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Abstract 

Osteoporosis has been described as a paediatric disease with geriatric consequences. This 

thesis explored the associations between proximal, historical and predictive genetic and 

environmental factors affecting bone mass and bone size in socio-economically- and 

environmentally-disadvantaged black and -advantaged white pre- and early-pubertal South 

African children. Data were collected from 476 children (182 black boys, 72 white boys, 158 

black girls, 64 white girls) of mean age 10.6 years (range: 10.0-10.9), 406 biological mothers and 

100 biological fathers. The main findings were that black children and their parents compared to 

white, had greater DXA-measured BMC at the femoral neck regardless of the way in which 

BMC was corrected for size (height, weight, BA and/or BAPC) and greater bone strength. 

Lumbar spine BMC was greater or similar depending on which measures were used to correct 

BMC for size. At the whole body, mid radius and distal one third of the radius, BMC varied 

between children, and between their parents, and were dependent on which measures were used 

to correct BMC for size. Weight at 1 year (WT1), length at 1 year (LT1) and birth weight (BW), 

were significant predictors of BMC of the femoral neck (P<0.05-0.01) after correcting BA and 

BMC for race/ethnicity, gender, age, socioeconomic status, bone age, height and weight at 10 

years. Maternal and paternal heritability was estimated to each be ~30% in both black and white 

subjects. The main conclusion was that ethnicity is the single most important proximal factor 

affecting bone mass and bone size in 10 year old South African children. Black children 

demonstrate a superior bone mass and bone strength at the femoral neck. Historical and 

predictive factors however indicate that black children have not been programmed for optimal 

bone health in utero and early life, nor are contemporary environmental factors favourable for 
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the maximisation of peak bone mass. This cohort may be at risk of developing osteoporosis as an 

elderly population, particularly at the lumbar spine and forearm.  
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Table 1-1. List of abbreviations and definitions of terms  
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½h2 Heritability estimate (%), by maternal or paternal descent, defined as 

the proportion of trait / phenotypic variation that is accounted for by 

genetic factors. 

25(OH)D Serum 25-hydroxyvitamin D 

AA African American 

ANCOVA Analysis of covariance 

BA Bone area (cm2) 

BD Bone density (mg/cm3) 

Bone mass Noun. The mineral content of bone. (Source: The American Heritage® 

Stedman’s Medical Dictionary. Houghton Mifflin Company. 

http://dictionary.reference.com/browse/bone mass. Accessed 23-Dec-

2011). In this thesis, refers to BMC or BMD. 

Bone size Refers to BA 

BMAD Bone mineral apparent density (g/cm3) 

BMC Bone mineral content (g) 

BMD, aBMD Bone mineral density (g/cm2), areal bone mineral density (g/cm2), 

Bone density refers to areal bone density (g/cm2) throughout the thesis 

BMI Body mass index (kg/m2) 

BTT, Bt20 Birth to Ten, Birth to Twenty 

BW Birthweight 

Current factors Refers to genetic factors, environmental factors, height, weight, 

skeletal maturation, pubertal status, SES, nutrition, physical activity. 

cm Centimetre 

DPA Dual-beam photon absorptiometry 

DR Distal 1/3rd of radius 
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DXA Dual energy X-ray absorptiometry 

Environmental factors Refers to lifestyle factors (SES, nutrition, physical activity) 

Ethnicity Identity with or membership in a particular racial, national, or cultural 

group and observance of that group’s customs, believes, and language. 

(Source: The American Heritage® Stedman’s Medical Dictionary. 

Houghton Mifflin Company. 

http://dictionary.reference.com/browse/ethnicity. Accessed 23-Dec-

2011). 

F Female 

FN Femoral neck 

g Grams 

Genetic factors Refers to gender and race/ethnicity 

Heredity Noun. The transmission from one generation to another of genetic 

factors that determine individual characteristics: responsible for the 

resemblances between parents and offspring.  

(Source: Collin’s English Dictionary – Complete and Unabridged 10th 

Edition., http://dictionary.reference.com/browse/heredity. Accessed 

23-Dec-2011). 

Hereditary Adjective. Of, relating to, or denoting factors that can be transmitted 

genetically from one generation to another. 

(Source: Collin’s English Dictionary – Complete and Unabridged 10th 

Edition., http://dictionary.reference.com/browse/hereditary. Accessed 

23-Dec-2011). 

Heritability Noun. 

(1) The quality or state of being heritable.  

(2) The proportion of observed variation in a particular trait that can 

be attributed to inherited genetic factors in contrast to 

environmental ones.  

(Source: Merriam-Websters Medical Dictionary. Merriam-Webster, 
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Inc., http://dictionary.reference.com/browse/heritability. Accessed 23-

Dec-2011). 

Heritable Adjective. Capable of being inherited; inheritable. 

(Source: Collin’s English Dictionary – Complete and Unabridged 10th 

Edition., http://dictionary.reference.com/browse/heritable. Accessed 

23-Dec-2011). 

Historical factors Refers to birthweight, length at 1 year, weight at 1 year. 

Ht Height (m) 

LS Lumbar spine 

LT, LT1 Length, length at 1 year 

M Male 
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P Probability-value 

PBM Peak bone mass 

PC Power coefficients, derived from the linear-regression analyses of 

ln(BMC) on ln(BA) 

Predictive factors Refers to bone mass and bone size of parents, and the heritability of 

bone mass and bone size in children 

pQCT Peripheral quantitative computed tomography 

Race1 

 

 

 

 

B, W 

A local geographic or global human population distinguished as a 

more or less distinct group by genetically transmitted physical 

characteristics. (Source: The American Heritage® Stedman’s Medical 

Dictionary. Houghton Mifflin Company. 

http://dictionary.reference.com/browse/race. Accessed 23-Dec-2011). 

black, white 

                                                 
1 Statistics South Africa (Stats SA) has deprecated the term 'race' and advocated the use of Population Group which 
defines groups with common characteristics (in terms of descent and history), particularly in relation to how they 
were (or would have been) classified before the 1994 elections. The following categories are used: Black African, 
coloured, Indian or Asian, white, other. (Source: Statistics South Africa, 
http://www.statssa.gov.za/inside_statssa/standardisation/Concepts_and_Definitions_%20StatsSAV3.pdf, accessed 
31-Oct-2011) 
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Preface 

 

In 2000, I was afforded the incredible opportunity of working on the Bone Health sub-

study of the formerly known Birth to Ten (BTT) project. Since extended and now called Birth to 

Twenty (Bt20), it is Africa’s largest and longest running observational study of children and 

adolescent growth, development and health, and one of the few large-scale longitudinal studies 

in the world. Bt20 children and their families are based in Soweto-Johannesburg, South Africa’s 

largest and densest metropolitan area, extending over 200km2, with ~3 million inhabitants 

[Statistics South Africa, www.statssa.gov.za/community_new/content.asp, accessed 31-Oct-

2011]. 

 

In 1990, shortly after Nelson Mandela was released from Victor Verster Prison on 11 

February 1990, BTT was launched and continues to date. Within a seven week period from 23 

April 1990 to 08 June 1990, 5460 singleton births were recorded in the metropolitan area of 

Johannesburg-Soweto. The source of the population data was the official birth notifications, 

governed by a local ordinance, which were completed by delivery staff at the time of every birth 

in the area. 273 This information was subsequently recorded in the registers maintained by each of 

the three local health authorities comprising most of the metropolitan area of Soweto-

Johannesburg. 273 To be included in the original BTT cohort, mothers had to reside in the study 

catchment area for at least the first six months of the child’s life. 272 A total of 3273 children met 

these inclusion criteria. The demographics of the BTT cohort closely approximated national 
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demographics at the time which were 74% black, 12.5% white, 10% coloured and 3.5% Indian. 

273 The aim of BTT when initiated was to investigate prenatal risk factors, mortality, morbidity, 

growth, nutritional status, psychological development, environmental and household air 

pollution, family composition and child health associated with rapid urbanization. 273  

 

In 1999, researchers interested in bone health in childhood initiated a Bone Health sub-

study (approved by the Committee for Research on Human Subjects, University of the 

Witwatersrand: M980810). The main aims of the study were to investigate a multitude of 

environmental and hereditary factors on bone mass acquisition. Comprehensive sets of 

longitudinal data (weight at birth as well as weight and length/height at 1, 2, 4, 5, 7 and 8 years 

of age) were available on 1200 black children from which 623 were randomly enrolled onto the 

Bone Health sub study. Cross checks were performed to ensure that there were no significant 

differences between the Bone Health subset and BTT cohort for key demographic variables such 

as residential area at birth, maternal age at birth, gravidity, gestational age and birth weight. All 

white children with longitudinal data were enrolled into this Bone Health sub study (n=65). To 

increase the number of white children on the study, children of the same age from schools in the 

greater Johannesburg metropolitan area were asked to volunteer. An additional 71 white children 

(boys = 38; girls = 33) were recruited onto the study. Subjects with chronic illness (juvenile 

rheumatoid arthritis, epilepsy or asthma) on medication known to affect growth or bone mass 

development were excluded from the study (n=4). I, together with an incredible team of 

individuals, collected data from these 476 healthy South African children (182 black boys, 72 
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white boys, 158 black girls, 64 white girls) of median age 10.6 years (range: 10.0-10.9) from 23 

April 2000 to the 07 June 2001.  

 

 In this cohort, I investigated the relationship between bone mass, bone size, and genetic- 

and environmental factors during the 10th year of life. This thesis presents the data which I was 

involved in collecting, capturing, and which I cleaned, analysed, published, and am submitting 

for the degree of Doctor of Philosophy. A series of the three published manuscripts form the core 

of the thesis, which aimed to answer key research questions:- 

 

1) What proximal factors contribute to bone mass and bone size of 10-year old pre-

and early pubertal, black and white South African children? 

2) Do historical factors contribute to the current status of bone mass? More 

specifically, (1) Do weight and/or length in infancy predict bone mass in 10 year 

old children? (2) If there is a relationship is it because weight and/or length in 

infancy are related to bone size or bone mass? 

3) Is parental bone size and bone mass predictive of bone size and bone mass in 10-

year old children? More specifically, what is the heritability of bone size and bone 

mass? 

 

Chapters 1 and 2 describe the relevant background to the subsequent chapters. Chapter 1 

briefly highlights at the outset the relevance of studying bone health in this population, and the 
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potential value this thesis has to add to the current knowledge and understanding of factors 

affecting bone health in the setting of a developing country. Chapter 2 reviews literature relating 

to the measurement and interpretation of bone mass and bone size in children, black-white ethnic 

differences, infant programming and heritability thereof. The chapter gives rise to three key 

research questions and hypotheses which the rest of the thesis addresses.  

 

Chapters 3 to 5 present in the three published papers the data, analyses, results and 

discussion, as they were published hence the format: introduction, materials and methods, results 

and discussion. The following papers were published and a poster was presented in support of 

this thesis. As first author, I contributed substantially to the acquisition, analyses and 

interpretation of data. I drafted the manuscript and submitted it for publication. In the case of the 

poster, I gave an oral presentation of the poster at the conference. 

 

1. Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Differences in bone size and bone 

mass between black and white 10-year-old South African children. Osteoporos Int 17, 

433-440 (2006). 320 Impact factor: 4.695. (See Appendix 2).  

 

2. Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Infant programming of bone size and 

bone mass in 10-year-old black and white South African children. Paediatr Perinat 

Epidemiol 21, 354-362 (2007). 321 Impact factor 2.110. (See Appendix 3).  
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3. Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Bone mass and bone size in pre- or 

early pubertal 10-year-old black and white South African children and their parents. 

Calcif Tissue Int 88, 281-293 (2011). 322 Impact factor 2.893. (See Appendix 4).  

 

4. Vidulich, L; Norris, SA; Pettifor, JM. 2002. The relationship between birth weight and 

weight at 1 year with bone mass variables in 10 year old South African children. 2nd 

International Conference on Child Bone Health, Sheffield, England, June 2002: Poster 

Presentation. 

 

Chapter 6 consolidates the findings from Chapters 3-5. A summary of this thesis’ 

findings, hypotheses tested, key results, common research themes that emerged and contributions 

to the body of knowledge that were made, are presented. It was beyond the scope of the thesis to 

address in detail a number of limitations and answer the questions that emerged from this body 

of work. The limitations to be kept in mind when interpreting the results of this thesis, and to be 

considered for future research in this field, are documented in this chapter, as are unanswered 

questions and data that could still remains to be analysed. I finally end with what the findings of 

this thesis conclude. 
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CHAPTER 1 - Why study bone health in South African children? 

 

Osteoporosis, the most common of bone diseases, is defined as “a disease characterised 

by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone 

fragility and a consequent increase in fracture risk”. 338 The disease is associated with significant 

morbidity, mortality and financial costs. In 2002, full-blown osteoporosis cost the US economy 

as much as 18 billion dollars, exclusive of the indirect costs of billions more amounting from the 

loss of productivity of patients and caregivers. 318 Once diagnosed, osteoporosis is not curable. 

By 2020, it is predicted that 50% of Americans over the age of 50 years, will have or be at risk of 

developing osteoporosis of the hip. 318 The figures were calculated for all ethnic groups though 

the fracture incidence is usually highest for whites. 176,218 Although as per the National 

Osteoporosis Foundation of South Africa (NOFSA) 

[www.osteoporosis.org.za/downloads/NOFSAguide.pdf, accessed 31-Oct-2011], data on the 

incidence of fracturing and osteoporosis in South Africa are not available, it appears to be similar 

to developed countries for white, Asian and mixed-race/ethnic populations. The black population 

is however different, in that osteoporosis and fracturing at the hip are less for both African 

Americans and black South Africans. 

 

The International Osteoporosis Foundation has predicted that the largest increase in bone 

fractures worldwide is expected to occur in developing countries. The proportion of worldwide 

hip fractures from Africa has been projected to increase from 0.2 to 0.6% by the year 2050, 

based on fracture rates and population growth. 59 Indeed, South African experts are offering 

anecdotal evidence that the incidence of fractures is on the increase. 26 NOFSA predicted 1 in 3 



Bone mass and bone size in 10 year-old South African children 

 

Page 2 of 233 

 

South African women and 1 in 5 men (altogether potentially 4-6 million people) would be 

afflicted by the disease. 26 Osteoporosis and associated fragility fractures are not currently 

considered the most concerning health problem in South Africa. The health system is currently 

burdened by diseases related to HIV/AIDS, poverty and chronic diseases of lifestyle, 

highlighting the need for prevention strategies. 70 

 

Osteoporosis has been described as “a paediatric disease with geriatric consequences". 

There are two key concepts core to understanding the proposal that osteoporosis has its origins in 

childhood, namely, (1) Barker’s foetal origins hypothesis and (2) the attainment of peak bone 

mass (PBM) during childhood and adolescence. The purpose of this section is to highlight at the 

outset the relevance of studying bone health in this population, and the potential value this thesis 

has to add to the current knowledge and understanding of factors affecting bone health in the 

setting of a developing country. 

 

(1) Barker’s foetal origins hypothesis of osteoporosis  

 

Epidemiological studies have suggested that size at birth and later growth patterns are 

associated with chronic diseases in later life: early onset of cardiovascular, metabolic and 

endocrine disease in adult life, including coronary heart disease, hypertension, type 2 diabetes, 

hypercholesterolemia, 20,124 stroke, 17 obesity, 240 chronic lung disease, 174 psychological 

outcomes, 123 characteristic changes in fingerprint patterns 337 and most important to this thesis, 

osteoporosis. 12 That is, the bone size and mass attained in childhood and adolescence may be 
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limited by programming having occurred during pre- and early postnatal life. The literature is 

reviewed in more detail in Chapter 2.  

 

The reasons for studying the foetal origins hypothesis in a South African population are 

motivated by Adair and Prentice (2004) 2 who argue that the foetal origins hypothesis is most 

applicable to developing countries in which most of the world's low birthweight babies are born. 

73 Almost a quarter of South Africa's infants weigh less than 2.5kg, 248 and are at greatest risk of 

chronic disease in later life. 

 

Socio-economically and environmentally-disadvantaged black babies are smaller at birth 

when compared to -advantaged white children. 248 It has been hypothesized, that smaller babies 

result from (1) their failure as foetus’ to thrive in utero and reach their genetic potential, (2) their 

mothers’ failure to thrive during their life and reach their genetic potential, which in turn impose 

uterine restraint on their babies and / or (3) generations of deprivation resulting in the 

evolutionary selection of a thriftier genotype and phenotype. 2 In response to undernutrition in 

early development, the foetus is programmed to reduce its demand for nutrients, and although 

adaptation may be beneficial for short-term survival, it has been linked to permanent and 

negative changes in the body’s structure, physiology and metabolism. 13,196 Lower birthweight 

babies have lower bone mass and less muscle mass, both of which are reported to persist for life, 

and are thought to be mediated by changes to the hypothalamic-pituitary-adrenal axis and the 

two associated bone mass-influencing hormones: growth hormone and cortisol.  
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The foetal origins hypothesis is addressed in Chapter 2 (literature review), Chapter 4 

(publication) 321 and Chapter 6 (discussion and conclusions). 

 

(2) Peak bone mass (PBM) 

 

Bone mass at any point in life reflects the balance between the activity of bone-resorbing 

cells (osteoclasts) and bone-forming cells (osteoblasts), with osteoclasts being more active 

during the process of ageing and osteoblasts being more active during the years of growth and 

development. 266 This bone remodelling process is regulated by the complex interaction of 

endogenous factors (genetic) and exogenous factors (environmental) which affects bone cell 

function both directly and indirectly by altering the production of local and systemic hormones 

that modulate bone cell activity. 264 The bone size and mass attained in childhood and 

adolescence is an important determinant of lifelong skeletal health and is critical in determining 

the individual’s fracture risk in later life. 206 The greater the peak bone mass achieved at the end 

of the bone-growing years, the greater the protection against the inevitable bone loss and the risk 

of osteoporosis in later life. The vast majority of adult bone mass is attained around the time of 

puberty. 279 Data from the Australian-based Saskatchewan Pediatric Bone Mineral Accrual Study 

Peak estimated total body PBM was reached by 18.8y in females and 20.5y in males, given the 

evidence that bone area plateaus around 5 years after peak height velocity and bone 

mineralization, around 7 years. 27 While much is understood about bone loss and its mechanisms, 

less is known about optimising the attainment of PBM, and the complex interaction of genetic 

factors (heredity, body size, gender) and environmental factors (nutrition, physical activity, 

pubertal development) on bone acquisition during the period from birth through puberty to 
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adulthood. 56,122,230 More longitudinal data are required to advance our current knowledge and 

understanding of the factors affecting the acquisition of bone between birth to puberty, especially 

in different ethnic groups from developed and developing countries. 

 

This study forms part of the greater longitudinal Bt20 study which aims to provide these 

data. This thesis presents cross-sectional data on the bone size and bone mass status of 10 year 

old children, as they entered adolescence and are covered in Chapter 2 (literature review), 

Chapter 3 (publications) 320 and Chapter 6 (discussion and conclusions).  



Bone mass and bone size in 10 year-old South African children 

 

Page 6 of 233 

 

 

CHAPTER 2 - Literature review 

 

Measuring and interpreting bone mass and bone size in children 

 

Over the years, paediatric studies have measured bone mass using various scanning 

technologies and processing software and established paediatric normative datasets. These 

datasets served both clinical and research applications in the diagnosis and monitoring of 

diseases affecting bone as well as studying the effect of genetic and environmental factors on 

bone mineralization and skeletal growth. The different techniques have included 

radiogrammetry, photon absorptiometry, single-beam photon absorptiometry (SPA), dual-beam 

photon absorptiometry (DPA), computed tomography, neutron activation, dual energy x-ray 

absorptiometry (DXA), quantitative computed tomography (QCT), quantitative ultrasound 

(QUS) and magnetic resonance imaging (MRI). Of these, DXA is the most widely used 

technique for the measurement of bone mass in paediatric populations 32,156 and recommended by 

the International Society for Clinical Densitometry (ISCD) as the preferred method of measuring 

BMC and BMD in children. 119 

 

DXA can acquire data from the whole body (head, arms, ribs, thoracic and lumbar spine, 

pelvis, legs) as well as from specific skeletal regions of interest such as the hip (total hip and 

femoral neck), spine (lateral, midlateral, and anteroposterior spine) and forearm (radius and 

ulna). 32,261,300 DXA measures bone mineral content (BMC, g) and bone area (BA, cm2) from 
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which areal bone mineral density (BMD or aBMD, g/cm2) is calculated (BMD = BMC ÷ BA),  

32,36  

  

 The advantages of using DXA technology is that it measures quickly (2-3 minutes per 

site), and its radiation doses are low (0.001-0.005 mSv), both of which are particularly important 

for children. Comparative radiation doses are tabulated below.  

 

Table 2-1 Examples of comparative radiation doses to which people are exposed. 

Radiation dose  Exposure 

<0.005 mSv The radiation dose received by a DXA scan 

0.01 mSv The radiation dose received by a patient having his/her teeth x-rayed 

0.01 mSv The radiation dose received by a patient having his/her lungs x-rayed 

2 mSv 
The annual dose of cosmic radiation received by a person working in an 

aeroplane 

2.4 mSv 
The global background radiation is measured at 2.4 mSv and South Africa's 

average is close to this. 

4 mSv 
The average annual radiation dose for South Africans caused by indoor radon, 

X-ray examinations etc. 

100 mSv The highest permitted dose for a radiation worker over a period of five years. 

1000 mSv 
The dose which may cause symptoms of a radiation sickness (e.g. tiredness and 

nausea) if received within 24 hours. 

6000 mSv The dose which may lead to death when received all at once. 

Source: http://www.necsa.co.za/Necsa/Nuclear-Technology/Nuclear-Waste-442.aspx, accessed 

24-Apr-2012) 

 

DXA is easy to use, patient-friendly and less costly than most other methods making it 

widely available and more accessible to patients. 230 In addition, its measurements of BMC and 
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BA are accurate and precise. BMC measurements are within 7-9% of BMC as determined by ash 

weight, the current gold standard for measuring BMC in the laboratory, 136,326 as well as 

concurring with Quantitative Computed Tomography (QCT) which measures true density in 

mg/cm3 of either cortical or trabecular bone. 90 BMD measurements have been shown to be 

predictive of future fracture risk in adults 36,261 and children. 56,120,121 In children, for each 

standard deviation decrease in size-adjusted BMC, the risk of fracture increased by 89%, 56 

which is comparative to the risk of fracture in adults which increases 1.5-2.5 times for each 

standard deviation decrease in BMD (or 10-12% BMD in the spine). In children, a smaller 

skeleton relative to overall body size, or being overweight, increases the risk of fractures than in 

those of health body weight. 56,120 The relationship between BMD and risk of fracture is stronger 

than the relationship between cholesterol and risk of heart attack, and as strong as the 

relationship between blood pressure and risk of stroke. 202 BMD however does not fully explain 

bone strength. Since 50-75% of fragility fractures occur in women who have BMD within the 

normal range, the prediction of fracture is improved by measuring additional parameters together 

with BMC to better account for bone strength. 76,185 

 

 There are disadvantages in using DXA to measure bone mass. The first concern is related 

to variability in BMD measurements between different types of machines, even those made by 

the same manufacturer. Measured BMDs between different machines (by type or location) 

cannot be accurately compared due to machine and software variability, 168 over and above 

technologist-measuring and physician-interpretive variability, a limitation applicable to most 

medical technologies.  
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 The second main concern in using DXA to measure bone mass, particularly in children is 

that it remains a two-dimensional projection technique of a three-dimensional structure. The 

third dimension of bone depth determining volume cannot be measured as it lies in the same 

direction as the x-ray beam. What this means is that the larger of two bones, each known to have 

the same volumetric BMD (for example 1g/cm3), will be measured by DXA to have a greater 

areal (aBMD) (See Figure 2-1).  

 

Figure 2-1. The larger of two bones, each known to have a volumetric BMD of 1g/cm3, will 
be measured by DXA to have a greater areal BMD (2 g/cm2 vs. 1 g/cm2)  

 Cube A Cube B 
Dimensions (cm) 
 
 
 
 
 

1 x 1 x 1 cm 
 
 
 

2 x 2 x 2 cm 

BA (cm2) 1 4 
BMC (g) 1 8 
aBMD (g/cm2) 1 2 
Source: Binkovitz and Henwood (2007) 32 
 

Another disadvantage to DXA is that it is a composite measurement of bone, lean- and fat 

tissue mass. Body composition can confound results. This is particularly relevant given the 

increasing prevalence of obesity. 

 

DXA measurements (BMC and BA) are therefore directly dependent on size-related 

variables such as body size (height), bone size (short bones or narrow bones), 227 and indirectly 

dependent on age of the child, ethnicity and body size and composition. 9,333 In adults, this is not 

of significant concern since bone volume remains fairly constant but is of major concern to those 

working with children as they undergo great changes in body and skeletal size during growth 
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which is not uniform in all dimensions. 111,148 Thus, the comparison, analyses and interpretation 

of BMC and BMD in children need to be corrected for differences in bone or body size so that 

BMD is not underestimated in smaller children and overestimated in larger ones.  

 

A number of statistical ways to address the effect of size on BMC and BMD have been 

proposed. Each manufacturer (Hologic, Lunar and Norland) has developed for each scanner its 

own normative database, each making use of their own combination of physiological size-related 

variables (race/ethnicity, gestational age, weight, height, maturity, and / or surface area) for 

which their data should be corrected. Binkovitz et al. (2007) 32 have summarized how these 

databases differ (Table 2-2). The table shows just how complex, confusing and potentially 

erroneous the interpretation of DXA can be. 178  
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Table 2-2. Normative paediatric DXA databases (C/B/H/A/O Caucasian/black/Hispanic/ 
Asian/other, GA gestation age, (L) longitudinal study, SA surface area) 

Source: Binkovitz et al. (2007) 32 
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There is no standard way to correct BMC or areal BMD data for changes in skeletal size; 

BMC and BMD have been corrected for varying combinations of body size (height, weight), 

bone size, bone area, pubertal stage, skeletal maturity, and body composition (BMI, lean body 

mass). 115 In the case of children, BMC or BMD data may be expressed as Z-scores. 119,343 (See 



Bone mass and bone size in 10 year-old South African children 

 

Page 13 of 233 

 

Table 2-3 below). A Z-score is a standardized score that indicates how many standard deviations 

a data point is from the population mean. A z-score is calculated by subtracting the population 

mean from the individual score, and dividing the difference by the population standard deviation. 

Z is negative when the raw score is below the mean and positive when it is above. BMC or areal 

BMD Z-scores less than or equal to 2.0 in children and adolescents are defined as low bone 

mineral content or bone mineral density for chronologic age, by the The Society for Clinical 

Densitometry (ISCD). 119 

 

The many different methods used, together with a number of factors may influence bone 

mass such as race/ethnicity, growth, nutritional status, lifestyle, and pubertal development, 323 

make the interpretation of uncorrected and corrected DXA data, and the objective comparisons 

between studies, populations and age groups very complex, confusing and potentially erroneous. 

32  
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Table 2-3. Different statistical corrections used to adjust DXA measurements for bone size 

and / or body size 

Measure Statistical corrections Reference 

BA Height Buison et al. (2005) 44 

BMC Weight Leonard et al. (2004) 179 

 Height Patel et al. (1992); 247 Zemel et al. (2010) 343 

 Weight, height & age Bedogni et al. (2002) 30 

 Bone area Horlick et al. (2000) 142 

 Bone area & height Mølgaard et al. (1997) 227 

 Bone area, weight & height Prentice et al. (1994) 261 

 BMC / height Cundy et al. (1995); 67 Ellis et al. (2001) 88,89 

BMD(=BMC/BA) Weight McCormick et al. (1991) 208 

 Height Mølgaard et al. (1997) 227 

 Weight & height Prentice et al. (1994) 261  

 Lean body mass Robinson et al. (1995) 276 

 Body mass index Luckey et al. (1989) 197 

 BMD / (height) Cundy et al. (1995) 67 

BMAD See Table 2-4. Katzman et al. (1991) 161; Carter et al. (1992) 51 

WB BMC Stepwise corrections:- 

(1) BMC adjusted for BA 

(2) BA adjusted for height 

(3) Height adjusted for age 

Mølgaard et al. (1997) 227 

WB BMD Stepwise corrections:- 

(1) BMD or BMC/age 

(2) height/age, then 

(3) LTM/height, then  

(4) BMC/LTM ratio for 

height 

Högler et al. (2003) 137 

WB or LS BMC LTM for height Z-scores 

BMC for LTM Z-scores 

Crabtree et al. (2003) 65 



Bone mass and bone size in 10 year-old South African children 

 

Page 15 of 233 

 

To address the confounding effect of bone size on bone mass Katzman et al. (1991) 161 

and Carter et al. (1992) 51 proposed measurements less dependent on size by mathematically 

converting BMC to a three-dimensional estimate of volumetric BMD (bone mineral apparent 

density (BMAD)). Bones were assumed to be shaped as cubes, and the formulae in Table 2-4 

were applied to calculate BMAD.  

 

Table 2-4. Formulae used to calculate BMAD 

Site Formula 

Whole body BMAD = BMC / (BA2height) 

Mid-forearm BMAD = BMC / BA2 

Femoral neck BMAD = BMC / BA2 

Lumbar spine (L1-L4) BMAD = BMC / BA1.5 

 

Kröger et al. (1992) 171 applied a similar concept assuming bones (vertebral bodies, 

femoral shaft and neck) to be shaped as cylinders and applied the formula 

BMAD=(BMC)(4/[π{bone width}]). Similarly, Lu et al. (1996) 195 assumed the femoral neck, 

mid-third of the femoral shaft, and the four lumbar vertebral bodies to be cylinders and used 

bone width (d) and height (h) to calculate bone volume: [(π(d/2)2 x h]. All methods however 

calculate coefficients by assuming bones are shaped as cubes or cylinders which do not 

necessarily hold true in different ethnic groups, ages and sex. 261 

 

 Prentice et al. (1994) 261 proposed a method that calculated population-specific power 

coefficients (PCs) for specific skeletal sites. Power coefficients linearise the relationship between 

BMC and BA and allow BMC to be custom-corrected for size for each ethnic and sex group and 

each skeletal site.  
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 Given our study was conducted in two ethnic groups (black and white), both sexes, and in 

children and their parents, the greatest confounder of bone size needed to be addressed. 

Therefore, the first concern of this thesis was to study the effect of correcting BMC for various 

combinations of height, weight, BA or BAPC in black and white children, and with appropriately 

justified corrections, explore the associations of BMC and BA between black and white children 

and their parents. The different methods which were used to correct BMC for size are addressed 

in Chapters 3 and 5 (publications) and Chapter 6 (discussion and conclusion). 
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Black-white ethnic differences in bone mass and bone size 

 

Introduction 

 

This literature review summarises black-white ethnic differences or similarities that have 

been found in bone mass in children and adults. Bone mass, which may be reported as BMC, 

BMD, or BMAD, has been reviewed at the whole body, the femoral neck, lumbar spine and / or 

forearm, measured using different technologies (DXA, SPA and QCT), in females, males or both 

genders combined, spanning the age range from 0-65y and from different parts of the world. 

Table 2-5 to Table 2-8 presents studies which have reported black-white ethnic differences or 

similarities. Data shaded in yellow highlight those measurements which were greater in blacks 

than whites (B>W). Data shaded in red highlight those measurements which were greater in 

whites than blacks (W>B). The studies are presented per skeletal site studied, in alphabetical 

order of author, and includes whether DXA-, or SPA-derived BMC or BMD was corrected for 

size. Corrections for size were not required by QCT-derived bone density (BD). The tabulated 

literature summary is followed by a summary of common findings and by a discussion of what 

are known to be favourable and unfavourable factors contributing to black-white differences in 

bone mass, and what is known about the bone mass profile of South African women and children 

compared to their white counterparts.  
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Table 2-5. Summary of studies which have explored ethnic differences at the whole body (in alphabetical order of author) 

Reference N M/F Age Country Measure Result 
unadjus
ted for 

size 

Result adjusted for size 
 

Children & adolescents 
 

Bachrach et al. (1999) 10 29 F 9-11y USA BMC 
BMD 

B>W 
B>W 

- 
- 

 25 M 9-11y  BMC 
BMD 

B=W 
B=W 

- 
- 

        
Ellis et al. (1997) 89 245 F 3-18y USA BMC - B>W (age, wt & ht) 
        
Ellis et al. (1997) 88 297 M 3-18y USA BMC - B>W (age, wt & ht) 

        
Horlick et al. (2000) 142 336 M&F 6-11y USA BMC - B>W (BA, age, wt & ht) 
        
Micklesfield et al. (2007) 220 156 F 9y SA BMC B=W B>W (age, wt & ht) 
 180 M 9y  BMC B=W B>W (age, wt & ht) 
        
 172 F 9y USA BMC B>W B>W (age, wt & ht) 
 239 M 9y  BMC B>W B>W (age, wt & ht) 
        
Nelson & Barondess (1997) 
231 

773 M&F 9y USA BMC B>W - 

     BMD B>W - 
        
Wang et al. (1997) 329  39 F 10.2 ± 1.1y 1 

 
USA BMC 

BMD 
BMAD 

B=W 
B=W 
B=W 

B>W (wt, ht, diet & activity)    
B=W (wt, ht, diet & activity)    
B=W (wt, ht, diet & activity)    
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Reference N M/F Age Country Measure Result 
unadjus
ted for 

size 

Result adjusted for size 
 

 81 F 13.5 ± 1.8y 2 
 

 BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity)    
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 54 M 10.9 ± 1.3y 1  BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 

 65 M 14.4 ± 2.4y 2  BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

        
Adults

        
Barondess et al. (1997) 25,25 79 M 33-64y USA BMC B>W B>W (BMC/ht) 
        
Chantler et al. (2011) 53 427 F 18-45y SA BMD B=W 

(age) 
Not-shown 

        
Ettinger et al. (1997) 92 402 M&F 25-36y USA BMD B>W B>W (clinical & biochemical 

variables) 
        
Henry & Eastell (2000) 134 103 M&F 20-37y UK BA B=W - 
     BMD B>W - 
        
Wang et al. (1997) 329 109 F 20.2 ± 3.2y 3 

 
 

 BMC 
BMD 

BMAD 

B>W 
B>W 
B>W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
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Reference N M/F Age Country Measure Result 
unadjus
ted for 

size 

Result adjusted for size 
 

 75 M 20.3 ± 3.1y 3 
 

 BMC 
BMD 

BMAD 

B>W 
B>W 
B>W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

1Pre-/early pubertal; 2Pubertal; 3Mature. Data shaded in yellow highlight those measurements which were greater in blacks than whites 

(B>W). 
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Table 2-6. Summary of studies which have explored ethnic differences at the femoral neck (in alphabetical order of author) 

Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for size 
 

Children and Adolescents 
        
Bachrach et al. 
(1999) 10 

29 F 9-11y USA BMC 
BMD 

B>W 
B>W 

- 
- 

 25 M 9-11y  BMC 
BMD 

B=W 
B>W 

- 
- 

       
Bell et al. (1991) 31 53 F 7-12y USA BMD B>W B>W (wt, age) 
 53 M 7-12y  BMD B>W B>W (wt, age) 
       
Wang et al. (1997) 
329 

39 F 10.2 ± 1.1y1 
 

USA BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B>W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity)     

 81 F 13.5 ± 1.8y2 
 

 BMC 
BMD 

BMAD 

B=W 
B=W 
B>W 

B=W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 54 M (10.9 ± 
1.3y1 

 BMC 
BMD 

BMAD 

B=W 
B=W 
B>W 

B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 

 65 M 14.4 ± 2.4y2  BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 
Adults 

        
Aspray et al. 
(1996) 8 

134 F 44+y UK & 
The 

Gambia 

BMC 
BMD 

?B=W 
?B=W 

?B=W (age, ht & wt) 
?B=W (age, ht & wt) 
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Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for size 
 

        
Chantler et al. 
(2011) 53 

427 F 18-45y SA BMD B>W (age) B>W (all combinations of age, 
wt, fat mass, waist 
circumference, ht, VAT & 
FFSTM) 

        
Daniels et al. 
(1995) 70 

364 F 20-64y SA BMD - B>W (wt & ht) 

       
Daniels et al. 
(1997) 69 

294 F 20-64y SA BMC 
BMD 

BMAD 

 
 

B>W 

B>W (wt, ht & BA) 
B>W (wt, ht) 
 

       
Henry & Eastell 
(2000) 134 

103 M&F 20-37y UK BA 
BMD 

BMAD 

B=W 
B>W 
?B=W 

- 
- 
- 

       
Wang et al. (1997) 
329 

109 F 20.2 ± 3.2y3  BMC 
BMD 

BMAD 

B>W 
B>W 
B>W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 75 M 20.3 ± 3.1y3 
 

 BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

1Pre-/early pubertal; 2Pubertal; 3Mature. VAT visceral adipose tissue, FFSTM fat-free soft tissue mass. 
Data shaded in yellow highlight those measurements which were greater in blacks than whites (B>W). Results preceded by a ‘?’ were 
not explicitly reported, but deduced. 
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Table 2-7. Summary of studies having explored ethnic differences at the lumbar spine (in alphabetical order of author) 

Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for size 
 

Children & Adolescents 
        
Bachrach et al. 
(1999) 10 

29 F 9-11y USA BMC 
BMD 

B=W 
B>W 

- 
- 

 25 M 9-11y  BMC 
BMD 

B=W 
B=W 

- 
- 

        
Bell et al. (1991) 31 53 F 7-12y USA BMD B>W B>W (wt, age) 

 53 M 7-12y  BMD B=W B>W (wt, age) 
        

Gilsanz et al. (1998) 
114 

294 M&F 8-18y USA Volumetr
ic BD 

B>W N/A since adjustment for size 
not needed for QCT-derived 
volumetric bone density. 

        
Southard et al. (1991) 
299 

218 M&F 1-19y USA BMD - B=W (wt & tanner) 

       
Wang et al. (1997) 329 39 F 10.2 ± 1.1y1 

 
USA BMC 

BMD 
BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity)     

 81 F 13.5 ± 1.8y2 
 

 BMC 
BMD 

BMAD 

B=W 
B=W 
B=W 

B=W (wt, ht, diet & activity)     
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 54 M 10.9 ± 1.3y1  BMC 
BMD 

BMAD 

B=W 
B=W 
B>W 

B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 
B>W (wt, ht, diet & activity) 

 65 M 14.4 ± 2.4y2  BMC 
BMD 

B=W 
B>W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 



Bone mass and bone size in 10 year-old South African children 

 

Page 24 of 233

Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for size 
 

BMAD B>W B=W (wt, ht, diet & activity) 
        

Adults 
        
Aspray et al. (1996) 8 370 F 44+y UK & 

The 
Gambia 

BMC 
BMD 

W>B 
W>B 

W>B (age, ht & wt) 
W>B (age, ht & wt) 
 

        
Chantler et al. (2011) 
53 

427 F 18-45y SA BMD B=W (age) W>B (combinations of age, fat 
mass, waist circumference & 
ht) 

        
Daniels et al. (1995) 
70 

364 F 20-64y SA BMD B>W B=W (wt & ht) 

        
Daniels et al. (1997) 
69 

294 F 20-64y SA BMC 
BMD 

BMAD 

 
 

B>W  

B=W (wt, ht & BA) 
B=W (wt & ht) 
  

        
Henry & Eastell 
(2000) 134 

103 M&F 20-37y UK BA B=W - 

     BMD B>W - 
     BMAD B>W - 
        
Wang et al. (1997) 329 109 F 20.2 ± 3.2y3 

 
 

 BMC 
BMD 

BMAD 

B>W 
B>W 
B>W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 

 75 M 20.3 ± 3.1y3 
 

 BMC 
BMD 

B=W 
B=W 

B=W (wt, ht, diet & activity) 
B=W (wt, ht, diet & activity) 
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Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for size 
 

BMAD B=W B=W (wt, ht, diet & activity) 
1Pre-/early pubertal; 2Pubertal; 3Mature.  
Data shaded in yellow highlight those measurements which were greater in blacks than whites (B>W). Data shaded in red highlight 
those measurements which were greater in whites than blacks (W>B). 
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Table 2-8. Summary of studies which have explored ethnic differences at the forearm (in alphabetical order of author) 

Reference n M/F Age Country Measure Result 
unadjusted 

for size 

Result adjusted for 
size 

 
Children & Adolescents 

        
Bell et al. (1991) 31 53 F 7-12y USA BMD B>W B>W (wt, age) 

 53 M 7-12y  BMD B=W B>W (wt, age) 
        

Li et al. (1989) 183  M&F 1-6y  BMC B>W  
        

Lohman et al. (1984) 191     BMC 
BMC/BW 

B>W 
B>W 

 

        
Patel et al. (1992) 247 580 F 6-20y SA BMC 

BMC/BW 
W>B 
W>B 

B>W (ht) 
B>W (ht)? 

  M 6-20y  BMC 
BMC/BW 

W>B 
W=B 

B=W (ht) 
B=W (ht) 

        
Prentice et al. (1990) 260 377 M&F 0-36m UK  

& The 
Gambia 

SPA-
derived 
BMC 

W>B W>B (ht, wt, bone 
width) 

        
Slaughter et al. (1990) 
294 

108 F 8-18y USA BMD B>W  

        
Adults

        
Aspray et al. (1996) 8 386 F 44+y UK & 

The 
Gambia 

BMC 
BMD 

W>B 
W>B 

 

W>B (age, ht & wt) 
W>B (age, ht & wt) 
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Daniels et al. (1995) 70 364 F 20-64y SA BMD B=W B=W (wt & ht) 
        
Daniels et al. (1997) 69 294 F 20-64y SA BMC 

BMD 
BMAD 

- 
- 

B=W 

B=W (wt, ht & BA) 
B=W (wt & ht) 
  

1Pre-/early pubertal; 2Pubertal; 3Mature.  
Data shaded in yellow highlight those measurements which were greater in blacks than whites (B>W).  
Data shaded in red highlight those measurements which were greater in whites than blacks (W>B). 
Results preceded by a ‘?’ were not explicitly reported, but deduced.
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From the above summary of the various studies conducted which investigated black and 

white ethnic differences in SPA-, DXA- and QCT-derived bone mass at different ages, there is 

evidence that bone mass before and after adjusting for body size differences (if applicable) has 

been found to be equivalent or greater at all sites and at all ages in African Americans than 

whites. Studies of black-white differences in other countries are much fewer and thus it is 

difficult to comment on whether these findings can be generalized across countries. 

 

At the hip, a superior bone mass was evident in both the black population from South 

Africa and in African Americans both before and after making appropriate corrections for 

differences in size between black and white ethnic groups.  

 

In South Africa, BMD at the proximal femur in black 20-64y old premenopausal, 

perimenopausal and postmenopausal women has been found to be respectively 7%, 10%, and 

13% greater than in their white peers, after adjusting for differences in height and weight. 70 

Limited research had been done on children in South Africa prior to 2000 when data collection 

for this thesis began. Since then, greater BMD at the hip has also been reported. 212,222  

 

In the US, the difference in femoral neck BMD between African American and white 

females in late premenopausal and early perimenopausal period has been reported to be of a 

similar magnitude (6–9%) to that reported in black and white South Africans, after selected 

anthropometric and lifestyle factors (which included weight) were adjusted for. 100 Greater bone 

mass at the hip has also been reported in African American children of all ages, when compared 

to white children. 31,92,183,208,329 
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Given that bone mass is greater at the hip in blacks than whites, a similar ethnic 

difference would be expected at the lumbar spine and other skeletal sites, as there is 90-97% 

concordance of the WHO osteoporosis classification between the hip and lumbar spine using 

DXA derived T-scores in the same subject. 194 This is true at the lumbar spine in most US studies 

of adults, in which a greater bone mass has indeed been observed in African American adults 

99,100,208,339 when compared to US white peers both before and after correcting for size. BMD was 

7-12% 100 and 18% greater in African Americans and 11% higher in Somali immigrants living in 

the USA, than white women. 219 In African American children compared to their white US peers, 

both greater 10,31,208,219,329 and similar bone mass 10,31,69,70,143,183,257,277,299,329,339 have been reported 

before and after correcting for differences in size. 

 

 In South Africa, the results are less conclusive. In one adult study, BMD at the lumbar 

spine was similar in premenopausal, perimenopausal and postmenopausal black and white 

women after adjusting for differences in height and weight, 70 while in another, BMD at the 

lumbar spine was lower after correcting for ethnic differences in body composition. 53 In 

children, a greater BMC at the lumbar spine has been observed in prepubertal 9 year old South 

African girls before and after correcting for differences in height and weight 212 and age. 220  

 

Very few other studies have been conducted in Africa, however in The Gambia black 

Gambian women have been shown to have similar or lower BMD to white British women after 

correcting for differences in body size. 53 Lumbar spine BMC was 31% lower (and 24% after 

correcting for age, height and weight) than in white British women. 8 
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At the forearm, black Gambian women were shown to have 16% less BMC at the 

midshaft of the radius than in their white British counterparts (and 10% less after adjustment for 

age, height, and weight). 8 No differences in forearm bone mass between South African blacks 

and whites were found before or after corrections. 70  

  

A study in children aged 0-36 months reported a greater BMC in 134 British children 

(123 Caucasian, 11 mixed, mostly Eurasian) when compared to 243 Gambian children both 

before and after correcting for height, weight and bone width. 261 

 

Factors influencing bone mass in black populations 

 

Black-white differences in bone mass at the hip especially, have been proposed to result 

from differences in the macro- and microarchitecture of bone, as a result of 

biological/physiological and social/behavioural factors directly or indirectly influence bone.  

 

Macroarchitecture of the hip 

 

In relation to the macroarchitecture of the hip, data from the proximal femur analyzed 

with a hip structural analysis program, have shown that both South African and African 

American women have narrower marrow cavities, thicker cortices, and lower buckling ratios 

(ratio of outer radius to cortical thickness), yet non-significant differences in outer bone 

diameter. 232,233,290 Estimates of greater bone strength in the neck were also reported. 222,233 

Interestingly, direct comparisons between South African blacks and African Americans and their 
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white counterparts showed intercountry black-black differences to be less than intracountry 

black-white differences, 233 suggestive of similar genetic influences. Support for this hypothesis 

comes from studies which suggest that the South African black population and the African-

American population (originating from West Africa) had similar genetic pools, as the South 

African Bantu-speaking ethnic groups migrated from West Africa. 93,233,238 

 

Microarchitecture of the iliac crest 

 

At the iliac crest, the microarchitecture as determined from bone histomorphometric 

analyses, has been established to be better in black South Africans and African American adults 

and children than their white peers in the few studies in which it has been assessed. Blacks had 

thicker cortical bone, have less porous cortices, greater endocortical wall thickness, and greater 

osteoid thickness. Adults in addition had fewer canals in the cortical bone and thicker trabeculae 

than whites. 244,286-288  

 

Socioeconomic status (SES) 

 

There are a number of controllable lifestyle factors known to directly or indirectly 

positively influence bone mass, key of which is socioeconomic status (SES).  

 

South Africa is a country classified by the World Bank as a developing country of upper-

middle income status (http://data.worldbank.org/country/south-africa, accessed 23-Dec-2011). In 

2011, South Africa officially joined the group of top emerging markets, now known as BRICS 
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(Brazil, Russia, India, China and South Africa). Despite this development status, the vast 

majority of South Africans remain poor and remain socioeconomically and environmentally 

disadvantaged compared to whites, with regards to income, education, employment, property 

ownership and access to health care. 80 As per Bloomberg 

(http://www.bloomberg.com/apps/news?pid=newsarchiveandsid=aoB7RbcZCRfU, accessed 23-

Dec-2011), a quarter of the population is estimated to be unemployed, and as per the United 

Nations Development Programme (http://hdr.undp.org/en/media/HDI_2008_EN_Tables.pdf, 

accessed 23-Dec-2011), they survive on less than the equivalent of US $1.25 a day. There is a 

strong correlation between SES and health; the lowest socioeconomic groups having higher 

deaths and illness rates. 157 SES has also been linked to bone mass. For example, data from the 

UK’s the Avon Longitudinal Study of Parents and Children (ALSPAC), show social position of 

mothers in pregnancy was related to bone area and bone mass of children aged 9.9 years, which 

was mediated by opposing actions of height and weight. 55 Norris et al. (2008) reported 

indicators of SES such as social support and disposable income as ascertained by caregiver’s 

marital/cohabiting status and the presence of television in the home, were associated with whole 

body BMC in black and white pre-early pubertal children of the BTT cohort through its impact 

on BA. 237 Chantler et al. (2011) suggested socioeconomic and lifestyle factors of black and 

white South Africans contribute to BMD by different magnitudes. 53  

 

Fat body mass (FBM) / adiposity 

 

The SES-adipose relationship is complex, and whether SES positively or negatively 

influences adipose tissue seems to depend on individual countries and on their levels of SES 
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development, as well as whether the studies were conducted in adults or children. It is generally 

accepted that in women and men from countries with medium and low levels of SES 

development, such as South Africa, high-SES is associated with greater adiposity, particularly in 

urban areas. 98,211,301 Rapid urbanisation and the associated nutrition transition are key 

determinants of this relationship. In contrast, countries with a high level SES development, such 

as the US, low-SES is associated with higher adiposity in both adults and children. 292,332 There 

are however always exceptions such as high-SES African American adolescent girls for 

examples, are more likely to be overweight than their medium-SES counterparts. 332 

 

Both South African black and African American populations have higher obesity rates, 

greater peripheral fat and less visceral fat than whites. 162,263 According to the International 

Association for the Study of Obesity [http://www.iaso.org/iotf/obesity, accessed 31-Oct-2011] 

and Puoane et al. (2002), 263 the obesity rates in South Africa are of the highest in Africa with 

around 27% of women and 9% of men being obese (BMI ≥30kg/m2), 57% of women and 29% of 

men, 18% of girls and 14% of boys being overweight or obese (BMI ≥25kg/m2).  

 

FBM is generally considered to have a positive influence on bone mass, and be protective 

against osteoporosis in both adults and children. DXA and pQCT data from ALSPAC showed fat 

mass to be a positive predictor of bone mass, independent of LBM. 57,283,312 Fat mass was 

suggested to stimulate radial bone growth by increasing the rate of periosteal growth. 57 

 

Potential mechanisms proposed to mediate the fat-bone relationship include the 

mechanical loading of the skeleton and the endocrine activities of adipose tissue. Adipocytes 
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secrete fatty acids and peptide hormones or cytokines, known as adipocytokines (leptin, 

adiponectin, resistin and visfatin). 270 These hormones have been linked to both bone formation 

and bone resorption. The latest systematic review and meta-analysis showed leptin to be 

positively associated to BMD and adiponectin, negatively associated with BMD. 34 The nett 

effect of adiposity on bone mass, and on the growing skeleton however remains controversial. 50  

 

Adiposity has also been shown to negatively influence bone mass, and that increased 

FBM has also been associated with low total BMD and BMC. 50,278 In white and African 

American adults, BMD was inversely related to abdominal visceral adipose tissue (VAT) and 

subcutaneous adipose tissue (SAT) after adjustment for LBM. 162 Associations between LBM or 

FBM and bone mineral to vary depending on the bone site study, the bone indices used, the 

technical problems with scanning technique, the sample size, and statistical analyses employed. 

57,305 It has also been suggested that these results stem from total and central adiposity (visceral 

adipose tissue, VAT, and subcutaneous adipose tissue, SAT) which influence bone differently. In 

prepubertal children, Pollock et al. (2011) reported total body BMC to be 4% lower in 

overweight children with pre-diabetes than those without pre-diabetes, after controlling for sex, 

race, height, and weight. 256 Whereas total fat mass had a positive association with total body 

bone mass, the central adiposity measurements of abdominal visceral adipose tissue (VAT) and 

subcutaneous adipose tissue (SAT) had negative relations with total bone mass, supporting that 

central, rather than total, adiposity may be deleterious for developing bone. In adolescents and 

young adult women, Gilsanz et al. (2009) 112 reported VAT to negatively influence QCT-

measured bone structure and strength of the midshaft of the femur, though SAT positively 
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influenced the same parameters. Much research is still needed to fully understand the pattern of 

adipose tissue deposition and its influences on bone mass. 

 

Physical activity / weight-bearing / mechanical loading 

 

 There is a strong association between SES and participation in physical activity. SES may 

mediate the relationship that has been found between race/ethnicity and physical activity which 

in turn mediates the relationship between race/ethnicity and disease. 66,165 In the US, 

socioeconomically disadvantaged groups are least likely to participate in physical activity, 317 the 

lack of which is strongly associated with being overweight or obese in adults. 172,291 Indeed, 

black South African and African American adults and children are less physically active, and 

more obese than their white counterparts. 75,172,212,213,259,291 Weight-bearing physical activity has 

been positively correlated with bone BMD outcomes from childhood onwards. 135,167,212,214,224,237  

A study in South African women of black African or mixed ancestral origin from 

socioeconomically disadvantaged backgrounds showed that the influence of physical activity on 

adult BMD was most influential between the ages of 14 and 21 years. 224 Data from longitudinal 

studies spanning between 6.5 months and 6 years support that physical activity is beneficial to 

bone mineral accrual throughout the bone-growing years. 45 The bone response to physical 

activity depends on the child’s maturity level, sex, skeletal site measured, and intensity and 

length of the exercise intervention. 39,45 The most significant changes to bone mass and bone 

strength have been observed in response to weight-bearing exercise during the pre- and 

peripubertal periods 45,228 The more intense the exercise, the longer its duration, the greater the 

osteogenic response and bone mass accrued. 45 The endocrine changes and rapid bone growth 
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associated with the pre- and peripubertal periods, support bone adaptation in response to weight-

bearing exercise more so than during adolescence or adulthood. 45 That said, McVeigh et al. 

(2004) however found that 9-year old black children of the Bt20 cohort were significantly less 

physically active than their white counterparts, and there was no association between the level of 

physical activity of black children and their bone mass. 212 

 

Greater weight-bearing has been proposed to explain the greater femoral neck bone mass 

in black South African women. 69,70 Indeed, black women are of greater body weight, walk long 

distances, carry loads on their heads, babies on their backs; and the men are employed largely as 

labourers. The mechanostat theory proposes that muscles exert the greatest loads on the skeleton 

not just through body weight by dynamic loading of bone. These forces cause bones to adapt by 

altering their strength, to accommodate the load. 106 Mechanical loading has been suggested to 

stimulate bone formation by decreasing apoptosis and increasing the proliferation and 

differentiation of osteoblasts and osteocytes, 87 and so protect against bone loss and osteoporosis. 

This is one mechanism through which greater body weight and lean mass are proposed to be 

predictive of higher bone mass, lower rates of bone loss and fracture incidence. Lean-, fat- and 

bone mass are highly correlated, which makes the relative contributions of LBM and FBM 

difficult to determine. However, lean body mass (LBM) more so than fat body mass (FBM) have 

been independently linked to bone mass as measured by DXA and pQCT. In children (5-18y), 

LBM was the strongest single predictor for DXA-measured whole body BMC (r2=0.945) and 

lumbar spine BMC (r2=0.887). 65 Högler et al. (2003) also observed close associations between 

LBM and whole body BMC in girls (r=0.975) and boys (r=0.984). 137 Schönau et al. (2002) used 

pQCT and showed a linear muscle-bone relationship between muscle cross-sectional area and 



Bone mass and bone size in 10 year-old South African children 

 

Page 37 of 233

BMC of the radial diaphysis in girls (r=0.89) and boys (r=0.92). 289 In South Africa, LBM was 

the most significant contributor to BMD at the lumbar spine and hip sites in black 

premenopausal women and at the hip in white women. 53 South African black women have less 

LBM than their white counterparts, 82 in contrast to African Americans who have more LBM. 

177,234,265,336 

 

Diet 

 

The socioeconomically disadvantaged tend to consume cheap energy-dense foods that are 

typically low in nutrient density. For black South Africans, a healthy diet is mostly unaffordable. 

309 The resultant diet consumed by adults and children is higher in fat, and lower in macro- and 

micro-nutrients including those needed to directly or indirectly optimize bone growth and 

mineralization: calcium, vitamin D, phosphorus, copper, iron, magnesium, manganese, protein 

and zinc. 118,199,214 Black Bt20 children consume almost half the calcium intake (boys 453 

mg/day; girls 494 mg/day) 214 than white children (boys 822 mg/day; girls 885 mg/day), 214 as 

assessed by using a validated Food Frequency Questionnaire. 199,214 Black South African women 

also consume a diet which is approximately 25% lower in calcium (mean 436 vs. 577 mg/day), 54 

than their white peers. Despite the marked differences in calcium intake between black and white 

children, only a marginal effect of dietary calcium intake on BMC was found. 199,214 African 

American children have been shown to have higher intestinal calcium absorption and lower urine 

calcium excretion than white children, however these parameters have not been studied in the 

cohort. Serum 25-hydroxyvitamin D [25(OH)D] concentrations, the best indicator of vitamin D 

nutritional status, were significantly lower in black children of this cohort than white children 
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when aged 10 years and (93 ± 34 nmol/l vs. 120 ± 37 nmol/l). 258 The following categories were 

used to define vitamin D status: vitamin D deficiency (<50 nmol/), insufficiency (50-74 nmol/l) 

and sufficiency (>75 nmol/l). 138-140 Based on this, the vitamin D status of both groups was 

adequate. In addition to calcium, the dietary intakes of 18 other micronutrients were investigated 

and the means were found to fall below the Recommended Dietary Allowance (RDA). 

Recommended Dietary Allowances (RDAs) are quantities of nutrients in the diet that are 

required to maintain good health in people. Each nutrient has its own RDA, the actual amounts 

of which are required to maintain good health in specific individuals, may differ from person to 

person. Table 2-9 below shows that more than 75% of the Bt20 cohort sampled in 2000, at age 

10 years, had intakes >75% below the RDA for calcium, potassium, zinc, copper, vitamin A, 

riboflavin, vitamin B6, ascorbic acid, pantothenic acid and biotin.200 Given the nutritional profile 

of black South Africans, especially children, a compromised bone mass could be expected. 

 

Table 2-9. Nutrients by quartile according to the percentage of urban black children below 

the Recommended Dietary Allowance (RDA) (n=143) 

% below 

the RDA 

Year 2000 Year 2003 

0-25 Protein, vitamin B12, magnesium, folic acid Folic acid 

26-50 Phosphorus, manganese, vitamin E 
Protein, vitamin B12, magnesium, magnesium, 

potassium, ascorbic acid, vitamin E 

51-75 Energy, iron, thiamine, nicotinic acid 
Energy, iron, phosphorus, thiamine, riboflavin, 

nictonic acid, manganese 

>75 

Calcium, potassium, zinc, copper, vitamin A, 

riboflavin, vitamin B6, ascorbic acid, pantothenic 

acid, bioton 

Calcium, zinc, copper, vitamin A, vitamin B6, 

pantothenic acid, biotin 

 

Source: Mackeown et al. (2003) 199 
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Puberty  

 

Menarcheal age in girls 

 

Mean menarcheal age is considered a measure of socioeconomic standing, health, 

nutritional status of a population, and has also been associated with bone mass. 262 Early 

menarche has been associated with higher bone mass, 110 and a late menarche with low bone 

mass at the forearm, spine and proximal femur as well as an increased risk of fracture. 86,104 The 

relationship has been suggested to be mediated by the extended exposure (as with early 

menarche) or shortened exposure (as with delayed menarche) to endogenous oestrogens. 86 There 

is also evidence supporting that age at menarche and adult BMD are not associated, 37,217 and that 

menarche, body composition and bone mass might all be pre-programmed in utero or near the 

time of birth. 1 

 

SES is linked to the onset of puberty with higher SES being associated with earlier 

menarche. 242 Declines in menarcheal age are attributed to improvements in socioeconomic 

circumstances, and to the associated increase in the percentage of the population that is 

overweight and obese. 152 Menarcheal ages differ between developed and developing countries, 

and between racial/ethnic groups. African Americans girls achieve menarche significantly earlier 

than whites (mean age of 12.1 years for 330 black girls and 12.7 years for 419 white girls), 340 

independent of select social economic factors (family size, family income level, urban 

residence). 340 Regarding South Africa's Bt20 cohort, menarcheal age was similar to that of 

African Americans, but there were no racial/ethnics differences between 188 black and 99 whites 
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girls: 12.4 years (95% confidence interval (CI 12.2, 12.6) in blacks and 12.5 years (95% CI 11.7, 

13.3) for whites, 152 probably because of sample size (n=749 vs. 287). Menarcheal age in both 

black and white South Africans has declined at a rate of 0.5 years and 0.22 years per decade. 152 

From another part of Africa, Gambian girls enter menarche and about of 2 years later than 

African Americans and South Africans; 14.90 years (95% CI 14.52-15.28). Their average rate of 

decline of median menarcheal age was however far more rapid at 0.65 years of age per decade. 

262 

 

Peak height velocity in boys 

 

 Pubertal timing, as estimated by age at peak height velocity (PHV), predicted both 

cortical and trabecular volumetric BMD and previous fractures in young adult Swedish men 

from the population-based Gothenburg Osteoporosis and Obesity Determinants (GOOD) study. 

Late puberty proved a risk factor for low BMD and previous fractures in young adult men. 164 

 

Other factors 

 

A number of additional biological/physiological factors have been documented to 

positively influence bone mass. Those reported in black populations include lower bone 

remodelling rates, 100 longer bone apposition and formation rates, 287,288 more efficient calcium 

economy, 3,69 and genetics. 129,235  
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What was the aim of our study? 

 

In the above section, we have discussed the bone mass profile of black South African 

women and children (where data were available) and compared the findings to their white 

counterparts. We have also reported on ethnic differences between African American and white 

Americans. We have discussed biological/physiological and social/behavioural factors 

previously proposed to influence racial/ethnic differences in bone mass. Black South Africans, 

children in particular, are exposed to a number of environmental factors known to impact 

negatively on bone mass. Given this, it was hypothesized that black children would have lower 

bone mass than white children. In contributing to the understanding of the complex interaction 

between genetic and environmental factors on bone acquisition before and in early puberty in 

black South Africans, the research questions this thesis therefore aimed to answer were:-  

 

1. What proximal factors contribute to bone mass and bone size of 10-year old pre-

and early pubertal, black and white South African children? 

2. Do historical factors contribute to the current status of bone mass? More 

specifically, (1) Do weight and/or length in infancy predict bone mass in 10 year 

old children? (2) If there is a relationship is it because weight and/or length in 

infancy are related to bone size or bone mass? 

3. Is parental bone size and bone mass predictive of bone size and bone mass in 10-

year old children? More specifically, what is the heritability of bone size and bone 

mass? 
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The background and literature review related to the 2nd and 3rd research questions are 

discussed in the following sections: 
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Infant programming of bone mass and bone size 

 

Introduction 

 

Of all the factors affecting bone growth in childhood, perhaps the least investigated is the 

influence of early life on later bone mass and bone size. This section summarises what is 

understood about foetal and infant programming of bone mass and bone size. It begins with 

definitions followed by a description of the Barker’s foetal origins hypothesis, measure of 

compromised intrauterine growth and developing and this is all applicable to bone size and bone 

mass. The literature review includes data from developed countries, adults and children, and 

males and females, as well as various measures of early life and bone mass. Table 2-10 presents 

studies which have linked early life events to bone mass status in children and adults. The studies 

are presented chronological order, and the table includes a comment on whether or not BMC or 

BMD was corrected for size. The tabulated literature summary is followed by a summary of 

common findings and a discussion of how the literature explains these findings. The relationship 

between Barker’s foetal origins hypothesis to the bone mass profile of South African children 

remains an unknown and is addressed by way of a research question, the second of this thesis. 

 

Definition of programming and metabolic imprinting 

 

Environmental stimuli or insults during critical periods of intrauterine development are 

known to result in adaptations that permanently change the structure and physiology of a foetus. 

This is known as programming. 12,196 Programming stimuli may be endogenous (e.g. hormonal) 
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or exogenous (e.g. environmental) in origin, the most important of which is undernutrition.196 

Tissues that are compromised during periods of rapid cell division adapt by slowing their rates of 

cell division thereby protecting the foetus from relative undernutrition in late gestation.16 In 

response to undernutrition in early development, the foetus is programmed to reduce its demand 

for nutrients, and although adaptation may be beneficial for short-term survival, it has been 

linked to permanent and negative changes in the body’s structure, physiology and metabolism. 

13,196 Lower birthweight babies have lower bone mass and less muscle mass both of which are 

reported to persist for life. These consequences are thought to be mediated by changes to the 

hypothalamic-pituitary-adrenal axis and the two associated bone mass-influencing hormones: 

growth hormone and cortisol. 

 

The term ‘metabolic imprinting’ is related to programming. 334 The difference between 

metabolic imprinting and programming is in the details of their definitions. 334 Metabolic 

imprinting has 4 characteristics “1) a susceptibility limited to a critical ontogenic window in 

development 2) a persistent effect lasting through adulthood, 3) a specific and measurable 

outcome (that may differ quantitatively among individuals), and 4) a dose-response of threshold 

relation between a specific exposure and outcome.” 334 

 

Barker’s foetal originals hypothesis 

  

 Barker was the first to suggest that adult diseases may originate during foetal 

development. He and his colleagues observed regions in England which had the highest rates of 

mortality from cardiovascular disease, also had the highest rates of infant mortality in the early 
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20th century. 18 A strong relationship was shown between compromised intrauterine growth and 

development (as reflected by decreasing birthweight, head circumference and ponderal index), 

and death from coronary heart disease. 19,20 It was later found that not only birthweight, but also 

weight at one year of age were related to coronary heart disease, even if birthweight was 

unrelated to weight at one year of age. 105 Low birthweight has been linked to the early onset of 

cardiovascular, metabolic and endocrine disease in adult life, including coronary heart disease, 

hypertension, type 2 diabetes, hypercholesterolemia, 20,124 stroke, 17 obesity, 240 chronic lung 

disease, 174 psychological outcomes, 123 characteristic changes in fingerprint patterns 337 and most 

important to this thesis, osteoporosis. 12 Larger birthweights have also been associated with 

increased risk of polycystic ovarian disease and the hormone-related cancers of the breast, 

prostate and testicles. 281 

 

Measures of compromised intrauterine growth and development 

  

Socio-economically and environmentally disadvantaged black babies are smaller at birth 

than advantaged white children. 248 It has been hypothesized, that smaller babies result from (1) 

their failure as foetus’ to thrive in utero and reach their genetic potential, (2) their mothers’ 

failure to thrive during their life and reach their genetic potential which in turn imposes uterine 

restraint on their babies and/or (3) generations of deprivation resulting in the evolutionary 

selection of a thriftier genotype and phenotype. 2  

 

Birthweight is determined by both the genome (~40%) and intrauterine environment 

(~60%), the quality of the latter depending on the supply of nutrients and oxygen, which is 
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influenced by among other factors maternal age, maternal height, parity, social class, the 

presence of pre-eclampsia and maternal smoking. 62,107,126 Birthweight is not a perfect indicator 

of the quality of intrauterine life, but it is the most commonly used and is one of the measures 

used in this thesis, together with height and weight at 1 year of age. There are additional 

measures reflecting the quality of intrauterine life and their association with disease patterns seen 

in later life, namely:- 

 Body proportions: Intrauterine growth retardation/restriction may affect weight and 

length proportionately or disproportionately. 133 Altered birth proportions more so than 

birthweight are associated with adult coronary heart disease and type 2 diabetes. 103,188 A 

neonate who is of low birthweight, yet proportionate (weight and length have been 

equally affected), is likely to have been undernutritioned in early gestation, and this has 

been linked to the risk of developing high blood pressure but not coronary heart disease. 

14 A neonate who is of low birthweight and disproportionate at birth (weight and length 

have not been  equally affected) may be short or thin. A short neonate is likely to have 

been affected for some time in utero. A short body in relation to head size in particular 

has been linked to a greater risk of developing high levels of cholesterol and clotting 

factors. 14,21,205 A thin  neonate suggests recent undernutrition. Both short and thin 

neonates have  been linked to a greater risk of developing hypertension in adult life. 14 

Thin neonates have been linked to a greater risk of developing insulin resistance in 

adulthood. 251 

 Ponderal index (ratio of birthweight to birth length (weight/length3): A low ponderal 

index reflects that the foetus has recently been undernutritioned. Both animal and human 
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studies have shown that undernutrition late in pregnancy is commonly a consequence of 

an inadequate maternoplacental blood supply set up earlier in gestation. 116 

 Abdominal circumference: Abdominal circumference is an indicator of foetal growth, 

which when compromised, is  predictive of high serum LDL-cholesterol and plasma 

fibrinogen concentrations in adult life. 21  

 Birthweight:placenta ratio: Placental weight and size (area) have been used to measure 

foetal growth. Infants born with low birthweight in relation to placental weight, or low 

placental weight are at increased risk of developing hypertension; 15,49 while those born 

with low placental weight in relation to birthweight are at increased risk of developing 

hypertension in combination with type 2 diabetes. 91 Also, low birthweight in relation to 

placental weight has been associated with failure to thrive and poor catch-up growth for 

the first 18 months. 128 

 Crown-heel length: Birth length reflects the foetus’ trajectory of growth, which is set at 

an early stage in development, provided that the maternoplacental unit is able to supply 

sufficient nutrients to maintain that trajectory. Crown-heel length is an indicator of lean 

body mass and skeletal growth, which is most important to skeletal health in later life. 

There is a strong relationship between paternal birthweight and crown-heel length, 117 and 

this may reflect paternal imprinting of genes important for skeletal growth, such as those 

regulating the concentrations of insulin-like growth factor (IGF). 74 
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Barker’s foetal origins hypothesis in relation to bone mass and bone size 

 

It has been suggested that Barker’s foetal origins hypothesis may apply to the skeletal 

system and that growth during prenatal and early postnatal life are related to bone status in later 

life. Epidemiological studies have indeed shown retarded growth in infancy is associated with 

lower bone mass in adults and children, independent of environmental influences known to 

negatively impact bone, such as calcium, nutrition and physical activity. 64 A tabulated review of 

the literature in chronological order, a summary of common findings and a discussion of how the 

literature explains these findings follows. 
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Table 2-10. Studies linking early life events to bone mass status in adults and children, in chronological order 

Reference n M/F* Age (y) From Measures of early 
life 

Outcome (with no 
adjustment) 

Outcome (with adjustments) 

Hamed et 
al. (1993) 
126 

230 F 20-23 UK Birthweight Not associated with either 
lumbar spine or femoral neck 
BMD 

- 

        
Cooper et 
al. (1995) 60 

153 
 

F 21-22 UK Weight at 1 y; 
Short height at 5 & 
10 y (height at 1 y 
not available) 

Associated with lumbar spine 
& femoral neck BMC (not 
BMD, BMAD) 

After adjusting for weight 
results remained significant, 
but not when adjusting for 
height & weight concurrently. 

     Birthweight Not associated with any 
measure of bone mass at any 
site 

- 

        
Cooper et 
al. (1997) 62 

189 F 
&  

223 M 

M&F 61-73 UK Weight at 1 yr 
 

Females: Weakly associated 
with lumbar spine & femoral 
neck BMC (not BMD) 
Males: Weakly associated with 
lumbar spine BMC (not BMD) 

After adjusting for height & 
weight, results no longer 
significant.  
 

     Birthweight, 
breastfeeding & 
social class 

Not associated with any 
measures of bone mass 

- 

        
Düppe et al. 
(1997) 83 

7 M&F Mean 
15 

UK Weight at 4 & 6 y Associated with total body 
BMC (not BMD, & not 
femoral neck BMC or BMD)  

After adjusting for weight & 
height, results strengthened. 

        
Jones et al. 
(1999) 150 
 

30 M&F 8 Aus- 
tralia 

Birthweight & 
growth in infancy 

Associated with lumbar spine 
& femoral neck BMD. 

After adjusting for height & 
weight, results still significant. 
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Reference n M/F* Age (y) From Measures of early 
life 

Outcome (with no 
adjustment) 

Outcome (with adjustments) 

Jones et al. 
(2000) 151 

30 M&F 8 Aus-
tralia 

Breastfeeding > 3 
months 

Associated with higher BMD 
at the whole body, lumbar 
spine & femoral neck. 

- 

        
Fewtrell et 
al. (2000) 97 

44 M&F 8-12 UK Weight & height at 
18 m & 7.5 y 

 
 

- After correcting for current age 
& sex, associated with whole 
body, lumbar spine, femoral 
neck & radial BA, BMC & 
BMD 

     Birthweight - After adjusting for gestational 
age, associated with lumbar 
spine BA 

     Birth length Associated with lumbar spine 
& whole body BA. 

After adjusting for gestational 
age, current BA, height & 
weight, sex, age, pubertal 
status, birth length was 
negatively related to whole 
body & lumbar spine BMC. 

     Length of gestation Not associated with any 
measures of bone mass 

- 

        
Yarbrough 
et al. (2000) 
342 

305 F 47-89 USA Birthweight Associated with lumbar spine, 
total hip & forearm BMC (not 
BMD) 

After adjusting for weight, BW 
associated with lumbar spine 
BMC only. 

        
Gale et al. 
(2001) 107 

143 M&F 70-75 UK Birthweight Associated with whole body, 
lumbar spine & femoral neck 
BMC 

After adjusting for age, sex & 
height results remained 
significant, but not when 
adjusting for height & weight 
concurrently. Associations also 
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Reference n M/F* Age (y) From Measures of early 
life 

Outcome (with no 
adjustment) 

Outcome (with adjustments) 

remained significant after 
adjusting for lifestyle factors. 

     Head 
circumference : 
abdominal 
circumferences 
(measure of brain-
sparing) 

Not associated with bone size 
or density. 

- 

        
McGuigan 
et al. (2002) 
209 

460 M&F 22 Norther
n 

Ireland 

Birthweight Not associated with BMD Not associated after adjusting 
for parental height & weight 

        
Weiler et al. 
(2002) 335 

5 M&F Mean 
17.3 

Canada Premature births of 
birthweight <1500g 

Bone mass is appropriate for 
body size. 

- 

        
Antoniades 
et al. (2003) 
5 

2822 M&F 47.5 UK Birthweight Associated with BMD at the 
femoral neck, lumbar spine, 
but not at the forearm 

Not associated after adjusting 
for height & weight 

        
Dennison et 
al. (2004) 77 

205 M 
&  

132 F 

M&F 61-73 UK Weight at 1 y Associated with GH1 genotype 
associated with bone loss 

- 

        
te Velde et 
al. (2004) 
308 

261 M&F 36 The 
Netherl

ands 

Birthweight Associated with BMC at the 
whole body, femoral neck & 
lumbar spine 

After adjusting for weight, no 
longer associated. 

        
Arden et al. 
(2005) 6 

29 F 66 UK Birthweight Negatively associated with 
serum 1,25 (OH)2D 

- 
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Reference n M/F* Age (y) From Measures of early 
life 

Outcome (with no 
adjustment) 

Outcome (with adjustments) 

     Weight at 1 year Negatively associated with 
serum 1,25 (OH)2D, more so 
than birthweight. 

- 

        
Dennison et 
al. (2005) 78 

966 M&F 70’s UK Birthweight Correlated with femoral neck 
& lumbar spine BMC  

- 

     Weight at 1 year Correlated with femoral neck 
& lumbar spine BMC 

- 

        
Laitinen et 
al. (2005) 
173  

1099 M&F 31 Finland Birthweight - Standardised BW correlated 
with standardised distal radius 
BMC 

     Growth retardation 
at birth 

Associated with distal & 
ultradistal radius BMC & distal 
BMD 

Associated with distal & 
ultradistal radius BMC after 
adjusting for body size 

     Gestational age, 
ponderal index 

Not associated with distal & 
ultradistal radius BMC or 
BMD 

 

        
Pearce et al. 
(2005) 250 

389 M&F 49-41 UK Birthweight Not associated with hip or 
lumbar spine BMD 

Not associated with hip or 
lumbar spine BMD after 
adjusting for height & weight 

     Childhood growth Associated with BA (total BA 
of lumbar spine & hip) 

Not associated with BA (total 
BA of lumbar spine & hip) 
after correcting for height & 
weight 

Saito et al. 
(2005) 280 

86 F 18-21 Japan Birthweight Associated with lumbar spine 
& total hip BMC 

- 

     Weight gain from 
birth to 1.5 y 

Associated with lumbar spine 
& total hip BMC & lumbar 

- 
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Reference n M/F* Age (y) From Measures of early 
life 

Outcome (with no 
adjustment) 

Outcome (with adjustments) 

spin BMD. 
     Weight gain from 9 

to 12 y 
Associated with femoral neck 
BMC 

- 

        
Tobias et al. 
(2005) 314 

451 M&F 9 UK Maternal intake of 
folate in pregnancy 
at 32 weeks 

Folate intake associated with 
spinal BMC 

Folate intake associated with 
spinal BMC (adjusted for BA, 
height, weight & other factors 

     Maternal intake of 
K+ in pregnancy at 
32 weeks 

K+ intake associated with 
spinal BMC 

Association no longer 
significant 

     Maternal intake of 
Mg2+ in pregnancy 
at 32 weeks 

Mg2+ intake associated with 
total body BMC 

Association no longer 
significant 

        
Dalziel et 
al. (2006) 68 

174 M&F 31 US Birthweight  BW corrected for gestational 
age was associated with 
lumbar spine, total body & 
femoral neck BMC.  
 
Associated with narrowing of 
the upper shaft & narrow neck 
regions 

BW Z-score associated with 
BMC & BMD of the proximal 
femur.  
 
Other associations no longer 
significant. 

     Prematurity, 
betamethasone 
exposure 

No effect on PBM or femoral 
geometry 

 

        
Leunissen 
et al. (2009) 
181  

312 M&F 18-24 The 
Netherl

ands 

Birthweight & birth 
length 

Z-score associated with LS 
BMD 

Association no longer 
significant after correcting for 
age, gender & adult body size 

* Gender: M = males; F = females
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Summary of common findings 

 

The relationship between birthweight, growth in infancy and bone mass has been 

explored in several epidemiological studies; in adults, 5,60,62,63,78,107,126,196,308,342 young adults, 60,280 

adolescents83 and children, 97,150,314 which Table 2-10 summarises. Regardless of the different 

populations, genders, age groups and statistical analyses employed, three common findings 

emerged:- 

 A heavier birthweight or weight at 1 year was positively and consistently associated with 

higher BMC in adulthood. 

 Size in infancy was a better predictor of BMC than birthweight. 

 By adjusting BMC for current size (height and/or weight), or by using BMD, 

relationships between birthweight or infant size and bone mass were generally rendered 

insignificant, at the hip and lumbar spine (in women). 

 

Birthweight is associated with BMC 

 

 A heavier birthweight was positively and consistently associated with higher BMC in 

adulthood especially at the lumbar spine and hip, and less consistently at the forearm. A pooled 

meta-analysis-estimate showed that for every 1 kg increase in birthweight, lumbar spine BMC 

increased by 1.49g and hip BMC by 1.41g. 11 
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Size in infancy is a better predictor of BMC than birthweight.  

 

All studies having explored the relationship between weight at 1 year and adult bone 

mass, have reported weight at 1 year to be significantly associated with bone mass. 60,62,78  

 

Childhood weight, especially weight at 1 year (WT1), more so than birthweight (BW) 

was predictive of bone mineral content (BMC) before adjusting for the confounding variables of 

current height and weight, but generally, not after. The evidence supports the hypothesis that 

skeletal development is programmed in utero and tracks to infancy and adulthood, but that it is 

the tracking of body or bone size that is the major factor accounting for differences in bone mass 

in adulthood. Low birthweight and slow growth in height during childhood have been shown to 

be directly associated with the adult risk of hip fracture. 61   

 

Size at birth and infancy are not associated with BMC corrected for size (height and / or weight), 

or BMD 

 

Meta-analyses and systematic reviews of studies revealed no associations between 

birthweight and BMD of the lumbar spine or hip. 11,285 By adjusting BMC for size (height and/or 

weight), or by using BMD, relationships between infant size and bone mass were generally 

rendered insignificant. 11,285  
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How does the literature explain these findings? 

 

Evidence from animal studies 

 

 Studies in animals support the principle that early environment has long-term 

consequences on health. 7 The features of metabolic syndrome have been shown in the offspring 

of rats fed calorie-restricted diets, 109 protein-restricted diets, 125 iron-restricted diets, 182 high-fat 

diets, 163 or have been subjected to intrauterine growth retardation following intrauterine artery 

ligation 293 or have been overexposed to glucocorticoids. 186 The common outcome despite the 

range of insults suggests a common pathway.  

 

Evidence from these animal studies indicates that the growth trajectory is likely to be set 

at an early stage of foetal development. 187 In sheep, alterations in maternal diet and plasma 

progesterone, around the time of conception and embryo implantation, have been shown to 

change the foetal growth trajectory. 166,327 Progesterone may alter the growth trajectory by 

changing the allocation of cells between the embryoblast which develops into the foetus and the 

trophoblast which develops into the placenta. 166,327 

 

Rats fed a protein-restricted diet have offspring with altered skeletal growth and bone 

biochemistry. 175 BMC and BA are lower in the experimental animals than in controls, there are 

changes in appearance to the growth plates, and the formation of osteogenic precursors within 

the bone marrow compartment is delayed. 215,241  
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In addition, in response to calcium deficiency, the size of the trabecular envelope is 

increased and that of the cortical envelope, reduced. This is thought to be mediated by 

parathyroid hormone (PTH) and PTH-related peptide (PTHrP). 313 

 

Evidence from studies in humans 

 

In humans, skeletal size, BMC and BMD have been shown to track, from as early as 19 

weeks gestation. 43,78,107,130 Harvey et al. (2010) showed femur length from 19 to 34 weeks 

gestation was predictive of postnatal skeletal size at age 4 years, and foetal abdominal 

circumference was predictive of volumetric bone density. 130 Tobias et al. (2005) showed 

constituents of maternal diet (magnesium, potassium and folate) were related to total body and 

spinal DXA measures in pre- and early pubertal boys and girls aged 9 years, supporting the 

hypothesis that early life factors program the trajectory of bone development in childhood. 314  

 

Kajantie (2008) 155 proposed a conceptual framework of possible pathways of the foetal 

programming of adult diseases. This framework summarises the potential stimuli or insults a 

foetus may experience and the resultant lifelong metabolic changes. See Figure 2-2 below.  
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Figure 2-2. Conceptual framework of possible pathways of foetal programming of adult 

diseases 
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  * HPAA, hypothalamic-pituitary-adrenocortical axis 

 

Source: Kajantie (2008) 155 
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Altered foetal nutrition and/or excess foetal glucocorticoid exposure during critical 

periods of development are the environmental stimuli or insults that cause metabolic adaptations 

and/or modification of epigenetic gene regulatory mechanisms. 72 In any tissue at any given 

stage, only a few of the 30 000 genes are expressed. The inhibition/activation of this “epigenetic 

code” is what determines our phenotype. 108 Epigenetics may be defined as the inheritance of 

information based on gene expressed levels rather than gene sequence (genetics). 144 

 

The metabolic adaptations are thought to result from metabolic imprinting by way of 1) 

induced variations in organ structure, 2) alterations in cell number, 3) clonal selection, 4) 

metabolic differentiation and 5) hepatocyte polyploidization. 334 In relation to the skeletal system 

and growth trajectory, the candidate mechanism through which programming occurs is through 

the regulation of mesenchymal stem cell and osteoblastic activity. 282 The regulatory hormones 

which are implicated include vitamin D, insulin-like growth factor (IGF)-1, 6,94,145,146 growth 

hormone (GH), 77 PTH and PTHrP 313 and leptin. 160 

 

Osteoblast function has been shown to be positively influenced by IGF-1 225 which is 

mainly secreted by the foetal liver. Leptin, which is mainly secreted by the foetal adipose tissue, 

180 is thought to affect bone formation via the hypothalamic action on the sympathetic nervous 

system, 160 by stimulating the differentiation of stromal cells into osteoblasts and inhibiting the 

differentiation to adipocytes. 311 There are leptin receptors on bone mass stomal cells, as well as 

on osteoblasts and chondrocytes. 127  
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The reason size in infancy is a better predictor of BMC than birthweight is proposed to be 

because of accelerated or catch-up growth which may occur in the first 2 years following 

compromised growth in utero. 306 This catch-up growth is thought to restore the genetically 

determined growth trajectory 306  

 

The reason why birthweight is associated with BMC but not BMC corrected for height 

and/or weight, or BMD, is partly because of (1) BMC’s strong dependence on current bone or 

body size, to which birthweight and weight at 1 year are associated and (2) the inability of DXA 

to distinguish between the contributions by size and density. It remains unknown to what extent 

associations seen between size at birth and in infancy reflect the tracking of weight and height 

during childhood.  

 

What was the aim of our study? 

 

In the above section, I reviewed studies which have explored the relationship between 

Barker’s foetal origins hypothesis and bone mass. These studies were conducted in the developed 

countries of the UK, Australia, Canada and Finland in adult Caucasian populations. There is a 

need for Barker’s foetal originals hypothesis to be supported by replicating findings in other 

settings, such as in a developing country and in other races/ethnicities, to assess whether this 

hypothesis manifests in children and whether the relationship between size in infancy and bone 

mass is mediated by the tracking of infant size, on which bone mass is dependent. Also, very few 

studies have addressed the influence of post natal growth (e.g. height and weight at 1 year) on 

BMC. Thus we have explored Barker’s foetal originals hypothesis by studying the relationship 
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between growth in infancy and bone mass, by examining how birthweight and weight at 1 year 

relate to bone size and bone mass, as well as body size (height and weight) in 10 year old black 

and white South African boys and girls. This is the first study to be conducted in a developing 

country with a research sample of 10 year old children from both black and white ethnic groups. 

I asked the research question “Do historical factors contribute to the current status of bone 

mass? More specifically, (1) Do weight and/or length in infancy (birth and at 1 year) 

predict bone mass in 10 year old children? (2) If there is a relationship is it because weight 

and/or length in infancy are related to bone size or bone mass?" 
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Heritability of bone mass and bone size 

 

Introduction 

 

The preceding chapters have discussed the variation in the bone mass phenotype in black 

and white populations. Phenotypic variation may be due to environmental factors, random 

chance and genetic factors, the last of which accounts for the major proportion (50-80%) of 

variation in BMD. 24,122,132,192,253  

 

The bone mass phenotype is classified as a quantitative trait, which is measured on a 

continuous scale (as opposed to a discrete scale), shows variability in the population, is affected 

by the environment, and for which no specific gene has been identified. Geneticists use 

quantitative genetics (which includes expertise from the fields of genetics, genomics, physiology, 

statistics, bioinformatics and computational biology) to study the link between continuous traits 

and their underlying genetic basis, and to predict patterns of trait variations among relatives. 

Genetic components of various continuous traits may be estimated by using simple statistical 

methods. In this chapter, I review and discuss the familial resemblance and heritability of bone 

mass and bone density, parameters which I used to analyse my data. 

 

Familial resemblance 

 

 Familial resemblance relates to traits, such as bone mass, that appear similar between 

family members more so than unrelated pairs of individuals. Familial resemblance may be 
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estimated statistically using correlations or covariances among family members. 271 These 

measures may not necessarily be entirely due to genetic transmission of a trait given the common 

environments families are exposed to, such as lifestyle habits, and in the case of bone mass, 

calcium intakes, physical activity, smoking and alcohol. The strength of familial resemblance 

may be quantified by estimating heritability. 

 

Heritability 

 

Heritability has two definitions; (1) the quality or state of being heritable (Source: 

Merriam-Websters Medical Dictionary. Merriam-Webster, Inc., 

http://dictionary.reference.com/browse/heritability. Accessed 23-Dec-2011) and (2) a statistical 

one that defines heritability as the genetic variance divided by the total variance. Heritability 

estimates (0-100%) are used to help identify genetic and/or environmental causes of differences 

between individuals, by using variance. A high heritability estimate implies a strong resemblance 

between parents and their children with regards to a specific trait and a low heritability implies a 

low level of resemblance. Heritability of bone density has been estimated to be 50-80% 

141,153,169,192,255,295,316 and as high as 80-90% in twin studies. 81,253,295  

 

Heritability indices that are estimated from full siblings and include non-additive genetic 

variance are termed “heritability in the broad sense” (H2). Heritability in the broad sense (h2) can 

be estimated as twice the intraclass correlation coefficient of the sons and daughters from 

analyses of variance of BMD Z-scores. 169 
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Heritability indices that include only additive genetic variance (e.g. parent-offspring 

comparisons) in the numerator are termed “heritability in the narrow sense” (hN
2). Heritability in 

the narrow sense (hN
2) can be estimated from the regression of offspring phenotypic value (e.g. 

BMD z-scores of offspring, BMDo) on the average parent phenotypic values (e.g. BMD z-scores 

of parents (BMDP). The regression coefficient (βp), by definition, is the ratio of covariance 

between parent and offspring to variance of the parents, which represents total variance in the 

phenotype i.e. BMDo = βi + βp (BMDp). 
169  

 

The non-heritable portion (1-hN
2 or 1 -h2) may be attributed to measurement error and 

environmental influences specific to an individual. Studies aim to adjust BMC or BMD 

measurements for lifestyle and reproductive factors, accounting for the co-variance between 

BMC or BMD of parents and their children due to non-genetic factors. 169 Table 2-11 to Table 

2-13 summarise studies which have explored familial resemblance and the heritability of bone 

mass. All studies chose BMD as their primary variable in which to study heritability or familial 

resemblance of bone mass.  



Bone mass and bone size in 10 year-old South African children 

y of studies (presented in alphabetical order of author) having explored familial resemblance and 

Count
ry 

Race/
Ethnic

ity 

Relations Age ± SD 
(y) 

n Adjust- 
ments 

Statistics Authors’ conclusion Referen
ce 

Switze
rland 

Cauca
sian 

Daughter 
Mother 

8.1 ± 0.7 
40.0 ± 4.0 

138 
138 

Age-adj z-
scores 

(1) Pearson’s  
(2) Heritability 

Familial resemblance of bone 
mineralisation was clearly 
detectable in prepubertal girls, 
particularly at sites of prevailing 
trabecular bone. 

Ferrari 
et al. 
(1998) 95 

      
      

Austra
lia 

Not 
specifi

ed 

Daughter 
Son 

Mother 

8.3 
8.2 

33.5 

105 
186 

(1) z-scores 
(2) BMD adj 
for height & 
weight 

(1) Pearson’s  
(2) Logistic 
regression 
(3) Heritability 

Heritability consistently higher in 
mother-daughter than mother-son 
pairs. [Adjusting for bone size did 
not alter results] 

Jones & 
Nguyen, 
(2000) 
149 

       
      

France Cauca
sian 

Daughter 
Son 

Mother 
Father 

18.1 ± 2.0 
18.4 ± 2.4 
41.9 ± 3.6 
44.0 ± 3.8 

98 
85 
129 
129 

BMD adj for 
age & sex 

(1) Pearson’s  
(2) Logistic 
regression 
(3) Stepwise 
multiple 
regression 

The BMD in children in healthy 
families was related to the BMD 
of their parents, as well as to 
environmental factors (weight, 
height, percentage body fat, BMI, 
daily calcium intake & physical 
activity, but not alcohol 
consumption & smoking).  

Jouanny 
et al. 
(1995) 
153 

       
       

USA Europ
ean 

ancestr
y 

Daughter 
Son 

Mother 
Father 

31 ± 6 
32 ± 5 
60 ± 6 
63 ± 6 

40 
40 
40 
40 

Age-, wt- & 
ht-adj BMD 
z-scores; 
MR adj for 
lifestyle 
factors 

(1) Pearson’s 
(2) Forward 
stepwise 
multiple 
regression 

Heredity contributes significantly 
to bone density 

Krall & 
Dawson
-Hughes 
(1993) 
169 
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Sites Techn
ology 

Measu
res of 
bone 
mass 

Count
ry 

Race/
Ethnic

ity 

Relations Age ± SD 
(y) 

n Adjust- 
ments 

Statistics Authors’ conclusion Referen
ce 

R SPA BA, 
BMC, 
vBMD 

Austra
lia 

Not 
specifi

ed 

Daughter 
Son 

Mom 
Father 

11-17 
11-17 

44.6 ± 4.8 
47.1 ± 5.6 

52 
54 
99 
78 

Adj for age, 
gender, 
sexual 
maturity, ht 
& wt 

(1) Percentage 
of parent 
(2) Pearson’s  
(3) Heritability 
(4) Stepwise 
multiple 
regression 

After adjusting for age, gender, 
sexual maturity & body size, 
heritability account for the 
greatest variation in bone mass 

Magare
y et al. 
(1999) 
201 

       
        
Metac
arpal 

LS 
(L1-
L4) 
R 
(distal
) 

RG 

SPA 
DPA 

BL, 
BM, 
BMD 

USA Cauca
sian 

Daughter 
Mother 
Father 

14 
42 ± 4 
43 ± 4 

31 
24 
24 

 (1) Pearson’s 
(2) Stepwise 
multiple 
regression 
(3) Canonical-
correlations 

Genetic info from mothers & 
fathers strongly influences bone 
size, mass & density in young 
women 

Matkovi
c et al. 
(1990) 
207 

        
      

FN, 
Tot 
hip, 
LS 
(L1-
L4) 

DXA BMC, 
BMD 

Canad
a 

Not 
specifi

ed 

Daughter 
Mother 

Son 
Mother 

11.8 ± 2.1 
38.8 ± 4.4 
12.7 ± 2.0 
40.9 ± 5.0 

41 
41 
42 
42 

Age-derived 
BMD z-
scores 

(1) Percentage 
of mother’s 
BMD 
(2) Pearson’s 

Strong BMD familial resemblance 
between mother-daughter & 
mother-grandmother pairs. [Hip 
bone mass accumulates before 
that of the spine] 

McKay 
et al. 
(1994) 
210 

       
       
FN, 
LS, 
WB & 
head 

BMD Swede
n 

Not 
specifi

ed 

Son 
Mother 
Father 

17.0 ± 0.4 
44.5 ± 4.4 
47.1 ± 4.4 

50 
pairs 

Midparent & 
offspring z-
scores 

(1) Heritability 
(2) Principal 
component 
analysis 

Heritability is a main determinant 
of the variance in BMD in young 
men 

Nordstr
öm & 
Lorentz
om 
(1999) 
236 
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Sites Techn
ology 

Measu
res of 
bone 
mass 

Count
ry 

Race/
Ethnic

ity 

Relations Age ± SD 
(y) 

n Adjust- 
ments 

Statistics Authors’ conclusion Referen
ce 

      
      

R 
(mid 
& 
distal) 

SPA BW, 
BMC, 
BMD 

USA Not 
specifi

ed 

Daughter 
Mother 

18.6 ± 0.1 
44.2 ± 0.4 

84 
84 

Both adj for 
weight & 
BMI & non 
adj values 
used 

(1) Pearson’s 
(2) Heritability 
(3) Backward 
stepwise 
multiple 
regression 

There is a strong maternal genetic 
influence on the accrual of bone 
mass in 18-22y olds. 

Tylavsk
y et al. 
(1989) 
316 

Sites: FN, femoral neck; LS, lumbar spine; R, radius (distal unless specified); WB, whole body. 
Technology: DXA, dual x-ray absorptiometry, RG, radiogrammetry; SPA, single-photon absorptiometry. 
Measures of bone mass: BL (mm), bone length; BA (cm2) bone area; BW (cm), bone width; BM (g), bone mass; BMC (g), bone mineral content; BMD (g/cm2), 
bone mineral density. 
Statistics: Pearson’s, Pearson product moment correlation; Heritability, heritability (regression coefficient, ß). 
Unless specified, all associations mentioned are positive and significant. Outcomes (with adjustments) when not made, was left blank 
PS Midradius = 95% cortical, distal radius = 38-50% trabecular 284  
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Table 2-12. Summary of genetic studies (presented per skeletal site) using percentage of parents' bone mass 

Sites Measures of 
bone mass 

% Daughter of 
Mother 

% Son of 
Mother 

Age Adjustments Reference 

Femoral neck (FN) 
FN BMC 33-43 - 8y Age-adjusted z-

scores 
Ferrari et al. 
(1998) 95 

 BMD 59-78 -    
 BMAD 75-105 -    
       

FN BMD 75 92 Pre-puberty Age-derived 
BMD z-scores 

McKay et al. 
(1994) 210 

       
FN BMD 85 111 Early-puberty   

       
Total Hip (Tot hip) 

Tot hip BMD 67 81 Pre-puberty Age-derived 
BMD z-scores 

McKay et al. 
(1994) 210 

Tot hip BMD 80 100 Early-puberty   
       

Lumbar spine (L) 
L2-L4 BMC 33-43 -  Age-adjusted z-

scores 
Ferrari et al. 
(1998) 95 

 BMD 59-78 -    
 BMAD 75-105 -    
       

L1-L4 BMD? 90-97 - 16y  Matkovic et al. 
(1990) 207 

       
L1-L4 BMD 62 65 Pre-puberty Age-derived 

BMD z-scores 
McKay et al. 
(1994) 210 

L1-L4 BMD 74 80 Early puberty Age-derived 
BMD z-scores 
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Sites Measures of 
bone mass 

% Daughter of 
Mother 

% Son of 
Mother 

Age Adjustments Reference 

       
Radius (R) 

R BW 99 97 17y Adjusted for age, 
gender, sexual 
maturity, ht & wt 

Magarey et al. 
(1999) 201 

 BMC 95 85    
 vBMD 98 89    

Distal 
(1/10th) R 

BMD 90-97 -    

Distal(1/5th) 
R 

BMD 90-97 -    

       
Mid R BMC 90 - 19y   

 BMD 95 -    
Distal R BMC 90 -    

 BMD 95 -    
D, daughter; M, mother; S, son; F, father; MP, midparent. 
* Both parents and not midparent 
Measures of bone mass: BL (mm), bone length; BA (cm2) bone area; BW (cm), bone width; BM (g), bone mass; BMC (g), bone 
mineral content; BMD (g/cm2), bone mineral density. 
PS Midradius = 95% cortical, distal radius = 38-50% trabecular 284 
Results preceded by a ‘?’ were not explicitly reported, but deduced.  
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Table 2-13. Summary of genetic studies (presented per skeletal site) using Pearson’s moment product correlation coefficients 

(r) 

Sites Measures 
of bone 

mass 

D-M D-F D-MP S-M S-F S-MP Adjustments Reference 

Femoral neck (FN)
FN BA 0.34 - - - - - Age-adjusted z-scores Ferrari et al. (1998) 95 

 BMC 0.35 - - - - -   
 BMD 0.34 - - - - -   
 BMAD 0.34 - - - - -   
          
FN BMD 0.40 - - 0.16 - - (1) z-scores 

(2) BMD adjusted for 
height & weight 

Jones & Nguyen (2000) 149 

         
FN BMD 0.40 -0.12 0.22 0.47 0.31 0.58 Age-, wt- & ht-adjusted 

BMD z-scores 
Krall & Dawson-Hughes 
(1993) 169 

         
FN BMD 0.31 - - 0.22 - - Age-derived BMD z-scores McKay et al. (1994) 210 
          

Total hip 
Total hip BMD 0.36 - - 0.26 - - Age-derived BMD z-scores McKay et al. (1994) 210 
         

Lumbar spine (LS)
L2-L4 BA 0.36 - - - - - Age-adjusted z-scores Ferrari et al. (1998) 95 

 BMC 0.65 - - - - -   
 BMD 0.31 - - - - -   
 BMAD 0.24 - - - - -   
         

LS BMD 0.30 - - 0.30 - - Z-scores Jones & Nguyen (2000) 149 
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Sites Measures 
of bone 

mass 

D-M D-F D-MP S-M S-F S-MP Adjustments Reference 

L2-L4 BMD 0.30 0.16 0.34 0.28 0.24 0.37 Age-, wt- & ht-adjusted 
BMD z-scores 

Krall & Dawson-Hughes 
(1993) 169 

         
L1-L4 BM 0.43 0.53 0.65 - - -  Matkovic et al. (1990) 207 
 BMD 0.46 0.45 0.60 - - -   
         
L1-L4 BMD 0.34 - - 0.25 - - Age-derived BMD z-scores McKay et al. (1994) 210 

         
Whole body (WB)

WB BMD 0.22 - - 0.06 - - (1) z-scores 
(2) BMD adjusted for 
height & weight 

Jones & Nguyen (2000) 149 

         
WB BMD 0.24 0.29 0.29* 0.30 0.18 0.18* BMD adjusted for age & 

sex 
Jouanny et al. (1995) 153 

         
WB BMD 0.54 0.11 0.46 0.57 0.24 0.54 Age-, wt- & ht-adjusted 

BMD z-scores 
Krall & Dawson-Hughes 
(1993) 169 

         
Radius (R)

R BMD 0.35 0.40 0.47 0.27 0.23 027 Age-, wt- & ht-adjusted 
BMD z-scores 

Krall & Dawson-Hughes 
(1993) 169 

R BW 0.36 0.18 0.34 0.57 .24 0.52 Adjusted for age, gender, 
sexual maturity, ht & wt 

Magarey et al. (1999) 201 

 BMC 0.37 0.22 0.37 0.50 026 0.47   
 vBMD 0.33 0.12 0.32 .32 0.25 0.36   

Distal (1/10th) 
R 

BMD 0.46 0.57 0.72 - - -   

Distal (1/5th) BMD 0.46 0.28 0.52 - - -   
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Sites Measures 
of bone 

mass 

D-M D-F D-MP S-M S-F S-MP Adjustments Reference 

R 
Mid R BW 0.44 - - - - - Both adjusted for wt & 

BMI & non adjusted values 
used 

Tylavsky et al. (1989) 316 

 BMC 0.47 - - - - -   
 BMD 0.34 - - - - -   

Distal R BW 0.33 - - - - -   
 BMC 0.37 - - - - -   
 BMD 0.32 - - - - -   

D, daughter; M, mother; S, son; F, father; MP, midparent. 
*Both parents and not midparent 
Measures of bone mass: BL (mm), bone length; BA (cm2) bone area; BW (cm), bone width; BM (g), bone mass; BMC (g), bone 
mineral content; BMD (g/cm2), bone mineral density. 
Midradius = 95% cortical, distal radius = 38-50% trabecular 284  
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Discussion of common findings 

 

The studies which explored familial resemblance and heritability of bone mass had the 

following common findings:-  

 

1. Associations: Heritability was the main determinant of variance in BMD. The BMD of 

children was associated with that of their parents as determined by (1) percentage of parents' 

bone mass, (2) Pearson’s moment product correlation coefficients, (3) heritability estimates, (4) 

logistic regression, (5) stepwise multiple regression, (6) canonical-correlations and (7) principal 

component analyses, all of which strongly suggest a genetic contribution. The extent to which 

genetic factors were shown to influence bone mineral mass depended on the choice of 

methodology, bone mass variables studied as well as skeletal sites studied, family relationships 

compared, gender involved, population studied, number of participants in study and statistics 

used.  

 

2. Timing of associations: Studies showed that genetic factors governing bone mass are 

expressed before the pubertal growth spurt in girls, 95 peaked between the ages of 13 and 26 

years, 122,141 and decreased with increasing age. 71,101,198 That is, the major genetic effect was on 

the attainment of peak bone mass rather than on bone loss in later life. 198 Also, the prepubertal 

period was the period during which environmental influences appear to have a much larger effect 

than during adulthood. 149 Given this, interventions should be targeted in prepubertal children 

having been identified directly or indirectly as being at higher genetic risk of low bone mass. 

 



Bone mass and bone size in 10 year-old South African children 

 

Page 74 of 233

3. Gender-specificity: Osteoporosis affects more women than men (~30% vs. ~12%). 268 

Several studies in adults have found gender differences in the heritability of BMD, with 

heritability being greater in men than women. For example, heritability of femoral neck BMD 

was ~67% in men vs. ~47% in women; 158 lumbar spine BMD was 72% in men vs. 55% in 

women; 269 forearm BMD was 89% in men vs. 74% in women. 229 In children, the bone density 

in girls was more strongly associated with that of their parents, especially their mothers 

suggesting genetic factors are more influential in girls. 153,210 The genetic variation observed 

including between the genders was not thought to be the cause of the complex disease but was 

rather thought to influence a person’s susceptibility to the detrimental effects of negatively bone-

influencing environmental factors. 159 

 

4. Site-specificity. Most studies report on the heritability of bone mass at the clinically 

important skeletal sites of femoral neck and lumbar spine. Fewer studies have investigated other 

skeletal sites, but those that have, have shown that besides heritability being gender-specific, it is 

also site-specific. It has been proposed that individual skeletal sites may respond differently to 

genetic and environmental influences. 253 The head, for example, a skeletal region relatively 

independent of external forces such as weight-bearing, is thought to be the region best preserving 

genetic effects on bone mass, and has been shown in adult monozygotic twins to be the most 

highly heritable region of the human skeleton. 315 Quantifying the degree to which BMD is 

heritable at different sites is important. By so doing, the degree to which low bone mass can be 

treated with environmental modifications such as diet, exercise and medication (vitamin D, 

hormone replacement therapy/oestrogen and bisphosphonates) can be better predicted. Sites of 

predominantly trabecular bone (38-50%) such as the distal radius have been shown found to be 
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more influenced by genetics than sites of predominantly cortical bone (95%) such as the mid 

radius. 95 More evidence is however needed to support the finding that heritability of BMD is 

site-specific and the reasons for this. 255 

 

There are a number of genes that have been identified to be associated with bone mineral 

density and bone turnover, the most recent of which have been confirmed by way of genome-

wide association (GWA) studies. 302 GWA studies compare genomes between two groups and 

look for genetic variation associated with a particular trait. Identified variants are linked to traits 

which are investigated at the molecular level in a cell or organism. A number of osteoporosis 

susceptibility loci have been identified and validated. The following genes have been identified 

to be associated with bone mass and bone turnover:- 

 Gene symbol    Gene name 

1. VDR:     Vitamin D receptor 

2. ESR1:     Oestrogen receptor α 

3. ESR2:     Oestrogen receptor β 

4. LRP4:     Low density lipoprotein receptor-related   

     protein 4  

5. LRP5:     Low density lipoprotein receptor-related   

     protein 5 

6. SOST:     Sclerostin 

7. GFP177:    Green fluorescent protein 177  

8. RANKL:    Receptor activator of NF-κB ligand 
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9. RANK / TNFRSF11A:  Tumour necrosis factor receptor    

     superfamily, member 11A 

10. OPG / TNFRSF11B:   Osteoprotegerin / Tumour necrosis factor   

     receptor superfamily, member 11B 

11. COLIA1:    Collagen type I alpha 1 

12. SPP1:     Secreted phosphoprotein 1 

13. ITGA1:    Integrin alpha 1 

14. SP7:     SP7 transcription factor 

15. SOX6:    SRY (Sex determining region Y)-box 6 

 

The above-listed genes are all associated with three biological pathways: (1) the 

oestrogen endocrine pathway, (2) the RANKL/RANK/OPG signalling pathway, and (3) the Wnt 

(Wingless and int-1)/-catenin signalling pathway. 184 

 

The oestrogen endocrine pathway 

 

 Oestrogen binds to two types of oestrogen receptors (ESR1 and ESR2) and positively 

influences bone through three modes of action by: (1) inhibiting bone remodelling by 

suppressing the self-renewal of osteoblasts and osteoclasts progenitors, (2) prolonging the life of 

the osteoblasts and (3) inhibiting bone resorption by down regulation of the 

RANK/RANKL/OPG pathway (see section below). 40,249 
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The RANKL/RANK/OPG signalling pathway 

 

The RANKL/RANK/OPG signalling pathway regulates osteoclasts formation and 

activation. Osteoblasts and stromal cells express RANKL activators and secrete OPG. 

Osteoclasts and their precursors have RANK receptors on the surface. RANKL binds to RANK 

and by so doing regulates the differentiation of precursors into multinucleated osteoclasts. The 

RANKL/RANK interaction may be blocked by OPG which acts as a decoy receptor and binds to 

RANKL Thus it is suggested that the RANKL/OPG ratio is important in determining levels of 

bone mass in normal and diseased individuals. 40 

 

The Wnt/-catenin signalling pathway 

 

Wnts are secreted glycoproteins key to the regulation of cell growth, differentiation, 

function and death. Signalling through the Wnt/-catenin pathway positively influences bone 

through the renewal of stem cells, stimulation of pre-osteoblast replication, induction of 

osteoblastogenesis and the inhibition of osteoblasts and osteocyte apoptosis. 170 Mutations in this 

Wnt-signalling pathway and altered expression of LRP5, a co-receptor, result in both high- and 

low (osteoporosis pseudoglioma syndrome) bone mass traits depending on whether the mutation 

is one related to loss-of or gain-of function. 325 These mutations are thought to alter the response 

of the skeleton to mechanical loading by increasing/decreasing production of OPG by 

osteoblasts. 147 
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Although differences in the expression of the genes listed above have the potential to 

explain black-white differences in bone mass, none have unequivocally been proven to do so, 

85,96,235,267 and is thus an area on which future research should be focused.  

 

The relationship between the familial resemblance and heritability of bone mass can be 

summarized as follows:-  

 

1. Associations: Heritability was the main determinant of variance in BMD. 

2. Timing of associations: The major genetic effect was on the attainment of PBM rather 

than on bone loss in later life.  

3. Gender-specificity: Heritability was consistently higher in mother-daughter than mother-

son pairs.  

4. Site-specificity: Genetics may have a greater effect on sites consisting mainly of 

trabecular bone than cortical bone. 

5. Conclusion: Offspring of parents with low BMD also have a low BMD. Those at higher 

genetic risk can be identified either directly or indirectly and targeted for the optimisation 

of environmental factors leading up to attainment of PBM. 

 

What was the aim of our study? 

 

The variation in BMD is accounted for by mostly genetic factors (50-80%), with the 

remainder (20-50%) owing to environmental and random factors. In this chapter, the familial 

resemblance and heritability of bone mass in children and their parents have been reviewed. The 
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findings of studies conducted in Caucasian populations of Australia, Canada, Europe, US and 

Sweden support the possibility of being able to directly or indirectly identify children at a higher 

genetic risk of low bone mass so that they may be targeted for programs optimizing 

environmental factors in the years leading up to attainment of PBM. Similar studies assessing 

heritability of bone mass and bone size by way of parent-child associations have not been 

previously explored in developing countries and/or black populations. Populations subjected to 

environmental factors known to negatively influence bone mass are expected to have lower bone 

mass, higher fragility fracture rates and lower heritability estimates. Black South Africans, 

children in particular, are exposed to a number of environmental factors known to impact 

negatively on bone mass, as previously discussed. Given the environmental variability, it could 

be hypothesized that heritability estimates of bone mass would be less in black than in white 

children. In contributing to the understanding of the complex interaction between genetic and 

environmental factors on bone acquisition before and in early puberty in black South Africans 

the third research question this thesis aimed to answer was “Is parental bone size and bone 

mass predictive of bone size and bone mass in 10-year old children? More specifically, what 

is the heritability of bone size and bone mass in 10-year old pre-and early pubertal South 

African children?” 
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Research questions and hypotheses 

 

The review of the literature in the preceding sections raised three key research questions. 

The key research questions and proposed hypotheses are summarized below, and are answered in 

the succeeding three chapters which are presented as a series of three publications. In order to 

answer these questions, it is important we explored how best to adjust DXA-derived measures of 

BMC for body- and bone size in South Africa’s pre- and early pubertal children and their 

parents. 

 

Research question 1:  What proximal factors contribute to bone mass and bone size 

of 10-year old pre-and early pubertal, black and white South 

African children? 

 

Hypothesis:    Body size (height and weight), genetic factors (gender,   

    race/ethnicity), lifestyle factors (SES, nutrition, physical activity),  

    sexual and skeletal maturity influence bone mass and   

    bone size. 

 

 

Research question 2: Do historical factors contribute to the current status of bone 

mass?” More specifically, (1) Do weight and/or length in 

infancy predict bone mass in 10 year old children? (2) If there 
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is a relationship, is it because weight and/or length in infancy 

are related to bone size or bone mass? 

 

Hypothesis:  Size in infancy is related to 10 year old bone size and mass, mainly 

through the tracking of body size, which influences bone mass. 

 

 

Research question 3:  Is parental bone size and bone mass predictive of bone size and 

    bone mass in 10-year old children? More specifically, what is  

    the heritability of bone size and bone mass? 

 

Hypotheses:    (3a) Bone mass is likely be heritable. 

(3b) Heritability estimates of bone mass are less in black than in  

 white children 
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CHAPTER 3 - Differences in bone size and bone mass between 

black and white 10-year old South African children 

 

Published as: Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Differences in bone size and 

bone mass between black and white 10-year-old South African children. Osteoporos Int 17, 433-

440 (2006). 320 

 

Introduction 

 

The incidence of osteoporosis and fracturing, a late manifestation of the disease, is 

significantly lower in African-American than Caucasian US populations 114,193,216 and has 

resulted in considerable research into ethnic differences in bone mass. The lower incidence of 

fracturing has in part been explained by a greater bone mass in African-Americans. 4,24,143,232 

Although fracture rates are also low in Africans living in Africa, few studies have investigated 

bone mass in communities in Africa. 8,69,70,319 

 

A greater bone mass in African-Americans than in Caucasian Americans has been 

explained by advantageous differences in key bone-influencing factors. 143,303 Black South 

Africans, children in particular, are exposed to a number of environmental factors known to 

impact negatively on bone mass, such as poor nutrition, 46 low calcium intake, 199 little physical 

activity, 212,213 patterns of compromised growth, and delayed onset of puberty, 47,48 thus bone 
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mass could be expected to be reduced when compared to South African whites or African-

Americans.  

 

Studies of bone mass in adult South African ethnic groups have found that pre-, peri- and 

postmenopausal black women have a greater bone mass at the hip than white women (as had 

been found in African-Americans), but their bone mass at the radius and lumbar spine is similar 

to that of whites (unlike African-Americans). 69,70 Radial bone mass is greater in black than white 

children 246 but little is known of the factors influencing bone mass in children of different ethnic 

groups in developing countries. This study describes the ethnic differences in bone mass in pre- 

and early pubertal children in South Africa. 

 

Materials and methods 

 

Subjects 

 

We collected data on 476 healthy children (182 black boys, 72 white boys, 158 black 

girls, 64 white girls) of median age 10.6 years (range: 10.0-10.9) who formed part of the Birth to 

Twenty (BT20) longitudinal cohort of children born in the greater Johannesburg metropolitan 

area within a six-week period (23 April - 8 June 1990). 102,273,341 Comprehensive sets of 

longitudinal data were available on 1200 black children from which 340 were randomly enrolled 

onto the Bone Health Study. Cross checks were performed to ensure that there were no 

significant differences between the Birth to Twenty and Bone Health cohort for key demographic 
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variables (residential area at birth, maternal age at birth, gravidity, gestational age and birth 

weight). All white children with longitudinal data were enrolled into this bone health study 

(n=65). To increase the number of white children on the study, children of the same age from 

schools in the greater Johannesburg metropolitan area were asked to volunteer. An additional 71 

white children (boys = 38; girls = 33) were recruited onto the study. Subjects with chronic illness 

(juvenile rheumatoid arthritis, epilepsy or asthma) on medication known to affect growth or bone 

mass development were excluded from the study (n=4). This study protocol was approved by the 

Committee for Research on Human Subjects of the University of the Witwatersrand, 

Johannesburg and the Ethical Advisory Committee of Loughborough University, UK. Both 

children and guardians gave written informed consent to be studied.  

 

Anthropometry 

 

Height was measured to the last completed 1 mm using a wall-mounted stadiometer 

(Holtain, UK) and weight to the nearest completed 0.1 kg using a digital electronic instrument 

(Dismed, USA). 190 Both instruments were regularly calibrated and subjects wore minimal 

clothing when being weighed. Forearm length, needed for DXA analyses, was measured as 

elbow-wrist length taken between the most posterior point of the olecranon and the most distal 

palpable point of the styloid process of the radius. 190 
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Maturity 

 

Sexual maturity was self-assessed by pubic hair development in boys and girls, using the 

Tanner scaling technique. 203,204 Children were divided into two stages of development, namely, 

pre-/early pubertal (Tanner stages 1-2) and midpubertal (Tanner stages 3-4). In addition, skeletal 

maturity was assessed by scoring bone age from hand radiographs using the Tanner-Whitehouse 

bone-specific scoring technique (TWII20). 307 

 

Dual-energy X-ray absorptiometry (DXA) 

 

Bone area (BA) and bone mineral content (BMC) of the whole body, left total hip, 

femoral neck, lumbar spine (anteroposterior, L1-L4) and distal third of the radius were measured 

by DXA in array mode, using an Hologic QDR-4500 (Hologic, Inc., Waltham, MA, USA). Lean 

and fat tissue masses were also measured. The data were analysed with the software supplied by 

the manufacturer, version 11.2. A lumbar spine phantom was scanned daily to determine the 

machine’s measurement precision, expressed as the coefficient of variation (CV) which for BA 

and BMC were 0.47% and 0.78% respectively. All measurements were performed and analysed 

by the same person. 

 

Lumbar vertebral heights 

 

Anterior, middle and posterior heights of lumbar vertebrae L1-L4 were measured at sites 

determined by the DXA operator. Vertebral heights were calculated as the mean of the heights of 
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the anterior, middle and posterior portions of lumbar vertebrae L1-L4, which were measured (in 

mm) from a lateral DXA scan, using provided software. 114 

 

Radiogrammetry 

 

In addition to DXA measurements, radiogrammetry was used to measure cortical 

thickness of the second metacarpal from anteroposterior radiographs of the left hand. Using 

digital callipers calibrated to the nearest 0.01 mm, measurements were made to the nearest 0.1 

mm of the length of the metacarpal (L), outer cortical diameter (D) and inner cortical diameter 

(d) at the midpoint of the shaft. Combined cortical thickness (C=D-d), cortical cross-sectional 

area (π/4[D2-d2]), % cortical cross-sectional area to total area ([(D2-d2)/D2]x100) and the 

Barnett-Nordin index ((C/D)x100) were calculated. The Barnett-Nordin index is a parameter of 

relative cortical thickness that compensates for differences in skeletal size and variations in tube-

to-film and hand-to-film distance. 23 Measurement precision, expressed as the coefficient of 

variation (CV) was determined between two observers (LV and SN) which for metacarpal 

length, outer and inner diameters were 0.34%, 1.65% and 1.81% respectively. 

 

Socioeconomic questionnaire 

 

Primary caregivers answered questions about their social and economic status. This 

questionnaire had been modified appropriately for a South African population and previously 

validated. 42 The socioeconomic score was formulated from the presence or absence of 13 asset 

indicators, namely, house type, electricity, indoor flushing toilet, indoor running water, refuse 
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removal, television, digital satellite television, motor vehicle, refrigerator, microwave, washing 

machine, video machine and telephone). 

 

Statistics 

 

STATISTICA (data analysis software system) version 6 (StatSoft, Inc., 2001) was used 

to perform univariate and multivariate analyses to determine ethnic differences. Parametric data 

were analysed using univariate analyses (age, bone age, height, weight, body mass index (BMI), 

BMC and BA). Lean and fat mass, corrected for height were analysed using an ANCOVA. 

Stepwise multiple regressions analyses were used to determine predictors (gender, pubertal 

development, current height and weight) of the dependent variables (BMC or BA). A positive β 

meant BMC or BA in black children was greater than it was in white children. Nonparametric 

data were analysed using Fisher’s exact test (pubertal development) and Mann-Whitney U-Test 

(socioeconomic status). Probability values <0.05 were considered significant for all tests. 

Numerous statistical comparisons were made, thus more cognisance was placed on differences 

with p≤0.01.  

 

Results 

 

Cohort characteristics 

 

Characteristics of the cohort which took part in this study are shown in Table 3-1. Black 

children lived in households which scored significantly lower on the socioeconomic scale 
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(median = 7, range: 0-13) than white children (median = 12, range: 6-13) (p<0.05, Mann-

Whitney U Test). Most of our cohort was prepubertal or in early puberty (black boys: 99%, white 

boys: 99%, black girls: 98%, white girls: 97%) as determined by pubic hair development, and 

there were no ethnic differences in sexual maturity (Fisher’s exact test). Skeletal maturity as 

determined by bone age, was similar between the ethnic groups within each gender, even though 

black boys and girls were slightly younger than their white counterparts at the time of their visit. 

Black children were significantly shorter than their white peers (boys: p<0.0001; girls: p<0.01), 

black boys weighed significantly less than white boys (p<0.001) and had less lean tissue mass 

(p<0.0001). After correcting for differences in height, both ethnic groups had similar lean tissue 

masses, however black girls had higher fat mass (p<0.05) than white girls.  



Bone mass and bone size in 10 year-old South African children 

 

Page 89 of 233

Table 3-1. Descriptive characteristics (mean ± SD (n)) of black and white children aged 10 years. 

 
Males 

White                     Black 
(n=72)                     (n=182) 

 
 

P 

Females 
White                    Black 

(n=64)                     (n=158) 

 
 

P 
Age (y) 10.65 ± 0.24 10.55 ± 0.27 <0.01 10.62 ± 0.25 10.53 ± 0.27 <0.05 
Bone age (y) 10.31 ± 1.04 (71) 10.13 ± 1.05 (179) ns 10.41 ± 1.23 (62) 10.38 ± 1.27 (156) ns 
Pre-/early puberty 
(Tanner hair 
1and2) 

99% (65) 99% (170) 

ns 

99% (65) 98% (154) 
 

ns Mid-puberty 
(Tanner hair 
3and4) 

1% (1) 1% (2) 1% (1) 2% (3) 

Height (cm) 143.5 ± 7.5 137.4 ± 6.2 <0.0001 142.6 ± 7.8 139.2 ± 6.3 <0.001 
Weight (kg) 36.0 ± 6.4 32.6 ± 6.6 <0.001 35.6 ± 7.8 34.8 ± 8.3 ns 
Lean mass (kg)* 26.9 ± 3.6 24.1 ± 3.2 <0.0001 25.0 ± 4.2 23.9 ± 3.9 ns 
Fat mass (kg)* 8.2 ± 3.4 7.4 ± 4.0 *ns 9.8 ± 4.3 10.1 ± 5.1 *<0.05 
Body mass index 
(kg/m2) 

17.4 ± 2.1 17.2 ± 2.6 *ns 17.3 ± 2.6 17.8 ± 3.4 *ns 

*After corrections for ethnic differences in height.
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DXA results 

 

Table 3-2 summarises ethnic differences in BA and BMC of the whole body, femoral 

neck, total hip, lumbar spine and distal third of the radius, as determined by DXA. The data and 

statistics presented in Table 3-2 are not corrected for current body size. Table 3-3 shows the 

results from multiple regression analyses where BA and BMC were corrected for gender, 

pubertal development, height and weight. 

 

Whole body 

 

Black boys had significantly less whole body BA and BMC than white boys (p<0.0001) 

but after correcting for gender, puberty, height and weight, there were no significant differences 

in BA or BMC (Table 3-3).  

 

Femoral neck 

 

Black children had a smaller BA at the femoral neck (both genders: p<0.0001) but similar 

BMC. However, after correcting for gender, puberty, height and weight, there was no difference 

in BA and BMC was greater in black than white children (β =0.20, p<0.0001) (Table 3-3). BMC 

was 6% and 5% greater in black boys and girls respectively than their white peers when adjusted 

means were compared.  
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Total hip 

 

Before corrections, black children had a smaller BA at the total hip (both genders: 

p<0.0001) (Table 3-2). After corrections, despite BA remaining smaller in black children (β =-

0.13, p<0.0001), BMC was greater in black than white children. (β =0.07, p<0.05) (Table 3-3). 

BMC was 6% greater in black boys than white boys when adjusted means were compared, and 

was no different in girls.  

 

Lumbar spine 

 

Black boys had less BA and BMC at their lumbar vertebrae than white boys (both 

p<0.0001) (Table 3-2) which was explained by differences in height and weight (Table 3-3). 

That is, after corrections, there were no ethnic differences at the lumbar spine in BA or BMC. 

 

Radius 

 

At the mid radius, before corrections, black children had similar BA but less BMC than 

white children (boys: p<0.05). After corrections, BA and BMC were significantly greater in 

black than white children (BA: β=0.26, p<0.0001; BMC: β=0.13, p<0.0001) (Table 3-3). That is, 

black boys and girls had 6% more BMC at the mid radius than white boys and girls respectively.  
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At the distal one third of the radius, before corrections, black boys had less BMC than 

white boys (p<0.01) (Table 3-2). After corrections, black children had a greater BA (p<0.05) but 

there were no ethnic differences in BMC. 
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Table 3-2. Bone area (BA) and bone mineral content (BMC) comparisons between ethnic groups within each gender. Values 
are unadjusted means (± SD) 

 

 Males 
White                     Black 

 
P 

Females 
White                    Black 

 
P 

       
 n=72 n=182  n=64 n=158  
Whole body BA (cm2) 1312.22 ± 163.87 1217.08 ± 140.59 <0.0001 1286.75 ± 187.92 1248.58 ± 171.87 ns 
Whole body BMC (g) 1084.94 ± 164.78 995.13 ± 140.83 <0.0001 1036.84 ± 196.41 992.95 ± 179.03 ns 
       
 n=71 n=180  n=64 n=158  
Femoral neck BA (cm2) 4.32 ± 0.33 4.13 ± 0.31 <0.0001 4.21 ± 0.30 4.05 ± 0.31 <0.0001 
Femoral neck BMC (g) 3.03 ± 0.42 3.06 ± 0.38 ns 2.70 ± 0.46 2.77 ± 0.41 ns 
       
 n=71 n=180  n=64 n=158  
Total hip BA (cm2) 22.36 ± 2.68 20.42 ± 2.43 <0.0001 23.18 ± 3.42 20.69 ± 2.50 <0.0001 
Total hip BMC (g) 16.23 ± 2.73 15.52 ± 2.58 ns 15.39 ± 3.67 14.57 ± 3.00 ns 
       

 n=72 n=182  n=64 n=158  
L1-L4 BA (cm2)  46.00 ± 4.96 43.02 ± 4.26 <0.0001 43.99 ± 4.26 42.99 ± 4.34 ns 
L1-L4 BMC (g) 26.72 ± 4.66 19.09 ± 3.69 <0.0001 25.54 ± 5.10 25.33 ± 5.24 ns 
       
 n=69 n=180  n=64 n=158  
Mid radius BA (cm2) 4.52 ± 0.81 4.48 ± 0.80 ns 4.24 ± 0.80 4.37 ± 0.84 ns 
Mid radius BMC (g) 1.88 ± 0.38 1.75 ± 0.34 <0.05 1.70 ± 0.37 1.68 ± 0.41 ns 
       
 n=69 n=180  n=64 n=158  
Distal 1/3

rd radius BA (cm2) 2.32 ± 0.19 2.32 ± 0.22 ns 2.19 ± 0.20 2.18 ± 0.20 ns 
Distal 1/3

rd  radius BMC (g) 1.14 ± 0.12 1.09 ± 0.13 <0.01 1.06 ± 0.15 1.04 ± 0.15 ns 
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Table 3-3. Ethnic differences in bone area (BA) and bone mineral content (BMC) at the whole body, femoral neck, total hip, 
lumbar spine (L1-L4) and mid- and distal 1/3rd of the radius after correcting for gender, puberty, height and weight 

 

Measure of bone mass Ethnicity
(β*) 

± SE P R2 Predictors 
(P<0.001) 

Puberty

Whole body BA (cm2) 0.04 0.02 ns 0.86 Height, weight ns 
Whole body BMC (g) 0.02 0.03 ns 0.70 Height, weight, gender ns 

       
Femoral neck BA (cm2) -0.07 0.04 ns 0.44 Height, weight, gender ns 
Femoral neck BMC (g) 0.20 0.03 <0.0001 0.50 Height, weight, gender ns 
       
Total hip BA (cm2) -0.13 0.03 <0.0001 0.59 Height ns 
Total hip BMC (g) 0.07 0.04 <0.05 0.50 Height, weight, gender ns 

       
L1-L4 BA (cm2) 0.04 0.03 ns 0.57 Height, gender ns 
L1-L4 BMC (g) 0.02 0.04 ns 0.47 Height, weight ns 

       
Mid radius BA (cm2) 0.26 0.03 <0.0001 0.63 Height, weight, gender ns 
Mid radius BMC (g) 0.13 0.03 <0.0001 0.61 Height, weight, gender ns 

       
Distal 1/3

rd radius BA (cm2) 0.11 0.04 <0.05 0.27 Height, gender ns 
Distal 1/3

rd radius BMC (g) 0.12 0.04 ns 0.36 Height, weight, gender ns 
* A positive β means BA or BMC was greater in black than white children 
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 General 

 

Correcting BA and BMC for ethnicity, gender, puberty, height and weight accounted f

between 27% and 86% of variance in BA and between 36% and 70% of variance in BMC 

measurements at different sites in black and white South African children (Table 3-3). Puberta

development was not a significant predictor of BA or BMC. 

 

Lumbar vertebral heights. 

 

Lumbar vertebral heights were less in both black boys (L1-L4: p<0.0001) and girls (L

L4: p<0.01 to p<0.0001) than in their white peers before and after correcting for ethnic 

differences in height (Table 3-4 and Table 3-5).  

 

Table 3-4. Vertebral heights* (unadjusted means ± SD) of lumbar spine vertebrae (L1-L
comparisons between ethnic groups within each gender 

 Males 
White               Black 

 (n=70)               (n=179) 

P Females 
White               Black 

 (n=64)               (n=155) 
L1 (mm) 18.12 ± 1.50 16.97 ± 1.20 <0.0001 18.54 ± 1.33 17.95 ± 1.48 
L2 (mm) 18.83 ± 1.35 17.38 ± 1.27 <0.0001 19.34 ± 1.57 18.53 ± 1.55 <
L3 (mm) 18.98 ± 1.32 17.46 ± 1.19 <0.0001 19.49 ± 1.73 18.43 ± 1.60 <
L4 (mm) 19.14 ± 1.53 17.65 ± 1.27 <0.0001 19.80 ± 1.49 18.69 ± 1.74 <
*Vertebral heights were calculated as the mean of the heights of the anterior, middle and 
posterior portions of the first four lumbar vertebrae (mm) as did Gilsanz et al. (1998). 114 
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Table 3-5. Ethnic differences in lumbar spine vertebral heights (L1-L4) after correcting for 
gender, height and puberty 

 Ethnicity 
(β*) 

± SE P R2 Predictors 
(P<0.001) 

Puberty 

L1 (mm) -0.09 0.04 <0.01 0.51 Height, gender <0.05 
L2 (mm) -0.14 0.03 <0.0001 0.55 Height, gender <0.01 
L3 (mm) -0.20 0.03 <0.0001 0.54 Height, gender ns 
L4 (mm) -0.19 0.04 <0.0001 0.44 Height, gender ns 
*A negative β means vertebral heights are greater in white than black children.  
 

Radiogrammetry results 

 

Before corrections, the inner diameter of the 2nd metacarpal was greater in black children 

than white (boys: p<0.001; girls p<0.05). (Table 3-6.) Black boys also had a greater combined 

cortical thickness (p<0.0001) than white boys but a smaller Barnett-Nordin index (p<0.001) and 

% cortical area to total area ratio (p<0.0001). After corrections, black children had greater 

metacarpal length (β=0.26, p<0.0001), outer (β=0.25, p<0.0001) and inner diameters (β=0.27, 

p<0.01), as well as the cortical cross sectional area (β=0.11, p<0.05). However, this translated to 

a greater Barnett-Nordin index (β=-0.20, p<0.0001) and % cortical area to total area (β=-0.21, 

p<0.0001) in white children. (Table 3-7) 
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Table 3-6. Radiogrammetric comparisons between ethnic groups within each gender. Values are unadjusted means (± SD) 

 Males 
White                  Black 
(n=71)               (n=178) 

 
 

P 

Females 
White                  Black 
(n=61)               (n=153) 

 
 

P 
Length (mm) 54.75 ± 3.49 54.41 ± 3.40 ns 55.32 ± 4.07 56.08 ± 3.93 ns 
Outer diameter (mm) 6.98 ± 0.64 7.10 ± 0.67 ns 6.74 ± 0.59 6.91 ± 0.63 ns 
Inner diameter (mm) 4.00 ± 0.71 4.36 ± 0.72 <0.001 3.69 ± 0.61 3.91 ± 0.66 <0.05 
Combined cortical thickness (mm) 2.98 ± 0.42 2.75 ± 0.41 <0.0001 3.05 ± 0.49 3.00 ± 0.45 ns 
Cortical cross-sectional area (mm2) 25.61 ± 4.26 24.66 ± 4.40 ns 25.00 ± 4.73 25.45 ± 4.66 ns 
% cortical area to total area  67.03 ± 7.59 62.29 ± 7.49 <0.0001 69.73 ± 7.56 67.79 ± 7.24 ns 
Barnett-Nordin index (%)* 42.98 ± 6.80 38.91 ± 6.27 <0.0001 45.41 ± 6.90 43.62 ± 6.49 ns 
 

Table 3-7. Ethnic differences in metacarpal indices after correcting for gender, height and puberty 

 Ethnicity 
(β*) 

SE P R2 Predictors 
(P<0.001) 

Puberty 

Length (mm) 0.26 0.03 <0.0001 0.62 Gender, height ns 
Outer diameter (mm) 0.25 0.04 <0.0001 0.24 Gender, height ns 
Inner diameter (mm) 0.27 0.05 <0.01 0.18 Gender, height ns 
Combined cortical thickness (mm) -0.07 0.05 ns 0.13 Gender, height ns 
Cortical cross-sectional area (mm2) 0.11 0.04 <0.05 0.20 Height ns 
% cortical cross-section area to total cross-sectional area  -0.21 0.05 <0.01 0.13 Gender ns 
Barnett-Nordin index (%)* -0.20 0.05 <0.0001 0.13 Height ns 
* A positive β means the respective metacarpal indices are greater in black than white children 
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Discussion 

 

Ethnic differences in bone mass (BMC) between black and white 10 year old South 

African children, as measured by DXA and corrected for gender, pubertal development, current 

height and weight, were most apparent at the femoral neck and total hip. That is, black children 

had a greater BMC at the femoral neck (boys: 6%; girls: 5%), total hip (boys: 6%) and mid 

radius (boy and girls: 6%) than white children, despite black children being more exposed to 

environmental factors known to impact negatively on bone mass, such as living in poorer 

households and having poorer nutrition, compromised growth and development as reflected by 

their lower birth weights, shorter statures, lighter body weights and later onset of pubertal 

development, 46 lower calcium intake (estimated to be approximately 400 mg/day) 199 and less 

physical activity. 212 Black children had similar whole body and lumbar spine bone masses to 

white children. These data suggest that ethnic differences are site-specific in our 10 year old 

cohort of black and white South Africans which are not as a result of differences in current 

height or weight (for which statistical corrections were made), bone age and pubertal stage 

(which did not differ between ethnic groups), but are more likely as a result of differences in 

genetic factors.  

 

The finding that bone mass at the femoral neck, total hip and mid radius was greater in 

10-year-old South African black than white children is consistent with national and international 

studies which have explored black-white ethnic differences in both adults and children. Before 

correcting for differences in height and weight, pre- and early pubertal African-American 

children had greater femoral neck bone mass (BMC and / or BMD) than white children. 10,31 
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Wang et al. (1997), after correcting for differences in both height and weight, found BMAD to 

be greater in African-American pre-/early pubertal girls than white girls. 329 Our results in 

children are also consistent with studies conducted in South African adult women (20-64y) 

where BMC of the femoral neck was greater in blacks than whites, before and after having 

corrected for body and bone size. 69,70 Greater weight-bearing was proposed to explain the 

greater femoral neck bone mass in black South African women. However, given that black 10 

year old children, who are lighter or of similar weights to white children, also have a greater 

femoral neck bone mass, other reasons, such as genetics, are likely to account for a greater bone 

mass at the femoral neck and total hip in South Africa’s black population.  

 

Forearm BMC has also been found to be greater in black than white American children 

before and after corrections for weight and age in 7-12 year olds 31 and before corrections in 1-6 

year old children. 183,191 In a previous study using single photon absorptiometry, South African 

blacks aged 6-20y were found to have greater BMC at the midshaft radius than white children, 

after correcting for differences in height. 247  

 

At the lumbar spine and whole body, ethnic differences in bone mass were absent. The 

results are similar to those found in South African pre-, peri- and postmenopausal women. 69,70 

Although the majority of studies from the US have demonstrated greater bone masses in African-

Americans, 31,113,183,231,234,328 there are indeed US studies comparable to ours where no 

differences in bone mass have been found; uncorrected lumbar spine BMC and BMD have been 

reported to be similar in African-American and Caucasian children, 10,31,257,329,339 as have results 

after correcting for ethnic differences in size or maturity. 143,299 Adult Somalis, living in the USA, 
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have also been reported to have a similar lumbar spine BMD to Caucasian Americans. 219 At the 

whole body, a site on which there is less literature in children to make comparisons, two studies 

did not find ethnic differences between African-American and Caucasian children. 10,329  

 

In addition to bone density, ethnic differences in bone architecture and geometry have 

more recently been studied. Histomorphometric analysis of iliac crest biopsies has shown that 

South African black adults have thicker trabeculae than whites. 193,232,233 At the proximal femur, 

both US and South African black populations have been shown to have a narrower marrow 

cavity, thicker cortex and a lower buckling ratio despite non-significant differences in outer bone 

diameter, characteristics consistent with greater bone strength and lower fracture rates in blacks 

at this region. 290 Geometrically, wider bones are stronger bones, which African-American 

populations have been found to have. 114,193 We found black children had shorter lumbar 

vertebral heights for the same BA before and after correcting for differences in height, 

suggesting that the vertebrae are wider. Further, DXA-measured BA at the mid shaft of the 

radius was consistently greater in black than white children after correcting for differences in 

height. And lastly, our radiogrammetry results support that black children had greater outer and 

inner diameters of their metacarpal, thinner cortices and less cortical bone both before and after 

correcting for height, gender and puberty, and differences in skeletal size and variations in tube-

to-film and hand-to-film distance (i.e. the Barnett-Nordin index), it translates to greater bone 

strength. This architecture is consistent with greater polar strength-strain indices which are more 

resistant to bending and torsional forces. “In mechanics, however, it is well known that 

resistance of tubular structures to flexion can be maintained with a lower wall-area/total area 

ratio provided that the total diameter of the tube is large.” 296  
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A number of candidate gene polymorphisms have been linked to bone mass, such as of 

the vitamin D receptor gene (VDR), calcium-sensing receptor gene (CASR), alpha2HS-

glycoprotein gene (ASHG), oestrogen receptor alpha gene (ESR1), calcitonin gene, parathyroid 

hormone gene (PTH), collagen I alpha 1 gene, transforming growth factor beta (TGF-beta) gene, 

interleukin-1 (IL-1) gene, interleukin-6 (IL-6) and LDL receptor-related protein 5 (LRP5) 

apolipoprotein E gene. Ethnic differences have been found in allelic and genotypic differences in 

a number of these polymorphisms in various populations including between black and white 

ethnic groups. 85,96,235,267 Though these genes have the potential to explain ethnic differences in 

bone mass, none have unequivocally been proven to do so.  

 

In conclusion, black children in South Africa have greater bone mass at the femoral neck, 

total hip and mid radius than their white peers, and similar bone mass at the lumbar spine and 

whole body. This bone mass pattern, at the femoral neck in particular, is similar to that reported 

in US children, yet our black South African children, unlike their African-American peers, are 

comparatively disadvantaged. These findings suggest that the femoral neck, total hip and mid 

radius bone mass patterns described in our black children are likely to be under similar genetic 

influences as those of African-American children rather than due to environmental influences. 

Support for this hypothesis comes from studies which suggest that the South African black 

population and the African-American population (originating from West Africa) had similar 

genetic pools, as the South African Bantu-speaking ethnic groups migrated from West Africa. 

93,233,238 It is unclear at this stage, whether improvement in the adverse environmental factors in 

our black children would greatly change the bone mass findings at other sites. However it does 
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raise an intriguing question around how the genetic influences maintain bone mass in the face of 

what are generally considered to be adverse environmental factors. Not only do these genetic 

influences have a positive effect on bone mass during childhood, but these are maintained 

through adult life and are associated with a very low incidence of femoral neck and vertebral 

fractures in the elderly.
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CHAPTER 4 - Infant programming of bone size and bone mass 

between black and white 10-year old South African children 

 

Published as: Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Infant programming of bone size 

and bone mass in 10-year-old black and white South African children. Paediatr Perinat 

Epidemiol 21, 354-362 (2007). 321 

 

Introduction 

 

In developed countries, the earliest of factors shown to identify those at a high risk of 

having low bone mass and so be prone to osteoporosis in later life, is that of quality of 

intrauterine and early life reflected by low birthweight and size in infancy. The relationship 

between birthweight, growth in infancy and bone mass has been explored in several 

epidemiological studies; in adults, 5,60,62,63,78,107,126,196,308,342 young adults, 60,280 adolescents 83 and 

children.97,150,314 Childhood weight, especially weight at 1 year (WT1) has been shown to be 

predictive of bone mineral content (BMC) before adjusting for the confounding variables of 

current height and weight, but often, not after. Supporting studies are needed to confirm that the 

relationship between size in infancy and bone mass is not entirely mediated by the tracking of 

infant size to adulthood, on which bone mass is dependent. In addition, since most studies were 

conducted in Caucasian populations from developed countries such as the UK, Australia, Canada 
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and Finland, it is unclear whether such relationships exist in black populations and in developing 

countries. 

  

 We studied the relationship between growth in infancy and current bone mass in South 

African children by investigating how birthweight, weight and length at 1 year related to bone 

area (BA) and bone mass (BMC) before and after adjustment for current height and weight in a 

population of 10 year old black and white children born in Johannesburg during 1990. The 

questions asked were: (1) Do birthweight, or weight and / or length at 1 year of age predict bone 

size and bone mass in 10-year-old children? (2) If there is a relationship between infant weight 

and / or length in infancy and bone mass in 10-year-old children, is it because of its relationship 

to bone size or bone mass? 

 

Materials and Methods 

 

Subjects 

 

The subjects were 473 healthy children stratified by race 2/ethnicity and gender (182 

black boys, 72 white boys, 158 black girls, 64 white girls) of median age 10.6 years (range: 10.0-

10.9) who formed part of a longitudinal cohort of children born in Johannesburg during 1990 and 

whose growth and development have been tracked since birth. Weight had been recorded at birth 

as well as weight and length/height at 1, 2, 4, 5, 7, 8, 9 and 10 years of age. The source of the 

                                                 
2 “Race does not refer to any biological attributes but rather to the compulsory classification of people into the 
Population Registration Act”.344 Although the act has been repealed, these categories are still powerful and 
commonly used by the South African government and statistical services.  
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population data was the official birth notifications, governed by a local ordinance, and completed 

by delivery staff at the time of every birth in the area. This information was subsequently 

recorded in the registers maintained by each of the three local health authorities comprising most 

of the metropolitan area of Soweto-Johannesburg. 273 Subjects with chronic illness (juvenile 

rheumatoid arthritis, epilepsy or asthma) or on medication known to affect growth or bone mass 

development were excluded from the study (n=4). The study protocol was approved by the 

Committee for Research on Human Subjects of the University of the Witwatersrand, 

Johannesburg and the Ethical Advisory Committee of Loughborough University, UK. Both 

children and guardians gave written informed consent to be studied.  

 

Anthropometry 

 

Height was measured to the last completed 1mm using a wall-mounted stadiometer 

(Holtain, UK) and weight to the nearest completed 0.1kg using a digital electronic instrument 

(Dismed, USA), using standardised protocols.190 Both instruments were regularly calibrated and 

subjects wore minimal clothing when being weighed.  

 

Maturity  

 

Sexual maturity was self-assessed as pubic hair development in boys and girls, using the 

Tanner scaling technique. 203,204 In addition, skeletal maturity was assessed by scoring bone age 

from hand radiographs using the Tanner-Whitehouse bone-specific scoring technique (TWII20). 

307 



Bone mass and bone size in 10 year-old South African children 

 

Page 106 of 233

Dual-energy X-ray absorptiometry (DXA) 

 

BA and BMC of the whole body, excluding the head (WB), femoral neck (FN) and 

lumbar spine (LS; L1-L4) were measured by DXA using an Hologic QDR-4500 (Hologic, Inc., 

Waltham, MA, USA). A lumbar spine phantom was scanned daily to determine its measurement 

precision. The coefficients of variations (CV), calculated from no less than 240 repeat scans, 

were 0.47% and 0.78% for BA and BMC respectively. 

 

Socioeconomic questionnaire 

 

Primary caregivers answered questions about their social and economic status. This 

questionnaire had been modified appropriately for a South African population and previously 

validated. 42 The socioeconomic score was formulated from the presence or absence of 13 asset 

indicators, namely, house type, electricity, indoor flushing toilet, indoor running water, refuse 

removal, television, digital satellite television, motor vehicle, refrigerator, microwave, washing 

machine, video machine and telephone). 

 

Statistics 

 

Univariable and multivariable relationships between weight (birth, 1y), length (1y) vs. 

BA and BMC (10y), and the extent to which these relationships were dependent on, or 

independent of measures of height and weight (10y) were analysed using STATISTICA (data 

analysis software system) version 6 (StatSoft, Inc., 2001). Student t-tests were used to compare 
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means (Table 4-1 and Table 4-2). ANCOVAs analysed the relationship between 10-year-old BA 

or BMC when BW, WT1 or LT1 were categorised into tertiles and age was treated as a 

continuous predictor. (Table 4-3). 62,107 Multiple regression models determined the predictive 

power of BW, WT1 and LT1 on BA and BMC when BA and BMC were in addition adjusted for 

race/ethnicity, gender, age, socioeconomic status, bone age, height and weight at 10 years (Table 

4-4). The regression coefficient (β) was interpreted as the magnitude of the contribution infant 

size made to current BA and BMC variables. 226,245,261 Residual plots of all regression models 

showed no outlying or influential points, no deviation from the assumptions of linear 

relationships and constant variances. Probability values <0.05 were considered significant for all 

tests.  

 

Results 

 

Cohort characteristics 

 

Anthropometry 

 

Descriptive statistics for the 10-year-old subjects who took part in this study are shown in 

Table 4-1. Black children lived in households which scored significantly lower on the 

socioeconomic scale (median = 7, range: 0-13) than white children (median = 12, range: 6-13) 

(P<0.05, Mann-Whitney U Test).  
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At birth black males were lighter than white males (P<0.01). At age 1 year, black males 

were shorter than white males (P<0.01). Even though all subjects were aged between 10.0 and 

10.9 years, black children were on average one month younger at the time of their visit and 

significantly shorter than their white counterparts (males: 6.3 cm shorter, P<0.0001; females: 3.4 

cm shorter P<0.001). Black males were on average 3.4 kg lighter than white males at 10 years of 

age (P<0.001). 

 

Sexual maturity 

 

 Most of our cohort was prepubertal or in early puberty (black boys: 99%, white boys: 

99%, black girls: 98%, white girls: 97%) as determined by pubic hair development (Table 4-1). 

There were no ethnic differences in the distribution of sexual maturity (Fisher’s exact test). 

Skeletal maturity as determined by bone age, was similar between the ethnic groups within each 

gender (P>0.05). Bone age, the measure of maturity included in the multiple regression analyses, 

was neither a significant predictor of BA nor BMC. 
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e characteristics (mean ± SE (n)) of black and white children aged 10 years  

 Males 
White                     Black 

P Females 
White                    Black 

P 

10.65 ± 0.03 (72) 10.55 ± 0.02 (182) <0.01 10.62 ± 0.03 (64) 10.53 ± 0.02 (158) <0.05 
10.31 ± 0.12 (71) 10.13 ± 0.08 (179) ns 10.41 ± 0.15 (62) 10.38 ± 0.10 (156) ns 

ir 1) % (n) 51% (34) 65% (113) 
ns 

67% (43) 59% (92) 
ns 

hair 2) % (n) 48% (32) 34% (58) 30% (19) 39%(62) 
air 3 & 4) % (n) 1% (1) 1% (1) ns 3% (2) 2% (3) ns 

143.5 ± 0.9 (72) 137.3 ± 0.5 (182) <0.0001 142.6 ± 0.9 (64) 139.2 ± 0.5 (158) <0.001 
36.0 ± 0.8 (72) 32.6 ± 0.5 (182) <0.001 35.5 ± 1.0 (64) 34.8 ± 0.7 (158) ns 
17.4 ± 2 (72) 17.2 ± 3 (182) ns 17.3 ± 3 (64) 17.8 ± 3 (158) ns 

3.35 ± 0.53 (70) 3.16 ± 0.50 (181) <0.01 3.12 ± 0.37 (64) 3.03 ± 0.53 (157) ns 
9.79 ± 1.12 (15) 9.66 ± 1.40 (131) ns 8.96 ± 0.85 (16) 9.28 ± 1.46 (104) ns 
76.7 ± 3.5 (18) 74.3 ± 3.3 (127) <0.01 74.0 ± 3.7 (16) 72.7 ± 3.1 (104) ns 

are means
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Dual-energy X-ray absorptiometry (DXA) 

 

Bone size (BA) and bone mass (BMC) measurements at the whole body, femoral neck 

and lumbar spine are shown in Table 4-2. Data and statistics presented in this table were not 

adjusted for any variables.  

 

General 

 

Table 4-1 and Table 4-2 provide anthropometric and DXA data respectively, reported per 

gender and race/ethnicity. Racial differences in anthropometry, BA and BMC, as well as the 

effect of socioeconomic status in this cohort have been reported elsewhere. 212,213,239,320  
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Table 4-2. Bone area (BA) and bone mineral content (BMC) comparisons between race/ethnic groups within each gender. 

Values are unadjusted means (± SE) 

 Males 
White                     Black 

P Females 
White                    Black 

P 

       
 n=71 n=180  n=64 n=158  

Whole body less head 
BA (cm2) 

1099.74 ± 18.75 1009.22 ± 10.06 <0.0001 1087.33 ± 22.64 1047.95 ± 13.41 ns 

Whole body less head 
BMC (g) 

786.35 ± 17.04 715.38 ± 9.36 <0.001 766.71 ± 21.93 738.75 ± 13.14 ns 

       
 n=72 n=182  n=64 n=158  
Femoral neck BA (cm2) 4.32 ± 0.04 4.13 ± 0.02 <0.0001 4.21 ± 0.04 4.05 ± 0.02 <0.0001 
Femoral neck BMC (g) 3.03 ± 0.05 3.06 ± 0.03 ns 2.70 ± 0.06 2.77 ± 0.03 ns 
       
 n=72 n=182  n=64 n=158  
L1-L4 BA (cm2)  46.00 ± 4.96 43.02 ± 4.26 <0.0001 43.99 ± 4.26 42.99 ± 4.34 ns 
L1-L4 BMC (g) 26.72 ± 4.66 19.09 ± 3.69 <0.0001 25.54 ± 5.10 25.33 ± 5.24 ns 
Data and statistics presented in this table were not adjusted for any variables. Student t-tests were used to compare means.
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Infant size (weight and length) vs. BA and BMC at 10 years 

 

Mean BA and BMC values which are tabulated for each group (black and white boys and 

girls) according to tertiles of BW, WT1 or LT1, were positively and significantly associated with 

weight (BW, WT1) and length (LT1) at most sites and more so in males than females (Table 4-

3). 

 

After correcting BA and BMC for race/ethnicity, gender, age, socioeconomic status, bone 

age, height and weight at 10 years, WT1 and LT1 were still predictive of 10-year-old whole body 

BA and BMC (between 6% and 10% for a 1% change in predictor) and femoral neck BMC 

(between 8% and 17% for a 1% change in predictor) (Table 4-4). When BMC was in addition 

adjusted for BA, BW, WT1 and LT1 continued to be predictive of BMC at the femoral neck, but 

not at the whole body. 
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Table 4-3. BA and BMC means (± SE) adjusted for age at the whole body, femoral neck and lumbar spine, within each third of 

the distribution of Birthweight (BW, kg), and weight at 1 year (WT1, kg) and length at 1 year (LT1, cm). 

Size Category n Whole body 
BA                    BMC 

n Femoral neck 
BA                    BMC 

n Lumbar spine 
BA                    BMC 

Black males 
BW <3.00kg 59 961.5 ± 16.5 670.6 ± 15.4 59 4.08 ± 0.04 2.94 ± 0.05 59 41.36 ± 0.53 22.19 ± 0.46

3.00-3.36kg 62 1007.5 ± 16.1 711.9 ± 15.0 62 4.10 ± 0.04 3.02 ± 0.05 62 43.06 ± 0.52 23.22 ± 0.45
>3.36kg 60 1058.1 ± 16.3 763.9 ± 15.3 58 4.21 ± 0.04 3.22 ± 0.05 60 44.51 ± 0.52 25.07 ± 0.45
P trend  <0.001 <0.001  <0.05 <0.001  <0.001 <0.0001 

WT1 <9.0kg 45 928.2 ± 17.4 648.3 ± 17.0 43 4.03 ± 0.04 2.87 ± 0.05 45 40.75 ± 0.62 21.64 ± 0.51
9.0-10.0kg 44 1001.5 ± 14.7 704.1 ± 14.3 44 4.09 ± 0.04 3.03 ± 0.05 44 43.32 ± 0.63 23.62 ± 0.52
>10.0kg 42 1097.7 ± 16.4 799.6 ± 15.9 42 4.28 ± 0.04 3.31 ± 0.05 42 44.99 ± 0.64 25.49 ± 0.53
P trend  <0.0001 <0.0001  <0.001 <0.0001  <0.0001 <0.0001 

LT1 <73.0cm 34 928.3 ± 20.2 647.1 ± 19.4 33 4.01 ± 0.05 2.85 ± 0.06 34 40.39 ± 0.72 21.31 ± 0.60
 73.0-76.0cm 60 1021.2 ± 17.1 722.7 ± 16.4 59 4.17 ± 0.04 3.12 ± 0.05 60 43.83 ± 0.54 24.01 ± 0.45
 >76.0cm 33 1082.2 ± 17.3 787.0 ± 16.7 33 4.27 ± 0.05 3.26 ± 0.06 33 44.81 ± 0.73 25.61 ± 0.61
 P trend  <0.0001 <0.0001  <0.01 <0.0001  <0.0001 <0.0001 

 
White males 

BW <3.20kg 23 1014.4 ± 31.1 705.0 ± 28.5 24 4.22 ± 0.06 2.82 ± 0.08 24 44.44 ± 1.03 24.65 ± 1.01
 3.20-3.50kg 23 1091.9 ± 30.5 781.3 ± 28.0 25 4.26 ± 0.06 2.99 ± 0.08 25 45.86 ± 1.01 27.08 ± 0.99
 >3.50kg 24 1186.9 ± 29.7 866.5 ± 27.3 23 4.52 ± 0.06 3.29 ± 0.08 24 48.57 ± 0.99 29.44 ± 0.97
 P trend <0.001 <0.001  <0.01 <0.001  <0.05 <0.01 
WT1 <9.2kg 3 892.3 ± 60.0 596.5 ± 63.3 3 3.86 ± 0.14 2.34 ± 0.25 3 38.48 ± 0.98 19.01 ± 1.02
 9.2-9.9kg 7 1050.5 ± 39.2 751.1 ± 41.3 7 4.21 ± 0.09 3.01 ± 0.16 7 45.99 ± 0.64 27.61 ± 0.66
 >9.9kg 5 1265.3 ± 48.1 907.4 ± 50.7 5 4.47 ± 0.11 3.38 ± 0.20 5 50.82 ± 0.79 28.46 ± 0.82
 P trend  <0.01 <0.05  <0.05 <0.05  <0.0001 <0.0001 
LT1 <74.8cm 5 969.0 ± 92.0 671.5 ± 89.1 5 4.05 ± 0.14 2.54 ± 0.20 5 41.24 ± 1.19 21.66 ± 1.26
 74.8-78.5cm 9 950.3 ± 56.7 653.9 ± 54.9 9 4.32 ± 0.10 3.16 ± 0.14 9 46.30 ± 0.86 27.58 ± 0.91
 >78.5cm 4 1205.7 ± 44.2 863.6 ± 42.9 4 4.55 ± 0.16 3.34 ± 0.22 4 51.20 ± 1.32 27.61 ± 1.39
 P trend  <0.05 <0.05 ns <0.05  <0.001 <0.01 



Bone mass and bone size in 10 year-old South African children 

 

Page 114 of 233

Size Category n Whole body 
BA                    BMC 

n Femoral neck 
BA                    BMC 

n Lumbar spine 
BA                    BMC 

Black females 
BW <2.86kg 50 1004.1 ± 22.5 701.6 ± 22.5 50 4.00 ± 0.04 2.69 ± 0.06 50 42.19 ± 0.60 24.60 ± 0.73

2.86-3.21kg 55 1067.3 ± 21.4 754.8 ± 21.4 55 4.06 ± 0.04 2.81 ± 0.05 55 43.27 ± 0.57 25.69 ± 0.70
>3.21kg 52 1069.9 ± 22.0 758.1 ± 22.0 52 4.07 ± 0.04 2.79 ± 0.06 52 43.44 ± 0.58 25.66 ± 0.72
P trend  ns ns  ns ns  ns ns 

WT1 <8.5kg 27 982.2 ± 21.3 677.0 ± 21.0 27 3.97 ± 0.06 2.60 ± 0.07 27 41.66 ± 0.76 23.15 ± 0.88
8.5-9.5kg 43 1061.2 ± 24.9 758.0 ± 24.6 43 4.04 ± 0.04 2.81 ± 0.06 43 43.01 ± 0.60 25.82 ± 0.70
>9.5kg 34 1147.7 ± 28.0 820.3 ± 27.6 34 4.18 ± 0.05 2.87 ± 0.06 34 44.39 ± 0.68 26.83 ± 0.78
P trend  <0.0001 <0.001  <0.05 <0.05 <0.05 <0.01 

LT1 <71.0cm 28 1014.7 ± 21.3 705.8 ± 20.7 28 4.01 ± 0.06 2.61 ± 0.07 28 42.30 ± 0.76 24.34 ± 0.89
71.0-74.0cm 50 1041.9 ± 24.3 733.8 ± 23.6 50 4.05 ± 0.04 2.79 ± 0.05 50 42.85 ± 0.57 25.33 ± 0.67
>74.0cm 26 1163.8 ± 36.4 845.0 ± 35.4 26 4.17 ± 0.06 2.92 ± 0.07 26 44.31 ± 0.79 26.81 ± 0.92
P trend  <0.01 <0.01  ns <0.05  ns ns 

           
White females 

BW <3.0kg 20 1095.3 ± 40.5 779.0 ± 39.5 19 4.26 ± 0.07 2.71 ± 0.11 19 43.82 ± 0.92 24.80 ± 1.07
 3.0kg-3.28kg 24 1052.5 ± 36.9 734.9 ± 36.0 22 4.17 ± 0.06 2.66 ± 0.10 22 43.78 ± 0.84 25.11 ± 0.97
 >3.28kg 20 1121.2 ± 40.3 792.6 ± 39.4 20 4.19 ± 0.07 2.71 ± 0.11 20 43.78 ± 0.92 25.79 ± 1.06
 P trend  ns ns  ns ns  ns ns 
WT1 <8.3kg 4 944.6 ± 50.1 636.3 ± 49.8 4 3.96 ± 0.11 2.37 ± 0.17 4 40.71 ± 1.99 21.11 ± 2.19
 8.3-9.2kg 7 1079.0 ± 43.4 770.4 ± 43.2 7 4.00 ± 0.09 2.41 ± 0.13 7 42.11 ± 1.56 22.60 ± 1.72
 >9.2kg 5 1448.6 ± 86.7 1133.3 ± 86.3 5 4.28 ± 0.10 3.02 ± 0.16 5 47.37 ± 1.85 31.38 ± 2.04
 P trend  <0.01 <0.01  ns <0.05  ns <0.05 
LT1 <72.5cm 5 944.4 ± 63.7 633.1 ± 65.1 5 3.87 ± 0.09 2.30 ± 0.15 5 37.78 ± 1.21 19.50 ± 1.86
 72.5-74.0cm 7 1094.6 ± 58.5 777.9 ± 59.8 7 4.17 ± 0.08 2.64 ± 0.13 7 45.33 ± 1.05 25.80 ± 1.62
 >74.0cm 4 1311.3 ± 90.1 991.9 ± 92.1 4 4.31 ± 0.09 3.04 ± 0.17 4 47.22 ± 1.32 30.93 ± 2.03
 P trend <0.05 <0.05  <0.05 <0.05 <0.001 <0.01 
ANCOVAs analysed the relationship between 10-year-old BA or BMC when BW, WT1 or LT1 were categorised into tertiles and age was treated as a continuous predictor. 
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Table 4-4. The predictive power (β ± SE) of birthweight (BW), weight at 1 yr (WT1) and length at 1 year (LT1) of BA and 
BMC at the whole body, femoral neck and lumbar spine when BA and BMC were adjusted for race/ethnicity, gender, age, 
socioeconomic status, bone age, height and weight at 10 years 
Measure Birthweight Weight (1y) Length (1y) 

 n β ± SE P n β ± SE P n β ± SE P 
 
BA adjusted for race/ethnicity, gender, age, socioeconomic status, bone age, height (10y) and weight (10y) 
Whole body BA 460 0.03 0.02 ns 258 0.10 0.03 <0.001 257 0.06 0.03 <0.05 
Femoral neck BA 457 -0.04 0.04 ns 256 0.10 0.06 ns 255 0.02 0.06 ns 
Lumbar spine BA 460 0.02 0.03 ns 258 0.08 0.05 ns 257 0.01 0.05 ns 
 
BMC adjusted for race/ethnicity, gender, age, socioeconomic status, bone age, height (10y) and weight (10y) 
Whole body BMC 460 0.03 0.02 ns 258 0.10 0.04 <0.01 257 0.08 0.04 <0.05 
Femoral neck BMC 457 0.05 0.04 ns 256 0.14 0.05 <0.05 255 0.17 0.06 <0.01 
Lumbar spine BMC 460 0.04 0.04 ns 258 0.08 0.05 ns 257 0.04 0.06 ns 
 
BMC adjusted for race/ethnicity, gender, age, socioeconomic status, bone age, height (10y) and weight (10y) and BA 
Whole body BMC 460 -0.004 0.01 ns 258 -0.02 0.02 ns 257 0.01 0.02 ns 
Femoral neck BMC 457 0.07 0.03 <0.05 256 0.11 0.05 <0.05 255 0.16 0.05 <0.01 
Lumbar spine BMC 460 0.02 0.03 ns 258 0.03 0.04 ns 257 0.04 0.05 ns 
Multiple regression models determined the predictive power of BW, WT1 and LT1 on BA and BMC when BA and BMC were in addition adjusted for race/ethnicity, gender, age, socioeconomic status, 
bone age, height and weight at 10 years. The regression coefficient (β) was interpreted as the magnitude of the contribution infant size made to current BA and BMC variables.
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Discussion 

 

In both black and white South African 10-year old children, size in infancy was 

predictive of BA and BMC at all sites before adjustments were made for confounding variables. 

After adjustments for race/ethnicity, gender, age, socioeconomic status, bone age, height and 

weight at 10 year, size in infancy remained predictive of whole body BA and BMC, and femoral 

neck BMC. This relationship was observed despite black children being exposed to a multitude 

of environmental factors known to impact negatively on bone mass, such as living in poorer 

households and poor nutrition, 46 low calcium intake (estimated to be approximately 400 

mg/day), 199 little physical activity, 212,213 patterns of compromised growth and development as 

reflected by their shorter statures, lighter body weights and delayed onset of puberty. 47,48 It is 

well established that body size “tracks” through childhood, and that foetal and adult size lie on a 

continuum of body size and that the closer any two points are, the higher the correlation between 

them.33 The relationship between infant weights and BMC was not entirely mediated by the 

tracking of skeletal size: infants of a lower birthweight and a smaller size at 1 year grow to 

develop smaller bones (as reflected by BA) and/or bones of lower BMC at the femoral neck 

(lower BMC with similar BA). 

 

Meta-analyses and systematic reviews support a relationship between birthweight (and 

infant size) and lumbar spine BMC in adults both before and after adjustment for body size. 285  

Possible reasons explaining why we did not observe the same in our 10 year old children include 

(1) categorising birthweight and infant weight data resulted in a decrease in statistical power. (2) 

There may be have been confounding variables relating to lumbar spine BMC or birthweight for 
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which our analyses did not correct (e.g. bone geometry or quality, pubertal status, hormonal 

status, physical activity, smoking habits, alcohol consumption, calcium intake). We did not 

adjust for lifestyle determinants as gestational age at birth, physical inactivity, low dietary 

calcium intake and cigarette smoking of parents have not been shown to affect relationships 

between infant size and current bone mass. 22,62,107,245 (3) The relationship between birthweight 

and infant size and lumbar spine BMC is indeed mediated by the tracking infant size through to 

childhood. These reasons may also explain possible gender differences observed, but not 

analysed, in Table 4-3.  

 

The number of white subjects with data at 1 year was small, which should be borne in 

mind when interpreting any results in this race/ethnicity. 

 

The statistical methods employed in this study were similar to those used by other 

researchers so that comparisons could be made between studies and populations. We therefore 

have reported results that were both unadjusted and adjusted for the confounding variables of 

height and weight (in addition to race/ethnicity, gender, age, socioeconomic status, bone age), so 

as to counter the effect of tracking of skeletal size. 

 

Unadjusted BMC was positively and significantly related to birth- and infant weights and 

lengths and unadjusted BMC as has been observed in adults 5,60,62,107,196,280,308 and in the elderly, 

62,78 at the whole body, lumbar spine and / or femoral neck (Table 4-2). 
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In addition to using similar categorising methods as those used by others, 60,62,107,126 we 

used multiple regression techniques, and made simultaneous adjustments for race/ethnicity, 

gender, age, socioeconomic status, bone age, 60,62,107 height and weight, which are analyses 

particularly recommended for use in children, 226,245,261 and showed that size in infancy, 

especially at 1 year, was correlated with, and was predictive of BA and BMC of the whole body 

and BMC at the femoral neck at age 10 years, independent of current size, which is a finding that 

has not been consistently observed in adults. In adults, after adjusting BMC for height and 

weight simultaneously, it was reported that birthweight and weight or length at 1 year were no 

longer associated with bone mass. 5,62,308  

 

The mechanisms through which in utero growth translates into compromised bone health 

have been suggested to be mediated by the development of fewer cells and / or the altered 

programming of stem cell function and regulatory hormones 282 such as vitamin D, IGF-1 

6,94,145,146 and GH. 77 The multitude of BMC-modifying factors to which adults are exposed over 

a lifetime have been suggested to mask the relationship between early growth and adult bone 

mass, which we suggest explain why this relationships was observed in pre- and peripubertal 

children aged 10 years. 

 

The present findings support the hypothesis that growth and development both 

intrauterine and up until 1 year of age, which are measures of genetic, intrauterine and postnatal 

environmental factors, may have long-term consequences when compromised, and may be 

associated with the risk of osteoporosis in later life.  
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CHAPTER 5 - Bone mass and bone size in pre- or early pubertal 10-

year old black and white South African children and their parents 

 

Published as: Vidulich,L., Norris,S., Cameron,N. and Pettifor,J. Bone mass and bone size in pre- 

or early pubertal 10-year-old black and white South African children and their parents. Calcif 

Tissue Int 88, 281-293 (2011). 320 

 

Introduction 

 

Populations subjected to environmental factors known to negatively influence bone mass 

are expected to have lower bone mass, higher fragility fracture rates and lower heritability 

estimates. Black South Africans are subject to poor growth and nutrition, 46 low dietary calcium 

intake 199 and little physical activity, 212,213 yet have higher bone mass at the femoral neck 70,320 

and lower fracture rates. 79,297,310 Genetic factors which account for a major proportion of bone 

mass variance in adults, 252 adolescents 207 and children 149 are thought to maintain bone mass in 

black South Africans in the face of these adverse environmental factors. Yet assessment of 

heritability of bone mass and bone size by way of parent-child associations has not been 

previously explored in this population. 

 

Dual energy X-ray absorptiometry (DXA) technology remains the most widely used 

technique for the measurement of bone mass in both adult 32 and paediatric populations 32,156 and 



Bone mass and bone size in 10 year-old South African children 

 

Page 120 of 233

was used in this study. DXA measurements, their analyses and interpretation are dependent on 

size-related variables such as age, body size (height and weight), and bone volume 227 and on 

skeletal maturity, ethnicity and body composition. 9,115  

 

There is no standard way to correct BMC or areal BMD data for changes in skeletal size; 

they have been corrected for varying combinations of body size, bone size, bone area, pubertal 

stage, skeletal maturity, and body composition 115. The many different methods used make the 

interpretation of uncorrected and corrected DXA data and the objective comparisons between 

studies, populations and age groups very complex, confusing and potentially erroneous. 32  

 

To address these concerns Katzman et al. (1991) 161 and Carter et al. (1992) 51 proposed 

measurements less dependent on size by mathematically converting BMC to a three-dimensional 

estimate of volumetric BMD or bone mineral apparent density (BMAD). Bones were assumed to 

be shaped as cubes, and the following formulae were applied to calculate BMAD at whole body 

(BMC/(BA2height), femoral neck and mid-forearm (BMC/BA2) and lumbar spine 

(BMC/BA1.5). Kröger et al. (1992) 171 applied a similar concept assuming bones (vertebral 

bodies, femoral shaft and neck) to be shaped as cylinders and applied the formula 

BMAD=(BMC)(4/[π(bone width)]). Similarly, Lu et al. (1996) 195 assumed the femoral neck, 

mid-third of the femoral shaft, and the four lumbar vertebral bodies to be cylinders and used 

bone width (d) and height (h) to calculate bone volume (π(d/2)2 x h. All methods however 

calculate coefficients by assuming bones are shaped as cubes or cylinders which do not 

necessarily hold true in different ethnic groups, ages and sex. 261  
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Prentice et al. (1994) 261 proposed a method that calculated population-specific power 

coefficients (PCs), and then corrected BMC for BAPC, height and weight. This method allows 

BMC to be custom-corrected for size for each ethnic and sex group and each skeletal site. 

 

Therefore, the first aim of this study was to compare BMC corrected for BAPC, height and 

weight 261 against BMC corrected for other combinations of height, weight and / or BA in black 

and white children and their parents. The second aim of the study was to explore the associations 

of BMC and BA between black and white children and their parents in order to obtain an 

estimate of hereditability.  

 

Materials and Methods 

 

Subjects 

 

The subjects were 419 healthy children stratified by ethnicity and gender (135 black girls, 

63 white girls, 154 black boys, 67 white boys) of mean age 10.6 years (range: 10.0-10.9) who 

formed part of a longitudinal cohort of children born in Johannesburg during 1990 (the Bone 

Health sub-cohort of the Birth to Twenty study), and whose growth and development have been 

tracked since birth. Subjects with chronic illness (such as juvenile idiopathic arthritis, epilepsy or 

asthma) or on medication known to affect growth or bone mass development were excluded from 

the study (n=4). Of the parents of the 419 children, we collected maternal data from 406 

biological mothers (280 black mothers, 126 white mothers) of median age 37 years and paternal 



Bone mass and bone size in 10 year-old South African children 

 

Page 122 of 233

data from 100 biological fathers (53 black fathers, 47 white fathers) of median age 42 years. 

Many children were no longer living with their fathers whilst other fathers were not able to make 

themselves available for DXA scans because of a number of reasons, including work 

commitments. Both maternal and paternal data were available for 88 children. The study 

protocol was approved by the Committee for Research on Human Subjects of the University of 

the Witwatersrand, Johannesburg and the Ethical Advisory Committee of Loughborough 

University, UK. Guardians gave written informed consent and the children written assent to be 

studied.  

 

Anthropometry 

 

Height was measured to the last completed 1 mm using a wall-mounted stadiometer 

(Holtain, UK) and weight to the nearest completed 0.1 kg using a digital electronic instrument 

(Dismed, USA), using standardised protocols. 190 Both instruments were regularly calibrated and 

subjects wore minimal clothing when being weighed.  

 

Maturity 

 

Sexual maturity was self-assessed as pubic hair development in boys and girls, using the 

Tanner scaling technique. 203,204 In addition, skeletal maturity was assessed by scoring bone age 

from hand radiographs using the Tanner-Whitehouse bone-specific scoring technique (TWII20). 

307 

 



Bone mass and bone size in 10 year-old South African children 

 

Page 123 of 233

Socioeconomic questionnaire 

 

Primary caregivers answered questions about their social and economic status. This 

questionnaire had been modified appropriately for a South African population and previously 

validated. 42 The socioeconomic score was formulated from the presence or absence of 13 asset 

indicators, namely, house type, electricity, indoor flushing toilet, indoor running water, refuse 

removal, television, digital satellite television, motor vehicle, refrigerator, microwave, washing 

machine, video machine and telephone. 

 

Dual-energy X-ray absorptiometry (DXA) 

 

Children’s and their parents’ BA and BMC of the whole body including and excluding 

the head (WB), femoral neck (FN), lumbar spine (LS; L1-L4), mid-radius (MR) and distal one-

third of the radius (DR) were scanned using a fan beam densitometer in array mode (model 

Hologic QDR-4500A (Hologic, Inc., Bedford, MA, USA)). Lean body mass (LBM) and fat body 

mass (FBM) were determined from the DXA whole body scan. Adult and children’s data were 

analyzed using adult software supplied by the manufacturer, version 11.2. (Hologic, Inc). To 

determine the densitometer’s measurement precision, a lumbar spine phantom was scanned 

daily. The coefficients of variations (CV) were 0.47% and 0.78% for BA and BMC respectively. 

To determine operator measurement precision, 15 subjects were scanned twice and the resultant 

CV was <1% for both BA and BMC. Precision of measurement in the children was not assessed 

because of radiation concerns. 
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Structural geometry of the femoral neck 

 

A series of standard formulae developed by Beck and colleagues 28,29 were used to 

calculate cross sectional area (CSA; cm2) and section modulus (Z; cm3) of the femoral neck from 

DXA-measured BMC and BA. Assumptions were made that the fixed length of the femoral neck 

area was 1.5 cm, the effective density of bone in fully mineralized bone tissue was ~1.05 g/cm3 

and the proportion of cortical mass was 0.6. The standard formulae included estimating femoral 

neck width, cross-sectional moment of inertia, endosteal diameter, cross sectional area, 

trabecular porosity, mean cortical thickness and buckling ratio. 

 

Statistics 

 

STATISTICA (data analysis software system) version 6 (StatSoft, Inc., 2001, Tulsa, OK, 

USA) was used to analyse data sets of children and their parents and the associations between 

them. Data sets included age, bone age (in children), height, weight, BA and BMC of the whole 

body, femoral neck, lumbar spine, mid- and distal one-third of the radius, and whole body LBM 

and FBM. All data are reported as means and standard errors of the mean. Probability values 

<0.05 were considered significant for all tests. 

 

Power coefficients (PC) were derived from the linear-regression analyses of ln(BMC) on 

ln(BA). These regression coefficients were used as the PC to which BA were raised to correct for 

bone size and were determined for each skeletal site for each of the 8 groups in this study (black 
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and white boys and girls, mothers and fathers). BMC was then corrected for the size-related 

predictors of height, weight, and/or BAPC or BA. BMC was also corrected ln(LBM) or ln(FBM). 

 

To allow for comparisons between size-adjusted BMC of children and those of their 

parents, BMC was corrected for height, weight, BAPC and age (the latter in adults only) and then 

converted to Z-scores. Z-scores were calculated from the means and standard deviations of each 

of the 8 groups. The associations between children’s and parents’ Z-scores were assessed by way 

of Pearson’s correlation coefficients (r) and the calculation of heritability estimates (½h2, %). 

Heritability by maternal (½h2) and paternal descent (½h2) was estimated by regressing children’s 

Z-scores on mother’s or father’s Z-scores. The resulting regression coefficient gives the 

appropriate heritability estimate. 149,201,236  

 

Lastly, the predictors of children’s BA and BMC were assessed by way of multiple 

regression analyses. Mother’s or father’s BAPC were included separately as predictors of 

children’s BA in addition to ethnicity, gender, child’s height, weight and BAPC. Mother’s or 

father’s size adjusted BMC (corrected for height, weight and BAPC) were included separately as 

predictors of children’s BMC in addition to ethnicity, gender, child’s height, weight and BAPC. 

Residual plots of all regression models showed no outlying or influential points, no deviation 

from the assumptions of linear relationships and constant variances.  
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Results 

 

1. Descriptive characteristics of study population 

 

Black families lived in households that scored significantly lower on the socioeconomic 

scale (median = 7, range: 0-13) than white families (median = 12, range: 6-13) (P<0.05, Mann-

Whitney U Test).  

 

Descriptive characteristics of the 10-year old black and white children and their parents 

are shown in Table 5-1. Ethnic differences in anthropometry in this cohort of children have been 

reported elsewhere. 212,239,320 Briefly, when compared to their white peers, black children and 

their parents were significantly shorter, and black boys and their fathers were significantly 

lighter. At the time of the study, the children had achieved ~80% of their parents’ heights and 

~50% of their parents’ weights.  

 

All the children were pre-or early pubertal (Tanner stages 1-2) as determined by pubic 

hair development. There were no ethnic differences in sexual maturity (Fisher’s exact test) or 

skeletal maturity (independent t-test) within each sex.  
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2. BA and BMC 

 

Uncorrected BA 

 

Uncorrected BA data are shown in Table 5-1. Bone area was generally smaller in black 

children and their parents, or at the most, similar but never bigger. At 10 years of age, children 

had achieved ~80% of their parental BA at the femoral neck and distal one-third of the radius, 

~75% at the lumbar spine, ~60% at the whole body and ~55% at the mid radius.  

 

Uncorrected BMC 

 

Uncorrected BMC data are shown in Table 5-1. When compared to their white peers, 

uncorrected BMC was lower in black boys and their fathers at all sites except the femoral neck. 

Uncorrected BMC was similar in black and white girls but less in black mothers at all sites 

except the mid-radius. Uncorrected BMC in children had reached ~65% of parental values at the 

femoral neck, ~50% at the distal one-third of the radius, ~45% at the whole body, ~40% at the 

lumbar spine and ~35% at the mid radius. 

 

Power coefficients 

 

The calculated power coefficients (PC) are shown for each of the 8 groups (black and 

white boys and girls, mothers and fathers) at each skeletal site in Table 5-2. Calculated PCs 

ranged from 0.87 to 1.83 in children and 0.43 to 1.58 in adults. They differed between blacks and 
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whites in both children and adults at the femoral neck, between black and white adults at the 

distal one-third of the radius, and only between black and white mothers at the mid-radius. In 

addition, for the most part, PCs were significantly different from 1, 1.5 and/or 2, which have 

been used by different authors to adjust for differences in size. 
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Table 5-1. Descriptive characteristics (± SE) of a) 10-year old black and white girls and boys and b) their parents. BA and 

BMC reported in this table are not corrected size. P-values indicate ethnic differences 

 
a)   
 Girls Boys
 Black White  Black White  
 Mean ± SE n Mean ± SE n P< Mean ± SE n Mean ± SE n P< 
Age (y) 10.53 ± 0.27 135 10.61 ± 0.25 63 0.05 10.55 ± 0.27 154 10.65 ± 0.24 67 0.05 
Skeletal age (y) 10.26 ± 1.09 135 10.30 ± 1.21 63 ns 10.19 ± 1.15 154 10.36 ± 1.23 67 ns 
Height (cm) 139.2 ± 6.40 135 142.7 ± 7.61 63 0.01 137.3 ± 6.2 154 143.5 ± 7.4 67 0.0001 
Weight (kg) 34.8 ± 8.3 135 35.7 ± 8.0 63 ns 32.7 ± 6.5 154 35.9 ± 6.2 67 0.001 
Lean mass (kg) 23.9 ± 4.0 135 25.1 ± 4.3 63 ns 24.1 ± .31 154 26.9 ±3.6 67 0.0001 
Fat mass (kg) 10.1 ± 5.0 135 9.8 ± 4.4 63 ns 7.5 ± 4.0 154 8.1 ± 3.2 67 ns 
Whole body less head BA (cm2) 1049 ± 173 135 1081 ± 183 63 ns 1010 ± 133 154 1095 ± 151 67 0.0001 
Whole body less head BMC (g) 741 ± 170 135 759 ± 172 63 ns 717 ± 126 154 781 ± 139 67 0.001 
Femoral neck BA (cm2) 4.05 ± 0.32 135 4.20 ± 0.29 63 0.01 4.13 ± 0.32 153 4.33 ± 0.33 66 0.0001 
Femoral neck BMC (g) 2.78 ± 0.42 135 2.68 ± 0.45 63 ns 3.05 ± 0.39 153 3.03 ± 0.43 66 ns 
Lumbar spine BA (cm2) 34.02 ± 3.49 135 34.79 ± 3.33 63 ns 34.11 ± 3.26 154 36.40 ± 4.01 67 0.0001 
Lumbar spine BMC (g) 20.72 ± 4.32 135 20.66 ± 4.17 63 ns 19.09 ± 3.02 154 21.40 ± 3.67 67 0.0001 
Mid radius BA (cm2) 4.37 ± 0.87 135 4.27 ± 0.85 63 ns 4.49 ± 0.77 152 4.51 ± 0.80 64 ns 
Mid radius BMC (g) 1.69 ± 0.43 135 1.71 ± 0.40 63 ns 1.76 ± 0.34 152 1.87 ± 0.37 64 0.05 
Distal ⅓ rd radius BA (cm2) 2.17 ± 0.20 135 2.19 ± 0.21 63 ns 2.32 ± 0.22 152 2.32 ± 0.19 64 ns 
Distal ⅓ rd radius BMC (g) 1.04 ± 0.16 135 1.06 ± 0.15 63 ns 1.09 ± 0.13 152 1.14 ± 0.12 64 0.01 
Cross sectional area (cm2) 1.76 ± 0.27 126 1.70 ± 0.29 63 ns 1.94 ± 0.25 143 1.93 ± 0.27 66 ns 
Cross sectional area (cm2)* 1.79 ± 0.02 126 1.66 ± 0.02 63 0.001 1.99 ± 0.02 143 1.82 ± 0.03 66 0.0001 
Section modulus (cm3) 1.12 ± 0.40 126 1.25 ± 0.44 63 0.05 1.28 ±0.43 143 1.51 ± 0.50 66 0.001 
Section modulus (cm3)* 1.16 ± 0.03 126 1.16 ± 0.04 63 ns 1.24 ± 0.03 143 1.31 ± 0.04 66 ns 
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b) 
 Mothers Fathers 
 Black White  Black White  
 Mean ± SE n Mean ± SE n P< Mean ± SE N Mean ± SE n P< 
Age (y) 35.6 ± 4.81 280 40.2 ± 6.07 126 0.0001 42.5 ± 7.8 53 41.9 ± 5.5 47 ns 
Height (cm) 157.7 ± 5.7 280 165.2 ± 5.9 126 0.0001 169.6 ± 6.2 53 179.6 ± 6.2 47 0.0001 
Weight (kg)  71.7 ± 14.9 280 69.4 ± 14.6 126 ns 71.4 ± 13.5 53 81.2 ± 12.0 47 0.001 
Lean mass (kg) 30.5 ± 10.5 280 25.4 ± 10.1 126 0.0001 49.5 ± 6.4 53 58.3 ± 6.7 47 0.0001 
Fat mass (kg) 37.3 ± 5.3 280 41.3 ± 6.4 126 0.0001 17.2 ± 7.8 53 19.9 ± 8.0 47 ns 
Whole body BA (cm2) 1917 ± 147 278 2003 ± 143 125 0.0001 2139 ± 146 53 2330 ± 131 47 0.0001 
Whole body BMC (g) 2096 ± 276 278 2221 ± 278 125 0.0001 2498 ± 261 53 2716 ± 304 47 0.001 
Femoral neck BA (cm2) 4.83 ± 0.35 280 5.12 ± 0.34 126 0.0001 5.47 ± 0.36 53 5.91 ± 0.30 47 0.0001 
Femoral neck BMC (g) 4.26 ± 0.65 280 4.09 ± 0.64 126 0.05 4.81 ± 0.57 53 4.95 ± 0.81 47 ns 
Lumbar spine BA (cm2) 42.6 ± 4.3 280 47.5 ± 4.2 125 0.0001 49.3 ± 4.3 53 55.2 ± 4.7 47 0.0001 
Lumbar spine BMC (g) 44.4 ± 7.8 280 50.5 ± 9.1 125 0.0001 51.2 ± 6.5 53 56.3 ± 8.5 47 0.01 
Mid radius BA (cm2) 7.16 ± 0.99 280 7.01 ± 0.99 126 ns 9.31 ± 1.26 53 10.1 ± 1.18 47 0.01 
Mid radius BMC (g) 4.11 ± 0.68 280 4.12 ± 0.69 126 ns 6.09 ± 1.07 53 6.73 ± 0.96 47 0.01 
Distal ⅓ rd radius BA (cm2) 2.63 ± 0.28 280 2.65 ± 0.24 126 ns 3.06 ± 0.44 53 3.12 ± 0.24 47 ns 
Distal ⅓ rd radius BMC (g) 1.77 ± 0.19 280 1.83 ± 0.20 126 0.01 2.30 ± 0.28 53 2.46 ± 0.28 47 0.01 
Cross sectional area (cm2) 2.71 ± 0.41 280 2.60 ± 0.41 126 0.05 3.05 ± 0.38 43 3.14 ± 0.51 47 ns 
Cross sectional area (cm2)* 2.82 ± 1.01 280 3.52 ± 1.23 126 0.001 5.28 ± 1.97 43 7.58 ± 2.44 47 0.0001 
Section modulus (cm3) 2.73 ± 0.02 280 2.55 ± 0.04 125 0.05 3.24 ± 0.08 43 2.97 ± 0.07 47 0.05 
Section modulus (cm3)* 3.01 ± 0.06 280 3.11 ± 0.10 125 0.001 6.15 ± 0.39 43 6.79 ± 0.37 47 ns 
 
*Femoral neck geometry results when corrected for height and total lean mass (less head for children) (± SE). 



Bone mass and bone size in 10 year-old South African children 

 

Page 131 of 233

Table 5-2. Power coefficients (PC ± SE)* at each skeletal site in black and white a) children and b) their parents  
 
a)  

 Girls Ethnic 
differences 

Boys Ethnic 
differences 

Gender 
differences 

Black 

Gender 
differences 

White 
 Black n White n P Black n White n P P P 

Whole body less head 1.34 ± 0.02 135 1.32 ± 0.03 63 0.5749 1.28 ± 0.03 154 1.27 ± 0.04 67 0.8490 0.1046 0.3276 

Femoral neck 1.18 ± 0.13d 135 1.83 ± 0.212 63 0.0010 0.87 ± 0.11a 153 1.35 ± 0.164 66 0.0160 0.0696 0.0721 

Lumbar spine 1.52 ± 0.101  135 1.72 ± 0.151 63 0.1750 1.21 ± 0.094c 154 1.30 ± 0.113 67 0.5689 0.0220 0.0253 

Mid radius 1.16 ± 0.042a 135 1.09 ± 0.051a 63 0.3005 0.96 ± 0.04a 152 1.04 ± 0.05a 64 0.2499 0.0004 0.4825 

Distal ⅓ rd radius 1.24 ± 0.093c 135 1.17 ± 0.11c 63 0.6214 0.81 ± 0.084a 152 1.07 ± 0.05a 64 0.0439 0.0004 0.5012 

 
b)  

 Mothers Ethnic 
differences 

Fathers Ethnic 
differences 

 Black n White n P Black n White n P 

Whole body 1.39 ± 0.061 278 1.37 ± 0.102 125 0.8585 1.26 ± 0.124d 53 1.60 ± 0.183 47 0.1107 

Femoral neck 0.78 ± 0.114a 280 0.94 ± 0.20c 126 0.4500 0.43 ± 0.251b 53 1.10 ± 0.46 47 0.1898 

Lumbar spine 1.33 ± 0.061c 280 1.58 ± 0.111 125 0.0314 0.90 ± 0.16b 53 1.09 ± 0.21b 47 0.4671 

Mid radius 1.00 ± 0.04a 280 1.02 ± 0.06a 126 0.7810 1.07 ± 0.11b 53 1.06 ± 0.10 47 0.0591 

Distal ⅓ rd radius 0.80 ± 0.052a 280 1.02 ± 0.07a 126 0.0111 0.70 ± 0.113a 53 1.16 ± 0.14d 47 0.0114 
 

1-4 Significantly different from 1: 1P<0.0001, 2P<0.001, 3P<0.01, 4P<0.05 
a-d Significantly different from 1.5: aP<0.0001, bP<0.001, cP<0.01, dP<0.05 
* PCs were calculated from the linear-regression analyses of ln(BMC) on ln(BA). BAPC was used as a correction for BMC together with height and weight in Figure 5-1 to Figure 5-4. P values indicate 
ethnic and gender differences. The superscripts indicate whether PC was different from 1 or 1.5. 
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Table 5-3. The associations between children’s and parents’ BMC Z-scores* assessed by Pearson correlation coefficients (r) 
and heritability estimates (½h2) 
a)  

Children vs. Mothers 
 Girls Boys Ethnic differences Gender differences 
 Black White Black White Girls Boys Black White 
 r ½h2 ± SE n r ½h2 ± SE n r ½h2 ± SE n r ½h2 ± SE n P P P P 

WB 0.38a 0.39 ± 0.08 128 0.51a 0.40 ± 0.13 59 0.46a 0.40 ± 0.07 149 0 .46a 0.45 ± 0.11 61 
r: 0.313 

½h2: 0.946 
r: 1.000 

½h2: 0.701 
r: 0.426 

½h2: 0.925 
r: 0.728 

½h2: 0.769 

FN 0.31a 0.32 ± 0.09 128 0.44a 0.43 ± 0.12 60 0.23d 0.23 ± 0.08 151 0.29d 0.32 ± 0.12 62 
r: 0.344 

½h2: 0.479 
r: 0.184 

½h2: 0.540 
r: 0.478 

½h2: 0.454 
r: 0.352 

½h2: 0.518 

LS 0.20d 0.22 ± 0.10 128 0.27d 0.29 ± 0.14 59 0.42a 0.38 ± 0.07 152 0.29d 0.34 ± 0.13 62 
r: 0.645 

½h2: 0.685 
r: 0.333 

½h2: 0.771 
r: 0.543 

½h2: 0.181 
r: 0.908 

½h2: 0.794 

MR 0.48a 0.52 ± 0.08 128 0.28d 0.28 ± 0.13 60 0.27d 0.25 ± 0.08 150 0.39c 0.40 ± 0.12 60 
r: 0.096 

½h2: 0.103 
r: 0.388 

½h2: 0.311 
r: 0.044 

½h2: 0.018 
r: 0.509 

½h2: 0.499 

DR 0.40a 0.46 ± 0.09 128 0.36c 0.35 ± 0.12 59 0.15d 0.14 ± 0.07 149 0.34d 0.38 ± 0.12 58 
r: 0.772 

½h2: 0.483 
r: 0.201 

½h2: 0.077 
r: 0.026 

½h2: 0.048 
r: 0.905 

½h2: 0.860 

 

b) 
 Children vs. Fathers 
 Girls Boys Ethnic differences Gender differences 
 Black White Black White Girls Boys Black White 
 r ½h2 ± SE n r ½h2 ± SE n r ½h2 ± SE n r ½h2 ± SE n P P P P 

WB 0.11 0.12 ± 0.23 25 0.39 0.30 ± 0.15 24 0.28 0.31 ± 0.21 27 0 .45d 0.36 ± 0.15 23 
r: 0.323 

½h2: 0.516 
r: 0.515 

½h2: 0.846 
r: 0.548 

½h2: 0.545 
r: 0.816 

½h2: 0.779 

FN 0.49d 0.52 ± 0.29 25 0.38 0.32 ± 0.17 24 0.33 0.39 ± 0.22 27 -0.21 -0.18 ± 0.18 23 
r: 0.656 

½h2: 0.558 
r: 0.066 

½h2: 0.049 
r: 0.513 

½h2: 0.722 
r: 0.050 

½h2: 0.051 

LS 0.41d 0.46 ± 0.22 25 -0.03 -0.03 ± 0.21 24 0.47d 0.60 ± 0.22 28 0.49d 0.33 ± 0.13 23 
r: 0.127 

½h2: 0.114 
r: 0.931 

½h2: 0.301 
r: 0.799 

½h2: 0.654 
r:0.070 

½h2:0.154 

MR 0.33 0.32 ± 0.19 25 -0.43 -0.06 ± 0.31 24 0.43d 0.46 ± 0.19 28 0.47d 0.34 ± 0.14 22 
r: 0.009 

½h2: 0.305 
r: 0.869 

½h2: 0.616 
r: 0.689 

½h2: 0.604 
r: 0.002 

½h2: 0.248 

DR 0.59d 0.57 ± 0.20 25 -0.17 -0.20 ± 0.24 24 0.36 0.37 ± 0.18 28 0.50d 0.26 ± 0.10 22 
r: 0.005 

½h2: 0.070
r: 0.571 

½h2: 0.592 
r: 0.304 

½h2: 0.459 
r: 0.023 

½h2: 0.233 
 

a-d Significantly correlated: aP<0.0001, bP<0.001, cP<0.01, dP<0.05 
* Z-scores were calculated from the means and standard deviations of BMC adjusted, for height, weight, and BAPC (PCs listed in Table 5-2. ) and age in adults. Z-scores were used 
so that children and their parents’ data were comparative. 
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Size-adjusted BMC 

 

Figure 5-1 to Figure 5-4 illustrate how BMC values vary in black and white children and 

their parents when corrected for different combinations of height, weight, BA and/or BAPC at the 

different skeletal sites. Correcting BMC for height, weight and BAPC or BA accounted for the 

greatest proportion of the variance in BMC at most skeletal sites. However, ethnic differences in 

BMC were magnified when correcting for BAPC versus BA. That is, BMC (corrected for BAPC) 

was greater in black children and their parents than in their white peers at the femoral neck (all 

P<0.0001) and lumbar spine (all P<0.0001), and in black boys and fathers at the whole body 

(both P<0.0001). At the femoral neck, black girls had 7% more BMC than whites when 

corrected for BA, height and weight, which increased to 69% when corrected for BAPC, height 

and weight. Similar increases were observed in black boys (from 8% to 64%), mothers (from 8% 

to 34%) and fathers (from 6% to 98%) as well as at the lumbar spine (black girls: from 4% to 

85%; boys from 3% to 34%; mothers from 1% to 166% and fathers from 2% to 89%). BMC was 

less in black girls and their mothers at the whole body (both P<0.0001), mid radius (girls: 

P<0.0001, mothers: P<0.001) and distal one-third of the radius (girls only P<0.0001).  
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Figure 5-1. Whole body less head (for girls and boys) and whole body (for mothers and fathers) BMC (± SE) corrected for 
ln(height), ln(weight) or combinations of size-related predictors of BA, BAPC, (BAx), height (ht) and / or weight (wt) in black 
and white girls and boys, mothers and fathers. Asterisk’s indicate ethnic differences, *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001 
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Figure 5-2. Lumbar spine BMC (± SE) corrected for ln(height), ln(weight) or combinations of size-related predictors of BA, 
BAPC, (BAx), height (ht) and / or weight (wt) in black and white girls and boys, mothers and fathers. Asterisk’s indicate ethnic 
differences, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Bone mass and bone size in 10 year-old South African children 

 

Page 136 of 233

Figure 5-3. Femoral neck BMC (± SE) corrected for ln(height), ln(weight) or combinations of size-related predictors of BA, 
BAPC, (BAx), height (ht) and / or weight (wt) in black and white girls and boys, mothers and fathers. Asterisk’s indicate ethnic 
differences, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (not published) 
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Figure 5-4. Mid radius BMC (± SE) corrected for ln(height), ln(weight) or combinations of size-related predictors of BA, 
BAPC, (BAx), height (ht) and / or weight (wt) in black and white girls and boys, mothers and fathers. Asterisk’s indicate ethnic 
differences, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (not published) 
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3. Structural geometry of the femoral neck 

 

There were no ethnic differences between children or parents in uncorrected cross 

sectional area (CSA). Uncorrected section modulus (Z) was significantly greater in black 

children and their parents (P<0.05-0.0001). Once corrected for height and total lean mass (less 

head for children), CSA was significantly greater in blacks (P<0.05-0.0001) and Z significantly 

smaller in black mothers (P<0.001). (Table 5-1) 

 

4. Associations between children’s and parents’ BMC adjusted for height, weight and BAPC 

 

The associations between children’s and parents’ adjusted BMC Z-scores assessed by 

way of Pearson’s correlation coefficients (r) and heritability estimates (½h2, %) are presented in 

Table 5-3. BMC Z-scores of black and white children were significantly correlated with those of 

their mothers’ at all skeletal sites. Heritability by maternal or paternal descent was estimated to 

be ~30%. There were no significant ethnic differences in correlation coefficients or heritability 

estimates.  

 

Discussion 

 

This study illustrates how various combinations of size-related adjustments influence 

DXA-measured BMC in black and white pre-pubertal children and their parents. Ethnic 

differences in BMC were dependent on ethnic differences in size. Correcting BMC for BAPC (or 
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BA), height and weight proved to be the combination of size-related corrections that accounted 

for the greatest proportion of the variance in BMC at all skeletal sites. Size-adjusted BMC 

(adjusted for BA) at the different sites was greater in blacks by 2-8%, but by 34-166% when 

adjusted for BAPC. Chapter 3 presented BMC corrected for height and weight only (excluding 

BA) in the same black children was ~6% greater at the femoral neck but not different at the 

lumbar spine. 320 In support of these latter findings, similar lumbar spine BMDs were shown in 

pre-, peri- and postmenopausal black and white South African women when corrected for height 

only. 69,70 Adjusting BMC for BAPC, height and weight versus BA, height and weight increased 

ethnic differences in both adults and children at the femoral neck (in girls: from 7% to 69%; 

boys: 8% to 64%; mothers 8% to 34%; fathers: 6% to 98%) and unmasked ethnic differences at 

the lumbar spine (girls: 4% vs. 85%; boys: 3% vs. 34%; mothers 1% vs. 166%; fathers: 2% vs. 

89%) and may in part explain the ten-fold lower prevalence of femoral neck fractures in adult 

black South Africans when compared to whites. 298,310 

 

DXA, histomorphometric and radiogrammetric evidence has accumulated supporting 

superior bone quality and strength in black South Africans and African-Americans when 

compared to their white counterparts; the macro-architecture of the proximal femur in blacks is 

characterised by narrower marrow cavities, thicker cortices and a lower buckling ratios (ratio of 

outer radius to cortical thickness), despite non-significant differences in outer bone diameter. 

232,233,290 The micro-architecture of the iliac crest in South African blacks is characterised by 

thicker cortical bone, less porous cortices, greater endocortical wall thickness and greater osteoid 

thickness. Adults in addition have fewer canals in the cortical bone and thicker trabeculae than 

whites. 286-288 Estimates of strength as determined by cross-sectional geometry (cross-sectional 
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area and section modulus) at the femoral neck were greater in both South African blacks and 

African-Americans when compared to whites. 222,233 These macro- and micro- architectural 

features are consistent with greater bone strength and lower fracture rates. 290 Lastly, black South 

Africans have been shown to have greater bone apposition and formation rates. 287,288 Smaller 

bones with thicker cortices and trabeculae have also been found using high resolution pQCT in 

Chinese premenopausal women at the distal radius and tibia when compared to white women; 331 

these findings are similar to that which has been found at the femoral neck in the comparison 

between our black and white South African children. 

 

Structural differences in bone are suggested to originate in the peripubertal period 

because few ethnic differences in bone size and microarchitecture before puberty have been 

reported. 114 Differences in DXA-measurements are apparent by age 9 years in this cohort, 

suggesting that these differences had developed prior to puberty. 212,223 

 

It is possible that the better bone mass in black children and adults might have been due 

to greater weight-bearing or physical activity in which poorer people might need to engage. In 

fact, we had previously proposed this to be a mechanism for the greater femoral neck BMD in 

black South African women. 70 Correlations have been shown between weight of load carried on 

the head and lumbar spine BMD, as well as between years of load carrying and lumbar spine and 

total body BMD. 189 However, given that black 10 year old children, who are lighter than or of 

similar weight as white children, also have a greater femoral neck bone mass, other explanations 

must be sought. Physical activity is actually lower in our black than white children 212,213 thus 

excluding physical activity as a possible explanation Thus it appears that skeletal loading is 
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unlikely to have contributed to the higher bone mass and we now postulate that the differences 

are mainly genetically determined in otherwise unfavourable social and environmental 

conditions (poor growth and nutrition, 46 and low dietary calcium intake 199 of black children). In 

support of our findings, a study conducted in individuals of African descent in the West Indies, 

which analysed genetic and environmental factors influencing BMD measured by both DXA and 

QCT, found overall heritability of both areal and volumetric BMD to be substantial. 330  

 

Areal BMD remains an important predictor of fracture risk. The calculation of areal 

BMD or another measure of apparent density, BMAD, assumes PCs to be 1 (when calculating 

BMD), 1.5 (when calculating BMAD at the femoral neck and mid-radius) or 2 (when calculating 

BMAD at the whole body). PCs calculated in this study were for the most part significantly 

different from each of the three values in both children and their parents, confirming that neither 

BMD nor BMAD reflect true volumetric bone density. It is of interest to note that the calculated 

PCs were generally similar for the two ethnic groups at each of the different bone sites with the 

exception of the femoral neck in both boys and girls and at the distal third of the radius in boys. 

Similar PCs suggest that three dimensional size changes in bone associated with growth are 

similar at the whole body, lumbar spine and mid-radius in the two ethnic groups.  

 

In the same cohort of children at age 9 years, higher power coefficients were found in 

white children when compared to black. 223 The difference between this study and Micklesfield 

et al. (2009) may be that we calculated power coefficients for black and white boys and girls as 

opposed to Micklesfield et al. (2009) who combined boys and girls in the calculation of their 

black and white PCs, thus increasing sample size and statistical power to detect ethnic 
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.differences in PCs, bone dimensions or bone distribution. These different approaches highlight 

the importance of calculating power coefficients specific to a sample, time point, and aim of the 

study. 

 

Maternal BA and size-adjusted BMC significantly predicted their children’s BA and 

adjusted BMC at all skeletal sites. Heritability by maternal descent was estimated to be ~30% 

and was similar for both black and white children. This is not the first study to demonstrate the 

influence of maternal genetics on the prepubertal acquisition of bone mass, 84,149 but it is the first 

to show similar genetic influences in BMC in both black and white prepubertal populations, 

despite their differences in body- and bone size, and environmental influences. Black South 

Africans, children in particular, are exposed to a number of environmental factors known to 

impact negatively on bone mass, such as poor growth and nutrition, 46 low calcium intake 199 and 

little physical activity. 212,213 Given the important contributions that diet and other environmental 

factors have on the phenotypic variance in bone mass or BMD, lower bone mass and heritability 

estimates in blacks would be expected. Lower heritability estimates have been shown before for 

stature in West African populations when compared to European populations, which were 

explained by the rigours of the traditional way of life in West African surroundings. 275  

 

In general, the possible genetic contribution to the variance of the bone mass phenotype 

is reported to be 50–80% at any age or in any group. 35 The bone mass phenotype in black South 

Africans is expressed even in pre-/early pubertal childhood. These heredity estimates in black 

children are comparable to those from environmentally-advantaged white South African children 

and Caucasians from other parts of the world.  
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Mother-daughter estimates of heritability of BMC are usually better than mother-son 

estimates. 149 In the current study, this was true only at mid- and distal one-third of the radii in 

black children, at all other sites no differences in heritability between male and female children 

were seen. It has also been suggested that estimates of maternal heritability are better than 

paternal estimates in both boys and girls. 149 Due to the small number of fathers, a major 

limitation in the current study, it was not possible to draw any conclusions from our data.  

 

In conclusion, this study confirms that correcting BMC for height, weight and BAPC was 

the combination of size-related adjustments that accounted for the greatest proportion of the 

variance of BMC at all skeletal sites. This combination increased ethnic differences in BMC 2.6 

times greater at the femoral neck and unmasked ethnic differences at the lumbar spine in both 

adults and children and may in part explain the lower prevalence of fragility fractures at the hip 

in black South Africans when compared to whites. 298 Heritability by maternal descent, estimated 

by regressing children’s Z-scores on parents Z-scores, was ~30%, and comparable between 

environmentally disadvantaged black and advantaged white South African children and similar 

to that found in Caucasians from other parts of the world. It is unclear at this stage, whether 

improvement in the adverse environmental factors in our black children would result in an 

increase in bone mass, even lower fracture rates and greater heritability. The intriguing question 

remains as to how genetic influences maintain bone mass in the face of what are generally 

considered to be adverse environmental factors. Not only do these genetic influences have a 

positive effect on bone mass during childhood, but these are maintained through adult life and 

are associated with a very low incidence of femoral neck fractures in the elderly.
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CHAPTER 6 - Discussion and conclusions 

 

Introduction 

 

This thesis explored the associations between proximal, historical and predictive genetic 

and environmental factors affecting bone health in socio-economically- and environmentally-

disadvantaged black and -advantaged white pre- and early-pubertal children from South Africa. 

Data presented in this thesis was collected in 2000 and 2001 when the understanding of DXA 

measurement and interpretation of BMC and bone mass in growing children was a relatively new 

field. This chapter serves to consolidate our three research publications over that time span. This 

chapter first presents a summary of this thesis’ findings, hypotheses tested and key results. From 

the body of work, I discuss common research themes that emerged, and what contributions this 

thesis makes to the body of theoretical and contextual knowledge. I also discuss limitations and 

propose future research avenues to pursue, and finally, what the findings of this thesis conclude. 

 

Summary of key findings 

 

Table 6-1 below summarises the three key research questions, the hypotheses that were 

tested and the summary of key findings by chapter. 
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Table 6-1. Summary of key findings 

Research questions Hypotheses Summary of chapter findings 
(1) What proximal 
factors contribute to 
bone mass and bone size 
of 10-year old pre-and 
early pubertal, black and 
white South African 
children? 
 
 

Body size (height, weight), 
genetic factors (gender, 
race/ethnicity), lifestyle 
factors (SES, nutrition, 
physical activity), sexual 
and skeletal maturity 
influence bone mass and 
bone size. 
 
 

Socio-economically- and 
environmentally disadvantaged 
black children had a greater bone 
mass at the femoral neck, total 
hip and mid radius than white 
children which was neither 
explained by differences in 
current height or weight (for 
which statistical corrections were 
made) nor bone age and pubertal 
stage (which did not differ 
between ethnic groups). 

   
(2) Do historical factors 
contribute to the current 
status of bone mass?” 
More specifically, (1) Do 
weight and/or length in 
infancy predict bone 
mass in 10 year old 
children? (2) If there is a 
relationship is it because 
weight and/or length in 
infancy are related to 
bone size or bone mass? 

Size in infancy is related to 
10 year old bone mass and 
bone size. 

BMC at 10 years was 
independently associated with 
weight and length at 1 year, 
which was not completely 
mediated by the tracking of 
skeletal growth. Low BW and 
small size at 1 year resulted in 
smaller bones and bones of 
lower BMC at the whole body 
and lower BMC at the femoral 
neck. 

   
(3) Is parental bone size 
and bone mass predictive 
of bone size and bone 
mass in 10-year old 
children? More 
specifically, what is the 
heritability of bone size 
and bone mass? 

(3a) Bone mass is heritable. 
 

(3b) Heritability estimates 
of bone mass are less in 
black than in white children 

(3a) Black children and their 
parents had a greater corrected 
BMC at the femoral neck, and 
lumbar spine, than their white 
counterparts.  

 
(3b) Maternal heritability of 
bone mass was estimated to be 
~30%. That is, ~30% of the 
phenotypic variation is due to 
genetic variation in both blacks 
and whites at all sites and was 
comparable between socio-
economically- and 
environmentally disadvantaged 
black children and advantaged 
white children.  
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The key findings in black and white 10-year black and white old children are 

schematically summarized in Figure 6-1 below.  

 

Figure 6-1. Schematic skeletal figure summarising key findings in black (B) and 
white (W) children when DXA-measured BMC was corrected for BAPC, height and weight 
(as in Chapter 5) 

 

 

 

1) At the femoral neck: BMC was consistently greater in both black children and their 

parents when compared to their white peers, regardless of the way in which BMC was 

corrected for size. The percentages in brackets that follow refer to percentage black-white 

differences in BMC after correcting BMC for BA, height and weight (as in Chapter 3) versus 

correcting BMC for BAPC, height and weight (as in Chapter 5). Percentages preceded by 
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‘ns’, indicate the black-white differences were ‘not significant’. [Black girls (7% vs. 69%), 

black boys (8% vs. 64%), black mothers (8% vs. 34%) and black fathers (ns 6% vs. 98%)]. 

 

2) At the lumbar spine: BMC was greater or similar in blacks when compared to whites, 

depending on which measures were used to correct BMC for size. [Black girls (ns 4% vs. 

85%), black boys (ns 3% vs. 34%), black mothers (ns 1% vs. 166%) and black fathers (ns 

2% vs. 89%)]. 

 

3) At the whole body, mid radius and distal one third of the radius: ethnic differences in BMC 

varied between boys and girls and their parents, as well as being dependent on which 

measures were used to correct BMC for size. [Whole body: black girls (ns 1% vs. -13%), 

black boys (ns 1% vs. 8%), black mothers (-2% vs. -19%) and black fathers (ns 3% vs. 

97%); mid radius: black girls (-11% vs. -11%), black boys (-4% vs. 7%), black mothers (-

4% vs. ns 0%) and black fathers (ns 0% vs. ns -2%) and distal one third of the radius: black 

girls (ns 0% vs. -4%), black boys (ns -3% vs. 18%), black mothers (-3% vs. 20%) and black 

fathers (ns -3% vs. 24%)]. 

 

Research themes 

 

Three key and recurring factors or research themes emerged across the body of work in 

this study of proximal, historical and predictive genetic and environmental factors affecting bone 

mass and bone size in growing children, namely, the DXA measurement factor, the skeletal site 

factor and the genetic predisposition factor, which are discussed in more detail below. 
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The DXA measurement factor 

 

In Chapter 3 when bone mass and bone size were compared between black and white 

children only, BMC was corrected for BA, height and weight. In Chapter 5, when bone size 

and bone mass were compared between black and white children and their parents, BMC was 

corrected for BAPC, height and weight, after population-specific power coefficients (PCs) were 

calculated. This method allowed DXA-measured BMC to be custom-corrected for size for each 

group (black and white boys and girls and their parents) we studied and at each skeletal site. 261 

Correcting BMC for BAPC (or BA), height and weight proved to be the combination of size-

related corrections that accounted for the greatest proportion of the variance in BMC at all 

skeletal sites. Chapter 5’s Figure 5-1 to Figure 5-4 illustrated how BMC values varied in black 

and white children and their parents when corrected for different combinations of height, weight, 

BA and/or BAPC and how different conclusions with regards to ethnic differences in bone mass 

at the different skeletal sites could be drawn: that BMC was greater in blacks than whites, greater 

in whites than blacks, or that there was no difference between the ethnic groups.  

 

Very few studies from other parts of the world have reported greater bone mass 

(corrected or uncorrected for size) in white populations when compared to black, yet we found 

BMC (corrected and/or uncorrected for size) to be greater in whites at a few skeletal sites. That 

is, BMC was greater in whites at the whole body, and at the mid- and distal one-third of the 

radius in girls, boys, mothers and fathers, and at the lumbar spine in boys and mothers.  
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From South Africa, Patel et al. (1992), found a greater uncorrected BMC at the forearm 

in white South African women aged 6-20 years when compared to their black counterparts, but 

not after correcting for height. 247 Daniels et al. (1995) however found no differences in radial 

and spinal BMD between South African blacks and whites before or after corrections. 70  

 

From the UK and The Gambia, lumbar spine BMC was 31% higher in British women 

(44+ years) when compared to Gambian counterparts, and 24% higher after correcting for age, 

height and weight. Similarly, midshaft radial BMC was 16% higher before and 10% after 

adjustment for age, height, and weight. In 134 British children aged 0-36 months (123 

Caucasian, 11 mixed, mostly Eurasian) BMC was greater when compared to 243 Gambian 

children both before and after correcting for height, weight and bone width.  260 

 

The questions to ask ourselves are: do these findings reflect a superior bone mass in 

whites, i.e. are we observing true site-specific ethnic differences in bone mass, or are we 

observing under- and/or overestimation of BMC? The International Society for Clinical 

Densitometry (ISCD) recommend that corrections for bone size and body composition must be 

factored into the interpretation of DXA measurements for children aged 5-19 years of age whose 

BMC and areal BMD are highly influenced by skeletal dimensions and body composition, which 

continuously changes in children. 119 The ISCD however does not recommend correcting DXA 

measurements in adults for skeletal dimensions and body composition, which remain relatively 

constant. In the clinical setting, uncorrected BMD is sufficient to diagnose and monitor bone 

mass in adults. That said, correcting adult BMC or BMD data for size would add value to the 

accuracy and precision of research data.  



Bone mass and bone size in 10 year-old South African children 

 

Page 150 of 233

 

Using Figure 5-1 to Figure 5-4, it would be valuable to investigate which the most 

appropriate size-related corrections for DXA-measured BMC are by comparing corrected BMC 

values from these figures of both children and adults to BMC as determined by one of three 

possible methods; (1) ash weight which is the current gold standard for measuring BMC in the 

laboratory. DXA-measured BMC are within 7-9% of BMC as determined by ash weight; 136,326 

(2) Quantitative Computed Tomography (QCT) which measures volumetric bone density in 

mg/cm3 of either cortical or trabecular bone 90 or (3) true bone density which is wet bone weight 

divided by the actual volume of bone tissue. We may not know the answer yet but this thesis 

highlighted that black-white ethnic differences in BMC are dependent on the DXA measurement 

factor, and results must always be interpreted with this in mind. 

 

The skeletal site factor 

 

 The femoral neck emerged as the site at which BMC was consistently greater in both 

black children and their parents when compared to their white peers, regardless of the way BMC 

was corrected for size. (Figure 5-3) Lumbar spine, BMC was however not consistently greater in 

black boys and mothers when compared to whites and depended on which measures were used to 

correct BMC for size. (Figure 5-2). There may be a few explanations for this apparent lack of 

agreement between skeletal sites.  

 

The main difference between the femoral neck and lumbar spine is in the composition 

and relative proportions of cortical and trabecular bone. The femoral neck is predominantly 
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cortical (~75%) and lumbar spine predominantly trabecular (~66%). Table 6-2 below tabulates 

the relative proportions of cortical and trabecular bone at other skeletal sites too.  

 

Table 6-2. Relative proportions of cortical and trabecular bone at the specific skeletal sites 

Skeletal site % Cortical Bone % Trabecular Bone 

PA spine 33% 66% 

Ultra distal radius 33% 66% 

Femoral neck 75% 25% 

8mm radius 75% 25% 

Total body 80% 20% 

Mid radius 95% 5% 

Source: Bonnick (1998) 38 

 

The turnover of cortical bone is slower than trabecular bone due to its predominantly 

mechanical function compared to the metabolic function of trabecular bone. The apparent 

discordance in ethnic differences in bone mass between skeletal sites may be because the rate of 

growth in varying dimensions differs between trabecular and cortical sites. Or trabecular bone 

may be more responsive, or responds quicker, to specific environmental influences than cortical 

bone. 254 For example, white girls might have had higher oestrogen levels which are associated 

with puberty before the development of secondary sexual characteristics, which were not yet 

apparent. 

 

The incidence of vertebral fractures in South African women is significantly lower in 

rural and urban blacks (3% and 2%) when compared to whites (14%). 79 More recently Conradie 

(2008) published a thesis with updated data in which the prevalence of vertebral fractures was 
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reported to be similar between black (11.5%) and white (8.1%) women. 58 Small sample size 

cross-sectional study design were cited as concerns. Nevertheless, these data may suggest an 

increase in the prevalence of vertebral fractures in black South African women. These data in 

fracture incidence in together with the environmental and historical factors investigated in this 

thesis, suggest raise a potential concern relating to the bone health status of this cohort. That is, 

the children have not been programmed for optimal bone health in utero and early life. In 

addition, environmental factors are not favourable for maximisation of PBM as this cohort enters 

puberty, both of which are risk factors for the development of osteoporosis as an elderly 

population, particularly at forearm and lumbar spine. Despite disadvantages, black children 

fortunately demonstrate a superior bone mass- and strength at the femoral neck, to that of their 

white peers. This genetic advantage is seen in infancy, adults, and is associated with a very low 

incidence of femoral neck fractures in the black elderly.  

 

The genetic predisposition factor 

 

The third and final research theme consolidates the evidence from this thesis and related 

literature and argues that by inference, the superior bone mass observed in black children results 

from genetic predisposition rather than environmental factors. It is this genetic predisposition 

that holds the key to understanding ethnic differences in bone mass and bone size. 

 

Genetic factors are documented as accounting for 50–90% of bone mass, and bone 

structure, the rate of bone loss, and the skeleton’s response to environmental stimuli like 

nutrients and physical activity are inherited. 318 As was found in both black and white children, 
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maternal heritabilities were similar (~30%) between the two ethnic groups. This supports the 

findings of Visscher et al. (2008), 324 who noted that heritabilities were surprisingly constant 

across populations and species.  

 

Figure 6-2 below from Heaney et al. (2003) 131 has been superimposed on what has been 

published on the Bt20 cohort together with the findings of this thesis. With regard to black 

children and their parents and factors influencing bone mass structure, a green tick () indicates 

data which are favourable, a red cross () indicates unfavourable data, and orange question mark 

(??) indicates data may not be available or if available, further research is needed. 

 

Figure 6-2. Factors influencing bone mass structure and risk of fracture  

Adapted from Heaney (2003) 131  
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The favourable bone mass profile of the black Bt20 cohort, their parents and data from 

other South African studies are discussed at the beginning of this chapter, and will not be 

repeated here. A discussion of factors influencing the bone mass profile follows. 

 

pQCT data has since been published on the Bt20 cohort when the children were aged 13 

years.. Black children were shown to have greater trabecular and cortical densities at the radius 

(metaphysis, 4%) and tibia (diaphysis, 38%)  respectively. 221 In addition, histomorphometric 

analyses of the iliac crest showed black South African adults to have thicker cortical bone, have 

less porous cortices, greater endocortical wall thickness, and greater osteoid thickness than 

whites. Adults in addition had fewer canals in the cortical bone and thicker trabeculae than 

whites, 244,286-288 all of which support favourable material properties of bone in black South 

Africans. 

 

Favourable shape & architecture and bone strength are supported by pQCT data from 

the tibia at age 13 years, together with the radiogrammetry results from the 2nd metacarpal 

presented in chapter 3, which showed black children to have greater outer bone and inner 

marrow diameters. Despite thinner cortices, this architecture is consistent with greater polar 

strength-strain indices and more resistant to bending and torsional forces. Bending strength as 

determined by the strength-strain index, was calculated to be 10-20% greater in black children.  

 

Favourable fracture rates were reported for black postmenopausal women at the femoral 

neck 297 and in these black children of Bt20 children at age 9 years. 310 The incidence of 

fracturing was half of what it was in black children (19%) compared to white (41.5%). The most 
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commons site fractured was the upper limb (57%), and the most common grade of trauma, 

moderate. 310 Thandrayen et al. (2009) did not include comparative analyses with bone mass but 

Clark et al. (2006) did and found that bone mass was predictive of fracture risk in UK children 

aged 9.9y from The Avon Longitudinal Study of Parents and Children (ALSPAC). 56 Fracture 

risk was reported to increase by 89% per SD decrease in size-adjusted BMC i.e. smaller 

skeletons relative to overall body size were at increased risk of fracturing. 56 

 

No hormones or bone turnover data was presented in this thesis; however, 

histomorphometric evidence suggests that black South Africans have higher rates of bone 

turnover than whites. Higher bone turnover rates in South African blacks have been suggested to 

minimise the volume of bone damaged by fatigue and stress fractures, resulting in better bone 

quality and consequently lower fracture risk in blacks than in whites. 288 However, no ethnic 

differences in biochemical markers of bone formation (serum alkaline phosphatase and 

osteocalcin) or bone resorption (urine hydroxyproline and pyridinoline), or in dietary calcium 

intake in either the pre- or postmenopausal groups have been found. 69 Serum 25-hydroxyvitamin 

D (25-(OH)D) was lower and 1,25-dihydroxyvitamin D (1,25-(OH)D) levels higher in blacks 

than whites and whites had higher ionized serum calcium, similar serum albumin, lower serum 

parathyroid hormone and higher urinary calcium excretion suggestive of nett skeletal calcium 

loss. 69 Subsequent to this thesis, no differences in menarcheal age between black and whites 

girls were found: 12.4 years (95% confidence interval (CI 12.2, 12.6) in blacks and 12.5 years 

(95% CI 11.7, 13.3) for whites. 152 
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Given DXA-measured fat mass was no different between the black and white children at 

age 10 years (Chapters 3 and 5) and at age 13 years, 221 fat mass an unlikely soft tissue padding 

contributor in explaining ethnic differences in bone mass and the incidence of fracturing. Lean 

mass was significantly less in black boys when compared to white, as determined by DXA at age 

10 years (Chapters 3 and 5) and DXA-measured whole body and pQCT-measured muscle cross-

sectional area of the forearm and leg at age 13 years. Micklesfield et al. (2011) showed a 

significant positive relationship between muscle CSA and cortical area in black and white 

children. 221 In addition, South African black women have less LBM than their white 

counterparts, 82 in contrast to African Americans who have more LBM. 177,234,265,336 but LBM 

was the most significant contributor to BMD at the lumbar spine and hip sites in black 

premenopausal South African women and at the hip in white women. 53 These data on total lean 

mass however do not clarify the ethnic differences observed bone mass, and the incidence of 

fracture. 

 

Fat and lean masses, are key contributing factors not just to ‘soft tissue padding’, ‘fall 

prevention’ but also to bone strength. Given that these were not included in Figure 6-2, they have 

been added. Given the attention body composition is receiving in the field of bone, these factors 

are important in future work relating to changes in bone in both ethnic groups. 

 

With regard to lifestyle factors, black children of this cohort lived in households who 

scored significantly lower on the socioeconomic scale (median = 7, range: 0-13) than white 

children (median = 12, range: 6-13). Despite the poorer SES, Norris et al. (2008) 237 showed that 

SES had no influence on the bone mass of the hip and lumbar spine in the children in the Bt20 
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cohort; although there was a significant independent effect of SES on whole body bone size. 

Femoral neck BMC was shown to be influenced by the historical factors of birthweight, height at 

1 year (1y) and weight at 1 year (1y), associations which were not entirely mediated by size. 

Infants of lower birthweight and a smaller size at 1 year grew to develop smaller bones (as 

reflected by BA) and/or bones of lower BMC at the femoral neck (lower BMC with similar BA).  

 

 

With regard to exercise, McVeigh et al. (2004) 212 found that black children of this cohort 

at age 9 years were significantly less physically active than their white counterparts and that 

there was no association between the black children’s level of physical activity and bone mass. 

However, a greater bone mass existed in black 10 year old children despite the fact that they 

were lighter or of similar weights. weight-bearing, greater weight-bearing was proposed to 

explain the greater femoral neck bone mass in black South African women. 69,70 Indeed, black 

women are of a greater body weight, walk long distances, carry loads on their heads, and babies 

on their backs; while men are employed largely as labourers. However, a greater bone mass 

existed in black than white 10 year old children despite the fact that the former were lighter or of 

similar weights. Nyati et al. (2006) 239 found black children to have longer forearms and black 

boys to have longer legs and humeri and shorter trunks than their white peers. These ethnic 

differences in anthropometry might indicate different centres of gravities and mechanical loads 

imposed on weight-bearing bones during physical activity. 

 

With regard to nutrition, the dietary calcium intake by black children of this cohort was 

almost half (~400 mg/day) of that in their white counterparts (~800 mg/day). This supports other 
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studies that have shown only limited evidence of an effect of dietary calcium intake on BMC. 

199,214 Calcium absorption and renal calcium conservation has not been addressed in this cohort.  

25(OH)D concentrations, were significantly lower in black children of this cohort than white 

children (93 ± 34 nmol/l vs. 120 ± 37 nmol/l). 258  

 

Therefore, the superior () BMC, fracture rate, bone mass, shape and architecture, 

material properties and bone strength observed in South Africa’s black children, adults and 

elderly cannot be explained by unfavourable () environmental factors (nutrition, exercise and 

lifestyle), or questionable or unknown (??) factors and are more likely to be explained by 

inherited traits that favourably determine bone mass. Based on Heaney’s (2003) 131 adapted 

model,  factors that warrant more research include body composition (muscle and fat) in 

particular, falls, soft-tissue padding and postural reflexes.  

 

Figure 6-3 below illustrates the genetic and non-genetic control of bone mass. The 

superimposition of favourable () versus unfavourable data () yields a striking picture which 

suggests that bone mass in our population must be under genetic control. 
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Figure 6-3. Interaction of genetic and non-genetic factors on bone mass  

 

Source: Rizzoli et al. (2001) 274  
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The last figure, Figure 6-4, supporting the hypothesis that bone mass is under 

predominantly genetic control is from Heaney et al. (2000). 132 Although this graph was not 

designed to compare different populations, we can hypothesise that 'Full Genetic Potential' 

would be coupled with 'Optimal Bone' bone acquisition (- - -) and ‘Inadequate Lifestyle Factors’ 

would be coupled with ‘Suboptimal’ bone acquisition (- - -). At the femoral neck especially, we 

see black children fitting the bone mass curve of 'Full Genetic Potential', despite having 

‘Inadequate lifestyle factors’ which are typically considered to result in ‘Suboptimal’ bone 

acquisition.  

 

Figure 6-4. Bone mass versus age with optimal and suboptimal bone acquisition 

 

Source: Heaney et al. (2000) 132 
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In support of the inference that a greater bone mass in South Africa’s black children, 

adults and elderly is likely to be explained by genetic factors, a logic of arguments table is 

presented below. The table consists of 3 columns: resultant bone mass, environmental 

contribution and genetic contribution. Using the underlined row as an example, the argument 

across the 3 columns should be read as follows:  “WHERE the resultant bone mass is shown to 

be less in blacks than whites (B<W), and assuming the environmental contribution to be less 

than the genetic contribution to bone mass, IF the environmental contribution is less favourable 

in blacks than whites (B<W) THEN the genetic contribution must be less than, equal to, or 

greater in blacks than in whites (B<W, B=W or B>W)”. Every possible scenario is presented. 

 

Table 6-3 Logic of arguments 

WHERE* IF THEN 

Resultant bone mass Environmental contribution Genetic contribution 

 Assuming environmental contribution < genetic contribution  

B<W B<W B<W, B=W or B>W 

 B=W B<<W 

 B>W B<<W 

B=W B<W B>>W 

 B=W B<W, B=W or B>W 

 B>W B<<W 

B>W B<W B>>W 

 B=W B>W 

 B>W B<W, B=W or B>W 

  

 Assuming environmental contribution = genetic contribution 

B<W B=W B<W 

 B<W  B=W 
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WHERE* IF THEN 

Resultant bone mass Environmental contribution Genetic contribution 

 B<<W B>W 

B=W B>W  B<W 

 B=W B=W 

 B<W B>W 

B>W  B>>W B<W 

 B>W B=W 

 B=W B>W 

  

 Assuming environmental contribution > genetic contribution 

B<W B<W, B=W or B>W B<W 

 B<<W B=W 

 B<<W B>W 

B=W B>>W  B<W 

 B<W, B=W or B>W B=W 

 B<<W B>W 

B>W B>>W  B<W 

 B>W  B=W 

 B<W, B=W or B>W B>W 

 

 Figure 6-2, Figure 6-3 and Figure 6-4, together with the logic of arguments presented in 

Table 6-3 infer that greater bone mass in South Africa’s black children, adults and elderly is 

likely to be explained by genetic factors.  

 

 This work is not the first to support a genetic basis for black-white differences, but the 

first with data from a population that demonstrates the relative non-contribution of 

environmental factors to a superior bone mass. Our arguments that the basis for black-white 
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differences in bone mass is predominantly genetic are also supported by evidence that different 

sets of genes control bone quantity and architecture at different skeletal sites 154 and by work 

done by Parfitt et al. (1997). 243 They argued the magnitude of ethnic differences in bone mass 

(10% to 40%) were not comparable to the differences of known non-genetic or environmental 

factors. And secondly, ethnic differences in bone mass were already evident in the foetus and 

continued to increase progressively during growth and PBM attained which appear to persist 

throughout life. 243 A recent study found that in a sample of multiethnic peripubertal children, 

BMC was associated with markers of genetic admixture and percent body fat but not with self-

classified race/ethnicity categories, diet, or physical activity. 52 

 

Despite the genetic predisposition factor supporting a superior bone mass and geometry, 

at the femoral neck, this thesis highlights historical and predictive factors that may predispose 

the lumbar spine and other skeletal sites to the risk of developing osteoporosis. Osteoporosis, a 

“paediatric disease with geriatric consequences”, can be addressed by way of optimising 

maternal health and the intrauterine environment, growth in early infancy, as well as by the 

optimisation of factors for the maximisation of PBM during childhood and adolescence. The 

following of a healthy diet, engagement in regular physical activity, and the avoidance of 

behaviours such as smoking and excessive alcohol consumption must be advocated and 

supported. The investment in such prevention programmes will have tremendous payoffs in the 

future for all chronic diseases of lifestyle, including osteoporosis. 
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Theoretical relevance 

 

1. This work has contributed to the body of knowledge in the following ways:- 

1) This study has established that there are ethnic differences in bone size and bone mass 

(BMC) at the femoral neck, total hip and mid radius between black and white 10 year old 

South African children, as measured by DXA and corrected for gender, pubertal 

development, and current height and weight, which are covariants particularly relevant 

for use in children. 226,245,261 Black South African children had a greater BMC at the 

femoral neck (boys: 6%; girls: 5%), total hip (boys: 6%) and mid radius (boy and girls: 

6%) than white children. Bone mass at the lumbar spine and whole body was similar in 

black and white children, but this depended on which method was used to correct for 

differences in body and bone size.  

2) It is the first study to illustrate how DXA-measured BMC varies in response to being 

corrected for different combinations of size-related corrections such as height, weight and 

BA or BAPC. By calculating PC (power coefficients) for each ethnic-, gender-, and age-

group, and correcting BMC for height, weight and BAPC, ethnic differences in corrected 

BMC in both adults and children increased up to tenfold at the femoral neck and 

unmasked ethnic differences at the lumbar spine. 

3) It is also the first study in pre- and early pubertal black and white children to show a 

relationship between bone size and bone mass at 10 years of age and early life factors, 

which reflect the quality of growth in early life. By having made simultaneous 

adjustments for race/ethnicity, gender, age, socioeconomic status, bone age,60,62,107 height 

and weight, historical factors as reflected by size in infancy, especially at 1 year, were 
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correlated with and predictive of BA and BMC of the whole body and BMC at the 

femoral neck at age 10 years, independent of the tracking of body size. 

4) Bone size and bone mass in pre- and early pubertal black and white children and their 

parents have been assessed for the first time from a developing country and we have 

studied the heritability of bone mass and bone size by way of parent-child associations, 

establishing that maternal heritability estimates are ~30% for both environmentally 

disadvantaged black and advantaged white children. The magnitude of the estimate is 

similar to that found in Caucasians from other parts of the world. 

 

Contextual relevance 

 

The purpose of this section is to discuss the relevance of my findings to South Africans in 

relation to current bone health status in children and as future adults. 

 

The three main findings of this these are:- 

1)  Black children have greater bone mass at the femoral neck, total hip and mid 

radius than white children which is neither explained by differences in current height or 

weight (for which statistical corrections were made) nor bone age and pubertal stage 

(which did not differ between ethnic groups). Estimates of bone strength as determined 

by cross-sectional geometry (cross-sectional area and section modulus) at the femoral 

neck were greater in black children. At the whole body, lumbar spine and distal one-third 

of the radius, there were no differences in BMC. 
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Thus socio-economically- and environmentally disadvantaged black children 

currently demonstrate a superior bone mass to that of their more advantaged white 

children. DXA findings and structural analyses of the femoral neck suggest black 

children have a superior shape and architecture, material properties and bone strength. 

Bone mass appears to be under genetic influences rather than environmental influences, 

findings which suggest reasons for the low prevalence of fragility fractures in adult black. 

It is unclear at this stage, whether improvement in the adverse environmental factors in 

our black children would greatly improve the bone mass findings at all sites. However it 

does raise an intriguing question around how the genetic influences maintain bone mass 

in the face of what are generally considered to be adverse environmental factors. For 

now, these genetic influences have a positive effect on bone mass during childhood, but 

the question is will they be maintained through adult life and continue to be associated 

with a very low incidence of femoral neck and vertebral fractures in the elderly? 

 

2)  BMC at 10 years of age is independently associated with weight and length at 

1 year, which is not completely mediated by the tracking of skeletal growth. Low 

birthweight and small size at 1 year resulted in lower whole body BA and BMC and 

reduced BMC at the femoral neck.  

  

 Thus historical factors of the intrauterine environment and nutrition in early 

infancy, as indicated by birthweight and size in early infancy, were related to bone size 

and mass at age 10 years. 
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3)  (3a) After correcting BMC for height, weight and BAPC, black children and their 

parents had a greater corrected BMC at the femoral neck and lumbar spine than their 

white counterparts. (3b) Maternal heritability of BMC was estimated to be ~30%. In 

other words, ~30% of the phenotypic variation is due to genetic variation in both blacks 

and whites at all sites and is comparable between environmentally disadvantaged black 

and advantaged white children.  

 

 That is, parental bone size and bone mass were equally predictive factors of bone 

 size and bone mass in their children.  

  

Though black children of this cohort may currently demonstrate a superior bone mass 

status, all indications are that they have not been programmed for optimal bone health in utero 

and early life, nor are environmental factors favourable for the maximisation of peak bone 

health. In the years that lie ahead of them, lifestyle choice these children make, environmental 

factors to which they may be exposed, as well as an increase in life expectancy, may not 

continue to sustain the current genetic protection of their bone mass status that they currently 

demonstrate, and therefore they may be at risk of developing osteoporosis.  

 

White children of this cohort, may have been programmed for better bone health in utero 

and early life than their black counterparts. However, they are probably less well protected by 

genetic factors and therefore must rely on optimizing environmental factors to ensure optimal 

bone health as do white children in developed regions such as Europe and North America, 273 
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where authorities advocate the prevention of bone disease from birth and encourage individuals 

to choose to follow a bone-healthy diet, engage in regular physical activity, and avoid behaviours 

such as smoking and excessive alcohol consumption that can damage bone. 

 

In South Africa, osteoporosis and associated fragility fractures are not considered the 

most concerning health problems. However, with increasing life expectancy in all developing 

countries including ours, these regions are where the greatest increase in the number of 

osteoporotic fractures worldwide are expected to occur. 304 Osteoporotic fractures are a major 

burden worldwide, because of the associated morbidity, mortality and financial costs. Currently, 

in South Africa, chronic diseases of lifestyle account for nearly 40% of adult mortality. 41 In the 

interests of ensuring bone health and reducing other chronic diseases of lifestyle in future 

generations of South Africans, this thesis supports the prevention of osteoporosis, a “paediatric 

disease with geriatric consequences”, by the optimisation of maternal health and the intrauterine 

environment and growth in early infancy, as well as by the optimisation of factors for the 

maximisation of PBM during childhood and adolescence.  

 

Limitations and future research 

 

It is beyond the scope of the thesis to solve a number of limitations and address questions 

that emerged from this body of work. This section addresses these limitations so that they may 

be kept in mind when interpreting the results of this thesis, and so that they may be considered 

for future research in this field. Unanswered questions and data that could still be analysed are 

presented as potential future research avenues. 
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Limitations 

 

The cross-sectional design of the studies presented in this thesis is but a snapshot of the 

bone health status and characteristics associated with the Bt20 cohort. Therefore, causality could 

not be inferred but should emerge from the longitudinal data set of which this cross-sectional 

study formed part.  

 

The variation in presentation of BMC data across the chapters to explore ethnicity, 

environment and inheritance factors, is a potentially limiting factor of this thesis.  

 

Also, the findings from our population may not apply to other populations (for example, 

do rural children in South Africa have similar bone mass to children in the Bt20 cohort?), and 

findings at one skeletal site may not apply to other skeletal sites (for example, why are findings 

at the femoral neck and lumbar spine different from those at the radius (mid-radius is ~95% 

cortical and distal radius ~33% cortical?). 

 

With regard to the study of ethnic difference in bone mass, it would have been 

informative to include fracture risk in the analysing of all results. We have purposefully 

emphasized findings relating to black children and their mothers because of the small numbers of 

black fathers, white children and their parents. All results should be interpreted with this in mind. 
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With regards to the study of infant programming of bone mass, we have showed that 

birthweight, weight and length at 1 year continued to be predictive of BMC at the femoral neck 

after BMC had been corrected for race/ethnicity, gender, age, socioeconomic status, bone age, 

height (10y) and weight (10y) and BA (10y). Thus, in the case of black boys, in whom 

birthweight and length at 1y were significantly less than those of white boys, it might be 

expected that BMC at the femoral neck would be significantly less in black boys at 10 years of 

age, but this was not the case. Similarly, where there were no ethnic differences in size in 

infancy, there were ethnic differences in femoral neck BMC. Clearly, infant programming of 

bone mass differs between the ethnic groups and future research could explore this. There are 

other factors at play which I suspect may relate to the timing of genetic-environmental 

interactions, and which future research may consider addressing.  

 

Regarding the study of heritability, heritability was estimated by way of parent-child 

associations and regressing children’s Z-scores on mother’s or father’s Z-scores. The resulting 

regression coefficient gave the appropriate heritability estimate. 149,201,236 This method was 

chosen because of the statistical software that was available at the time, and because as a non-

geneticist, it was statistical analyses, results and interpretation which I understood. There is a 

second way to estimate heritability by using ANOVAs and estimating variance components, 

statistical methods from which so much more about heritability in this population could still be 

learnt. 
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Future research 

 

A number of questions emerged form this body of work which may be considered in 

future research. 

 

With regard to black-white ethnic differences in bone mass 

 

(1) What are the most appropriate size-related site-specific corrections for DXA-

measured BMC in black and white South African children? The International 

Society for Clinical Densitometry (ISCD) have made the following general 

recommendations for measuring, and the clinical interpreting and reporting DXA 

findings in children and adolescents:-  

 Use DXA-measured BMC and areal BMD. 119 

 Measure the posterior-anterior (PA) spine and total body less head (TBLH) as 

these skeletal sites yield the most accurate and reproducible data. 119  

 Adjust BMC and areal BMD for absolute height or height age, or compare 

them to appropriate paediatric reference data sets. 119 

There’s a paucity of paediatric reference data in general. The ISCD calls for further 

research to expand upon and confirm their recommendations, which data from 

black South African children in particular, has the potential to do.  

(2) How do genetic influences maintain bone mass (at the femoral neck, total hip and 

mid radius) in the face of what are generally considered to be adverse 

environmental factors?  
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(3) Will the improvement in the adverse environmental factors in our black children 

greatly change the bone mass findings at other sites (whole body and lumbar spine) 

and the incidence of fracturing? 

(4) How do gene-environment interactions affect bone size and bone mass?  

(5) Which genes are responsible for greater bone mass in South Africa’s black 

population? 

 

Although the technology of choice for future research should ideally be QCT, the 

availability, advantages of using DXA technology, as well as the broader range of applications 

e.g. body composition, DXA data most certainly have a place now and for years to come in 

clinical practice and research. Therefore, the models for improved analyses and interpretation of 

data should continue to be pursued. 

 

With regard to infant programming of bone mass 

 

A bank of data on antenatal, postnatal and early life exists for this cohort. The 

relationship between early life and bone mass at age 10 years could be researched further, with 

the intention of identifying factors in early life at which prevention strategies could be targeted. 

 

Possible factors are listed below but there may be others:-. 

 Antenatal: 

o Gravida 

o Gestational age at birth 
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o Nature of mother’s work when pregnant 

o Abnormalities or complications of pregnancy 

o Details of delivery 

 Early life: 

o Growth and development (height, weight / length, body fat) 

o Feeding (breast-, bottle-, weaning and early nutrition) 

o Child’s medical history and concomitant medication 

o Immunisations 

 General: 

o Maternal and supporting family’s:-  

 Education 

 Socioeconomic circumstances 

 Medical history and concomitant medication 

 Use of tobacco and alcohol 

 

With regard to the heritability of bone mass 

 

Heritability, a population parameter, depends on population-specific factors, such as 

allele frequencies, the effects of gene variants, and variation due to environmental factors. Given 

this, and the arguments presented in research theme 3 “the genetic predisposition factor”, future 

research ought to focus on the genetics of bone mass, genetic-environmental interactions and 

timing thereof in black South Africans. Very little is known about the genetic inheritance of bone 

mass in black populations. There has been interest in a number of key gene groups associated 
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with BMD variation in European populations, namely genes associated with the receptor 

activator for nuclear factor κ B ligand (RANKL) / osteoprotegerin (OPG) signalling pathway, 

and the oestrogen receptor which have previously shown to be associated with BMD and should 

be explored in black South Africans. 
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Conclusion 

 

This PhD thesis highlighted that ethnicity is the single most important proximal factor 

affecting bone mass and bone size in 10 year old South African children. Despite being socio-

economically- and environmentally disadvantaged, black children fortunately demonstrate a 

superior bone mass- and strength at the femoral neck, to that of their white peers. This genetic 

advantage is seen in infancy, adults, and is associated with a very low incidence of femoral neck 

fractures in the black elderly. However, this thesis highlights that historical and predictive factors 

of bone mass indicate black children have not been programmed for optimal bone health in utero 

and early life, nor are contemporary environmental factors favourable for the maximisation of 

PBM. In the years that lie ahead, lifestyle choices this cohort makes, environmental factors to 

which they may be exposed, as well as an increase in life expectancy, may not continue to 

sustain the current genetic protection of their bone mass that they currently demonstrate at the 

femoral neck. This cohort may be at risk of developing osteoporosis as an elderly population, 

particularly at the lumbar spine and forearm. This is critically important to us as a nation and its 

policy makers, who in the midst of a profound health transition, are grappling with the 

management of a health system burdened by communicable, non-communicable, perinatal and 

maternal, and injury-related disorders. Those particularly affected are prominently poor people 

living in urban settings. Osteoporosis, a “paediatric disease with geriatric consequences”, must 

be addressed now. National health policies must focus on the optimisation of maternal health and 

the intrauterine environment, growth in early infancy, as well as by the optimisation of factors 

for the maximisation of PBM during childhood and adolescence. The following of a healthy diet, 

engagement in regular physical activity, and the avoidance of behaviours such as smoking and 
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excessive alcohol consumption must be advocated and supported. The investment in such 

prevention programmes will have tremendous payoffs in the future for all chronic diseases of 

lifestyle, including osteoporosis. 
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