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ABSTRACT 

 

Medical X-ray imaging is nowadays ubiquitous in healthcare. International studies have 

shown that patient doses during both diagnostic X-ray examinations and fluoroscopically 

guided procedures from one clinic to another can vary by a factor of up to 100. Such a 

variation in patient doses offers an opportunity for dose – image quality optimization. Given 

this background, every radiology clinic which wants to use X-ray imaging ethically and 

efficiently should have in place ways of optimizing the patient dose – image quality 

relationship. One generally accepted tool in the optimization process is diagnostic reference 

levels (DRLs). Currently in South Africa there are no established DRLs and there is no 

systematic patient dose data collection by the either the national regulator or any competent 

authority. The main purpose of this thesis was to quantify patient doses for patients 

undergoing diagnostic examinations and fluoroscopically guided procedures, educate 

radiation workers on typical patient doses, develop effective methods in quality control of 

radiographic and fluoroscopic equipment and evaluate radiographer familiarity with digital 

radiography technology within the context of a typical university teaching South African 

hospital. The present thesis comprises of seven studies, all carried out at Charlotte Maxeke 

Johannesburg Academic Hospital (CMJAH), formerly Johannesburg Hospital: 

 

Study I: In this investigation the luminance level of X-ray viewing boxes and ambient 

lighting levels in reporting rooms were measured as a quality assurance procedure and 

compared with the recommended values by the Directorate of Radiation Control (DRC) of 

South Africa, European Commission (EC) and Nordic Radiation Protection Co-operation 

(NORDIC). Results from this investigation showed that the mean average luminance was 

1027 cd m
-2

 and 3284 cd m
-2

 at the Division of Radiology and Division of Radiation 

Oncology respectively.  The Division of Radiation Oncology had an average viewing box 

uniformity 7.14% compared to 27.32% at the Division of Radiology. The average ambient 

lighting was found to be 66 lux for both Divisions. The radiograph viewing conditions 

variably comply with guidelines. The radiographic imaging chain can only be as strong as its 

weakest link, thus this study underscores the need of implementing quality control and 

quality assurance standards in radiographic image viewing. Based on the practical experience 

of this investigation it is recommended that the DRC test criteria be adopted, in light of the 

varied recommendations worldwide.   
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Study II: This study aimed to develop, implement and evaluate a software program which 

can be used in a radiology quality control program. A Microsoft Excel
™

 based software 

program was developed for use in quality control: tests data collection, analysis and archiving 

of the tests done on general radiography equipment, fluoroscopy equipment and film 

processors. Validation of the software application in terms of usability, user-friendliness was 

done by an experienced radiographer. This software provides an easier and efficient way of 

recording quality control data, analysis and archiving. 

 

Study III: This study retrospectively analyzed the radiation doses delivered to patients 

undergoing fluoroscopy guided procedures in terms of the skin dose
1
 and the kerma-area 

product readings. A total of three hundred and thirty one fluoroscopically guided procedures 

were analyzed. In agreement with other published studies, a weak correlation was shown 

between skin dose and screening time, while a poor correlation was shown between KAP 

reading and screening time. There was a wide spread in the radiation doses registered for any 

one given type of examination, which shows that there is room for dose optimization. From 

the lessons drawn from this study it is practically feasible to record the KAP, fluoroscopy 

time and number of images routinely. The usefulness and potential use of KAP meters with 

regards to dose optimization in radiology was confirmed.   

 

Study IV: This investigation aimed to assess the feasibility of fabricating in-house the clinical 

dosimetry radiology phantoms. A total of six patient dose assessment phantoms were 

fabricated of which four phantoms were as per American National Standards Institute (ANSI) 

specifications and the other two as per Centre for Devices and Radiological Health (CDRH) 

specifications. This study proved that the phantoms can be fabricated cost-effectively in-

house in a hospital with a mechanical engineering workshop using materials which are 

locally available. In addition, this study determined radiation doses received by patients 

undergoing six general radiography examinations. The feasibility of both direct and indirect 

methods of patient dosimetry was studied. Patient dosimetry based on indirect measurements 

was the method of choice. Patient data and technical parameters related to the X-ray 

examinations were collected. The study involved the following examinations: chest posterior-

anterior (PA), chest lateral (LAT), pelvis anterior-posterior (AP), abdomen AP, lumbar spine 

AP and thoracic spine AP. Entrance surface air kerma was calculated based on the X-ray tube 

                                                 
1
 See Section 8.3 on the use of the term skin dose 
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output of the unit used and the exposure parameters used for the actual examination. Based 

on the mean entrance surface air kerma (ESAK) values from the individual rooms, the 

following DRLs were established: 0.10 mGy for chest PA, 0.22 mGy for chest LAT, 2.98 

mGy for pelvis AP, 4.19 mGy for abdomen AP, 5.30 mGy for lumbar spine AP and 3.28 

mGy for thoracic spine AP. The calculated mean ESAK values were compared with 

previously published mean values from other countries. For the first time, a baseline for 

potential dose reference levels (DRLs) in South Africa was established for the selected 

examinations. The results of this snapshot audit serve as a benchmark for future dose 

optimization attempts in South Africa. Feasible and practical dose saving measures are 

presented and discussed based on the experience of the present patient dose audit carried out. 

 

Study V: A replica of the CDRAD phantom was successfully fabricated in-house for use as 

an image quality test object. It has been shown that the phantom when fabricated in-house is 

inexpensive and can be made from materials that are readily available locally. Furthermore 

the utility of the replica phantom as both an acceptance testing and routine quality control 

tool has been demonstrated.  The replica phantom proved effective for purpose and user-

friendly. 

 

Study VI: The purpose of this study was to assess radiographer familiarity and preferences 

with digital radiography and thereafter make recommendations in line with the migration 

from screen film to digital radiography in South Africa. A questionnaire was designed to 

collect data from either qualified or student radiographers from four teaching hospitals. From 

the four teaching hospitals there were a total of 205 potential respondents.  Among other 

things, responses regarding experiences and preferences with digital radiography, quality 

control procedures, patient dose, advantages and disadvantages of digital radiography were 

sought. The information collected was based on self-reporting by the participants. Sixty-three 

out of 205 (31 %) radiographers from all the four radiology centres responded to the 

circulated questionnaire. The participants of this survey showed familiarity with digital 

radiography and have embraced this relatively new technology as shown by the fact that they 

can identify both its advantages and disadvantages as applied to clinical practice. However, 

there are minimal quality control procedures specific to digital radiography being undertaken 

and there is need for formal education, continuing education and manufacturer training with 
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respect to quality control as institutions make the transition from conventional screen film 

radiology to digital radiology.  

 

Study VII: An investigation into the amount of scattered radiation from the couch during 

under-couch procedures was carried out. Of dosimetric concern are the forward scattered 

photons from the couch which contribute in principle to patient dose. Measurement of the 

amount of scattered radiation off the patient couch was accomplished by using an ionization 

chamber.  The results of the investigation showed that for field size of dimensions, 10 cm * 

10 cm, the scatter contribution is approximately 12 % of the total radiation reaching the 

patient surface. In addition the scatter contribution varies by ±2% across field sizes ranging 

from 8 cm * 8 cm to 20 cm * 20 cm, with the 10 cm * 10 cm field size taken as a reference 

field. This study underscores the need to account for the forward scattered radiation so as to 

improve the accuracy of clinical patient dosimetry. 

 

Programs of continuing education and training of radiological personnel in appropriate 

radiological technique need be actively implemented in order to maintain a high level of 

awareness of the factors that determine the diagnostic quality and dose to the patients. In line 

with efforts to optimize dose from diagnostic radiography examinations it is recommended 

that national DRLs be established in South Africa for the most frequent examinations in 

general radiography and fluoroscopy. It is recommended that the South African national 

regulator endeavour to implement or facilitate implementation of a national patient dose 

database. In summary, this thesis indicates the possibility of dose reduction in diagnostic 

radiology through optimization of radiographic process.  

 

Key Words: diagnostic radiology, fluoroscopically guided procedures, optimization of 

protection, image quality, dose reference levels, quality control, digital radiography  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 An Overview 

In November 1895, Professor Wilhelm Conrad Röentgen of the University of Wurzburg, 

Germany discovered X-rays in his laboratory
1-5

. It is reported that to demonstrate the 

properties of X-rays in a public lecture, Röentgen asked a prominent Swiss professor of 

anatomy by the name Rudolf Albert von Kölliker to put his hand in the beam and thus 

produced the first publicly taken radiograph clearly showing the bony structures of the hand 

and a ring on the finger
6
. From the very onset of Röentgen’s discovery, X-rays were 

immediately applied to medical imaging.  

 

Radiography as practiced then was immediately followed by fluoroscopy. Fluoroscopy is the 

method that provides real-time X ray imaging that is especially useful for guiding a variety of 

diagnostic and interventional procedures. The early equipment consisted of a tube with a 

fluorescent screen at one end and an eyepiece at the other. A body part placed in between the 

X-ray tube and the screen produced an image even in a lighted room.  

 

In modern day society, diagnostic radiology is of paramount importance at any level of 

healthcare, be it in public health or preventative medicine or curative medicine
7
. Diagnostic 

radiology examinations can be used either solely or in conjunction with expert clinical 

judgement to diagnose or confirm disease processes.  Medical X-ray examinations have 

empowered medical professionals to study physiology and view human anatomy non-

invasively, leading to the elimination of some exploratory surgery
8
.   

 

In the year 2000, medical imaging was listed as one of the top 11 inventions for the past 1000 

years, which is a clear indicator of the importance of this modality to humanity
8
. Mankind 

has gained a lot from the use of ionizing radiation, however the use of ionizing radiation 

poses some risk to the population. However, in general the risk posed by medical X-ray 

examinations is assumed to be outweighed by the derived benefit. An increase in the 

availability of medical X-ray imaging equipment in developing countries has led to an 

increase in the frequency of X-ray examinations
9
.   
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Medical ionizing radiation sources give by far the largest contribution to the population dose 

from man-made sources and most of this contribution comes from diagnostic X-rays
10 -13

. The 

UNSCEAR 2008 Report mentions that the worldwide total number of diagnostic medical 

examinations (both medical and dental) per year is estimated to have risen from 2.4 billion in 

the 1991 - 1996 survey to 3.6 billion in the 1997 – 2007 survey, representing a 50 % 

increase
14

. Following the trend over the past couple of decades there is reason to assume that 

the use of X-rays for medical purposes is going to continue to increase. For example for the 

population of the United States of America the dose budget is as shown below
15

. 

 

 

Figure 1.1: The pie chart shows sources of radiation exposure in the United States of 

America in 2006 
15

. 

 

When considering radiation dose due to medical applications it is worthwhile to mention the 

contribution by computed tomography (CT). From Figure 1.1 CT is clearly the largest dose 

contributor from medical use of ionizing radiation. The UNSCEAR 2008 Report noted that 

34 % of the collective dose from medical exposures was due to CT procedures 
14

. There has 
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been a remarkable increase in the use of CT since its clinical introduction in the early 1970s 

16,17
. In 2004 CT examinations per thousand population per annum were as follows: 30 in 

Australia, 35 in Germany, 50 in Belgium and 97 in Japan 
16

. For example as of 2008 the use 

of CT had increased by approximately 12 fold in the UK and by more than 20 fold in the 

US
18

. In the UK, CT contributes the bulk of the collective dose
18

. It is the opinion of the 

author that the use of CT is not as prevalent as that of general radiography in South Africa 

thus the deliberate choice to investigate the high frequency general radiography 

examinations. Nonetheless it is appreciated that CT is a high dose modality which deserves to 

be investigated. 

 

South Africa is a healthcare level II country according to the UNSCEAR definition which is 

based on physicians per head of population 
19

. This healthcare level classification translates to 

332 diagnostic X-ray examinations per 1000 population per annum based on the 1997 –2007 

survey 
14

. Given this relatively high frequency of X-ray examinations, it will be a disservice 

to the population for the scientific community to not investigate radiography practice with the 

aim of optimising practice.  

 

The detrimental effects of ionizing radiation are well documented
20

. Given the self evident 

increase in global usage of X-rays coupled with the increase in frequency of use, it becomes 

imperative for the medical physics community to explore ways of efficient and optimum 

usage. In simple terms, optimization in diagnostic radiology means producing an image with 

all the relevant diagnostic information for the least radiation dose. In practice application of 

optimization principles is not as easy as it might seem since the two quantities dose and 

image quality are intimately connected. In most cases better images need an increase in dose 

and the reverse is normally true. In a clinical set-up for any given patient the radiographer/ 

radiation technologist, in an effort to optimize dose has to make decisions with regard to the 

exposure parameters ( kVp, mAs, use of grid, filtration and focus to film distance). All these 

parameters have an influence on both image quality and radiation dose to the patient. Having 

multiple parameters to choose from when taking a radiograph further complicates the 

optimization process, as the parameters are not necessarily complementary.   
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1.2 Status of Radiology in South Africa and Legislature 

Within sub Saharan Africa, South Africa enjoys comparatively better radiology facilities. The 

radiology community is regulated by a directorate under the Department of Health, namely, 

DRC. The DRC’s mission is to promote and maintain health within the framework of the 

National Health Plan and specifically the protection against injury or disease caused by 

technological devices, including hazardous sources of radiation, by furthering the safe and 

legal use of such devices. Currently there are 12602 medical X-ray units and 289 CT units 

licensed by the DRC. From the DRC listing of licensed medical devices it is evident that the 

technology in use varies from very old to the latest state of the art equipment
21

. The DRC 

stipulates the types of quality control (QC) tests and their frequency.   

 

The mainstream radiology department professionals, namely radiologists, radiographers and 

medical physicists have voluntary professional societies which represent them. Radiologists 

have the Radiological Society of South Africa (RSSA) which represents radiologists and 

nuclear medicine physicians in South Africa and Namibia. The professional society for 

radiographers is called the Society of Radiographers of South Africa (SORSA), it represents 

radiographers practising in diagnostic radiology, nuclear medicine, radiotherapy and 

ultrasound. The South African Association of Physicists in Medicine and Biology 

(SAAPMB) represents medical physicists. All the mentioned societies are at liberty to make 

representations on issues affecting their practice to the Health Professions Council of South 

Africa (HPCSA) or the national government or any relevant statutory body.  

  

The Hazardous Substances Act, (Act 15 of 1973) governs the safe use of medical x-ray 

equipment in South Africa 
22

. Licensing X-ray emitting devices for use in South Africa is the 

sole responsibility of the DRC. The DRC has a mandate to enforce the Hazardous Substances 

Act, for example to ensure that appropriate quality control procedures are being undertaken 

for every installed unit 
22

. The current official position in South Africa is that quality control 

procedures in radiology should be done by South African National Accreditation Agency 

(SANAS) accredited companies or organizations. However the SANAS accreditation is 

modality specific
 
and as of July 2010 there are 14 organizations approved by the DRC to 

perform radiology quality control procedures 
23

.  
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South African radiology departments have not been spared from staff shortages. There is a 

general shortage of radiographers in the health sector and moreover the situation is worsened 

by labour migration to the private sector and overseas. As of June 2008 there were 4 medical 

physicists with a primary or sole responsibility in diagnostic radiology, otherwise the rest of 

the medical physics community provided service to the radiology community on a 

consultative basis. The current number of diagnostic radiology medical physicists’ falls way 

short for optimum staffing levels, particularly worrying is that even some university teaching 

hospitals have vacant posts. The SAAPMB officially endorsed the use of the IAEA-TRS 457 

protocol for radiology dose measurement in 2008 
24

.  

 

1.3 Problem Statement 

Despite the fact that in general the benefits derived from medical radiation exposure 

outweighs the associated risks to the patients, there is a growing concern among the patients, 

public and the scientific community about the ill-effects of radiation. An interrogation of the 

google search engine on the internet reveals the scale of the radiation concerns the public has 

through the various published media articles. The first step in allaying the radiation effects 

phobia is to accurately quantify the risk of these procedures. Currently in radiology the risk 

metric of choice is effective dose, which can only be derived from the knowledge of patient 

doses in a population. Patient doses can be determined through carrying out dose audits in 

clinics, which evaluate patient dose, image quality and technique. Currently there is sparse 

literature on patient doses in South Africa and such lack of information reinforces fears about 

radiation. The problem can be summed up as a process optimization problem and thus the 

objective of this work to identify feasible ways of lowering patient doses.     

 

1.4 Motivation for Research Work 

The Government Gazette No. 14596 of 26 February 1993, made further specific regulations 

with regards to use of Group IV Hazardous Substances. The major theme of the mentioned 

Government Gazette was radiation protection of the patient, radiation workers and the 

general public. Of interest is Section 29, Part 2 of the Gazette which reads 

“A holder shall ensure that any equipment or apparatus under his control 

(a) that contains a Group IV hazardous substance and that is used for medical exposure; 

or 

(b) that is intended for use with such substance. 
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is of such design or construction and is installed and maintained and calibrated in such a 

way that the exposure to ionizing radiation of any person who is undergoing a medical 

exposure may, as far as is reasonably  practicable, be restricted to a minimum that is 

reconcilable with the intended clinical purpose or research objective.” 
25

. 

Thus there is a statutory obligation to diagnostic radiology service providers to apply the 

ALARA principle without compromising the image quality. However for this to be achieved 

there ought to be measurable metrics for typical X-ray examination. This can be done by way 

of setting up DRLs as suggested by the International Commission on Radiological Protection 

(ICRP) 
26

. It is envisaged that establishment of DRLs will shift from the retrospect approach 

of “what dose did I deliver” to a more prospective approach of “what dose should I deliver”. 

No DRLs for radiography examinations have been established in South Africa
27

. Moreover 

patient dose data collated from international studies involving countries across the globe is 

mainly based on data from developed countries
14

. It should be appreciated that for 

fluoroscopy / screening procedures a reduction in patient dose will also result in a 

corresponding reduction in radiation workers dose 
28

. 

 

In the United States of America all fluoroscopic equipment manufactured on or after 10 June 

2006, should be able to display air kerma rate and cumulative air kerma
29

. The DRC in South 

Africa followed suit in 2007 and changed the license conditions for fixed fluoroscopy units to 

include the instalment of KAP meters
30

. As a result all facilities having fixed fluoroscopy X-

ray units were instructed to have a KAP-meter installed and to record the KAP readings after 

each examination with effect from 01 January 2008. It would be unfortunate to have this 

depository of KAP meter readings without any meaningful scientific analysis of the data. It is 

the objective of this thesis to analyse the data depository with the intention of contributing to 

the knowledge of patient radiation doses. 

 

1.5 Significance of Study 

 In modern day society, patients and members of the public have nearly unlimited access to 

information regarding their care-paths. The pitfalls of this readily available information 

sourced from internet search engines and media is that it often lacks context and is easily 

misinterpreted by the lay public. Presently there is no local knowledge base to inform on 

typical radiation doses in South Africa and thus dose optimization development process, 
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henceforth this thesis will provide baseline knowledge to inform optimization processes on a 

practical local clinical setting level. 

 

Public hospitals in South Africa are migrating to digital radiography, for example in 2006 

Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) installed a total of 6 digital 

units of which 5 were general radiography digital units and 1 digital mammography unit. 

Research from overseas has shown that digital radiography has the potential to improve 

workflow and lower patient doses, however this hypothesis has not been tested and 

established in a South African public hospital setting where most of the staff were trained on 

and operate analogue units. This thesis through a questionnaire will capture the current digital 

radiography practice in a few select South African public hospitals with the aim of making 

recommendations for “best practice”. 

 

For radiation protection purposes to the radiologist or interventionist the fluoroscopy units are 

in most cases operated with the X-ray tube under the couch. In this configuration at typical 

radiology beam energies there is forward directed backscattered radiation which present 

industry preferred dosimetry systems do not account for in quantifying patient skin doses. 

This thesis will quantify the amount of the forward directed backscattered radiation which 

contributes to the patient’s skin dose and therefore potentially lead to a more accurate 

quantification of clinical dosimetry, which informs associated radiation risks to the patient.     

                                   

1.6 Objectives 

This work will attempt to find solutions with specific attention to the challenges and 

knowledge gaps pertinent to the South African radiology community. The objectives of this 

work are, among others, 

 Measure incident air kerma and calculate entrance surface air kerma from selected X-

ray examinations. 

 Retrospectively analyse patient doses from fluoroscopic examinations and procedures. 

 Identify potential high dose fluoroscopic procedures. 

 Deduce and establish preliminary local diagnostic reference levels for selected 

examinations. 

 Identify the weakest links in the X-ray imaging chain and subsequently address the 

optimization strategies accordingly. 
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 Educate, advice, and sensitize the South African radiology community on patient 

doses.  

 Provide information on patient doses to the South African radiology community. 

 Provide information on patient doses in healthcare level II countries. 

 Assess the familiarity radiographers to digital radiography. 

 Design a simple spreadsheet based application to be used for recording quality control 

results.  

 Investigate the amount of forward scattered radiation on under-couch KAP-meter 

installations. 

Scientific methods will be applied to improve the clinical application of ionizing radiation. 

The study is designed around four major scientific challenges in diagnostic radiology, being 

the justification of X-ray examinations, the optimization of X-ray technology, assessment of 

patient exposure to X-rays and image quality assessment in diagnostic radiology. 

 

1.7 Organization 

The structural organization of this thesis is described in the following paragraphs. This 

present work comprises of eleven chapters and five appendices.  

 

Chapter One gives an overview of the subject matter of this work. It gives a brief history of 

the field of radiology. Furthermore, it spells out the objectives of this work and at the same 

time gives the justification for engaging in this research. 

 

Chapter Two is a brief literature review on the various subjects of this dissertation. It briefly 

details and acknowledges prior research which has been done on this subject by other 

scholars. The literature review is limited to the following general subjects: quality control and 

quality assurance programs in diagnostic radiology, radiographic viewing conditions in 

diagnostic radiology, use of custom made quality control software in radiology, fluoroscopy 

dose audits, radiography examinations dose audits, physical and clinical image quality 

assessments, issues related to migration from screen film technology to digital radiography 

and scattered radiation from under couch procedures.  Pertinent results and lessons learnt 

from this literature review are spelt out. 
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Chapter Three deals briefly with the science and engineering behind the production of X-

rays. In addition a brief synopsis in the relatively complicated science of image formation on 

a screen-film combination is also offered. Digital radiography and fluoroscopy are introduced 

in this chapter. 

 

Issues relating to radiation dosimetry in diagnostic radiology are introduced in Chapter Four. 

Concepts of dose measurement are introduced in this section of the thesis. More importantly 

the principal subject of this thesis, that is, dose optimization is introduced. Issues like the 

biological effects of radiation and the associated radiation risk are also discussed. 

 

The thesis includes a comprehensive chapter on image quality metrics. Image quality metrics 

is presented in Chapter Five. The phrase image quality is defined in this chapter and also 

factors that affect image quality are discussed. This chapter offers both quantitative and 

qualitative means of measuring image quality.     

 

Chapter Six discusses the materials and methodology employed in this research. Methods 

employed in this work varied from experimental measurements, engineering fabrication, 

questionnaire based data acquirement and statistical data analysis.  

 

Chapter Seven provides an in-depth analysis of the collected data. The results are presented 

in a number of forms, amongst others, graphs, histograms and tables. 

 

Chapters Eight deals with discussions arising from this work and drawing from what other 

researchers have done. This chapter gives an insight on the strengths and weaknesses of this 

thesis. Some of the work presented in this thesis has been published in scientific journals.  

 

Chapter Nine gives out the recommendations borne out of this work and conclusions that 

have been deduced from this dissertation. 

 

Chapter Ten gives out the conclusions that have been deduced from this dissertation. The 

main findings of this work are spelt out in this chapter. 
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Chapter Eleven has suggestions for future work based on the knowledge gaps identified from 

this work. 

 

After Chapter Eleven there are five appendices, namely, CD-ROM accompanying this thesis, 

the User’s Guide for the QC software developed, the X-ray room data collection form, the 

patient data collection form and a Questionnaire used in this thesis. The CD-ROM contains 

this thesis and the QC software. All the references cited in this work are listed after the 

Appendices.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Prior Work 

Dose audits involve assessment of all parameters that influence both patient dose and image 

quality of the radiographs. Thus a dose audit should consist of evaluation of the radiographic 

technique, patient dose and image quality. Patient dose surveys have reported wide variations 

in doses for patients undergoing the same type of X-ray examinations, at times by a factor of 

100 
31 -35

. This wide variation in patient dose is an indication of room to further optimize the 

radiography process. In addition, there is evidence that substantial reductions in these medical 

exposures are possible without detriment to patient care
31

. The wide variation in doses led the 

Royal College of Radiologists (RCR) and the National Radiological Protection Board 

(NRPB) to recommend that regular patient dose monitoring should be an essential component 

of a quality assurance (QA) programme in diagnostic radiology 
36

. 

 

The ICRP and the European Commission have recommended the use of DRLs as a quantity 

to aid dose optimization and a tool for patient dose audit and monitoring 
26, 37

. DRLs are 

defined as dose levels in medical radio-diagnostic practices or, in the case of 

radiopharmaceuticals, levels of activity, for typical examinations, for groups of standard sized 

patients or standard phantoms and for broadly defined types of equipment
37

. The DRL should 

fulfil the following criteria: 

 Be clearly defined and easy to measure or calculate. 

 Directly indicate the dose delivered to the patient. 

 Allow easy correlations with the technical parameters of the medical examination. 

 Be adapted to all types of radiological equipment.  

According to the ICRP, implementation of DRLS can lead to the following: 

 Reduce number of high or low dose values in a regional, national or local dose 

distribution. 

 Promote a narrower range of dose values that represent good practice for a particular 

examination 

 Promote progression towards an optimum range of dose values for a particular 

examination. 
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DRLs should be determined from patient dose surveys and be representative of the region or 

country. In order to be a true reflection of radiology practice DRLs should be regularly 

updated as practice and equipment change in hospitals. 

 

As a result of the concerns about the biological effects of radiation on patients receiving 

diagnostic radiology examinations there have been numerous patient dose audits conducted in 

various countries. The results of these patient audits have been compared nationally and 

internationally. For instance, in 1992 the NRPB established a National Patient Dose Database 

to collate the measurements made by X-ray departments across the UK of radiation doses to 

patients undergoing radiographic and fluoroscopic imaging procedures 
38

. This led to the 

publication of representative patient dose values in 1992. The published dose values were 

from data accrued through the period 1982 to 1985. Subsequent dose survey reports in 1996, 

2002 and 2007 showed a continued patient dose decrement 
39-41

. It therefore stands to reason 

that introduction of DRLs helped lower patient dose. Studies by the NRPB are large scale in 

nature, the 2007 publication is based on data collected from January 2001 to February 2006, 

comprising of 23 000 entrance surface dose measurements, 57 000 kerma area product (KAP) 

measurements for single radiographs, 208 000 KAP measurements and 187 000 fluoroscopy 

time recordings 
41

 

 

In the United States of America (USA) a large scale dose survey called Nationwide 

Evaluation of X-ray Trends (NEXT) was established for the purposes of producing a 

snapshot in time of patient doses from a nationally representative number of radiology 

facilities. The program was conducted jointly by the Conference of Radiation Control 

Program Directors (CRCPD) and the Food and Drug Administration’s (FDA) Centre for 

Devices and Radiological Health (CDRH). The NEXT program was started in 1973, 

assessing patient doses from twelve common medical and dental diagnostic examinations 

using manual techniques 
42

. However in 1984 the NEXT program started using clinically 

validated standard patient equivalent phantoms for use with automatic exposure control 

(AEC) techniques 
43

. There is a lot of practical experience to be derived from the NEXT 

program should the South African radiology community decide to establish national DRLs.  

 

In 2008 the initial results from an IAEA project involving countries from Africa, Asia and 

Eastern Europe were published. In this project there were six African countries participating, 
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namely Tanzania, Sudan, Democratic Republic of the Congo, Zimbabwe, Madagascar and 

Ghana. The mean entrance surface air kerma values were as follows: 0.33 mGy for chest PA, 

4.07 mGy for lumbar spine AP, 8.53 mGy for lumbar spine LAT, 3.64 mGy for abdomen AP, 

3.68 mGy for pelvis AP and 2.41 mGy for skull AP 
44

. This study concluded that patient 

doses were not higher than those in developing countries, however it pointed out that poor 

image quality was the major source of unnecessary radiation to patients in developing 

countries. Furthermore the study showed that introduction of quality control procedures led to 

patient dose reductions ranging from 25% to 85% depending on the type of examination. 

  

A number of studies from Nigerian radiology centres have been published 
12, 45, 46

. In general 

patient doses have been found to be comparable to data from both European and other 

African countries. In 2007, a study involving 9 hospitals in Southern Nigeria estimated 

entrance surface dose using standard exposure factors and a mathematical algorithm
47

. The 

estimated mean entrance surface dose were as follows: 0.4 mGy for chest PA, 1.7 mGy for 

chest LAT, 6.7 mGy for skull AP, 4.2 mGy for skull LAT, 5.4 mGy for abdomen AP and 6.9 

mGy for pelvis AP. Studies from an African country make for meaningful comparison of 

radiology practice, because they are more or less equal in terms of resources and also they 

have mostly common challenges. 

 

In recent years there has been data from the Islamic Republic of Iran which has been 

published. The Islamic Republic of Iran is a healthcare level II country like South Africa thus 

presenting meaningful comparisons. A nationwide survey was conducted in phases from 

2003, involving 31 radiology departments spread across 21 cities, involving 14 X-ray 

examination projections
48

. From the collected data the following dose reference levels were 

established for the following projections: 4.06 mGy for abdomen AP, 1.83 mGy for cervical 

spine AP, 0.93 mGy for cervical spine LAT, 0.97 mGy for chest AP, 2.07 mGy for chest 

LAT, 0.41 mGy for chest PA, 3.43 mGy for lumbar spine AP, 8.41 mGy lumbar spine LAT, 

3.18 mGy for pelvis AP, 2.85 mGy for skull AP, 1.93 mGy for skull LAT, 2.83 mGy for 

skull PA, 2.72 mGy for thoracic spine AP and 5.29 mGy for thoracic spine LAT 
48

.   

 

Tsapaki V et al 
49

 compared entrance surface dose values from a couple of examination types, 

using a mathematical method and thermoluminescent dosimeters (TLDs). Their study found 

that the entrance surface dose values derived from the mathematical/ calculation method 
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based on the exposure parameters was close to the results from the thermoluminiscent 

dosimetry. Furthermore, the study concluded that the calculation method offered an easy, 

cheaper and faster way of performing patient dosimetry. 

 

There are a number of things which can be done to minimize patient doses in general 

radiography examinations, for instance
50

: 

 Use patient specific exposure parameters ( kVp, mAs and filtration) 

 Keep the number of views per examination to the minimum necessary. 

 Consider alternative modalities e.g. ultrasound and MRI. 

 Use the most efficient image receptor consistent with the diagnostic information 

sought. 

 Avoid the universal use of anti-scatter grids. 

 Always collimate the X-ray beam to the size of the image receptor and clinical region 

of interest. 

 Optimize the processor performance.  

 

Presently in South Africa there is no published work of DRLs for diagnostic radiology 

examinations thus the motivation to undertake this study. Published work in the field of 

radiology has been limited to fluoroscopically guided procedures and mammography 

examinations 
51 -53

. It is well recognized and appreciated that fluoroscopically guided or 

interventional radiology procedures contribute significantly to the total collective dose due to 

medical exposure even if their frequency is relatively low 
54

. In addition, it is widely 

appreciated that some procedures in interventional radiology carry greater radiation risks than 

many other radiological examinations. The fact that fluoroscopy is a high dose modality 

could be possibly the motivation for South African research having been in this specialty. 

One of the few South African studies was by Acho et al who employed TLD dosimetry to 

measure radiation doses to 27 patients undergoing fluoroscopically guided back pain 

management procedures 
51

. A large variation in patient doses for the same procedure was 

reported in this study. Acho et al reported the following mean maximum skin doses: 20.2 

mGy for epidural injections, 48.9 mGy for facet joint injections, 37.4 mGy for sacroiliac joint 

injections and 14.3 mGy for radiofrequency neurotomy.  
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Technically a DRL represents doses for a typical examination or procedure, however the 

concept of ‘typical’ procedures is not well defined in interventional radiology either as the 

procedures can vary greatly. Marshall et al cautions on the interpretation of DRLs from 

specific clinics in light of the skewed and dispersed DRL distributions encountered in 

interventional radiology 
55

. For complex examinations they suggest setting up DRLs based on 

pooled size-corrected patient KAP distributions rather than distributions of average KAP per 

room. It has been shown that KAP values alone are not adequate indicators of skin dose, 

having shown poor correlation with skin dose
56

. However the KAP reading has been adopted 

by many as a quick indication of the radiation dose delivered. Some researchers have 

discredited this quantity due to its weak correlation with entrance surface dose, which is the 

quantity of interest given its intimate relation with deterministic effects.  

 

Patient dose audits have also been conducted for fluoroscopy procedures. For example in 

2004 the IAEA published the document IAEA-TECDOC-1423, which was a coordinated 

research project involving countries from Africa, Asia and Eastern Europe 
57

. The countries 

involved can generally be classified as developing countries as such this data in valuable and 

applicable to the South African situation. Morocco was the only African country participating 

in this project. Information recorded included patient’s age, weight, number of images, 

fluoroscopy time and KAP readings. The patient dose data was estimated from at least a 

patient sample size of five with an average mass of 70±10 kg for European countries and 

60±10 kg for Asian countries. This multi-national study had a mean DAP value of 23.2 Gy 

cm
2
 (3.5 - 84.5 Gycm

2
) and an average screening time of 3.5 minutes (1.0 – 11.9 minutes) for 

a barium meal procedure
57

.  

 

There are a number of things which can be done to minimize patient doses in fluoroscopy 

procedures, for instance 
58, 59

: 

 The field size should be restricted to the region of interest. 

 Keep the X-ray tube at the maximal distance from the patient while the image 

intensifier is kept  as close as possible to the patient 

 Keep beam ON time to an absolute minimum 

 Operator reaction to the 5-minute time notifications. 

 Use of the Last-Image-Hold facilities 

 Keep the tube current as low as possible. 
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 Keep the kVp as high as possible bearing in mind the patient thickness, patient dose 

and image quality. 

 Removal of the anti-scatter grid and use of screen-film combinations of a higher 

speed class. 

 Minimize room lighting to optimize image viewing. 

 Only justified examinations to be undertaken. 

 

In as much as one would like to have the patient dose as low as reasonably achievable, the 

limiting factor is the diagnostic information derived from the particular image. The dilemma 

in many cases is that image quality improves with higher patient doses, albeit a violation of 

the ALARA principle. Image quality is affected by a number of factors, ranging from the 

acquisition process, image receptor device, image processing process and image display. A 

number of methods have been used to assess image quality in radiology, either using 

phantoms or patients. However, some researchers have questioned the use of phantom based 

image quality studies to make inferences to clinical image quality as the link with clinical 

image formation is neither well defined nor predictive. It is therefore important for image 

quality to be defined in terms of what is needed or supposed to be detected in a particular 

image. Krupinski et al has defined image quality as task based 
60,61

. The subjective nature of 

image quality makes any objective assessment difficult. 

 

Errors and variations in interpretation represent the weakest link in clinical imaging 
62

. 

Among other things these errors are a result of poor technique. In 2007 Egbe et al did a 

retrospective study on assessing image quality of abdominal radiographs based on the 

Commission of European Communities image quality criteria 
63

. In the study by Egbe, 53 % 

of the radiographs classified as good quality images. In such a scenario there is a need and 

scope for image quality improvement. In 2001 van Soldt et al performed a patient dose and 

image quality survey for patients undergoing PA chest radiography in 25 selected centres in 

Netherlands 
64

. For image quality the study employed a contrast-detail phantom. A detailed 

description of the CD phantom is given in Chapter Five. Some researchers have gone further 

and investigated image quality based on clinical images. For example, in 2004 Tingberg et al 

studied the effect of the characteristic curve on the image quality of chest and lumbar spine 

radiographs based on the recommendations of the European Guidelines on Quality Criteria 

for Diagnostic Radiographic Images 
65

. Image quality was evaluated by seven experienced 
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radiologists, both fulfilment of the European Image Criteria and visual grading analysis 

(VGA) were analysed.  

 

Quality control and assurance in medical radiology is a legal requirement in South African. 

The International Organization for Standardization (ISO) defines quality assurance as all 

those planned and systematic actions necessary to provide confidence that a product or 

service will satisfy the given requirements of quality 
66

. In everyday talk, quality control is 

often confused with quality assurance, however, quality control is defined as the process 

through which the actual quality performance is measured, compared with existing standards 

and the actions necessary to keep or regain conformance with the standards.   

 

Implementation of a quality assurance program seeks to continuously improve performance 

of the workflow process. A quality assurance system should be designed in such a manner 

that it provides for the following: 

 Provide routine and consistent checks to ensure compliance. 

 Identify and address any deviations from compliance. 

 Document and archive all QC activities. 

 Obtain optimum diagnostic information at minimum cost and with minimum 

radiation dose. 

 

The collection and analysis of data is very critical in a QA cycle as it leads to a robust and 

effective critique of the quality performance status of the system. As such ways need to be 

found which will lead to easier data collection, analysis and archiving. Presently most 

radiology departments use paper for both recording and archiving their QA records. Analysis 

of large records on paper is not only cumbersome but also prone to transcription errors.  

 

Many medical physicists have developed spreadsheets to record, analyse and archive QA 

data. In most instances these spreadsheets have been developed by an individual, which is 

ineffective for implementation and use by others. The use of such software makes it possible 

to consolidate all the QA data in one repository which makes it easier for the medical 

physicists, field service engineers, radiographers and policy-makers to review the quality 

performance of any device. Langer and Kanal developed a library of spreadsheets to facilitate 

the performance of diagnostic radiology physics QA
67

. The spreadsheets were originally 
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posted on the now defunct world wide web (http://radweb.mcis.washington.edu/~sglanger) 

for use by anyone. The spreadsheets were later posted on http://diag-medphys.nfinite-

horizons.org/ , however for some reason these spreadsheets are no longer accessible. For any 

QA software to be effective it should have a way of immediately display the trend in the QA 

results with respect to the reference or baseline results as on acceptance testing. Despite its 

advantages, software programs have the potential to suffer from systematic programming 

errors, data corruption and there needs to be a learning curve as users move from hardcopy to 

softcopy systems. 

 

Performance of the reporting radiologists depends on a host of factors of which viewing 

conditions is one of them. The resolution of the eye is strongly dependent on image 

brightness so for the purposes of accurate film reading it is desirable to have optimum 

radiograph viewing conditions. At a luminance value of approximately 1300 cd m
-2

 the 

maximum resolution of the eye is approximately 12 lp/ mm at a viewing distance of 25 cm, 

which is grossly reduced in darker viewing conditions
68

. A dark radiograph of film density 

over 2.5 or dim viewing conditions can result in a human being’s eyes’ resolution to drop to 

less than 4 lp / mm
68

. Optimum viewing conditions have been suggested by organizations like 

World Health Organization (WHO) 
69

. 

 

The computer industrial technology revolution has not spared radiography. For example, 

conventional screen-film radiography is being replaced by digital technology based 

radiography. Fuji Photo Film Co were the pioneers of digital radiography systems, they 

introduced what they called computed radiography (CR) in the 1980s
70

. The CR system 

consisted of an europium-activated barium fluorohalide imaging plate and a laser readout 

system. Early CR images were of poorer quality than screen-film, however the general image 

quality of CR systems has since then improved drastically
70

. The major disadvantage of CR is 

the time lag between exposure of the imaging plate and subsequent display of the image. The 

remedy to this disadvantage was the design and implementation of flat panel detectors 

(FPDs). FPDs are self scanning, two dimensional solid state imaging devices  Passage of time 

and further improvement in technology led to the capability of viewing images 

instantaneously through the application of flat panel detector technology.  

 

http://radweb.mcis.washington.edu/~sglanger
http://diag-medphys.nfinite-horizons.org/
http://diag-medphys.nfinite-horizons.org/
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Digital radiography if well optimized has the potential to reduce patient dose, however 

transition to this modality has not necessarily lead to a reduction in the radiation burden to the 

patients. In some cases it has been found to lead to an increase in patient doses, for example a 

study by Vano et al showed an increase of between 40% and 103% in patient entrance doses 

71
. Radiology department have to go through a learning curve as they transit from screen-film 

technology to digital radiography. At times this process takes long as the radiographers would 

not have been adequately trained in the digital modality. Another challenge with digital 

radiography is that often the energy response of digital detectors is different from film. AEC 

calibration in digital radiography demands and deserves an alternative parameter to optical 

density 
72

. Some traditional quality assurance aspects in radiology have been affected by the 

introduction of digital radiography. For instance, image display has also been affected by the 

migration to digital radiology as such optimum viewing conditions of soft copy images 

demands changes in traditional image display quality control and assurance. 

 

For under-couch installations, KAP dosimetry is complicated by the presence of attenuation 

and scatter from the couch 
73

. In 1965 Carlsson measured KAP calibration factors for both 

over-couch and under-couch installations for X-ray beams having HVLs ranging from 3mm 

Al to 8 mm Al 
74

. The quotient between over- and under-couch installations ranged from 1.28 

(for 3 mm Al) to 1.12 (for 7 mm Al) 
74

. The influence of scattered radiation has implications 

on KAP calibration dosimetry. The amount of forward scattered photons from the couch to 

the patient was investigated in this work. 

 

2.2 Rationale of Study 

The aim of this work was to investigate current radiological practice in a typical South 

African public hospital and subsequently suggest and recommend dose optimization 

measures. This thesis is made up of seven studies and below the rationale of the studies is 

explained: 

Quality control of radiography viewing conditions: One of the ways of obtaining accurate 

diagnosis depends on the radiologist being able to see all the radiographic detail on the film. 

Much effort has been invested in dose reduction and image quality improvement, however all this 

is futile if the radiograph viewing conditions are sub-optimal. Prior to this study there were no 

tests on viewing conditions were being performed at the radiology department at CMJAH. The 

trend for radiology departments to transit to digital radiography has been discussed in Chapter 

One, the importance of viewing conditions cannot be overemphasised in digital radiology. An 
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ongoing quality control program to ensure optimal viewing conditions in-line with international 

recommendations will be established as a result of this study.   

Custom made quality control software: It is not enough to do quality control procedures 

without proper recording. The designed software makes it possible for soft copy recording and 

archiving and in addition it lends itself for trend analysis. The software in its present form 

captures all the tests required by the DRC and thus practical experience from its use will inform  

The DRC states the quality control tests to be conducted in a radiology department without 

providing the test procedures, this approach works in a situation where there is adequate medical 

physics staffing. In the South African situation where there is a lack of medical physics staffing in 

radiology departments and quality control tests are done by non-medical physicists it is prudent to 

provide work instructions for the tests and this will be provided as an appendix to this thesis.  

Fluoroscopy procedures and general radiography examinations dose audits: The first 

step to dose optimization is to undertake a dose audit, as such this study reviewed the doses 

received by patients who underwent some fluoroscopy procedures and radiography examinations. 

Fluoroscopy procedures are usually patient dose intensive, while the investigated general 

radiography examinations are frequent leading to a significant high collective effective dose thus 

the choice to analyse these two modalities. All fluoroscopy units in South Africa are by law 

required to have KAP meters installed, whose readings provide dosimetry metrics which have 

potential in dose optimization. Results of these dose audits will provide baseline values for 

comparison with international dose values. Furthermore these studies provide preliminary dose 

reference levels, of which the dose reference levels concept has been proven to be effective in 

bringing down patient doses in radiology. Radiological procedures and examinations which can 

benefit from further dose optimization will be identified from these studies.  

Non-clinical image quality assessment: The dose optimization process is not a monotonic 

pursuit of reduction of patient doses, however it takes into consideration the image quality. An 

image quality assessment phantom was fabricated in-house phantom to assess non-clinical image 

quality. This phantom can be used to evaluate changes in image quality as parameters of the 

imaging chain are changed in a dose optimization process. Furthermore this phantom can be used 

to evaluate the consistency in the image quality derived from an X-ray machine over its lifespan. 

Digital radiography practice and technique: If the full advantages of digital radiography 

are to be realised the end-users should understand and appreciate the modality’s capabilities 

and functionalities. Traditional quality assurance practice need be modified when digital 

radiography is adopted. This study was in the form of a questionnaire which interrogated the 

radiographer’s appreciation of the capabilities of digital radiography with particular bias to its 

dose optimization potential.  
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Forward directed backscatter from under-couch procedures: For procedures where the X-

ray tube is under-couch, there is some forward backscatter radiation from the couch to the the 

patient. Currently the detector of choice in fluoroscopy units is the KAP however it has no 

capabilities of measuring this backscatter contribution to the patient’s dose. From the literature 

review and the current industry standards there is a knowledge gap with regards to the inclusion 

of the forward directed backscatter in patient dosimetry. This study enables more accurate 

quantification of the forward directed radiation backscatter and thus provides for more 

meaningful determination of patient skin doses. 
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CHAPTER THREE 

PHYSICS OF RADIOLOGY 

  

3.1 Introduction 

Anatomic imaging is governed by the physics of interaction between energy and matter. 

Diagnostic radiology comprises of a couple of imaging modalities. The commonly used 

modalities are X-ray radiography, computed tomography (CT), ultrasound (US), magnetic 

resonance imaging (MRI), nuclear medicine (NM) and positron-emission tomography (PET). 

Each modality has its advantages and disadvantages depending on the anatomy or physiology 

being subject to examination. Ultrasound is based on differential reflection and refraction of 

high frequency sound waves by matter of different densities. On the other hand MRI uses a 

combination of magnetic fields and radio waves in order to produce images. The obvious 

advantage of US and MRI is that they do not use ionizing radiation given the fact that 

ionizing radiation has the potential to induce carcinogenesis. Nuclear medicine and PET 

involve the administration of radioactive nuclide tracers whose distribution in the human 

body is detected by appropriate cameras, eventually giving an indication of the metabolism. 

Nuclear medicine is primarily used to investigate physiological function of organs.  X-ray 

radiography and CT utilise ionizing radiation in the process of image production. Only X-ray 

radiography will be discussed in depth in this present study. 

  

The radiographic process is largely made possible and effective owing to the fact that 

different types of anatomy (materials) present with different attenuation properties to the 

radiation beam. In practice, an X-ray machine directs ionizing radiation to a region of interest 

in the body, this radiation tends to pass through less dense tissue or organs in the body but is 

attenuated by denser structures. In analogue radiography radiation which has passed through 

a patient will strike a cassette containing a fluorescent phosphorous screen and subsequently 

expose the X-ray film. The areas on the film which were exposed to the light coming from 

the fluorescent phosphorous screen (created by the X-rays striking the screen) will be 

blackened after the development of the film and the unexposed areas will remain white. The 

degree of blackening on the developed film thus depends on the amount of exposure to 

radiation. In the text below various key concepts of the physics of radiology are dealt with 

superficially as these are dealt with at depth in standard radiology textbooks. 
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3.2 X-ray Production 

X-rays are produced as a result of interactions between electrons of a specific kinetic energy 

and an appropriate target material. X-rays are produced inside a glass envelope called an X-

ray tube. The X-ray tube houses among other components two electrodes namely, a cathode 

and an anode. The cathode is connected to the negative pole of a high frequency generator 

which generates or supplies a steady supply of direct current. The anode is connected to the 

positive pole of the generator. Below is a simplified schematic diagram of a typical X-ray 

tube
75

. 

 

 

Figure 3.1: A schematic diagram of an X-ray tube 
75

. 

 

The cathode consists of a coiled resistive wire commonly called a filament. Most filaments 

are made up of tungsten. As a result of the large current the cathode emits electrons as a 

result of thermionic emission. Due to a large potential difference between the cathode and 

anode the electrons are immediately accelerated to the anode. The kinetic energy of the 

electrons is converted to other forms of energy upon interacting with the anode. The X-ray 

production process is highly inefficient with 99% of the electron’s energy being channelled to 

heat production and a meagre 1% for radiation production 
76

. 
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In most general radiography units, the anode is made up of tungsten or alloys of tungsten. 

Below are some of the desired properties of an anode material 
77

. 

 High atomic number which in turn favours electron to photon conversion 

efficiency. 

 A high melting point. 

 A high heat conductivity 

 A low vapour pressure. 

As the electrons impinge on the target they undergo a couple of possible interactions of 

which two modes of interactions lead to the production of two types of radiation namely, 

bremstrahlung and characteristic radiation. Bremstrahlung radiation is a result of the electron 

interacting with the nuclear forces (intra-nuclear interaction) while the characteristic radiation 

is a result of the electron interacting with another electron(s) in orbit of the target material 

nucleus. The radiation from the target is then filtered and collimated before being directed to 

the patient. A suitable detector is used to capture the radiation which comes out of the patient. 

Ultimately a radiologist or any competent person in the field of radiology should analyse and 

interpret the images. 

       

3.3 Image Formation 

The X-ray beam emerging from the patient is incident on a radiation detector, normally a 

radiographic film. The emergent radiation will expose the radiographic film. The 

radiographic film is relatively insensitive to radiation but sensitive to light thus it is normally 

used in conjunction with an intensifying screen. In the case whereby an intensifying screen is 

used then both the film and two intensifying screens are housed in a cassette, with the film 

being sandwiched between two intensifying screens. A schematic diagram of an X-ray 

cassette is shown below.  
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Figure 3.2: A schematic diagram of an X-ray cassette and film 
78

 . 

 

The net result of radiation interacting with the intensifying screen is the emission of light 

photons which will in turn expose the X-ray film. Thomas Edison is credited with being the 

first one to use calcium tungstate as an intensifying screen 
75

. However the first screen film 

image was by Mihajlo Idvorski Pupin 
79

. The use of calcium tungstate as a phosphor in the 

intensifying screens demised in the 1970s with the introduction of rare earth phosphors
75

. 

Some examples of rare earth phosphors are gadolium oxysulfide, lanthanum oxybromide and 

yttrium tantalite. The principal attraction and advantage of a screen-film combination is that it 

uses less radiation compared to direct exposure to the film to yield the same film optical 

density. In addition screen film technology reduced exposure times, thus removing a lot of 

movement blur from images. However the introduction of intensifying screens degrades the 

near perfect spatial resolution of film. 

 

The X-ray film consists of a transparent base which is made out of non-flammable polyester. 

The base acts as a supporting medium for other layers. The base should be strong, flexible, 

waterproof and stable dimensionally such that it is suitable for automatic processing. 
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Immediately after the base there is a subbing layer which acts as glue or a binder between the 

base and the emulsion. The emulsion is the light sensitive part of the film. The image 

formation process takes place in the emulsion. The emulsion consists of silver halide 

compounds suspended in gelatine. The emulsion is protected from mechanical damage by the 

outermost layer called the supercoat. The supercoat should be pervious to processing 

chemicals and also possess surface characteristics which make it appropriate for 

transportation by the rollers of the processor. The basic structure of a duplitised film is shown 

in Figure 3.3 below 
80

. 

 

Figure 3.3: The basic structure of a duplitised film
80

. 

 

The emulsion has the silver and bromide ions in a cubic lattice. In a pure crystal the cubic 

lattice is electrically neutral. The presence of impurities will lead to creation of a spot on the 

surface of the crystal called a sensitivity speck, which has a tendency of attracting any free 

electrons in the crystal. X-ray exposure of the emulsion leads to the production of free 

electrons as a result of both photoelectric and Compton interactions. In addition in the case of 

using intensifying screens, the light photons will also further dislodge electrons from the 

bromide (halide) ion. 

 

Br
-   

+ h     Br   +   e
-
        3.1 

The bromine atom is absorbed by the subbing layer. The electrons produced will eventually 

be trapped by the sensitivity speck. Once an electron is trapped on the sensitivity speck it will 

then attract a positively charged silver ion. The interaction between an electron and the silver 

ion leads to the formation of a neutral silver atom. Repetition of this process will result in an 

area of the crystal with a number of neutral silver atoms and thus a latent image. 
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During the development process, crystals containing a latent image allow the rest of the silver 

ions present to be reduced to silver atoms. The silver atoms give a dark colour on the film. 

The film is then fixed using a weakly acidic solution. The crystals which did not contain a 

latent image are washed off at the fixation stage leaving a light area on the film. 

 

3.4 Digital Radiography  

Most radiology departments in South Africa are making a transition from screen-film 

technology to digital radiography. In the case of digital X-ray imaging the incident X-ray 

photons either undergoes intermediate conversion to secondary quanta before an electrical 

signal is generated and further processed to give an image or the electrical signal arises 

directly from the interaction of the X-ray photons with the detector. In broad terms digital 

radiography can be divided into two classes, namely, computed radiography which is 

photostimulable phosphor detector based and direct digital radiography which is flat panel 

imaging based. Digital radiography has its own advantages and disadvantages when 

compared to screen-film radiography, some of which are shown in Table 3.1 
81,82

.  
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Table 3.1: Advantages and disadvantages of digital radiography over screen-film 

radiography 
81, 82

. 

 

Advantages Disadvantages 

Increased dynamic range 

 

Poorer spatial resolution. 

 

Linear response of images Artifacts due to the imaging plate, image 

processing algorithms etc 

 

Availability of post-exposure 

processing functions 

Poor techniques can be used as 

radiographers depend on post-exposure 

processing capabilities. 

 

Easy to archive since images are in 

digital format 

 

 

Increased sensitivity to scattered radiation. 

 

Leads to a higher patient thorough-put 

 

More expensive than screen-film 

radiography. 

 

Separation of image capture, 

processing, storage and display 

processes which means they can be 

optimized individually 

 

Lack of familiarity to radiologists and 

radiographers. 

 

CR employs photostimulable phosphors as radiation receptors. The phosphors used are 

usually europium doped barium fluorohalides, for example, BaFBr and BaFI 
83

. In computed 

radiography an imaging plate, which houses the photostimulable phosphor is placed in a 

light-tight enclosure, exposed to the X-ray image and then read out by raster scanning with a 

laser to release the photostimulated luminescence signal. The blue photostimulated 

luminescence signal is collected by a lightguide, which eventually feeds the signal to a 

photomultiplier tube (PMT). The PMT signal is then digitized to form the image on a point-

by-point basis. CR has the advantage of having a workflow pattern which is very similar to 
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screen-film radiography. This similarity is very useful in the event of a transition from 

screen-film radiography to computed radiography. Figure 3.4 shows the workflow process in 

CR.  

 

Figure 3.4: A representation of the CR imaging plate reading process workflow 
84

. 

 

The comparatively time consuming read-out process in computed radiography is one of its 

major drawbacks.  

 

Direct digital radiography on the other hand, does away with the read out process by 

providing for instantaneous display of images. In digital radiography the digitization of the 

X-ray projection image occurs within the image receptor. Detectors in digital radiography can 

be in the form of charged coupled devices (CCD) or flat panel imagers (FPI). Furthermore 

FPIs are generally of two types namely, direct detection or indirect detection flat panel 

imagers. 

 

Indirect FPIs are only sensitive to visible light hence the necessity of using X-ray intensifying 

screens which will convert the X-rays into light energy which is readily detected by the FPI. 

Most indirect FPI systems use cesium iodide (CsI) or gadolinium oxysulphide (Gd2O2S) as 

the intensifying screen 
71, 82, 85

. Each detector in the FPI is divided into two areas, a 

comparatively large area which is light sensitive and a small area housing the electronics. The 

light sensitive portion of the detector is a photoconductor, and electrons are released in the 
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photoconductor region on exposure to visible light. During exposure, charge is built up in 

each detector element and is held there by a capacitor. After exposure, the charge in each 

detector element is read out using the electronics system. Below is a schematic diagram of the 

indirect conversion system.  

 

 

 

Figure 3.5: A layout of an indirect conversion digital radiography system 
75

. 

 

Each detector element in an FPI has a transistor associated with it, and during exposure a 

negative voltage is applied to all gate lines, causing the transistor switches on the FPI to be 

turned off. As a result the charge accumulated during exposure remains stored in the 

capacitor of each detector element. During readout, positive voltage is sequentially applied to 

each gateline, the charge from each detector element is read out, digitized and stored forming 

a digital image. 

 

In direct flat panel detectors are made from a layer of photoconductor material on top of a 

thin film transistor array. The photoconductor of choice is usually selenium. A negative 

voltage is applied to a thin metallic layer on the front surface of the detector and thus the 

detector elements are held positive in relation to the top electrode.  
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Figure 3.6: A layout of a direct conversion digital radiography system 
75

. 

 

During X-ray exposure, X-ray interactions in the selenium layer liberate electrons that 

migrate through the selenium matrix under the influence of the applied electric field and are 

collected on the detector elements.  

 

3.5 Fluoroscopy 

Fluoroscopy provides real-time, X-ray projection imaging of dynamic processes as they 

occur. In general fluoroscopic procedures can be classified into two categories, namely, 

diagnostic imaging for visualization of patient anatomy and interventional procedures for 

therapeutic purposes. The essential main components of a fluoroscopic imaging system are 

shown in Figure 3.7.  
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Figure 3.7: The components of the fluoroscopic imaging chain 
86

. 

Fluoroscopic procedures are normally performed by using an image intensifier (II) to detect 

the x-ray pattern emerging from the patient after removal of scattered radiation by the anti-

scatter grid. The II is coupled to closed-circuit television systems and it converts incident X-

rays into a minified visible light image thus in the process significantly improving visibility 

of the image to the viewer. Within the II, the input phosphor, which is normally cesium 

iodide (CsI) converts the X-ray photons to light photons. The input phosphor in an II serves a 

purpose similar to the intensifying screen in screen-film radiography. Intimately attached to 

the input phosphor is the photocathode which converts the light photons to photoelectrons. 
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The electrons are accelerated under the influence of a large voltage in the range of 25 kV to 

30 kV between the photocathode and the anode structure on the other side of the evacuated 

tube. Focussing electrodes are used to restrict the electron pathway and thus maintain the 

electron spatial distribution as they were released at the input phosphor. The electrons impact 

on the output phosphor made of zinc cadmium sulfide doped with silver (ZnCdS:Ag), and by 

virtue of the acceleration gain of the electrons and the geometric reduction of the electron 

distribution, the resultant light image is amplified 
87

. The signal from the output phosphor is 

picked up by the camera system and finally displayed for viewing on a monitor.  

 

The long fluoroscopy times particularly during interventional procedures may result in 

patient doses that cause deterministic effects of radiation in patients 
10

. It is therefore 

necessary to optimize fluoroscopic guided procedures to keep the doses to both patients and 

medical staff as low as reasonably achievable consistent with the goal at hand. 
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CHAPTER FOUR 

 

RADIOLOGICAL DOSIMETRIC QUANTITIES AND UNITS 

 

4.1 Introduction 

A number of organizations have put in place guidelines and recommendations with regards to 

the dosimetry and effects of ionising radiation. The ICRP is an international body responsible 

for informing and making recommendations on all aspects of protection against ionising 

radiation. On the other hand the International Commission on Radiation Units and 

Measurements (ICRU), develop and define dosimetric quantities and units. Also national 

bodies like the Health Protection Agency (HPA), National Council on Radiation Protection 

and Measurement (NCRP) and others have also made recommendations for radiation safety 

in their respective countries.  

 

4.2 Dosimetry Quantities 

Diagnostic radiology dosimetry quantities can be classified as either basic or application 

specific quantities
10

. Basic dosimetric quantities are fundamental quantities defined in ICRU 

Report 60 
88

. In the text below, dosimetry quantities relevant to radiological physics are 

discussed. 

 

4.2.1 Basic Dosimetry Quantities 

Basic dosimetry quantities are briefly discussed below. 

 

4.2.1.1 Fluence () 

Is the quotient dN by da, where dN is the number of particles incident on a sphere of cross-

sectional area da, thus: 

 = 
da

dN
         4.1 

Fluence has the unit m
-2

. 

 

4.2.1.2 Energy Fluence () 

Is the quotient dR by da, where dR is the radiant energy incident on a sphere of cross-

sectional area da, thus: 
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 = 
da

dR
         4.2 

Energy fluence has the unit J/m
2
. 

 

4.2.1.3 Kerma (K) 

Kerma is defined as the quotient dE by dm, where dE is the sum of the initial kinetic energies 

of all the charged particles liberated by uncharged particles in a mass dm of material
10

. 

X = 
dm

dE
          4.3 

Kerma has the unit J/kg or Gray. 

 

4.2.1.4 Mean Energy Imparted 

The mean energy imparted,  , to a given volume of matter equals the radiant energy, Rin, of 

all the charged and uncharged ionizing particles which enter that volume minus the radiant 

energy, Rout, of all those charged and uncharged ionizing particles which leave the same 

volume, plus the sum, Q, of all changes of the rest energy of nuclei and elementary particles 

which occur in the volume, thus:  

  = Rin – Rout + Q        4.4  

For the diagnostic radiology energy range, Q is zero. Mean energy imparted has the unit J. 

 

4.2.1.5 Absorbed dose (D) 

Absorbed dose, D, is the quotient d  by dm, where d  is the mean energy imparted to 

matter of mass dm, thus:  

D = 
dm

d
         4.5 

This quantity applies to all types of ionizing radiation and to any absorbing medium. 

The Gray or J/kg is the unit used for absorbed dose. Whenever secondary electron 

equilibrium is established kerma is numerically equal to absorbed dose
10

. Since in the 

diagnostic range of energies the production of bremstrahlung with low atomic number 

materials is negligible, the dosimetric quantity of choice is kerma instead of absorbed dose.   
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4.2.2 Application Specific Dosimetry Quantities 

Only application specific quantities relevant to general radiography and fluoroscopy will be 

discussed below. Air kerma instead of absorbed dose is used as the basis of all directly 

measured application specific quantities
 89

. Figure 4.1 demonstrates the various application 

specific dosimetry quantities and their position with respect to the geometry of an imaging 

system.  

 

Figure 4.1: A diagram showing  various patient related dosimetric quantities
14

. 

 

4.2.2.1 Incident air kerma (Ki) 

The incident air kerma, Ki, is the kerma to air from an incident X-ray beam measured on the 

central beam axis at the position of the patient or phantom surface. This quantity does not 

include backscattered radiation. The unit for incident air kerma is the Gray. 

 

4.2.2.2 Entrance surface air kerma (ESAK) 

The entrance surface air kerma, ESAK, is the kerma to air measured on the central beam axis 

at the position of the patient or phantom surface. This quantity includes both radition incident 

on the patient or phantom and backscattered radiation. The unit forESAK is the Gray. 
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The ESAK is related to the incident air kerma through the backscatter factor, B: 

ESAK = Ki* B         4.6 

The imparted energy on the patient or effective dose to the patient can be derived from ESAK 

values
73

. 

 

4.2.2.3 X-ray tube output (Y(d)) 

The X-ray tube output is defined as the quotient of the air kerma at a specified distance, d, 

from the X-ray tube focus by the tube current-exposure time product, PIt, thus: 

Y(d) =

P

dK

It

)(
         4.7 

The unit for X-ray tube output is J kg
-1

 C
-1

 or Gy A
-1

 s
-1

. 

 

4.2.2.4 Kerma Area Product 

The kerma area product (KAP) is the integral of the air kerma over the field area (x by y) at a 

plane perpendicular to the beam axis. KAP is measured using a transmission type ionization 

chamber, namely KAP meter which is mounted on the collimator housing of the X-ray unit. 

In mathematical terms KAP is given by the relation
73

: 

,( , )KA c air

A

P K x y dxdy 
       4.8  

 

 

where A is the area of the beam in a reference plane perpendicular to the beam axis,  

Kc, air is the air collision kerma at the plane (x,y).  

 

For field sizes where the heel effect can be neglected the air kerma is approximately constant 

over the field area (A) and can then be expressed as the product of the air kerma and area. 

AKP aircKA  ,         4.9 

 

Advantages of using this quantity are that it is easily measured, applies also to fluoroscopy 

measurements and it also takes into account the beam area. Effective doses can be derived 

from KAP values and it has been shown that KAP is more closely related to effective dose 

than ESAK
73

. For photon energies used in diagnostic radiology the air kerma is 

approximately equal to the absorbed dose, thus at times KAP is often erroneously called the 

dose-area product (DAP). 
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4.3 Kerma Area Product Meters 

Basically KAP meters are large area, transmission ionization chambers with associated 

electronics. When in use the KAP meter is placed perpendicular to the beam central axis and 

in a location that completely intercept the entire beam area of the X-ray beam. An alternative 

to the transmission ionization chamber based KAP meter is the mathematical KAP meter 

which is based on a computer software program which utilizes information about the X-ray 

tube output to derive the KAP reading. The reading from a KAP meter can be changed by 

altering the X-ray technique factors (kVp, mA, time), varying the area of the field or both. 

The KAP reading for practical purposes can be considered as independent of the distance 

between the X-ray focus and patient.  

 

KAP is a measure of the total energy imparted to the patient as ionizing radiation. The KAP 

reading can be converted to effective dose using appropriate conversion factors 
90, 91

. KAP 

meters have the advantage of being universal, that is they can be used for any examination 

and patient. Compared to TLDs they can be used in fluoroscopy procedures which involve a 

variety of X-ray tube angulations and patient positions. The main drawback of KAP meters is 

that their readings do not include the backscatter component and thus do not indicate skin 

dose. Furthermore the interpretation of data from KAP meters is not without its challenges. 

KAP meters exhibit some energy dependence thus correction factors should be derived. The 

configuration of the KAP meter introduces some bias to the KAP value, for example, if there 

is some material or object in between the KAP meter and patient, the patient will receive less 

dose than what is implied by the displayed KAP value. This is particularly true with under 

couch KAP meter installations; different calibration coefficients should therefore be derived.  

 

4.4 Patient Risk Related Quantities 

The ultimate aim of dosimetry in radiology is to quantify the radiation risk posed on the 

patient as a result of the particular examination. 

 

4.4.1 Dose Equivalent (H) 

Dose equivalent is defined as the product D, the absorbed dose and Q the quality factor
92

.  

H = D* Q          4.10 

where  D is the absorbed dose. 

Q is the quality factor which accounts for linear energy transfer (LET) dependence. 
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The quantity dose equivalent applies to a point in tissue. The SI unit for the dose equivalent is 

the sievert (Sv) and the rem is an alternative unit. 

 

4.4.2 Equivalent Dose (HT) 

The average absorbed dose in the tissue or organ (T) due to radiation of type R, weighted by 

a radiation weighting factor wR is defined as the equivalent dose (HT)
10, 26, 92, 93

. 

HT = wR* DT,R         4.11 

where  DT,R is the average absorbed dose in tissue T. 

 wR is the radiation weighting factor for radiation R 

 

The radiation weighting factor accounts for the differences in the relative biological effects of 

different types of radiation in producing stochastic effects at low doses. In the diagnostic 

radiology energy ranges the radiation weighting factor is assigned a value of unity. When the 

radiation consists of components with different wR, the equivalent dose in tissue T is given by 

summing all contributing radiation types. 

HT =  
R

RTR Dw ,         4.12 

 

The ICRP Report 103 of 2007 revised and updated the radiation weighting factors which 

were previously in the ICRP Report 60 
26, 92

. The differences in the radiation weighting 

factors from the two reports are shown in Table 4.1 
26, 92

. 
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Table 4.1: Updated radiation weighting factors for different radiation qualities according to 

ICRP 
26,92

. 

Radiation type Radiation weighting factor wR 

  ICRP 103 ICRP 60 

Photons 1 1 

Electrons and Muons 1 1 

Protons and charged 

pions 

1 5 

Alpha particles, fission 

fragments and heavy ions 

20 20 

Neutrons Continuous function 

of neutron energy 

Step and continuous functions of 

neutron energy 

  

For X-ray energies used in diagnostic radiology, the radiation weighting factor is taken to be 

unity.  

4.4.3 Effective Dose (E) 

The effective dose expresses the relative detriment associated with each irradiated tissue or 

organ and it is expressed as if the whole body were irradiated 
10,26,92,93

. The tissue weighting 

factor (wT) is obtained by expressing the detriment of each tissue-specific cancer or 

hereditary disease relative to the total aggregated detriment. 

E = T

T

T Hw          4.13 

The effective dose concept allows for the summation of doses from different sources of 

radiation and subsequent comparison with dose limits that relate to whole body radiation 

exposure. Effective dose has the unit J/kg, however the most commonly used special name is 

the sievert (Sv). Effective dose provides an indication of the potential detriment of radiation 

and thus can be used to evaluate the appropriateness of an examination using ionizing 

radiation. 

The tissue weighting factors have also changed with the publication of ICRP 103. The 

updated tissue weighting factors are shown in Table 4.2 
92

. 
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Table 4.2: Updated tissue weighting factors for the different organs according to the ICRP 
26, 

92
. 

Organ / Tissue Tissue weighting factor wT 

  ICRP 103 ICRP 60 

Gonads 0.08 0.20 

Red bone marrow 0.12 0.12 

Colon 0.12 0.12 

Lung 0.12 0.12 

Stomach 0.12 0.12 

Bladder 0.04 0.05 

Breast 0.12 0.05 

Liver 0.04 0.05 

Oesophagus 0.04 0.05 

Thyroid 0.04 0.05 

Skin 0.01 0.01 

Bone surface 0.01 0.01 

Remainder 0.12 0.05
12

 

 

4.4.4 Collective Effective Dose 

It is defined as the product of the effective dose and the number of individuals exposed. It 

gives an indication of the overall population radiation risk in terms of the number of radiation 

induced cancers or hereditary effects as a result of the exposure 
92

. The unit for collective 

effective dose is the person-sievert or man-sievert. 

 

4.5 Biological Effects of Ionizing Radiation 

The fact that radiation will be attenuated as it traverses through tissue leads to the biological 

effects associated with radiation. The interaction between radiation and human cells triggers a 

chain of events, some of the possibilities being
94

: 

 Cells receive no damage to critical sites and thus are unaffected. 

                                                 
11

 There are 14 organs / tissues in ICRP 103 compared to 12 in ICRP 60. 
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 Some cells will accumulate enough damage to be lethal and will die in their next 

attempt to divide. 

 Some cells accumulate a degree of damage that is however not lethal, which if given 

enough time gets repaired. 

It is a widely accepted tenet that ionizing radiation has the potential of inducing 

carcinogenesis in tissue. The probability of causing biologic damage in tissue by ionizing 

radiation is not only restricted to high doses but exists even at low dose levels. A great deal of 

information concerning biologic effects of radiation has been gathered from Japanese atomic 

bomb survivors, Chernobyl accident survivors, medical exposures and occupational 

exposures
6
. The data is extrapolated to lower doses, which brings some uncertainty but 

nonetheless gives an insight into the biological effects of ionizing radiation. 

 

The biologic effects of ionizing radiation on humans can be broadly classified into two 

categories, namely deterministic – and stochastic effects. Deterministic effects are 

characterised by radiation effects which manifest themselves once a well defined radiation 

dose has been absorbed. Examples of deterministic effects of radiation are skin erythema, 

epilation, death as a result of acute exposure, cataract formation. In addition deterministic 

effects can be thought of as acting at a tissue level. Some of the deterministic effects on skin 

as a function of dose are given in Table 4.3 
95

. 
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Table 4.3: Deterministic effects for skin as a function of dose and their onset time. 

 

Radiation injuries or burns are not uncommon in interventional radiology. Koening et al has 

reviewed the types of radiation induced injuries after fluoroscopically guided procedures 
96

. 

Figure 4.2 shows one example of a radiation injury on a 69 year male patient with a history of 

angina who had undergone two angioplasties of the left coronary artery within 30 hours. The 

patient later developed secondary ulceration over the left scapula. Figure 4.2 shows the 

radiation burn on the patient as a result of the procedures 
96

. 

 

 

 

 

 

 

 

 

 

 

 

 

Deterministic Effect Dose Threshold (Gy) Onset time Peak time 

Early transient erythema 2  ~ 24 hours 

Temporary epilation 3 3 weeks  

Main erythema 6 10 weeks ~ 2 weeks 

Permanent epilation 7 3 weeks  

Dry desquamation 10 4 weeks ~ 2 weeks 

Invasive fibrosis 10   

Dermal atrophy 11 >14 weeks  

Telangiectisia 12 >52 weeks  

Moist desquamation 15 ~4 weeks ~5 weeks 

Late erythema 15 ~6 – 10 weeks  

Dermal necrosis 18 >10 weeks  

Secondary ulceration 20 >6 weeks  
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Figure 4.2: A picture from Koening TR et al showing a radiation injury on a patient after 

undergoing the two procedures 
96

. 

 

Stochastic effects can be thought of as acting at a cellular level and they are basically 

governed by laws of probability or chance. Stochastic effects result in the modification of the 

genetic material of cells as opposed to killing of cells. The effects of ionizing radiation are 

often difficult to distinguish from other forms of trauma
94

. Generally the level of doses 

associated with general radiography is not high enough to cause deterministic effects, 

however the doses encountered in interventional radiology can cause deterministic effects.  

 

4.6 Radiation Risk Assessment Models 

Ionizing radiation has been associated with inducement of cancer in the exposed population, 

therefore it becomes imperative for the scientific community to be able to both qualify and 

quantify the radiation risk involved. Radiation risk estimates are based on the increased rates 

of cancer, not on death directly from the ionizing radiation 
97

. Risk estimates are influenced 

by the radiation characteristics (dose, dose rate, fractionation, radiation quality), biological 
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characteristics (age, sex, genetic background, and nature of tissue or organ) and the approach 

to the analysis (dose response model, projection model and risk model). 

 

Mathematicians and epidemiologists have developed radiation risk models of the relationship 

between radiation and the associated risk (causation of fatal cancer). The five radiation risk 

models which have been developed over the years will be discussed below. For comparison 

purposes the risk models are presented on a common set of axis in Figure 4.3
 98

. 

 

 
 

Figure 4.3: The relationship between the radiation dose and the associated risk as predicted 

by the different models: supra-linearity, linear no threshold, linear-quadratic, threshold and 

hormesis. 

 

4.6.1 The Linear No Threshold (LNT) Risk Model 

This model assumes that the radiation risk is directly proportional to the amount of radiation 

dose absorbed in tissue
99 -101

. The LNT model assumes that any exposure to radiation in 

excess of the usual background level poses an additional risk of cancer. In theory damage to 

DNA at a single point has a potential to induce cancer. Application of this model has not been 

without controversy, however the NCRP Report 136 states: “ Although other dose-response 

relationships for the mutagenic and carcinogenic effects of low-level radiation can not be 

excluded, no alternate dose-response relationship appears to be more plausible than the linear 

non-threshold model on the basis of present scientific knowledge”
102

. This model has found 
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widespread application in radiation protection where the premise is “better play it safe” rather 

than underestimate the risk. In addition it has been used to assess the net benefit from 

collective X-ray examinations. 

 

4.6.2 The Linear Quadratic Model  

This model is a variant of the LNT model, proposing that any amount of radiation dose poses 

a risk of cancer. The linear quadratic dose-response model predicts a lower incidence of 

cancer than the linear model at low doses and a higher incidence at intermediate dose. The 

BEIR V committee recommends the linear quadratic model for prediction of leukaemia and 

bone cancer 
75

.  

 

4.6.3 The Supra-Linear Model 

This is another variant of the LNT model, it assumes that any dose of radiation possess a risk 

of inducing a cancer. One of the explanations of this dose-effect relationship has been the 

existence of a small subpopulation of individuals within the total population who are 

hypersensitive to radiation 
100

. Compared to the LNT model the supra-linear model can lead 

to an overestimation or underestimation of the radiation risks depending on the level of 

radiation dose.  

 

4.6.4 The Threshold Value Model  

This model is based on the reasoning that below a certain level of radiation dose there is no 

risk of causation of fatal cancer. Researchers behind this model argue that the body has the 

capability and mechanisms to repair radiation damage to the tissues
103-105

. To further support 

their model they argue that the level of cancer prevalence is not significantly higher in areas 

where the background radiation is above average. The main weakness of this model is that it 

has failed to come up with a threshold radiation dose value below which radiation can be 

classified as posing no risk. 

 

4.6.5 The Hormesis Model   

This model is premised on the fact that any substance which is introduced into the body in 

large amounts (overdose) has harmful effects yet small amounts of the same substance are 

beneficial
106 -110

. The relationship between radiation dose and risk as proposed by the 

hormesis model is shown in Figure 4.2.  
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4.7 Dose measurement methods 

Patient dose assessments are conducted in order to estimate the radiation risk associated with 

the X-ray examination, thus the reason for dose optimization is to minimize this risk. In 

patient dose assessment it is important to define the site at which the dose is to be estimated. 

The dose to the skin surface is a useful parameter because it is comparatively easy to measure 

and it is useful as a starting point for estimating dose to the underlying organs. 

 

The radiation dose to patients who have undergone diagnostic radiology examinations can be 

determined by two general methods, namely, direct and in-direct measurement methods. 

 

4.7.1 Direct Methods 

Direct measurements involve the placement of a suitable dose measuring device (a 

dosemeter) on the patient’s skin or close to the organ of interest prior to the examination. The 

dose measurement done during an examination at the site of interest is the easiest and often 

the most accurate method of determining patient dose. TLDs have been used for this purpose 

in a number of patient dose surveys
111 -117

. After irradiation and with appropriate calibration, 

this method yields the entrance surface air kerma at the point of application resulting from the 

examination. Strictly no X-ray parameters need to be recorded, although in practice beam 

quality and field size need to be known if internal doses are to be calculated from the initial 

TLD measurement. TLDs have the advantage of being small, enabling them to be stuck on a 

patient without causing image artefacts for general radiography examinations. The 

disadvantage of this technique includes the inevitable delay between exposure and readout of 

the dosemeter and the inability to perform retrospective dose estimates. Also the execution of 

a survey involving several thousand individual exposures brings about a considerable 

increase in workload. In addition the calibration process of TLDs is time consuming. 

Alternatively dose assessment can be done using phantoms, i.e. an artificial object simulating 

a patient.   

 

Other forms of dosimeters have also been used for patient dosimetry. Film dosimetry has 

been used with success to quantify patient doses in interventional radiology
118,119

. In addition, 

metal-oxide semiconductor field effect transistors (MOSFETs) have also been used for 

patient dosimetry in interventional radiology
 120,121

. Novel applications of scintillators have 

also been applied to measure patient doses in radiology with success
122, 123

. Diamond 
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detectors have also been used to measure patient doses successfully 
124

. It should be 

appreciated that all forms of dosemeter need to be calibrated and their dosimetry 

characteristics like linearity, beam quality dependence and directional dependence need to be 

established. 

 

4.7.2 Indirect Methods 

These types of measurement involve prior measurement of X-ray exposure or exposure rate 

usually made in the un-attenuated beam for a range of radiographic parameters. These 

measurements together with the radiographic factors used in the particular examination and 

published X-ray interaction data, allow the calculation of the entrance surface air kerma, 

ESAK (Gy) and kerma area product, KAP (Gy cm
2
) and subsequent calculation of the 

effective dose. For these indirect methods, no beam measurements are needed during the 

examination itself. 

 

Dose assessment can also be done by computer simulations. One popular method is the 

Monte Carlo simulation. In radiation physics simulation of a virtual image of the exposure 

conditions is modelled to a computer program, which then creates virtual particle tracks 

followed from the source to their final absorption. Possible interactions with matter are 

induced with random numbers and known probabilities of each interaction type. Monte Carlo 

simulations provide a safe, reliable, inexpensive and flexible tool for complicated studies in 

medical radiation physics
125

. The Monte Carlo simulation can be verified by use of TLDs or 

measurements in phantoms. The disadvantage of Monte Carlo simulation is that it is time 

consuming. 

 

4.8 Dose Optimization in Radiology  

Optimization can be defined as the process of finding the best compromise among several 

often conflicting requirements 
126

. In business optimization is associated with improvement of 

the efficiency of a production process. However in the radiology context, it is the process of 

determining what level of protection and safety makes exposures and the probability and 

magnitude of potential exposures, ‘as low as reasonably achievable’, economic and social 

factors being taken into account. Optimization will therefore involve input from the 

radiologist, radiographer and medical physicist. In radiology the aim of optimization is to 

achieve an adequate diagnosis through the attainment of sufficient image quality yet using the 
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least possible radiation. The optimization process in a radiology clinic involves the following 

steps, in order of execution: 

 Initial preparation: establish an agreement of the optimization process in the radiology 

clinic.  

 Dose and image quality assessment: performance of patient dose audit in conjunction 

with an assessment of clinical image quality. 

 Review of current status of procedure: compare patient doses with appropriate 

benchmarks 

 Intervention: recommend changes to the radiography protocol. 

 Verification of the effect of optimization process: record results and make available to 

all stakeholders. 

 Monitoring: Process to be continually monitored with a view of further adjustment 

and improvement. 

Practical implementation of optimization is more often an iterative process with the aim of 

lowering the dose to image quality ratio.  
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CHAPTER FIVE 

 

IMAGE QUALITY IN RADIOLOGY 

 

5.1 Background 

The quality of a medical image is determined by the imaging method, the characteristics of 

the equipment and the imaging variables selected by the operator. Thus the definition of 

quality for the resultant image in practical terms depends on the information sought from it. 

For example in some instances spatial resolution is a priority yet in another instants, contrast 

is the priority. Variations in image quality can also be caused by changes in X-ray output and 

film processing techniques. The change in X-ray output may be due to aging of the X-ray 

tube, variation in electricity supply or in the X-ray machine parameters (kVp, mA and timer 

calibration) or due to operator error. Improper image quality is a composite result of both 

equipment failure and human error. It has been shown that for optimally performing 

equipment, poor image quality is predominantly due to improper choice of technique factors 

leading to under- and over-exposure and positioning errors
127

. Poor image quality can also be 

due to old (expired) or a wrong concentration of the processing chemicals, the development 

time and the processing temperature. Acceptable X-ray image quality is maintained by using 

a comprehensive quality assurance program.   

 

5.2 General Image Quality Metrics 

The aim of imaging is to create an accurate, high quality imagery which faithfully represents 

the physical object. There should be both quantitative and qualitative methods to ascertain the 

faithfulness and representativeness of the image to the object. There are several quantities 

which can be used to assess image quality, broadly falling in two categories, either objective 

or subjective. Image quality can not be completely quantified by a single metric. In 1960 

Linfoot suggested that the similarity of image and object be assessed by comparison of the 

spatial intensity of the actual image g(x,y) with the spatial intensity of the ideal image g’(x,y). 

To define similarity between the image and object Linfoot used three quantities, namely, 

image fidelity, relative structural content and correlation
128

. 
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5.3 Primary Image Quality Metrics 

Any meaningful judgement of image quality should be based on measurable quantities. The 

three primary image quality indicators are contrast, resolution and noise
129

. A variation in any 

one of these metrics should translate to a change in perception of image quality. 

 

5.3.1 Contrast 

This quantity shows how well two adjacent objects can be distinguished as separate entities. 

Contrast can be said to show the differences in the attenuation properties of objects. The 

diagram below illustrates the concept of contrast. 

 

 

 

 

 

 

 

Figure 5.1: A schematic diagram illustrating the concept of contrast 
77

. 

 

Any perception of contrast will be due to the difference in the transmitted intensities through 

the attenuating materials. The transmitted intensities X1 and X2 are related to contrast through 

the relationship
77

: 

Contrast = 
1

2
10log

X

X
        5.1 

As beam energy increases, the Compton effect becomes predominant, leading to increased 

scattered radiation which will ultimately reduce the contrast. In simple terms contrast is a 

measure of the difference between densities on an exposed detector.   

 

5.3.2 Resolution 

This is the capability of an imaging system to distinguish between two adjacent structures as 

separate entities
75, 77

. The spatial resolution of an X-ray unit can be measured using bar 

patterns. It is measured in line pairs per millimetre. The higher the number of line pairs per 

millimetre the superior the resolution of the system. Resolution is affected by a number of 

factors which include the following, focal spot size, motion unsharpness.  
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5.3.3 Noise 

Noise degrades image quality and limits the ability to visualize low contrast objects
130

. In 

screen-film technology noise can be thought of as the random fluctuation of film density 

about some mean value following uniform exposure. In digital technology it can be defined 

as the optical density variation in the pixel values across an image of a uniform object. The 

major source of noise is radiographic mottle, which has three components namely, screen 

mottle, film mottle and quantum mottle
131

. Screen mottle is caused by the non-uniformities in 

the screen construction, yet film mottle is caused by the graininess of the film. Quantum 

mottle is a result of the random nature of the interactions involved in the production and 

detection of X-ray photons. As a result of quantum mottle there is a random variation in the 

number of photons incident on a detector.  

 

5.4 Overall System Performance 

If dose optimization is to be successful in diagnostic radiology then image quality should be 

explicitly defined. Most of the time clinical image quality refers to a subjective judgement 

based on an impression of quality of clinical radiographic images in which case the 

assessment’s usefulness is questionable
132

. However when image quality is judged by task 

based criteria the assessment is more relevant.  

 

There are a number of ways of classifying and quantifying X-ray image quality which are 

useful in comparing imaging systems. The quality of an image should be assessed in relation 

to the imaging capability of the device that produces it. However, it should be appreciated 

that when an image is assessed subjectively, the use made of the diagnostic information is 

dependent on the observer, in particular his or her visual response system. Below is a 

discussion on various methods of assessing image system performance. 

 

5.4.1 Signal-to-Noise Ratio (SNR) 

Every imaging system aims to have a high object signal compared to the background signal 

and minimal noise in order to produce high quality images. The two mentioned properties of 

images are important, however, their ratio is the most significant indicator of image 

quality
133

. The SNR of a radiographic system describes the ability of the system to reproduce 

low-contrast objects. Signal-to-noise ratio is defined as 
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where 1s and 2s represent the mean signal intensity in background and signal regions of the 

image respectively 

)( 1s and )( 2s are the standard deviation in the mentioned regions respectively. 

It has been shown that to have reliable detection by human observers, the SNR should at least 

have a value equal to five.
134

. 

 

5.4.2 Noise Equivalent Quanta 

For an ideal imaging device, the measured SNR in the final image is proportional to the 

square root of the number of photons in the region of interest. 

measmeas NSNR          5.4 

 

However, in reality there are various sources of noise in the imaging device which are not 

related to the Poisson-distributed x-ray flux. As a result the real SNR is less than the ideal 

SNR. 

idealreal SNRSNR          5.5 

If the noise from the real-world imaging device is fed back to the input stage one gets an 

indication of the effective number of incident photons had the device been an ideal imaging 

device. Thus a number of quanta N can be related to the measured real SNR. 

2'

realSNRN           5.6 

N is the noise equivalent quanta (NEQ), it gives the effective number of quanta used by the 

imaging device based on the measured SNR
133

. Dividing the NEQ with the incident number 

of quanta gives an indication of the efficiency of the imaging device. The NEQ describes the 

image collection and storage stage of the imaging chain
135

.  
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5.4.3 Detector Quantum Efficiency 

The detector quantum efficiency (DQE) is a metric used to describe the performance of X-ray 

imaging systems expressed as a function of spatial frequency
136

. It is a measure of how the 

available signal-to-noise ratio is degraded by the imaging system. 

 

DQE can be determined from the following relationship: 

2

2

out

in

SNR
DQE

SNR


        5.7

 

This is simply the ratio of the output signal-to-noise ratio to the input signal-to-noise ratio of 

the imaging system. DQE is also related to the NEQ and incident quanta through the relation: 

N

NEQ
DQE           5.8 

The quantity DQE is a rigorous, quantitative and transportable concept for objectively 

evaluating the performance of an X-ray detector. It should be noted that while DQE is usually 

defined for an image detector, it is not restricted to such. Since DQE does not include the 

observer/ radiologist it therefore lacks the possibility to describe the effects of the image 

processing and display stages of the imaging chain
136

.   

 

5.4.4 Modulation Transfer Function 

Imaging systems are normally assessed by way of their resolving power. Unfortunately 

radiology imagers are complex devices and many factors contribute to their resolution 

capabilities. Some of the factors can not be readily expressed in terms of resolution and might 

not be related to one another. The concept modulation transfer function (MTF) is one way of 

combining these factors. At any stage in the imaging process, the available information can 

be represented in terms of a spectrum of frequencies. The most detailed specification of 

spatial resolution is provided by the modulation transfer function
137

. The idea of spatial 

frequency can be understood by considering two ways of describing an object consisting of a 

set of equally spaced parallel lines. Instead of saying the object consists of lines equally 

spaced 0.2 mm apart, one can say that the lines occur with a frequency in space (spatial 

frequency) of five per millimetre. 

 

Fourier analysis provides a mathematical method for relating the description of an object or 

image in real space to its description in frequency space. For a true image of an object to be 
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produced the imaging system should be able to transmit every spatial frequency in the object 

with 100 % efficiency. The MTF of the imaging system is the product of the MTFs of the 

respective subcomponents. 

 

Thus the MTF of the system at any spatial frequency, , is that the product of the MTFs of all 

the components at spatial frequency . The advantage of the MTF methodology is that it is 

conceptually easy to understand, besides it is much more difficult to work in real space. In 

addition, by examining the MTFs of each component it is possible to determine the weakest 

link in the imaging chain and also the MTF can be used to analyze the effect of varying 

singular imaging conditions on image quality. In general screen-film systems which require a 

low dose, show a decreased MTF and increased noise compared to systems requiring high 

dose. 

 

5.4.5 Noise Power Spectrum 

The noise power spectrum (NPS) can be thought of as the variance of the image intensity 

divided among the various frequency components of the image or as the variance of a given 

spatial frequency component in an ensemble of measurements of that spatial frequency. NPS 

is related to MTF and two dimensional DQE through the relationship
138

. 
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       5.9

 

where the average pixel value in an image, MTF(u,v) is the two-dimensional system 

modulation transfer function, q is the average density of X-ray quanta incident on the system 

while the image is being acquired, and NPS is the noise power spectrum which is a measure 

of the radiographic mottle.  

 

5.5 Physical/ Physiological Assessment 

It is useful to assess image quality in terms of both physical image quality parameters and 

observer’s perceptual response. The MTF is very useful in assessing the physical 

performance of an imaging system, but its major shortfall is that interpretation of images 

using this quantity remains obscure. Thus it is of great relevance to involve the observer in 

analysis of image quality, because images are then judged on clinical merit. A simple method 

of assessment is to detect a detail of interest in the presence of noise. A major weakness of 

this type of assessment method is that visual thresholds at which objects can be (a) detected, 
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(b) recognized and (c) identified are not the same. This means that results can not be simply 

extrapolated from studies on test objects to clinical images
77

. 

 

5.5.1 Receiver Operator Characteristic Curves (ROC) 

Expression of image quality by way of using exclusively physical properties of the imaging 

system suffers from two major disadvantages: 

 The derivation of one all-embracing measure of image quality is extremely difficult, 

and 

 Such attempts do not include the observer of the image in the imaging system chain. 

It is widely accepted that ROC analysis is the most complete way of quantifying and 

reporting accuracy in two-group classification tasks. ICRU Report 54 states that the ROC 

methodology is the only method which allows for an imaging system performance evaluation 

without observer bias
139

.  

 

The concept of ROC analysis was introduced in medicine by Lusted who postulated that a 

radiologist could achieve different combinations of sensitivity and specificity by consciously 

changing the “threshold of abnormality” or “critical confidence level” which are used to 

differentiate between nominally positive images from nominally negative ones
132

. The ROC 

methodology acknowledges that accurate image interpretation by an observer does not only 

depend on the physical imaging system or the pathology but also on the perceptual 

characteristics of the observer and the “critical confidence level” the observer assumes in 

distinguishing between nominally positive images and nominally negative images. 

 

For a ROC study a set of images are obtained using different imaging systems or techniques, 

to be tested. In ROC studies the correct status of the image must be known. Phantoms using 

simulated lesions or abnormalities can be used, but it is also possible to use actual clinical 

images. In most cases the problem in diagnostic imaging can be simplified to the detection or 

non-detection of an abnormality in the image. Thus in the simplest approach, each image 

contains either one or no abnormality. The former are called “positive” images and the latter 

are called “negative” images. The images are given to an observer who is asked to indicate 

whether an abnormality/ lesion is present or absent in each image, as well as where it is and 

his or her confidence that it actually is present. There are usually four confidence levels:  
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 1 = certainly present 

 2 = probably present 

 3 = probably not present 

 4 = certainly not present.  

 

For each confidence level the following parameters are calculated: 

 True positive fraction (TPF) which is the fraction of positive images correctly 

identified as positive by the observer. 

 False positive fraction (FPF) which is the fraction of negative images incorrectly 

identified as positive by the observer. 

The TPF is sometimes called the sensitivity and (1 – FPF) the specificity of the test or 

observer. An additional two parameters can also be calculated: true negative fraction, TNF = 

(1 – FPF) and the false negative fraction, FNF = (1 – TPF). The ROC curve is the obtained by 

plotting the true and false positive rates
140

. Figure 5.2 shows an example of a ROC plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: An example of a ROC curve 
141

. 

 

The ROC curve should lie above the ascending 45 diagonal which would represent 

“guessing”, i.e. equal probability of true and false positive detection. The further the curve 

lies above the 45 line and the greater the area under the curve the better the performance of 
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the imaging system and/ or observer
132

. The red and yellow curves are typical ROC curves. 

As the test accuracy improves, the curve moves towards the top left-hand corner of the plot, 

which means in Figure 4.0 the yellow line represents superior test accuracy. The area under 

the curve indicates the accuracy of the imaging technique, with an area of 1.0 representing a 

perfect diagnostic test, having 100% sensitivity and specificity. 

 

ROC methodology is widely accepted as the gold standard of image quality assessment. 

However the use of the ROC methodology is limited in use for routine quality control and 

assurance because it takes time calculating, drawing and analysing. There are variants of the 

ROC methodology which aim at increasing the statistical power of the evaluation in 

comparison to pure ROC methodology. A detailed review of the different variants of the 

ROC method is given elsewhere
142

. For example, in the free response forced error (FFE) 

experiment described by Chakraborty and Winter which is a variant of the ROC method, the 

observer’s task is to correctly localise multiple lesions in an image and to rank them in order 

of confidence
143

. In this method lesions are marked in ascending numerical order according 

their apparentness in the image until an error is committed, i.e. a false positive image has 

been created. The FFE score, A1 is calculated using the relation: 
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where  TPFo,i the quotient between the number of correct findings (m) before 

observer o makes an error and the total number of lesions (n) in image 

i. 

I is number of images 

O is number of observers 

 

5.5.2 Contrast Detail Tests 

ROC analysis is relatively time consuming and alternatively psychophysical techniques are 

desirable. One such alternative technique that has been used for assessing observer 

performance of a system is contrast detail analysis. Contrast detail tests can be performed for 

a particular imaging device at a given dose and subsequently compared to another imaging 

system at the same dose or the same technique can be applied over a range of doe exposures. 

There is a variety of contrast-detail phantom designs on the market however all these 
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phantom designs have in them objects of varying diameter and varying levels of subject 

contrast. The subject varying contrast in these phantoms is normally achieved in two ways 

either by utilising holes of different depth or having circular objects made up of objects of 

different attenuating properties.   

 

Low contrast detectability can be measured using phantoms or viewing the clinical images by 

the eye. There are a couple of low contrast detail phantoms available on the market. One of 

the popular test objects on the market are the Leeds test objects which is marketed by Leeds 

Test Objects Limited, Boroughbridge, United Kingdom. The original design concept was 

done by Hay et al
144

. Leeds Test Objects Ltd offers a range of test objects: TOR CDR, TO 10, 

TO 12, TO 16, TO 20 and TOR 18FG
145

. The test objects are imaging modality specific, 

being used for either radiography or fluoroscopy units. Figure 5.3 is a photograph of the 

commercial Leeds test object TOR 18 FG for use in fluoroscopy examinations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: A photograph of the Leeds Test object. 
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This particular test object consists of eighteen circular discs of 8 mm diameter. For the 

purposes of image quality assessment the observer under a predetermined set of imaging 

conditions will determine how many discs are visible in the image and this is compared with 

tabulated data, which relates the number of objects seen to threshold contrast for the 

particular X-ray beam quality. The apparent advantage of this kind of test is that it is easy and 

quick to perform. It can be applied to track changes in system performance and also rank X-

ray units according to their contrast and noise characteristics. Since this is a subjective test its 

greatest weakness is that it depends on the observer and there is bound to be a wide variation 

in assessment from one observer to another. In addition over time observers become familiar 

with the expected image making the test lose its objectivity. 

 

5.5.3 Forced Choice Experiments 

The motivation behind this class of tests is to eliminate observer bias in assessment. For each 

detail size and contrast the observer is presented with an example of a detail and then asked 

to identify the location of a similar detail in a given fixed number of possible locations. 

 

The CDRAD phantom is one popular phantom for performing forced choice experiments. 

The CDRAD phantom is manufactured by Artinis Medical Systems B.V., Andelst in the 

Netherlands
146

. This phantom consists of a 10 mm thick block of perspex measuring 265 mm 

X 265 mm. It is composed of 15 rows and 15 columns , with only the top three rows having 

one hole drilled, while the other remaining rows have two holes, one drilled in the centre and 

the other in a randomly chosen corner. The phantom is designed in such a manner that within 

a row the hole diameter is constant, with exponentially increasing hole depth and within a 

column the hole-depth is constant while the diameter decreases exponentially.  One of the 

variants of the pattern of the CDRAD phantom is as shown below
146

.  
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Figure 5.4: A radiographic image of a CDRAD phantom
146

. 

 

There are four patterns available for the phantom to avoid observers memorizing location of 

holes as they gain experience with usage of the phantom. However, the arrangement of the 

test details is irregular thus the observer can not intuitively predict the location of a detail. 

The assessment then involves the observer identifying the location of the detail, upon which 

the image quality factor will be calculated based on the correct responses.  

Correct observation ratio = 
squaresofnumbertalTo

nsobservatioCorrect
   5.11 
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Alternatively the image quality factor (IQF) methodology can be used: 





15

1

,*
i

thii DCIQF         5.12  

where i denotes the contrast column 

Ci denotes the contrast 

Di,th denotes the threshold diameter in contrast column i 

 

A plot of the smallest visible diameter and contrast is called the contrast- detail (CD) curve. 

The CDRAD phantom can be used across all the X-ray imaging devices in diagnostic 

radiology. Furthermore the CDRAD phantom can be used to compare imaging systems and 

observers.  

 

In addition to commercially available phantoms there is also the TRG- Phantom on the 

market courtesy of ALVIM Research and Development Ltd of Israel
147

. Most image quality 

phantoms have test objects arranged in a permanently fixed configuration that can possibly be 

retained in the observers’ memory and thus lead to a false evaluation. TRG is a statistical 

contrast-detail phantom consisting of a polyvinylchloride body with two groups of six 

columns. Each column consists of 10 discs, 5 of which have holes drilled into them. 

Pathology simulating test objects are eccentrically located in the tissue equivalent disks, 

which can be displaced within sockets numbered by X-ray opaque material. Below is a 

picture of the TRG phantom. 
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Figure 5.5: A picture of the TRG phantom
147

. 

 

Each test element can be displaced independently from the others. Columns 1 -6 includes 

polyvinylchloride plates to simulate high contrast while columns 7 -12 has PMMA plates for 

low contrast. Half of the plates have a small hole drilled somewhere in the middle and these 

holes vary in depth and in diameter. The size of the hole varies from 0.5 mm to 1.0 mm in the 

polyvinylchloride plates and from 0.9 mm to 2.0 mm in the PMMA plates. The depth of each 

hole is the same as its diameter. A distinct advantage of this phantom is that it has a provision 

to move the test objects from one position (location) to another, and the observer cannot 

know or predict their locations during the experiment.  

 

5.5.4 Visual Grading Analysis 

Visual grading analysis (VGA) has established itself as a strong, reliable alternative to the 

ROC methodology
148

. A number of reasons have been put forward to support the 

establishment of VGA as a consistent alternative to ROC methodology.  Firstly in VGA the 
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quality criteria are based on clinically relevant structures. In addition, VGA has shown to 

generally agree with the ROC method, which is considered as the gold standard of image 

quality assessment. In comparison with the ROC method, VGA has proved to be easy to 

conduct and is less time consuming. In the VGA approach to image assessment the image or 

a feature of the image is given a relative score, which reflects how well that image or feature 

can be visualised. Any set of clinical images can be used in a VGA study. An in-depth 

description of the VGA methodology is given elsewhere
149

. VGA can either be conducted in 

an absolute or relative manner. The two methods are briefly discussed below. 

 

The relative approach involves a comparison between the clinical test images and a reference 

image. Subsequently the observer gives a score or rates the clinical images with respect to the 

reference image. An image quality criteria for chosen anatomy/ structures is used in such 

studies, the European Quality Criteria is one such criteria that has been widely used. 

Typically four to five grading scales are used, for example,  

 Much poorer than the reference image 

 Slightly poorer than the reference image 

 Equivalent to reference image 

 Slightly better than the reference image 

 Much better than the reference image 

 

The absolute method grades images according to visibility of particular anatomy/ structures 

in the image. The point scale is based on the following: 

 Excellent 

 Good 

 Moderate 

 Poor 

 Very poor 

To proceed with any meaningful analysis of VGA studies the scale steps used have to be 

converted into numerical values. One example of such a scale that can be used in a clinical 

situation is as shown in Table 5.1 below. 
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Table 5.1: A typical VGA relative rating scale. 

Relative Rating Meaning 

 The structure in the image is  

-2 Clearly inferior to 

-1 Slightly inferior to 

0 Equal to 

+2 Slightly better to 

+1 Clearly better to 

 Structures in the reference image 

 

Results of the VGA study are then used to calculate the visual grading analysis score, which 

is defined as the mean of all the ratings when the numerical representations of the scale steps 

are used. The normalised visual grading analysis score (VGAS) can be calculated from 
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       5.13 

where  G is the relative ratings of the images are summed over a number of observers (o), 

images (i), and structures (s).  

I is the total number of images per technique 

 
S is the total number of structures 

 O is the total number of observers 

The VGA results are dependent on the reference image. VGA is very much a subjective test 

thus it can be improved by having multiple observers and averaging their scores.  

 

5.5.5 Image Criteria Score 

An alternative to VGAS is image criteria score (ICS). This image assessment tool is based on 

visualization of defined anatomic structures. The concept of image quality criteria was 

introduced by the Radiation Protection Programme of the Commission of the European 

Communities. After extensive clinical trials in Europe, image quality criteria were established 

for a number of radiological examinations
150 -152

. A criteria based on visualization of 

particular anatomy is established, and an image taken under particular radiographic 

conditions is assessed on fulfilment of the criterion using either a “YES” or “NO”. For a 

number of images taken using the same radiographic technique, the fraction of fulfilled 

criteria, ICS, is calculated as below: 



Chapter Five: Image Quality in Radiology 
 

66 

 

OCI

F

ICS

I

i

C

s

O

o

oci





  1 1 1

,,

        5.14 

where  F is fulfilment of criterion c for image i, by observer o.  

I is the total number of images 

 
C is the total number of criteria 

 O is the total number of observers 

 

Each anatomical examination has its own image criteria depending on the pathology of 

interest. 

 

5.6 Weaknesses of Observer Based Studies 

The greatest weakness of observer based studies is both intra-observer and inter-observer 

variation in reporting the same images. The decision taken by an observer is influenced by his 

or her experience, perceptions, expectations and preferences. The lack of consistency in 

interpretation of images has been shown in studies whereby observers were asked to re-

evaluate images after a certain interval of time and their interpretations were shown to vary 

from the initial by up to 20%
 153

.  

 

To reduce observer variability the following can be implemented in observer studies: use of 

multiple observers, averaging observer scores, observers should be familiar with images to be 

studied and a reasonable period of time should be allowed to elapse before the next reading 

session so as to reduce memory bias from the observers. 

 

5.7 Image Artifacts 

An artifact is an optical density on film or image that is not due to the anatomy being 

radiographed. Artifacts can be due to the acquisition device, patient related factors and 

processing devices. In general an artefact is an acknowledged image imperfection that does 

not hamper clinical image interpretation. The presence of numerous artifacts can lead to 

reduced observer confidence
153

. In screen film radiography artifacts can be as a result of the 

following
154, 155

: 

 Poor screen-film contact 

 Improper use/positioning of a grid 
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 Blurred images due to patient motion 

 Poor patient preparation 

 Artifacts due to inappropriate patient clothing during exposure, e.g.  jewellery, 

glasses, belts, etc 

 Chemical fog artifacts due to improper or inadequate chemistry, resulting in a dull 

gray haze on film. 

 Processor rollers can be a cause of artifacts on images. Scratches on film can be as a 

result of rollers not turning smoothly or be due to chemical buildup on the crossover 

guide. Dirty rollers can make deposits on the film. 

 Film fogging can be a result of use of an incorrect safelight, film cassette or darkroom 

not being light-tight. Fogging can also occur from the close proximity of the safelight.     

 The static artifact is caused by buildup of electrons in the emulsion, usually as a result 

of an electric discharge from the finger to the film. Other possible causes could be that 

the darkroom humidity is too low, processor feed tray not electrical grounded or 

screens were not cleaned with an antistatic screen cleaner.  

 

 

 

 

Figure 5.6: A radiograph exhibiting the static artifact 
155

. 
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Remedies to static are grounding one’s hand on a metal object before handling the 

film, installation of a humidifier or use of an antistatic cleaner at the recommended 

frequency. 

 Smudge manifests as a yellowish stain on a finished radiograph. This can be due to 

inadequate film washing or remaining thiosulfate from the fixer solution. 

 

For digital units utilizing an image intensifier, image artifacts can be experienced from 

pincushion distortion, magnetic field distortion and vignetting
133

.  For laser scanning based 

systems one of the most common artifacts is banding or shading perpendicular to the 

direction of the laser scan
133

. Banding or shading can be as a result of dust accumulating in 

the scanning optical mirror
133

. Scratches on the CR imaging plate can cause image artifacts as 

shown below
155

.  

 

 

 

Figure 5.7: A radiograph showing scratch artifacts on a CR image 
155

.  

 

The remedy to scratch artifacts is to replace the photostimulable phosphor plate. In addition 

caution should be taken when cleaning imaging plates as improper cleaning can lead to image 

artifacts. Only manufacturer recommended cleaning agents should be used for cleaning CR 

plates. 
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Grids are equally relevant to digital radiography as they are to screen film radiography, 

however, the grid should be used with the correct orientation. An example of an artefact due 

to incorrect grid orientation is shown below
155

.  

 

 

  

Figure 5.8: A radiograph showing artifacts due to incorrect orientation of grid 
155

.  

A robust quality control program would easily pick up artifacts before they influence the 

accuracy of diagnosis in the clinic. 
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CHAPTER SIX 

METHODS AND MATERIALS 

 

6.1 Quality Control of Radiography Viewing Conditions      

This study was conducted at the Divisions of Radiology and Radiation Oncology of CMJAH. 

All the conventional viewing boxes and radiograph viewing areas/ reporting rooms in these 

two divisions were subject to assessment. A calibrated Nuclear Associates Precision 

Photometer, Model 07-621 was used for measuring the viewing box luminance, viewing box 

luminance uniformity and the viewing area ambient lighting (illuminance).   

 

For consistency in the experimental measurement set-up, a distance of 30 cm was maintained 

between the photometer and the viewing box. The choice of this measurement distance was 

motivated by the fact that it approximates the distance between the viewer and the viewing 

box in a typical clinical setting. There was a time lag between switching ON a viewing box 

and measurement of its brightness to ensure that the light output stabilises. Ambient lighting 

was measured from a distance of 30 cm away from a switched off viewing box
156-157

. 

  

For the purposes of measuring luminance the view box was divided into four quadrants such 

that five measurements were taken namely at the centre of the view box and also at the centre 

of each quadrant. The partitioning pattern used for the viewing boxes is shown in Figure 6.1. 
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Figure 6.1: Partitioning of the viewing box for the purposes of measurement. 

 

These measurements were taken with the photometer positioned flush on the view box. The 

luminance of the particular viewing box was then calculated as the average of the five 

measurements. Viewing box luminance uniformity was determined using the relationship 

below
156

: 

100(%)
minmax

minmax 





PP

PP
Uniformity       6.1 

 

where Pmax is the maximum luminance measured and  

Pmin is the minimum luminance value measured on the viewing box. 

 

Assessment of fulfilment of viewing conditions and ambient lighting conditions was based on 

guidelines from the DRC, European Commission (EC) and the NORDIC countries 
158-159

. 

These guidelines for the parameters viewing box luminance, uniformity of viewing box and 

ambient lighting are shown in Table 6.1. 
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Table 6.1: Tabulation of published guidelines. 

Organization Luminance of 

viewing box (cd m
-2

) 

Uniformity of 

viewing box (%) 

Ambient 

lighting (lux) 

DRC  1500  20  100 

NORDIC 1500 – 3000  15  100 

EC  1700  30  50 

 

 

6.2 Custom Made Quality Control Software      

A list of required quality control tests for general radiography units, fluoroscopy units and 

processors was drawn up based on the DRC requirements. The document is not prescriptive 

on how to do the tests, however it references the Institute of Physics and Engineering in 

Medicine (IPEM) Report 91 and the British Institute of Radiology (BIR)
160 -161

. The 

frequency of tests and the pass/ fail criteria adopted were primarily as recommended from the 

DRC website. 

  

A personal computer-based, user-friendly computer program has been developed by the 

author for the purposes of recording, analysis and archiving relevant quality control test 

results for general radiography, fluoroscopy and processor units. The spreadsheet program 

was implemented as an Excel 2003 Workbook which requires information from the QA / QC 

tests. To ensure an efficient and reliable application package, the following design criteria 

were applied: 

 Cell and worksheet protection was used to ensure that fixed data can not be 

accidentally changed. 

 Creation of pull down menus was used to limit permissible entries. 

 Exclusivity of worksheets was maintained as much as possible so as to avoid a 

cascade effect in the event of corruption of one worksheet.  

 Hardwiring of factors in formulas was avoided. 

 

The Excel workbook was designed so as to afford easy access to the relevant worksheets. The 

main menu of the workbook should present the user with the following broad options: 

 General Radiography QA 

 Fluoroscopy QA 
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 Processor QA 

 Repeat Analysis 

Within each equipment class, worksheets are grouped according to frequency of testing, 

namely, daily, weekly, monthly, 3 monthly, bi-annually and annually. Cells that require data 

entry or direct user input are left un-shaded (white background). All cells populated with a 

calculation formula are locked to avoid corruption of the data. In general the colour green 

represents satisfaction of the pass criteria while the colour red represents satisfaction of the 

fail criteria. For easy monitoring of data use of control charts is used. An in-depth description 

of how the software operates is given in Appendix A and B.  

 

6.3 Fluoroscopy Procedures Dose Audit       

Patient and dosimetric data was collected retrospectively on patients who had undergone 

fluoroscopy based examinations or procedures between the period 14 August 2007 and 26 

March 2008 at the Division of Radiology, CMJAH. Patients who had either the screening 

time or KAP readings not recorded were excluded from this study. Another criteria for study 

eligibility was that the patients ought to have been 18 years and above at the time of the 

procedure. The following patient related parameters were collected from the record books, 

namely: name and surname of the patient, sex of the patient, age of the patient, type of 

examination, contrast agent used, clinician(s) performing the examination, radiographer(s) 

performing the screening, total screening time, total KAP reading for examination/ procedure 

and duration of the procedure. The following procedures were analyzed namely barium 

swallow, barium meal, barium enema, hexabrix swallow, gastrografin meal, voiding 

cystourethrogram, fistulogram, myelogram, nephrostomy and loopogram. 

 

All the examinations were performed on a Philips Medical Systems multi-purpose C-arm 

MultiDiagnost Eleva unit. Figure 6.2 is a photograph of the unit used in this study.  
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Fig 6.2: A photograph of the Philips MultiDiagnost Eleva C-arm unit. 

 

The MultiDiagnost Eleva unit is capable of performing a wide range of examinations. The 

unit is driven by a high frequency Optimus TC generator. The accelerating potential can be 

varied from 40 kVp to 150 kVp in the radiographic mode and between 40 kVp and 125 kVp 

in the fluoroscopy mode. The unit provides: 

 Nominal diameter of field sizes: 17 cm, 20 cm, 25 cm, 31 cm and 38 cm 

 Fluoroscopic modes: low, normal and high dose rate 

 0.5 to 30 pulses per second range 

 0.1 mm Al added filtration 

 Focus to detector distance ranges from 95 cm to 125 cm 

 

In addition the MultiDiagnost Eleva unit has a mathematical built-in KAP-meter installed 

from which the skin dose
1
 and KAP reading are derived. The mathematical KAP meter uses 

data from the generator and the positions of the jaws to calculate the skin dose and KAP 

                                                 
1
The unit displays skin dose on the console which in actual fact should read as air kerma instead of skin dose. 

See Section 8.3 for more detail. 
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values. The skin dose was displayed and recorded in mGy while the KAPs were recorded in 

µGym
2
. Both the KAP and skin dose reading are displayed on the X-ray unit control console 

and there is a facility to make a printout of these readings. The unit is periodically serviced 

and the appropriate quality assurance performed. 
 

 

The KAP meter reading was validated using an ionisation chamber (PTW Type TM77334) 

with a calibration certificate traceable to German standards for air kerma. The ionization 

chamber was positioned 75 cm from the focus. The field size at the point of measurement 

was confirmed using radiographic film. The validation geometry minimized scattered 

radiation from the KAP meter, collimator housing and surrounding objects reaching the 

reference ionization chamber. A working tolerance of ± 25% was considered acceptable for 

agreement between the KAP reading and the product of the ionization chamber reading and 

beam area 
162

. 

 

Descriptive and summary statistics were generated. Some data manipulation was performed 

with Microsoft Excel 2000. In addition, Microsoft Excel was used for all graphing, 

generating scatter plots, trend lines and linear regression. The relationship between the 

various dosimetric quantities was sought and expressed in terms of the coefficients of 

correlation
163

. There were clearly transcription errors in the original record books as such the 

Chauvenet’s criterion test was used to exclude exceptionally out of trend values (either too 

low or high) 
164

.  

 

6.4 Radiography Examinations Dose Audit 

A prospective patient dose audit requires detailed planning and organization for it to be 

meaningful. Decisions need to be taken with regards to the dosimetry method to be used, 

phantoms, what data need to be collected and responsibility for data collection. The following 

sub-sections detail what was done in preparation for the patient dose survey at CMJAH.  
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6.4.1 Phantoms 

Diagnostic radiology phantoms were fabricated in-house at the Division of Medical Physics, 

CMJAH as per ANSI and CDRH specifications 
10, 166,167

. Only clear acrylic and type 1100 

aluminium was used to fabricate the phantoms. A total of four phantoms (ANSI 

specifications) were fabricated for the following anatomical sites, namely, chest, abdomen- 

lumbar spine, skull and the extremities. In addition two phantoms (chest and abdomen lumbar 

spine) were fabricated according to the CDRH specifications. The materials required for the 

fabrication are given in Table 6.2. 

 

Table 6.2: List of ANSI and CDRH phantoms fabrication requirement list. 

ANSI PHANTOMS  

Five sheets   260 mm X 260 mm X 25.4 mm Acrylic 

One sheet   260 mm X 260 mm X 1 mm Aluminum 

One sheet   260 mm X 260 mm X 50.8 mm Acrylic 

One sheet   260 mm X 260 mm X 2 mm Aluminum 

One sheet   80 mm X 260 mm X 4.5 mm Aluminum 

One square tubes  20 mm X 20 mm X 250 mm Acrylic 

  

CDRH ABDOMEN/ LUMBAR SPINE 

PHANTOM 

 

Five sheets   270 mm X 270 mm X 30 mm Acrylic 

One sheet   270 mm X 270 mm X 20 mm Acrylic 

Two sheets   270 mm X 270 mm X 12 mm Acrylic 

Two sheets   270 mm X 80 mm X 2 mm Aluminum 

  

CDRH CHEST PHANTOM  

One sheet   270 mm X 270 mm X 30 mm Acrylic 

Two sheets   270 mm X 270 mm X 12 mm Acrylic 

Two sheets   270 mm X 270 mm X 10 mm Acrylic 

Two sheets   360 mm X 280 mm X 10 mm Acrylic 

One sheet   300 mm X 20 mm X 6 mm Acrylic 

One sheet   270 mm X 270 mm X 2.5 mm Aluminum 

One sheet   270 mm X 270 mm X 1.6 mm Aluminum 
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6.4.2 TLD Dosimetry 

Measurement of radiation doses using TLDs requires that they be calibrated. A Toshiba 

Medical Systems Corporation radiotherapy simulator unit was used as the X-ray source in 

this investigation. The unit uses a model KXO-50XM diagnostic X-ray high voltage 

generator and has an inherent filtration half value layer of 1.8 mm Al at 70 kVp. In addition 

this unit offers both radiography and fluoroscopy functions. Quality control tests like 

reproducibility, linearity, and field light – radiation field congruence, and timer accuracy, 

were performed on the unit to establish compliance of the unit to the specifications of the 

DRC. The unit passed the reproducibility, linearity and field light – radiation field 

congruence tests as per DRC criteria. Timer accuracy was measured using the PTW DiaVolt 

Universal and was found to be satisfactory. 

 

A total of 78 LiF:Mg,Cu,P TLDs marketed as GR-200A were used in this study. The 

properties of GR-200A TLDs are shown in Table 6.3. 
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Table 6.3: The characteristics of the GR-200A TLD 
165

. 

General Properties  

Material LiF 

Doping Cu, Mg, P 

Manufacturer Fimel, France 

Form Circular chips 

Dimensions  4.5 mm   *  0.8 mm  

Density 2.65 g per cc 

Effective atomic number 8.2 

  

Dosimetric Properties  

Fading at 20 C Negligible 

Light dependence Negligible 

Photon energy dependence in the range of 30 keV to 1.25 

MeV 

< 20 % 

Linear response range 1 Gy – 12 Gy 

  

Pre-irradiation Annealing  

Temperature 240 C 

Heating rate  

Duration 10 minutes 

  

Reading Cycle   

Preheating temperature 140 C 

Duration of preheating 7 seconds 

Heating temperature 245 C 

Duration 10 seconds 

 

The TLDs were prepared for dosimetry as per manufacturer instructions. The 75 TLDs were 

annealed using the cycle given in Table 6.3. The TLD annealing procedure was performed 

using a programmable TLDO™ oven controlled by the THELDO™ software. Rapid cooling 
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after the annealing was achieved by retrieving the TLD tray from the oven and immediately 

placing it on top of a copper block.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: A photograph of the TLD annealing oven. 

 

TLDs were calibrated against a calibrated PTW – Freiburg ionization chamber TM77334-

2244 at various beam qualities. The long term stability of the ionization chamber was 

checked using a carbon -14 check source at regular intervals during the course of this work. 

The beam qualities ranged from 50 kVp (2.07 mm Al first half value layer (HVL)) to 150 

kVp (5.8 mm Al first HVL). The TLD calibration set-up is as recommended in the IAEA 

TRS-457 diagnostic radiology protocol 
10

. As an initial calibration process the TLDs were 

uniformly exposed to 1 mGy and subsequently the reader calibration factor (RCF) and the 

elemental correction coefficients (ECC) of the individual dosimeters were determined. Each 

TLD chip had its own unique identification number. Background radiation dose was 

considered to be negligible in this study.  

 

The TLDs were read using a Harshaw Model 3500 manual TLD reader manufactured by 

Harshaw Bicron Radiation Measurement Products. The Harshaw 3500 operates 
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on WinREMS software, which runs under a Windows® platform on a separate computer, 

providing user interface while the reader control and the applications software. The reading 

cycle is shown in Table 6.2.  

 

6.4.3 Frequency of Examinations 

It is recommended that DRLs should initially be established for one or two of the more 

common X-ray examinations
168

. Based on this recommendation clinical records of general 

radiography patient examinations performed at the main X-ray department at CMJAH during 

the period 02 January 2008 to 31 December 2008 were analyzed to determine the frequency 

of examinations. 

 

6.4.4 Patient Population  

This was a descriptive quantitative survey in which patient doses were determined in terms of 

the entrance surface air kerma. Participation consent was actively sought from the patients. 

The patients mass was measured using a bathroom scale, while height was measured using a 

tailor’s tape measure. For each participating patient, the following information was recorded: 

mass, height, exposure parameters (kVp, mAs), focus-film distance, use of grid and quality of 

the radiograph. A data collection form was designed to allow for all the necessary 

information to be recorded. A copy of the data collection sheet is given in Appendix C. All 

this information was collected over a period of one week. The body mass index (BMI) was 

calculated for each patient. Only adult patients undergoing the following examinations were 

eligible for the study: chest PA, chest LAT, pelvis AP, abdomen AP, lumbar spine AP and 

thoracic spine AP.  

 

Dose has been shown to relate closely to the equivalent diameter of the patient 
169

. Instead of 

measuring the patient’s thickness at the relevant anatomical site, the equivalent diameter 

(ED) in centimeters was calculated using the relationship from Reay et al 
170

. 

 

h

w
ED





2

        6.2 

where 

w is the patient’s mass in grams 

h is the patient’s height in cm 
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The above equation takes account of body shape by approximating the person to a cylinder 

with the same density as water. 

 

The DRLs in this study were established from the calculated ESAK values, as advised in the 

IAEA Code of Practice
10

. ESAK calculations were done only for exposures which resulted in 

films of diagnostic quality. Through the use of published conversion factors, ESAK values 

can be converted to risk related quantities, such as organ dose and effective dose. However 

calculation of risk related quantities was not performed.  

 

6.4.5 Computational Method 

For this study the indirect dosimetry methodology used was as per IAEA TRS 457 protocol. 

The x-ray tube output from the units was measured using a calibrated 1 cm
3
 PTW-Freiburg 

TM77334 ionization chamber connected to a PTW UNIDOS E electrometer. From the 

measurement of K(d) the x-ray tube output, Y(d) in Gy per mAs was then calculated as the 

quotient of K (d) by PIt where K(d) is the air kerma and PIt is the tube loading during the 

exposure in mAs. 

ItP

dK
dY

)(
)(          6.3 

The incident air kerma is calculated using the following relationship. 

2

)(

















p

Iti
tFTD

d
PdYK       6.4 

where  Y (d) is the output (mGy(mAs)
-1

) of the X-ray tube at particular exposure settings  

 PIt is the tube loading during the exposure of the patient 

 FTD  is the focus to table distance 

 tp is the patient thickness at the irradiation site 

The advantage of Ki is that it can be converted to patient risk related quantities like organ and 

effective dose. Furthermore, for the determination of ESAK, Ki is multiplied by an 

appropriate backscatter factor. 

BSFKESAK i          6.5 

where BSF is the backscatter factor.  

Backscatter factors are a function of the irradiated area and can be obtained from the 

appendix of the TRS 457 protocol. ESAK is used to evaluate skin doses, which is critical for 

management of deterministic effects. 
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6.4.6 Patient Dosimetry 

A patient dose audit was undertaken to quantify the level of doses patients received from the 

various radiographic examinations. The study was done at the main x-ray department of 

CMJAH. The main x-ray department has five x-ray rooms of which two were used for this 

study. Two Philips Medical Systems units, powered by Optimus 50 high frequency 

generators were used for this study as the other two units were not used for the examinations 

being audited and the other unit was not functional at the time of the patient dose audit. Each 

unit had an inherent filtration of 2.5 mm of aluminum (Al). However, added filtration could 

be activated by setting the built-in rotatable filter disk to one of the filter values indicated on 

the disk, namely, 0 mm Al, 1 mm Al, 2 mm Al and 1 mm plus 0.1 mm Cu. In addition the 

units had moving anti-scatter grids of grid ratio 12:1. Information with regarding the 

technical aspect of the units was recorded in a data collection form, shown in Appendix B. 

 

6.4.7 Ethics Approval  

Ethical clearance was issued by the University of the Witwatersrand, Human Research 

Clearance Committee. In addition informed consent was obtained from each study 

participant. 

 

6.5 Non-Clinical Image Quality Assessment 

A patient dose audit in isolation from some form of radiological image quality assessment is 

not of much value. In situations where there is a trade-off between patient dose and image 

quality, both quantities need to be measured. As such radiograph image quality was done 

using phantom images. A contrast detail phantom was used to assess image quality. A 

contrast detail curve provides the best qualitative way of representing both the spatial and 

contrast capabilities of an imaging unit. The horizontal axis of the curve represents the size of 

the objects (detail) while the vertical axis corresponds to the contrast of the objects. 

 

6.5.1 Fabrication of the CDRAD phantom   

A replica of the commercial CDRAD contrast-detail phantom was fabricated in house for 

image quality studies 
146

. Drill pattern number 2 was used to fabricate the phantom
146

.  
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6.5.2 The Observers 

Three medical physicists reported on the images. All the participating medical physicists 

were fully employed at CMJAH. Scoring of images was as per the CDRAD manual 
146

.  

 

6.5.3 Image viewing conditions 

The radiographs were viewed by the observers on conventional viewing boxes.  The room 

luminosity in the room was constant throughout the experiment. The observers could take as 

much time as they wanted viewing the radiographs and could stand at any distance from the 

viewing box. 

 

6.5.4 CDRAD Contrast-Detail Study   

The CDRAD phantom was symmetrically sandwiched between 8.3 cm blocks of 30 cm X 30 

cm PMMA sheets. The total thickness of the CDRAD phantom plus the PMMA sheets is 

17.6 cm which is equivalent to 20 cm of water. This phantom – PMMA blocks arrangement 

gives scatter conditions representative of an average adult patient.     

 

The experimental set-up for acquiring images of the CDRAD phantom sandwiched by the 

Perspex sheets is shown below. 

 

 

Figure 6.4: The experimental set up for imaging the CDRAD phantom. 
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A focus to proximal surface of the CDRAD phantom distance of 100 cm was maintained 

throughout the experimental study. The effect of the following parameters on the threshold-

contrast detectability was investigated: 

 variation of kVp 

 variation of the thickness of PMMA sandwiching the CDRAD phantom 

 variation in between imaging units 

The observers had to identify in every square matrix the location of the holes drilled on the 

corner. Results were entered into a score sheet provided with the phantom manual. After 

comparing the score forms to the reference form (drill pattern) a correction scheme was used 

taking into account the four nearest neighbours, using the rules in the CDRAD manual
146

. 

The threshold contrast value was determined for each diameter.  

 

6.6 Digital Radiography Practice and Technique 

The aim of this investigation was to assess radiographer familiarity with digital radiography 

in four teaching hospitals. A cross-sectional study was designed in which a questionnaire was 

used to collect data from either qualified or student radiographers from four teaching 

university hospitals in South Africa. The questionnaire is provided in Appendix D. Only 

qualified radiographers or registered student (trainee) radiographers were eligible for 

inclusion in the current study. Student radiographers were included in the study because they 

would give an insight into the training programs and in some cases due to staff shortages they 

work under minimal supervision. Due to a request by one of the participating institutions, the 

hospitals will not be identified by name in this study. 

 

The questionnaire used took a multiple format, i.e. it had closed and open ended questions. 

The information collected was based on self-reporting by the study participants. The 

questionnaire captured the participants’ familiarity, preferences, knowledge and 

workmanship with regards to digital radiography. The participants in this survey were further 

asked questions relating to operation of their digital X-ray units, comparing digital 

radiography to screen-film radiography and their preferences when using digital radiography 

units.   

 

A soft copy of the questionnaire was e-mailed to the radiotherapy medical physicist at the 

relevant teaching hospital, who made printouts and hand delivered them to the Assistant 
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Director of Radiography. The Assistant Director then asked the radiographers to respond to 

the questionnaire. Participation into the study was voluntary and no incentive for 

participation was offered. Furthermore data anonymity and confidentiality was assured.  

 

Descriptive statistics were generated from the data using Microsoft Excel 2007 and 

StatsDirect software. Descriptive statistics included summary measures and frequency tables. 

In line with research ethics all the collected data was handled with confidentiality.  

 

6.7 Scatter from Under-couch Procedures   

An isocentric radiotherapy simulator unit manufactured by Toshiba Medical Systems 

Corporation was used for this study. The unit has a 4.4 cm thick carbon fibre couch, 

equivalent to 1.15 mm Al at 100 kVp. In under-couch system X-ray units, scattered radiation 

is generated from the couch. Before the scatter measurements were done, the X-ray 

transmission factor of the couch was measured. The couch transmission was determined 

across a range of tube voltages, from 40 kVp to 120 kVp in steps of 10 kVp. A field size of 

10 cm * 10 cm at a focus-to chamber distance of 100 cm was used for the transmission 

measurements. A 1 cm
3
 PTW-Freiburg TM77334 ionization chamber calibrated in terms of 

air kerma was used for the measurements. The couch was raised to its highest possible 

vertical position to be as close as possible to the focus so as to have minimal scattered 

radiation reaching the ionization chamber during the transmission measurements.    

 

The experimental set-up during the scatter measurements always had slabs of PMMA slabs 

placed distal to the parallel plate chamber so as to simulate the amount of scatter generated by 

an average patient. One of the Perspex blocks had a notch carved at its centre so as to 

accommodate the plane parallel chamber used for the measurements. The focus to chamber 

distance was maintained at 100 cm for all the experimental measurements. The determination 

of scatter generated from the couch and directed to the patient involves two steps, namely, 

 measurement of the primary radiation
2
 (PR)beam  

 measurement of the primary plus scattered radiation (PPS) beam. 

 

The amount of primary radiation was measured from the experimental set-up shown in 

Figure 6.5. The couch was lowered to its lowest possible position, which was the closest to 

                                                 
2
 Strictly speaking this is not primary radiation however term is use to differentiate from scatter from the couch. 
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the X-ray tube. This arrangement rules out the possibility of any scattered radiation from the 

couch reaching the ionization chamber, thus provides a measurement of the primary 

radiation only. 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

Figure 6.5: The experimental set-up for measurement of primary radiation from the source.  
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The primary plus scattered radiation beam is measured with the ionization chamber flush on 

the couch. The experimental setup is shown in Figure 6.6 below. 

 

  

          

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

Figure 6.6: The experimental set-up for measurement of both primary plus scattered 

radiation from the source.  

 

In this investigation the measured ionization charge was corrected for ambient conditions. 

The ratio of primary plus scattered radiation to primary radiation was calculated. This study 

investigated 60 kVp, 70 kVp, 90 kVp and 120 kVp beams. 
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CHAPTER SEVEN 

RESULTS AND ANALYSIS 

 

7.1 Quality Control of Radiography Viewing Conditions      

A total of 47 viewing boxes had their average luminance, average central luminance, average 

uniformity measured in this study. From this total, 24 viewing boxes were located in various 

areas at the Division of Radiology and the remaining 23 were located at the Division of 

Radiation Oncology. Results of the investigation are tabulated in Table 7.1. Numerical 

figures are given to the nearest whole number. 

 

Table 7.1: The mean luminance and luminance uniformity of the viewing boxes.
1
 

Division Mean Average 

Luminance  

 ( cd m
-2

)  

Mean Central 

Luminance  

( cd m
-2

) 

Average 

Uniformity  

(%) 

Radiology 1027 

[549] 

1285 

[666] 

27 

[13] 

Radiation Oncology 3284 

[328] 

3305 

[407] 

7 

[4] 

 

In addition to the viewing box luminance measurements, the ambient lighting of the reporting 

rooms was measured. The results of these measurements are shown in Table 7.2.  

 

 

 

 

 

 

 

 

 

 

                                                 
1
 The standard deviation in the measured quantity is shown in square brackets. 
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Table 7.2: The average ambient lighting readings from the viewing stations in the two 

departments.
2
 

 Radiology Radiation 

Oncology 

Average Ambient Lighting (lux) 66 66 

Standard Deviation Average Ambient Lightining 

(lux) 

25 32 

 

The data in Tables 7.1 and 7.2 was compared with the published guidelines from the DRC, 

NORDIC and the EC as given in Table 6.1. Figures 7.1 and 7.2 below show the percentage of 

viewing boxes which were in compliance with the guidelines as set out by different 

organizations at the Divisions of Radiology and Radiation Oncology respectively. 

 

Figure 7.1: A bar chart showing  the percentage of viewing boxes at the Division of  

Radiology which are compliant to the different guidelines. 

 

 

                                                 
2
  The standard deviation in the measured quantity is shown in square brackets. 
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Figure 7.2: A bar chart showing percentage of viewing boxes at the Division of Radiation 

Oncology complying with different guidelines. 

 

7.2 Custom Made Quality Control Software      

An Excel based workbook has been developed to capture, analyse and archive QC results for 

the following equipment: general radiography units, fluoroscopy units and processors. In 

addition there is a provision to perform repeat analysis of any one imaging room. In total the 

workbook consists of twenty separate Microsoft Excel™ files some of whom comprise of 

more than one worksheet. A software package provides for the following: 

 Increase reliability of QA evaluations 

 Reduce use of paper documentation. 

 Provide an automatic pass / fail criteria based on the DRC requirements. 

At present, the program is a Microsoft Excel™ 2003 workbook which can be run on a 

common office PC with usual basic provisions. To facilitate easy use the software has a 

graphic user interface which utilises a click button, upon clicking it reveals the main menu of 

the program. Below is a screen shot of the graphic user interface.  
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Figure 7.3: A screen capture of the graphic user interface. 

 

When the user clicks the “Show Menu” button the computer screen is as shown below: 

 

 

Figure 7.4: A screen capture showing the options presented to user according to equipment. 

 



Chapter Seven: Results and Analysis 
 

92 

 

This screen “page” allows the user to select the relevant equipment that he/she wants to 

perform the tests on. Selection is made possible through clicking on the modality/ equipment 

of choice. 

Furthermore under each equipment or modality the tests are sorted according to the 

recommended frequency of tests. The frequency options range from daily, weekly, monthly, 

quarterly, bi-annually and annually and selection is through clicking at the frequency of 

choice. An example of the frequency choices for the radiography modality is shown below in 

Figure 7.5.   

 

 

Figure 7.5: A screen capture showing the frequency of test options for the radiography 

modality. 

 

The software presents graphical display facilities for the user to easily identify any trends. 

The daily processor test results are automatically archived in a table format for easier 

trending. A typical daily processor test output table is shown in Figure 7.6. 
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Figure 7.6: A screen capture showing the daily processor quality control test results archive. 

 

The daily radiography room QC tests are binary in nature, either the equipment passes or fails 

the test, thus the user has to tick the check box if the equipment passes or leave un-ticked if 

the equipment fails the criteria. Figure 7.7 shows a screenshot of the radiography daily QC 

test worksheet. 
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Figure 7.7: A screen capture showing the daily X-ray quality control test results page. 

 

To further aid decision making with regards to fulfilment of criteria, a pass of fulfilment of 

criteria is shown under a green background yet a fail is shown under a red background. If the 

tolerance limits are not exceeded then the assumption that the unit is working properly can be 

made. 

 

The data integrity of the software package is ensured through locking of cells which involve a 

calculation. Moreover the user has the option of protecting the worksheets by way of the use 

of a password should the worksheet need to be edited. After data entry and necessary 

calculations the output sheet has been optimized for black and white printing on an A4 size 

paper. 

 

To evaluate the performance of the software application, an experienced diagnostic radiology 

radiographer with experience in quality control procedures, tested the functionality of the 

package. The validation process proved that the software can be used in a typical clinical 

setting.  

 

7.3 Fluoroscopy Procedures Dose Audit       

A total of three hundred and thirty one (331) patients were involved in this study, with patient 

age ranging from 16 - 88 years (mean age of 51.2 years). The patient population comprised of 

159 males and 172 females. The distribution of examinations according to their type is shown 
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in Figure 7.8 below. The majority of the examinations were for the upper gastrointestinal 

tract. 

 

Figure 7.8: A pie chart showing the examination type distribution. 

 

This review study involved forty eight clinicians and thirty seven radiographers of varying 

experience in their practice. The adopted technique for any particular examination was at the 

discretion of the radiologists.  

 

The KAP readings from the unit was found to be within 10 % of the product of the X-ray 

field area and air kerma as determined by the reference ionization chamber. The mean, 

standard deviation, range, mean and 75 th quartile were calculated to the nearest whole 

number for each type of examination from the individual patient records of the skin dose
3
 and 

KAP reading. The results are shown in Table 7.3 and Table 7.4.  

 

 

 

 

 

 

 

 

                                                 
3
 See Section 8.3 for further discussion on the use of the term skin dose. 
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Table 7.3: A tabulation of the mean, range, standard deviation and median in KAP values for 

various examinations
4
. 

Examination Number of 

examinations 

Mean 

KAP 

Range Standard 

deviation 

Median 

KAP 

Third 

Quartile 

µGym
2
 µGym

2
 µGym

2
 µGym

2
 µGym

2
 

Barium Swallow 101 1912 235 -7276 1482 1398 2477 

Barium Meal 27 2343 47 - 6505 1819 2005 2654 

Hexabrix 

Swallow 

35 1643 241 - 

9712 2336 723 1529 

Gastrografin 

Meal 

75 2689 167 - 

6979  2283 2353 3942 

Barium Enema 31 5062 519 – 

20296 4285 4337 6846 

Voiding 

Cystourethrogram 

106 1560 130 – 

9419 1658 1007 1868 

Fistulogram 7 1320 154 – 

2559 971 1483 2068 

Myelogram 6 1821 14 – 5266 2335 596 3405 

Nephrostomy 8 1458 161 – 

2559 794 1468 2070 

Loopogram 3 810 746 - 910 88 774 842 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4
 Calculated quantities are given to the nearest whole number 
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Table 7.4: A tabulation of the mean, range, standard deviation and median in skin dose 

values for various examinations
5
. 

Examination Number of 

examinations 

Mean 

skin 

dose 

Range Standard 

deviation 

Median 

skin dose 

Third 

Quartile 

(mGy) (mGy) (mGy) (mGy) (mGy) 

Barium Swallow 101 78 62 -347 55 59 108 

Barium Meal 27 127 38 - 395 101 94 149 

Hexabrix 

Swallow 

35 57 

7 - 242 60 35 56 

Gastrografin 

Meal 

75 75 

10 - 131 43 74 121 

Barium Enema 31 177 55 - 487 99 154 210 

Voiding 

Cystourethrogram 

106 63 

7 - 579 51 53 86 

Fistulogram 7 71 9 - 155 57 50 105 

Myelogram 6 117 1 - 292 112 104 171 

Nephrostomy 8 38 7 - 179 63 11 25 

Loopogram 3 31 22 - 49 16 22 36 

 

Analysis of the range of both the skin doses and KAP meter readings shows a wide variation 

within one examination. The third quartile KAP values from this study were compared with 

the DRLs from the UK data as shown in Figure 7.9 
38

. 

                                                 
5
 Calculated quantities are given to the nearest whole number 



Chapter Seven: Results and Analysis 
 

98 

 

 

 

Figure 7.9: A bar chart showing a comparison of the third quartile KAP values from this 

study and the DRLs from the UK study. 

 

Figure 7.9 shows that the third quartile values from this study are higher than the data from 

the UK. However it should be borne in mind that this is data from a single centre as opposed 

to the multi-centre study of the UK.   

 

In this study KAP values were not converted into a patient risk related parameter but the 

influence of the various parameters on it was analysed. Time in terms of the screening time 

and the duration of the whole procedure have an impact on the patient dose. The mean 

screening time, mean procedure duration and number of radiographs taken per procedure 

were documented and are given in Table 7.5. 
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Table 7.5: The mean screening time, mean procedure duration and number of films taken per 

examination type


. 

Examination Mean screening 

time (minutes) 

Mean procedure  

duration (minutes) 

Mean number 

of films taken  

Barium Swallow 4 27 4 

Barium Meal 7 43 5 

Hexabrix swallow 3 24 4 

Gastrografin Meal 4 47 3 

Barium enema 10 54 4 

Voiding 

Cystourethrogram 

4 41 2 

Fistulogram 3 34 2 

Myelogram 54 55 2 

Nephrostomy 8 93 2 

Loopogram 2 22 2 

 

Furthermore the recorded screening times from this study were compared to the data from the 

UK study. The comparison of these two studies is shown in Figure 7.10. 

 

 

                                                 

 Values of screening time and duration of fluoroscopy are quoted to the nearest integer 
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Figure 7.10: A bar chart showing a comparison of the third quartile screening times from 

this study and those from the UK study. 

 

The relationship between dosimetry quantities and/ or dose influencing quantities needs to be 

known for any attempt to optimize patient doses. The relationship between screening time 

and skin dose and between screening time and KAP was evaluated in terms of coefficients of 

correlation. Table 7.6 shows the coefficients of correlation between the evaluated dose 

metrics and the tests of correlation were shown to be of moderate correlation. 

 

Table 7.6: Coefficients of correlation between the different dosimetry influencing quantities. 

Relationship Coefficient of 

Correlation 

Coefficient of determination 

Screening  

 

time vs skin dose 

0.6474 0.4196 

Screening time vs KAP 0.3959 0.1567 

KAP vs skin dose  0.4787 0.2291 

 

Furthermore this work tested the relationship between the number of films/ radiographs taken 

per procedure and the two dosimetry quantities, KAP and skin dose. Results of this 
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investigation showed that the correlation was statistically insignificant between the number of 

films taken and the two dosimetry quantities. Results of the coefficient of correlation tests are 

shown in Table 7.7. The results show a weak correlation between the number of films taken 

and the dosimetry quantities: KAP and skin dose. Based on Table 7.7 it can be concluded that 

an increase in the number of films taken during a procedure does not necessarily translate to 

high patient doses.  

 

Table 7.7: Coefficients of correlation between numbers of films used per examination and 

other dosimetry quantities. 

Relationship Coefficient of 

Correlation 

Coefficient of determination 

Number of films Vs KAP 0.4918 0.2418 

Number of films Vs skin 

dose 

0.4533 0.2055 

 

The frequency of the various dose related parameters is shown in Figures 7.11  – 7.13. 

The descriptive statistics for patient KAP, skin dose and screening times showed an 

asymmetrical distribution.  

 

 

Figure 7.11: A skewed frequency distribution of the KAP readings. 
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Figure 7.12: The frequency distribution of the recorded skin doses. 

 

 

 

Figure 7.13: The frequency distribution of the screening time. 
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The left asymmetry in the distribution is welcome in terms of the patient radiation protection 

perspective since the majority of patients would have received less than the mean dose.  

 

7.4 Radiography Examinations Dose Audit 

Feasibility of the both the direct and indirect dosimetry methods was conducted in a clinical 

setting.  

 

7.4.1 Phantoms 

Four ANSI phantoms were fabricated as per recommended specifications. Figures 7.14  – 

7.17 are photographs of the fabricated phantoms. Materials from the phantoms can be used 

interchangeably between the four types of phantoms. As of January 2009, it cost R1871.19c 

to buy the phantom material to be used across the four types of phantoms, yet if each 

phantom had material exclusively bought for it the total cost of materials would have been 

R4864.18c. The AAPM Report No. 31 recommends that the ANSI phantoms have the 

dimensions 305 mm * 305 mm (length * width) but it further states that a reduction in 

dimensions to 250 mm * 250 mm does not affect the entrance surface air kerma 

measurements. As a result the smaller dimensions were used to fabricate the phantoms. 
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Figure 7.14: A photography of the fabricated ANSI abdomen phantom. 

 

 

Figure 7.15: A photography of the fabricated ANSI chest phantom. 
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Figure 7.16: A photography of the fabricated ANSI extremity phantom. 

 

 

Figure 7.17: A photography of the fabricated ANSI skull phantom. 
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The different phantoms were compared in terms of their mass, the cost of material, the time 

taken to fabricate them and level of their complexity in terms of fabrication. The level of 

complexity was classified into three categories, namely, low (easy to fabricate), fair and high 

(challenging – demanding a relatively high level of machining). Only the cost of materials is 

accounted for because the machining was done by people employed full-time by the hospital. 

Table 7.8 shows a comparison of the phantoms based on these criteria. A quotation was 

obtained from a local agent that sells these phantoms and prices are indicated in Table 7.8. 

The quoted prices from the vendor are exclusive of value added tax and are subject to the 

prevailing foreign currency exchange rate. 

 

Table 7.8: A comparison of the physical properties of various ANSI phantoms
6
. 

 

In addition to the ANSI phantoms, the chest CDRH and abdomen/ lumbo-sacral spine CDRH 

phantoms were fabricated as per design specifications.  

 

 

 

 

 

 

 

                                                 
6
 Quoted prices are as of January 2009. 

7
 Subjective assessment of fabrication process by fabricator 

Phantom Mass 

(±0.25kg) 

Cost of 

Material 

(ZAR) 

Cost of 

phantom 

from vendor 

(ZAR) 

Level of 

Fabrication 

Complexity
7
 

Time taken 

to fabricate 

(hours) 

Chest 7.0 977.20 8600.00 Fair 4 

Abdomen/ 

Lumbo-

Sacral Spine 

12.0 1812.69 11100.00 Fair 6 

Skull 10.7 1603.04 10600.00 Low 4 

Extremity 3.5 471.25 3500.00 Low 2 
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Figure 7.18: A photography of the fabricated CDRH abdomen phantom. 
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Figure 7.19: A photography of the fabricated CDRH chest phantom. 

 

The fabrication process of the phantoms was evaluated subjectively. The design properties of 

these phantoms is shown in Table 7.9. 

Table 7.9. Fabrication details for the two CDRH phantoms.
8
 

Phantom Mass 

(kg) 

Materials Cost of 

Material 

(ZAR) 

Level of 

Fabrication 

Complexity
9
 

Time 

taken to 

fabricate 

(hours) 

Patient 

Equivalence 

CDRH 

Chest 

8.7 PMMA, 

Al, Air 

gap 

2534.36 High 8 Established 

CDRH 

Abdomen/ 

Lumbo-

Sacral 

Spine 

13.6 PMMA, 

Al 

1166.67 High 10 Established 

                                                 
8
 Quoted prices are as of January 2009. 

9
 Subjective assessment of fabrication process by fabricator 
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In terms of representing how radiation interacts with the patient and scatter generation from 

the patient CDRH have been shown to be more realistic 
172 -173 

. However the ANSI chest 

phantom proved to be easier to fabricate. In addition to satisfying radiation dosimetry 

requirements, the fabricated phantoms satisfy the health and safety requirements as they have 

the following properties: 

 Toxicity: all materials used are non-carcinogenic and hypo-allergenic. 

 Handling: phantoms are composed of individual slabs thus there is no need to 

carry the whole mass at once. 

 Fire risk: no flammable products have been used. 

 Mechanical properties: phantoms have sufficient mechanical strength. 

 

7.4.2 TLD Dosimetry for Patient Dose Auditting 

A total of seventy-eight TLDs were used in this study of which seven of them were classified 

as reference dosimeters and the remaining were classified as field dosimeters from which the 

presented results are based on. It was established that the Harshaw 3500 TLD manual reader 

had a reader calibration factor (RCF) of 0.511 nC/ μGy. Each TLD was characterized in 

terms of its element correction coefficient (ECC). It took an average of 78 seconds to read 

one TLD. 

 

An initial attempt to use a single ECC factor for an individual TLD across the whole range of 

the available kVp proved to give unsatisfactory results, as there was a large discrepancy 

between the TLD measured incident air kerma and the calculated incident air kerma. Results 

of this initial investigation are given in Figure 7.20.  
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Figure 7.20: 78 TLD readings obtained after exposing dosimeters to a dose of 1.00 mGy over 

a range of tube voltages using a single ECC for each TLD chip. 

 

Figure 7.20 shows that most of the TLD chips had a deviation of more than 20% from the 

expected reading. To improve the agreement between the TLD readings and expected 

reading, ECCs were established for each TLD at 10 kVp intervals from 50 kVp to 140 kVp. 

Figure 7.21 below shows the subsequent response of the TLDs to an incident air kerma of 1.0 

mGy across a range of kVp.  
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Figure 7.21: TLD readings obtained after exposing them to a dose of 1.00 mGy over a range 

of tube voltages. 

 

Results of this current investigation agree with a study by Akpochafar which established that 

TLD GR200A response at diagnostic energies was significantly energy dependent.
171 

 

To further test the accuracy of TLDs, they were exposed to doses ranginging from 0.6 mGy 

to 17 mGy. The TLD reading was compared to the expected reading based on knowledge of 

the X-ray tube output obtained from ionization chamber measurements. Figure 7.22 

summarises the relationship between the two methods employed. 
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Figure 7.22: A plot of the measured TLD doses against the expected doses. 

 

A direct proportional relationship is expected between the TLD response and the dose. Based 

on Figure 7.22 the use of TLD dosimetry was not pursued further as a direct method in this 

work. Therefore the practical approach of this work was to adopt the ionization chamber as 

the gold standard dosimeter. This choice was based on the fact that the ionization chamber 

used had a calibration traceable to the German standards of air kerma. Moreover the 

agreement between the expected doses and measured doses were not satisfactory, since the 

TLDs under-responded in most cases. In a developing country set-up where TLD facilities 

are not readily available to most radiology departments, thus the ionization chamber based 

dosimetry was adopted as a method of choice. 

 

7.4.3 Frequency of Examinations 

A survey of adult radiography examinations performed at the main X-ray department of 

CMJAH was conducted. A total of 14753 radiography examinations were performed during 

the period 02 January 2008 to 31 December 2008. The frequency distribution of the 

examinations is shown in Figure 7.23. 

 



Chapter Seven: Results and Analysis 
 

113 

 

 

 

Figure 7.23: The frequency distribution of the examinations. 

 

7.4.4 Patient Dosimetry 

An analysis was done on the patient attributes who presented at the two general X-ray rooms. 

The mean of patient mass, height and BMI are shown in Table 7.11. Super HR – U30 

orthochromatic X-ray films from FUJIFILM Corporation were used for all examinations. In 

addition only Agfa Curix Ortho Regular screens were used. The X-ray units used have an 

automatic exposure control (AEC) facility, however this facility was not used. Each room has 

a technique chart (exposure chart) displayed for a variety of examinations which can be 

performed on the X-ray unit. During the period of the dose audit the departmental combined 

repeat / reject rate was 1.3 %.  The descriptive statistics related to the patient attributes and 

exposure parameters are shown in Table 7.10. 
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Table 7.10: Summary of the patient attributes and typical exposure parameters used. 

Examination Chest PA Chest LAT Pelvis AP Abdomen AP Lumbar Spine 

AP 

Thoracic Spine 

AP 

Room A1       

Number of 

patients 

27 27 5 19 10 ***** 

Mean mass (kg) 75.0 (56.0-

127.0) 

[29.6%] 

75.0(56.0-

127.0) 

[29.6%]  

63.2 (60.0 – 

64.0) [2.5%]                 

75.8 (56 -

105)[16%] 

66.9 (61.0 -

74.0) [8.3] 

***** 

Mean height (m) 1.70 (1.52 -

1.92) [5.6] 

1.70 (1.52 -

1.92) [5.6] 

1.57 (1.56 -

1.62) [1.7%] 

1.70 (1.56 -

1.86) [5.7%] 

1.63 (1.56 – 

1.70) [3.8%] 

***** 

Mean BMI 

(kg/m2) 

25.7 25.7 25.6 26.5 25.3 ***** 

kVp 125(109-

125)[3%] 

125(117-

125)[2%] 

63(60-

64)[4%] 

60(60-66)[3%] 66(60-77)[9%] ***** 

mAs 1 (1.0 – 3.2) 

[48%] 

3 (2.0 -6.3) 

[38%] 

40 (50-63) 

[15%] 

40 (32-100) 

[47%] 

40 (40-100) 

[52%] 

***** 

Screen film speed 400 400 400 400 400 ***** 

Film size 35cm X43cm 35cm X43cm 30cm 

X40cm 

30cmX40 cm 18cmX 43cm ***** 

FFD (cm) 180 180 100 100 100 ***** 

       

Room A2       

Number of 

patients 

22 22 8 7 8 11 

Mean mass (kg) 68.1 (41.0 – 

100.0) 

[21.4%] 

68.1 (41.0 – 

100.0) 

[21.4%]  

68.1 (50.0 -

75.0) 

[12.6%] 

67.4 (50.0-

88.0) [20.3%] 

56.9 (50.0 -

61.0) [2.0%] 

65.8 (50.0 -

95.0) [20.6%] 

Mean height (m) 1.68 (1.51 -

1.75) [3.8%] 

1.68 (1.51 -

1.75) [3.8%] 

1.76 (1.70 – 

1.85) [4.4%] 

1.60 (1.42 – 

1.73) [6.1%] 

1.70 (1.60 – 

1.70) [1.5%] 

1.68 (1.60 -

1.81) [3.6] 

Mean BMI 

(kg/m2) 

24.1 24.1 22.1 26.5 19.7 23.2 

kVp 125(109 -

125)[5%] 

125(109 - 

125)[3%] 

63(57 - 

66)[5%] 

60(60 -

81)[11%] 

66(60 -

90)[15%] 

60 (55 -

66)[8%] 

mAs 1 (1.0 – 2.25) 

[39%] 

3 (1.6 – 4.0) 

[19%] 

40 (22 - 40) 

[17%] 

40 (40 - 100) 

[56%] 

40 (32 -80) 

[52%] 

40 (40 -100) 

[62%] 

Screen film speed 400 400 400 400 400 400 

Film size 35cm X43cm 35cm X43cm 30cm 

X40cm 

30cmX40 cm 18cmX 43cm 18cm X43cm 

FFD (cm) 180 180 100 100 100 100 

***** Data not available 

 Ranges are shown in parentheses ( ) 

 Coefficients of variation are shown in brackets [ ] 
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The frequency distribution of patient mass is shown in the bar chart in Figure 7.24. 
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Figure 7.24: The frequency distribution of patients’ mass. 

 

Patient mass varied from 38 kg to 127 kg while patient height fluctuated from a minimum of 

1.42 m to a maximum of 1.92 m. In comparison to the mAs coefficient of variation, the kVp 

coefficient of variation was narrower. The wide variation in mAs used for the examinations 

subsequently leads to wide variations in patient ESAK. Consistent with good radiographic 

practice a high kVp technique is being used for chest examinations. Furthermore the 

frequency of examinations during the period under review is shown in Figure 7.25.   
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Figure 7.25: A pie chart showing total number of examination investigated according to 

anatomical region. 

 

As in most radiology clinics, chest examinations were the most frequent of all the performed 

examinations. 

 

7.4.4.1 X-ray tube Output 

The X-ray tube output across the clinically used kVp range was calculated from the measured 

air kerma (K(d)) using equation 6.2. The x-ray tube output at 125 kVp was calculated as 

0.0991 mGy/mAs and 0.0997 mGy/mAs for the A1 and A2 units respectively. The x-ray tube 

output was measured at 100 cm from the X-ray source and for an added filtration of 1 mm Al. 
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Figure 7.26: The X-ray tube output from the two imaging rooms. 

 

During the period of collecting the data, the X-ray tube output constancy check was done 

prior to data collection and was found to be within ± 5% of its baseline value (first day 

output).  

 

7.4.4.2 ESAK Measurements and Calculations 

A total of 166 ESAK calculations were done based on the exposure parameters used for the 

particular examination and on the measured x-ray tube output. The descriptive statistics 

(mean, minimum, maximum, median e.t.c.) of the ESAK values from the two x-ray rooms are 

given in Table 7.11.  
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Table 7.11: Distribution of ESAK values in mGy for the different examinations. 

Examination Chest PA Chest 

LAT 

Pelvis AP Abdomen 

AP 

Lumbar 

Spine AP 

Thoracic 

Spine AP 

ESAK 

Room A1 

Minimum 0.05 0.12 3.16 1.58 2.20 ***** 

Mean 0.10 0.23 3.73 2.98 5.63 ***** 

Median 0.08 0.20 3.51 2.72 4.78 ***** 

Maximum 0.20 0.44 5.16 5.43 11.22 ***** 

Max/Min 

ratio 

4 3.7 1.63 3.4 5.1 ***** 

Standard 

deviation 

0.03 0.08 0.83 1.16 3.15 ***** 

 

Room A2 

Minimum 0.05 0.07 1.25 2.36 1.75 2.33 

Mean 0.09 0.19 1.84 4.59 4.32 3.28 

Median 0.08 0.20 1.90 3.14 4.16 2.99 

Maximum 0.15 0.26 2.50 13.78 8.31 4.91 

Max/ Min 

ratio 

3.0 3.7 2.0 5.8 4.7 2.1 

Standard 

deviation 

0.02 0.04 0.40 4.07 2.43 0.90 

 

Mean Room 

A1 ESAK / 

Mean Room 

A2 ESAK 

1.11 1.21 2.02 0.65 1.30 ***** 

***** Data not available 

 

In comparison with other published studies, the ratio of the maximum ESAK to minimum 

ESAK is moderate, having a maximum of approximately 6 for the patient examinations 

studied. Despite the two rooms having x-ray units of the same make and same technique 
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chart, there was a significant variation in the mean ESAK particularly for pelvis AP and 

abdomen AP examinations. 

 

From these ESAK values the global mean was established based on the mean ESAK values 

per examination from each room. The mean ESAK values were compared with results from 

international studies as shown in Table 7.12 
38,44,45,48,174

.  

 

Table 7.12: Established mean from this study compared with results from national and 

international recommendations. 

 

Examination This 

study 

Brazil
174 

UK
38 

Iran
49 

IAEA 
175  IAEA

45 

mGy 

Date of study  2009 2005 2008 2004 2008 

Chest PA 0.10 0.35 0.15 0.41 0.40 0.33 

Chest LAT 0.21 0.96 0.60 2.07 1.50 
10

 

Pelvis AP 2.79 
11

 4.00 3.18 10.00 3.68 

Abdomen AP 3.79 
12

 4.00 4.06 10.00 3.64 

Lumbar spine AP 4.98 6.60 5.00 3.43 10.00 4.07 

Thoracic spine AP 3.28 
13

 4.00 2.72 7.00 
14

 

 

 

 

 

 

 

 

 

                                                 


 DRLs based on a screen film relative speed of 200. To compare with this study, values should be multiplied 

by 2. 
10

  No data available 
11

  No data available 
12

  No data available 
13

  No data available 
14

  No data available 
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Furthermore, based on the mean ESAK values the DRLs were established at a third quartile 

level.  The established DRLs from this study are given in Table 7.13. 

 

Table 7.13: Established DRLs from this study. 

Examination DRL (mGy) 

Chest PA 0.10 

Chest LAT 0.22 

Pelvis AP 2.98 

Abdomen AP 4.19 

Lumbar spine AP 5.30 

Thoracic spine AP 3.28 

 

7.4.4.3 Potential Dose Saving Practices 

There are a number of changes, which can be implemented in practice to further decrease the 

dose to the patient. Patient dose is influenced by a host of factors: exposure factors, 

technique, FFD, film-screen speed, equipment type and age, film processing equipment and 

patient size
176

. In this study possible optimization strategies were not implemented but were 

however highlighted to management at the Division of Radiology. The possible options are 

discussed below: 

 

Introduction of filters into the X-ray beam will lead to absorption of the low energy photons 

in X-ray spectrum, which would have nonetheless not reached the detector and thus give 

unnecessary dose to the patient. During the dose audit all examinations were currently being 

taken with a 1 mm Al filter, yet the units provide a range of filters. The effect of different 

levels of added filtration is shown in Figure 7.27. 
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Figure 7.27: A comparison of the X-ray tube output for various filters. 

 

For example, in Figure 7.27 the use of say a 0.1 mm Cu filter instead of the 1 mm Al filter at 

125 kVp proved to deliver less dose, as it reduces the X-ray tube output by a factor of one-

and-half without necessarily degrading image quality. A 1 mm Al filter does not electrically 

burdern the X-ray tube and thus does not shorten the tube’s life span. 

 

Furthermore the effect of beam filtration can be demonstrated by use of the software 

SpeckCalc
177-178

. 
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Figure 7.28: A demonstration of the use of the SpeckCalc software to show the effect of 

filtration on the X-ray spectrum. 

 

For example in Figure 7.30 the green line represents a 120 kVp beam with 0.8 mm beryllium 

and 2.0 mm aluminium added filtration while the red line is from the same beam with the 

following added filtration, 0.8 mm beryllium, 2.0 mm aluminium and 0.1 mm copper. From 

the Figure 7.28 it is clear that the 0.1 mm Cu filter significantly decreases the amount of the 

low energy photons. This software can be used to pedagogically demonstrate the effect of 

filtration and thus be used as a workplace training tool. 

 

Evaluation of radiographic exposure parameters is part of the dose optimization process. The 

imaging protocols have to be compared with other protocols which have proved to have less 

dose for optimum image quality. The tube potential used for the various examinations was 

compared with those recommended by the EU and New Zealand National Radiation 

Laboratory (NRL) 
150,179

. Table 7.14 compares the kVps used in this study to those 

recommended for general good practice. 
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Table 7.14: A comparison of kVp used at CMJAH with those recommended by EU and NRL 

150, 179
. 

Examination This study EU
 

NRL
 

 kVp kVp kVp 

Chest PA 125 125 100 – 150 

Chest LAT 125 125 100 – 150 

Pelvis AP 63 75 – 90 70 – 90 

Abdomen AP 60 ***** ***** 

Lumbar spine AP 66 70 -90 70 – 90 

Thoracic spine AP 60 ***** ***** 

 

High kVp techniques can lead to use of low mAs and thus effectively reduce patient doses. 

Furthermore the focus to film distance according to the departmental technique chart used for 

the various examinations was compared with those recommended by the EU and New 

Zealand National Radiation Laboratory (NRL)
150, 179

. 

 

Table 7.15: A comparison of the focus film distance at CMJAH with those recommended by 

EU and NRL. 

Examination This 

study 

EU
 

NRL
 

 cm cm cm 

Chest PA 180 180 (140 -200) 180 (140 -

200) 

Chest LAT 180 180 (140 -200) 180 (140 -

200) 

Pelvis AP 100 115 (110 -150) 115 (100 – 

150) 

Abdomen AP 100 115 (110 -150) 115 (100 – 

150) 

Lumbar spine AP 100 115 (110 -150) 115 (100 – 

150) 

Thoracic spine AP 100 ***** ***** 
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A change of the FFD from 100 cm to the recommended 115 cm brings about a change in the 

ESAK by nearly 20%. However, the significant reduction of the ESAK does not necessarily 

translate to a considerable reduction in effective dose to the patient
176

. In addition any change 

in FFD should be done in consideration of the grid being used, as this can lead to image 

artifacts as discussed in Section 5.7. 

 

One of the easiest ways of reducing patient doses is to use low mAs techniques. For 

consistent image quality the automatic exposure control (AEC) chambers should be well 

calibrated. The radiographers’ generally preferred to manually set the mAs. Therefore the use 

of the AEC facility is highly recommended.   

 

7.5 Non -Clinical Image Quality Assessment   

A replica of the CDRAD contrast-detail phantom (Artinis Medical Systems BV, Netherlands) 

was fabricated in-house. Drill pattern number 2 was used for this phantom
146

. All the drill bits 

below a diameter of 1 mm had to be purchased from the local hardware supplier. Lead ball 

bearings were used to mark the boundary of each individual square element making up the 

phantom.  

 

The fabricated CDRAD phantom consists of a 10 mm thick and 265 * 265 mm
2
 PMMA 

tablet in which cylindrical holes are drilled of varying depths (0.3 -8.0 mm) and diameters 

(0.3 – 8.0 mm). The phantom consists of 15 rows and 15 columns in which rows contain 

holes of constant diameter but exponentially increasing depth and columns contain holes of 

identical depth and exponentially decreasing diameter. 
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Figure 7.29: A photography of the fabricated CDRAD contrast-detail phantom placed on top 

of a polystyrene foam block. 

 

The first three rows have only one hole at the centre of each individual square element. The 

remaining rows have one hole at the centre and another one at a randomly chosen position in 

one of the four corners of the square element. 

 

The fabricated replica of the CDRAD phantom was used to assess the following aspects of 

image quality in a radiology department: 

 comparing different radiographic techniques 

 comparing image quality from different X-ray units 

 

7.5.1 CDRAD Contrast –Detail Study 

This study aimed to show typical application of the CDRAD contrast detail phantom in the 

clinical setting as a proof-of-principle. A couple of parameters which influence image quality 

as assessed by use of a contrast detail phantom were investigated. Every image acquired was 

read by 3 independent observers. Contrast detail curves were computed and plotted for each 

investigation.  
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7.5.1.1 Evaluation of Image Quality as a Function of kVp 

In general a high tube voltage technique is advisable, however the choice has to be judicious 

as the tube voltage affects image contrast. Figure 7.30 below shows the mean contrast detail 

curves of images taken using 60 kVp and 80 kVp. 

 

Figure 7.30: A contrast detail curves at 60 kVp (blue) and 80 kVp (red). 

 

The images taken at 60 kVp showed more detail in comparison to those taken at 80 kVp.  

 

7.5.1.2 Evaluation of Image Quality as a Function of Phantom Thickness 

Patient or object thickness has an effect on image contrast. The effect of phantom thickness 

obtained by sandwiching the CDRAD phantom was investigated. The PMMA blocks 

sandwiching the CDRAD phantom were symmetrically distributed around it. Three phantom 

thicknesses were investigated, namely 16 cm, 14 cm and 12 cm. In addition the phantom 
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arrangement was imaged using 60 kVp. Figure 7.31 demonstrates the general loss of contrast 

as the phantom thickness decreases for the same tube voltage. 

 

 

Figure 7.31: A contrast detail curves for different phantom thickness: 16 cm (red), 14 cm 

(blue) and 12 cm (green ). 

 

7.5.1.3 Evaluation of Image Quality Between Different X-ray Units 

Different imaging units will have different image quality as a result of the engineering make-

up. As an example the CDRAD phantom was imaged using two X-ray units and the resulting 

images were compared using contrast-detail curves. The same exposure parameters were used 

across the two units. 
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Figure 7.32: A contrast detail curves at Unit 1 (blue) and Unit 2 (green). 

 

Based on Fig 7.34 Unit 1 has superior image quality in comparison to Unit 2. This reinforces 

the use of the CDRAD phantom for monitoring image quality performance of X-ray units. 

  

7.6 Digital Radiography Practice and Technique 

Sixty-three out of 205 (31 %) radiographers from the four public radiology centres responded 

to the circulated questionnaire. Among those who responded were ten student radiographers 

and fifty three qualified radiographers employed on a full-time basis. Because of the small 

numbers, student radiographers participating in the survey from each hospital were combined 

with qualified radiographers as shown in Table 16. 
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Table 7.16: Response rate based on returned questionnaires according to hospitals. 

Hospital Radiographers who participated in the study Total 

 Qualified 

Radiographers 

Student 

Radiographers 

Total participating 

(%) 

 

A 8 3 11 (15) 73 

B 21 0 21 (41) 51 

C 10 1 11 (28) 39 

D 14 6 20 (48) 42 

Total 53 10 63 (31) 205 

 

Hospital D had the greatest response rate among the participating hospitals. Despite the poor 

response in some hospitals, the data collected provided some insights and lessons and was 

nonetheless useful. As such interpretations from this study should be viewed as exploratory 

and illuminative. Radiography techniques were not compared between the participating 

institutions. 

 

In terms of modalities Hospitals A and D currently use flat panel based digital radiography 

units whereas Hospital B uses both computed radiography and flat panel based digital 

radiography units while Hospital C is currently using computed radiography units only. The 

equipment manufacturers are varied and included Philips Medical Systems, Siemens Medical, 

GE Medical Systems, Toshiba, Agfa, Fuji, Kodak and Konica Minolta. However, the interest 

of this present study was not to compare manufacturers. 

 

All the qualified radiographers had post qualification experience ranging from 1 year to more 

than 5 years. Post qualification experience was further stratified by whether such experience 

included digital radiography technology. Figure 7.33 shows the distribution of post 

qualification experience according to the radiography modality.  

 

.  
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Figure 7.33: A bar chart showing post qualification experience stratified by imaging 

modality. 

 

The above distribution confirms the fact that digital technology is still a relatively new 

technology to the South African radiography workforce public hospitals, only 15 % (8) of the 

qualified radiographers had 4 years or more of experience with digital radiography compared 

to 68 % (36) for the same amount of experience with screen-film radiography.  

 

Table 7.17 provides a summary of key responses from radiographers based on the 

questionnaire administered. This has not been broken down into qualified and student 

radiographers because of the small number of students involved. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Seven: Results and Analysis 
 

131 

 

Table 7.17: Summary of key responses from study by participants. 

Factor of interest Number (%) Total
* 

Training in digital radiography (DR) 

    

 Had formal education on DR 38 (61) 62 

 Had formal training on DR quality control 10 (16) 61 

 Thourough reading of the digital unit’s manual 14 (23) 60 

 Easier to perform retakes in DR 33 (55) 60 

   

Comparison between digital and screen-film  radiography based on participants 

opinion 

   

 Has superior spatial resolution 43 (71) 61 

 Has superior image quality 45 (74) 61 

 Gives relatively more radiation dose to the patient 30 (51) 59 

 Has a wider dynamic range 50 (91) 55 

   

Preference in digital radiography 

   

 Collimate rather than crop image 55 (89) 62 

 Use grids 63 (100) 63 

Note: 
*
Total – varies because some few participants did not provide responses to specific questions.  

 

Presently radiography training in South Africa involves academic teaching at a university and 

clinical practice at a university hospital. Sixty-one percent (38) of the participants had been 

exposed to digital radiography during their lectures while at university. A small proportion, 

16 % (10) of the respondents underwent formal training in quality control procedures on the 

digital X-ray units they were using. The training was conducted by the relevant 

manufacturer’s representative. However, none of the surveyed departments had or were 

following a particular written protocol on quality control procedures, although there was a 

designated radiographer responsible for quality control. Twenty-three percent of the 

respondents had managed to read the manual of the digital X-ray unit they were operating. 

Slightly more than half (55 %) of the participants felt it was easier for them to retake an 
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image in digital radiography than in screen film radiography. Fifty-five percent of the 

respondents preferred to collimate to the region of interest instead of cropping the image after 

acquisition.  

 

In an open-ended section of the questionnaire, participants were asked what they thought the 

advantages of digital radiography were. The responses varied, but some reported advantages 

were common to most participants. Table 7.18 shows the five most popular advantages cited 

by the respondents.  

 

Table 7.18 The most commonly cited advantages of digital radiography over screen-film 

radiography (n=63). 

 

Cited advantage Number of respondents (%) 

More patients treated 34 (54%) 

Post processing capabilities 18 (29) 

Reduced radiation dose 18 (29) 

Superior image quality 17 (27) 

No wet processing 12 (19) 

Other 34 (54) 

 

One of the commonly cited advantages of digital radiography is the increase in patient 

throughput. In response to the question of how many patients they could image, a median of 

20 patients and 50 patients could be imaged per eight-hour shift in screen-film radiography 

and digital radiography with inter-quartile ranges of (15-45) and (25 – 108) respectively. 

 

Consistent with the fact that the participants are from public teaching hospitals the most 

commonly cited disadvantage of digital radiography was its “press button” approach. The 

digital radiography user interface takes away the fundamental radiography technique training 

i.e. exposure settings, which is core to the art of screen-film radiography.  

 

Some of the participants’ responses were not reported on because the response rate to the 

particular question was poor. Inclusion of all responses would have introduced attrition bias 

to the study. 
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7.7 Scatter from Under-couch Procedures       

A Toshiba Medical Systems Corporation radiotherapy simulator unit was used for this study. 

The unit uses a model KXO-50XM diagnostic X-ray high voltage generator and has an 

inherent filtration half value layer of 1.8 mm Al at 70 kVp.  

 

Prior to the scatter measurements, the percentage transmission of the couch was measured 

using an ionization chamber for a 10 cm X 10 cm field. The percentage transmission was 

measured over a range of kVps ( 50 – 125 kVp) in steps of 10 k Vp in between the range. 

Over the range of kVps an average percentage transmission of 78%  (standard deviation 3%) 

was calculated for the couch. 

 

The PPS to PR ratio was defined as the ratio of the charge collected using the experimental 

set-up in Figure 6.6 to that collected using the experimental set-up shown in Figure 6.5. A 

scatter plot of the measured ratio of the total scatter beam to the “primary” beam is shown in 

Figure 7.34. 

 

 

 

 

 

Figure 7.34: The ratio of the measured primary radiation to the total (primary plus 

scattered) radiation plotted against field size for different beam kilovoltages. 
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From Figure 7.34, the scatter contribution ranges from 8% to 15 % depending on the beam 

kilovoltage and field size. As expected the scatter component increases with field size. 

Furthermore the measured ratios of PPS to PR were normalised to the 10 cm * 10 cm field 

size SPR. A scatter plot of the normalised PPS/ PR is shown in Figure 7.35. 

 

 

Figure 7.35: The ratio PPS/ PR at different beam kilovoltages normalised to a 10 cm * 10 cm 

field size. 

 

Scattered radiation is inevitably generated within the patient support system. Figures 7.34 to 

7.35 demonstrates the contribution of scattered radiation as a result of having a carbon fibre 

patient support in the way of the X-ray beam. From Figure 7.35, for a reference field size of 

10 cm * 10 cm, the scatter contribution varies by a maximum of ±2% with field size. Thus for 

accurate clinical dosimetry the effect of forward scattered radiation from the couch needs to 

be factored into the patient skin dose.  
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CHAPTER EIGHT 

DISCUSSIONS 

 

8.1 Quality Control of Radiography Viewing Conditions      

If the whole radiographic process chain is to be fully optimized it becomes imperative for 

viewing box luminance and ambient lighting to be optimal. The viewing box luminance, 

ambient lighting, viewing distance will to some degree influence what the radiologist 

perceives. The DRC, NORDIC and EC recommendations on the measured quantities in this 

study are not in total agreement and it would be a good idea for the radiology community to 

harmonize these guidelines worldwide or alternatively adopt one set of guidelines from one 

organization
180

. From the practical experience of this work it is recommended that the DRC 

criteria be adopted by radiology clinics in South Africa.  

 

After 2000 hours of use the luminance of fluorescent tubes decreases by approximately 

10%
181

. The American College of Radiology (ACR) recommends replacement of fluorescent 

tubes after every 18 to 24 months. This could explain the high level of viewing box 

luminance uniformity at the Division of Radiation Oncology as the division was opened in 

2006. To improve the viewing box uniformity at the Division of Radiology it was suggested 

that the viewing boxes be cleaned and the fluorescent lamps be replaced regularly. The effect 

of the continual use of non-compliant viewing boxes can be determined by conducting 

observer performance studies.   

 

The EC recommends that the ambient lighting be measured at a distance of 1 m, thus 

compliance with the European guidelines was not analyzed since we measured the quantity at 

a distance of 30 cm, this being premised on the assumption that a distance of 30 cm 

approximates the distance between the viewer and the viewing box in most clinical settings. 

 

The average luminance is a better indicator of the viewing box luminance than the central 

luminance. This is confirmed by the greater standard deviation in the mean central luminance 

than the standard for the mean average luminance as shown in Table 7.0. It is thus 

recommended that the average luminance be used as a quality control metric for viewing box 

luminance. 
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Despite the widespread use of screen-film technology in developing countries there is a 

gradual shift to digital X-ray systems and this could be ultimate solution to viewing box 

luminance which is non-optimal and having a detrimental effect on radiograph reporting. The 

use of digital systems opens way for other viewing options like use of video monitors, 

printing the image on paper and the use of picture archiving and communication systems 

(PACS) which have the advantage of doing away with the cost of film, chemicals and 

processor equipment, but which also has its quality control demands. A study by Goo et al 

showed that monitor luminance and ambient light had little effect on observer performance in 

soft-copy reading of digital chest radiographs provided adequate windowing and levelling 

was used 
182

. The quest for optimal viewing conditions is not only restricted to viewing box 

performance but should be extended to ensure adequate ergonomics at workstations, as 

human factors like fatigue have been shown to lead to diagnosis inaccuracy.  

 

8.2 Custom Made Quality Control Software      

The software program developed promotes data collection for quality assurance and serves as 

a database for easily identifying and managing trends and subsequent corrective measures. In 

the present South African scenario where there is a shortage of medical physicists who would 

otherwise be in-charge of the quality assurance programs, a computer program which can be 

used for collection, analysis and archiving of data is helpful. In most cases the QA would be 

done by someone who is not necessarily trained in that aspect or lacks the in-depth 

understanding of the results and analytical skills. Use of a computer program allows for data 

collection, archival and subsequent analysis by a medical physics expert. For any meaningful 

long term deductions on the performance stability of a piece of equipment to be made, there 

needs to be an archive of test results which can readily be captured for analysis, and this 

application package offers that by virtue of being digital in nature. Furthermore recording and 

archiving of QC results implies a level of evidence based practice.  

 

Use of the graphical display, the green and red flag system on the results makes decision 

making on the suitability of equipment for clinical use easy. In addition software has the 

advantage of minimizing transcription errors. Furthermore the software’s capability to rapidly 

retrieve QC related information allows the user to assess the data rapidly and efficiently.  
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Softcopy data collection lends itself to a possibility of further data analysis which could be 

potentially utilised by institutions like the DRC in multi-centre QA data analysis. Instead of 

sending loads of hard copy QC results to the DRC for annual inspection, potentially one can 

email the Excel files, which is comparatively easier, faster and user-friendlier.    

 

Argus  software is one example of the commercial radiological QA software packages 

which can be purchased from vendors
183

. Despite the fact that these software packages are 

not affordable to most clinics, their test criteria is not necessarily designed to the fulfilment of 

national requirements. Therefore the “home-grown” package is a realistic alternative to a 

commercial software packages.  

 

Over the years medical physicists have written computer software to support their scientific, 

educational and clinical endeavours. Writing any software for use in the clinic poses a 

number of challenges given the potential devastating effects of any malfunctioning computer 

program
184

. As such all potential users of this software are welcome to identify any bugs and 

make suggestions for potential improvements in its design. 

 

8.3 Fluoroscopy Procedures Dose Audit       

X-ray examinations involving fluoroscopy and interventional examinations contribute 

significantly to the total collective dose due to medical exposure even if their frequency is 

relatively low
185

. Given this background, fluoroscopic examinations and procedures deserve 

aggressive dose optimization methods. The legal requirement by the DRC to have KAP 

meters installed on all fixed fluoroscopy units lends itself to real time monitoring of patient 

doses and routine patient dose recordings during fluoroscopically guided procedures. 

Recording of KAP values make dose watching possible, for example an expected band of 

KAP values can be established for each procedure. For example, should KAP values 

consistently exceed this band, an investigation needs to be done, however, if the KAP values 

are consistently below the band at optimum image quality then the band needs to be updated.   

 

During the period under review, some patients did not have their KAP reading or skin dose 

recorded after an examination. However, the recording process has significantly improved 

since then. The documentation process was still in its initial phase for the period under review 

so it was assumed that some radiographers were not yet used to recording the data and would 
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tend to forget. The division’s decision to start recording KAP readings on 14 August 2007 

paid dividends as by 01 January 2008 the process was fully compliant to the DRC’s 

requirements, presumably radiographers were used to the workflow process. In addition, it is 

good workmanship to document all the patient examination related parameters for the 

purposes of comparison with other radiology departments and also as a quality control 

measure with the aim of continuously improving the process. In addition the referring 

physician can be notified on those patients with a high KAP or skin dose reading for further 

long-term monitoring and follow-up.   

 

The Philips MultiDiagnost Eleva unit displays the KAP and skin dose. However what the 

manufacturer calls skin dose is actually air kerma. Skin dose would need to include 

backscatter factors and the unit does not have a bank of the appropriate backscatter factors. 

The displayed air kerma is referenced to the interventional reference point (IRP) which is a 

point 15 cm from the isocenter towards the focal spot
186

. The position of IRP depends on the 

height of the couch, the angulations of the beam and the size of the patient. Depending on the 

geometry, the IRP may lie outside or inside the patient, or may coincide with the patient skin 

surface. Since the IRP moves relative to the patient as beam angulation changes, the 

cumulative air kerma is usually an overestimate of skin dose. However for situations where 

the IRP is at the skin or closer to the skin, the cumulative air kerma will be a good 

approximation of skin dose.  

 

The calculated KAP DRLs from this study are considerably higher than the published UK 

DRLs 
38

. UK DRLs are from a wide range of centres, whereas these results are from a single 

referral university teaching hospital which arguably does complicated procedures. Some of 

the procedures were done by registrars, since they are still learning this may explain the 

generally higher doses delivered to patients. However some studies have reported KAP 

values higher than those presented here, for example a nationwide Swiss study established 60 

Gy cm
2
 and 150 Gy cm

2
 as DRLs for barium meal and barium enema respectively compared 

to 27 Gy cm
2
 and 70 Gy cm

2
  for the same procedures as established from this study 

54
.  

Despite the use of a single dedicated fluoroscopy suite there was a wide variation in 

measured skin doses and KAPs within any type of examination. CMJAH is a training 

institution and this variation could be a result of a difference in experience of both 

radiographer and radiologist. In addition relatively high doses were recorded, this could arise 
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from the fact that the current survey is for a university hospital where the proportion of 

complicated cases might be relatively high and where there is a high number of junior 

radiologists undergoing their training. Doses are likely to be higher when these procedures 

are performed by a radiologist not adequately trained on technical details of the equipment 

189, 190
. This can be ameliorated by teaching radiation safety and dose optimization at medical 

school and vigorous on-job training. Monthly audits of doses by physicians and their 

subsequent display can lead to reduction in doses as no doctor would want to always top the 

list for unjustified reasons. 

 

The simplest and most widely available dosimetry quantities in fluoroscopy are fluoroscopy 

time and number of fluoroscopic images. These are analogues of dose, i.e they do not 

measure dose directly and by themselves are insufficient to determine patient dose
187 -188

. In 

general fluoroscopy time has a poor correlation with peak skin dose (PSD), however if it is 

the only measurement available, it is better to record it than not monitoring at all. In this 

investigation, an analysis of the screening time for the various examinations showed a 

moderate correlation (r = 0.65) between screening time and skin dose, while a weak 

correlation (r = 0.40) was deduced between screening time and KAPs. This is can be 

explained by the fact that a KAP meter reading includes the dose contribution from the digital 

acquisitions which contribute a significant amount to the total dose but not to the screening 

time. The poor correlation should be interpreted cautiously as the fluoroscopy screening time 

is of limited use as it makes no allowance for the influence of dose rate or field size. 

  

KAP has been proven to be a good indicator of stochastic risk, and correlates with operator 

and staff dose, however it is not an ideal indicator of deterministic risk. KAP does not 

correlate well with skin dose, however it is a useful surrogate measure of skin dose. The most 

optimal quantity which needs to be measured in fluoroscopy patient dosimetry is the PSD. 

PSD may be measured with a computerised analysis tool integrated into the fluoroscopic unit. 

The likelihood and severity of radiation induced skin injury to the patient as a whole are 

functions of the highest radiation dose at any point on that patient’s skin i.e. the PSD. PSD 

and KAP are the most useful predictors for deterministic and stochastic injury, respectively
187 

-189
. The RAID-IR study established the following approximate conversion relationship 

between PSD and KAP 
189

. 

PSD (mGy) = 249 + 5.2 * KAP (Gy*cm
2
)     8.1     
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Such formulas are strictly applicable to a particular clinic and its procedures, as such caution 

needs to be exercised if they are to be adopted in other clinics. However in those situations 

where there is lack of dosimetry support they can be used as a rough guide. 

  

The ICRP has recommended the use of DRLs as a first step in the optimization of radiology 

procedures. However, in a British Journal of Radiology commentary Dr Dendy asks the 

question whether the principle of DRLs can be used in interventional radiology (IR) and 

would such a move aid optimization
191

. He alludes to the variability of the procedures and 

therefore suggests that if DRLs are to be adopted for IR procedures, then they have to be 

graded for each type of procedure, according to simple, medium and complex. However he 

claimed the starting point was to collect detailed information on a wide range of procedures 

from a number of different centres. However, Miller et al have successfully proposed initial 

DRLs for fluoroscopically guided procedures in the USA successfully 
192

.  

 

The KAP meter reading has been criticised as being ambiguous, for example a high reading 

can be as a result of a big area being exposed (less dose) or a high dose on a small area. 

However KAP readings are still relevant for purposes of radiation protection of the patient 

and as a potential predictor of stochastic effects. In addition the clinically available dose and 

KAP measurements ignore the effect of backscatter from the patient. Backscatter can increase 

skin dose by 10% -40%, depending on the beam area and energy 
10

. However, since the KAP 

reading is directly related to the beam area, it therefore shows the level of beam collimation 

and monitoring of these readings can lead to patient dose reduction. 

 

Fast changing technology has made physicians to be forever on the learning curve. Before 

physicians master a technique on any equipment, a new advanced model is on the market and 

at times using a different detector combination which demands its own optimization process. 

It should be understood that for any dose optimization process to be successful in any clinic it 

should include all the professional groups working in the clinic, i.e. the radiographers who 

record the dose descriptors; the radiologists who carry out the procedures, the referring 

physicians who give patient care after the procedure and the medical physicist who is in-

charge of the dosimetry, and liases with the equipment engineers.  
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The present South African statute makes it mandatory for patient record keeping for 5 years 

post-procedure. In terms of the dosimetry is it mandatory to keep a record of the fluoroscopy 

time, however the KAP reading can be recorded if applicable. The ICRP Report 85 

recommends recording of dose parameters for two groups of patients, namely, 

 Those who have undergone procedures with entrance skin dose above 1 Gy and they 

are likely to have repeat procedures. 

 Those who have undergone procedures with entrance skin dose above 3 Gy and they 

are unlikely to have repeat procedures.
193

. 

Table 8.1below shows dose metric recommendations from other organizations and 

individuals.  
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Table 8.1: Existing recommendations for recording patient dose
188

. 

Reference Reference type Procedures for which dose to be 

recorded 

When dose should be recorded Dose metrics recorded 

ICRP 193 International 

guideline 

Determined by dose PSD > 1 Gy if procedure likely 

to be repeated; PSD > 3 Gy if 

procedure not likely to be 

repeated 

PSD and location, skin dose map 

Spanish 

statute 194 

National law Mandatory for all interventional 

procedures 

Always KAP (minimum requirement), 

fluoroscopy time and number of 

images 

FDA 

Advisory 

195 

FDA advisory 

(US) 

To be decided by each facility If skin dose equals or exceeds 

threshold dose set by each 

facility ( 1 -2 Gy suggested) 

Skin dose, skin dose map or 

verbal description of site 

ACR 196 ACR technical 

standard (US) 

Determined by fluoroscopy time or 

expected skin dose 

Fluoroscopy time > 10 minutes 

or expected skin dose > 2 Gy 

Fluoroscopy time, location of 

skin areas receiving dose > 2 Gy 

CRCPD 

(2001) 197 

CRCPD resolution 

(US) 

Procedures with a potential for 

producing radiation induced injury 

Not specified Not specified 

CRCPD 

(2003) 198 

Suggested state 

regulations for 

radiation control 

(US) 

All All Fluoroscopy time, number of 

images 

Faulkner 

199 

Review All Always PSD and KAP 

O’Dea et al 

200 

Observational 

study 

Greater than 0.01% chance of 

exceeding 6 Gy PSD if study not 

likely to be repeated; > 5% chance 

of exceeding 1 Gy PSD if study 

likely to be repeated at the same 

skin site 

All procedures meeting criteria PSD 

Waite and 

Fitzgerald 

201 

Observational 

study 

FGIPs Always for cerebral 

embolization, for all cases if 

easily available, otherwise 

periodic check for FGIPs. 

PSD and KAP for cerebral 

embolization and for all cases if 

easily available 

Miller et al 

189 

Observational 

study 

All All if integrated dosimetry 

available, otherwise 

procedures with known 

potential for high dose 

PSD, CD, KAP, fluoroscopy time 

acceptable only if other metrics 

not available 

Miller et al 

202 

Observational 

study 

All All if integrated dosimetry 

available, otherwise 

procedures with known 

potential for high dose 

PSD, CD, KAP 

 

Clearly from Table 8.1 there is no world-wide consensus on which dosimetry metrics should 

be recorded for interventional studies. This scenario presents an opportunity for the South 

African radiology community in liaison with the DRC to formulate a policy stipulating the 
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dose metrics to be recorded and at what level. However the from the lessons drawn from this 

study it is practically feasible to record the KAP, fluoroscopy time and number of images, 

similar to the Spanish statutes.   

 

Fluoroscopy machines have a dose alarm, which would alert the operator after screening for a 

certain preset time. The physician would be expected to respond to this alarm accordingly 

without compromising patient care. There are other metrics which can be used to alert 

physicians on the patient doses delivered during procedures. Table 8.2 shows the level of 

notification for the various surrogates of patient dose used in the clinic. 

 

Table 8.2. Summary of radiation monitoring dose notification thresholds 
188

. 

Parameter First notification Subsequent 

notification 

Threshold 

Peak skin dose 2000 mGy 500 mGy 3000 mGy 

Reference point air 

kerma 

3000 mGy 1000 mGy 5000 mGy 

Kerma area product
* 

300 Gycm
2 

100 Gycm
2 

500 Gy cm
2 

Fluoroscopy time 30 minutes 15 minutes 60 minutes 

*
Assuming a 100 cm

2
 field at patient skin. 

 

Furthermore Table 8.2 gives the threshold values upon which the patient must be actively 

followed up after a procedure. Establishment of threshold values should take into 

consideration factors like: what is the appropriate threshold level, what data analysis is 

expected to be done and who does the analysis. A balance has to be struck between having 

thresholds low enough to capture all real events and also high enough to keep the workload 

within reasonable limits. 

 

This investigation had some limitations which deserve to be mentioned. Some of the 

procedures had limited number of patients (<10). Such low patient numbers are expected in 

non-specialist hospitals, the remedy is to collect data over a very long period which is not 

always practical. This study involved 48 clinicians and 37 radiographers which is a relatively 

big number, of which some are students in training. Such a big group makes any efforts to 

narrow patient doses difficult as it is difficult to achieve consistency in such a large group of 
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varying clinical experience. KAP values are procedure specific and may be department 

specific, therefore it is difficult to use KAP trigger levels for skin dose estimated for one 

procedure, for another procedure, or even in another place performing the same procedure, 

however at times it may well be the only indicator available.  

 

8.4 Radiography Examinations Dose Audit     

For a hospital equipped with a mechanical engineering workshop it is cheaper to fabricate the 

recommended radiology phantoms in-house. The phantoms which are recommended by the 

DRC are cost effective and relatively easy to build. Phantoms are useful in the dose 

optimization process, having the advantage that unlike patient studies there is no need for 

seeking consent and ethics approval in order to perform dose measurements. However their 

major limitation is that they fail to indicate the dose variations evident in the clinic due to 

differences in patient size and tissue composition.  

 

The indirect measurement method based on X-ray tube output measurements is ideal for large 

patient populations. TLD dosimetry can be used as a stand-alone system or in conjunction 

with indirect measurement dosimetry methods 
203

. One of the disadvantages of TLD 

dosimetry is its large start-up capital investment and is thus not a cost-effective option for a 

small radiology department. In the South African situation TLD dosimetry would be ideal for 

those hospitals with radiotherapy centers where TLDs are being used for patient in-vivo dose 

verification. In this work the TLDs used generally gave lower doses than the expected 

calculated dose based on the X-ray tube output. TLD dosimetry was found to be labour 

intensive and time consuming as a manual TLD reader was used. TLD response is beam 

quality dependent which implies that they should be calibrated across the beam quality 

spectrum in radiology, which further reinforces the fact that their use is labour intensive. 

Perhaps use of three TLD chips to measure a single exposure would yield improved results 

through averaging or rejection of an extremely out of trend reading. Some researchers have 

labelled TL dosimetry as a ‘black art’ due to the fact that it yields inconsistent results at 

times
171, 204

. Furthermore in comparison to ionization chamber dosimetry, TLDs have a 

higher uncertainty. In addition, TLDs can only be used for examinations which don’t seek 

fine detail as they can easily present as an artefact.  
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Entrance surface air kerma is one of the dose indicators which can be used in clinical patient 

dosimetry. There is an alternative formalism to equation 6.4 which has been published. Some 

researchers have used the relationship 
47, 205, 206, 207

: 

 BSFmAs
FSD

FSD

kVp

kVp
OutputK

ex

ref

ref

ex

e  22 )()(     8.2  

where  Output is the X-ray tube output at reference kVpref and at a reference distance of 

FSDref  

kVpex is the tube potential used for the particular examination. 

mAs is the product of the tube current and the exposure time. 

FSDex is the focus to skin distance for the particular examination. 

BSF is the backscatter factor 

The assumption in equation 8.2 is that the X-ray tube output is proportional to the square of 

tube potential (kVp
2
). This is not a universal truth as shown in Figure 8.1, where the output 

was a function of kVp
2.061

. 

 

Figure 8.1. The variation of X-ray tube output with kVp. 

 

It is therefore recommended that beam output be measured across a reasonably representative 

spectrum of kVps instead of measuring it at one reference kVp as suggested by equation 8.1.  
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Calculation of entrance surface air kerma has proven to be a suitable and reliable alternative 

to TLD measurements. The present study did not show a good correlation between doses as 

calculated from exposure parameters and doses from TL dosimetry. Despite the poor 

correlation of this study some studies elsewhere have shown agreement between 

computational and TL dosimetry methods 
208

. However the computational method is a cost 

effective method of conducting representative patient dose estimations and is ideal for dose 

audits involving a large number of patients. 

 

Most European countries have established and published their own DRLs but adopting a 

DRL from another country is not advisable given the variation in radiography practice, state 

of equipment and technique throughout the world. Once the local DRLs are established they 

have to be compared with the national DRLs or international DRLs and this comparison 

provides an opportunity for continuous dose optimization improvement. To the best of the 

author’ knowledge no DRLs based on clinical data have been established in South Africa for 

general radiography examinations. Establishment of local DRLs will allow comparison of 

practice with other centres or other countries. 

 

The DRLs from this study are comparatively lower than those set up by most countries. This 

could be a result of the fact that the DRLs from international studies are established from 

several x-ray rooms in different hospitals and therefore radiography practice and technique 

varied widely. In addition, in some cases, authors setting up DRLs do not report on the 

patient dose influencing factors like added filtration, screen-film speed, generator type, use of 

AEC or manual method, and image receptor technology. For instance, the DRLs from this 

study are based on a screen-film speed of 400 compared to 200 used in the IAEA study 
175

. 

As hospitals migrate to digital technology, patient dose audits must be carried out and DRLs 

representative of this technology established. 

 

There is a danger that medical physicists can invest a lot of effort in attaining the levels of 

published or legislated DRLs which on its own will be antithetic to the principle of dose and 

image quality optimization, as this could divert the medical physicist from the search for the 

best or optimum combination of patient dose and image quality. Patient doses that are far 

lower than DRLs need to be investigated. Dose optimization in the clinic should not 
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necessarily end with complying with regulatory DRLs, physicists should continue seeking 

ways to optimize systems which already meet regulatory guidelines. 

 

In this study the author was actively responsible for the data collection as the radiographers 

felt it would be an extra work load to them, being short-staffed. From our experience, this 

indirect method of assessing patient doses introduces minimal inconvenience to the running 

of an x-ray department. However, for large scale studies it would be much easier and less 

disruptive to the patients for the radiographers working on the X-ray units to collect the data 

required for entrance surface air kerma calculation. In addition, direct involvement of 

radiographers in the measurement process would improve their awareness of patient doses 

and the effectiveness of radiation protection measures. 

 

Since all the dose influencing parameters are to be recorded when setting up DRLs, it makes 

it easier to pinpoint parameters leading to higher doses and thereafter optimize the process. 

Although DRLs are not applicable to individual patients, their establishment is based on 

knowledge of the x-ray tube output, which means queries from patients regarding their 

personal doses can be answered with confidence. 

 

In compliance with the DRC quality control and quality assurance requirements it is assumed 

that most suites know the x-ray tube output from their units. It is possible that most radiology 

centers have indeed been conducting patient dose audits in an effort to optimize their 

examinations. Should this be the case then it is suggested that a national database be 

established in the mould of the National Patient Dose Database (NPDD) of the United 

Kingdom (UK), in which measurements of radiation doses to patients are collated
38

. Trends 

could then be monitored and reliable national DRLs could be developed and refined. The 

DRC is best suited to set-up such a database given that annual quality control returns from all 

licensed radiation users in the country are collated by them.   

 

In comparison patients in Room A1 received more dose than those in Room A2, despite 

Room A2 having a higher X-ray tube output. This could be a result of different patient sizes, 

Room A1 having larger patients as shown by the fact that for the same type of examinations 

the average patient mass was 70.2 kg in Room A1 compared to 67.4 kg in Room A2. The 

very existence of differences in mean entrance surface air kerma values between the two 
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examination rooms shows that there is potential for further optimization of the radiography 

process at CMJAH. The two units were using an added filtration of 1 mm Al, thus an 

appropriate change to use other available filter thicknesses should lead to dose reduction. 

Furthermore, adoption of the radiography techniques suggested in the document European 

Guidelines on Quality Criteria for Diagnostic Radiographic Images for instance, could 

further decrease patient doses while maintaining good image quality
150

. 

 

Training and continuous professional development is crucial in the effort to optimise doses, 

for example, the dose optimization concept should be taught to radiology registrars and 

radiography students as they train such that as they graduate into full professionals they are 

fully conscious of the need to strike a balance between dose and image quality. For this to 

succeed it would entail changes in curricula being taught at training institutions and having 

relevant societal scientific meetings putting emphasis on the concept.  

 

Patient thickness has an influence on the dosimetry and therefore it is important to record 

patient height and mass during a patient dose audit. It is recommended that at least 10 

patients per x-ray room be used in the establishment of DRLs 
36,168

. In this study this was not 

always possible, however, since the data collection was spread over a week it can be argued 

that a true reflection of radiographic practice and technique was captured. The use of such a 

low number of patients has a disadvantage in that one or two individual patients may 

influence the mean value significant. This can be minimized by accepting patients within a 

certain mass range (60 kg – 80 kg) into the survey. However this concept leads to exclusion 

of a significant patient population from the study, thus decreasing the statistical power of the 

survey. However Miller et al in a study for fluoroscopic guided procedures concluded that 

patient body habitus did not significantly affect the 75
th

 percentile dose 
192

.  

 

The importance of imaging continues to increase for both radiotherapy planning and 

radiotherapy treatment delivery 
209

. As such patient dose monitoring is potentially useful for 

not only diagnostics, but also therapy, especially with increasing introduction of image 

guided radiation therapy related techniques to clinics around the world 
209

. Dosimetry 

techniques used in radiology can be used potentially with or without changes by the radiation 

oncology physicists in the dosimetry of imaging modalities as applied to radiotherapy. The 
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optimization of process principles used in radiology imaging can be applied in radiotherapy 

portal verification procedures. 

 

Effective dose has been used to quantify patient radiobiological detriment, its advantage 

being that it facilitates a comparison of the risks associated with different spatially-

inhomogeneous exposures. However the effective dose has its own weaknesses, with some 

researchers calling for its scrapping off 
210 - 213

. Some of the disadvantages of the effective 

dose concept are that it was introduced by the ICRP as a way of quantifying occupational 

exposures, and thus can not be used to determine individual risk, it is age and sex average, 

which thus brings about the inherent uncertainties in this quantity. Therefore, it would be 

meaningful to ultimately quantify risk of radiation induced cancer death. The PCXMC Monte 

Carlo based computer program that has been developed by the Finnish Radiation and Nuclear 

Safety Authority (STUK) has the capability of calculating organ doses and subsequently 

perform cancer risk assessments based on the Biological Effects of Ionizing Radiation 

(BEIR) VII committee models 
214

. The PCXMC offers tissue weighting factors from ICRP 

Publication 60 or 103 and it incorporates adjustable-size paediatric and adult patient models. 

However this software due to its cost would be generally out of reach for most of the 

developing world potential users. There is one freely available computer program, 

CALDose_X which calculate incident air kerma and entrance surface air kerma based on the 

output of the X-ray equipment. In addition, the software uses conversion coefficients (CCs) 

to assess absorbed dose to organs and tissues of the human body, the effective dose as well as 

the patient’s cancer risk for radiographic examinations. 
215 

 

This work had some significant limitations, which deserve discussion. Data could have been 

collected over a longer period of time and in turn have an increased number of patients. Use 

of the concept of equivalent diameter for patient thickness tends to underestimate the FSD for 

the AP and PA projections while overestimating the FSD for the lateral and oblique 

projections. In addition the use of body mass index has limitations since it does not make any 

differentiation between body type e.g ectomorph or endomorph or mesomorph. Also the use 

of phantoms of fixed dimensions present inherent limitations since patients are of various 

sizes and shapes. 
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8.5 Non –Clinical Image Quality Assessment 

It has been demonstrated that in a hospital equipped with a mechanical engineering workshop 

it is cheaper to fabricate the CDRAD phantom in-house. The dose optimization process 

should involve measurement of appropriate dose and image quality metrics 
216, 217

. Dose 

metrics are fairly well established and standardised in comparison to the image quality 

metrics. Any image quality metric should be able to both qualitatively and quantitatively 

describe the fulfilment of medical purpose of that image.   

 

The fabricated CDRAD phantom is easy to use and being a phantom it spares patients from 

unnecessary dose. Vano et al demonstrated that the image quality from the phantom has a 

good correlation with clinical images 
218

. In addition the CDRAD phantom has a distinct 

advantage in that it evaluates the whole imaging system, that is both the imaging system and 

the observer.    

 

Use of phantoms for image quality assessment has the advantage of getting rid of the 

inhomogeneity and variability inherent in any patient population. However use of phantoms 

is without its disadvantages as questions have been raised about the subjectivity of these tests 

over time if the same phantom is used and the clinical relevance of the tests. In general image 

quality phantoms evaluate the imaging system performance under ideal set-up conditions. To 

improve the simulation of clinical conditions (X-ray spectrum and scatter contribution), the 

CDRAD phantom was sandwiched between 16cm of PMMA which provide full scatter 

conditions.  

 

In an era where most university teaching hospitals in South Africa are acquiring digital 

radiography units, the CDRAD phantom is an asset in image quality assessment and dose 

optimization. The CDRAD phantom has been used to determine the optimum beam energies 

in chest images using screen-film and computed radiography 
219 - 220

.  

 

8.6 Digital Radiography Practice and Technique 

The study undertaken was exploratory and illuminative for other teaching hospitals, however 

it showed some very interesting results worthy of further exploration. This study allowed the 

evaluation of the opinion of radiographers on digital radiography. The study also presents a 

potential area of collaboration with other teaching hospitals in South Africa for further 
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studies based on lessons learned from this study, with particular emphasis on setting up 

technical and clinical protocols.  

 

Among the four institutions surveyed, only Hospital B had a picture archiving and 

communication system (PACS) implemented in its radiology department. Some experts have 

suggested that in order to reap the full benefits of digital radiography, one needs to implement 

PACS 
221

. It is, therefore, recommended and encouraged that institutions eventually 

implement PACS as they migrate from film to filmless radiography if they are to fully realize 

the benefits of digital radiography. Studies have shown that implementation of PACS has led 

to increased radiographer productivity and overall efficiency of radiology departments 
222 -225

.  

 

There is a large gap in the number of radiographers with at least four years of experience with 

digital radiography in comparison to screen-film radiography. This could be explained by the 

fact that most radiographers were only exposed to digital radiography post qualification. This 

becomes a challenge since in most cases it is the more qualified radiographers who are tasked 

with training students and supervising newly-qualified radiographers. Thus, it becomes 

imperative for them to be subjected to formal education in this modality.  

 

Quality control procedures and quality assurance are equally important in digital radiography 

as they are in conventional screen-film radiography. However, it must be appreciated that the 

workflow process and operational nature of digital radiography directly affects traditional 

quality assurance practice 
226

. For example, how does a radiology department implement an 

accurate film reject analysis in digital radiography, given the fact that radiographers can 

readily delete images on the workstation? It is recommended that quality control procedures 

required for digital radiography be included in radiography undergraduate and postgraduate 

programs. To further improve service delivery, radiology departments should implement 

formal in-house quality control training to members of staff. 

 

Radiographers should be encouraged to read the operator’s manual of the X-ray units they are 

using. Reading the manual would empower the operator to realize the most out of the unit, 

particularly post processing functionality. Since the majority of the participants (84%) 

alluded to the fact that they never had formal quality control training of the units they are 

using, it is advisable that they at least consult manuals available to them. 
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All the hospitals who participated in this study did not have a full-time medical physicist in 

their radiology departments. This is owing to a nationwide shortage of medical physicists in 

South Africa, and as a result of this critical shortage, most institutions have medical 

physicists working in their radiotherapy department full-time and their service to diagnostic 

radiology departments is limited to a consultative basis. Furthermore, the regulations 

governing licensing and operation of radiology departments do not stipulate the minimum 

medical physics staffing levels consistent with the type of equipment. The advent of these 

new technologies should encourage participation of medical physicists who would be 

responsible for performing acceptance testing, patient dose measurements, objective image 

quality assessments, setting up of quality control programs, annual quality assessment of all 

the X-ray units in their departments and quality control review programs
81, 82 , 227

.  

 

In dealing with radiation dose issues, it should be appreciated that digital radiography has a 

wider dynamic range than screen-film systems and overexposures or underexposures can 

yield quality images, because post processing adjustments can be made
85

. In digital 

radiography, a higher patient dose would usually translate into an improvement in image 

quality as the images have less noise. In comparison to screen-film technology, digital 

radiography systems do not give an immediate feedback to radiographers concerning the 

radiation dose and as a result, there is a potential risk for dose creep
85, 228, 229

. Although digital 

radiography has the potential to achieve dose reduction in a number of examinations, patient 

dose increments in the range of 40–103% have been reported in the process of migrating 

from screen-film to digital radiography 
71, 230

. Thus, the unnecessary pursuit of beautiful 

images would violate the ALARA principle. There is also a risk that if the X-ray generator 

AEC develops a fault or the output calibration drifts, the dose increase or decrease can go 

unnoticed because of the wide exposure dynamic range of digital systems. In addition, the 

wide exposure dynamic range means that there is significant potential for the initial set-up of 

the system to be non-optimized, which further motivates for having medical physics staffing 

in radiology departments.  

 

Digital radiography has post processing functions, for example, images can be cropped to 

show only the region of interest. It is bad radiography practice to rely on cropping images 

instead of collimating the beam as this leads to unnecessary radiation dose burden to the 
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patient. In addition, proper collimating will lead to noise reduction in images, which will 

potentially result in lower reject rates.  

 

Digital radiology presents cost benefit advantages to developing countries. In comparison to 

film processors the use and maintenance of phosphor based imaging plates and 

accompanying computer system is easier 
231

. In the event where there is a lack of funds to 

finance installation of a PACS and associated network system, users can burn images on CD-

ROMs. CD-ROMs have an advantage of being portable and easily transported from one 

imaging department to another. 

 

For any digital radiology department to be successful in terms of keeping patient doses as low 

as reasonably achievable it needs to adopt and implement a well structured quality control 

program. Key to the success of a digital radiology program is the training of radiographers as 

they make a transition from film / screen technologies. However it must be acknowledged 

that public hospitals have had challenges when it comes to establishment of quality assurance 

teams. For example appointment of dedicated quality assurance radiographers has been 

frustrated by staff shortages, whereby the quality assurance radiographer has to abandon his/ 

her duties to do clinical duties.  

 

The ease of digital radiography poses a risk of an increased number of unnecessary 

exposures. It has been shown that in as much as digital radiography can potentially lead to a 

50 % dose reduction, this is offset by a almost doubling of the number of procedures. 

Furthermore, in general for digital radiography the image quality increases (noise decreases) 

as the dose in increased. As such for any procedure the image quality needs to be well 

defined for the specific task at hand. There has been a proposal to classify digital radiography 

into three image quality bands, namely, low, medium and high.  

 

Although this is the case, caution is needed with the interpretations as the present sample size 

is relatively small given the number of radiology centers in South Africa having both 

conventional screen film and digital radiography. Further face-to-face interviews rather than 

mailed questionnaires would have improved participation. However, it stands to reason that 

since these surveyed institutions are teaching hospitals, their radiography practice culture 

cascades to a number of other centers.  
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8.7 Scatter from Under-couch Procedures       

KAP meters offer the possibility of online measurement of patient doses and subsequent 

recording of these doses have been widely used for patient radiation dose assessment. As 

such the regulatory requirement of having KAP meters on every fixed fluoroscopy unit is 

welcome and will help in the dose optimization efforts. 

   

The backscatter from couch and patient to the KAP meter is in most cases negligible given 

the distance between the KAP meter and the patient and couch. However of dosimetric 

concern are the forward scattered photons from the couch which contribute in principle to 

patient dose. The couch generated scattered photons will therefore increase the patient’s skin 

dose without any contribution to diagnostic image quality. This component of patient dose is 

not accounted for by the KAP reading. 

 

Attenuation properties of the patient couch and the mattresses have to be factored in when 

reporting KAP readings for under-couch procedures. For under-couch installations, the 

calibration factor needs to be modified to take into account attenuation in the couch. Some 

manufacturers use a calibration factor which is a weighted average of the over-couch 

configuration and the under-couch configuration. This can only be accurate if spectral 

changes are negligible, thus the calibration factor would need to be decreased in value in 

proportion to the attenuation of the couch. The backscatter from couch and patient to the 

KAP meter is in most cases non-existent to negligible given the distance between the KAP 

meter and the patient and couch. However of dosimetric concern are the forward scattered 

photons from the couch which contribute in principle to patient dose. Furthermore it should 

be appreciated that foam type mattress can lead to patient dose reduction as they approximate 

an air gap. 
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CHAPTER NINE 

 

RECOMMENDATIONS 

 

9.1 Recommendations 

Below are recommendations drawn from the practical experience of this work, whose aim is 

to further optimise radiology practice.  

 It is recommended that the light box lamps be purchased in bulk to avoid batch variations 

in terms of colour and intensity. Furthermore as a measure to improve uniformity, should 

there be a need to replace a lamp in a viewing box, all the lamps should be replaced. 

 This study has shown the feasibility of measuring patient doses and establishment of 

DRLs in a radiology department. It is therefore recommended that multi-centre studies be 

conducted in an effort to establish national DRLs. It has been shown in the UK that 

implementation of DRLs have progressively led to a reduction in patient doses. 

 Equipment dose saving capabilities should be used to their fullest by operators. Examples 

of such are different filtration and AEC capabilities.  

 The South African medical health community, society at large and in particular the 

radiology community needs to be educated and alerted on dose optimization options for 

patients through awareness campaigns, training curricula, continuing education programs. 

One simple and straight forward way of reducing the radiation burden to patients is to 

reduce the frequency of examinations and procedures. Over-utilization has been cited as 

one of the major causes of the dramatic increase in radiation doses in American patients 

232
. Hendee et al report on ways of avoiding over-utilization of ionizing radiation as 

suggested by participants of the American Board of Radiology Foundation summit on 

causes and effects of over-utilization of imaging 
232

. As such relevant professional and 

scientific societies in South Africa have the responsibility to educate and encourage their 

membership on alternative imaging modalities which do not use ionizing radiation. 

Physicians can use the ACR Appropriateness Criteria® and ICRP guidelines on 

appropriate imaging examinations for their patients and radiation protection of the patient 

respectively 
233,  234

 

 For radiology clinics without medical physics support, as a first attempt to optimize 

radiography practice it is recommended that the European Union radiography practice 
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guidelines be adopted. The patient dose reducing measures mentioned in Chapter 2 are 

effective in optimizing practice. 

 The ACR guidelines on DRLs has offered guidance on the roles of medical physicists and 

physicians in the effort of patient dose-image quality optimization, however it does not 

offer any guidance on the role of radiographers. South African radiology community, 

which need include but not limited to the following organizations, South African 

Association of Physicists in Medicine and Biology, Radiological Society of South Africa, 

Society of Radiographers of South Africa and DRC, should discuss and provide 

guidelines on the roles of radiographers in dose optimization. 

 For fluoroscopically guided procedures it is recommended that protocols be set –up to 

decide which dosimetric parameters need to be recorded, guide patient counselling and 

post-procedure after-care for those patients who would have received doses beyond the 

set threshold. If there is no local data available then as an initial step to optimization of 

protection, consistent use of any of the dosimetry parameter thresholds in Table 8.2 

would be appropriate. Based on results of this study it is recommended that at least KAP 

and screening time be recorded for each procedure. 

 Migration from screen-film to digital radiography presents challenges to radiology 

clinics. In this work most radiographers claimed to have never had a formal training in 

digital radiography, therefore it is recommended that radiology departments adopt the 

ICRP Report 93 recommendations on digital radiography training 
235

. 

 In light of a general medical physicists shortage in South Africa, having the medical 

physics support service provided for a district or province by a floating medical physicist 

would be an alternative. 

 Results of this study have shown that the amount of scattered radiation from the patient 

couch to the skin is not negligible, thus for accurate patient dosimetry in under-couch 

procedures forward scattered photons from the patient support table should be included. 
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CHAPTER TEN 

 

CONCLUSIONS 

 

This study contributes to the development of DRLs in radiography/fluoroscopy in the context 

of a developing country and highlights the need for quality assurance in radiology and 

furthermore recommends the need of the establishment of a national patient dose database for 

the purposes of establishing South African DRLs. Any form of regulation or standardization 

begins with dissemination of information and this study attempts to do that. Furthermore, 

conclusions of the separate investigations comprising this work are discusses below. 

 

10.1 Quality Control of Radiography Viewing Conditions 

This study showed that the viewing conditions at CMJAH were variably in compliance with 

guidelines from international organizations. However it is suggested that the DRC 

recommendations be adopted by South African radiology clinics, as this would easily be used 

as proof of compliance for viewing conditions. Furthermore, this study underscores the need 

of implementing quality control and quality assurance standards in radiographic image 

viewing, in support of overall optimization of the radiographic process.   

 

10.2 Custom Made Quality Control Software 

The purpose of this work was the design and test of a software program to acquire, analyse 

and archive quality control test data. A PC-based user-friendly computer program capable of 

data entry, analysis and archiving was developed. The computer program is based on 

Microsoft Excel


 and can be used on any PC running on the Windows operating system and 

with the normal accompanying hardware and software provisions. In addition to being used 

for reject analysis the designed software can be used for a variety of QC tests on general 

radiography units, fluoroscopy units and film processors. This program offers a quantitative 

approach to gathering and generating statistics on equipment QC. This software supports 

radiology staff in performing QC and QA tests on radiology equipment. It is envisaged that 

the use of this computer program will help radiology departments achieve compliance with 

the regulatory authority. This computer program is freely available to any potential user.   

 

 



Chapter Ten: Conclusions 
 

158 

 

10.3 Fluoroscopy Procedures Dose Audit 

The presented patient dose data in this study represents practice at CMJAH. Data from 331 

fluoroscopy examinations was collected and analyzed. Procedures resulting in higher patient 

radiation doses have been identified. The barium and myelogram studies contributed most to 

patient doses. There is a wide spread in the radiation doses registered for any one given type 

of examination. This large variability in the radiation dose delivered proves that the studied 

fluoroscopic examinations stand to gain from dose optimization. The 75-th percentile values 

established in this investigation were higher than the DRLs of the UK.  In addition this study 

shows the usefulness of KAP meters in radiology with respect to dose optimization.  

 

10.4 Radiography Examinations Dose Audit 

The phantoms for patient dose measurements recommended by the DRC can be fabricated in-

house in a hospital with a mechanical engineering workshop using materials which are 

locally and readily available. As part of ongoing QC and QA procedures of indirect patient 

dose assessment using phantoms should be encouraged in all radiology departments. A 

computational method based on exposure parameters for assessing patient dose in plain 

radiography was successfully used. It has been demonstrated how a patient dose audit could 

be performed in a large teaching hospital with minimal interference to practice. To the best of 

the authors’ knowledge this is the first time patient doses for general radiography 

examinations have been audited and published in South Africa. The data presented in this 

study is an initial attempt at establishing local DRL values and the established DRLs are 

shown in Table 7.13. This study suggested dose saving measures which result in significant 

reduction of the patient radiation dose burden. Application of such measures can lower the 

collective effective dose from diagnostic radiology examinations, potentially leading to lower 

associated cancer risk. Furthermore, this study has an educational function to the radiology 

community and also provides a benchmark to assist any statutory organization to establish 

DRLs in South Africa.  

 

10.5 Non-Clinical Image Quality Assessment 

A replica of the CDRAD phantom was successfully fabricated in-house for use as an image 

quality test object. It has been shown that the phantom when fabricated in-house is 

inexpensive and can be made from materials that are readily available locally. Furthermore 

the utility of the CDRAD phantom as both an acceptance testing and routine quality control 
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tool has been demonstrated.  The CDRAD contrast-detail phantom is easy to use, and the 

contrast-detail curves correlate with the subjective impression of image quality. This study 

will in future be expanded to involve clinical image quality using the CEC image quality 

recommendations: see Chapter Eleven. 

 

10.6 Digital Radiography Practice and Technique 

This investigation successfully evaluated opinion and knowledge among radiographers of 

digital radiography. The results of this survey showed that participants are familiar with 

digital radiography and have embraced this relatively new technology as shown by the fact 

that they can identify both its advantages and disadvantages as applied to clinical practice. 

There is however minimal quality control of digital radiography being done at the surveyed 

institutions. It is therefore recommended that users of digital X-ray units adopt 

comprehensive national or international protocols 
81,84, 236

. As quality control becomes more 

important and technical in nature for digital radiography equipment the role of medical 

physicists becomes critical, thus, stakeholders in the South African diagnostic radiology 

community should establish the minimum staffing requirements for medical physicists 

particularly for teaching hospitals. Findings from this study suggest that there is need for 

formal education, continuing education and manufacturer training with respect to quality 

control as institutions make the transition from conventional screen film radiology to digital 

radiology.  

 

10.7 Scatter from Under-Couch Procedures 

The main motivation for this investigation was to quantify the amount of couch generated 

forward scatter and its implications to patient dosimetry. This study shows that the calibration 

factor for under-couch installations should not only take into account the attenuation 

properties of the patient couch but also include the effect of forward scattered photons to the 

patient. In the investigated under-couch irradiation geometry, the mean scatter radiation 

contribution was found to be approximately 12 % for a reference field of 10 cm * 10 cm. In 

addition the scatter contribution varies by ±2% across field sizes ranging from 8 cm * 8 cm to 

20 cm * 20 cm, with the 10 cm * 10 cm field size taken as a reference field. This study 

underscores the need to account for the effects of forward scattered radiation for accurate 

clinical patient dosimetry. 
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CHAPTER ELEVEN 

 

SUGGESTIONS FOR FUTURE WORK 

 

11.1 Suggestions for future work 

The major limitation of the patient dose data presented in this study was that it was 

representative of a single hospital, therefore it is suggested that for future work, a multi-

centre investigation be conducted. It is envisaged that such a study would produce data that 

could be used to establish national DRLs for common radiography examinations. It is 

suggested that such a study be conducted in liaison with the DRC for the obvious reason that 

it would make it easier to regulate the established DRLs. 

 

The effort of keeping patient doses as low as reasonably practicable consistent with the 

intended purpose must be extended to other imaging modalities, for example CT and 

dentistry radiography. CT is by its nature a high dose modality and deserves scrutiny and 

monitoring in the effort of dose optimization. For example in the USA, the largest contributor 

to the dramatic increase in population radiation exposure is due to CT scans 
237

. As such it is 

suggested that multi-centre studies be conducted to ascertain the frequency of CT 

examinations and subsequent establishment of DRLs for the high frequency examinations. 

 

Dentistry radiography is a low dose modality however, it is being used relatively more 

frequently and moreover by non-radiologists. Experimental and epidemiologic evidence has 

linked exposure to low-dose ionizing radiation with the development of solid cancers and 

leukemia 
238

. Dental radiology consist of a series of radiation exposures that are partially 

superimposed, it is thus a target for dose optimization procedures. The use of teeth bracelets 

demands frequent X-ray imaging and this potentially leads to excessive exposure to the 

thyroid which is worrisome given the generally young age group which wear teeth bracelets. 

It is suggested that also DRLs also be established in dentistry radiography. 

 

Fluoroscopic and digital radiographic imaging technologies are making it possible to 

accurately image and treat a wide range of conditions in both adults and children. However, 

radiographic examinations cannot be successfully conducted using a “one-size fits all” 

approach. Paediatric patients, whose tissues and organs are still developing, are significantly 
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more sensitive to radiation than adults and thus deserve special attention 
239 -244

. In addition, 

the cancer risk for a given radiation dose is higher for children compared to adults, one 

reason for this is the longer life expectancy of children, which allows a latent cancer to 

develop 
239

. The risk is approximately three times higher for newborns and declines to that of 

adults by the middle of the 3
rd

 decade of life. Data published in the last decade suggest that 

even low levels of radiation exposure increases a child’s risk of eventually developing a 

cancer by a small but statistically significant amount 
239 -242

. The small but significant 

increased cancer risk associated with X-ray imaging studies in children highlights the 

importance of minimizing radiation exposure in paediatric patients.  The number and 

frequency of paediatric imaging studies using ionizing radiation should be minimized and 

radiographic imaging conducted only when necessary. Paediatric patients are not simply 

small adult patients as established DRLs for adult patients can not be applied in paediatric 

radiology. The dose optimization effort in paediatric radiology should also involve 

ergonomics as cchildren may be fearful of medical equipment, unco-operative to instructions, 

need immobilization during examinations and need to see parents or caregivers throughout 

the examinations and procedures. Special attention should be given to adolescent patients, 

who have an adult sized body but possess children elevated risk coefficients. Adoption of 

optimized Image Gently protocols would possibly lead to a reduction in doses 
245

. Design 

of paediatric phantoms should be considered as the phantoms used in this work are for adults.
 

 

The natural step after phantom image quality studies is to do a study based on clinical 

images. A clinical image quality study based on the EC image quality criteria for both adult 

and pediatric patients is recommended for future work. Such a study will help put into 

perspective the entrance surface air kerma measurements and thus further strengthen the dose 

optimization effort. A computerised data collection database has already been designed by 

the author for future use in such kind of studies. In the designed database the radiologist 

makes the assessment on a soft copy. The program automatically saves the completed form 

for subsequent retrieval for analysis. Figure 11.1 shows a snapshot of the computer program 

homepage.  
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Figure 11.1 A screen-dump of the image quality score recording database graphic user 

interface. 

 

The presented computer program can be used for data acquiring and archiving during clinical 

image quality studies utilizing the European Guidelines on Quality Criteria for Diagnostic 

Radiographic Images.  

 

The replica of the CDRAD image quality phantom fabricated in this study will in future be 

benchmarked against a commercial version. It is anticipated that this would further give 

confidence on the utility of the in-house fabricated phantom.  

 

The amount and nature of the scattered radiation from the patient couch and or mattress can 

be effectively be investigated using Monte Carlo simulations. Results of the Monte Carlo 

simulations can then be benchmarked against the presented experimental results. 
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AAPM     American Association of Physicists in Medicine 

ACR     American College of Radiology 

AEC Automatic Exposure Control 

AP Antereo-posterio 

Al     aluminium 

ALARA    as low as reasonably achievable 

ALARP    as low as reasonably practical 

ANSI     American National Standards Institute 

BEIR Biological Effects of Ionizing Radiations 

BIR British Institute of Radiology 

CCD Charged Coupled Devices 

CDRH Centre for Devices and Radiological Health 

CEC Commission of European Communities 

CMJAH Charlotte Maxeke Johannesburg Academic Hospital 

formerly Johannesburg Hospital 

CNR contrast to noise ratio 

Cu     copper 

CR computed radiography 

CRCPD Conference of Radiation Control Program Directors 

CsI Cesium Iodide 

CT     computed tomography 

DAP Dose area-product 

DDI Detector Dose Indicator 

DRC     Directorate of Radiation Control 

DRL dose reference level 

DDR direct digital radiography 

EC European Commission 

ECC element correction coefficient 

ESAK entrance surface air kerma 



Nomenclature 
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ESD entrance surface dose 

FDA Food and Drug Administration 

FPD flat panel detector 

FPI flat panel imager 

FOM figure of merit 

FSD     focus to skin distance 

FTD     focus to table distance 

HPA     Health Protection Agency 

HVL half value layer 

IAEA International Atomic Energy Agency 

IEC International Electrotechnical Commission 

ICRU International Commission on Radiation Units and 

Measurements 

ICRP International Commission on Radiological Protection 

ICS image criteria score 

II image intensifier 

IPEM Institute of Physics and Engineering in Medicine 

IQF image quality figure 

IRP interventional reference point 

ISO International Organization for Standardization 

KAP Kerma area-product 

Ki incident air kerma 

kVp kilovolt (tube voltage) 

Ktp     temperature – pressure correction factor 

LAT lateral 

LNT linear no threshold 

mA milliampere 

mAs milliampere second 

MRI     magnetic resonance imaging 

MOSFET    metal-oxide silicon field effect transistor 

MTF modulation transfer function 



Nomenclature 
 

xxvi 

 

Nk     chamber calibration factor 

NEXT     Nationwide Evaluation of X-ray Trends 

NEQ Noise equivalent quanta 

NM nuclear medicine 

NMISA    National Metrology Laboratory of South Africa 

NORDIC Scandanavian countries 

NPS noise power spectrum 

NRPB National Radiation Protection Board (UK) 

PA Postereo-antereo 

PACS picture archiving and communicating system 

PMMA polymethyl methacrylate 

PMT photomultiplier tube 

PPS primary plus scatter radiation 

PR primary radiation 

PTW-FREIBURG Physikalisch-Technische Werkstatten Dr. Pychlau GmbH 

QA quality assurance 

QC quality control 

RCF reader calibration factor 

RCR Royal College of Radiology 

RSSA Radiological Society of South Africa 

ROC receiver operating characteristics 

SAAPMB South African Association of Physicists in Medicine and 

Biology 

SNR signal to noise ratio 

SORSA Society of Radiographers of South Africa 

STUK Finnish Radiation and Nuclear Safety Authority 

TCDD     threshold contrast –detail detectability 

TLD thermoluminescent dosimeter 

TRS Technical Report Series 

UNSCEAR United Nations Scientific Committee on the Effects of 

Atomic Radiation 



Nomenclature 
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UK United Kingdom 

US ultrasound 

USA United States of America  

VGA visual grading analysis 

VGAS visual grading analysis score 

WHO World Health Organization 
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APPENDIX A 

 

RADIOGRAPHY AND FLUOROSCOPY QC SOFTWARE CD-ROM 

 

The CD-ROM which comes with this thesis contains the following materials in 

appropriately named folders: 

 A folder named Software Suite, which is a collection of Excel Microsoft ™ 

worksheets which make up software. 

 A folder named Thesis, which contains the Chapters and Appendices which 

make up this Thesis. 

 A folder named User Guide, which contains a detailed guide to the software 

user. 

The methodology used to perform the QC tests has been adapted from practical 

experience, the CRCPD Quality control recommendation document or the University 

of Rochester Medical Centre Manual 
250, 251

. As the test apparatus may vary, the setup 

procedures also vary, thus the suggested procedures must be used as a general guide, 

however the measurement metrics should essential be the same. Any mention of a 

particular test equipment is for illustrative purposes as any equivalent equipment can 

be used. A qualified Diagnostic Radiology Medical Physicist may be required to give 

specific instructions on setup relevant to that clinic. 

 

All the contents of the CD-ROM are supposed to be used on any personal computer 

running on a Microsoft Windows platform. Instructions on how to install the software 

are given in Appendix B. 
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APPENDIX B 

 

RADIOGRAPHY AND FLUOROSCOPY QC SOFTWARE USER’S GUIDE 

 

B1.1 Structural Architecture Of Software 

This document is a guide to the usage of the software program. A more detailed Use 

Guide can be found on the CD-ROM accompanying this thesis. This present software 

version supports QC tests on the following equipment: radiography units, fluoroscopy 

units, processors and repeat analysis. At present, the program takes the form of a 

collection of four workbooks of which each of the workbooks have a number of 

worksheets under it. The individual worksheets have been kept un-linked for 

simplicity of design and for easy troubleshooting should there be a bug. Each QC test 

is presented in a single worksheet which provides for data input, analysis and output.  

 

The method to perform the tests presented herein is not prescriptive, however the 

required input data is the same. At present, the program is a Microsoft Excel 2003 

application and so that it requires only a common office personal computer with usual 

provisions, as such Microsoft Excel Application (version 2003 or higher) must be 

installed on your personal computer. The application should work on computers 

running on any of the following operating systems: Windows 2000®, Windows XP® 

and Windows 7®. The program is available freely and can be requested from the 

author. 

 

B1.2 Installation 

The CD-ROM contains a folder named Software Suite. This folder contains the 

following 20 Microsoft Excel worksheets: 

 Data Input Menu 

 Fluoroscopy Quarterly Tests 

 Fluoroscopy Annual Tests 

 Fluoroscopy Daily Tests 

 Fluoroscopy IER 

 Fluoroscopy Weekly Tests 

 Processor Baseline Sensitometry Tests 
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 Processor Control Film CrossOver Tests 

 Processor Daily Tests 

 Processor IER 

 Radiography Quarterly Tests 

 Radiography Annual Tests 

  Cassettes and Screen Tests 

 Radiography Daily Tests 

 Radiography Semi-Annual Tests 

 Radiography IER 

 Radiography Weekly Tests 

 Repeat Analysis 

 Terms of Use 

 User Records 

In addition to the spreadsheets there is a folder named Results on which the results of 

the tests can be saved onto. Installation of the software is a one-step process where the 

Software Suite folder is copied from the D-drive to My Documents. Note that the 

software suite can only work if the all the worksheets are in one folder.  

 

When the Data Input Menu workbook is opened a form with “Show Menu”and 

“Create Room” buttons pops up ready for user input. Clicking on the Category item 

will populate the Data Type list with the data types applicable to that category. When 

you know click on a Data Type the appropriate workbook will automatically open. 

Furthermore, for the application to work the user must enable macros in Excel.  
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 B1.3 PROGRAM TOUR GUIDE 

On opening the Data Input Menu worksheet the user is faced with the graphic user 

interface shown below. The Data Input Menu worksheet is the main worksheet of this 

workbook. 

 

Figure B1: A screen dump showing the main menu worksheet. 

 

The main worksheet has two buttons, namely, the “Show Menu” button and the 

“Create Room” button. The “Show Menu” button shows a list of rooms housing the 

equipment under the quality control program. In addition the various modalities under 

the quality control program are also shown. 
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Figure B2: A screenshot after the “Show Menu” button has been pressed. 

 

The “Create Room” button offers the capability of the user to add imaging rooms 

housing equipment under the quality control program. When the Create Room button 

is clicked the user will be presented with a form which will allow you to enter the 

room data. The graphic user interface looks as below after the Create Room button 

has been clicked. 

 

 

Figure B3: Shows the Create Room userform. 
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After populating the form the user can click the Save button to save the information 

and this information is automatically saved in the Rooms worksheet. As a 

precautionary measure when a user attempts to change data of an existing room a 

warning will be issued before the data is saved. Alternatively information about a 

room can be edited on the Rooms worksheet. 

 

Navigation through the worksheets is made easier by grouping the tests according to 

both modality and their frequency. A certain security degree is maintained through 

sheet and cell protection, but the user is responsible to keep clean working habits. 

 

The worksheets use the following unique coloured scheme. This makes it more user-

friendly. 

 

 

Table B1: The  colour coding system used in this program. 

 

Results of the tests can be printed off and the print-outs are optimized to be one a 

single A4 size page and in black and white. Since the aim is to replace working with 

hardcopies, the print quality is set to low quality. 
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B2.1 Radiography and Fluoroscopy Daily Tests 

Worksheets to perform daily tests are found on the worksheets: Radiography and 

Fluoroscopy Daily Tests. The daily tests on radiography and fluoroscopy units consist 

of visual checks on the equipment. These tests are to assure that all components of the 

radiographic x-ray system indicator lights, displays, and mechanical locks and detents 

are working properly and that the mechanical rigidity and stability of the equipment is 

optimum. The user has to confirm functionality of the various components, by ticking 

the check boxes on the worksheet. A tick resembles a Pass/ Yes/ Affirmative action 

whilst an un-ticked check box represents a Fail/ No. 

 

B3.1 Radiography and Fluoroscopy Weekly Tests 

The weekly step wedge test is found on the Radiography and Fluoroscopy Weekly 

Tests worksheets of the Main Menu. Analysis of the results is either visual inspection 

of the resulting step film (comparing to the reference / baseline film) or through 

measurement of the optical densities at each step using a densitometer. The optical 

densities for each step are plotted on a control chart. Each week the highest number of 

discernible steps on the step wedge should be recorded and any deterioration from the 

baseline value should be investigated. 

 

B4.1 Radiography and Fluoroscopy Quarterly Tests 

Worksheets to perform the three monthly tests are found on the worksheets: 

Radiography and Fluoroscopy Quarterly Tests. For fluoroscopy suites three monthly 

tests involve the check on the protective clothing and the HLC safety functionality. 

For radiography rooms the tests which are done on a three monthly interval are the 

light field –radiation field congruency, visual inspection on protective clothing, 

radiation field bucky alignment and the collimator alignment and checks on positive 

beam limiting devices. 
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B4.1.1 Light Field and Radiation Congruence Test 

Aim:  

 To determine if radiation is being delivered on the projected light field.  

Procedure:  

 Install a loaded 24cm X 30 cm cassette in the bucky and set an FFD of 100 

cm. 

 Adjust the field size such that its less than the film size. 

 Place coins as shown below: 

 

 

Figure B4: Set up for the light field and radiation field congruence. 

 

 Expose the X-ray film to get sufficient darkening and subsequently develop. 

 After developing the film measure the distances between the light (where 

coins touch) and radiation field for all coin locations. 

 Enter the measured distance differences into the spreadsheet on cells 

D12:G12. 

. 
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 Results:  

 The tolerance for this test is ±2% of the SID. 

 

B4.1.3 Radiation Field and Cassette Holder Alignment Test 

Aim:  

 To assure that the light field accurately defines the x- ray field. 

Procedure: 

 Use the same exposed film from the Light Field and Radiation Congruence 

test. 

 Determine the center of the x-ray field and also the geometric centre of the 

film using  a ruler edge as shown in the worksheet (see Rad Field Cassette 

Alignment worksheet). 

 Enter the measured distances on the spreadsheet cell D13..  

Results:  

 The tolerance for this test is ±2% of the SID. 

 

B4.1.2 Protective Clothing Tests 

Aim:  

 Apron, gonad shield and gloves are screened periodically to determinate their 

function in blocking radiation passage.  

Procedure:  

 Each item is visually and manually inspected for holes and cracks. If notice 

suspicious then fluoro them.  

 Screening maybe used to confirm holes and cracks. 

 Lead shields found to be defective are discarded through the Radiation Safety 

Unit for proper disposal of lead.  

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 Protective clothing with holes or breaks should be removed from use and be 

replaced. 
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B4.1.5 Positive Beam Limiting Device Test 

Aim:  

 To determine if the positive beam limiting device is operating correctly.  

Procedure:  

 Identify two cassettes of the same size. 

 Insert one cassette on the cassette holder and the other on the patient couch, 

each time ensure that the cassettes are uniformly oriented. 

 Determine if the collimator is adjusted to a field size smaller than the image 

receptor while the PBL system is activated, the light field should be slightly 

smaller than the size of the cassette on the patient couch. 

  Determine if the PBL system responds correctly to different cassette sizes. 

 Determine if X-ray production is not possible at an FFD outside the specified 

range for the PBL system. 

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 Collimator should adjust to a field size smaller than the image receptor. 

 PBL system should respond correctly to changes in cassette sizes. 

 Radiation production should not be possible at an FFD outside the range of the 

PBL system. 

 

B4.1.7 Radiography Dose Constancy Test 

Aim:  

 To determine if the X-ray tube radiation tube output is constant over a period 

of time.  

Procedure:  

 The baseline value for this set-up should be determined on an annual basis 

following the absolute dosimetry. 

 Information will be recorded on the Dose Constancy worksheet under the 

Radiography Quarterly Tests workbook. 

 The chamber must be at 80 cm from the source with at least 20 cm from the 

couch to avoid backscatter. 

 Use the following exposure factors: 70 kVp and 40 mAs.  
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 Enter the ambient temperature and pressure on cells D26:D27. 

 Make at least three exposures and record the measured charge on cells 

D34:F34. 

 Compare the measured charge with the baseline value.  

Results:  

 The tolerance for this test is ±25%. 

 

B4.1.7 Fluoroscopy Dose Rate Constancy Test 

Aim:  

 To determine if the X-ray tube radiation tube output is constant over a period 

of time.  

Procedure:  

 The baseline value for this set-up should be determined on an annual basis 

following the absolute dosimetry. 

 Information will be recorded on the Dose Rate Constancy worksheet under the 

Fluoroscopy Quarterly Tests workbook. 

 Set a distance of 100 cm from focus to image intensifier. 

 Record the focus-to-image intensifier distance on cell C24. 

 Position the ionization chamber on the 185 mm thick PMMA phantom 

 Use the following exposure parameters: 70 kVp and 4mA. Any other 

reference exposure parameters can be used as long consistent with the absolute 

dosimetry. 

 Enter the ambient temperature and pressure on cells D24:D25. 

 Make at least three exposures and record the charge measured over 1 minute 

on cells C36:E36. 

 Compare the measured charge with the baseline value.  

 Compare the measured charge with the baseline value.  

Results:  

 The tolerance for this test is ±25%. 
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B4.1.7 Fluoroscopy High Level Control (HLC) Test 

Aim:  

 To determine if the audible indicator of the HLC is functioning properly.  

Procedure:  

 Activate the HLC. 

 Determine if the audible indicator sounds when the HLC is activated. 

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 The audible indicator should sound whenever the HLC is engaged. 

 

B5.1 Radiography Semi Annual Tests 

Worksheets to perform the bi-annual tests are found on the Radiography Semi-Annual 

workbook. The following tests are under this category: dark room fog test, room 

lighting, viewing box luminance and light field luminance. 

 

B5.1.1 Dark Room Fog Test 

Aim:  

 To assure that the safelights and other potential sources of “unsafe” light will 

not fog the film being handled in the dark room.  

Procedure:  

 Turn off all lights in the dark room.  

 After eyes have adapted to the darkness ( about 5 minutes), check for light 

sources. Particular attention should be devoted to seals around doors, pass-

boxes, processors, suspended ceilings, etc.  

 Eliminate any light sources.  

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

 Open a new box of film. This box film must be the same type that is normally 

used in the dark room.  

 Load the film into the cassette in total darkness.  

 Exposure the film using an X-ray technique to a density of film is 

approximately 1.0.  
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 Place the film on the counter in the darkroom with all of lights off.  

 Cover the left half of the film with one opaque sheet of paper. Keep this half 

covered throughout the two steps.  

 Turn on the safelights and all other indicator lights.  

 Cover all but the upper quarter of the remaining portion of film with the 

second piece of the opaque paper and expose that portion for 2 minutes. Shift 

the opaque paper so that one-half of the film is uncovered and exposed 1 

minute. Shift the paper again so that ¾ of the film is uncovered and exposed 

for another minute. This film has a total exposure of 4, 2, and 1 minutes in the 

three exposed areas.  

 Determinate the density difference between the exposed areas and the 

corresponding unexposed areas using a densitometer.  

 Enter the density difference on cell D19. 

Results: 

 The density difference between the fogged and unfogged portions of the film 

should not exceed 0.05 O.D. For the two minute exposure area and must not 

exceed 0.05 O.D. for the one minute exposure.  

 

B5.1.2 Room Lighting Test 

Aim:  

 To assure that the room light conditions are adequate for optimal viewing of 

radiographs.  

Procedure:  

 Use a calibrated photometer for measurements.  

 Measurements should be done 30 cm away from a switched off viewing box. 

 Perform measurements on four different positions.  

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

 Enter the photometer readings on cells F15:F18. 

 

Results: 

 The average light luminance shall be at equal to or less than 100 lux.  
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B5.1.3 Viewing Box Luminance Test 

Aim:  

 To assure that the viewing boxes provide for optimal viewing of radiographs.  

Procedure:  

 Use a calibrated photometer for measurements.  

 Before starting measurements ensure that the viewing box has been ON for a 

reasonable time to ensure that the light output is stable. 

 Partition the viewing box into four imaginary quadrants. 

 Perform measurements on four quadrants and on the central position.  

 Enter the photometer readings on cells F16:F19. 

Results: 

 The average viewing box luminance shall be greater than or equal to 1500 

cd/m
2
.  

 Viewing box luminance uniformity should be less than 20%. 

 

B5.1.5 Light Field Luminance 

Aim:  

 To assure that the luminance of the light field collimation indicator is 

sufficient to delineate the area being exposed and that the dial markings on the 

collimator are accurate.  

Procedure:  

 Place the photometer on the tabletop, 100 cm from the source.  

 Partition the light field into four imaginary quadrants. 

 Activate the collimator light with the room lights off and read the luminance 

shown on the meter.  

 Repeat for the remaining quadrants.  

 Enter the photometer readings on cells F11:F14. 

 Also measure the background luminance and record it on cell D14. 

 

Results: 

 The light luminance shall be at least 160 lux at 100 cm SID.  
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B6.1 Radiography Annual Tests 

Worksheets to perform the annual tests are found on the Radiography Annual Tests 

and Fluoroscopy Annual Tests workbooks depending on the modality you are testing. 

It is advisable to have a qualified medical physicist perform these annual tests. 

 

B6.1.1 Tube Leakage Test 

Aim: 

 To assure compliance with the regulatory requirements. 

Procedure: 

 Use worksheet Tube Leakage found on Radiography Annually and 

Fluoroscopy Annually workbooks. 

 Compliance is evaluated using the maximum X-ray tube potential and the 

maximum beam current at that potential for “continuous tube operation”. 

 Maximum tube potential and current ratings (kVp max and I max , respectively) 

are usually quoted as leakage technique factors. I max depends on kVp max and 

the values typically assumed for I max are 3.3 mA, 4 mA and 5 mA for kVp max 

of 1150 kVp, 125 kVp and 100 kVp, respectively. 

 For Assessment of X-ray Tube Leakage Radiation Close the X-ray tube 

diaphragm and place the tube down on the X-ray table. Surround the X-ray 

tube with at least 6 big X-ray cassettes with films, forming a closed volume 

(cubicle) around the X-ray tube housing (number the films).  

 Perform a heavy exposure (according to the X-ray unit possibilities kVmax) – 

for example 125 kVp/ 200 mA for 1 sec.  

 Develop the films and identify the dark places on the films. 

 Place a large volume ionisation chamber at the places, where the films are 

most dark, 0.1 metre from the tube housing. 

 If highest kV is: 

 150 kVp use 3.3 x (3600/100) = 118.8 use therefore 120 mAs. 

 125 kVp use 4 x (3600/100) = 144 mAs or if not available use 150 

mAs 

 100 kVp use 5 x (3600/100) = 180 mAs 

 Repeat the measurement at other places around the tube housing and record 

the chamber readings on cells C15: E18. 
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 Set at highest kVp max (e.g 125 kVp), lowest mA (e.g. 50 mA) longest 

exposure time (e.g. 5 seconds).  

 Make exposure and perform measurement at 1 metre.  

 Record the readings on cells C29:E32. 

 Repeat to cover the whole tube and record highest reading. 

Results: 

 Leakage radiation should be equal to or less than 0.876 mGy/ h (0.876 

mGy/ h = 1 mSv/ h = 100 mR/ h) at 1 m.  

 

B6.1.2 KAP-meter Verification Test 

Aims:  

 To assure that the KAP meter reading is accurate. 

Procedure: 

 Mount the KAP meter on the tube housing. 

 Collimate the X ray beam to the desired field dimensions.  

 Use these exposure parameters: 70 kVp and 10 mA. 

 Place the ionization chamber on the central axis at a position of 200 mm above 

the couch to avoid the influence of backscattered radiation. 

 Expose the ionization chamber and record the charge readings on cells 

D21:F21. 

 Note the average of the KAP readings and record it on cell E26. 

Results: 

 Agreement between the chamber and KAP should be within ±25 %. 

 

B6.1.4 Output Reproducibility Test 

Aims:  

 To test if the radiation output from the X-ray tube is reproducible. 

Procedure: 

 Position the ionization chamber in air at 80 cm from the source and away from 

any surfaces that can contribute backscatter. 

 Field size should be large enough to cover the ionization chamber.  
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 To avoid the heel effect, do not place the ionization chamber towards the 

anode side of the X-ray tube. 

 Set the X-ray generator to technique factors commonly used in the clinic e.g. 

80 kVp. 

 Make 5 exposures and record the charge reading for each exposure on cells 

C16:C20. 

Results: 

 The coefficient of variation should be within ≤5 %. 

 

B6.1.6 Timer Accuracy 

Aim:  

 To ensure that the console time display is accurate and correct.  

Procedure:  

 Use the worksheet Timer Accuracy under the Radiography Annual Tests 

workbook. 

 Use the PTW DiaVolt or equivalent instrumentation. 

 Set value of kVp most frequently used in the room.  

 Make an exposure at selected time station.  

 Enter the DiaVolt readings in cells C12:C22. 

Results: 

 Time accuracy should be ≤ 10 %. 

 

B6.1.8 kVp Accuracy Test 

Aim:  

 To ensure that the X-ray generator is producing the kVp as selected on the 

control panel.  

Procedure:  

 Use the worksheet kVp Accuracy under the Radiography Annual Tests 

workbook or Fluoroscopy Annual Tests workbook depending on the modality 

you are working on. 
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 Use the PTW DiaVolt or equivalent instrumentation. 

 Collimate the beam to the active area of DiaVolt.  

 Make exposures and record the displayed kVp values on cells D13:D20 of the 

worksheet.  

Results: 

 kVp accuracy should be within  ≤ 10 %. 

 

B6.1.6 Annual QA Checklist 

Aim:  

 To ensure that an up-to-date QA program in the clinic.  

Procedure:  

 This test is in the form of a checklist.  

 Ideally this test should be discussed at the departmental QA Committee 

meeting. 

 Any non affirmative responses to the checklist questions must be followed up 

with the QA committee.  

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 Affirmative responses to the checklist questions indicate a relevant and up-to-

date technique chart.  

 A non-affirmative response must be followed up with the QA committee.  

 

B6.1.7 Technique Chart Review Test 

Aim:  

 To ensure that an up-to-date technique chart is being used in the clinic.  

Procedure:  

 This test is in the form of a checklist. 

 Ideally this test should be discussed at the departmental QA Committee 

meeting. 
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 Any non affirmative responses to the checklist questions must be followed up 

with the QA committee.  

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 Affirmative responses to the checklist questions indicate a relevant and up-to-

date technique chart. A non-affirmative response must be followed up with the 

QA committee.  

 

B6.1.9 Source-to- Image Distance Indicator Test 

Aims:  

 To assure that the source-to-image distance (SID) is indicated accurately. 

Procedure: 

 Note the indicated SID from the distance indicator. This should be done for 

each clinically used SID. 

 Measure the distance from the focal spot to the cassette.  

 Enter the measured distance on cell C10. 

Results: 

 This distance should be within 2% of the indicated SID. 

 

B6.1.10 mA Linearity Test 

Aim:  

 To assure linearity or consistency in mGy/mAs between mA stations to 

achieve uniform results for the same mAs.  

Procedure:  

 Use the worksheet mA linearity Accuracy under the Radiography Annual 

Tests workbook. 

 Set kVp and time most frequently used in the room.  

 Make exposures over a range of mA settings and record the measured charge 

on cells E13: G18. 
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Results: 

 Any two consecutive tube current settings shall not differ by more than 0.1 

times their sum. That is (X1 - X 2) ≤ 0.1 (X1 + X 2).  

 

B6.1.11 Half Value Layer Test 

To be determined using an appropriate dosimeter, with a reasonable stability over a 

range of beam qualities. Also high purity aluminium filters to be used.  

Aim:  

 To assure that the amount of filtration is in compliance with DRC regulations.  

Procedure:  

 Use the worksheets HVL under either Fluoroscopy Annual workbook or 

Radiography Annual workbook depending on the modality you are using. 

 Experimental set-up is as in IAEA-TRS 457. 

 Enter the absorber thickness in column cells B13:B17. 

 Record the measured charge for each absorber thickness on cells D13:F17. 

 Note the trend-line equation from the plot. 

 Enter the slope and intercept values from the trend-line equation on cells B19 

and C19 respectively. 

Results: 

 Calculated HVL is given in cell F21. 

 Compare with Table 3 in the DRC QC document. 

 

B6.1.12 Radiography Absolute Dose Measurement 

Aim:  

 To measure the X-ray tube radiation output. 

Procedure: 

 Information will be recorded on the Absolute Dose worksheet under the 

Radiography Annual Tests workbook. 

 Enter the exposure parameters to be used for the absolute dosimetry. 

 Set a distance of 100 cm from focus to the patient couch. 
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 The ionization chamber should be at least 25 cm away from the patient table to 

avoid influence of backscattered radiation influencing its signal. 

 Enter the ambient temperature and pressure. 

 Enter the beam quality factor on cell C24. 

 Make at least three exposures and record the charge collected in cells 

C29:E29. 

 The incident air kerma is calculated in accordance to the IAEA -TRS 457 

formalism.  

Results: 

 After determining the incident air kerma immediately determine the baseline 

values for the quarterly output constancy tests. 

 

B6.1.13 Fluoroscopy Absolute Dose Measurement 

Aim:  

 To assure that the output dose rate of the fluoroscopy unit is in compliance 

with DRC regulations.  

Procedure: 

 Information will be recorded on the Annual Absolute worksheet under the 

Fluoroscopy Annual Tests workbook. 

 Enter the correct chamber calibration factor on cell D36. 

 Set a distance of 100 cm from focus to image intensifier. 

 Record the focus-to-image intensifier distance. 

 Position the ionization chamber on the 185 mm thick PMMA phantom 

 Enter the exposure parameters and beam quality on the worksheet. 

 Enter the beam quality factor on cell D31. 

 Enter the ambient temperature and pressure in cells D26:D27. 

 Make at least three exposures and record the measured charge collected over a 

period of 1 minute in cells D39:F39.  

 Based on your set field size and beam quality choose the appropriate water 

and PMMA backscatter factors as given in IAEA-TRS 457. These should be 

entered in cells D33:D34. 
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 Use the IAEA -TRS 457 formalism to calculate the entrance surface air kerma 

rate.  

Results: 

 Entrance surface air kerma rate must be 50 mGy/min for normal dose rate. 

 

B6.1.14 AEC Consistency (kVp) Test 

Aim:  

 To check the reproducibility of all the AEC chambers with varying kVp.  

Procedure:  

 Place a total thickness of 14 cm of perspex slabs close to the image receptor. 

 Install an X-ray film in the film holder. 

 Perform three exposures with the same chamber selected. 

 The three exposures should be at 60 kVp, 80 kVp and 100 kVp. 

 Enter the density readings in cells D11:F14. 

 Compare the net densities of the three exposed films. 

Results: 

 The net densities should be within 0.9 and 1.4. 

 Net density variation between the 4 films should be less than 0.2. 

 

B6.1.15 AEC Consistency (Thickness) Test 

Aim:  

 To check the consistency of all the AEC chambers at different object 

thickness.  

Procedure:  

 Place a total thickness of 5 cm of perspex slabs close to the image receptor. 

 Install an X-ray film in the film holder. 

 Perform three exposures with the same chamber selected. 

 Repeat the three exposures using 10 cm and 20 cm total thickness of perspex. 

 Enter the density readings in cells D12:F15. 

 Compare the net densities of the three exposed films. 
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Results: 

 The net densities should be within 0.9 and 1.4. 

 Net density variation between the 4 films should be less than 0.2. 

 

B6.1.16 AEC Chamber Consistency Test 

Aim:  

 To check the consistency in response between all the AEC chambers.  

Procedure:  

 Place a total thickness of 20 cm of perspex slabs close to the image receptor. 

 Install an X-ray film in the film holder. 

 Select one chamber at a time and subsequently make three exposures. 

 Repeat exposures for the other 2 chambers.  

 Enter the density readings in cells D13:F16. 

Results: 

 The net densities should be within 0.9 and 1.4. 

 Net density variation between the 4 films should be less than 0.2. 

 

B6.1.17 AEC Overall Reproducibility Test 

Aim:  

 To check the reproducibility of all the AEC chambers.  

Procedure:  

 Place a total thickness of 20 cm of perspex slabs close to the image receptor. 

 Adjust the beam size such that all the ionization chambers are within the 

radiation field. 

 Install an X-ray film in the film holder. 

 Select all the AEC chambers to be operational during exposure. 

 Expose at 80 kVp. 

 Repeat the exposures 4 times.  

 Enter the density readings in cells D13:D16. 

Results: 

 The net densities should be within 0.9 and 1.4. 

 Net density variation between the 4 films should be less than 0.2. 
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B6.1.18 Fluoroscopy Spatial Resolution Test 

Aim:  

 To check the maximum spatial resolution of a fluoroscopic system using the 

X-ray line pairs per mm patterns.  

Procedure:  

 Use the test pattern tool composed of line pair (lp) with discreet line pair 

groups.  

 The test pattern tool shall be placed on a 19 mm thickness of type 1100 

aluminium.  

 The aluminium plate shall be covered by useful beam completely.  

 Distance between couch and Image Intensifier shall be 30 cm.  

 If the system has variable source to image (SID) then SID should not exceed 

100 cm.  

 Record of the highest number of the test pattern that gives visible separation 

lines between of group.  

 Repeat for all the magnification stations.  

 Results are to be entered in Column D of the worksheet. 

Results: 

 The minimum spatial resolution at center of the beam for all FOVs is given in 

the DRC document. 

 

B7.1 Cassettes and Screens Tests 

The QC tests on cassettes and screens is found on the Cassette and Screens workbook.   

 

B7.1.1 Visual Check, Identification and Cleaning of Cassettes 

Aim:  

 To ensure the cassettes are in good order, are clearly marked with the correct 

type and speed of intensifying screens, and are identified by number to enable 

any cassette causing a film fault to be easily traced. 

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 
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Procedure: 

 Clean external surfaces of cassettes with damp swabs and soap or spirit-based 

swabs, taking particular care to avoid spirit contact with intensifying screens. 

 Inspect cassette for damage, particularly the edges, hinge and catches. 

 Check that the type of intensifying screen is clearly marked. 

 Check that the cassette is marked with a number, which corresponds to the 

number on the intensifying screen. 

Results: 

 Cassettes with damage to the hinge or catches should be sent for repair or 

discarded. 

 Intensifying screen identification labels should be replaced if not clear. All 

cassettes should be marked with indelible marker with a number to correspond 

to the number on the intensifying screen. 

 

B7.1.2 Cassette Light Tightness Check 

Aim:  

 To test for light leakage into cassettes causing film fogging. 

Procedure: 

 Load the cassette with a film 

 Place the cassette with suspect area of cassette uppermost, next to light source. 

 Leave for 15 - 30 minutes. 

 Process the film. 

 A tick on the tick box indicates pass of criteria while if the tick box is left un-

ticked that represents a fail. 

Results: 

 Any light leakage will cause fogging. 
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B7.1.3 Screen-Film Contact Test 

Aim:  

 To assure that optimum contact is maintained between the screen(s) and film 

in each cassette. 

Procedure: 

 Load cassettes to be tested and let rest for approximately 15 minutes to allow 

trapped air to escape. 

 Place the cassette on the table and collimate the beam to the cassette size. 

 Place the wire mesh on top of the cassette and expose the cassette.  

 Suggested technique factors are: 5-10 mAs, 50 kVp; 2 mAs, 70 kVp; or 3-5 

mAs, 60 kVp). 

 Process the film. The optical density of the area between the wires of the mesh 

on the film should be between 1.5 and 2.0. 

 View the film on a viewbox in a room with low ambient lighting. 

 Areas of poor contact will appear as dark areas on the film. 

 A tick on the tick box indicates pass of criteria while if the tick box is left un-

ticked that represents a fail. 

Results: 

 Large areas (>2 cm in diameter) of poor contact may indicate the need for 

corrective action.  

 Areas of poor contact around the periphery of the cassette may indicate faulty 

latches or worn seals on the cassettes.  

 If the area of poor contact is not eliminated by cleaning, consider replacing the 

cassette. 
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8.1 Processor Tests  

Below are the required tests for wet processors. 

 

8.1.1 Processor Baseline Sensitometry Tests 

Aim:  

 To establish baseline sensitometry values for the processor, when the quality 

control program is initiated or there is a significant change in the processing 

workflow. 

Procedure: 

 Select a new box of film to be used for quality control purposes. 

 Drain the chemicals and flush the processor with water. 

 Replenish the tanks with fresh chemicals. 

 Set the temperature recommended by the film manufacturer. 

 Set the chemicals’ replenishment rates to those recommended by the 

manufacturer. 

 Expose and immediately process a sensitometric strip. 

 Repeat this for five consecutive days. 

 Read and record the densities from the sensitometric strip, including the 

density from the unexposed part of the film. 

 The densities are to be entered in cells D14:H35 of the worksheet. 

 The average density for each step from the 5 sensitometry strips done over 5 

consecutive days is given in Column I. 

 Determine which step has a density closest to 1.20, and this corresponds to 

mid-density (MD). 

 Determine which step has a density closest but less than 2.20, and this 

corresponds to high-density (HD). 

 Determine which step has a density closest but not less than 0.45, and this 

corresponds to low-density (LD). 

 The difference between HD and LD is the difference density (DD). 

 Determine the average of the densities from the unexposed parts of the films, 

this is base-plus-fog density (B+F). 
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Results: 

 Results of this test become baseline values of the processor sensitometry. 

 

8.2 Processor Daily Tests 

The daily test on the processors combines general functionality tests and particular 

processor parameters to be recorded and monitored every day. The daily tests have 

been split into two, namely quantitative and qualitative tests. 

 

8.2.1 Qualitative Daily Processor Tests 

Aim:  

 To make sure on a day to day basis that all photographic processor is running 

optimally and producing consistent, high quality film.  

Procedure:  

 This test is in the form of a checklist. 

 Answer the listed questions on the worksheet, a tick on the tick box indicates 

pass of criteria while if the tick box is left un-ticked that represents a fail. 

Results:  

 Affirmative responses to the checklist questions indicate a relevant and up-to-

date technique chart.  

 A non-affirmative response must be followed up for corrective action.  

 

8.2.2 Quantitative Daily Processor Tests 

Aim:  

 To make sure on a day to day basis that all photographic processor is running 

optimally and producing consistent, high quality film.  

Procedure:  

 Expose the control film with the sensitometer. 

 Develop the control film. 

 Measure and record the base + fog optical density. 

 Measure and record the optical density at the mid-density step. 

 Measure and record the optical density at the high-density step. 

 Measure and record the optical density at the low-density step. 
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 Calculate the difference density. 

 Measure and record the developer temperature. 

 Confirm that the levels of the chemicals are optimum. 

 This information is to be entered on the Daily QA worksheet form under the 

Processor Daily Tests workbook. 

 Type a for a tick to indicate a pass and r for a cross to indicate non-

compliance. 

 To archive the data click on the Tabulate Morning Processor Check button. 

Results: 

 Baseline Processor performance indicators would have been previously 

determined using the procedure Processor Baseline Sensitometry Tests 

described in 3.7.1. 

 If the MD and DD are within ±0.15 of their respective operating levels, and 

the B+F is within ±0.03 of its operating level, the processor is in control, and 

no further action is required.  

 If the MD or DD exceeds the control limit of ±0.15, the source of the problem 

should be determined and corrected before clinical films are processed. 

Likewise, if the B+F exceeds +0.05, corrective action should be taken before 

clinical films are processed. 

 The developer temperature should be as advised by the chemistry supplier/ 

manufacturer.  

 An archive of all the tests is found on the Daily QA Table worksheet on the 

Processor Daily Tests workbook. 

 

B8.3 Control Film Cross-Over Test 

Aim:  

 When one nears the end of the box of film that has been used for processor 

monitoring, crossover testing should begin with the new box of film. 

Procedure: 

 With 5 films remaining, select a new box of film for processor quality control. 

 Assure that the processor is in control. 
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 Expose and immediately process 5 sensitometric strips each from the old and 

new boxes of film. 

 For the old box of films enter the densities on cells E13:I17. 

 For the new box of films enter the densities on cells E22:I26. 

 Determine the average of the steps previously identified for processor quality 

control for MD, DD, and B+F from the 5 films from the old box and from the 

5 films from the new box. 

 Determine the difference in the average values between the new and old boxes 

of film. 

 Adjust the old operating levels for MD, DD, and B+F by this difference to 

establish the new operating levels. This is accomplished by adding the 

difference (new-old), including the sign, to the old operating level. If the 

difference (new-old) is positive, the new operating level is increased. If the 

difference (new-old) is negative, the new operating level is decreased. 

 Record the new operating levels with their new control limits on a new control 

chart. Record the complete emulsion number of the new box of film on the 

new processor control chart. If the new box of film produces step densities that 

are so different from the old that the monitored steps are no longer the best 

choices, then new operating levels need to be established. (The best choices 

are the step with densities greater than or equal to 0.45 for the low-density 

step, closest to 1.20 for the mid-density step, and closest to but less than 2.20 

for the high-density step.) 

 Make a notation on the control chart in the remarks section of the date that a 

cross-over was performed. 

Results: 

 If the MD and DD are within ±0.15 of their respective operating levels, and 

the B+F is within ±0.03 of its operating level, the processor is in control, and 

no further action is required.  

 If the MD or DD exceeds the control limit of ±0.15, the source of the problem 

should be determined and corrected before clinical films are processed. 

Likewise, if the B+F exceeds +0.05, corrective action should be taken before 

clinical films are processed. 
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B9.1 Repeat Analysis 

This worksheet provides for repeat analysis. This test should be done every 3 months. 

The data is presented in the form of bar charts for easy visualization. 

Aim:  

 To provide a method for the analysis of the rejected radiographs will provide 

information concerning those aspects of radiological imaging that need the 

most attention.  

Procedure:  

 Start the test with an empty reject film container.  

 Establish a method to accurately determine the amount of raw film consumed 

starting on the day that you clean out the reject films.  

 Decide on the length of the survey period (such as a week). At the end of this 

period, collect all rejected radiographs and determine the actual number of 

radiographs exposed (i.e., the number of sheets of raw films consumed) during 

this period.  

 Analyze all of the rejected films and determine the reason that they were 

probably rejected. 

 Record the reasons for rejection in cells D46 and above, while the number of 

rejected films in that category is recorded in cells E46 and above.  

 Determine the overall reject rate. For example, if there were 7 rejected films 

and a total of 122 films produced, then overall rate is: 

%7.5%100
122

7


  

 Determine the percentage of rejects from each of categories. For example. 3 

films fell into category labelled “ over exposure”. The percentage of rejected 

films falling into this categories is: 

 
%43%100

7

3


  

Results: 

 Should be ≤ 10 %. 

 Cannot increase by more than 2 % from its previous rate. 
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B10.1 Individual Equipment Record (IER) 

The DRC requires that the licensee compiles and maintains an IER which contains the 

following information: 

 Equipment particulars e.g. make, model, serial number e.t.c. 

 Operators manual. 

 Details of the following: 

o Person responsible for the overall QA program. 

o Person or organization responsible for maintenance tests. 

o Records of the acceptance tests. 

o Maintenance tests to be conducted and their frequency. 

The above information is to be entered into the designated input cells of the 

equipment IER worksheet. 
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APPENDIX C 

 

X-RAY ROOM DATA COLLECTION FORM 

 

Table B2: X-ray room data collection form. 

 

X-ray generator 

X-ray generator model  

Generator waveform  

X-ray tube  

Filtration  

  

Bucky 

Grid ratio  

Grid strip frequency  

Interspace and cover material  

  

Image receptor 

Type of screen  

Speed  

Type of film  
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APPENDIX D 

 

PATIENT DATA COLLECTION FORM 

 

ROOM NUMBER:      _________________ 

TYPE OF EXAMINATION:     _________________ 

 

 

Table B3: Patient  data collection form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patient 

No. 

Mass  

(kg) 

Height 

(m) 

Age Gender Tube 

Voltage 

(kVp) 

Tube 

Loading 

(mAs) 

Patient 

thickness 

(cm) 

FFD 

(cm) 

Cassette 

size 

(cm*cm) 

Grid 

Used 

(Yes/No) 

Film 

Density 

OK 

(Yes/No) 
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APPENDIX E 

 

PARTICIPANT QUESTIONNAIRE FORM 

 

Research Project: Dose Optimization in Diagnostic Radiology 

A Doctoral Research Study Being Undertaken Through the University of the 

Witwatersrand, Johannesburg 

 

Principal Investigator:    Thulani Nyathi 

Division of Medical Physics 

Area 348:  Johannesburg Hospital 

Private X39 

Johannesburg 2000 

South Africa 

      Tel: (011) 481 -2148  

Fax: (011) 484 -9202 

 

We are conducting a study to assess radiographic practice with the advent of digital 

radiography. For the purposes of this study the term digital radiography means both 

computed radiography (CR) and direct digital radiography (DDR). We would like to 

invite you to participate in this study. 

 

Please complete the following questionnaire. 
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