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ABSTRACT 

Alkaline phosphatases (ALPs) are a group of membrane-bound glycoproteins that 

occur in many species of animals and have a wide tissue distribution. ALPs have been 

shown to play a role in cell differentiation and organogenesis. In humans, the 

physiological role of ALP in skeletal mineralization is well documented. In routine 

clinical practice, ALP measurement is frequently used in the differential diagnosis of 

liver and bone diseases. 

Studies have shown the presence of tissue non-specific ALP (TNSALP) activity 

in rat adipocytes, human preadipocytes and in a murine preadipocytic cell line, 3T3-

L1. ALP has also been shown to play a role in adipogenesis in 3T3-L1 cells and 

human preadipocytes. The purpose of the present study was to determine whether 

the ALP that is expressed in a human hepatocarcinoma cell line, HepG2 has a role in 

intracellular lipid accumulation. 

Intracellular lipid droplet accumulation in HepG2 cells was induced by addition 

of oleic acid coupled to albumin (Sigma-Aldrich, UK) to culture medium (Earle‟s 

Minimum Essential Medium [EMEM]) and used at a final concentration of 400 M. 

Tissue non-specific ALP inhibitors (levamisole and histidine) inhibited ALP activity and 

intracellular lipid accumulation in both the 3T3-L1 and HepG2 cells. Post-

transcriptional silencing of the tissue non-specific alkaline phosphatase (TNSALP) 

gene using siRNA oligos inhibited intracellular lipid accumulation in both 3T3-L1 and 

HepG2 cells.  
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In both cell lines, the ALP mRNA levels decreased in cells transfected with the 

anti-ALP siRNA compared to untransfected cells. This decrease in gene expression 

was mirrored by a corresponding fall in ALP activity in both cell lines. 

Quantification of the expression levels of the peroxisome proliferator activated 

receptor gamma (PPAR ) gene (an important regulator of adipogenesis) using real-

time quantitative polymerase chain reaction (real-time qPCR) showed an upward 

regulation of its expression four days after induction of intracellular lipid droplet 

accumulation in both cell types after which the levels declined. Neither levamisole nor 

histidine affected the expression of PPAR . 

Immunostaining of HepG2 cells with monoclonal antibodies against adipophilin 

and staining for ALP using the ELF 97 kit (Molecular Probes, Holland) demonstrated 

that ALP activity was localized to the surface of the lipid droplet membrane.  

A previous investigation has shown that ALP activity is higher in preadipocytes 

isolated from black compared to white females. Investigation of single nucleotide 

polymorphisms in the promoter region of the human TNSALP gene shows that 

genetic variation in the ALP promoter is not responsible for the ethnic differences in 

ALP activity observed in black and white South Africans. 

In conclusion, the close association of ALP activity with the lipid droplet 

membrane in HepG2 and 3T3-L1 cells and the ability to block intracellular lipid 

accumulation using sequence specific oligonucleotides for ALP and pharmacological 

agents (histidine & levamisole) strongly indicates that ALP is involved in intracellular 

lipid accumulation in HepG2 cells and 3T3-L1 cells. This study also shows that PPAR  
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gene expression increases during lipid accumulation in HepG2 cells but that inhibition 

of ALP with histidine or levamisole does not affect the expression of this gene. Thus, 

ALP must act downstream of PPAR  during intra-cellular lipid accumulation. 
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1.1  Introduction 

Alkaline phoshatases (ALPs) (orthophosphoric-monoester phosphophydrolase, 

EC.3.1.3.1) are a group of membrane-bound glycoproteins that hydrolyze a broad 

range of monophosphate esters at alkaline pH optima (McComb et al. 1979). ALP 

attaches itself to the surface of the cell membrane via a phosphatidyl inositol glycan 

(PI-G) tail which is attached to the carboxyl terminus of the protein (Jemmerson and 

Low 1987). ALPs are widely distributed in nature ranging from prokaryotes to higher 

eukaryotes (Hass et al. 1979). In vitro studies have shown that the specific activity 

for each of the forms of the enzymes show substrate dependence (Fishman 1989). 

ALP also catalyzes the removal of 5‟ phosphate groups from proteins, DNA, RNA, 

ribo-and deoxyribonucleotide triphosphates. As such ALPs have been used in nucleic 

acid manipulations (Primrose and Twyman 2005). 

The reactions catalyzed by ALP can be summarized as follows (Price 1993): 

                             Orthophosphatase      

ROP + H2O                                     ROH + HOP 

                            Pyrophosphatase 

PPi +   H2O                                    2Pi 

                            Phosphotransferase 

ROP + RÓH                                   ROH  + RÓP 

Measurements of total ALP and its isoenzymes in human body fluids are used 

in routine clinical practice to differentiate liver and bone diseases. 
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Recently, Ali et al. (2003) showed the presence of ALP in a murine 

preadipocyte cell line (3T3-L1) and human preadipocytes where it was shown to be 

involved in the control of adipogenesis (intracellular lipid accumulation). The same 

study also showed that ethnic differences were present in the activity of ALP isolated 

from human preadipocytes, with levels being much higher in preadipocytes isolated 

from black than white females. 

The molecular control mechanisms for the intracellular lipid accumulation in a 

variety of tissues within the human body are still largely unknown. A number of 

factors are now known to be involved in the regulation of this process. These include 

PPAR  and a number of other transcription factors, IGF-1, fatty acids and cytokines. 

Environmental factors like age, gender and lifestyle also seem to play a role (Frubeck 

et al. 2001). 

Unregulated increase in fat cell number and size may lead to obesity. Obesity 

is a common and serious medical problem especially in industrialized and developing 

economies (Rosen and Spiegelman 2000). 

An understanding of the molecular events involved in adipogenesis may give a 

better insight into the modalities of interventions that can be used to reduce the 

accumulation of lipids within the lipid-storing cell types in humans and other animals. 

This study was carried out to determine whether ALP is present and involved in 

intracellular lipid accumulation in cell types that are known to be able to accumulate 

lipid for example, hepatocytes and preadipocytes. 
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This study also provides additional insight into the subcellular localization of 

ALP in the different lipid-storing cell types using immunocytochemical techniques. 

Additionally, the study looked at the expression pattern of the peroxisome proliferator 

activated receptor gamma (PPAR ) gene (an important transcriptional regulator of 

adipogenesis) and determined the effect of inhibiting ALP activity (chemically or 

through RNA interference pathway) on intracellular lipid accumulation and the 

expression of the PPAR  gene in 3T3-L1 cells and in an human hepatocarcinoma cell 

line (HepG2). Lastly, this study also investigated the role that single nucleotide 

changes in the promoter region of the human tissue non-specific ALP may play in the 

control of ALP expression. Differences in the activity of ALP were observed in cell 

extracts from preadipocytes isolated from black and white subjects in South Africa 

with the former ethnic group showing higher levels than the latter group (Ali et al. 

2006).  

The remainder of this thesis is organized in the order as follows: Firstly, a 

review of the literature relevant to the study is presented. Secondly, an outline of the 

materials and the methods used in the study is followed by the results section and 

lastly but not least the discussion of the results and the conclusions drawn from the 

study are given. 
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2.1  The Biochemistry of ALPs 

The ALPs are widely distributed in nature ranging from prokaryotes to higher 

eukatyotes. They have a homology to a large number of other enzymes and are part 

of the nucleoside pyrophosphatase/phosphodiesterase superfamily of enzymes 

(Gijsbers et al. 2002). With few exceptions, ALPs are homodimeric enzymes and each 

catalytic site contains three metal ions, that is two zinc and one magnesium ion, which 

are necessary for enzymatic activity. 

ALPs hydrolyze a wide range of monophosphate esters at alkali pH optima 

(McComb et al. 1979). These enzymes also hydrolyze inorganic pyrophosphates and 

exhibit transphorylation activity. The transphorylation involves direct transfer of 

phosphate from substrate to an acceptor alcohol such as diethanolamine and 2-amino-

2-methyl-1-propanol (Price 1993). 

ALPs also catalyse the removal of phosphate groups on the 5‟ end of nucleic 

acids. Removing these phosphates prevents the DNA from self-ligating, thereby 

keeping DNA molecules linear until the next step of the process for which they are 

prepared  (Primrose and Twyman 2005). 

Phosphorylation of ALP occurs mainly at serine residue 102 in the active centre 

of the ALP molecule (Han and Coleman 1995). The phosphorylation of ALP may 

activate its catalytic activity and enable it to participate in hydrolysis 

(dephosphorylation) of molecules containing phosphate groups (Galperin and Jedizejas 

2001).  
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2.2  Human ALP isoenzymes 

Isoenzymes are distinctive genetically determined forms of an enzyme. Though these 

enzymes may essentially catalyze similar biochemical transformations, they have 

distinguishable physical and biochemical properties (Moss 1982). Different forms of 

enzymes having a common gene locus are called isoforms. 

There are four genes encoding the protein moieties of the ALP enzymes: the 

tissue non-specific (TNSALP), the intestinal (I-ALP), the placental (P-ALP) and the 

germ-cell (G-ALP) isoenzymes (Fig. 2.1). These four classes of ALP have been 

identified by differences in protein structure as determined by peptide „maps‟, partial 

sequence analysis and immunological analysis (Mulivor et al. 1978; McKenna et al. 

1979; Whitaker and Moss 1979; Hua et al. 1986). 

It has been proposed that the human ALPs are members of a multi-gene 

enzyme family that arose by successive duplication from a common ancestral gene 

(Harris 1982). While there are only four true isoenzymes recognized at present there 

are many more variants of the enzymes thus far described (Crofton et al. 1979; 

Okazaki et al. 2004). 
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Figure 2. 1 Human  ALP isoenzymes. 

The gene loci for the P-ALP, I-ALP and G-ALP occupy adjuscent position on the long arm of 

chromosome 2 (Griffin et al. 1987) while the locus for the TNSALP (also called 

liver/bone/kidney [L/B/K])  gene is on chromosome 1[1p36.1-p34] (Smith et al. 1988). 

 

 

ALP

TNSALP 

- mostly expressed in the liver,bone & kidney

-isoforms of this isoenzyme found in serum differ in their glycosylation 
patterns.

-the bone isoform is the predominant form of TNSALP isoenzyme during the 
‘growth spurt’ of normal adolescents (VanHoof et al. 1990).

Intestinal

- localized to the brush 
borders of epithelial cells.

Germ cell 

- trace amounts found in the testis & thymus

- its serum concentration correlates with placental 
growth, increasing as pregnancy proceeds (Fishman 

1990). 

-was identified primarily by physicochemical and 
immunological methods (Nakayama et al. 1970; 

Goldstein et al. 1982)

Placental

- >90% sequence homology to 
intestinal ALP 

- heat stable, highly polymorphic

- may be involved in internalization of 
IgG molecules
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2.3  Physiological roles of ALP 

The presence of ALP in many species suggests its involvement in fundamental 

biological processes. However, the exact biological functions of these glycoproteins in 

normal metabolism is not yet known (Harris 1990). The only exception to this 

statement comes from the work on hypophosphatasia which clearly indicates that the 

bone isoform of the TNSALP isoenzyme is necessary for bone mineralization (Posen et 

al. 1977; Whyte 1994). 

It is not clear what TNSALP does on the cell surface of most other cell types in 

the body. However, the localization of ALP to membranes suggests that it may be 

involved in the active transport of substances across these membranes. 

Some of the proposed roles that ALP play in the human body are shown in Fig. 

2.2.  
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Figure 2. 2 Roles of ALP in different tissues in the human body. 

The most well characterized biological function of ALP is its role in mineralization of the 

skeleton. 

 

 

 

 

 

ALP

Skeleton

- mineralization of bone (Whyte 
1994)

- dental cementum formation

Gut

-transepithelial transport 
of TAG (Zhang et al. 
1996, Narisawa et al. 

2003) 

Brain

-regulation of neurotransmission 
(Fonta et al. 2005)

Kidney

- vascular calcification 
(Schopper and Shanahan 

2008)

Other roles

Several studies have postulated the involvement of 
ALP in a range of other processes including cell 
adhesion, vitamin B transport, cell signaling and 
cell differentiation in the nervous tissue (Muler et 
al. 1991; Mahmood et al. 1994; Rind et al. 1995). 

Liver

-protection from immunological injury 
(Xu et al 2002) 
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2.4  Attached and soluble forms of ALP 

ALP attaches to the surface of cell membranes via a phosphatidyl inositol glycan (PI-

G) tail. The biogenesis and transfer of the PI-G structure has been called glypiation 

(Harris 1990). The detailed processes involved in glypiation are still somewhat 

uncertain. It is thought that co- or post-translationally a hydrophobic, carboxyl 

terminal region of the nascent protein is removed and the glycolipid is attached to the 

carboxyl terminus (Harris 1990). It is thought that damage to ALP rich cell surface 

microvilli, which coat the lumens of tissues like intestines, kidney, liver, bone and 

placenta would result in the entry of ALP into the systemic circulation. Defects in PI-G 

synthetic mechanisms could also result in an increased entry of ALP into the circulation 

(Fishman 1990). 

So called „soluble‟ forms of ALP also occur for example, in serum and are 

derived from the membrane bound forms by the action of a specific phospholipase C 

or D (Harris 1990). The „soluble‟ forms are dimers while the membrane bound forms 

are more likely tetramers (Hawrylak and Stinson 1988). 

Much less is known about the structures of the carbohydrate moieties of these 

glycoproteins than of the protein moieties. However, the patterns of the ALP 

glycosylation appear to be organ specific and not species specific, an important result 

which has been exploited in measuring the different forms of ALPs in serum (McCarthy 

et al. 1998). 
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2.5  Discrimination and quantification of total serum ALP and its isoenzymes 

Most colorimetric and kinetic assays that measure total ALP activity (units are U/L) 

utilize p-nitrophenyl phosphate as a substrate that is hydrolyzed by ALP into a yellow 

coloured compound with maximal absorbance at 405nm in an alkaline buffer. The rate 

of the reaction is directly proportional to the enzyme activity and this basic kinetic 

procedure can be adapted for a number of automated platforms (Rosalki and Foo 

1984). 

Various biochemical and immunological methods have been used to 

discriminate and selectively assay the different ALPs in serum. In clinical practice the 

drive has been to develop techniques that can adequately resolve the bone, liver and 

kidney isoforms. Briefly, three general methods have proved particularly useful in 

isolating and measuring ALP isoenzymes in different biological materials (Harris 1990). 

These methods will not be covered at any length in this thesis. 

These methods include the various forms of electrophoresis (Jennings et al. 

1970; Hagerstrand and Skude 1976; Siede and Steiffert 1977; Moss and Edward 1984; 

Rosalki and Foo 1984; Siriha et al. 1986; Cocco et al. 1987; Griffiths and Black 1987); 

immunoassays (McKenna et al. 1979; Lehman 1980; Slaughter et al. 1981; Hendrix et 

al. 1990; Masuhara et al. 1992) and chromatography (Schoenau et al. 1986; Bielby 

and Chin 1987; Gonchoroff et al. 1989; Severini et al. 1991). 
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2.6  Genetics of ALP isoenzymes 

There are presently four known gene loci encoding the protein moieties of the alkaline 

phosphatase glycoproteins. The I-ALP, P-ALP and G-ALP  loci are closely linked and 

located near the end of the long arm of chromosome 2 [q34-q37] (Griffin et al. 1987). 

In contrast the TNSALP locus is located near the end of the short arm of chromosome 

1 [p36.1-p34] (Smith et al. 1988). The reasons for the tissue specific differences in the 

expression of the various ALP genes is not known (Harris 1990). 

2.6.1 Gene structures 

The human TNSALP gene appears to exist as a single copy in the haploid genome and 

is composed of 12 exons distributed over more than 50kb being at least five times 

larger than the intestinal and placental ALP genes mainly due to intron size 

differences. Exon sequences were first localized by hybridization of radio-labelled 

TNSALP cDNA to restriction digests of cloned genomic DNAs. Intron-exon boundaries 

were precisely defined by DNA sequence analysis of appropriate genomic fragments 

(Weiss et al. 1988). 

The sequence of the coding region is about 1572-1602bp and the mature 

polypeptide chain is about 507-513 amino acids long. The nucleotide sequence at the 

5‟ end of TNSALP gene is also known and it is in the region upstream of this site 

where promoter activity resides (refer to section 2.6.2 for a detailed discussion on the 

role of this promoter region in ALP gene regulation). 
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Intestinal ALP is one of the linked genes on the long arm of chromosome 2. In 

intestinal and TNSALP genes the introns occur at analogous positions (Henthorn et al. 

1987). The I-ALP gene in its entirety is 5291bp long. A 125bp fragment located 5‟ to 

the first exon can function as a promoter in mammalian cells. Two recognized 

transcription signals, a TATA-like sequence and a consensus binding site for the 

transcriptional factor Sp1 are found in this region (Henthorn et al. 1988). The 

placental ALP gene is one of the three closely related genes that are on the long arm 

of chromosome 2 in man. The expression of the placental and intestinal ALP genes is 

highly tissue specific in spite of nearly 90% sequence similarity within their exons.  

A comparison of the placental ALP 5‟ flanking sequence (up to -540bp) with the 

analogous sequence of the I-ALP gene revealed several deletions/substitutions which 

could be important in determining the tissue-specific expression of these genes. 

The sequences of the coding regions of the different genes are all very similar 

in length (1572-1602bp). They each include at their 5‟ ends a short sequence coding 

for a signal peptide (17-21 amino acids) which is cleaved off in protein synthesis 

leaving mature polypeptide chains 507-513 amino acids long. The P-ALP and G-ALP 

isoenzymes each comprise 513 amino acids with a positional identity of 98%. In the 

case of I-ALP the mature polypeptide predicted from its cDNA sequence comprises 509 

amino acids and after allowing for small gaps shows 87% positional identity with both 

the placental and placental-like sequences. The amino acid sequence of the mature 

TNSALP (507 amino acids) only show about 50-60% positional identity with the other 
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three ALPs. These four genes appear to have evolved from a common ancestral gene 

by a series of successive gene duplications (Harris 1990). 

 

2.6.2  Regulation of ALP gene expression 

A promoter region has been identified in each of the four genes and there is currently 

much interest in finding out how differences in sequence in this region may play a role 

in determining the differences in the expression of the various genes in different 

tissues. 

In this report regulation of gene expression will be discussed with particular 

emphasis on the TNSALP gene. In order to examine the promoter activity of DNA 

within the 5‟ region of the TNSALP gene, a 672bp AvaII fragment corresponding to 

bases -801 to -129 upstream of the first base of the ATG initiation codon was inserted 

upstream of the promoterless bacterial chloramphenicol acetyltransferase gene in 

derivatives of the plasmid psVOcat (Kadesch and Kildjian 1990). For the labelling of 

the bases in the gene sequence and important regulatory motifs refer to Fig. 2.3 

below. 

 

 

 

 

 

 



 Chapter Two                                                               Literature Review 

 14 

-805 GGTCCCCTTCTGCTTCTTCTTGCGGTAGCCAGGGAGGCAGCCCACGGGCAGGGAAGCG

GGGGTGGGGGTGCAGAGGTGCACGTGGACAGAGACA 
 

-705 GAGAAGAGACAGGGACGTGGGCAGAGACGGATAAAGACAGACACCCAGAGAAGCCAG
ATATGTTGACAGACACAGAGACAGACGCCAGAGAGGAAGGCAG 

 

-605 ACAAAGAGACGGGTGGAGACAAAGACTCCCACCAAGAGACGCAGAAGGAAGATGCCGA
CGGTAAAGACAAAACAGGAGACGCGCGCAAGGAGCACGTCAG 

 
-505 AGCCCAGGCTCGCTGAGAGAGGAAGGGCTCCCCTGGGGCAGCCCGGAGGCAGAGAGA

CCGAGAGTGCGGGGCGGGCGGGCGAGGGACGCCAGGGCCGCGTCACC 
 

-405 CCAGCCCGTTCCTAGCTCCGCTCCCGGCAGGGGGCGCCCTGGCCTCGTGGCACGACCG
GCCCGCGGGGCGCGGGCTCGGGCCGGGGGCGGGGCCGGGGC 

 
-305 CTGGCTGGAGGGGTTGGGGCCGGGGGCGGGGGAGGGGGCGGGCTGCCCGGGCC 

   
TCACTCGGGCCCCGCGGCCGCCTTTATAAGGCGGCGGGGGTGGTG 

             
-205                    *** 

GCCCGGGCCGCGTTGCGCTCCCGCCACTCCGCGCCCGCTATCCTGGCTCCGTGCTCCC 
                     ****** 
ACGCGCTTGTGCCTGGACGGACCCTCGCCAGTGCTCTGCGCA 

 
-105 gtaaggattcgacgctgccccgcgccctggttccccagggccccagcggacgtggtccatccccttctgcatcctcc

gctggccccgtggttgaactttaatggc…………….Intron 1 (>25 kb) …………….. 
tttaatttctagGATTGGAACATCAGTTAACATCTGACCACT 

-74 GCCAGCCCACCCCCTCCCACCCACGTCGATTGCATCTCTGGGCTCCAGGGATAAAGCAG
GTCTTGGGGTGCACCATG…  
                            +1 

 

Figure 2. 3 The 5‟-end of the TNSALP gene. 

The nucleotide sequence is oriented with transcription proceeding from left to right and 

numbered with the first base of the ATG initiation codon designated as +1. Nucleotides 5‟ to 

this position are indicated by negative numbers, disregarding positions within the first intron. 

Nucleotides within the 5‟ flanking region and first and second exons are shown in upper case 

letters; those within the first intron are shown in lower case. The major start sites of 

transcription initiation are shown as *; those above the line were mapped by primer 

extension, those below by S1 nuclease protection. Similarly,  indicate a minor transcription 

start site. Four copies of the core consensus for SP binding are highlighted yellow. A TATA box 

is shown in red. Mulitple copies of an imperfect purine-rich repeat are shown in green. An 11-
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bp direct repeat within the 5‟ flanking region and the first exon is highlighted in purple. A 15-

bp direct repeat within the 5‟ flanking region is highlighted in grey - (adapted from Weiss et 

al. 1988). 

 

The ability of these constructs to express chloramphenicol acetyltransferase 

activity was measured 48 hours after transfection into SAOS-2 human osteosarcoma 

cells. The TNSALP promoter was found to be four to 10 times more active than the 

enhancer-less SV40 promoter in SaOS-2 cell line based on the mRNA levels (Kadesch 

and Kildjian 1990). 

A 672 bp DNA segment situated 5‟ to the TNSALP gene can direct 

chloramphenicol acetyltransferase gene expression in mammalian cells. It is 

reasonable to assume that this activity is due to the TNSALP gene promoter. This 

region contains three types of DNA sequence elements worth noting (Fig. 2.3). First, 

an A/T rich sequence is present between nucleotides -228 and -222, about 25bp 

upstream of the major transcription start site. Similar sequences referred to as TATA 

boxes are found at analogous positions in many eukaryotic genes and are thought to 

be important in positioning the start of transcription initiation (Dynan and Tjian 1985; 

Serfling et al. 1985). Second, four copies of the consensus sequence (GGGCGG) for 

binding transcription factor Sp1 are present at nucleotides positions -437, -320, -280, 

and -268 (Kadonaga et al. 1986). This sequence exists within the promoter of a 

diverse group of cellular and viral genes. Third, between nucleotides -740 and -460, 

there is a group of short purine-rich, imperfect direct repeats of the consensus 

sequence (GGGCGG), the significance of which is not known (Weiss et al. 1988). 



 Chapter Two                                                               Literature Review 

 16 

The promoter region of the TNSALP gene is quite distinct from the intestinal 

and the placental ALP gene promoters. The former contains a G/C – rich promoter and 

a CpG island at its 5‟ end. In contrast, the latter genes contain G/C residues that do 

not qualify as CpG clusters (Henthorn et al. 1988). The features that have been 

described for the promoter region of the TNSALP gene have been observed in many 

other genes that exhibit a wide tissue distribution notably the „housekeeping‟ genes 

(Kadesch and Kildjian 1990).  

An increasing number of factors have been described that bind to various sites 

in the promoter region of the TNSALP gene and are thus involved in the regulation of 

its expression. A few examples of the transcription factors that regulate the expression 

of the TNSALP gene are given below. 

The androgen receptor controls an integrated gene expression program 

required for bone mineralization, as shown by the delayed mineralization of skull and 

reduced bone volume and surface area observed in androgen receptor deficient mice 

(Kang et al. 2008). Androgen receptor dimers have been shown to bind to an Sp1 

binding site situated between -437 and -432 upstream of the TNSALP gene (Orimo 

and Shimada 2005). 

Bone morphogenic protein-2 (BMP-2) is one of the most potent bone inducing 

agents in osteoblast differentiation. The promoter region of the TNSALP gene contains 

a Dlx-5 binding cis-element to which the BMP-2 receptor dimer binds. Increased ALP 

activity was induced by BMP-2 stimulation in myogenic murine C2C12 cells (Kim et al. 
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2004). It is likely that this cis-element is one of the Sp1 binding sites shown in Figure 

2.3. 

Orimo and Shimado (2005) used the human osteosarcoma cell line (SaOS-2) to 

study the effect of all-trans-retinoic acid on the expression of human TNSALP gene. It 

was shown in this study that all-trans-retinoic acid upregulates human TNSALP gene 

expression and catalytic activity in SaOS-2 cells. Retinoic acid is the active form of 

vitamin A that stimulates cellular differentiation via the retinoic acid receptor (RAR)-

retinoid X receptor (RXR) heterodimers. This complex binds to a specific cis-element, 

the retinoic acid response element (RARE) found in vitamin A-response genes 

(Mangelsdorf et al. 1995). A RARE has been found in the promoter region of the 

human TNSALP gene (Orimo and Shimada 2005). Using supershift assays, Orimo and 

Shimado (2005) found heterodimers of RXR and RAR bound to the RARE suggesting 

that the complex enhanced TNSALP expression. Agents such as all-trans-retinoic acid 

that bind to the RARE in the promoter region therefore enhances TNSALP expression 

and activity. It is known that all-trans-retinoic acid is a key regulator of bone 

formation. TNSALP plays a key role in bone mineralization by formation of 

hydroxyapatite crystals in osteoblast matrix (Whyte 1994).  

Regulation of the murine TNSALP gene by retinoic acid occurs in a similar way 

(Escalente et al. 1996). 

Weston et al.(2003) reported that all-trans-retinoic acid may be involved in 

ossification by inhibiting early differentiation of mesenchymal stem cells (MSCs) into 

other cell lineages but stimulating chondrocyte proliferation and hypertrophy, which 
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results in increased ossification of the cartilage during osteogenesis (Weston et al. 

2003). Chondrocytes are the major type of cell found in the cartilage matrix. They are 

derived from a population of adult stem cells, mesenchymal stem cells. MSCs have the 

ability to differentiate into other cell lineages, for example, osteoblasts, chondrocytes 

and adipocytes, depending on the differentiation factors to which they are exposed 

(Vaananen 2005; Nardi and da Silva Meirelles 2006).  

Forkhead transcription factor (FKHR) is involved in the regulation of multiple 

genes including those that code for glucose metabolic enzymes, proapoptotic factors 

and cell regulators (Carlsson and Mahlapuu 2002 ). The expression of FHKR in 

osteogenic cells (MC3T3-E1) was measured by RT-PCR and immunoblotting assays. 

Furthermore, it was shown via reporter and electrophoretic mobility shift assays that 

ALP gene transcription was stimulated through a Forkhead receptor element [FRE]  

lying within the promoter region of the TNSALP gene (Hatta et al. 2002).  

Smad-interacting protein 1 (SIP1) is one of the members of the two-handed 

zinc finger protein family that bind to E4-box sequences present in the promoter of the 

mouse TNSALP gene.   

SIP1 represses TNSALP promoter activity in C2C12 cells by binding in vitro to a 

CACCCT/CACCTG sequence (Tylzanowski et al. 2001). This sequence is located in the 

promoter region, upstream of exon 1 near the TATA box. A similar distribution of 

these sites is seen in the human TNSALP gene. The binding of SIP1 to a 

CACCT/CACCTG sequence is responsible for the repression of reporter constructs 
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carrying a TNSALP promoter fragment. Tylzanowski et al. (2001) suggest that SIP1 

could therefore be a candidate repressor protein for the TNSALP gene. 

These studies demonstrate that the TNSALP gene promoter has a number of 

different regulatory elements that modulate transcription of the gene. Thus, it is 

possible that the level of TNSALP expression in preadipocytes is dependent on the 

level of particular transcription factors and that polymorphisms within the promoter 

region may attenuate or enhance TNSALP gene expression.  

  

2.7  Mutations in the TNSALP gene 

Hypophosphatasia is a rare inborn error of metabolism associated with a low serum 

ALP and characterized by abnormal skeletal mineralization. The expression of the 

TNSALP isoenzyme is defective although that of the intestinal and placental 

isoenzymes appear normal (Mueller et al. 1983).  

It has been suggested that inorganic pyrophosphate controls the mineralization 

process in bone. Its accumulation in hypophosphatasia might therefore be the 

immediate cause of the defect in bone mineralization. The condition appears to be 

inherited as an autosomal recessive disorder (Whyte 1994). 

Hypophosphatasia shows much variation in clinical expression and it is 

customary to classify the patients into four main forms. A detailed review of the 

clinical classification is provided by Mornet (2007). The perinatal form results in still 

birth or death a few days after birth due to extensive hypomineralisation and 

deformity of bones. Infantile hypophosphatasia presents in the first 6 months of life 

and includes rickets, craniosynostosis and nephrocalcinosis. 
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After the first year, childhood hypophosphatasia presents with rickets causing 

short stature, delayed walking, premature shedding of deciduous teeth. Adult 

hypophosphatasia is characterized by osteomalacia and bony deformities during 

middle age in patients with a history of mild rickets in childhood. 

The clinical severity of the disease can be predicted by measurements of the 

immunoreactivity and catalytic activity of the bone isoenzyme. The lower the 

immunoreactivity index the more severe the skeketal disease (Iqbal et al. 2000). 

Heterozygotes are in most cases clinically unaffected though they show reduced 

serum levels of the TNSALP isoform. 

Genetic linkage studies using polymorphic probes for the TNSALP locus and 

flanking markers are consistent with a primary abnormality in the TNSALP gene in 

bone hypophosphatasic kindreds (Greenberg et al. 1990). However, the mutations 

that give rise to hypophosphatasia may also involve defects in the regulation of 

structurally intact TNSALP gene. The first defect in the TNSALP gene was identified on 

cDNA isolated from a patient-derived fibroblast line (Weiss et al. 1989).  

The gene defect causes a lethal form of hypophosphatasia and involves a point 

mutation that converts amino acid 162 of the mature TNSALP from alanine to 

threonine. 

Since then a number of mutations of the TNSALP gene have been published in 

patients with hypophosphatasia (Henthorn et al. 1992; Mornet et al. 1998; Taillandier 

et al. 2001; Watanabe et al. 2001; Herasse et al. 2002; Mumm et al. 2002; Orimo et 

al. 2002; Draguet et al. 2004; Watanabe et al. 2005). 
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TNSALP with an Asp289 Val mutation fails to reach the cell surface and 

undergoes proteosome-mediated degradation and accumulates intracellularly (Ishida 

et al. 2003). A frame shift mutant protein of TNSALP has also been described that 

results in a delayed secretion of the enzyme and the enzyme easily undergoes 

proteosomal degradation (Komaru et al. 2005). 

A website (http:www.sesep.uvsq.fr/03_hypo_mutations.php#mutations) for 

human ALP gene mutations is available and below is a summary of the documented 

mutations in this gene responsible for hypophosphatasia (Table 2.1). The last update 

was on 30th September, 2010. 

Table 2. 1 TNSALP gene mutations  

Missense mutations are the most frequently occurring while mutations in the 

regulatory part of the gene are the rarest. 

 

Type                                              Number % 

Missense 

Nonsense 

Splicing 

Small insertions 

Small deletions 

Large deletions 

Insertion/deletion 

Regulatory 

177 

6 

9 

4 

22 

3 

1 

1 

79.4 

2.7 

4.0 

1.8 

9.9 

1.0 

0.5 

0.5 

Total 222 100 
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In all the cases of hypophosphatasia that have been reported no mention of the 

patient‟s anthropometric data are given. This information would be useful in the light 

of claims about the role of ALP in intracellular lipid accumulation in human and rodent 

adipocytes (Ali et al. 2006). However, it is interesting to note that transgenic mice 

carrying a TNSALP gene knock-out are reported to have very little adipose tissue 

(Narisawa et al. 1997).  

 

2.8  Intracellular lipid accumulation 

Lipids are a large and diverse group of naturally occurring organic compounds that are 

related only by their solubility in polar organic solvents (such as ether, chloloform, 

acetone) and general insolubility in water (Koon 2009). 

In circulation lipids are transported in combination with proteins (these 

complexes are called lipoproteins). In living organisms, lipids are used for energy 

storage, serve as structural components of cell membranes and are important 

hormones or contain essential fatty acids. The major form in which the lipids are 

stored in the body is triacylglycerides (made up of a glycerol backbone to which 3 

fatty acids are esterified). 

Free fatty acids may be liberated from lipoproteins by lipoprotein lipase (LPL) 

and these may enter cells of various tissues where they are reassembled into 

triglycerides. Cells of different tissues of the body have varying capacities to 

accumulate lipids. 
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2.8.1  Lipid droplet formation 

The lipid droplet (LD) is one of the numerous terms that have been used to describe 

cytoplasmic lipid inclusions that are surrounded by a limiting osmophilic boundary 

generally thought to be a phospholipid monolayer (Murphy 2001). Recently, the terms 

lipid body and adiposome have been proposed as alternative names for these 

organelles (Liu et al. 2004). These discrete lipid storage droplets are made up of a 

core of triacylglycerol (TAG) and cholesterol esters.  

The ability to package neutral lipids into discrete lipid storing droplets is a 

general property of most cells (Martin and Parton 2006).  

In cultured cells and in vivo LDs form in response to elevated fatty acid levels 

(Pol et al. 2004). In one model of LD formation (Fig. 2.4) neutral lipids are synthesized 

between leaflets of the ER membrane. 

 

 

 

 

 

 

 

 

 

 



 Chapter Two                                                               Literature Review 

 24 

 

 Figure 2. 4 Lipid droplet formation and motility.  

In this model of LD formation, neutral lipids are synthesized between the leaflets of the ER 

membrane. The mature LD is then thought to bud from the ER membrane to form an 

independent organelle that is bounded by a limiting monolayer of phospholipids and LD-

associated proteins. Some of the best understood LD-associated proteins are members of the 

PAT (perilipin, ADRP and TIP47-related protein)-domain family of proteins. 

(Adapted from Martin and Parton 2006). 

 

These LDs are not just isolated storage depots in the cell but they can 

physically interact with several organelles over short or long durations via the 

cytoskeleton (Goodman 2008) [see Fig. 2.5]. 
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Figure 2. 5 Lipid droplet-organelle associations. 

A, most droplets remain attached to the ER. It is not clear whether the phospholipid 

monolayer is continuous with the cytoplasmic monolayer of the ER, as shown, or whether the 

leaflets are separate. B, peroxisomes frequently associate with droplets and can insert 

pexopodia into the core of the droplet. C, mitochondrial associations allow flux of fatty acyl-

CoAs for oxidation; other communication also exists. D, microtubule motors associate with 

droplets, allowing bidirectional transport (one motor is shown). E, endosomes probably 

associate transiently with droplets, transferring proteins and lipids. F, droplets can undergo 

SNARE-mediated homotypic fusion. (Adapted from Goodman 2008). 

   
 

Immunocytochemical studies (Brasaemle et al. 1997) revealed that lipid storage 

droplets are associated with specific proteins. Adipose differentiation-related protein 

(ADRP, also called adipophilin) is one of them. This protein is ubiquitously expressed 

in many different mammalian cell types and culture cell lines (including the murine 

http://www.jbc.org/content/283/42/28005/F1.large.jpg
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3T3-L1 preadipocytes, Chinese hamster ovary fibroblasts, HepG2 cells and the murine 

MA-10 Leydig cells) (Heid et al. 1998). Adipocytes and steroidogenic cells also express 

perilipins (Brasaemle et al. 1997), a family of lipid droplet-associated proteins that 

share a highly related sequence domain with ADRP. This group of proteins has been 

termed PAT (perilipin, ADRP and TIP47-related proteins). The proteins on the surface of 

LDs provide stability to the organelle and prevent their coalescing (Greenberg et al. 

1991). 

Cloning of perilipin cDNA from a rat adipocyte expression library revealed two 

forms of the protein. Perilipin A, a 56kDa protein is the most abundant and coats lipid 

droplets in both adipose and steroidogenic cells. Perilipin B, a 47kDa protein is less 

abundant than perilipin A and occurs primarily in adipose cells (Londos et al. 1999). 

The two isoforms are produced by alternative RNA splicing and are identical through 

their first 406 N-terminal amino acids but contain unrelated C-termini (Mackie-

Branchette et al. 1995). Another form of perilipin (perilipin C) is relatively abundant in 

steroid producing cells but undetectable in adipocytes by Western blotting (Servetnick 

et al. 1995). This species of perilipin appears to differ from perilipin A and B at both its 

N- and C- terminus.  

Perilipin and ADRP co-localize on lipid droplets of some cell types such as 

Leydig cells while in other cell types for example, mature adipocytes ADRP is not 

present. 

The specific localization of ADRP and perilipins to lipid droplets in a wide variety 

of cells suggests that they may play a role in management of neutral lipid stores.  
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It is now known that perilipins protect the lipid droplet from hydrolysis that is 

mediated by the hormone-sensitive lipase/cholesteryl esterase class of enzymes 

(Servetnick et al. 1995; Londos et al. 1996). 

The amount of TAG stored in non-adipose tissue is minimal and very tightly 

regulated. Various rodent models of obesity have shown that cytostolic TAG 

accumulates excessively in these organs when this regulation is disrupted. This 

accumulation has been implicated in activating adverse signalling cascades that 

culminate in irreversible cell death (lipotoxicity) and lead to several well recognized 

clinical syndromes. It may arise in the setting of high plasma fatty acids or TAG in 

blood. Alternatively, lipid overload may result from mismatch between free fatty acid 

import and utilization (Lelliot and vidal-Paig 2004). Evidence from both human and 

animal studies suggests that lipid accumulation in the heart, skeletal muscle, 

pancreas, liver and kidney play important roles in the pathogenesis of obesity-related 

disorders (Arulmozhi et al. 2007). 

 

2.8.2  Tissues involved in lipid accumulation 

Fat depots are scattered throughout the body, generally occurring in areas mainly 

composed of loose connective tissue such as the subcutaneous layers between muscle 

and dermis (Rosen and Spiegelman 2000). However, fat deposits are also found 

around the heart, kidneys and other internal organs. 
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 Adipose tissue 

Adipose tissue is found mainly under the skin but also in depots between the muscles, 

in the intestines and in their membrane folds, around the heart and the liver. Its main 

role is to store energy in the form of fat, although it also cushions and insulates the 

body. It has an important endocrine function in producing hormones/factors such as 

leptin, prostaglandins, adipsin, resistin, TNF , IL-6, and adiponectin (Frubeck et al. 

2001). 

White fat (which is the more common type of adipose cell) is found in a wide 

variety of locations in the mammalian body. Brown fat is mainly found in subscapular, 

interscapular and mediastinal areas. Brown adipose cells are associated with 

thermogenesis mainly in hibernating and newborn mammals, although recent studies 

using 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomographic and computed 

tomographic (PET-CT) scans show that brown fat is present in adult humans. Brown 

adipose tissue regions were present more frequently in women than in men and the 

amount of brown adipose tissue correlated negatively with body-mass index especially 

in older people (Cypess et al. 2009).  

It seems that higher levels of brown adipose tissue may protect against age–

related obesity. This might also explain the gender differences in the prevalence of 

obesity in some population groups. 

Brown and white adipocytes are morphologically different. Thus, brown 

adipocytes have cytoplasmic lipids arranged as numerous small membrane-bound 

droplets (multilocularity), while white adipocytes have cytoplasmic lipids arranged in a 
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single vacuole (uniloculality) (Cinti 2002). The mitochondria of brown adipocytes are 

packed with cristae and contain the thermogenic uncoupling protein 1 (UCP1) (Garlid 

et al. 1998). In vivo and in vitro studies have shown that the differentiation process of 

the two types of adipocytes show distinctive features. The origin of the adipocyte 

precursor is however, still unknown. White adipocytes have been shown to 

transdifferentiate into brown adipocytes and vice-versa (Cinti 2002). 

The differentiation of preadipocytes into mature adipocytes, which includes the 

expression of mature cell markers and a concomitant accumulation of intracellular 

lipid, is called adipogenesis. A detailed discussion of adipogenesis is given in section 

2.9 of this report. 

Obesity is defined as a state of increased body fat tissue mass that arises from 

an imbalance between energy intake and expenditure. It is associated with increased 

fat cell size and number. It is considered a chronic illness, increasing worldwide and is 

known to be a major risk factor for type 2 diabetes, cardiovascular disease, and a 

number of many other disorders (Flegal et al. 2005). 

Body fat is composed of two major fat depots: visceral and subcutaneous. 

Visceral fat is located around internal body organs (inside the peritoneal cavity) whilst 

subcutaneous fat is found beneath the epidermis. Visceral fat is composed of several 

adipose depots and portends greater risk for diabetes, dyslipidemia, hypertension and 

coronary artery disease than does subcutaneous fat (Reaven et al. 2004). It has been 

suggested that the high lipolytic rate of visceral adipocytes and their higher secretory 
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rate of factors that modify whole-body insulin sensitivity may play a role in this 

disease association (Bergman et al. 2006). 

 
 The liver 

In the liver, fat is located within hepatocytes (Szczepanick et al. 1999) and also in Ito 

cells [also known as hepatic stellate cells] (Hautekeete and Geerts 1997). In animals, 

the liver has been shown to have a high capacity to accumulate TAG and the size of 

this pool can change several-fold within hours (Duee et al. 1985). Triglycerides may 

accumulate either as small or large lipid deposits (micro- or macrovesicular steatosis) 

(Fong et al. 2000). Microvesicular steatosis is often associated with severe liver 

dysfunction and is a more severe condition than macrovesicular steatosis (Burt et al. 

1998). Causes of macrovesicular steatosis include excessive alcohol intake and other 

causes such as total parenteral nutrition (TPN) and jujenal bypass. The pathogenesis 

of TPN-induced liver steatosis remains unknown (Wang et al. 2006). 

Chronic ingestion of ethanol inhibits both the oxidation of fatty acids in the liver 

and release of very low-density lipoprotein (VLDL) into the blood. All of these 

mechanisms favour steatosis (Day and Yeaman 1994; Ismail 2008). 

  It has been shown that the regulation of lipogenesis and the accumulation of 

lipids in hepatocytes is mediated by PPAR  (Inoue et al. 2005). Zhao et al. (2004) 

showed that in a rat model of fatty liver disease PPAR  expression decreased in rats 

fed on alcohol. The fall in PPAR  correlated with an increase in inflammation, necrosis 

and fibrosis. Therefore, the investigators hypothesised that the ability of alcohol to 

inhibit PPAR  activity may promote liver fibrosis and necrosis (Zhao et al. 2004). 
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Diabetologists and hepatologists continue to see a rise in incidence of fatty liver 

disease (Yki-Jarvinen and Westerbacka 2005). Non-alcoholic steatohepatitis (NASH) is 

liver disease that occurs in people who drink little or no alcohol. The major feature of 

NASH is fat in the liver, associated with inflammation (Chitturi et al. 2004). About 20% 

of NASH progresses to cirrhosis over approximately 5-7 years (Powell et al. 1990). The 

cause of NASH is still not clear. The incidence of NASH is on the rise and seems to be 

linked to the global epidemic of obesity and type 2 diabetes mellitus (Farrel 2003). 

Visceral fat and insulin resistance have been proposed as predictors of NASH 

(Sobhonslidsuk et al. 2007; Ohki et al. 2009) but it is not known how they cause this 

disease. The definitive test for the diagnosis of NASH is histology of a liver biopsy. At 

present there is no specific therapy for NASH except interventions that control 

conditions associated with NASH such as diabetes and hyperlipidemia.  

Clinical trials with the thiazolidinediones have shown improvements in liver 

pathology in NASH patients (Reynaert et al. 2005; Argo et al. 2009). 

 

 Steroidogenic cells 

Cholesteryl esters account for most of the stored lipids in adrenal cells and there is 

some accumulation of triacylglycerols and free fatty acids as well. Adrenal cells use 

this stored cholesterol as a substrate for steroid hormone synthesis or, as with other 

cells for membrane synthesis. Electron microscopy studies show that lipid droplets in 

adrenal cells are surrounded by a layer of an electron-dense substance known as the 

„capsule‟ (Almahbobi et al. 1992). This adrenal lipid droplet capsule can be 
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demonstrated by immunostaining with a monoclonal antibody which recognizes a 

160kda protein on the lipid droplet surface (Wang and Fong 1995). 

Cultured adrenal cells contain many small lipid droplets that cannot be readily 

quantified by Oil Red O staining. The size of the lipid droplets can, however, be 

increased by incubating cells with culture medium containing an oleic acid/albumin 

mixture (Brasaemle et al. 1997). 

Leydig cells are found adjacent to the seminiferous tubules in the testes. They 

synthesize and release androgens (C19 steroids). Lipids, mainly cholesteryl esters are 

stored in lipid droplets in Leydig cells (Sinha et al. 1997) and act as the precursors for 

the androgens. Adrenal cortical and Leydig cells both contain perilipin C which is not 

detected in adipocytes (Servetnick et al. 1995). 

 

 Accumulation of lipids in macrophages 

Lipids in macrophages are stored in cytosolic lipid droplets which have been suggested 

to consist of a core of neutral lipids (cholesterol esters or TAG) surrounded by a 

monolayer of amphipathic structures such as phospholipids and proteins. Perilipin and 

ADRP are the most well known of these proteins. The latter is the predominant protein 

of the lipid droplets in macrophages (Lu et al. 2001). 

The uptake of modified low-density lipoprotein (LDL) by macrophages via the 

scavenger receptors results in lipid droplet accumulation and foam cell formation 

(Brown and Goldstein 1983; Draude and Reinhard 2000). This process plays an 

important role in the development of atherosclerosis. The atherosclerotic lesion is 

characterized by regions of hypoxia (Bostrom et al. 2006; Xu 2006). Hypoxia causes 



 Chapter Two                                                               Literature Review 

 33 

an accumulation of triglyceride-containing cytosolic lipid droplets in the cell by 

increasing the expression of ADRP and the rate of TAG biosynthesis and by reducing 

the rate of -oxidation of fatty acids (Bostrom et al. 2006). 

In macrophages, induction of adipophilin expression by modified LDL promotes 

intra-cellular lipid accumulation and prevents lipid efflux from the macrophage cell 

line, THP-1. Therefore, adipophilin may contribute to lipid accumulation in the intima 

of the arterial wall (Larigauderie et al. 2004). 

The peroxisome proliferator activated receptors ( ,  and ) are a family of 

fatty acid-activated transcription factors which control lipid homoestasis and cellular 

differentiation.  

It was reported (Vosper et al. 2001) that PPAR  mRNA and protein levels are 

dramatically elevated during macrophage differentiation and provide pharmacological 

evidence that PPAR  is a positive effector of lipid accumulation in human macrophage 

cultures. 

 

 Accumulation of lipids in muscle, -cells and cardiomyocytes 

Lipid contained within skeletal muscle as TAG is thought to be an important link 

between obesity, insulin resistance and type 2 diabetes (Szczepanick et al. 1999; 

Goodpaster and Wolf 2004). It is thought that the oversupply of lipids to skeletal 

muscle causes insulin resistance by promoting the accumulation of lipid-derived 

metabolites (e.g. ceramide) that inhibit insulin signalling (Schmitz 2000; Sebastian et 

al. 2007). 
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The regulation of cholesterol and TAG metabolism in muscle cells is believed to 

involve liver X receptors (LXR). These play an important role in fatty acid metabolism 

by controlling the gene expression of sterol regulatory element binding protein-1c 

(SREBP-1c) and fatty acid synthase. 

The -cells of the islets of Langerhans synthesize and secrete insulin. Studies in 

the Zucker diabetic fatty rat have led to the concept that chronically elevated free 

fatty acid levels can cause apoptosis of TAG-laden pancreatic -cells as a result of the 

formation of ceramides which induce nitric oxide-dependent cell death (Lee et al. 

1994). This lipotoxicity could explain the development of type 2 diabetes in obesity. 

The ability of normal -cells to accumulate cytoplasmic TAG might serve as a 

cytoprotective mechanism against FFA-induced apoptosis by preventing a cellular rise 

in toxic free fatty acyl moieties. It is known that this capacity is lost or insufficient in 

cells with a prolonged TAG accumulation as may occur in vivo (Cnop et al. 2001). 

Rat and human -cells express high affinity receptors for LDL and VLDL and can 

internalize both lipoproteins. These receptors were not observed in islet -cells. In 

human -cells LDL and VLDL uptake may contribute to the intracellular lipid 

accumulation observed in the aging -cell population (Cnop et al. 2002). 

Excessive deposition of lipids within myocardial tissue is an important cause of 

non-ischaemic dilated cardiomyopathy in humans (McGavock et al. 2006). 

Overexpression of long-chain acyl-CoA synthatase, a key enzyme involved in TAG 

synthesis, produces cardiac-restricted steatosis. Increased protein expression of acyl-

CoA synthatase in the myocardium disrupts the balance between lipid import and 
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export which results in diffuse lipid accumulation in heart cells (McGavock et al. 2006). 

Current thinking suggests that cardiomyopathy is not a direct consequence of TAG 

accumulation alone but that it develops secondary to accumulation of by-products of 

lipid metabolism just like in muscle cells and interferes with intracellular signaling 

pathways (Schaffer 2003). 

It is not yet clear whether the intracellular lipids that accumulate in -cells, 

muscle or heart are membrane bound like in adipocytes and hepatocytes. 

TNSALP is expressed in adipocytes (Ali et al. 2006) and hepatocytes (Nowrouzi 

and Yazdanparast, 2005) both of which are known to accumulate lipids. If TNSALP is 

an important factor in intracellular lipid accumulation it would be expected to also be 

expressed in the tissues described above.  

However, no studies have specifically analysed whether these tissues do 

contain TNSALP, and this must be a question for future studies. 

   

2.8.3  Cell line models used in studying lipid metabolism 

Approximately one third of the adipose tissue mass within mammals is made up by 

mature adipocytes. The remaining two thirds of adipose tissue mass is made up by 

small blood vessels, nerve tissues, fibroblasts and preadipocytes in various stages of 

development (Geloen et al. 1989).Preadipocytes then make up a very small proportion 

of adipose tissue (Ntambi and Kim 2000). Preadipocytes and fibroblasts are not easily 

distinguishable and the inability to align preadipocytes at similar developmental stages 

confounds detailed in vivo studies (Ntambi and Kim 2000). In addition, primary 

cultures have a limited life span in culture. Some of these difficulties were partially 
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circumvented in the 1970s when Green and his colleagues established immortal 

fibroblast cell lines that readily differentiated into adipocytes when appropriate 

hormonal inducers were added (Green and Kehinde 1975). These cell lines provide an 

experimentally accessible system in vitro, which faithfully recapitulate the features of 

adipogenesis observed in vivo. 

2.8.3.1  Preadipocyte cell lines 

Adipocyte precursor cell lines can be divided into two classes: pluripotent fibroblasts 

and unipotent preadipocytes. The pluripotent fibroblasts have the ability to be 

converted into several cell types (Cornelius et al. 1994). 10T1/2 fibroblasts which were 

derived from CH3 mouse embryos can be converted to preadipose, premuscle and 

precartilage tissue upon treatment with 5‟azacytidine, an inhibitor of DNA methylation. 

Other pluripotent fibroblasts cell lines are Balb/c 3T3, 1246, RCJ3.1 and CHEF/18. 

These pluripotent fibroblasts act as good models for understanding the events 

responsible for cellular determination of the separate cell fates. 

Unipotent preadipocytes (3T3-L1, 3T3-F442A, Ob1771 and 1256) are cells that 

have undergone determination and can only differentiate to adipocytes. These cell 

lines are ideal for studying the molecular events responsible for the conversion of 

preadipocytes into adipocytes (Ntambi and Kim 2000). There are some differences in 

the differentiation requirements of each of these cell lines and it is thought that this is 

due to variations in the developmental stage at which cells were arrested when 

immortalised (Ntambi and Kim 2000). 
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The 3T3-L1 and 3T3-F442A culture lines are the most widely used with the 

former cell line being the most well-characterized and reliable model for studying the 

differentiation process (Takahashi et al. 2008). The 3T3-L1 cell line was derived from 

the Swiss 3T3 cell line prepared from disaggregated 17-19 day old Swiss mouse 

embryos (Green and Kehinde 1975). The 3T3-L1 cells show strong contact inhibition in 

vitro that is, their rate of growth is reduced as soon as cell-to-cell contacts are 

established. When the growth of the cells is arrested, a certain portion will convert to 

adipose cells (Aaranson and Todaro 1968). 

There are advantages and disadvantages to using cell lines to study 

preadipocyte development. A cell line derived from cloning provides a homogenous 

cell population that contains cells all at the same stage of differentiation. This allows 

for a definitive response to various treatments. Furthermore, these cells can be 

passaged indefinitely, which provides a constistent source of cells (Ntambi and Kim 

2000). It is, however, clear that preadipocytic cell lines are not true analogues of 

primary adipocytes (MacDougald and Mandrup 2002). In interpreting results it must 

also be kept in mind that with preadipocyte cell lines, all cells are exclusively 

differentiated white adipose tissue while in mammals a second type of fat cell (brown 

adipocytes) also exists. Another very important limitation to the exclusive use of 

established preadipocyte cell lines is that they have not allowed an assessment of 

depot-specific differences in fat cell behaviour and preadipocytes isolated from 

different fat depots are known to have different adipogenic potential, the molecular 

basis of which is not fully understood (Lefebvre et al. 1998). 
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2.8.3.2  Other lipid accumulating cell lines 

HepG2 is an adherent cell line derived from a human hepatocellular liver carcinoma. 

The cells are epithelial in morphology. This cell line has been found to express a wide 

variety of liver-specific functions. Among these functions are those related to 

cholesterol and TAG metabolism. Intracellular lipid storage is increased by the addition 

of oleic acid coupled to bovine serum albumin to the culture medium to allow 

quantification of lipd accumulation (Brasaemle et al. 1997). 

Y-1 is a cell line derived from the mouse adrenal cortex tumour. It also has an 

adherent growth mode and epithelial morphology. It produces steroid hormones at a 

high rate and pronounced morphological transformation under ACTH stimulation 

(Bounassisi et al. 1962). It accumulates small lipid droplets that do not stain deeply 

with oil red O stain. In order to enhance lipid accumulation it is necessary to add oleic 

acid/albumin to the culture medium (Brasaemle et al. 1997). 

 

2.9  Regulation of lipid accumulation in selected cell types 

2.9.1  Adipocytes 

Adipocytes are thought to originate from fibroblast-like precursor cells that 

differentiate into mature adipocytes under appropriate stimulatory conditions 

(Cornelius et al. 1994). These precursor cells do not possess any morphological or 

enzymatic marker that can be used to determine whether they will be adipocytes 

(Albright and Stem 1998). The criteria used to identify preadipocytes depends on lipid 

accumulation after clonal expansion has stopped. This makes early identification of the 

preadipocytic state in vivo difficult (Gregoire et al. 1998). In humans much of 
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preadipocyte differentiation occurrs shortly after birth (Burd et al. 1985). This allows 

the newborn to cope more efficiently with intervals between nutrient intake 

(MacDougald and Lane 1995). 

During the first two years of life, adipose tissue mass grows by an increase in 

both size and number, initially by cell enlargement and then after 6-12 months by an 

increase in both size and number (Salans et al. 1973). Cell number increases slowly 

from two years of age until close to the onset of puberty, and during adolescence, 

there is another sharp elevation in cell number that accounts for a spurt in the growth 

of adipose tissue (Ailhaud et al. 1992). In the infant and young children there is a 

continuous subcutaneous layer of fat over the whole body. In the adult this thins out 

in some regions but persists and grows thicker in certain sites of predilection 

(Bjorntorp 1974). These differ in the two sexes and are largely responsible for the 

characteristic differences in the body form of females and males. 

 
The adipogenic program 

Adipogenesis is a term used to describe all the processes that lead to the appearance 

and accumulation of lipid droplets in adipocytes. It is a two-step developmental 

process by which an undifferentiated mesenchymal cell is committed into a 

preadipocyte, which then undergoes a secondary differentiation step to become a 

lipid-filled adipocyte (Fig. 2.6). The undifferentiated mesenchymal cell  can develop 

along a number of different lineages such as myocyte, chrondocyte or osteocyte 

(Gregoire et al. 1998; MacDougald and Mandrup 2002). 

 



 Chapter Two                                                               Literature Review 

 40 

 

 

Figure 2. 6 Development of mesenchymal/mesodermal derivatives. 

Mesenchymal stem cells (MSCs) develop from the mesoderm and then commit into different 

lineages influenced by a number of factors.Bone morphogenic proteins (BMPs) through their 

intracellular mediators (Smad proteins) can trigger MCSs to enter the osteogenic or adipogenic 

while preventing commitment into the myogenic lineage.Intracellular proteins such as TAZ and 

Schnurri-2 modify the action of BMP in the determination of the osteogenic or adipogenic 

lineages. In addition the actions of BMP can be modulated by Noggin, Nodal and glypican-3. 

Wnt and Hedgehog proteins are important for MSCs commitment in myogenic and osteogenic 

lineages and prevent commitment into adipogenic lineages. Adapted from (Gesta et al. 2007). 
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 Adipocyte determination 

Determination is the irreversible commitment of a cell to a pathway of differentiation 

(Whittaker 1973; Maduro 2010). Determination always comes before differentiation. 

Autonomous determination is when the cell holds all the information that it needs to 

direct its differentiation. When a cell depends on instructions from neighbours to direct 

its differentiation, it is called interactive determination (Lau et al. 2010). The fertilized 

egg and its early daughter cells are totipotent but as development proceeds, these 

cells give rise to progressively more specialised cells which have a less extensive 

developmental repertoire but can still develop into multiple cell types (Mayani 2003). 

In the end the cells become restricted to their ultimate fate, meaning that they 

become committed to a particular type of differentiation. This commitment or 

determination involves a gradual reduction of developmental options that ultimately 

renders the cells capable of becoming only a single cell type (Taghert et al. 1984). 

Determination most likely involves the expression of one or few regulatory 

genes that control the subsequent expression of many other genes in the hierarchy. 

These restrictions of gene expression can be considered to be developmental. These 

decisions occur without any apparent change in the phenotype of the cells. Therefore 

one cannot establish whether a cell has become committed until after determination 

has occurred. The early molecular events that induce determination of the primitive 

mesenchymal precursor cells to the adipocyte lineage remain unknown though the 

transcriptional pathways that are important in the later stages of adipose 

differentiation have largely been identified (Rosen et al. 2000). 
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 Adipocyte differentiation 

Adipocyte differentiation is the process whereby a relatively unspecialized cell acquires 

specialized features of an adipocyte. This transition involves four stages (growth 

arrest, clonal expansion, early and terminal differentiation). The first stage in the 

differentiation of fat cells and most cell lineages, is growth arrest (Bernlohr et al. 

1985). In cultured cell lines growth arrest occurs after contact inhibition although 

experiments using very low density plating in serum-free medium demonstrate that 

cell-cell contact is not an absolute requirement for growth arrest to occur (Gregoire et 

al. 1998). In cultured cell models, growth arrest also requires the addition of a 

differentiation-inducing hormone mixture, usually insulin and a glucocorticoid and is 

followed by one or two rounds of clonal expansion (Camp et al. 2002). This process 

ceases with the expression of the transcriptional factors PPAR  and CCAAT/enhancer 

binding protein (C/EBP ) (Shao and Lazzaar 1997; Morrison and Farmer 1999) which 

leads to a permanent period of unusual growth arrest called GD (Scott et al. 1982) 

followed by the expression of the fully differentiated adipocyte phenotype (Cornelius 

et al. 1994). The cells then assume a more rounded shape, accumulate fat droplets 

and become terminally differentiated adipocytes by day 5-7 (Ntambi and Kim 2000). 

The first sign of adipocyte differentiation is the appearance of lipid droplets in 

the cytoplasm. This is a much easier and more sensitive criterion than measuring 

enzymatic or chemical changes in culture because of asynchrony of participating cells. 

There is a dramatic alteration in cell shape as the cell converts from fibroblastic to a 

spherical shape.  
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The distinct shape results from different arrangements of the various 

cytoskeletal components inside the cell including microtubules and intermediate 

filaments. Rearrangement of the vimentin cytoskeleton has been observed during the 

transformation of preadipocytes into adipocytes in cell culture (Franke et al. 1987). 

Studies have shown that the capacity of the preadipocytes to differentiate and 

accumulate lipid deteriorates with aging (Kirkland et al. 1993). Preadipocytes collected 

from old rats and humans accumulate less lipid and have lower lipogenic enzyme 

activities when exposed to a variety of conditions that induce differentiation than 

preadipocytes from younger individuals. 

 

2.9.1.1  Genes involved in adipocyte differentiation 

Ntambi and Kim (2000) described the time course of the genetic events involved in 

adipocyte differentiation (Fig. 2.7). Very early markers of adipocyte differentiation are 

expressed when 3T3-L1 cells reach confluence. The cell to cell contact stimulates the 

expression of lipoprotein lipase and type VI collagen genes (Cornelius et al. 1988). 

Within an hour after the addition of transformation cocktail, the expression of c-fos, c-

jun, c-mys and C/EBP  and  is observed (Cornelius et al. 1994). Between day 3-4, 

the activity of C/EBP  and PPAR  is maximum and induce the transcription of many 

adipocyte genes encoding proteins and enzymes involved in creating and maintaining 

the adipocyte phenotype (Gregoire et al. 1998). Interestingly, several genes 

associated with adipocyte differentiation are found to be aberrantly expressed in 

transgenic or naturally occurring mouse models of obesity and metabolic diseases 

(Robinson et al. 2000). 
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Figure 2. 7 Progression of 3T3-L1 preadipocyte differentiation. 

The major identified events of preadipocyte differentiation are presented chronologically. 

Areas labeled by gene names represent periods of gene expression during the differentiation 

program. The distinct stages of differentiation (very early, early, intermediate and late) are 

also provided. LPL, lipoprotein lipase; C/EBP, CCAAT/enhancer binding protein, PPAR, 

peroxisome proliferator-activated receptor; MIX, methylisobutylxanthine; DEX, dexamethasone 

(Ntambi and Kim 2000). 

 
In another study, 579 genes were identified as genes that changed reliably and 

consistently during adipocyte differentiation (Gerhold et al. 2002). These genes were 

clustered into 32 distinct groups using the UPGMA (Unweighted group method with 

arithmetic mean) clustering algorithm (Table 2.2). Large portions of genes in clusters 

26-32 are adipocyte specific. 

http://jn.nutrition.org/content/vol130/issue12/images/large/4w12t1238002.jpeg
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Table 2. 2 Clusters of genes by the UPGMA version of the average linkage algorithm 

(abridged version).  

The genes shown in bold were confirmed with quantitative PCR analysis.  Adapted from 

(Gerhold et al. 2002). 

Cluster No. of  

genes 

Accession 

no. 

Representative genes Function 

1 1 L12030 Stromal cell-derived factor 1 Cytokine and cytokine 

receptor 

 

2 

 

5 

X83536 Matrix metalloproteinase 14 Extracellular matrix/cell 

adhesion 

  M32490 Cysteine-rich protein 61 Cell growth/cycle regulator 

 

 

 

3 

 

 

 

22 

X65128 Growth arrest-specific gene Cell growth/cycle regulator 

U43076 Cell division cycle 37 Cell growth/cycle regulator 

M70641 FISP12 Cell growth/cycle regulator 

X04367 PDGF receptor, ß-

polypeptide 

Cell growth/cycle regulator 

M63725 Activating transcription 

factor 1 

Transcription factor 

8 2 X70298 SRY box-containing gene 4 Nucleic acid binding 

10 171 W99875 Pyruvate kinase 3 Metabolism 

  M13445/X0

4663 

1-Tubulin/ß5-tubulin Structural protein 

  L07803 Thrombospondin 2 Extracellular matrix/cell 

adhesion 

25 1 AA067813 Glutamate-cysteine ligase Protein synthesis 

26 1 M93275 Adipose differentiation-

related protein 

Lipid metabolism 

 

 

 

 

 

 

U01841 PPAR  Nuclear receptor 

D00466 Apolipoprotein E Lipid metabolism 

W36455 Adipsin Lipid metabolism 
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27 

 

 

29 

W13632 Angiotensinogen Secreted protein 

M33324 GH receptor Cell growth/cycle regulator 

U08188 Hormone sensitive lipase Lipid metabolism 

X13135 Fatty acid synthase Lipid metabolism 

AA016431 Fatty acid-binding protein 5 Lipid metabolism 

X85983 Carnitine acetyltransferase Lipid metabolism 

W85270 Apolipoprotein CI Lipid metabolism 

U15977 Long-chain acyl-CoA 

synthase 

Lipid metabolism 

U41497 Very long-chain acyl-CoA 

dehydrogenase 

Lipid metabolism 

L11163 Short-chain acetyl-CoA 

dehydrogenase 

Lipid metabolism 

31 2 M21285 Stearoyl-CoA desaturase Lipid metabolism 

32 1 W29562 Adipocyte protein aP2 Lipid metabolism 

 

 

 

The role of TNSALP in the control of adipocyte differentiation is not fully 

understood. Its inhibition does block intracellular lipid accumulation (Ali et al. 2005) 

however, whether this inhibition involves the down regulation of the major 

transcription factors involved in the molecular control of adipogenesis, is not known.  

 

2.9.1.2  Transcriptional regulation of adipogenesis 

Three classes of transcriptional factors have been identified that directly influence fat 

cell development. These include PPAR , C/EBPs and the basic helix-loop-helix family of 

transcription factors (ADD1/SREBP1c). 

 
 
 



 Chapter Two                                                               Literature Review 

 47 

 Peroxisome proliferator activated receptor-  (PPAR ) 

PPAR  belongs to a superfamily of nuclear hormone receptors and like many members 

of this class of transcriptional factors, PPAR  must heterodimerize with a partner (the 

retinoid X receptor ) to bind DNA and be transcriptionally active (Kliewer et al. 1994; 

Tontonoz et al. 1994; Zhu et al. 1995). The basic mechanism of action of PPAR  and 

some of its ligands are illustrated in Fig. 2.8. The target genes of PPAR  and  are 

those that are mostly involved in lipid and carbohydrate metabolism 

Two other distinct members of the PPAR subfamily have been described:  and 

δ (Dreyer et al. 1992). Two isoforms of PPAR  exist (PPAR  1 and PPAR  2), both of 

them being a result of alternative promoter usage and differential RNA splicing of the 

PPAR  gene at the 5` end (Zhu et al. 1995). PPAR 1 is the dominant isoform found in 

fat cells. PPAR 2 is 30 amino acids longer than PPAR 1 and is present at lower levels 

in adipose tissue and in a variety of other cell types (Tontonoz et al. 1994; Brun et al. 

1996).  The actions of PPARs at the cellular level are summarized in Fig. 2.8. 
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Figure 2. 8 Basic mechanism of action of nuclear hormone receptors. 

a, Nuclear hormone receptors bind to a specific sequence in the promoter of target genes 

(called hormone response elements), and activate transcription upon binding of ligand. 

Several nuclear hormone receptors, including the retinoic acid receptor, the vitamin D receptor 

and PPAR, can bind to DNA only as a heterodimer with the retinoid X receptor, RXR, as 

shown. b, Structure of some PPAR  and PPAR  ligands (Kersten et al. 2000). 
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Figure 2. 9 Actions of PPARs at the cellular level. 

PPAR  stimulates oxidation of fatty acids in various organelles, such as mitochondria, 

peroxisomes and microsomes. It also stimulates uptake of fatty acids and synthesis of 

lipoproteins. PPAR  stimulates lipolysis of circulating triglycerides and the subsequent uptake 

of fatty acids into the adipose cell. It also stimulates binding and activation of fatty acids in 

the cytosol, events that are required for synthesis of triglycerides. FA, fatty acid; HDL, high 

density lipoprotein (Kersten et al. 2000). 

 

 
Roles of PPAR  in mammalian metabolism 

The role of PPAR  in adipogenesis has been illustrated in studies that have deleted this 

gene in mice. PPAR  -/- mice are completely devoid of adipose tissue and PPAR  +/- 

mice are characterized by a decreased adipose tissue mass (Kubota et al. 1999).  



 Chapter Two                                                               Literature Review 

 50 

In vitro data shows that embryonic stem cells lacking both copies of PPAR  fail 

to differentiate into adipocytes after appropriate treatment (Rosen et al. 1999). 

In humans several mutations in the PPAR  gene have so far been described. A 

rare Pro115Gln mutation in the NH2 terminal domain of PPAR  was found in four very 

obese subjects (Ristow et al. 1998). This mutation results in a permanently active 

PPAR  and leads to increased adipocyte differentiation and obesity. The PPAR  gene is 

mapped to chromosome 3(3p2s; OMIM number 601487). 

High affinity selective PPAR  agonists such as the thiazolidinediones (TZD) have 

been used to mediate differentiation in fibroblastic cells leading to lipid accumulation 

and the expression of many endogenous genes characteristic of the adipocyte 

(Sandouk et al. 1993). Some of the genes induced are lipoprotein lipase, type VI 

collagen, acylCoA synthatase, glucose transporter (Glut) 4 and fatty acid transport 

protein-1 (Cornelius et al. 1988). 

A loss of function, missense mutation in PPAR  has been reported in two 

patients with severe insulin resistance and diabetes (Barroso et al. 1999) indicating 

the role of PPAR  in glucose homeostasis.  

In one study, PPAR  was shown to regulate bone metabolism in vivo with 

PPAR -deficient embryonic stem cells failing to differentiate into adipocytes, but 

spontaneously differentiating into osteoblasts. The adipocyte phenotype was restored 

by re-introduction of the PPAR  gene (Akune et al. 2004). 
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Regulation of PPAR  activity 

PPAR  is activated through the binding of ligands to its carboxy-terminal ligand-

binding domain. The thiazolidinedione (TZD) class of anti-diabetic drugs are 

recognized as potent synthetic ligands for PPAR  (Lehmann et al. 1995). These 

compounds are effective at promoting adipogenesis in culture and in vivo. 

The first natural PPAR  ligand to be identified was a prostanoid, 15-deoxy- 12,14 

prostaglandin J2 [15d PGJ2] (Forman et al. 1995; Kliewer et al. 1995). Eicosanoids, 

polyunsaturated fatty acids (oleate and linoleate) and their derivates also bind PPAR  

(Forman et al. 1997; Kliewer et al. 1997). These natural ligands however bind PPAR  

with affinities much lower than synthetic ligands (Kliewer et al. 1997). 

PPAR  is inihibited by a number of inflammatory cytokines. The ligand-

dependent transcriptional activity of PPARγ is thus inhibited by TNF-  (Zhang et al. 

1996).  In the TNF-  signaling pathways, activation of IKK and ERK were reported to 

inhibit the transcriptional activity of PPARγ (Ruan et al. 2003; Gao et al. 2006). 

The association of PPAR  activity and atherosclerosis remains unclear (Kersten 

et al. 2000) although PPAR  seems to stimulate the uptake of oxidized LDL, an 

important component in foam cell formation. 

  

 C/EBP family  

Three members of the C/EBP family of transcription factors i.e. C/EBP , C/EBP  and 

C/EBPδ have been implicated in the induction of adipocyte differentiation. Their tissue 

distribution is, however, not limited to adipose tissue. These transcription factors have 

C-terminal basic region/leucine zipper (bZIP) domains which confer DNA binding and 
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the ability to dimerize either as homodimers or as heterodimers with other family 

members (Mandrup and Lane 1997). C/EBP also regulates the activity of PPAR  as 

shown in Figure 2.8 and described below. 

C/EBP  and C/EBPδ mRNA and protein levels rise early and transiently in 

cultured preadipoctes to which transformation cocktail has been added (Christy et al. 

1991) whilst C/EBP  is induced later in the differentiation process, slightly preceding 

the induction of most genes involved in fat cell metabolism and the expression of 

PPAR  (Yew et al. 1995). Its function seems to be the maintenance of the terminally 

differentiated state through autoactivation of its own genes (Mandrup and Lane 1997). 

Ectopic expression of C/EBP  is sufficient to induce the differentiation of 3T3-L1 

cells without the addition of hormonal inducers. Embryonic fibroblasts lacking both 

C/EBP  and δ were severely impeded from developing as adipocytes. C/EBPδ has a 

much lower adipogenic potential than C/EBP  and it is thought that it may act 

synergistically with C/EBPα in the induction of PPAR . 

 
 ADD1/SREBP1 

Adipocyte determination and differentiation factor 1 (ADD1) belongs to a family of the 

basic helix-loop-helix transcription factors (Tontonoz et al. 1993). This group of 

transcription factors has been implicated in tissue-specific gene regulation particularly 

in muscle, which shares a mesodermal origin with adipose tissue. It is mostly 

expressed in brown fat, followed by liver, white fat and kidney. It binds to an E-box 

motif (CANNTG) and also has an ability to bind to a sterol regulatory element (SRE) 

and hence it is also named SREBP-1 (Yokoyama et al. 1993). The expression of mRNA 
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encoding this factor is induced dramatically as cultured preadipocytic cell lines are 

stimulated to undergo differentiation. The mechanisms by which ADD1 exercises its 

adipogenic function remains unknown (Kim and Spiegelman 1996). 

Adipogenesis is often portrayed as a wave of transcriptional events. The first 

wave involves a rise in the levels of C/EBP  and δ and these transcriptional factors 

activate the second wave which includes the transcription factors PPAR  and C/EBP . 

It seems that the second wave of transcription factor stimulation is particularly 

susceptible to negative regulation. Factors that inhibit adipogenesis include: Wnts, 

TGF- , GH, resistin, inflammatory cytokines and PGF2  (MacDougald and Mandrup 

2002). 

 

2.9.1.3  Hormonal regulation of adipogenesis 

Various hormonal agents, chosen largely through empirical means, have been used to 

induce differentiation in preadipocytic cell lines.  

Thus, early in vitro studies revealed that insulin was necessary for 

differentiation. Insulin increases the proportion of cells that differentiate and also 

increases the amount of lipid accumulation in each fat cell (Girard et al. 1994). 

Interestingly, preadipocytes expresss few, if any, insulin receptors (Reed and Lane 

1979) and the effect of insulin on differentiation has been shown to occur through 

cross-activation of the IGF-1 receptor (Fernyhough et al. 2007). IGF-1 and insulin 

stimulate several specific downstream signal transduction pathways, any or all of 

which could mediate the adipogenic effects of these hormones (Smas and Sul 1995). 
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Glucocorticoids also induce differentiation of cultured preadipocyte cell lines and 

primary adipocytes. In most of these studies, glucocorticoids are given in the form of 

dexamethasone (DEX) (Rosen and Spiegelman 2000). DEX is believed to operate 

through the activation of the glucocorticoid receptor which is a nuclear hormone 

receptor in the same large family as PPAR . DEX has been shown to induce C/EBPδ, 

which may account for some of its adipogenic activity (Wu et al. 1996). 

Very early studies of cultured preadipoctyic cell lines revealed that the addition 

of isobutylmethylxanthine (IBMX) enhances differentiation. IBMX acts by increasing 

cAMP levels and activation of -glycerolphosphatase dehydrogenase activity which is a 

lipogenic enzyme(Ellis and Manganiello 1985). A combination of IBMX, insulin and DEX 

is still the preferred regimen for inducing fat cell formation in 3T3-L1 cells. When IBMX 

is replaced by synthetic analogues of cAMP, adipogenesis is still enhanced. 

2.9.2  Hepatocytes 

PPAR 2 is abundantly expressed in mature adipocytes and is elevated in the 

livers of animals that develop fatty livers. In the hepatic cell line AMC-12, PPAR 2 

selectively upregulated several adipogenic and lipogenic genes including ADRP, 

SREBP1 and FAS whose expression levels are known to increase in steatotic livers of 

ob/ob mice. PPAR 2 regulated induction of both SREBP1 and FAS that parallelled an 

increase in de novo TAG synthesis in hepatocytes. These observations propose a role 

for PPAR  as an inducer of steatosis in hepatocytes (Schadinger et al. 2005). 

Macrophages resident in the liver (Kupffer cells), play a role in the physiological 

regulation of lipid metabolism of the adjacent hepatocytes. Inhibition of Kupffer cell 
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activity decreased prostaglandin E2 release into the liver tissue and this contributed to 

lipid accumulation in hepatocytes (Neyricnck et al. 2004). Under normal conditions 

quiescent Kupffer cells would therefore stimulate lipid accumulation. This effect is 

counteracted by the production of prostaglandins by other non-parenchymal cells in 

the liver such as, sinusoidal endothelial cells (Decker 1985). Prostaglandins stimulate 

the clearance of FFAs from the liver by increasing the production and secretion of 

VLDL (Feingold et al. 1989). 

 

2.10  ALP and adipogenesis 

A direct role for ALP in the differentiation of the murine preadipocyte cell line, 3T3-L1 

was demonstrated in a study by Ali et al. (2005). Inhibition of ALP activity by 

levamisole or histidine reduced intracellular TAG accumulation in the cells. Human 

TNSALP is inhibited by levamisole or histidine but not Phe-Gly-Gly which inhibits the 

tissue specific forms of ALP. Thus, Phe-Gly-Gly did not inhibit adipogenesis in the 3T3-

L1 cell line (Ali et al. 2005). It is very likely therefore that it is the TNSALP isoenzyme 

that is involved in adipogenesis in the 3T3-L1 cells. ALP activity also increased during 

adipogenesis. The mechanism by which ALP may influence adipogenesis in the 3T3-L1 

cells is not yet known. Increased adipogenesis was associated with increased ALP 

activity in primary cells, paralleling data from the 3T3-L1 preadipocytes (Ali et al. 

2005). 

Ali et al (2006a) also showed that there was a difference in the activity of ALP 

in human preadipocytes from black and white females, which was paralleled by a 

higher level of adipogenesis in the preadipocytes taken from the black female 
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subjects. The reason for the higher level of ALP activity in this ethnic group is not 

known but possible causes include increased gene transcription due to differences in 

the promoter region gene sequence, increased levels of transcriptional factors 

controlling ALP gene expression and polymorphisms in the ALP exons coding for the 

catalytic site. 

It would be worthwhile to further study the association of ALP activity and lipid 

accumulation in other cell lines e.g. Y-1 and HepG2 cells, but particularly in the latter 

cells since they are known to express TNSALP (Nowrouzi and Yazdanparast, 2005) and 

accumulate lipids (Brasaemle et al. 1997). 

  

2.11  ALP gene silencing by RNA interference 

It is recognized that the ALP inhibitors used by Ali et al. (2003) may not have had 

specific inhibitory effects on ALP activity. The definitive way to demonstrate the role of 

ALP in adipogenesis would be to knock-down (silence) the gene that codes for this 

protein in 3T3-L1 preadipocytes and HepG2 cells and study the progression of lipid 

droplet accumulation in these cells. 

The appearance of double-stranded RNA within a cell, for example as a result 

of viral infection, triggers an RNA interference response. The cellular enzyme Dicer 

binds to the double stranded RNA and cuts it into short pieces of 20 or so nucleotides 

in length, known as small interfering RNAs or siRNA. These molecules then bind to a 

cellular enzyme complex RISC (RNA induced silencing complex) that uses one strand 

of the siRNA to bind to the complementary single-stranded mRNA molecules (Fig. 
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2.10). RISC then degrades the mRNA, thus silencing the expression of the viral gene 

(Downward 2004). 

RNA interference has been exploited artificially to inhibit the expression of any 

gene of interest (Fire et al. 1998; Meister and Tuschi 2004).  

The main systems for achieving RNA interference are short synthetic double 

stranded RNA molecules and gene expression vectors that direct their production in 

the cell (Siomi and Siomi 2009). Libraries of RNA interference have been constructed 

that allow the analysis of gene function on a genome-wide scale. It is envisaged that 

soon RNA  interference will be exploited for therapy and a number of such agents are 

being tested in clinical trials (Wall and Shi 2003). 
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Figure 2. 10 The RNAi pathway. 

(http://www.rnaiweb.com/RNAi/What_is_RNAi/index.html) 

A. On entering the cell, long dsRNAs act as a trigger of RNAi process. 

B. It is first processed by the RNAse III enzyme Dicer in an ATP-dependent reaction. 

C. Dicer processes dsRNAs into 21-23 nucleotides (nt) short interfering RNA (siRNA) with 2-nt 

3' overhangs. siRNA can also be synthesized outside the cell and then be introduced 

into a cell. 

D. The siRNAs are incorporated into the RNA-inducing silencing complex (RISC) which consists 

of an Argonaute (Ago) protein as one of its main components. Ago cleaves and 

discards the passenger (sense) strand of the siRNA duplex leading to activation of the 

RISC. 

E and F. The remaining guide (antisense) strand of the siRNA guides RISC to its homologous 

mRNA, resulting in the endonucleolytic cleavage of the target mRNA. 

 



 Chapter Two                                                               Literature Review 

 59 

2.12  Aims of the study 

 

(i) To study the relationship between ALP activity and intracellular lipid droplet 

accumulation in HepG2 as compared to 3T3-L1 cells and to determine the 

effect of inhibiting ALP activity on lipid droplet accumulation in HepG2 as 

compared to 3T3-L1 cells using TNSALP inhibitors. 

(ii) To determine the subcellular localization of ALP activity in HepG2 and 3T3-

L1 cells. 

(iii) To study the expression pattern of the PPAR  gene with the induction of 

lipid droplet accumulation in the above cell types and what effects inhibition 

of ALP has on this process. 

(iv) To demonstrate the effect of post-transcriptional silencing of the TNSALP 

gene on lipid droplet accumulation in HepG2 and 3T3-L1 cells. 

(v) To study the role that single nucleotide polymorphisms (SNPs) in the 

promoter region of the human TNSALP gene play in the differential 

expression of ALP activity in two ethnic groups (black and white South 

African women). 
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3.1  ALP activity and protein measurements in HepG2 and 3T3-L1 cells with 

the progression of lipid droplet accumulation 

3.1.1  3T3-L1 and HepG2 cell culture 

HepG2 cells were obtained from the American Type Culture Collection (product 

number CRL-1197), as were the 3T3-L1 cells (product number CL-173). A frozen 

aliquot of the cells was thawed and seeded into a 25cm2 culture flask (Corning®) 

containing Earle‟s Minimum Essential Medium (EMEM) supplemented with 10% fetal 

calf serum for the HepG2 cells and Dulbecco‟s Modified Eagle‟s Medium (DMEM) for 

the 3T3-L1‟s. The media were prepared as shown in Table 3.1 and 3.2 and were 

sterilized using a syringe fitted with a 0.22 micron filter. The flasks were incubated at 

370C in a 5% CO2 atmosphere. Maintenance medium (EMEM or DMEM) was replaced 

after every 3 days until the cells were ready for experiments, passaging or freezing. 

 

Table 3.1  Earle‟s Minimal Essential Medium (10% EMEM) -100ml 

Reagent Volume (ml) 

Earle‟s Minimum Essential Medium (BioWhittaker) 

Sodium pyruvate (100mM, Gibco)   

Pen/Strep (1000U/ml/1000 g/ml, BioWhittaker) 

L-Glutamine (200mM,Gibco)    

Non-essential amino acids (100X, BioWhittaker) 

Fetal calf serum (Gibco BRL) 

86.0 

1.0 

1.0 

1.0 

1.0 

10.0 
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Table 3. 2  Dulbecco‟s Modified Eagle‟s Medium (10% DMEM) -100ml 

Reagent Volume (ml) 

DMEM (GibCo, 1X) 

Fetal bovine serum (GibCo) 

Pen/Strep (1000U/ml/1000 g/ml , BioWhittaker) 

Glutamine (100X; 200mM,GibCo) 

88 

10 

1 

1 

 

Passaging HepG2 and 3T3-L1 cells 

When cells were approximately 70-80% confluent they were seeded into new flasks. 

Spent medium was removed from culture flask and the cell monolayer was washed 

twice with 3ml of ice cold sterile phosphate buffered saline (PBS [pH 7.2], GibCo 

Invitrogen). Then 1ml of 0.25% Trypsin-EDTA (GibCO) was added to the flask and 

incubated at 370C for at least 20 minutes. When the cells were visibly detached from 

the surface of the flask, they were pipetted up and down to loosen them. Four ml of 

the growth medium was then added to the flask to stop the trypsinization process 

after which aliquots of the cell suspension were added to growth medium placed in 

new culture flasks. 

 
Freezing cells 

In order to create stocks of frozen HepG2 and 3T3-L1 cells, confluent cells in 25cm2 

culture flasks were washed twice with sterile PBS and detached by incubating with 

1ml per flask of 0.25% Trypsin-EDTA at 370C for 20 minutes. 
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Four ml of 10% culture medium was added to the trypsinized cells in each 

flask and the suspension was transferred into a 10ml centrifuge tube which was spun 

at 3000g for 5 minutes. The supernatant was discarded and the cell pellet was 

resuspended with 1.5ml of freezing medium (culture medium containing 10% 

dimethyl sulphoxide [(DMSO), Sigma]. This solution was then dispensed into 

cryovials, 1 ml per tube and kept overnight at -700C. For long term storage the vials 

were transferred into the vapour phase of liquid nitrogen. 

 

Thawing cells 

Cells were re-cultured by removing vials from liquid nitrogen storage and placing 

them in a water bath equilibrated at 370C. Cells were thawed quickly with shaking 

and transferred into a 25cm2 culture flask containing 5ml of the growth medium. The 

cells were maintained in an incubator at 370C in a 5% CO2 atmosphere. 

Newly thawed aliquots of cells were tested for Mycoplasma contamination 

using a ™MycoAlert Mycoplasma kit (LONZA, USA). Aliquots of cells that were 

negative for Mycoplasma contamination were used in experiments. 

 

3.1.3  Induction of adipogenesis in 3T3-L1 Cells  

3T3-L1 cells were grown and maintained under the conditions described in section 

3.1.2 above. The cells were induced (transformed) to accumulate lipid droplets using 

a transformation cocktail prepared as below. After 3 days of initial incubation with 

transformation medium, the cells were maintained in DMEMD10 containing insulin only 
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for a further 3 days after which it was replaced with DMEM every third day until the 

cells were harvested for experiments. 

 
Transformation cocktail – 50ml 

 3-isobutyl-1-methyl-xanthine (IBMX)[Sigma] 

50mg of IBMX was dissolved in 1ml of warm methanol (BDH) and 110 l of this was 

added to 50ml DMEMD10 to give a final concentration of 495 M. 

 Dexamethasone 

1mg of dexamethasone was dissolved in 1ml of absolute ethanol (Univar). This was 

then diluted to 20ml with previously sterilized PBS (pH7.2) and 100 l of the solution 

was added to 50ml of DMEMD10 to give a final concentration of 255nM. 

 Insulin 

An aliquot of 137 l of insulin (100IU/ml, Actrapid HM, Novo Nordisk) was added to 

50ml of DMEMD10 to give a final concentration of 1.83 M. 

 

3.1.4  Induction of lipid droplet accumulation in HepG2 cells 

When the cells were approximately 70-80% confluent, 660 l of oleic acid-albumin 

mixture [ 6:1 moles of oleate:mole of albumin] (Sigma-Aldrich, UK) was added to 5ml 

of maintenance medium to give a final concentration of 400 M. Oleic acid-albumin 

was replaced after every third day until the cells were used for experiments. 

Measurement of lipid accumulation in cells was done by using Oil Red O 

staining at day 0, 4, 7 and 11 after the addition of the oleic acid-albumin. On each of 
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these time intervals, cell counting was also done. Lipid accumulation was also 

assessed in cells in which oleic acid-albumin mixture was not added. 

 

3.1.5  Measurement of lipid droplet accumulation in 3T3-L1 and HepG2 cells - 

Oil Red O staining  

Intracellular lipid accumulation was determined using the Oil Red O staining 

procedure. Neutral lipid droplets have the ability to collect Oil Red O stain when it is 

added to them. The amount of the bound dye extracted (which is an approximation 

of the lipid content of the cells) is measured spectrophotometrically at 510nm 

(Ramirez-Zacarius et al. 1992). 

 
Preparation of reagents 

 420mg of Oil Red O (Sigma) was dissolved in 120ml of absolute isopropyl alcohol 

(propan-2-ol, Univar). The solution was gently shaken at room temperature 

overnight. The solution was then filtered twice through a Whatman filter paper 

No.1 and then 90ml of distilled water was added to the filtrate. This working 

solution was kept at 40C until used. 

 Fixative - 3% glutaraldehyde (Merck) was prepared by adding 3ml of stock 

solution to 97ml distilled water. 

 60% isopropyl alcohol was prepared by adding 6 parts of absolute isopropyl 

alcohol to 4 parts of distilled water. 
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Procedure  

 Spent medium was removed from the culture flask and 2.5ml of fixative was 

added to the flask and left at room temperature for 2 hours. 

 The fixative was replaced with 3ml of 60% propan-2-ol and after 5 minutes the 

alcohol was allowed to evaporate by opening the flask at room temperature for at 

least 10 minutes. 

 2.5ml Oil Red O stain solution was added to stain the cells at room temperature for 

2 hours. The stain was removed and the cells rinsed with 3ml of 60% propan-2-ol 

for 5 seconds. The alcohol was removed. 

 3ml of 60% propan-2-ol was added to the flask to extract the dye with constant 

shaking (90rpm for 2 hours) on a Labcon Platform shaker (LabDesign, RSA). 

 The amount of dye extracted was quantified by measurement of absorbance on 

the Labsystems Multiskan Ascent Multiplate Reader (Research Technologies, 

Finland) at 510nm using propanol:water (4:3) as a blank. 

 

Images of the stained cells were also taken at the specified time intervals using a 

Nikon CoolPix 995 digital camera (Japan) that was mounted on an inverted phase 

microscope (Nikon TMS, Japan). 

 
Cell counting procedure 

 Cells were trypsinized in the flasks sacrificed for cell counting at the appropriate 

time interval and 4ml of maintenance medium was added to the trypsinized cells 

and pipetted up and down to mix. 
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 A hemacytometer cover slip was mounted over the counting chamber 

(Hemacytometer, Neubauer double 0.10mm depth BrightLine AO Instrument Co.) 

and about 10 l of the suspended cells was dispensed to the underside of the 

cover slip until the whole of the chamber was covered with the suspension. 

 The number of cells in each of the 4 fields (squares) was counted using the 10x 

objective on a Nikon TMS microscope, (Japan). The average of the cell count was 

multiplied by 104 cells to give the number of cells per ml of the suspension. 

 

3.1.6  ALP and protein extraction of cultured cells 

ALP and total protein were extracted from cells on day 0 (baseline), day 4 and day 11 

(after induction of lipid droplet accumulation) using an extraction solution prepared 

as described in Table 3.3 below. Aliquots of the extract were used for ALP activity 

and total protein measurement. 

Table 3. 3 ALP/protein extraction solution 

Substance Amount 

Tris–base [hydroxymethyl aminomethane] – 

(Merck) 

Triton-X 100 (BDH) 

Phenylmethylsulphonyl fluoride (Sigma) 

Distilled water 

157.6mg 

1 ml 

35mg 

99ml 
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Distilled water (80 ml) was added to the Tris–base, phenylmethylsulphonyl 

fluoride and Triton-X100 and stirred on a magnetic stirrer until the base was 

completely dissolved. The pH of the solution was adjusted to 7.2 using HCl and then 

the solution made up to 100ml. Aliquots of this solution were kept at -20 0C until use. 

 Spent medium was removed from culture flask and cells were washed twice 

with 4ml ice cold PBS (pH7.2) 

 1ml of ALP/protein cell extraction solution was added to the flask and 

incubated for 15 minutes at 370C until the cell monolayer was visibly detached 

from the flask. 

 The cells were mixed by pipetting up and down and then the suspension 

transferred into 1.5ml Eppendorf tube. A 10 l aliquot of this suspension was 

used for approximating cell count. 

 The tube was then centrifuged at 15000 RCF for 10 minutes at room 

temperature in a Mikro 22R Zentrifugen centrifuge. 

 A 300 l aliquot of the supernatant was transferred into a tube and kept on ice 

ready for ALP measurement on the Modular Analyzer (Roche) in the Routine 

Chemistry Lab whilst 300 l of the supernatant was reserved for protein 

determination. 

 

3.1.7  ALP activity measurement 

ALP activity was measured in the routine Chemistry Laboratory (Johannesburg 

General Hospital) using a Cobas kit on the Roche Modular Analyzer P800 (Japan). ALP 

activity was also measured on the extraction solution and a zero reading was 
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obtained. The colorimetric assay uses pNPP as a substrate and monitors the change 

in optical density as a coloured product is formed when ALP hydrolyses its substrate. 

The amount of the coloured product that is formed is directly proportional to the 

amount of the enzyme present in a sample. ALP activity was expressed in IU/ g 

protein. The performance of the assay was checked by the simultaneous run of 

internal controls twice a day. 

 

3.1.8  Total protein measurement using the Bradford method 

This assay is based on the observation that absorbance maximum for an acidic 

solution of Coomassie Brilliant G-250 shifts from 465 to 595nm when binding to 

protein occurs (Bradford 1976). 

 

Preparation of the Bradford Reagent 

A 100mg of Coomassie Blue (G-250) was dissolved in 100ml 85% phosphoric acid. 

Then, 50ml of 95% ethanol was added to the mixture. The mixture was shaken until 

the G-250 was completely dissolved. The solution was made up to 1 litre. It was then 

filtered through a Whatman Filter No.1 to get rid of the blue particles of G-250. 

 

Protein standard curve 

Bovine serum albumin (BSA; 200mg) was dissolved in 100ml distilled water to give a 

stock of 2mg/ml. Standards were prepared from the stock as shown in Table 3.4. 
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Table 3. 4  Protein standards for calibration curve 

    Volume of BSA stock  

( l) 

Volume of H2O 

( l) 

Final protein 

concentration 

( g/mL) 

Blank 

Std 1 

Std 2 

Std 3 

Std 4 

Std 6 

0 

250 

375 

500 

750 

1000 

1000 

750 

625 

500 

250 

0 

0 

500 

750 

1000 

1500 

2000 

 

Measurements on the multiplate reader (Labsystem) 

A 500 l aliquot of Bradford reagent was added to 10 l of each of the 

standards/samples. Samples (cell extracts) were each initially diluted 1 in 20 with 

distilled water before being added to the Bradford reagent. The Bradford reagent and 

samples were allowed to equilibrate at room temperature for at least 20 minutes 

before being mixed. 

Samples that did not give absorbance readings between the lowest and the 

highest standards were appropriately diluted until they gave a reading that was 

within the standard curve. 

A 300 l aliquot of the Bradford-standards/sample mixtures were pipetted into 

a 96 well plate and the optical densities read on the Labsystems Multiskan Ascent 

Multiplate Reader (Research Technologies, Finland) at 595nm within an hour after 
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addition of reagent to samples or standards. Concentrations of samples were 

calculated by the reader taking into account all the appropriate dilutions that may 

have been done on the samples. 

 

3.2  The effect of ALP inhibitors on the progression of lipid droplet 

accumulation and ALP activity in HepG2 & 3T3-L1 cells 

3.2.1  Cell culture 

3T3-L1 and HepG2 cells were grown and maintained under conditions described 

earlier in section 3.1. When the cells were approximately 80% confluent, they were 

induced to accumulate lipid droplets using protocols described in sections 3.1.3 & 

3.1.4 respectively. 

The transformation and maintenance medium were spiked with the two ALP 

inhibitors (Levamisole and Histidine) and changed at the appropriate time intervals as 

described earlier in the same sections. 

 
3T3-L1 cells 

The two inhibitors were used as described below (as reported by Ali et. al. 2005): 

Levamisole (L-tetramisole hydrochloride, Sigma): 0.048g was dissolved in 2ml PBS 

(pH7.2) and 100 l of this solution was added to 5ml of the culture medium to give a 

final concentration of 2.0mM. 

Histidine (C6H902, Merck): 0.465g was dissolved in 60ml culture medium and 5ml of 

this was aliquoted into 25cm2 tissue culture flask. This gave a final concentration of 

50mM. 
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HepG2 cells 

The two inhibitors were used at the following concentration after a dose-response 

curve was performed: 

Levamisole (L-tetramisole hydrochloride, Sigma): 0.072g was dissolved in 2ml PBS 

(pH7.2) and 100 l of this solution was added to 5ml of the culture medium to give a 

final concentration of 3.0mM. 

Histidine (C6H902, Merck): 0.58g was dissolved in 60ml culture medium and 5ml of 

this was allocated into 25cm2 tissue culture flask to give a final concentration of 

74.8mM. 

 

3.3  Peroxisome Proliferator Activated Receptor gamma (PPAR ) gene 

expression studies in HepG2 & 3T3-L1 cells. 

HepG2 and 3T3-L1 cells were grown and maintained under the conditions described 

in section 3.1.1. The cells were induced to accumulate lipid droplets using the 

procedure described earlier in this chapter. Isolation of total RNA was done on day 0, 

4 and 7 post induction of lipid droplet formation. PPAR  gene expression was also 

studied in cell cultures in the presence of the two ALP inhibitors as used in section 

3.2.1. 

3.3.1  Isolation of total RNA using the Qiagen ®RNeasy Mini Kit (Germany)  

Harvesting cells  

The cell monolayer was washed twice with cold PBS buffer (pH 7.2) having removed 

the culture medium from the flask. The cells were trypsinized using 1ml of 0.25% 
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Trypsin-EDTA. After cells were detached from the flask 1ml of growth medium was 

added to the flask and mixed by pipetting up and down. The cell suspension was 

transferred into an RNAse-free polypropylene centrifuge tube and spun at 280 xg for 

5 minutes at room temperature. The supernatant was completely removed and the 

cell pellet was loosened by flicking the tube. Cells were disrupted by the addition of 

350 l of RLT buffer supplied in the kit and later homogenized by centrifuging the 

lysed cells in a shredder column also supplied in the kit at 8000 xg for 15 seconds. 

 
Isolation of total RNA 

 350 l of 70% ethanol was added to the homogenized lysate and mixed well by 

pipetting. 

 700 l of the lysate was applied onto an RNeasy mini column placed into a 2ml 

collection tube and the tube centrifuged at 8000 xg for 15 seconds. The flow 

through was discarded. 

 700 l of wash buffer RW1 was added to the column and centrifuged as above. 

The collection tube and the flow through were discarded. The column was placed 

into a new 2ml collection tube. 

 500 l of buffer RPE was applied onto the column and the tube centrifuged at 

8000 xg for 15 seconds. The flow through was discarded. 

 Another 500 l of buffer RPE was added to the column and the tube centrifuged 

for 2 minutes at 8000 xg to dry the tube. The column was transferred to a new 

collection tube and spun for one minute at 14,000 xg. 
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 The column was placed in a new 1.5ml collection tube and 35 l of RNAse-free 

water was pipetted directly into the RNeasy silica-gel membrane. The tube was 

centrifuged for 1 minute at 8000 xg to elute. This was repeated with a similar 

volume of RNAse-free water. 

 The eluate was kept on ice and contains the RNA template required for 

complementary DNA (cDNA) synthesis. 

 
The concentration of total RNA isolated was determined on the NanoDrop® 1000 

spectrophotometer (Thermo Scientific, USA) using RNase-free water as a blank (units 

were ng/ l). Total RNA isolated from cells was separated by agarose gel 

electrophoresis using Tris Boric acid EDTA (TBE) as running buffer and viewed under 

UV light to check its quality (Appendix I).  Intact total RNA should give two bright 

bands representing the 28S and 18S ribosomal RNA. Secondly, the 260/280 ratio on 

the NanoDrop was used to determine the integrity of RNA (Pfaffl et al. 2002; 

McCurdy et al. 2008). 

A ratio of 2.0 is generally considered good for RNA (NanoDrop ND1000 Full-spectrum 

UV/Vis spectrophotometer User‟s Manual 2005, NanoDrop technologies 

Inc.Wilmington, DE USA). 

3.3.2  Reverse Transcriptase PCR (RT-PCR) 

Complementary DNA (cDNA) was synthesized from RNA (isolated as described above) 

using moloney murine leukaemia virus (MMuLV) Reverse Transcriptase kit (Promega, 

USA). The procedure is summarized below.  
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Step 1 

       Reagent 

Total RNA 

Oligo dT primer (0.2 mol/ l) 

dNTPs (5mM) 

Water (RNA/DNAse - free) 

Volume ( l) 

2.5 g 

1.0 

1.0 

added to 

make up 

30 l 

 

               

 Incubated at 650C for 5         

minutes     

Step 2, put on ice and the following were added  

RT buffer (5X) 

Diethrethiotol (DTT), 0.1M 

RNAse inhibitor (100U/ l) 

4.0 

2.0 

1.0 

 

       Incubated at 370C  for 2 

min 

 

Step 3, added  

MMuLV Rev Transcriptase  1.0         Incubated at 370C for   50 

min then at 70 for 15 min 

               Total volume   30 l 
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A tube containing no RNA but all the reagents required in the RT-PCR was set up to 

be used as a blank when determining the concentration of the cDNA on the 

NanoDrop® (Lossos et al. 2003). 

The amount of RNA used in each tube for cDNA synthesis was 2.5 g. A total 

reaction volume of 30µl was set up for each of the time points. 

„DNase digestion is optional with RNeasy kits since RNeasy silica-membrane 

technology efficiently removes most of the DNA without DNase treatment‟ – (RNeasy 

Mini Handbook [Qiagen, Germany], 4th edition; April 2006 page 23). 

RNase inhibitor was supplied by Roche, (Germany); MMuLV RT by Promega, 

(USA); DTT by Sigma Aldrich (UK) and Oligo dTs by Inqaba, (RSA). 

 

 

 

 

 

 

 

 

 



 Chapter Three                                                       Materials & Methods 

 76 

3.3.3  Amplification of PPAR  and TBP genes and optimization of PCR 

conditions using a Biorad Thermocycler and the Rotor-Gene 6000 light 

cycler 

Amplification and optimization of PCR conditions for the PPAR  gene was done on the 

™MyCycler thermocycler (BioRad, Italy). The TATA box binding protein (TBP) gene 

was used as an endogenous internal control for the gene expression studies. The use 

of an endogenous reference corrects for variation in nucleic acid recovery, differences 

in sample handling, presence of inhibitors and variation in RNA content. TBP gene 

has been used as a reference gene in a number of papers (Vandesompele et al. 

2002; Kok et al. 2005; Foldager et al. 2009).  Phan et al. (2004) reported that TBP 

gave results similar to hypoxanthine phosphoribosyltransferase (HGPRT) gene [a 

commonly used housekeeping gene] as the normalization control in 3T3-L1 cells. 

Unchanged expression of TBP gene in 3T3-L1 cells that was monitored by Western 

blot has also been reported (Vankoningsloo et al. 2006). 

 In HepG2 cell line, TBP gene has also been used as a reference gene where it 

has given results similar to the ones obtained in other cell lines (Wong et al. 2003; 

Sivertsson et al. 2010). In my work, TBP was shown to be a good reference gene 

because the expression of this gene does not fluctuate significantly during the period 

of experiments when both the HepG2 and 3T3-L1 cells were subjected to different 

treatments (Figures 4.15, 4.16, 4.24, 4.25, 4.30, 4.31, 4.35, 4.36 and 4.37). 

Optimization of PCR conditions on both the Biorad thermocycler and the Rotor-

Gene light cycler involved manipulation of PCR parameters like the annealing 

temperature/time; primer concentrations & number of cycles followed by gel 
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electrophoresis of the PCR products to check for the quality of the PCR products (in 

terms of primer dimers, brightness of bands and unspecific products). The starting 

conditions were those provided by the manufacturers of the enzymes that were used 

in the PCRs. Conditions that gave the best PCR products (in terms of brightness of 

bands and lack of or less primer dimers) upon gel electrophoresis were chosen and in 

the following sections of this thesis these set of conditions are refered to as „optimal 

conditions‟. 

Optimization of PCR conditions using a conventional thermocycler is cheaper 

(especially when an option of temperature gradient is available) than using a light 

cycler (real-time PCR machine) and the PCR products from a conventional 

thermocycler are visualized better on agarose gels than those from a light cycler. 

 

 (i) HepG2 cells  

Primer design 

The gene sequence of the human PPAR  gene is available in the GenBank Database 

under the accession number L40904 (appendix IA). The accession number for the 

human TBP gene is NM003194 and the sequences of the two genes are shown in 

appendix IB. Primer sequences for the two genes were designed using the 

GeneRunner software [Hastings Software Inc, Las Vegas, USA] (Lima and Garces 

2006). To check how specific the primers were for a target, their sequences were 

compared to sequences in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the 

basic local alignment search tool (BLAST). 
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Sequencher Version 4.7 (Gene Codes Corp USA) was used to align the primers 

with the target gene. Primer synthesis was done at Inqaba Biotec, RSA. Synthesized 

lyophilized primers were reconstituted with RNA/DNAse-free water to give a stock 

solution of 100 M. 

Table 3. 5  PCR primers for PPAR  and TBP genes in HepG2 cells. 

Gene Primer sequence bases Tm 

(°C) 

Expected 

 product size (bp) 

 

PPAR  

 

 

For 5‟- GGT TGA CAC AGA GAT GCC A -3‟ 

Rev 5‟- CAA AGG AGT GGG AGT GGT C -3‟ 

 

19 

19 

 

60.2 

62.3 

 

   

88bp 

 

TBP 

 

For 5‟- CAG TGA CCC AGC AGC ATC -3‟ 

Rev 5‟- GTC AGT CCA GTG CCA TAA GG -3‟ 

 

18 

20 

 

62.2 

62.5 

 

277bp 

 

PCR reactions for each of the two genes were set up in separate tubes using 

their specific primer sets (Table 3.6). PCR products were visualized having been 

separated by gel electrophoresis as described in section 3.3.4 below. Negative 

template control (NTC) contained all the reagents of the PCR except the DNA 

template. 
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Table 3. 6 PCR components for 1 reaction tube for PPAR  and TBP genes in HepG2 

cells using a BioRad Thermocycler. 

Reagent Vol ( l) Initial 

concentration 

Final 

concentration 

Buffer (SuperTherm Gold 

with 15mM MgCl2, [JMR UK]) 

dNTPs (Bioline, UK) 

Taq polymerase 

(SuperTherm Gold, JRM UK) 

Forward primer (PPAR ) 

Forward primer (TBP) 

Reverse primer (PPAR ) 

Reverse primer (TBP) 

Distilled water 

DNA template 

1.00 

 

0.80 

 

0.15 

0.10 

0.10 

0.10 

0.10 

9.25 

0.50 

10X 

 

10mM each 

 

5U/ l 

25 M 

25 M 

25 M 

25  M 

 

0.8X 

 

0.7mM 

 

0.07U/ l 

0.21 M 

0.21 M 

0.21 M 

0.21 M 

Total volume/tube 12.00   

 

Thermal cycling 

Initial denaturation    940C, 11 min  x1 

Denaturation     940C, 45 sec 

Annealing     600C, 30sec              

Extension     720C, 45sec 

Final extension    720C, 10min  x1       

x35 
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3.3.4  Gel electrophoresis 

Agarose gel electrophoresis was used to separate and analyse PCR products. To 

visualise DNA, 2.5 l ethidium bromide (10mg/ml) was added to 50ml of molten 

agarose that was prepared as described below. Ethidium bromide binds to DNA by 

intercalating between bases and absorbs invisible UV light and transmits the energy 

as visible blue light. A 2 l aliquot of 6X Fermentas loading dye (made up of 10mM 

Tris-HCl, 0.15% orange G, 0.03% xylene cyanol FF, 60% glycerol and 60mM EDTA) 

was mixed with the sample/molecular weight marker and loaded into the wells of the 

agarose gel. 

 

Preparation of running buffer and agarose gel 

 1X Tris Boric acid EDTA (TBE) buffer was prepared by dissolving 10.8g Tris 

(hydroxymethylaminomethane, Merck Germany) and 5.5g boric acid (Merck 

Germany) in 500ml distilled water. Four ml of 0.5M EDTA (Sigma, Germany) 

was added to the solution and the volume was made up to 1 litre in a 

volumetric flask with distilled water. The 0.5M EDTA was prepared by 

dissolving 9.3g of EDTA in 50ml distilled water and the pH adjusted to 8.0 on a 

Beckman 32 pH meter. 

 A 2% (w/v) agarose solution was prepared by dissolving 2 agarose tablets 

(equivalent to 1g) (Bioline, Germany) into 50ml TBE buffer. 

 When the tablets were completely dissolved, the solution was heated in a 

microwave to a clear solution. The solution was allowed to cool and 2.5 l 

(10mg/ml) of ethidium bromide was added. 
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 A gel comb was fitted into a gel casting tray and the agarose solution was 

poured into it and allowed to set for about 25 minutes. 

 The gel was then placed into the electrophoresis tank containing 1xTBE buffer 

with the wells facing the negative electrode. 

 2 l of loading dye was mixed with 4 l of PCR product and then loaded into the 

wells. The same volume of the loading dye was also mixed with 1 l molecular 

weight marker (O‟ Gene Ruler 50 bp, Fermentas [Lithiunia]) and loaded into a 

separate well. 

 
Electrophoresis was run at 95V (constant current) till the samples ran to about ¾ of 

the length of the gel after which the current was switched off. The gel was then 

viewed under UV light using a Biorad Gel Doc XR Imaging System (Italy). 

 

3.3.5  Quantitative real-time PCR (qPCR) in HepG2 cells. 

The quantification of the levels of expression of the PPAR  and TBP genes was carried 

out using a Rotor-Gene 6000 (Corbett Life Sciences Research, NSW Australia) real-

time cycler. A SensiMix™ dT kit (Quantace Ltd, London) was used for the PCR 

reactions (Table 3.7). PCR conditions were optimized as outlined in section 3.3.3. 

Quantification of the levels of mRNA was done using the two standard curve 

method [one curve each for the reference and gene of interest] (Rotor-Gene 6000 

Operator Manual 1.7.87 Corbett Research 2006 Australia: page 75-78). Absolute 

quantification determines the input copy number, usually by relating the PCR signal 

to a standard curve.  
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Standard curve 

Equal volumes of each of the standard (of known concentration) made from the 

„cDNA pool‟ was added to a PCR tube containing specific primers for a gene and its 

concentration entered into the Rotorgene software. Depending on the concentration 

units entered, the software would then determine its own value for each of the 

standards. Triplicates were run. Change in fluorescence in each of the standards was 

plotted against cycle number. The threshold values were then calculated. This is the 

cycle number at the point where the fluorescence curve crosses a limit of detection 

(ten times the SD of the baseline fluorescence). The threshold (CT) values were thus 

calculated for each standard and plotted against cDNA concentration to yield the 

standard curve. 

Unknown samples 

In order to use the same amount of cDNA in PCR (for example 50ng), samples were 

diluted if necessary to concentrations that would give 50ng in a volume between 0.5-

1µl. These tubes (triplicates) were then run alongside the tubes containing the 

standards making note of any dilutions made on the sample. 

The Rotorgene software would then determine the concentration of the 

unknown samples by reading them off the standard curve. The final result was 

calculated by multiplying the concentration of the sample with the dilution factor if 

any dilutions were made.  
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Table 3. 7 PCR components for 1 reaction tube run on the Rotor-Gene for PPAR  

and TBP genes in HepG2 cells: 

Reagent  Vol  ( l) Initial 

concentration 

Final 

concentration 

SensiMix dT 

SYBR® Green I 

For primer (PPAR ) 

For primer (TBP) 

Rev primer (PPAR ) 

Rev primer (TBP) 

Water 

cDNA template 

6.5 

0.5 

0.1 

0.1 

0.1 

0.1 

variable 

variable 

2X 

50X 

25 M          

25 M 

25 M 

25 M 

 

1.1X 

2.1X 

0.17 M 

0.17 M 

0.17 M 

0.17 M 

 Total volume/tube 12.00   

 

Cycling parameters 

Initial denaturation    950C, 10 min   x1 

Denaturation     950C, 10 sec 

Annealing     570C, 15sec                       

Extension     720C, 20sec 

 

Data was acquired after step 3 (extension). 

 

 

 

 

 

x40 
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Preparation of a standard curve 

A cDNA pool was made by thoroughly mixing cDNA samples synthesized from RNA 

isolated from the cell cultures on day 0, 4 and 7. This cDNA was then serially diluted 

to give standards that were used in the real-time PCR. The cDNA pool is 

representative in terms of quality and concentration range of the cDNA likely to be 

found in the samples under study. Similarly, in order to generate a standard curve to 

use in qRT-PCR, Orimo and Shimado (2005) sequentially diluted cDNA made from 

mRNA isolated from SaOS-2 cells to estimate the levels of ALP mRNA in these same 

cells.  

Five graded series of cDNA dilutions were done on the cDNA pool using 

DNAse-free water and the concentrations were determined on the NanoDrop 1000 

spectrophotometer (Thermo Scientific, USA) using water as a blank. The graded 

cDNA dilutions were used as calibrators. 

Table 3. 8  Concentration of cDNA used as standards in HepG2 cells 

Standard Concentration (ng/ l) 

Std1 

Std2 

Std3 

Std4 

Std5 

291.2 

145.8 

68.8 

35.7 

16.3 
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Triplicates of PCR reaction tubes containing each of the standards were set up 

for the two genes. PCR was carried out using the cycling parameters described earlier 

in this section. 

 
Quantitative real-time PCR run 

The concentration of cDNA synthesized from RNA isolated from HepG2 cells was 

determined on the NanoDrop 1000 spectrophotometer. The concentrations of cDNA 

synthesized on day 0, 4 and day 7 post addition of oleic acid was diluted with DNAse-

free water to give a similar starting amount of DNA per volume of sample using the 

formula C1V1=C2V2 (where C1 is the initial concentration of cDNA and V1 the volume of 

the aliquot to be diluted, C2 and V2 are the concentration and volume respectively of 

the final solution). Using the Sensimix dT kit, ≥100ng of cDNA is the optimal amount 

for one PCR reaction mixture. Samples were therefore diluted so that an equivalent of 

this amount was present in a microlitre or less of sample. 
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Table 3. 9 Example of dilutions and concentrations of cDNA used in a typical 

quantitative real-time PCR (HepG2 cells). Diluted cDNA was obtained by 

diluting cDNA obtained from the reverse transcription of total RNA. 

 

 

 

Sample 

Initial [cDNA] 

(ng/ l) 

Diluted 

[cDNA]  

(ng/ l) 

Volume required to 

give 50ng of cDNA 

( l) 

 

Expt 1 

 

Day 0 1213.5 75.6 0.66 

Day 4 932.4 69.7 0.72 

Day 7 530.1 85.4 0.59 

 

Expt 2 

Day 0 604.0 61.7 0.81 

Day 4 419.8 52.1 0.95 

Day 7 432.3 80.5 0.62 

 

Expt 3 

Day 0 75.7 75.7 0.66 

Day 4 104.4 85.8 0.58 

Day 7 182.4 63.1 0.79 

 

For each experiment, master mixes were set up for each of the 3 time points 

and for each of the two genes using their specific primers, to give a total of 6 master 

mixes. Each PCR run included triplicates for each of the standards and each of the 

samples. 
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(ii) 3T3-L1 cells 

Primer design 

The gene sequence of the mouse PPAR  gene is available in the GenBank database 

under the accession number NM011146.3 (appendix IC). The accession number for 

the mouse TBP gene is NM013684 (appendix ID). Primer design, synthesis and 

storage were carried out as described in section 3.3.3 (i). 

Table 3. 10  PCR primers for PPAR  and TBP genes (mouse). 

Gene Primer sequence bases 
Tm 

(°C) 

Expected 

product 

size 

 

PPAR  

For 5‟- CCA GAG CAT GGT GCC TTC GCT  -3‟ 

Rev 5‟- CAG CAA CCA TTG GGT CAG CTC  -3‟ 

21 

21 

68 

60 

 

240 bp 

 

TBP 

For 5‟- ACC CTT CAC CAA TGA CTC CTA TG -3‟ 

Rev 5‟-  ATG ATG ACT GCA GCA AAT CGC -3‟ 

23 

21 

68 

62 

 

189 bp 

 

The following conditions were determined optimal for the amplification 

process. PCR reactions for each of the two genes were set up in separate tubes using 

their specific primer sets as shown in Table 3.6 
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Thermal cycling 

Initial denaturation    940C, 11 min   x1 

Denaturation     940C, 45 sec 

Annealing     640C, 30sec                        

Extension     720C, 45sec 

Final extension    720C, 10min   x1 

 
PCR products were visualized having been separated by gel electrophoresis as 

described in section 3.3.4. Optimization of PCR conditions using a conventional 

thermocycler were done in the same way as given in section 3.3.3 

 

3.3.6  Quantitative real-time PCR (qPCR) in 3T3-L1 cells 

The quantification of the levels of expression of the PPAR  and TBP genes was carried 

out using a Rotor-Gene 6000 (Corbett Life Sciences Research) real time cycler. A 

SensiMix™ dT kit (Quantace, UK) was used for the PCR reactions. 

 
Optimization of PCR conditions 

The following conditions were found optimal for the amplification of the two genes on 

the Rotor-Gene 6000. PCR reactions for each of the two genes were set up in 

separate tubes using their specific primer sets. PCR components for 1 reaction tube 

were set up as shown in Table 3.7 but using an initial concentration of the primers of 

20nM. 

 

 

x35 
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Cycling parameters 

Initial denaturation    950C, 10 min   x1 

Denaturation     950C, 10 sec 

Annealing     600C, 15sec                       

Extension     720C, 20sec 

Data was acquired after step 3 (extension). 

 
Preparation of a standard curve 

The standard curve was prepared as described in section 3.3.5, sub-section 

“Preparation of a standard curve”. 

Table 3. 11 Concentration of cDNA used as standards 

Standard Concentration (ng/ l) 

Std1 

Std2 

Std3 

Std4 

Std5 

272.4 

130.8 

60.5 

29.8 

14.1 

 

Triplicates of PCR reaction tubes containing each of the standards were set up 

for the two genes. PCR was carried out using the cycling parameters described earlier 

in this section. 

 

 

x40 
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Quantitative real-time PCR in 3T3-L1 cells. 

Sample preparation was carried out as described in section 3.3.5, sub-section 

“Quantitative real-time PCR run”. 

Table 3. 12 Example of dilutions and concentrations of cDNA used in a typical 

quantitative real-time PCR in 3T3-L1 cells. Diluted cDNA was 

obtained by diluting cDNA obtained from the reverse transcription of 

total RNA 

 

 Sample 
Initial [cDNA] 

(ng/ l) 

Diluted 

[cDNA]  

(ng/ l) 

Volume required to give 

63.2ng of cDNA ( l) 

 

Exp t 1 

 

Day 0 85.7 - 0.70 

Day 4 238.0 - 0.27 

Day 7 212.0 - 0.30 

 

Expt 2 

Day 0 86.9 - 0.73 

Day 4 790.9 206.0 0.31 

Day 7 369.5 - 0.17 

 

Expt 3 

Day 0 157.5 - 0.40 

Day 4 906.9 186.7 0.31 

Day 7 150.3 - 0.42 

 

Only 2 samples (Day 4, expt 2 and Day 4, expt 3) were diluted because the 

initial concentration of cDNA at these time points were too high to give 63.2ng of 

cDNA from  1 l or less of their respective samples. 
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For each experiment, master mixes were set up for each of the 3 time points 

and for each of the two genes using their specific primers, to give a total of 6 master 

mixes. Each PCR run included triplicates for each of the standards and the samples. 

 

 3.4  RNAi studies for the TNSALP gene in HepG2 and 3T3-L1 cells 

Establishment and optimization of gene silencing conditions in a human (HepG2) and 

a mouse cell line (3T3-L1) was done using the RNAi Human/Mouse starter kit 

(Qiagen, Germany Cat No. 301799). The kit contains positive and negative siRNA 

controls, HiPerFect transfection reagent and protocols intended as starting points for 

RNAi experiments. 

Short interfering RNA (siRNA) targeted against the protein kinase MAPK1 (Erk 

2) is the positive (silencing) control that is included in the kit. The sequence of this 

positive siRNA control is homologous to both the human and mouse MAPK1 mRNA 

sequences (GeneBank accession numbers NM002745 [human] and NM011949 

[mouse] respectively). 

The negative control siRNA ( AllStars negative) included in the kit is a highly 

validated siRNA that has no known homology to any mammalian gene and is 

therefore used to control for non-specific silencing effects. The AllStars negative 

siRNA included in the kit is labeled with Alexa Fluor 488. This label allows easy 

monitoring of transfection efficiency and enables optimization of transfection 

conditions. qPCR was used to monitor the efficiency of gene silencing using PCR 

primers (QuantiTect) specific for the MAPK1 gene in both cell lines. 
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Primer assays used for amplification of the MAPK1 gene were different for HepG2 and 

3T3-L1 cells. It was expected that the amplicons would be of different sizes and 

therefore different melting peaks. The sequences of the primers were however, not 

provided by the manufacturers (Qiagen, Germany). 

Optimization of siRNA transfection included manipulation of the following 

parameters: amount of siRNA, ratio of HiPerfect reagent to siRNA and cell density. 

3.4.1  Optimized transfection conditions using the Fast-Forward protocol 

a) Preparation of siRNA working solution 

RNase-free water (250 l) was added to each tube containing 5nmol lyophilized siRNA 

(negative and positive controls) to obtain a 20 M solution. This solution is equivalent 

to approximately 250ng/ l siRNA. 20 l aliquots were prepared and kept at -20 C until 

use. 

b) Cell culture 

HepG2 and 3T3-L1 cells were seeded and grown in 25cm2 Nunc culture flasks and 

maintained under conditions described in sections 3.1.1 and 3.1.2 respectively. 

 

Procedure 

1. Shortly before transfection ~ 6 x104 cells were seeded into wells of a 24-well 

plate in 0.5ml of an appropriate growth medium (10% EMEM for HepG2 and 

10% DMEM for 3T3-L1 cells). 

2. For the short time until transfection (~4 hours), the cells were incubated 

 under conditions described in sections 3.1.1 and 3.1.2. 
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3. A 125ng aliquot of siRNA (0.5 l of the reconstituted siRNA) was diluted in 

100 l  culture medium containing no serum to give a final siRNA concentration 

of 16.5nM. Then 3 l of HiPerFect transfection reagent was added to the 

diluted siRNA and mixed by vortexing. 

4. The samples were incubated at room temperature (15-25 C) for 5-10 

 minutes to allow the formation of transfection complexes. 

5. The transfection complexes were then added drop-wise into the cells, 

 gently swirling the plate to ensure uniform distribution of the complexes. 

6. The culture plates containing the cells were incubated under conditions 

 described earlier and gene silencing was monitored 72 hours after 

 transfection. 

3.4.2  Transfection efficiency 

Efficiency of transfection was monitored using a confocal fluorescence microscope 

(Carl Zeiss 100M, German) by following the emission spectra of Alexa Fluor 488. Cells 

that were transfected (having green fluorescent dots) were counted and expressed as 

a percentage of the total number of cells in a given field. 

 

3.4.3  Gene knockdown efficiency 

Total RNA was isolated from cell cultures that were treated with the AllStars negative 

siRNA and the positive (silencing) siRNA. Concentration of the total RNA was 

determined on the NanoDrop ND 1000 spectrophotometer. cDNA synthesis was done  
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using the MMuLV RT kit as described in section 3.3.2. The same amounts of total 

RNA were used as templates in cDNA synthesis from both sets of cell cultures. 

 

Quantitative real-time PCR 

qPCR was performed on the Rotor-Gene 6000. Volumes and concentration of PCR 

components used are shown in Table 3.13. QuantiTect primer assay for MAPK1 

(mouse Catalogue number QT 00133840, human Catalogue number QT 00065933) 

were used at a final concentration of 1X. The primer assays for the MAPK1 gene in 

human and mouse are different. The cycling parameters were similar to those 

described in section 3.3.5 but with an annealing temperature of 60oC. 

 

Table 3. 13 PCR components for 1 reaction tube run on the Rotor-Gene 6000 

for MAPK1 gene in HepG2 and 3T3-L1 cells 

Reagent  Vol  ( l) Initial 

concentration 

Final concentration 

SensiMix dT 

SYBR® Green I 

Primer assay 

Water 

cDNA template 

6.0 

0.24 

1.2 

variable 

variable 

2x  

50X 

10X 

1X 

1X 

1X 

 Total volume/tube 12.00   
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3.4.4  Post-transcriptional silencing of the TNSALP gene in 3T3-L1 and HepG2 

cells using the long-term transfection protocol 

Cell culture 

On the day before first transfection, 3T3-L1 and HepG2 cells were seeded into 24-

well Nunc plates at an approximate density of 6 x 104 cells per well and maintained 

under conditions described in sections 3.1.1 and 3.1.2 respectively. 

 

Transfection 

Lyophilized pellets of the siRNA for the TNSALP gene for the mouse and the human 

cell lines were prepared and used as described in section 3.4.1. Transformation 

cocktail was added to the cells as they were transfected for the first time. New 

transfection complexes were added to the cells with change of culture medium. No 

transfection complexes were added to cells that acted as controls. 

Non-silencing siRNA (®AllStars negative) transfection complexes were added to cells 

to control for the non-specific effects of siRNA transfection. 

The following were the parameters of the HP GenomeWide siRNA (Qiagen, 

Germany): 

(i) mouse (3T3-L1) cells 

Catalogue number:  SI02666132 

Gene accession:  NM 007431 

Gene symbol:  Alpl 

Gene ID:   11647 

nmol/tube:   5 
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MW (K-salt):   13310.124 

Purity:    High-perfomance purity (HPP) 

Target sequence:  5‟-CAGGATCGGAACGTCAATTAA-3‟ 

Sense strand:  5‟-GGAUCGGAACGUCAAUUAATT-3‟ 

Antisense strand:  5‟-UUAAUUGACGUUCCGAUCCTG-3‟ 

Type of overhang:  DNA 

 
(ii) human (HepG2) cells 

Catalogue number:  SI02658600 

Gene accession:  NM 000478 

Gene symbol:  Alpl 

Gene ID:   249 

nmol/tube:   5 

MW (K-salt):   13365.164 

Purity:    High-perfomance purity (HPP) 

Target sequence:  5‟-CCGGGACTGGTACTCAGACAA -3‟ 

Sense strand:  5‟-GGAACUGGUACUCAGACAATT -3‟ 

Antisense strand:  5‟-UUGUCUGAGUACCAGUCCCGG-3‟ 

Type of overhang:  DNA 
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Total RNA isolation, ALP activity measurement and determination of intracellular lipid 

accumulation in transfected/untransfected cells 

Total RNA was isolated from 3T3-L1 cell cultures on day 0, 7 and 11 post-addition of 

transfection complexes and on day 0, 4, 7 and 11 from HepG2 cells using the 

procedures outlined in section 3.3.1. cDNA synthesis was done with the isolated RNA 

as template using the procedure described in section 3.3.2. ALP was extracted from 

the cultures using the extraction solution prepared as shown in Table 3.2 and ALP 

activity measured using the pNPP method as noted in section 3.1.7. Total protein was 

determined on the cell extracts using the Bradford method (section 3.1.8) but the 

protein standards were diluted 1:1000 to allow measurements of lower protein 

concentrations as the cells were now grown in 24 well plates. Intracellular lipid 

accumulation was assessed using the Oil Red O staining procedure (section 3.1.5). 

 
Efficiency of TNSALP gene knockdown 

cDNA synthesized from the total RNA on the various time points was used for the 

TNSALP gene expression studies using the Rotor-Gene 6000. QuantiTect primer 

assays ([mouse] catalogue number QT 01740221 and [human] catalogue number QT 

00012957) each designed for the specific site on the mRNA transcript for the TNSALP 

gene for the two cell types, were used. PCR reaction volumes were as shown in Table 

3.13. The cycling parameters were also the same as used in section 3.3.5 but the 

annealing temperature was 60oC. 
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3.5  Subcellular localization of ALP in HepG2 cells 

3.5.1  Cell culture  

3T3-L1 cells were grown on 22x22mm cover slips placed in a 6 well Nunc culture 

plate and incubated at 37°C in a 5% CO2/ 95% air in DMEM containing no phenol 

red. Phenol red-free medium reduces autofluorescence of culture cells (Querido and 

Chartranda 2008). The cover slips were pre-incubated with 2% (w/v) gelatine 

solution (BDH Chemicals, Poole England) for 15 minutes and then allowed to air dry 

for 30 minutes before cells were added on top of them. Gelatine enhances 

attachment of cells to the cover slips. At confluence, the cell monolayer was washed 

twice (5 minutes each) with PBS (pH 7.4). Differentiation was induced using the 

protocol previously described and immunolabeling was done 8 days post-

transformation. 

HepG2 cells were also cultured on 22x22mm cover slips placed in a 12 well 

Nunc culture plate and incubated at 37°C in a 5% CO2/ 95% air in EMEM containing 

no phenol red. The cover slips were also pre-incubated with 2% (w/v) Gelatin 

solution. Lipid accumulation was induced in confluent cells by the addition of 660 l 

oleic acid coupled to serum bovine albumin (6:1 moles of oleate:mole of albumin) in 

5ml of maintenance medium. 

3.5.2  Preparation of reagents 

 1X Phosphate buffered saline (PBS):  8.0g sodium chloride (NaCl, Merck RSA), 

0.2g potassium chloride (KCl, Univar RSA), 1.4g dibasic sodium phosphate 

(Na2HPO4, Merck RSA) and 0.24g monobasic potassium phosphate (KH2PO4, Merck 
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RSA) were added to 950ml distilled water. The pH of the solution was adjusted to 

7.4 and the volume made up to 1L. 

 Antibody dilution buffer: To prepare 10ml, 1.0ml purified Goat IgG [Invitrogen 

Corporation, CA USA] was added to 9.0ml 1X PBS (pH 7.4, BioWhitaker Lonza MD 

USA) and while stirring 1mg Saponin (Sigma Aldrich UK) was added until 

completely dissolved. 

 Blocking buffer:  0.15g of glycine [0.2M](Proanalysis, RSA) was dissolved in 10ml 

antibody dilution buffer. 

 3% (w/v) paraformaldehyde-PBS solution: 3g of paraformaldehyde (Sigma 

Germany) was dissolved in 100ml 1X PBS (pH 7.4, BioWhitaker Lonza MD USA) 

and stirred on a magnetic stirrer at a low heat setting in a fume hood until the 

solution became clear. The pH of the solution was then adjusted to 7.4. 

 4', 6-Diamidino-2-phenylindole (DAPI) (Invitrogen, CA USA): 10.9mM of DAPI 

dilactate stock was diluted in 1X PBS (pH 7.4, BioWhitaker Lonza MD USA) and 

used at a final concentration of 300nM. 

 2% (w/v) gelatine solution: 10g of gelatin (BDH Chemicals Poole England) was 

dissolved in 500ml of deionised water. The solution was autoclaved for 30 

minutes and then cooled at room temperature before storage at 4-80C. 

 
All the reagents prepared above were syringe filtered through a 0.22 micron filter 

before use. 
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 Normal rabbit and guinea pig serum [abD Serotec UK]:  for use as negative 

controls for primary antibodies. These were used at the same dilution (see 

below) as the primary antibodies which they were replacing. 

 Fluorsave reagent (CalBiochem Merck, Germany):  for mounting cover slips on 

slides. 

 

Primary antibodies 

 Rabbit monoclonal anti-perilipin (D1D8 XP) antibody obtained from Cell 

Signalling Technology, Inc USA (catalogue number 9349) was diluted 1:100 

with antibody dilution buffer before use. 

 Guinea pig polyclonal (GP40, hCTA/B) anti-adipophilin/ADRP antibody obtained 

from Progen Biotechnik, Heidelberg Germany was diluted 1:100 with antibody 

dilution buffer before use. 

Secondary antibodies 

 Alexa Fluor 594-coupled goat anti-rabbit IgG (H&L chains) antibody [Invitrogen 

Molecular Probes, CA USA] (stock 2000 g/mL; absorption maxima 590nm and 

emission maxima 717nm) was used at a concentration of 10 g/mL as the 

secondary antibody to the primary rabbit anti-perilipin antibody. 

 Alexa Fluor 488-coupled goat anti-guinea pig IgG [H&L chains] antibody 

[Invitrogen Molecular Probes, CA USA] (stock 2000 g/mL; absorption maxima 

495nm and emission maxima 519nm) was used at a concentration of 10 g/mL 

and used as the secondary antibody to the guinea pig anti-ADRP antibody. 
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3.5.3  Specificity of the immunocytochemical methods 

3.5.3.1  Negative controls 

In order to show that the staining of the cells is specifically due to the primary 

antibodies (Perilipin/ADRP), the two primary antibodies were replaced with similarly 

diluted normal serum from the species in which the primary antibodies were raised 

(that is rabbit and guinea pig serum respectively) keeping all the other steps outlined 

in the protocol in section 3.5.2.2 (Burry 2000), the same. Fluorescence was also 

checked in cells in which the secondary antibodies were omitted from the procedure. 

In this case, the secondary antibody was replaced with the antibody dilution buffer. 

3.5.4  Indirect immunolabeling of perilipin and ELF 97 staining of ALP in 

differentiated 3T3-L1 cells. 

 Maintenance medium was aspirated from the wells of the culture plates and 

cells were washed twice for 5 minutes each with 2ml 1X PBS (pH 7.4). 

 Cells were fixed on the microscope slide cover slip by addition of 1ml of 3% 

freshly prepared formaldehyde-1X PBS solution for 10 minutes at room 

temperature. The fixative was then removed. Cells were then rinsed three 

times in 2ml 1X PBS for 5 minutes each. 

 Cells were incubated at room temperature for 45 minutes in 200µl blocking 

buffer containing glycine, saponin and goat IgG. Glycine was used to quench 

background fluorescence due to aldehydes; saponin was used to permeabilize 

the cells and purified goat IgG was used to block non-specific antibody binding 
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(DiDonata and Brasaemle 2003). Cells were then washed once with 1X PBS 

(pH 7.4) for 5 minutes. 

 100 l containing anti-perilipin antibody (1:100 dilution in antibody dilution 

buffer) was added to fixed cells and maintained in a humid chamber at 40C 

overnight. The cells were then allowed to warm up at room temperature for 30 

minutes. 

 100 l of Alexa Fluor 594-coupled goat anti-rabbit antibody (10µg/ml) in 

antibody diluent was then added to the cover slip and incubated in the dark for 

1 hour at room temp. The cells were then washed three times with 2ml 1X PBS 

for 10 minutes each and stained for ALP activity as described below. If no ALP 

staining was necessary cell nuclei were counterstained with DAPI (300nM in 

PBS) and the cover slip was then mounted on a microscope slide using 

Fluorsave reagent (CalBiochem, Merck Germany). The slide was then allowed 

to dry at room temperature for 20 minutes before visualization. 

 
ALP staining using the ELF 97 endogenous phosphatase kit 

ALP staining in 3T3-L1 cells was done using the enzyme linked fluorescence (ELF 97) 

kit (Invitrogen Molecular Probes, Leiden The Netherlands). This was due to failure to 

find antibodies that could specifically and clearly label ALP in the cells that were 

studied. 

 Excess PBS from the cover slip was shaken off. 

 100µl of the diluted (1:20) ELF 97 substrate [2-(5‟-chloro-2-

phosphoryloxyphenyl-6-chloro-4(3H)-guinazolinone) was filtered through ELF 



 Chapter Three                                                       Materials & Methods 

 103 

97 spin filter (0.2µm pore size) by centrifuging at 300xg for 5 minutes in a 

Mikro 22 Centrifuge (Germany). The filtrate was then added to the cover slip 

that was placed on top of a microscope glass slide. For the control slide, a 

known inhibitor of ALP (Levamisole, 7mM in PBS) was added and incubated for 

an hour at room temperature before this step. 

 The reaction was monitored on an Olympus BX 41 microscope using a DAPI 

filter. After 15 minutes, once sufficient reaction product was formed, the 

reaction was quenched by submerging the cover slip in wash buffer (25mM 

EDTA, 5mM Levamisole in PBS, pH 8.0). Cleavage of the ELF 97 substrate 

generates a yellow green precipitate at the site of ALP activity. Omission of the 

ELF 97 substrate did not give any ALP signal. 

 The cover slip was then washed with two changes of the wash buffer between 

10-15 minutes with gentle agitation. 

 The wash buffer was then removed and the cover slip was then mounted on a 

microscope slide using the ELF 97 mounting medium (Invitrogen Molecular 

Probes, Leiden The Netherlands). It was then allowed to dry overnight at room 

temperature away from light before visualization. 

 
Visualization was through DAPI/fluorescein/red filters. Images were captured using 

an Olympus XM10 camera mounted on an Olympus 1X71 microscope (Hamburg, 

Germany). The images were processed using Analysis LS Research Soft Imaging 

Solutions (Múnster, Germany). 
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3.5.5  Indirect immunolabeling of ADRP and ELF 97 staining of ALP in HepG2 

cells 

The procedure described in section 3.5.4 was also used to label adipose 

differentiation related protein (ADRP) and ALP in HepG2 cells 7 days after the 

addition of oleic acid–albumin mixture. Non-transformed cells were also labeled. 

ADRP (adipophilin) belongs to a group of proteins (PAT family) that closely associates 

with the lipid droplet membrane in many types of cells (Londos et al. 1999; Ohsaki et 

al. 2005). Motomura et al. (2006) demonstrated the staining of ADRP in human 

hepatocytes. Perilipin is not expressed in HepG2 cells (Servetnick et al. 1995; Straub 

et al. 2008).  

ADRP antibody was used at a dilution of 1:100. The concentration of the 

secondary antibody (Alexa Fluor 488-coupled goat anti-guinea pig IgG) used was 

10µg/mL. 

 

3.6  Analysis of single nucleotide polymorphisms (SNPs) in the promoter 

region of the human TNSALP gene 

The nucleotide sequence of the coding region of the human TNSALP gene and its 5‟ 

upstream region is available in the DDBJ/EMBL/GenBank databases under the 

accession number AB176449. The 5‟ upstream region is 3.84kb in size and its 

nucleotide sequence is shown in appendix IE. For the naming of the bases in this 

region of the gene, refer to Fig.2.3 (Weiss et al. 1988). 

Ethical clearance for this part of the study was obtained from the Human 

Research Ethics Committee (Medical), WITS University (Protocol No. M070214). 



 Chapter Three                                                       Materials & Methods 

 105 

3.6.1  Primer design and synthesis 

To design primers for use in amplifying the promoter region of the human TNSALP 

gene, Gene Runner software (version 3.05, Hastings Software USA) was used. 

In order to make analysis of sequenced fragments easier, 7 sets of primers were 

designed for amplification of the whole fragment Table 3.14. The segments 

overlapped to avoid elimination of some bases during amplification. 

Primer sequences were sent to Inqaba Biotec (RSA) for synthesis. The 

lyophilized primers were reconstituted with an appropriate volume of DNA/RNAse-free 

water to give a stock solution of 100 M. 

Polymerase chain reaction (PCR) was used to amplify the segments of the 

promoter region and control DNA (isolated from a subject who did not participate in 

the study) was used to optimize PCR conditions. 
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Table 3. 14 PCR primers for the promoter region of the human TNSALP gene 

Segment Primer sequence bases 
Tm 

(°C) 

Expected 

product 

size 

 

1- 550bp 

 

 

471-1000 

 

 

971-1591 

 

 

1531-2050 

 

 

2031-2751 

 

 

2731-3270 

 

 

3251- 3780 

 

For  5‟- ACT GGG ATT ACA GGC GTG TG- 3‟ 

Rev 5‟- ACC TAC AGC CCC ACC TTT AAC- 3‟ 

 

For  5‟-GCT GCT TCG GCT GTC GTA GTC TC- 3‟ 

Rev 5‟- AGG CTG AGG CAC GAG AAA GCC- 3‟ 

 

For 5‟-AGG GTT CAA GCG TTT CTC GTG CC- 3‟ 

Rev 5‟- GTG GGC AGG GCA GGT GTT TAC -3‟ 

 

For  5‟- CTA TCT CTG GCC TTG GTG TA-3‟ 

Rev 5‟- CAC CCT CAA ACC CTC TTA CT- 3‟ 

 

For 5‟- AGT AAG AGG GTT TGA GGG TGG- 3‟ 

Rev 5‟- AGC ACT GGC CCT AAA ACA TGG -3‟ 

 

For 5‟- CCA TGT TTT AGG CCC AGT GC-3‟ 

Rev 5‟- GCT CTG TTT GAA TGC CTC CA-3‟ 

 

For 5‟- TGG AGG CAT TCA AAC AGA GC-3‟ 

Rev 5‟- GCT ACC GCA AGA AGA AGC AC-3‟ 

 

20 

21 

 

23 

21 

 

23 
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3.6.2  DNA extraction 

Whole blood (4.5ml) from 6 black females (BMI 33.0  4.6; age 49.7  6.3 years) and 

6 white females (BMI 31.5  4.5; age 39.5  11.9 years) was collected into an EDTA 

tube and centrifuged in a Labofuge 200 centrifuge (Heraeus Sepatech, USA) at 

2500xg for 10 minutes at room temperature. Three layers were formed with the 

middle layer being the buffy coat. The buffy coat layer was then carefully pippetted 

out of the tube. DNA was extracted using the QIAamp DNA mini Kit (Qiagen, 

Germany; www.qiagen.com/literature/default.aspx?Term=QIAquickextraction+kit&)) 

according to the manufacture‟s instructions. 

The eluate containing genomic DNA was stored at -20 C until use. To 

determine the concentration of the isolated DNA, a NanoDrop spectrometer ND1000 

(NanoDrop Technologies Inc, USA) was used. 

3.6.3  Optimization of the PCR conditions for the promoter region of the 

human TNSALP gene 

Preparation of the master mix 

The master mix contains all the components of PCR except the template DNA. 

Taq polymerase (Supertherm Gold) and its buffer (containing 15mM MgCl2) were 

supplied by JMR Holdings (UK); dNTPs were supplied by Bioline and the primers were 

synthesized by Inqaba, (RSA). 

 

 

 

http://www.qiagen.com/literature/default.aspx?Term=QIAquick
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Table 3. 15 Volume and concentration of PCR components in one typical PCR 

tube reaction and a master mix for 10 reactions 

Reagent Vol  

( l) 

Initial 

concentration 

Final 

concentration 

Master mix 

for 10 

reactions 

Buffer   

dNTPs 

Taq polymerase (ST 

Gold) 

Forward primer 

Reverse primer 

Distilled water 

DNA template 

1.0 

0.8 

0.15 

 

0.1 

0.1 

7.85 

2.0 

     10X 

     10mM each 

    5U/ l 

 

    100 M 

    100 M 

 

1X 

0.7mM 

0.06U/ l 

 

0.8 M 

0.8 M 

10.0 

8.0 

1.5 

 

1.0 

1.0 

78.5 

 Total volume/tube 12.0    

 

Thermal cycling 

The reaction tubes were then placed in a thermal cycler (™My Cycler thermocycler, 

Biorad [Italy]) that was programmed using the parameters below. Optimization of the 

PCR conditions usually involved manipulation of the annealing temperature/time and 

or adjustment of primer concentration. Negative control contained all reagents for the 

PCR excluding the DNA template. 
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Table 3. 16 Optimized PCR conditions for each of the amplified segments of 

the promoter region of the human TNSALP gene 

 Segment Annealing temp/time Extension time [Primer] 

1 (1-550bp) 

2 (471-1000bp) 

3 (971-1591bp) 

4 (1531-2050bp) 

5 (2031-2751bp) 

6 (2731-3270bp) 

7 (3251- 3780) 

67 C/30sec 

60 C /30sec 

77 C /30sec 

59 C /30sec 

64 C /30sec 

64 C /30sec 

58 C /30sec 

35 sec 

35 sec 

45sec 

35sec 

35 sec 

1min 

1min 

50mM 

100 mM 

50 mM 

100 mM 

50 mM 

50 mM 

100 mM 

 

The initial denaturation temperature was 94 C for 11minutes while the 

extension temperature was 72 C for 10 minutes for all the PCR reactions. 

Cycling conditions were 940C for 40 seconds, annealing temperature x  for y seconds 

(Table 3.16). These steps were repeated 30 times in sequence. 

 

3.6.4  Gel electrophoresis of PCR products for the promoter  region of the 

human TNSALP gene 

Electrophoresis on agarose gel was used to separate and analyze PCR products as 

described in section 3.3.4 above. 
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3.6.5  DNA sequencing  

Purification of PCR products 

PCR products were purified using the QIAquick PCR purification kit (Qiagen, 

Germany; www.qiagen.com/literature/default.aspx?Term=QIAquickpurification +kit&) 

as per manufacturer‟s recommendations before the samples were sent for 

sequencing. 

 

DNA sequencing 

PCR products were sent to Inqaba Biotec (RSA) for sequencing. A Genetic Analysis 

System method on a Spectrumedix SCE 2410 (Spectrumedix ILL, USA) was used to 

sequence the PCR products. 

 
Mutation analysis of sequenced samples 

A total of 168 sequence results (14 for each of the 12 samples) were received from 

Inqaba Biotec. Sequencher version 4.7 was used to align the reference gene 

(GeneBank accession number AB 176449) sequence with the sequenced results and 

checked for single nucleotide differences. 

Forward and reverse sequences for each of the segments sequenced were 

checked for background noise at the beginning and end of the sequence and those 

parts of the chromatogram that did not show well defined peaks were edited before 

the sequences were analyzed. Starting from the 5‟ end both sequences were 

inspected for any nucleotide base differences. 

 
 

http://www.qiagen.com/literature/default.aspx?Term=QIAquick
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3.7  Statistical analysis 

All experiments were repeated 3 times unless otherwise stated. Mean and standard 

error of the mean (SEM) were calculated from the 3 repeats for each of the variables 

under study. Each data point in the figures shown in the next chapter is a mean of 3 

experiments unless otherwise stated. 

Students paired t-test was used to compare the difference between means 

calculated for each of the variables in the experiments. 

A p-value of equal or less than 0.05 was considered a statistically significant 

difference between means for any of the variables studied. 

All the statistical tests were performed using ®Microsoft Excel (2003).
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The data contained within this chapter derives from experiments performed to 

answer a number of questions. The first was to determine whether TNSALP is 

expressed within HepG2 cells and whether its level increases during intracellular lipid 

accumulation, using the 3T3-L1 preadipocyte cell line as a comparator. Secondly, 

TNSALP inhibitors were used to determine whether this isoenzyme is required for lipid 

accumulation and whether inhibition of ALP activity would also affect the expression 

of the key adipogenic regulator, PPAR  in both cell lines. The third question was 

would more specific inhibitors of TNSALP i.e. siRNA, block intracellular lipid 

accumulation in both 3T3-L1 and HepG2 cells. The fourth question was, what is the 

intracellular localization of TNSALP in these two cells lines, and how is it related 

spatially to the lipid droplet-specific proteins? The final question was whether the 

marked ethnic difference in TNSALP activity in preadipocytes from white and black 

subjects (Ali et al. 2006a) was related to polymorphisms within the promoter region 

of the TNSALP gene. 

 

4.1 ALP activity and intracellular lipid droplet accumulation in HepG2 & 3T3-

L1 cells 

In order to determine the relationship between lipid droplet accumulation and ALP 

activity in HepG2 and 3T3-L1 cells, total ALP activity and lipid accumulation was 

measured in cells that were induced to accumulate intracellular lipids over a time 

course of 11 days. 
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4.1.1  Intracellular lipid accumulation 

Intracellular lipid accumulation was measured as optical density (OD) of the Oil Red O 

stain that was back extracted from cells after induction of intracellular lipid droplet 

accumulation and was expressed as OD units per 200,000 cells. The images of cells 

are shown in Fig. 4.1. 
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  Figure 4. 1 Photographs of 3T3-L1 & HepG2 cells (stained with Oil Red O). 

A- 3T3-L1 cells and B– HepG2 cells 11 days post-induction of lipid accumulation (x40 

magnification). In both cell types the lipid droplets appear to form a necklace around the 

nucleus but in the HepG2s there are lots of small lipid droplets. 

 

 

 

A 

B   

A 
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In 3T3-L1 cells, statistically significant increases in lipid accumulation were observed 

on day 7 and 11 (p<0.005) post-induction of lipid droplet aggregation compared to 

day 0 (Fig.4.2). In HepG2 cells, statistically significant increases in lipid accumulation 

were also observed on day 7 (p<0.05) and day 11 (p<0.005) post-induction of lipid 

droplet formation compared to day 0 (Fig.4.3). 

 

4.1.2  ALP activity in HepG2 and 3T3-L1 cells 

ALP activity of cell extracts (expressed in IU/ g protein) increased from day 0 to day 

4 parallel to lipid accumulation in both cell types. Statistically significant increases in 

ALP activity were observed on day 4, 7 and 11 compared to day 0 in 3T3-L1 cells 

(p<0.05; Fig.4.2) and on day 4 (p<0.005; Fig.4.3) in HepG2 cells. ALP activity, 

however, declined earlier in HepG2 (at day 7) than in 3T3-L1 cells (Fig.4.2 and 4.3). 
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Figure 4. 2 ALP activity and lipid accumulation in 3T3-L1 cells. 

ALP activity reaches a peak on day 7 after which it declines. Lipid accumulation increases 

parallel to ALP activity but continues to rise until day 11. Data expressed as mean ± SEM; 

each point represents the mean of 4 experiments; *p< 0.05 vs day 0; **p< 0.005 vs day 0. 
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Figure 4. 3 ALP activity and lipid accumulation in HepG2 cells. 

ALP activity reaches a peak on day 4 after which it declines. Lipid accumulation increases 

parallel to ALP activity but continues to increase until day 11. Data expressed as mean ± 

SEM; each point represents the mean of 4 experiments; *p< 0.05 vs day 0; **p< 0.005 vs 

day 0. 
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In order to study the effect of two ALP inhibitors on lipid accumulation, HepG2 and 

3T3-L1 cells were induced to accumulate lipid droplets in the presence and absence 

of levamisole and histidine. Lipid accumulation and ALP activity were determined in 
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4.2.1  Lipid accumulation 

Differences in intracellular lipid content in the presence and absence of the two ALP 

inhibitors in HepG2 and 3T3-L1 cells are shown as images in Fig. 4.4 & 4.5 

respectively. 

Triglyceride content of HepG2 and 3T3-L1 cells in the absence of the two 

inhibitors was significantly higher on day 7 (p<0.005 in 3T3-L1 cells; p<0.05 in 

HepG2 cells) and 11 (p<0.005 in 3T3-L1 cells; p<0.005 in HepG2 cells) compared to 

day 0 (Fig.4.6 & 4.7). 
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Figure 4. 4 Oil Red O stain photographs of HepG2 cells. 

A - No inhibitor, B - Treated with levamisole [3.0mM] and C - Treated with histidine [74.8mM] 

(11 days post-induction of lipid droplet accumulation). All images x 40 magnification. 

Histidine-treated cells accumulated less lipid than levamisole-treated cells. Untreated cells 

accumulated more lipid than the inhibitor-treated cells. 

B 

A 

 

C 
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Figure 4. 5 Oil Red O stain photographs of 3T3-L1 cells. 

A - No inhibitor, B - Treated with histidine [50mM] and C - Treated with levamisole [2.0mM] 

(11 days post-induction of lipid droplet accumulation). All images x 40 magnification. 

Histidine-treated cells accumulated less lipid than levamisole-treated cells. Untreated cells 

accumulated more lipid than the inhibitor-treated cells. 

A 

B 

C 
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In the presence of histidine (in both cell types), a statistically significantly lower level 

of intracellular lipid was observed on day 7 and 11 (p <0.05) when compared to the 

untreated cells. In HepG2 cells, a statistically significantly higher level of intracellular 

lipid was observed only on day 4 (p<0.05) when compared to day 0 in the presence 

of histidine (Fig.4.6). No statistically significant differences in intracellular lipid 

content were observed between histidine-treated cells and cells on day 0 in 3T3-L1 

cells (Fig.4.7). Inhibition of intracellular lipid accumulation by histidine was nearly 

complete in 3T3-L1 cells. 

In the presence of levamisole, a statistically significant lower lipid content was 

noted on day 11 in HepG2 cells (p <0.05) compared to untreated cells (Fig.4.6). In 

3T3-L1 cells, a statistically significant lower lipid content in the presence of levamisole 

was noted on day 4 and day 11 (both p <0.05) compared to the untreated cells 

(Fig.4.7). In HepG2 cells, a statistically significant higher level of intracellular lipid was 

observed on day 7 and day 11 (p<0.05) when compared to day 0 in the presence of 

levamisole. In 3T3-L1 cells a statistically significant higher level of intracellular lipid 

was observed on day 11 compared to day 0 in the presence of levamisole (Fig.4.7). 

In both cell types significantly lower levels of lipid were seen in cells treated 

with histidine when compared to levamisole. In HepG2 cells, this difference in 

intracellular lipid content was observed on day 7 and 11 (p <0.05; Fig.4.6) while in 

3T3-L1 cells the difference between the treatments was observed on day 7 only 

(p<0.05; Fig.4.7). 
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In the presence of histidine in HepG2 cells a significant increase in lipid 

accumulation occurred at day 4 only compared to day 0. In 3T3-L1 cells no significant 

increase in lipid accumulaton was observed at day 4, 7 and 11 compared to day 0. 

Histidine inhibited lipid accumulation earlier and more strongly in 3T3-L1 than in 

HepG2 cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6 The effect of histidine and levamisole treatment on intracellular 

lipid accumulation in HepG2 cells. 

Histidine [74.8mM] reduced lipid accumulation from day 4 to day 11 while the inhibitory 

effect of levamisole [3.0mM] was seen from day 7. Histidine inhibited lipid accumulation 

much more strongly than levamisole. Data expressed as mean ± SEM; *p< 0.05 vs untreated 

cells; p<0.05 vs day 0; p<0.05 vs histidine.  
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Figure 4. 7 The effect of histidine and levamisole treatment on intracellular 

lipid accumulation in 3T3-L1 cells. 

Less lipids accumulated in histidine-treated cells from day 7-11 compared to untreated cells 

while the inhibitory effect of levamisole was observed on day 11 only when compared to 

untreated cells. Histidine [50mM] inhibited lipid accumulation much more strongly than 

levamisole [2.0mM]. Data expressed as mean ± SEM; *p< 0.05 vs untreated cells; p<0.05 

vs day 0; p<0.05 vs histidine.  
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4.2.2  ALP activity in the presence and absence of histidine and levamisole. 

 

In the absence of the two inhibitors, a statistically significant increase in ALP activity 

was observed on day 4 (p<0.05) in HepG2 cells compared to day 0 (Fig.4.8). On day 

7, however, the p-value was less than 0.05 when compared to day 0. Statistically 

significant differences in ALP activity were observed on day 4, 7 (p<0.05) and 11 

(p<0.005) compared to day 0 in 3T3-L1 cells (Fig.4.9). 

In the presence of histidine, statistically significant decreases in ALP activity 

were observed on day 4 (p<0.05; Fig.4.8) in HepG2 cells compared to the untreated 

cells while in 3T3-L1 cells statistically significant decreases in ALP activity were 

observed on day 4 (p<0.005; Fig.4.9), day 7 and 11 (p<0.05; Fig.4.9). Histidine 

treatment maintained ALP activity on day 4, 7 and 11 at levels similar or lower to that 

observed on day 0 in both HepG2 cells (Fig.4.8) and 3T3-L1 cells (Fig.4.9). 

In the presence of levamisole, a statistically significant decrease in ALP activity 

were observed on day 4 in HepG2 cells (p<0.05; Fig.4.8) and in 3T3-L1 cells 

(p<0.05; Fig.4.9) compared to untreated cells. On day 7, the decrease in ALP activity 

was not significant compared to untreated cells (HepG2) (p>0.05). 

In the presence of histidine in both HepG2 and 3T3-L1 cells no statistically 

significant decrease in ALP activity was observed on days 4, 7 and 11 compared to 

day 0. Histidine treatment maintained ALP activity at a level similar to that seen on 

day 0. 
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Figure 4. 8 Effect of histidine and levamisole treatment on ALP activity in 

HepG2 cells. 

Histidine [74.8mM] and levamisole [3.0mM] reduced ALP activity on day 4 with the strongest 

inhibition seen in histidine-treated cells when compared to untreated cells. On day 7 & 11 

ALP activity in histidine-treated cells was lower than that on day 0. Data expressed as mean 

± SEM; *p< 0.05 vs untreated cells; p<0.05 vs day 0. 
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Figure 4. 9 Effect of histidine and levamisole treatment on ALP activity in 

3T3-L1 cells. 

 

ALP activity was reduced by histidine [50mM] and levamisole [2.0mM] from day 4 to 11 

compared to untreated cells. An almost complete block in ALP activity was seen in histidine-

treated cells. Data expressed as mean ± SEM; *p< 0.05 vs untreated cells; **p< 0.005 vs 

untreated cells; p<0.05 vs day 0; p<0.005 vs day 0. 
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PCR to indirectly quantify the PPAR  mRNA levels. Total RNA was isolated from cells 

grown in the presence and absence of levamisole and histidine.  

 

4.3.1  Conventional PCR 

During conventional PCR, the PPAR  gene was amplified and resulted in an 88 base 

pair band in HepG2 cells and a 241 base pair band in 3T3-L1 cells. The TATA-box 

binding protein (TBP) gene gave 277 and 189 base pair products for HepG2 and 3T3-

L1 cells respectively after amplification (image in Fig.4.10 & 4.11). The latter was 

used as the reference gene. All bands corresponded to the predicted fragment sizes. 

For the no template control (NTC), DNase-free water was added instead of cDNA.   

Primer location and region of amplification of the two sets of primers are shown in 

Appendix I. 
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Figure 4. 10 Agarose gel image of PCR products from HepG2 cells. 

Separation of PCR products on a 2% agarose gel stained with ethidium bromide showed a 

88bp band for PPAR  gene and a 277bp band for the TBP gene using a 50bp DNA molecular 

weight marker. NTC  is the no template control. 

 

Figure 4. 11 Agarose gel image of PCR products from 3T3-L1 cells. 

Separation of PCR products on a 2% agarose gel stained with ethidium bromide showed a 

241bp band for PPAR  gene and a 189bp band for the TBP gene using a 50bp DNA molecular 

weight marker. NTC  is the no template control.  
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4.3.2  Optimized conditions for quantitative real-time PCR on Rotor-Gene 6000  

DNA synthesized from mRNA extracted from both HepG2 and 3T3-L1 cells showed 

excellent amplification during real-time PCR (Fig.4.12 & 4.13 respectively). Clear, 

single peaks on the melting curve plot indicated precise amplification with no 

unspecific products. For the no template control (NTC), DNase free water was added 

instead of cDNA. The mean melting peak temperature for TBP in HepG2 cells 

(reference gene) was 83.4 ± 0.1 (range 83.3-83.7), N=20. The mean melting peak 

temperature for TBP in 3T3-L1 cells was 81.3 ± 0.2 (range 81.2-81.5), N=20.   

The PCR product of the TBP in HepG2 and 3T3-L1 cells was sequenced to 

confirm its identity. The consensus sequence of the forward and the reverse 

sequences were blasted into GenBank and there was a 100% sequence similarity with 

the reference sequences for the two genes (Appendix I). 

Quantification of the levels of mRNA was done using the two standard curves 

on the Rotor-Gene 6000 as described in section 3.5.5. Efficiency of amplification of 

the standards are given in Appendix I. 100% efficiency corresponds to 1 using the 

Rotorgene software and this means the doubling (in amount) of PCR products after 

one cycle. 
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Figure 4. 12 Real time amplification plot (top) and melting curve of PCR 

products for HepG2 cells. 

Specific amplication of the PPAR  and TBP genes are shown by single melting curves of their 

PCR products. The blue line is the threshold limit. NTCs are negative controls. Cycling 

parameters and PCR components are shown on page 83. 
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Figure 4. 13 Real time amplification plot (top) and melting curve of PCR 

products for 3T3-L1 cells. 

Specific amplication of the PPAR  and TBP genes are shown by single melting curves of their 

PCR products. The blue line is the threshold limit. NTCs are negative controls. Cycling 

parameters are shown on page 89 and and PCR components are shown in Table 3.7. 
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4.3.3  PPAR  gene expression in HepG2 and 3T3-L1 cells. 

A 4-fold increase in the expression of the PPAR  gene after induction of lipid 

accumulation was observed between day 0 and day 4 in HepG2 cells after which it 

declined. The difference in the expression of the gene was statistically significant 

between day 0 and day 4 (p<0.05; Fig.4.14). In 3T3-L1 cells, a statistically significant 

2.5-fold increase in the expression of the PPAR  gene was observed between day 0 

and day 4 (p<0.05; Fig.4.15). No statistically significant differences in the expression 

of the TBP gene were observed on all days in both cell types. The basal expression 

(day 0) of PPAR  gene was higher in 3T3-L1 than in HepG2 cells. The difference was, 

however, not significant. 
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Figure 4. 14 PPAR  gene expression in HepG2 cells. 

A 4-fold increase in the expression of PPAR  occurred 4 days after induction of lipid droplet 

accumulation. On day 7 the levels were lower than on day 4 but slightly higher than day 0. 

No significant changes in the expression of the TBP were observed during the 11 day period. 

Data expressed as mean ± SEM; *p<0.05 vs day 0. 

 

 

 

 

 

 

0 

50 

100 

150 

200 

250 

300 

350 

Day 0 Day 4 Day 7 

   
   

  c
D

N
A

 (
n

g/
m

ic
ro

lit
er

) 

PPAR  
TBP 

* 



 Chapter Four                                                                              Results 

 134 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 15 PPAR  gene expression in 3T3-L1 cells. 

A 2½-fold increase in the expression of PPAR  occurred day 4 after induction of adipogenesis. 

On day 7 the levels were lower than on day 4 but slightly higher than day 0. No significant 

changes in the expression of the TBP were observed during the 11 day period. Data 

expressed as mean ± SEM; *p<0.05 vs day 0. 
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The increase in the expression of the PPAR  gene was statistically significant in 

both cell types between day 0 and day 4 (p<0.05; Fig.4.16 & 4.17). In the presence 

of histidine, a statistically significant 2-fold increase in the expression of the PPAR  

gene occurred between day 0 and day 4 in both cell types (p<0.05; Fig.4.16 & 4.17). 

The level of expression of the TBP gene did not change significantly over the 7 day 

period. Histidine and levamisole were used at concentration mentioned on pages 119 

and 120 in HepG2 and 3T3-L1 cells respectively. 
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Figure 4. 16 PPAR  gene expression in HepG2 cells grown in the presence of 

levamisole and histidine. 

An increase in PPAR  level occurred on day 4 after induction of lipid accumulation followed by 

a decline on day 7 in the presence of both levamisole [3.0mM] and histidine [74.8mM]. The 

two inhibitors did not alter the expression pattern of PPAR  seen in cells not treated with 

either of the two inhibitors. Data expressed as mean ± SEM; *p<0.005 vs untreated; 

p<0.05 vs day 0. 
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Figure 4. 17 PPAR  gene expression in 3T3-L1 cells grown in the presence of 

levamisole and histidine. 

An increase in PPAR  level occurred on day 4 after induction of adipogenesis followed by a 

decline on day 7 in the presence of both levamisole [2.0mM] and histidine [50mM]. The two 

inhibitors did not alter the expression pattern of PPAR  seen in cells not treated with either 

levamisole or histidine. Data expressed as mean ± SEM; p<0.05 vs day 0. 
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4.4  RNAi studies for the TNSALP gene in HepG2 and 3T3-L1 cells 

In order to study the effect that the silencing of the TNSALP gene using siRNA oligos 

would have on intracellular lipid accumulation, transfected and untransfected HepG2 

and 3T3-L1 cells were induced to accumulate lipid droplets over a 11 day period. 

Total ALP was measured in cell extracts at selected time points over the same period. 

Transfection conditions and efficiency of gene knockdown were established using 

fluorescently labelled anti-MAPK1 siRNA oligos. The RNAi human/mouse/rat starter kit 

(Qiagen, Germany) provides highly validated siRNA oligos, reagents, primer assays 

and guidelines for establishing transfection conditions. 

 

4.4.1  Transfection efficiency of siRNA oligos in 3T3-L1 and HepG2 cells using 

the RNAi human/mouse/rat starter kit 

100 l of Anti-MAPK1 siRNA oligos (16.5nM) was added to confluent  HepG2/3T3-L1 

cells that were grown on a microscope slide cover slip and after 72 hours the cells 

were visualized on a fluorescence microscope to see the proportion of cells that were 

transfected. In this work the number of transfected cells (with green dots inside the 

cell) was manually counted and expressed as a percentage of the total number of 

cells seen in a given field.  Two or more dots in a cell would be counted as one 

transfected cell. Eight fields were randomly selected and cells counted to gauge a 

measure of transfection efficiency. DAPI stain was used to count total number of cells 

in a given field. Approximately 120 cells were counted in each field. The efficiency of 
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transfection was determined at 72.9% ± 1.6 in 3T3-L1 and 68.6% ± 0.8 in HepG2 

cells. 

Confocal fluorescence microscope images of HepG2 and 3T3-L1 cells 

transfected with control siRNA and anti-MAPK1 siRNA are shown in Fig.4.18 & 4.19  

respectively. The green dots are the fluorescently labeled siRNA in the cytoplasm of 

cells. Cells transfected with the control siRNA show green dots within cells while 

those transfected with the positive (silencing) siRNA do not show green dots in the 

cytoplasm of the cells. Pictures which were taken using a non-fluorescent filter are 

labelled as transilluminated pictures. 
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Figure 4. 18 Confocal fluorescence picture of HepG2 cells. 

A - With control siRNA, B – With  anti-MAPK1 siRNA and C -Transilluminated light (72 hours 

post-transfection x 63). 16.5nM of control and anti-MAPK1 siRNA were each added to cells 

grown on a microscope slide cover slip placed in a well of a culture plate containing 3ml 

culture medium. 
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Figure 4. 19 Confocal fluorescence picture of 3T3-L1 cells. 

 A - With control siRNA, B – With anti-MAPK1 siRNA and C -Transilluminated light (72 hours 

post-transfection x 63). 16.5nM of control and anti-MAPK1 siRNA were each added to cells 

grown on a microscope slide cover slip placed in a well of a culture plate containing 3ml 

culture medium. 
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4.4.2  MAPK1 gene knockdown efficiency 

In order to determine the efficiency of knockdown of the MAPK1 gene in HepG2 and 

3T3-L1 cells, total RNA isolated from cells before and after transfection with the 

control and Anti-MAPK1 siRNA oligos was reverse transcribed into cDNA and the 

MAPK1 mRNA levels indirectly quantified using real-time PCR with primers specific for 

the MAPK1 gene. Control siRNA oligos do not have any known homology with mouse 

or human mRNA sequences. Knockdown efficiency of MAPK1 gene helps to give an 

idea of efficiency of knockdown of gene of interest.The siRNA for genes of interest 

are provided without fluorescence tags. 

 

4.4.2.1  Optimized qPCR conditions on the Rotor-Gene 6000 

PCR conditions for the amplification and quantification of the MAPK1 gene were 

optimized as described in section 3.3.3. The amplification plots and melting curves of 

the products obtained using the „optimized conditions‟ are shown in Fig. 4.20 and 

4.21 below. For the no template control (NTC), DNase free water was added instead 

of cDNA. Though the same gene was being amplified in the two cell types, PCR 

primers used for the amplification were different, hence the difference in the melting 

temperature of the two PCR products. 
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Figure 4. 20 Real time PCR amplification plot (top) and melting curve of PCR 

products (MAPK1 gene) for HepG2 cells. 

Specific amplication of MAPK1 and TBP genes are shown by single melting curves of their 

PCR products. The blue line is the threshold limit. NTCs are negative controls. Cycling 

parameters are shown on page 83 but with annealing temperature of 60oC and and PCR 

components are shown in Table 3.13.   

 

 

MAPK1  

TBP 

NTC 

MAPK1 

 

TBP 

 

 



 Chapter Four                                                                              Results 

 144 

 

 

Figure 4. 21 Real time PCR amplification plot (top) and melting curve of PCR 

products (MAPK1 gene) for 3T3-L1 cells. 

Specific amplication of MAPK1 and TBP genes are shown by single melting curves of their 

PCR products. The blue line is the threshold limit. NTCs are negative controls. Cycling 

parameters are shown on page 83 but with annealing temperature of 60oC and and PCR 

components are shown in Table 3.13.  

MAPK1 

TBP 

MAPK1  

TBP 

NTC

s 

 

NTCs 



 Chapter Four                                                                              Results 

 145 

4.4.2.2  MAPK1 gene knockdown efficiency 

Expression level of the MAPK1 gene was determined using the two-standard curve 

method on the Rotor-Gene 6000 (described in section 3.3.5). Efficiency of gene 

knockdown was calculated as a percentage difference in the expression of the gene 

in cells treated with the control (non-silencing) siRNA and cells treated with the 

silencing (anti-MAPK1) siRNA. The expression of the two genes in cells not 

transfected with either of the siRNA was set at 100% relative to cells which were 

transfected with either the positive or negative siRNA. The percentage change in the 

expression of the MAPK1 gene was significant in both cell lines (p<0.005, Fig.4.22, 

3T3-L1 cells; p<0.05, Fig 4.23, HepG2 cells). 

No significant change in the expression of the TBP gene was observed in either 

cell type between cells transfected with the anti-MAPK1 siRNA and the control siRNA 

compared to untransfected cells. The knockdown efficiency of the MAPK1 gene in 

3T3-L1 cells was 78.9% ± 5.9 while in HepG2 cells it was 68.6% ± 10.3. 
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Figure 4. 22 MAPK1 gene expression in 3T3-L1 cells 72 hours post-

transfection. 

An approximately 80% decline in gene expression was observed in cells transfected with anti-

MAPK1 siRNA. No change in gene expression was seen in control and non-transfected 

cells.TBP gene expression did not significantly vary between the three types of treatments. 

Data are mean ± SEM; *p<0.05 vs control & non-transfected; **p<0.005 vs control siRNA & 

non-transfected. 
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Figure 4. 23  MAPK1 gene expression in HepG2 cells 72 hours post-

transfection. 

An approximately 70% decline in gene expression was observed in cells transfected with anti-

MAPK1 siRNA. No change in gene expression was seen in control and non-transfected cells. 

TBP gene expression did not significantly vary between the three types of treatments. Data 

are mean ± SEM; *p<0.05 vs control & non-transfected; **p<0.005 vs control siRNA & non-

transfected. 
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4.4.3  Knockdown efficiency of the TNSALP gene in 3T3-L1 and HepG2 cells 

transfected with siRNA directed against TNSALP mRNA  

 

The conditions of transfection (cell density and concentration of siRNA oligos) that 

were established using the control and anti-MAPK1 siRNA oligos were used in 

studying the effect of knocking down the TNSALP gene on intracellular lipid 

accumulation in cells that were induced to accumulate lipid droplets using the 

protocol previously described. 

The quantity of TNSALP gene expression was determined using the cDNA 

reverse transcribed from the total RNA isolated from 3T3-L1 cell cultures on day 0, 7 

and 11 and on day 0, 4, 7 and 11 from HepG2 cells using the Rotor-Gene 6000 real-

time cycler. TBP was used as the reference gene. Total RNA was isolated from cells 

transfected with control siRNA, anti-ALP oligos and in untransfected cells. 

PCR conditions for amplification of the TNSALP gene were determined using 

the „optimization‟ strategy described in section 3.3.3. The amplification and melting 

plots of the PCR products using the QuantiTect primer assay (Qiagen QT 01740221) 

for the TNSALP gene in 3T3-L1 cells and QuantiTect primer assay (Qiagen QT 

00012957) for the TNSALP gene in HepG2 cells respectively are shown in Fig. 4.24 

and 4.25. For the no template control (NTC), DNase free water was added instead of 

cDNA. 
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Figure 4. 24 Real time PCR amplification (top) and melting curves for the 

TNSALP gene in 3T3-L1 cells. 

Specific amplication of the TNSALP and TBP genes are shown by single melting curves of 

their PCR products. The blue line is the threshold limit. NTCs are negative controls. Cycling 

parameters are shown on page 83 but with annealing temperature of 60oC and and PCR 

components are shown in Table 3.13. 
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Figure 4. 25 Real time PCR amplification (top) and melting curves for the 

TNSALP & TBP genes in HepG2 cells. 

Specific amplication of TNSALP and TBP genes are shown by single melting curves of their 

PCR products. The blue line is the threshold limit. NTCs are negative controls.Cycling 

parameters are shown on page 83 but with annealing temperature of 60oC and and PCR 

components are shown in Table 3.13. 
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Knockdown efficiency at a given time point (e.g. day 7) was calculated as the 

difference in the expression of ALP gene between non-transfected cells and cells 

transfected with anti-ALP siRNA expressed as a percentage of the level in non-

transfected cells. 

Expression of the ALP gene in 3T3-L1 cells reached a maximum on day 7 for 

the untransfected cells and for cells transfected with the anti-ALP siRNA and the 

control siRNA (data not shown). However, no significant differences in any of the 

mean values could be found as a result of the high SEM values. Therefore, expression 

levels of the ALP and TBP genes shown in the graphs that follow are given as a 

percentage of the level of expression in untransfected cells on day 7 or day 11. The 

expression of the ALP and TBP genes in untransfected cells was set at 100%. 

In the 3T3-L1 cells the percentage change in the ALP gene expression on day 

7 between cells transfected with anti-ALP siRNA and those not transfected was 

significant (p<0.05, Fig.4.26). A significantly lower level of gene expression was also 

observed when anti-ALP treated cells were compared to those cells transfected with 

the control siRNA (p<0.05, Fig.4.26). On day 11, significantly lower levels of ALP 

gene expression were observed when cells transfected with anti-ALP siRNA were 

compared to cells transfected with the control (non-silencing) siRNA and those cells 

that were not transfected (Fig.4.27). On both day 7 and 11, significant increases in 

ALP gene expression were observed in cells transfected with anti-ALP siRNA 

compared to expression on day 0. 



 Chapter Four                                                                              Results 

 152 

Significant increases in ALP gene expression (on day 7 and 11) were also 

observed when cells treated with the control siRNA were compared to cells on day 0 

(Fig.4.26 & 4.27). 

On day 7, the knockdown efficiency in 3T3-L1 cells was 81.3% ± 2.7 between 

untransfected cells and those cells transfected with the anti-TNSALP siRNA. At the 

same time point the efficiency of knockdown was 80.5% ± 4.2 (SEM) between 3T3-

L1 cells that were transfected with the control (non-silencing) siRNA and those that 

were transfected with the anti-TNSALP siRNA. 

There was no significant difference in the expression of the TBP gene between 

untransfected cells and those treated with the siRNA for the TNSALP gene and the 

non-silencing siRNA at day 7 and 11 (Fig.4.28 & 4.29). This was also the case when 

the three treatments on day 7 and 11 were compared to cells on day 0. 
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Figure 4. 26 TNSALP gene expression in transfected 3T3-L1cells 7 days post-

transfection. 

Anti-ALP siRNA caused ~80% reduction in TNSALP gene expression on day 7 compared 

against control siRNA. The level of TNSALP gene expression in untransfected and control cells 

was not different. Data are mean ± SEM; ♦p<0.05 vs Day 0; ♦♦p<0.005 vs Day 0; *p<0.05 

vs No siRNA; ♣p<0.05 vs control siRNA. 
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Figure 4. 27 TNSALP gene expression in transfected 3T3-L1 cells 11 days 

post-transfection. 

Anti-ALP siRNA caused ~87% reduction in TNSALP gene expression on day 11 compared to 

control siRNA. The level of TNSALP gene expression in untransfected and control cells was 

not significantly different. Data are mean ± SEM; ♦p<0.05 vs Day 0; ♦♦p<0.005 vs Day 0; 

*p<0.05 vs No siRNA; **p<0.005 vs No siRNA; ♣p<0.05 vs control; ♣♣p<0.005 vs control. 
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Figure 4. 28 TBP gene expression in transfected 3T3-L1 cells 7 days post-

transfection. 

No significant differences in expression of the TBP gene were seen on day 7 between 

untransfected cells and those transfected with either the control siRNA or anti-TNSALP siRNA. 

Data are mean ± SEM. 
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Figure 4. 29 TBP gene expression in transfected 3T3-L1 cells 11 days post-

transfection. 

No significant differences in expression of the TBP gene were seen on day 7 between 

untransfected cells and those transfected with either the control siRNA or anti-TNSALP siRNA. 

Data are mean ± SEM. 

 

In the HepG2 cells ALP gene expression reached a maximum on day 4 and 

declined thereafter (data not shown). However, as with the 3T3-L1 cells no significant 

differences in the level of expression of the ALP gene could be observed due to the 

high SEM values. Therefore, the levels of expression of both the ALP and TBP genes 

were expressed as percentage values as described for the HepG2 cells. 
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In HepG2 cells, the percentage expression of the ALP gene increased from day 

0 to 4 in untransfected cells. A significant decrease in ALP gene expression was 

observed on day 4 in cells transfected with the anti-ALP siRNA compared to untreated 

cells (p<0.05, Fig.4.30). Compared to day 0, a significant increase in ALP gene 

expression was also observed on day 4 in cells treated with the control siRNA 

(p<0.05, Fig.4.30). In contrast, no significant differences in ALP gene expression 

were observed between the cells transfected with the control siRNA and cells 

transfected with the anti-TNSALP siRNA on day 7 and 11 (Fig.4.31 & 4.42). 

On day 4, the knockdown efficiency was 80.0% ± 8.9 between untransfected 

cells and those cells transfected with the anti-ALP siRNA. At the same time point the 

efficiency of knockdown was 73.9% ± 15.7 between HepG2 cells that were 

transfected with the control siRNA and those that were transfected with the anti-ALP 

siRNA. The expression of the TBP gene in HepG2 cells was not significantly influenced 

by any of the siRNAs (Fig.4.33, 4.34 & 4.35). 

 

 

 

 

 

 

 

 

 

 



 Chapter Four                                                                              Results 

 158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 30 TNSALP gene expression in transfected HepG2 cells 4 days post-

transfection. 

Anti-ALP siRNA caused ~74% reduction in TNSALP gene expression on day 7 compared to 

control siRNA. The level of TNSALP gene expression in untransfected cells and cells 

transfected with control siRNA was not significantly different. Data are mean ± SEM; 

♦p<0.05 vs Day 0; *p<0.05 vs No siRNA; ♣p<0.05 vs control siRNA. 
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Figure 4. 31 TNSALP gene expression in transfected HepG2 cells 7 days post-

transfection. 

No significant differences in percentage change in gene expression were observed between 

cells transfected with anti-TNSALP siRNA and either untransfected cells or cells transfected 

with control siRNA on day 7. Data are mean ± SEM. 
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Figure 4. 32 TNSALP gene expression in transfected HepG2 cells 11 days 

post-transfection. 

No significant differences in percentage change in gene expression were observed between 

cells transfected with anti-TNSALP siRNA and either untransfected cells or cells transfected 

with control siRNA on day 11. Data are mean ± SEM. 
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Figure 4. 33 TBP gene expression in transfected HepG2 cells 4 days post-

transfection. 

No significant differences in expression of the TBP gene were seen on day 4 between 

untransfected cells and those transfected with either the control siRNA or anti-TNSALP siRNA. 

Data are mean ± SEM. 
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Figure 4. 34 TBP gene expression in transfected HepG2 cells 7 days post-

transfection. 

No significant differences in expression of the TBP gene were seen on day 7 between 

untransfected cells and those transfected with either the control siRNA or anti-TNSALP siRNA. 

Data are mean ± SEM. 
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Figure 4. 35 TBP gene expression in transfected HepG2 cells 11 days post-

transfection. 

No significant differences in expression of the TBP gene were seen on day 11 between 

untransfected cells and those transfected with either the control siRNA or anti-TNSALP siRNA. 

Data are mean ± SEM. 

4.4.4  ALP activity in 3T3-L1 & HepG2 cells transfected with siRNA directed 

against TNSALP mRNA  

In order to confirm if the knockdown of TNSALP gene worked, ALP activity was 

analyzed in cells transfected with anti-TNSALP siRNA, in cells transfected with control 

siRNA and in untransfected cells. 
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A five-fold higher level of ALP activity was observed in 3T3-L1 cells that were 

not treated with the siRNA for the TNSALP gene when compared to cells treated with 

the silencing siRNA on day 7. Similar results were observed in 3T3-L1 cells that were 

treated with the control siRNA (AllStars negative) compared to cells treated with the 

anti-TNSALP (silencing) siRNA. The differences in ALP activity on day 7 and 11 in cells 

transfected with the anti-ALP siRNA compared with the cells that were transfected 

with the negative siRNA and the untransfected cells were statistically significant 

(p<0.05; Fig.4.36). The activity of ALP in cells transfected with the control siRNA and 

in untreated cells on day 11 was significantly lower than on day 7 but were higher 

than the baseline levels [day 0] (p<0.05; Fig.4.36). 

On day 4 ALP activity was four and half-fold higher in untransfected HepG2 

cells and HepG2 cells treated with control siRNA when compared to cells treated with 

the anti-ALP siRNA (Fig.4.37). A significantly higher ALP activity was observed on day 

4 (p<0.05; Fig.4.37) between untransfected cells and cells transfected with control 

siRNA compared with cells on day 0. On day 11, a significantly lower ALP activity 

(p<0.05; Fig.4.37) was observed in cells treated with anti-ALP siRNA compared to 

cells on day 0. 

The differences in ALP activity between the cells transfected with the anti-ALP 

siRNA and the untreated cells (HepG2) were statistically significant on day 4, 7 and 

11 (p<0.05). However, a statistically significant difference in ALP activity between 

cells transfected with the control siRNA and those transfected with the anti-ALP siRNA 
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was observed on day 4 only (p<0.05; Fig.4.37). In all the three types of treatments, 

ALP activity declined on day 7 and continued to do so until day 11 (Fig.4.36 & 4.37). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 36 ALP activity in 3T3-L1 cells transfected with siRNA. 

A 5-fold reduction in ALP activity was seen on day 7 when anti-ALP transfected cells were 

compared to control cells. A 3-fold reduction was observed on day 11. Treatment with anti-

ALP siRNA did not cause a significant increase in ALP activity from day 0. Data are mean ± 

SEM‟ *p<0.05 vs untransfected cells; p<0.05 vs day 0; p<0.005 vs day 0; p<0.05 vs 

control siRNA. 
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Figure 4. 37 ALP activity in HepG2 cells transfected with siRNA. 

A 5-fold reduction in ALP activity was seen on day 4; a 2-fold reduction on day 7 and a 3-fold 

reduction on day 11 when anti-ALP transfected cells were compared to control cells. A 

significant increase in ALP activity from day 0 was observed only on day 11 in anti-TNSALP-

treated cells. Data are mean ± SEM; *p<0.05 vs untreated cells; p<0.05 vs day 0; 

p<0.005 vs day 0; p<0.05 vs control siRNA. 
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4.4.5  Intracellular lipid droplet accumulation in 3T3-L1 & HepG2 cells 

transfected with siRNA directed against TNSALP mRNA  

 

In order to demonstrate the effect that the transient silencing of the TNSALP gene 

had on lipid accumulation, HepG2 and 3T3-L1 cells were grown in medium to which 

the siRNA oligos were added. At confluency transformation cocktail was added to the 

cells as described in section 3.1.1 & 3.1.2.  

In 3T3-L1 cells, intracellular lipid accumulation increased parallel to ALP 

activity in cells that were not treated with siRNA and in those that were treated with 

the control siRNA from day 0 to day 7. Unlike ALP activity, intracellular lipid 

accumulation continued to increase after day 7. Increases in lipid accumulation were 

statistically significant on day 7 (p<0.005) and day 11 (p<0.05) in cells transfected 

with the control siRNA or untreated cells compared to cells transfected with the anti-

ALP siRNA (Fig.4.38). Significant increases in ALP activity were observed on day 7 

and 11 in untreated cells and cells transfected with the control siRNA when compared 

to day 0 (p<0.005; Fig.4.38). A significant increase in ALP activity was also observed 

in cells transfected with the silencing siRNA compared to cells on day 0 (p<0.05; 

Fig.4.38). On day 7 and 11, cells transfected with the control siRNA showed a higher 

ALP activity than cells transfected with the anti-ALP siRNA (p<0.05; Fig.4.38). 

In HepG2 cells, statistically significant differences in intracellular lipid 

accumulation were observed on day 7 (p<0.05; Fig.4.39) between cells treated with 

the anti-ALP siRNA and untreated cells. Untreated cells accumulated more 

intracellular lipid than cells transfected with the silencing siRNA. A similar difference 
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was also observed on day 11 (p<0.005; Fig.4.39). Statistically significant differences 

in intracellular lipid accumulation were also observed in cells transfected with the 

control siRNA compared to cells transfected with the anti-ALP siRNA on both day 7 

(p<0.05) and 11 (p<0.005) [Fig.4.39]. 

Compared to cells on day 0, significant increases in intracellular lipid 

accumulation were observed on day 7 and 11 in cells transfected with the control 

siRNA and in untreated cells (p<0.005; Fig.4.39). In cells transfected with the anti-

ALP siRNA a similar increase was observed on day 11 (p<0.05; Fig.4.39). Significantly 

higher intracellular lipid accumulation was observed in cells transfected with the 

control siRNA compared to cells transfected with the anti-ALP (silencing) siRNA on 

day 7 (p<0.05) and day 11 (p<0.005; Fig.4.39). 
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Figure 4. 38 Intracellular lipid accumulation in 3T3-L1 cells transfected with 

anti- TNSALP siRNA oligos. 

On day 7 and 11, Anti-TNSALP treated cells accumulated 69 and 68% lower lipid levels 

respectively compared to control siRNA. On both day 7 and 11, significantly higher increases 

in lipid accumulation were observed between the three types of treatments and day 0. Data 

are mean ± SEM;*p<0.05 vs untreated cells; p<0.05 vs day 0; p<0.005 vs day 0; 

p<0.05 vs control siRNA; p<0.05 vs control siRNA. 
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Figure 4. 39 Intracellular lipid accumulation in HepG2 cells transfected with 

siRNA for TNSALP gene. 

On day 7 and 11, Anti-TNSALP treated cells accumulated 40 and 34% lower lipid levels 

respectively compared to control siRNA. On both day 7 and 11, significant higher increases in 

lipid accumulation were observed between the three types of treatments and day 0. Data are 

mean ± SEM; *p<0.05 vs untreated cells; p<0.05 vs day 0; p<0.005 vs day 0; p<0.05 

vs control siRNA; p<0.05 vs control. 

 

The inhibitory effect of the anti-ALP siRNA on intracellular lipid accumulation, 

as visualised using oil red O staining of the lipid droplets, in 3T3-L1 and HepG2 cells 

is shown in Fig. 4.40 & 4.41 respectively. 
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Figure 4. 40 Oil Red O stain pictures of transfected 3T3-L1 cells. 

A - No siRNA, B - with control siRNA and C - with anti-ALP siRNA 11 days post-addition of 

transfection complexes (x 40 magnification). Reduced intracellular lipid droplet accumulation 

is observed in anti-ALP treated cells compared to control siRNA and untransfected cells. Cells 

were transfected post-confluency in culture medium containing transformation cocktail. 
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Figure 4. 41 Oil Red O stain pictures of transfected HepG2 cells. 

A - No siRNA, B - with control siRNA and C - with anti-ALP siRNA 11 days post-addition of 

transfection complexes (x 40 magnification). Reduced intracellular lipid droplet accumulation 

is observed in anti-ALP treated cells compared to control siRNA and untransfected cells. Cells 

were transfected post-confluency in culture medium containing transformation cocktail. 
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4.5  Subcellular localization of ALP in HepG2 & 3T3-L1 cells 

4.5.1  Immunolabelling of perilipin and staining of ALP in 3T3-L1 cells 

 

In order to show the localization of ALP activity within 3T3-L1 cells, transformed cells 

grown on a microscope cover slip were stained with ELF 97 phosphatase substrate 

having been immunolabelled for perilipin [Fig 4.42-4.46]. Alexa Fluor 594 goat 

conjugated anti-rabbit secondary antibody (red fluorescence) was used to locate the 

anti-perilipin antibody [Fig 4.42]. No fluorescence was visible in the primary antibody 

control, in which the secondary antibody was left out (Fig 4.43). Non-specific 

background staining was present in the secondary antibody control, in which the 

primary antibody was left out (Fig 4.44). Cleavage of ELF 97 phosphatase substrate 

by ALP produces a bright yellow/green colour when viewed using DAPI long pass 

filter [Fig 4.45]. The negative control for the ELF 97 substrate, which did not yield a 

signal, was produced by incubating cells with a known inhibitor of ALP (levamisole) 

[Fig 4.46B]. Levamisole had no effect on perilipin staining [Fig 4.46A]. 
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Figure 4. 42  Immunolabelling of perilipin in 3T3-L1 cells. 

A- Staining of perilipin on the periphery of lipid droplet (red) using Alexa Fluor 594 goat 

conjugated anti-rabbit secondary antibody. Lipid droplets are seen intracytoplasmically. Cell 

nucleus was counterstained with DAPI (blue). B- Phase contrast image of cell shown in A. 

Scale bar =20µm. Original magnification x100. 
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Figure 4. 43 Primary antibody control in immuostaining of perilipin in 3T3-L1 

cells. 

A - Cells were incubated with anti-perilipin antibody in the absence of the secondary antibody 

(Alexa Flour 594 goat conjugated anti-rabbit secondary antibody). No fluorescence was 

visible. Cell nucleus was counterstained with DAPI (blue). B - Phase contrast image of cell 

shown in A. Scale bar =20µm. Original magnification x100. 
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Figure 4. 44 Secondary antibody control in immuostaining of perilipin in 3T3-

L1 cells. 

A- Non specific background staining of the cytoplasm was noted for cells incubated with the 

secondary antibody (Alexa Fluor 594 goat conjugated anti-rabbit secondary antibody) in the 

absence of the anti-perilipin primary antibody. Note that no staining of the lipid droplet is 

visible. Cell nucleus was countestained with DAPI (blue). B- Phase contrast image of cell 

shown in A. Scale bar =20µm. Original magnification x100. 
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Figure 4. 45 ELF 97 staining of ALP activity and immuostaining of perilipin in 

3T3-L1 cells. 

A - Yellow/green staining of ALP activity captured using the DAPI long pass filter (Amax 

=345nm & Emax=455nm).B - Perilipin staining (Alexa Fluor 594 goat conjugated anti-rabbit 

secondary antibody). C - Phase contrast image of cell shown in A&B. Scale bar =20µm. 

Original magnification x100. 
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Figure 4. 46 Control for ELF 97 staining of ALP activity and immuostaining of 

perilipin in 3T3-L1 cells. 

A - Perilipin staining (Alexa Fluor 594 goat conjugated anti-rabbit secondary antibody) and B 

- DAPI filter image after incubation with 7mM levamisole (inhibitor of ALP) for 1hour at room 

temperature. No ALP staining is visible in B. C - Phase contrast image of cell shown in A-B. 

Scale bar =20µm. Original magnification x100. 
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4.5.2  Immunolabelling of Adipose differentiation-related protein (ADRP) and 

staining of ALP in HepG2 cells 

 

HepG2 cells were also immunolabeled for Adipose differentiation-related protein 

(ADRP) and stained for ALP [Fig 4.47-4.52]. 

Alexa Fluor 488 goat-coupled anti-guinea pig antibody (green fluorescence) was used 

to detect the primary anti-ADRP antibody [Fig 4.47]. No fluorescence was visible in 

the primary negative control (Fig 4.48). Non-specific background staining was present 

in the secondary antibody control (Fig 4.49). Cleavage of ELF 97 phosphatase 

substrate by ALP produces a bright yellow/green colour when viewed using a DAPI 

long pass filter [Fig 4.50]. The control for ELF 97 substrate, which did not yield a 

signal, was produced by incubating cells with a known inhibitor of ALP (levamisole) 

[Fig 4.51]. Non-transformed HepG2 cells were also stained for ALP and labelled for 

ADRP and neither ALP activity nor ADRP were visible [Fig 4.52]. 
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Figure 4. 47  Immunolabelling of ADRP in HepG2 cells. 

A - Staining of ADRP on the periphery of lipid droplets (green) using Alexa Fluor 488 goat 

conjugated anti-guinea pig secondary antibody. Cell nucleus was counterstained with DAPI 

(blue). B - Phase contrast image of cell shown in A. LD= lipid droplet. Scale bar =20µm. 

Original magnification x100. 
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Figure 4. 48 Primary antibody control in immuostaining of ADRP in HepG2 

cells. 

A - Cells were incubated with anti-ADRP antibody in the absence of the secondary antibody 

(Alexa Fluor 488 goat conjugated anti-guinea pig secondary antibody). Fluorescence was not 

present. Cell nucleus was countestained with DAPI (blue). B - Phase contrast image of cell 

shown in A. LD= lipid droplet. Scale bar =20µm. Original magnification x100. 
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Figure 4. 49 Secondary antibody control in immuostaining of ADRP in HepG2 

cells. 

A – Non-specific background staining of cells incubated with the secondary antibody (Alexa 

Fluor 488 goat conjugated anti-guinea pig secondary antibody) in the absence of the anti-

ADRP primary antibody. Staining is cytoplasmic. Cell nucleus was counterstained with DAPI 

(blue). B - Phase contrast image of cell shown in A . LD = lipid droplet. Scale bar =20µm. 

Original magnification x100.  
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Figure 4. 50 ELF 97 staining of ALP activity and immuostaining of ADRP in 

HepG2 cells. 

A - Yellow green staining of ALP activity captured using the DAPI long pass filter (Amax 

=345nm & Emax=455nm). B - ADRP staining (Alexa Fluor 488 goat conjugated anti-guinea pig 

secondary antibody). C - Phase contrast image of cell shown in A-B. Scale bar =20µm. 

Original magnification x100. 
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Figure 4. 51 Control for ELF 97 staining of ALP activity and immuostaining of 

ADRP in HepG2 cells. 

A - ADRP staining (Alexa Fluor 488 goat conjugated anti-guinea pig secondary antibody). B - 

DAPI filter image after incubation with 7mM levamisole (inhibitor of ALP) for 1 hour at room 

temperature. C - Phase contrast image of cell shown in A-B. Scale bar =20µm. Original 

magnification x100. 
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Figure 4. 52 ELF 97 ALP staining and ADRP labeling in non-transformed HepG2 

cells. 

A - Non specific background staining due to Alexa Fluor 488 goat conjugated anti-guinea pig 

secondary antibody. B - ALP activity staining was not present. C - Phase contrast image of 

cell shown in A. Scale bar =20µm. Original magnification x100. 

 

4.6  Single nucleotide polymorphisms in the promoter region of the human 

TNSALP gene 

The profound difference in pre-adipocyte ALP activity observed between white and 

black South African females (Ali et al. 2006) suggested that either the catalytic 

activity or the level of expression of the enzyme was much higher in the latter group.   
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It was therefore decided to analyse the promoter region of the ALP gene to 

determine if genomic sequence variation existed between the 2 ethnic groups. 

Three important motifs to which specific transcription elements (Sp1,the RARE 

and Dlx 5 binding cis-element) bind have been described in the promoter region of 

the human TNSALP gene (Weiss et al. 1988). These motifs are scattered across the 

promoter region, so the whole promoter region was therefore sequenced to search 

for any nucleotide base changes that could play a role in regulating the rate of 

transcription. Seven sets of overlapping PCR primers were used to amplify the 

promoter region of the human TNSALP gene. 

 

4.6.1  Optimized PCR conditions and gel electrophoresis of PCR products 

By changing one or several PCR parameters, conditions described in Table 3.15 and 

3.16 were found optimal in amplifying the promoter region. An agarose gel image of 

PCR products after electrophoresis is shown in Fig. 4.53 below. All PCR products 

corresponded to the predicted PCR product sizes. 
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Figure 4. 53 Agarose gel image of PCR products for the 7 sets of primers (S1- 

S7) used to amplify the promoter region of the human TNSALP 

gene.  

PCR products were separated on a 2% agarose gel stained with ethidium bromide. A 50bp 

MWM was used to size the PCR amplicons. Sizes of the molecular weight marker (MWM) are 

shown on the left hand side of the gel. No template is the negative control. PCR primer 

location on the gene is shown in Appendix I. 

 
  

4.6.2  Sequencing of PCR products 

Sequence results of the seven fragments of PCR products for each of the 12 subjects 

were aligned and compared with the reference sequence using Sequencher 4.7. No 

single nucleotide base changes were identified in the sequenced strands. Below is a 

chromatogram of one of the sequenced samples (Fig. 4.54). 
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Figure 4. 54 Chromatogram of a sequenced PCR product (genomic DNA as a 

template) using PCR primer set 3. 

No nucleotide base changes were identified when the sequenced strands were aligned with a 

Gene Bank reference sequence. 
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5.0  Introduction 

Obesity is defined as a state of increased body fat tissue mass that arises from an 

imbalance between energy intake and expenditure. It is associated with increased fat 

cell size and number. An increase in fat cell number appears to correlate well with 

severity of human obesity even in late adult life (Hirsch and Batchelor 1976). Debate 

about whether obesity should be called a disease or simply a condition continues. The 

authors of one paper argue that because “obesity has a known aetiology and 

pathogenesis, it meets the criteria required to call it a disease” (Bray 2004). The 

prevalence of obesity is increasing worldwide and is known to be a major risk factor 

for type 2 diabetes, cardiovascular diseases and a number of many other disorders 

(Flegal et al. 2005). It is therefore, not surprising that over the past decade there has 

been an upsurge of knowledge about adipocyte biology mainly focusing on the factors 

and mechanisms that influence adipocyte determination and differentiation (Ruesch 

and Klem 1994; Gregoire et al. 1998; Fajas et al. 2001). 

Ali et al. (2006) reported for the first time that ALP plays a role in the control of 

adipogenesis in the murine preadipocyte cell line, 3T3-L1 and in human preadipocytes 

and it was therefore suggested by the authors that this enzyme may be a prime 

candidate for the future development of therapeutic interventions for obesity and its 

related diseases. 

The present study demonstrates that ALP that is expressed in a human 

hepatocarcinoma derived cell line (HepG2) plays a role in intracellular lipid 

accumulation. 
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This study also sheds more light on the characterization of the role that ALP 

plays in adipogenesis or lipid accumulation in both the 3T3-L1 and HepG2 cells in 

terms of determining the spatial relationship of ALP activity with the lipid droplets, 

studying the relationship between the expression of PPAR  gene with the progression 

of lipid droplet accumulation and determining the effects of inhibiting or blocking ALP 

activity on intracellular lipid accumulation in the two cell types. 

 

5.1  ALP activity and intracellular lipid droplet accumulation in 3T3-L1 and 

HepG2 cells 

The major morphological change that occurs during adipogenesis is intracellular lipid 

accumulation. This is preceded by characteristic changes in cell shapes from a more 

spindle-like shape into a circular shape that enables the cells to store the maximal 

amount of lipid (Smas and Sul 1995). The distinct shapes result from the 

rearrangements of the various cytoskeletal components inside the cell including 

microtubules and intermediate filaments (Chisholm 2002). 

This study has shown for the first time that the ALP expressed in HepG2 cells 

plays a role in the formation of intracellular lipid droplets. It has been previously 

reported that the main ALP produced by HepG2 cells is the TNSALP (Nowrouzi and 

Yazdanparast 2005). 

ALP activity increased parallel to lipid droplet accumulation in both 3T3-L1 and 

HepG2 cells. In 3T3-L1 cells ALP activity increased from day 0 (baseline) to day 7 and 

declined on day 11 post-induction of transformation. In HepG2 cells, the decline in ALP 

activity was earlier than in 3T3-L1 cells, that is day 4 post-induction of lipid droplet 
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accumulation. In both cell lines intracellular lipid accumulation continued to increase 

from day 0 to day 11. 

ALP activity on day 0 (before induction of lipid droplet formation) was higher in 

HepG2 than in 3T3-L1 cells. This may be due to the fact that the HepG2 cells are 

terminally differentiated whilst 3T3-L1 cells are “immature” adipocytes. With 

differentiation, the level of ALP activity in the 3T3-L1 cells increases to levels similar to 

those seen in the HepG2 cells. 

In the conversion of preadipocytes into adipocytes it seems that ALP is required 

at a later stage of this metabolic process and maybe involved in the initiation of lipid 

accumulation within the membrane-bound lipid droplet. Other genes have also been 

reported to be temporarily up-regulated when preadipocytes are induced to 

accumulate lipids in vitro and include: c-fos, c-jun, c-myc and C/EBP  and  (Cornelius 

et al. 1994), C/EBP  and PPAR  (Gregoire et al. 1998). Most of these peptides are 

transcription factors that induce adipogenesis and precede the expression of the genes 

that characterise a cell as a mature adipocyte. 

Once pre-adipocytes are induced to accumulate lipids in vitro, the process is 

irreversible and the lipid droplets continue to increase in size even when the pro-

differentiation medium is withdrawn. One study reported a high ALP activity in the 

small, multilobular pre-adipocytes isolated from human bone marrow but absent from 

the large, unilobular mature adipocytes (Bianco et al. 1988). It could therefore be 

hypothesised that in humans ALP is important only during the final stages of 

adipogenesis and is not required for mature adipocyte function. 
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This may explain the decrease in ALP activity after day 4 in HepG2 cells and 

day 7 in 3T3-L1 cells but an increase in lipid accumulation up to day 11 of the 

experiment. This would suggest that addition of ALP inhibitors after day 4 in HepG2 

and day 7 in 3T3-L1 cells would have minimal or no effect on lipid accumulation 

compared to addition before these time points. The time course of ALP expression and 

its subcellular location suggest that it may be important in the initiation of lipid droplet 

formation but is not required for maintenance of the lipid droplet. 

In normal physiology, it is possible that hepatocytes tend to „protect‟ 

themselves from accumulating excessive intracellular lipids in order to maintain the 

fine cellular ultrastructure that is crucial to the many important biochemical pathways 

taking place in liver cells. This might be the reason why the ALP gene is 

downregulated earlier in HepG2 than in 3T3-L1 cells during the adipogenic process. 

Also, the adipose cells being the cells dedicated to fat storage and metabolism may 

have a better capacity to accumulate intracellular lipids than HepG2 cells. 

In terms of lipid droplet size, 3T3-L1 cells accumulated bigger droplets than 

HepG2 cells. As the lipid droplets formed, they tended to coalesce into bigger 

structures often unilocular and formed a better defined ring shape in the cytoplasm 

(around the nucleus) in 3T3-L1 than in HepG2 cells. The characteristic change in cell 

shape observed in 3T3-L1 cells as they accumulated intracellular lipid (rounding up) 

was not observed in HepG2 cells. It is not yet clear if the differences observed could 

be due to the differences in the regimen used for inducing intracellular lipid formation 

in the two cell types. 
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To my knowledge, there are no reports of the use of transformation cocktails 

containing hormones such as insulin to stimulate lipid droplet accumulation in HepG2 

cells in vitro. It would be worthwhile to study the liver ALP activity pattern in rodent 

models of NASH and find out if ALP is involved in the pathophysiology of the disease. 

The possible mechanisms where TNSALP may be involved in intracellular 

accumulation of neutral lipids in some lipid-storing cells is discussed further in section 

5.4.1. 

 

5.2  Pharmacological inhibition of ALP activity blocks intracellular lipid 

accumulation in HepG2 cells and adipogenesis in 3T3-L1 cells. 

Ali et al. (2003) showed that the ALP isoenzyme that is inhibited by levamisole and 

histidine but not Phe-Gly-Gly is expressed in the 3T3-L1 cells. This property is 

characteristic of the murine TNSALP isoenzyme (Ohkubo et al. 2000). The human 

TNSALP isoenzyme, shares 90% amino acid sequence homology with the murine 

TNSALP isoenzyme (Terao and Mintz 1987). Ali et al. (2003) reported in the same 

study that inhibition of ALP with histidine reduced intracellular lipid accumulation in 

3T3-L1 cells and in human preadipocytes while levamisole inhibited ALP activity and 

intracellular lipid accumulation in 3T3-L1 cells but not in isolated human 

preadipocytes. 

The present study has shown the inhibition of ALP activity by histidine and 

levamisole in HepG2 cells. Intracellular lipid droplet accumulation in HepG2 cells was 

siginificantly reduced by the two inihibitors. 
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At the concentrations used in this study, histidine showed a stronger inhibitory 

effect on ALP activity and a correspondingly greater reduction in intracellular lipid 

accumulation than levamisole (Fig.4.6 page 122). This suggests that all the machinery 

required for lipid accumulation is present within the cells but that reduced ALP activity 

dramatically slows down this process. 

The ability of the two ALP inhibitors to reduce intracellular lipid accumulation in 

HepG2 suggests that ALP is involved in the metabolic processes related to intracellular 

lipid accumulation. However, it must be noted that both inhibitors have other effects 

that may also lead to the inhibition of lipid deposition, and these will be discussed 

below. 

Levamisole is an agonist of both adrenergic and nicotinic receptors (Hsu 1980) 

and has been ascribed to increase the activity of enzymes like glycogen synthase in rat 

adipocytes (Basi et al. 1994) and pyruvate dehydrogenase in rat fat pads 

(Thomaskutty et al. 1993). 

 The transcriptional activity of ADD1/SREBP1c in murine 3T3-L1 cells is down-

regulated by an increased expression of glycogen synthase (which is directly regulated 

by glycogen synthase kinase 3 [GSK3]) (Kim et al. 2004). ADD1 is a transcriptional 

factor that is involved in the stimulation of many lipogenic genes and it has been 

suggested that ADD1 plays a role in coordinating insulin-dependent lipid and glucose 

metabolism (Kim et al. 1998; Foretz et al. 1999). Increased activity of glycogen 

synthase therefore results in decreased intracellular lipid accumulation. 
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In one study, the decreased activity of pyruvate dehydrogenase complex 

(PDHc) was found to be associated with increased fat storage in pancreatic -cells in 

rats (Pighin et al. 2003). Lipotoxicity leading to pancreatic -cell dysfunction is well 

documented (Rossetti et al. 1990; McGarry and Dobbins 1999). 

The participation of adrenergic receptors (ARs) in the regulation of adipose 

tissue development and metabolism is well known (Soloveva et al. 1997). Stimulation 

of the 3-ARs in adipocytes leads to increased lipolysis primarily through the 

production of cAMP via coupling of G proteins to adenyl cyclase and the activation of 

hormone-sensitive lipase whereas stimulation of 2-ARs leads to increased lipid 

storage through the inhibition of cAMP production (Lafontan and Berlan 1993). The 

net lipid mobilization depends on the balance between stimulatory and inhibitory 

effects of catecholamines on beta and alpha ARs respectively (Mauriege et al. 1987). 

Levamisole binds the β-adrenergic receptors and could therefore block intra-cellular 

lipid accumulation by increasing lipolysis. 

Soloveva et al. (1997) reported a 2-fold increase in the level of -AR transcripts 

in transgenic mice over-expressing 1-AR and the activation of these receptors was 

reported to prevent excessive adiposity. In humans, a functional glutamine 27 

glutamic acid (Gln27Glu) polymorphism in the beta2-AR gene has been associated 

with the male-type adiposity (increase in fat mass in the upper body region 

particularly in the abdomen) in women and thus an increased cardiovascular risk 

(Kunnas et al. 2009). 



Chapter Five  Discussion & Conclusion 

 196 

It is unlikely that levamisole blocks intra-cellular lipid accumulation via the 

nicotine acetylcholine receptor since activation of this receptor by nicotinic acid blocks 

lipolysis via the inhibition of cAMP accumulation in adipose tissue through mechanisms 

similar to those previously described for the ARs (Tunaru et al. 2003).   

Rae et al. (2003) reported the inhibition of the amino acid system A transporter 

(SAT2) by histidine (Rae et al. 2003). SAT2 is ubiquitously expressed and confers a 

Na+-dependent ability for the transport of short-chain neutral amino acids. SAT2 is 

known to be expressed in 3T3-L1 cells (Hyde et al. 2001). It is not known how the 

inhibition of the SAT2 system could inhibit intracellular lipid accumulation, however it 

is known that SAT2 levels increase during adipogenesis in 3T3-L1 cells  (Su et al. 

1998) and may provide amino acids for increased protein synthesis. 

Thus it is also possible that histidine may affect other biomolecules than ALP 

and by this mechanism block intracellular lipid accumulation. 

Inhibition of ALP activity in the osteoblastic cell line (SV-HFO) using levamisole 

was shown to cause reduced cellular mineralization even in the presence of 

dexamethasone (Iba et al. 1995). As such ALP has been used as one of the early 

markers of osteoblast differentiation (Naito et al. 2005; Hsu et al. 2007; Wang et al. 

2007). However, the use of ALP activity as a marker of differentiation of mesenchymal 

cells into osteoblasts is now questioned as a result of the evidence that ALP is also an 

important marker of the adipogenic process. 
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The present study has gone a step further by inhibiting ALP activity with siRNA 

designed against the TNSALP mRNA transcripts and studying its effects on intracellular 

lipid accumulation in both the 3T3-L1 and HepG2 cells. 

 

5.3  The RNA interference pathway and the knockdown of specific mRNA 

transcripts 

The interpretation of results on the effects of levamisole and histidine on ALP activity 

and lipid accumulation in 3T3-L1 and HepG2 cells is fraught with difficulty because of 

the lack of specificity of the two inhibitors on ALP activity, as already noted. Specific 

silencing of ALP activity using the RNA interference pathway could better clarify the 

involvement of this glycopotein in intracellular lipid accumulation. 

In the initial application of RNAi to study the expression of mammalian genes, 

the major setback was that the introduction of double stranded RNA greater than 30 

nucleotides in length led to non-specific suppression of gene expression. However, as 

the RNAi system became better understood, scientists discovered that short interfering 

RNA oligos of 23 nucleotides could be used to mediate gene silencing in mammalian 

cells and no non-specific gene silencing effects were seen in mammalian cells using 

such siRNA species (Elbashir et al. 2001). At the same time it was confirmed that 

identically sized synthetic siRNAs can induce gene-specific inhibition of expression in 

C.elegans, human and mouse cells (Caplen et al. 2001). Consistent with this 

observation, numerous studies have since shown that double-stranded RNA-induced 

gene silencing occurs in a number of different eukaryotic species (Timmons and Fire 
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1998; Hammond et al. 2000; Li et al. 2000; Wianny and Zernicka-Goetz 2000; 

Semizarov et al. 2003). 

The RNAi human/ mouse starter kit (Qiagen Technologies) is a good starting 

point for establishing unknown transfection conditions in cell lines. Use of the 

fluorescently-labelled siRNA provides convenient monitoring of transfection efficiency. 

When siRNAs are used at low concentrations any potential off-target effects are 

minimized. 

 

5.3.1  Effect of siRNA transfection on ALP activity and intracellular lipid 

accumulation. 

Using siRNA directed against mRNA transcripts for TNSALP, we have shown for the 

first time that the inhibition of intracellular lipid accumulation in 3T3-L1 and HepG2 

cells is mediated by TNSALP. Thus, the specific siRNA directed against the TNSALP 

transcript reduced ALP activity and lipid accumulation in both cell lines. 

Western blots were not used to confirm the reduction of TNSALP protein levels 

because this was deemed unnecessary since ALP activity was measured in the cell 

extracts. The assessment of ALP activity is the most pertinent measure of the end 

result of TNSALP mRNA knockdown. Furthermore, the temporal profile of the 

transcript knockdown and the reduction of ALP activity were superimposible in both 

cell lines suggesting a direct link between these two events. It is impossible to explain 

these results without inferring that the knockdown of the TNSALP mRNA led to a 

reduction in the intracellular levels of the ALP enzyme. 
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The use of the AllStars negative siRNA was a good internal control to assess the 

non-specific off-target effects that the double-stranded RNA molecules could have on 

the cells in general and lipid metabolism in particular. Cells that were treated with 

Allstars negative siRNA gave results (in terms of ALP activity, mRNA expression levels 

and lipid accumulation) that were very similar to untreated cells. Furthermore, 

expression of the housekeeping TBP gene was not affected by the anti-TNSALP siRNA 

which also suggests that off-target effects of the siRNA were minimal. 

5.3.2  Effect of siRNA transfection on TNSALP gene expression 

The expression of the TNSALP gene determined indirectly through measuring the 

levels of its mRNA on day 0 was zero in 3T3-L1 cells. This is in keeping with the 

TNSALP protein activity which was also undetectable on day 0. On day 7 the 

knockdown efficiency was 81.3% ± 2.7 (SEM) in cells that were transiently transfected 

with the siRNA and this was mirrored by low ALP activity at this same time point. The 

expression of TNSALP declined on day 11 and again this is consistent with the ALP 

activity level determined at the same time point. In untransfected HepG2 cells, the 

expression of the TNSALP gene was highest on day 4 after which it declined. ALP 

activity was also highest on day 4 and a sharp decline was observed after this time 

point. In HepG2 cells transfected with the silencing siRNA, the suppression of ALP 

activity on day 4 was mirrored by a significant reduction in ALP mRNA levels 

determined on the same time point. On day 4, the knockdown efficiency of the 

TNSALP gene was 80.0% ± 8.9. 
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There are no reports on the knockdown of the TNSALP gene in 3T3-L1 and 

HepG2 cells in the literature. However, one study showed that TNSALP knock-out mice 

developed epileptic seizures the origin of which has been linked to deficiency in 

pyridoxal-5-phosphate and GABA metabolism (Waymire et al. 1995). This study 

reported “that mice homozygous for the mutant TNSALP allele were indistinguishable 

from littermates at birth. During the first two weeks postnatally, the single gross 

difference between mutants and heterozygotes or wild-type littermates was their size, 

which ranged from 50% to 100% of that of control littermates” (Waymire et al. 1995). 

The authors, however, did not mention differences in other anthropometric 

measurements such as body fat and muscle mass. However, another study of TNSALP 

knockout mice described both reduced bone mineral density and the presence of very 

little adipose tissue (Narisawa et al. 1997). 

Though the efficiency of transfection using siRNA for the TNSALP gene in both 

3T3-L1 and HepG2 cells was not determined, based on the results of the MAPK1 gene 

it can be argued that the efficiency of transfection was not 100% and this may explain 

the retention of low levels of TNSALP gene expression in the presence of the TNSALP 

siRNA in both cell types. 

The knockdown of the TNSALP gene in 3T3-L1 and HepG2 cells and the 

resultant reduced intracellular lipid accumulation confirms the important role that ALP 

plays in adipogenesis.  

The positioning of the TNSALP protein on the membrane of the lipid droplet in 

both HepG2 and 3T3-L1 cells and its expression late in the adipogenic process suggest 
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that it functions downstream of PPAR . This is also implicated by the lack of effect of 

TNSALP inhibitors on PPAR  expression. It is therefore unlikely that the knock-down of 

TNSALP mRNA would affect the expression of other key transcription factors involved 

in gene regulation early in the adipogenic pathway e.g. SREBP1 or the C/EBPs. Future 

investigations must explore the effect of TNSALP mRNA knock-down on the expression 

of proteins that act as markers of the mature adipocyte such as hormone sensitive 

lipase or FABP1, as well as the transcriptional regulation of the TNSALP gene. This 

data would help to show the effect and relationship of ALP with proteins characteristic 

of developing adipocytes. 

5.4  Subcellular localization of ALP in HepG2 cells 

A large body of evidence points out that ALP is a membrane-associated glycoprotein 

(Harris 1990; Detmers et al. 1995) and is anchored to cell membranes via a PI-G tail 

(Jemmerson and Low 1987; Kihn et al. 1990). A number of studies have also shown 

that the membrane surrounding the lipid droplet in a number of cell lines (for 

example, preadipocytes, murine MA-10 Leydig cells and adrenal Y-1 cells) contain 

perilipin, vimentin and ADRP (Greenberg et al. 1991; Servetnick et al. 1995; 

Brasaemle et al. 1997). All these proteins are known to be phosphoproteins. ADRP is 

the predominant protein of the lipid droplets in adrenal cells, macrophages and 

hepatocytes (Brasaemle et al. 1997; Lu et al. 2001; Motomura et al. 2006). It has 

been suggested that perilipin protects the lipid droplets from lipolytic enzymes and 

may play a role in management of neutral lipid stores (Servetnick et al. 1995). 
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The membrane of lipid droplets is closely associated with that of the 

endoplasmic reticulum and other secretory vesicles (Targett-Adams et al. 2003). This 

may enable shuttling of biomolecules between the lipid droplet compartment and the 

secretory vesicles. There is growing evidence that the association between lipid 

droplets and other vesicles point to novel functions of droplets in organelle 

communication. Droplet translocation through the cytoplasm and rapid movement on 

microtubules has been observed (Valetti et al. 1999). 

The present study has shown for the first time that ALP localizes on the lipid 

droplet membrane in a human hepatocarcinoma cell line, HepG2 cells. It appears that 

this is the same locality within these cells where ADRP is also expressed. In 3T3-L1 

cells, ALP activity was co-localised on the lipid droplet with perilipin. 

ALP activity was demonstrated using the ELF 97 endogenous phosphatase 

detection kit (Molecular Probes). This method gives specific labelling of ALP activity 

and is compatible with other detection methods e.g. fluorescence staining  (Cox and 

Singer 1999). One important aspect to observe in using the ELF 97 kit to detect 

endogenous phosphatases is to be able to demonstrate that no ALP signal is present 

when a specific inhibitor of ALP is incubated with the cells before the ELF 97 reaction. 

Inhibition of ALP activity by levamisole in this study blocked the ELF 97 signal, 

confirming that this technique was detecting ALP activity. No ALP activity was seen in 

non-transformed HepG2 cells using the ELF 97 substrate suggesting either that this 

method is not sensitive enough to detect ALP activity at this time point or that no ALP 

is present in these cells before the induction of lipid droplet formation. This seems 
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unlikely, because ALP activity could be measured in HepG2 cells before stimulation of 

intracellular lipid accumulation. A previous study has reported immunocytochemical 

localisation of ALP to the nucleus of HepG2 cells (Yamamoto et al. 2003) whilst a 

study of cultured rodent hepatocytes have shown localisation of ALP to the nuclear 

membrane, the endoplasmic reticulum, the Golgi apparatus and the plasma membrane 

(Asada-Kubota and Kanamura 1986). 

Immunocytochemical analysis of ALP sub-cellular localisation was also 

attempted using ALP monoclonal antibodies. However, this method was unsuccessful 

with poor visualisation of the immunocytochemical stain and high non-specific binding 

of the antibodies. 

The localization of ALP to the lipid droplet membrane supports the supposed 

role that ALP plays in intracellular lipid accumulation. However, it is not known what 

ALP does on the surface of the lipid droplet membrane. The following sections will 

discuss the possible role of ALP in intracellular lipid accumulation. 

 

5.4.1  Proposed mechanisms of TNSALP mediated intracellular lipid 

accumulation. 

In light of the current body of information on the localization and activity of ALP in 

human tissue and a number of cell lines it is not easy to propose a unifying 

mechanism that clearly shows the role of ALP in intracellular lipid accumulation. 

Indeed, there are a number of possible mechanisms by which ALP may be involved 

and these will be discussed below. 
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5.4.1.1  ALP in neutral lipid synthesis 

It is possible that ALP may be involved in the intracytoplasmic synthesis of neutral 

lipids (TAG and cholesterol esters). An important and possibly rate-determining step in 

the biosynthesis of TAG in all eukaryotic cells is the conversion of phosphatidic acid 

into diacylglycerol [DAG] by phosphatidic acid phosphatase [PAP] (Bell and Coleman 

1980; Carman and Han 2009). Stimulation of the activity of the cytoplasmic fraction of 

PAP in human liver tissue has been reported when the liver tissues were pre-incubated 

with ALP (Angelin et al. 1987). A previous study reported similar findings when rat 

liver tissues were used (Berglund et al. 1982). Dephosphorylation by ALP may 

therefore be of importance in regulating the activity of PAP in animals. 

 
The pathway of TAG biosynthesis is shown in the scheme below: 
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Figure 5. 1 Triacylglycerol biosynthesis 

An increase in ALP activity stimulates the activity of PAP* which results in the increased 

synthesis of DAG. DAG can be converted directly into TAG by DAG acyltransferase. 

 

Alternatively, DAG can be shuttled into a pathway leading to the formation of 

inositol 1, 4, 5 triphosphate [IP3]. IP3 binds with the receptors in the membrane of the 

smooth endoplasmic reticulum [ER] where it helps opening of Ca2+ channels. The 

resulting increase in free cytoplasmic calcium synergizes with the action of DAG in 

activation of some forms of protein kinases and may activate many other calcium-

dependent processes (Rhoades and Bell 2009). Protein kinase C is reported to 

phosphorylate receptor interacting protein 140 (RIP 140). RIP 140 is abundantly 
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expressed in adipocytes and is known to regulate lipolysis through its interaction with 

perilipin (Ho et al. 2011). In HepG2 cells however, activation of AMP-activated protein 

kinase  (AMPK ) reduced lipid accumulation caused by incubation of cells with 

palmitate (Liu et al. 2011). 

 In future it would be worthwhile to assay the activity of PAP in cell extracts in 

which ALP activity has been blocked by either siRNA oligos or chemical inhibitors to 

study the role that the two enzymes play in lipid accumulation. 

 

5.4.1.2  Interaction with lipid droplet associated proteins  

TNSALP is a membrane-bound glycoprotein and therefore its supposed role in lipid 

droplet formation could possibly be exerted at the level of the lipid droplet membrane. 

This could involve the interaction of ALP with membrane receptors or phosphoproteins 

located on this membrane. Perilipins are the most abundant phosphoproteins that 

associate with the lipid droplet in a number of lipid storing-cell types (Londos et al. 

1999). 

Perilipins (especially Perilipin A) regulate TAG storage by reducing rates of basal 

lipolysis and facilitating hormonally stimulated lipolysis (Garcia et al. 2004). The 

phosphorylation of perilipins by protein kinases (PKA) causes a large increase in the 

rate of lipolysis (Souza et al. 2002; Tansey et al. 2003). One study has suggested that 

perilipins, in the phosphorylated state, may be hormone sensitive lipase (HSL)-binding 

proteins (Sztalryd et al. 2003) and are involved in docking the HSL at the surface of 

the lipid droplet membrane. Inhibition of ALP activity may therefore allow for lipolysis 
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by reducing de-phosphorylation of perilipin and thus increasing docking of HSL at the 

surface of the lipid droplet membrane. 

The role of perilipin in lipid storage in vivo is supported by studies using 

perilipin knockout mice. Tansey et al. (2001) reported that perilipin null mice were 

leaner than wild type littermates and were resistant to diet induced obesity. 

Adipocytes isolated from perilipin null mice showed  elevated basal lipolysis (Tansey et 

al. 2001). 

If ALP is a phosphophoprotein phosphatase, its localization on the lipid droplet 

membrane would suggest that ALP may be involved in maintaining perilipins and 

possibly other members of the PAT family of phosphoproteins in the de-

phosphorylated state. 

 

5.4.1.3  TNSALP as a transport protein 

Narisawa et al. (2003) presented evidence that intestinal ALP (I-ALP) is involved in the 

rate-limiting step during intestinal fat absorption in rats. Thus, I-ALP gene knockout 

rats showed an accelerated rate of fat absorption compared to the wild type rats when 

fed on a high fat diet (Narisawa et al. 2003). Furthermore, I-ALP was found on the 

surface of membrane bound lipid particles that are involved in the transport of lipids 

into and across enterocytes (Zhang et al. 1996). These data suggest that I-ALP is a 

prime regulator of fat absorption into the enterocytes lining the intestine and may give 

some indication of the possible role of TNSALP in preadipocytes and hepatocytes. 

A physiological role for ALP in the regulation of organic cation transport at the 

blood brain barrier has been suggested in rat brain endothelial 4 (RBE4) cells (Calhau 
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et al. 2002). How the transport of organic cations may relate to the role of ALP in the 

control of intracellular lipid accumulation however, is not known. 

In bacteria, the presence of phosphate groups usually prevents organic 

molecules from passing through the membrane. Dephosphorylating the membrane 

proteins is known to be important for bacterial uptake of organic compounds 

(www.en.academic.ru.dic.nsf/enwik/). If this happens in eukaryotes, then this may 

also be a possible mechanism through which ALP mediates lipid accumulation by 

facilitating passage of organic molecules that may be utilized in lipid synthesis. 

Alternatively, ALP may be involved in the hydrolysis of ATP and this could be 

linked to the energy requiring process of lipid droplet formation (Shinozaki and Pritzker 

1996). 

5.5  PPAR  gene expression in 3T3-L1 and HepG2 cells 

A number of studies have reported the involvement of PPAR  in intracellular lipid 

accumulation in various cell lines and primary cells (Brun et al. 1996; Wu et al. 1997; 

Emma and Yousef 2003; Seargent et al. 2004; Schadinger et al. 2005). 

Often refered to as the „master regulator of adipogenesis‟, PPAR  participates in 

the transcriptional activation of numerous adipogenic and lipogenic genes important 

for adipocyte maturation and lipid accumulation. Examples of such genes are PEPCK 

(Tontonoz et al. 1995), fatty acid transport protein-1 (Martin et al. 1997), Glut4 (Wu 

et al. 1998), lipoprotein lipase (Schoonjans et al. 1996) and aP2 (Tontonoz et al. 

1994). 

http://www.en.academic.ru.dic.nsf/enwik/
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There are a few reports of the involvement of the PPAR  gene in metabolism in 

hepatocytes. Some of the reports are discussed below and these studies were carried 

out in rodents. 

A PPAR -responsive element has been identified in mouse hepatocytes and 

these elements are important in the control of hepatocyte growth factor (HGF) gene 

transcription (Jiang et al. 2001). HGF promotes cell growth, cell motility and 

morphogenesis of its target cells (Michalopoulos and DeFrances 1997).  Furthermore, 

studies have shown that treatment of rat hepatocytes with HGF leads to increased 

lipogenesis (Shao et al. 1996; Kaibori et al. 1998; Shiota et al. 2000). 

Hepatic PPAR  protein expression measured immunohistochemically in mice 

with liver steatosis induced by a high fat diet revealed an increased expression 

compared to control mice (Inoue et al. 2005). This study shows that PPAR  activity is 

associated with lipid accumulation in liver cells. 

One study has shown that PPAR  regulates lipogenesis and lipid accumulation 

in steatotic hepatocytes (Schadinger et al. 2005). This phenomenon is accompanied by 

a selective upregulation of several adipogenic and lipogenic genes including ADRP, 

SREBP1 and fatty acid synthase. 

These studies demonstrate that at least in rodents, PPAR  may be involved in 

the lipid accumulation observed in hepatocytes and may also modulate the 

steatohepatitis associated with obesity. 

In this study we have shown for the first time that the expression of the PPAR  

gene increases during lipid accumulation within the human derived liver cell line, 
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HepG2. The expression of the PPAR  gene was found to be highest four days after 

addition of transformation medium in both 3T3-L1 and HepG2 cells. After day 4 the 

expression declined to levels not significantly different from the baseline values. The 

expression of PPAR  has been reported to reach a maximum between day 3 and 4 

after induction of lipid droplet accumulation in a number of other studies (Wu et al. 

1995; Clarke et al. 1997; Jessen and Stevens 2002). Other studies have shown that 

the increase in PPAR  expression varies from 2 (Zizola et al. 2010) to 8 (Chung et al. 

2010) fold over a 4 day period of adipogenesis in 3T3-L1 cells. In this study, PPAR  

expression increased 2 to 3 fold in the 3T3-L1 cells, which is comparable to the 

literature. 

 Interestingly, ALP activity and PPAR  gene expression peak at the same time 

point in the hepatocyte cell line but in the preadipocytes PPAR  gene expression peaks 

before ALP activity. This suggests a difference in the time course of the principal 

events that control intracellular lipid accumulation in the two cell lines. 

The decline in the activity of PPAR  after day 4 suggests the completion of the 

differentiation process and a lessening of the need for direction of new transcript 

synthesis (Jessen and Stevens 2002). 

5.5.1  Levamisole and histidine do not alter the expression pattern of the 

PPAR  gene in 3T3-L1 and HepG2 cells 

The question of whether the activation of the PPAR  gene precedes that of the ALP 

gene was addressed by incubating HepG2 and 3T3-L1 cells with ALP inhibitors and 

determining the effect of this treatment on the PPAR  gene expression. The 
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expression of the PPAR  gene peaked on day four after the induction of lipid droplet 

accumulation and declined to near base line levels on day 7 in the presence of the two 

ALP inhibitors (levamisole and histidine) in both cell types under study. This 

expression pattern is similar to the one observed when the cells were not treated with 

the two inhibitors. Use of the two ALP inhibitors nevertheless caused inhibition of both 

intracellular lipid accumulation and ALP activity as discussed in section 5.2. 

These results suggest that in both HepG2 and 3T3-L1 cells PPAR  gene 

activation does not require the presence of functional ALP. It is therefore possible that 

ALP acts at a later stage in the adipogenic pathway than PPAR  or in a separate 

pathway to that of PPAR  and which is critrical for intracellular lipid accumulation. 

5.6  Ethnic differences in ALP activity and the role of SNPs in the promoter 

region of the human TNSALP gene 

A national survey has shown that obesity is more prevalent in South African black than 

white women (Puoane et al. 2002). In a study performed in our department significant 

differences in ALP activity and adipogenesis were seen in preadipocytes isolated from 

white and black women, the activity being higher in the latter group (Ali et al. 2006a). 

This may partly explain the higher prevalence of obesity in the black population group. 

In the present study we hypothesized that the differences in ALP activity 

mentioned above could be due to differences in the rates of transcription of the ALP 

gene. The possible role that SNPs in the promoter region of the human TNSALP gene 

could play in moderating the transcription process was therefore investigated. 
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Sequencing results of the promoter region for the TNSALP gene amplified from 

6 black women (BMI 33.0  4.6; age 49.7  6.3 years) and 6 white South African 

women (BMI 31.5  4.5; age 39.5  11.9 years) did not show any nucleotide changes.  

No significant difference in the fat mass was observed between black and white 

women who participated in the study (Appendix II). 

In a study by Ali et al. (2006a) the difference in ALP activity in pre-adipocytes 

isolated from black and white women was so profound that if polymorphisms in the 

promoter region of the TNSALP gene were responsible for this difference, it should be 

present at a very high frequency in the one population group compared to the other 

and thus should be detectable even in a small group of subjects. Also, in the study of 

Ali et al. (2006a) the level of preadipocyte ALP activity was not related to BMI and 

therefore, the inability of the current study to identify an ALP promoter polymorphism 

cannot be due to the use of predominantly obese subjects. In the original study of Ali 

et al. (2006a) differences in ALP activity were observed between pre-adipocytes from 

15 white and 13 black females before addition of the adipogenesis-inducing cocktail 

i.e. at day 0 (36.5 ± 5.8 versus 136.4 ± 10.9 mU/mg protein, respectively; p<0.0005) 

and 12 days after (127 ± 16 versus 278 ± 27 mU/mg protein, respectively; 

p<0.0005).  In fact, at day 0, the lowest ALP activity detected in preadipocytes from 

the black females was higher than the highest ALP level detected in the preadipocytes 

from the white females. The same study reported that intracellular lipid accumulation 

was higher in pre-adipocytes isolated from black compared to white females which 

parallels the obesity prevalence rates in these population groups and also suggested 
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that the reason for the  higher fat accumulation in pre-adipocytes isolated from black 

females may be related to the higher ALP activity (Ali et al. 2006). 

These data suggest that the differences in preadipocytic ALP activity between 

black and white South African women might either be due to a post-translational 

modification of the ALP protein, differences in ALP mRNA stability, differences in the 

levels of molecules controlling ALP gene expression, involvement of altered levels or 

activity of upstream transcription factors that regulate TNSALP expression,  differences 

in micro RNA involvement at the transcriptional level or differences in the genetic 

sequence of the ALP exon coding for the active site of the enzyme. Differences in the 

promoter region of the gene by methylation or chemical modifications of the histones 

that do not change the underlying DNA sequence but modifies the expression of a 

gene (Jaenisch and Bird 2003) may also explain the large difference in ALP activity 

observed between the two ethnic groups. Interestingly, methylated sites (CpG islands) 

are present in the promoter region of the human TNSALP gene (Weiss et al. 1988). 

5.6.1  Polymorphisms in TNSALP and ENPP1 genes and its association with 

biochemical features of obesity 

A number of studies have shown that genetic polymorphisms in the gene of a known 

functional partner of TNSALP in bone mineralization called ectonucleotide 

pyrophosphatase/phosphodiesterase 1 (ENPP1) are significantly associated with 

obesity traits in humans of different ethnicity (El Achhab et al. 2009; Santoro et al. 

2009). The ENPP1 gene is located on chromosome 6q22-q23 and its product has been 

identified as one of the principal regulators of extracellular pyrophosphate 
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(ePPi)/phosphate (Pi) equilibrium levels. It is through the metabolism of ePPi/Pi and 

calcium that TNSALP and ENPP1 modulate mineralization of bone (Zhang et al. 2007). 

Recently, DNA polymorphisms in the TNSALP gene and other genes involved in 

mineralization of bone (e.g. mouse progressive ankylosis gene, ANKH) have been 

shown to have strong associations with obesity related phenotypes in healthy 

Caucasian subjects. The obesity related phenotypes that were strongly associated with 

the TNSALP gene polymorphisms were waist-to-hip ratio (WHR) and serum levels of 

epidermal growth factor receptor (EGFR) (Korostishevsky et al. 2010). 

A haplotype G-A  (rs3738096 and rs1256331) located in the 3‟ UTR of the 

TNSALP gene showed the most significant association with WHR (Korostishevsky et al. 

2010). The haplotype T-G (rs869179 and rs1472563) which is within the TNSALP 

promoter was associated with EGFR levels. In vivo and in vitro studies have shown 

that EGFR increases adipogenesis (Serrero et al. 1993; Adachi et al. 1994). The EGFR 

levels exhibited weak correlation with the WHR trait and other obesity phenotypes that 

were studied e.g. BMI and leptin (Korostishevsky et al. 2010). 

This PhD study, however, did not identify any SNPs in the promoter region of 

the TNSALP gene in black and white South Aficans. I believe that this could have been 

due to the small sample size that was studied (N=12). Furthermore, the purpose of 

this study was not to associate ALP SNPs with obesity but rather to determine if SNPs 

were present in the promoter region which may explain the difference in ALP levels 

observed in preadipocytes from white and black females. 
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The study by Korostishevsky et al. (2010) and work performed in this thesis 

strengthens the hypothesis that ALP plays some role in adipocyte biology and 

accumulation of intracellular lipids in a number of cell types. 
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5.7  Conclusions 

The presence of ALP in many species of animals and its wide tissue distribution 

suggests its involvement in fundamental biological processes. To date, little is known 

with any certainty about the exact biological functions of these glycoproteins in normal 

metabolism (Harris 1990). The only exception to this statement comes from the work 

on hypophosphatasia which clearly indicates that the liver/bone/kidney isoenzyme is 

necessary for bone mineralization (Posen et al, 1977; Whyte 1994). There are reports 

of the role of ALP in mammalian embryogenesis (McDougall et al. 1998) and in cell 

differentiation (Andracchi and Korte 1991). ALP may therefore continue to be a 

subject of intensive research in an attempt to understand more clearly some of its 

biological functions. 

The presence of ALP activity in 3T3-L1 cells, human preadipocytes (from the 

mammary gland and subcutenous abdominal fat) (Ali et al. 2006; Ali et al. 2006a) and 

in HepG2 cells suggests that ALP expression is a common feature of cells that 

accumulate cytoplasmic lipid droplets. The localization of ALP activity on the surface of 

the lipid droplet membrane in HepG2 and 3T3-L1 cells shown in this study certainly 

points to the involvement of ALP in some of the processes related to intracellular lipid 

accumulation. 

By using a more specific approach of inhibiting ALP expression, RNAi, the 

present study has also strengthened the suggestion that ALP plays a role in 

cytoplasmic lipid droplet accumulation and the use of PCR primers specific for the 
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TNSALP isoenzyme indicates that it is the TNSALP isotype that is involved in 

intracellular lipid accumulation. 

The increase in the expression of the PPAR  gene early in adipogenesis (3T3-L1 

cells) and in intracellular lipid accumulation (HepG2 cells) suggests that PPAR  is an 

important factor in lipid accumulation in both preadipocytes and hepatocytes. 

Furthermore, the ability of ALP inhibitors to block intracellular lipid accumulation in 

both HepG2 and 3T3-L1 cells but to have no effect on PPAR  gene expression 

suggests that PPAR  either precedes ALP in the adipogenic pathway or exists on a 

separate but equally important pathway in the adipogenic process. 

 

5.8  Strategies for future work 

Related to the work on ethnic differences in ALP activity observed in black and white 

South African women, future work would include increasing the sample size for 

sequencing studiesto detect nucleotide base changes in other regions of the TNSALP 

gene (similar to work done by Kolostishevsky et al. 2010 in Caucasian population) and 

studying the methylation pattern of the promoter region of the gene in black and 

white subjects. Studies should also be performed to quantify ALP gene expression in 

preadipocytes isolated from both population groups. 

To extend the ALP inhibitor studies (using pharmacological agents or siRNA) to 

another cell line known to accumulate intracellular lipid droplets i.e. adrenal Y-1 cells 

and Leydig cells. 
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Because both ALP and PPAR  are induced during intracellular lipid accumulation 

in 3T3-L1 and HepG2 cells, in order to show whether ALP is downstream of PPAR  or 

not, future studies will involve use of PPAR  agonist such as thiazolidinediones  to test 

if stimulation of PPAR   will increase ALP activity. 

The specific knock out of the ALP gene in adipocytes in vivo would be important 

to determine if this would lead to reduced adipose tissue. 

It is possible that ALP controls the phosphorylation status of molecules that 

play an important role in adipogenesis. Therefore, the phosphorylation level of 

proteins isolated from preadipocytes incubated with 32P in the presence and absence 

of ALP inhibitors may help to identify the molecule(s) that are de-phosphorylated by 

ALP using phospho-specific antibodies (Tran et al. 2007) or immunoblotting (Iyer et al. 

2005). 

The ability of ALP to activate PAP could easily be investigated by incubating 

preadipocytes with TNSALP inhibitors or treat them with siRNA against TNSALP, and 

measure PAP activity and lipid accumulatin in the presence and absence of the 

inhibitors. 
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APPENDIX I 

Appendix IA 
Homo sapiens peroxisome proliferator activated receptor gamma (PPARG) mRNA, complete 
cds 
LOCUS       HUMPPARGB       1808 bp    mRNA    linear   PRI 26-DEC-2001 

DEFINITION Homo sapiens peroxisome proliferator activated receptor gamma 

(PPARG) mRNA, complete cds. 

ACCESSION   L40904 

VERSION L40904.2  GI:17978515 

SOURCE  Homo sapiens (human) 

ORGANISM   Homo sapiens ,  Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata;  Euteleostomi;Mammalia; Eutheria; Euarchontoglires; 

Primates; Haplorrhini;Catarrhini; Hominidae; Homo. 

 

Primer location and region of amplification of the PPAR   gene in HepG2 cells 
(Forwad primer is shown in red while the reverse primer is in blue, both are underlined; highlighted in 
yellow is the region that was amplified). 

 

1ccgaccttaccccaggcggccttgacgttggtcttgtcggcaggagacagcaccatggtg 

61ggttctctctgagtctgggaattcccgagcccgagccgcagccgccgcctggggggcttg 

121ggtcggcctcgaggacaccggagaggggcgccacgccgccgtggccgcagaaatgaccat 

181ggttgacacagagatgccattctggcccaccaactttgggatcagctccgtggatctctc 

241cgtaatggaagaccactcccactcctttgatatcaagcccttcactactgttgacttctc 

301cagcatttctactccacattacgaagacattccattcacaagaacagatccagtggttgc 

361agattacaagtatgacctgaaacttcaagagtaccaaagtgcaatcaaagtggagcctgc 

421atctccaccttattattctgagaagactcagctctacaataagcctcatgaagagccttc 

481caactccctcatggcaattgaatgtcgtgtctgtggagataaagcttctggatttcacta 

541tggagttcatgcttgtgaaggatgcaagggtttcttccggagaacaatcagattgaagct 

601tatctatgacagatgtgatcttaactgtcggatccacaaaaaaagtagaaataaatgtca 

661gtactgtcggtttcagaaatgccttgcagtggggatgtctcataatgccatcaggtttgg 

721gcggatgccacaggccgagaaggagaagctgttggcggagatctccagtgatatcgacca 

781gctgaatccagagtccgctgacctccgggccctggcaaaacatttgtatgactcatacat 

841aaagtccttcccgctgaccaaagcaaaggcgagggcgatcttgacaggaaagacaacaga 

901caaatcaccattcgttatctatgacatgaattccttaatgatgggagaagataaaatcaa 

961gttcaaacacatcacccccctgcaggagcagagcaaagaggtggccatccgcatctttca 

1021gggctgccagtttcgctccgtggaggctgtgcaggagatcacagagtatgccaaaagcat 

1081tcctggttttgtaaatcttgacttgaacgaccaagtaactctcctcaaatatggagtcca 

1141cgagatcatttacacaatgctggcctccttgatgaataaagatggggttctcatatccga 

1201gggccaaggcttcatgacaagggagtttctaaagagcctgcgaaagccttttggtgactt 

1261tatggagcccaagtttgagtttgctgtgaagttcaatgcactggaattagatgacagcga 

1321cttggcaatatttattgctgtcattattctcagtggagaccgcccaggtttgctgaatgt 

1381gaagcccattgaagacattcaagacaacctgctacaagccctggagctccagctgaagct 

1441gaaccaccctgagtcctcacagctgtttgccaagctgctccagaaaatgacagacctcag 

1501acagattgtcacggaacacgtgcagctactgcaggtgatcaagaagacggagacagacat 

1561gagtcttcacccgctcctgcaggagatctacaaggacttgtactagcagagagtcctgag 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
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1621ccactgccaacatttcccttcttccagttgcactattctgagggaaaatctgaccataag 

1681aaatttactgtgaaaaagcgttttaaaaagaaaagggtttagaatatgatctattttatg 

1741catattgtttataaagacacatttacaatttacttttaatattaaaaattaccatattat 

1801gaaattgc 

 
 
Appendix IB 

 

Homo sapiens TATA box binding protein (TBP), mRNA 
LOCUS       NM_003194  1867 bp    mRNA    linear   PRI 20-SEP-2009 

DEFINITION  Homo sapiens TATA box binding protein (TBP), mRNA. 

ACCESSION   NM_003194 

VERSION     NM_003194.3  GI:61744433 

SOURCE      Homo sapiens (human) 

ORGANISM    Homo sapiens Eukaryota; Metazoa; Chordata; Craniata;Vertebrata; 

Euteleostomi;Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; Homo. 

 

Primer location and region of amplification of the TBP gene in HepG2 cells 
(Forwad primer is shown in red while the reverse primer is in blue, both are underlined; highlighted in 
yellow is the region that was amplified). 

 

01ggttcgctgtggcgggcgcctgggccgccggctgtttaacttcgcttccgctggcccata 

61gtgatctttgcagtgacccagcagcatcactgtttcttggcgtgtgaagataacccaagg 

121aattgaggaagttgctgagaagagtgtgctggagatgctctaggaaaaaattgaatagtg 

181agacgagttccagcgcaagggtttctggtttgccaagaagaaagtgaacatcatggatca 

241gaacaacagcctgccaccttacgctcagggcttggcctcccctcagggtgccatgactcc 

301cggaatccctatctttagtccaatgatgccttatggcactggactgaccccacagcctat 

361tcagaacaccaatagtctgtctattttggaagagcaacaaaggcagcagcagcaacaaca 

421acagcagcagcagcagcagcagcagcaacagcaacagcagcagcagcagcagcagcagca 

481gcagcagcagcagcagcagcagcagcagcagcaacaggcagtggcagctgcagccgttca 

541gcagtcaacgtcccagcaggcaacacagggaacctcaggccaggcaccacagctcttcca 

601ctcacagactctcacaactgcacccttgccgggcaccactccactgtatccctcccccat 

661gactcccatgacccccatcactcctgccacgccagcttcggagagttctgggattgtacc 

721gcagctgcaaaatattgtatccacagtgaatcttggttgtaaacttgacctaaagaccat 

781tgcacttcgtgcccgaaacgccgaatataatcccaagcggtttgctgcggtaatcatgag 

841gataagagagccacgaaccacggcactgattttcagttctgggaaaatggtgtgcacagg 

901agccaagagtgaagaacagtccagactggcagcaagaaaatatgctagagttgtacagaa 

961gttgggttttccagctaagttcttggacttcaagattcagaatatggtggggagctgtga 

1021tgtgaagtttcctataaggttagaaggccttgtgctcacccaccaacaatttagtagtta 

1081tgagccagagttatttcctggtttaatctacagaatgatcaaacccagaattgttctcct 

1141tatttttgtttctggaaaagttgtattaacaggtgctaaagtcagagcagaaatttatga 

1201agcatttgaaaacatctaccctattctaaagggattcaggaagacgacgtaatggctctc 

1261atgtacccttgcctcccccacccccttctttttttttttttaaacaaatcagtttgtttt 

1321ggtacctttaaatggtggtgttgtgagaagatggatgttgagttgcagggtgtggcacca 

1381ggtgatgcccttctgtaagtgcccaccgcgggatgccgggaaggggcattatttgtgcac 

1441tgagaacaccgcgcagcgtgactgtgagttgctcataccgtgctgctatctgggcagcgc 

1501tgcccatttatttatatgtagattttaaacactgctgttgacaagttggtttgagggaga 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
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1561aaactttaagtgttaaagccacctctataattgattggactttttaattttaatgttttt 

1621ccccatgaaccacagtttttatatttctaccagaaaagtaaaaatcttttttaaaagtgt 

1681tgtttttctaatttataactcctaggggttatttctgtgccagacacattccacctctcc 

1741agtattgcaggacagaatatatgtgttaatgaaaatgaatggctgtacatatttttttct 

1801ttcttcagagtactctgtacaataaatgcagtttataaaagtgttaaaaaaaaaaaaaaa 

1861aaaaaaa 

 
Appendix IC 
 

Mus musculus peroxisome proliferator activated receptor gamma (PPARg), transcript 

variant 2, mRNA 
LOCUS       NM_011146  1769 bp    mRNA    linear   ROD 05-OCT-2009 

DEFINITION  Mus musculus peroxisome proliferator activated receptor gamma 

(PPARg), transcript variant 2, mRNA. 

ACCESSION   NM_011146 

SOURCE      Mus musculus (house mouse) 

ORGANISM    Mus musculus ,Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia;Sciurognathi; Muroidea; Muridae; Murinae; Mus. 

 

Primer location and region of amplification of the PPAR  gene in 3T3-L1 cells 
(Forwad primer is shown in red while the reverse primer is in blue, both are underlined; highlighted in 
yellow is the region that was amplified). 

 

 

1  caaaacaccagtgtgaattacagcaaatctctgttttatgctgttatgggtgaaactctg 

61ggagattctcctgttgacccagagcatggtgccttcgctgatgcactgcctatgagcact 

121tcacaagaaattaccatggttgacacagagatgccattctggcccaccaacttcggaatc 

181agctctgtggacctctccgtgatggaagaccactcgcattcctttgacatcaagcccttt 

241accacagttgatttctccagcatttctgctccacactatgaagacattccattcacaaga 

301gctgacccaatggttgctgattacaaatatgacctgaagctccaagaataccaaagtgcg 

361atcaaagtagaacctgcatctccaccttattattctgaaaagacccagctctacaacagg 

421cctcatgaagaaccttctaactccctcatggccattgagtgccgagtctgtggggataaa 

481gcatcaggcttccactatggagttcatgcttgtgaaggatgcaagggttttttccgaaga 

541accatccgattgaagcttatttatgataggtgtgatcttaactgccggatccacaaaaaa 

601agtagaaataaatgtcagtactgtcggtttcagaagtgccttgctgtggggatgtctcac 

661aatgccatcaggtttgggcggatgccacaggccgagaaggagaagctgttggcggagatc 

721tccagtgatatcgaccagctgaacccagagtctgctgatctgcgagccctggcaaagcat 

781ttgtatgactcatacataaagtccttcccgctgaccaaagccaaggcgagggcgatcttg 

841acaggaaagacaacggacaaatcaccatttgtcatctacgacatgaattccttaatgatg 

901ggagaagataaaatcaagttcaaacatatcacccccctgcaggagcagagcaaagaggtg 

961gccatccgaatttttcaagggtgccagtttcgatccgtagaagccgtgcaagagatcaca 

1021gagtatgccaaaaatatccctggtttcattaaccttgatttgaatgaccaagtgactctg 

1081ctcaagtatggtgtccatgagatcatctacacgatgctggcctccctgatgaataaagat 

1141ggagtcctcatctcagagggccaaggattcatgaccagggagttcctcaaaagcctgcgg 

1201aagccctttggtgactttatggagcctaagtttgagtttgctgtgaagttcaatgcactg 

1261gaattagatgacagtgacttggctatatttatagctgtcattattctcagtggagaccgc 

1321ccaggcttgctgaacgtgaagcccatcgaggacatccaagacaacctgctgcaggccctg 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10090
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1381gaactgcagctcaagctgaatcacccagagtcctctcagctgttcgccaaggtgctccag 

1441aagatgacagacctcaggcagatcgtcacagagcacgtgcagctactgcatgtgatcaag 

1501aagacagagacagacatgagccttcaccccctgctccaggagatctacaaggacttgtat 

1561tagcaggaaagtcccacccgctgacaacgtgttccttctattgattgcactattattttg 

1621agggaaaaaaatctgacacctaagaaatttactgtgaaaaagcatttaaaaacaaaaagt 

1681tttagaacatgatctattttatgcatattgtttataaagatacatttacaatttactttt 

1741aatattaaaaattaccacattataaaatt 

 

 
 
Appendix ID 
 

Mus musculus TATA box binding protein (TBP), mRNA 
LOCUS       NM_013684  1842 bp    mRNA    linear   ROD 23-AUG-2009 

DEFINITION  Mus musculus TATA box binding protein (TBP), mRNA. 

ACCESSION   NM_013684 

VERSION     NM_013684.3  GI:172073170 

SOURCE      Mus musculus (house mouse) 

ORGANISM    Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi;Mammalia; Eutheria; Euarchontoglires; Glires; 

Rodentia;Sciurognathi; Muroidea; Muridae; Murinae; Mus. 

 

Primer location and region of amplification of the TBP gene in 3T3-L1 cells 
(Forwad primer is shown in red while the reverse primer is in blue, both are underlined; highlighted in 
yellow is the region that was amplified). 

 

1  aagagcgcaactggcggaagtgacggcatcagatgtgcgtcaggcgttcggtggatcgag 

61tccggtagcggtggcgggtatctgctggcggtttggctaggtttctgcggtcgcgtcatt 

121ttctccgcagtgcccagcatcactatttcatggtgtgtgaagataacccagaacattgaa 

181gacgtttctaaggagatattcagaggatgctctagggaagatctgagtactgaagaaagg 

241gagaatcatggaccagaacaacagccttccaccttatgctcagggcttggcctccccaca 

301gggcgccatgactcctggaattcccatctttagtccaatgatgccttacggcacaggact 

361tactccacagcctattcagaacaccaacagtctctctattttggaagagcaacaaagaca 

421gcagcagcaacagcaacagcagcagcaacaacagcaggcagtagcaactgcagcagcctc 

481agtacagcaatcaacatctcagcaacccacacagggtgcctcaggccagaccccacaact 

541cttccattctcaaactctgaccactgcaccgttgccaggcaccacccccttgtacccttc 

601accaatgactcctatgacccctatcactcctgccacaccagcttctgagagctctggaat 

661tgtaccgcagcttcaaaatattgtatctaccgtgaatcttggctgtaaacttgacctaaa 

721gaccattgcacttcgtgcaagaaatgctgaatataatcccaagcgatttgctgcagtcat 

781catgagaataagagagccacggacaactgcgttgattttcagttctggaaaaatggtgtg 

841cacaggagccaagagtgaagaacaatccagactagcagcaagaaaatatgctagagttgt 

901gcagaagttgggcttcccagctaagttcttagacttcaagatccagaacatggtggggag 

961ctgtgatgtgaagttccctataaggctggaaggccttgtgctgacccaccagcagttcag 

1021tagctatgagccagaattatttcctggattaatctacagaatgatcaaacccagaattgt 

1081tctccttatttttgtttctggaaaagttgtattaacaggtgctaaagttagagcagagat 

1141ttatgaagcatttgaaaacatctaccccatcttaaagggattcaggaagaccacatagtt 

1201gtctgccatgttctcctgccttccctatccacgtgttttttaaaaccagtcagttttggt 

1261accactgatggtacagttggtgaggacactcagttacaggtggcagcatgaagtgacact 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10090
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1321gtgtgtcctactgcaggatactagaaaggttccccctctgcactgaaatcaccctgcagc 

1381actactgtgagttgcttgctctgtgctgctacttgggcggcactgcccatttatttatat 

1441ttagattttaaacactgctgttggtgattgttggtttaagggacagaactttaagtgttc 

1501aagccacctgtacaattggacttttcattttaatctttcccacacaagccagtttttata 

1561tttctaccagaaaagtaaaaatcttttttaaaagtgttgtttttctagtttgtaactctt 

1621aggagttatttttgtgccagatacattccgccttcccagtattgcaggactgaatagttg 

1681tattaatcaaaacaatggctgtacatacttttctttcttcagagtactctgcacaaaaac 

1741gcagcttgtaaattgttagatttttgttataaatgataccttgtaagtcatgtgatcata 

1801ctgtcaaagaaatttattttagatataatgcctgagaccatt 

 
 
Appendix IE 
Homo sapiens ALPL gene for alkaline phosphatase, promoter region  
LOCUS       AB176449   4388 bp    DNA     linear   PRI 26-OCT-2006 

DEFINITION  Homo sapiens ALPL gene for alkaline phosphatase, promoter region 

and exon 1. 

ACCESSION   AB176449 

SOURCE      Homo sapiens (human) 

ORGANISM    Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 

Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae 

 
Primer location and region of amplification of the TNSALP gene promoter region in 

humans 
(Forwad primers are shown in red while the reverse primers in blue, highlighted in yellow are sites on the 
gene where forward and reverse primers share the same bases. All are underlined. The whole  promoter 
region  was amplified. 

 
1 actgggattacaggcgtgtgccactgtgcccggcccctgttatcttactaacttacttat 

61taatgtttgttgtttattatctaccttcccaactaaagtgtcagttccgtgaggataaac 

121attctgttttgttcactggtatgtccagttcctagaagggtgcctgctgcagagcaggca 

181tccaataaacatttgttgaatgaataaggttgccaagtctgcctgggataacagcctgct 

241cactggaaaggtgacgatgacaacagtgatggtgctttggtgttgcagggaggagcaagt 

301taaatctcacctataaagatctttccatcaggctgcagacacagagggagtccccagcaa 

361caatagctcatatatgcttcagtttcctcatccgtgaagagagaataaaagtccctactt 

421ttattagcgtccaattgccctggccacggcagcattgtcggtttaatgatgctgcttcgg 

481ctgtcgtagtctcttccacctcatgccttttggttcattttttaactgagttaaaggtgg 

541ggctgtaggtggcactgggaatcaaatggctgaacttgtgctcaggcctgggcttgagat 

601aaaatgacccctttagtccaagcatcaaaacagaccaaggtttcaggcccccttgccttt 

661aaatagatttcagggattattttctccagccctagaccacagctgactcctcaccgcctc 

721tccacgaacagacctcagagttttgttttctctgtctctctcctttctttctcctttatc 

781tctgtctactgaggtcctggctgtccccctgccccaccctaccctatgctcttgggcttc 

841tggcctcatctctaacttagcttctaattttttctcttcttttcctttctttttttgaaa 

901cagagtctcactctgtcacccaggctggagtgtagtggcgtgatctcagctcactgcaac 

961ctctgcctccagggttcaagcgtttctcgtgcctcagcctcccaagtagctgggactaca 

1021ggtgtgcagtcaccttgctcggctaatttttatgttttcagtagagacggggtttcaccg 

1081tgttggccaggctggtctcaaactccggacctcaggtgatccacctgcctagcctcccaa 

1141agtgctgggattacaggcatgagccaccacgcccggcctaacttagcttctaattctaat 

1201gcctggtgaacctcttaaatttttttttcccaagacaaagtctcactctgttggccaggc 

1261tggagtgcaggggtgtgatcatagctcactgcagactctaactcctggacacaagagacc 

1321ctcccatcttggcctcccaaagtgctgggattacaggcgtgagccaccatgcctggcctg 

1381cctagtgaacttgaaggtctagcttgcggcacaggctcatggcatgcacttaacagatac 

1441ggaataaatggatgaatggaaaaagccctggactgggaatagtaaacctggtaaccaaac 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
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1501ccagctctgaccctgacctgtaagtaactactatctctggccttggtgtaccccatgtat 

1561agtggggattgtaaacacctgccctgcccaccttatgatactgctgtgagactcaaaaga 

1621catcattagctcttaggcacagggagcttggaggttaaatccaatttgcttagttttcaa 

1681caaggaagtggtgccccagggacaatgatggagagaaatcgaatgtaatgagctgttgcc 

1741accagctgagtggtcctgaaatcatggcatctgggttgcacttagagattgtccagttca 

1801aaaggccagaaggaatctgaacctcgatgggaaaagtgacttgctcagctccccagcaag 

1861ccagggcagagctggaggatggactggagtctcctggttccaggtccaggacttctttcc 

1921gctgtgttgacagagccaggaggaggggcacccggggagcaggggaggcaagggctgctg 

1981gatgccccatctcagttgaattctccttgagggacccagcccaggagcagagtaagaggg 

2041tttgagggtggaaggtggcagggctggccaagcagtatagtccctgctgctgataaccaa 

2101tccctgaaatcccgaggtggagggacttgagggcaaatcacagacatgggggacctaatg 

2161ctggccatgtggctcaaccagaagtgcccgtccctcatagctttggggagatcagaagtc 

2221agggatagggtcgggtgtggtggctcatgcctgtaatcccatcactttgggataaggagg 

2281cagggggatcacttgagcttaggagttcgagaccagcctgagcaacatagcaaaaccctg 

2341ttctttacaaaaaaatacaaaaattagccgggcgtggtggtgcacacctgtagtcctggc 

2401tgctggggaggctgaggtgggaagatcacttgagcccgggaggtcgaggctgcagtgagc 

2461tgacatcatgctactgcattccagcctaggcaatagagtgggaccctgtctcaaaaaaaa 

2521aaaaaaaaaagtcaggggtgctggccccatgataggtgcaatgggtgcctccaattccct 

2581ctggctctgcctcccagcctctgtccaagcaacaggcagattttccatgcctggggactt 

2641gcccctggctcactgatgatgataccatcttaagtctcctggaatccttaaacccttcct 

2701tggcatttgtgagcaagtattgagcccctcccatgttttaggcccagtgctgggtgcttt 

2761cacctgcaatttcttacagaggatggtatttcctaaactccattcatttgctacctccat 

2821gatttttgccatatcacccaacccatgaaatacataaataaatagtatttactcaatatt 

2881ttgactcacttttaaaaaacataaacttatctgaaaagggaacctatgtcacgcctctaa 

2941ataaacagtatcaaccaaaaatacaaaagaaacaaaaataaatacaaagacattcttggt 

3001ttctggcaccaggccccagttctggctccaaccttactgagaagtcacatgatctctctg 

3061ggcctcagttttctcctctggaaaatggagcttttggaagttaatgcatgcacagtgcct 

3121ggccctgagactggcatggagtgagtggaagagaggttgcctgacctggctaaaattggt 

3181tctctgggcagacattttcccaagggccactgagaagaccctcctgttaggagtcagtga 

3241gctctgtcgctggaggcattcaaacagagcctgcggacttctcactgcgaagttgcccag 

3301agaattcagtgctcagaggaaagggagtggttattccatcagagctggttccccaggagc 

3361gggagcagggcctgtagcacccagcctctgtccctggctcccgtctatccgggattttag 

3421cgtttcctctgtagttttcaagcactgtctcatatgactctcgcaccagcgagaggccag 

3481gggagatggtgtctgcctgttaaagaggggccggctggtccacataggtcaagtgacttg 

3541gccaaggtcaccagagcagagttttgaacttgagctgtctgactcaactgcctgggaagt 

3601gcctgcccctcctctggcatccagggagcatgtcctggggctctggctgggacatagccg 

3661gacacctgcgggccctttacgtctctaaagagagaaagagggaagggcccctgtctaggg 

3721ggtggtttccctccagatgccacccctccgaggtccccttctgcttcttcttgcggtagc 

3781cagggagggcagcccacgggcaggaagcgggggtgggggtgcagagtcagaggtgcacgt 
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Appendix IF 

LOCUS       NM_000478               2606 bp    mRNA    linear   PRI 25-SEP-

2011 

DEFINITION  Homo sapiens alkaline phosphatase, liver/bone/kidney (ALPL), 

            transcript variant 1, mRNA. 

ACCESSION   NM_000478 

VERSION     NM_000478.4  GI:294712525 

KEYWORDS    . 

SOURCE      Homo sapiens (human) 

  ORGANISM  Homo sapiens 

            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 

            Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 

            Catarrhini; Hominidae; Homo. 

REFERENCE   1  (bases 1 to 2606) 

  AUTHORS   Mentrup,B., Marschall,C., Barvencik,F., Amling,M., Plendl,H., 

            Jakob,F. and Beck,C. 

  TITLE     Functional characterization of a novel mutation localized in the 

            start codon of the tissue-nonspecific alkaline phosphatase gene 

  JOURNAL   Bone 48 (6), 1401-1408 (2011) 

 
 Location of the siRNA target sequence  is shown in red. 
 

 
CCGGGCCTCACTCGGGCCCCGCGGCCGCCTTTATAAGGCGGCGGGGGTGGTGGCCCGGGCCGCGTTGCGCTCCC
GCCACTCCGCGCCCGCTATCCTGGCTCCGTGCTCCCACGCGCTTGTGCCTGGACGGACCCTCGCCAGTGCTCTGC

GCAGGATTGGAACATCAGTTAACATCTGACCACTGCCAGCCCACCCCCTCCCACCCACGTCGATTGCATCTCTGGG
CTCCAGGGATAAAGCAGGTCTTGGGGTGCACCATGATTTCACCATTCTTAGTACTGGCCATTGGCACCTGCCTTAC
TAACTCCTTAGTGCCAGAGAAAGAGAAAGACCCCAAGTACTGGCGAGACCAAGCGCAAGAGACACTGAAATATGCC
CTGGAGCTTCAGAAGCTCAACACCAACGTGGCTAAGAATGTCATCATGTTCCTGGGAGATGGGATGGGTGTCTCC
ACAGTGACGGCTGCCCGCATCCTCAAGGGTCAGCTCCACCACAACCCTGGGGAGGAGACCAGGCTGGAGATGGAC
AAGTTCCCCTTCGTGGCCCTCTCCAAGACGTACAACACCAATGCCCAGGTCCCTGACAGCGCCGGCACCGCCACCG
CCTACCTGTGTGGGGTGAAGGCCAATGAGGGCACCGTGGGGGTAAGCGCAGCCACTGAGCGTTCCCGGTGCAACA
CCACCCAGGGGAACGAGGTCACCTCCATCCTGCGCTGGGCCAAGGACGCTGGGAAATCTGTGGGCATTGTGACCA
CCACGAGAGTGAACCATGCCACCCCCAGCGCCGCCTACGCCCACTCGGCTGACCGGGACTGGTACTCAGACAACGA
GATGCCCCCTGAGGCCTTGAGCCAGGGCTGTAAGGACATCGCCTACCAGCTCATGCATAACATCAGGGACATTGAC
GTGATCATGGGGGGTGGCCGGAAATACATGTACCCCAAGAATAAAACTGATGTGGAGTATGAGAGTGACGAGAAA
GCCAGGGGCACGAGGCTGGACGGCCTGGACCTCGTTGACACCTGGAAGAGCTTCAAACCGAGATACAAGCACTCC
CACTTCATCTGGAACCGCACGGAACTCCTGACCCTTGACCCCCACAATGTGGACTACCTATTGGGTCTCTTCGAGC

CAGGGGACATGCAGTACGAGCTGAACAGGAACAACGTGACGGACCCGTCACTCTCCGAGATGGTGGTGGTGGCCA
TCCAGATCCTGCGGAAGAACCCCAAAGGCTTCTTCTTGCTGGTGGAAGGAGGCAGAATTGACCACGGGCACCATG
AAGGAAAAGCCAAGCAGGCCCTGCATGAGGCGGTGGAGATGGACCGGGCCATCGGGCAGGCAGGCAGCTTGACC
TCCTCGGAAGACACTCTGACCGTGGTCACTGCGGACCATTCCCACGTCTTCACATTTGGTGGATACACCCCCCGTG
GCAACTCTATCTTTGGTCTGGCCCCCATGCTGAGTGACACAGACAAGAAGCCCTTCACTGCCATCCTGTATGGCAA
TGGGCCTGGCTACAAGGTGGTGGGCGGTGAACGAGAGAATGTCTCCATGGTGGACTATGCTCACAACAACTACCA
GGCGCAGTCTGCTGTGCCCCTGCGCCACGAGACCCACGGCGGGGAGGACGTGGCCGTCTTCTCCAAGGGCCCCAT

GGCGCACCTGCTGCACGGCGTCCACGAGCAGAACTACGTCCCCCACGTGATGGCGTATGCAGCCTGCATCGGGGC
CAACCTCGGCCACTGTGCTCCTGCCAGCTCGGCAGGCAGCCTTGCTGCAGGCCCCCTGCTGCTCGCGCTGGCCCT
CTACCCCCTGAGCGTCCTGTTCTGAGGGCCCAGGGCCCGGGCACCCACAAGCCCGTGACAGATGCCAACTTCCCAC
ACGGCAGCCCCCCCCTCAAGGGGCAGGGAGGTGGGGGCCTCCTCAGCCTCTGCAACTGCAAGAAAGGGGACCCAA
GAAACCAAAGTCTGCCGCCCACCTCGCTCCCCTCTGGAATCTTCCCCAAGGGCCAAACCCACTTCTGGCCTCCAGC
CTTTGCTCCCTCCCCGCTGCCCTTTGGCCAACAGGGTAGATTTCTCTTGGGCAGGCAGAGAGTACAGACTGCAGAC
ATTCTCAAAGCCTCTTATTTTTCTAGCGAACGTATTTCTCCAGACCCAGAGGCCCTGAAGCCTCCGTGGAACATTCT

GGATCTGACCCTCCCAGTCTCATCTCCTGACCCTCCCACTCCCATCTCCTTACCTCTGGAACCCCCCAGGCCCTACA

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
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ATGCTCATGTCCCTGTCCCCAGGCCCAGCCCTCCTTCAGGGGAGTTGAGGTCTTTCTCCTCAGGACAAGGCCTTGC
TCACTCACTCACTCCAAGACCACCAGGGTCCCAGGAAGCCGGTGCCTGGGTGGCCATCCTACCCAGCGTGGCCCA
GGCCGGGAAGAGCCACCTGGCAGGGCTCACACTCCTGGGCTCTGAACACACACGCCAGCTCCTCTCTGAAGCGAC
TCTCCTGTTTGGAACGGCAAAAAAAAATTTTTTTTTCTCTTTTTGGTGGTGGTTAAAAGGGAACACAAAACATTTAA

ATAAAACTTTCCAAATATTTCCGAGGACAAAAAAAAAAA 
 

Appendix IG 

LOCUS       NM_007431               2521 bp    mRNA    linear   ROD 25-SEP-

2011 

DEFINITION  Mus musculus alkaline phosphatase, liver/bone/kidney (Alpl), 

mRNA. 

ACCESSION   NM_007431 

VERSION     NM_007431.2  GI:160333225 

KEYWORDS    . 

SOURCE      Mus musculus (house mouse) 

  ORGANISM  Mus musculus 

            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 

            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; 

            Sciurognathi; Muroidea; Muridae; Murinae; Mus; Mus. 

REFERENCE   1  (bases 1 to 2521) 

  AUTHORS   Dubose,A.J., Smith,E.Y., Yang,T.P., Johnstone,K.A. and 

Resnick,J.L. 

  TITLE     A new deletion refines the boundaries of the murine Prader-Willi 

            syndrome imprinting center 

  JOURNAL   Hum. Mol. Genet. 20 (17), 3461-3466 (2011) 

   PUBMED   21659337 

REFERENCE   2  (bases 1 to 2521) 

  AUTHORS   Hirota,T., Ohta,H., Shigeta,M., Niwa,H. and Saitou,M. 

  TITLE     Drug-inducible gene recombination by the Dppa3-MER Cre MER 

            transgene in the developmental cycle of the germ cell lineage in 

            mice 

  JOURNAL   Biol. Reprod. 85 (2), 367-377 (2011) 

 

Location of the siRNA target sequence on the mouse TNSALP gene is shown in red. 

GAGGCCGGCGGGTGCTCGGCCAGGCCGCCTTCATAAGCAGGCGGGGGAGGTGGCCGCCAGAGTACGCTCC 
CGCCACTGCGCTCCTTAGGGCTGCCGCTCGCGAGCCGGAACAGACCCTCCCCACGAGTGCCTGCAGGATC 
GGAACGTCAATTAACGTCAATTAACATCTGACGCTGCCCCCCCCCCCCTCTTCCCACCATCTGGGCTCCA 
GCGAGGGACGAATCTCAGGGTACACCATGATCTCACCATTTTTAGTACTGGCCATCGGCACCTGCCTTAC 
CAACTCTTTTGTGCCAGAGAAAGAGAGAGACCCCAGTTACTGGCGACAGCAAGCCCAAGAGACCTTGAAA 
AATGCCCTGAAACTCCAAAAGCTCAACACCAATGTAGCCAAGAATGTCATCATGTTCCTGGGAGATGGTA 
TGGGCGTCTCCACAGTAACCGCTGCCCGAATCCTTAAGGGCCAGCTACACCACAACACGGGCGAGGAGAC 
CCGGCTGGAGATGGACAAATTCCCCTTTGTGGCCCTCTCCAAGACATATAACACCAACGCTCAGGTCCCT 
GACAGCGCGGGCACTGCCACTGCCTACTTGTGTGGCGTGAAGGCCAACGAGGGCACAGTGGGAGTGAGCG 
CAGCCACAGAGCGCACGCGATGCAACACCACTCAGGGCAATGAGGTCACATCCATCCTGCGCTGGGCCAA 
GGATGCTGGGAAGTCCGTGGGCATTGTGACTACCACTCGGGTGAACCACGCCACACCCAGTGCAGCCTAC 
GCACACTCGGCCGATCGGGACTGGTACTCGGATAACGAGATGCCACCAGAGGCTCTGAGCCAGGGCTGCA 
AGGACATCGCATATCAGCTAATGCACAATATCAAGGATATCGACGTGATCATGGGTGGCGGCCGGAAATA 
CATGTACCCGAAGAACAGAACTGATGTGGAATACGAACTGGATGAGAAGGCCAGGGGTACAAGGCTAGAT 
GGCCTGGATCTCATCAGTATTTGGAAGAGCTTTAAACCCAGACACAAGCATTCCCACTATGTCTGGAACC 
GCACTGAACTGCTGGCCCTTGACCCCTCCAGGGTGGACTACCTCTTAGGTCTCTTTGAGCCCGGGGACAT 
GCAGTATGAATTGAATCGGAACAACCTGACTGACCCTTCGCTCTCCGAGATGGTGGAGGTGGCCCTCCGG 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10090
http://www.ncbi.nlm.nih.gov/pubmed/21659337
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ATCCTGACCAAAAACCTCAAAGGCTTCTTCTTGCTGGTGGAAGGAGGCAGGATTGACCACGGACATCATG 
AGGGTAAGGCCAAGCAGGCTCTGCATGAAGCAGTGGAGATGGACCAGGCCATTGGCAAGGCAGGCGCCAT 
GACATCCCAGAAAGACACCTTGACTGTGGTTACTGCTGATCATTCCCACGTTTTCACATTCGGTGGATAC 
ACCCCCCGGGGCAACTCCATCTTTGGTCTGGCTCCCATGGTGAGCGACACGGACAAGAAGCCCTTCACGG 

CCATCCTATATGGTAACGGGCCTGGCTACAAGGTGGTGGACGGTGAACGGGAAAATGTCTCCATGGTAGA 
TTACGCTCACAACAACTACCAGGCCCAGTCCGCTGTTCCCCTGCGCCATGAGACCCACGGTGGAGAAGAC 
GTGGCGGTCTTTGCCAAGGGCCCGATGGCACACCTGCTTCACGGCGTCCATGAGCAGAACTACATTCCCC 
ATGTGATGGCGTATGCCTCCTGCATTGGGGCCAACCTTGACCACTGTGCCTGGGCCGGCTCTGGGAGCGC 
ACCCTCCCCAGGGGCCCTGCTGCTTCCACTGGCTGTGCTCTCCCTACGCACCCTGTTCTGAGGGTGCAGG 
TCCCACAAGCCCGCAATGGACAGCCAGCTCCCCTCCTTTTGTGGCCCACCACCGGGCAGCCCACACTCAA 
GGGAGAGGTCCAGGCAACTTCCAGCAGGAACAGAAGTTCGCTATCTGCCTTGCCTGTATCTGGAATCCTC 

CATGGGCCAGATTCCTGGCTCTGCCTTTATTCCCTAGTTATTGCCCTTTGGCCAGCAGGTTTCTCTCTTG 
GGCAGGCAAGACACAGACTGCACAGATTCCCAAAGCACCTTATTTTTCTACCAAATATATTCTCCAGACC 
CTGCAACCTCCATGGAACATTCCAGATCTGACCTTCTCTCCTCCATCCCTTCCCTTCCCTCTGGAACACT 
GGGCCCCATAGTCACGGCCAGTCCTCAAGCCCAACCCTCCCTGGGGGGAAGACCAGGTCTGCTCAGGATG 
AGACTCCCAGGAAGCCACCTCCGGGGTTGGCTGTCTACCCAGGGTTGCCAAGCTGGGAAGAACACTCCAG 
CCGGACAGGACACACACACACACTCCCCACCCAATTGCAGAGACTCGCCAACCCTTCACTGAAGTGGCTC 
TCCTGTTTGGAATAGCGGGGTGGGGTGGGGGAGAAGAAAGAAAGAAAGAAAAAAAATTTTTAATTTCTCT 

TTTTGGTGTTGGTTAAAAGGGAACACAAGACATTTAAATAAAACATCCCAAATATTTCTGAGGCCAAAAA 
A 
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Appendix IH 

RNA quality in HepG2 cells as determined by gel electrophoresis and the Nanodrop 

1000 spectrophotometer 

 

3 g of total RNA was added to 2 l of gel loading dye and separated on 1% TBE 

agarose gel at 98V for 40 min 
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RNA quality in 3T3-L1 cells as determined by gel electrophoresis and the Nanodrop 

1000 spectrophotometer 

 

3 g of total RNA was added to 2 l of gel loading dye and separated on 1% TBE 

agarose gel at 98V for 40 min 
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Consensus sequence of the TBP gene in HepG2 cells and a portion of its 

chromatagram below 

 

GATAACCCAAGGAATTGAGGAAGTTGCTGAGAAGAGTGTGCTGGAGATGCTCTAGGAAAAA
ATTGAATAGTGAGACGAGTTCCAGCGCAAGGGTTTCTGGTTTGCCAAGAAGAAAGTGAACA

TCATGGATCAGAACAACAGCCTGCCACCTTACGCTCAGGGCTTGGCCTCCCCTCAGGGTGCC

ATGACTCCC 
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BLAST results of sequenced PCR product of TBP gene in HepG2 cells 

 

BLAST  

Mouse-over to show  defline and scores, click to show  alignments
 

 
 

 

              

                       
 

  

 

  

 

  

 
 

 

Descriptions 

Legend for links to other resources: UniGene GEO Gene Structure Map Viewer 

PubChem BioAssay  

 

 

 

 

 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Accession 

transcripts 

Description Max 

score 

Total 

score 

Query 

coverage 

E value Max 

identity 

Links 

NM_003194.3 Homo sapiens 

TATA box 

binding protein 

(TBP), mRNA 

357 357  

100% 1e-96 

 

100% 

 

 

Genomic sequences[show first] 

NT_025741.15 Homo sapiens 

chromosome 6 

genomic contig, 

GRCh37 

reference primary 

assembly 

331  

 

331 

 

 

92% 

 

 

7e-89 

 

 

100% 

 

NW_001838996

.1 

Homo sapiens 

chromosome 6 

genomic contig, 

alternate assembly 

(based on HuRef), 

 

 

331 

 

 

331 

 

 

92% 

 

 

7e-89 

 

 

100% 

 

> ref|NM_003194.3|  Homo sapiens TATA box binding protein (TBP), mRNA 

Length=1867 

Score =  357 bits (193),  Expect = 1e-96 

 Identities = 193/193 (100%), Gaps = 0/193 (0%) 

 Strand=Plus/Plus 
 
Query  1    GATAACCCAAGGAATTGAGGAAGTTGCTGAGAAGAGTGTGCTGGAGATGCTCTAGGAAAA  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  109  GATAACCCAAGGAATTGAGGAAGTTGCTGAGAAGAGTGTGCTGGAGATGCTCTAGGAAAA  168 

 

Query  61   AATTGAATAGTGAGACGAGTTCCAGCGCAAGGGTTTCTGGTTTGCCAAGAAGAAAGTGAA  120 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  169  AATTGAATAGTGAGACGAGTTCCAGCGCAAGGGTTTCTGGTTTGCCAAGAAGAAAGTGAA  228 

 

Query  121  CATCATGGATCAGAACAACAGCCTGCCACCTTACGCTCAGGGCTTGGCCTCCCCTCAGGG  180 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  229  CATCATGGATCAGAACAACAGCCTGCCACCTTACGCTCAGGGCTTGGCCTCCCCTCAGGG  288 

 

Query  181  TGCCATGACTCCC  193 

            ||||||||||||| 

Sbjct  289  TGCCATGACTCCC  301 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/61744433?report=genbank&log$=nucltop&blast_rank=1&RID=2T6FGYNY013
http://blast.ncbi.nlm.nih.gov/Blast.cgi#61744433
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DESCRIPTIONS=100&DISPLAY_SORT=0&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&HSP_SORT=0&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=4G17WHNM011&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WWW_BLAST_TYPE_URL=&DATABASE_SORT=2#sort_mark
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=ref_contig+alt_contig_HuRef+rna&na=1&gnl=ref%7CNT_025741.15%7C&gi=224514841&term=224514841%5Bgi%5D&taxid=9606&RID=2T6FGYNY013&QUERY_NUMBER=1&log$=nucltop
http://blast.ncbi.nlm.nih.gov/Blast.cgi#224514841
http://blast.ncbi.nlm.nih.gov/Blast.cgi#224514841
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=ref_contig+alt_contig_HuRef+rna&na=1&gnl=ref%7CNW_001838996.1%7C&gi=157696557&term=157696557%5Bgi%5D&taxid=9606&RID=2T6FGYNY013&QUERY_NUMBER=1&log$=nucltop
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=ref_contig+alt_contig_HuRef+rna&na=1&gnl=ref%7CNW_001838996.1%7C&gi=157696557&term=157696557%5Bgi%5D&taxid=9606&RID=2T6FGYNY013&QUERY_NUMBER=1&log$=nucltop
http://blast.ncbi.nlm.nih.gov/Blast.cgi#224514841
http://blast.ncbi.nlm.nih.gov/Blast.cgi#224514841
http://www.ncbi.nlm.nih.gov/nucleotide/61744433?report=genbank&log$=nuclalign&blast_rank=1&RID=2T6FGYNY013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=111185894[NUID]&RID=4G17WHNM011&log$=genetop&blast_rank=1
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?direct=on&gbgi=111185894&THE_BLAST_RID=4G17WHNM011&log$=maptop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=61744433[NUID]&RID=2T6FGYNY013&log$=genealign&blast_rank=1
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?direct=on&gbgi=61744433&THE_BLAST_RID=2T6FGYNY013&log$=mapalign&blast_rank=1
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Consensus sequence of the TBP gene in 3T3-L1 cells and a portion of its 

chromatagram below 

 

TTACCCTTCACCAATGACTCCTATGACCCCTATCACTCCTGCCACACCAGCTTCTGAGAGCTC

TGGAATTGTACCGCAGCTTCAAAATATTGTATCTACCGTGAATCTTGGCTGTAAACTTGACCT

AAAGACCATTGCACTTCGTGCAAGAAATGCTGAATATAATCCCAAGCGATTTGCTGCAGTCA
TCATT 
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BLAST results of sequenced PCR product of TBP gene in 3T3-L1 cells 

 
Mouse over to see the defline, click to show  alignments

 

 
 

 

            

                  
 

  

 

    

 

    

 
 

 
Descriptions 

Legend for links to other resources: UniGene GEO Gene Structure Map Viewer 

PubChem BioAssay  

Sequences producing significant alignments: 

 

 

Accession 

transcripts 

Description Max 

score 

Total 

score 

Query 

coverage 

E 

value 

Max 

identity 

Links 

NM_013684.2 Mus musculus 

TATA box 

binding protein 

(Tbp), mRNA 

 

219 

 

219 

 

100% 

1e-56 

 

100% 

 

 

Genomic sequences[show first] 

NT_039649.7 Mus musculus 

chromosome 17 

genomic contig, 

 

132 

 

220 

 

100% 

 

1e-30 

 

100% 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/nucleotide/111185894?report=genbank&log$=nucltop&blast_rank=1&RID=4G17WHNM011
http://blast.ncbi.nlm.nih.gov/Blast.cgi#111185894
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DESCRIPTIONS=100&DISPLAY_SORT=0&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&HSP_SORT=0&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=MegaBlast&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=4G17WHNM011&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WWW_BLAST_TYPE_URL=&DATABASE_SORT=2#sort_mark
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=alt_contig+ref_contig+rna&na=1&gnl=ref%7CNT_039649.7%7CMm17_39689_37&gi=149268951&term=149268951%5Bgi%5D&taxid=10090&RID=4G17WHNM011&QUERY_NUMBER=1&log$=nucltop
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=Display&dopt=nucleotide_unigene&from_uid=111185894&RID=4G17WHNM011&log$=unigenetop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo&term=111185894[gi]&RID=4G17WHNM011&log$=geotop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=111185894[NUID]&RID=4G17WHNM011&log$=genetop&blast_rank=1
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?direct=on&gbgi=111185894&THE_BLAST_RID=4G17WHNM011&log$=maptop&blast_rank=1
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strain 

C57BL/6J 

> ref|NM_013684.2|  Mus musculus TATA box binding protein (Tbp), mRNA 

Length=1669 

Score =  219 bits (118),  Expect = 1e-56 

 Identities = 118/118 (100%), Gaps = 0/118 (0%) 

 Strand=Plus/Plus 

 

Query  1    CCTGCCACACCAGCTTCTGAGAGCTCTGGAATTGTACCGCAGCTTCAAAATATTGTATCT 60 

                    

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  607  CCTGCCACACCAGCTTCTGAGAGCTCTGGAATTGTACCGCAGCTTCAAAATATTGTATCT 666 

 

Query  61   ACCGTGAATCTTGGCTGTAAACTTGACCTAAAGACCATTGCACTTCGTGCAAGAAATG  118 

            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  667  ACCGTGAATCTTGGCTGTAAACTTGACCTAAAGACCATTGCACTTCGTGCAAGAAATG  724 

 

http://www.ncbi.nlm.nih.gov/nucleotide/111185894?report=genbank&log$=nuclalign&blast_rank=1&RID=4G17WHNM011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=Display&dopt=nucleotide_unigene&from_uid=111185894&RID=4G17WHNM011&log$=unigenealign&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo&term=111185894[gi]&RID=4G17WHNM011&log$=geoalign&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=111185894[NUID]&RID=4G17WHNM011&log$=genealign&blast_rank=1
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?direct=on&gbgi=111185894&THE_BLAST_RID=4G17WHNM011&log$=mapalign&blast_rank=1


 

 

235 

 

Standard curve and efficiency of TBP gene amplification in HepG2 cells. S1-S5 are 

standards, NTC is the no template control. S1 is the standard with highest DNA 

concentration while S5 has the lowest concentration. 

 

 

 

S1 

S2 

S3 

S4 

S5 

NTC 



                                                                                            Appendix I 

 236 

Standard curve and efficiency of PPAR  gene amplification in HepG2 cells. S1-S5 are 

standards, NTC is  a non-template control. S1 is the standard with highest DNA 

concentration while S5 has the lowest concentration. 

 

 

 

 

S1 

S2 

S3 

S4 
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Standard curve and efficiency of TBP gene amplification in 3T3-L1 cells. S1-S5 are 

standards, NTC is the no template control. S1 is the standard with highest DNA 

concentration while S5 has the lowest concentration. 

 

 

 

 

S1 

S2 

S3 

S4 
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Standard curve and efficiency of PPAR  gene amplification in 3T3-L1 cells. S1-S5 are 

standards, NTC is the no template control. S1 is the standard with highest DNA 

concentration while S5 has the lowest concentration. 

 

 

 

NTC S1 

S2 

S3 

S4 

S5 
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Standard curve and efficiency of ALP gene amplification in HepG2 cells (S1-S4 are 

standards, NTC is the no template control. S1 is the standard with highest DNA 

concentration while S4 has the lowest concentration. 
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Standard curve and efficiency of ALP gene amplification in 3T3-L1 cells. (S1-S5 are 

standards, NTC  is the no template control. S1 is the standard with highest DNA 

concentration while S5 has the lowest concentration. 
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APPENDIX II 

Lipid accumulation (OD/20x 104 cells) in HepG2 and 3T3-L1 cells AII.1 

Cell line  day 0 day 4 day 7 day 11 

 

HepG2 

Mean (N=3) 0.20 0.57 0.83 0.93 

SD 0.01 0.15 0.15 0.33 

SEM 0.01 0.08 0.08 0.17 

 

3T3-L1 

Mean (N=3) 0.030 0.061 0.148 0.202 

SD 0.004 0.019 0.019 0.018 

SEM 0.002 0.010 0.009 0.009 

 

ALP activity (IU/ g protein) in HepG2 and 3T3-L1 cells    AII.2 

  

Cell line  day 0 day 4 day 7 day 11 

 

HepG2 

Mean (N=4) 6.32 9.29 7.68 3.74 

SD 0.79 0.53 2.60 0.91 

SEM 0.39 0.27 1.30 0.45 

 

3T3-L1 

Mean (N=4) 0.00 7.21 9.94 6.57 

SD 0.00 2.58 3.60 1.48 

SEM 0.00 1.29 1.80 0.74 
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Lipid content of HepG2 and 3T3-L1 cells in the presence  

and absence of Levamisole and Histidine (N=3).  AII.3 

Cell 

t

y

p

e 

treatment  day 0 day 4 day 7 day 11 

 

 

 

 

HepG2 

 

No 

in

hi

bit

or 

Mean 0.068 0.207 0.286 0.356 

SD 0.007 0.059 0.085 0.104 

SEM 0.004 0.029 0.042 0.052 

 

Levamisole 

Mean  0.135 0.180 0.261 

SD  0.043 0.035 0.072 

SEM  0.022 0.017 0.036 

 

Histidine 

Mean  0.128 0.138 0.137 

SD  0.009 0.042 0.014 

SEM  0.005 0.021 0.021 

 

 

 

 

3T3-L1 

 

No 

in

hi

bit

or 

Mean 0.040 0.109 0.266 0.400 

SD 0.009 0.037 0.059 0.040 

SEM 0.004 0.019 0.029 0.020 

 

Levamisole 

Mean  0.094 0.129 0.217 

SD  0.033 0.072 0.109 

SEM  0.016 0.036 0.055 

 

Histidine 

Mean  0.082 0.085 0.099 

SD  0.042 0.057 0.053 

SEM  0.021 0.029 0.026 

                                                                                                    

ALP activity (IU/ g protein) in HepG2 and 3T3-L1 cells  

in the presence and absence of Levamisole and Histidine (N=3).   AII.4 

Cell 

t

y

p

e 

treatment  day 0 

0 

day 4 day 7 day 11 

 

 

 

 

HepG2 

 

No 

in

hi

bit

or 

Mean 1.17 6.43 4.13 1.86 

SD 0.83 0.95 2.14 1.18 

SEM 0.42 0.48 1.07 0.59 

 

Levamisole 

Mean  4.56 1.52 1.25 

SD  1.94 0.59 1.68 

SEM  0.97 0.29 0.84 

 

Histidine 

Mean  1.07 0.34 0.22 

SD  0.77 0.15 0.06 

SEM  0.38 0.07 0.03 

 

 

 

 

3T3-L1 

 

No 

in

hi

bit

or 

Mean 0.23 2.75 3.57 0.85 

SD 0.40 1.04 1.01 0.46 

SEM 0.20 0.52 0.51 0.23 

 

Levamisole 

Mean  0.13 0.79 0.50 

SD  0.23 0.46 0.21 

SEM  0.11 0.23 0.11 

 

Histidine 

Mean  0.18 0.14 0.10 

SD  0.32 0.12 0.17 

SEM  0.16 0.06 0.09 
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PPAR  gene expression in HepG2 and 3T3-L1 cells (N=3)   AII.5 

Cell type Gene  day 0 day 4 day 7 

 

 

HepG2 

 

PPAR 

Mean 69.07 272.33 113.27 

SD 42.34 74.59 10.65 

SEM 24.47 43.11 6.15 

 

TBP 

Mean 65.43 58.40 73.90 

SD 21.19 14.72 20.96 

SEM 12.25 8.51 12.11 

 

 

 

3T3-L1 

 

PPAR 

Mean 348.73 835.43 542.6 

SD 285.49 727.08 541.98 

SEM 165.02 420.28 313.28 

 

TBP 

Mean 72.77 56.9 71.70 

SD 24.76 11.48 22.51 

SEM 14.31 6.63 13.01 

 

PPAR  gene expression in HepG2 cells in the presence of 

 Levamisole and Histidine (N=3)     AII.6 

Cell 

t

y

p

e 

Gene treatment  day 0 day 4 day 7 

 

 

 

 

HepG2 

 

 

 

PPAR 

 

No Inhibitor 

mean 119.60 209.20 168.63 

SD 75.35 101.63 85.42 

SEM 37.68 50.82 42.71 

 

Levamisole 

mean  235.60 179.37 

SD  97.47 67.17 

SEM  48.74 33.58 

 

Histidine 

mean  222.47 167.93 

SD  96.35 84.75 

SEM  48.18 42.37 

 

 

TBP 

 

No Inhibitor 

mean 118.50 125.97 111.17 

SD 86.22 93.28 90.17 

SEM 43.11 46.64 45.36 

 

Levamisole 

mean  133.30 96.03 

SD  91.53 87.03 

SEM  45.76 43.51 

 

Histidine 

mean  139.10 113.47 

SD  97.26 113.47 

SEM  48.63 56.74 
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PPAR  gene expression in 3T3-L1 cells in the  

presence of Levamisole and Histidine (N=3) AII.7 

Cell 

t

y

p

e 

Gene treatment  day 0 day 4 day 7 

 

 

 

 

3T3-

L

1 

 

 

 

PPAR 

 

No Inhibitor 

mean 102.0

7 

274.1

3 

230.8

0 
SD 38.67 41.65 48.75 

SEM 19.38 20.83 24.38 

 

Levamisole 

mean  262.0

7 

156.3

0 
SD  45.81 103.20 

SEM  22.91 51.60 

 

Histidine 

mean  225.5

0 

184.7

0 
SD  1.27 30.98 

SEM  0.64 15.49 

 

 

TBP 

 

No Inhibitor 

mean 78.73 98.73 75.03 

SD 34.56 34.93 20.81 

SEM 17.28 17.47 10.40 

 

Levamisole 

mean  88.57 65.73 

SD  37.32 13.19 

SEM  18.66 6.60 

 

Histidine 

mean  77.85 67.33 

SD  0.21 17.63 

SEM  0.11 8.82 

 

MAPK1 gene expression in 3T3-L1 cells 72 hours post-transfection(N=3)  AII.8 

 treatment Expt 1 Expt 2  Expt 3 Mean SD SEM 

 

 

MAPK1  

 

 

Anti- siRNA 

 

9.50 

 

6.80 

 

18.20 
 

11.50 

 

5.96 

 

3.44 

 

Control siRNA 

 

29.00 

 

40.80 

 

132.10 
 

67.30 

 

56.43 

 

32.58 

 

Non-transfected 

 

31.20 

 

38.62 

 

134.10 
 

67.97 

 

57.39 

 

33.13 

 

 

Ref gene 

(TBP) 

 

Anti- siRNA 

 

118.30 

 

104.30 

 

245.40 
 

156.00 

 

77.74 

 

44.88 

 

Control siRNA 

 

124.60 

 

148.00 

 

245.50 
 

171.70 

 

64.42 

 

36.04 

 

Non-transfected 

 

119.50 

 

153.78 

 

239.95 
 

171.08 

 

62.06 

 

35.83 
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MAPK1 gene expression in HepG2 cells 72 hours post-transfection(N=3)  AII.9 

 treatment Expt 1 Expt 2  Expt 3 Mean SD SEM 

 

 
 
MAPK1  

 

 

Anti- siRNA 

 

10.40 

 

5.10 

 

4.30 

 

6.60 

 

3.30 

 

1.90 

 
Control siRNA 

 
20.50 

 
18.10 

 
27.70 

 
22.10 

 
5.00 

 
2.90 

 
Non-transfected 

 
22.10 

 
15.45 

 
30.04 

 
22.53 

 
7.30 

 
4.22 

 
 
Ref gene 

(TBP) 

 
Anti- siRNA 

 
104.20 

 
98.70 

 
131.30 

 
111.40 

 
17.50 

 
10.10 

 
Control siRNA 

 
101.30 

 
112.60 

 
159.30 

 
124.40 

 
30.70 

 
17.80 

 
Non-transfected 

 
98.56 

 
109.78 

 
174.94 

 
127.76 

 
41.24 

 
28.81 

 

Data for RNAi studies in 3T3-L1 cells                                                        AII.10 

 ALP activity in transfected 3T3 cells [IU/ g protein] (N=3)   

    expt1 expt2 expt3 Mean SEM SD 

day 0   0.001 0.001 0.000 0.001 0.000 0.001 

 

day 7 

 

No siRNA 0.016 0.019 0.010 0.015 0.007 0.005 

With Anti-siRNA 0.004 0.002 0.002 0.003 0.001 0.001 

With control siRNA 0.014 0.014 0.018 0.015 0.008 0.002 

 

day 11 

 

No siRNA 0.006 0.004 0.005 0.005 0.002 0.001 

With Anti-siRNA 0.001 0.002 0.002 0.002 0.001 0.000 

With control siRNA 0.004 0.006 0.007 0.006 0.003 0.001 

  

 

 

 

 

 

 

 

   



                                                                          Appendix II 

 246 

Lipid accumulation in transfected 

3T3 cells (OD/2x104 cells) 

    expt1 expt2 expt3 Mean SEM SD 

day 0   0.05 0.04 0.05 0.05 0.00 0.01 

  

day 7 

  

No siRNA 0.30 0.27 0.30 0.29 0.01 0.02 

With Anti- 0.07 0.08 0.09 0.08 0.00 0.01 

With Control siRNA 0.27 0.24 0.28 0.26 0.01 0.02 

  

day 11 

  

No siRNA 0.41 0.40 0.35 0.39 0.02 0.03 

With Anti-siRNA 0.11 0.12 0.16 0.13 0.01 0.03 

With Control siRNA 0.41 0.37 0.41 0.40 0.01 0.02 

  

 

TNSALP gene expression in transfected 3T3 

cells   

    expt1 expt2 expt3 Mean SEM SD 

day 0   0.00 0.00 0.00 0.00 0.00 0.00 

  

day 7 

  

No siRNA 4523.30 1212.30 382.15 2039.25 1095.46 2190.93 

With Anti-siRNA 1065.10 172.60 70.40 436.03 273.59 547.18 

With Control siRNA 3890.50 1303.70 391.30 1861.83 907.57 1815.14 

  

day 11 

  

No siRNA 1074.70 1071.80 81.20 742.57 286.38 572.76 

With Anti-siRNA 174.50 122.10 7.80 101.47 42.62 85.24 

With Control 920.40 795.70 72.60 596.23 228.87 457.75 
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TBP gene expression in transfected 3T3 cells 

  
  expt1 expt2 expt3 Mean SEM SD 

day 0 
  96.10 95.70 34.10 75.30 17.84 35.68 

  

day 7 

  

No siRNA 131.60 138.90 24.20 98.23 32.11 64.22 

With Anti-siRNA 126.10 111.50 34.70 90.77 24.55 49.10 

With Control siRNA 151.20 100.20 42.40 97.93 27.22 54.44 

  

day 11 

  

No siRNA 104.70 208.20 35.10 116.00 43.55 87.10 

With Anti-siRNA 142.70 152.20 38.00 110.97 31.68 63.37 

With Control siRNA 201.30 119.90 37.20 119.47 41.03 82.05 

 

Data for RNAi studies in HepG2 cells        (N=3)               AII.11    

ALP activity (IU/ g protein)in transfected HepG2 cells   

    exp1 exp2 exp3 Mean ± SD SEM 

Day 0  0.006 0.007 0.007 0.007 0.001 
0.00

0 

 

Day 4 

 

No siRNA 0.028 0.016 0.024 0.023 0.006 
0.00

3 

with Anti-siRNA 0.005 0.004 0.006 0.005 0.001 

0.00

0 

with Control siRNA 0.026 0.029 0.021 0.025 0.004 
0.00

2 

 

Day 7 

 

No siRNA 0.011 0.016 0.01 0.012 0.003 
0.00

2 

with Anti-siRNA 0.002 0.007 0.001 0.003 0.003 
0.00

2 

with Control siRNA 0.006 0.006 0.008 0.007 0.001 
0.00

1 

 

Day 11 

 

No siRNA 0.006 0.006 0.007 0.006 0.001 
0.00

0 

with Anti-siRNA 0.003 0.001 0.002 0.002 0.001 0.00 

with Control siRNA 0.006 0.009 0.002 0.006 0.004 
0.00

2 
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Intracellular lipid accumulation(OD/2 x104 cells) in transfected HepG2 cells 

    exp1 exp2 exp3 Mean ± SD SEM 

Day 0   0.07 0.08 0.07 0.07 0.01 0.00 

  

Day 4 

  

No siRNA 0.10 0.09 0.07 0.09 0.03 0.00 

with Anti-siRNA 0.09 0.11 0.10 0.10 0.02 0.01 

with Control siRNA 0.10 0.09 0.08 0.08 0.02 0.01 

  

Day 7 

  

No siRNA 0.25 0.22 0.20 0.22 0.03 0.01 

with anti-siRNA 0.17 0.16 0.17 0.17 0.01 0.00 

with Control siRNA 0.25 0.31 0.29 0.28 0.03 0.02 

  

Day  

  

No siRNA 0.48 0.5 0.47 0.48 0.02 0.01 

with Anti-siRNA 0.23 0.25 0.24 0.28 0.01 0.01 

with Control siRNA 0.42 0.41 0.44 0.42 0.02 0.01 

 

 

TNSALP gene expression in transfected HepG2 cells (cDNA[ng/ml)  

  exp1 exp2 exp3 Mean ± SD SEM 

Day 0  195.6 177.1 180.3 184.3 9.9 5.7 

Day 4 

No siRNA 2247.4 1052.9 489.0 1263.1 897.8 448.9 

with Anti-siRNA 233.3 124.0 185.1 180.8 54.8 27.4 

with Control siRNA 2065.2 1288.5 322.0 1225.2 873.3 436.7 

Day 7 

No siRNA 281.9 116.4 266.5 221.6 91.4 45.7 

with Anti-siRNA  35.9 150.4 93.2 81.0 40.5 

with Contro siRNA 264.7 195.6 231.9 230.7 34.6 17.3 

Day 

1

1 

No siRNA 270.6 202.9 273.3 248.9 39.9 19.9 

with Anti-siRNA 45.3 202.9 136.2 128.1 79.1 39.6 

with Control siRNA 58.4 174.7 210.5 147.9 79.5 39.8 
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TBP gene expression in transfected HepG2 cells (cDNA[ng/ml) 

  expt1 expt2 expt3 mean ± SD SEM 

Day 0  160.3 96.4 164.9 140.5 38.3 19.1 

Day 4 

No 219.5 228.2 124.3 190.7 57.6 28.8 

With Anti-siRNA 188.0 154.4 43.3 128.6 75.7 37.9 

With Control siRNA 147.0 193.5 122.8 154.4 35.9 18.0 

Day 7 

No 310.2 202.1 135.1 215.8 88.4 44.2 

With Anti-siRNA 220.6 153.9 176.4 183.6 33.9 17.0 

With Control siRNA 296.2 148.1 190.6 211.6 76.3 38.1 

Day 11 

No 56.9 109.0 214.6 126.8 80.3 40.2 

With Anti-siRNA 229.3 236.5 217.2 227.7 9.8 4.9 

With Control siRNA 254.8 141.4 201.6 199.3 56.7 28.4 

 

Anthropometric data for subjects who participated in the study on 

polymorphism in the promoter region of TNSALP gene. N=6, black women 

 

 Subject study number 

 1 2 3 4 5 6 Mean SD 

Age 48 41 58 55 52 44 49.7 ±6.3 

Weight 90.2 76.0 79.4 91.4 82.7 77.30   

Height 1.61 1.55 1.54 1.68 1.52 1.51   

BMI 34.8 31.6 33.5 32.4 35.8 33.9 33.0 ±4.6 

 

(N= 6, White women) 

 Subject study number 

 21 22 233 24 25 26 Mean SD 

Age 27 39 22 53 45 51 39.5 ±11.9 

Weight 85.8 86.6 61.9 85.7 99.3 79.6   

Height 1.70 1.61 1.63 1.52 1.68 1.60   

BMI 29.7 33.4 23.3 37.1 35.2 31.1 31.5 ±4.5 
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