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Abstract

Our main focus in this research is to compute formulae for the generating function

of lattice paths. We will only concentrate on two types of lattice paths, Dyck

paths and Motzkin paths. We investigate different ways to enumerate these paths

according to various parameters. We start off by studying the relationship between

the Catalan numbers Cn, Fine numbers Fn and the Narayana numbers vn,k together

with their corresponding generating functions. It is here where we see how the the

Lagrange Inversion Formula is applied to complex generating functions to simplify

computations. We then study the enumeration of Dyck paths according to the

semilength and parameters such as, number of peaks, height of first peak, number

of return steps, e.t.c. We also show how some of these Dyck paths are related.

We then make use of Krattenhaler’s bijection between 123-avoiding permutations of

length n, denoted by Sn(123), and Dyck paths of semilength n. Using this bijective

relationship over Sn(123) with k descents and Dyck paths of semilength n with

sum of valleys and triple falls equal to k, we get recurrence relationships between

ordinary Dyck paths of semilength n and primitive Dyck paths of the same length.

From these relationships, we get the generating function for Dyck paths according

to semilength, number of valleys and number of triple falls. A plateau in a Motzkin

path is the occurrence of a sequence of an up step (1, 1) a horizontal step (1, 0) and

a down step (1,−1) in that order. We find different forms of the generating function

for Motzkin paths according to length and number of plateaus with one horizontal

step, then extend the discussion to the case where we have more than one horizontal

step. We also study Motzkin paths where the horizontal steps have different colours,

called the k-coloured Motzkin paths and then the k-coloured Motzkin paths which

don’t have any of their horizontal steps lying on the x-axis, called the k-coloured

c-Motzkin paths. We find that these two types of paths have a special relationship

which can be seen from their generating functions. We use this relationship to

simplify our enumeration problems.
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Chapter 1

INTRODUCTION

In our research, we try to understand different relationships between the Catalan

numbers, Fine numbers and Motzkin numbers. To do this, we rely heavily on gener-

ating functions and the different techniques used in the enumeration of lattice paths.

We will also make use of the Binomial Coefficients because they are easy to use and

have important applications.

Below is a list of some of the important binomial identities we will apply when

solving the enumeration problems. These expressions hold for n, k,m, r ∈ {0} ∪ N

nX
i=0

 
n

i

!
xn−iyi = (x+ y)n =

nX
i=0

 
n

i

!
xiyn−i, 

n

k

!
=

 
n

n− k

!
where n ≥ k, 

n

k

!
=

 
n− 1

k

!
+

 
n− 1

k − 1

!
where n ≥ k ≥ 1,

nX
i=0

 
k + i

k

!
=

 
n+ k + 1

n

!
,

nX
i=0

 
i

m

!
=

 
n+ 1

m+ 1

!
where n ≥ m, 

r

k

!
= (−1)k

 
k − r − 1

k

!
where r ≥ k with r ≥ 1,
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and lastly Vandermonde identity with its many variations, 
r

m

! 
m

k

!
=

 
r

k

! 
r − k
m− k

!
where r ≥ m ≥ k.

It should further be noted that
�
0
0

�
= 1 and

�
n
k

�
= 0 whenever n < k.

We will mainly focus on the papers [3], [7], [10] and [16]. We will start with the study

of the different relationships between generating functions for Catalan numbers, the

Narayana function and generating functions for Fine numbers. Then we will study

the different ways to enumerate Dyck paths according to various parameters. We

also investigate the bijective relationship between permutation of length n and Dyck

paths of semilength n.



Chapter 2

GENERATING FUNCTIONS

2.1 Introduction

Definition 1 A Dyck path is a lattice path in the first quadrant which begins at the

origin and has up steps, (1, 1) denoted by u, and down steps, (1,−1) denoted by d

and ends at the point (2n, 0). It never goes below the x−axis and n is the semilength

of the path (i.e the number of up steps).

e.g. The Dyck path below can be represented by uuduuuddddudud

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.

Definition 2 A generating function is a formal power series in one indeterminate

6
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whose coefficients encode information about a sequence of numbers (an).

Following the dictum by Herbert Wilf [18], ”A generating function is a clothesline

on which we hang up a sequence of numbers for display”. We will use sequences and

their generating functions interchangeably. For example, the generating function

for the sequence (1, 1, 1, · · · ) is A(x) = 1 + x+ x2 + x3 + · · · . Here we see that the

coefficient of xn, where n ≥ 0, represents a corresponding element in our sequence.

The multivariate generating functions of a sequence are the formal power series in

multiple variables. If A(z) is a generating function then we use [zn]A(z) to represent

the coefficient of zn in the power series expansion of A(z). From our generating

function above we get [xn]A(x) = 1.

We begin by reading E. Deutsch’s paper, Dyck path enumeration [7].

2.2 The Lagrange Inversion Formula

The Lagrange Inversion Formula (LIF) is a remarkable tool for solving functional

equations and can sometimes give explicit formulas. To apply LIF, our functional

equation must be of the form,

F = pΦ(F ).

Here Φ is a function of F and we are solving for F in terms of p.

Theorem 1 Let A(z) be a generating function satisfying the equation

A(z) = 1 + zH(A(z)) (2.2.1)

where H(λ) is a polynomial in λ, then (2.2.1) has a unique solution A(z). Further-

more, if G(λ) is a polynomial in λ, then

[zn]G(A(z)) =
1

n
[λn−1]G′(1 + λ)(H(1 + λ))n for n ≥ 1. (2.2.2)

As an example, consider the functional equation
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Ds(z) =
�
zeD(z)

�s
.

If we let A(z) = D(z), H(z) = ez and G(z) = zs, then applying the LIF to get the

coefficient of zn in Ds(z) gives,

[zn]Ds(z) =
1

n
[λn−1]sλs−1eλn

=
s

n
[λn−s]

�
1 + nλ+

(nλ)2

2!
+

(nλ)3

3!
+ · · ·

�
=
s

n

nn−s

(n− s)!
.

2.3 The Catalan Numbers

These numbers form a sequence of natural numbers that appear frequently in com-

binatorics. The first few Catalan numbers are 1, 1, 2, 5, 14, 42, · · · . We will often use

them in our study of lattice paths. The Catalan numbers have a functional equation

given by

zC2(z)− C(z) + 1 = 0, C(0) = 1. (2.3.1)

Making C(z) the subject of the formula we getX
n≥0

Cnz
n = 1 + z

X
n≥0

Cnz
n
X
n≥0

Cnz
n

= 1 + z
X
n≥0

nX
k=0

CkCn−kz
n.

Equating the coefficient of the equation above we get, C0 = 1,

Cn =
n−1X
k=0

CkCn−1−k

= C0Cn−1 + C1Cn−2 · · ·+ Cn−1C0

= Cn−1 + C1Cn−2 · · ·+ Cn−1, for n ≥ 1.
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Solving the quadratic equation (2.3.1), we get

C(z) =
1−
√

1− 4z

2z
. (2.3.2)

Now

[zn]C(z) = [zn]
1−
√

1− 4z

2z

= [zn+1]
1−
√

1− 4z

2

= [zn+1]
1−Pn≥0

� 1
2
n

�
(−4z)n

2

= [zn+1](−1)

P
n≥1

� 1
2
n

�
(−4z)n

2

= −1

2
[zn+1]

X
n≥1

(−1)n−1(2n− 2)!

22n−1n!(n− 1)!
(−4z)n

= −1

2
[zn+1]

X
n≥1

(−1)(2n− 2)!

22n−1n!(n− 1)!
4nzn

=
1

2

(2n)!

22n+1(n+ 1)!n!
4n+1

=
1

n+ 1

 
2n

n

!
. (2.3.3)

Thus,

Cn =
1

n+ 1

 
2n

n

!
. (2.3.4)

Making C(z) the subject of the formula in (2.3.1) and raising it to the exponent s

we get

Cs(z) =
�
1 + zC2(z)

�s
.

Applying the LIF to the equation above, with A(z) being C(z), H(A(z)) being

(C(z))2 and G(A(z)) being (C(z))s gives,

[zn]Cs(z) =
1

n
[λn−1]s(1 + λ)s−1((1 + λ)2)n
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=
1

n
[λn−1]s(1 + λ)2n+s−1

=
s

n
[λn−1]

2n+s−1X
k=0

 
2n+ s− 1

k

!
λk

=
s

n

 
2n+ s− 1

n− 1

!
=
s

n

(2n+ s− 1)!

(n− 1)!(n+ s)!

=
s

2n+ s

(2n+ s)!

n!(n+ s)!

=
s

2n+ s

 
2n+ s

n

!
, where n, s are not both equal to 0. (2.3.5)

If s = 1, we see that [zn]C(z) =
1

n+ 1

�
2n
n

�
as expected and if s = 2, [zn]C2(z) =

1
n+2

�
2(n+1)
n+1

�
which is equal to Cn+1.

2.4 The Fine Numbers

There are many combinatorial interpretations of these numbers. Some of them are:

i.) The number of Dyck paths where no u step starting at the x-axis is immediately

followed by a d step.

ii.) The number of Dyck paths where the first ud occurs such that the vertex be-

tween the two steps corresponds to a y coordinate that is even in the Cartesian plane.

The first few Fine numbers are 1, 0, 1, 2, 6, 18, 57, · · · . The Fine function is defined

by

F (z) =
1−
√

1− 4z

z(3−
√

1− 4z)
. (2.4.1)

From the equation above we get

F (z) =

1−
√

1− 4z

2z

z

 
1

z
+

1−
√

1− 4z

2z

!
=

C(z)

1 + zC(z)
(2.4.2)
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=
C(z)(1− zC(z))

(1 + zC(z))(1− zC(z))

=
C(z)− zC2(z)

1− z2C2(z)

=
1

1− z2C2(z)
, from (2.3.1). (2.4.3)

From (2.4.2) we get

F (z) = C(z)
P
s≥0(−1)szsCs(z) =

P
s≥0(−1)szsCs+1(z).

Applying (2.3.5) on Cs+1 in the equation above gives,

F (z) =
X
s≥0

(−1)szs
X
n≥0

s+ 1

2n+ s+ 1

 
2n+ s+ 1

n

!
zn

=
X
n≥0

X
s≥0

(−1)s
s+ 1

2n+ s+ 1

 
2n+ s+ 1

n

!
zn+s.

Extracting the coefficient of F (z) from the above equation we get,

[zn]F (z) = Fn =
X
s≥0

(−1)s
s+ 1

2(n− s) + s+ 1

 
2(n− s) + s+ 1

n− s

!
=
X
s≥0

(−1)s
s+ 1

2n− s+ 1

(2n− s+ 1)!

(n− s)!(n+ 1)!

=
1

n+ 1

X
s≥0

(−1)s(s+ 1)

 
2n− s
n

!
=

1

n+ 1

nX
s=0

(−1)s(s+ 1)

 
2n− s
n

!
.

The upper limit in the last step follows since
�
2n−s
n

�
= 0 for s ≥ n+ 1. From (2.4.3)

we have,

F (z) =
X
s≥0

z2sC2s(z)

=
X
s≥0

z2s
X
n≥0

2s

2n+ 2s

 
2n+ 2s

n

!
zn, using (2.3.5)
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=
X
n≥0

X
s≥0

s

n+ s

(2n+ 2s)!

n!(n+ 2s)!
zn+2s.

Thus,

Fn =
X
s≥0

�
s

(n− 2s) + s

��
(2(n− 2s) + 2s)!

(n− 2s)!((n− 2s) + 2s)!

�
=
X
s≥0

s

n− s

 
2n− 2s

n

!
, for n ≥ 2. (2.4.4)

2.5 The Narayana numbers

The generating functions associated with these numbers will be used extensively

in our enumeration problems. The bivariate generating function for the Narayana

numbers, ρ(t, z), has implicit formula

(1 + ρ)(1 + tρ)z = ρ, where ρ(t, 0) = 0. (2.5.1)

To get the explicit formula we multiply out the brackets to get,

ztρ2 + ρ(zt+ z − 1) + z = 0, where ρ = ρ(t, z).

Using the quadratic formula and then simplifying we get,

ρ(t, z) =
1− z − zt−

È
(zt+ z − 1)2 − 4z2t

2zt

=
1− z − tz −

√
1− 2z + z2 − 2tz − 2tz2 + t2z2

2tz
. (2.5.2)

We then extract the coefficients of tkzn in ρm, (1 + ρ)m, and (1 + tρ)m using LIF

and then simplify the expressions.

If m ≥ 1 and n ≥ 1, then

[tkzn]ρm = [tk]
1

n
[λn−1]mλm−1 ((1 + λ)(1 + tλ))n
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= [tk]
m

n
[λn−m]

nX
i=0

 
n

i

!
λi

nX
j=0

tj
 
n

j

!
λj

= [tk]
m

n
[λn−m]

nX
i=0

nX
j=0

 
n

i

! 
n

j

!
tjλi+j

= [tk]
m

n

nX
j=0

 
n

n−m− j

! 
n

j

!
tj

=
m

n

 
n

n−m− k

! 
n

k

!
=
m

n

 
n

m+ k

! 
n

k

!
. (2.5.3)

Thus,

[tkzn]ρm =

8>>><>>>:
m
n

�
n

m+k

��
n
k

�
if n ≥ 1 and m ≥ 1,

1 if n = m = k = 0,

0 otherwise.

If n ≥ 1, then

[tkzn](1 + ρ)m = [tkzn]
mX
s=0

 
m

s

!
ρs

= [tkzn]
mX
s=0

 
m

s

!X
i≥1

X
j≥0

s

i

 
i

s+ j

! 
i

j

!
tjzi using (2.5.3)

=
mX
s=0

 
m

s

!
s

n

 
n

s+ k

! 
n

k

!
=
m

n

 
n

k

!
mX
s=1

 
m− 1

m− s

! 
n

k + s

!
=
m

n

 
n

k

! 
m+ n− 1

m+ k

!
after using Vandermonde’s identity.

(2.5.4)

Thus,

[tkzn](1 + ρ)m =

8>>><>>>:
m
n

�
n

m+k

��
n+m−1
m+k

�
if n ≥ 1,

1 if n = k = 0,

0 otherwise.

If n ≥ 1, then
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[tkzn](1 + tρ)m = [tkzn]
mX
s=0

 
m

s

!
tsρs

= [tkzn]
mX
s=0

 
m

s

!X
i≥1

X
j≥0

s

i

 
i

s+ j

! 
i

j

!
tj+szi using (2.5.3)

=
mX
s=0

 
m

s

!
s

n

 
n

k

! 
n

k − s

!
=
m

n

 
n

k

!
mX
s=1

 
m− 1

m− s

! 
n

n− k + s

!
=
m

n

 
n

k

! 
n+m− 1

n+m− k

!
after using Vandermonde’s identity

=
m

n

 
n

k

! 
n+m− 1

k − 1

!
. (2.5.5)

Thus,

[tkzn](1 + tρ)m =

8>>><>>>:
m
n

�
n

m+k

��
n+m−1
m+k

�
if n ≥ 1,

1 if n = k = 0,

0 otherwise.

The Narayana numbers vn,k are defined by vn,k = [tkzn]ρ(t, z). If in (2.5.3) we let

m = 1 then we find that the Narayana numbers are given by

1

n

 
n

k + 1

! 
n

k

!
for n ≥ 1.

From (2.5.1) and (2.5.2) we then derive some relationships satisfied by the Narayana

function.

We have

ρ(
1

t
, tz) =

1− (tz)− (1
t
)(tz)−

È
1− 2(tz) + (tz)2 − 2(1

t
)(tz)− 2(1

t
)(tz)2 + (1

t
)2(tz)2

2(1
t
)(tz)

=
1− z − tz −

È
1− 2tz + (tz)2 − 2z − 2tz2 + z2

2z

= t

�
1− z − tz −

È
1− 2tz + (tz)2 − 2z − 2tz2 + z2

2tz

�
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= tρ(t, z). (2.5.6)

Also

1− z
z

ρ(t, z) =
1− z
z

�
1− z − tz −

È
1− 2tz + (tz)2 − 2z − 2tz2 + z2

2tz

�
=

(1− z)2 − tz + tz2 − (1− z)
È

1− 2tz + (tz)2 − 2z − 2tz2 + z2

2tz2

= 1 +
1

2tz2
�
(1− z)2 − tz − tz2

−(1− z)
È

1− 2tz + (tz)2 − 2z − 2tz2 + z2
�

= 1 +
(1− z)2

2tz2

�
1− tz

(1− z)2
− ztz

(1− z)2

−

Ì
1− 2tz

(1− z)2
− 2ztz

(1− z)2
+

(tz)2(1− z)2

(1− z)4

�
= 1 +

1

2z tz
(1−z)2

�
1− tz

(1− z)2
− z tz

(1− z)2

�
−

É
1− 2 tz

(1−z)2 − 2z tz
(1−z)2 + ( tz

(1−z)2 )2 − 2z
�

tz
(1−z)2

�2
+ z2

�
tz

(1−z)2
�2

2z tz
(1−z)2

= 1 + ρ

�
z,

tz

(1− z)2

�
.

Thus,

ρ(t, z) =
z

1− z

�
1 + ρ(z,

tz

(1− z)2
)

�
. (2.5.7)

Now

1 + ρ

�
1

z
,

tz2

(1− z)2

�
= 1 + zρ

�
z,

tz

(1− z)2

�
by (2.5.6)

= 1 + z
�
ρ(t, z)

1− z
z
− 1

�
by (2.5.7)

= 1− z + zρ(t, z)(1− z)

= (1− z)(ρ(t, z) + 1). (2.5.8)
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2.6 Terminology and notations

A peak, valley and doublerise in a Dyck path is the occurrence of ud, du and uu

respectively. A triple fall is the occurrence of three consecutive down steps ddd.

The level of a vertex in a Dyck path is the y coordinate corresponding to that vertex.

Thus, if a vertex of a Dyck path has coordinates (n, k) then, we say it is at level k.

A step of a Dyck path having extremeties of co-ordinates (n, k−1) and (s, k), where

n, s are natural numbers and |n − s| = 1 with k ≥ 1, is said to be at level k. The

level of a peak, valley or doublerise is the level of the vertex between its two steps.

A low peak is a peak at level 1 and a high peak is a peak at a level greater than 1.

A low valley is a valley at level 0 and a high valley is one at level 1 or greater.

A return step is a d step that touches the x-axis. If a Dyck path only has one return

step, we say the Dyck path is primitive. In a Dyck path, we call a maximal string of

u’s an ascent and a maximal string of d’s a descent. If a descent ends on the x-axis,

it is called a return descent.

Examples: We consider the diagram below to explain some of the definitions above.

1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 2.

In this diagram, the vertices (4, 4), (10, 2), (13, 3) and (21, 5) are the peaks and the

vertices (8, 0), (11, 1) and (16, 0) are the valleys of the path. The doublerises in this

diagram are the subpaths that are formed by any combination of two consecutive u

steps in (0, 0)− (4, 4), (8, 0)− (10, 2), (11, 1)− (13, 3) and (16, 0)− (21, 5). Likewise,

the triple falls are any three consecutive d steps in (4, 4) − (8, 0), (13, 3) − (16, 0)

and (21, 5)− (26, 0). This Dyck path has return steps at (8, 0), (16, 0) and (26, 0). If

we cut off our path at the point (8, 0), then the left part becomes a primitive Dyck

path. The ascents of this path are (0, 0)− (4, 4), (8, 0)− (10, 2), (11, 1)− (13, 3) and
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(16, 0)− (21, 5). Similarly, the descents are (4, 4)− (8, 0), (10, 2)− (11, 1), (13, 3)−
(16, 0) and (21, 5)− (26, 0).

We define αβ to be the concatenation of two Dyck paths α and β and α̂ = uαd to be

the elevation of the Dyck path α. From these definitions, it is clear that all elevated

paths are primitive and non-empty since they always start with an u step and end

with a d step. We also note that the concatenation of two non-empty paths cannot

give a primitive path since the two paths will be joined on the x-axis which means

the path will have more than one return step. The empty path is denoted by ε.

Let’s consider the two diagrams below.

1
2
3
4

1
2
3
4

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3(a). Figure 3(b).

1
2
3
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3(c).

To elevate the Dyck path in figure 3(b), we prepend a u step and append a d step.

This leads to the primitive Dyck path in figure 3(c) with the semilength increased

by one.

For concatenation, we must first relax the condition that all Dyck paths must start

at the origin and end at the vertex (2n, 0). Essentially, we shift the Dyck path which

will appear on the right of the concatenation to the right by the number of steps in

the Dyck path on the left of the concatenation. After this shift, we insert the left

Dyck path on the left of the shifted Dyck path such that the terminal vertex of the
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left path joins the initial vertex of the shifted path. The concatenation of path 3(a)

and 3(b) gives either one of the paths below, depending on which of the two was

shifted,

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4(a).

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4(b).

If A and B are finite sets of Dyck paths, then we define the concatenation of A and

B by

AB := {αβ : α ∈ A, β ∈ B}

and the elevation of A by

Â := {α̂, α ∈ A}.

We will denote the set of all Dyck paths of semilength n by Dn. The set containing

the empty path is D0 = {ε}. The set of elevated Dyck paths of semilength n will be

represented by D̂n.

Every nonempty Dyck path α can be uniquely decomposed into the form

α = uβ1dγ1 i.e. α = β̂1γ1, (2.6.1)
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where β1 and γ1 are Dyck paths that can be empty. This is called the first return

decomposition, since the d step in uβ1d is the first return step of α. We also note that

both β̂1 and γ1 must be shorter that α. Alternatively, we can uniquely decompose

α into

α = β2uγ2d i.e. α = β2γ̂2 (2.6.2)

where β2 and γ2 are Dyck paths that can be empty.

From (2.6.1) we get

Dn = D̂0Dn−1 ∪ D̂1Dn−2 ∪ · · · ∪ D̂n−1D0, n ≥ 1. (2.6.3)

This is because the concatenation of D̂aDn−1−a, where n− 1 > a > 0, gives a Dyck

path with semilength equal to a + 1 (due to elevation) before the first return and

n− 1− a after the first return which makes the total semilength of the path equal

to n . If we take the union of all such sets we get all the paths in Dn except for

the empty path when n = 0. From (2.6.2) and using a similar argument to the one

above we get

Dn = D0D̂n−1 ∪D1D̂n−2 ∪ · · ·Dn−1 ∪ D̂0, n ≥ 1. (2.6.4)

These are both unions of disjoint sets because if we consider the paths in D̂aDn−1−a

and D̂1+aDn−2−a, where n− 1 ≥ a ≥ 0, we have:

α ∈ D̂aDn−1−a ⇒ α = uα1dα2 where α1 ∈ Da−1 (for the case when a = 0, α1 is

the empty path ) with α2 ∈ Dn−1−a and β ∈ D̂a+1Dn−2−a ⇒ β = uβ1dβ2 where

β1 ∈ Da with β2 ∈ Dn−2−a.

This shows that α 6= β because α1 6= β1 since they have unequal semilengths and

hence α is not an element of D̂1+aDn−2−a which means D̂aDn−1−a 6= D̂1+aDn−2−a,

so the unions must be disjoint which makes the sets in (2.6.3) and (2.6.4) mutually

exclusive.
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Example: Let’s consider the paths in D3, these are,

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Figure 5(a) Figure 5(b) Figure 5(c)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Figure 5(d) Figure 5(e)

From (2.6.3), we have

D3 = D̂0D2 ∪ D̂1D1 ∪ D̂2D0.

We then look at the Dyck paths that are in each of the sets in the union. The

elements of D̂0D2 are Figure 5(a) and Figure 5(d), those for D̂2D0 are Figure 5(c)

and Figure 5(e), and finally, the element of D̂1D1 is Figure 5(b). From this, we see

that the sets D̂0D2, D̂1D1 and D̂2D0 are mutually exclusive and if we take the union

of these sets we get exactly the elements in D3.

We have that |D̂n| = |Dn| since D̂n is the set of the Dyck paths in Dn raised by one

level.

Now

|Dn| = |D̂0Dn−1 ∪ D̂1Dn−2 ∪ · · · ∪ D̂n−1D0|, n ≥ 1

= |D̂0Dn−1|+ |D̂1Dn−2|+ · · ·+ |D̂n−1D0|, n ≥ 1 by mutual exclusivity

= |D0||Dn−1|+ |D1||Dn−2|+ · · ·+ |Dn−1||D0|.

Since |D0| = 1, it follows that |Dn| satisfies the same recurrence and initial condition

as the Catalan numbers. This shows that |Dn| = Cn for n ≥ 0.
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2.7 Enumeration and special types of parameters

Let p be a fixed non-negative integer-valued parameter of Dyck paths , i.e. a mapping

from ∪n≥0Dn into {0, 1, 2, · · · }. We can use p to represent the number of peaks,

valleys, doublerises etc.

If A is a finite set of Dyck paths, then PA(t) denotes the enumerating polynomial of

A relative to parameter p and

PA(t) :=
X
x∈A

tp(x).

If A and B are disjoint finite sets of Dyck paths, then

PA∪B(t) =
X

x∈A∪B
tp(x)

=
X
x∈A

tp(x) +
X
x∈B

tp(x)

= PA(t) + PB(t). (2.7.1)

We denote PDn(t) as Pn(t) and PD̂n
(t) as P̂n(t) for simplicity. The generating func-

tion for the enumeration of Dyck paths according to semilength (coded by z) and

the parameter p (coded by t) is

D(t, z) :=
X
n≥0

Pnz
n (2.7.2)

and the generating function for the enumeration of elevated Dyck paths according

to semilength (coded by z) and the parameter p (coded by t) is

D̂(t, z) :=
X
n≥0

P̂nz
n. (2.7.3)

For any given parameter p, we will denote the sum of all the values of the parameter

p on all the Dyck paths of semilength n by σn.

Now we have, Pn(t) =
P
x∈Dn

tp(x), so P ′n(t) =
P
x∈Dn

p(x)tp(x)−1 hence

P ′n(t)|t=1 =
X
x∈Dn

p(x)(1)p(x)−1

=
X
x∈Dn

p(x)
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= σn.

We also have

∂

∂t
D(t, z)|t=1 =

X
n≥0

∂

∂t
Pn(t)|t=1z

n

=
X
n≥0

σnz
n.

The above implies that
∂

∂t
D(t, z)|t=1 is the generating function of the sequence (σn)

for n ≥ 0. If we assume that the Dyck paths are equally likely to occur then the

expected value of the parameter p is

σn
|Dn|

=
σn
Cn
.

A parameter p is said to be additive if p(αβ) = p(α) + p(β) for all Dyck paths

α and β. The number of peaks, number of doublerises are examples of additive

parameters since the concatenation of two Dyck paths does not add or remove a

peak or doublerise in the new path. The parameter number of valleys (du) is not

additive because the concatenation of two non-empty Dyck paths will give one more

du.

If the parameter p is additive, then

PAB(t) =
X

αβ∈AB
tp(αβ)

=
X

α∈A∪β∈B
tp(α)+p(β)

= PA(t)PB(t).

Using this result and (2.6.3) with an additive parameter p we get

Pn(t) =
X
x∈Dn

tp(x)

=
X

x∈D̂0Dn−1∪D̂1Dn−2∪···∪D̂n−1D0

tp(x)
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=
X

α∈D̂0Dn−1

tp(α) +
X

β∈D̂1Dn−2

tp(β) + · · ·+
X

γ∈D̂n−1D0

tp(γ) where x = αβ · · · γ

= PD̂0Dn−1
(t) + PD̂1Dn−2

(t) + · · ·+ PD̂n−1D0
(t)

= PD̂0
(t)PDn−1(t) + PD̂1

(t)PDn−2(t) + · · ·+ PD̂n−1
(t)PD0(t)

= P̂0(t)Pn−1(t) + P̂1(t)Pn−2(t) + · · ·+ P̂n−1(t)P0(t). (2.7.4)

Multiplying the above expression by zn and summing over n where n ≥ 1 we get

X
n≥1

Pn(t)zn =
X
n≥1

[P̂0(t)Pn−1(t) + P̂1(t)Pn−2(t) + · · ·+ P̂n−1(t)P0(t)]z
n

=
X
n≥1

n−1X
k=0

P̂kPn−1−kz
n

= z
X
k≥o

X
n≥1+k

P̂kz
kPn−1−kz

n−1−k

= z
X
k≥o

P̂kz
k
X
r≥0

Prz
r, by making the substitution r = n− 1− k

= zD̂(t, z)D(t, z).

Now X
n≥1

Pn(t)zn =
X
n≥0

Pn(t)zn − P0z
0

=
X
n≥0

Pn(t)zn − 1

= D(t, z)− 1.

Combining the two we get

D(t, z)− 1 = zD̂(t, z)D(t, z). (2.7.5)

We say a parameter p is quasiadditive when for any two Dyck paths α and β, α

contributes p(α) and β contributes p(β) to p(αβ) and due to concatenation, for

some α and β we get p(αβ) > p(α) + p(β). The number of valleys and the number

of duu’s are examples of quasiadditive parameters. A parameter p is said to be a

left parameter if for any two Dyck paths α and β we have
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p(αβ) =

8<:p(α), if α 6= ε

p(β), if α = ε.

The number of peaks before the first return and the height of the first valley are

examples of such parameters. In the case of a left parameter for two finite sets A

and B of Dyck paths such that ε is not in A, we have

PAB(t) =
X

αβ∈AB
tp(αβ)

=
X

αβ∈AB
tp(α)

= |B|
X
α∈A

tp(α)

= |B|PA(t). (2.7.6)

From (2.6.3) and considering a left parameter p we get

X
α∈Dn

tp(α) =
X

α∈D̂0Dn−1∪D̂1Dn−2∪···∪D̂n−1D0

tp(α).

Now, we have that the elevated sets do not contain the empty path and the unions

are disjoint so the equation above becomes

Pn(t) =
X

α1β1∈D̂0Dn−1

tp(α1β1) +
X

α2β2∈D̂1Dn−2

tp(α2β2) + · · ·+
X

αnβn∈D̂n−1D0

tp(αnβn)

= |Dn−1|
X

α1∈D̂0

tp(α1) + |Dn−2|
X

α2∈D̂1

tp(α2) + · · ·+ |D0|
X

αn∈D̂n−1

tp(αn)

= Cn−1P̂0(t) + Cn−2P̂2(t) + · · ·+ C0P̂n−1(t), n ≥ 1,

multiplying this by zn and summing over n for n ≥ 1 we getX
n≥1

Pn(t)zn =
X
n≥1

[Cn−1P̂0(t) + Cn−2P̂2(t) + · · ·+ C0P̂n−1(t)]z
n

= z
X
n≥1

n−1X
k=0

Ckz
kP̂n−1−kz

n−1−k
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= z
X
k≥0

X
n≥k+1

Ckz
kP̂n−1−kz

n−1−k

= z
X
k≥0

X
r≥0

Ckz
kP̂rz

r by making the substitution r = n− 1− k

= z
X
k≥0

Ckz
k
X
r≥0

P̂rz
r

= zC(z)D̂(t, z). (2.7.7)



Chapter 3

ENUMERATION OF DYCK

PATHS ACCORDING TO

DIFFERENT PARAMETERS

In this chapter, we continue with E. Deutsch’s paper were we will derive generating

functions for Dyck paths according to semilength and various other parameters.

We will then extract the coefficient of these generating functions to get the total

number of ways to enumerate the associated Dyck paths according to the relevant

parameters.

3.1 Enumeration of Dyck paths according to semilength

and number of peaks

The parameter number of peaks is additive, since the concatenation of two Dyck

paths does not affect the total number of peaks.

If we elevate an empty Dyck path, this contributes one peak to the elevated path

and if we elevate a nonempty path we see that the number of peaks remains the

same. Thus, if we let p(x) be the number of peaks in a Dyck path x with length n

and p1(x) be the number of peaks in the same path after elevation, we get

P̂0(t) =
X
x∈D̂0

tp1(x) =
X
x∈D̂0

t = t,

26
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and

P̂n(t) =
X
x∈D̂n

tp1(x) =
X
x∈D̂n

tp(x) = Pn(t), n ≥ 1.

Multiplying the P̂n by zn and summing over n ≥ 0 we getX
n≥0

P̂n(t)zn = t+
X
n≥1

Pn(t)zn,

which becomes

D̂(t, z) = t+D(t, z)− 1. (3.1.1)

By dividing both sides of (2.7.5) by zD(t, z) and substituting what we get into

(3.1.1) we find that
D(t, z)− 1

zD(t, z)
= D(t, z) + (t− 1),

which simplifies to

zD2(t, z)− (1− tz + z)D(t, z) + 1 = 0.

Using the quadratic formula to solve for D(t, z) gives

D(t, z) =
1− tz + z ±

È
(1− tz + z)2 − 4z

2z

=
1− tz + z ±

√
1− 2z + z2 − 2tz − 2tz2 + t2z2

2z
,

we know D(0, 0) = 1, so from the expression above we only consider the negative

sign since it gives an indeterminate form D(0, 0) = 0
0
. Thus,

D(t, z) =
1− tz + z −

√
1− 2z + z2 − 2tz − 2tz2 + t2z2

2z

=
2tz

2tz
+ t

1− tz − z −
√

1− 2z + z2 − 2tz − 2tz2 + t2z2

2tz

= 1 + tρ(t, z) from (2.5.2). (3.1.2)
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We then extract the coefficient of D(t, z) by making use of (2.5.5) with m = 1 to

get the number of Dyck paths with k peaks and semilength n.

[tkzn]D(t, z) = [tkzn](1 + tρ(t, z))

=
1

n

 
n

k

! 
n

k − 1

!
.

We know that Pn(t) is the generating function for the number of Dyck paths ac-

cording to peaks which have fixed semilength n and D(t, z) =
P
n≥0 Pn(t)zn. If we

let D(t, z) =
P
k≥0Gk(z)tk, then we see Gk(z) is the generating function for Dyck

paths according to semilength, which have a fixed number of peaks equal to k. Now,

we also know that the empty path is the only Dyck path that has number of peaks

equal to 0, so G0(z) = 1. We see that

D(t, z) = 1 + tρ(t, z) from (3.1.2)

= 1 + t

�
z

1− z

�
1 + ρ

�
z,

tz

(1− z)2

���
from (2.5.7)

= 1 +
tz

1− z

�
1 +

D

�
z,

tz

(1− z)2

�
− 1

z

�
from (3.1.2)

= 1− t+

tD

�
z,

tz

(1− z)2

�
1− z

= 1− t+
t

1− z
X
n≥0

Pn(z)
(tz)n

(1− z)2n
from (2.7.2).

Thus, X
k≥0

Gk(z)tk = 1− t+
X
n≥0

Pn(z)zntn+1

(1− z)2n+1
.

When k = 0, the right hand side of this equation is 1 and when k = 1 it is
z

1− z
.

For k ≥ 2, the summands have the same coefficient of t. So we can write this as,
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Gk(z) =

8>>>><>>>>:
1 if k = 0
z

1− z
if k = 1

Pk−1(z)zk−1

(1− z)2k−1
if k ≥ 2.

If we look at a Dyck path we notice that each u step is followed by either another

u step or a d step. This tells us that for each u step, we either have a double rise

or a peak. Since a Dyck path with semilength n has n number of u steps, it follows

that the sum of peaks and double rises in a Dyck path should equal the semilength

of the path. We also have that in a Dyck path every peak is followed by a descent

and every descent leads to either a valley or ends with a return step that is not

followed by a u step i.e, the last step of the path. Thus, every peak except the last

one produces a valley. This implies that the number of valleys is one less than the

number of peaks.

3.2 Enumeration of Dyck paths according to num-

ber of low peaks and number of high peaks

Both these parameters are additive. Let’s consider the Dyck path below,

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.
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We see that in Figure 6, our path has two low peaks (1, 1) and (3, 1) and three high

peaks (7, 3) , (10, 2) and (12, 2). If we prepend a u step and then append a d step,

we get the Dyck path below,

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.

the low peaks will be raised to level two, thus, all the peaks become high peaks.

More generally, if we elevate a nonempty Dyck path we get a primitive Dyck path

with no low peaks.

Let s be the variable coding the parameter number of low peaks and t be the variable

coding the parameter number of high peaks. If we elevate an empty path we get

a primitive path with one low peak and if we elevate a nonempty path we get

a primitive Dyck path with no low peaks because all the low peaks become high

peaks, i.e.,

P̂n(s, t) =

8<:s if n = 0

Pn(t, t) if n ≥ 1.

Multiplying P̂n by zn and summing over n ≥ 0 we getX
n≥0

P̂n(s, t)zn = s+
X
n≥1

Pn(t, t)zn

which becomes

D̂(s, t, z) = s− 1 +D(t, t, z) = s− 1 +D(t, z). (3.2.1)

Substituting this into (2.7.5), we obtain
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D(s, t, z)− 1 = zD(s, t, z)(s− 1 +D(t, z)),

solving for D(s, t, z), we get

D(s, t, z) =
1

1− z(s− 1 +D(t, z))

=
1

1− z(s+ tρ(t, z))
from (3.1.2)

=
X
a≥0

(z(s+ tρ(t, z)))a

=
X
a≥0

aX
i=0

 
a

i

!
tiρi(t, z)sa−iza

=
X
a≥0

aX
i=0

 
a

i

!
ti
X
m≥0

X
u≥0

i

m

 
m

i+ u

! 
m

u

!
tuza+msa−iza from (2.5.6)

=
X
i≥0

X
a−i≥0

X
m≥0

X
u≥0

 
a

i

!
i

m

 
m

i+ u

! 
m

u

!
tu+isa−iza+m.

To get the number of Dyck paths of length n with j low peaks and k high peaks,

we extract the coefficient of sjtkzn in D(s, t, z) above. Thus, by making the sub-

stitutions u + i = k, a − i = j and a + m = n in the coefficient of sa−itu+iza+m

gives

[tksjzn]D(s, t, z) =
X
i≥1

i

n− (i+ j)

 
i+ j

j

! 
n− (i+ j)

k

! 
n− (i+ j)

k − i

!
=

X
h≥j+1

h− j
n− h

 
h

j

! 
n− h
k

! 
n− h

j + k − h

!
where i+ j = h,

with n− h ≥ k ⇒ n− k ≥ h and j + k ≥ h. It must be the case that in the above

equality, n > h and n− k ≥ h implies that k > 0 and n ≥ h+ k = i+ j+ k > j+ k.

When j = n or k = 0, we either have an empty path or the trivial path which only

has low peaks, so [tksjzn]D(s, t, z) = 1.
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3.3 Enumeration of Dyck paths according to semilength

and number of high peaks

From above we know that the parameter number of high peaks is additive and that

the generating function for Dyck paths according to semilength, number of low peaks

and number of high peaks is

D(t, s, z) =
1

1− z(s+ tρ(t, z))
.

Since we just want the generating function for Dyck paths according to semilength

and number of high peaks, we let s = 1 in the equation above. This gives

D(t, z) =
1

1− z(1 + tρ(t, z))

=
1

1− z(
ρ(t, z)

zρ(t, z)
)

from (2.5.1)

= 1 + ρ(t, z).

To get the number of Dyck paths with semilength n and k high peaks, we make use

of (2.5.4) with m = 1 to get

[tkzn]D(t, z) =

8>>><>>>:
1
n

�
n
k

��
n
k+1

�
if n ≥ 1

1 if n = k = 0

0 otherwise.

3.4 Enumeration of Dyck paths according to semilength

and number of low peaks

This case is similar to the one in section 3.3 above, however, instead of letting s = 1

we let t = 1 in our generating function. Thus,

D(s, z) =
1

1− z(s− 1 +D(z))
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=
1

1− z(s+ C(z)− 1)

=
X
i≥0

zi(s+ C(z)− 1)i

=
X
i≥0

zi
iX

r=0

 
i

r

!
zrC2r(z)si−r

=
X
r≥0

X
i≥r

 
i

r

!
zr+iC2r(z)si−r

=
X
r≥0

X
i≥r

X
j≥0

 
i

r

!
2r

2j + 2r

 
2j + 2r

j

!
zr+i+jsi−r.

To get the number of Dyck paths with semilength n and k low peaks, we extract

the coefficient of D(s, z) to get

[skzn]D(s, z) =
X
r≥0

r

n− r − k

 
r + k

r

! 
2(n− r − k)

n− 2r − k

!
,

with 2(n− r − k) ≥ n− k, that is, n−k
2
≥ r. So for n > k

[skzn]D(s, z) =

bn−k
2
cX

r=0

r

n− r − k

 
r + k

r

! 
2(n− r − k)

n− k

!
.

If we let k = 0 in our expression above, we see that it is the same as that of the Fine

numbers (2.4.4). This shows that the number of Dyck paths with no low peaks has

the same distribution as the Fine numbers.

3.5 Enumeration of Dyck paths according to semilength

and height of first peak

The parameter height of first peak is a left parameter. Let t be the variable coding

the number of peaks and s be the variable coding the height of the first peak.

If we elevate an empty path, this contributes a peak and the height of the first peak

will be one. If we elevate a nonempty path, we will have the same number of peaks

but the height of the first peak increases by one.

Thus, if we let q(x) (p(x)) be the height of the first peak (number of peaks) in a
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Dyck path x with semilength n, then

P̂0(t, s) =
X
x∈D0

tp(uxd)sq(uxd) =
X
x∈D0

ts = ts,

and for n ≥ 1

P̂n(t, s) =
X
x∈Dn

tp(uxd)sq(uxd) =
X
x∈Dn

tp(x)sq(x)+1 = sPn(t, s).

Multiplying P̂n(t, s) by zn and summing over n ≥ 0 gives

D̂(t, s, z) = ts− s+ sD(t, s, z). (3.5.1)

Since we have an additive parameter and a left parameter, we combine (2.7.5) and

(2.7.7). Let p be an additive parameter and q a left parameter then

Pn(t, s) =
X
x∈Dn

tp(x)sq(x)

=
X

x∈D̂0Dn−1∪D̂1Dn−2∪···∪D̂n−1D0

tp(x)sq(x)

=
X

α1β1∈D̂0Dn−1

tp(α1β1)sq(α1β1) + · · ·+
X

αnβn∈D̂n−1D0

tp(αnβn)sq(αnβn)

=
X

α1∈D̂0

X
β1∈Dn−1

tp(α1)tp(β1)sq(α1) + · · ·+
X

αn∈D̂n−1

X
βn∈D0

tp(αn)tp(βn)sq(αn)

= P̂0(t, s)Pn−1(t) + · · ·+ P̂n−1(t, s)P0(t).

Multiplying by zn and summing over n for n ≥ 1 gives

D(t, s, z) = 1 +
X
n≥1

n−1X
k=0

P̂k(t, s)Pn−1−k(t)z
n

= 1 + z
X
k≥0

P̂k(t, s)z
k
X

n≥1+k
Pn−1−k(t)z

n−1−k

= 1 + zD̂(t, s, z)D(t, z).
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Substituting (3.5.1) into the equation above gives

D(t, s, z) = 1 + szD(t, z)(t− 1 +D(t, s, z))

=
1 + szD(t, s)t− szD(t, s)

1− szD(t, z)

=
1 + tsz(1 + tρ(t, z))− sz(1 + tρ(t, z))

1− sz(1 + tρ(t, z))
from (3.1.2)

=

1 +
tsρ(t, z)

1 + ρ(t, z)
− sρ(t, z)

1 + ρ(t, z)

1− sρ(t, z)

1 + ρ(t, z)

= 1 +
tsρ(t, z)

1 + (1− s)ρ(t, z)

= 1 + tsρ(t, z)
X
i≥0

(1− s)i(−ρ(t, z))i

= 1 + tsρ(t, z)
X
i≥0

iX
r=0

 
i

r

!
(−s)r(−ρ(t, z))i

= 1 + tsρ(t, z)
X
r≥0

srρr(t, z)
X
i≥r

 
i

i− r

!
(−ρ(t, z))i−r

= 1 +
X
r≥0

tsr+1ρr+1(t, z)
X
a≥0

 
a+ r

a

!
(−ρ(t, z))a

= 1 +
X
r≥0

ρr+1(t, z)
1

(1 + ρ(t, z))r+1
tsr+1

= 1 +
X
r≥0

zr+1(1 + tρ(t, z))r+1tsr+1 from (2.5.1).

To get the number of Dyck paths of semilength n with i peaks and height of first

peak k, we must extract the coefficient of D(t, s, z) above. For i, j, n not all equal

to zero, this gives

[tiskzn]D(t, s, z) = [ti−1zn−k](1 + tρ(t, z))k

=
k

n− k

 
n− k
i− 1

! 
n− 1

i− 2

!
,

with n− 1 ≥ i− 2 and n− k > 0, and thus, 0 < i < n and 0 < k < n. We note that

[tiskzn]D(t, s, z) = 1 if j = k = n since this implies that we either have an empty
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path or the trivial path with heights of all peaks equal to one. Now, if we let t = 1

in our trivariate generating function above, we get

D(s, z) = 1 + szD(z)D(t, s, z)

=
1

1− szC(z)

=
X
r≥0

X
i≥0

r

2i+ r

 
2i+ r

i

!
srzr+i from (2.3.5).

Thus, to get the number of Dyck paths with semilength n and height of first peak

k, we extract the coefficient of skzn to get

k

2n− k

 
2n− k
n− k

!
.

3.6 Enumeration of Dyck paths according to semilength

and number of return steps

The parameters number of peaks and number of return steps are additive. Let t be

the variable coding the number of peaks and s be the variable coding the number

of return steps. If we elevate an empty path, this contributes one peak and one

return step to the elevated path and if we elevate a nonempty Dyck path, we get

a primitive Dyck path with the same number of peaks and one return step. Thus,

if we let p(x) (q(x)) be the number of peaks (return steps) in Dyck path x, with

semilength n, then

P̂0(t, s) =
X
x∈D0

tp(uxd)sq(uxd) =
X
x∈D0

ts = ts,

and for n ≥ 1

P̂n(t, s) =
X
x∈Dn

tp(uxd)sq(uxd) =
X
x∈Dn

tp(x)s = sPn(t).

Multiplying P̂n(t, s) by zn and summing over n ≥ 0 givesX
n≥0

P̂n(t, s)zn = ts+
X
n≥1

sPn(t)zn
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= ts− s+ sD(t, z).

Substituting this into (2.7.5) gives

D(t, s, z) = 1 + szD(t, s, z)(t− 1 +D(t, z))

= 1 + tszD(t, s, z)(1 + ρ(t, z)) from (3.1.2)

=
1

1− tsz(1 + ρ(t, z))

=
X
i≥0

(tsz)i(1 + ρ(t, z))i

=
X
i≥0

X
l≥0

X
a≥0

i

l

 
l

a

! 
l + i− 1

a+ i

!
siti+azi+l.

To get the number of Dyck paths with semilength n, j peaks and k returns, we

extract the coefficient of D(t, s, z) to get

[tjskzn]D(t, s, z) =
k

n− k

 
n− k
j − k

! 
n− 1

j

!
=
k

j

 
n− k − 1

j − k

! 
n− 1

n− j

!
,

with j > 0 and n > k. We note that [tjskzn]D(t, s, z) = 1 if j = k = n since this

implies that we either have an empty path or the trivial path with heights of all

peaks equal to one. Now, if we let t = 1 in our trivariate generating function above,

we get

D(s, z) =
1

1− sz(1 + ρ(z))
=

1

1− szC(z)
from (3.1.2).

This shows that the number of Dyck paths with semilength n and height of first

peak k has the same distribution as the number of Dyck paths of the same length

with k return steps.



Chapter 4

A BIJECTIVE MAPPING FROM

PERMUTATIONS TO DYCK

PATHS

We now look at a paper by M. Barnabei, F. Bonetti and M Silimbani, The descent

statistic over (123)-avoiding permutations [3], on the relationship between (123)-

avoiding permutations and Dyck paths.

4.1 Introduction

We say a permutation σ ∈ Sn avoids a pattern τ ∈ Sk if it does not contain

a subsequence that is order-isomorphic to τ . For example, a permutation σ =

u1u2 · · ·un avoids a pattern (123) if there does not exist a subsequence in σ such

that ui < uj < uk and i < j < k. From here onwards, a set of all permutations with

n elements avoiding a pattern τ will be denoted by Sn(τ).

As an example, consider the permutation

σ = 7 10 5 9 8 3 6 4 2 1. (4.1.1)

This permutation is in S10(123) since you cannot find a subsequence of three or more

strictly increasing numbers. The only increasing subsequences in this permutation

are, 7 8, 7 10, 7 9, 5 9, 5 8, 5 6, 3 4 and 3 6.

A reverse permutation is one where the last term becomes the first, the second last

38
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term becomes the second and continuing the process until we get to the first term.

For example, the reverse of the permutation 1234 is 4321 and we denote it by rev.

To get the complement of a permutation with length n, we add 1 to its length and

then from n + 1 we subtract each element in the permutation. This operation is

denoted by c. For example, from the permutation 4213, we see that it has length 4,

adding 1 to 4 and subtracting each element of 4213 from 5 gives 1342.

We say a permutation σ = σ(1)σ(2) · · ·σ(n) has a descent at i if σ(i) > σ(i + 1).

We know that S3 has six elements and their relationships are as follows:

• 123 = 321rev

• 132 = (213rev)c

• 132 = 231rev

• 132 = 312c

where rev and c respectively denote the reverse and complement operations. This

shows that in order to determine the distribution of the descent statistic over Sn(τ)

for every τ ∈ S3, it is sufficient to look at the distribution of descents over the sets

Sn(132) and Sn(123). We will investigate the case τ = 123.

4.2 Relationship between Dyck paths and permu-

tations

The generating function for Dyck paths according to semilength, number of valleys

v(D) and triple falls tf(D) is

D(x, y, z) =
X
n≥0

X
D∈Dn

xnyv(D)ztf(D)

=
X

n,v,t≥0
dn,v,tx

nyvzt

where dn,v,t represents the number of Dyck paths with semilength n, v valleys and

t triple falls.
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Let σ = σ(1)σ(2) · · ·σ(n) be a (123)-avoiding permutation. A left-to-right minimum

of σ is an element σ(i) which is smaller than σ(j), with i > j. It is further assumed

that the first element in a permutation is a left-to-right minimum. In the permu-

tation σ = 7 10 5 9 8 3 6 4 2 1, we find that 7, 5, 3, 2, and 1 are the left-to-right

minima. Thus, with the exception of the first element, for an element to be a left-

to-right minimum in a permutation, it must be smaller than all the element to its

left. If we let x1, x2 · · ·xk be the left-to-right minima in σ, then, we can write

σ = x1w1x2w2 · · ·xsws

where wi represents the elements between the left-to-right minima xi and xi+1.

Now, we note that the elements in wi must be decreasing. To see this, let’s con-

sider wi, obviously all elements in wi must be greater than xi otherwise wi has a

left-to-right minimum, which is impossible since wi is all the elements between two

consecutive left-to-right minima. If we assume that wi has a subsequence of two

or more increasing elements, then, xiwi will have a subsequence of at least three

strictly increasing elements. This contradicts σ being a (123)-avoiding permutation.

So clearly all the elements in wi must be decreasing.

We will construct a Dyck path from a permutation σ. To do this we let xi represent

a left-to-right minimum where x0 = n+1 and wi be a word representing the elements

between xi and xi+1. Starting from the left and going to the right of a permutation

whenever there is left-to-right minimum, xi, we will translate this to xi−1 − xi up

steps denoted by u(xi−1−xi) in our Dyck path and any word wi is translated to li + 1

down steps denoted by d(li+1) where li is the number of elements in wi.

Example: Let’s consider our permutation σ = 7 10 5 9 8 3 6 4 2 1. This is a

(123)-avoiding permutation of length 10, so we can construct a Dyck path from it.

The left-to-right minima of this permutation are 7, 5, 3, 2, 1. To construct the

corresponding Dyck path, we need to translate x0−x1 = 11− 7 = 4 into 4 up steps,

then translate l1 +1 = 1+1 = 2 into 2 down steps, repeating the same process every

time we have a left-to-right minimum. This procedure yields the Dyck path below,
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1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8.

Proposition 1 Let σ be a permutation in Sn(123), and D be a Dyck path created

from σ.

The number of descents of σ is

des(σ) = v(D) + tf(D),

where des(σ) is the number of descents in σ, v(D) is the number of valleys in D

and tf(D) is the number of triple falls in D.

Proof 2 Let σ = x1w1 · · ·xsws be a (123)-avoiding permutation.

To find the descents of σ we note the following:

i) since wi has li elements and it is decreasing, it must have li − 1 descents,

ii) whenever we make a transition from wi to xi+1 we get another descent.

Now, to see the bijective mapping, we also note the following:

i) for every nonempty wi, we get li + 1 consecutive down steps in our created Dyck

path; these li + 1 down steps translate to li− 1 triple falls which are in bijection with

the descents in wi,

ii) with the exception of the first left-to-right minimum, every xi results in up steps

immediately after a descent, whenever this happens, we get a valley.

This shows that descents in σ can be translated into valleys and triple falls in D(σ),

where D(σ) is the Dyck path built from the (123)-avoiding permutation σ.



42

The above proposition allows us to switch our attention from permutations in

Sn(123) with k descents to Dyck paths of semilength n where k is the sum of valleys

and triple falls. We will focus on generating functions of Dyck paths according to

semilength, valleys and triple falls.

Let the generating function for primitive paths according to semilength, valleys and

triple falls be,

PD(x, y, z) =
X
n≥0

X
D∈PDn

xnyv(D)ztf(D)

=
X

n,v,t≥0
pdn,v,tx

nyvzt,

where PDn is the set of primitive Dyck paths.

To see the relationship between Dyck paths and primitive Dyck paths, we look at

the propositions below.

Proposition 2 Let n ≥ 3, then,

pdn,v,t = dn−1,v,t−1 − dn−2,v−1,t−1 + dn−2,v−1,t. (4.2.1)

Proof 3 A primitive Dyck path of semilength n, with v valleys and t triple falls can

be obtained in two ways.

i) By elevating a Dyck path of semilength n− 1 with v valleys and t triple falls that

ends with a ud. Elevating this path gives a primitive Dyck path with v valleys and t

triple falls. We also note that this path is in bijection with Dyck paths of semilength

n− 2, with v − 1 valleys and t triple falls, dn−2,v−1,t.

ii) By elevating a Dyck path of semilength n− 1 with v valleys and t− 1 triple falls

that does not end with ud. In order to get these paths, we must remove, from the

number counting Dyck paths of semilength n− 1 with v valleys and t− 1 triple falls,

dn−1,v,t−1, all those paths that end with ud. These paths that end with ud are in

bijection with Dyck paths of semilength n−2 with v−1 valleys and t−1 triple falls,

dn−2,v−1,t−1.

Combining these two cases, we get (4.2.1).
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We also note that Dyck paths and primitive Dyck paths satisfy the proposition

below.

Proposition 3 For every n ≥ 1, we have

dn,v,t = pdn,v,t +
n−1X
i=0

X
j,k≥0

pdi,j,kdn−i,v−j−1,t−k. (4.2.2)

Proof 4 Let D be a Dyck path of semilength n and let’s consider its last return

decomposition, D = αβ where α ∈ Dn and β ∈ PDn.

If α is the empty path, then D is primitive, otherwise,

v(D) = v(α) + v(β) + 1

and

tf(D) = tf(α) + tf(β).

D(x, y, z) =
X
n≥0

X
D∈Dn

xnyv(D)ztf(D)

=
X
n≥0

X
β∈PDn

xnyv(β)ztf(β)

+ y
X
n≥0

n−1X
k=1

X
α∈Dn−k

xn−kyv(α)ztf(α)
X

β∈PDk

xkyv(β)ztf(β)

= PD(x, y, z) + y
X
k≥1

X
n−k≥1

X
α∈Dn−k

xn−kyv(α)ztf(α)
X

β∈PDk

xkyv(β)ztf(β)

= PD(x, y, z) + y
X
k≥1

X
β∈PDk

xkyv(β)ztf(β)
X

n−k≥1

X
α∈Dn−k

xn−kyv(α)ztf(α)

= PD(x, y, z)

+ y

�X
k≥0

X
β∈PDk

xkyv(β)ztf(β) − 1

�� X
n−k≥0

X
α∈Dn−k

xn−kyv(α)ztf(α) − 1

�
= PD(x, y, z) + y (PD(x, y, z)− 1) (D(x, y, z)− 1). (4.2.3)

Extracting the coefficient of D(x, y, z) in this functional equation gives us the desired

result.
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Multiplying proposition (2) by xnyvzt and summing over v, t ≥ 0 and n ≥ 3, we get

X
n≥3

X
v,t≥0

pdn,v,tx
nyvzt

=
X
n≥3

X
v,t≥0

dn−1,v,t−1x
nyvzt −

X
n≥3

X
v,t≥0

dn−2,v−1,t−1x
nyvzt +

X
n≥3

X
v,t≥0

dn−2,v−1,tx
nyvzt

= xz

�X
n≥1

X
v≥0

X
t≥1

dn−1,v,t−1x
n−1yvzt−1 − 1− x

�
− x2yz

�X
n≥2

X
v,t≥1

dn−2,v−1,t−1x
n−2yv−1zt−1 − 1

�
+ x2y

�X
n≥2

X
v≥1

X
t≥0

dn−2,v−1,tx
n−2yv−1zt − 1

�
= xz(D(x, y, z)− 1− x)− x2yz(D(x, y, z)− 1) + x2y(D(x, y, z)− 1)

= (D(x, y, z)− 1)(xz + x2y − x2yz)− x2z.

Now, on the left hand side we have,X
n≥3

X
v,t≥0

pdn,v,tx
nyvzt =

X
n≥0

X
v,t≥0

pdn,v,tx
nyvzt − 1− x− x2 = PD(x, y, z)− 1− x− x2.

Note, we do not subtract x2y because the path is primitive. Equating the two sides

gives

PD(x, y, z) = (D(x, y, z)− 1)(xz + x2y − x2yz) + 1 + x+ x2 − x2z. (4.2.4)

We then solve (4.2.3) and (4.2.4) simultaneously to make D(x, y, z) the subject of

the formula as follows:

Let D = D(x, y, z), PD = PD(x, y, z), a = 1+x+x2−x2z and b = xz+x2y−x2yz.

Substituting (4.2.4) into (4.2.3) gives

D = (D − 1)b+ a+ y((D − 1)b+ a− 1)(D − 1)

= bD − b+ a+ ybD2 − 2ybD + 2yb+ y(a− 1)D − y(a− 1),
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which leads to the quadratic equation

ybD2 + (b− 1− 2yb+ y(a− 1))D + a− b+ 2yb− y(a− 1) = 0.

Using the quadratic formula, we get

D =
−b+ 1 + 2yb− y(a− 1)

2yb

±
È

(b− 1− 2yb+ y(a− 1))2 − 4yb(a− b+ 2yb− y(a− 1))

2yb

=
−1 + xz + xy + 2x2y − 2xzy − 2x2y2 − 2x2yz + 2x2y2z

2xy(xyz − xy − z)

± (1− 2xz + xz2 − 2xy − 4x2y + x2y2 − 4xy2z2 − 8x3y3z − 4x4y4

+ 2x3y2z + 8x3y3z2 + 8x4y4z + x4yz2 − 4x4y3z2 + 2x2yz − 2x3y2z

− x4y2z2)
1
2

1

2xy(xyz − xy − z)
.



Chapter 5

MOTZKIN PATHS

We now start with the study of Motzkin paths. These are lattice paths constructed

from the same step set as the Dyck paths, {u, d}, but might also have the horizon-

tal step h. We give a sketch of the Motzkin paths below followed by the formal

definition.

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 9.

Definition 3 A Motzkin path is a lattice path in the first quadrant which begins at

the origin and has up steps, (1, 1), horizontal steps, (1, 0), and down steps, (1,−1),

respectively denoted by u, h and d, that ends at the point (n, 0).

At any point in the path, the number of down steps is at most equal to the number

of up steps. Hence, the steps of a Motzkin path never go below the x-axis. Using
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the symbolic method, we note that Motzkin paths are of the form

M = ε+ hM + uMdM,

where ε denotes the empty path and h, u, d represent the horizontal, up and down

steps respectively, in a Motzkin path. Thus, a Motzkin path is either empty or a

horizontal step followed by a Motzkin path or an up step followed by a Motzkin

path then a down step and then another Motzkin path.

Translating the equation above to generating functions, we get

M(x) = 1 + xM(x) + x2M2(x).

This is a quadratic equation which we solve to get,

M(x) =
1− x±

È
(x− 1)2 − 4x2

2x2
.

Since the limit of M(x) as x goes to 0 is 1, and we get M(0) = 0
0

only when we take

the negative solution, then we discard the positive solution since it gives M(0) = 2
0
.

We now study the paper by D. Drake and R. Gantner, Generating functions for

plateaus in Motzkin paths [10].

Definition 4 A plateau in a Motzkin path is any part of the Motzkin path that has

the subsequence uhd, thus, a u step immediately followed by an h step immediately

followed by a d step.

5.1 Generating functions for Motzkin paths

Let Mp
n be the number of Motzkin paths of length n with p plateaus and

M(x, y) =
X
n≥0

bn
3
cX

p=0

Mp
nx

nyp,

be the generating function for Motzkin paths according to length and number of

plateaus. In this generating function, p has an upper limit of bn
3
c because each

plateau has three steps and if all steps of the Motzkin path form part of a plateau,
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then we see that the total number plateaus is bn
3
c.

We state and prove some theorems related to generating functions for Motzkin paths

according to length and number of plateaus.

Our plateau-counting formulae depend on a recursion among the Mp
n. To get these

generating functions we will first prove the following lemmas:

Lemma 1 If we set Mp
n = 0 when p is negative or n is negative, then the Mp

n satisfy

Mp
n =

n− 2p

p
Mp−1

n−3 + 2Mp
n−3 (5.1.1)

for all n, and for all p > 0.

Proof 5 To get a path with p plateaus and length n, we can do one of two things:

i) We start with a Motzkin path of length n−3 with p−1 plateaus. We then insert a

plateau in the path at a vertex that is not adjacent to a horizontal step in a plateau.

There are 2(p− 1) vertices which are adjacent to the horizontal step in the plateaus

of the path and the total number of vertices in the path is n− 3 + 1 = n− 2. So, we

choose one vertex from n− 2− 2(p− 1) = n− 2p and insert a plateau.

ii) Secondly, we take a path of length n − 3 with p plateaus and insert a plateau at

one of the vertices adjacent to the horizontal step in a plateau. This destroys one

plateau and creates a new one. Thus, we choose one vertex from one of the 2p and

insert a plateau.

If we insert a plateau in a path of length n− 3 and p− 1 plateaus we get a specific

path with length n and p plateaus. However, we get the same path by removing and

then reinserting any of the other p − 1 plateaus. Thus, the two procedures create

each path p times.

Therefore,

pMp
n = (n− 2p)Mp−1

n−3 + 2pMp−1
n−3,

dividing both sides by p gives the result.

Let fp(x) be the generating function for Motzkin paths with p plateaus.
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Thus,

fp(x) =
X
n≥0

Mp
nx

n.

Lemma 2 The generating function for Motzkin paths with no plateaus is

f0(x) =
1− x+ x3 −

È
(1− x+ x3)2 − 4x2

2x2
,

and the number of Motzkin paths with no plateaus satisfy the recurrence

M0
n = M0

n−1 +M0
n−2 +

n−2X
k=2

M0
n−k−2M

0
k .

Proof 6 To get a Motzkin path with no plateaus, the path must be one of the fol-

lowing:

i) An empty path, this contributes a 1 to the generating function.

ii) A horizontal step followed by a zero plateau Motzkin path, this contributes xf0(x)

to the generating function.

iii) An up step, followed by a zero plateau Motzkin path excluding the case of a single

horizontal step, then a down step followed by a zero plateau Motzkin path.

This contributes x(f0(x)− x)xf0(x) to the generating function.

Thus,

f0(x) = 1 + xf0(x) + x2(f0(x)− x)f0(x)

= 1 + (x− x3)f0(x) + x2f 2
0 (x).

Solving the quadratic equation we get

f0(x) =
1− x+ x3 ±

È
(1− x+ x3)2 − 4x2

2x2
.

Now, from our functional equation for f0(x), the limit of f0(x) as x tends to 0 is 1.

So, from the solutions above we will only consider the negative sign case since it is
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the one that gives us 0
0
, which is what we want.

To get the recurrence relationship we first note that,

f 2
0 (x) =

X
n≥0

M0
nx

n
X
n≥0

M0
nx

n

=
X
n≥0

nX
k=0

M0
kM

0
n−kx

n.

Now, extracting coefficients

[xn]f0(x) = [xn]
�
1 + xf0(x)− x3f0(x) + x2f 2

0 (x)
�

=

8<:1 if n = 0

[xn−1]f0(x)− [xn−3]f0(x) + [xn−2]f 2
0 (x) if n ≥ 1.

Thus, if n ≥ 1, then

M0
n = M0

n−1 −M0
n−3 +

n−2X
k=0

M0
kM

0
n−k−2

= M0
n−1 −M0

n−3 +M0
0M

0
n−2 +M0

1M
0
n−3 +

n−2X
k=2

M0
kM

0
n−k−2

= M0
n−1 +M0

n−2 +
n−2X
k=2

M0
kM

0
n−k−2.

We then use these properties of f0(x) to get a general expression of M(x, y).

Theorem 7 The generating function of Motzkin paths according to length and num-

ber of plateaus is given by,

M(x, y) =
1− 2x3

1− 2x3(1− y)

�
f0(x) +

x

1− 2x3
∂

∂x
x3
Z y

0
M(x, s)ds

�
,

where, f0(x) is as defined above.
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Proof 8 We know that

Mp
n =

n− 2p

p
Mp−1

n−3 + 2Mp
n−3.

Multiplying this equation by xn and summing over n ≥ 0 we get,

fp(x) =
X
n≥0

Mp
nx

n

=
X
n≥0

n− 2p

p
Mp−1

n−3x
n +

X
n≥0

2Mp
n−3x

n

=
x

p

X
n≥0

nMp−1
n−3x

n−1 − 2x3
X
n≥0

Mp−1
n−3x

n−3 + 2x3
X
n≥0

Mp
n−3x

n−3

=
x

p

X
n≥0

Mp−1
n−3

∂

∂x
xn − 2x3fp−1(x) + 2x3fp(x)

=
x

p

∂

∂x

�
x3
X
n≥0

Mp−1
n−3x

n−3

�
− 2x3fp−1(x) + 2x3fp(x)

=
x

p

∂

∂x

�
x3fp−1(x)

�
− 2x3fp−1(x) + 2x3fp(x).

By making fp(x) the subject of the formula in the above equation, we get

fp(x) =
1

1− 2x3

�
x

p

∂

∂x

�
x3fp−1(x)

�
− 2x3fp−1(x)

�
.

Multiplying this equation by yp and summing over p ≥ 1 we getX
p≥1

X
n≥0

Mp
nx

nyp =
X
p≥1

1

1− 2x3

�
x

p

∂

∂x

�
x3fp−1(x)

�
− 2x3fp−1(x)

�
yp,

thus,

M(x, y)− f0(x) =
1

1− 2x3
X
p≥1

x

p

∂

∂x

�
x3fp−1(x)

�
yp − 1

1− 2x3
X
p≥1

2x3fp−1(x)yp

=
x

1− 2x3
∂

∂x
x3
X
p≥1

1

p
fp−1(x)yp − 2x3y

1− 2x3
X
p≥1

fp−1(x)yp−1

=
x

1− 2x3
∂

∂x
x3
X
p≥1

fp−1(x)
Z y

0
sp−1ds− 2x3y

1− 2x3
M(x, y)
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=
x

1− 2x3
∂

∂x
x3
Z y

0
M(x, s)ds− 2x3y

1− 2x3
M(x, y).

By making M(x, y) the subject of the formula, we get,

M(x, y)

�
1 +

2x3y

1− 2x3

�
= f0(x) +

x

1− 2x3
∂

∂x
x3
Z y

0
M(x, s)ds

thus,

M(x, y)

�
1− 2x3(1− y)

1− 2x3

�
= f0(x) +

x

1− 2x3
∂

∂x
x3
Z y

0
M(x, s)ds.

Dividing both sides by
1− 2x3(1− y)

1− 2x3
gives us the desired form.

This generating function can be written in different forms:

Theorem 9 The bivariate generating function M(x, y) has a differential form given

by,
∂

∂x

�
xM

�
x,

z

x3

��
= (1− z − 2x3)

∂

∂z
M(x,

z

x3
).

Proof 10 Let dm = Mm
3m+k and

hk(z) =
X
m≥0

dmz
m.

So, we have

h0(z) =
X
m≥0

Mm
3mz

m =
X
m≥0

zm =
1

1− z
.

Since all the steps in Mm
3m are inside some plateau, then there is only one path of

this kind.

From (5.1.1), for m ≥ 1 we have,

Mm
3m+k =

3m+ k − 2m

m
Mm−1

3m+k−3 + 2Mm
3m+k−3
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=
m+ k

m
Mm−1

3m+k−3 + 2Mm
3m+k−3.

Substituting this into the generating function hk(z), and then expanding, we get,X
m≥0

dmz
m = M0

k +
X
m≥1

Mm
3m+kz

m

= M0
k +

X
m≥1

Mm−1
3(m−1)+kz

m +
X
m≥1

k

m
Mm−1

3(m−1)+kz
m + 2

X
m≥1

Mm
3(m)+(k−3)z

m

= M0
k + zhk(z) + 2hk−3(z)− 2M0

k−3 + k
X
m≥1

Mm−1
3(m−1)+k

Z z

0
sm−1ds

= M0
k + zhk(z) + 2hk−3(z)− 2M0

k−3 + k
Z z

0
hk(s)ds.

Thus,

hk(z) = M0
k + zhk(z) + 2hk−3(z)− 2M0

k−3 + k
Z z

0
hk(s)ds.

Differentiating this equation with respect to z we get,

h′k(z) = hk(z) + zh′k(z) + 2h′k−3(z) + khk(z),

which simplifies to,

(k + 1)hk(z) = (1− z)h′k(z)− 2h′k−3(z). (5.1.2)

Now, replacing z with x3y in hk(z) then multiplying by xk and summing over k ≥ 0,

we get, X
k≥0

hkx
3yxk =

X
k≥0

X
m≥0

Mm
3m+kx

3mymxk

=
X
k≥0

X
m≥0

Mm
3m+kx

3m+kym

=
X
n≥0

bn
3
cX

p=0

Mp
nx

nyp

= M(x, y).
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So,

∂

∂x
xM

�
x,

z

x3

�
=

∂

∂x

X
k≥0

hk

�
x3

z

x3

�
xk+1

=
X
k≥0

hk(z)(k + 1)xk,

and

∂

∂z
M
�
x,

z

x3

�
=

∂

∂z

X
k≥0

hk

�
x3

z

x3

�
xk

=
X
k≥0

h′k(z)xk.

Multiplying (5.1.2) by xn and summing over k ≥ 0 we find,X
k≥0

(k + 1)hk(z)xk = (1− z)
X
k≥0

h′k(z)xk − 2
X
k≥0

h′k−3(z)xk,

which leads to,

∂

∂x

�
xM

�
x,

z

x3

��
= (1− z)

∂

∂z
M
�
x,

z

x3

�
− 2x3

∂

∂z
M
�
x,

z

x3

�
= (1− z − 2x3)

∂

∂z
M
�
x,

z

x3

�
.

We also find that the generating function for Motzkin paths has an explicit form

given by the theorem below.

Theorem 11 The generating function for Motzkin paths according to length and

number of plateaus has explicit form

M(x, y) =
1− x+ x2 − x3y −

È
(1− 3x+ x3 − x3y)(1 + x+ x3 − x3y)

2x2
.

Proof 12 To get a Motzkin path, it must be one of the following forms:

i) An empty path, this contributes a 1 to the generating function.

ii) A horizontal step followed by a Motzkin path, this contributes xM(x, y) to the

generating function.
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iii) An up step, followed by a Motzkin path, followed by a down step, followed by a

Motzkin path. In this case, if an up step is followed by a single step Motzkin path,

i.e., a Motzkin path that is just a horizontal step, then we have a plateau that will not

be counted in our generating function. To solve this problem, we subtract the case

where M(x, y) is a horizontal step, x, and add xy to put back the horizontal step and

count plateau that will be formed. This contributes x (M(x, y)− x+ xy)xM(x, y).

Combining these three forms we get

M(x, y) = 1 + (x− x3 + x3y)M(x, y) + x2M2(x, y).

Thus,

x2M2(x, y)− (1− x+ x3 − x3y)M(x, y) + 1 = 0.

We note that this is a quadratic equation in M(x, y); using the quadratic formula

we get

M(x, y) =
(1− x+ x3 − x3y)±

È
(1− x+ x3 − x3y)2 − 4x2

2x2

=
(1− x+ x3 − x3y)

2x2

±
È

1− 2x− 3x2 + 2x3 − 2x4 + x6 − 2x3y(1− x+ x3) + (x3y)2

2x2

=
(1− x+ x3 − x3y)

2x2

±
È

1− 2x− 3x2 + 2x3 − 2x4 + x6 − 2x3y(1− x+ x3) + (x3y)2

2x2

=
(1− x+ x3 − x3y)

2x2

±
È

(1 + x+ x3)(1− 3x+ x3)− 2x3y(1− x+ x3) + (x3y)2

2x2

=
(1− x+ x3 − x3y)±

È
(1 + x+ x3 − x3y)(1− 3x+ x3 − x3y)

2x2
.

Now, the limit as x tends to 0 of M(x, y) is 1 from our functional equation. In our

equation above, only the negative sign leads to the same answer when we take limits.

Hence, we get the result we require.
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5.2 Generating functions for Motzkin paths with

plateaus of length r > 1

We now generalize our generating functions to cases where the plateaus are longer,

that is, of length greater than 1. In the previous section we considered the case

r = 1.

Definition 5 A plateau of length r in a Motzkin path is any part of the Motzkin

path that has the subword uhrd where r ≥ 1, thus, a u step immediately followed by

r h steps immediately followed by a d step.

From this definition, we see that the number of horizontal steps in each plateau of

length r is r. Let rM
p
n be the number of Motzkin paths of length n with p plateaus

of length r and

rM(x, y) =
X
n≥0

b n
2+r
cX

p=0
rM

p
nx

nyp,

be the generating function for Motzkin paths according to length and number of

plateaus of length r. In this generating function, p has an upper limit of b n
2+r
c

because each plateau is made up of 2 + r steps and if all steps of the Motzkin path

form part of a plateau, then we see that the total number of plateaus is b n
2+r
c. To

get the generating functions, we must first prove recursions for rM
p
n.

Lemma 3 If we set rM
p
n = 0 when p is negative or n is negative, then the rM

p
n

satisfy

rM
p
n =

n− (r + 1)p

p
rM

p−1
n−(2+r) + (r + 1) rM

p
n−(2+r) (5.2.1)

for all n, and for all p > 0.

Proof 13 To get a path of length n with p plateaus of length r, we can do one of

two things:

i) We start with a Motzkin path of length n− (2 + r) with p− 1 plateaus of length r.

We then insert a plateau of length r in the path at a vertex that is not adjacent to
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any horizontal step in a plateau of length r. There are (1 + r)(p− 1) vertices which

are adjacent to the horizontal steps in the plateaus of length r in the path and the

total number of vertices in the path is n − (2 + r) + 1 = n − r − 1. So, we choose

one vertex from n− (1 + r)− (1 + r)(p− 1) and insert a plateau.

ii) Secondly, we take a path of length n − (2 + r) with p plateaus of length r and

insert a plateau of length r at one of the vertices adjacent to the horizontal step in

a plateau of length r. This destroys one plateau of length r and creates a new one.

Thus, we choose one vertex from one of the (1 + r)p and insert a plateau.

If we insert a plateau of length r in a path of length n− (1 + r) and p− 1 plateaus of

length r we get a specific path with length n and p plateaus of length r. However, we

get the same path by removing and then reinserting any of the other p− 1 plateaus.

Thus, the two procedures create each path p times.

Therefore,

p rM
p
n = (n− (1 + r)− (1 + r)(p− 1)) rM

p−1
n−(2+r) + (1 + r)p rM

p−1
n−(2+r).

Dividing both sides by p gives the result.

Let rfp(x) be the generating function for Motzkin paths with p plateaus of length

r.

Thus,

rfp(x) =
X
n≥0

rM
p
nx

n.

Lemma 4 The generating function for Motzkin paths with no plateaus of length r

is

rf0(x) =
1− x+ x2+r −

È
(1− x+ x2+r)2 − 4x2

2x2
,

and the number of Motzkin paths with no plateaus of length r satisfy the recurrence

rM
0
n = rM

0
n−1 − rM

0
n−(2+r) +

n−2X
k=0

rM
0
n−k−2 rM

0
k .

Proof 14 To get a Motzkin path with no plateaus of length r, it must be one of the
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following:

i) An empty path, this contributes a 1 to the generating function.

ii) A horizontal step followed by a Motzkin path with no plateaus of length r, this

contributes x rf0(x) to the generating function.

iii) An up step, followed by a Motzkin path with no plateaus of length r excluding the

case counted by xr, then a down step followed by a Motzkin path with no plateaus of

length r. This contributes x( rf0(x)− xr)x rf0(x) to the generating function.

Thus,

rf0(x) = 1 + x rf0(x) + x2( rf0(x)− xr) rf0(x)

= 1 + (x− x2+r) rf0(x) + x2f 2
0 (x).

Solving the quadratic equation we get

rf0(x) =
1− x+ x2+r ±

È
(1− x+ x2+r)2 − 4x2

2x2
.

Discarding the spurious solution, we get the desired result.

To get the recurrence relationship we first note that,

rf
2
0 (x) =

X
n≥0

rM
0
nx

n
X
n≥0

rM
0
nx

n

=
X
n≥0

nX
k=0

rM
0
k rM

0
n−kx

n.

Now,

[xn] rf0(x) = [xn]
�
1 + x rf0(x)− x2+r rf0(x) + x2 rf

2
0 (x)

�
=

8<:1 if n = 0

[xn−1] rf0(x)− [xn−(2+r)] rf0(x) + [xn−2] rf
2
0 (x) if n ≥ 1.

Thus, if n ≥ 1, then

rM
0
n = rM

0
n−1 − rM

0
n−(2+r) +

n−2X
k=0

rM
0
k rM

0
n−k−2.
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We then use these properties of rfo(x) to get a general expression of rM(x, y).

Theorem 15 The generating function of Motzkin paths according to length and

number of plateaus of length r is given by,

rM(x, y) =
1− 2x2+r

1− 2x2+r(1− y)

�
rf0(x) +

x

1− 2x2+r
∂

∂x
x2+r

Z y

0
rM(x, s)ds

�
,

where rf0(x) is as defined above.

Proof 16 We know that

rM
p
n =

n− (r + 1)p

p
rM

p−1
n−(2+r) + (r + 1) rM

p
n−(2+r).

Multiplying this equation by xn and summing over n ≥ 0 we get,

rfp(x) =
X
n≥0

rM
p
nx

n

=
X
n≥0

n− (r + 1)p

p
rM

p−1
n−(2+r)x

n +
X
n≥0

(r + 1) rM
p
n−(2+r)x

n

=
x

p

X
n≥0

n rM
p−1
n−(2+r)x

n−1 − (1 + r)x2+r
X
n≥0

rM
p−1
n−(2+r)x

n−(2+r)

+ (1 + r)x2+r
X
n≥0

rM
p
n−(2+r)x

n−(2+r)

=
x

p

X
n≥0

rM
p−1
n−(2+r)

∂

∂x
xn − (1 + r)x2+r rfp−1(x) + (1 + r)x2+r rfp(x)

=
x

p

∂

∂x

�
x2+r

X
n≥0

rM
p−1
n−(2+r)x

n−(2+r)

�
− (1 + r)x2+r rfp−1(x) + (1 + r)x2+r rfp(x)

=
x

p

∂

∂x

�
x2+r rfp−1(x)

�
− (1 + r)x2+r rfp−1(x) + (1 + r)x2+r rfp(x).

By making rfp(x) the subject of the formula in the above equation, we get

rfp(x) =
1

1− (1 + r)x2+r

�
x

p

∂

∂x

�
x2+r rfp−1(x)

�
− (1 + r)x2+r rfp−1(x)

�
.
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Multiplying this equation by yp and summing over p ≥ 1 we getX
p≥1

X
n≥0

rM
p
nx

nyp =
X
p≥1

1

1− (1 + r)x2+r

�
x

p

∂

∂x

�
x2+r rfp−1(x)

�
− (1 + r)x2+r rfp−1(x)

�
yp.

Thus,

rM(x, y)− rf0(x) =
1

1− (1 + r)x2+r
X
p≥1

x

p

∂

∂x

�
x2+r rfp−1(x)

�
yp

− 1

1− (1 + r)x2+r
X
p≥1

(1 + r)x2+r rfp−1(x)yp

=
x

1− (1 + r)x2+r
∂

∂x
x2+r

X
p≥1

1

p
rfp−1(x)yp

− (1 + r)x2+ry

1− (1 + r)x2+r
X
p≥1

rfp−1(x)yp−1

=
x

1− (1 + r)x2+r
∂

∂x
x2+r

X
p≥1

rfp−1(x)
Z y

0
sp−1ds

− (1 + r)x2+ry

1− (1 + r)x2+r
rM(x, y)

=
x

1− (1 + r)x2+r
∂

∂x
x2+r

Z y

0
rM(x, s)ds− (1 + r)x2+ry

1− (1 + r)x2+r
rM(x, y).

By making rM(x, y) the subject of the formula, we get,

rM(x, y)

�
1 +

(1 + r)x2+ry

1− (1 + r)x2+r

�
= rf0(x) +

x

1− (1 + r)x2+r
∂

∂x
x2+r

Z y

0
rM(x, s)ds.

Thus,

rM(x, y)

�
1− (1 + r)x2+r(1− y)

1− (1 + r)x2+r

�
= rf0(x) +

x

1− (1 + r)x2+r
∂

∂x
x2+r

Z y

0
rM(x, s)ds.

Dividing both sides by
1− (1 + r)x2+r(1− y)

1− (1 + r)x2+r
gives us the desired form.

This generating function can be written in different forms.

Theorem 17 The bivariate generating function rM(x, y) has a differential form
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given by,

∂

∂x

�
x rM

�
x,

z

x2+r

��
= (1− z − (1 + r)x2+r)

∂

∂z
rM

�
x,

z

x2+r

�
.

Proof 18 Let rdm = rM
m
3m+k and

rhk(z) =
X
m≥0

rdmz
m.

So, we have

rh0(z) =
X
m≥0

rM
m
(2+r)mz

m =
X
m≥0

zm =
1

1− z
.

Since all the steps in Mm
(2+r)m are inside some plateau, then there is only one path

of this kind.

From (5.2.1), for m ≥ 1 we have,

rM
m
(2+r)m+k =

(2 + r)m+ k − (1 + r)m

m
rM

m−1
(2+r)m+k−(2+r) + (1 + r) rM

m
(2+r)m+k−(2+r)

=
m+ k

m
rM

m−1
(2+r)m+k−(2+r) + (1 + r) rM

m
(2+r)m+k−(2+r).

Substituting this into the generating function rhk(z), and then expanding, we get,X
m≥0

rdmz
m = rM

0
k +

X
m≥1

rM
m
(2+r)m+kz

m

= rM
0
k +

X
m≥1

rM
m−1
(2+r)(m−1)+kz

m +
X
m≥1

k

m
rM

m−1
(2+r)(m−1)+kz

m

+ (1 + r)
X
m≥1

rM
m
(2+r)(m)+(k−(2+r))z

m

= rM
0
k + z rhk(z) + (1 + r) rhk−(2+r)(z)− (1 + r) rM

0
k−(2+r)

+ k
X
m≥1

rM
m−1
(2+r)(m−1)+k

Z z

0
sm−1ds

= rM
0
k + z rhk(z) + (1 + r) rhk−(2+r)(z)− (1 + r) rM

0
k−(2+r) + k

Z z

0
rhk(s)ds.

Thus,
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rhk(z) = rM
0
k + z rhk(z) + (1 + r) rhk−(2+r)(z)− (1 + r) rM

0
k−3 + k

Z z

0
rhk(s)ds.

Differentiating this equation with respect to z we get,

rh
′
k(z) = rhk(z) + z rh

′
k(z) + (1 + r) rh

′
k−(2+r)(z) + k rhk(z),

which simplifies to

(k + 1) rhk(z) = (1− z) rh
′
k(z)− (1 + r) rh

′
k−(2+r)(z). (5.2.2)

Now, replacing z with x3y in rhk(z) then multiplying by xk and summing over k ≥ 0,

we get, X
k≥0

rhk(x
2+ry)xk =

X
k≥0

X
m≥0

rM
m
(2+r)m+kx

(2+r)mymxk

=
X
k≥0

X
m≥0

rM
m
(2+r)m+kx

(2+r)m+kym

=
X
n≥0

b n
2+r
cX

p=0
rM

p
nx

nyp

= rM(x, y).

So,

∂

∂x
x rM

�
x,

z

x2+r

�
=

∂

∂x

X
k≥0

rhk

�
x2+r

z

x2+r

�
xk+1

=
X
k≥0

rhk(z)(k + 1)xk,

and

∂

∂z
rM

�
x,

z

x2+r

�
=

∂

∂z

X
k≥0

rhk

�
x2+r

z

x2+r

�
xk

=
X
k≥0

rh
′
k(z)xk.
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Multiplying (5.2.2) by xk and summing over k ≥ 0 we find,X
k≥0

(k + 1) rhk(z)xk = (1− z)
X
k≥0

rh
′
k(z)xk − (1 + 2)

X
k≥0

rh
′
k−(2+r)(z)xk,

which leads to,

∂

∂x

�
x rM

�
x,

z

x2+r

��
= (1− z)

∂

∂z
rM

�
x,

z

x2+r

�
− (1 + r)x2+r

∂

∂z
rM

�
x,

z

x2+r

�
= (1− z − (1 + r)x2+r)

∂

∂z
rM

�
x,

z

x2+r

�
.

We also find that the generating function for Motzkin paths has an explicit form

given by the theorem below.

Theorem 19 The generating function for Motzkin paths according to length and

number of plateaus of length r has explicit form

rM(x, y) =
1− x+ x2+r − x2+ry −

È
(1− x+ x2+r − x2+ry)2 − 4x2

2x2
.

Proof 20 To get a Motzkin path, it must be one of the following forms:

i) An empty path, this contributes a 1 to the generating function.

ii) A horizontal step followed by a Motzkin path, this contributes x rM(x, y) to the

generating function.

iii) An up step, followed by a Motzkin path, followed by a down step, followed by a

Motzkin path. In this case, if an up step is followed by a Motzkin path which is a

sequence of r horizontal steps, then we have a plateau that will not be counted in our

generating function. To solve this problem, we subtract the case where rM(x, y) is

xr, and add xry to put back the horizontal steps and count the plateau of length r

that will be formed. This contributes x ( rM(x, y)− xr + xry)x rM(x, y).

Combining these three forms we get

rM(x, y) = 1 + x rM(x, y) + x ( rM(x, y)− xr + xry)x rM(x, y) (5.2.3)

= 1 + (x− x2+r + x2+ry) rM(x, y) + x2 rM
2(x, y).
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Thus,

x2 rM
2(x, y)− (1− x+ x2+r − x2+ry) rM(x, y) + 1 = 0.

We note that this is a quadratic equation in rM(x, y); using the quadratic formula

we get

rM(x, y) =
(1− x+ x2+r − x2+ry)±

È
(1− x+ x2+r − x2+ry)2 − 4x2

2x2
.

Discarding the spurious solution, we get the result we require.

5.3 Continued fractions

We then generalize (5.2.3) into a continued fraction. To do this, we first replace

rM(x, y) with m(x, y) and the correction we make for the plateaus, (xry−xr), with

P , where P := P (x, y). Thus,

m(x, y) = 1 + xm(x, y) + x (m(x, y) + P )xm(x, y)

= 1 +m(x, y)
�
x+ x2m(x, y) + x2P

�
=

1

1− x− x2P − x2m(x, y)
.

If we inductively replace m(x, y) with the right hand side of the equation, we have

m(x, y) =
1

1− x− x2P − x2

1− x− x2P − x2

1− x− x2P − x2

1− · · ·
Now, replacing P with xy−x, we find that the generating function for Motzkin paths

according to length and number of plateaus has a continued fraction expansion form

given by,
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M(x, y) =
1

1− x− x2(xy − x)− x2

1− x− x2(xy − x)− x2

1− x− x2(xy − x)− x2

1− · · ·

.

Similarly, we find

rM(x, y) =
1

1− x− x2(xry − xr)− x2

1− x− x2(xry − xr)− x2

1− · · ·

.

From, P. Flajolet, Combinatorial aspects of continued fractions [11], Theorem 1 ,

we see that the P appearing at the ith level of our continued fraction corresponds

to the correction we make at height i. Looking at our continued fraction and taking

note of P. Flajolet, Combinatorial aspects of continued fractions [11], Theorem 1,

we see that the corrections at different heights do not have to be the same. This

allows us to write our continued fraction in the following form,

M(x, y) =
1

1− x− x2P1 −
x2

1− x− x2P2 −
x2

1− x− x2P3 −
x2

1− · · ·

. (5.3.1)

Using this information, we then look at various examples where we make adjustments

at different heights.

Example 1: The generating function for Motzkin paths with no peaks at even levels

is,

S(x) =
1− 2x+ 2x2 − x3 −

√
1− 4x+ 4x2 − 2x3 + x6

2(1− x)x2
.

In this type of path, at each even height, we can have any nonempty Motzkin path

with no peaks at odd heights. So, the correction we make will be to exclude the

empty path, that is, −1. This leads to a path with at least one horizontal step

between any u and the corresponding d step.
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We find that our correction terms must be zero whenever we have an odd height and

−1 whenever we have an even height. That is, Pk = 0 when k is odd and Pk = −1

when k is even. Thus,

S(x) =
1

1− x− x2

1− x+ x2 − x2S(x)

=
1− x+ x2 − x2S(x)

1− 2x+ x2 − x3 − (1− x)x2S(x)
,

which gives the quadratic equation

(1− x)x2 (S(x))2 − (1− 2x+ 2x2 − x3)S(x) + 1− x+ x2 = 0.

Using the quadratic formula leads to

S(x) =
1− 2x+ 2x2 − x3 ±

È
(1− 2x+ 2x2 − x3)2 − 4(1− x)x2(1− x+ x2)

2(1− x)x2

=
1− 2x+ 2x2 − x3 ±

√
1− 4x+ 4x2 − 2x3 + x6

2(1− x)x2
,

discarding the spurious solution gives the desired result.

Example 2: The generating function for Motzkin paths in which the uhd’s have

weight y and no plateaus are of length greater than one is

S(x, y) =
(1− x)2 − x2(xy(1− x)− x)

2x2(1− x)

−
È

(1 + (x− 1)x2(xy + 1))(1 + (x− 1)x(4 + x+ x2y))

2x2(1− x)
.

In this type of path, at each height ≥ 1, we must exclude the possibility of having

a Motzkin path that is just a sequence of two or more horizontal steps. So, for each

height ≥ 1, we must have the correction term being

Pk = xy − (x+ x2 + x3 + · · · ) = xy − x

1− x
.

Plugging this in our continued fraction we find
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S(x, y) =
1

1− x− x2
�
xy − x

1− x

�
− x2S(x, y)

,

which leads to the quadratic equation

x2S2(x, y)−
�

1− x− x2
�
xy − x

1− x

��
S(x, y) + 1 = 0.

Using the quadratic formula we get

S(x, y) =

1− x− x2
�
xy − x

1− x

�
±
s�

1− x− x2
�
xy − x

1− x

��2

− 4x2

2x2

=
(1− x)2 − x2(xy(1− x)− x)

2x2(1− x)

±
È

(1 + (x− 1)x2(xy + 1))(1 + (x− 1)x(4 + x+ x2y))

2x2(1− x)
,

which gives us the solution.

In this example, setting y = 1 we get a generating function for the number of

Motzkin paths which only have plateaus of length one.

Example 3: We now find he generating function which counts Motzkin paths in

which uhd’s at height three or more have weight y and uhhd’s at heights that are a

multiple of two have weight z.

To find it, we first note that at all heights ≥ 3 we make the correction Y = xy − x
and at heights ≥ 2 which are a multiple of 2 we make the correction Z = x2z − x2.
These adjustments are shown in the table below

k 1 2 3 4 5 6 7 8 9 10
Pk 0 Z Y Y + Z Y Y + Z Y Y + Z Y Y + Z

Plugging these corrections into our continued fraction (5.3.1), we get,
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S(x, y, z) =
1

1− x− x2

1− x− x2Z − x2

1− x− x2Y − x2

1− · · ·

. (5.3.2)

Now, we note that from the third height upwards the corrections we make are

periodic. So, we let

s =
1

1− x− x2Y − x2

1− x− x2(Y + Z)− x2s

=
1− x− x2(Y + Z)− x2s

(1− x− x2Y )(1− x− x2(Y + Z)− x2s)− x2

=
−x2 − A(A− x2Z)±

È
(x2 + A(A− x2Z))2 + 4(A− x2Z)x2A

2x2A
,

where A = 1− x− x2Y . Substituting B = A(A− x2Z) and discarding the solution

that does not lead to the form 0
0

we get,

s = −
B + x2 −

È
(B + x2)2 + 4x2B

2x2A
.

Substituting the expression above into (5.3.2) gives

S(x, y, z) =
1

1− x− x2

1− x− x2Z − x2s

=
1− x− x2Z − x2s

(1− x)(1− x− x2Z − x2s)− x2
.



Chapter 6

MOTZKIN PATHS WITH

HORIZONTAL STEPS OF

DIFFERENT COLOURS

Now we move on to the paper by, A. Sapounakis and P. Tsikouras, On k-coloured

Motzkin words [16], where we investigate the k-coloured Motzkin paths. These are

Motzkin paths whose horizontal steps are coloured by means of k different colours.

Let S be a set of k + 2 different steps, where, k ∈ N and u, the up step, and d, the

down step, are elements of S. If k = 0 then S will be a step set for the Dyck paths,

for k 6= 0, then S\{u, d} = {µ1, µ2 · · ·µk} are the k differently coloured horizontal

steps. Let S∗ be the set of lattice paths created from the step set S and let ε, be

the empty path, also be in S∗. If c is a path in S∗, then |c|x denotes the number of

occurrences of the step x in c, where x ∈ S.

This shows that for any path c in S∗ to be a k-coloured Motzkin path, we must have

|s|u = |s|d and for any factorisation, s = wv, we must have |w|u ≥ |w|d. Below is an

illustration of a 3-coloured Motzkin path of length 21, where b, r and y respectively

represent the horizontal steps of blue, red and yellow colours.
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1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 10.
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r
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y

r b y

b y

Looking at the diagram above, we see that it has length 21 with 9 horizontal steps

created from a set of 3-coloured horizontal steps.

We will denote the number of k-coloured Motzkin paths of length n by Mk,r and the

number of k-coloured Motzkin paths of length n and with r number of u by Mk,n,r.

If k = 0, then we get that M0,n is the number of Dyck paths of semilength n
2
, since

there won’t be any horizontal steps. We also note that if k = 0 and n = 2s + 1,

where s ∈ N, then M0,n will neither be a Dyck path nor a Motzkin path since this

path will not terminate on the x-axis. If k = 1, then we get that M1,n is equal to

the number of Motzkin paths of length n.

6.1 Enumeration of k-coloured Motzkin paths

Let s = s1s2 · · · sn ∈ S∗. We say two indices, i, j ∈ [n] = 1, 2, · · ·n with i < j,

are called conjugates with respect to s if and only if j is the smallest element in

{i+ 1, i+ 2, · · ·n} for which the subpath sisi+1 · · · sj is a k-coloured Motzkin path.

From this definition we see that the subpath must have horizontal step coloured by

k-colours and the conjugate steps must also be in this path.

A k-coloured Motzkin path, s ∈ S∗, is called a k-coloured c-Motzkin path if and

only if every i ∈ [n], with si neither a u nor a d, lies between two conjugate indices.

We will denote the number of these paths by cMk,n.

Note: what the definition is saying is that all the level steps in a k-coloured Motzkin

path must lie between two conjugates. Clearly the first step cannot be a level step

because there won’t be a step before it and hence it won’t lie between two conjugates.

From this restriction, we also have that for the first level step that lies on the x-axis,
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there must be a d before it. This d step will not have a conjugate because you

cannot have a Motzkin path which starts with a d step.

From this note, we see that the k-coloured c-Motzkin paths don’t have any level

steps on the x-axis.

Let Mk be the set of k-coloured Motzkin paths and cMk be the set of k-coloured

c-Motzkin paths. The initial rise of a nonempty path s = s1s2 · · · sn ∈ S∗, with

s1 = u, is the segment s1s2 · · · sj where sv = u for all v ∈ [j] and sj+1 6= u. If s1 6= u

then the initial rise of s is the empty step, i.e., the path is either empty or it starts

with a horizontal step. We will denote the length of the initial rise of path s by i(s).

It is easy to see that i(s) ≥ |s|d.

LetMk(x, y, z) be the generating function for k-coloured Motzkin paths and cMk(x, y, z)

be the generating function for k-coloured c-Motzkin paths according to length, l,

number of u steps, r, and length of the initial rise, i.

Thus,

Mk(x, y, z) =
X
s∈Mk

xl(s)yr(s)zi(s) and cMk(x, y, z) =
X

s∈ cMk

xl(s)yr(s)zi(s).

Proposition 4 The generating functions for Mk(x, y, z) and cMk(x, y, z) are given

by

Mk(x, y, z) =
1 + kxMk(x, y)

1− x2yzMk(x, y)
, (6.1.1)

and
cMk(x, y, z) =

1

1− x2yzMk(x, y)
. (6.1.2)

Proof 21 For (6.1.1), there are two cases we need to consider, when k = 0 and

secondly, when k 6= 0.

i) In this case, any nonempty path s ∈ M0 can be uniquely decomposed into the

form s = uwdv, where w, v ∈ M0. From this decomposition, we find the following

relationships:

l(s) = l(w) + 2 + l(v)
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i(s) = 1 + i(w)

r(s) = 1 + r(w) + r(v).

Thus,

Mk(x, y, z) = 1 +
X
s∈Mk

xl(s)yr(s)zi(s)

= 1 +
X

w,v∈Mk

xl(w)+2+l(v)y1+r(w)+r(v)z1+i(w)

= 1 + x2yz
X
w∈Mk

xl(w)yr(w)zi(w)
X
v∈Mk

xl(v)yr(v)

= 1 + x2yzMk(x, y, z)Mk(x, y)

=
1

1− x2yzMk(x, y)
.

ii) In this case, every nonempty s ∈ Mk can be uniquely decomposed into either

s = µtw, where w ∈ Mk and µt can be any of the k-coloured horizontal steps,

i.e., µt ∈ S \ {u, d}, or s = uwdv, where w, v ∈Mk.

From the first decomposition we get,

l(s) = l(w) + 1

i(s) = 0

r(s) = r(w),

and from the second, we get,

l(s) = l(w) + 2 + l(v)

i(s) = 1 + i(w)

r(s) = 1 + r(w) + r(v).

Combining these two decompositions into one generating function gives,

Mk(x, y, z) = 1 +
kX
t=1

X
w∈Mk

xl(µtw)yr(w) +
X

w,v∈Mk

xl(w)+2+l(v)y1+r(w)+r(v)z1+i(w)
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= 1 + x
kX
t=1

X
w∈Mk

xl(w)yr(w) + x2yz
X
w∈Mk

xl(w)yr(w)zi(w)
X
v∈Mk

xl(v)yr(v)

= 1 + xkMk(x, y) + x2yzMk(x, y, z)Mk(x, y)

=
1 + xkMk(x, y)

1− x2yzMk(x, y)
.

This proves the first part of the proposition. Now for the second part, we have, every

nonempty s ∈ cMk can be uniquely decomposed into s = uwdv, where w ∈ Mk and

v ∈ cMk.

From this decomposition, we find the following relationships:

l(s) = l(w) + 2 + l(v)

i(s) = 1 + i(w)

r(s) = 1 + r(w) + r(v).

Thus,

cMk(x, y, z) = 1 +
X

s∈ cMk

xl(s)yr(s)zi(s)

= 1 +
X

v∈ cMk

X
w∈Mk

xl(w)+2+l(v)y1+r(w)+r(v)z1+i(w)

= 1 + x2yz
X
w∈Mk

xl(w)yr(w)zi(w)
X

v∈ cMk

xl(v)yr(v)

= 1 + x2yzMk(x, y, z) cMk(x, y), (6.1.3)

substituting z = 1, we get,

cMk(x, y) =
1

1− x2yMk(x, y, z)
.

We then substitute our equation above and (6.1.1) into (6.1.3) to get

cMk(x, y, z) = 1 + x2yzMk(x, y, z)
1

1− x2yMk(x, y)

=
1− x2y

�
Mk(x, y)− zMk(x, y, z)

�
1− x2yMk(x, y)
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=

1− x2y
 
Mk(x, y)− z 1 + xkMk(x, y)

1− x2yzMk(x, y)

!
1− x2yMk(x, y)

=

1− x2y

�
Mk(x, y)− zx2y

�
Mk(x, y)

�2 − z − zkxMk(x, y)
�

1− x2yzMk(x, y)

1− x2yMk(x, y)
,

(6.1.4)

after making the substitution z = 1 and cross multiplying (6.1.1), we find that it has

the quadratic form given by,

x2y
�
Mk(x, y)

�2 − (1− xk)Mk(x, y) + 1 = 0, (6.1.5)

substituting this equation into (6.1.4) gives

cMk(x, y, z) =

1− x2y
�
Mk(x, y)− z((1− xk)Mk(x, y, z)− 1)− z − zkxMk(x, y)

�
1− x2yzMk(x, y)

1− x2yMk(x, y)

=

1− x2yM
k(x, y)− zMk(x, y)

1− x2yzMk(x, y)

1− x2yMk(x, y)

=
1

1− x2yzMk(x, y)
,

which is what we wanted to show.

Solving the quadratic formula, (6.1.5), and discarding the spurious solution, we get,

Mk(x, y) =
1− xk −

È
(1− xk)2 − 4x2y

2x2y
. (6.1.6)

In the above formula, making the substitutions k = 0 and x = 1, we correctly get

the generating function for Dyck paths according to semilength, coded by y. Thus,

Mk(y) =
1−
√

1− 4y

2y
.

If we make the substitutions k = 1 and y = 1, we correctly get the generating
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function for Motzkin paths according to length, i.e.,

M1(x) =
1− x−

È
(1− x)2 − 4x2

2x2
.

If we make the substitutions k = 2 and y = 1, we correctly get the generating

function for Motzkin paths according to length, i.e.,

M2(x) =
1− 2x−

È
(1− 2x)2 − 4x2

2x2

=
1− 2x−

√
1− 4x

2x2

=
−1

x
+
D(x)

x
.

Thus,

[xn]M2(x) = [xn+1](D(x)− 1) = Cn+1.

This shows us that the number of Motzkin paths of length n, whose horizontal steps

are coloured by means of two colours, is equal to the number of Dyck paths with

n+ 1 up steps.

Now, from above, we see that

M2(x) =
D(x)− 1

x
= D2(x) = C2(x),

which leads to,
cM2(x) =

1

1− x2C2(x)
.

Thus, the generating function for 2-coloured c-Motzkin paths is equal to the gen-

erating function for Fine numbers, (2.4.3). So, we conclude that the number of

2-coloured c-Motzkin paths of length n is equal to the nth fine number, fn.

Let Mk
n be the number of k-coloured Motzkin paths of length n and cMk

n be the

number of k-coloured c-Motzkin paths of length n.

Proposition 5 For every k, h, n, r ∈ N with r ≤ bn
2
c, we have

mk+h
n,r =

nX
j=2r

 
n

j

!
mk
j,rh

n−j =
nX

j=2r

 
n

j

!
mh
j,rk

n−j,
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and

mk+h
n =

nX
j=0

 
n

j

!
mk
jh

n−j =
nX
j=0

 
n

j

!
mh
j k

n−j.

Proof 22 Considering (6.1.6), we find that for every k, h ∈ N,

Mk+h(x, y) =
1− (k + h)x−

È
(1− (k + h)x)2 − 4x2y

2x2y

=

1− xh− xk − (1− xh)

s
1− 2xk

1− xh
+
x2k2 − 4x2y

(1− xh)2

2x2y

= (1− xh)

1− x

1− xh
k −

s�
1− k

�
x

1− xh

��2

− 4
�

x

1− xh

�2

y

2
�

x

1− xh

�2

y(1− xh)2

=
Mk

�
x

1− xh
, y
�

1− xh
.

Similarly

Mk+h(x, y) =
Mh

�
x

1− xk
, y
�

1− xk
.

Now, we have

Mk

�
x

1− xh
, y
�

1− xh
=

1

1− xh
X
s∈Mk

�
x

1− xh

�l(s)
yr(s)

=
X
j≥0

b j
2
cX

r=0

mk
j,rx

jyr
1

(1− xh)j+1

=
X
j≥0

b j
2
cX

r=0

mk
j,rx

jyr
X
t≥0

 
−j − 1

t

!
(−xh)t

=
X
j≥0

b j
2
cX

r=0

X
t≥0

mk
j,r

 
j + t

j

!
xj+tyrht

=
X
j≥0

b j
2
cX

r=0

X
n≥j

mk
j,r

 
n

j

!
xnyrhn−j substituting j + t = n
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=
X
n≥0

nX
j=0

b j
2
cX

r=0

mk
j,r

 
n

j

!
xnyrhn−j

=
X
n≥0

bn
2
cX

r=0

nX
j=2r

mk
j,r

 
n

j

!
xnyrhn−j.

So, extracting the coefficients of x and y we get,

mk+h
n,r =

nX
j=2r

mk
j,r

 
n

j

!
hn−j =

nX
j=2r

mh
j,r

 
n

j

!
kn−j,

since mk+h
n,r = mh+k

n,r . This proves the first part of the proposition. For the second

part, we have,

mk+h
n =

bn
2
cX

r=0

mk+h
n,r

=

bn
2
cX

r=0

nX
j=2r

mk
j,r

 
n

j

!
hn−j

=
nX

j=2r

 
n

j

!
hn−jmk

j

=
nX

j=2r

 
n

j

!
kn−jmh

j since mk+h
n = mh+k

n .

Now, we know

m0
j,r =

8<:Cr if j = 2r

0 if j 6= 2r

and

m0
j =

8<:Cb j2 c if j is even

0 if j is odd.

So letting h = 0 in our equation above, we get

mk
n,r =

nX
j=2r

 
n

j

!
m0
j,rk

n−j
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=

 
n

2r

!
Crk

n−2r +
nX

j>2r

 
n

j

!
m0
j,rk

n−j

=
n!

(2r)!(n− 2r)!

(2r)!

(r!)2
kn−2r

r + 1

=
kn−2r

n+ 1

 
n+ 1

r + 1, r, n− 2r

!
.

Now, noting that for k = 1, then m1
n,r counts the number of Motzkin paths of length

n with r up steps, we have,

m1
n,r =

 
n

2r

!
Cr and m1

n =

bn
2
cX

r=0

 
n

2r

!
Cr,

thus giving us a relationship between the enumeration of Motzkin paths and the

enumeration of Dyck paths.

6.2 Powers of generating functions for Motzkin

paths

We now turn our attention to powers of the generating functions for k-coloured

Motzkin paths and k-coloured c-Motzkin paths

Proposition 6 The coefficients of (Mk(x, y))s, with s ∈ N, are given by the formula

[xnyr](Mk(x, y))s =
kn−2rs

n+ s

 
n+ s

s+ r, r, n− 2r

!
where, n, r ∈ N and r ≥ bn

2
c.

Proof 23 Define the function S(x) = xMk(x, y). From (6.1.5), we know Mk(x, y) =

x2y(Mk(x, y))2 + xkMk(x, y) + 1. By making use of our definition, this shows that

S(x) = x[yS2(x) + kS(x) + 1].

Thus, S(x) = xΦ(S(x)) and we can apply LIF (1), with A(z) = S(z), H(λ) =

(yλ2 + kλ+ 1) and G(z) = zs. We start by finding the coefficient of xnyr in Ss(x).
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By applying LIF we have

[xn]Ss(x) =
1

n
[λn−1]sλs−1(yλ2 + kλ+ 1)n

=
s

n
[λn−s]

nX
i=0

 
n

i

!
λi(yλ+ k)i

=
s

n
[λn−s]

nX
i=0

iX
u=0

 
n

i

! 
i

u

!
λi+uyuki−u

=
s

n
[λn−s]

nX
u=0

nX
i=u

 
n

i

! 
i

u

!
λi+uyuki−u

=
s

n
[λn−s]

nX
u=0

2nX
m=2u

 
n

m− u

! 
m− u
u

!
λmyukm−2u where i+ u = m

=
s

n
[λn−s]

2nX
m=0

bm
2
cX

u=0

 
n

m− u

! 
m− u
u

!
λmyukm−2u

=
s

n

bn−s
2
cX

u=0

 
n

s+ u, u, n− s− 2u

!
yukn−s−2u,

with n ≥ m − u, which implies that r ≥ max(0, n − m). Now, for the desired

coefficient,

[xnyr](Mk(x, y))s = [xnyr]x−sSs(x)

= [yr]
s

n+ s

bn
2
cX

u=0

 
n+ s

s+ u, u, n− 2u

!
yukn−2u

=
kn−2rs

n+ s

 
n+ s

s+ r, r, n− 2r

!
.

When s = 1 we get mk
n,r as expected. To find the coefficients of ( cMk(x, y))s we

need to make use of (6.1.2) and the proposition above as can be seen below,

[xnyr]( cMk(x, y))s = [xnyr]

�
1

1− x2yMk(x, y)

�s
from (6.1.2)

= [xnyr]
X
i≥0

 
s+ i− 1

i

!
x2iyi(Mk(x, y))i

= [xnyr]
X
i≥0

 
s+ i− 1

i

!
x2iyi

X
a≥0

X
u≥0

i

a+ i

 
a− i

i+ u, u, a− 2u

!
ka−2uxayu
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=
X
i≥0

 
s+ i− 1

i

!
i

n− i

 
n− i

r, r − i, n− 2r

!
kn−2r,

with i ≤ r and 2r ≤ n.

Proposition 7 The number of all k-coloured C-Motzkin with initial rise of length i

is

[xnyrzi] cMk(x, y) =
kn−2ri

n− i

 
n− i

r, r − i, n− 2r

!
,

where 1 ≤ s ≤ r ≤ bn
2
c

Proof 24

[xnyrzi] cMk(x, y, z) = [xnyrzi]
X
u≥0

x2uyuzu(Mk(x, y))u from 6.1.2

= [xnyrzi]
X
u≥0

x2uyuzu
X
a≥0

X
v≥0

u

a+ u

 
a− u

v + u, v, a− 2v

!
ka−2vxayv,

making the substitutions u = i, r = v + i, n = a + 2i with i > 0, n − i ≥ 2r − i and

n− i ≥ n− r gives the result.

Now, extending our study to all Motzkin paths, we get that the number of all

Motzkin paths of length n, r up steps and with initial rise of length i is

[xnyrzi]Mk(x, y, z) = [xnyrzi]
�
cMk(x, y, z) + kx cMk(x, y, z)Mk(x, y)

�
= [xnyrzi]

�X
u≥0

x2uyuzu(Mk(x, y))u + kx
X
u≥0

x2uyuzu(Mk(x, y))u+1

�
=
kn−2ri

n− i

 
n− i

r, r − i, n− 2r

!
+ k[xn−2i−1yr−i](Mk(x, y))i+1

=

�
kn−2ri(r + 1)

(n− i)(n− i+ 1)

��
(n− i+ 1)!

(r + 1)!(r − i)!(n− 2r)!

�
+

�
kn−2r(i+ 1)(n− 2r)

(n− i)(n− i+ 1)

��
(n− i+ 1)!

(r + 1)!(r − i)!(n− 2r)!

�
=
kn−2r(ni− ri+ i+ n− 2r)

(n− i)(n− i+ 1)

 
n− i+ 1

r + 1, r − i, n− 2r

!
.
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When n = 2r then the result becomes

i

2r − i

 
2r − i
r − i

!
,

which is equal to the number of Dyck paths of semilength r with height of first peak

i as expected. This is because if the length of our Motzkin path is n = 2r, then it

would be a Dyck path.



Chapter 7

CONCLUSION

This thesis studies various properties and parameters in Dyck and Motzkin paths

and shows their relationship to other combinatorial objects such as permutations.

This was done using the methodology of generating functions and extraction of

coefficients using various techniques. For further reading on one of these topics, one

can consult the papers [1], [2], [4], [5], [6], [8], [9], [11], [12], [13], [14], [15], [17], [18].
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