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Abstract

In a number of situations the derivative of the objective function of an op-
timization problem is not available. This thesis presents a novel algorithm
for solving mixed integer programs when this is the case. The algorithm
is the first developed for problems of this type which uses a trust region
methodology. Three implementations of the algorithm are developed and
deterministic proofs of convergence to local minima are provided for two of
the implementations.

In the development of the algorithm several other contributions are made.
The derivative free algorithm requires the solution of several mixed inte-
ger quadratic programming subproblems and novel methods for solving non-
convex instances of these problems are developed in this thesis. Additionally,
it is shown that the current definitions of local minima for mixed integer pro-
grams are deficient and a rigorous approach to developing possible definitions
is proposed. Using this approach we propose a new definition which improves
on those currently used in the literature.

Other components of this thesis are an overview of derivative based mixed
integer non-linear programming, extensive reviews of mixed integer quadratic
programming and deterministic derivative free optimization and extensive
computational results illustrating the effectiveness of the contributions men-
tioned in the previous paragraphs.
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Chapter 1

Introduction

This chapter is intended to give a brief introduction to the work done in
this thesis. Section 1.1 contains a description of the problems considered. In
section 1.2 we list applications of the problems described in section 1.1 and
a give brief summary of the current literature related to the solution of these
problems. Finally we describe the gaps in the literature that will be filled by
the approaches developed in this thesis. Section 1.3 gives an outline of the
structure of the remainder of the thesis.

1.1 Problem overview

Optimization problems involve the minimization of an objective function
subject to some set of constraints. One of the most general classes of op-
timization problems are the mixed integer non-linear programs (MINLPs).
MINLPs are problems whose objective functions and constraints can be non-
linear and which involve both continuous and integer variables. A large
number of real world problems from many different disciplines can be formu-
lated as MINLPs [120]. Accordingly, a large amount of work has been done
on developing both local and global solution approaches for this type of prob-
lem [67]. Both heuristic and deterministic approaches have been developed,
in this work we will mainly concern ourselves with the deterministic case.
Almost all of these approaches rely on knowledge of the derivative of the
objective function [67]. However, there are a number of problems in which
the required derivatives may be unavailable. These problems all have one
or more of the following characteristics; the objective function is expensive,
the objective function is noisy or the objective function is obtained using a
black box simulation [46]. Problems of this type can only be solved using
derivative free optimization methods. The development of a deterministic
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derivative free algorithm for solving MINLPs is the main aim of this thesis.
However, rather than considering general MINLPs, as described above, we
shall consider the simpler class of bound constrained MINLPs. As is clear
from the name, the variables in bound constrained MINLPs may only be
restricted by upper and lower bounds rather than the general non-linear con-
straints described above. The problem described above can be formulated
quantitatively as follows:

min
x

f(x) (1.1)

s.t. l ≤ x ≤ u,

x =
[
xTc , x

T
d

]T ∈ R
nc × Z

nd,

where f(x) is some non-linear function of x, nd is the number of discrete
integer variables and nc is the number of continuous variables. Problem (1.1)
must be solved without using the derivative of f .

A second problem considered in this thesis involves the solution of an-
other subclass of general MINLPs, namely mixed integer quadratic programs
(MIQPs). A MIQP is an optimization problem with a quadratic objective
function, linear constraints and both continuous and integer variables. Obvi-
ously a problem with these characteristics can be formulated mathematically
as follows:

min
x

h(x) =
1

2
xTHx+ gTx (1.2)

s.t. Ax ≤ b,

Dx = e,

l ≤ x ≤ u,

x =
(
xTc , x

T
d

)T ∈ R
nc × Z

nd ,

where H ∈ Sn (space of real, symmetric matrices of order n), g ∈ R
n,

A ∈ R
(a,n), b ∈ R

a, D ∈ R
(p,n) and e ∈ R

p. Mature solution approaches
have been developed for convex MIQPs and commercial software packages
are available for solving these problems. Far less work has been done on
solving the non-convex version of problem (1.2) and the non-convex case is
the focus of the work done in this thesis.

1.2 Motivation

Derivative free optimization procedures for continuous problems have ad-
vanced considerably in the past two decades. This is due to a dramatic
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increase in the number of applications requiring derivative free methods [46].
Very little work has been done on extending these approaches to the mixed
integer case. The approaches which have been developed are all based on ex-
tending continuous direct search procedures to the mixed integer case. One
concern about the implementation of these algorithms is that they consider
the continuous and discrete variables separately, this may cause then to ig-
nore information that could prove useful in the minimization of f . In addition
they all follow a similar basic form so the effect of using different algorithmic
structures has not been well explored for derivative free MINLPs. It is in
an attempt to overcome these problems that we develop a novel derivative
free mixed integer algorithm by extending the trust region based, continu-
ous, derivative free algorithm BOBYQA (Bound Optimization BY Quadratic
Approximation) [126].

The characteristics of problems requiring the use of derivative free opti-
mization methods were listed in section 1.1. Problems with these characteris-
tics arise in engineering, finance, industrial design, dynamic pricing, medical
imaging, groundwater supply problems and operations research, among oth-
ers [46, 68, 71, 72]. These problem characteristics occur most commonly in
combination with mixed variables in engineering applications [17, 71]. Most
of the real world derivative free, mixed integer problems have more compli-
cated constraints than the bound constraints considered here. It is hoped
that the bound constrained method proposed in this thesis will lead to the
development of trust region methods capable of handling more complicated
constraints. A number of methods have been developed for continuous prob-
lems which allow complicated constraints to be handled by methods origi-
nally developed for bound constrained problems. These approaches include
augmented Lagrangians [53, 96], inexact restoration [39], extreme barrier
approaches [20], filter methods [18] and auxiliary functions [168]. A modi-
fication of any of these methods to the mixed integer case would allow our
method to be used in solving real world problems with complicated con-
straints.

We now summarise the reasons for our focus on the development of so-
lution methods for non-convex MIQPs. The main reason is that a number
of MIQPs need to be solved as sub-problems during our derivative free al-
gorithm for solving problem (1.1). MIQPs are also important in their own
right, having a number of other applications including the mean variance
problem in portfolio optimization [60], model predictive control [22], hybrid
systems control [139], the optimal sizing and citing of substations in a net-
work routing problem [57] and chaotic mapping of complete multipartite
graphs [33]. As was noted in section 1.1 the algorithms for solving problem
(1.2) when H is positive semidefinite are relatively mature and commercial
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software is available to solve these problems. On the other hand, relatively
little work considers the non-convex version of problem (1.2). Most of the
work that has been done involves the development of convex relaxations and
valid inequalities. Solution methods for special cases of problem (1.2) have
been developed in [33, 38, 40, 113, 114]. None of these methods can solve
the most general form of problem (1.2). However, the most general form of
problem (1.2) can be solved using general MINLP solvers such as BARON
[135], the αBB method [8] and Couenne [28]. Problem (1.2) can also be
solved using a recently developed modification of the MINLP solver SCIP
[30]. We propose modifications to these existing general methods which al-
low us to solve problem (1.2) more efficiently then the unmodified general
methods would allow.

More specifically problem (1.2) is simplified by using carefully chosen
linear transformations to reduce the number of bilinear terms in the objective
function. As will be explained in chapter 2, each bilinear term requires
additional variables and constraints to be added to the problem during the
solution process which increases the time taken to solve the problem. The
reduction in the number of bilinear terms is especially large when the problem
contains more continuous variables than integer variables; it is in this case
that our methods are most effective.

1.3 Structure of the thesis

The remainder of this thesis is structured as follows. In chapter 2 we give a
summary of the most common methods used for solving MINLPs as well as a
review of the current methods available for solving MIQPs. In chapter 3 we
give a review of derivative free optimization methods. The review covers the
most common methods used to solve continuous problems and the current
state of mixed integer, derivative free methods with an emphasis on the
direct search procedures mentioned in section 1.2. Chapter 3 also contains
a detailed description of BOBYQA. In chapter 4 we develop methods for
solving problem (1.2). Chapter 5 contains the description of the derivative
free algorithm for solving problem (1.1). Computational results illustrating
the effectiveness of the methods developed in chapters 4 and 5 are given
in chapter 6. Chapter 7 contains concluding remarks and a discussion of
possible future work.
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Chapter 2

Review of Mixed Integer

Non-Linear Programming

This chapter contains a review of the deterministic techniques most com-
monly used to solve MINLPs as well as a review the literature relating to
MIQPs. The MINLP review does not go into detail concerning state of the
art methods based on these techniques since, as detailed in section 2.2.6, they
are not suitable for derivative free applications. The MINLP review is di-
vided into two parts; in section 2.1 we discuss methods developed for convex
MINLPs while section 2.2 reviews the non-convex case. The MIQP review
is contained in section 2.3. The material contained in the MIQP review is
relevant to the solution of problem (1.2). Some concluding remarks are given
in section 2.4.

2.1 Convex MINLPs

MINLPs are problems with non-linear objective functions and constraints
in which both continuous and integer variables are present. This is one of
the most general classes of optimization problems and a large number of
real world problems from many different disciplines can be formulated as
MINLPs; a list of examples is given in [34]. In this section we consider
MINLPs with the following form:

min
x

f(x) (2.1)

s.t. ci(x) ≤ 0, i = 1, . . . , ncons,

x =
[
xTc , x

T
d

]T ∈ R
nc × Z

nd ,
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where f(x) and ci(x) are convex functions of x and ncons is the number of
constraints. In the following sections we review the most commonly used
deterministic procedures for solving problem (2.1). Good reviews of this
topic can be found in [34, 67, 120].

2.1.1 Branch and Bound

Branch and Bound methods were initially introduced for solving mixed in-
teger linear programs (MILPs) in [50] and were extended to the non-linear
case in [36, 69, 142]. The basic idea behind Branch and Bound algorithms
is to use the continuous relaxation of problem (2.1) to obtain valid lower
bounds and explore the space of the integer variables using a tree search.
Specifically, this method proceeds by solving the continuous relaxation of
problem (2.1). If the solution of the continuous relaxation is feasible for
problem (2.1) then the optimal solution has been found and the algorithm
is stopped. Otherwise the solution of the continuous relaxation provides a
lower bound on the solution of problem (2.1) and the algorithm selects and
branches on one of the integer variables, say xi. Branching is achieved by
choosing a branching point, say x̂i, and forming two new problems by adding
the constraints xi ≤ ⌊x̂i⌋ and xi ≥ ⌈x̂i⌉ respectively to problem (2.1). One
of the new problems is then selected, its continuous relaxation is solved and
the branching process is repeated. In this way a search tree is generated in
which each node corresponds to a MINLP obtained from problem (2.1) using
bound constraints. At each iteration nodes are pruned if they satisfy one of
three fathoming rules:

i) The continuous relaxation of the MINLP is infeasible.

ii) The lower bound obtained using the continuous relaxation is greater
than the current upper bound on the solution.

iii) The solution of the continuous relaxation is feasible for problem (2.1).

If a node is fathomed using iii) then the solution of the continuous relaxation
provides an upper bound on the solution of problem (2.1). No branching
occurs on a fathomed node. The algorithm stops once all of the leaf nodes
of the search tree have been fathomed and returns the lowest upper bound
as the solution. Generally the Branch and Bound method is only effective
when the size of the search tree is small or when the continuous relaxations
are easy to solve.

In [36, 98] an extension to the Branch and Bound method is proposed
based on using sequential quadratic programming (SQP) to solve the contin-
uous relaxations. The change to the basic Branch and Bound procedure is
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that early branching is allowed. Specifically, after a certain number of SQP
iterations a decision is made whether to branch before solving the continuous
relaxation completely. While this method reduces the computational cost of
the continuous relaxations it precludes fathoming using ii).

2.1.2 Outer Approximation

The Outer Approximation method was first introduced in [55] for problems
which are linear in the integer variables. The method was extended to the
general non-linear case in [56]. The outer approximation algorithm proceeds
by solving a finite alternating sequence of non-linear programming (NLP)
subproblems and relaxations of a MILP master problem (MP). The MP
is constructed by reformulating problem (2.1) as a MILP and relaxing the
problem by removing some of the constraints. This relaxed problem is the
MP and its solution provides a lower bound on the solution of problem (2.1).
The MILP reformulation is obtained using supporting hyperplanes. At each
iteration of the algorithm the MP is used to obtain a vector of values for the
discrete variables; the vector used is the discrete component of the solution
of the MP. An NLP subproblem is then generated by fixing the values of the
discrete variables in problem (2.1) to be equal to the vector generated by the
MP. The NLP subproblem is used to find values for the continuous variables.
If the NLP is infeasible a feasibility problem is solved and a new master
problem is generated by adding constraints to the current MP which make
the vector of discrete variables used in the construction of the NLP infeasible.
Otherwise, if the NLP is feasible its solution gives an upper bound on the
solution of problem (2.1) and the MP for the next iteration is constructed
by adding cuts to the current MP which ensure that a better lower bound
is obtained during the next iteration. The algorithm is either stopped when
the MP becomes infeasible or when the upper and lower bounds are within
a specified tolerance.

Outer Approximation performs poorly on functions which cannot be well
approximated by linear functions. To overcome this limitation Fletcher and
Leyffer [56] developed the quadratic outer approximation method by adding
a second order Lagrangian term to the objective function of the MP. This
new master problem is a MIQP. This approach allows a better representation
of the non-linearities in problem (2.1). The disadvantages of quadratic outer
approximation are that the MP no longer provides a lower bound on problem
(2.1) and that the MP takes longer to solve since it is now a MIQP rather
than a MILP.

Another possible flaw of the Outer Approximation method is that it does
not exploit the strong relationship which exists between successive master
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problems. In an attempt to overcome this limitation the LP/NLP based
Branch and Bound method was developed in [97, 129]. This method solves
the master problem generated in the first iteration of the outer approximation
algorithm using a Branch and Bound procedure. The NLP subproblems used
in Outer Approximation are solved at each node where a feasible solution for
the discrete variables is produced.

2.1.3 Generalised Benders Decomposition

Benders Decomposition method was developed for MILP by Benders [29].
The extension of this method to the non-linear case is known as Generalised
Benders Decomposition (GBD) [58, 64]. The GBD method is similar to the
Outer Approximation algorithm discussed in section 2.1.2 in that it proceeds
by solving a finite alternating sequence of NLP subproblems and relaxations
of a MILP master problem. The MP used by GBD is not derived using
outer approximation, rather it is derived using non-linear duality theory.
Another difference is that GBD adds fewer cuts to the MP at each iteration
than Outer Approximation. As a result the GBD MP is easier to solve than
the Outer Approximation MP. The trade-off is that the MP used in Outer
Approximation supplies a tighter lower bound.

2.1.4 Extended Cutting Plane

The Extended Cutting Plane (ECP) method was developed in [158] by ex-
tending the continuous cutting plane algorithm [79] to the mixed integer
case. The ECP method can only be applied to problems with linear objec-
tive functions. Problems with non-linear objectives can easily be transformed
to the required form by moving the objective into the constraints. Unlike
the previous methods ECP does not require the solution of NLPs, rather it
proceeds by solving a sequence of MILPs. At each iteration a linearisation
of the most violated constraint is added to the MILP. This causes the series
of MILPs solved to produce a non-decreasing sequence of lower bounds on
problem (2.1). The algorithm is terminated when the greatest constraint
violation lies within a user defined tolerance. In Westerlund and Pörn [159]
the ECP method was extended to handle pseudo-convex problems.

2.1.5 Branch and Cut

The Branch and Cut method was originally developed for combinatorial op-
timization. It was extended to mixed binary programming in [142] and to
the general integer case by Kesavan and Barton [80]. The Branch and Cut
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procedure is an extension of the Branch and Bound procedure outlined in
section 2.1.1. Like Branch and Bound it explores the discrete space using a
search tree and uses continuous relaxations of problem (2.1) to obtain valid
lower bounds. However, each time a node which cannot be fathomed, is
generated the Branch and Cut procedure either branches to create two new
nodes or it adds cuts to the continuous relaxation which make the current
solution infeasible. If cuts are added the new continuous relaxation is solved
and the decision between branching and cutting on the current node is made
again.

2.1.6 Disjunctive Programming

In this section we discuss an alternative method of formulating problem (2.1)
using algebraic constraints, logic disjunctions and logic relations. This for-
mulation is known as a generalised disjunctive program (GDP) and it takes
the following form [67]:

min
xc,c

∑

k∈SD

ck + f(xc) (2.2)

s.t. ci(xc) ≤ 0, i = 1, . . . , ncons,

∨

j∈Dk




Yjk
hjk(xc) ≤ 0
ck = γjk


 , k ∈ SD,

Ω(Y ) = True,

xc ∈ R
nc , ck ∈ R, Yik ∈ {True,False},

where SD is the set of disjunctions and Dk is the set of terms in the kth
disjunction. Yjk are boolean variables which control the space in which the
continuous variables can lie. If Yjk is true then term j ∈ Dk is true in
disjunction k ∈ SD. In other words the constraint hjk(xc) ≤ 0 must be
satisfied by the continuous variables and the variable ck is given a value γjk.
Ω(Y ) are logical relations, in the form of propositional logic, which must be
satisfied by the boolean variables. As in problem (2.1), f and ci are convex
non-linear functions. However in this case they are functions only of xc ∈ R

nc

rather than of x [67].
Real world problems are modelled as GDPs when logical conditions are

involved in the problem formulation and when the integer variables are used
to model conditions where different sets of constraints are valid [120]. In
addition, any problem expressed as a MINLP can be transformed to a GDP
and vice-versa. Thus, any GDP can be solved by transforming it to a MINLP
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and applying one of the procedures described above. However it is often more
efficient to solve problem (2.2) directly. A number of the methods described
above have been altered to solve GDP rather than MINLPs. Specifically a
Branch and Bound procedure has been developed in [91], an Outer Approx-
imation algorithm has been developed in [153] and a GBD algorithm has
been developed in [153]. In [155] an Outer Approximation algorithm has
been developed which can solve hybrid problems involving both disjunctions
and mixed integer constraints.

2.2 Non-convex MINLPs

In this section we consider methods which find a global optimum of problem
(2.1) when we remove the constraint that f and ci must be convex functions.
All of the methods discussed in this section are based on the Branch and
Bound procedure. Due to the non-convexity of the problem lower bounds are
obtained by using convex envelopes or under-estimators to construct lower
bounding MINLPs. It is also necessary to branch on both the continuous and
the integer variables. Branching on the continuous variables results in search
trees which are not finite and accordingly only ε-convergence can be guaran-
teed. This makes the methods potentially very computationally expensive.
The major differences between the methods discussed in this section lie in
the methods used to perform the branching and in the procedures used to
obtain the lower bounds.

2.2.1 The α − BB method

The α − BB (α Branch and Bound) method was first developed for con-
tinuous twice differentiable non-convex NLPs in [14] and was extended to
non-convex MINLPs by Adjiman et al. [8]. The α − BB algorithm is a
Branch and Bound algorithm which uses convex underestimators of f and ci
to obtain lower bounds. The lower bounds are obtained by replacing f and ci
with their convex underestimators in problem (2.1), relaxing the integrality
constraint and solving the resulting convex NLP. The convex underestima-
tors are constructed by underestimating each term in f and ci. Three types
of terms must be considered during this procedure; convex terms, non-convex
terms with special structure and arbitrary non-convex terms. Obviously con-
vex terms do not need to be underestimated. Non-convex terms with special
structure are terms for which specific convex bounding procedures have been
developed. These terms include bilinear terms, trilinear terms, fractional
terms and univariate concave functions [107]. Finally, it has been shown in
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[14] that any twice differentiable term r(x) is underestimated by the following
expression

r(x) + α

n∑

i=1

(ui − xi) (li − xi) , (2.3)

where α ∈ R+. It can be shown that (2.3) is convex if and only if α satisfies

α ≥ max

{
0,−1

2
min
x,k

λk(x)

}
, (2.4)

where λk are the eigenvalues of the Hessian of r(x). Clearly, using (2.3)
and (2.4) a convex underestimator of any twice differentiable function can be
constructed. This completes the discussion of the lower bounding procedure.

The α−BB method converges to a global minimum of problem (2.1) with
finite ε-convergence when f and ci are twice differentiable. The algorithm
is terminated when the upper and lower bounds are within a user specified
tolerance. Clearly some procedure is required to determine the upper bounds.
Any feasible solution of problem (2.1) provides an upper bound. These values
could be obtained when the solution of the convex relaxation is feasible, by
using heuristics or by fixing the integer variables and solving the resulting
NLP.

Finally, we discuss the branching procedure used by α−BB. The branch-
ing variable is chosen to be the variable with the most fractional solution at
the optimum of the lower bounding problem. If it is possible to use knowl-
edge of the problem to create a priority branching list then the information
in the list is incorporated into the choice of branching variable using a hybrid
approach. The branching point is chosen to be the value of the branching
variable at the optimum of the lower bounding problem.

2.2.2 BARON

BARON (Branch And Reduce Optimization Navigator) is a Branch and
Bound based procedure developed by Sahinidis [135]. BARON guarantees
ε-convergence to a global optimum of problem (2.1) when f and ci are fac-
torable functions. Factorable functions can be expressed as recursive sums
and products of univariate functions. The lower bounds in BARON are ob-
tained using a combination of convex underestimators and linearisation. The
convex underestimators are constructed using factorable programming tech-
niques [110]. The underestimators are then linearised using a two stage outer
approximation technique which automatically detects and makes use of con-
vexity in the objective function, further details are given in [147, 148]. In
addition to upper and lower bounding BARON also makes use of a number
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of range reduction techniques. These techniques are applied to every node
of the search tree in pre and post processing procedures to reduce both the
search space and the relaxation gap. Further details on the various range
reduction techniques can be found in [135].

We now discuss the branching procedure used by BARON. The branching
variable xi is chosen using one of two strategies. The first strategy is devel-
oped in [134] and simply chooses the branching variable to be the variable
with the greatest domain on the current node. The second strategy is the
violation transfer strategy developed in [147]. This procedure assigns each
variable a measure of the violation of the non-convexities of the objective
function by the current convex relaxation. The variables are then weighted
using a priority branching list, should one be available. The branching vari-
able is then chosen to be the variable with the greatest weighted violation
measure. For specific details on the violation measure the interested reader
is referred to [146] and [147]. Once the branching variable has been chosen
the branching point x̂i is chosen using the following procedure. If the ith
coordinate of the current upper bound lies in the domain of the branching
variable on the current node then x̂i is set to the ith coordinate of the upper
bound. Otherwise x̂i is set to the ith coordinate of the solution of the con-
tinuous relaxation of the current node. In addition, once in every specified
number of iterations the branching point is chosen to be the mid-point of
the domain of the branching variable on the current node. This accelerates
convergence and is necessary to ensure exhaustiveness.

2.2.3 Couenne

Couenne (Convex Over and Under ENvelopes for Nonlinear Estimation) is
a Branch and Bound procedure developed in [28]. Couenne guarantees ε-
convergence to a global optimum of problem (2.1) when f and ci are fac-
torable functions. The lower bounds used by Couenne are obtained in two
steps. Firstly, problem (2.1) is reformulated, using a number of auxiliary
variables, to a problem whose constraints have a simpler form than problem
(2.1). In the second step the reformulated problem is linearised. The lineari-
sation is similar to that used in BARON. This linearised problem is solved
to obtain a valid lower bound. The reformulation is only applied to the orig-
inal problem, i.e. to the problem in the first node of the search tree. The
linearisation of the first node is calculated from scratch using a procedure
described in [28]. The linearisation used by every other node is calculated
by refining the linearisation of its parent node. Upper bounds are obtained
by fixing the values of the discrete variables using the solution of the lower
bounding problem and solving the resulting NLP. Like BARON, Couenne
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makes use of a number of range reduction techniques, details of which can
be found in [28].

We now describe the branching procedure used by Couenne. The branch-
ing variable can be chosen using one of two strategies. The first strategy
chooses the variable with the greatest degree of infeasiblity at the solution
of the lower bounding problem, the measure of infeasiblity used to make this
choice is given in [28]. The second strategy is the violation transfer strat-
egy [147] which was described in the previous section. Once the branching
variable has been selected the branching point is chosen using the following
formula

x̂i = max

{
li + β,min

{
ui − β, αx̃i +

(1 + α)(ui + li)

2

}}
, (2.5)

where β = 0.2(ui − li), α = 0.25 and x̃ is the solution of the lower bounding
problem. Except that x̂i is set to zero if the value given by (2.5) is sufficiently
close to zero.

2.2.4 SCIP

SCIP (Solving Constraint Integer Programs) is a Branch and Bound proce-
dure, developed in Achterberg [7], based on a paradigm called constraint inte-
ger programming (CIP). CIP combines the modelling and solving techniques
available in constraint programming, MILP and the satisfiability problem.
SCIP cannot solve the general version of problem (2.1), it can only solve
problems which have linear constraints in the continuous variables once the
integer variables have been fixed. This restriction makes it possible to prove
that SCIP converges to the global optimum in a finite number of function
evaluations. SCIP prunes the Branch and Bound tree using linear program-
ming (LP) relaxations of problem (2.1), cutting planes and domain propa-
gation. Domain propagation is a concept used in constraint programming
which uses the constraints on a subproblem in the Branch and Bound tree to
determine domain reductions which can be used to reduce the search space.
A final procedure used to prune nodes is conflict analysis, a concept adapted
from the satisfiability problem. Conflict analysis generates valid constraints
by analysing the infeasible subproblems in the Branch and Bound tree.

A number of branching rules are implemented in SCIP; most infeasible
branching, pseudocost branching, strong branching, hybrid strong/pseudo–
cost branching, pseudocost branching with strong branching initialization
and reliability branching. Further details on these branching procedures
are given in Achterberg [7]. SCIP also contains a number of node selection
policies; best first search, depth first search, best estimate search, hybrid best
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estimate/best bound search and depth first search with periodical selection
of the best node. Once again, further details are given in Achterberg [7].

In Berthold et al. [30] SCIP has been extended such that it can be used to
solve mixed integer quadratically constrained programs (MIQCP). MIQCPs
have the same form as problem (1.2), with the addition of quadratic con-
straints to the problem. This extension is discussed further in section 2.3.2.

2.2.5 Global optimization of non-convex GDP

In [92] a Branch and Bound procedure is developed for solving a class of non-
convex GDPs. This procedure can solve problem (2.2) when f , ci and hjk are
made up of terms that are either convex, bilinear, linear fractional or concave
separable. A convex relaxation is constructed using convex underestimators
of f , ci and hjk. This convex relaxation provides lower bounds on the solution
of the problem. This algorithm also makes use of range reduction techniques.
Specifically, the range reduction techniques developed in [165] are applied.

The Branch and Bound procedure uses two sets of branching rules. The
initial set of branching rules only allow branching on the boolean variables.
Once a node is produced on which all of the boolean variables are fixed the
second set of branching rules is applied. The second set of branching rules is
used to fix the continuous variables for given values of the boolean variables.
Once the second set of branching rules have been used to fix the continuous
variables the solution obtained is used to update the upper bound. A cut
is then added to the problem making the choice of boolean variables fixed
by the first set of branching rules infeasible. The second set of branching
rules is then replaced by the first set. The algorithm terminates when the
upper and lower bounds are within a user specified tolerance. This algorithm
guarantees ε-convergence to a global minimum of problem (2.2).

2.2.6 Suitability of traditional MINLP methods

Besides Branch and Bound all of the methods discussed in the sections 2.1
and 2.2 make use of the derivative of the objective function which clearly
makes them unsuitable for solving derivative free problems. While the Branch
and Bound method can be implemented without using the derivative of the
objective function it does rely on continuous relaxations of the objective func-
tion to obtain lower bounds. There are a number of situations in which these
relaxations are not available and these situations require derivative free solu-
tion methods [3, 46, 71]. Clearly none of the traditional methods described
here can be used to solve problem (1.1) in the derivative free case.
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2.3 Mixed integer quadratic programming

In this section we consider in more detail the literature on a specific class
of MINLPs, namely mixed integer quadratic programs. This is relevant to
the second problem considered in this thesis; the solution of problem (1.2).
Most of the literature concerning this problem considers convex MIQPs and
solution methods in this case have advanced to the point where reliable, effi-
cient commercial software packages are available. In section 2.3.1 we briefly
review the literature related to convex MIQPs and mention some of the soft-
ware available to solve problem (1.2) in this case. Far less work considers
non-convex MIQPs and it is this case that the methods developed in chapter
4 consider. The literature on non-convex MIQPs is reviewed in section 2.3.2.

2.3.1 Convex mixed integer quadratic programming

As noted above reliable, efficient commercial software packages are available
for solving convex MIQPs. Accordingly, the amount of work published on
the convex case has decreased in recent years with focus shifting to the non-
convex case. We now briefly discuss some of the work done on convex MIQPs
in the past. In [9] a Cutting Plane algorithm for convex MIQPs is developed.
The algorithm adds valid inequalities to the problem until the optimum of
the continuous relaxation is integer feasible. In [31] a Branch and Cut al-
gorithm is developed specifically for solving problems arising from portfolio
optimization. A Benders Decomposition algorithm is proposed in [88, 89].
The algorithm includes a preprocessing step involving a linear transformation
which simplifies the master problem used by the algorithm. Improvements
to the Benders Decomposition algorithm are suggested in [58]. A Branch
and Bound algorithm using piecewise linear underestimators to obtain lower
bounds is developed in [11]. In [97] a Branch and Bound method using a
dual active set algorithm with warm starts1 to solve the continuous relax-
ations is proposed. A procedure for obtaining improved lower bounds in a
Branch and Bound framework is given in [57]. More recently Axehill et al.
[23] proposed novel relaxations for use in model predicative control applica-
tions and Buchheim et al. [37] present a Branch and Bound procedure that
uses a preprocessing step to ensure that the nodes can be processed quickly.
The commercial packages available for solving convex MIQPs include Gurobi,
CPLEX, MOSEK and XPRESS. CPLEX is used to solve convex MIQPs in

1The term warm start is used to describe a situation where information from a previous
optimization problem is used to speed up the reoptimization after a minor change has been
made to the problem [21].
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this thesis. It uses a Branch and Cut algorithm with a Simplex Method used
to solve the continuous subproblems [62].

2.3.2 Non-convex mixed integer quadratic program-

ming

The work that has been done on solving non-convex MIQPs can be divided
into two classes. The first class considers the derivation of tight convex re-
laxations and strong cuts which can be used to obtain tight lower bounds
on the solution of problem (1.2). The relaxations and cuts can be included
in non-convex MINLP algorithms such as those described in section (2.2).
The work done in this class does not consider the development of algorithms
specifically for solving MIQPs. The second class considers the development
of algorithms specifically for solving MIQPs. In chapter 4 we propose modi-
fications to these methods which improve their efficiency.

Inequalities and relaxations

Before beginning our discussion we note that many of the procedures de-
scribed in this section have been developed for MIQCPs. However, as we
consider MIQPs in this thesis all of the techniques in this section shall be
discussed in that context. Readers interested in the extension to MIQCP are
referred to the relevant references. A good review of all but the most recent
techniques discussed in this section can be found in [41].

A procedure used by a large proportion of the inequalities that have
been developed to date is known as lifting [41]. This involves the use of
auxiliary variables to lift the problem to a higher dimensional space in which
it has a simplified structure. The most common form of lifting is to use the
auxiliary variables Xij to represent the quadratic terms in the objective using
the constraints Xij = xixj . These constraints can be represented using the
symmetric matrix equation X = xxT . This lifting procedure results in the
following reformulation of problem (1.2) [41]:

min
x

h(x) =
1

2
〈H,X〉 + gTx (2.6)

s.t. Ax ≤ b,

Dx = e,

l ≤ x ≤ u,

X = xxT ,

x =
(
xTc , x

T
d

)T ∈ R
nc × Z

nd , X ∈ Sn,
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where 〈H,X〉 = Trace(H,X). The objective function is now linear but we
have added the non-convex constraint X = xxT to the problem. It can be
shown that problem (2.6) is equivalent to the following problem [41]:

min
x

h(x) =
1

2
〈H,X〉 + gTx (2.7)

s.t. (x,X) ∈ clconv(Ω̂),

where Ω̂ is the feasible region of problem (2.6) and clconv(Ω̂) denotes the
closed convex hull of Ω̂. A linear relaxation of problem (2.7) is obtained by
relaxing the integrality constraint and removing the constraint X = xxT .
Denote the feasible region of this problem by L̂. In the following paragraphs
we discuss a number of inequalities that can be used to strengthen L̂ by
making the feasible region a closer approximation of Ω̂.

We first describe the most common method of constructing inequalities
used to strengthen L̂. Suppose αTx ≤ α0 and βTx ≤ β0 are two valid
inequalities for Ωq, where Ωq denotes the feasible region of problem (1.2).
The following equality is then also valid for Ωq [41]

− (αTx− α0)(β
Tx− β0) ≤ 0, (2.8)

and it follows that the following inequality is valid for clconv(Ω̂)

α0β
Tx + β0α

Tx− α0β0 − 〈βαT , X〉 ≤ 0.

The inequalities contained explicitly in (2.6) can be used to derive a number
of inequalities with the form of (2.8). The linearised versions of this set of
inequalities are considered in [85, 104] and are known as the rank-2 linear in-
equalities. Denote the region defined by the rank-2 linear inequalities by R2.
The rank-2 inequalities include the well known RLT inequalities described in
[138].

Another important class of strengthening inequalities are the semidefinite
inequalities [41]. These inequalities arise from the fact that for any x ∈ R

n

the following relation holds

[
1 xT

x xxT

]
=

[
1
x

] [
1
x

]T
< 0.

Considering the constraint X = xxT in problem (2.6) we see that the follow-
ing linear constraint is valid for clconv(Ω̂) [41]

[
1 xT

x X

]
< 0. (2.9)
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The region defined by this constraint is denoted PSD. It is also possible to
make use of relaxations of (2.9). For example, in Kim and Kojima [82] all of
the principal 2 × 2 submatrices of the matrix in (2.9) are constrained to by
positive semidefinite without requiring that (2.9) is satisfied.

Now we have clconv(Ω̂) ⊆ L̂ ∩ R2 ∩ PSD. Equality has been proven for
various special cases, these are not considered here as we are concerned with
the general problem. The interested reader is referred to [41]. Replacing the
feasible region of problem (2.7) with any combination of L̂, R2 and PSD
gives a convex relaxation of problem (1.2) which can be used to obtain valid
lower bounds [41].

In [136] a different approach is used to handle the non-convex constraint
X = xxT . This constraint can be represented using the following relations

X − xxT < 0, (2.10)

X − xxT 4 0. (2.11)

The first of these constraints is convex while the second is non-convex. Relax-
ing the feasible region of problem (2.7) to L̂∩PSD is equivalent to dropping
the non-convex constraint (2.11) from the problem. The procedure devel-
oped in [136] avoids dropping (2.11) completely. Instead a dynamic proce-
dure based on axis rotations and disjunctive programming is developed to
approximate (2.11).

If it is not possible to represent clconv(Ω̂) sufficiently accurately in the
space (x,X) the problem can be lifted to even higher spaces. This allows
the linearisation of constraints of degree greater than two [41]. A sequential
convexification theorem is proven in [136] using this idea. The sequential
convexification theorem allows us to decompose the non-convexity of problem
(1.2) into a number of atomic non-convex problems. The ith atomic problem
involves the minimization of a linear function over a non-convex feasible
region of the form L̂ ∩ PSD ∩ {(x,X) : Xii ≤ x2i }. A disjunctive approach
to approximate this region is described in [136]. We note that this method
only applies to problems with binary variables rather than general integer
variables.

At this point all of the relaxations that have been given for clconv(Ω̂) have
been defined in the space (x,X). The use of the auxiliary variables X can
greatly increase the computational expense of solving a problem. An obvious
question to ask is whether the strength of these relaxations can be expressed
using inequalities defined only in terms of x. This problem is considered in
[137]. Consider the relaxation of clconv(Ω̂) given by L̂ ∩RLT ∩PSD, where
RLT denotes the region described by the RLT inequalities described above.
Let Q denote the coordinate projection of L̂ ∩ RLT ∩ PSD onto the space
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of x. Q is a relaxation of clconv(Ω) defined only in terms of the original
variables. An algorithmic framework is developed in [137] which, given a
point x̄, either shows that x̄ ∈ Q or provides a valid inequality which is
violated by x̄. This allows the relaxations derived in the lifted space to be
used in the original space.

A possible alternative to the lifting procedures described above is to ob-
tain a convex relaxation of problem (1.2) by replacing h with its convex
envelope [41]. A convex envelope of a function h is the convex function
which most closely underestimates h. Another approach, proposed in [101],
is to use a combination of lifting and convex envelopes. However, finding
the convex envelope of an arbitrary quadratic function over a polytope is
itself an NP-hard problem. One approach used to reduce the cost of for-
mulating convex underestimators, which was mentioned in section 2.2, is to
underestimate each term in h separately. Specifically, the convex envelopes
of bound constrained terms of the form xixj and −x2i can be derived ana-
lytically and can be used to construct convex underestimators of quadratic
objective functions [135].

Another relaxation approach which does not require lifting is to formulate
a convex relaxation of problem (1.2) as a second order cone program (SOCP)
[81, 137]. This approach can only be applied to problems with linear objective
functions and quadratic constraints. Problem (1.2) can easily be transformed
to this form by moving the objective into the constraints. The Hessian is
then written as the difference of two carefully chosen positive semidefinite
matrices, H− and H+. The quadratic constraint can now be written in the
following form

1

2
xTH+x + gTx ≤ 1

2
xTH−x.

An auxiliary variable z is introduced to represent 1
2
xTH−x. The constraint

on the auxiliary variable is relaxed to give

1

2
xTH−x ≤ z.

The quadratic constraint now takes the form

1

2
xTH+x+ gTx ≤ z,

1

2
xTH−x ≤ z.

Since H− and H+ are positive semidefinite these constraints describe a con-
vex feasible region. This relaxation is only effective if z is bounded above
by some µ ∈ R. The value of µ will depend on the problem and the choices
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of H+ and H−. Guidelines for choosing µ are given in [81]. The relaxed
problem generated using this approach has a linear objective and linear and
convex quadratic constraints. This problem can then be represented as an
SOCP which can be solved using the primal-dual interior-point method [81].

Finally we discuss a class of valid inequalities developed in [61]. They
are known as gap inequalities and are an extension of the gap inequalities
derived in [87] for the max-cut problem. They are developed for the lifted
space using the fact that the matrix in (2.9) is positive semidefinite. While
these inequalities are tight they are NP-hard to compute. To reduce the
computational expense a number of valid inequalities which are less tight
but easier to compute are reviewed in [87]. Alternatively the gap inequalities
could be calculated using heuristics or a relaxation of the gap inequalities
could be used.

Solution methods

In this section we review the work that has been done on developing al-
gorithms for solving non-convex MIQPs. Besides the modification of SCIP
mentioned in section 2.2 the work that has been done in this area considers
special cases of problem (1.2) rather than the general problem.

The first method we consider was developed in [38] and makes use of
a semidefinite relaxation of the problem embedded in a Branch and Bound
framework. The specific problem considered in [38] has the following form:

min
x

h(x) =
1

2
xTHx+ gTx (2.12)

s.t. x ∈ D1 × · · · ×Dn,

where Di is an arbitrary closed subset of R. Some examples of possible
subsets are {−1, 1}, [−1, 3], Z and {0} ∪ [1,∞). While the domains of the
individual variables are more complicated then those that can be represented
by problem (1.2), linear constraints cannot be represented by problem (2.12).
Accordingly, the method developed in [38] can only solve a subset of the
problems represented by problem (1.2), namely those with the form:

min
x

h(x) =
1

2
xTHx+ gTx (2.13)

s.t. l ≤ x ≤ u,

x =
(
xTc , x

T
d

)T ∈ R
nc × Z

nd .

Using the lifting procedure detailed in the previous section the following
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convex relaxation of problem (2.12) can be derived:

min
x

h(x) =
1

2
〈H,X〉 + gTx (2.14)

s.t. (xi, Xii) ∈ clconv(Pi), ∀i = 1, . . . , n,

X − xxT < 0,

where Pi = {(xi, x
2
i ) : xi ∈ Di}. To use this relaxation linear constraints

that can be used to model clconv(Pi) are needed. In general this requires an
infinite number of constraints. However a separation algorithm is given in
[38] which, given a pair of values (x̄i, X̄ii), either returns a valid inequality
for Pi which is violated by (x̄i, X̄ii) or shows that (x̄i, X̄ii) ∈ Pi. Using this
separation algorithm problem (2.14) can be solved using an interior point
algorithm.

Problem (2.12) can now be solved using a Branch and Bound algorithm.
The lower bounds for each node are obtained by solving problem (2.14) with
an interior point algorithm. Upper bounds are obtained by evaluating the
objective function of problem (2.12) at feasible values of x obtained from
the solution of problem (2.14). The branching variable is chosen to be the
variable minimizing X̃ii − x̃2i where (x̃, X̃) is the solution of problem (2.14).
The branching point is chosen to be x̃i. These choices of branching variable
and branching point improve the convergence of the algorithm.

The second method considered in this section is a convex reformulation
scheme developed in [33]. The reformulation results in an equivalent convex
MIQP. Unlike the previous method the convex reformulation can handle lin-
ear constraints. However, it is restricted in the type of Hessian matrix it can
handle. Specifically, only problems for which the ncth principal leading sub-
matrix of H is positive semidefinite can be solved using this procedure. The
convex reformulation is achieved by adding a number of auxiliary variables
to the objective function. The best coefficients for the auxiliary variables are
determined by solving a semidefinite program [33]. Since the MIQP resulting
from the reformulation is convex it can be solved using the methods outlined
in section 2.3.1. Further details on this procedure are given in chapter 4.

In [40] it is shown that any non-convex MIQP with binary rather than
general integer variables can be reformulated as a LP over the convex cone
of copositive matrices. Problems with this form are known as copositive pro-
grams. While this reformulation does not remove the difficulty of the problem
it does allow it to be transferred to the constraints representing the convex
cone of copositive matrices. This allows methods developed for copositive
programs to be applied to non-convex MIQPs. This reformulation is less
effective than [33] since the algorithms developed for solving convex MIQPs
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are more mature than existing algorithms for solving copositive programs.
We note that the method developed in [40] can only be applied to problems
with equality constraints and lower bound on the variables. However, any
constrained MIQP can be transformed to a problem with the required form
using slack variables.

We now discuss the modification of SCIP developed in Berthold et al. [30]
which allows MIQPs to be solved. The LP relaxations used to obtained lower
bounds are constructed by moving the objective into the constraints and us-
ing an outer approximation constructed by linearising the convex terms and
using linear underestimators for the non-convex terms. The linear underes-
timators used are the convex envelopes for bilinear and concave univariate
functions. The convex envelope of a concave univariate term is merely its
secant. The concave envelope of a bilinear term axixj is obtained by introduc-
ing and additional variable κij to the problem with the following constraints

{
κij ≥ ljxi + lixj − lilj ,

κij ≥ ujxi + uixj − uiuj,
if a > 0, (2.15)

{
κij ≤ ljxi + uixj − uilj ,

κij ≤ ujxi + lixj − liuj ,
if a < 0. (2.16)

We see that the underestimation of each bilinear term requires the addition
of a variable and two inequality constraints to the problem. Upper bounds on
the solution are obtained using heuristics, details on the heuristics used are
give in Berthold et al. [30] and Achterberg [7]. Cutting planes are also made
use of by the modification of SCIP. At each node of the Branch and Bound
tree where the solution of the LP relaxation is infeasible for problem (1.2)
an attempt is made to make the solution infeasible for the LP relaxation by
adding cutting planes to the outer approximation. Additionally, at each node
in the tree a domain propagation procedure is applied in attempt to reduce
the feasible solution of the node. The modification of SCIP also includes a
presolving phase in which various reformulations and simplifications are made
in an attempt to simplify the problem, these procedures include dual bound
reduction, domain propagation and reformulation of constraints containing
binary variables. Further details are given in [30].

The branching variable xi is chosen using a pseudocost branching rule.
The pseudocost of a variable is an estimate of the change in the objective
function value of the LP relaxation that will result from branching on the
variable. Details on calculating the pseudocost are given in [7, 30]. The
branching variable is chosen to be the variable with the highest pseudocost.
The branching point x̂i is chosen to be the value of the branching variable
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at the solution of the LP relaxation x̃, unless this point would be too close
to the bounds in which case it is shifted inwards. Specifically the branching
point is given by

x̂i = min {max {x̃i, 0.2li + (1 − 0.2)ui} , 0.2uj + (1 − 0.2)lj} .

This completes our discussion of the modification of SCIP.
Finally we note that a number of approaches have been developed for

problems which use binary rather than integer variables and are linear in the
binary variables. This problem is considered too distant from problem (1.2)
to be reviewed in detail here. The interested reader is referred to [113, 114]
and the references contained therein.

2.4 Conclusion

In this chapter we have presented a review of the traditional deterministic
methods used for solving MINLPs. As explained in section 2.2.6, none of
these approaches is suitable for the derivative free case. The methods which
have been developed for solving derivative free MINLPs are reviewed in chap-
ter 3. We have also given a review of the current state of research on MIQPs.
Mature commercial software is available for solving these problems in the
convex case and a list of packages that can be used to solve convex MIQPs
is given. In this thesis we use CPLEX for solving convex MIQPs. A brief re-
view of the literature related to convex MIQPs is also given. A more detailed
review is given of the literature on non-convex MIQPs. We note that, besides
the modification of SCIP, the solution methods that consider this problem
are all concerned with special cases of problem (1.2). Procedures for solving
the general version of problem (1.2) are developed in chapter 4.
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Chapter 3

Review of Derivative Free

Programming

This chapter contains a review of derivative free optimization for both contin-
uous and mixed integer problems. In section 3.1 we examine the conditions
under which derivative free methods are required and we give examples of
applications where these conditions occur. Section 3.2 contains a review of
derivative free optimization of continuous problems; the focus of the review is
on methods relevant to mixed integer derivative free optimization. In section
3.3 we give a detailed review of the BOBYQA algorithm. In section 3.4 we
review the current state of mixed integer derivative free optimization.

3.1 Introduction to derivative free optimiza-

tion

A large proportion of currently existing optimization methods make extensive
use of the derivatives of the objective function and the constraints. This
is only natural since the derivatives contain a large amount of information
that is extremely useful when trying to find the optimal value of a function,
indeed the necessary conditions for local optima are normally stated in terms
of the gradient of the objective function. The gradients are either supplied
by the user or are estimated using finite differences. However, there are a
number of situations in which the derivatives are unavailable or unreliable.
Obviously in these situations traditional gradient based methods cannot be
applied. This is the motivation behind the development of derivative free
optimization methods [46].

Problems requiring derivative free solution approaches arise in a wide
number of applications. However there are a fairly small number of general
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problem characteristics which result in unavailable derivatives [46];

i) When the objective function is noisy derivatives are unreliable.

ii) When the objective function is expensive derivatives generally take a
prohibitively long time to calculate.

iii) When the objective function values are obtained via black box simulation
derivatives are generally unavailable.

Problems with these characteristics arise in engineering, finance, industrial
design, dynamic pricing, medical imaging, groundwater supply problems and
operations research, among others [46, 68, 71, 72]. These problem characteris-
tics occur most commonly in combination with mixed variables in engineering
applications [17, 71].

3.2 Derivative free optimization of continu-

ous problems

A large amount of work has been done on developing various derivative free
solution methods for continuous problems. These methods can be divided
into three classes; metaheuristics, surrogate based optimization and local
sampling [71]. Metaheuristics use stochastic methods to find an approxima-
tion to the global solution. Surrogate based optimization techniques make
use of models of the objective function and are often used to solve problems
with expensive objective functions. Local sampling methods are determinis-
tic procedures designed to find local optima. A survey comparing 22 differ-
ent algorithms taken from each of the three categories can be found in [130].
The local sampling methods are most relevant to this thesis since our solution
technique can be thought of as a generalisation of this approach to the mixed
integer case. Accordingly we give a fairly detailed overview of deterministic
sampling in section 3.2.3. For the sake of completeness brief overviews of the
metaheuristic and surrogate approaches are given in sections 3.2.1 and 3.2.2
respectively.

3.2.1 Metaheuristics

Metaheuristics are procedures designed to attempt to find global minima by
methodically searching the solution space [3]. This is done by using stochastic
methods to generate new sample points from previously evaluated points.
One of the main characteristics of a number of metaheuristics is that they can
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accept points which increase the objective function value, this is a mechanism
to allow them to escape local minima [71]. In addition metaheuristics have
very few restrictions on the types of problems to which they can be applied
[3]. However, the overwhelming majority of metaheuristics lack deterministic
proofs of convergence [3]. Almost all of the convergence results that do exist
show that the metaheuristics converge asymptotically in probability [3]; if
the algorithm is run for enough iterations the probability that the global
minimum has been located can be made as close to one as desired [133]. These
proofs do not provide any practical guarantee of convergence in real problems
[133]. In the rare cases when deterministic proofs exist they generally rely
on assumptions that slow the convergence of the algorithm considerably, an
example from [112] is discussed below. We see that while metaheuristics are
useful in improving the objective function value they should not be applied in
situations were a deterministic solution is desired [3]. Another disadvantage
of the use of metaheuristics in derivative free optimization is that many
metaheuristics require a large number of function evaluations which makes
them unsuitable for problems with expensive objective functions [71]. The
literature on metaheuristics is large and we will merely give a brief overview
of three of the most common derivative free methods; simulated annealing,
particle swarm optimization and evolutionary algorithms. Interested readers
are referred to [109, 145] and the references contained therein for a more
extensive survey.

The simulated annealing algorithm is based on the physical annealing
process, in which a substance is heated up followed by slow cooling while
attempting to remain as close as possible to thermal equilibrium [151]. Simu-
lated annealing algorithms treat the objective function as the free energy of a
system and the variables as particles [71]. The temperature of this simulated
system is gradually decreased following some user specified cooling schedule.
The algorithm is stopped once some minimum temperature is reached [151].
A number of papers prove convergence in probability for specific instances
of simulated annealing algorithms, for example see [63, 70, 103, 144]. How-
ever, numerical studies show that convergence can be very slow [76]. Indeed
in [32, 133] problems are presented for which it is suggested that simulated
annealing algorithms will not converge in a finite time. A good review of
simulated annealing algorithms and their convergence properties is given in
[151].

Particle swarm optimization algorithms use a finite set of particles, whose
positions represent values of x, to explore the objective function. Each par-
ticle moves in the search space with a velocity that depends on the best
position of that particle as well as the overall best position of the particles
[26]. A proof of convergence in probability for an instance of a particle swarm
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algorithm is given in [77]. Proofs of deterministic convergence are given in
[150, 154]. However these proofs are given for a version of the algorithm
which has had its stochastic components removed. This greatly reduces the
effectiveness of the algorithm and the results in [150, 154] are mainly used
to set parameters in the usual stochastic version of the particle swarm algo-
rithm. Reviews of particle swarm optimization can be found in [26, 27, 121].

Evolutionary algorithms are algorithms which model biological evolution.
Three algorithms of this type have been applied to optimization problems;
genetic algorithms, evolutionary programming and evolution strategies [24].
Evolutionary algorithms deal with a finite set of sample points simultane-
ously. At each iteration a subset of the sample points is chosen to use to
generate new sample points using various search operators. These search op-
erators are chosen such that the algorithm models biological evolution [24].
Further details on the differences between the three types of evolutionary al-
gorithms and the details of their implementation can be found in [10, 24, 164].
Convergence in probability has been proven for instances of genetic algo-
rithms and evolution strategies, for example see [25, 83, 112, 132]. One of
the rare deterministic convergence results mentioned in the first paragraph of
this section is derived in [112] for a certain class of genetic algorithms under
certain conditions. However, this method often displays very slow conver-
gence in practice since the proof requires an improvement in the sample sets
average function value at each iteration. If an iteration produces a sample
set without this property it is discarded and more iterations are performed
until an appropriate sample set is found. However, the further the algorithm
has progressed the less likely the generation of such a sample set becomes.
This slows the convergence of the algorithm considerably [3].

3.2.2 Surrogate based optimization

Surrogate based optimization involves replacing the objective function with a
surrogate model which is easier to optimize. Surrogate optimization generally
focuses on reducing the number of function evaluations and is most frequently
used in engineering. Good reviews can be found in [46, 59, 71, 128, 140, 157];
the remainder of the material in this section is taken from these reviews. It is
important to note that the surrogate model is not designed to fit f as well as
possible, rather it should capture the main features of the objective function
to allow the minimum to be reached as quickly as possible. The search for
an optimum using surrogate models usually involves an iterative procedure
in which a series of surrogate models are generated. This is done using a
limited number of evaluations of f to aid in model correction and validation.

Surrogate models can be broadly divided into two classes, physical models
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and functional models. Physical surrogate models result from a simplification
of the physical or numerical process used to obtain the objective function
value. This could be done, for example, by linearising terms in the equations
describing a system or by using a coarser grid when solving a system of
PDEs numerically. For some problems this simplified process can be used
as the surrogate model. However, in a number of problems the simplified
process does not approximate f sufficiently well to allow its use as a surrogate.
A number of techniques have been developed to incorporate the simplified
model into a surrogate optimization framework; the most commonly used are
response correction, multi-point methods and space mapping. For further
detail on these procedures readers are referred to the reviews listed above.
Physical models are generally based on the physical characteristics of the
system being modelled. Accordingly, they cannot typically be applied to
problems other than the one for which they were developed.

Functional surrogate models are constructed without utilizing any partic-
ular knowledge of the process used to evaluate the objective function. Instead
functional models are algebraic representations of the objective function con-
structed from data obtained by sampling the objective function. The gen-
eration of a functional model generally requires the following components; a
set of basis functions, a sampling procedure, a fitting criterion and a proce-
dure to combine the first three components into a coherent whole. As before
interested readers are referred to the referenced reviews for specifics.

Convergence results have been proven for some surrogate optimization
techniques, for example see [12, 35, 140]. However, a large percentage of
existing surrogate optimization techniques lack convergence proofs and a
number of approaches for which convergence has been proven actually prove
convergence on the surrogate model rather than f [140].

3.2.3 Local sampling methods

Local sampling methods are iterative procedures which choose a new sam-
pling point in the kth iteration from the region around the best point avail-
able at the kth iteration. In a large proportion of local sampling methods
the new points are chosen in such a way that convergence to either first or
second order stationery points can be proven [46]. The deterministic nature
of many local sampling techniques is the reason that they are the main focus
of the derivative free portion of this thesis. Local sampling procedures can
further be divided into three categories; direct search, methods incorporating
line-search based on simplex derivatives and trust region methods [46].

A large number of local sampling methods have been developed for either
bound constrained or unconstrained optimization [46]. However a number
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of methods have been developed to allow these approaches to be used in the
solution of problems with more general constraints. Some of these approaches
include augmented Lagrangians [53, 96], inexact restoration [39], extreme
barrier approaches [20] and filter methods [18].

Direct search

Direct search methods are derivative free methods that do not make any
derivative approximations or build any models. Instead direct search proce-
dures proceed by sampling f at a finite number of points in each iteration
and deciding which actions to take based solely on those objective function
values [46]. Direct search methods can be divided into two categories; direc-
tional direct search and simplicial direct search. The difference between these
categories lies in the procedure used to determine which points to sample.
Directional direct search methods sample along a set of directions forming
a positive basis while simplicial methods use simplices and operations over
simplices to determine the sample points [46].

In general directional direct search procedures proceed in the following
manner [46]. At each iteration a step size αk is available. During each
iteration of the procedure the objective function is evaluated at the points
in the set

Pk = {xk + αkd : d ∈ D}, (3.1)

where D is the set of search directions and xk is the point with the lowest
function value that has been found thus far. Pk can be thought of as a subset
of the points contained in the following mesh

Mk = {xk + αkDb : b ∈ Z
n
+}.

This mesh is merely conceptual; it is never generated in its entirety, rather
points in the mesh are generated as need. Pk is given a specific order and is
called the set of poll points while D is known as the set of poll directions.
In line with this notation the procedure of evaluating the objective function
at the poll points is called polling. Polling aims to find a point with a lower
objective function value than xk. If it is successful xk+1 is set to be the
point obtained by polling and the step length is set such that αk+1 ≥ αk. If
polling fails to find a point with a lower objective function value than xk the
quantities used in the (k + 1)th iteration are xk+1 = xk and αk+1 ≤ αk. The
polling procedure can either be opportunistic or complete. In opportunistic
polling the poll step is stopped as soon as a point with a lower objective
function value than xk is found. Complete polling examines all of the poll
points and then uses the point with the lowest objective function value. In
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addition to the poll step a number of algorithms also contain a search step.
During the search step the objective function is evaluated at a finite number
of points in Mk with the aim of finding a point with a lower objective function
value than xk. This could be done, for example, using heuristics or surrogate
models.

A number of direct search algorithms have been developed following this
general procedure but using a variety of techniques to perform the individual
steps. In the following paragraphs we give a brief discussion of some of the
most well known of these algorithms. In addition we give a slightly more
detailed discussion of simplicial direct search procedures.

Coordinate search Coordinate search is perhaps the simplest of the direc-
tional direct search procedures. Coordinate search uses the following positive
basis to define its set of poll points

D = [In, −In] ,

where In is the n × n identity matrix. Coordinate search generally uses
opportunistic polling and a simple procedure to calculate αk+1, for example
we could have αk+1 = 2αk when polling succeeds and αk+1 = 1

2
αk if polling

fails [46].

Generalised pattern search Torczon [149] introduced the class of gen-
eralised pattern search (GPS) algorithms. GPS algorithms systematically
polls points that lie on a mesh Mk centered on xk and defined by a finite set
of positive spanning directions. Importantly it was shown that if all xk are
contained in a compact set and f is continuously differentiable in the neigh-
bourhood of the level set {x : f(x) ≤ f(x0)} where x0 is the initial point then
a sequence of GPS iterations converge to a point x∗ satisfying ∇f(x∗) = 0.
In addition it is shown that coordinate search, evolutionary operation using
factorial designs, the original pattern search algorithm developed in [73] and
the multidirectional search method are all special cases of the GPS algorithm
[149]. Search steps may be included in GPS algorithms without affecting the
convergence results. The GPS algorithm was generalised to bound and lin-
early constrained problems in [94] and [95] respectively. In [18] non-linear
constraints are incorporated into GPS using a filter method. Filter methods
solve a bi-objective optimization problem where one of the objectives is f
and the other is a measure of the constraint violation. However the filter
method does not guaranty convergence to a stationery point [16].
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Mesh adaptive direct search The mesh adaptive direct search (MADS)
algorithm was developed by Audet and Dennis [19] to overcome the limita-
tions on the convergence of the filter GPS algorithm [18]. MADS modifies
the poll step of the algorithm by considering a variable set of poll directions.
The set of possible poll directions is asymptotically dense in R

n. In addition
MADS uses two parameters two generate the poll points rather than the sin-
gle parameter αk in (3.1). The first parameter is the poll size parameter; the
poll size parameter determines the region from which points can be selected.
The second parameter is the mesh size parameter; the mesh size parameter
defines a mesh within the region determined by the poll size parameter [130].
This change in the structure of the algorithm allows proof of convergence to
either first [19] or second order [5] stationery points in the Clarke sense [43].
Whether the convergence is proven to first or second order depends on the
assumptions made about the smoothness of the objective function [5, 19].

Incorporating line search Lucidi and Sciandrone [106] develop a direc-
tional direct search method which incorporates a line search along the poll
directions. The algorithm uses the same set D as is used in coordinate search
and can be applied to bound constrained problems. The algorithm proceeds
by polling points defined using D until it finds a direction which gives a suf-
ficient decrease in f . A derivative free line search is then performed along
this direction and xk+1 is set equal to the resulting point. Once all of the
poll directions have been considered for a specific xk without xk+1 being set
the algorithm sets xk+1 to any point satisfying f(xk+1) < f(xk), i.e. the
sufficient decrease condition is removed. It should be noted that the algo-
rithm only allows the use of a search step once all of the poll directions have
been considered. A convergence proof is given showing that the algorithm
converges to a stationery point.

Simplicial direct search The simplest simplicial direct search algorithm
is the well known Nelder-Mead algorithm [118]. Every iteration of the Nelder-
Mead algorithm is based on a simplex of n+ 1 vertices ordered by increasing
objective function value. The next sample point is determined by performing
a reflection, an expansion, a contraction or a shrink on the simplex. Despite
its popularity there is no guaranty that the Nelder-Mead algorithm will con-
verge to a stationery point [111]. A number of modifications to have been
proposed to to the original algorithm which allow convergence to be proven.
In [152] an algorithm is proposed which controls the geometry of the simplex
at each iteration as well as imposing a sufficient decrease condition. Another
possible approach is to let the Nelder-Mead algorithm run as normal as long
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as a sufficient decrease condition is satisfied. When the sufficient decrease
condition is violated the geometry of the sample points is modified in such a
way that convergence can be proven [78, 127].

Line-search using simplex derivatives

The second class of local sampling procedures we shall consider locate new
points by using simplex gradients to perform derivative free line searches.
The point xk+1 is set to the point found using the line search. The most
well known of these approaches is the implicit filtering algorithm developed
by Gilmore and Kelley [65]. The implicit filtering algorithm creates a new
simplex at each iteration; in serial applications this can have a detrimental
effect on the solution time. In [46] an alternative approach is proposed in
which only one point in the simplex is changed in each iteration rather than
discarding the entire simplex.

Trust region methods

Trust region methods for derivative free optimization maintain a quadratic
or linear model of the objective function based solely on samples of the
objective function [46]. Generally quadratic models are used as they allow
the curvature of the objective function to be taken into account. The model is
constructed in such a way that it can be trusted within some neighbourhood
of xk. The neighbourhood in which the model can be trusted is called the
trust region. The models can be constructed using interpolation, regression
or any other approximation technique. The most common choice for the trust
region is an n-sphere centred on xk. Given a model and a trust region in the
kth iteration a trust region algorithm attempts to find xk+1 by finding the
minimum of the quadratic model in the trust region. The aim of this type of
iteration is to reduce the value of the objective function. In derivative free
methods a second type of iteration is often required; one which improves the
geometry of the interpolation points [46].

Another important part of a trust region algorithm is trust region man-
agement; this is the procedure used to adjust the size of the trust region. The
basic idea is to compare the reduction in the objective function value with
the reduction predicted by the model. If the comparison is good we either
increase the size of the trust region or leave it unchanged. If the comparison
is bad the size of the trust region may be reduced [46]. However when con-
sidering a reduction in the size of the trust region it is necessary to ensure
that the poor comparison is due to the size of the trust region rather than
a poor model. This must be considered since derivative free models do not
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necessarily become more accurate as the size of the trust region is reduced.
Often a geometry improvement iteration is used to increase the quality of
the model [46].

The most successful trust region methods are those that use interpola-
tion to build their quadratic models. We now give a brief discussion of the
most common of these methods. The first algorithm we consider is simply
called Derivative Free Optimization (DFO) and was developed in [45]. DFO
requires that its interpolation points always satisfy a condition on their ge-
ometry; it uses as its interpolation points the largest subset of the evaluated
sample points that satisfy said condition. However, if the number of points
in the subset is greater than 1

2
(n+ 1)(n+ 2) the size of the subset is reduced

since a quadratic model can generally only interpolate 1
2
(n+1)(n+2) points.

Any freedom remaining in the quadratic model is taken up by minimising
the Frobenius norm of the Hessian of the model. The Frobenius norm of a
matrix is defined as follows

‖Θ‖F =

√√√√
n∑

i=1

n∑

j=1

(Θ)2i,j, Θ ∈ R
(n,n).

DFO also makes use of geometry improvement iterations to find new inter-
polation points if there are not a sufficient number of previously evaluated
points satisfying the geometry condition.

The second algorithm we consider is BOBYQA, which was developed by
Powell [126]. BOBYQA also uses Frobenius norm quadratic models to inter-
polate a set of sample points and makes use of geometry improvement itera-
tions to ensure the quality of the model does not deteriorate. The derivative
free mixed integer methods developed in chapter 5 are based on an extension
of BOBYQA to the mixed integer case. Accordingly, a more extensive review
of BOBYQA is appropriate; this review is given in section 3.3.

A different approach is taken in the wedge method [108]. Rather than
using separate iterations to reduce the objective function and improve the
geometry, the wedge method uses only one type of iteration which attempts
to reduce the objective function value while simultaneously maintaining an
acceptable geometry for the interpolation points. This done by adding an
additional constraint to the trust region which prevents the new point from
lying on a manifold which would result in an unacceptable geometry should
an interpolation point be placed on it. The method derives its name from
the fact that the additional constraint is wedge shaped. Unlike the previous
approaches the wedge method does not use Frobenius models. Rather it
uses a fully determined quadratic model and accordingly it always requires
1
2
(n+ 1)(n+ 2) interpolation points.
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3.3 The BOBYQA algorithm

In this section we give a review of the BOBYQA algorithm. The details of
this description are all taken from [126] and the references contained therein.
The rest of this section is organised as follows. Section 3.3.1 contains a
brief overview of BOBYQA. In section 3.3.2 we describe the preliminary
calculations and the derivation of the initial quadratic model. In section 3.3.3
we discuss the method used to update the quadratic model. The procedure
used to select new interpolation points is discussed in section 3.3.4. In section
3.3.5 we describe a procedure used to deal with computational rounding
errors. The remaining details of the algorithm are given in section 3.3.6.

3.3.1 Overview of BOBYQA

BOBYQA is an iterative, derivative free procedure which solves the following
optimization problem:

min
x

f(x) (3.2)

s.t. l ≤ x ≤ u,

x ∈ R
n.

This is achieved by constructing a series of quadratic approximations Qk

to the objective function. To fully specify a quadratic model of a function
usually requires 1

2
(n + 1)(n + 2) interpolation points. BOBYQA allows the

user to specify the number of interpolation points m as some integer such that
m ∈

[
n+ 2, 1

2
(n+ 1)(n+ 2)

]
. This reduction in the number of interpolation

points allows BOBYQA to have a computational complexity of O (n2). We
now give a brief outline of BOBYQA, details on how each step is performed
will be given later in this section. At the beginning of the kth iteration a
quadratic model Qk which satisfies the following conditions is available

Qk(yi) = f(yi), i ∈ K, (3.3)

where the points yi are the interpolation points and K = {1, 2, . . . , m}. At
the start of the kth iteration we also have a trust region radius ∆k and a
point xk which has the property

f(xk) = min {f(yi) : i ∈ K} .
Now if certain conditions are satisfied the algorithm stops on the kth iteration
and returns xk and f(xk). Otherwise, a new interpolation point is selected
and replaces one of the current interpolation points. The new point is selected

34



by finding a step dk such that xk + dk is feasible and ‖dk‖ ≤ ∆k. This step
is constructed by performing either a trust region iteration or an alternative
iteration. A trust region iteration selects dk by solving the following problem:

min
dk

Qk(xk + dk) (3.4)

s.t. l ≤ xk + dk ≤ u,

‖dk‖ ≤ ∆k,

dk ∈ R
n.

An alternative iteration selects a dk which will improve the geometry of the
interpolation points. The method used to decide between trust region and
alternative iterations is described in section 3.3.4. One of the interpolation
points, yt say, is now replaced by xk +dk to form the new set of interpolation
points ŷi. The interpolation points now have the form

ŷi =

{
yi, i 6= t,

xk + dk, i = t.
(3.5)

Before the (k + 1)th iteration xk+1, Qk+1 and ∆k+1 are calculated. The
following formula is used to calculate xk+1

xk+1 =

{
xk, f(xk) ≤ f(xk + dk),

xk + dk, f(xk) > f(xk + dk).

The new quadratic model Qk+1 is generated by minimising the Frobenius
norm of ∇2Qk+1 −∇2Qk subject to the constraints

Qk+1(ŷi) = f(ŷi), i ∈ K. (3.6)

This is done by solving a system of linear equations.
Another important feature of BOBYQA is that instead of using one trust

region, as described in section 3.2.3, BOBYQA employs inner and outer trust
regions. The outer trust region is specified by the radius ∆k which has already
been mentioned. The inner trust region is specified by a radius ρk which,
like ∆k is updated at each iteration. The inner trust region radius is used
to restrict the placement of new interpolation points and in the termination
conditions of BOBYQA.

3.3.2 The initial quadratic model

The user has to supply an initial point x0, an initial inner trust region radius
ρ1, a final inner trust region radius ρend and the bounds l and u. The initial
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value of the outer trust region radius is given by ∆1 = ρ1. From here on
we consider the case where m = 2n + 1, the reader interested in the more
general case m ∈

[
n + 2, 1

2
(n + 1)(n+ 2)

]
is referred to [126]. We focus on

m = 2n+1 since numerical results show it to be the most effective value of m
and fixing the value of m allows us to simplify the explanation of BOBYQA.
Now, the initial set of interpolation points is constructed by placing points on
the boundary of a trust region with radius ∆1. Since all of the interpolation
points are required to be feasible an error is returned if ui − li ≤ 2∆1. The
initial point x0 may need to be moved to ensure that the interpolation points
are feasible, this is done automatically. Let (x0)i denote the ith element of
x0. The elements of x0 are reset using the following formula

(x0)i =





li, (x0)i < li,

ui, (x0)i > ui,

li + ∆1, li < (x0)i < li + ∆1,

ui − ∆1, ui > (x0)i > ui − ∆1,

(x0)i , otherwise.

After x0 is adjusted the value of the first interpolation point is set to y1 = x0.
As shall be seen in the following sections, the point x0 is used a number
of times in BOBYQA. To prevent numerical errors it may occasionally be
necessary to shift x0 during the execution of BOBYQA. The procedure used
to shift x0 and the conditions under which the shift is deemed necessary are
given in section 3.3.6. Now, for i = 1, 2, . . . , n, the remaining interpolation
points are defined as follows





yi+1 = x0 + ∆1ei yn+i+1 = x0 − ∆1ei, if li < (x0)i < ui,

yi+1 = x0 + ∆1ei yn+i+1 = x0 + 2∆1ei, if (x0)i = li,

yi+1 = x0 − ∆1ei yn+i+1 = x0 − 2∆1ei, if (x0)i = ui,

(3.7)

where ei is the ith unit vector in R
n. We note that the interpolation points

given by (3.7) may be expressed in the more general form

yi+1 = x0 + αiei, yn+i+1 = x0 + βiei, i = 1, . . . , n,

where αi and βi are non-zero real numbers satisfying αi 6= βi. The interpo-
lation points are expressed in this more general as it will allow some of the
formulae developed below to be used in section 3.3.5.

We now describe the procedure used to set up the initial quadratic model.
The quadratic model Q1 can be written in the form

Q1(x) =
1

2
xT∇2Q1x+ τTx+ ζ, (3.8)
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where τ ∈ R
n and ζ ∈ R. The objective function is evaluated at each of the

interpolation points, this allows the use of (3.3) to specify m elements of ζ ,
τ and ∇2Q1. Specifically we fix ζ , all of the elements of τ and the diagonal
elements of ∇2Q1. The remaining elements of ∇2Q1 are set to zero. This
is equivalent to using the freedom in the off-diagonal elements of ∇2Q1 to
minimise the Frobenius norm of ∇2Q1.

Now as was mentioned in section 3.3.1 the quadratic model is updated
by solving a system of linear equations which is itself updated during each
iteration. More details about the origin and form of the linear system are
given in section 3.3.3. Here we give a brief initial description of the system to
facilitate the discussion of the procedure used to set it up. The linear system
is square and has the following form

[
A Y T

Y 0

]

λ
p
q


 =

[
r
0

]
,

where λ ∈ R
m, p ∈ R, q ∈ R

n and r ∈ R
m. The definitions of λ, p, q and r

will be made clearer in section 3.3.3. A is an m×m symmetric matrix with
the elements

(A)i,j =
1

2

[
(yi − x0)

T (yj − x0)
]2
, i, j ∈ K. (3.9)

Y is an (n+ 1) ×m matrix with the form

Y =

[
1 1 . . . 1

y1 − x0 y2 − x0 . . . ym − x0

]
. (3.10)

Now since p, q and λ are the unknowns in the linear system, the matrix W
that we actually work with has the form

W =

[
A Y T

Y 0

]−1

=

[
Ω ΞT

Ξ 0

]
.

The structure of the initial interpolation points allows explicit formulae for
Ω and Ξ to be derived [124]. Ξ in an (n + 1) × m matrix whose elements
are assigned as follows. (Ξ)1,1 = 1 and the remaining elements of the first
row of Ξ are zero. For i = 1, . . . , n the (i+ 1)th row of Ξ has three non-zero
elements which are given by

(Ξ)i+1,1 = − 1

αi

− 1

β1
,

(Ξ)i+1,i+1 =
βi

αi (βi − αi)
,

(Ξ)i+1,n+i+1 =
αi

βi (αi − βi)
.
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Now instead of specifying the elements of Ω explicitly, Ω is expressed, using
an m×(m−n−1) matrix Z, in the form Ω = ZZT . Ω is written in this form
to prevent numerical errors in the updating procedures from increasing the
rank of Ω. Now the initial Z matrix will have only three non-zero elements
in each column. For i = 1, . . . , n these elements are given by

(Z)1,i =

√
2

αiβi
,

(Z)i+1,i =

√
2

αi(βi − αi)
,

(Z)n+i+1,i =

√
2

βi(αi − βi)
.

This completes our discussion of the initial calculations.

3.3.3 Updating the quadratic model

As was mentioned in section 3.3.1 the quadratic model is updated by min-
imising the Frobenius norm of ∇2Qk+1 −∇2Qk subject to the constraints

Qk+1(ŷi) = f(ŷi), i ∈ K.

The Frobenius norm of a matrix is defined in section 3.2.3. Define D(x) to
be the following quadratic function

D(x) = Qk+1(x) −Qk(x), (3.11)

D(x) = p+ (x− x0)
T q +

1

2
(x− x0)

TF (x− x0), (3.12)

where p = Qk+1(x0)−Qk(x0), q = ∇Qk+1(x0)−∇Qk(x0) and F = ∇2Qk+1−
∇2Qk. Using this notation it can be said that the model is updated by
minimising 1

4
‖∇2D‖2F = 1

4
‖F‖2F subject to the interpolation constraints

D(ŷi) = f(ŷi) −Qk(ŷi), i ∈ K. (3.13)

The factor of 1
4

is included for convenience and does not affect the solution
of the problem. The problem of updating the quadratic model has been
transformed into a convex quadratic program whose Lagrangian has the form

L =
1

4

n∑

i=1

n∑

j=1

(F )2i,j −
m∑

j=1

λj [D (ŷj) − f (ŷj) +Qk (ŷj)] . (3.14)
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The partial derivatives of L with respect to the parameters of D(x) are all
zero at the solution of the quadratic programming problem. This gives us
the following set of relations for the Lagrangian multipliers

m∑

j=1

λj = 0, (3.15)

m∑

j=1

λj (ŷj − x0) = 0, (3.16)

F =

m∑

j=1

λj (ŷj − x0) (ŷj − x0)
T . (3.17)

These relations arise from differentiating L with respect to p, the elements
of q and the elements of F respectively. Now using (3.11) and (3.12) we can
express Qk+1(x) as follows

Qk+1(x) = Qk(x) + p + (x− x0)
T q +

1

2
(x− x0)

TF (x− x0), (3.18)

where F takes the form in (3.17). We see that the calculation of Qk+1 has
been reduced to the calculation of p, q and λ. After substituting (3.18) into
(3.13) the constraints on the quadratic program take the form

p+ (ŷi − x0)
T q +

1

2

m∑

j=1

λj

[
(ŷi − x0)

T (ŷj − x0)
]2

= f(ŷi) −Qk(ŷi). (3.19)

Recall from section 3.3.2 that the linear system used to find p, q and λ has
the form

[
A Y T

Y 0

]

λ
p
q


 =

[
r
0

]
, (3.20)

where ri = f(ŷi) − Qk(ŷi), A is defined in (3.9) and Y is defined in (3.10).
Obviously in the definitions of A and Y , yi must be replaced by ŷi. It is now
clear that the first m rows of the system are given by (3.19), the (m + 1)th
row is given by (3.15) and the last n rows are given by (3.16). This completes
our discussion of the origin of the linear system.

As noted in section 3.3.2 the inverse matrix W of the linear system in
the previous paragraph is the matrix that is actually used by BOBYQA.
From here we denote the W matrix used in the kth iteration by Wk. It is
important to note that the interpolation constraints (3.13) use the updated
set of interpolation points ŷi so Wk+1 is used to obtain Qk+1 from Qk. The
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Lagrangian multipliers λ are then equal to the components of Ωk+1r, p is
equal to the first component of Ξk+1r and q is given by the last n components
of Ξk+1r. These expressions can be simplified further by noting that {yi : i ∈
K} and {ŷi : i ∈ K} only differ in one point so

ri = f(ŷi) −Qk(ŷi) = 0, i ∈ K\{t}. (3.21)

It is clear from this equation that Ωk+1r and Ξk+1r will just be equal to
multiples of the tth column of Ωk+1 and Ξk+1 respectively. The multiplying
factor in both cases will be rt = f(ŷt) − Qk(ŷt). This allows us to calculate
λ, p and q. However for reasons that will become clear p is not required.

Now, using the representation of Qk+1 in (3.18), the explicit calculation of
all of the elements of ∇2Qk+1 from ∇2Qk requires O(mn2) operations [123].
This is clear from the fact that the calculation of F using (3.17) requires two
vectors of length n to be multiplied together for each of the m interpolation
points. To keep the complexity of the algorithm within O(n2) the Hessian
matrices of the quadratic models are written in the following form [123]

∇2Qk = Gk +
m∑

j=1

µk
j (yj − x0) (yj − x0)

T , (3.22)

where Gk ∈ Sn and µk
j ∈ R. A procedure is described below which, given

G1 and µ1
j , allows Gk and µk

j to be calculated for any k. The required initial
values are given by µ1

j = 0 and G1 = ∇2Q1 where ∇2Q1 is found using the
procedure described in section 3.3.2. A formula for ∇2Qk+1 with a similar
form to (3.22) is required. Towards this end we define µk+1

j ∈ R such that
the following equations are satisfied

Gk+1 = Gk + µk
t (yt − x0) (yt − x0)

T , (3.23)

∇2Qk+1 = Gk+1 +
m∑

j=1

µk+1
j (ŷj − x0) (ŷj − x0)

T . (3.24)

An explicit formula needs to be found for µk+1
j . Substituting (3.22) into

(3.23) gives

Gk+1 = ∇2Qk −
m∑

j=1
j 6=t

µk
j (yj − x0) (yj − x0)

T , (3.25)

but from (3.5) we have yj = ŷj, j 6= t so

Gk+1 = ∇2Qk −
m∑

j=1
j 6=t

µk
j (ŷj − x0) (ŷj − x0)

T . (3.26)

40



Substituting (3.26) into (3.24) and recalling that F = ∇2Qk+1 −∇2Qk gives

F = −
m∑

j=1
j 6=t

µk
j (ŷj − x0) (ŷj − x0)

T +

m∑

j=1

µk+1
j (ŷj − x0) (ŷj − x0)

T . (3.27)

Substituting (3.17) into (3.27) and simplifying gives

m∑

j=1
j 6=t

(
µk
j + λj

) [
(ŷj − x0) (ŷj − x0)

T
]

+ λt (yt − x0) (yt − x0)
T

=
m∑

j=1

µk+1
j (ŷj − x0) (ŷj − x0)

T .

(3.28)

Now, considering (3.23), (3.24) and (3.28) it is clear that the Hessian of the
quadratic model can be updated by updating Gk and µk

j as follows

Gk+1 = Gk + µk
t (yt − x0) (yt − x0)

T , (3.29)

µk+1
j =

{
µk
j + λj , j 6= t,

λj, j = t.

In addition to reducing the complexity of the updating process, using this
formula for the Hessian allows ∇2Qk to be multiplied by any vector in R

n

in O(mn) operations [123]. Accordingly this representation of the Hessian
allows the complexity of BOBYQA to be kept within O(n2).

A gradient of Qk is required in each iteration; the gradient qk = ∇Qk(xk)
is used. This gradient is chosen since it both allows a more accurate calcula-
tion of dk in trust region iterations and helps reduce numerical errors when
qk becomes small. Therefore, Qk(x) can be expressed in the following form

Qk(x) = Qk(xk) + (x− xk)T qk +
1

2
(x− xk)T∇2Qk(x− xk). (3.30)

Now the values of Qk(xk) = f(xk) and Qk(xk+1) = f(xk+1) are known since
xk and xk+1 are interpolation points. Therefore, as noted previously, the
value of p is not required in our representation of Qk. The formula used to
update qk is found by differentiating (3.18), giving the following equation

∇Qk+1(xk) = qk + q +

m∑

j=1

λj (ŷj − x0)
T (xk − x0) (ŷj − x0) . (3.31)
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This formula gives qk+1 when xk+1 = xk. When xk+1 = xk + dk the Taylor
series expansion of Qk+1(xk + dk) gives

Qk+1(xk + dk) = Qk+1(xk) + dTk∇Qk+1(xk) +
1

2
dTk∇2Qk+1dk. (3.32)

Differentiating both sides of this equation gives

∇Qk+1(xk + dk) = ∇Qk+1(xk) + ∇2Qk+1dk. (3.33)

Combining (3.31) and (3.33) the following expression for qk+1 is obtained

qk+1 =

{
∇Qk+1(xk), xk+1 = xk,

∇Qk+1(xk) + ∇2Qk+1dk, xk+1 = xk + dk,
(3.34)

where ∇Qk+1(xk) is given by (3.31).
We now discuss the updating procedure for Wk. At the beginning of the

(k + 1)th iteration the matrix Wk, which is derived using yi, is available.
However, from the above description of the updating of the quadratic model
it is clear that Wk+1 is required to update Qk. Therefore Wk+1 needs to be
calculated before the procedure for updating Qk is applied. Before proceeding
with our discussion of the updating of Wk we need to define the following
quantities. Let z ∈ R

n+m+1 be the vector with the following components





zi = 1
2

[
(yi − x0)

T (xk + dk − x0)
]2
, i ∈ K,

zm+1 = 1,

zi+m+1 = (xk + dk − x0)i, i = 1, . . . , n.

(3.35)

In addition define φ, ψ, τ, σ ∈ R as follows

φ = eTt Wket, (3.36)

ψ = 0.5‖xk + dk − x0‖4 − zTWkz, (3.37)

τ = eTt Wkz, (3.38)

σ = φψ + τ 2. (3.39)

Now it is shown in [123] that Wk+1 can be calculated from Wk using the
following formula

Wk+1 =Wk + σ−1[φ(et −Wkz)(et −Wkz)
T − ψWkete

T
t Wk+

τ{Wket (et −Wkz)
T + (et −Wkz) e

T
t Wk}], (3.40)
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where et is the tth coordinate vector in R
n+m+1. However, it should be noted

that the (m + 1)th row and column of Wk are not required when updating
the quadratic model. The motivation for this statement follows from two
observations. Firstly, as noted in the paragraph following (3.21), the value
of p is not required by our quadratic model. In addition the (m + 1)th
component of the right hand side of (3.20) is zero. Accordingly, when the
right hand side of (3.20) is pre-multiplied by Wk the (m + 1)th column will
have no effect on the result. Clearly it is not necessary to retain the (m+1)th
row and column of Wk. However, (3.40) needs to be modified to allow us
to update Wk without these elements. This can be done as follows. Let s
be the integer in K such that ys = xk. Now let v denote the sth column of
W−1

k , the components of v are given by





vi = 1
2

[
(yi − x0)

T (xk − x0)
]2
, i ∈ K,

vm+1 = 1,

vi+m+1 = (xk − x0)i, i = 1, . . . , n.

(3.41)

Now from the definition of v it is clear that W−1
k es = v which gives Wkv = es.

Using this relation the following identities can easily be obtained

Wkz = Wk(z − v) + es, (3.42)

zTWkz = (z − v)TWk(z − v) + 2zs − vs, (3.43)

where zs and vs are the sth components of z and v respectively. Now each
occurrence of Wkz and zTWkz in (3.37)–(3.40) is replaced by (3.42) and
(3.43) respectively. Since (z − v)m+1 = 0 this allows Wk+1 to be calculated
from Wk when the (m+ 1)th row and column of Wk are not available.

The modified version of (3.40) is used to obtain Ξk+1 from Ξk and Ωk.
However, a procedure to update the matrix Zk, used in the factorisation of Ωk,
is still required. Zk needs to be updated in such a way that Ωk+1 = Zk+1Z

T
k+1

were Ωk+1 is given by (3.40). The following updating procedure is employed
here. First construct an n × n orthogonal matrix Ψ such that only the
first component of the tth row of ZkΨ is non-zero. A matrix Ψ with the
required form can be constructed using Algorithm 1. Algorithm 1 proceeds
by constructing a series of n − 1 orthogonal matrices Θ each of which sets
one element of the tth row to zero. The required orthogonal matrix Ψ is then
just the product of the Θ matrices. Ψ is orthogonal since the product of two
orthogonal matrices is itself orthogonal [74]. Now, since Ψ is orthogonal, Zk

43



can be replaced by ZkΨ in the factorisation of Ωk, as follows

Ωk = ZkZ
T
k ,

= ZkIZ
T
k ,

Ωk = (ZkΨ)(ZkΨ)T .

Now set Zk := ZkΨ. This gives a Zk matrix in which the only non-zero
element in the tth row of Zk is in the first column. Accordingly, only the
first column of Zk has to be changed to obtain Zk+1. Specifically, it can be
shown that the first column of Zk+1 has the following components [125]

(Zk+1)i,1 =
τ (Zk)i,1 + (et − es −Wk(z − v))i (Zk)t,1√

σ
, i ∈ K. (3.44)

This completes our discussion of the updating of Qk and Wk.

Algorithm 1 Generation of the orthogonal matrix used to update Zk

Ψ := In
Φ := Zk

if there is a non zero component of the tth row of ZkΨ besides the first
component then

for i = 2 to n do

Θ := In
if Φt,i 6= 0 then

µ := 0n×1, υ := 0n×1

µi := 1, υ1 := 1

µ1 :=
Φt,1

Φt,i

, υi := −Φt,1

Φt,i

µ :=
µ

‖µ‖ , υ :=
υ

‖υ‖
Set the first column of Θ to µ and the ith column to υ

end if

Φ := ΦΘ
Ψ := ΨΘ

end for

end if

Return Ψ

3.3.4 Choosing the direction vector

As noted in section 3.3.1, at each iteration the step dk is found using either
a trust region iteration or an alternative iteration. During both types of
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iteration we find a dk which satisfies the constraints

‖dk‖ ≤ ∆k,

l ≤ xk + dk ≤ u.

In this section we describe the procedures used during both trust region and
alternative iterations. We also describe the method used to select t as well as
the method used decide which type of iteration to use during the execution
of BOBYQA.

Trust region iterations

As noted in section 3.3.1, during trust region iterations dk is found by
minimising the current quadratic model subject to trust region constraints.
Specifically dk is taken to be the solution of the following problem:

min
dk

Qk(xk + dk) (3.45)

s.t. l ≤ xk + dk ≤ u,

‖dk‖ ≤ ∆k,

dk ∈ R
n.

This problem is solved using an active set version of the truncated conjugate
gradient method [126]. The algorithm begins at the centre of the trust region
and the procedure is restarted with an enlarged active set if dk becomes
restricted by the bound constraints l ≤ x ≤ u. No indices are removed from
the active sets of the subproblems. Additionally, if dk reaches the boundary
of the trust region and the algorithm would terminate with ‖dk‖ < ∆k then
an attempt is made to improve the solution by changing dk while remaining
on the trust region boundary. Further details on this procedure are not
given here, the interested reader is referred to [126] and the more extensive
description in [68].

Alternative iterations

As noted in section 3.3.1, in alternative iterations dk is chosen to improve
the geometry of the interpolation points. Specifically, dk is chosen such that
numerical errors in the updating of Wk are avoided. This is done by ensuring
that the value of σ, in (3.39), is large. We concentrate our efforts on σ since
it is the only denominator in (3.40) and (3.44). Now define Λt (x) to be a
quadratic function satisfying the Lagrange interpolation conditions

Λt(yi) = δit, i ∈ K, (3.46)
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where δit is the Kronecker delta. These interpolation conditions do not fully
specify Λt; the remaining freedom is taken up minimising the Frobenius norm
of ∇2Λt. It will be shown that the value of σ is closely related to Λt. How-
ever before describing this relationship further the method used to obtain
the coefficients of Λt must be given. The method used to construct Λt is
closely related to the method used to update Qk since both procedures in-
volve minimising a Frobenius norm. Consider the derivation of Wk given at
the beginning of section 3.3.3. Suppose that D(x) is redefined as follows

D(x) = Λt(x),

and that the interpolation constraints (3.13) are replaced with

D(yi) = δit, i = 1, 2, . . . , m. (3.47)

Now following the same reasoning used at the start of section 3.3.3 and noting
that the interpolation conditions (3.47) involve the old interpolation points
yi it can be shown that Λt can be written in the form

Λt(x) = p + (x− x0)
T q +

1

2
(x− x0)

T∇2Λt(x− x0), (3.48)

where

∇2Λt =
m∑

i=1

λi (yi − x0) (yi − x0)
T . (3.49)

In this case λi are the components of Ωket, p is the first component of Ξket
and q is given by the remaining components of Ξket. However, as noted in
section 3.3.3, the (m+1)th row and column of Wk are not available so instead
of using (3.48) Λt is expressed in the following form

Λt(x) = (x− xk)T∇Λt(xk) +
1

2
(x− xk)T∇2Λt(x− xk),

where ∇Λt(xk) = q + ∇2Λt(xk − x0). Λt can be expressed in this form since
Λt(xk) = 0. This completes our discussion of the method used to construct
Λt.

We now give a more detailed description of the relationship between σ
and Λt. Recall that τ = eTt Wkz and that the coefficients λi, q and p are
the elements of Wket. In addition, it is clear from its definition that Wk is
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symmetric. Using this information we can rewrite τ as follows

τ = eTt Wkz,

= (W T
k et)

T z,

= (Wket)
T z,

=



λ
p
q




T

z,

τ =
m∑

i=1

λizi + pzm+1 +
n∑

j=1

qjzj+m+1. (3.50)

Substituting the elements of z, which are given by (3.35), into (3.50) the
following formula for τ is obtained

τ =
1

2
(xk + dk − x0)

T∇2Λt(xk + dk − x0) + (xk + dk − x0)
T q + p.

Comparing this to (3.48) it is clear that

τ = Λt(xk + dk).

Substituting into (3.39) the following expression for σ is obtained

σ = φψ + {Λt(xk + dk)}2 .
This is the promised relationship between σ and Λt. Now it is shown in [123]
that we have both φ ≥ 0 and ψ ≥ 0. Using these bounds it is trivial to show
that σ is bounded below by {Λt(xk + dk)}2.

It was noted at the start of this section that the aim of the alternative
iterations is to ensure that σ is substantial. This is done by making the
lower bound on σ, given in the previous paragraph, as large as possible.
Accordingly the step dk is found by solving the following problem:

max
dk

|Λt(xk + dk)| (3.51)

s.t. l ≤ xk + dk ≤ u,

‖dk‖ ≤ ∆k,

dk ∈ R
n.

This problem is solved approximately. In particular xk+dk is usually selected
to lie on one of the straight lines between xk and the other interpolation
points. If this procedure would prevent the new set of interpolation points
from spanning R

n then dk is replaced by a Cauchy step. Further details of
this procedure are not given here, the interested reader is referred to [126].
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Choosing t and the type of iteration

In first part of this section we discuss the methods used to select t during
trust region and alternative iterations. Two objectives are considered when
choosing t. Firstly, it is desirable to cluster the interpolation points around
xk. In addition, it is necessary to ensure that the value of σ is acceptably
large. The reasons for making σ large have been explained previously. The
clustering of the interpolation points around xk improves the accuracy of
the quadratic model around xk. This is important when checking that xk is
a minima, indeed we shall see later that one of the termination conditions
of the algorithm is that all of the interpolation points lie within a certain
neighbourhood of xk. It is important to note that the objectives described
above must be considered simultaneously; clustering the interpolation points
around xk without ensuring an acceptable value of σ could result in numerical
errors. Clustering the interpolation points could also lead to areas of the
feasible region being poorly sampled; in BOBYQA this is prevented by the
inner trust region radius.

During trust region iterations t is chosen to be the integer in K\{s} (s is
defined above (3.41)) which maximises the following quantity

max

[
1,

‖yt − xk‖2
∆2

k

]
σt,

where σt denotes the value of σ if t is chosen. Clearly, when choosing t using
this condition both the clustering of the interpolation points and the value
of σ are taken into account. During alternative iterations it is deemed that
the choice of dk is a sufficient guaranty that the value of σ will be acceptable.
Accordingly, during alternative iterations our main aim when choosing t is
clustering the interpolation points. This being the case, during alternative
iterations t is set to the integer which satisfies the following equation

‖yt − xk‖ = max {‖yi − xk‖ : i ∈ K} .

This completes our discussion of the choice of t.
We now describe the method used to choose between trust region and

alternative iterations during the execution of BOBYQA. The decision process
is illustrated in Figure 3.1. Figure 3.1 also shows the process used to choose
ρk+1, the inner trust region radius. In this section we only describe the
process used to decide whether ρk+1 < ρk or ρk+1 = ρk

1. The process used
to set ρk+1 when ρk+1 < ρk will be discussed in section 3.3.6. Now when

1The inner trust region radius is never increased so there is no need to consider the
case ρk+1 > ρk.
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Find dk
using (3.45)

‖dk‖ ≤ 1
2
ρk

δk ≤ 10ρk

ρk+1 = ρk

Alternative
Iteration

ρk+2 = ρk+1

Find dk+2

using (3.45)

Calculate
f(xk + dk)

f(xk + dk) < f(xk)

rk ≥ 0.1

δk+1 > max[2∆k+1, 10ρk]

∆k+1 = ρk, ‖dk‖ ≤ ρk,
δk+1 ≤ 10ρk, rk ≤ 0

ρk+1 = ρk

Find dk+1

using (3.45)

Set ρk+1

using (3.58)

ρk+1 ≤ ρendStop
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Figure 3.1: A flow chart showing the processes followed to choose between
trust region and alternative iterations and to find ρk+1.
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deciding between trust region and alternative iterations measures of both
the clustering of the interpolation points and the quality of the quadratic
model are required. Towards this end rk is defined as

rk =
f(xk) − f(xk + dk)

Qk(xk) −Qk(xk + dk)
, (3.52)

and δk is defined as follows

δk = max {‖yi − xk‖ : i ∈ K} .
Now it is undesirable to take steps that are small relative to the size of the
trust region. Accordingly, once a trust region step is generated by solving
problem (3.45) the inequality ‖dk‖ ≤ 0.5ρk is evaluated. If this inequality
holds dk is discarded and either an alternative iteration is started or ρk is
reduced and another trust region iteration is begun. Otherwise the trust
region iteration proceeds as normal in which case the value of f(xk + dk)
will be calculated. Following [126] we refer to the situation where the trust
region step is not discarded by saying that f(xk+dk) is calculated. If the trust
region step is rejected the clustering of the interpolation points is checked
using the following condition, δk ≤ 10ρk. If this condition holds then ρk+1

is chosen such that ρk+1 < ρk using a method discussed in section 3.3.6. If
the new ρk+1 satisfies ρk+1 ≤ ρend then BOBYQA is stopped and xk and
f(xk) are returned. If ρk+1 > ρend a new trust region step is calculated
and the decision process is repeated. On the other hand, if δk > 10ρk then
ρk+1 = ρk and an alternative iteration is used to improve the geometry
of the interpolation points. After the alternative iteration a trust region
step is calculated with ρk+2 = ρk+1 = ρk. Now consider the case were
f(xk +dk) is calculated during a trust region iteration. If f(xk +dk) < f(xk)
or rk ≥ 0.1 then it is assumed the algorithm is proceeding satisfactorily using
the current trust region and set of interpolation points so another trust region
step is calculated with ρk+1 = ρk. If neither of these conditions hold the
clustering of the interpolation points is checked using the following condition,
δk+1 > max[2∆k+1, 10ρk]. If this condition does not hold the next iteration is
an alternative iteration with ρk+1 = ρk to improve the interpolation points. If
the condition does hold the inner trust region radius may need to be reduced
for the algorithm to make further progress. This decision is made using the
following conditions

∆k+1 = ρk,

‖dk‖ ≤ ρk,

δk+1 ≤ 10ρk,

rk ≤ 0.
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If these conditions hold ρk+1 is chosen such that ρk+1 < ρk. If the new
ρk+1 satisfies ρk+1 ≤ ρend then BOBYQA is stopped and xk and f(xk) are
returned. If ρk+1 > ρend a new trust region step is calculated and the decision
process is repeated. If any of the four conditions given above are not satisfied
a new trust region step is calculated with ρk+1 = ρk.

3.3.5 The RESCUE procedure

In this section a procedure named RESCUE is described. RESCUE is used
to handle a specific type of numerical error that occasionally occurs during
the calculation of σ. Numerical errors can cause large inaccuracies in the
calculated value of σ. Large reductions in the value of σ are particularly
troublesome since, as discussed in section 3.3.4, small values of σ can cause
errors in the updating of Wk. Furthermore, it is obvious that negative values
of σ would preclude the use of (3.44) to update Zk. Now both the value
of dk chosen in alternative iterations and the value of t used during the
trust region iterations are used to try and keep σ away from zero. However,
despite these measures unacceptable losses in accuracy my still occur during
the calculation of σ.

Recall that σ = φψ + τ 2 and that theoretically φψ is bounded below by
zero. In this section we are mainly concerned with numerical errors that
cause φψ to be negative. The factorisation of Ωk ensures that φ is positive
in practice since we have

φ = (Wk)t,t ,

= eTt ZkZ
T
k et,

=
∥∥ZT

k et
∥∥2 ,

φ ≥ 0.

However, there is no guaranty that ψ will be positive in practice and compu-
tational experience shows that rounding errors can produce negative values
of ψ. Since φ is always positive this makes φψ negative which reduces the
value of σ. Occasionally these errors are tolerated as they do not always cause
difficulty in the execution of BOBYQA. Quantitatively the current value of
σ is rejected if it satisfies the relation

σ <
1

2
τ 2. (3.53)

If this criteria is satisfied RESCUE is used to try and obtain a better value
of σ. RESCUE proceeds by constructing a new set of interpolation points
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whose geometry is better than the set that resulted in the numerical error.
The quadratic model is then updated to fit the new set of interpolation points.
The procedures used to perform these tasks are described in the subsections
below.

Generation of new interpolation points

In this section we discuss the procedure used by RESCUE to construct the
new interpolation points. The first step of RESCUE is to discard the current
Wk and Zk matrices, replacements will be generated during the execution
of RESCUE. The value of x0 is changed to x0 = xk. Since Wk has been
discarded this change in x0 only results in a change in (3.22), the stored form
of ∇2Qk. It is desirable to update (3.22) without changing µk

j , i.e. (3.22)
should be updated by changing Gk. Let GResc

k denote the updated form of
Gk. Noting that ∇2Qk is invariant under changes of origin and that µk

j is
unchanged, the following equation can be derived

Gk +
m∑

j=1

µk
j (yj − x0) (yj − x0)

T = GResc
k +

m∑

j=1

µk
j (yj − xk) (yj − xk)T ,

GResc
k = Gk +

m∑

j=1

µk
j

[
(yj − x0) (yj − x0)

T − (yj − xk) (yj − xk)T
]
.

This equation allows us to update (3.22) when the origin is shifted to xk.
The next step of RESCUE is to construct a set of possible replacement inter-
polation points {γi : i ∈ K}. This is done using a similar procedure to that
used to set up the initial interpolation points. Set γ1 = x0 and find non-zero
multipliers αi and βi with αi 6= βi using a procedure described below. The
remaining m− 1 points are set as follows

{
γi+1 = x0 + αiei, i = 1, . . . , n,

γi+n+1 = x0 + βiei, i = 1, . . . , n.
(3.54)

The values of the multipliers αi and βi are given by the following formulae

αi =





∆k, l ≤ x0 + ∆kei ≤ u,

∆k, (xk)i + ∆k ≤ ui,

−∆k, (xk)i − ∆k ≥ li,

βi =





−∆k, l ≤ x0 − ∆kei ≤ u,

li − (xk)i, ((xk)i + ∆k ≤ ui) ∧ (|li − (xk)i| ≥ 0.5∆k) ,

ui − (xk)i, ((xk)i − ∆k ≥ li, ) ∧ (|ui − (xk)i| ≥ 0.5∆k) ,
1
2
αi, otherwise.
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New versions of Wk and Zk are constructed using {γi : i ∈ K} and the
method described in section 3.3.2. RESCUE now proceeds by constructing
a new set of interpolation points {ŷi : i ∈ K}. This set is constructed
by replacing as many points as possible in {γi : i ∈ K} with points from
{yi : i ∈ K} while maintaining an acceptable value of σ. It is desirable
to use as many points as possible from {yi : i ∈ K} in the construction
of {ŷi : i ∈ K} since the objective function has already been evaluated at
each point in {yi : i ∈ K}. More specifically the procedure for constructing
{ŷi : i ∈ K} proceeds as follows. Initially the new interpolation points are
given by {ŷi = γi : i ∈ K}. Each point in {yi : i ∈ K} is assigned a score
υi which is given by υi = ‖yi − xk‖. These scores are used to decide which
point in {yi : i ∈ K} RESCUE should attempt to place in {ŷi : i ∈ K}.
Let υ∗ denote the greatest of these scores. Now let ℓ be the integer giving
the smallest positive value of υℓ. RESCUE attempts to replace one of the
points in {ŷi : i ∈ K} with yℓ. The point to be removed from {ŷi : i ∈ K}
is denoted by ŷt where t is chosen to be the integer which maximises the
following quantity

σ =φψ + τ 2,

σ = (Wk)t,t

(
1

2
‖yℓ − xk‖4 − (z − v)TWk(z − v) + 2zs − vs

)

+
(
eTt Wk(z − v)

)2
. (3.55)

It is inexpensive to find this value of t since both ψ and Wk(z − v) are
independent of t. Once both t and ℓ have been selected RESCUE needs to
decide whether to replace ŷt with yℓ. Now let σt be the value of σ given
by (3.55) with the current t. Then the replacement is made if the following
condition is satisfied

σt > 0.01max
[(
eTi Wk(z − v)

)2
: i ∈ K\{s}

]
, (3.56)

where the factor 0.01 was chosen through numerical experiment and we recall
that s is the integer such that ys = xk. If (3.56) is satisfied RESCUE replaces
ŷt with yℓ in {ŷi : i ∈ K}. The matrices Wk and Zk are then updated using
the techniques outlined in section 3.3.3 and the score is set to υℓ = 0. On
the other hand if (3.56) is not satisfied the replacement is not made, the
current Zk and Wk are retained and υ∗ is added to υℓ. A new value of ℓ is
then chosen since the manipulation of the scores will result in a new smallest
positive υi. RESCUE then attempts to replace another point in {ŷi : i ∈ K}
with the new yℓ by repeating the procedure described above. This section of
the RESCUE procedure is terminated when either m− 1 replacements have
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occurred or all the values of ℓ with υℓ > 0 have been considered without a
successful replacement.

Updating the quadratic model

In this section we discuss the method used to update the quadratic model
given the set of new points {ŷi : i ∈ K} and valid matrices Wk and Zk.
Let T be the set of integers such that ŷt, t ∈ T is not in the original set
{yi : i = 1, . . . , m}. If T is empty then obviously the current quadratic
model already interpolates all of the points in {ŷi : i ∈ K}. However, if
T 6= ∅ the quadratic model clearly needs to be updated. When T 6= ∅ the
objective function has not been evaluated at all of the points in {ŷi : i ∈ K}
and the first step in updating Qk is to obtain these objective function values.
Now recall from section 3.3.4 that a function Λt(x) satisfying the Lagrangian
interpolation conditions (3.46) can be found using Wk. The fact that Λt

satisfies (3.46) allows Qk to be updated as follows. For each t ∈ T set

Qk(x) := Qk(x) + {f(ŷt) −Qk(ŷt)}Λt(x). (3.57)

For each t, (3.57) ensures that Qk(ŷt) = f(ŷt) while having no effect on the
value of Qk at the other interpolation points. That this is the case can easily
be seen by considering (3.46). The updating of Qk for each value of t is
completed before moving to the next integer in T . The matrix Wk remains
fixed throughout the process of updating Qk. We now discuss how to perform
this updating procedure in practice given that Qk is in the form of (3.30) with
∇2Qk given by (3.22) and qk given by (3.34). We first discuss the updating
of ∇2Qk. Since the interpolation points yj, j ∈ T are no longer made use of
RESCUE adds

∑
j∈T µ

k
j (yj − x0)(yj − x0)

T to Gk and sets µk
j = 0, j ∈ T .

∇2Qk can now be expressed in the following form

∇2Qk = Gk +
m∑

j=1

µk
j (ŷj − x0) (ŷj − x0)

T .

Then for each t ∈ T set

µk
j := µk

j + λj, j = 1, 2, . . . , m,

where λj is the jth element of the tth column of Ω multiplied by f(ŷt)−Qk(ŷt).
That this method correctly updates the Hessian can be seen by considering
(3.57) and (3.49), the form of the Hessian of Λt(x). The updating procedure
for qk makes use of (3.31). Since xk = x0 the sum over j on the right hand
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side is equal to zero. Clearly then qk is given by qk := qk + q, where q can be
expressed as

q = {f(ŷt) −Qk(ŷt)}∇Λt(xk).

This completes our discussion of the updating of Qk in RESCUE.

Incorporating RESCUE into BOBYQA

The incorporation of RESCUE into BOBYQA is the focus of this section.
Firstly, it should be noted that one or more of the new interpolation points
found by RESCUE may satisfy f(xk) > f(ŷi). If this is the case xk is changed
and the change to qk described in (3.34) is made before proceeding with the
operation of BOBYQA.

If RESCUE is called during a trust region iteration then after the execu-
tion of RESCUE a new trust region step is generated using the new Qk. It
is possible that values of σ and τ generated after the call of RESCUE will
also satisfy (3.53), in which case RESCUE is called again. However, once
repeated calls to RESCUE occur it is always asked whether T was empty
during the previous call to RESCUE. If T was empty then further calls to
RESCUE will have no effect and an error is returned. Numerical experience
shows that this error is very rare. RESCUE will only ever be called during
trust region iterations when a trust region step satisfying ‖dk‖ ≥ 1

2
ρk is gen-

erated. When ‖dk‖ ≥ 1
2
ρk condition (3.53) is checked before f(xk + dk) is

calculated; since RESCUE will typically change Qk, which in turn changes
dk, the value of f(xk + dk) before RESCUE is called will not be required.

Two different branches can be taken if RESCUE is called during an alter-
native iteration. If T = ∅ the alternative iteration is restarted using the new
Wk. If RESCUE is called again during the restarted alternative iteration an
error is returned, as before this error is very rare. If T 6= ∅ a trust region
iteration is begun with the calculation of a new trust region step using the
Qk returned by RESCUE. Similarly to the trust region case, condition (3.53)
is checked before f(xk + dk) is calculated during the alternative iteration.
We note that the preceding description of the inclusion of RESCUE into
BOBYQA is not included in Figure 3.1.

3.3.6 Further details of BOBYQA

This section contains the remaining information required to complete the
description of BOBYQA. The first subsection contains the description of
the trust region management procedure. The second subsection contains an
outline of the method used to perform the occasional shift of origin. The
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final section details two methods used to improve the convergence of the
algorithm.

Trust region management

As was mentioned previously BOBYQA maintains two trust region radii; an
outer radius ∆k and an inner radius ρk. The inner trust region radius is used
to keep the interpolation points apart by preventing steps that are too small
relative to the size of the outer trust region. The inner trust region radius is
also used in the stopping condition of the algorithm; the algorithm is stopped
when ρk ≤ ρend. In this section we outline the procedures used to find ∆k+1

and ρk+1 from ∆k and ρk respectively. The parameters used in the updating
procedures were chosen through numerical experiment.

The situations in which ρk+1 = ρk along with those in which ρk+1 < ρk
is required are shown in Figure 3.1 and discussed in section 3.3.4. The
arguments will not be repeated here. However, a formula to calculate ρk+1

when ρk+1 < ρk has not been given. The required reduction formula can be
expressed as follows

ρk+1 =





ρend, ρk ≤ 16ρend,√
ρkρend, 16ρend < ρk ≤ 250ρend,

0.1ρk, ρk > 250ρend.

(3.58)

This formula is reduces ρk by a factor of ten unless there will only be one
or two more reductions until ρk = ρend. Further information on the specific
form of (3.58) can be found in [124]. This completes the discussion of the
management of the inner trust region.

If the kth iteration is an alternative iteration ∆k+1 = ∆k. If the kth
iteration is a trust region iteration that calculates f(xk + dk) then ∆k+1 is
given by

∆k+1 =





min
[
1
2
∆k, ‖dk‖

]
, rk ≤ 0.1,

max
[
1
2
∆k, ‖dk‖

]
, 0.1 < rk ≤ 0.7,

max
[
1
2
∆k, 2‖dk‖

]
, rk > 0.7.

(3.59)

This formula utilises the fact that the larger rk is the better the quadratic
model is working. Accordingly, when rk is small the size of trust region is
reduced in an attempt to improve the accuracy of the quadratic model. For
larger rk the size of the trust region is increased to allow a more efficient
exploration of the solution space. Further details on this formula, as well
as the other trust region management formulae in this section, are given in
[124]. A refinement to (3.59), which also applies to the following formulae
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for calculating ∆k+1, is that ∆k+1 is set to ρk if ∆k+1 ≤ 1.5ρk. When a trust
region step satisfying ‖dk‖ < 1

2
ρk is produced then ∆k+1 is given by

∆k+1 = min

[
1

10
∆k,

1

2
δk

]
. (3.60)

When a situation arises in which ρk+1 < ρk then ∆k+1 is given by

∆k+1 = max

[
1

2
ρk, ρk+1

]
. (3.61)

We note that the conditions which cause ρk+1 < ρk can occur with the
conditions that result in the use of (3.59) or (3.60). In this case (3.61) is
used instead of (3.59) or (3.60). A final refinement to the management of
the outer trust region radius is that it may be temporarily reduced before
alternative iterations. If δk < 10∆k before an alternative iteration then ∆k

is reduced using the formula ∆k = max[0.1δk, ρk]. The previous value of ∆k

is restored after the alternative iteration. This completes our discussion of
the management of the outer trust region.

Shifts of origin

It is important for numerical accuracy that the distance between x0 and xk
does not become too large. For this reason the origin is shifted occasionally
to x0 = xk. Specifically the origin is shifted to xk when a step dk is generated
such that (

‖dk‖ ≥ 1

2
ρk

)
∧
(
‖dk‖2 ≤ 10−3‖xk − x0‖2

)
.

The procedure used to shift the origin is derived in [123]; we give the details
of the procedure here, the reader interested in the derivation is referred to
[123]. Let Γ be an n×m matrix whose columns are given by

Γej =
{
sT (yi − xav)

}
(yi − xav) +

1

4
‖s‖2s,

where s = xk − x0 is the magnitude of the shift and xav = 1
2
(x0 + xk). The

updated Wk matrix is then given by

Wk :=

[
I 0
Γ I

]
Wk

[
I ΓT

0 I

]
.

This will have no effect on Ωk so the factorisation Zk does not need to be
changed. The quadratic model is updated by adding the following symmetric
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matrix to Gk

{
m∑

j=1

µjyj − xav

m∑

j=1

µj

}
sT + s

{
m∑

j=1

µjyj − xav

m∑

j=1

µj

}T

.

This completes our description of the origin shifting procedure.

Methods to increase the speed of convergence

The final details required for the description of BOBYQA are two refinements
used to speed the convergence of the algorithm in specific situations. The
first refinement is used when the quadratic model is very successful. The
second refinement applies when the elements of the Hessian of the quadratic
model are much too large. We note that these refinements are not included
in Figure 3.1.

The first refinement is a procedure that can be used to give ρk+1 < ρk
when ‖dk‖ < 1

2
ρk and δk > 10ρk. This procedure is necessary as it can happen

that a previous quadratic model has generated an xk such that ‖xk − x∗‖ is
much smaller than ρk, here x∗ is the optimal solution. Then if the quadratic
models remain accurate representations of the objective function the trust
region steps generated by solving problem (3.45) may all be rejected by the
condition ‖dk‖ ≥ 1

2
ρk, until ρk is reduced.

The technique used to overcome this problem uses the following estimate
of the accuracy of the quadratic model

εmax = max {|f(xl + dl) −Ql(xl + dl)| : l ∈ {k − 3, k − 2, k − 1}} ,

where f(xl+dl), l ∈ {k−3, k−2, k−1} are the three most recently calculated
values of the objective function. The value of εmax is said to be usable if
RESCUE was not called in the previous three iterations and if ‖dl‖ ≤ ρk, l ∈
{k − 3, k − 2, k − 1}. Obviously εmax will also not be usable during the first
three iterations. Now whenever a trust region step is generated which satisfies
‖dk‖ < 1

2
ρk and δk > 10ρk then the existence of a usable εmax is checked.

If εmax is found to be usable we set ρk+1 < ρk if and only if the two tests
outlined in the following paragraphs suggest that x∗ ∈ {x : ‖x− xk‖ ≤ ρk}.

The first test checks whether a move to the trust region boundary is likely
to reduce the objective function value. This is done using the information
obtained when solving problem (3.45) using the truncated conjugate gradient
procedure. Let S be the set of search directions such that the steps taken
along the directions were not restricted by the bounds, l ≤ x ≤ u. Now it is
necessary to examine the effect that a move from xk + dk to xk + dk + θs, s ∈
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S, θ ∈ R, where ‖dk + θs‖ = ρk, has on the value of Qk. A Taylor series
expansion gives

Qk(xk + dk + θs) = Qk(xk + dk) + (θs)∇Qk(xk + dk) +
1

2
(θs)T ∇2Qk (θs) .

From the conjugacy property of the directions in S it is clear that s∇Qk(xk+
dk) = 0, ∀s ∈ S. Therefore

Qk(xk + dk + θs) = Qk(xk + dk) +
1

2
θ2sT∇2Qks. (3.62)

Since ‖dk + θs‖ = ρk and ‖dk‖ < 1
2
ρk the triangle inequality can be used to

show that ‖θs‖ > 1
2
ρk. Substituting this into (3.62) gives

Qk(xk + dk + θs) −Qk(xk + dk) >
1

8
ρ2k‖s‖−2sT∇2Qks.

Clearly, changes in Qk provide an indication of the changes in the objective
function. Accordingly, if the inequalities

εmax ≤
1

8
ρ2k‖s‖−2sT∇2Qks, ∀s ∈ S,

are satisfied it is deemed unlikely that a move from xk +dk to the trust region
boundary will reduce the value of the objective function.

The second test determines whether it is likely that a component of xk+dk
which is restricted by the bound constraints needs to be moved away from the
bounds. A set V of multiples of the coordinate vectors is formed as follows.
Include ρkei or −ρkei in V if the ith component of xk + dk is equal to li or ui
respectively. It is deemed likely that ρk should be reduced if the differences

Qk(xk + dk + v) −Qk(xk + dk), ∀v ∈ V,

are greater than εmax. In addition the second derivatives are ignored if the
first order part of the difference is sufficiently large. The second test is then
given by

εmax ≤ max

[
vT∇Qk(xk + dk), v

T∇Qk(xk + dk) +
1

2
vT∇2Qkv

]
, ∀v ∈ V.

If both of these tests hold then ρk+1 is set using (3.58).
The second refinement used to speed the convergence of BOBYQA is

designed to avoid the inefficiencies that occur when the elements of ∇2Qk

are too large. This can happen if the initial point is far from a local minimum
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and in a region in which the value of f increases exponentially. The values of
the elements of ∇2Q1 will be large in this case and an additional technique
may be required to reduce them for later iterations since generally the change
‖∇2Qk+1−∇2Qk‖F is made as small as possible subject to the interpolation
conditions. To overcome this problem Qk+1 is compared to an alternative
quadratic model Qalt

k+1 which is defined to be the quadratic model which
satisfies the interpolation conditions and has its remaining degrees of freedom
taken up by minimizing ‖∇2Qalt

k+1‖F . Now define the operator P such that
the value of P∇Qk+1(xk+1) will be a vector in R

n whose ith component is
given by

(P∇Qk+1(xk+1))i =





min [0, (∇Qk+1(xk+1))i] , (xk+1)i = li,

(∇Qk+1(xk+1))i , li ≤ (xk+1)i ≤ ui,

max [0, (∇Qk+1(xk+1))i] , (xk+1)i = ui.

Now ‖P∇Qk+1(xk+1)‖ is expected to be much smaller than ‖P∇Qalt
k+1(xk+1)‖

when BOBYQA is making progress in reducing f . However, when the ele-
ments of ∇2Qk+1 are too large this relation tends to be reversed. Therefore,
when the condition

‖P∇Qalt
k+1(xk+1)‖ ≤ 0.1‖P∇Qk+1(xk+1)‖, (3.63)

holds for three consecutive trust region steps we replace Qk+1 by Qalt
k+1. Con-

dition (3.63) is checked during trust region iterations that calculate f(xk+dk)
after the value of f(xk +dk) has been calculated and the updating procedure
described in section 3.3.3 has been performed. This completes our description
of the BOBYQA algorithm.

3.4 Derivative free optimization of mixed in-

teger problems

Relatively little work has been done on developing derivative free solution
methods for mixed integer programs. As with the methods developed for
continuous problems, the work that has been done can be divided into meta-
heuristics, surrogate optimization and local sampling.

3.4.1 Metaheuristics and surrogate optimization

Most of the existing methods for solving derivative free MINLP problems are
metaheuristics. These methods suffer from the same drawbacks mentioned
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in section 3.2.1; lack of deterministic convergence proofs and a large number
of function evaluations. Indeed, in the mixed integer case even proofs of
convergence in probability are rare. As in the continuous case the literature
is large and we only give some examples of the most common approaches.
Algorithms based in simulated annealing are developed in [42, 131, 156, 166].
Proofs of convergence in probability are given in [131, 156]. Particle swarm
algorithms for MINLP are developed in [84, 162]. Evolutionary approaches
are developed in [47, 51, 100, 163]. It appears that no convergence results
have been proven for particle swarm and evolutionary algorithms. The basic
details of all three of these approaches are similar to those given in section
3.2.1; for more detailed descriptions of each algorithm the interested reader
is referred to the relevant references.

Two surrogate methods have been developed for solving MINLPs. The
first was developed by Hemker [71]. The proposed approach uses functional
surrogate models, more specifically it uses a detrended kriging model with
the form

s(x) = β + z(x), (3.64)

where s(x) is the surrogate model, β ∈ R and z(x) is a stationery Gaussian
random function with zero mean and a covariance of the form

Cov[z(x̃), z(x̄)] = σ2
z

n∏

j=1

e−θj(x̃j−x̄j)
2

, (3.65)

where x̃ and x̄ are two of the points being used to construct the surrogate
model. The parameters θj , β and σz are calculated using a maximum like-
lihood approach. Once the surrogate model is constructed it is minimised
using a MINLP Branch and Bound algorithm to ensure that the solution
returned is integer feasible. The next point at which the objective function
is evaluated is the solution returned by the Branch and Bound algorithm,
unless the point lies within an ε-ball of a previously evaluated point. In
that case the new point is chosen by minimising the mean square error of
the surrogate model. This problem is also solved using a Branch and Bound
algorithm which ensures that the new point is integer feasible. Once the
objective function has been evaluated at the new point the surrogate model
is updated using all of the previous function evaluations. The algorithm is
a heuristic with no convergence results being presented. This clearly makes
it unsuitable for use in situations when deterministic convergence guaranties
are desired.

A second surrogate optimization approach named SO-MI has been devel-
oped in Müller et al. [116]. SO-MI uses a radial basis function model with
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the following form

s(x) =
∑

i

λi‖x− x̄i‖3 + βTx + α, (3.66)

where β ∈ R
n, α ∈ R, x̄i are points at which the objective function has

been evaluated and the sum is over all of the points used to construct the
surrogate model. The parameters λi, β and α are found by solving a linear
system which insures that s(x) interpolates the points used to construct the
model. In this algorithm the surrogate model is not used directly to find the
next point to be evaluated, rather four possible points to be evaluated are
randomly generated. The objective function is only evaluated at one of the
four points. This point is chosen to be the point which maximises a weighted
sum of two scores; the first score is based on the distance between the random
point and the previously evaluated points and the second score is based on
the value of s(x) at the random point. Once the objective function has been
evaluated at the new point the surrogate model is updated. Convergence in
probability can be proven for SO-MI.

3.4.2 Local sampling

All of the local sampling methods that have been developed for derivative
free MINLP are of the directional direct search type. The methods that have
been developed in this area at this point can be found in [1, 2, 3, 17, 102,
105]. Importantly deterministic proofs of convergence to local minima have
been provided for each of the algorithms. All of the algorithms follow the
same basic approach; the algorithms alternate between local minimization
of the continuous variables, with the discrete variables held fixed and local
minimization of the discrete variables, with the continuous variables held
fixed. The differences between the algorithms mainly lie in the methods
used to perform the continuous optimization. We now give a slightly more
detailed description of each of the algorithms referenced above.

The first mixed integer direct search algorithm was proposed in [17]. The
algorithm can solve problems with bound constraints on the continuous vari-
ables and can handle categorical variables. It uses a GPS algorithm to search
the continuous variables and searches the discrete variables by evaluating all
points in a user defined discrete neighbourhood. The polling step of the algo-
rithm is divided into three stages; a continuous poll with the discrete variables
held fixed, a discrete poll with the continuous variables held fixed and an ex-
tended poll. The extended poll step performs a continuous poll around each
point found during the discrete poll which satisfies f(x) < f(xk) + ξ, where
ξ > 0 is a user defined threshold. The procedure to be used in the search
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step is not specified. Paper [17] is theoretical; algorithms and convergence
proofs are presented but only two illustrative examples are considered, one
of which is of the form of problem (1.1).

The algorithm developed in [2] and [3] extends the method developed in
[17] to handle general constraints on the continuous variables. This is done
using a filter approach, as was discussed in section 3.2.3. The remaining de-
tails of the algorithm are essentially the same as [17]. In [3] a modification of
the algorithm is proposed to allow any available derivative information to be
used. In [141] the algorithm is extended to handle problems with stochastic
objective functions. The algorithm from [2] and [3] has been implemented in
the software package NOMAD (Nonsmooth Optimization by Mesh Adaptive
Direct Search) [6, 90].

In [105] an algorithmic model for direct search methods is presented. The
procedures used to perform the continuous and discrete local searches are not
specified. However, restrictions on their form, which allow convergence to be
proven, are given. These restrictions do not require the points sampled by
the continuous search to lie on a mesh, rather a sufficient decrease condition
must be imposed. The algorithmic model can handle general continuous
constraints and categorical variables. As was the case in the previous two
algorithms this method also makes use of continuous, discrete and extended
poll steps. Paper [105] is theoretical; algorithms and convergence proofs
are presented but only one example, which is of a form more general than
problem (1.1), is considered.

The algorithm developed in [1] can solve problems with categorical vari-
ables and general continuous constraints. It uses MADS to search the con-
tinuous variables and searches the discrete variables by evaluating all points
in a user defined discrete neighbourhood. The constraints are handled using
an extreme barrier approach. This algorithm also uses continuous, discrete
and extended poll steps. We note that [1] is purely theoretical; algorithms
and convergence proofs are presented but there are no computational results.

Three similar direct search algorithms are developed in [102]. The algo-
rithms solve problems with bound constraints and integer variables. Unlike
the previous algorithms they cannot solve problems with categorical vari-
ables. The algorithm developed by Lucidi and Sciandrone [106] (see section
3.2.3 for details) is used to search the continuous variables. The method used
to explore the discrete variables is the difference between the algorithms pro-
posed in [102]. The first algorithm searches the discrete variables using a
modification of the method in [106], this modification includes a sufficient
decrease condition. The second algorithm removes the sufficient decrease
condition from the discrete search used in the first algorithm. Neither of
the first two algorithms makes use of an extended polling step. The third
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algorithm uses a similar discrete search procedure to that used in the first
algorithm. However, if a point with sufficient decrease is not found during
the discrete polling step an extended polling step is used. As before the
extended polling step is used to explore the neighbourhood of any points
satisfying f(x) < f(xk) + ξ that were found during the discrete poll. Exten-
sive computational results comparing the effectiveness of the three algorithms
with NOMAD are presented in [102].

The main problem with these approaches is that the continuous and dis-
crete variables are considered separately. This prevents them from taking
into account the combined behaviour of the objective function. Accordingly
information which might be helpful in reducing the objective function is not
taken into account. We also note that no work has been done on developing a
trust region based derivative free approach. The extension of the BOBYQA
trust region method to the mixed integer case, in chapter 5 of this thesis, is
intended to overcome these deficiencies.

3.5 Conclusion

In this chapter we have presented a review of derivative free optimization
for continuous and mixed integer problems. The literature on continuous
derivative free optimization is large and we mainly focused on the areas of
continuous derivative free optimization that are used in the mixed integer
case. In section 3.3 we gave a detailed review of the BOBYQA algorithm;
this review is necessary since the method developed in chapter 5 is based on
BOBYQA. From our review of the mixed integer derivative free literature it
is clear that, in their current state, metaheuristics and surrogate optimiza-
tion procedures are inadequate for problems where a deterministic guaranty
of convergence to a minima is required. The various extensions of direct
search procedures to the mixed integer case are more appropriate since they
all have deterministic proofs of convergence. However, a weakness of these
algorithms is that they treat the discrete and continuous variables separately.
To overcome these limitations we develop a trust region based mixed integer
method based on BOBYQA in chapter 5.
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Chapter 4

Methods for Solving

Non-Convex MIQPs

In this chapter we develop a number of methods for solving non-convex
MIQPs. The methods developed involve preprocessing procedures and mod-
ifications of some of the solution methods described in chapter 2. Each of the
methods discussed has been developed for problems whose Hessians have a
specific structure. Combined these methods can solve any problem with the
form of problem (1.2). Specifically we consider the following three classes of
Hessians, listed here in order of increasing difficulty:

1. The ncth principal leading submatrix is positive semidefinite. Solution
methods for this class are developed in section 4.3.

2. The ncth principal leading submatrix is invertible. Solution methods
for this class are developed in section 4.2.

3. The ncth principal leading submatrix is singular. Solution methods for
this class are developed in section 4.4.

The methods developed for each class of Hessian can be used to solve prob-
lems whose classes are higher in the list but not those lower than itself. For
example, the methods developed for class 2 can also be used to solve prob-
lems in class 1 but not those in class 3. However the methods developed
become less efficient as you move further down the list. All of the solution
approaches are based on a linear transformation whose basic form is devel-
oped in section 4.1. Specific transformations for problems in classes 2, 1 and
3 are developed in sections 4.2, 4.3 and 4.4 respectively. Concluding remarks
are made in section 4.5.
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4.1 The linear transformation

In this section we develop the general form of a linear transformation which
can be applied to mixed integer problems. In the following sections this
general form is used to derive transformations useful in solving problems
whose Hessians have a specific structure. In deriving the transformation we
make use of the fact that H can be expressed in the following form

H =

[
Hcc Hcd

HT
cd Hdd

]
, (4.1)

where Hcc ∈ Snc , Hdd ∈ Snd and Hcd ∈ R
(nc,nd). Now, consider a matrix V

with the following form

V =

[
Ucc Ucd

0 Udd

]
, (4.2)

where Ucc ∈ R
(nc,nc) and Udd ∈ R

(nd,nd) are arbitrary invertible matrices and
Ucd ∈ R

(nc,nd) is an arbitrary matrix. Any matrix with this form is invertible
[74]. Now under the linear transformation x = V y problem (1.2) is equivalent
to the following problem:

min
y

h(V y) =
1

2
yTV THV y + gTV y (4.3)

s.t. AV y ≤ b,

DV y = e,

l ≤ V y ≤ u,

y =
[
yTc , y

T
d

]T
,

Uddyd ∈ Z
nd,

Uccyc + Ucdyd ∈ R
nc .

We can apply this linear transformation since V is always invertible. We
need to simplify the integral constraint Uddyd ∈ Z

nd ; we therefore restrict
Udd to be some unimodular matrix. A matrix is unimodular if it is integral
and has a determinant of ±1 [167]. Now since |Udd| = ±1 both Udd and U−1

dd

are integral and it is obvious that

Uddyd ∈ Z
nd ⇔ yd ∈ Z

nd.

It is also obvious that

Uccyc + Ucdyd ∈ R
nc ⇔ yc ∈ R

nc.
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Problem (4.3) now takes the following form:

min
x

h(V y) =
1

2
yTV THV y + gTV y (4.4)

s.t. AV y ≤ b,

DV y = e,

l ≤ V y ≤ u,

y =
[
yTc , y

T
d

]T ∈ R
nc × Z

nd .

We now consider the quadratic term, yTV THV y, in problem (4.4). Sub-
stituting (4.1) and (4.2) into the quadratic term we obtain the following
expression

yTV THV y =yTc U
T
ccHccUccyc + 2yTd

(
UT
cdHccUcc + UT

ddH
T
cdUcc

)
yc

+ yTd
(
UT
cdHccUcd + UT

cdHcdUdd + UT
ddH

T
cdUcd

+UT
ddHddUdd

)
yd. (4.5)

In the following sections we shall use the remaining freedom in the elements
of V to simplify (4.5). The choice of elements will depend on the structure
of Hcc.

4.2 Approach used when Hcc is invertible

In this section we consider the case when Hcc is invertible. The discussion
is divided into two parts; in section 4.2.1 we describe the linear transforma-
tion used for these problems while in section 4.2.2 we discuss a Branch and
Bound algorithm that can be used to solve the transformed problem. The
transformation is chosen in such a way that the Branch and Bound algorithm
can solve the transformed problem faster than the original problem. Com-
putational results showing that the transformation has the desired effect are
given in chapter 6.

4.2.1 Choosing the elements of V

When Hcc is invertible we use the freedom in our choice of the elements of
V to remove as many of the bilinear terms in (4.5) as possible. This aim
is chosen since the available solution approaches for problems of this type,
such as SCIP and Baron, make use of Branch and Bound algorithms. When
constructing the lower bounding problems in the Branch and Bound tree each
bilinear term in the objective function is underestimated using the convex
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envelopes (2.15) or (2.16). Therefore, each bilinear term adds one additional
variable and two constraints to the lower bounding problem. Reducing the
number of bilinear terms will decrease the size of the lower bounding problems
which should improve the efficiency of the Branch and Bound algorithm.
Additionally, the convex envelope of a sum of terms is not necessarily equal
to the sum of the convex envelopes of the terms [75]. Reducing the number
of terms that are underestimated may result in a tighter underestimating
problem.

Before proceeding with our description of the method used to achieve
this reduction in the number of bilinear terms we define the following sets of
indices

J = {1, 2, . . . , nc},
I = {nc + 1, nc + 2, . . . , n}.

Now, to remove the desired bilinear terms from (4.5) we need the following
equation to be satisfied

UT
cdHccUcc + UT

ddH
T
cdUcc = 0. (4.6)

We know that Ucc is invertible so (4.6) can be expressed as

HccUcd = −HcdUdd. (4.7)

In (4.7) Hcc and Hcd are known constant matrices, Ucd is unknown and Udd

must be unimodular. If we find some criteria to fix Udd as a constant unimod-
ular matrix we will have a system of nc × nd equations in nc × nd unknowns
where the unknowns are the elements of Ucd. If Hcc is not invertible (4.7)
will have no solution; this is the reason that we consider the cases when Hcc

is and is not invertible separately.
There is still a fairly large amount of freedom in our choice of Udd since

at this point the only restriction on this portion of V is that it should be
unimodular. For example Udd can be any integral upper or lower triangular
matrix with ±1 on the diagonal. We fix the remaining freedom in Udd by using
it to reduce the bounds on the integer variables in the transformed problem.
This allows us to construct tighter underestimators of the non-convex terms
in h(V y) [30] and reduces the number of possible combinations of integer
variables. The tighter underestimators are useful when solving problem (4.4)
with a Branch and Bound method. The bounds on the variables in our
transformed problem are given by

yLi ≤ yi ≤ yUi ,
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where yLi and yUi can be found as follows [167]. Let

yL0i = min
x

{(
V −1

)
i
x : Ax ≤ b,Dx = e, l ≤ x ≤ u

}
,

yU0
i = max

x

{(
V −1

)
i
x : Ax ≤ b,Dx = e, l ≤ x ≤ u

}
,

where (V −1)i is the ith row of V −1. Denote the feasible region of these
problems by Ωq. This is also the feasible region of problem (1.2). The
bounds on the variables in the transformed problem are given by

yLi =

{
yL0i , i ∈ J,

⌈yL0i ⌉, i ∈ I,
(4.8)

yUi =

{
yU0
i , i ∈ J,

⌊yU0
i ⌋, i ∈ I.

(4.9)

We now discuss the method proposed to fix the elements of Udd to minimize
the range of the bounds on the integer variables. Each row of U−1

dd can be
found by solving the following problem:

argmin
(U−1

dd )
i

{
max
xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]
− min

xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]}
(4.10)

s.t. Udd is unimodular, (4.11)

where
(
U−1
dd

)
i

is the ith row of U−1
dd . We wish to solve problem (4.10) for

i = 1, . . . , nd; the ith solution of problem (4.10) gives us the ith row of
U−1
dd . The constraint that Udd must be unimodular makes problem (4.10)

very difficult to solve. However, problem (4.10) can be solved analytically
when only bound constraints are present in the original problem. In this case
problem (4.10) takes the following form:

argmin
(U−1

dd )
i

{
max
xd

[(
U−1
dd

)
i
xd : l ≤ x ≤ u

]
− min

xd

[(
U−1
dd

)
i
xd : l ≤ x ≤ u

]}

s.t. Udd is unimodular.

The linear programs in the objective function are now separable so we have:

argmin
(U−1

dd )
i

{
nd∑

j=1

(
max
xj

[(
U−1
dd

)
i,j

(xd)j : lj ≤ (xd)j ≤ uj

]

−min
xj

[(
U−1
dd

)
i,j

(xd)j : lj ≤ (xd)j ≤ uj

])}
(4.12)

s.t. Udd is unimodular,
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where
(
U−1
dd

)
i,j

is the jth element of the ith row of U−1
dd . Clearly the solution

of jth maximization problem in the objective function of problem (4.12) is

(xd)
∗
j =

{
uj,

(
U−1
dd

)
i,j

≥ 0,

lj ,
(
U−1
dd

)
i,j
< 0,

and the solution of the jth minimization problem is

(xd)
∗
j =

{
lj ,

(
U−1
dd

)
i,j

≥ 0,

uj,
(
U−1
dd

)
i,j
< 0.

The objective function of problem (4.12) can now be written as follows





nd∑

j=1

[(
U−1
dd

)
i,j
uj −

(
U−1
dd

)
i,j
lj

]
,
(
U−1
dd

)
i,j

≥ 0,

nd∑

j=1

[(
U−1
dd

)
i,j
lj −

(
U−1
dd

)
i,j
uj

]
,
(
U−1
dd

)
i,j
< 0.

(4.13)

Clearly, we can now express (4.12) as follows:

argmin
(U−1

dd )
i

{
nd∑

j=1

∣∣∣
(
U−1
dd

)
i,j

∣∣∣ (uj − lj)

}
(4.14)

s.t. Udd is unimodular.

Now consider the following relaxation of problem (4.14):

argmin
(U−1

dd )
i

{
nd∑

j=1

∣∣∣
(
U−1
dd

)
i,j

∣∣∣ (uj − lj)

}
(4.15)

s.t. U−1
dd is invertible and has integer elements.

Consider the ith problem with the form of problem (4.15), the problem gives
us the ith row of U−1

dd . Clearly every non-zero value of
(
U−1
dd

)
i,j

increases the

objective function value so our solution should have as many zero elements
as possible. Since U−1

dd is constrained to be invertible
(
U−1
dd

)
i

must have at
least one non-zero element. Combining this with the fact that the elements
of U−1

dd must be integral the solution of the ith problem can be expressed in
the following form

(
U−1
dd

)
i,j

=

{
±1, j = pi,

0, j 6= pi,
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where pi ∈ Z is an index whose value must still be found. Since U−1
dd must be

invertible we must have pi 6= pr∀r ∈ {1, 2, . . . , nd}\{i}. Any set of pi indices
which satisfy this condition and any combination of choices of 1 or −1 for(
U−1
dd

)
i,pi

is a feasible solution of problem (4.15). However for our purposes

all of these solutions can be thought of as being equivalent, for the following
reasons. Since there is only one non-zero element in each row the ordering of
the rows merely relabels the indices in problem (4.4), which has no effect on
either the solution or the difficulty of problem (4.4). The choice of 1 or −1
also has no effect on the difficulty of problem (4.4) since it merely results in
a rotation of one of the axes through 180◦. Therefore, we shall only consider
the solution U−1

dd = Ind
, which also gives Udd = Ind

. Clearly Ind
is unimodular

so it is also a feasible solution of problem (4.14). Therefore, since problem
(4.15) is a relaxation of problem (4.14), U−1

dd = Ind
is a global minimum of

problem (4.14). Accordingly, when only bound constraints are present in the
original problem, the global minimum of problem (4.10) is U−1

dd = Ind
which

gives Udd = Ind
.

Unfortunately, no analytic solution can be found when general linear con-
straints are present in the original problem. In this case we solve the prob-
lem approximately. We shall consider two different approximations here.
The first approximation is constructed by simplifying the constraint that Udd

must be unimodular in two ways. Firstly we restrict ourselves to the set of
upper triangular unimodular matrices since this makes it much easier to en-
sure that the determinant of Udd is ±1, as required. It also allows us to solve
each problem separately since the elements in different rows are no longer
coupled. With this simplification problem (4.10) takes the following form:

argmin
(Udd)i

{
max
xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]
− min

xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]}
(4.16)

s.t.
(
U−1
dd

)
i,i

= ±1, (4.17)
(
U−1
dd

)
i,j

= 0, j = 1, . . . , i− 1, (4.18)
(
U−1
dd

)
i,j

∈ Z, j = i + 1, . . . , nd. (4.19)

We now have a problem which can be solved via the solution of a number of
integer linear programming problems. The second alteration we make is to
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relax constraint (4.19) resulting in the following relaxation of problem (4.16):

argmin
(Udd)i

{
max
xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]
− min

xd

[(
U−1
dd

)
i
xd : x ∈ Ωq

]}
(4.20)

s.t.
(
U−1
dd

)
i,i

= ±1,
(
U−1
dd

)
i,j

= 0, j = 1, . . . , i− 1,
(
U−1
dd

)
i,j

∈ R, j = i+ 1, . . . , nd.

It is obvious that problem (4.20) is much easier to solve than problem (4.10).
Problem (4.20) was solved using the derivative free algorithm NOMAD [6,
90], which solves the problem by treating the objective function as a black
box. NOMAD chooses fixed values for (Udd)i at each iteration and inputs
them into the objective function of problem (4.20). The objective function
is then evaluated by solving the linear programs for xd using the values of
(Udd)i input by NOMAD. Once we have solved problem (4.20) we need to
restore the integrality of the off diagonal elements of U−1

dd so that Udd is
unimodular. This was done by rounding the off diagonal elements of the
solution of problem (4.20).

The second approximation considered is much simpler and is obtained by
relaxing Ωq. Define l̄ and ū as follows

l̄i = min
xi

{xi : Ax ≤ b,Dx = e, l ≤ x ≤ u} ,

ūi = min
xi

{xi : Ax ≤ b,Dx = e, l ≤ x ≤ u} .

Now let Ω̄q denote the relaxed feasible region Ω̄q = {x : l̄ ≤ x ≤ ū}. The
second approximation of problem (4.10) is the following problem:

argmin
(U−1

dd )
i

{
max
xd

[(
U−1
dd

)
i
xd : x ∈ Ω̄q

]
− min

xd

[(
U−1
dd

)
i
xd : x ∈ Ω̄q

]}
(4.21)

s.t. Udd is unimodular.

From the discussion above we know that the solution of this problem gives
Udd = Ind

. This may seem to be a fairly weak relaxation but we shall see
from the computational results presented in chapter 6 that, for our purposes,
its effectiveness is comparable to problem (4.20). The choice between these
two approximations is discussed further in chapter 6.

We have now fixed Udd. This allows us to fix Ucd as the matrix which
satisfies (4.7). We have yet to impose any restriction on Ucc, besides de-
manding that it be invertible. Since Hcc is Hermitian it is diagonalisable
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[15] and we let Ucc be the diagonalising matrix. Obviously the diagonalising
matrix is not unique; to specify Ucc uniquely we make it the matrix with the
normalised eigenvectors of Hcc as its columns1. Now consider the last term
in (4.5); define Θdd as follows

Θdd = UT
cdHccUcd + UT

cdHcdUdd + UT
ddH

T
cdUcd + UT

ddHddUdd. (4.22)

We can simplify (4.22) by expressing Udd in terms of Ucd using (4.7), as follows

Ucd = −H−1
cc HcdUdd. (4.23)

Substituting (4.23) into (4.22) we obtain the following expression for Θdd

Θdd = UT
dd

(
Hdd −HT

cdH
−1
cc Hcd

)
Udd. (4.24)

Now using the values of Udd, Ucd and Ucc described above (4.5) takes the
following form

yTV THV y = yTc Θccyc + yTd Θddyd, (4.25)

where we define Θcc as follows

Θcc = UT
ccHccUcc. (4.26)

Since we have fixed Ucc as the matrix which diagonlises Hcc we see that Θcc

is diagonal. Problem (1.2) now takes the following form:

min
y

h(V y) =
1

2

(
yTc Θccyc + yTd Θddyd

)
+ gTV y (4.27)

s.t. AV y ≤ b,

DV y = e,

l ≤ V y ≤ u,

yL ≤ y ≤ yU ,

y =
[
yTc , y

T
d

]T ∈ R
nc × Z

nd .

It is clear that the structure of the objective function has been simplified
by the transformation. This has been achieved by reducing the number of
bilinear terms in the objective function. The reduction is quantified in the
following theorem.

Theorem 1. h(x) has at most 1
2

(n2
c − nc) + ncnd more bilinear terms than

h(V y)

1Any symmetric n× n matrix has n linearly independent eigenvectors [15]
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Proof. We consider the case with the maximum reduction in the number of
bilinear terms, this occurs when H has no zero elements. The difference
in the number of bilinear terms will then be equal to the number of zero
elements in the upper triangular portion of the Hessian of problem (4.27).
Now the Hessian of problem (4.27) has the following form

Θ =

[
Θcc 0nc×nd

0nd×nc
Θdd

]
,

where 0nc×nd
is a zero matrix with dimensions nc × nd. Now Θdd is dense

so it has no zero off diagonal elements, Θcc is diagonal so it has 1
2

(n2
c − nc)

zero upper triangular elements and obviously 0nc×nd
has ncnd zero elements.

Therefore h(x) has at most 1
2

(n2
c − nc)+ncnd more bilinear terms than h(V y).

We see that we have transformed problem (1.2) into an equivalent problem
problem which has no terms containing both continuous and integer variables,
has an objective function which is fully separable in the continuous variables
and has at most 1

2
(n2

c − nc)+ncnd less bilinear terms in the objective function
than problem (1.2). This has been achieved without adding any additional
variables or constraints to the problem, the only detrimental effect is that the
bound constraints have become linear inequality constraints. Clearly since
problem (1.2) and problem (4.27) are equivalent we have

min
x
h(x) = min

y
h(V y), (4.28)

argmin
x

h(x) = V

{
argmin

y

h(V y)

}
. (4.29)

These equations allow us to obtain the solution of problem (1.2) from that
of problem (4.27).

4.2.2 The Branch and Bound Procedure

We now describe a Branch and Bound algorithm can be used to solve problem
(4.27). This algorithm is based on BARON, which was described in chapter
2. Lower bounds are obtained using the convex envelopes of the non-convex
terms in the objective functions. The convex envelopes for bilinear and con-
cave univariate functions with known upper and lower bounds were given in
chapter 2. These envelopes require knowledge of the upper and lower bounds
of each of the variables. The bounds for our problem are given by (4.8) and
(4.9).
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We use the following notation in our description of the Branch and Bound
algorithm; the overall lower bound OLB is the current lower bound on the
solution, the overall upper bound OUB is the current upper bound on the
solution, the stopping tolerance tol is set by the user and is used to stop the
algorithm when OUB − OLB < tol. The Branch and Bound procedure is
described in Algorithm 2, the details on how steps iii, iv, viii and xi were
performed are given in more detail in the following paragraph.

We first discuss the node selection strategy used in step iii. Following
[165] the node chosen for branching was the node with the smallest lower
bound LB, i.e. the node of the current OLB. We now discuss step iv in
which a branching variable yb is chosen. The branching variable was chosen
by finding the non-convex term with the greatest difference between the
non-convex term and its convex underestimator at the solution of the convex
underestimation of the problem. If the term was bilinear the branching
variable was chosen to be the variable involved in the bilinear term with the
largest domain. The branching point yvalb was chosen as follows. Let

ε =
yUb − yLb

10
,

where yUb and yLb are the upper and lower bounds of the branching variable
at the current node. Let yupb be the value of yb at the current OUB and let
ylowb be the value of yb at the LB for the current node. Following [135] for
every fifth node the value of yvalb was given by

yvalb =
yUb − yLb

2
.

Otherwise the value of yvalb was given by [165]

yvalb =





yupb if yLb + ε < yupb < yUb − ε,

ylowb if ¬
(
yLb + ε < yupb < yUb − ε

)
∧
(
yLb + ε < ylowb < yUb − ε

)
,

yU
b
−yL

b

2
otherwise.

Obviously if yb is an integer variable the branching is performed using the
new constraints yb ≤ ⌊yvalb ⌋ and yb ≥ ⌈yvalb ⌉. The valid upper bounds in step
viii were obtained using bnb20 [86]. bnb20 is an open source convex MINLP
solver which uses a Branch and Bound methodology. The optimality based
range reduction technique used in step xi is taken from [135]. If the lower
bound of yi is active at the solution of the lower bounding problem and
the Lagrangian multiplier λi of the constraint is greater than zero then the
following inequality is valid

yi < li +
OUB − OLB

λi
. (4.30)

75



Algorithm 2 The Branch and Bound algorithm

i. Set the stopping tolerance tol, set OLB = −∞, set OUB = ∞ and
initialise the list of active nodes, ACTIVE, as an empty list.

ii. Add the problem to ACTIVE with the bounds given by (4.8) and (4.9).
Form the convex underestimator of the problem and solve its convex
relaxation to obtain an initial LB.

iii. Select a node for branching.

iv. Select the branching variable yb. Select the value yvalb at which the vari-
able will be branched.

v. Add the two nodes formed by branching to ACTIVE.

vi. Form convex underestimators of the two nodes obtained from the branch-
ing using the convex envelopes given in [135].

vii. Solve the continuous relaxations of the convex undestimators. This was
done using the MATLAB function quadprog. This gives valid lower
bounds LB over the domain of the subproblems.

viii. If the two new nodes are on a multiple of the fourth level of the tree
obtain an upper bound UB on the solution.

ix. Find OLB and OUB.

x. If LB > OUB prune the node from ACTIVE.

xi. Apply an optimality based range reduction technique to each of the new
nodes using (4.30) and (4.31). If either of the nodes becomes infeasible
after the range reduction then prune that node.

xii. If at least one of the new nodes has not been pruned then remove the
parent node from ACTIVE. If both of the new nodes have been pruned
store LB of the parent node for comparison with OLB and remove the
parent node from ACTIVE.

xiii. If OUB − OLB < tol or if ACTIVE becomes empty then return OUB
and stop otherwise go to step iii.
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Similarly if the upper bound is active and λi > 0 then the following inequality
is valid

yi > ui −
OUB − OLB

λi
. (4.31)

This completes our description of the Branch and Bound algorithm.

4.3 Approach used when Hcc is positive defi-

nite

When Hcc is positive semidefinite problem (1.2) can be reformulated as a con-
vex program. This allows us to apply convex mixed integer approaches to
the solution of a non-convex problem. In this section we consider three differ-
ent convex reformulation schemes for problem (1.2). The first reformulation,
which was mentioned in chapter 2, was developed in [33] and is known as
Mixed Integer Quadratic Convex Reformulation (MIQCR). MIQCR results
in an equivalent convex MIQP and can be applied to any problem where Hcc

is positive semidefinite. MIQCR is discussed in section 4.3.1. The reformula-
tion discussed in section 4.3.2 combines the linear transformation in section
4.1 with the ideas used in [33]. We call this reformulation technique Mixed
Integer Quadratic Transformation and Convex Reformulation (MIQTCR).
MIQTCR also results in an equivalent convex MIQP and can be applied to
any problem where Hcc positive definite. The third reformulation is discussed
in section 4.3.3. This reformulation combines the linear transformation with
a convexification scheme for bilinear integer programming developed in [122].
We call this reformulation Mixed Integer Quadratic Transformation and Bi-
linear Convexification (MIQTBC). MIQTBC results in an equivalent convex
MINLP. MIQTBC can be applied to any problem where Hcc is positive def-
inite and another fairly unrestrictive condition on the form of the Hessian
holds.

4.3.1 MIQCR

In this section we assume without loss of generality that the origin has been
shifted such that the lower bound on each variable is 0. The details of the
method described in this section are all taken from [33]. We define the
following sets of indices

P =
{

(i, j) ∈ I2 ∪ (I × J) ∪ (J × I)
}
,

E = {(i, k) : i ∈ I, k = 0, . . . , ⌊log2 (ui)⌋} ,
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where ui is the upper bound on xi. We convexify problem (1.2) by adding to
the problem new variables wij and new linear constraints which ensure that
wij = xixj . If equality constraints are present in problem (1.2) we also add
the following term to the objective function

α

p∑

r=1

{
n∑

i=1

(D)r,i xi − er

}2

, (4.32)

where (D)r,i is the element in the rth row and ith column of D, and α ∈ R

is a parameter whose value is discussed later in this section. Clearly (4.32) is
zero in the feasible region so its addition will have no effect on the objective
function value.

More specifically we perform the convex reformulation by considering the
following perturbed objective function

hα,β(x, w) = h(x)+
∑

(i, j)∈P

βij (xixj − wij)+α

p∑

r=1

{
n∑

i=1

(D)r,i xi − er

}2

. (4.33)

Clearly hα,β(x, w) = h(x) in the feasible region, if we enforce the equality con-
straint wij = xixj . The following problem, which has (4.33) as its objective
function, is equivalent to problem (1.2):

min
x,w

hα,β(x, w) (4.34a)

s.t. Ax ≤ b, (4.34b)

Dx = e, (4.34c)

0 ≤ x ≤ u, (4.34d)

xi =

⌊log
2
ui⌋∑

k=0

2ktik, i ∈ I, (4.34e)

tik ∈ {0, 1}, (i, k) ∈ E, (4.34f)

zijk ≤ ujtik, (i, k) ∈ E, j ∈ I ∪ J, (4.34g)

zijk ≤ xj , (i, k) ∈ E, j ∈ I ∪ J, (4.34h)

zijk ≥ xj − uj (1 − tik) , (i, k) ∈ E, j ∈ I ∪ J, (4.34i)

zijk ≥ 0, (i, k) ∈ E, j ∈ I ∪ J, (4.34j)

wij =

⌊log
2
ui⌋∑

k=0

2kzijk, (i, j) ∈ I × (I ∪ J), (4.34k)

wii ≥ xi, i ∈ I, (4.34l)
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wij = wji, (i, j) ∈ P, (4.34m)

wij ≥ xiuj + xjui − uiuj, (i, j) ∈ P, (4.34n)

wij ≤ uixj , (i, j) ∈ I × J. (4.34o)

We now show that problem (4.34) is equivalent to problem (1.2). It was
noted above the hα,β(x, w) = h(x) when wij = xixj . Therefore it is sufficient
to show that the constraints of problem (4.34) enforce the equality constraint
wij = xixj . Constraint (4.34e) is a unique binary decomposition of xi. Using
this decomposition we obtain the following equality

xixj =

⌊log
2
ui⌋∑

k=0

2ktikxj = wij . (4.35)

We linearise (4.35) by introducing new variables zijk which are equal to
tikxj . Substituting zijk into (4.35) gives constraint (4.34k). Constraints
(4.34g)–(4.34j) enforce the equality zijk = tikxj . To show that this is the
case we consider the two possible values of tik separately. First consider the
case tik = 0. In this case we must have zijk = 0. Now consider the form of
constraints (4.34g)–(4.34j) when tik = 0

zijk ≤ 0,

zijk ≤ xj ,

zijk ≥ xj − uj,

zijk ≥ 0.

Clearly, in this case we have zijk = 0, as required. Now consider the case
tik = 1. In this case we must have zijk = xj . Consider the form of constraints
(4.34g)-(4.34j) when tik = 1

zijk ≤ uj,

zijk ≤ xj ,

zijk ≥ xj ,

zijk ≥ 0.

Clearly, in this case we have zijk = xj , as required. From the above discus-
sion we see that, as required, the constraints in problem (4.34) enforce the
constraint wij = xixj .

We want to find the values of α and βij which give the maximum value
for the minimum of the continuous relaxation of problem (4.34) while also
ensuring that (4.33) is convex. Denote these values by α∗ and β∗

ij . We choose
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these values of α and βij since they will allow us to obtain a tight initial lower
bound when solving the problem with a Branch and Bound algorithm. Now
it can be shown that the continuous relaxation of problem (4.34) is equivalent
to the following problem [33]:

min
x,w

hα,β(x, w) (4.36a)

s.t. Ax ≤ b, (4.36b)

Dx = e, (4.36c)

0 ≤ xi ≤ ui, i ∈ J, (4.36d)

wii ≥ xi, i ∈ I, (4.36e)

wij = wji, (i, j) ∈ P, (4.36f)

wij ≥ xiuj + xjui − uiuj, (i, j) ∈ P, (4.36g)

wij ≥ 0, (i, j) ∈ P, (4.36h)

wij ≤ uixj , (i, j) ∈ P, (4.36i)

wij ≤ ujxi, (i, j) ∈ P. (4.36j)

This problem is derived by projecting the feasible region of continuous re-
laxation of problem (4.34) onto the x and w variables, see [33] for further
details. The values of α∗ and β∗

ij can now be found by solving the following
problem:

max
α,β

V {problem (4.36)} (4.37a)

s.t Hα,β < 0, (4.37b)

where V {problem (4.36)} is the optimal value of problem (4.36) and Hα,β

is the Hessian of hα,β. Constraint (4.37b) ensures that the reformulated
problem is convex. It is shown in [33] that the optimal value of problem
(4.37) can be found using the following theorem.

Theorem 2. α∗ and β∗
ij can be deduced from the optimal values of the dual

variables of the following semidefinite program:

min
x,X

Tr (HX) + gTx (4.38a)

s.t. Ax ≤ b, (4.38b)

Dx = e, (4.38c)

0 ≤ xi ≤ ui, i ∈ J, (4.38d)[
1 x
xT X

]
< 0, (4.38e)

80



a∑

r=1

n∑

i=1

{
n∑

j=1

(D)ri(D)rjXij − 2(D)rierxi

}
= −

a∑

r=1

e2r , (4.38f)

Xij ≤ ujxi, (i, j) ∈ P, (4.38g)

Xij ≤ uixj , (i, j) ∈ P, (4.38h)

Xij ≥ ujxi + uixj − uiuj, (i, j) ∈ P, (4.38i)

Xij ≥ 0, (i, j) ∈ P, (4.38j)

Xii ≥ xi, i ∈ I, (4.38k)

x ∈ R
n, (4.38l)

X ∈ Sn. (4.38m)

The value of α∗ is equal to the optimal value of the dual variable associ-
ated with constraint (4.38f). The coefficients β∗

ij are given by the following
equation

β∗
ij =

{
β1∗
ij + β2∗

ij − β3∗
ij − β4∗

ij , i 6= j,

β1∗
ij + β2∗

ij − β3∗
ij − β4∗

ij − β5∗
ij , i = j,

where β1∗
ij , β

2∗
ij , β

3∗
ij , β

4∗
ij and β5∗

ii are the optimal values of the dual variables
associated with constraints (4.38g), (4.38h), (4.38i), (4.38j) and (4.38k) re-
spectively.

Proof. See [33]

Substituting the values of α∗ and β∗
ij , obtained using Theorem 2, into

problem (4.34) we obtain a convex MIQP which is equivalent to problem
(1.2). The equivalent MIQP, problem (4.34), can be solved efficiently due
to the tight lower bound given by the continuous relaxation of the problem.
As noted previously MIQCR can be applied to any problem where the ncth
principal leading submatrix is positive semidefinite.

In the case when problem (1.2) has inequality constraints and no equality
constraints it is desirable to reformulate the problem in such a way that we
can use α to tighten the lower bound obtained for the continuous relaxation
[33]. This can be done by using slack variables to convert the inequality
constraints to equality constraints.

4.3.2 MIQTCR

In this section we combine the linear transformation from section 4.1 with
the ideas developed in section 4.3.1. We choose the same elements of V as
were chosen in section 4.2.1 resulting in a problem with the form of problem
(4.27). We now assume, without loss of generality, that the origin of the
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transformed problem has been shifted such that yLi = 0 ∀i ∈ J ∪ I. This
allows us to apply the methods developed in section 4.3.1.

The objective function of our transformed problem has no terms contain-
ing both continuous and integer variables. In addition the continuous terms
in the objective function, yTc Θccyc, are convex. Therefore, if we can perturb
the discrete terms, yTd Θddyd, in such a way that the discrete part of the objec-
tive function is convex, the entire resulting objective function will be convex.
This leads us to consider a modification of the method described in section
4.3.1 in which we set βij = 0, ∀(i, j) 6∈ I2. In developing this method we
consider the following perturbed objective function

hα,β(y, w) = h(y) +
∑

(i, j)∈I2

βij (yiyj − wij) + α

p∑

r=1

{
n∑

i=1

(DV )r,i yi − er

}2

.

Now the following problem, which has this expression as its objective func-
tion, is equivalent to problem (1.2):

min
y,w

hα,β(y, w) (4.39a)

s.t. AV y ≤ b, (4.39b)

DV y = e, (4.39c)

l ≤ V y ≤ u,

0 ≤ y ≤ yU , (4.39d)

yi =

⌊log
2
yUi ⌋∑

k=0

2ktik, i ∈ I, (4.39e)

tik ∈ {0, 1}, (i, k) ∈ E (4.39f)

zijk ≤ yUj tik, (i, k) ∈ E, j ∈ I, (4.39g)

zijk ≤ yj, (i, k) ∈ E, j ∈ I, (4.39h)

zijk ≥ yj − yUj (1 − tik) , (i, k) ∈ E, j ∈ I, (4.39i)

zijk ≥ 0, (i, k) ∈ E, j ∈ I, (4.39j)

wii ≥ yi, i ∈ I, (4.39k)

wij =

⌊log
2
yUi ⌋∑

k=0

2kzijk, (i, j) ∈ I2, (4.39l)

wij = wji, (i, j) ∈ I2, (4.39m)

wij ≥ yiy
U
j + yjy

U
i − yUi y

U
j , (i, j) ∈ I2. (4.39n)

We note that there is no constraint equivalent to (4.34o) in problem (4.39),
this is because there are no wij variables with (i, j) ∈ I×J in hα,β(y, w). The
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equivalence between problems (1.2) and (4.39) can be shown by following the
same reasoning used in the paragraph following problem (4.34). We see that
problem (4.39) has fewer variables than problem (4.34). We now use the
following trivial modification of Theorem 2 to find α∗ and β∗

ij .

Theorem 3. α∗ and β∗
ij can be deduced from the optimal values of the dual

variables of the following semidefinite program:

min
y,X

Tr(HX) + gTV y (4.40a)

s.t. AV y ≤ b, (4.40b)

DV y = e, (4.40c)

l ≤ V y ≤ u,

0 ≤ yi ≤ yUi , i ∈ J, (4.40d)
[

1 y
yT X

]
< 0, (4.40e)

a∑

r=1

n∑

i=1

{
n∑

j=1

(DV )ri(DV )rjXij − 2(DV )rieryi

}
= −

a∑

r=1

e2r , (4.40f)

Xij ≤ yUj yi, (i, j) ∈ I2, (4.40g)

Xij ≤ yUi yj, (i, j) ∈ I2, (4.40h)

Xij ≥ yUj yi + uiyj − yUi y
U
j , (i, j) ∈ I2, (4.40i)

Xij ≥ 0, (i, j) ∈ I2, (4.40j)

Xii ≥ yi, i ∈ I, (4.40k)

y ∈ R
n, (4.40l)

X ∈ Sn. (4.40m)

The value of α∗ is equal to the optimal value of the dual variable associ-
ated with constraint (4.40f). The coefficients β∗

ij are given by the following
equation

β∗
ij =

{
β1∗
ij + β2∗

ij − β3∗
ij − β4∗

ij , i 6= j,

β1∗
ij + β2∗

ij − β3∗
ij − β4∗

ij − β5∗
ij , i = j,

where β1∗
ij , β

2∗
ij , β

3∗
ij , β

4∗
ij and β5∗

ii are the optimal values of the dual variables
associated with constraints (4.40g), (4.40h), (4.40i), (4.40j) and (4.40k) re-
spectively.

Substituting the values of α∗ and β∗
ij , obtained using Theorem 3, into

problem (4.39) we obtain a convex MIQP which is equivalent to problem
(1.2). The lower bound given by the continuous relaxation of problem (4.39)
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is generally not as tight as the bound of problem (4.34). This is due to
the fact that each βij term used to perturb the objective function is used
to tighten the continuous relaxation of the objective function and MIQTCR
uses fewer βij terms than MIQCR. However, due to this reduction in the
number of βij terms, problem (4.39) has fewer variables than problem (4.34).
This may allow problem (4.39) to be solved more efficiently than problem
(4.34). In addition we note that the transformation might allow us to solve
problem (4.40) faster than problem (4.38).

In the case when problem (1.2) has inequality constraints and no equal-
ity constraints we make use of α as described at the end of section 4.3.1.
We note that the slack variable transformation must be applied to problem
(4.27) as adding slack variables to the original problem will make Hcc positive
semidefinite.

4.3.3 MIQTBC

MIQTBC uses a variation of the linear transformation with a convexification
scheme developed for bilinear integer programming [122] to convexify prob-
lem (1.2). To use this scheme we require that the only non-convex terms in
the objective function of the transformed problem are bilinear terms involving
only the integer variables. It is shown below that a transformation resulting
in an objective function with the required form exists and an algorithm is
given to find the transformation.

The Linear Transformation for MIQTBC

In the following theorem we show that under a fairly unrestrictive condi-
tion we can choose V such that the only non-convex terms in the objective
function are bilinear integer terms. When we discuss variable reordering in
relation to the following theorem we mean interchanging two discrete vari-
ables or two continuous variables, we do not allow the interchanging of a
continuous variable and a discrete variable.

Theorem 4. If the elements of x can be reordered such that Hdd−HT
cdH

−1
cc Hcd

has at least two principal leading submatrices which are not negative semidefi-
nite then there exists a unimodular matrix Udd such that the diagonal elements
of Θdd are all positive.

Proof. Let Λ = Hdd − HT
cdH

−1
cc Hcd. Consider a transformation matrix V of

the form

V =

[
Ucc Ucd

0nd,nc
ŨddUdd

]
.
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Now the product of two unimodular matrices is unimodular so if both Udd

and Ũdd are unimodular then so is ŨddUdd. Using this form of V we have
Θdd = UT

ddŨ
T
ddΛŨddUdd. Now let Λ̃ = ŨT

ddΛŨdd. We first show that there

exists a unimodular matrix Ũdd such that Λ̃ has at least one positive diagonal
element. Now let A(k) denote a k × k submatrix of A; the position of A(k)

will be clear from the context. We can now write Ũdd and Λ as follows

Ũdd =

[±1 01,nd−1

µ̃ Ũ
(nd−1)
dd

]
, Λ =

[
α λT

λ Λ(nd−1)

]
, (4.41)

where Ũ
(nd−1)
dd is a lower triangular matrix with ±1 on its diagonal, µ̃ ∈ Z

nd−1,

λ ∈ R
nd−1 and α ∈ R. We can now express Λ̃ as follows

Λ̃ =

[
µ̃TΛ(nd−1)µ̃± 2λT µ̃+ α µ̃TΛ(nd−1)Ũ

(nd−1)
dd ± λT Ũ

(nd−1)
dd

Ũ
(nd−1)T
dd Λ(nd−1)µ̃± Ũ

(nd−1)T
dd λ Ũ

(nd−1)T
dd Λ(nd−1)Ũ

(nd−1)
dd

]
.

Now since Λ must have at least two leading submatrices which are not nega-
tive semidefinite the variables in x can be reordered to make Λ(nd−1) indefinite
or positive semidefinite. Suppose that the variables have been ordered such
that this is true. If this is the case, µ̃TΛ(nd−1)µ̃ ± 2λT µ̃ + α is unbounded
above, regardless of the values of λ and α. Therefore ∃ µ̃ ∈ Z

nd−1 such that
(Λ̃)1,1 is greater than zero.

Suppose that we choose the elements of Ũdd such that (Λ̃)1,1 > 0. Now

Θdd can be written as Θdd = UT
ddΛ̃Udd. We now prove by induction that each

leading submatrix of Θdd can be constructed to have only positive diagonal
elements. We have

Θ
(1)
dd = U

(1) T
dd Λ̃(1)U

(1)
dd = (±1)2Λ̃(1) = Λ̃(1),

Θ
(1)
dd > 0.

Therefore the diagonal element of Θ
(1)
dd is positive. Now assume the diagonal

elements of Θ
(k)
dd are positive. We need to show that there exists a unimodular

matrix with U
(k+1)
dd such that Θ

(k+1)
dd has positive diagonal elements. Now

Θ
(k+1)
dd = U

(k+1) T
dd Λ̃(k+1)U

(k+1)
dd ,

where

U
(k+1)
dd =

[
U

(k)
dd µ

01,k ±1

]
, Λ̃(k+1) =

[
Λ̃(k) λ̃

λ̃T a

]
,
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where U
(k)
dd is an upper triangular matrix with ±1 on its diagonal, µ ∈ Z

k,

λ̃ ∈ R
k and a ∈ R. Therefore

Θ
(k+1)
dd =

[
U

(k) T
dd Λ̃(k)U

(k)
dd U

(k) T
dd Λ̃(k)µ± U

(k) T
dd λ̃

µT Λ̃(k)U
(k)
dd ± λ̃TU

(k)
dd µT Λ̃(k)µ± 2λ̃Tµ+ a

]
.

We need to show that ∃µ ∈ Z
k s.t. µT Λ̃(k)µ ± 2λ̃Tµ + a > 0. Since this

is a quadratic function of µ it is sufficient to show that one of the diagonal
elements of Λ̃(k) is greater than zero. Now Λ̃(k) has at least one positive
element, (Λ̃(k))1,1. Therefore ∃µ ∈ Z

k s.t that (Θ
(k+1)
dd )k+1,k+1 > 0 and by the

assumption (Θ
(k)
dd )i,i > 0 ∀i = 1, . . . , k. Therefore there exists a unimodular

matrix Udd such that the diagonal elements of Θdd are all positive.

It should be noted that the assumption that the elements of x can be
reordered such that Hdd − HT

cdH
−1
cc Hcd has at least two principal leading

submatrices which are not negative semidefinite will not be satisfied for every
H . This assumption is key to the proof of the theorem. However numerical
experience suggests that the condition will be satisfied for a large number of
Hessians, especially as the value of n increases. This is mainly due to the
fact that we can rearrange the elements of Λ by relabelling the elements of
x. For example if any of the diagonal elements of Λ are greater than zero the
elements of x can be relabelled such that the assumption holds. However,
the assumption can also hold when all of the diagonal elements of Λ are less
than zero2.

We now consider problem (4.4). We make the same choices for Ucc and
Ucd as were made in section 4.2.13 and we use Algorithm 3, presented later
in this section, to choose Udd such that Theorem 4 is satisfied. We now have
the following MIQP which is equivalent to problem (1.2):

min
y

h(V y) =
1

2

(
yTc Θccyc + yTd Θddyd

)
+ gTV y (4.42)

s.t. AV y ≤ b,

DV y = b,

l ≤ V y ≤ u,

yLi < yi < yUi , ∀i ∈ J ∪ I,
y =

[
yTc , y

T
d

]T ∈ R
nc × Z

nd ,

2It is possible for all of the diagonal elements of an indefinite matrix to be negative.
3These choices of Ucc and Ucd can be used since every positive definite matrix is in-

vertible [74]
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where Θcc = UT
ccHccUcc is diagonal and all the diagonal elements of Θdd are

positive. We note that since we have used Algorithm 3 to choose Udd the only
non-convex terms in objective function of problem (4.42) are integer bilinear
terms. In the following discussion we assume, without loss of generality, that
the origin has been shifted such that yLi = 1 ∀i ∈ J ∪ I.

The Algorithm Used to Generate V

While we have proven the existence of a transformation matrix V with the
required properties we still need to provide a concrete method for finding
matrices with this form. The required method is described by Algorithm 3.
The algorithm finds a matrix with the required form using two basic stages.
The first stage ensures that we have a Λ̃ matrix with (Λ̃)1,1 > 0; steps ii
to v are involved in this process. If Λ does not have a positive diagonal
element in step ii then a matrix Ũdd, which will allow us to define Λ̃ such
that it has at least one positive diagonal element, is found in steps iii and iv.
The second stage of the algorithm finds a matrix Udd which ensures that the
diagonal elements of UT

ddΛ̃Udd are all positive where Λ̃ was found using the
first part of the algorithm. Steps vi to ix are involved in the second stage of
the algorithm. We restrict Udd to be an upper triangular matrix with 1 or
−1 on its diagonal. We set the upper triangular elements one column at a
time. To ensure that the diagonal elements of UT

ddΛ̃Udd are positive we need

to ensure that µT Λ̃(k)µ±2λ̃Tµ+a > 0 is satisfied. To do this we first check, in
step vi, whether this equation is satisfied by µ = 0. If this is the case we set
the upper triangular elements of the column to zero. Otherwise we use steps
vii and viii to set the element of the column in the first row to the smallest
number which allows this equation to be satisfied if all the other elements
of µ are set to zero. We then set the diagonal element of Udd to 1 or −1 if
our choice of µ satisfies µT Λ̃(k)µ+ 2λ̃Tµ+ a > 0 or µT Λ̃(k)µ− 2λ̃Tµ+ a > 0
respectively.

Convexification Scheme for Bilinear Integer Terms

We now describe the convex reformulation scheme used for the discrete bilin-
ear terms in the objective function of problem (4.42). The method used in-
volves a change of variables resulting in a linearly constrained convex MINLP.
The details of the reformulation scheme are taken from [122]. As noted above
we have shifted the origin of our problem such that the lower bound of each
of the variables is one. We first consider bilinear terms of the form

ayiyj, a > 0, i 6= j.
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Algorithm 3 The Udd selection algorithm for MIQTBC

i. Set rhs = 1, ind = 2 and Udd = 0nd×nd
.

ii. If Λ has at least one positive diagonal element reorder the variables such
that (Λ)1,1 > 0, set Ũdd = Ind

, set Λ̃ = Λ and go to step vi. If all of the
diagonal elements of Λ are negative go to step iii.

iii. Solve the following equation numerically for ξ ∈ R
nd−1; ξTΛ(nd−1)ξ +

2λT ξ + α = rhs. The equation was solved using the MATLAB function
fsolve.

iv. Let µ̃ = round(ξ). If µ̃TΛ(nd−1)µ̃+ 2λT µ̃+ α > 0 then let

Ũdd =

[
1 01,nd−1

µ̃ Ind−1

]

and go to step v. Otherwise set rhs = rhs + 1 and go to step iii.

v. Let Λ̃ = ŨT
ddΛŨdd and reorder the variables such that (Λ̃)1,1 > 0.

vi. If (Λ̃)ind,ind > 0 set (Udd)1,ind = 0, (Udd)ind,ind = 1 and go to step ix.
Otherwise go to step vii.

vii. Set µ1 and µ2 as the solutions to the following problems

min
µ1

µ1

s.t (Λ̃)1,1µ
2
1 + 2(Λ̃)ind,1µ1 + (Λ̃)ind,ind > 0, µ1 ≥ 0, µ1 ∈ Z.

min
µ2

µ2

s.t (Λ̃)1,1µ
2
2 − 2(Λ̃)ind,1µ2 + (Λ̃)ind,ind > 0, µ2 ≥ 0, µ2 ∈ Z.

viii. If µ1 < µ2 set (Udd)1,ind = µ1 and (Udd)ind,ind = 1 otherwise set
(Udd)1,ind = µ2 and (Udd)ind,ind = −1.

ix. If ind = n go to step x otherwise set ind = ind + 1 and go to step vi.

x. Return Ũdd, Udd and the variable reorderings used during the algorithm.
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For each variable involved in a bilinear term of this form we make the sub-
stitution

yi = eYi .

Since we only make the substitutions in the bilinear terms and not in the
univariate terms or the constraints we add the following constraint to the
problem

Yi = ln yi. (4.43)

To linearise this constraint we note that yi can be expressed as a sum of
binary variables as follows:

yi = 1 +

mi∑

k=1

tikk, (4.44)

mi∑

k=1

tik ≤ 1,

tik ∈ {0, 1},

where
mi = ui − 1.

Substituting this into (4.43) and noting that at most one of the binary vari-
ables can be non-zero, we obtain the following

Yi =

mi∑

k=1

tik ln (1 + k) .

A bilinear term ayiyj will take the following form after the substitution:

min aeYi+Yj (4.45)

s.t. yi = 1 +

mi∑

k=1

tikk,

mi∑

k=1

tik ≤ 1,

Yi =

mi∑

k=1

tik ln (1 + k) ,

yj = 1 +

mj∑

k=1

tjkk,
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mj∑

k=1

tjk ≤ 1,

Yj =

mj∑

k=1

tjk ln (1 + k) ,

yi, yj, Yi, Yj ∈ R,

tij ∈ {0, 1}.

We now consider bilinear terms of the form

−ayiyj, a > 0, i 6= j.

For each variable involved in a bilinear term of this form we make the sub-
stitution

yi =
√
Yi.

Again we only make this substitution in the bilinear terms and not in the
univariate terms or the constraints. Accordingly, we add the following con-
straint to the problem

Yi = y2i .

Substituting (4.44) into this constraint and again noting that at most one of
the binary variables can be non-zero, we obtain the following

Yi = 1 +

mi∑

k=1

tik
(
(k + 1)2 − 1

)
.

A bilinear term −ayiyj will take the following form after the substitution:

min − a
√
YiYj (4.46)

s.t. yi = 1 +

mi∑

k=1

tikk,

mi∑

k=1

tik ≤ 1,

Yi = 1 +

mi∑

k=1

tik
(
(k + 1)2 − 1

)
,

yj = 1 +

mj∑

k=1

tjkk,

mj∑

k=1

tjk ≤ 1,
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Yj = 1 +

mj∑

k=1

tjk
(
(k + 1)2 − 1

)
,

yi, yj, Yi, Yj ∈ R,

tij ∈ {0, 1}.
We now substitute (4.45) and (4.46) into each of the bilinear terms in the

objective function of problem (4.42). The resulting problem is a convex
MINLP which is equivalent to problem (1.2) [122]. MIQTBC can be applied
to any problem where the ncth principal leading submatrix is positive definite
and the elements of x can be reordered such that Hdd − HT

cdH
−1
cc Hcd has at

least two principal leading submatrices which are not negative semidefinite.

4.4 Approach used when Hcc is singular

When Hcc is singular we again want to reduce the number of bilinear terms
that must be underestimated in the objective function, for the same reasons
that were given in section 4.2. Towards this end we choose the elements of V
such that the Hessian Θ of the transformed problem, which is given in (4.5),
can be written in the following form

Θ = Θ(1) + Θ(2),

Θ =

[
Θ

(1)
cc 0

0 Θ
(1)
dd

]
+

[
Θ

(2)
cc Θ

(2)
cd

Θ
(2)T
cd Θ

(2)
dd

]
, (4.47)

where Θ
(1)
cc , Θ

(2)
cc and Θ

(2)
dd are diagonal and Θ(2) is positive definite. The

resulting problem will be solved using a Branch and Bound algorithm. Since
Θ(2) is positive definite none of the terms in Θ(2) need to be underestimated
when obtaining the lower bounds. Therefore, following the same reasoning
as in Theorem 1, we will have a transformed problem with 1

2
(n2

c − nc)+ncnd

fewer bilinear terms in the objective function that need to be underestimated.
We now show that there exists a matrix V which gives the Hessian of the

transformed problem the form specified by (4.47). As before we require Ucc

to be a matrix which diagonalises Hcc. Since Hcc is Hermitian this matrix
must exist [15]. We now prove the existence of the required transformation.

Theorem 5. ∃ Ucc such that Ucc diagonalises Hcc and Θ can be written in
the following form

Θ =

[
Θ

(1)
cc 0

0 Θ
(1)
dd

]
+ Θ(2), (4.48)

where Θ(2) is positive definite.
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Proof. Let

A = UT
ccHccUcc,

B = UT
cc (HccUcd +HcdUdd) ,

C = UT
cdHccUcd + UT

cdHcdUdd + UT
ddH

T
cdUcd + UT

ddHddUdd.

The Hessian in (4.5) now takes the following form

Θ =

[
A B
BT C

]
,

Θ =

[
Af 0
0 Cf

]
+

[
Ad B
BT Cd

]
, (4.49)

where Ad and Cd are defined as diagonal matrices with positive values on
the diagonal and Af and Cf are defined such that

A = Ad + Af ,

C = Cd + Cf .

Denote the second matrix in (4.49) as Θ(2). Now the elements of Ucd and
Udd can be taken to be fixed, the methods used to fix these matrices will be
discussed after the proof of the theorem. Now using the definition of B and
the fact that Ucd and Udd are fixed we see that the elements of B can be
written in the following form

(B)j,k =
nc∑

m=1

ρ(k)m (Ucc)m,j , (4.50)

where ρ
(k)
m ∈ R. Now we know that Ucc must be a matrix which diagonalises

Hcc but this does not specify Ucc uniquely. If F is some matrix which diag-
onalises Hcc then the matrix Ucc obtained by multiplying each column of F
by some real number will also diagonlise Hcc [15]. Therefore the magnitude
of the elements of Ucc can be made arbitrarily small. It is then clear from
(4.50) that the elements of Ucc can be chosen to make the magnitude of the
elements of B arbitrarily small.

A matrix F ∈ R
(n,n) is said to be strictly diagonally dominant if [74]

∣∣∣(F )i,i

∣∣∣ >
n∑

j=1
j 6=i

∣∣∣(F )i,j

∣∣∣ ∀i = 1, . . . , n.

Now a strictly diagonally dominant matrix which is Hermitian and has posi-
tive diagonal elements is positive definite [74]. Now from the definitions of Ad
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and Cd we know that the Θ(2) has positive diagonal elements and it is obvious
that Θ(2) is Hermitian. We need to show that we can choose the elements
of Ucc such that Θ(2) is strictly diagonally dominant. We have shown above
that the magnitude of the elements of B can be made arbitrarily small and
we know that Ad and Cd are diagonal matrices. Therefore the magnitude of
the off diagonal elements of Θ(2) can be made arbitrarily small. It is then
obvious that we can choose Ucc such that Θ(2) is strictly diagonally dominant.
Therefore ∃ Ucc such that Ucc diagonalises Hcc and Θ can be written in the
following form

Θ =

[
Θ

(1)
cc 0

0 Θ
(1)
dd

]
+ Θ(2),

where Θ(2) is positive definite and Θ
(1)
cc is diagonal.

We now discuss the methods used to fix the values of Ucd and Udd. The
method used to set Udd is the same as that described in subsection 4.2. In
fixing Ucd we note that although there will always exist some Ucc such that
Theorem 5 is satisfied the elements of Ucc might be very small. This tends to
increase the bounds on the transformed problem calculated using (4.8) and
(4.9). We attempted to use our freedom in the choice of Ucd to minimise this
effect. A number of methods were developed to try and achieve this, the most
promising of which sets as many of the elements of HccUcd + HcdUdd to zero
as possible. This was done because we need to use Ucc to make the elements
of B small enough to make Θ(2) positive definite. It was reasoned that since
B = UT

cc (HccUcd +HcdUdd), if HccUcd + HcdUdd had a large number of zero
elements then the elements of Ucc could be made larger while still satisfying
(4.48). The efficiency of this choice of Ucd was tested. However, it was found
through numerical experiment that the most efficient value for Ucd was the
zero matrix. There may be more efficient choice of Ucd than that found
in this thesis and the choice of this matrix warrants further investigation.
Algorithm 4 was used to find Ucc satisfying (4.48). In Algorithm 4 µ, ν and
ω are parameters set by the user which determine the size of the elements
of Ucc, A

d and Cd respectively. The effectiveness of the transformation is
dependent on the choice of µ, ν and ω. These parameters will need to be
determined by numerical experiment for each type of problem solved. The
values used in this work are given in chapter 6.

Using the specified values of Ucd, Udd and Ucc we obtained the following
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Algorithm 4 The Ucc selection algorithm for singular Hcc

i. Set µ > 0, ν > 0 and ω > 0. Set r = 0.

ii. Let Ũcc be the matrix with the normalised eigenvectors of Hcc as its
columns.

iii. Let Ucc = µŨcc, χ = ν max (abs (A)) and ζ = ωmax (abs (C)), where A
and C are defined prior to (4.49) and max(F ) denotes the largest element
of the matrix F and abs(F ) denotes the matrix obtained by taking the
absolute values of the elements of F .

iv. Set Θ̃(2) to the following matrix

Θ̃(2) =

[
χInc

B
BT ζInd

]
,

where B is defined prior to (4.49).

v. Test whether Θ̃(2) is positive definite. If it is then go to step viii, other-
wise go to step vi.

vi. Set r = r + 1 and u(r) = 0.9u(r) where u(r) is the rth column of Ucc.

vii. If r = nc set r = 0. Go to step iv.

viii. Let Θ(2) = Θ̃(2). Return Θ(2) and Ucc and stop.
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transformed problem:

min
y

h(V y) =
1

2

(
yTc Θ(1)

cc yc + yTd Θ
(1)
dd yd

)
+

1

2
yTΘ(2)y + gTV y (4.51)

s.t. AV y ≤ b,

DV y = e,

l ≤ V y ≤ u,

yL ≤ y ≤ yU ,

y =
[
yTc , y

T
d

]T ∈ R
nc × Z

nd ,

where Θ
(1)
cc is diagonal and Θ(2) is positive definite. As noted at the start of

this section, when obtaining the lower bounds we do not need to underesti-
mate the bilinear terms in yTΘ(2)y since Θ(2) is positive definite.

4.5 Conclusion

In this chapter we have developed a number of different approaches for use in
solving non-convex MIQPs. Different approaches were developed for differ-
ent classes of Hessians. All of the approaches developed in this chapter are
based on carefully chosen linear transformations. When the ncth principal
leading submatrix is positive semidefinite the problem is solved by refor-
mulating it as a convex MIQP. We use the linear transformation to reduce
the number of terms required by the reformulation. The resulting problem
can be solved using convex mixed integer algorithms. A different approach
is taken when solving problems with invertible and singular ncth principal
leading submatrices. These problems are solved using Branch and Bound
algorithms. The linear transformations in these cases are chosen in such
a way that more efficient lower bounding problems can be obtained at the
nodes of the Branch and Bound tree. Computational results illustrating the
effectiveness the approaches developed in this chapter are given in chapter 6.
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Chapter 5

Derivative Free Methods for

MINLPs

In this chapter we present a trust region algorithm for finding local minima
of problem (1.1) without using the derivative of the objective function. The
algorithm makes use of a series of quadratic approximations to the objec-
tive function and is adapted from the BOBYQA algorithm for derivative
free, bound constrained continuous optimization [126]. A detailed review
of BOBYQA was given in chapter 3. Three different implementations of
the algorithm are presented and deterministic proofs of convergence to local
minima are provided for two of the implementations.

This chapter is organised as follows. In section 5.1 we discuss possible
definitions of local minima for mixed integer programs. This is necessary
since there are a number of possible definitions and it is important to have a
clear definition of a local minimum when developing deterministic algorithms.
Section 5.2 contains the details of the new derivative free algorithm. Details
of the three different implementations of the algorithm are given as well as
the convergence proofs for two of the implementations. Concluding remarks
are made in section 5.3. The pseudocode for the derivative free algorithm is
given in appendix A.

5.1 Local minima of mixed integer programs

Clearly, the first step in designing a deterministic local search procedure
should be to develop a mathematical formulation of a local minimum. Any
definition of a local minimum will have the form [119]

Definition 6. A point x∗ is a local minimum if,

f(x∗) ≤ f(x), ∀x ∈ Nmin(x
∗),
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where Nmin(x) is some neighbourhood of x.

As we shall see below the definitions of local minima in both the contin-
uous and discrete cases take this form. The mixed integer nature of the
variables in problem (1.1) makes it possible to envisage several different
definitions of Nmin(x), each of which gives a different definition of a local
minimum. We discuss several possible definitions in this section as well as
suggesting some restrictions that could be used to decide which of these def-
initions to use. While these restrictions are applied to bound constrained
MINLPs in this work they are developed for the general MINLPs with the
form of problem (2.1).

Before proceeding with this discussion we need to define the following
notation. Let Ωm denote the feasible region of problem (2.1). In the special
cases when nd = 0 and nc = 0 let Ωc and Ωd respectively denote the feasible
region of problem (2.1) . For any xc and ε > 0 let Bε(xc) denote the open
ball {yc ∈ R

nc : ‖yc − xc‖ < ε}. Let Nm(x) denote a neighbourhood used
in the definition of a local minimum of a mixed integer problem. We assume
that x ∈ Nm(x). Let Nd(xd) denote a discrete, user defined neighbourhood.
Let Nr(x) denote a neighbourhood of x of the form

Nr(x) = {y ∈ R
n : yc = xc, yd ∈ Nd(xd)}.

Nr(x) is just a commonly used subset of Nm(x). Now suppose we give xd some
feasible value in f(x). The remaining freedom in the continuous variables will
form a manifold. We refer to the feasible region of this manifold as a feasible
continuous manifold. We also need to recall the continuous and discrete
definitions of local minima as well as the definition of a global minimum
before proceeding with our discussion. For continuous problems, nd = 0, the
following definition of a local minimum is used [119]

Definition 7. (Continuous local minimum) A point x∗ ∈ Ωc is a local min-
imum if, for some ǫ > 0,

f(x∗) ≤ f(x), ∀x ∈ Bε(x
∗).

For discrete problems, nc = 0, the following definition of a local minimum
is used [160]

Definition 8. (Discrete local minimum) A point x∗ ∈ Ωd is a local minimum
if,

f(x∗) ≤ f(x), ∀x ∈ Nd(x
∗).

The following definition of a global minimum is used for continuous [119],
discrete [99] and mixed problems [120]
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Definition 9. (Global minimum) A point x∗ ∈ Ωm is a global minimum if,

f(x∗) ≤ f(x), ∀x ∈ Ωm.

This completes the list of definitions required to allow us to proceed with
our discussion of mixed integer local minima.

As was noted above a local minimum of a mixed problem can be defined
in a number of ways. We suggest that some further restrictions need to be
imposed on the definition to allow it to be chosen in a meaningful way. The
existing definitions, which are discussed below, do not follow these restric-
tions and we shall provide an example illustrating the resulting deficiencies.
The first two restrictions that we propose for the definition of a mixed lo-
cal minimum are that it should reduce to Definition 7 when nd = 0 and to
Definition 8 when nc = 0. The remaining restrictions ensure that desirable
properties of Definitions 7 and 8 are retained in the mixed definition. Firstly,
the fact that the neighbourhood in Definition 8 is user defined allows the user
some control over the strength of the minimum obtained as well as the com-
putational effort required to find the minimum. This is important since the
problem is NP-hard; it may be prohibitively expensive to find local minima
using a large neighbourhood, in which case a smaller neighbourhood can be
used. Since the mixed problem is also NP-hard the mixed definition should
allow the user some control over the size of the neighbourhood. In addition,
we propose that the following are desirable characteristics of the discrete and
continuous definitions and that the definition in the mixed case should have
an analogous characteristic;

i) A point is a local minimum of a continuous, convex problem if and only
if it is the global minimum.

ii) If nc = 0 (discrete problem) and Nd(x) = Ωd then a point is a local
minimum of the problem if and only if it is a global minimum.

The difference between these properties is that i) requires that the prob-
lem considered be convex while ii) requires that the neighbourhood include
all feasible discrete points. Considering the mixed case it seems natural to
combine these properties to give a restriction on the definition of a mixed
minimum. The discussion above gives us the following restrictions on the
definition of a local minimum

1) The definition of a mixed integer local minimum reduces to Definition 7
when nd = 0.

2) The definition of a mixed integer local minimum reduces to Definition 8
when nc = 0.
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3) The definition of a mixed integer local minimum allows the user some
control over the size of Nm.

4) If Nm contains at least one point on each feasible continuous manifold and
f and ci are convex then a point is a local minimum of a mixed integer
problem if and only if it is a global minimum.

It may be that more restrictions should be added to this list since these re-
strictions do not uniquely specify a definition of a local minimum, an example
showing that this is the case is provided later in this section. However, it
should be noted that the definition of a local minima is also not uniquely
specified in the discrete case. The non-uniqueness of the definition might be
an unavoidable effect of including discrete variables in the problem. While
the restrictions listed above do not uniquely specify the definition of a local
minima they do limit the possible choices enormously and allow us to define
what we believe to be a practically meaningful definition of a local minimum.

We now discuss the two definitions of local minima that have been pro-
posed in the literature. The following definition of a local minimum is used
in [102] and [156],

Definition 10. (Separate local minimum) A point x∗ ∈ Ωm is a local mini-
mum of problem (1.1) if, for some ǫ > 0,

f(x∗) ≤ f(x), ∀x ∈ {x : xc ∈ Bε(x
∗
c), xd = x∗d} ∩ Ωm, (5.1)

f(x∗) ≤ f(x), ∀x ∈ Nr(x
∗) ∩ Ωm. (5.2)

One of the implementations of our derivative free algorithm guarantees
convergence to a separate local minimum. A stronger definition of a local
minimum is used in [1, 2, 17, 105],

Definition 11. A point x∗ ∈ Ωm is a local minimum of problem (1.1) if, for
some ǫ > 0,

f(x∗) ≤ f(x), ∀x ∈


 ⋃

x∈Nm(x∗)

Bε(xc) × {xd}


⋂Ωm,

where Nm(x) is some neighbourhood of x.

In all cases where Nm(x) is defined explicitly in this definition a neigh-
bourhood with the form Nr(x) is used [17, 105]. We believe that this defini-
tion is too broad to be practically useful when Nm(x) is left in its most general
form. Indeed, it is only slightly less general than Definition 6. Accordingly,
from this point we shall only discuss the applied version of Definition 11.
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The main problem with Definition 10 and the applied version of Definition
11 is that they do not satisfy restriction 4). We present an example below
showing that this is the case. Another issue is that the definitions treat the
continuous and discrete variables separately, ignoring the overall behaviour of
the objective function. To overcome these problems we propose the following
stronger definition of a local minimum.

Definition 12. (Combined local minimum) A point x∗ ∈ Ωm is a local min-
imum of problem (1.1) if, for some ǫ > 0,

f(x∗) ≤ f(x), ∀x ∈ {x : xc ∈ Bε(x
∗
c), xd = x∗d} ∩ Ωm, (5.3)

f(x∗) ≤ f(x), ∀x ∈ Ncomb(x∗) ∩ Ωm. (5.4)

Here Ncomb(x∗) is the set of optimal points obtained when solving the
following set of problems:





min
x

f(x)

s.t. l < x < u,

xd = x̄d,

x =
[
xTc , x

T
d

]T ∈ R
nc × Z

nd ,

∣∣∣∣∣∣∣∣∣∣

x̄ ∈ Nr(x
∗)\{x∗}




. (5.5)

These problems are solved using x̄ as the initial point. The problems in (5.5)
are continuous NLPs. Now clearly the points in Ncomb(x) will depend on the
method used to solve the problems in (5.5). Accordingly this definition is
not fully specified unless the method used to solve these problems has been
specified. The solver used should be deterministic with deterministic proof of
convergence. The use of a stochastic method will result in different elements
being contained in Ncomb(x) each time the solver is run. From this point we
shall call whichever solver is chosen by the user the neighbourhood solver.
We also note that any point which is a combined local minimum will also be
a separate local minimum. The converse is not true; separate local minima
are not always combined local minima. We now prove that Definition 12
satisfies the restrictions we placed on the definition of a local minimum.

Theorem 13. Definition 12 satisfies restrictions 1), 2), 3) and 4).

Proof. Suppose that nd = 0, in this case restriction 1) must be satisfied.
From its definition Nr(x) = x when nd = 0 which gives Nr(x)\{x} = ∅.
Then from its definition it is clear that Ncomb(x) = ∅. Considering Definition
12 we see that it reduces to Definition 7 when Ncomb(x) = ∅ so restriction 1)
is satisfied.
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Now suppose that nc = 0, in this case (5.3) reduces to

f(x∗) ≤ f(x), ∀x ∈ {x : x = x∗},

but this gives f(x∗) ≤ f(x∗) which is satisfied identically so it can be dropped
from the definition. Now consider Ncomb(x). The problems in (5.5) each
contain the constraint x = x̄ when nc = 0 so the optimal point of each
problem must be x̄. Then, by its definition, Ncomb(x) has the following form

Ncomb(x) = {x̄ : x̄ ∈ Nr(x)\{x}},
Ncomb(x) = Nr(x)\{x}.

Now consider Definition 8; clearly replacing Nr(x
∗) with Nr(x

∗)\{x∗} will
have no effect on which points satisfy the definition. We have shown that
this is the form that Definition 12 takes when nc = 0. Therefore Definition
12 is equivalent to Definition 8 when nc = 0 and restriction 2) is satisfied.

Now, the number of points in Ncomb(x) is determined by the number of
points in the user defined neighbourhood Nr(x). Thus, Definition 12 satisfies
restriction 3)

We now show that restriction 4) is satisfied. Consider a point x∗ which
satisfies Definition 12. Assume that f and ci are convex and that the neigh-
bourhood {x : xc ∈ Bε(x

∗
c), xd = x∗d} ∪ Ncomb(x) contains at least one point

on each feasible continuous manifold. From the definition of Ncomb(x) we see
that it will contain one point on each manifold besides that containing x∗ and
that each point will have the lowest objective function value on its manifold.
Since x∗ satisfies (5.3) it is the minimum on its continuous manifold. There-
fore, there are no points with a lower objective function value than x∗ on
the manifold containing x∗. Now none of the points in Ncomb(x) has a lower
objective function value than x∗ and each point in Ncomb(x) is the minimum
on one of the continuous manifolds. Therefore, there are no points on any of
the other feasible continuous manifolds with a lower objective function value
than x∗. Therefore x∗ is a global minimum and restriction 4) is satisfied.

It was stated previously that our restrictions do not uniquely specify a
definition of a local minimum. That this statement is correct can be seen
by using different neighbourhood solvers in the definition of Ncomb(x) and
considering non-convex problems. Clearly, different solvers are not guaran-
teed to return the same solutions for the problems in (5.5) when f or ci
are non-convex. It follows that Definition 12 is not unique. One of the im-
plementations of our derivative free algorithm guarantees convergence to a
combined local minimum.
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We now show that Definition 10 and the applied version of Definition
11 do not satisfy restriction 4). This is done using a counterexample. The
example is also used to illustrate the advantages of choosing a definition which
satisfies our restrictions and the negative effects of ignoring said restrictions.
Consider the following example:

min
[y,x]

5

2
(x+ y)2 +

1√
2

(−x + y) (5.6)

s.t. − 2 ≤ x, y ≤ 2,

y ∈ R, x ∈ Z.

The constraints describing the feasible region of problem (5.6) are clearly
convex and, since it is the sum of two convex terms, the objective function
is also convex. The contours of the objective function are shown in Figure
5.1a. Figure 5.1b shows the feasible values of the objective function viewed
along the x-axis. The green dots in Figure 5.1b are placed at the minimum
of each parabola. Clearly each of the green points will satisfy (5.3), this
is required by all three definitions. Now using Definition 10 or the applied
version Definition 11 each green point will be a local minima, regardless of the
choice of Nr([y, x]). This is obvious from the fact that each green point gives
the lowest possible objective function value for a specific value of y. Clearly
then neither definition satisfies restriction 4). We also see here the dangers of
choosing definitions without carefully considering their construction. Using
the definitions in the literature fairly simple problems can be imagined for
which the size Nd(xd) will have no effect on whether a point is defined as a
local minimum. This is clearly undesirable. Now consider Definition 12 with

Nr ([y, x]) = {[ȳ, x̄] : ȳ = y, x̄ = −2,−1, . . . , 2}.

Using this definition of Nr there will be at least one point on each feasible
continuous manifold. Ncomb([y, x]) will contain the four green points not
lying on the same manifold as y. Clearly only the global minimum at [2, −2]
is a local minimum using this definition. We see that, as expected, Definition
12 satisfies restriction 4). In fact, for this problem the condition that the local
minimum should be a global minimum does not require that a point in the
neighbourhood lie on each manifold. This is clear from the fact that when
applying Definition 12 with

Nr ([y, x]) = {[ȳ, x̄] : ȳ = y, x̄ = x− 1, x+ 1},

only the global minimum at [2, −2] is a local minimum.
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(a) A contour plot of the objective function of problem (5.6).
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(b) The feasible values of the objective function viewed along the
x-axis. The green points are placed at the minimum of each
parabola.

Figure 5.1: A figure illustrating important features of the objective function
of problem (5.6).
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5.2 Mixed integer algorithm

We now develop a trust region based, derivative free algorithm that can be
used to solve problem (1.1). We present three different implementations of
the algorithm; each implementation has different convergence results. The
first implementation is a heuristic and is called HEMBOQA (HEuristic Mixed
Bound constrained Optimization by Quadratic Approximation). The second
implementation guarantees convergence to a separate local minimum, as de-
fined in Definition 10, and is called SEMBOQA (SEparate Mixed Bound con-
strained Optimization by Quadratic Approximation). The third algorithm
guarantees convergence to a combined local minimum, as defined in Defi-
nition 12, and is called COMBOQA (COmbined Mixed Bound constrained
Optimization by Quadratic Approximation).

HEMBOQA is the adaption of BOBYQA to mixed integer programs.
The differences between the two algorithms all stem from the fact that, as
in BOBYQA, HEMBOQA requires all interpolation points to be feasible.
Specifically the last nd components of each interpolation point must be inte-
gral. The changes caused by the restriction that all of the interpolation points
must be feasible will become clear in the following discussion. A description
of the aspects of the HEMBOQA algorithm which differ from BOBYQA
is given in sections 5.2.1 to 5.2.3. Pseudocode describing the execution of
HEMBOQA is given in appendix A. SEMBOQA and COMBOQA are modi-
fications of HEMBOQA. The details of the changes made to HEMBOQA to
produce SEMBOQA and COMBOQA are given in section 5.2.4. Familiarity
with the review of BOBYQA given in chapter 3 is required to completely
understand the following discussion.

5.2.1 Initialisation

At the initialisation of the algorithm the user is required to specify the fol-
lowing quantities; an initial point x0, an initial inner trust region vector
ρbeg ∈ R

n, a final trust region vector ρend ∈ R
n, the number of continu-

ous variables nc, the number of discrete variables nd, the upper and lower
bounds u and l, the maximum number of function evaluations maxevals and
the maximum time maxtime. The purposes of these quantities will be made
clear in the following discussion. We note here that instead of the trust re-
gion radii used in BOBYQA, HEMBOQA uses trust region vectors. This is
because HEMBOQA uses box shaped rather than spherical trust regions and
each element of the trust region vector specifies the size of the box in one
direction. The reasons for the use of the box shaped trust region are given
in section 5.2.2. We also note that in the HEMBOQA algorithm we restrict
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the number of interpolation points to have the value m = 2n+ 1 rather than
allowing the user to choose m. Our description of BOBYQA in chapter 3
also used m = 2n + 1. However, in [126] provision is made for the user to
choose the number of interpolation points.

We now discuss the procedure used to set up the initial set of interpolation
points. Similarly to BOBYQA, the initial point x0 may need to be moved to
ensure that the interpolation points are feasible, this is done automatically.
The elements of x0 are reset using the following formula

(x0)i =





li, (x0)i < li,

ui, (x0)i > ui,

li + (∆1)i, li < (x0)i < li + (∆1)i,

ui − (∆1)i, ui > (x0)i > ui − (∆1)i,

(x0)i , otherwise,

(5.7)

where (∆1)i is the ith component of ∆1. When there are no binary variables
in the problem the following procedure is used to set up the initial quadratic
model and interpolation points. The initial inner and outer trust region
vectors, ρ1 and ∆1, are both set to ρbeg. The initial interpolation points are
chosen as follows; set y1 = x0 and for i = 1, . . . , n define yi+1 and yn+i+1 as
follows




yi+1 = x0 + (∆1)iei yn+i+1 = x0 − (∆1)iei, if li < (x0)i < ui,

yi+1 = x0 + (∆1)iei yn+i+1 = x0 + 2(∆1)iei, if (x0)i = li,

yi+1 = x0 − (∆1)iei yn+i+1 = x0 − 2(∆1)iei, if (x0)i = ui.

(5.8)

This is just a modification of the formula used by BOBYQA which takes
into account the fact that the trust regions are now box shaped. Since all
of the interpolation points are required to be feasible an error is returned
if ui − li < 2(∆1)i. The initial quadratic model is set up by using the
interpolation points to set p1, q1 and the diagonal elements of ∇2Q1. The
remaining elements of ∇2Q1 are set equal to zero; this can be thought of as
minimizing the Frobenius norm of ∇2Q1.

However, if binary variables are present in the problem we need to modify
this procedure since using (5.8) when binary variable are present results in
infeasible interpolation points. The procedure described below is used to
overcome this problem. Suppose the ith variable is binary. In the following
discussion we use i to index both interpolation points and specific coordinates
of interpolation points, e.g. (yi+1)i is the ith coordinate of the (i + 1)th
interpolation point. Now, set (x0)i = 0 and (∆1)i = 0.5 and use (5.8) to set
up the initial interpolation points. This will result in infeasible interpolation
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points. These points are used to set up W1. However, as we shall see the
objective function is never evaluated at these points. Use the procedure
in [126] to set up W1. Then for each binary coordinate we create a new
interpolation point yrep, i.e. if the problem contains four binary variables then
four new interpolation points will be generated. The new point is constructed
by setting (yrep)i = 1 and

(yrep)j =





1, xj is binary,

(x0)j + (∆1)j , (x0)j + (∆1)j < uj and xj is not binary,

(x0)j − (∆1)j, otherwise.

(5.9)

Here j is an index given by

j =

{
1, i = n,

i + 1, otherwise.

The remaining elements of yrep are set equal to the corresponding elements
of x0. The point yrep will always be feasible since x0 is set using (5.7) and
ui − li ≥ 2(∆1)i. We replace yi+1 with yrep in the set of interpolation points
and update W1 using the procedure described in [126] using x0 = xk. Once
this procedure has been performed for all of the binary variables we have a set
of feasible interpolation points. We use this new set of interpolation points
to set up Q1. However, due to the new structure of the interpolation points,
additional freedom is now required in order to satisfy the initial interpolation
conditions, as explained in the following paragraph. Accordingly, we now
use the interpolation points to set p1, q1, the diagonal elements of ∇2Q1 and
the off diagonal element in the ith row and jth column of ∇2Q1 for each i
corresponding to a binary variable.

We now explain why the off diagonal elements of ∇2Q1 have to be used
in this case. Normally the coefficients of the initial quadratic model are
found by solving a system of linear equations with the form Fz = b where
F ∈ R

m,m and z, b ∈ R
m. The vector b contains the objective function values

at the interpolation points, z is a vector of the coefficients of Q1 and the vth
row of F will have the following form

[
(yv)

2
1 (yv)

2
2 . . . (yv)

2
n (yv)1 (yv)2 . . . (yv)n 1

]
.

Now the system Fz = b will only have a solution if rank(F ) = m [15]. The
rank of F is equal to the number of linearly independent rows of F . Normally
the procedure used to set up the interpolation points ensures that they are
linearly independent which in turn ensures that rank(F ) = m. However,
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considering (5.8) and the procedure used to set up yrep we see that we have
yrep = yi+n+1 + yj+1 − y1. Since one of the rows of F is a linear combination
of three others rank(F ) = m−1 so we will not be able to find the coefficients
of Q1. We now show that by using the off diagonal element in the ith row
and jth column of ∇2Q1 we make it possible solve the system. The vth row
of F now takes the form

[
(yv)

2
1 (yv)

2
2 . . . (yv)

2
n (yv)1 (yv)2 . . . (yv)n 1 (yv)i × (yv)j

]
.

Adding this column to the matrix cannot make any of the previously inde-
pendent rows dependent so if

(yrep)i(yrep)j 6= (yi+n+1)i (yi+n+1)j + (yj+1)i (yj+1)j − (y1)i (y1)j , (5.10)

then we will have rank(F ) = m. From the discussion above we see that we
have y1 = x0, (x0)i = 0, (yrep)i = 1, (yj+1)i = (x0)i, (yi+n+1)j = (x0)j and
(yi+n+1)i = 1. Using this information we can rewrite (5.10) as follows

(yrep)j 6= (x0)j . (5.11)

From (5.9) we see that (5.11) will be satisfied provided that (∆1)j 6= 0. We
must have (∆1)j > 0 since, as noted above, an error is returned if ui − li <
2(∆1)i. Therefore (5.11) is satisfied so rank(F ) = m and the system Fz = b
has a solution, allowing the coefficients of Q1 to be found.

5.2.2 Trust Region and Alternative Iterations

During trust region iterations the following problem is solved to find dk:

min
dk

Qk(xk + dk) (5.12)

s.t. l ≤ xk + dk ≤ u,

− ∆k ≤ dk ≤ ∆k,

dTk =
[
dck

T , ddk
T
]T

∈ R
nc × Z

nd,

where ∆k ∈ R
n. We note that we have replaced the spherical trust region

used by BOBYQA with a box shaped trust region. This is done for two
reasons. Firstly it simplifies the MIQP that must be solved to calculate
dk since the bound constraints in problem (5.12) are easier to handle than
the quadratic constraints that would result from the use of a spherical trust
region. The MIQPs are NP-hard and accordingly they are the most compu-
tationally expensive part of the algorithm. Clearly then, making the MIQPs
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easier to solve should reduce the solution time. The second reason for the use
of a box shaped trust region is that it allows us to have different trust region
sizes for different coordinate directions. This is vital to the success of the
algorithm as the trust region needs to become much smaller than one in the
continuous coordinate directions to give a good solution. However if the size
of the trust region becomes smaller then one in the integer coordinates we will
no longer be able to change the discrete part of our solution. This will clearly
inhibit the algorithm since the size of the trust region in the continuous coor-
dinates generally becomes smaller than one fairly soon after the initialisation
of the algorithm. This change in the form of the trust region forces us to
modify a number of the formulae used in BOBYQA, these changes will be
given in section 5.2.3. A similar modification is made to the problems solved
during the alternative iterations. During alternative iterations the step dk is
found by solving the following problem:

max
dk

|Λt(xk + dk)| (5.13)

s.t. l ≤ xk + dk ≤ u,

− ∆k ≤ dk ≤ ∆k,

dTk =
[
dck

T , ddk
T
]T

∈ R
nc × Z

nd ,

where Λt is defined in chapter 3.
Both problem (5.12) and problem (5.13) are MIQPs. These problems

were solved using a number of different methods. The method applied in a
particular case depended on the Hessian of the problem. If the Hessian was
positive definite the problems were solved using CPLEX. If the Hessian was
indefinite but the ncth principle leading submatrix of the Hessian was positive
semidefinite the problem was solved using a convex reformulation scheme
developed in [33]. If the ncth principal leading submatrix was indefinite the
problem was solved using the methods developed chapter 4.

5.2.3 Further details on the implementation of HEM-

BOQA

In this section we give the remaining details required to complete the descrip-
tion of HEMBOQA. First, a procedure is given which is used to ensure that
a good solution is obtained in the continuous variables. We then describe the
procedure used when patterns appear in the step lengths. Following that we
outline the procedures used to choose t and to choose between trust region
and alternative iterations. Finally, the trust region management procedure
is given.
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Before proceeding with the discussion outlined in the previous paragraph
we give two further brief points on the implementation of HEMBOQA.
Firstly, the procedure used by HEMBOQA to update Qk and Wk is the
same as the procedure used by BOBYQA. Secondly, if HEMBOQA exceeds
the user specified run time or number of function evaluations the algorithm
is stopped and the current xk and f(xk) are returned.

Ensuring a good solution in the continuous variables

We now describe a feature of HEMBOQA used to ensure that the continuous
part of the solution is accurate. Let Xi denote the feasible continuous mani-
fold obtained by fixing the integer dimensions in the feasible region to have
the values of ydi . Recall that s denotes the integer which satisfies ys = xk.
Now it can happen that xk is the only interpolation point on Xs

1. If this
is the case it is unlikely that HEMBOQA will find an accurate estimate of
the optimal point on Xs; the location of this optimal point is required by all
of our definitions of local minima. To allow HEMBOQA to obtain a more
accurate estimate of the optimal point on Xs we require that there be a user
specified number γreq of interpolation points on Xs before the size of the trust
region can be reduced and before the algorithm can be stopped. The value of
γreq chosen will depend on the accuracy required and the desired number of
function evaluations; decreasing γreq will result in a smaller number of func-
tion evaluations but a less accurate solution. Now let γin denote the number
of interpolation points on Xs. A number of steps are taken to try and ensure
that γin ≥ γreq. Firstly, if γin < γreq none of the interpolation points on Xs

can be replaced by xk + dk when choosing the set of interpolation points for
the (k + 1)th iteration. Obviously, when trying to increase the number of
points on Xs it is undesirable to remove any points already on Xs. In addition
if γin < γreq it is made more likely that a trust region iteration will be used
rather than an alternative one. This done since numerical experiments show
that trust region iterations are far more likely to produce points on Xs than
alternative iterations. Despite these measures it is possible that an extremely
large number of iterations will be completed before we obtain γin ≥ γreq. The
following procedure is used to overcome this effect. If there have been more
than 20 iterations during which xk has remained constant and xdk 6= xdk + ddk
then any trust region step with xdk = xdk + ddk will be accepted. In addition if
there are 100 consecutive iterations during which xk has remained constant

1An interpolation point lies on Xs if its integer components are equal to the integer
components of xk.
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and xdk 6= xdk + ddk we use the neighbourhood solver2 to find a locally optimal
point on Xs starting from xk. We then set xk to be the point returned by the
neighbourhood solver and return xk and f(xk) with a warning. The numbers
20 and 100 were chosen by numerical experiment.

Handling patterns in the step lengths

In this section we describe a procedure that is used to allow the algorithm to
proceed if patterns appear in the step lengths. The following example will be
used to illustrate what we mean when we speak of patterns in the step lengths.
Consider a problem with n = 2 and suppose we find the following sequence of
new interpolation points; x1+d1 = [1, 2]T , x2+d2 = [3, 4]T , x3+d3 = [5, 6]T ,
x4 + d4 = [1, 2]T , x5 + d5 = [3, 4]T and x6 + d6 = [5, 6]T . We see that
there is a pattern in this sequence of new interpolation points. If a sequence
such as the one described in our example occurs it will keep repeating, with
no decrease in the objective function value, until the maximum number of
function evaluations or the maximum time is reached. Clearly this is not a
desirable situation.

A procedure has been developed which attempts to break patterns once
they are detected. To allow patterns to be detected the previous interpo-
lation points used by the algorithm must be stored. However, it will be
impractical to store all of the new points found by HEMBOQA. Instead the
number of previous points stored is specified by the user; this is a further
quantity which must be specified by the user during the initialisation step.
The number of points stored is denoted by looplength. If the size of the
pattern is greater than half of looplength the pattern will not be detected.
For instance, in the example above, which has a pattern length of three,
if four interpolation points are stored HEMBOQA can only detect one du-
plicated point and it clearly needs to detect all three duplicated points to
identify the pattern. When a pattern is detected the current value of dk is
discarded and a new step is chosen as follows. We select a random integer
i from the set {1, . . . , m}\{s}3. We then use the neighbourhood solver to
find a locally optimal point on Xi using yi as a starting point, call this point
xnew. If xnew = xk + dk (here dk is the step length which is discarded when
the pattern is detected) or xnew is equal to one of the current interpolation
points then choose a different interpolation point and repeat the process. If
all of the interpolation points have been considered we use the neighbourhood

2As noted previously, the neighbourhood solver should be a deterministic solver which
will return a locally optimal point.

3s is excluded since we require that HEMBOQA never be able to replace the best
interpolation point.
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solver to find a locally optimal point on Xs starting from xk. Call this point
xk(new) We then set xk := xk(new) and return xk and f(xk) with a warning.
A warning is returned since the algorithm is only stopped because we have
failed to break out of the pattern, it is therefore unlikely that the returned
solution is optimal. Once we have found some xnew such that xnew 6= xk + dk
and xnew is not equal to one of the current interpolation points we choose a
new dk such that xk + dk = xnew.

Choosing t and the type of iteration

In first part of this section we discuss the methods used to select t during
trust region and alternative iterations. Two objectives are considered when
choosing t. Firstly, it is desirable to cluster the interpolation points around
xk. In addition, it is necessary to ensure that the value of σ is acceptably
large; this helps prevent numerical errors in the updating process. The clus-
tering of the interpolation points around xk improves the accuracy of the
quadratic model around xk. This is important when checking that xk is a
minimum, indeed we shall see later that one of the termination conditions
of the algorithm is that γreq interpolation points on Xs lie within a certain
neighbourhood of xk.

During trust region iterations t is chosen to be the integer which max-
imises the following quantity

max

[
1,

‖yt − xk‖2∏
i (∆k)i

]
σt. (5.14)

where σt denotes the value of σ if t is chosen. Clearly, when choosing
t using this condition both the clustering of the interpolation points and
the value of σ are taken into account. However, as in BOBYQA, when
f(xk + dk) < f(xk) it my be desirable to choose a different t. Accordingly
when f(xk + dk) < f(xk) we calculate trep by replacing xk with xk + dk in
(5.14). We then calculate φrep, ψrep, τrep and σrep by replacing t with trep in
(3.36)-(3.39). If σrep ≥ 0.5τ 2rep then t, φ, ψ, τ and σ are replaced by trep, φrep,
ψrep, τrep and σrep respectively. During alternative iterations t is set to the
integer which satisfies the following equation

‖yt − xk‖ = max {‖yi − xk‖ : i ∈ K} . (5.15)

Clearly (5.15) helps to cluster the interpolation points around xk.
We now describe the decision process used to choose between trust re-

gion and alternative iterations during the execution of HEMBOQA. We also
mention part of the trust region management procedure for the inner trust
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region, whose size is controlled by ρk ∈ R
n. Specifically we describe which

situations require ρk+1 < ρk and which require ρk+1 = ρk
4. Now when de-

ciding between trust region and alternative iterations measures of both the
clustering of the interpolation points and the quality of the quadratic model
are required. Towards this end rk is defined as

rk =
f(xk) − f(xk + dk)

Qk(xk) −Qk(xk + dk)
, (5.16)

δk is defined as follows

δk = max {‖yi − xk‖ : i = 1, 2, . . . , m} , (5.17)

and let yδ denote the interpolation point which satisfies this equation. We
define ωk ∈ R

n as follows. If γin < γreq then (ωk)i = ∞ otherwise if γin ≥ γreq
then consider the γin points on Xs that are closest to xk, call this set Ys. The
ith element of ωk is then set equal to the ith element of the point in Ys with
the greatest difference between its ith element and the ith element of xk. In
addition we introduce the following notation to aid in our description of the
decision process. If a, b ∈ R

n are two vectors and h(a, b) is any equation or
inequality containing a and b then any(h(a, b)) is true if and only if h(ai, bi)
holds for any i. We also define all(h(a, b)) such that all(h(a, b)) is true if and
only if h(ai, bi) holds for all i.

Now it is undesirable to take steps that are small relative to the size of
the trust region. Accordingly, once a trust region step is generated by solving
problem (5.12) the following expression is evaluated

(all(dk ≤ 0.5ρk) ∨ (γin ≥ γreq)) ∧ (all(dk ≤ 0.1ρk) ∨ (γin < γreq)) . (5.18)

If this expression is true dk is discarded and either an alternative iteration
is started or ρk is reduced and another trust region iteration is begun; the
choice is made using (5.19), as described below. Otherwise the trust region
iteration proceeds as normal, in which case the value of f(xk + dk) will be
calculated. Following [126] we refer to the situation where the trust region
step is not discarded by saying that f(xk + dk) is calculated. If the trust
region step is rejected the clustering of the interpolation points is checked
using the following expression

all(|ωk − xk| ≤ 2ρk) ∨ (γin ≥ γreq). (5.19)

If this expression is true ρk+1 is chosen such that ρk+1 < ρk using a method
discussed in the next subsection. If the new ρk+1 satisfies all(ρk+1 ≤ ρend)

4These relations are applied componentwise since ρk is a vector.
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then HEMBOQA is stopped and xk and f(xk) are returned. If any(ρk+1 >
ρend) a new trust region step is calculated and the decision process is repeated.
On the other hand, if (5.19) is false then ρk+1 = ρk and an alternative
iteration is started. After the alternative iteration a trust region step is
calculated with ρk+2 = ρk+1 = ρk. Now consider the case where f(xk + dk) is
calculated during a trust region iteration. If f(xk + dk) < f(xk) or rk ≥ 0.1
then it is assumed that the algorithm is proceeding satisfactorily using the
current trust region and set of interpolation points so another trust region
step is calculated with ρk+1 = ρk. If neither of these conditions hold the next
iteration is an alternative iteration with ρk+1 = ρk if any interpolation points
satisfy |(yi)j−(xk)j | > 2, j = nc+1, . . . , n or if all(|yδ−xk| > max(2∆k, 10ρk).
If neither of these conditions hold the inner trust region radius may need to
be reduced for the algorithm to make further progress. This decision is made
using the following conditions

∆k+1 = ρk, (5.20)

all(dk ≤ ρk), (5.21)

all(|ωk − xk| ≤ 2ρk), (5.22)

f(xk + dk) ≥ f(xk), (5.23)

rk ≤ 0. (5.24)

If these conditions hold ρk+1 is chosen such that ρk+1 < ρk. If the new ρk+1

satisfies all(ρk+1 ≤ ρend) then HEMBOQA is stopped and xk and f(xk) are
returned. If any(ρk+1 > ρend) a new trust region step is calculated and the
decision process is repeated. If any of the conditions given by (5.20)–(5.24)
are not satisfied a new trust region step is calculated with ρk+1 = ρk. This
completes our discussion of the process used to decide between trust region
and alternative iterations.

Trust region management

We now discuss the procedures used to manage the sizes of the inner and
outer trust regions. Now, the situations in which ρk+1 = ρk along with those
in which ρk+1 < ρk is required were discussed earlier in this section5. The
arguments will not be repeated here. However, a formula to calculate ρk+1

when ρk+1 < ρk has not been given. The required reduction formula can be

5As in BOBYQA we do not allow ρk+1 > ρk.
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expressed as follows

(ρk+1)i =





(ρend)i, (ρk)i ≤ 16(ρend)i,√
(ρk)i(ρend)i, 16(ρend)i < (ρk)i ≤ 250(ρend)i,

0.1(ρk)i, (ρk)i > 250(ρend)i.

(5.25)

This is the same formula used in BOBYQA besides the fact that it is now
applied to each element of the vector describing the box shaped trust region
rather than to the single trust region radius of the spherical trust region.
This completes the discussion of the management of the inner trust region.

If the kth iteration is an alternative iteration we set ∆k+1 = ∆k. If the
kth iteration is a trust region iteration that calculates f(xk + dk) then ∆k+1

is given by

(∆k+1)i =





min [0.5(∆k)i, (dk)i] , rk ≤ 0.1,

max [0.5(∆k)i, (dk)i] , 0.1 < rk ≤ 0.7,

max [0.5(∆k)i, 2(dk)i] , rk > 0.7,

which is a generalisation of the formula used in BOBYQA. After this formula
has been applied we set (∆k+1)i = (ρk)i if (∆k+1)i ≤ 1.5(ρk)i. In all but two
other situations, which are discussed below, we set ∆k+1 = ∆k. The first
situation in which ∆k+1 6= ∆k occurs when we have ρk+1 < ρk. In this case
we set the elements of ∆k+1 using the following formula

(∆k+1)i = max[0.5(ρk)i, (ρk+1)i], (5.26)

which is a generalisation of the formula used in BOBYQA. The second case
in which ∆k+1 6= ∆k occurs when a trust region step is generated such that
(5.18) is true. In this case ∆k+1 is given by ∆k+1 = 0.1∆k. After applying
this reduction we set (∆k+1)i = (ρk)i if (∆k+1)i ≤ 1.5(ρk)i. In addition to
these reductions we also temporarily reduce ∆k at the start of an alternative
iteration using the following formula

(∆k)i :=

{
max[0.1|(yδ − xk)i|, (ρk)i], |(yδ − xk)i| < 10(∆k)i,

(∆k)i, otherwise,
(5.27)

which is a modification of the formula used in BOBYQA. The original value
of ∆k is restored after the alternative iteration. If, in any situation, we have
(∆k)i < 1 for any i ∈ {nc + 1, n} then we set (∆k)i = 1. The reason for
preventing the size of the trust region in the discrete coordinates from falling
below one was given in section 5.2.2. This completes our description of the
behaviour of ∆k.
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5.2.4 SEMBOQA and COMBOQA

No convergence results can be proven for HEMBOQA. To overcome this
deficiency two new implementations of our derivative free algorithm are de-
veloped in this section. Before proceeding, we define manifold minima as
continuous local minima of f on the feasible continuous manifolds of prob-
lem (1.1). For example, the solutions of the problems in (5.5) are manifold
minima. In this section we assume that f has a finite number of manifold
minima. We also define a slight modification of HEMBOQA which we denote
HEMBOQA2. HEMBOQA2 requires as input a set of feasible interpolation
points, an interpolating quadratic model, the W matrix used to update the
quadratic model and a step length. Obviously, with this input, HEMBOQA2

does not make use of the initialisation procedure described in 5.2.1. The rest
of HEMBOQA2 is the same as HEMBOQA. HEMBOQA2 can be thought
of as HEMBOQA running from k = 2 with the input to HEMBOQA2 re-
placing the values obtained during the first iteration of HEMBOQA and the
step length input referred to above replacing the step length that would be
returned by the trust region or alternative procedures. The two implementa-
tions developed here use a number of calls to HEMBOQA and HEMBOQA2.
We still use maxtime and maxevals for the maximum time and number of
function evaluations allowed in HEMBOQA and HEMBOQA2. In this sec-
tion we assume that maxevals is finite. We denote the maximum time and
number of function evaluations in the new implementations by tmax and nmax

respectively. Both of the implementations described in this section have the
same basic form, which is described in Algorithm 5. The differences between
the two implementations lie in how steps iii and v are performed. More details
on the steps described in Algorithm 5 are given in the following paragraphs.

The first implementation, SEMBOQA, can be proven to converge to a
separate local minima. In the following description we use the term ma-
jor iteration to distinguish the iterations of SEMBOQA from the iterations
of HEMBOQA and HEMBOQA2. One major iteration of SEMBOQA is
completed each time step iii is performed in Algorithm 5. As described in
Algorithm 5, SEMBOQA uses major iterations with the form of HEMBOQA
with a check at the end of each major iteration to determine whether xk is a
local minimum. If it is not a local minimum a new point with a lower objec-
tive function value than xk is found and added to the interpolation points.
We now give specific details on how some of the steps in Algorithm 5 are
performed in SEMBOQA. The following procedure is used to perform the
check for local minima in step iii. Whenever HEMBOQA or HEMBOQA2

return xk we use the neighbourhood solver to find a locally optimal point xb
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Algorithm 5 General structure of the deterministic implementations of the
derivative free algorithm

i. Choose tmax, nmax and the input required by HEMBOQA.

ii. Run HEMBOQA to obtain a new xk and f(xk). Also store Wk, Qk and
the final set of interpolation points.

iii. If xk is a local minimum go to step ix otherwise go to step iv.

iv. If # function evaluations > nmax or time > tmax go to step ix otherwise
go to step v.

v. Generate a new feasible point xn satisfying f(xn) < f(xk) (see pg 117
for details).

vi. Run one iteration of HEMBOQA2 with Wk, Qk and the final set of
interpolation points stored in step ii or step viii as inputs. The step
length input into HEMBOQA2 is given by xk −xn. If RESCUE is called
during the first iteration of HEMBOQA2 go to step vii otherwise go to
step viii.

vii. Set x0 = xn and go to step ii which restarts HEMBOQA with the new
x0.

viii. Run HEMBOQA2 to obtain a new xk and f(xk) with Wk, Qk and the
final set of interpolation points stored in step ii or the previous call to
step viii as inputs. The step length input into HEMBOQA2 is given by
xk − xn. Store the new Wk, Qk and final set of interpolation points. Go
to step iii.

ix. Stop and return xk and f(xk).
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on Xs starting from xk. We then set xk = xb, this is the xk used in step iii.
The objective function is then evaluated at every point in Nr(xk)\{xk}∩Ωm.
Denote the point in Nr(xk)∩Ωm with the smallest objective function value by
xn. If there is more than one point with the lowest objective function value
choose the point that is closest to xk. If xn = xk then xk is a local minimum
and we stop and return xk and f(xk). If xn 6= xk we have not found a local
minimum and f(xn) < f(xk). The fact that f(xn) < f(xk) when the test for
optimality fails allows us to use xn as the point that must be generated in
step v. In step vi we see that HEMBOQA2 is not used if RESCUE would be
called on its first iteration. The call to RESCUE might result in the point xn
being discarded from the set of interpolation points. Since f(xn) < f(xk),
this would be discarding the best interpolation point, which we do not allow
in our derivative free algorithm. The following theorem provides the proof
of convergence for SEMBOQA.

Theorem 14. SEMBOQA converges to a separate local minimum after a
finite number of function evaluations.

Proof. We assume that the neighbourhood solver converges to a manifold
minimum after a finite number of evaluations. If this convergence has any
conditions, such as requiring that f be continuous, then these conditions also
apply to this theorem.

At the end of each major iteration either xk is a local minimum or a
point xn such that f(xn) < f(xk) has been found. Suppose we find xn
satisfying this inequality. Now we run the neighbourhood solver on Xs while
checking for a local minimum and set xk to the returned optimal point.
Therefore, f(xn) is less than or equal to the value of a manifold minimum
on Xs. The point xn is added to the set of interpolation points. Now,
SEMBOQA is structured such that it will never discard the point with the
current best objective function value. Therefore, the process of checking for
a local minimum at the end of each major iteration either removes at least
one manifold minimum from consideration or finds a separate minimum.
From (5.1) we see that a separate local minimum must also be a manifold
minimum. We also note that every problem must have at least one separate
local minimum. This is due to the fact that the global minimum is clearly
also a separate minimum. Considering these facts we see that, after some
finite number of major iterations, either a separate local minimum will have
been found or only one manifold minimum will still be under consideration.
In the latter situation this manifold minimum must be a separate minimum
since every problem must have at least one separate minimum. Therefore,
SEMBOQA converges to a separate local minimum after a finite number
of major iterations. Now, by assumption we have maxevals < ∞ so each
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major iteration requires a finite number of function evaluations. Therefore,
SEMBOQA converges to a separate local minimum after a finite number of
function evaluations.

The second implementation, COMBOQA, can be proven to converge to
a combined local minima. COMBOQA also follows the structure outlined
in Algorithm 5. The following procedure is used to perform the check for
local minima in step iii. Whenever HEMBOQA or HEMBOQA2 return xk
the neighbourhood solver is used to find a locally optimal point xb on Xs

starting from xk. We then set xk = xb, this is the xk used in step iii.
Ncomb(xk) is then constructed using the neighbourhood solver. Denote the
point in Ncomb(xk)∩Ωm with the smallest objective function value by xn. If
there is more than one point with the lowest objective function value choose
the point that is closest to xk. If xn = xk then xk is a local minimum and
we stop and return xk and f(xk). If xn 6= xk we have not found a local
minimum. COMBOQA also makes use of a modified version of step v which
has the following form

v. Generate a new feasible point xn satisfying f(xn) < f(xk). If ‖xk−xn‖ >
10‖ρbeg‖ go to step vii.

This modifications is made since it is more efficient to generate a new set of
interpolation points if the new best point xn is far from the current set of in-
terpolation points. The following theorem provides the proof of convergence
for COMBOQA.

Theorem 15. COMBOQA converges to a combined local minimum after a
finite number of function evaluations.

Proof. The proof of this theorem takes the same form as the proof of the
convergence of SEMBOQA so we just give a brief outline here. As with
SEMBOQA, at the end of each major iteration of COMBOQA either xk is
a local minimum or a point xn such that f(xn) < f(xk) has been found.
Therefore each major iteration of COMBOQA either finds a local minimum
or determines that at least one manifold minimum is not a local minimum.
There are a finite number of manifold minima and a combined local minimum
is also a manifold minimum. Therefore COMBOQA converges to a combined
local minimum after a finite number of function evaluations.

This concludes the development of the three implementations of our
derivative free algorithm.

118



5.3 Conclusion

In this chapter we have developed a trust region, derivative free algorithm for
solving problem (1.1). Three different implementations of the algorithm were
developed. Two of the implementations are deterministic while the third is
a heuristic. We note that convergence of the deterministic algorithms is only
guaranteed for problems with a finite number of manifold minima. Com-
putational results examining the effectiveness of these implementations are
presented in chapter 6. We have also discussed possible definitions of local
minima for mixed integer programs. There are a number of possible defini-
tions and we propose four restrictions that can be used choose an effective
definition. The definitions proposed in the literature do not satisfy these
restrictions and an example has been presented to illustrate the resulting
deficiencies. In addition, a new definition of a local minimum has been pro-
posed. This definition does satisfy our restrictions and its effectiveness is
illustrated using the same example.
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Chapter 6

Computational Results and

Discussion

In this chapter we present computational results which illustrate the effec-
tiveness of the methods developed in chapters 4 and 5. The methods devel-
oped in chapter 4 for solving MIQPs are tested in section 6.1. Randomly
generated problems with three different types of constraints are used as test
problems. The problems are generated in such a way that we can specify
that the Hessian should be either invertible, singular or have a positive def-
inite ncth principal leading submatrix. When the Hessian is invertible we
can also specify the percentage of negative eigenvalues. This allows us to
test all three of the methods developed in chapter 4. The methods developed
in chapter 5 are tested in section 6.2. Thirty different test functions were
used to generate test problems. Some of these functions are only defined for
fixed n while others are defined for n > 0. These test functions were used
to generate a total of 118 test problems for the derivative free algorithms
in chapter 5. The test problems were also solved using the state of the art
derivative free MINLP solver NOMAD. Some concluding remarks are made
in section 6.3.

6.1 Mixed integer quadratic programming

In this section we examine the effectiveness of the methods for solving MIQPs
developed in chapter 4. We recall that methods were developed for three
different classes of Hessian. In section 6.1.1 we present the results obtained
using the methods developed for invertible Hcc. The results obtained using
the methods developed for positive definite Hcc are given in section 6.1.2.
The results obtained when Hcc is singular are given in section 6.1.3. Test
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problems whose Hessians have the required structure were generated using
procedures given in appendix C. The tests in each section are made up of
two parts; in the first part we examine general MIQPs while in the second
we focus on the form of the MIQPs that have to be solved by our derivative
free algorithms.

We consider only bound and inequality constraints in our test problems.
Any problem with equality constraints can be transformed into this form.
Three types of constraints are considered,

Type 1. Bound constraints: The only constraints present in the original
problem were bound constraints.

Type 2. Sparse linear inequality constraints: The only constraints present
in the original problem were linear inequality constraints and the
matrix A had sparse block diagonal structure.

Type 3. Dense linear inequality constraints: The only constraints present
in the original problem were linear inequality constraints and the
matrix A was dense.

The linear inequality constraints were generated in such a way that the orig-
inal problem was always feasible and bounded. The procedures used to gen-
erate the constraints are given in appendix C.

Unless noted otherwise all tests in this section were performed on a PC
with an Intel Core i5 CPU at 3.2GHz with 4GB of RAM running 64-bit
Windows 7. Whenever more than one algorithm was used to solve the same
problem the algorithms were run consecutively with no time gap between the
end of an algorithm and the start of the next. This was done to ensure a
similar computational load. All solutions were checked for feasibility. If an
algorithm ran for more than 10000 seconds on a problem it was stopped and
declared unsuccessful for that problem. We also note that time is used as
the performance measure when making the comparisons in this section.

6.1.1 Results obtained with Hcc invertible

In this section we consider the case where Hcc is invertible. In all of the
sections in this chapter comparisons between algorithms are made using per-
formance profiles, which were developed in Dolan and Moré [54]. Let tp,s be
the performance measure for algorithm s to solve problem p. As noted above
we use time as the performance measure in this section so tp,s is the time
taken by algorithm s to solve problem p. The performance ratio ρp,s is then
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given by

ρp,s =
tp,s

min {tp,s : s ∈ S} (6.1)

where S is the set of algorithms. Denote the fraction of performance ratios
that are less than a factor τ ≥ 1 by P (ρp,s ≤ τ : s ∈ S). The performance
profile is a plot, for each algorithm, of P (ρp,s ≤ τ : s ∈ S) vs τ . The same
performance profile is often plotted multiple times with different ranges of τ
to better display the behaviour of P (ρp,s ≤ τ : s ∈ S).

We now present results examining the effectiveness of the transformation
by solving problem (1.2) and problem (4.27) using SCIP 3.0, Baron 11.3
and Algorithm 2. Algorithm 2 and SCIP were both called from MATLAB
2010a; in the case of SCIP this was done using the mex interface provided
in OPTI Toolbox 1.7 [48]. BARON was run on the NEOS server [49, 66]
since no academic license is available for BARON. SCIP and BARON where
both run with their default settings; the default absolute and relative con-
vergence tolerances of SCIP are both 10−6, the default absolute and relative
convergence tolerances of BARON are 10−9 and 0.1 respectively. The abso-
lute convergence tolerance tol in Algorithm 2 was set to 0.01. The fact that
the convergence tolerances are different is irrelevant since we do not directly
compare different algorithms in this section. We recall that the transformed
problem has at most 1

2
(n2

c − nc) + ncnd fewer bilinear terms than the origi-
nal problem. Clearly as nc increases the reduction in the number of bilinear
terms increases so we expect the transformation to become more effective
as nc increases. We therefore consider three different sets of test problems
for each algorithm; the first containing problems with nc = nd, the second
containing problems with nc > nd and the third with nc < nd. We shall not
consider problems with nc = 0 or nd = 0 since these are no longer mixed
problems and specialised solution methods have been developed to solve these
problems.

We first present the results obtained using SCIP. When nc = nd the set
of test problems was constructed using various values of n for each type
of constraint; for type 1, 2 and 3 constraints we used n = 4, 8, 16, 24, 32,
n = 4, 8, 12, 16, 20 and n = 4, 6, 8, 10, 12 respectively. Different values of n
were used for different constraint types in an attempt to obtain problems with
a similar level of difficulty for each type of constraint; for example problems
with type 1 constraints are much easier to solve than problems with type
3 constraints so a larger range of n values was used for these constraints.
The problem generation method used in this section allows the percentage
of negative eigenvalues q of the Hessian to be specified. For each value of n
problems with q = 20, 40, 60, 80 were generated. For each pair of values of n
and q three test problems were randomly generated creating a test set of 180
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problems. The results are presented in the form of a performance profile in
Figure 6.1. In this figure, and the rest of the figures in this section, Original
shows the results when solving problem (1.2), Transformed shows the results
when solving the transformed problem with Udd set using problem (4.20)
and Transformed 2 shows the results when solving the transformed problem
with Udd = Ind

. For reasons which are explained below, the time taken to
solve problem (4.20) is not included in the results. The linear programs in
the objective function of (4.20) were solved using the linear programming
algorithm in CPLEX 12.1. When nc > nd the set of test problems was
constructed as follows. Similarly to nc = nd for type 1, 2 and 3 constraints
we used n = 8, 16, 24, 32, n = 8, 12, 16, 20 and n = 8, 10, 12, 14 respectively.
For each value of n four values of nc were used. The values were chosen
to evenly divide the interval [n/2 + 1, n − 1]; for example for n = 24 we
have nc = 13, 16, 20, 23. For n = 8, nc = 4 was also to construct the test
set, i.e. nc = 4, 5, 6, 7. For each pair of values of n and nc problems with
q = 20, 40, 60, 80 were generated. For each set of values of n, nc and q two
test problems were randomly generated creating a test set of 384 problems.
The results are presented in the form of a performance profile in Figure 6.2.
When nc < nd the set of test problems was constructed as follows. Problems
were generated using type 1, 2 and 3 constraints with n = 8, 11, 14, 17, n =
8, 10, 12, 14 and n = 8, 9, 10, 11 respectively. As before, four values of nc

were chosen for each n to evenly divide the interval [1, n/2 − 1] with nc = 4
also being used for n = 8. Smaller values of n were used than when testing
nc > nd as the difficulty of the problems increases as nd increases. As before
problems were generated with q = 20, 40, 60, 80 and for each set of values of
n, nc and q two test problems were randomly generated creating a test set of
384 problems. The results are presented in the form of a performance profile
in Figure 6.3.

We see from Figure 6.1 that when nc = nd the transformation generally
allows the problems to be solved more quickly but solving the original prob-
lem allows more problems to be solved. An unexpected result is that it is in
fact slightly more efficient to set Udd = Ind

than it is to use problem (4.20).
This result is obtained in all of the tests performed in this section. Since the
solution time of problem (4.20) is not included in the results we know that
this is due to the fact that Udd = Ind

is a good choice of Udd rather than the
fact that problem (4.20) is difficult to solve. Including the solution time of
problem (4.20) would not affect our conclusion that Udd = Ind

is the superior
choice. Observing the similarity of the results obtained for the two choices
of Udd it might seem that the choice of Udd will not have much effect on the
solution time of problem (4.27). To show that the choice of Udd can have
a large effect on efficiency we again consider the test set constructed when
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(b) Performance profile for τ ∈ [1, 80]

Figure 6.1: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc = nd using SCIP.
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(b) Performance profile for τ ∈ [1, 500]

Figure 6.2: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc > nd using SCIP.
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(b) Performance profile for τ ∈ [1, 100]

Figure 6.3: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc < nd using SCIP.
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nc = nd. We remove the bound constrained problems from the set since we
have an analytic solution of problem (4.20) for bound constrained problems.
We use SCIP to solve two versions of problem (4.27) generated using two
different Udd matrices. In the first version we set Udd = Ind

while in the other
we set Udd to be an upper triangular matrix with ones on the diagonal and
all of the upper triangular elements set to 20. The results are presented in
the form of a performance profile in Figure 6.4. It is clear that a poor choice
of Udd can have a drastic effect on the solution time; choosing Udd carefully
is important. Now, we see from Figures 6.2 and 6.3 that, as expected, the
efficiency of our transformation increases as nc increases. When nc > nd it is
clearly more efficient to solve problem (4.27) and when nc < nd it is clearly
more efficient to solve problem (1.2).

We now present the results obtained using BARON and Algorithm 2
which help to show that the results obtained using SCIP are characteristic
of Branch and Bound algorithms in general rather than just being caused
by the structure of SCIP. Smaller test sets were used to obtain the following
results since they are just meant to confirm the results obtained using SCIP.
We first present the results obtained using BARON. For nc = nd the test
set was constructed by generating problems with type 1, 2 and 3 constraints
with n = 8, 12, 16, n = 8, 10, 14 and n = 8, 10, 12 respectively. For each
value of n problems with q = 20, 40, 60, 80 were generated. For each pair
of values of n and q two test problems were randomly generated creating a
test set of 72 problems. The results for nc = nd are presented in the form
of a performance profile in Figure 6.5. For nc > nd the same set of n and q
values was used but nc was given by nc = n − ⌊n/4⌋. Clearly this test set
is also made up of 72 problems. The results for nc > nd are presented in
Figure 6.6. For nc < nd the same set of n and q values was used but nc was
given by nc = ⌊n/4⌋. The results for nc < nd are presented in Figure 6.7.
Observing the relative behaviour of Transformed and Transformed 2 in the
results obtained using SCIP and BARON we shall only consider Udd = Ind

from this point on.
We now present the results obtained using Algorithm 2. For nc = nd the

test set was constructed by generating problems with type 1, 2 and 3 con-
straints with n = 4, 8, 12, 16, n = 4, 8, 10, 14 and n = 4, 6, 8, 10 respectively.
For each value of n problems with q = 20, 40, 60, 80 were generated. For
each pair of values of n and q three test problems were randomly generated
creating a test set of 140 problems. The results for nc = nd are presented in
the form of a performance profile in Figure 6.8. For nc > nd the test set was
constructed by generating problems with type 1, 2 and 3 constraints with
n = 6, 12, 16, n = 6, 10, 12 and n = 6, 8, 10 respectively. For each n > 8 four
values of nc were chosen for each n to evenly divide the interval [1, n/2 − 1]
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Figure 6.4: Performance profile examining the effect of the choice of Udd

when solving problems with nc = nd using SCIP. Bad Udd denotes the upper
triangular choice of Udd.
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with nc = 4 also being used for n = 8. For n = 6 we used nc = 4, 5. Prob-
lems were generated with q = 20, 40, 60, 80 and for each set of values of n, nc

and q two test problems were randomly generated creating a test set of 240
problems. The results for nc > nd are presented in the form of a performance
profile in Figure 6.9. For nc < nd the test set was constructed by generating
problems with type 1, 2 and 3 constraints with n = 4, 10, 14, n = 4, 8, 10
and n = 4, 6, 8 respectively. For each n > 8 four values of nc were chosen
for each n to evenly divide the interval [1, n/2 − 1] with nc = 4 also being
used for n = 8. For n = 6 we used nc = 1, 2 and for n = 4 we used nc = 1.
Problems were generated with q = 20, 40, 60, 80 and for each set of values
of n, nc and q two test problems were randomly generated creating a test
set of 192 problems. The results for nc < nd are presented in the form of a
performance profile in Figure 6.10.

Considering Figures 6.5 to 6.10 we see that the behaviour observer with
SCIP is replicated with BARON and Algorithm 2 when nc < nd and nc > nd.
However, for nc = nd solving problem (4.27) is clearly now more efficient
than solving problem (1.2). It should be noted that, especially when using
BARON, the advantage, while noticeable, is not large. This differences in
the behaviour of the solvers for nc = nd is due to the different structure of
the three solvers used.

In summary, the results presented thus far in this chapter allow the fol-
lowing conclusions to be drawn. Firstly, it is more efficient to use Udd = Ind

rather than setting Udd using problem (4.20). It is also clear that when solv-
ing MIQPs with more continuous variables than integer variables it is more
efficient to solve the transformed problem than problem (1.2). When nc < nd

this result is reversed and it becomes more efficient to solve problem (1.2).
When nc = nd the results depend on the solver used; for two of the three
solvers considered here it is more efficient to solve the transformed problem.

We now consider the specific case of solving the MIQP subproblems in
HEMBOQA, SEMBOQA and COMBOQA. From this point on we shall refer
to these algorithms as the MBOQA algorithms. We recall that these are
bound constrained problems and note that they are solved by Algorithm
2 in this thesis. Since each algorithm requires a number of MIQPs to be
solved we shall present the results in terms of average times rather than
using performance profiles. Hopefully choosing the algorithm with the lowest
average time will give the best performance for the MBOQA algorithms.
The test set was constructed as follows. We consider problems with type 1
constraints and nc = nd. Problems with n = 4, 6, 8, . . . , 20 were used. For
each value of n problems with q = 20, 40, 50, 60, 80 were generated. For each
pair of values of n and q two test problems were randomly generated creating
a test set of 90 problems. We also note that for these tests the time limit
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Figure 6.5: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc = nd using BARON.
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(b) Performance profile for τ ∈ [1, 1500]

Figure 6.6: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc > nd using BARON.
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Figure 6.7: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc < nd using BARON.
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Figure 6.8: Performance profile examining the effectiveness of the transforma-
tion when solving problems with nc = nd and Hcc invertible using Algorithm
2.
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Figure 6.9: Performance profile examining the effectiveness of the transforma-
tion when solving problems with nc > nd and Hcc invertible using Algorithm
2.
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Figure 6.10: Performance profile examining the effectiveness of the trans-
formation when solving problems with nc < nd and Hcc invertible using
Algorithm 2.
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n Original problem Transformed problem

time # nodes us time # nodes us

4 0.1981 1.500 0 0.4850 13.40 0
6 0.4665 4.600 0 0.5650 10.90 0
8 4.0229 31.90 0 1.9911 34.10 0
10 89.419 314.9 0 11.755 152.9 0
12 781.11 1444 0 65.427 491.5 0
14 5228.8 4610 1 309.79 1474 0
16 11790 5539 4 2862.1 11693 0
18 18541 4983 8 8176.4 20182 1
20 20000 3711 10 14887 25549 4

Table 6.1: The results obtained when solving problem (1.2) and problem
(4.27) with constraints of type 1, nc = nd and Hcc invertible using Algorithm
2. The number of unsolved problems is denoted by us.

was extended to 20000 seconds. The results obtained using Algorithm 2 are
presented in Table 6.1. The table gives the average time taken and number of
nodes required to solve the original and transformed problem for each value
of n. The values given are the average of the time and number of nodes for
the ten test problems for each value of n.

Considering the results given in Table 6.1 we see that for n ≤ 6 it is
more efficient to solve problem (1.2) while for n > 6 it is more efficient to
solve problem (4.27). This result is used when deciding whether or not to
transform a MIQP subproblem in the MBOQA algorithms. This completes
our discussion of the situation in which Hcc is invertible.

6.1.2 Results obtained with Hcc positive definite

In this section we consider the case where Hcc is positive definite. The first
set of results presented compares MIQCR and MIQTCR in the three cases
nc = nd, nc > nd and nc < nd. We also present results illustrating that
for small problems it is more efficient to solve problem (1.2) directly rather
than applying a convex reformulation. We then present the results used to
determine which solver should be used in the MBOQA algorithms. Finally we
present results comparing MIQCR, MIQTCR and MIQTBC when all three
reformulated problems are solved using a MINLP solver. Since a MINLP
solver must be used for MIQTBC the final set of results are not of practical
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interest and are included for completeness.

Results obtained using MIQP solvers

The first set of results presented in this section are used to compare MIQCR
and MIQTCR. The MIQPs produced by the reformulation schemes were
solved using CPLEX 12.1 and the SDPs in Theorems 2 and 3 were solved
using SeDuMi 1.3 [143]. Both CPLEX and SeDuMi were called from MAT-
LAB 2010a and were run with their default settings; the default convergence
tolerance of SeDuMi is 10−9, the default absolute and relative convergence
tolerances of CPLEX are 10−6 and 10−4 respectively. When solving problems
with constraints of types 2 and 3 the first inequality constraint is converted
to an equality constraint using a slack variable. The allows α to be used in
the reformulation. The first set of results presented compare MIQCR and
MIQTCR when nc = nd. The set of test problems was constructed by gen-
erating problems with type 1, 2 and 3 constraints with n = 4, 8, 16, 24, 32,
n = 4, 8, 12, 16, 20 and n = 4, 6, 8, 10, 12 respectively. For each value of n ten
random problems were generated creating a test set of 150 problems. The
results are presented in the form of a performance profile in Figure 6.11. The
computation time includes the solution times of both CPLEX and SeDuMi.
MIQCR and MIQTCR appear to be roughly equivalent for this set of test
problems. We see from Figure 6.11 that while MIQTCR solves the greatest
number of problems in the shortest time it takes much longer than MIQCR
for a number of problems. When nc = nd it appears that the reduction in
the number of variables generated by MIQTCR is balanced by the tighter
relaxation gap generated by MIQCR.

It should be clear from the discussion in section 4.3.2 that as nc increases
the difference in the number of variables required by MIQTCR and MIQCR
should increase. This behaviour is illustrated in Table 6.2 which gives the
average relaxation gap and number of variables in the reformulated problems
when nc is varied with n = 8 for problems with constraints of type 2. For
each value of nc five test problems were generated and the values given in
the table are the averages of the results obtained for the five problems. We
see that the percentage of the number of variables required by MIQTCR
relative to MIQCR decreases from 82% to 27% as nc increases from 1 to 7.
For the same range of nc the percentage of the relaxation gap in the problems
generated by MIQCR relative to MIQTCR only varies between 68% and 43%.
Similar behaviour is observed for all three types of constraints. Observing this
behaviour it seems reasonable to compare MIQCR and MIQTCR for nc > nd.
The set of test problems used to make this comparison was constructed as
follows. For type 1, 2 and 3 constraints we used n = 8, 16, 24, 32, n =
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Figure 6.11: Performance profile examining the effectiveness of the reformu-
lations schemes MIQCR and MIQTCR when nc = nd.
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nc Relaxation gap Number of variables

MIQCR MIQTCR Ratio MIQCR MIQTCR Ratio

1 854.71 1399.4 0.611 414 340.4 0.822
2 21.987 46.252 0.475 297 196.2 0.661
3 257.09 588.40 0.437 310 175.6 0.566
4 26.621 59.940 0.444 221 103 0.466
5 88.929 191.43 0.465 182 69.2 0.380
6 27.858 41.272 0.675 153 46.6 0.305
7 18.973 27.846 0.681 66 18 0.273

Table 6.2: The average relaxation gap and number of variables for problems
with constraints of type 2 when nc is varied with n = 8. The ratio in the
fourth column is the relaxation gap of MIQCR over that of MIQTCR. The
ratio in the seventh column is the number of variables used by MIQTCR over
the number used by MIQCR.

8, 12, 16, 20 and n = 8, 10, 12, 14 respectively. For each value of n four values
of nc were used. The values were chosen to evenly divide the interval [n/2 +
1, n − 1]. For n = 8, nc = 4 was also to construct the test set. For each
pair of values of n and nc five test problems were generated creating a test
set of 240 problems. The results obtained when solving the test problems
using MIQCR and MIQTCR are presented in the form of a performance
profile in Figure 6.12. Considering Figure 6.12 we see that MIQTCR has a
clear advantage over MIQCR for problems of the type considered here with
nc > nd. This advantage is due to the fact that for nc > nd the reduction in
the number of variables generated by MIQTCR has a greater effect than the
tighter relaxation gap generated by MIQCR. As noted before, these results
obviously only apply when Hcc ≻ 0. When Hcc is positive semidefinite rather
than positive definite MIQCR is the only applicable reformulation scheme.

We now consider the case nd > nc. The test set for problems of this
form was constructed using type 1, 2 and 3 constraints with n = 8, 11, 14, 17,
n = 8, 10, 12, 14 and n = 8, 9, 10, 11 respectively. As before, four values of nc

were chosen for each n to evenly divide the interval [1, n/2 − 1] with nc = 4
also being used for n = 8. Smaller values of n were used than when testing
nc > nd as the difficulty of the problems increases as nd increases. The results
for this set of problems are given in Figure 6.13. We see that, as expected,
MIQCR is the superior reformulation scheme when nd > nc.

We now present results which allow us to determine whether there are
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Figure 6.12: Performance profile examining the effectiveness of the reformu-
lations schemes MIQCR and MIQTCR when nc > nd.

140



1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(ρ

 ≤
 τ

)

 

 

MIQCR
MIQTCR

(a) Performance profile for τ ∈ [1, 5]

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(ρ

 ≤
 τ

)

 

 

MIQCR
MIQTCR

(b) Performance profile for τ ∈ [1, 500]

Figure 6.13: Performance profile examining the effectiveness of the reformu-
lations schemes MIQCR and MIQTCR when nc < nd.
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situations in which it may be more effective to solve problem (1.2) directly
rather than applying MIQCR or MIQTCR. The test set was constructed
with nc = nd using type 1, 2 and 3 constraints with n = 2, 4, 6, . . . , 16. For
each value of n ten random problems were generated creating a test set of
240 problems. From Figure 6.11 we see that, since nc = nd, MIQCR and
MIQTCR will produce similar results on this set of problems. Therefore, we
shall not consider MIQTCR in this section. This helps make the comparison
of the solution times of the original and reformulated problems clearer. The
problems generated by MIQCR were solved using CPLEX 12.1 while problem
(1.2) was solved using SCIP 3.0. Both CPLEX and SCIP are commercial
solvers which should make the comparison fair. CPLEX and SCIP were both
called from MATLAB. CPLEX and SCIP were run with their default options.
The default absolute convergence tolerances are the same for CPLEX and
SCIP. The relative convergence tolerances of CPLEX and SCIP cannot be
directly compared since they are defined differently. The results are presented
in two parts. The results obtained with n ≤ 6 are given in Figure 6.14 while
the results obtained with n ≥ 8 are given in Figure 6.15. It is clear from the
figures that for n ≤ 6 it is more efficient to solve problem (1.2) directly rather
than using a convex reformulation. For n ≥ 8 this result is reversed and it
becomes more efficient to apply a convex reformulation. This behaviour is
caused by the contribution of the solution time of the SDP to the solution
time of MIQCR. For small n the SDP makes a large contribution to the
solution time. For large n the solution time of the SDP becomes negligible
compared to the solution times of CPLEX and SCIP.

In summary, the results presented in this section allow the following con-
clusions to be drawn. When solving MIQPs of this type with more continu-
ous variables than integer variables it is more efficient to use MIQTCR than
MIQCR. When nc < nd this result is reversed and it becomes more efficient
to use MIQCR. When nc = nd the two reformulation scheme appear to be
roughly equivalent; while MIQTCR solves the greatest number of problems
in the shortest time it takes much longer than MIQCR for a number of prob-
lems. Further for n ≤ 6 it is more efficient to solve problem (1.2) directly
rather than using a convex reformulation. For n ≥ 8 this result is reversed
and it becomes more efficient to apply a convex reformulation.

We now consider the specific case of solving the MIQP subproblems in
the MBOQA algorithms. As before we consider the average results obtained
for bound constrained problems. The test set was constructed as follows.
We consider problems with type 1 constraints and nc = nd. Problems with
n = 4, 8, 12, . . . , 32 were used. For each value of n ten test problems were
randomly generated creating a test set of 80 problems. The reformulated
problems were solved using CPLEX. The results are presented in Table 6.3.
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Figure 6.14: Performance profile comparing the solution times of the refor-
mulated problem and the original problem for n ≤ 6.
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Figure 6.15: Performance profile comparing the solution times of the refor-
mulated problem and the original problem for n ≥ 8.
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n MIQCR MIQTCR

# nodes time us # nodes time us

4 92 0.6848 0 77 0.6652 0
8 398 0.9113 0 980 0.8546 0
12 1248 1.5001 0 60351 1.9133 0
16 4914 4.3249 0 1.04×106 23.643 0
20 5729 9.2330 0 16.59×106 470.86 0
24 9556 31.084 0 0.118×109 2148.3 1
28 23366 84.736 0 0.270×109 8310.9 3
32 1.00×106 268.21 0 0.284×109 8909.5 6

Table 6.3: The results obtained when solving problems with constraints of
type 1, nc = nd and Hcc positive definite. The reformulated problems are
solved using CPLEX. The number of unsolved problems is denoted by us.

The table gives the time taken and number of nodes required to solve the
problems generated by MIQCR and MIQTCR for each value of n. The
values given are the average of the time and number of nodes for the ten test
problems with each value of n.

Considering the results given in Table 6.1 we see that for n ≤ 8 it is more
efficient to use MIQTCR while for n > 8 it is more efficient to solve the
problem using MIQCR. This result is used to choose the convex reformula-
tion scheme applied to the MIQP subproblems in the MBOQA algorithms
when Hcc is positive definite. This completes our comparison of MIQCR and
MIQTCR.

Results obtained using MINLP solver

We now examine the results obtained when solving the problems generated
by MIQCR, MIQTCR and MIQTBC using MINLP solvers. As noted ear-
lier, these results are not of great practical interest and are included for
completeness. The reformulated problems were solved using Couenne 0.3.2
on the NEOS server [49, 66]. The reason that the NEOS server was used
for these problems rather than making use of the Couenne binaries is the
following. The Couenne binaries require .nl files as input, these files are
generated by AMPL. However the author only had access to the student
version of AMPL which only accepts problems with fewer than 300 variables
and constraints. Since in this section we are using Couenne to solve the re-
formulated problems, rather than problem (1.2), the number of constraints
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n MIQCR MIQTCR MIQTBC

4 0.296 0.376 0.074
6 3.296 2.324 0.614
8 4.460 10.836 2.482

10 15.170 28.871 5.796
12 31.754 84.886 33.64
14 98.341 756.34 152.19
16 300.31 3084.4 1034.6

Table 6.4: The time taken to solve problems with constraints of type 1 with
Hcc positive definite using Couenne.

n MIQCR MIQTCR MIQTBC

4 5.412 4.313 1.330
6 42.082 20.522 6.456
8 47.235 49.611 19.410

10 110.43 192.12 151.96
12 301.37 451.29 475.54
14 1032.1 1688.3 2012.5

Table 6.5: The time taken to solve problems with constraints of type 2 with
Hcc positive definite using Couenne.

is generally greater than 300 for n ≥ 6. The required SDPs were again
solved using SeDuMi 1.3 with its default options. We again solved problems
with constraints of types 1, 2 and 3. For all three reformulation schemes we
solved randomly generated MIQPs with nc = nd, n was varied between 4
and 16 for type 1 constraints, between 4 and 12 for type 2 constraints and
between 4 and 10 for type 3 constraints. It was noted in section 4.3.3 that
MIQTBC can only be applied if the elements of x can be reordered such
that Hdd −HT

cdH
−1
cc Hcd has at least two principal leading submatrices which

are not negative semidefinite. This property was guaranteed by testing each
problem as it was generated and discarding it if the property did not hold.
The time taken to solve a problem with a certain n was taken as the average
time taken to solve 5 randomly generated problems with that n. The time
taken to solve the test problems for constraints of types 1, 2 and 3 are given
in Tables 6.4, 6.5 and 6.6 respectively.
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n MIQCR MIQTCR MIQTBC

4 3.094 1.714 0.657
6 15.83 10.15 12.45
8 99.32 255.03 68.34

10 5352.3 3687.3 1958.6

Table 6.6: The time taken to solve problems with constraints of type 3 with
Hcc positive definite using Couenne.

It is clear from Tables 6.4, 6.5 and 6.6 that MIQTBC is the superior
convexification scheme for constraints of type 1 when n < 12, for constraints
of type 2 when n < 10 and for constraints of type 3 for all n examined.
As explained in the previous section, the superiority of the various methods
is due to a trade off between the number of variables in the reformulated
problem and the size of the relaxation gap. We again note that if CPLEX
had been used to solve problems (4.34) and (4.39) MIQCR and MIQTCR
would have been more efficient that MIQTBC.

6.1.3 Results obtained with Hcc singular

We now consider the results obtained when Hcc is singular. As before we
first examine the effectiveness of the transformation as n increases. We use
the same method described in section 6.1.1 to test the effectiveness of the
transformation but we now generate Hessians where Hcc is singular using the
method described in appendix C. The values of µ, ν and ω in Algorithm 4
were set by numerical experiment. In order to simplify the selection of these
parameters it was decided that each of the three parameters would be given
the same value and this value would be denoted by σ. For problems with
n < 10 we used σ = 2 and for n ≥ 10 we used σ = 2.5.

Problems with the form considered in this section must be solved using
Branch and Bound algorithms. Making use of the special structure of the
objective function of problem (4.51) requires a change in the underestimating
procedure used by the Branch and Bound algorithm. The algorithm needs
to be told to split the Hessian into the two terms Θ(1) and Θ(2) and that
none of the bilinear terms in the Θ(2) need to be underestimated. Since this
requires a change in the algorithm rather than the simple preprocessing that
could be applied in section 6.1.1 we shall only consider Algorithm 2 in this
section; we shall not consider BARON or SCIP.

The test sets in this section use the same values of n and nc as those
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used to test Algorithm 2 in section 6.1.1 and their description shall not be
repeated here. Since q cannot be varied we instead generate 10 random test
problems when nc = nd and 7 random test problems for each pair of values of
n and nc when nc 6= nd. The number of problems in the test sets for nc = nd,
nc > nd and nc < nd are 120, and 210 and 168 respectively. The results for
nc = nd, nc > nd and nc < nd are presented in the form of a performance
profiles in Figures 6.16, 6.17 and 6.18 respectively.

Considering Figures 6.16, 6.17 and 6.18 we see that the behaviour ob-
served in section 6.1.1 is repeated here. The explanation for this behaviour
is the same as that given in section 6.1.1. While the results presented here
are positive a major drawback of this method is the sensitivity of the trans-
formation to the choice of σ. A poor choice of σ can lead to a reversal of the
results with problem (1.2) becoming easier to solve than problem (4.51) in all
cases. We also note that for nc = 1 the elements of Ucc become so small that
numerical errors cause (4.8) and (4.9) to be unbounded for some variables.
This gives us infinite original bounds on these variables so we cannot solve
the transformed problem. This effect is independent of n; (4.8) and (4.9) are
always unbounded for nc = 1 but not for higher values of nc.

We now consider the specific case of solving the MIQP subproblems in
the MBOQA algorithms. As before we consider the average results obtained
for bound constrained problems. The test set is constructed using the same
values of n and nc as those used in section 6.1.1. For each pair of values of n
and nc ten random test problems were generated. We also note that for these
tests the time limit was extended to 20000 seconds. The results obtained
using Algorithm 2 are presented in Table 6.7. The table gives the time taken
and number of nodes required to solve the original and transformed problem
for each value of n. The values given are the average of the time and number
of nodes for the ten test problems for each value of n.

Considering the results given in Table 6.7 we see that it is more efficient
to solve problem (4.51) than problem (1.2). This result is used when deciding
whether or not to transform a MIQP subproblem in the MBOQA algorithms
when Hcc is singular. This completes our discussion of the MIQP solution
methods.

6.2 Mixed integer non-linear programming

In this section we examine the results obtained when using HEMBOQA,
SEMBOQA and COMBOQA to solve a number of MINLP test problems.
These results are compared to the results obtained using NOMAD. Thirty
test functions, with a wide range of difficulty, were considered. Most of the
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Figure 6.16: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc = nd and Hcc singular using Algorithm
2.
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Figure 6.17: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc > nd and Hcc singular using Algorithm
2.
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Figure 6.18: Performance profile examining the effectiveness of the transfor-
mation when solving problems with nc < nd and Hcc singular using Algorithm
2.
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n Original problem Transformed problem

time # nodes us time # nodes us

4 0.4070 3.400 0 0.3182 7.600 0
6 27.134 285.4 0 0.7002 15.40 0
8 5302.2 26851 0 6.7017 149.7 0
10 838.76 2905 0 17.460 264.0 0
12 18983 30137 8 55.132 561.3 0
14 20000 16502 10 208.31 1556 0
16 20000 11409 10 2275.7 11773 2
18 20000 5430 10 20000 49470 10

Table 6.7: The results obtained when solving problem (1.2) and problem
(4.27) with constraints of type 1, nc = nd and Hcc singular using Algorithm
2. The number of unsolved problems is denoted by us.

functions considered are defined for n variables, for these functions problems
were solved for n = 2, 4, 6, 8, 10. A list of the test functions used is given
in Table 6.8. The table also gives the number of variables used for each of
the problems. More detailed descriptions of the test functions are given in
appendix C. The problems generated by these test functions are continuous,
they were transformed into MINLPs by restricting xi, i = n

2
+ 1, . . . , n to

integral values. The problems listed in Table 6.8 were all solved using HEM-
BOQA, SEMBOQA, COMBOQA and NOMAD. Following [102], Nr(x) is
defined as follows

Nr(x) = {y ∈ R
n : yc = xc, ‖yd − xd‖ ≤ 1}.

We recall that Nr(x) is used in the definitions of local minima for SEMBOQA,
COMBOQA and NOMAD. BOBYQA was used as the neighbourhood solver
in HEMBOQA, SEMBOQA and COMBOQA.

All tests in this section were performed on a PC with an Intel Core 2 Duo
CPU at 2.8GHz with 2GB of RAM running 32-bit Windows Vista. When
the four algorithms were used to solve the same problem the algorithms were
run consecutively with no time gap between the end of an algorithm and
the start of the next. This was done to ensure a similar computational load.
All solutions were checked for feasibility. The maximum time and maximum
number of function evaluations for HEMBOQA, SEMBOQA, COMBOQA
and NOMAD were set to infinity. The remaining parameters of the MBOQA
algorithms were set as follows; γreq = nc, looplength = 200, (ρbeg)i = 1,
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Problem Name n Problem Name n

Absolute value function 2,4,6,8,10 Powell’s quadratic
4

Ackley’s function 2,4,6,8,10 problem
Axis parallel hyper-

2,4,6,8,10
Rastrigin’s function 2,4,6,8,10

ellipsoid function Rosenbrock’s valley 2,4,6,8,10
Becker and Lago Problem 2 Rotated hyper-ellipsoid

2,4,6,8,10
Branin’s function 2 function
Dekkers and Aarts problem 2 Salomon problem 2,4,6,8,10
Easom’s function (shifted) 2 Schaffer problem 1 2,4,6,8,10
Exponential problem 2,4,6,8,10 Schwefel’s function

2,4,6,8,10
Fourth function of De Jong 2,4,6,8,10 (shifted)
Goldstein-Price function 2 Sinusoidal problem

2,4,6,8,10
Griewangk’s function 2,4,6,8,10 (shifted)
Hosaki problem 2 Sphere function 2,4,6,8,10
Levy function 2,4,6,8,10 Step function 2,4,6,8,10
Linear function 2,4,6,8,10 Sum of different powers

2,4,6,8,10
Michalemicz’s function 2,4,6,8,10 function
Neumaier problem 3 2,4,6,8,10 Wood’s function 4
Perm function 2,4,6,8,10 Zakharov function 2,4,6,8,10

Table 6.8: The test functions used to examine the effectiveness of the deriva-
tive free MINLP algorithms.

(ρend)i = 0.0001, i = 1, . . . , nc and (ρend)i = 1, i = nc + 1, . . . , nd. The
MATLAB implementation of NOMAD, NOMADm 4.7 [4], was used in these
tests. NOMADm was run with all of its parameters at their default values,
the default convergence tolerance of NOMADm is 0.0001. We note that since
the maximum time and maximum number of function evaluations were set
to infinity in our algorithms there were no failed tests.

Now, we see from Table 6.8 that each of the four algorithms was used to
solve 118 test problems. The results obtained are given in detail in appendix
B. However, as one would expect with this large number of test problems,
the results in appendix B are rather lengthy and difficult to interpret. Ac-
cordingly we present a number of averaged quantities in this section which
give a clearer idea of the behaviour of the algorithms.

Our first goal is to compare the effectiveness of the different algorithms.
The properties of the solution which can be used to compare the algorithms
are the value of f(x∗), the time taken to solve the problem and the number of
function evaluations required to solve the problem. The timing results con-
sidered here and in appendix B are the results obtained by the algorithms
when function evaluations are inexpensive. We first note that NOMAD takes
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far less time to solve all of the test problems than the trust region based meth-
ods. However, in this thesis we are more concerned with problems involving
expensive function evaluations. We therefore use f(x∗) and the number of
function evaluations as performance measures. We shall use two different ap-
proaches to compare our algorithms. The first approach is from [44, 117]. In
this approach each algorithm is given a score of 1 to 4 for each test problem
depending on its relative effectiveness for that problem. The best algorithm
is given a score of 1. The average scores for each n as well as the average
scores for the entire test set are given in Table 6.9. We also compare the
algorithms using a performance profile with the number of function evalua-
tions used as the performance measure. The performance profile is plotted
in Figure 6.19. We cannot use performance profiles when using f(x∗) as a
performance measure. Instead we use the m-fold improvement mp,s defined
in [13]

mp,s =
fp(x

∗
s) − f b

p

fw
p − f b

p

, (6.2)

where f b
p and fw

p are, respectively, the best and worst objective function
values returned by the derivative free algorithms when solving problem p
and fp(x

∗
s) is the solution returned by algorithm s for problem p. Similarly

to performance profiles we plot the cumulative distribution function of the
m-fold improvement in Figure 6.20.

From Table 6.9 and Figure 6.20 we see that COMBOQA is the superior
algorithm when f(x∗) is used as a performance measure. This is as expected
since COMBOQA uses the strongest definition of a local minimum, Definition
12. HEMBOQA is the worst performing algorithm when using f(x∗) as the
measure of performance. Again, this is the expected result since HEMBOQA
is a heuristic. It is also clear that SEMBOQA performs better than NOMAD
even though they use the same definition of a local minimum, Definition
10. In summary, using f(x∗) as the measure of performance the algorithms
can be listed in order of effectiveness as follows; COMBOQA, SEMBOQA,
NOMAD, HEMBOQA.

From Table 6.9 and Figure 6.20 we see that, as might be expected, the
results are reversed when using the number of function evaluations as the
measure of performance. HEMBOQA uses the lowest number of function
evaluations most often since its heuristic nature means that it does not need
to check that the point it returns is actually a local minima. The results ob-
tained for SEMBOQA and NOMAD are much closer than when using f(x∗)
as the measure of performance, it appears that NOMAD has a slight ad-
vantage. COMBOQA consistently requires the greatest number of function
evaluations. This is due to the fact that far more function evaluations are
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Figure 6.19: Performance profile comparing the derivative free algorithms
using number of function evaluations as a performance measure.
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n Criteria Score

HEMBOQA SEMBOQA COMBOQA NOMAD

2
f(x∗) 2.0741 1.5185 1.1481 1.5556
# evals 1.1852 2.4444 3.6667 2.6270

4
f(x∗) 2.0000 1.2174 1.0870 1.8261
# evals 1.3478 2.5652 3.6957 2.3913

6
f(x∗) 2.0000 1.4762 1.2857 1.8095
# evals 1.4286 2.6190 3.5238 2.4286

8
f(x∗) 2.0000 1.2857 1.2381 1.9048
# evals 1.6667 2.4286 3.5238 2.3810

10
f(x∗) 2.0952 1.6190 1.4762 1.8095
# evals 1.6190 2.5238 3.4286 2.4286

Average
f(x∗) 2.0339 1.4234 1.2470 1.7811
# evals 1.6272 2.3310 3.0640 2.2370

Table 6.9: Rankings of the four derivative free algorithms using the objec-
tive function value and the number of function evaluations as performance
criteria.
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Figure 6.20: Cumulative probability distribution of the m-fold improvement
of the derivative free algorithms.
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required to construct Ncomb(x) than are required to construct Nr(x). Us-
ing the number of function evaluations as the measure of performance the
algorithms can be listed in order of effectiveness as follows; HEMBOQA,
NOMAD, SEMBOQA, COMBOQA.

We can now suggest the following guidelines to be used when choosing
between these four algorithms. If the objective function evaluations are in-
expensive NOMAD should be the algorithm of choice. On the other hand,
if the objective function is expensive a trade off must be made between the
quality of the solution and the number of function evaluations required. If
the objective function is very expensive HEMBOQA should be used as it
generally requires the lowest number of function evaluations. If the quality
of the solution is very important COMBOQA should be used. For problems
where both the number of function evaluations and the quality of the solution
are important we recommend the use of SEMBOQA or NOMAD. Though,
as discussed in chapter 5, the use of these algorithms does involve the risk
that increasing the size of Nr(x) will not improve the quality of the solution.
If the size of Nr(x) is being increased to improve the quality of the solution
it would be better to use COMBOQA.

We now wish to examine more closely the effect that increasing n has
on the number of function evaluations required by our trust region methods.
To this end the average number of function evaluations required for each n
were considered. In obtaining these averages only those problems which are
defined for any n were considered. Clearly considering a problem which is
only defined for n = 2 will not help in determining behaviour as n changes.
The average number of function evaluations are plotted in Figures 6.21, 6.22
and 6.23 for HEMBOQA, SEMBOQA and COMBOQA respectively.

We see from Figure 6.21 that the number of function evaluations re-
quired by HEMBOQA is approximately O(n2.05) on average. From Figures
6.22 and 6.23 we see that increasing n has a greater effect on the num-
ber of function evaluations for SEMBOQA and COMBOQA. We see that
the number of function evaluations required by SEMBOQA is approximately
O(n2.24), while the number of evaluations required by COMBOQA is approx-
imately O(n2.51). As expected, n has the greatest effect on the complexity of
COMBOQA and the smallest effect on HEMBOQA. However the difference
between these complexities is surprisingly small. These results are poorer
than the results obtained for BOBYQA in which the number of function
evaluations appears to increase linearly with n. However, given the difficulty
added to the problem by the integer variables, we feel that keeping the num-
ber of function evaluations required to approximately O(n2) is a good result.
These results are important as our methods are applicable to problems in
which the objective function is expensive. Obviously then, it is desirable
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Figure 6.21: A plot showing the effect of increasing n on the average number
of function evaluations required by HEMBOQA to solve the test problems.
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Figure 6.22: A plot showing the effect of increasing n on the average number
of function evaluations required by SEMBOQA to solve the test problems.
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Figure 6.23: A plot showing the effect of increasing n on the average number
of function evaluations required by COMBOQA to solve the test problems.

that the number of function evaluations not increase too drastically with n.
We shall not provide an analysis of the time taken by the trust region

algorithms since, as noted above, NOMAD is far superior to the trust region
methods when time taken is used as the measure of performance. This can
clearly be seen by considering the results in appendix B. The large difference
in the time is mainly due to the difficulty of solving the MIQP trust region
subproblems, problem (5.12) and problem (5.13), when the ncth principal
leading submatrices of their Hessians are indefinite or singular.

Finally we note that the derivative free algorithms found the global min-
ima of the test problems for a surprisingly large number of test problems
considering that they are designed to find local minima. The percentage
of test problems for which the algorithms located the global minimum are
given in Table 6.10. As should be expected from the previous results, COM-
BOQA finds the greatest number of global minima while HEMBOQA finds
the smallest number.

As was mentioned in chapter 3, computational results are also given in
[102]. However, for two reasons, their results cannot easily be compared to
those given here. Firstly no values for x0 are given in [102]. Secondly they
do not consider integer variables, rather they restrict some of the variables
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HEMBOQA SEMBOQA COMBOQA NOMAD

47.4% 54.2% 58.5% 52.5%

Table 6.10: Percentage of test problems for which the global minimum was
found.

to the following values

xi = li + k
ui − li

10
, k = 0, . . . , 10,

This is only equivalent to our constraint that xi ∈ Z when ui − li = 10.
However, Liuzzi et al. [102] compare their algorithms to NOMAD and the
two methods are roughly equivalent when using f(x∗) and the number of
function evaluations as measures of performance, no timing results are given.
It follows that the conclusions drawn here regarding the relative efficiency of
NOMAD will likely also hold for the algorithms in [102].

6.3 Conclusion

Extensive computational results have been given illustrating the effectiveness
of the methods developed in chapters 4 and 5. The results show that our
methods give an improvement in efficiency over currently available methods
in a number of situations. There are also situations in which our approaches
are inferior to those currently existing in the literature. Since no method is
superior in every situation these results should be used as a guide to aid in
deciding which method should be applied to solve specific problems.
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Chapter 7

Conclusion

A new type of deterministic derivative free mixed integer algorithm has been
introduced in this thesis. This is the first algorithm which makes use of
trust regions to solve derivative free MINLPs. The algorithm is an extension
of BOBYQA [126] to the mixed integer case. Three implementations of
the algorithm have been developed; deterministic convergence results have
been proven for two of the implementations. The remaining contributions of
this thesis are the development novel of approaches for solving non-convex
MIQPs and a rigorous approach to the definition of local minima of mixed
integer problems. These contributions were found to be required during
the development of the derivative free algorithm. Extensive computational
results have been given showing the effectiveness of the contributions made
in this thesis.

7.1 Summary

Chapter 2 contains a review of derivative based mixed integer methods. The
review is divided into two parts. In the first part derivative based methods for
solving both convex and non-convex MINLPs are reviewed. Obviously these
methods cannot be used to solve our problem since they use derivatives. The
review of these methods is included for completeness and does not give many
technical details. The second part of the chapter contains a review of methods
developed specifically for solving MIQPs. We review both convex and no-
convex methods. This material is more relevant to our work. Accordingly
the review is more detailed than that of the general MINLP methods.

Chapter 3 contains a review of derivative free methods for solving both
continuous and mixed integer problems. These methods are divided into
three classes in the review; metaheuristics, surrogate optimization and local
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sampling methods. The review of continuous methods is important since all
of the mixed integer, derivative free methods that have been developed at
this point are extensions of continuous methods to the mixed integer case.
Chapter 3 also contains a detailed review of the BOBYQA algorithm [126],
a continuous trust region method. The detail of the review is motivated by
the fact our derivative free algorithm is an extension of BOBYQA to the
mixed integer case. The review of BOBYQA contains a number of explana-
tions of concepts considered obvious by the original author. Following the
review of continuous derivative free methods is a review of the mixed integer
approaches that have been developed to date. Emphasis is placed on the
deterministic methods since they are the focus of this thesis. All of the de-
terministic methods reviewed are extensions of direct search methods to the
mixed integer case.

In chapter 4 preprocessing procedures and solution methods are devel-
oped for solving non-convex MIQPs. Methods are developed for problems
with three different types of Hessians; Hessians whose ncth principal leading
submatrices are positive semidefinite, invertible Hessians and singular Hes-
sians. All the methods make use of a linear transformation with carefully
chosen elements. The methods developed for Hessians whose ncth princi-
pal leading submatrices are positive semidefinite are convex reformulation
schemes based on convex reformulations developed in [33] and [122]. The
methods developed for invertible and singular Hessians focus on using the
linear transformation to reduce the number of terms in the objective func-
tion that need to be underestimated when solving the problem using a Branch
and Bound algorithm.

In chapter 5 we develop our deterministic derivative free algorithm for
solving mixed integer programs using trust regions. In the first section of
the chapter we considered definitions of local minima for mixed integer pro-
grams. Due to the mixed nature of the variables a number of definitions can
be envisaged, indeed a number of definitions have already been proposed in
the literature. A number of deficiencies are exposed in the current defini-
tions and a new definition is proposed that overcomes these problems. The
new definition is developed by proposing four restrictions that the definition
of a local minimum should satisfy. In the second part of chapter 5 three
implementations of the derivative free algorithm are developed. The first
implementation is a heuristic extension of BOBYQA to the mixed integer
case. The differences between BOBYQA and our algorithm mainly stem
from the fact that the trust region subproblems are now MIQPs rather than
continuous quadratic programs. The second and third implementations are
modifications of the heuristic which allow deterministic convergence results
to be proven. The two implementations converge to two different types of
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local minima.
Computational results are presented in chapter 6 showing the effectiveness

of the methods developed in chapters 4 and 5. Each of the MIQP methods
developed in chapter 4 was tested on a number of randomly generated prob-
lems with three different types of constraint. The methods developed in 5
were tested using thirty test functions which were used to generate a total of
118 test problems. The results of these tests allowed us to propose a number
of guidelines which should be useful in determining which method should be
applied in various situations.

7.2 Future Work

There are a number of areas in which it might be possible to extend or
improve the work developed in this thesis.

Transformation for MIQPs The unimodular part of the transforma-
tion matrix used by the MIQP methods in chapter 4 was set to the identity
matrix. When linear constraints are present in the problem the identity ma-
trix is only an approximation of the problem we wish to solve to set unimod-
ular matrix. It should be possible to find more efficient methods of solving
the element assigning problems defined in chapter 4. Alternatively it may be
possible to find a completely different approach to assigning to elements of
the unimodular matrix.

Definition of local minima We have proposed a number of restrictions
on the definition of a mixed integer local minimum. While these restrictions
allow us to develop an improved definition they do not uniquely specify the
definition, as discussed in chapter 5. It may be possible to develop more
restrictions which allow the definition to be specified uniquely.

Time used by derivative free algorithm From the results presented
in chapter 5 and appendix B it is clear that while our derivative free algo-
rithm performs well in terms of the required number of function evaluations it
performs poorly in terms of the time taken to solve the test problems. As was
noted in chapter 5, this is mainly due to the time taken to solve the MIQP
subproblems, especially when the subproblems are non-convex. Further work
should be done on reducing the solution time. We can envisage a number of
modifications to the algorithms which might allow this to be achieved. The
MIQPs could be solved heuristically for large trust regions with determinis-
tic methods only being applied near termination of the algorithm. Another
approach could be to stop the major iterations of SEMBOQA and COM-
BOQA early; this could be thought of as a hybrid between pattern search
and trust region methods. It might also be possible to reduce the solution
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time by tuning the parameters of the algorithm. It should be noted that
these modifications may negatively affect the number of function evaluations
required by the algorithm.

Handling more general constraints The derivative free algorithm de-
veloped in this thesis can only solve problems with bound constraints. It
would clearly be desirable to extend to method to more general constraints.
It was mentioned in chapter 1 that a number of methods have been developed
for extending bound constrained methods to solve problems with general con-
straints. These approaches include augmented Lagrangians [53, 96], inexact
restoration [39], extreme barrier approaches [20], filter methods [18] and aux-
iliary functions [168]. A filter method is used in [3] to extend a mixed integer
method to general constraints, it seems likely that a similar approach could
be applied here.
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Appendix A

Pseudocode for the

HEMBOQA Algorithm

In this appendix we present the HEMBOQA algorithm, developed in chapter
5, in pseudocode form. The notation used in the pseudocode is the same as
that used in the description of HEMBOQA in chapter 5.

The HEMBOQA algorithm

input: x0, ρbeg, ρend, nc, u, l, maxevals, maxtime, looplength, γreq
m := 2n+ 1
Set up the intial interpolation points, Q1 and W1 (see section 5.2.1)
Determine xk (see page 34)
while The stopping conditions ((5.20)–(5.24)) are not satisfied do

if (# function evaluations > maxevals) ∨ (time > maxtime) then

stop and return xk and f(xk)
end if

Calculate γin
if γin < γreq then

Do not allow the replacement of any of the interpolation points on
Xs

end if

Find dk using problem (5.12)
if all(dk) < ǫ then

Stop and return xk and f(xk)
end if

if The integral components of xk + dk have not been the same as the
integral components of xk for 20 consecutive iterations and
all(xk + dk = xk) then

NoAlt := 1
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end if

if any(dk ≥ 0.5ρ)∨ (noalt = 1)∨ ((γin < γreq)∧ (any(dk ≥ 0.1ρ)) then
if there is a repeated pattern in the step lengths over the last
looplength iterations (see section 5.2.3) then

Choose a random interpolation point yi not equal to xk
Find xnew by making the integer components equal to
those of yi and setting the continuous components to be the
result of running the neighbourhood solver on Xi

while all (xnew − (xk + dk)) ≤ 10−4 do

if All interpolation points have been considered then

Return xk and f(xk) with a warning
end if

Choose a new random point which has not been considered
before and find xnew as before

end while

dk := xnew − xk
end if

Calculate z and v using (3.35) and (3.41)
Select t using (5.14)
Calculate φ, ψ, τ and σ using (3.36)–(3.39)
while (σ < 0.5τ) ∨ (σ > 1010) do

Use the RESCUE procedure (see section 3.3.5)
end while

if f(xk + dk) < f(xk) then

xk+1 := xk + dk
Select a new t using xk+1, call it trep (see page 111)
Calculate αrep, βrep, σrep and τrep (see page 111)
if σrep > 0.5τrep (see page 111) then

t := trep (see page 111)
α := αrep (see page 111)
β := βrep (see page 111)
σ := σrep (see page 111)
τ := τrep (see page 111)

end if

else

xk+1 := xk
end if

Update the Qk, Wk and the interpolation points (see section 3.3.5
and (3.5))
Calculate rk using (5.16)
Calculate ∆k+1 (see section 5.2.3)
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if (rk < 0.1) ∧ (f(xk) > f(xk + dk)) ∧ (∃i s.t. |(yi)j − (xk)j | > 2,
j = nc + 1, . . . , n) then

NextAlt := 1
end if

if (∆k+1 = ρk) ∧ (all(dk ≤ ρk)) ∧ (all(|ωk − xk| ≤ 2ρk))∧
(f(xk + dk) ≥ f(xk)) ∧ (rk < 0) then

if all(ρ ≤ ρend) then

Stop and return xk and f(xk)
else

Reduce ρ using (5.25)
end if

end if

if f(xk + dk) < f(xk) then

xk+1 := xk + dk
end if

if (rk < 0.1) ∧ (NoAlt = 0) ∧ (f(xk) > f(xk + dk))∧
all(|yδ − xk| > max(2∆k, 10ρk) then

NextAlt := 1
end if

end if

if (there was no trust region processing) ∧ all(|ωk − xk| ≤ 2ρk) then

if all(ρ ≤ ρend) then

Stop and return xk and f(xk)
else

Reduce ρ using (5.25)
end if

end if

if (NextAlt = 1) ∨ ((γreq ≥ γin) ∧ all(dk < 0.5ρ)) ∧ (NoAlt = 0))∨
(γreq < γin) ∧ all(dk < 0.1ρ) ∧ (NoAlt = 0)) then

Calculate δk using (5.17)
if NextAlt = 1 then

∆k := 0.1∆k

end if

Temporarily reduce ∆k using (5.27)
Select t using (5.15)
Calculate the Lagrangian function Λt (see page 46)
Find dk using problem (5.13)
Check for and deal with patterns in the step lengths using the
procedure described in the trust region iteration
if xk + dk is already an interpolation point then

NoAlt := 1
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end if

if NoAlt = 0 then

Calculate z and v using (3.35) and (3.41)
Calculate φ, ψ, τ and σ using (3.36)–(3.39)
while σ ≤ 0.5τ 2 do

Use the RESCUE procedure (see section 3.3.5)
end while

Update the Qk, Wk and the interpolation points (see
section 3.3.5 and (3.5))
if f(xk + dk) < f(xk) then

xk+1 = xk + dk
end if

end if

end if

if the integral components of xk + dk have not been the same as the
integral components of xk for 100 consecutive iterations then

Find xk(new) by making the integer components equal to those of
xk and setting the continuous components to be the result of
running the neighbourhood solver on Xs

xk := xk(new)

Stop and return xk and f(xk)
end if

end while
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Appendix B

Results for the derivative free

MINLP solvers

This appendix contains the detailed computational results obtained using
HEMBOQA, SEMBOQA, COMBOQA and NOMAD. The results for n =
2, 4, 6, 8, 10 are given in Tables B.1, B.2, B.3, B.4 and B.5 respectively. For
each problem the tables give the value of f(x∗), the time taken to solve the
problem, the number of objective function evaluations required to solve the
problem and the distance between x∗ and xg. Here xg denotes the global
optimum. The norm used is the infinity norm. The value of ‖x∗ − xg‖∞ is
only given if the algorithm finds the global minimum of the test problem. In
all of the tables the function names are shortened to a three letter key, the
key is simply the first three letters of the function name, except for Schaffer
problem 1 and Schwefel’s function whose keys are SCA and SCW respectively.
There are four rows in the tables for each problem key. The rows contain the
results obtained using HEMBOQA, SEMBOQA, COMBOQA and NOMAD
respectively. An analysis of the results contained in these tables is given in
chapter 6.

problem f(x∗) time # evals ‖x∗ − xg‖∞
ABS 4.31×10−9 45.11 33 4.31×10−9

4.31×10−9 46.21 44 4.31×10−9

4.31×10−9 44.97 60 4.31×10−9

0 0.140 39 0
ACK 1.11×10−4 37.70 33 3.94×10−5

3.05×10−5 37.89 46 1.08×10−5

3.05×10−5 37.95 68 1.08×10−5

8.88×10−16 0.140 38 0

Continued on next page
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Table B.1 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

AXI 0 1.36 8 0
0 1.36 20 0
0 1.36 38 0
0 0.140 42 0

BEC 5.04×10−8 27.53 61 2.00×10−4

0 27.52 74 0
0 27.12 94 0

BRA 0.857 6.95 21 -
0.857 6.94 34 -
0.398 11.27 105 -
0.398 0.250 55 -

DEK -24771 22.17 23 7.46×10−8

-24771 22.06 35 1.55×10−9

-24771 22.21 53 2.30×10−9

-24771 0.468 67 0
EAS -6.86×10−5 76.26 146 -

-1 122.9 200 7.75×10−10

-6.86×10−5 74.36 171 -
-6.86×10−5 0.172 37 -

EXP 0.368 1.23 5 0
0.368 1.23 15 0
0.368 1.24 23 0
0.368 0.094 16 0

FOU 0.056 14.10 18 8.16×10−3

0.050 36.72 32 0.203
0.053 10.70 70 0.0282

0 0.109 33 0
GOL 92.0 6.19 19 -

92.0 6.18 33 -
3 10.39 145 1.17×10−10

264.5 0.156 40 -
GRI 0.055 8.76 20 -

0.055 8.70 35 -
0.055 8.68 59 -
0.351 0.203 42 -

HOS -1.942 5.35 18 -
-2.346 8.60 51 0
-2.346 8.63 91 0

Continued on next page
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Table B.1 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

-2.346 0.125 30 0
LEV 0.125 9.28 19 -

1.50×10−32 11.83 54 -
1.50×10−32 11.88 100 -
1.5×10−32 0.125 35 -

LIN -20 1.69 9 0
-20 1.67 20 0
-20 1.67 29 0
-20 0.250 45 0

MIC -0.801 13.58 25 -
-0.801 22.03 63 -
-0.801 22.13 91 -
-0.801 0.140 41 -

NEU -1.25 0.67 6 -
-2 4.90 38 0
-2 3.95 85 0
-2 0.140 35 0

PER 1 7.85 8 -
1 8.31 19 -

1.11×10−18 105.4 139 0
1 0.109 17 -

RAS 0 1.04 7 0
0 1.03 19 0
0 1.01 37 0
0 0.125 35 0

ROS 0.771 32.81 76 -
0.771 30.64 93 -
0.771 30.93 124 -
0.771 0.172 44 -

ROT 0 1.71 9 0
0 1.69 21 0
0 1.69 39 0
0 0.218 63 0

SAL 0.400 275.2 119 -
0.500 58.06 59 -

8.32×10−13 65.99 149 8.32×10−12

0 0.140 38 0
SCA 0.037 6.35 21 -

Continued on next page

172



Table B.1 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

0.037 6.33 36 -
0.037 6.32 67 -
0.037 0.140 36 -

SCW -7.88 16.54 17 -
-67.6 15.78 39 -
-67.6 15.85 77 -

-126.8 0.406 47 -
SIN -1.63 0.37 13 -

-3.5 8.23 32 0
-3.5 7.85 46 0

-1.184 0.140 26 -
SPH 0 2.41 8 0

0 1.64 20 0
0 1.61 38 0
0 0.156 42 0

STE 5 1.40 8 0
5 1.40 18 0
5 1.39 26 0
5 0.156 32 0

SUM 0 0.68 6 0
0 0.67 16 0
0 0.67 30 0
0 0.125 33 0

ZAK 6.89×10−5 92.86 211 7.42×10−3

8.54×10−31 90.03 224 8.27×10−16

8.54×10−31 90.05 250 8.27×10−16

0 0.156 37 0

Table B.1: Results for n = 2

problem f(x∗) time # evals ‖x∗ − xg‖∞
ABS 4.11×10−5 188.0 69 3.34×10−5

2.02×10−6 203.2 95 1.05×10−6

2.36×10−6 69.27 174 1.24×10−5

0 0.281 97 0
ACK 5.83×10−6 144.0 138 2.90×10−6

1.85×10−6 170.1 152 8.24×10−7

1.85×10−6 121.3 305 8.24×10−7

Continued on next page
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Table B.2 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

8.88×10−16 0.312 94 0
AXI 0 1.376 12 0

0 1.362 33 0
0 1.367 97 0
0 0.452 109 0

EXP 0.135 2.085 9 0
0.135 2.110 27 0
0.135 2.119 57 0
0.135 0.140 31 0

FOU 0.275 1209 374 -
0.024 4999 473 -
0.085 2315 624 -

0 0.250 76 0
GRI 7.40×10−3 391.0 93 -

7.40×10−3 261.0 99 -
7.40×10−3 286.5 227 -

0.140 0.577 126 -
LEV 0.125 68.89 57 -

5.87×10−15 128.9 155 -
5.28×10−15 89.07 306 -
1.50×10−32 0.250 81 -

LIN -40 1.712 13 0
-40 1.695 33 0
-40 1.678 67 0
-40 0.452 133 0

MIC -2.144 487.0 80 -
-2.158 557.9 461 -
-2.158 535.8 411 -
-2.158 0.359 132 -

NEU -16 619.7 191 5.0×10−4

-16 182.9 75 0
-16 437.7 215 0

-15.33 0.593 153 -
PER 11.06 842.5 208 -

0.049 4907 674 -
0.049 2400 1340 -
1.676 3.994 756 -

POW 2.64×10−12 209.9 186 -
Continued on next page
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Table B.2 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

7.81×10−13 214.0 293 -
3.28×10−4 217.7 769 -

0 0.265 99 0
RAS 0 0.993 11 0

0 1.028 32 0
0 0.999 96 0
0 0.234 81 0

ROS 2.949 186.2 80 -
2.100 1625 349 -
2.100 185.5 265 -
2.100 0.452 131 -

ROT 0 1.712 13 0
0 1.911 35 0
0 1.813 103 0
0 0.827 196 0

SAL 0.600 283.0 92 -
0.600 501.1 174 -
0.400 472.9 376 -

0.6 0.218 68 -
SCW -15.75 1214 119 -

-95.58 3231 173 -
-372.0 11720 596 -
-253.6 0.796 194 -

SIN -1.634 0.433 36 -
-3.5 46.31 206 0
-3.5 61.41 272 0

-0.746 0.218 65 -
SPH 0 1.972 12 0

0 1.591 33 0
0 1.631 97 0
0 0.296 109 0

STE 10 21.71 14 0
10 21.11 40 0
10 13.50 86 0
10 0.250 78 0

SUM 1.78×10−3 21.94 56 -
1.54×10−14 21.95 97 2.43×10−5

1.54×10−14 21.86 241 2.43×10−5

Continued on next page
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Table B.2 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

0 0.218 73 0
WOO 18.57 2128 267 -

2.560 4559 796 -
5.29×10−5 4074 607 0

41.08 0.749 235 -
ZAK 4.49×10−17 1562 347 6.12×10−9

5.51×10−15 1855 559 6.03×10−8

5.92×10−19 780.8 501 6.77×10−10

8.322 0.437 152 -

Table B.2: Results for n = 4

problem f(x∗) time # evals ‖x∗ − xg‖∞
ABS 0 2193 229 0

8.05×10−6 629.6 521 4.75×10−6

6.70×10−6 998.7 365 2.47×10−6

0 0.499 174 0
ACK 1.502 1913 173 -

1.502 3283 359 -
1.502 1503 822 -

8.88×10−16 0.499 166 0
AXI 0 1.390 16 0

0 1.364 45 0
0 1.374 177 0
0 0.499 202 0

EXP 0.050 2.965 13 0
0.050 2.992 39 0
0.050 2.975 105 0
0.050 0.172 46 0

FOU 0.198 3190 70 -
0.017 905.7 236 -
0.038 2632 471 -

0 0.343 120 0
GRI 7.40×10−3 1125 115 -

7.40×10−3 3752 688 -
7.40×10−3 5476 650 -

0.150 1.217 247 -

Continued on next page
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Table B.3 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

LEV 0.125 852.3 96 -
1.54×10−13 4180 659 -
3.88×10−12 790.5 1241 -
1.50×10−32 0.499 138 -

LIN -60 1.748 17 0
-60 1.705 46 0
-60 1.663 121 0
-60 1.045 264 0

MIC -4.513 2071 302 -
-4.513 1948 208 -
-4.513 3962 729 -
-4.513 0.499 171 -

NEU -49.38 915.0 75 -
-49.38 837.5 110 -

-50 1835 422 0
-46.38 1.435 520 -

PER 631.1 893.5 92 -
2.410 1681 3033 -
1.487 2664 11436 -

2.09×108 0.936 242 -
RAS 0 1.077 15 0

0 1.043 44 0
0 1.068 176 0
0 0.374 138 0

ROS 3.207 6728 424 -
3.207 23729 622 -
3.207 4472 618 -
3.207 1.404 416 -

ROT 0 1.710 17 0
0 1.707 49 0
0 1.718 199 0
0 1.279 397 0

SAL 0.900 26.09 41 -
0.900 26.15 93 -
0.400 5820 3181 -

1.2 0.328 98 -
SCW -23.63 10685 204 -

-103.5 7711 232 -
Continued on next page
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Table B.3 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

-379.9 32211 1044 -
-380.4 2.153 386 -

SIN -0.417 0.401 52 -
-2.692 2375 159 -
-2.692 841.9 403 -
-0.596 0.406 133 -

SPH 0 2.537 16 0
0 1.636 45 0
0 1.618 177 0
0 0.515 202 0

STE 15 34.57 18 0
15 17.81 53 0
15 18.88 146 0
15 0.437 138 0

SUM 7.02×10−16 9614 3444 1.61×10−4

3.56×10−17 7659 3502 6.87×10−5

9.61×10−15 2338 1543 3.07×10−4

0 0.343 120 0
ZAK 2.227 5075 642 -

2.056 1760 460 -
3.08×10−12 11299 1484 8.68×10−7

37.85 1.747 454 -

Table B.3: Results for n = 6

problem f(x∗) time # evals ‖x∗ − xg‖∞
ABS 3.30×10−3 2059 430 2.41×10−3

1.52×10−5 1925 668 8.12×10−6

7.83×10−6 14872 1632 5.65×10−7

0 0.890 270 0
ACK 1.297 6763 1109 -

6.92×10−6 9042 449 2.71×10−6

7.70×10−6 9030 950 4.19×10−6

8.88×10−6 0.889 254 0
AXI 0 1.405 20 0

0 1.412 53 0
0 1.435 245 0

Continued on next page
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Table B.4 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

0 0.811 321 0
EXP 0.0183 3.801 17 0

0.0183 3.759 46 0
0.0183 3.740 142 0
0.0183 0.234 61 0

FOU 0.208 47922 589 -
0.254 22063 466 -

0.0221 46006 939 0.170
0 0.546 195 0

GRI 1.63×10−13 16615 1003 6.99×10−7

7.40×10−3 2724 450 -
7.40×10−3 42950 2127 -

0.143 2.636 385 -
LEV 3.48×10−7 1568 125 -

0.0895 4401 984 -
3.70×10−13 2011 771 -
1.50×10−32 0.811 206 -

LIN -80 1.919 21 0
-80 1.931 53 0
-80 1.792 161 0
-80 1.591 438 0

MIC -5.075 5855 337 -
-5.118 16617 3540 -
-5.076 3440 1099 -
-5.076 1.622 514 -

NEU -112 63072 821 2.00×10−3

-112 19495 503 0
-112 4980 1018 0
-105 5.35 1198 -

PER 3.74×1010 3398 173 -
3.46×109 765.8 978 -

466.8 1427 21429 -
2.60×1010 20.92 2233 -

RAS 0 1.225 19 0
0 1.169 56 0
0 1.079 280 0
0 0.546 206 0

ROS 6.545 25207 501 -
Continued on next page
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Table B.4 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

4.238 35914 1377 -
4.238 11136 2116 -
4.238 4.056 983 -

ROT 0 1.783 21 0
0 1.767 57 0
0 1.756 273 0
0 2.3556 666 0

SAL 0.700 14192 697 -
0.700 21006 1993 -
0.800 45120 2091 -

1.1 0.546 113 -
SCW -31.50 5328 101 -

-738.4 22551 553 -
-644.2 35657 2056 -

-507.23 3.9 639 -
SIN -0.220 0.644 68 -

-3.5 3195 567 0
-3.5 4282 1133 0

-0.49639 0.624 204 -
SPH 0 2.486 20 0

0 1.763 53 0
0 1.753 245 0
0 0.84241 321 0

STE 20 22.72 22 0
20 21.96 66 0
20 95.59 222 0
20 0.6708 212 0

SUM 1.19×10−10 11073 3532 9.97×10−3

2.81×10−13 25283 7141 2.04×10−3

0 7003 2030 0
0 0.6084 174 0

ZAK 2.460 28640 1274 -
3.741 11229 530 -
2.029 39197 8268 -

111.97 0.6708 208 -

Table B.4: Results for n = 8
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problem f(x∗) time # evals ‖x∗ − xg‖∞
ABS 7.80×10−5 34653 1064 6.35×10−5

1.86×10−5 42484 1612 6.91×10−6

4.83×10−6 14570 771 1.27×10−6

0 1.170 385 0
ACK 1.155 20808 900 -

1.155 32983 1058 -
1.155 36233 2932 -

8.88E-16 1.310 403 0
AXI 0 1.424 24 0

0 1.408 61 0
0 1.472 321 0
0 1.373 466 0

EXP 6.74×10−3 4.603 21 0
6.74×10−3 4.612 53 0
6.74×10−3 4.551 183 0
6.74×10−3 0.312 76 0

FOU 0.257 86048 1466 -
0.072 37533 689 -
0.075 71005 2000 -

0 0.718 248 0
GRI 7.40×10−3 1.74×105 2333 -

7.40×10−3 10679 1110 -
7.40×10−3 15487 1213 -

0.155 4.571 558 -
LEV 8.05×10−9 4536 188 -

0.090 76594 2269 -
0.090 9158 2265 -

1.50×10−32 0.936 285 -
LIN -100 2.602 25 0

-100 2.206 60 0
-100 1.832 205 0
-100 2.418 655 0

MIC -4.353 39635 749 -
-3.253 43289 989 -
-4.336 45418 1393 -
-5.175 2.590 774 -

NEU -210 8562.2 538 2.00×10−3

-210 92908 757 0
Continued on next page
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Table B.5 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

-209.4 7870 1108 -
-200 18.44 2379 -

PER 2.25×1020 194.7 23 -
7.01×1015 194.5 112 -
1.92×109 23407 11306 -

3.68×1018 18.10 2446 -
RAS 0 1.255 23 0

0 1.173 67 0
0 1.082 397 0
0 1.030 285 0

ROS 8.678 1.09×105 827 -
5.246 42705 871 -
5.246 36438 2169 -
5.246 8.736 1599 0

ROT 0 1.789 25 0
0 1.772 65 0
0 1.840 355 0
0 3.931 1003 0

SAL 1.100 33244 977 0
0.400 27755 952 0
0.500 1.21×105 5707 0

1.3 0.624 156 -
SCW -39.38 25658 232 -

-39.38 2.36×105 1906 -
-750.1 93995 1756 -
-634.0 7.753 953 -

SIN -0.220 0.935 100 -
-3.5 54531 907 0
-3.5 58579 1980 0

-0.416 0.733 248 -
SPH 0 2.5689 24 0

0 1.710 61 0
0 1.757 321 0
0 1.310 466 0

STE 25 49.09 26 0
25 103.1 76 0
25 62.78 296 0

Continued on next page
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Table B.5 – Continued from previous page
problem f(x∗) time # evals ‖x∗ − xg‖∞

25 0.936 300 0
SUM 5.40×10−13 37532 5764 7.42×10−3

5.36×10−13 1.49×105 18834 6.81×10−3

8.90×10−13 1.09×105 12366 6.79×10−3

0 0.718 235 0
ZAK 18.83 1.24×105 1106 -

2.068 30405 430 -
2.068 4.78×105 4597 -
140.2 0.983 272 -

Table B.5: Results for n = 10
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Appendix C

Test Problems

This appendix contains details of the test problems used in chapter 6. The
algorithms used to generate random MIQP instances are given in section C.1.
The details of the MINLP test problems are given in section C.2.

C.1 Method used to generate MIQPs

In this section we discuss the methods used to generate the non-convex
MIQPs used in chapter 6. The generation of the MIQPs can be broken
up into two stages; in the first stage the objective function is generated while
in the second we generate the constraints. Obviously three objective function
generation methods were required since methods were developed three dif-
ferent types of Hessians, as discussed in chapter 4. The required generation
algorithms are given in section C.1.1. In section C.1.2 we give the algorithms
used to generate the three types of constraints; bound, sparse and dense con-
straints. In the discussion in the following sections the random numbers were
generated using the MATLAB function rand(a,b) which generates an a× b
matrix containing random numbers drawn from the uniform distribution on
the interval (0, 1).

C.1.1 Generation of the objective function

The objective function of problem (1.2) is completely specified by giving H
and g. For all three types of problems the elements of g were chosen uniformly
at random from (−1, 1). We now give the algorithms used to set H when Hcc

is invertible, positive definite and singular. Hessians with Hcc invertible were
generated using Algorithm 6. This algorithm is taken from [38] and generates
symmetric matrices with a user defined percentage q of positive eigenvalues.
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We note that it is very rare that the ncth principal leading submatrix in step
v is not invertible. The procedures used to generate H with Hcc positive
definite and singular are given in Algorithm 7 and Algorithm 8 respectively.
Both of these algorithms make use of Algorithm 6 to generate matrices with
q positive eigenvalues. However, when we call Algorithm 6 in Algorithm 7
and Algorithm 8 we are in fact referring to Algorithm 6 without its final step.

Algorithm 6 Generation of Hessians with Hcc invertible

i. Set q ∈ [0, 100]. Let q̃ = ⌊pn/100⌋.

ii. Choose n random numbers κi. Generate the first q̃ numbers uniformly
at random from (0, 1). Choose the remaining (n− q̃) numbers uniformly
at random from (−1, 0).

iii. Generate n random vectors with elements drawn uniformly at random
from (−1, 1). Orthonormalise these vectors to obtain the vectors li.

iv. The Hessian is given by the following equation

H =

n∑

i=1

κilil
T
i . (C.1)

v. Check whether the ncth principal leading submatrix of H is invertible.
If it is then return H otherwise go to step ii.

C.1.2 Generation of the constraints

In this section we give the algorithms used to generate the constraints on
the MIQPs in chapter 6. Three types of constraints were used in chapter
6; bound constraints, sparse linear inequality constraints and dense linear
inequality constraints. For bound constrained problems each variable was
constrained to lie between minus two and two. The linear inequality con-
straints were generated in such a way that the original problem was always
feasible and bounded. This was done by applying random linear transfor-
mations to bound constraints. The sparse linear inequality constraints were
generated using Algorithm 9. The sparsity1 of the constraint matrix gener-

1The sparsity of a matrix is a measure of the number of non-zero elements and is given
by (number of non-zero elements)/(number of elements).
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ated by Algorithm 9 decreases from 1 for n = 2 to 0.0667 for n = 30. The
dense linear inequality constraints were generated using Algorithm 10. It
is obvious that the constraints generated using these algorithms will always
result in a feasible, bounded problem since they could be thought of as the
result of transforming the constraints of a bound constrained problem with
the variables constrained to lie between −β and β.

C.2 MINLP test functions

In this section more details are given on the problems used to test the deriva-
tive free algorithm developed in chapter 5. The test functions were taken
from [13, 52, 93, 52, 115, 161]. In the list below we give the name of the
test function, the reference from which it was taken, the form of f(x), the
bounds used and x0. Further details on these functions can be found in the
relevant references. We note that when the function name is followed by
the word ‘shifted’ the origin of the function has been moved such that the
xg ∈ Z

n. This makes it possible to check whether the algorithms find the
global minima.

• Absolute value function

– f(x) =
n∑

i=1

|xi|

– li = −10, ui = 10, ∀i = 1, . . . , n

– (x0)i = 4, ∀i = 1, . . . , n

• Ackley’s function [13]

– f(x) = a exp


b

√√√√
n∑

i=1

x2i
n


− exp

(
n∑

i=1

cos (2πxi)

n

)
+ c,

where a = −20, b = −0.2 and c = 20 + e1.

– li = −32, ui = 32, ∀i = 1, . . . , n

– (x0)i = 3, ∀i = 1, . . . , n

• Axis parallel hyper-ellipsoid function [161]

– f(x) =

n∑

i=1

ix2i

– li = −5.12, ui = 5.12, ∀i = 1, . . . , n
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– (x0)i = 4, ∀i = 1, . . . , n

• Becker and Lago problem [13]

– f(x) = (|x1| − 5)2 + (|x2| − 5)2

– li = −10, ui = 10, i = 1, 2

– (x0)i = 0, i = 1, 2

• Branin’s function [13]

– f(x) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1 − 1

8π

)
cos (x1) + 10

– l = [−5, 0] , u = [0, 15]

– x0 = [−3, 3]

• Dekkers and Aarts problem [13]

– f(x) = 105x21 + x22 − (x21 + x22)
2

+ 10−5 (x21 + x22)
4

– li = −20, ui = 20, i = 1, 2

– (x0)i = 4, i = 1, 2

• Easom’s function (shifted) [13]

– f(x) = − cos (x1) cos (x2) e
−x2

1
−x2

2

– li = −100, ui = 100, i = 1, 2

– (x0)i = 3, i = 1, 2

• Exponential problem [13]

– f(x) = exp

(
−1

2

n∑

i=1

x2i

)

– li = −1, ui = 1, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n

• Fourth function of De Jong [52]

– f(x) =
n∑

i=1

x4i + gaussian noise

– li =, ui =, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n
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• Goldstein-Price function [13]

– f(x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x21 − 14x2+

6x1x2 + 3x22
)]

×
[
30 + (2x1 − 3x2)

2 (18 − 32x1+
12x21 + 48x2 − 36x1x2 + 27x22

)]

– li = −2, ui = 2, i = 1, 2

– (x0)i = 1, i = 1, 2

• Griewangk’s function [13]

– f(x) =
1

4000

n∑

i=1

x2i −
n∏

i=1

cos

(
xi√
i

)
+ 1

– li = −600, ui = 600, ∀i = 1, . . . , n

– (x0)i = 2, ∀i = 1, . . . , n

• Hosaki problem [13]

– f(x) =

(
1 − 8x1 + 7x21 −

7

3
x31 +

1

4
x41

)
x22e

−x2

– li = [0 0] , ui = [5 6]

– x0 = [3, 3]

• Levy function [93]

– f(x) = sin2 (πy1) +
n−1∑

i=1

(yi − 1)2
[
1 + 10 sin2 (πyi+1 + 1)

]
+

(yn − 1)2 (1 + sin(2πyn))2

where yi = 1 +
1

4
(xi − 1)

– li = −10, ui = 10, ∀i = 1, . . . , n

– (x0)i = 3, ∀i = 1, . . . , n

• Linear function

– f(x) =
n∑

i=1

xi

– li = −10, ui = 10, ∀i = 1, . . . , n

– (x0)i = 3, ∀i = 1, . . . , n

• Michalemicz’s function [161]
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– f(x) = −
n∑

i=1

sin (xi)

[
sin

(
ix2i
π

)]20

– li = 0, ui = π, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n

• Neumaier problem 3 [13]

– f(x) =

n∑

i=1

(xi − 1)2 −
n∑

i=2

xixi−1

– li = −n2, ui = n2, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n

• Perm function [161]

– f(x) =
n∑

i=1

{
n∑

j=1

[
j i +

1

2

][(
xj
j

)i

− 1

]}2

– li = −n, ui = n, ∀i = 1, . . . , n

– (x0)i = 0, ∀i = 1, . . . , n

• Powell’s quadratic problem [13]

– f(x) = 121 ∗ x21 + 5 (x3 − x4)
2 + (x2 − 2x3)

4 + 10 (x1 − x4)
4

– li = −10, ui = 10, i = 1, 2, 3, 4

– (x0)i = 1, ∀i = 1, 2, 3, 4

• Rastrigin’s function [13]

– f(x) = 10n+
n∑

i=1

[
x2i − 10 cos (2πxi)

]

– li = −5.12, ui = 5.12, ∀i = 1, . . . , n

– (x0)i = 2, ∀i = 1, . . . , n

• Rosenbrock’s valley [13]

– f(x) = 100

n−1∑

i=1

[(
xi+1 − x2i

)2
+ (1 − xi)

2
]

– li = −2.048, ui = 2.048, ∀i = 1, . . . , n

– (x0)i = 0, ∀i = 1, . . . , n
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• Rotated hyper ellipsoid function [115]

– f(x) =
n∑

i=1

i∑

j=1

x2j

– li = −65.53, ui = 65.53, ∀i = 1, . . . , n

– (x0)i = 15, ∀i = 1, . . . , n

• Salomon problem [13]

– f(x) = 1 − cos (2π‖x‖) + 0.1‖x‖
– li = −100, ui = 100, ∀i = 1, . . . , n

– (x0)i = 4, ∀i = 1, . . . , n

• Schaffer problem 1 [13]

– f(x) =
1

2
+

2
(

sin
√
x21 + x22

)2
− 1

2 (1 + 0.001 (x21 + x22))
2

– li = −100, ui = 100, i = 1, 2

– (x0)i = 4, i = 1, 2

• Schwefel’s function (shifted) [13]

– f(x) = −
n∑

i=1

(xi − 0.0313) sin
(√

|xi − 0.0313|
)

– li = −500, ui = 500, ∀i = 1, . . . , n

– (x0)i = 2, ∀i = 1, . . . , n

• Sinusoidal problem (shifted) [13]

– f(x) = −2.5

n∏

i=1

sin
(
xi − 2 +

π

2

)
−

n∏

i=1

sin
(

5
(
xi − 2 +

π

2

))

– li = 0, ui =
π

2
, ∀i = 1, . . . , n

– (x0)i = 0, ∀i = 1, . . . , n

• Sphere function [161]

– f(x) =

n∑

i=1

x2i
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– li = −5.12, ui = 5.12, ∀i = 1, . . . , n

– (x0)i = 4, ∀i = 1, . . . , n

• Step function [52]

– f(x) = 6n+
n∑

i=1

⌊xi⌋

– li = −3.12, ui = 3.12, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n

• Sum of different powers function [115]

– f(x) =
n∑

i=1

|xi|i+1

– li = −1, ui = 1, ∀i = 1, . . . , n

– (x0)i = 1, ∀i = 1, . . . , n

• Wood’s function [13]

– f(x) = 100
(
x21 − x2

)2
+ (x1 − 1)2 + (x3 − 1)2 + 90

(
x23 − x24

)2
+

10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8 (x2 − 1) (x4 − 1)

– li = −10, ui = 10, i = 1, 2, 3, 4

– (x0)i = 3, i = 1, 2, 3, 4

• Zakharov function [161]

– f(x) =
n∑

i=1

x2i +

(
n∑

i=1

xi
2i

)2

+

(
n∑

i=1

xi
2i

)4

– li = −5, ui = 10, ∀i = 1, . . . , n

– (x0)i = 3, ∀i = 1, . . . , n
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Algorithm 7 Generation of Hessians with Hcc positive definite

1. Generate an n× n matrix H̃ with q = 50% using Algorithm 6.

2. Generate an nc × nc matrix Hcc with q = 100% using Algorithm 6.

3. Generate H by replacing the ncth principal leading submatrix of H̃
with Hcc.

4. If H � 0 discard H and go to step 1, otherwise return H .

Algorithm 8 Generation of Hessians with Hcc singular

i. Generate an n× n matrix H̃ with q = 50% using Algorithm 6.

ii. Generate an nc × nc matrix Hcc using the procedure described above
with q = 50% using Algorithm 6. However in step ii we replace r of
the random numbers κi with 0. Here r is a randomly generated integer
between 1 and nc.

iii. Hcc generated in step ii is singular. Let H be the matrix obtained when
ncth principal leading submatrix of H̃ is replaced by Hcc.
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Algorithm 9 Generation of sparse linear inequality constraints

i. Generate a random 2 × 2 matrix a with elements drawn uniformly at
random from (0, 2).

ii. If n is even generate an n × n matrix A1 by making each 2 × 2 block
diagonal element a and setting all other elements to zero. If n is odd
generate an (n + 1) × (n + 1) matrix Ã1 by making each 2 × 2 block
diagonal element a and setting all other elements to zero. Form A1 from
Ã1 by removing the (n+ 1)th row and (n+ 1)th column from Ã1.

iii. Let A be the following 2n× n matrix

A =

[
A1
−A1

]
.

iv. Generate a random n× 1 vector β with integer elements between 1 and
3 using the MATLAB function randi(5,n,1).

v. Let b be the following 2n× 1 vector

b =

[
β
β

]
.
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Algorithm 10 Generation of dense linear inequality constraints

i. Generate a random n× n matrix A1 with elements drawn uniformly at
random from (0, 1).

ii. Let A be the following 2n× n matrix

A =

[
A1
−A1

]
.

iii. Generate a random n× 1 vector β with integer elements between 1 and
3 using the MATLAB function randi(5,n,1).

iv. Let b be the following 2n× 1 vector

b =

[
β
β

]
.
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