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Abstract

The aim of this research project was to investigate the benefits and shortfalls of Energy-
Shaping controllers and use them to gain insight into industry standard control methods.
Energy is a fundamental quantity in nature and is conserved due to the first law of thermo-
dynamics. Actuators, necessarily, add energy into the system or remove energy from the
system. Sensors remove (in some cases, negligible amounts of) energy from the system
in order to measure some variable of interest. All control algorithms employing feedback,
must measure at least one physical variable of the system to be controlled. Furthermore, all
control algorithms must have at least one actuator in order to control the system. Hence, by
proxy, all control algorithms affect the energy of the system. Two key ideas in energy shap-
ing are: Energy Balancing and Power Shaping. Other control algorithms, ultimately, can
be classed under these two ideas. Three constructive energy shaping algorithms were in-
vestigated, these were: Controller Interpolation via a common Lyapunov function, Energy-
Shaping Robot control and Interconnection and Damping Assignment Passivity Based Con-
trol (IDAPBC). In this dissertation, a modelling paradigm has been proposed which is a
multi-dimensional extension of The Energy Method. It is also shown that dissipation acts as
a constant disturbance in the power of the system. A non-linear PI-like controller has been
proposed to compensate for it. A clear link between the phase portrait and the system’s
energy is shown. By shaping the system energy, the phase portrait is altered and by shaping
the phase portrait, the time domain performance is altered. In this dissertation, the various
techniques used to shape a system’s energy and power are all applied to the same non-linear
control problem i.e. the simple pendulum. With hindsight, popular existing control strate-
gies are reinterpreted via energy and power shaping. A notable example is that PID is shown
to affect the potential and dissipation functions of the closed loop system. A pattern that
emerged during the research was that: in order to fully control the system, it appears that
the controller must be at least as computationally complicated as the plant. This is dubbed,
the Controller Complexity Principle. A formal proof of it is a recommended research direc-
tion. The main conclusion of this work is that energy and power are concepts of tremendous
value in control engineering. In this dissertation, energy and power are used to tie seem-
ingly disparate work in control together. It is this re-interpretation of existing techniques in
terms of energy and power which demonstrates the value of physical reasoning in control.
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1 Introduction

“The journey of a thousand miles begins with a broken fan belt and a leaky
tire.”

- The Cynic’s Guide to Life

Modelling of the dynamics of an engineering system using energy-based methods has been
around since Maxwell wrote his celebrated paper, “On Governors” which is considered to
be the birth of control engineering [1]. However, the idea of designing controllers using
energy-based methods was first described in [2]. The aim of this research project was to
investigate the benefits and shortfalls of Energy-Shaping control and use it to gain insight
into the commonly used Proportional-Integral-Derivative (PID) control, amongst others.
Linear control techniques are, by far, the main ones used in modern industrial control and
PID control is used extensively, hence the reason for the comparison [3, 4], [5, pp. 293-313].

The conservation of energy is an unalterable, physical constraint. Actuators, necessarily,
add energy into the system or remove energy from the system1. Sensors remove (in some
cases, negligible amounts of) energy from the system in order to measure some variable of
interest. All control algorithms employing feedback, must measure at least one physical
variable of the system to be controlled. Furthermore, all control algorithms must have at
least one actuator in order to control the system. Hence, by proxy, all control algorithms
affect the energy of the system2 under control. Therefore, by explicitly looking at the energy
of the system and how it is affected by a closed loop control algorithm, additional insight
not available using other analysis and design techniques is gained. In fact, as will be shown,
Energy-Shaping Control methods employ a few simple ideas which lead to powerful and
useful control laws. Furthermore, it is possible to analyse other control laws in terms of the
effect on the system’s energy. The energy domain, therefore, provides a domain for both
analysis and design of control laws.

Energy Balancing [6, 7, 8, 9] and Power Shaping [10, 11] are the key techniques available
for Energy-Shaping. Speaking generally, the Energy-Balancing design paradigm requires
the engineer to select a closed-loop energy of the system. This would entail specifying:
desired potential, kinetic and dissipation functions; a loss-less power transformation (similar
to a gyrator) and finally match these with the actual system [7, 8, 6]. How to select these
desired functions is left to the imagination of the engineer. Power shaping is essentially
concerned with how the power of the system is affected by the control law [10, 11, 12]. As
described in Chapter 5.2, power shaping considers all the possible trajectories which the
system can take and if any one trajectory is desirable, then the control algorithm ensures
that trajectory is followed [10, 11]. Constructive methods for assigning a desired closed-
loop energy and/or power explored in this dissertation are: Controller Interpolation via a
common Lyapunov function [13]; Energy-Shaping Robot control [2, 14],[15, Ch. 9] and
Interconnection and Damping Assignment Passivity Based Control (IDAPBC) [6, 16, 17,

1If power was flowing into the actuator.
2Assuming the system is a physical system and not a mathematical one.
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18, 19]. These control methods have all been grouped under the umbrella term Energy-
Shaping Control.

This energy paradigm is fundamentally different from the classical control paradigm in-
volving modes (in the Laplace domain) and frequencies (in the Fourier domain). A transfer
function/matrix or input-output model can be called black box modelling, because the inter-
nal distribution of energy is never taken into account. Modelling in the energy framework
is, necessarily, white box since one needs to know how the input energy is being distributed
throughout the system. As will be shown this kind of white box modelling leads to elegant
control laws since one may, for example, remove a potential energy function and replace it
with another more suitable one. This would not be possible in the input/output framework
since knowledge of how the system stores energy internally would, necessarily, be lost.

1.1 Research Questions and Scope

The types of systems considered are systems that can be modelled using energy-based meth-
ods. This modelling framework is appropriate since a very large class of practical problems
can be modeled using energy-based methods and the modelling framework can easily in-
corporate non-linearities of practical interest [20, 16, 17, 21]. The control problems to be
tackled will be the regulation problem and the trajectory tracking problem3. Systems with
delays have been excluded from the scope of this project.

Question: �How does one design an energy based controller for both
linear and nonlinear plants?�

The entire process of energy shaping rests on the solution of what are termed the Matching
Equations, which, in general, require the solution of a set of partial differential equations
[7, 8, 6]. The Matching Equations are a statement about the desired equivalence of the real
physical system and the desired controlled system. Explicitly, if Σ is a physical system and
Σd is the desired system, then the matching equation is Σ = Σd .

Question: �How does PID control a�ect the energy of a linear Second
Order Single Input, Single Output system?�

A fundamental question in this research is how the PID control algorithm affects the energy
stored in a system. Once this is known, a valid comparison with energy-shaping methods
can be made, since both control methodologies will be in the same domain. The severe
restriction to second order linear single input, single output (SISO) systems is because PID
control algorithms, which require a model, typically use these system models [22]. This is
because many practical problems can be modelled with second order differential equations
[22]. This question is answered in Chapter 3.4 where the influences of the three terms have
a clear interpretation in terms of the energy of the system. In summary, the proportional
term affects the potential function, the derivative term affects the dissipation of the system
and the integral term affects the instantaneous stationary point of the energy function.

3The regulation problem involves bringing a system to a state and keeping it there, while the tracking problem
involves the system’s state(s) following an arbitrary reference trajectory.
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Question: �Can Energy-Shaping Control provide more insight into the
design of controllers?�

Given that energy is of such fundamental importance in nature, it seems likely that the
effect of a control law on the energy of the system would lead to new insight. This question
is explored throughout the dissertation but is specifically tackled for various well-known
control algorithms in Chapter 6.

The research questions are dealt with in the dissertation as follows: Chapter 2 presents the
literature review, Chapter 3 explores a number of important concepts and Chapter 4 deals
with modelling issues using energy. Chapter 5 presents energy-shaping methods for control
and Chapter 6 presents the insights gained from this framework as well as constructive
techniques for energy-shaping. Recommendations and conclusions are presented in Chapter
7.

1.2 Summary of Research

The key outcome of this research was the usefulness of viewing control action in terms of
energy. It appears that energy manipulation is a unifying theme in control engineering. A
number of classical and modern techniques for control can be reinterpreted in terms of their
manipulation of the system’s energy.

1.3 A Few Key Findings

The Energy Method is a well known method for determining the equations of motion for
a scalar loss-less, “input-less” system [23, Ch. 7]. This method has been extended to the
multi-dimensional case, which now includes dissipation, input forces and loss-less power
transformations and is presented in Chapter 4. This methodology offers a simple alternative
to Lagrangian and Hamiltonian mechanics for the modelling of complicated, multi-variable
systems.

It is shown in Chapter 5.2 that dissipation acts as a constant disturbance in the power of
the system. The dissipation is removed by including an integrator into the power shaping
control law, analogous to the well-known disturbance rejection technique, using a PI-like
controller.

Phase portrait analysis is a well known tool for non-linear system analysis [15, pp. 17-18].
For a second order system, the phase portrait is a plot of the system’s state (position, charge
etc.) against its rate (velocity, current etc.) for various initial conditions [15, pp. 17-18].
In Chapter 3.4 a clear link between the phase portrait and the system’s energy is shown.
Therefore, by shaping the system energy, the phase portrait is altered and by shaping the
phase portrait, the time domain performance is altered. Hence, phase portraits are the link
between the energy domain and the time domain.

A pattern that emerged during the research was that: in order to fully control the system, it
appears that the controller must be at least as computationally complicated as the aspects
of the plant to be controlled. For want of a better name, this phenomenon is referred to as
the Controller Complexity principle. There is a strong analogy to this principle in the 1870
thought experiment by J.C Maxwell [24]. It is described in Chapter 6.1.

12



1.4 Conclusions

The principles related to energy have been shown to be an invaluable tool in both modelling
and control algorithm design. Thus, by considering the effects of a control algorithm on
the energy of a system, additional insight into the action of the controller on the system is
gained.

The generalisation of The Energy Method has offered a viable alternative to Lagrangian and
Hamiltonian mechanics. Furthermore, since it is founded on the conservation of energy, it
adds insight into the understanding of systems that can be put into prototypical form. All
physical systems can be put into this prototypical framework since it is founded on the first
law of thermodynamics.

The link between phase portraits and the energy of a system was established. Hence, shap-
ing the energy of a system shapes the phase portrait and shaping the phase portrait shapes
the time domain performance. Phase portraits therefore represent the link between energy
and time. Phase portraits also provide global information at a glance, information that is not
available in time plots such as step responses and initial condition plots amongst others.

Energy Shaping controllers have far richer control structures and allow for greater perfor-
mance (even in the presence of non-linearity and modelling errors) than linear PID tech-
niques. Furthermore, the energy-shaping controllers are synthesised in a framework with
which every engineer is familiar, namely energy. There is a tremendous advantage to using
physical insight into control algorithm development, rather than the abstract mathematical
techniques that appear to have dominated the control engineering field of late and which
seem to lose track of both engineering insight and reality.

13



2 Literature Review

“We have to know the past to understand the present.”
- Carl Sagan

Modelling of the dynamics of an engineering system using energy-based methods has been
around since Maxwell wrote his celebrated paper, “On Governors” which is considered to
be the birth of control engineering [1]. However, the idea of designing controllers using
energy based methods was first described in [2]. In [2], the idea of considering the actuator
as a system that adds energy into the system to be controlled, via some interconnection, was
described for the first time. This paper, [2], is considered to be the birth of Passivity Based
Control [25, pp. 10-11].

Passivity Based Control’s objective is to render a closed loop system passive which means
simply that energy is conserved in the system i.e. that the energy stored in the closed loop
system is equal to the initial energy stored plus the energy supplied via the input minus the
energy lost via dissipation [25, Appendix A]. The restriction in Passivity Based Control is
that for all inputs, u(t) ∈Rm , there must exist some corresponding outputs, y(t) ∈Rm such
that uTy has units of power [25, Appendix A]. If these can be found then a (scalar) storage
function H(x) with states x ∈ RN exists which captures the notion of energy balancing i.e.

H(x)−H(0) ≤
� t

0
uT(s)y(s)ds−d,

where d is the dissipation of the system and the map u→ y is defined as a passive map
[6]. Now if the system’s storage function H(x) has a global minimum at x∗ then, using the
storage function H(x) as a Lyapunov function, convergence of x to x∗ can be proved [6].

The unique feature of energy-shaping methods is that this result is intuitive. This is further
articulated: if a system has a potential function with a unique minimum and the system
always dissipates energy away from the minimum, then the system will eventually settle to
the minimum. Passivity Based Control was originally based on the Euler-Lagrange equa-
tions used to model a system [25] but evolved into using another model structure, namely
the Port-Controlled Hamiltonian [19].

For the reader who is not familiar with Lagrangian mechanics, the idea is to take the energy
of a system and use it to find the equations of motion [25, pp. 16-18, Appendix B]. For an
N degree of freedom system described by generalised co-ordinates q ∈ RN , the Lagrangian
L (q, q̇) = T (q̇,q)−U(q) is formed, where T is the total kinetic energy and U is the total
potential energy [25, pp. 16-18, Appendix B]. To get the equations of motion for the system,
employ Hamilton’s Principle to arrive at,

d
dt

(
∂L

∂ q̇

)
− ∂L

∂q
= Q,

where Q is defined as all the vector of generalised forces that act along each of the various
degrees of freedom [25, pp. 16-18, Appendix B]. This will lead, in general, to N coupled
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second order differential equations. The Controlled Lagrangian technique, which shapes
the kinetic and potential energies via the available input forces is done completely in the
Euler-Lagrange framework [7, 8, 26].

The Port-Controlled Hamiltonian framework is similar, but it leads to 2N coupled first order
differential equations for an N degree of freedom system [19]. The model equations are
given in terms of 2N states x ∈R2N , m inputs and outputs u,y ∈Rm and an energy function
H(x) = T (x)+U(x) [19]. The Port-Controlled Hamiltonian for the system has the form

ẋ = [J(x)−R(x)]
∂

∂x
H(x)+G(x)u

y = GT (x)
∂

∂x
H(x)

where J(x) is a skew-symmetric matrix which called the interconnection matrix (which
captures the loss-less power transform between the various states), R(x) is the symmetric
positive definite damping matrix (which captures how the system dissipates energy among
the various degrees of freedom) and G(x) is the input coupling matrix (which models how
the input couples to the various degrees of freedom) [19]. These equations are used in the
celebrated Interconnection and Damping Assignment Passivity Based Control (IDAPBC)
[19].

These two design methods (IDAPBC and Controlled Lagrangians) have been shown to be
equivalent for simple mechanical systems, which can be expected given that the Lagrangian
and Hamiltonian are related by the Legendre Transform [27]. What should be noted is
that the IDAPBC framework appears to have had a wider adoption into practice, probably
because the Controlled Lagrangian framework can be shown to be a subset of the general
Port-Controlled Hamiltonian framework [19]. Moreover the Controlled Lagrangian method
relies on extremely advanced mathematics such as group theory, and invokes strange no-
tions such as “symmetry breaking potentials” and “vertical and horizontal decompositions
of the configuration space” and has related problems with how to shape the kinetic and
potential energy of the system to get the results desired [28]. Whereas it is clear in the Port-
Controlled Hamiltonian framework that by shaping H(x) one is shaping the equilibrium
points, choosing R(x) shapes how the system tends to “slow down” (think of a resistor’s
role in a series RLC circuit) and J(x) shapes which states exchange energy with one an-
other (think of the skew symmetry of the well known DC-motor, where the current in the
armature and the angular speed of the load affect one another) [25].

A staple of non-linear control stability proofs is Lyapunov’s Second Method and it is in-
teresting to note that it is based on energy dissipation [15, Chapter 3]. It is used in the
Controlled Lyapunov design techniques[29, 30, 31, 13, 32]. This is where an energy-like
function, the Lyapunov candidate function, a scalar function dependent on all of the states
of the system is shaped1 [29]. The shaping of the first derivative of this function is nec-
essary to prove stability and can be shaped for a guaranteed minimum performance of the
closed loop system [15, Chapter 3]. Control design for fuzzy rules can be done in this
framework directly and stability easily proved. This is a valuable tool, given the lack of
stability proofs for fuzzy controllers in general [13, 32]. The main idea was presented in
[13, 32] as a Heuristic Fuzzy Logic controller. The basic idea is first to define regions in the
state space, x∈RN using fuzzy membership functions µi(x) :

{
RN → [0,1]

}
[13, 32]. Then

using a Lyapunov function, V (x), choose a control input ui(x) which makes the derivative

1The Lyapunov function does not have to be the physical energy of the system.
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of the Lyapunov function, V̇ (x) negative definite in that region [13, 32]. Using the same
Lyapunov function, look at each of the defined regions in turn and choose a control input
function which makes each region’s V̇ (x) negative definite [13, 32]. Finally, each of the
functions are interpolated using the weighted sum defuzzification method

u(x) =
∑
i
µi(x)ui(x)

∑
i
µi(x)

,

where u(x) is the total input to the system [13, 32]. Since each controller stabilises each
region of the state space, their interpolation via the weighted sum defuzzification method,
stabilises the system over the entire state space [13, 32].

Moreover, Controlled Lagrangians and IDAPBC both use the Lyapunov direct method for
stability proofs [7, 8, 9, 25, 17, 19].

Power shaping is another technique which is concerned with the rate of change of energy
within a system. The idea of power shaping presented is originally presented as an “energy
swing up” controller by [11], and further presented in [10]. See [12] for the idea of power
shaping as applied to the process control problem of an unstable Continuously Stirred Tank
Reactor. The basic idea is to add energy into the system until the system reaches the energy
level which corresponds to a particular desired trajectory in the state space [10, 11].

Hence energy-shaping is at the heart of stability proofs for non-linear control, via the Lya-
punov technique. Controlled Lagrangians and IDAPBC exploit energy-shaping directly.
Some of the key features of these available methods for energy-shaping controllers are: the
modelling of the system and the design of the controller are done in a single framework;
stability analysis can be done simply by looking at the sign of the power of the closed loop
system (i.e. the first derivative of the energy); the control design is physically motivated
and hence does not require linearity. Some excellent resources for in depth reading on
Energy-Shaping control are [15, 26, 33, 14, 34, 25].

Techniques from physical energy consideration, IDAPBC and Lyapunov based control will
be presented in this dissertation under the umbrella term Energy-Shaping Control.
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3 Introduction to Energy Concepts

“One does not simply walk into Mordor.”
- Boromir, JRR Tolkien’s Lord of the Rings

3.1 Research Framework

It is reasonable to infer that no control methodology can be applied equally well to all pos-
sible systems, both mathematical and physical. Hence, it is important to limit the class of
problems when investigating a control methodology. For the purposes of energy-shaping,
the class of problems has been limited to physical systems that obey the conservation of
energy. A prototypical system has been defined, which obeys the conservation of energy
and is thoroughly investigated in Chapter 4. It is shown in Chapter 6 that a number of other
modelling paradigms are a subset of this prototypical model. Hence, once the prototypical
model is understood, if a given system can be represented as this prototypical model, phys-
ical insight into the system can be gained at once. The prototypical system is introduced
next, followed by a simple example showing the value of energy-based reasoning.

Prototypical System

A second order non-linear ordinary differential equation used throughout this dissertation
is equation (3.1.1) which is an amalgamation from various sources [7, 20, 26, 35, 36, 37,
21, 10, 38]. Clearly, a large class of practical, multi-variable problems can be modelled in
this way and hence the reason for its adoption. Furthermore, once all of the terms in the
model are understood, the effect of a control law on any one of the terms can be readily
appreciated.

M(x, t)ẍ+D(x,v)v+K(x) = G(x)u (3.1.1)

where: x ∈ RN is the vector of states, v = ẋ is the vector of rates, M(x, t) = M(x, t)T > 0 is
the mass matrix, D(x,v) is the dissipation, Coriolis/Centripetal forces and loss-less power
transformation, K(x) is the spring-like force or potential-derived force, G(x) is the input
coupling matrix, u is the vector of inputs and G(x)u has units of generalised force.

To assist the understanding of energy flow in the prototypical system, it is necessary to
expand the term linear in the velocity, v, into

D(x,v) = R(x,v)+J(x,v)+
1
2

Ṁ(x, t),

with R(x,v) = R(x,v)T > 0 and J(x,v) =−J(x,v)T skew symmetric. J(x,v) allows the
model to account for Coriolis and Centripetal forces in the spirit of Robotics [15, pp. 393-
403], R(x,v) accounts for dissipation as is done in IDAPBC [19, 18] and the 1

2 Ṁ(x, t) term
is an energy accounting term explained in Chapter 4 and adapted from [14].
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It will be shown in Chapter 4 that the energy of the system, Es is given by

Es =
1
2

vTM(x, t)v+
�

K(x)Tdx,

where 1
2 vTM(x, t)v is the kinetic energy of the system and

�
K(x)Tdx is the potential energy

of the system.

The power of the system given by

d
dt

Es = −vTR(x,v)v+vTG(x)u−vTJ(x,v)v.

This power equation describes friction-like loss of power via vTR(x,v)v, power gain via in-
puts vTG(x)u and power shuffling within the system via vTJ(x,v)v. Note that vTJ(x,v)v =
0 captures loss-less power transformations within the system itself and are referred to as
Coriolis and Centripetal forces in the Robotics literature [15, pp. 393-403], [14] and as the
interconnection in IDAPBC [19, 18]. The prototypical model eq (3.1.1) is recovered from
the energy and power equations using the conservation of energy and is presented in detail
in Chapter 4.

This modelling methodology is a priori using known physical principles and can be char-
acterised as white box modelling. It is important to recognise that each term in the proto-
typical equation has intuitive physical meaning1, meaning which is lost in the more abstract
mathematical models such as the ubiquitous input affine non-linear state space model. The
model’s usefulness will be demonstrated throughout the dissertation. A further restriction
in this dissertation is that G(x)u is N×1 with N inputs u. This seemingly severe restriction
is actually not unrealistic since it is a hardware design issue, namely if one wants to arbi-
trarily get all co-ordinates in the system to behave independently, then at least one input is
required for each co-ordinate i.e. the system is fully actuated [39, Ch. 13]. This restriction
implies that G(x) must have an inverse [18, 19]. Furthermore, the system is assumed to
be controllable. For the under-actuated case i.e. for an N degree of freedom system with
m < N inputs, only m co-ordinates can be independently controlled [10].

Example of Energy-Based Reasoning

To demonstrate the insight and value of energy-based reasoning, the following special
scalar case of the prototypical model is presented:

consider

ẍ+b(v)+ c(x) = 0,

where b and c are continuous functions [15, pp. 74-75]. In addition these functions satisfy
the “first and third quadrant” non-linearity

vb(v)> 0 v 6= 0

xc(x)> 0 x 6= 0,

as in [15, pp. 74-75]. A typical “first and third quadrant” function is depicted in Figure
3.1.1. This system can be shown to be globally asymptotically convergent to x = 0 [15, pp.
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Figure 3.1.1: A First and Third Quadrant Function

74-75]. This is an important result since it highlights that non-linear functions can actually
aid in stabilising a system globally.

3.2 Lyapunov's Second Method

It is intuitively obvious that a system that is always dissipating energy into the external en-
vironment will eventually settle to some final state, provided that energy is not being added
to the system at a rate greater than is being dissipated. The Lyapunov method (Lyapunov’s
Second Method)2 for proof of stability is a generalisation of this energy argument [5, p.
110-126]. This section is presented as a brief summary of the excellent work in [5, p.
110-126] and [15, p. 40-91], which the interested reader is urged to read as they are both
excellent sources of information on the topic.

Given a general autonomous system which can be described by the differential equation

dx
dt

= F(x),

it is possible to show that this system’s states x ∈ RN , will eventually settle at the origin,
x =O, if a function V (x), called the Lyapunov function, can be found [5, p. 110-126],[15,
p. 40-91].

The Lyapunov function V (x) must satisfy:

V (x) > 0

for all x 6= O, which is to say that the function is positive for any value of the states [5, p.
110-126],[15, p. 40-91]. Furthermore, its time derivative must always be negative for any
value of the states, mathematically

V̇ (x) < 0

for all x 6=O and

V̇ (x) = 0

1The model can be thought of as a series of coupled, non-linear and time varying mass-spring-dampers
2Lyapunov’s First Method refers to the technique of linearising the system about a point and checking that all

of the poles are strictly in the left half plane [5, p. 110-126]
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iff x = O which is to say that the function V̇ (x) is only zero if every state is zero[5, p.
110-126],[15, p. 40-91].

A question typically arises about how this function, V (x) is at all related to the system
under study, since the function can be fabricated without considering the system at all. The
answer is simple: consider a Lyapunov candidate function V (x), its time derivative can be
computed using the chain rule from multidimensional calculus, as follows

V̇ (x) =
∂V (x)

∂x
dx
dt

,

which when “evaluated along the system trajectories”, basically substituting in the model
equation,

dx
dt

= F(x),

yields

V̇ (x) =
∂V (x)

∂x
F(x)

[5, p. 110-126].

This has to satisfy the properties outlined above in order to prove that the system is globally
stable [5, p. 110-126],[15, p. 40-91].

It is important to remember that if a candidate Lyapunov function fails to have the desired
properties to prove stability, this does not imply that the system is unstable [5, p. 110-
126],[15, p. 40-91]. What remains is to try another candidate Lyapunov function until
stability can be proved [5, p. 110-126],[15, p. 40-91].

Subtleties and Uses of the Lyapunov Method

Now the Lyapunov candidate function need not have the properties mentioned throughout
the entire state space. If it can be shown that the Lyapunov function has the required prop-
erties, locally, which is to say within some “ball”, Br within a radius r around a point in the
state space, xe, then it shows stability within that region of the state space [5, p. 110-112].
The region of stability is called a “ball” since in general the state space will be N dimen-
sional and a “ball” is different from an N dimensional sphere since it includes all of the
points enclosed by that sphere, mathematically defined as all the points that satisfy ||x||< r
[15, 40-91]. Figure 3.2.1 depicts a Lyapunov function for a system of one state x, which
has multiple equilibria, xe and the derivative of V (x) is depicted using the arrows visible on
the function. It is clear from the figure that the equilibrium point at the origin is globally a
minimum, whereas the equilibrium point in the negative half of the the state space is a local
minimum. Now Lyapunov’s method for proof of stability will work for both of these points.
However, the “ball”, Br for each point will have a different radius. If the “ball” nearest the
origin were extended to encompass the entire real line, global stability for the origin could
not be concluded, since there is a local minimum elsewhere in the space.
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Figure 3.2.1: A one dimensional Lyapunov function

3.3 Contraction Analysis

Contraction analysis is a method used to determine whether all trajectories in some region in
the state space, for a given system, converge to a particular trajectory, or point [40, 41]. The
basic premise is simple: if the virtual displacement 3, δx, of any trajectory of the system
(with respect to some definition of distance in the state space, also known as a metric) inside
a ball4 around a point or other some other trajectory (call it xd) tends to move towards xd,
then the system is said to be contracting in that ball [42, 41]. Figure 3.3.1, inspired and
adapted from [41], depicts this idea for a two dimensional system where it can be seen
that the ball B, surrounds the trajectory xd and that all the trajectories within the ball move
towards xd . The trajectories outside this ball do not approach xd .

Given a system described by

ẋ = F(x, t),

where x may be a vector and F is a non-linear, possibly time varying function, the virtual
velocity δ ẋ is calculated with

δ ẋ =
∂F
∂x

δx,

note that the virtual displacement, δx can be differentiated with respect to time [41].

Now consider the squared distance of the virtual displacement, defined as δxTδx differen-
tiated with respect to time to yield

d
dt
(δxT

δx) = 2δxT
δ ẋ

= 2δxT ∂F
∂x

δx

3A virtual displacement is the distance between two trajectories in the state space, at a fixed point in time
[42, 41]. Essentially, this can be thought of as a what if scenario. One considers what would happen if
the system started at different initial conditions and were allowed to evolve until the present time. The
“distance” between the system’s actual trajectory now and this other theoretical trajectory is the virtual
displacement.

4A ball, described in English, is a filled-in multidimensional sphere which excludes the shell of the sphere.
Mathematically a ball around the point x∗ is the set of all points in x ∈ RN , satisfying ||x−x∗||< r where
r is a positive constant [15, pp. 47].
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Figure 3.3.1: Contraction for a Two Dimensional System, adapted from Slotine.

which uses the virtual velocity calculated earlier [41].

Now let λmax(x, t) denote the largest eigenvalue of the symmetric part5 of the Jacobian ∂F
∂x ,

where the symmetric part of the Jacobian is 1
2

(
∂F
∂x +

∂F
∂x

T
)

[41].

Substitution of this idea into d
dt (δxTδx), yields

d
dt
(δxT

δx) = 2δxT ∂F
∂x

δx

= δxT

(
∂F
∂x

+
∂F
∂x

T
)

δx

≤ λmax(x, t)δxT
δx

which upon integration, bearing in mind that δxTδx = (||δx||)2 (where || � || is the 2-norm),
yields

||δx|| ≤ ||δx0||e
� t

0 λmax(x,t)dt

according to [41].

If λmax(x, t) is then uniformly negative definite, basically it is less than zero for all x consid-
ered and all time t > 0 then any virtual displacement ||δx|| converges to zero [41]. A finite
path would then consist of a number of ||δx|| and all of these are converging exponentially
so therefore an entire finite path would converge exponentially as well [41]. The region
where this phenomenon occurs is then called a contraction region [41].

In mathematical parlance, a contraction region is defined as a region where

∃β > 0, ∀x, ∀t > 0, 1
2

(
∂F
∂x +

∂F
∂x

T
)

<−β I<O,

5A skew-symmetric matrix, J has the well-known property vTJv = 0, for any appropriately sized vector v.
This is the reason why only the symmetric part of the Jacobian is considered.
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a semi-contraction region is defined as a region wheres

∃β > 0, ∀x, ∀t > 0, 1
2

(
∂F
∂x +

∂F
∂x

T
)
≤−β I≤O,

and an indifferent region is defined as a region where ∂F
∂x is skew-symmetric [41]. Note that

I is the N×N identity matrix.

Now the main result of contraction analysis follows:

For a system described by ẋ = F(x, t), if a ball centred around a trajectory is a contraction
region, then all the trajectories that start in that ball remain in that ball and furthermore,
they converge exponentially to that trajectory [41, Theorem 1]. If the entire state space is
a contraction region, then logically, all trajectories converge to the single trajectory consid-
ered. There is a further generalisation of this result for cases where the definition of length
changes with states and time (this is the metric alluded to in the opening paragraph of this
section).

Let Me(x, t) = Θ
T
Θ be a uniformly positive definite defined metric for the state space x,

where Θ is a continuous and smooth transformation δz = Θδx [41]. Given a system ẋ =
F(x, t), if there is a region in the state space where

∂F
∂x

T
Me +Ṁe +Me

∂F
∂x ≤ βMMe with constant βM > 0 then that region is a contraction re-

gion [41].

This result follows from the time derivative of δxTMe(x, t)δx which is

d
dt

(
δxTMe(x, t)δx

)
= δxT

(
∂F
∂x

T

Me +Ṁe +Me
∂F
∂x

)
δx,

and uses the same method and assumptions as before [41]. The interested reader is referred
to [40, 42, 41] for more information on the technique.

Subtleties in the use of Contraction Analysis

In [42] the idea of a virtual system is introduced, which dramatically simplifies the appli-
cation of contraction theory. The virtual system is one which contains both the system
trajectory and desired trajectory as special cases, which means that if the virtual system is
contracting, then the system trajectory exponentially approaches the desired trajectory [42].
Furthermore, for the case of an observer, if the virtual system contains both the estimated
state and the true state, then the estimated state will exponentially approach the true state
[42]. The difficulty lies in finding this virtual system, which is done by inspection and some
clever tricks in [42].

A number of characteristic examples are taken from [42] and presented:

A Simple Autonomous System

Consider a system with states x ∈ RN and matrix D(x)> 0∀x described by

ẋ = −D(x)x.

23



The virtual velocity is

δ ẋ = −∂D
∂x

xδx−Dδx

which, in general, is difficult to use in a proof of contraction [42].

The trick is to use a virtual system, with virtual state χ , described by

χ̇ = −D(x)χ

that has the original system as a solution (χ = x) as well as the origin (χ =O) [42]. This is
critical, D(x) is not a function of χ and hence it is not affected when calculating the virtual
velocity, δ χ̇ .

Now the virtual velocity for this virtual system is

δ χ̇ = − [D(x)χ]
χ

δ χ

= −D(x)δ χ

which contracts for all χ since D(x)> 0 ∀x, χ . This means that the original system, whose
trajectory is contained in the virtual system (i.e. χ = x) contracts as well [42].

Observers and Controllers

This example is an adaptation from an example in [42].

Consider the observer

˙̂x = −sin(x̂)+u+κp(x− x̂) (3.3.1)

which estimates the state, x ∈ R, for the system

ẋ = −sin(x)+u+κp(x− x) (3.3.2)

and κp > 0 is a strictly positive constant [42]. There is a subtlety here introduced by [42].
The subtlety is inclusion of the term κp(x− x) in the description of the system. This extra
term suggests the choice of virtual system

χ̇ = −sin(χ)+u+κp(x−χ), (3.3.3)

that has the virtual velocity

δ χ̇ = (−cos(χ)−κp)δ χ,

which will contract for κp > 1 [42]. Therefore since both the system state χ = x and the
observer estimate χ = x̂ are particular solutions to the virtual system, the observer estimate
exponentially approaches the true state [42]. There is a dual result about tracking con-
trollers, which is to say that the system will exponentially approach the reference trajectory
provided that the system to be controlled is a particular solution of the contracting controller
[42]. Now both the original system χ = x and the reference signal to be tracked χ = xd are
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Figure 3.3.2: Observer Response

solutions of the virtual system, therefore a controller of the form (3.3.3) will exponentially
track the reference signal. This is highlighted in [42] and considers (3.3.3) as an implicit
form of the controller that, upon solving for u and letting χ = xd yields,

u = ẋd + sin(xd)+κp(xd− x) (3.3.4)

which is a proportional controller with a feed-forward term. Notice that the feed-forward
term does not cancel the non-linear dynamics of the system. In feed-back linearisation, the
control law with feedback linearisation would be of the form u = sin(x)+ r which, upon
substitution into the system, would lead to ẋ = r. It will be shown in Chapter 5.4 that
eq (3.3.4) is actually plant inversion with a feedback term. This controller is an excellent
example of the Controller Complexity Principle in action: the controller has at least the
same mathematical structure as the plant in order to get the plant to exponentially track a
reference trajectory.

The system (3.3.2), observer (3.3.1) and controller (3.3.4) were simulated using Matlab’s
Simulink simulation package, a gain of κp = 10 was used in both circumstances, the deriva-
tive in the tracking controller was approximated using a filtered derivative with an arbitrary
bandwidth of 100 rad/s and the system was given an initial condition of 10. The input to the
plant for the observer was a square wave with a period of 2 s and a duty cycle of 50%; the
same signal was used as the reference to be tracked for the tracking controller. The observer
response is depicted in Figure 3.3.2. The tracking response is depicted in Figure 3.3.3. The
exponential stability as predicted by the contraction analysis is clear in both cases.

Contraction Analysis' relationship with Energy and
Power: an Example

For a suitably defined metric Me(χ, t) it is possible to relate the system energy to the idea of
contraction. Provided that δ χTMe(χ, t)δ χ has units of the system energy, d

dt

(
δ χTMe(χ, t)δ χ

)
will have units of power and will therefore represent the energy loss or gain of the system.

Consider the DC motor model

d
dt

(
ω

i

)
=

 −Br
Jm

Km
Jm

−Km
L −Rr

L

( ω

i

)
+

(
0
1
L

)
V,
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Figure 3.3.3: Tracking Response

with angular speed ω , current i, input voltage V , torque/speed constant Km, moment of
inertia Jm, inductance L, resistance Rr and viscous damping Br.

Written in this form the system appears as

ẋ = F(x)+Gu

where

F(x) =

 −Br
Jm

Km
Jm

−Km
L −Rr

L

( ω

i

)

and

Gu =

(
0
1
L

)
V.

By choosing χ = x =
[

ω i
]T , Me(x, t) as

Me =

 Jm
2 0

0 L
2

 ,

and given that δx =
[

δω δ i
]Tleads to

δxTMe(x, t)δx =
Jm

2
δω

2 +
L
2

δ i2.

This is exactly the incremental kinetic energy of the load and the incremental magnetic
energy stored in the inductor. Now calculating the power,

d
dt

(
δxTMe(x, t)δx

)
= δxT

(
∂F
∂x

T

Me +Ṁe +Me
∂F
∂x

)
δx,

leads to −Brδω2−Rrδ i2 which is expected from energy reasoning alone, considering that
this term is the loss due to the rotational friction and resistance in the armature.
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3.4 Phase Portraits

Henri Poincare was one of the mathematicians who developed the idea of phase plane anal-
ysis in the late 1800’s [15, pp. 17]. The idea is to plot a dynamic system’s trajectories in a
plane defined by the state (eg. x) on one axis and the rate (eg. ẋ) on an axis perpendicular to
that, making time an implicit variable [15, pp. 17]. This plot is called a phase portrait for the
system [15, pp. 17-18]. A point in the phase space, (x, ẋ), is the instantaneous position and
velocity of the system [43, Ch. 3]. If the system which the phase space describes were to
change its position or velocity or both, it is clear that it would rely on the present states and
the equations of motion. Hence the system would (uniquely) evolve with time by following
a sequence of points in the phase space [43, Ch. 3]. All of these successive points form a
trajectory in the phase plane [15, pp. 17-18]. It should be noted that due to determinism,
each trajectory in the phase portrait may not cross any other trajectory, for that would imply
that a particular initial condition would lead to two different outcomes [43, Ch. 3].

The beauty of this graphical representation of a dynamic system is that qualitative features,
response to various initial conditions and equilibrium points of the system can all be pic-
torially represented [15, pp. 19]. This plot also obviates the need to solve the equations
of motion analytically [15, pp. 17]. The most useful property of phase portraits is that
the system models can be non-linear and hence the non-linear behaviour of a system may
be analysed [5, pp. 28-29]. Phase portraits are useful for up to second order non-linear
ordinary differential equations (ODE’s) since one can obtain global information about the
system under study simply by looking at a picture of the various trajectories [15, Ch. 2],
[43, Ch. 3].

Method of Construction

All of the phase portraits in this dissertation were constructed using wxMaxima, a free com-
puter algebra system, and Matlab.

First Order Systems

For any first order non-linear ODE, the phase portrait may be drawn explicitly [15, Ch. 2,
pp 21-22]. Consider the equation,

ẋ = f (x),

the phase portrait can be drawn under the premise that ẋ becomes the dependent variable in
the plot and x becomes the independent variable in the plot, in the usual spirit of y = f (x)
[15, Ch. 2, pp 21-22].

Once the system has been drawn, the trajectory that the system takes given some initial
x0, may be found by inspection [15, Ch. 2, pp 21-22]. Wherever ẋ is positive, the state
trajectory will move in the direction of increasing x and wherever ẋ is negative, the trajectory
will move in the direction of decreasing x [15, Ch. 2, pp 21-22]. The values where ẋ = 0 are
the equilibrium points of the system and the stability of the equilibrium point is assessed by
considering whether the two state trajectories are moving away from the point or towards it
[15, Ch. 2, pp 21-22].
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Figure 3.4.1: Phase Portrait of ẋ =−sin(x) and ẋ =−1
2 x

It is worth noting that a linear first order ODE with a time constant τ , written as

dx
dt

= − x
τ
,

is a straight line in the phase portrait [10]. This means that one may estimate a given non-
linear first order ODE’s rate of convergence to a stable point (divergence from an unstable
point respectively) by drawing a straight line through the origin and comparing where the
non-linear ODE is above the line. Wherever the non-linear ODE is above the line, its rate
of convergence (divergence respectively) will be at least as fast as an exponential with time
constant τ , where 1

τ
is the slope of the straight line in phase space. Figure 3.4.1 depicts the

function,

ẋ = −sin(x),

with ẋ =−1
2 x overlaid on the plot.

It should be noted that when x is in the region [−1.89,1.89], then the system has a (converg-
ing) time constant that is greater than 2 seconds, and outside of this region the time constant
is less than 2 seconds.

This procedure makes it visually obvious that non-linear systems can have different time
constants for different regions of the state space.

Furthermore, it is clear that the origin, (x, ẋ) = (0,0), is a point of stability for this system
since all the system trajectories within x ∈ (−π,π) move towards it.

Second Order Systems

There are a number of ways to draw a phase portrait for second order non-linear ODE’s [15,
Ch 2.]. Since time is an implicit variable in the phase portrait, by solving the set of ODE’s
and eliminating time, the equations that govern the phase portrait are readily arrived at [15,
Ch. 2, pp. 18-19]. Another method is to integrate the second order ODE with respect to dẋ
and dx respectively, using the identity from calculus

ẍ = ẋ
dẋ
dx

as described in [15, Ch. 2, pp. 24-25]. This integration will yield the same phase portrait as
the first method which solves for time [15, Ch. 2, pp 24-25].
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Figure 3.4.2: Lorenz Attractor ρ = 28, σ = 10, β = 8
3

Third Order Systems

The Lorentz attractor is an excellent example of a well known phase portrait for a third
order system [43, Ch. 18]. The Lorenz attractor is depicted in Figure 3.4.2 and shows what
a trajectory for the system starting from (x,y,z) = (1,1,0) looks like.

The phase portrait of a third order system is useful for the visualisation of Proportional
Integral Derivative (PID) control of a second-order system, as will be shown. It is possible to
construct phase portraits of third order ODE’s using modern software packages designed for
visualisation of volumetric fluid flow, indeed Figure (3.4.2) was constructed using Matlab’s
functions intended for visualising volumetric flows. The type of systems that can easily be
visualised in this way are systems of equations of the form,

ẋ = fx(x,y,z)

ẏ = fy(x,y,z)

ż = fz(x,y,z).

Fortunately the general PID controller for a second-order ODE can be put into this form.

Given a second-order ODE of the form,

ẍ = f (x, ẋ)+gu,

a PID controller with set-point weighting for the system has the form [5, pp. 309],

u = κp1x∗−κp2x+κd1v∗−κd2v+ζ

ζ̇ = κi(x∗− x),

where x∗ is the desired state, x is the measured state, κp is a proportional gain, κd is a
derivative gain and κi is the integral gain.
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This yields the closed loop dynamics,

ẋ = v

v̇ = f (x, ẋ)+g [κp1x∗−κp2x+κd1v∗−κd2v+ζ ]

ζ̇ = κi(x∗− x),

which is of the required form for three dimensional visualisation.

This is visualised in Chapter 6.2.

Relationship of Phase Portrait to Energy

The phase portrait for a physical system has a particularly useful interpretation in terms of
energy. The view presented here was inspired by Riemann who saw complex mappings as
projections from an object on the surface of a three dimensional sphere onto the complex
plane, the so called “Riemann Sphere” [44, pp. 142-145].

Consider a subset of the prototypical model eq (3.1.1) for a one dimensional system,

mẍ = −k(x)−b(x, ẋ)ẋ+F,

with m the inertia, k(x) the force dependent on position, x ∈R, b(x, ẋ)ẋ the force dependent
on velocity, ẋ and F the external applied force. This equation can readily be seen to be
Newton II in disguise i.e. ma = ∑F .

Now using the identity,

ẍ = ẋ
dẋ
dx

,

the following can be integrated,

mẋdẋ = −k(x)dx−b(x, ẋ)ẋdx+Fdx. (3.4.1)

It is pertinent at this point to examine the units of the equation,

[mẋdẋ] = kg
m
s

m
s

[k(x)dx] = Nm

[b(x, ẋ)ẋdx] = Nm

[F dx] = Nm,

which are all units of energy. This means that equation (3.4.1) which governs the phase
portrait will be the energy of the system!

Recall,

mẍ = −k(x)−b(x, ẋ)ẋ+F,

which leads to the differential,

mẋdẋ = −k(x)dx−b(x, ẋ)ẋdx+F dx
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after using the identity ẍ = ẋ dẋ
dx .

Integrating both sides leads to,

1
2

mẋ2 +

�
k(x)dx = E0−

�
b(x, ẋ)ẋ2dt +

�
F dx,

where the chain rule has been applied to the integral of b(x, ẋ)ẋ and the constants of integra-
tion are lumped into E0. This is exactly of the form of the energy balance for the system, in
words, the energy stored by the system, kinetic 1

2 mẋ2 plus potential
�

k(x)dx, is equal to the
initial energy, E0 minus the energy lost by friction forces,

�
b(x, ẋ)ẋ2dt plus the work done

on the system,
�

F dx.

For the application of this idea to constructing and interpreting phase portraits, consider the
simple frictionless mass spring system,

mẍ = −kx.

Applying the identity ẍ = ẋ dẋ
dx leads to the equation,

mẋdẋ = −kxdx,

which, when integrated, yields,

1
2

mẋ2 = −1
2

kx2 + c.

As expected, this is the energy for the frictionless mass-spring system, which implies that
the constant of integration, c is the initial energy, E0 i.e.

1
2

mẋ2 +
1
2

kx2 = E0. (3.4.2)

Now, in the spirit of the Riemann sphere, consider the energy as a two dimensional function,
E(x, ẋ) = 1

2 mẋ2+ 1
2 kx2 perpendicular to the plane of the phase portrait. The energy of a mass

spring system is simply a paraboloid with its stationary point at the origin, (x, ẋ) = (0,0).
Figure 3.4.3 depicts this paraboloid, as well as contour lines projected into the phase plane.

A solution to the equation (3.4.2) is seen to actually be a contour line of constant energy,
E0, on the function E(x, ẋ) and is depicted as a projection down from the energy surface,
E(x, ẋ) onto the phase plane in Figure 3.4.3. Juxtapose this perspective now with the phase
portrait of the system drawn directly from equation (3.4.2) and depicted in Figure 3.4.4. The
two views of equation (3.4.2), that of a projection down from a higher dimensional energy
function and the solutions to a planar equation (3.4.2), are congruent.

The only remaining issues are those of dissipation and applied forces, −
�

b(x, ẋ)ẋ2dt +�
F dx. The problem with these forces is that they are, in general, dependent on time6 and

the phase portrait has time as an implicit variable. These can be dealt with by considering
only the system energy

Es =
1
2

mẋ2 +

�
k(x)dx (3.4.3)

6If F is dependent only on the state x or a constant then it may be integrated and added to the system energy,
1
2 mẋ2 +

�
k(x)dx.
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Figure 3.4.3: Energy of the mass spring system, m = 1 kg, k = 2 N/m

Figure 3.4.4: Phase portrait of mass spring system, m = 1 kg, k = 2 N/m
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which implies that the dissipated energy and added work are

Es = E0−
�

b(x, ẋ)ẋ2dt +
�

F dx. (3.4.4)

Consider that the contours of the energy function E(x, ẋ) are found by the intersection of a
plane E(x, ẋ) = const and E(x, ẋ) which is the first graph in Figure 3.4.5. It should be duly
noted in this figure that the trajectory is a closed orbit, just as in the case of the lossless
mass spring system. Now, since the system energy, Es is varying with time, the plane of
intersection E(x, ẋ) = const must be moving up and down, depending on whether energy
is being dissipated, or added into, the system. The second graph in Figure 3.4.5 shows
dissipation of energy and it should be noted that the trajectory now takes on a spiral as the
surface, E(x, ẋ) tightens in towards the origin. Now the phase portrait of the system with
dissipation is depicted in Figure 3.4.6. It should be clear that the spiral on the surface of the
paraboloid in Figure 3.4.5 will appear as Figure 3.4.6 when projected down into the (x, ẋ)
plane.

Hence the trajectories in any two dimensional phase plane can be understood in terms of
projections down from a higher dimensional energy function.

Note that a closed circle will look like a cosine wave when x is plotted against t . Fur-
thermore, a spiral will look like a damped cosine in time [5, pp. 28-29]. Phase portraits
are not simply a useful tool for analysing second-order, non-linear system ODE’s, but are
also a valuable aid for energy-shaping control. This will be further demonstrated in this
dissertation.

3.5 Applications of Phase Portraits to Energy Shaping
Control

In practice, one does not need to bother with solving equation (3.4.1) each time to construct
the phase portrait, if the energy function is known. It can be plotted directly and further-
more, the effect of a controller (if its effect in the energy domain is known) can immediately
be observed, without having to run numerous simulation experiments. Phase portrait analy-
sis is an extremely powerful analysis tool which, when coupled with energy shaping, allows
the control engineer to visually design non-linear controllers and understand their effect,
globally. The only restriction is that analysis is restricted to second order, scalar, ordinary
differential equations [15, Ch. 2]. Phase portraits represent the link between the energy and
the time domain. By shaping the energy, the possible trajectories that can be taken by the
closed loop system are altered. Those trajectories can then be compared to a known time
domain performance trajectory, similar to what was done in Figure 3.4.1. Consider that for
an arbitrary second order system, a spiral of known time domain performance can be started
with the same initial condition and the trajectory that the closed loop system takes can be
compared.

33



Figure 3.4.5: The effect of time-varying forces on the system energy

Figure 3.4.6: Mass Spring System with Viscous Damping (b(x, ẋ)ẋ = bẋ), m = 1 kg, k = 2
N/m, b = 0.5 Ns/m, F = 0 N
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4 Modelling of Systems using Energy

“For those who want some proof that physicists are human, the proof is in
the idiocy of all the different units which they use for measuring energy.”

- Richard P. Feynman, The Character of Physical Law

Energy Viewed as an Integral Transform

Inspired by The Energy Method taught extensively in undergraduate physics courses, the
following general derivation is presented [23, Ch. 7]. What is new in this derivation is the
inclusion of input force and dissipation, which, to the best of the author’s knowledge, has
not been done explicitly before. Note: all integral limits are from t0→ t, unless otherwise
stated and all initial conditions are lumped into the value E0, where E0 is the initial energy
of the system. This framework offers an alternative to the well known Hamiltonian and La-
grangian methods of modelling complicated systems and can be considered a generalisation
of The Energy Method.

Given a set of N equations of motion in the prototypical form,

M(x, t)ẍ+D(x,v)v+K(x) = G(x)u,

with state x ∈ RN and v = ẋ, let

y := M(x, t)ẍ+D(x,v)v+K(x)−G(x)u.

Hence the prototypical model equation is reduced to y =O with this definition.

Note that
�
(G(x)u)T dx has units of work. Without loss of generality, let G(x)u = F.

The N× 1 force vector, F, may be zero for some row entries, which would correspond to
co-ordinates that are not directly acted upon via the input forces.

Now the total energy of the system, including all loss and gain appears as an integral trans-
form1 via

E {y} =

�
vT ydt.

1Juxtapose this with the well known Fourier Transform F {y}=
�

e− jωtydt, where the integral is taken over
all time from−∞→ ∞
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Note that the units of each row of y are identical to each row of the generalised force vector,
F as per definition. As per the definition,

�
FT dx has units of work. This integral may be

transformed via the chain rule in calculus,
�

FTdx =

�
FT dx

dt
dt

=

�
vTFdt.

Note that the term, FTv, is a scalar and hence FTv = vTF.

Including each term in y into the work integral leads to
�

vTydt =

�
vTM(x, t)ẍdt +

�
vTD(x,v)vdt +

�
vTK(x)dt−

�
vTFdt +E0

Each term will be looked at individually:

Firstly, the “spring-like” term can be re-written as

�
vTK(x)dt =

�
K(x)T dx,

where the chain rule was again used to transform the integral. It is clear that this is the total
work done by moving N position dependent springs2 with force equal to K(x) through a
displacement dx. This work is given the name of potential energy which is stored in the
system by virtue of its displacement and is recovered when the system is allowed to return
to rest [23, Ch. 8].

The second term is given by
�

vTD(x,v)vdt,

which is, in part, the time integral of the power lost due to internal heating of the system [23,
Ch. 7.7 , 8.4]. The other part of this term will also contain the Coriolis and Centripetal forces
present [15, pp. 393-403]. It must be stressed that this term is not only a representation of
loss of energy of the system. It will be shown that it contains terms that represent energy
exchange within the system itself.

Lastly, the “mass-like” term, M(x, t) must be symmetric and positive definite [10]. This is
because it is used in the kinetic energy, and if it didn’t have these properties then a negative
kinetic energy could be possible [10]. A negative kinetic energy is disallowed [10]. The
integral transform for the “mass-like” term is

�
vTM(x, t)ẍdt = vTM(x, t)v−

�
vTṀ(x, t)vdt−

�
ẍTM(x, t)vdt

2
�

vTM(x, t)ẍdt = vTM(x, t)v−
�

vTṀ(x, t)vdt
�

vTM(x, t)ẍdt =
1
2

vTM(x, t)v− 1
2

�
vTṀ(x, t)vdt

2In fact any potential derived force that is displaced from equilibrium can be modelled using this equation.
The term “potential derived” force was avoided so that a more concrete example (springs) could be offered.
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where integration by parts has been used3 and the repeated integral,
�

ẍTM(x, t)vdt =�
vTM(x, t)ẍdt, is factored out. This is the energy stored in the system by virtue of its

motion, called the kinetic energy of the system and is a direct consequence of the well
known work-kinetic energy theorem [23, Ch. 7.5]. The other term dependent on the time
rate of change of the mass is not normally associated with the kinetic energy of the system.
This term will be dealt with in the sequel.

Hence, each term in the integral is a recognisable energy term and the total energy of a
system is the sum of all the individual energies in the system, which means,

E {y} =

�
vTydt. (4.0.1)

Given that the criteria for dimensional consistency are satisfied, one can transform any set
of such equations from the time domain into the energy domain.

To reverse this and transform from the energy domain back to the time domain, it is neces-
sary to solve

d
dt

E {y} = O.

This is simply a statement of the conservation of energy, that is that the total stored energy
(kinetic plus potential) plus internal energy minus the work done on the system does not
change with time.

Proof

From the definition,

d
dt

E {y} =
d
dt

�
vTydt.

Using the fundamental theorem of calculus,

d
dt

�
vTydt = vTy.

Now setting this equal to zero results in

vTy = O

which implies that either: every generalised velocity, v = 0 for all time; or each co-efficient,
y =O. By definition y =O are the equations of motion for the system. �

There are two matters outstanding; the 1
2

�
vTṀ(x, t)vdt term and the exact description

of D(x,v). At this point it is worth mentioning that what we choose to call the various
energies is artificial and a matter of convenience. An example illustrating this fact is the
energy associated with an object’s temperature. This energy is not available to do any work

3� f gh′ = f gh−
�

f g′h−
�

f ′gh
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by itself and is sometimes called “heat”. However, if there is another object nearby with
a different temperature, then one can construct a heat engine which can do useful work.
In this case the energy in the first object can be thought of as a form of potential energy,
relative to the second object. The energy content in the first object has not changed, it is
only the label that the user applies to it that has changed. This simple example illustrates
the point that the partitioning of the system energy is a matter of convenience. This has a
direct consequence on the 1

2

�
vTṀ(x, t)vdt term as well as the interpretation of the energy

associated with the D(x,v) term. The energy 1
2

�
vTṀ(x, t)vdt, is complicated since it can

arise due to the reconfiguration of the mass elements in the system (since M is a function
of x) or due to genuine mass loss (for instance in a thrust powered aircraft). In the first
case the energy does not leave the system and in the second case, it does and is hence not
recoverable. Thus one can call it both an internal energy reshuffling or a dissipation term,
depending on the context. The decomposition of D(x,v) is addressed next. It is organised
into a convenient form and it should be noted again, that the reader may choose to represent
it differently.

Decomposition of the D(x,v) term

The system energy Es is defined here as the kinetic plus the potential energy of the system
i.e.

Es :=
1
2

vTM(x, t)v+
�

K(x)T dx. (4.0.2)

This is the energy that is, in principle, recoverable and is an artificial partitioning of the
energy of the system. The only way the system can gain energy is via the input and the only
way the system can lose energy is via dissipation into the environment, mathematically this
means that

d
dt

Es = −vTR(x,v)v+vTG(x)u+−vTJ(x,v)v. (4.0.3)

Note that the term R(x,v) is symmetric and positive definite and is used to capture the power
loss. The extra term representing loss-less internal power transformations, J(x,v), is skew
symmetric i.e. vTJ(x,v)v = 0, which means that nothing has been added to the physical
power equation.

This is a purely physical argument and is not derived from other considerations.

Furthermore, this term is different from the D(x,v) present in the prototypical model.
This was done to allow for Coriolis and Centripetal forces in the spirit of Robotics [15,
pp. 393-403][14], include dissipation as is done in IDAPBC [19, 18] and include the
1
2

�
vTṀ(x, t)vdt as is done in [14].

Looking at the power of the physical system, d
dt Es, which is the time derivative of eq. (4.0.2)

gives

d
dt

Es = vTM(x, t)v̇+vT Ṁ(x, t)
2

v+vT K(x),

where the chain rule has been used on the potential function integral,
�

K(x)T dx, and the
transpose has been taken of the resulting 1×1 entity, namely K(x)Tv = vTK(x).
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Now using the prototypical model equation, eq (3.1.1) and substituting in for M(x, t)ẍ

d
dt

Es = vTG(x)u−vTK(x)−vTD(x,v)v︸ ︷︷ ︸
vTM(x,t)ẍ

+vT Ṁ(x, t)
2

v+vTK(x)

= vTG(x)u−vTD(x,v)v+vT Ṁ(x, t)
2

v. (4.0.4)

Therefore by making eq. (4.0.3) equal to eq. (4.0.4),

vTG(x)u−vTD(x,v)v+vT Ṁ(x, t)
2

v = −vTR(x,v)v+vTG(x)u−vTJ(x,v)v

vTD(x,v)v = vTR(x,v)v+vT Ṁ(x, t)
2

v+vTJ(x,v)v

which is to say that

D(x,v) = J(x,v)+R(x,v)+
1
2

Ṁ(x, t). (4.0.5)

This decomposition of D(x,v) is hence an amalgamation of [18, 14].

This result is a mathematical description of what is intuitive from physics, which is to say
that the power flow in the system is the sum of the power gained via the input and the power
lost due to dissipation.

Stationary points

An important feature of the system energy is that the stationary points of the energy func-
tion, ∇E = 0, are the equilibrium points of the system [6]. Hence, if the energy function is
shaped, so too are the stationary points. In order to determine the stability of the stationary
points, a variety of techniques may be used: stability of the linearised system about that
point as in Lyapunov’s First method [45, 30]; or La Salle’s invariance principle as described
in [15, Chapter 3.4.3]; or the well known result about the sign of ∇2E around the stationary
point i.e. if ∇2E > 0 around the stationary point, it is a local minimum and hence stable.
The value of energy-based reasoning is that it is not an abstract mathematical concept, but
something that is used daily by engineers to reason about the physical world. Thus, by
placing the design of controllers in this domain, all of the insight and experience with the
system to be controlled is automatically included in the design considerations.

4.1 Modelling using the Conservation of Energy

The purpose of the previous derivation is to present an alternative to the well known Hamil-
tonian and Lagrangian methods of modelling. This alternative is a generalisation of the The
Energy Method which exploits the conservation of energy in order to derive the equations
of motion [23, Ch. 7].

The basic idea is as follows:
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Figure 4.1.1: Inverted Pendulum on a Cart System

1. Describe the kinetic and potential energy in terms of co-ordinates appropriate to the
problem; call the sum Es.

2. Compute d
dt Es.

3. Describe power loss,−vTR(x,v)v, and power gain, vTG(x)u, into the system and let
it equal d

dt Es.

4. Include known work-less forces in the power loss equation via −vTJ(x,v)v.

5. Solve the resulting equation power equation: d
dt Es = −vTR(x,v)v− vTJ(x,v)v +

vTG(x)u.

Two possible solutions are: either the equations of motion (eq (3.1.1)) or all velocities equal
zero for all time (v = O, ∀t > 0), as proved above. Two characteristic examples follow
which illustrate the method.

Energy Domain to Time Domain Example: Pendulum on a Cart

Consider the classical pendulum on a cart system with cart position x, cart velocity v, pen-
dulum angle θ , pendulum angular velocity ω , pendulum length l, pendulum mass m and
cart mass µ depicted in Figure 4.1.1.

1.) To begin, the position of the mass of the pendulum in the lab frame is given by

r(t) = [x+ l sin(θ), l cos(θ)] ,

with generalised velocity,

ṙ(t) = [v+ l cos(θ)ω,−l sin(θ)ω] .

The Kinetic energy of the pendulum Tp is given by

Tp =
1
2

mṙ · ṙ

=
1
2

mv2 +
1
2

ml2
ω

2 +ml cos(θ)ωv.

The Kinetic energy of the cart Tc is given by

Tc =
1
2

µv2.
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Let ml2 = I which is immediately seen to be the moment of inertia of the rod about the end
tip and let γ = ml cos(θ) which is the coupling between the two degrees of freedom of the
cart and pendulum system.

Now the total Kinetic energy, Tp +Tc, for the cart pendulum system is,

T =
1
2

mv2 +
1
2

Iω
2 + γωv+

1
2

µv2.

It is imperative at this point to describe the kinetic energy using matrix notation 4. To begin,
choose the generalised co-ordinate as x =

[
x θ

]T and hence the generalised velocity is

v =
[

v ω
]T

= ẋ. The mass matrix is therefore,

M(x, t) =

(
m+µ γ

γ I

)
,

such that

T =
1
2

vTM(x, t)v.

The potential energy of the system with respect to the down position of the pendulum is
given by,

U = mgl(1+ cos(θ))

= mgl +gγ.

In integral form the potential energy is,

U =

�
K(x)Tdx,

which produces the well known result,

K(x) =
∂U
∂x

=

(
0

g ∂γ

∂θ

)
.

This is the potential derived force.

Now the system energy, Es is

Es = T +U

=
1
2

vTM(x, t)v+
�

K(x)Tdx.

2.) Computing d
dt Es is now a simple matter and results in,

4It is possible to follow the procedure without matrices, however substantially more algebra is needed.
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d
dt

Es = vTM(x, t)v̇+
1
2

vTṀ(x, t)v+vTK(x)

3.) The power loss due to frictional forces is modelled using viscous damping,

vTR(x,v)v = vT
(

B 0
0 Br

)
v,

where B is the friction co-efficient for the x co-ordinate and Br is the friction co-efficient for
the θ co-ordinate. Notice that there is room to include cross-coupling between the friction
co-ordinates in the off-diagonal terms. The only proviso is that the resulting matrix must
be positive definite. The input forces enter only in the x co-ordinate and hence the power
gained by the system is given by,

vTG(x)u = vT
(

1 0
0 1

)(
u
0

)
,

where u is the applied force on the cart.

4.) There is no other shuffling of energy within the system and hence J(x,v) = 0.

5.) Using the result from step 2 and 3, the resulting power equation to be solved is,

vTM(x, t)v̇+
1
2

vTṀ(x, t)v+vTK(x) = −vTR(x,v)v+vTG(x)u,

which has the solutions

M(x, t)ẍ+D(x,v)v+K(x) = G(x)u,

or v =O, ∀t, recalling that v̇ = ẍ.

Each term is given explicitly by

M(x, t)ẍ =

(
m+µ γ

γ I

)(
ẍ
θ̈

)

D(x,v)v =

(
B 1

2
∂γ

∂θ
ω

1
2

∂γ

∂θ
ω Br

)(
v
ω

)

K(x) =

(
0

g ∂γ

∂θ

)
and

G(x)u =

(
1
0

)
u

with u = F and γ = ml cos(θ). These are exactly the equations of motion derived by other
means [7, 38].
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4.2 Time Domain to Energy Domain

The beauty of eq. (4.0.1) is that it is possible to reverse the modelling procedure, which is
to say that one can take the model equations and analyse the energy structure present. This
can be done uniquely as follows:

Represent the system in prototypical model form i.e. eq. (3.1.1).

Decompose the D(x,v) in terms of R(x,v)and J(x,v).

Compute
�

vT ydt.

The various partitions of energy should be evident from the previous sections. Recall that
the J(x,v) matrix does not add anything to the power equation and hence would be lost if
the integral in step 3 was performed without first finding J(x,v) in the time domain. This is
the term that uniquely specifies the energy structure of the system since it is lost in general.

Time Domain to Energy Domain Example: DC Motor

This example serves to show that step 2 is of paramount importance when computing eq.
(4.0.1), as claimed. The well known DC motor model, with: moment of inertia, Jm; angle of
shaft, θ ; angular speed of shaft, ω; inductance of stator, L; charge in stator circuit, q; current
in stator, i; viscous rotational friction, Br; resistance in stator circuit, Rr; input voltage, V
and motor constant Km. Describing the system with x =

[
θ q

]T and v =
[

ω i
]T ,

the model equations are

d
dt

(
Jmω

Li

)
=

(
−Br Km

−Km −Rr

)(
ω

i

)
+

(
0
1

)
V,

and can be put into prototypical form

Mẍ+Dv+K(x) = Gu.

1.) The matrices of the prototypical form are,

Mẍ =

(
Jm 0
0 L

)
d
dt

(
ω

i

)
,

Dv =

(
Br −Km

Km Rr

)(
ω

i

)
,

K(x) =

(
0
0

)
,

and

Gu =

(
0
1

)
V.
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2.) The decomposition to be followed is D = J+R+ 1
2 Ṁ. Due to the constant M the term

1
2 Ṁ is a non-issue. The J matrix will not appear in the energy of the system. Hence when
trying to go from the energy domain back to the time domain, J will be missing in the
dynamics.

Observe that by computing the integral transform,
�

vT dt, without completing step 2, the
result is,

Es =
1
2

vTMv+0

= E0−
�

vTDvdt +
�

vTGudt

therefore

d
dt

Es = vTMv̇

= −Brω
2−Rri2 +vTGu

which upon solving this power equation leads to

Mv̇ =

(
−Br 0

0 −R

)
v+
(

0
1

)
V

and it is clear that the loss-less power transformation between current and angular velocity
through Km is lost. This is because J does not store or leak energy and hence does not
participate in the energy accounting. Decomposing D leads to

R =
1
2

(
(D− 1

2
Ṁ)+(D− 1

2
Ṁ)T

)
=

(
Br 0
0 Rr

)
as expected and

J =
1
2

(
(D− 1

2
Ṁ)− (D− 1

2
Ṁ)T

)
=

(
0 −Km

Km 0

)

which was lost when taking the product vTDv. The reader is reminded again that vTJv = 0,
for any v, due to J being skew-symmetric.

3.) Keeping this in mind leads to the energy equation

Es =
1
2

vTMv+0

= E0−
�

vTRvdt−
�

vTJvdt +
�

vTGudt

which will yield the correct equations of motion by differentiating with respect to time and
solving the power equation.
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5 Energy-Shaping Methods for Control

“A method is a trick I use twice.”

- George Polya

Energy-Shaping will fundamentally consist of either changing the closed-loop energy or
the closed-loop power or both. Energy-Balancing is a general methodology that matches
an open-loop energy structure to a closed-loop energy structure, as will be shown. Power-
shaping on the other hand, asymptotically approaches a desired closed-loop energy struc-
ture. The problem remains with how to choose a desired closed-loop energy. This is ad-
dressed in the three constructive techniques used to assign a desired closed-loop energy
structure. These techniques are: controller interpolation via a common Lyapunov func-
tion; energy-shaping Robot control and Interconnection and Damping Assignment Passiv-
ity Based Control (IDAPBC). All of these techniques require a controller that has full state
access and is at least as computationally complex as the plant, in line with the Controller
Complexity principle.

At the end of this section, a simple physical system with rich dynamics, namely the simple
pendulum, under the influence of gravity with a torque acting on a frictionless hinge is
modelled and described. The control algorithms will be tested on this system, however they
will be developed for the prototypical model and hence have wide applicability.

Energy Balancing

The basic idea of energy balancing is to have the system energy appear as some desired en-
ergy in closed loop [6]. The presentation of this idea is modified from the conventional en-
ergy balancing controllers, which are presented in the Controlled Lagrangian and IDAPBC
framework [6, 26]. The presentation here is original and has an intuitive interpretation.
Furthermore, it follows on naturally to the power shaping ideas of [10].

The equivalence of the system energy, Es, with a desired energy, Ed , is mathematically

Es = Ed ,

which is to say that

Ẽ = Es−Ed

= 0.

The detailed presentation and design using Energy Balancing is presented in 5.1.
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Power Shaping

The idea of power shaping presented here is originally presented as an “energy swing up”
controller by [11], and further presented in [10]. See [12] for the idea of power shaping as
applied to the process control problem of an unstable Continuously Stirred Tank Reactor.

The basic idea is to add energy into the system until the system reaches the energy level
which corresponds to a particular desired trajectory in the state space [10, 11]. It was shown
in Chapter 3.4 how energy relates to time domain performance using phase portraits as a
tool.

Explicitly (for the lossless case): given the system energy, Es, and desired constant energy
associated with a certain system behaviour, Ed , the rate of change of the difference Es−Ed =
Ẽ is

d
dt

Ẽ = Ės,

because Ed is a constant. Now

Ės = Fv

which is simply the input power, as expected in the lossless case. There is a valuable trick
which [11] employed. The trick is to let

F = −κpẼv

where κp > 0 is a constant and implies that

Ės =
d
dt

Ẽ

= −κpẼv2.

Using contraction analysis,

δ
˙̃E = −κpv2

δ Ẽ,

is contracting therefore the control law F =−κpẼv will exponentially cause Ẽ→ 0 i.e. the
system energy Es→ Ed .

An integrator in the power shaping control law has been included to allow for robust perfor-
mance in the presence of model uncertainty, as well as removing the problem of dissipation.
This idea was inspired by the understanding of energy in terms of phase portraits, as well
as the well known problem of disturbance rejection in linear control. Furthermore, the idea
has been extended into many degree of freedom systems by vectorising this result for the
prototypical system.

The detailed method and design using Power shaping is in Chapter 5.2.

The three constructive techniques are briefly described next.
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Constructive Techniques for Energy-Shaping

Controller Interpolation via a Common Lyapunov function

The main idea was presented in [13, 32] as a Heuristic Fuzzy Logic controller. The basic
idea is first to define regions in the state space, x ∈ RN using fuzzy membership functions
µi(x) :

{
RN → [0,1]

}
[13, 32]. Then using a Lyapunov function, V (x), choose a control

input ui(x) which makes the derivative of the Lyapunov function, V̇ (x) negative definite
in that region [13, 32]. Using the same Lyapunov function, look at each of the defined
regions in turn and choose a control input function which makes each region’s V̇ (x) negative
definite [13, 32]. Finally, each of the functions are interpolated using the weighted sum
defuzzification method

u(x) =
∑
i
µi(x)ui(x)

∑
i
µi(x)

,

where u(x) is the total input to the system [13, 32]. Since each controller stabilises each
region of the state space, their interpolation via the weighted sum defuzzification method,
stabilises the system over the entire state space [13, 32].

As an example; a rule leading to a consequent might be:

IF Positive(x1) AND Positive(x2) THEN u1(x) = x1− x2,

where the membership function

µ1(x)=Positive(x1) AND Positive(x2) which can be defined as min(Positive(x1),Positive(x2)).

The rule can then composed as,

µ1(x)u1(x) = min(Positive(x1),Positive(x2))(x1− x2),

if the definition for AND has been chosen as the min() function [46, Ch. 2.2.4].

The name used in [13, 32] was Heuristic Fuzzy Controller, but this detracts from the key
point of using a Lyapunov function.

Another view provided in this dissertation is the reinterpretation of the results which the
fuzzy control system terminology obfuscates; this technique is really just an interpolation
amongst controllers bearing a Lyapunov function in mind. Chapter 5.3 presents the method
and design technique.

Energy-Shaping Robot Control

The techniques from Robot Control apply directly to the class of problems considered in
this dissertation and are based on energy shaping arguments for stability proofs and under-
standing of the algorithm [15, Ch. 9]. The idea of considering the actuator in a multiple
degree of freedom robot system as a device which regulates the energy flow in a system was
first done in [2].

The model considered for this class of problem is near identical in structure to the prototyp-
ical model, eq (3.1.1), but does not include dissipation, and the inputs enter directly:

H(q)q̈+C(q, q̇)q̇+g(q) = τ,
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where q ∈ RN is the vector of the N generalised co-ordinates, H(q) is the inertia matrix,
C(q, q̇) is the Coriolis and Centripetal matrix, g(q) is the gravitational force matrix and τ

are the applied torques [15, Ch. 9]. The main results of this method are translatable to the
prototypical model, eq (3.1.1), but will require a few subtle adjustments.

The controllers available in this framework, adapted for the prototypical model, are pre-
sented in Chapter 5.4.

Interconnection and Damping Assignment

This dissertation would not be complete if the method of IDAPBC were not presented. The
basic idea is again one on matching, but in this case the matching condition is that the well
known input affine nonlinear model

ẋ = F(x)+G(x)u

be made to look like

ẋ = (Jd(x)−Rd(x))
∂

∂x
Hd(x) (5.0.1)

where each of the terms Jd, Rd and Hd have physical interpretations as interconnection,
damping and energy respectively [19, 18]. The minima of Hd(x) are the stable equilibrium
points for a suitably chosen Jd and Rd [19, 18]. If the system is already in the form

ẋ = (J(x)−R(x))
∂

∂x
H(x)

called a Port-Controlled Hamiltonian model, then the matching problem is to make this
system match the eq (5.0.1), which is the desired closed loop system [19, 18]. The solution
for the control law involves finding the solution to a set of partial differential equations,
which prevents the ease of application of IDAPBC [19, 18].

The method and detailed design of the technique is presented in Chapter 5.5.

The Simple Pendulum

An example used to demonstrate each control technique is the simple pendulum, under the
influence of gravity with a torque acting on a frictionless hinge. The pendulum is suspended
by a mass-less rigid rod. There are a number of reasons for choosing this example: the
system is a scalar second order differential equation and can therefore be represented on a
phase portrait; it has a trigonometric non-linearity due to gravity, which leads to interesting
behaviour (notably multiple equilibria); the system is well understood and the system has
different behaviour at different energy levels. By choosing such a simple, yet rich, system,
the various influences from each of the control techniques can be readily appreciated 1.

This simple pendulum, under the influence of gravity on a frictionless hinge is depicted in
Figure 5.0.1. It has a mass m, at the end of a rigid rod of length l, angle θ , angular speed
ω = θ̇ , applied torque τ , gravitational constant g and moment of inertia measured about the
hinge, I.

1However, the control techniques are developed for the multi-dimensional, multiple-input prototypical model
and hence are valid for a much broader class of problems.
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Figure 5.0.1: A Simple Pendulum

The system has an energy,

Es =
1
2

Iω
2 +U0−mgl cos(θ), (5.0.2)

with U0 := mgl in order to have zero potential energy when θ = 0. The power input to the
system is

Ės = τω. (5.0.3)

Now the equations of motion are derived using the technique from Chapter 4, by taking the
time derivative of eq. (5.0.2) and setting it equal to eq. (5.0.3),

Ės = Ės

ω
(
Iθ̈ +mgl sin(θ)

)
= ωτ,

and therefore either ω = 0 for all t > 0 or

Iθ̈ +mgl sin(θ) = τ. (5.0.4)

Put into prototypical form, the system is,

msp(θ)θ̈ +dsp(θ ,ω)ω + ksp(θ) = gsp(θ)τ, (5.0.5)

with

msp(θ) = I,

dsp(θ ,ω) = 0,

ksp(θ) = mgl sin(θ),

gsp(θ) = 1,

θ̇ = ω.

The values of m = 0.5 kg, l = 1 m, g =9.81 m/s2, I = ml2 kg m2 will be used throughout.

The natural energy function and phase portrait are depicted in Figure 5.0.2 and Figure 5.0.3
respectively. Firstly, there are multiple equilibria, as evidenced by the orbiting trajectories
around multiples of 2π [10]. This should be juxtaposed with the mass-spring system which
had a single equilibrium point in Chapter 3.4.
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Figure 5.0.2: The Simple Pendulum Energy Function

Figure 5.0.3: The Simple Pendulum Phase Portrait for Various Initial Conditions

Secondly, it should be apparent that for low energy levels, the pendulum behaves as a mass-
spring system (simple harmonic oscillator) [10]. This is clearly shown by the circular trajec-
tories near each multiple of 2π . As higher and higher energy levels are attained, the period
of the pendulum must change, since the circular trajectories distort and become ellipses.
In fact, the exact analytic solution to this period is given by “the complete elliptic integral
of the first kind” [47]. Note that the mass-spring system must have exactly the same pe-
riod, regardless of energy level, due to its linearity. Even though the arc-length of the circle
becomes larger in the mass-spring system, for higher energy levels, the maximum speed
attained is larger and hence the same time per round trip must be taken. Whereas for the
pendulum, this is not the case.

Now, if the energy function is viewed locally around (θ ,ω) = (0,0) (see Figure 5.0.4),
then it is apparent that the approximation to a mass-spring system is valid. This region
corresponds to the circular orbits around the origin of Figure 5.0.3. If the energy function is
viewed locally around (θ ,ω) = (π,0) (see Figure 5.0.5), then it is clear that this is a saddle
point in the energy function. Calculating ∇2E confirms this:

∇
2E(θ ,ω) =

(
mgl cos(θ)

I

)
,

which evaluated at (θ ,ω) = (π,0) leads to

∇
2E(π,0) =

(
−mgl

I

)
.

This demonstrates a local maximum, (∇2E < 0), in the θ direction and a local minimum,
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Figure 5.0.4: Energy of Simple Pendulum viewed locally around θ = 0

Figure 5.0.5: Energy of Simple Pendulum viewed locally around θ = π

(∇2E > 0), in the ω direction 2. Hence this is classified as a saddle point. Due to the
trigonometric term in θ , this local minimum and saddle point pattern repeats every k2π ,
k ∈ Z.

2Note that the point (θ ,ω) = (π,0) is an equilibrium point since, ∇E(π,0) = (0,0) and therefore the assertion
of minima and maxima is valid.
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5.1 Energy Balancing

The idea of an Energy Balancing controller is presented in the literature in a number of dif-
ferent contexts, most notably in the Controlled Lagrangian method [7, 8] and the IDAPBC
framework [6].

The presentation here is of the same basic idea, but modified for the prototypical system
presented in eq (3.1.1). It includes the ability to shape the dissipation, interconnection and
Coriolis/Centripetal terms as done in IDAPBC [6], but avoids having to solve partial deriva-
tive equations, since the potential and kinetic energies are kept separate and discernable.

Given the prototypical model eq (3.1.1), the energy of the system Es is given by

Es =
1
2

vTM(x, t)v+
�

K(x)T dx (5.1.1)

= E0−
�

vTD(x,v)vdt +
�

vTG(x)udt

as is derived in Chapter 4. An energy balancing controller essentially makes the controller
supply the difference between the stored and the desired energy Ed .

It requires that

Es = Ed

and furthermore that

d
dt

(Es−Ed) =
d
dt

Ẽ

= 0,

which is to say that the difference in energy is zero for all time. This should be juxtaposed
with the power shaping method where the difference in energy exponentially approaches
zero as t→ ∞ which is described in Chapter 5.2.

Now given a basic desired energy

Ed =
1
2

vTMd(x, t)v+
�

Kd(x)T dx

= E0−
�

vTDd(x,v)vdt

and using the difference in power equation results in

�
vTydt = Ed

vT (M(x, t)ẍ+D(x,v)v+K(x)−G(x)u) = vT (Md(x, t)ẍ+Dd(x,v)v+Kd(x)) ,

which permits the solution

u = G(x)−1 (M(x, t)ẍ+D(x,v)v+K(x)−u∗) , (5.1.2)

where
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u∗ = Md(x, t)ẍ+Dd(x,v)v+Kd(x).

This result has the basic form of feedback linearisation [15, Ch. 6]. The key difference
here is that, the target dynamics u∗ are derived using physical considerations of the desired
closed loop system’s energy, and not arbitrarily, as in Feedback Linearisation3. The second
major difference between this technique and feedback linearisation is that, eq (5.1.2) is
actually an inversion of the plant, in that the plant dynamics are completely cancelled and
replaced by other dynamics i.e. the substitution of eq (5.1.2) into eq (3.1.1) leads to

Md(x, t)ẍ+Dd(x,v)v+Kd(x) = 0.

Strictly speaking, feedback linearisation comes from the requirement that,

Md = I
Dd = O
Kd = O,

which implies that,

Ed =
1
2

vTv,

and

Ėd = vTr

where r is a new external input i.e. the control of a double integrator. This has the control
law

u = G(x)−1 ([M(x, t)−1] ẍ+D(x,v)v+K(x)+ r)

which can be simplified using the model eq (3.1.1), substituting for ẍ and a great deal of
algebra into

u = G(x)−1 (D(x,v)v+K(x)+M(x, t)r) .

Substituting the control law into eq (3.1.1) leads to

ẍ = r

as required. Of course the general method rests on choosing an appropriate desired energy
Ed , a few situations are presented next. It should be remembered here that the general theory
has been presented and creativity and insight has been used in the example for this section.
Other techniques which constructively modify the closed-loop energy and power functions
are presented later in this Chapter.

3The one key point to mention is that acceleration terms are needed in the target dynamics u∗ if the mass
matrix is to be modified
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Choosing Ed: Modi�cation of Existing Plant

If the desired energy functions are modifications of the existing plant, which is to say:

Fd = Fp +∆F

where Fd is the desired function4, Fp is the plant function and ∆F is the modification then
the control law eq (5.1.2) becomes

u = −G(x)−1 (∆M(x, t)ẍ+∆D(x,v)v+∆K(x))

which appears exactly like a general state feedback control law except with the additional
acceleration term ∆M(x, t)ẍ. The acceleration terms may be kept if they are being measured
(say via accelerometers) or may be eliminated using the model eq. (3.1.1) and a great deal
of algebra into

u = − [Md(x, t)G(x)]−1
{

M(x, t)(∆K(x)+∆D(x,v)v)−∆M(x, t)(K(x)−D(x,v)v)
}

Choosing Ed: New Plant

If the desire is to have the closed loop system behave completely differently from the exist-
ing plant, then eq (5.1.2) is exactly what will be derived.

Design of Energy-Balancing Controllers

The general design steps are:

1. Get the system model into prototypical model form.

2. Identify M(x, t), D(x,v), K(x) and G(x)u in the open loop system.

3. Choose desired kinetic and potential functions5.

4. Choose a desired dissipation, interconnection and Coriolis/Centripetal matrix Dd(x,v).

5. Solve the energy and power matching equation for u.

Energy-Balancing Control of a Simple Pendulum

Given the system energy of the pendulum as,

Es =
1
2

Iω
2 +U0−mgl cos(θ),

with input power,

Ės = τω,

4An example is Md(x, t) = M(x, t)+∆M(x, t)
5Steps 3 and 4 represent the design freedom of the control engineer. Constructive methods to assign the

desired energy structure will be introduced later in this chapter.
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the energy-balancing methodology can begin. Note that θ ∗ is a desired angle.

It is important to actually have the uncontrolled energy of the system to be controlled or
otherwise there can be no energy-balancing. Provided that M(x,t), D(x,v) and K(x) can be
identified, the system energy can easily be calculated using the energy transform in Chapter
4.

The equations of motion are, given by eq. (5.0.4) and repeated here for reference,

Iθ̈ +mgl sin(θ) = τ.

1.) The prototypical form of this equation is given by eq. (5.0.5) and is repeated here,

msp(θ)θ̈ +dsp(θ ,ω)ω + ksp(θ) = gsp(θ)τ.

2.) The parameters of the model are given by

msp(θ) = I,

dsp(θ ,ω) = 0,

ksp(θ) = mgl sin(θ),

gsp(θ) = 1.

As stipulated, the design freedom of the control engineer is in steps 3.) and 4.). A selection
of energy balancing designs are worked through next.

Viscous Damping

3.) The kinetic energy and potential energy are left untouched and hence,

1
2

mspd(θ)ω
2 = msp(θ)ω

2,�
kspd(θ)dθ =

�
ksp(θ)dθ .

4.) The inclusion of viscous damping is given by the desired power,

Ėd = −dspd(θ ,ω)ω2

= −κdω
2.

5.) Each of the adjustments to the energy structure of the system can be classed under the
“modification of an existing plant” which implies that,

mspd = msp +∆m,

dspd = dsp +∆d,

kspd = ksp +∆k,

with ∆m = 0, ∆d = κd , ∆k = 0 and hence the control law is given by,

τ = −gsp(θ)
−1 [

∆mθ̈ +∆dω +∆k
]

= −1
1
[
0 θ̈ +κdω +0

]
= −κdω.
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It may be more transparent to the reader to approach the problem from first principles.
This is the presentation that will be followed throughout the rest of the energy balancing
section. If the reader so desires, it is possible to follow the “modification of an existing
plant” paradigm and write the control laws directly for the following examples.

3.) The inclusion of viscous damping leads to,

Ed =
1
2

Iω
2 +U0−mgl cos(θ).

4.) The desired power loss is,

Ėd = −κd ω
2.

5.) The matching equation is therefore, the derivative of the system energy minus the deriva-
tive of the desired energy equal to the system power minus the desired power,

Ės− Ėd = Ės− Ėd

ω
(
Iθ̈ +mgl sin(θ)− Iθ̈ −mgl sin(θ)

)
= τω +κd ω

2

0 = τω +κd ω
2

and therefore,

τω = −κd ω
2

τ = −κd ω.

Spring-like Desired Potential Function

3.) The desire to have the potential function appear as a spring-like potential function, with
a single equilibrium point, θ ∗, leads to

Ed =
1
2

Iω
2 +

1
2

κp (θ −θ
∗)2 .

4.) The dissipation of the system is left alone.

5.) The matching equation is then,

Ės− Ėd = Ės− Ėd

ω
(
Iθ̈ +mgl sin(θ)− Iθ̈ −κp(θ −θ

∗)
)

= τω,

which has solution

τ = mgl sin(θ)−κp(θ −θ
∗).

This is a proportional controller with feedback linearisation.
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Translation of Stationary Points in the Potential Function

3.) Now if the potential function were chosen to have a new minimum, at θ ∗ say, then

Ed =
1
2

Iω
2 +U0−mgl cos(θ −θ

∗).

4.) The dissipation of the system is left alone.

5.) The matching equation is,

Ės− Ėd = Ės− Ėd

ω
(
Iθ̈ +mgl sin(θ)− Iθ̈ −mgl sin(θ −θ

∗)
)

= τω,

which leads to

τ = mgl sin(θ)−mgl sin(θ −θ
∗).

Again, feedback linearisation with a new potential function. Notice that this feedback con-
troller honours the symmetry of the system in that the new potential function has an infinite
number of stationary points. Observe,

∇Ed =

(
mgl sin(θ −θ ∗)

Iω

)
=

(
0
0

)

has solutions (θ ,ω) = (θ ∗+kπ,0) with k∈Z. Take note of the kπ , this means that all of the
equilibrium points have translated, including the saddle points. This problem is alleviated
in the following control method.

Target Torque Position Controller

A strange potential function, which reappears in Chapter 5.4 under the “target torque” con-
troller6, is

�
kspd(θ)dθ = U0−mgl cos(θ)−mgl sin(θ ∗)θ .

3.) The desired kinetic and potential energy is,

Ed =
1
2

Iω
2 +U0−mgl cos(θ)−mgl sin(θ ∗)θ .

4.) The dissipation of the system is left alone.

5.) The matching equation is,

6In fact this potential function was calculated using the energy transform from Chapter 4.
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Ės− Ėd = Ės− Ėd

ω
(
Iθ̈ +mgl sin(θ)− Iθ̈ −mgl sin(θ)+mgl sin(θ ∗)

)
= τω,

and therefore the controller is,

τ = mgl sin(θ ∗).

Although the effect of the new potential function is not obvious, the gradient of the energy
function is

∇Ed =

(
mgl sin(θ)−mgl sin(θ ∗)

Iω

)
.

This can be made to solve for the stationary points of the system via,

(
0
0

)
=

(
mgl sin(θ)−mgl sin(θ ∗)

Iω

)
,

which has the solutions (θ ,ω) = (θ ∗ + 2kπ,0) with k ∈ Z, as required. Note the 2kπ

which ensures that no saddle points are included in solutions to the system’s steady state.
This controller is also less computationally involved than the translation of stationary points
method previously, since the control law is essentially a calculated constant. This stationary
point is not at a minimum of the energy function though since ∇2Ed remains unchanged.

Gravity Inversion

Consider the case of gravity inversion, where the potential function changes sign,

3.) The desired kinetic and potential energy are,

Ed =
1
2

Iω
2 +U0 +mgl cos(θ).

4.) The dissipation is left as is.

5.) The matching equation is,

Ės− Ėd = Ės− Ėd

ω
(
Iθ̈ +mgl sin(θ)− Iθ̈ +mgl sin(θ)

)
= τω,

that leads to the controller,

τ = 2mgl sin(θ).

Again, the saddle points have not been removed from the possible equilibria of the system.

Of course, it is possible to combine these different controllers.
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Combined Dissipation and Potential Shaping

It is possible to combine the effects of potential and dissipation shaping.

Spring-like potential and Viscous dissipation

3.) The desired energy is,

Ed =
1
2

Iω
2 +

1
2

κp(θ −θ
∗)2.

4.) The desired power dissipation is,

Ėd = −κd ω
2.

5.) The resulting controller (after solving the matching equation) is then,

τ = mgl sin(θ)−κp(θ −θ
∗)−κd ω,

which is feedback linearisation with a PD controller. Notice that the derivative is not taken
of the error, θ−θ ∗ but rather the output, θ only 7 as with a set-point weighted PD controller.

Target torque, Spring-like potential and Viscous dissipation

3.) If the combination is the target torque, spring-like potential function with dissipation
then:

Ed =
1
2

Iω
2 +

1
2

κp(θ −θ
∗)2 +U0−mgl cos(θ)−mgl sin(θ ∗)θ .

4.) The desired power dissipation is,

Ed = −κd ω
2.

5.) The resulting control law is,

τ = mgl sin(θ ∗)−κp(θ −θ
∗)−κd ω.

Both of these combinations are well known in the Robotics literature, and are discussed in
Chapter 5.4.

7 d
dt θ = ω.
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Figure 5.1.1: Physical Representation of Pendulum Controller, adapted from Ortega et al.

Stability

Given that the matching equation has been solved, it means that the closed loop energy is the
desired energy. In the combination of the spring-like function with dissipation, asymptotic
stability of (θ ,ω) = (θ ∗,0) can easily be shown using Ed as a Lyapunov function and
employing La Salle’s Invariance principle [15, Chapter 3.4.3]. Remember this is at the cost
of online computation of mgl sin(θ).

The stability of the target torque, spring-like function and dissipation combination requires
more subtlety. Solving for the stationary points of the energy function, Ed ,

∇Ed =

(
mgl sin(θ)−mgl sin(θ ∗)+κp(θ −θ ∗)

Iω

)
=

(
0
0

)
,

yields the unique solution (θ ,ω) = (θ ∗,0) if κp > 0. Next, ∇2Ed must be greater than zero
at the desired equilibrium point θ ∗ in order for it to be a global minimum. Calculating this,

∇
2Ed =

(
mgl cos(θ)+κp

I

)
,

and ensuring that ∇2Ed > 0 for any θ ∗ implies, that κp > mgl. If this condition on κp is
validated, then the point (θ ,ω) = (θ ∗,0) will be a global minimum of the energy function,
Ed . Hence if κd > 0, this point will be asymptotically approached as per Figure 3.4.5 in
Chapter 3.4. Appreciate that only physical reasoning about the energy was used to conclude
global stability. No linearisation was needed, no complicated partial differential equations
(PDE’s) had to be solved, no invariance principles had to be invoked, only physical insight
and reasoning about the closed loop system’s energy was needed. It is valuable to have a
visual representation of the forces that have been added to the pendulum system. This is
depicted in Figure 5.1.1 and adapted from [25, pp. 47]. Essentially, the target torque acts
as a plane that a spring, κp term, and a damper, κd term, are coupled to with the pendulum
[25, pp. 47]. The action of each of the terms should be clear now.

The phase portraits of these two control laws are depicted in Figures 5.1.2 and 5.1.3. For the
parameters chosen, mgl = 4.905 and hence κp = 5. Choosing, κd = 0.5 and θ ∗ (arbitrarily)
as 1 rad completes the design. It is clear from the phase portraits that both control laws are
globally asymptotically stable, and further that (θ ,ω)→ (θ ∗,0) as the theory predicts.

It is trivial to generalise these controllers, to the multi-variable, prototypical case: formally
replace all mgl sin() with K(), ω with v, θ with x and θ ∗ with x∗. Define κp and κd as N×N
matrices, κp, κd and finally replace τ with G(x)u. If G(x) has an inverse, an assumption
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Figure 5.1.2: Phase Portrait with Desired Spring-like Potential and Dissipation (κp = 5,
κd = 0.5 and θ ∗ = 1)

Figure 5.1.3: Phase Portrait with Target Torque, Spring-like Potential and Dissipation (κp =
5, κd = 0.5 and θ ∗ = 1)
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used throughout this dissertation and explained in Chapter 3.1, then the input, u, can be
solved for explicitly.

The analogues to these control laws are shown in [14] and [15, Ch. 9] to be well suited for
position regulation. If trajectory following is the control problem, then the techniques from
Chapter 5.2 and Chapter 5.4 are better suited to this task.
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5.2 Power Shaping

The ideal objective for any control problem would be for the system to do already what
the designer would like it to do. Now the phase portrait shows all the possible trajectories
which the system can take and if any one of them is a desirable behaviour, then the goal of
the controller is merely to make sure that the system has exactly the energy needed to follow
that trajectory [10, 11]. This means that the controller is exploiting what the system would
do naturally anyway as opposed to forcing it to do what the designer wants and wasting
energy fighting the dynamics. By combining phase portrait analysis, bearing Figure 3.4.5
in mind, and energy-shaping control, the designer can elegantly solve non-linear control
objectives by considering how much energy the system has at a given point in time and
therefore what trajectory the system will be on.

The development presented here mirrors the scalar system described in [10]. However,
extensions to the paradigm and adaptation to the prototypical model are included in this
development and are presented next.

The basic idea is as follows: given a system energy Es and a desired energy Ed , let the
difference in energy be Ẽ = Es−Ed .

The desired energy Ed is given by

Ed =
1
2

vTMd(x, t)v+
�

Kd(x)T dx

with the desired power

Ėd = vT
Φ(x,v)

where Φ(x,v) is the desired D(x,v)v and desired inputs lumped together. Note that Ed and
Ėd together represent the desired closed loop dynamics.

Looking now at the difference in actual and desired energy Ẽ,

Ẽ =
1
2

vT
∆Mv+

�
∆KT dx,

where ∆M = M(x, t)−Md(x, t) and ∆K = K(x)−Kd(x).

The difference in power is

d
dt

Ẽ = −vTR(x,v)v+vTG(x)u−vT
Φ(x,v)

and the goal is for

d
dt

Ẽ = −κpvTẼv

where κp > 0 is a scalar constant. This is similar to the scalar system in [10].

This condition leads to

−κpvTẼv = −vTR(x,v)v+vTG(x)u−vT
Φ(x,v)
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which results in the control law,

u = G(x)−1

Φ(x,v)+R(x,v)v︸ ︷︷ ︸
cancels

−κpẼv


which requires exact cancellation of the dissipation structure Φ(x,v)+R(x,v)v i.e. partial
feedback linearisation of the dissipation of the system. Now if there are any model inaccu-
racies in R(x,v) then Ẽ will not go to zero8. The inspiration for solving this problem was
from the investigations into phase portraits in terms of energy in Chapter 3.4 as well as a
PID controller’s effect in the phase plane in Chapter 3.5.

Consider using just the control law

u = −κpG(x)−1Ẽv

and for simplicity’s sake, Ed is constant, then

d
dt

Ẽ = −κpvTẼv−vTR(x,v)v

which looks like ẋ =−kx−d i.e. the dissipation acts like a disturbance in the power equa-
tion! Hence, the well known method of disturbance rejection using an integrator was used
to remove the dissipation, without cancelling it in the control law.

This idea leads to the control law,

u = G(x)−1 (
ζ v−κpẼv

)
ζ̇ = −κiẼ

and the power equation becomes

d
dt

Ẽ = −vTR(x,v)v−κpvTẼv+vT
ζ v

d
dt

ζ = −κiẼ

if Ed is a constant, where κi > 0 is a constant and ζ is a scalar integrator. This is an extension
of the method in [10], and can be considered as a non-linear energy PI controller.

The equilibrium points for this system are found by setting the derivatives equal to zero (and
assuming v 6=O) and hence

Ẽ = 0

vT
ζ v = vTR(x,v)v

which has clearly negated the effect of the dissipation.

In the general case when Ed is not a constant,

d
dt

Ẽ = −vTR(x,v)v+vTG(x)u−vT
Φ(x,v)

8Φ(x,v) is user defined and therefore there are no model inaccuracies to worry about
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with the control law

u = G(x)−1 (
ζ v−κpẼv+Φ(x,v)

)
(5.2.1)

ζ̇ = −κiẼ

results in the equilibrium points

Ẽ = 0

vT
ζ v = vTR(x,v)v

as expected. To assess the stability, contraction analysis is used. Define the virtual system,

d
dt

E = −vTR(x,v)v−κpvTE v+vTZ v

d
dt

Z = −κiE ,

which contains the actual system for E = Ẽ and Z = ζ . The virtual velocity is now,

(
δ Ė
δŻ

)
=

(
−κpvTv vTv
−κi 0

)(
δE
δZ

)
.

The eigenvalues, s1,2 of the system are

s1 =
−
(
vTv
)

κp +
√

κ2
p (vTv)2−4κivTv

2

and

s2 =
−
(
vTv
)

κp−
√

κ2
p (vTv)2−4κivTv

2
.

The system is stable as long as the real part of s1 is negative i.e.√
κ2

p (vTv)2−4κivTv < vTvκp

=⇒ κ
2
p
(
vTv
)2−4κivTv < κ

2
p
(
vTv
)2

and therefore

κivTv > 0,

which is validated as long as v 6=O.

Consider the case that v = O and Ẽ 6= 0. This leads to ζ̇ 6= 0, with u = 0 from the defini-
tion of eq (5.2.1), the power shaping control law. Therefore the integrator will continue to
wind-up whilst no input is applied to the system. By applying a small impulse, enough to
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overcome stiction and make v 6=O, when v =O this issue can be resolved. Hence the full
and final power shaping control law is

u = G(x)−1{
ζ v−κpẼv+Φ(x,v)+Aδ (v)

}
ζ̇ = −κiẼ

where A> |vTD(x,v)v| for small v, if stiction is a problem and A> 0 if it isn’t. Furthermore,
δ (x) is the well known, one dimensional Kronecker delta function. This is defined as,

δ (x) =

{
1 x = 0
0 otherwise.

Design of Power-Shaping Controllers

The general design steps are:

1. Get the system model into prototypical model form.

2. Identify which of the level curves of the energy function are a desired trajectory. Call
this energy level, Ed .

3. If none exist, use an energy shaping controller to generate them. Go back to 2.

4. Use eq. 5.2.1 as the control law.

5. Design appropriate values for κp and κi, depending on performance requirements.

Swing-up Control of a Pendulum

Step 1.) has been completed previously in eq. (5.0.5).

This example is adapted from the lecture series of [10]. For reference purposes, the equation
of motion for the pendulum is repeated here,

Iθ̈ = −mgl sin(θ)+ τ.

Remember that θ = 0 is the straight down position of the pendulum.

Now the energy for the system is,

1
2

Iω
2 +U0−mgl cos(θ) = E0 +

�
τω dt

which is to say that,

Es =
1
2

Iω
2 +U0−mgl cos(θ),

with U0 the reference potential energy.

2.) The phase portrait for this system is depicted in Figure 5.2.1. A trajectory that has
exactly enough energy to swing up to vertical position, stop briefly and then fall back over
is highlighted i.e. (θ ,ω) = (−π,0.1).
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Figure 5.2.1: Pendulum Phase Portrait with critical swing up trajectory

Now if the control algorithm could asymptotically approach this energy, Ed = 2mgl and
maintain the system energy there, the pendulum would follow this trajectory and achieve
the goal of swinging the pendulum up. If the energy function is suitably shaped such that a
desirable trajectory already exists in the system, then this technique can be used to exponen-
tially track this trajectory. Mathematically the goal is to have Es→ Ed i.e. Es−Ed = Ẽ→ 0.

So the goal is to lift the system energy or lower the system energy plane, in the spirit of
Figure 3.4.5, until it attains the correct level. This can be done by looking at the time
derivative of Ẽ i.e. the power, which, after some algebra, turns out to be,

d
dt

Ẽ = Ės

= τω.

This is completely expected since Ed and E0 are constants and more importantly, since there
is no dissipation, the only power loss or gain is through the input torque, τ .

4.) The trick now is to make τ =−κpωẼ which yields,

d
dt

Ẽ = −κpω
2Ẽ. (5.2.2)

Juxtapose equation (5.2.2) with a simple linear ODE ẋ =−kx and it should be clear that as
long as κp > 0, then Ẽ will exponentially approach 0 as required. Figure 5.2.2 shows the
system under this control law, κp = 1, for various initial conditions; it is clear that these
initial conditions all reach the required swing up trajectory. The drawback being if the
initial condition is (θ ,ω) = (k2π,0), k = Z, then the system will not swing-up due to the
system being at a local minimum in the energy and τ = −κp(0)Ẽ. The inclusion of the
small impulse defined earlier will alleviate this problem.

Lastly, the swing-up problem with dissipation is solved using the integrator previously de-
fined. Consider the dissipation function,

d(ω)ω = 5sgn(ω)+2ω

which (loosely) models stiction at low speeds and viscous friction otherwise. This function
is depicted in Figure 5.2.3.
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Figure 5.2.2: Phase Portrait of Pendulum System under Swing-up Control (κp = 1) for three
different initial conditions, [θ ,ω] = {[−0.5,2] , [−π,11.25] , [−5,2]}

Figure 5.2.3: Dissipation function modelling Stiction and Viscous Damping

The system with dissipation is now,

Iθ̈ +d(ω)ω +mgl sin(θ) = τ.

With the existing control law, it is clear that the swing-up trajectory is never reached, as
depicted in Figure 5.2.4.

4.) The control law is now

τ = −κpωẼ +ωζ +Aδ (ω)

ζ̇ = −κiẼ,

Figure 5.2.4: Phase plot for Pendulum under Swing-up Control with Dissipation
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Figure 5.2.5: Three-dimensional Phase Portrait of Pendulum under Swing-Up Control with
Integrator (κp = 1, κi = 0.2)

Figure 5.2.6: Two-dimensional Phase Portrait of Pendulum under Swing-Up Control with
Integrator (κp = 1, κi = 0.2)

with constants κp > 0 and κi, A to be determined.

5.) Firstly A > |d(ω)ω2| for small ω which leads to A > 5, hence A = 6 is chosen. For a

chosen κp, as long as κi <
κ2

p
4 then the eigenvalues for the virtual system will remain real.

For comparison sake, κp = 1 as before and hence κi <
1
4 . Therefore a κi = 0.2 is chosen.

The three-dimensional phase portrait for initial condition (θ ,ω,ζ ) = (0,0,0), using this
control law is depicted in Figure 5.2.5. It should be clear that the integrator ζ oscillates
between 5 and 7 due to the dissipation changing with angular speed ω . Figure 5.2.6 depicts
the system, viewed along the ζ axis i.e. the two-dimensional phase portrait. In both cases
there appears to be an oscillation during the swinging phase but the system is swinging-up.
The phase portrait does not appear as Figure 5.2.2, however it should be remembered that
the system cannot swing-up without this integrator (See Figure 5.2.4). So at the very least
the control problem is solved, although not ideally.

By modifying κi to allow for non-real eigenvalues the performance is improved, at the
cost of overshoot (as with linear PI control). To ensure this condition, κi is chosen to be
4. The three-dimensional phase portrait is depicted in Figure 5.2.7. The overshoot is well
evidenced in this figure since the value of ζ oscillates dramatically. However, at low speeds,
the integrator almost tracks the dissipation function, as evidenced by the step-like rises along
the ζ axis. It should be clear though, that the ideal swing-up trajectory of Figure 5.2.1 is
more closely followed. The two-dimensional phase portrait (the system viewed along the
ζ axis) is portrayed in Figure 5.2.8. The system is clearly seen to be oscillating between π
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Figure 5.2.7: Three-dimensional Phase Portrait of Pendulum under Swing-Up Control with
Integrator (κp = 1, κi = 4)

Figure 5.2.8: Two-dimensional Phase Portrait of Pendulum under Swing-Up Control with
Integrator (κp = 1, κi = 4)

and 3π , as desired.

The inclusion of a non-linear integrator and impulse only at zero speed has clearly extended
the technique of power shaping. It is now possible to actively compensate for a non-linear
dissipation function, without feedback linearisation, in the power-shaping methodology.
Furthermore, the method has been extended to include multi-dimensional systems as well
as non-constant desired energy levels, Ed . So it should be possible now to have a given
multi-variable, non-linear system , characterised by Es, exponentially approach a desired
system, characterised by Ed , using this technique, regardless of dissipation. The beauty of
the Power-Shaping control law is that it causes the system to exponentially reach a natural
trajectory i.e. a trajectory that the system is already capable of via the energy function.

Constructive methods for shaping the closed loop energy are presented next.

70



Constructive Methods for

Energy-Shaping
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5.3 Common Lyapunov Controller Interpolation

The so called “Heuristic Fuzzy Logic” controller of [13, 32] is a constructive method of
choosing “fuzzy rules” that make a common Lyapunov function negative definite over the
entire state space.

The basic idea in [13, 32] is to consider a number of “membership functions” µi(x) :{
RN → [0,1]

}
(which are used for measuring the extent that the system is “in” the various

regions of the state space), and associated outputs, ui(x) (which are really just controllers)
with k rules that are “defuzzified” via the algorithm

u(x) =
∑
i
µi(x)ui(x)

∑
i
µi(x)

.

The method is perhaps best grasped by way of a simple example.

Consider a scalar subset of the prototypical model,

mẍ+d(v)v+ k(x) = u

with (for interest’s sake) k(x) = sin(x), d(v) = |v| and m a constant. It is good to identify
what this system appears as, and for all intents and purposes it appears as a pendulum in a
viscous medium.

Choose the Lyapunov function as the energy

E(x,v) =
1
2

mv2 +U0− cos(x)

where U0 = 1 is the zero potential energy reference. This system has the derivative

d
dt

E = −d(v)v2 +u

which is expected from the methodology expounded upon in Chapter 4. Letting u = 0 and
finding the equilibrium points of the system by looking at ∇E = 0 yields the set

(x∗,v∗) ∈ [kπ,0]

for k ∈ Z. Due to symmetry and because kπ (k odd) is a saddle point, it is best to limit
the stability argument to −π < x < π . Now the power is zero iff −d(v)v2 = 0 and hence
the points (x∗,v∗), with (k− 2)π < x∗ < kπ and k odd, are locally asymptotically stable9

as per the reasoning around La Salle’s invariance principle in [15, Chapter 3.4.3]. Consider
defining, as is usually done, three membership functions that determine whether a variable is
positive, negative or zero [13]. Now to construct the two dimensional membership functions
in the (x,v) state space the following is defined,

µXY (x,v) := X(x)ANDY (v)

9Getting a system like this to stabilise around (x,v) = (0,0) is simple. All that is needed is a proportional
controller with a gain large enough to overcome the energy in the minima of the potential function i.e.
u =−κpx with κp > 1.
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Figure 5.3.1: Positive, Negative and Zero membership functions

Figure 5.3.2: Membership Functions for 2D Phase Space

where µXY is the two dimensional membership function composed of one dimensional
membership functions X() AND Y ().

The fuzzy definition for AND is

X(x)ANDY (v) := X(x)Y (v)

which can alternatively be defined as min(X(x),Y (v)) [46, Ch. 2.2.4].

As an example, three membership functions µZZ , µNN and µPZ of the two dimensional state
space (x,v) are depicted in Figure 5.3.2. These should be read as, for example, µZZ := Z(x)
AND Z(v) in other words x is zero and v is zero. For comparison, the same sets are plotted
using the alternate definition for AND, it is clear that the difference is in the gradients of the
membership functions which takes on a stepped appearance in Figure 5.3.3.

Figure 5.3.3: Membership functions for 2D Phase space using alternate definition of AND
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Table 5.1: Fuzzy Rule Base (Control Law Interpolation Table)
Rule Membership Function Control Input Lyapunov Function Derivative V̇

1 µPP −umax V̇ = xv+ v 1
m (−|v|v− sin(x)−umax)

2 µPZ −κ2x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ2x)

3 µPN −κ3x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ3x)

4 µZP −κ4x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ4x)

5 µZZ −κ5x−δ5v V̇ = xv+ v 1
m (−|v|v− sin(x)−κ5x−δ5v)

6 µZN −κ6x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ6x)

7 µNP −κ7x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ7x)

8 µNZ −κ8x V̇ = xv+ v 1
m (−|v|v− sin(x)−κ8x)

9 µNN umax V̇ = xv+ v 1
m (−|v|v− sin(x)+umax)

Now each of the membership functions defined like this are given corresponding control
inputs, which is the “fuzzy rule base” in [13, 32]. The rule base will typically take on the
form of Table 5.1, where umax is the desired saturation limit of the control law [13, 32]. The
derivative of the Lyapunov function is included to show the negative definiteness under the
various control inputs. The great part about the technique is that assumptions can be made
about the sign of the various co-ordinates (x,v) due to the membership functions defining
this region of the state space. Note that a different Lyapunov function,

V =
1
2
(x2 + v2)

is used here to illustrate the method, with

V̇ = xv+ v
1
m
(u−|v|v− sin(x)) .

If the energy of the system is used as the Lyapunov function, then the resulting control laws
are trivially shown to stabilise the system. A few select rules are analysed to show the logic
behind these rules, which are similar to [13, 32]. Look at Rule 1, bearing in mind that since
µPP defines the region that this control law is valid, it implies that both x and v are positive.
Now the derivative of the Lyapunov function V needs to be negative definite in this region
to prove stability, hence |umax| > |mx+ sin(x)| since − 1

m |v|v
2 is negative already. In this

discussion − 1
m |v|v

2 is always negative hence it is not referred to explicitly from now on.

Rule 2, x is positive and |v|< 0.5 therefore κ2x > mx+ sin(x) and so κ2 = 2.1m suffices.

Rule 3, now x is positive and v is negative which makes the term xv negative hence all that
is required is that κ3x > sin(x) which means that κ3 = 1.1 suffices.

Rule 4, |x|< 0.5 and v is positive, therefore κ4x > m0.5+ sin(x) and so κ4 = 1.1m.
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Rule 5 has a PD controller with |x| < 0.5 and |v| < 0.5 and therefore κ5x+ δ5v > mxv+
sin(x) which has κ5 = 1.1 and δ5 = 1.1m as a solution.

Rule 6, 7 and 8 all have the same relations as κ4, κ3 and κ2 respectively due to symmetry.

Rule 9 has some subtlety to it, since x is negative and v is negative. Therefore the trick is
to factorise into v

(
−x− 1

m sin(x)+ 1
m umax

)
, remembering that x is negative and again ignore

− 1
m |v|v

2. Now if
(
−x− 1

m sin(x)+ 1
m umax

)
is positive then the product v

(
−x− 1

m sin(x)+ 1
m umax

)
will be negative as required. Therefore |umax|> |mx+ sin(x)| which is the same as Rule 1.
The engineering reason for making umax positive and adopting this strategy is easier to see;
if the position is negative and moving away from the origin, then push as hard as possible
in the direction of the origin i.e. the positive direction.

Employing now the weighted sum “defuzzification”, the controller interpolation is readily
apparent i.e.

u(x) =
µPP(−umax)+µPZ(−κ2x)+ . . .µNN(umax)

µPP +µPZ + . . .µNN

with all the µ expanded it is,

u(x) =
P(x)P(v)(−umax)+P(x)Z(v)(−κ2x)+ . . .N(x)N(v)(umax)

P(x)P(v)+P(x)Z(v)+ . . .N(x)N(v)
.

In the resulting control algorithm, it is mostly proportional feedback and the footnote in
the introduction of this problem shows why this is all that was really needed. The system
initially used to demonstrate this technique in [13] had exactly the same global stability
properties as this example and could have used proportional feedback exclusively as well.

Some special cases of the technique which are worth mentioning follow on from this.

Consider a uniform control strategy, −Kx say, adopted for all regions in a general state
space, x.

Then

u(x) =
µ1(−Kx)+µ2(−Kx)+ . . .µN(−Kx)

µ1 +µ2 + . . .µN

=
(µ1 +µ2 + . . .µN)(−Kx)

(µ1 +µ2 + . . .µN)

= −Kx

i.e. the control law is pure state feedback with a gain K that satisfies stability in all of the
regions considered due to the common Lyapunov considerations.

Consider that the states x are such that they belong exclusively10 to a membership function,
µk, then

u(x) =
µk (uk(x))

µk

= uk(x)

10Which is to say that all other membership functions return zero
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which is just the control law for that region of the state space. Hence the denominator of the
“defuzzification” algorithm has normalised the influence of the membership function, µk,
on the control law, uk(x).
Consider now that the states, x, are in a region which belongs to two membership functions,
µ1 = 0.25 and µ2 = 0.75, and no others then

u(x) =
µ1 (u1(x))+µ2 (u2(x))

µ1 +µ2

= 0.25(u1(x))+0.75(u2(x))

which demonstrates an interpolation between the two different control strategies. The sys-
tem is 0.75 in the µ2 region of the state space and hence the control law consists of 0.75 the
control law appropriate to that region of the state space.

It should be clear now that this technique is really one of controller interpolation using a
common Lyapunov function for stability assessment.

Design of Common Lyapunov Interpolated Controllers

The general design technique adapted from [13, 32] is now presented.

1. Choose a Lyapunov function appropriate for the problem.

2. Choose regions of the state space to consider and define them using overlapping mem-
bership functions. The membership functions must be functions defined such that
they map RN → [0,1] only, where RN is the dimension of the state space.

3. Go through each membership function and find a controller that makes the Lyapunov
function negative definite. Honour the bounds on the states set by the membership
functions.

4. Lastly, interpolate amongst the controllers using the weighted defuzzification algo-
rithm.

It is possible to use more extravagant membership functions which solve the problem more
elegantly and require fewer rules. One such example is in [32], where a sliding mode
controller was combined with a state feedback controller such that, when the system was
away from the switching surface, the sliding mode controller was employed and when on
the switching surface, the state feedback controller was employed. Not mentioned in that
paper was that, the state feedback controller included feedback linearisation. Nevertheless,
the combination proved successful when applied in simulation to the inverted pendulum on
a cart control problem. Moreover, the control problem only required two controllers to be
interpolated for a four dimensional system, instead of the nine for the simple second order
problem presented previously.

An idea, inspired by the work in [32], as a general non-linear control paradigm is to form
a linear controller, in the usual way, around an equilibrium point, and define a membership
function for this region of linearity and then to find a non-linear controller which will drive
the system to this region. This sort of strategy is often employed in control of the inverted
pendulum and its ilk, where a “swing-up” controller is switched out for an LQR controller
when the pendulum reaches the linear region [11, 48]. The drawback of the strategy is that
there is a “hard” switch between the different controllers which introduces transients [11,
48]. This switching transient problem is alleviated by interpolating between the controllers
using the weighted sum defuzzification method, just as the alleviation of chattering in the
sliding mode control was achieved in [32].
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Control Interpolation for the Simple Inverted Pendulum

Consider the well known simple pendulum with energy

E =
1
2

Iω
2 +U0−mgl cos(θ)

and power

Ė = τω

which has the model (using the conservation of energy from Chapter 4)

Iθ̈ +mgl sin(θ) = τ.

Note g = 9.81 m/s2 is the gravitational constant, l = 1 m is the length of the pendulum,
m = 0.5 kg is the mass at the tip of the pendulum, I = ml2 is the moment of inertia about
the hinge and τ is the input torque. Notice that this is a frictionless model.

The goal is to get θ to stabilise about the upright position kπ with k odd.

1.) The energy is chosen as a Lyapunov function.

First Attempt: Constant Torque with State Feedback

Membership Functions

2.) The upright position is really an infinite number of equilibrium points since it is θ = kπ

with k odd. So to try to have membership functions which are positive, negative and zero
about the equilibrium points it is necessary to have an infinite number of such membership
functions. Fortunately, this problem was addressed in [49], in which a trigonometric po-
tential function in the IDAPBC methodology solved a similar problem. Now, by borrowing
this idea and adapting it for the purposes here, the desired infinite number of membership
functions is elegantly solved. In other words, a trigonometric membership function will
honor the required equivalence of θ = kπ , k odd. Hence the membership functions for the
θ co-ordinate are chosen as,

µZ = cos(
1
2
(x−π))2

µZ̄ = 1−µz,

with µz read as zero and µZ̄ read as not zero, these are depicted in Figure 5.3.4. 3.) Consider
the control strategy: if the angle is not near zero apply a constant torque, if the angle is near
zero then use a PD controller (State Feedback) that honours θ = kπ , k odd. It is intuitive
that this strategy should be feasible. The control law is presented in Table 5.2. It should
be noticed that the first controller is not actually negative definite unless ω < 0. However,
due to the symmetry of the problem, this presents no challenge as the pendulum can only
rotate and hence, an equilibrium point is always available as long as the pendulum spins
far enough around. It is also interesting to note that in the Lyapunov framework, if the
Lyapunov function’s derivative is not negative (semi) definite then no conclusion can be
drawn about stability. However, since the energy of the system has been chosen as the
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Figure 5.3.4: Zero and Non-Zero Membership Functions for θ = kπ

Table 5.2: Pendulum Control Law Interpolation Table
Membership Function Controller Lyapunov Function Derivative

µZ̄(θ) umax Ė = umaxω

µZ(θ) −κp sin(θ −π)−κd ω Ė =−κp sin(θ −π)ω−κd ω2

Lyapunov function, physical grounds can be used to reason that this is, in fact, a stabilising
controller.

The controller for the region µZ(θ) requires some explanation: the −sin(θ − π) has the
required “first and third quadrant” behaviour around any odd multiple for 2nπ < |θ | <
2(n+1)π for n ∈ N and therefore asymptotically stabilises the system, as per Chapter 3.1.
The Lyapunov function’s derivative (power) is only negative definite when κd > κp. It will
be shown next that this restriction can be relaxed using an energy argument.

Now at its heart, this control law is −κp sin(θ − π)− κd ω , which can be interpreted via
the energy-balancing methodology from Chapter 5.1. Essentially, what has happened is an
adjustment of the potential function i.e. a desired energy of,

Ed =
1
2

Iω
2 +

�
κp sin(θ −π)dθ +mgl

�
sin(θ) sindθ +U0

=
1
2

Iω
2 +U0 +κp cos(θ)−mgl cos(θ),

which is tantamount to an inversion of the potential function for κp = 2mgl, and the inclu-
sion of viscous friction,

Ėd = −κd ω
2.

So, what once needed some dancing around and a bit of luck in arriving at, namely, u =
−κp sin(θ −π), is arrived at in a straight forward manner in the energy balancing frame-
work. As with the first example in this section, all that is really needed is a relatively
simple control law u =−κp sin(θ −π)−κd ω , which will globally stabilise the pendulum
at θ = kπ for k odd, provided that κp = 2mgl exactly and κd > 0, which will eventually
dampen out the oscillations about θ = kπ for k odd.

4.) The phase portrait in Figure 5.3.5 for this control scheme shows the global stability of the
points (θ ,ω) = (kπ,0) for k odd. For comparison’s sake, the potential inversion controller
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Figure 5.3.5: Phase Portrait of Constant Torque/PD Controller (κp = 10, κd = 4.5, umax =
10)

Figure 5.3.6: Phase Portrait of Gravity Inversion/Damping (κd = 4.5)

alluded to has the phase portrait depicted in Figure 5.3.6. It, too, globally stabilises the
system.

Second Attempt: Swing-up Controller with State Feedback

2.) The membership functions that are employed in this technique are two-dimensional,
since ω is part of the swing up control strategy. An additional membership function for low
angular speeds is

µL = e−x2
,

which is the Gaussian function. Now the two regions for the state space (θ ,ω) are given as

µZL = µZ(θ)µL(ω)

µZ̄L = 1−µZL,

which should be read as “near equilibrium” AND “near low speeds” for µZL. Finally, µZ̄L
should be read as, “not near zero equilibrium” AND “not near low speeds”. These member-
ship functions are depicted in Figure 5.3.7 and Figure 5.3.8 respectively.

3.) The control scheme is to use the swing up controller if the system is not near the
equilibrium point and not at low speeds i.e. uZ̄L is the swing-up power shaping controller
from Chapter 5.2, −(Es−mgl)ω . The same controller as the first attempt is used for the
region µZL which is, −κp sin(θ −π)−κd ω . 4.) The resulting phase portrait (Figure 5.3.9)
shows the global stability of the control strategy around (θ ,ω) = (kπ,0) for k odd.
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Figure 5.3.7: Zero Angle and Low Speed Membership Functions

Figure 5.3.8: Not Zero Angle and Not Low speed Membership Functions

Figure 5.3.9: Phase Portrait of Swing-up/PD (κp = 10, κd = 4.5)
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The usefulness of being able to smoothly interpolate between different controllers has
clearly been demonstrated with this technique. Moreover, the framework guarantees sta-
bility in a constructive manner, using a common Lyapunov function. It is hoped that light
has been shed on an idea that was obscured in fuzzy control system terminology.
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5.4 Energy Shaping Robot Control

Robotics has a rich history and is an excellent example of how physical insight and energy
considerations lead to a successful and intuitive non-linear control methodology [2, 14],
[15, Ch. 9]. In [15, Ch. 9] the idea was put forward of using robotics as a template for
non-linear control of multiple input multiple output (MIMO) systems. The model equations
for a general N degree of freedom robot appear similar to the prototypical model eq (3.1.1),
indeed robotics was one of the inspirations for settling on this structure.

The N degree of freedom robot equations are given by [15, Ch. 9.1] and [14] as

H(q)q̈+C(q, q̇)q̇+g(q) = τ

where q ∈ RN is the vector of the N generalised co-ordinates, H(q) is the inertia matrix,
C(q, q̇) is the Coriolis and Centripetal matrix, g(q) is the gravitational force matrix and
τ ∈ RN are the applied torques11. There is a slight difference in that [14] includes the time
derivative of the inertia matrix with C(q, q̇) as

H(q)q̈+

(
C(q, q̇)+

1
2

Ḣ(q)
)

q̇+g(q) = τ, (5.4.1)

however the energy balance is the same (as it must be) in both cases. It should be clear that
τ is an N× 1 vector of input torques and hence the robotic system must be fully actuated.
This fact is crucial for the development of the control laws that follow.

What is not considered in neither [14] nor [15, Ch. 9], is the inclusion of dissipation in the
term linear in q̇. This term is present in the prototypical model. It is interesting to note that
[14] has also solved robotics problems where constraints are considered and which is also
presented in this section.

The robot equation eq (5.4.1) is clearly a subset of the prototypical model eq (3.1.1) which
is repeated for reference purposes

M(x, t)ẍ+D(x,v)v+K(x) = G(x)u

with D(x,v) = R(x,v)+J(x,v) + 1
2 Ṁ(x, t), x ∈ RN and v = ẋ. There are a number of

energy shaping controllers for robotics and are presented separately as solutions appropriate
to position regulation and trajectory tracking.

Position Regulation

For position regulation, [15, Ch. 9.1.1] uses energy considerations to show that the control
law

τ = −Kpq̃−Kdq̇, (5.4.2)

with q̃ = q−q∗ and q∗ the desired position vector, causes the system states q in eq (5.4.1)
to reach the desired states q∗, iff g(q) = O and Kp > 0 and Kd > 0 [15, Ch. 9.1.1]. Note

11Note that the condition on the torques implicitly defines the system as fully actuated.
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that there is a subtlety here in that the error q̃ is composed in the position but not the velocity
as in conventional PD control. This is further enhanced in [14] via the celebrated PD plus
gravity compensation via

τ = −Kpq̃−Kdq̇+g(q) (5.4.3)

which cancels out the gravity term in eq (5.4.1). However eq (5.4.3) requires online com-
putation of the gravity term and adds to the computational burden of the control law, eq
(5.4.2), in line with the Controller Complexity principle. Notice that this is the exact same
control law derived via Energy-Balancing in Chapter 5.1.

To reduce this computational burden, eq (5.4.3) is modified into,

τ = −Kpq̃−Kdq̇+g(qd), (5.4.4)

and is referred to as a PD plus target torque regulation controller [14]. This control law is
analysed in terms of its energy effects in Chapter 5.1.

Proof of Position Regulation

All three position regulation techniques have Lyapunov stability proofs to show their asymp-
totic stability properties. These are presented here and are adapted from [14] and [15, Ch.
9] .

All three proofs use a Lyapunov function,

d
dt

(
1
2

q̇TH(q)q̇+ P̄(q̃)
)

= −q̇T (C(q, q̇)+Kd) q̇,

where P̄(q̃) is a modified potential function of q̃. To find P̄(q̃), compute the inner product
of eq. 5.4.1 (with the appropriate control law) and q̇.

Next, use 1
2 q̇TH(q)q̇+ P̄(q̃) as a Lyapunov function and choose Kp so that P̄(q̃) is positive

definite. As long as Kd +C(q, q̇) is positive definite, then Lyapunov’s second theorem can
successfully be applied and convergence of q̃→ 0 and q̇→ 0 is asymptotically ensured.

�

If the control objective is in some other co-ordinate system (say x) other than the model
co-ordinates (say q) where x = f(q) then eq (5.4.3) becomes

τ = −κp
∂xT

∂q
(x−x∗)−Kdq̇+g(q) (5.4.5)

with κp some positive constant [14]. This control law will guarantee asymptotic conver-
gence to the target co-ordinates, provided that x is of the same dimension as q; if it is not,
then the Jacobian ∂xT/∂q will be non-square and have multiple solutions for q at x∗ [14].
This is called the “ill-posedness of inverse kinematics” [14]. The stability proof for this
controller uses a Lyapunov function
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E =
1
2

q̇H(q)q̇+
κ

2
||x̃||2

with

d
dt

E = −q̇TKdq̇

which is clearly an energy argument for stability [14].

Constraint Considerations

The following is a modification of [14]:

given constraints that the system needs to honour during operation, of the form,

φ(x) = 0

where the dimension of x is equal to the dimension of q related by x = f(q), then the control
law

τ = g(q)−Kdq̇− ∂xT

∂q

{
κp(x−x∗)+λd

∂φ(x)
∂x

}
causes the system to asymptotically approach x∗ with the Lagrange multiplier λ → λd as
time t → ∞ [14]. The Lagrange multiplier is interpreted as the normal force of the system
on the constraint surface in the robot context [14].

Trajectory Tracking Control

The issue of trajectory tracking for Robotics is addressed very simply in [15, Ch. 9.1.2] and
[42]. The essential idea follows the Controller Complexity principle in that, the controller
has the same mathematical structure as the plant with a feedback term for stability.

Perfect Tracking

If there is no plant-model mismatch then trajectory tracking is trivial and involves clever use
of the equality in eq (3.1.1), the idea has been adapted for the prototypical model from [39,
Ch. 13]. One first specifies a desired trajectory, xd ∈RN , that is at least twice differentiable
[39, Ch. 13]. Once this trajectory has been specified, simply substitute it into the model
equations and the resulting input forces will be the forces that must be applied to the system
to achieve that trajectory [39, Ch. 13]. The fundamental requirement for this concept to
work is that the initial conditions are the same, xd(0) = x(0) and that, in modern control
terms, the system is fully-actuated [39, Ch. 13]. This technique is actually plant inversion
and provides exact tracking, assuming no disturbance and no plant-model mismatch.
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Proof

Given the model eq (3.1.1), the input for a desired trajectory xd is

G(x)−1 (M(xd, t)ẍd +D(xd,vd)vd +K(xd)) = u

which when substituted into the model results in

M(x, t)ẍ+D(x,v)v+K(x) = G(x)G(x)−1 (M(xd, t)ẍd +D(xd,vd)vd +K(xd)) .

Given that xd(0) = x(0) at time t = 0 and exact equality of all vector functions (i.e. no
plant-model mismatch) the above equality is valid.

Hence, by induction the equality is valid for all subsequent times.

Hence x = xd for all time t ≥ 0.

�

The fact that plant inversion is taking place is easy to see in a scalar linear analogy to the
prototypical model i.e.

Mẍ+Dẋ+Kx = Gu

which has the Laplace transform(
Ms2 +Ds+K

)
X(s) = GU(s)

with transfer function from u to x of

X(s)
U(s)

=
G

(Ms2 +Ds+K)
.

Now, using the technique of specifying the trajectory xd and solving for u results in

Mẍd +Dẋd +Kxd = Gu

and has transfer function from xd to u of

U(s)
Xd(s)

=

(
Ms2 +Ds+K

)
G

which is clearly the inverse of the plant transfer function.

Furthermore, the transfer function from xd to x is then

X(s)
Xd(s)

= 1

X(s) = Xd(s)

which is perfect tracking. This scalar linear analogy is consistent with the results from the
non-linear prototypical framework and hence the term plant inversion is used.
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Exponential Tracking

The plant inversion result should be juxtaposed with the observer and controller results in
Chapter 3.3, which had the identical structure but included a feedback term, which allowed
for exponential tracking. Hence the result can be modified to include this term, from which
the same conclusions can be drawn i.e. the virtual system

M(x, t)χ̈ +D(x,v)ν +K(x) = G(x)u−Kd(ν−v) (5.4.6)

with virtual state χ ∈ RN , virtual velocity ν = χ̇ contains the system for χ = x, ν = v
and a controller for χ = xr, ν = vr. All that remains is to prove contraction with the virtual
system and the controller, implicitly defined by eq (5.4.6), will exponentially track a desired
reference trajectory xr according to contraction theory12. This example is very similar to
what was done in the robot manipulator control design in [42].

Proof of Contraction (adapted from [42])

Taking the time derivative of the general metric 1
2 δνTM(x, t)δν leads to

d
dt

(
1
2

δν
TM(x, t)δν

)
= −δν

TR(x,v)δν−δν
TKdδν

since J(x,v) is skew-symmetric and the 1
2 Ṁ(x, t) cancels on both sides. Hence the system

contracts for δν .

�

Given that the system contracts for δν implies that v→ vr exponentially. The trick then is
to choose

vr = vd−Λ(x−xd)

with Λ a Hurwitz matrix to ensure exponential tracking of x→ xd [42].

This implies that the control law,

u = G(x)−1 (M(x, t)v̇r +D(x,v)vr +K(x))+Kd(vr−v),

will exponentially track a given reference trajectory xd for some Kd > 0, Hurwitz matrix Λ

and vr = vd−Λ(x−xd).

12See Chapter 3.3
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Tracking: Feedback Linearisation

This idea is known as the computed torque method in robotics and involves feedback lin-
earisation with

τ = H(q)r+C(q, q̇)q̇+g(q)

which leads to the closed loop dynamics

q̈ = r

[15, Ch. 9.1.2]. What remains is to choose r, the new input, as

r = q̈d−2A˙̃q−A2q̃

with N×N matrix A > 0 and the closed loop dynamics become

¨̃q+2A˙̃q+A2q̃ = 0 (5.4.7)

where q̃ = q−qd [15, Ch. 9.1.2]. Now eq (5.4.7) appears as a critically damped second
order system with time constant A. Recall that eq (5.4.7) is an N × 1 vector differential
equation so it is not automatically critically damped along every co-ordinate q. To make
this the case the constant matrix A should be chosen as αI, where α is a positive constant
and I is the N ×N identity matrix, then eq (5.4.7) becomes a system of N independent
second order differential equations, each critically damped with time constant α .

Of course it is possible to tease out what is being done here in terms of energy, since it has
already been established that feedback linearisation is a special form of energy-balancing
in Chapter 5.1. What remains is to observe the effect of r in terms of energy and the energy
analysis will be complete.

Recall that Energy Balancing a desired energy Ed = 1
2 vTv with desired power Ėd = vTr

leads to feedback linearisation of the prototypical model eq (3.1.1). Substitution of the
dynamics

r = ẍd−2Aṽ−A2x̃

into the desired power will result in a closed loop prototypical system

˜̈x +2Aṽ+A2x̃ = 0

where x̃ = x−xd and ṽ = ˙̃x. To observe what has been done in terms of energy, it is neces-
sary to use the definition of r and substitute it into Ėd resulting in

Ėd = vT ẍd−vT2Aṽ−vTA2x̃ (5.4.8)

= vTẍd−vT2Av−vTA2x+vT2Avd +vTA2xd.

There are cross terms in eq (5.4.8) and it appears that dimensional consistency has been
lost with the term vTẍd. However, it must be remembered that there are unit masses due
to the desired energy Ed = 1

2 vTv and hence the term does indeed have units of J
s . When

x̃ and ṽ have been multiplied out, it is clear that power is added into the system if a twice
differentiable desired trajectory xd is not zero and the power is zero only when v = vd,
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x = xd and ẍd = 0. An intuitive explanation of this desired power function can be put
in terms of a mass spring damper system, with a spring that exerts zero force only when
x = xd, a linear viscous damper that only stops extracting energy from the system when
v = vd and a unit mass that moves on its own according to some desired acceleration ẍd.
Hence the control philosophy was to have equality between the system and this mythical
mass-spring-damper.

The drawback of this method is again, that no plant-model mismatch is allowed [15, Ch. 9].

Robust Tracking: Sliding Mode

It is well known that sliding mode control is a robust, high performance control method-
ology [15, Ch. 7]. The basic idea involves designing a switching surface σ(χ) which is a
function of all of the states χ ∈ RN and a control law that causes all system trajectories to
approach the surface and stay on it [15, Ch. 7.1]. The dynamics on the switching surface
then dictate the system performance i.e. the closed loop system behaves as σ =O [15, Ch.
7.1].

Mathematically the goal is to have

1
2

d
dt

σ
T
σ ≤ −ηI(σT

σ)
1
2 (5.4.9)

where η is a positive constant which implies a finite time convergence (smaller than 1
η

σ t=0)
to the switching surface σ and is clearly a Lyapunov argument for stability [15, Ch. 7.1,
Ch. 9.1.2].

Now the switching surface is chosen as

σ = ˙̃q+Λq̃

where Λ is a Hurwitz matrix, essentially its eigenvalues are all stable [15, Ch. 9.1.2].

This approach can be simplified and be physically justified with a few alterations by con-
sidering the time derivative of σTHσ and interpreting the switching surface as a velocity
error via

σ = q̇− q̇r

q̇r = q̇d−Λq̃,

which is an artifice that allows reasoning about the energy related properties to conspire
with trajectory following [15, Ch. 9.1.2].

The derivation in [15, Ch. 9.1.2] is modified to suit the prototypical model next.

Consider a switching surface σ(x,v)

σ(x,v) = ṽ+Λx̃,

which is given for a general second order scalar system in [15, Ch. 7.1.1]. Recall that x̃ =
x−xd and ṽ = v−vd. Now use the artifice mentioned previously by letting vr = vd−Λx̃
and the sliding surface can be rewritten as

σ = v−vr
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which is a general weighted velocity error in the spirit of [15, Ch. 9.1.2].

Now construct the Lyapunov function

E =
1
2

σ
TM(x, t)σ

which is clearly positive definite for all x and v. The time derivative of the Lyapunov
function,

d
dt

E = σ
TM(x, t)σ̇ +

1
2

σ
TṀ(x, t)σ ,

with the prototypical model eq (3.1.1),

M(x, t)v̇ = −D(x,v)v−K(x)+G(x)u

and clever use of the switching surface definition as in [15, pp. 402] leads to

M(x, t)(σ̇ + v̇r) = −D(x,v)(σ +vr)−K(x)+G(x)u

and finally

d
dt

E = σ
T (G(x)u−D(x,v)vr− [R(x,v)+J(x,v)]σ −K(x)−M(x, t)v̇r) .

Now using the skew-symmetry of J(x,v) and symmetric positive definiteness of R(x,v)
yields

d
dt

E = σ
T (G(x)u−D(x,v)vr−K(x)−M(x, t)v̇r)−σ

TR(x,v)σ (5.4.10)

To design a robust control strategy let the model have bounded modelling errors,

M̄ = M̂−M
D̄ = D̂−D
K̄ = K̂−K,

where M̄ denotes the error, M̂ denotes the “best guess” and M is the “true value” [15, pp.
403]. For ease of reading, the arguments to the matrices have been dropped. Let G(x) be
bounded by

0 < Gmin(x)≤ G(x) ≤Gmax(x)

where Gmax(x) and Gmin(x) are the known upper and lower bounds respectively [15, pp.
287-288]. Now G(x) is a multiplicative uncertainty and hence it is a natural choice that the
best approximation is the geometric mean of the limits

Ĝ(x) = (Gmin(x)Gmax(x))
1
2

which is a vectorised version of [15, pp. 287-288].
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Define now

Ḡ(x) = G(x)Ĝ(x)−1

which will be the identity matrix for no mismatch between G(x) and Ĝ(x).

Choose the control law

u = Ĝ(x)−1 (M̂(x, t)v̇r + D̂(x,v)vr + K̂(x)−κ(x,v)sgn(σ)
)

where κ(x,v) is an N×N matrix of gains and sgn() is the sign function mathematically
defined for scalars as

sgn(y) =


+1 y > 0
0 y = 0
−1 y < 0,

that has the property that ysgn(y) = |y| i.e. the absolute value of y [15, 402].

Now with the control law substituted into eq (5.4.10),

d
dt

E = σ
TḠ
(
M̄v̇r + D̄vr + K̄

)
−σ

TRσ −σ
TḠκ(x,v)sgn(σ)

the sliding condition, eq (5.4.9), can be verified using

κ(x,v) ≥
∣∣Ḡ−1 (M̄v̇r + D̄vr + K̄

)∣∣+η

which is an adaptation and extension of [15, Ch. 7.1, pp. 40-403]. The problem with this
control law is the sharp switching around σ = 0 due to the sgn() function [15, Ch. 7.1].
There is a way to make the control law continuous in a boundary around the switching
surface and this is addressed next [15, Ch. 7.2]. The fix is to use a saturation function sat()
defined as

sat(y) =

{
y |y|< 1
sgn(y) otherwise,

and hence use the control law

u = best guess− Ĝ(x)−1
κ(x,v)sat(

σ

B
)

where B is the boundary width around the switching surface [15, Ch. 9.2, pp. 294]. The
Controller Complexity principle is again at work where the control algorithm is at least as
complicated as the plant and further that the feedback term κ(x,v) has to be larger than the
known uncertainty in the model.
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Table 5.3: Robotic Control Laws Adapted to the Prototypical System
Name Control Law

Position Regulation

PD Plus Gravity G(x)u =−Kp(x−x∗)−Kdv+K(x)

PD Target Torque G(x)u =−Kp(x−x∗)−Kdv+K(x∗)

Task Space Position Regulation G(x)u =−κp
∂x
∂γ
(γ− γ∗)−Kdv+K(x)

Task Space with Constraints G(x)u =− ∂x
∂γ

{
κp(γ− γ∗)+λd

∂φ(γ)
∂γ

}
−Kdv+K(x)

φ(γ) = 0

Trajectory Tracking

Plant Inversion G(xd)u = M(xd, t)ẍd +D(xd,vd)vd +K(xd)

Feedback Linearisation G(x)u = M(x, t)r+D(x,v)v+K(x)
r = ẍd +2A(v−vd)+A2(x−xd)

Exponential Tracking G(x)u = M(x, t)v̇r +D(x,v)vr +K(x)+Kd(vr−v)
vr = vd−Λ(x−xd)

Robust Tracking u = Ĝ(x)−1
(
M̂(x, t)v̇r + D̂(x,v)vr + K̂(x)

)
−Ĝ(x)−1

(
κ(x,v)sat(σ

B )
)

κ(x,v)≥
∣∣Ḡ−1

(
M̄v̇r + D̄vr + K̄

)∣∣+η

Applications to the Prototypical System

The beauty of the results from Robot control is that the control laws are directly applicable to
the prototypical model, with a few minor modifications on the stability proofs. The handful
of control laws on position regulation, trajectory tracking and control under constraints are
therefore directly available for design purposes. All that is required is a change of variables
namely q→ x, q̇→ v, H(q)→M(x, t) and finally τ → G(x)u and all of the rich control
laws from robotics are available for use with the prototypical system. It should be clear that
in order for the results to be applicable, G(x) must have an inverse and the system should
be fully actuated as it is in eq (5.4.1). All of the control laws presented in this Chapter are
presented in Table 5.3. Note that the task space co-ordinates are given as γ , the switching
surface is σ = ṽ+Λx̃ and the system to be controlled is the prototypical model eq (3.1.1).
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Design of Energy-Shaping Robot Controllers

There is no design work needed in applying the control laws from Table 5.3. All that is
required is to have the system model in the prototypical framework, since these control
laws were adapted to fit it. One simply chooses the control law that best fits the control
problem at hand.

The recommended control law for position regulation is the PD Target Torque method due
to its simplicity and low computational cost, as compared with some of the other position
regulation controllers.

The recommended control laws for tracking are the Exponential Tracking control law, if
the model used is accurate and the Robust Tracking control law if the model is a simplifi-
cation and/or disturbances are expected. The Robust Tracking control law also reaches the
trajectory in finite time and therefore is a better performing controller.

Application of Energy-Shaping Robot Control to the
Simple Pendulum

The position regulation control laws (PD plus gravity, PD Target Torque) have already been
applied in Chapter 5.1. Due to the pendulum system being scalar, the task space control
laws are not appropriate in this application. Hence the trajectory tracking control laws will
be examined. It should be remembered that, the Power-Shaping control law of Chapter 5.2
is also appropriate for solving trajectory tracking problems. A few important sliding-mode
control concepts are introduced next before getting to the tracking algorithms.

Sliding-Mode Control Concepts

As previously stated, the goal of the sliding mode algorithm is to cause the system trajectory
to approach the switching surface, σ , in finite time [15, Ch. 7.1]. This is the heart of the
Robust Tracking algorithm. Once on the switching surface, the dynamics of the system are
determined by σ = 0 [15, Ch. 7.1].

Consider, for example, the switching surface,

σ(θ ,ω) = ω̃ +λ θ̃ ,

with λ a positive constant. Choosing λ = 0.5 yields a stable switching surface, as per Figure
5.4.1.

To demonstrate the principle of sliding-mode control, the reference trajectory θd = 1 is
chosen. By doing this, the tracking problem has become a regulation problem. Figure 5.4.1,
adapted from [15, Ch. 7.2, pp. 291], depicts the switching surface for λ = 0.5 and θd = 1.
A boundary around the switching surface, included as a visual aid for later addressing, is
represented by the region B. For a constant θd , the velocity error becomes ω̃ = ω . The
dynamics on the switching surface are therefore,

σ = 0

ω +λ (θ −1) = 0

=⇒ θ̇ = −λ (θ −1).
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Figure 5.4.1: Switching Surface, with Boundary layer B.

This is a stable, linear, first order, ordinary differential equation. A fact made clear in
Figure 5.4.1. The stationary point is, θ = 1, as desired. The exponential tracking algorithm
is presented next, followed by the robust tracking algorithm.

Exponentially Convergent Tracking of a Sinusoidal Wave

The control law for exponentially convergent tracking (from Table 5.3) of a sinusoidal wave
is:

τ = Iv̇r +mgl sin(θ)+κd(ω− vr), (5.4.11)

and

vr = ωd−λ (θ −θd).

Note, the feedback term is,

κd(ω− vr) = κd
(
ω̃ +λ θ̃

)
= κd σ ,

which is very similar to the sliding-mode controller. The differences are: κd = const and
does not change with state; the switching surface, σ , is not an argument to a function.
In fact, this can be shown to be a limiting case of the robust tracking algorithm. This is
accomplished by using the sat() function and making the boundary around the switching
surface, B = ∞, whilst describing the modelling error with a constant.

The sinusoidal reference wave, with frequency f = 0.25 Hz, is θd = sin(2π f t). This implies
that ωd = (2π f ) cos(2π f t) and furthermore that

v̇r = −(2π f )2 sin(2π f t)−λ (ω− (2π f ) cos(2π f t)) .

For brevity’s sake these are not substituted into eq (5.4.11).

In terms of visually representing the performance, a plot of σ against time is extremely
useful for this purpose [15, Ch. 7, pp. 296]. The phase portrait is messy due to trajectories
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Figure 5.4.2: Switching surface plot of Exponentially Convergent Tracking algorithm

crossing one another, since the system is time varying. Furthermore, there is little insight in
terms of rate of convergence on a phase portrait, due to time being an implicit variable.

Recall that when σ = 0, then perfect tracking is achieved. The exponential nature of the
control algorithm is clear from Figure 5.4.2. Two (arbitrary) initial conditions are used,
namely (θ ,ω) = (2.5,5) and (θ ,ω) = (−2.5,−5). The gain, κd is chosen as 10. Note that
the switching surface, σ is a linear combination of angle and angular velocity errors. Hence,
these initial σ values are not unique.

Robust Tracking of a Sinusoidal Wave

The sliding-mode control algorithm (Robust Tracking in Table 5.3), given a varying m is,

τ = Î v̇r + m̂gl sin(θ)−κ(θ ,ω)sat(
σ

B
),

where m̂ is the best guess of the mass, and m̄ is the maximum expected error. The re-
quirement for the sliding condition to hold, is that κ(θ ,ω)≥ |Ī v̇r + m̄glsin(θ)|+η13. For
comparison’s sake, the robust tracking algorithm assumes exact knowledge of the plant ini-
tially. The free parameter, η is experimentally chosen to be 20, such that both controllers
have similar settling times. The same reference signal, θd = sin(2π f t) is to be tracked.
The boundary layer, B, is chosen to be 0.1, which experimentally removes chattering. The
switching surface plot against time, for the same previous initial conditions, is depicted in
Figure 5.4.3. It should be clear that there is a finite time to reach the surface (σ = 0) and
when the system is on the surface, it remains on it (σ = 0 from then on). Whereas in Figure
5.4.2, the convergence to σ = 0 is exponential, as its name implies.

To assess the robustness, m̂ is again chosen to be 0.5 kg and m̄ = ±0.25 kg. This means
that the maximum expected deviation of the best approximated mass, m̂ and the true mass
is between 0.75 kg and 0.25 kg. To further test the algorithm, the true mass is defined
according to,

m = 0.5+0.22 sin(θ),
13Take note, if there is no plant-model mismatch (m is exactly known), then, for a constant θd = 0, this control

law is feedback linearisation with a feedback term. The expanded feedback term is −η sgn(ω +λ θ̃) i.e. a
bang-bang controller with PD input and ±η as output. For the control law that includes the sat() function
and the boundary B, the control law inside the boundary is a PD controller, −ηω −ηλ x̃ and a bang-bang
controller outside of the boundary.
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Figure 5.4.3: Switching surface plot of Robust Tracking algorithm

Figure 5.4.4: Switching surface plot of Robust Tracking algorithm under a varying mass

which honours the assumed bounds on the mass.

This is not a realistic description of the system, since the mass of the bob varies with the
angle, however it does test the robustness of the technique. The resulting switching surface
plot is depicted in Figure 5.4.4. The performance is near identical as the exactly known
mass case, with no visible error. This result should be juxtaposed with the exponentially
convergent tracking controller previously defined. Figure 5.4.5 depicts the response from
the exponentially convergent tracking controller. It is clear that the varying mass causes a
visible error in tracking the sinusoidal wave, since σ does not remain zero for any portion
of time. Hence the exponentially convergent tracking controller is not robust with respect
to parameter variation.

The exponentially convergent tracking controller has a simpler control law and is reliable,
provided that the plant is modelled exactly. The robust tracking control law is more compu-
tationally complicated but can be made robust with respect to parameter variation. More-
over, it is clear at the design stage the amount of uncertainty in the modelling of the system.
Lastly, the robust control algorithm has a finite time to reach the trajectory, whereas the
exponentially convergent tracking controller approaches the trajectory exponentially.
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Figure 5.4.5: Switching surface plot of Exponentially Convergent Tracking algorithm under
a varying mass
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5.5 Interconnection and Damping Assignment (IDAPBC)

The following is a brief summary of the Interconnection and Damping Assignment method-
ology expounded upon in [6, 16, 17, 18, 19].

Given a state space description in the well known input affine form, where x ∈ RN :

ẋ = F(x)+G(x)u, (5.5.1)

interconnection and damping assignment seeks to transform this system into a system that
has: a desired interconnection, Jd(x), between states, a desired damping, Rd(x), in the
various degrees of freedom as well as a desired potential function, Hd(x)14 [18]. It does this
via the the input u = β (x) [18].

The matching equation for this problem is then,

F(x)+G(x)β (x) = (Jd(x)−Rd(x))∇Hd(x)

which is a partial differential equation due to the term ∇Hd(x) [6].

Differentiating the right hand side along the closed loop trajectories yields,

d
dt

Hd(x) = −∇
T Hd(x)Rd(x)∇Hd(x),

which has desirable stability properties as seen in the Chapter on Lyapunov functions [6].

Now it is possible to split the matching equation into: a fully actuated part using the inverse
of G(x), defined as G(x)−1 which has the property that G(x)−1G(x) = I ; and an unactu-
ated part using the left annihilator of G(x), defined as G(x)† which has the property that
G(x)†G(x) =O [18, 19].

The fully actuated matching equation is given by,

β (x) = G(x)−1 {(Jd(x)−Rd(x))∇Hd(x)−F(x)} (5.5.2)

and the unactuated matching equation is given by,

G(x)†F(x) = G(x)† (Jd(x)−Rd(x))∇Hd(x). (5.5.3)

Both of these matching equations need to be solved simultaneously, the fully-actuated
matching equation solves for the control law directly and the unactuated matching equa-
tion makes sure that inputs are not required along co-ordinates in which there is no control
authority, for the given Interconnection, Damping and Potential functions [6]. Note that
G(x)−1 is the Moore-Penrose pseudo-inverse, which is a well defined for non-square matri-
ces as long as G(x) has full column rank, which is assumed for IDAPBC’s purposes [6].

It should be noted that this technique closely models feedback linearisation in that the plant
dynamics are canceled and replaced by the structure the designer wants [15, Ch. 6]. The
main difference is that the target dynamics are chosen based on energy, whereas in feedback
linearisation, they may be arbitrarily assigned [15, Ch. 6]. Consider the substitution of eq
(5.5.2) into (5.5.1), where for readability (Jd(x)−Rd(x))∇Hd(x) = Fd(x):
14The following properties must be adhered to: Jd =−Jd

T and Rd =Rd
T > 0
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ẋ = F(x)+G(x)G(x)−1 {Fd(x)−F(x)} ,

which results in

ẋ = Fd(x),

and is identical to feedback linearisation.

Design of Interconnection and Damping Assignment Controllers

The general design technique adapted from [19, 18] is now presented:

1. Choose an Hd which has a unique equilibrium point, x∗ at the desired state space.

2. Choose the dissipation Rd to help convergence to this point.

3. Choose also a Jd, if energy must be exchanged between different states. (Think of
the DC motor)

4. Solve the matching equations.

Another, more laborious method, also from [19, 18]:

1. Choose a dissipation structure Rd and interconnection Jd.

2. Solve the matching equations for all families of Ha = H−Hd .

3. Choose the solution which has a minimum at the desired state x∗.

One can further choose which matrices to fix and which to leave free to solve for families
of controllers. However, there are only two matching equations and therefore one must fix
at least one parameter; either Hd , Rd or Jd.

Interconnection and Damping Assignment of a Simple
Pendulum

First and foremost, the model for the simple pendulum must be modified into the port-
controlled Hamiltonian framework. This is done by defining a generalised co-ordinate, q
and corresponding “conjugate momentum”, p [18]. For the frictionless simple pendulum,
these are the angle q= θ and the angular momentum p= Iω . Now the Hamiltonian (system
energy [19]) is:

H(q, p) =
1
2

p2

I
+U0−mgl cos(q).

Using Hamiltonian mechanics, [39, Ch. 16], the equations of motion are(
q̇
ṗ

)
=

(
[H]p

− [H]q + τ

)

=

( p
I

−mgl sin(q)+ τ

)
,

98



which can easily be shown to be identical to the second order model arrived at in other
Chapters.

This can be written in port-controlled Hamiltonian form as

ẋ = (J−R)∇H +Gu

with

x =

(
q
p

)
,

G =

(
0
1

)
,

u = τ,

J =

(
0 1
−1 0

)
,

R =

(
0 0
0 0

)
,

and

∇H =

(
[H]q
[H]p

)
.

Now with the control law, u = β (x) the matching condition is, as per eq (5.5.2),

(J−R)∇H +Gβ (x) = (Jd−Rd)∇Hd ,

which has solution,

β (x) = G−1 {(Jd−Rd)∇Hd− (J−R)∇H} ,

where G−1 is the Moore-Penrose pseudo-inverse,

G−1 := (GT G)−1GT,

as described in [19].

The other matching equation is eq (5.5.3),

G† (J−R)∇H = G† (Jd−Rd)∇Hd .
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Now the left annihilator of G, denoted as G† is such that:

G†G =

(
0
0

)
;

column rank(G†) = column rank(G) which implies that

G† 6=
[

0 0
]
,

as described in [34, pp. 296].

Hence, for the simple pendulum,

G−1 =

([
0 1

][ 0
1

])−1 [
0 1

]
=

[
0 1

]
,

and

G† =
[

1 0
]
.

Desired Dissipation

1,2,3.) If the desire is for the inclusion of dissipation only, then Jd = J, and Hd = H with

Rd =

(
0 0
0 r

)
,

which is tantamount to the desired inclusion of viscous damping. Notice that dissipation is
only included where it would normally appear. This, incidentally, avoids having to solve
the second matching equation, eq (5.5.3), which ensures that the energy is not shaped where
there is no control authority to do so.

4.) The control law is

β (x) =
[

0 1
]
(R−Rd)∇H

=
[

0 1
]( 0 0

0 −r

)(
[H]q
[H]p

)
=

[
0 −r

]( [H]q
[H]p

)
,

which results in,

β (x) = −r [H]p

= −r
p
I
,

and is clearly β (x) =−rω using p = Iω .
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1,2,3.) It is possible to solve for all controllers for this system which have a general dissi-
pation structure,

Rd =

(
rq r1
r1 rp

)
,

with J = Jd and Hd a free parameter. This is achieved by defining Hd = H +Ha, which is
to say that, the desired Hamiltonian is an addition of the original Hamiltonian and another
modifying one [18].

4.) The second matching equation is then eq (5.5.3), which is a partial differential equation
that solves for any modified Hamiltonian with this dissipation structure. Explicitly now,[

1 0
]
(R−Rd)∇Ha = 0[

1 0
]( −rq −r1
−r1 −rp

)(
[Ha]q
[Ha]p

)
= 0

[
−rq −r1

]( [Ha]q
[Ha]p

)
= 0,

which is

rq
∂

∂q
Ha + r1

∂

∂ p
Ha = 0.

Solving this equation for Ha allows the engineer to find an entire family of admissible
modifications to the natural energy15 H, and choose one with a suitable equilibrium point.
By dividing both sides by rq this becomes the constant coefficient advection equation,

∂

∂q
Ha +

r1

rq

∂

∂ p
Ha = 0,

which has solution

Ha = f (p− r1

rq
q), (5.5.4)

with f () an arbitrary differentiable function [50].16Equation 5.5.4 is an entire family of
admissible solutions. After choosing a specific one, the control law is found by using the
first matching equation, eq (5.5.2),

β (x) =
[

0 1
]
(R−Rd)∇Ha

=
[

0 1
]( −rq −r1
−r1 −rp

)(
[Ha]q
[Ha]p

)
=

[
−r1 −rp

]( [Ha]q
[Ha]p

)
,

which is

β (x) = −r1
∂

∂q
Ha− rp

∂

∂ p
Ha.

15Recall that Hd = H +Ha.
16It should be well noted that with rq = r1 = 0, this PDE is trivially solved. Originally, the dissipation was

only added where it would naturally appear anyway, which circumvented having to solve this PDE. Hence,
physical reasoning has allowed the design to skip some of the more advanced mathematical requirements
of IDAPBC.
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Modi�cation of Potential Function

1,2,3.) With the desire to invert gravity and have the pendulum balance about the upright
position implies that, Jd = J, Rd = R and

Hd =
1
2

p2

I
+mgl cos(q)+U0.

4.) The first matching equation is,

β (x) =
[

0 1
]
(J−R)(∇Hd−∇H)

=
[

0 1
]( 0 1
−1 0

)
(∇Hd−∇H)

=
[
−1 0

]( [Hd ]q− [H]q
[Hd ]p− [H]p

)
=

[
−1 0

]( [Hd ]q− [H]q
0

)
= [H]q− [Hd ]q ,

and leads to

β (x) = mgl sin(q)︸ ︷︷ ︸
cancelsgravity

+mgl sin(q).

The energy balancing of Chapter 5.1 leads to these exact same controllers (both gravity
inversion and desired dissipation) in a more straight forward manner. The second matching
equation to be solved is,

0 = G† (J−R)(∇Hd−∇H)

0 =
[

1 0
]( 0 1
−1 0

)
(∇Hd−∇H)

0 =
[

0 1
]( [Hd ]q− [H]q

[Hd ]p− [H]p

)
0 =

[
0 1

]( [Hd ]q− [H]q
0

)
0 = 0.

Hence, the control law is a valid one (as already observed in previous chapters).

It interesting to note that for a very general modification of Hd into,

Hd =
1
2

p2

I
+U(q),

the resulting control law is

β (x) = mgl sin(q)− ∂

∂q
U(q).

This is feedback linearisation with a potential derived force − ∂

∂qU(q). Again, a result more
easily achieved in Chapter 5.1.
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Remarks about Kinetic Energy Shaping

1,2,3.) Consider that the desired kinetic energy is not identical to the original kinetic energy
i.e. [Hd ]p− [H]p 6= 0, but Jd = J and Rd = R, then the second matching equation, eq (5.5.3),
is

∂

∂ p
Hd − ∂

∂ p H = 0

=⇒ ∂

∂ p
Ha = 0.

4.) This is trivial to solve and has solution,

Ha = U(q),

essentially stating that the kinetic energy may not be modified if J and R are not modified.
This is completely expected since the kinetic energy cannot be modified using the states
p and q only. It should be remembered from Chapter 5.1and Chapter 5.4 that, the kinetic
energy requires acceleration terms in order to alter it.

Concomitant Shaping of Potential and Dissipation

1,2,3.) Given the desire for gravity inversion and the inclusion of dissipation i.e. Hd and Rd
are as previously defined with Jd = J.

4.) The resulting matching equations are:

β (x) =
[

0 1
]
((J−Rd)∇Hd− (J−R)∇H)

=
[

0 1
]
((J−Rd)∇Hd− J∇H)

=
[

0 1
]( 0 1
−1 −r

)(
[Hd ]q
[Hd ]p

)
−
[

0 1
]( 0 1
−1 0

)(
[Hd ]q
[Hd ]p

)
=

[
−1 −r

]( [Hd ]q
[Hd ]p

)
−
[
−1 0

]( [H]q
[H]p

)
;

and,

0 = G† ((J−Rd)∇Hd−J∇H)

=
[

1 0
]( 0 1
−1 −r

)(
[Hd ]q
[Hd ]p

)
−
[

1 0
]( 0 1
−1 0

)(
[H]q
[H]p

)
=

[
0 1

]( [Ha]q
[Ha]p

)
.

The second matching equation implies that the kinetic energy may not be modified.

The first matching equation is,

− ∂

∂q
Ha− r

∂

∂ p
Hd = β (x),
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with Ha = Hd−H = 2mgl cos(q), Hd = 1
2

p2

I +mgl cos(q)+U0, and therefore

β (x) = 2mgl sin(q)− r
p
I
.

This is a linear combination of the gravity inversion control law and the dissipation control
law previously derived. Furthermore, it is identical to the gravity inversion and damping
of Chapter 5.1, with q = θ and p = Iω. The effects of these controllers have already been
demonstrated in previous Chapters.

The beauty of IDAPBC is that all controllers that honor some interconnection and damping
structure can be solved for at once. Unfortunately, it requires the solution of, at worst
case, coupled non-linear PDE’s. Energy-balancing, in the prototypical model framework is
much more easily applied than the IDAPBC framework. However, the ground-work already
accomplished in the IDAPBC framework can easily be incorporated into the prototypical
model framework. The first improvement would be, the extension to the under-actuated
case. It should be possible to use a similarly defined matching equation, involving the left
annihilator of G(x) in the prototypical model, to accomplish this.
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5.6 Summary of Energy Shaping Control Methods

All of the control techniques involve a matching process, whereby the system energy is
matched to a desired energy via the input. The usefulness of designing controllers in the
energy domain is sure to be appreciated at this stage.

A summary of the different control strategies and when to apply them follows.

Energy-Balancing is a technique that is useful for state regulation and can, indirectly, change
the possible trajectories of the system via energy-shaping. Furthermore, the solutions lead-
ing to the control law are algebraic and no difficult partial differential equations need to be
solved, unlike the IDAPBC methodology.

Power-Shaping is a technique that is useful for causing a system to attain a particular energy
level, and maintain it. It has been extended via the inclusion of a non-linear integrator and
an impulse at zero speed and can now actively compensate for a non-linear dissipation
function, without feedback linearisation. The beauty of the Power-Shaping control law is
that is causes the system to exponentially reach a natural trajectory i.e. a trajectory that the
system is already capable of via the energy function. The control law is computationally
complex though.

A number of constructive techniques for assigning a closed loop energy have been reported
on.

The Controller Interpolation via a Common Lyapunov technique has shown the usefulness
of being able to smoothly interpolate between different controllers. Moreover, the frame-
work guarantees stability in a constructive manner, using a common Lyapunov function. If
controllers have already been designed, which stabilise a system in different operating re-
gions, then they may be smoothly interpolated using this technique. It is possible, therefore,
to compensate for a control law’s deficiencies with another, seamlessly.

The Robot control laws are already well established in that industry. A list of controllers
for both position regulation and tracking were presented. The recommended control law for
position regulation is the PD Target Torque method due to its simplicity and low computa-
tional cost, as compared with some of the other position regulation controllers. There are
two recommended control laws for tracking: the Exponential Tracking control law and the
Robust Tracking control law. If the model used is accurate, then the exponential tracking
control law should be used. The Robust Tracking control law should be used if the model
is a simplification and/or disturbances are expected. The Robust Tracking control law also
reaches the trajectory in finite time and therefore is a better performing controller.

Finally, the Interconnection and Damping Assignment Passivity Based Control (IDAPBC)
has a great deal to offer, at the cost of being mathematically difficult. The beauty of IDAPBC
is that all controllers that honour some interconnection and damping structure can be solved
for at once. Energy-balancing, in the prototypical model framework is much more easily
applied than the IDAPBC framework and leads to the same controllers. However, IDAPBC
has already solved the problem of controlling under-actuated systems and is well established
in the field of Energy-Shaping control.

To extend the energy-balancing framework, ideas from IDAPBC can be adapted to suit the
prototypical model. The first improvement would be, the extension to the under-actuated
case. It should be possible to use a similarly defined matching equation, involving the left
annihilator of G(x) in the prototypical model, to accomplish this.
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6 Further Insight into Other Control

Methods

“Available energy is energy which we can direct into any desired channel.
Dissipated energy is energy which we cannot lay hold of and direct at

pleasure, such as the energy of the confused agitation of molecules which we
call heat.”

- James Clerk Maxwell, ’Diffusion’, Encyclopaedia Britannica (1878)

6.1 On the Similarity of Controller and Plant

Feedback Linearisation removes the plant dynamics and leaves behind a chain of integrators
[15, Ch. 6]. In Chapter 5.1, it was shown that energy balancing is a form of feedback
linearisation1.

In Chapter 3.3, the ideas from [41, 40, 42] were presented and the idea of a virtual system
was explained. The virtual system idea allows the control engineer to design an exponen-
tially stable tracking controller or observer in the same framework.

In linear state feedback, if one wants to fully assign the closed loop eigenvalues, then the
controller must be of the same order as the plant.

All of these ideas are linked. The controller in all of these cases has at least the same
mathematical structure as the plant, in order to fully control the system. This increases the
computational complexity of the control law.

In fact, throughout this dissertation, the control laws kept appearing as: a mathematical
expression functionally similar to the plant plus a number of feedback terms. This pattern
sparked the idea that, perhaps, in order to fully control a plant, the control algorithm needs
to be at least as computationally complicated as the plant.

An excellent example, further demonstrating this idea, is Maxwell’s Demon described in
the context of an air traffic controller in [24]. Maxwell’s Demon was described in approx-
imately 1870 as a thought experiment that considers an imaginary creature (a “Demon”)
who is in control of a frictionless door between two partitions of a gas [24]. The demon
has the ability to measure the speed of the particles in the gas and selectively let particles
through (by way of opening and shutting the frictionless door) from one compartment into
the other compartment [24]. This allows the demon to effectively “reverse” the second law
of thermodynamics by making one compartment’s temperature increase (increasing the av-
erage velocity of the particles by selectively letting through faster molecules) and the other
compartment’s temperature decrease [24].

1Plant inversion as a worst case.
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Now Szilard reasoned that if entropy was changing in the gas system, and the demon was
part of the system, then the demon must be taken into account in the entropy balance [24].
Hence the controller (Demon) has to bear a computational burden (“negentropy”, informa-
tion) equal to the degree that entropy needs to be reduced [24]. For want of a better name,
this phenomenon is referred to as the Controller Complexity principle.

A formal proof of this idea is a recommended research direction.

6.2 PID Control of a Mass Spring Damper System

Before the effect of PID on a mass spring damper system is shown, the effect of a constant
input force must be explored. Once this is understood, because of linearity, the resulting
phase portrait will be a linear combination of the phase portraits, due to constant input
forces, viscous damping and proportional feedback respectively. Given that second order
models are typically used in the design of PID loops, the results presented here are directly
applicable to practice [5, pp. 298-302].

A model of a mass spring damper system takes the form,

mẍ = −kx−bẋ+F, (6.2.1)

where m is the mass, k is the spring stiffness constant, b is the viscous damping constant
and F is the input force.

Firstly, as was already mentioned in Chapter 3.4, viscous damping causes the trajectories of
the mass spring system to asymptotically approach the origin. (This is depicted in Figure
3.4.6).

Next, consider the application of a constant force, F = 1 N with no dissipation, b = 0 Ns/m.
The phase portrait of this system is depicted in Figure 6.2.1. It should be noted that the
trajectories now orbit around a new point, x = 1

2 m whereas in the unforced case, the trajec-
tories all orbit around the point x = 0 m. These two values are called the singular values of
the system and may be found using a number of techniques [15, pp. 20]. The two easiest
methods are using the state space description and using energy directly. Putting equation
(6.2.1) into state space form yields,

ẋ = v

v̇ = −kx−bv+F,

which has the form,

χ̇ = S(χ),

with χ =
[

x v
]T .

The singular points are found by setting χ̇ =O [15, pp. 20].

This implies that, assuming F constant,

0 = v

0 = −kx−bv+F,
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Figure 6.2.1: Mass Spring Damper with constant force, F = 1 N, m = 1 kg, b = 0 Ns/m,
k = 2 N/m.

which when simplified leads to

v = 0

x =
F
k
.

For k = 2 N/m and F = 1 N then the singular point is found to be x = 1
2 which is clear from

Figure 6.2.1.

Using the energy directly requires finding the energy of equation (6.2.1), which can be
found using a variety of well known methods.

The energy is, assuming constant F ,

1
2

mẋ2 +
1
2

kx2 −Fx = E0−
�

bv2dt.

Let the energy of the system, Es =
1
2 mẋ2 + 1

2 kx2−Fx. Now taking the gradient of ∇E =
(kx−F, ẋ) and setting it equal to O gives exactly the same singular point values

x =
F
k

ẋ = 0.

It should be clear that a change of k will change the curvature of the paraboloid that is the
energy of the system, since it affects the potential function. Furthermore, a change in the
value of b will affect the tightness of the spiral in the phase plane due to the more rapidly
lowering of the plane in Figure 3.4.5. This is as a result of dissipating energy.

Now a special form of PID control, with set-point weighting [5, pp. 294], chosen to simplify
the analysis, is

F = −κpx−κdv+ζ

ζ̇ = κi(x∗− x).
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Figure 6.2.2: Phase portrait of PID action on a mass spring damper, m= 1 kg, b= 0.5 Ns/m,
k = 2 N/m, κp = 0 N/m, κd = 0 Ns/m, κi = 0.1 N/ms

κp and κd can be seen to affect k and b respectively which has the effects already explained.

Hence the proportional term of PID affects the potential function, the derivative term affects
the dissipation of the system and the integral term is discussed next.

ζ has the affect that it instantaneously offsets the singular point of the mass spring damper
system by raising and lowering the plane of intersection in Figure 3.4.5, depending on
whether the state, x is equal to x∗or not. The closed loop dynamics are,

ẋ = v

v̇ = −(k+κp)x− (b+κd)v+ζ

ζ̇ = κi(x∗− x),

which has the stationary point,

v = 0

ζ = (k+κp)x∗

x = x∗.

One cannot tell whether this stationary point is stable or not, but at the very least the state x is
at the desired point x∗. It should be noted that, the force due to the integrator, has cancelled
out the effects of the spring k and the proportional control action, due to κp

2. A three-
dimensional phase portrait with various initial conditions (x,v,ζ ) = (0,0,0), (−4,0,0),
(−4,0,4), (0,0,8) is depicted in Figure 6.2.2. Given that κp and κd affect k and b re-
spectively, only k and b need to be altered in this simulation, with κp = κd = 0. The desired
position is arbitrarily set to x∗ = 2. This means that the force of the spring at the stationary
point is k x∗ = k 2 = 4 N. It is clear in the phase portrait that all of the trajectories converge
to the plane ζ = 4 i.e. the integrator has cancelled out the effect of the spring at the new
equilibrium point. All the while, the spring and damper cause the asymptotic spiraling into
the desired state (x,v) = (2,0).

2In fact, this ability of integral action to change the stationary point of a system does not depend on linearity [5,
pp. 295]. This is probably the reason for PID control being employed so successfully across all engineering
disciplines.

109



Insights into PID gained from Energy-Shaping

Forces dependent on x and v affect the potential and dissipation functions respectively. The
effect of time varying forces is to raise and lower the plane of intersection of the energy
function, depicted in Figure 3.4.5.

The rate at which the plane of intersection of the energy function is moving up or down,
the power, is dependent on vκi

�
(x∗− x)dt and the dissipation (b+κd)v2. The spring and

damper naturally cause the system to spiral towards zero, while the integrator (instanta-
neously) affects the stationary point and therefore the point that the spring and damper
approach. This also explains why if κi is too large, the system can become unstable. Essen-
tially, the natural dynamics are not allowed to settle towards the new stationary point and
power is continuously added by the integrator, which compounds the issue. In other words,
the plane of ζ = (k+κp)x∗ is “missed” due to the energy being added to the system too
quickly. The exact value of κi for marginal stability is given by,

κi =
(k+κp)(b+κd)

m
,

which is dimensionally correct and can be found analytically using standard linear tech-
niques.

Hence the effect of PID is one of energy shaping itself, the proportional term affects the
curvature of the paraboloid (by altering the potential function/spring term), the derivative
term affects the rate at which the plane of intersection of the energy function decreases to
the equilibrium point i.e. the ’tightness’ of the spiral (by altering the dissipation function)
and the integrator affects the equilibrium point of the system.

6.3 PI Control of a First-Order System

In the process control sector of industry, coupled first order systems (with or without delay)
are the types of models typically used for control design [34, pp. 40-45].

Consider, for simplicity’s sake, the single input, single output, first-order system,

r
dy
dt

= −k y+u,

where y is the output of interest and u is the input and r and k are model parameters. A good
deal of insight is gained by putting this into the prototypical form,

m
d2y
dt2 + r

dy
dt

+ k y = u,

with m = 0. This means that the system behaves as a “mass-less mass-spring-damper”.
Hence there is no inertia to overcome and the system will return to the “springs” natural
equilibrium (y = 0) at a rate limited by how strong the damper is. The theory of differential
equations has the same result (for real parameters r and k) since the natural response to the
differential equation,

r
dy
dt

+ k y = 0,
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has the solution, with y0 given by initial conditions,

y = y0e−
k
r t .

This solution has all of the properties reasoned about previously by intuition.

Now consider the PI control law (with set-point weighting),

u = −κp y+κi

�
(y∗− y)dt,

which results in,

r
dy
dt

+ k y = −κp y+κi

�
(y∗− y)dt, (6.3.1)

when applied to the system. By differentiating both sides of eq (6.3.1) with respect to time
and factoring, the closed-loop system becomes,

r
d2y
dt2 +(k+κp)

dy
dt

+κi (y− y∗) = 0. (6.3.2)

By inspection, the first-order system under PI control behaves now as a mass-spring-damper
system with “mass” r, linear “damper” constant (k+κp) and “spring” κi (y− y∗). The
“spring” term is interesting as it has a natural equilibrium at y∗ and re-iterates the point of
the integrator reducing steady-state error to zero. Another interesting feature brought about
by this representation is that the proportional term actually acts like a damper under closed-
loop conditions. Hence if the closed-loop system is too oscillatory, the proportional term
should be increased to dampen out the oscillations.

By analysing the PI control of a first-order system, in terms of the prototypical model and the
energy domain, new insight into the closed-loop behaviour of the system has been gained.

6.4 State Feedback shapes the Potential and Dissipation
functions

State feedback is a well known linear control methodology and typically has a control law
of the form,

u = −Kχ,

subject to the model

χ̇ = Aχ +Bu,

where χ ∈ RN and u ∈ RM [51, pp. 249].

The non-linear analog of this method has a control law of the form,

u = −K(χ),
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subject to the ’input affine’ model,

χ̇ = F(χ)+G(χ)u (6.4.1)

where again χ ∈ RN and u ∈ RM [52, pp. 239-241]. If the model is derived from physical
considerations using Lagrangian or Hamiltonian mechanics, it is clear that the states χ , will
consist of generalised co-ordinates (distance, charge, angle etc.) and generalised velocities
(velocity, current, angular velocity etc.) or some scalar multiple of these [36][25, Appendix
B]. Hence the states may be partitioned as χ =

[
x v

]T where x ∈RN are the generalised
co-ordinates and v ∈ RN are the generalised velocities. Given this, the control law

u = −K(χ)

can be decomposed into a part containing the generalised co-ordinate x, a part linear in the
generalised velocity, v, and a ’mixed’ part with

−K(χ) = −Kp(x)−Kd(x,v)v−Km(x,v). (6.4.2)

Before continuing, it is pertinent to mention that the input affine model can be generated
from the prototypical model eq (3.1.1) as long as M(x, t) has an inverse. M(x, t) will real-
istically always have an inverse since it is always positive definite, and it is always positive
definite, because, if it weren’t, then a negative kinetic energy could be possible, and this is
disallowed [10]. Hence from,

M(x, t)ẍ+D(x,v)v+K(x) = G(x)u

the following is arrived at

ẋ = v
v̇ = −M(x, t)−1 (D(x,v)v+K(x))+M(x, t)−G(x)u

which is exactly equal to the input affine model, eq (6.4.1) with χ =
[

x v
]T,

F(χ) =

(
v

−M(x, t)−1 (D(x,v)v+K(x))

)
and

G(χ) = M(x, t)−1G(x).

So it has been shown that the input affine model can be derived from the prototypical model
and furthermore that the general non-linear state feedback can be decomposed in eq (6.4.2).
Hence when the general state feedback is applied to the prototypical model one finds

M(x, t)ẍ+D(x,v)v+K(x) = −G(x)(Kp(x)+Kd(x,v)v+Km(x,v))

which results in

M(x, t)ẍ+
(

D(x,v)+G(x)Kd(x,v)︸ ︷︷ ︸
)

new D(x,v)

v+
(

K(x)+G(x)Kp(x)︸ ︷︷ ︸
)

new K(x)

= −G(x)Km(x,v)︸ ︷︷ ︸
forcing function
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and each of the terms in the control law can clearly be seen to affect the dissipation, potential
and input force.

The linear case follows the exact same derivation with Kp(x) = Kp x, Kd(x,v)v = Kd v and
Km(x,v) = 0 where Kp, Kd are suitably defined constant matrices3.

Hence both linear and non-linear state feedback shape the potential and dissipation func-
tions, with the general non-linear state feedback introducing a forcing function dependent
on x and v. It should be noted that there is a clear physical interpretation of what has hap-
pened to the prototypical system when applying the control law4. This insight is lost in the
input affine case and suggests, that it is perhaps best to leave the model equations as coupled
second order differential equations.

6.5 Feedback Linearisation is a natural result of Energy
Balancing

The goal of Feedback Linearisation is to transform the model equations into the control of
a number of integrators [15, Ch. 6].

For example consider the input affine model from eq (6.4.1) again,

χ̇ = F(χ)+G(χ)u.

A control of the form

u = G(χ)−1 {r−F(χ)}

results in

χ̇ = r

and achieves Feedback Linearisation. All that remains is to design r according to some
control objective and the control problem is solved [15, Ch. 6]. There are restrictions that
must be kept in mind when applying this technique, the interested reader is referred to [15,
Ch. 6] and [52, Chapter 5.3] for a detailed exposition on the method and restrictions.

Given the prototypical model eq (3.1.1), the energy of the system Es is given by

Es =
1
2

vTM(x, t)v+
�

K(x)Tdx

and is derived in Chapter 4. An energy balancing controller essentially makes the controller
supply the difference between the stored and the desired energy Ed , which is described in
detail in Chapter 5.1.

3It should be clear here that state feedback is actually a generalised PD controller
4For systems which have negligible inertia, such as chemical systems, M(x, t) = 0 and the control law will

affect the model as follows:(
D(x,v)+G(x)Kd(x,v)︸ ︷︷ ︸

)
new D(x,v)

v+

(
K(x)+G(x)Kp(x)︸ ︷︷ ︸

)
new K(x)

= −G(x)Km(x,v)︸ ︷︷ ︸
forcing function

.
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It requires that

d
dt

(Es−Ed) = 0,

which results in

vT (M(x, t)ẍ+D(x,v)v+K(x)−G(x)u) = vT (yd +Φ(x,v)) (6.5.1)

where yd are the target dynamics as a result of choosing Ed and Φ(x,v) are the desired
dissipation, loss-less power transformations, Coriolis/Centripetal forces lumped together.
Notice that for a solution to exist d

dt Ed must equal vT times some function. Now the solution
of eq (6.5.1) results in a control law of the form,

u = G(x)−1

K(x)+D(x,v)v+M(x, t)ẍ︸ ︷︷ ︸−u∗

cancel dynamics


u∗ = yd +Φ(x,v),

which is clearly of the same form as the feedback linearisation control law5. It should be
noted that if Ed = Es, then the control law results in u = O. This is intuitive since there is
no control problem if the system already behaves in the desired manner. Interconnection
and Damping Assignment Passivity Based Control (IDAPBC) is also shown to be feedback
linearisation in Chapter 5.5. The key point in both energy-balancing and IDAPBC is that
the target dynamics, r, are chosen, bearing the influence on the system energy in mind. It
is worth mentioning that a desired energy of Ed = 1

2 vTv which is the kinetic energy of N
uncoupled unit masses and Ėd = vTr where r is some new input force leads to exactly the
control of a N dimensional double integrator i.e. ẍ = r as is expounded upon in Chapter 5.1.

6.6 Controlled Lyapunov related to Power Shaping

The controlled Lyapunov technique involves choosing a Lyapunov function6 (which is pos-
itive definite), V (x) for the system

ẋ = F(x,u)

with state x∈RN and input u∈RM [5, pp. 124]. Taking the time derivative of the Lyapunov
function leads to

d
dt

V (x) =
∂V
∂x

ẋ

=
∂V
∂x

F(x,u),

where the system model ẋ = F(x,u) has been used [5, pp. 124].

5There is a subtlety here in that this is actually plant inversion; this is addressed in full in Chapter 5.1
6The Lyapunov function is a scalar which takes a vector input.
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All that remains is for the designer to create a control law u = β (x) that stabilises the system
by ensuring that ∂V

∂x F(x,β (x)) < 0 for the desired region in the state space [5, pp. 124].
This is not a trivial task in general.

Now if V (x) is chosen to be the actual energy of the system, Es, then it follows that V̇ (x) =
Ės which is the power flow of the system . This will include the input, as shown in Chapter
4. Hence, designing a control law with this V̇ (x) in mind is tantamount to power shaping.

6.7 Contraction Analysis is an Energy Argument for a
Suitably Chosen Metric

Contraction analysis is a technique which offers an alternative to Lyapunov based proofs
of stability [41]. It is stronger than Lyapunov stability in that conclusions can be drawn
about rate of convergence, region of convergence as well as whether any two trajectories
converge to a point or some nominal trajectory [41]. If a region in the state space of a
system is contracting then it enjoys this strong form of stability, which is to say that any two
trajectories in the contracting region exponentially approach each other [41]. The method
is described in full in Chapter 3.3. With the introduction of a virtual system, contraction
analysis is significantly easier to use to prove stability as compared to Lyapunov stability.

Now the most general form of Contraction analysis involves looking at the time derivative
of the differential form,

δ χTMe(χ, t)δ χ

where δ χ is the virtual displacement (the separation between any two neighbouring trajec-
tories in the state space at the same time), Me(χ, t) is the metric chosen for the state space
and χ ∈ RN [41]. Now if the metric Me(χ, t) is chosen such that the differential form has
the units of energy, then contraction analysis becomes an argument about the “incremental”
energy i.e. the difference in energy between neighbouring trajectories in the state space.

Let the state χ =
[

x v
]T with the differential form δ χTMe(χ, t)δ χ given by[

δx δv
][ 0 0

0 M(x, t)

][
δx
δv

]
where M(x, t) is as defined in the prototypical model eq (3.1.1). If the time derivative of
the differential form is always decreasing for any virtual displacement δ χ =

[
δx δv

]T,
then the system eq (3.1.1) is said to be contracting [41]. Taking the time derivative of the
differential form defined in terms of energy leads to

d
dt

(
δ χ

TMe(χ, t)δ χ
)

= δvTM(x, t)δ v̇+
1
2

δvTṀ(x, t)δv. (6.7.1)

Now by calculating the virtual displacement and velocities of the prototypical model eq
(3.1.1)

M(x, t)δ v̇+[D(x,v)v]v δv+[D(x,v)v]x δx+D(x,v)δv+K(x)xδx = G(x)δu+[G(x)u]x δx

and solving for

M(x, t)δ v̇ = G(x)δu+[G(x)u]x δx− [D(x,v)v]v δv (6.7.2)

− [D(x,v)v]x δx−D(x,v)δv−K(x)xδx
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yields the dynamics of the system due to an arbitrary virtual displacement in the state space
δ χ7.

Substitution of eq (6.7.2) into (6.7.1) and remembering that D(x,v) = R(x,v)+J(x,v)+
1
2 Ṁ(x, t), leads to

d
dt

(δ χMe(χ, t)δ χ) = δv(G(x)δu+[G(x)u]x δx− [D(x,v)v]v δv)

+δv(− [D(x,v)v]x δx−R(x,v)δv− [K(x)]x δx)

= −δv(R(x,v)+ [D(x,v)v]v)δv
−δv([K(x)]x +[D(x,v)v]x− [G(x)u]x)δx+δvG(x)δu

which is the incremental power equation for the prototypical system. This needs to be less
than βMe(χ, t) for all δv, δx and δu in order for contraction to occur [41, 40, 42]. This
should be juxtaposed with the typical approach used in contraction analysis i.e. choose a
controller structure u = F(χ) and then analyse the system for contraction in terms of δ χ

and the free parameters of F(χ) [41, 40, 42].

It is very interesting to note that if

G(x)δu = ([K(x)]x +[D(x,v)v]x− [G(x)u]x)δx

then d
dt (δ χMe(χ, t)δ χ) is negative definite for all δv as long as [D(x,v)v]x is positive

definite. The controller u is then found by integration of
�

G(x)δu =

�

xd

x
([K(x)]x +[D(x,v)v]x− [G(x)u]x)δx

and solving for u, assuming such a solution exists. The inspiration for this idea of construct-
ing an incremental control input and solving for u via integration is found in [40]. Hence,
contraction analysis is an energy argument for a suitably chosen metric.

7Note: [h]y is the partial derivative of h with respect to y
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7 Recommendations and Conclusions

7.1 Conclusion

The principles related to energy have been shown to be an invaluable tool in both mod-
elling and control algorithm design. The main techniques for energy-shaping control are
energy balancing and power shaping. Three constructive energy-shaping techniques were
expounded upon: controller interpolation using a common Lyapunov function, energy-
shaping controllers from robotics and IDAPBC. The generalisation of The Energy Method
has offered a viable alternative to Lagrangian and Hamiltonian mechanics. Furthermore,
since it is founded on the conservation of energy, it adds insight into the understanding of
systems that can be put into prototypical form. All physical systems can be put into this
prototypical framework since it is founded on the first law of thermodynamics.

Power-shaping has been extended to account for dissipation. Since dissipation was shown
to act as a constant disturbance in the power equation, it could be compensated for using
a non-linear energy integrator. Power-shaping has further been extended to handle multi-
dimensional systems as well as non-constant desired energies, Ed .

The Heuristic Fuzzy Logic controller was shown to be an interpolation between controllers
that make a common Lyapunov function negative definite.

A number of energy shaping robot control laws have been adapted for the prototypical
system.

Thus, by considering the effects of a control algorithm on the energy of a system, additional
insight into the action of the controller on the system is gained.

The link between phase portraits and the energy of a system was established. Hence, shap-
ing the energy of a system shapes the phase portrait and shaping the phase portrait shapes
the time domain performance. Phase portraits therefore represent the link between energy
and time. Phase portraits also provide global information at a glance, information that is not
available in time plots such as step responses, initial condition plots and their ilk.

Contraction analysis is an invaluable tool for stability proofs. This is achieved by only using
the terms that directly affect stability of the system. Furthermore, the trick of defining an
appropriate virtual system, allows the control engineer to design observers or controllers in
a single framework. Conclusions about stability follow in a very simple, straightforward
manner

Energy Shaping controllers have far richer control structures and allow for greater perfor-
mance (even in the presence of non-linearity and modelling errors) than linear PID tech-
niques. Furthermore, the energy-shaping controllers are synthesised in a framework with
which every engineer is familiar, namely energy. There is a tremendous advantage to using
physical insight into control algorithm development, rather than the abstract mathematical
techniques that appear to have dominated the control engineering field of late and which
seem to lose track of both engineering insight and reality.
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7.2 Recommendations for Further Research

Given the basics of IDAPBC in Chapter 5.5 and the similarity in the matching conditions of
Chapter 5.1 and 5.2, it should be possible to extend the energy-shaping techniques presented
in this dissertation into the under-actuated case. It is conjectured that by solving the same
equations, but with an additional left annihilator equation, the under-actuated case can be
taken care of.

A formal proof of the Controller Complexity principle and its links to entropy in the spirit
of Maxwell’s Demon would add a valuable tool to non-linear control.

The extension of the prototypical model to include distributed systems (eg. flexible links
and boundary value problems) should allow for the energy shaping insight to extend to these
sorts of systems.

The extension of the phase portrait insights into more than three dimensions would be an
invaluable tool for non-linear control system analysis and design.

It would be extremely interesting to see the effect of other well known control structures,
such as the Linear Quadratic Regulator (LQR) , on the energy of the system. Of course,
if the algorithm is a general state feedback strategy, then its exact effect on the energy of
the prototypical system was shown in Chapter 6. It is therefore a reasonable prediction
that LQR is a time-varying dissipation and potential shaping controller, when applied to the
prototypical system.

A related topic that would yield some interesting results would be the optimal control prob-
lem cast in terms of the system’s physical energy.
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