

The application of parallel processing

techniques to computationally intensive

biomedical imaging studies

Blake Andrew McLuckie

A dissertation submitted to the Faculty of Engineering and the Built Environment,
University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of
Master of Science in Engineering.

Johannesburg, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39671607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Declaration

I declare that this dissertation is my own, unaided work, other than where specifically

acknowledged. It is being submitted for the degree of Master of Science in Engineering at

the University of the Witwatersrand, Johannesburg. It has not been submitted before for

any degree or examination in any other university.

Signed this _______ day of_____________ 2013

Blake Andrew McLuckie

ii

Abstract

The landscape of modern computing is changing. While Moore’s law is currently holding

and the number of transistors that can be produced on a given area of a chip is still

growing exponentially, the practice of improving performance by increasing the clock

frequency of a single processor is reaching its limit. Instead, the focus has shifted to

applying multiple processors to solving a single problem, a methodology known as

parallel processing. Parallel processing has the potential to overcome many of the

shortcomings of linear processing, but also presents a number of unique challenges. This

dissertation explores the potential benefits of parallel processing by examining the

application of a near-field coded aperture simulator on a parallel cluster and contrasting

its implementation and performance with previously written simulators for serial

processors. The platform used is a cluster of Sony PlayStation 3’s; featuring the IBM

developed Cell Broadband Engine Architecture. It was found that the PS3’s were capable

of producing performance gains of around forty times an equivalently priced conventional

processor, with the capability of easily scaling the system by adding or removing nodes as

required. However, this comes at the cost of a much increased burden on the developer.

Apart from the core application, a great deal of code must be written to handle

communication and synchronization between nodes, a task which can at times be very

complex. In addition, a number of tools available for serial processors, such as highly

efficient compilers, advanced development environments and many standardized libraries

cannot be applied in a parallel environment. The main conclusions drawn from this

research are that while the potential gains of parallel processing are enormous, allowing

attainable solutions to problems that were previously too costly, the costs of development

are prohibitive. Still, parallel processing is the natural next step in modern computing,

and it is only a matter of time before its idiosyncrasies are solved.

iii

Acknowledgments

This work was carried out in the Biomedical Engineering Research Group, within the

School of Electrical and Information Engineering at the University of the Witwatersrand,

Johannesburg. Funding was provided partially by the School, and partially by the

National Research Foundation of South Africa.

The author would like to thank:

Professor David Rubin as research supervisor, for the initial conception of

the work and for his patience, guidance, and insight.

Professor Tshilidzi Marwala as research supervisor and for the co-

ordination of funds.

Dr. Ken Nixon, for answering so many questions.

David Starfield, for helping with the details.

Ian and Bev McLuckie for their ongoing emotional, intellectual, and, yes,

financial support.

Kerry McLuckie for listening, and for the pizza.

Professor Ian Jandrell, Gill van der Heever and the rest of the staff in the

School of Electrical and Information Engineering, for making it a place that

genuinely cared about its students.

iv

Table of Contents

Declaration .. i

Abstract ... ii

Acknowledgments .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables .. vii

Table Of Acronyms ... viii

1 Introduction ... 1

1.1 The Problem ... 1

1.2 The Question .. 2

1.3 The Application ... 2

1.4 The Platform ... 3

1.5 Dissertation Layout ... 3

2 A Short History of Computing .. 5

2.1 Parallel Processing .. 6

2.1.1 Understanding the Problem .. 6

2.1.2 Amdahls Law .. 6

2.1.3 Additional Technicalities ... 7

2.1.4 Compilers ... 8

2.1.5 Conclusion ... 8

2.2 Introduction to Parallel Computing .. 8

2.2.1 Flynn’s Taxonomy .. 9

2.2.2 Hardware ... 9

2.2.3 Software .. 10

2.3 Conclusion .. 11

3 Literature Review .. 12

3.1 The GPU .. 12

3.1.1 GPU Architecture ... 13

3.2 Ray Tracing ... 13

3.2.1 Ray Tracing on the GPU ... 14

v

3.2.2 Ray Tracing and Coded Aperture Simulation .. 15

3.3 The Cell Processor .. 16

4 The Platform .. 18

4.1 The Sony PlayStation 3 ... 18

4.2 The Cluster .. 18

4.3 Inter-Communication and Message Passing Interface... 19

4.4 Establishing a secure channel and SSH ... 20

4.5 Software development on the PS3 ... 20

4.5.1 Installing The Software Development Kit (SDK) .. 20

4.5.2 Development Environment ... 21

5 The Cell Broadband Engine Architecture .. 22

5.1 Architecture .. 22

5.2 Communication .. 24

5.2.1 Mailboxes .. 25

5.2.2 Signal Notification channels .. 25

5.3 The SPU ... 26

5.3.1 Calculating PI ... 26

6 Nuclear Imaging ... 29

6.1 Background ... 29

6.2 Coded Apertures ... 30

6.3 Design and Testing .. 31

7 Software Architecture Overview ... 32

7.1 Task Level Paradigms .. 32

7.1.1 The PC .. 32

7.1.2 The PPU ... 33

7.2 Instruction Level Paradigms ... 33

7.2.1 The SPU .. 33

7.3 The PC ... 34

7.3.1 Input .. 34

7.3.2 Run Time .. 36

7.3.3 Completion .. 36

7.4 The PPU... 36

vi

7.4.1 Communication conflict .. 38

7.5 The SPU ... 38

7.5.1 caSim_spu .. 39

7.5.2 SPU_Manager .. 39

7.5.3 Base_Spu ... 40

8 Coding on the SPU ... 44

8.1 SIMD Examples ... 44

8.1.1 Case 1 ... 44

8.1.2 Case 2 ... 45

8.2 Distance Calculation ... 47

8.2.1 Implementation discussion ... 49

8.2.2 Overview .. 50

8.2.3 SIMD .. 50

8.2.4 Implementation ... 51

8.3 Camera Distribution ... 53

8.4 Natural Exponent Calculations ... 56

8.5 Conclusion .. 57

9 Results.. 58

9.1 Performance Testing .. 58

9.2 Performance Breakdown .. 59

9.3 Discussion on Cell Broadband Engine Architecture ... 60

9.3.1 The Positive ... 60

9.3.2 The Negative .. 61

9.4 Recommendations for Future work ... 62

10 Conclusion ... 63

References .. 65

11 Bibliography ... 65

vii

List of Figures

Figure 1: Simplified Graphics Pipeline ... 12

Figure 2: Illustration of Ray Tracing ... 14

Figure 3: Cell Broadband Engine Arcitecture .. 22

Figure 4: PowerPC Element Layout .. 22

Figure 5: Synergistic Processing Element Layout ... 22

Figure 6: Illustration of Scatter/Gather Operations .. 24

Figure 7: Monte Carlo Pi Estimation .. 27

Figure 8: Illustration of a Parallel-Hole Collimator .. 29

Figure 9:Far and Near Field Coded Apertures ... 31

Figure 10: Coded Aperture Simulation Setup .. 35

Figure 11: Illustration Of gamma camera ray distribution .. 42

Figure 12: Vector addition ... 44

Figure 13: Vector Less Than Operation ... 46

Figure 14: Vector 'AND' Operation .. 46

Figure 15: Vector 'NOT' Operation' ... 46

Figure 16: Second 'And' Operation .. 47

Figure 17: Result Recombination .. 47

Figure 18: Cross-section of a ray passing through an aperture 48

Figure 19: Ray distribution on camera cell .. 53

Figure 20: Illustration of symmetry of Distribution Constants 54

Figure 21: Reorganised Distribution Constants ... 55

Figure 22: Camera cell Re-combination .. 56

Figure 23: Relative performance of simulator versions. ... 59

List of Tables

Table 1: Important breakthroughs in Computing ... 5

Table 2: Cost per Gigaflop through history ... 18

Table 3: Vector Representation of Ray Distribution ... 54

Table 4: Revised Vector Representation of Ray Distribution 55

file:///C:/Diss/Blake%20McLuckie%20-%20Dissertation5.docx%23_Toc340517936
file:///C:/Diss/Blake%20McLuckie%20-%20Dissertation5.docx%23_Toc340517937

viii

Table Of Acronyms

BEI Broadband Engine Interface
CBE Cell Broadband Engine
CBEA Cell Broadband Engine Architecture
DMA Direct Memory Access
EA Effective Address
EIB Element Interconnect Bus
ENIAC Electronic Numeric Integrator and Computer
ES Effective Storage
FLOPS Floating Operations Per Second
GUI Graphical User Interface
IOIF Input/Output Interface
LA Local Address
LS Local Storage
MFC Memory Flow Controller
MIC Memory Interface Controller
MIMD Multiple Instructions Multiple Data
MISD Multiple Instructions Single Data
MPI Message Passing Interface
MPP Massively Parallel Computing
OS Operating System
PPE Power Processing Element
PPU Power Processing Unit
SDK Software Development Kit
SETI Search for Extra Terrestrial Intelligence
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SPE Synergistic Processing Element
SPU Synergistic Processing Unit
STI Sony Computer Entertainment, the Toshiba corporation and IBM.

1

2 Introduction

There can be no doubt that computers have become an invaluable tool in nearly every

application in existence; education, media, warfare, architecture, communication; no

facet of life is unaffected and bio-medical engineering is no exception. From the complex

calculations required in MRI’s to the design of prosthetic limbs, computers are an

essential asset to the field.

2.1 The Problem

The physical world is often a great deal more complex than simple observation would

imply, and simulating it can also be similarly complex. The problem is Consider the

following: There is an estimated 1.37 billion km3 of water in the oceans of the world [1].

This translates to mL of water. Now, a standard teaspoon

has a volume of 5 ml. Dividing the volume of the oceans by the volume of the teaspoon:

Similarly, given the molar mass of water and Avogadro’s constant [2], it can be shown

that there are approximately 1.668 x 1022 molecules of water in a single tea spoon.

Dividing this number by the number of teaspoons of water in the ocean gives

There are more than 60 million times more molecules of water in a teaspoon than there

are teaspoons of water in all the oceans in the world. Performing a complete simulation

of all the interactions of all the molecules in a teaspoon – or even a single drop - of water

is a completely infeasible task.

And yet, a number of methods of accurately simulating the behaviour of a fluid exist,

including Smoothed Particle Hydrodynamics methods(SPH) [3], vorticity based methods

[4], and Lattice Boltzmann methods [5]. All have which have been adopted by graphical

developers to produce entire rivers and waterfalls in modern movies and video games.

This is accomplished not by modelling individual particles, but rather the emergent

behaviour of the sum of those particles. Of course, there is a trade-off, each of the listed

methods is an approximation of fluid behaviour, and none them are going to be as

accurate as an effective particle by particle simulation. Another example of this is

Newtonian physics. Theories on relativity and quantum states provide a more exact

description of motion and are necessary for systems that require a great deal of

precision, such as the Global Positioning System [6], but their mathematical complexity is

2

prohibitive. Newton’s Laws are a great deal simpler and are accurate enough for general

use. Even in standard GPS navigation systems, the error that would be caused by ignoring

relativistic effects would amount to less than a centimetre [6].

The question then becomes finding the balance; a method which produces results

accurate enough to be meaningful, but cheap enough computationally to be completed

in a reasonable amount of time and effort.

In a number of areas, this balance has already been found. After all, computer generated

rivers and oceans can be very convincing indeed. However, the landscape of

computational methods is changing and the age of serial processing is coming to an end;

we have simply arrived at the physical limits of this form of computing [7].

The relatively new field of parallel processing may shift this balance. There is effectively

no limit to the amount of processing power that can be applied to a given problem, as

long as that problem can be effectively parallelised [8]. Systems which were previously

too costly to simulate may now be viable. Image processing methods stand to benefit

enormously, as images can easily be broken into sections and simultaneously processed

on different nodes in a cluster.

There is also another area where simulation times may be improved, within the code

itself. Most high level languages have been designed to be as user friendly as possible,

such as that in MatLab or Visual Basic. While this does make the design and

implementation of non-time-critical processes a great deal easier, and despite the

continued evolution of economic compilers, the use of these languages often results in

massively inefficient code. As an example, converting a previous version of a near-field

coded aperture simulator from MatLab to C++ and tweaking the algorithms used yielded

a 100 times performance gain.

2.2 The Question

The question asked within this Thesis is simply; given the power parallel processing

represents and with well-designed software written at an appropriately low level, can

problems that are currently incredibly computationally expensive now be solved within a

reasonable amount of time?

2.3 The Application

Even though a 100 times performance gain has already been attained in the near-field

coded aperture simulator, individual simulations can still take over twenty hours to run.

Eventually, three dimensional simulations will be required, which will be achieved by

individually processing at least 50 distinct layers, running into thousands of hours of

machine-hours (as opposed to man-hours). Clearly this is an unacceptable time frame.

3

As a case study, the near-field coded aperture simulation will be re-examined for three

reasons: The problem is easily parallelised simply by breaking up the source images into

smaller sections and delegating them to nodes in a cluster, and collecting the results at a

central machine after the simulation is complete. Secondly, since the problem is familiar,

the key question – that is, how viable is application of parallel processing within the field

of bio-medical engineering – may be focused on. Results can easily be verified by

comparing them with previous versions of the simulator, which in turn have been verified

by physical trials.

All these points make a near-field coded-aperture simulator the ideal application for the

basis of this thesis.

2.4 The Platform

To test this premise, a cluster of six Sony PlayStation 3’s connected by a gigabit Ethernet

switch will be used. The PlayStation has been chosen as, at the beginning of this project,

it held the record for the lowest cost to performance ratio, at just $0.2 per billion floating

operations per second(GFLOP) due to its processor [9], IBM’s innovative Cell Broad

Engine(CBE). The operating system used is Linux Fedora 7, as it is one of only two

supported by the CBE software development kit [10].

2.5 Dissertation Layout

This dissertation will begin in chapter 2, which gives a brief history of computing and

examines the move away from serial computing to parallel computing. Chapter 3

explores some of the work done in similar areas, including a brief overview of Ray Tracing

and computing on Graphical Processing Units. Chapter 4 gives an overview of the

hardware setup, the details of the network setup, the communication software and the

particulars of the development environment. Chapter 5 examines the Cell Broadband

Architecture(CBEA) in detail and provides a simple example of an easily parallelisable

problem and how the features of the processor are used to solve it. There are three

layers of processors involved in the in simulator, namely the central PC node, the two

layers of processors on the PS3, and chapter 5 gives a brief description of each level’s

tasks and responsibilities, as it easier to understand the process as a whole first before

trying to connect each of the pieces, before giving a more detailed explanation of the

implementation of each strata.

Chapter 6 gives a brief introduction into the field of coded apertures, explaining their

use, and why the simulations are so computationally expensive.

Chapter 7 details three aspects of the algorithm used to perform all the necessary

calculations of the simulation, and how the capabilities of the Cell Broadband Engine

Architecture are used to optimise the process.

4

To conclude, chapter 8 examines the performance of the simulator and provides a

summary of the findings, including recommendations on future work.

Two appendices are given on CD. Appendix A supplies a Doxygen generated set of HTML

documents demonstrating the layout of classes and files within the code, and Appendix B

supplies the source code itself, divided into PC and PS3 code.

5

3 A Short History of Computing

Although modern computing has become a prominent force in everyday life, there is no

specific time or place where it can be said to have been invented in its entirety. Instead,

like many things, it is the culmination of decades of invention and innovation.

War has often acted as an accelerant for technology [11], and so it is no surprise that the

Second World War is perhaps the first period in history that electronic devices began to

play a major role. Technologies such as sonar and radar were developed, and the need

to calculate ballistic tables and quickly and accurately resulted in the now famous ENIAC

(Electronic Numerical Integrator and Computer) [11]. A machine running on over 18000

vacuum tubes, the ENIAC was the size of a small building. Although its original function

was to calculate ballistic tables, it was used as tool in cryptography, and was also used to

solve early problems on the Manhattan Project [11]. However, for all its

accomplishments, the ENIAC is still a far cry from the tools available to modern

computing. A list of major breakthroughs and dates is given below in Table 1.

Table 1: Important breakthroughs in Computing

Devise Year of Invention Inventor(s)

The Transistor 1947/48 [12] John Bardeen, Walter

Brattain & Wiliam Shockley
The Integrated Circuit 1958 [13] Jack Kilby & Robert Noyce

The Mouse 1964 Douglas Engelbart

ARPANET(The original internet) 1969 [14]

Intel 4004, First Microprocessor 1971 [15] Faggin, Hoff & Mazor

The Floppy Disk 1971 Alan Shugart

MS-DOS 1981 Tim Paterson, Bill Gates

Microsoft Windows 1985

In the last six decades, computing has made its way into every facet of our lives. Digital

microchips can be found in everything from cellular phones to refrigerators. The uses are

limitless. While the humble ENIAC could produce over 350 multiplication operations per

second, the Japanese Earth Simulator centre is capable of producing over 35 trillion

floating point operations per second [16].However, while computers may perform

operations many thousands of orders of magnitude faster than a human can, there are

still applications where this is not enough. This is especially true in the field of scientific

computing.

As in chapter 0, Consider that there are 5 mL of water in a standard teaspoon, which

translates to 5g. The molar mass of water is around 18g, which means there are around

0.22 moles of water in a single teaspoon. This translates into

 molecules. Even with 35 trillion operations per second, attempting to

6

simulate the interaction of the molecules in a simple teaspoon of water is a laughable

exercise. Thus, the drive to develop ever faster computational devices continues.

Until now, the primary method of increasing computational power has been to increase

the clock frequency of the microchip, known as frequency scaling [17]. The higher the

frequency, the more clock cycles occur in a second and more work can be done, and

while Moore’s Law appears to be holding true for the present, this technique of

increasing performance has begun to reach its limit.

The power consumption of a chip is given by

Where f is the frequency, V is the voltage change, and C is the capacitance of the chip

[18]. Thus we see a linear relationship between power and frequency scaling. On a large

scale, this could consume a great deal of energy. Other factors contribute as well, such

as memory latency (The time it takes to retrieve information from ram).

Thus a move has begun away from serial processing, that is, instructions which are

completed on a single computational core in a specific order, to parallel processing, in

which a problem is broken down and computed on two or more cores simultaneously,

using a divide and conquer strategy. The greater the number of cores, the more work

can be done simultaneously, and the problems with frequency scaling can be avoided.

3.1 Parallel Processing

3.1.1 Understanding the Problem

While processors with two or four cores have become common, manufacturers are

promising to continue to increase that number in a fashion similar to frequency scaling

[8]. A good example is the Cell Broadband Engine Architecture (CBEA) used in this

project, which has one complete processing core, and eight “Synergistic Processing

Units”. Parallel Processing, however, is far more complex than ordinary, sequential

processing for a number of reasons, a few of which will be discussed below.

3.1.2 Amdahls Law

Like frequency scaling, we might expect a linear relationship between an increased

number of processors and performance, however this not necessarily the case. The

limiting factor of performance increase in parallelism is the linear dependencies in a

sequence of instructions. Imagine there is a series of commands that must be completed

in a particular order, and no command can be started before its predecessor is

completed. A good example of this is in old adventure computer games. A character

must collect an apple to exchange for a screw-driver so he may repair a car to drive to

town and so on. If this is the case, it does not matter how many people are playing the

7

game, it will still take the same amount of time. Thus the benefit an application can

receive from applying multiple processors is dependent on how much of the application

is inherently sequential. This is known as Amdahl’s Law and is given by the following

equation.

Where S is the possible performance gain in percentage form, and P is the percentage of

the application that can be effectively parallelised [19].

3.1.3 Additional Technicalities

Apart from the intrinsic limitations imposed on parallel processing by Amdahl’s Law,

there are a number of additional complexities associated with coding parallel

applications. A common example is a race condition [20]: two processors are performing

tasks on the same variable, the output dependant on which processor finishes first. This

is obviously undesirable and because of this, there must be a way to lock variables such

that only one processor has access to it at once. However, this may result in a deadlock

condition [20]. Processor 1 has locked variable A and is waiting for variable B to be

released, meanwhile processor 2 has locked variable B and is waiting for variable A. The

result of which is a deadlock and the system crashes. One can see that there must be a

degree of communication and synchronisation between processes in order to avoid these

conditions.

Parallel problems are thus cast into one of three very broad and largely undefined classes

[20, 21]: Fine Grained, Coarse Grained and Embarrassingly Parallel. Fine grained require

a great deal of communication and synchronisations and communication, Coarse grained

less so and Embarrassingly parallel problems require little or no intercommunication. In

especially Fine Grained problems, by adding more processors than required, the

additional overhead of data transmission and synchronisation may actually have a

detrimental effect on the running time. [20]

Additionally, there is a problem of consistency. A sequential processor will always

produce the same output given a particular input. Take, for example, Conway’s game of

Life [22]. The game is “played” on two dimensional grid with each square being classified

as “alive” or “dead”. Each cell interacts with its eight surrounding cells in accordance

with the following four rules.

1. Any live cell with fewer than two live neighbours dies.

2. Any Live cell with two or three neighbours lives to the next iteration.

3. Any Live cell with more than three live neighbours dies.

4. Any dead cell with exactly three live neighbours comes to life.

8

The game is well known for its ability to demonstrate chaos theory and emergence of

very complex and very different patterns from initial conditions that vary by even a single

cell in the right place.

Given a grid with an initial state, a sequential processor will always produce exactly the

same pattern every time it is run, since it will always process the cells in a particular

order.

Run on a parallel system, however, it makes sense to divide the grid into smaller sections

and allocate them to each core. Now, depending on subtle timing differences, each time

the simulation is run, a particular cell on the edge of a division may have a different state,

which would produce a new pattern nearly every time the game is run. A parallel

process may thus produce unstable or unreliable results, depending on the application

and how it is implemented.

3.1.4 Compilers

Sequential compilers have been around for decades now, and they have become very

efficient at optimising even poorly written code. High level languages like Visual Basic

have allowed people to very quickly produce reliable and user friendly applications,

delegating the task of optimisation to the compiler.

In the new era of parallel computing, however, this is no longer true [20]. Complications,

such as deciding how a problem should be split up, when and where synchronisation

needs to occur and how to handle the delegation of memory are, for the time being,

simply too sophisticated for a computer to handle efficiently, and must be managed by

the programmer. So, curiously, the advent of this new era in computing has resulted in

the necessity of coding practices being reverted back twenty or thirty years.

3.1.5 Conclusion

While Parallel Processing possesses the capacity to overcome the limitations of

sequential computing, there are some problems that cannot benefit from this method of

processing. In addition, it presents a number of challenges and pitfalls that must be

thoroughly understood before the benefits can be achieved.

3.2 Introduction to Parallel Computing

Parallel computing is a complicated subject in terms of both hardware and software. As

such, an introduction to the already well defined terms and patterns is given below.

For a computer to perform an operation, it needs both an instruction and a piece of data

to be acted on. As an analogy to help understand each concept; consider the kitchen in a

busy restaurant. Each chef representing a processor, each dish being prepared a task,

9

each action such stirring or chopping an instruction and each dish or ingredient a piece of

data.

3.2.1 Flynn’s Taxonomy

In the broadest sense, there are only four ways to process data and their classification is

known as Flynn’s Taxonomy [20]. First we have Single Instruction Single Data (SISD). This

is essentially sequential computing, and is analogous to a single chef preparing a single

dish, adding a single ingredient at a time. Then there is Single instruction Multiple

Data(SIMD), this time the chef is preparing a number of dishes simultaneously, following

the same instructions and performing the same actions for each but using different

ingredients, or different quantities of the same. This form of processing is rarely used.

Next is Multiple instruction Single Data(MISD). This is equivalent to multiple chefs

preparing the same dish but each performing a different task, one chopping carrots,

another adding salt and so forth. This form of processing is almost never seen. Lastly we

have the most common variety of parallel computing, and the form you would expect to

see in the philosophical kitchen; Multiple Instructions Multiple Data. Here each chef is

preparing his or her own dishes, more or less independently of the others.

3.2.2 Hardware

There are a number of important decisions to make when designing a parallel

architecture, a few of which will be discussed here.

3.2.2.1 Memory

Memory in computer is either distributed or shared [20, 21]. In the case of distributed

memory, each processor has its own local address space. This type of memory is often

physically distributed on the chip as well as simply being allocated to a specific processor

in software. With shared memory, each core is connected to a single, unified address

space via a high speed bus. Both distributed and shared memory types have their

advantages and disadvantages. The CELL processor used in this project uses a

combination of both; each core has its own 256kB cache of local memory but is also

connected to an effective address space, which may vary in size, but is usually several

orders of magnitude greater than 256kB [23]. In the case of the PlayStation 3, the shared

address space is typically 256MB.

3.2.2.2 Levels of Parallelism

There are a number of levels of parallelism, each stacked on the level below it. A brief

description is given below [20, 21].

1. At the lowest level is bit level parallelisation. This refers to the size, in bits, that a

processor can operate on. If an 8 bit processor must add two 16 bit numbers, it

must first add the two lowest 8 bit words, then add the two higher words,

10

possibly with a carry bit from the first operation, and recombine the results.

Increasing the number of bits the processor can operate on to 16 would reduce

this process to a single addition instruction. This is bit level parallelism.

2. Vectorisation and instruction level parallelism. These refer to the SIMD and MISD

parallelisation discussed above. Some processors can perform the same

operation on multiple data elements (vectors of data), or it may have multiple

instruction pipelines, allowing it to perform more than one instruction in a clock

cycle.

3. Multi-Core processors. Modern chips are being designed with multiple,

independent cores, allowing them to perform a number of separate tasks at once.

4. Symmetric Multiprocessing. A number of identical processors are connected

together via a high speed bus.

5. Cluster Computing and Massive Parallel Processing (MPP). Cluster computing is

effectively a number of individual, stand-alone commercial machines connected

together via network. This configuration is typically known as a Beowulf cluster.

MPPs are similar to cluster computing, except that they are usually connected by

specially designed network hardware, and are typically much larger than a

Beowulf cluster, often reaching several hundred individual units. Many of the

world’s super-computers are MPPs.

6. The highest level of parallelism is Grid computing. Grid Computing links any

number of individual machines over the internet, usually making use of machines

that would otherwise be idle. Because of the unpredictability of bandwidth and

latency, only embarrassingly parallel problems are feasible through grid

computing. A well-known example is the SETI@HOME [24] projects, which

utilises consenting computers to sift through the massive amount of data

collected by satellites and telescopes for signs of life in the universe.

3.2.3 Software

There are also a great many decisions that must be made for an effectively parallelised

problem. A few of these will be discussed below.

3.2.3.3 Partitioning and Delegation

The first step in writing the application is deciding what parts of the problem can be

parallelised and how to delegate these segments to processors. Each core can perform

an identical task on different data sets, or the processors can be set up like a production

line, each processor performing part of the whole operation, with data being passed

from one core to the next [21]. Each has its advantages and disadvantages. The

production line model will allow functions to be streamlined and optimised as well as

changed easily, but will increase the need for inter-communication. Having each

processor perform the same task will save on communication, but will take up extra

11

space in local storage. Of course, there are often many ways to parallelise a problem, all

of which need to considered.

3.2.3.4 Synchronisation and communication

Once it has been decided as to how required tasks are to be delegated, the amount of

synchronisation between processors must be determined. Fined grained problems will

require constant attention, while embarrassingly parallel problems may require none at

all. There are two types of communication [23]; synchronous and asynchronous.

Synchronous communication will stall a sending processor until a received signal has

been generated by the recipient. Asynchronous communication will not. Which method

is chosen depends on how closely the two processors must work. It is undesirable to

have one processor running idle waiting for another as performance is lost, but

synchronisation must also be maintained.

3.2.3.5 Application control and load balancing

Load balancing is an important factor in parallelisation [20]. Allocate too much work to a

processor and you run the risk others running idle waiting for its results. Too little work

increases the communication overhead, also resulting in a loss of performance. A good

practice is the use of double buffering; that is, storing the next set of data to be

processed while the current set is running. Once complete, the results can be returned

and work on the second set of data can begin immediately, while a third set of data is

loaded into storage concurrently. While this practise can effectively eliminate the

transfer time of large sets of data, it also requires more space in local memory and must

be carefully managed; it can be easy to overwrite data that has not yet been processed.

3.3 Conclusion

A parallel application must be structured very differently to a sequential application

performing the same task. From choosing the hardware it will run on to the general form

of the application, as well as similar problems at instruction level, designing a good,

efficient parallel solution can be an extremely complex task. Once designed,

implementing the solution while avoiding the issues discussed in chapter 3.2.3 can be

similarly difficult.

Keeping this in mind, Chapter 4 discusses the chosen set up; including hardware,

operating systems and software used, as well as the methods for establishing a secure

channel between nodes and the communication protocol for inter-nodal communication.

12

4 Literature Review

The field of high performance computing is expanding rapidly, and a great deal of

research is currently exploring the efficiency of both new hardware design and software

paradigms. Much of the current work involves the potential use of Graphical Processor

Units (GPU’s), rather than the traditional CPU.

4.1 The GPU

A GPU is a processing unit created specifically to deal with the complexities of rendering

a complex image to a screen, a common demand in media applications such as video

games. This is accomplished by breaking this process down into a few well defined steps,

known as the Graphics Pipeline, as shown in Figure 1 [25].

Figure 1: Simplified Graphics Pipeline

An input is first passed to the GPU. This is usually a collection of vertices created by the

CPU. A vertex contains information about a particular object – it’s position in space,

colour, lighting information and so forth. At the second stage, this data is processed,

which could involve smoothing edges, rotating, scaling or otherwise manipulating the

geometry of the scene. The vertices are then Rasterised. Given the position of the

13

camera or viewer, this is simply the process of mapping an object to a collection of pixels

on the screen, defining what objects are going to be displayed where. Once this has

been done, the pixels are processed, and colours are determined based on texture,

lighting, shadows and any other visual effects. The output of this stream is the final

displayed image. Programs that instruct the GPU on how to act on pixels or vertices are

known as shaders. This is a simplified view of the graphics pipeline, and each stage can

be broken down into several sub stages.

4.1.1 GPU Architecture

Both vertices and pixels have a set of common, well known properties: All vertices are

going to have a position in two or three dimensional space, all pixels are going to have

colour and brightness and so forth. Because of this, the types of operations that are

going to be performed on them are also generally predictable [25].

This, taken with the intrinsically parallel nature of displaying an image, means that GPU’s

can have a large number of highly specialised cores, as opposed to CPU’s, which have a

low number of very general cores. The ATI X1900 GPU, for instance, has 36 pixel shader

processors and 8 vertex shader processors, whereas most CPU’s currently have at most 4

general purpose cores.

As such, GPU’s typically have much greater performance than a comparable CPU, but at

the cost of being extremely limited in both the types of operations that can be performed

and the format of the data that can be operated on.

GPU’s are becoming increasingly flexible as their value to high performance computing

projects become more obvious [26]. This has become known as GPGPU (General

Purpose computing on the GPU). A few projects employing GPU’s are discussed below in

section 4.2.1. There are still a number of drawbacks to employing a GPGPU, notably that

there is no good way to deal with conditional logic, and the number of instructions that

can be queued up on a single core is quite small [26].

4.2 Ray Tracing

While the Graphics Pipeline discussed in section 4.1 is the most common method of

rendering an image, it does suffer from a number of drawbacks. Because objects are

handled individually and in parallel, it becomes very difficult to calculate effects where

the objects influence the appearance of each other, such as in effects like shadows,

reflection and refraction. An alternative approach with the potential to create much

more realistic images is that of Ray Tracing [25].

Generally speaking, most rendering algorithms function by processing the geometry and

lighting of a scene, and then projecting the result onto an image plain in front of a view

point, an eye or a camera. Broadly speaking, ray tracing follows the reverse approach,

14

projecting a ray from the eye, through a section of the image plane, onto the scene [27].

This is shown below in Figure 2. The path of the ray intersects the objects that will be

displayed on, or at least influence, the pixels on that section of the image plane. The

below image also demonstrates that advanced graphical effects such as reflection and

refraction, which are very difficult to achieve with the traditional graphics pipeline, may

effectively be built into the algorithm [27]. This may be thought of as a physical

simulation of actual light.

Figure 2: Illustration of Ray Tracing

Ray tracing is of interest in the context of this project because is similar to the process of

tracing a ray through a coded aperture. It is also a highly computationally expensive

process, and much research has gone into the problem of effectively parallelizing it so

complex images may be rendered in real-time.

4.2.1 Ray Tracing on the GPU

Ray Tracing is an Embarrassingly Parallel problem. In principle, as many cores may be

utilized as there are primary rays. For this reason the GPGPU, with its high number of

processing units, seems like a natural platform on which to implement a successful, real

time application, and indeed there have been several attempts to do just that [25].

It has been found that up to 95% of the processing time in a ray tracing Algorithm comes

from intersection calculations [28]. That is, the process of following the path of the ray

and determining which objects in a scene the ray passes through or comes into contact

with. Keeping this in mind the first approach by Carr et al [29] utilized the GPU just as a

means of calculating these intersections. The results were impressive, with 114 million

ray/triangle intersection tests per second on an ATI Radeon 8500. This compared to an

15

estimated 20 million on a comparable CPU implementation at the time. The main

drawbacks of this approach were that a significant portion of the computation, including

ray generation and shading, were left on the CPU. In addition, the relatively low

precision of the Floating Point numbers representation on the GPU (only 24 bit) resulted

in image artifacts [29].

Purcell et al used a slightly different approach [30], implementing the entire algorithm

solely on a GPU. This approach was calculated to achieve 56 million ray/triangle

intersection tests per second on comparable hardware. The conclusion of the work was

that real-time ray tracing may be possible with GPU architecture, but it would require the

hardware to evolve to a more generally programmable pipeline.

Martin Christen implemented an approach similar to Pascall, and compared it directly

with a similar approach on a CPU [31]. The conclusion was that while GPU’s theoretically

possess sufficient processing power, actual performance was only slightly better than on

a CPU. Several drawbacks of the GPU were highlighted, which if improved could improve

performance significantly. Predictions were made that advances in GPU architecture

would make real-time ray tracing feasible.

The general consensus across these works is that while ray tracing is in theory a well

suited application to the architecture, and while GPU’s possess enough processing power

to make the application far more viable than on regular CPU’s, the hardware is still too

specialised to be effectively put use, and do not presently provide significant

performance gains. Predictions are made that the architecture will converge on a more

flexible, programmable pipeline, and that this will dramatically improve the viability of

the GPGPU [26].

4.2.2 Ray Tracing and Coded Aperture Simulation

Simulating a coded aperture bears a great deal of resemblance to running a Ray Tracing

algorithm to render a scene, in so far as the primary aspect of both is tracing the path of

a ray and determining points of intersection. However, the focus of many of these

papers is creating efficient data structures to represent objects. This is not necessary in a

coded aperture simulation, as it is known that the object the ray travels through can

easily be represented by a grid. This allows for a much greater degree of specialization,

and should allow greater efficiency. Also, the criterion for a successful Ray-Tracing

implementation is real-time rendering, and this must be achieved for the methods to

really make an impact. This is not the case with a coded-aperture simulation, and any

performance gain could be considered a success. These factors may make coded

aperture simulation on a GPU more viable.

16

4.3 The Cell Processor

An alternative to the GPU may be seen in the IBM Cell processor. This is discussed in

detail in section 5. Put somewhat simplistically, the Cell may be viewed as half way

between a typical CPU and a GPU. It has one standard, complete Power Processing Unit

(PPU), and eight Synergistic Processing Units (SPU). The SPU’s resemble the more

specialized cores of a GPU, but are optimized for performing general Floating Point

mathematical procedures [32]. The Cell processor is comparatively new architecture, but

has already seen use in a number of high profile endeavors. Including the Folding at

Home project, utilizing idle Sony Playstation 3’s in houses all over the world to perform

calculations involving the formation of complex proteins.

Another example is the University of Massachusetts “Gravity Grid”. This is a cluster of

sixteen PlayStation 3’s. This cluster has been used for a variety of projects, including

Binary Black Hole Coalescence using Perturbation Theory, and Kerr Black Hole Radiative

“Tails” [33].

As a more concrete example Buttari et al benchmarked the Cell processor with a few

common algorithms, such as an implementation of a Fast Fourier Transform (FFT), and

procedures to solve both sparsely and densely populated system of linear equations [10].

The findings were varied. The sparsely populated linear equations achieved a

performance of 155 billion floating point operations per second (Gflops), which is around

75% of the theoretical maximum performance of the chip. The FFT achieved around 90

Gflops, and the sparse linear algebra fell to 12.8 Gflops, only 6% of the maximum

processor efficiency.

However, for comparison, a 3GHz pentuim 4 processor has a maximum theoretical limit

of 12 Gflops. It estimated that traditional architecture can yield about 30% efficiency for

sparse linear equations, for a total of 3.6 Gflops.

Buttari et al conclude that while the Cell processor has an enormous amount of raw

processing power, there are several drawbacks, especially as part of the Playstation 3. Of

concern were limitations on memory size and access speed, networking access speed and

a lack of optimization for double precision floating point operations [10]. The general

difficulty of the programming paradigm was also brought up as well, summarized in the

following statement: “Writing efficient and fast code for the CELL processor is, in fact, a

difficult task since it requires a deep knowledge of the processor architecture, of the

development environment and some experience. In many cases, high performance can

only be achieved if very low level code is produced that is on the border line between

high level languages and assembly.”

17

Despite this, the Cell has achieved some remarkable results, often within one to two

orders of magnitude of performance gains over traditional processors. The variety of

different projects it has been successfully involved in also speaks well of its capabilities.

18

5 The Platform

The cost of computing, measured in unit money/GFLOPS has been falling at an

exponential rate over the last decade or so. Below Table 2 demonstrates the fall in the

cost of computing.

Table 2: Cost per Gigaflop through history

Year Computer $/GFLOP

1961 17 million IBM 1620 units [34] 1.1 trillion

1997 Two Pentium-Pro-processors in a
Beowulf Cluster [35]

30,000

2003 KASYO, University of Kentucky
[36]

82

2006 ATI X1900 Graphics card [37] 1

2007 Sony PS3 [10, 37] 0.2

Thus, at the start of this project, the Sony PlayStation 3 held the record for the lowest

cost to performance ratio. This figure is slightly misleading, as it takes into account the

graphics card, which is inaccessible to open source developers. The actual figure is closer

to $2/GFLOP [10, 37] which is slightly higher than the ATI X1900 GPU. Overall though,

the theoretical performance of the Cell Processor and a GPU are comparable, and the

Cell is expected to be far more versatile, and able to retain a higher performance ratio

over a wider range of applications, and is therefore the platform of choice for this

project.

5.1 The Sony PlayStation 3

The PS3 is driven by the Cell Broadband Engine Architecture (CBEA, or simply the Cell)

processor discussed in detail in chapter 5. It also comes standard with an RSX GPU

running at 550 MHz, and 256 MB of XDR main ram running at 3.2 GHz. Two USB 2.0

ports as well as a Blu-Ray disk reader allow the transfer of data. There is an option to

load a UNIX based operating system (OS) on top of the simpler game OS [10]. There are a

number of excellent tutorials easily available on the internet as to how to do this, though

unfortunately the later versions of PS3 firmware have removed this option. A Linux

release known as Yellow Dog was developed specifically for the PS3, however the

freeware Software Development Kit (SDK) for the Cell processor recommends either Red

Hat 5.1 or Fedora 7 [10]. Though once installed, a kernel modified to take advantage of

the Cell processor must be used to replace the original.

5.2 The Cluster

It was decided that the initial configuration for the project would be six PS3s in a Beowulf

cluster, but with a standard Linux PC box running as a central node, all connected via a

19

gigabit switch. Fedora 7 was chosen as the OS for all nodes in the cluster, as it is known

to be compatible with the software development kit available for CBEA and is not

hampered by the relatively small amount of RAM. An important feature of the cluster

would be the capability to add more nodes as required without any changes in the

software, if six PS3’s proved to be insufficient.

In a Linux based system, there are a number of run-levels. A run level dictates how many

features of the OS are active, with run level 1 being the most basic, and run level 5 being

the highest, with all options enabled by default, though this can be customised [38].

Typically only run-levels 3 and 5 are used [38]. Run-Level 3 is the standard consoled

based version of Linux, with a few essential daemons active. A daemon is a Linux term

for a small program running in the background. Run level 3 typically only has a few

essential daemons active, such as those responsible of networking and communication.

Run level 5 adds a GUI (Graphical user interface) similar to Microsoft Windows on top of

this, as well as a number of superfluous or unnecessary daemons which can be nice to

have, but also consume performance. It is worth noting that even run-level 3 is still

running on top of the system firmware. This is not unlike Virtual Machine software, such

as VirtualBox [39], that allows a copy of Microsoft Windows to be simulated on a

computer running the Macintosh operating system (MacOS). The PS3 is effectively

running two operating systems simultaneously. This, coupled with what is currently

regarded as a relatively small amount of RAM may stress the system and produce bottle

necks with even very simple tasks, such as running basic C++ development environment

software. Thus, run level 5 may run a little slowly to those used a normal PC. Since high

performance is the goal of the project, only the central PC node will run in run-level 5.

The PS3’s will run in run-level 3 to avoid the extra load of a GUI and other non-essential

daemons, except during development, where a good GUI is invaluable.

5.3 Inter-Communication and Message Passing Interface

There must be communication between nodes if a cluster is to function and although it is

not recognized by any major body of standards, the Message Passing Interface (MPI) has

nevertheless become the de facto standard in high performance intercommunication in

clusters [40]. There are a number of MPI implementations, such as LAM-MPI [41] and

OPEN-MPI [42]; however they all largely consist of a set of routines callable from

development languages such a C, C++, FORTRAN [40]. The goal of the development of

MPI was to establish a portable, efficient and flexible means for communication between

closely linked clusters. It supports both synchronous and asynchronous communication

as well as point-to-point (one to one) and collective (one to many or many one)

communications. In order to ensure standardised data types, MPI functions require the

pre-declaration of variable types, to ensure they are passed correctly between non-

homogenous systems [40]. It is worth noting that to ensure the support of

heterogeneous systems, as a variable is passed from one node to another, it is converted

20

to an MPI-defined data type. It is safe to say this has not been tested on Cell based

systems, and may be problematic.

5.4 Establishing a secure channel and SSH

Before MPI can begin passing data between nodes, a secure channel of communication

must first be established. Since the process must be automated, a system that requires

the user to enter a password every time a connection between nodes is established is

infeasible, yet basic security should always be maintained. SSH (Secure Shell) provides an

answer to both these problems [43]. SSH uses public key cryptography to authenticate a

remote machine and for the remote machine to authenticate the user if necessary [44]. A

machine using public key cryptography generates two keys (a very long sequence of

numbers), a public key and a private key. A message is encrypted with the public key,

and can only be decrypted with the matching private key. While the two keys are

mathematically related, it is infeasible to calculate the private key from the public one

[44]. Thus each node has two files; one containing its private key and another containing

a list of public keys. It can then encrypt a message with the appropriate public key and

send it to the node with the corresponding private key, without the need for any kind of

password. To add another node, one simply adds the new nodes public key to the other

nodes public key lists.

5.5 Software development on the PS3

It is safe to say that software development on the PS3 was not a priority when Sony

designed it, as its main function is as a media platform and game console. This, coupled

with the fact that a non-standard kernel of Linux is being installed non-standard

hardware, as well as the flood of compilation options Linux presents mean that even

seemingly trivial tasks in the set-up have the possibility of being a stalling point in the

development process. A few such examples are discussed below.

5.5.1 Installing The Software Development Kit (SDK)

The software development kit (SDK) for the CELL processor is freely available for

download from the Brazilian Centre for Supercomputing. The tutorial that was followed

recommended manually downloading the SDK, writing it to a CD and installing from there

[10]. Following their recommendations, there was no difficulty downloading or writing

the SDK to CD. Linux has dedicated software installation daemon known as YUM, and it

is this that must be used to install the SDK. Despite changing the installation path in the

appropriate folder from the internet site for the Brazilian Centre for Supercomputing to

the CD-ROM, YUM insisted on downloading from the internet. It was by pure chance

that the folder containing the path file was open while an installation was attempted, it

21

became apparent the file placed there was re-named before a second file with the

original settings was created. After this, the system would attempt to install from the

internet and if it failed, the new file was deleted and the original renamed, leaving no

trace that anything had ever happened. There seems to be no way to change this

setting. Eventually, after several attempts which failed due to a poor connection, the

SDK installed successfully. This little technicality is ultimately trivial, but it illustrates

nicely some of the more peculiar quirks involving development on the PS3.

5.5.2 Development Environment

While there is a version of the Opera development environment that supports the cell

SDK [23], it ran so slowly that it was more hindrance than help. Instead, the text editor

GEDIT was used to produce code, which was compiled, linked and run via the console.

Debugging was accomplished with feedback from the compiler and the tried and trusted

method of writing variable values to the screen, a task made significantly more complex

by running several tasks in parallel. For this reason, most development was done with

only the primary and one secondary core active.

With the platform and cluster setup discussed, chapter 5 examines the CBEA in detail,

and explains how its many features add up to produce performance gains of up to forty

times that of other comparatively priced modern processors, as well as giving a practical

example of how these features may be put to use.

22

6 The Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture Engineis the result of an attempt made by Sony

Computer Entertainment, the Toshiba Corporation and IBM, collectively known as STI, to

address some of the issues presented by more traditional single core processors [45].

6.1 Architecture

The architecture of the Cell Broadband Engine is laid out in Figure 3 below [23, 32].

Figure 3: Cell Broadband Engine Arcitecture

More detailed diagrams of the PPU and an SPU are shown below in Figure 4 and Figure 5

[23, 32].

 Figure 4: PowerPC Element Layout Figure 5: Synergistic Processing Element Layout

23

The Cell is composed of several components. There is one 64 bit PowerPC, known as the

Power Processing Element (PPE) as well as eight “Synergistic Processing Elements” (SPEs).

Each core is linked to the others, as well as external RAM and any other external sources

by a high speed “Element Interconnect Bus” (EIB). The EIB can transfer up to 96 bytes of

data per clock cycle. The EIB interfaces with external devised such as ram through the

Cell Broadband Element Interface (BEI) and one of two Input/output Interfaces (IOIF).

RAM may also be accessed through the Memory Interface Control unit (MIC). The PPE

has separate level 1 caches for instructions and data, as well as a level 2 data cache. Each

SPE has its own 256 kB cache of memory, as well as its own “Memory Flow Controller”

(MFC). Henceforth, the cache associated with an SPU is referred to as “Local Storage”

(LS), and the rest of system memory as “Effective Storage”(ES). Likewise, the memory

locations will be referred to as “Local Address “(LA) and “Effective Address” (EA) [32].

The major difference between the Cell and other multi-core processors is specialization.

Most current multiple core CPU’s have two to four identical, complete cores. However,

with the cell, the PPU and SPUs are distinctly different entities. The PPU is a full-fledged

PowerPC core, with an extended instruction set for single instruction multiple data

(SIMD) operations. Its purpose is to run the operating system as well as serving as a

central, controlling hub for the eight SPUs [45, 32].

 The SPUs, in turn have been stripped down; they would not be capable of the

sophisticated instructions required to run an operating system. In trade, they have been

optimized to run single precision floating point operations, with an extensive SIMD

instruction set [32]. As an example, to further simplify and optimise the SPU’s many data

types have been cut entirely and only the most common floating point representations

are supported. De-normalised numbers are automatically set to zero [45]. Referring

back to section 5.3, this feature might become problematic as MPI first converts all

variables to its own format before being transmitted, and then converted back to the

original format on the other side. Additionally, there is only one rounding mode. As a

result applications requiring a great deal of floating point operations, such as is common

in media applications enjoy a performance boost in the range of an order of magnitude

over more traditional architectures [46]. This is especially true in the field of scientific

computing, such as performing complex matrix operations [23].

In addition to the performance benefits gained by the specialization of the SPUs, is a

marked drop in the power requirements, making the Cell one of the most power efficient

processors available in today’s market [23].

Possibly the most innovative feature of the Cell is the Memory Flow Controller (MFC)

attached to each SPU. An MFC is responsible for moving memory between local storage

space and effective storage space. Because it is effectively a separate entity from the

SPU, memory transfers may be managed independently and asynchronously from the

SPU. By working on one block of memory while another is loaded to or from effective

24

storage, a technique known as “double buffering”, the effects of memory latency may be

drastically reduced or nullified completely. Because of this, certain applications may gain

up to two orders magnitude in performance, rather than the single order generally

predicted [23]. Of course, this feature is something of a double-edged sword. Unless

great care is taken on the side of the programmer, memory transfers may affect memory

blocks currently being processed. The consequences of which could be anything from

erroneous results to a total system crash.

6.2 Communication

In order to initiate a transfer of elements from effective storage to local storage, or vice

versa, an SPU must write a request to the associated registers of its MFC. This is known

as a Direct Memory Access (DMA) request. A DMA request must provide a local address,

an effective address, the number of elements to be transferred as well as a 5 bit tag to

identify the transfer [23]. This request may also be written by the PPU, or any of the

other SPU’s. While being able to initiate a transfer from the PPU itself is certainly a

useful feature, it reinforces the danger of memory transfers mentioned above, as the

PPU has no means of determining where an SPU is in its instruction cycle unless specific

synchronization points are coded in.

The MFC’s provide a variety of useful features, including scatter/gather instructions as

demonstrated in Figure 6

Figure 6: Illustration of Scatter/Gather Operations

A scatter command sends an identical block of data to each SPU, while a gather is the

opposite; the PPU gathers a block of data from each SPU and combines it. The tags

associated with a transfer play a major role in managing the flow of memory [23]. An

MFC can queue multiple transfers, potentially with different tag, and when beneficial,

the MFC may process these commands out of order. An SPU can also await the

completion of all DMA requests, or only a specific selection of tags. This is accomplished

by writing to a 32 bit wide mask register. 32 bits are used because the tag id is 5 bits

wide, corresponding to 32 possible values. A ‘1’ is positive, and a ‘0’ is ignored [32]. It is

worth noting that this register is, counter-intuitively, defaulted to all 0’s. In other words,

the SPU will not wait for any transfers to complete before acting. The register must be

25

manually set. This simple feature makes the complicated task of parallelization a great

deal easier, by allowing the programmer to easily distinguish different threads within the

system and to act accordingly. As a simple example, deadlocks, where two processors

await information from the other the before continuing can easily be avoided simply by

assigning different tag groups.

A DMA command is not the only means by which an SPU can communicate with the PPU:

There are also “Mailboxes” and “Signal Notification Channels”, or simply “Signals” [23].

The differences between the two are somewhat subtle and are described below. Both

Mailboxes and Signals are unidirectional, that is, depending on the direction, they may be

used to communicate with the PPU from the SPU, or vice-versa, but one channel may not

do both.

6.2.1 Mailboxes

There are two single entry, 32 bit wide outgoing mailboxes (from SPU to PPU), one of

which may be configured to trigger an interrupt. There is also one four entry inbound

mailbox, meaning up to four 32 bit wide messages may be stored. Associated with this

mailbox is a 2 bit wide register containing the number of awaiting messages. It is

imperative to query this register before attempting a read, as reading an empty mailbox

will stall the SPU until a message arrives. Reading from the mailbox will consume one

entry and decrement the counter register [23].

6.2.2 Signal Notification channels

There are two, 32 bit, signal notification channels, both of which of are inbound. The

second channel may be configured to trigger an interrupt, but it is the first channel that

presents the most interesting features. It may be configured to operate in two modes;

overwrite mode and logical OR mode. In overwrite mode, the PPU simply replaces any

data that was previously in the signal box. Needless to say, this is somewhat dangerous

as there is no guarantee the previous message was processed.

In “Logical Or”, as the name suggests, any incoming message undergoes a bitwise OR

operation with any signal still pending in the signal box [23]. This effectively allows the

programmer to line up to thirty two discreet commands for the SPU to perform without

the possibility of overwriting a previous message. A read from either Signal channel

resets all bits to 0.

A common example of the uses of signal and mail boxes is in the initiation of a DMA

transfer. An SPU may alert the PPU that it requires another block of memory to process

by writing a pre-defined number to an outgoing mailbox. The PPU will pack the required

data into a single contiguous block before writing the address of the first element and

the number of elements in the block to the four entry inbound mailbox before writing a

“complete” signal to the inbound signal channel. Meanwhile, the SPU has stalled, polling

26

the signal channel a “complete” signal, before reading the address and number of the

data elements. Using this information, it will then initiate a DMA transfer and assign a

tag to the transfer, polling the DMA register until the transfer associated with the tag is

complete before finally writing a “Transfer complete” message to an outgoing mailbox, at

which time the PPU can release the reserved memory. Of course, the SPU need not be

stalled polling for completion signals, it may instead process any remaining data assigned

to it between polls, reducing performance losses.

This process might seem overly complex for a simple transfer of memory, but it leaves

both the PPU and the SPU free for other tasks while the transfer is taking place.

6.3 The SPU

One of the major advantages the Cell has over other CPU or GPU architectures is the

ability to load each SPU with different ‘programs’. That is, each SPU may perform

functions unrelated to any of the others. This is known as context switching [23], and

allows the SPUs to be configured to run the same instruction set, or to be chained

together in a similar fashion to a production line. This also frees up additional memory

for use in the program itself; a blessing considering each SPU has only 256 kB of local

storage.

The true power of the SPU lies in the extensive SIMD instruction set. There are 128 4-

word long registers (on the SPU, a word is 32 bits) that support these operations [32].

These are known as vectors. This effectively quadruples the processing power of a core

that has already been stripped down and optimised for single precision floating point

operations. However, this can present the programmer with some interesting challenges

as to how to arrange data, as not all problems split neatly into four block units, adding to

the already complex task of optimising a problem.

A simple example of programming for the Cell is presented below in an iterative

approach to calculating PI.

6.3.1 Calculating PI

The method discussed is a common, iterative method of calculating Pi, known as a Monte

Carlo Method [47]. Consider a square whose sides are given as 2 units long, then the

area of that square is four units squared. Now consider a circle in the centre of the

square with a radius of one a unit as is shown in Figure 7, then the area of the circle is

πr2, which equals pi because r is 1.

27

Figure 7: Monte Carlo Pi Estimation

The ratio of the area of the circle to the area of the square is

Now random points are generated within the square, and the number of points that are

also within the circle are counted, using the equation √ . With enough

points the ratio of the circle to the square - π - may be calculated [47].

The most obvious approach to solve this problem with an ordinary processor is shown

below.

1. Generate a random pair of points

2. Square the points.

3. Add points together

4. Root result.

5. Compare the results to 1, if less than, add to a total.

6. Repeat 1 – 5 as often as necessary. More repetitions will yield greater accuracy

[47].

7. Divide the total number of points within the circle the total number of points

generated and multiply by 4.

Now, from an optimisation point of view, there are several shortcuts that can be made

immediately. Since the root of 1 is 1, the costly root operation may be done away with

entirely. Secondly, while generating two random numbers between 0 and 1, might not

take much time, there is a more efficient way to accomplish it. Instead two arrays with

ten thousand random numbers each can be created, the pairs of points may be cycled to

create a sample set of = 100 million discrete points, which is more than sufficient

for the purpose.

Now, four X coordinates and four Y coordinates may be copied into vectors. Multiply and

add the results, then compare it with 1, and if it is less, 1 is added for every appropriate

result to a running total. Once complete, cycle the coordinates and repeat the process.

28

However, there is still one way to further improve performance. “If” statements can

dramatically slow down a process, as the SPU must first make the comparison before

fetching the next instruction to execute. One of the many SIMD instructions available to

the SPU is a simple less than/greater comparison. A positive result will result in a word

comprising all 1’s, while a negative result yields all zeros. If this result then undergoes a

bitwise AND function with a vector containing the number 1, the result may then be

added directly to the running total without any branches in the code at all.

Of course, each SPU on the CELL may perform this entire process without any

communication between each other, and the end results may be passed to the PPU via

Mailboxes.

The result of this process is 50 times speed improvement over a 2.4 GHz Intel Core Duo

processor running the process initially described.

Chapter five discusses the background of the application, including a description of

nuclear imaging and coded apertures. Chapter six briefly discusses the purpose and

responsibilities of the three layers of processors; namely the central PC node and the

PPUs and SPUs on the PS3’s before giving a more detailed explanation of the

implementation of the software of each, with a particular focus given to the

communication between layers.

29

7 Nuclear Imaging

7.1 Background

Nuclear imaging is the practice of introducing small quantities of a radioactive substance,

known as a radiopharmaceutical, into the body [48]. There are many such

radiopharmaceuticals, each intended to interact with different tissue types such as lung,

heart, kidney, thyroid, etc. They may be taken up readily by some tissues and not by

others thus introducing activity differences which can be visualised with a gamma

camera [48].

Unfortunately, high energy electro-magnetic rays are difficult to focus with a simple

optical lens. For instance, X-rays may only be focused by grazing incident reflection at

energies lower than 10 KeV [49, 50].

For this reason, the usual method of producing a usable image in nuclear imaging is with

the use of a collimator [51]. A parallel-hole collimator consists of septa, or cells, and is

designed to allow only rays perpendicular to the source and camera surface pass. This

essentially produces a one-to-one image on the camera, demonstrated below in Figure 8

[51].

Figure 8: Illustration of a Parallel-Hole Collimator

However, a parallel-hole collimator is a very large, heavy apparatus that is difficult to

maneuver into position, and may restrict the resolution of the final image. An alternative

to a collimator is the simple pin-hole camera. The resolution of a pinhole camera is

inversely proportional to the size of the hole; a very small hole would produce a very high

resolution, while a large hole would yield a poor resolution [51].

30

7.2 Coded Apertures

The major advantage of a pin-hole camera is that it works equally well electro-magnetic

rays of all energies. Regrettably, a single pinhole camera is not quite up to the demands

of nuclear imaging. In order to yield a suitably high resolution image, a relatively small

hole would have to be used, restricting the number of rays that would pass through. Due

to current limitations in the sensitivity of the gamma cameras used, a patient would

either be forced to remain still for an inordinately long time, or be exposed to

dangerously high levels of radiation [51].

The solution to the problem is to use multiple pin-hole cameras on a single plate, all

placed in mathematically significant positions. The greater the number of holes, the

greater amount of radiation passed to the camera. This is known as a coded aperture [51,

50]. The result is a number of overlapping images, which may appear to be a random

blur to the naked eye, but may be decoded into a single image, given the geometry of the

aperture plate. The advantage of this method is that as many holes as necessary may be

used without compromising the resolution of the final image. Also, a coded aperture

would be much smaller and weigh significantly less than a collimator [51].

Coded apertures have been used in astronomy for a number of years, but have only

recently been applied to the field of nuclear imaging [51]. However, their use in

astronomy is viable because the source of the radiation is so far away that the EMF rays

from a single source are effectively all parallel to each other and perpendicular to the

surface of the aperture plate and gamma camera. This is known as far-field imaging.

In contrast, in nuclear imaging the aperture plate and gamma camera are placed as close

the patient as possible in order increase the ray count on the camera. As one might

expect, this is called near-field imaging. Due to the close proximity of the source, the

aperture plate and the camera, rays are scattered at all angles, as shown below in Figure

9 [51].

Because of this, when the image is reconstructed, artifacts and ghost images are

introduced. There are a number of methods that may be used to reduce or eliminate

these images, but it is clear the precise design and dimensions of the aperture plate are

important in the application of this technique.

31

Figure 9:Far and Near Field Coded Apertures

7.3 Design and Testing

While the design and efficiency of a coded aperture may be done purely mathematically,

its effectiveness must still be established in real-life situations.

It is unreasonable to physically construct every variation of a design, and deliberately

expose a patient to even small amounts of radiation simply to determine the

effectiveness of a particular pattern. Apart from the danger to the patient, it would be

prohibitively expensive in terms of both money and time.

The next best thing then, is a computer model of the process. Even modern serial

processors have been found to be inadequate for this process, due to sheer

computational power required. Literally hundreds of billions of rays may be traced in a

single simulation.

The University of the Witwatersrand has thus far produced two versions of such a

simulator. The first, took up to two weeks running on six machines to run a single

simulation [51]. The second, written in C++ with a slightly different algorithm was at

least 100 times faster, taking just 20 hours to run on a single machine. However, all

simulations run thus far involved a strictly two dimensional source. The ultimate goal is

to run three dimensional simulations by simulating two dimensional ‘slices’, one at a

time. Unfortunately, this may involve fifty or more such slices, bringing the running time

of an individual simulation back into the realm of the unacceptable.

The requirement, then, is for a massive increase in the processing power available to run

these simulations. The next chapter briefly examines the history of computing, as well as

the direction future processors may take.

32

8 Software Architecture Overview

As was discussed in section 2.4, there are three distinct levels of hardware: The central

PC node, the PPUs on the PS3s and their corresponding SPUs. As one would expect,

there are three correlated layers of software, all written and compiled separately. This

chapter first presents a brief description of the design philosophies of each layer of

software, before giving a more detailed description of the implementation.

8.1 Task Level Paradigms

Since it is known that the slowest component of current parallel networks is

communication, this should be kept to a minimum. This can be achieved relatively easily

in a Coded Aperture simulation by breaking the sources up into sections, performing all

the costly calculations separately and only recombining the results at the very end.

However, care must be taken to strike a balance between communication latency and

load balancing. In the PC and PPU layers, preference should be given to allocating work

over performing their own calculations. Also, since the PPU has access to over a

thousand times the memory available to an SPU, and the PC potentially even more so, it

makes intuitive sense to store data for later computation, giving priority to processing

requests from a lower level.

8.1.1 The PC

The PC represents both the input and output sources of the simulation. On the input

side, there are several tasks that the PC should perform before passing the information

on. It must convert the source and aperture bitmaps into useful data structures; in this

case, two dimensional arrays. This could be done on the PPU’s but it make little sense to

perform a task six times when it can be done once, and also guarantees uniformity. In

the case of multiple queued simulations, it should ensure that only one instance of each

source and aperture array is stored with a unique key, saving space and once again

guaranteeing uniformity. It should pack the rest of the simulation information into a

single data structure that is easily transferable. It should also perform basic functionality

tests on the given information; ensuring rays do not pass around the aperture and any

other factors that might cause the simulations to fail.

With the input taken care of, the PC can now transfer each source, aperture and

information data structures to the PPUs. With 256Mb of memory, they can easily store

all the information without having to request and replace data from the PC.

The PC can now delegate rows of sources from a particular simulation to each PPU, and

wait to recombine the results.

Once all simulations have been completed, the PC can decode each image, and the

process will be complete.

33

8.1.2 The PPU

Because it must also run an operating system in the background, the PPU can easily

become a bottleneck. For this reason, the PPU should be treated purely as

administrative layer: assigning work to and responding to requests from the SPUs while

relaying the results back to the PC.

8.2 Instruction Level Paradigms

The above section spoke about how the program as a whole should be split up and

managed. This is the point where all the actual calculations and computations that make

up the simulator are done. As such, the difficulties that must be overcome and the

choices that must be made are of a very different nature.

8.2.1 The SPU

There are a number of complex calculations the SPU must perform, and as mentioned in

section 6.3 the true power of the SPU lies in its extensive SIMD instruction set, which

allows it to operate on a vector of four 32 bit words in a single instruction cycle. The

challenge is then to organise the program structure and data such that full capability of

feature is utilised. A task that, at times, is more easily said than done. As an example,

despite the fact that the SIMD vectors contain four entries, only two multiplications may

be done concurrently. In digital logic, the product of two 32 bit words is a single 64 bit

number. Since a vector is only 128 bits wide, it has space to store only two answers. This

is true even if it is known that the product can always be contained in the original 32 bits,

as is the case when the number is only ever going to be multiplied by a 1 or a 0. This is an

operation that is relatively common, and so a more efficient method should be found.

Another concern is that the SPUs have not been designed to handle branches in the code

well [23], so “if” statements and “while” loops should be avoided if possible. The SPUs

should instead perform exactly the same sequence of instructions regardless of the

circumstances. As will be seen in chapter 9 these restrictions often result in the use of

bitwise instructions, and in many places the code more closely resemble assembly level

languages than standard C++. In turn, this requires anyone attempting to understand or

alter the code to have an intrinsic comprehension of microprocessors at a more primitive

level.

The final challenge is that the SPU has only 256 kB of memory of local memory. It is self-

evident that at some point in the ray tracing process information about the aperture

must be required, however these files (or arrays used to represent them) may be very

large, and so a method of selecting and storing an appropriate section of the aperture

must be supported. Additionally, memory transfers and many calculations are

dependent on the data being aligned in a particular way in local memory. Once again,

34

this more closely resembles developing embedded applications on small microprocessors

rather than programs written in higher languages to run on computers.

8.3 The PC

The PC layer of software can be broken down into three specific tasks; initialization which

includes loading and copying simulation details to all nodes, load delegation which

ensures no processors are left idle for want of work and result recombination and

processing.

8.3.1 Input

The input to the simulation software is simply a text file containing the following

information: The names of the source and aperture image bitmaps as well the location of

the aperture and camera on the z axis – the source is assumed to be at zero – and the

thickness of the aperture. The nomenclature of axes used is illustrated in Figure 10

below. It must show the length of the sides of the source, camera and aperture as well

as the number of block per side (the resolution) of the camera, which is assumed to be

square. The resolution of the source and aperture images is read directly from the image

itself. Lastly, the input file must contain the attenuation constant α, which is dependent

on the material used in the aperture as well as the energy of the radiation. Units are

usually given in millimetres, though any unit of length may be used as long as it is used

consistently throughout all the variables in the simulation.

Each unique source and aperture image is assigned a unique key, to avoid storing

multiple copies of the same image, and to ensure uniformity.

In order to transform the source and aperture bitmaps into a two dimensional character

array, an open source C++ library, easyBMP, was used [52]. A bitmap pixel consists of

three colours – red, green, and blue. In a grey scale image, the values for all three are

the same, and so only the blue layer was extracted. In the source image, light colours

represent areas of high radiation and dark areas low radiation. A black pixel yields a

value of 0 and a white pixel gives 255. In the aperture image, white represents empty

space while black represents solid material. In this case white is assigned a value of zero

and, for reasons explained in section 9.2, black is given the value -1, which currently looks

to the PC like 255, but more importantly, yields a register filled only with 1s.

It is assumed that source, aperture and camera are aligned, and so the centres of all

three are set to be at 0,0 on the x,y plane. If for some reason, the user wishes the source

or the aperture to be out of alignment, he may pad the image with a black margin.

If one viewed the setup as shown below in Figure 10, with the source at the front and the

camera at the back, the left and down represent negative values, while right and up

represent positive values. Camera cells are numbered, starting with 0 at the bottom left

35

and increasing to the right until the border is reached, then the numbering continues

from the left one row up. Although no structure or variable actually contains theses

values, they are used when recombining results.

Figure 10: Coded Aperture Simulation Setup

From the dimensions and resolutions of the source, aperture, camera, the PC calculates

the distance between the centres of two adjacent source blocks () and the

distance between two adjacent cell boundaries of the aperture and camera.

The PC then packs all the simulation information into easily transferable data structs. (A

struct, short for structure, is a C++ term for a user definable data type which may be

composed of any number of other data types, a simple example is a Student struct,

which would contain strings for name and surname, and unsigned integers for student

number, date of birth, ID number and so forth) With this this accomplished, it then

performs a few basic checks. It ensures source, aperture and camera are all roughly the

same size, it checks to see that the aperture does indeed come before the camera and

that the aperture and the camera do not overlap because of the thickness of the

aperture. It also checks that rays traced from the bottom left of the source to the

bottom left of the camera pass through the aperture, and the same for the top right,

ensuring all rays pass through the aperture. If a problem is found, it alerts the user and

asks if he wishes to continue, if necessary black margins may be added to the aperture.

Finally, source and aperture arrays, as well a simulation data structs are copied to each

PPU and the PC transmits a “Begin” signal, once received, each PPU replies with a

request for work, and we move into the run time phase of the simulations.

36

8.3.2 Run Time

Having each PPU request work instead of directly assigning tasks may seem somewhat

unintuitive, but it makes load sharing a good deal easier. Instead of polling each PPU in

turn, the PC need only check if a request has been sent. In answer of a request, the PC

will assign a PPU with a simulation key and a number of rows of the source to process.

The PC may also receive a “complete signal”, indicating that there are results ready to be

transferred. The results will come in the form of an array, the first number indicating the

simulation key, the second number is the quantity of results sent in that batch and after

that are the results themselves in blocks of 10. The first unit in a block contains the

number of the central cell on the camera, where the results are to be added, and the

remaining nine are the results for the central cell and its eight neighbours. The necessity

for the values in the 8 neighbouring cells is explained in section 9.3.

A “Complete” signal does not necessarily mean the PPU has finished processing its

assigned load, merely that an array on the PPU whose purpose is to temporarily hold

results is full. As mentioned, DMA transfers require memory to be 16 bit aligned, or 64

bit aligned for maximum transfer speed and so memory management on them can

become tiresome. Also, the PS3 has only 256 MB of RAM, while the PC may have up to 4

GBs, thus it makes sense to move results from the PS3 to the PC as quickly as possible.

The results are not processed on the PPU for the reasons mentioned in section 8.1.2.

The PC then has three responsibilities during runtime; in order of importance they are

work delegation, result transmission and result processing.

8.3.3 Completion

Once all simulations have been completed, the PC must only finish processing any results

it still has stored and write the completed simulation results to a file for de-coding.

8.4 The PPU

As mentioned in section 8.1.2 the PPU has the potential to act as a bottleneck with even

relatively simple calculations. The PPU layer of software, therefore, has been designed to

act purely as an administrative layer, sending information forward to the SPUs and

sending results back to the PC.

Initially, the PPU waits for the PC to copy forward the source and aperture image arrays,

first receiving the dimensions so it can call malloc (A C++ command used to requisition a

contiguous space in memory) to allocate data space for each image. With the sources

and apertures received, it creates an array containing the memory addresses of the start

of each row source and aperture, as well a as an array containing the x-coordinates of the

centre of each cell in each source, using the position of the bottom and left most source

37

cell and the calculated previously. The reasons for these calculations will become

apparent in section 9.2.

With all relevant information received or calculated, as with the PC, the PPU forwards a

signal to the SPU’s that they begin.

The SPUs may send back a number of signals, most of which are requests, with a few

‘task complete’ indicators. The SPU’s main request will be for source cells to process.

The PPU has two 32 entry arrays that will be sent to the SPU: One floating point array

and on character array. The first entry of the character array is the simulation key. If the

key is different from the one currently being processed by the SPU, the SPU will send a

request for new simulation information. The remaining 31 entries are the intensities of

the source points. The first entry of the floating point array is the y coordinate of the

row being sent, the remaining 31 entries are x coordinates. If an entry in source row is

zero, the PPU will skip it and move on to the next entry, which is why it must also supply

the x-coordinates of each source point. If the end of a row is reached, a 0 will be set in

the intensity array and the SPU will process up to that point before requesting more

data.

The SPU may also request the memory address of the starting point of a particular row

on the aperture image. Since memory is severely limited, the SPU may not be able to

store the entire aperture, thus it may be forced to store only a small part relevant to the

space the currently simulated rays pass through. This is why the memory addresses of

the start of each aperture row are calculated once initially and then stored. It was

decided that the SPUs could only reasonably store 5120 cells at a time; only ten or so

rows of the larger apertures simulated.

The SPUs may also request the memory address of an array into which to move results.

Keeping in mind that these arrays must be 64 byte aligned, each PPU has 36 such arrays,

each ten times the size of an SPU result batch. Once again, memory restrictions prevent

the SPU’s from storing too many results at once. By making the storage arrays on the

PPU ten times the size of their SPU counterparts, communication times may be kept to a

minimum. Since the PPU arrays are contiguous, the SPU may calculate the next address

to transfer results to. An SPU will never mix results from two different simulations, they

will instead request a new address. In this way, results for different simulations are kept

separate. The PPU has two arrays monitoring the result storage arrays. The first keeps

the simulation key associated with the results, the second contains one of only three

values: 0 = Available for allocation, 1 = In Use, 2 = Complete.

Once a “complete” value is found, the entire array is sent back to the PC, along with the

appropriate simulation key, and reset to 0 for re-allocation.

38

The PPU will continue this loop until it’s delegated work load is completed, at which point

it will request more work from the PC. If the PC sends a ‘no work remaining’ signal, the

PPU will wait until all SPUs return a ‘complete’ signal before ensuring that all threads are

successfully terminated before sending the remaining results back to the PC along with

its own ‘complete signal.

8.4.1 Communication conflict

While integer numbers, both signed and unsigned, could be passed freely between the

PC and PPUs, any floating point numbers sent between them were always automatically

set to zero in the process. The best guess as to the reason behind this behaviour is the

somewhat expected clash between MPI’s requirement to convert floating point numbers

to a native format before transmission to ensure compatibility in non-homogenous

systems, and the Cell’s reduced number of supported data types. Several

implementations of the MPI protocol were used, including LAM MPI and OPENMPI, two

of the most common, with identical results. Creating a new integer variable before

typesetting and copying the floating point variable into the new integer variable, one bit

at a time, then transmitting the integer and reversing the process on the other side met

with some success, but proved too unreliable to be a valid solution to the problem.

While MPI has become the most frequently used communication protocol in modern

clusters, an alternative may be to revert to the older PVM (Parallel Virtual Machine)

protocol.

Another alternative is to convert every unit in a floating point number into an integer,

recombining them into a single integer value while storing the position of decimal point,

transmitting these to the PPU and then re-converting these to back to a floating point.

However, assuming each number is ten digits long, converting a floating point to an

integer, or vice versa would require ten multiplications (to get one unit at a time to the

left of the decimal point), ten rounding procedures (to eliminate the numbers to the right

of the decimal point), ten subtractions (to remove the now processed number), ten

further multiplications (to place the number in the correct place in the integer) and then

ten additions to reconstruct the integer number, before transmitting. The procedure

would then have to be reversed to yield the original floating point number on the other

side. It was decided that this procedure consumes too many resources for what is

ultimately a relatively unimportant procedure.

8.5 The SPU

As one might expect, the PPUs layer of software is the most complex, as it must deal with

both the administration of receiving details, sending results back to the PPU and, of

course, performing all calculations pertinent to the simulations. As was discussed in

section 6.3, coding on the SPU is a far more complex task than on either the PC or the

PPU due to the fact that the data must be aligned and arranged to take full advantage of

39

the attached MFC module and SIMD instruction set, as well as manually managing the

limited amount of memory while avoiding any branching code, such as “IF Statements”

and “While Loops”, where possible [23].

An understanding of the computational complexity of low level commands, such as the

number of clock cycles required to perform an addition calculation versus multiplication

is also useful when attempting to optimise performance. Three examples of overcoming

such issues are given in chapter 9 . This chapter will instead focus on the structure of the

code and detail the responsibilities of the SPU.

There are three basic layers of abstraction in the SPU layer, while each layer is stored in

separate .cpp and .h files, only the lower two are represented by classes. The first,

caSim_spu is simply responsible for initiating the SPU and ensuring its successful

termination. The second, henceforth referred to as the spu_manager, is the

administrative layer and is responsible for all communication between the SPU its

associated PPU, sending results and requests and handling inbound commands. The

lowest layer, called base_spu, is left to co-ordinate all calculations involved in the actual

simulation. The complete code may be found in appendix B.

8.5.1 caSim_spu

In clarification of the name, ca refers to coded aperture, Sim refers to simulation, and spu

is simply following a naming convention, and refers to the fact that the .h or .cpp file is

associated with the SPU rather than the PPU. This first layer is as simple as described. Its

only purposes are the successful initialisation of the SPU, as well as transferring some

data related to natural exponential function discussed in section 9.4 and the successful

termination of the application. After initialisation, caSim_spu creates and calls a single

instance of the spu_manger class.

8.5.2 SPU_Manager

The Spu_Manager class is more complex, handling a number of instances of a-

synchronous memory transfers and double buffering, ensuring no calculations are being

performed on a section of memory currently involved in a memory transfer.

As mentioned in section 8.3, a particular structure (or struct) is used to transport source

information. A 32 entry floating point array stores the x-coordinates of the corresponding

source points, with the first entry containing the y-coordinate of the contained row.

Another 32 entry character array holds the related intensities of the sources, with the

first entry containing the simulation key. The SPU_Manager contains two such structs,

one active, the other held in backup. When one source is finished, the backup source is

made active and a request for a new set of source information is sent. The reply is

handled by the MFC and loaded a-synchronously in the background, thus no time is

wasted waiting for a reply from the PPU when a source has been finished. This is a text-

40

book example of double buffering, and is used extensively by the SPU_Manager. Of

course it must keep track of which source is currently active, which block in the source is

currently in use, and most importantly, whether the transfer of new data has been

completed before switching active source structs.

If the simulation key of a source struct is different to the one currently being processed,

the SPU_Manager is responsible for sending a request for the new simulation details,

initiating the transfer once an address has been returned, and halting the rest of the

processes until this transfer is complete.

As with the source structs, there are two result structs, each one tenth the length of the

same on the PPU. The SPU_Manager stores the address of the start of one such struct on

the PPU. When one result struct is filled on the SPU, the SPU sends the results, switches

the active storage container, and calculates the address of the next location on the PPU

to send to. This is done nine times before “result full” signal and a “request new

address” signal are sent. Though, as with most other communications, two Addresses

are stored, an active address and a backup. Once the active address if full, the backup is

made active and the replied address is used to replace the backup, another example of

double buffering.

The SPU_Manager must also keep track of the first row of the aperture stored. Due to

the lack of memory available to the SPU, a single 5120 entry character array is used to

store the state of each aperture cell. This may or may not be enough to contain the

entire aperture. If not, only the portion required for the current state in the simulation is

stored. If this changes, it is the responsibility of the SPU_Manager to request the

required section. Since it is unlikely that more than ten cells are crossed in the y axis

(calculations on known simulations averaged out at three to four) , and since the largest

resolution aperture so far simulated was fewer than 500 cells wide, only entire rows are

stored. If only partial rows were stored, it would greatly increase the time and

complexity of transferring aperture data. Thus full rows are stored, but only the relevant

section of columns are used.

The PPU may also issue a “Halt” command to each SPU in order to process a possible

backlog of results; naturally there is an associated “Start” command. The SPU_Manager

is responsible for holding the SPU state on a “Halt” command and resume on a “Start”

command.

8.5.3 Base_Spu

The final layer of abstraction is known as Base_Spu, and it is this layer that actually

handles all calculations in the simulation. While all calculations are performed with the

four word vector SIMD instruction set, this section will give a brief overview of the

41

simulation process, and is only discussed in a general sense. More detail as to how the

calculations are carried out are given in chapter 9

The first step in the process is to create a ray object. To calculate the necessary

constants, two things are required; a starting point and an ending point. It is possible to

do this with by selecting a start point and specifying a gradient, however, many

calculations are greatly simplified by choosing the former approach.

The start point is provided by the source struct and the end point is calculated from the

position of a cell on the camera. In terms of the camera, only the location of the bottom

and left edges, the number of cells per side and the dimensions of each side are stored.

The Base_Spu must therefore calculate an end point for the ray from the number of the

currently active cell, and the given dimensions.

Due to the four entry vector SIMD nature of the SPUs, four rays are traced at once with

16 (4 X 4) rays traced per camera cell, one row of rays at a time. The complexity of the

mathematics of a line in three-dimensional space is simplified by breaking it down into a

combination of two, two-dimensional lines; one on the (x,z) plane, the other on the (y,z)

plane. Thus calculations may be made with the well-known formulae for straight lines:

Or more specifically in this case

With constants m,n,c and d determined for each of the four rays, the remainder of the

simulation may be broken down into three specific parts, each presenting a unique

problem and each is discussed in detail in chapter 9 . The first step is to determine the

amount of solid material each ray passed through. The second is to multiply the source

by an attenuation constant given by

Where S is the intensity of the source, r is the amount of material passed through,

calculated in the previous step, and α is an attenuation constant dependent on the type

of material used and the energy of the radiation [51].

In reality, Gamma cameras are not perfect - a single gamma ray may trigger several

neighbouring cells if it does not fall in the centre of a cell. To emulate this, the final value

N is distributed among the central cell and its eight neighbours according to the formula

[51].

42

Where v is the value to be added to a cell, N is the value calculated in the previous step, x

and y are the width and height of a cell respectively and Δx and Δy are the distances to

the point from the centre of each cell in the x and y axis respectively. As an example,

see Figure 11 below.

Figure 11: Illustration Of gamma camera ray distribution

A negative value indicates that the ray hit farther than one full cell length away, and

would not, in reality, affect the cell, and is thus discarded if it occurs. However, the

simulation is structured in such a way that these values are not calculated at all, as it

would be a waste of resources.

The black dot is in the centre of the nine blocks, marked 1, has a Δx and Δy of 0, thus

100% of the value is added. For all other blocks Δx = x and Δy = y, which results in 0%

being added. The light grey dot marked 2 has Δx =1/2x but Δy = 0 for both blocks. Thus

50% of the total value is added to each block. The dark grey dot marked 3 has Δx = 1/2x

and Δy = 1/2y for all four block, thus 25% of the total value is added to all four blocks.

With all calculations performed, the results are added to the active results storage array,

and the process is repeated on the three remaining rows on the camera cell, before again

repeating the process on the next cell on the camera. Once all camera cells have been

simulated, the next source block is selected and the procedure is repeated. Thus, it can

be seen that the running time of a whole simulation increases exponentially with the

resolution of the source and camera.

43

This concludes the basic structure of the SPU layer of software, for a more detailed

description of the class structure, members and functions, refer to the associated

doxygen documentation on the attached CD.

Having discussed the general structure of the software on the SPU, chapter 7 presents

three key areas of simulation itself, and details their implementation on a SIMD

architecture.

44

9 Coding on the SPU

Working on the SPU involves a movement from task level parallelism to instruction level,

due to the SIMD nature of the processor.

The challenge is to take full advantage of the SIMD instruction set, while avoiding

branching code, such as if statements and while loops. The SPU assumes sequential flow,

correctly predicted branches execute in a single cycle, but an incorrectly predicted

branch incurs an 18 to 19 cycle penalty [23], thus it is important to reduce the

opportunities for incorrectly predicted braches. The uses and difficulties of programming

in a SIMD environment will be demonstrated in two cases, before its application to near

field coded-aperture simulation is examined.

9.1 SIMD Examples

9.1.1 Case 1

To demonstrate how SIMD may be used, consider the following code segment:

int x[4];
int y[4];
int z[4];
for (int i = 0; i < 4; i++)
{
 z[i] =x[i] + y[i];
}

This is a simple piece of code, adding four corresponding values in two arrays. The code
may be vectorised as demonstrated below in Figure 12. Each x value and each y value
are loaded into on cell of a vector, before a single addition instruction is given.

Figure 12: Vector addition

45

This demonstrates that four addition operations may be completed simultaneously, and

will yield a four times performance gain.

However, this is a simple case, and most operations do not fit so easily into the SIMD

architecture, and the programmer must often demonstrate a little creativity to solve the

problem.

9.1.2 Case 2

Consider the code segment below

 int x[4] = {6;1;9;2};
 int y[4] = {9;2;7;5};

iInt z[4];
 for(int i = 0; i < 4; i++)
 {
 if (x[i] < y[i])
 {
 z[i] = x[i];
 }
 else
 z[i] = y[i];
 }

Once again, this is a relatively trivial function, simply finding the lower value of two

arrays in their respective places. However, this operation does not fit so neatly into

vector form, as each pair must be compared separately and there is no guarantee that

the results will be the same, yet the same operations must be carried out on all four

values simultaneously and give a correct result.

One cannot simply say “if x < y”, since four values must be compared concurrently and

the results of each set may differ, and running through a loop for each value in the arrays

defeats the purpose of using a SIMD instruction set. This is why it is important to learn

the entire instruction set, and what each instruction returns as seemingly unimportant

commands can make a difficult task much easier.

The above problem can be solved with a comparison instruction and a few bitwise logic

commands.

The comparison function compares each value in the x array with its counter-part in the y

array. If the comparison is true, the result is a four byte word with each bit set to 1.

Likewise, if the comparison is false, each bit is set to zero. This is shown below in Figure

13.

46

Figure 13: Vector Less Than Operation

This does not give the final answer, but it does create the tool to so, namely the binary

array at the bottom of a figure. Since all the bits are set to one, a bitwise AND function

will give out the same number, if all the bits are set to zero, a bitwise AND will always

give zero as the answer. Thus by ‘ANDing’ the x array with the binary array, as shown

below in Figure 14, only the x values that were smaller than the y values are left.

Figure 14: Vector 'AND' Operation

Now the values that are zero must come from the y array, so the binary array must be

inverted with a NOT instruction to give Figure 15.

Figure 15: Vector 'NOT' Operation'

47

The same process that was used to on the x array is now repeated on the y array, as

shown in Figure 16.

Figure 16: Second 'And' Operation

Adding the two results together, the correct answer is obtained, as shown in Figure 17.

Figure 17: Result Recombination

This may seem like an overly complicated method, but bitwise operations are

computationally inexpensive, and it fulfils the criteria of having no branches; exactly the

same sequence of instructions is followed every time.

This procedure, or variations of it, is used extensively when calculating the amount of

solid material a ray has passed through.

9.2 Distance Calculation

Probably the most important element of a near-field coded aperture simulator is the

algorithm used to determine the amount of solid material a ray passes through.

The most obvious approach is to divide the aperture into n slices in the z plane, then

calculate the x and y positions of the ray at each slice, then use the result to calculate

48

which cell of the aperture is in, and if the block is made of solid material, add Δz to a

running total, where Δz is the distance between slices. This is illustrated in Figure 18.

Figure 18: Cross-section of a ray passing through an aperture

The black horizontal lines represent cell borders, while the vertical, dotted lines

represent the points at which a calculation is made.

Indeed, this is the method used in the first version of the simulator written in MatLab

[51]. One can increase accuracy at the price of increased running time by increasing the

number of slices the aperture is divided in to.

A more efficient method can be seen by viewing the aperture as a grid. A ray can only

change states – into or out of solid material – at the lines of the grid, representing the

sides of the cells. Thus accuracy can be increased and running time decreased by only

making calculations when the ray crosses one of these lines.

The above equations are used to find the entry and exit points of cells. At each

boundary, these positions were used to calculate which cell in the aperture the ray had

moved into, still adding Δz as before, if the cell moved through was solid.

This was the algorithm used in the second, C++ version of the simulator.

The goal now is to further improve on this algorithm, and there are several areas that can

easily be optimised.

The entry point and exit points to the aperture, as well as the first x and y boundary

crossings of a ray can only be calculated using the linear equations above. However,

once these initial calculations have been made, it can be see that because the gradients

of the rays do not change, and the size of the cells do not vary, the Δz between two x or y

boundaries must remain constant. Thus, Δz may be calculated once, and then added to a

49

running total every time. This reduces the number of operations from a multiplication

and an addition to just a single addition. While this may not seem much, when repeated

hundreds of billions of times, it can become quite meaningful.

Also, instead of calculating which block of the aperture enters, the actual physical

process may be emulated. The aperture is stored in a single, contiguous 5120 entry

character array. The signs on the gradients of ray do not change, that is, a ray with

positive gradients will continue to move up and right through the aperture, a ray with

negative gradients will do the opposite. If the initial point of entry is calculated, and a

pointer is used to store the address, this aspect may be taken advantage of. If the ray

crosses a y boundary, moving from one column to another, one may be added to or

subtract from the pointer. If the ray crosses an x boundary, moving from one row to

another, then the number of cells in a row is added or subtracted. This process directly

simulates the ray moving through the aperture, and once again, a number of operations

are reduced to just a single addition. Once the pointer has been operated on, it can

simply be de-referenced to determine if the cell is made of solid material or not.

The only caveat to this method is that there must be a preliminary check to ensure that

no rays exit through the side of the aperture, as this would produce erroneous results.

9.2.1 Implementation discussion

Now that a few ways have been found to further increase the efficiency of the algorithm,

they must now be implemented, avoiding the use of branching code as much as possible.

It is here the use of bitwise operations is invaluable. All bitwise operations, such as: less

than, equal to, AND, NOR and so on are all included in the SIMD instruction set. If a

condition is true, it returns a 4 byte word with all bit set to 1, if the condition is false, all

bits are set to 0.

As an example, imagine calculating the Δz of a ray moving from one cell to another. If

the cell is solid, then it can be multiplied by one, if not, multiplied by zero, the result then

added to a total. However, in the world of digital logic, one type of variable must be

multiplied by another of the same type, and the product of two 32 bit words is one 64 bit

word, despite the fact that the answer can only be either the original 32 bit word, or

zero. On an ordinary processor, this would not matter, but since on the SPU, all answers

must fit into their original 32 bit containers to take advantage of the SIMD architecture.

The answer is simple one, instead of multiplying by one, the same effect may be achieved

by performing a bitwise AND operation on a word with all bits set to 1, as in section 9.1.2.

If the bits are set to 0, then this is the same as multiplying by zero.

50

9.2.2 Overview

The following is an overview of the steps taken to calculate the distance of solid material

a ray passes through. Section 9.2.4 will present a much more detailed description of

each step, however, it is a somewhat intricate process and a simpler explanation will be

useful in understanding the procedure.

1. Calculate the initial aperture cell the ray enters for the pointer, the z locations of

the first x and y boundary crossings and the Δz between two x and two y borders.

2. Compare the z locations of the first x boundary crossing, the first y boundary

crossing, and the z location of the end of the aperture.

3. If the ray crosses an x boundary first, subtract the z location of its crossing from

the z location of the entry point (ie the face of the array), de-reference the

pointer and perform a bitwise AND on the two results (a de-referenced array will

yield all 1’s if solid). Add the result to a running total. Lastly, add Δz for the x

boundaries to the position of the first x crossing. Do the same if the first crossing

is a y boundary, obviously substituting the y equivalent. If it exits the back of the

array, then the process is finished.

4. Update the pointer as discussed above, and repeat from step 2 until the process is

finished.

9.2.3 SIMD

Now a method of determining how much solid material a ray passes through is known,

but a few decisions must be made as how best to implement it within a SIMD framework.

Firstly, the starting point of a ray is given, but an end point must be selected in order to

calculate the necessary constants. This point will naturally fall on either the aperture or

the camera. An arbitrary point could be chosen, but it makes little sense considering a

well-chosen end point could simplify a great many calculations. By and large, there is

little reason to consider the aperture as a valid option. It has already been demonstrated

that once the initial entry block has been calculated, there are few calculation to be

made, none of which are made easier by selecting the aperture as a target. In addition,

more calculations would have to be run to see if a ray passing through the aperture

would even hit the camera.

The camera is the more logical choice, as it allows the distribution constants to be pre-

calculated and hard coded.

The next question is ‘Are calculations going to be carried out on four rays at a time, or at

four points on a single ray?’ On a single ray, there is no way of knowing if it going to pass

through a number of boundaries divisible by four before exiting the aperture, indeed, it is

most likely this will not be the case, and so performance will be lost.

51

If four rays are simulated simultaneously, performance will likewise be wasted unless all

four rays pass through the same number of boundaries. However, if 4 x 4 rays are

simulated per cell in the camera, it is likely that all four rays will have nearly identical

gradients, and are thus like to cross a similar number of boundaries in the aperture.

This, then, seems like the logical approach, and is the one chosen for implementation.

9.2.4 Implementation

Now that the general structure of the algorithm has been laid out, as well as how the

SIMD architecture is applied, what follows is a point by point explanation of the actual

implementation. Unfortunately a flowchart would be redundant, as one of the main

goals of working on an SPU is to avoid branching code [23]

First, though, is a list of vector names used and their purpose. For reference, all names

listed below are taken directly from the code itself.

 Znow – The Current Z position of the simulation

 ΔZ – The total amount of solid material a ray has passed through in the Z axis

 Znext – The Z position of the next boundary crossing

 ZXnext – The Z position of the next x boundary

 Zynext – The Z position of the next y boundary

 Zend – The Z location of the end of the aperture.

 ΔZX – The distance in the z plane a ray will travel between two x bounds

 ΔZY – The distance in the z plane a ray will travel between two Y bounds

 Pointers – Keep track of the pointers to the array

 Ones – Vector filled with 1’s, for bitwise operations, contains the value -1.

 Zeros – Vector Filled with 0’s for bitwise operations.

 One – Used to manipulate Pointers, contains the value 1.

 Aperture_Columns - Used to manipulate Pointers

Some Cell jargon may also be useful. To “Splat” a number means to copy a single value

into all four words in a vector, and to “Gather” means to add each of the four values to

provide a single result. The following are the preliminary steps required for a simulation

to run. Any names underlined refer to the vectors defined above.

1. Splat Ones, One, Zeros and Aperture_Columns with the appropriate numbers.

2. Splat Znow with the Z position of the front position.

3. Splat Zend with the Z position of the back of the aperture.

4. Splat ΔZ with 0, since the ray has crossed no material yet.

5. Calculate ΔZX and ΔZY and splat the values to the respective vectors.

52

6. Calculate the Z crossings of the first x and y bounds for each ray, load the values into

ZXnext and ZYnext

7. Calculate the initial entry cells for each ray, and set the values in Pointers.

The next step bears some explanation. If any rays have negative gradients, then the

numbers in ONE or Aperture_Columns effectively need to multiplied by -1. Once

again, in the digital world, there is another way of accomplishing this; finding the 2’s

complement. This is essentially inverting all the bits in a word and adding one. The

result is the negative of the same value. Thus NOT bitwise operator is applied and

one is added. However, there is the possibility that the gradient is positive, and this is

not required. Once again, attempting to avoid “if statements”, the following process

can be followed. This technique is applied extensively in the simulation process, and

so bears explanation.

1. Perform the operation m < 0 and store the result.

2. AND the result with One. If the condition is true, then One is left untouched, if not,

the result is 0.

3. NOT One and add 1. If One was zero, then it flips to all 1’s, adding one resets to zero.

If One was not zero, then the two’s complement has been found. (ie, -1)

4. Perform the operation m >= 0 and store the result.(Note, use the original m)

5. AND the result with One.

6. Add the results of 3 and 5. Since only one condition can be true, this leaves the final,

correct answer, regardless of whether the gradient is positive or negative.

7. Repeat the entire process with Aperture Columns.

This is essentially the same technique as is discussed in section 9.1.2.

All the information required to simulate a single row of rays has now been calculated and

loaded. The Process is as follows. In the following procedure, assume that Vectors retain

their values, and the results of the operations are stored elsewhere unless explicitly

stated that the value is changed.

1. ZXnext <= ZYnext

2. AND ZXnext with Ones.

3. ZXnext > ZYnext

4. AND ZYnext with Ones.

5. Add results of 2 and 4, and use result to set ZNext

6. ZNext <= Zend

7. AND ZNext with result from 6.

8. NOT Zend

9. Add results from 7 and 8. Set the result as Znext

53

10. Subtract Znow from Znext

11. De-reference pointers.

12. AND results from 11 and 10. Add result to ΔZ.

13. AND result from 1 with ONE and add to Pointers.

14. AND results from 1 with ΔZX and add to ZXnext

15. AND result from 3 with Aperture_Columns and add to Pointers.

16. AND result from 3 with ΔZY and add to ZYnext

17. Gather ZNext If the result is greater than 1, return to strep 1.

Thus, throughout the entire process, only a single branch can occur, either all rays

have exited the aperture, in which case all in ZNext will be greater than Zend, and the

next simulation can begin, or there are still rays within the aperture and loop must

continue. One can see that the most complex operation performed during the

operation is a simple addition. The cost, however, is effort and clarity. This would be

a relatively trivial task if written in even standard c++ on a conventional processor.

However, on an SPU it took a great deal longer, and while technically not extremely

complex, the above procedure is certainly not intuitive.

9.3 Camera Distribution

It has already been decided that the camera is a natural choice for the end points of a ray

object. It also makes sense, given the four word architecture of the SIMD vectors to

simulate 16 (4 * 4) rays per cell, this is shown below in Figure 19.

Figure 19: Ray distribution on camera cell

The decision to make the camera the end point for the rays, has two major advantages,

the first is that uniformity of ray distribution is assured and the second is that the

54

distribution constants can be hard-coded. It is clear there are four vectors, containing the

values shown below in Table 3.

Taking a closer look at the figure, there is a natural symmetry to the distribution

constants. This is demonstrated in Figure 20.

Figure 20: Illustration of symmetry of Distribution Constants

From this, it can be seen that, providentially, each dot affects four cells, and each cell is

affected by four dots, this fits nicely into the natural four word architecture, however,

from Table 3 above, it can be seen that the vectors are not quite right, as only two

entries in a given vector affect the relevant four blocks.

A lengthy piece of code that deals with two blocks and two dots at once could be written,

but a far more elegant solution presents itself, if the data is just re-arranged slightly. This

is demonstrated in below in Table 4 and graphically in Figure 21.

Vector 1 1A 1B 1C 1D

Vector 2 2A 2B 2C 2D

Vector 3 3A 3B 3C 3D

Vector 4 4A 4B 4C 4D

Table 3: Vector Representation of Ray Distribution

55

By re-arranging the data in this way, we are left with four dots, each affecting four blocks,

but the key point here is that a single vector loaded with pre-defined distribution values

may be multiplied by each of the four vectors to attain a result.

Vector 1 1A -> 1A 1B -> 1B 1C -> 2B 1D -> 2A

Vector 2 2A -> 1D 2B -> 1C 2C –> 2C 2D -> 2D

Vector 3 3A -> 4D 3B -> 4C 3C -> 3C 3D -> 3D

Vector 4 4A -> 4A 4B -> 4B 4C -> 3B 4D -> 3 A

Table 4: Revised Vector Representation of Ray Distribution

Figure 21: Reorganised Distribution Constants

Of course, each cell simulation affects only nine cells, not the 16(4 X 4) that have been

calculated. The blocks must thus be recombined as shown in Figure 22.

56

Figure 22: Camera cell Re-combination

9.4 Natural Exponent Calculations

The freeware SDK for the SPUs does not include a function for calculating natural

exponentials as is required in section 8.5.3 in the form of

Where S is the original intensity of the source, r is the amount of solid material passed

through and α is constant dependant on the type of material and energy of the radiation.

There are two fundamental approaches to the problem [53, 54]. The first is to

implement a recursive algorithm such as the Taylor series [53]

 ∑

This is non-ideal, it can be seen that the above formulae contains a large number of

multiplications, divisions and additions. It seems impractical to dedicate that kind

computational complexity on what, in reality, is a relatively small piece of the problem.

The second method is to construct a lookup table for all values it is realistic to expect to

encounter [54]. It was calculated that it is extremely unlikely to encounter a value of x < -

9. It was further calculated that at least three decimal places of precision were required

for the simulation to maintain accuracy. This means accounting for values between 0

and -9.999, a total of ten thousand values. Twenty thousand values for a full lookup

table with a 1 to 1 correspondence, though this can be reduced if one is willing to

calculate where a value is stored in relation to the start of the table. Even so, ten

thousand floating point values will require 40 kB of memory. Once again, this is

57

unacceptable. With only 256 kB to work with, dedicating such a large portion of memory

to the problem is just as unrealistic as implementing a recursive algorithm. Of course,

this table could be stored in the local memory of the PPU, but that would require a

request to and a response from the PPU, which has already been established to be a

possible bottleneck.

The solution is again a simple one, and can be found in basic algebra. If 1.234 is written

as 1.2 + 0.034, then the same can be done in the exponential, which leads to the

following

The table can therefore be broken into two parts, one containing values for the range of

e0.0 to e-9.9, the other storing e0.000 to e-0.099. In this format, each table would have to

store only 100 values each, for a total of 200 with a single multiplication required to join

the two. 200 values correspond to 800 bytes of memory, which is perfectly acceptable.

Of course, the tables could be broken down further into four tables of just ten entries

each, however it was judged that space saved did not warrant two additional

multiplication procedures.

Trials on a PC have shown that this method actually yields similar performance to a single

table. The time taken for a single multiplication is apparently comparable to retrieving a

value from a table that large.

Thus given a seemingly intractable problem, a simple, elegant solution has been found

that may even benefit other, more traditional processing architectures.

9.5 Conclusion

Developing on the SPU is more reminiscent of developing on small, embedded

microchips than on a fully fledged PCU. While they present a few limitations, especially

in the amount of memory, the SPU’s allow the Cell architecture a performance gain in the

orders of magnitude of traditional, sequential processing units [23]. However, there is a

steep learning curve involved, and a great deal of creativity is sometimes required to take

full advantage of the processing power available.

Having seen a view of the finer details of the simulator, chapter 8 presents the findings of

this dissertation, including a performance breakdown of the simulator, the conclusions of

the project, and recommendations for future work.

58

10 Results

As discussed previously in section 8.4.1, floating point communication between the PPUs

and the PC prevented the project as a whole from being completed and a number of

systems, such as the final combining of the results on the PC were never implemented.

However, these are areas of low computational intensity, and are unlikely to affect the

final performance of the system. The core components, those associated with the high

computational cost and prohibitive running times of a near field coded aperture

simulator, were successfully implemented. The results of which are discussed below.

10.1 Performance Testing

While no complete simulations were run, enough functionality was established to run a

comparison to the original PC counterpart. The results were partially dependant on the

geometry of the coded aperture with relative performance increasing with thicker

aperture plates and higher resolution patterns. Thicker apertures and more complex

patterns increase the ratio of number of calculations done to communication between

processing elements and memory transfers. Using configurations similar to those

demonstrated in [51], it was found that the Cell processor could perform all necessary

calculations on a single ray at approximately the expected 40 times performance gain

seen in the Pi estimation application. This is demonstrated visually below in Figure 23:

Relative performance of simulator versions. which shows the relative performance of the

original Matlab simulator, its C++ counterpart and the CBEA simulator. Note the

logarithmic scale of the y axis.

 This figure is a little misleading, as most previous simulations ran at 3 x3 rays per cell of

the camera, while the PS3 runs at a constant 4 x4 rays per cell, due to the nature of the

SIMD architecture. Thus simulations will yield a

 times speed enhancement.

Nevertheless, simulations which once took almost a day to run (and nearly 2 weeks on six

machines before that) could now be completed in little under an hour on a single

machine; twelve minutes running on the cluster. Additionally, there is a slight

improvement in accuracy, and the option to easily add more nodes if required. The idea

of running fifty slides of a three dimensional simulation is now quite plausible.

59

Figure 23: Relative performance of simulator versions.

10.2 Performance Breakdown

Due to the complex and sometimes unpredictable nature of a parallel application, it is

vital to be able to find any unexpected bottlenecks that might hamper performance. In

order to accomplish this, four main areas in the code were identified.

1. The generation of ray objects and their associated constants.

2. Calculating the total amount of solid material a ray passed through in both the X

and Y axes.

3. The Conversion from distances in X and Y axes to actual distance of material the

ray passed through.

4. Using the above figure and the initial intensity of the ray, calculating the

attenuation of the ray.

5. Calculating the distribution of 16 rays to the targeted cell and its neighbours.

In order to identify the proportion of time each of the processes took, the following

method was used.

1. Run a single, complete ray calculation in a “for loop” with enough iterations that

it takes at least a few milliseconds, long enough for the clock function to

accurately record any changes in time. This serves as a control time.

2. Each of the above 5 points represent separate function calls. The total running

time of the process can then be broken down into the following equation.

60

3. Where T1 is the control time, N is the time of one specific function, and X is the

time represented by the remaining four functions. Placing the target function in

another for loop for another 101 iterations gives

4. Subtracting T1 from T2 gives

5. Which yields

And N can be solved.

6. The percentage of the running time that N takes to execute can then be found by

7. This process is repeated for each of the five functions listed above. The total

should make up the bulk of run time, if not the same process can be used to

narrow down the section of code acting as a bottleneck and remedy it.

The results of the above process on the five main functions are approximately

1. 10%

2. 40%

3. < 1%

4. 20%

5. 20%

It can be seen that the total comes to about 90% of the total running time, which is a

good indication that there is very little wasted time, and that the computational power of

the chip is being applied where it is needed.

Since no complete simulations were run, the accuracy of the results was verified both by

hand calculation and comparison to a small sectional results created by the original

simulators.

10.3 Discussion on Cell Broadband Engine Architecture

10.3.1 The Positive

Essentially, the Cell delivers what was promised. There is no doubt that as a processor it

has at least 40 times the raw computing power of other standard, comparatively priced

processors, while maintaining the flexibility that Graphic Processing Units lack. It has all

the advantages of a distributed memory system, while the high speed Element

Interconnect Bus and Memory Flow Controller units allow a skilled programmer to hide

the time traditionally lost to memory latency in such systems. It also has a large, shared

61

address space. Thus, it combines the best aspects of distributed and shared memory

models of parallelism. The Mailbox and Signal notification channels provide an excellent

means of communicating commands or of synchronisation. The bitwise ‘OR’ mode of

writing to a Signal notification channel proved particularly useful, as it allows one to

queue up commands without having to worry about overwriting previously written ones.

Although not specifically required in this application, the ability to switch contexts (that

is, essentially loading a new program onto the SPU) on the fly will be invaluable in

dynamic load balancing. An SPU application for each for each parallelisable task in a

program must be written, and then simply loaded needed, allowing for the optimisation

of a specific task in an assembly line fashion, but with the ability to adapt to bottlenecks

as and when they occur. Overall, the Cell provides a number of original and useful

innovations.

10.3.2 The Negative

The Sony PS3, while appearing to be a near perfect platform for scientific computing due

to its low cost to computational power ratio has a number of weaknesses that prevent it

from living up to its potential. The 256Mb of ram it has is simply not enough to run

modern operating systems and development environments. As seen in section 5.5.2, this

means coding and debugging through a text editor and a console, a process that has

been obsolete for at least a decade. The difficulties of debugging through a console by

writing text to the screen are compounded by the parallel nature of the chip, and it is

nearly impossible to judge the timing of events, a critical component of any parallel

application. In addition, including the libraries required to write text to the screen in the

SPU code take up valuable space in its 256kB cache.

Also, the somewhat erratic behaviour and interactions of freeware operating systems

and applications make the PS3 an inherently unstable platform to develop for. Finally,

the ability to install an operating system over the game OS has recently been removed in

the firmware. Ultimately, using the PS3 for scientific computing an unfeasible

undertaking, a conclusion supported by [10].

The Cell is still a very new technology, and as such it still has a number of weaknesses.

Often, the most difficult part of working on the Cell was simply the lack of

documentation and support. As an example, the provided documentation made

reference to the fact that the inbound Signal Notification Channel had an ‘or’ mode, but

made no mention of how to enable it. It was eventually found, in a log detailing the

changes between SDK versions 2.1 and 3.0, that a specific flag must be set when

initialising the SPU, and while it described the register in which the flag bit was located,

no mention was made of its actual position in the register, and so was found by trial and

error. There are also places where processes are counter-intuitive: in order to initiate a

DMA transfer, the address of a variable containing the address of the data to be sent

must be supplied, rather than just the address containing the data. As discussed in

62

section 6.2, there is 5 bit tag, identifying the transfer. There is a 32 bit mask (5 bits = 32

possible values) which can be set to hide or show if DMA commands with the appropriate

tags are complete or not, one might expect this mask to initially be set to look for all tags

when, in fact, the reverse is true. These examples are by no means the full extent of the

Cells idiosyncrasies, but they do serve to demonstrate the point. These complaints are

not specific to the Cell itself, only to the general lack of documentation and knowledge in

the community.

Working on the SPU’s is more reminiscent of working on a microprocessor in Assembly

language than on a CPU in C++. Indeed, many of the instructions directly related to the

SPU are one-to-one conversions from Assembly to C++ [23]. Each SPU has 128 128-bit

registers used for SIMD vector instructions. Because of this, care must be taken when

aligning data, and must often be managed manually. DMA transfers also require the data

to be sixteen bit aligned.

The real challenge represented by the chip itself is in the SIMD instruction set. Taking full

advantage of operating on four data points at once, while attempting to avoid ‘if

statements’ and ‘while loops’ certainly requires a little more creativity than traditional,

sequential, coding. Taking this into account with the parallel nature of environment and

potentially asynchronous memory transfers without the benefit of development

environment and a de-bug mode, the whole process can become somewhat interesting.

While all three layers of software were implemented, tested and fully functional, barring

some of the code on the PC required to recombine all results, it was the communication

layer between the PC and the PPU’s - the MPI interface - that failed. The reduced

number of supported data types may well grant enhanced performance, but it also

means the Cell may be incompatible with a number of common libraries and

applications, such as MPI.

10.4 Recommendations for Future work

As discussed in section 8.4.1, should the decision be made to complete the work

presented in this dissertation, the recommended starting point would be to revert the

inter-nodal communication from MPI to the earlier PRV protocol.

Should the problem of a high speed, near field coded aperture simulator be revisited, the

minimal amount of node intercommunication required and the high degree of processor

independence, characteristic of all embarrassingly parallel applications, makes this an

ideal candidate for grid computing. While the techniques described in chapter 9 have

been adapted for SIMD computation, they should still provide a solid foundation for an

efficient grid based simulator.

63

11 Conclusion

With a very high performance to cost ratio, the Sony PlayStation 3 sounds like an ideal

platform for scientific computing. However, the relatively small amount of memory as

well as the lack of standardisation and support detracts greatly from its appeal.

Similarly, the Cell Broadband Engine Architecture offers a lot of promise. The

combination of a small, local memory cache with a larger shared address space with

dedicated, on-chip memory transfer modules goes a long way to solving the problems of

inter-communication between nodes in a parallel environment. The stripped down

Synergistic Processing Elements offer floating point calculation performance previously

only seen on GPUs, but without sacrificing the flexibility of a standard CPU.

Unfortunately, the Cell is not without fault. The cost of performance is effort and clarity.

The SIMD instruction set is powerful, but unwieldy, requiring the developer to carefully

manage and manually align data. Avoiding branching code increases performance, but is

often difficult and produces code that is very cumbersome for others to read and

understand. Finally, the Cell is still a very new technology, and suffers a few unintuitive

idiosyncrasies and a general lack of documentation and support. Generally however, for

the purposes of scientific or academic computing, the benefits far outweigh the

drawbacks.

Additionally, a second generation of CBEA processors is on the horizon, optimised for a

64 bit word architecture. It seems reasonable to assume that a second, more mature

iteration of the Cell processor will have smoothed many of the original eccentricities,

while documentation and support will become more widespread.

The qualities of the Cell processor naturally reflect the qualities of parallel processing as a

whole. The technology is still new, and a number of issues have not been adequately

resolved for general use. The difficulties of memory management, work allocation and

synchronisation in a parallel environment are currently too complex to be dealt with in a

complier and must be hand coded. In this new form of processing, development tools

and practices have effectively been regressed by a decade or more. What’s more, not all

problems can benefit from parallelisation. The potential gains are limited by what

percentage of a given problem is inherently serial in nature, as described in Amdahl’s Law

[19].

Under the correct circumstances, however, the results are impressive. It has been shown

that the Sony PlayStation 3 can achieve a 40 fold gain in performance over similarly

priced processors with a more traditional architecture. In addition, this figure is scalable.

Unlike serial processors, more nodes may be added to a cluster more or less at will.

64

Like the relationship between modern, quantum physics and its older Newtonian

counterpart, parallel processing is not yet ready for general use in all facets of

computing, but it does provide a powerful tool for solving problems that warrant its cost.

65

References

12 Bibliography

[1] T. Garrison, Oceanography: An Invitation to Marine Science, 5th ed, Thompson Brooks/Cole,

2005.

[2] Bureau International des Poids et Mesures, “The International system of units (SI)” 2006.

[3] W. G. Hoover, “Smooth Particle Applied Mechanics: The State of the Art,” World Scientific,

no. 25, 2006.

[4] J. Steinhoff, Vorticity Confinement: A New Technique for Computing Vortex Dominated

Flows, John Wiley & Sons, 1994.

[5] P. Yuan and L. Schaefer, “Equations of State in a lattice Boltzmann model,” Physics of Fluids,

vol. 18, 2006.

[6] H. Fliegel and R. DiEsposti, “GPS AND RELATIVITY: AN ENGINEERING OVERVIEW,” Precise

Time and Time Interval, vol. 28, 1996.

[7] S. Adve et al., “Parallel Computing Research at Illinois: The UPCRC Agenda,” 2008.

[8] K. Asanovic, R. Bodik, K. Keutzer et al., “The Landscape of Parallel Computing Research: A,”

EECS, 2006.

[9] O. Erik, E. Sevre, M. Christiansen et al., “Experiments in scientific computation on the

PlayStation 3,” Visual Geosciences, vol. 13, pp. 125-132, June 2008.

[10] A. Buttari, P. Luszczek et al., “A Rough Guide to Scientific Computing On the PlayStation 3,”

2007.

[11] W. T. Moye, “ENIAC: The Army-Sponsored Revolution,” January 1996. [Online]. Available:

http://bandwidthco.com/history/eniac/ENIAC%20-

%20The%20Army%20Sponsored%20Revolution.pdf. [Accessed 11 January 2011].

[12] D. Bodanis, Electric Universe, Crown Publishers, 2005.

[13] B. Winston, Media technology and society: a history: from the telegraph to the Internet,

Routeledge, 1998.

[14] K. Hafner, Where Wizards Stay Up Late: The Origins Of The Internet, Simon and Schuster

Paperbacks, 1998.

66

[15] M. Malone, The Microprocessor: A Biography, vol. 1, Springer, 1995.

[16] “The top 500 Supercomputing Sites,” November 2003. [Online]. Available:

http://www.top500.org/list/2003/11/. [Accessed jANUARY 2011].

[17] L. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2002.

[18] J. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996..

[19] M. Hill and M. Marty, “Amdahl's Law in the Multicore Era,” Published by the IEEE Computer

Society, July 2008. [Online]. Available:

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf.

[Accessed 12 January 2011].

[20] A. Grama, Introduction to Parallel Computing, 2 ed., Addison-Wesley, 2003.

[21] R. Buyya, “Parallel Computing at a Glance,” 2000.

[22] M. Gardner, “Mathematical Games - The fantastic combinations of John Conway's new

solitaire game "life",” Scientific American, pp. 120-123, October 1970.

[23] IBM, Cell Broadband Engine Programming Handbook, IBM, 2009.

[24] E. Korpela, A. Werthimer and e. al, “SETI@HOME—MASSIVELY DISTRIBUTED COMPUTING

FOR SETI,” COMPUTING IN SCIENCE & ENGINEERING, pp. 78-83, January/February 2001.

[25] B. e. a. Purcell, “Ray Tracing on Programmable Graphics Hardware,” ACM Transactions on

Graphics, vol. 21, pp. 703 - 712, 2002.

[26] J. Owens, D. Luebke and e. al, “A Survey of General-Purpose Computation on Graphics

Hardware.,” State of the Art Reports, 2005.

[27] N. Thrane and L. O. Simonsen, “A comparison of Acceleration Structures for GPU Assisted

Ray Tracing.,” M.S. thesis, Unversity of Aarhus, 2005.

[28] T. Whitted, “An Improved Illumination Model for Shaded Display,” Communications of the

ACM, 1980.

[29] N. A. Carr, J. Hall and J. C. Hart, “The Ray Engine,” Proceedings of the ACM SIG-Grapgh/

Eurographics conference on Graphics hardware, pp. 37-46, 2002.

[30] T. Purcell, Ray Tracing on a stream processor, Phd Thesis, 2004.

[31] C. Martin, Ray Tracing on GPU - Diploma Thesis, University of Applied Sciences Basel , 2005.

[32] IBM, “Cell BE architecture,” October 2006. [Online]. Available:

67

http://cell.scei.co.jp/pdf/CBE_Architecture_v101.pdf. [Accessed 25 12 2012].

[33] University of Massachusetts Dartmouth, “Playstation 3 Gravity grid,” [Online]. Available:

http://gravity.phy.umassd.edu/ps3.html. [Accessed 11 11 2012].

[34] IBM, IBM 1961 BRL Report, 1961.

[35] M. Warren, J. Salmon and e. al, “Pentium Pro Inside: I. A Treecode at 430 Gigaflops on ASCI

Red, II. Price/Performance of $50/Mflop on Loki and Hyglac,” IEEE, 1997.

[36] University of Kentucky, “University Of Kentucky Supercomputer Breaks The $100 Per GFLOPS

Barrier,” August 2003. [Online]. Available: http://aggregate.org/KASY0/press.html.

[37] S. Graham, M. Snir et a.l, “Getting up to speed: The future of supercomputing,” THE

NATIONAL ACADEMIES PRESS, 2005.

[38] M. Garrels, “Init run levels,” in Introduction to Linux: A hands on Guide, 2008, CreateSpace

Independent Publishing Platform.

[39] “Oracle VM VirtualBox®: User Manual,” 2011.

[40] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel Programming with the

Message-Passing Interface, 2nd ed., MIT Press, 1994.

[41] 2009. Lam-MPI home page. Available: http://www.lam-mpi.org/.

[42] 2011. Open-Mpi home page. Available: http://www.open-mpi.org/.

[43] Network Working Group , “The Secure Shell (SSH) Authentication Protocol,” 2006.

[44] M. Anoop, “Public Key Cryptography: Applications Algorithms and Mathematical

Explanations”.

[45] IBM, “Innovation Matters,” 23 January 2009. [Online]. Available:

http://domino.research.ibm.com/comm/research.nsf/pages/d.compsci.brochure2006.html.

[Accessed 13 December 2010].

[46] M. Gschwind, H. Hofstee, B. Flachs et al., “Synegystic Processing in Cells Multicore

Architechure,” IEEE Computer Society, March/April 2006. [Online]. Available:

http://www.research.ibm.com/people/m/mikeg/papers/2006_ieeemicro.pdf. [Accessed 13

12 2010].

[47] J. Liu, Monte Carlo Strategies on Scientific Computing, Springer, 2008.

[48] R. Henkin, D. Bova et al., Nuclear Medicine, 2nd ed., Mosby, 2006.

68

[49] P. Maoa, F. Harrison and e. al, “Development of grazing incidence multilayer mirrors for hard

X-ray focusing telescopes”.

[50] J. In ’ t Zand, “Coded aperture camera imaging concept,” 1996. [Online]. Available:

http://astrophysics.gsfc.nasa.gov/cai/coded_intr.html. [Accessed 26 12 2012].

[51] D. M. Starfield, “Towards clinically useful coded apertures for planar nuclear medicine

imaging,” Ph.D Thesis, University of the Witwatersrand, 2009.

[52] P. Macklin, 2011. [Online]. Available: http://easybmp.sourceforge.net/.

[53] J.-M. Muller, Elementary functions, 2nd ed., Birkhäuser , 2006.

[54] J. Hart, Computer Approximations, Wiley, 1968.

[55] R. Vuducy, A. Chandramowlishwaran et al., “On the Limits of GPU Acceleration,” 2010.

