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Preface

A basic requirement of risk management is the ability to quantify risk. In industry,

the most popular tool to do this has been Value-at-Risk. Its simplicity, together

with its easy interpretation as the amount of capital required to only have an α%

chance of ruin, made it attractive. As time wore on, it became clear that Value-at-

Risk was lacking an important property. It did not respect risk diversification. This

has caused much criticism by academics. In their seminal papers [6, 7], Artzner et

al. conceived a set of axioms that a reasonable measure of risk should obey. This

gave rise to the notion of a coherent risk measure. With a set of axioms in place,

much rigorous analysis has been done on the properties of coherent risk measures.

As the theory of coherent risk measures deepened, it became apparent that there

was a non-trivial overlap with a number of other fields; no-arbitrage pricing theory,

convex game theory, convex optimization, insurance risk pricing and utility theory,

to name but a few.

In contrast to the theory of coherent risk measures, the problem of pricing and

hedging derivatives has long been studied. In 1900, Bachelier [8] was among the

first to price derivatives by taking an expectation of the payoff with an appropriate

measure. It was only later, in 1973, that Black, Merton and Scholes [9, 45] con-

nected the pricing of derivatives under an equivalent ‘risk neutral’ measure with the

replication and dynamic hedging of derivatives by trading in the underlying asset.

It is precisely this connection that made the celebrated Black-Scholes-Merton option

pricing model robust enough to become an industrial standard. For the first time,

the pricing of securities moved away from relying on the Law of Large Numbers and

instead used the economically compelling principle of no-arbitrage. The argument

is that the value of a security should be the cost of replicating it. If it were not, it

would be possible for an agent to make a risk free profit by taking a position in the

security and an opposite position in the replicating strategy.

vii
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These developments gave rise to the Fundamental Theorem of Asset Pricing:

Given a financial process S, there are no arbitrage opportunities in the market if

and only if there exists an equivalent measure under which S is a martingale.

In this case, we may price a contingent claim on S by taking its expected payoff under

this measure. This result was first considered by Ross [51] and later by Harrison,

Kreps and Pliska in [29, 28, 43]. Since then, it has been vigorously studied and

extended [12, 16, 17]. See [18, 55] for a thorough survey on this subject.

In a complete market model, the equivalent martingale measure is unique, and

the value of a derivative is unambiguous. The Black-Scholes-Merton model is an

example of this. However, when a model is extended to include market realities, such

as transaction and liquidity costs, there are many equivalent martingale measures

which preclude arbitrage. This produces an interval of no-arbitrage prices. The

infimum and supremum of this price interval respectively represent the lower and

upper no-arbitrage price bounds. In practice, these bounds tend to be quite wide,

and the question of which price to choose arises. See [36, 37, 22] for the mathematical

structure of valuation bounds in incomplete markets.

One approach is to adopt a utility function that specifies an agent’s personal prefer-

ence [30, 31, 41, 13, 25, 24, 40]. The use of a utility function allows the selection of

a unique price, or at least tight price bounds, but suffers from being too subjective.

Another approach, taken by Černý and Hodges [63], is to strengthen the condition

of no-arbitrage to exclude so called ‘good deals’. This leads to good deal bounds

that are tighter than no-arbitrage bounds. Jaschke and Küchler [35, 34] then made

a vital connection between good deal bounds and coherent risk measures; modulo

some technical conditions, they are in one-to-one correspondence. This allows good

deal bounds to be specified in terms of an agent’s appetite for risk. This approach

fills a gap between the preference free no-arbitrage pricing on the one hand, and

the utility based pricing on the other. The valuation bounds associated with a

coherent risk measure are, to some extent, generic and independent of personal

preference, yet tight enough to be used in practice. Jaschke and Küchler go on to

prove an abstract version of the Fundamental Theorem of Asset Pricing in terms

of a coherent risk measure, using mainly algebraic techniques. This result does not

consider martingales and is phrased in terms of the existence of a pricing system

being equivalent to the absence of good deals.



Preface ix

In this work, we will consider the Fundamental Theorem of Asset Pricing in the

context of coherent risk measures.

We begin with a short survey of coherent risk measures, which is an extended version

of [11] and serves as an introductory chapter. Here, our focus will be on exhibiting

the shortcomings of Value-at-Risk and studying coherent alternatives for measuring

risk. The core of our presentation is a characterization of coherent risk measures,

due to Delbaen [15]. This fundamental result is ultimately where the theories of

coherent risk measures and no-arbitrage pricing intersect. This characterization

allows us to generate a plethora of coherent risk measures. In particular, we will

study a popular coherent alternative to Value-at-Risk, called Expected Shortfall

[1, 2, 61, 62]. We also consider the class of distortion risk measures, which arise

from the Choquet Integral [19]. These risk measures have long been considered in

the Actuarial Science literature [69, 67, 66, 64]. Under certain conditions, these risk

measures are coherent, and many of the popular coherent risk measures may be

represented in this context. This approach also leads to new coherent risk measures,

such as the Wang Transform - a risk measure that ‘goes beyond coherence’ [66].

This risk measure is of particular interest as it may be used to recover the CAPM

model, as well as the Black-Scholes-Merton option pricing model.

Next, we examine the Fundamental Theorem of Asset Pricing. We begin with the

finite dimensional setting and present the finite discrete time version of this result

by Harrison and Pliska [29]. In the infinite dimensional setting, it turns out that a

continuous time version of this result does not exist. The condition of no-arbitrage

needs to be complemented with a topological notion, which involves taking the clo-

sure of the set of super-replicable claims. We present a version of the Fundamental

Theorem of Asset Pricing due to Kreps [43], and independently Yan [70], who intro-

duced the stronger condition of no-free-lunch. We achieve this using an argument

in the setting of Lindelöf spaces conceived by Rokhlin [50].

It is worth mentioning that a finite discrete time version of the Fundamental The-

orem of Asset Pricing in terms of the no-arbitrage condition does indeed exist in

the infinite dimensional setting, and was proved by Dalang, Morton and Willinger

in [12].

We then proceed to the work of Jaschke and Küchler [34], where we present their

unified framework. They showed that there is a one-to-one correspondence between

the following economic objects:
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• Coherent risk measures ρ.

• Cones A of acceptable risks, where A = {x : ρ(x) ≤ 0}.

• Partial preferences x º y, meaning that the cash stream x is at least as good

as the cash stream y. This can be expressed as x º y ⇔ x− y ∈ A.

• Valuation bounds π and π where ρ(x) = π(−x) = −π(x).

• Sets K of admissible price systems given by π ∈ K ⇔ π(x) ≥ 0 for all x º 0.

Using an acceptance set (the cone of acceptable risks mentioned above) determined

by a coherent risk measure, they introduce notions of good deals of the first and

second kind. Subsequently, a version of the Fundamental Theorem of Asset Pricing

characterising the condition of no good deals of the second kind is proved. This

results in no good deal valuation bounds that are tighter than no-arbitrage valuation

bounds. Since their approach focuses on using mainly algebraic techniques, they do

not prove a corresponding result for the stronger condition of no good deals of the

first kind.

Using an analogous approach to Kreps and Yan, we introduce the notion of no

near-good deals of the first kind. We then prove the following generalisation of the

Kreps-Yan Theorem, which is the centerpiece of this work.

Theorem Let (Ω,F ,P) be a probability space and X = Lp(P), endowed with the

norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for p = ∞.

Let (M, π) be a market model in X induced by a financial process S and M0 =

π−1(0) ⊂ M be the linear subspace of marketed cashflows at price 0.

Suppose that ρ is a strictly expectation bounded coherent risk measure that is lower

semi-continuous, and that ρA−M0
is the market aware risk measure where A = Aρ.

Then the following statements are true.

(a) There are no near-good deals of the first kind in the market if and only if there

exists Q ∈Me
A(S) with dQ

dP ∈ X∗ = Lq(Q), p−1 + q−1 = 1, under which S is a

martingale.

(b) If there are no near-good deals of the first kind, then

ρA−M (z) = sup
{
EQ[−z] : Q ∈Me

A(S)
}

,

for all z ∈ X.
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(c) If there are no near-good deals of the first kind, then we have the near-good

deal bounds

πA,M0
(z) = inf

{
EQ[z] : Q ∈Me

A(S)
}

and

πA,M0(z) = sup
{
EQ[z] : Q ∈Me

A(S)
}

,

for all z ∈ X. Moreover, these bounds are at least as tight as the no-free-lunch

bounds.

The above result is proved in the abstract setting of Lindelöf spaces and applies to

popular risk measures, such as Expected Shortfall and the Wang Transform. Using

similar techniques, we also recover a partial case of the Fundamental Theorem of

Asset Pricing proved by Staum in [59], where he characterizes the slightly weaker

condition of no near-arbitrage. Whilst the above result appears to be new, it does

not produce tighter price bounds than the results of Staum.

The results in this work draw on elementary techniques from Functional Analysis,

Convex Analysis and Duality Theory. To assist the reader who is not familiar with

these subjects, we have included an appendix, where the required background and

references may be found.

Stuart Cullender

Johannesburg

February 2013



Chapter 1

A Survey of Coherent Risk

Measures

1.1 Preliminaries

Throughout this survey, we will work with a general σ-additive probability space

(Ω,F ,P). The space of (classes of a.e. equal) measurable random variables X : Ω →
R is denoted by L0(Ω,F ,P), or L0(P) if there is no confusion possible.

If we equip L0(P) with the topology of convergence in probability, we reflect a

natural mode of convergence therein; it is well known that this topology is not

normable. Recall that a sequence of random variables (Xn) ⊂ L0(P) converges to

X in probability if, for all ε > 0, we have

lim
n→∞P[|Xn −X| ≥ ε] = 0.

This is equivalent to the condition limn→∞ E[|Xn −X| ∧ 1] = 0.

By L∞(Ω,F ,P) or L∞(P), we mean the Banach space of all essentially bounded

random variables. That is, all X ∈ L0(P) for which the norm

‖X‖∞ := inf{K > 0 : P[|X| > K] = 0}

is finite. Notice how this norm does not depend on the underlying probability space.

The Banach spaces of p-integrable random variables are denoted by Lp(Ω,F ,P) or

Lp(P), where 1 ≤ p < ∞. These are the random variables X ∈ L0(P) for which the

1



Ch. 1 A Survey of Coherent Risk Measures §1.1 Preliminaries 2

norm

‖X‖p :=
(∫

Ω
|X|p dP

)1/p

is finite. By Hölder’s Inequality, it follows that

L∞(P) ⊂ Lp2(P) ⊂ Lp1(P) ⊂ L0(P)

for all 1 ≤ p1 < p2 < ∞.

For 1 < p < ∞, let q be such that p−1+q−1 = 1. Then the dual space (the space of all

bounded linear functionals) of Lp(P), denoted by Lp(P)∗, is isometrically isomorphic

to Lq(P). The isometry from Lq(P) onto Lp(P)∗ is given by the mapping g 7→ f∗g
defined by

〈f, f∗g 〉 =
∫

Ω
fg dP

for all f ∈ Lp(P). Hölder’s Inequality shows that this mapping is well defined and

the Radon-Nikodým Theorem ensures that this mapping is surjective. In the case

p = 1, the dual of L1(P) is L∞(P).

The spaces Lp(P) are reflexive for 1 < p < ∞. That is, the canonical isometry

Lp(P) ↪→ Lp(P)∗∗ is surjective so that Lp(P) = Lp(P)∗∗. The spaces L1(P) and

L∞(P) are not reflexive. The dual of L∞(P) is the Banach space ba(Ω,F ,P) of

all finitely additive measures µ of bounded variation on (Ω,F) such that µ(E) = 0

when P(E) = 0 for all E ∈ F . Here, ba(Ω,F ,P) is equipped with the variation

norm defined by ‖µ‖ = |µ|(Ω) := supP
∑

A∈P |µ(A)|, where the supremum is taken

over all measurable, finite, pairwise-disjoint partitions P of Ω. We will use the no-

tation ba(P) if there is no chance of confusion. Consequently, we have the canonical

embedding L1(P) ↪→ ba(P), which is not surjective. It can also be shown that L1(P)

has no predual; i.e. it is not the dual of any normed space.

We shall, via the Radon-Nikodým Theorem, tacitly associate countably additive

measures Q such that Q ¿ P with their corresponding densities f := dQ
dP in L1(P).

In order for Q to be a probability measure, we must have f ≥ 0 and E[f ] = 1. In

the case where P[f > 0] = 1, the induced measure Q is equivalent to P.

We conclude this section with a characterization of convex cones C ⊂ L∞(P) that

are weak* closed. The Krein-Sḿulian Theorem says that for a Banach space X, a

convex set C ⊂ X∗ is weak* closed if and only if C ∩ λball(X∗) is weak* closed for

all λ. When X = L∞(P) and C is a cone, this result may be extended as follows (cf.

[18, Proposition 5.2.4]).
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Proposition 1.1.1 Let C be a convex cone in L∞(P). The following statements

are equivalent:

(a) C is weak* closed.

(b) C ∩ ball(L∞(P)) is weak* closed.

(c) C ∩ ball(L∞(P)) is ‖ · ‖p-closed for every 0 < p < ∞.

(d) C ∩ ball(L∞(P)) is ‖ · ‖p-closed for some 0 < p < ∞.

(e) C ∩ ball(L∞(P)) is closed with respect to the topology of convergence in prob-

ability.

In the literature, the above result is attributed to Grothendieck in [27, Part 4,

Chapter 5, Exercise 1].

1.2 Introduction to Risk Measurement

1.2.1 The Risk Measurement Model

There are a myriad of risks a financial institution may face [68]. A financial in-

stitution’s ability to accurately measure its market risk is central to determining

capital adequacy requirements. Market risk is defined as the potential for unex-

pected change in a financial position due to fluctuations in market prices.

Market risk lends itself more naturally to quantification than other types of risk.

For this reason, we will only concern ourselves with market risk in this work.

We consider a simple one-step model consisting of two time points; today and some

point in the future. Let us fix a probability space (Ω,F ,P) and denote the random

variable of future profits and losses (P&L) by X : Ω → R. We will sometimes refer

to X as a position. For simplicity, it is assumed that all random profits and losses

in the future have been discounted to today. This is equivalent to assuming that the

risk free interest rate is zero.

Our aim is to associate with a given P&L distribution of a portfolio X, a number

ρ(X) that represents the risk of the position. This number can represent the ‘value
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at risk’ or ‘capital requirement’ or ‘margin’ required to hold the position X. We

formalize this with a definition:

Definition 1.2.1 (Risk Measure) Let (Ω,F ,P) be a probability space and A ⊂
L0(P). Then ρ : A → R ∪ {∞} is called a risk measure.

The properties we impose on ρ determine the size of A. Obviously, the more restric-

tions we place on a risk measure, the smaller its domain will become. In order for a

risk measure to be sufficiently useful, we at least require that L∞(P) ⊆ A.

1.2.2 Quantiles

We recall the notion of a quantile and related elementary results.

Definition 1.2.2 (Quantiles) Let X ∈ L0(P) and α ∈ (0, 1).

(a) x is called an α-quantile of X if P[X ≤ x] = α.

(b) The lower α-quantile of X is defined by

x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α}.

(c) The upper α-quantile of X is defined by

x(α) = qα(X) = inf{x ∈ R : P[X ≤ x] > α}.

It follows from the definition that x(α) ≤ x(α). Observe that we may write

x(α) = sup{x ∈ R : P[X ≤ x] < α}

and

x(α) = sup{x ∈ R : P[X ≤ x] ≤ α}.

We also have the following proposition, the proof of which is an easy exercise.

Proposition 1.2.3 Let X ∈ L0(P) and α ∈ (0, 1) then

(a) qα(X) = −q1−α(−X) and qα(X) = −q1−α(−X).
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(b) x(α) = x(α) if and only if P[X ≤ x] = α for at most one x, i.e. there is at

most one α-quantile x.

(c) In the case where there is no α-quantile x associated with α, we have

P[X = x(α)] = P[X = x(α)] > 0

and

P[X ≤ x(α)] = P[X ≤ x(α)] > α.

(d) If x(α) < x(α) then

{x ∈ R : P[X ≤ x] = α} =

{
[x(α), x

(α)), P[X = x(α)] > 0;

[x(α), x
(α)], P[X = x(α)] = 0.

We are now prepared to define Value-at-Risk.

1.2.3 Value-at-Risk

One of the most popular risk measures used in industry is called Value-at-Risk

(VaR). This risk measure seeks to answer the following question:

Given a profit and loss distribution of a portfolio X, what is the minimum loss

incurred in α% of the worst cases?

The number α ∈ (0, 1) is known as the significance level and is usually set to a small

value (e.g. α = 0.05 or α = 0.01). Let us denote the answer to this question by

VaR α(X). Then, if the capital requirement of the position X is set to VaR α(X),

the probability of ruin is no greater than α. Thus, VaR is a risk measure that is

only concerned with the frequency of a disaster, not with the extent of it. In view

of this, VaR can be expressed in terms of a quantile.

The above shows that for α ∈ (0, 1), we may have many corresponding α-quantiles,

or none at all. Thus, choosing a definition for VaR is not obvious. We follow [15]

with the following definition. See Figure 1.2 for an illustration.

Definition 1.2.4 (Value-at-Risk) Let X : Ω → R denote the random variable

of profits and losses of some portfolio. Then, for α ∈ (0, 1), we define Value-at-Risk

at level α to be the quantity

VaR α(X) = −qα(X) = −x(α).
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The position X is said to be acceptable if VaR α(X) ≤ 0.

P&L Distribution

P&L Distribution

VaR Loss Profit and Loss over N days

Figure 1.1: VaR at a significance level of α on a normally distributed P&L distri-

bution.

The above definition can also be expressed as VaR α(X) = q1−α(−X). A positive

VaR represents the extra capital required in order to reduce the probability of ruin

to α. A negative VaR implies that capital may be withdrawn from the position or

that more risk can be added to the position. We gather some important properties

of VaR in the following proposition. The proof is straight forward.

Proposition 1.2.5 Let X, Y ∈ L0(P) and α ∈ (0, 1). Then VaR has the following

properties:

(a) X ≥ 0 ⇒ VaR α(X) ≤ 0,

(b) X ≥ Y ⇒ VaR α(X) ≤ VaR α(Y ),

(c) VaR α(λX) = λVaR α(X) for all λ ≥ 0,

(d) VaR α(X + k) = VaR α(X)− k for all k ∈ R.

In particular, we have VaR α(X + VaR α(X)) = 0.

It is clear that the value of VaR α(X) depends only on the distribution of X and not

the underlying probability space. This property is known as law invariance, which

we will formalize later. In fact, VaR is law invariant in a very strong sense; it is not

hard to think of different P&L distributions that produce the same VaR number

(See Figure 1.1).
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P&L Distribution

P&L Distribution

VaR Loss Profit and Loss over N days

Figure 1.2: An example of a different distribution with the same VaR as Figure 1.1.

Since VaR α(X) is defined for every X ∈ L0(P), one might suspect that such a high

level of generality means that VaR could be missing an important property. Such

suspicions would be well founded as it turns out that VaR is not sub-additive (i.e.

VaR does not respect portfolio diversification). In other words, it is not always true

that VaR α(X +Y ) ≤ VaR α(X)+VaR α(Y ). Consider the following simple example

[68].

Example 1.2.6 Consider a portfolio consisting of a short out-the-money put and a

short out-the-money call, written on the same asset. Suppose that each option has

only a 4% chance of being in the money at maturity. Then the 95%VaR of each

option will be zero. However, the combined portfolio has an 8% chance of being

in-the-money, which means the 95%VaR is non-zero. Thus, the sum of individual

risks of the options is smaller than the risk of the combined position.

Figure 1.3 shows the payoff diagram of the position in Example 1.2.6. Figure 1.4

shows a 7-day VaR surface simulation. Figure 1.5 shows the diversification benefit

from combining the risks of the individual options, i.e. the difference between the

sum of the individual risks and the risk of the combined position. Notice how the

diversification benefit drops below zero.

It can be shown that VaR α is sub-additive on risks with elliptical distributions

provided that 0 < α < 0.5. For more examples of risks for which VaR fails to be

sub-additive the reader may consult [6, 7, 61].

The lack of sub-additivity makes it difficult to decentralize risk management in

financial institutions because the aggregation of risks of components of an institution

does not provide an upper bound for the risk faced by the institution as a whole.
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Figure 1.3: The payoff of the portfolio from Example 1.2.6, containing a short call

struck at $35 and a short put struck at $25. The notional size of each option is

$100.

This problem may be compounded in the presence of a regulatory body that enforces

capital adequacy requirements. Indeed, the institution may be tempted to create

more subdivisions to artificially lower the perceived risk. For more on the virtues

and shortcomings of VaR the reader can consult [23] and the references contained

therein.

1.3 Coherent Risk Measures

1.3.1 Coherency Axioms

Value-at-Risk has been heavily criticized for its failure to consider the extent of a loss

in the event of a disaster, as well as for its lack of sub-additivity [6, 7, 23]. In view

of these shortcomings, Artzner et al. sought to axiomatize the desirable properties

one would expect from a risk measure [6, 7]. This gave rise to a new class of risk

measures known as ‘Coherent Risk Measures’. We use the definition from [15].

Definition 1.3.1 (Coherent Risk Measure) A mapping ρ : L∞(P) → R is

called a coherent risk measure if the following properties hold:
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Figure 1.4: The 7-day VaR surface of the portfolio in Example 1.2.6.
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Notice how the diversification benefit drops below zero.
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(a) Monotonicity: For all X ∈ L∞(P)+ we have ρ(X) ≤ 0.

(b) Sub-additivity: for all X1, X2 ∈ L∞(P) we have ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

(c) Positive homogeneity: for all X ∈ L∞(P) we have ρ(λX) = λρ(X) for all

λ > 0.

(d) Translation invariance: for all X ∈ L∞(P) we have ρ(X + a) = ρ(X)− a for

all constant functions a.

The above properties have important financial interpretations:

Monotonicity: If a position X is positive (i.e. X ∈ L∞(P)+), then it means

that the position cannot lose money. This constitutes an acceptable position and is

represented by ρ(X) ≤ 0. As with VaR , this means that we can withdraw capital

from the position, or take on more risk.

Sub-Additivity: To repeat what has been mentioned above, we require that a

coherent risk measure not punish its user for diversifying risk.

Positive Homogeneity: This is a natural requirement; the size of the risk of a

position should scale with the size of the position.

Translation Invariance: Adding or removing a fixed amount of capital from

a position alters risk of that position by the same amount. In particular, we have

ρ(X + ρ(X)) = ρ(X) − ρ(X) = 0. Thus, the risk of a position represents the

additional capital required to make that position acceptable.

According to the above definition, a coherent risk measure cannot take the value

±∞. Also, the domain of a coherent risk measure has been restricted to L∞(P).

The reason for this caution is due to the following negative result, proved in [15,

Theorem 5.1].

Theorem 1.3.2 If the probability space (Ω,F ,P) is atomless, then there is no real-

valued coherent risk measure on L0(P).

Proof. Suppose that there exists a coherent risk measure ρ : L0(P) → R. Define

the translation invariant sub-modular function ψ : L0(P) → R by ψ(X) = ρ(−X)

for each X ∈ L0(P). Then, ψ has the following obvious properties:
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• X ∈ L0(P), X ≤ 0 ⇒ ψ(X) ≤ 0,

• X1, X2 ∈ L0(P) ⇒ ψ(X1 + X2) ≤ ψ(X1) + ψ(X2),

• X ∈ L0(P) ⇒ ψ(λX) = λψ(X) for all λ > 0,

• X ∈ L0(P) ⇒ ψ(a + X) = ψ(X) + a for all constant functions a.

We will now show that ψ implies the existence of a non-zero positive linear functional

on the vector lattice L0(P). This contradicts the fact that the only order bounded

linear functional on L0(P) is the zero function, since all positive linear functionals

are order bounded (see [72] for an example).

To this end, observe that ψ(1) = 1. Indeed, homogeneity implies that ψ(0) =

ψ(2 · 0) = 2ψ(0) which gives ψ(0) = 0. Now, using the translation invariance, we

obtain ψ(1) = ψ(0 + 1) = ψ(0) + 1 = 1 as required.

Consider the subspace M = {α · 1 : α ∈ R} ⊂ L0(P). Using translation invariance

and homogeneity, it is easy to see that ψ|M is a linear functional on M . By the

Hahn-Banach Theorem (in its most general form), there exists a linear functional

f : L0(P) → R that extends ψ|M with f(X) ≤ ψ(X) for all X ∈ L0(P). To see

that f is positive, let X ≥ 0. Then −f(X) = f(−X) ≤ ψ(−X) ≤ 0, from which

f(X) ≥ 0 follows. The fact that f(1) = 1 completes the proof. 2

The above result allows for a distribution-free proof of the incoherency of VaR .

Corollary 1.3.3 VaR is not a sub-additive risk measure. Consequently, VaR is

not coherent.

Proof. Let ρ be defined by ρ(X) = VaR α(X) for some α ∈ (0, 1). Then, as we

have seen, ρ satisfies the properties of monotonicity, homogeneity and translation

invariance. If ρ were sub-additive, then ρ would be a coherent risk measure with

ρ : L0(P) → R. This contradicts the above result. 2

Not to be discouraged by the above theorem, Delbaen [15] extended the notion of

a coherent risk measure to all of L0(P) by allowing the risk measure to take on the

value ±∞. The interpretation is as follows: If X is a very risky position in the sense

that no amount of capital added to the position will make it acceptable, the risk

assigned to this position would be ∞. It is absurd to assign the risk of the position
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X a value of −∞, because it would mean that an arbitrary amount of capital could

be withdrawn from the position, and the position would remain acceptable. We do

not exhibit Delbaen’s extension to L0(P) here and continue in the setting of L∞(P),

safe in the knowledge that it can be extended if necessary.

1.3.2 Additional Properties for Risk Measures

Some additional properties for risk measures found in the literature [61, 15, 44, 67]

are:

Definition 1.3.4 If ρ is a risk measure, then

(a) ρ is said to satisfy the Fatou Property if ρ(X) ≤ lim inf ρ(Xn) for every se-

quence of random variables (Xn) with supn ‖Xn‖∞ ≤ 1 that converges to a

limit X in probability,

(b) ρ is law invariant if P(X ≤ t) = P(Y ≤ t) for all t ∈ R implies ρ(X) = ρ(Y )

for any random variables X and Y ,

(c) ρ is co-monotonically additive if for Z ∈ L0(P) and increasing functions f, g

with f ◦ Z, g ◦ Z ∈ L0(P), we have ρ(f ◦ Z + g ◦ Z) = ρ(f ◦ Z) + ρ(g ◦ Z).

We explain the interpretations of the above properties:

Fatou Property: It can be shown, in a similar way to the proof of Fatou’s

Lemma, that the Fatou Property is equivalent to 0 ≤ Xn ≤ 1, Xn ↓ 0 ⇒ ρ(Xn) ↑ 0.

Thus, the Fatou Property implies a type of continuity with respect to the partial or-

dering on L0(P). This property is required when working with σ-additive probability

spaces. All the coherent risk measures we consider will have the Fatou Property.

Law Invariance: The risk associated with a position X depends only on the

distribution of X. This property ensures that other factors, such as the structure

of the underlying probability space, do not influence the risk associated with the

position X.

Co-Monotonic Additivity: Two random variables X and Y are said to be co-

monotone if there exist increasing functions f, g and a random variable Z such that

X = f ◦ Z and Y = g ◦ Z. Thus, if X and Y are co-monotone they share the same
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source of uncertainty. This can be viewed as a probability-free way of saying that X

and Y are perfectly correlated, i.e. neither random variable provides a diversification

benefit for the other. The property of co-monotonic additivity says that there is no

diversification benefit to be gained from aggregating co-monotone risks.

As mentioned before, VaR is law invariant. It also turns out that VaR is co-

monotonically additive. This follows easily from the identity

qα(u ◦X) = u ◦ qα(X) (1.3.1)

where u : R → R is an increasing function with no discontinuities in common with

the distribution FX of X. A corresponding statement holds for lower α-quantiles.

The proof of (1.3.1) is simple when both u and FX are assumed to be one-to-one.

Indeed, we have

Fu(X)(x) = P[u(X) ≤ x] = P[X ≤ u−1(x)] = FX(u−1(x)) = FX ◦ u−1(x).

Taking inverses on both sides, we arrive at (1.3.1). We omit the more complicated

general case, which can be found in [19, Proposition 4.1].

1.3.3 Characterizations of Coherent Risk Measures

In this section, we present an important characterization of coherent risk measures

with the Fatou Property, due to Delbaen [15]. This characterization will allow us to

generate numerous examples of coherent risk measures.

Theorem 1.3.5 (Delbaen) For a coherent risk measure ρ : L∞(P) → R, the

following statements are equivalent:

(a) ρ satisfies the Fatou Property.

(b) There is a ‖ · ‖1-closed, convex set P of probability measures, all of which are

absolutely continuous with respect to P, such that

ρ(X) = sup
Q∈P

EQ[−X]

for all X ∈ L∞(P).
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(c) The convex cone Cρ := {X ∈ L∞(P) : ρ(X) ≤ 0} ⊃ L∞(P)+ is weak* closed

and uniquely determines ρ via the relation ρ(X) = inf{γ ∈ R : X + γ ∈ Cρ}.

Proof. (a)⇒(c) Suppose that ρ satisfies the Fatou Property. By the positive

homogeneity and sub-additivity of ρ, it follows that Cρ is a (convex) cone. The

monotonicity of ρ implies L∞(P)+ ⊂ Cρ.

To see that ρ(X) = inf{γ ∈ R : X +γ ∈ Cρ}, observe that for all γ ∈ R with X +γ ∈
Cρ, we have by translation invariance ρ(X) − γ = ρ(X + γ) ≤ 0. Thus ρ(X) ≤ γ.

Moreover, since ρ(X + ρ(X)) = 0 it follows that ρ(X) ∈ {γ ∈ R : X + γ ∈ Cρ},
which proves the claim.

It remains to show that Cρ is weak* closed. By Proposition 1.1.1, we need only

show that Cρ ∩ ball(L∞(P)) is closed in probability. To this end, let (Xn) ⊂ Cρ ∩
ball(L∞(P)) be a sequence of random variables that converges in probability to

X. The Fatou Property implies that ρ(X) ≤ lim inf ρ(Xn) ≤ 0. Thus, X ∈ Cρ ∩
ball(L∞(P)) so that Cρ is weak* closed.

(b)⇒(a) For each Q ∈ P we have, by Fatou’s Lemma,

EQ[−X] ≤ lim inf
n→∞ EQ[−Xn] ≤ lim inf

n→∞ ρ(Xn)

for any sequence (Xn) ⊂ ball(L∞(P)) that converges to X in probability. Taking

the supremum over P on the left hand side of the inequality shows that ρ has the

Fatou Property.

(c)⇒(b) Consider the duality pair (L1(P), L∞(P), 〈·, ·〉) where 〈f, g〉 := EP[fg] for

each f ∈ L1(P) and g ∈ L∞(P). Then, the polar set C◦
ρ ⊂ L1(P) of the convex cone

Cρ ⊂ L∞(P) is given by

C◦
ρ = {f ∈ L1(P) : EP[fX] ≥ 0 ∀ X ∈ Cρ}.

Since L∞(P)+ ⊂ Cρ, it follows that C◦
ρ ⊂ L1(P)+. Moreover, C◦

ρ is a convex cone

that is weakly closed (and thus norm closed). Define the set of measures

P = {f ∈ C◦
ρ : dQ = fdP defines a probability measure}

= {f ∈ C◦
ρ : EP[f ] = 1}.

It is not difficult to check that P is convex and ‖ · ‖1-closed. Also, we may write

C◦
ρ =

⋃
λ≥0 λP. Indeed, since C◦

ρ is a cone, we have the inclusion
⋃

λ≥0 λP ⊂ C◦
ρ .
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For the reverse inclusion, suppose there exists f ∈ C◦
ρ \

⋃
λ≥0 λP. Then EP[f ] 6= λ

for all λ ≥ 0. This is impossible because f is positive.

By the assumption, Cρ is weak* closed. The Bi-Polar Theorem implies Cρ = C◦◦
ρ =

(
⋃

λ≥0 λP)◦. Thus,

Cρ =



X ∈ L∞(P) : EP[Xf ] ≥ 0 ∀ f ∈

⋃

λ≥0

λP




= {X ∈ L∞(P) : EP[Xf ] ≥ 0 ∀ f ∈ P}
= {X ∈ L∞(P) : EQ[X] ≥ 0 ∀ Q ∈ P}.

Consequently, ρ(X) ≤ 0 if and only if EQ[X] ≥ 0 for all Q ∈ P. This gives

ρ(X) = inf{γ ∈ R : X + γ ∈ Cρ}
= inf{γ ∈ R : EQ[X + γ] ≥ 0 ∀ Q ∈ P}
= inf{γ ∈ R : EQ[−X] ≤ γ ∀ Q ∈ P}
= sup{EQ[−X] : Q ∈ P},

which concludes the proof. 2

From the proof of the above theorem, it can be seen that there is a one-to-one

correspondence between

(a) coherent risk measures ρ possessing the Fatou Property,

(b) closed, convex sets of probability measures P ⊂ L1(P),

(c) weak* closed convex cones Cρ ⊂ L∞(P) such that L∞(P)+ ⊂ Cρ.

Remarks and Interpretations

• The set Cρ is known as the set of acceptable positions. The quantity ρ(X)

represents the least (largest) amount of capital that has to be invested (with-

drawn) in (from) the position X to achieve (maintain) an acceptable position.

• A coherent risk measure satisfying the Fatou property can be represented as a

supremum of expectations taken over a collection of probabilities P. One can

interpret P as a range of scenarios, and the quantity ρ(X) as the worst case

scenario.
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Extension to Lp-Spaces

Part of Theorem 1.3.5 can be extended from L∞(P) to Lp(P), where 1 ≤ p < ∞. To

achieve this, we need stronger condition than the Fatou Property on the coherent

risk measure ρ.

Definition 1.3.6 Let 1 ≤ p < ∞. If ρ : Lp(P) → R is a risk measure, then ρ is said

to be continuous if there exists K > 0 such that |ρ(X)| ≤ K‖X‖p for all X ∈ Lp(P).

The following result is due to Inoue [32].

Theorem 1.3.7 Let 1 ≤ p < ∞ and p−1 +q−1 = 1. For a risk measure ρ : Lp(P) →
R, the following statements are equivalent:

(a) ρ is a continuous coherent risk measure.

(b) There exists a set G ⊂ Lq(P)+ with E[g] = 1 for each g ∈ G such that

• supg∈G ‖g‖q < ∞, and

• ρ(X) = supg∈G E[−Xg] for all X ∈ Lp(P).

Proof. (b)⇒(a) By Hölder’s Inequality, we have

ρ(X) ≤ sup{‖g‖q : g ∈ G} · ‖X‖p,

which implies that ρ is continuous. The axioms of coherency are also easily derived

from the definition of ρ.

(a)⇒(b) Let X ∈ L∞(P) and let Xn be a sequence in L∞(P) that decreases to X.

Then ‖Xn−X‖p → 0 by the order continuity of ‖·‖p. By the continuity of ρ we have

ρ(Xn) → ρ(X), which implies that ρ|L∞(P) has the Fatou Property. By Theorem

1.3.5, there exists a set G of non-negative random variables g with E[g] = 1 such

that

ρ|L∞(P)(X) = sup
g∈G

E[−Xg],

for all X ∈ L∞(P). Since ρ is continuous, it follows that

ρ|L∞(P)(−X) = sup
g∈G

E[Xg] ≤ K‖X‖p.
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Consequently,

E[Xg] ≤ K‖X‖p

for all X ∈ L∞(P) and g ∈ G. This implies that the functional fg ∈ Lp(P)∗ defined

on the dense subset L∞(P) by the action fg(X) = E[Xg] has norm ‖fg‖ ≤ K for all

g ∈ G. This shows that

ρ(X) = sup
g∈G

E[−Xg]

is defined for all X ∈ Lp(P) and that supg∈G ‖g‖q < ∞. 2

This result can be extended to include lower semi-continuous coherent risk measures,

as is done in [46] for L1(P). We present a version for Lp(P).

Definition 1.3.8 Let 1 ≤ p ≤ ∞. If ρ : Lp(P) → R is a risk measure, then ρ is said

to be lower semi-continuous (resp. upper semi-continuous) if for every c ∈ R, the

set

{X ∈ Lp(P) : ρ(X) ≤ c} (resp. {X ∈ Lp(P) : ρ(X) ≥ c})

is closed with respect to the topology under consideration.

Theorem 1.3.9 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed with

the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞. For a risk measure ρ : Lp(P) → R, the following statements are equivalent:

(a) ρ : X → R is a lower semi-continuous coherent risk measure.

(b) There exists a closed set G ⊂ X∗
+ with E[g] = 1 for each g ∈ G such that

• ρ(f) = supg∈G E[−fg] for all f ∈ X.

(c) The convex cone Cρ := {f ∈ X : ρ(f) ≤ 0} ⊃ X+ is closed and uniquely

determines ρ via the relation ρ(x) = inf{γ ∈ R : x + γ ∈ Cρ}.

Proof. (a)⇒(c) Follows directly from Theorem 1.3.5 and the lower semi-continuity

of ρ.

(c)⇒(b) The proof is completely analogous to the argument used in Theorem 1.3.5.
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(b)⇒(a) The fact that ρ is coherent follows easily from its definition in (b). Since

the supremum of a collection of continuous functions is lower semi-continuous (cf.

[4, Lemma 2.41]), we have (a). 2

Observe that the Fatou Property is in fact lower-semi continuity with respect to the

weak* topology on L∞(P). This topology corresponds to the topology induced by

bounded convergence in probability by Proposition 1.1.1.

1.3.4 Examples of Coherent Risk Measures

We are now in a position to generate some important examples of coherent risk

measures using Theorem 1.3.5. To this end, fix a probability space (Ω,F ,P) and

consider a coherent risk measure ρ : L∞(P) → R and a position X ∈ L∞(P). For

a set of measures P ⊂ L1(P), we shall denote by coP the closed convex hull with

respect to ‖ · ‖1.

Example 1.3.10 (Largest Coherent Risk Measure) Let

P = co {Q : Q a probability measure with Q¿ P}
= {f ∈ L1(P)+ : EP[f ] = 1}.

This produces the coherent risk measure

ρ(X) = sup
Q∈P

EQ[−X] = ess-sup (−X).

This risk measure gives the maximum loss of the position X. Here, X is acceptable

if and only if X is non-negative. It is clear that using such a risk measure would

stop all financial activities, as it is too conservative.

Example 1.3.11 (Average Loss) Let P = {P}. Then ρ(X) = supQ∈P EQ[−X] =

EP[−X]. A position X is acceptable if and only if its average EP[X] is non-negative.

This risk measure is too tolerant to use in practice.

Example 1.3.12 (Worst Conditional Expectation) Given a significance level

α ∈ (0, 1), let

PWCE = co {P[ · |A] : P[A] > α}.
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This produces the Worst Conditional Expectation

WCE α(X) = sup{EQ[−X] : Q ∈ PWCE } = − inf{E[X|A] : A ∈ F ,P[A] > α}.

If the probability space is atomless then we can replace P[A] > α with P[A] ≥ α. One

should be aware that the definition of Worst Conditional Expectation depends on

the structure of the underlying probability space. The Radon-Nikodým derivative

of Q = P[ · |A] is of the form

dQ
dP

=
1A

P[A]
.

It follows that PWCE is ‖ · ‖∞-bounded by 1/α. Since PWCE is clearly uniformly

integrable, we have that PWCE is weakly compact in L1(P) by the Dunford-Pettis

Theorem.

Unfortunately, WCE is not of much practical use because it is difficult to compute.

We shall remedy this situation with the next example.

Example 1.3.13 (Expected Shortfall) Given a significance level α ∈ (0, 1),

let

PES = {f ∈ L1(P)+ : ‖f‖∞ ≤ 1/α, EP[f ] = 1}.

Note that PES is already closed and convex in L1(P). This produces the risk measure

called Expected Shortfall, given by

ES α(X) = sup{EQ[−X] : Q ∈ PES }
=

1
α

(
E[−X · 1{X≤x(α)}]− x(α)(α− P[X ≤ x(α)])

)
.

We shall prove the above formula later on. In the mean time, notice that PWCE ⊂
PES . Consequently, WCE α(X) ≤ ES α(X) for all X ∈ L∞(P). In the case where

the underlying probability space is atomless, we get PWCE = PES . Clearly, we then

have WCE α(X) = ES α(X) for all X ∈ L∞(P).

By Theorem 1.3.5, ES is a coherent risk measure with the Fatou Property (as are

all the other examples). We can thus avoid the technical proof of the coherency of

ES given in [2, Proposition 3.1].

The above formula for Expected Shortfall is clearly law-invariant and easy to com-

pute. ES can be viewed as the smallest law-invariant risk measure that dominates

WCE . In the next chapter, we shall apply this risk measure to Example 1.2.6.
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We remark that the so called ‘Conditional Value-at-Risk’ introduced in [62] is equiv-

alent to Expected Shortfall. This is shown in [2, Corollary 4.3].

1.4 Expected Shortfall

1.4.1 Definition

In view of Example 1.3.13, we make the following definition:

Definition 1.4.1 Let X ∈ L∞(P) denote the random variable of profits and losses

of a portfolio. Then, for α ∈ (0, 1), we define the Expected Shortfall of X to be

ES α(X) =
1
α

(
E[−X · 1{X≤x(α)}]− x(α)(α− P[X ≤ x(α)])

)
.

As stated earlier in Example 1.3.13, Expected Shortfall is a coherent risk measure.

To justify this, it remains to prove the following result.

Proposition 1.4.2 For X ∈ L∞(P) and α ∈ (0, 1) we have

ES α(X) = sup{EQ[−X] : Q ∈ PES },

where

PES = {f ∈ L1(P)+ : ‖f‖∞ ≤ 1/α, EP[f ] = 1}.

Consequently, ES is a coherent risk measure.

Proof. First note that 1/α > 1 implies that PES is non-trivial, i.e. non-empty and

contains more than just the probability P. Consider a measure Qα with a density

fα := dQα

dP given by

dQα

dP
=





1
α1{X≤x(α)}, P[X = x(α)] = 0;
1
α

[
1{X≤x(α)} + α−P[X≤x(α)]

P[X=x(α)]
1{X=x(α)}

]
, P[X = x(α)] > 0.

(1.4.2)

It is not difficult to check that fα ≥ 0, ‖fα‖∞ ≤ 1/α and EP[fα] = 1. Consequently,

we have Qα ∈ PES . Moreover,

EQα [−X] = EP[−Xfα] =
1
α

(
E[−X · 1{X≤x(α)}]− x(α)(α− P[X ≤ x(α)])

)
.
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To complete the proof, take an arbitrary Q ∈ PES with density f := dQ
dP and define

A = {X ≤ x(α)}. Then, bearing in mind that 0 ≤ f ≤ 1/α and EP[f ] = 1, we

deduce

EQ[−X] =
∫

Ω
(−X) dQ =

∫

A
(−X)f dP+

∫

Ac

(−X)f dP

=
1
α

∫

A
(−X) dP+

∫

A
(−X)

(
f − 1

α

)
dP+

∫

Ac

(−X)f dP

≤ 1
α

∫

A
(−X) dP+

(−x(α)

) ∫

A

(
f − 1

α

)
dP+

(−x(α)

) ∫

Ac

f dP

=
1
α
E[−X · 1A]− x(α)

(
Q(A)− 1

α
P[A] +Q(Ac)

)

=
1
α
E[−X · 1A]− x(α)

(
1− 1

α
P[A]

)

=
1
α

(
E[−X · 1A]− x(α) (α− P[A])

)

= EQα [−X].

This shows that ES α(X) = sup{EQ[−X] : Q ∈ PES }, as required. 2

If the distribution of the position X is continuous at x(α), we have P[X = x(α)] = 0

and P[X ≤ x(α)] = α. In this case, Expected Shortfall reduces to

ES α(X) = E[−X|{X ≤ x(α)}].

In other words, Expected Shortfall coincides with the so-called Tail Conditional

Expectation (TCE). In general, TCE is not coherent. This is because quantiles are

not continuous with respect to any reasonable topology.

Interpretation of Expected Shortfall

The following result [2, Proposition 4.1] provides a financial interpretation of Ex-

pected Shortfall.

Proposition 1.4.3 Let α ∈ (0, 1) and X ∈ L∞(P) be a random variable of profits

and losses. If X1, X2, . . . denotes an independent sequence of random variables with

the same distribution as X, then

ES α(X) = lim
n→∞

−1
bnαc

bnαc∑

i=1

Xi:n
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with probability 1. In fact, convergence holds in ‖ · ‖1-norm as well. Here, the

notation Xi:n denotes the i-th smallest sample in the ranked sequence of n samples

X1, X2, . . . , Xn.

The above result says that Expected Shortfall can be estimated by the average of

α% of the most extreme losses drawn from X. So, in contrast to VaR , ES answers

the following question:

Given a profit and loss distribution of a portfolio X, what is the average loss incurred

in α% of the worst cases?

Therefore, ES is a risk measure that is concerned with the extent of a loss, rather

than just the probability of that loss happening. Intuitively, this should mean that

Expected Shortfall is a more conservative risk measure than Value-at-Risk. This is

confirmed by the following proposition.

Proposition 1.4.4 For X ∈ L∞(P) and α ∈ (0, 1) we have

ES α(X) ≥ E[−X|{X ≤ x(α)}] ≥ VaR α(X).

Proof. For the first inequality, observe

ES α(X) =
1
α

(
E[−X · 1{X≤x(α)}]− x(α)(α− P[X ≤ x(α)])

)

=
1
α

(
E[−X|{X ≤ x(α)}]P[X ≤ x(α)] + x(α)(P[X ≤ x(α)]− α)

)

=
1
α

(
E[−X|{X ≤ x(α)}](P[X ≤ x(α)]− α) + x(α)(P[X ≤ x(α)]− α)

+ αE[−X|{X ≤ x(α)}]
)

=
1
α

(
(E[−X|{X ≤ x(α)}]− (−x(α))︸ ︷︷ ︸

≥0

)(P[X ≤ x(α)]− α︸ ︷︷ ︸
≥0

)

+ αE[−X|{X ≤ x(α)}]
)

≥ 1
α

(
αE[−X|{X ≤ x(α)}]

)

= E[−X|{X ≤ x(α)}].

For the second in equality, notice that

E[−X|{X ≤ x(α)}] ≥ E[−X|{X ≤ x(α)}] ≥ −x(α) = VaR α(X).
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2

We return to Example 1.2.6 with payoff at maturity given by Figure 1.3. Figure 1.6

shows a 7-day ES surface simulation. Figure 1.7 shows the diversification benefit

from combining the risks of the individual options, i.e. the difference between the

sum of the individual risks and the risk of the combined position. In contrast to

the simulation done with VaR in Figures 1.4 and 1.5, notice how the diversification

benefit does not drop below zero.

1.4.2 Properties of Expected Shortfall

We gather some important properties of Expected Shortfall in the following theorem.

The proofs of these properties are adapted from [2, 61].

Theorem 1.4.5 Let X ∈ L∞(P) denote the random variable of profits and losses

of some portfolio and α ∈ (0, 1). Then ES has the following properties:

(a) ES α(X) = − 1
α

∫ α
0 x(u)du = 1

α

∫ 1
1−α q(u)(−X)du.

(b) The mapping α 7→ ES α(X) is continuous and decreasing.

(c) ES is a law-invariant coherent risk measure that satisfies the Fatou Property

and is co-monotonically additive.

(d) ES α(X) = sup
{
WCE α(X ′) : X ′ ∈ L0(Ω′,F ′,P′),

P′[X ′ ≤ x] = P[X ≤ x] ∀ x ∈ R}
.

Proof. (a) Let U be a uniformly distributed random variable on (0, 1). By the

Inverse Transform Method, Z := x(U) has the same distribution as X. Using the

fact that u 7→ x(u) is non-decreasing, we arrive at the following inclusions:

{U ≤ α} ⊂ {Z ≤ x(α)}
{U > α} ∩ {Z ≤ x(α)} ⊂ {Z = x(α)}.

Consequently, we get
∫ α

0
x(u)du = E[Z · 1{U≤α}]

= E[Z · 1{Z≤x(α)}]− E[Z · 1{U>α}∩{Z≤x(α)}]

= E[X · 1{X≤x(α)}] + x(α)(α− P[X ≤ x(α)]).
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Figure 1.6: The 7-day ES surface of the portfolio in Example 1.2.6.
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Figure 1.7: The 7-day ES diversification benefit of the portfolio in Example 1.2.6.

In contrast to VaR , notice how the diversification benefit does not drop below zero.
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Dividing through by −α proves the claim.

(b) The fact that the mapping α 7→ ES α(X) is continuous follows trivially from

part (a). Let ε > 0 and let fα be as in (1.4.2). It is then easy to check that

fα+ε − fα

{
≤ 0, X < x(α);

≥ 0, X > x(α).

Now let A = {X < x(α)} and observe

ES α(X)− ES α+ε(X) = EP[−Xfα]− EP[−Xfα+ε]

= EP[X(fα+ε − fα)]

= EP[1A · (−X)(fα − fα+ε︸ ︷︷ ︸
≥0

)] + EP[1Ac ·X(fα+ε − fα︸ ︷︷ ︸
≥0

)]

≥ EP[1A · (−x(α))(fα − fα+ε)] + EP[1Ac · x(α)(fα+ε − fα)]

= EP[x(α)(fα+ε − fα)]

= x(α)(1− 1)

= 0.

This proves (b).

(c) After reading Example 1.3.13, the only thing left to prove is that ES is co-

monotonically additive. But this fact follows easily from (1.3.1), the subsequent

remarks, and part (a).

(d) This is also a trivial consequence of Example 1.3.13; we have WCE α(X) ≤
ES α(X) and WCE α(X) = ES α(X) when the underlying probability space is non-

atomic. Using the Inverse Transform Method, we can always find a random variable

X ′ on an non-atomic probability space with the same distribution as X (note that

X is not required to have a continuous distribution [53, Proposition 2.1]). 2

In the literature, there are a variety of characterizations of coherent, law invariant,

co-monotonically additive risk measures in terms of integrals of quantiles [61, 44,

67, 69]. Indeed, Theorem 1.4.5(a) is a special case of this. Kusuoka generalized with

the following classical result [44, Theorem 4].

Theorem 1.4.6 (Kusuoka) Let ρ : L∞(P) → R. Then the following statements

are equivalent:
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(a) ρ is a law invariant coherent risk measure with the Fatou Property.

(b) There is a compact convex set M0 of probability measures on [0, 1] such that

ρ(X) = sup
{∫ 1

0
ES α(X) dm(α) : m ∈M0

}
.

Moreover, ρ is co-monotonically additive if and only if the above supremum is at-

tained.

In [39] it is shown that all law invariant risk measures already have the Fatou Prop-

erty. Thus, the assumption of the Fatou property in the above theorem is superfluous

and may be dropped.

1.4.3 The Relation with Value-at-Risk

In order to preserve the connection between the level of VaR and the probability of

solvency, some would find it desirable to find a smallest coherent risk measure that

dominates VaR [61]. In this case, the following theorem is a disappointment.

Theorem 1.4.7 For each X ∈ L∞(P) and α ∈ (0, 1), we have that

VaR α(X) = inf
{
ρ(X) : ρ ≥ VaR α, ρ coherent with the Fatou property

}
.

We omit the technical proof of this result, which can be found in [15, Theorem 6.8].

Since VaR is not coherent, this result shows that there is no smallest coherent risk

measure that dominates VaR .

In order to find a smallest coherent risk measure, we must consider the smaller class

of law invariant coherent risk measures that dominate VaR , where the underlying

probability space is atomless. If we do this, the following result holds (cf. [15,

Theorem 6.10]).

Theorem 1.4.8 Suppose that (Ω,F ,P) is an atomless probability space and α ∈
(0, 1). Then, for any law-invariant coherent risk measure ρ, that satisfies the Fatou

property and dominates VaR α, we have ρ ≥ WCE α = ES α.

We have shown above that ES dominates VaR . The above result says that ES is, in

some sense, the smallest coherent risk measure that dominates VaR . In practice, the
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difference between these two risk measures can be quite large. Figure 1.8 shows the

difference between the 7-day ES surface and the 7-day VaR surface of the portfolio

in Example 1.2.6. This makes it hard to see how the level of ES can be connected

with the probability of default.
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Figure 1.8: The difference between the 7-day ES surface and the 7-day VaR surface

of the portfolio in Example 1.2.6.

1.5 Beyond Coherence

1.5.1 Distortion Measures and the Choquet Integral

We now generalize coherent risk measures further by considering the non-additive

Choquet Integral. Consider a random variable X. If X ≥ 0, we can write X =∫∞
0 1{X>u}du. Similarly, if X ≤ 0, we have X =

∫ 0
−∞−1{X≤u}du. Consequently,

for general X, we may write

X =
∫ 0

−∞
−1{X≤u}du +

∫ ∞

0
1{X>u}du.
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Taking expectations on both sides gives

E[X] =
∫ 0

−∞
E[−1{X≤u}] du +

∫ ∞

0
E[1{X>u}] du

= −
∫ 0

−∞
P[X ≤ u] du +

∫ ∞

0
(1− P[X ≤ u]) du.

This provides some insight into the following definitions.

Definition 1.5.1 (Distortion Probabilities) Let X be a random variable

and FX(x) = P(X ≤ x) be the distribution of X.

(a) If g : [0, 1] → [0, 1] is an increasing function with g(0) = 0 and g(1) = 1, then

F ∗
X(x) = g(FX(x)) defines a distorted probability distribution.

(b) The function g is called a distortion function.

(c) The function g∗ defined by g∗(u) = 1 − g(1 − u) is called the dual distortion

function.

Definition 1.5.2 (Choquet Integral) We define the Choquet Integral1 with

respect to the distortion function g and distorted probability F ∗
X(x) = g(FX(x)) to

be

Hg[X] = −
∫ 0

−∞
g(FX(x)) dx +

∫ ∞

0
[1− g(FX(x))] dx.

If X ≥ 0, we have

Hg[X] =
∫ ∞

0
[1− g(FX(x))] dx.

The Choquet integral has long appeared in the insurance and actuarial literature

[69, 65, 66, 64, 67]. It turns out that there is a significant overlap with the theory

of risk measures [15, 66, 61].

Care must be taken when using the Choquet Integral because it is non-additive and

asymmetrical. The theory of non-additive integration is treated in [19]. We collect

some useful properties [67, Theorem 3]:
1In the literature, the Choquet integral is defined in terms of the survival function SX(x) =

1 − FX(x). I.e. Hh[X] = − ∫ 0

−∞[1 − h(SX(x))] dx +
∫∞
0

[h(SX(x))] dx. Since we are working with

FX , the distortion function g is dual to h. As a result, the properties listed for Hg[ · ] are symmetrical

to those listed in the literature.
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Proposition 1.5.3 Let X, Y ∈ L∞(P), where the underlying probability space is

non-atomic. Then the Choquet Integral has the following properties:

(a) Hg[−X] = −Hg∗ [X], thus Hg asymmetrical,

(b) Hg[1] = 1,

(c) E[X] ≤ Hg[X] for all X if and only if g(u) ≤ u for all u ∈ [0, 1],

(d) Hg[X] ≤ ‖X‖∞,

(e) Hg is positively homogeneous,

(f) Hg is translation invariant,

(g) If g is convex, i.e. g
′′

> 0, then Hg is sub-additive and if g is concave, i.e.

g
′′

< 0, then Hg is super-additive,

(h) Hg is law-invariant (and consequently has the Fatou Property [39]),

(i) X ≤ Y then Hg[X] ≤ Hg[Y ],

(j) Hg is co-monotonically additive,

(k) limd→0+ Hg[(X − d)+] = Hg[X] and limd→∞Hg[X ∧ d] = Hg[X].

If we are working with L∞(P), we need consider only positive random variables.

Indeed, by the translation invariance of the Choquet Integral, we can shift any

X ∈ L∞(P) by ‖X‖∞ so that it is positive. We then subtract ‖X‖∞ again from

resulting calculation.

Definition 1.5.4 (Distortion Risk Measure) Let X ∈ L∞(P) denote the ran-

dom variable of profits and losses of some portfolio. Then, for a distortion function

g, we define the Distortion Risk Measure of X to be

ρg(X) = Hg[−X] = −Hg∗ [X].

Observe that g is convex if and only if g∗ is concave. As a consequence of the above

proposition we have the following result.

Theorem 1.5.5 The Distortion Risk Measure ρg is a coherent risk measure pro-

vided that the distortion function g is convex (equivalently, the dual distortion func-

tion g∗ is concave). Moreover, ρg enjoys all the properties listed in Proposition

1.5.3.
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1.5.2 Some Familiar Examples

Using the appropriate distortion function we can recover some familiar risk measures:

Example 1.5.6 (Value-at-Risk) With the distortion function

g(u) =

{
1, u > 1− α;

0, u ≤ 1− α,

we obtain ρg(X) = Hg[−X] = VaR α(X). Notice that g is not convex or continuous.

Consequently, ρg is not coherent.

Example 1.5.7 (Average Loss) If we define the distortion function to be

g(u) = u, we obtain ρg(X) = Hg[−X] = EP[−X]. Since g is convex, ρg is coherent.

Example 1.5.8 (Expected Shortfall) With the distortion function

g(u) =

{
α+u−1

α , u > 1− α;

0, u ≤ 1− α,

we obtain ρg(X) = Hg[−X] = ES α(X). Since g is convex, ρg is coherent.

The last two examples enjoy the properties listed in Proposition 1.5.3. Observe that

the set {u ∈ (0, 1) : g(u) = 0} represents the portion of the distribution of X that is

discarded when applying the Choquet integral.

Remark: We have seen that a convex distortion function g corresponds to a co-

herent risk measure ρg via the Choquet Integral. Since ρg has the Fatou Property,

Theorem 1.3.5 implies that there is a ‖ · ‖1-closed convex set of measures Pg, all

absolutely continuous to P, so that ρg(X) = sup{EQ[−X] : Q ∈ Pg}. It would be

interesting to characterize Pg in terms of g.

1.5.3 The Wang Transform

One of the criticisms leveled against Expected Shortfall is the fact that only the

tail of the profit and loss distribution is considered. The information in the re-

maining portion of the distribution is discarded. Moreover, Expected Shortfall does

not properly adjust for extreme low-frequency and high-severity losses because it

does not take higher moments into account. In [66], a new distortion function is

recommended that accounts for all this and thus ‘goes beyond coherence’.
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Definition 1.5.9 (Wang Transform) The Wang Transform is defined by the

distortion function

gµ(u) = Φ(Φ−1(u)− µ).

We shall denote the corresponding Choquet integral applied to the random variable

X by H[X; µ].

In the case of risk measures, it is useful to talk in terms of a significance level. For

the Wang Transform Risk Measure we write

WT α(X) = H[−X;−Φ−1(α)] = −H[X; Φ−1(α)]

for a given significance level α ∈ (0, 1). Here, Φ denotes the standard normal

cumulative distribution function.

If X is a standard normal random variable, then H[X; µ] has the action of setting

the mean of X to µ, while leaving the standard deviation unchanged. We collect

some properties of the the Wang Transform in the following Theorem (cf. [66, pp.

20–22]).

Theorem 1.5.10 (Wang Transform) The Wang Transform has the following

useful properties:

(a) The first derivative of gµ is

dgµ(u)
du

= exp
(

µΦ−1(u)− µ2

2

)
.

(b) The second derivative of gµ is

d2gµ(u)
d2u

=
µφ(Φ−1(u)− µ)

φ(Φ−1(u))2
;

so that gµ is convex for positive µ and concave for negative µ.

(c) The dual distortion operator of gµ is

g∗µ(u) = 1− gµ(1− µ) = g−µ(u).

(d) ess-inf (X) ≤ H[X;µ] ≤ ess-sup (X).
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(e) H[X;µ] is an increasing function of µ. Moreover, H[X; µ] approaches the

above bounds when µ tends to −∞ and ∞ respectively.

(f) H[ · ; µ] is translation invariant.

(g) H[ · ; µ] is positively homogeneous.

(h) For λ < 0 we have H[λX; µ] = λH[X;−µ].

(i) H[ · ; µ] is co-monotonically additive.

(j) H[ · ; µ] is sub-additive when µ > 0 and super-additive when µ < 0. Corre-

spondingly, WT is sub-additive when 0 < α < 1
2 and super-additive when

1
2 < α < 1.

(k) H[X;µ] > E[X] when µ > 0, H[X; µ] = E[X] when µ = 0 and H[X; µ] < E[X]

when µ < 0.

(l) If X ∼ N (γ, σ), then gµ ◦ FX is a normal distribution given by N (γ + µσ, σ).

Consequently, H[X; µ] = E[X] + µσ[X]. Note that the standard deviation is

left unchanged.

(m) If log(X) ∼ N (γ, σ), then gµ ◦ FX is a log-normal distribution which corre-

sponds to a random variable whose logarithm is distributed N (γ + µσ, σ).

Figure 1.9 depicts the distortion function associated with the Wang Transform Risk

Measure at a significance level of 5%. It is clearly convex, so that WT is coherent

and enjoys the properties listed in Theorem 1.5.10.

Since the WT distortion function has the property that g(u) ∈ {0, 1} if and only

if u ∈ {0, 1}, the Wang Transform takes the entire distribution into account when

measuring the risk. For normal and log-normals risks, the Wang Transform has the

effect of moving the expected value to the α-th percentile of the original distribution.

Calculation of the Wang Transform

Calculation of the Choquet integral can prove to be cumbersome. When it comes

to positive increasing functions of a standard normal random variable, the following

result offers some assistance.
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Figure 1.9: The 95% Wang Transform distortion function.

Proposition 1.5.11 Let k ∈ R and h : R→ [0,∞) be continuous on R and strictly

increasing on the interval (k,∞). Assume that h((−∞, k]) = {0} and X = h(Z)

where Z is a standard normal random variable. Then

H [X; µ] = E [h(Z + µ)] .

Proof. Let ε > 0, then

H [X; µ] =
∫ ∞

0
[1− gµ(FX(x))] dx

=
∫ ∞

ε
[1− gµ(FX(x))] dx +

∫ ε

0
[1− gµ(FX(x))] dx

=
∫ ∞

ε
[1− gµ(Φ(h−1(x)))] dx +

∫ ε

0
g−µ(P[h(Z) > x]) dx

=
∫ ∞

ε
[1− Φ(h−1(x)− µ)] dx +

∫ ε

0
g−µ(P[h(Z) > x]) dx

=
∫ ∞

ε
[1− P[h(Z + µ) ≤ x]] dx +

∫ ε

0
g−µ(P[h(Z) > x]) dx.

To complete the proof, observe that

0 ≤
∫ ε

0
g−µ(P[X > x]) dx ≤ ε

and let ε → 0. 2
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When it comes to general distributions, a simple observation allows for an efficient

Monte Carlo approximation. It is plain that Hg[X] = E[Y ] where Y is drawn from

the distorted distribution g ◦ FX . Thus,

Hg[X] =
∫ ∞

−∞
xd(g ◦ FX)(x)

=
∫ ∞

−∞
x g′(FX(x))fX(x) dx

=
∫ 1

0
F−1

X (u)g′(u) du.

Here, fX denotes the probability density function of X. The above equation implies

that the Choquet integral can be calculated as the mean of samples of X (generated

using the Inverse Transform Method, say) multiplied by the derivative of g applied

to the corresponding percentiles of X. In other words,

Hg[X] ∼ 1
n

N∑

i=0

xi · g′(FX(xi)),

where the xi are samples drawn from the distribution of X. The derivative of g can

be calculated using a finite difference method. In the case of the Wang Transform,

we have an explicit formula for the derivative of g.

To illustrate this method, we return to Example 1.2.6 with payoff at maturity given

by Figure 1.3. Figure 1.10 shows a 7-day WT surface simulation. Figure 1.11 shows

the diversification benefit from combining the risks of the individual options.

Figure 1.12 depicts the difference between the Wang Transform surface and the

corresponding Expected Shortfall and Value-at-Risk surfaces. Notice how the Wang

Transform is dominated by Expected Shortfall. At first glance, this may seem to

contradict Theorem 1.4.8. However, another glance at the adjacent picture shows

that the Wang Transform does not dominate Value-at-Risk. This violates one of the

conditions of the theorem.

1.5.4 The Relationship between the Wang Transform and CAPM

In this section, we recover the CAPM model using the Wang Transform. We make

the crucial assumption that the prevailing price of an asset can be determined by

applying H[ · ;µ] to the discounted future asset price. This is much like assuming
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Figure 1.10: The 7-day Wang Transform surface of the portfolio in Example 1.2.6.
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Figure 1.11: The 7-day Wang Transform diversification benefit of the portfolio in

Example 1.2.6. In contrast to VaR , notice how the diversification benefit does not

drop below zero.
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Figure 1.12: The difference between the 7-day Wang Transform surface and the

corresponding 7-day ES and VaR surfaces of the portfolio in Example 1.2.6.

the asset price process is a martingale (or equivalently assuming the absence of

arbitrage). Given this pricing assumption, we infer the value of µ from the market.

Let Ai(0) denote the current price of asset i and A(1) its asset price after one time

step. Denote by Ri = Ai(1)/Ai(0)− 1 the simple return of asset i over that period.

Assume that Ri is normally distributed with mean E[Ri] and standard deviation

σ[Ri]. Assume that

Ai(0) = H

[
Ai(1)
1 + rf

;−µi

]
= H

[
Ai(0)

1 + Ri

1 + rf
;−µi

]
,

where rf denotes the deterministic risk free rate of return. It follows that

Ai(0)(1 + rf ) = Ai(0)(1 + Ai(0)H [Ri;−µi])

⇒ rf = H [Ri;−µi] = E[Ri]− µiσ[Ri].

Consequently,

µi =
E[Ri]− rf

σ[Ri]
.

For the market portfolio M , the risk adjusted rate of return must equal the risk free

rate. This leads to

rf = H [RM ;−µM ] = E[RM ]− µMσ[RM ]
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so that

µM =
E[RM ]− rf

σ[RM ]
.

This quantity is known as the Sharpe ratio.

The CAPM model asserts that

E[Ri] = rf + βi[E[RM ]− rf ]

where

βi =
Cov [Ri, RM ]

σ[RM ]2

is the beta of asset i.

This relationship can be rewritten as

E[Ri]− rf

σ[Ri]
= ρi,M

E[RM ]− rf

σ[RM ]

where ρi,M is the correlation between Ri and RM . ρi,M is sometimes referred to as

the systematic risk of Ai in relation to the market. Consequently, we have

µi = ρi,M · µM

and

µi · σ[Ri] = βi(µM · σ[RM ])

so that µi corresponds to the systematic risk and the beta of asset i.

1.5.5 Recovery of the Black-Scholes Formula

Suppose that the asset At follows the process

dAt = Atγdt + AtσdWt

where W is a standard Brownian Motion, γ is the drift and σ is the volatility of At.

The solution to this stochastic differential equation is given by

At = ft(Z) := A0 exp
((

γ − σ2

2

)
t + σ

√
tZ

)
.

Note that ft is a strictly increasing, continuous function on R taking values in (0,∞).
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We will use the Wang Transform to recover the Black-Scholes formula for a European

call option with strike K and maturity T . As before, we assume the absence of

arbitrage, which means that

A0 = H[exp(−rfT )AT ;−µ] = exp(−rfT )H[AT ;−µ],

where rf is now the continuously compounded risk free rate of return. We may

rewrite this as

A0 = exp(−rfT )E[BT ],

where BT is drawn from the distorted distribution FBT
= g−µ ◦ FAT

.

Since log
(

AT
A0

)
∼ N

((
γ − σ2

2

)
T, σ2T

)
, it follows that

log
(

BT

A0

)
∼ N

((
γ − σ2

2

)
T − µσ

√
T , σ2T

)
.

Thus,

A0 = exp(−rfT )A0E
[
BT

A0

]

= A0 exp
(
−rfT +

(
γ − σ2

2

)
T − µσ

√
T +

σ2T

2

)

⇒ 0 = (γ − rf )T − µσ
√

T

⇒ µ =
(γ − rf )

√
T

σ
,

so that µ is the market price of risk.

The payoff of the European call option is given by C(AT ) = (AT − K)+. De-

fine h(x) = C(fT (x)), then h is continuous, strictly increasing on the interval

(f−1
T (K),∞) and h((−∞, f−1

T (K)]) = {0}. With the help of Proposition 1.5.11,

the price of the option may be calculated as:

H[C(AT );−µ]

= H[h(Z);−µ]

= E[h(Z − µ)]

=
∫ ∞

−∞
C

[
A0 exp

((
γ − σ2

2

)
T + σ

√
T

(
x− (γ − rf )

√
T

σ

))]
φ(x) dx

=
∫ ∞

−∞
C

[
A0 exp

((
rf − σ2

2

)
T + σ

√
Tx

)]
φ(x) dx,

=
∫ ∞

−∞

[
A0 exp

((
rf − σ2

2

)
T + σ

√
Tx

)
−K

]

+

φ(x) dx,
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which is precisely the Black-Scholes formula for pricing call options. The same

argument does not apply to put options.



Chapter 2

The Fundamental Theorem of

Asset Pricing

2.1 Introduction

The Fundamental Theorem of Asset Pricing (FTAP) is a result that connects the

pricing of derivatives via a replicating portfolio and the principle of no-arbitrage on

the one hand, and pricing by taking expectations with respect to an equivalent risk

neutral measure on the other. The result can be loosely formulated as follows:

Theorem 2.1.1 (The Fundamental Theorem of Asset Pricing) For a

model S of a financial market, the following statements are approximately equivalent:

(a) S does not allow for arbitrage.

(b) There exists an equivalent probability measure Q on the underlying probability

space (Ω,F ,P) under which S is a martingale.

The word ‘approximately’ is used in the above theorem because these statements

are not mathematically equivalent without additional definitions and assumptions.

Many versions of this theorem exist in different settings and at different levels of

generality. In this chapter we will showcase some of the earlier efforts at making this

theorem precise. We first look at the finite dimensional case of Harrison and Pliska

[29] and then the infinite dimensional case of Kreps [43].

40
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The techniques developed here will add context to the next chapter where we will

examine this theorem in the setting of coherent risk measures.

Our presentation follows the illuminating surveys [55] and [18, Chapter 2]. We refer

the reader to these works for more detail.

2.2 The Finite Dimensional Setting

2.2.1 Preliminaries

Assume that (Ω,F , (Ft)T
t=0,P) is a finite, filtered probability space. A financial

market model is a stochastic process

S̃ = (S̃t)T
t=0 = (S̃(0)

t , S̃
(1)
t , . . . , S̃

(d)
t )T

t=0,

taking values in Rd+1. We assume that the zero co-ordinate satisfies S̃
(0)
t > 0 for all

t = 0, . . . , T and S̃
(0)
0 = 1. We will refer to S̃0 as the numéraire asset and it usually

denotes a bank account.

A trading strategy H̃ = (H̃t)T
t=0 = (H̃(0)

t , H̃
(1)
t , . . . , H̃

(d)
t )T

t=0 is a predictable (i.e. H̃t

is Ft−1-measurable) process taking values in Rd+1. Observe that between time t and

t− 1, the agent holds the quantity H̃j
t of asset j and this quantity is determined at

t− 1. This explains the economic requirement of the predictability of H̃.

We will say that the trading strategy H̃ is self financing if we have

〈H̃t, S̃t〉 = 〈H̃t+1, S̃t〉

for all t = 0, . . . , T − 1. The quantity Ṽt = 〈H̃t, S̃t〉 = 〈H̃t+1, S̃t〉 is the value of

the portfolio of assets described by S̃ held in volumes described by H̃. If H̃ is self

financing, it means that there is no in or out flow of money when altering the volumes

of the assets in the portfolio. Adjustments to the portfolio are either funded by, or

liquidated to, the numéraire asset.

It is easier to account in units of the numéraire asset. This is achieved by writing

S = (St)T
t=0 = (S(0)

t , S
(1)
t , . . . , S

(d)
t )T

t=0 :=

(
1,

S̃
(1)
t

S̃
(0)
t

, . . . ,
S̃

(d)
t

S̃
(0)
t

)T

t=0

.

S is known as the discounted process. Since co-ordinate zero is always equal to one,

we may omit it from the above notation so that S takes its values in Rd. I.e. we
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now write

S = (S(1)
t , . . . , S

(d)
t )T

t=0.

Let H be the process obtained from H̃ by discarding the first (numéraire) co-

ordinate. In other words, H is the Rd-valued process defined by

H = (Ht)T
t=0 = (H(1)

t , . . . , H
(d)
t )T

t=0 := (H̃(1)
t , . . . , H̃

(d)
t )T

t=0.

Theorem 2.2.1 For every predictable process H = (H(1)
t , . . . , H

(d)
t ) taking values

in Rd, there exists a unique self financing trading strategy H̃ = (H̃(0)
t , H̃

(1)
t , . . . , H̃

(d)
t )

taking values in Rd+1 such that (H̃(j)
t )T

t=1 = (H(j)
t )T

t=1 for j = 1, . . . , d and H̃
(0)
1 = 0.

The above result is easy to verify but economically important. It says that given any

trading strategy H = (H(1)
t , . . . , H

(d)
t ) in d risky assets, we may always add an extra

trading strategy (H̃(0)
t ) in the numéraire asset such that the entire strategy becomes

self financing. Moreover, if we normalize by requiring H̃
(0)
1 = 0, this trading strategy

becomes unique.

The discounted portfolio value Vt = Ṽt/S̃
(0)
t depends only on the Rd-dimensional

process H. Indeed,

Ṽ0 = V0 = 〈H̃1, S̃0〉 = 〈H1, S0〉,

using the convention S̃
(0)
0 = 1 and H̃

(0)
1 = 0. Moreover, since H is self financing, we

have

∆Vt = Vt − Vt−1 =
Ṽt

S̃
(0)
t

− Ṽt−1

S̃
(0)
t−1

=
〈H̃t, S̃t〉

S̃
(0)
t

− 〈H̃t−1, S̃t−1〉
S̃

(0)
t−1

=
〈H̃t, S̃t〉

S̃
(0)
t

− 〈H̃t, S̃t−1〉
S̃

(0)
t−1

= H̃
(0)
t + 〈Ht, St〉 − (H(0)

t + 〈Ht, St−1〉)
= 〈Ht, ∆St〉,

where ∆St := St − St−1. Therefore, at maturity T , we may write

VT = V0 +
T∑

t=1

〈Ht,∆St〉 = V0 + (H · S)T , (2.2.1)
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where (H · S)T :=
∑T

t=1〈Ht,∆St〉 is the notation for a stochastic integral from the

theory of stochastic integration. In this discrete setting, the stochastic integral takes

the form of a Riemann sum. To know what the actual value of VT at time T is, we

need to make the calculation ṼT = VT S̃
(0)
T .

Given the above discussion, we will work with a discounted Rd-valued financial

process S and trading strategy H, safe in the knowledge that it may be uniquely

transformed into a self-financing portfolio.

2.2.2 Attainable Claims and Martingale Measures

Definition 2.2.2 We call the subspace K ⊂ L0(P) defined by

K = {(H · S)T : H a trading strategy in Rd}

the set of contingent claims attainable at price 0.

The set K contains precisely those payoff functions at time T , depending on ω ∈ Ω,

that an economic agent may replicate with zero initial investment, following some

trading strategy H.

For a ∈ R, the set Ka := a + K is called the set of contingent claims attainable

at price a. These are all the terminal portfolio values of the form (2.2.1). For

convenience, K0 is denoted by K.

Definition 2.2.3 We call the convex cone C ⊂ L∞(P) defined by

C = {g ∈ L∞(P) : ∃ f ∈ K such that f ≥ g}

the set of contingent claims super-replicable at price 0.

The set C contains all the terminal payoffs that may be super-replicated at zero

initial cost. In the event that the super-replication of g ∈ C is strict, we may

simply throw away money to arrive at g. This is known as free disposal and plays

an indispensable role in the continuous version of the fundamental theorem of asset

pricing later on. As before, we write Ca := a+C for the set of all contingent claims

super-replicable at price a ∈ R. We are now in a position to formulate the notion of

no-arbitrage mathematically.
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Definition 2.2.4 (No-Arbitrage) A financial market S satisfies the no-arbitrage

condition (NA) if K ∩ L0
+(P) = {0}.

Economically speaking, the no-arbitrage condition demands that any terminal payoff

that precludes loss and is attainable at zero initial investment should not allow any

chance of making money, no matter how small.

Proposition 2.2.5 For the financial market model S and corresponding subspace

K and cone C in L∞(P) we have the following:

(a) C = K − L∞+ (P).

(b) The no-arbitrage condition K∩L0
+(P) = {0} is equivalent to C∩L0

+(P) = {0}.

(c) If S satisfies the no-arbitrage condition, then C ∩ (−C) = K.

Proof. (a) If g ∈ K − L∞+ (P), then g = f1 − f2 where f1 ∈ K and f2 ∈ L∞+ (P).

Consequently, g ≤ f1 so that g ∈ C. Conversely, let g ∈ C. Then there exists

f1 ∈ K such that f2 := f1 − g ∈ L∞+ (P). Thus, g = f1 − f2 ∈ K − L∞+ (P).

(b) Since K ⊂ C, we have that C ∩ L0
+(P) = {0} implies K ∩ L0

+(P) = {0}.
Conversely, assume K ∩ L0

+(P) = {0} and suppose that 0 6= g ∈ C ∩ L0
+(P). Then

there exists f ∈ K such that f ≥ g. Hence 0 6= f ∈ K∩L0
+(P) = {0}, a contradiction.

(c) Clearly, K ⊂ C ∩ (−C). For the converse, let g ∈ C ∩ (−C). By part (a),

we may write g = f1 − h1 with f1 ∈ K and h1 ∈ L∞+ (P). On the other hand,

we may also write g = f2 + h2 with f2 ∈ K and h2 ∈ L∞+ (P). Consequently,

f1 − f2 = h1 + h2 ∈ L∞+ (P) so that f1 − f2 ∈ K ∩ L∞+ (P) = {0}. Plainly, f1 = f2

and h1 + h2 = 0. Since h1, h2 ∈ L∞+ (P), we must have h1 = h2 = 0. It follows that

g = f1 = f2 ∈ K, as required. 2

Definition 2.2.6 (Equivalent Martingale Measure) Let Q be a proba-

bility measure on the filtered probability space (Ω,F , (Ft)T
t=1,P) and let S denote a

financial market model on this space.

(a) S is called a martingale under Q if EQ[St+1|Ft] = St for all t = 0, . . . , T − 1.

(b) Q is called an equivalent martingale measure if Q ∼ P and S is a martingale

under Q.
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(c) We denote byMe(S) the set of all equivalent martingale measures with respect

to S.

(d) We denote by Ma(S) the set of all probability measures Q ¿ P under which

S is a martingale.

In the finite dimensional setting, Q ∼ P if and only if Q[ω] > 0 for each ω ∈
Ω. Also note that all probability measures Q automatically satisfy Q ¿ P in the

finite dimensional setting. However, this is not the case when passing to infinite

dimensions.

Lemma 2.2.7 Let Q be a probability measure on (Ω,F , (Ft)T
t=1,P). The following

statements are equivalent:

(a) Q ∈Ma(S).

(b) EQ[f ] = 0, for all f ∈ K.

(c) EQ[g] ≤ 0, for all g ∈ C.

Proof. (a)⇔(b) Given that (a) is true, we have

EQ[f ] = EQ
[

T∑

t=1

〈Ht, ∆St〉
]

=
T∑

t=1

EQ[〈Ht,∆St〉]

=
T∑

t=1

d∑

j=1

EQ[H(j)
t ∆S

(j)
t ] =

T∑

t=1

d∑

j=1

EQ[H(j)
t EQ[∆S

(j)
t |Ft−1]]

=
T∑

t=1

d∑

j=1

EQ[H(j)
t (EQ[S(j)

t |Ft−1]− S
(j)
t−1︸ ︷︷ ︸

=0

)] = 0,

for all f ∈ K. Conversely, consider trading strategies (Ht)T
t=1 of the form Ht =

x1A ∈ Rd for some x ∈ Rd, A ∈ Ft−1, 1 ≤ t ≤ T , and Hs = 0 ∈ Rd for all s 6= t,

1 ≤ s ≤ T . By assumption, for all such trading strategies, we have

0 = EQ
[

T∑

t=1

〈Ht, ∆St〉
]

= EQ[〈x1A, ∆St〉] =
d∑

j=1

EQ[xj1A ·∆S
(j)
t ].

By considering the unit vector basis for Rd, we can deduce

EQ[1A(St − St−1)]
Q[A]

= EQ[(St − St−1)|A] = 0 ∈ Rd,
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for all A ∈ Ft−1 with Q[A] > 0. Consequently,

EQ[St − St−1|Ft−1] = 0 ∈ Rd.

This proves that S is a martingale.

(b)⇔(c) Suppose (b) is true and let g ∈ C. Then g = f1 − f2 with f1 ∈ K and

f2 ∈ L∞+ (P). Consequently, EQ[g] = EQ[f1] − EQ[f2] ≤ EQ[f1] = 0. Conversely,

suppose (c) is true. Since K ⊂ C, we have EQ[f ] ≤ 0 for all f ∈ K. On the other

hand, since K is a linear space, we have EQ[−f ] ≤ 0 for all f ∈ K. Consequently,

EQ[f ] ≥ 0 so that EQ[f ] = 0. 2

2.2.3 The Fundamental Theorem of Asset Pricing

After the above preparations we are able to prove the fundamental theorem of asset

pricing in the finite dimensional setting, due to Harrison and Pliska [29].

In what follows, we consider the dual pair (L1(P), L∞(P), 〈·, ·〉). The bilinear map-

ping 〈·, ·〉 : L1(P)× L∞(P) → R is given by

〈q, f〉 =
∫

Ω
fq dP =

N∑

i=1

(fiqi)pi,

where q =
∑N

i=1 qi1{ωi} ∈ L1(P), f =
∑N

i=1 fi1{ωi} ∈ L∞(P), N = |Ω| and P[ωi] = pi

for 1, . . . , N . This notation should not be confused with the scalar product 〈·, ·〉 on

Rd. The correct operation will be clear from the context of its use.

Theorem 2.2.8 (Fundamental Theorem of Asset Pricing) For a financial

market S modeled on a finite filtered probability space (Ω,F , (Ft)T
t=0,P), the following

statements are equivalent:

(a) S satisfies the no-arbitrage condition.

(b) Me(S) 6= ∅.

Proof. (b)⇒(a) Let Q ∈ Me(S). By Lemma 2.2.7 we have EQ[g] ≤ 0 for all

g ∈ C. Suppose 0 6= g ∈ C∩L∞+ (P), then P ∼ Q implies EQ[g] > 0. A contradiction.
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(a)⇒(b) By assumption, we have K ∩ L∞+ (P) = {0}. We would like to find a

functional q ∈ L∞(P)∗ = L1(P) that separates the closed linear space K from

L∞+ (P) \ {0}. To ensure the strict positivity of q, we consider the set

P :=

{
N∑

n=1

αn1{ωn} : αn ≥ 0,
N∑

n=1

αn = 1, N = |Ω|
}

,

instead of L∞(P)+ \ {0}. P is a convex, compact subset of L∞+ (P) which is disjoint

from K by the no-arbitrage assumption. By the Hyperplane Separation Theorem,

there exists q =
∑N

i=1 qi1{ωi} ∈ L1(P) and α < β such that

〈q, f〉 ≤ α for all f ∈ K

and

〈q, h〉 ≥ β for all h ∈ P.

Since K is a linear subspace, for any f ∈ K we have 〈q, f〉 ≤ α and −〈q, f〉 ≤ α,

which implies 0 ≤ |〈q, f〉| ≤ α. Moreover, 〈q, f〉 ≤ α
n for all n ∈ N. Hence, we may

replace α with zero. Consequently, 〈q, f〉 = 0 for all f ∈ K.

Denote the one-function by 1 =
∑N

i=1 1{ωi}. Observe that 〈q, h〉 > 0 for all h ∈ P

implies qi > 0 for each i = 1, . . . N . This permits us to define

Q =
q

〈q,1〉 ,

so that EQ[1] = 〈Q,1〉 = 1. Thus, Q is a probability measure equivalent to P such

that Lemma 2.2.7 (b) is true. It now follows that Q ∈Me(S). 2

Corollary 2.2.9 Let S be a financial model satisfying the no-arbitrage condition on

a finite filtered probability space (Ω,F , (Ft)T
t=0,P). For any f ∈ Ka, we have that

the representation

f = a + (H · S)T

is unique, where a ∈ R and H is some trading strategy. Moreover, for every Q ∈
Me(S), we have

EQ[f ] = a and EQ[f |Ft] = a + (H · S)t, for all 0 ≤ t ≤ T.
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Proof. For uniqueness, suppose that f has two representations

f = a1 + (H1 · S)T and f = a2 + (H2 · S)T ,

with a1 > a2. By considering the trading strategy H2 − H1, we find an arbitrage

opportunity ((H2 − H1) · S)T = a1 − a2 > 0. This contradicts the assumption of

no-arbitrage.

Now suppose that

f = a + (H1 · S)T and f = a + (H2 · S)T , (2.2.2)

where the processes H1 · S and H2 · S are distinct. Then there exists t (0 ≤ t ≤ T )

such that (H1 · S)t 6= (H2 · S)t. We may then suppose that the event

A := {ω ∈ Ω : (H1 · S)t > (H2 · S)t} ∈ Ft

is non-empty. Define the trading strategy H = (H2 −H1)1A · 1(t,T ]. Economically,

this strategy says we hold nothing until time t and, in the event A, then proceed

with the strategy described by H2 −H1.

Using (2.2.2), we see that (H · S)T = 0 on Ω \A and

(H · S)T = (H2 · S)T
t+1 − (H1 · S)T

t+1

= (H1 · S)t − (H2 · S)t > 0

on A. This again contradicts the assumption of no-arbitrage.

The final part of the proof is completed by realizing that for any predictable process

H and every Q ∈Ma(S), the process H · S is a martingale. Indeed,

EQ[(H · S)t|Ft−1] = EQ
[

t∑

s=1

〈Hs, ∆Ss〉
∣∣∣∣Ft−1

]
=

t∑

s=1

EQ [〈Hs, ∆Ss〉|Ft−1]

=
t∑

s=1

d∑

j=1

EQ[H(j)
s ∆S(j)

s |Ft−1]

=
t∑

s=1

d∑

j=1

H(j)
s (EQ[S(j)

s |Ft−1]− S
(j)
s−1︸ ︷︷ ︸

0 when s=t

)

=
t−1∑

s=1

d∑

j=1

H(j)
s (S(j)

s − S
(j)
s−1)

= (H · S)t−1,
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as required. 2

2.2.4 Pricing by No-Arbitrage

Proposition 2.2.10 Let S be a financial model satisfying the no-arbitrage condition

on a finite filtered probability space (Ω,F , (Ft)T
t=0,P). Then the polar cone C◦ of the

cone C is equal to coneMa(S). Moreover, Me(S) is dense in Ma(S). Hence, the

following statements are equivalent:

(a) g ∈ C,

(b) EQ[g] ≤ 0 for all Q ∈Ma(S),

(c) EQ[g] ≤ 0 for all Q ∈Me(S).

Proof. Let

C◦ = {q ∈ L1(P) : 〈q, g〉 ≤ 0 ∀ g ∈ C}

be the polar cone of C ⊂ L∞(P). Since L∞− (P) ⊂ C, it follows that C◦ ⊂ L1
+(P).

Let 0 6= q ∈ C◦. By Lemma 2.2.7, we have Q ∈ Ma(S) where dQ := (q/〈q,1〉) dP.

Consequently, q ∈ coneMa(S) so that C◦ ⊂ coneMa(S). For the reverse inclusion,

let Q ∈Ma(S) and observe that by Lemma 2.2.7 we have EQ[g] = 〈Q, g〉 ≤ 0 for all

g ∈ C. This gives Q ∈ C◦ and so Ma(S) ⊂ C◦. Since C◦ is a cone, it follows that

coneMa(S) ⊂ C◦.

Note that, in our finite dimensional setting, C is closed. Indeed, by Proposition 2.2.5

we have C = K − L∞+ (P), which is a finite dimensional algebraic sum of a linear

space and a polyhedral cone.

By the Bi-Polar Theorem, we have C = C◦◦ = (coneMa(S))◦. It follows that

g ∈ C ⇐⇒ 〈q, g〉 ≤ 0 ∀ q ∈ C◦ = coneMa(S)

⇐⇒ EQ[g] ≤ 0 ∀ Q ∈Ma(S).

This shows the equivalence of (a) and (b).

For the equivalence of (b) and (c), observe that the assumption of no-arbitrage

implies that Me(S) 6= ∅. Choose Q∗ ∈ Me(S) and for any Q ∈ Ma(S), define the
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sequence an := (1/n)Q∗ + (1 − 1/n)Q for each n ∈ N. Then an ∈ Me(S) for each

n ∈ N with limn→∞ an = Q. This implies that Me(S) is dense in Ma(S). The proof

is now complete. 2

A direct consequence of the above proposition is the following:

Proposition 2.2.11 Let S be a financial model satisfying the no-arbitrage condition

on a finite filtered probability space (Ω,F , (Ft)T
t=0,P). Then the following statements

are equivalent:

(a) f ∈ K,

(b) EQ[f ] = 0 for all Q ∈Ma(S),

(c) EQ[f ] = 0 for all Q ∈Me(S).

Proof. By Proposition 2.2.5 (c) we have f ∈ K if and only if f ∈ C ∩ (−C). Thus,

the result follows directly from Proposition 2.2.10. 2

Corollary 2.2.12 Let S be a financial model satisfying the no-arbitrage condition

on a finite filtered probability space (Ω,F , (Ft)T
t=0,P). If f ∈ L∞(P) satisfies EQ[f ] =

a for all Q ∈Me(S), then f = a + (H · S)T for some trading strategy H.

Proof. Since EQ[f − a] = 0 for all Q ∈ Me(s), it follows from Proposition 2.2.11

that f − a ∈ K. This implies that f ∈ Ka. An application of Corollary 2.2.9

completes the proof. 2

Corollary 2.2.13 (Complete Financial Markets) Let S be a financial model

satisfying the no-arbitrage condition on a finite filtered probability space (Ω,F , (Ft)T
t=0,P).

Then the following statements are equivalent:

(a) Me(S) consists of a single element Q.

(b) Each f ∈ L∞(P) may be represented as

f = a + (H · S)T for some a ∈ R and H ∈ H.
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In this case a = EQ[f ], the stochastic integral H ·S is unique and we have EQ[f |Ft] =

EQ[f ] + (H · S)t for t = 1, . . . , T .

Proof. The result follows as a special case of Corollary 2.2.12. 2

In the above result, the quantity EQ[f ] = a is the unique no-arbitrage price of the

contingent claim f ∈ L∞(P). Notice that we can find such a unique price for every

f ∈ L∞(P). When a financial model S has this ideal property we refer to it as a

complete market. We now turn our attention to the case where f may yield more

than one arbitrage free price. In this case, we say the market is incomplete.

If a is an arbitrage free price for the claim f ∈ L∞(P), we are able to enlarge the

financial market S by introducing the financial instrument f without compromising

the no-arbitrage condition. The instrument f is bought or sold at price a at time

t = 0 and yields the random cashflow f(ω) at time t = T . The linear space Kf,a

generated by the set K ∪ {f − a} describes the enlarged set of attainable claims at

price 0. The no-arbitrage condition for this enlarged market becomes Kf,a∩L∞+ (P) =

{0} which is satisfied if and only if a is indeed an arbitrage free price for f .

Theorem 2.2.14 (Pricing by No-Arbitrage) Let S be a financial model satis-

fying the no-arbitrage condition on a finite filtered probability space (Ω,F , (Ft)T
t=0,P).

For f ∈ L∞(P), define the no-arbitrage bounds

π(f) = sup{EQ[f ] : Q ∈Me(S)} and

π(f) = inf{EQ[f ] : Q ∈Me(S)}.

Then either π(f) = π(f), in which case f is attainable at π(f) := π(f) = π(f), or

π(f) < π(f), in which case

(π(f), π(f)) = {EQ[f ] : Q ∈ M e(S)}

and a is an arbitrage free price for f if and only if a ∈ (π(f), π(f)).

Proof. The case π(f) = π(f) follows from Corollary 2.2.12.

For the case π(f) < π(f), first observe that I := {EQ[f ] : Q ∈ Me(S)} is a non-

empty bounded interval in R. Indeed, I ⊂ [−‖f‖∞, ‖f‖∞] shows that I is bounded.

To see that I is an interval, observe that any convex combination of elements of
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Me(S) is again an element of Me(S). With this in mind, let x1 < y < x2 with

x1, x2 ∈ I and let λ ∈ (0, 1) such that λx1 + (1 − λ)x2 = y. Then there exist

Q1,Q2 ∈ Me(S) with EQ1 [f ] = x1 and EQ2 [f ] = x2 whence E(λQ1+(1−λ)Q2)[f ] = y,

implying y ∈ I.

Now suppose a ∈ I, then there exists Q ∈ Me(S) such that EQ[f − a] = 0. By

linearity, this implies that EQ[h] = 0 for all h ∈ Kf,a. By Lemma 2.2.7, Q ∈
Me(S, f). Here, Me(S, f) denotes the set of equivalent martingale measures with

respect to the financial model S which is enlarged to include f . Thus, Kf,a∩L∞+ (P) =

{0} by Theorem 2.2.8.

Conversely, suppose that Kf,a ∩ L∞+ (P) = {0}. Theorem 2.2.8 and Lemma 2.2.7

imply that there exists Q ∈ Me(S, f) such that EQ[h] = 0 for all h ∈ Kf,a. This,

together with another application of Lemma 2.2.7, implies that Q ∈ Me(S) and

a = EQ[f ].

To conclude with the boundary case, assume π(f) ∈ I. By definition, EQ[f−π(f)] ≤
0 for all Q ∈Me(S) so that f −π(f) ∈ C by Proposition 2.2.10. Hence, there exists

h ∈ K such that h − (f − π(f)) ≥ 0. On the other hand, our assumption implies

that there exists Q∗ ∈Me(S) such that EQ∗ [f ] = π(f). Thus,

0 ≤ EQ∗ [h− (f − π(f))] = EQ
∗
[h]− (π(f)− π(f)) = 0.

Consequently, f − π(f) = h ∈ K, and an appeal to Proposition 2.2.11 produces

EQ[f ] = π(f) for all Q ∈ Me(S). In other words, we have that I is a singleton - a

contradiction. Using a similar argument applied to −f , we deduce that I must be

an open interval. 2

2.3 The Infinite Dimensional Setting

2.3.1 Introduction

Fix 1 ≤ p ≤ ∞ and let q satisfy p−1 + q−1 = 1. Throughout, we consider the dual

pair (Lp(P), Lq(P), 〈·, ·〉) where it is assumed that the underlying filtered probability

space (Ω,F , (Ft)0≤t≤T ,P) is diffuse, and all processes are indexed by a continuous

time interval [0, T ]. The bilinear mapping 〈·, ·〉 : Lp(P)× Lq(P) → R is given by

〈f, q〉 =
∫

Ω
fq dP
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for all f ∈ Lp(P) and q ∈ Lq(P). Many of the definitions are analogous to the finite

dimensional setting.

As before, we work with a discounted financial process S. For notational conve-

nience, we will assume that S is one-dimensional. Generalizing to d assets is straight

forward.

We consider the set of simple contingent claims attainable at price a defined by

Ma =
{

a +
n∑

i=1

Hi(Sti − Sti−1) : H bounded and predictable,

0 = t0 < t1 < . . . < tn = T

}
.

Here, (Hi)n
i=1 is a bounded process that is predictable in the sense that Hi is Fti−1

measurable for i = 1, . . . , n. Observe that M0 is a linear space.

Define the vector space of simple marketed claims

M :=
⋃

a∈R
Ma ⊂ Lp(P),

together with a pricing functional π : M → R. The elements of M are of the form

m = a +
n∑

i=1

Hi(Sti − Sti−1)

and π is canonically defined as π(m) = a. Here, π plays the role of taking an

expectation with respect to a martingale measure. We shall refer to the pair (M, π)

as the market model.

In this setting, the assumption of no-arbitrage takes the following form:

Proposition 2.3.1 (No-Arbitrage) Let (M, π) be a market model in Lp(P).
Then the no-arbitrage condition is satisfied if and only if for all m ∈ M satisfying

m ≥ 0 and P[m > 0] > 0, we have π(m) > 0.

Proof. Suppose that M0 ∩ Lp
+(P) = {0} and let

m = a +
n∑

i=1

Hi(Sti − Sti−1) ∈ M



Ch. 2 The Fundamental Theorem of Asset Pricing §2.3 The Infinite Dimensional Setting 54

satisfy m ≥ 0 and P[m > 0] > 0. If π(m) = a ≤ 0, then

n∑

i=1

Hi(Sti − Sti−1) ≥ −a ≥ 0.

Thus,

0 6= m ≤
n∑

i=1

Hi(Sti − Sti−1) ∈ M0 ∩ Lp
+(P) = {0},

a contradiction.

Conversely, let f ∈ M0∩Lp
+(P). By definition, π(f) = 0 which leads to P[f > 0] = 0

so that f = 0. 2

The above proposition shows that arbitrage is excluded precisely when the functional

π : M → R is strictly positive.

The problem of constructing a martingale measure on (Ω,F , (Ft)0≤t≤T ,P) now trans-

lates to finding a non-negative extension of π to all of Lp(P). That is, to find

0 ≤ π∗ : Lp(P) → R so that π∗(m) = π(m) for all m ∈ M . Indeed, if such a π∗

exists, then it is induced by a unique q ∈ Lq(P) via the action

π∗(m) = 〈m, q〉 =
∫

Ω
mq dP = EQ[m].

The non-negativity of π is equivalent to the non-negativity of q. By replacing q with

q/EP[q], we may assume that π∗(1) = 1 and we have found a probability measure

Q ¿ P with Radon-Nikodým density dQ
dP = q. Moreover, since M0 contains all the

simple integrals of the form

n∑

i=1

Hi(Sti − Sti−1)

where 0 = t0 < t1 < . . . < tn = T , it follows that

π∗
(

n∑

i=1

Hi(Sti − Sti−1)

)
= EQ

[
n∑

i=1

Hi(Sti − Sti−1)

]
= 0

for all such integrals. In a similar fashion to the proof of Lemma 2.2.7, we have that

all finite subsequences (Sti)
n
i=1 are martingales underQ. Consequently, (St)0≤t≤T is a

continuous time martingale under Q. In order for Q ∼ P, we must have P[q > 0] = 1,

or in other words, π∗ must be strictly positive. We summarise with the following

proposition.
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Proposition 2.3.2 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed

with the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞. Let (M, π) be a market model in X induced by the process S. The following

statements are equivalent:

(a) The market model (M,π) admits a strictly positive extension π∗ : X → R.

(b) There exists a strictly positive f ∈ X∗ such that f |C ≤ 0, where C := M0−X+.

(c) There exists a strictly positive f ∈ X∗ such that f |M0 = 0.

(d) There exists a probability measure Q ∼ P, with density function f ∈ X∗, under

which S is a martingale.

Proof. (a)⇒(b) Let f = π∗, then f |M0 = 0 and for all x ∈ C we have x = x1−x2

with x1 ∈ M0 and x2 ∈ X+. Thus, f(x) = f(x1)− f(x2) = 0− f(x2) ≤ 0.

(b)⇒(c) Since M0 ⊂ C, we have f(x) ≤ 0 for all x ∈ M0. Using the fact that M0

is a linear space, we have f(−x) = −f(x) ≤ 0. This implies f |M0 = 0.

(c)⇒(d) By replacing f with f/f(1) we have found a probability measure Q ∼ P
with density dQ

dP = f ∈ Lq(P) such that

f(x) = 〈x, f〉 =
∫

Ω
xf dP = EQ[x]

for all x ∈ Lp(P). Since EQ[y] = 0 for all y ∈ M0, S is a martingale under Q by the

above discussion.

(d)⇒(a) Define π∗(x) = EQ[x] for all x ∈ X. Since Q ∼ P, π∗ is strictly positive.

By the fact that S is a martingale under Q, we have π∗|M0 = 0. Moreover, for

f ∈ M , we have f = a1 + m, where a ∈ R and m ∈ M0. Thus, π∗(f) = a + 0 = a

and we have π∗|M = π. 2

In view of Proposition 2.3.1, it is necessary that M does not contain any arbitrage

opportunities in order for the market model (M, π) to admit a strictly positive

extension.

The construction of a strictly positive π∗ : Lp(P) → R is the difficult part in the proof

of the Fundamental Theorem of Asset Pricing in infinite dimensions. It relies on the

topological structure of the underlying space Lp(P) as well as making additional

assumptions on the closedness of C = M0 − Lp
+(P). This is the subject of the next

section.
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2.3.2 No-Free-Lunch

As with Theorem 2.2.8, we resort to the Hyperplane Separation Theorem to find

the positive extension π∗ : Lp(P) → R of the pricing functional π : M → R.

In the case of L∞(P), Ross [51] proposed equipping a topology strong enough for the

positive cone L∞+ (P) to have non-empty interior. By Proposition 2.3.1, the linear

space M0 and the open set int(L∞+ (P)) are disjoint precisely when the no-arbitrage

condition is satisfied. An appeal to the Hyperplane Separation Theorem for open

sets provides π ∈ L∞(P)∗ that is strictly positive on int(L∞+ (P)) and non-positive

on M0.

Unfortunately, there are problems with this approach. In order for int(L∞+ (P)) to

be non-empty, either L∞(P) must be finite dimensional or L∞(P) must be equipped

with the norm topology induced by ‖ · ‖∞. In both cases, there is no guarantee

that π∗ is strictly positive on L∞+ (P) \ {0} which means that there is no guarantee

that the corresponding martingale measure Q is equivalent to P. Moreover, in the

latter case, we end up with a functional π ∈ L∞(P)∗ that may not be a member

of L1(P). Recall that the norm dual of L∞(P) is the space ba(Ω,F ,P) of finitely

additive measures with bounded variation, which is much larger than L1(P) in the

infinite dimensional case. As such, we cannot induce a probability measure Q ¿ P
under which the process S is a martingale because π∗ may have a singular part.

In order for π∗ ∈ L1(P), we have to work with the weak* topology on L∞(P).

However, under this topology, we have int(L∞+ (P)) = ∅. As examples show, it is

then impossible to separate L∞+ (P) \ {0} from M0 (cf. [21, Proposition 5.1.7]).

To circumvent this problem, it is necessary to employ a different version of the

Hyperplane Separation Theorem, which says that it is always possible to strictly

separate a closed convex set from a disjoint compact convex set by a continuous

linear functional. To this end, Kreps considered the convex cone

C = {g ∈ Lp(P) : ∃ f ∈ M0 such that f ≥ g}

of claims that are super replicable at price 0. In the same manner as the proof

of Proposition 2.2.5, we have that C = M0 − Lp
+(P) and that the no-arbitrage

property M0 ∩ Lp
+(P) = {0} is equivalent to C ∩ Lp

+(P) = {0}. In the infinite

dimensional setting, C is not guaranteed to be weak* closed. To remedy this, Kreps

formulates the following definition (cf. [43]), which is a strengthening of the no-
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arbitrage condition.

Definition 2.3.3 (No-Free-Lunch) Let (M, π) be a market model in Lp(P),

1 ≤ p ≤ ∞. We say that (M, π) satisfies the no-free-lunch condition if

C ∩ Lp
+(P) = {0}.

Here, the closure of C is taken in the ‖ · ‖p-topology for 1 ≤ p < ∞ and the

σ(L∞(P), L1(P))-topology for the case p = ∞.

Observe that, for 1 < p < ∞, the norm, weak and weak* closures of the convex set

C coincide.

If the no-arbitrage condition is violated, we can find 0 6= g ∈ C ∩ Lp
+(P). Thus,

0 ≤ g = f − h where f ∈ M0 and h ≥ 0. Economically speaking, we were able to

replicate the positive claim g with a zero-cost marketed claim f and by disposing of

the positive cash flow h.

In the case of no-free-lunch being violated, we are not always able to replicate g, but

instead are able to approximate g by elements of the form gα = fα−hα ∈ M0−Lp
+(P).

In other words, we are able to replicate g to some arbitrary precision using a zero-cost

marketed claim and free disposal.

The no-free-lunch condition thus has a sensible economic interpretation and is crafted

for the application of the Hyperplane Separation Theorem for closed convex sets.

We are now in a position to prove the Kreps-Yan Theorem.

2.3.3 The Kreps-Yan Theorem

We present a proof of the Kreps-Yan Theorem by Rokhlin [50, Theorem 1.1]. Al-

though this version is a partial case of [38, Theorem 3.1], its statement is simpler

and the proof is cleaner.

Let 〈X, Y 〉 be a pair of Banach spaces in separating duality. Suppose X is equipped

with a locally convex topology τ which is compatible with the duality 〈X,Y 〉 (in

other words, preserves the continuity of the functionals induced by Y ). Let K ⊂ X

denote a τ -closed pointed cone. An element f ∈ Y is called strictly positive if

〈x, f〉 > 0 for all x ∈ K \ {0}. An element f ∈ Y is called non-negative if 〈x, f〉 ≥ 0

for all x ∈ K. We only consider cones K such that the set of strictly positive

functionals is non-empty.
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Definition 2.3.4 (Kreps-Yan Property) Let X be endowed with a locally con-

vex topology τ compatible with the duality 〈X,Y 〉 and K ⊂ X be τ -closed pointed

cone that admits a strictly positive functional.

(a) We say that the Kreps-Yan Theorem is valid for the ordered space (X, K) if

for any τ -closed convex cone C with −K ⊂ C, the condition C ∩ K = {0}
implies the existence of a strictly positive f ∈ Y such that f |C ≤ 0.

(b) If this property holds for every τ -closed pointed cone K ⊂ X that admits a

strictly positive functional, then we say that (X, τ) has the Kreps-Yan Prop-

erty.

Recall that a topological space (X, τ) is said to have the Lindelöf Property if every

open cover of X has a countable subcover. We will refer to X as a Lindelöf space if

(X, σ(X, Y )) has the Lindelöf Property.

Note that the space (X,σ(X, Y )) is a Lindelöf space if the Lindelöf Property can be

verified for any topology τ compatible with the duality 〈X, Y 〉. Indeed, for any open

cover {Uα} ⊂ σ(X,Y ) ⊂ τ of X, there exists a countable subcover {Uαi}∞i=1 ⊂ τ .

But clearly {Uαi}∞i=1 ⊂ σ(X, Y ).

We now prove the Kreps-Yan Theorem in the abstract setting of Lindelöf spaces.

Theorem 2.3.5 Let (X,σ(X, Y )) be a Lindelöf space. Then (X, τ) has the Kreps-

Yan Property for any locally convex topology τ compatible with the duality 〈X, Y 〉.

Proof. Let x ∈ K \{0}. Then x 6∈ C and by the Hyperplane Separation Theorem,

there exists fx ∈ Y such that

〈y, fx〉 < 〈x, fx〉

for all y ∈ C. Since C is a cone, we have that 〈y, fx〉 ≤ 0 for all y ∈ C. Furthermore,

−K ⊂ C implies that 〈x, fx〉 > 0 and 〈z, fx〉 ≥ 0 for all z ∈ K.

Consider the family of sets

Ax = {y ∈ X : 〈y, fx〉 > 0}

for all x ∈ K \ {0} and let

A0 = {y ∈ X : |〈y, η〉| < 1},
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where η is a strictly positive functional (whose existence is assumed). The sets Ax

are open in the topology σ(X,Y ) and form an open cover of K. Moreover, the cone

K is closed in σ(X,Y ) since all topologies compatible with the duality 〈X, Y 〉 have

the same collection of closed convex sets. An appeal to the Lindelöf Property implies

the existence of the countable subcover ∪∞i=0Axi ⊃ K, where x0 = 0.

Let αi = 1/(‖fxi‖2i), then
∑∞

i=1 αifxi converges in the norm topology to some

f ∈ Y . Clearly f ≤ 0 on C. Moreover, f is strictly positive. Indeed, by the strict

positivity of η, for any element x ∈ K \ {0} there exists λ > 0 such that λx 6= A0.

As a consequence, λx ∈ Axk
for some k ≥ 1 and

〈λx, f〉 =
∞∑

i=1

αi〈λx, fxk
〉 ≥ αi〈λx, fxk

〉 > 0.

This completes the proof. 2

We identify some spaces that have the Kreps-Yan Property.

Corollary 2.3.6 The spaces Lp(P), 1 ≤ p < ∞, have the Kreps-Yan Property for

the norm topology and L∞(P) has the Kreps-Yan Property for the weak* topology

σ(L∞(P), L1(P)).

Proof. A topological space X is Lindelöf if it can be written as a countable union

of compact subsets. Indeed, an open cover of X induces a finite subcover of each

compact set. The union of these finite subcovers form a countable cover of X.

Therefore, by the Banach-Alaoglu Theorem, any dual space X∗ is Lindelöf in the

weak* topology σ(X∗, X). Consequently, a reflexive space is Lindelöf in the weak

topology σ(X, X∗) due to the weak compactness of the unit ball. By the above

theorem, reflexive spaces have the Kreps-Yan Property with respect to the norm

topology (in view of the fact that the norm topology is a locally convex topology

compatible with the duality 〈X, X∗〉) and dual spaces have the Kreps-Yan Property

with respect to the weak* topology.

Lastly, recall that a Banach space X is called weakly compactly generated (WCG) if

X contains a weakly compact subset whose span is dense in X. In [60] it is shown

that all WCG spaces are Lindelöf with respect to the weak topology. Thus, all WCG

spaces have the Kreps-Yan Property with respect to the norm topology.

The spaces Lp(P) are reflexive for 1 < p < ∞. Moreover, L1(P) is WCG (cf. [20]).

This completes the proof. 2
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The Kreps-Yan Theorem falls out as a special case of the above result.

Theorem 2.3.7 (Kreps-Yan) Let (Ω,F ,P) be a probability space and X = Lp(P)

endowed with the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P))
for p = ∞.

Let (M,π) be a market model in X induced by the process S. Then M satisfies the

no-free-lunch condition if and only if there is an equivalent probability measure Q
with dQ

dP ∈ X∗ = Lq(Q), p−1 + q−1 = 1, such that S is a Q-martingale.

Proof. As before, let C = {g ∈ Lp(P) : ∃ f ∈ M0 such that f ≥ g} = M0−Lp
+(P),

where M0 = π−1(0). Suppose that there is an equivalent probability measure Q
with dQ

dP ∈ X∗ = Lq(P) such that S is a Q-martingale. By Proposition 2.3.2, there

exists a strictly positive functional f ∈ X∗ such that f(g) ≤ 0 for all g ∈ C. By

continuity, the inequality extends to C. Now suppose 0 6= g ∈ C ∩ Lp
+(P), then the

strict positivity of f implies f(g) > 0. A contradiction.

For the converse, first observe that the set of strictly positive functionals with respect

to Lp(P)+ is non-empty. Indeed, the expectation functional is a member of this

set. We may therefore apply Theorem 2.3.5. Suppose that M satisfies the no-free-

lunch condition. By Corollary 2.3.6, X has the Kreps-Yan Property with respect to

the above-mentioned topologies. As such, there exists a strictly positive functional

f ∈ X∗ such that π∗|C ≤ 0. An application of Proposition 2.3.2 completes the proof.

2

2.3.4 Further Developments

Dalang, Morton and Willinger apply the Kreps-Yan Theorem in L1(P) to prove a

discrete time version of the Fundamental Theorem of Asset Pricing in terms of the

no-arbitrage condition for a d-dimensional process S on a diffuse probability space

[12].

Theorem 2.3.8 (Dalang-Morton-Willinger) Let (Ω,FT ,P) be a probability

space and let S = (St)T
t=0 be an Rd-valued stochastic process adapted to the discrete

time filtration (F)T
t=0. Then the no-arbitrage condition holds if and only if there

exists a probability measure Q ∼ P so that:
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(a) St ∈ L1(P) for all t = 0, . . . , T ,

(b) S is a Q-martingale,

(c) dQ
dP ∈ L∞(P).

The proof of this theorem is difficult, and is as close as one can get to a general

version of the Fundamental Theorem of Asset Pricing in terms of the no-arbitrage

condition (cf. [16, §7]).

The Kreps-Yan Theorem was the first version of The Fundamental Theorem of

Asset Pricing applicable to continuous time processes. The price of achieving this

was to trade the no-arbitrage condition for the stronger no-free-lunch condition.

The theorem also has other limitations. When applying the theorem for the case

1 ≤ p < ∞, the martingale measure has density in Lq(P) for q > 1. The q-th

moment is not invariant under equivalent changes in measure. In other words, if

we pass from the probability P to an equivalent probability P1, it does not follow

from dQ
dP ∈ Lq(P) that dQ

dP1
∈ Lq(P1). Only the spaces L0(P) and L∞(P) remain

unchanged under an equivalent change in probability. From a practical viewpoint,

L∞(P) is the most interesting case. However, the class of processes belonging to

L∞(P) is too restrictive for many applications. There is also the added complexity

of dealing with the weak* topology.

One of the difficulties of working with the weak* topology is the interpretation of the

no-free-lunch condition. Earlier, we mentioned that no-free-lunch means we are able

to approximate an arbitrage opportunity g by elements of the form gα = fα − hα ∈
M0 −L∞+ (P). In general, the elements {fα − hα}α∈I are indexed by an uncountable

ordered set I. This is not very helpful in practical applications. The question

arises as to whether we can replace {fα − hα}α∈I with (fi − hi)∞i=1. In the case of

continuous processes, Delbaen [14] was able to provide a positive answer when the

simple integrals in the market model (M,π) are indexed by stopping times instead

of deterministic times. Another positive answer was provided by Schachermayer [54]

in the case of discrete time processes with infinite time horizon.

When we are able to pass to the discrete sequence (fi − hi)∞i=1 convergent in the

weak* topology of L∞(P), the Principle of Uniform Boundedness implies that

sup
i∈N

‖fi − hi‖∞ < ∞.
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This means that the risk is bounded when approximating arbitrage opportunity g.

This is known as no-free-lunch with bounded risk [54]. In the general case, this

condition means that there is M > 0 such that fα ≥ −M P-almost surely for all

α ∈ I.

Unfortunately, in the general setting of semi-martingales, this condition does not

guarantee the existence of an equivalent martingale measure [16]. This fact suggested

that the requirement of the market model (M,π) containing the simple integrals is

not strong enough for a general theorem. An enrichment is needed. Indeed, the

art of finding a Fundamental Theorem of Asset Pricing involves choosing the set

M0 of marketed cashflows at zero initial cost so that the ‖ · ‖∞-closure of the set

C = M0 − L∞(P) is closed in the weak* topology of L∞(P).

The admissibility criteria of the trading strategy H are a subtle issue. In the con-

tinuous time setting it is necessary to exclude trading pathologies, such as doubling

strategies, in order to derive a viable theory. The criteria have to balance math-

ematical tractability with economic reality. A classical admissibility criterion is

introduced in [28, 29] to exclude doubling strategies:

Definition 2.3.9 An S-integrable predictable process H = (Ht)0≤t≤T is called ad-

missible if there is a constant M > 0 such that
∫ t

0
Hu dSu ≥ −M

almost surely for all t ∈ [0, T ].

The interpretation of this is that the economic agent, trading according to the strat-

egy H, has to adhere to a finite credit line. There are other variations of this

condition in the literature; we refer the reader to [28, 71, 21, 55] for more informa-

tion.

The approach of Delbaen and Schachermayer [16] was to define the set of marketed

cashflows at zero as

M0 =
{∫ T

0
Ht dSt : H admissable

}

and then assume free disposal by defining

C = [M0 − L0
+(P)] ∩ L∞(P).



Ch. 2 The Fundamental Theorem of Asset Pricing §2.3 The Infinite Dimensional Setting 63

The difference in the approach of [16] to the classical Kreps-Yan Theorem is due to

the following definition:

Definition 2.3.10 A locally bounded semi-martingale S satisfies the no-free-lunch

with vanishing risk condition if

C ∩ L∞+ (P) = {0},

where C denotes the ‖ · ‖∞-closure of C.

The process S fails the above condition if and only if there is 0 6= g ∈ L∞+ (P) and a

sequence (fn) of the form

fn =
∫ T

0
H

(n)
t dSt,

where the H(n) are admissible strategies, such that fn ≥ g − 1
n . This is a weaker

condition than no-free-lunch but stronger than no-arbitrage.

Economically, it means that the agent has to be willing to sacrifice at most 1
n when

approximating the arbitrage opportunity g, which is easy to interpret and leads to

the following general theorem [16].

Theorem 2.3.11 (Delbaen-Schachermayer) Let S be a bounded (resp. lo-

cally bounded) real-valued semi-martingale. Then there is a probability measure

Q ∼ P under which S is a martingale (resp. local martingale) if and only if S

satisfies the no-free-lunch with vanishing risk condition.

This result was extended to unbounded semi-martingales in [17], where the require-

ment of a martingale is weakened to sigma-martingale.

Theorem 2.3.12 (Delbaen-Schachermayer) Let S be a (not necessarily bound-

ed) Rd-valued semi-martingale. Then there is a probability measure Q ∼ P under

which S is a sigma-martingale if and only if S satisfies the no-free-lunch with van-

ishing risk condition.



Chapter 3

Valuation Bounds and Risk

Measures

3.1 Introduction

In this chapter, we present the work of Jaschke and Küchler [35, 34] (also see Staum

[59]) on generalising the Fundamental Theorem of Asset Pricing in terms of coherent

risk measures. We have seen earlier that the absence of arbitrage is equivalent to the

existence of an equivalent martingale measure with which we can price contingent

claims. If this measure is not unique (i.e. the market is not complete), we obtain

the no-arbitrage bounds

π(x) = sup{EQ[x] : Q ∈Me(S)} and

π(x) = inf{EQ[x] : Q ∈Me(S)}.

In reality, these bounds may be quite wide which presents the problem of which

price to choose. One approach is to select a unique price (or at least tighter price

bounds) with the help of a utility function which characterizes an agent’s preference

[30, 31, 41, 13, 25, 24, 40]. The drawback to this approach is the tight coupling of

contingent claim pricing and an agent’s utility function, initial position and estimate

of the real world probability measure. This can introduce significant model risk.

The approach of Jaschke and Küchler is to induce price bounds using a coherent

risk measure. These turn out to be the same good deal bounds considered by Černý

64
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and Hodges in [63]. These bounds can be shown to be tighter than the no-arbitrage

bounds but are still reasonably independent of personal preferences.

A remark on notation: Since this chapter involves many set theoretic arguments, we

will use lowercase letters to denote random variables to avoid confusion with sets,

which are denoted with uppercase letters.

3.2 The Space of Cash Streams

In what follows, let L denote a generic space of cash streams. We assume that it is

possible to form a position on either side of a contract, which translates into L being

a linear space. We also assume there exists a secure cash stream whose present value

is 1. We denote this by 1 ∈ L and it is used as a reference or numéraire cash stream.

Let (Ω,F ,P) be a probability space. Some examples of the space L are:

(a) The space of stochastic cash streams on a finite time horizon [0, T ]. Let Lsm

denote the space of simple adapted processes

x(t, ω) =
n∑

i=0

xi1Ei(ω)1[τi(ω),T ](t).

These are the cash streams which pay the amount xi at a random time τi in

the event Ei. The numéraire cash stream in this space is

1(t, ω) = 1Ω1[0,T ].

(b) The space of deterministic cash streams on a finite time horizon [0, T ]. Let

Ldm denote the space of piecewise constant functions

x(t) =
n∑

i=1

xi1[τi,T ](t).

These are the cash streams which pay the amount xi at the deterministic time

τi. The numéraire cash stream is given by

1(t) = 1[0,T ](t).

(c) The space of stochastic payments at one period. Let Lso denote the space of

simple random variables

x(ω) =
n∑

i=1

xi1Ei(ω).
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The numéraire cash stream is given by

1(ω) = (1 + r)xΩ(ω),

where r is the risk free rate of return on the time interval [0, T ]. The case

where Ω is finite is treated in [7].

A pricing system π : L → R assigns a fair value to a cash stream x ∈ L before any

kind of transaction costs. Since π represents frictionless pricing, it is naturally a

linear function. We call a price system π normalised if π(1) = 1. If π is normalised,

then π(x) amounts to the expected present value of the cash stream x.

Some examples of pricing systems are

(a) On the space Lsm, an important class of pricing systems are induced by pairs

of numéraire processes N and probability measures Q. These price systems

are of the form πN,Q : Lsm → R defined by

πN (x) = EQ
[∫ T

0

N0

Nt
dxt,

]

where Nt > 0 is some process used for discounting - a money market account,

for example.

(b) On the space Ldm, the cashflows are deterministic. Price systems on this space

represent a term structure of interest rates since they apply corresponding

discount factors v(t) to the cashflows with maturity t. This can be expressed

as

πv(x) =
∫ T

0
v(t) dxt.

(c) On the space Lso, price systems are equivalent to taking expectations with

respect to a probability measure Q. I.e.

πQ(x) = EQ[x] =
∫

Ω
x(ω) dQ(ω).

3.3 A Unified Framework

A relation º is called a pre-order if it is both reflexive and transitive. A pre-order

becomes a vector ordering if, in addition, the following two conditions hold:
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• x º y ⇔ x− y º 0, and

• x º 0, α > 0 ⇒ αx º 0.

It is well known that there is a one-to-one correspondence between vector orderings

º and cones A via the relation

x º y ⇔ x− y ∈ A.

We also assume a natural vector ordering ≥ on L is given by x ≥ 0 if every single

payment of x is non-negative. The cone of non-negative cash streams is denoted by

L+.

Let º denote a preference relation, then z º 0 means that z is preferable to the zero

cash stream. For x ∈ L, define

π(x) = inf{α ∈ R : α1 º x}

and

π(x) = sup{α ∈ R : α1 ¹ x}

as the upper and lower bound price of the cash stream x. The function ρ defined by

ρ(x) = inf{α ∈ R : α1 + x º 0}

can be considered a risk measure. It denotes the smallest amount of a secure cash

stream that needs to be added to x to make x preferable to zero. It is easy to see

that ρ(x) = π(−x) = −π(x) for all x ∈ L.

Modulo some technical conditions, there is a one-to-one correspondence between the

following economic objects:

(a) Coherent risk measures ρ.

(b) Cones A of acceptable risks, where A = {x : ρ(x) ≤ 0}.

(c) Partial preferences x º y meaning that x is at least as good as y. This can be

expressed as x º y ⇔ x− y ∈ A.

(d) Valuation bounds π and π where ρ(x) = π(−x) = −π(x).

(e) Sets K of admissible price systems given by π ∈ K ⇔ π(x) ≥ 0 for all x º 0.
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The relationship (a) and (b) was established for the case L = L∞(P) in Theorem

1.3.5. We will prove the correspondence of the above in the more general setting

of L. In the next definition, we formulate the conditions required for the economic

objects º, A, ρ and (π, π) to be equivalent.

Recall that a set A is called absorbing if for every f ∈ L there exists α > 0 such

that α−1f ∈ A. The radial interior of A is the set

{f ∈ A : A− f is absorbing}.

A set A is radially open if it coincides with its radial interior. A set A is called

radially closed if its compliment is radially open.

Definition 3.3.1 (a) A vector ordering º on L is a coherent partial preference if:

(Cl) {x ∈ L : x º 0} is radially closed,

(M) x ≥ 0 ⇒ x º 0.

(b) A set A ⊂ L is a coherent acceptance set if:

(C, PH) A is a cone,

(Cl) A is radially closed,

(T) 1 ∈ A,

(M) L+ ⊂ A.

(c) A function ρ : L → R is a coherent risk measure if:

(C) ρ is convex,

(PH) ρ is positively homogeneous,

(T) ρ is translation invariant,

(M) ρ is monotone.

(d) The pair (π, π) are called coherent valuation bounds if π(−x) = −π(x) for all

x ∈ L and ρ := −π is a coherent risk measure.

As a consequence, we have the identities π(x) = −ρ(x) and π(x) = ρ(−x) for

all x ∈ L.

Observe that convexity and sub-additivity are equivalent under the assumption of

positive homogeneity.
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Theorem 3.3.2 There is a one-to-one correspondence between the economic objects

listed in Definition 3.3.1.

Proof. (a)⇔(b) Let A = {x ∈ L : x º 0}, then A is easily seen to be a

coherent acceptance set. Conversely, for a coherent acceptance set A, the unique

order relation º determined by x º y ⇔ x − y ∈ A satisfies the properties of (a)

and is a coherent partial preference.

(b)⇔(c) For a coherent acceptance set A denote by

ρA(x) := inf{α ∈ R : α1 + x ∈ A}

the risk measure induced by A and for a coherent risk measure ρ denote by

Aρ := {x : ρ(x) ≤ 0}

the acceptance set induced by ρ.

It is easy to check the following equivalences:

• A [Aρ] is a cone if and only if ρA [ρ] is convex and positively homogeneous.

• 1 ∈ A [1 ∈ Aρ] if and only if ρA [ρ] is translation invariant.

• L+ ⊂ A [L+ ⊂ Aρ] if and only if ρA [ρ] is monotone.

What remains is to show that A 7→ ρA and ρ 7→ Aρ are bijections and inverses of

each other. First we show ρAρ = ρ. Indeed, by translation invariance

ρAρ(x) = inf{α ∈ R : α1 + x ∈ {y ∈ L : ρ(y) ≤ 0}}
= inf{α ∈ R : ρ(x) ≤ α}
= ρ(x).

Conversely, we show A = AρA . The inclusion A ⊂ AρA is trivial. For the reverse

inclusion, observe that A is a cone with 1 ∈ A. Thus x ∈ A and α ≥ 0 imply

x + α1 ∈ A. As such, the set

{α ∈ R : α1 + x ∈ A}
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is of the form ∅, R, [ρ,∞) or (ρ,∞) for some ρ ∈ R. Since A is radially closed, the

form (ρ,∞) cannot occur. Indeed, ρ1+x ∈ L\A implies that the set L\A−{ρ1+x}
is absorbing. Consequently, there exists γ > 0 such that

γ−11 ∈ L \A− {ρ1 + x}

whence (γ−1 + ρ)1 + x ∈ L \A. This contradicts the fact that

ρ = inf{α ∈ R : α1 + x ∈ A}

and so we must have ρ1 + x ∈ A. If ρ ≤ 0, then x = (ρ1 + x)− ρ1 ∈ A. Adopting

the convention inf ∅ = ∞ and inf R = −∞ we have ρA(x) ≤ 0 if and only if x ∈ A.

It now follows that AρA = {x : ρA(x) ≤ 0} = A.

(a)⇒(d) For x ∈ L, define

π(x) = inf{α ∈ R : α1 º x} and π(x) = sup{α ∈ R : α1 ¹ x}.

Then, it is easily seen that π(−x) = −π(x). Define

ρ(x) = −π(x) = inf{α ∈ R : α1 + x º 0}.

Then ρ is a coherent risk measure by virtue of the coherent partial preference º.

(d)⇒(c) Trivial. 2

Observe that ρA(0) = 0 if and only if 1 ∈ A and −1 6∈ A. If A is a cone containing

1, then ρA < ∞ if and only if 1 is in the radial interior of A and ρA > −∞ if and

only if −1 is in the radial interior of L \A.

The monotonicity property of a convex measure ρ ensures that non-negative expo-

sures are viewed as riskless (x ≥ 0 ⇒ ρ(x) ≤ 0). On the other hand, it is sensible

to prevent non-positive positions from being acceptable. This is the aim of the

following definition.

Definition 3.3.3 A coherent risk measure ρ is called weakly relevant if x ≤ 0 and

x 6= 0 imply ρ(x) > 0. We say that ρ is strongly relevant if ρ(x) ≤ 0 and ρ(−x) ≤ 0

imply x = 0.

The property of relevance ensures that the addition of a non-zero risk to an existing

position will have a material impact on the risk of the portfolio (cf. [7]).
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In terms of acceptance sets, weak relevance corresponds to the condition

A ∩ (−L+) = {0}.

Strong relevance corresponds to

A ∩ (−A) = {0},

which is tantamount to the associated preference ordering being anti-symmetric.

As mentioned earlier, it is argued in [15] that for a coherent risk measure ρ, it

does not make sense to allow ρ(x) = −∞, as this would enable us to withdraw an

arbitrary amount of capital from the position x without increasing its risk. This

situation cannot occur if the corresponding (radially closed) acceptance set Aρ is

weakly relevant. Indeed, −1 is contained in the radial interior of L \ Aρ when

A ∩ (−L+) = {0}.

3.4 Dual Pricing Systems

Let 〈L, L̂〉 be in separating duality. Note that L̂ need not be the entire algebraic

dual of L. Let

A◦ := {π ∈ L̂ : π(x) ≥ 0 ∀ x ∈ A}

denote the polar cone in L̂ of a cone A ⊂ L, and let

K◦ := {x ∈ L : π(x) ≥ 0 ∀ π ∈ K}

denote the polar cone in L of a cone K ⊂ L̂.

Definition 3.4.1 For an acceptance set A ⊂ L, we call the polar cone

KA := A◦ ⊂ L̂

the associated set of admissible price systems and

DA := {π ∈ A◦ : π(1) = 1}

the associated set of normalised admissible price systems.

We can now prove a generalization of Theorem 1.3.5.
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Theorem 3.4.2 (Duality Theorem) Let A ⊂ L be a cone that contains 1,

KA = A◦ the associated set of admissible price systems, and ρ = ρA its associated

risk measure. Then the following statements are true:

(a) A = K◦
A if and only if A is σ(L, L̂)-closed.

(b) If A is σ(L, L̂)-closed then DA 6= ∅ if and only if −1 6∈ A.

(c) If A is σ(L, L̂)-closed then

ρ(x) = sup
π∈KA

π(−x)/π(1),

where we adopt the convention 0/0 = −∞.

(d) If A is σ(L, L̂)-closed then

ρ(x) = sup
π∈DA

π(−x),

provided 1 is in the radial interior of A. We adopt the convention sup ∅ = −∞.

Proof. (a) Assume A is a σ(L, L̂)-closed. Since A is a convex cone that contains

0, it follows from the Bi-Polar Theorem that

K◦
A = A◦◦ = co (A ∪ {0}) = A.

Conversely, A = K◦
A = A◦◦ implies A is σ(L, L̂)-closed.

(b) Observe that A = K◦
A implies

x ∈ A ⇐⇒ π(x) ≥ 0 ∀ π ∈ KA. (3.4.1)

Suppose DA 6= ∅. If −1 ∈ A then π(−1) ≥ 0 for some π ∈ DA, which implies

−1 ≥ 0. Thus, −1 6∈ A. Conversely, if −1 6∈ A, there exists π ∈ KA such that

π(−1) < 0. Thus, π( · )/π(1) ∈ DA.

(c) By (3.4.1), we have

ρ(x) = inf{α ∈ R : α1 + x ∈ A}
= inf{α ∈ R : π(α1 + x) ≥ 0 ∀ π ∈ KA}
= inf{α ∈ R : α ≥ π(−x)/π(1) ∀ π ∈ KA}
= inf{α ∈ R : α ≥ sup

π∈KA

π(−x)/π(1)}

= sup
π∈KA

π(−x)/π(1)
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for all x ∈ L.

(d) If 1 is in the radial interior of A, then π(1) > 0 for all 0 6= π ∈ KA. Indeed,

pick x ∈ L such that π(x) > 0. Since A − 1 is absorbing, there exists γ > 0 such

that −γ−1x ∈ A − {1}. Thus, γ1 − x ∈ A. By (3.4.1), π(γ1 − x) ≥ 0 ⇒ π(1) ≥
γ−1π(x) > 0. The fact that

ρ(x) = sup
π∈DA

π(−x)

now follows easily1. 2

In view of the above result, we add to Definition 3.3.1.

Definition 3.4.3 (a) We call a coherent risk measure (and its equivalent repre-

sentations) closed if its corresponding acceptance set is σ(L, L̂)-closed.

(b) We call KA ⊂ L̂ a coherent set of admissible price systems if

(C, PH) KA is a cone,

(Cl) KA is σ(L̂, L)-closed,

(M) x ∈ L+ ⇒ π(x) ≥ 0 ∀ π ∈ KA.

By [34, Propostion 17], any closed acceptance set A is also radially closed.

Corollary 3.4.4 There is a one-to-one correspondence between the closed versions

of the economic objects listed in Definition 3.3.1 and the coherent sets of admissible

price systems in Definition 3.4.3

Proof. Given a σ(L, L̂)-closed coherent acceptance set A ⊂ L, define KA = A◦.

Then KA is automatically a σ(L̂, L)-closed convex cone. It is also easy to see that

x ∈ L+ ⇒ π(x) ≥ 0 ∀ π ∈ KA.

Conversely, given a coherent set of admissible price systems K ⊂ L̂, define AK = K◦.

Then AK is a σ(L, L̂)-closed convex cone that contains L+.

Lastly, the Bi-Polar Theorem asserts that A = AKA
for all closed coherent accep-

tance sets A and K = KAK
for all coherent sets of admissible price systems K.

Thus, one-to-one correspondence is assured and the proof is complete. 2

1In fact, DA is a base for the cone KA.
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3.5 Good Deals

In this section we study good deals, which are a natural generalisation of arbitrage.

A generalised version of the Fundamental Theorem of Asset Pricing will be derived.

Let M ⊂ L be the set of all cash streams available in the market at zero initial cost

and assume it is a cone.

As an illustration, consider the cash streams {zi}n
i=1. If it were possible to buy the

cash stream zi at the asked price pi, the net cash stream ci = −pi1+ zi is a member

of M . Similarly, if it were possible to sell zi at the bid price p
i
, then the net cash

stream ci = p
i
1− zi is also a member of M . Moreover, M contains the set

cone ({c1, . . . , cn} ∪ {c1, . . . , cn}),

which represents the assumption of no trading constraints.

Conceptually, M plays the same role as the linear space K of attainable claims at

price zero that was considered in the previous chapter. The assumption that M is

a cone represents a market where transaction costs are taken into account. If M is

linear, then the market can be viewed as frictionless.

Definition 3.5.1 (Good Deals) Fix a coherent acceptance set A and let M

denote the cone of cash streams available in the market.

(a) We say that 0 6= x ∈ M is a good deal of the first kind if x ∈ A.

(b) We say that x ∈ M is a good deal of the second kind if there exists α > 0 such

that x− α1 ∈ A.

A good deal of the first kind represents a strategy, with no initial cost, that achieves

a terminal cashflow that is acceptable in terms of our measure of risk.

A good deal of the second kind is similar to a good deal of the first kind, except

we are able to withdraw α units of 1 from the position without compromising its

acceptability. Thus, a good deal of this kind allows the arbitrageur to determine

whether the rewards of doing the deal outweigh the costs.



Ch. 3 Valuation Bounds and Risk Measures §3.5 Good Deals 75

Proposition 3.5.2 Let M denote the cone of cash streams available in the market.

Fix a coherent risk measure ρ, let

A = {x ∈ L : ρ(x) ≤ 0}

and

C = {x ∈ L : ρ(x) < 0}.

Then the following statements are true:

(a) M −A = {z ∈ L : ∃ x ∈ M such that x º z}.

(b) If ρ is strongly relevant, there are no good deals of the first kind if and only if

(M −A) ∩A = {0}.

(c) There are no good deals of the second kind if and only if (M −A) ∩ C = ∅.

Proof. (a) If z ∈ M −A, then z = x−a where x ∈ M and a ∈ A. Consequently,

x − z ∈ A so that x º z. Conversely, for z ∈ L, if there exists x ∈ M such that

x º z, we have a := x− z ∈ A. Thus, z = x− a ∈ M −A.

(b) Clearly, the absence of good deals of the first kind is equivalent to the condition

M ∩A = {0}.

Since M ⊂ M−A, we have that (M−A)∩A = {0} implies M∩A = {0}. Conversely,

assume M ∩ A = {0} and suppose that 0 6= z ∈ (M − A) ∩ A. Then there exists

x ∈ M such that x º z º 0. I.e. x− z ∈ A. The strong relevance of ρ implies that

−z 6∈ A and so x 6= 0. Hence, 0 6= x ∈ M ∩A = {0}, a contradiction.

(c) We first show that the absence of deals of the second kind is equivalent to the

condition M ∩ C = ∅. Indeed, if x ∈ M ∩ C, we have that ρ(x) = β < 0. Hence,

0 = ρ(x)− β = ρ(x + β1). Letting α = −β > 0, it follows that x−α1 ∈ A and so x

is a good deal of the second kind. Conversely, if x ∈ M is a good deal of the second

kind, there exists α > 0 so that x − α1 ∈ A. Hence, ρ(x − α1) = ρ(x) + α ≤ 0.

Consequently, ρ(x) < 0 which implies x ∈ M ∩ C.

To conclude, observe that M ⊂ M −A and so (M −A)∩C = ∅ implies M ∩C = ∅.
Conversely, assume M∩C = ∅ and suppose that z ∈ (M−A)∩C. Then ρ(z) < 0 and

z = x−a where x ∈ M and a ∈ A. Consequently, ρ(x) = ρ(z +a) ≤ ρ(z)+ρ(a) < 0.

This contradicts M ∩ C = ∅. 2
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If A = L+ in the above proposition, the good deals of the first kind specialize to

arbitrages.

Proposition 3.5.3 Let A be a coherent acceptance set and M denote the cone of

cash streams available in the market. Then the following statements hold:

(a) There are no good deals of the second kind if and only if 1 6∈ M −A.

(b) If −1 6∈ A, then every good deal of the second kind is also a good deal of the

first kind.

Proof. (a) Let x ∈ M and a := x−α1 ∈ A for some α > 0. Since M−A is a cone,

it follows that 1 = α−1(x−a) ∈ M−A. Conversely, suppose that 1 ∈ M−A. Then,

for any α > 0, we may write α1 = x − a where x ∈ M and a ∈ A. Consequently,

a = x− α1 ∈ A so that x is a good deal of the second kind.

(b) As before, let x ∈ M and x − α1 ∈ A for some α > 0. Clearly, −α1 6∈ A

implies that x 6= 0. Since α1 ∈ A, it follows that x = (x − α1) + α1 ∈ A. Thus, x

is a good deal of the first kind. 2

We will focus on good deals of the second kind for the remainder of this chapter.

Definition 3.5.4 Let A be a coherent acceptance set and M denote the cone of

cash streams available in the market, then we may define the market induced good

deal bounds:

πA,M (z) = inf
α∈R,x∈M

{α : x + α1− z ∈ A}, and

πA,M (z) = sup
α∈R,x∈M

{α : x− α1 + z ∈ A}.

The interval [πA,M (z), πA,M (z)] is the interval of the prices for the cashflow z that

exclude the possibility of good deals of the second kind.

As an illustration, suppose that an agent is willing to buy the cash stream z for a

price p > πA,M (z). Then there exists a market hedge x and price α < p such that

x + α1− z ∈ A.



Ch. 3 Valuation Bounds and Risk Measures §3.5 Good Deals 77

Thus, we can sell z to the agent at price p, execute the strategy that generates x,

and the resulting cash stream y := x + p1 − z is a good deal of the second kind.

Indeed, let γ = p− α > 0, then y ∈ M and y − γ1 ∈ A. A similar argument can be

made for an agent willing to sell the cash stream z for a price less than πA,M (z).

Proposition 3.5.5 If A is a coherent acceptance set and M is a cone, then the

good deal bounds (πA,M , πA,M ) is a pair of coherent valuation bounds. Moreover,

ρ(z) := −πA,M (z) = ρA−M (z) = inf
x∈M

ρA(x + z)

for all z ∈ M .

Proof. It follows easily from the definition that πA,M (z) = −πA,M (−z). Also

observe

{α : x + z − α1 ∈ A, x ∈ M} = {α : z − α1 ∈ A−M}.

Thus,

ρ(z) = −π(z)

= − sup{α : x− α1 + z ∈ A, x ∈ M}
= inf{−α : x− α1 + z ∈ A, x ∈ M}
= inf{α : x + α1 + z ∈ A, x ∈ M}
= inf{α : z + α1 ∈ A−M}
= ρA−M (z),

from which ρ(z) = infx∈M ρA(x + z) follows. Since A −M is a cone that contains

L+, ρ is a coherent risk measure. If A − M is radially closed, the relationship is

one-to-one. 2

We will refer to ρ = ρA−M as the market aware risk measure.

The definition of (πA,M , πA,M ) and (π, π) are similar, but their economic meaning

is quite different. The raw valuation bounds (πA,M , πA,M ) are independent of the

market and based purely on an agent’s preference. The bounds (πA,M , πA,M ) price

a security relative to the market and some trading strategy. These bounds can be

viewed as a generalisation of the no-arbitrage price bounds seen earlier.
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Definition 3.5.6 We call

KA,M := A◦ ∩ (−M)◦

=
{

π ∈ L̂ : π(x) ≥ 0 ∀ x ∈ A and π(x) ≤ 0 ∀ x ∈ M
}

=
{

π ∈ L̂ : π(x) ≥ 0 ∀ x ∈ A and π(x) ≤ 0 ∀ x ∈ M −A
}

the set of consistent price systems and

DA,M = {π ∈ KA,M : π(1) = 1}

the set of normalised consistent price systems.

The set DA,M is analogous to the set of absolutely continuous martingale measures

Ma(S) in the previous chapter.

As a simple consequence of Theorem 3.4.2, we obtain a generalised version of the

fundamental theorem of asset pricing.

Theorem 3.5.7 (Jaschke-Küchler) Let A ⊂ L be a coherent acceptance set

and M ⊂ L be the cone of cashflows available in the market. If A −M is σ(L, L̂)-

closed, then the following statements are true for z ∈ L.

(a) A−M = K◦
A,M .

(b) DA,M 6= ∅ if and only if there are no good deals of the second kind in the

market.

(c) ρA−M (z) = supπ∈KA,M
π(−z)/π(1), where we adopt the convention 0/0 = −∞.

(d) ρA−M (z) = supπ∈DA,M
π(−z), provided 1 is in the radial interior of A −M .

We use the convention sup ∅ = −∞.

Proof. (a) Observe that KA,M := A◦ ∩ (−M)◦ = (A −M)◦. Indeed, π ∈ A◦ ∩
(−M)◦ implies π(a) ≥ 0 for a ∈ A and π(m) ≤ 0 for m ∈ M . Hence π(a)− π(m) =

π(a−m) ≥ 0 so that π ∈ (A−M)◦. Conversely, if π ∈ (A−M)◦, then π(x) ≥ 0 for

all elements of the form x = 0−m and x = a− 0 where a ∈ A and m ∈ M . Thus,

π ∈ A◦ ∩ (−M)◦.
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The statement now follows from Theorem 3.4.2 (a) by replacing the acceptance set

A with A−M .

(b) By Theorem 3.4.2 (b), DA,M 6= ∅ if and only if −1 6∈ A−M . By Proposition

3.5.3, 1 6∈ M −A is equivalent to the absence of good deals of the second kind, from

which the result follows.

(c), (d) Follows directly from Theorem 3.4.2. 2

Corollary 3.5.8 Let A ⊂ L be a coherent acceptance set and M ⊂ L be the cone

of cashflows available in the market. If A−M is σ(L, L̂)-closed, then DA,M 6= ∅ if

and only if (M −A) ∩ C = ∅.

Proof. The result follows from (b) in the above theorem and Proposition 3.5.2. 2

Corollary 3.5.9 Let A ⊂ L be a coherent acceptance set and M ⊂ L be the cone

of cashflows available in the market. If A−M is σ(L, L̂)-closed, then

πA,M (z) = inf
π∈DA,M

π(z) and

πA,M (z) = sup
π∈DA,M

π(z)

for all z ∈ L, provided 1 is in the radial interior of A−M .

Proof. Follows directly from (d) in the above theorem and the identities implied

by Proposition 3.5.5, i.e. πA,M (z) = −ρA−M (z) and πA,M (z) = ρA−M (−z) for all

z ∈ L. 2

As is evident from the above results, it is a requirement that A − M be σ(L, L̂)-

closed in order to achieve a fundamental theorem of asset pricing. This requires us

to choose an appropriate M so as to complete A−M .



Chapter 4

A Generalised Kreps-Yan

Theorem

4.1 Introduction

In [35, 34], Jaschke and Küchler prove a FTAP pertaining to good deals of the

second kind only. It is argued that deals of this kind are practically relevant to the

arbitrageur, because the value of doing the deal can be directly measured in units

of the numéraire asset.

In this chapter, we will focus on the stronger condition of no good deals of the

first kind, which is a natural extension of the no-arbitrage condition. As such, a

continuous time, infinite dimensional version of the FTAP pertaining to these deals

does not exist.

Following the approach of Kreps [43], we consider the condition of ‘no near-good

deals of the first kind’, which is a natural extension of the no-free-lunch condition.

This leads to a generalisation of the Kreps-Yan Theorem, where the notion of a

free-lunch is extended to include (almost) super replicable contingent claims having

acceptable risk specified by an agent’s market aware coherent risk measure. Here,

the super replication occurs according the agent’s partial preference ordering induced

by his/her risk measure. As a result, we obtain price bounds that are tighter than

no-free-lunch price bounds.

In [59], Staum extends the work of Jaschke and Küchler. He formulates the notion

80
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of a near-arbitrage, which is analogous to a near-good deal of the first kind, but

not equivalent. He goes on to prove a general version of the FTAP in terms of the

absence of near-arbitrage. Using a different approach to that of Staum, we are able

to prove a partial case of this result.

4.2 Preliminaries

Suppose that L is a topological vector space. In Theorem 3.4.2 (d), it is assumed

that 1 is contained in the radial interior of the acceptance set A. This is a strong

requirement. Indeed, an element e is in the radial interior of A ⊂ L if and only if

e is an order unit of L with respect to the ordering induced by A (cf. [56]), i.e.

Ie := ∪n∈N[−ne, ne] = L, where we use the notation

[x, y] = {z ∈ L : x ¹ z ¹ y}.

If A is closed and the topology on L is completely metrizable (e.g. L0(P) equipped

with the topology of convergence in probability), then e is in the interior of A if and

only if e is an order unit of L.

It is well known that the positive cones Lp
+(P), 1 ≤ p < ∞, have void interior with

respect to the norm topology on Lp(P). Also, the positive cone of L∞(P) has void

interior with respect to the weak* topology. In order to extend the above results to

Lp-spaces, we use the notion of a quasi-interior point.

Definition 4.2.1 Let L be a locally convex topological vector space, ordered by

the convex cone K. An element e ∈ K is said to be a quasi-interior point of K if

the set ∪n∈N[−ne, ne] is dense in L. The set of all quasi-interior points of K will be

denoted Kq.

One can check that e ∈ Kq if and only if spanK ∩ ({e} − K) is dense in L. For

a detailed account on quasi-interior points, the reader can consult [26] as well as

[57, 56]. For convenience, we shall recall some basic results.

Proposition 4.2.2 Let L be a locally convex topological vector space, ordered by the

convex cone K. Then the following statements hold.

(a) intK ⊂ Kq.
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(b) If intK 6= ∅ then Kq = intK.

(c) Kq is a convex subset of K.

(d) Kq + K ⊂ Kq.

(e) Kq = ∪{e + K : e ∈ Kq}.

(f) Kq ∪ {0} is a convex cone.

(g) Kq 6= ∅ and L = K −K imply L = Kq −Kq.

(h) If Kq 6= 0 then K ⊂ Kq. If K is closed, then K = Kq.

(i) (x + K)q = x + Kq for all x ∈ L.

When K has non-empty interior, this interior is equal to Kq. When the interior of

K is empty, the quasi-interior may be non-empty. Indeed, the Lp-spaces mentioned

above are an example of this, since 1 is quasi-interior to the positive cone which has

empty interior.

We turn our attention to strictly positive functionals.

Proposition 4.2.3 Let 〈L, L̂〉 be vector spaces in separating duality and suppose

that L is ordered by the cone K ⊂ L. If f ∈ (K◦)q then f is strictly positive on K.

Proof. Suppose f ∈ (K◦)q and choose x ∈ K \ {0}. If 〈x, f〉 = 0, then 〈y, f〉 = 0

for all y ∈ If = ∪n∈N[−nf, nf ] ⊂ L̂. Since If is dense in L̂, it follows that x = 0,

which is a contradiction. 2

To prove the converse, we need to assume that K induces a lattice structure on the

pair 〈L, L̂〉 (cf. [5, Theorem 4.85] or [4, Theorem 8.54]).

We exhibit a condition on the acceptance set A that guarantees the existence of a

strictly positive functional on A.

Definition 4.2.4 Let L be a vector space, ordered by the convex cone K. A convex

subset B ⊂ K is called a base for K if for each 0 6= x ∈ K, there exists a unique

real number α > 0 such that α−1x ∈ B.
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A cone K admits a strictly positive functional if and only if it has a base. The

discussion below proves this fact and is adapted from [3, Theorem 1.47].

In view of the above definition, define the function τ : K → R+ by τ(x) = α. Then

τ is additive on K. To see this, let x, y ∈ K and b1 = x/τ(x) and b2 = y/τ(y). Then

b1, b2 ∈ B and by the convexity of B, we have

b :=
τ(x)b1

τ(x) + τ(y)
+

τ(y)b2

τ(x) + τ(y)
∈ B.

Thus, (τ(x) + τ(y))b = x + y. By uniqueness, it follows that τ(x + y) = τ(x) + τ(y).

An appeal to [3, Lemma 1.26] indicates that τ may be extended to a strictly positive

linear function f : K−K → R via the formula f(x1−x2) = f(x1)−f(x2), x1, x2 ∈ K.

Conversely, if there exists a strictly positive linear functional f : K −K → R, the

set B = K ∩ f−1(1) is a base for the cone K. To see this, let α = f(x) for each

x ∈ K. Then α−1x ∈ B and α > 0 is unique. Indeed, suppose λ > 0 is such that

λ−1x ∈ B, then f(λ−1x) = 1 ⇒ f(x) = λ = α. In this case, we say that B is defined

by f .

Note that if L is a locally convex topological vector space, f need not be continuous

if the topology on L is not complete. We require that the strictly positive functional

f be continuous. The next definition guarantees this.

Definition 4.2.5 Let L be a locally convex topological vector space, ordered by

the convex cone K. Then K is said to be well-based if K has a base B ⊂ K such

that 0 6∈ B.

The following result can be found in [47].

Proposition 4.2.6 Let L be a locally convex topological vector space, ordered by the

convex cone K. Then K admits a continuous strictly positive functional f : L → R
if and only if K is well-based. In this case, K is pointed and we may take the base

B of K to be B = K ∩ f−1(1).

Proof. Assume K admits a continuous strictly positive functional f : L → R. Let

B = K ∩ f−1(1), then B is a convex base for K by the above discussion. Since f is

continuous, we have that 0 6∈ B.
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Conversely, by the Hyperplane Separation Theorem, there exists a continuous func-

tional f that strictly separates {0} and B. We may choose f so that f(x) > 0 for all

x ∈ B. For each y ∈ K \ {0}, we have y = λx where λ > 0 and x ∈ B are uniquely

determined. Hence, f(y) = λf(x) > 0 so that f is strictly positive on K.

To complete the proof, observe that K ∩ (−K) ⊂ f−1(0) and K ∩ f−1(0) = {0}.
Thus, K ∩ (−K) ⊂ K ∩ f−1(0) = {0}, which shows that K is pointed. 2

In [33, Theorem 3.8.4], it is shown that if L is a normed space ordered by the cone

K, then K is well-based by a bounded base B if and only if the dual cone K◦ in the

norm dual L∗ has non-empty interior.

For some interesting results concerning the geometry of cones, the interested reader

can consult [47, 42].

4.3 Near-Good Deals of the First Kind

Definition 4.3.1 Let 〈L, L̂〉 be in separating duality, A ⊂ L a strongly relevant

coherent acceptance set, and M a cone of marketed cash streams.

(a) We refer to 0 6= z ∈ (M −A) ∩ A as a near-good deal of the first kind. Here,

the closure of M −A is taken in the σ(L, L̂)-topology.

(b) We say that there are no near-good deals of the first kind if (M −A)∩A = {0}.

It is obvious that every good deal of the first kind is also a near-good deal of the

first kind.

In what follows, assume that 〈L, L̂〉 are Banach spaces in separating duality. Note

that L̂ is not necessarily the continuous dual of L, for which we use the notation L∗.

Definition 4.3.2 Let A ⊂ L be a closed coherent acceptance set.

(a) A functional π ∈ L̂ is called strictly positive with respect to A if 〈x, π〉 > 0 for

all x ∈ A \ {0}.

(b) We use the notation

K̃A := {π ∈ KA : π is strictly positive with respect to A}
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for the set of strictly positive admissible price systems and

D̃A := {π ∈ K̃A : π(1) = 1}

for the set of normalised strictly positive admissible price systems.

(c) If M ⊂ L is a cone of marketed cash streams, then define

K̃A,M := K̃A ∩ (−M)◦

=
{

π ∈ L̂ : π(x) > 0 ∀ x ∈ A \ {0} and π(x) ≤ 0 ∀ x ∈ M
}

=
{

π ∈ L̂ : π(x) > 0 ∀ x ∈ A \ {0} and π(x) ≤ 0 ∀ x ∈ M −A
}

to be the set of strictly positive consistent price systems and

D̃A,M := {π ∈ K̃A,M : π(1) = 1}

to be the set of normalised strictly positive consistent price systems.

(d) Let M ⊂ L be a cone of marketed cash streams. Then we define the market

induced no near-good deal valuation bounds as:

πA,M (z) = ρA−M (−z) and

πA,M (z) = −ρA−M (z),

for all z ∈ L, where ρA−M denotes the coherent risk measure corresponding to

the closed convex cone A−M .

We now generalise the Kreps-Yan Theorem to the setting of coherent risk measures.

Theorem 4.3.3 Suppose that (L, σ(L, L̂)) is a Lindelöf space with M ⊂ L a cone

of marketed cash streams. Let A ⊂ L be a closed and well-based coherent acceptance

set, and let ρA−M be the market aware risk measure. Then the following statements

are true:

(a) There are no near-good deals of the first kind if and only if D̃A,M 6= ∅.

(b) There are no near-good deals of the first kind if and only if A−M = K̃◦
A,M .

(c) If there are no near-good deals of the first kind, then

ρA−M (z) = sup
π∈K̃A,M

π(−z)/π(1) = sup
π∈D̃A,M

π(−z).
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(d) Using the convention 0/0 = −∞, we have

ρA−M (z) = sup
π∈KA,M

π(−z)/π(1).

If 1 is in the quasi-interior of A−M then

ρA−M (z) = sup
π∈DA,M

π(−z),

where we use the convention sup ∅ = −∞.

Proof. (a) Proposition 4.2.6 implies that A admits a strictly positive functional

and is strongly relevant. Thus, if there are no near-good deals of the first kind,

Theorem 2.3.5 implies the existence of a functional π ∈ D̃A,M . Conversely, if π ∈
D̃A,M , we have A ∩ π−1(0) = {0}. However, (M −A) ∩ A ⊂ π−1(0), which implies

(M −A) ∩A = {0}. Thus, there are no near-good deals of the first kind.

(b) By (a), we have that K̃A,M 6= ∅ and so we may choose π∗ ∈ K̃A,M . Then, for

any π ∈ KA,M = (A−M)◦, define the sequence an = (1/n)π∗+(1−1/n)π. Clearly,

an ∈ K̃A,M for all n ∈ N. Moreover, for any x ∈ L, we have

lim
n→∞〈x, an〉 = lim

n→∞(1/n)〈x, π∗〉+ lim
n→∞(1− 1/n)〈x, π〉

= 〈x, π〉.

This shows K̃A,M is σ(L̂, L)-dense in KA,M . Since A−M = K◦
A,M by the Bi-Polar

Theorem, we have

x ∈ A−M ⇐⇒ 〈x, π〉 ≥ 0 for all π ∈ KA,M . (4.3.1)

Since K̃A,M is dense in KA,M , (4.3.1) is equivalent to

x ∈ A−M ⇐⇒ 〈x, π〉 ≥ 0 for all π ∈ K̃A,M (4.3.2)

by continuity. Consequently, A−M = K̃◦
A,M . Conversely, A−M = K̃◦

A,M implies

that K̃A,M 6= ∅, and consequently D̃A,M 6= ∅. By (a), there are no near-good deals

of the first kind.

(c) Use the equivalence of (4.3.1) and (4.3.2) and the proof of Theorem 3.4.2 (c)

with A replaced with A−M . Normalising the elements of K̃A,M yields the result.
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(d) Since 1 is in the quasi-interior of A−M , Proposition 4.2.3 implies that 1 is

strictly positive on KA,M . Proposition 4.2.6 implies that DA,M is a base for the cone

KA,M . The result now follows from Theorem 3.4.2 (c). 2

Corollary 4.3.4 Suppose that (L, σ(L, L̂)) is a Lindelöf space with M ⊂ L a cone

of marketed cash streams. Let A ⊂ L be a closed and well-based coherent acceptance

set, and let ρA−M be the market aware risk measure. Then, the no near-good deal

valuation bounds (πA,M , πA,M ) may be calculated as

πA,M (z) = inf
π∈D̃A,M

π(z) and

πA,M (z) = sup
π∈D̃A,M

π(z)

for all z ∈ L, provided there are no near-good deals of the first kind.

Proof. Follows directly from (d) in the above theorem and the identities πA,M (z) =

−ρA−M (z) and πA,M (z) = ρA−M (−z) for all z ∈ L. 2

Corollary 4.3.5 Suppose that (L, σ(L, L̂)) is an ordered Lindelöf space with M ⊂ L

a cone of marketed cash streams. Let A ⊂ L be a closed and well-based coherent

acceptance set. Then, the no near-good deal valuation bounds (πA,M , πA,M ) are at

least as tight as the no-free-lunch valuation bounds (πL+,M , πL+,M ).

Proof. The no-free-lunch valuation bounds (πL+,M , πL+,M ) correspond to the

acceptance set L+ −M . By the monotonicity of A, the set of strictly positive

consistent price systems with respect to A, given by

K̃A,M =
{

π ∈ L̂ : π(x) > 0 ∀ x ∈ A \ {0} and π(x) ≤ 0 ∀ x ∈ M −A
}

,

is contained inside the set of strictly positive consistent price systems with respect

to L+, given by

K̃L+,M =
{

π ∈ L̂ : π(x) > 0 ∀ x ∈ L+ \ {0} and π(x) ≤ 0 ∀ x ∈ M − L+

}
.

The containment is preserved for the corresponding normalised price systems. The

result now follows easily from the above corollary. 2

If the cone of marketed cashflows M is chosen so that the cone A −M is σ(L, L̂)-

closed, then near-good deals of the first kind may be replaced with good deals of the

first kind in the above results.
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4.4 Near-Arbitrage

In [59], Staum proves an abstract version of the FTAP (cf. [59, Theorem 6.2]) in

terms of the absence of near-arbitrage. In this section, we recover a partial case of

Staum’s result.

Definition 4.4.1 Let L be an ordered vector space, A ⊂ L be a coherent acceptance

set and M ⊂ L is a cone of marketed cash streams.

(a) We say there are no near-arbitrages in the market if (M −A) ∩ L+ = {0}.

(b) In addition, we write

K̃
(nna)
A,M =

{
π ∈ L̂ : π(x) > 0 ∀ x ∈ L+ \ {0} and π(x) ≤ 0 ∀ x ∈ M −A

}

for the set of strictly positive consistent price systems and

D̃
(nna)
A,M := {π ∈ K̃A,M : π(1) = 1}

for the set of normalised strictly positive consistent price systems.

The absence of near-arbitrage is a slightly weaker condition than the absence of

near-good deals of the first kind and has a slightly more generic interpretation;

a near-arbitrage is an (almost) super replicable claim that is non-negative. As

with near-good deals of the first kind, super-replication takes place according to

a preference ordering specified by an acceptance set. The main difference is that the

claim has no downside, whereas with a near-good deal, the downside is acceptable

in terms ones specified risk appetite. Of course, not everyone in the market uses the

same risk measure.

We obtain the following result in an analogous manner to Theorem 4.3.3.

Theorem 4.4.2 (Staum) Suppose that (L, σ(L, L̂)) is an ordered Lindelöf space

such that L+ is well-based and closed. Let M ⊂ L be a cone of marketed cash

streams and let A ⊂ L be a coherent acceptance set, with ρA−M the market aware

risk measure. Then the following statements are true:

(a) There are no near-arbitrages if and only if D̃
(nna)
A,M 6= ∅.
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(b) There are no near-arbitrages if and only if A−M = (K̃(nna)
A,M )◦.

(c) If there are no near-arbitrages, then

ρA−M (z) = sup
π∈K̃

(nna)
A,M

π(−z)/π(1) = sup
π∈D̃

(nna)
A,M

π(−z).

Proof. (a) Proposition 4.2.6 implies that L+ admits a strictly positive functional

and is pointed. By the monotonicity of A, we have −L+ ⊂ M −A. Thus, if

there are no near-arbitrages, Theorem 2.3.5 implies the existence of a functional

π ∈ D̃
(nna)
A,M . Conversely, if π ∈ D̃

(nna)
A,M , we have L+ ∩ π−1(0) = {0}. However,

(M −A) ∩ L+ ⊂ π−1(0), which implies (M −A) ∩ L+ = {0}. Thus, there are no

near-arbitrages.

(b) It follows easily from the monotonicity of A that K̃
(nna)
A,M ⊂ KA,M = (A−M)◦.

In a similar fashion to Theorem 4.4.2 (b), we have that K̃
(nna)
A,M is dense in KA,M

if and only if there are no near-arbitrages. The result follows from the Bi-Polar

Theorem.

(c) Use (b) and the proof of Theorem 3.4.2 (c) with A replaced with A−M .

Normalising the elements of K̃
(nna)
A,M yields the result. 2

Although the condition of no near-arbitrage is weaker than that of no near-good

deals of the first kind, the resulting valuation bounds are identical.

Corollary 4.4.3 Suppose that (L, σ(L, L̂)) is an ordered Lindelöf space such that

L+ is well-based and closed. Let M ⊂ L be a cone of marketed cash streams and

let A ⊂ L be a coherent acceptance set, with ρA−M the market aware risk measure.

Then, the no near-arbitrage valuation bounds
(
π

(nna)
A,M , π

(nna)
A,M

)
may be calculated as

π
(nna)
A,M (z) = inf

π∈D̃
(nna)
A,M

π(z) and

π
(nna)
A,M (z) = sup

π∈D̃
(nna)
A,M

π(z)

for all z ∈ L, provided there are no near-arbitrages. Moreover, if A is closed and

well based, the no near-good deal valuation bounds (πA,M , πA,M ) are identical to the

no near-arbitrage valuation bounds.
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Proof. Follows directly from (c) in the above theorem and the identities

π
(nna)
A,M (z) = −ρA−M (z)

and

π
(nna)
A,M (z) = ρA−M (−z)

for all z ∈ L. The fact that these quantities correspond to the no near-good deal

valuation bounds follows from the uniqueness of ρA−M . 2

In general, the condition (M −A)∩H = {0}, where H is a closed convex cone with

L+ ⊂ H ⊂ A, induces the same valuation bounds as the condition of no near-good

deals of the first kind.

4.5 Application to Lp-Spaces

4.5.1 Expectation Boundedness

In order to apply Theorem 4.3.3 to a meaningful class of coherent risk measures,

we need to strengthen the assumption of monotonicity. We follow Rockafeller et al.

with the following definition [49, 48].

Definition 4.5.1 (Expectation Boundedness) We call a coherent risk mea-

sure ρ : Lp(P) → R expectation bounded if it satisfies

(EB) ρ(x) ≥ E[−x] for all x ∈ Lp(P),

and strictly expectation bounded if it satisfies

(SEB) ρ(x) > E[−x] for all non-constant x ∈ Lp(P) and ρ(x) = E[−x] for all constant

x ∈ Lp(P).

Plainly, expectation boundedness implies monotonicity. Thus, when we consider

expectation bounded coherent risk measures, we may replace the monotonicity axiom

(M) in Definition 3.3.1 with axiom (EB) or (SEB).
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It follows from Proposition 1.5.3 (c) that all distortion risk measures ρg are expec-

tation bounded if and only if the distortion function has the property g(u) ≤ u for

all u ∈ [0, 1]. Also, by Theorem 1.3.5, all coherent risk measures with the Fatou

Property are expectation bounded.

In [67, Theorem 3], the following representation theorem is proved.

Theorem 4.5.2 A pricing function H : Lp(P) → R has a Choquet representation

H[X] = −
∫ 0

−∞
g(FX(x)) dx +

∫ ∞

0
[1− g(FX(x))] dx,

for a distortion function g if and only if H satisfies the following properties:

(a) H[1] = 1,

(b) H is law-invariant,

(c) X ≤ Y then H[X] ≤ H[Y ],

(d) Hg is co-monotonically additive,

(e) limd→0+ Hg[(X − d)+] = Hg[X] and limd→∞Hg[X ∧ d] = Hg[X].

In this case, all the properties listed in Proposition 1.5.3 hold.

Moreover, if the distortion function g satisfies g(u) < u for all u ∈ [0, 1], then the

distortion measure ρg induced by Hg is strictly expectation bounded. Indeed, for

non-constant X ≥ 0, we have

g(u) < u ⇒ g(FX(x)) < FX(x) for all x ∈ [0,∞)

⇒
∫ ∞

0
FX(x)− g(FX(x)) dx > 0

⇒
∫ ∞

0
[1− g(FX(x))]−

∫ ∞

0
[1− FX(x)] dx > 0

⇒ Hg[X] > E[X].
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For non-constant X ≤ 0, we have

g(u) < u ⇒ g(FX(x)) < FX(x) for all x ∈ (−∞, 0]

⇒ −
∫ 0

−∞
g(FX(x))− FX(x) dx > 0

⇒ −
∫ 0

−∞
g(FX(x)) +

∫ 0

−∞
FX(x) dx > 0

⇒ Hg[X] > E[X].

Therefore, for general non-constant X, ρg(X) = Hg[−X] > E[−X] holds. The case

of constant X is clear. As a consequence, Expected Shortfall is strictly expectation

bounded, as well as the Wang Transform WT α for 0 < α < 1
2 .

Strict expectation boundedness guarantees that the corresponding acceptance set is

well-based.

Proposition 4.5.3 An acceptance set A ⊂ Lp(P) that corresponds to a strictly

expectation bounded coherent risk measure ρ is well-based by the convex set B =

A ∩ {x ∈ Lp(P) : E[x] = 1}.

Proof. Let H0 = {x ∈ Lp(P) : 〈x,1〉 = E[x] > 0}. For non-constant x ∈ A,

it follows from E[−x] < ρ(x) ≤ 0 that x ∈ H0. For constant 0 6= x ∈ A, we

have ρ(x) = E[−x] < 0, which means x ∈ H0. Therefore, A \ {0} ⊂ H0. Thus,

1 ∈ A◦ ⊂ Lq(P) (p−1 + q−1 = 1) is a continuous functional which is strictly positive

on the convex cone A. By Proposition 4.2.6, A is well-based by B. 2

4.5.2 Good Deals and Martingales

We are now prepared to specialise to Lp-spaces.

Definition 4.5.4 Let A ⊂ Lp(P), 1 ≤ p ≤ ∞, be a strongly relevant coherent

acceptance set and S be a financial process. Then we define

Me
A(S) =

{
Q ∈Me(S) : EQ[x] > 0 ∀ x ∈ A \ {0}

}

to be the set of equivalent martingale measures that are strictly positive with respect

to A.
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Note that the monotonicity of A implies that any probability measure Q with

EQ[x] > 0 ∀ x ∈ A \ {0} is equivalent to P. The following result is analogous

to Proposition 2.3.2. We present it again in the context of coherent acceptance sets

for the sake of completeness.

Proposition 4.5.5 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed

with the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞.

Let (M, π) be a market model in X induced by the process S, and M0 = π−1(0) ⊂ M

be the linear subspace of marketed cashflows at price 0. Suppose A ⊂ X is a closed

coherent acceptance set. Then the following statements are equivalent:

(a) The market model (M,π) admits an extension π∗ : X → R which is strictly

positive on A.

(b) There exists f ∈ K̃A,M0.

(c) There exists f ∈ D̃A,M0.

(d) There exists a probability measure Q ∈Me
A(S) with dQ

dP ∈ X∗ = Lq(Q), p−1 +

q−1 = 1.

(e) There exists a f ∈ X∗ that is strictly positive on A such that f(1) = 1 and

f |M0 = 0.

Proof. (a)⇒(b) Let f = π∗, then f |M0 = 0 and is strictly positive on A. For

all x ∈ C := M0 − A, we have x = x1 − x2 with x1 ∈ M0 and x2 ∈ A. Thus,

f(x) = f(x1)− f(x2) = 0− f(x2) ≤ 0. Hence, f ∈ K̃A,M0 .

(b)⇒(c) Since 1 ∈ A, replacing f with f/f(1) gives (c).

(c)⇒(d) By the monotonicity of A, f is strictly positive on X+. Thus, f corre-

sponds to a probability measure Q ∼ P with density dQ
dP = f ∈ Lq(P) such that

f(x) = 〈x, f〉 =
∫

Ω
xf dP = EQ[x]

for all x ∈ Lp(P).

Since M0 ⊂ C, we have EQ[x] ≤ 0 for all x ∈ M0. Using the fact that M0 is a linear

space, we have EQ[−x] = −EQ[x] ≤ 0. Therefore, EQ[x] = 0 for all x ∈ M0, whence
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S is a martingale under Q by a similar argument to Lemma 2.2.7. We conclude that

Q ∈Me
A(S).

(d)⇒(e) Since S is a martingale under Q, the restriction of the functional f :=

EQ[ · ] to M0 is 0. Thus, f satisfies the requirements of (e).

(e)⇒(a) For x ∈ M , we have x = a1 + m, where a ∈ R and m ∈ M0. Thus,

f(x) = a + 0 = a and so we have f |M = π with f strictly positive on A. 2

Theorem 4.3.3 can now be expressed in the following form.

Theorem 4.5.6 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed with

the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞.

Let (M, π) be a market model in X induced by a financial process S and M0 =

π−1(0) ⊂ M be the linear subspace of marketed cashflows at price 0.

Suppose that ρ is a strictly expectation bounded coherent risk measure that is lower

semi-continuous, and that ρA−M0
is the market aware risk measure where A = Aρ.

Then the following statements are true.

(a) There are no near-good deals of the first kind in the market if and only if there

exists Q ∈Me
A(S) with dQ

dP ∈ X∗ = Lq(Q), p−1 + q−1 = 1, under which S is a

martingale.

(b) If there are no near-good deals of the first kind, then

ρA−M (z) = sup
{
EQ[−z] : Q ∈Me

A(S)
}

,

for all z ∈ X.

(c) If there are no near-good deals of the first kind, then we have the near-good

deal bounds

πA,M0
(z) = inf

{
EQ[z] : Q ∈Me

A(S)
}

and

πA,M0(z) = sup
{
EQ[z] : Q ∈Me

A(S)
}

for all z ∈ X. Moreover, these bounds are at least as tight as the no-free-lunch

bounds.



Ch. 4 A Generalised Kreps-Yan Theorem §4.5 Application to Lp-Spaces 95

Proof. (a) The acceptance set A is closed by Theorem 1.3.9 and well-based by

Proposition 4.5.3. By the proof of Corollary 2.3.6, X is a Lindelöf space. Theorem

4.3.3 (a) now asserts that there are no near-good deals of the first kind if and only

if D̃A,M0 6= ∅. The latter is equivalent to Q ∈ Me
A(S) with dQ

dP ∈ X∗ = Lq(Q),

p−1 + q−1 = 1, by Proposition 4.5.5.

(b) Follows from Theorem 4.3.3 (c) and the fact that D̃A,M0 = Me
A(S).

(c) Follows from Corollary 4.3.4 and 4.3.5. 2

4.5.3 Near-Arbitrage and Martingales

In the case of no near-arbitrage, we may drop the assumption of strict expectation

boundedness and replace Me
A(S) with a larger subset of Me(S).

Definition 4.5.7 Let A ⊂ Lp(P), 1 ≤ p ≤ ∞, be a strongly relevant coherent

acceptance set and S be a financial process. Then we define

M(nna)
A (S) =

{
Q ∈Me(S) : EQ[x] ≥ 0 ∀ x ∈ A

}

to be the set of equivalent martingale measures that are positive with respect to A.

Clearly, we have Me
A(S) ⊂ M(nna)

A (S) ⊂ Me(S). With this definition, we obtain

the following analogue of Proposition 4.5.5. We omit the proof, which is similar.

Proposition 4.5.8 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed

with the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞.

Let (M, π) be a market model in X induced by the process S and M0 = π−1(0) ⊂ M

be the linear subspace of marketed cashflows at price 0. Suppose A ⊂ X is a closed

coherent acceptance set. Then the following statements are equivalent:

(a) The market model (M, π) admits a strictly positive extension π∗ : X → R
which is non-negative on A.

(b) There exists f ∈ K̃
(nna)
A,M0

.

(c) There exists f ∈ D̃
(nna)
A,M0

.
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(d) There exists a probability measure Q ∈ M(nna)
A (S) with dQ

dP ∈ X∗ = Lq(Q),

p−1 + q−1 = 1.

(e) There exists a strictly positive f ∈ X∗ that is non-negative on A, such that

f(1) = 1 and f |M0 = 0.

Theorem 4.4.2 now specialises to the following.

Theorem 4.5.9 Let (Ω,F ,P) be a probability space and X = Lp(P) endowed with

the norm topology for 1 ≤ p < ∞ and the weak* topology σ(L∞(P), L1(P)) for

p = ∞.

Let (M,π) be a market model in X induced by a financial process S, and M0 =

π−1(0) ⊂ M be the linear subspace of marketed cashflows at price 0.

Suppose that ρ is a coherent risk measure, and that ρA−M0
is the market aware risk

measure where A = Aρ. Then the following statements are true.

(a) There are no near-arbitrages in the market if and only if there exists Q ∈
M(nna)

A (S) with dQ
dP ∈ X∗ = Lq(Q), p−1 + q−1 = 1, under which S is a martin-

gale.

(b) If there are no near-arbitrages, then

ρA−M (z) = sup
{
EQ[−z] : Q ∈M(nna)

A (S)
}

,

for all z ∈ X.

(c) If there are no near-arbitrages, then we have the near-arbitrage bounds

π
(nna)
A,M0

(z) = inf
{
EQ[z] : Q ∈M(nna)

A (S)
}

and

π
(nna)
A,M0

(z) = sup
{
EQ[z] : Q ∈M(nna)

A (S)
}

for all z ∈ X. Moreover, these bounds are at least as tight as the no-free-lunch

bounds.

Proof. Since X is a Lindelöf space, Theorem 4.4.2 (a) asserts that there are no

near-arbitrages if and only if D̃
(nna)
A,M0

6= ∅. The latter is equivalent to Q ∈M(nna)
A (S)

with dQ
dP ∈ X∗ = Lq(Q), p−1 + q−1 = 1, by Proposition 4.5.8.



Ch. 4 A Generalised Kreps-Yan Theorem §4.5 Application to Lp-Spaces 97

(b) Follows from Theorem 4.4.2 (c) and the fact that D̃
(nna)
A,M0

= M(nna)
A (S).

(c) Follows from Corollary 4.4.3. 2



Conclusions and Directions

We have exhibited some of the overlap between the theory of coherent risk measures

and the pricing and hedging of derivatives. The results of Jaschke and Küchler [34],

which demonstrate a one-to-one correspondence between coherent risk measures and

coherent valuation bounds, allow the Fundamental Theorem of Asset Pricing to be

extended to price derivatives using good deal bounds, which are narrower than no-

arbitrage bounds. These good deal bounds are specified by an acceptance set which

incorporates one’s preferences, risk appetite, and current inventory. The use of good

deal bounds comes at the expense of making the stronger assumption of no good

deals in the market. This assumption is safe in the sense that arbitrage opportunities

are also excluded.

These price bounds can be used as bid/offer prices for over-the-counter derivatives,

and serve as a methodology of pricing in incomplete markets. The pricing is consis-

tent with the cost of super-replicating the claim using the partial preference ordering

induced by the associated acceptance set.

The main result of this work is a generalisation of the Kreps-Yan Theorem [43, 70],

where the condition of no-free-lunch has been replaced with the more general condi-

tion of no near-good deals of the first kind. This result, in some sense, compliments

the work of Jaschke and Küchler, who prove a FTAP with regard to good deals of

the second kind. In the context of Lp-spaces, this result also considers the underly-

ing financial process that drives the cone of marketed cashflows M , and relates the

condition of no near-good deals of the first kind to the existence of an equivalent

martingale measure.

Since M only contains simple market strategies, this result also suffers from the

problem of not being able to approximate good deals with countable sequences. A

way to overcome this might be to adopt the ‘vanishing risk’ approach of Delbaen

98
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and Schachermayer [16] by making the following definition.

Definition 4.5.10 Let S be a (locally) bounded semi-martingale, A ⊂ L∞(P) a

strongly relevant coherent acceptance set, and

M0 =
{∫ T

0
Ht dSt : H admissable

}

the cone of marketed cash streams.

(a) We refer to 0 6= z ∈ (M −A)∞ ∩ A as a near-good deal of the first kind with

vanishing risk. Here, the closure of M −A is taken in the ‖ · ‖∞-topology.

(b) We say that S satisfies the condition of no good deals of the first kind with

vanishing risk (NGDVR) if (M −A)∞ ∩A = {0}.

The crux is being able to prove the following analogue of [16, Theorem 4.2].

Theorem 4.5.11 Let S be a (locally) bounded semi-martingale, A ⊂ L∞(P) a

strongly relevant coherent acceptance set, and M0 the cone of marketed cash streams.

If S satisfies (NGDVR), then

(a) C0 := M0 −A is Fatou closed in L0(P) and hence,

(b) C = C0 ∩ L∞(P) is σ(L∞(P), L1(P))-closed.

Here, a subset D ⊂ L0(P) is called Fatou closed if for every sequence (fn)n≥1 uni-

formly bounded below and such that fn → f almost everywhere, we have f ∈ D. If

D is a cone, then D is Fatou closed if for every sequence (fn)n≥1 ⊂ D with fn ≥ 1

and fn → f almost surely, we have f ∈ D.

The proof of the above theorem is highly non-trivial in the case A = L∞+ (P) ([16,

Theorem 4.2]). The proof relies on a number of subtle convergence results, some

of which rely on contradicting elaborate constructions. The author suspects that

these results should still work for a general coherent acceptance set A, but careful

checking is required. This goes beyond the scope of this work. Assuming this result

is indeed true, one can employ Theorem 2.3.5 to construct an equivalent martingale

measure in L1(P).
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Another issue not addressed in this work is a procedure for constructing a coherent

acceptance set A that represents ones beliefs and preferences as well as calculating

the valuation bounds

π(x) = sup{EQ[x] : Q ∈Me
A(S)} and

π(x) = inf{EQ[x] : Q ∈Me
A(S)}.

See Staum [58] for more detail on this.

In closing, Staum mentions in [59] that the assumption of a market pricing function

π obscures aspects of market modeling in his work. Theorem 4.5.9 avoids this

problem by virtue of the fact that it is formulated in a more concrete setting; it

relates the absence of near-arbitrage to an equivalent martingale measure on Lp(P)

(which Staum refers to as a strictly monotone consistent pricing kernel). Proving

Theorem 4.5.11 would be a decent step forward in marrying the theories of coherent

risk measures and no-arbitrage, pricing and hedging in a general setting.



Chapter A

Appendix

A.1 Functional Analysis

The reader is referred to [10, 52, 21, 3, 4, 56] for a comprehensive presentation of

the material in this section.

A.1.1 Normed Spaces and Linear Operators

Definition A.1.1 Let X be a real vector space.

(a) A map ‖ · ‖ : X → R is called a norm if

(i) ‖f‖ > 0 for all f ∈ X and ‖f‖ = 0 if and only if f = 0,

(ii) ‖αf‖ = |α|‖f‖ for all f ∈ X and α ∈ R and

(iii) ‖f + g‖ ≤ ‖f‖ + ‖g‖ for all f , g ∈ X (this is known as the triangle

inequality).

(b) The pair (X, ‖ · ‖) is called a normed space.

(c) If (X, ‖ · ‖) is complete with respect to the norm, i.e. every norm Cauchy

sequence has a limit in X, then (X, ‖ · ‖) is called a Banach space.

(d) The set ball(X) := {x ∈ X : ‖x‖ ≤ 1} is called the closed unit ball in X.

Definition A.1.2 Let X and Y be vector spaces. We shall call a map T : X → Y a

101
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linear operator if we have T (αx+βy) = αT (x)+βT (y) for each α, β ∈ R, x, y ∈ X.

Note that we sometimes denote T (x) by Tx.

Definition A.1.3 Let X and Y denote normed spaces, and T : X → Y denote a

linear operator.

(a) T : X → Y is called bounded if there exists a constant C > 0 such that

‖Tx‖ ≤ C‖x‖ for all x ∈ X.

(b) T : X → Y is called open if T (O) is open in Y for every open set O ⊂ X.

(c) T : X → Y is called an isometry if ‖Tx‖ = ‖x‖ for all x ∈ X.

(d) T : X → Y is called an isomorphism if the exists a K > 0 such that K−1‖x‖ ≤
‖Tx‖ ≤ K‖x‖ for all x ∈ X.

(e) T : X → Y is called a metric surjection if T is surjective and

‖y‖ = inf{‖x‖ : x ∈ X, Tx = y}

for every y ∈ Y . Metric surjections are sometimes referred to as quotient

operators.

(b) A linear operator P : X → X is called a projection if P 2x = P (Px) = Px for

all x ∈ X. P is called contractive if ‖Px‖ ≤ x for all x ∈ X.

It is easily shown that a linear operator is bounded if and only if it is continuous,

therefore we will use these terms interchangeably.

Note that part (e) in the above definition is equivalent to T : X → Y mapping the

open unit ball of X onto the open unit ball of Y . This implies that Y is isometrically

isomorphic to the quotient space X/Ker(T ).

A.1.2 Dual Spaces

Definition A.1.4 Let X and Y be normed spaces.

(a) We define the normed space L(X, Y ) by

L(X,Y ) := {T ∈ L(X, Y ) : T is bounded}
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together with the operator norm ‖ · ‖ defined by

‖T‖ = sup{ ‖Tx‖ : ‖x‖ ≤ 1}

for all T ∈ L(X,Y ). If X = Y then we shall write L(X, X) as L(X).

(b) In the case where Y = R, we shall write L(X,Y ) as X∗. The elements of X∗

are called linear functionals and X∗ is called the continuous dual of X.

(c) We call X∗∗ = (X∗)∗ the continuous bidual of X.

If X is a normed space and Y is a Banach space, then L(X, Y ) is also a Banach

space with respect to the operator norm. In particular, we have that X∗ is a Banach

space.

We note that a normed space X can be canonically embedded as a subspace of its

bidual under the isometry iX : X → X∗∗ defined by iX(x)(x∗) = x∗(x) for all x ∈ X

and x∗ ∈ X∗. We see this as an abstract containment where the normed structure

is preserved and we denote this as X ↪→ X∗∗. A normed space X is called reflexive

if X = X∗∗. The elements of X ↪→ X∗∗ are sometimes referred to as induced linear

functionals on X∗. Since X∗∗ is always a Banach space, the closure of X in X∗∗ is

complete, which shows every normed space has a completion.

A.1.3 Fundamental Results

Theorem A.1.5 (a) (Open Mapping Theorem) A bounded linear surjection

acting between Banach spaces is open.

(b) (Closed Graph Theorem) A linear operator between acting Banach spaces

is bounded if and only if its graph is closed.

(c) (Principle of Uniform Boundedness) Let X and Y be Banach spaces and

S ⊂ L(X,Y ). If sup{‖Tx‖ : T ∈ S} < ∞ for all x ∈ X, then sup{‖T‖ : T ∈
S} < ∞.

(d) (Hahn-Banach) If f is a bounded linear functional on a subspace of a normed

space, then f extends to the whole space with preservation of norm.

Corollary A.1.6 (Hahn-Banach)
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(a) If X is a normed linear space and x ∈ X, then there exists x∗ ∈ X∗ of norm

1 such that x∗(x) = ‖x‖.

(b) If X is a normed space, then for all x ∈ X we have ‖x‖ = sup{|x∗(x)| : ‖x∗‖ ≤
1, x∗ ∈ X∗}.

(c) If X is a normed space and x∗(x) = 0 for all x∗ ∈ ball(X∗), then x = 0; i.e.

ball(X∗) separates the points in X.

Corollary A.1.7 (Hyperplane Separation Theorem) Let X be a topological

vector space and let A,B be convex non-empty subsets of X with A ∩B = ∅.

(a) If A is open, there exists f ∈ X∗ and t ∈ R such that f(a) < t ≤ f(b) for all

a ∈ A and b ∈ B.

(b) If X is locally convex, A compact and B closed, then there exists f ∈ X∗ and

s, t ∈ R such that f(a) < t < s < f(b) for all a ∈ A and b ∈ B.

A.1.4 Adjoint Operators

Definition A.1.8 Let X and Y be normed spaces.

(a) Let T ∈ L(X,Y ). We define the adjoint T ∗ : Y ∗ → X∗ by (T ∗y∗)(x) = y∗(Tx)

for all y∗ ∈ Y ∗ and x ∈ X.

(b) For T ∈ L(X,Y ), we call T ∗∗ : X∗∗ → Y ∗∗ the second adjoint of T .

We collect some useful results involving adjoints.

Proposition A.1.9 Let X and Y be normed spaces, then the following statements

hold:

(a) The mapping T 7→ T ∗ is an isometry of L(X, Y ) into L(Y ∗, X∗).

(b) The second adjoint T ∗∗ : X∗∗ → Y ∗∗ is a unique continuous extension of

T : X → Y .

(c) T : X → Y is an isometry if and only if T ∗ : Y ∗ → X∗ is a metric surjection.
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(d) T : X → Y is a metric surjection if and only if T ∗ : Y ∗ → X∗ is an isometry.

(e) If X and Y are Banach spaces, then a bounded linear operator T : X → Y has

closed range if and only if T ∗ : Y ∗ → X∗ has closed range.

A.1.5 Duality Pairs, Polar Sets, Convex Sets and Cones

Definition A.1.10 (a) Let X and Y be vector spaces and 〈·, ·〉 : X × Y → R be

a bilinear (linear in each variable) map. Then (X, Y, 〈·, ·〉) is called a dual pair

provided

• ∀ x ∈ X ∃ y ∈ Y such that 〈x, y〉 6= 0, and

• ∀ y ∈ Y ∃ x ∈ X such that 〈x, y〉 6= 0.

(a) Given a dual pair (X, Y, 〈·, ·〉),

(i) the polar of a set A ⊂ X is defined by

A◦ = {y ∈ Y : 〈x, y〉 ≤ 1 ∀ x ∈ A}.

(ii) Similarly, the polar of a set B ⊂ Y is defined by

B◦ = {x ∈ X : 〈x, y〉 ≤ 1 ∀ y ∈ B}.

Note that for any dual pair (X,Y, 〈·, ·〉), we have that (X,Y,−〈·, ·〉) is also

a dual pair. We may therefore, at our discretion, replace 〈x, y〉 ≤ 1 with

〈x, y〉 ≥ −1 in the above definition.

(c) For a vector space X, a set C ⊂ X is called a cone if the following properties

hold:

• C + C ⊂ C,

• λC ⊂ C for all λ ≥ 0,

A cone C is called pointed or proper if C ∩ (−C) = {0}.

(d) For a vector space X, a set E ⊂ X is called convex if for every x, y ∈ E we

have that tx + (1− t)y ∈ E for all t ∈ [0, 1].

(e) Let X be a topological vector space. For a set D ⊂ X, the closure of the

smallest convex set containing D is denoted co D. This is sometimes referred

to as the closed convex hull of D.
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Let (X, Y, 〈·, ·〉) be a dual pair. If C ⊂ X is a cone, we have

C◦ = {y ∈ Y : 〈x, y〉 ≤ (≥) 0 ∀ x ∈ C}.

Similarly, if D ⊂ Y is a cone, we have

D◦ = {x ∈ X : 〈x, y〉 ≤ (≥) 0 ∀ y ∈ D}.

Moreover, in the case that A ⊂ X is a vector space, we have

A◦ = A⊥ := {y ∈ Y : 〈x, y〉 = 0 ∀ x ∈ A}.

Similarly, if B ⊂ Y is a vector space, we have

B◦ = B⊥ := {x ∈ X : 〈x, y〉 = 0 ∀ y ∈ B}.

The vector space Y induces a locally convex topology σ(X, Y ) on the vector space

X via point-wise convergence. That is, xα → x in the σ(X, Y )-topology if and only

if 〈xα, y〉 → 〈x, y〉 for all y ∈ Y . Similarly, X induces a locally convex topology

σ(Y, X) on Y . If f : X → R is linear, it can be shown that f is σ(X, Y )-continuous

if and only if there exists yf ∈ Y such that f(x) = 〈x, yf 〉 for all x ∈ X. Thus, we

have the identity (X, σ(X, Y ))∗ = Y = {〈·, y〉 : X → R : y ∈ Y }.

In particular, for a normed space X, we have the dual pair (X, X∗, 〈·, ·〉), where

〈x, x∗〉 := x∗(x) for all x ∈ X and x∗ ∈ X∗. The topology σ(X, X∗) on X called the

weak topology on X and the topology σ(X∗, X) on X∗ is called the weak* topology

on X∗.

Convex sets in Banach spaces have a useful property: they are norm closed if and

only if they are weakly closed. Note that every cone and vector subspace is convex.

Proposition A.1.11 Let (X, Y, 〈·, ·〉) be a dual pair, {Ai}i∈I be a family of sets in

X and A ⊂ X. Then the following properties hold.

(a) A◦ is convex and closed in the σ(Y, X)-topology, moreover A◦ = (co A)◦.

(b) 0 ∈ A◦ and A ⊂ A◦◦. Moreover, A1 ⊂ A2 ⇒ A◦2 ⊂ A◦1.

(c) (λA)◦ = (1/λ)A◦ for all λ > 0.

(d) (
⋃

i∈I Ai)◦ =
⋂

i∈I A◦i .
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(e) (
⋂

i∈I Ai)◦ ⊃ co
⋃

i∈I A◦i where the closure is taken in the σ(Y, X)-topology.

(f) For the dual pair (X, X∗, 〈·, ·〉), we have ball(X)◦ = ball(X∗) and ball(X∗)◦ =

ball(X).

A.1.6 The Bi-Polar, Krein-Sḿulian and Banach-Alaoglu Theorems

We list some fundamental results pertaining to weak topologies.

Theorem A.1.12 (a) (Bi-Polar Theorem) Let (X, Y, 〈·, ·〉) be a dual pair. For

a set A ⊂ X we have A◦◦ = co (A ∪ {0}), where the closure is taken in the

σ(X, Y )-topology.

(b) (Krein-Sḿulian Theorem) Let X be a Banach space and C ⊂ X∗ be convex.

Then C is weak* closed if and only if C ∩ (λball(X∗)) is weak* closed for all

λ > 0.

(c) (Banach-Alaoglu) Let X be a Banach space, then the closed unit ball of

X∗ is σ(X∗, X) compact.

In particular, the Bi-Polar Theorem states that a convex set C ⊂ X that contains

zero is σ(X,Y ) closed if and only if C = C◦◦.

If C ⊂ X∗ is a cone, where X is now a Banach space, the Krein-Sḿulian Theorem

implies that C is weak* closed if and only if C ∩ ball(X∗) is weak* closed.

Lastly, the Banach-Alaoglu Theorem implies that every sequence in the closed unit

ball of X∗ has a weak* convergent subsequence.
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[63] A. Černý and S. Hodges, The theory of good-deal pricing in incomplete mar-

kets, Mathematical Finance–Bachelier Congress 2000 (H. Geman, D. Madan,

S. Pliska, and T. Vorst, eds.), Springer-Verlag, Berlin, 2001, pp. 175–202.

[64] S. Wang, Premium calculation by transforming the layer premium density,

ASTIN Bulletin 26 (1996), 71–92.



BIBLIOGRAPHY 113

[65] , Comonotonicity, correlation order and premium principles, Insurance

Math. Econom. 22 (1998), 235–242.

[66] , A class of distortion operators for pricing financial and insurance risks,

The Journal of Risk and Insurance 67 (2000), no. 1, 15–36.

[67] S. S. Wang, V. R. Young, and H. H. Panjer, Axiomatic characterization of

insurance prices, Insurance: Mathematics and Economics 21 (1997), 173–183.

[68] G. West, Risk measurement for finanacial institutions, Lecture Notes, Program

in Advanced Maths of Finance, University of the Witwatersrand, Johannesburg,

Available at http://www.finmod.co.za/RM.pdf, 2006.

[69] M.E. Yaari, The dual theory of choice under risk, Econometrica 55 (1987),

95–115.

[70] J.A. Yan, Caractérisation d’ une classe d’ensembles convexes de L1 ou H1,
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