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ABSTRACT

In this thesis a number of different constructions on ordered algebraic structures

are studied. In particular, two types of constructions are considered: comple-

tions and finite embeddability property constructions.

A main theme of this thesis is to determine, for each construction under

consideration, whether or not a class of ordered algebraic structures is closed

under the construction. Another main focus of this thesis is, for a particular

construction, to give a syntactical description of properties preserved by the

construction. A property is said to be preserved by a construction if, whenever

an ordered algebraic structure satisfies it, then the structure obtained through

the construction also satisfies the property.

The first four constructions investigated in this thesis are types of comple-

tions. A completion of an ordered algebraic structure consists of a completely

lattice ordered algebraic structure and an embedding that embeds the former

into the latter. Firstly, different types of filters (dually, ideals) of partially or-

dered sets are investigated. These are then used to form the filter (dually, ideal)

completions of partially ordered sets. The other completions of ordered alge-

braic structures studied here include the MacNeille completion, the canonical

extension (also called the completion with respect to a polarization) and finally

a prime filter completion.

A class of algebras has the finite embeddability property if every finite par-

tial subalgebra of some algebra in the class can be embedded into some finite

algebra in the class. Firstly, two constructions that establish the finite em-

beddability property for residuated ordered structures are investigated. Both of

these constructions are based on completion constructions: the first on the Mac-

Neille completion and the second on the canonical extension. Finally, algebraic

filtrations on modal algebras are considered and a duality between algebraic and

relational versions of filtrations is established.
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1. GENERAL INTRODUCTION

Non-classical logics, such as modal or substructural logics, often have both nat-

ural algebraic and relational (Kripke-style) semantics. One of the primary con-

cerns of algebraic logic is the identification of classes of algebras that are suitable

for the study of various logics. If a class of algebras can be found that algebraizes

a given logic in a natural way, then algebraic methods may be used to better

understand the logic. A very well-known example of such a class of algebras is

the class of Boolean algebras that algebraizes classical propositional logic.

The properties of such a class of algebras often correspond to properties of

the logic and the relational semantics — thus introducing new ways of establish-

ing results through duality and correspondence theories. An example relevant

to this thesis is that decidability of the logic can often be obtained by showing

that the class of algebras is generated by its finite members.

Once a class of algebras has been identified there are, broadly speaking,

two courses of investigation to follow. Firstly, we can undertake a thorough

investigation of the class of algebras. In doing so, we seek to obtain favourable

results that will be applicable in the logic setting. This then introduces the

second course of investigation, namely establishing links between properties of

the logic and properties of the class of algebras. That is, translating logic

problems into their algebraic counterparts and then translating algebraic results

back into logic terms.

In this thesis we will focus, mostly, on algebraic models of non-classical logics

— usually without explicit mention of the possible logics that may be interpreted

on these algebraic structures. Moreover, for the most part we will pursue the

first course of investigation by focussing our attention on the development of

the algebraic theory. In particular, we will study a number of constructions

on classes of ordered algebraic structures that are algebraic models for various

non-classical logics. We do, however, also consider one problem where our focus

will be on the translation of relational methods into algebraic ones and vice
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versa.

By preservation theorems we mean the following types of results. We say

that a class of algebras is closed under a construction if, given an algebra of the

class, the algebraic structure obtained via the construction also belongs to the

class. For example, substructural logics are logics whose algebraic models are

residuated structures [GJKO07]. We are therefore interested in constructions

that, when performed on residuated structures, yield residuated structures.

Furthermore, we say that an identity (an expression of the form (∀~x)(s(~x) =

t(~x)), for terms s, t in the language) is preserved by a construction if, whenever

the original structure satisfies the identity, then the structure obtained through

the construction also satisfies the identity. We similarly define what it means

for an inequality (an expression of the form (∀~x)(s(~x) ≤ t(~x)) for terms s, t

in the language), quasi-identity or any other property to be preserved by a

construction. Our research is partly motivated by considerations on modal

algebras. An important problem in modal logic is that of canonicity — the

preservation of identities by the canonical extension. A classical result there

is that the class of Sahlqvist identities [Sah75], a syntactically defined class, is

preserved by the canonical extension [Jón94]. For a number of the constructions

considered in this thesis our aim has been to prove Sahlqvist-like results by

giving syntactic descriptions of classes of identities preserved by the respective

constructions. Our algebraic approach is motivated by the algebraic approach

for modal algebras in [Jón94] and [GV99].

This thesis is divided into two parts. In the first part we focus on comple-

tions. A completion of an ordered algebraic structure is a pair consisting of a

complete ordered structure (see Chapter 2) and an embedding that maps the

original structure into the complete one (see Chapter 3 for a precise definition).

We will explore the motivations for completions in Chapter 3.

In most cases the properties of completions do not depend on the algebraic

structure, but only on the underlying partial order of the algebra we wish to

complete. For this reason we focus, firstly, on completions of partially ordered

sets into complete lattices. We investigate ways of extending operations defined

on the partially ordered set, to operations defined on the completions. We in-

vestigate properties of the operations preserved by the completions, for example

order-preservation, residuation and distribution properties.

To start with we consider the filter and ideal completions of partially ordered
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sets in Chapter 4. In the literature a wide range of different up-sets and down-

sets have been called the ‘filters’ and ‘ideals’, respectively, of a partially ordered

set. We survey these possible definitions. In particular, we will focus on four

different families of up-sets and down-sets — different types of filters and ideals

of a partially ordered set — that we believe are representative. Three of these

families of filters (respectively, ideals) form complete lattices into which the

original partially ordered set can be embedded, i.e., completions of the partially

ordered set. The four types of filters and ideals introduced in this chapter will

also be used in a number of the other constructions studied in this thesis (see

Chapters 6 and 7). Next we investigate some of the properties of these filter and

ideal completions. In the course of our investigations we consider the possible

definitions of ‘prime filters’ (respectively, ‘prime ideals’) of a partially ordered set

and relate them to the join-irreducible (respectively, meet-irreducible) elements

of the completions. Prime filters and ideals of a partially ordered set will be

used again in the completions considered in Chapter 7. Finally we consider the

extension of order-preserving operations to these completions.

Next, in Chapter 5, we turn our attention to the MacNeille completion. The

MacNeille completion of partially ordered sets and lattices has been studied in

great depth and is well understood, see for instance [Mac37, TV07]. Further-

more, we can use the MacNeille completion to complete MTL-algebras [vA11]

— the algebraic models of monoidal t-norm logic (see Chapter 5.2). We con-

sider the expansion of an MTL-algebra with a single unary, order-preserving

operation that we will call a modality. Such algebras will be called modal MTL-

algebras. We begin by axiomatizing the class of modal MTL-algebras. We then

use the MacNeille completion of modal MTL-algebras to obtain a Sahlqvist-like

result for modal MTL, i.e., we give a syntactic description of properties (involv-

ing the newly added modality) that are preserved by the MacNeille completion

of a modal MTL-algebra.

The third type of completion we study in Chapter 6 is the canonical exten-

sion or completion with respect to polarizations of partially ordered sets. We

note that different completions have been called ‘the canonical extension’ of a

partially ordered set. This is due to the fact that, depending on the type of

filters and ideals of a partially ordered set used in the construction, one may ob-

tain distinct completions. We investigate the construction in general, but also

consider specific instances of completions obtained through this construction.
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More specifically, the four types of filters and ideals introduced in Chapter 4 are

used to obtain four, generally different, completions of a partially ordered set.

We consider the extension of additional operations to each of these completions

— focusing on distribution and residuation properties. An alternative construc-

tion that makes use of an intermediate structure is described. Finally we give

some results toward a syntactical description of a class of properties preserved

by these completions.

In Chapter 7 we characterize the partially ordered sets that can be embedded

into completely distributive complete lattices and describe the construction of

such a completely distributive complete lattice. The construction makes use of

the ‘prime filters’ and ‘prime ideals’ defined in Chapter 4. We characterize the

partially ordered sets for which the completion obtained in this chapter is iso-

morphic to one of the completions obtained in Chapter 6. We also consider the

extension of order-preserving and order-reversing operations to the completion.

In the second part of the thesis we focus on constructions that produce finite

models. These constructions have been used to prove the finite embeddability

property for many varieties of algebras. A class of algebras has the finite embed-

dability property if every finite partial subalgebra of some algebra in the class

can be embedded into a finite algebra in the class. Once the finite embeddabil-

ity property has been established for a variety of algebras, the decidability of

its universal (and hence, equational) theory and of the associated logic (if it is

finitely axiomatized) may follow via algebraization results. See Chapter 8 for

more details on the motivation behind such constructions.

In Chapter 9 we use the standard construction [vA09] for obtaining the finite

embeddability property for a class of residuated (ordered) algebras, to obtain

the finite embeddability property for the class of modal MTL-algebras. We

also establish the finite embeddability property for a number of its subclasses

by investigating properties preserved by the construction. The standard con-

struction is based on the MacNeille completion (studied in Chapter 5). This

then introduces the following question: Can a construction be devised that is

based on the canonical extension (studied in Chapter 6)? In fact, it was this

question that led us to investigate the canonical extensions of partially ordered

sets. The answer to this question is ‘yes’ for decreasing lattice-ordered residu-

ated structures. We describe this alternative construction, called the canonical

FEP construction, and show that it may also be used to establish the finite em-
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beddability property of some classes of algebras. We consider some additional

properties preserved by this construction.

Finally, in Chapter 10 we study finite embeddability constructions for modal

algebras. A modal algebra is a Boolean algebra equipped with a unary operator.

We show that the algebraic constructions considered in this chapter are algebraic

versions of model-theoretic filtrations. A filtration of a (Kripke) model is a finite

(Kripke) model obtained with respect to a subformula closed set of formulas.

We use the methods developed in this chapter to obtain the algebraic versions

of a number of well-known model-theoretic filtrations.
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2. PRELIMINARIES

In this chapter we give some basic definitions and fix the notations. The reader

may consult [Bir67], [DP02] or [BS81] for more on the definitions and results

given here.

For a set Q, let P(Q) denote the powerset of Q. We write M ⊆fin Q to

denote that M is a finite subset of Q. For n ∈ N, let M ⊆n Q denote that

M ⊆ Q and M has n or fewer elements. If S ⊆ Q, then Q − S will denote the

set complement of S in Q, i.e., Q− S = {a ∈ Q : a /∈ S}.

2.1 Partially ordered sets

One of the main themes of this thesis will be to investigate various ‘completions’

(see Definition 3.0.1 in Chapter 3) of partially ordered sets. In this section we

recall the definitions of partially ordered sets and related notions.

Definition 2.1.1. A quasi-ordered set is a pair Q = 〈Q,≤〉 such that Q is a

set and ≤ is a binary relation on Q such that, for all x, y, z ∈ Q,

(i) x ≤ x, i.e., ≤ is reflexive, and

(ii) x ≤ y and y ≤ z imply x ≤ z, i.e., ≤ is transitive.

Then ≤ is called a quasi-order on Q and Q is called the universe of Q.

Definition 2.1.2. A partially ordered set, or poset for short, is a quasi-ordered

set P = 〈P,≤〉 such that, in addition to (i) and (ii) in Definition 2.1.1 above,

≤ satisfies, for all x, y ∈ P ,

(iii) x ≤ y and y ≤ x imply x = y, i.e., ≤ is antisymmetric.

Then ≤ is called a partial order on P .
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We will sometimes write ≤P to indicate that we are working with the order

defined on the universe P of a poset P =
〈

P,≤P
〉

. If there exists an element

y ∈ P such that y ≥ x for all x ∈ P , then y is called the top element and is

denoted by ⊤ or 1. On the other hand, if P contains an element z such that

z ≤ x for all x ∈ P , then z is called the bottom element and is denoted by ⊥

or 0. We sometimes write ⊤P and ⊥P to avoid ambiguity. A poset P is called

bounded if it has both a top element and a bottom element.

Definition 2.1.3. The dual of a poset P =
〈

P,≤P
〉

, is the poset P∂ =
〈

P,≤P∂
〉

such that P∂ has the same universe as P but where ≤P∂

⊆ P × P

is defined by:

x ≤P∂

y ⇐⇒ y ≤P x

for all x, y ∈ P .

In general, given any statement about posets, the dual statement can be

obtained by replacing ≤ with ≥ and vice versa.

A poset P is said to be linearly ordered if, for all x, y ∈ P either x ≤ y or

y ≤ x. That is, any two elements of P are comparable. A linearly ordered poset

is also called a chain.

Let P = 〈P,≤〉 be a poset and let S ⊆ P . An element x ∈ P is an upper

bound of S if x ≥ y for all y ∈ S. Dually, an element z ∈ P is called a lower

bound of S if z ≤ y for all y ∈ S. Let Su and Sℓ denote the sets of all upper

and lower bounds of S, respectively. That is, define ℓ : P(P ) → P(P ) and
u : P(P ) → P(P ) by

Sℓ = {a ∈ P : a ≤ b for all b ∈ S}

and

Su = {a ∈ P : a ≥ b for all b ∈ S}.

If Su has a least element, then that least element is called the supremum of S.

Dually, if Sℓ has a greatest element, then that greatest element is called the

infimum of S.

(i) If the supremum of S exists in P, then we denote it by
∨

S and call it the

join of S.

(ii) If the infimum of S exists in P, then we denote it by
∧

S and call it the

meet of S.
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The join and meet of a set {x, y} are denoted by x ∨ y and x ∧ y, respectively.

We will use a superscript P if it is necessary to indicate that a join or a meet

is being found in a particular poset P, i.e., we write ∨P or ∧P. It should be

clear that the partial operations ∨ and ∧ are induced by the ordering ≤ and

implicitly defined for any poset P.

Definition 2.1.4. A subposet of a poset P = 〈P,≤〉 is any poset Q =
〈

Q,≤Q
〉

such that Q ⊆ P and ≤Q⊆ Q×Q is defined by

x ≤Q y ⇐⇒ x ≤P y

for all x, y ∈ Q.

Definition 2.1.5. The (direct or Cartesian) product of the posets P1, . . . ,Pn

for some n ∈ N, where Pi =
〈

Pi,≤
Pi
〉

for i = 1, . . . , n, is the poset
∏n

i=1 Pi such

that
∏n

i=1 Pi is its universe and its ordering ≤ is the coordinate-wise ordering

defined by:

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒ xi ≤
Pi yi for i = 1, . . . , n

for all (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1 Pi. If n = 2, then we write P1 ×P2 to

denote the product of P1 and P2.

2.2 Algebras, lattices and Boolean algebras

A type (or language) of algebras is a set T of function symbols such that a

nonnegative integer n, called the arity, is assigned to each f ∈ T. If the arity

of f is n, then f is said to be an n-ary function symbol.

An algebra of type T is a structureA =
〈

A,TA
〉

such that A is a set called the

universe (or underlying set) of the algebraA and for each n-ary function symbol

f ∈ T there is a function fA : An → A in TA. Each operation fA ∈ TA is called

a fundamental operation of the algebra. We will often omit the superscript A

(and write f instead of fA) when it is clear from the context.

Definition 2.2.1. A join-semilattice is a poset L = 〈L,≤〉 such that L is a

non-empty set and the supremum of each finite subset of L exists.

The order ≤ now induces a (fully defined) binary operation ∨L on L such

that x ∨L y equals the supremum of {x, y} for all x, y ∈ L.
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We will sometimes write L =
〈

L,∨L
〉

, where ∨L is idempotent, commutative

and associative, when we refer to a join-semilattice to emphasize that ∨L is

defined on the entire L × L and that ∨L forms part of the language. Then the

associated partial order of L is defined by, for all x, y ∈ L,

x ≤ y ⇐⇒ x ∨L y = y.

A meet-semilattice can now be defined dually.

Definition 2.2.2. A meet-semilattice is a poset L = 〈L,≤〉 such that L is a

non-empty set and the infimum of each finite subset of L exists.

The order ≤ now induces a (fully defined) binary operation ∧L on L such

that x ∧L y equals the infimum of {x, y} for all x, y ∈ L.

As with join-semilattices we will sometimes write L =
〈

L,∧L
〉

, where ∧L is

idempotent, commutative and associative, to indicate that ∧L is fully defined

and that ∧L forms part of the language. The associated partial order of L is

defined by, for all x, y ∈ L,

x ≤ y ⇐⇒ x ∧L y = x.

Definition 2.2.3. A lattice is an algebra L = 〈L,∨,∧〉 such that L is a non-

empty set equipped with two binary operations ∨ : L×L→ L and ∧ : L×L→ L

that satisfies

(x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∨ y = y ∨ x and x ∧ y = y ∧ x

x ∨ x = x and x ∧ x = x

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x

for all x, y, z ∈ L.

We can now define a partial order ≤L on L in terms of ∨ and ∧ as follows:

x ≤L y ⇐⇒ x ∨ y = y ⇐⇒ x ∧ y = x

for all x, y ∈ L. Then ≤L is called the associated lattice order of L and
〈

L,≤L
〉

is a poset. Furthermore, the operations ∨ and ∧ correspond with the induced

join and meet operations of ≤L, respectively, i.e., the processes of obtaining
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supremums and infimums in
〈

L,≤L
〉

, as defined in the previous section. That

is, x ∨ y is the least element of {x, y}u and x ∧ y is the greatest element of

{x, y}ℓ, for all x, y ∈ L. We may therefore view a lattice as a poset such that

the supremum and infimum exist for all finite subsets of L (even though the

languages are technically not the same). Hence, a lattice can be seen as both

a join-semilattice and a meet-semilattice. Depending on the context, we will

sometimes view a lattice as an algebraic structure and at other times view it as

a poset.

If L = 〈L,∨,∧〉 is a lattice such that
〈

L,≤L
〉

is bounded, then we often

denote the top element of L by 1 and the bottom element by 0. Moreover,

x ∧ 1 = x and x ∨ 0 = x for all x ∈ L. Sometimes 1, 0 are included in the

language in which case we write L = 〈L,∨,∧, 0, 1〉.

Given the above we can now make the following definition.

Definition 2.2.4. A complete lattice is a lattice L = 〈L,∨,∧〉 such that the

sumpremum and the infimum (with respect to the associated lattice order ≤L)

exist for all subsets of L.

Definition 2.2.5. A sublattice of a lattice L =
〈

L,∨L,∧L
〉

is a lattice L′ =
〈

L′,∨L′

,∧L′

〉

such that L′ ⊆ L and if x, y ∈ L′, then x∨L′

y = x∨L y ∈ L′ and

x ∧L′

y = x ∧L y ∈ L′.

Thus, ∨L′

is the restriction of ∨L to L′ and ∧L′

is the restriction of ∧L to L′.

Definition 2.2.6. Let L = 〈L,∨,∧〉 be a lattice. Then L is said to be

(i) distributive if it satisfies the distributive law: for all x, y, z ∈ L

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(ii) modular if it satisfies the modular law: for all x, y, z ∈ L

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z.

For complete lattices we have the following stronger condition.

Definition 2.2.7. If a lattice L is complete, then L is called completely dis-

tributive if, for any doubly indexed subset {xij}i∈Ψ,j∈Φ of L, we have

∧

i∈Ψ





∨

j∈Φ

xij



 =
∨

γ:Ψ→Φ

(

∧

i∈Ψ

xiγ(i)

)

,
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where γ : Ψ → Φ is a choice function, i.e., γ(i) = j for some j ∈ Φ.

Let S be any set. Then L = 〈P(S),∪,∩〉 is a completely distributive com-

plete lattice. In fact, any complete lattice 〈L,∨,∧〉 such that L is a set of sets,

∨ is ∪ and ∧ is ∩, is completely distributive.

Definition 2.2.8. Let L = 〈L,∨,∧〉 be a lattice. An element x ∈ L is join-

irreducible if

(i) x is not the bottom element (if it exists in L),

(ii) x = y ∨ z implies x = y or x = z for all y, z ∈ L.

The following condition is equivalent to condition (ii):

(ii)’ If y < x and z < x, then y ∨ z < x for all y, z ∈ L.

Dually, an element x ∈ L is meet-irreducible if

(a) x is not the top element (if it exists in L),

(b) x = y ∧ z implies x = y or x = z for all y, z ∈ L.

The following condition is equivalent to condition (b):

(b)’ If y > x and z > x, then y ∧ z > x for all y, z ∈ L.

Equivalently, an element x ∈ L is join-irreducible if, whenever x =
∨

X

and X is finite, then x ∈ X . Dually, an element x ∈ L is meet-irreducible if,

whenever x =
∧

X and X is finite, then x ∈ X . That is, an element is join-

irreducible (respectively, meet-irreducible) if it cannot be written as a finite join

(respectively, meet) unless it forms part of the finite join (respectively, meet).

Definition 2.2.9. A Boolean algebra is an algebra A = 〈A,∨,∧,¬, 0, 1〉 such

that

(i) 〈A,∨,∧, 0, 1〉 is a distributive lattice with greatest element 1 and least el-

ement 0,

(ii) ¬ is a unary operation on A such that x ∨ ¬x = 1 and x ∧ ¬x = 0 for all

x ∈ A.
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2.3 Varieties

We give some background on varieties that will be required.

Definition 2.3.1. A subalgebra B of an algebra A is an algebra of the same

type as A with B ⊆ A such that every fundamental operation of B is the re-

striction of the corresponding operation of A to B, the universe of B.

Definition 2.3.2. If A and B are two algebras of the same type T, then a map

ϕ : A → B is called a homomorphism from A to B if ϕ(fA(a1, . . . , an)) =

fB(ϕ(a1), . . . ϕ(an)), for all a1, . . . , an ∈ A and each n-ary fundamental opera-

tion fA ∈ TA. If, in addition, ϕ is onto, then B is called a homomorphic image

of A.

Definition 2.3.3. Let Ai be an algebra of type T for each i ∈ Ψ. Then the

(direct) product
∏

i∈Ψ Ai is defined to be the algebra of type T with
∏

i∈ΨAi as

the universe such that for each n-ary f ∈ T and each (ai)i∈Ψ ∈
∏

i∈ΨAi, we

have that f
∏

i∈Ψ
Ai((ai)i∈Ψ) =

(

fAi(ai)
)

i∈Ψ
.

For a class of algebras K, we define S(K), H(K) and P(K) to be, respectively,

the class of all subalgebras of algebras from K, the class of all homomorphic

images of algebras from K and the class of all direct products of algebras from

K. Then S, H and P are called class operators.

Lemma 2.3.4. The class operators S, H and P preserve identities, i.e., if an

identity is valid in a class of algebras K, then it is valid in S(K), H(K) and

P(K).

We note that in this thesis we will take the universal quantification over the

variables occurring in an identity, inequality or quasi-identity as implicit. For

example, we will write s = t rather than (∀~x)(s(~x) = t(~x)).

We can now define the notions of a variety and a subvariety.

Definition 2.3.5. A non-empty class of algebras K of type T is called a variety

if it is closed under S, H and P.

The smallest variety containing a class of algebras K of the same type, is

called the variety generated by K. A variety is finitely generated if it is generated

by a finite set of finite algebras.

Definition 2.3.6. A subclass of a variety that is itself also a variety is called

a subvariety of the variety.
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2.4 Operations and operators on ordered sets

We introduce the types of operations on ordered sets that will be considered.

Let P,Q and Pi be posets, for i = 1, . . . , n for some n ∈ N. For a unary

map f : P → Q and S ⊆ P , let f(S) = {f(a) : a ∈ S}. Similarly, for an n-ary

map f :
∏n

i=1 Pi → Q and Si ⊆ Pi, let

f(S1, . . . , S2) = {f(a1, . . . , an) : ai ∈ Si, i = 1, . . . , n}.

The maps f1, f2 : P → Q can be ordered using the point-wise ordering: f1 ≤ f2

if, and only if, f1(x) ≤ f2(x) for every x ∈ P . Let f1 : P → Q and f2 : R → P ;

then we will write f1 · f2 for the composition of f1 and f2.

Definition 2.4.1. Let P =
〈

P,≤P
〉

and Q =
〈

Q,≤Q
〉

be posets. A map

f : P → Q is called

(i) one-to-one if: f(x) = f(y) implies x = y for all x, y ∈ P ;

(ii) onto if: for every y ∈ Q there exists x ∈ P such that f(x) = y;

(iii) order-preserving (or monotone) if: x ≤P y implies that f(x) ≤Q f(y) for

all x, y ∈ P ;

(iv) an order-embedding if: x ≤P y if, and only if, f(x) ≤Q f(y) for all

x, y ∈ P ;

(v) an order-isomorphism if: f is an order-embedding that maps P onto Q.

If P andQ are posets such that there exists an order-isomorphism f : P → Q

from P onto Q, then P and Q are said to be order isomorphic. If P and Q∂

are order isomorphic, then P and Q are said to be reverse order-isomorphic.

Let P =
〈

P,≤P
〉

and Q =
〈

Q,≤Q
〉

be posets. A map f : P → Q distributes

over finite joins if
∨

f(M) exists and
∨

f(M) = f(
∨

M) for all M ⊆fin P such

that
∨

M exists. If
∨

f(S) exists and
∨

f(S) = f(
∨

S) for all S ⊆ P such that
∨

S exists, then f distributes over arbitrary joins.

Distribution of a map over finite and arbitrary meets can be defined dually.

That is, f : P → Q distributes over finite meets if
∧

f(M) exists and
∧

f(M) =

f(
∧

M) for all M ⊆fin P such that
∧

M exists. If
∧

f(S) exists and
∧

f(S) =

f(
∧

S) for all S ⊆ P such that
∧

S exists, then f distributes over arbitrary

meets.
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The distribution of a map over joins is often called join-preservation in the

literature (see, for example, [GH01], [GJKO07] and [Suz11]). Observe that if f

distributes over finite joins or meets, then f is order-preserving.

Definition 2.4.2. A map f between posets P and Q is called

(i) an operator if it distributes over finite joins.

(ii) a complete operator if it distributes over arbitrary joins.

(iii) a dual operator if it distributes over finite meets.

(iv) a complete dual operator if it distributes over arbitrary meets.

An operator on a Boolean algebra A = 〈A,∨,∧,¬, 0, 1〉 is an operation

f : A→ A that distributes over finite joins and satisfies f(0) = 0.

We can now generalise these notions to n-ary maps.

Definition 2.4.3. Let Pi, for i = 1, . . . , n and Q be posets. An n-ary map

f :
∏n

i=1 Pi → Q is called

(i) an operator if it distributes over finite joins in each coordinate.

(ii) a complete operator if it distributes over arbitrary joins in each coordinate.

(iii) a dual operator if it distributes over finite meets in each coordinate.

(iv) a complete dual operator if it distributes over arbitrary meets in each

coordinate.

Let L1 =
〈

L1,∨
L1 ,∧L1

〉

and L2 =
〈

L2,∨
L2 ,∧L2

〉

be lattices. If f : L1 → L2

is one-to-one, onto and both an operator and a dual operator, then f is called

a lattice isomorphism and the lattices L1 and L2 are isomorphic. Lattices L1

and L2 are (lattice) isomorphic if, and only if,
〈

L1,≤
L1

〉

and
〈

L2,≤
L2

〉

are

order-isomorphic.

Definition 2.4.4. A closure operator f : P → P is a map that satisfies, for all

x, y ∈ P ,

(i) x ≤ f(x), i.e., f is increasing,

(ii) x ≤ y implies f(x) ≤ f(y), i.e., f is order-preserving, and

(iii) f(f(x)) = f(x), i.e., f is idempotent.
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2.5 Residuated operators

In this section we recall the definitions of residuated operators. We also give

some standard results concerning residuated operators that we will use when

proving preservation theorems involving residuated operators.

Let P =
〈

P,≤P
〉

, Q =
〈

Q,≤Q
〉

and R =
〈

R,≤R
〉

be posets.

Definition 2.5.1. A map f : P → Q is called residuated if there exists a

corresponding map g : Q→ P , called the residual of f , such that, for all x ∈ P

and all y ∈ Q

f(x) ≤Q y ⇐⇒ x ≤P g(y).

The following holds for unary residuated operators.

Lemma 2.5.2. Let f : P → Q be residuated with residual g : Q → P and

let S ⊆ P and T ⊆ Q. If
∨

S exists in P, then
∨

f(S) exists in Q and
∨

f(S) = f(
∨

S). Similarly, if
∧

T exists in Q, then
∧

g(T ) exists in P and
∧

g(T ) = g(
∧

T ).

Hence, a unary residuated map is a complete operator while its residual is a

complete dual operator. Let f : P → Q be a residuated operator with residual

g : Q→ P . Then,

(i) g is uniquely determined by f .

(ii) f and g are both order-preserving.

(iii) g · f is a closure operator.

(iv) x ≤ g(f(x)) for all x ∈ P .

(v) f(g(y)) ≤ y for all y ∈ Q.

Let L1 and L2 be complete lattices. If f : L1 → L2 is a complete operator,

then f is residuated. In this case, the residual g : L2 → L1 is definable by

g(y) =
∨

{x ∈ L1 : f(x) ≤ y} for all y ∈ L2. We can also define f in terms of g

by f(x) =
∧

{y ∈ L2 : x ≤ g(y)} for all x ∈ L1.

Definition 2.5.3. A binary map ◦ : P × Q → R is called residuated if there

exist maps \ : P × R → Q and / : R ×Q → P such that for all x ∈ P , y ∈ Q

and z ∈ R

x ◦ y ≤R z ⇐⇒ y ≤Q x\z ⇐⇒ x ≤P z/y.
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The maps \ and / are called the left and right residuals of f , respectively.

A binary residuated map, ◦ : P × Q → R, is order-preserving in both

arguments. If \ : P × R → Q and / : Q × R → P are the left and right

residuals of ◦, respectively, then \ is order-preserving in its second argument

and order-reversing in its first, while / is order-preserving in its first argument

and order-reversing in its second. For all x ∈ P and z ∈ R we have that

x ◦ (x\z) ≤R z; and for all y ∈ Q and z ∈ R we have that (z/y) ◦ y ≤R z.

Lemma 2.5.4. Let ◦ : P × Q → R be a binary residuated map with left and

right residuals \ : P × R → Q and / : R × Q → P , respectively. Let S ⊆ P ,

T ⊆ Q and U ⊆ R.

(i) If
∨

S exists in P, then
∨

a∈S(a ◦ b) exists in R, for any b ∈ Q, and

(
∨

S) ◦ b =
∨

a∈S(a ◦ b).

(ii) If
∨

T exists in Q, then
∨

b∈T (a ◦ b) exists in R, for any a ∈ P , and

a ◦ (
∨

T ) =
∨

b∈T (a ◦ b).

(iii) If
∨

S exists in P, then
∧

a∈S(a\c) exists in Q, for any c ∈ R, and

(
∨

S) \c =
∧

a∈S(a\c).

(iv) If
∧

U exists in R, then
∧

c∈U (a\c) exists in Q, for any a ∈ P , and

a\ (
∧

U) =
∧

c∈U (a\c).

(v) If
∧

U exists in R, then
∧

c∈U (c/b) exists in P, for any b ∈ Q, and

(
∧

U) /b =
∧

c∈U (c/b).

(vi) If
∨

T exists in Q, then
∧

b∈T (c/b) exists in P, for any c ∈ R, and

c/ (
∨

T ) =
∧

b∈T (c/b).

Hence, a binary residuated map ◦ is a complete operator. If P,Q and R are

complete lattices, then a binary map ◦ : P ×Q → R is residuated if, and only

if, it is a complete operator. If this is the case then the left and right residuals

of ◦ are definable as a\c =
∨

{b ∈ Q : a ◦ b ≤ c} and c/b =
∨

{a ∈ P : a ◦ b ≤ c}.

If a binary residuated operator ◦ : P × P → P is commutative, then its left

and right residuals coincide, i.e., x\y = y/x for all x, y ∈ P and the symbol

→ is usually used to denote the residual. That is, x → y = x\y = y/x for all

x, y ∈ P .
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2.6 Galois connections

The constructions studied in Chapters 5, 6 and 9 all make use of Galois connec-

tions as defined in this section.

Let P =
〈

P,≤P
〉

and Q =
〈

Q,≤Q
〉

be posets.

Definition 2.6.1. Maps � : P ⇄ Q :� form a Galois connection, if, for all

x ∈ P and y ∈ Q we have y ≤Q x� if, and only if, x ≤P y�. The maps � and
� are called the polarities of the Galois connection.

Lemma 2.6.2. Let � : P ⇄ Q :� be maps that form a Galois connection.

Then, for x, x1, x2 ∈ P and y, y1, y2 ∈ Q:

(i) If x1 ≤P x2, then x
�

2 ≤Q x�

1 . That is, � is order-reversing.

(ii) If y1 ≤Q y2, then y
�

2 ≤P y�

1 . That is, � is order-reversing.

(iii) The maps �� : P → P and �� : Q→ Q are closure operators. Therefore,

x ≤P x�� and y ≤Q y��.

(iv) We have ��� =� and ��� =�, i.e., x��� = x� and y��� = y�.

Lemma 2.6.3. Let � : P ⇄ Q :� be maps that form a Galois connection. Then

both maps convert existing joins into meets, i.e., for S ⊆ P and T ⊆ Q:

(i) If
∨

S exists in P, then
∧

(S�) exists in Q and (
∨

S)
�
=
∧

(S�).

(ii) If
∨

T exists in Q, then
∧

(T�) exists in P and (
∨

T )
�
=
∧

(T�).

Let P,Q and R be sets. If R ⊆ P ×Q, then R induces a Galois connection

between 〈P(P ),⊆〉 and 〈P(Q),⊆〉. The maps � : P(P ) ⇄ P(Q) :�, defined by,

for S ⊆ P and T ⊆ Q

S� = {y ∈ Q : x ∈ S implies (x, y) ∈ R}

and

T� = {x ∈ P : y ∈ T implies (x, y) ∈ R}

are called the polarities of R and form the Galois connection induced by R.
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2.7 Up-sets, down-sets, filters and ideals

Different families of up-sets and down-sets of posets are central to this thesis.

A special family of up-sets (respectively, down-sets) is the filters (respectively,

ideals) of a lattice. In Chapter 4 we investigate possible generalizations of these

notions to posets. We then use these different generalizations in the construc-

tions studied in Chapters 4, 6 and 7. One of the constructions considered in

Chapter 9 employs the filters (respectively, ideals) of meet-semilattices (respec-

tively, join-semilattices).

Let P = 〈P,≤〉 be a poset.

Definition 2.7.1. A subset F ⊆ P is called an up-set (or order-filter) of P if

F satisfies:

if x ∈ F and y ∈ P such that y ≥ x, then y ∈ F, (2.1)

and whenever P has a top element F 6= ∅.

Dually, a subset I ⊆ P is called a down-set (or order-ideal) of P if I satisfies:

if x ∈ I and y ∈ P such that y ≤ x, then y ∈ I, (2.2)

and whenever P has a bottom element I 6= ∅.

For S ⊆ P , let [S) and (S] denote the up-set and the down-set of P, re-

spectively, generated by S, i.e., [S) = {a ∈ P : a ≥ b for some b ∈ S} and

(S] = {a ∈ P : a ≤ b for some b ∈ S}. If S = {x}, we write [x) and (x] for

[{x}) and ({x}], respectively. Up-sets (down-sets) of the form [x) ((x]) are called

principal. We note that our definition includes the empty set in the family of

up-sets of a poset, but only for posets that do not have a top element. Dually,

the empty set is a down-set of a poset if it does not have a bottom element.

In some instances in the literature the empty set is always excluded (see for

instance [DP02]), while in others it is always included (see for instance [Sch72]).

Definition 2.7.2. Let L be a lattice (respectively, meet-semilattice). A non-

empty subset F of L is called a filter of L if it satisfies (2.1) and, for x, y ∈ L,

x, y ∈ F implies x ∧ y ∈ F.

Definition 2.7.3. Let L be a lattice (respectively, join-semilattice). A non-

empty subset I of L is called an ideal of L if it satisfies (2.2) and, for x, y ∈ L,

x, y ∈ I implies x ∨ y ∈ F.
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The family of filters (respectively, ideals) of a lattice L will be denoted by

F(L) (respectively, I(L)), or just F (respectively, I) if L is understood. Both

F and I are closed under arbitrary intersection.

A filter or an ideal of L is called proper if it does not coincide with L. If

L has a bottom element, then F ∈ F is proper if, and only if, ⊥(= 0) /∈ F .

Dually, if L has a top element, then I ∈ I is proper if, and only if, ⊤(= 1) /∈ I.

Let L be a lattice (respectively, meet-semilattice) and let S ⊆ L. Then

there exists a smallest filter containing S, denoted by [S〉, namely [S〉 =
⋂

{F ∈

F : S ⊆ F}. Dually, if L is a lattice (respectively, join-semilattice), then

there exists a smallest ideal containing S which we will denote by 〈S], namely

〈S] =
⋂

{I ∈ I : S ⊆ I}. We call [S〉 the filter generated by S and 〈S] the ideal

generated by S. If S = {a} for some a ∈ L, then [{a}〉 = [a) and it is called a

principal filter of L. Similarly, 〈{a}] = (a] and it is called a principal ideal of L.

Let S ⊆ L; observe that b ∈ [S〉 if, and only if, b ≥
∧

M for some M ⊆fin S.

Similarly, c ∈ 〈S] if, and only if, c ≤
∨

N for some N ⊆fin S.

Definition 2.7.4. A prime filter F of a lattice L is a filter of L that satisfies,

for x, y ∈ L,

x ∨ y ∈ F implies x ∈ F or y ∈ F.

A prime ideal of a lattice L is an ideal of L that satisfies, for x, y ∈ L,

x ∧ y ∈ I implies x ∈ I or y ∈ I.

We will denote the family of prime filters (respectively, prime ideals) of a

lattice L by F (L) (respectively, I (L)), or simply F (respectively, I ) if L is

understood. A filter F of L is prime if, and only if, L−F is a prime ideal of L.

Definition 2.7.5. A proper filter F of a lattice L is called an ultrafilter or a

maximal filter if the only filter that properly contains F is the set L itself.

Dually, a proper ideal I of a lattice L is called maximal if the only ideal that

properly contains I is L.

If L is a distributive lattice with a bottom element, then every ultrafilter of

L is a prime filter. If L is a distributive lattice with a top element, then every

maximal ideal of L is a prime ideal (see, for example, [DP02]).

Definition 2.7.6. A subset F of a lattice L is called a complete filter of L, if
∧

S ∈ F for every S ⊆ F such that
∧

S exists in L.
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Dually, a subset I of a lattice L is called a complete ideal of L, if
∨

S ∈ I

for every S ⊆ I such that
∨

S exists in L.

Let Fc and Ic denote the families of complete filters and ideals of a lattice

L, respectively.
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3. INTRODUCTION TO COMPLETIONS

We are often interested in algebraic structures of which the underlying set is

(partially) ordered. Such ordered algebraic structures occur naturally in many

areas of mathematics. Examples include ordered groups, ordered rings, fields,

ordered vector spaces, the sets of open or closed elements of a topology and the

algebraic models of logics. Given an ordered algebraic structure, we are often

interested in the supremums (joins) and infimums (meets) of its (arbitrary)

subsets. If these do not exist, then one way to get around this non-existence is

to embed the partial structure into a complete structure for which the necessary

supremums and infimums do exist. We will call a pair consisting of a complete

structure and an embedding a completion. The following definition makes this

precise.

Definition 3.0.1. A completion of a poset P is a pair (L, γ) where L is a

complete lattice (viewed as a poset) and γ : P → L is an order-embedding.

There are various reasons why one might wish to embed ordered algebraic

structures into complete ones. A complete lattice is representable, both as a

complete lattice of sets and as the image of a closure operator on a powerset

lattice. Therefore, if it is important that the algebraic structures under con-

sideration are representable, then completing the algebras would be one way of

obtaining exactly what is needed.

From a logician’s perspective, we may wish to model predicate logics. How-

ever, since (bounded) universal quantification corresponds with infinite meets

and (bounded) existential quantification corresponds with infinite joins, we need

to complete the algebra under consideration first to ensure that the necessary

infinite joins and meets exist.

Furthermore, the proofs of many completeness theorems of various proposi-

tional and predicate logics have made use of results on completions. For exam-

ple, in [MO02] the MacNeille completion of a residuated lattice is used to prove
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that the predicate logic MTL∀ is standard complete. In [Ono03b, Theorems 5

and 6] the MacNeille completion of a (integral weakly idempotent) commutative

residuated lattice (with exponentials) is shown to be a commutative residuated

lattice (with exponentials). These results are then used to show that intuitionis-

tic linear predicate logic (with exponentials) is complete with respect to the class

of complete commutative residuated lattices (with exponentials). Similarly, it

can be used to show that intuitionistic predicate logic without the contraction

rule is complete with respect to the class of complete integral (weakly idempo-

tent) commutative residuated lattices [Ono03b, Corollary 13].

Another application of completions that can be found in the literature, is the

use of the canonical extension to obtain relational semantics for non-classical

logics — including some substructural logics. It is often the case that a logic is

closely related to a corresponding class of algebraic structures. These algebraic

structures then provide algebraic semantics for the logic. Relational semantics

for the logic may then be obtained by taking the canonical extensions of the

algebraic structures and then using discrete duality theory to obtain relational

structures. See [DGP05] and [CGvR] for examples of where this has been done

in the literature.

In the following four chapters we will investigate the construction of various

completions of posets and other algebraic structures. Depending on our pur-

poses, we may need different completions. Each completion has its advantages

and disadvantages. For example, the MacNeille completion of a lattice preserves

the existing infinite structure while the canonical extension destroys it. Having

various completions at our disposal makes it more likely that we will have a

construction that does what we need it to do.



4. FILTER AND IDEAL COMPLETIONS

It is well known that if L is a lattice with a top element, then F =
〈

F(L),∨F,∧F
〉

forms a complete lattice where F(L) is the set of filters of L,
∨F

i∈Ψ Fi =
[
⋃

i∈Ψ Fi

〉

and
∧F

i∈Ψ Fi =
⋂

i∈Ψ Fi for Fi ∈ F(L), i ∈ Ψ. Then ⊆ is the as-

sociated lattice order. If L does not have a top element, then F(L)∪{∅}, is the

universe of a complete lattice. Let F⊤(L) denote the complete lattice obtained

from the set of filters of L with the possible inclusion of ∅. Similarly, if L has

a bottom element, then I =
〈

I(L),∨I,∧I
〉

, is a complete lattice where I(L) is

the set of all ideals of L,
∨I

j∈Φ =
[

⋃

j∈Φ Ij

〉

and
∧I

i∈ϕ =
⋂

j∈Φ Ij for Ij , j ∈ Φ.

Then ≤I is ⊆. If L does not have a bottom element, then we can include ∅ to

form a complete lattice. Let I⊥(L) denote the complete lattice obtained from

the set of ideals of L with the possible inclusion of ∅. Then, ν : L → F⊤(L)

defined by ν(a) = [a), for all a ∈ L, is a lattice embedding of L into F⊤(L)
∂ ,

that is, ν(L) is the universe of a sublattice of F⊤(L)
∂ . Dually, ω : L → I⊥(L)

defined by ω(a) = (a], for all a ∈ L, is a lattice embedding of L into I⊥(L),

that is, ω(L) is the universe of a sublattice of I⊥(L). Thus, (F⊥(L)
∂ , ν) and

(I⊤(L), ω) are completions of L. For more on the filter and ideal lattices of a

lattice L the reader is referred to [Bir67, Chapter V.2].

In this chapter we would like to generalise ‘filter’ and ‘ideal’ completions to

the poset setting. This has been done in various, decidedly distinct, ways in the

literature. We begin by recalling the definition of four different families of up-

sets and down-sets of a poset P. Many more have been defined in the literature

and we give a quick survey of the remaining families that do not form a part of

this thesis. The different types of filters and ideals defined in this chapter will

be used again in some of the completions studied in later chapters.

Next we investigate the complete lattices formed by three of these families.

At this point the notions of a ‘prime ideal’ and a ‘prime filter’ of a poset become

of interest. However, the literature does not agree on what the correct definitions

of these notions are either. We recall the definitions found in the literature and
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compare them. We will use the family of prime filters defined here in the

completions studied in Chapter 7. Furthermore, we show that strictly prime

filters (see Definition 4.2.18) are meet-irreducible elements in the associated

lattice of filters. Similarly, strictly prime ideals are meet-irreducible elements in

the associated lattice of ideals.

Finally, we consider the extension of operations defined on the poset to

operations defined on the completions. In particular, we show that if f : P → P

is an operator, then its extension (to one of the completions) is a complete

operator. Dually, the extension (to one of the completions) of a dual operator

is a complete dual operator.

4.1 Filters and ideals of posets

In the literature one may encounter various families of up-sets (respectively,

down-sets) of a poset that have been called the ‘filters’ (respectively, ‘ideals’) of

the poset.

Let P be a poset and suppose F ′ is defined to be the set of ‘filters of P’,

then, as stated in [Fri54], it would be desirable for F ′ to satisfy the following

conditions:

(i) If a ∈ P , then [a) ∈ F ′.

(ii) If T ⊆ F ′, then
⋂

T ∈ F ′.

(iii) If P is a lattice, then F ′ is exactly the family of filters of P .

In [GJKO07] a so-called ‘rich enough’ family of up-sets, F ′, (that is, ‘rich

enough’ to be used in a construction studied in [GJKO07, Chapter 6]) is required

to satisfy:

(a) If a ∈ P , then [a) ∈ F ′.

(b) If F ∈ F ′, then F is closed under existing finite meets.

(c) ∅ ∈ F ′ if, and only if, P does not have a top element.

The family of filters, F(L), of a lattice L satisfies conditions (i)-(iii), (a)

and (b) above. On the other hand, ∅ is never a filter of L and the closure

of F(L) under intersection is not affected by this exclusion. For a poset P

the satisfaction of condition (ii) depends on the satisfaction of condition (c).
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It would therefore seem natural to require that the eventual definition of a

‘filter of a poset’ satisfies all of the conditions above, since we are looking for

a generalisation of the notion of a filter on a lattice. However, upon closer

inspection it would appear that such a requirement would be expecting too

much. Consider, for instance, condition (ii): “If T ⊆ F ′, then
⋂

T ∈ F ′”.

As stated above, if P does not have a top element, then condition (ii) will be

satisfied only if condition (c) is satisfied, i.e., ∅ ∈ F ′. However, if condition (c)

is satisfied, then F ′ need not equal the set of filters when P is a lattice, which

is condition (iii). It should be apparent that defining filters (and ideals) on a

poset is not straightforward.

Let P = 〈P,≤〉 be a poset. Recall that F ⊆ P is an up-set of P if, whenever

a ∈ F and b ∈ P such that a ≤ b, then b ∈ F ; and F 6= ∅ whenever P has a top

element. Dually, I ⊆ P is a down-set of P if, whenever a ∈ I and b ∈ P such

that a ≥ b, then b ∈ I; and I 6= ∅ whenever P has a bottom element.

We now recall the definitions of some of the various families of up-sets and

down-sets that have been called the ‘filters’ and ‘ideals’ of a poset, respectively,

in the literature.

Definition 4.1.1 ([AA90]). A subset F ⊆ P is called a pseudo filter of P if F

is an up-set that satisfies

if x, y ∈ F and x ∧ y exists in P, then x ∧ y ∈ F (4.1)

and if P has a top element then F 6= ∅. Pseudo ideals can be defined dually.

Pseudo ideals were defined in [AA90] where, in addition to satisfying the

above properties, they were defined to be non-empty proper subsets of P . How-

ever, we define P to be both a pseudo filter and a pseudo ideal, while ∅ is a

pseudo filter (respectively, ideal) when P does not have a top element (respec-

tively, a bottom element).

In [Doy50] the notion of an ‘ideal’ of a poset was defined. This notion

actually corresponds to the notion of a filter on a bounded lattice.

Definition 4.1.2 ([Doy50]). A subset F ⊆ P is called a Doyle-pseudo filter of

P if F is an up-set that satisfies

if M ⊆fin F such that
∧

M exists in P, then
∧

M ∈ F (4.2)

and if P has a top element then F 6= ∅. Doyle-pseudo ideals can be defined

dually.
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In [Ven71] Doyle-pseudo ideals were defined to be non-empty, and were called

the ‘ideals’ of a poset. Doyle-pseudo ideals were also simply called the ‘ideals’ of

a poset in [Tun74] — though we note that it was not explicitly said that ideals

are only closed under existing finite joins.

Next we consider a family of up-sets first introduced in [Fri54].

Definition 4.1.3 ([Fri54]). A subset F ⊆ P is called a Frink filter of P if F

satisfies

if M ⊆fin F, then M ℓu ⊆ F (4.3)

and if P has a top element then F 6= ∅. Frink ideals can be defined dually.

Note that all Frink filters are up-sets. Frink ideals were called the ‘ideals’ of

a poset in [Fri54] and [War55]. This family of down-sets were used in [War55] in

the study of relations between topologies in posets, one of which was the Frink

ideal topology.

The definitions of Doyle-pseudo and Frink filters given here, differ from the

original definitions obtained in [Doy50] and [Fri54], respectively, in that ∅ is

excluded for posets with a top element.

For more on pseudo, Doyle-pseudo and Frink filters and ideals the reader

may consult [Nie06].

In [Hof79] it was suggested that the following family of up-sets may be viewed

as the ‘filters’ of a poset.

Definition 4.1.4 ([Hof79]). A non-empty subset F ⊆ P is called a directed

filter of P if it is an up-set that satisfies

if x, y ∈ F, then there exists z ∈ F such that z ≤ x and z ≤ y. (4.4)

Directed ideals can be defined dually.

If S ⊆ P satisfies (4.4), then S is called a down-directed subset of P. Up-

directed subsets can be defined dually.

The directed filters and ideals defined above have also been called the ‘filters’

and the ‘ideals’ of a poset in the literature (see for instance [DGP05], [Por12]

or [DP02]).

Tables 4.1 and 4.2 respectively summarize the different types of filters and

ideals of a poset considered in this thesis.
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An up-set F of a poset P is called a

pseudo filter if: x, y ∈ F and x ∧ y exists in P implies x ∧ y ∈ F .

Doyle-pseudo filter if: M ⊆fin F and
∧

M exists in P implies
∧

M ∈ F .

Frink filter if: M ⊆fin F implies M ℓu ⊆ F .

directed filter if: x, y ∈ F implies there exists z ∈ F such that z ∈ {x, y}ℓ.

Tab. 4.1: A summary of the various types of filters under consideration.

A down-set I of a poset P is called a

pseudo ideal if: x, y ∈ I and x ∨ y exists in P implies x ∨ y ∈ I.

Doyle-pseudo ideal if: M ⊆fin I and
∨

M exists in P implies
∨

M ∈ I.

Frink ideal if: M ⊆fin I implies Muℓ ⊆ I.

directed ideal if: x, y ∈ I implies there exists z ∈ I such that z ∈ {x, y}u.

Tab. 4.2: A summary of the various types of filters under consideration.

Let Fp, Fdp, Ff and Fd denote the families of pseudo, Doyle-pseudo, Frink

and directed filters of P, respectively. The families of pseudo, Doyle-pseudo,

Frink and directed ideals of P will be denoted by Ip, Idp, If and Id, respec-

tively. We write F∗(P) and I∗(P), for ∗ ∈ {p, dp, f, d}, if it is necessary to

indicate which poset is used. For ∗ ∈ {p, dp, f, d}, we will sometimes refer to

the elements of F∗ as ∗-filters and to the elements of I∗ as ∗-ideals.

Remark 4.1.5. The members of Fdp, Ff and Fd are closed under existing

finite meets. To see this, let M ⊆fin P such that
∧

M exists in P. Then, by

definition, if F ∈ Fdp such that M ⊆ F , it follows that
∧

M ∈ F . If F ∈ Ff

such that M ⊆ F , then
∧

M ∈M ℓu ⊆ F . Finally, if F ∈ Fd such that M ⊆ F ,

then there exists z ∈M ℓ such that z ∈ F . But then
∧

M ∈ F .

Dually, the members of Idp, If and Id are closed under existing finite joins.

Lemma 4.1.6. The following inclusions hold: Fd ⊆ Ff ⊆ Fdp ⊆ Fp and

Id ⊆ If ⊆ Idp ⊆ Ip. In general, these inclusions are strict.

Proof. We prove the claim for the families of filters. The proof of the claim for

the families of ideals follows dually.

Let F ∈ Fd and M = {a1, a2, . . . , an} ⊆fin F . Since F is directed there

exists a z1 ∈ F such that z1 ≤ a1 and z1 ≤ a2. Furthermore, there exists a
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z2 ∈ F such that z2 ≤ z1 (hence also z2 ≤ a1, a2) and z2 ≤ a3. Continuing

in this way we can find a zn−1 ∈ F such that zn−1 ≤ zn−2 (and hence also

zn−1 ≤ ai for i = 1, . . . , n− 1) and zn−1 ≤ an. That is, zn−1 ∈ F and zn−1 ≤ ai

for i = 1, . . . , n. Then zn−1 ∈M ℓ which implies that M ℓu ⊆ [zn−1) ⊆ F . Thus

F ∈ Ff .

Next let F ∈ Ff and let M ⊆fin F such that
∧

M exists in P . Then
∧

M ∈M ℓu ⊆ F , i.e.,
∧

M ∈ F and hence F ∈ Fdp.

Since any subset containing two or fewer elements is still a finite subset, it

follows that Fdp ⊆ Fp.

Consider the following poset to see that these inclusions generally are strict:
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Fig. 4.1: The inclusions Fd ⊆ Ff ⊆ Fdp ⊆ Fp may be strict.

Let P′ be the poset in Figure 4.1. Then F1 = {2, 3} ∈ Ff , but F1 /∈ Fd

since it does not contain a common lower bound of 2 and 3. Furthermore,

F2 = {1, 2, 3, 6, 7} ∈ Fdp, but F2 /∈ Ff . To see why, observe that {6, 7}ℓ = ∅
and therefore {6, 7}ℓu = P * F2. Finally, F3 = {1, 2, 3, 4, 5} ∈ Fp but F3 /∈ Fdp.

Here
∧

{1, 2, 3} = 6 /∈ F3. Also note that, in general, Fp is strictly included in

the family of all up-sets. In this particular example all up-sets are also pseudo

filters. However, I = {4, 5} is a down-set that is not a pseudo ideal since

4 ∨ 5 = 1 /∈ I.

If P is bounded then the inclusions Fd ⊆ Ff and Id ⊆ Ff may still be

strict. We note that every principal up-set (respectively, down-set) of a poset

P is a directed filter (respectively, directed ideal) of P, and therefore included

in all four families of filters (respectively, ideals). In fact, if P is finite, then

Fd = {[a) : a ∈ P}. Furthermore, observe that if L is a bounded lattice, then

Fp(L) = Fdp(L) = Ff (L) = Fd(L) = F(L) and Ip(L) = Idp(L) = If (L) =

Id(L) = I(L).
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In this thesis we will focus our attention on the families of up-sets and

down-sets defined above. However, more (generally distinct) families of up-

sets and down-sets, that have been used in various completions of posets, have

been defined in the literature. Among these is the family {Suℓ : S ⊆ P} used

by MacNeille in [Mac37]. If P is finite, then the family of Frink filters of P

correspond exactly with this family of down-sets. However, this need not be the

case if P is infinite. For example, if F ∈ Ff is infinite, then Fuℓ need not be a

subset of F — this may be the case when
∧

F exists in P, but is not included

in F . See Chapter 5 for more on the MacNeille completion.

In [BS66] the collection of all non-empty down-sets of a poset P that are

bounded above, i.e.,

{I : I is a down-set and there exists a ∈ P such that I ⊆ (a]},

was used to complete P. In general, this family of down-sets does not correspond

with any of the families of down-sets under consideration in this thesis. Let

P′ be the poset depicted in Figure 4.1. Then P′ is a Frink ideal, but it is

not bounded above. On the other hand, {5, 7} ⊆ P ′ is bounded above since

{5, 7} ⊆ (3] = {3, 5, 6, 7}, but since 5 ∨ 7 = 3 /∈ {5, 7} it is not a pseudo ideal

(and hence none of the other three types of ideals under consideration).

In [Abi68] Abian defined the initial cuts of a poset and showed that the

family of initial cuts generally differs from the family of lower cuts used by

MacNeille. For a ∈ P , an initial segment with respect to a was defined to be

the set {x ∈ P : x � a} and an initial cut the union of any family of initial

segments. An initial cut need not be closed under existing joins. To see why we

consider the poset P′ in Figure 4.1 again. The sets {3, 5, 6, 7} and {2, 4, 6, 7}

are the initial segments with respect to 4 and 5, respectively. Their union,

{2, 3, 4, 5, 6, 7} then forms an initial cut, but not a pseudo ideal since 4 ∨ 5 = 1

is not included. On the other hand, F1 ∈ Ff , but F1 is not an initial cut.

In [Sch72] a down-set I is called k-small generated, for k ≥ 2, if there exists

S ⊆ I such that |S| ≤ k and a ∈ I if, and only if, a ≤ s for some s ∈ S. Since

k ≥ 2 it follows that all principal down-sets are k-small generated. It should

be clear that k-small generated down-sets need not be closed under existing

joins. These types of down-sets are essentially generalizations of the principal

down-sets. In [WWT78] generated down-sets, with a variety of restrictions

on the generating subsets, were used. For example, the generating subsets were
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assumed to have cardinality less than or equal to some n; or, assumed to have an

upper bound in the poset for every pair of elements from the generating subset;

or, assumed to have an upper bound in the poset for every finite subset of the

generating subset; or, assumed to be bounded, directed or linearly ordered.

In [Hal00] an ‘ideal’ of an ordered set is defined to be a subset I for which

{a, b}uℓ ⊆ I whenever a, b ∈ I. Consider the poset P′ from Figure 4.1 once

more. If we were to define the notion of a ‘filter’ dually to the definition above,

then {1, 2, 3} would be a ‘filter’ of P′, but not a Frink filter since {1, 2, 3}ℓu =

{1, 2, 3, 6} * {1, 2, 3}.

Another collection of down-sets that should be mentioned here, though not

called ideals in the literature, is the family of Scott-closed sets [Sco72]. A Scott-

closed set is a down-set that is closed under the existing joins of its directed

subsets. If P is finite, then the Scott-closed sets correspond with the directed

ideals of P. For more on Scott-closed sets and the Scott topology the reader is

referred to [Ern81], [GHK+80] and [Ros84].

In [Doc67] and [Sch74] ideals closed under selected joins were defined. Let

T ⊆ P(P ). Then an T -ideal of P, I, is a down-set satisfying: if S ∈ T , S ⊆ I

and
∨

S exists in P, then
∨

S ∈ I. Clearly, if T is all finite subsets of P , then

the T -ideals of P are exactly the Doyle-pseudo ideals of P. Similarly, if T is all

binary subsets of P , then the T -ideals of P are exactly the pseudo ideals of P.

In [MN65] (see also [Ros72]) the following definition of m-ideals was given:

a subset F ⊆ P is called an m-ideal if Suℓ ⊆ F for all S ⊆ F such that |S| < m.

If m = ℵ0, then the m-ideals are exactly the Frink ideals.

4.1.1 Complete filters and ideals

Next we generalise the notion of a ‘complete filter’ to the poset setting. Again

the generalisation is not straightforward, since a number of different families of

up-sets may be identified as candidates for the generalisation.

Definition 4.1.7 ([Tun74, Jan78]). A subset F ⊆ P is called a complete Doyle-

pseudo filter of P if F is an up-set that satisfies

if S ⊆ F such that
∧

S exists in P, then
∧

S ∈ F (4.5)

and if P has a top element then F 6= ∅. Complete Doyle-pseudo ideals can be

defined dually.
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In [Jan78] complete Doyle-pseudo filters are called conditionally complete

filters and in [Tun74] simply the ‘complete filters’ of a poset.

Following the above we make the following analogous definitions.

Definition 4.1.8. A subset F ⊆ P will be called a complete Frink filter of P if

F satisfies

if S ⊆ F, then Sℓu ⊆ F (4.6)

and if P has a top element then F 6= ∅. Complete Frink ideals can be defined

dually.

Definition 4.1.9. A non-empty subset F ⊆ P will be called a complete directed

filter of P if F is an up-set that satisfies

if S ⊆ F, then there exists z ∈ F such that z ≤ x for all x ∈ S. (4.7)

Complete directed ideals can be defined dually.

Let Fcdp, Fcf and Fcd denote the families of complete Doyle-pseudo, com-

plete Frink and complete directed filters, respectively. The families of complete

Doyle-pseudo, complete Frink and complete directed ideals will be denoted by

Icdp, Icf and Icd, respectively.

If P is finite, then Fcdp = Fdp, Fcf = Ff , Fcd = Fd, Icdp = Idp, Icf = If

and Icd = Id. If L is a lattice and L has a top element, then the families of

complete Doyle-pseudo, complete Frink and complete directed filters all coincide

with the family of complete filters of L, i.e., Fcdp(L) = Fcf (L) = Fcd(L) =

Fc(L). Similarly, Icdp(L) = Icf (L) = Icd(L) = Ic(L) if L has a bottom

element.

Lemma 4.1.10. The following inclusions hold: Fcd ⊆ Fcf ⊆ Fcdp and Icd ⊆

Icf ⊆ Fcdp. In general, these inclusions are strict.

Proof. The proof of Lemma 4.1.6 may be suitably modified to prove the inclu-

sions. The example given in Figure 4.1 suffices to show that these inclusions are

strict, since the various types of complete filters coincide with the correspond-

ing types of filters on finite posets. In Figure 4.2 we provide infinite posets

demonstrating that these inclusions are strict. If P′ is the infinite anti-chain,

depicted in Figure 4.2, then any proper subset of P′ will be a complete Doyle-

pseudo filter, but not a complete Frink filter. In particular, if F1 = P ′ − {1},

then F1 ∈ Fcdp(P′), but F1 /∈ Fcf(P′). Next let Q′ be the poset depicted in

Figure 4.2. Then F2 = Q′ − {1, 2} ∈ Fcf(Q), but F2 /∈ Fcd(Q).
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Fig. 4.2: The inclusions Fcd ⊆ Fcf ⊆ Fcdp may be strict.

4.2 Filter and ideal lattices

The different types of filters and ideals ordered by inclusion form posets, i.e.,

〈F∗,⊆〉 and 〈I∗,⊆〉 are posets for ∗ ∈ {p, dp, f, d}. If ∗ ∈ {p, dp, f}, then we will

be able to say more. We will show that F∗ and I∗ are closed under intersection.

Furthermore, we will show that an arbitrary subset of P generates both a ∗-

filter and a ∗-ideal of P. Then the sets F∗ and I∗ are the universes of complete

lattices.

We first have a closer look at closure under intersection. The fact that Fdp

and Idp are closed under intersection was shown in, for instance, [Sch72] and

[GJKO07]. In [Fri54] it was stated that Ff and If are closed under intersection.

We include a proof here.

Lemma 4.2.1. The families Fp, Fdp, Ff , Ip, Idp and If are closed under

arbitrary intersections.

Proof. We only show the closure under arbitrary intersection for the families of

filters. It can be shown similarly for the families of ideals.

The family of all up-sets is closed under intersection: let G be an arbitrary

set of up-sets and let F =
⋂

G. If F = ∅, then P does not have a top element

and F is an up-set by definition. If a ∈ F , b ∈ P and b ≥ a, then a ∈ G for

every G ∈ G. But every G ∈ G is an up-set which implies that b ∈ G for every

G ∈ G. Therefore, b ∈
⋂

G = F .

Now suppose G ⊆ Fdp (respectively, G ⊆ Fp). If F = ∅, then P does
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not have a top element and F ∈ Fdp (respectively, F ∈ Fp) by definition.

Otherwise, let M ⊆fin (respectively, ⊆2) F such that
∧

M exists in P . Then

M ⊆fin (respectively, ⊆2) G for every G ∈ G. By definition
∧

M ∈ G for every

G ∈ G. Therefore,
∧

M ∈
⋂

G = F and hence, F ∈ Fdp (respectively, F ∈ Fp).

Let G ⊆ Ff . If F = ∅, then P does not have a top element and F ∈ Ff . If

F 6= ∅ and M ⊆fin F , then M ⊆fin G for every G ∈ G. Then M ℓu ⊆ G for

every G ∈ G, which implies that that M ℓu ⊆
⋂

G = F . Thus, F ∈ Ff .

Remark 4.2.2. We note that the inclusion of ∅ in Fp, Fdp and Ff when P

does not have a top element is necessary for the closure of these families of up-

sets under intersection. Similarly, the inclusion of ∅ in Ip, Idp and If when P

does not have a bottom element, ensures that each of these families of down-sets

is closed under intersection.

Next we investigate the generation of ‘filters’ and ‘ideals’ by arbitrary sub-

sets. Since these families are closed under intersection, the ‘filter’ and ‘ideal’

generated by a subset of the poset can be defined from above. Indeed, in the

literature the definitions from above of generated ‘filters’ and ‘ideals’ have often

been used. However, in the sequel we provide definitions from below and show

that they are equivalent to the definitions from above.

Lemma 4.2.3. Let S ⊆ P be arbitrary. Then there exists a Doyle-pseudo

(respectively, pseudo) filter, denoted by [S〉dp (respectively, [S〉p), that is the

intersection of all Doyle-pseudo (respectively, pseudo) filters containing S. The

set [S〉dp (respectively, [S〉p) is called the Doyle-pseudo (respectively, pseudo)

filter generated by S. Moreover, define the sequence Si, i ∈ N, of subsets of P

as follows:

S0 = S

Si+1 =
[{

∧

M : ∅ 6=M ⊆fin (respectively,⊆2)Si and
∧

M exists
})

Then, [S〉dp (respectively, [S〉p) =
⋃

i∈N
Si.

Proof. Observe that {F ∈ Fdp : S ⊆ F} 6= ∅ since S ⊆ P ∈ Fdp. By

Lemma 4.2.1,
⋂

{F ∈ Fdp : S ⊆ F} ∈ Fdp.

For the second part of the claim, let F =
⋃

i∈N
Si. If a ∈ Si, then {a} ⊆fin Si

with a =
∧

{a}. Thus a ∈ Si+1 and Si ⊆ Si+1. That is, the sequence Si, i ∈ N, is
increasing. In particular, S ⊆ Si for each i ∈ N and hence S ⊆ F . Furthermore,

since Si is an up-set for i ≥ 1, it follows that F is also an up-set.
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Suppose M ⊆fin F such that
∧

M exists and M = {a1, . . . , an}. For j =

1, . . . , n, let Tj be the first set in the sequence Si, i ∈ N, such that aj ∈ Tj .

Since M is finite and Si, i ∈ N, is increasing, there is a largest element, Sk,

in {T1, . . . , Tn}. Then, M ⊆fin Sk and
∧

M ∈ Sk+1. Hence,
∧

M ∈ F and

F ∈ Fdp.

Let G ∈ Fdp such that S ⊆ G. We show by induction that each Si ⊆ G for

i ∈ N. If a ∈ S0, then a ∈ G by hypothesis. Suppose Si ⊆ G and say a ∈ Si+1.

Then a ≥
∧

M for some M ⊆fin Si ⊆ G. But G ∈ Fdp implies that
∧

M ∈ G

and therefore also a ∈ G. Hence, Si+1 ⊆ G. That is, Si ⊆ G for all i ∈ N. Now
let a ∈ F ; then a ∈ Sj ⊆ G for some j ∈ N. Therefore, F ⊆ G.

The proof of the claim for generated pseudo filters is similar.

Example 4.2.4. One may wonder whether or not the process of finding the

Doyle-pseudo (pseudo) filter generated by an arbitrary subset S can be described

in finitely many steps. In general it is not possible. The sequence Si, i ∈ N,
may be a strictly increasing sequence as illustrated in Figure 4.3.

r rrr
r rrr

r rrrrr rrrr

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A
A
A

�
�
�JJ

J
JJ

A
A
A

�
�
�









J
J
J
JJ

A
A
A

�
�
�







J

J
J
JJ












�
 �	
'
&

$
%

'

&

$

%

'

&

$

%

S0

S1

S2

S3

.

..

Fig. 4.3: The generation process of [S〉
pd

need not be finite.

Lemma 4.2.5. Let S ⊆ P be arbitrary. Then there exists a Frink filter, denoted

by [S〉f , that is the intersection of all Frink filters containing S. The set [S〉f is

called the Frink filter generated by S. Moreover, [S〉f =
⋃
{

M ℓu :M ⊆fin S
}

.
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Proof. Note that {F ∈ Ff : S ⊆ F} 6= ∅ since S ⊆ P ∈ Ff . Then, by

Lemma 4.2.1,
⋂

{F ∈ Ff : S ⊆ F} ∈ Ff .

We will show that S ⊆ F and that F ∈ Ff . Then we will show that F is

the smallest, set theoretically speaking, Frink filter for which this is the case.

Let F =
⋃
{

M ℓu : M ⊆fin S
}

. If a ∈ S, then {a} ⊆fin S and {a} ⊆

{a}ℓu ⊆ F . Therefore, S ⊆ F .

Next we show that F ∈ Ff . If M ⊆fin S such that M ℓ = ∅, then M ℓu = P

and F = P ∈ Ff .

Now suppose that M ℓ 6= ∅ for every M ⊆fin S. Let N ⊆fin F such

that N = {a1, . . . , an}. Then there exists Ni ⊆fin S such that ai ∈ N ℓu
i for

i = 1, . . . , n. Furthermore,
⋃n

i=1Ni ⊆
fin S. Let b ∈ (

⋃n
i=1Ni)

ℓ, then b ∈ N ℓ
i

for each i = 1, . . . , n. That is, b ≤ ai for each i = 1, . . . , n. But then b ∈ N ℓ

and (
⋃n

i=1Ni)
ℓ ⊆ N ℓ. Therefore, N ℓu ⊆ (

⋃n
i=1Ni)

ℓu ⊆ F . Hence, F ∈ Ff .

Finally, let G ∈ Ff such that S ⊆ G. If M ⊆fin S, then M ⊆fin G and

M ℓu ⊆ G. Hence,
⋃
{

M ℓu :M ⊆fin S
}

= F ⊆ G.

Notice that if S ⊆fin P , then [S〉f = Sℓu. Clearly S ⊆fin S and Sℓu ⊆ [S〉f .

Let M ⊆fin S; then Sℓ ⊆M ℓ and M ℓu ⊆ Sℓu.

If S = {a} for some a ∈ P , then [{a}〉p = [{a}〉dp = [{a}〉f = [a).

The pseudo, Doyle-pseudo and Frink ideals generated by an arbitrary set S ⊆

P can be defined dually and will be denoted by 〈S]p,〈S]dp and 〈S]f , respectively.

Furthermore, if S = {a} for some a ∈ P , then 〈{a}]p = 〈{a}]dp = 〈{a}]f = (a].

Since the families F∗ and I∗ are closed under intersection and since arbitrary

subsets of P generate elements in F∗ and I∗, these sets form the universes of

complete lattices. If ∗ ∈ {p, dp, f}, then F∗ =
〈

F∗,∨F∗

,∧F∗〉

is a complete

lattice, where

F∗

∨

i∈Ψ

Fi =

[

⋃

i∈Ψ

Fi

〉

∗

and

F∗

∧

i∈Ψ

Fi =
⋂

i∈Ψ

Fi

for Fi ∈ F∗, i ∈ Ψ. Then ⊆ is the associated lattice order ≤F∗

. Similarly,

I∗ =
〈

I∗,∨I∗ ,∧I∗
〉

is a complete lattice if ∗ ∈ {p, dp, f}, with

I∗
∨

j∈Φ

Fi =

〈

⋃

j∈Φ

Ij





∗

and

I∗
∧

j∈Φ

Fi =
⋂

j∈Φ

Ij

for Ij ∈ I∗, j ∈ Φ. Then the associated lattice order ≤I∗ is ⊆.
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The following corollary is a consequence of these facts. The claim for the

pseudo and Doyle-pseudo cases follows from results in [Doc67] and [Sch72]. The

claim for the Frink case follows from the results in [Fri54].

Corollary 4.2.6. Let ∗ ∈ {p, dp, f} and let P = 〈P,≤〉 be a poset. Define

ν∗ : P → F∗ by ν∗(a) = [a), for all a ∈ P . Then ((F∗)∂ , ν∗) is a completion

of P and, furthermore, ν∗ is an order-embedding of P into (F∗)∂ that preserves

all existing finite meets and joins in P.

Define ω∗ : P → I∗ by ω∗(a) = (a], for all a ∈ P . Then (I∗, ω∗) is a

completion of P. Moreover, ω∗ is an order-embedding of P into I∗ that preserves

all existing finite meets and joins in P.

It is interesting to note that the embeddings ω∗ (respectively, ν∗) that map

elements of a poset onto the principal ideal (respectively, principal filter) gen-

erated by it, is called the canonical embedding in the literature — see for in-

stance [Ern83] and [Sch72].

Example 4.2.7. Let P′ be the poset depicted in Figure 4.1. Then the complete

lattices (F∗)∂ and I∗, for ∗ ∈ {p, dp, f} are depicted in Figures 4.4 and 4.5. The

image of P ′ is shaded in each of these. See Example A.1.1 in Appendix A.1 for

more details.

The following notions will be explored for most of the completions studied

in this thesis and will turn out to be very useful when we investigate extensions

of additional operators.

Definition 4.2.8. Let L = 〈L,∨,∧〉 be a complete lattice. Then, S ⊆ L is

said to be join-dense in L if every element in L is the join of elements in S.

Dually, T ⊆ L is said to be meet-dense in L if every element in L is the meet

of elements in T .

If P is a poset and (L, γ) is a completion of P, then (L, γ) is called a join-

completion of P if γ(P ) is join-dense in L. Dually, (L, γ) is called a meet-

completion of P if γ(P ) is meet-dense in P.

If γ(P ) is both meet-dense and join-dense in L, then the completion (L, γ)

is called doubly dense.

Join-completions have also been called upper completions [Sch72] or superior

completions [BS66] in the literature, while meet-completions have also been

called inferior completions [BS66].
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Fig. 4.4: The complete lattices (Ff )∂ and (Fdp)∂ .

In [Ern83] and [Sch74] the completions (I∗, ω∗), for ∗ ∈ {p, dp, f}, of a poset

P were shown to be join-completions of P since ω∗(P ) is join-dense in I∗. Recall

that
∨

∅ = ⊥. Dually, each completion ((F∗)∂ , ν∗), for ∗ ∈ {p, dp, f}, is a meet-

completion of P since ν∗(P ) is meet-dense in (F∗)∂ . Here we use the fact that
∧

∅ = ⊤. See [Sch74] for more on join-completions.

Furthermore, for ∗ ∈ {p, dp, f}, the completions I∗ are instances of a standard

completion. A standard completion of P is a collection of down-sets of P that

includes all principal down-sets. Standard completions of posets have been

studied extensively in, for example, [BN82], [Ern83], [EW83] and [ER87].

We now turn our attention to the families of directed filters and ideals. In

general, Fd and Id are not closed under intersection as was noted in [Hof79].

Consider the following counterexample to see why.

Example 4.2.9. Let P′ be the poset depicted in Figure 4.6. Then {1, 2, 3},

{1, 2, 4} ∈ Fd, but {1, 2, 3} ∩ {1, 2, 4} = {1, 2} /∈ Fd since it does not contain a

common lower bound of 1 and 2.

Furthermore, an arbitrary subset of a poset need not generate a unique

directed filter. Since Fd is not closed under intersection a ‘generated directed

filter’ cannot be defined from above. On the other hand, a definition from
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below would not produce a unique directed filter — if it even exists. Consider

the following counterexample to see why.

Example 4.2.10. Let P′ be the poset depicted in Figure 4.7. If S = {3, 4},

then there does not exist a directed filter containing S, since P′ does not contain

a common lower bound for 3 and 4. Furthermore, if T = {1, 2}, then {1, 2, 3}

and {1, 2, 4} are two directed filters both containing T , but there does not exist

a least directed filter containing T .

In fact, it will only make sense to refer to a ‘directed filter generated by a

set’, if we start off with a set that is already directed.

Lemma 4.2.11. If D ⊆ P is down-directed, then [D) is the least directed filter

containing D. Dually, if U ⊆ P is up-directed, then (U ] is the least directed

ideal containing U .

The proof is straightforward and is omitted.

The families of directed filters and ideals therefore do not, in general, form

complete lattices. In [DP02, Definition 8.1] pre-complete partially ordered sets

(pre-CPO for short) are defined to be posets for which the join
∨

D of each



4. Filter and ideal completions 43

u3 u 4

u1 u 2

�
�
�
�
��

Z
Z

Z
Z

ZZ

F2

�
�
�
�
��

F1

Q
Q

Q
Q

QQ

�



�
	

F1 ∩ F2

Fig. 4.6: The poset P′ with F1, F2 and F1 ∩ F2.

t3 t 4

t1 t 2

�
�
�
��

Z
Z

Z
ZZ�� ��

S

�� ��T

Fig. 4.7: In general, ‘generated directed filters’ are not well-defined.

directed subset D of P exists. Then (Fd)∂ and Id are both pre-CPO’s and Id

is called the ideal completion of a poset P in [DP02, Exercise 9.6].

We now give a quick summary of the properties of the various types of filters

and ideals discussed in this chapter. Recall the list of conditions that one might

expect the ‘filters’ of a poset to satisfy from Section 4.1. In Table 4.3 we list

these conditions and indicate which of the families of up-sets under consideration

in this thesis satisfy the respective conditions. Table 4.4 contains a similar

summary for the families of down-sets under consideration in this thesis.

Property Fp Fdp Ff Fd

Includes the principal filters. Y Y Y Y

Closed under arbitrary intersection. Y Y Y N

Each member is closed under existing finite meets. N Y Y Y

Contains ∅ if, and only if, the poset has no top element. Y Y Y N

Corresponds with the family of filters on a bounded lattice. Y Y Y Y

Tab. 4.3: A summary of the properties of the various types of filters.
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Property Ip Idp If Id

Includes the principal ideals. Y Y Y Y

Closed under arbitrary intersection. Y Y Y N

Each member is closed under existing finite joins. N Y Y Y

Contains ∅ if, and only if, the poset has no bottom element. Y Y Y N

Corresponds with the family of ideals on a bounded lattice. Y Y Y Y

Tab. 4.4: A summary of the properties of the various types of ideals.

4.2.1 Prime filters and ideals

In this section we deviate from the main theme of this thesis by considering

some properties of the filter and ideal completions that are not directly related

to property preservation.

Recall that a prime filter F of a lattice L = 〈L,∨,∧〉 is a filter of L satisfying:

if a ∨ b ∈ F , then a ∈ F or b ∈ F . Dually, a prime ideal I of L is an ideal of

L that satisfies: if a ∧ b ∈ I, then a ∈ I or b ∈ I. Equivalently, a filter F of L

(respectively, an ideal I of L) is prime if, and only if, L−F (respectively, L− I)

is a prime ideal (respectively, prime filter).

In [Mac37] the meet of two or more elements, in a poset, is called their

product. In analogy with prime numbers, it is then natural to assume that a

prime element should be one that cannot be expressed as the meet (product)

of two other elements. That is, we would expect a prime filter not to be the

intersection of two or more strictly greater filters. In fact, we have the following

for lattices.

Lemma 4.2.12. If L is a lattice and F is a prime filter of L, then F is a

meet-irreducible element of F.

Proof. Suppose F is a prime filter and let G1 and G2 be two filters of L such

that F ⊂ G1 and F ⊂ G2. Then there exists a ∈ G1 such that a /∈ F and there

exists b ∈ G2 such that b /∈ F . Furthermore, a∨b ∈ G1∩G2, but a∨b /∈ F since

F is prime. Therefore, F ⊂ G1 ∩G2. Hence, F is a meet-irreducible element of

F .

We will now explore possible definitions of ‘prime filters’ and ‘prime ideals’

on posets. The first possible definition of a ‘prime filter’ we consider will not



4. Filter and ideal completions 45

suffice for meet-irreducibility, but will prove useful in the construction of another

completion of the poset, studied in Chapter 7.

In [Jan78] a prime complete Doyle-pseudo filter of a poset P (called a ‘prime

conditionally complete filter’ in [Jan78]) was defined to be a complete Doyle-

pseudo filter, F , that also satisfies: if S ⊆ P such that
∨

S exists and
∨

S ∈ F ,

then S ∩ F 6= ∅. This condition was then shown to be equivalent to requiring

that P − F be a prime complete Doyle-pseudo ideal. In line with this we give

the following definition of a prime Doyle-pseudo filter.

Definition 4.2.13. A proper (complete) Doyle-pseudo filter F of a poset P is

said to be prime if, and only if, P − F is a (complete) Doyle-pseudo ideal.

A proper (complete) Doyle-pseudo ideal I is said to be prime if, and only if,

P − I is a (complete) Doyle-pseudo filter.

Observe that if F ∈ Fdp is prime, then P − F ∈ Idp is prime. Similarly, if

I ∈ Idp is prime, then P − I ∈ Fdp is also prime.

The definition implies that ∅ is not a prime filter or ideal, since P −∅ = P

which is not proper. We denote the set of prime Doyle-pseudo filters (respec-

tively, prime complete Doyle-pseudo filters) by F dp (respectively, F cdp) and the

set of prime Doyle-pseudo ideals (respectively, prime complete Doyle-pseudo ide-

als) by I dp (respectively, I cdp). Prime pseudo filters and ideals can be defined

similarly.

Lemma 4.2.14. A Doyle-pseudo filter F of a poset P is prime if, and only if,

whenever
∨

M exists and
∨

M ∈ F for some M ⊆fin P , then F ∩M 6= ∅.

Proof. Suppose F is prime and let M ⊆fin P such that
∨

M exists and
∨

M ∈

F . Assume M ∩ F = ∅. Then M ⊆fin P − F . But P − F is a Doyle-pseudo

ideal since F is prime. Therefore,
∨

M ∈ P − F — contradicting the initial

assumption that
∨

M ∈ F . Hence, M ∩ F 6= ∅.

Next suppose F satisfies: whenever
∨

M exists and
∨

M ∈ F for some

M ⊆fin P , then F ∩M 6= ∅. Now let N ⊆fin P − F . If
∨

N exists, then
∨

N ∈ P −F by the contrapositive of the assumption, since F ∩N = ∅. Thus,

P − F is a Doyle-pseudo ideal and F is prime.

We now define the prime Frink filters and prime directed filters in the same

way.
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Definition 4.2.15. A proper (complete) Frink filter F of a poset P is said to

be prime if, and only if, P −F is a (complete) Frink ideal. A proper (complete)

Frink ideal I is said to be prime if, and only if, P − I is a (complete) Frink

filter.

Similarly, a proper (complete) directed filter F is said to be prime if, and

only if, P − F is a (complete) directed ideal. A proper (complete) directed ideal

I is said to be prime if, and only if, P − I is a (complete) directed filter.

Lemma 4.2.16. A Frink (respectively, directed) filter F of a poset P is prime

if, and only if, whenever
∨

M exists and
∨

M ∈ F for some M ⊆fin P , then

F ∩M 6= ∅.

We note that the dual of the above statement holds for Frink (respectively,

directed) ideals. The proof is similar to the proof of Lemma 4.2.14 and follows

from the fact that Frink and directed filters are closed under existing finite

meets while Frink and directed ideals are closed under existing finite joins. See

Remark 4.1.5.

In [GJP10] a prime directed ideal, I, of a meet-semilattice is defined to be a

directed ideal satisfying: for any a, b ∈ P if a ∧ b ∈ I, then a ∈ I or b ∈ I. The

above result ensures that the definition of a prime directed ideal given here is a

generalisation of the definition given in [GJP10].

Let F f and F d denote the sets of prime Frink and prime directed filters,

respectively, while I f and I d denote the sets of prime Frink and prime directed

ideals, respectively.

Since
〈

Fd,⊆
〉

is not complete, we do not consider the directed filters or

ideals in the discussion below.

In general the prime pseudo, Doyle-pseudo and Frink filters defined above

need not be meet-irreducible elements in F∗, ∗ ∈ {p, dp, f}. Consider the fol-

lowing example to see why.

Example 4.2.17. Let P′ be the poset depicted in Figure 4.8. Then Fp =

Fdp = Ff . Moreover, {1, 2} ∈ F ∗ since {3, 4} ∈ I∗. However, {1, 2} is not

meet-irreducible in F∗ since {1, 2, 3} ∩ {1, 2, 4} = {1, 2}.

The definitions of prime ∗-filters given above therefore seem to be insufficient.

In [Hal00] ‘prime Doyle-pseudo ideals’ of a poset (simply called the ‘prime ideals’

of a poset in [Hal00]) were defined as follows: I ∈ Idp of a poset P is called
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Fig. 4.8: A prime filter need not be meet-irreducible in F∗.

prime if I is proper and non-empty and

if a, b ∈ P such that {a, b}ℓ ⊆ I, then a ∈ I or b ∈ I. (4.8)

In light of the above we make the following definitions.

Definition 4.2.18. A proper, non-empty pseudo filter F of a poset P is called

a strictly prime pseudo filter of P if it satisfies

If ∅ 6=M ⊆2 P such that Mu ⊆ F, then M ∩ F 6= ∅. (4.9)

Strictly prime pseudo ideals can be defined dually.

Definition 4.2.19. A proper, non-empty Doyle-pseudo filter F of a poset P is

called a strictly prime Doyle-pseudo filter of P if it satisfies

If ∅ 6=M ⊆fin P such that Mu ⊆ F, then M ∩ F 6= ∅. (4.10)

Similarly, a proper, non-empty Frink filter F of P is called a strictly prime

Frink filter of P if it satisfies (4.10).

Strictly prime Doyle-pseudo and Frink ideals can be defined dually.

Let F ∗
s (respectively, I ∗

s ) denote the sets of all strictly prime ∗-filters (re-

spectively, strictly prime ∗-ideals). It follows from Example 4.2.17 that, in gen-

eral, F ∗ * F ∗
s for ∗ ∈ {p, dp, f}. However, the inclusion in the other direction

holds.



4. Filter and ideal completions 48

Lemma 4.2.20. Let ∗ ∈ {p, dp, f}. Then F ∗
s ⊆ F ∗.

Proof. Let F ∈ F dp
s and letM ⊆fin P−F such that

∨

M exists. ThenMu 6= ∅
as
∨

M ∈ Mu. If Mu ⊆ F , then by (4.10) M ∩ F 6= ∅ — a contradiction.

Therefore, there exists an element b ∈ Mu such that b ∈ P − F . But then
∨

M ∈ P − F : if
∨

M ∈ F , then b ∈ F since
∨

M ≤ b and F is an upset —

again a contradiction. Thus, P − F ∈ Idp and F ∈ F dp.

The proof of F p
s ⊆ F p is similar.

Let F ∈ F f
s and let M ⊆fin P − F . If Mu ⊆ F , then M ∩ F 6= ∅ since

F satisfies (4.10) — contradicting our choice of M . Hence Mu ∩ (P − F ) 6= ∅.

Let b ∈ Mu ∩ (P − F ), then b ≥ c for every c ∈ Muℓ. If there exists c ∈ Muℓ

such that c ∈ F , then b ∈ F since F is an upset — contradicting the fact that

b ∈ P − F . Therefore, c ∈ P − F for all c ∈ Muℓ, i.e., Muℓ ⊆ P − F and

P − F ∈ Ff . Hence, F ∈ F f .

Similarly we can show that I ∗
s ⊆ I ∗ for ∗ ∈ {p, dp, f}.

Next we show that the strictly prime filters are meet-irreducible in the lattice

of filters.

Lemma 4.2.21. Let P be a poset and ∗ ∈ {p, dp, f}. If F ∈ F ∗
s (P), then F is

meet-irreducible in F∗(P) and hence a join-irreducible element in (F∗(P))∂ .

Proof. Let F ∈ F ∗
s (P) and G1, G2 ∈ F∗(P) such that F ⊂ G1 and F ⊂ G2.

Then F ⊆ G1 ∩ G2. If G1 ⊆ G2, then G1 ∩ G2 = G1 and F ⊂ G1 ∩ G2.

Similarly, if G2 ⊆ G1, then F ⊂ G1 ∩G2. Now suppose G1 * G2 and G2 * G1.

Then there exist elements a ∈ G1 and b ∈ G2 such that a /∈ G2 and b /∈ G1.

Then {a, b}u ⊆ G1 ∩ G2: if {a, b}u = ∅, then {a, b}u ⊆ G1 ∩ G2. On the

other hand, suppose {a, b}u 6= ∅ and let c ∈ {a, b}u. Then c ∈ G1 since c ≥ a

and c ∈ G2 since c ≥ b, i.e., c ∈ G1 ∩ G2. Hence, {a, b}u ⊆ G1 ∩ G2. Now

suppose {a, b}u ⊆ F . Then a ∈ F or b ∈ F since F is strictly prime. But since

F ⊆ G1 ∩ G2, it follows that a ∈ G1 ∩G2 or b ∈ G1 ∩ G2 — contradicting our

choice of a and b. Therefore, {a, b}u * F . We now choose G = G1 ∩ G2. By

Lemma 4.2.1 G ∈ F∗. Then, since a, b /∈ G we have G ⊂ G1 and G ⊂ G2.

Moreover, since {a, b}u ⊆ G we know that F ⊂ G.

We have shown that if F ⊂ G1 and F ⊂ G2, then F ⊂ G1 ∩ G2 for

all G1, G2 ∈ F∗. Thus, F is meet-irreducible in F∗ and therefore also join-

irreducible in (F∗)∂ .
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Similarly, for ∗ ∈ {p, dp, f}, if I ∈ I ∗
s (P), then I is meet-irreducible in

I∗(P).

The converse of Lemma 4.2.21 need not be true.

Example 4.2.22. Let ∗ ∈ {p, dp, f} and let P′ be the poset depicted in Fig-

ure 4.9. Let F = {1} ∈ F∗ and M = {2, 3} ⊆ P ′. Then Mu = ∅ ⊆ F but

M ∩ F = ∅. Therefore, F /∈ F ∗
s . However, as can be seen in the depiction of

F∗ in Figure 4.9, F is meet-irreducible in F∗.

b b b

b

b
∅

{1} {2} {3}

P ′

b b b

b

1 2 3

4

F M

P′ : F∗ :

Fig. 4.9: Not all meet-irreducible elements in F∗ are strictly prime.

If P is a lattice, then a filter of P is strictly prime if, and only if, it is prime.

We note not every meet-irreducible element in F(L) of a lattice L is a prime

filter of L. To see why, consider the meet-irreducible elements in the lattice of

filters of the complete lattice F∗ in the previous example.

In [LR88] generalised notions of distributivity and modularity of posets are

given. A poset P said to be distributive if ({a, b}u ∪ {c})ℓ = ({a, c}ℓ ∪ {b, c}ℓ)uℓ

for all a, b, c ∈ P . Furthermore, a poset P is called ideal distributive if the lattice

of ideals (as defined in [Hal00]) is distributive. In [HR95] it was then shown that

if P is ideal distributive, then I ⊆ P is a strictly prime ideal if, and only if, it is

meet-irreducible. A consequence of this result is that an ideal of a distributive

lattice is prime if, and only if, it is meet-irreducible in its lattice of ideals. We

give a direct proof here.

Lemma 4.2.23. If L is a distributive lattice then F ∈ F is prime if, and only

if, F is meet-irreducible in F.

Proof. The forward implication follows from Lemma 4.2.21. We must therefore

only prove the backward implication. We prove the contra-positive.
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Let L be a distributive lattice and let F be a filter of L that is not prime.

Then there exist elements a, b ∈ L such that a ∨ b ∈ F but a /∈ F and b /∈ F .

Suppose a ≤ b, then b = a ∨ b ∈ F — contradicting the choice of a and b.

Similarly, if b ≤ a. Thus a � b and b � a. Now let G1 = [{c ∧ a : c ∈ F}) and

G2 = [{c ∧ b : c ∈ F}). Then G1 and G2 are filters of L such that F ⊆ G1 ∩G2.

Let d ∈ G1 ∩G2. Then there exist elements c1, c2 ∈ F such that d ≥ c1 ∧ a

and d ≥ c2 ∧ b. Then d ≥ (c1 ∧ a) ∨ (c2 ∧ b) ≥ (c1 ∧ c2 ∧ a) ∨ (c1 ∧ c2 ∧ b).

Let c = c1 ∧ c2. Then c ∈ F and d ≥ (c ∧ a) ∨ (c ∧ b) = c ∧ (a ∨ b) since L is

distributive. But c ∈ F and a ∨ b ∈ F imply that c ∧ (a ∨ b) ∈ F . Since F is an

upset we have d ∈ F . Hence, F = G1 ∩G2.

Now suppose a ∈ G2. Then there exists c ∈ F such that a ≥ c ∧ b. For any

c′ ∈ F we have c′∧a ≥ c′∧c∧b. But c′∧c ∈ F which implies that (c′∧c)∧b ∈ G2

and therefore so is c′ ∧ a. Then G1 ⊆ G2 and G1 ∩ G2 = G1 = F . But then

a ∈ F which contradicts our choice of a and b. Thus a /∈ G2. Similarly, b /∈ G1.

Then F ⊂ G1 and F ⊂ G2 but F = G1 ∩G2, i.e., F is not meet-irreducible.

4.3 Extensions of maps

It is often the case that a poset P is the underlying ordered structure of an al-

gebra. If this is the case, then there will usually be some additional operations

defined on P . The process of completing an algebra then includes finding exten-

sions of these additional operations to the complete algebra. We now consider

the extensions of operations to the completions studied in this chapter.

If f : P → Q is a map defined between two posets, then we would like

to define extensions of f on the filter and ideal completions of the posets.

That is, for ∗ ∈ {p, dp, f}, we want to define maps f (F∗)∂ : F∗(P ) → F∗(Q)

and f I∗ : I∗(P ) → I∗(Q) in such a way that f (F∗)∂(ν∗(a)) = ν∗(f(a)) and

f I∗(ω∗(a)) = ω∗(f(a)). Similarly, we would also like to define extensions of n-ary

maps. In [BS66] completions of partially ordered algebras were considered. In

particular the authors of [BS66] considered join-completions, meet-completions

and doubly dense completions of partially ordered algebras. Their definition of

the extension of an order-preserving operation of an algebra heavily relied on

the join-denseness of the poset universe in its completion. In this section we

will employ similar methods for the extension of maps.

We begin by considering the extension of unary maps.
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For the remainder of this section let ∗ ∈ {p, dp, f} and posets P =
〈

P,≤P
〉

and Q =
〈

Q,≤Q
〉

be fixed. Recall that ν∗(P ) and ν∗(Q) are meet-dense in

(F∗(P))∂ and (F∗(Q))∂ , respectively; and ω∗(P ) and ω∗(Q) are join-dense in

I∗(P) and I∗(Q), respectively. That is, for F ∈ F∗(P) we have that F =
∧(F∗)∂{ν∗(a) : a ∈ P such that ν∗(a) ≥(F∗)∂ F} and for I ∈ I∗(P) we have

that I =
∨I∗

{ω∗(a) : a ∈ P such that ω∗(a) ≤
I∗ I}. If f : P → Q is an order-

preserving unary map, then we have the following natural extensions of f to

(F∗(P))∂ and I∗(P), respectively.

Definition 4.3.1. Let f : P → Q be order-preserving. Define f∧
∗ : F∗(P) →

F∗(Q) by, for F ∈ F∗(P),

f∧
∗ (F ) =

(F∗(Q))∂
∧

{[f(a)) : a ∈ P such that ν∗(a) ⊆ F}

=

(F∗(Q))∂
∧

{[f(a)) : a ∈ P such that [a) ⊆ F}

Define f∨
∗ : I∗(P) → I∗(Q) by, for I ∈ I∗(P),

f∨
∗ (I) =

I∗(Q)
∨

{(f(a)] : a ∈ P such that ω∗(a) ⊆ I}

=

I∗(Q)
∨

{(f(a)] : a ∈ P such that (a] ⊆ I}

For F ∈ F∗(P), let f(F ) = {f(a) : a ∈ F}. Similarly, for I ∈ I∗(P) let

f(I) = {f(a) : a ∈ I}. The maps f∧
∗ and f∨

∗ can now be simplified in the

following way.

Lemma 4.3.2. Let f : P → Q be order-preserving. Then,

f∧
∗ (F ) = [f(F )〉∗ and f∨

∗ (I) = 〈f(I)]∗ .

Furthermore, f∧
∗ and f∨

∗ are both order-preserving and are extensions of f .

That is, for a ∈ P ,

f∧
∗ (ν∗(a)) = ν∗(f(a)) and f∨

∗ (ω∗(a)) = ω∗(f(a)).

Proof. We prove the claims for f∧
∗ . The claims for f∨

∗ can be proved similarly.

Let a ∈ F . Then ν∗(a) = [a) ⊆ F and it follows that f(F ) ⊆
⋃

{[f(a)) :

a ∈ P such that ν∗(a) ⊆ F}. Therefore, [f(F )〉∗ ⊆ f∧
∗ (F ).
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For the inclusion in the other direction, let a ∈ P such that ν∗(a) = [a) ⊆ F .

If b ∈ [f(a)), then b ≥ f(a) ∈ [f(F )〉∗. Since [f(F )〉∗ is an up-set we have that

b ∈ [f(F )〉∗. Thus, [f(a)) ⊆ [f(F )〉∗ for all a ∈ P such that ν∗(a) = [a) ⊆

F . Then
⋃

{[f(a)) : a ∈ P such that ν∗(a) ⊆ F} ⊆ [f(F )〉∗. Since the filter

generated by a set is the intersection of all filters that include it, we have that

f∧
∗ (F ) ⊆ [f(F )〉∗.

Let F,G ∈ F∗(P ) such that F ≤(F∗(P))∂ G, i.e., G ⊆ F . Then f(G) ⊆ f(F ).

This implies that [f(G)〉∗ ⊆ [f(F )〉∗, i.e., f
∧
∗ (G) ≤

(F∗(Q))∂ f∧
∗ (F ).

Finally we show that f∧
∗ extends f . By the above f∧

∗ (ν∗(a)) = [f([a))〉∗.

Since f(a) ⊆ f([a)) it follows that [f(a)) ⊆ [f([a))〉∗. Now let b ∈ [a). Then

b ≥ a and since f is order-preserving f(b) ≥ f(a). Then, f(b) ∈ [f(a)) and

f([a)) ⊆ [f(a)). Then, by the definition of a generated filter, [f([a))〉∗ ⊆ [f(a)〉∗.

Therefore, f∧
∗ (ν∗(a)) = [f(a)〉∗ = ν∗(f(a)).

Lemma 4.3.3. Let f : P → P be a unary order-preserving operation with

extensions f∧
∗ and f∨

∗ to (F∗)∂ and I∗, respectively. Then,

(i) if f is increasing (also known as extensive), then so are f∧
∗ and f∨

∗ ,

(ii) if f is decreasing, then so are f∧
∗ and f∨

∗ ,

(iii) if f is the identity map on P , then f∧
∗ is the identity map on F∗ and f∨

∗

is the identity map on I∗.

Proof. We prove the claims for f∧
∗ . The claims for f∨

∗ follow similarly.

(i) Suppose a ≤ f(a) for all a ∈ P . Let F ∈ F∗ and a ∈ F . Then, a ≤ f(a)

by assumption and f(a) ∈ F since F is an up-set. Then, f(F ) ⊆ F and

hence [f(F )〉∗ ⊆ F , i.e., F ≤(F∗)∂ f∧
∗ (F ).

(ii) Suppose f(a) ≤ a for all a ∈ P . Let F ∈ F∗ and a ∈ F . Then,

f(a) ≤ a which implies that a ∈ [f(F )〉∗. Therefore, F ⊆ [f(F )〉∗, i.e.,

f∧
∗ (F ) ≤

(F∗)∂ F .

(iii) Suppose f(a) = a for all a ∈ P and let F ∈ F∗. Then, [f(F )〉∗ =

[{f(a) : a ∈ F}〉
∗
= [{a : a ∈ F}〉∗ = F . That is, f∧

∗ (F ) = F .
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Example 4.3.4. Let P′ be the poset depicted in Figure 4.10. If h : P ′ → P ′

is defined by h(1) = h(2) = 2 and h(3) = 3, then h is an operator (since no

non-trivial joins exist in P′). However, h∧f is not an operator: let F = {1}

and G = {2}. Then, [h(F )〉f = [{2}〉f = {2} and [h(G)〉f = [{2}〉f = {2}.

Therefore, h∧f (F )∨
(Ff (P′))∂ h∧f (G) = {2}. On the other hand, F ∨(Ff (P′))∂ G =

F ∩G = ∅. Then, h∧f (F ∨(Ff (P′))∂ G) = [h(F ∩G)〉f = [h(∅)〉f = [∅〉f = ∅.

-
h K

h
K
h

h h

P′:

u1 u2 u3

(Ff (P′))∂ :

u

P ′

u{1} u{2} u{3}

u∅

HHHHHH

������
HHHHHH

������

Fig. 4.10: h∧

f need not be an operator when h is.

Remark 4.3.5. If we examine Example 4.3.4 further, we observe that there

does not exist an extension of h to some h′ defined on Ff (P′) such that h′

will be an operator. Suppose to the contrary that some extension h′ of h is an

operator. Then h′(∅) ≥ h′(νf (2)) = νf (h(2)) = νf (2) and h
′(∅) ≥ h′(νf (3)) =

νf (h(3)) = νf (3) implies that h′(∅) = ∅. But h′(∅) = h′(νf (1) ∨ νf (2)) =

h′(νf (1)) ∨ h′(νf (2)) = νf (2) and we have reached a contradiction. However,

this does not mean that it is impossible to find some completion of P′ for which

h can be extended to an operator — for an example see Remark 6.3.9.

One can also use the poset P′ in Example 4.3.4 to see that h∧f and h∨f need

not be dual operators when h is a dual operator and that h∨f need not be an

operator when h is an operator. See Example A.1.2 in Appendix A.1 for the

details.

On the other hand, if f is a dual operator, then f∧
dp is a complete dual

operator. Similarly, if f is an operator, then f∨
dp is a complete operator. We

prove the latter statement here. The proof of the former follows dually.

Lemma 4.3.6. If f : P → Q is an operator, then f∨
dp is a complete operator.
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Proof. Let Ii ∈ Idp(P) for i ∈ Ψ. We need to compare

f∨
dp

(

∨

i∈Ψ

Ii

)

=

〈

f





〈

⋃

i∈Ψ

Ii

]

dp









dp

and
∨

i∈Ψ

f∨
dp(Ii) =

〈

⋃

i∈Ψ

〈f (Ii)]dp

]

dp

.

We first show by induction that f
(

〈
⋃

i∈Ψ Ii
]

dp

)

⊆
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. If

a ∈ S0 =
⋃

i∈Ψ Ii, then a ∈ Ii0 for some i0 ∈ Ψ. Then f(a) ∈ 〈f(Ii0)]dp ⊆
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
and f(S0) ⊆

〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. Now suppose f(Sj) ⊆

〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
and let a ∈ Sj+1. Then a ≤

∨

M for some M ⊆fin Sj such

that
∨

M exists. By the inductive hypothesis f(M) ⊆
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. Fur-

thermore, since
∨

M exists and f is an operator, we have that
∨

f(M) exists and
∨

f(M) = f(
∨

M). Then f(
∨

M) ∈
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
since it is closed under

existing joins. Since f is order-preserving, f(a) ≤ f(
∨

M) and it follows that

f(a) ∈
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. Thus, f(Sj+1) ⊆

〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. This proves

that f
(

〈
⋃

i∈Ψ Ii
]

dp

)

⊆
〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
. Hence,

〈

f
(

〈
⋃

i∈Ψ Ii
]

dp

)]

dp
⊆

〈

⋃

i∈Ψ 〈f (Ii)]dp

]

dp
.

For the inclusion in the other direction:

Ii ⊆

〈

⋃

i∈Ψ

Ii

]

dp

for all i ∈ Ψ

⇒ f(Ii) ⊆ f





〈

⋃

i∈Ψ

Ii

]

dp



 for all i ∈ Ψ

⇒ 〈f(Ii)]dp ⊆

〈

f





〈

⋃

i∈Ψ

Ii

]

dp









dp

for all i ∈ Ψ

⇒
⋃

i∈Ψ

〈f(Ii)]dp ⊆

〈

f





〈

⋃

i∈Ψ

Ii

]

dp









dp

⇒

〈

⋃

i∈Ψ

〈f(Ii)]dp

]

dp

⊆

〈

f





〈

⋃

i∈Ψ

Ii

]

dp









dp

.

A consequence of the above is that if f : P → Q is residuated, then f∨
dp is

residuated. Moreover, if f : P → Q is residuated with residual g : Q→ P , then
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f∨
dp : Idp(P) → Idp(Q) is residuated and f∨

dp’s residual, g
r
dp : Idp(Q) → Idp(P),

is defined by, for J ∈ Idp(Q),

grdp(J) =
〈

⋃

{I ∈ Idp(P) : f∨
dp(I) ⊆ J}

]

dp
.

Lemma 4.3.7. If f : P → Q is residuated with residual g : Q → P and

f∨
dp : Idp(P) → Fdp(Q) is its extension with residual grdp : Idp(Q) → Idp(P),

then grdp extends g.

Proof. Let a ∈ P . We need to show that grdp(ωdp(a)) = (g(a)] = ωdp(g(a)).

We first show that f(I) ⊆ f∨
dp(I) for all I ∈ Idp(P). Let I ∈ Idp(P) and

a ∈ I. Then (a] ⊆ I which, by Lemma 4.3.2, implies that (f((a])] = (f(a)] ⊆

f∨
dp(I). Thus, f(a) ∈ f∨

dp(I) and hence f(I) ⊆ f∨
dp(I).

Let I ∈ Idp(P) such that f∨
dp(I) ⊆ (a]. Let b ∈ I. Then by the above,

f(b) ∈ f∨
dp(I) ⊆ (a]

⇒ f(b) ≤ a

⇒ b ≤ g(a) by residuation

⇒ b ∈ (g(a)].

Thus, I ⊆ (g(a)]. But then
⋃

{I ∈ Idp(P) : f∨
dp(I) ⊆ J} ⊆ (g(a)] and since the

dp-ideal generated by the set is the intersection of all dp-ideals that include it,

we have that grdp(ωdp(a)) ⊆ (g(a)].

For the inclusion in the other direction let b ∈ (g(a)]. Then,

b ≤ g(a)

⇒ f(b) ≤ a by residuation

⇒ (f(b)] = f∨
dp((b]) ⊆ (a]

⇒ (b] ∈ {I ∈ Idp(P) : f∨
dp(I) ⊆ ωdp(a)}

⇒ b ∈ grdp(ωdp(a)).

Thus, (g(a)] ⊆ grdp(ωdp(a)).

Lastly we show how to define the extensions of n-ary maps in a similar way.

Let n ∈ N and let Pi =
〈

Pi,≤
Pi
〉

, for i = 1, . . . , n, and Q =
〈

Q,≤Q
〉

be posets. Let f :
∏n

j=1 Pj → Q be an order-preserving n-ary map, i.e.,
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order-preserving in each coordinate. For Fi ∈ F∗(Pi) let f(F1, . . . , Fn) =

{f(a1, . . . , an) : ai ∈ Fi, i = 1, . . . , n}. Similarly, for Ii ∈ F∗(Pi) let f(I1, . . . , In) =

{f(a1, . . . , an) : ai ∈ Fi, i = 1, . . . , n}.

Lemma 4.3.8. Let f :
∏n

i=1 Pi → Q be an order-preserving n-ary map. Define

f∧
∗ :

∏n
i=1 F

∗(Pi) → F∗(Q) and f∨
∗ :

∏n
i=1 I

∗(Pi) → I∗(Q) as follows, for

Fi ∈ F∗(Pi)

f∧
∗ (F1, . . . , Fn) = [f(F1, . . . , Fn)〉∗

and for Ii ∈ I∗(Pi)

f∨
∗ (I1, . . . , In) = 〈f(I1, . . . , In)]∗ .

Then f∧
∗ and f∨

∗ are both order-preserving and they both extend f .

The proof is similar to the proof of Lemma 4.3.2.



5. THE MACNEILLE COMPLETION

The construction considered in this chapter is also called the Dedekind-MacNeille

completion, the completion by cuts or the normal completion of a poset P.

In [Mac37] MacNeille generalised Dedekind’s construction of the real numbers

from the rational numbers, to yield a completion for any poset. We begin by

describing this completion for posets in general. Next we focus our attention on

the MacNeille completion of lattices. In particular, we are interested in the Mac-

Neille completion of a subclass of the class residuated lattices, namely the MTL-

algebras. We summarize some of the results obtained in [vA09] and [vA11].

Next we study the MacNeille completion of modal MTL-chains, where a modal

MTL-chain is a residuated lattice equipped with an additional order-preserving

unary map. We begin by axiomatizing the class of modal MTL-algebras. Next

we consider a possible extension of a ‘modality’, defined on a MTL-chain, to the

MacNeille completion of the underlying lattice. Given this extension, we focus

our attention on the preservation of properties.

5.1 The MacNeille completion of a poset

In [Mac37] MacNeille proved that any poset P = 〈P,≤〉 can be embedded into

a complete lattice L in such a way that the embedding preserves all joins and

meets existing in P. He described the construction of such a completion of a

poset P, i.e., he constructed a complete lattice L =
〈

L,∨L,∧L
〉

and described

the order-embedding ι that maps P into L. In [Ban56], [Sch56] and [Bru62]

the MacNeille completion of a poset P is characterized as the completion (L, ι),

unique up to isomorphism, that fixes P and in which ι(P ) is doubly dense (see

Definition 4.2.8). That is, if L′ =
〈

L′,∨L′

,∧L′

〉

is a complete lattice and P is a

subset of L′ that is both join-dense and meet-dense in L′, then L′ is isomorphic

to the MacNeille completion (L, ι) of P via an order-isomorphism that agrees

with ι on P . The uniqueness, up to isomorphism, allows us to speak of the
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MacNeille completion of a poset. Furthermore, the MacNeille completion (L, ι)

of a poset P is minimal in the sense that if (C, ϕ) is any completion of P with

C =
〈

C,∨C,∧C
〉

, then there exists an order-embedding ψ : L → C such that

ψ(ι(P )) = ϕ(P ), i.e., ψ · ι = ϕ [Mac37]. The abstract characterization above

has been used as the definition of the MacNeille completion of a poset in the

literature (see for instance [TV07]). We, however, will use a concrete definition

of the completion. To this end, consider the following construction.

Let P = 〈P,≤〉 be a poset. A set S ⊆ P is called stable if Sℓu = S. Note that

a stable set is upward closed in P and closed under existing arbitrary meets.

Definition 5.1.1. Let L =
〈

L,∨L,∧L
〉

where L is the set of all stable sets and

for Si ∈ L, i ∈ Ψ,

L
∨

i∈Ψ

Si =
⋂

i∈Ψ

Si and
L
∧

i∈Ψ

Si =
⋂

{T ∈ L : Si ⊆ T for all i ∈ Ψ}.

The associated complete lattice order ≤L on L is ⊇.

Let ι : P → L be defined by ι(a) = {a}u for a ∈ P . Then ι is an order-

embedding of P into L that preserves all existing meets and joins in P.

The MacNeille completion of the poset P is the pair (L, ι).

If P is a chain, then its MacNeille completion is also a chain and, for S, T ∈ L,

S ∧L T = S ∪ T .

We note that ι(P ) is doubly dense in
〈

L,∨L,∧L
〉

(see Definition 4.2.8).

Since ι(P ) is join-dense in its MacNeille completion, the MacNeille completion of

a poset is a so-called ‘standard completion’ of the poset. Standard completions

of posets have been studied in [Sch74, Ern81, EW83, ER87].

It is well known that the pair of maps (ℓ,u ) used in the MacNeille comple-

tion of a poset Q = 〈Q,≤〉 form a Galois connection between 〈P(Q),⊆〉 and

〈P(Q),⊇〉. The stable sets are just the closed elements of the closure operator ℓu,

and are also called the Galois closed sets.

Remark 5.1.2. It is interesting to note that in [Mac37] the MacNeille comple-

tion of a poset is called a ‘canonical extension’ of the poset. The definition of a

‘canonical extension’ of a poset given in [Mac37] ensures that it is minimal in a

sense. The term ‘canonical extension’ has since been used for a generally differ-

ent completion of lattices and posets (see for instance [GJ94, GH01, GJKO07,

DGP05]). Since this completion is generally different from the MacNielle com-

pletion, it is also in general not minimal in the required sense and hence is not a
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‘canonical extension’ in the sense of [Mac37]. We investigate these completions

in Chapter 6. In [Kri47] some minor modifications to the theory of ‘canoni-

cal extensions’, as defined in [Mac37], were suggested. This modified theory of

‘canonical extensions’ was developed further in [Kri47] and in [Kri48] explicit

constructions of ‘canonical extensions’ were considered.

5.2 The MacNeille completion of MTL-chains

When studying a construction it is natural to ask whether or not a class of

algebras is closed under the construction. Some equationally defined classes of

algebras turn out to be closed under the MacNeille completion. In [Mac37] it was

shown that the class of Boolean Algebras is closed under the MacNeille comple-

tion, i.e., the MacNeille completion (of the lattice reduct) of a Boolean algebra,

is again a Boolean algebra. Similarly, it was shown in [BD75] that the class of

Heyting Algebras is closed under the MacNeille completion (also see [BH04]).

On the other hand, some prominent equational properties are not preserved by

the MacNeille completion. For example, in [Fun44] a counterexample was given

to show that the MacNeille completion of a distributive lattice need not be dis-

tributive. In fact, in [Har93a] it was shown that any lattice can be embedded

into the MacNeille completion of a distributive lattice in such a way that all

existing joins and meets are preserved by the embedding. Completion-invariant

properties of posets, i.e., properties that are satisfied by a poset if, and only if,

it is satisfied by its MacNeille completion, were considered in [Ern91].

The discussion thusfar has not included classes of algebras expanded with

additional operations. We note that the algebraic structure of Boolean algebras

and Heyting algebras are completely determined by their lattice reducts. The

extension of additional operations defined on lattices to operations defined on

their MacNeille completions has been studied for a wide variety of algebras.

In [Mon70] and [GV99] the MacNeille completion of Boolean algebras with op-

erators was studied. The extension of maps to the various ideal completions,

considered in Chapter 4.3, was done similarly to the extension of the operators

in [Mon70] — utilising the join-denseness of the image of P in the comple-

tion. In [TV07] this was called the ‘lower completion’ of a Boolean algebra with

operators. An ‘upper completion’ of an algebra would uniformly utilise the

meet-denseness of the image of the poset in its MacNeille completion, when ex-



5. The MacNeille completion 60

tending additional operations. The question of “Which equational properties of

lattice with additional operations are preserved under the upper and lower com-

pletions?”, was addressed in [TV07]. The MacNeille completion of more specific

classes of lattice expansions have also been the subject of many research projects.

The MacNeille completion of ortholattices have been studied in [Mac64], of or-

thomodular lattices in [Ada69, Har91, Har93b], of modal algebras in [BH07] and

of modal algebras extended with fixpoint operators in [San08].

We now turn our attention to the following class of algebras.

Definition 5.2.1. An (integral, bounded, commutative) residuated lattice is

an algebra A = 〈A, ◦,→,∨,∧, 0, 1〉 such that

(i) 〈A,∨,∧, 0, 1〉 is a bounded lattice with 1 and 0 as greatest and least ele-

ments, respectively, and

(ii) ◦ is a binary operation that is associative, commutative, has identity 1 and

is residuated with residual →, i.e., for all x, y, z ∈ A

x ◦ y ≤ z ⇐⇒ y ≤ x→ z.

If, in addition, the residuated lattice A is linearly ordered, then A will be

called a residuated chain. The following hold for residuated lattices:

1 → x = x, x→ 1 = 1, x→ x = 1

x ◦ (x→ y) ≤ y

(x ◦ y) → z = x→ (y → z)

x ◦ y ≤ x ∧ y

x ≤ y ⇐⇒ x→ y = 1.

The residual operation → satisfies:

x→ y =
∨

{z : x ◦ z ≤ y}.

The MacNeille completion of residuated lattices has been studied in [Ono03a]

and [Ono03b]. Therein it was shown that many classes of residuated lattices are

closed under the MacNeille completion. One such subclass of residuated lattices

is the class of FL-algebras studied in [CGT11] and [CGT12]. Another is the

class of MTL-algebras.

In [EG01], monoidal t-norm logic, MTL for short, was introduced as the

logic of left-continuous t-norms and an algebraic semantics for the logic, namely

the variety of ‘MTL-algebras’, was defined.
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Definition 5.2.2. An MTL-algebra A = 〈A, ◦,→,∨,∧, 0, 1〉 is a residuated

lattice that satisfies the prelinearity identity: for all x, y ∈ A

(x→ y) ∨ (y → x) = 1.

The following hold in all MTL-algebras:

x→ (y ∨ z) = (x→ y) ∨ (x→ z)

x→ (y ∧ z) = (x→ y) ∧ (x→ z)

(x ∨ y) → z = (x→ z) ∧ (y → z)

(x ∧ y) → z = (x→ z) ∨ (y → z).

We note that the middle two of the equations above also hold in residuated

lattices in general. We will use the abbreviation ¬x := x → 0, which defines a

negation operation. From the properties listed above it follows that the negation

is order-reversing, ¬0 = 1 and ¬1 = 0. We inductively define the terms xn, for

n ∈ N, as follows: x0 = 1 and xn+1 = x ◦ xn.

An MTL-algebra whose underlying lattice order is linear is called an MTL-

chain. A main result concerning the variety of MTL-algebras is that it is gen-

erated by the class of MTL-chains (see, for example, [EG01]).

The MacNeille completion of MTL-chains has been studied in [vA09, vA11].

In the following section we will consider expansions of MTL-algebras with

(order-preserving, unary) operations. We will restrict our attention to the Mac-

Neille completion of MTL-chains. Therefore, we now give a brief summary of

the results from [vA09] and [vA11].

Throughout the rest of this section let A = 〈A, ◦,→,∧ ∨ 0, 1〉 be a fixed

MTL-chain.

We shall use the MacNeille completion to construct a complete lattice into

which the underlying ordering on A embeds. Next we extend ◦ and → to binary

operations on the complete lattice. The definitions of ◦L and →L given below,

were used in [vA11].

Let
〈

L,∨L,∧L
〉

be the MacNeille completion of the underlying ordering

on A.

For H1, H2 ⊆ A, define

H1 ◦H2 = {a ◦ b : a ∈ H1 and b ∈ H2}

and for S, T ∈ L define

S ◦L T = (Sℓ ◦ T ℓ)u.
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Theorem 5.2.3. [vA11]

(i) Let S, T ∈ L. If H1, H2 ⊆ A is such that S = Hu
1 and T = Hu

2 , then

S ◦L T = Hu
1 ◦L Hu

2 = (H1 ◦H2)
u.

(ii) The operation ◦L on L is residuated with respect to ⊇ and the residual of

◦L is, for S, T ∈ L,

S →L T = {a ∈ A : (Sℓ ◦ {a})u ⊇ T }u.

(iii) The algebra L = 〈L, ◦L,→L,∨L,∧L, 0L, 1L〉, where 0L = A and 1L = {1},

is a complete MTL-chain and the map ι : A → L defined by ι(a) = {a}u

for all a ∈ A, is an embedding of A into L that preserves all existing meets

and joins in A. Hence, (L, ι) is the MacNeille completion of A.

Lemma 5.2.4. [MvAb] Let S, T ∈ L. If H1, H2 ⊆ A such that S = Hu
1 and

T = Hu
2 , then

S ∧L T = Hu
1 ∧L Hu

2 = (H1 ∧H2)
u,

where H1 ∧H2 = {a ∧ b : a ∈ H1 and b ∈ H2}.

Proof. Observe that for each a ∈ T ℓ, either T = [a) or there exists b ∈ H2 such

that a ≤ b. To see this, suppose that b < a for all b ∈ H2; so a ∈ Hu
2 = T . Then

a ∈ T ∩ T ℓ, which is only possible if T = [a).

Since L is a chain we may assume, without loss of generality, that S ≤L T ,

i.e., S ⊇ T , so S ∧L T = S. Note that H1 ⊆ Sℓ hence H1 ∧ H2 ⊆ Sℓ, and

therefore S = Sℓu ⊆ (H1 ∧H2)
u.

For the reverse inclusion, if H1 ⊆ H1 ∧ H2, then (H1 ∧ H2)
u ⊆ Hu

1 = S.

If H1 6⊆ H1 ∧ H2, then there exists a ∈ H1 such that for all b ∈ H2, a 6≤ b,

i.e., b < a. But then a ∈ Hu
2 = T ⊆ S. Since a ∈ H1 ⊆ Sℓ, it follows that

a ∈ S ∩ Sℓ, so S = [a). Now T = S = [a) since a ∈ T . That is, a is the least

upper bound of H2. Then b = a ∧ b ∈ H1 ∧ H2 for any b ∈ H2 since a ∈ H1.

Thus, H2 ⊆ H1 ∧H2 and hence (H1 ∧H2)
u ⊆ Hu

2 = [a) = S.

We now consider the preservation of properties by the construction. Note

that for MTL-chains, an inequality s ≤ t is equivalent to an identity s = s∧ t or

t = s∨t or s→ t = 1. (Recall that the universal quantification over the variables

occurring in s and t is implicit.) In the sequel we consider the preservation of

inequalities by the completion and therefore, implicitly, also the preservation
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of identities. In [vA11] ‘approximation terms’ were used to obtain preservation

results. A general scheme of inequalities, whose preservation by the completion

is determined by the form of the terms s and t, was described. This is related

to the methods used in [Jón94] and [GV99] to obtain preservation results in

completions of modal algebras. (See also [TV07] for similar results on ordered

algebras.)

Let t be an MTL-term. If the variables occurring in t are in the sequence

~x = x1, . . . , xn, then we denote this by t(x1, . . . , xn) or t(~x). If ~a = a1, . . . , an is

a sequence of elements of A, then we write t(~a) to denote the evaluation of the

term t in A under the assignment xi 7→ ai. If ~S = S1, . . . , Sn is a sequence of

elements of L, then we write tL(~S) to denote the evaluation of the term t in L

under the assignment xi 7→ Si. We write ~Sℓ to denote the sequence Sℓ
1, . . . , S

ℓ
n

and ~a ∈ ~Sℓ means that ai ∈ Sℓ
i for each i = 1, . . . , n. Where a term t(~x) and

either ~a ∈ A or ~S ∈ L are given, it is assumed that ~x and ~a or ~S are sequences

of the same length.

Given a term t(~x) and ~S ∈ L, the evaluation of tL(~S) can be approximated

by the set of tA(~a)’s where each ai ∈ Sℓ
i , which we write as {tA(~a) : ~a ∈ ~Sℓ}.

Since this set is not stable it is necessary to close it in L, which can be done in

two ways, namely:

t∃(~S) = {tA(~a) : ~a ∈ ~Sℓ}u,

t∀(~S) = {tA(~a) : ~a ∈ ~Sℓ}ℓu,

which are then our approximations to tL(~S). We say that t(~x) is:

∃-stable if tL(~S) = t∃(~S)

∃-expanding if tL(~S) ⊆ t∃(~S)

∃-contracting if tL(~S) ⊇ t∃(~S)

∀-stable if tL(~S) = t∀(~S)

∀-expanding if tL(~S) ⊆ t∀(~S)

∀-contracting if tL(~S) ⊇ t∀(~S) for all ~S ∈ L.

If A satisfies the inequality s(~x) ≤ t(~x), then s∃(~S) ⊇ t∃(~S) and s∀(~S) ⊇

t∀(~S) for all ~S ∈ L. Thus, for example, if A satisfies s(~x) ≤ t(~x) and s is ∃-

contracting and t is ∃-expanding, then for any ~S ∈ L, sL(~S) ⊇ s∃(~S) ⊇ t∃(~S) ⊇

tL(~S), i.e., sL(~S) ≤L tL(~S). More generally we have the following results.
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Theorem 5.2.5. [vA09]

(i) If both s and t are ∃-stable terms, or both s and t are ∀-stable terms, then

s = t is preserved by the MacNeille completion.

(ii) If s is an ∃-contracting term and t is an ∃-expanding term, or s is a ∀-

contracting term and t is a ∀-expanding term, then s ≤ t is preserved by

the MacNeille completion.

Lemma 5.2.6. [vA11]

(i) The constants 1 and 0, every variable x, every {◦,∨}-term and every

{∧,∨}-term is ∃-stable.

(ii) If s is ∃-stable, then ¬s is ∀-stable.

(iii) If s1 and s2 are ∃-stable (resp., ∃-contracting, ∃-expanding) terms, then

s1 ∨ s2 is ∃-stable (resp., ∃-contracting, ∃-expanding).

(iv) If s1 and s2 are ∃-stable (resp., ∃-contracting) terms that have no variables

in common, then s1 ◦ s2 is ∃-stable (resp., ∃-contracting).

(v) If t(~x) is an ∃-expanding term and y is a variable not in ~x, then t(~x) → y

is ∃-contracting.

Since Su ⊆ Sℓu for any S ⊆ A, we have that t∃(~S) ⊆ t∀(~S) for any term t(~x)

in the language and any ~S ∈ L. Hence, if a term is ∀-contracting, then it is also

∃-contracting. Similarly, if a term is ∃-expanding, then it is also ∀-expanding.

Definition 5.2.7. The sets of positive and negative terms are the smallest sets

of terms closed under the following rules:

(i) 0 and 1 are both positive and negative;

(ii) the term t(x) = x is positive for each variable x;

(iii) if s is negative and t is positive, then s → t is positive and t → s is

negative;

(iv) if s(x1, . . . , xn) is a {◦,∧,∨}-term and each ti is positive (respectively,

negative) terms, then s(t1, . . . , tn) is positive (respectively, negative).
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It was shown in [vA09] that every positive term in the language {◦,→,∨,∧,

1, 0} is ∃-expanding (hence also ∀-expanding), while every negative term is ∀-

contracting (hence also ∃-contracting).

For example, if A is ‘involutive’, i.e., satisfies ¬¬x = x, then so is L. If A is

‘strict’, i.e., satisfies x∧ (¬x) = 0, then so is L. The following identities are also

preserved [vA11]: ¬(x ◦ y)∨ ((x∧ y) → (x ◦ y)) = 1 (weak nilpotent minimum),

x ∨ ¬xn (weak excluded middle), xn+1 = xn (n-contraction) and ¬xn+1 = ¬xn

(weak n-contraction).

5.3 Modal MTL-chains

Substructural logics are logics with structure sensitive consequence relations, for

example, logics without structural rules like contraction, weakening, commuta-

tivity or associativity that form part of intuitionistic and classical logic. It the

literature, modalities have then been added to the substructural logics as a way

to reintroduce limited structural rules. This was done in [Gir87]: the exponen-

tials ! and ? of linear logic can be viewed as modal operators, since they have

some similarities with the modalities 3 and 2. The addition of modal operators

to various non-classical logics has since been studied increasingly. Another ex-

ample is the Baaz Delta ∆, intended to mean complete (classical) truth, added

to fuzzy logic [Baa96]. In [Mon04] and [CMM10] storage operators and truth

stresser modalities are added to many-valued logics and, in particular, to MTL.

For more examples of the addition of modalities to various (substructural) log-

ics the reader can consult, for example, [Res93, Ven95, Buc94, DGR97, Kam03,

Ono05].

It is therefore natural to consider the expansion of MTL-algebras with a

‘modality’. Before we consider the MacNeille completion of ‘modal MTL-algebras’,

we must make the notion of a ‘modal MTL-algebra’ precise.

The results in this section have been obtained in collaboration with Prof.

Clint van Alten and have been published in [MvAb].

5.3.1 Axiomatization of (reverse) modal MTL-algebras

Motivated by the fact that the variety of MTL-algebras is generated by the class

of MTL-chains, we define a ‘modal MTL-chain’ to be an MTL-chain equipped

with an additional order-preserving (unary) operation f , and a ‘modal MTL-
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algebra’ as any algebra in the variety generated by the class of modal MTL-

chains. We will show that this class is strictly smaller than the class of all MTL-

algebras that have an additional order-preserving operation. In particular, we

show that modal MTL-algebras are axiomatized by the axioms of MTL-algebras

together with f(x∨y) = f(x)∨f(y) and (f(y) → f((x→ z)◦y))∨ (z → x) = 1.

We note that the less general notion (in the sense that there are addi-

tional constraints) of a ‘modal residuated lattice’ has been considered by Ono

in [Ono05], where such algebras are defined to be residuated lattices equipped

with an operation f that satisfies f(x) ≤ x, f(x) ≤ f(f(x)), 1 ≤ f(1) and

f(x) ◦ f(y) ≤ f(x ◦ y) in addition to being order-preserving.

We also consider ‘reverse modal MTL-chains’ that are algebras in which the

modality is order-reversing rather than order-preserving. A natural motivating

example is the operation h(x) = 1 − x on any standard MTL-algebra, that

is, an MTL-algebra whose universe is the real interval [0, 1]. We show that

an axiomatization for the class of reverse modal MTL-algebras consists of the

axioms for MTL together with h(x ∨ y) = h(x) ∧ h(y) and (h((x → z) ◦ y) →

h(y)) ∨ (z → x) = 1.

Definition 5.3.1.

(i) A modal residuated lattice is an algebra 〈A, ◦,→,∨,∧, f, 0, 1〉, where

〈A, ◦,→,∨,∧, 0, 1〉 is a residuated lattice and f is a unary operation that

is order-preserving, i.e., x ≤ y implies f(x) ≤ f(y).

(ii) A reverse modal residuated lattice is an algebra 〈A, ◦,→,∨,∧, h, 0, 1〉,

where 〈A, ◦,→,∨,∧, 0, 1〉 is a residuated lattice and h is a unary oper-

ation that is order-reversing, i.e., x ≤ y implies h(y) ≤ h(x).

Let A = 〈A, ◦,→,∨,∧, f, 0, 1〉 be a fixed modal residuated lattice.

Definition 5.3.2. A subset F of A is a congruence filter (or c-filter for short)1

of A if: 1 ∈ F , F is upward closed, closed under ◦, and f(d) → f(d ◦ a) ∈ F

whenever a ∈ F and d ∈ A.

We note that c-filters have also been called implicative filters [Ono10], de-

ductive filters [GJKO07] or normal filters.

1 sometimes called an ‘ideal’, as it satisfies the notion of ideal from [GU84].
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The set of all c-filters of A, ordered by inclusion, forms a complete lattice,

denoted Filc A. If θ is a congruence on A and a ∈ A, we use [a]θ to denote the

congruence class of a with respect to θ.

Proposition 5.3.3. The congruence lattice of A, ConA, is isomorphic to the

c-filter lattice, FilcA; the isomorphisms are given by: θ 7→ [1]θ and F 7→ θF =

{(a, b) : a→ b, b→ a ∈ F}.

Proof. Since the result is known for residuated lattices [GJKO07], we need only

check that the result extends to the operation f . Let F be a c-filter of A. To

see that θF is compatible with f , suppose (a, b) ∈ θF , i.e., a → b, b → a ∈ F .

Since a ◦ (a → b) ≤ b and f is order preserving it follows that f(a ◦ (a →

b)) ≤ f(b). By the definition of a c-filter, f(a) → f(a ◦ (a → b)) ∈ F , and

f(a) → f(a ◦ (a → b)) ≤ f(a) → f(b), so f(a) → f(b) ∈ F . Similarly, we

can show that f(b) → f(a) ∈ F , hence (f(a), f(b)) ∈ θF . Next, let θ be a

congruence on A. To see that [1]θ is a c-filter, suppose a ∈ [1]θ, i.e., (a, 1) ∈ θ.

Then for any d ∈ A we have that (f(d) → f(d ◦ a), f(d) → f(d ◦ 1)) ∈ θ, i.e.,

(f(d) → f(d ◦ a), 1) ∈ θ. Thus, f(d) → f(d ◦ a) ∈ [1]θ.

We would like to extend the fact that the MTL-chains generate the variety

of MTL-algebras to the modal case. In order to do so, we make the following

definitions.

Definition 5.3.4.

(i) A modal MTL-chain is a modal residuated lattice whose underlying lattice

order is linear.

(ii) A modal MTL-algebra is any algebra in the variety generated by modal

MTL-chains.

We note that since the underlying lattice order is linear it follows that modal

MTL-chains satisfy the prelinearity identity. Furthermore, since modal MTL-

algebras are in the variety generated by modal MTL-chains, it follows that

modal MTL-algebras also satisfy the prelinearity identity.

Since f is order-preserving, the following identity holds in all modal MTL-

chains, and hence also modal MTL-algebras:

f(x ∨ y) = f(x) ∨ f(y). (5.1)



5. The MacNeille completion 68

The identity f(x ∧ y) = f(x) ∧ f(y) also holds. Note that the order-preserving

property of f can be inferred from (5.1).

We now introduce some notions from Universal Algebra that we will need

going forward. The reader is referred to [BS81] for more details on the notions

defined here as well as the proofs of the results listed here. Also see Chapter 2.3

for the definition of a varieties.

An algebra B is called congruence-distributive if ConB is a distributive lat-

tice. We call a class of algebras congruence-distributive if, and only if, every

algebra in the class is congruence-distributive. We now have the following re-

sult that follows from Mal’cev conditions [Mal54].

Theorem 5.3.5. The variety of lattices is congruence distributive.

See [GJKO07] for a direct proof.

Definition 5.3.6. An algebra B is a subdirect product of an indexed family

(Bi)i∈Ψ of algebras if,

(i) B is a subalgebra of
∏n

i=1 Bi, the direct product of the algebras in (Bi)i∈Ψ,

and

(ii) all the coordinate projections restricted to B are onto, i.e., each Bi is a

homomorphic image of B.

The family of algebras (Bi)i∈Ψ is called a subdirect representation of B.

We now call an algebra B subdirectly irreducible if every subdirect represen-

tation (Bi)i∈Ψ of B contains (an isomorphic copy of) B as a factor.

Let (Bi)i∈Ψ be an indexed family of algebras of the same type. We will call

an ultrafilter on P(Ψ) (viewed as a Boolean algebra) an ultrafilter on Ψ. Let U

be an ultrafilter on Ψ. Then, for ~a and ~b in the direct product
∏

i∈Ψ Bi, define

||~a = ~b|| = {i ∈ Ψ : ai = bi}.

Furthermore, let ≡U⊆
∏

i∈Ψ Bi ×
∏

i∈ΨBi be defined by

~a ≡U
~b ⇐⇒ ||~a = ~b|| ∈ U.

Then ≡U is a congruence on
∏

i∈Ψ Bi.

Definition 5.3.7. The ultraproduct of an indexed family of algebras (Bi)i∈Ψ

with respect to an ultrafilter U on Ψ is the quotient algebra (
∏

i∈Ψ Bi)/ ≡U .
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Finally we introduce the notion of a quasivariety.

Definition 5.3.8. A class of algebras K of the same type is called a quasivariety

if it is closed under isomorphism, subalgebras, direct products and ultraproducts.

A class of algebras is a quasivariety if, and only if, it can be axiomatized by

quasi-identities.

In [Jón67] Jónsson gave a Mal’cev condition for congruence-distributive va-

rieties. He also proved the following result.

Theorem 5.3.9. [Jón67] Let K be a congruence-distributive variety generated

by a subclass K′. If B is a subdirectly irreducible algebra in K, then B is the

homomorphic image of a subalgebra of an ultraproduct of members of K′.

Observe that the variety of modal MTL-algebras is congruence-distributive

since its algebras contain lattice reducts and since congruence distributivity is

a Mal’cev condition. Since the variety of modal MTL-algebras is congruence-

distributive, it follows that Jónsson’s theorem applies. Furthermore, since the

variety of modal MTL-algebras is generated by the modal MTL-chains, it follows

that every subdirectly irreducible modal MTL-algebra is a homomorphic image

of a subalgebra of an ultraproduct of modal MTL-chains. But the class of

modal MTL-chains is closed under ultraproducts, subalgebras and homomorphic

images since its algebras are linearly ordered. Thus, the variety generated by

modal MTL-chains may be obtained by taking subdirect products only. In

particular, this means that the variety coincides with the quasivariety generated

by modal MTL-chains.

In order to axiomatize the variety of modal MTL-algebras it is sufficient,

therefore, to determine identities that a modal residuated lattice must satisfy

to be embeddable into a product of modal MTL-chains, and hence a subdirect

product of modal MTL-chains. From the theory of universal algebra (see, for

instance, [BS81, Lemma 8.2]) we know that if the intersection of a set of con-

gruences of an algebra is the trivial congruence, then the algebra is a subdirect

product of the associated quotient algebras. Thus, we shall characterize the

congruences of a modal MTL-algebra for which the quotient algebra is a modal

MTL-chain. Since the congruence lattice of a modal MTL-algebra is isomorphic

to the c-filter lattice, we characterize the c-filters F for which A/θF is a modal

MTL-chain where A is a modal residuated lattice (see, for example, [EG01]).
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The methods used here make use of ideas from the theory of ℓ-groups — see,

for example, [AF88].

In the sequel, let A = 〈A, ◦,→,∨,∧, f, 0, 1〉 be a fixed modal residuated

lattice as before.

As with a lattice filter, a c-filter of A is called prime if, for all a, b ∈ A,

a ∨ b ∈ F implies that at least one of a ∈ F or b ∈ F .

The following result can be obtained for modal MTL-algebras in the same

way that it is obtained for MTL-algebras.

Lemma 5.3.10. If A satisfies the prelinearity identity, then a c-filter F of A

is prime if, and only if, A/θF is linearly ordered.

Lemma 5.3.11. The variety of modal MTL-algebras satisfies:

x ∨ z = 1 implies (f(y) → f(x ◦ y)) ∨ z = 1. (5.2)

Proof. If a∨c = 1 in a chain, then either a = 1, in which case f(b) → f(a◦b) = 1,

or c = 1, in which case (f(b) → f(a ◦ b)) ∨ c = 1. Thus, by Jónsson’s theorem

every modal MTL-algebra satisfies (5.2).

Definition 5.3.12. For every ideal I of the lattice reduct of A define:

FI = {a ∈ A : there exists c ∈ I such that a ∨ c = 1} .

Lemma 5.3.13. Suppose A satisfies the quasi-identity (5.2).

(i) If I is an ideal of the lattice reduct of A, then FI is a c-filter of A.

(ii) If I is a maximal (proper) ideal of the lattice reduct of A, then FI is prime.

Proof. (i) It is clear that 1 ∈ FI . Let a, b ∈ A. If a, b ∈ FI , then there exist

c1, c2 ∈ I such that a ∨ c1 = 1 and b ∨ c2 = 1. To see that a ◦ b ∈ FI , observe

that c1 ∨ c2 ∈ I and (a∨ c1) ◦ (b∨ c2) = 1. After distributing the left-hand side,

we obtain

(a ◦ b) ∨ (a ◦ c2) ∨ (c1 ◦ b) ∨ (c1 ◦ c2) = 1

⇒ (a ◦ b) ∨ ((c1 ◦ b) ∨ (c1 ◦ c2)) ∨ ((a ◦ c2) ∨ (c1 ◦ c2)) = 1

⇒ (a ◦ b) ∨ (c1 ◦ (b ∨ c2)) ∨ ((a ∨ c1) ◦ c2) = 1

⇒ (a ◦ b) ∨ (c1 ◦ 1) ∨ (1 ◦ c2) = 1

⇒ (a ◦ b) ∨ (c1 ∨ c2) = 1,
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so a ◦ b ∈ FI . If a ∈ FI and a ≤ b, then there exists d ∈ I such that a ∨ d = 1,

hence also b ∨ d = 1, so b ∈ FI . If a ∈ FI , say a ∨ d = 1 for some d ∈ I, then

(f(b) → f(a ◦ b)) ∨ d = 1, by (5.2), so f(b) → f(a ◦ b) ∈ FI .

(ii) Suppose I is a maximal ideal of the lattice reduct of A and a ∨ b ∈ FI .

Then there exists c ∈ I such that (a ∨ b) ∨ c = 1. Suppose that a /∈ FI . Then

a ∨ c 6= 1 for every c ∈ I so the ideal of the lattice reduct of A generated by

I ∪ {a} is a proper ideal containing I. Since I is maximal, we must have a ∈ I.

Thus, a∨c ∈ I and hence b ∈ FI since b∨ (a∨c) = 1. A similar argument shows

that if b /∈ FI , then a ∈ FI . Therefore, at least one of a ∈ FI or b ∈ FI .

Theorem 5.3.14. The variety of modal MTL-algebras is axiomatized by the

axioms of MTL-algebras together with (5.1) and (5.2).

Proof. LetA be a modal residuated lattice that satisfies the prelinearity identity,

(5.1) and (5.2). Note that the identity (5.1) implies the quasi-identity for the

order-preserving property of f . For each a ∈ A\{1} there exists, by Zorn’s

Lemma, a maximal ideal Ia of the lattice reduct of A with a ∈ Ia. Note that

a /∈ FIa or else there exists c ∈ Ia such that a∨c = 1, which implies that 1 ∈ Ia,

but Ia is proper. It follows that:

⋂

{FIa : a ∈ A\{1}} = {1}.

By the isomorphism between the congruence lattice and c-filter lattice of A, it

follows that A is a subdirect product of {A/θFIa
: a ∈ A\{1}}. Furthermore,

from Lemma 5.3.13 and Lemma 5.3.10 it follows that A is a subdirect product

of modal MTL-chains.

As we shall show, the quasi-identity (5.2) in the above results may be re-

placed by the following identity:

(f(y) → f((x→ z) ◦ y)) ∨ (z → x) = 1. (5.3)

Corollary 5.3.15. The variety of modal MTL-algebras is axiomatized by the

axioms of MTL-algebras together with (5.1) and (5.3).

Proof. Since every chain satisfies: x ≤ z or z ≤ x, it follows easily that every

modal MTL-chain, and hence every modal MTL-algebra, satisfies (5.3). Suppose

A is a modal residuated lattice that satisfies the prelinearity condition, (5.1)

and (5.3); we show that it also satisfies (5.2), from which the result follows. If
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a, b, c ∈ A and a ∨ c = 1, then c = 1 → c = (a ∨ c) → c = (a → c) ∧ (c → c) =

a→ c. Similarly, a = c→ a. By (5.3), (f(b) → f(a ◦ b)) ∨ c = 1.

We show, by example, that the quasi-identity (5.2) cannot be dropped from

our axiomatization of modal MTL-algebras.

Example 5.3.16. Let A be modal residuated lattice described as follows. The

universe A = {0, a, b, 1}, the lattice order is given by 0 ≤ a, b ≤ 1 with a

and b incomparable (see Figure 5.1). For x, y ∈ A, let x ◦A y = x ∧ y and

x →A y =
∨

{z : x ∧ z ≤ y}. Let fA be the operation defined by fA(0) = 0,

fA(a) = b, fA(b) = a and fA(1) = 1. Then the fA-free reduct of A is an MTL-

algebra and hence a subdirect product of MTL-chains. In addition f distributes

over joins, i.e., (5.1) holds, however, A does not satisfy (5.2). To see this,

observe that a ∨ b = 1 but fA(1) →A fA(1 ◦A a) = 1 →A b = b. A has only

two c-filters, namely {1} and {0, a, b, 1}, and therefore only two congruences.

Thus, A is subdirectly irreducible and hence cannot be represented as a subdirect

product of modal MTL-chains.
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Fig. 5.1: The operation fA on A.

The above results can be adapted to reverse modal MTL-algebras as follows.

We omit the proofs as they are similar to those for modal MTL-algebras. Let

B = 〈B, ◦,→,∨,∧, h, 0, 1〉 be a fixed reverse modal residuated lattice.

Definition 5.3.17. A subset F of B is a c-filter of B if: 1 ∈ F , F is upward

closed, closed under ◦, and h(d ◦ a) → h(d) ∈ F whenever a ∈ F and d ∈ B.

Corollary 5.3.18. The congruence lattice, ConB, is isomorphic to the c-filter

lattice, FilcB; the isomorphisms are given by: θ 7→ [1]θ and F 7→ θF .
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Definition 5.3.19.

(i) A reverse modal MTL-chain is a reverse modal residuated lattice whose

underlying lattice order is linear.

(ii) A reverse modal MTL-algebra is any algebra in the variety generated by

reverse modal MTL-chains.

Since h is order-reversing, the identities

h(x ∨ y) = h(x) ∧ h(y) (5.4)

and

h(x ∧ y) = h(x) ∨ h(y)

hold in all reverse modal MTL-chains and MTL-algebras; either identity implies

that h is order-reversing. Consider the following quasi-identity and identity:

x ∨ z = 1 implies (h(x ◦ y) → h(y)) ∨ z = 1, (5.5)

(h((x→ z) ◦ y) → h(y)) ∨ (z → x) = 1. (5.6)

Theorem 5.3.20. The variety of reverse modal MTL-algebras is axiomatized

by the axioms for MTL-algebras together with (5.4), and (5.5) or (5.6).

We show, by example, that the quasi-identity (5.5) cannot be dropped from

our axiomatization of reverse modal MTL-algebras.

Example 5.3.21. Let B be the reverse modal residuated lattice defined as fol-

lows. The h-free reduct of B is the same as the f -free-reduct in the previous

example, so it is an MTL-algebra. Let hB be defined by hB(0) = 1, hB(a) = a,

hB(b) = b and hB(1) = 0. See Figure 5.2. Then B satisfies (5.4) but not (5.5)

since a ∨B b = 1 but, (hB(1 ◦B a) →B hB(1)) ∨B b = b. Again, B has only

two c-filters, namely {1} and {0, a, b, 1}, and therefore only two congruences.

Thus, B is subdirectly irreducible and hence cannot be represented as a subdirect

product of reverse modal MTL-chains.
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Fig. 5.2: The operation fB on B.

5.3.2 The MacNeille completion of modal MTL-chains

Throughout this section A = 〈A, ◦,→,∨,∧, f, 0, 1〉 will be a fixed modal MTL-

chain.

Let A′ be the f -free reduct of A. Then A′ is an MTL-chain and we can

obtain its MacNeille completion L′ = 〈L, ◦L,→L,∨L,∧L, 0L, 1L〉 as described in

Section 5.2. We then extend the operation f on A to an operation fL on L so

that the resulting algebra L is a modal MTL-chain into which A embeds, called

the MacNeille completion of A. Thereafter, various preservation properties of

the completion of A into L are considered, that is, properties of A that are also

satisfied by L. The results obtained here build on the results obtained in [vA09]

and [vA11] (summarised in Section 5.2); in particular, the general scheme of

inequalities given there is extended to include terms built up with an additional

modal operator f .

Define a unary operation (the modal operator) on L as follows: for S ∈ L,

fL(S) = {f(a) : a ∈ Sℓ}u.

Lemma 5.3.22. The operation fL is order-preserving on L.

Proof. Let S, T ∈ L such that S ≤L T , i.e., S ⊇ T . Then Sℓ ⊆ T ℓ, so {f(a) :

a ∈ Sℓ} ⊆ {f(a) : a ∈ T ℓ}, hence {f(a) : a ∈ Sℓ}u ⊇ {f(a) : a ∈ T ℓ}u, i.e.,

fL(S) ≤L fL(T ).

Recall that ι : A→ L defined by ι(a) = {a}u is embedding of A into L.

Lemma 5.3.23. The embedding ι of A into L preserves f , i.e., for a ∈ A, we

have fL ({a}u) = {f(a)}u.

Proof. We have fL({a}u) = {f(b) : b ∈ {a}uℓ}u = {f(b) : b ≤ a}u, which is

equal to {f(a)}u since f is order-preserving.
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Theorem 5.3.24. The algebra L = 〈F, ◦L,→L,∨L,∧L, fL, 0L, 1L〉 is a com-

plete modal MTL-chain and ι is an embedding of A into L that preserves all

existing meets and joins in A.

Then (L, ι) is the MacNeille completion of A.

In the remainder of this section we describe some classes of (∃-, ∀-) stable,

expanding and contracting terms, which may be used in conjunction with the

above theorem to obtain a class of identities preserved by the MacNeille comple-

tion. We define positive and negative terms in the language {◦,→,∨,∧, f, 0, 1}

by modifying condition (iv) in Definition 5.2.7 as follows:

(iv) if s(x1, . . . , xn) is a {◦,∨,∧, f}-term and each ti is a positive (respectively,

negative) term, then s(t1, . . . , tn) is positive (respectively, negative).

We show that every positive term is ∃-expanding, while every negative term

is ∃-contracting. However, in order to classify positive and negative terms in

this way, it is useful to show the stronger result that every negative term is

∀-contracting, which implies that it is ∃-contracting. Note also that a (∃-, ∀-)

stable term is both contracting and expanding. Recall that every positive term

in the language {◦,→,∨,∧, 0, 1} is ∃-expanding and every such negative term is

∀-contracting (hence also ∃-contracting) [vA09]. We shall extend these results

to include the modal operator.

Lemma 5.3.25. If t is an ∃-expanding term, then f(t) is ∃-expanding.

Proof. Let s(~x) = f(t(~x)) and ~S ∈ L. Then,

tL(~S) ⊆ t∃(~S) ⇒ (tL(~S))ℓ ⊇ (t∃(~S))ℓ

⇒ {f(~a) : ~a ∈ tL(~S)ℓ} ⊇ {f(~a) : ~a ∈ t∃(~S)ℓ}

⇒ {f(~a) : ~a ∈ tL(~S)ℓ}u ⊆ {f(~a) : ~a ∈ t∃(~S)ℓ}u

⇒ fL(tL(~S)) ⊆ {f(~a) : a ∈ {t(~b) : ~b ∈ ~Sℓ}uℓ}u.

Since {t(~b) : ~b ∈ ~Sℓ} ⊆ {t(~b) : b ∈ ~Sℓ}uℓ we have

{f(~a) : a ∈ {t(~b) : ~b ∈ ~Sℓ}}u ⊇ {f(~a) : a ∈ {t(~b) : ~b ∈ ~Sℓ}uℓ}u

and hence

sL(~S) = fL(tL(~S)) ⊆ {f(~a) : ~a ∈ t∃(~S)ℓ}u ⊆ {f(t(~a)) : ~a ∈ ~Sℓ}u = s∃(~S).
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Lemma 5.3.26. If t is a ∀-contracting term, then f(t) is ∀-contracting.

Proof. Let s(~x) = f(t(~x)) and ~S ∈ L. Then,

sL(~S) = fL(tL(~S))

⊇ fL(t∀(~S))

= {f(b) : b ∈ {t(~a) : ~a ∈ ~Sℓ}ℓuℓ}u

= {f(b) : b ∈ {t(~a) : ~a ∈ ~Sℓ}ℓ}u,

which we must show to include s∀(~S) = {f(t(~a)) : ~a ∈ ~Sℓ}ℓu. Let b ∈ {t(~a) :

~a ∈ ~Sℓ}ℓ, so b ≤ t(~a) for all ~a ∈ ~Sℓ, hence also f(b) ≤ f(t(~a)) for all ~a ∈ ~Sℓ.

Thus, f(b) ∈ {f(t(~a)) : ~a ∈ ~Sℓ}ℓ, from which we deduce s∀(~S) ⊆ sL(~S) after

taking upper bounds.

Combining Proposition 13.27 in [vA09] with Lemmas 5.3.25 and 5.3.26 gives

the following result.

Proposition 5.3.27. Every positive {◦,→,∨,∧, f, 0, 1}-term is ∃-expanding,

hence also ∀-expanding; and every negative {◦,→,∨,∧, f, 0, 1}-term is ∀-contrac-

ting, hence also ∃-contracting.

Consequently, any inequality s ≤ t in which s is negative and t is positive is

preserved by the completion. Observe that such an inequality is equivalent to

1 = s → t, and s → t is positive. We next consider ∃-stable terms; since such

terms are both ∃-contracting and ∃-expanding, they may appear on either side

of the inequality.

Lemma 5.3.28. If s1 and s2 are ∃-stable (respectively, ∃-contracting) terms

that have no variables in common, then s1 ∧ s2 is ∃-stable (respectively., ∃-

contracting).

Proof. Let t(~x, ~y) = s1(~x)∧ s2(~y), where ~x and ~y have no variables in common,

and ~S, ~T ∈ L. Then, using Lemma 5.2.4,

tL(~S, ~T ) = sL1 (~S) ∧
L sL2 (~T )

= (respectively, ⊇) s∃1(
~S) ∧L s∃2(

~T )

= {s1(~a) : ~a ∈ ~Sℓ}u ∧L {s2(~b) : ~b ∈ ~T ℓ}u

= {s1(~a) ∧ s2(~b) : ~a,~b ∈ ~Sℓ, ~T ℓ}u

= t∃(~S, ~T ).
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Lemma 5.3.29. Let t1 and t2 be terms that are order-preserving in each co-

ordinate and have exactly one variable in common, say x, and let ~y1 and ~y2 be the

remainder of the variables occurring in t1 and t2, respectively. If s(x, ~y1, ~y2) =

t1(x, ~y1)◦ t2(x, ~y2) or t1(x, ~y1)∧ t2(x, ~y2) and both t1 and t2 are ∃-stable (respec-

tively, ∃-contracting), then s is ∃-stable (respectively, ∃-contracting).

Proof. For S, ~T1, ~T2 ∈ L and s = t1 ◦ t2, we have

sL(S, ~T1, ~T2) = tL1 (S, ~T1) ◦
L tL2 (S, ~T2)

= (respectively, ⊇) t∃1(S,
~T1) ◦

L t∃2(S,
~T2).

Using Theorem 5.2.3(i),

t∃1(S,
~T1) ◦

L t∃2(S,
~T2)

= {t1(a,~b) : a ∈ Sℓ,~b ∈ ~T1
ℓ
}u ◦L {t2(c, ~d) : c ∈ Sℓ, ~d ∈ ~T2

ℓ
}u

= {t1(a,~b) ◦ t2(c, ~d) : a, c ∈ Sℓ,~b ∈ ~T1
ℓ
, ~d ∈ ~T2

ℓ
}u

⊆ {t1(a,~b) ◦ t2(a, ~d) : a ∈ Sℓ,~b ∈ ~T1
ℓ
, ~d ∈ ~T2

ℓ
}u

= s∃(S, ~T1, ~T2).

For the inclusion in the other direction, let e ∈ s∃(S, ~T1, ~T2), i.e., t1(a,~b) ◦

t2(a, ~d) ≤ e for all a ∈ Sℓ,~b ∈ ~T1
ℓ
and ~d ∈ ~T2

ℓ
and let a, c ∈ Sℓ. Since A

is a chain either a ≤ c or c ≤ a. Suppose c ≤ a; then t2(c, ~d) ≤ t2(a, ~d) for

all ~b ∈ ~T1
ℓ
and ~d ∈ ~T2

ℓ
since t2 is order-preserving in each co-ordinate. Then

t1(a,~b) ◦ t2(c, ~d) ≤ t1(a,~b) ◦ t2(a, ~d) ≤ e, so e ∈ {t1(a,~b) ◦ t2(c, ~d) : a, c ∈ Sℓ,~b ∈

~T1, ~d ∈ ~T2}
u, as required. If a ≤ c the proof is similar. The proof for s = t1 ∧ t2

follows similarly, using Lemma 5.2.4.

By the definition of fL it is immediate that f(x) is ∃-stable. Thus, a partic-

ular consequence of the above lemma is that (f(x))n is ∃-stable for each n ≥ 1,

as are (f(x1))
n1 ◦ · · · ◦ (f(xk))

nk and (f(x1))
n1 ∧ · · · ∧ (f(xk))

nk , where each xi

is a variable, 0 or 1 and each ni ≥ 1. More generally, we have the following:

Lemma 5.3.30. The following terms are ∃-stable: any term built up inductively

from 0, 1, x, f(x), for any variable x, by taking ◦ or ∧ of terms that share at

most one variable, or any ∨.
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Combining the above results we obtain the following theorem.

Theorem 5.3.31. An inequality s ≤ t is preserved by the completion if t is any

positive term and s is:

(i) a negative term,

(ii) an ∃-stable term (as in Lemma 5.3.30),

(iii) a term t(~x) → y, where t(~x) is an ∃-expanding term and y is a variable

not in ~x,

(iv) any term built up inductively from terms in (i-iii) by taking ◦’s or ∧’s of

any terms that have no variables in common or any ∨’s.

Special subclasses of modal MTL-chains

In [CMM10], Ciabattoni et al. study the addition of truth stresser modalities

to MTL and its extensions. When considering the semantics of these logics a

number of classes of algebras are studied, all of which are subclasses of modal

MTL-algebras as considered here. The various logics studied in [CMM10] are the

monoidal t-norm logic (MTL), the involutive monoidal t-norm logic (IMTL) and

the strict monoidal t-norm logic (SMTL). The last two of the aforementioned

logics axiomatize t-norm logics whose negations are, respectively, involutive and

strict. Furthermore, t-norm logics satisfying an n-contraction property were also

studied — with involutive negations (CnIMTL) and without (CnMTL).

Let Logics = {MTL, IMTL, SMTL} ∪ {CnMTL : n ≥ 2} ∪ {CnIMTL : n ≥

2}. For L ∈ Logics, an L-algebra is an MTL-algebra such that all the MTL-

axioms as well as the additional axioms of the logic L are all valid. That is,

• An IMTL-algebra is an MTL-algebra satisfying: ¬¬x = x.

• An SMTL-algebra is an MTL-algebra satisfying: x ∧ (¬x) ≤ 0.

• A CnMTL-algebra, n ≥ 2, is an MTL-algebra satisfying: xn ≤ xn−1.

• A CnIMTL-algebra, n ≥ 2, is an IMTL-algebra that is also a CnMTL-

algebra.
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Then, an

• LKr-algebra is a modal L-algebra satisfying:

(i) f(x→ y) ≤ f(x) → f(y)

(ii) f(x ∨ y) = f(x) ∨ f(y)

(iii) f(1) = 1.

• LKTr-algebra is an LKr-algebra additionally satisfying:

f(x) ≤ x.

• LS4r-algebra is an LKTr-algebra additionally satisfying:

f(f(x)) ≥ f(x) (hence also f(f(x)) = f(x)).

• L!r-algebra is an LS4r-algebra additionally satisfying:

f(x) ◦ f(x) = f(x).

• Lr
∆-algebra is an LS4r-algebra additionally satisfying:

f(x) ∨ (f(x) → 0) = 1.

It is shown in [CMM10] that an LKr-algebra is a subdirect product of linearly

ordered algebras, hence the quasi-identity (5.2) holds in such algebras.

Observe that in a modal MTL-algebra, the identity

f(x) ◦ f(y) ≤ f(x ◦ y) (5.7)

is equivalent to the identity

f(x→ y) ≤ f(x) → f(y). (5.8)

To see that (5.7) implies (5.8) we recall that x ◦ (x → y) ≤ y. Since f is

order-preserving and by (5.7), f(x) ◦ f(x → y) ≤ f(x ◦ (x → y)) ≤ f(y), hence

f(x → y) ≤ f(x) → f(y). Conversely, to see that (5.8) implies (5.7), recall

that x ≤ y → (x ◦ y). Since f is order-preserving and by (5.8), f(x) ≤ f(y →

(x ◦ y)) ≤ f(y) → f(x ◦ y), hence f(x) ◦ f(y) ≤ f(x ◦ y).

The following corollary is now a straightforward consequence of Theorem 5.3.31.

Corollary 5.3.32. If A is a linearly ordered LKr-, LKTr-, LS4r-, L!r- or Lr
∆-

algebra, then so is L.
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Complete operators

Recall that an operation f is called a complete operator if f(
∨

ai) =
∨

f(ai)

whenever
∨

ai exists. Complete operators are often also called left-continuous.

If, in addition to being order-preserving, we assume that the operation f is

a complete operator, a wider class of properties is preserved by the completion.

Firstly, if f is a complete operator, then fL is a complete operator.

Lemma 5.3.33. Let H ⊆ A. If d ∈ Huℓ such that d 6≤ e for any e ∈ H, i.e.,

e < d for all e ∈ H, then d =
∨

H.

Proof. Suppose d ∈ Huℓ such that e < d for every e ∈ H . Then d is an upper

bound for H . Let a ∈ Hu, then d ≤ a since d ∈ Huℓ. Thus, d is the least upper

bound for H .

Lemma 5.3.34. If f is a complete operator, then for all H ⊆ A,

(i) fL(Hu) = (f(H))u, where f(H) = {f(a) : a ∈ H},

(ii) if S = Hu is stable, then fL(S) = (f(H))u.

Proof. We shall prove part (i); part (ii) then follows directly. Since H ⊆ Huℓ we

have f(H) ⊆ f(Huℓ) and also (f(Huℓ))u ⊆ (f(H))u, i.e., fL(Hu) ⊆ (f(H))u.

Conversely, let a ∈ (f(H))u, i.e., a ≥ f(b) for every b ∈ H , and let c ∈ Huℓ. If

c ≤ d for some d ∈ H , then f(c) ≤ f(d) ≤ a since a ∈ (f(H))u. If not, then d < c

for every d ∈ K, so c =
∨

H , by Lemma 5.3.33. Thus, f(c) = f(
∨

H) =
∨

f(H)

since f is a complete operator. But a is an upper bound for f(H), so
∨

f(H) ≤ a

and, in particular, f(c) ≤ a. In either case we find that f(c) ≤ a and therefore

a ∈ (f(Huℓ))u. We conclude that (f(H))u ⊆ (f(Huℓ))u.

Lemma 5.3.35. If f is a complete operator, then fL is also a complete operator.

Proof. Let Si ∈ L. By Lemma 2.6.3, fL(
∨L

i Si) = fL(
⋂

i Si) = fL(
⋂

i S
ℓu
i ) =

fL((
⋃

i S
ℓ
i )

u). Then, by Lemma 5.3.34, fL(
∨L

i Si) = f(
⋃

i S
ℓ
i )

u. Finally, by

Lemma 2.6.3, fL(
∨L

i Si) = (
⋃

i f(S
ℓ
i ))

u =
⋂

i f(S
ℓ
i )

u =
∨L

i f
L(Si).

It is well known that residuated unary operations distribute over all existing

joins. Examples of complete operators therefore include all residuated operators.

However, only a partial converse holds: if the underlying lattice of an algebra

A is complete, then a unary operation f on A that distributes over all joins is
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residuated. Hence, a consequence of f being a complete operator is that fL is

residuated.

Lemma 5.3.36. If f is a complete operator and s is an ∃-contracting term,

then f(s) is also ∃-contracting.

Proof. Let t = f(s(~x)) and ~S ∈ L. Then

tL(~S) = fL(sL(~S)) ⊇ fL(s∃(~S)) = fL({s(~a) : ~a ∈ ~Sℓ}u)

= {f(s(~a)) : ~a ∈ ~Sℓ}u by Lemma 5.3.34

= t∃(~S).

Corollary 5.3.37. If f is a complete operator and s is an ∃-stable term, then

f(s) is also ∃-stable.

Proof. A term that is both ∃-expanding and ∃-contracting is an ∃-stable term.

The result follows from Lemmas 5.3.25 and 5.3.36.

Lemma 5.3.38. If f is a complete operator, then the following terms are ∃-

stable: any term built up inductively from 0, 1, x, f(x), for any variable x, by

taking ◦ or ∧ of terms that share at most one variable, taking f of any term or

∨ of any two terms.

Combining the above results we obtain the theorem below.

Theorem 5.3.39. If f is a complete operator, then an inequality s ≤ t is

preserved by the completion if t is any positive term and s is:

(i) a negative term,

(ii) an ∃-stable term (as in Lemma 5.3.38)

(iii) a term t(~x) → y, where t(~x) is an ∃-expanding term and y is a variable

not in ~x,

(iv) a term built up inductively from terms in (i-iii) by taking ◦ or ∧ of any

terms have no variables in common, any f or any ∨.



5. The MacNeille completion 82

Order-reversing modalities

If A = 〈A,∨,∧, ◦,→, h, 0, 1〉 is a reverse modal MTL-algebra, then we define

the unary operation hL on L by

hL(S) = {h(a) : a ∈ Sℓ}ℓu

and let L = 〈F, ◦L,∨L,∧L, hL, 0L, 1L〉, where the other operations are as de-

scribed in Section 5.2. Note that hL(S) is the ∀-approximation.

Recall that ι : A → L is the embedding of A into L defined by ι(a) = {a}u

for all a ∈ A.

Lemma 5.3.40. The embedding ι : A → L of A into L preserves h, i.e., for

a ∈ A, hL({a}u) = {h(a)}u.

Lemma 5.3.41. The operation hL is order-reversing.

The proofs of Lemmas 5.3.40 and 5.3.41 are similar to the proofs of Lem-

mas 5.3.23 and 5.3.22, respectively.

Proposition 5.3.42. The algebra L =
〈

F, ◦L,→L,∨L,∧L, hL, 0L, 1L
〉

is a com-

plete reverse modal MTL-algebra and ι : A → L, the embedding of A into L,

preserves all existing meets and joins in A.

Then (L, ι) is the MacNeille completion of A.

We now turn our attention to properties preserved by this construction.

Clearly, h gives the impression of a negative term and, indeed, we show that

this is the case.

Lemma 5.3.43. If s is an ∃-expanding term, then h(s) is ∀-contracting.

Proof. Let t = h(s(~x)) and ~S ∈ L. Since s is ∃-expanding and hL is order-

reversing,

tL(~S) = hL(sL(~S)) ⊇ hL(s∃(~S)) = {h(b) : b ∈ {s(~a) : ~a ∈ ~Sℓ}uℓ}ℓu,

which we must show to be a superset of t∀(~S) = {h(s(~a)) : ~a ∈ ~Sℓ}ℓu. Since

{s(~a) : ~a ∈ ~Sℓ} ⊆ {s(~a) : ~a ∈ ~Sℓ}uℓ, {h(s(~a)) : ~a ∈ ~Sℓ} ⊆ {h(b) : b ∈ {s(~a) : ~a ∈

~Sℓ}uℓ} and the result follows after taking the ℓu-closures.

Lemma 5.3.44. If s is a ∀-contracting term, then h(s) is ∃-expanding.
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Proof. Let t = h(s(~x)) and ~S ∈ L. Since s is ∀-contracting and hL is order-

reversing,

tL(~S) = hL(sL(~S)) ⊆ hL(s∀(~S)) = {h(b) : b ∈ {s(~a) : ~a ∈ ~Sℓ}ℓuℓ}ℓu

= {h(b) : b ∈ {s(~a) : ~a ∈ ~Sℓ}ℓ}ℓu,

which we must show to be a subset of t∃(~S) = {h(s(~a)) : ~a ∈ ~Sℓ}u. Let

~a ∈ ~Sℓ and b ∈ {s(~a) : ~a ∈ ~Sℓ}ℓ. Then b ≤ s(~a) so h(s(~a)) ≤ h(b), hence

{h(s(~a)) : ~a ∈ Xℓ}ℓ ⊆ {h(b) : b ∈ {s(~a) : ~a ∈ ~Sℓ}ℓ}ℓ and the result follows after

taking u’s.

Extend the notion of positive and negative terms to the language of reverse

modal MTL-algebras by defining h(s) negative whenever s is positive and h(s)

positive whenever s is negative. The above two results give the following.

Proposition 5.3.45. Every positive term is ∃-expanding and every negative

term is ∀-contracting, hence also ∃-contracting.

Theorem 5.3.46. If h is a reverse modality, an inequality s ≤ t is preserved

by the completion if t is any positive term and s is:

(i) a negative term,

(ii) an ∃-stable term on the language {◦,∨,∧, 0, 1} (as in Lemma 5.3.30),

(iii) a term t(~x) → y, where t(~x) is an ∃-expanding term and y is a variable

not in ~x,

(iv) a term built up inductively from terms in (i-iii) by taking ◦ or ∧ of any

terms have no variables in common, or any ∨.

In addition, we have the following preservation result.

Proposition 5.3.47. If A satisfies x ≤ h(h(x)) or h(h(x)) ≤ x then L satisfies

the same. Thus, if h is involutive, then so is hL.

Proof. The inequality x ≤ h(h(x)) is preserved by Theorem 5.3.46 since x is

∃-stable and h(h(x)) is positive.

For S ∈ L,

hL(hL(S)) = {h(b) : b ∈ {h(a) : a ∈ Sℓ}ℓ}ℓu,
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where we have used the fact that Hℓuℓ = Hℓ for any H ⊆ A. Suppose A

satisfies h(h(x)) ≤ x and let S ∈ L. Let c ∈ {h(b) : b ∈ {h(a) : a ∈ Sℓ}ℓ}ℓ,

i.e., c ≤ h(b) for all b ∈ {h(a) : a ∈ Sℓ}ℓ. If d ∈ S, then a ≤ d for all a ∈ Sℓ

hence h(d) ≤ h(a) so h(d) ∈ {h(a) : a ∈ Sℓ}ℓ. Thus, c ≤ h(h(d)) ≤ d, so c ∈ Sℓ,

hence {h(b) : b ∈ {h(a) : a ∈ Sℓ}ℓuℓ}ℓ ⊆ Sℓ and the result follows after taking

superscript u’s.



6. CANONICAL EXTENSIONS

Completions of algebraic structures that have received substantial attention

are so-called canonical extensions. Canonical extensions were first introduced

in [JT51, JT52] for Boolean algebras with operators. Canonical extensions of

(bounded) distributive lattices were studied in [GJ94, GJ00, CP12] and canon-

ical extensions of (bounded) lattice expansions were first studied in [GH01]

and later also in [Har06]. We note that in this chapter we will not use the

term ‘canonical extension’ for the notion defined in [Mac37] (see Remark 5.1.2),

which is generally different from the notion of ‘canonical extension’ discussed

here.

In [GH01] both a concrete description and an abstract characterization of

the canonical extension of a (bounded) lattice were given. It turns out that

the construction given in [GH01] is a special case of the construction described

in [Tun74] wherein Tunnicliffe described the completion of posets with respect

to a polarization (see Definition 6.1.1). Subsequently, ‘canonical extensions’ of

posets have been explored in [DGP05, GJKO07, GJP].

In [DGP05] the construction described in [GH01] (first appearing in [Tun74])

was modified for posets. An alternative construction, closely related to the

construction of the canonical extension of Boolean algebras with operators given

in [GM97], was also given in [DGP05]. The authors then focussed their attention

on ‘canonical extensions’ of additional operations and relational completeness

of some substructural logics.

In [GJKO07] the construction from [Tun74] (and [GH01]) was (again) de-

scribed generally for the poset setting and properties of ‘canonical extensions’

were investigated. The ‘canonical extensions’ of additional operations as well as

residuated groupoids were also considered.

However, upon closer inspection it becomes apparent that the completions

used in [DGP05] and [GJKO07] are generally different. The difference between

these completions is due to a choice of ‘filters’ and ‘ideals’ (families of up-sets
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and down-sets of posets, respectively). To use the terminology from [Tun74],

different ‘polarizations of posets’ were used in [DGP05] and [GJKO07]. We note

that in [DGP05, Remark 2.3] the authors acknowledged that a choice had to be

made and subsequently explained their choice. Thus, it is clear that a choice

must be made, but it is not clear which choice would give one ‘the correct’

definition of the ‘canonical extension’ of a poset, or if there even is ‘a correct’

definition. Further investigation is therefore warranted.

In [GJP] a completion obtained through the construction in [Tun74] is called

an (F , I)-construction — after its polarization. The authors of [GJP] investi-

gate which properties a polarization should satisfy in order for the completion

obtained from it to satisfy certain desirable properties, for example restrictive

distributive laws [GH01] or commuting with products.

In the next section we study the construction from [Tun74, GH01] for the

posets setting. We then investigate some of the properties of completions ob-

tained through this construction. Perhaps unsurprisingly not all the results that

hold for canonical extensions of (bounded) lattices are true for these comple-

tions. Crucially, these completions do not, in general, commute with (Cartesian)

products — see Example 6.2.14.

We then investigate four specific completions that may be obtained through

the construction. We use the four different types of filters and ideals of a

poset, defined in Chapter 4, to construct the four completions under considera-

tion. Among these are the ‘canonical extensions’ of posets studied in [DGP05]

and [GJKO07], respectively. We take a closer look at some of the properties of

each of the individual completions.

Next we focus our attention on extensions of additional operations. We

first consider extensions of unary operations. Again the results are not always

favourable. For example, the extensions (used here) of operators on posets are

not necessarily operators on the completions of the posets — see Examples 6.3.8

and 6.3.10. On the other hand, for three of the completions considered here (the

completions using Doyle-pseudo, Frink and directed filters and ideals, respec-

tively) the extensions of unary residuated operators are again residuated — see

Propositions 6.3.13 and 6.3.14.

We also explore extensions of n-ary operations. Since the construction does

not commute with products, extensions of n-ary operations are not straight-

forward. For three of the completions under consideration the extensions of
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arbitrary unary operations can be generalized to extensions for arbitrary n-ary

operations. We investigate some properties of these extensions of n-ary opera-

tions. In particular, we are interested in order-preserving n-ary operations and

binary residuated operators.

As stated earlier, an alternative construction of the canonical extension of a

Boolean Algebra with operators was described in [GM97]. In this construction

the canonical extension is the MacNeille completion of an intermediate structure.

This construction was generalised in [DGP05, Suz11] to the poset setting for a

particular choice of families of up-sets and down-sets. We show here that the

construction can be generalized to use a number of different families of up-sets

and down-sets.

Finally we focus our attention on the preservation of properties through the

construction studied in this chapter. As in the previous chapters we follow

the approach used in [Jón94]. Using the denseness of the completion, we can

approximate terms in the completion from below and from above. We combine

the use of these approximations in order to give a syntactical description of

inequalities preserved by the construction. We note that in [GM97, Suz11,

Suz10] an alternative approach was followed to investigate property preservation

by the completion.

A part of this chapter has been submitted for publication in the form of [Mor].

6.1 The general case

Throughout this section let P = 〈P,≤〉 be a fixed poset.

6.1.1 The construction

The construction described in this section corresponds with the construction

of completions of posets with respect to polarizations [Tun74]. It also corre-

sponds with the construction of canonical extensions of bounded lattices [GH01].

Throughout this section let F and I be fixed families of non-empty subsets of P .

Let R ⊆ F × I be the relation defined by (F, I) ∈ R if, and only if, F ∩ I 6= ∅.

The polarities of R yield the Galois connection [Bir67], � : P(F) ⇄ P(I) :�,

where, for X ∈ P(F) and Λ ∈ P(I)

X� = {I ∈ I : F ∈ X implies I ∩ F 6= ∅}
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Λ� = {F ∈ F : I ∈ Λ implies F ∩ I 6= ∅}.

Then X ∈ P(F) is Galois closed if X = X�� and Λ ∈ P(I) is Galois closed if

Λ = Λ��. In [Tun74] the term ‘regular’ is used for Galois closed sets.

Let C = {X ∈ P(F) : X = X��}. For T ⊆ C let

C
∧

T =
⋂

T and

C
∨

T =
(

⋃

T
)��

,

i.e., meet is intersection and join is the Galois closure of the union. Then C =
〈

C,∨C,∧C
〉

is a complete lattice where ⊆ is the associated lattice ordering ≤C.

Definition 6.1.1. [Tun74, Definition 3] A pair (F , I) of sets of non-empty

subsets of P is called a polarization of P if:

(i) If x, y ∈ P such that x 6= y, then there exists S ∈ F ∪ I such that x ∈ S

and y /∈ S.

(ii) If F ∈ F and x /∈ F , then there exists I ∈ I such that x ∈ I and F ∩I = ∅
and, dually, if x /∈ I ∈ I then there exists F ∈ F such that x ∈ F and

I ∩ F = ∅.

For the remainder of this section we assume that (F , I) forms a polarization

of P and that C =
〈

C,∨C,∧C
〉

is the complete lattice of Galois closed sets with

respect to (F , I).

Define the map α : P → C by α(a) = {F ∈ F : a ∈ F}. Then, for each

a ∈ P the set α(a) is Galois closed, i.e., α(a) ∈ C. Furthermore, α is one-to-one.

For S ⊆ P let α(S) = {α(a) : a ∈ S}.

Lemma 6.1.2. [Tun74, Proposition 4] Let S ⊆ P . Then

(i)
∧C

α(S) = {F ∈ F : S ⊆ F}.

(ii)
∨C

α(S) = {F ∈ F : S ⊆ I ∈ I implies F ∩ I 6= ∅}. In particular, if

S ∈ I then
∨C

α(S) = {F ∈ F : F ∩ S 6= ∅}.

Analogous claims were made for bounded lattices in [GH01, Proposition 2.6].

In the sequel we omit the superscript C when denoting ∨’s and ∧’s in C and

only use it when we need to indicate which lattice is under consideration.

Definition 6.1.3. [Tun74, Definition 5] A polarization (F , I) of P is consistent

if F is a set of non-empty up-sets of P such that each principal up-set of P is

an intersection of sets in F , and, dually, I is a set of non-empty down-sets of

P such that each principal down-set of P is an intersection of sets in I.
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Then we have the following.

Theorem 6.1.4. [Tun74, Theorem 1] (C, α) is a completion of P if, and only

if, the polarization used to construct C is consistent.

Hence, if (F , I) is a consistent polarization then α is an order-embedding of

P into C. If it is necessary to specify P, we will write (C(P), αP) and C(P).

Let B = {Λ ∈ P(I) : Λ = Λ��}. We note that B =
〈

B,∨B,∧B
〉

, such

that
∨B

T =
⋂

T and
∧B

T = (
⋃

T )
��

for T ⊆ B where ≤B is ⊇, also

forms a complete lattice. If (F , I) is consistent, then γ : P → B defined by

γ(a) = {I ∈ I : a ∈ I} is an order-embedding of P into B and therefore

(B, γ) is also a completion of P. Moreover, C is order-isomorphic to B with

isomorphism ψ : X 7→ X�. As a matter of fact, in [Tun74] the construction of

(B, γ) is described. However, we prefer working with (C, α).

In [GJKO07] a slightly more restrictive condition was placed on the sets F

and I for their investigation of the above construction for the poset setting: the

families F and I of up-sets and down-sets of P, respectively, are called rich

enough if

(i) each member of F (respectively, I) is closed under existing finite meets

(respectively, joins).

(ii) F (respectively, I) contains all principal up-sets (respectively, down-sets).

In [GJKO07] the empty set is allowed to be a member of F (respectively, I) if,

and only if, P does not have a top element (respectively, bottom element). If

we assume that rich enough families of up-sets and down-sets may not include

the empty set, then any pair consisting of a rich enough family of up-sets and a

rich enough family of down-sets clearly forms a consistent polarization.

In [GJP] families of up-sets and down-sets satisfying condition (ii) above

(from [GJKO07]) are called ‘standard collections of filters’ and ‘standard col-

lections of ideals’, respectively.

If (C, α) is a completion obtained from a consistent polarization, then α need

not preserve existing meets and joins in P. In [Tun74] a polarization (F , I) is

called lattice-consistent if F = Fdp and I = Idp, i.e., the families of Doyle-

pseudo filters and ideals, respectively (see Definition 4.1.2 in Chapter 4.1); and

completely consistent if F = Fcdp and I = Icdp (see Definition 4.1.7 in Chap-

ter 4.1). The author then states in [Tun74, Proposition 6] that α preserves ex-

isting finite joins and meets if, and only if, the polarization is lattice-consistent;
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and α preserves existing joins and meets if, and only if, the polarization is

completely consistent. However, from the proof it becomes clear that a correct

definition of lattice-consistent polarization should be relaxed to only require con-

dition (i) from [GJKO07] stated above. Similarly, the definition of a completely

consistent polarization should be altered to include more families of up-sets and

down-sets. Therefore we make the following definitions.

Definition 6.1.5. A polarization (F , I) of P will be called lattice-consistent if

each member of F is closed under existing finite meets and each member of I

is closed under existing finite joins. Similarly, (F , I) will be called completely

consistent if each member of F is closed under existing arbitrary meets and each

member of I is closed under existing arbitrary joins.

Recall from Definition 4.2.8 that a set S is meet-dense in a complete lattice

A if every element in A is the meet of elements in S. Dually, a set T is said to

be join-dense in a complete lattice A if every element in A is the join of elements

in T .

Theorem 6.1.6. [Tun74, Theorem 2] Let (A, ϕ) be a completion of P where

A =
〈

A,∨A,∧A
〉

. Then there exists a consistent polarization (F , I) of P such

that (C, α), obtained from (F , I), is isomorphic to (A, ϕ) (in such a way that

the image of P is fixed by the isomorphism) if, and only if, there exist S, T ⊆ A

such that

(i) S is meet-dense in A and T is join-dense in A; and

(ii) if a ∈ S and b ∈ T such that a ≥ b, then there exists c ∈ P such that

a ≥ ϕ(c) ≥ b.

We will call a completion (A, ϕ) dense with respect to a pair of subsets (S, T )

of A, if S is meet-dense in A and T is join-dense in A. The first condition in

the theorem above can then be restated as: there exist S, T ⊆ A such that A is

dense with respect to (S, T ).

A consequence of the preceding theorem is that the completions studied in

Chapters 4 and 5 are obtainable, up to isomorphism fixing the image of P , using

the construction described in this section.

For example, let (L, ι) be the MacNeille completion of P, as described in

Chapter 5.1. Recall that ι(P ) is both join-dense and meet-dense in L. Hence,

in the notation of Theorem 6.1.6, we may set S = ι(P ) = T . Then by [Tun74,
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Corollary 1] S and T also satisfy the second condition. Moreover, if F is the set

of all principal up-sets of P and I the set of all principal down-sets of P, then

(C, α), the completion obtained from the polarization (F , I), is (isomorphic to)

the MacNeille completion of P.

For more examples the reader is referred to [Tun74, pg. 23].

Remark 6.1.7. One may now wonder whether or not every completion of a

poset is obtainable from a polarization. In [Tun74, Example 3] the author at-

tempted to address this problem by providing a counterexample. However, the

example does not appear to disprove what it was intended to disprove. For more

details on why this example does not work the reader may consult Example A.2.1

in Appendix A.2. The problem remains open.

6.1.2 Properties of the completion

Throughout this section let F be a fixed family of non-empty up-sets of P that

includes all the principal up-sets, and I a fixed family of non-empty down-

sets of P that includes all principal down-sets. Then (F , I) forms a consistent

polarization as defined above. Let (C, α) be the completion obtained from the

polarization (F , I), as described in the previous section. We write F(P) and

I(P) when it is necessary to specify P.

Lemma 6.1.8. The following holds for (C, α).

(i) ⊤ = F .

(ii) P ∈ F if, and only if, ⊥ = {P}. Moreover, P /∈ F if, and only if, ⊥ = ∅.

(iii)
∨

α(P ) = ⊤ and
∧

α(P ) = ⊥.

Proof. (i) Recall that ∅ /∈ F . If P ∈ I, then F�� = {P}� = F . If P /∈ I,

then for all J ∈ I there exists F ∈ F such that J ∩ F = ∅. Therefore,

F�� = ∅� = F . The last equality follows since the implication “I ∈ ∅
implies F ∩ I 6= ∅” is trivially true for all F ∈ F .

In either case F is Galois closed and hence ⊤ = F .

(ii) If P ∈ F , then {P}�� = I� = {P}, i.e., {P} is Galois closed. The only

proper subset of {P} is ∅, but ∅�� = I� = {P} and therefore does not

belong to C. Hence, ⊥ = {P}. The implication in the other direction is

immediate.
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Now suppose P /∈ F . Then ∅�� = I� = ∅ and ⊥ = ∅ since ∅ is the

least subset of F and it is Galois closed. Again, the implication in the

other direction is immediate.

(iii) If P ∈ I, then
∨

α(P ) = {F ∈ F : F ∩ P 6= ∅} = F = ⊤ by part (i)

and Lemma 6.1.2 (ii). If P /∈ I, then
∨

α(P ) = {F ∈ F : P ⊆ I ∈

I implies F ∩ I 6= ∅} = F = ⊤ since there is no I ∈ I such that P ⊆ I

and therefore the implication is trivially true for all F ∈ F .

If P ∈ F , then
∧

α(P ) = {F ∈ F : P ⊆ F} = {P} = ⊥ by part (ii) and

Lemma 6.1.2 (i). On the other hand, if P /∈ F , then
∧

α(P ) = {F ∈ F :

P ⊆ F} = ∅ = ⊥ again by part (ii) and Lemma 6.1.2 (i).

Following [DGP05] and [GJP] we define the closed and open elements of the

completion in terms of the elements of F and I, respectively.

Definition 6.1.9. An element Y ∈ C is called closed if Y =
∧

α(F ) for some

F ∈ F . On the other hand, an element Z ∈ C is called open if Z =
∨

α(I) for

some I ∈ I.

Let K, O and KO denote the sets of closed, open and clopen elements of C,

respectively. When necessary we will use K(P), O(P) and KO(P) to denote the

closed, open and clopen elements of C(P).

For a bounded lattice the closed and open elements of its canonical extension

are defined as the meets and joins, respectively, of the images of arbitrary subsets

of the lattice [GH01]. Since an arbitrary subset of a lattice generates both a

filter and an ideal of the lattice, on lattices our definitions of the sets of closed

and open elements will be the same as the definitions given in [GH01]. This will

be explored further in Section 6.2.

The following notion of a parametrised compactness, called internal com-

pactness in [GJKO07], was also mentioned in [GH01].

Proposition 6.1.10. The completion (C, α) is internally compact with respect

to (F , I) in the sense that it satisfies: for any S, T ⊆ P ,

∧

α(S) ≤
∨

α(T ) if, and only if, F ∩ I 6= ∅ for any F ∈ F and any I ∈ I such

that S ⊆ F and T ⊆ I.
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Proof. Let S, T ⊆ P .

Suppose
∧

α(S) ≤
∨

α(T ) for S, T ⊆ P and let G ∈ F and J ∈ I such

that S ⊆ G and T ⊆ J . Then
∧

α(G) ≤
∧

α(S) ≤
∨

α(T ) ≤
∨

α(J). That is,

{F ∈ F : G ⊆ F} ⊆ {F ∈ F : J ⊆ I ∈ I implies F ∩ I 6= ∅}. In particular,

G ∩ J 6= ∅.

Next suppose F ∩ I 6= ∅ for every F ∈ F and I ∈ I such that S ⊆ F and

T ⊆ I. Then F ∈ {F ∈ F : T ⊆ I ∈ I implies F ∩ I 6= ∅} =
∨

α(T ) and hence
∧

α(S) ≤
∨

α(T ).

In [GJP] a slightly weaker parametrised compactness is used in considering

∆1-extensions: a completion (C, α) obtained from (F , I) will be called (F , I)-

compact or parametrically compact if it satisfies:
∧

α(F ) ≤
∨

α(I) if, and only

if, F ∩ I 6= ∅. Clearly (C, α) is also parametrically compact.

Lemma 6.1.11. If Y ∈ K, then G = {a ∈ P : α(a) ≥ Y } ∈ F and Y =
∧

α(G). Similarly, if Z ∈ O, then J = {a ∈ P : α(a) ≤ Z} ∈ I and Z =
∨

α(J).

Proof. If Y ∈ K, then Y =
∧

α(G′) for some G′ ∈ F . It is immediate that

G′ ⊆ G. Let a ∈ G, then Y ≤ α(a), i.e., {F ∈ F : G′ ⊆ F} ⊆ {F ∈ F : a ∈ F}.

Then G′ ∈ α(a) and a ∈ G′. Thus, G ⊆ G′. Then G′ = G and Y =
∧

α(G).

For Z ∈ O there is some J ′ ∈ I such that Z =
∨

α(J ′). Clearly J ′ ⊆ J .

Now let a ∈ J . Then α(a) ≤ Z =
∨

α(J ′), i.e., {F ∈ F : a ∈ F} ⊆ {F ∈ F :

F ∩ J ′ 6= ∅}. Therefore, if a ∈ F , then F ∩ J ′ 6= ∅. In particular [a) ∩ J ′ 6= ∅.

Thus a ∈ J ′ and J ⊆ J ′. We conclude that J ′ = J and Z =
∨

α(J).

Lemma 6.1.12. The set KO of clopen elements of C is exactly the set α(P ).

Proof. Recall that [a) ∈ F and (a] ∈ I for every a ∈ P . If a ∈ P , then
∨

α((a]) = α(a) =
∧

α([a)) and α(a) ∈ KO. Hence, α(P ) ⊆ KO.

Next let X ∈ KO. Then there exists G ∈ F and J ∈ I such that
∧

α(G) =

X =
∨

α(J). By the internal compactness, Proposition 6.1.10, this is the case

if, and only if, G∩J 6= ∅. Let a ∈ G∩J , then α(a) ≤
∨

α(J) = X =
∧

α(G) ≤

α(a). Consequently, G = [a), J = (a] and X = α(a) ∈ α(P ). Therefore,

KO ⊆ α(P ).

This result further motivates the choice to define the closed and open el-

ements of (C, α) in terms of F and I, respectively. If we defined the closed
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and open elements of (C, α) in terms of arbitrary subsets of P instead, then

Lemma 6.1.12 would not necessarily be true — see Example 6.2.2. In Sec-

tion 6.3 we use Lemma 6.1.12 when we consider possible extensions of additional

operations.

Proposition 6.1.13. The completion (C, α) is dense with respect to the sets

of closed and open elements, i.e., every element of C is both the join of all the

closed elements below it and the meet of all the open elements above it.

Proof. We first show that X ∈ C is an up-set in F : let F ∈ X , G ∈ F such that

F ⊆ G and I ∈ X�. Then I ∩F ⊆ I ∩G, so I ∩G 6= ∅. Hence, G ∈ X�� = X .

It is immediate that
∨

{Y ∈ K : Y ≤ X} ≤ X since Y ≤ X for every

Y ∈ {Y ∈ K : Y ≤ X}. If X = ∅, then X = ⊥ by Lemma 6.1.8 (ii) and X ≤
∨

{Y ∈ K : Y ≤ X}. Now suppose X 6= ∅ and let G ∈ X . Then
∧

α(G) ≤ X

since X is an up-set in F . Furthermore, G ∈
∧

α(G) ⊆ (
⋃

{
∧

α(F ) :
∧

α(F ) ≤

X})�� =
∨

{Y ∈ K : Y ≤ X}. Hence, X ⊆
∨

{Y ∈ K : Y ≤ X}, i.e.,

X ≤
∨

{Y ∈ K : Y ≤ X}.

Since Z ≥ X for every Z ∈ {Z ∈ O : Z ≥ X} it follows that
∧

{Z ∈ O :

Z ≥ X} ≥ X . If I ∈ X�, then X ≤
∨

α(I), i.e., X ⊆ {F ∈ F : F ∩ I 6= ∅} by

Lemma 6.1.2 (ii) and thereforeX� ⊆ {I ∈ I :
∨

α(I) ≥ X}. Then, X = X�� ⊇

{I ∈ I :
∨

α(I) ≥ X}� = {F ∈ F : I ∈ I such that
∨

α(I) ≥ X implies F ∩

I 6= ∅} =
⋂

{{F ∈ F : F ∩ I 6= ∅} :
∨

α(I) ≥ X} =
∧

{Z ∈ O : Z ≥ X}.

Even though the terms ‘closed’ and ‘open’ elements were not used in [Tun74],

the above result was also shown in [Tun74, Proposition 4 (b)].

In [GH01] the term ‘canonical extension of a lattice L’ is used for a comple-

tion of L that is both dense and compact (in the sense of Definition 6.2.10). The

uniqueness of the canonical extension of a lattice, up to isomorphism, is then

proved [GH01, Proposition 2.7]. In [GJKO07, Theorem 6.2], the uniqueness, up

to isomorphism, of (C, α) is shown. In [DGP05, Theorem 2.5] the uniqueness,

up to isomorphism, of (C, α) is shown for a specific choice of F and I. We note

that the significance of this uniqueness is lessened by the fact that the notions of

compactness and denseness depend entirely on the sets F and I. That is, (C, α)

is the unique completion of P that is internally compact and dense with respect

to F and I. But, other (distinct) completions may be obtained, through the

construction described in Section 6.1.1, for different choices of F and I. These
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completions will also be internally compact and dense, but now with respect to

the new choices of F and I.

The following result was first noted in [GH01]. See [GJKO07, Theorem 6.2]

for a proof of the statement.

Proposition 6.1.14. Let S ⊆ P such that
∧

S exists in P and all F ∈ F are

closed under
∧

S, i.e., S ⊆ F implies
∧

S ∈ F . Then
∧

S is preserved by the

extension, i.e., α(
∧

S) =
∧

α(S).

Similarly, let T ⊆ P such that
∨

T exists in P and every I ∈ I is closed

under
∨

T , i.e., T ⊆ I implies
∨

T ∈ I. Then
∨

T is preserved by the extension,

i.e., α(
∨

T ) =
∨

α(T ).

This result motivates the alteration of the notions of lattice-consistent and

completely consistent polarizations to that given in Definition 6.1.5.

If F is a family of non-empty up-sets of P = 〈P,≤〉, then F is a family of

non-empty down-sets of P∂ = 〈P,≥〉. Similarly, if I is a family of non-empty

down-sets of P = 〈P,≤〉, then I is a family of non-empty up-sets of P∂ = 〈P,≥〉.

Furthermore, if (F , I) is a lattice-consistent polarization of P, then (I,F) is a

lattice-consistent polarization of P∂ . Then, the set of sets that are Galois closed

with respect to (I,F) and ≥ is exactly the set B = {Λ ∈ P(I) : Λ = Λ��} and

C(P∂) =
〈

B,∨C,∧C
〉

is the completion of P∂ obtained from the polarizaiton

(I,F) (see Section 6.1.1), where I is used as the up-sets and F as the down-

sets. As we showed earlier, C(P) is isomorphic to B(P). But, from the above,

it follows that B(P) = C(P∂)∂ . Hence, C(P)∂ is isomorphic to C(P∂), i.e., the

dual of the completion of a poset is isomorphic to the completion of its dual.

(However, one can easily find an example to show that it need not be the case

that C(P)∂ is equal to C(P∂) for some sets F and I.)

Finally we consider the product of completions. This will play a major role in

Section 6.3 where we will investigate extensions of operations defined on posets.

For example, an n-ary operation on a poset P is a map f : Pn → P .

Lemma 6.1.15. For n ∈ N and i = 1, . . . , n, let each Pi be a poset with comple-

tion (C(Pi), α
Pi). Then β :

∏n
i=1 Pi →

∏n
i=1 C(Pi) defined by β((a1, . . . , an)) =

(αP1(a1), . . . , α
Pn(an)) is an order-embedding of

∏n
i=1 Pi into

∏n
i=1 C(Pi).

Proof. Let (a1, . . . , an), (b1, . . . , bn) ∈
∏n

i=1 Pi. Then by the definition of the

coordinate-wise ordering defined on the product and since α is an order embed-

ding we have (a1, . . . , an) ≤ (b1 . . . , bn) if, and only if, ai ≤
Pi bi for i = 1, . . . , n
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if, and only if, αPi(ai) ≤ αPi(bi) for i = 1, . . . , n. That is, if, and only if,

β((a1, . . . , an)) ≤ β((b1, . . . , bn)).

6.2 Some specific cases

The reader is referred to Chapter 4.1 for the definitions of pseudo, Doyle-pseudo,

Frink and directed filters and ideals (see Definitions 4.1.1, 4.1.2, 4.1.3 and 4.1.4,

respectively).

Let ∗ ∈ {p, dp, f, d} and set F∗ = F∗\{∅} and I∗ = I∗\{∅}. Then each

F∗ is a family of non-empty up-sets of P that includes the principal up-sets

and each I∗ is a family of non-empty down-sets of P that includes the principal

down-sets. Let (C∗, α∗) be the completion obtained from (F∗, I∗) as described

in Section 6.1.1. Then results from Section 6.1.2 apply. Let ⊤∗ and ⊥∗ denote

the top and bottom elements of C∗, respectively. In general the four extensions

obtained in this way are distinct, as the following example illustrates.

Example 6.2.1. Let P′ be the poset depicted in Figure 6.1. (Note that P′

was also considered in Example 4.2.7.) Then Cd, Cf and Cpd are depicted in

Figure 6.1 with α∗(P
′) shaded. The completion Cp contains 48 elements and is

not depicted here due to its size. See Example A.2.2 in Appendix A.2 for more

details.

We note thatCd was referred to as the ‘canonical extension’ ofP in [DGP05],

while in [GJKO07] the term the ‘canonical extension’ of P was used for Cdp.

Let ∗ ∈ {p, dp, f, d} and let K∗, O∗ and KO∗ denote the sets of closed,

open and clopen elements of (C∗, α∗), respectively. By Definition 6.1.9, K∗ =

{
∧

α∗(F ) : F ∈ F∗} and O∗ = {
∨

α∗(I) : I ∈ I∗}. Furthermore, by Propo-

sitions 6.1.10 and 6.1.13 C∗ is internally compact and dense with respect to

(K∗, O∗).

Let L = 〈L,∨,∧〉 be a bounded lattice. Recall that, for ∗ ∈ {p, dp, f, d},

F∗(L) = F∗(L) = F(L) and I∗(L) = I∗(L) = I(L). We will denote the

completion of L obtained from the polarization (F(L), I(L)) by (C(L), αL) (or

simply (C, α), if L is understood). Then (C(L), αL) is the canonical extension

of L [GH01]. In the literature the sets of closed and open elements of (C(L), αL)

are often defined as the meet and join, respectively, of the image of arbitrary

subsets of L (see for instance [Jón94] and [GHV05]). Furthermore, in [GH01] it

was shown that the set of closed elements of the canonical extension of a lattice
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⊥dp

Cdp :

Fig. 6.1: The poset P′ with the complete lattices Cd,Cf and Cdp.

L forms a sublattice of C(L) and is reverse isomorphic to the lattice of its filters

F(L). Similarly, the set of open elements of C(L) forms a sublattice of C(L)

and is isomorphic to the lattice of its ideals I(L).

In [GJKO07] it was suggested that closed and open elements of the com-

pletion (C, α) of a poset, as described in Section 6.1.1, may also be defined in

terms of arbitrary subsets of the poset, regardless of the choice of F and I used.

However, if we choose to alter Definition 6.1.9 accordingly, then the set of clopen

elements of (C, α) need not be exactly α(P ). We will need KO(P) = α(P ) for

the extensions of maps considered in Section 6.3. If Definition 6.1.9 is left un-

changed, the set of closed elements is order-isomorphic to F∂ , but in general

does not form a sublattice of C. Similarly, the set of open elements is order-
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isomorphic to I, but in general does not form a sublattice of C. Consider the

following example to see why.

Example 6.2.2. Let P′ be the poset depicted in Figure 6.2 with the complete

lattices Cp, Cdp, Cf and Cd also depicted. Closed elements of (C∗, α∗), ∗ ∈

{p, dp, f, d}, are depicted by  , open elements by # and elements that are neither

open nor closed by ⊛.

If arbitrary subsets of P ′ were used in the definition of closed and open

elements, then 3 ∈ Cd would be clopen, but 3 /∈ αd(P
′).

For ∗ ∈ {p, dp, f, d}, the set of open elements of (C∗, α∗) is isomorphic to the

poset I∗, but does not form a sublattice of C∗: for all the completions 1, 2 ∈ O∗

and 1 ∧ 2 = 3, but 3 /∈ O∗. Similarly, the closed elements of (C∗, α∗) are

isomorphic to the poset F∂
∗ , but the join of closed elements need not be closed

again: 4, 5 ∈ Kd but 4 ∨ 5 = 3 /∈ Kd in Cd and 5, 6 ∈ K∗ but 5 ∨ 6 = 4 /∈ K∗ in

C∗, ∗ ∈ {p, dp, f}. Hence, the closed elements do not form a sublattice of C∗.

For more details on the completion in this example the reader is referred to

Example A.2.3 in Appendix A.2.

b b

b b

bc

bc bc

bc

bc bc

bc

*

*

*

b b

b b

bc bc

bc bc

b b

bb

b

b
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bc1 2

3 4

⊤d

⊥d

1 2

3

4 5

⊤∗

⊥∗

1 2

3

4

5 6

P′ : Cd : Cd,Cdp,Cf :

Fig. 6.2: Closed and open elements of C∗ for ∗ ∈ {p, pd, f, d}.

Lemma 6.2.3. Let εK : F → K be defined by εK(F ) =
∧

α(F ). Then εK is an

order-isomorphism between F∂ and 〈K,⊆〉. Similarly, let εO : I → O be defined

by εO(I) =
∨

α(I). Then εO is an order-isomorphism between I and 〈O,⊆〉.
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Proof. We prove the claim for εK . The claim for εO follows similarly.

Observe that εK is clearly onto by the definition of closed elements. Now

suppose εK(F ) =
∧

α(F ) =
∧

α(G) = εK(G) for some F,G ∈ F . Let a ∈ F .

Then F ∩ (a] 6= ∅ and by the internal compactness
∧

α(F ) ≤
∨

α((a]). Then
∧

α(G) ≤
∨

α((a]) and, again by the internal compactness, G∩ (a] 6= ∅. Thus,

a ∈ G and F ⊆ G. Similarly we can show that G ⊆ F by using the internal

compactness and the fact that
∧

α(F ) ≤
∧

α(G). Then F = G and εK is

one-to-one.

The above also shows that F ≤F∂

G if εK(F ) ≤ εK(G). Next suppose

F ≤F∂

G for F,G ∈ F . That is, F ⊇ G. Let F ′ ∈ F such that F ⊆ F ′. Then

G ⊆ F ′ and εK(F ) =
∧

α(F ) = {F ′ ∈ F : F ⊆ F ′} ⊆ {F ′ ∈ F : G ⊆ F ′} =
∧

α(G) = εK(G).

We conclude that it is natural for K and O to depend on F and I, respec-

tively.

Let ∗ ∈ {p, dp, f}. Recall from Lemmas 4.2.3 and 4.2.5 that an arbitrary

S ⊆ P generates both a ∗-filter and a ∗-ideal, denoted [S〉∗ and 〈S]∗. We have

the following closures for K∗ and O∗.

Lemma 6.2.4. Let ∗ ∈ {p, dp, f}. Then K∗ is closed under meets, i.e., the

meet of closed elements is again a closed element; and O∗ is closed under joins,

i.e., the join of open elements is again an open element.

Proof. Let Fi ∈ F for i ∈ Ψ. Then,

∧

i∈Ψ

(

∧

α(Fi)
)

=
⋂

i∈Ψ

{F ∈ F : Fi ⊆ F}

={F ∈ F : Fi ⊆ F for all i ∈ Ψ}

=

{

F ∈ F :

(

⋃

i∈Ψ

Fi

)

⊆ F

}

=

{

F ∈ F :

[

⋃

i∈Ψ

Fi

〉

∗

⊆ F

}

=
∧

α

([

⋃

i∈Ψ

Fi

〉

∗

)

∈ K.

Similarly we can show that for Ij ∈ I, j ∈ Φ, we have
∨

j∈Φ (
∨

α(Ij)) =
∨

α
(〈

⋃

j∈Φ Ij

]

∗

)

∈ O.
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Proposition 6.2.5. Let ∗ ∈ {p, dp, f}. If S ⊆ P , then
∨

α∗(S) =
∨

α∗(〈S]∗)

and
∧

α∗(S) =
∧

α∗([S〉∗).

Proof. By Lemma 6.1.2 (ii)
∨

α∗(S) = {F ∈ F∗ : S ⊆ I ∈ I∗ implies F∩I 6= ∅}

and
∨

α∗(〈S]∗) = {F ∈ F∗ : F ∩ 〈S]∗ 6= ∅}. Then, F ∈
∨

α∗(〈S]∗) if, and only

if, F ∩
⋂

{I ∈ I∗ : S ⊆ I} 6= ∅ if, and only if, S ⊆ I ∈ I∗ implies F ∩ I 6= ∅ if,

and only if, F ∈
∨

α∗(S). Hence,
∨

α∗(S) =
∨

α∗(〈S]∗).

By Lemma 6.1.2 (i),
∧

α∗(S) = {F ∈ F∗ : S ⊆ F} and
∧

α∗([S〉∗) = {F ∈

F∗ : [S〉∗ ⊆ F}. Let F ∈ F∗ such that [S〉∗ ⊆ F . Then S ⊆ [S〉∗ ⊆ F and

F ∈
∧

α∗(S). On the other hand, since [S〉∗ =
⋂

{F ∈ F∗ : S ⊆ F} we have

that [S〉∗ ⊆ F for each F ∈
∧

α∗(S) and
∧

α∗([S〉∗) ⊆
∧

α∗(S).

A consequence of the above is that the sets of closed and open elements of

(C∗, α∗), ∗ ∈ {p, dp, f}, can indeed be defined in terms of arbitrary subsets of

the poset.

Corollary 6.2.6. Let ∗ ∈ {p, dp, f}, then K∗ = {
∧

α∗(S) : S ⊆ P} and O∗ =

{
∨

α∗(T ) : T ⊆ P}.

On the other hand, recall from Example 4.2.10 that an arbitrary subset of

P need not generate a directed filter or a directed ideal. In fact, the notion of

a directed filter or ideal being generated only makes sense if we begin with a

directed set (see Lemma 4.2.11). Then, by Lemmas 4.2.11 and 6.1.2 (i) and (ii),

we have the following for Cd.

Proposition 6.2.7. Let D ⊆ P be down-directed and U ⊆ P up-directed, then
∧

αd(D) =
∧

αd([D)) and
∨

αd(U) =
∨

αd((U ]).

The elements of Kd and Od can therefore be described in terms of arbitrary

directed sets.

Corollary 6.2.8. Let X,Y ∈ Cd. Then X ∈ Kd if, and only if, X =
∧

αd(D)

for some down-directed D ⊆ P . Also, Y ∈ Od if, and only if, Y =
∨

αd(U) for

some up-directed U ⊆ P .

In [DGP05] ‘compactness’ of (Cd, αd) is defined as follows: (Cd, αd) is com-

pact provided that whenever D ⊆ P is non-empty and down-directed, U ⊆ P

is non-empty and up-directed and
∧

αd(D) ≤
∨

αd(U), then there exist a ∈ D

and b ∈ U with a ≤P b. This notion of compactness is implied by the internal

compactness of (Cd, αd).
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Lemma 6.2.9. If D ⊆ P is non-empty and down-directed, U ⊆ P is non-empty

and up-directed and
∧

αd(D) ≤
∨

αd(U), then there exist a ∈ D and b ∈ U with

a ≤P b.

Proof. Suppose D,U ⊆ P are both non-empty with D down-directed, U up-

directed and
∧

αd(D) ≤
∨

αd(U). Then, F ∩ I 6= ∅ for all F ∈ Fd with D ⊆ F

and all I ∈ Id with U ⊆ I by the internal compactness. By Lemma 4.2.11 it

then follows that [D) ∈ Fd, (U ] ∈ Id and [D) ∩ (U ] 6= ∅. Let c ∈ [D) ∩ (U ],

then a = c ≤P c = b.

In [GH01] the following stronger notion of compactness is defined.

Definition 6.2.10. A completion (C, α) is called compact if for any Y ⊆ K

and any Z ⊆ O it satisfies:

∧

Y ≤
∨

Z if, and only if,

there exist Y0 ⊆fin Y and Z0 ⊆fin Z such that
∧

Y0 ≤
∨

Z0.

In general, it is not the case that (C, α) is compact. In [GH01] it was observed

that this stronger notion of compactness is not a property of the complete lattice

C, but rather of (C, α) since the sets K and O depend on α, F and I. Hence,

this form of compactness is also indirectly parametrised by F and I. That is

to say, the sets Y and Z of closed and open elements cannot be replaced by

arbitrary subsets of C.

For certain choices of F and I the completion (C, α) will be compact. In

particular, we will show that (C∗, α∗) is compact for ∗ ∈ {p, dp, f}.

We will need the following to prove compactness.

Lemma 6.2.11. Let ∗ ∈ {p, dp, f} and S ⊆ P . If a ∈ [S〉∗, then there exists

M ⊆fin S such that a ∈ [M〉∗.

Proof. Recall from Lemma 4.2.3 that [S〉dp =
⋃

i∈N
Si where S0 = S and Si+1 =

[{
∧

M : ∅ 6=M ⊆fin S and
∧

M exists}). If a ∈ S0 = S, then {a} ⊆fin S and

a ∈ [a). For 1 ≤ j ∈ N, suppose that if b ∈ Sj, then there exists M ⊆fin S

such that b ∈ [M〉dp. Let a ∈ Sj+1. Then a ≥
∧

N for some N ⊆fin Sj

such that
∧

N exists. Suppose N = {b1, . . . , bn}. Then, by the inductive

hypothesis, there exists Mi ⊆
fin S such that bi ∈ [Mi〉dp for i = 1, . . . , n. Now

let M =
⋃n

i=1Mi ⊆
fin S. Then N ⊆fin [M〉dp and therefore a ∈ [M〉dp.

The proof of the statement for pseudo filters is similar.
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Next recall from Lemma 4.2.5 that [S〉f =
⋃

{M ℓu : M ⊆fin S}. Let

a ∈ [S〉f . Then there exists M ⊆fin S such that a ∈ M ℓu and therefore

a ∈ [M〉f .

The dual statements for generated ∗-ideals also hold.

Proposition 6.2.12. Let ∗ ∈ {p, dp, f}, then (C∗, α∗) is compact.

Proof. Let Y ⊆ K∗ and Z ⊆ O∗.

The backward implication is immediate. If there exist Y0 ⊆fin Y and

Z0 ⊆fin Z such that
∧

Y0 ≤
∨

Z0, then
∧

Y ≤
∧

Y0 ≤
∨

Z0 ≤
∨

Z.

To prove the implication in the other direction, suppose that
∧

Y ≤
∨

Z.

Furthermore, let G ⊆ F∗ such that Y = {
∧

α∗(G) : G ∈ G} and J ⊆ I∗ such

that Z = {
∨

α∗(J) : J ∈ J }. Then, by Lemma 6.2.4,

∧

Y =
∧

{

∧

α∗(G) : G ∈ G
}

=
∧

α∗

([

⋃

G
〉

∗

)

.

Similarly,

∨

Z =
∨

{

∨

α∗(J) : J ∈ J
}

=
∨

α∗

(〈

⋃

J
]

∗

)

.

By the internal compactness [
⋃

G〉∗∩〈
⋃

J ]∗ 6= ∅. Let c ∈ [
⋃

G〉∗∩〈
⋃

J ]∗, then

by Lemma 6.2.11 there exist sets M ⊆fin
⋃

G and N ⊆fin
⋃

J such that c ∈

[M〉∗ and c ∈ 〈N ]∗, i.e., c ∈ [M〉∗∩〈N ]∗ and
∧

α∗([M〉∗) ≤ α∗(c) ≤
∨

α∗(〈N ]∗).

For each a ∈M , let Ga ∈ G such that a ∈ Ga. Then,
∧

α∗(Ga) ≤ α∗(a) for

each a ∈M and

∧

{

∧

α∗(Ga) : a ∈M
}

≤
∧

α∗(M) =
∧

α∗([M〉∗).

Similarly, for each b ∈ N , let Jb ∈ J such that b ∈ Jb. Then,
∨

α∗(Jb) ≥ α∗(b)

for each b ∈ N and

∨

α∗(〈N ]∗) =
∨

α∗(N) ≤
∨

{

∨

α∗(Jb) : b ∈ N
}

.

Let Y0 = {
∧

α∗(Ga) : a ∈M} and Z0 = {
∨

e∗(Jb) : b ∈ N}. Then
∧

Y0 ≤
∨

Z0.

In [GJKO07, Lemma 6.3] it is stated that (Cdp, αdp) is compact and in

the paragraph preceding Lemma 6.3 it is claimed that (Cdp, αdp) is the only

completion for which internal compactness implies compactness. From the above
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it can be seen that (Cdp, αdp) is not the only compact completion of P, nor is

it the only one for which internal compactness implies compactness.1

In [GJP] it is shown that certain ∆1-completions of a poset are compact by

giving a number of sufficient conditions for compactness. If ∗ ∈ {p, dp, f}, then

(C∗, α∗) satisfies those sufficient conditions and compactness of (C∗, α∗) can

also be established via their result.

Let ∗ ∈ {dp, f, d}. Recall from Remark 4.1.5 that the members of F∗ are

closed under existing finite meets, while the members of I∗ are closed under

existing finite joins. The polarization (F∗, I∗) is therefore lattice-consistent as

per Definition 6.1.5 and rich enough in the sense of [GJKO07] (though always

excluding the empty set). The members of Fp and Ip are closed under existing

binary meets and joins, respectively. Combining this with Proposition 6.1.14

gives the following.

Corollary 6.2.13. If ∗ ∈ {dp, f, d}, then (C∗, α∗) preserves all existing finite

meets and joins, while (Cp, αp) preserves all existing binary meets and joins.

Finally, for n ∈ N and i = 1, . . . , n, let each Pi be a poset and let ∗ ∈

{p, dp, f, d}. Then β∗ :
∏n

i=1 Pi →
∏n

i=1 C∗(Pi), defined by β∗((a1, . . . , an)) =

(αP1

∗ (a1), . . . , α
Pn
∗ (an)), is the order-embedding of

∏n
i=1 Pi into

∏n
i=1 C∗(Pi).

In [DGP05, Theorem 2.8] it is claimed that the completion commutes with

products, i.e., Cd(
∏n

i=1 Pi) =
∏n

i=1 Cd(Pi), up to isomorphism. Similarly,

it is claimed in [GJKO07, Corollary 6.9] that Cdp(
∏n

i=1 Pi) is isomorphic to
∏n

i=1 Cdp(Pi). However, the following example serves as a counterexample to

both these claims. In general it is not necessarily the case that C(
∏n

i=1 Pi) is

isomorphic to
∏n

i=1 C(Pi).

Example 6.2.14. Let P′ be the 2-element anti-chain, then P′ × P′ is the 4-

element anti-chain. For ∗ ∈ {p, pd, f, d}, the completion C∗(P
′) has 4 elements,

as depicted in Figure 6.3, and hence C∗(P
′)×C∗(P

′) has 16 elements. On the

other hand, the completion C∗(P
′ × P′), for ∗ ∈ {f, d}, has only 6 elements.

1 We note that [GJKO07, Lemma 6.3] states the equivalence of the compactness and the

internal compactness of (Cdp, αdp) with a third statement. However, in the poset setting,

this third statement need not be equivalent to the compactness nor the internal compactness

of (Cdp, αdp) — it relies on the existence of meets and joins that in fact need not exist in

the poset. On the other hand, in [GH01, Lemma 2.4] the claim was proved for the canonical

extension of a lattice.
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Moreover, if ∗ ∈ {p, dp} then C∗(P
′ ×P′) has far more than 16 elements. See

Example A.2.4 in Appendix A.2 for more details.

P′:
t
1

t
2

P′ ×P′:
t

(1, 1)
t

(1, 2)
t

(2, 1)
t

(2, 2)

C∗(P′) :

t⊤∗

tα∗(1) tα∗(2)

t
⊥∗

�
��

@
@@

�
��

@
@@

C∗(P′)×C∗(P′): t

t t t t

t t t t t

t t t

t t
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C∗(P′ ×P′), ∗ ∈ {f, d}: t⊤∗

tα∗((1, 1)) tα∗((1, 2)) tα∗((2, 1)) tα∗((2, 2))

t
⊥∗

����������

XXXXXXXXXX
�

��
@
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XXXXXXXXXX

����������

@
@@

�
��

Fig. 6.3: The construction generally does not commute with products.

Let P1 and P2 be bounded posets. We note that in [GJP] it is shown

that if F∗(P1 × P2) = F∗(P1) × F∗(P2), then C∗(P1 × P2) is isomorphic to

C∗(P1) ×C∗(P2). However, the boundedness is crucial for the implication to

be true. In [GJP] the authors also provide the example above to show that even

though Fd(P×P) = Fd(P)×Fd(P), the construction does not commute with

products. We note that in the case of bounded latticesC(
∏n

i=1 Li) is isomorphic

to
∏n

i=1 C(Li), [GH01]. This lack of commutativity of the construction of the

completion and products of posets will have an impact on the extension of n-ary

operations.

For the remainder of this section we examine the choice we made at the start

of this chapter to exclude the empty set from the sets that form polarizations.
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We will show that nothing is gained by allowing the empty set.

In [GJKO07] the empty set is included in a rich enough family of up-sets (re-

spectively, down-sets), F (respectively, I), if P does not have a top (respectively,

bottom) element. However, following [Tun74] we require that the members of

both F and I be non-empty. By definition ∅ /∈ Fd. However, recall if P does

not have a top element, then ∅ ∈ F∗ for ∗ ∈ {p, dp, f}; and if P does not have a

bottom element, then ∅ ∈ I∗ for ∗ ∈ {p, dp, f}. One may now wonder why we

choose to exclude the empty set and what would happen if we included it. We

will show that the complete lattice obtained from (F∗, I∗) has up to two more

elements than the complete lattice obtained from (F∗, I∗). There will be a new

top element (above the top element of C∗) if P does not have a top element and

a new bottom element (below the bottom element of C∗) if P does not have a

bottom element.

We introduce the following notation. Let ∗ ∈ {p, dp, f}, R∗ ⊆ F∗ × I∗ be

defined by (F, I) ∈ R∗ if and only if F ∩ I 6= ∅ and let the polarities of R∗ be

denoted by
◮ : P(F∗) ⇄ P(I∗) :◭

where, for X ∈ P(F∗) and Λ ∈ P(I∗) we have

X◮ = {I ∈ I∗ : F ∈ X implies I ∩ F 6= ∅}

Λ◭ = {F ∈ F∗ : I ∈ Λ implies F ∩ I 6= ∅}.

Let C∗ = {X ∈ P(F∗) : X = X◮◭} and C∗ = 〈C∗,∨,∧〉 where meet is intersec-

tion, join the Galois closure of the union and ⊆ the associated lattice ordering.

Define the map α∗ : P → C∗ by α∗(a) = {F ∈ F∗ : a ∈ F} for all a ∈ P . Then

the map α∗ is an order-embedding of P into C∗.

Lemma 6.2.15. Let ∗ ∈ {p, dp, f} and X ∈ P(F∗). Then, X ∈ C∗, i.e.,

X = X�� if, and only if, X = X◮◭. In particular, {P}◮◭ = {P}�� = {P}

and F◮◭

∗ = F��

∗ = F∗.

Next let X ∈ P(F∗). If X = X◮◭ such that ∅ ∈ X, then P does not have a

top element and X = F∗. If ∅ = ∅◮◭, then P does not have a bottom element

and ∅ ∈ I∗.

Proof. Let X ∈ P(F∗) such that X 6= ∅. Notice that ∅ /∈ X◮ since X 6= ∅
and ∅ ∩ F = ∅ for all F ∈ X . Then I ∈ X� if, and only if, I ∩ F 6= ∅ for all

F ∈ X if, and only if, I ∈ X◮. Thus, X� = X◮. Furthermore, X� = X◮ 6= ∅
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since P ∈ I∗ such that P ∩F 6= ∅ for all F ∈ X . Now ∅ /∈ X◮◭ since X◮ 6= ∅
and ∅ ∩ I = ∅ for all I ∈ X◮. Then, F ∈ X�� if, and only if, F ∩ I 6= ∅ for

all I ∈ X� = X◮ if, and only if, F ∈ X◮◭. Therefore, X�� = X◮◭.

By Lemma 6.1.8 (ii) we have that ⊥∗ = {P}, since P ∈ F∗. Therefore, if

X ∈ C∗, then X 6= ∅. Thus we may conclude that X ∈ C∗ if, and only if,

X = X◮◭.

Now let X ∈ P(F∗) such that X = X◮◭ and ∅ ∈ X . Then ∅ ∈ F∗ and

it follows from the definition of ∗-filters that P does not have a top element.

Furthermore, X◮ = ∅ since no ideal can have a non-empty intersection with

∅. Then, X◮◭ = ∅◭ = F∗.

Lastly suppose ∅ = ∅◮◭. But ∅◮ = I∗ which implies that (I∗)◭ = ∅.

This is only the case if P ∩ I = ∅ for some I ∈ I∗. That can only be true

for I = ∅. Then ∅ ∈ I∗ and P has no bottom element by the definition of

∗-ideals.

The following example now illustrates the difference between C∗ and C∗.

Example 6.2.16. Let P′ be the 2-element anti-chain depicted in Figure 6.4.

Then F∗ = I∗ = {∅, {1}, {2}, {1, 2}} and F∗ = I∗ = {{1}, {2}, {1, 2}} for

∗ ∈ {p, dp, f}. Then C∗ is the completion obtained from (F∗, I∗), while C∗ is

the completion obtained from (F∗, I∗).

b b

b b

b b

bc

bc

bc

bc

bc

bc

P′ : C∗ : C∗ :

1 2

{{1}, {1, 2}} {{2}, {1, 2}}

{{1}, {1, 2}} {{2}, {1, 2}}

{{1}, {2}, {1, 2}}

{{1}, {2}, {1, 2}}

{∅, {1}, {2}, {1, 2}}

{{1, 2}}

{{1, 2}}

∅

Fig. 6.4: Using F∗ and I∗ in the construction.

It should be clear that nothing is really gained by using F∗ and I∗ instead
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of F∗ and I∗. This further justifies our choice to exclude the empty set from

families of up-sets and down-sets used to form polarizations.

6.3 Extensions of maps

6.3.1 Unary maps

Throughout this section let the posets P =
〈

P,≤P
〉

and Q =
〈

Q,≤Q
〉

be fixed.

Let f : P → Q be an arbitrary map between P and Q. We wish to extend f

to a map f∗ from C∗(P) to C∗(Q). Following [GJ00] and [GH01], we have the

following two ways of naturally extending a unary map f , since (C∗(P), αP
∗ ) is

dense.

Definition 6.3.1. For f : P → Q, define fσ
∗ , f

π
∗ : C∗(P) → C∗(Q) by

fσ
∗ (X) =

∨

{

∧

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a) ≤ Z} :

Y ∈ K∗(P), Z ∈ O∗(P), Y ≤ X ≤ Z
}

fπ
∗ (X) =

∧

{

∨

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a) ≤ Z} :

Y ∈ K∗(P), Z ∈ O∗(P), Y ≤ X ≤ Z
}

.

The results in this section are closely related to the results obtained in [GH01]

for bounded lattices. However, some statements that are true for bounded

lattices do not hold in the more general poset setting.

Lemma 6.3.2. Let f : P → Q. Then fσ
∗ and fπ

∗ both extend f , i.e., fσ
∗ (α

P
∗ (b)) =

αQ
∗ (f(b)) = fπ

∗ (α
P
∗ (b)), for b ∈ P .

The proof is straightforward and relies on Lemma 6.1.12, i.e., the fact that

KO∗(P) = αP
∗ (P ).

In the case of bounded lattices fσ ≤ fπ under the point-wise order [GH01,

Lemma 4.2]. However, as illustrated by the following example, this need not

be the case in the poset setting if f : P → Q is not order-preserving. This

contradicts [GJKO07, Lemma 6.7].

Example 6.3.3. Let P′ be the poset depicted in Figure 6.5, and let f : P ′ → P ′

be defined by f(1) = f(3) = 3 and f(2) = f(4) = 4. Then, fσ
d (X) =

∨

{3, 4,⊥d} = X, while fπ
d (X) =

∧

{X, 3, 4} = ⊥d. Furthermore, fσ
∗ (X1) =
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∨

{3, 4,⊥∗} = X2, while f
π
∗ (X1) =

∧

{X2, 3, 4} = ⊥∗, for ∗ ∈ {p, dp, f}. The

reader is referred to Example A.2.3 in Appendix A.2 for details on the comple-

tions.

f(1)

hK
f(3)

f(2)

hY
f(4)

w /

b b

b b

bc

bc bc

bc

bc bc

bc

*

*

*

b b

b b

bc bc

bc bc

b b

bb

b

b

bc

bc1 2

3 4

⊤d

⊥d = fπ
d
(X)

1 2

X = fσ
d
(X)

3 4

⊤∗

⊥ = fπ
∗
(X1)

1 2

X1

X2 = fσ
∗
(X1)

4 5

P′ : Cd : Cp,Cdp,Cf :

Fig. 6.5: fσ
∗ need not be less than fπ

∗ .

If P does not have a top element, then it may be the case that P /∈ Id.

If P /∈ Id, then it follows from Lemmas 6.1.8 (iii) and 6.1.11 that ⊤d /∈ Od.

Then fσ
d (⊤d) =

∨

∅ = ⊥d and fπ
d (⊤d) =

∧

∅ = ⊤d, regardless of the definition

of f . If P does not have a bottom element, then we may have that P /∈ Fd.

Again by Lemmas 6.1.8 (iii) and 6.1.11, P /∈ Fd implies that ⊥d /∈ Kd and

consequently fσ
d (⊥d) =

∨

∅ = ⊥d, while f
π
d (⊥d) =

∧

∅ = ⊤d, regardless of

f ’s definition. Therefore, unless P has a top and a bottom element, fσ
d and fπ

d

need not be order-preserving when f is. Since we would prefer an extension of

an order-preserving map to be order-preserving, we redefine fσ
d and fπ

d when f

is order-preserving. The definition below was used in [DGP05] for the extension

of order-preserving maps.

Definition 6.3.4. Let f : P → Q be order-preserving. Then define fσ
d , f

π
d :

Cd(P) → Cd(Q) by

fσ
d (X) =

∨

{

∧

{αQ
d (f(a)) : a ∈ P, Y ≤ αP

d (a)} : X ≥ Y ∈ Kd(P)
}

fπ
d (X) =

∧

{

∨

{αQ
d (f(a)) : a ∈ P, αP

d (a) ≤ Z} : X ≤ Z ∈ Od(P)
}

.
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In [DGP05] it was shown that both fσ
d and fπ

∗ are extensions of f and are

order-preserving when f is.

For ∗ ∈ {p, dp, f} we need not redefine fσ
∗ and fπ

∗ , since we have the following

simplifications.

Lemma 6.3.5. If ∗ ∈ {p, dp, f} and f : P → Q is order-preserving, then

fσ
∗ (X) =

∨

{

∧

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a)} : X ≥ Y ∈ K∗(P)
}

fπ
∗ (X) =

∧

{

∨

{αQ
∗ (f(a)) : a ∈ P, αP

∗ (a) ≤ Z} : X ≤ Z ∈ O∗(P)
}

.

These simplifications are straightforward and the proofs are omitted.

We will need the following to prove Lemma 6.3.7 (iv) for fσ
d and fπ

d . It was

noted in [DGP05].

Lemma 6.3.6. Let f : P → Q be order-preserving, F ∈ Fd and I ∈ Id. Then,

f(F ) is down-directed and f(I) is up-directed.

Lemma 6.3.7. Let ∗ ∈ {p, dp, f, d}. Let f : P → Q be order-preserving. Then:

(i) fσ
∗ and fπ

∗ are order-preserving.

(ii) fσ
∗ ≤ fπ

∗ under the point-wise ordering.

(iii) We have the following simplifications

(a) fσ
∗ (Y ) =

∧

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a)} for all Y ∈ K∗(P).

(b) fσ
∗ (X) =

∨

{fσ
∗ (Y ) : X ≥ Y ∈ K∗(P)} for all X ∈ C∗(P).

(c) fπ
∗ (Z) =

∨

{αQ
∗ (f(a)) : a ∈ P,Z ≥ αP

∗ (a)} for all Z ∈ O∗(P).

(d) fπ
∗ (X) =

∧

{fσ
∗ (Z) : X ≤ Z ∈ O∗(P)} for all X ∈ C∗(P).

(iv) fσ
∗ = fπ

∗ on K∗(P) ∪O∗(P). Moreover, fσ
∗ (K∗(P)) ⊆ K∗(Q),

fπ
∗ (K∗(P)) ⊆ K∗(Q), fσ

∗ (O∗(P)) ⊆ O∗(Q) and fπ
∗ (O∗(P)) ⊆ O∗(Q).

Proof. The proofs of parts (i) to (iii) are similar to those of the analogous claims

for bounded lattices [GH01]. We prove (iv) since we need to consider the case

where ∗ is d separately.

(iv) Let Y ∈ K∗(P). Then fσ
∗ (Y ) ≤ fπ

∗ (Y ) by part (ii). Let a ∈ P such

that Y ≤ αP
∗ (a). Then, by Lemma 6.1.12, αP

∗ (a) ∈ O∗(P) and therefore
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{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a)} ⊆ {fπ
∗ (Z) : Y ≤ Z ∈ O∗(P)}. Then, by

part (iii) (d), fπ
∗ (Y ) ≤ fσ

∗ (Y ).

The proof that fσ
∗ = fπ

∗ on O∗(P) is similar.

Let ∗ ∈ {p, dp, f}. Then it follows immediately from Corollary 6.2.6 that

fπ
∗ (Y ) = fσ

∗ (Y ) ∈ K∗(Q) for Y ∈ K∗(P) and fσ
∗ (Z) = fπ

∗ (Z) ∈ O∗(Q)

for Z ∈ O∗(P).

If ∗ is d, then, by Lemma 6.1.11, G = {a ∈ P : Y ≤ αP
d (a)} ∈ Fd(P)

for Y ∈ Kd(P). Then f(G) is down-directed by Lemma 6.3.6. Finally, by

Corollary 6.2.8 it follows that
∧

αQ
d (f(G)) ∈ Kd(Q). But

∧

αQ
d (f(G)) =

fσ
∗ (Y ) (= fπ

∗ (Y ) by the above). Similarly, one can show that fπ
∗ (Z)(=

fσ
∗ (Z) by the above) ∈ Od(Q) for Z ∈ Od(P).

We now consider the extension of operators defined on P to C∗. Observe

that if f is an operator, then f is order-preserving. The simplifications from

Lemma 6.3.7 therefore apply.

In the case of bounded lattices, fσ and fπ are complete operators when

f is an operator. Furthermore, if f is a dual operator, then fσ and fπ are

complete dual operators [GH01, Corollary 4.7]. In the next two examples we

illustrate that, for ∗ ∈ {dp, f, d}, fσ
∗ need not be a (complete) operator when f

is an operator. Dually, fπ
∗ need not be a (complete) dual operator when f is a

dual operator. We no longer consider the completion (Cp, αp) since it does not

preserve all existing finite meets and joins (Corollary 6.2.13).

Example 6.3.8. Let P′ be the 3-element anti-chain, depicted in Figure 6.6, with

f : P ′ → P ′ defined by f(1) = 2, f(2) = 2 and f(3) = 3. Then, f distributes

over all existing joins since no non-trivial joins exist in P′. However, fσ
∗ (α∗(1)∨

α∗(2)) = ⊤∗ 6= α∗(2) = fσ
∗ (α∗(1)) ∨ f

σ
∗ (α∗(2)), for ∗ ∈ {f, d}. Therefore, fσ

∗

does not distribute over finite joins. See Example A.2.5 in Appendix A.2 for

more details.

We note that C∗(P
′), ∗ ∈ {f, d}, from Example 6.3.8 is isomorphic to F∗(P

′)

in Example 4.3.4. Therefore, by the argument in Remark 4.3.5, there is no way

to extend f to an operator on C∗(P
′). However, f may be extended to an

operator on other completions of P′.



6. Canonical extensions 111

-
f K

f
K
f

hh

P′:

u1 u2 u3

C∗:

u
⊥∗

uα∗(1) uα∗(2) uα∗(3)

u⊤∗

HHHHHH

������
HHHHHH

������

Fig. 6.6: fσ
∗ , ∗ ∈ {f, d}, need not be an operator when f is.

Remark 6.3.9. Let P′ be the poset from Example 6.3.8 with operator f defined

on P ′. Then fσ
dp is an operator on Cdp(P

′). See Example A.2.5 in Appendix A.2

for more details.

In [GJKO07, Lemma 6.12] it is claimed that if f is an operator, then fσ
dp is a

complete operator. Furthermore, it is also claimed that if f is a dual operator,

then fπ
dp is a complete dual operator. The following example contradicts these

claims.

Example 6.3.10. Let P′ and Q′ be the posets depicted in Figure 6.7 and let

f : P ′ → Q′ be the map defined by f(a) = a for a = 1, . . . , 7. Then f distributes

over all existing joins. Due to their sizes, diagrams for Cdp(P
′) and Cdp(Q

′)

are not depicted here.

Now let X1 =
∧

αP′

dp({1, 2}) and X2 = αP′

dp(4). Then X1 ∨ X2 = (X1 ∪

X2)
�� = {I ∈ Idp(P

′) : 4 ∈ I and (1 ∈ I or 2 ∈ I)}� = Fdp(P
′) − {{1}, {2}}.

But then αP′

dp(3) ⊆ X1 ∨ X2 and since fσ
dp is order-preserving, fσ

dp(α
P′

dp(3)) ≤

fσ
dp(X1 ∨X2). That is, fσ

dp(X1 ∨X2) ≥ αQ′

dp (3) ∈ Kdp(Q
′).

On the other hand, since {1, 2} ∈ Fdp(P
′), we have X1 ∈ Kdp(P

′) and

fσ
dp(X1) = αQ′

dp (f(1))∧α
Q′

dp (f(2)) = αQ′

dp (1)∧α
Q′

dp (2) = αQ′

dp (8). Also, fσ
dp(X2) =

αQ′

dp (4). Then, f
σ
dp(X1)∨f

σ
dp(X2) = αQ′

dp (8)∨α
Q′

dp (4) = {F ∈ Fdp(Q
′) : 8 ∈ F or

4 ∈ F}��. In particular, {4, 7, 8} ∈ {F ∈ Fdp(Q′) : 8 ∈ F or 4 ∈ F}�, but

{3} ∩ {4, 7, 8} = ∅ and therefore {3} /∈ αQ′

dp (8) ∨ αQ′

dp (4). Thus, αQ′

dp (3) �
fσ
dp(X1) ∨ f

σ
dp(X2).

By the denseness of Cdp(Q
′) it then follows that fσ

dp(X1) ∨ f
σ
dp(X2) 6=

fσ
dp(X1 ∨X2). That is, the extension fσ

dp does not distribute over finite joins.

In [Suz11] a more restrictive notion of distribution over joins was defined. A
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Fig. 6.7: fσ
dp need not be an operator when f is.

map f : P → Q will be called ‘join-preserving’ if it satisfies: for all a1, a2 ∈ P

and each c ∈ Q satisfying f(a1) ≤ c and f(a2) ≤ c, there exists b ∈ P such that

a1 ≤ b, a2 ≤ b and f(b) ≤ c. We note that the map f defined in Example 6.3.10

satisfies this definition of ‘join-preservation’. Hence, fσ
dp need not be an operator

even if f satisfies the more restrictive join-preservation property.

Next we focus our attention on residuated operators. We ask the questions:

Is fσ
∗ residuated when f is? If so, can we describe its residual? For ∗ ∈ {dp, f, d},

we will show that if g is f ’s residual then fσ
∗ is residuated when f is and that

gπ∗ is its residual.

Lemma 6.3.11. Let f : P → Q be residuated with residual g : Q → P . Let

G ∈ Fdp(P) and J ∈ Idp(Q). Then

[f(G)〉dp ∩ J 6= ∅ ⇐⇒ G ∩ 〈g(J)]dp 6= ∅.

Proof. Let c ∈ [f(G)〉dp ∩ J . Clearly g(c) ∈ 〈g(J)]dp. We show by induction

that g(c) ∈ G. Recall that [f(G)〉dp =
⋃

i∈N
Si where S0 = f(G) and Si+1 =

[{
∧

M : ∅ 6=M ⊆fin Si such that
∧

M exists
})

.

If c ∈ S0 then c = f(a) for some a ∈ G. Then, by residuation, f(a) ≤ c

implies that a ≤ g(c). Since G ∈ Fdp(P), it follows that g(c) ∈ G.

Suppose that d ∈ Si implies that g(d) ∈ G. Let c ∈ Si+1, i.e.,
∧

M ≤ c for

some M ⊆fin Si such that
∧

M exists. Then g(
∧

M) ≤ g(c). By Lemma 2.5.2

it follows that
∧

g(M) exists and
∧

g(M) = g(
∧

M). Thus,
∧

g(M) ≤ g(c). By

the inductive hypothesis g(d) ∈ G for every d ∈M . But G ∈ Fdp(P ), therefore
∧

g(M) ∈ G and hence g(c) ∈ G. Then, g(c) ∈ G ∩ 〈g(J)]dp.

The implication in the other direction follows similarly.

Lemma 6.3.12. Let f : P → Q be residuated with residual g : Q → P . Let

G ∈ Ff (P) and J ∈ If (Q). Then

[f(G)〉f ∩ J 6= ∅ ⇐⇒ G ∩ 〈g(J)]f 6= ∅.
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Proof. We begin by showing that g(f(M)ℓ)u ⊆ g(f(M ℓ))u for anyM ⊆fin G. If

M ℓ = ∅, then g(f(∅))u = g(∅)u = ∅u = P . Hence, g(f(M)ℓ)u ⊆ g(f(M ℓ))u.

Now suppose M ℓ 6= ∅ and let b ∈ M ℓ. Then for every a ∈ M , b ≤ a and

therefore f(b) ≤ f(a). Thus, f(b) ∈ f(M)ℓ and f(M ℓ) ⊆ f(M)ℓ. But then

g(f(M ℓ)) ⊆ g(f(M)ℓ) and hence g(f(M)ℓ)u ⊆ g(f(M ℓ))u.

Next we show that g(f(M ℓ))u ⊆ G for any M ⊆fin G. Let d ∈ g(f(M ℓ))u,

then d ≥ g(f(a)) for every a ∈ M ℓ. By residuation, g(f(a)) ≥ a for every

a ∈ M ℓ. Then, d ≥ a for every a ∈ M ℓ and d ∈ M ℓu. Hence, g(f(M ℓ))u ⊆

M ℓu ⊆ G since G ∈ Ff (P).

Now let c ∈ [f(G)〉f ∩ J . Then, g(c) ∈ 〈g(J)]f is immediate. It remains

to show that g(c) ∈ G. Since c ∈ [f(G)〉f , we know that c ∈ N ℓu for some

N ⊆fin f(G). Let M ⊆fin G such that N = f(M). Then c ∈ f(M)ℓu, i.e.,

c ≥ d for every d ∈ f(M)ℓ. But then g(c) ≥ g(d) for every d ∈ f(M)ℓ and

g(c) ∈ g(f(M)ℓ)u. By the claims above it follows that g(c) ∈ g(f(M ℓ))u ⊆ G.

That is, g(c) ∈ G ∩ 〈g(J)]f .

Similarly we can show that f(g(M)u)ℓ ⊆ f(g(Mu))ℓ and f(g(Mu))ℓ ⊆ J for

any M ⊆fin J . We can then prove, in a similar way, that f(c) ∈ [f(g)〉f ∩ J

when c ∈ G ∩ 〈g(J)]f .

Proposition 6.3.13. Let ∗ ∈ {dp, f}. If f : P → Q is residuated with residual

g : Q → P , then fσ
∗ : C∗(P) → C∗(Q) is residuated and gπ∗ : C∗(Q) → C∗(P) is

its residual, i.e., for all X ∈ C∗(P) and all X ′ ∈ C∗(Q)

fσ
∗ (X) ≤ X ′ ⇐⇒ X ≤ gπ∗ (X

′).

Proof. By the denseness ofC∗(P) andC∗(Q) we haveX =
∨

{Y ∈ K∗(P) : Y ≤

X} for all X ∈ C∗(P) and X ′ =
∧

{Z ∈ O∗(Q) : Z ≥ X ′} for all X ′ ∈ C∗(Q).

Furthermore, since P ∈ F∗(P) we have
∧

αP
∗ (P ) = ⊥

C∗(P)
∗ ∈ {Y ∈ K∗(P) :

Y ≤ X} for all X ∈ C∗(P). Similarly, Q ∈ I∗(Q) implies that
∨

αQ
∗ (Q) =

⊤
C∗(Q)
∗ ∈ {Z ∈ O∗(Q) : Z ≥ X ′} for all X ′ ∈ C∗(Q). Since f is residuated, it

is order-preserving and by Lemma 6.3.7 (i) so is fσ
∗ . Therefore, fσ

∗ (X) ≤ X ′

if, and only if, fσ
∗ (Y ) ≤ Z for every Y ∈ K∗(P) such that Y ≤ X and every

Z ∈ O∗(Q) such that X ′ ≤ Z. Similarly, X ≤ gπ∗ (X
′) if, and only if, Y ≤ gπ∗ (Z)

for every Y ∈ K∗(P) such that Y ≤ X and every Z ∈ O∗(Q) such that X ′ ≤ Z.

It is therefore sufficient to prove that fσ
∗ (Y ) ≤ Z if, and only if, Y ≤ gπ∗ (Z) for

Y ∈ K∗(P) and Z ∈ O∗(P).
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Let Y ∈ K∗(P) and Z ∈ O∗(P). Then there exists G ∈ F∗(P) such that

Y =
∧

αP
∗ (G) and there exists J ∈ I∗(Q) such that Z =

∨

αQ
∗ (J). Furthermore,

fσ
∗ (Y ) =

∧

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a)} and gπ∗ (Z) =
∨

{αP
∗ (g(b)) : b ∈

Q,Z ≥ αQ
∗ (b)}.

Suppose fσ
∗ (Y ) ≤ Z, i.e.,

∧

{αQ
∗ (f(a)) : a ∈ P, Y ≤ αP

∗ (a)} ≤
∨

αQ
∗ (J). By

the internal compactness of C∗(Q), the above holds if, and only if, F ∩ I 6= ∅
for every F ∈ F∗(Q) such that {f(a) : Y ⊆ αP

∗ (a)} ⊆ F and every I ∈ I∗(Q)

such that J ⊆ I. That is, if, and only if,
[

{f(a) : Y ⊆ αP
∗ (a)}

〉

∗
∩ J 6= ∅. But

Y ⊆ αP
∗ (a) if, and only if, {F ∈ F∗(P) : G ⊆ F} ⊆ {F ∈ F∗(P) : a ∈ F} if, and

only if, a ∈ G. Therefore, {a ∈ P : Y ⊆ αP
∗ (a)} = G and

fσ
∗ (Y ) ≤ Z ⇐⇒ [f(G)〉∗ ∩ J 6= ∅.

On the other hand, suppose Y ≤ gπ∗ (Z), i.e.,
∧

αP
∗ (G) ≤

∨

{αP
∗ (g(b)) :

b ∈ Q,Z ≥ αQ
∗ (b)}. By the internal compactness of C∗(P) the above holds

if, and only if, F ∩ I 6= ∅ for every F ∈ F∗(P) such that G ⊆ F and every

I ∈ I∗(P) such that {g(b) : Z ⊇ αQ
∗ (b)} ⊆ I. In particular, if, and only if,

G ∩
〈

{g(b) : Z ⊇ αQ
∗ (b)}

]

∗
6= ∅. But Z ⊇ αQ

∗ (b) if, and only if, {F ∈ F∗(Q) :

b ∈ F} ⊆ {F ∈ F∗(Q) : F ∩ J 6= ∅} if, and only if, [b) ∩ J 6= ∅ if, and only if,

b ∈ J . Therefore, {b ∈ Q : Z ⊇ αQ
∗ (b)} = J and

Y ≤ gπ∗ (Z) ⇐⇒ G ∩ 〈g(J)]∗ 6= ∅.

Hence, we need to prove [f(G)〉∗ ∩ J 6= ∅ if, and only if, G∩ 〈g(J)]∗ 6= ∅ to

prove the claim.

Lemmas 6.3.11 and 6.3.12 prove the equivalence for the Doyle-pseudo and

Frink cases, respectively.

We note that a similar claim was made in [GJKO07, Lemma 6.15] for binary

residuated operators. However, in Example 6.3.30 we provide a counter-example

to that claim.

To prove that fσ
d has residual gπd , we use the same argument that was used

in [DGP05, Proposition 3.6] for a similar claim on binary residuated operators.

Proposition 6.3.14. If f : P → Q is residuated with residual g : Q→ P , then

fσ
d : Cd(P) → Cd(Q) is residuated and gπd : Cd(Q) → Cd(P) is its residual, i.e.,

for all X ∈ Cd(P) and all X ′ ∈ Cd(Q)

fσ
d (X) ≤ X ′ ⇐⇒ X ≤ gπd (X

′).
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Proof. Let X ∈ Cd(P) and X ′ ∈ Cd(Q).

To prove that fσ
d (X) ≤ X ′ ⇐⇒ X ≤ gπd (X

′) it is sufficient to show that

for Y ∈ Kd(P) and Z ∈ Od(Q), fσ
d (Y ) ≤ Z ⇐⇒ Y ≤ gπd (Z) by the denseness

of Cd(P) and Cd(Q).

Note that if {Y ∈ Kd(P) : Y ≤ X} = ∅, then X =
∨

∅ = ⊥
Cd(P)
d ,

fσ
d (X) =

∨

∅ = ⊥
Cd(Q)
d and fσ

d (X) ≤ X ′ ⇐⇒ X ≤ gπd (X
′) is true for all X ′ ∈

Cd(Q). Similarly, if {Z ∈ Od(Q) : Z ≥ X ′} = ∅, then X ′ =
∧

∅ = ⊤
Cd(Q)
d ,

gπd (X
′) =

∧

∅ = ⊤
Cd(P)
d and fσ

d (X) ≤ X ′ ⇐⇒ X ≤ gπd (X
′) is true for all

X ∈ Cd(P).

Suppose {Y ∈ Kd(P) : Y ≤ X} 6= ∅ and {Z ∈ Od(Q) : Z ≥ X ′} 6= ∅. Let

Y ∈ Kd(P) and Z ∈ Od(Q). Then there exists a filter G ∈ Fd(P) such that

Y =
∧

αP
d (G) and there exists an ideal J ∈ Id(Q) such that Z =

∨

αQ
d (J).

Suppose fσ
d (Y ) ≤ Z. Now, fσ

d (Y ) =
∧

{αQ
d (f(a)) : a ∈ P, Y ≤ αP

d (a)} =
∧

αQ
d (f(G)). That is,

∧

αQ
d (f(G)) ≤

∨

αQ
d (J). By Lemma 6.3.6, f(G) is

down-directed and therefore, by Corollary 6.2.8,
∧

αQ
d (f(G)) =

∧

αQ
d ([f(G)).

Then, by Lemma 6.2.9, there exist elements d ∈ [f(G)) and b ∈ J such that

d ≤ b. But f(a) ≤ d for some a ∈ G since d ∈ [f(G)). That is, there exists

an a ∈ G such that f(a) ≤ b. By the residuation we have a ≤ g(b). Hence,
∧

αP
d (G) ≤ αP

d (a) ≤ αP
d (g(b)) ≤

∨

αP
d (g(J)), i.e., Y ≤ gπd (Z).

The implication in the other direction follows similarly.

6.3.2 n-ary maps

Given an n-ary map f :
∏n

i=1 Pi → Q, for n ∈ N, and posets P1, . . . ,Pn,Q, we

would like to define an extension of f from
∏n

i=1 C∗(Pi) to C∗(Q). On lattices

the canonical extension commutes with finite products [GH01]. Therefore, in

the lattice setting the extension of any n-ary map may be viewed as the exten-

sion of a unary map. That is, for f :
∏n

i=1 Li → L where Li, 1 ≤ i ≤ n, and

L are lattices, an extension of f , say fC :
∏n

i=1 C(Li) → C(L), can be viewed

as the unary map fC : C(
∏n

i=1 Li) → C(L). However, since the construction of

completions of posets described in Section 6.1.1 does not commute with prod-

ucts, see Example 6.2.14, the extension of an n-ary map must be treated as an

n-ary map in the poset setting.

For ∗ ∈ {p, dp, f}, the sets of closed and open elements in
∏n

i=1 C∗(Pi) are

defined as follows.

Definition 6.3.15. Let ∗ ∈ {p, dp, f}. An element (Y1, . . . , Yn) ∈
∏n

i=1 C∗(Pi)
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is called closed if Yi ∈ K∗(Pi), for i = 1, . . . , n. Furthermore, an element

(Z1, . . . , Zn) ∈
∏n

i=1 C∗(Pi) is called open if Zi ∈ O∗(Pi), for i = 1, . . . n.

Let K∗, O∗ and KO∗ denote the sets of closed, open and clopen elements of
∏n

i=1 C∗(Pi), respectively. Then, K∗ =
∏n

i=1K∗(Pi) and O∗ =
∏n

i=1O∗(Pi).

Recall that the order-embedding β∗ :
∏n

i=1 Pi →
∏n

i=1 C∗(Pi) is defined by

β∗((a1, . . . , an)) = (αP1

∗ (a1), . . . , α
Pn
∗ (an)) (see Lemma 6.1.15). Then the pair

(
∏n

i=1 C∗(Pi), β∗) is a completion of
∏n

i=1 Pi.

Let ~a ∈
∏n

i=1 Pi, ~X ∈
∏n

i=1 C∗(Pi), ~Y ∈ K∗ and ~Z ∈ O∗ denote the n-tuples

(a1, . . . , an), (X1, . . . , Xn), (Y1, . . . , Yn) and (Z1, . . . , Zn), respectively, where

ai ∈ Pi, Xi ∈ C∗(Pi), Yi ∈ K∗(Pi) and Zi ∈ O∗(Pi) for i = 1, . . . , n.

Proposition 6.3.16. Let ∗ ∈ {p, dp, f}. The completion (
∏n

i=1 C∗(Pi), β∗) is

dense with respect to the sets K∗ and O∗, i.e., for every ~X ∈
∏n

i=1 C∗(Pi) we

have that ~X =
∨

{~Y ∈ K∗ : ~Y ≤ ~X} =
∧

{~Z ∈ O∗ : ~Z ≥ ~X}.

The denseness of (
∏n

i=1 C∗(Pi), β∗) follows directly from the definitions of

K∗ and O∗ and the denseness of each (C∗(Pi), α∗), established in Proposi-

tion 6.1.13.

Lemma 6.3.17. Let ∗ ∈ {p, dp, f}. Then, KO∗ = β∗ (
∏n

i=1 Pi).

The proof follows from the fact that KO∗(Pi) = αPi
∗ (Pi) for i = 1, . . . , n

(see Lemma 6.1.12).

There are now two natural extensions for an n-ary map, as was the case for

unary maps.

Definition 6.3.18. For ∗ ∈ {p, dp, f} and an n-ary map f :
∏n

i=1 Pi → Q,

define fσ
∗ :

∏n
i=1 C∗(Pi) → C∗(Q) and fπ

∗ :
∏n

i=1 C∗(Pi) → C∗(Q) by: for all

~X ∈
∏n

i=1 C∗(Pi),

fσ
∗ (
~X) =

∨

{

∧

{

αQ
∗ (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ β∗(~a) ≤ ~Z

}

:

~Y ∈ K∗, ~Z ∈ O∗, ~Y ≤ ~X ≤ ~Z

}

,

fπ
∗ (
~X) =

∧

{

∨

{

αQ
∗ (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ β∗(~a) ≤ ~Z

}

:

~Y ∈ K∗, ~Z ∈ O∗, ~Y ≤ ~X ≤ ~Z

}

.
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We note that since
∏n

i=1 C∗(Pi) andC∗(
∏n

i=1 Pi) are isomorphic for bounded

lattices, fσ
∗ = fσ and fπ

∗ = fπ if Pi, 1 ≤ i ≤ n, and Q are bounded lattices.

Therefore, the definitions of fσ
∗ and fπ

∗ given here are generalizations of the

definitions on lattices.

Lemma 6.3.19. Let ∗ ∈ {p, dp, f}. If f :
∏n

i=1 Pi → Q, then fσ
∗ and fπ

∗ extend

f , i.e., for ~a ∈
∏n

i=1 Pi we have fσ
∗ (β∗(~a)) = αQ

∗ (f(~a)) = fπ
∗ (β∗(~a)).

The proof is similar to the proof of Lemma 6.3.2 where the extension of

unary maps are considered.

Lemma 6.3.20. If f :
∏n

i=1 Pi → Q is order-preserving, then

fσ
∗ (
~X) =

∨

{

∧

{

αQ
∗ (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ β∗(~a)

}

: ~X ≥ ~Y ∈ K∗

}

,

fπ
∗ ( ~X) =

∧

{

∨

{

αQ
∗ (f(~a)) : ~a ∈

n
∏

i=1

Pi, β∗(~a) ≤ ~Z

}

: ~X ≤ ~Z ∈ O∗

}

.

The proofs of these simplifications are similar to the proofs of the simplifi-

cations for the unary cases, done in Lemma 6.3.5.

If ∗ is d, then
∏n

i=1 Cd(Pi) need not be dense with respect to
∏n

i=1Kd(Pi)

and
∏n

i=1Od(Pi), as illustrated in the example below.

Example 6.3.21. Let P′ be the 2-element anti-chain. Then Cd and Cd ×Cd

are depicted in Figure 6.8. The elements from Kd and Kd ×Kd are depicted by

 , the elements from Od and Od ×Od are depicted by # and all other elements

are depicted by ⊛.

Now consider, for example, the element (⊤d,⊥d). Firstly, (⊤d,⊥d) has no

elements from Kd ×Kd below it and can therefore not be expressed as a join of

such elements. Furthermore, (⊤d,⊥d) has no elements from Od × Od above it

and cannot be expressed as a meet of these elements either.

In [DGP05] order-preserving n-ary maps are extended in terms of the sets
∏n

i=1Kd(Pi) and
∏n

i=1Od(Pi) in the following two ways:

f1
d ( ~X) =

∨

{

∧

{

αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ βd(~a)

}

: ~X ≥ ~Y ∈

n
∏

i=1

Kd(Pi)

}

,

f2
d (
~X) =

∧

{

∨

{

αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, βd(~a) ≤ ~Z

}

: ~X ≤ ~Z ∈
n
∏

i=1

Od(Pi)

}

.

Then f1
d and f2

d are both order-preserving and extend f .
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bc*

bc*

bcb bcb bc*

bcb bcb

bc*

bc*

bc* bc*

bc*

bc*

bc* bc*

bc*

bc*

bcb bcb

bc*

Cd(P
′) : Cd(P

′)×Cd(P
′) :

(αd(a),⊤d)

(αd(a),⊥d)

(⊤d,⊥d)

Fig. 6.8: Cd ×Cd need not be dense w.r.t. Kd ×Kd and Od ×Od.

Example 6.3.22. Let P′ = 〈{1, 2},≤〉 be the 2-element anti-chain from Exam-

ple 6.3.21 with Cd × Cd depicted in Figure 6.8. Define ρ1 : P ′ × P ′ → P ′ by

ρ1(1, 1) = 1 = ρ1(1, 2) and ρ1(2, 1) = 2 = ρ1(2, 2). Then ρ1 is the projection

map on the first coordinate of P′ × P′ and it is order-preserving. However,

neither of the extensions (ρ1)
1
d or (ρ1)

2
d are the projection map on the first co-

ordinate of Cd ×Cd. To see this observe that since there are no elements from

Kd ×Kd less than or equal to (αd(a),⊥d), we have (ρ1)
1
d((αd(a),⊥d)) =

∨

∅ =

⊥d 6= αd(a). Furthermore, since there are no elements from Od × Od greater

than or equal to (αd(a),⊤d), we have (ρ1)
2
d((αd(a),⊤d)) =

∧

∅ = ⊤d 6= αd(a).

The previous example could be altered slightly to show that the extensions

f1
d and f2

d of a constant n-ary map f need not be constant. There are therefore

some natural and simple properties that are not preserved by the extensions

considered in [DGP05]. It would appear that the main reason why the exten-

sions from [DGP05] do not preserve these properties, is the lack of denseness of
∏n

i=1 Cd(Pi) with respect to
∏n

i=1Kd(Pi) and
∏n

i=1Od(Pi).

Next we define a pair of sets such that
∏

i=1 Cd(Pi) is dense with respect

to it.

Definition 6.3.23. Define the sets of closed and open elements of
∏n

i=1 Cd(Pi)

by

Kd =

n
∏

i=1

(Kd(Pi) ∪ {⊥Pi

d }) and Od =

n
∏

i=1

(Od(Pi) ∪ {⊤Pi

d }),

where ⊥Pi

d and ⊤Pi

d denote the bottom and top elements of Cd(Pi), respectively.

Let KOd be the set of clopen elements of
∏n

i=1 Cd(Pi).
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Proposition 6.3.24. The completion (
∏n

i=1 Cd(Pi), βd) is dense with respect

to the sets Kd and Od, i.e., for every ~X ∈
∏n

i=1 Cd(Pi) we have ~X =
∨

{~Y ∈

Kd : ~Y ≤ ~X} =
∧

{~Z ∈ Od : ~Z ≥ ~X}.

Proof. Clearly
∨

{~Y ∈ Kd : ~Y ≤ ~X} ≤ ~X and ~X ≤
∧

{~Z ∈ Od : ~Z ≥ ~X}.

Let T = {~Y ∈ Kd : ~Y ≤ ~X} and Ti = {Y ∈ Cd(Pi) : Y = Yi for some ~Y ∈

T } for i = 1, . . . , n. Then
∨

T = (
∨

T1, . . . ,
∨

Tn). Furthermore, let Si =

{Y ∈ Kd(Pi) : Y ≤ Xi}. Then ~X = (
∨

S1, . . . ,
∨

Sn). Let Y ∈ Si, then

(⊥P1

d , . . . , Y, . . . ,⊥Pn

d ) ∈ T , which implies that Y ∈ Ti. Thus, Si ⊆ Ti and
∨

Si ≤
∨

Ti. Therefore, ~X = (
∨

S1, . . . ,
∨

Sn) ≤ (
∨

T1, . . . ,
∨

Tn) =
∨

T .

The proof that ~X ≥
∧

{~Z ∈ Od : ~Z ≥ ~X} is similar.

Lemma 6.3.25. In
∏n

i=1 Cd(Pi), we have KOd = βd (
∏n

i=1 Pi).

Proof. By Lemma 6.1.12 we have αd(Pi) = KOd(Pi) for i = 1, . . . , n. Therefore

βd(
∏n

i=1 Pi) ⊆ KOd.

Let ~X ∈ KOd. For i = 1, . . . , n, if Xi = ⊥Pi

d , then ⊥Pi

d ∈ Od(Pi) or

⊥Pi

d = ⊤Pi

d . If ⊥Pi

d ∈ Od(Pi), then there exists I ∈ Id(Pi) such that ⊥Pi

d =
∨

αPi

d (I). But I 6= ∅ implies that Pi is a singleton and Xi ∈ αPi

d (Pi). If

⊥Pi

d = ⊤Pi

d = Fd(Pi) 6= ∅, then Pi is a singleton and Xi ∈ αPi

d (Pi).

In the same way we can show that Xi ∈ αPi

d (Pi) if Xi = ⊤Pi

d for some

i = 1, . . . , n.

If Xi 6= ⊥Pi

d and Xi 6= ⊤Pi

d , then Xi ∈ KOd(Pi) and Xi ∈ αPi

d (Pi) by

Lemma 6.1.12.

Therefore, ~X ∈ KOd implies that Xi ∈ αPi

d (Pi) for each i = 1, . . . , n. It then

follows that ~X ∈ βd(
∏n

i=1 Pi) and KOd ⊆ βd(
∏n

i=1 Pi).

Definition 6.3.26. For an order-preserving n-ary map f :
∏n

i=1 Pi → Q, define

the extensions fσ
d :

∏n
i=1 Cd(Pi) → Cd(Q) and fπ

d :
∏n

i=1 Cd(Pi) → Cd(Q) by,

for all ~X ∈
∏n

i=1 Cd(Pi),

fσ
d (
~X) =

∨

{

∧

{

αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ βd(~a)

}

: ~X ≥ ~Y ∈ Kd

}

,

fπ
d (
~X) =

∧

{

∨

{

αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, βd(~a) ≤ ~Z

}

: ~X ≤ ~Z ∈ Od

}

.

Lemma 6.3.27. If f :
∏n

i=1 Pi → Q, then fσ
d and fπ

d extend f , i.e., for

~a ∈
∏n

i=1 Pi we have fσ
d (βd(~a)) = αQ

d (f(~a)) = fπ
d (βd(~a)).
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Using Lemma 6.3.25 we can show the above similarly to the way in which

the analogous claims are proved for the other cases.

Example 6.3.28. Consider the poset P′ and binary map ρ1 : P ′ × P ′ → P ′

from Example 6.3.22. Recall that P′ is the 2-element anti-chain and ρ1 the

projection map on the first coordinate of P′ × P′. Then both (ρ1)
σ
d and (ρ1)

π
d

are the projection map on the first coordinate of Cd ×Cd.

If each Pi is bounded then our extensions of an order-preserving n-ary map

f correspond with the extensions f1
d and f2

d defined in [DGP05]. Consider

the following to see why. Let ρi : Fd(
∏n

i=1 Pi) → P(Pi) be defined by, for

F ∈ Fd(
∏n

i=1 Pi)

ρi(F ) = {a ∈ Pi : there exists ~a ∈ F such that a = ai}.

In [GJP, Proposition 6.13] it was shown that if ρi(F ) ∈ Fd(Pi) for all F ∈

F(
∏n

i=1 Pi), then Fd(
∏n

i=1 Pi) =
∏n

i=1 Fd(Pi). Furthermore, as stated ear-

lier, in [GJP, Proposition 6.12] it was shown that if each Pi is bounded and

Fd(
∏n

i=1 Pi) =
∏n

i=1 Fd(Pi), then Cd(
∏n

i=1 Pi) =
∏

i=1 Cd(Pi). Though not

shown in [GJP], it is an easy exercise to show that ρi(F ) ∈ Fd(Pi) for all F ∈

F(
∏n

i=1 Pi). Hence, if each Pi, i = 1, . . . , n, is bounded, then Kd(
∏n

i=1 Pi) =
∏n

i=1Kd(Pi) and it follows that fσ
d = f1

d and fσ
d = f2

d .

We have the following for the extensions of order-preserving n-ary maps.

Lemma 6.3.29. Let ∗ ∈ {p, dp, f, d} and let f :
∏n

i=1 Pi → Q be order-

preserving. Then,

(i) fσ
∗ and fπ

∗ are order-preserving.

(ii) fσ
∗ ≤ fπ

∗ under the point-wise ordering.

(iii) we have the following simplifications:

a) fσ
∗ (
~Y ) =

∧

{αQ
∗ (f(~a)) : ~a ∈

∏n
i=1 Pi, ~Y ≤ β∗(~a)} for all ~Y ∈ K∗.

b) fσ
∗ ( ~X) =

∨

{fσ
∗ (~Y ) : ~X ≥ ~Y ∈ K∗} for all ~X ∈

∏n
i=1 C∗(Pi).

c) fπ
∗ (~Z) =

∨

{αQ
∗ (f(~a)) : ~a ∈

∏n
i=1 Pi, ~Z ≥ β∗(~a)} for all ~Z ∈ O∗.

d) fπ
∗ (
~X) =

∧

{fπ
∗ (
~Z) : ~X ≤ ~Z ∈ O∗} for all

~X ∈
∏n

i=1 C∗(Pi).
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(iv) fσ
∗ = fπ

∗ on K∗ ∪ O∗. Moreover, if ∗ ∈ {p, dp, f}, then fσ
∗ and fπ

∗ map

elements in K∗ to elements in K∗(Q); and elements in O∗ to elements in

O∗(Q).

Proof. If ∗ ∈ {p, dp, f}, then the proofs of (i) to (iv) are similar to the proofs of

(i) to (iv) of Lemma 6.3.7. Similarly for (i), (iii) and (iv) if ∗ is d.

Let ∗ be d, then the following proves (ii):

Recall that in a (complete) lattice we have that
∨

S ≤
∧

T if, and only if,

a ≤ b for all a ∈ S and all b ∈ T where S, T ⊆ P . To prove that fσ
d ≤ fπ

d , we

need to show that, for every ~Y ∈ Kd and every ~Z ∈ Od, such that ~Y ≤ ~X ≤ ~Z,

∧

{αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ βd(~a)} ≤
∨

{αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Z ≥ βd(~a)}

Let ~Y ∈ Kd and ~Z ∈ Od. For i = 1, . . . , n, we consider the various possi-

ble combinations of Yi’s and Zi’s and construct an element ~c = (c1, . . . , c2) ∈
∏n

i=1 Pi such that ~Y ≤ βd(~c) ≤ ~Z.

• If Yi = ⊥Pi

d and Zi = ⊤Pi

d , let ci be any element in Pi. Then ⊥Pi

d ≤

αPi

d (ci) ≤ ⊤Pi

d .

• If Yi = ⊥Pi

d and Zi ∈ Od(Pi), then there exists a J ∈ Id(Pi) such that

Zi =
∨

αPi

d (J). Let ci ∈ J , then ⊥Pi

d ≤ αPi

d (ci) ≤
∨

αPi

d (J) = Zi.

• If Yi ∈ Kd(Pi) and Zi = ⊤Pi

d , then there exists a G ∈ Fd(Pi) such that

Yi =
∧

αPi

d (G). Let ci ∈ G, then Yi =
∧

αPi

d (G) ≤ αPi

d (ci) ≤ ⊤Pi

d .

• If Yi ∈ Kd(Pi) and Zi ∈ Od(Pi), then there exist G ∈ Fd(Pi) and

J ∈ Id(Pi) such that Yi =
∧

αPi

d (G) and Zi =
∨

αPi

d (J). But then
∧

αPi

d (G) ≤ Xi ≤
∨

αPi

d (J). By the internal compactness ofCd(Pi) it fol-

lows thatG∩J 6= ∅. Let ci ∈ G∩J , then
∧

αPi

d (G) ≤ αPi

d (ci) ≤
∨

αPi

d (J).

Then,

∧

{αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Y ≤ βd(~a)}

≤ αQ
d (f(~c))

≤
∨

{αQ
d (f(~a)) : ~a ∈

n
∏

i=1

Pi, ~Z ≥ βd(~a)}

and the result follows.
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If we modify Examples 6.3.8 and 6.3.10 suitably, we can construct coun-

terexamples showing that fσ
∗ need not be an operator if f is, for ∗ ∈ {dp, f, d}.

We now focus on binary residuated operators. Let P =
〈

P,≤P
〉

, Q =
〈

Q,≤Q
〉

and R =
〈

R,≤R
〉

. Let ◦ : P ×Q→ R be a binary residuated operator

with left residual \ : P × R → Q and right residual / : Q × R → P . Recall

that the dual of the completion of a poset is isomorphic to the completion of

its dual. We can therefore view \ and / as maps on P∂ × R and Q × R∂ ,

respectively. When viewed in this way, the π-extensions, for ∗ ∈ {f, dp}, of \

and / are described in the following way:

Y \π∗Z =
∨

{αQ
∗ (a\b) : a ∈ P, b ∈ R, Y ≤ αP

∗ (a), Z ≥ αR
∗ (b)}

for all Y ∈ K∗(P) and Z ∈ O∗(R).

X1\
π
∗X2 =

∧

{Y \π∗Z : X1 ≥ Y ∈ K∗(P), X2 ≤ Z ∈ O∗(R)}

for all X1 ∈ P and X2 ∈ R.

In [GJKO07, Lemma 6.15] it was claimed that the σ-extension, ◦σdp, of a

binary residuated operator ◦ with left and right residuals \ and /, respectively,

has left and right residuals \πdp and /πdp, respectively. However, if P,Q and

R are posets, then the following example shows that \π∗ need not be the left

residual of ◦σ∗ for ∗ ∈ {dp, f}. We note that if P and Q are meet-semilattices

and R is a join-semilattice, then the proof of [GJKO07, Lemma 6.15] proves

that ◦σdp has residuals \πdp and /πdp.

Example 6.3.30. Let ∗ ∈ {dp, f}. Let P′ be the poset depicted in Figure 6.9

and define ◦, \, / : P ′ × P ′ → P ′ as in Table 6.1. Then ◦ is a binary residuated

operator with left and right residuals \ and /.

Observe that F = {1, 2, 3} ∈ F∗ and Y =
∧

α∗(F ) ∈ K∗. Furthermore,

I = {4, 5, 6} ∈ I∗ and Z =
∨

α∗(I) ∈ O∗. Then α∗(2) ∧ α∗(3) = Y > Z =

α∗(4) ∨ α∗(5).

Now, Y ◦σ∗ Y = α∗(6) since 2 ◦ 3 = 4, 3 ◦ 2 = 5 and 4 ∧ 5 = 6. If \π∗

is the left-residual of ◦σ∗ , then Y ≤ Y \π∗α∗(6) by the residuation. However,

Y \π∗α∗(6) =
∨

{α∗(1\6), α∗(2\6), α∗(3\6)} =
∨

{α∗(6), α∗(4), α∗(5)} = Z < Y ,

which violates the residuation condition in the above. Hence, \π∗ is not the left-

residual of ◦σ∗ .

Note that since ◦σ∗ is a complete operator it must be residuated. See Exam-

ple A.2.6 in Appendix A.2 for more details on the completion.
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Fig. 6.9: \π∗ need not be the left residual of ◦σ∗ .

The question of whether or not ◦σ∗ is residuated when ◦ is, for ∗ ∈ {dp, f, d},

is still open. If one could prove that ◦σ∗ is always a complete operator when ◦ is

residuated, then it would follow that ◦σ∗ is residuated.

In [DGP05, Proposition 3.6] it was shown that if ◦ is a binary residuated

operator with left and right residuals \ and /, respectively, then ◦1d has left and

right residuals \2d and /2d, respectively. Recall that if P, Q and R are bounded,

then ◦σd = ◦1d, \
π
d = \2d and /πd = /2d. If P, Q and R are not bounded, then ◦1d is

essentially an operator on Cd(P×Q) rather than on Cd(P) ×Cd(Q).

6.4 An alternative construction of C∗

In [DGP05] and [Suz11] an alternative construction of Cd (up to isomorphism)

was described. This construction is a generalization of the construction of the

canonical extension of Boolean algebras with operators described in [GM97].

Here we give a brief description and overview of the construction, but now also

using polarizations different from (Fd, Id) to illustrate that, up to isomorphism,

the other completions obtained from lattice-consistent polarizations may also

be obtained through this construction.

Throughout this section let P be a fixed poset and F a fixed family of non-

empty up-sets of P that includes all the principal up-sets and such that each

member of F is closed under existing finite meets. Furthermore let I be a fixed

family of non-empty down-sets of P that includes all principal down-sets and

such that each member of I is closed under existing finite joins. That is, F

and I are rich enough in the sense of [GJKO07] (excluding the empty set) and
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1 ◦ 1 = 1 2 ◦ 1 = 2 3 ◦ 1 = 3 4 ◦ 1 = 4 5 ◦ 1 = 5 6 ◦ 1 = 6

1 ◦ 2 = 2 2 ◦ 2 = 2 3 ◦ 2 = 5 4 ◦ 2 = 6 5 ◦ 2 = 5 6 ◦ 2 = 6

1 ◦ 3 = 3 2 ◦ 3 = 4 3 ◦ 3 = 3 4 ◦ 3 = 4 5 ◦ 3 = 6 6 ◦ 3 = 6

1 ◦ 4 = 5 2 ◦ 4 = 6 3 ◦ 4 = 5 4 ◦ 4 = 6 5 ◦ 4 = 6 6 ◦ 4 = 6

1 ◦ 5 = 4 2 ◦ 5 = 4 3 ◦ 5 = 6 4 ◦ 5 = 6 5 ◦ 5 = 6 6 ◦ 5 = 6

1 ◦ 6 = 6 2 ◦ 6 = 6 3 ◦ 6 = 6 4 ◦ 6 = 6 5 ◦ 6 = 6 6 ◦ 6 = 6

1\1 = 1 2\1 = 1 3\1 = 1 4\1 = 1 5\1 = 1 6\1 = 1

1\2 = 2 2\2 = 1 3\2 = 2 4\2 = 1 5\2 = 1 6\2 = 1

1\3 = 3 2\3 = 3 3\3 = 1 4\3 = 1 5\3 = 1 6\3 = 1

1\4 = 5 2\4 = 3 3\4 = 5 4\4 = 1 5\4 = 3 6\4 = 1

1\5 = 4 2\5 = 4 3\5 = 2 4\5 = 2 5\5 = 1 6\5 = 1

1\6 = 6 2\6 = 4 3\6 = 5 4\6 = 2 5\6 = 3 6\6 = 1

1/1 = 1 2/1 = 2 3/1 = 3 4/1 = 4 5/1 = 5 6/1 = 6

1/2 = 1 2/2 = 1 3/2 = 3 4/2 = 4 5/2 = 3 6/2 = 4

1/3 = 1 2/3 = 2 3/3 = 1 4/3 = 2 5/3 = 5 6/3 = 5

1/4 = 1 2/4 = 1 3/4 = 1 4/4 = 2 5/4 = 1 6/4 = 2

1/5 = 1 2/5 = 1 3/5 = 1 4/5 = 1 5/5 = 3 6/5 = 3

1/6 = 1 2/6 = 1 3/6 = 1 4/6 = 1 5/6 = 1 6/6 = 1

Tab. 6.1: The definitions of ◦, \ and /.

therefore the polarization (F , I) is lattice-consistent.

Now define a binary relation⊑ on the union F∪I as follows: for all F,G ∈ F

and all I, J ∈ I

(i) F ⊑ G if, and only if, F ⊇ G,

(ii) I ⊑ J if, and only if, I ⊆ J ,

(iii) F ⊑ I if, and only if, F ∩ I 6= ∅,

(iv) I ⊑ F if, and only if, for all a ∈ I and all b ∈ F , a ≤ b.

The relation ⊑ is a quasi-order on F ∪ I since it is reflexive and transitive, but

not a partial order since it is not antisymmetric: if F = [a) and I = (a] for some
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a ∈ P , then F ⊑ I and I ⊑ F , but F 6= I. Now define the following equivalence

relation, ∼, on F ∪ I. For F ∈ F and I ∈ I we have F ∼ F , I ∼ I and

F ∼ I if, and only if, F ⊑ I and I ⊑ F.

Then ∼ identifies the principal filters and ideals generated by the same element,

i.e., [a) ∼ (a] for all a ∈ P . For S ∈ F ∪ I let [S]∼ denote the equivalence class

of S with respect to ∼ and let D = {[S]∼ : S ∈ F ∪ I}. Let ⊑D be the binary

relation on D defined by:

[S]∼ ⊑D [T ]∼ if, and only if, S ⊑ T for all S, T ∈ F ∪ I.

Then ⊑D is reflexive, transitive and antisymmetric and D = (D,⊑D) is a poset.

The poset D = (D,⊑D) is called the intermediate structure or intermediate

level (see for instance [DGP05, Suz11]). Now let (L(D), ιD), with L(D) =
〈

L(D),∨L(D)∧L(D)
〉

, be the MacNeille completion of D. See Chapter 5 for

more on the MacNeille completion. Recall that the MacNeille completion can

abstractly be defined as the unique (up to isomorphism) completion of D such

that D is doubly dense in it. It should be clear, from the definition of closed

and open elements, that there is a one-to-one correspondence between K ∪ O

and D. Moreover, since K ∪ O is doubly dense in C, it follows that L(D) is

isomorphic to C, the completion obtained from the polarization (F , I).

Though only dealt with abstractly in the literature, we will now explicitly

define the order-embedding of P into L(D). Define ιP : P → D by ιP (a) =

[(a]]∼ = [[a)]∼ for all a ∈ P . Then ιP is one-to-one. Furthermore, recall that

ιD : D → L(D) is defined by ιD([S]∼) = [S]u∼. Then the composition of ιP with

ιD, i.e., ιD · ιP, is an order-embedding of P into L(D). For a ∈ P we have

ιD(ιP(a)) = ιD([[a)]∼) = [[a)]u∼.

Lemma 6.4.1. Let L(D) be the complete lattice obtained through the construc-

tion described above. Then ιD · ιP preserves existing finite joins and meets in P,

i.e., if M,N ⊆fin P such that
∨

M and
∧

N exist in P, then ιD(ιP(
∨

M)) =
∨L(D)

ιD(ιP(M)) and ιD(ιP(
∧

N)) =
∧L(D)

ιD(ιP(N)).

Proof. (i) Let M ⊆fin P be the set M = {a1, . . . , an} for some n ∈ N. Then,



6. Canonical extensions 126

for i = 1, . . . , n,

ai ≤
∨

M ⇒ [ai) ⊇
[

∨

M
)

⇒ [ai) ⊑
[

∨

M
)

⇒ [[ai)]∼ ⊑D

[[

∨

M
)]

∼

⇒
[[

∨

M
)]

∼
∈ [[ai)]

u
∼.

Then, [[
∨

M)]∼ ∈
⋂

[[ai)]
u
∼. Hence, [[

∨

M)]u∼ ⊆
⋂n

i=1[[ai)]
u
∼, i.e.,

L(D)
∨

ιD (ιP (M)) ≤L(D) ιD

(

ιP

(

∨

M
))

.

On the other hand, suppose [S]∼ ∈
⋂n

i=1[[ai)]
u
∼ for some S ∈ F ∪L. Then

[S]∼ ∈ [[ai)]
u
∼ for i = 1, . . . , n, i.e., [[ai)]∼ ⊑D [S]∼ for i = 1, . . . , n.

• If S ∈ F , then S ⊆ [ai) for i = 1, . . . , n. Therefore, S ⊆
⋂n

i=1[ai) =

[
∨

M) which implies that [
∨

M) ⊑ S. Then [[
∨

M)]∼ ⊑D [S]∼ and

[S]∼ ∈ [[
∨

M)]u∼.

• If S ∈ I, then [ai) ∩ S 6= ∅ for i = 1, . . . , n. Then ai ∈ S for

i = 1, . . . , n. But by assumption each member of S is closed under

existing joins. Therefore,
∨

M ∈ S and [
∨

M) ∩ S 6= ∅. Then

[[
∨

M)]∼ ⊑D [S]∼ and [S]∼ ∈ [[
∨

M)]u∼.

Thus we have shown that
⋂n

i=1[[ai)]
u
∼ ⊆ [[

∨

M)]u∼, i.e.,

ιD

(

ιP

(

∨

M
))

≤L(D)

L(D)
∨

ιD(ιP(M)).

Hence, ιD · ιP preserves existing joins.

(ii) Let N ⊆fin P be the set N = {b1, . . . , bm} for some m ∈ N. Then, for

i = 1, . . . ,m

∧

N ≤ bi ⇒
(

∧

N
]

⊆ (bi]

⇒
(

∧

N
]

⊑ (bi]

⇒
[(

∧

N
]]

∼
⊑D [(bi]]∼

⇒ [(bi]]
u
∼ ⊆

[(

∧

N
]]u

∼
.
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Then [(
∧

N ]]u∼ ∈ {T ∈ L(D) : [(bi]]
u
∼ ⊆ T for i = 1, . . . , n}. Therefore,

⋂

{T ∈ L(D) : [(bi]]u∼ ⊆ T for i = 1, . . . , n} ⊆ [(
∧

N ]]u∼, i.e.,

ιD

(

ιP

(

∧

N
))

≤L(D)

L(D)
∧

ιD(ιP(N)).

On the other hand, let T ∈ L(D) such that [(bi]]
u
∼ ⊆ T for i = 1, . . . , n.

This is equivalent to requiring that
⋃n

i=1[(bi]]
u
∼ ⊆ T . Then (

⋃n
i=1[(bi]]

u
∼)

ℓu ⊆

T ℓu = T since T ∈ L(D). By the properties of Galois connection we have

that (
⋂n

i=1[(bi]]
uℓ
∼ )u ⊆ T . Now let S ∈ F∪I such that [S]∼ ∈

⋂n
i=1[(bi]]

uℓ
∼ .

Then, [S]∼ ∈ [(bi]]
uℓ
∼ for i = 1, . . . , n. Since [(bi]]

uℓ
∼ = [(bi]]

ℓ
∼ we have that

[S]∼ ⊑D [(bi]]∼ for i = 1, . . . , n. Then S ⊑ (bi] for i = 1, . . . , n.

• If S ∈ F , then S ∩ (bi] 6= ∅ for i = 1, . . . , n and it follows that

N ⊆fin S. Since each member of F is closed under existing meets

we have
∧

N ∈ S. Then [
∧

N) ⊆ S and therefore S ⊑ [
∧

N). Now

[S]∼ ⊑D [[
∧

N)]∼ = [(
∧

N ]]∼ and [S]∼ ∈ [(
∧

N ]]ℓ∼.

• If S ∈ I, then S ⊆ (bi] for i = 1, . . . , n and therefore S ⊆
⋃n

i=1(bi] =

(
∧

N ]. Then S ⊑ (
∧

N ] and [S]∼ ⊑D [(
∧

N ]]∼. Hence, [S]∼ ∈

[(
∧

N ]]ℓ∼

We may therefore conclude that
⋂n

i=1[(bi]]
uℓ
∼ ⊆ [(

∧

N ]]ℓ∼.

Finally we have that [(
∧

N ]]u∼ = [(
∧

N ]]ℓu∼ ⊆ (
⋃n

i=1[(bi]]
uℓ
∼ )u ⊆ T which

implies that
L(D)
∧

ιD(ιP(N)) ≤L(D) ιD

(

ιP

(

∧

N
))

.

6.5 Preservation theorems

Following the methods used in [Jón94] and [GV99] we use approximation terms

to obtain preservation results. In particular, we will give a syntactic description

of terms s and t for which s ≤ t is preserved by the completion. (Recall that

we take universal quantification over such expressions as implicit.)

Throughout this section let ∗ ∈ {dp, f, d}. In the sequel we will identify P

with the sub-poset of C∗ that P is isomorphic to. That is, we consider P ⊆ C∗.

From here on we will use the letters a, b or c to denote element of C∗; elements

of K∗ will be denoted by y or y′ and elements of O∗ will be denoted by z or z′.
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Let 〈P, {fi : i ∈ Ψ},≤〉 be an ordered algebra such that each fi is order-

preserving. Then both fσ
i and fπ

i are order-preserving and we can take fC∗

i to

mean either of the two. Let t be a term in the language {∨,∧, {fi : i ∈ Ψ}}. If

the variables occurring in t are in the sequence ~x = x1, . . . , xn, then we denote

this by t(~x). If ~a = a1, . . . , an is a sequence of elements of C∗, then tC∗(~a)

denotes the evaluation of t in C∗ under the assignment xi 7→ ai.

For each term t(~x) and ~a ∈ Cn
∗ define

tσ∗ (~a) =
∨

{

∧

{

t(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

: ~a ≥ ~y ∈ K∗,~a ≤ ~z ∈ O∗

}

,

tπ∗ (~a) =
∧

{

∨

{

t(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

: ~a ≥ ~y ∈ K∗,~a ≤ ~z ∈ O∗

}

.

For each fi, i ∈ Ψ, assume that fC∗

i is a fixed extension of fi, either f
σ
i or

fπ
i , on C∗.

Definition 6.5.1. A term t(~x) is called

• σ-stable if tC∗(~a) = tσ∗ (~a),

• σ-expanding if tC∗(~a) ≥ tσ∗ (~a),

• σ-contracting if tC∗(~a) ≤ tσ∗ (~a),

• π-stable if tC∗(~a) = tπ∗ (~a),

• π-expanding if tC∗(~a) ≥ tπ∗ (~a),

• π-contracting if tC∗(~a) ≤ tπ∗ (~a),

for all ~a ∈ Cn
∗ .

Lemma 6.5.2. If 〈P, {fi : i ∈ Ψ},≤〉 satisfies s(~x) ≤ t(~x), then sσ∗ (~a) ⊆ tσ∗ (~a)

and sπ∗ (~a) ⊆ tπ∗ (~a) for all ~a ∈ Cn
∗ .

Proof. Let ~a ∈ Cn
∗ , ~y ∈ K∗ and ~z ∈ O∗ such that ~y ≤ ~a ≤ ~z. If ~b ∈ Pn such that

~y ≤ ~b ≤ ~z, then s(~b) ≤ t(~b) since 〈P, {fi : i ∈ Ψ},≤〉 satisfies s(~x) ≤ t(~x). Then,

∧

{

s(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

≤
∧

{

t(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

and
∨

{

s(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

≤
∨

{

t(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

.

Therefore, sσ∗ (~a) ≤ tσ∗ (~a) and s
π
∗ (~a) ≤ tπ∗ (~a).
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Corollary 6.5.3. If s is a σ-contracting term and t is a σ-expanding term, or

s is a π-contracting term and t is a π-expanding term, then s ≤ t is preserved

by the completion.

Proof. Suppose 〈P, {fi : i ∈ Ψ,≤}〉 satisfies s ≤ t, where s is a σ-contracting

term and t is a σ-expanding term. Then by Lemma 6.5.2, sC∗(~a) ≤ sσ∗ (~a) ≤

tσ∗ (~a) ≤ tC∗(~a). The proof is similar if s is π-contracting and t is π-expanding.

We note that if s is σ-stable, then s is σ-contracting and if t is σ-stable, then

t is σ-expanding. Thus, if s is σ-stable and t is σ-stable, then s ≤ t is preserved

by the completion. Similarly, if s is π-stable and t is π-stable, then s ≤ t is

preserved by the completion.

Lemma 6.5.4. Let s1 and s2 be σ-contracting terms, i.e., sC∗

1 (~a) ≤ (s1)
σ
∗ (~a)

and sC∗

2 (~a) ≤ (s2)
σ
∗ (~a) and for all ~a ∈ Cn

∗ . Let t(~x) = s1(~x) ∨ s2(~x). Then t is

a σ-contracting term.

Proof. Let ~a ∈ Cn
∗ . Then,

tC∗(~a)

= sC∗

1 (~a) ∨ sC∗

2 (~a)

≤ (s1)
σ
∗ (~a) ∨ (s2)

σ
∗ (~a)

=
∨

{

∧

{

s1(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

: ~a ≥ ~y ∈ K,~a ≤ ~z ∈ O
}

∨

∨

{

∧

{

s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

: ~a ≥ ~y ∈ K,~a ≤ ~z ∈ O
}

=
∨

{

∧

{

s1(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

∨

∧

{

s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z
}

: ~a ≥ ~y ∈ K,~a ≤ ~z ∈ O
}

.

Let ~y ∈ K and ~z ∈ O such that ~y ≤ ~a ≤ ~z. If ~b ∈ Pn such that ~y ≤ ~b ≤ ~z, then

s1(~b) ≤ s1(~b) ∨ s2(~b) and s2(~b) ≤ s1(~b) ∨ s2(~b). Therefore,

∧

{s1(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z} ≤
∧

{s1(~b) ∨ s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z}

and

∧

{s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z} ≤
∧

{s1(~b) ∨ s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z}.
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Then,

∧

{s1(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z} ∨
∧

{s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z}

≤
∧

{s1(~b) ∨ s2(~b) : ~b ∈ Pn, ~y ≤ ~b ≤ ~z}

so tC∗(~a) ≤ tσ∗ (~a). Hence, t is σ-contracting.

Lemma 6.5.5. Let s1 and s2 be π-expanding terms, i.e., sC∗

1 (~a) ≥ (s1)
π
∗ (~a)

and sC∗

2 (~a) ≥ (s2)
π
∗ (~a) for all ~a ∈ Cn

∗ . Let t(~x) = s1(~x) ∧ s2(~x). Then t is a

π-expanding term.

The proof follows the dual argument to that used in the proof of Lemma 6.5.4.

We now consider terms involving additional operations. By Lemmas 6.3.7

and 6.3.29 we have that fσ
∗ ≤ fπ

∗ under the point-wise ordering if f is order-

preserving. If every operation occurring in a term t is order-preserving, then

the term (function) t is order-preserving. Moreover, tσ∗ ≤ tπ∗ . Let f : P → P

be a residuated operator with residual g : P → P . Then fσ
∗ and gπ∗ form a

residuated pair on C∗ by Lemmas 6.3.13 and 6.3.14. For the remainder of this

section we consider only terms from the language {∨,∧, f, g} and assume that

fC∗ is the extension fσ
∗ of f ; while gC∗ will be the extension gπ∗ of g. Then all

terms under consideration from now on are order-preserving. Furthermore, by

Lemma 6.3.7, we have the following simplification of our approximations:

tσ∗ (~a) =
∨

{

∧

{

t(~b) : ~y ≤ ~b ∈ Pn
}

: ~a ≥ ~y ∈ K∗

}

,

tπ∗ (~a) =
∧

{

∨

{

t(~b) : ~z ≥ ~b ∈ Pn
}

: ~a ≤ ~z ∈ O∗

}

.

Now suppose a term t is σ-contracting, i.e., tC∗(~a) ≤ tσ∗ (~a) for all ~a ∈ Cn
∗ .

Then tσ∗ (~a) ≤ tπ∗ (~a) for all ~a ∈ Cn
∗ and t is π-contracting. On the other hand,

suppose t is π-expanding, i.e., tC∗(~a) ≥ tπ∗ (~a). Then t
π
∗ (~a) ≥ tσ∗ (~a) for all ~a ∈ Cn

∗

and t is σ-expanding.

By definition f(x) is σ-stable and therefore also π-contracting. Similarly,

g(x) is π-stable and therefore also σ-expanding.

We will call a term t(~x) totally defined if t(~a) is defined in P , i.e., t(~a) exists

and t(~a) ∈ P , for all ~a ∈ Pn. We note that since not all finite joins and meets

exist in P , only {f, g}-terms will be totally defined terms.

Lemma 6.5.6. Let s be a totally defined σ-contracting term, i.e., sC∗(~a) ≤

sσ∗ (~a) for all ~a ∈ Cn
∗ . Let t(~x) = f(s(~x)). Then t is a σ-contracting term.
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Proof. Let ~a ∈ Cn
∗ . Then,

tC∗(~a)

=fσ
∗ (s

C∗(~a))

≤fσ
∗ (s

σ
∗ (~a))

=fσ
∗

(

∨

{

∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c} : ~a ≥ ~y ∈ K∗

})

=
∨

{

fσ
∗

(

∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c}
)

: ~a ≥ ~y ∈ K∗

}

where the final equality follows from the fact that fσ
∗ is residuated on C∗ and

therefore a complete operator.

Let ~y ∈ K∗ such that ~y ≤ ~a. Then,

fσ
∗

(

∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c}
)

=
∨

{

∧

{f(b) : b ∈ P, y′ ≤ b} :
∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c} ≥ y′ ∈ K∗

}

.

Let y′ ∈ K∗ such that y′ ≤
∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c}. Then, y′ ≤ s(~c) for all

~c ∈ Pn such that ~y ≤ ~c. But s(~c) ∈ P , since s is a totally defined term. Then,

{f(b) : b ∈ P, y′ ≤ b} ⊇ {f(s(~c)) : ~c ∈ Pn, ~y ≤ ~c}

⇒
∧

{f(b) : b ∈ P, y′ ≤ b} ≤
∧

{f(s(~c)) : ~c ∈ Pn, ~y ≤ ~c.}

By the above we have that

∨

{

∧

{f(b) : b ∈ P, y′ ≤ b} :
∧

{s(~c) : ~c ∈ Pn, ~y ≤ ~c} ≥ y′ ∈ K∗

}

≤
∧

{f(s(~c)) : ~c ∈ Pn, ~y ≤ ~c}.

Therefore,

tC∗(~a) ≤
∨

{

∧

{f(s(~c)) : ~c ∈ Pn, ~y ≤ ~c} : ~a ≥ ~y ∈ K∗

}

=tσ∗ (~a).

Hence, t is σ-contracting.

Lemma 6.5.7. Let s be a totally defined π-expanding term, i.e., sC∗(~a) ≥ sπ∗ (~a)

for all ~a ∈ Cn
∗ . Let t(~x) = g(s(~x)). Then t is a π-expanding term.

The proof is similar to the proof of Lemma 6.5.6, but makes use of the fact

that gπ∗ is a complete dual operator on C∗.

We summarize the above results in the following theorem.
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Theorem 6.5.8. An inequality s ≤ t is preserved by the completion (C∗, α∗),

where C∗ =
〈

C∗,∨
C,∧C, fσ

∗ , g
π
∗

〉

, if s is any term built up from variables using

∨ and f ; and t is any term built up from variables using ∧ and g.



7. PRIME FILTER COMPLETION

A number of representation theorems for (completely) distributive (complete)

lattices can be found in the literature. In [Ran52, Theorem 1] it was shown that

a lattice is completely distributive if, and only if, it is a complete homomorphic

image of a complete ring of sets. A year later, in [Ran53, Theorem A] the

same author showed that every completely distributive complete lattice can be

embedded isomorphically into the direct union of a family of complete chains.

Another seven years later he improved the proof of the above representation

result in [Ran60, Theorem 7], greatly reducing the number of chains required

in the representation, by making use of the following notions. Let L = 〈L,∨,∧〉

be a complete lattice with associated ordering relation ≤. An ordered pair of

elements (a, b) of L is called a blanket if, and only if, for every c ∈ L, either

c ≥ a or c ≤ b. If, in addition, a0 ∈ L such that a0 > a implies that (a0, b) is

not a blanket and b0 ∈ L such that b0 < b implies that (a, b0) is not a blanket,

then (a, b) is called a minimax blanket. Finally, a blanket (a, b) separates the

elements c, d ∈ L if, and only if, c ≥ a and d ≤ b.

A combination of [Ran60, Theorems 5, 6 and 7] then gives the following

representation result. A complete lattice L = 〈L,∨,∧〉 can be embedded iso-

morphically into the direct union of a family of complete chains if, and only if,

for any c, d ∈ L with c � d, there exists a minimax blanket that separates c and

d. The embedding preserves all meets and joins existing in L.

The representation results above are all closely related to Priestley’s repre-

sentation theorem for bounded distributive lattices [Pri70]. A topology T on

a set P is a family of subsets of P that contains P and ∅ and that is closed

under arbitrary unions and finite intersections. Let L = 〈L,∨,∧〉 be a bounded

distributive lattice and let Sa = {I ∈ I (L) : a /∈ I} and B = {Sa∩(I (L)−Sb) :

a, b ∈ L}. Define T by: U ∈ T if, and only if, U is a union of members of B.

Then T is a topology on I (L) and 〈I (L),⊆,T 〉 is called the dual space of L or

the prime ideal space of L. The sets Sa, for a ∈ L, then form the clopen down-
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sets of I (L). Priestley’s representation theorem now states: If L = 〈L,∨,∧〉

is a bounded distributive lattice, then the map a 7→ Sa is an isomorphism of L

onto the lattice of clopen down-sets of the dual space 〈I (L),⊆,T 〉 of L. The

above representation theorem relied on the following being satisfied by the dual

space of a bounded distributive lattice: For any points x, y ∈ P , if x � y, then

there exists a clopen upset U of P such that x ∈ U and y /∈ U . This is known

as Priestley’s separation axiom and is clearly closely related to the notion of

separation by a blanket.

In [Jan78] the combined representation result from [Ran60], as stated above,

was generalised for the poset setting. We summarize the results from [Jan78] in

Section 7.1 and then give a similar result, but with a much simpler construction.

We then investigate a possible connection between this construction and the

construction of a complete lattice obtained from a polarization, as studied in

Chapter 6. Finally we consider possible extensions of maps to the completely

distributive complete lattice obtained through the construction.

The work done in this chapter is part of an on-going collaboration with Prof.

Clint van Alten [MvAc].

7.1 The construction

The reader is referred to Chapter 4 for the definitions of pseudo and Doyle-

pseudo filters (Definitions 4.1.1 and 4.1.2, respectively), complete Doyle-pseudo

filters (Definition 4.1.7) and (complete) prime pseudo and Doyle-pseudo filters

(Definition 4.2.13).

Firstly, we summarise the results from [Jan78] wherein the authors proved

a sub-direct representation of certain posets.

Let P = 〈P,≤〉 be a poset. A pair (F, I), with F ∈ Fcdp and I ∈ Icdp, is

called a blanket if, and only if, F ∪ I = P . If x, y ∈ P such that x � y, then a

blanket (F, I) is said to separate x and y if, and only if, x ∈ F and y ∈ I.

Define the relations RF ⊆ Fcdp ×Fcdp and RI ⊆ Icdp × Icdp by

(F,G) ∈ RF ⇐⇒ F ∩ 〈P −G]cdp = ∅

and

(I, J) ∈ RI ⇐⇒ [P − I〉cdp ∩ J = ∅.

A subset S of F is said to be a RF -chain if, and only if, for all F,G ∈ S we

have that (F,G) ∈ RF , F = G or (G,F ) ∈ RF . Furthermore, a RF -chain, S,
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will be called weakly dense if, and only if, whenever F,G ∈ S and (F,G) ∈ RF ,

there exists F ′ ∈ S such that (F, F ′) ∈ RF and (F ′, G) ∈ RF . RI-chains and

weakly dense RI-chains in I are defined similarly.

A filter F ∈ Fcdp will be called accessible if, and only if, it is either prime

or there exists a weakly dense RF -chain S in F such that F /∈ S, but F =
⋂

S.

An ideal I ∈ Icdp will be called accessible if, and only if, it is either prime or

there exists a weakly dense RI -chain T in I such that I /∈ T , but I =
⋂

T .

Finally a blanket (F, I) will be called an accessible blanket if, and only if, both

F and I are accessible.

Then we have the following representation result.

Theorem 7.1.1 ([Jan78]). A poset P can be embedded isomorphically into the

direct union of a family of complete chains if, and only if, for any a, b ∈ P with

a � b there exists an accessible blanket which separates a and b. The embedding

preserves all meets and joins existing in P.

The construction of the direct union of a family of complete chains in the

above is fairly involved and rather cumbersome to work with. We propose

weakening the condition required of P and embedding P into a completely

distributive complete lattice instead. Since the variety of distributive lattices is

generated by the 2-element chain, nothing is really sacrificed.

For ∗ ∈ {p, dp}, recall that F ∗ and I ∗ denote the families of prime ∗-filters

and prime ∗-ideals of P, respectively (see Definition 4.2.13). In the sequel we

will be interested in posets that satisfy one of the following:

For any x, y ∈ P, if x � y, then there

exists F ∈ F dp(P) such that x ∈ F, but y /∈ F. (7.1)

For any x, y ∈ P, if x � y, then there

exists F ∈ F p(P) such that x ∈ F, but y /∈ F. (7.2)

By the definition of prime filters it then follows that y ∈ P − F ∈ I ∗ for

∗ ∈ {p, dp}. All distributive lattices satisfy the above.

Theorem 7.1.2. A poset P can be embedded into a completely distributive com-

plete lattice such that all existing finite (respectively, binary) meets and joins
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in P are preserved by the embedding if, and only if, P satisfies (7.1) (respec-

tively,(7.2)).

Proof. We prove the claim for the case where P satisfies (7.1). The proof of the

case where P satisfies (7.2) is similar.

Let L = 〈L,∨,∧〉 be a completely distributive complete lattice and let ξ be

an order-embedding of P into L such that ξ preserves all existing finite meets

and joins in P. Let a, b ∈ P such that a � b. Then ξ(a) � ξ(b) since ξ is an

order-embedding. Since L is distributive, it follows that there exists a prime

filter F ∈ F (L) such that ξ(a) ∈ F , but ξ(b) /∈ F . Let G = {c ∈ P : ξ(c) ∈ F}.

Then a ∈ G, but b /∈ G. Moreover, G ∈ F pd(P): Let c1 ∈ G and c2 ∈ P

such that c1 ≤ c2. Then ξ(c1) ≤ ξ(c2) and ξ(c1) ∈ F . Since F is an up-

set we have ξ(c2) ∈ F and consequently c2 ∈ G. Hence, G is an up-set in

P. Next let M ⊆fin G such that
∧

M exists in P. Then ξ(M) ⊆fin F and
∧

ξ(M) ∈ F . Since ξ preserves all existing finite meets in P, we have that
∧

ξ(M) = ξ(
∧

M) ∈ F . Therefore,
∧

M ∈ G and we conclude that G is closed

under existing finite meets. Finally, suppose N ⊆fin P such that
∨

N exists

and
∨

N ∈ G. Then ξ(
∨

N) ∈ F , i.e.,
∨

ξ(N) ∈ F since ξ preserves existing

finite joins. But F ∈ F (L) implies that F ∩ ξ(N) 6= ∅. Let c ∈ N such that

ξ(c) ∈ F ∩ξ(N). Then c ∈ G by definition and G∩N 6= ∅. Hence, G ∈ F dp(P).

Now suppose P satisfies (7.1). To prove the backward implication we con-

struct a completely distributive complete lattice into which P can be embedded

and we describe the embedding.

Let Edp =
{

U ∈ P(F dp) : U is an up-set in
〈

F dp,⊆
〉}

. We note that since

∅ and F dp are up-sets in
〈

F dp,⊆
〉

, it follows that Edp 6= ∅. Then we will

show that Edp = 〈Edp,∪,∩〉 is a completely distributive complete lattice where

⊆ is the associated lattice order ≤E. Let T ⊆ Edp. Then
⋃

T = {F ∈ F dp :

F ∈ U for some U ∈ T }. Let F ∈
⋃

T and G ∈ F dp such that F ⊆ G. Then

F ∈ U for some U ∈ T . Since U is an up-set in
〈

F dp,⊆
〉

, it follows that

G ∈ U . Hence, G ∈
⋃

T and
⋃

T is an up-set in
〈

F dp,⊆
〉

. Next we consider
⋂

T = {F ∈ F dp : U ∈ T implies F ∈ U}. Let F ′ ∈
⋂

T and G′ ∈ F dp such

that F ′ ⊆ G′. Then F ′ ∈ U for all U ∈ T . But each U ∈ T is an up-set in
〈

F dp,⊆
〉

. Therefore, G′ ∈ U for all U ∈ T and hence G′ ∈
⋂

T . Thus,
⋂

T

is an up-set in
〈

F dp,⊆
〉

. This proves that Edp is a complete lattice. It is well

known that any complete lattice of sets is completely distributive [DP02].
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Now define ξdp : P → Edp as follows: for a ∈ P

ξdp(a) = {F ∈ F
dp : a ∈ F}.

Then ξdp is an order-embedding of P into Edp that preserves the finite meets

and join that exist in P: Let a, b ∈ P . If a ≤ b, then a ∈ F ∈ F dp implies that

b ∈ F since F is an up-set. Hence ξdp(a) ⊆ ξdp(b). If a � b, then by assumption

there exists F ′ ∈ F dp such that a ∈ F ′, but b /∈ F ′. Then F ′ ∈ ξdp(a) but

F ′ /∈ ξdp(b). Therefore, ξdp(a) * ξdp(b).

Next let M ⊆fin P such that
∧

M exists in P. Then,

ξdp

(

∧

M
)

=
{

F ∈ F
dp :

∧

M ∈ F
}

= {F ∈ F
dp :M ⊆ F}

=
⋂

a∈M

{F ∈ F
dp : a ∈ F}

=
⋂

ξdp(M),

where the second equality follows from the closure of Doyle-pseudo filters under

existing finite meets. Now let N ⊆fin P such that
∨

N exists in P. Then,

ξdp

(

∨

N
)

=
{

F ∈ F
dp :

∨

N ∈ F
}

= {F ∈ F
dp : N ∩ F 6= ∅}

=
⋃

a∈N

{F ∈ F
dp : a ∈ F}

=
⋃

ξdp(N),

where the second equality follows from the fact that the filters are prime.

Thus, (Edp, ξdp) is a completion of P.

In the sequel let (E∗(P), ξP∗ ), ∗ ∈ {dp, p}, denote the completion of a poset

P constructed as in the proof of Theorem 7.1.2. If P is understood we write

(E∗, ξ∗).

Example 7.1.3. Let P′ be the poset depicted in Figure 7.1. Then, P′ satisfies

(7.1) and (7.2). By Theorem 7.1.2 it follows that P′ can be embedded into the

completely distributive complete lattice E∗, also depicted in Figure 7.1. The

image of P under ξ∗ is shaded in the depiction of E∗.

One may wonder whether or not one of the smaller families of up-sets of

a poset P would suffice. For example, would a poset P be embeddable into a
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completely distributive complete lattice if, and only if, for any x, y ∈ P there

exists a prime Frink filter, F ∈ F f , such that x ∈ F , but y /∈ F? The answer to

this question is no. The poset P′ considered in this example is clearly embeddable

into a completely distributive complete lattice, but, for example, there does not

exist a prime Frink filter F such that 2 ∈ F , but 3 /∈ F .

For the full details, see Example A.3.1 in Appendix A.3.

b

b b b

1

2 3 4

P′ : E∗ :

b

b b b

bc bc bc

bc

F∗ = ξ∗(1)

⊥E∗

Fig. 7.1: The poset P′ and the complete lattice E∗, for ∗ ∈ {d, dp}.

7.2 Relation to the canonical extension

If we assume the axiom of choice, then we have the following result (see for

instance [DP02, Theorem 10.18]).

Theorem 7.2.1. Let L = 〈L,∨,∧〉 be a distributive lattice, F ∈ F(L) and

I ∈ I(L) such that F∩I = ∅, then there exist G ∈ F (L) and J = L−G ∈ I (L)

such that F ⊆ G and I ⊆ J .

Recall that if L is a bounded lattice, then the families of pseudo and Doyle-

pseudo filters and ideals correspond with the families of filters and ideals of L.

We will therefore drop the subscript “∗” when we refer to the completion (E, ξ)

of L. Moreover, (7.1) now becomes:

For any x, y ∈ L, if x � y, then there

exists F ∈ F (L) such that x ∈ F, but y /∈ F. (7.3)

It is well known that a lattice L is distributive if, and only if, it satisfies (7.3).
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It is also known that if L is a bounded distributive lattice, then E is (iso-

morphic to) the canonical extension of L [GJ94]. We now give an explicit

correspondence between E and C, as described in Chapter 6.

Lemma 7.2.2. Let L be a bounded distributive lattice. Let E be the com-

pletely distributive complete lattice obtained through the construction described

in Section 7.1 and let C be the complete lattice obtained from the polarization

(F(L), I(L)), as described in Chapter 6.1.1. Define η : C → E by, for X ∈ C

η(X) = X ∩ F (L)

Then η is a lattice isomorphism between C and E that fixes L.

Proof. (i) η is one-to-one: Let X1, X2 ∈ C such that η(X1) = η(X2), i.e.,

X1 ∩ F (L) = X2 ∩ F (L). Let F ∈ X1 and suppose F /∈ X2 = X��

2 .

Then there exists I ∈ X�

2 such that F ∩ I = ∅. By Theorem 7.2.1,

there exists G ∈ F (L) such that F ⊆ G and G ∩ I = ∅. Therefore,

G /∈ X��

2 = X2. But, since X1 is an up-set in F and F ⊆ G, we have that

G ∈ X1. This contradicts our assumption that η(X1) = η(X2). Thus,

F ∈ X2 and X1 ⊆ X2. Similarly, we can show that X2 ⊆ X1. Hence,

X1 = X2.

(ii) η is onto: Let U ∈ E . We will show that η(U��) = U . It follows from

the properties of Galois connections that U�� ∈ C. Since U ⊆ U�� and

U ⊆ F (L), the inclusion U ⊆ U�� ∩ F (L) is immediate. To prove the

inclusion in the other direction, let F ∈ U�� ∩ F (L). Then F ∩ I 6= ∅
for all I ∈ U�. Now J = L−F ∈ I (L), since F ∈ F (L), and F ∩J = ∅.

Therefore, J /∈ U�. This implies that there exists G ∈ U such that

G ∩ J = ∅. Then G ⊆ L − J = F and F ∈ U , since U is an up-set of

prime filters. Hence, U�� ∩ F (L) ⊆ U .
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(iii) η distributes over meets and joins: Let Xi ∈ C for i ∈ Ψ. Then,

η

(

C
∧

i∈Ψ

Xi

)

= η

(

⋂

i∈Ψ

Xi

)

=

(

⋂

i∈Ψ

Xi

)

∩ F (L)

=
⋂

i∈Ψ

(Xi ∩ F (L))

=
⋂

i∈Ψ

η(Xi)

=

E
∧

i∈Ψ

η(Xi).

Furthermore, recall that
∨C

i∈ΨXi = (
⋃

i∈ΨXi)
�� which equals (

⋂

i∈ΨX
�

i )�

by Lemma 2.6.3. Let F ∈ η(
∨C

i∈ΨXi) = (
⋂

i∈ΨX
�

i )� ∩ F (L). This is

the case if, and only if, F ∩ I 6= ∅ for all I ∈
⋂

i∈ΨX
�

i if, and only if,

J /∈
⋂

i∈ΨX
�

i for J = L− F ∈ I (L) (since F is prime). Moreover,

J /∈
⋂

i∈Ψ

X�

i

⇐⇒ J /∈ X�

j for some j ∈ Ψ

⇐⇒ there exists Gj ∈ Xj such that Gj ∩ J = ∅ for some j ∈ Ψ

⇐⇒ there exists Gj ∈ Xj such that Gj ⊆ F for some j ∈ Ψ

⇐⇒ F ∈ Xj for some j ∈ Ψ

⇐⇒ F ∈ η(Xj) for some j ∈ Ψ

⇐⇒ F ∈
⋃

i∈Ψ

η(Xi) =
E
∨

i∈Ψ

η(Xi).

Hence, η(
∨C

i∈ΨXi) =
∨E

i∈Ψ η(Xi).

(iv) η fixes L: Let a ∈ L. Then,

η(α(a)) = η({F ∈ F : a ∈ F})

= {F ∈ F : a ∈ F} ∩ F (L)

= {F ∈ F (L) : a ∈ F}

= ξ(a).
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Implicit from the above is that the map ζ : E → C defined by ζ(U) = U��,

for U ∈ E , is the inverse of η and therefore a lattice isomorphism from E to C

that fixes L.

Consider the proof of Lemma 7.2.2. The fact that L is distributive is only

called upon when we prove that η, the isomorphism between C and E, is one-

to-one, since we appeal to Theorem 7.2.1. One may now wonder whether or not

there exists a larger class of posets for which the completions discussed in this

chapter correspond to the completions studied in Chapter 6. We will show that

this is indeed the case and give a characterization of a larger class of posets for

which Edp and Cdp are isomorphic.

We begin by recalling a result obtained in [Tun74].

Following [Tun74] a polarization (F , I) of a poset P is called normal if,

whenever F ∈ F and I ∈ I such that F ∩ I = ∅, then there exist G ∈ F and

J ∈ I such that G∩ I = ∅ = F ∩J and G∪J = P . Then we have the following

result.

Theorem 7.2.3. [Tun74, Theorem 3] The completion C obtained from a po-

larization (F , I) of a poset P is completely distributive if, and only if, (F , I) is

a normal polarization of P.

Observe that a normal polarization does not require that the larger sets G

and J be disjoint. Let P be a poset for which (Fdp(P), Idp(P)) form a normal

polarization. Define ηdp : Cdp → Edp by ηdp(X) = X ∩ F dp(P). To prove that

ηdp is one-to-one for a poset, we need the following stronger condition:

If F ∈ Fdp(P) and I ∈ Idp(P) such that F ∩ I = ∅, then there exist

G ∈ F dp(P) and J = L−G ∈ I dp(P) such that F ⊆ G and I ⊆ J. (7.4)

We will now show that if (Fdp(P), Idp(P)) is a normal polarization for a

poset P, then P satisfies (7.4).

Lemma 7.2.4. Let P be a poset, F ∈ Fdp(P) and I ∈ Idp(P). Then F ∩I = ∅
if, and only if, [α(F )〉 ∩ 〈α(I)] = ∅.

Proof. Let F ∈ Fdp(P) and I ∈ Idp(P). Observe that [α(F )〉 = [
∧

α(F ))

and 〈α(I)] = (
∨

α(I)]. Then, [α(F )〉 ∩ 〈α(I)] 6= ∅ if, and only if, [
∧

α(F )) ∩

(
∨

α(I)] 6= ∅. This is the case if, and only if,
∧

α(F ) ≤
∨

α(I) if, and only if,

F ∩ I 6= ∅ by the internal compactness of Cdp.
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Corollary 7.2.5. If Cdp of a poset P is distributive and F ∈ Fdp(P) and

I ∈ Idp(P) such that F ∩ I = ∅, then there exist G ∈ F (Cdp) and J =

Cdp −G ∈ I (Cdp) such that α(F ) ⊆ G and α(I) ⊆ J .

This is a direct consequence of Theorem 7.2.1 and Lemma 7.2.4.

Lemma 7.2.6. Let G ∈ F (Cdp) of a poset P. Then α−1(G∩α(P )) ∈ F dp(P).

Proof. We first show that α−1(G ∩ α(P )) ∈ Fdp(P). Clearly α−1(G ∩ α(P )) is

an up-set in P, since G is an up-set and α and α−1 are order-preserving. Let

M ⊆fin α−1(G ∩ α(P )) such that
∧

M exists in P. Then, since α preserves

finite meets that exist in P,

M ⊆fin α−1(G ∩ α(P ))

⇒ α(M) ⊆fin G ∩ α(P )

⇒
∧

α(M) ∈ G

⇒ α
(

∧

M
)

∈ G

⇒ α
(

∧

M
)

∈ G ∩ α(P )

⇒
∧

M ∈ α−1(G ∩ α(P )).

Therefore, α−1(G ∩ α(P )) is closed under finite meets that exist in P. Hence,

α−1(G ∩ α(P )) ∈ Fdp(P).

Now let N ⊆fin P − α−1(G ∩ α(P )) such that
∨

N exists in P. Suppose
∨

N ∈ α−1(G ∩ α(P )). Then, since α preserves finite joins that exist in P and

since G is prime,

∨

N ∈ α−1(G ∩ α(P ))

⇒ α
(

∨

N
)

∈ G ∩ α(P )

⇒
∨

α(N) ∈ G ∩ α(P )

⇒ G ∩ α(N) 6= ∅

⇒ N ∩ α−1(G ∩ α(P )) 6= ∅,

which contradicts our choice of N . Thus,
∨

N /∈ α−1(G ∩ α(P )) and therefore

P − α−1(G ∩ α(P )) ∈ Idp(P). But then, α−1(G ∩ α(P )) ∈ F dp(P).

Combining Corollary 7.2.5 and Lemma 7.2.6 now gives the following.
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Corollary 7.2.7. If Cdp of a poset P is distributive, then P satisfies (7.4).

If we now combine Corollary 7.2.7 with the backward implication of Theo-

rem 7.2.3, we get the following result.

Corollary 7.2.8. If P is poset such that (Fdp(P), Idp(P)) is a normal polar-

ization, then P satisfies (7.4).

We also have the following.

Lemma 7.2.9. If a poset P satisfies (7.4), then P satisfies (7.1).

Proof. Let P be a poset that satisfies (7.4) and let a, b ∈ P such that a � b.

Then [a) ∈ Fdp(P), (b] ∈ Idp(P) and [a) ∩ (b] = ∅. By assumption there exist

G ∈ F dp(P) and J = P − G ∈ I dp(P) such that [a) ⊆ G and (b] ⊆ J . Then,

a ∈ G, but b /∈ G.

A consequence of the above is that if (Fdp(P), Idp(P)) is a normal polariza-

tion of a poset P, then we can embed P into a completely distributive complete

lattice, Edp, constructed as in the proof of Theorem 7.1.2. Furthermore, recall

from our earlier discussion that the only part of the proof of Lemma 7.2.2 that

would not hold for all posets satisfying (7.1), is the proof that η is one-to-one.

It should be clear that if a poset P satisfies (7.4) (the poset analogue of the

property described in Theorem 7.2.1), then the map ηdp will be one-to-one.

Therefore, we have the following result.

Corollary 7.2.10. Let P be a poset such that (Fdp(P), Idp(P)) is a normal

polarization. Let Edp be the completely distributive complete lattice obtained

through the construction described in Section 7.1 and let Cdp be the complete

lattice obtained from the polarization (Fdp(P), Idp(P)), as described in Chap-

ter 6.1.1. Let ηdp : Cdp → Edp be defined by, for X ∈ Cdp,

ηdp(X) = X ∩ F
dp(P ).

Then ηdp is a lattice isomorphism between Cdp and Edp that fixes P .

Remark 7.2.11. Recall the following result for lattices. Let L be a lattice.

Then the following are equivalent:

(i) L is distributive.
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(ii) Given J ∈ I(L) and G ∈ F(L) such that J ∩G = ∅, there exist I ∈ I (L)

and F = L− I ∈ F (L) such that J ⊆ I and G ⊆ F .

(iii) Given a, b ∈ L with a � b, there exists F ∈ F (L) such that a ∈ F , but

b /∈ F .

One may now wonder whether or not an analogous claim would be true in the

poset setting. By Lemma 7.2.9 we have that (ii) implies (iii) for posets. How-

ever, the question of whether or not the other implications hold is still open.

7.3 Extension of maps

For the remainder of this section let ∗ ∈ {p, dp} and let P =
〈

P,≤P
〉

and

Q =
〈

Q,≤Q
〉

be fixed posets that satisfy (7.1) if ∗ is dp and (7.2) if ∗ is p.

Furthermore, let (E∗(P), ξP∗ ) and (E∗(Q), ξQ∗ ) be the completions of P and Q

obtained through the construction described in Section 7.1.

We will treat order-preserving and order-reversing maps separately.

Lemma 7.3.1. If U ∈ E∗(P), then
⋂

U is an up-set in P. In particular, if

U = ξP∗ (a), then
⋂

U = [a).

Dually, if Υ is an up-set of ideals, then
⋂

Υ is a down-set in P. In particular,
⋂

{I ∈ I ∗(P) : a ∈ I} = (a]

Proof. Let b ∈
⋂

U and c ∈ P such that b ≤ c. Then b ∈ F for all F ∈ U . But

each F ∈ U is an up-set in P . Hence, c ∈ F for all F ∈ U and consequently

c ∈
⋂

U . Thus,
⋂

U is an up-set in P.

Suppose U = ξ∗(a) for some a ∈ U . Clearly [a) ⊆
⋂

U . If b ∈ P such that

a � b, then, by assumption, there exists F ∈ F ∗(P) such that a ∈ F , but b /∈ F .

Then F ∈ ξ∗(a) = U and b /∈
⋂

U . Therefore,
⋂

U = [a).

The proof of the second claim is similar.

Lemma 7.3.2. Let f : P → Q be an order-preserving map. Then fE∗ :

E∗(P) → E∗(Q) defined by, for U ∈ E∗(P),

fE∗(U) =
{

F ∈ F
∗(Q) : f

(

⋂

U
)

⊆ F
}

is order-preserving and extends f , i.e., for all a ∈ P we have fE∗(ξP∗ (a)) =

ξQ∗ (f(a)).
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Proof. Let U, V ∈ E∗(P) such that U ⊆ V and F ∈ fE∗(U). Then,

U ⊆ V and f
(

⋂

U
)

⊆ F

⇒
⋂

U ⊇
⋂

V

⇒ f
(

⋂

U
)

⊇ f
(

⋂

V
)

⇒ f
(

⋂

V
)

⊆ F

⇒ F ∈ fE∗(V ).

Hence, fE∗(U) ⊆ fE∗(V ) and we conclude that fE∗ is order-preserving.

Now let a ∈ P and let F ∈ fE∗(ξP∗ (a)). Since a ∈
⋂

ξP∗ (a), we have

that f(a) ∈ F and F ∈ ξQ∗ (f(a)). Hence, fE∗(ξP∗ (a)) ⊆ ξQ∗ (f(a)). Next let

G ∈ ξQ∗ (f(a)) and let b ∈
⋂

ξP∗ (a). By Lemma 7.3.1, b ≥ a, and since f is

order-preserving, it follows that f(b) ≥ f(a). Then f(b) ∈ G, since G is an

up-set and f(a) ∈ G. Therefore, f(
⋂

ξP∗ (a)) ⊆ G and G ∈ fE∗(ξP∗ (a)). Thus,

ξQ∗ (f(a)) ⊆ fE∗(ξP∗ (a)).

Lemma 7.3.3. Let h : P → Q be an order-reversing map. Then hE∗ : E∗(P) →

E∗(Q) defined by, for U ∈ E∗(P),

hE∗(U) =
{

F ∈ F
∗(Q) : h

(

⋂

{

I ∈ I
∗(P) :

⋂

U * (P − I)
})

⊆ F
}

is order-reversing and extends h, i.e., for all a ∈ P we have hE∗(ξP∗ (a)) =

ξQ∗ (h(a)).

Proof. Let U, V ∈ E∗(P) such that U ⊆ V . Then,

⋂

V ⊆
⋂

U

⇒
⋂

U * (P − J) for all J ∈
{

I ∈ I
∗(P) :

⋂

V * (P − I)
}

⇒ J ∈
{

I ∈ I
∗(P) :

⋂

U * (P − I)
}

for all J ∈
{

I ∈ I
∗(P) :

⋂

V * (P − I)
}

⇒
{

I ∈ I
∗(P) :

⋂

V * (P − I)
}

⊆
{

I ∈ I
∗(P) :

⋂

U * (P − I)
}

⇒
⋂

{

I ∈ I
∗(P) :

⋂

V * (P − I)
}

⊇
⋂

{

I ∈ I
∗(P) :

⋂

U * (P − I)
}

⇒ h
(

⋂

{

I ∈ I
∗(P) :

⋂

V * (P − I)
})

⊇ h
(

⋂

{

I ∈ I
∗(P) :

⋂

U * (P − I)
})

.
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Let F ∈ hE∗(V ). Then, h (
⋂

{I ∈ I ∗(P) :
⋂

V * P − I}) ⊆ F implies that

h (
⋂

{I ∈ I ∗(P) :
⋂

U * P − I}) ⊆ F and therefore, F ∈ hE∗(U). Hence,

hE∗(V ) ⊆ hE∗(U) and we may conclude that hE∗ is order-reversing.

Let a ∈ P . Then
⋂

ξP∗ (a) = [a) by Lemma 7.3.1. Now,

J ∈ {I ∈ I
∗(P) : [a) * P − I} ⇐⇒ there exists b ∈ P such that

b ≥ a and b ∈ J

⇐⇒ a ∈ J

⇐⇒ J ∈ {I ∈ I
∗(P) : a ∈ I}.

That is, {I ∈ I ∗(P) :
⋂

ξP∗ (a) * P − I} = {I ∈ I ∗(P) : a ∈ I}. Then,

by Lemma 7.3.1, it now follows that
⋂

{I ∈ I ∗(P) :
⋂

ξP∗ (a) * P − I} =
⋂

{I ∈ I ∗(P) : a ∈ I} = (a]. Then hE∗(ξP∗ (a)) = {F ∈ F ∗(Q) : h((a]) ⊆ F}.

Let c ∈ (a]. Then, c ≤ a implies h(a) ≤ h(c), since h is order-reversing.

Consequently, h(a) ∈ F ∈ F ∗(Q) if, and only if, h((a]) ⊆ F since F is an

up-set. Hence, hE∗(ξP∗ (a)) = {F ∈ F ∗(Q) : h(a) ∈ F} = ξQ∗ (h(a)).

In the following example we show that fE∗ need not be an operator when f

is one. Similarly, hE∗ need not be a dual operator when h is one.

Example 7.3.4. Let P′ be the poset depicted in Figure 7.2. Note that no non-

trivial joins or meets exist in P′. Let f : P ′ → P ′ be the identity map. Then

f is an operator on P′. However, the extension fE∗ of f to E∗ (also depicted

in Figure 7.2 with ξ∗(P
′) shaded) is not an operator on E∗. In particular,

fE∗(ξ∗(3) ∪ ξ∗(4)) 6= fE∗(ξ∗(3)) ∪ f
E∗(ξ∗(4)).

Now let h : P ′ → P ′ be the unary operation defined by h(1) = 3, h(2) = 4,

h(3) = 1 and h(4) = 2. Then h is order-reversing and a dual operator on

P′. However, the extension hE∗ of h to E∗ is not a dual operator on E∗. In

particular, hE∗(ξ∗(3) ∩ ξ∗(4)) 6= hE∗(ξ∗(3)) ∩ h
E∗(ξ∗(4)).

For more details the reader may consult Example A.3.2 in Appendix A.3.

Lemma 7.3.5. Let f : P → P be order-preserving.

(i) If f is increasing, then fE∗ is increasing.

(ii) If f is such that f(f(x)) ≤ f(x) for all x ∈ P , the fE∗(fE∗(U)) ⊆ fE∗(U)

for all U ∈ E∗.
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b b

b b

1 2

3 4

P′ :

bc

bc

bc

bc

b b

b b

E∗ :

F∗

⊥E∗

ξ∗(1) ξ∗(2)

ξ∗(3) ξ∗(4)

hE∗(ξ∗(3)) ∩ hE∗(ξ∗(4)) fE∗ (ξ∗(3) ∪ ξ∗(4))

fE∗ (ξ∗(3)) ∪ fE∗ (ξ∗(4))

hE∗(ξ∗(3) ∩ ξ∗(4))

Fig. 7.2: Extensions of (dual) operators need not be (dual) operators.

Proof. (i) Suppose f(x) ≥ x for all x ∈ P . Let U ∈ E∗ and F ∈ U . If

a ∈
⋂

U , then f(a) ≥ a and since
⋂

U is an upset (by Lemma 7.3.1) we

have f(a) ∈
⋂

U . Therefore, f(
⋂

U) ⊆
⋂

U ⊆ F . Then F ∈ fE∗(U) and

hence U ⊆ fE∗(U).

(ii) Suppose f(f(x)) ≤ f(x) for all x ∈ P . Let U ∈ E∗. Then, by defini-

tion, f(
⋂

U) ⊆ F for all F ∈ fE∗(U). Thus, f(
⋂

U) ⊆
⋂

fE∗(U) and

f(f(
⋂

U)) ⊆ f(
⋂

fE∗(U)). Let F ∈ fE∗(fE∗(U)). Then,

f
(

⋂

fE∗(U)
)

⊆ F

⇒ f
(

f
(

⋂

U
))

⊆ F

⇒ f
(

⋂

U
)

⊆ F

⇒ F ∈ fE∗(U),

where the second implication follows from our assumption and the fact

that F is an up-set. Hence, fE∗(fE∗(U)) ⊆ fE∗(U).

Finally, we can also define extensions of n-ary maps. Let P1, . . . ,Pn and

Q be posets, for some n ∈ N. Let f :
∏n

i=1 Pi → Q be an n-ary map that is



7. Prime filter completion 148

order-preserving in each coordinate. Define fE∗ :
∏n

i=1(E∗(Pi)) → E∗(Q) by,

for Ui ∈ E∗(Pi), i = 1, . . . , n,

fE∗(U1, . . . , U2) =
{

F ∈ F
∗(Q) : f

(

⋂

U1, . . . ,
⋂

Un

)

⊆ F
}

.

The proofs that fE∗ extends f and is order-preserving in each coordinate are

similar to the proofs of the analogous claims for unary maps.

On the other hand, let h :
∏n

i=1 Pi → Q be an n-ary map that is order-

reversing in each coordinate. For Ui ∈ E∗(Pi) let Ui =
⋂

{I ∈ I ∗(Pi) :
⋂

Ui * (P − I)}.

Then hE∗ :
∏n

i=1(E∗(Pi)) → E∗(Q) defined by, for Ui ∈ E∗(Pi), i = 1, . . . , n,

hE∗(U1, . . . , U2) =
{

F ∈ F
∗(Q) : h

(

U1, . . . , Un

)

⊆ F
}

,

extends h and is order-reversing in each coordinate.
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8. INTRODUCTION TO THE FINITE EMBEDDABILITY

PROPERTY

An important question in Mathematical logic is determining whether or not a

given logic is decidable. A logic is decidable if there exists an algorithm that

decides whether or not a formula is a theorem of the logic. One way to prove

the decidability of a logic is to reduce the decidability problem to determining

satisfaction on finite models. A logic is said to have the finite model property

(FMP) if every formula that is not a theorem of the logic can be refuted in

a finite model of the logic. Furthermore, a logic has the strong finite model

property (SFMP) if, for every finite set of premises Σ, and every formula ϕ,

if ϕ does not follow from Σ, then all the formulas of Σ are satisfied by some

interpretation in a finite model of the logic that makes ϕ false. If a finitely

axiomatized logic has the SFMP, then it is decidable.

Due to algebraization results for logics (algebraization in the sense of [BP89]),

the above is directly related to the identification of classes of algebras with de-

cidable theories.

If K is a class of algebras, then the universal theory (respectively, equational

theory) of K is the set of universal sentences (respectively, universally quantified

identities) that are valid in all members of K. A class of algebras has a decid-

able universal (respectively, equational) theory if there exists an algorithm that

decides whether or not a universal sentence (respectively, identity) is a member

of the theory, i.e., is valid in all members of the class.

We will need the following notions in the sequel.

Definition 8.0.1. Let A =
〈

A, {fA
i : i ∈ Ψ},≤A

〉

be an ordered algebra (of

any type) and let B be any subset of A. The partial subalgebra B of A with

domain B is the partial ordered algebra
〈

B, {fB
i : i ∈ Ψ},≤B

〉

, where for i ∈ Ψ,
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fi k-ary, b1, . . . , bk ∈ B

fB
i (b1, . . . , bk) =

{

fA
i (b1, . . . , bk) : if fA

i (b1, . . . , bk) ∈ B

undefined : if fA
i (b1, . . . , bk) /∈ B,

and ≤B is the restriction of ≤A to B, i.e., for b1, b2 ∈ B we have that

b1 ≤B b2 ⇐⇒ b1 ≤A b2.

Definition 8.0.2. An embedding of a partial subalgebra B into an ordered alge-

bra C is a one-to-one map γ : B → C that preserves and reflects the partial order

and all existing operations; i.e., for b1, b2 ∈ B we have that b1 ≤B b2 if, and only

if, γ(b1) ≤
C γ(b2); and if fi is some k-ary operation such that fB

i (b1, . . . , bk) is

defined for b1, . . . , bk ∈ B, then γ
(

fB
i (b1, . . . , bk)

)

= fC
i (γ(b1), . . . , γ(bk)) .

A classK of (ordered) algebras has the finite embeddability property (FEP, for

short) if every finite partial subalgebra of some member of K can be embedded

into some finite member of K.

Suppose we are interested in whether or not a given identity (∀~x)(s(~x) =

t(~x)) is in the equational theory of some variety V of algebras. If we start

with the assumption that it is not in the equational theory of V, then there

exists an algebra A ∈ V, and some assignment ~x 7→ ~a of elements of A to the

variables such that the evaluations of s and t are different, i.e., sA(~a) 6= tA(~a).

The set of elements of A used in the evaluation of s and t form a finite subset,

say M ⊆fin A. Let B be the finite partial subalgebra of A with universe M .

Now, if V has the FEP, then B can be embedded into a finite member C of

V in such a way that all existing operations in B are preserved and therefore

sC(~a) 6= tC(~a). That is, if V has the FEP, then the following result holds: an

identity holds in V if, and only if, it holds in all finite members of V. The same

method can be used to find a finite countermodel for a given quasi-identity or

universal sentence that is not valid in V. As a consequence, V is generated, as

a quasivariety, by its finite members. If, in addition, V is finitely axiomatized,

then the (quasi-)equational theory of V is decidable.

The FEP has been used to prove the decidability of the universal theories

of various varieties — usually associated with logic. Examples of varieties that

have the FEP include the variety of closure algebras [McK41, MT44], Heyting

algebras [MT46], integral residuated lattices [BvA02] and integral residuated

ordered groupoids [BvA05]. In [GJ13, vA09] it was shown that a large selection
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of subvarieties of (integral) residuated lattice-ordered unital groupoids, have the

FEP.

For a more extensive background on the FEP the reader is referred to [BvA02]

or [Eva69].
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9. THE FEP FOR RESIDUATED STRUCTURES

We would like to identify varieties of residuated (ordered) structures that have

the FEP. Such varieties correspond to substructural logics and for finitely axiom-

atized logics the FEP implies decidability thereof. In this chapter we consider

two different constructions that may be used to establish the FEP for a variety

of residuated structures. Each of these constructions is based on a completion

construction. The first construction we study is the standard construction for

obtaining the FEP for residuated structures (see, for example [vA09]). The

standard construction is based on the MacNeille completion of a poset (see Re-

mark 9.1.3). The second construction we investigate in this chapter is based on

the canonical extension of a bounded lattice (see Remark 9.2.19). We therefore

call it the canonical FEP construction.

In Section 9.1.1 we describe the standard construction for residuated (par-

tially) ordered algebras [vA09]. We include this description here in order to

highlight the similarities and differences between the standard construction and

the construction considered in Section 9.2. Then, in Section 9.1.2 we describe

the standard construction for MTL-chains [vA11]. The reader is referred to

Chapter 5.2 for more on MTL-algebras and MTL-chains. Since the algebras un-

der consideration are linearly ordered, the construction simplifies significantly.

Recall that if it is the case that the finite algebra obtained through the con-

struction satisfies an inequality s ≤ t whenever the original algebra does, then

we say that the inequality is preserved by the FEP construction. (Also recall

that the universal quantification over the variables occurring in s and t is im-

plicit.) In [vA09] and [vA11] a general description of inequalities s ≤ t that are

preserved by the construction for residuated ordered algebras and MTL-chains,

respectively, was given. As in the case of various completion constructions, an

approximation term was used to establish the preservation of properties. In

Section 9.1.2 we recall the definition of the approximation term that was used

to prove the preservation of properties by the standard FEP construction for
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MTL-chains. We then give a summary of the results from [vA11].

In Section 9.1.3 we extend the construction to modal MTL-chains (see Chap-

ter 5.3). Thereafter, we consider the preservation of various identities under the

FEP construction, building on the results in [vA11]. In doing so we obtain the

FEP for various classes of modal MTL-chains. That is, if an inequality s ≤ t is

preserved by the construction, then the subclass of modal MTL-chains charac-

terized by s ≤ t has the FEP, and hence the corresponding subvariety of modal

MTL-algebras has the FEP. Since any variety of modal MTL-algebras is gener-

ated by its subclass of modal MTL-chains, the FEP for such a variety follows

from the FEP for its subclass of modal MTL-chains [vA11] (see also [BF00]).

Thus, we only need to consider modal MTL-chains.

In Section 9.2 we describe an alternative construction for obtaining the FEP

for residuated lattice ordered algebras. The construction in this section is based

on the canonical extension of a lattice, studied in Chapter 6 — hence the title

canonical FEP construction. We show (again) that the class of decreasing resid-

uated (lattice) ordered algebras has the FEP through this construction. Finally

we investigate some additional properties preserved by the construction.

9.1 The standard FEP construction

9.1.1 The FEP for residuated ordered algebras

For the full details of the construction described in this section the reader may

consult [vA09]. The reader is also referred to [Bus11] for more on the FEP for

residuated ordered algebras.

By a residuated ordered algebra (of type T) we shall mean a structure A =
〈

A,TA,≤
〉

, where 〈A,≤〉 is a poset and
〈

A,TA
〉

is an algebra whose set of

operations TA is a finite set consisting of constants, unary and binary residuated

operators and their residuals. Now, let

(i) TA
0 denote the set of constants in TA;

(ii) TA
1 denote the set of residuated unary operators in TA;

(iii) (T•
1)

A denote the set of residuals of the operators in TA
1 ;

(iv) TA
2 denote the set of residuated binary operators in TA; and

(v) (T•
2)

A denote the set of left and right residuals of the operators in TA
2 .
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If B is a partial subalgebra of a residuated ordered algebra A (see Defini-

tion 8.0.1), then we introduce the following notion.

Definition 9.1.1 ([vA09]). Let A =
〈

A,TA,≤
〉

be a residuated ordered algebra

of type T and B a partial subalgebra of A. A pair W = 〈W,W •〉 of subsets of

A is called a B-residual pair if the following conditions are satisfied:

(i) W contains B ∪ TA
0 and is closed under the operations in TA

1 ∪ TA
2 ;

(ii) W • contains B ∪ TA
0 and is closed under the operations in (T•

1)
A and

closed under a\kx and x/ka for all a ∈ W and \k, /k ∈ (T•
2)

A.

For the remainder of this section let A =
〈

A,TA,≤
〉

be a fixed residuated

ordered algebra and let B =
〈

B,TB,≤B
〉

be a fixed partial ordered subalgebra

of A. Let W = 〈W,W •〉 be a B-residual pair. Now defined l and u as follows.

For S ⊆ A, let

Sl = {a ∈ W : a ≤ c for all c ∈ S}

Su = {a ∈W • : a ≥ c for all c ∈ S}

That is, Sl is the set of all lower bounds of S in W and Su is the set of all

upper bounds of S in W •. We note that if W = A = W •, then Sl = Sℓ and

Su = Su. Moreover, the pair of maps ( l,u ) forms a Galois connection between

〈P(W ),⊆〉 and 〈P(W •),⊇〉.

A set S ⊆ W • will be called stable if S = Slu. Let C denote the set of all

stable sets. Then ⊇ is a complete lattice order on C, and for Si ∈ C for i ∈ Ψ

C
∨

i∈Ψ

Si =
⋂

i∈Ψ

Si and

C
∧

i∈Ψ

Si =
⋂

{T ∈ C : Si ⊆ T for all i ∈ Ψ}.

Furthermore, for each f ∈ TA
1 and ◦ ∈ TA

2 , define the operations fC and ◦C on

C as follows [vA09, Definition 5.8]. For L1, L2 ⊆W , let f(L1) = {f(a) : a ∈ L1}

and L1 ◦ L2 = {a ◦ b : a ∈ L1 and b ∈ L2}. For S1, S2 ∈ C, define:

fC(S1) = (f(Sl

1))
u and S1 ◦

C S2 = (Sl

1 ◦ S
l

2)
u.

Then for each f ∈ TA
1 and ◦ ∈ TA

2 , the operations fC and ◦C on C are residuated

with respect to the order ⊇ [vA09, Lemma 5.10]. If f ∈ TA
1 has residual

g ∈ (T•
1)

A, then denote the residual of fC by gC. Similarly, if ◦ ∈ TA
2 has

left and right residuals \, / ∈ (T•
2)

A, then denote the left and right residuals of

◦C by \C and /C, respectively. Finally, for each k ∈ TA
0 , let kC = {k}u. Let
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TC = {tC : t ∈ T}, ≤C=⊇ and C =
〈

C,TC,≤C
〉

. Then we have the following

result.

Theorem 9.1.2. [vA09, Theorem 5.11] The structure C is a complete residu-

ated ordered algebra of the same type as A, and there exists an embedding of B

into C that preserves all existing meets and joins in B.

The map ζ : B → C defined by ζ(b) = {b}u for b ∈ B is an order embedding

of B into C (see Definition 8.0.2) that preserves all existing meets and joins in

B.

Remark 9.1.3. We note that if B = A, then W = 〈A,A〉 is the only possible

B-residual pair, and C is a completion of A. In fact, we obtain the MacNeille

completion of the lattice-reduct of A. For more on the MacNeille completion

the reader may consult Chapter 5.

An infinite sequence a1, a2, . . . of elements of a quasi-ordered set 〈Q,≤〉

will be called good if there exist i, j ∈ N such that i < j and ai ≤ aj . If no

such indices exist, i.e., if ai � aj whenever i < j, then the sequence is called

bad. A quasi-ordered set 〈Q,≤〉 is well-quasi-ordered if every infinite sequence of

elements of Q is good. That is, 〈Q,≤〉 is well-quasi-ordered if it does not contain

an infinite descending chain nor does it contain an infinite anti-chain. A quasi-

ordered set 〈Q,≤〉 is reverse well-quasi-ordered if, for every infinite sequence of

elements a1, a2, . . . , there exist i, j ∈ N with i < j and aj ≤ ai. That is, 〈Q,≤〉

is reverse well-quasi-ordered if it does not contain an infinite ascending chain

nor does it contain an infinite anti-chain.

Theorem 9.1.4. [vA09, Theorem 7.1] Let A be a residuated ordered algebra,

B a finite partial subalgebra of A, and W = 〈W,W •〉 a B-residual pair.

(i) If 〈W,≤〉 is reverse well-quasi-ordered and 〈W •,≤〉 is well-quasi-ordered,

then C is finite.

(ii) If 〈W,≤〉 is well-quasi-ordered and 〈W •,≤〉 is reverse well-quasi-ordered,

then C is finite.

9.1.2 The FEP for MTL-chains

Recall from Definition 5.2.2 that an MTL-algebra A = 〈A, ◦,→,∨,∧, 0, 1〉 is a

residuated lattice that satisfies the prelinearity identity: for x, y ∈ A

(x→ y) ∨ (y → x) = 1.
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An MTL-chain is a linearly ordered MTL-algebra. The reader is referred to

Definitions 5.2.1 and 5.2.2, and the discussions that follow these definitions, for

more on residuated lattices and MTL-algebras.

Throughout this section let A be a fixed MTL-chain, B a finite subset of A

containing 1 and 0, and B the partial subagebra of A with domain B.

Let W and W • be two sets satisfying:

(W1) B ⊆W ⊆ A and B ⊆W • ⊆ A,

(W2) W is closed under ◦,

(W3) if a ∈ W and b ∈ W •, then a→ b ∈W •,

(W4) 〈W,≤〉 is reverse well-ordered and 〈W •,≤〉 is well-ordered.

If we use the terminology from the previous subsection, then (W1-W3) en-

sures that 〈W,W •〉 is a B-residual pair, while (W4) ensures that the algebra

obtained through the construction described in this section will be finite by

Theorem 9.1.4.

Since we are only considering linearly ordered algebras, the standard con-

struction simplifies to the following.

For W and W • satisfying (W1 - W4) define, for each a ∈ A,

al =
∨

{b ∈W : b ≤ a}, au =
∧

{c ∈ W • : a ≤ c}.

The well-ordering and reverse well-ordering assumptions ensure that the relevant

supremums and infimums of the above sets exist. The maps u and l are both

order-preserving. In addition, the following properties are easily derived:

Lemma 9.1.5. For any a ∈W , c, d ∈ W • and e ∈ A,

(i) a ≤ aul and clu ≤ c,

(ii) a ≤ c iff au ≤ c,

(iii) a ≤ c iff a ≤ cl,

(iv) aulu = au, clul = cl,

(v) elulu = elu.
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In fact, the pair of maps ( l,u ) (considered as maps between W and W •)

forms a Galois connection between 〈W,≤〉 and 〈W •,≤〉.

An element c ∈ W • is said to be stable if c = clu. Let C denote the set of

stable elements. By Lemma 9.1.5 (iv) and (v), au is stable for a ∈ W and elu

is stable for e ∈ A. In [vA11] is was shown that the well-ordering and reverse

well-ordering assumptions in (W4) imply that C is a finite set.

We define an MTL-chain with universe C. Since C ⊆ A, the order on A,

restricted to C, is linear and defines lattice operations ∧C and ∨C which coincide

with the corresponding operations on A. The product operation is defined, for

c, d ∈ C, by:

c ◦C d = (cl ◦ dl)u.

The following property holds: If c, d ∈ C and a, b ∈ W for which c = au and

d = bu, then c ◦C d = (a ◦ b)u. Using this property one can show that ◦C is

associative, commutative, has identity 1 and is residuated with respect to ≤;

for c, d ∈ C, the residual is:

c→C d = (cl → d)lu.

The algebra C = 〈C, ◦C,→C,∧C,∨C, 0, 1〉 is therefore a finite MTL-chain and

the identity map is an embedding of B into C; that is, if a ◦B b is defined in B,

then a ◦B b = a ◦C b, and, similarly, for →B.

Let t(~x) = t(x1, . . . , xn) be any {◦,→,∨,∧, 0, 1}-term. If ~c = c1, . . . , cn is a

sequence of elements of C, then tC(~c ) denotes the evaluation of t in C under

the assignment xi 7→ ci. Where a term t(~x) and ~c ∈ C are given, ~x and ~c are

assumed to be sequences of the same length. If ~c = c1, . . . , cn is a sequence of

elements in C, then ~c l denotes the sequence cl1, . . . , c
l
n of elements of W .

For each term s(~x) and ~c ∈ C, define

s⋆(~c ) = sA(~c l)lu.

Note that s⋆(~c ) ∈ C by Lemma 9.1.5 (v). A term s(~x) is called:

⋆-stable if sC(~c ) = s⋆(~c )

⋆-expanding if sC(~c ) ≥ s⋆(~c )

⋆-contracting if sC(~c ) ≤ s⋆(~c ) for all ~c ∈ C.

If A satisfies an inequality s ≤ t, then s⋆(~c ) ≤ t⋆(~c ) for all ~c ∈ C. Thus, if s

is ⋆-contracting and t is ⋆-expanding, then C satisfies s ≤ t and the inequality
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is preserved. Observe that ⋆-stable implies both ⋆-contracting and ⋆-expanding.

This gives the following results.

Theorem 9.1.6. [vA11] The following hold for all terms s and t:

(i) If s and t are both ⋆-stable, then s = t is preserved by the FEP construc-

tion.

(ii) If s is ⋆-contracting and t is ⋆-expanding, then s ≤ t is preserved by the

FEP construction.

The following proposition summarizes the results regarding MTL-terms.

Proposition 9.1.7. [vA11]

(i) If s(~x) is a {◦,∨,∧, 0, 1}-term and ~c ∈ C, then sC(~c ) = s(~c l)u and s is

⋆-stable.

(ii) If t(~x) = ¬s(~x), where s(~x) is a {◦,∨,∧, 0, 1}-term and ~c ∈ C, then

tC(~c ) = t(~c l)lu, i.e., t is ⋆-stable.

(iii) For all variables x1, . . . , xn, y, the term (x1 ◦· · ·◦xn) → y is ⋆-contracting.

(iv) If t1, . . . , tm are ⋆-stable (resp., ⋆-expanding, ⋆-contracting) terms and

s(y1, . . . , ym) is a {∧,∨}-term, then s(t1, . . . , tm) is ⋆-stable (resp., ⋆-

expanding, ⋆-contracting).

(v) If t1, . . . , tm are ⋆-contracting terms and s(y1, . . . , ym) is a {◦,∧,∨}-term,

then s(t1, . . . , tm) is ⋆-contracting.

(vi) If s is a ⋆-contracting term and t is a ⋆-expanding term, then s → t is

⋆-expanding.

9.1.3 The FEP for modal MTL-chains

The results from this section were obtained in collaboration with Prof. Clint

van Alten and have been published in [MvAb].

Recall from Definitions 5.3.1 and 5.3.4 that a modal MTL-chainA = 〈A, ◦,→,

∧,∨, f, 0, 1〉 is a linearly ordered residuated lattice such that f is an order-

preserving unary operation.

Throughout this section let A = 〈A, ◦,→,∧,∨, f, 0, 1〉 be a fixed modal

MTL-chain, let B be a finite subset of A containing 1 and 0, let B be the partial
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subagebra of A with domain B and let C be the finite MTL-chain obtained by

the construction described in the previous subsection, from the modality-free

reduct of B.

In order to extend the construction to modal MTL-chains, we define the

operation fC on C by:

fC(c) = f(cl)lu.

For ease of notation, we assume that f binds more strongly than u and l.

Lemma 9.1.8. The identity embedding of B into C preserves the operation f ,

i.e., if f(b) ∈ B for some b ∈ B, then fC(b) = fB(b) = f(b).

Proof. Note that, by the definitions of u and l and the fact that B ⊆W ∩W •,

if b ∈ B, then bu = b = bl. Thus, if f(b) ∈ B as well, then we have: fC(b) =

f(bl)lu = f(b)lu = f(b).

Lemma 9.1.9. fC is order-preserving, hence fC distributes over ∧C and ∨C.

Proof. If a, b ∈ C such that a ≤ b, then al ≤ bl and also f(al) ≤ f(bl). Thus,

fC(a) = f(al)lu ≤ f(bl)lu = fC(b).

Theorem 9.1.10. ForW,W • satisfying (W1 - W4) the algebra C =
〈

C, ◦C,→C,

∧C,∨C, fC, 0, 1
〉

is a finite modal MTL-chain and the identity map is an em-

bedding of B into C.

Since a choice of W and W • exists that satisfies (W1 - W4), namely, W the

{◦}-closure of B in A and W • = {a→ b : a ∈ W, b ∈ B}, we have the following

result.

Theorem 9.1.11. The class of modal MTL-chains has the FEP, hence the

variety of modal MTL-algebras has the FEP.

We now extend the results summarized in Section 9.1.2 to include the modal

operator. We obtain different preservation results depending on the choice of

W and W •. Generally, the larger W is, the stronger the results, but we must

always ensure that 〈W,≤〉 is reverse well-ordered and 〈W •,≤〉 is well-ordered

for C to be finite. In the subsections below, we consider variations of the above

construction by making different choices for W and W •. We then describe ⋆-

stable, ⋆-contracting and ⋆-expanding terms involving the modality f . Larger

classes of ⋆-stable, ⋆-contracting and ⋆-expanding terms can then be inferred
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from Proposition 9.1.7. The preservation results and FEP for each class are

then obtained directly from Theorem 9.1.6.

The first choice of W and W • we shall consider is W the {◦}-closure of B

in A and W • = {a → b : a ∈ W, b ∈ B}. By definition, B ⊆ W , and B ⊆ W •

since b ∈ B can be written as 1 → b. Note that if c = a → b ∈ W • for a ∈ W

and b ∈ B, then for any d ∈ W , d → c = (a ◦ d) → b ∈ W •. That 〈W,≤〉 is

reverse well-ordered and 〈W •,≤〉 is well-ordered is proved in [vA11]. Note that

W is also closed under ∧ and ∨ and contains 0 and 1. From the definition of

fC, we immediately get that f(x), f(1) and f(0) are ⋆-stable terms. Thus, by

Proposition 9.1.7, we have the following results for this particular choice of W

and W •.

Lemma 9.1.12. If s is a {◦,∨,∧, 0, 1}-term, then f(s) is ⋆-expanding.

Proof. Let t(~x) = f(s(~x)) and ~c ∈ C. By Proposition 9.1.7 (i), we have s(~c l) ∈

W and sC(~c ) = s(~c l)u, so tC(~c ) = f(s(~c l)ul)lu ≥ f(s(~c l))lu = t⋆(~c ).

Lemma 9.1.13. If s is a {◦,∧,∨, 0, 1}-term, then f(¬s) is ⋆-contracting.

Proof. Let t(~x) = f(¬s(~x)) and ~c ∈ C. Then tC(~c ) = fC(¬CsC(~c )) =

fC(¬C(s(~c l))u) = fC(((s(~c l))ul → 0)lu), where the second equality follows

from Proposition 9.1.7 (i). But (s(~c l))ul → 0 ∈ W •, and by Lemma 9.1.5 (i),

we have that ((s(~c l))ul → 0)lu ≤ ((s(~c l))ul → 0). Since fC is order-preserving,

tC(~c ) ≤ fC((s(~c l))ul → 0) = f(((s(~c l))ul → 0)l)lu. Since ~c l ∈ W and W

is closed under {◦,∧,∨, 0, 1} it follows that s(~c l) ∈ W and s(~c l) ≤ (s(~c l))ul.

But → is order-reversing in the first coordinate and l is order-preserving, so

((s(~c l))ul → 0)l ≤ (s(~c l) → 0)l. Therefore, tC(~c ) ≤ f(s(~c l) → 0)lu = t⋆(~c).

We note that a number of the special classes of modal MTL-chains consid-

ered in Chapter 5.3.2 are closed under the standard FEP construction and hence

have the FEP. To see that this is the case observe that, by the above and Propo-

sition 9.1.7, the following inequalities and identities (that form the additional

axioms of these classes) are preserved by the construction: f(x)◦f(y) ≤ f(x◦y)

(which is equivalent to f(x → y) ≤ f(x) → f(y)), f(1) = 1 and f(x) ≤ x. In

addition, the strict condition x∧(¬x) ≤ 0 and n-contraction xn ≤ xn+1 are pre-

served, as is the involution ¬¬x = x, although for this case it is necessary to first

close B under ¬ (see [vA11]). Thus, the varieties of LKr-algebras and LKTr-
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algebras have the FEP for each L ∈ Logics = {MTL, IMTL, SMTL}∪{CnMTL :

n ≥ 2} ∪ {CnIMTL : n ≥ 2}.

When W is closed under f

Throughout this subsection we assume that A satisfies f(x) ≤ x and take W to

be the {◦, f}-closure of B and W • = {a → b : a ∈ W, b ∈ B}. It is immediate

that (W1 - W3) hold; for (W4), the reverse well-ordering of W follows directly

from Higman’s theorem [Hig52]: we may consider W as an ordered algebra

generated by a finite set B, with operations (◦ and f) compatible with the

order and decreasing in all arguments. The reverse well-ordering of W • then

follows. Note that f(x) ≤ x is preserved by the FEP construction since both

f(x) and x are ⋆-stable terms; that is, fC is decreasing.

Lemma 9.1.14. If t(x) = (f(x))n, for any n ≥ 1, and c ∈ C, then tC(c) =

(t(cl))u and t is ⋆-stable. In addition, (f(1))n and (f(0))n are ⋆-stable for any

n ≥ 1.

Proof. This is shown by induction on n: if n = 1 then t(x) = f(x) and t is

⋆-stable by definition. Moreover, since cl ∈W and W is closed under f we have

(f(cl))l = f(cl) and t⋆(c) = (f(cl))u. Now suppose that for some n ≥ 1, the

term s(x) = (f(x))n is ⋆-stable and sC(c) = (s(cl))u. Let t(x) = f(x) ◦ s(x).

Then:

tC(c) = fC(c) ◦C sC(c)

= f(cl)u ◦C (s(cl))u

= (f(cl) ◦ s(cl))u

= (t(cl))u = t⋆(c).

The final equality follows since cl ∈ W and W ’s closure under ◦ and f implies

that t(cl) ∈ W , i.e., (t(cl))l = t(cl). The proofs for (f(1))n and (f(0))n are

similar.

Lemma 9.1.15. Any {◦,∧,∨, f, 0, 1}-term is ⋆-expanding.

Proof. Let s(~x) be a {◦,∧,∨, f, 0, 1}-term and ~c ∈ C. If s does not contain f

then, by Proposition 9.1.7 (i), s is ⋆-stable, and therefore also ⋆-expanding for

the standard construction and hence also for the modified construction. We
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just need to consider the case where s contains f , so let s(~x) = f(t(~x)) where

t(~x) is a {◦,∧,∨, f, 0, 1}-term and assume, inductively, that t is ⋆-expanding.

We have sC(~c ) = fC(tC(~c )) ≥ fC(t⋆(~c )) = fC((t(~c l))lu). Since ~c l ∈ W and

W is closed under {◦,∧,∨, f, 0, 1} we have (t(~c l))lu = (t(~c l))u. Then sC(~c ) ≥

fC((t(~c l))u) = f((t(~c l))ul)lu. Moreover, since t(~c l) ∈ W we have (t(~c l))ul ≥

t(~c l), by Proposition 9.1.5 (i), and so sC(~c ) ≥ f(t(~c l))lu = s⋆(~c ).

Lemma 9.1.16. If t = ¬s where s is a {◦,∧,∨, f, 0, 1}-term, then t is ⋆-

contracting.

Proof. Let t(~x) = ¬s(~x) and ~c ∈ C. By Lemma 9.1.15, sC(~c ) ≥ s⋆(~c ) and, since

¬C is order-reversing, ¬CsC(~c ) ≤ ¬Cs⋆(~c ). Furthermore, since ~c ∈ W and W

is closed under {◦,∧,∨, f, 0, 1}, it follows that s(cl) ∈ W , s⋆(~c ) = (s(~c l))u and

s(~c l) ≤ (s(~c l))ul. Thus, tC(~c ) = ¬CsC(~c ) ≤ ¬Cs⋆(~c ) = ((s(~c l))ul → 0)lu ≤

(s(~c l) → 0)lu = t⋆(~c ).

By the above results, we have that f(x) ≤ f(f(x)) and f(x) ◦ f(x) =

f(x) are preserved by the above FEP construction. Recall that Logics =

{MTL, IMTL, SMTL}∪{CnMTL : n ≥ 2}∪{CnIMTL : n ≥ 2}. Let L ∈ Logics;

then the varieties of LS4r- and L!r-algebras (see Chapter 5.3.2) have the FEP

since they have decreasing operators. In addition, Lr
∆-algebras have the FEP

since the identity f(x)∨ (f(x) → 0) = 1 is easily seen to be preserved, as in the

proof of Corollary 5.3.32.

In [CMM10], Ciabattoni et al. investigated the FEP for MTL-algebras and

IMTL-algebras. They showed that the subvarieties of IMTL-,SMTL-, MTL!r-

and IMTL!r-algebras have the FEP. Using our construction, we show that all

of the subvarieties of algebras considered in [CMM10] have the FEP - thus

extending their results. Moreover, using our FEP construction any subvariety

obtained by adding identities preserved by our FEP construction have the FEP.

Residuated Operators

In the previous subsections, the sets of ⋆-stable terms excluded those with iter-

ated f ’s, such as f(f(x)). One case in which such terms are ⋆-stable is if f is

residuated with residual g. The reader is referred to Chapter 2.5 for more on

residuated operators. Residuated operators are a special case of the complete

operators considered in Chapter 5.3.2.
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Results regarding the FEP for residuated lattices with additional residuated

operators were obtained in [vA09]. These results specialise to the case of modal

MTL-algebras, as we show here. The FEP construction is modified as follows:

Set W to be the {◦, f}-closure of B and W • the least set containing B and

closed under the operations a→ x, a ∈W , and g.

It is immediate that this choice of W and W • satisfy conditions (W1 - W3),

however (W4) is not generally true. If f is decreasing, then (W4) is true [vA09].

Thus, we assume that A satisfies f(x) ≤ x. Observe that since W is closed

under f and ◦, the preservation results of the previous subsection hold.

Lemma 9.1.17. The operation fC is residuated and its residual is gC(c) =
∨

{d ∈ C : fC(d) ≤ c} = g(c)lu for all c ∈ C. Thus, if b, g(b) ∈ B, then

gC(b) = g(b).

Proof. Let c ∈ C. We begin by showing that g(c)lu belongs to {d ∈ C : fC(d) ≤

c}. Since g(c) ∈W •,

fC(g(c)lu) = f(g(c)lul)u = f(g(c)l)u ≤ f(g(c))u ≤ cu = c.

Next, suppose d ∈ C such that fC(d) ≤ c, i.e., f(dl)u ≤ c. Then f(dl) ≤ c,

hence dl ≤ g(c). By Lemma 9.1.5, since dl ∈ W , we have dl ≤ g(c)l hence

d = dlu ≤ g(c)lu, which completes the proof of the first statement. Thus, if

b, g(b) ∈ B, then gC(b) = g(b)lu = g(b).

The usefulness of the residuation property for f comes from the following

result, which is then used to describe a large set of ⋆-stable terms.

Lemma 9.1.18. If a ∈ W , then fC(au) = f(a)u.

Proof. Let a ∈ W . Recall that fC(au) = f(aul)u. By Lemma 9.1.5, a ≤ aul,

hence f(a)u ≤ f(aul)u. Let e = f(a)u ∈ W •. Then f(a) ≤ e hence a ≤ g(e) by

residuation. Then au ≤ g(e) by Lemma 9.1.5, since g(e) ∈ W •, so aul ≤ au ≤

g(e). Thus, f(aul) ≤ f(g(e)) ≤ e so fC(au) = f(aul)u ≤ e = f(a)u.

Lemma 9.1.19. If s(~x) is a {◦,∨,∧, f, 0, 1}-term and ~c ∈ C, then sC(~c ) =

s(~c l)u and s is ⋆-stable.

Proof. If s is a {◦,∨,∧, 0, 1}-term, the results follow from Lemma 9.1.7 (i).

Inductively, suppose s = f(~x), where t(~x) is a {◦,∨,∧, f, 0, 1}-term and tC(~c ) =
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t(~c l)u for all ~c ∈ C. For each c ∈ C, cl ∈W andW is closed under the operations

in {◦,∨,∧, f, 0, 1}, so t(~c l) ∈ W and f(t(~c l)) ∈W . Thus,

sC(~c ) = fC(tC(~c )) = fC(t(~c l)u)

= f(t(~c l))u (by Lemma 9.1.18)

= f(t(~c l))lu = s⋆(~c ).

Order-reversing modalities

The standard construction can also be extended to reverse modal MTL-chains

and the results obtained in the case of modal MTL-chains can be adapted for

order-reversing modalities.

Recall from Definitions 5.3.1 and 5.3.19 that a reverse modal MTL-chainA =

〈A, ◦,→,∨,∧, h, 0, 1〉 is a linearly ordered residuated lattice with an additional

order-reversing unary operation h.

For the remainder of this section let A = 〈A, ◦,→,∨,∧, h, 0, 1〉 be a fixed

reverse modal MTL-chain. Assume that W and W • are sets satisfying (W1-

W4), in particular, we may take W to be the {◦}-closure of B in A and W • =

{a → b : a ∈ W, b ∈ B}. Let C be the finite MTL-algebra obtained by the

construction in Section 9.1.2. Extend C with the operation hC on C defined

by: for c ∈ C,

hC(c) = h(cl)lu.

Lemma 9.1.20. hC is order-reversing.

Proof. For c, d ∈ C with c ≤ d, we have cl ≤ dl hence h(dl) ≤ h(cl), and so

hC(d) ≤ hC(d).

The proofs of the following results are straightforward.

Lemma 9.1.21. The identity embedding of B into C preserves the operation

h, i.e., if b, h(b) ∈ B, then hC(b) = h(b).

Theorem 9.1.22. For W,W • satisfying (W1-W4) the algebra C = 〈C, ◦C,→C

,∧C,∨C, hC, 0, 1〉 is a finite reverse modal MTL-chain, and the identity map is

an embedding of B into C.
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Corollary 9.1.23. The class of reverse modal MTL-chains has the FEP, hence

the variety of reverse modal MTL-algebras has the FEP.

We now investigate preservation theorems that include the order-reversing

operation. From the definition of hC it follows that h(x), h(1) and h(0) are

⋆-stable terms. Moreover, by Proposition 9.1.7 we have the following results.

Lemma 9.1.24. If s is a {◦,∧,∨, 0, 1}-term, then h(s) is ⋆-contracting and

h(¬s) is ⋆-expanding.

Proof. If s(~x) is a {◦,∧,∨, 0, 1}-term and ~c ∈ C, then, by Proposition 9.1.7 (i),

hC(sC(~c ) = hC(s(~c l)u) = h(s(~c l)ul)lu ≤ h(s(~c l))lu,

so h(s) is ⋆-contacting. The remaining statement follows similarly from Propo-

sition 9.1.7 (ii).

Using the above results together with Proposition 9.1.7 larger classes of

⋆-stable, ⋆-contracting and ⋆-expanding terms can be inferred. From Theo-

rem 9.1.6 we then obtain preservation results and the FEP for subvarieties of

reverse modal MTL-algebras whose corresponding characteristic properties are

preserved.

9.2 The canonical FEP construction

The results obtained in this section form part of an on-going collaboration with

Prof. Clint van Alten [MvAa].

The standard construction for obtaining the FEP for a variety of resid-

uated ordered algebras is based on the MacNeille completion of lattices (see

Remark 9.1.3). However, a lattice can be completed in many different ways as

can be seen from Part I of this thesis. In particular, we now describe an alterna-

tive construction for obtaining the FEP for residuated lattice ordered algebras

that is based on the construction of a completion of a lattice with respect to

a polarization, i.e., the canonical extension. See Chapter 6 for more on this

construction.

9.2.1 The construction

Throughout this section A =
〈

A,∨,∧,TA,≤
〉

will be a fixed residuated lattice

ordered algebra (of type T). The set of operations TA of A is a finite set con-
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sisting of constants, unary and binary residuated operations and their residuals

as in Section 9.1.1. Moreover, let B =
〈

B,∨B,∧B,TB,≤B
〉

be a fixed partial

(ordered) subalgebra of A.

We modify the definition of a B-residual pair as follows.

Definition 9.2.1. A pair W = 〈W,W •〉 of subsets of A is called a B-residual

pair if the following conditions are satisfied:

(i) W contains B ∪TA
0 and is closed under ∧ and the operations in TA

1 ∪TA
2 ;

(ii) W • contains B ∪ TA
0 and is closed under ∨ and the operations in (T•

1)
A

and a\kx and x/ka for all a ∈W and \k, /k ∈ (T•
2)

A.

Observe that 〈W,≤〉 (i.e., 〈W,∧〉) is a meet-semilattice and 〈W •,≤〉 (i.e.,

〈W •,∨〉) is a join-semilattice.

For the remainder of this section let W = 〈W,W •〉 be a fixed B-residual

pair.

Let F(W ) denote the set of all filters of W and I(W •) set of all ideals of

W • (see Definitions 2.7.2 and 2.7.3). Let R ⊆ F(W ) × I(W •) be the binary

relation defined by: (F, I) ∈ R if, and only if, there exists a ∈ F and there exists

b ∈ I such that a ≤A b. Then the polarities of R yield a Galois connection,
3 : P(F(W )) ⇆ P(I(W •)) :2 where, for X ∈ P(F(W )) and Λ ∈ P(I(W •))

X3 = {I ∈ I(W •) : F ∈ X implies (F, I) ∈ R},

Λ2 = {F ∈ F(W ) : I ∈ Λ implies (F, I) ∈ R}.

Then Λ ∈ P(I(W •)) is Galois closed if Λ2 3 = Λ and X ∈ P(F(W )) is Galois

closed if X32 = X . Let S = {Λ ∈ P(I(W •)) : Λ = Λ2 3}.

Lemma 9.2.2. If Λi, i ∈ Ψ, are Galois closed, then
⋂

i∈Ψ ΛΨ is Galois closed.

Proof. Using the properties of Galois connections described in Lemmas 2.6.2,

we have the following: for Λi ∈ S, i ∈ Ψ,

(

⋂

i∈Ψ

Λi

)

23

=

(

⋂

i∈Ψ

Λ23

i

)

23

=

(

⋃

i∈Ψ

Λ2

i

)

323

=

(

⋃

i∈Ψ

Λ2

i

)

3

=
⋂

i∈Ψ

Λ23

i =
⋂

i∈Ψ

Λi.
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For Λi ∈ S, i ∈ Ψ, let

S
∨

i∈Ψ

Λi =
⋂

i∈Ψ

Λi and

S
∧

i∈Ψ

Λi =

(

⋃

i∈Ψ

Λi

)

23

.

Then S =
〈

S,∨S,∧S
〉

is a complete lattice such that the associated complete

lattice order ≤S is ⊇. Let µ : B → S be the map defined by µ(b) = {I ∈

I(W •) : b ∈ I}.

Remark 9.2.3. Recall from Lemma 2.6.3 that 3 and 2 convert existing joins

into meets. That is, for Λi ∈ S, i ∈ Ψ

(

⋂

i∈Ψ

Λi

)

2

=

(

S
∨

i∈Ψ

Λi

)2

=

(

S
∧

i∈Ψ

Λ2

i

)

=

(

⋃

i∈Ψ

Λ2

i

)

23

.

If meet is intersection and join is the Galois closure of the union on the set of

Galois closed elements in P(I(W •)), then for Xj ∈ P(I(W •)), j ∈ Φ,





⋃

j∈Φ

Xj





3

=





⋃

j∈Φ

Xj





323

=





∨

j∈Φ

Xj





3

=
∧

j∈Φ

X3

j =
⋂

j∈Φ

X3

j .

We observe that {F}3 = {I ∈ I(W •) : (F, I) ∈ R} ∈ S for any F ∈ F(W ).

Let S(W ) = {{F}3 : F ∈ F(W )}.

Lemma 9.2.4. If Λ ∈ S, then Λ is an intersection of elements of S(W ).

Proof. Let Λ ∈ S, i.e., Λ = Λ23. Then,

Λ23 =
{

I ∈ I(W •) : F ∈ Λ2 implies (F, I) ∈ R
}

=
⋂

{

{I ∈ I(W •) : (F, I) ∈ R} : F ∈ Λ2
}

=
⋂

{{F}3 : F ∈ Λ2}.

Let b ∈ B. Now let Λb = {I ∈ I(W •) : b ∈ I} and Xb = {F ∈ F(W ) : b ∈

F}. Furthermore, let 〈T ]
W•

denote the ideal generated by T ⊆W • in W • and

(b]W
•

be the principal ideal generated by b in W •. Dually, we denote the filter

generated by T ′ ⊆ W in W by [T ′〉
W

and the principal filter generated by c in

W by [c)W .
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Lemma 9.2.5. If b ∈ B, then

(i) Λ2

b = Xb, and

(ii) X3

b = Λb.

Proof. We only prove the first statement. The proof of the second follows dually.

Let F ∈ Λ2

b = {F ∈ F(W ) : I ∈ Λb implies (F, I) ∈ R}. In particular

(b]W
•

∈ Λb and therefore (F, (b]W
•

) ∈ R. Then there exist a ∈ F and c ∈ (b]W
•

such that a ≤ c. But c ∈ (b]W
•

implies c ≤ b. Hence, a ≤ b and b ∈ F since

b ∈ B ⊆ W ∩W •. Therefore, F ∈ Xb and Λ2

b ⊆ Xb. On the other hand, let

F ∈ Xb. Since b ∈ F , b ∈ I and b ≤ b for each I ∈ Λb, we have that (F, I) ∈ R

for each I ∈ Λb. Thus, F ∈ Λ2

b and Xb ⊆ Λ2

b .

Corollary 9.2.6. Let b ∈ B. Then µ(b) ∈ S.

Proof. By Lemmas 9.2.5 and 2.6.2 we have µ(b) = Λb = X3

b ∈ S.

Lemma 9.2.7. The map µ preserves the ordering in B.

Proof. Let a, b ∈ B be such that a ≤ b and let I ∈ µ(b). Then b ∈ I. Since

a ≤ b and I is a down-set, we have a ∈ I. Thus, I ∈ µ(a). Hence, µ(b) ⊆ µ(a),

i.e., µ(a) ≤S µ(b).

Lemma 9.2.8. The map µ is one-to-one and preserves the existing finite meets

and existing finite joins in B.

Proof. The map µ is one-to-one since the principal ideal, (b]W
•

∈ Λb = µ(b)

for all b ∈ B: If a 6= b, then at least one of a � b or b � a. Suppose a � b,

then a /∈ (b]W
•

. Therefore, (b]W
•

∈ µ(b) but (b]W
•

/∈ µ(a) and µ(b) 6= µ(a).

Similarly, µ(b) 6= µ(a) if b � a.

Let bi ∈ B for i = 1, . . . , n, and suppose
∨n

i=1 bi exists in B. Then
∨n

i=1 bi ∈

W • since B ⊆W • and W • is closed under ∨. Furthermore,

n
∨

i=1

Sµ(bi) =

n
⋂

i=1

Λbi =

n
⋂

i=1

{I ∈ I(W •) : bi ∈ I}

= {I ∈ I(W •) : bi ∈ I for all i = 1, . . . , n}

=

{

I ∈ I(W •) :
n
∨

i=1

bi ∈ I

}

= Λ(
∨

n
i=1

bi) = µ

(

n
∨

i=1

bi

)

.
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Next suppose
∧n

i∈1 bi exists in B; then
∧n

i=1 bi ∈W since B ⊆W and W is

closed under ∧. By Lemma 9.2.5 and Remark 9.2.3 and the properties of filters,

we have that:

n
∧

i=1

Sµ(bi) =

(

n
⋃

i=1

µ(bi)

)

23

=

(

n
⋂

i=1

Λ2

bi

)

3

=

(

n
⋂

i=1

Xbi

)

3

=

(

n
⋂

i=1

{F ∈ F(W ) : bi ∈ F}

)

3

= {F ∈ F(W ) : bi ∈ F for all i = 1, . . . , n}3

=

{

F ∈ F(W ) :

n
∧

i=1

bi ∈ F

}

3

= X3

(
∧

n
i=1

bi)
= Λ(

∧
n
i=1

bi) = µ

(

n
∧

i=1

bi

)

.

Definition 9.2.9. For each f ∈ TA
1 and ◦ ∈ TA

2 we define the operations

fS : S → S and ◦S : S × S → S as follows. For F,G ∈ F(W ) define

f̂(F ) = [{f(a) : a ∈ F}〉W and F ◦̂G = [{a ◦ b : a ∈ F, b ∈ G}〉W .

Next, for X,Y ∈ P(F(W )), define

f(X) = {f̂(F ) : F ∈ X} and X ◦ Y = {F ◦̂G : F ∈ X, G ∈ Y }.

Then, for Λ,Υ ∈ S, we define

fS(Λ) = f(Λ2)3 and Λ ◦S Υ = (Λ2 ◦Υ2)3.

Let f ∈ TA
1 such that g ∈ (T•

1)
A is its residual and let ◦ ∈ TA

2 such that

\, / ∈ (T•
2)

A are the left and right residuals of ◦, respectively. For I ∈ I(W •)

and F ∈ F(W ), define

ĝ(I) = 〈{g(a) : a ∈ I}]
W•

,

F \̂I = 〈{a\b : a ∈ F, b ∈ I}]
W•

and

I/̂F = 〈{a/b : a ∈ I, b ∈ F}]W
•

.
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Furthermore, for Λ ∈ S and X ∈ P(F(W )) define

g(Λ) = {ĝ(I) : I ∈ Λ},

X\Λ = {F \̂I : F ∈ X, I ∈ Λ} and

Λ/X = {I/̂F : I ∈ Λ, F ∈ X}.

Recall from Chapter 2.7 that since W is a meet-semilattice, a ∈ [T 〉W for

some T ⊆ W if, and only if, there exist elements b1, . . . , bn ∈ T such that

a ≥
∧n

i=1 bi. Similarly, since W • is a join-semilattice, a ∈ 〈T ′]
W•

for some

T ′ ⊆W • if, and only if, there exist b1, . . . , bm ∈ T ′ such that a ≤
∨n

i=1 bi.

Lemma 9.2.10. Let F,G ∈ F(W ) and I ∈ I(W •). Then

(i) (f̂(F ), I) ∈ R if, and only if, there exist a ∈ F and b ∈ I such that

f(a) ≤ b.

(ii) (F, ĝ(I)) ∈ R if, and only if, there exist a ∈ F and b ∈ I such that

a ≤ g(b).

(iii) (F ◦̂G, I) ∈ R if, and only if, there exist a ∈ F , b ∈ G and c ∈ I such that

a ◦ b ≤ c.

(iv) (G,F \̂I) ∈ R if, and only if, there exist a ∈ F , b ∈ G and c ∈ I such that

b ≤ a\c.

(v) (F, I/̂G) ∈ R if, and only if, there exist a ∈ F , b ∈ G and c ∈ I such that

a ≤ c/b.

Proof. We prove the third and the fourth statements. The other statements can

be proved similarly.

(iii) If there exist a ∈ F , b ∈ G and c ∈ I such that a◦b ≤ c, then (F ◦̂G, I) ∈ R

since a◦b ∈ F ◦G. Next suppose (F ◦̂G, I) ∈ R. Then there exist a′ ∈ F ◦̂G

and c ∈ I such that a′ ≤ c. Since a′ ∈ F ◦̂G there exist a1, . . . , an ∈ F

and b1, . . . , bn ∈ G, for some n ∈ N, such that
∧n

i=1(ai ◦ bi) ≤ a′. Then

a =
∧n

i=1 ai ∈ F and b =
∧n

i=1 bi ∈ G sinceW is closed under finite meets.

Furthermore, a ◦ b ≤
∧n

i=1(ai ◦ bi) ≤ a′ ≤ c.

(iv) If there exist a ∈ F , b ∈ G and c ∈ I such that b ≤ a\c, then (G,F \̂I) ∈ R

since a\c ∈ F \̂I. Now suppose (G,F \̂I) ∈ R. Then there exist b ∈ G and
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c′ ∈ F \̂I such that b ≤ c′. But c′ ∈ F \̂I implies there exist a1, . . . , an ∈ F

and c1, . . . , cn ∈ I, for some n ∈ N, such that c′ ≤
∨n

i=1(ai\ci). Then a =
∧n

i=1 ai ∈ F sinceW is closed under finite meets and c =
∨n

i=1 ci ∈ I since

W • is closed under finite joins. Moreover, b ≤ c′ ≤
∨n

i=1(ai\ci) ≤ a\c.

Lemma 9.2.11. Let f ∈ TA
1 , ◦ ∈ TA

2 and Λ,Υ ∈ S. If X,Y ∈ P(F(W )) such

that Λ = X3 and Υ = Y 3, then

(i) fS(Λ) = fS(X3) = (f(X))3, and

(ii) (Λ ◦S Υ) = X3 ◦S Y 3 = (X ◦ Y )3.

Proof. We prove the second statement. The proof of the first follows a similar

argument and relies on Lemma 9.2.10 parts (i) and (ii).

The inclusion from left to right, (X32 ◦ Y 32)3 ⊆ (X ◦ Y )3, is immediate

from the properties of Galois connections.

For the inclusion in the other direction observe that, for I ∈ I(W •)

I ∈ (X ◦ Y )3

⇐⇒ (F ′◦̂G′, I) ∈ R for all F ′ ∈ X and all G′ ∈ Y

⇐⇒ there exist a ∈ F ′, b ∈ G′ and c ∈ I such that by Lemma 9.2.10 (iii)

a ◦ b ≤ c for all F ′ ∈ X and all G′ ∈ Y

⇐⇒ there exist a ∈ F ′, b ∈ G′ and c ∈ I such that by residuation

b ≤ a\c for all F ′ ∈ X and all G′ ∈ Y

⇐⇒ (G′, F ′\̂I) ∈ R for all F ′ ∈ X and all G′ ∈ Y by Lemma 9.2.10 (iv)

⇐⇒ F ′\̂I ∈ Y 3 for all F ′ ∈ X

⇐⇒ (G,F ′\̂I) ∈ R for all F ′ ∈ X and all G ∈ Y 32

⇐⇒ there exist a ∈ F ′, b ∈ G and c ∈ I such that by Lemma 9.2.10 (iv)

b ≤ a\c for all F ′ ∈ X and all G ∈ Y 32

⇐⇒ there exist a ∈ F ′, b ∈ G and c ∈ I such that by residuation

a ≤ c/b for all F ′ ∈ X and all G ∈ Y 32

⇐⇒ (F ′, I/̂G) ∈ R for all F ′ ∈ X and all G ∈ Y 32 by Lemma 9.2.10 (v)

⇐⇒ I/̂G ∈ X3 for all G ∈ Y 32
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⇐⇒ (F, I/̂G) ∈ R for all F ∈ X32 and all G ∈ Y 32

⇐⇒ there exist a ∈ F, b ∈ G and c ∈ I such that by Lemma 9.2.10 (v)

a ≤ c/b for all F ∈ X32 and all G ∈ Y 32

⇐⇒ there exist a ∈ F, b ∈ G and c ∈ I such that by residuation

a ◦ b ≤ c for all F ∈ X32 and all G ∈ Y 32

⇐⇒ (F ◦̂G, I) ∈ R for all F ∈ X32 and all G ∈ Y 32 by Lemma 9.2.10 (iii)

⇐⇒ I ∈ (X32 ◦ Y 32)3.

Lemma 9.2.12. For each f ∈ TA
1 and ◦ ∈ TA

2 , the operations fS and ◦S on S

are residuated with respect to the order ⊇.

Proof. Since S is a complete lattice it suffices to show that fS and ◦S distribute

over all joins. We prove the claim for ◦S. The claim for fS can be shown

similarly. Let Υ,Λi ∈ S, i ∈ Ψ. To show that ◦S distribute over all joins, we

must show that

Υ ◦S
S
∨

i∈Ψ

Λi =

S
∨

i∈Ψ

(

Υ ◦S Λi

)

and

S
∨

i∈Ψ

Λi ◦
S Υ =

S
∨

i∈Ψ

(

Λi ◦
S Υ
)

.

Let us consider the first condition. By Remark 9.2.3 and Lemma 9.2.11 (ii),

Υ ◦S
S
∨

i∈Ψ

Λi = Υ ◦S
⋂

i∈Ψ

Λi

= Υ23 ◦S
⋂

i∈Ψ

(

Λ23

i

)

= Υ23 ◦S

(

⋃

i∈Ψ

Λ2

i

)

3

=

(

Υ2 ◦
⋃

i∈Ψ

Λ2

i

)

3

.
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Furthermore,

S
∨

i∈Ψ

(

Υ ◦S Λi

)

=
⋂

i∈Ψ

(

Υ ◦S Λi

)

=
⋂

i∈Ψ

(

Υ2 ◦ Λ2

i

)

3

=

(

⋃

i∈Ψ

(

Υ2 ◦ Λ2

i

)

)

3

=

(

⋃

i∈Ψ

{

F ◦̂G : F ∈ Υ2, G ∈ Λ2

i

}

)

3

=

{

F ◦̂G : F ∈ Υ2, G ∈
⋃

i∈Ψ

Λ2

i

}

3

=

(

Υ2 ◦
⋃

i∈Ψ

Λ2

i

)

3

.

Similarly, the second condition holds. Hence, ◦S is residuated.

We will use the following auxiliary result to describe the residuals of fS and

◦S.

Lemma 9.2.13. Let X ∈ P(F(W )) and Λ ∈ P(I(W •)). Then,

X3 ⊇ Λ23 ⇐⇒ X ⊆ Λ2

Proof. If X3 ⊇ Λ23, then by the properties of Galois connections X ⊆ X32 ⊆

Λ232 = Λ2. The inclusion in the other direction follows immediately from the

properties of Galois connections.

Lemma 9.2.14. For each f ∈ TA
1 with residual g ∈ (T•

1)
A, define gS : S → S

by, for Λ ∈ S,

gS(Λ) = g(Λ)23.

Then gS is the residual of fS.

Proof. For all Λ,Υ ∈ S we must show that fS(Λ) ≤S Υ if, and only if, Λ ≤S

gS(Υ). First note that by Lemma 9.2.13,

fS(Λ) ≤S Υ ⇐⇒ f(Λ2)3 ⊇ Υ23

⇐⇒ f(Λ2) ⊆ Υ2.
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Also, by Lemma 9.2.13,

Λ ≤S gS(Υ) ⇐⇒ Λ23 ⊇ g(Υ)23

⇐⇒ Λ2 ⊆ g(Υ)2.

Therefore, to prove the claim we must show that f(Λ2) ⊆ Υ2 if, and only if,

Λ2 ⊆ g(Υ)2. We prove the forward implication. The implication in the other

direction follows similarly.

Suppose f(Λ2) ⊆ Υ2. Then,

F ∈ Λ2

⇒ f̂(F ) ∈ f(Λ2)

⇒ f̂(F ) ∈ Υ2 by assumption

⇒ (f̂(F ), I) ∈ R for all I ∈ Υ

⇒ there exist a ∈ F, b ∈ I such that f(a) ≤ b for all I ∈ Υ by Lemma 9.2.10 (i)

⇒ there exist a ∈ F, b ∈ I such that a ≤ g(b) for all I ∈ Υ by residuation

⇒ (F, ĝ(I)) ∈ R for all I ∈ Υ by Lemma 9.2.10 (ii)

⇒ F ∈ g(Υ)2.

Hence, Λ2 ⊆ g(Υ)2.

Lemma 9.2.15. For each ◦ ∈ TA
2 with left and right residuals \, / ∈ (T•

2)
A,

define \S, /S : S × S → S by, for Λ,Υ ∈ S,

Λ\SΥ = (Λ2\Υ)23 and Λ/SΥ = (Λ/Υ2)23.

Then \S and /S are the left and right residuals, respectively, of ◦S.

Proof. Let Λ,Υ,Γ ∈ S. We must show that Λ ◦S Υ ≤S Γ if, and only if,

Υ ≤S Λ\SΓ if, and only if, Λ ≤S Γ/SΥ. We show that Λ ◦S Υ ≤S Γ implies

Υ ≤S Λ\SΓ. The other implications follow similarly.

Observe that, by Lemma 9.2.13,

Λ ◦S Υ ≤S Γ ⇐⇒ (Λ2 ◦Υ2)3 ⊇ Γ23

⇐⇒ Λ2 ◦Υ2 ⊆ Γ2.

Furthermore, again by Lemma 9.2.13,

Υ ≤S Λ\SΓ ⇐⇒ Υ23 ⊇ (Λ2\Γ)23

⇐⇒ Υ2 ⊆ (Λ2\Γ)2.
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Thus we must show that Λ2 ◦Υ2 ⊆ Γ2 implies Υ2 ⊆ (Λ2\Γ)2.

Suppose Λ2 ◦Υ2 ⊆ Γ2. Then,

G ∈ Υ2

⇒ F ◦̂G ∈ Λ2 ◦Υ2 for all F ∈ Λ2

⇒ F ◦̂G ∈ Γ2 for all F ∈ Λ2 by assumption

⇒ (F ◦̂G, I) ∈ R for all F ∈ Λ2 and all I ∈ Γ

⇒ there exist a ∈ F, b ∈ G and c ∈ I such that by Lemma 9.2.10 (iii)

a ◦ b ≤ c for all F ∈ Λ2 and all I ∈ Γ

⇒ there exist a ∈ F, b ∈ G and c ∈ I such that by residuation

b ≤ a\c for all F ∈ Λ2 and all I ∈ Γ

⇒ (G,F \̂I) ∈ R for all F ∈ Λ2 and all I ∈ Γ by Lemma 9.2.10 (iv)

⇒ G ∈ (Λ2\Γ)2.

Hence, Υ2 ⊆ (Λ2\Γ)2.

Lemma 9.2.16. Let f ∈ TA
1 and ◦ ∈ TA

2 .

(i) If a ∈ B such that f(a) ∈ B, then f̂([a)W ) = [f(a))W .

(ii) If a ∈ B such that g(a) ∈ B, then ĝ((a]W
•

) = (g(a)]W
•

.

(iii) If a, b ∈ B such that a ◦ b ∈ B, then [a)W ◦̂ [b)W = [a ◦ b)W .

(iv) If a, b ∈ B such that a\b ∈ B, then [a)W \̂(b]W
•

= (a\b]W
•

.

(v) If a, b ∈ B such that a/b ∈ B, then (a]W
•

/̂[b)W = (a/b]W
•

.

Proof. We prove the third and the fourth statements. The other three state-

ments can be proved similarly.

(iii) Suppose a, b ∈ B such that a◦ b ∈ B. Let c ∈ [a◦ b)W , then a◦ b ≤ c ∈W .

But a ◦ b ∈ {e ◦ d : e ∈ [a)W , d ∈ [b)W } = {e ◦ d : a ≤ e ∈ W, b ≤ d ∈ W}.

Therefore, c ∈ [{e ◦ d : a ≤ e ∈M, b ≤ d ∈M}〉
W

= [a)W ◦̂ [b)W by the

upward closure of filters.

For the inclusion in the other direction, let c ∈ [a)W ◦̂ [b)W = [{e ◦ d :

≤ e ∈W, b ≤ d ∈W}〉W . Then c ≥
∧n

i=1(ei ◦ di) for some n ∈ N and

a ≤ ei ∈ W , b ≤ di ∈ W for i = 1, . . . , n. Since ei ◦ di ≥ a ◦ b for

i = 1, . . . , n, we have that c ≥
∧n

i=1(ei ◦ di) ≥ a ◦ b and c ∈ [a ◦ b)W .
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(iv) Suppose a, b ∈ B such that a\b ∈ B. Let c ∈ (a\b]W
•

. Then c ≤ a\b ∈

{e\d : e ∈ [a)W , d ∈ (b]W
•

} = {e\d : a ≤ e ∈ M, b ≥ d ∈ W •}. Thus,

c ∈ 〈{e\d : a ≤ e ∈W, b ≥ d ∈W •}]W
•

= [a)W \̂(b]W
•

by the downward

closure of ideals.

On the other hand, let c ∈ [a)W \̂(b]W
•

= 〈{e\d : a ≤ e ∈ W, b ≥ d ∈ W •}]
W•

.

Then c ≤
∨n

i=1(ei\di) for some n ∈ N and a ≤ ei ∈ W , b ≥ di ∈ W •

for i = 1, . . . , n. Since ei\di ≤ a\b for i = 1, . . . n we have that c ≤
∨n

i=1(ei\di) ≤ a\b and c ∈ (a\b]W
•

.

Lemma 9.2.17. The embedding µ : a 7→ {I ∈ I(W •) : a ∈ I} preserves each

f ∈ TA
1 , each g ∈ (T•

1)
A, each ◦ ∈ TA

2 and each pair \, / ∈ (T•
2)

A. That is:

(i) If a ∈ B such that f(a) ∈ B, then fS(µ(a)) = µ(f(a)).

(ii) If a ∈ B such that g(a) ∈ B, then gS(µ(a)) = µ(g(a)).

(iii) If a, b ∈ B such that a ◦ b ∈ B, then µ(a) ◦S µ(b) = µ(a ◦ b).

(iv) If a, b ∈ B such that a\b ∈ b, then µ(a)\Sµ(b) = µ(a\b).

(v) If a, b ∈ B such that a/b ∈ b, then µ(a)/Sµ(b) = µ(a/b).

Proof. We only prove the third and fourth statements. The proofs of other

statements follow similarly. Recall that µ(a) = Λa = {I ∈ I(W •) : a ∈ I} and

Xa = {F ∈ F(W ) : a ∈ F}.

(iii) Let a, b ∈ B such that a ◦ b ∈ B. By Lemmas 9.2.5 (i) and 9.2.11 (ii),

µ(a) ◦S µ(b) = Λ23

a ◦S Λ23

b = (Λ2

a ◦ Λ2

b )
3 = (Xa ◦Xb)

3

= {F ◦̂G : F,G ∈ F(W ) such that a ∈ F, b ∈ G}3.

Then, I ∈ {F ◦̂G : F,G ∈ F(W ) such that a ∈ F, b ∈ G}3 if, and only if,

([a)W ◦̂[b)W , I) ∈ R: The forward implication follows from the definition

of 3 since [a)W ◦̂[b)W ∈ {F ◦̂G : F,G ∈ F(W ) such that a ∈ F, b ∈ G}.

For the implication in the other direction, suppose ([a)W ◦̂[b)W , I) ∈ R.

Then, Lemma 9.2.10 (iii), there exist c ∈ [a)W , d ∈ [b)W and e ∈ I such

that a ◦ b ≤ c ◦ d ≤ e. Now let F,G ∈ F(W ) such that a ∈ F and b ∈ G.

Then a ◦ b ∈ F ◦̂G and by Lemma 9.2.10 (iii) we have that (F ◦̂G, I) ∈ R.
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Since this is the case for all F,G ∈ F(W ) such that a ∈ F and b ∈ G, it

follows that I ∈ {F ◦̂G : F,G ∈ F(W ) such that a ∈ F, b ∈ G}3.

Furthermore,

([a)W ◦̂[b)W , I) ∈ R

⇐⇒ ([a ◦ b)W , I) ∈ R (by Lemma 9.2.16 (iii))

⇐⇒ there exist c ∈ [a ◦ b)W , d ∈ I such that c ≤ d

⇐⇒ a ◦ b ∈ I (a ◦ b ≤ c ≤ d and a ◦ b ∈ B)

⇐⇒ I ∈ µ(a ◦ b).

(iv) Let a, b ∈ B such that a\b ∈ B. Then,

µ(a)\Sµ(b) = (Λ2

a \Λb)
23 = (Xa\Λb)

23

= {G\̂J : F ∈ F(W ), J ∈ I(W •) such that a ∈ F, b ∈ I}23.

Then F ∈ {G\̂J : G ∈ F(W ), J ∈ I(W •) such that a ∈ G, b ∈ I}2

if, and only if, (F, [a)W \̂(b]W
•

) ∈ R: Firstly [a)W \̂(b]W
•

∈ {G\̂J : G ∈

F(W ), J ∈ I(W •) such that a ∈ G, b ∈ I} since a ∈ [a) and b ∈ (b].

Therefore, (F, [a)W \̂(b]W
•

) ∈ R for all F ∈ {G\̂J : G ∈ F(W ), J ∈

I(W •) such that a ∈ G, b ∈ I}2. Next, suppose (F, [a)W \̂(b]W
•

) ∈ R.

Then, by Lemma 9.2.10 (iv), there exist c ∈ F , d ∈ [a)W and e ∈ (b]W
•

such that c ≤ d\e ≤ a\b. Now let G ∈ F(W ) and J ∈ I(W •) such that

a ∈ G and b ∈ I. Then, again by Lemma 9.2.10 (iv), (F,G\̂J) ∈ R.

Hence, F ∈ {G\̂J : G ∈ F(W ), J ∈ I(W •) such that a ∈ G, b ∈ I}2.

Moreover,

(F, [a)W \(b]W
•

) ∈ R

⇐⇒ (F, (a\b]W
•

) ∈ R (by Lemma 9.2.16 (iv))

⇐⇒ there exist c ∈ F, d ∈ (a\b]W
•

such that c ≤ d

⇐⇒ a\b ∈ F. (c ≤ d ≤ a\b and a\b ∈ B)

Hence,

{G\J : G ∈ F(W ), J ∈ I(W •) such that a ∈ G, b ∈ I}2

= {F ∈ F(W ) : a\b ∈ F}.
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We can now show that I ∈ {F ∈ F(W ) : a\b ∈ F}3 if, and only if,

([a\b)W , I) ∈ R: Suppose I ∈ {F ∈ F(W ) : a\b ∈ F}3. Since [a\b)W ∈

{F ∈ F(W ) : a\b ∈ F} it follows directly that ([a\b)W , I) ∈ R. On the

other hand, suppose ([a\b)W , I) ∈ R. Then there exist c ∈ [a\b)W and

d ∈ I such that a\b ≤ c ≤ d. Let G ∈ {F ∈ F(W ) : a\b ∈ F}; then

(G, I) ∈ R since a\b ∈ G. Therefore, I ∈ {F ∈ F(W ) : a\b ∈ F}3.

Finally,

([a\b)W , I) ∈ R

⇐⇒ there exist c ∈ [a\b)W , d ∈ I such that c ≤ d

⇐⇒ a\b ∈ I (a\b ≤ c ≤ d and a\b ∈ B)

⇐⇒ I ∈ µ(a\b).

Thus, µ(a)\Sµ(b) = µ(a\b).

Theorem 9.2.18. The structure S is a complete residuated ordered algebra of

the same type as A and there exists an embedding of B into S that preserves all

existing meets and joins in B.

Remark 9.2.19. Let L = 〈L,∨,∧〉 be a bounded lattice and let C be the comple-

tion of L obtained from the polarization (F(L), I(L)) as described in Chapter 6.

Then C is the canonical extension of L [GH01]. Now, if B = A, then the only

possible B-residual pair is 〈A,A〉. Then (F, I) ∈ R if, and only if, F ∩ I 6= ∅
and the lattice reduct of S is just the canonical extension of the lattice reduct

of A.

9.2.2 Finiteness

Recall that A =
〈

A,∨,∧,TA,≤
〉

is a residuated lattice ordered algebra (of type

T) and B =
〈

B,∨B,∧B,TB,≤B
〉

is a partial (ordered) subalgebra of A. Also

recall that W = 〈W,W •〉 is a B-residual pair, as per Definition 9.2.1.

Let Pfin(W ) denote the set of all finite subsets of W . For M,N ∈ Pfin(W )

define the ordering ≦ on Pfin(W ) by: M ≦ N if, and only if, there exists a

one-to-one function ψ :M → N such that a ≤ ψ(a) for every a ∈M .

We will make use of the following result that was obtained in [Nas63].
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Lemma 9.2.20. [Nas63] If 〈W,≥〉 is well-quasi-ordered, then so is
〈

Pfin(W ),≧
〉

.

Corollary 9.2.21. If 〈W,≤〉 is reverse well-quasi-ordered, then so is
〈

Pfin(W ),≦
〉

.

Proof. We that have that 〈W,≤〉 is reverse well-quasi-ordered if, and only if,

〈W,≥〉 is well-quasi-ordered; which implies that
〈

Pfin(W ),≧
〉

is well-quasi-

ordered; which is the case if, and only if,
〈

Pfin(W ),≦
〉

is reverse well-quasi-

ordered.

Let F ∈ F(W ). We note that W −F is a downset in W . If 〈W,≤〉 is reverse

well-quasi-ordered, then W − F contains only finitely many maximal elements

(if not, the maximal elements would form a bad sequence in 〈W,≤〉). Let DF

denote the set of maximal elements in W − F .

Lemma 9.2.22. Suppose 〈W,≤〉 is reverse well-quasi-ordered and let F,G ∈

F(W ). If DF ≧ DG, then F ⊆ G.

Proof. Since 〈W,≤〉 is reverse well-quasi-ordered, DF and DG are both finite

and ≧ is defined for DF and DG.

By definition of ≧ there exists a one-to-one function ψ : DG → DF such

that a ≤ ψ(a) for every a ∈ DG.

For any x ∈ A it now follows that:

x /∈ G

⇒ x ∈ W −G

⇒ x ≤ a for some a ∈ DG

⇒ x ≤ ψ(a) since DF ≧ DG

⇒ x ≤ b for some b ∈ DF since ψ(a) ∈ DF

⇒ x /∈ F.

Hence, F ⊆ G.

For F ∈ F(W ), let F3 be an abbreviation for {F}3 = {I ∈ I(W •) : (F, I) ∈

R} and recall that (F, I) ∈ R if, and only if, there exist a ∈ F and b ∈ I such

that a ≤ b. Furthermore, recall that S =
〈

S,∨S,∧S
〉

is a complete lattice with

S = {Λ ∈ P(I(W •)) : Λ = Λ2 3} and

S
∨

i∈Ψ

Λi =
⋂

i∈Ψ

Λi and

S
∧

i∈Ψ

Λi =

(

⋃

i∈Ψ

Λi

)

23

for Λi ∈ S, i ∈ Ψ. The associated lattice order ≤S is ⊇.
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Theorem 9.2.23. If 〈W,≤〉 is reverse well-quasi-ordered and 〈W •,≤〉 is well-

quasi-ordered, then S is finite.

Proof. Recall that S(W ) = {F3 : F ∈ F(W )}. Although F(W ) is an infinite

set, we claim that the set S(W ) is finite.

We begin by showing that 〈S(W ),⊆〉 is well-quasi-ordered: Assume to the

contrary that 〈S(W ),⊆〉 is not well-quasi-ordered, i.e., there is a bad sequence

F3

1 , F
3

2 , . . . in 〈S(W ),⊆〉. Then, whenever i < j, we have F3

i * F3

j . Now,

F3

i * F3

j implies that there exists an I ∈ I(W •) such that (Fi, I) ∈ R, but

(Fj , I) /∈ R. Moreover, (Fi, I) ∈ R if, and only if, there exist a ∈ Fi and b ∈ I

such that a ≤ b. Then a /∈ Fj , since (Fj , I) /∈ R. Thus, Fi * Fj whenever i < j.

Hence, F1, F2, . . . is a bad sequence in 〈F(W ),⊆〉.

From the contrapositive of Lemma 9.2.22, it now follows that DF1
, DF2

, . . . is

a sequence of finite subsets ofW such that, whenever i < j, we have DFi
� DFj

.

That is, DF1
, DF2

, . . . is a bad sequence in
〈

Pfin(W ),≧
〉

. Hence,
〈

Pfin(W ),≧
〉

is not well-quasi-ordered. But then
〈

Pfin(W ),≦
〉

is not reverse well-quasi-

ordered and neither is 〈W,≤〉, by Corollary 9.2.21. This, however contradicts

our assumption that 〈W,≤〉 is reverse well-quasi-ordered. We may therefore

conclude that 〈S(W ),⊆〉 is well-quasi-ordered. That is, it has no infinite anti-

chains nor does it have any infinite descending chains.

Next, we show that 〈S(W ),⊆〉 has no infinite ascending chains. Suppose,

to the contrary, that there exists an infinite chain F3

1 ⊂ F3

2 ⊂ · · · in S(W ).

For each n ∈ N, choose In ∈ F3

n+1 − F3

n . Note that (Fn+1, In) ∈ R, but

(Fn, In) /∈ R. Therefore, there exist cn ∈ Fn+1 and dn ∈ In such that cn ≤ dn,

for each n ∈ N. Then, (Fi+1, Ij) /∈ R whenever i < j: suppose to the contrary

that (Fi+1, Ij) ∈ R for some i < j. Then there exist a ∈ Fi+1 and b ∈ Fj

such that a ≤ b. But then a ∈ Fi+1 ⊆ Fj , which implies that (Fj , Ij) ∈ R

— contradicting our choice of Ij . Furthermore, (Fi+1, Ij) /∈ R whenever i < j

implies that, whenever i < j, we have c � d for all c ∈ Fi+1 and all d ∈ Ij .

In particular, ci � dj whenever i < j. Since ci ≤ di, it follows that di � dj

whenever i < j. Thus (dn) is a bad sequence in 〈W •,≤〉, contradicting our

assumption. Therefore, 〈S(W ),⊆〉 is finite.

Consequently, S(W ) is finite. Recall that every stable set Λ ∈ S is an

intersection of elements of S(W ), by Lemma 9.2.4. Hence, S is finite.

Thus, the problem of determining if S is finite is reduced to identifying B-
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residual pairs, W = 〈W,W •〉 for which 〈W,≤〉 is reverse well-quasi-ordered and

〈W •,≤〉 is well-quasi-ordered. We briefly summarise some results from [Hig52]

that we will use to find reverse well-quasi-ordered W ’s and well-quasi-ordered

W •’s.

An algebra A =
〈

A,OA,�
〉

such that � is a quasi-order is called a quasi-

ordered algebra if:

Each operation in OA preserves � in each of its arguments. (9.1)

The quasi-order � is called a divisibility order if, in addition to (9.1), it satisfies:

For each n-ary operation fA of A and all a1, . . . , an ∈ A,

ai � fA(a1, . . . , an) for each i = 1, . . . , n.

For each k ∈ N, let OA
k denote the set of all k-ary operations in OA. Suppose

≤k is a quasi-order on OA
k for each k ∈ N. Then � is called compatible with ≤k

if, for all fA, hA ∈ OA
k :

If fA ≤k h
A and a1, . . . , ak ∈ A, then fA(a1, . . . , ak) � hA(a1, . . . , ak).

If
〈

A,OA,�
〉

has no proper subalgebras, then it is said to be minimal. For

example, an algebra generated by its set of constants is a minimal algebra.

Theorem 9.2.24. [Hig52, Theorem 1.1] Suppose that
〈

A,OA,�
〉

is a minimal

algebra endowed with a divisibility order �. If
〈

OA
k ,≤k

〉

is a well-quasi-ordered

set such that � is compatible with ≤k for each k = 0, . . . , n, and OA
k is empty

for k > n, then 〈A,�〉 is well-quasi-ordered.

Theorem 9.2.25. [Hig52, Theorem 1.2] Suppose that
〈

A,OA,�
〉

is an algebra

of finite type endowed with a divisibility order �. If
〈

A,OA
〉

is generated by a

subset B and 〈B,� |B〉 is well-quasi-ordered, then 〈A,�〉 is well-quasi-ordered.

In particular, if
〈

A,OA,�
〉

is generated by a finite set, then 〈A,�〉 is well-

quasi-ordered.

Finally we note that a finite direct product of well-quasi-ordered sets is

again well-quasi-ordered; and the union of a finite number of well-quasi-ordered

subsets of some partially ordered set 〈A,≤〉 is also well-quasi-ordered.
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Decreasing residuated ordered algebras

Recall from Section 9.1.1 that for a residuated lattice ordered algebra, A =
〈

A,∨,∧,TA,≤
〉

, the set of operations TA is finite and consists of constants and

unary and binary residuated operators. If, in addition, each operator in TA
1 ∪TA

2

is decreasing, then A =
〈

A,∨,∧,TA,≤
〉

is called a decreasing residuated lattice

ordered algebra. Then, for each f ∈ TA
1 , we have f(x) ≤ x which implies that

x ≤ g(x), where g ∈ (T•
1)

A is f ’s residual. Hence, each g ∈ (T•
1)

A is increasing.

Furthermore, if ◦ ∈ TA
2 , then y ◦ x ≤ x and x ◦ y ≤ x implies that x ≤ y\x and

x ≤ x/y.

Now let A be a decreasing residuated ordered algebra and B a partial sub-

algebra of A. Let W be the closure of B ∪TA
0 under the operations in TA

1 ∪TA
2

and ∧. Then ≥ is a divisibility order on W and W is generated by a finite

set. Thus, by Theorem 9.2.25, 〈W,≥〉 is well-quasi-ordered and hence 〈W,≤〉 is

reverse well-quasi-ordered.

Next let W • be the closure of B ∪ TA
0 under ∨, each gi ∈ (T•

1)
A, i ∈ Ψ, and

under a\jx and x/ja for all a ∈W and j ∈ Φ. Then,

(i) ≤ is preserved by ∨ and gi, a\jx and a/jx for all i ∈ Ψ, all j ∈ Φ and all

a ∈ W .

(ii) As explained in the discussion above, each g ∈ (T•
1)

A, each a\jx and each

x/ja is increasing, i.e., c ≤ g(c), c ≤ a\jc and c ≤ a/jc for all c ∈ W •.

Hence, ≤ is a divisibility order on W •.

(iii) W • is closed under infinitely many unary operations and one binary op-

eration. The set O2 is just {∨} which is trivially well-quasi-ordered and

the ordering ≤ on W • is (trivially) compatible with its trivial ordering.

Furthermore, for each j ∈ Φ, let Lj = {a\jx : a ∈ M} and Rj = {x/ja :

a ∈ W}. Define the relation ≤L
j on each Lj as follows: a1\jx ≤L

j a2\jx if,

and only if, a1 ≥ a2. Similarly, define ≤R
j on each Rj by: x/ja1 ≤R

j x/ja2

if, and only if, a1 ≥ a2. Then each
〈

Lj,≤
L
j

〉

and each
〈

Rj ,≤
R
j

〉

is well-

quasi-ordered: 〈W,≤〉 is reverse well-quasi-ordered and a1 ≥ a2 implies

a1\jc ≤ a2\jc and c/ja1 ≤ c/ja2 for all c ∈W •. Now let O1 be the union

of all Lj , Rj and {gi ∈ (T•
1)

A : i ∈ Ψ} and let ≤1 be the union of all

≤L
j ’s, ≤

R
j ’s and the trivial order on {gi ∈ (T•

1)
A : i ∈ Ψ}. Then 〈O1,≤1〉

is well-quasi-ordered. Moreover, the ordering ≤ onW • is compatible with
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≤1.

Hence, 〈W •,≤〉 is well-quasi-ordered by Theorem 9.2.24.

Then 〈W,W •〉 is a B-residual pair such that W is reverse well-quasi-ordered

and W • is well-quasi-ordered. Moreover, S obtained from 〈W,W •〉 by the con-

struction described in Section 9.2.1, is finite by Theorem 9.2.23.

9.2.3 Additional properties preserved by the construction

Though not explored in full, we show some initial preservation results here. In

particular we show how Lemma 9.2.11 can be used to great effect to prove the

preservation of some important properties of the operations.

Lemma 9.2.26. Let f ∈ TA
1 . Then:

(i) If f is decreasing, then so is fS.

(ii) If f is increasing, then so is fS.

(iii) If f is idempotent, then so is fS.

Proof. (i) Suppose f is decreasing, i.e., f(a) ≤ a for all a ∈ A. Let Λ ∈ S

and I ∈ Λ. Then,

(F, I) ∈ R for all F ∈ Λ2

⇒ there exist a ∈ F, b ∈ I such that a ≤ b for all F ∈ Λ2

⇒ there exist a ∈ F, b ∈ I such that f(a) ≤ a ≤ b for all F ∈ Λ2

⇒ (f̂(F ), I) ∈ R by Lemma 9.2.10 (i) for all F ∈ Λ2

⇒ I ∈ f(Λ2)3.

Hence, Λ ⊆ f(Λ2)3, i.e., fS(Λ) ≤S Λ.

(ii) Suppose f is increasing, i.e., a ≤ f(a) for all a ∈ A. Let Λ ∈ S and

I ∈ f(Λ2)3. Then,

(f̂(F ), I) ∈ R for all F ∈ Λ2

⇒ there exist a ∈ f̂(F ), b ∈ I such that a ≤ b for all F ∈ Λ2

by Lemma 9.2.10 (i)
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⇒ there exist c1, . . . , cn ∈ F, n ∈ N, a ∈ f̂(F ) and b ∈ I such that

n
∧

i=1

f(ci) ≤ a ≤ b for all F ∈ Λ2

⇒ there exist c1, . . . , cn ∈ F, n ∈ N, a ∈ f̂(F ) and b ∈ I such that

f

(

n
∧

i=1

ci

)

≤

n
∧

i=1

f(ci) ≤ a ≤ b for all F ∈ Λ2

⇒ there exist c ∈ F (set, c =

n
∧

i=1

ci), b ∈ I such that c ≤ f(c) ≤ b for all F ∈ Λ2

since W and F are closed under finite meets and f is increasing

⇒ (F, I) ∈ R for all F ∈ Λ2

⇒ I ∈ Λ23 = Λ.

Therefore, f(Λ2)3 ⊆ Λ, i.e., Λ ≤S fS(Λ).

(iii) Suppose f is idempotent, i.e., f(f(a)) = f(a) for all a ∈ A. We first show

that f̂(f̂(F )) = f̂(F ): Let a ∈ f(F ). Then a ≥
∧n

i=1 f(ci) ≥ f(
∧n

i=1 ci)

for some c1, . . . , cn ∈ F , n ∈ N. But c =
∧n

i=1 ci ∈ F since W and F are

closed under finite meets. Thus, a ≥ f(c) = f(f(c)) for some c ∈ F , since

f is idempotent. This implies that a ∈ f̂(f̂(F )). Hence, f̂(F ) ⊆ f̂(f̂(F )).

On the other hand, let b ∈ f̂(f̂(F )). Using the fact that W and F are

closed under finite meets, we can follow a similar argument to the one

above to prove the following: there exists a ∈ f̂(F ) such that b ≥ f(a).

But a ∈ f̂(F ) implies that a ≥ f(c) for some c ∈ F . Then b ≥ f(a) ≥

f(f(c)) = f(c) which implies that b ∈ f̂(F ). Hence, f̂(f̂(F )) ⊆ f̂(F ).

Next let X ∈ P(F(W )). Then:

f(f(X)) = f({f̂(F ) : F ∈ X})

= {f̂(f̂(F )) : F ∈ X}

= {f̂(F ) : F ∈ X}

= f(X).



9. The FEP for residuated structures 188

Now, by the above and Lemma 9.2.11 (i) we have: for Λ ∈ S,

fS(fS(Λ)) = fS(f(Λ2)3)

= f(f(Λ2))3

= f(Λ2)3

= fS(Λ).

Lemma 9.2.27. Let ◦ ∈ TA
2 . Then,

(i) If ◦ is decreasing (in each coordinate), then so is ◦S.

(ii) If ◦ is associative, then so is ◦S.

(iii) If ◦ is commutative, then so is ◦S.

(iv) If 1 ∈ TA
0 such that 1 is a (left- or right-) identity of ◦, then µ(1) is a

(left- or right-) identity of ◦S.

Proof. (i) Suppose ◦ is decreasing, i.e., a ◦ b ≤ a and a ◦ b ≤ b for all a, b ∈ A.

We must show that Λ ◦S Υ ≤S Λ and Λ ◦S Υ ≤S Υ for all Λ,Υ ∈ S. We

will prove the first inequality. The second follows similarly. Let Λ,Υ ∈ S

and let I ∈ Λ. Then,

(F, I) ∈ R for all F ∈ Λ2

⇒ there exist a ∈ F, b ∈ I such that a ≤ b for all F ∈ Λ2

⇒ there exist a ∈ F, b ∈ I such that a ◦ c ≤ a ≤ b

for all c ∈ G, for all G ∈ Υ2 and all F ∈ Λ2

⇒ (F ◦̂G, I) ∈ R for all F ∈ Λ2 and all G ∈ Υ2, by Lemma 9.2.10 (iii)

⇒ I ∈ (Λ2 ◦Υ2)3.

Hence, Λ ⊆ (Λ2 ◦Υ2)3, i.e., Λ ◦S Υ ≤S Λ.

(ii) Suppose ◦ is associative. Let F1, F2, F3 ∈ F(W ). We will show that

F1◦̂ (F2◦̂F3) = (F1◦̂F2)◦̂F3. Let

e ∈ F1◦̂ (F2◦̂F3) = [{a ◦ b : a ∈ F1, b ∈ F2◦̂F3}〉 .



9. The FEP for residuated structures 189

Then e ≥
∧n

i=1(ai ◦ bi) ≥
∧n

i=1 ai ◦
∧n

i=1 bi where ai ∈ F1 and bi ∈ F2◦̂F3

for i = 1, . . . , n. But a =
∧n

i=1 ai ∈ F1 and b =
∧n

i=1 bi ∈ F2◦̂F3. Thus,

e ≥ a ◦ b for a ∈ F1 and b ∈ F2◦̂F3. Using a similar argument we can

now show that b ∈ F2 ◦ F3 implies that b ≥ c ◦ d for some c ∈ F2 and

d ∈ F3. Then, e ≥ a ◦ (c ◦ d) = (a ◦ c) ◦ d by the associativity and

e ∈ (F1◦̂F2)◦̂F3. Therefore, F1◦̂ (F2◦̂F3) ⊆ (F1◦̂F2)◦̂F3. The inclusion

in the other direction follows similarly.

A consequence of the above is that X1 ◦ (X2 ◦X3) = (X1 ◦X2) ◦X3 for

X1, X1, X3 ∈ P(F(W )):

X1 ◦ (X2 ◦X3) = X1 ◦ {F2◦̂F3 : Fi ∈ Xi, i = 1, 2}

= {F1◦̂ (F2◦̂F3) : Fi ∈ Xi, i = 1, 2, 3}

= {(F1◦̂F2) ◦̂F3 : Fi ∈ Xi, i = 1, 2, 3}

= (X1 ◦X2) ◦X3.

Then, by the above and Lemma 9.2.11 (ii) we have, for Λ,Υ,Γ ∈ S (and

therefore Λ2,Υ2,Γ2 ∈ P(F(W ))):

Λ ◦S (Υ ◦S Γ) = Λ23 ◦S (Υ2 ◦ Γ2)3

= (Λ2 ◦ (Υ2 ◦ Γ2))3

= ((Λ2 ◦Υ2) ◦ Γ2)3

= (Λ2 ◦Υ2)3 ◦S Γ23

= (Λ ◦S Υ) ◦S Γ.

(iii) Suppose ◦ is commutative. We first show that ◦̂ is commutative. Let

F1, F2 ∈ F(W ). Then,

F1◦̂F2 = [{a ◦ b : a ∈ F1, b ∈ F2}〉

= [{b ◦ a : b ∈ F2, a ∈ F1}〉

=F2◦̂F1.

Now we have that, for X1, X2 ∈ P(F(W )):

X1 ◦X2 ={F1◦̂F2 : F1 ∈ X1, F2 ∈ X2}

={F2◦̂F1 : F2 ∈ X2, F1 ∈ X1}

=X2 ◦X1.
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Finally, for Λ,Υ ∈ S:

Λ ◦S Υ =
(

Λ2 ◦Υ2
)

3

=
(

Υ2 ◦ Λ2
)

3

=Υ ◦S Λ.

(iv) We show that if 1 is a left-identity of ◦, then µ(1) is a left-identity of ◦S.

The proofs of the other cases are similar.

Let Λ ∈ S. Then, by Lemma 9.2.5,

µ(1) ◦S Λ

= (µ(1)2 ◦ Λ2)3

= ({F ∈ F(W ) : 1 ∈ F} ◦ {G ∈ F(W ) : I ∈ Λ implies (G, I) ∈ R})3

= {F ◦̂G : 1 ∈ F, I ∈ Λ implies (G, I) ∈ R}3.

We first show that Λ ⊆ µ(1) ◦S Λ. Suppose F = G1◦̂G2 such that 1 ∈ G1

and I ∈ Λ implies that (G2, I) ∈ R and let J ∈ Λ. Then (G2, J) ∈ R by

assumption. By the definition of R there then exist a ∈ G2 and b ∈ J

such that a ≤ b. But 1 ∈ G1 implies that 1 ◦ a = a ∈ F . Therefore,

(F, J) ∈ R. Since (F, J) ∈ R for all J ∈ Λ, it follows that F ∈ Λ2. Hence,

{F ◦̂G : 1 ∈ F, I ∈ Λ implies (G, I) ∈ R} ⊆ Λ. By the properties of Galois

connections we then have that

Λ = Λ23 ⊆ {F ◦̂G : 1 ∈ F, I ∈ Λ implies (G, I) ∈ R}3 = µ(1) ◦S Λ.

For the inclusion in the other direction let G ∈ Λ2, i.e., G ∈ F(W ) such

that I ∈ Λ implies that (G, I) ∈ R. Observe that since 1 ∈ TA
0 ⊆ W ,

we have that [1)W ∈ F(W ) such that 1 ∈ [1)W . We will now show that

[1)W ◦̂G = G.

Let a ∈ G; then 1 ◦ a = a ∈ [1)W ◦̂G. Hence, G ⊆ [1)W ◦̂G. Next consider

[1)W ◦̂G =
[

{b ◦ c : b ∈ [1)W , c ∈ G}
〉

. If b ∈ [1)W , then b ≥ 1 which

implies that b ◦ c ≥ 1 ◦ c = c for all c ∈ G. Thus, b ◦ c ∈ G since G is an

up-set. Then [1)W ◦̂G ⊆ G. Therefore, [1)W ◦̂G = G.

From the above it now follows that

Λ2 ⊆ {F ◦̂G : 1 ∈ F, I ∈ Λ implies (G, I) ∈ R}.
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Then, by the properties of Galois connections,

{F ◦̂G : 1 ∈ F, I ∈ Λ implies (G, I) ∈ R}3 = µ(1) ◦S Λ ⊆ Λ23 = Λ.
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10. ALGEBRAIC FILTRATIONS IN MODAL LOGIC

Many well-known propositional modal logics are algebraizable and classes of

Boolean algebras with operators (or BAOs for short) are the equivalent algebraic

semantics of such logics. Since Boolean algebras form the algebraic semantics for

classical propositional logic, the task of the additional operators in BAOs is to

represent the modalities of the logic. Following the discussion in Chapter 8 and

since modal logics are algebraizable, it is natural to seek classes of BAOs that

have the FEP. Recall that the algebraizability ensures that if a class of BAOs

has the FEP, then the associated logic is decidable if it is finitely axiomatized.

In this chapter we will use the method of algebraic filtration to prove the FEP

for classes of modal algebras (BAOs with a single unary operator). The method

of filtration has been used to prove finite model properties in modal logic. Al-

though this method is usually associated with relational (Kripke) models, it was

originally an algebraic one. In [McK41] filtrations were used to prove the finite

model property for the modal logics S2 and S4 (see also [MT44]). The (Kripke)

model-theoretic version of filtration first appeared in [Lem66a, Lem66b, LS77],

where the algebraic and model-theoretic methods were connected for some par-

ticular cases. The filtration method was further developed in [Seg68, Seg71]

(where the term ‘filtration’ was apparently first used). Algebraic filtrations have

also been applied in the settings of, for example, cylindric algebras [HMT85] and

relation algebras [Ném87]. For an extensive history of modal logics and filtra-

tions, we refer the interested reader to [Gol03].

We investigate connections between the algebraic and model-theoretic ver-

sions of filtrations and develop a duality between the two methods. In the next

section we recall the definitions of the notions we will use: modal algebras,

Kripke frames and models and the basic modal language.

We begin our investigation by describing algebraic constructions that pro-

duce finite modal algebras, called algebraic filtrations, in Section 10.2. In Sec-

tion 10.3 we recall the method of filtration for Kripke models and then adjust
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the method for Kripke frames. That is, we introduce the notion of a set filtra-

tion, which was already implicit in [Lem66a]. Set filtrations are equivalent to

ordinary model-theoretic filtrations, but operate on frames rather than models.

They are better suited for the duality theory developed in Section 10.4.

Finally, in Section 10.5 we use the correspondence developed in Section 10.3

to translate well known model-theoretic filtrations into set filtrations. In partic-

ular, we will consider the largest, smallest, transitive and symmetric filtrations.

We use the duality theory developed in Section 10.4 to find the algebraic versions

of each of these filtrations.

For the sake of readability we will restrict ourselves to modal algebras and

to frames with only one binary relation. The definitions of algebraic and set

filtrations as well as all other definitions and results in the rest of the chapter

can, however, be generalized in a natural way to the settings of arbitrary Boolean

algebras with operators (BAOs) and frames of different modal similarity types,

respectively.

The results from this chapter were obtained in collaboration with Prof. Clint

van Alten and Dr. Willem Conradie and have been published in [CMvA].

10.1 Modal algebras, modal logic and Kripke semantics

In this section we give the definitions of the objects of study for this chapter.

See [BdRV01] for more on the notions defined here.

Recall that an operator f : A→ A on a Boolean algebra A distributes over

finite joins, i.e., f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ A, and satisfies f(0) = 0.

Definition 10.1.1. A (normal) modal algebra is an algebra A = 〈A,∨,∧,¬, 0,

1, f〉 is such that 〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra and f is a unary operator.

An element a ∈ A is an atom of A if 0 < a and there is no element b ∈ A

such that 0 < b < a. Let AtA denote the set of all atoms of A. A modal

algebra A is called atomic if every non-0 element of A has an atom less than or

equal to it. An element a ∈ A is a co-atom of A if a < 1 and there is no element

b ∈ A such that a < b < 1. Let CaA denote the set of all co-atoms of A.

If S ⊆ A, then the Boolean subalgebra of A generated by S, say BS =
〈

B,∨B,∧B,¬B, 0, 1
〉

, is the intersection of all subalgebras of the f -free reduct

of A containing S. We note that the unary operator f is partially defined on

B. Furthermore, if S is finite, then 〈B, f〉 is a finite partial subalgebra of A.
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The formulas of the basic modal language over a denumerably infinite set of

proposition letters Φ are given by the following recursive definition:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ψ | 3ϕ

where p ∈ Φ. This language is interpreted in models M = 〈W,R, V 〉 in the

usual way, i.e., given w ∈W :

• it is never the case that M, w  ⊥;

• M, w  p if, and only if, w ∈ V (p);

• M, w  ¬ϕ if, and only if, M, w 6 ϕ;

• M, w  ϕ ∨ ψ if, and only if, M, w  ϕ or M, w  ψ;

• M, w  3ϕ if, and only if, there exists v ∈ W such that (w, v) ∈ R and

M, v  ϕ.

Given the definition of the semantics, it is possible to extend the valuation

V : Φ → P(W ) to a map from the set of all formulas to P(W ) by letting

V (ϕ) = {w ∈ W : M, w  ϕ}. We shall make use of the fact that V (3ϕ) =

fR(V (ϕ)), which can be seen as follows:

V (3ϕ)= {w ∈W : M, w  3ϕ}

= {w ∈W : there exists x ∈ W such that (w, x) ∈ R and M, x  ϕ}

= {w ∈W : there exists x ∈ W such that (w, x) ∈ R and x ∈ V (ϕ)}

= fR(V (ϕ)).

Definition 10.1.2. A (Kripke) frame is a pair F = 〈W,R〉 where W is a non-

empty set and R a binary relation on W .

A valuation on F is a function V : Φ → P(W ) that assigns a subset of W to

every proposition letter.

A (Kripke) model M = 〈F, V 〉 is a relational structure where F is a frame

and V is a valuation on F. If F = 〈W,R〉, then we also write M as 〈W,R, V 〉.

It is well known that the duality between frames and modal algebras rests

on the following notions.
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Definition 10.1.3. The complex algebra of F = 〈W,R〉 is the modal algebra

F+ = 〈P(W ),∩,∪,−,∅,W, fR〉, where the operator fR on P(W ) is given by:

fR(X) = {w ∈W : there exists x ∈ X such that (w, x) ∈ R}.

Recall that an ultrafilter F of an Boolean algebra A is a maximal proper

filter of the lattice reduct of A, i.e., a proper filter of the lattice reduct of A

that satisfies: for all a, b ∈ A

if a ∨ b ∈ F, then a ∈ F or b ∈ F.

Since a∨¬a = 1 ∈ F for all a ∈ A and all filters F of a Boolean algebra A, the

above is equivalent to: for all a ∈ A either a ∈ F or ¬a ∈ F .

Theorem 10.1.4 (Ultrafilter theorem). Let A be a Boolean algebra, a ∈ A and

G a proper filter of A such that a /∈ G. Then there is an ultrafilter F of A such

that G ⊆ F and a /∈ F .

Definition 10.1.5. The ultrafilter frame of A is the frame A• = 〈UfA, Rf 〉

where UfA is the set of all ultrafilters of A and Rf is a binary relation on UfA

such that

(u, v) ∈ Rf ⇐⇒ f(a) ∈ u whenever a ∈ v.

For each modal algebra A, define a binary relation RA on A such that

(a, b) ∈ RA ⇐⇒ a ≤ f(b).

Definition 10.1.6. Suppose A is an atomic modal algebra. The atom structure

of A is the frame A+ = 〈AtA, RA↾AtA〉 where RA↾AtA denotes the restriction

of RA to AtA.

The duality theory developed in Section 10.4 will rely on the following two

theorems.

Theorem 10.1.7. Let F be a frame. The F is isomorphic to (F+)+, i.e., the

atom structure of the complex algebra of F.

Theorem 10.1.8 (Jónsson-Tarski theorem [JT51]). Let A = 〈A,∨,∧,¬, 0, 1, f〉

be a modal algebra. Then the representation function ̟ : A → P(UfA) given

by

̟(a) = {u ∈ UfA : a ∈ u}

is an embedding of A into (A•)
+.
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That is, every modal algebra is (isomorphic to) a subalgebra of the com-

plex algebra of its ultrafilter frame. The above theorem can be restated more

generally for BAOs.

10.2 Algebraic Filtrators

Let A be a modal algebra. Recall from the discussion on the FEP in Chap-

ter 8 that if we assume that an identity (∀~x)(s(~x) = t(~x)) fails in A, then

there exist some assignment ~x 7→ ~a of elements of A to the variables such that

sA(~a) 6= tA(~a). Then the set of elements of A used in the evaluation of s

and t forms a finite subset, say M ⊆fin A. Recall that the aim is now to

construct a finite modal algebra in which the identity fails. In general the sub-

algebra of A generated by M is infinite since the operator f may force the

inclusion of infinitely many elements. Hence we cannot expect to produce a fi-

nite modal algebra in this way. However, the partial subalgebra 〈BM , f〉 where

BM =
〈

B,∨B,∧B,¬B, 0, 1
〉

is the Boolean subalgebra of the f -free reduct of A

generated by M and f the modal operator partially defined on B, is finite and

is closed under all existing Boolean operations inM . For 〈BM , f〉 to be a modal

algebra, we must now extend the partial modal operator f to an operator f ′

defined on the entire B. We note that 〈BM , f〉 is not the only choice of finite

partial subalgebra that can be used in such a construction — any finite par-

tial subalgebra of A that contains M and is closed under the existing Boolean

operations inM may be used. We will, however, focus on 〈BM , f〉 in this thesis.

In [McK41] the extension f ′ of f was defined on the universe B of BM in

the following way:

f ′(b) =
∧

{a ∈ B : there exists c ∈ B such that a = f(c) and b ≤ c}.

Given some restrictions, it is easy to show that f ′ as defined above is an operator

that extends f . We can now generalize this approach to describe a way to define

an operation fQ on B in terms of an arbitrary binary relation Q ⊆ B ×B. For

any Q ⊆ B ×B define fQ on B by:

fQ(b) =
∧

{a ∈ B : (a, b) ∈ Q}.

In order to ensure that fQ extends f and is an operator, we will require that

Q satisfy certain conditions. This approach will be explored further in Sec-

tion 10.2.1 where we will also state the conditions required of Q.
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The suggested extension of a partial operation given above uses a conjunction

of elements of B to give an approximation of f(b) from above. Alternatively, we

may also use a disjunction of elements of B to give an approximation f(b) from

below. We will develop this approach in the remainder of this section since it

is better suited for the duality theory developed in Section 10.4. As one might

expect, there is a close connection between the approximations from below and

from above and we will investigate it in more detail in Section 10.2.1.

Throughout this section letA be a modal algebra with operator f ,M ⊆fin A

and BM the finite Boolean subalgebra of the f -free reduct of A generated by

M . Furthermore, let M ⊆ M such that f(a) ∈M whenever a ∈M . If f ′ is an

operator on BM we use 〈BM , f
′〉 to denote the modal algebra with BM as its

Boolean part and f ′ as its operator.

It is well known that an operator f ′ on the finite Boolean algebra BM is

uniquely determined by its operation on AtBM , the set of atoms of BM . To

see why, note that if b = x1 ∨ · · · ∨ xn where {x1, . . . , xn} is the set of all atoms

of BM below b, then

f ′(b) = f ′(x1∨· · ·∨xn) = f ′(x1)∨· · ·∨f
′(xn) =

∨

{f ′(y) : y ∈ AtBM and y ≤ b}.

Moreover, for each function g : AtBM → BM (and hence each operator on BM )

there is an associated binary relation Rg on AtBM defined by:

(x, y) ∈ Rg ⇐⇒ x ≤ g(y). (10.1)

That is, Rg =≤ ◦g, where ◦ denotes relational composition.

Conversely, any binary relation R on AtBM has an associated function gR :

AtBM → BM defined by:

gR(y) =
∨

{x ∈ AtBM : (x, y) ∈ R}. (10.2)

We now have a one-to-one correspondence between the functions g : AtBM →

BM and relations R ⊆ AtBM ×AtBM .

Lemma 10.2.1. For any function g : AtBM → BM , gR
g

= g, and, for any

binary relation R on AtBM , RgR

= R.

Proof. For y, z ∈ AtBM ,

gR
g

(y) =
∨

{x ∈ AtBM : (x, y) ∈ Rg} =
∨

{x ∈ AtBM : x ≤ g(y)} = g(y),
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and

(z, y) ∈ RgR

⇐⇒ z ≤ gR(y) ⇐⇒ z ≤
∨

{x ∈ AtBM : (x, y) ∈ R}.

Since z is an atom, the last condition holds if, and only if,

z ∈ {x ∈ AtBM : (x, y) ∈ R} ⇐⇒ (z, y) ∈ R.

Given any binary relation R on AtBM , the function gR : AtBM → BM

defined in (10.2) can be extended to an operator on BM , denoted by fR, in the

following unique way:

fR(b) =
∨

{gR(y) : y ∈ AtBM and y ≤ b}

=
∨

{

∨

{x ∈ AtBM : (x, y) ∈ R} : y ∈ AtBM and y ≤ b
}

=
∨

{x ∈ AtBM : there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R}.

Note that fR(0) =
∨

∅ = 0 and, by the definition of fR on BM , it is immediate

that fR distributes over finite joins, i.e., fR is an operator on BM . To ensure

that fR extends f , we require the following condition:

For all b ∈M and all x ∈ AtBM we have x ≤ f(b) if, and only if,

there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R. (R)

We note that condition (R) states that ≤ ◦f ↾M⊆ R◦ ≤ where ◦ denotes

relational composition.

Lemma 10.2.2. If R is a binary relation on AtBM such that (R) holds, then

fR(b) = f(b) for all b ∈M .

Proof. By (R), we have

fR(b) =
∨

{x ∈ AtBM : there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R}

=
∨

{x ∈ AtBM : x ≤ f(b)}

=f(b) (since f(b) ∈ BM ).

The next lemma provides a converse.
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Lemma 10.2.3. If f ′ is an operator on BM that extends f , then Rf ′

satisfies

(R).

Proof. Let b ∈ M , and x ∈ AtBM . Suppose x ≤ f(b) = f ′(b). But then

x ≤ f ′(
∨

{y ∈ AtBM : y ≤ b}) =
∨

{f ′(y) : y ∈ AtBM and y ≤ b}, and hence

x ≤ f ′(y0) for some atom y0 ≤ b. But x ≤ f ′(y0) means (x, y0) ∈ Rf ′

. This

proves the implication from left to right in (R). Conversely, suppose y0 ≤ b and

(x, y0) ∈ Rf ′

. Then x ≤ f ′(y0) ≤ f ′(b) = f(b).

Thus, we have established a one-to-one relationship between operators on

BM that extend f and binary relations on AtBM that satisfy condition (R).

We now make the following definition.

Definition 10.2.4. An algebraic filtrator of A through (M,M) is a binary re-

lation R on AtBM that satisfies (R). In that case, the modal algebra 〈BM , f
R〉,

where fR is defined by:

fR(b) =
∨

{x ∈ AtBM : there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R}

(10.3)

is called the algebraic filtration of A through (M,M) with R.

An algebraic filtrator R is called rigid if, in addition to (R), it also satisfies:

For all x, y ∈ AtBM and for all c, d ∈ A we have that

0 6= c ≤ x and d ≤ y and c ≤ f(d) implies (x, y) ∈ R. (R1)

Observe that since M is finite, so is BM . Hence, BM is indeed atomic, as

was assumed in the definition. Moreover, the atoms of BM are maximal non-0

meets of elements of M and their negations. That is, if M = {a1, . . . , an} and

a0 and a1 denote ¬a and a, respectively, then AtBM = {a
h(1)
1 ∧ · · · ∧ a

h(n)
n : h :

{1, . . . , n} → {0, 1}} − {0}.

We will show that the additional rigidity condition (R1) is necessary if we

want the algebraic filtrations to correspond exactly to the standard filtrations

of models found in the literature. A detailed comparison between filtrations of

algebras and of models is made in Section 10.4.

The discussion in this section can be summarized in the following theorem:

Theorem 10.2.5 (Algebraic Filtration Theorem). Suppose that A 6|= s = t.

Then there exist subsets M ⊆ M ⊆ A such that for any algebraic filtration
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〈BM , f
R〉 of A through (M,M) with R we have 〈BM , f

R〉 6|= s = t. Moreover,

|BM | ≤ 22
n

, where n is the number of subterms of s and t. Specifically, one can

take M = {v(u) : u a subterm of s or t}, and M = {a ∈ S : f(a) ∈ M}, where

v is any assignment on A falsifying s = t.

10.2.1 Extending operators on Boolean subalgebras

Recall from the opening discussion of this section that a conjunction of elements

may be used to define an extension of a partial operator, as opposed to a dis-

junction of elements as was used in the above. We will now show that there is

a natural connection between the two approaches and we will give an explicit

translation between them.

As before, let A = 〈A,∨,∧,¬, 0, 1, f〉 be a modal algebra and M ⊆M ⊆fin

A such that f(a) ∈M whenever a ∈M . Also, letBM be the Boolean subalgebra

of A generated by M . The following operation defined on BM was used by

McKinsey in [McK41] to prove the finite model properties for S2 and S4 (see

also [MT44]):

f ′(b) =
∧

{a ∈ BM : there exists c ∈M such that a = f(c) and b ≤ c}.

(10.4)

If we assume thatM is closed under ∨, then it can be shown that f ′ distributes

over finite joins in BM and extends f . This assumption is not restrictive since

we may first close M under ∨ in BM . If we do so, then for all a, b ∈ M we

have that f(a ∨ b) = f(a) ∨ f(b) ∈M and therefore a ∨ b ∈ M . To ensure that

f ′(0) = 0 for operations defined in this way, we include 0 in the set M (and

hence also in M). Then f ′ is an operator that extends f .

Another example of an operation defined on BM in this way is:

f ′(b) =
∧

{a ∈ BM : f(b) ≤ a}. (10.5)

which can easily be shown to be an operator that extends f .

Throughout this section we assume that 0 ∈M .

In general, for any binary relation Q on BM , we may define an operation

fQ : BM → BM by:

fQ(b) =
∧

{a ∈ BM : (a, b) ∈ Q}. (10.6)

The relation Q does not uniquely determine fQ, that is, different relations may

induce the same operation. This is illustrated by the following results.
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Lemma 10.2.6. Suppose Q and Q′ are binary relations on BM such that Q is

the upward closure in the first co-ordinate of Q′, i.e., (a, b) ∈ Q if, and only if,

(c, b) ∈ Q′ for some c ≤ a. Then fQ′

= fQ.

Proof. Since Q′ ⊆ Q, it is clear that fQ(b) ≤ fQ′

(b) for each b ∈ BM . To prove

the inequality in the other direction, note that

fQ(b) =
∧

{a ∈ BM : (a, b) ∈ Q}

=
∧

{a ∈ BM : there exists c ∈ BM such that a ≥ c and (c, b) ∈ Q′}.

Suppose a ∈ {a ∈ BM : (a, b) ∈ Q}, i.e., there exists c ∈ BM such that a ≥ c

and (c, b) ∈ Q′. Then a ≥ c ≥
∧

{d ∈ BM : (d, b) ∈ Q′} since c ∈ {d ∈ BM :

(d, b) ∈ Q′}. Hence a ≥ fQ′

(b) and it follows that fQ(b) ≥ fQ′

(b).

Lemma 10.2.7. Suppose Q and Q′ are binary relations on BM such that Q is

the meet closure in the first co-ordinate of Q′, i.e., (a, b) ∈ Q if, and only if,

a = a1 ∧ a2 where (a1, b) ∈ Q′ and (a2, b) ∈ Q′. Then fQ′

= fQ.

Proof. Observe that fQ(b) ≤ fQ′

(b) for each b ∈ BM since Q′ ⊆ Q. We now

prove that the inequality in the other direction holds. Note that

fQ(b) =
∧

{a ∈ BM : (a, b) ∈ Q}

=
∧

{a ∈ BM : there exist a1, a2 ∈ BM such that

a = a1 ∧ a2 and (a1, b) ∈ Q′ and (a2, b) ∈ Q′}.

Let a ∈ {a ∈ BM : (a, b) ∈ Q}; then there exist a1, a2 ∈ BM such that a =

a1 ∧ a2, (a1, b) ∈ Q′ and (a2, b) ∈ Q′. Then a1, a2 ≥ fQ′

(b) since a1, a2 ∈ {a ∈

BM : (a, b) ∈ Q′} and therefore a = a1∧a2 ≥ fQ′

(b). Hence fQ(b) ≥ fQ′

(b).

A binary relation Q on BM will be called fQ-maximal if, whenever Q ⊆

Q′ ⊆ BM ×BM such that fQ = fQ′

, we have that Q′ = Q.

Observe that, if Q ⊆ BM × BM is meet closed in its first co-ordinate, then

(fQ(b), b) ∈ Q for all b ∈ BM . This follows immediately from the definition of

fQ and the fact that BM is finite.

Lemma 10.2.8. A relation Q ⊆ BM ×BM is fQ-maximal if, and only if, it is

meet and upward closed in its first co-ordinate.
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Proof. In light of Lemmas 10.2.6 and 10.2.7, it is clear than an fQ-maximal

relation is meet and upward closed in its first co-ordinate. Conversely, suppose

Q ⊆ BM×BM is meet and upward closed in its first co-ordinate and there exists

Q′ ⊆ BM × BM such that Q ⊆ Q′ and fQ = fQ′

. For a, b ∈ BM such that

(a, b) ∈ Q′, we have that a ≥ fQ′

(b) = fQ(b) =
∧

{c ∈ BM : (c, b) ∈ Q}. Then

(a, b) ∈ Q since (fQ(b), b) ∈ Q and Q is upward closed in the first co-ordinate.

Thus Q′ ⊆ Q and hence Q′ = Q.

We are only interested in relations Q such that fQ is an operator on BM

that extends f . In order to characterize such relations we define the following

conditions.

• For all b1, b2, a1, a2 ∈ BM , if (a1, b1) ∈ Q and (a2, b2) ∈ Q,

then (a1 ∨ a2, b1 ∨ b2) ∈ Q. (Q1)

• For all b1, b2, a ∈ BM , if (a, b1) ∈ Q and b2 ≤ b1, then (a, b2) ∈ Q. (Q2)

• For all a ∈ BM and all b ∈M, if (a, b) ∈ Q, then f(b) ≤ a. (Q3)

• For all b ∈M we have (f(b), b) ∈ Q. (Q4)

Lemma 10.2.9. Let Q ⊆ BM ×BM .

(i) If (Q1) and (Q2) hold, then fQ is distributes over finite joins in BM .

(ii) If (Q3) and (Q4) hold, then fQ(b) = f(b) for all b ∈M .

Proof. (i) Let b1, b2 ∈ BM . Then,

fQ(b1 ∨ b2) =
∧

{a ∈ BM : (a, b1 ∨ b2) ∈ Q}.

We will show that the above is equal to:

fQ(b1) ∨ f
Q(b2)

=
∧

{a1 ∈ BM : (a1, b1) ∈ Q} ∨
∧

{a2 ∈ BM : (a2, b2) ∈ Q}

=
∧

{a1 ∨ a2 : (a1, b1) ∈ Q and (a2, b2) ∈ Q}.

If (a, b1 ∨ b2) ∈ Q, then (a, b1) ∈ Q and (a, b2) ∈ Q by (Q2). Hence

fQ(b1 ∨ b2) ≥ fQ(b1) ∨ fQ(b2). If (a1, b1) ∈ Q and (a2, b2) ∈ Q, then

(a1 ∨ a2, b1 ∨ b2) ∈ Q by (Q1). Therefore, fQ(b1 ∨ b2) ≤ fQ(b1) ∨ f
Q(b2)

and the equality follows.
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(ii) Let b ∈ M . Then (f(b), b) ∈ Q so f(b) ∈ {a ∈ BM : (a, b) ∈ Q} by (Q4).

Furthermore, if a ∈ BM such that (a, b) ∈ Q, then f(b) ≤ a by (Q3).

Hence fQ(b) = f(b).

By our assumption that 0 ∈ M , it follows by the above lemma that if

(Q1)− (Q4) hold, then fQ is an operator that extends f .

Lemma 10.2.10. Let Q ⊆ BM ×BM be fQ-maximal. Then:

(i) fQ is distributes over finite joins on BM if, and only if, (Q1) and (Q2)

hold.

(ii) fQ(b) = f(b) for all b ∈M if, and only if, (Q3) and (Q4) hold.

Proof. (i) The backward implication follows from Lemma 10.2.9. We prove

the forward implication. Assume that fQ distributes over finite joins. To

show that (Q1) holds, suppose that (a1, b1) ∈ Q and (a2, b2) ∈ Q for

b1, b2, a1, a2 ∈ BM . Then,

fQ(b1 ∨ b2)

=fQ(b1) ∨ f
Q(b2)

=
∧

{a1 ∈ BM : (a1, b1) ∈ Q} ∨
∧

{a2 ∈ B : (a2, b2) ∈ Q}

=
∧

{a1 ∨ a2 ∈ BM : (a1, b1) ∈ Q and (a2, b2) ∈ Q}.

Thus, a1 ∨ a2 ≥ fQ(b1 ∨ b2). Furthermore, since Q is finite and meet

closed in the first co-ordinate we have that (fQ(b1 ∨ b2), b1 ∨ b2) ∈ Q.

Finally, the fact that Q is upward closed in the first co-ordinate implies

that (a1 ∨ a2, b1 ∨ b2) ∈ Q.

To show that (Q2) holds, suppose we have that (a, b1) ∈ Q and b2 ≤ b1 for

a, b1, b2 ∈ BM . Then fQ(b1) = fQ(b1 ∨ b2) = fQ(b1) ∨ f
Q(b2). Therefore

fQ(b2) ≤ fQ(b1) ≤ a. As observed earlier, (fQ(b2), b2) ∈ Q. It then

follows that (a, b2) ∈ Q, since Q is upward closed in the first co-ordinate.

(ii) As in part (i) we need only prove the forward implication. Suppose

fQ(b) = f(b) for all b ∈ M . To see that (Q3) holds, suppose b ∈ M

and (a, b) ∈ Q. Then, a ≥ fQ(b) = f(b).

Finally, from fQ(b) = f(b) and the fact that Q is meet closed in its first

co-ordinate, it follows that (f(b), b) ∈ Q, i.e., (Q4) holds.
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Suppose Q ⊆ BM × BM satisfies (Q1) − (Q4). Then we can restrict Q to

AtBM in the second co-ordinate since fQ is an operator. Furthermore, we can

also restrict Q to CaBM , the set of co-atoms of BM , in the first co-ordinate

since the upward closure of Q in the first co-ordinate does not change fQ. Let

PQ denote the restriction of Q to CaBM ×AtBN , i.e., PQ satisfies:

(c, y) ∈ P if, and only if, there exists a ∈ BM

such that a ≤ c and (a, y) ∈ Q. (10.7)

Observe that if Q and Q′ are different relations on BM that define the same

operator, the relations on CaBM × AtBM obtained from Q and Q′ by (10.7)

are the same.

Starting with an arbitrary relation P ⊆ CaBM ×AtBM , we may define an

operation fP on BM as follows: for y ∈ AtBM ,

fP (y) =
∧

{c ∈ CaBM : (c, y) ∈ P}

and extend the operation to arbitrary b ∈ BM by:

fP (b) =
∨

{fP (y) : y ∈ AtBM and y ≤ b}

=
∧

{c ∈ CaBM : for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ P}. (10.8)

We now show that the operation fP as defined above is an operator.

Lemma 10.2.11. For every P ⊆ CaBM × AtBM , fP distributes over finite

joins in BM .

Proof. Let b1, b2 ∈ BM . Then

fP (b1∨ b2) =
∧

{c ∈ CaBM : for all y ∈ AtBM , if y ≤ b1∨ b2, then (c, y) ∈ P}.

On the other hand,

fP (b1) ∨ f
P (b2)

=
∧

{c1 ∨ c2 : for all y ∈ AtBM , if y ≤ b1, then (c1, y) ∈ P, and,

for all y ∈ AtBM , if y ≤ b2, then (c2, y) ∈ P}

=
∧

{c ∈ CaBM : for all y ∈ AtBM , if y ≤ b1, then (c, y) ∈ P, and,

for all y ∈ AtBM , if y ≤ b2, then (c, y) ∈ P}.
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The second equality follows from the fact that if c1 and c2 are distinct co-atoms,

then c1 ∨ c2 = 1.

Let c ∈ CaBM such that (c, y′) ∈ P whenever y′ ≤ b1 for y′ ∈ AtBM and

(c, y′) ∈ P whenever y′ ≤ b2 for y′ ∈ AtBM . Now let y ∈ AtBM such that

y ≤ b1 ∨ b2. Since y ∈ AtBM , it follows that y ≤ b1 or y ≤ b2. In either case, it

follows that (c, y) ∈ P . Thus,

c ∈ {c ∈ CaBM : for all y ∈ AtBM , if y ≤ b1 ∨ b2, then (c, y) ∈ P},

and fP (b1 ∨ b2) ≤ fP (b1) ∨ f
P (b2).

The inclusion in the other direction (and hence the inequality in the other

direction) is straightforward.

To ensure that fP extends f , we require the following condition:

For all b ∈M and all c ∈ CaBM we have that f(b) ≤ c

if, and only if, for all y ∈ AtBM , y ≤ b implies (c, y) ∈ P. (P )

Lemma 10.2.12. Let P ⊆ CaBM ×AtBM . Then fP (b) = f(b) for all b ∈M

if, and only if, P satisfies (P ).

Proof. Suppose that P satisfies (P ). We must show that

f(b) =
∧

{c ∈ CaBM : for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ P}.

Since f(b) is in the Boolean algebra BM , it is equal to the meet of all the

co-atoms greater than it. Thus, it is sufficient to show that, for any c ∈ CaBM ,

f(b) ≤ c ⇐⇒ for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ P,

which is just condition (P ).

To prove the implication in the other direction, suppose that fP (b) = f(b)

for all b ∈M and let b ∈M and d ∈ CaBM . Then,

f(b) ≤ d

⇐⇒ fP (b) ≤ d

⇐⇒ d ∈ {c ∈ CaBM : for all y ∈ AtAS , if y ≤ b, then (c, y) ∈ P}

⇐⇒ y ≤ b implies (d, y) ∈ P for all y ∈ AtBM ,

as required.
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If Q ⊆ AS × AS is fQ-maximal and satisfies (Q1) − (Q4), then PQ ⊆

CaAS ×AtAS is just the restriction of Q to CaAS ×AtAS . Thus, in this case

the operations fPQ

(as defined in (10.8)) and fQ (as defined in (10.6)) are the

same.

Lemma 10.2.13. If Q ⊆ BM ×BM is fQ-maximal and satisfies (Q1)− (Q4),

then fQ(b) = fPQ

(b) for all b ∈ BM . Thus, fPQ

(b) = f(b) for all b ∈M .

Proof. It follows from Lemmas 10.2.9 (i) and 10.2.11 that fPQ

and fQ are

operators. Hence, it will be sufficient show that fPQ

(y) = fQ(y) for all y ∈

AtBM , since that will imply that fPQ

(b) = fQ(b) for all b ∈ BM . Recall that

for Boolean algebras we have that

∧

S =
∧

{c ∈ CaBM : there exists d ∈ S such that d ≤ c}.

for any S ⊆ B. Thus, for y ∈ AtBM ,

fQ(y) =
∧

{a ∈ BM : (a, y) ∈ Q}

=
∧

{c ∈ CaBM : there exists a ∈ B such that a ≤ c and (a, y) ∈ Q}

=
∧

{c ∈ CaBM : (c, y) ∈ PQ}

=fPQ

(y).

Thus, fPQ

and fQ agree on BM .

By Lemma 10.2.9 (ii) we have that fPQ

(b) = fQ(b) = f(b) for all b ∈M .

Then the following result is a consequence of Lemmas 10.2.13 and 10.2.12.

Corollary 10.2.14. If Q ⊆ BM×BM is fQ-maximal and satisfies (Q1)−(Q4),

then PQ satisfies (P ).

Note that if Q is fQ-maximal, then Q can be recovered from PQ by taking

the meet closure in the first co-ordinate and the join-closure in the second co-

ordinate. More generally, suppose that P ⊆ CaBM × AtBM satisfies (P ).

Define a relation QP ⊆ BM ×BM by taking the meet and upward closure in the

first coordinate and the join and downward closure in the second coordinate, i.e.,

(a, b) ∈ QP

⇐⇒ for all c ∈ CaBM and all y ∈ AtBM , if a ≤ c and y ≤ b, then (c, y) ∈ P.
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It should be clear that the restriction of QP to CaBM × AtBM is just P , i.e.,

PQP

= P . Furthermore, we also have that QPQ

= Q for any Q ⊆ BM × BM

that is fQ-maximal and satisfies (Q1)− (Q4).

Finally we wish to establish connections between relations P ⊆ CaBM ×

AtBM satisfying (P ) and relations R ⊆ AtBM × AtBM satisfying (R). For

P ⊆ CaBM ×AtBM , define RP ⊆ AtBM ×AtBM as the relation that satisfies:

(x, y) ∈ R ⇐⇒ (¬x, y) /∈ P (10.9)

Lemma 10.2.15. If P satisfies (P ), then RP satisfies (R) and fRP

= fP .

Proof. Let b ∈M and x ∈ AtBM . Then ¬x ∈ CaBM and therefore, by (P ),

f(b) ≤ ¬x

⇐⇒ for all y ∈ AtBM , if y ≤ b, then (¬x, y) ∈ P

⇐⇒ there does not exist y ∈ AtBM such that y ≤ b and (¬x, y) /∈ P

⇐⇒ there does not exist y ∈ AtAS such that y ≤ b and (x, y) ∈ RP .

Equivalently,

f(b) 6≤ ¬x ⇐⇒ there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ RP .

Since x is an atom, we have that x ≤ f(b) if, and only if, f(b) 6≤ ¬x, as required.

Thus, RP satisfies (R), so fRP

is an operator. Since fP is also an operator,

to show that fRP

= fP we need only show that fRP

(y) = fP (y) for all atoms y.

Recall that in a finite Boolean algebra with atoms x1, . . . , xn, if a = x1∨· · ·∨xk,

then ¬a = xk+1 ∨ · · · ∨ xn. Now, for y ∈ AtBM ,

fP (y) =
∧

{c : c ∈ CaAS and (c, y) ∈ P}

=¬
∨

{¬c : c ∈ CaAS and (c, y) ∈ P}

=¬
∨

{x : x ∈ AtAS and (¬x, y) ∈ P}

=
∨

{x : x ∈ AtAS and (¬x, y) /∈ P}

=fRP

(y).

On the other hand, for R ⊆ AtBM ×AtBM , define PR ⊆ CaBM ×AtBM

to be the relation that satisfies:

(c, y) ∈ P ⇐⇒ (¬c, y) /∈ R (10.10)
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Lemma 10.2.16. If R satisfies (R), then PR satisfies (P ) and fR = fPR

.

Proof. Let b ∈ S and c ∈ CaBM . Then ¬c ∈ AtBM and by (R),

¬c ≤ f(b)

⇐⇒ there exists y ∈ AtBM such that y ≤ b and (¬c, y) ∈ R

⇐⇒ it is not the case that y ≤ b implies (¬c, y) /∈ R for all y ∈ AtBM

⇐⇒ it is not the case that y ≤ b implies (c, y) ∈ PR for all y ∈ AtBM .

Equivalently,

¬c 6≤ f(b)

for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ PR.

Since c is a co-atom, we have f(b) ≤ c if, and only if, ¬c 6≤ f(b), as required for

PR to satisfy (P ).

Since fR and fPR

are operators, we need only show that fR(y) = fPR

(y)

for all atoms y to show that fR = fPR

. Indeed, for y ∈ AtBM ,

fPR

(y) =
∧

{c : c ∈ CaBM and (c, y) ∈ PR}

=
∧

{c : c ∈ CaBM and (¬c, y) /∈ R}

=¬
∨

{¬c : c ∈ CaBM and (¬c, y) /∈ R}

=¬
∨

{x : x ∈ AtBM and (x, y) /∈ R}

=
∨

{x : x ∈ AtBM and (x, y) ∈ R}

=fR(y).

For P ⊆ CaBM ×AtBM and x, y ∈ AtBM , we have:

(x, y) ∈ RPR

⇐⇒ (¬x, y) /∈ PR ⇐⇒ (¬¬x, y) ∈ R ⇐⇒ (x, y) ∈ R.

For R ⊆ AtBM ×AtBM , c ∈ CaBM and y ∈ AtBM , we have:

(c, y) ∈ PRP

⇐⇒ (¬c, y) /∈ RP ⇐⇒ (¬¬c, y) ∈ P ⇐⇒ (c, y) ∈ P.

Thus there is a one-to-one correspondence between relations R ⊆ AtBM ×

AtBM satisfying (R), relations P ⊆ CaBM×AtBM satisfying (P ) and relations
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Q ⊆ BM × BM that are fQ-maximal and satisfy (Q1) − (Q4). Indeed, for

R ⊆ AtBM ×AtBM satisfying (R) and a, b ∈ BM ,

(a, b) ∈ QPR

⇐⇒ for all c ∈ CaBM and all y ∈ AtBM , if a ≤ c and y ≤ b, then (¬c, y) /∈ R.

Conversely, for Q ⊆ BM × BM that is fQ-maximal and satisfies (Q1) − (Q4),

and x, y ∈ AtBM ,

(x, y) ∈ RPQ

⇐⇒ (¬x, y) /∈ Q.

In addition, for relations P , Q, R that are related as above, the operators fP ,

fQ and fR are the same.

In summary then: if Q is any binary relation on BM that satisfies (Q1) −

(Q4), define P as in (10.7) and R by: (x, y) ∈ R if, and only if, (¬x, y) /∈ P ,

which is equivalent to:

(x, y) ∈ R if, and only if, for all a ∈ BM , if (a, y) ∈ Q, then x ≤ a. (10.11)

Then R is the unique algebraic filtrator of A through (M,M) such that fR =

fQ. Conversely, starting with an algebraic filtrator R of A through (M,M),

there is no unique relation Q ⊆ BM × BM corresponding to R, however there

is a unique relation P ⊆ CaBM × AtBM , namely (c, y) ∈ P if, and only if,

(¬c, y) /∈ R, such that fP = fR. A suitable, but not unique, relation Q ⊆

BM ×BM corresponding to P and R may be obtained from (10.8):

(a, b) ∈ Q if, and only if,

a ∈ CaBM and for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ P.

10.3 Frames and Filtrations

We now recall the standard definition of a filtration for a (Kripke) model. The

process of finding a filtration of a model can be described as follows: Given

an equivalence relation of finite index on a model, construct a finite model by

defining a relation on the equivalence classes that preserves truth for all formulas

in a given finite subformula-closed set of formulas. This method relies heavily on

the subformula-closed set of formulas and the valuation on the model. However,

we do not have dual notions for these in the algebraic setting. For this reason

we reformulate the notion of a filtration for a frame instead — introducing
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set filtrations that operate on frames. Finally, we give a comparison between

filtrations for frames and models.

Definition 10.3.1. Let Σ be a finite, subformula-closed set of formulas (in the

basic modal language) and M = 〈W,R, V 〉 a model. For u, v ∈ W , let u ∼Σ v

if, and only if, for all ϕ ∈ Σ, M, u  ϕ if, and only if, M, v  ϕ. Then ∼Σ is

an equivalence relation on W . Let [u]Σ denote the equivalence class of u with

respect to ∼Σ, and let WΣ = {[u]Σ : u ∈ W}. A filtration of M = 〈W,R, V 〉

through Σ is then any model M′ = 〈W ′, R′, V ′〉 such that:

•W ′ =WΣ, (F1)

• V ′(p) = {[u]Σ : u ∈ V (p)}, (F2)

• (u, v) ∈ R implies ([u]Σ, [v]Σ) ∈ R′, (F3)

• if ([u]Σ, [v]Σ) ∈ R′, then M, u  3ϕ whenever M, v  ϕ and 3ϕ ∈ Σ. (F4)

The following theorem demonstrates how filtrations can be applied.

Theorem 10.3.2 (Filtration theorem). If M′ is a filtration of M through

a subformula closed set of formulas Σ, then for all w ∈ W and all ϕ ∈ Σ,

M, w  ϕ iff M′, [w]Σ  ϕ. Moreover, |WΣ| ≤ 2|Σ|.

It should be clear that the method of filtration described above relies on a

subformula-closed set Σ and a valuation V . In the sequel we generalise this

method to frames.

Recall that the complex algebra of a frame F = 〈W,R〉 is the modal algebra

F+ = 〈P(W ),∩,∪,−,∅,W, fR〉, where fR is defined on P(W ) by:

fR(X) = {w ∈W : there exists x ∈ X such that (w, x) ∈ R}.

The atoms of F+ are exactly the singleton subsets {w} of W .

In the following definition of a set filtrator, we replace Σ and V that were

used in the filtration method for models, by two subsetsM ⊆M ⊆ P(W ) where

fR(X) ∈M for each X ∈M .

Definition 10.3.3. Let F = 〈W,R〉 be a frame and M ⊆ M ⊆fin P(W ) such

that fR(X) ∈ M whenever X ∈ M . Let ∼M be the equivalence relation on W

defined by:

u ∼M v ⇐⇒ for all X ∈M we have that u ∈ X if, and only if, v ∈ X.
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For each u ∈ W , denote by [u]M the equivalence class of u with respect to ∼M ,

and let WM = {[u]M : u ∈ W}.

A set filtrator of F through (M,M) is a binary relation R′ on WM satisfying:

For all X ∈M and for all u ∈ W we have that u ∈ fR(X) if, and

only if, there exists v ∈ W such that v ∈ X and ([u]M , [v]M ) ∈ R′. (SF )

The frame 〈WM , R
′〉 is then called a set filtration of F through (M,M).

A rigid set filtrator R′ is a set filtrator that additionally satisfies, for all

u, v ∈ W ,

(u, v) ∈ R implies ([u]S , [v]S) ∈ R′. (SF1)

Next we show that every filtration of a model corresponds to a set filtration.

Proposition 10.3.4. Let M′ = 〈WΣ, R
′, V ′〉 be filtration of a model M =

〈W,R, V 〉 through a subformula closed set of formulas Σ. Let M = {V (ϕ) :

ϕ ∈ Σ} and M = {V (ϕ) : 3ϕ ∈ Σ}. Then 〈WM , R
′〉 is a rigid set filtration of

〈W,R〉 through (M,M) and 〈WM , R
′〉 = 〈WΣ, R

′〉.

Proof. Recall that, for ψ ∈ Σ, V (ψ) = {x ∈ W : M, x  ψ}. If X ∈ M , then

X = V (ϕ) for some ϕ ∈ Σ such that 3ϕ ∈ Σ. Hence V (3ϕ) = fR(V (ϕ)) =

fR(X). Thus fR(X) ∈M whenever X ∈M . Note that,

X ∈M

⇐⇒ there exist ϕ ∈ Σ such that X = V (ϕ)

⇐⇒ there exist ϕ ∈ Σ such that X = {w ∈ W : M, w  ϕ}.

Therefore, it should be clear that u ∼M v if, and only if, u ∼Σ v. Thus

WΣ =WM . By the above we may now rewrite (F4) as:

If ([u]M , [v]M ) ∈ R′, then u ∈ fR(X) whenever v ∈ X and X ∈M,

or, equivalently,

for all X ∈M there exists v ∈ X such that

([u]M , [v]M ) ∈ R′ implies that u ∈ fR(X). (10.12)

The above is just the forward implication in (SF ).
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To prove the backward implication, note that, if X ∈ M and u ∈ fR(X),

then there exists v ∈ X such that (u, v) ∈ R. By (F3) we then have that, if

X ∈ M and u ∈ fR(X), then there exists v ∈ X such that ([u]M , [v]M ) ∈ R′.

Thus, (SF ) holds. The rigidity condition (SF1) follows from (F3).

The converse is not true. The following example illustrates that not every

set filtration corresponds to a filtration of a model.

Example 10.3.5. Let F = 〈W,R〉 be the frame with W = {a, b, c} and R =

{(a, b), (a, c), (b, a)} depicted in Figure 10.1.

Then {{b, c}} = M ⊆ M = {{a}, {b, c}} satisfy fR(X) ∈ M whenever

X ∈ M . The sets in M form the equivalence classes with respect to ∼M , i.e.,

WM = {[a]M , [b]M}. Now let R′ = {([a]M , [b]M )}, then R′ satisfies (SF ) and

〈WM , R
′〉, also depicted in Figure 10.1, is a set filtration of F through (M,M).

Note, however, that since (b, a) ∈ R but ([b]M , [a]M ) /∈ R′, this frame cannot

be obtained as the result of filtering a model based on F, since (F3) will never

hold.

F = 〈W,R〉:

r
r

r�
���@

@@R
�

��	b

a

c

〈WM , R
′〉:r r-

[a]M [b]M

Fig. 10.1: The frame F = 〈W,R〉 and its set filtration 〈WM , R′〉

We now show that even though the rigidity is not necessary to find a set

filtrator of a frame, it is necesarry to obtain a filtration of a model. That is, as

a partial converse for Lemma 10.3.4 we show that every rigid set filtration of a

frame corresponds to a filtration of a model.

Proposition 10.3.6. Let 〈W,R〉 be a frame and 〈WM , R
′〉 a rigid set filtration

of 〈W,R〉 through (M,M). Then there exists a subformula-closed set of formulas

Σ and a valuation V such that 〈WΣ, R
′, V ′〉 is a filtration of 〈W,R, V 〉 through

Σ and 〈WΣ, R
′〉 = 〈WM , R

′〉.

Proof. Assume, without loss of generality, that M = {X1, . . . , Xn} and M =

{X1, . . . , Xm}, m ≤ n. By the definition of set filtration, for each i = 1, . . . ,m,

there is some ji ∈ {1, . . . , n}, such that fR(Xi) = Xji . Let Σ = {p1, . . . , pn,3p1,
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. . . ,3pm} and V (pi) = Xi for i = 1, . . . , n. Note that Σ is a subformula-closed

set of formulas.

As before, V (3pi) = fR(Xi) = Xji = V (pji) for all i = 1, . . . ,m. Then, for

ϕ ∈ Σ,

M, u  ϕ

⇐⇒ u ∈ V (ϕ)

⇐⇒ u ∈ Xi for some i = 1, . . . , n.

Thus, u ∼Σ v if, and only if, u ∼M v. Thus WΣ =WM and it follows that (F1)

holds. Note that (SF ) clearly implies (10.12), which is equivalent to (F4), while

(SF1) clearly implies (F3).

One may now wonder whether or not a weakened notion of filtration in

modal logic would suffice. The answer is ‘yes’. In the following definition we

introduce the notion of a weak filtration which corresponds with the definition

of a set filtrator.

Definition 10.3.7. Let Σ be a finite, subformula-closed set of formulas and

M = 〈W,R, V 〉 a model. A weak filtration of M = 〈W,R, V 〉 through Σ is any

model M′ = 〈W ′, R′, V ′〉 such that:

•W ′ =WΣ, (F1)

• V ′(p) = {[u]Σ : u ∈ V (p)}, (F2)

• for all 3ϕ ∈ Σ we have M, u  3ϕ ⇐⇒ ([u]Σ, [v]Σ) ∈ R′

for some v ∈ W such that M, v  ϕ. (WF )

Suppose 〈W,R〉 is a frame and let 〈WM , R′〉 be a set filtration of 〈W,R〉

through (M,M). Then there exist a subformula-closed set of formulas Σ and a

valuation V such that 〈WM , R
′, V ′〉 is a weak filtration of 〈W,R, V 〉 through Σ

and 〈WΣ, R
′〉 = 〈WM , R′〉. We can obtain Σ and V in exactly the same way as

was described in the proof of Proposition 10.3.6.

Example 10.3.8. The set filtration described in Example 10.3.5 now corre-

sponds to a weak filtration of a model. Let Σ = {p1, p2,3p1}, V (p1) = {{b, c}}

and V (p2) = {{a}}. Then it can easily be shown that R′ satisfies (WF ). Thus,

〈WM , R
′, V ′〉 is a weak filtration of 〈W,R, V 〉 through Σ.
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Observe that, if a relation R′ satisfies both (F3) and (F4), then it also

satisfies (WF ). On the other hand, from Examples 10.3.5 and 10.3.8 it follows

that (WF ) is a strictly weaker condition than conditions (F3) and (F4) together.

However, the weakened condition (WF ) suffices to prove a modified version of

the Filtration Theorem.

Theorem 10.3.9 (Weak Filtration Theorem). If M′ is a weak filtration of M

through a subformula-closed set of formulas Σ, then for all u ∈ W and all ϕ ∈ Σ,

M, u  ϕ if, and only if, M′, [u]Σ  ϕ. Moreover, |WΣ| ≤ 2|Σ|.

Proof. As in the standard proof of the Filtration Theorem (see, for exam-

ple, [BdRV01]), we prove the claim by induction on the complexity of formulas

in the basic modal logic. The base case as well as the Boolean cases remain

unchanged since they do not involve the relation R′. We therefore only need to

check the case where ϕ := 3ψ.

Suppose M, u  3ψ. By (WF ) we have that ([u]Σ, [v]Σ) ∈ R′ for some

v ∈ W such that M, v  ψ. Since Σ is subformula-closed, we have that ψ ∈ Σ.

Then, by the inductive hypothesis, M′, [v]Σ  ψ. It then follows thatM′, [u]Σ 

3ψ since ([u]Σ, [v]Σ) ∈ R′.

For the implication in the other direction, suppose M′, [u]Σ  3ψ. Then

there exists a [v]Σ such that ([u]Σ, [v]Σ) ∈ R′ and M′, [v]Σ  ψ. Then ψ ∈ Σ

since Σ is subformula-closed and by the inductive hypothesis we have that

M, v  ψ. Finally, since R′ satisfies (WF ), it follows from the backward impli-

cation of (WF ) that M, u  3ψ.

10.4 Duality

Recall from Section 10.1 that every frame is (isomorphic to) the atom structure

of some modal algebra and every modal algebra is (isomorphic to) a subalgebra

of the complex algebra of some frame. Furthermore, operations on frames such

as taking generated subframes, bounded morphic images, and disjoint unions

correspond naturally with operations on algebras, namely, taking homomorphic

images, subalgebras, and products. In this section we will establish a similar

duality between set filtrations (operating on frames) and algebraic filtrations

(operating on algebras). This correspondence motivates the use of the term

“algebraic filtration” for the construction defined in Section 10.2.
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10.4.1 Starting from frames

Let F = 〈W,R〉 be a frame with M ⊆ M ⊆fin P(W ). On the one hand,

we can obtain the set filtration 〈WM , R′〉 for some set filtrator R′ (as in Defini-

tion 10.3.3). On the other hand, we may choose to consider the complex algebra

of the frame, i.e., F+ = 〈P(W ),∩,∪,−,∅,W, fR〉. Then (the same) R′ is an

algebraic filtrator of F+ through (M,M). Hence, 〈F+
M , f

R′

R 〉, where F+
M is the

Boolean subalgebra of F+ generated by M and fR′

R is as defined in (10.3), is

the algebraic filtration of F+ through (M,M) with R′. In the following proposi-

tion we show that the atom structure of 〈F+
M , f

R′

R 〉, i.e., 〈F+
M , f

R′

R 〉+ is precisely

〈WM , R
′〉. This is illustrated in the diagram in Figure 10.2.

'
&

$
%〈WM , R

′〉 ∼= 〈F+
M , f

R′

R 〉+

'
&

$
%

F = 〈W,R〉

M ⊆M ⊆ P(W )

?

R′ ⊆WM ×WM '
&

$
%〈F+

M , f
R′

R 〉�

'
&

$
%

F+ = 〈P(W ), fR〉

M ⊆M ⊆ P(W )

-

?

R′ ⊆ (AtF+)2

Fig. 10.2: Starting from frames.

Proposition 10.4.1. Let F = 〈W,R〉 be a frame, let M ⊆ M ⊆fin P(W )

and let R′ be a (rigid) set filtrator of F through (M,M). If F+
M is the Boolean

subalgebra of F+ generated by M and 〈F+
M , f

R′

R 〉 the algebraic filtration of F+

through (M,M) with R′, then

(i) R′ is a (rigid) algebraic filtrator of F+ through (M,M),

(ii) 〈WM , R′〉 ∼= 〈F+
M , f

R′

R 〉+.

Proof. (i) Recall that F+ = 〈P(W ),∩,∪,−,∅,W, fR〉 where fR is given by

fR(X) = {w ∈ W : there exists x ∈ X such that (w, x) ∈ R}.
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We first show that R′ is an algebraic filtrator of F+ through (M,M). In

order to do so we must show that (a) R′ is an relation of AtF+
M ; and (b)

R′ satisfies (R).

(a) Recall that since F+
M is the Boolean subalgebra generated by M ,

AtF+
M consists of the maximal non-empty meets of elements of M .

That is, if M = {X1, . . . , Xn}, then AtF+
M consists of all sets of the

form X ′
1 ∩X

′
2 ∩ · · ·∩X ′

n 6= ∅, where X ′
i is either Xi or −Xi. Now let

u, v ∈W . If u, v ∈ X1∩· · ·∩Xk∩(−Xk+1)∩· · ·∩(−Xn), then u ∈ Xi

if, and only if, v ∈ Xi for all Xi ∈M , i = 1, . . . , n. Thus, the atoms

of F+
M are just the equivalence classes [u]M . Hence, WM = AtF+

M

and R′ is a relation on WM = AtF+
M .

(b) Secondly, since R′ is a set filtrator, it satisfies (SF ). But (SF ) is

equivalent to:

For all X ∈M and all [u]M ∈WM we have that [u]M ⊆ fR(X)

if, and only if,

there exists [v]M ∈WM such that [v]M ⊆ X and ([u]S , [v]S) ∈ R′.

Clearly the above is equivalent to (R) for F+ and it follows that R′

satisfies (R).

Next we show that R′ is a rigid algebraic filtrator when it is a rigid set

filtrator. Suppose R′ satisfies (SF1), i.e., for all u, v ∈ W , (u, v) ∈ R

implies that ([u]M , [v]M ) ∈ R′. We must show that (R1) holds. For F+,

(R1) can be written as: For all [u]M , [v]M ∈WM and c, d ⊆W ,

if ∅ 6= c ⊆ [u]M , d ⊆ [v]M and c ⊆ fR(d), then ([u]M , [v]M ) ∈ R′.

But if ∅ 6= c ⊆ [u]M , d ⊆ [v]M and c ⊆ fR(d), then every element in

c has an R-successor in d. Since c 6= ∅, it then follows that there are

elements u′ ∈ c ⊆ [u]M and v′ ∈ d ⊆ [v]M such that (u′, v′) ∈ R. Hence,

([u]M , [v]M ) ∈ R′ by (SF1) and R′ is a rigid algebraic filtrator.

(ii) As noted in Section 10.2, the atom structure of 〈F+
M , f

R′

R 〉, i.e., 〈F+
M , f

R′

R 〉+,

is the structure 〈AtF+
M , R

′〉. Since AtF+
M =WM , the result follows.
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10.4.2 Starting from algebras

Let A = 〈A,∨,∧,¬, 0, 1, f〉 be a modal algebra with M ⊆ M ⊆fin A. On the

one hand, we may obtain the algebraic filtration 〈BM , f
R′

〉 ofA through (M,M)

with some algebraic filtrator R′. Recall that BM is the Boolean subalgebra of

A generated by M and fR′

is defined by

fR(b) =
∨

{x ∈ AtBM : there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R}.

On the other hand, we can consider the ultrafilter frame of A, A• =

〈UfA, R′
f 〉 where (u, v) ∈ R′

f if, and only if, f(a) ∈ u whenever a ∈ v for

all u, v ∈ UfA. By the Jónsson-Tarski theorem, Theorem 10.1.8, A may be

embedded into the complex algebra of its ultrafilter frame, i.e., (A•)
+, via the

map ̟ : A→ UfA given by ̟(a) = {u ∈ UfA : a ∈ u}.

Now let

M• = {̟(a) : a ∈M}, (10.13)

M• = {̟(a) : a ∈M}, (10.14)

R′
• ⊆ {̟(x) : x ∈ AtA}2 such that (̟(x), ̟(y)) ∈ R′

• ⇐⇒ (x, y) ∈ R′.

(10.15)

Then M• ⊆ M• ⊆ P(UfA). We will show that R′
• is a set filtrator of A•

through (M•,M•) with resulting set filtration 〈(UfA)M•
, R′

•〉. Moreover, the

complex algebra of 〈(UfA)M•
, R′

•〉, i.e., 〈(UfA)M•
, R′

•〉
+ is isomorphic to the

algebraic filtration 〈BM , f
R′

〉. This is illustrated in the diagram in Figure 10.3.

Lemma 10.4.2. Let A be a modal algebra, R′ an algebraic filtrator of A through

(M,M) and A• the ultrafilter frame of A. If M•, M• and R′
• are defined as

in (10.13), (10.14) and (10.15), respectively, then R′ is a set filtrator of A•

through (M•,M•). If R′ is rigid, then so is R′
•.

Proof. We first show that M•, M• and R′
• are correctly defined for it to be

possible that R′
• is a set filtrator of A• through (M•,M•). Suppose that M =

{a1, . . . , an} and M = {a1, . . . , am}, m ≤ n. Then M• ⊆ M• ⊆ P(UfA).

Furthermore, the quotient structure 〈(UfA)M•
, R′

•〉 has universe:

(UfA)M•
= {̟(a1)

h(1) ∩ · · · ∩̟(an)
h(n) : h : {1, . . . , n} → {0, 1}} − {∅},

where ̟(ai)
0 = −̟(ai) and ̟(ai)

1 = ̟(ai). Since ̟ is an embedding of A
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'
&

$
%〈BM , f

R′

〉 ∼= 〈(UfA)M•
, R′

•〉
+

'
&

$
%〈(UfA)M•

, R′
•〉

'
&

$
%

A

M ⊆M ⊆fin A

'
&

$
%

〈UfA, R′
f 〉

M• ⊆M• ⊆ P(Uf (A))

-

�

?

R′ ⊆ AtBM ×AtBM

?

R′
•

Fig. 10.3: Starting from algebras.

into (A•)
+, we have that ̟(a)i = ̟(ai), i ∈ {0, 1}. Hence

̟(a1)
h(1) ∩ · · · ∩̟(an)

h(n) = ̟(a
h(1)
1 ) ∩ · · · ∩̟(ah(n)n )

= ̟(a
h(1)
1 ∧ · · · ∧ ah(n)n ).

It follows that (UfA)M•
= {̟(x) : x ∈ AtBM}. Hence R′

• is a relation on the

equivalence classes in (UfA)M•
. Thus, M•, M• and R′

• are correctly defined.

Now, to show that R′
• is a set filtrator we must show that it satisfies (SF ).

In this context (SF ) can be rewritten as: For all a ∈M and all u ∈ UfA,

u ∈fRf
(̟(a)) if, and only if, there exists v ∈ UfA

such that v ∈ ̟(a) and ([u]S•
, [v]S•

) ∈ R′
•. (10.16)

Since ̟ is an embedding, we have that fRf
(̟(a)) = ̟(f(a)). Moreover u ∈

̟(f(a)) is equivalent to [u]M•
⊆ ̟(f(a)) and v ∈ ̟(a) is equivalent to [v]M•

⊆

̟(a) since an element of (UfA)M•
is the intersection of all members ofM• that

contain it. Thus (10.16) is equivalent to: For all a ∈M and all u ∈ UfA

[u]M•
⊆ ̟(f(a))) if, and only if, there exists v ∈ UfA

such that [v]M•
⊆ ̟(a) and ([u]M•

, [v]M•
) ∈ R′

•. (10.17)

Since the equivalence classes with respect to M• are of the form ̟(x) for x ∈

AtBM , we may quantify over AtBM instead of over UfA. Thus (10.17) is
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equivalent to: For all a ∈M and all x ∈ AtBM

̟(x) ⊆ ̟(f(a)) if, and only if, there exists y ∈ AtBM

such that ̟(y) ⊆ ̟(a) and (̟(x), ̟(y)) ∈ R′
•. (10.18)

Now, ̟(a) ⊆ ̟(b) if, and only if, a ≤ b, for all a, b ∈ A. From this and the

definition of R′
•, it follows that (10.18) is equivalent to: For all a ∈ M and

x ∈ AtBM ,

x ≤ f(a) if, and only if, there exists y ∈ AtBM

such that y ≤ a and (x, y) ∈ R′

which is just (R). Thus, R′ satisfies (SF ) if, and only if, it satisfies (R). But R′

satisfies (R) by assumption. Hence, R′ satisfies (SF ).

Next we show that R′
• is a rigid set filtrator when R′ is rigid. Suppose that

R′ is rigid, i.e., it satisfies (R1). We have to show that R′
• satisfies (SF1). Let

x, y ∈ AtBM , u ∈ ̟(x), v ∈ ̟(y) such that (u, v) ∈ R′
f . By the definition of

R′
f (see Definition 10.1.5) it follows that f(a) ∈ u for all a ∈ v. In particular,

f(y) ∈ u. Then, x ∧ f(y) ∈ u, since u is a filter and x ∧ f(y) 6= 0 since u is

proper. Moreover, since 0 6= x ∧ f(y) ≤ x and y ≤ y and x ∧ f(y) ≤ f(y), we

have that (x, y) ∈ R′ by (R1). Hence, by definition, (̟(x), ̟(y)) ∈ R′
•.

Define δ : AtBM → (UfA)M•
to be the restriction of ̟ to AtBM , i.e., for

all x ∈ AtBM ,

δ(x) = {u ∈ UfA : x ∈ u}.

Proposition 10.4.3. Let A be a modal algebra and 〈BM , f
R′

〉 the algebraic

filtration of A through (M,M) with some algebraic filtrator R′. Furthermore,

let A• the ultrafilter frame of A and let M•, M• and R′
• be defined as in the

equations (10.13), (10.14) and (10.15), respectively, such that 〈(UfA)M•
, R′

•〉

is the set filtration of A• through (M•,M•) with R′
•. Then δ is an isomor-

phism between the atom structure 〈BM , f
R′

〉+ and 〈(UfA)M•
, R′

•〉. Conse-

quently, 〈BM , f
R′

〉 is isomorphic to the complex algebra 〈(UfA)M•
, R′

•〉
+.

Proof. Recall from Definition 10.1.6 that 〈BM , f
R′

〉+ = 〈AtBM , R
′〉. Since

δ(x) = ̟(x) for all x ∈ AtBM , it follows from the definition of R′
• that (x, y) ∈

R′ if, and only if, (δ(x), δ(y)) ∈ R′
•. Thus, δ is a homomorphism. In the proof

of Lemma 10.4.2 it was shown that (UfA)M•
= {̟(x) : x ∈ AtBM} = {δ(x) :



10. Algebraic filtrations in modal logic 221

x ∈ AtBM}. Hence, δ is onto. To see that δ is one-to-one, observe that if

x, y ∈ AtBB such that x 6= y, then x ∧ y = 0. But ultrafilters are proper, so no

ultrafilter of A contains both x and y. Then δ(x)∩ δ(y) = ∅ and it follows that

δ(x) 6= δ(y)

Since BM is finite, 〈BM , f
R′

〉 is isomorphic to (〈BM , f
R′

〉+)
+ which in turn

is isomorphic to 〈(UfA)M•
, R′

•〉
+.

10.5 Analogues of model-theoretic filtrations

In this section we translate a number of well-known filtrations from the literature

into their corresponding set filtrations and algebraic filtrations. In addition, we

will use the correspondences of Section 10.2.1 to give equivalent descriptions of

the algebraic filtrations. In particular, we will consider the largest, smallest,

transitive and symmetric filtrations.

To start with we will make use of the correspondence developed in Sec-

tion 10.3 between filtrations operating on models and set filtrations operating

on frames to find a definition of the corresponding set filtration of each of the

four filtrations we will consider. We will then make use of the duality developed

in Section 10.4.1 to obtain the algebraic version of the filtration in terms of a

relation R on the atoms. Finally, we also give the definition of the algebraic

filtrator in terms of an arbitrary binary relation Q and use the correspondence

developed in Section 10.2.1 to show that it is equivalent to the algebraic filtrator

obtained through the duality.

We now consider some well-known (model-theoretic) filtrations used in modal

logic. The ‘largest’ (respectively, ‘smallest’, ‘transitive’, ‘symmetric’) filtration

of a model, as referred to in the literature, is a description of how a filtration of

any given model with respect to any given subformula closed set of formulas can

be defined. We use the correspondence theory to give a description of how a set

filtration of any given frame through an appropriate pair of sets (M,M) with

a set filtrator can be defined. Using the duality theory we give a description of

how an algebraic filtration of any given modal algebra through an appropriate

pair of sets (M,M) with an algebraic filtrator can be defined.

We introduce the following notions to assist us with the translation of a set

filtrator into an algebraic filtrator.

Definition 10.5.1. An augmented modal algebra (AMA for short) is a struc-
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ture A = 〈A,∨,∧,¬, 0, 1, f,M,M,R′〉 where

• A = 〈A,∨,∧,¬, 0, 1, f〉 is a modal algebra,

• M ⊆M ⊆ A such that f(a) ∈ S whenever a ∈M ,

• R′ is binary relation on the AtBM .

We let L be the first-order language of AMAs, but where only restricted

quantification over M , M , BM , and AtBM is allowed. The following definition

makes this precise:

Definition 10.5.2. Let L be the first-order language with

• function symbols ∧ and ∨ (binary), ¬ and f (unary),

• constant symbols 0 and 1,

• unary predicates symbols M , M , AM , and AtBM , and

• binary predicate symbol R′.

The usual Boolean connectives will be denoted by & ,⊔,∼, and ⇒ to avoid

confusion with the operations of the Boolean algebra. We will often write x ∈M

instead of M(x), and similarly for the other unary predicate symbols.

The only quantification allowed in L is bounded quantification over the ex-

tensions of the unary predicates, i.e., quantification of the form ∀x(x ∈M ⇒ ϕ)

and ∃x(x ∈M and ϕ) (abbreviated as usual as (∀x ∈M)ϕ and (∃x ∈M)ϕ and

similarly for the other unary predicates).

The language L is interpreted in AMAs in the obvious way. Notice that,

even though the signature of AMAs does not explicitly accommodate the pred-

icate symbols BM and AtBM , the interpretations of these are entirely deter-

mined by the interpretation of M .

We are now ready to consider the filtration constructions mentioned above.

In addition to the notions of AMAs and the language L we will need some

further technical results. We include these with the investigation of the largest

filtration to make their motivation and significance clearer.

Throughout the following subsections, A = 〈A,∨,∧,¬, 0, 1, f〉 will be a fixed

modal algebra and M ⊆M ⊆fin A such that f(a) ∈M whenever a ∈M .
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10.5.1 The largest filtration

We first consider the largest (or coarsest) filtration (see, for example, [BdRV01]).

Recall that the largest filtration of a model M = 〈W,R, V 〉 through a finite

subformula-closed set of formulas Σ is given by

([u]Σ, [v]Σ) ∈ Rℓ if, and only if, for all 3ϕ ∈ Σ, if M, v  ϕ, then M, u  3ϕ,

or, equivalently,

([u]Σ, [v]Σ) ∈ Rℓ if, and only if, for all 3ϕ ∈ Σ, if v ∈ V (ϕ), then u ∈ V (3ϕ).

We now formulate an equivalent version in terms of a set filtrator acting on

a frame. Thus, instead of M and Σ, we have a frame F = 〈W,R〉 and M ⊆

M ⊆ P(W ) where, for each X ∈ M , fR(X) ∈ M . From the correspondence

developed in Section 10.3 it follows that X ∈M corresponds to V (ϕ), for some

ϕ ∈ Σ with 3ϕ ∈ Σ, and that fR(X) = V (3ϕ). Thus, the largest set filtrator

of F through (M,M) is given by

([u]M , [v]M ) ∈ Rℓ if, and only if,

for all X ∈M, if v ∈ X, then u ∈ fR(X). (10.19)

Then Rℓ satisfies (SF ) by Proposition 10.3.4.

Recall from Section 10.4 that Rℓ may also be viewed as an algebraic filtrator

through (M,M) of the complex algebra F+. In particular, if F+
M is the Boolean

subalgebra of 〈W,R〉+ generated by M , then the atoms of F+
M are just the

equivalence classes [u]M , where u ∈ W . Furthermore, for v ∈ W and X ∈ S,

we have that v ∈ X if, and only if, [v]M ⊆ X . Thus, (10.19) is equivalently to:

([u]M , [v]M ) ∈ Rℓ if, and only if,

for all X ∈M, if [v]M ⊆ X, then [u]M ⊆ fR(X).

Thus the duality theory gives us the following definition. In abuse of notation,

we will use Rℓ for different relations, but it should be clear from the context

which relation we are referring to.

Definition 10.5.3. The largest algebraic filtrator of A through (M,M), de-

noted Rℓ, is defined by, for all x, y ∈ AtBM ,

(x, y) ∈ Rℓ if, and only if, for all a ∈M, if y ≤ a, then x ≤ f(a).
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The filtration of A through (M,M) with Rℓ, namely 〈BM , f
Rℓ

〉, is called the

largest algebraic filtration of A through (M,M).

Recall that (R) is the following condition:

For all b ∈M and all x ∈ AtBM we have x ≤ f(b) if, and only if,

there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ R.

Remark 10.5.4. We must now confirm that Rℓ is an algebraic filtrator, i.e.,

that Rℓ satisfies (R). This can be done by a direct computation. However, we

would like to show that whenever we translate the definition of a set filtrator

in the above way, we get the definition of an algebraic filtrator. As a result we

avoid tedious computations for each future translation.

If A is the complex algebra of some frame, then the fact that Rℓ is an

algebraic filtrator follows directly from Proposition 10.4.1 and the fact that Rℓ

satisfies (SF ). However, we need to prove that this is the case for arbitrary

modal algebras A. To do so we will make use of AMAs and L .

In [JT51] it was shown that every modal algebra A is (isomorphic to) a

subalgebra of a complete and atomic modal algebra Aσ, called its canonical

extension. See Chapter 6 for more on the canonical extension. The canoni-

cal extension of an AMA A = 〈A,∨,∧,¬, 0, 1, f,M,M,R′〉 is the AMA Aσ =

〈Aσ,∨,∧,¬, 0, 1, f,M,M,R′〉 where 〈Aσ,∨,∧,¬, 0, 1, f〉 is the canonical exten-

sion Aσ of A, and M , M , and R′ are unchanged. This definition makes sense

since BM is finite and therefore isomorphic to its canonical extention, and in

fact we may identify the two, i.e., BM = Bσ
M .

The following lemma can be established by a straightforward induction, using

the fact that the bounded quantification of L restricts all considerations to the

substructure A of Aσ.

Lemma 10.5.5. For any AMA A and any L -sentence ϕ, it holds that A |= ϕ

if, and only if, Aσ |= ϕ.

Futhermore, from [JT51] we know that the complete and atomic modal alge-

bras are, up to isomorphism, the complex algebras of Kripke frames. Let CAMA

be the class of all AMAs with complete and atomic modal algebra reducts. We

now show that if we can define a relation with an L -formula, then it will be an

algebraic filtrator on all modal algebras whenever it is an algebraic filtrator on

complex algebras.
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Observe that (R) can be rewritten as follows:

(∀b ∈M)(∀x ∈ AtBM )(x ≤ f(b) ⇔ (∃y ∈ AtBM )(y ≤ b&Rxy)).

It should be clear from the above that (R) is an L -sentence.

Proposition 10.5.6. Let ψ an L -sentence, such that ψ |=CAMA (R). Then

ψ |=AMA (R).

Proof. Let A ∈ AMA, and suppose A |= ψ. By the forward implication of

Lemma 10.5.5 we have that Aσ |= ψ, and hence, by assumption, Aσ |= (R).

Since (R) is an L -sentence, it follows that A |= (R) by the backward implication

of Lemma 10.5.5.

We can now rewrite the condition in Definition 10.5.3 as follows:

(∀x, y ∈ AtBM )(R′xy ⇔ (∀a ∈M)(y ≤ a⇒ x ≤ f(a))) (10.20)

Clearly the above is an L -sentence. Then, if ψ is the L -sentence (10.20), then

Rℓ satisfies (R) by Proposition 10.5.6. That is, we have accomplished what we

set out to do in Remark 10.5.4.

The set filtrator Rℓ as defined in (10.19) is rigid (this is immediate from the

definition and (SF1)). Then it follows that the algebraic filtrator Rℓ is also rigid

by Proposition 10.4.1.

Lemma 10.5.7. The largest binary relation on AtBM satisfying (R) is Rℓ.

Proof. LetR ⊆ AtBM×AtBM such that R satisfies (R) and suppose (x, y) ∈ R.

If y ≤ a, then x ≤ f(a) by (R). Thus (x, y) ∈ Rℓ and it follows that R ⊆ Rℓ.

Observe that Rℓ assigns the largest value (in terms of the ordering on BM )

to fR(b) when compared to all the binary relations on AtBM satisfying (R)

(or then, algebraic filtrators of A through (M,M)). This follows from the fact

that Rℓ is the largest binary relation on AtBM (set theoretically) to satisfy (R),

Lemma 10.5.7, and from the definition of fRℓ

— recall that for b ∈ BM ,

fRℓ

(b) =
∨

{x ∈ AtBM : there exists y ∈ AtBM such that y ≤ b and (x, y) ∈ Rℓ}.

Next we use the correspondence developed in Section 10.2.1 to show that

the operator fRℓ

coincides with the operator given in (10.4) used in [McK41] to

prove finite model properties for S2 and S4. Let Qℓ ⊆ BM ×BM be defined by:

(a, b) ∈ Qℓ if, and only if, there exists d ∈M such that a = f(d) and b ≤ d,
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so that

fQℓ

(b) =
∧

{a ∈ BM : there exists d ∈M such that a = f(d) and b ≤ d}

=
∧

{f(d) : d ∈M and b ≤ d}.

It can easily be shown that Qℓ satisfies (Q2)− (Q4); to ensure that Qℓ satisfies

(Q1) we require thatM be closed under ∨ and 0 ∈M . Thus, fQℓ

is an operator

that extends f . The algebraic filtrator on A through (M,M) corresponding to

Qℓ, as given by (10.11), is:

(x, y) ∈ R

⇐⇒ for all a ∈ BM , if (a, y) ∈ Qℓ, then x ≤ a

⇐⇒ for all a ∈ BM , if there exists d ∈M such that a = f(d) and y ≤ d,

then x ≤ a

⇐⇒ for all d ∈M, if y ≤ d, then x ≤ f(d)).

But this is just Rℓ. Hence we have the following.

Corollary 10.5.8. If M is closed under ∨ and 0 ∈M , then the modal algebra

〈BM , f
Qℓ

〉 is the largest algebraic filtration through (M,M), i.e., fQℓ

= fRℓ

.

10.5.2 The smallest filtration

In this section we turn our attention to the smallest (or finest) filtration is of

a model. If M = 〈W,R, V 〉 is a model and Σ a finite, subformula-closed set of

formulas, then the smallest filtration (see, for example, [BdRV01]) of M is given

by the relation:

([u]Σ, [v]Σ) ∈ Rs if, and only if, there exists u′ ∈ [u]Σ

and there exists v′ ∈ [v]Σ such that (u,′ v′) ∈ R.

As with the largest filtration, suppose we have a frame F = 〈W,R〉 and M ⊆

M ⊆ P(W ) where fR(X) ∈ M for each X ∈ M , instead of M and Σ. Then,

by the correspondence developed in Section 10.3, the smallest set filtrator of F

through (M,M) is:

([u]M , [v]M ) ∈ Rs if, and only if, there exists u′ ∈ [u]M

and there exists v′ ∈ [v]M such that (u′, v′) ∈ R. (10.21)



10. Algebraic filtrations in modal logic 227

The filtration 〈WM , R
s〉, of F obtained through (M,M) with Rs is called the

smallest set filtration of F through (M,M).

Recall that Rs may also be viewed as an algebraic filtrator through (M,M)

of the complex algebra F+ (see Section 10.4). Then (10.21) equivalent to:

([u]M , [v]M ) ∈ Rs if, and only if, [u]M ∩ fR([v]M ) 6= ∅.

On modal algebras in general this becomes Definition 10.5.9, below. Again we

will abuse notation and use Rs to also denote the relation on AtBM .

Definition 10.5.9. The smallest algebraic filtrator of A through (M,M) is

defined by, for all x, y ∈ AtBM ,

(x, y) ∈ Rs if, and only if, x ∧ f(y) 6= 0,

The filtration of A through (M,M) with Rs, namely 〈BM , f
Rs

〉, is called the

smallest algebraic filtration of A through (M,M)

Now let ψ be the L -sentence:

(∀x, y ∈ AtBM )(R′xy ⇔ (x ∧ f(y) 6= 0)).

Then, since all CAMAs satisfying ψ also satisfy (R), it follows from Proposi-

tion 10.5.6 that Rs will always satisfy (R).

The relation Rs defined above, commonly known as the smallest, finest, or

least filtration, is not the smallest relation, set theoretically speaking, which

satisfies the property (R) nor does it produce the smallest value for fR(b) when

compared to other binary relations on AtBM satisfying (R).

Example 10.5.10. Consider the complex algebra A of a frame consisting of

three points u, v, and w, with accessibility relation R = {(u, v), (v, v), (w,w)}

(depicted in Figure 10.4). Let x = {u}, y = {v} and z = {w} denote the atoms

of A. Then f(x) = 0, f(y) = x∨y, f(z) = z and f(x∨y) = f(x)∨f(y) = x∨y.

Now let M = A; then BM = A and M = {x ∨ y}.

The three relations R1 = {(x, y), (y, x)}, R2 = {(x, x), (y, y)}, and R3 =

{(x, y), (y, y)} all satisfy condition (R). However, their intersection does not

contain a relation that satisfies (R). Hence, in this instance, no least filtration

exists. Furthermore, the smallest filtration Rs as defined above, would be Rs =

{(x, y), (y, y), (z, z)} which is strictly includes R3. These relations are illustrated

in Figure 10.4.
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Note that on frames, the smallest set filtrator Rs is (set theoretically) the

smallest rigid set filtrator. Recall from Section 10.3 that (model-theoretic) fil-

trations (Definition 10.3.1), in the usual sense of the term, correspond to rigid

set filtrators. Then the smallest filtration is, per definition, the least relation sat-

isfying the conditions of Definition 10.3.1. From Proposition 10.4.1 it follows

that Rs is the smallest rigid algebraic filtrator.

R: s s s-
-m -m

u v w

Rs: s s s-
-m -m

{u} {v} {w}

R1: s s s-�
{u} {v} {w}

R2: s s s-m -m
{u} {v} {w}

R3: s s s-
-m

{u} {v} {w}

Fig. 10.4: In some instances no least filtration exists.

Next, we use the correspondence developed in Section 10.2.1 to show that

the operator obtained from the smallest algebraic filtrator is equivalent to the

operator obtained from the relation Qs ⊆ BM ×BM defined by:

(a, b) ∈ Qs if, and only if, f(b) ≤ a.

It is easy to verify that Qs satisfies (Q1) − (Q4). Thus, fQs

defined by, for all

b ∈ BM

fQs

(b) =
∧

{a ∈ BM : f(b) ≤ a}

is an operator that extends f . To obtain the algebraic filtrator on A through

(M,M) corresponding to Qs, we make use of the intermediate relation P s ⊆

CaBM ×AtBM defined as in (10.7):

(c, y) ∈ P s

⇐⇒ there exists a ∈ BM such that a ≤ c and (a, y) ∈ Qs

⇐⇒ there exists a ∈ BM such that f(y) ≤ a ≤ c

⇐⇒ f(y) ≤ c.
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Thus, the algebraic filtrator R corresponding to Qs is defined by:

(x, y) ∈ R

⇐⇒ (¬x, y) /∈ P s

⇐⇒ f(y) 6≤ ¬x

⇐⇒ x ∧ f(y) 6= 0

⇐⇒ (x, y) ∈ Rs.

Thus, we have the following result.

Corollary 10.5.11. The modal algebra 〈BM , f
Qs

〉 is the smallest algebraic

filtration through (M,M), i.e., fQs

= fRs

.

10.5.3 The transitive filtration

Filtrations are often designed to preserve specific frame properties of the models

they are applied to. In this section we will consider filtrations designed to

preserve transitivity. By Sahlqvist’s theorem we know that a frame is transitive

if, and only if, the modal formula 33p→ 3p is valid on the frame. We will say

that a modal algebra is transitive if it validates f(f(x)) ≤ f(x). Let Tr denote

the class of transitive modal algebras.

Given a class K of modal algebras, let AMA(K) (respectively, CAMA(K))

be the class of all AMAs (respcetively, CAMAs) A such that the modal algebra

reduct of A is a (complete and atomic) member of K. Then AMA(Tr) (respec-

tively, CAMA(Tr)) are the (complete and atomic) augmented transitive modal

algebras.

If M = 〈W,R, V 〉 is a model and Σ a finite, subformula-closed set of formu-

las, the transitive filtration of M (see, for example, [BdRV01]) is given by the

relation:

([u]Σ,[v]Σ) ∈ Rt if, and only if, for all 3ϕ ∈ Σ,

if v ∈ V (ϕ ∨3ϕ), then u ∈ V (3ϕ).

When applied to transitive models this is a filtration, and produces a transitive

model. (We note that the resulting model will be transitive even if the original

was not.)
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If we now translate the above to sets and frames, we see that the transitive

set filtrator of F through (M,M) is given by:

([u]M ,[v]M ) ∈ Rt if, and only if, for all X ∈M,

if v ∈ X ∪ fR(X), then u ∈ fR(X),

or, equivalently,

([u]M , [v]M ) ∈ Rt if, and only if, for all X ∈M,

if [v]M ⊆ X ∪ fR(X), then [u]M ⊆ fR(X)).

The relation Rt satisfies (SF ) by the correspondence developed in Section 10.3

and, moreover, preserves transitivity. From the duality theory of Section 10.4 we

know that Rt also defines an algebraic filtrator on complex algebras of transitive

frames. If we generalize to modal algebras in general, then we have the following.

Definition 10.5.12. The transitive algebraic filtrator of A through (M,M) is

defined by, for all x, y ∈ AtBM ,

(x, y) ∈ Rt if, and only if, for all a ∈M, if y ≤ a ∨ f(a), then x ≤ f(a).

The filtration of A obtained through (M,M) with Rt, namely 〈BM , f
Rt

〉, is

called the transitive algebraic filtration of A through (M,M).

As in the previous examples we need to show that Rt satisfies (R). In addi-

tion to that, we need to show that the transitive algebraic filtration 〈BM , f
Rt

〉,

as defined above, is again a transitive modal algebra. The following proposition

now generalizes Proposition 10.5.6 for classes of AMAs.

Proposition 10.5.13. Let K be a class of modal algebras closed under canonical

extensions, and ψ an L -sentence, such that

(1) ψ |=CAMA(K) (R), and

(2)
〈

BM , f
R′

〉

∈ K whenever A = 〈A,∨,∧,¬, 0, 1, f,M,M,R′〉 ∈ CAMA(K)

and A |= ψ.

Then

(3) ψ |=AMA(K) (R), and
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(4)
〈

BM , f
R′

〉

∈ K whenever A = 〈A,∨,∧,¬, 0, 1, f,M,M,R′〉 ∈ AMA(K)

and A |= ψ.

Proof. The proof of (3) is similar to the proof of Proposition 10.5.6

To prove (4), suppose A = 〈A,∨,∧,¬, 0, 1, f,M,M,R′〉 ∈ AMA(K) and

A |= ψ. Then Aσ ∈ CAMA(K) by the assumption that K is closed under canon-

ical extensions, and it therefore follows that Aσ |= ψ by Lemma 10.5.5. Thus
〈

Bσ
M , f

R′

〉

∈ K. But then the claim follows, since
〈

Bσ
M , f

R′

〉

=
〈

BM , f
R′

〉

.

Proposition 10.5.14. If A is transitive, then Rt defines an algebraic filtrator

of A through (M,M). Moreover
〈

BM , f
Rt
〉

is transitive.

Proof. In order to be able to apply Proposition 10.5.13 the class Tr of transitive

modal algebras must be closed under taking canonical extensions. Since the

inequality f(f(x)) ≤ f(x) falls within the Sahlqvist class, it follows from the

canonicity of Sahlqvist identities studied in [Jón94] that Tr is indeed closed

under taking canonical extensions.

Furthermore, let ψ be the L -sentence:

(∀x, y ∈ AtBM )(R′xy ⇔ (∀a ∈M)(y ≤ a ∨ f(a) ⇒ x ≤ f(a))).

From the discussion above we know that Rt is an algebraic filtration on all

complex algebras of transitive frames. Thus we have that ψ |=CAMA(Tr) (R).

Moreover, the filtration 〈BM , R
t〉 is transitive whenever A is a transitive com-

plex algebra. That is, both conditions of Proposition 10.5.13 are met. Thus,

by Proposition 10.5.13 we have that Rt satisfies (R) and
〈

BM , f
Rt
〉

is transi-

tive.

If we consider the correspondence of Section 10.2.1 again, we show that

the operator obtained from the transitive algebraic filtrator is equivalent to the

operator obtained from the relation Qt ⊆ BM ×BM defined by:

(a, b) ∈ Qt if, and only if, there exists d ∈M such that a = f(d) and b ≤ d ∨ a.

It is easy to show that Qt satisfies conditions (Q2) and (Q4). As with the largest

filtration, Q satisfies condition (Q1) if M be closed under ∨. If A is transitive

and that 0 ∈M , then Qt satisfies (Q3). Under these condition fQt

, defined by

fQt

(b) =
∧

{a ∈ BM : (a, b) ∈ Qt},
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is an operator that extends f . The algebraic filtration of A through (M,M)

corresponding to Qt is given by (10.11):

(x, y) ∈ RQt

⇐⇒ for all a ∈ BM , if (a, y) ∈ Qt, then x ≤ a

⇐⇒ for all a ∈ BM , if there exists d ∈M such that

a = f(d) and y ≤ d ∨ a, then x ≤ a

⇐⇒ for all d ∈M, if y ≤ d ∨ f(d), then x ≤ f(d).

Hence, RQt

is just Rt and we have the following result.

Corollary 10.5.15. If A is transitive, M is closed under ∨ and 0 ∈ M , then

〈BM , f
Qt

〉 is the transitive algebraic filtration through (M,M), i.e., fQt

= fRt

.

10.5.4 The symmetric filtration

It is well-known (again by Sahlqvist’s Theorem) that a frame is symmetric if,

and only if, the modal formula p → 23p is valid on it. A modal algebra is

called symmetric if it validates x ≤ ¬f(¬f(x)). The class of all symmetric

modal algebras will be denoted by Sym.

If M = 〈W,R, V 〉 is a model and Σ is a finite, subformula-closed set of

formulas, then the symmetric filtration ofM (see [LS77]) is given by the relation:

([u]Σ, [v]Σ) ∈ Rsym if, and only if, for all 3ϕ ∈ Σ we have that

M, v  ϕ implies M, u  3ϕ and M, u  ϕ implies M, v  3ϕ.

When applied to symmetric models this is a filtration and produces symmetric

models. (As in the transitive case, the resulting model will be symmetric even

if the original model was not.)

Translating the above to sets and frames, we define the symmetric set filtrator

of F through (M,M) by:

([u]M , [v]M ) ∈ Rsym if, and only if, for all X ∈M we have that

v ∈ X implies u ∈ fR(X) and u ∈ X implies v ∈ fR(X).

As in the previous examples, we define the algebraic filtrator corresponding to

the frame filtrator given above as follows.
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Definition 10.5.16. The symmetric algebraic filtrator of A through (M,M)

is defined by, for all x, y ∈ AtBM ,

(x,y) ∈ Rsym if, and only if, for all a ∈M we have that

y ≤ a implies x ≤ f(a) and x ≤ a implies y ≤ f(a).

The filtration of A through (M,M) with Rt, namely 〈BM , f
Rt

〉, is called the

symmetric algebraic filtration of A through (M,M).

Now let ψ be the L -sentence:

(∀x, y ∈ AtBM )(∀a ∈M)((y ≤ a⇒ x ≤ f(a)) & (x ≤ a⇒ y ≤ f(a)))

Then Rsym is defined by ψ. Furthermore, the class Sym of symmetric modal al-

gebras is closed under canonical extensions. Thus, following a similar argument

to the one used in the proof of Proposition 10.5.14, we can prove the following

result.

Proposition 10.5.17. If A is symmetric, then the relation Rsym is an algebraic

filtrator, i.e., Rsym satisfies (R). Moreover, 〈BM , f
Rsym

〉 is symmetric.

Finally, we obtain a relation on BM that induces the same operator as Rsym,

by applying the correspondence developed in Section 10.2.1. In this case, we

derive a suitable relation Qsym from Rsym. Let P sym ⊆ CaBM ×AtBM be the

relation given by:

(c, y) ∈ P sym

⇐⇒ (¬c, y) /∈ Rsym

⇐⇒ there exists d ∈M such that y ≤ d and ¬c 6≤ f(d), or, ¬c ≤ d and y 6≤ f(d)

⇐⇒ there exists d ∈M such that y ≤ d and f(d) ≤ c, or, ¬c ≤ d and f(d) ≤ ¬y.

Then, by Lemma 10.2.16, the relation P sym satisfies (P ). Furthermore, fP sym

defined by:

fP sym

(b) =
∧

{c ∈ CaBM : for all y ∈ AtBM , if y ≤ b, then (c, y) ∈ P sym}

is an operator on BM that extends f .

The relation P sym can now be extended to a relation on BM × AtBM by

allowing any a ∈ BM in its first co-ordinate. To see why, observe that if a ∈ BM
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and c ∈ CaBM such that c ≥ a, then (a, y) ∈ P sym implies that (c, y) ∈ P sym.

Therefore,

fP sym

(b) =
∧

{a ∈ BM : for all y ∈ AtBM , if y ≤ b, then (a, y) ∈ P sym}.

We now define a relation Qsym as follows:

(a, b) ∈ Qsym if, and only if, for all y ∈ AtBM , if y ≤ b then (a, y) ∈ P sym

Then Qsym satisfies (Q1), (Q2) and (Q4). If A is symmetric, then Qsym satisfies

(Q3) . Hence we have the following result.

Corollary 10.5.18. If A is symmetric, then 〈BM , f
Qsym

〉 is the symmetric

algebraic filtration through (M,M), i.e., fQsym

= fRsym

.



11. CONCLUSIONS AND FUTURE WORK

In Part I of this thesis we studied four different constructions for completing

partially ordered sets. Generally these constructions produce different comple-

tions of the same poset. For different applications one may choose to employ

different completions, depending on which properties one needs the completion

to preserve. For example, the Doyle-pseudo ideal (respectively, filter) comple-

tion of a poset is the only completion (of those considered in this thesis) for

which the extension of an operator (respectively, dual operator) is a complete

operator (respectively, complete dual operator). Thus, if the distribution over

joins is of importance in a particular problem, then one would choose to perform

the ideal completion.

Unary residuation maps are preserved by both the MacNeille completion and

completions with respect to polarizations. In order to decide which completion

would be more advantageous, a thorough comparison of properties preserved by

the respective completions still needs to be done. On the other hand, whether

or not completions obtained via polarizations preserve binary residuation maps

is still unknown. In particular, we would like to determine whether or not the

σ-extension of a binary residuated map is residuated on the completion and, if

it is, we would like to describe its residual. It is known that binary residuated

maps are preserved by the MacNeille completion and it can therefore be used

for problems requiring such preservation results.

The methods employed in Chapters 5 and 6 to obtain syntactical descrip-

tions of properties preserved by the completions, may also be used to obtain

preservation results for the other completions. That is, if appropriate approx-

imation terms for the filter, ideal and prime filter completions are identified,

then the approximation terms may be used to determine inequalities preserved

by these completions.

Future work includes further development of the canonical FEP construc-

tion. We would like to answer questions like: Can we use the canonical FEP
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construction to prove the FEP for classes of algebras for which the standard

construction could not be used? Does the finite lattice obtained through the

canonical FEP construction have denseness properties since it is related to com-

pletions obtained via polarizations?

Finally, a further question to consider regarding filtrations is: what prop-

erties of a modal algebra are preserved in the finite modal algebra constructed

by a filtration? In particular, does the finite modal algebra belong to the same

varieties as the original algebra?
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A. DETAILS OF SELECTED EXAMPLES

A.1 Examples from Chapter 4

Example A.1.1. Let P′ be the poset depicted in Figure 4.1 considered in Ex-

ample 4.2.7. Then,

(i) Fd = {{1}, {2}, {3}, {1, 2, 4}, {1, 3, 5}, {2, 3, 7}, {1, 2, 3, 6}}

and Id = {{4}, {5}, {6}, {7}, {1, 4, 5, 6}, {2, 4, 6, 7}, {3, 5, 6, 7}}.

(ii) Ff = Fd ∪ {∅, {1, 2}, {1, 3}, {2, 3}, P ′}

and If = Fd ∪ {∅, {4, 6}, {5, 6}, {6, 7}, P ′}.

(iii) Fdp = Ff ∪ {{1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7}, {1, 2, 3, 4, 5, 6},

{1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}} and Idp = If .

(iv) Fp = Fdp∪{{1, 2, 3}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 7}, {1, 2, 3, 5, 7}, {1, 2, 3, 4, 5, 7}

and Ip = Idp.

Example A.1.2. Let P′ = 〈P ′,≤〉 be the poset depicted in Figure 4.10 with

h : P ′ → P ′ defined by h(1) = h(2) = 2 and h(3) = 3 as in Example 4.3.4. Then

h is both an operator and a dual operator since no non-trivial joins or meets

exist. Let S = {1} and T = {2}. Note that S, T ∈ Ff (P′) and S, T ∈ If (P′).

(i)

[h(S)〉f = [{2}〉f = {2}, [h(T )〉f = [{2}〉f = {2},

[S ∪ T 〉f = [{1, 2}〉f = {1, 2, 3}.

Then,

h∧f (S) ∧
(Ff (P′))∂ h∧f (T ) = [{2}〉f = {2},

but

h∧f (S ∧(Ff (P′))∂ T ) =
[

h([S ∪ T 〉f )
〉

f
= [{2, 3}〉f = {1, 2, 3}.

Hence, h∧f is not a dual operator.
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(ii)

〈h(S)]f = 〈{2}]f = {2}, 〈h(T )]f = 〈{2}]f = {2},

〈h(S ∩ T )]f = 〈h(∅)]f = 〈∅]f = ∅, 〈S ∪ T ]f = 〈{1, 2}]f = {1, 2, 3}.

Then,

h∨f (S) ∧
If (P′) h∨f (T ) = 〈{2}]f = {2},

but

h∨f (S ∧If (P′) T ) = 〈h(S ∩ T )]f = ∅.

Hence, h∨f is not a dual operator.

Furthermore,

h∨f (S) ∨
If (P′) h∨f (T ) = 〈{2}]f = {2},

but

h∨f (S ∨If (P′) T ) =
〈

h(〈S ∪ T ]f )
]

f
= 〈{2, 3}]f = {1, 2, 3}.

Hence, h∨f is not an operator.

A.2 Examples from Chapter 6

Example A.2.1. The reader is referred to Remark 6.1.7 for the context of this

example.

Let P′ =
〈

P ′,≤P′

〉

be the poset depicted in Figure A.1 and let Q′ =
〈

Q′,∨Q′

,∧Q′

〉

the complete lattice depicted in the same figure with associated

lattice order ≤Q′

. Let α : P ′ → Q′ be defined by α(1) = 1, α(2) = 2, α(3) =

4, α(4) = 6 and α(5) = 7. Then (Q′, α) is a completion of P′. The subposet of

Q′ that is order-isomorphic to P′ is shaded in the depiction of Q′ in Figure A.1.

The author of [Tun74] wanted to use Theorem 6.1.6 to argue that (Q′, α)

is not a completion of P′ that can be obtained from some polarization. See

Chapter 6.1.1 for the construction referred to here.

Suppose Q′ can be obtained form a polarization. Then there must exist

S, T ⊆ Q′ that satisfy the conditions of Theorem 6.1.6. Recall that the first

condition in Theorem 6.1.6 states that S is meet-dense in Q′ and T is join-

dense in Q′. Since 5 is a completely meet-irreducible element in Q′, it must be

the case that 5 ∈ S. Similarly, since 3 is a completely join-irreducible in Q′, it

must be the case that 3 ∈ T . The author of [Tun74] now claimed that 5 ∈ S and

3 ∈ T implies that S and T must violate the second condition in Theorem 6.1.6.
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Thus, reaching a contradiction. He makes this claim since there does not exist

an element in the image of P ′ in between 3 and 5. However, 5 ≤Q′

3 and not

5 ≥Q′

3. Hence, S and T need not violate the second condition in Theorem 6.1.6.

In fact, Q′ is isomorphic to Cf (P
′):

Ff (P′) = {∅, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 5}, {1, 2, 3, 4}, P ′},

If (P′) = {∅, {4}, {5}, {3, 4}, {4, 5}, {2, 4, 5}, {1, 3, 4, 5}, P ′}

and

Cf (P
′) = {{P ′}, {{1, 2, 3, 4}, P ′}, {{1, 2, 5}, P ′}, {{1, 3}, {1, 2, 3, 4}, P ′},

{{1, 2, 5}, {1, 2, 3, 4}, P ′}, {{1, 2}, {1, 2, 5}, {1, 2, 3, 4}, P ′},

Ff − {{1}, {1, 3}},Ff − {{2}},Ff }

b

b

b b

b

P′ :

1 2

3

4 5

bc

bc

bc

bc

b b

b

b b

Q′ :
⊤

1 2

3
4

5

6 7

⊥

Fig. A.1: The poset P′ and the complete lattice Q′.

Example A.2.2. In this example we give more details on the completions in

Example 6.2.1. Let P′ be the poset depicted in Figure 6.1. Then P′ was also

considered in Example 4.2.7. See Example A.1.1 for the set F∗ and I∗, ∗ ∈
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{p, dp, f, d}. Then,

Cd = {∅, {{1, 2, 4}}, {{1, 3, 5}}, {{2, 3, 7}}, {{1, 2, 3, 6}}, {{1, 2, 4}, {1, 2, 3, 6}},

{{1, 3, 5}, {1, 2, 3, 6}}, {{2, 3, 7}, {1, 2, 3, 6}}, {{1}, {1, 2, 4}, {1, 3, 5}, {1, 2, 3, 6}},

{{2}, {1, 2, 4}, {2, 3, 7}, {1, 2, 3, 6}}, {{3}, {1, 3, 5}, {2, 3, 7}, {1, 2, 3, 6}},Fd } .

Cf = {{P ′}, {{1, 2, 4}, P ′}, {{1, 3, 5}, P ′}, {{2, 3, 7}, P ′}, {{1, 2, 3, 6}, P ′},

{{1, 2, 4}, {1, 2, 3, 6}, P ′}, {{1, 3, 5}, {1, 2, 3, 6}, P ′}, {{2, 3, 7}, {1, 2, 3, 6}, P ′},

{{1, 2}, {1, 2, 4}, {1, 2, 3, 6}, P ′}, {{1, 3}, {1, 3, 5}, {1, 2, 3, 6}, P ′},

{{2, 3}, {2, 3, 7}, {1, 2, 3, 6}, P ′},

{{1}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 3, 5}, {1, 2, 3, 6},

{{2}, {1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 7}, {1, 2, 3, 6}, P ′},

{{3}, {1, 3}, {2, 3}, {1, 3, 5}, {2, 3, 7}, {1, 2, 3, 6}, P ′}, P ′},Ff } .

Cdp = {{P ′}, {{1, 2, 3, 4, 5, 6}, P ′}, {{1, 2, 3, 4, 6, 7}, P ′}, {{1, 2, 3, 5, 6, 7}, P ′},

{{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, P ′},

{{1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 6, 7}, P ′},

{{1, 2, 3, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′},

{{1, 2, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, P ′},

{{1, 3, 5}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 6, 7}, P ′}

{{2, 3, 7}, {1, 2, 3, 6, 7}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′}

{{1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7}, {1, 2, 3, 4, 5, 6},

{1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′},

{{1, 2, 4}, {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′},

{{1, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′},

{{2, 3, 7}, {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, P ′},



Details of selected examples 243

Fdp − {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 7}},

Fdp − {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 3, 5}},

Fdp − {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 3, 5}, {2, 3, 7}},

Fdp − {{2}, {3}, {2, 3}, {2, 3, 7}},Fdp− {{1}, {3}, {1, 3}, {1, 3, 5}},

Fdp − {{1}, {2}, {1, 2}, {1, 2, 4}},Fdp } .

Example A.2.3. Here we provide more details on the completions considered

in Examples 6.2.2 and 6.3.3. Let P′ be the poset depicted in Figures 6.2 and 6.5.

Then,

Fd = {{1}, {2}, {1, 2, 3}, {1, 2, 4}} and Id = {{3}, {4}, {1, 3, 4}, {2, 3, 4}}.

For ∗ ∈ {p, dp, f},

F∗ = Fd ∪ {∅, {1, 2}, P ′} and I∗ = Id ∪ {∅, {3, 4}, P ′}.

Furthermore,

Cd = {∅, {{1, 2, 3}}, {{1, 2, 4}}, {{1, 2, 3}, {1, 2, 4}},Fd− {{2}},Fd − {{1}},Fd}

and, for ∗ ∈ {p, dp, f},

C∗ = {{P ′}, {{1, 2, 3}, P ′}, {{1, 2, 4}, P ′}, {{1, 2, 3}, {1, 2, 4}, P ′}

{{1, 2}, {1, 2, 3}, {1, 2, 4}, P ′},F∗ − {{1}},F∗ − {{2}},F∗ }

Clearly then ⊥d = ∅, 3 = {{1, 2, 3}, {1, 2, 4}} and ⊤d = Fd are neither open

nor closed in Cd.

On the other hand, there are elements that are not in α∗(P
′) that are either

closed or open in C∗ for ∗ ∈ {p, dp, f}. For example, 3 = {{1, 2}, {1, 2, 3}, {1, 2, 4}, P ′} =
∧

α∗({1, 2}) ∈ K∗ and 4 = {{1, 2, 3}, {1, 2, 4}, P ′} =
∨

α∗({3, 4}) ∈ O∗.

Example A.2.4. Let P′ = 〈P ′,≤〉 be the poset from Example 6.2.14 de-

picted in Figure 6.3. Then, Fd(P′) = {{1}, {2}} = Id(P′) and, for ∗ ∈

{p, dp, f}, F∗(P′) = {∅, {1}, {2}, P ′} = I∗(P′). We then have that, Cd(P
′) =

{∅, {{1}}, {{2}},Fd(P
′)} and C∗(P

′) = {{P ′}, {{1}, P ′}, {{2}, P ′},F∗(P
′)}. Clearly

Cd(P
′) is isomorphic to C∗(P

′) and is the complete lattice depicted in Fig-

ure 6.3.

Let Q′ = P′ ×P′; then Q′ is also depicted in Figure 6.3. Label the elements

of Q′ with a, b, c, d form left to right. Then,

Fd(Q′) = {{a}, {b}, {c}, {d}}= Id(Q′),
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Ff (Q′) = Fd(Q′) ∪ {∅, {a, b, c, d}} = If (Q′)

and, for ∗ ∈ {p, dp},

F∗(Q′)

= Ff (Q′) ∪ {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}}

= I∗(Q′).

We now have that,

Cd(Q
′) = {∅, {{a}}, {{b}}, {{c}}, {{d}},Fd(Q

′)},

Cf (Q
′) = {Q′, {{a}, Q′}, {{b}, Q′}, {{c}, Q′}, {{d}, Q′},Ff(Q

′)}

and C∗(Q
′) contains 129 elements for ∗ ∈ {p, dp}. See Figure 6.3 for a depiction

of C∗(Q
′), ∗ ∈ {f, d}.

Example A.2.5. Let P′ be the 3-element anti-chain considered in Example 6.3.8

and depicted in Figure 6.6. Then,

Fd = {{1}, {2}, {3}}= Id and Ff = Fd ∪ {∅, P ′} = If .

Furthermore,

Cd = {∅, {{1}}, {{2}}, {{3}},Fd}

and

Cf = {{P ′}, {{1}, P ′}, {{2}, P ′}, {{3}, P ′},Ff}.

Clearly Cd and Cf are isomorphic. Then C∗, ∗ ∈ {f, d}, is the complete lattice

depicted in Figure 6.6.

On the other hand,

Fdp = Ff ∪ {{1, 2}, {1, 3}, {2, 3}}= Idp

and

Cdp = {{P ′}, {{1, 2}, P ′}, {{1, 3}, P ′}, {{2, 3}, P ′},

{{1, 2}, {1, 3}, P ′}, {{1, 2}, {2, 3}, P ′}, {{1, 3}, {2, 3}, P ′},

{{1}, {1, 2}, {1, 3}, P ′}, {{2}, {1, 2}, {2, 3}, P ′},

{{3}, {1, 3}, {2, 3}, P ′},Fdp − {{1}, {2}, {3}},

Fdp − {{1}, {2}},Fdp − {{1}, {3}},Fdp − {{2}, {3}},

Fdp − {{1}},Fdp − {{2}},Fdp − {{3}},Fdp }
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The complete lattice Cdp is depicted in Figure A.2. Now label the element in

Cdp with ‘a’ to ‘r’ from top to bottom and from left to right. Let f : P → P be

the operator defined in Example 6.3.8 by f(1) = f(2) = 2 and f(3) = 3. Then

fσ
dp : Cdp → Cdp is defined as in Table A.1. It is easy to check that fσ

dp is an

operator.

bc

bc bcbc

bc bc bc

bc

bc bc bc

bc bc bc

bc

b b bi

d

k

q

Fig. A.2: Cdp of the the 3-element anti-chain.

fσ
dp(a) = d fσ

dp(g) = d fσ
dp(m) = i

fσ
dp(b) = i fσ

dp(h) = i fσ
dp(n) = q

fσ
dp(c) = d fσ

dp(i) = i fσ
dp(o) = i

fσ
dp(d) = d fσ

dp(j) = i fσ
dp(p) = q

fσ
dp(e) = i fσ

dp(k) = k fσ
dp(q) = q

fσ
dp(f) = i fσ

dp(l) = i fσ
dp(r) = q

Tab. A.1: The definition of fσ
dp : Cdp → Cdp.

Example A.2.6. Let P′ be the poset depicted in Figure 6.9 considered in Ex-

ample 6.3.30. Then, for ∗ ∈ {dp, f},

F∗ = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, P ′}

and

I∗ = {∅, {6}, {4, 6}, {5, 6}, {4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}, P ′}.
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Now,

C∗ = {{P ′}, {{1, 2, 3, 4}, P ′}, {{1, 2, 3, 5}, P ′}, {{1, 2, 3, 4}, {1, 2, 3, 5}, P ′},

{{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, P ′},F∗ − {{1}, {1, 3}},

F∗ − {{1}, {1, 2}},F∗ }

and C∗ is the complete lattice depicted in Figure 6.9.

A.3 Examples from Chapter 7

Example A.3.1. This example provides the full details of Example 7.1.3. Let

P′ be the poset depicted in Figure 7.1. Then,

F∗ = {{1}, {1, 2}, {1, 3}, {1, 4}, {1,2,3}, {1,2,4}, {1,3,4}, P ′}

and

I∗ = {∅, {2}, {3}, {4}, P ′}

for ∗ ∈ {p, dp}. Furthermore, F ∗ and I ∗ contain the elements in F∗ and I∗,

respectively, printed in bold. Then,

1 � 2, 1 ∈ {1, 3, 4} and {2} ∈ I
∗, 1 � 3, 3 ∈ {1, 2, 4} and {3} ∈ I

∗,

1 � 4, 2 ∈ {1, 2, 3} and {4} ∈ I
∗, 2 � 3, 2 ∈ {1, 2, 4} and {3} ∈ I

∗,

3 � 2, 3 ∈ {1, 3, 4} and {2} ∈ I
∗, 2 � 4, 2 ∈ {1, 2, 3} and {4} ∈ I

∗,

4 � 2, 4 ∈ {1, 3, 4} and {2} ∈ I
∗, 3 � 4, 3 ∈ {1, 2, 3} and {4} ∈ I

∗,

4 � 3, 4 ∈ {1, 2, 4} and {3} ∈ I
∗.

Therefore, P′ satisfies (7.1) and (7.2). Then,

E∗ = {∅, {{1, 2, 3}}, {{1, 2, 4}}, {{1, 3, 4}}, {{1, 2, 3}, {1, 2, 4}}, {{1, 2, 3}, {1, 3, 4}},

{{1, 2, 4}, {1, 3, 4}},F ∗ }

and E∗ = 〈E∗,∪,∩〉 can be depicted as in Figure 7.1.

On the other hand, Ff = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3, 4}} and If =

{∅, {2}, {3}, {4}, {1, 2, 3, 4}}. Then, F f = ∅ and I f = ∅ and clearly a simi-

lar construction using prime Frink filters instead of prime Doyle-pseudo filters

would not yield the required result.
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Example A.3.2. Let ∗ ∈ {p, dp} and let P′ be the poset depicted in Figure 7.2

considered in Example 7.3.4. Compare with Example A.2.3. Then,

F∗ = {∅, {1}, {2}, {1,2}, {1,2,3}, {1,2,4}, P ′}

I∗ = {∅, {3}, {4}, {3,4}, {1,3,4}, {2,3,4}, P ′}.

Moreover, F ∗ and I ∗ contain the elements in Fdp and Idp, respectively, printed

in bold. Then,

1 � 2, {1} ∈ F
∗ and {2, 3, 4} ∈ I

∗, 1 � 3, {1} ∈ F
∗ and {2, 3, 4} ∈ I

∗,

1 � 4, {1} ∈ F
∗ and {2, 3, 4} ∈ I

∗, 2 � 1, {2} ∈ F
∗ and {1, 3, 4} ∈ I

∗,

2 � 3, {2} ∈ F
∗ and {1, 3, 4} ∈ I

∗, 2 � 4, {2} ∈ F
∗ and {1, 3, 4} ∈ I

∗,

3 � 4, {1, 2, 3} ∈ F
∗ and {4} ∈ I

∗, 4 � 3, {1, 2, 4} ∈ F
∗ and {3} ∈ I

∗.

Thus, P′ satisfies (7.1) and (7.2). Therefore, we can construct a completely

distributive complete lattice E∗ by Theorem 7.1.2. Then,

E∗ = {∅, {{1, 2, 3}}, {{1, 2, 4}}, {{1, 2, 3}, {1, 2, 4}}, {{1, 2}, {1, 2, 3}, {1, 2, 4}},

{{1}, {1, 2}, {1, 2, 3}, {1, 2, 4}}, {{2}, {1, 2}, {1, 2, 3}, {1, 2, 4}},F ∗ }

and E∗ is the complete lattice depicted in Figure 7.2.

Let f : P ′ → P ′ be the identity map. Then,

fE∗(ξ∗(3)) = {F ∈ F
∗ : [3) ⊆ F} = ξ∗(3)

and

fE∗(ξ∗(4)) = {F ∈ F
∗ : [4) ⊆ F} = ξ∗(4).

Therefore,

fE∗(ξ∗(3)) ∪ f
E∗(ξ∗(4)) = ξ∗(3) ∪ ξ∗(4) = {{1, 2, 3}, {1, 2, 4}}.

On the other hand,
⋂

{{1, 2, 3}, {1, 2, 4}}= {1, 2}. Thus,

fE∗(ξ∗(3) ∪ ξ∗(4)) = {F ∈ F
∗ : {1, 2} ⊆ F}

= {{1, 2}, {1, 2, 3}, {1, 2, 4}}

6= fE∗(ξ∗(3)) ∪ f
E∗(ξ∗(4)).

Next let h : P ′ → P ′ be defined by h(1) = 3, h(2) = 4, h(3) = 1 and h(4) = 2.

Then, as established in the proof of Lemma 7.3.3,

hE∗(ξ∗(3)) = {F ∈ F
∗ : h((3]) ⊆ F} = {F ∈ F

∗ : 1 ∈ F} = ξ∗(1)
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and

hE∗(ξ∗(4)) = {F ∈ F
∗ : h((4]) ⊆ F} = {F ∈ F

∗ : 2 ∈ F} = ξ∗(2).

Therefore,

hE∗(ξ∗(3)) ∩ h
E∗(ξ∗(4)) = ξ∗(1) ∩ ξ∗(2) = {{1, 2}, {1, 2, 3}, {1, 2, 4}}.

On the other hand, since ξ∗(3) ∩ ξ∗(4) = ∅, we have that

hE∗(ξ∗(3) ∩ ξ∗(4)) = {F ∈ F
∗ : ∅ ⊆ F}

= F
∗

6= hE∗(ξ∗(3)) ∩ h
E∗(ξ∗(4)).



B. IMPLEMENTATION OF ALGORITHM TO COMPUTE C∗

Though the construction described in Chapter 6.1.1 of the complete lattice C,

from a polarization (S1, S2), is not particularly complicated, it may prove to

be a time consuming process. This is essentially due to the fact that, for each

set in P(S1), we must check whether or not it is Galois closed. Hence, we

have 2|S1| sets to consider. Even for a small poset, computing C may turn out

to be a big undertaking. For instance, the 3-element anti-chain considered in

Example A.2.5 has 7 non-empty Doyle-pseudo filters and ideals. Hence, there

are 128 sets in P(Fdp) to test for Galois closure.

On the up side, the process can easily be implemented since it requires no

human intervention. Since we relied upon numerous examples and counterexam-

ples during our study of these completions, we found it necessary to implement

the algorithm to generate our examples.

Our implementation was done in Java and we made use of a pre-defined

set object. The input file contains the two sets that form the polarization

with respect to which the complete lattice is constructed. The program then

computes the set of Galois closed subsets of the first set, and generates a file

containing this set as output. In this Appendix we provide the source code of

our implementation in order for the reader to easily verify the correctness of the

examples generated through this. We also provide a sample input and output

file.

B.1 Source code

package Complet ionWrtPolar izat ion ;

import java . u t i l . ∗ ;

import java . n io . f i l e . F i l e s ;

import java . n io . f i l e . Path ;
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import java . n io . f i l e . Paths ;

import java . n io . cha r s e t . Charset ;

import java . n io . cha r s e t . StandardCharsets ;

import java . i o . IOException ;

/∗

∗ @author Wilmari Morton

∗ Note : No e f f o r t has been made to opt imise t h i s code .

∗ The ob je c t was to c r e a t e a working a lgor i thm .

∗/

pub l i c c l a s s Complet ionWrtPolar izat ion {

f i n a l s t a t i c Charset ENCODING = StandardCharsets . UTF 8 ;

/∗

∗ @param args the command l i n e arguments

∗ The f i r s t argument i s the path to the input f i l e

∗ conta in ing the p o l a r i z a t i o n .

∗ The second argument i s the path o f the output f i l e .

∗/

pub l i c s t a t i c vo id main ( St r ing [ ] a rgs ) {

t ry {

//Read the input f i l e i n to a Lis t<Str ing >.

L i s t<Str ing> f u l l F i l eCo n t e n t s =

readInputF i l e ( a rgs [ 0 ] ) ;

//Extract Set 1 from the input f i l e contents .

Set<Object> s e t1 =

GetSetsFromStr ingList ( ExtractSet1 ( f u l l F i l eCo n t e n t s ) ) ;

//Extract Set 2 from the input f i l e contents .

Set<Object> s e t2 =

GetSetsFromStr ingList ( ExtractSet2 ( f u l l F i l eCo n t e n t s ) ) ;

//Perform the complet ion .

Set<Object> r e s u l t S e t =

PerformComplet ionWrtPolar izat ion( set1 , s e t2 ) ;
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/∗

∗ Write the r e s u l t i n g Ga lo i s c l o s ed s e t s

∗ out to f i l e .

∗/

WriteOutput ( args [ 1 ] , r e s u l t S e t ) ;

} catch ( IOException ex ) {

System . out . p r i n t l n ( ex . getMessage ( ) ) ;

}

}

//Algorithm to compute the Ga lo i s c l o s ed elements .

pub l i c s t a t i c Set<Object>

PerformComplet ionWrtPolar izat ion

( Set<Object> set1 , Set<Object> s e t2 ) {

Set<Object> g a l o i sC l o s edSe t s = new HashSet<Object >() ;

Set powerSetOfSet1 = powerSet ( s e t1 ) ;

boolean nonEmptyIntersect ion ;

/∗

∗ I t e r a t o r through the power s e t o f Set 1 .

∗ In our c on s t r u c t i o n o f C,

∗ Set 1 i s the s e t o f ∗− f i l t e r s .

∗/

f o r ( I t e r a t o r powerSetOfSet1 I te ra tor =

powerSetOfSet1 . i t e r a t o r ( ) ;

powerSetOfSet1 I te ra tor . hasNext ( ) ; ) {

Set powerSetElement =

( Set ) powerSetOfSet1 I te ra tor . next ( ) ;

Set<Object> nonEmptyIntersect ionSet2 =

new HashSet<Object >() ;

Set<Object> nonEmptyIntersect ionSet1 =

new HashSet<Object >() ;

/∗

∗ Find the elements o f Set 2 that

∗ have a non−empty i n t e r s e c t i o n with

∗ a l l the e lements o f the cur r ent s e t .
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∗/

f o r ( I t e r a t o r s e t 2 I t e r a t o r =

se t2 . i t e r a t o r ( ) ; s e t 2 I t e r a t o r . hasNext ( ) ; ) {

Set set2Element =

( Set ) s e t 2 I t e r a t o r . next ( ) ;

nonEmptyIntersect ion = true ;

f o r ( I t e r a t o r powerSetE lementI te rator =

powerSetElement . i t e r a t o r ( ) ;

powerSetE lementI te rator . hasNext ( ) ; ) {

Set set1Element =

( Set ) powerSetE lementI te rator . next ( ) ;

boolean elementFound = f a l s e ;

f o r ( I t e r a t o r s e t1E l ement I t e r a to r =

set1Element . i t e r a t o r ( ) ;

s e t1E l ement I t e r a to r . hasNext ( ) ; ) {

St r ing element =

( St r ing ) s e t1E l ement I t e r a to r . next ( ) ;

i f ( set2Element . conta in s ( element ) ) {

elementFound = true ;

break ;

}

}

i f ( ! elementFound ) {

nonEmptyIntersect ion = f a l s e ;

break ;

}

}

i f ( nonEmptyIntersect ion ) {

nonEmptyIntersect ionSet2 . add ( set2Element ) ;

}

}

f o r ( I t e r a t o r s e t 1 I t e r a t o r =

se t1 . i t e r a t o r ( ) ; s e t 1 I t e r a t o r . hasNext ( ) ; ) {

Set set1Element = ( Set ) s e t 1 I t e r a t o r . next ( ) ;

nonEmptyIntersect ion = true ;
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f o r ( I t e r a t o r nonEmpty Inte r sec t ionSet2 I t e ra tor =

nonEmptyIntersect ionSet2 . i t e r a t o r ( ) ;

nonEmpty Inte r se ct i onSe t2 I t e ra tor . hasNext ( ) ; ) {

Set set2Element =

( Set ) nonEmpty Inte r s ec t i onSe t2 I t e ra tor . next ( ) ;

boolean elementFound2 = f a l s e ;

f o r ( I t e r a t o r s e t2E l ement I t e r a to r =

set2Element . i t e r a t o r ( ) ;

s e t2E l ement I t e r a to r . hasNext ( ) ; ) {

St r ing e l =

( St r ing ) s e t2E l ement I t e r a to r . next ( ) ;

i f ( set1Element . conta in s ( e l ) ) {

elementFound2 = true ;

break ;

}

}

i f ( ! elementFound2 ) {

nonEmptyIntersect ion = f a l s e ;

break ;

}

}

i f ( nonEmptyIntersect ion ) {

nonEmptyIntersect ionSet1 . add ( set1Element ) ;

}

}

i f ( ( powerSetElement . s i z e ( ) ==

nonEmptyIntersect ionSet1 . s i z e ( ) ) ) {

g a l o i sC l o s edSe t s . add ( powerSetElement ) ;

}

}

r e turn g a l o i sC l o s edSe t s ;

}

/∗

∗ Returns the power s e t o f a s e t .
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∗/

pub l i c s t a t i c <T> Set<Set<T>> powerSet ( Set<T> o r i g i n a l S e t ) {

Set<Set<T>> s e t s = new HashSet<Set<T>>();

i f ( o r i g i n a l S e t . isEmpty ( ) ) {

s e t s . add (new HashSet<T> ( ) ) ;

r e turn s e t s ;

}

Lis t<T> l i s t = new ArrayList<T>( o r i g i n a l S e t ) ;

T head = l i s t . get ( 0 ) ;

Set<T> r e s t = new HashSet<T>( l i s t . subLis t (1 , l i s t . s i z e ( ) ) ) ;

f o r ( Set<T> s e t : powerSet ( r e s t ) ) {

Set<T> newSet = new HashSet<T>() ;

newSet . add ( head ) ;

newSet . addAll ( s e t ) ;

s e t s . add ( newSet ) ;

s e t s . add ( s e t ) ;

}

r e turn s e t s ;

}

/∗

∗ Reads in the f i l e at the s p e c i f i e d path

∗ and r e turns a Lis t<Str ing >.

∗ Each l i s t item i s a l i n e in the f i l e .

∗/

pub l i c s t a t i c L i s t<Str ing>

r ead InputF i l e ( S t r ing aFileName ) throws IOException {

Path path = Paths . get ( aFileName ) ;

r e turn F i l e s . r eadAl lL ine s ( path , ENCODING) ;

}

/∗

∗ I t e r a t e s through the Lis t<Str ing> r e turned from

∗ r ead ing the input f i l e and r e turns a Lis t<Str ing>

∗ which only conta in s the l i n e s from the input f i l e
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∗ pe r t a i n i ng to Set 1 .

∗/

pub l i c s t a t i c L i s t<Str ing>

ExtractSet1 ( L i s t<Str ing> f u l l F i l eCo n t e n t s )

{

ArrayList<Str ing> r e tu r nL i s t =

new ArrayList<Str ing >() ;

I t e r a t o r<Str ing> i t e r = f u l l F i l eCo n t e n t s . i t e r a t o r ( ) ;

boolean done = f a l s e ;

boolean s t a r t ed = f a l s e ;

whi l e ( i t e r . hasNext()&&!done )

{

St r ing cur r entL ine = i t e r . next ( ) ;

i f ( cu r r entL ine . equa l s IgnoreCase(”−−Set 1−−”))

s t a r t ed = true ;

i f ( ( s t a r t ed ) &&

( cur r entL ine . equa l s IgnoreCase(”−−Set 2−−”)))

done = true ;

i f ( ( s t a r t ed ) && ( ! done ) &&

( ! cur r entL ine . equa l s IgnoreCase(”−−Set 1−−”)))

r e tu r nL i s t . add ( cur r entL ine ) ;

}

r e turn r e tu r nL i s t ;

}

/∗

∗ I t e r a t e s through the Lis t<Str ing> r e turned from

∗ r ead ing the input f i l e and r e turns a Lis t<Str ing>

∗ which only conta in s the l i n e s from the input f i l e

∗ pe r t a i n i ng to Set 2 .

∗/

pub l i c s t a t i c L i s t<Str ing>

ExtractSet2 ( L i s t<Str ing> f u l l F i l eCo n t e n t s )

{

ArrayList<Str ing> r e tu r nL i s t = new ArrayList<Str ing >() ;



Implementation of algorithm to compute C∗ 256

I t e r a t o r<Str ing> i t e r = f u l l F i l eCo n t e n t s . i t e r a t o r ( ) ;

boolean done = f a l s e ;

boolean s t a r t ed = f a l s e ;

whi l e ( i t e r . hasNext()&&!done )

{

St r ing cur r entL ine = i t e r . next ( ) ;

i f ( cu r r entL ine . equa l s IgnoreCase(”−−Set 2−−”))

s t a r t ed = true ;

i f ( ( s t a r t ed ) &&

( cur r entL ine . equa l s IgnoreCase(”−−Set 1−−”)))

done = true ;

i f ( ( s t a r t ed ) && ( ! done ) &&

( ! cur r entL ine . equa l s IgnoreCase(”−−Set 2−−”)))

r e tu r nL i s t . add ( cur r entL ine ) ;

}

r e turn r e tu r nL i s t ;

}

/∗

∗ Converts a L i s t o f s t r i n g s o f the f o r a , b , c e t c

∗ i n to a Set o f Set<Str ings >.

∗/

pub l i c s t a t i c Set<Object>

GetSetsFromStr ingList ( L i s t<Str ing> i nputL i s t ) {

Set<Object> r e tu rnSe t = new HashSet<Object >() ;

f o r ( S t r ing s : i nputL i s t ) {

Set<Str ing> addSet = new HashSet<Str ing >() ;

S t r ing [ ] i nn e r S t r i n g = s . s p l i t ( ” , ” ) ;

f o r ( S t r ing element : i nn e r S t r i n g ) {

i f ( ( ! element . equa l s IgnoreCase (” empty ” ) ) &&

( ! element . isEmpty ( ) ) ) {

addSet . add ( element ) ;

}

}

r e tu rnSe t . add ( addSet ) ;
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}

r e turn r e tu rnSe t ;

}

/∗

∗ Takes in the s t r i n g r ep r e s en t a t i o n o f a Set object ,

∗ e . g . [ b , c , a ] , o rde r s the e lements a l p h a b e t i c a l l y

∗ and r e turns a s t r i n g in the format :

∗ {a , b , c}

∗/

pub l i c s t a t i c S t r ing OrderedSet ( S t r ing inputSt r ing ) {

i nputSt r ing = inputSt r ing . r e p l a c eA l l ( ” \ \ [ ” , ” ” ) ;

i nputSt r ing = inputSt r ing . r e p l a c eA l l ( ” \ \ ] ” , ” ” ) ;

i nputSt r ing = inputSt r ing . r e p l a c eA l l (” ” , ” ” ) ;

S t r ing [ ] s t rArray = inputSt r ing . s p l i t ( ” , ” ) ;

java . u t i l . Arrays . s o r t ( s t rArray ) ;

S t r ing s e tS t r i n g = ”{” ;

f o r ( S t r ing element : s t rArray ) {

s e tS t r i n g = s e tS t r i n g . concat ( element ) ;

s e tS t r i n g = s e tS t r i n g . concat ( ” , ” ) ;

}

s e tS t r i n g = s e tS t r i n g . s ub s t r i n g (0 ,

s e tS t r i n g . l ength ( ) − 1 ) ;

s e tS t r i n g = s e tS t r i n g . concat ( ” } ” ) ;

r e turn s e tS t r i n g ;

}

/∗

∗ Writes the s e t s out to the output f i l e

∗/

pub l i c s t a t i c vo id WriteOutput ( St r ing f i l ePa th ,

Set<Object> g a l o i sC l o s edSe t s ) throws IOException {

/∗

∗ This loop ge t s the maximum s i z e o f the s e t s .
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∗ This i s used to output the s e t s in order o f s i z e .

∗/

i n t maxElements = 0 ;

f o r ( I t e r a t o r i t e r a = ga l o i sC l o s edSe t s . i t e r a t o r ( ) ;

i t e r a . hasNext ( ) ; ) {

Set s tb = ( Set ) i t e r a . next ( ) ;

i f ( s tb . s i z e ( ) > maxElements ) {

maxElements = stb . s i z e ( ) ;

}

}

ArrayList<Str ing> aLines = new ArrayList<Str ing >() ;

aL ines . add (”C={”);

/∗

∗ I t e r a t e from 0 to the max s e t s i z e .

∗ At each i t e r a t i o n wr i t e out the s e t s that have

∗ that number o f sub−s e t s .

∗/

f o r ( i n t count = 0 ; count <= maxElements ; count++) {

f o r ( I t e r a t o r i t e r a = ga l o i sC l o s edSe t s . i t e r a t o r ( ) ;

i t e r a . hasNext ( ) ; ) {

Set s tb = ( Set ) i t e r a . next ( ) ;

i f ( s tb . s i z e ( ) == count ) {

St r ing p r i n tS t r i n g = ”{” ;

f o r ( I t e r a t o r inne r = stb . i t e r a t o r ( ) ;

i nne r . hasNext ( ) ; ) {

i f ( ! p r i n tS t r i n g . endsWith (”{” ) ) {

p r i n tS t r i n g =

pr i n tS t r i n g . concat ( ” , ” ) ;

}

Set i n s e t = ( Set ) inne r . next ( ) ;

p r i n tS t r i n g =

pr i n tS t r i n g . concat

( OrderedSet ( i n s e t . t oSt r ing ( ) ) ) ;

}

p r i n tS t r i n g = pr i n tS t r i n g . concat ( ” } ” ) ;
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aLines . add ( p r i n tS t r i n g ) ;

}

}

}

aLines . add (” } ” ) ;

Path path = Paths . get ( f i l e P a t h ) ;

F i l e s . wr i t e ( path , aLines , ENCODING) ;

}

}

B.2 Sample input file

Let P ′ be the 3-element anti-chain from Example A.2.5. To compute Cdp, the

completion with respect to (Fdp, Idp) the following is received as input.

input.txt:

– – Set 1 – –

1

2

3

1, 2

1, 3

2, 3

1, 2, 3

– – Set 2 – –

1

2

3

1, 2

1, 3

2, 3

1, 2, 3

B.3 Sample output file

The following file is received as output, given the input (Fdp, Idp) from the

sample above.
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output.txt:

C = {

{{1, 2, 3}}

{{1, 3}, {1, 2, 3}}

{{2, 3}, {1, 2, 3}}

{{1, 2}, {1, 2, 3}}

{{1, 3}, {2, 3}, {1, 2, 3}}

{{2, 3}, {1, 2}, {1, 2, 3}}

{{1, 3}, {1, 2}, {1, 2, 3}}

{{3}, {1, 3}, {2, 3}, {1, 2, 3}}

{{2}, {2, 3}, {1, 2}, {1, 2, 3}}

{{1}, {1, 3}, {1, 2}, {1, 2, 3}}

{{1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

{{2}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

{{3}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

{{1}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

{{3}, {1, 3}, {1}, {2, 3}, {1, 2}, {1, 2, 3}}

{{3}, {2}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

{{2}, {1, 3}, {1}, {2, 3}, {1, 2}, {1, 2, 3}}

{{3}, {2}, {1}, {1, 3}, {2, 3}, {1, 2}, {1, 2, 3}}

}
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tions of Mathematics, Computer Science and Physics - Kurt Gödel’s
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