(n, n ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{g}\right)$ defined on the set $\sum_{1}=\left\{a_{1}, a_{2}, \ldots, a_{g}\right\}$ and $F_{2}\left(n, n ; \mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ defined on the set $\Sigma_{2}=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ are orthogonal if each ordered pair $a_{i} b_{j}$ appear $\lambda_{i} \mu_{j}$ times when the square F_{1} and F_{2} are placed in juxtaposition.

The generalized concepts of frequency rectangles and frequency hyperrectangles have crept into the literature quite naturally. The following definition was given in [Ch1980] and [MaFe1984].

Definition 1.2.3. Coordinatize the $\prod_{i=1}^{d} n_{i}$ cells of a d-dimensional hyperrectangle of size $n_{1} \times \ldots \times n_{d}$ by the d-tuples of integers $\left(j_{1}, \ldots, j_{d}\right)$ where $1 \leq j_{i} \leq n_{i}$. A frequency hyperrectangle (F-hyperrectangle) is an arrangement of m symbols into the $\prod_{i=1}^{d} n_{i}$ cells, if $m \mid \prod_{j \neq i} n_{j}$ for $i=1, \ldots, d$, such that each of the m symbols appears $m^{-1}\left(\Pi_{j \neq i} n_{j}\right)$ times in each of the n_{i} sets $\mathrm{H}_{1}^{i}, \ldots, \mathrm{H}_{n_{i}}^{i}$, where H_{j}^{i} is the set of all cells with j as the i-th coordinate, $=1, \ldots, n_{i}$.

Suchower [Su1989] and Cheng [Ch2] gave the definition for a frequency hyperrectangle which allows different frequencies for different symbols, generalizing the above definitions,

Definition 1.2.4. An F-hyperrectangle of size $n_{1} \times \ldots \times n_{d}$, denoted by
$F\left(n_{1}, \ldots, n_{d i} \lambda_{1,1}, \ldots, \lambda_{1, m} ; \ldots ; \lambda_{d, 1}, \ldots, \lambda_{d, m}\right)$ where for each $i, 1 \leq i \leq d, \prod_{j \neq i} n_{j}$ $=\lambda_{i, 1}+\ldots+\lambda_{i, m}$, is an $n_{1} \times \ldots \times n_{d}$ array consisting of $m \geq 2$ symbols, say $\{1, \ldots, m\}$, with the property that for each i and $j, 1 \leq i \leq d, 1 \leq j \leq m$, the symbol j accurs exactly $\lambda_{i, j}$ times in each of the τ_{i} subarrays $H_{1}^{i}, \ldots H_{n_{i}}^{i}$, where H_{k}^{i} is the subarray of all cells with k as the i-th coordinate, $k=1, \ldots, n_{i}$.

Laywine, Mullen and Whittle [LaMuWh1995] introduced the definition for a hypercube with a prescribed type.

Definition 1.2.5. For $d \geq 2$, a d-dimensional hypercube of order n is
an $n \times \ldots \times n$ array with n^{d} points based upon n distinct symbols. Such a hypercube has type j with $0 \leq j \leq d-1$ if, whenever any j of the coordinates are fixed, each of the n symbols appears n^{d-j-1} times in that subarray.

In this thesis, we provide a versatile definition for a frequency hyperrectangle that allows different frequencies for different symbols and has a prescribed type.

For a natural number n, we use \underline{n} for the set $\{1,2, \ldots, n\}$. $P_{k}(S)$ denotes the set consisting of all \hat{i}-subsets of the set S. We define $P_{0}(S)$ as $\{\phi\}$ where ϕ is the empty set.

Definition 1.2.6. A frequency hyperrectangles (F-hyperrectangles) of size $n_{1} \times \ldots \times n_{d}$, and type $t, 0 \leq t \leq d-1$, denoted by $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda=\right.$ $\left.\Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)\right)$, where $\lambda=\Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)$ is a function with the domain $P_{t}(\underline{d}) \times \underline{m}$ and $\prod_{k \neq i_{1}, \ldots, i_{t}} n_{k}=\sum_{j=1}^{m} \Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)$ for each $\left(i_{1}, \ldots, i_{t}\right) \in P_{t}(\underline{d})$, is an $n_{1} \times \ldots \times n_{d}$ array consisting of $m \geq 2$ symbols with the property that whenever any t of the coordinates, say i_{1}, \ldots, i_{t}, are fixed, the symbol j occurs exactly $\Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)$ times in that subarray.

Counting the number of times that the symbol $j, 1 \leq j \leq m$, appears in the array, we obtain

$$
\begin{equation*}
\left.n_{i_{1}} \times \ldots \times n_{i_{t}} \times \Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)=n_{i_{1}^{\prime}} \times \ldots \times n_{i_{t}^{\prime}} \times \Phi\left(\left(i_{1}^{\prime}, \ldots, i_{t}^{\prime}\right), j\right)\right) \tag{1.9}
\end{equation*}
$$

This means that all $\Phi\left(\left(i_{1}, \ldots, i_{t}\right), j\right)$'s are determined by $\Phi((1, \ldots, t), 1), \ldots$, $\Phi((1, \ldots, t), m)$ and n_{1}, \ldots, n_{d}. We can use this fact to simplify the notation to $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}, \ldots, \lambda_{m}\right)$, where $\lambda_{j}=\{((1, \ldots, t), j)$ if $t>0$. $\Phi(\phi, j) \quad$ if $t=0$
Let us look at some examples."

0	1	1		1	1	0		1	0	1
$F_{1}=\operatorname{HR}(6,3,3 ; 2 ; 1,2):$	1	1		1	1	0		1	0	1

Frequency squares and hyperrectangles have numerous statistical properties and as a result, there has been considerable interest in various as-
pects of the theory and construction of such objects (See [DéKe1974] and [DéKe1991]).

Now we give the definition for mutually orthogonal F-hyperiectangles.
Definition 1.2.7. Two F-hyperrectangles $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}, \ldots, \lambda_{m_{1}}\right)$ and $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \mu_{1}, \ldots, \mu_{m_{2}}\right)$ are orthogonal if upon superposition, each ordered pair $(i, j), 1 \leq i \leq m_{1}, 1 \leq j \leq m_{2}$, appears exactly

$$
\left(\prod_{i=1}^{d} n_{i}\right) \lambda_{i} \mu_{j} /\left(\prod_{k=t+1}^{d} n_{k}\right)^{2} \text { times. }
$$

A set of F -hyperrectangles is called mutually onthogonal if every pair of F-hyperrectangles are orthogonal.

It is easy to verify that the above examples F_{1} and F_{2} are orthogonal.
In Chapter 4 of this thesis, we derive a bound for the maximum number of such mutually orthogonal frequency hyperrectangles. This result simultaneously generalizes Suchower's bound in [Su1989] ar.a LMW's bound in [LaMuWh1995], as well as some results in [Ch1980], [PeMa1986], [MaLeFe1981], [HeRaSe1975].

In Chapter 5, we give two algorithms to construct mutually orthogonal frequency hyperrectangles, which generalize Bose [Bo1938] and Mullen [Mu1988] construction, and Laywine, Mullen and Whittle's Algorithm [LaMuWh1995], respectively.

1.3 Carlitz compositions

A composition, of an integer n is a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of integers such that

$$
n=x_{1}+x_{2}+\ldots+x_{k}, \text { where } x_{i} \geq 1
$$

A partition of an integer n is a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of integers such that

$$
n=x_{1}+x_{2}+\ldots+x_{k} \text { and } 1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k}
$$

In both cases, the x_{i} 's are called the summands or the parts. We refer to n as the size and to k as the number of summands of the composition (partition). It is convenient to extend these definitions by regarding 0 as obtained by an empty sequence of summands.

Partitions and compositions of integers are, besides their intrinsic interests, usually used as theoretical models for evolutionary processes in different contexts: statistical mechanics, theory of quantum strings, population biology, nonparanatric statistics, etc.. Therefore properties (Statistical, algebraic, analytic,...) of these objects have received constant attention in the literature ([An1976], [HwYe1997], [KnMa], [OdRi1979], [RiKn1995]).

We know that there are 2^{n-1} compositions of the integer n with generating function $\frac{1}{1-\frac{3}{1-z}}$. The average number of summands in a random composition
of size n is $\frac{n+1}{2}$.
Carlitz [Ca1976] first discussed the following restricted composition, which is called a Carlitz composition in [KnPr1998].

Definition 1.3.1. A Carlitz composition of an integer n is a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of integers such that

$$
\begin{aligned}
& n=x_{1}+x_{2}+\ldots+x_{k}, \text { where } x_{i} \geq 1 \text { and } x_{j} \neq x_{j+1} . \\
& \quad \text { for } i=1, \ldots, k \text { and } j=1, \ldots, k-1 .
\end{aligned}
$$

Let $c(n)$ denote the number of Carlitz compositions of size n. Carlitz [Ca1976] found the generating function

$$
C(z):=\sum_{n \geq 0} c(n) z^{n}=\frac{1}{1-\sigma(z)}, \text { where } \sigma(z)=\sum_{j \geq 1} \frac{z^{j}(-1)^{j-1}}{1-z^{j}}
$$

Here are the first few values of $c(n)$:

$$
1+z+z^{2}+3 z^{3}+4 z^{4}+7 z^{5}+14 z^{6}+23 z^{7}+39 z^{8}+71 z^{9}+124 z^{10}+\ldots ; \text { it }
$$ is sequence A.003242 in [SlPl1905].

Carlitz [Ca1976] noted only that the radius of convergence of $C(z)$ is at least $1 / 2$. Knopfmacher and Prodinger [KnPr$]$ showed that there is a dominant pole p, where $\rho=0.571349 \ldots$

Therefore $c(n) \sim 0.456387 \cdot(1.750243)^{n}$.
Knopfnacher and Prodinger [$5 \mathrm{~L} \operatorname{Pr} 1998$] also proved that the average number of summands in a random Carlitz composition of size n is asymptotic
to $0.350571 \cdot n$.
For ordinary compositions, the statistic "largest summand of a composition" has obtained a lot of attention.

It is noted in [OdRi1979] that the average value of the largest summand in a sandom composition of size n is asymptotic to

$$
\log _{2} n+\gamma / \ln 2-3 / 2+\lambda\left(\log _{2} n\right)+o(1)
$$

where γ is Euler's constan' numerically $\gamma=0.577216$), and $\lambda(x)$ is nonconstant continuous functions periodic with period 1 and mean 0 .

Knopfinacher and Prodinger [KnPr1998] carried out the analogous analysis for the case of Carlitz compositions. The average number of the largest summand in a random Carlitz cornposition of size n is asymptotic to

$$
\log _{1 / \rho} n-\log _{1 / \rho} \sigma^{\prime}(\rho)-\log _{1 / \rho}(1-\rho)-\gamma / \ln \rho+1 / 2+\bar{\lambda}\left(\log _{1 / \rho} n\right) \text { where }
$$

$\bar{\lambda}(x)$ is a periodic function that has period 1 , mean 0 and small amplitude.
For ordinary compositions it is meaningless to allow the $x_{i} \mathrm{~s}$ to be zero, since then there would be infinitely many compositions for each n. However, in the context of Carlitz compositions, it makes sense, so the number $d(n)$ of Carlitz compositions with zeros allowed is meaningful. Such comprsitions have been discussed in [$\mathrm{Ca1976]}$ and $[\mathrm{KnPr1998]}$.

Knopfmacher and Prodinger [KnPr1998] obtained the generating function

$$
D(z):=\sum_{n \geq 0} d(n) z^{n}=\frac{1+2 \sigma(z)}{1-2 \sigma(z)} .
$$

Therefore $d(n) \sim 1.337604 \cdot(2.584243)^{n}$.
In Chapter 6 of this thesis, we derive:
the average number of summands in a random Carlitz composition with zeros allowed of size n, and show that this is asymptotic to $0.871626 n$, and the average size of the largest summand in a random Carlitz composition with zeros allowed of size n, and show this to be asymptotic to

$$
\log _{1 / \tau} n-\log _{1 / \tau} \sigma^{\prime}(\tau)-\log _{1 / \tau}(1-\tau)-\gamma / \ln \tau+1 / 2+\bar{\delta}\left(\log _{1 / \tau} n^{\prime}\right. \text { where }
$$ $\tau=0.386960$ and $\bar{\delta}(x)$ is a periodic function that has period 1 , mean 0 and small amplitude.

In the last section of Chapter 6, we introduce another related object: the Carlitz werd, which is a generalization of Carlitz composition.

Chapter 2

Extremization Problems

In this chapter, we main!y consider extremal matrices concerning Questions 1.1.6 and 1.1.7 and extremal matrix classes concerning Question 1.1.3. In section 2.1, the symbiotic relationship of bipartite posets and (0,1) matrices is discussed. We derive an upper bound and a lower bound for $s(A)$ in section 2.2. A special class of matrices is constructed in section 2.3 . This class of matrices is useful in answering Question 1.1.6. In section 2.4, we give the main results of this chapter. a proof of Conjecture 1.1.4 and auswers to Questions 1.1.3, 1.1.6 and 1.1.7.

2.1 Bipartite posets and (0,1) matrices

In this section, we will introduce the symbiotic relationship between bipartite posets and (0,1) matrices.

A poset P is bipartite if its vertices may be partitioned into two subsets X and Y such that each ordered pair of P is of the form $x<y$ where $x \in \mathrm{X}$ and $y \in \mathrm{Y}$. Such a partition (X,Y) is called a bipartition of the poset. A bipartite poset P with a partition (X, Y) is denoted by $\mathrm{P}(\mathrm{X}, \mathrm{Y})$.

Let $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ be a given bipartite poset, where $\mathrm{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathrm{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$. We define $a_{i j}=1$ if $x_{i}<y_{j}$, otherwise $a_{i j}=0$. The resulting m-by- n matrix $\mathrm{A}=\left(a_{i j}\right)$ is called the reduced adjacency matrix of $\mathrm{P}(\mathrm{X}, \mathrm{Y})$. The matrix A characterizes $P(X, Y)$.

For example, consider the bipartite poset $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ is in Figure 1, where $\mathrm{X}=\left\{x_{1}, \ldots, x_{4}\right\}$ and $\mathrm{Y}=\left\{y_{1}, y_{2}\right\}$. The reduced adjacency matrix of $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

On the other hand, let $\mathrm{A}=\left(a_{i j}\right)$ be a $(0,1) m$-by- n matrix. There is a natural way to associate a bipartite poset $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ with A . Let $\mathrm{X}=\left\{x_{1}, \ldots, x_{m}\right\}$
and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be disjoint sets of m and n elements, respectively, and define $x_{i}<y_{j}$ if and only if $a_{i j} \neq 0 . \operatorname{In} \mathrm{P}(\mathrm{X}, \mathrm{Y}) x_{1}, \ldots, x_{m}$ are minimal elements and y_{1}, \ldots, y_{n} are maximal elements.

Two bipartite posets $\mathrm{P}_{1}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$ are isomorphic if and only if there are two bijections $\theta: X_{1} \rightarrow X_{2}$ and $\phi: Y_{1} \rightarrow Y_{2}$ such that $x<y$ in P_{1} if and only if $\theta(x)<\phi(y)$ in P_{2}.

We see that two bipartite posets $\mathrm{P}_{1}\left(\mathrm{X}_{1}, Y_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{X}_{2}, Y_{2}\right)$ are isomorphic if and only if their resultiug reduced adjacency matrices are permutation equivalent.

Two bipartite posets $\mathrm{P}_{1}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$ are dis.sjoint if they have no vertex in common. The union of $\mathrm{P}_{1}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$ is the poset with the vertex set $X_{1} \cup Y_{1} \cup X_{2} \cup Y_{2}$ and the ordered pair set consisting of all ordered pairs in P_{1} and P_{2}. If $P_{1}\left(X_{1}, Y_{1}\right)$ and $P_{2}\left(X_{2}, Y_{2}\right)$ are disjoint, we denote their union by $\mathrm{P}_{1}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)+\mathrm{P}_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$.

We always clesignate a zero matrix by O, a matrix with every entry equal to 1 by $J . \quad$ order to emphasize the size of these matrices we sometimes include subscripts. Thus $J_{m, n}$ denotes the all I's matrix of size m by n, and
this is abbreviated to J_{n} if $m=n$. The notations $O_{m, n}$ and O_{n} have similar meanings. In displaying a matrix we often use $*$ to designate a submatrix of no particular concern.

We define the direct sum of matrices A_{1} and A_{2} to be the matrix

$$
A_{1} \oplus A_{2}=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

and the oblique direct sum of A_{1} and A_{2} to be the matrix

$$
\mathrm{A}_{1} \bar{\oplus} A_{2}=\left[\begin{array}{cc}
J & A_{2} \\
A_{1} & J
\end{array}\right]
$$

Suppose A_{i} is the reduced adjacency matrix of $\mathrm{P}_{i}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)$, where $1 \leq$ $i \leq m$, then $A_{1} \oplus \ldots \oplus A_{m}$ is the reduced adjacency matrix. of the poset $\mathrm{P}_{1}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)+\ldots+\mathrm{P}_{m}\left(\mathrm{X}_{m}, \mathrm{Y}_{m}\right)$.

Since the Hasse diagram of $P(X, Y)$ is the usual bipartite graph drawn with the y 's above the x 's, terms related to bipartite graphs, such as vertex degree, isolated vertex, etc., carry over directly to bipartite posets. Their definitions can be found in [BoMu1975, Chapter 1-10].

A completed bipartite poset is a simple bipartite graph with bipartion (X, Y) in which each vertex of X is joined to each vertex of $Y ;$ if $|X|=m$ and $|\mathrm{Y}|=n$, such a poset is denoted by $\mathrm{P}_{m, n}$.

The bipartite complement of a bipartite poset $P(X, Y)$, denoted by $\overline{P(X, Y)}$, is a bipartite poset with partition (X, Y) in which $x<y$ in $\overline{P(X, Y)}$ if and only if x is not comparable with y in $P(X, Y)$, where $x \in X$ and $y \in Y$. For example, Figure 3 shows a given poset $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ and its bipartite complement.

Fig. 3
The reduced adjacency matrix of $\mathrm{P}_{m, n}$ is $J_{m, n}$. Let A and B be the reduced adjacency matrices of $P(X, Y)$ and $\overline{P(X, Y)}$, respectively, then

$$
B=J_{|X|,|Y|}-A .
$$

In this section, we will write some results in poset language as well as in matrix language.

Matrices (bipartite posets) whose stair number is 1 or 2 have been characterized in [BrJu1992]. The assumption in the following theorems that A has no rows or columns consisting of all 0's or all 1's involves no essential loss of generalization.

Theorem 2.1.1 ([BrJu1992]). Let A be a $(0,1)$ matrix having no rows or columns consisting of all 0^{\prime} s. Then $\mathrm{b}(\mathrm{A})=1$ if and only if $\mathrm{A} \cong J$.

Theorem 2.1.1'. Let $P(X, Y)$ be a bipartite poset with no isolated vertex. Then $\mathrm{b}(\mathrm{P}(\mathrm{X}, \mathrm{Y}))=1$ if and only if $\mathrm{P}(\mathrm{X}, \mathrm{Y}) \cong P_{|X|,|Y|}$.

Theorem 2.1.2 ([BrJul992]). Let A be a (0,1) matrix having no rows or columns consisting of all 0 's or all 1 's. Then $b(A)=2$ if and only if the rows and columns of A can be permuted to give an oblique direct sum
$O \bar{\oplus} \ldots \bar{\oplus} O$ of zero matrices.
Theorem 2.1.2 ${ }^{\prime}$. Let $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ be a bipartite poset with no isolated vertex, and each vertex degree satisfies $\mathrm{d}(x)<|\mathrm{Y}|$ where $x \in \mathrm{X}$, and $\mathrm{d}(y)<|\mathrm{X}|$ where $y \in \mathrm{Y}$.

Then $\mathrm{b}(\mathrm{P}(\mathrm{X}, \mathrm{Y}))=2$ if and only if $\mathrm{P}(\mathrm{X}, \mathrm{Y}) \cong \overline{P_{m_{1}, n_{1}}+\ldots+P_{m_{k}, n_{k}}}$, where $m_{1}+\ldots+m_{k}=|X|$ and $n_{1}+\ldots+n_{k}=|\mathrm{Y}|$.

2.2 Normal forms

The following theorems show the relations between matrix structure and jump number.

Theorem 2.2.1 ([BrJu1992]). Let A be a (0,1) matrix with no zero row or column. Let $\mathrm{b}(\mathrm{A})=p$. Then there exist permutation matrices P and. Q and integers m_{1}, \ldots, m_{p} and n_{1}, \ldots, n_{p} such that PAQ equals

$$
\left[\begin{array}{cccc}
J_{m_{1}, n_{1}} & A_{12} & \ldots & A_{1 p} \tag{2.1}\\
O & J_{m_{2}, n_{2}} & \ldots & A_{2 p} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{m_{p}, n_{p}}
\end{array}\right]
$$

A matrix (2.1) satisfying the conclusion of Theorem 2.2.1 is called a normal form of A.

The next result is straightforward from the above theorem.
Theorem 2.2.2. Let A be a $(0,1)$ matrix with exact h_{1} zero rows and h_{2} zero columns. Let $\mathrm{b}(\mathrm{A})=p$. Then there exist permutation matrices P and Q and integers m_{1}, \ldots, m_{p} and n_{1}, \ldots, n_{p} such that

$$
\mathrm{PAQ}=\mathrm{A}^{\prime}=\left[\begin{array}{ccccc}
J_{m_{1}, n_{1}} & A_{12} & \ldots & A_{1 p} & O_{m_{1}, h_{2}} \tag{2.2}\\
O & J_{m_{2}, n_{2}} & \ldots & A_{2_{p}} & O_{m_{2}, h_{2}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{m_{p}, n_{p}} & O_{m_{p}, h_{2}} \\
O_{h_{1}, n_{1}} & O_{h_{1}, n_{2}} & \ldots & O_{h_{1}, n_{p}} & O_{h_{1}, h_{2}}
\end{array}\right]
$$

Now we prove the main theorem of this section.
Theorem 2.2.3. Let $\mathrm{R}=\left(r_{1}, \ldots, r_{m}\right)$ and $\mathrm{S}=\left(s_{1}, \ldots, s_{n}\right)$.
Define $r_{\text {min }}=\min \left\{r_{i} \mid 1 \leq i \leq m, r_{i} \neq 0\right\}, h_{1}=\left|\left\{i \mid r_{i}=0,1 \leq i \leq m\right\}\right|$,
$s_{\min }=\min \left\{s_{i} \mid 1 \leq i \leq n, s_{i} \neq 0\right\}, h_{2}=\left|\left\{i \mid \varepsilon_{i}=0,1 \leq i \leq n\right\}\right|$,
$r_{\text {max }}=\max \left\{r_{i}\right\}$ and $s_{\text {max }}=\max \left\{s_{i}\right\}$.
Suppose $A \in \Lambda(R, S)$, then

$$
\begin{aligned}
& \qquad s(\mathrm{~A}) \geq m+n-1-\operatorname{rnin}\left\{m-h_{1}-s_{\min }+1, n-h_{2}-r_{\min }+1\right\} \\
& \quad\left(\text { i.e., } b(A) \leq \min \left\{m-h_{1}-s_{\min }+1, n-h_{2}-r_{\min }+1\right\}\right), \\
& \text { and } s(\mathrm{~A}) \leq m+n-1-\max \left\{\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil,\left\lceil\left(n-h_{2}\right) / r_{\max }\right\rceil\right\} \\
& \quad\left(i . e ., b(A) \geq \max \left\{\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil,\left\lceil\left(n-h_{2}\right) / r_{\max }\right\rceil\right\}\right) .
\end{aligned}
$$

Proof. Let $b(A)=p$. Then $A \cong A^{\prime}$ of the form (2.2).
Since A has at least $s_{\text {min }}$ I's in each nonzero column, the first stair occurs in row $s_{\min }$ or later. Hence there are at most $m-h_{1}-\left(s_{\min }-1\right)$ stairs, and hence $\mathrm{s}(\mathrm{A}) \geq m+n-1-\left[m-h_{1}-\left(s_{\min }-1\right)\right]$

$$
=m+n-1-\left(m-h_{1}-s_{\min }+1\right) .
$$

Since $s(A)=s\left(A^{T}\right)$, we may get $s(A) \geq m+n-1-\left(n-h_{2}-r_{\min }+1\right)$.
So $s(A) \geq m+n-1-\min \left\{m-h_{1}-s_{\min }+1, n-h_{2}-r_{\min }+1\right\}$.
In the form (2.2), we have $m_{1}+\ldots+m_{p}+h_{1}=m$, where each m_{i} satisfies $m_{i} \leq s_{\text {max }}$, and hence $p \times s_{\text {max }}+h_{1} \geq m$, i.e., $p \geq\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil$.

Then $s(A) \leq m+n-1-\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil$.
Similarly $\mathrm{s}(\mathrm{A}) \leq m+n-1-\left\lceil\left(n-h_{2}\right) / r_{\max }\right\rceil$.
Hence $\mathrm{s}(\mathrm{A}) \leq m+n-1-\max \left\{\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil,\left\lceil\left(n-h_{2}\right) / r_{\max }\right\rceil\right\}$.

The following corollaries are clear.
Corollary 2.2.4. Let $\mathrm{R}=\left(r_{1}, \ldots, r_{m}\right)$ and $\mathrm{S}=\left(s_{1}, \ldots, s_{n}\right)$.
Define $r_{\text {min }}=\min \left\{r_{i} \mid 1 \leq i \leq m, r_{i} \neq 0\right\}, h_{1}=\left|\left\{i \mid r_{i}=0,1 \leq i \leq m\right\}\right|$,
$s_{\text {min }}=\min \left\{s_{i} \mid 1 \leq i \leq n, s_{i} \neq 0\right\}, h_{2}=\left\{\left\{i \mid s_{i}=0,1 \leq i \leq n\right\} \mid\right.$,
$r_{\text {max }}=\max \left\{r_{i}\right\}$, and $s_{\text {max }}=\max \left\{s_{i}\right\}$.
Then

$$
\begin{aligned}
& \mathrm{m}(\mathrm{R}, \mathrm{~S}) \geq m+n-1-\min \left\{m-h_{1}-s_{\min }+1, n-h_{2}-r_{\min }+1\right\}, \\
& \mathrm{M}(\mathrm{R}, \mathrm{~S}) \leq m+n-1-\max \left\{\left\lceil\left(m-h_{1}\right) / s_{\max }\right\rceil,\left\lceil\left(n-h_{2}\right) / r_{\max }\right\rceil\right\}
\end{aligned}
$$

Corollary 2.2.5. Let A be an $m \times n(0,1)$ matrix without any zero row, if there are at most k I's in each column, then $b(A) \geq\lceil m / k\rceil$.

Corollary 2.2.6. Let A be an $m \times n(0,1)$ matrix without any zero column, if there are at most $k I$'s in each row, then $\mathrm{b}(\mathrm{A}) \geq\lceil n / k\rceil$.

In $\Lambda(n, k), m=n, h_{1}=h_{2}=0, s_{\max }=r_{\text {max }}=k$, then we have
Corollary 2.2.7 ([BrJu1992]). $\mathrm{M}(n, k) \leq 2 n-1-\lceil n / k\rceil$.

2.3 A special class of matrices

We say matrix A contains matrix B if there exists distinct integers i_{1}, \ldots, i_{s} and distinct integers j_{1}, \ldots, j_{t} ouch that the new matrix consisting of the i_{1-} th, $, \ldots, i_{s}$-th rows and the j_{1}-th $, \ldots, j_{t}$-th columns of A is B . For example, ma$\operatorname{trix} A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 0\end{array}\right]$ contains matrix $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, since the new matrix consisting of the third, second rows and the first, second columns of A is B.

First we prove some Iernmas.
Lemma 2.3.1. Let A be a $(0,1)$ matrix.
(i) If A has no zero column, then $\mathrm{b}\left(\left[\begin{array}{l}J_{s, t} \\ A\end{array}\right]\right)=\mathrm{b}(\mathrm{A})$.
(ii) If A has a zero column, then $\mathrm{b}\left(\left[\begin{array}{l}J_{s, t} \\ A\end{array}\right]\right)=\mathrm{b}(\mathrm{A})+1$.

Proof. Let $\mathrm{b}\left(\left[\begin{array}{l}J_{s, t} \\ A\end{array}\right]\right)=p$, then $\left[\begin{array}{l}J_{s, t} \\ A\end{array}\right]$ is permutation equivalent to the normal form

$$
\mathrm{B}=\left[\begin{array}{cccc}
J_{m_{1}, n_{1}} & A_{12} & \ldots & A_{1 p} \\
0 & J_{m_{2}, n_{2}} & \ldots & A_{2 p} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{m_{p}, n_{p}} \\
O_{h_{1}, n_{1}} & O_{i_{1}, n_{2}} & \ldots & O_{h_{1}, n_{p}}
\end{array}\right] .
$$

It is clear that the first m_{1} rows of the normal form B must contain s all 1's rows. Hence $m_{1} \geq s$.

In (i), since A has no zero column, it implies $m_{1}>s$. Therefore after we delete these s all I's rows from B , the stair number does not chause.

Then $\mathrm{b}\left(\left[\begin{array}{c}J_{s, t} \\ \mathrm{~A}\end{array}\right]\right)=\mathrm{b}(\mathrm{A})$.
In (ii), we have $m_{1} \geq s$.
Since A has a zero column, it follows that $m_{1}=s$.
Hence after we delete these s all 1's rows from B, the stair number decreases by 1 .

There $\mathrm{b}\left(\left[\begin{array}{c}J_{s, t} \\ A\end{array}\right]\right)=\mathrm{b}(\mathrm{A})+1$.

Similarly, we have
Lemma 2.3.2. Let A be a $(0,1)$ matrix.
(i) If A has no zero row, then $\mathrm{b}\left(\left[\begin{array}{ll}J_{s, t} & A\end{array}\right]\right)=\mathrm{b}(\mathrm{A})$.
(ii) If A has a zero row, then $\mathrm{b}\left(\left[\begin{array}{ll}J_{s, t} & A\end{array}\right]\right)=\mathrm{b}(\mathrm{A})+1$.

Lemma 2.3.3. Let A and B be $(0,1)$ matrices, and assume that either (i) $b(A) \geq b(B)+2$, and A has no zero column or row, or (ii) $b(A) \geq b(B)=2$, both A and B have no zero column or row. Then $\mathrm{b}(\mathrm{A} \bar{\oplus} B)=\mathrm{b}(A)$.

Proof. (i) Let $\mathrm{b}(\mathrm{A} \bar{\oplus} B)=p$, then $\mathrm{A} \bar{\oplus} B=\left[\begin{array}{cc}J_{s_{1}, t_{2}} & B \\ A & J_{s_{2}, t_{2}}\end{array}\right]$ is permutation equivalent to the normal form

$$
\mathrm{C}=\left[\begin{array}{cccc}
J_{m_{1}, n_{1}} & A_{12} & \ldots & A_{1 p} \\
0 & J_{m_{2}, n_{2}} & \ldots & A_{2 p} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{m_{p}, l_{p}}
\end{array}\right]
$$

The following claim is clear.
Claim 2.3.4. Any two-row submatrix of $A \bar{\nexists} B$ consisting of one row from $\left[\begin{array}{ll}J_{s_{1}, t_{1}} & B\end{array}\right]$ and one row from $\left[\begin{array}{ll}A & J_{s_{2}, l_{2}}\end{array}\right]$ has no zero column.

Due to Claim 2.3.4, we see that the first m_{1} rows of C contain $\left[\begin{array}{ll}J_{s_{1}, t_{1}} & B\end{array}\right]$ or $\left[\begin{array}{ll}A & J_{s_{2}, t_{2}}\end{array}\right]$.

If the first m_{1} rows of C contain $\left[\begin{array}{ll}J_{s_{1}, t_{1}} & B\end{array}\right]$, then $m_{1}>s_{1}$. (Because $m_{1}=s_{1}$ implies A has a zero column, a contradiction.)

Hence after we delete $\left[\begin{array}{ll}J_{s_{1}, t_{1}} & B\end{array}\right]$ from C, the stair number does not change.

Therefore $\mathrm{b}(\mathrm{A} \bar{\oplus} B)=\mathrm{b}\left(\left[\begin{array}{ll}A & J_{s_{2}, t_{2}}\end{array}\right]\right)$.
Since A has no zero row, we have $b\left(\left[\begin{array}{ll}A & J_{s_{2}, t_{2}}\end{array}\right]\right)=b(A)$ by Lemma 2.3.2. Hence $b(A \oplus B)=b(A)$.
If the first m_{1} rows of C contain $\left[\begin{array}{ll}A & J_{s_{2}, t_{2}}\end{array}\right]$, then $m_{1} \geq s_{2}$.
Therefore $\mathrm{b}(\mathrm{A} \Phi B) \leq \mathrm{b}\left(\left[\begin{array}{ll}J_{s_{1}, l_{1}} & B\end{array}\right]\right)+1$

$$
\begin{aligned}
& \leq \mathrm{b}(B)+1+1 \quad \text { (by Lemma 2.3.2) } \\
& \leq \mathrm{b}(B)+2 \leq \mathrm{b}(A)
\end{aligned}
$$

Since $\mathrm{b}(\mathrm{A} \Phi B) \geq \mathrm{b}(A)$, it implies $\mathrm{b}(\mathrm{A} \Phi B)=\mathrm{b}(A)$.
(ii) can be proved in a similar way.

We now recursively construct a particular class of matrices $\widetilde{A_{n, k}}$ which have occured in [BrMaRo1986].

Set $n_{1}=n$ and $k_{1}=k$. We now apply steps 1 and 2 below, beginning with step 1 and alternating between steps 1 and 2 .

Step 1. Suppose n_{i} and k_{i} have been defined where $n_{i} \geq k_{i}>0$ and i is odd.

Let $n_{i}=q_{i} k_{i}+r_{i}$, where $0 \leq r_{i}<k_{i}$ and $q_{i}>0$. If $r_{i}=0$, we set $A_{i}=\oplus_{q_{i}} J_{k_{i}}$,
a direct sum of q_{i} copies of $J_{k_{i}}$, and stop. Otherwise $A_{i}=\left(\oplus_{q_{i}-1} J_{k_{i}}\right) \oplus A_{i+1}$, and $A_{i+1} \in \Lambda\left(n_{i+1}, k_{i+1}\right)$ is defined in step 2 , and where $n_{i+1}=k_{i}+r_{i}$ and $k_{i+1}=k_{i}$. (when $q_{i}=1$, the direct sum $\oplus_{q_{i}-1} J_{k_{i}}$ is an empty matrix.)

Step 2. Suppose n_{i+1} and k_{i+1} have been defined where $n_{i+1} \geq k_{i+1}>0$ and $i+1$ is even. Let $n_{i+1}=q_{i+1}\left(n_{i+1}-k_{+1}\right)+r_{i+1}$, where $0 \leq r_{i+1}<n_{i+1}-$ k_{i+1} and $q_{i+1}>0$. If $r_{i+1}=0$, we set $A_{i+1}=\bar{\oplus}_{q_{i+1}} O_{n_{i+1}-k_{i+1}}$, an oblique direct sum of q_{i+1} copies of $O_{n_{i+1}-k_{i+1}}$ and stop. Otherwise, $A_{i+1}=\left[\oplus_{q_{i+1}-1} O_{n_{+1}-k_{i+1}}\right] \bar{\oplus}_{i_{i+2}}$, where $A_{i+2} \in \Lambda\left(n_{i+2}, k_{i+2}\right)$ with $n_{i+2}=\left(n_{i+1}-k_{i+1}\right)+r_{i+1}$ and $k_{i+2}=r_{i+1}$.

Note that for odd $i, q_{i+1} \geq 2$ and $q_{i+2} \geq 2$ whenever they are defined. That is so because $n_{i+1}=k_{i}+r_{i}>2 r_{i}$ and hence $n_{i+1}>2\left(n_{i+1}-k_{i+1}\right)$. Also $n_{i+2}=\left(n_{i+1}-k_{i+1}\right)+r_{i+1}>2 r_{i+1}=2 k_{i+2}$. It follows that this construction terminates after a finite number of steps. Let t be the smallest positive integer such that $r_{t}=0$.

We set $\widetilde{A_{n, k}}$ equal to A_{1}.

Now we evaluate the stair number of $\widetilde{A_{n, k}}$.
Lemma 2.3.5. If $t \geq 3$, then $b\left(\widetilde{A_{n, k}}\right)=b\left(A_{3}\right)+q_{1}-1$.
Proof. $\widetilde{A_{n, k}}=\left(\oplus_{q_{1}-1} J_{k_{1}}\right) \oplus A_{2}$ where $\mathrm{A}_{2}=O_{n_{2}-k_{2}} \bar{\oplus} \ldots \oplus O_{n_{2}-k_{2}} \oplus A_{3}$.
$\mathrm{b}\left(\widetilde{A_{n, k}}\right)=\mathrm{b}\left(A_{2}\right)+q_{1}-1$.

According to the way of constructing $\overline{A_{n, k}}, A_{3}$ has no zero column or row.
Due to lemma 2.3.3, $\mathrm{b}\left(A_{2}\right)=\mathrm{b}\left(A_{3}\right)$.
Then $\mathrm{b}\left(\widetilde{A_{n, k}}\right)=\mathrm{b}\left(A_{3}\right)+q_{\mathrm{t}}-1$.
Theorem 2.3.6.

$$
b\left(\widetilde{A_{n, k}}\right)=\left\{\begin{array}{cc}
\sum_{i=1}^{t / 2} q_{2 i-1}-(t-4) / 2 & \text { if } 2 \mid t \\
\sum_{i=1}^{(t+1) / 2} q_{2 i-1}-(t-1) / 2 & \text { if } 2 \nmid t
\end{array} .\right.
$$

Proof. The proof is by induction on t.
If $t=1$, then $\widetilde{A_{n, k}}=\oplus_{q_{1}} J_{k}, \mathrm{~b}\left(\widetilde{A_{n, k}}\right)=q_{1}$.
If $t=2$, then $\widetilde{A_{n, k}}=\left(\oplus_{q_{1}-1} J_{k_{1}}\right) \oplus A_{2}$, where $A_{2}=\bar{\oplus}_{q_{2}} O_{n_{2}-k_{2}}$, hence $\mathrm{b}\left(\widetilde{A_{n, k}}\right)=$ $q_{1}-1+2=q_{1}+1$.

Then when $t=1$ or 2 , we are done.
Assume that we have proved the result holds for $t \leq m, m \geq 2$. Then when $t=m+1$, by Lemma 2.3.5,

$$
\begin{equation*}
\mathrm{b}\left(\widetilde{A_{n, k}}\right)=b\left(A_{3}\right)+q_{1}-1 \tag{2.3}
\end{equation*}
$$

By the induction assumption,

$$
\begin{aligned}
& b\left(A_{3}\right)=\left\{\begin{array}{cc}
\sum_{i=2}^{t / 2} q_{2 i-1}-\left(t^{\prime}-4\right) / 2 & \text { if } 2 \mid t^{\prime} \\
\sum_{i=2}^{(t+1) / 2} q_{2 i-1}-\left(t^{\prime}-1\right) / 2 & \text { if } 2 \nmid t^{\prime}
\end{array}\right. \\
& \text { where } t^{\prime}=t-2
\end{aligned}
$$

Combining (2.3) and (2.4), we prove the statement.

2.4 Main resuits

For a matrix A in block form, we use $\mathrm{A}\left[i_{1}, i_{2}, \ldots, i_{3} \mid j_{1}, j_{2}, \ldots, j_{t}\right]$ for the submatrix consisting of the i_{1}-th, i_{2}-th, .., i_{s}-th block rows and j_{1}-th,j_{2}-th,\ldots, j_{t}-th block columns of A . $\mathrm{A}\left(i_{1}, i_{2}, \ldots, i_{s} \mid j_{1}, j_{2}, \ldots, j_{t}\right)$ is used for the submatrix of A obtained by deleting the $i_{1}-\mathrm{th}, i_{2}-\mathrm{th}, \ldots, i_{s}$-th block rows and j_{1}-th, j_{2}-th $, \ldots, j_{t}$-th block columns from A . Instead of $\mathrm{A}\left[i_{1}, i_{2}, \ldots, i_{s} \mid i_{1}, i_{2}, \ldots, i_{s}\right]$ and $\mathrm{A}\left(i_{1}, i_{2}, \ldots, i_{s} \mid i_{1}, i_{2}, \ldots, i_{s}\right)$, we write $\mathrm{A}\left[i_{1}, i_{2}, \ldots, i_{s}\right]$ and $\mathrm{A}\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ respectively.

A square matrix is called upper triangular if all the elements below the main diagonal are zero.

Firstly we consider Question 1.1.6.
Theorem 2.4.1. Suppose $A \in \Lambda(n, k)$ where $1 \leq k \leq n$. Then $s(A) \leq$ $n+k-2$, and the equality holds if and only if A has an order $n-k+1$ nonsingular submatrix which is permutation equivalent to an upper triangular matrix.

Proof. Brualdi and Jung have proved $\mathrm{s}(\mathrm{A}) \leq n+k-2$ in [BrJu1992].
$\mathrm{s}(\mathrm{A})=n+k-2(i . e, \mathrm{~b}(\mathrm{~A})=n-k+1)$ if and only if A contains an order $n-k+1$ submatrix of the form $\left(\begin{array}{cccc}1 & * & \ldots & * \\ 0 & 1 & \ldots & * \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1\end{array}\right)$, if and only if A has an order $n-k+1$ non-singular submatrix which is permutation equivalent to an upper triangular matrix.

Now we discuss Question 1.1.7.
If $A \in \Lambda(n, k)$ where $k \mid n$ and $b(A)=\frac{n}{k}$, then from the form (2.1), we see that $m_{1}=\ldots=m_{p}=n_{1}=\ldots=n_{p}=k$.

Thus we obtain the following assertion.
Theorem 2.4.2. Let $\mathrm{A} \in \Lambda(n, k)$ where $k \mid n$, then $\mathrm{s}(\mathrm{A})=2 n-1-\frac{n}{k}$ iff $\mathrm{A} \cong \widetilde{A_{n, k}}$.

In order to investigate the case $k \nmid n$, we first prove the following lemmas.
Lemma 2.4.3. Suppose that $A \in \Lambda(n, k)$ and $k<n<2 k$, then $\mathrm{s}(\mathrm{A})=2 n-$ 3 iff $(n-k) \mid k$, and $A \cong \widetilde{A_{n, k}}$.

Proof. If $(n-k) \mid k$ and $\mathrm{A} \cong \widetilde{A_{n, k}}$, then $\mathrm{A} \cong O_{n-k} \widetilde{\oplus} . . \bar{\oplus} O_{n-k}$ and thus $s(A)=2 n-3$.

If $s(A)=2 n-3$, then $b(A)=2$.
By Theorem 2.1.2, we see that $\mathrm{A} \cong O_{m_{1}, n_{1}} \bar{\oplus} \ldots \not O_{m_{\ell}, n_{t}}$.
Since $A \in \Lambda(n, k)$, it implies that $m_{1}=n_{1}=\ldots=m_{t}=n_{t}=n-k$.
Hence $(n-k) \mid n, A \cong \widetilde{A_{n, k}}$.
Siuce $(n-k) \mid(n-k)$, we have $(n-k) \mid k$.

Lemma 2.4.4. If A is permutation equivalent to the block triangular form

$$
\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 t} \\
0 & A_{22} & \ldots & A_{2 t} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{t t}
\end{array}\right] \text { or }\left[\begin{array}{cccc}
A_{11} & 0 & \ldots & 0 \\
A_{21} & A_{22} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
A_{t 1} & A_{t 2} & \ldots & A_{t t}
\end{array}\right] \text {, }} \\
\text { then } b(A) \geq \sum_{i=1}^{t} b\left(A_{i i}\right) .
\end{array}\right.
$$

Proof. Since A can achieve at least $b\left(A_{11}\right)+b\left(A_{22}\right)+\ldots+b\left(A_{t t}\right)$ stairs, it implies that $b(A) \geq \sum_{i=1}^{t} b\left(A_{i i}\right)$.

Lemma 2.4.5. Let A be an $m \times n(\eta, 1)$ matrix having no rows or columns consisting of all 0 's or I's and $b(A)=2$. Then the number of 0 's in any two unequal columns is not more than m.

Proof. Due to Theorem 2.1.2, $\mathrm{A}=O_{m_{1}, m_{1}} \overline{\operatorname{T}} . . \bar{\oplus} O_{m_{t}, m_{t}}$, where $t \geq 2$ and $m_{1}+\ldots+m_{t}=m$.

The number of 0 's in any two unequal columns equals $m_{i_{1}}+m_{i_{2}} \leq m$, where $l \leq i_{1}, i_{2} \leq t$ and $i_{1} \neq i_{2}$.

For the case $k \nmid n$, we have the following result.
Theorem 2.4.6. Suppose that $p k<n<(p+1) k, A \in \Lambda(n, k)$, then $\mathrm{s}(\mathrm{A})=2 n-1-(p+1)$ iff $(n \bmod k)\} k$ and $\mathrm{A} \cong \overline{A_{n, k}}$.

Proof. The sufficiency is clear.
To prove the necessity, when $p=1$, we are done.
Suppose when $p<h, h \geq 2$, the statement holds.
Then when $p=h, \mathrm{~b}(\mathrm{~A})=h+1$.
According to Theorem 2.2.1, we may assume A is in the normal form

$$
\left[\begin{array}{cccc}
J_{m_{1}, n_{1}} & A_{12} & \ldots & A_{1, h+1} \tag{2.5}\\
0 & J_{m_{2}, n_{2}} & \ldots & A_{2, h_{h 1}} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & J_{m_{h+1}, n_{h+1}}
\end{array}\right]
$$

where $m_{i} \leq k, n_{i} \leq k, i=1, \ldots, h+1$.
In the form (2.5), $h k<n<(h+1) k$ and $A \in \Lambda(n, k)$, the following assertion is clear.

Claim 2.4.7. For any two distinct integer $i, j, 1 \leq i, j \leq h+1$, we have $k<m_{i}+m_{j} \leq 2 k, k_{i}<n_{i}+n_{j} \leq 2 k$.

In the form (2.5), suppose $D_{i}=\left(A_{i, i+1} \ldots A_{i, h+1}\right), i=1, \ldots, h$.
Let h_{i} be the smallest integer of set $\{i+1, \ldots, h+1\}$ such that $A_{i, h_{1}} \neq 0$. If $\mathrm{D}_{i}=O$, then let $h_{i}=i$.

Suppose $\mathrm{F}_{j}=\left[\begin{array}{c}A_{1, j} \\ \ldots \\ A_{j-1, j}\end{array}\right], j=2, \ldots, h+1$.
Let, t_{j} be the largest integer of set $\{1, \ldots, j-1\}$ such that $A_{t, j} \neq O$. If $\mathrm{F}_{j}=O$, then let $t_{j}=j$.

Claim 2.4.8. If $h_{i}>i$, then $\mathrm{b}\left(\mathrm{A}_{i, h_{i}}\right)=2$.
Proof of claim. If $\mathrm{b}\left(\mathrm{A}_{i, h_{i}}\right)>2$, then it is clear that $\mathrm{b}\left(\mathrm{A}\left(h_{i} \mid i\right)\right)>h+1_{\text {, }}$ hence $\mathrm{b}(\mathrm{A})>h+1$, which contradicts the assumption that $\mathrm{b}(\mathrm{A})=h+1$.

If $\mathrm{b}\left(\mathrm{A}_{i, h_{i}}\right)=1$, by Theorem 2.1.1, $\mathrm{A}_{i, h_{i}} \cong\left[\begin{array}{cc}J_{a, b} & 0 \\ 0 & 0\end{array}\right]$.
Assume $a=m_{i}$, then $m_{i}+m_{h_{i}} \leq k$, where $i \neq h_{i}$, which contradicts claim 2.4.7.

Then $a<m_{i}$. Similarly, $b<n_{h_{\mathrm{i}}}$.
Since $\mathrm{A}\left[i, h_{i}\right] \cong O_{m_{h_{i}}, n_{i}} \bar{\oplus} \mathrm{~A}_{i, h_{i}}, \mathrm{~A}\left[i, h_{i}\right]$ has at least three stairs.

Since $A \cong\left[\begin{array}{ccc}A\left(i, h_{i}, h_{i}+1, \ldots, h+1\right) & * & * \\ 0 & A\left[i, h_{i}\right] & * \\ 0 & 0 & A\left[h_{i}+1, \ldots, h+1\right]\end{array}\right]$

$$
\begin{aligned}
\mathrm{b}(\mathrm{~A}) & \geq \mathrm{b}\left(A\left(i, h_{i}, h_{i}+1, \ldots, h+1\right)\right)+\mathrm{b}\left(A\left[i, h_{i}\right]\right)+\mathrm{b}\left(A\left[h_{i}+1, \ldots, h+1\right]\right) \\
& \geq\left(h_{i}-1-1\right)+3+\left[h+1-\left(h_{i}+1\right)+1\right] \\
& =h+2>h+1, \text { a contradiction. }
\end{aligned}
$$

Hence $b\left(A_{i, h_{i}}\right)=2$.
Here we can get the following statements, whose proofs are given in the next section.

Claim 2.4.9. If $h_{1}>1$, then $A_{i, h_{1}}=O, i=2, \ldots, h_{1}-1$.
Claim 2.4.10. If $1<h_{1}<h+1$, then $\mathrm{A}_{1 i}=O, i=h_{1}+1, \ldots, h+1$.

Applying the above assertions, we now finish the proof of Theorem 2.4.6.
In thie form (2.5), if $\mathrm{D}_{1}=0$, then $m_{1}=n_{1}=k, \mathrm{~A}=J_{k} \oplus A(1), \mathrm{A}(1) \in$ $\Lambda(n-k, k)$.

Let $n^{\prime}=n-k$, then $(h-1) k<n^{\prime}<h k$,

$$
\begin{aligned}
& \text { and } \mathrm{s}(\mathrm{~A}(1))=\mathrm{s}(\mathrm{~A})-\mathrm{s}\left(\mathrm{~J}_{k}\right)-1 \\
& \quad=[2 n-1-(h+1)]-(2 k-1-1)-1
\end{aligned}
$$

$$
\begin{aligned}
& =2(n-k)-1-h \\
& =2 n^{\prime}-1-h .
\end{aligned}
$$

Due to the induction assumption, $\mathrm{A}(1) \cong \widetilde{A_{n-k, k} k}$,

$$
((n-k) \bmod k) \mid k .
$$

Then $(n \bmod k) \mid k$ and $\mathrm{A} \cong \widetilde{A_{n, k}}$.
If $\mathrm{D}_{1} \neq 0$, i.e., $h_{1}>1$, then we distinguish the following two cases.
Case 1. $h_{\mathrm{I}}=h+1$. Then $\mathrm{A}_{12}=A_{13}=\ldots=A_{1 h}=0$.
Due to claim 2.4.9, $\mathrm{A}_{2, h+1}=\mathrm{A}_{3, h+1}=\ldots=\mathrm{A}_{h, h+1}=0$.
Therefore $\mathrm{A} \cong A[1, h+1] \oplus A(1, h+1)$.
Then we have $A[1, h+1] \in \Lambda\left(n^{\prime}, k\right), A(1, h+1) \in \Lambda\left(n^{\prime \prime}, k\right)$ where $k<$ $n^{\prime}<2 k,(h-2) k<n^{\prime \prime}<h k, n^{\prime}+n^{\prime \prime}=n$.

We get $b(A[1, h+1]) \geq 2, b(A(1, h+1)) \geq h-1$ by corollary 2.2.5.
Since $\mathrm{b}(A[1, h+1])+b(A(1, h+1))=h+1$, 't implies that

$$
\begin{aligned}
& \mathrm{b}(A[1, h+1])=2, \text { and } \\
& \mathrm{b}(A(1, h+1))=h-1
\end{aligned}
$$

Due to corollary 2.2.5, $n^{\prime \prime} \leq(h-1) k$, then $(h-2) k<n^{\prime \prime} \leq(h-1) k$.
Suppose that $n^{\prime \prime}<(h-1) k$.
By the induction assumption, $\left(n^{\prime} \bmod k\right) \mid k$ and $\left(n^{\prime \prime} \bmod k\right) \mid k$.
Then $k<n^{\prime} \leq k+k / 2$ and $(h-2) k<n^{\prime \prime} \leq(h-2) k+k / 2$.

Hence $(h-1) k<n \leq h k$, which contradicts $h k<n<(h+1) k$.
So $n^{\prime \prime}=(h-1) k$.
It implies that $m_{2}=n_{2}=\ldots=m_{h}=n_{h}=k_{1}$ therefore $A(1, h+1) \cong \oplus_{h-1} J_{k}, A[1, h+1] \cong A_{n-(h-1) k, k}$.
Then $\mathrm{A} \cong \overline{A_{n, k}},(n \bmod k) \mid k$.
Case 2. $1<h_{1}<h+1$. Then $A_{12}=A_{13}=\ldots=A_{1, h_{1}-1}=O$.
Due to claim 2.4.9 and 2.4.10, $\mathrm{A}_{1, h_{1}+1}=\ldots=A_{1, h+1}=O$ and

$$
\mathrm{A}_{2, h_{1}}=\ldots=A_{l_{1}-1, h_{1}}=0
$$

Next, we will prove $\mathrm{D}_{h_{1}}=0$.
Suppose not, by claim 2.4.8, we have $b\left(A_{1, h_{1}}\right)=2$ and $b\left(A_{h_{1}, h_{h_{1}}}\right)=2$.
It implies that $\mathrm{b}\left(\left[\begin{array}{cc}A_{1 h_{1}} & O \\ J_{m_{h_{1}}, n_{h_{1}}} & A_{h_{1}, h_{h_{1}}}\end{array}\right]\right) \geq 4$. Then $\mathrm{b}\left(\mathrm{A}\left(h_{h_{1}} \mid 1\right)>h+1\right.$, hence $b(A)>h+1$, a coutradistion.

Then $\mathrm{D}_{h_{1}}=O, \mathrm{~A} \cong A\left[1, h_{1}\right] \oplus A\left(1, h_{1}\right)$.
Similar discussion as case 1 , we have $\mathrm{A} \cong \widetilde{A_{n, k}}$ and $(n \bmod k) \mid k$.

The next result follows from Theorems 2.4.2 and 2.4.6.
Theorem 2.4.11. Suppose that $A \in \Lambda(n, k)$ where $1 \leq k \leq n$, then $\mathrm{s}(\mathrm{A})=2 n-1-\lceil n / k\rceil$ iff $k \mid n$ or $(n \bmod k) \mid k$, and $\mathrm{A} \cong \overline{A_{n, k}}$.

Corollary 2.4.12. Suppose that $A \in \Lambda(n, k)$ where $1 \leq k \leq n$, then $s(A)=2 n-1-\lceil n / k\rceil$ iff $k \mid n$ and $A \cong \oplus_{\frac{n}{k}} J_{k}$, or $(n \bmod k) \mid k$ and $A \cong$ $\oplus_{[n / k\rceil-2} J_{k} \oplus\left(\bar{\oplus}_{\frac{k}{n \bmod k}+1} O_{n \bmod k}\right)$.

The following corollary shows Conjecture 1.1.4 is true.
Corollary 2.4.13. If $k \neq n$ and $(n \bmod k) \nmid k$ for $1 \leq k \leq n$, then $M(r n, k)<2 n-1-\lceil n / k\rceil$.

Corollary 2.4.14. Suppose that $n \geq 2 k$. Let $A \in \Lambda(n, k)$ satisfy

$$
\mathrm{s}(\mathrm{~A})=\mathrm{M}(n, k)=2 n-1-\lceil n / k\rceil
$$

Then there exits $\mathrm{B} \in \Lambda(n-k, k)$ such that A is permutation equivalent to $J_{k} \oplus B$ where $\mathrm{s}(\mathrm{B})=\mathrm{M}(n-k, k)$.

The next corollary give an answer to Question 1.1.3.
Corollary 2.4.15. $\mathrm{M}(n, k)=2 n-1-\lceil n / k\rceil$ iff $k \mid n$ or $(n \bmod k) \mid k$.

2.5 Completion of proofs

In this section, we will prove ciaim 2.4 .9 and 2.4.10 in order to complete the prouf of Theorem 2.4.6.

From claim 2.4.7, we see that

Claim 2.5.1. If $h_{i}>i$, then $A_{i, h_{i}}$ has no column or row consisting of all 1's.

Claim 2.5.2. If $h_{i}>i$, then $\mathrm{A}_{i, h_{\mathrm{i}}}$ has no column or row consisting of all 0's.

Proof of claim. Suppose $A_{i, h_{i}}$ has a column or row consisting of all 0's. Due to claim 2.4.8, $\mathrm{A}\left[\mathrm{i}, h_{i}\right]$ has at least three stairs, then $\mathrm{b}(\mathrm{A})>h+1$, a contradiction.

Since $b(A)=b\left(A^{T}\right)$, we can obtain the following claims.
Claim 2.5.3. If $t_{j}<j$, then $\mathrm{b}\left(\mathrm{A}_{t, j}\right)=2$.
Claim 2.5.4. If $t_{j}<j$, then $A_{t_{j}, j}$ has no column or row consisting of all $0^{\prime} s$ or $1^{\prime} s$.

Now we prove claim 2.4.9.
Proof of claim 2.4.9. Suppose not, then there exists $t_{h_{1}}$, such that $2 \leq$ $t_{h_{1}} \leq h_{1}-1$ and $\mathrm{b}\left(\mathrm{A}_{t_{h_{1}}, h_{1}}\right)=2$.

By claim 2.4.8, 2.5.1, 2.5.2 and Theorem 2.1.2, we have

$$
A_{1, h_{1}} \cong O_{p_{1}, q_{1}} \bar{\oplus} \ldots \bar{\otimes} O_{p_{w}, q_{w}}, w \geq 2
$$

There exist two unequal columns in $A_{1, h_{1}}$ opposite two unequal columns in $A_{t_{h_{1}}, h_{1}}$, otherwise we see that all columns of $A_{t_{h_{1}}, h_{1}}$ are identical, which
contradicts $b\left(A_{t_{h_{1}}, h_{1}}\right)=2$.
Without loss of generality we assume the numbers of 0 's in these two unequal columns of $A_{1, h_{1}}$ are p_{1}, p_{2} respectively, there are $a_{1}, a_{2} 0$'s in their respectively opposite columns of $A_{t_{h_{1}}}, h_{1}$.

Due to lemma 2.4.5, $a_{1}+a_{2} \leq m_{t_{h_{1}}}, p_{1}+p_{2} \leq m_{1}$.
Now consider the numbers of 1's in these two columns.
Since each column sum of A is k, and $m_{1}=k$, we have

$$
\begin{aligned}
& m_{h_{1}}+\left(m_{t_{h_{1}}}-a_{1}\right)+\left(m_{1}-p_{1}\right) \leq k \\
& m_{h_{1}}+\left(m_{t_{h_{1}}}-a_{2}\right)+\left(m_{1}-p_{2}\right) \leq k \\
& \text { equivalently } m_{h_{1}}+m_{t_{h_{1}}}-a_{1} \leq p_{1} \\
& \quad m_{h_{1}}+m_{t_{h_{1}}}-a_{2} \leq p_{2} \\
& \text { Then } m_{h_{1}}+m_{t_{h_{1}}}<2 m_{h_{1}}+m_{t_{h_{1}}} \\
& \quad \leq 2 m_{h_{1}}+2 m_{t_{h_{1}}}-a_{1}-a_{2} \\
& \quad \leq p_{1}+p_{2} \\
& \leq k, \text { contradicting lemma 2.4.7. }
\end{aligned}
$$

This completes the proof.

From claim 2.4.9, we have the following assertion.
Claim 2.5.5. If $h_{1}>1$, then $\mathrm{A}_{1, h_{1}} \cong O_{q_{1} g_{1}} \bar{\oplus} \ldots \bar{\oplus} O_{q, q_{w}}, w \geq 2, w q=k$,

$$
m_{h_{1}}=q \leq k / 2
$$

Finally we will consider claim 2.4.10.
In the form (2.5), if $1<h_{1}<h+1$, we suppose that $\left(\mathrm{A}_{1, h_{1}+1} \ldots \mathrm{~A}_{1, h+1}\right) \neq$ O. Let s be the smallest number of the set $\left\{h_{1}+1_{2}, \ldots, h+1\right\}$ such that $A_{s s} \neq 0$.

By claim 2.4.7, $m_{h_{\mathrm{t}}}+m_{s}=q+m_{s}>k$.
Due to claim 2.5.5, $m_{h_{2}} \leq k / 2$, hence $m_{s}>k-m_{h_{\mathrm{t}}} \geq k / 2$.
We see that $\mathrm{b}\left(\mathrm{A}_{1 s}\right) \leq 3$, otherwise we contradict $\mathrm{b}(\mathrm{A})=h+1$.
The following statements can be deduced.
Claim 2.5.6. $\mathrm{b}\left(\mathrm{A}_{1 s}\right) \neq 1$.
Proof of claim. Suppose that $b\left(\mathrm{~A}_{1 s}\right)=1$. Then $\mathrm{A}_{1 s} \cong\left[\begin{array}{cc}J_{a, b} & 0 \\ 0 & 0\end{array}\right]$.
Since each column sum is k, and $m_{s}>k / 2$, it implies that $a<k / 2$.
Due to claim 2.5.5, we have $\mathrm{b}\left(\left[\mathrm{A}_{1, h_{1}} \mathrm{~A}_{1 s}\right]\right) \geq 3$.
By claim 2.4.7, $b<n_{s}$, then $\mathrm{b}\left(\left[\begin{array}{cc}A_{1 h_{1}} & A_{1 s} \\ 0 & J_{m_{s}, n_{s}}\end{array}\right]\right) \geq 4$, hence $\mathrm{b}(\mathrm{A})>h+1$, a contradiction.

So $b\left(A_{1 s}\right) \neq 1$.
Claim 2.5.7. If $\mathrm{A}_{1 s}$ has no zero row, then $\mathrm{b}\left(\mathrm{A}_{1 s}\right)=3$.

If $A_{1 s}$ has a zero row, then $b\left(A_{1 s}\right)=2$.
Proof of claim. If $\mathrm{A}_{1 s}$ has no zero row, due to the fact that column sum of $\mathrm{A}_{1 s}$ is at most $k-m_{s}<k / 2$, then we have

$$
\mathrm{b}\left(\mathrm{~A}_{1 s}\right) \geq\left\lceil k /\left(k-m_{s}\right)\right\rceil \geq k /\left(k-m_{s}\right)>2 \text { by corollary } 2.2 .5
$$

So $b\left(\mathrm{~A}_{1 s}\right)=3$.
If $\mathrm{A}_{1 s}$ has a zero row, then $\mathrm{b}\left(\mathrm{A}_{1 s}\right)<3$, otherwise we contradict $\mathrm{b}(\mathrm{A})=h+$ 1.

Due to claim 2.5.6, we have $b\left(A_{1 s}\right)=2$.
Due to claim 2.5.3, 2.5.4 and 2.5.7, we have the following assertion.
Claim 2.5.8. $1<t_{s}<\mathrm{s}$, and $\mathrm{b}\left(\mathrm{A}_{t_{s}, s}\right)=2$.
Claim 2.5.9. $\mathrm{A}_{1 s}$ has no zero column.
Proof of claim. Assume that $A_{1 s}$ has a zero column.
Now consider whether $A_{1 s}$ has a zero row or not.
Case 1. $\mathrm{A}_{1 s}$ has a zero row, then $\mathrm{b}\left(\mathrm{A}_{1 s}\right)=2$ by claim 2.5.7.
So $b\left(\left[\begin{array}{cc}J_{m_{4}, n_{t}} & A_{1 s} \\ 0 & J_{m_{s}, n_{s}}\end{array}\right]\right) \geq 4$, therefore $\mathrm{b}(\mathrm{A})>h+1$, a contradiction.
Case 2. $\mathrm{A}_{1 s}$ has no zero row, then $\mathrm{b}\left(\mathrm{A}_{1 s}\right)=3$ by claim 2.5.7.
So $b\left(\left[\begin{array}{c}A_{1 s} \\ J_{m_{s}, n_{s}}\end{array}\right]\right) \geq 4$, therefore $b(A)>h+1$, a contradiction.
Hence $\mathrm{A}_{1 s}$ has no zero column.

Claim 2.5.10. Let the numbers of 1 's in any two unequal columns of $\mathrm{A}_{1 \mathrm{~s}}$ be a_{i} and a_{j}, respectively, then $a_{i}+a_{j} \geq k / 2$.

Proof of claim. Suppose not, then there exist two unequal columns of A_{1} such that $a_{1}+a_{2}<k / 2$, where a_{1} and a_{2} are the numbers of 1 's in these two unequal columns of $A_{1 s ;}$ respectively. We denote by B the submatrix of $A_{1 s}$ consisting of these two columns, then $b(B)=2$ by claim 2.5.9.

Since $a_{1}+a_{2}<k / 2$, it implies that the number of zero rows of B is greater than $k / 2$, hence $b\left(\left[\begin{array}{ll}A_{1, L_{1}} & A_{1 s}\end{array}\right]\right) \geq 4$ by claim 2.5.5.

Therefore $\mathrm{b}(\mathrm{A})>h+1$, a contradiction.
Next we will complete the proof of claim 2.4.10.
We see that there exist two unequal columns in $A_{1, s}$ opposite two unequal columns in $A_{t_{s}, s}$ otherwise we see that all columns of $A_{1 s}$ are identical, which contradicts $\mathrm{b}\left(\mathrm{A}_{1 s}\right) \neq 1$.

Without loss of generality we assume the numbers of 1's in these two unequal columns of $A_{1 s}$ are c_{1}, c_{2} respectively, and there are $p_{1}, p_{2} 0$'s in their respectively opposite columns of $A_{t, s}$.

Due to lemma 2.5.10, $c_{1}+c_{2} \geq k / 2$.
Due to claim $2 . \dot{5} 8, b\left(A_{t, s}\right)=2$, and we get $p_{1}+p_{2} \leq m_{t}$, by lemma 2.4.5.

In matrix A we consider the numbers of 1's in these two columns, then

$$
m_{s}+\left(m_{t_{s}}-p_{1}\right)+c_{1} \leq k, \quad m_{s}+\left(m_{t_{s}}-p_{2}\right)+c_{2} \leq k
$$

Hence $2 m_{s}+m_{t_{s}}+\left(m_{t_{s}}-p_{1}-p_{2}\right)+c_{1}+c_{2} \leq 2 k$.
So $2 m_{s}+m_{\mathrm{t}}+k / 2 \leq 2 k$.
Due to $m_{s}>k / 2$, then $m_{s}+m_{t_{s}}<k$, a contradiction.
Hence $\mathrm{A}_{1 i}=O, i=h_{1}+1, \ldots, h+1$.

Chapter 3

Some exact values concerning

maximum jump numbers

In the first section of this chapter, we get the exact values for $\mathrm{M}(11, k)$ where $1 \leq k \leq 11$. Two types of recursive constructions are discussed in section 2. Consequently we derive some inequalities for $\mathrm{M}(n, k)$. In the last section, we deduce exact values for $\mathrm{M}(n, 6), \mathrm{M}(n, n-3), \mathrm{M}(n, n-4)$ and $\mathrm{M}(q k+2, k)$.

$3.1 \mathrm{M}(11, \mathrm{k})$

Theorem 3.1.1. The following hold:
(a) $M(11,1)=10, M(11,2)=15, M(11,3)=16, M(11,4)=17, M(11,5)=$ $18, M(11,9)=18, M(11,10)=19, M(11,11)=20$.
(b) $M(11,7)=18, M(11,8)=18$.
(c) $M(11,6)=17$.

Proof. (a) can be obtained from formulas (1.1)-(1.8) in Chapter 1.
(b) By Corollary 2.4.13, $M(11,7) \leq 18$ and $M(11,8) \leq 18$.

Let $\mathrm{A}_{1}=\left(J_{3} \oplus\left(O_{1} \bar{\oplus} O_{1} \bar{\oplus} O_{1} \bar{\oplus} O_{1}\right)\right) \bar{\oplus} O_{4}$, then we see $\mathrm{s}\left(\mathrm{A}_{1}\right)=18$. Thus $M(11,7)=18$.

Let $\mathrm{A}_{2}=\left(\left(J_{2} \oplus\left(O_{1} \bar{\oplus} O_{1} \bar{\oplus} O_{1}\right)\right) \Phi O_{3}\right) \bar{\oplus} O_{3}$, then we see $\mathrm{s}\left(\mathrm{A}_{2}\right)=18$. Thus $M(11,3)=18$.
(i) Now we determine the value of $\mathrm{M}(11,6)$.

The following lemma is quoted from [BrJu1992].
Lemma 3.1.2 ([BrJu1992]). $\mathrm{M}(2 k+1, k+1) \geq 4 k-\lceil\sqrt{k}\rceil$.
By lemma 3.1.2 and Corollary 2.4.13, $17 \leq M(11,6)<19$. We only need to prove $\mathrm{M}(11,6) \neq 18$.

For any matrix $A \in \Lambda(11,6)$, if $b(A)=3$, then from Theorem 2.2.1, we have

$$
A \cong\left[\begin{array}{lll}
J_{6,5-q} & A_{12} & A_{13} \tag{3.1}\\
0 & J_{p, q} & A_{23} \\
0 & 0 & J_{5-p, 6}
\end{array}\right]
$$

where $1 \leq p \leq 4,1 \leq q \leq 4$.

Since $b(A)=b\left(A^{T}\right)$, we may assume $b\left(A_{12}\right) \leq b\left(A_{23}\right)$ in the form (3.1).
In the form (3.1), $b\left(A_{12}\right) \geq 1$, otherwise $b\left(A_{12}\right)=0$, then $A_{12}=O$, hence $p=6$, a contradiction.

Moreover $b\left(A_{23}\right) \leq 2$ and $b\left(A_{13}\right) \leq 3$, otherwise $b(A)>3$, a contradiction. Then $1 \leq \mathrm{b}\left(A_{12}\right) \leq \mathrm{b}\left(A_{23}\right) \leq 2$ and $0 \leq \mathrm{b}\left(A_{13}\right) \leq 3$.

Lemma 3.1.3. In $\Lambda(11,6)$, there does not exist a matrix of the form (3.1) whose stair number is 3 , and $b\left(A_{12}\right)=1$.

Proof. Suppose there exists a matrix A of the form (3.1) and $A \in \Lambda(11,6)$, $\mathrm{b}(\mathrm{A})=3$ and $\mathrm{b}\left(\mathrm{A}_{12}\right)=1$.

Since $A \in \Lambda(11,6)$ and $b\left(A_{12}\right)=1$, we see that $A_{12} \cong\left[\begin{array}{c}J_{6-p, q} \\ 0\end{array}\right]$.
Therefore $\mathrm{A} \cong B_{1}=\left[\begin{array}{lll}J_{6-p, 5-q} & J_{6-p, q} & C_{1} \\ J_{p, 5-q} & 0 & C_{2} \\ 0 & J_{p, q} & A_{23} \\ 0 & 0 & J_{5-p, 6}\end{array}\right]$.
Claim 3.1.4. C_{1} has a zero column.
Proof of the claim. Suppose C_{1} has no zero column. By the fact that C_{1} has 6 columns, then the number of 1 's in C_{1} is not less than 6 .

Since each row of C_{1} only have one 1's, we see that the number of I's in
C_{1} is $6-p<6$, a contradiction.
Thus, we have
Claim 3.1.5. $\mathrm{b}\left(\mathrm{C}_{1}\right)=1$ or 2 .
We distinguish the following two cases.
Case 1. $b\left(\mathrm{C}_{1}\right)=2$. Then $\mathrm{C}_{1} \cong\left[\begin{array}{ll}J_{s_{1}, 4} \oplus J_{s_{2}, 7} & O_{6-p, 4}\end{array}\right]$, where $s_{1}+s_{2}=$ $6-p$.

Therefore $A \cong B_{2}=\left[\begin{array}{cccc}J_{6-p, 5-q} & J_{6-p, q} & J_{s 1,1} \oplus J_{s_{2}, 1} & O_{6-p, 4} \\ J_{p, 5-q} & 0 & D_{1} & D_{2} \\ 0 & J_{p, q} & D_{3} & D_{4} \\ 0 & 0 & J_{5-p, 2} & J_{5-p, 4}\end{array}\right]$.
Since $\mathrm{b}(\mathrm{A})=3$, we see that $\mathrm{b}\left(\left[\begin{array}{l}D_{2} \\ D_{4}\end{array}\right]\right) \leq 1$, then $\mathrm{b}\left(\left[\begin{array}{l}D_{2} \\ D_{4}\end{array}\right]\right)=1$.
Due to the fact that the column sum of B_{2} is 6 , we have
Claim 3.1.6. D_{2} has no zero column. D_{4} has no zero columa.
Claim 3.1.7. $\left[\begin{array}{c}D_{2} \\ D_{4}\end{array}\right]$ has no zero row.
Proof of the claim. Suppose D_{2} has a zero row, then $q=1$. Hence D_{2} can not have an all I's row. Therefore $\mathrm{D}_{2}=0$. Then the last column sum of B_{2} is at most 5 , a contradiction.

Therefore D_{2} has no zero row. Similarly, we can prove that D_{4} has no
zero row.
Since $b\left(\left[\begin{array}{c}D_{2} \\ D_{4}\end{array}\right]\right)=1$, by claim 3.1.6, 3.1.7 and Theorem 2.1.1, we have $\left[\begin{array}{c}D_{2} \\ D_{4}\end{array}\right]=J_{2 p, 4}$.

We choose any one row from the second and the third row blocks of B_{2}, respectively. Those two rows sum $\geq(5-q)+4+q+4=\quad$, a contradiction.

Case 2. $\mathrm{b}\left(\mathrm{C}_{1}\right)=1$. Then $\mathrm{A} \cong B_{3}=\left[\begin{array}{cccc}J_{6-p, 5-q} & J_{6-p, q} & J_{6-p, 1} & O_{6-p, 5} \\ J_{p, 5-q} & 0 & E_{1} & E_{2} \\ 0 & J_{p, q} & E_{3} & E_{4} \\ 0 & 0 & J_{5-p, 1} & J_{5-p, 5}\end{array}\right]$.
Due to the fact that the column sum of B_{3} is 6 , we have
Claim 3.1.8. E_{2} has no zero column. E_{4} has no zero column.
Due to the fact that the row sum of B_{3} is 6 , we have
Claim 31.9. $\left[\begin{array}{c}E_{2} \\ E_{4}\end{array}\right]$ has no zero row.
Claim 3.1.10. E2 has no all 1's row.
Proof of the claim. Suppose E_{2} has an all l's row, then $5-q=1$, i.e., $q=4$. Hence there are at most two 1 's in each row of E_{4}.

Since E_{4} has 5 columns and E_{4} has no zero column, we see that

$$
\mathrm{b}\left(\mathrm{E}_{4}\right) \geq\left\lceil\frac{5}{2}\right\rceil=3 \text { by Corollary 2.2.6. }
$$

Thus $b\left(B_{3}\right) \geq 4$, a contradiction.
Similarly, we have
Claim 3.1.11. E_{4} has no all l's row.
We see that the number of 1's in any one column in the third column block of B_{3} is at least $6-p+5-p$. Then $6-p+5-p \leq 6$, i.e., $2 p \geq 5$.

Therefore $p \geq 3$. Hence p is 3 or 4 .
Claim 3.1.12. $\left[\begin{array}{c}E_{2} \\ E_{4}\end{array}\right]$ has no all I's column.
Proof of the claim. Suppose $\left[\begin{array}{c}E_{2} \\ E_{4}\end{array}\right]$ has an all 1's column, then $6-p=5$, i.e., $p=1$, a contradiction.

By Theorem 2.1.2, $\left[\begin{array}{c}E_{2} \\ E_{4}\end{array}\right] \cong O_{p-1, t_{1}} \bar{\oplus} \ldots \bar{\oplus} O_{p-1, t_{k}}$, where $t_{1}+\ldots+t_{k}=5$.
Then $p-1 \mid 2 p$.
Therefore $p \neq 4$. Hence $p=3$, and $\left[\begin{array}{c}E_{2} \\ E_{4}\end{array}\right] \cong O_{2, t_{1}} \bar{\oplus} O_{2, t_{2}} \bar{\oplus} O_{2, t_{3}}$.
Due to claim 3.1.8, we have $b\left(E_{2}\right)=2$ and $b\left(E_{4}\right)=2$.
We see that there is only one 1 's in $\left[\begin{array}{c}E_{1} \\ E_{3}\end{array}\right]$. So we may assume $E_{1}=0$ or $\mathrm{E}_{3}=0$.

If $\mathrm{E}_{1}=0$, then $\mathrm{b}\left(\left[J_{p, q} E_{3}\right]\right)=2$.
Since $\mathrm{b}\left(\mathrm{E}_{2}\right)=2$, we see $\mathrm{b}\left(\left[\begin{array}{ccc}O & E_{1} & E_{2} \\ J_{p, q} & E_{3} & E_{4}\end{array}\right]\right) \geq 4$, thus $\mathrm{b}\left(\mathrm{B}_{3}\right) \geq 4$, a contradiction.

If $\mathrm{E}_{3}=O$, then $\mathrm{b}\left(\left[\begin{array}{cc}E_{3} & E_{4} \\ J_{5-p, 1} & J_{5-p, 5}\end{array}\right]\right) \geq 3$.
Therefore $\mathrm{b}\left(\mathrm{B}_{3}\right) \geq 4$, a contradiction.
We complete the proof of Lemma 3.1.3.

Lemma 3.1.13. In $\Lambda(11,6)$, there does not exist a matrix of the form (3.1) whose stair number is 3, and $b\left(A_{12}\right)=b\left(A_{23}\right)=2$.

Proof. Suppose there exists a matrix A of the form (3.1) and $A \in \Lambda(11,6)$, $b(A)=3$ and $b\left(A_{12}\right)=b\left(A_{23}\right)=2$.

Let A_{22} be a $p \times q$ matrix. Since $\mathrm{b}(\mathrm{A})=\mathrm{b}\left(\mathrm{A}^{T}\right)$, without loss of generality, we may assume $p \leq q$.
A_{12} has no zero row, otherwise we contradict $\mathrm{b}(\mathrm{A})=3$.
Suppose A_{12} has exactly s rows which consists of all I's.

Then $A \cong B_{1}=\left[\begin{array}{lll}J_{s, 5-q} & J_{s, q} & C_{2} \\ J_{6-s, 5-q} & C_{1} & C_{3} \\ O & J_{p, q} & A_{23} \\ O & O & J_{5-p, 6}\end{array}\right]$, where $C_{1}=O_{p, q_{1}} \bar{\sigma} \ldots \bar{\oplus} O_{p, q_{k}}$, $k p+s=6$ and $k \geq 2$.

Hence $2 p \leq 6$, thus $p \leq 3$.
Since $b\left(A_{23}\right)=2$, we see that $p \geq 2$.
Hence $p=2$ or 3 .
Similarly, we can have $q=2$ or 3 .
Distinguish the following two cases.
Case 1. $p=2$. Then $k=2$ or 3 , hence $s=0$ or 2 .
The following two subcases will be discussed.
Subcase 1.1. $s=0$. Then $k=3$.
Since $2 \leq q \leq 3$, we see that $\mathrm{C}_{1}=O_{2,1} \bar{\oplus} O_{2,1} \bar{\oplus} O_{2,1}$ and $q=3$.
Thus $A_{23} \cong O_{1,3} \bar{\oplus} O_{1,3}$.
Then $A \cong B_{2}=\left[\begin{array}{ccc}J_{6,2} & O_{2,1} \oplus O_{2,1} \oplus O_{2,1} & D \\ O & J_{2,3} & O_{1,3} \bar{\oplus} O_{1,3} \\ O & 0 & J_{3,6}\end{array}\right]$.
Then $D \in \Lambda(6,2)$.
By Corollary 2.2.5, we have $b(D) \geq 3$.

Since $b(D) \leq 3$, we see $b(D)=3$.
Thus $\mathrm{D} \cong\left[\begin{array}{lll}J_{m_{1}, n_{1}} & D_{12} & D_{13} \\ 0 & J_{m_{2}, n_{2}} & D_{23} \\ 0 & O & J_{m_{3}, n_{3}}\end{array}\right]$ by Theorem 2.2.1.
Since $D \in \Lambda .(6,2)$, we have $m_{1}=m_{2}=m_{3}=n_{1}=n_{2}=n_{3}=2$ and $\mathrm{D}_{12}=D_{13}=D_{23}=0$.
Thus $\mathrm{D} \cong J_{2} \oplus J_{2} \oplus J_{2}$, therefore $\mathrm{b}\left(\left[\begin{array}{c}D \\ O_{1,3} \bar{\oplus} O_{1,3}\end{array}\right]\right) \geq 4$, a contradiction.
Subcase 1.2. $s=2$. Then $k=2$.
Thus $\mathrm{C}_{1}=O_{2, q_{1}} \bar{\oplus} O_{2, q_{2}}$.
Claim 3.1.14. C_{2} has zero column.
Proof of the claim. Similar to the proof of claim 3.1.4.
Thus we have $\mathrm{b}\left(\mathrm{C}_{2}\right)=1$ or 2 .
Claim 3.1.15. $\mathrm{b}\left(\mathrm{C}_{2}\right)=1$.
Proof of the claim. Suppose $b\left(\mathrm{C}_{2}\right) \neq 1$, then $\mathrm{b}\left(\mathrm{C}_{2}\right)=2$.
Without loss of generality, we may assume $\left[\begin{array}{c}C_{2} \\ C_{3}\end{array}\right]=\left[\begin{array}{cc}J_{1,1} \oplus J_{1,1} & O_{2,4} \\ * & E\end{array}\right]$.
Due to the fact that the column sum of B_{1} is 6 , we have E has no z. o column.

Since $b(E)=1$, we see that E has at least one all 1 's row, and we may assume this row is the i-th row of B_{1}.

Since C_{1} has no zero row, the number of 1's in the i-th row of $B_{1}>5$ -$q+4=9-q \geq 6$, a contradiction.

Then $A \cong B_{3}=\left[\begin{array}{cccc}J_{2,5-q} & J_{2, q} & J_{2,1} & O_{2,5} \\ J_{4,5-q} & O_{2, q_{1}} \bar{\oplus} O_{2, q 2} & F_{1} & F_{2} \\ O & J_{2, q} & F_{3} & F_{4} \\ O & O & J_{3,1} & J_{3,5}\end{array}\right]$.
Claim 3.1.16. $q=3$.
Proof of claim. Suppose $q=2$, then $q_{1}=q_{2}=1$.
Therefore there are at most two 1's in each row of F_{2}.
Since the column sum of B_{3} is 6 , it implies that F_{2} has no zero column.
By Corollary 2.2.6, $b\left(F_{2}\right) \geq\left\lceil\frac{5}{2}\right\rceil=3$, thus $b\left(B_{3}\right) \geq 4$, a contradiction.
Now we may assume $q_{1}=1, q_{2}=2$ in B_{3}.
Consider the following sub-matrix B of B_{3},

$$
\mathrm{B}=\left[\begin{array}{ccc}
O_{2,1} \bar{\oplus} O_{2,2} & F_{1} & F_{2} \\
J_{2, q} & F_{3} & F_{4}
\end{array}\right]
$$

It is clear that $\left[\begin{array}{l}F_{2} \\ F_{4}\end{array}\right]$ has no rows or columns consisting of all 0 's or all 1's.

Then $\mathrm{b}\left(\left[\begin{array}{l}F_{2} \\ F_{4}\end{array}\right]\right) \neq 1$. Thus $\mathrm{b}\left(\left[\begin{array}{c}F_{2} \\ F_{4}\end{array}\right]\right)=2$. Hence, by Theorem 2.1.2,

$$
\left[\begin{array}{l}
F_{2} \\
F_{4}
\end{array}\right] \cong O_{3, t_{1}} \bar{\oplus} O_{3, t_{2}}
$$

Then $\mathrm{B} \cong\left(G_{1} G_{2} O_{3, t_{1}} \nsubseteq O_{3, t_{2}}\right)$, where G_{1} is obtained from $\left[\begin{array}{c}O_{2,1} \oplus O_{2,2} \\ J_{2,9}\end{array}\right]$ by independent row permutations and $G_{2} \cong\left[\begin{array}{l}F_{1} \\ F_{3}\end{array}\right]$.

There is only one 1's in G_{2}, hence we have
$\mathrm{B} \cong B^{\prime}=\left[\begin{array}{cccc}* & 1 & J_{1, t_{1}^{\prime}} & O_{1, t_{2}^{\prime}} \\ L_{1} & O_{2,1} & J_{2, t_{1}^{\prime}} & O_{2, t_{2}^{\prime}} \\ L_{2} & O_{3,1} & O_{3, t_{1}^{\prime}} & J_{3, t_{2}^{\prime}}\end{array}\right]$ where $\left[\begin{array}{c}L_{1} \\ L_{2}\end{array}\right]$ consists of 5 rows of
the matrix $\left[\begin{array}{c}O_{2,1} \oplus O_{2,2} \\ J_{2, q}\end{array}\right]$, and $\left\{\begin{array}{l}t_{1}^{\prime}=t_{1} \\ t_{2}^{\prime}=t_{2}\end{array}\right.$ or $\left\{\begin{array}{c}t_{1}^{\prime}=t_{2} \\ t_{2}^{\prime}=t_{1}\end{array}\right.$.
Since L_{2} consists of three rows of the matrix $\left[\begin{array}{c}O_{2,1} \bar{\oplus} O_{2,2} \\ J_{2, q}\end{array}\right]$, we see that $\mathrm{b}\left(L_{2}\right) \geq 2$, thus $\mathrm{b}\left(\mathrm{B}^{\prime}\right) \geq 4$, therefore $\mathrm{b}\left(\mathrm{B}_{3}\right) \geq 4$, a contradiction.

Case 2. $p=3$.
By (3.2), we have $q=3$.
Then we may assume $\mathrm{A} \cong B_{4}=\left[\begin{array}{ccc}J_{6,2} & O_{3,2} \bar{\oplus} O_{3,1} & A_{13} \\ 0 & J_{3,3} & O_{1,3} \bar{\oplus} O_{2,3} \\ 0 & 0 & J_{2,6}\end{array}\right]$. Here we
may suppose A_{13} is
(i) $\left[\begin{array}{llll}O_{1,3} & 1 & 1 & 0 \\ H_{1} & & H_{2} & \\ H_{3} & & H_{4} & \end{array}\right]$ or
(ii) $\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0 \\ H_{5} & H_{6} & * & * & * & *\end{array}\right]$ or
(iii) $\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 0 \\ H_{7} & * & H_{8} & * & * & *\end{array}\right]$, where H_{1} and H_{2} consist of two rows.

In case (i), we see that any row of $\left[\begin{array}{l}H_{1} \\ H_{3}\end{array}\right]$ must be (0 000) or (lll 1111$)$, otterwise $\left[\begin{array}{c}A_{13} \\ O_{1,3} \bar{\oplus} O_{2,3}\end{array}\right] \cong\left[\begin{array}{ccccc}H_{1} & & H_{2} & & \\ H_{?} & & H_{4} & & \\ O_{1,3} & & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0\end{array}\right] \quad 0\left[\begin{array}{llllll}H_{1} & & & H_{2} & & \\ H_{3} & & & H_{4} & & \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right] \cong\left[\begin{array}{lllll} \\ 1 & 1 & 1 & 0 & 0\end{array}\right]$ thus $\mathrm{b}\left(\left[\begin{array}{c}A_{13} \\ O_{1,3} \bar{\oplus} O_{2,3}\end{array}\right]\right)>3$, then $\mathrm{b}\left(\mathrm{B}_{4}\right)>3$, a contradiction.

Due to the fact that the row sum of B_{4} is 6 , then we have $H_{1}=O_{2,3}$.

Without loss of generality, we may assume $\mathrm{H}_{3}=\left[\begin{array}{c}J_{2,3} \\ O_{1,3}\end{array}\right]$, then $\mathrm{H}_{4}=$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$.

Thus $\mathrm{b}\left(\mathrm{H}_{2}\right) \neq 1$, hence $\mathrm{b}\left(\mathrm{H}_{2}\right) \geq 2$.
Therefore $b\left(\left[\begin{array}{lll}O_{2,1} & H_{1} & H_{2} \\ J_{3,1} & H_{3} & H_{4}\end{array}\right]\right) \geq 4$.
So $b\left(B_{4}\right) \geq 4$, a contradiction.
In case (ii), there is only one I's in H_{5}, thus there exists one row in $\left[\begin{array}{ll}H_{5} & H_{6}\end{array}\right]$ of the form (0 0), otherwise the number of 1's in the seventh column of B_{4} is greater than 6 , a contradiction. Assume this row is the i-th row of B_{4}.

Therefore B_{4} has the sub-matrix
\(\mathrm{L}=\left[\begin{array}{lllll}1 \& 1 \& 0 \& 1 \& 0

l_{1} \& l_{2} \& l_{3} \& 0 \& 0

1 \& 1 \& 1 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0\end{array}\right] \quad\)| the first row |
| :--- |
| the i-th row |
| the 8-th row |
| the 9-th row |

where $\left(\begin{array}{lll}l_{1} & l_{2} & l_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ or $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$.

Therefore $\mathrm{b}(\mathrm{L}) \geq 4$, thus $\mathrm{b}\left(\mathrm{B}_{4}\right) \geq 4$, a contradiction.
In case (iii), similar to the case (ii), discuss column H_{7} and H_{8} instead of H_{5} and H_{6}, then we also have $\mathrm{b}\left(\mathrm{B}_{4}\right) \geq 4$, a contradiction.

We complete the proof of Lemma 3.1.13.
By Lemma 3.1.3 and Lemma 3.1.13, we see there does not exist a matrix in $\Lambda(11,6)$ whose stair number is 3 . Hence $M(11,6) \neq 18$. Therefore $M(11,6)=17$.

Brualdi and Jung stated the following conjecture in [Br'Ju1992].
Conjecture 3.1.17. $\mathrm{M}(2 k+1, k+1)=4 k-\lceil\sqrt{k}]$.
The fact that $\mathrm{M}(11,6)=17$ demonstrates that conjecture 3.1.17 holds for $k=5$.

3.2 Recursive constructions and some inequalities

Our recursive constructions are based on the next two facts.
Fact 1. If $\mathrm{A}_{1} \in \Lambda\left(n_{1}, k\right)$ and $\mathrm{A}_{2} \in \Lambda\left(n_{2}, k\right)$, then $\mathrm{A}_{1} \oplus \mathrm{~A}_{2} \in \Lambda\left(n_{1}+n_{2}, k\right)$.

Fact 2. If $\mathrm{A} \in \Lambda(k, 2 k-n)$ where $k<n<2 k$, then $\mathrm{A} \bar{\oplus} \mathrm{O}_{n-k} \in \Lambda(n, k)$.
From Fact 1, we have the following theorem.
Theorem 3.2.1. If $n_{1} \geq k \geq 1$ and $n_{2} \geq k \geq 1$, then $M\left(n_{1}+n_{2}, k\right) \geq$ $M\left(n_{1}, k\right)+M\left(n_{2}, k\right)+1$.

Proof. By definition, there exists a matrix $\mathrm{A}_{1} \in \Lambda\left(n_{1}, k\right)$ such that $\mathrm{s}\left(\mathrm{A}_{1}\right)=M\left(n_{1}, k\right)$.

Similarly, there exists a matrix $A_{2} \in \Lambda\left(n_{2}, k\right)$ such that $s\left(\mathrm{~A}_{2}\right)=M\left(n_{2}, k\right)$.
Since $\mathrm{s}\left(A_{1} \oplus A_{2}\right)=M\left(n_{1}, k\right)+M\left(n_{2}, k\right)+1$ and $A_{1} \oplus A_{2} \in \Lambda\left(n_{1}+n_{2}, k\right)$, we have $M\left(n_{1}+n_{2}, k\right) \geq M\left(n_{1}, k\right)+M\left(n_{2}, k\right)+1$.

Corollary 3.2.2. $\mathrm{M}(17,6)=29$.
Proof. $M(17,6) \geq M(9,6)+M(8,6)+1$

$$
\begin{aligned}
& =15+13+1 \\
& =29 .
\end{aligned}
$$

By Corollary 2.4.13, $M(17,6)<2 \times 17-1-3$

$$
=30 .
$$

'Then $\mathrm{M}(17,6)=29$.
Corollary 3.2.3 ([BrJu1992]). $\mathrm{M}(n, k) \geq 2 k-1+M(n-k, k) \quad$ where $n \simeq \because \quad$.

Brualdi and Jung conjectured that equality in Corollary 3.2.3 holds in
general. The following conjecture appeared in [BrJu1992].
Conjecture 3.2.4 ([BrJul992]). Suppose $n \geq 2 k$. Let $A \in \Lambda(n, k)$ satisfy $\mathrm{s}(\mathrm{A})=\mathrm{M}(n, k)$. Then there exists $\mathrm{B} \in \Lambda(n-k, k)$ such that A is permutation equivalent to $J_{k} \oplus B$ where $\mathrm{s}(\mathrm{B})=\mathrm{M}(n-k, k)$.

Proposition 3.2.5. Conjecture 3.2 .4 does not hold.
Proof. If Conjecture 3.2.4 holds, then $M(n, k)=s\left(J_{k}\right)+M(n-k, k)+1$

$$
=2 k-1+M(n-k, k)
$$

Let $n=17$ and $k=6$. Then $M(17,6)=11+M(11,6)=28$, a contradiction to Corollary 3.2.2.

Therefore the equality in Corollary 3.2 .3 does not hold in general.

From Fact 2, we have the following theorem.
Theorem 3.2.6. $\mathrm{M}(n, k) \geq 2 n-2 k+M\left(k, 2 k-n_{\text {, }}\right.$, where $k<n<2 k$.
Proof. By definition, there exists a matrix $\mathrm{A} \in \Lambda(k, 2 k-n)$ such that $\mathrm{s}(\mathrm{A})=M(k, 2 k-n)$, i.e., $\mathrm{b}(\mathrm{A})=2 k-1-M(k, 2 k-n)$.

Due to Lemma 2.3.3, $\mathrm{b}\left(\mathrm{A} \oplus \mathrm{O}_{n-k}\right)=\mathrm{b}(A)=2 k-1-M(k, 3 k-n)$.
Then $M(n, k) \geq 2 n-1-b\left(A \bar{\oplus} O_{n-k}\right)$
$\geq 2 n-2 k+M(k, 2 k-n)$.
We note that equality in Theorem 3.2.6 does not bold in general. For
example, $M(11,6)=-17>2 \times 5+M(6,1)$.

3.3 Some exact values

From Corollary 2.4.13, Theorems 3.2.1 and 3.2.6, we can get exact values for $M(n, 6 j, M(n, n-3), M(n, n-4), M(n, n-2)$ and $M(q k+2, k)$.

Theorem 3.3.1. Suppose $0<k<\frac{n}{2}, k \nmid n$ and $(n \bmod k) \nmid k$. If there exist natural numbers n_{1} and n_{2} such that $n=n_{1}+n_{2},\left(n_{1} \bmod k\right) \mid k$ and $\left(n_{2}\right.$ $\bmod k) \mid k$, then $\mathrm{M}(n, k)=2 n-2-\lceil n / k\rceil$.

Proof. Since $n>2 k$, without loss of generality, we may assume $n_{1}>$ k and $n_{2}>k$.

$$
\begin{aligned}
& \text { Then } \begin{aligned}
& M(n, k) \geq M\left(n_{1}, k\right)+M\left(n_{2}, k\right)+1 \\
&=2 n_{1}-1-\left\lceil\frac{n_{1}}{k}\right\rceil+2 n_{2}-1-\left\lceil\frac{n_{2}}{k}\right\rceil+1 \\
&=2 n-2-\lceil n / k\rceil
\end{aligned}
\end{aligned}
$$

On the other hand, $\mathrm{M}(n, k) \leq 2 r,-2-\lceil n / k\rceil$ by Corollary 2.4.13.
Hence $\mathrm{M}(n, k)=2 n-2-\lceil n / k\rceil$.
Corolary 3.3.2. $M(n, 6)=2 n-1-\lceil n / 6\rceil-a$,

$$
\text { where } a=\left\{\begin{array}{lc}
0 & \text { if } 6 \mid n \text { or }(n \bmod 6) \mid 6 \\
1 & \text { if }(n \bmod 6)=4 \text { or } 5, \text { and } n \neq 11 \\
2 & \text { if } n=11
\end{array}\right.
$$

Proof. If $6 \mid n$ or $(n \bmod 6) \mid 6$, it is clear.
For $n=10$ and 11 , we can verify it directily.
If $n \geq 16$ and $(n \bmod 6)=4$, let $n_{1}=8$ and $n_{2}=n-8$. Therefore we get $M(n, 6)=2 n-2-\lceil n / 6\rceil$ by Theorem 3.3.1.

If $n \geq 17$ and $(n \bmod 6)=5$, it is similar to the above case.
Corollary 3.3.3 ([BrJu1992]). $M(n, 3)=2 n-1-\lfloor n / 3\rfloor-a$ where $a \equiv n(\bmod 3)$ and $0 \leq a \leq 2$.

Corollary 3.3.4 ([BrJu1992]). $M(n, 4)=2 n-1-\{n / 4\rceil-a$ where $a=1$ if $4 \mid n-3$ and 0 otherwise.

Theorem 3.3.5. If $q \geq 1$ and $k>1$, then

$$
\mathrm{M}(q k+2, k)=\left\{\begin{array}{ll}
2 q k-q+2 & \text { if } k \text { is even } \\
2 q k-q+1 & \text { if } k \text { is odd }
\end{array} .\right.
$$

Proof. If k is even, by Corollary 2.4.15, then

$$
\begin{gathered}
\mathrm{M}(q k+2, k)=2(q k+2)-1-(q+1) \\
=2 q k-q+2 .
\end{gathered}
$$

If k is odd and $q \geq 2$, let $n_{1}=k+1$ and $n_{2}=(q-1) k+1$.
Then $\mathrm{M}(q k+2, k)=2(q k+2)-2-(q+1)$

$$
=2 q k-q+1 \quad \text { by Theorem 3.3.1. }
$$

If k is odd and $q=1$, then the conclusion follows by formula (1.7) in Chapter 1.

Hence if k is odd, $\mathrm{M}(q k+2, k)=2 q k-q+1$.

Let $q=2$, we have a corollary.
Corollary 3.2.6 ([Br.Ju1992]). $\mathrm{M}(2 k+2, k)=\left\{\begin{array}{ll}4 k & \text { if } k \text { is even } \\ 4 k-1 & \text { if } k \text { is odd }\end{array}\right.$.
Theorem 3.3.7. If $\mathrm{M}(m, m-k)=\left\{\begin{array}{l}2 m-3 \text { if } k \mid m \\ 2 m-4 \text { if } k \nmid m\end{array}\right.$, where $1 \leq k \leq$ $m-1$,

$$
\text { then } M(m+q k, m+(q-1) k)=\left\{\begin{array}{ll}
2(m+q k)-3 & \text { if } k \mid r, \\
2(m+q k)-4 & \text { if } k \nmid m
\end{array} \text { for } q \geq 0\right.
$$

Proof. If $k \mid m$, then

$$
\begin{aligned}
\mathrm{M}(m+q k, m & +(q-1) k)=2(m+q k)-1-\left[\frac{m+q k}{m+(q-1) k}\right\rceil \\
& =2(m+q k)-3 .
\end{aligned}
$$

If $k \nmid m$, we prove it by induction.
When $q=1, \mathrm{M}(m+k, m) \geq 2 k+M(m, m-k) \quad$ (by Theorem 3.2.6)

$$
\geq 2 k+2 m-4
$$

Cn the other hand, $\mathrm{M}(m+k, m)<2(m+k)-1-\left\lceil\frac{m+k}{m}\right\rceil$

$$
=2(m+k)-3
$$

Hence $\mathrm{M}(m+k, m)=2(m+k)-4$.
Assume when $q=p$, the statement holds.

Then when $q=p+1, M(m+(p+1) k, m+p k) \geq 2 k+M(m+p k, m+(p-1) k)$

$$
=2(m+(p+1) k)-4
$$

On the other hand, $\mathrm{M}(m+(p+1) k, m+p k)<2(m+(p+1) k)-1-\left\lceil\frac{m+i p+1) k}{m+p k}\right\rceil$

$$
=2(m+(p+1) k)-3
$$

Hence $\mathrm{M}(m+(p+1) k, m+p k)=2(m+(p+1) k)-4$.
Therefore if $k \nmid m$, we get $\mathrm{M}(m+q k, m+(q-1) k)=2(m+q k)-4$.
Corollary 3.3.8 ([BrJu1992]). $M(n, n-2)=\left\{\begin{array}{cl}2 n-3 & \text { if } n \text { is even } \\ 2 n-4 & \text { if } n \text { is odd }\end{array}\right.$.
Coroilary 3.3.9. $M(n, n-3)=\left\{\begin{array}{ll}2 n-3 & \text { if } 3 \mid n \\ 2 n-4 & \text { if } 3 \nmid n\end{array}\right.$ for $n>4$.
Proof, Let $k=3$ in Theorem 3.3.7. Due to the fact that

$$
\begin{aligned}
& M(5,2)=6=2 \times 5-4, \\
& M(6,3)=9=2 \times 6-3, \text { and } \\
& M(7,4)=10=2 \times 7-4, \\
& \text { we get } M(n, \iota-3)=\left\{\begin{array}{ll}
2 n-3 & \text { if } 3 \mid n \\
2 n-4 & \text { if } 3 \nmid n
\end{array} \text { for } n>4\right. \text {. }
\end{aligned}
$$

Corollary 3.3.10. $M(n, n-4)=\left\{\begin{array}{ll}2 n-3 & \text { if } 4 \mid n \\ 2 n-4 & \text { if } 4 \nmid n\end{array}\right.$ for $n>5$.
Proof. Let $k=4$ in Theorem 3.3.7. Due to the fact that

$$
\mathrm{M}(6,2)=8=2 \times 6-4,
$$

$$
\begin{aligned}
M(7,3)=10 & =2 \times 7-4 \\
M(8,4)=13 & =2 \times 8-3 \text { and } \\
M(9,5)=14 & =2 \times 9-4, \\
\text { ive get } M(n, n-4) & =\left\{\begin{aligned}
2 n-3 & \text { if } 4 \mid n \\
2 n-4 & \text { if } 4 \nmid n
\end{aligned} \text { for } n>5 .\right.
\end{aligned}
$$

Chapter 4

Maximum Number of Mutually

Orthogonal Frequency

Hyperrectangles

In this chapter, we derive a bound for the maximum number of mutually orthogonal frequency hyperrectangles that simultaneously generalizes Suchower's bound [Su1989] and LMWW 's bound [LaMIuWh1995]. Before it we state a simple necessary condition for an F-hyperrectangle of size $n_{1} \times \ldots \times n_{d}$ and type t to exist.

4.1 A necessary condition

Firstly we give the following necessary condition for an F-hyperrectangle of size $n_{1} \times \ldots \times n_{d}$ and type t to exist.

Theorem 4.1.1. If there exists an F-hyperrectangle $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}, \ldots, \lambda_{m}\right)$, where $1 \leq t \leq d-1$, then l.c.m. $\left\{\prod_{k=1}^{t} n_{i_{k}} \mid\left\{i_{1}, \ldots, i_{t}\right\} \in P_{t}(\underline{d})\right\}<\prod_{i=1}^{d} n_{i}$.

Proof. Suppose not, then l.c.m. $\left\{\prod_{k=1}^{t} n_{i_{k}} \mid\left\{i_{1}, \ldots, i_{t}\right\} \in P_{t}(\underline{d})\right\}=\prod_{i=1}^{d} n_{i}$, by the fact that

$$
\text { l.c. } m .\left\{\prod_{k=1}^{t} n_{i_{k}} \mid\left\{i_{1}, \ldots, i_{t}\right\} \in P_{t}(\underline{d})\right\} \mid \prod_{i=1}^{d} n_{i} .
$$

Set $Q=\left(\prod_{i=1}^{t} n_{i}\right) \lambda_{1}=\left(\prod_{i=1}^{t} n_{i}\right) \Phi((1, \ldots, t), 1)$.
By formula (1.9) in Chapter 1, we have

$$
\begin{align*}
& \text { l.c. } m .\left\{\prod_{k=1}^{t} n_{i_{k}} \mid\left\{i_{1}, \ldots, i_{t}\right\} \in P_{t}(\underline{d})\right\} \mid Q, \\
& \text { then } \prod_{i=1}^{d} n_{i} \mid Q . \tag{4.1}
\end{align*}
$$

Therefore $\mathrm{Q} \geq \prod_{i=1}^{d} n_{i}$.
Since $\lambda_{1}+\ldots+\lambda_{m}=\prod_{j \neq 1, \ldots, t} n_{j}$, we have

$$
Q=\prod_{i=1}^{d} n_{i}\left(\lambda_{1} / \prod_{j \neq 1, \ldots, t} n_{j}\right)<\prod_{i=1}^{d} n_{i}, \text { which contradicts (4.1). }
$$

Let $t=1$, then we have a corollary.
Corollary 4.1.2. If there exists an F-hyperrectangle $F\left(n_{1}, \ldots, n_{d} ; \lambda_{1}, \ldots, \lambda_{m}\right)$, then l.c.m. $\left\{n_{1}, \ldots, n_{d}\right\}<\prod_{i=1}^{d} n_{i}$.

Secondiy we correct some errors in [Sul989].
In order to generalize Definition 1.2.3, the following definition was stated in [Su1989].

Definition 4.1.3. An F-hyperrectangle of size $n_{1} \times \ldots \times n_{d}$, denoted by $F\left(n_{1}, \ldots, n_{d i} \lambda_{1,1}, \ldots, \lambda_{1, m} ; \ldots ; \lambda_{d, 1}, \ldots, \lambda_{d, m}\right)$ where for each $i_{1} 1 \leq i \leq d, n_{i}=$ $\lambda_{i, 1}+\ldots+\lambda_{i, m}$, is an $n_{1} \times \ldots \times n_{d}$ array consisting of $m \geq 2$ symbols, say $\{1, \ldots, m\}$, with the property that for each i and $j, 1 \leq i \leq d, 1 \leq j \leq m$, the symbol j occurs exactly $\lambda_{i, j}$ times in every subarray consisting of the n_{i} cells (k_{1}, \ldots, k_{d}) where all coordinates but the i-th coordinate are fixed.

Let's look at an example.

$\mathrm{F}_{0}:$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	
1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	

It is easy to verify that F_{0} is an F-hyperrectangle of size $4 \times 4 \times 4$ by Definition 1.2.3. But according to Definition 4.1.3, it is not an F-hyperrectangle. So Definition 4.1.3 is not a generalization of Definition 1.2.3. Definition 1.2.4, which is a generalization of Definition 1.2.3, corrects Definition 4.1.3.

Concerning the definition of mutually orthogonal F-hyperrectangles, the
following one corrects Definition 2 in [Su1989].
Definition 4.1.4. Two F-hyperrectangles $F\left(n_{1}, \ldots, n_{d} ; \lambda_{1}, \ldots, \lambda_{m_{1}}\right)$ and
$F\left(n_{1}, \ldots, n_{d i} \mu_{1}, \ldots, \mu_{m_{2}}\right)$ are orthogonal if upon superposition: each ordered pair $(i, j), 1 \leq i \leq m_{1}, 1 \leq j \leq m_{2}$, appears exactly $n_{1}^{2} \lambda_{i} \mu_{j} / \prod_{i=1}^{d} n_{i}$ times. A set of F-hyperrectangles is called mutually orthogonal if every pair of F hyperrectangles are orthogonal.

4.2 An upper bound

Now we give the main result of this chapter.
Theorem 4.2.1. If there is a set of mutually orthogonal F-hyperrectangles

$$
\mathrm{F}_{1}=\mathrm{HR}\left(n_{1}, \ldots, n_{d} ; t_{;} \lambda_{1}^{(1)}, \ldots, \lambda_{m_{1}}^{(1)}\right), \ldots, \mathrm{F}_{r}=\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right),
$$

then

$$
\sum_{j=1}^{r}\left(m_{j}-1\right) \leq \prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(\underline{d})} \prod_{j=1}^{k}\left(n_{i j}-1\right)-1
$$

Proof. Set $N=n_{1} \times \ldots \times n_{d}$ and $M=m_{1}+\ldots+m_{r}$. For the F-hyperrectangle $\mathrm{F}_{k}, 1 \leq k \leq r$, we define an $N \times m_{k}$ matrix $\mathrm{A}_{k}=\left(a_{\left(i_{1} \ldots, i_{d}\right), j}^{(k)}\right)$ by

$$
a_{\left(i_{1}, \ldots, i_{d}\right), j}^{(k)}=\left\{\begin{array}{ll}
1 & \text { if } j \text { occurs in position }\left(i_{1}, \ldots, i_{d}\right) \text { of } F_{k} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Construct an $N \times M$ matrix $B=\left(A_{1}\left|A_{2}\right| \ldots \mid A_{r}\right)$.
In any subarray of an F-hyperrectangle of type t defined by fixed k co-
ordinates, say $i_{1}, i_{2}, \ldots i_{k}, 1 \leq k \leq t$, one element will be determined if the others are known. For example, after we determine a subarray by the values of coordinates $i_{1}, i_{2}, \ldots i_{k}$, the element with the rest $d-k$ coordinates equal to their respective dimensions n_{h}, where $h \neq i_{1}, i_{2}, \ldots i_{k}$, can be interpreted as the last element of the above subarray. There are $\sum_{\left.\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k} \mid \underline{d}\right)} \Pi_{j=1}^{k}\left(n_{i},-1\right)$ element of B are dependent for a fixed k.

Summing over k, there are

$$
\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \Pi_{j=1}^{k}\left(n_{i},-1\right) \text { such elements. }
$$

Then $\operatorname{rank}(B) \leq \prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(\mathbb{d})} \prod_{j=1}^{k}\left(n_{i_{j}}-1\right)$.
Now we see that for $1 \leq k, l \leq r, A_{k}^{T} A_{l}=\left(f_{i j}\right)$ is an $m_{k} \times m_{l}$ matrix where $f_{i j}=$ number of times the ordered pair (i, j) occurs when F_{k} is superimposed onto Fl. Then

$$
A_{k}^{T} A_{l}=\left\{\begin{array}{ll}
\left(N / \prod_{i=t+1}^{d} n_{i}\right) L_{k} & \text { ì } k=l \\
\left(N /\left(\prod_{i=t+1}^{d} n_{i}\right)^{2}\right) L_{k} \cdot J_{m_{k} \times m_{l}} L_{l} \quad \text { if } k \neq l
\end{array},\right.
$$

where $\mathrm{L}_{k}=\operatorname{diag}\left(\lambda_{1}^{(k)}, \ldots, \lambda_{m_{k}}^{(k)}\right)$ and $J_{m_{k} \times m_{l}}$ is an $m_{k} \times m_{l}$ matrix consisting of all I's.

Thus the $M \times M$ matrix $B^{T} B$ is given by

$$
B^{T} B=\left(\begin{array}{cccc}
A_{1}^{T} A_{1} & A_{1}^{T} A_{2} & \ldots & A_{1}^{T} A_{r} \\
A_{2}^{T} A_{1} & A_{2}^{T} A_{2} & \ldots & A_{2}^{T} A_{r} \\
\ldots & \ldots & \ldots & \ldots \\
A_{r}^{T} A_{1} & A_{r}^{T} A_{2} & \ldots & A_{r}^{T} A_{r}
\end{array}\right)
$$

$$
=\left(N /\left(\prod_{i=t+1}^{d} n_{i}\right)^{2}\right)\left(\begin{array}{cccc}
\prod_{i=t+1}^{d} n_{i} L_{1} & L_{1} J_{m_{1} \times m_{2}} L_{2} & \ldots & L_{1} J_{m_{1} \times m_{r}} L_{r} \\
L_{2} J_{m_{2} \times m_{1}} L_{1} & \prod_{i=t+1}^{d} n_{i} L_{2} & \ldots & L_{2} J_{m_{2} \times m_{r}} L_{r} \\
\ldots & \ldots & \ldots & \ldots \\
L_{r} J_{m_{r} \times m_{1}} L_{1} & L_{r} J_{m_{r} \times m_{2}} L_{2} & \ldots & \prod_{i=t+1}^{d} n_{i} L_{r}
\end{array}\right) .
$$

$$
\text { Set the } M \times M \text { nonsingular diagonal matrix } \mathrm{C}=\left(\begin{array}{cccc}
L_{1} & & & 0 \\
& L_{2} & & \\
& & & \\
& & \cdots & \\
0 & & & L_{\bullet}
\end{array}\right) \text {. }
$$

Then

$$
B^{T} B C^{-1}=\left(N /\left(\prod_{i=t+1}^{d} n_{i}\right)^{2}\right)\left(\begin{array}{cccc}
\prod_{i=t+1}^{d} n_{i} I_{m_{1}} & L_{i} J_{m_{1} \times m_{2}} & \ldots & L_{1} J_{m_{1} \times m_{r}} \\
L_{1} J_{m_{2} \times m_{1}} & \prod_{i=t+1}^{d} n_{i} I_{m_{2}} & \ldots & L_{2} J_{m_{2} \times m_{r}} \\
\ldots & \ldots & \ldots & \ldots \\
L_{r} J_{m_{r} \times m_{1}} & L_{r} J_{m_{r} \times m_{2}} & \ldots & \Pi_{i=t+1}^{d} n_{i} I_{m_{r}}
\end{array}\right)
$$

Next we find the eigenvalues of $B^{T} B C^{-1}$.
Observe that the sum of each column of $B^{T} B C^{-1}$ is $r N /\left(\prod_{i=t+1}^{d} n_{i}\right)$, then $r N /\left(\prod_{i=t+1}^{d} n_{i}\right)$ is one eigenvalue of $B^{T} B C^{-1}$. For the eigenvalue $N /\left(\prod_{i=t+1}^{d} n_{i}\right)$,
there are $m_{1}-1$ eigenvectors $\left(\alpha_{m_{1}}, \theta_{m_{2}}, \ldots, \theta_{m_{r}}\right)^{T}, \ldots, m_{r}-1$ eigenvectors $\left(\theta_{m_{1}}, \theta_{m_{2}}, \ldots, \alpha_{m_{r}}\right)^{T}$ where $\theta_{m_{k}}=(0, \ldots, 0)$ and $\alpha_{m_{k}}$ have m_{k} coordinates, and the coordinates of $\alpha_{m_{k}}$ sum to 0 .

Hence $\operatorname{rank}\left(B^{T} B C^{-1}\right) \geq 1+M-r$.
Then $\operatorname{rank}\left(\mathrm{B}^{\top} B\right)=\operatorname{rank}\left(B^{T} B \mathrm{C}^{-1}\right) \geq 1+M-r$.
Due to the fact that $\operatorname{rank}\left(B^{T} B\right) \leq \operatorname{rank}(B)$,
then we have

$$
\begin{aligned}
& 1+M-r \leq \prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \prod_{j=1}^{k}\left(n_{i}-1\right) \\
& \text { i.e., } \sum_{j=1}^{r}\left(m_{j}-1\right) \leq \prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(\underline{d})} \Pi_{j=1}^{k}\left(n_{i_{2}}-1\right)-1
\end{aligned}
$$

The above theorem generalizes many previous results.
When we reduce to the following cases:
(1) $t=1$;
(2) $m_{1}=\ldots=m_{r}$;
(3) (hypercubes case) $m_{1}=\ldots=m_{r}, n_{1}=\ldots=n_{d}, \lambda_{1}^{(i)}=\ldots=$ $\lambda_{m_{i}}^{(i)}$, where $i=1, \ldots, r$,
(4) $t=1, m_{1}=\ldots=m_{r}, \lambda_{1}^{(i)}=\ldots=\lambda_{m_{1}}^{(i)}$ where $i=1, \ldots, r$;
(5) (F-squares of type 1) $d=2, n_{1}=n_{2}, t=1$;
(6) (F-squares of type 1 with constant frequency vectors) $d=2, n_{1}=$ $n_{2}, t=1, \lambda_{1}^{(i)}=\ldots=\lambda_{m}^{(i)}$ for $i=1, \ldots, r ;$
(7) (F-squares of type 1 with constant frequency vectors and based on the same number of symbols) $d=2, n_{1}=n_{2}, t=1, m_{1}=\ldots=m_{r}, \lambda_{1}^{(i)}=$ $\ldots=\lambda_{m_{i}}^{(i)}$ where $i=1, \ldots, r ;$
we have some corollaries, which appeared in the literature.
Corollary 4.2 .2 ([Su1989]). If there is a set of r mutually orthogonal F-hyperrectangles of type 1

$$
\begin{aligned}
& F_{1}=F\left(n_{1}, \ldots, n_{d} ; \lambda_{1}^{(1)}, \ldots, \lambda_{m_{1}}^{(1)}\right), \ldots, F_{r} F\left(n_{1}, \ldots, n_{d} ; \lambda_{1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right), \\
& \text { then } \sum_{j=1}^{r}\left(m_{j}-1\right) \leq \prod_{i=1}^{d} n_{i}-\sum_{i=1}^{d}\left(n_{i}-1\right)-1
\end{aligned}
$$

Corollary 4.2.3. If there is a set of r mutually orthogonal F-hyperrectangles $\mathrm{F}_{1}=\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}^{(1)}, \ldots, \lambda_{m}^{(1)}\right), \ldots, \mathrm{F}_{r}=\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}^{(r)}, \ldots, \lambda_{m}^{(r)}\right)$,
then $r \leq \frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \prod_{j=1}^{k}\left(n_{i_{k}}-1\right)-1\right)$.
Corollary 4.2 .4 ([LaMuWh1995]). If there is a set of $r d$-dimensional mutually orthogonal hypercubes

$$
\begin{aligned}
& \mathrm{F}_{1}=\operatorname{HR}\left(n, \ldots, n ; t ; n^{d-t-1}, \ldots, n^{d-t-1}\right), \ldots, \mathrm{F}_{r}=\operatorname{HR}\left(n, \ldots, n ; t ; n^{d-t-1}, \ldots, n^{d-t-1}\right), \\
& \text { then } \quad r \leq \frac{1}{n-1}\left(n^{d}-\sum_{i=1}^{t}\binom{d}{i}(n-1)^{i}-1\right) .
\end{aligned}
$$

Corollary 4.2.5 ([Ch1980]). If there is a set of r mutually orthogonal F-hyperrectangles of type 1 based on the same number of symbols, m,

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{HR}\left(n_{1}, \ldots, n_{d} ; 1 ; \lambda^{(1)}, \ldots, \lambda^{(1)}\right), \ldots, \mathrm{F}_{r}=\mathrm{HR}\left(n_{1}, \ldots, n_{d} ; 1 ; \lambda^{(r)}, \ldots, \lambda^{(r)}\right), \\
& \text { then } \quad r \leq \frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-\sum_{i=1}^{d}\left(n_{i}-1\right)-1\right)
\end{aligned}
$$

Corollary 4.2.6 ([PeMa1986]). If there is a set of r mutually orthogonal F-squares of type 1

$$
\begin{aligned}
& \mathrm{F}_{1}=\operatorname{HR}\left(n, n ; 1 ; \lambda_{1}^{(1)}, \ldots, \lambda_{m 1}^{(1)}\right), \ldots, \mathrm{F}_{r}=\operatorname{HR}\left(n, n ; 1 ; \lambda_{1}^{(r)}, \ldots, \lambda_{m_{r}}^{(\tau)}\right), \\
& \text { then } \quad \sum_{j=1}^{r}\left(m_{j}-1\right) \leq(n-1)^{2} .
\end{aligned}
$$

Corollary 4.2.7 ([MaLeFe1981]). If there is a set of r mutually orthogonal F -squares of type 1

$$
\begin{aligned}
& \quad F_{I}=\operatorname{HR}\left(n, n ; 1 ; \lambda_{1}^{(1)}, \ldots, \lambda_{m_{1}}^{(1)}\right), \ldots, F_{r}=\operatorname{HR}\left(n, n ; 1 ; \lambda_{1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right), \text { where } \lambda_{1}^{(i)}= \\
& \ldots=\lambda_{m_{i}}^{(i)} \text { for } i=1, \ldots, r, \\
& \quad \text { then } \quad \sum_{j=1}^{r}\left(m_{j}-1\right) \leq(n-1)^{2} .
\end{aligned}
$$

Corollary 4.2 .8 ([HeRaSe1975]). If there is a set of r mutually orthogonal F-squares of type 1 based on the same number of symbols, m,
$\mathrm{F}_{1}=\operatorname{HR}(n, n ; 1 ; \lambda, \ldots, \lambda), \ldots, \mathrm{F}_{r}=\operatorname{HR}(n, n ; 1 ; \lambda, \ldots, \lambda)$, where $\lambda=\frac{n}{m}$,
then

$$
r \leq \frac{1}{m-1}(n-1)^{2}
$$

Theorem 4.2.1 also motivates the following definition.
Definition 4.2.9. A set of mutually orthogonal F-liyperrectangles
$F_{1}=\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}^{(1)}, \ldots, \lambda_{m_{1}}^{(1)}\right), \ldots, \mathrm{F}_{r}=\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \lambda_{1}^{(r)}, \ldots, \lambda_{m_{r}}^{(r)}\right)$ is called complete if the equality holds in Theorem 4.2.1.

At this time, complete sets of F-hyperrectangles are only known to exist when the frequency vectors are constant and, except for a few sporadic cases,
when $N=n_{1} \ldots n_{d}$ is a prime power.

Chapter 5

Constructions for Mutually

Orthogonal Frequency

Hyperrectangles

In this chapter, we provide two different ways of constructing mutually orthogonal frequency hyperrectangles of a prescribed type. We concentrate on frequency hyperrectangles based on m symbols with constant frequency vector, $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \frac{1}{m} \prod_{i=t+1}^{d} n_{i}, \ldots, \frac{1}{m} \prod_{i=t+1}^{d} n_{i}\right)$. So we simplify $\operatorname{HR}\left(n_{1}, \ldots, n_{d} ; t ; \frac{1}{m} \prod_{i=t+1}^{d} n_{i}, \ldots, \frac{1}{m} \prod_{i=t+1}^{d} n_{i}\right)$ to $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$.

Firstly, we exhibit sets of linear polynomials over finite fields that repre-
sent complete sets of mutually orthogonal frequency hyperrectangles(MOFHR) of a prescribed type and of prime power order, which generalize Bose [Bo1938] and Mullen [Mu1988] construction.

Secondly, we give a recursive algorithm to construct $(d+1)$-dimensional MOFHR of type $t+1$ from d-dimensional MOFHR of type t, which generalizes a recursive procedure described in [LaMuWh1995].

5.1 Polynomial representation of orthogonal F-hyperrectangles

Let F_{q} denote the finite field of order q, where q is a prime power. Following Niederreiter in [Ni1971], we say that a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in F_{q} is a permutation polynomial in n variables over F_{q} if the equation $f\left(x_{1}, \ldots, x_{n}\right)=\alpha$ has exactly q^{n-1} solutions in F_{q}^{n} for each $\alpha \in F_{q}$. More generally, we say that a system $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$ of polynomials with $1 \leq m \leq n$ is orthogonal in F_{q} if the system of equations $f_{i}\left(x_{1}, \ldots, x_{n}\right)=\alpha_{i}(i=1, \ldots, m)$ has exactly q^{n-m} solutions in F_{q}^{n} for each $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in F_{q}^{m}$.

As indicated by Niederreiter in [Ni1971], the system $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots$,
$f_{m}\left(x_{1}, \ldots, x_{n}\right)$ is orthogonal if and only if for all $\left(b_{1}, \ldots, b_{m}\right) \in F_{q}^{m}$ with $\left(b_{1}, \ldots, b_{m}\right) \neq(0, \ldots, 0)$, the polynomial $b_{1} f_{1}\left(x_{1}, \ldots, x_{n}\right)+\ldots+b_{m} f_{m}\left(x_{1}, \ldots, x_{n}\right)$ is a permutation polynomial in n variables over F_{q}.

Let $m=q$, a prime power, and let $n_{i}=q^{s_{i}}$, where $s_{i} \geq 1$ is an integer. Now we have the following theorem.

Theorem 5.1.1. The $\frac{1}{q-1}\left(q^{\sum_{i=1}^{d} s_{i}}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \prod_{j=1}^{k}\left(q^{s_{i j}}-1\right)-\right.$ 1) polynomials

$$
\begin{equation*}
f_{\left(a_{11}, \ldots, a_{1 s_{1}}, \ldots, a_{d 1}, \ldots a_{\left.d s_{d}\right)}\right)}\left(x_{11}, \ldots, x_{1 s_{1}}, \ldots, x_{d 1}, \ldots, x_{d s_{d}}\right)=\sum_{i=1}^{d} \sum_{j=1}^{s_{i}} a_{i j} x_{i j} \tag{5.1}
\end{equation*}
$$

over F_{q}, where
(a) at least $t+1$ of the subvectors $\left(a_{11}, \ldots, a_{1 s_{1}}\right), \ldots,\left(a_{d 1}, \ldots a_{d s_{d}}\right)$ are nonzero;
(b) No two sets of a's are nonzero F_{q} multiples of each other, i.e., $\left(a_{11}^{\prime}, \ldots, a_{1 s_{1}}^{\prime}, \ldots, a_{d 1}^{\prime}, \ldots a_{d s_{d}}^{\prime}\right) \neq e\left(a_{11}, \ldots, a_{1 s_{1}}, \ldots, a_{d 1}, \ldots a_{d s_{d}}\right)$ for any $e \neq$ $0 \in F_{q}$
represent a complete set of $\operatorname{MOFHR}\left(q^{s_{1}}, \ldots, q^{s_{d}} ; t ; q\right)$ of dimension d and type t.

Proof. There are $\frac{1}{q-1}\left(q^{\sum_{i=1}^{d} s_{i}}-\sum_{k=1}^{t} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \prod_{j=1}^{k}\left(q^{s_{i j}-1}\right)-1\right)$
polynomials over F_{q} defined by (5.1) and conditions (a), (b).
Label the i-th coordinate with all s_{i}-tuples $\left(j_{i 1}, \ldots, j_{i s_{i}}\right)$ over F_{q}, for $1 \leq i \leq$ d. Now we may view an $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$ as a function $f: F_{q}^{\sum_{i=1}^{d} s_{i}} \rightarrow F_{q}$,
where the element $\left(j_{11}, \ldots, j_{1 s_{1}}, \ldots, j_{d 1}, \ldots, j_{d s_{d}}\right)$ becomes the element

$$
f\left(j_{11}, \ldots, j_{1 s_{1}}, \ldots, j_{d 1}, \ldots, j_{d s_{d}}\right) \in F_{q} .
$$

If $\left(j_{i_{k}}, 1, \ldots, j_{i_{k}, s_{k}}\right)$, for $k=1, \ldots, t$, is fixed, then

$$
\left.f_{(a)}\left(x_{11}, \ldots, x_{1 s_{1}}, \ldots, x_{d 1}, \ldots, x_{d s_{d}}\right)\right|_{\left(x_{i_{k}, 1}, \ldots, \ldots x_{i_{k}, i_{k}}\right)}=\left(j_{k_{k}, 1, \ldots, \ldots, i_{k}, i_{k}}\right), k=1, \ldots, t=\alpha
$$ has the same number of solutions in $F_{q}^{\sum_{w \neq i_{1}, \ldots, i_{k}} s_{u}}$ for each $\alpha \in F_{q}$. so that in the subarray obtained by fixing the i_{1}-th, ..., i_{i}-th coordinates, each element of F_{q} is picked up equally often. Hence $f_{(a)}\left(x_{11}, \ldots, x_{1 s_{1}}, \ldots, x_{d 1}, \ldots, x_{d s_{d}}\right)$ represents an $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$.

Clearly the F-hyperrectengles represented by $f_{1}=f_{(a)}\left(x_{11}, \ldots, x_{1 s_{1}}, \ldots\right.$, $\left.x_{d 1}, \ldots, x_{d s_{d}}\right)$ and $f_{2}=f_{\left(a^{\prime}\right)}\left(x_{11}, \ldots, x_{1 s_{1}}, \ldots, x_{d 1}, \ldots, x_{d s_{d}}\right)$ are orthogonal if and only of f_{1} and f_{2} form an orthogonal system of polynomials in $\sum_{i=1}^{d} s_{i}$ variables over F_{q}. By the Corollary of [Ni1971, p.417], f_{1} and f_{2} form an orthogonal system over F_{q} if and only if for all $\left(b_{1}, b_{2}\right) \neq(0,0) \in F_{q}^{2}$, the polynomial $\dot{b}_{1} f_{1}+b_{2} f_{2}$ is a permutation polynomial in $\sum_{i=1}^{d} s_{i}$ variables over F_{q}. Any linear polynomial of the form $\sum_{j=1}^{r} c_{j} x_{j}$ is a permutation polynomial in r variables provided at least one $c_{j} \neq 0$.

Let $\left(b_{1}, b_{2}\right) \neq(0,0) \in F_{q}^{2}$. If $b_{1}=0$, then $b_{2} f_{2}$ is a permutation polynomial since $b_{2} \neq 0$ while if $b_{2}=0$, then $b_{1} f_{1}$ is a permutation polynomial. Suppose $b_{1} b_{2} \neq 0$, so $b_{1} f_{1}+b_{2} f_{2}$ is a permutation polynonial unless all
$\sum_{i=1}^{d} s_{i}$ coefficients vanish, in which case $b_{1} a_{j}^{\prime}=-b_{2} a_{j}$ for $j=1, \ldots, \sum_{i=1}^{d} s_{i}$, i.e., unless $a_{j}^{\prime}=-b_{2} a_{j} / b_{1}$ for $j=1, \ldots, \sum_{i=1}^{d} s_{i}$, a contradiction of condition (b). Hence f_{1} and f_{2} form an orthogonal system and the proof is complete.

Theorem 5.1.1 is a generalization of the Mullen and Bose construction.
Corollary 5.1. 2 ([Mu1988]) The $\frac{1}{q-1}\left(q^{s}-1\right)^{2}$ polynomials
$f_{\left(a_{1}, \ldots, a_{2 s}\right)}\left(x_{1}, \ldots, x_{2 s}\right)=a_{1} x_{1}+\ldots+a_{2 s} x_{2 s} \quad$ over F_{q}, where
(a) $\left(a_{1}, \ldots, a_{s}\right) \neq(0, \ldots, 0)$;
(b) $\left(a_{s+1}, \ldots, a_{2 s}\right) \neq(0, \ldots, 0)$;
(c) No two sets of a's are nonzero F_{q} multiples of each other, i.e.,

$$
\left(a_{1}^{\prime}, \ldots, a_{2 s}^{\prime}\right) \neq e\left(a_{1}, \ldots, a_{2 s}\right) \text { for any } e \neq 0 \in F_{q}
$$

represent a complete set of mutually orthogonal F-squares $F\left(q^{s}, q^{s} ; \lambda, \ldots, \lambda\right)$, where $\lambda=q^{s-1}$.

Corollary 5.1.3 ([Bo1938]) The $q-1$ polynomials $f_{(a)}\left(x_{1}, x_{2}\right)=a x_{1}+x_{2}$ with $a \neq 0 \in F_{q}$ represent a complete set of $q-1$ mutually orthonogal Latin squares of order q.

For example, Theorem 5.1.1 gives the complete sets Ξ_{1} of $9 \operatorname{MOFHR}(4,4 ; 1 ; 2)$;
Ξ_{2} of $3 \operatorname{MOFHR}(4,2 ; 1 ; 2)$ and Ξ_{3} of $3 \operatorname{MOFHR}(4 ; 0 ; 2)$.
Consider the 9 polynomials over GF(2) given by

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{3} \\
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2}+x_{3} \\
f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{2}+x_{3} \\
f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{4} \\
f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{3}+x_{4} \\
f_{6}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2}+x_{4} \\
f_{7}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2}+x_{3}+x_{4} \\
f_{8}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{2}+x_{4} \\
f_{9}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{2}+x_{3}+x_{4}
\end{gathered}
$$

These 9 polynomials represent the complete set of $9 \operatorname{MOFHR}(4,4 ; 1 ; 2)$:

$$
\Xi_{1}: H_{1}=\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array} \quad H_{2}=\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array} 0 \quad 1 \quad 1 . \quad H_{3}=\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array} \begin{array}{llll}
0 & 0 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{llll}
0 & 1 & 0 & 1
\end{array} \\
& 0110 \\
& 0101 \\
& H_{4}=\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array} \quad H_{5}=\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array} \quad H_{6}=\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array} \\
& 1010 \\
& 1001 \\
& 1010 \\
& 0110 \\
& 0101 \\
& 0110 \\
& H_{7}=\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array} \quad H_{8}= \\
& 1001 \\
& 0101 \\
& H_{9}=\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array} \\
& 0110
\end{aligned}
$$

Consider the 3 polynomials over GF(2) given by

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{3} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}+x_{3} .
\end{aligned}
$$

These 3 polynomials represent the complete set of $3 \mathrm{MOFHR}(4,2 ; 1 ; 2)$:

$$
\begin{aligned}
& \begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 1
\end{array} \\
& \Xi_{2}: Q_{1}=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} \quad Q_{2}=\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array} \quad Q_{3}=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} . \\
& 10 \\
& 01 \\
& 10
\end{aligned}
$$

Consider the 3 polynomials over $\mathrm{GF}(2)$ given by

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}
$$

$$
\begin{aligned}
& f_{2}\left(x_{1}, x_{2}\right)=x_{2} \\
& f_{3}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}
\end{aligned}
$$

These 3 polynomials represent the complete set of $3 \operatorname{MOFHR}(4 ; 0 ; 2)$:

$$
\Xi_{3}: 0 \begin{array}{lllllllllll}
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array} 0
$$

5.2 Type 0 canonical F-hyperrectangles

The following construction gives type 0 canonical $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; 0 ; m\right)$ from $\operatorname{MOFHR}\left(n_{1} ; 0 ; m\right), \ldots, \operatorname{MOFHR}\left(n_{d} ; 0 ; m\right)$. Furthermore, adding a set of MOFHR of type 1 , we will have an enlarged set of MOFHR of type 0 . If the set of MOFHR of type 1 and the sets of $\operatorname{MOFHR}\left(n_{1} ; 0 ; m\right), \ldots, \operatorname{MOFHR}\left(n_{d ;} ; 0 ; m\right)$ are both complete, then the enlarged set of MOFHR of type 0 is also complete.

Suppose X is an $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$. Let $X\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ denote the entry in position $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$. The subarray obtained by assigning some fixed values a_{1}, \ldots, a_{t} to the i_{1}-th $, \ldots, i_{t}$-th coordinates, where $0 \leq a_{j} \leq n_{i_{j}}-$ 1 for $1 \leq j \leq t$, will be called a hyperplane and denoted by $X\left(x_{i}, a_{j}, j=\right.$ $1, \ldots, t)$. The class of hyperplanes into which X is partitioned by coordinates
$x_{i_{1}}, \ldots, x_{i_{t}}$ is denoted by $\left\{X\left(x_{i_{i}}=a_{1}, \ldots, x_{i_{t}}=a_{t}\right) \mid 0 \leq a_{j} \leq n_{i_{j}}-1\right\}$.
A set Ψ_{i} of type 0 canonical FHR can be constructed from a set Δ of $\operatorname{MOFHR}\left(n_{i} ; 0 ; m\right)$.

Suppose $\mathrm{L} \in \Delta$, then define a size $n_{1} \times \ldots \times n_{d}$ FHR, L^{*} as follows:

$$
\mathrm{L}^{*}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\mathrm{L}\left(x_{i}\right) .
$$

It is clear that L^{*} is a type $0, d$-dimensional FHR. The set $U_{i=1}^{d} \Psi_{i}$ is called the set of type u canonical FHR.

For example, from the set Ξ_{3} of $\operatorname{MOFHR}(4 ; 0 ; 2)$ in section 5.1 , we can sonstruct two sets Ψ_{1} and Ψ_{2}. The set $\Psi_{1} \cup \Psi_{2}$ is the set of type 0 cononical $\operatorname{FHR}(4,4 ; 0 ; 2)$. Furthmore, $\left(\Psi_{1} \cup \Psi_{2}\right) \cup \Xi_{1}$ is a complete set of $\operatorname{MOFHR}(4,4 ; 0 ; 2)$.

$$
\begin{aligned}
& 0000 \\
& 000 \\
& 0000 \\
& \Psi_{1}: C_{1}=\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array} \quad C_{2}=\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array} \quad C_{3}=\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array} \\
& 1111 \\
& 1111 \\
& 0000
\end{aligned}
$$

$$
\Psi_{2}: C_{4}=\begin{array}{llll}
\begin{array}{llll}
0 & 0 & 1 & 1
\end{array} \\
\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} \\
0 & 0 & 1 & 1
\end{array} \quad C_{5}=\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array} \quad C_{6}=\begin{array}{llllll}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array} \quad \begin{array}{llll}
0 & 1 & 1 & 0
\end{array} .
$$

Theorein 5.2.1. Given a set of $l_{1} \operatorname{MOFHR}\left(n_{1} ; 0 ; m\right), \ldots$, a set of l_{d} $\operatorname{MOFHR}\left(n_{d} ; 0 ; m\right)$, there exists a set Ψ of $\sum_{i=1}^{d} l_{i}$ type 0 canonical $\operatorname{FHR}\left(n_{1}, \ldots, n_{d} ; 0 ; m\right)$. Furthermore, adding a set Λ of $h \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; 1\right.$; m), the enlarged set $\Psi \cup \Lambda$ is a set of $\sum_{i=1}^{d} l_{i}+h \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; 0 ; m\right)$.

Proof. We only need to show that the members of $\Psi \cup \Lambda$ are orthogonal.
' it X and Y be members of $\Psi \cup \Lambda$. If $X, Y \in \Lambda$, then X and Y are orthogonal.

Otherwise, we may assume $X \in \Psi$, which implies that there exists k_{1}, where $1 \leq k \leq d$, such that $X \in \Psi_{k}$.

If $Y \in \Psi_{k}$, we assume that X is constructed from X^{\prime}, Y is constructed from Y^{\prime}, where X^{\prime}, Y^{\prime} are $\operatorname{MOFHR}\left(n_{k} ; 0 ; m\right)$. By the fact that each ordered pair occurs $\frac{n_{k}}{m^{2}}$ times in $\left(X^{\prime}, Y^{\prime}\right)$, where $\left(X^{\prime}, Y^{\prime}\right)$ denotes the F-hyperrectangle obtained by superimposing X^{\prime} and Y^{\prime}, we have that each ordered pair occurs $\frac{m_{k}}{m^{2}} \frac{\prod_{i=1}^{d} n_{i}}{n_{k}}=\frac{\prod_{i=1}^{d} n_{i}}{m^{2}}$ times in (X, Y). Hence X and Y are orthogonal.

If $Y \notin \Psi_{k}$, then each element occurs $\frac{\prod_{i=1}^{d}, n_{1}}{m \times n_{k}}$ times in each hyperplane $\mathrm{Y}\left(x_{k}=a\right), 0 \leq a \leq n_{k}-1$. Hence each ordered pair occurs exactly $\frac{n_{k}}{m} \frac{\prod_{1-1}^{d} n_{i}}{m \times n_{k}}=$ $\prod_{i=1}^{m^{2}} n_{i}$ times in (X, Y). Therefore X and Y are orthogonal.

Corollary 5.2.2. If the initial sets of $\operatorname{MOFHR}\left(n_{1} ; 0 ; m\right), \ldots, \operatorname{MOFHR}\left(n_{d} ; 0 ; m\right)$ and the set of MOFHR $\left(n_{1}, \ldots, n_{d} ; 1 ; m\right)$ are both complete, so is the enlarged set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; 0 ; m\right)$.

Proof. If $l_{i}=\frac{n_{i}-1}{m-1}$ and $h=\frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-\sum_{i=1}^{d}\left(n_{i}-1\right)-1\right)$, then $\sum_{i=1}^{d} l_{i}+h=\frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-1\right)$.

5.3 A recursive procedure

The following procedure constructs $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d}, n_{d+1} ; t+1 ; m\right)$ from $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$ and $\operatorname{MOFHR}\left(n_{d+1}, m ; 1 ; m\right)$.

Given a set Ω of $h \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$, we can divide the set into two classes, Ω_{1} and Ω_{2}. The class Ω_{1} consists of all $\operatorname{FHR}\left(n_{1}, \ldots, n_{d ;} t+1 ; m\right)$, and Ω_{2} consists of the rest. Let h_{1} be the cardinality of Ω_{1}.

Given a set Γ of $l \operatorname{MOFHR}\left(n_{d+1}, m ; 1 ; m\right)$, we append the following $n_{d+1} \times$
m rectangle

$$
R=\begin{array}{cccc}
0 & 1 & \ldots & m-1 \\
0 & 1 & \ldots & m-1
\end{array} \text { to } \Gamma . \text { We denote this new set as } \Gamma^{+} .
$$

Using this we now construct $l l+h_{1} \operatorname{MOFHR}\left(n_{1}, \ldots, n_{l l}, n_{d+1} ; t+1 ; m\right)$. Suppose $\mathrm{X} \in \Omega$, and $L \in \Gamma^{+}$, then define the $(d+1)$-dimensional hyperrectangle X^{L} as follows:
$X^{L}\left(x_{1}, x_{2}, \ldots, x_{d}, x_{d+1}\right)=L\left(X\left(x_{1}, x_{2}, \ldots, x_{d}\right), x_{d+1}\right)$. The expression is interpreted to mean that X^{L} is partitioned into the hyperplanes $\left\{X^{L}\left(x_{d+1}=\right.\right.$ $\left.0), X^{L}\left(x_{d+1}=1\right), \ldots, X^{L}\left(x_{d+1}=n_{d+1}-1\right)\right\}$, where $X^{L}\left(x_{d+1}=i\right)$ is X with a permutation applied to its symbols as defined by the i-th row of L. We can view each row of L as the image of a permutation from S_{m}, the symmetric group on m letters, $0,1, \ldots, m-1$.

The construction gives a new set $\Phi=\left\{X^{L}: X \in \Omega_{1}, L \in \Gamma^{+}\right\} \cup\left\{X^{L}:\right.$ $\left.X \in \Omega_{2}, L \in \Gamma\right\}$.

Note that $|\Phi|=\left|\Omega_{1}\right| \times(|\Gamma|+1)+\left|\Omega_{2}\right| \times|\dot{i}|=h_{1}(l+1)+\left(h-h_{1}\right) l=$ $h l+h_{1}$, as earlier claimed.

Let us look at an example. Set $\Omega=\left\{H_{1}, \ldots, H_{9}, C_{1}, \ldots, C_{6}\right\}$, and $\Gamma=$
$\left\{Q_{1}, Q_{3}, Q_{3}\right\}$. From the above procedure we can construct a complete set of $54 \operatorname{MOFHR}(4,4,4 ; 1 ; 2)$. The following is $H_{5}^{Q_{2}}$.

$$
x_{3}=0 \quad x_{3}=1 \quad x_{3}=2 \quad x_{3}=3
$$

$$
x_{2}=0,1,2,3
$$

$$
x_{1}=0 \begin{array}{llllllllllllllllll}
& 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

$$
x_{1}=1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad: \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0
$$

$$
\begin{array}{lllllllllllllllll}
x_{1}=3 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

Before showing that Φ is a set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d}, n_{t+1} ; t+1 ; m\right)$, we make some observations about the hyperplanes of members of Φ.

Let $\left(i_{1}, \ldots, i_{f}, i_{t+1}\right)$ be an arbitrary element in $P_{t+1}(\underline{d}+\underline{1})$. Now we consider two classes of hyperplanes in X^{L}, a typical member of Φ.

Class 1 hyperplanes are of the form $X^{L}\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$, where $i_{t+1}=d+1$. By definition this is $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}\right)$ with the permutation determined by row a_{t+1} of L applied to the symbols.

Class 2 hyperplanes are of the form $X^{L}\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$, where $i_{t+1}<d+1$. Say $P=X^{L}\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$. Partition P into $\left\{P\left(x_{d+1}=0\right), \ldots, P\left(x_{d+1}=n_{d+1}-1\right)\right\}$. Further $P\left(x_{d+1}=k\right)$ is ob-
tained from $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$ by permuting the symbols in $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$ according to the permutation defined by the k-th row of L .

Lemma 5.3.1. The members of Φ are of type $t+1$.
Proof. Suppose $X^{L} \in \Phi$, and let $\left(i_{1}, \ldots, i_{t}, i_{t+1}\right)$ be an arbitrary element in $P_{t+1}(\underline{d+1})$. We have to show that each symbol occurs an equal number of times in the hyperplane $X^{L}\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$, where $0 \leq a_{k} \leq \pi_{i_{k}}-1,1 \leq k \leq t+1$.

This is obvious if the hyperplane is in class 1 .
Consider a hyperplane P in class 2. Then P consists of n_{d+1} copies of hyperplane $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$ with the k-th copy having the symbols permuted by the k-th row of L.

If $X \in \Omega_{1}$, then each symbol occurs equally often in $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=\right.$ $a_{t}, x_{i_{t+1}}=a_{t+1}$) and therefore each symbol occurs equally often in P since permutations of the symbols of $X\left(x_{i_{1}}=a_{1,}, \ldots, x_{i_{\xi}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$ leave the number of occurrences of each symbol unchanged. So if $X \in \Omega_{1}$, then X^{L} is an $\operatorname{FHR}\left(n_{1}, \ldots, n_{d}, n_{d+1} ; t+1 ; m\right)$.

If $X \notin \Omega_{1}$, then $X \in \Omega_{2}$. Hence $L \in \Gamma$. Hyperplane P has partition

$$
\left\{P\left(x_{d+1}=0\right), P\left(x_{d+1}=1\right), \ldots, P\left(x_{d+1}=n_{d+1}-1\right)\right\}
$$

where $P\left(x_{d+1}=k\right)$ is $X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{t}}=a_{t}, x_{i_{t+1}}=a_{t+1}\right)$ with the symbols replaced according to row k of L. For any element $e, 0 \leq e \leq m-1$, the first row of L permutes e_{1} to e, \ldots, the n_{d+1} row of L permutes $e_{\pi_{d+1}}$ to e, where $0 \leq e_{1}, \ldots, e_{n_{d+1}} \leq m-1$.

By the fact that $L \in \Gamma$, we see that the multi-set
$\left\{e_{1}, \ldots, e_{n_{d+1}}\right\}=\left\{0_{1}, \ldots, 0,1, \ldots, 1, m-1, \ldots, m-1\right\}$ (each element with multiplicity $\frac{n_{d+1}}{m}$). Hence the number of times that symbol e appears in P is $\sum_{k=1}^{n_{d+1}}$ (the number of times that symbol e_{k} appears in $X\left(x_{i_{1}}=a_{1_{1}} \ldots, x_{i_{t}}=\right.$ $\left.\left.a_{t}, x_{i_{t+1}}=a_{t+1}\right)\right)=\frac{n_{d+1}}{m} \times \sum_{j=0}^{m-1}($ the number of times that symbol j appears in $\left.X\left(x_{i_{1}}=a_{1}, \ldots, x_{i_{i}}=a_{t}, x_{i_{t+1}}=a_{i+1}\right)\right)=\frac{n_{d+1}}{m} \times \frac{\prod_{k=1}^{d} \frac{n_{k}}{1}}{\prod_{k=1}^{+1} n_{i_{k}}}$. Thus each symbol occurs equally often in P.

Lemma 5.3.2. The members of Φ are mutually orthogonal.
Proof. Let X^{L} and Y^{M} be members of Φ, and assume $X \neq Y$. Then X and Y are orthogonal, and X^{L} and Y^{M}, respectively, have partitions $\left\{X^{L}\left(x_{d+1}=\right.\right.$ $\left.0), \ldots, X^{L}\left(x_{d+1}=n_{d+1}-1\right)\right\}$ and $\left\{Y^{M}\left(x_{d+1}=0\right), \ldots, Y^{M}\left(x_{d+1}=n_{d+1}-1\right)\right\}$. Each member of these partitions is obtained from X or Y by a permutation of the symbols, an operation that does not affect orthogonality. Hence
$X^{L}\left(x_{d+1}=k\right)$ is orthogonal to $Y^{M}\left(x_{d+1}=k\right)$ since X is orthogonal to Y. Therefore X^{L} is orthogonal to Y^{M}.

Assume $\mathrm{X}=\mathrm{Y}$. Then L is orthogonal to M . Let (L, M) denote the F hyperrectangle obtained by superimposing L and M.

If the ordered pair (α, β) appears in the position (i, j) of (L, M), then (α, β) appears in $\left(X^{L}{ }_{\mathrm{r}} X^{M}\right)\left(x_{d+1}=i\right) \frac{\prod_{k=1}^{d} n_{k}}{m}$ times by the fact that element j appears $\frac{\prod_{k=1}^{d} n_{k}}{m}$ times in X.

Since L and M are orthogonal F-hyperrectangles, we see that each ordered pair occurs exactly $\frac{n_{d+1} \times m}{m^{2}}=\frac{n_{d+1}}{m}$ times in (L, M). Hence each pair occurs exactly $\frac{\prod_{k=1}^{d+1} n_{k}}{m^{2}}$ times in $\left(X^{L}, X^{M}\right)$.

The following theorem follows from Lemmas 5.3.1 and 5.3.2.
Theorem 5.3.3. Given a set of $h \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$, which consists of $h_{1} \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t+1 ; m\right)$, and a set of $l \operatorname{MOFHR}\left(n_{d+1}, m ; 1 ; m\right)$, there exists a set of $h l+h_{1} \operatorname{MOFHR}\left(n_{1}, \ldots, n_{d}, n_{d+1} ; t+1_{i} m\right)$.

We note that Theorem 5.3.3 provides a generalization of Theorem 3.6 of [LaMuWh1995].

Given a complete set Φ of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$, where $0 \leq t \leq d-2$, if the subset of Φ, consisting of all type it +1) F-hyperrectangles, is also
complete, then we call the set Φ is strongly complete.
Corollary 5.3.4. (1) Given a complete set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; d-\right.$ $1 ; m)$ and a complete set of $\operatorname{MOFHR}\left(n_{d+1}, m ; 1 ; m\right)$, then the above recursive algorithm gives a complete set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d}, n_{d+1} ; d ; m\right)$.
(2) Given a strongly complete set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d} ; t ; m\right)$, where $0 \leq$ $t \leq d-2$, and a complete set of $\operatorname{MOFHR}\left(n_{d+1}, m ; 1 ; m\right)$, then the above recursive algorithm gives a complete set of $\operatorname{MOFHR}\left(n_{1}, \ldots, n_{d}, n_{d+1} ; t+1 ; m\right)$.

Proof. (1) If $h=\frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-\sum_{k=1}^{d-1} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(\underline{d})} \prod_{j=1}^{k}\left(n_{i_{j}}-1\right)-1\right)=$ $\frac{1}{m-1}\left(\prod_{i=1}^{d}\left(n_{i}-1\right)\right), h_{1}=0$ and $l=n_{d+1}-1$, then

$$
h l+h_{1}=\frac{1}{m-1}\left(\prod_{i=1}^{d+1}\left(n_{i}-1\right)\right)
$$

$$
=\frac{1}{m-1}\left(\prod_{i=1}^{d+1} n_{i}-\sum_{k=1}^{d} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d+1)} \prod_{j=1}^{k}\left(n_{i_{j}}-1\right)-1\right)
$$

(2) If $h=\frac{1}{m-1}\left(\prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t} \sum_{\left\{i_{i}, \ldots, i_{k}\right\} \in P_{k}(\underline{d})} \prod_{j=1}^{k}\left(n_{i}-1\right)-1\right), h_{1}=$ $\frac{1}{m_{!}, 1}\left(\prod_{i=1}^{d} n_{i}-\sum_{k=1}^{t+1} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d)} \prod_{j=1}^{k}\left(n_{i}-1\right)-1\right)$ and $l=n_{d+1}-1$, then
$h l+h_{1}=\frac{1}{m-1}\left(\prod_{i=1}^{d+1} n_{i}-\sum_{k=1}^{t+1} \sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in P_{k}(d+1)} \prod_{j=1}^{k}\left(n_{i}-1\right)-1\right)$.

It is easily seen that the complete set of $\operatorname{MOFHR}\left(q^{s_{1}}, \ldots, q^{s_{d}} ; t ; m\right)$ constructed by Theorem 2.1 .1 is strongly complete. So the polynomial construction (Theorem 2.1.1) gives a strongly complete set of MOFHR of prime power order.

Chapter 6

Carlitz Compositions

In the first two sections, we discuss Carlitz compositions with zeros allowed (CCWZA). The following two parameters: number of summands, largest summand are analyzed. In the third section, we introduce the Carlitz word which is a generalization of Carlitz composition.

6.1 The number of summands

Firstly we recall some results in [KnPr 1998].
Let $d(n)$ be the number of CCWZA of size n. Then the generating function $D(z):=\sum_{n \geq 0} d(n) z^{n}=(1+2 \sigma(z)) /(1-2 \sigma(z))$, where $\sigma(z)=\sum_{j \geq 1}(-1)^{j-1} z^{j} /\left(1-z^{j}\right)$.

There is a dominant singularity τ, which is the solution in the interval $[0,1]$ of the equation $\sigma(z)=1 / 2$. Numerically $\tau=0.386960$.

Therefore $d(n) \sim A \tau^{-n}=1.337604 \cdot(2.584243)^{n}$ where $A=(1+2 \sigma(\tau)) /\left(2 \tau \sigma^{\prime}(\tau)\right)$.
Now we consider the average number of summands in a random CCWZA of size n by a method that has appeared in [FIPr1987] under the nickname "adding a new slice".

Let $s(n)$ denote the summands number of CCWZA of size n.
We proceed from a CCWZA with k summands to one with $k+1$ summands by allowing the $(k+1)$-th summand x_{k+1} to be any positive integer and subtracting the forbidden case $x_{k+1}=x_{k}$. In terms of generating functions this reads as follows.

Let $f_{k}(z, u)$ be the generating function of those CCWZA with k summands where the coefficient of $z^{n} u^{j}$ refers to size n and the last summand $x_{k}=j$. We dissect the set of compositions into those with the last summand ≥ 1 (counted by $\left.g_{k}(z, u)\right)$ and those with the last summand $=0$ (counted by $\left.h_{k}(z)\right)$. Clearly, $h_{k}(z)=g_{k-1}(z, 1) \quad(k \geq 2)$.

Then $g_{k+1}(z, u)=g_{k}(z, 1) \frac{z u}{1-z u}+h_{k}(z) \frac{z u}{1-z u}-g_{k}(z, z u)$

$$
\begin{equation*}
\text { for } k \geq 1, g_{1}(z, u)=\frac{z u}{1-z u} \text { and } h_{1}(z)=1 \tag{6.1}
\end{equation*}
$$

We use another variable, w, to label the number of summands. Let
$G(z, u, w):=\sum_{k \geq 1} w^{k} g_{k}(z, u)$ and $F(z, u, w):=\sum_{k \geq 1} w^{k} f_{k}(z, u)$.
Multiplying (6.1) by w^{k+1} and summing over $k \geq 1$, we get

$$
G(z, u, w)=\left(w+w^{2}\right) G(z, 1, w) \cdot \frac{z u}{1-z u}+\left(w+w^{2}\right) \frac{z u}{1-z u}-w G(z, z u, w)
$$

Iterate it, and consequently we have

$$
\begin{gathered}
G(z, 1, w)=(w+1) r(z, w) /(1-(w+1) r(z, w)) \\
\text { where } r(z, w)=\sum_{i \geq 1} z^{i} w^{i}(-1)^{i-1} /\left(1-z^{i}\right) .
\end{gathered}
$$

Therefore $F(z, 1, w)=w+(w+1) G(z, 1, w)$

$$
=(w+(w+1) r(z, w)) /(1-(w+1) r(z, w)) .
$$

Hence the generating function $F(z):=\sum_{n \geq 0} s(n) \cdot z^{n}=\left.\frac{\partial}{\partial w} F(z, 1, w)\right|_{w=1}$

$$
=(1+4 u(z)) /[1-2 \sigma(z)]^{2} \quad \text { with }
$$

$u(z)=\sum_{j \geq 1}(-1)^{j-1} j z^{j} /\left(1-z^{j}\right)$.
Therefore $F(z) \sim B /(1-z / \tau)^{2}=1.16589 /(1-z / \tau)^{2}$,
where $B=(1+4 u(\tau)) /\left(2 \tau \sigma^{\prime}(\tau)\right)^{2}$.
Hence $s(n) \sim B n \cdot \tau^{-n}$.
Then the average number of summands in a random CCWZA of size n is $\sim \frac{B_{n} \cdot \tau^{-n}}{A \tau^{-n}}=0.871626 n$.

6.2 The largest summand

First we consider $F^{(h)}(z)$, the generating function of those CCWZA with the largest summand $\leq h$, where the coefficient of z^{n} refers to size n.

Let $f_{k}^{(h)}(z, u)$ be the generating function of those CCWZA with k summands and all summands $\leq h$, where the coefficient of $z^{n} u^{j}$ refers to size n and the last summand $x_{k}=j$. We dissect the set of compositions into those with the last summand ≥ 1 (counted by $\left.g_{k}^{(h)}(z, u)\right)$ and those with the last summand $=0$ (counted by $\left.l_{k}^{(h)}(z)\right)$. Clearly, $l_{k}^{(h)}(z)=g_{k-1}^{(h)}(z, 1) \quad(k \geq 2)$.

Then essentially the same idea as in (6.1) works, except that we only use a factor

$$
(z u)+\ldots+(z u)^{h}=z u\left(1-(z u)^{h}\right) /(i-z u) \quad \text { instead of the }
$$

full geometric series.
Hence $g_{k+1}^{(h)}(z, u)=g_{k}^{(h)}(z, 1) z u\left(1-(z u)^{h}\right) /(1-z u)+l_{k}^{(h)}(z) z u\left(1-(z u)^{h}\right) /(1-$ $z u)-g_{k}^{(h)}(z, z u)$

$$
\text { for } k \geq 1, g_{1}^{(h)}(z, u)=z u\left(1-(z u)^{h}\right) /(1-z u) \text { and } l_{1}^{(h)}(z)=1
$$

Setting $G^{(h)}(z, u):=\sum_{k \geq 1} g_{k}^{(h)}(z, u)$, we get

$$
\begin{aligned}
& G^{(h)}(z, 1)=2 \sigma^{(h)}(z) /\left(1-2 \sigma^{(h)}(z)\right), \\
& \quad \text { where } \sigma^{(h)}(z)=\sum_{i \geq 1}(-1)^{i-1}\left(z^{i}-z^{i(h+1)}\right) /\left(1-z^{i}\right) .
\end{aligned}
$$

Therefore $F^{(h)}(z)=1+2 G^{(h)}(z, 1)$

$$
=\left(1+2 \sigma^{(h)}(z)\right) /\left(1-2 \sigma^{(h)}(z)\right)
$$

The dominant pole τ_{h} is now the real solution of the equation

$$
\sigma^{(h)}(z)=1 / 2 .
$$

It is clear that τ_{h} tends to τ, but we have to determine how fast. We will use the "bootstrapping method" from [Kn1978].

Now, around $z=\tau$ we have approximate equation

$$
1 / 2 \approx \sigma\left(\tau_{h}\right)-\tau^{h+1} /(1-\tau)
$$

Let $\tau_{h}=\tau\left(1+\epsilon_{h}\right)$, and use Taylor's Theorem, then we get

$$
\begin{gathered}
0 \approx \tau \epsilon_{h} \sigma^{\prime}(\tau)-\tau^{h+1} /(1-\tau) \quad \text { or } \\
\epsilon_{h} \approx \tau^{h} /\left((1-\tau) c^{\prime}(\tau)\right) .
\end{gathered}
$$

Therefore the number of CCVIZA with the largest summand $\leq h$ is approximated by

$$
\left[\left(1+2 \sigma\left(\tau_{h}\right)\right) /\left(2 \tau_{h} \sigma^{\prime}\left(\tau_{h}\right)\right)\right] \cdot \tau_{h}^{-n} \approx\left[(1+2 \sigma(\tau)) /\left(2 \tau \sigma^{\prime}(\tau)\right)\right] \tau^{-n}\left(1+\epsilon_{h}\right)^{-n} .
$$

Thus the probability that the largest summand is $\leq h$ is approximated by

$$
\begin{aligned}
& {\left[(1+2 \sigma(\tau)) /\left(2 \tau \sigma^{\prime}(\tau)\right)\right] \tau^{-n}\left(1+\epsilon_{h}\right)^{-n} /\left(A \tau^{-n}\right) } \\
= & \left(1+\epsilon_{h}\right)^{-n} \approx\left(1-\tau^{h} /\left((1-\tau) \sigma^{\prime}(\tau)\right)\right)^{n} .
\end{aligned}
$$

For the probability that the largest summand is $>h$, we have approximately $1-\left(1-\tau^{h} /\left((1-\tau) \sigma^{\prime}(\tau)\right)\right)^{n}$.

Summing this up over $h \geq 0$, we get the desired average value E_{n}, the average number of the largest summand in a random CCWZA of size n.

The next step is to use the exponential approximation $(1-\alpha)^{n} \approx e^{-\alpha n}$.
Then $E_{n} \approx \sum_{h \geq 0}\left(1-e^{-n \tau^{h} /\left((1-\tau) \sigma^{\prime}(\tau)\right)}\right)$.
This quantity is quite well studied in [FlGoDu1995]. Set $N:=n /((1-$ $\left.\tau) \sigma^{\prime}(\tau)\right)$. Therefore
$E_{n} \sim \log _{1 / \tau} N-\gamma / l n \tau+1 / 2+\delta\left(\log _{1 / \tau} N\right)$, with a certain periodic function $\delta(x)$ that has period 1 , mean 0 , and small amplitude.

Rewriting this we get

$$
E_{n} \sim \log _{1 / \tau} n-\log _{1 / \tau} \sigma^{\prime}(\tau)-\log _{1 / \tau}(1-\tau)-\gamma / \ln \tau+1 / 2+\bar{\delta}\left(\log _{1 / \tau} n\right)
$$

where $\bar{\delta}(x)=\delta\left(x-\log _{1 / \tau} \sigma^{\prime}(\tau)-\log _{1 / \tau}(1-\tau)\right)$, which has the same pioperty as $\delta(x)$.

The numerical constant is

$$
-\log _{1 / \tau} \sigma^{\prime}(\tau)-\log _{1 / \tau}(1-\tau)-\gamma / \ln \tau+1 / 2=0.929718
$$

6.3 Carlitz words

In this section we discuss words (strings) over an alphabet with symbols $\beta_{1}, \beta_{2}, \ldots, \beta_{m}(m \geq 2)$.

The number of words of length n over an alphabet with m symbols is found to be m^{n}. Each word may be decomposed into a succession of blocks each formed with a single symbol maximally (as long as possible). Each block is called a run. For each block, the block length is called run length.

If a word has run lengths $l_{1}, l_{2}, \ldots, l_{k}$ sequencely, then we call it a $\left(l_{1}, l_{2}, \ldots, l_{k}\right)-$ word. For example, $m=3 ; \beta_{2} \beta_{2} \beta_{2} \beta_{2} \beta_{1} \beta_{3} \beta_{1} \beta_{1} \beta_{2} \beta_{3} \beta_{3} \beta_{1}$ is a. word of length 12. $\beta_{2} \beta_{2} \beta_{2} \beta_{2}, \beta_{1}, \beta_{3}, \beta_{1} \beta_{1}, \beta_{2}, \beta_{3} \beta_{3}, \beta_{1}$ are its runs. Their lengths are 4, $1,1,2,1,2,1$ respectively. It is a $(4,1,1,2,1,2,1)$-words.

For a $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$-word, if $l_{i} \neq l_{i+1}(i=1, \ldots, k-1)$, then we call it a Carlitz word.

Let $c_{m}(n)$ be the number of such Carlitz words of length n over an alphabet with symbols $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$. For convenience, we define $c_{m}(0)=1$.

From the definition, we see that $c_{2}(n)=2 c(n)$, i.e., $c(n)=\frac{1}{2} c_{2}(n)$ for $n \geq 1$ where $c(n)$ is the number of Carlitz compositions defined in section 1.3.

$c_{m}(n)$			
$\mathrm{n} \backslash \mathrm{m}$	2	3	4
0	1	1	1
1	2	3	4
2	2	3	4
3	6	15	28
4	8	27	64
5	14	51	124
6	28	159	520
7	46	339	1372
8	78	699	3100

Fig. 4

In this section, we deduce the generating function

$$
\begin{align*}
& C_{m}(z):=\sum_{n \geq 0} c_{m}(n) z^{n} \\
& =\frac{m}{m-1} \cdot 1 /\left(1-\sum_{i=1}^{\infty}(-1)^{i-1}(m-1)^{i} z^{i} /\left(1-z^{i}\right)\right)-\frac{1}{m-1} \tag{6.2}\\
& \quad=\frac{m}{m-1} \cdot 1 /\left(1-\sum_{i=1}^{\infty}(m-1) z^{i} /\left(1+(m-1) z^{i}\right)\right)-\frac{1}{m-1}
\end{align*}
$$

and the recurrence $c_{m}(n)=\sum_{j=1}^{n-1} P_{m}(j) \cdot c_{m}(n-j)+P_{m}(n) \cdot \frac{m n}{m-1}(n \geq 1)$,
where $c_{m}(0)=1$ and $P_{m}(n)=\sum_{i j n}(-1)^{i-1}(m-1)^{i}$.

Now we deduce the generating function (6.2).
Let $f_{k, m}(z, u)$ be the generating function of those Carlitz words with k runs where the coefficient of $z^{n} u^{j}$ refers to size n and the last run length $x_{k}=j$.

Then $f_{k+1, m}(z, u)=f_{k, m}(z, 1) \frac{(m-1) z u}{1-z u}-(m-1) f_{k, m}(z, z u)$

$$
\begin{equation*}
\text { for } k \geq 1 \text { and } f_{1, m}(z, u)=m \cdot \frac{z u}{1-z u} \tag{6.4}
\end{equation*}
$$

Define $F_{m}(z, u):=\sum_{k \geq 1} f_{k, m}(z, u)$.
From (6.4), we get

$$
F_{m}(z, u)=F_{m}(z, 1) \cdot \frac{(m-1) z u}{1-z u}+m \cdot \frac{z u}{1-z u}-(m-1) F_{m}(z, z u) .
$$

Iterate it, and consequently we have

$$
\begin{aligned}
& F_{m}(z, 1)=\frac{m}{m-1} \sigma_{m}(z)+F_{m}(z, 1) \sigma_{m}(z) \\
& \quad \text { where } \sigma_{m}(z)=\sum_{i \geq 1}(-1)^{i-1}(m-1)^{i} z^{i} /\left(1-z^{i}\right)
\end{aligned}
$$

Hence $C_{m}(z)=1+F_{m}(z, 1)$

$$
=\frac{m}{m-1} \cdot 1 /\left(1-\sigma_{m}(z)\right)-\frac{1}{m-1} .
$$

This finishes the proof of (6.2).
Since $\sum_{i \geq 1}(-1)^{i-1}(m-1)^{i} z^{i} /\left(1-z^{i}\right)$

$$
=\sum_{i=1}^{\infty}(-1)^{i-1}(m-1)^{i} \sum_{j=1}^{\infty} z^{i j}
$$

$$
=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty}(-1)^{i-1}(m-1)^{i} z^{i j}
$$

$$
=\sum_{j=1}^{\infty}(m-1) z^{j} /\left(1+(m-1) z^{j}\right),
$$

we get (6.2') from (6.2).
In the following, we derive (6.3).

$$
\begin{gathered}
\sum_{i=1}^{\infty}(-1)^{i-1}(m-1)^{i} z^{i} /\left(1-z^{i}\right)=\sum_{i=1}^{\alpha}(-1)^{i-1}(m-1)^{i} \sum_{j=1}^{\infty} z^{i j} \\
=\sum_{n=1}^{\infty} z^{n} \sum_{i n n}(-1)^{i-1}(m-1)^{i} .
\end{gathered}
$$

Define $P_{m}(n)=\sum_{i n n}(-1)^{i-1}(m-1)^{i}$.
Then $1+\sum_{n \geq 1} c_{m}(n) z^{n}=\frac{m}{m-1} \cdot 1 /\left(1-\sum_{n \geq 1} P_{m}(n) z^{n}\right)-\frac{1}{1 m-1}$.
Hence $\quad 1+\frac{m-1}{m} \sum_{n \geq 1} c_{m}(n) z^{n}=1 /\left(1-\sum_{n \geq 1} P_{m}(n) z^{n}\right)$.
It follows that $c_{m}(n)$ satisfies the recurrence

$$
c_{m}(n)=\sum_{j=1}^{n-1} P_{m}(j) \cdot c_{m}(n-j)+P_{m}(n) \cdot \frac{m}{m-1}(n \geq 1), \text { where } c_{m}(0)=1
$$

and $P_{m}(n)=\sum_{i \mid n}(-1)^{i-1}(m-1)^{i}$.
Finally, we state some asymptotic results for $c_{m i}(n), 2 \leq m \leq 10$.

m	ρ_{m}	A_{m}
2	0.571349	0.912774
3	0.434461	0.920266
4	0.360573	1.012713
5	0.312720	1.061314
6	0.278582	1.105405
7	0.252707	1.145457
8	0.232258	1.182073
9	0.215596	1.215771
10	0.201697	1.246993

Fig. 5

Here ρ_{m} is the dominant pole of the generating function $C_{m}(z)$. Therefore $c_{m}(n) \sim A_{m} \rho_{m}^{-n}$, where $A_{m}=\frac{m}{m-1} /\left(\rho_{m} \sigma_{m}^{\prime}\left(\rho_{m}\right)\right)$.

Bibliography

[Ad1967] S. Addelman, Equal and proportional frequency squares, J. Amer. Statist. Assoc. 62 (1967) 226-240.
[An1976] G. E. Andrews, The Theory of Partitions, in "Encyclopedia of Mathematics and Its Applications" (G. C. Rota, Ed.) Vol. 2, Addison-Wesley, Reading, Massachusetts, 1976.
[AsDeHa1998] A. S. Asratian, T. M. J. Denley and R. Häggkvist, Bipartite Graphs and their Applications, Cambridge University Press, United Kingdom, 1998.
[Be1973] E. Bender, Central and local limit theorerns applied to asymptotic enumeration, J. Comb. Theory, Ser. A 15 (1973) S1-111.
[BoMu1976] J. A. Bondy and U.S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
[Bo1938] R. C. Bose, On the application of the properties of Galois fields to the construction of hyper-Graece-latin squares, San Khya 3(1938), 323-338.
[BoShPa1960] R. C. Bose, S. S. Shrikhande and E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1960) 189-203.
[BoHa1987] V. Bouchitté and M. Habib, NP-completeness properties about linear extentions, Drder 4 (1987) 143-154.
[Br1980] R. A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra and Appl. 33 (1980) 159231.
[Br1992] R. A. Brualdi, Introductory Combinatorics (second edition), Prentice-Hall, Englewood Cliffs, New Jersey, 1992.
[Br.Ju1992] R. A. Brualdi and H. C. Jung, Maxiraum and minimum jump number of posets from matrices, Linear Algebra and Appl. 172 (1992) 261-282.
[BrJuTr1994] R. A. Brualdi, H. C. Jung and W. T. Trotter, Jr., On the poset of all posets on $\{\mathrm{n}\}$ elements, Discrete Appl. Math. 50 (1994) 111-123.
[BrMa1984] R. A. Brualdi and R. Manber, Chromatic number of classes of matrices of zeros and ones, Discrete Math. 50 (1984) 143-152.
[BrMaRo1986] R. A. Brualdi, R. Manber and J. A. Ross, On the minimum rank of regular classes of matrices of zeros and ones, J. Combin. Theory Ser. A. 41 (1986) 32-49.
[BrRy1991] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York, 1991.
[Ca1976] L. Carlitz, Restricted compositions, The Fibonacci Quarterly 14 (1976) 254-264.
[ChHa1980] M. Chein and M. Habib, The jump number of dags and posets: An introduction, Ann. Discrete Math. 9 (1980) 189194.
[ChMa1972] M. Chein and P. Martin, Sur le nombre de sauts d'une forêt, C. R. acad. Sc. Paris, 275 (1972) 159-161.
[Ch1] B. Cheng, Some exact values concerning maximum jump numbers, submitted.
[Ch2] B. Cheng, Mutually orthogonal F-hyperrectangles with different frequencies allowed, preprint.
[Ch3] B. Cheng, Maximal number of mutually orthogonal frequency hyperrectangles with a prescribed type, preprint.
[ChLi1996] B. Cheng and B. Liu, Some inequalities about connected domination number, Discrete Math. 159 (1.996) 241-245.
[ChLi1998] B. Cheng and B. Liu, Matrices of zeros and ones with the maximum jump number, Linear Algebra and Appl., 277 (1998) 83-95.
[ChLi] B. Cheng and B. Liiu, On the maximum jump number of regular matrices classes of zeros and ones, Suimitted.
[ChMu] B. Cheng and G. Mullen, Coustructions for mutually orthogonal frequency hyperrectangles with a prescribed type, preprint.
［Ch1980］C．S．Cheng，Orthogonal arrays with variaible number of sym－ bols，Ann．Statist．8（1980），447－453．
［DeKe1974］J．Dénes and A．D．Keedwell，Latin Squares and their Appli－ cations，Academic Press，New York， 1874.
［DeKe1991］J．Dénes and A．D．Keedwell，Latin Squares，Ann．Discrete Math．45， 1991.
［Di1950］R．P．Dilworth，A decomposition theorem for partially or－ dered sets，Aun．of Math． 51 （1950）161－166．
［DuRiWi1982］D．Duffus，I．Rival and P．Winkler，Minimizing setups for cycle－free ordered sets，ワワワ．Amer．Math．Soc． 85 （1982）509－ 513.
［Eu1779］L．Euler，Recherches sur une nouvelle espèce de quarrés magiques．［Memoir presented to the Academy of Sciences of St．Petersburg on 8th March，1779．］Published as（a）Verh． Zeeuwsch．Genootsch．Wetensch．Vlissengen 9 （1782）85－239；
（b）Mémoire de la société de Flessingue，Commentationes arithmetica collectae（elogé）St．Petersburg 1783）， 2 （1849）

302-361; (c) Leonardi Euleri Opera Omnia, Serie 1, 7 (1923) 291-392.
[Fe1990] S. Felsner, A 3/2-approximation algorithm for the jump number of interval orders, Order 6 (1990) 325-334.
[Fi1945] D. J. Finney. Some orthogonal property of the 4×4 and 6×6 latin squares, Ann. Eugenics 12 (1945) 213-219.
[Fi1946a] D. J. Finney, Orthogonal partitions of the 5×5 latin squares, Ann. Eugenics 13 (1946) 1-3.
[Fi1946b] D. J. Finney, Orthogonal partitions of the 6×6 latin squares, Ann. Eugenics 13 (1946) 184-196.
[FlGoDu1995] P. Flajolet, X. Gourdon and P. Dumas, Mellin transform and asymptatics: Harmonic sums, Theoretical Computer Science 144 (1995) 3-58.
[FIPr1987] P. Flajolet and H. Prodinger, Level number sequences for trees, Discrete Mathematics 65 (1987) 149-156.
[Fr1966] G. H. Freeman, Some non-orthogon: partitions of $4 \times 4,5 \times 5$ and 6×6 latin squares, Amn. Math. Statist. 37 (1966) 666-681.
[Ga1957] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957) 1073-1082.
[HeRaSe1975] A. Hedayet, D. Raghavarao and E. Seiden, Further contributions to the theory of F-squares designs, Ann. Statist. 3 (1975) 712-716.
[HeSe1970] A. Hedayet and E. Seiden, F-square and orthogonal F-square designs: a generalization of latin square and orthogonal latin square designs, Ann. Math. Statist. 41 (1970) 2035-2044.
[HwYe1997] H. K. Hwang and Y. N. Yeh, Measures of distinctness for random partitions and compositions of an integer, Advances in Applied Mathematics 19 (1997) 378-414.
[KnMa] A. Knopfmacher and M. E. Mays, Compositions with m distinct parts, Ars Combinatoria, to appear.
[KnPr1998] A. Knopfmacher and H. Prodinger, On Carlitz compositions, European J. Combinatorics 19 (1998) 579-589.
[Kn1978] D. E. Knuth, The average time for carry propagation, Indagationes Mathematicæ 40 (1978) 238-242.
[LaMuWh1995] C. F. Laywine, G. L. Mullen and G. Whittle, D-dimensional hypercubes and the Euler and MacNeish conjectures, Mh. Math. 119 (1995) 223-238.
[LoPl1986] L. Lovasz and M. D. Plummer, Matching Theory, Ann. Discrete Math. 29, 1986.
[Ma1898] P. A. MacMahon, A new method in combinatory analysis, with application to latin squares and associated questions, Trans. Camb. Phil. Soc. 16 (1898) 262-290.
[Ma1922] H. F. MacNeish, Euler squares, Ann. Math. 23 (1922) 221227.
[MaFe1984] J. P. Mandeli and W. T. Federer, On the construction of orthogonal F-hyperrectangles, Utilitas Math. 25 (1984), 315-
. 324.
[MaLeFe1981] J. P. Mandeli, F. C. F. Lee and W. T. Federer, On the construction of mutually orthogonal F-squares of order n from an orthogonal array ($n, k, s, 2$) and an $O L(s, r)$ sct. . . Statist. Plann. Inference 5 (1981) 267-272.
[Mi1991] J. Mitas, Tackling the jump number of interval orders, Order 8 (1991) 115-132.
[Mu1988] G. L. Mullen, Polynomial representation of complete sets of mutually orthogonal frequency squares of prime power order, Discrete Mathomatics 69 (1988) 79-84.
[Ni1971] H. Niederreiter, Orthogonal systems of polynomials in finite fields, Proc. Amer. Math. Soc. 28(1971) 415-422.
[PeMa1986] C. Pellegrino and N.A. Malara, On the maximal number of mutually orthogonal F-squares, Ann. Discrete Math. 30 (1986) 335-338.
[OdRi1979] A. M. Odlyzko and L. B. Richmond, On the compositions of an integer, Lecture Notes in Mathematics 829 (1979) 199-209.
[Re1991] K. Reuter, The jump number and the lattice of maximal antichains, Discrete Math, 88 (1 Mi) 289-307.
[RiKn1995] L. B. Richmond and A. Knoptnacher, Compositions with distinct parts, Aequationes Math. 49 (1995) 86-97.
[Ry1957] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377.
[Sh1998] J. Shao, Optimal labellings of rooted directed trees, Advances in Applied Mathematics 21 (1998) 1-21.
[ShZa1992] A. Sharary and N. Zaguia, On a setup optimization problem for interval orders, Inform. Process. Lett. 44 (1992) 51-55.
[SIPl1995] N. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, San Diego, California, 1995.
[StSt1987] G. Steiner and L. Stewart, A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders, Order 3 (1987) 359-367.
[StrStr1987] A. P. Street and D. J. Street, Cembinatorics of Experimental Design, Clarendon Press, Oxford, 1987.
[Su1989] S. J. Suchower, On the maximai number of mutually orthogonal F-hyperrectangles, Utilitas Math. 36 (1989) 77-82.
[Su1993] S. J. Suchower, Polynomial representations of complete sets of frequency hyperrectangles with prime power dimensions, J. Combin. Theory, Ser. A, 62 (1993) 46-65.
[Sy1988] M. M. Syslo, An algorithm for solving the jump number problem, Discrete Math. 72 (1988) 337-346.
[Sz1930] E. Szpilrajn, Sur I'extension de I'ordre partiel, Fund. Math. 16 (1930) 386-389.
[Ta1991] G. Tarry, Le problème de 36 officeurs, Compte Rendu de l'Association Francaise pour l'Avancement de Science Natural, 1 (1900) 122-123, and 2 (1901) 170-203.
[Wi1994] H. S. Wilf, Generatingfunctionology (second edition), Academic Press, San Diego, California, 1994.

Author Cheng B

Name of thesis Jump Numbers, Hyperrectangles And Carlitz Compositions Cheng B 1998

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

