DECLARATION

This dissertation was supervised by Dr. J. Rossouw and Prof. J.A. Frean.

I hereby declare that this dissertation, submitted in fulfilment of the requirements for Magister Scientiae at the University of the Witwatersrand, Johannesburg, is the result of my own investigation unless acknowledged to the contrary within the text.

Adrienne N Saif

Date

ACKNOWLEDGEMENTS

To my supervisors, Doctor Jenny Rossouw and Associate Prof John Frean, I wish to express my sincerest gratitude and appreciation for guiding me through my studies and for your invaluable help, advice and patience.

The staff at the Special Bacterial Pathogens Reference Unit; Natasha Trataris, Malodi Setshedi, Nolundi Bakana and Sindy Virasamy, for their patience, forbearance and help when I needed it.

To Marelize van Wyk at Mycology Reference Centre for the use of the NanoPhotometer.

To my Mom and Husband for your love, understanding and patience as well as supporting me all the way through.

SUMMARY

The Detection of *Burkholderia* spp. and pathogenic *Leptospira* spp. in South Africa

By

Adrienne N. Saif

Leptospirosis is a zoonosis of ubiquitous distribution and causes a wide spectrum of disease. *Burkholderia* species are important plant and human pathogens. Little or no investigation has been performed on any clinically-relevant *Burkholderia* or *Leptospira* species in Johannesburg. Environmental samples were taken from different sites in Johannesburg along the Jukskei River. These were subjected to culturing for *Burkholderia* spp. and polymerase chain reaction (PCR) for *Burkholderia* and *Leptospira* spp. Human serum, animal serum and kidney samples were also subjected to PCR for both organisms. A *Leptospira* IgM ELISA was also performed on human serum samples. The PCR yielded a significantly higher PCR positive from soil samples than water samples. The PCR yielded a significantly higher PCR spp. in soil samples. The ELISA yielded only 7.8% (26/332) positive samples. There were no human or animal positive PCR results for either organism. There is an environmental presence of both leptospires and *Burkholderia* in the area sampled. More studies are needed to establish how both organisms might affect patients with compromised immune systems, and how often both infections are incorrectly or under-diagnosed.

Acknowledgements		ii
Summaryii		.iii
Contents		iv
List of Abbreviations		_vii
List of Figures		_ix
List of Tables		xi
Chapter 1 Literature	Review	. 1
1.1 General Ir	ntroduction	1
1.2 Burkholde	eria	_2
1.2.1	Background and History	2
1.2.2	Morphology	_ 3
1.2.3	Life Cycle	_4
1.2.4	Epidemiology	5
1.2.5	Pathogenesis	. 6
1.2.6	Clinical Disease	_8
1.2.7	Diagnostics	.9
1.2.8	Treatment	_10
1.2.9	Importance	12
1.3 Leptospira		13
1.3.1	Background and History	13
1.3.2	Morphology	14
1.3.3	Life Cycle	_15
1.3.4	Epidemiology	_16
1.3.5	Pathogenesis	_18
1.3.6	Clinical Disease	_19
1.3.7	Diagnosis	21
1.3.8	Treatment	22
1.3.9	Clinical Importance	23

CONTENTS

1.3.10 Human leptospirosis in South Africa	23
1.4 Objectives of Study	
Chapter 2 Materials and Methods	
2.1 Sample Collection	
2.1.1 Environmental Samples	26
2.1.2 Human Samples	30
2.1.3 Rodent Samples	30
2.2 Culture of <i>Burkholderia</i> species	31
2.2.1 Media Selection	31
2.2.2 Processing of Environmental Samples	32
2.2.3 Colony Identification	32
2.2.3.1 Gram Stain and Microscopy	33
2.2.3.2 Oxidase	33
2.2.3.3 Catalase	33
2.2.3.4 API [®] 20NE	
2.3 DNA Extraction	
2.3.1 DNA Extraction from Environmental Samples	36
2.3.2 DNA Extraction from Bacterial Cultures	
2.3.3 DNA Extraction from Human and Rodent Samples	38
2.3.4 DNA Quantification	38
2.4 PCR Amplification	
2.4.1 Burkholderia spp. RecA Gene	41
2.4.2 Burkholderia pseudomallei lpxO Gene	41
2.4.3 Leptospira 16S rDNA Gene	42
2.5 PCR Optimization using Taguchi Technique	43
2.6 Agarose Gel Electrophoresis	43
2.7 Visualisation and Documentation	
2.8 Leptospira IgM ELISA	44
2.9 Data Analysis.	46

Chapter 3 Results	
3.1 Environmental Samples	
3.1.1 Burkholderia Culture	47
3.1.2 PCR	
3.1.2.1 Burkholderia PCR	49
3.1.2.2 Leptospira 16S rDNA PCR	
3.2 Human and Animal Samples	
3.2.1 Animal	58
3.2.2 Human	59
3.3 Leptospira IgM ELISA	
Chapter 4 Discussion and Conclusion	
References	70
Appendices	

LIST OF ABBREVIATIONS

AESC	Animal Ethics Screening Committee
AIDS	Acquired-immunodeficiency syndrome
Amp	Amperes
API	Analytical Profile Index
ATP	Adenosine triphosphate
ATCC	American Type Culture Collection
Bcc	Burkholderia cepacia vcomplex
BCSA	Burkholderia cepacia selective agar
Bp	Base pairs
ca	Approximately
CF	Cystic fibrosis
DMP	Diagnostic Media Products
DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleic triphosphate
EDTA	Ethylene
ELISA	Enzyme linked immunosorbent assay
EPS	Exopolysaccharide
et al	et alii (and others; abbreviation from Latin)
EtBr	Ethidium Bromide
g	Gram/s
HIV	Human immuno-deficiency virus
HRP	Horseradish peroxidase
HREC	Human Research Ethics committee
IL	Inter-leukin
IgM	Immunoglobulin M
IHA	Indirect haemagglutination
LPS	Lipopolysaccharide
lpxO	Dioxygenase gene
MAT	Microscopic agglutination test
Min	Minute
Μ	Molar
µg/ml	Microgram per milliliter
UHQ	Ultra high quality
μl	Microlitre/s
ml	Milliliter
mM	Milli-molar
mm ³	Cubic millimeter
mol	Mole
ms	Millisecond
NICD	National Institute for Communicable Diseases
NHLS	National Health Laboratory Services
n	Sample number
nm	Nanometer
n-PCR	Nested PCR
OFPBL	Oxidation-fermentation bactitracin lactose agar
PCA	Pseudomonas cepacia agar

PCR	Polymerase Chain Reaction
pmol/µl	Pico-moles per microliter
recA	Recombination gene
rRNA	Ribosomal RNA
rpm	Revolutions per minute
S	Second
SBPRU	Special Bacterial Pathogens Reference Unit
spp.	Species
16S rRNA	16 small sub-unit ribosomal RNA
TAE	Tris/acetate/EDTA
TNFα	Tumour necrosis factor alpha
U	Units
U/µl	Units per microliter
μM	Micromolar
μm	Micro-meters
UV	Ultra-violet
V	Volts
Wits	University of the Witwatersrand
w/v	Weight per volume
v/v	Volume per volume

LIST OF FIGURES

Figure 1.1	 (A) An electron scanning micrograph of <i>Burkholderia cepacia</i> and (B) a photograph of a <i>Burkholderia cepacia</i> culture on McConkey agar. 	3
Figure 1.2	Ecology of <i>B. pseudomallei</i> and the interactions between environmental <i>Burkholderia</i> spp. and human-animal hosts	5
Figure 1.3	Morphology of a leptospire.	14
Figure 1.4	The transmission cycles of pathogenic leptospirosis.	16
Figure 1.5	Global annual incidence of human leptospirosis	17
Figure 1.6	(A) Conjunctival suffusion and (B) purpuric rash, symptoms of	
	Leptospira infection.	20
Figure 2.1	The drainage basin of the Jukskei River in Gauteng showing the	
	respective sampling sites (black stars).	29
Figure 2.2	Map illustrating the regions of the City of Johannesburg.	31
Figure 2.3	API [®] 20NE strips illustrating positive (A) and negative (B) reactions.	<u>35</u>
Figure 3.1	The percentage of five most frequent organisms isolated in soil	
	and water samples collected in the Jukskei River catchment during	
	2010 and 2011.	48
Figure 3.2	The percentages of <i>Burkholderia</i> organisms isolated by culture from soil and water samples collected in the Jukskei River catchment during 2010 and 2011.	49
Figure 3.3	Agarose gel analysis showing the results of a <i>Burkholderia</i> spp. <i>RecA</i>	
0	PCR on cultured isolates from the API positives.	50
Figure 3.4	Taguchi optimization performed on <i>Burkholderia LpxO</i> PCR using	
8	a control strain of <i>Burkholderia pseudomallei</i>	_ 50
Figure 3.5	The percentages of <i>Burkholderia</i> species detected with	
	<i>Burkholderia</i> spp. <i>RecA</i> PCR amplifcation from water and soil samples collected from Jukskei River catchment during 2010 and 2011	51
Figure 3.6	Agarose gel analysis of Burkholderia spp. RecA PCR soil samples	
	from the Modderfontein Dam no.4	52
Figure 3.7	The percentage of <i>Burkholderia</i> culture and PCR positive samples	53

Figure 3.8	Agarose gel analysis of the products of the first round	
	Leptospira 16S rDNA Taguchi optimization.	54
Figure 3.9	Percentage of total leptospires found in soil and water by site.	55
Figure 3.10	Agarose gel analysis showing the first round <i>Leptospira</i> 16S results	55
Figure 3.11	Percentage of pathogenic leptospires isolated in soil samples.	56
Figure 3.12	Agarose gel analysis showing the results from a second round	
	Leptospira 16S rDNA.	57
Figure 3.13	Percentage of pathogenic to the total amount of leptospires found in soil samples.	58
Figure 3.14	Shows the percentage positive and negative samples for the	
	Leptospira IgM ELISA for 2010 and 2011.	59

LIST OF TABLES

Table 2.1	Environmental samples collected in the Juskskei River catchment	
	during 2010 and 2011	28
Table 2.2	List of Primers used in this study.	40
Table 2.3	The components which make up a Taguchi square, optimized	
	with at least three different concentrations.	
Table 2.4	The interpretation of test results of the Panbio <i>Leptospira</i> IgM ELISA.	46