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ABSTRACT 

 

One of the potential causes of hypertension is endothelial dysfunction associated 

with a decreased production of the vasodilator nitric oxide (NO).  Possible factors 

which may contribute to the reduced NO production include increased reactive 

oxygen species (eg. superoxides); increased concentrations of homocysteine; or 

decreased concentrations of L-arginine (cationic amino acids).  L-arginine, the 

precursor of NO, not only increases the bioavailability of NO by increasing its 

production; but also by reducing the inactivation of NO by superoxides.  In 

patients with hypertension, although fasting plasma L-arginine concentrations are 

elevated, L-arginine supplementation has been shown to decrease blood pressure.  

A possible explanation for these data may be that L-arginine uptake into cells is 

impaired and therefore would not be available for NO production.  Indeed, studies 

have shown that cellular uptake of L-arginine is reduced in lymphocytes from 

patients with hypertension and individuals genetically predisposed to developing 

hypertension.  However, elucidating the kinetics of L-arginine uptake into 

endothelial cells is fundamental to determine whether L-arginine uptake is indeed 

impaired. 

 

Previous studies have shown that the uptake of cationic amino acids into 

endothelial cells is mediated by the high affinity/low rate y
+
L transporter and the 

low affinity/high rate y
+
 transporter.  However, data on the kinetics, the relative 

contribution and physiological importance of the individual transporters in cells 

expressing more than one transporter, are inconsistent; as most studies determining 

the uptake of radiolabelled amino acids have assumed Michaelis-Menten kinetics 

and have calculated constants from Lineweaver-Burk reciprocal plots and Eadie-

Hofstee plots.  Another approach was therefore required to overcome the 

limitations and assumptions made in these studies.  My first aim was therefore to 

determine the kinetics of L-arginine uptake into endothelial cells using a general 

non-linear approach, which allows initial rates of uptake by more than one 

transporter to be determined and importantly includes the actual concentrations of 
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both the trace radiolabelled and unlabelled amino acid in the model.  Furthermore, 

using this approach no assumptions are made regarding the type of inhibition and 

the concentrations of inhibitors (or activators) could be included in the model.  As 

the model was additive, the theoretical contribution of uptake by each transporter 

could be modelled.  

 

The present study used raw, rather than transformed data, in non-linear regression 

analysis to characterize the kinetics of L-arginine uptake into cells.  I modelled the 

initial high affinity/low capacity and low affinity/high capacity uptake of trace L-

[
3
H]arginine by two transporters into ECV304 and umbilical cord vein endothelial 

cells in the presence of a range of unlabelled L-arginine and modifiers  using 

GraphPad Prism.  The contribution of uptake by individual transporters was 

modelled and showed that leucine inhibited the individual transporters differently 

and that the inhibition was not necessarily competitive.  N-ethylmaleimide 

inhibited only y
+
 transport and 2-amino-bicyclo-[2,2,1]-heptane-2-carboxylic acid 

may be a potential inhibitor of y
+
L transport.  Only the absence of sodium reduced 

L-arginine uptake by y
+
L transport and reduced the Km’, whereas reducing sodium 

decreased L-arginine uptake by y
+ 

transport without affecting the Km’.  This non-

linear modelling approach allows more than one transporter to be modelled, 

overcomes many of the assumptions made in reported studies and by using raw, 

rather than transformed data, avoids the errors inherent in methods deriving 

constants from the linearization of the uptake processes following Michaelian 

kinetics.  The results of this study therefore provide explanations for discrepancies 

in the literature and suggest that this modelling approach better characterises the 

kinetics of amino acid uptake into cells.  

 

Having elucidated the kinetics of L-arginine uptake into endothelial cells, I was 

then equipped to explore possible factors which could impair L-arginine uptake in 

hypertension.  In this regard, although increases in total plasma homocysteine 

were thought to play a role in hypertension; large prospective clinical trials to 

reduce total plasma homocysteine by vitaminB6/12/folate supplementation, have 
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failed to show beneficial effects on vascular outcomes.  The effects of 

homocysteine on the vasculature were attributed to the reactive free sulphydryl 

group; however only a fraction (1.5 – 4%) of total plasma homocysteine is actually 

present as the free reduced sulphydryl (-SH or thiol) form.  In comparison, free 

oxidized homocysteine, present as the disulphide, homocystine and the mixed 

disulphide (with cysteine) accounts for 20 – 30% of total plasma homocysteine.  In 

the absence of a clear mechanism by which homocysteine causes vascular disease, 

one of the other species making up the total homocysteine may be contributing to 

vascular disease through a different mechanism which may not involve the free 

sulphydryl group. 

 

Earlier studies demonstrated (in isolated nephrons) that the homocysteine 

disulphide, homocystine, shared the same membrane transporter as L-arginine (the 

precursor of NO), and competed for uptake with L-arginine.  These studies may 

suggest that increased homocystine concentrations, by inhibiting L-arginine 

transport, and hence reducing intracellular L-arginine concentrations, may impact 

on NO production in other cell types.  Therefore, the second aim of my study was 

to determine the effects of homocystine on cellular L-arginine uptake and hence on 

NO production.  

 

The uptake of labelled L-[
3
H]arginine was measured in confluent, L-arginine 

depleted HUVEC and ECV304 cells with unlabelled L-arginine, without or with 

homocystine and modifiers.  The kinetic constants were determined in Graphpad 

Prism using a described non-linear model of uptake for two transporters acting 

simultaneously.  The NO specific fluorescent DAF-2 dye was used to detect NO 

production by the cells.  Elevated physiological concentrations of 2.5µM 

homocystine significantly inhibited L-arginine uptake by 90% by y
+
L transport in 

both HUVEC (p<0.0005) and in ECV304 cells (p<0.05).  Homocystine reduced the 

Kma of y
+
L transport in HUVEC (<0.0001) affecting uptake in a competitive-like 

manner.  Pre-incubation of the ECV304 cells with L-arginine was able to reverse 

this inhibition by homocystine.  In contrast, homocystine increased uptake by y
+
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transport in HUVEC (p<0.01).  Under the experimental conditions used, effects of 

homocystine on the rate of NO production could not be shown.  By demonstrating 

that homocystine nearly abolishes L-arginine uptake by y
+
L transport in both 

HUVEC and ECV304 cells, these data provide a mechanism as to how homocystine 

may affect L-arginine concentrations.  These data would support studies to 

determine the association between homocystine concentrations and cardiovascular 

disease. 

 

Lastly, although angiotensin-converting enzyme inhibitors (ACEI’s, as well as 

angiotensin II receptor antagonists) but not other classes of antihypertensive 

agents, have been shown to decrease oxidative stress and increase NO availability 

independent of blood pressure lowering effects, the mechanism is not clear.  The 

ability of ACEI’s to decrease oxidative stress and enhance NO production has 

been attributed in part to the sulfhydryl groups present in some, but not all, 

ACEI’s.  Hence the mechanisms of the effects of ACEI’s on NO production 

warrant further investigation, as it is possible that L-arginine transporters may play 

a role by enhancing L-arginine uptake into cells, and thereby increasing NO 

production.    
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