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ABSTRACT 

Malaria is transmitted by the mature, blood feeding portion of mosquito vector populations. 

Malaria vector control programs based on indoor residual spraying (IRS) of insecticides are 

designed to target resting adult Anopheles mosquitoes before or after they have blood fed.  

 

When a female mosquito acquires a blood meal, she could also ingest harmful xenobiotics that 

are present in the blood. During the resting period after feeding, many processes are initiated 

in order to assist in the digestion and assimilation of the blood. Ultimately, this enables the 

mosquito to absorb those amino acids needed for the biosynthesis of yolk proteins, which are 

essential for subsequent egg maturation. Since the regulation of xenobiotic (including 

insecticides) detoxification enzyme systems is likely to be altered in response to the ingestion 

of blood, this study aimed to investigate the effect of a blood meal on insecticide tolerance in 

insecticide resistant and susceptible southern African strains of the major malaria vector 

Anopheles funestus.  

 

Through the use of CDC bottle bioassays it was demonstrated that blood fed An. funestus 

carrying a pyrethroid resistant phenotype are even more tolerant of pyrethroid intoxication 

than their unfed counterparts. Using another major malaria vector, An. gambiae, microarray 

analysis revealed that a general increase in delta class glutathione-s-transferase (GST) 

expression occured in response to a blood meal. One gene, GSTD3, was over-expressed in 

both blood fed An. gambiae and An. funestus. Although this gene could not be validated with 

real time quantitative PCR, it serves as a viable target for future investigations. 

 

Since the pyrethroid resistant phenotype of southern African An. funestus has been linked to 

the over-expression of the duplicate copy gene CYP6P9, the expression levels of both copies 
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of this gene were investigated. CYP6P9 and its copy, CYP6P13, showed a small but 

significant increase in expression in response to a blood meal. The increased expression of 

these major effect genes in response to blood feeding may be responsible for the increase in 

insecticide tolerance seen in the bottle bioassays. 

 

In an effort to repeat these experiments on wild caught An. funestus, field material was 

collected from Karonga in northern Malawi. Specimens were morphologically identified as 

members of the An. funestus group. However, attempts to molecularly identify them to species 

level failed. Through the use of ITS2 and D3 sequence analysis, cytogenetics and cross mating 

studies it was possible to conclude that these wild caught specimens were a new species. They 

have been provisionally named An. funestus-like. 
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CHAPTER 1 - GENERAL INTRODUCTION 

 

1.1 INTRODUCTION 

 

Malaria is one of the leading vector borne diseases worldwide and is responsible for the 

suffering of many individuals and family units in Sub-Saharan Africa. The World Health 

Organization (WHO) estimates that worldwide, there were over 225 million cases of 

malaria during 2009, with African countries carrying the bulk (78%) of the disease burden 

(http://www.who.int/malaria/world_malaria_report_2010). Currently, malaria is the 

leading cause of death in children under the age of five years. The impact of malaria places 

an increased burden on health care systems and results in decreased levels of productivity 

within the home and work environments (Chima et al., 2003). The effects of this disease 

place a great strain on the economies of third world countries and malaria has, in the past, 

been implicated as one of the contributing factors to reduced development in African 

countries. 

 

Malaria is an ancient disease that has been alluded to in Egyptian papyri as early as 1500 

B.C. Many great scientists and doctors, including Hippocrates and Laveran, have worked 

to elucidate the aetiology of the disease (Garnham, 1966). The link between malaria and 

mosquitoes was suggested by Dr. Beauperthuy, one of the early malaria researchers, in the 

mid 1800‟s. He suggested that the mosquito absorbed a “decay toxin” from its marsh-like 

environment and further proposed that this “toxin” was passed from the mosquito to 

humans thereby causing malaria (Boyce, 1910). In 1897 in India, Major Ronald Ross 

suggested that mosquitoes belonging to the sub-family Anophelinae were the vectors of 

avian malaria and that these mosquitoes were the intermediate host for the malaria parasite 

(Boyce, 1910). At the same time, Italian researchers Bignami and Grassi showed that 

http://www.who.int/malaria/world_malaria_report_2010
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Plasmodium falciparum was transmitted to humans through the infective bite of an 

anopheles mosquito. Grassi and his colleagues were the first to show the full life cycle of 

P. falciparum and P. vivax through the mosquito (Garnham, 1966). This elucidation of the 

Plasmodium-anopheline link has allowed for the development of malaria control efforts to 

limit the effect of the disease. 

 

Many current malaria control programmes continue to focus on the timely diagnosis and 

cost effective treatment of malaria. The parasitic protist responsible for this disease 

belongs to the Genus Plasmodium, with the dominant African species being P. falciparum. 

Many African countries still rely on chloroquine based treatment, however artemisinin 

combined therapy (ACT) is becoming more widely available especially in areas that have 

seen the emergence of chloroquine resistant Plasmodium. In the face of emerging drug 

resistance there is an ever increasing need for an integrated approach that embraces the 

importance of adequate vector control (Oaks et al., 1991; Miller and Greenwood, 2002).   

 

Vector surveillance and vector control are essential for assisting in the reduction of the 

incidence of malaria. Vector control aims to interrupt the malaria cycle prior to parasite 

transmission. Many early vector control programmes relied heavily on the use of indoor 

residual spraying (IRS) to target the indoor resting mosquitoes and larviciding to target the 

aquatic stages. In an African setting larviciding is not always feasible due to the extensive 

distribution of larval habitats which require frequent larvicide application due to the low 

persistence of the insecticides (Coosemans and Carnevale, 1995). Modern vector control 

programmes generally follow an integrated vector management system (IVM) as promoted 

by WHO-AFRO. An IVM can be loosely defined as „a process of evidence-based decision-

making procedures aimed at planning, implementing, monitoring and evaluating targeted, 
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cost-effective and sustainable combinations of vector control measures‟ (Manga et al., 

2004). Since IVMs aim to target vector mosquitoes at multiple points of their life cycle 

they generally combine the use of IRS with a combination of any of the following tools: 

bednets, biological control, environmental management, improved personal protection and 

community education. Unfortunately, there is no universal approach to malaria vector 

control. The epidemiology of the disease varies between as well as within countries and is 

dependant on the vector mosquito and Plasmodium species present. 

 

1.1.1  Malaria Vector Control in South Africa  

South Africa has a good track record in terms of the successful implementation of malaria 

vector control. Malaria used to be prevalent from the northeastern border with 

Mozambique and Zimbabwe to as far south as Port St Johns on the east coast and as far 

inland as Pretoria (le Sueur et al., 1993). It is primarily the implementation of successful 

provincial IRS programmes that has seen the distribution of malaria shrink towards the 

northern and eastern border regions of South Africa. 

 

South Africa experienced a devastating malaria outbreak in KwaZulu-Natal during the 

1931 malaria season. This prompted the first trial applications of pyrethrum insecticides in 

an attempt to control adult indoor resting mosquitoes (Coetzee and Hunt, 1998). In 1932, 

stimulated by the success of this trial, the widespread use of pyrethrum in house-spraying 

programmes began.  

 

DDT was used extensively during World War II to protect soldiers from disease carrying 

insects such as lice, mites and fleas. Following the successes of DDT during the war and 

the fact that South Africa had started to produce their own DDT stocks, there was a shift to 
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replace pyrethrums with DDT in the IRS campaigns in South Africa. This shift towards 

DDT resulted in the malaria mosquitoes, An. funestus and An. gambiae, largely being 

eliminated from this region (De Meillon, 1986; Sharp and le Sueur, 1996; Coetzee and 

Hunt, 1998). 

 

During 1996, due to pressure to discontinue the use of DDT, South Africa began using the 

pyrethroid deltamethrin for IRS (Govere et al., 2002; Coetzee and Fontenille, 2004). 

Despite continued IRS, malaria incidence rose dramatically from ±10 000 cases/annum in 

1995 to ± 60 000 case/annum by the end of 2000 (Figure 1.1). Hargreaves et al. (2000) 

showed that An. funestus had returned to the KwaZulu-Natal region and that this 

population was resistant to pyrethroids. A return to the use of DDT in 2000 resulted in a 

steady drop in malaria cases, with a reported decrease of 91% of malaria incidence in the 

KwaZulu-Natal region by 2002 (Department of Health, unpublished data; Maharaj et al., 

2005).  

 

In 2000, the Lubombo Spatial Development Initiative (LSDI), a joint programme between 

the governments of Swaziland, Mozambique and South Africa, was launched. The main 

goal of the LSDI was to develop the communities within the border regions between the 

member countries in order to stimulate the region to become a globally competitive 

economic zone (Sharp et al., 2007). Malaria control was considered a prerequisite to 

achieve this goal. Intensive IRS and antimalarial campaigns were initiated, treatment 

policies were reviewed and parasite prevalence surveys routinely carried out. During the 

initial seven year period of the LSDI, malaria cases within the targeted areas dropped 

significantly and the LSDI has contributed to a significant reduction in imported malaria 

cases within South Africa (Sharp et al., 2007).  
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Figure 1.1. The number of malaria cases in South Africa per year, from 1971 to 2010 (unpublished data, 

Department of Health, South Africa. Available at www.fidssa.co.za/B_FIDSSA2011Presen.asp under the 

presentation titled: Progress towards Malaria Elimination in South Africa). 

 

On the back of a highly successful LSDI programme, the concept of the Elimination Eight 

(E8) was born (www.malariaeliminationgroup.org). In March 2009, the Windhoek 

Resolution was drafted and this was presented at the SADC Ministers of Health Meeting, 

where the E8 was formally adopted. This is a regional and cross-border collaborative effort 

aimed at eliminating malaria in the four southernmost African countries, namely 

Botswana, Namibia, South Africa and Swaziland. These are considered to be the most 

likely to reach elimination by 2015. In order for elimination to be successful, support from 

the secondary bordering countries (Angola, Mozambique, Zambia and Zimbabwe) is 

essential. These secondary countries will need to scale up vector control activities in their 

southern most regions in order to create malaria free zones north of the elimination 

countries‟ borders (www.malariaeliminationgroup.org).  

http://www.fidssa.co.za/B_FIDSSA2011Presen.asp
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Since South Africa is now striving towards malaria elimination, an understanding of basic 

anopheline biology and ecology, as well as the processes involved in the development of 

insecticide resistance in vector populations, is becoming ever more important. Although 

DDT is currently being used in combination with carbamates and pyrethroids as part of 

South Africa‟s IRS campaign, multiple insecticide resistances have already started to 

appear in South African anophelines (Hargreaves et al., 2003; Mouatcho et al. 2009).  The 

discovery of insecticide resistance in affected An. funestus populations has prompted 

concern of the possibility of development of additional resistance phenotypes and has 

highlighted the need to improve our understanding of resistance mechanisms and the 

implementation of novel methods of control. 

 

1.1.2 Southern African Malaria Vectors 

The three major malaria vectors in southern Africa belong to the Anopheles gambiae 

complex and the Anopheles funestus group (Gillies and De Meillon, 1968).  Species from 

both groups often occur in sympatry and hence accurate identification of each species 

present is required for effective vector control.   

 

The An. gambiae complex is comprised of seven morphologically similar species which 

can only be differentiated at the molecular or chromosomal level.  Within this group An. 

gambiae Giles and An. arabiensis Patton are the major malaria vectors, whereas the 

remaining members (An. merus Dönitz, An. melas Theobald and An. bwambae White) are 

incidental or localized vectors (Gillies and De Meillon, 1968; Gillies and Coetzee, 1987).  

Anopheles quadriannulatus Theobald sp A and B (Hunt et al., 1998) have never been 

implicated as malaria vectors.  Anopheles gambiae s.l. larvae are opportunistic in terms of 
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larval habitat and have been found in a wide range of temporary water bodies, including 

water filled pots, tyre tracks and hoof/foot prints. 

 

The southern African malaria vector An. funestus Giles belongs to the An. funestus group.  

This group comprises nine members which are difficult to distinguish at the adult stage.  

However, identification can to some extent be more easily made at the egg and larval 

stages (Gillies and De Meillon, 1968; Gillies and Coetzee, 1987).   Anopheles funestus, An. 

rivulorum Leeson, An. leesoni Evans, An. parensis Gillies and An. vaneedeni Gillies and 

Coetzee are commonly found in southern Africa.  Of these, An. funestus is the only major 

malaria vector.  Anopheles funestus is extremely anthropophilic and preferentially feeds on 

humans, generally during the second half of the night (Gillies and De Meillon, 1968).   

Blood fed female An. funestus have been shown to rest indoors until the second day of the 

gonotrophic cycle, only exiting the shelter when they are half gravid (Gillies and De 

Meillon, 1968).  The preferred larval habitats of An. funestus are clean, permanent, 

vegetated water bodies such as marshes, ponds and swamps.  The presence of this species 

generally coincides with seasonal fluctuations in rainfall, appearing in the middle of rainy 

seasons and becoming more abundant towards the start of drier periods (Gillies and De 

Meillon, 1968).  It is suggested that changes in the level of the water table as well as 

climatic temperatures, which are less pronounced during the warm rainy seasons, exert an 

effect on the abundance of An. funestus (Gillies and De Meillon, 1968).   Effective control 

of An. funestus can be achieved by the implementation of IRS because this species is 

highly anthropophilic. 

 

Field methods used to distinguish the members of the An. gambiae complex and An. 

funestus group mostly rely on the use of the morphological keys (Gillies and Coetzee, 
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1987).  Anopheles funestus group mosquitoes can be distinguished from An. gambiae 

complex members by the absence of pale spots on the legs combined with the absence of a 

pale spot in the third main dark area of vein one of the wings. Mosquitoes belonging to the 

An. gambiae complex and An. funestus group can only be identified to species level using 

molecular techniques, including restriction fragment length polymorphism (RFLP) (Garros 

et al., 2004), multiplex PCR (Scott et al., 1993; Koekemoer et al., 2002) and real-time 

hydrolysis probe analysis (Bass et al, 2008).  

 

The accurate identification of field caught material is imperative during malaria vector 

control efforts since this will directly affect the costs involved as well as considerations of 

which insecticide to use. The ability to distinguish between morphologically similar vector 

and non-vector species, especially in areas of sympatry, is essential to the success of any 

vector control programme. Furthermore, the ability to identify which species carry 

insecticide resistance phenotypes allows for vector control programmes to be effective and 

cost efficient.  

 

1.1.3  Mechanisms of Insecticide Resistance 

The development of insecticide resistance has been demonstrated across most insect 

orders, with an ever increasing prevalence of multiple resistances (Hemingway and 

Ranson, 2000). The WHO defines insecticide resistance as the “development of an ability 

in a strain of an organism to tolerate doses of a toxicant which would prove lethal to the 

majority of individuals in a normal (susceptible) population of the species” (Zlotkin, 1999). 

Insecticide resistance predominantly occurs through target site insensitivity or enzymatic 

sequestration and detoxification (Hemingway et al., 2004).   
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Target site insensitivity generally occurs due to one or more point mutations in an 

insecticide target site.  Altered target sites which translate into insecticide resistance 

include: the sodium channel gene which is associated with knock down resistance to 

pyrethroids and DDT, otherwise known as Kdr resistance (Martinez-Torres et al., 1997; 

Ranson et al., 2000); the acetylcholinesterase gene (Weill et al., 2002; N‟Guessan et al., 

2003) which confers resistance to organophosphates and carbamates and the GABA 

receptors which confer resistance to the cyclodienes (Hemingway and Ranson, 2000).  

Knock-down resistance has been identified in a vast number of insect species, including 

An. gambiae (Martinez-Torres et al., 1998), Culex quinquefasciatus (Xu et al., 2006) and 

Musca domestica (Williamson et al., 1996). 

 

Enzymatic sequestration and detoxification of insecticides occurs when one or more 

detoxifying enzymes exhibit an increased level of activity.  Detoxifying enzymes generally 

belong to one of three broad classes, namely the monooxygenases, glutathione S-

transferases (GSTs) and non-specific esterases.  The monooxygenase class encompasses 

the cytochrome P450 groups which have been implicated in pyrethroid resistance in C. 

quinquefasciatus (Xu et al., 2005), C. pipiens pipiens (McAbee et al., 2003), An. gambiae 

(Nikou et al., 2003; Djouaka et al., 2008), An. arabiensis (Müller et al., 2008; Munhenga 

et al., 2011) and An. funestus (Brooke et al., 2001; Wondji et al., 2007; Amenya et al., 

2008).  

 

The development of pyrethroid resistance in southern African An. funestus has been linked 

to increased levels of P450 monooxygenase activity (Brooke et al., 2001; Amenya et al., 

2008; Cuamba et al., 2010).  The P450 monooxygenases are a superfamily of enzymes that 

are involved in the detoxification of xenobiotics and participate in the breakdown of 
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endogenous metabolic compounds (Scott, 1999).   P450 monooxygenases generally 

metabolize insecticides by incorporating an oxygen atom into the insecticide molecule, 

which leads to inactivation and detoxification.   

 

The availability of the An. gambiae whole genome sequence has made it possible to 

identify, through Basic Local Alignment Search Tools (BLAST), consensus regions or 

sequences that encode P450-like genes.  Using the conserved P450 heme binding region, 

Ranson et al. (2002) were able to identify 111 putative P450 genes in the An. gambiae 

genome.  A number of P450 studies have suggested that increased levels of insecticide 

tolerance may be linked to increased levels of CYP4, CYP6, CYP9 and/or CYP12 

expression (Scott, 1999).  Since the P450 family is large it has been difficult to link a 

resistance phenotype to any one particular CYP enzyme.  However, pyrethroid resistance 

in An. gambiae has been linked to the overexpression of CYP6Z1 (Nikou et al., 2003), 

CYP6Z2 and CYP6M2 (Müller et al., 2007) genes, which all occur within a cluster of 

P450 genes on chromosome 3R in An. gambiae adults (Nikou et al., 2003).  Two major 

and one minor quantitative trait locus (QTL) have been identified in An. gambiae (Ranson 

et al., 2004).  More recent research into these resistance “hotspots” in An. funestus has 

revealed that a QTL, which accounts for approximately 60% of resistance to pyrethroids in 

a southern African population of An. funestus, exists on chromosome 2R (Wondji et al., 

2007).  This collection of genes is primarily made up of a number of CYP6 P450 genes, 

thereby confirming the importance of CYP6s in insecticide resistance and is supported by 

evidence showing that CYP6P9, localized within this QTL, is overexpressed in pyrethroid 

resistant An. funestus (Wondji et al., 2007; Amenya et al., 2008).  
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1.1.4  Factors Influencing Insecticide Resistance 

Life stage studies in An. gambiae and An. funestus have shown that gene expression linked 

to the detoxification of insecticides changes through the different stages of the mosquito 

life cycle (Strode et al., 2006; Christian et al., 2011).  These changes in gene expression 

could have an effect on the relative levels of insecticide resistance at each life stage.  Hunt 

et al. (2005) have shown that age plays a role in reduced survival of adult An. funestus 

exposed to pyrethroids. 

 

One of the major biological process that may influence gene expression and hence 

insecticide resistance is blood feeding.  During and after a female mosquito has taken a 

blood meal a suite of digestive processes are initiated in order to utilize the blood nutrients.  

Sanders et al. (2003) analysed gene expression within the midgut of Aedes aegypti 

following a murine blood meal.  The study showed that the expressions of approximately 

330 genes are altered after a blood meal and that the genes spanned a broad spectrum of 

processes including: nutrient uptake and metabolism; peritrophic matrix formation and 

stress responses.  Of particular interest was the increased expression of two P450s whose 

putative function is detoxification (Sanders et al., 2003).  The upregulation of cytochrome 

P450s in response to an avian blood meal has also been identified in C. pipiens (Baldridge 

and Feyereisen, 1986).  The increase in P450 activity could be associated with the 

detoxification of xenobiotics present in the blood meal, however no literature on the direct 

effect of blood feeding on insecticide resistance could be found.        
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1.1.5  Laboratory Tools for Investigating Insecticide Resistance 

Insecticide resistance can be determined in a population by carrying out WHO 

susceptibility assays (WHO, 1998).  These bioassays score the percentage mortality after a 

sample group has been exposed to a particular insecticide, at a particular dosage, for a set 

time period.  The data gained from these experiments indicate the presence or absence of 

resistance but do not provide information on the mechanism/s involved.  The combination 

of bioassays with the use of synergists (compounds that abrogate the effect of insecticide 

resistance mechanisms) assists in determining which metabolic system could be 

responsible for the resistance phenotype, but is only one step in the process.  Target site 

insensitivity may be indicated when cross-resistance is observed in bioassays.  

Biochemical analyses can be used to quantify metabolic enzyme systems in association 

with resistance as well as to determine the presence of target site insensitivity in altered 

acetycholinesterase systems.  These results can also be confirmed by molecular tools such 

as PCR which can identify currently described mutations (Martinez-Torres et al., 1998; 

Ranson et al., 2000; Mutero et al., 1994; ffrench-Constant et al., 1993). 

 

The majority of the resistance mechanisms that have been assessed to date are metabolic in 

nature and hence may involve a number of genes.  Research into these systems has in the 

past been slow and the speed of resistance gene identification has been limited.  Current 

technologies such as microarrays allow for studies into multiple gene expression 

simultaneously.  The development of the An. gambiae detox chip (David et al., 2005) has 

allowed researchers to target their investigations directly at the suite of detoxification 

genes that are most likely to play a role in the development of insecticide resistance.  

Vontas et al. (2005) used this chip to show that a number of genes exhibit altered 

expression patterns after adult mosquitoes are exposed to insecticides.  This altered gene 
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expression included the increased expression of a cytochrome P450. Further, the An. 

gambiae detox chip has been used to study detoxification gene expression in other species 

such as An. arabiensis (Müller et al., 2008) and An. funestus (Christian et al., 2011b).  

 

 

1.1.6 Species Concepts 

The debate about how new species arise, otherwise referred to as the process of speciation, 

is often confused with the need to define what a species is (Hey, 2001). Since many 

theories of speciation rely on a particular idea of what a species is, and the idea of a species 

depends on the concept of speciation, each becomes somewhat dependent upon the other. 

Perhaps a good place to start is to try and define the word „species‟. To the lay person, a 

species can be defined as “a group of living organisms consisting of similar individuals 

capable of exchanging genes or interbreeding” (Oxford Dictionary: 

www.oxforddictionaries.com). This is a biological definition dependent on the ability of 

organisms to reproduce. A second definition relates more to taxonomy: “The species is the 

principal natural taxonomic unit, ranking below a genus and denoted by a Latin binomial” 

(Oxford Dictionary: www.oxforddictionaries.com).  

 

1.1.6.1 Taxonomic Concepts 

Taxonomic systems are old concepts that aimed to rank organisms in a simple and practical 

manner. These systems assumed that species remain unchanged, without any alteration 

through time. Aristotle was one of the first scientists to attempt to classify species 

according to a „scala naturae‟ in his book Historia animalium. He used gross morphology 

as well as a scale which was dependant on the organism‟s degree of perfection or 

potentiality (Bowler, 1992). The organisms that fell into the higher degrees were those 

http://www.oxforddictionaries.com/
http://www.oxforddictionaries.com/
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most similar to humans, i.e. those that gave birth to warm, live young. The organisms that 

fell into the lower degrees of the scale reproduce by laying cold, dry eggs.  

 

Aristotle‟s system was simplistic and he limited it to the animal kingdom. Linnaeus (1758) 

refined the taxonomical concept by separating all organisms into three broad Kingdoms: 

Regnum Animale, Regnum Vegetabile and Regnum Lapideum (animal, plant and mineral 

Kingdoms). He then divided each Kingdom into Classes composed of several Orders. The 

end point of his classification was a binomial given to each organism or species. Although 

Linnaeus based many of his classifications on structural similarities between organisms, he 

still did not leave any room for the idea of evolution. He states in his publication Systema 

Naturae that „species are as many as were created in the beginning by the Infinite” 

(Linnaeus, 1758).  

 

Linnaeus‟ binomial system is still used today and he is considered the father of modern 

taxonomy. The first part of the binomial is the genus name to which the organism belongs, 

followed by the „identifier‟ term. This identifier was generally chosen to describe the 

species itself according to a particular character.  

 

1.1.6.2 Biological Concepts 

Today, it is commonly accepted that classing organisms according to their gross 

morphology and „degrees of perfection‟ is entirely subjective and that the process of 

speciation involves genetic, biological and ecological components. Biological concepts of 

speciation can be broadly separated into two groups. Relational (or isolation) concepts are 

concerned with the physical location and separation of populations in order for speciation 

to occur. Genetical concepts (including the recognition concept) mostly assume that 
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ecological reproductive isolation has already occurred and are more focused on the genetic 

mechanisms that have led to species divergence. 

 

Dobzhansky and Mayr proposed theories of speciation that have been referred to as 

isolation concepts (Paterson, 1978). Their concepts are concerned with how the isolation of 

populations leads to divergent speciation. Hence, they are relational concepts. Dobzansky 

(1937) suggested that isolating „mechanisms‟ are responsible for delimiting the species 

gene pool. He defines isolating mechanisms as „all the mechanisms hindering or 

preventing the interbreeding of racial complexes or species‟ (Dobzhansky, 1937). These 

isolating mechanisms were generally related to the geographical positioning of the 

populations as a method for limiting their interaction. During this period of separation 

(allopatry), and given enough time, each population would randomly acquire unique 

mutations. If sufficient functional variation accumulated in each genome to prevent 

successful interbreeding of populations and sympatry was re-established, speciation can be 

considered to have taken place. This is an allopatric mode of speciation (Figure 1.2).  

 

 

Figure 1.2. Modes of speciation. (Ilmari Karonen,  http://en.wikipedia.or/wiki/File:Speciation _modes .svg) 

 

http://en.wikipedia.or/wiki/File
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Mayr (1969) defined a species as “groups of interbreeding natural populations that are 

reproductively isolated from other such groups”. He strongly supported the concepts of 

allopatric and peripatric speciation, but remained unconvinced of the plausibility of 

sympatric speciation. Further, he suggested that reproductive isolating mechanisms could 

be due to pre-mating or post-mating isolation (Mayr, 1963). Pre-mating isolation includes 

seasonal and habitat isolation where potential mates cannot meet due to different 

preferences or adaptations to habitat and climate; ethological isolation where potential 

mates can meet but not mate; and mechanical isolation where potential mates meet and 

attempt to copulate but fail. Post-mating isolation includes gamete inviability and or 

mortality whereby copulation takes place however the ovum cannot be fertilized; zygote 

mortality where the ovum is fertilized but the resulting zygote dies; hybrid inviability 

where the resulting zygote survives but has reduced viability; and hybrid sterility where the 

zygote is fully viable but cannot reproduce to form the next generation due to partial or 

complete sterility. 

 

The idea of hybrid inviability and sterility favoured the re-birth and development of the 

concept of speciation through reinforcement. The Wallace Effect, first suggested by Alfred 

Wallace in his book Darwinism (1889), lays the foundations for theories of speciation 

through reinforcement. These theories suggest that if two populations of different species 

were to come into contact with one another and mate successfully, their hybrid offspring 

would be less fit and therefore less competitive relative to pure-bred progeny. Hence, 

natural selection would select against hybrid survival (negative heterosis). The 

reproductive gap between the two species groups would thus be reinforced. 

Paterson (1978) argued that the reinforcement theory could not be valid. He reasoned that 

if two populations came into contact and random mating occurred to produce less fit 
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hybrids, the smaller of the two populations would eventually become extinct. Further, he 

highlighted inconsistencies in experiments designed to prove reinforcement theories. In 

these experiments researchers manipulated the population numbers such that each 

population was maintained at equal levels at each successive generation (Koopman, 1950; 

Knight et al., 1956; Paterniani, 1969; Crossley, 1974). This manipulation prevented the 

„weaker‟ of the populations from dying out, thereby giving false evidence in favour of the 

reinforcement theory.   

 

Since hybrid sterility and/or decreased hybrid fitness is the foundation of the reinforcement 

theory, the issues of defining species in terms of hybrid sterility needed to be investigated 

(Paterson, 1988). Historically, early Christian scientists viewed hybrid sterility as a Divine 

measure designed to ensure the purity of breeds (Lyell, 1832). The example of a sterile 

mule, being the hybrid progeny of a horse and a donkey, has often been used as evidence 

of a Divine mechanism to keep species populations pure and genetic lines uncontaminated. 

This concept of hybrid sterility breaks down when one considers polyploidy in 

angiosperms. The triploid offspring generated from a diploid and tetraploid parental pair of 

the same angiosperm are more or less sterile. In terms of hybrid sterility this would suggest 

that the parental types are different species. However, we know that this is not the case and 

the sterility is actually due to meiotic differences in the gametes. For this reason, hybrid 

sterility in the reinforcement concept is not a suitable model for speciation. 

In an effort to propose a clear and logical process of speciation, Paterson (1985) put 

forward his recognition concept. He defines a species as the „most inclusive population of 

individual biparental organisms which share a common fertilization system‟. In a natural, 

unforced environment members of a species will evolve a common specific mate 
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recognition system (SMRS). The system includes all the co-adapted signals and receptors 

required for two potential mates to recognize one another, copulate and successfully 

produce offspring. The SMRS includes olfactory, auditory, visual, tactile and chemo-

sensory stimuli which could form a series of signals between two potential mates. The 

SMRS in a biparental system would have to evolve such that both the male and female 

parts of the system develop in parallel. Although the recognition concept applies best to 

mobile organisms, it can also be applied to sessile organisms such as plants, mussels and 

oysters (Paterson, 1985). In plants, the SMRS may evolve to include pollen vectors which 

are specific organisms that transport pollen from one plant to another, as well as surface 

receptors on the stigma that recognizes pollen from like species.    

 

The co-adaption of the male and female SMRS is required for individuals of a species to 

retain compatibility. It is the adaptation of the components of the SMRS, for example to 

new habitats or environmental strain, which causes alterations in the SMRS between 

individuals. With this in mind, the end point of speciation in terms of the recognition 

concept is the point at which the new species‟ SMRS is no longer recognized by the 

original population and mating cannot occur successfully (Paterson, 1980). Speciation is 

thus viewed as an incidental effect of adaptation, not a direct consequence. 

There are at least 24 different concepts that have been proposed to solve the species 

problem (Hey, 2001), some more philopsophical and others more practical. The 

recognition concept aims to explain speciation through the most basic biological need or 

process, i.e. reproduction. It is not a relational concept that tries to explain speciation in 

one population in relation to another population. It highlights individual interactions within 

a population, with the common goal to produce progeny. For this reason the recognition 
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concept is favoured here over other species concepts because it deals with the issues of 

speciation in the most logical, simple and biologically relevant manner.   
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1.2  RESEARCH AIMS AND HYPOTHESIS 

When a female mosquito takes a blood meal, altered gene expression occurs in order to 

accommodate and utilize the nutrients.  It is hypothesized that the suite of genes 

responsible for the detoxification of xenobiotics in the blood meal may influence the 

subsequent level of susceptibility to insecticide following insecticide exposure.  Since 

P450 monooxygenase mediated pyrethroid resistance has been identified in the major 

South African malaria vector, An. funestus, it is imperative to understand the external 

factors that influence P450 regulation.    

 

Hence, in female An. funestus mosquitoes carrying a pyrethroid resistance phenotype, the 

process of acquiring and digesting a blood meal may affect their insecticide resistance 

status. Potentially, an altered insecticide resistance profile may impact on the current 

control strategies employed by malaria vector control programmes. The aim of this study 

was to determine whether there is a correlation between blood feeding and altered 

susceptibility to pyrethroids in An. funestus, and if so, to quantify the phenotypic and 

detoxification gene expression effects.   
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1.3  OBJECTIVES 

The aims of this study can broadly be separated into four main objectives: 

1. Determine, using bioassays, the effect of a blood meal on pyrethroid susceptibility 

in laboratory reared pyrethroid resistant and susceptible An. funestus females 

(Chapter 2). 

2. Analyse changes in detoxification gene expression using microarrays in laboratory 

reared pyrethroid resistant and susceptible An. funestus and An. gambiae females in 

response to blood feeding (Chapter 3). 

3. Verify any changes observed on selected genes using quantitative real-time PCR 

(qPCR), based on the results obtained from microarray analysis (Chapter 3). 

4. Characterise wild populations of An. funestus (Chapter 4). 
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CHAPTER 2 –THE EFFECT OF A SINGLE BLOOD MEAL ON THE 

PHENOTYPIC EXPRESSION OF INSECTICIDE RESISTANCE IN 

ANOPHELES FUNESTUS 

2.1 INTRODUCTION 

 

The primary malaria vector during the 1999/2000 malaria outbreak in South Africa was 

An. funestus and control of this mosquito currently relies on effective indoor residual 

spraying (IRS). Although South Africa‟s IRS campaign has adopted a mosaic spray 

approach using DDT (dichloro-diphenyl-trichloroethane), carbamates and pyrethroids 

(Maharaj et al., 2005), the occurrence of pyrethroid resistance in the An. funestus 

population (Hargreaves et al., 2000; Brooke et al., 2001) is a major concern for vector 

control. In addition, the development of insecticide resistance in An. arabiensis populations 

in South Africa (Hargreaves et al., 2003; Mouatcho et al., 2009) induces additional cause 

for concern, and an understanding of the mode, expression and inheritance of insecticide 

resistance mechanisms has become increasingly important.     

 

Insecticide resistance in insect populations is predominantly based on improved enzymatic 

sequestration and detoxification as well as by the alteration of insecticide target sites 

leading to insensitivity to insecticide (Hemingway et al., 2004).  Improved enzymatic 

detoxification has been linked to three broad classes of enzymes, namely monooxygenases, 

glutathione-S-transferases (GSTs) and non-specific esterases.  Pyrethroid resistance in 

Culex quinquefasciatus (Xu et al., 2005), Culex pipiens pipiens (McAbee et al., 2003), An. 

gambiae (Nikou et al., 2003) and An. funestus (Brooke et al., 2001; Wondji et al., 2007; 

Amenya et al., 2008; Wondji et al., 2009) has been linked to the increased activity of 
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cytochrome P450s, members of the monooxygenase class of detoxification enzymes. 

Further, the P450 monooxygenases have been implicated in the detoxification of 

xenobiotics (including drugs, pesticides and plant toxins) as well as endogenous metabolic 

products in insects (Scott, 1999).   

 

Since many major biological processes affect gene expression it is possible that insecticide 

detoxification gene expression may be stimulated by processes other than insecticide 

exposure.  The upregulation of cytochrome P450s in response to a blood meal has been 

demonstrated in C. pipiens (Baldridge and Feyereisen, 1989) and Aedes aegypti (Sanders et 

al., 2003).  It is hypothesized that the detoxification of xenobiotics and toxic blood 

components in the An. funestus midgut may inadvertently result in an increased ability to 

tolerate insecticide intoxication. 

 

2.2 RATIONALE 

Vector control relies on the use of insecticide chemicals to significantly reduce the number 

of malaria vectors by targeting that portion of the female population that takes blood meals 

and subsequently rests indoors.  It has been suggested that the intake of a blood meal may 

assist female mosquitoes to tolerate higher doses of insecticide through vigour tolerance.  It 

is hypothesized that in addition to vigour tolerance, during the process of blood digestion, 

detoxification mechanisms required for the neutralizing of harmful components in the 

blood meal may also confer an increased ability to tolerate insecticide intoxication through 

increased enzyme regulation.  
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2.3 AIMS AND OBJECTIVES 

The aim of this study was to determine whether a change in pyrethroid insecticide 

tolerance occurs when An. funestus mosquitoes have taken a blood meal. This was carried 

out through the following objectives: 

 To determine the percentage mortalities, for pyrethroid resistant and susceptible 

colonies of An. funestus, following exposure to varying dosages of permethrin 

for both unfed and blood fed cohorts 

 To determine the lethal dose required to kill 50% of permethrin exposed 

individuals (LD50) in each of the unfed study groups 

 To determine if a change in insecticide tolerance occurs for the resistant and 

susceptible colonies of An. funestus when exposed to the LD50 dose of 

permethrin, post blood feeding  

 

2.4 MATERIALS AND METHODS 

2.4.1 Mosquito colonies. Anopheles funestus laboratory colonies have been established 

and are maintained at the Vector Control Reference Unit of the National Institute for 

Communicable Diseases, NHLS (Johannesburg, South Africa).  All colonies are 

maintained under standard insectary conditions (Hunt et al., 2005).  The two An. funestus 

colonies used were: FUMOZ-RH, which originates from southern Mozambique and has 

been intensively selected for pyrethroid resistance (Hunt et al., 2005). FUMOZ-R (as in 

previously published work) and FUMOZ-RH refer to the same colony. The second colony, 

FANG, originates from Angola and is susceptible to pyrethroids.  

 

2.4.2 Insecticide dose-response experiments. The process of blood meal digestion may 

activate detoxification systems required to detoxify xenobiotics present in the blood.  
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Hence, it was decided that insecticide susceptibility should be investigated at different 

stages during the blood digestion process.  Susceptibility to permethrin was investigated 

during the early stage of blood digestion at four hours post blood feeding based on the 

assumption that those genes involved in the digestion process would have been transcribed 

by that time.  Susceptibility to permethrin was also investigated during the later stage of 

the digestion process at 18 hours post blood feeding to allow for the possibility that 

different genes may have been upregulated by that time.   

 

Three to four day old female cohorts from each colony were collected.  Each cohort was 

divided into two groups, one was fed on a 10% sucrose solution and the other was blood-

fed.  Blood meals were offered in a darkened room with an ambient temperature of 25°C. 

Only females that took blood were subsequently tested for susceptibility to permethrin.  

Following blood-feeding, a 10% sucrose solution was made available to all the females for 

either 4 hours or 18 hours prior to permethrin exposure.   

 

Dose-mortality responses comparing blood-fed versus unfed samples from the permethrin 

resistant and susceptible An. funestus colonies were assayed according to the CDC bottle 

bioassay method (Brogdon and McAllister, 1998).  Glass bottles (250 ml volume) were 

coated with the following range of permethrin concentrations (μg of permethrin/250 ml 

bottle): 0.1 μg, 1 μg, 10 μg, 25 μg, 50 μg, 100 μg, 250 μg, 500 μg and 1000 μg. 

Appropriate amounts of permethrin (Sigma) were dissolved in 1 ml acetone as a carrier.   

Each bottle was used a maximum of three times before being discarded. 

 

Approximately 20 to 25 females were used per bottle and the insecticide exposures lasted 

one hour. Following exposure to permethrin, all the females were transferred to 
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polystyrene cups with access to a 10% sucrose solution.  Percentage mortality was 

recorded 24 hours post-exposure for each permethrin concentration. For each An. funestus 

colony, eight to twelve cohorts were used. Each cohort was used as a single replicate such 

that one cohort could be used for the full dose range of exposures, in parallel for both the 

blood fed and unfed groups. The mean percentage mortality was calculated at each 

insecticide dose and the dose response graphs created. The data for each replicate of each 

cohort was log transformed to allow for the calculations of the 50% lethal dose (LD50) 

value, using regression analysis.  The mean LD50 and standard deviation could then be 

calculated for blood-fed and unfed, resistant and susceptible mosquitoes. An example of 

the regression analysis can be found in Appendix A. 

 

2.4.3 Dose specific responses following a blood meal. The WHO defines the 

discriminating dosage of insecticide to be used in resistance assays as twice the amount of 

insecticide required to kill 100% of an insecticide susceptible sample of the same species 

(WHO/CDS/MAL/98.12).  The susceptible FANG colony showed 100% mortality at 

approximately 50 µg/ 250 ml bottle.  It was thus decided that investigations at 100 µg/250 

ml bottle would be appropriate for dose specific assays against FUMOZ-RH. Insecticide 

dosages of 2 µg and 5 µg/250 ml bottle were chosen for dose specific assays against the 

susceptible FANG colony based on results from the dose-response experiments where the 

range induced approximately 50% mortality.   

 

Three to four day old female cohorts from each colony were removed and divided into two 

groups: one for blood-feeding and one to be fed on a 10% sucrose solution.  Blood meals 

were offered four hours prior to the one hour permethrin exposures.  Twenty to twenty five 

females were exposed per bottle through 9 to 11 replicates. Final mortality was recorded 
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24 hours post exposure and comparisons between blood-fed and unfed groups for each An. 

funestus colony were based on 2 sample t-tests and one-way ANOVA. 

 

2.5 RESULTS 

2.5.1 Lethal dose response graphs. Dose response graphs were generated for the 

insecticide susceptible FANG (Figure 2.1) and permethrin resistant FUMOZ-RH (Figure 

2.2) colonies.  No significant difference in susceptibility to permethrin between the unfed 

and blood-fed groups for both FUMOZ-RH and FANG (p >0.05) was evident across the 

full dosage range, regardless of the lapse of time between blood-feeding and permethrin 

exposure.  However, the FUMOZ-RH colony showed consistently higher levels of 

permethrin tolerance in the blood-fed group as compared to the unfed. 
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Figure 2.1. Percentage mortalities 24 hours post exposure for the pyrethroid susceptible An. funestus colony 

(FANG), in response to permethrin exposures, with either (A) blood-feeding 4 hours prior to permethrin 

exposure or (B) blood-feeding 18 hours prior to permethrin exposure. 
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Figure 2.2. Percentage mortalities 24 hours post exposure for the pyrethroid resistant An. funestus colony 

(FUMOZ-RH), in response to permethrin exposures with either (A) blood-feeding 4 hours prior to 

permethrin exposure or (B) blood-feeding 18 hours prior to permethrin exposure. 
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Figure 2.3 shows the dose of permethrin required to produce 50% mortality in each of the 

colonies, for each of the treatment times (permethrin exposure at either 4 hours or 18 hours 

post blood-feeding).  FUMOZ-RH showed significantly higher levels of insecticide 

tolerance as compared to the susceptible FANG colony (p<0.05).  The permethrin dose 

required to kill 50% of the resistant FUMOZ-RH samples was approximately 70 to 80 

times greater than that for the susceptible FANG colony. 

 
 

Figure 2.3. Comparison of dosages required to produce 50% mortality, 24 hours post permethrin exposure, 

(A) in the susceptible An. funestus colony (FANG) and (B) the resistant An. funestus colony (FUMOZ-RH).  

Permethrin exposures were carried out at either 4 hours or 18 hours post blood-feeding.  
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2.5.2 Dose specific responses following a blood meal. The susceptible FANG colony 

showed no significant difference in response to permethrin exposure between the unfed 

and blood-fed groups, for both of the insecticide dosages tested (p > 0.05, Figure 2.4).  The 

difference in response to permethrin exposure between blood-fed and unfed cohorts from 

the FUMOZ-RH colony was highly significant (p < 0.001) with the blood-fed cohorts 

showing a mean percentage mortality approximately five times lower than that of the unfed 

cohorts (Table 2.1). 

 

 
Figure 2.4. Comparison of percentage mortalities 24 hours post permethrin exposure at chosen 

discriminating dosages for the susceptible (FANG) and resistant (FUMOZ-RH) An. funestus colonies.  

Permethrin exposures were carried out 4 hours post blood- feeding at 2 and 5 μg/250 ml bottle for FANG and 

100 μg/250 ml bottle for FUMOZ-RH. 

 

Table 2.1. Mean percentage mortalities at the discriminating dosages for the susceptible An. funestus colony 

(FANG) and the resistant An. funestus colony (FUMOZ-RH).   

 Dose/250 ml 

Bottle 

Mean % 

Mortality 

 

SE 

 

n 

 

p 

FANG Unfed 2μg 29.45% 2.57% 213 > 0.05 

FANG Blood-fed 2μg 26.31% 2.80% 216  

FANG Unfed 5μg 57.00% 2.42% 261 > 0.05 

FANG Blood-fed 5μg 51.33% 4.14% 246  

FUMOZ-RH Unfed 100μg 59.21% 5.01% 244 < 0.001 

FUMOZ-RH Blood-fed 100μg 11.37% 2.54% 245  

All exposures on blood-fed individuals were carried out 4 hours post blood-feeding.  “SE” = standard error; 
“n” = sample size; “p” = significance of difference between the unfed and blood-fed groups following 2 
sample t-tests. 
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2.6 DISCUSSION 

 

The development of insecticide resistance in southern African An. funestus, and its 

dramatic effect on malaria transmission in South Africa, has highlighted the need to 

investigate this phenotype and its controlling factors.  Pyrethroid resistance in southern 

African An. funestus has been linked to elevated levels of monooxygenase cytochrome 

P450 activity as the primary mode of resistance (Brooke et al., 2001; Wondji et al., 2007; 

Amenya et al., 2008; Wondji et al., 2009).  It has subsequently been demonstrated that the 

resistance phenotype is inherited as a single, autosomal, incompletely dominant genetic 

factor (Okoye et al., 2008) and that there is no compromise in reproductive and 

physiological fitness associated with resistance (Okoye et al., 2007), leading to the 

prediction that pyrethroid resistance can be expected to spread readily within and between 

An. funestus populations in affected areas. If insecticide application is to remain effective, 

then this scenario must ultimately consider the response to insecticide exposure of older, 

blood-feeding females, which form that proportion of the population actively transmitting 

malaria. 

 

The application of an adapted CDC bottle bioassay method (Brogdon and McAllister, 

1998) allowed for the quantification and comparison of the levels of insecticide tolerance 

in both insecticide resistant and susceptible An. funestus colonies, in response to the effect 

of blood-feeding.   The results presented in this chapter indicate that the permethrin 

resistant colony (FUMOZ-RH), which has been intensively selected for pyrethroid 

resistance, has a 70- to 80-fold increase in insecticide tolerance as compared to the 

insecticide susceptible colony (FANG).  Although the insecticide dose response graphs did 

not highlight any significant differences in insecticide tolerance between any of the blood-

fed and unfed cohorts, the blood-fed resistant FUMOZ-RH colony consistently required 



 33 

higher dosages than its unfed counterpart in order to produce the same level of mortality. 

The lack of statistically significant differences between blood-fed and unfed cohorts may 

be an artifact of wide variation in response to insecticide exposure between batches of 

mosquitoes over successive generations. 

 

The direct comparison of percentage mortality following exposure to discriminating 

dosages of permethrin showed that a blood meal did not significantly alter the degree of 

insecticide tolerance in the fully insecticide susceptible colony of An. funestus.  This result 

suggests that vigour tolerance through increased body mass (and subsequent increased 

dilution of internalized insecticide) does not offer a significant measure of insecticide 

resistance. However, similar comparisons between blood-fed and unfed, insecticide 

resistant females from the FUMOZ-RH colony showed a significant increase in insecticide 

tolerance in association with a single blood meal.  This result suggests that the presence of 

a blood meal combined with an already effective insecticide detoxification mechanism 

significantly enhances the expression of the resistance phenotype.  

 

Given that IRS campaigns aim to target the biting portion of a vector population that rests 

indoors and that insecticide resistance phenotypes within An. funestus populations are 

becoming more prevalent, the data presented here warrant further consideration.  The 

results presented here suggest that the presence of a blood meal and/or the process of its 

digestion activate a series of insecticide detoxification pathways which “prime” the 

mosquito for contact with insecticide, in all likelihood through the increased expression of 

P450 genes hypothetically associated with blood meal digestion and insecticide 

detoxification.  
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2.7 CONCLUSION 

 

The fully insecticide susceptible An. funestus colony did not show any significant 

alteration in susceptibility to insecticide following a blood meal suggesting that vigour 

tolerance through increased body mass does not play a significant role in tolerance to 

insecticide intoxication. The decrease in insecticide susceptibility in the pyrethroid 

resistant colony of An. funestus following a blood meal suggests that insecticide 

detoxification mechanisms involved in insecticide resistance may further be stimulated by 

the presence of a blood meal prior to insecticide exposure, thereby leading to enhanced 

expression of the resistance phenotype.  This finding may be significant in terms of the 

criteria that are used to evaluate resistance phenotypes determined by WHO bioassay 

(WHO/CDS/MAL/98.12) in field populations, because blood-fed female mosquitoes may 

show enhanced expression of the resistance phenotype, possibly allowing for earlier 

detection of insecticide resistance.   
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CHAPTER 3 – DETOXIFICATION GENE TRANSCRIPTION 

ANALYSIS OF THE EFFECT OF A BLOOD MEAL ON FEMALE 

MOSQUITOES 

 

3.1 INTRODUCTION 

 

In the past, gene transcription studies relied on a “one-gene, one-experiment” setup (Muyal 

et al., 2008) and generating a global overview of gene transcription in response to a 

treatment or event was time consuming and costly. The advent of microarray technology 

brought about a shift from the tedious traditional molecular methods to the high-throughput 

screening of selected subsets of genes and even whole genomes simultaneously.    

 

The concept of DNA microarray technology was developed at Stanford University Medical 

Centre, USA, with the first account of the use of a cDNA microarray for expression 

profiling published by Schena et al. (1995). A microarray can be described as a “two-

dimensional arrangement of specific biological probes (e.g., DNA or protein molecules) 

deposited in an addressable fashion on a glass slide or other substance (e.g. polymer coated 

glass, plastics, nitrocellulose)” (Barbulovic-Nad et al., 2006).  

 

During gene transcription studies, microarrays can be used to analyse the differential 

expression of groups of genes within two comparable biological sources at a particular 

point in time. In any living cell, at any given point in time, genes are induced in response 

to any number of factors, including internal circadian rhythms and external factors or 

stimuli. The first stage of information transfer described in the central dogma of molecular 

biology is transcription, which in many eukaryotes results in pre-mRNAs that are often 

further processed to form mature mRNAs (Klug and Cummings, 1997). Each messenger 
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RNA (mRNA) that results from a transcriptional event is the product of a specific gene and 

has the potential to be translated into functional protein. Isolation and identification of the 

mRNAs present at a particular point in an experiment or treatment gives a snap-shot view 

of gene expression within the sample and in essence provides information on the functional 

state of each gene in relation to the treatment concerned (Schena, 2002).  

 

Isolated mRNA targets can be labeled with a Cyanine-5 (Target sample) or Cyanine-3 

(Reference sample) fluorescent dye. The two mRNA samples are then combined prior to 

hybridisation onto a single microarray. Hybridisation allows complimentary targets and 

probes to bind, producing double stranded molecules anchored onto the array. Post-

hybridisation washing serves to remove unbound targets so that only the bound targets are 

detected by the laser scanner. Two colour microarrays enable researchers to perform direct 

comparisons between two samples due to the competitive binding of each sample (Schulze 

and Downward, 2001), thus simultaneous detection of up and down regulation of gene 

targets within a single array is achievable.  

 

The Anopheles gambiae Detoxification chip 

The first published cDNA microarray experiment used 45 probes specific to 14 complete 

sequences and 31 expressed sequence tags (ESTs) of Arabidopsis thaliana (Schena et al., 

1995). More recently developed arrays have expanded the number to be in excess of four 

million probes within a single array (e.g. Roche NimbleGen, www.nimblegen.com/ 

products/expression/eukarya/index.html). These types of arrays are used to generate an 

unbiased view of gene expression across the entire genome of the organism. Knowledge of 

the full genome sequence is required to produce these tiling arrays. 

 

http://www.nimblegen.com/%20products/
http://www.nimblegen.com/%20products/
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Tiling arrays targeted at anopheline species are currently unavailable. However, 

Affymetrix® has developed their GeneChip® Plasmodium/Anopheles Genome Array, 

which incorporates more than 4,700 P. falciparum and 16,000 An. gambiae transcripts onto 

one array (www.affymetrix.com). This single colour system is suitable for investigating 

host-parasite based relationships thereby giving a global picture of gene expression 

responses resulting from Plasmodium infection. Two smaller, highly specialized arrays 

have been developed to investigate immunity and oxidative stress (Dimopoulos et al., 

2002) and metabolic based insecticide resistance (David et al., 2005) in An. gambiae. The 

latter of these mini-microarrays is called the detox chip and it contains probes that 

represent approximately 230 putative detoxification genes, each printed four times within 

the array. It has been used to profile insecticide resistance phenotypes for An. gambiae 

(Müller P et al, 2007; Djouaka et al., 2008) as well as the closely related An. arabiensis 

(Müller et al., 2008) and the unrelated An. funestus (Christian et al., 2011b). 

 

Standardisation of microarray experiments and downstream quantification 

Many different aspects of a microarray experiment can affect the quality, reproducibility 

and interpretation of the results. Basic guidelines have been established to assist 

researchers in standardising their experiments to an international level of acceptability. 

These MIAME (Minimum Information About a Microarray Experiment) guidelines 

include: descriptions of RNA extraction and amplification protocols; reporting of 

efficiencies and screening techniques to ensure suitable quality of biological samples; 

scanning parameters; annotations; data processing etc. (Brazma et al., 2001). In order to 

publish microarray findings, many journals now require that microarray experiments 

follow the MIAME guidelines and that data (raw and analysed) be submitted to a 
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microarray repository. These repositories are open-access and retrospective studies are able 

to utilize the data therein. 

 

Since the detox chip is being utilized as an investigative tool in this study, all genes that are 

found to be upregulated will need to be validated using quantitative real time PCR (qPCR). 

qPCR allows one to analyse the transcript abundance after each cycle of amplification 

thereby resulting in real time data acquisition. Relative expression values can be 

determined for a target gene or gene of interest by comparing the change in transcript 

abundance of the gene in one biological sample versus another (possibly treated) biological 

sample. In order to ensure that the observed changes in target gene expression are due to a 

biological effect and not differences in quantity of starting cDNA, gene expression levels 

of a reference gene (RG) or housekeeping gene (HKG) must be monitored in parallel to all 

the target genes. The RG is a gene that should exhibit stable expression levels between all 

samples, including the untreated and treated cohorts, in order to validate direct 

comparisons of target gene expression between samples (Derveaux et al., 2010). As with 

microarray experiments, a set of guidelines has been published to assist researchers in 

ensuring that their qPCR experiments conform to a minimum set of requirements (Bustin 

et al., 2009). Issues such as RNA extraction methodology; RNA quantification; cDNA 

synthesis; qPCR chemistries; RG suitability as well as data analyses are covered in the 

MIQE (Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments) guidelines (Bustin et al., 2009; Bustin, 2010). Real-time PCR reviews 

covering these topics are frequently published (see Baker, 2011).  
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3.2 RATIONALE 

In Chapter 2 it was shown that blood feeding in An. funestus, in samples where pyrethroid 

resistance already occurred, led to increased levels of pyrethroid resistance. This effect was 

not apparent in An. funestus females that were fully susceptible to insecticides. These 

findings provided the impetus to investigate the effect of a blood meal on detoxification 

gene transcription. Previous gene transcription studies that have investigated the effect of 

blood feeding have utilised an An. gambiae strain (Pink Eye Standard) that is susceptible to 

insecticides (Davidson, 1956; Holt et al., 2002 in supplementary information). Since a 

response to the blood meal was only seen in An. funestus mosquitoes carrying a resistance 

phenotype, the transcription experiment warranted repeating with an insecticide resistant 

An. gambiae strain as well as An. funestus.  
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3.3 AIMS AND OBJECTIVES 

The aim of this study was to investigate the use of the An. gambiae detox chip to detect 

potential gene targets that are upregulated in response to a blood meal in An. funestus and 

An. gambiae. Gene expression was investigated three hours post blood meal in order to 

generate data that was comparable to currently published research, such as Marinotti et al. 

(2006). Although the detox chip was designed for profiling expression within An. gambiae, 

it has been successfully applied to other closely related species. All potential gene targets 

were then analysed for relative expression using quantitative real time PCR. Specific 

objectives were: 

 To investigate the effect of a blood meal on gene expression in An. funestus 

FUMOZ-RH and An. gambiae GAH using the An. gambiae detox chip 

 To identify genes that have increased levels of expression in both the An. 

funestus and An. gambiae microarrays 

 To validate, through the use of real-time qPCR, the levels of gene expression, 

for the above genes, in response to the presence of a blood meal 

   

3.4 MATERIALS AND METHODS 

3.4.1 Mosquito colonies and sample preparation.  The An. funestus adults used in this 

study originated from the FUMOZ-RH laboratory colony. This colony originates from 

southern Mozambique and carries high levels of P450-mediated pyrethroid resistance 

(Brooke et al., 2001). The An. gambiae S form adults were drawn from the GAH 

laboratory colony which originates from the Ahafo region in Ghana. The GAH colony 

exhibits extensive insecticide resistance (bendiocarb, DDT, dieldrin, permethrin, 

deltamethrin). Most importantly, the pyrethroid resistance in GAH is mediated by P450 

and esterase metabolism in conjunction with kdr (Kaiser et al., 2010). 
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Both of these colonies are maintained under standard insectary conditions (25 ± 2°C, 80% 

RH) with a 12 hour day/night cycle which includes a 30 minute dusk/dawn transition. Both 

male and female adults were placed in 5L cages on the day of emergence, with access to 

10% sucrose. At three days of age, the males were removed and the cohort of females split 

into two groups. Both groups of females were then placed in artificial dusk cycles for 30 

minutes, after which they were placed in complete darkness for a minimum of 30 minutes. 

One of the cages was offered a human blood meal. After the blood meal, both groups of 

females were allowed to rest for three hours. 

 

Three separate biological replicates were used for this experiment. It was ensured that the 

adults used for each replicate were from different cohorts collected on different days. 

 

3.4.2 RNA preparation and cDNA synthesis.  After the three hour rest period, blood fed 

females and their unfed counterparts were sacrificed for RNA extractions. Approximately 

10-15 females per group were placed in 1.5 ml microcentrifuge tubes, on ice, for 

immediate RNA extraction. Total RNA extractions were carried out using the PicoPure
TM

 

RNA isolation kit (Arcturus) following manufacturer‟s guidelines. In order to limit 

genomic DNA contamination, a DNase treatment (RNase-Free DNase Set, Qiagen) was 

included in the RNA isolation procedure. The total RNA quantity and quality was assessed 

by spectrophotometry using the RNA-40 setting on the Nanodrop machine (Nanodrop 

Technologies, UK). Samples with less than 200 ng.μl
-1

 of RNA were excluded from the 

following steps. 
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Approximately five micrograms of total RNA was amplified using the RiboAmp
TM 

amplification kit (Arcturus) according to manufacturer‟s instructions. The quantity and 

quality of product was confirmed using the Nanodrop machine (minimum cutoff values: 

1000 ng.μl
-1

 and a 260/280 ratio of at least 1.7). The resulting aRNA was then reverse 

transcribed to cDNA using Superscript III reverse transcriptase (Invitrogen); random 

hexamers (Invitrogen) and fluorescently tagged Cy3- and Cy5-dUTPs (Amersham 

Biosciences). The Lucidea Universal Score Card (Amersham Biosciences) was used as a 

RNA spike-in control in all cDNA target preparations. A 1M NaOH, 20 mM EDTA 

solution was used to stop the reaction and degrade the original aRNA template, after which 

the targets were combined and cleaned using the illustra
TM

 CyScribe
TM

 GFX
TM

 

Purification Kit (GE Healthcare).  After purification, dye incorporation was assessed using 

the Nanodrop machine and the microarray (33-factor) settings. A minimum cDNA yield of 

15 ng.μl
-1

; minimum dye incorporation of 0.1 pmol.μl
-1

 for each Cy dye and a 260/280 

ratio of less than two, were the cutoff values used to control the efficiency of labeling and 

purification. Finally, 5 μg of poly dA oligo (Sigma) was added to each target set, combined 

and then vacuum dried using an Eppendorf Concentrator 5301 (Eppendorf, Hamburg) set 

at 45°C for 30 minutes. Dried pellets were resuspended in 15.5 μl of long hybridisation 

buffer (Corning Inc.) and denatured at 95°C for 5 minutes immediately before loading onto 

the array. A detailed, step by step listing of the protocol can be found in Appendix B.  

 

3.4.3 Microarray preparation and hybridisation.  The Pronto! Universal Microarray Kit 

(Corning Inc) was used to prepare all the microarray slides used in this study. The kit is a 

three step process, divided into: Pre-Soak and Pre-Hybridisation Protocol, Hybridisation 

Protocol and Post-Hybridisation Wash Protocol. In order to decrease the stringency of the 

array binding for the An. funestus experiments, all wash solutions were prepared and used 
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at 3x the recommended concentration (Christian et al., 2011b). The same solutions were 

prepared according to manufacturer‟s guidelines for the An. gambiae experiments. 

 

Hybridisation was carried out at 38°C and 42°C for the An. funestus and the An. gambiae 

experiments respectively (Christian et al., 2011b; David et al, 2005). Hybridisation was 

carried out for 16 hours in hybridisation chambers that had approximately 40 μl of 3x SSC 

buffer distributed around the inner edges. Hybrislips (Grace Biolabs) were used to cover 

each array, to prevent evaporation of the added targets. Post-Hybridisation washes were 

carried out at 38°C for half the specified times (Christian et al., 2011b). Wash steps 

requiring ambient temperature were carried out as close to 25°C as possible. The full 

protocol can be found in Appendix B. 

 

Experimental Design 

This study used a direct comparison design with included dye swap. Briefly, for each 

replicate used in the hybridisations, the targets were labeled alternately with Cy3 or Cy5, in 

a dye swap manner thereby resulting in 2 hybridisations for each replicate. The use of three 

biological replicates, each with a dye swap, assisted in the control of intra-experimental 

variation. A final technical repeat, with dye swap, was carried out using one of the existing 

biological replicates. This group served to control for inter-experimental variation. In total, 

11 arrays were hybridised and analysed for An. gambiae GAH and 8 arrays for An. 

funestus FUMOZ-RH. 

 

Microarray Scanning 

The microarrays were scanned using a GenePix 4000B scanner (Axon Instruments, 

Molecular Devices, USA). The photomultplier (PMT) range was adjusted to fall within 
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500 – 750V for each channel of detection thereby resulting in an overall intensity ratio as 

close to 1 as possible. The resulting TIFF files were analysed using the GenePix Pro 6.0 

software (Axon Instruments). Preprocessing according to the following cutoff values was 

used to determine spot quality. If a spot met either of the following criteria, it was excluded 

from analysis: a signal to noise ratio of less than 3 and or spot intensity values of greater 

than 65,000. The raw intensity values were then imported into the Limma 2.4 software 

running in the R 2.9.0 package of Bioconductor for analysis (Gentleman et al., 2004). 

 

Microarray Data Analysis 

Bioconductor is an open source bioinformatics software project that makes available a 

number of tools for the analysis of high throughput data. The project and the programs 

used in this microarray data analysis are available at www.bioconductor.org (Gentleman et 

al., 2004). R is a statistical programming language and an interface in which one can 

utilize a range of statistical analysis packages. The full program code used for the An. 

gambiae GAH analysis can be found in Appendix C. Briefly, before any data 

transformations or normalizations were carried out, MA plots and image density plots for 

the Cy dyes were generated for each array. An MA plot displays the distribution of the data 

with regards to the red or green intensity ratio (M) plotted against the average intensity (A) 

for each spot. Background corrections were carried out for each spot using the „normexp‟ 

method with an offset of 50, which ensures that the resulting corrected intensities are 

positive values (Ritchie et al., 2007). Normalization within arrays was carried out using the 

global „loess‟ method, without any additional offsets (Smyth and Speed, 2003). Boxplots 

were generated to assess the level of background distribution for each Cy dye. These 

boxplots could then be used to determine whether a particular array was an „outlier‟ and 

should be removed from future analyses. Normalization between arrays was then carried 

http://www.bioconductor.org/
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out using aquantile normalization which ensures that the average intensities (A) for each 

array exhibit the same empirical distribution whilst leaving the log ratios (M) unchanged 

(Smyth and Speed, 2003).  The „duplicateCorrelation‟ function was used to take into 

consideration that each individual spot is repeated four times within each array (Smyth et 

al., 2005), after which differential expression was assessed using the linear model 

approach implemented in the „limfit‟ and „eBayes‟ functions (Smyth, 2004). The empirical 

Bayes statistic results in the calculation of the log fold change, p-value and b-statistic (b-

stat) value for each gene on the array. 

 

The top five up and down regulated genes were compared between the An. gambiae arrays 

and the An. funestus arrays. Only genes with p < 0.001 and a b-stat value >2.95 were 

considered. 

 

(Note: To calculate the %probability that the gene shows true differential expression, one can use 

the b-stat value in the following function:  

% probability =   exp
(b-stat value)

      x 100 

 (1+ exp
(b-stat value)

]  

 

In general, b-stat values of >2.95 correlate to a >95% probability that the data represents a true 

event or difference. A b-stat value >4.5 suggests a probability of >99% that the gene is 

differentially expressed. 

 

3.4.4 Quantitative Real Time PCR.  Quantitative PCR was carried out using the RNA 

samples generated for the microarray experiments and the standard curves produced below. 

The Bio-Rad CFX96™ Real-Time PCR Detection System (Bio-Rad Laboratories Inc.) was 
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used to perform the real-time qPCR experiments. The target genes of interest for qPCR 

analysis include CYP6P9; CYP6P13; CYP6Gen and GSTD3.  

 

CYP6P9, CYP6P13 and CYP6Gen were chosen for analysis in real time as they have 

already been implicated in the pyrethroid resistance phenotype of FUMOZ-RH (Amenya et 

al., 2008; Matambo et al., 2010). GSTD3 was the only potential gene upregulated in both 

the An. funestus and the An. gambiae microarray studies. However, GSTD3 has not been 

investigated in An. funestus and does not seem to have an orthologue in the An. funestus 

EST database (Serazin et al., 2009; Gregory et al., 2011). Since the An. funestus genome 

has not been sequenced the percentage similarity between many of the genes of An. 

funestus and its closest relative An. gambiae remains unknown.  Primers thus needed to be 

designed for all three potential gene targets (see below). The CYP6Gen primer pair is 

described by Amenya et al. (2008). However, it has subsequently been found that the 

primer pair may target CYP6 genes indiscriminately and have hence been named 

CYP6Gen in this study.  

 

The 25 μl reactions were set-up using: 12.5 μl IQ SYBR Green Supermix (Bio-Rad 

Laboratories Inc.); 1 μl Forward primer (10μM); 1 μl Reverse primer (10μM); 1 μl cDNA 

and 9.5 μl nuclease-free water. The thermal cycling conditions are described in table 3.1 

below. 
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Table 3.1 Thermal cycling conditions for qPCR experiments 

Initial denaturation 95°C for 3 minutes 

Amplification – cycle  

36-40 times 

95°C                      for 10 seconds 

55/59.1°C*          for 15 seconds 

72°C                      for 15 seconds 

single fluorescence detection at 510-530 nm 

Melt curve detection Ramp from 60°C to 95°C: Increment of 0.5°C for 5 

seconds, single fluorescence detection at 510-530 nm                                                           

* 55°C for CYP6P13 and CYP6Gen amplification; 59.1°C for CYP6P9 amplification. Annealing temperature for 

the reference gene was run at the same temperature as the target. 

  

Target Primer design for Quantitative Real Time PCR 

 

CYP6P9, CYP6P13 and CYP6Gen Primers 

 

Since CYP6P9 (EU450763) and CYP6P13 (EF152577) share 93.7% nucleotide similarity, 

alignments of these two genes were carried out to identify regions of dissimilarity. Primers 

for the CYP6P9 gene were designed manually to fall with either their first, last, or 

preferably both nucleotides falling on a region of dissimilarity. All possible primer pairs 

were then entered into the freely available Netprimer program (Premier Biosoft 

International: www.premierbiosoft.com) to assess the possible self-primer dimers, cross-

primer dimers and hairpin formations. All primer pairs were confirmed for sequence 

specificity using the Megablast algorithm on the NCBI website 

(http://blast.ncbi.nlm.nih.gov). The two best primer pairs (with respect to specificity and 

dimer formation) were chosen and each pair was then assessed for their performance in 

real-time qPCR, see table 3.2 below. The primers targeted to the CYP6P13 region were 

designed by Riann Christian and are detailed in the table 3.2 below (Christian et al. 2011a). 

The CYP6Gen primer pair was originally described by Amenya et al. (2008). 

http://www.premierbiosoft.com/
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GSTD3 Primers 

 

Since the nucleotide sequence for the potential GSTD3 gene in An. funestus is unknown, 

alignments of An. gambiae sequences (XM 313667; AF513638; BX046867) with the 

GSTD3 detox chip probe were carried out for primer design. Two primer pairs were 

designed and analysed for suitability in the Netprimer program as above. Sequence 

specificity was confirmed using Megablast as above.  

 

The first set of primers (GSTD3 For and Rev) was designed to amply a large region of the 

GSTD3 target. The primers were tested on five different An. gambiae colonies and the 

resulting amplicons were sequenced (Inqaba Biotechnologies, Pretoria, SA) to ensure 

specificity to the GSTD3 gene. The primers were then applied to An. funestus genomic 

DNA extracted from three FUMOZ-RH individuals. In an effort to reduce the non-

specifics obtained in this PCR, attempts were made to optimize both salt concentration and 

annealing temperature. The amplicons that resulted from the 45°C annealing reaction were 

ligated into a pGem
®
-T Easy Vector (Promega Corporation) and then transformed into E. 

cloni
®
 10G Chemically Competent Cells (Lucigen

®
 Corporation). Transformants were 

screened for insert using the LacZ insertional inactivation system. White transformants 

containing potential inserts were screened using the SP6/T7 PCR screening method 

described in the manufacturer‟s guidelines.  Five representative clones for each insert 

length obtained were sequenced (Inqaba Biotechnologies). Sequences were aligned using 

the DNAStar Lasergene 7 package (DNAStar Inc., Madison, WI). The resulting contigs 

were blasted for sequence identification using Megablast as above and manually aligned to 

the GSTD3 probe from the An. gambiae detox chip. 
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All of the contigs obtained from the sequencing were translated in all six reading frames 

using SeqBuilder in the DNAStar Lasergene 7 package (DNAStar Inc., Madison, WI). 

These amino acid sequences were then aligned to the translated GSTD3 probe sequence. 

The best fit translated sequence was then aligned to multiple An. gambiae and Ae. aegypti 

delta-class GSTs.  

 

The second primer pair (GD3 For and Rev) was designed to give a small amplicon which 

could be used for real-time analysis of the GSTD3 gene.
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Table 3.2 Target genes for quantitative real time amplification 

Primer Sequence Primer 

Tm 

Annealing 

Temp 

Amplicon 

length 

Product 

Tm 

Reference 

CYP6P9 For1 5’ TGC ATT CGG GAT TGA GTG TA 3’ 58.3°C  

55.0°C 

 

209bp 

 

81°C 

This study 

CYP6P9 Rev1 5’ ATT CCA CCG TTT CCT TAA CA  3’ 56.3°C 

CYP6P9 For2 5’ AGA TGT GAT TGG CAC CTG T    3’ 58.0°C  

55.0°C 

 

232bp 

 

82°C 

This study 

CYP6P9 Rev2 5’ TCG ATA TTC CAC CGT TTC CT   3’ 58.3°C 

CYP6P13 For 5’ CTG GAT CTC CTA ATT ATG ATG AAG TTT TTC 3’  61.9°C  

59.0°C 

 

132bp 

 

81°C 

Christian et al., 

2011a CYP6P13 Rev 5’ GTT CAC CGT CTC GCG GAC T    3’ 64.5°C 

CYP6PGen For 5’  GAG GAA GTG AAG AAG CGA CAT C  3’ 62.7°C  

55.0°C 

 

141bp 

 

84.5°C 

Amenya et al., 

2008 CYP6PGen Rev 5’ TGA CGG TGA GAA GCG GAA C  3’ 62.3°C 

GD3 For 5’ GAG CAC TTC CTT ACC GAA CG 3’ 62.5°C  

45 – 55.0°C 

 

103bp* 

 

~ 

This study 

GD3 Rev 5’ CGT ACT TCA GCC AGT TCA GTG3’ 62.6°C 

GSTD3 For 5’ TCG CCG TAG TCA GTT CAG ATG 3’ 62.6°C  

45 – 55.0°C 

 

537bp*
 

 

~ 

This study 

GSTD3 Rev 5’ CGG TTC GAG ATC GTA CTT CAG 3’ 62.6°C 

* Predicted amplicon size based on An. gambiae cDNA sequence.  
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Reference Primer Design for Quantitative Real Time PCR 

 

Reference genes (RG) or housekeeping genes (HKG) are used to “calibrate” target gene 

expression levels. These RGs should have stable expression between the untreated and treated 

samples. Generally, more than one RG is required to perform an accurate assessment of the 

expression levels of the target gene of interest (Vandersompele et al., 2002; Bustin et al., 

2009; Chervoneva et al., 2010; Derveaux et al., 2010). In order to choose the most suitable 

candidate RGs, a number of potential genes are analysed for suitability.   

 

The RGs screened for suitability in this study are listed in table 3.3 below. A box and whisker 

plot was drawn to show the distribution of the quantification cycle (Cq) values for each HKG. 

The following freely available Microsoft Excel Visual Basic macros were used to assist in the 

assessment of HKG suitability: Bestkeeper (Pfaffl et al., 2004); geNorm (Vandesompele et al., 

2002) and Normfinder (Andersen et al., 2004).  

 

Bestkeeper uses raw Cq values to rank candidate HKGs based on the standard deviation of the 

Cqs and performs repeated pairwise correlation analyses between the HKGs. Ultimately, the 

assessment results in a „Power of HKG‟ value and p-value for each gene, for which the 

smallest possible value is preferred. 

 

geNorm calculates an M-value for each gene by assessing the average pairwise variation of the 

relative starting quantities entered by the user. The least stable gene, having the highest M-

value, is then eliminated from the assessment and the remaining genes are re-analysed. This 
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step-wise elimination of the least suitable genes eventually results in the two most favourable 

candidates.  Acceptability of a reference gene depends on whether the M-value is below 0.5 

for homogenous sample sets or less than 1.0 for heterogenous sample sets (Taylor et al., 

2010). 

 

NormFinder uses linear expression quantities to determine the variation within and between 

the test groups (eg. blood fed and unfed samples) and uses these values to derive a stability 

value for ranking the candidate RGs. The program will then determine the most suitable RG 

for a single reference gene experiment as well as the best pair of RGs in multiple reference 

gene experiments. 

 

Amplicons derived from the test runs were ligated, cloned and transformed, as above. Clones 

were sequenced by Inqaba Biotech (Pretoria, South Africa) to ensure that the correct reference 

genes were being targeted. 

 

Standard Curve Preparation for Quantitative Real Time PCR  

 

Total RNA was extracted from 10 – 15 female, 3-day old, unfed, FUMOZ-RH mosquitoes 

using the Trizol
TM

 RNA extraction protocol (Invitrogen). Pestles were cleaned with RNaseZap 

(Sigma), rinsed with DEPC-treated water and then autoclaved for 20 minutes. The final RNA 

pellet was resuspended in nuclease-free water (Ambion) and subjected to DNase treatment 

(Qiagen) to remove any DNA carryover. In order to inactivate the DNase enzyme, the RNA 

samples were briefly denatured at 72˚C for 10 minutes. The resulting RNA was quantified 
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using a Nanodrop spectrophotometer and quality was assessed by formaldehyde gel analysis 

and Agilent 2100BioAnalyzer (detailed protocols below).  

 

Table 3.3 Table of candidate reference genes. Note that the sequence for the RPS7 primer pairs originates from 

Amenya et al., 2008. All other primer pairs were designed in this study.  

Primer Sequence Primer 

Tm 

Genbank Accession 

No/EST Database 

No 

Amplicon 

length 

RPS7 For 5’ TTA CTG CTG TGT ACG ATG CC 3’ 60.4°C  

EF450776.1 

 

134bp RPS7 Rev 5’ GAT GGT GGT CTG CTG GTT C 3’ 62.3°C 

RPL8 For 5’ CAT CAG CAC ATT GGT AAG GC 3’ 60.4°C CD664267.1/ 

AF-NORA-contig_176 

 

305bp RPL8 Rev 5’ GTT TTC GCT TCC CGT TTT TC 3’ 58.4°C 

RPL19 For 5’ GAA ACA CCA ACT CCC GAC A 3’ 60.2°C  

DQ910355.1 

 

223bp RPL19 Rev 5’ TCA ACA GGC GAC GCA ACA C 3’ 62.3°C 

RPS26 For 5’ GAT AAG GCA ATC AAG AAG TTC G 3’ 59.0°C  CD577850.1/ 

AF-NORA-contig_270 

 

160bp RPS26 Rev 5’ TAC GGA CAA CCT TCG AGT GG 3’ 62.5°C 

CO1 For 5’ TAG GAG CCC CTG ATA TAG CTT TC 3’ 62.8°C  

AY423059.1 

 

123bp Co1 Rev 5’ ACT GTT CAT CCT GTT CCT GCT C 3’  62.7°C 

ND5 For 5’ TAG AAT TTT ATT AGG GTG GGA TGG 3’ 59.4°C  

AY727744.1 

 

122bp ND5 Rev 5’ ATC TCC AAT TCG ATT TGA TAA TGC 3’ 57.7°C 

Fun 18S For 5’ GTG TAC TTG GGC GTT ACT CTG TG 3’ 64.6°C  

AF417780.1 

 

116bp Fun 18s 

Rev 

5’ CTT TGA GCA CTC TAA TTT GTT CAA G 3’ 59.7°C 

GapDH For 5’ GAC TGC CAC TCG TCC ATC 3’ 62.2°C  

EZ966147.1 

 

139bp GapDH Rev 5’ CCT TGG TCT GCA TGT ACT TG 3’ 60.4°C 

 

http://www.ncbi.nlm.nih.gov/nucleotide/129716441?report=genbank&log$=nucltop&blast_rank=1&RID=JUXBYEMZ01N
http://www.ncbi.nlm.nih.gov/nucleotide/114864858?report=genbank&log$=nucltop&blast_rank=1&RID=JUZJSD6F01S
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cDNA was synthesized using the High Capacity RNA-to-cDNA Kit (Applied Biosystems). An 

acceptable yield of cDNA was >2000 ng.μl
-1 

with a 260/280 ratio of >1.8. cDNA generated in 

this manner was used to create the standard curves used in the real-time analyses below. A 

two-fold serial dilution of the cDNA was generated and used as the standard curve template in 

the real time qPCR reactions. Only experiments that had a standard curve with an efficiency of 

95-102% and an R
2
 >0.97 were used for analysis. A minimum of 7 out of the 11 standards 

were required to create the final standard curve using the Bio-Rad CFX Manager Software 

Version 1.5 (Bio-Rad Laboratories Inc). 

 

Assessment of RNA Quality 

 

The quality of the extracted RNA was assessed using both formaldehyde gel electrophoresis 

and the BioAnalyzer micro-fluidics platform developed by Agilent Technologies Inc.  

 

Formaldehyde Gel Electrophoresis 

 

Before preparing the gel, all equipment including gel tank, casting tray, combs, 200ml 

erlenmeyer flask etc was soaked in 0.1M NaOH, for a minimum of 1 hour. All the equipment 

was rinsed with DEPC-treated water and excess water shaken off. A 1.3% agarose gel was 

prepared by dissolving 0.65g agarose in 44ml DEPC-treated water in an erlenmeyer flask. The 

solution was boiled well to ensure that the agarose had completely dissolved. Whilst allowing 

the molten agarose to cool to 55-60°C, the opening of the flask was covered with foil to 

prevent further evaporation. Whilst the agarose was cooling, 5 ml 10x MOPS running buffer 



 73 

(0.4M MOPS pH 7.0; 0.1M Na-acetate; 10 mM EDTA) was mixed with 1.5 ml 37% 

formaldehyde in a 50 ml falcon tube. In a fume hood, the cooled agarose was combined with 

the MOPS-formaldehyde mix and 3 μl ethidum bromide (0.5 mg.ml
-1

). The formaldehyde 

agarose mix was then poured into a casting tray with the appropriate combs in place. The gel 

was allowed to set for at least half an hour. Before using the gel, it was pre-electrophoresed for 

at least 20 minutes at 5V/cm using 1x MOPS running buffer in the gel tank. 

 

Each RNA sample was prepared in a 0.5 ml PCR tube by mixing: 2.5 µl 10x MOPS running 

buffer; 4.4 μl 37% formaldehyde solution; 12.5 µl deionised formamide; up to 5.6 μl RNA 

sample and nuclease-free water to a final total volume of 25 µl. The solution was vortexed and 

briefly spun down. Heat denaturation of the mixture was carried out in a thermal cycler at 

55°C for 10 minutes then 70°C for 5 minutes. Immediately after denaturation the samples 

were placed on ice, until they were loaded on the gel. Prior to loading the samples, the 25 µl 

denatured sample was mixed with 5 µl Orange-G loading buffer (0.35% w/v Orange-G; 30% 

w/v Ficoll; 1 mM EDTA) and 0.2 μl ethidium bromide (0.5 mg.ml
-1

). The samples were 

electrophoresed for no more than 2 hours at 5V/cm, with an RNA High Range molecular 

weight marker (Fermentas) included. 

 

Agilent 2100 Bioanalyzer 

 

The RNA samples and RNA 6000 Nano chips were prepared and run according to 

manufacturer‟s instructions. Briefly, the chips were loaded with prepared gel-dye mix using 

the syringe and priming stations provided. A marker solution was added to all sample and 
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molecular weight marker wells. Heat denatured RNA ladder was added to the molecular 

weight marker well and 1 µl of RNA sample to each of the sample wells (up to 12). The chip 

was briefly vortexed and then inserted into the Agilent Bioanalyzer machine. The Bioanalyzer 

machine, through the use of microcapillaries and laser detection, analyses the RNA present in 

the samples. The software generates a digital electropherogram which is then analysed for the 

presence and absence of degradation products. An RNA Integrity Number (RIN) is calculated 

whereby a RIN value of 1 is indicative of completely degraded RNA and a value of 10 is fully 

intact RNA. The RIN value is calculated through the use of an algorithm that utilises a number 

of different input factors, including: the presence of the 28S and 18S peaks; the 28S:18S peak 

ratio; peak area; as well as the presence of pre-, inter- and post-region peaks.   

 

Quantitative Real Time PCR Data Analysis  

 

The resulting qPCR data in the form of quantification cycle (Cq) values was analysed 

according to the ∆Cq relative quantification method (Pfaffl, 2001). Four biological samples 

were amplified in triplicate for each run. Unfed mosquitoes represented the untreated samples 

and blood fed mosquitoes represented the treated samples. The mean Cq value for each was 

used in the following equation to determine the fold over-expression or relative expression 

ratio. 

 

Relative Expression Ratio  =  (Efficiency of target)∆Cq Target (treated – untreated) 

          (Efficiency of HKG)∆Cq HKG (treated – untreated)
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3.5 RESULTS 

 

Assessment of RNA Quality 

 

As part of the MIQE and MIAME guidelines, RNA integrity needs to be assessed to ensure 

that the results of any expression experiment are trustworthy.  Figures 3.1 and 3.2 below show 

total RNA extracted from FUMOZ-RH mosquitoes for use in standard curve preparation. All 

RNA samples used to generate the microarray data and real time analyses were run on either 

formaldehyde gels or Agilent RNA 6000 nano chips. The presence of a strong 18S RNA band 

and a weaker 28S band was observed for all RNA extracts. A RIN (RNA Integrity Number) 

value of > 6.0 was achieved for all the samples used in this study. 

 

 

Figure 3.1 Formaldehyde gel electrophoresis of RNA used to prepare standard curves for real-time quantitative 

PCR. Lanes 1-5: FUMOZ-RH Total RNA. Lane 6: Empty. Lane 7: RNA Molecular Weight marker. (1.3% 

agarose gel, Fermentas High Range RNA Ladder SM0423). 
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Figure 3.2 Agilent Bioanalyzer run of FUMOZ-RH RNA used to create cDNA for the standard curves used in 

the real-time quantitative PCR experiments. A: Typical FUMOZ-RH RNA profile. B: RNA ladder run in parallel 

to the RNA samples. 

 

Microarray analysis of the effect of a blood meal on detoxification gene expression in blood 

fed versus unfed An. gambiae  

 

Normalization of microarray data is necessary to ensure that differences in gene expression are 

due to true gene effects and not artifacts introduced by technological differences such as dye-

biases and print-tip efficiencies. Figure 3.3 depicts the variation in background fluorescence 

intensities for both the red and green channels after internal normalization for the An. gambiae 

GAH strain on each of the detox chips. These plots allow the slides to be analysed for extreme 

outliers in terms of fluorescence signals. A slide that has too many extreme outliers and a 

median that is greatly removed from the average can then be excluded from further analysis. 

The plots below show that although the overall background fluorescence for the green channel 

is more dispersed than that of the red channel, the slides included below can be analysed 

together. 
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Figure 3.3 Box and whisker plots depicting the log2 background fluorescence after internal normalization for the 

An. gambiae GAH microarrays. 

 

After normalizing the fluorescence between the slides, the differential expression of genes in 

response to a blood meal could be calculated using Bayes statistics. A volcano plot was 

generated (Figure 3.4A) highlighting the top 10 up and down regulated genes, after which the 
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results were filtered according to b-stat values to reveal those that had the highest probability 

of reflecting a true change in expression levels (Figure 3.4B). The top five down regulated 

genes belong to the monooxygenase P450 groups Cyp6 and Cyp9 and displayed log fold 

changes between 0.2 to 0.3 fold change in expression (Table 3.4). CYP9J5 was excluded from 

the analysis due to its b-statistic of 2.21, falling below the cutoff of 2.95, even though the p-

value <0.001 suggests significance. Four of the most up-regulated genes belong to the Delta-

class glutathione-S-transferases, each displaying at least a 2 fold increase in expression (Table 

3.4). However, GSTD1-3 had a b-statistic value of 1.96 which suggests only an 88% probably 

of being a true change in differential expression and was excluded from the analysis since it 

fell below the b-statistic cut-off. The fifth most up-regulated gene was found to be a 

glutaredoxin gene, GRX1. This glutaredoxin gene was only slightly upregulated with a final 

fold change of 1.76. 

 

Figure 3.4 Volcano plots for An. gambiae GAH on the detox chip (Cons corr: 0.69). A depicts all the genes from 

the analysis, with top 5 up- and down-regulated genes identified. B depicts the top 4 up- and down-regulated 

genes after filtering according to b-statistic values. Note: CYP9J5 and GSTD1-3 are filtered out due to their low 

b-statistic value. Up-regulated genes possess a log2 fold change greater than 1. Down regulated genes possess a 

log2 fold change less than 1. 
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Table 3.4 Top differentially expressed genes in An. gambiae GAH, in response to the presence of a blood meal. 

Genes highlighted in red fell just below the b-statistic cut off of 2.95 even though the P-value was significant.  

Gene Vector Base 

Gene ID 

Function Location Fold 

Change 

P-value b-statistic 

value 

Up-Regulated Genes 

GSTD1-5 AGAP004164 Glutathione S-Transferase 2R 2.71 1.55E-05 5.67 

GSTD3 AGAP004382 Glutathione S-Transferase 2R 2.50 1.83E-08 14.26 

GSTD1-3 AGAP004164 Glutathione S-Transferase 2R 2.21 3.06E-04 1.96 

GSTD2 AGAP004165 Glutathione S-Transferase 2R 2.07 3.30E-08 13.02 

GRX1 AGAP011107 Glutaredoxin 3L 1.76 2.83E-09 15.90 

Down-Regulated Genes 

CYP6P1 AGAP002868 Cytochrome P450 2R 0.31 2.78E-06 8.08 

CYP9J5 AGAP012296 Cytochrome P450 3L 0.30 3.42E-04 2.37 

CYP6Z2 AGAP008218 Cytochrome P450 3R 0.25 4.57E-11 20.28 

CYP6P3 AGAP002865 Cytochrome P450 2R 0.24 3.28E-15 30.24 

CYP9J4 AGAP012292 Cytochrome P450 3L 0.20 3.30E-08 13.25 
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Microarray analysis of the effect of a blood meal on detoxification gene expression in blood 

fed versus unfed An. funestus  

 

Figure 3.5 shows the distribution of the background fluorescence for the hybridisation of 

blood fed and unfed An. funestus onto the An. gambiae detox chip.  Similarly to Figure 3.3 

above, these plots allow the slides to be analysed for extreme outliers in terms of fluorescence 

signals. Again, the overall background fluorescence for the green channel is more dispersed 

than that of the red channel and in this experiment fewer slides could be included and analysed 

together due to greater levels of slide variation. 

 

After normalization the differential expression of genes in response to the presence of a blood 

meal could be calculated using Bayes statistics. The resulting volcano plot (Figure 3.6) depicts 

the five most up-regulated genes in response to a blood meal. Due to the large amount of 

variation between slides, the consensus correlation is low and a lower fold change (log2=0.5) 

has been used as a cut-off for significance. There are no significantly down regulated genes as 

can be seen by the absence of genes falling within the upper left hand quadrant of the volcano 

plot. 
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Figure 3.5 Box and whisker plots depicting the log2 background fluorescence after internal normalization for the 

An. funestus FUMOZ-RH microarrays. 
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Figure 3.6 Volcano plot for Anopheles funestus FUMOZ-RH on the detox chip (Cons corr: 0.53). All the genes 

from the analysis are depicted, with the top 5 up-regulated genes identified. Note: none of the genes fell within in 

the significantly down-regulated quadrant. Genes considered to be up-regulated possess a log2 fold change greater 

than 0.5. 

 

Table 3.5 lists the top five up-regulated genes. Tubulin B is the only gene that displays a 

significant increase in expression, with a doubling of expression levels in response to the 

blood meal. Two cytochrome P450 genes, a glutathione-S-transferase gene and a nitrilase are 

all marginally up-regulated with significant p-values and b-statistics >2.95. GSTD3 is the only 

gene that displays up-regulation in both the An. gambiae GAH and An. funestus FUMOZ-RH 

microarray experiments. 
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Table 3.5 Top differentially expressed genes in An. funestus FUMOZ-RH, in response to the presence of a blood 

meal. Vector Base Gene ID or *genBank ID, Function and Location for the An. gambiae gene probes found to be 

up-regulated. 

Gene Vector Base 

Gene ID 

Function Location Fold 

Change 

P-value b-statistic 

value 

Up-Regulated Genes 

Tubulin B AGAP010510 Tubulin - Structural 3L 2.20 3.04E-07 6.52 

NIT 8537 AGAP003515 Nitrilase 2R 1.70 3.47E-06 5.46 

CYP6AG2 *GB: AY745224 Cytochrome P450 2R 1.67 1.08E-09 8.97 

CYP6M3 AGAP008213 Cytochrome P450 3R 1.50 5.19E-08 7.28 

GSTD3 AGAP004382 Glutathione S-Transferase 2R 1.46 3.47E-06 5.46 

 

Reference Gene Assessments 

 

Eight different pairs of candidate reference genes were anaylsed in real-time for suitability as 

reference. Each pair was tested using cDNA from the blood fed and unfed An. funestus cohorts 

used in the microarray study. Figure 3.7 shows the amplification curves generated for seven of 

the eight candidate genes. RPL8 could not be included in the analysis as the primer pair 

targeting this gene yielded more than one amplification product, evidenced by double peaks in 

the melt curve analysis (see Appendix D). 

 

Visual inspection of the amplification curves in Figure 3.7 can help to confirm the suitability 

of the candidate genes. A suitable candidate gene, such as RPL19 and RPS7, should have 

equal amplification for the blood fed and unfed samples, since the starting concentration of 
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cDNA used is the same for all samples. Hence, the coloured amplification lines should 

overlap. Poor candidates are typified by separated amplification curves for each treatment 

type, as can be seen for the GAPDH, CO1 and FUN18S primer pairs. These three primer pairs 

display differential expression for the blood fed and unfed samples. 
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Figure 3.7 Amplification curves using An. funestus cDNA, to assess the suitability of the candidate reference 

genes. Red = blood fed samples, Blue = Unfed Samples.  
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Since visual inspection of amplification curves cannot be the sole discriminating factor for 

assessing candidate primer pairs, a box and whisker plot of the Cq (Cycle of quantitation) 

values was generated (Figure 3.8). This plot depicts the distribution of the Cqs for each primer 

pair enabling one to graphically assess the variation in expression levels. 
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Figure 3.8. Box and Whisker Plot showing the distribution of Cq values for each candidate reference gene. The 

central line through the boxes indicates the median, extended vertical bars represent the standard deviation of the 

mean derived from 8 individual samples run in duplicate.  * = an outlier for the ND5 group. 

 

The greatest variation in Cqs is displayed graphically for the FUN18S primer pair, where as in 

contrast, RPS7 shows the least dispersed Cqs. Although box and whisker plots are suitable for 

excluding the extremely poor candidate pairs, it is also necessary to use reference gene 

analysis tools to determine what the best combination of reference genes is. Three different 

analysis tools (geNorm, NormFinder and Bestkeeper) were used and compared. 
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The visual basic plugin, geNorm (Vandersompele et al., 2002), requires the user to enter 

relative starting quantities into the analysis tool (Figure 3.9A). In this screen shot, the first 

round of analysis has taken place and the two best candidate genes are highlighted in bold. 

The poorest candidate, FUN18S, has the highest M-value and is removed from the data set and 

the analysis repeated. Figure 3.9B is the last stage of the step-wise analysis of the candidate 

reference genes, showing that RPS7 and RPL19 are the two most suitable reference genes. The 

M-value is below 1.0, which is acceptable since the data entered into the algorithm was for a 

heterogenous sample set. 

 

Figure 3.9. Identification of candidate reference genes using geNorm. A represents all seven genes after the first 

cycle of analysis. Step-wise removal of the most unsuitable gene followed by re-analysis results in the two most 

suitable genes (B).  
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NormFinder (Andersen et al., 2004) is a unique program in that the user is able to analyse the 

expression of the candidate reference genes by using expression quantities combined with the 

power of choosing to use identifiers or not. Table 3.6 below is the result of the analysis in 

NormFinder without the use of identifiers. In this mode of analysis, the program suggests that 

RPL19 and RPS26 are the best candidate reference genes as they have the lowest stability 

values. 

 

Table 3.6 Identification of candidate reference genes using NormFinder without using identifiers. 

First Round Second Round 

Gene  

Stability 

value SE Gene  

Stability 

value SE 

RPS7 0.841 0.263 RPS7 0.907 0.290 

CO1 0.734 0.241 CO1 0.736 0.259 

RPL19 0.400 0.197 RPS26 0.417 0.234 

RPS26 0.407 0.198 ND5 0.852 0.279 

ND5 0.795 0.253 GAPDH 0.668 0.249 

GAPDH 0.738 0.242 FUN18S 1.458 0.409 

FUN18S 1.498 0.414    

 

The result of the NormFinder analysis, with the inclusion of identifiers, alters the outcome  of 

the analysis (Table 3.7). When identifiers are incorporated, the program suggests that the most 

suitable single reference gene to use is RPS26 and that the best combination of reference genes 

is RPL19 combined with GAPDH. 
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Table 3.7 Identification of candidate reference genes using NormFinder using sample identifiers. 

 

Gene Name         Stability Value 

 Intragroup Variation 

Group Identifier            Unfed               Blood Fed 

RPS7 0.830  RPS7 0.019 0.368 

CO1 0.613  CO1 0.680 0.734 

RPL19 0.468  RPL19 0.005 0.045 

RPS26 0.373  RPS26 0.128 0.432 

ND5 0.836  ND5 0.419 0.366 

GAPDH 0.729  GAPDH 0.248 0.823 

FUN18S 1.353  FUN18S 0.539 0.707 

Best combination of two genes RPL19 and GAPDH 

Stability value for best 

combination of two genes 

0.305 

 

Analysis of the reference genes in Bestkeeper (Pfaffl et al., 2004) requires the input of raw Cq 

values. The results of this analysis (Table 3.8) suggest that RPL19 is the most suitable 

reference gene, due to its low Power and p-value. The second and third best reference genes 

are RPS7 and ND5. This program does not however yield a result for the best two possible 

primers to be used in combination. 
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Table 3.8 Identification of candidate reference genes using Bestkeeper. 

  RPS7 

vs. 

BK 

CO1 

vs. 

BK 

RPL19 

vs. 

BK 

RPS26 

vs. 

BK 

ND5 

vs. 

BK 

GAPDH 

vs. 

BK 

FUN18S 

vs. 

BK 

  

  

p-value 0.628 0.017 0.053 0.031 0.428 0.043 0.002 

Power [x-fold] 1.07 2.34 1.36 1.67 1.22 2.11 5.46 

 

Optimization of Primers for GSTD3 

 

Since GSTD3 was the only gene up-regulated in both the An. gambiae and An. funestus 

microarray studies, it was targeted for analysis in real time qPCR. Primers were designed and 

tested on multiple strains of An. gambiae and the resulting fragments were sequenced in order 

to ensure specificity of the targeted region (Figure 3.10). Multiple strains of An. gambiae were 

used to cover any variation that may be due to locality or M/S status. All of the five An. 

gambiae strains tested yielded the same 603bp fragment which when sequenced confirmed 

that the primers were targeting the GSTD3 gene region. 

 

Figure 3.10 Genomic DNA extracted from An. gambiae specimens used to test the specificity of the GSTD3 For 

and Rev primer pair. The length of the amplicon will include the intron (69bp) and is expected to be 603bp in 

length. Lane 1: PCR –ve control. Lanes 2-6: BOA, COGS, JS3, NAG and SUA strains of An. gambiae. (2% TAE 

agarose gel, Fermentas 100bp O‟Range Ruler.) 
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The GSTD3 primers were then used to amplify potential GSTD3 orthologues in An. funestus 

genomic DNA extracts. Three different FUMOZ-RH individuals were used to test the primers, 

with varying annealing temperatures. Figure 3.11 shows the range of amplicons that resulted 

from the amplification using the GSTD3 primers. 

 

 

Figure 3.11 PCR products arising from a reaction using the GSTD3 For and Rev primer pair with three different 

FUMOZ-RH templates. (2% TAE agarose gel, Fermentas 100bp O‟Range Ruler.) 

 

Since the GSTD3 primers were yielding multiple fragments in An. funestus, all the amplicons 

were cloned for sequencing. Approximately 160 clones were screened and five clones from 

each representative fragment length were sequenced (Figure 3.12). The contigs generated from 

the sequencing run were analysed for sequence similarity against the GSTD3 microarray 

probe, at both the nucleotide and amino acid level (Table 3.9). Contigs 2_1609; 3_1609 and 
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3_0110 had the highest % nucleotide sequence similarity to the GSTD3 probe. These 

sequences however, when translated to amino acid sequence had low similarity to the probe. 

The highest level of amino acid sequence similarity achieved was 32.3%. 

 

The G3 primer pair, which was designed to target a smaller portion of the GSTD3 gene, failed 

to yield amplicons when applied to An. funestus. Attempts to optimize salt concentration and 

annealing temperature failed to result in amplification. 

 

 

Figure 3.12 An. funestus GSTD3 inserts cloned into pGem
®

-T Easy Vectors, depicting the range in size obtained. 

(2% TAE agarose gel, Fermentas 100bp O‟Range Ruler) Screened ~160 clones. 
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Table 3.9 Contigs resulting from the sequenced clones, aligned to the GSTD3 probe sequence from the An. 

gambiae detox chip. The three sequences that displayed the greatest sequences similarity have been highlighted 

in bold. 

Contig ID Contig Length % Nucleotide Sequence 

similarity  to the GSTD3 

probe sequence 

% Amino acid similarity 

to the translated GSTD3 

probe sequence 

Contig 1_1609 363bp 40.5% 26.9% 

Contig 2_1609 385bp 48.6% 25.0% 

Contig 3_1609 429bp 44.8% 27.3% 

Contig 4_1609 273bp 38.5% 32.1% 

Contig 5_1609 225bp 42.9% 32.3% 

Contig 6_1609 307bp 42.9% 24.7% 

Contig 7_1609 285bp 42.2% 30.6% 

Contig 1_2909 377bp 43.9% 28.6% 

Contig 2_2909 418bp 44.1% 21.3% 

Contig 1_0110 516bp 41.8% 28.6% 

Contig 2_0110 520bp 43.8% 14.8% 

Contig 3_0110 513bp 45.3% 16.9% 

Contig 4_0110 460bp 40.0% 22.4% 

  

Quantitative Real Time PCR for CYP6P9; CYP6P13 and CYP6Gen 

 

Real time qPCR analysis of two cytochrome P450 genes was carried out. Both CYP6P9 and 

CYP6P13 have previously been implicated in the pyrethroid based resistance in An. funestus 

FUMOZ-RH (Amenya et al., 2008; Wondji et al., 2009; Matambo et al., 2010). These genes, 
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when analysed in real time (Figures 3.13 and 3.14) to investigate the effect of the presence of 

a blood meal, showed slight yet significant up-regulation when compared to the unfed cohorts.  

 

CYP6P9 showed an induction of 5.08. ± 0.95 fold or 2.74 ± 0.70 fold when RPS7 and RPL19 

were used respectively as reference controls. CYP6P13 was induced 6.95 ± 0.78 fold and 5.91 

± 3.52 SD fold for the RPS7 and RPL19 controlled experiments respectively (Figure 3.15).  

 

The relative expression values for the target genes vary depending on the reference gene used 

in the analysis. This is due to differences in suitability of these genes themselves. RPS7 is the 

most suitable reference gene available for this study. However, since the MIQE guidelines 

(and many journals) require validation by more than one reference gene, RPL19 was included 

in the analysis. Visual inspection of the amplification curves for the RPS7 and RPL19 

reference genes (Figure 3.13 and 3.14) confirms that the variation in Cq observed for RPL19 is 

far greater than that of RPS7. One can thus expect a greater variation in the relative expression 

ratios that this reference gene delivers. 
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Figure 3.13 Amplification curves for CYP6P9, CYP6P13 and CYP6Gen. The Amplification curve for the 

reference gene RPS7 has been included for comparison. Red lines depict amplification curves for the blood fed 

samples, blue lines for the unfed samples. 

 

 

RPS7 CYP6P9 

   CYP6Gen CYP6P13 
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Figure 3.14 Amplification curves for CYP6P9, CYP6P13 and the general CYP6Gen. The Amplification curve for 

the reference gene RPL19 has been included for comparison. Red lines depict amplification curves for the blood 

fed samples, blue lines for the unfed samples. 
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Figure 3.15 Bar chart depicting the fold over expression for CYP6P9, CYP6P13 and CYP6Gen with both RPS7 

and RPL19 as reference genes. 
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The general CYP6 targeted primer pairs showed no significant change in expression levels, 

with a fold change of 1.48 ± 0.22 and 1.19 ± 0.35 for the RPS7 and RPL19 controlled 

experiments respectively (Figure 3.15). In order to better understand this result, an analysis of 

the potential gene targets of this general CYP6 primer pair was done for An. funestus (Figure 

3.16).  

 

The sequence similarity within the forward primer region between CYP6P9, CYP6P13 and 

CYP6P5 is very high, with only one base pair dissimilarity in the CYP6P5 sequence. The 

reverse primer region shows very high levels of similarity for all of the CYP6P4 sequences, 

CYP6P13 and CYP6P9, with only a single base dissimilarity between each of the sequences. 

The reverse primer regions of the CYP6P1 and CYP6P5 sequences have more than 3bp 

dissimilarity to the CYP6P9 primer region. 
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Figure 3.16 Alignment of multiple An. funestus CYP6 gene sequences that fall within the amplification region 

for the CYP6Gen primer pair. (Residues that match the An. funestus CYP6P9 sequence are shaded in yellow and 

hidden. Red box denotes forward primer region; blue box denotes reverse primer region.) 
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3.6 DISCUSSION 

 

Since the quality of the RNA (Vermeulen et al., 2011) used in gene transcription studies can 

affect the performance of both microarray analysis and real time qPCR, all of the RNA used in 

this study was assessed by formaldehyde gel electrophoresis and the microfluidics capillary 

system of the Agilent RNA 6000 Nano chips. In both methods the most prominent RNA 

fragment is the 18S rRNA. The 28S rRNA fragment is much reduced and at times absent 

altogether. In insects, the large 28S ribosomal subunit is made up of a combination of two 

smaller, 18S sized subunits (28Sα and 28Sβ linked by a weak hydrogen bond) and a smaller 

5.8S subunit (Figure 3.17). When heat is applied to insect RNA the hydrogen bond is 

irreversibly broken and the RNA appears to have a single 18S peak profile (Winnebeck et al., 

2010). Since the RIN values calculated by Agilent‟s 2100 expert software take into 

consideration the presence and surface area of the 28S RNA peak, the absence of this peak in 

insect RNA specimens will always have a negative impact on the resulting RIN values. 

Currently, the gold standard for RNA integrity analysis is the Agilent chip system. Thus, 

researchers need to be cognizant of the fact that the resulting RIN values for mosquito RNA 

samples are merely an indication of quality and cannot be used as an empirical analysis tool. 

With this in mind, a cutoff value of RIN = 6.0 was deemed acceptable for this study. 
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Figure 3.17. Assembly of the rRNA into ribosomal subunits in insects  (Winnebeck et al., 2010). Note that the 

28S α and β subunits are hydrogen bonded together to form the majority of the large ribosomal subunit. 

 

Microarray analysis of the effect of a blood meal on detoxification gene expression in An. 

gambiae highlighted potential gene targets for further investigation. The most up regulated 

genes were found to be four delta class GSTs and a glutaredoxin gene. The increase in 

glutaredoxin expression seen here has also been described in a blood meal experiment in An. 

gambiae by Felix et al (2010). The upregulation of GSTs in response to a blood meal has been 

described in a number of hematophagous arhtropods, including the sandfly Lutzomyia 

longipalpis (Jochim et al., 2008), the common hard-bodied tick Ixodes ricinus (Rudenko et al., 

2005) and An. gambiae (Dana et al., 2006). It has been suggested that GSTs may play an 

antioxidant role during blood meal digestion, sequestering free radicals, toxic free iron and 

other break down products that are released during the breakdown of blood proteins and 
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hemoglobin (Jochim et al., 2008). The down regulation of cytochrome P450s in response to 

the blood meal observed in this study is in agreement with a genome-wide microarray study in 

An. gambiae carried out by Marinotti et al (2005).  

 

Application of An. funestus cDNA to the An. gambiae detox chip has been optimized 

previously (Christian et al., 2011b). In this study, the detox chip was used as an investigative 

tool to identify possible targets involved in blood meal associated insecticide resistance. The 

most up-regulated genes were a nitrilase, two cytochrome P450s (CYP6AG2 and CYP6M3), 

the delta class glutathione S-transferase GSTD3 and tubulin. During blood feeding, a female 

mosquito can take up her own body weight in blood (Gwadz R, 1969). Changes in midgut 

structure need to take place in order to accommodate this increase in volume. Hence, structural 

genes like tubulin may exhibit increased levels of expression in response to the presence of the 

blood meal. The only gene that was identified as being up-regulated in both the An. gambiae 

and An. funestus microarrays was GSTD3. This gene has been shown to have variable 

expression levels following a blood meal in An. gambiae (Marinotti et al., 2005), with 

expression peaking at 3 hours post blood meal and declining thereafter. Since GSTD3 was 

highlighted by both species arrays, it served as a good target for quantitative real time PCR 

analysis. In addition, it has previously been established that CYP6P9 presents as one of the 

major effect genes for the production of pyrethroid resistance in FUMOZ-RH (Amenya et al., 

2008; Wondji et al., 2009; Matambo et al., 2010). CYP6P9 and its related genes were 

therefore included in the real time analysis even though the probe for CYP6P3 (the An. 
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gambiae orthologue to An. funestus CYP6P9) did not show any significant changes in 

expression levels in association with blood intake using microarrays.   

 

Prior to initiating real time qPCR analysis of the target genes, suitable reference genes needed 

to be identified. Analysis of candidate reference genes showed contradicting results between 

the different analysis tools used. An ideal reference gene could be described as having stable 

expression levels across all samples and treatments used within the experiment. Visual 

inspection of the amplification curves allows researchers to determine the initial spread of Cq 

values obtained for each gene, where the most suitable gene would display the smallest spread 

of Cqs (such as RPS7 and RPL19 in these experiments). A box and whisker plot of the Cq 

values removes bias from affecting the visual inspection of the amplification curves and from 

this analysis it was evident that RPS7; RPL19 and ND5 all held good potential as reference 

genes.  

 

geNorm is the only program that confirmed the visual inspection of the amplification curves, 

confirming suitability of RPS7 and RPL19 as reference genes. The Normfinder program gave 

very conflicting results. Initially, when analysing the data without the use of identifiers, the 

program identified RPL19 and RPS26 as the two best candidate reference genes. When 

repeating the analysis with the inclusion of identifiers, Normfinder suggested that GAPDH and 

RPL19 were the two most suitable genes to use. The GAPDH gene gave a spread of 

approximately 6 Cq values across the samples. According to the defining quality of a 

reference gene mentioned above, this range of Cq would be considered far too variable to be 
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acceptable. It was hence decided that the results of this analysis could not be taken into 

consideration when choosing the reference genes.  

 

Although the Bestkeeper program identified RPL19; RPS7 and ND5 as the three most suitable 

reference genes, the p-values for significance would exclude both ND5 and RPS7. Between all 

three programs the two candidate genes that were most commonly identified as potential 

reference genes were RPL19 and RPS7. Based on these results RPL19 and RPS7 were chosen 

as the reference genes for the real time qPCR experiments.  

 

Having identified suitable reference genes for the real time qPCR analysis it was then 

necessary to design and optimize primers targeted at the GSTD3 gene identified by microarray 

analysis. Two sets of primers were designed for this region. The GSTD3 primer pair was 

designed to fall just within the start and stop codons of the gene whereas the G3 primer pair 

was designed to span the intron, with the forward and reverse primers each falling within the 

coding exons of the gene. The primers were tested on An. gambiae genomic DNA and the 

resulting amplicons were sequenced thereby confirming specificity for the GSTD3 gene 

region.  

 

The GSTD3 specific primers were then applied to An. funestus DNA. The reaction failed to 

yield one specific amplicon, instead giving a „ladder‟ of amplicons for each reaction. Salt 

concentration in the PCR mix and annealing temperature in the cycling protocol were 

optimized. However, the number of products could not be reduced to a single amplicon. In 
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order to determine if any of the fragments were possibly the GSTD3 target, the fragments were 

cloned and sequenced. Analysis of sequence similarity to the GSTD3 probe sequence from the 

detox chip was done for both the nucleic acid and translated amino acid sequences.  The low 

level of similarity (48.6% at nucleic acid level; 32.1% at amino acid level) of the amplicons to 

the GSTD3 probe sequence suggests that these primer pairs are not specific enough to target 

GSTD3 in An. funestus. Gregory et al. (2011) showed that the percentage similarity for a small 

number of detoxification genes compared between An. funestus ESTs and orthologues from 

An. gambiae displayed high levels (>73%) of similarity at the amino acid level. This finding 

further suggests that the GSTD3 targeted primers used in this study are not specific enough for 

An. funestus. 

 

It is possible that due to the lowered levels of stringency of the microarrays for the An. 

funestus study, the signal achieved for the GSTD3 probe could be due to false, non-specific 

binding. Since the full genome of An. funestus has yet to be sequenced and annotated, it 

cannot be ruled out that the level of sequence variation between An. gambiae and An. funestus 

GSTs may be greater than first assumed. Even though the possibility of a false signal exists for 

the An. funestus study, the signal achieved in the An. gambiae study is likely to be a true 

reflection since the probe specificities and stringency of the experiment are far greater. The 

up-regulation of GSTD3 in response to a blood meal in the An. gambiae study lends credence 

to the microarray results for this gene in the An. funestus study. 
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Quantitative real time analysis of the CYP6P9 and CYP6P13 genes revealed slight, yet 

significantly elevated levels of expression in the blood fed cohorts of An. funestus. The 

CYP6Gen expression level remained unchanged in response to the blood meal. Since this 

primer pair may target multiple Cyp6 sequences, it is possible that any great increase in 

expression of a particular Cyp6 may have been masked by a significant down regulation of a 

different Cyp6. The CYP6Gen primer pair can only be used to gain a general overview of 

Cyp6 expression levels and its application is thus very limited. 

 

Since it is established that the CYP6P9 and CYP6P13 genes are already up-regulated in 

pyrethroid resistant An. funestus (Amenya et al., 2008; Matambo et al., 2010), further 

elevation after a blood meal could be expected to increase an individual‟s insecticide 

detoxification capability during subsequent exposure to insecticide. The concomitant increase 

in GST activity in association with blood feeding could play one of two roles. Firstly, GSTs 

have been shown to have antioxidant properties and function in response to oxidative stress. 

The presence of toxic free iron and other breakdown products released during blood meal 

digestion could induce oxidative stress pathways in the mosquito (Kumar et al., 2003). Since 

some GSTs have peroxidase activity (Vontas et al., 2001), an increase in their expression may 

alleviate the oxidative stress associated with the digestion of the blood meal. Secondly, GSTs 

have been tentatively associated with pyrethroid resistance owing to the sequestering of 

insecticide in a non-catalytic manner (Kostaropoulos et al., 2001). Sequestration is basically 

the process of binding insecticide for subsequent metabolic degradation and excretion before 

the insecticide is able to interact with its target.  
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GSTD3, which was upregulated in association with blood feeding in An. funestus and An. 

gambiae, may either function as an antioxidant or as an insecticide sequester, or perhaps both. 

Vontas et al. (2001) suggest that GSTs may assist with resistance to pyrethroids by alleviating 

the effects of oxidative stress induced by pyrethroid exposure. This is because the lethal effect 

of pyrethroid induced lipid peroxides may be abrogated by the activity of GSTs. 

 

3.7 CONCLUSION 

 

Acquiring and digesting a blood meal likely involves a suite of physiological adjustments in 

female mosquitoes. The ability of blood fed, pyrethroid resistant An. funestus to tolerate 

increased doses of insecticide has been phenotypically demonstrated previously (see chapter 

2). Here it is shown that the effect of a blood meal at the molecular level causes increased 

expression of the CYP6P9 and CYP6P13 detoxification genes. This increase in gene 

expression, albeit small, is postulated to enhance the detoxifying capability of those An. 

funestus females already carrying the resistance haplotype, enabling them to tolerate higher 

doses of pyrethroid insecticide than unfed females. Although the functional activity of GSTD3 

in the context of pyrethroid resistance is unknown, it is postulated that it may play a 

supportive role by alleviating the effects of oxidative stress in blood fed, pyrethroid exposed 

mosquitoes.    
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Contribution to publication: 

Belinda Spillings carried the CYP6P9 and CYP6P13 sequence analysis and design of the 

CYP6P9 primers for qPCR. The protocol used for the analysis of the CYP6P9 expression was 

also optimised.



 108 



 109 



 110 



 111 



 112 



 113 



 114 



 115 



 116 

 

          



 117 

 



 118 

CHAPTER 4 – ANOPHELES FUNESTUS-LIKE: THE DISCOVERY OF A 

NEW MEMBER SPECIES OF THE ANOPHELES FUNESTUS GROUP 

 
4.1 INTRODUCTION 

 

 

The Anopheles funestus group consists of nine African species (Gillies and De Meillon, 1968; 

Gillies and Coetzee, 1987; Harbach, 2004), five of which belong to the Funestus subgroup 

(Harbach, 2004; Garros et al., 2005). Phylogenetic analyses suggest that An. funestus, An. 

vaneedeni Gillies and Coetzee, An. parensis Gillies, An. aruni Sobti and An. confusus Evans & 

Leeson be grouped within the Funestus subgroup (Harbach, 2004; Garros et al. 2005). The 

remaining four members (An. rivulorum Leeson, An. brucei Service, An. fuscivenosus Leeson 

and the An. rivulorum-like species (Couhet et al. 2003)) have been placed in the Rivulorum 

subgroup.  

 

Although the adult stage of An. leesoni Evans is similar in morphology to the An. funestus 

subgroup members, it has very distinct eggs and larvae (Gillies and De Meillon, 1968). 

Cytogenetic (Green, 1982) and molecular (Garros et al., 2005) evidence suggest that this 

species is more closely related to the Asian An. minimus subgroup even though 

geographically, it is an African species. These findings have resulted in An. leesoni being 

removed from the An. funestus subgroup (Gillies and De Meillon, 1968; Gillies and Coetzee, 

1987) and placed as a member of the An. minimus subgroup (Harbach, 2004). 
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All of the members of the An. funestus subgroup are morphologically similar at the adult stage 

and accurate identification often requires the availability of material at multiple life stages 

(egg, larva or adult). Although they may be similar in morphology, their efficiencies as 

malaria vectors vary greatly. Due to its highly anthropophilic nature and its tendency to rest 

indoors, An. funestus s.s. is one of the most successful vectors of malaria in sub-Saharan 

Africa (Gillies and De Meillon, 1968). Anopheles rivulorum has only once been implicated in 

malaria transmission in Tanzania (Wilkes et al., 1996) but this species generally elects to 

blood feed on domestic animals rather than humans. The remaining members of the An. 

funestus group have never been shown to be malaria vectors in nature (Gillies and De Meillon, 

1968; Gillies and Coetzee, 1987), although An. vaneedeni has been infected experimentally in 

the laboratory (De Meillon et al., 1977). 

 

Owing to differences in vector capacity, biting and resting behaviours as well as the very close 

morphological similarity of the members of the An. funestus group, accurate identification of 

field caught material is critical for vector control programmes. Early identification methods 

relied solely on morphological characters which detailed minor differences between the 

members of the group (Evans and Symes, 1937; Evans, 1938; De Meillon 1947; Gillies and de 

Meillon 1968; Gillies and Coetzee 1987). This process of identification relied on the 

availability of multiple life stages and required a high level of expertise. A further drawback of 

this method of identification is that the morphological characters used for the species 

identifications overlap between species. 
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The success of using polytene chromosome morphology and banding sequences from fourth 

instar larvae and adult females to distinguish between members of the Anopheles gambiae 

complex was a remarkable advance in determining the specific status of sibling species 

(Coluzzi and Sabatini, 1967). Green and Hunt (1980) demonstrated that such cytogenetic 

analysis can also be used to distinguish An. parensis from An. funestus. However, An. 

vaneedeni (formerly An. aruni?) has homosequential chromosomal banding patterns with An. 

funestus. Cross mating studies between An. vaneedeni and An. funestus produced sterile male 

hybrids and asynapsis in hybrid polytene chromosomes (Green and Hunt, 1980), thereby 

confirming the specific status of An. vaneedeni which lead to it being formally named by 

Gillies and Coetzee (1987). Green (1982) published chromosome maps for three more 

members of the An. funestus group: An. rivulorum, An. leesoni and An. fuscivenosus.  More 

recent cytogenetic studies of West African An. funestus have shown evidence of genetic 

differentiation within populations, suggesting that this taxon may consist of a complex of 

cryptic species (Lochouarn et al., 1998; Costantini et al., 1999; Michel et al, 2005; Guelbeogo 

et al, 2005). 

 

Although cytogenetic maps have been published for most of the members of the An. funestus 

group (Green, 1982), this method of species identification requires considerable skill in order 

to interpret variation in the banding patterns on the chromosomes. Furthermore, polytene 

chromosomes are only found in specific mosquito tissues such as larval malpighian tubules 

and salivary glands or in the ovarian nurse cells of adult half gravid females. The need for 

simpler identification methods drove the development of molecular based approaches. One of 
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the first molecular techniques was a PCR-RFLP method designed to distinguish between An. 

funestus and An. vaneedeni (Koekemoer et al., 1998). Although this method was successful, it 

only targeted two members of the Funestus subgroup. Shortly after this, a PCR-SSCP method 

was developed that could distinguish four of the member species (Koekemoer et al., 1999). In 

2002 the development of a multiplex PCR assay targeting the variable ITS2 regions allowed 

for the identification of the five most prevalent species in the An. funestus group (Koekemoer 

et al., 2002). There is no doubt that the relative simplicity of these DNA based assays has 

resulted in the rapid development of our knowledge of the An. funestus group and has aided in 

the discovery of new species within this group. 

 

Recent discoveries of cryptic and incipient species have been aided by the development of 

molecular tools, specifically ITS2 sequence analyses. Hackett et al. (2000) utilised ITS2 

sequence divergence to reveal differences between the southeastern African An. rivulorum 

populations from those that occur in West and Central Africa. Failure of the species-specific 

multiplex PCR (Koekemoer et al., 2002) to detect An. rivulorum from Cameroon (Couhet et 

al., 2003) led to investigations into this population of mosquitoes.  The levels of sequence 

variation between the An. rivulorum populations are significant and suggest that the West 

African population is a new species (Couhet et al., 2003) that has been provisionally named 

An. rivulorum-like.  

 

Although thousands of new plant and animal species are described annually worldwide, the 

description of new species within the genus Anopheles is extremely rare. Intense attention has 
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been paid to this group due to its importance in malaria transmission. This chapter will 

describe the discovery of yet another new species of anopheline, closely related to the 

Funestus subgroup.  

 

4.2 RATIONALE 

 

It is shown in Chapter 2 that an increase in pyrethroid resistance, in a strain of An. funestus 

exhibiting a resistance phenotype, can be linked to the presence of a blood meal. It has further 

been shown that the presence of a blood meal exerts an effect at the transcriptional level 

within these mosquitoes, causing a small but significant elevation in CYP6P9 and CYP6P13 

transcription. 

 

Since the effects described above have been studied in laboratory reared strains of 

anophelines, it was decided to determine whether this phenomenon was seen in the progeny of 

wild caught An. funestus specimens. Although this objective was not completed owing to 

difficulties in identifying the wild-caught specimens, it remains as a future project. This 

chapter details the discovery of a new species of anopheline, belonging to the Funestus 

subgroup. 
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4.3 AIMS AND OBJECTIVES 

 

The initial aim of this study was to investigate the effects of blood feeding on insecticide 

tolerance using the progeny of wild caught An. funestus. This necessitated the collection of 

wild An. funestus specimens and their transport to the NICD laboratories for analysis. 

However, the field material could not be identified as An. funestus sensu stricto resulting in 

the following aims: 

 To identify the field caught An. funestus group specimens 

 To investigate nucleotide sequence similarity/divergence in the wild caught 

specimens compared to An. funestus laboratory colony material  

 To assess the possibility that the material collected may be a new species of 

anopheline, closely related to An. funestus 

 

4.4 MATERIALS AND METHODS 

 

4.4.1 Study site and collection method. Field collections of anopheline mosquitoes were 

conducted in the rural villages of Karonga, in the Northern District of Malawi (S 10° 18.627'  

E 34° 07.901'), (Figure 4.1). The villages are all in close proximity to the shores of Lake 

Malawi, where the predominant activities are fishing and maize cultivation. Rice paddies were 

also visible from the main road in the area surrounding Karonga (Figure 4.2A).  

Malawi has seasonal rainfall, starting November and ending in April. Mosquito collections 

were carried out in December 2007. It was hoped that the rainy season would have started 
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prior to our arrival. However, Malawi experienced late rains during this period. The conditions 

were very arid and hot (Figure 4.2B). 

 

                    
Figure 4.1. The field collections in northern Malawi were carried out in the villages surrounding Karonga - 

marked by *. 

 

 

Successful catches were predominantly daytime, indoor resting catches with the exception of 

samples that were collected from abandoned tyres placed at the entrance to a reed hut (Figure 

4.3). All adults collected were identified using the morphological keys of Gillies and De 

Meillon (1968) and Gillies and Coetzee (1987). Anopheles funestus group males were dry-

preserved on silica gel and the females transported live, with access to 10% sucrose solution, 

to the insectaries of the Vector Control Reference Unit, NICD, (Johannesburg, South Africa). 
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Figure 4.2. A. Dry rice paddies alongside the main road leading into Karonga town from the South. B. Karonga 

homestead area, approximately 20km South of the town, December 2007. 

 

 
 

Figure 4.3. A successful collection point at a reed hut. Abandoned tyres were stacked at the entrance and proved 

to be very productive. 

 

4.4.2 Laboratory rearing of wild caught specimens. A total of 63 females morphologically 

identified as belonging to the An. funestus group were placed in glass vials for egg laying. The 

females were offered a blood meal every alternate day. When not being fed they had constant 

access to 10% sucrose. Egg morphology confirmed the samples belonged to the Funestus 

subgroup (Gillies and De Meillon, 1968). Isofemale lines from each egg batch were reared to 

A                          B 
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adulthood and used for molecular identifications, WHO susceptibility assays and cross-mating 

experiments. Females that survived egg laying were offered another blood meal and at the half 

gravid stage their ovaries were dissected for cytogenetic analysis of their polytene 

chromosomes.   

 

4.4.3 WHO Susceptibility assays. A mix of F1 progeny from the isofemale lines were used to 

determine the presence of insecticide resistance using the standard World Health Organization 

(WHO) Bioassay test. Briefly, approximately 20 to 25 adults (2-3 days old, mixed sex) were 

placed in holding tubes and allowed to rest for one hour. After this the adults were blown 

through to an exposure tube containing an insecticide treated paper. Adults were exposed for 

one hour, after which they were blown through to the holding tube. The adults were allowed to 

rest for 24 hours with access to 10% sugar solution. The percentage mortality was scored for 

each insecticide tested: 0.75% permethrin; 4% DDT; 5% malathion and 0.1% bendiocarb. 

Each exposure was run in parallel with an unexposed control.   

 

4.4.4 Species identification of field material. One specimen from each isofemale line was 

sacrificed and DNA was extracted (see Appendix E for full protocol) using the salt 

precipitation method of Collins et al. (1987). The multiplex PCR for the identification of An. 

funestus, An. rivulorum, An. vaneedeni, An. parensis and An. leesoni (Koekemoer et al., 2002) 

was performed on all the DNA samples. A negative extraction control, a no DNA-template 

control and two positive controls were included in the PCR. The positive controls were An. 

funestus from colony material and An. leesoni from a previous field collection. Each of the 

samples was tested 2 to 3 times to ensure accuracy of the PCR identification.  
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4.4.5 ITS1, ITS2 and D3 Sequencing for unidentified Malawi samples. From four of the 

unidentified Malawian specimens (MalaF) and an An. funestus s.s. control, a partial region of 

the ITS2 gene was amplified. The primers used were: ITS2A (5‟- TGT GAA CTG CAG GAC 

ACA T- 3‟) and ITS2B (5‟ -TAT GCT TAA ATT CAG GGG GT- 3‟) (Koekemoer et al., 

2002). The PCR reaction was carried out in a volume of 25-µL and was adapted from Hackett 

et al. (2000). The reaction contained: 50pmol of each primer, 1.5mM MgCl2, 200µM of each 

dNTP, 1.25 units of Taq DNA polymerase and 1µl of extracted DNA. Both annealing 

temperature and MgCl2 gradients were attempted in an effort to reduce the non-specific 

amplicon, which ultimately could not be completely eliminated. The thermal cycling 

conditions are detailed in Table 4.1 below. The resulting PCR products were electrophoresed 

on a 1.8% low melting temperature Tris-acetate-EDTA (TAE) agarose gel stained with 

ethidium bromide (0.3 µg.ml
-1

). 

 

The ~850bp fragment from each sample was excised from the gel and cleaned using the 

Qiaquick
® 

Gel Extraction kit (Qiagen; Valencia, CA cat 28704). Direct sequencing was 

carried out by Inqaba Biotechnical Industries (Pretoria, South Africa), using both the ITS2A 

and ITS2B primers. Sequence alignment and analysis was carried out using DNASTAR
®
 

(Lasergene version 6; Wisconsin, USA). Sequence comparisons were carried out by creating a 

consensus sequence for the four MalaF samples and aligning it to the An. funestus s.s. control 

sequence. 
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Table 4.1. Thermal cycling conditions for the ITS2, D3, Untargeted An. funestus group and ITS1 PCRs. 

ITS2 PCR: 

Initial Denaturation 94°C 2 minutes 

Cycle 40x 94°C 30 seconds 

50°C 30 seconds 

72°C 40 seconds 

Final Extension 72°C 10 minutes 

 
D3 PCR: 

Initial Denaturation 94°C 3 minutes 

Cycle 30x 94°C 30 seconds 

63°C 40 seconds 

72°C 40 seconds 

Final Extension 72°C 10 minutes 

 
Un-targeted An. funestus group PCR: 

Initial Denaturation 94°C 2 minutes 

Cycle 35x 94°C 30 seconds 

45°C 30 seconds 

72°C 30 seconds 

Final Extension 72°C 10 minutes 

 
ITS1 Touchdown PCR: 

Initial Denaturation 94°C 2 minutes 

Touch Down Cycles:  

Cycle 20x 

-1°C every 2 cycles 

94°C 30 seconds 

65°C - 55°C 30 seconds 

72°C 40 seconds 

Cycle 15x 94°C 30 seconds 

55°C 30 seconds 

72°C 40 seconds 

Final Extension 72°C 10 minutes 
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The same four MalaF samples used above were used for the Domain 3 (D3) sequence analysis. 

The primers D3A (5‟ - GAC CCG TCT TGA AAC ACG GA - 3‟) and D3B (5‟ – TCG GAA 

GGA ACC AGC TAC TA – 3‟) (Koekemoer et al., 1999) were used to amplify a region 

approximately 400bp in length. The 25 μL reaction contained:  25 pmol of each primer, 1.5 

mM MgCl2, 200 μM each dNTP, 2 units of Taq DNA polymerase and 1μl DNA. The thermal 

cycling conditions are detailed in table 3.1 above. In an attempt to minimise non-specific 

amplification, a temperature gradient between 40 to 63°C for the annealing temperature was 

carried out. The non-specific product could not be reduced completely and hence a final 

annealing temperature of 63°C was used for subsequent PCRs. All the D3 amplicons were 

electrophoresed and sequenced as for the ITS2 amplicons. Sequencing was carried out for both 

strands, using the D3A and D3B primers. Sequence alignment and analysis was carried out 

using DNASTAR
®
 (Lasergene v6; Wisconsin, USA). A consensus sequence was created for 

the four MalaF samples and this was then aligned to the An. funestus s.s. control sequence for 

sequence analysis. 

 

Amplification of the ITS1 region was attempted using the following primers: 18SFor (5‟ – 

CCT TTG TAC ACA CCG CCC GT – 3‟) and 5.8sRev (5‟ – CAT GTG TCC TGC AGT TCA 

CA – 3‟) adapted from Sharpe et al. (2000). The 25 μL reaction contained:  25 pmol of each 

primer, 250 μM each dNTP, 0.5 units of Taq DNA polymerase and 1μl DNA.   Optimizations 

of the annealing temperature using a temperature gradient (40˚C to 55˚C) and salt 

concentrations (1.5mM to 3mM) were carried out. In an effort to reduce the number of non-
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specific products, touchdown PCRs in combination with varying salt concentrations were 

attempted. The cycling conditions for the touchdown PCR are detailed in Table 4.1.  

 

4.4.6 Design and application of the MalaF specific PCR primer.  Primer annealing sites, 

specific to the MalaF samples, were identified within the ITS2 gene region. MalaF specific 

primers were designed to yield an amplicon with a different size to the amplicon yielded for 

An. funestus s.s. in the species-specific PCR of Koekemoer et al. (2002). These primers were 

designed manually and analysed for melting temperature, GC content, self-complementarity 

and 3' stability using the primer check function in Primer3Plus (Untergasser et al., 2007). The 

two potential primers (MalaFA: 5‟ – CCT GCG TCC CAA GGT T- 3‟; MalaFB: (5‟ –GTT 

TTC AAT TGA ATT CAC CAT T- 3‟) were individually tested for their efficiency in the 

species-specific PCR for the identification of An. funestus group members. Each of the newly 

designed primers was included in the reaction mixture and the products run on a 3% Tris-

Borate-EDTA (TBE) agarose gel stained with ethidium bromide (0.3 µg.ml
-1

). All 61 of the 

unidentifiable An. funestus-like samples were then tested with the MalaFB primer. 

 

Samples that failed to amplify with the new MalaFB primer were confirmed for the presence 

of nucleic acids using a Nanodrop spectrophotometer (Appendix F; NanoDrop Technologies 

Inc., Wilmington, DE). These samples were then subjected to an in-house PCR to detect the 

presence of DNA. This PCR was designed to detect members of the An. funestus group, but 

not to identify them to species level. The primers used were: UF (5‟ - TGT GAA CTG CAG 

GAC ACA T -3‟) and LRev (5‟ – CCA AGC ACG TTG ATC CAG TAT TAC - 3‟) 
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(Koekemoer et al., 2008). The 25-μl PCR reaction mixture contained:  6.6pmol of each 

primer, 1.5mM MgCl2, 200μM each dNTP, 1 unit of Taq DNA polymerase and 1μl DNA. The 

cycling conditions are listed in Table 4.1 and the PCR is referred to as the Un-targeted An. 

funestus group PCR. The resulting amplicons were electrophoresed on a 2.5% TAE gel stained 

with ethidium bromide (0.3 µg.ml
-1

). The presence of a ~440bp fragment confirmed the 

presence of DNA for these samples. 

 

4.4.7 ITS2 Secondary Sequence Structure.  The ITS2 secondary structure of the MalaF 

specimens and Anopheles funestus group species were generated using the mfold program 

(Zuker et al., 2003). This program can be run through the UNAfold web server 

(http://mfold.rna.albany.edu/) or downloaded and run directly on a Linux platform. Mfold 

calculates the free energies for the predicted RNA structures (Mathews et al., 1999) which 

allows for comparisons between species. Initially, all sequences are trimmed to the same start 

codon as this could affect the folding of the structure. Sequences were entered individually 

into the program and with default constraints as the settings for analysis. The best structure, 

with the lowest deltaG, was chosen and used for comparison between species. 

 

4.4.8 Cytogenetics, cross-mating studies and ELISA for sporozoite detection:  

The cytogenetics and cross-mating experiments were carried out by Professor Hunt and Dr 

Brooke respectively. Hybrid status of the F1 progeny was tested using the An. funestus 

specific and the universal forward primer of Koekemoer et al. (2002) in combination with the 

MalaFB primer designed above. ELISA (Wirtz et al.,1987) was kindly carried out by Mr 

Vezegneho. Details of the methodology used are outlined in Spillings et al. (2009). 
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4.5 RESULTS 

Species Identification and WHO Bioassays 

The multiplex PCR assay (Koekemoer et al., 2002) for the identification members of the 

Anopheles funestus group was used to molecularly identify the wild caught specimens. Of the 

63 females that were brought back to the laboratory, only two could be positively identified. 

They were found to be An. rivulorum. The remaining samples failed to amplify even though 

the PCR was repeated 2 to 3 times (Figure 4.4), hence sequence analysis was carried out.   

Samples of F1 males and females from 17 of the isolines were pooled together and used for 

the WHO susceptibility assays. All of the F1 adults were found to be fully susceptible to the 

four insecticides tested (Table 4.2).   

 

 
 

Figure 4.4. PCR identification of the Malawi field samples using the multiplex PCR assay of Koekemoer et al. 

(2002). Control 1, no DNA template; Control 2, negative extraction control; Control 3, An. funestus positive 

control, Control 4, An. leesoni positive control. 
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Table 4.2. Insecticide susceptibility status of the F1 adults (males and females) of the wild caught An. funestus–

like adults.  Positive controls of insecticide susceptible An. funestus exhibited 100% mortality on all the 

insecticide papers.  Negative controls of the F1 adults showed 100% survival on untreated papers. 

Insecticide n ♀ : ♂ % Mortality 

0.75% Permethrin 132 69 : 63 100% 

4% DDT 105 57 : 48 100% 

5% Malathion 131 66 : 65 100% 

0.1% Bendiocarb 101 60 : 41 100% 

  

 

 

Sequence Analysis 

The ITS2 and D3 gene regions of four Malawian specimens were amplified and sequenced. 

Both the ITS2 and D3 PCRs were optimised to reduce the non-specific amplification. However 

small non-specific bands could not be eliminated (Figure 4.5A). Gel extraction was necessary 

to prepare the targets for sequencing to ensure that only a single fragment was sequenced 

(Figure 4.5B). The ITS1 amplification was unsuccessful as the number of non-specific 

products could not be reduced to an acceptable level (Figure 4.5C). Attempts were made to gel 

extract specific bands for sequencing, however background contamination from the non-

specific bands was always present.  

 



 134 

 
 
Figure 4.5. A. ITS2 PCR of MalaF specimens with An. funestus and An. rivulorum as positive controls, prior to 

gel extraction. Non-specific amplification can be seen, with these bands being approximately half the length of 

the target ITS2 fragments. B. D3 PCR amplicons of MalaF specimens, with An. funestus as a positive control, 

after gel extraction. C. ITS1 Touchdown PCR using An. funestus genomic DNA and 1.5 mM MgCl2. The 

combined lanes 1, 3 and 5 contain PCR products obtained from amplifications using different specimens of An. 

funestus. Non-specific amplification could not be reduced further than what is seen above. 

 

 

Sequencing of the 740bp ITS2 gene regions of the MalaF specimens and the standard An. 

funestus colony allowed for comparison between the two sequences (Figure 4.6). Across the 

740bp fragment, the MalaF specimens varied by 4.5% (33/740bp). These changes include a 3 

bp insertion; a 4 bp deletion; 10 transitions and 16 transversions. It was also noted that the An. 

funestus specific primer binding region on the MalaF sequence had three deletions and a T to 

C transition.     

 

Two MalaF specific primers were designed to anneal to the most variable regions in the MalaF 

ITS2 sequence (Figure 4.6). These primers (MalaFA and MalaFB) were each tested on 
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extracted MalaF DNA in order to assess their suitability as a species specific primer. The 

MalaFA primer was inconsistent and did not always result in an amplicon even though the 

same MalaF template DNA was used. The second primer, MalaFB, displayed consistent 

amplification on the same, as well as different, MalaF template DNAs. The inclusion of the 

MalaFB primer into the An. funestus group identification cocktail (Koekemoer et al., 2002) 

resulted in good amplicon yield, with a product of 390 basepairs (Figure 4.7A). All of the 61 

unidentifiable specimens were tested using the MalaFB primer and amplicons were obtained 

for 54 (88.5%) of the samples. The remaining seven specimens failed to amplify even after 

repeated PCR attempts. The presence of DNA in these samples was confirmed 

spectrophotomically (Appendix F) using a NanoDrop (NanoDrop Technologies Inc., 

Wilmington, DE) as well as by PCR using the untargeted An. funestus group primers (Figure 

4.7B). 
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Figure 4.6. Alignment of the ITS2 region in Anopheles funestus and the Malawian specimens. (•) indicates similar base pairs, (-) indicates deletions. 
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A 300bp portion of the D3 region was sequenced and analysed for both the standard An. 

funestus colony and the MalaF specimens. Alignment of the sequences revealed a 1.5% 

change (5/300bp) which consisted of a 2bp deletion, 2 base transversions and a base transition 

(Figure 4.8).  

 

 

 
 
Figure 4.7. A. MalaFB primer included in the PCR cocktail mix for An. funestus group identifications. Lanes 1-

3:  Positive Controls An. vaneedeni, An. funestus and An. rivulorum respectively; Lane 4: MalaF sample; Lanes 

5-6: Positive Controls An. parensis and An. leesoni respectively; Lane 7: PCR Negative Control. B. Lanes 1-7: 

Seven MalaF specimens that failed to amplify using the MalaFB primer, amplified here with the untargeted An. 

funestus group primers. Lanes 8-9: Positive Controls. Lane 10: No DNA PCR control. 

 

 

 
Figure 4.8. Sequence alignment of the partial D3 region of the unidentifiable Malawian (MalaF) samples (133 

basepairs) and Anopheles funestus (135 basepairs). Blocks highlight sequence variation. − indicates deletions. 

The forward D3A primer binds approximately 90 basepairs upstream from the start of this sequence 
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The secondary structure of the ITS2 regions was analysed using the freeware program, mFold 

(Zucker, 2003). The sequences for the MalaF specimens as well as An. funestus group 

members were folded in their respective RNA formats (Figure 4.9). It is clear from the 

predicted structures that the ITS2 fragments from each of the An. funestus group members 

folds with a distinct pattern. The MalaF samples fold similarly to An. funestus although a fair 

amount of structural change can be seen.  The same can be seen for the structures created for 

the An. rivulorum and An. rivulorum-like sequences.  

 

Lastly, in order to test specific status of the MalaF specimens, species crossing experiments 

were carried out between F1 MalaF specimens and a laboratory reared strain of An. funestus. 

The resulting hybrids were scored for asynapsis between homologous chromosomes and the 

testes were dissected to score hybrid infertility. Detailed results of this work are published in 

Spillings et al. (2009). Briefly, the hybrid polytene chromosomes (MalaF ♀ X An. funestus ♂) 

displayed consistent asynapsis whilst the testes in hybrid males appeared normal. The 

reciprocal cross produced a large number of eggs with an extremely low hatch rate of 0.2%. 

The two eggs that did hatch yielded two females that died prior to taking a blood meal.  
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Figure 4.9. Predicted ITS2 secondary structures for members of the An. funestus group. Structures highlighted in 

red are conserved structures within a species from two different localities. Structures highlighted in blue show the 

areas which vary from the conserved structure.   
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The hybrid status of the progeny resulting from the crossing experiments was tested using the 

An. funestus species identification PCR with the MalaFB primer included in the PCR master 

mix. All the hybrids gave fragments for both the An. funestus and MalaF species (Figure 4.10) 

irrespective of hybrid gender, thereby confirming their hybrid status. 

 

 
 

Figure 4.10. PCR confirmation of hybrid status. Control 1: no DNA PCR Control; Control 2: MalaF Positive 

Control; Control 3: An. funestus Positive Control. 

 

 

4.6 DISCUSSION 

 

Malawi‟s malaria control and prevention programme relies heavily on the use of insecticide 

treated bednets (ITN) to prevent the transmission of malaria (www.cdc.gov/Malaria/control-

prevention/malawi.htm).  In Karonga, bed-nets were often seen hanging in the traditional 

houses. Most of the household owners claimed that their bednets had never been retreated with 

insecticide. It is thought that this may be due the fact the bednet owner‟s bear the costs of 

retreatment since it is not provided for by the control programme.  This locality has not been 

targeted for indoor residual spraying and farming is limited to a subsistence/feudal system, 

where few insecticides are used. The predominant malaria vector species in Malawi are An. 

gambiae, An. arabiensis and An. funestus (Spiers et al., 2002; Hunt et al., 2010). Based on 
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this, collections were carried out in Karonga, northern Malawi in December 2007. The 

mosquitoes caught during this field trip were identified as belonging to the Funestus subgroup, 

based on the adult, larval and egg morphology (Gillies and De Meillon, 1968). The sensitivity 

of the F1 progeny of these Malawian specimens to all classes of insecticide is not surprising 

since the use of insecticides in this locality appears to be limited. 

 

Repeated attempts to identify these mosquitoes to species level using the multiplex PCR of 

Koekemoer et al. (2002) failed for 61/63 of the specimens. Previously, in August 2007, a 

collection carried out in the same locality exhibited an identification failure rate of 80%. 

Initially it was suspected that the DNA in these specimens may have degraded thereby 

resulting in the high failure rate observed. However, the specimens used for the PCR 

identification in this study, were freshly euthanized F1 progeny and DNA extraction controls 

were used in all experimental procedures. The failure to amplify the species targets for these 

specimens could not be explained by DNA degradation and thus the ITS1, ITS2 and D3 

regions were investigated.  

 

The reasons for investigating the ITS2 region were two fold. Firstly, the species identification 

PCR used in this study targets the variable regions in the ITS2 gene. Secondly, ITS2 tends to 

be less functionally restricted than other barcoding type genes. The nucleotide sequence of the 

ITS2 region may be free to evolve more rapidly whilst managing to conserve structural 

functionality (Müller T et al., 2007). Mutations could thus accumulate relatively quickly over 
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an evolutionarily short period of time. This suggests that the ITS2 region may potentially be a 

good indicator of early genetic discontinuity between organisms (Coleman, 2009).  

 

Sequencing of the ITS2 region for the Malawian specimens showed the presence of a base pair 

deletion and a T to C transition within in the region of the An. funestus specific primer binding 

site. These alterations resulted in the species-specific primer being unable to anneal and hence 

caused the failed amplification reactions. A similar failure of annealing in the species 

multiplex PCR was observed by Couhet et al. (2003) during the discovery of An. rivulorum-

like in Cameroon.  

 

Further sequence analysis of the Malawian ITS2 region showed a high level of sequence 

variation (4.5%) when compared to the An. funestus control. In the An. gambiae complex the 

levels of inter-specific divergence in this region can range from lows of 0.4% to 1.6% 

(Paskewitz et al., 1993). The sequence divergence between An. rivulorum in eastern and 

southern Africa and An. rivulorum-like in west and central Africa was found to be 19% 

(Hackett et al., 2000). 

 

Analysis of the D3 sequence of the Malawian specimens showed 1.5% variation in 

comparison to the An. funestus control. This low level of variation is significant since 

differences as small as 2-3 basepairs within D3 have been used to differentiate the members of 

the An. fluviatilis complex (Singh et al., 2004). A small difference of 5 substitutions has been 

observed for this region in An. mimimus species A and C (Sharpe et al., 2000). Combined, the 
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levels of sequence variation seen in both the ITS2 and D3 regions in the Malawian specimens 

confirm, at the molecular level, the results obtained from the cytogenetics indicating that these 

specimens are genetically distinct from An. funestus.  

 

The ITS2 secondary structure for the Malawian specimens shows close similarity to the An. 

funestus structure. This level of similarity is echoed in the structures derived for An. rivulorum 

and An. rivulorum-like. It was not the purpose of this research to develop a primary ITS2 

structure for the An. funestus group. However, the structures do have regions of similarity 

between the species. Further work on this region would enable one to generate a primary 

sequence where compensatory base changes (CBCs) could then be identified for each species. 

Since almost all eukaryotic ITS2 structures have a typical four helix shape (Coleman, 2003), 

the presence and positioning of CBCs can help to elucidate evolutionary pathways as well as 

assist in predicting sexual compatibilities within and between clades and groups (Coleman, 

2009). 

 

In order to be able to identify these Malawian specimens, a PCR primer was designed that was 

specific to their ITS2 region. Although two potential primers were tested for suitability, the 

most suitable primer (MalaFB) yielded an amplicon of approximately 390 basepairs in length. 

Unfortunately this amplicon is too close in size to that of An. rivulorum (~411bp) to be 

incorporated in the multiplex PCR mix, as seen by the species product “ladder” created in 

Figure 4.8A. Koekemoer et al. (2002) based the design of their multiplex PCR on the basis 

that the optimal difference in amplicon size for easy visualisation on an agarose gel is 
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approximately 50 basepairs. The amplicon derived from the Malawian specimens is only 21 

basepairs shorter than the An. rivulorum amplicon. This small difference in length increases 

the risk of misidentifications especially when separation between the amplicons is not fully 

achieved. Factors such as agarose concentration and the length of time spent electrophoresing 

the amplicons will affect the success of the electrophoretic separation.  With this in mind, the 

MalaFB primer does however allow for the identification of unidentified specimens where the 

initial multiplex PCR has failed. The MalaFB has been tested on the 24 specimens that failed 

to amplify in the collections of August 2007 (data not shown) and a high rate of amplification 

was achieved. We will continue to test this primer on field-caught specimens from other 

regions that fail to amplify using the An. funestus multiplex PCR assay of Koekemoer et al. 

(2002). The seven samples from this study that failed to amplify using both the multiplex PCR 

assay and the MalaFB primer were confirmed for DNA integrity through the success of the in-

house Funestus subgroup PCR. Thus, DNA degradation could not be the cause of the failed 

amplifications and further molecular analyses are necessary for these specimens. 

 

Before molecular tools became available for distinguishing morphologically similar species, 

cytogenetics and cross-mating studies were used to discriminate between members of sibling 

species complexes.  Members of the European An. maculipenis complex were distinguished by 

the chromosomal banding patterns seen in salivary gland polytene chromosomes (Frizzi, 1947 

and 1953). This success in cytotaxonomy was quickly followed by the cytogenetic description 

of the members of the An. gambiae complex (Coluzzi and Sabatini, 1967, 1968 and 1969). 

More recently, in 2001, a cytogenetic map for An. funestus was published giving details and 
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locations of inversion break points and inversion frequencies (Sharakhov et al., 2001). The 

chromosomal banding patterns of the Malawian specimens displayed homosequential banding 

arrangements with An. funestus, but were fixed for the inverted arrangements of 3a, 3b and 5a 

inversions, which are normally polymorphic in An. funestus. Although An. vaneedeni also has 

homosequential chromosomes with An. funestus (Green and Hunt, 1980), the fixed inverted 

arrangements on arms 3 and 5 of MalaF distinguish it from An. vaneedeni. 

 

Cytogenetic studies on West African An. funestus have provided evidence of potential species 

differentiation within these populations (Lochouarn et al., 1998; Constantini et al., 1999). 

Unfortunately, these findings could not be confirmed by cross-mating studies, since at that 

time An. funestus had not been successfully colonised.  Cross-mating experiments have been 

widely used to establish genetic discontinuities between sibling species within anopheline 

complexes (An. maculatus form K by Thongwat et al., 2008; An. pseudopunctipennis species 

C by Coetzee et al., 1999; An. minimus species E by Somboon et al., 2005; An. 

quadrimaculatus types A and B by Kaiser, 1988; An. annulipes species A and G by Foley and 

Bryan 1991) where hybrids were scored for asynapsis between homologous chromosomes as 

well as hybrid infertility. In this study, the hybrid chromosomes resulting from the MalaF 

females × An. funestus males showed consistent asynapsis between homologous 

chromosomes, typical of inter-species crosses (Davidson et al., 1967; Green and Hunt, 1980; 

Hunt et al., 1998). Dissections of the resulting male hybrids showed normal testis morphology 

with the possible exception that the head region of the spermatozoa appeared narrower. 

Unfortunately, the effect of this narrower morphology in terms of male fertility is unknown 

because we were unable to carry out back crosses. Eggs produced from the reciprocal crosses 
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displayed a very low level of viability (< 0.2% hatch rate), suggesting a genetic discontinuity 

between the parental samples. 

 

The status of the resulting hybrids was confirmed using the An. funestus multiplex PCR assay 

(Koekemoer et al., 2002) combined with the MalaFB primer. In the past, it was generally 

believed that rDNA was restricted to the X-chromosome in anopheline species and that 

recombination between the X and Y chromosomes did not occur. If this was the case, one 

would expect male hybrids to only carry the ITS2 genotype of their mother. In this study, the 

hybrids generated from crossing the Malawian specimens with An. funestus carry the ITS2 

genotypes of both of their parents.  This suggests that the rDNA in these species cannot be 

restricted to the X chromosome. It has been suggested that rDNA might not be restricted to the 

X chromosome in some members of the An. gambiae complex, namely in An. 

quadriannulatus, An. merus and An. melas (cited as unpublished data by S. Paskewitz in 

Collins et al., 1989). Further, the possibility of recombination between the X and Y 

chromosomes has been suggested for An. quadrimaculatus (Mitchell and Seawright, 1989); 

An. gambiae (Krzywinski et al., 2005; Wilkins et al., 2007) and An. culicifacies (Sakai et al., 

1979). 

 

4.7 CONCLUSION 

Based on the combined molecular, cytogenetic and cross-mating evidence, it is concluded that 

the Malawi population is a new member of the Funestus Subgroup. It is provisionally 

designated “An. funestus-like” until such time as a formal species description is published. 
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Further molecular investigations are needed to determine how this new species impacts on the 

variation seen in RFLP (Garros et al., 2004) and mitochondrial DNA (Michel et al., 2005) 

analyses of An. funestus populations from the southern African region. More detailed studies 

need to be carried out to generate a primary ITS2 secondary structure for the Funestus 

Subgroup as well as to clarify the potential for X and Y chromosomal recombination in these 

species. 

 

Further investigations into the basic biology of this new species are also required. Although 

none of the 61 specimens examined for malaria parasites during this study were positive for P. 

falciparum, the fact that these mosquitoes are common inside houses makes them potential 

vectors.  Future collections at different times of the year are needed to clarify the vector status, 

abundance and distribution of this new species. These studies could also provide data on the 

interactions between this new species and An. funestus s.s. in areas where they occur in 

sympatry. 
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CHAPTER 5 – GENERAL DISUCSSION, FUTURE RESEARCH AND 

CONCLUDING REMARKS 

 

5.1 GENERAL DISCUSSION 

 

 

The outbreak of malaria in South Africa during 1999/2000, and the discovery of pyrethroid 

resistant An. funestus in KwaZulu-Natal, highlighted the need to explore this resistance 

phenotype. The threat of pyrethroid resistant An. funestus populations from Mozambique 

encroaching into South Africa and the potential resurgence of An. funestus mediated malaria 

infections pose a serious obstacle to South Africa‟s stated goal of eliminating malaria by 2015. 

 

The pyrethroid resistant phenotype of southern African An. funestus has been linked to 

increased P450-mediated metabolism of the insecticide, specifically through the over 

expression of CYP6P9 (Amenya et al., 2008; Wondji et al., 2009). Further, this major effect 

gene is located within a QTL (rp1) which has been linked to pyrethroid resistance in An. 

funestus (Wondji et al., 2009). Given that the malaria transmitting portion of mosquito 

populations enter houses to blood feed and then rest, it was necessary to consider whether a 

blood meal would confer enhanced protection from the pyrethroid insecticide used in the IRS 

campaigns. The effect of a blood meal on insecticide tolerance in both pyrethroid resistant and 

susceptible strains of An. funestus was investigated in order to determine if a genetic 

mechanism was involved.  
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Through the use of CDC bottle bioassays it was demonstrated that blood fed pyrethroid 

resistant An. funestus displayed higher levels of insecticide tolerance than their unfed 

counterparts. In contrast, insecticide susceptible An. funestus were equally susceptible to 

pyrethroid intoxication, regardless of whether or not a blood meal had been taken. This 

suggests that the increased body mass of blood fed individuals does not significantly dilute 

internalized insecticide and thus increased vigour tolerance is not a suitable explanation for the 

increase in insecticide tolerance recorded in blood fed pyrethroid resistant An. funestus. 

Consequently, these results suggest that the presence of a blood meal enhances the expression 

of pyrethroid resistance only in those females that already carry a pyrethroid resistant 

phenotype, inadvertently priming them against the effects of insecticide intoxication.  

 

In order to determine whether this blood meal „priming mechanism‟ is linked to detoxification 

gene expression, microarray analysis using the An. gambiae detox chip was performed. A 

comparison between blood fed and unfed cohorts, for both insecticide resistant An. gambiae 

and An. funestus was then undertaken. The data generated allowed for the comparison of 

homologous and heterologous hybridisation arrays as an investigative tool to highlight the 

potential gene targets common to both species.  

 

Microarray analysis revealed that blood fed An. gambiae display elevated delta-class GST 

expression and concomitant down regulation of cytochrome P450s. Previous studies have 

shown that GSTs may be upregulated in response to a blood meal in hematophagous 

arthropods (Rudenko et al., 2005; Dana et al., 2006; Jochim et al., 2008). Expression analysis 
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of blood fed An. funestus did not reveal any significantly down regulated genes, but did reveal 

a commonly up-regulated GST (GSTD3) in both An. gambiae and An. funestus. Although an 

increase in GSTD3 expression following a blood meal in An. gambiae has been shown 

previously (Marinotti et al., 2005), this is the first study to demonstrate the increased 

expression of GSTD3 in blood fed An. funestus. Since GSTD3 is over expressed in both An. 

gambiae and An. funestus, it served as a good target for validation through q-PCR. 

 

Since CYP6P9 and CYP6P13 have been implicated as the major effect genes for pyrethroid 

resistance in An. funestus FUMOZ-RH (Amenya et al., 2008; Wondji et al., 2009; Matambo et 

al., 2010), they were also included in the real time qPCR investigation. Each of these genes, 

when assayed independently, exhibited slightly elevated levels of expression in association 

with blood feeding in pyrethroid resistant An. funestus. Although these genes normally occur 

in an overexpressed state in An. funestus FUMOZ-RH, the slight elevation in expression 

following a blood meal is likely to be responsible for the increased pyrethroid tolerance 

recorded in the bottle bioassay experiments. Unfortunately, due to the inability to target 

GSTD3 in An. funestus, expression levels of this gene in response to a blood meal could not be 

validated. 

    

Many biological experiments carried out using laboratory reared organisms are considered 

predictive of the functions and responses of the same organisms under field conditions. The 

sole use of laboratory reared organisms in experiments has been criticised, especially where 

parallels need to be drawn between laboratory and field organisms. The physiology and fitness 
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of field caught An. gambiae in comparison to laboratory reared strains has been found to differ 

significantly (Day and Van Handel, 1986; Huho et al., 2007). With this in mind, it was 

intended to test whether the findings of the blood meal investigations would hold true for wild 

caught, blood fed An. funestus. 

 

Field collections of mosquitoes were carried out in Northern Malawi and specimens were 

morphologically identified as An. funestus group based on the keys of Gillies and Coetzee 

(1987). Upon attempts to molecularly identify the species it was determined that these 

Malawian specimens were in fact not An. funestus. Through the use of molecular, cytogenetic 

and cross-mating studies we were able to show that these specimens are a new member of the 

Funestus Subgroup and have thus been provisionally named An. funestus-like.  

 

5.2 FUTURE RESEARCH 

 

Since the An. funestus genome has as yet not been sequenced, the An. gambiae detox chip was 

used as an investigative tool to identify detoxification genes that play a role in insecticide 

tolerance following a blood meal in An. funestus. Transcriptional studies of the resistance 

profiles of An. stephensi (Vontas et al., 2007), An. arabiensis (Müller et al., 2008) and An. 

funestus (Christian et al., 2011b) have been successfully investigated using the An. gambiae 

detox chip. Although heterologous hybridisations are possible (Moody et al., 2002; Nuzhdin et 

al., 2004; Sartor et al., 2005), caution should be exercised during experimental design and the 

downstream analysis of the results (Lu et al., 2009). Validation of expression data from a 

heterologous hybridisation is essential and can be done through the use of real time qPCR. 
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This serves to ensure that differential gene transcription reported in microarray experiments 

are the result of true target-probe binding and are not false signals. 

 

Recent advances in the study of An. funestus have seen the development of an EST and SNP 

database (Serazin et al., 2009; Gregory et al., 2011). This represents a huge gain in 

information, a fair amount of which still requires confirmation at the level of the functional 

annotation. It is hoped that high throughput analyses and technological advances such as direct 

RNA sequencing will start to close the gaps in An. funestus sequence information.  

 

Since GSTD3 was also upregulated in the An. gambiae microarrays it is still considered an 

important target for future studies, especially when there is evidence to suggest that GSTs may 

play a role in minimizing the impact of oxidative stress brought about by the digestion of 

blood (Jochim et al., 2008) and pyrethroid intoxication (Vontas et al., 2001). Since GSTs 

function to protect cells by removing reactive oxygen species, it is suggested that GSTD3 

involvement in blood meal digestion and the subsequent increase in insecticide tolerance could 

be a secondary process to that of the major effect resistance genes.  

 

Ultimately, the availability of the An. funestus genome will enable greater accuracy in gene 

transcription profiling. The creation of an An. funestus microarray will allow far more accurate 

investigations into gene expression within this organism. The application of RNA interference 

will allow researchers to investigate and confirm gene function through knock-down assays.   
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Lastly, research is required to determine the disease vector capacity (if any), distribution and 

basic biology of An. funestus-like. Further sampling of this species will elucidate the natural 

level of population variation as well as clarify issues such as host choice, seasonal preferences 

etc. Since species can be defined by the limits of gene exchange, investigations into the level 

of sequence divergence between the mitochondrial and genomic genes of the members of the 

Funestus Subgroup will assist in determining these limits of gene exchange and create more 

detailed phylogenies. 

 

5.3 CONCLUDING REMARKS 

 

An effective and successful vector control programme has, at its foundation, an accurate 

knowledge base which is constantly updated with recent information. This knowledge base 

includes basic information such as: mosquito species identity; disease vector incrimination; 

mosquito species composition by region; and insecticide susceptibility status of vector species 

and closely related non-vectors. Strong collaborations with the communities involved assist in 

information on bednet advocacy and amenability to IRS. 

 

Vector incrimination of African malaria vectors is confounded by overlapping morphology 

between vector and non-vector species. The accurate identification of members of the An. 

gambiae complex is only possible through cytogenetic and molecular based tools. Although 

there are small differences in the morphological characters between members of the An. 

funestus group, discrimination between the species on morphology alone is extremely difficult 

and accurate identification also relies heavily on the use of molecular tools. Added to this, the 
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discovery of a new species, which occurs in sympatry with and is morphologically identical to 

the major malaria vector An. funestus, confounds the situation further. Clarity on the basic 

biology and bionomics of both vector and non-vector species is thus becoming increasingly 

important. 

 

The detection of insecticide resistance in malaria vector populations is primarily based on 

WHO bioassays. Given that blood feeding enhances the expression of insecticide resistance in 

young (3 day old) genotypically resistant females depending on the resistance mechanism, it is 

recommended that young, blood fed females are included in samples during the routine 

insecticide susceptibility testing of target vector populations. This is important because blood-

feeding  may enhance the expression of resistance to a level where it is detectable using the 

WHO bioassay system, whereas testing non blood fed females only could allow newly 

emerging resistance to go undetected for a longer period, facilitating the spread of resistance 

alleles through affected populations.  

 

The development of insecticide resistance in southern African malaria vectors serves to 

undermine the goal of malaria elimination in the region. The design of resistance management 

tools relies on an understanding of how resistance develops in field populations. The data 

presented here highlight the effect that a blood meal has on insecticide tolerance in resistant 

An. funestus and reinforces the necessity of accurate vector species identification.  
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APPENDIX A 
Linear Regression Analysis of Bottle Bioassay Data 

Mortality data from replicate one of the FUMOZ-RH 18 hour, blood-fed exposures is shown 

below in Table A1. This data was used to plot the mortality versus dosage graph in Figure A1. 

From the equation of the regression line, the LD50 can be determined as below: 

y = 58.191x – 73.346 

Where y is the percentage mortality and x the log (dosage) 

 

If you want to calculate the LD50, enter 50 for y and then solve for x as follows: 
 

50 = 58.191x – 73.346 
58.191x = 123.346   
x = 123.346/58.191 
x = 2.119 

 

But x is the log (dosage), therefore you must antilog x to get the dosage: 
 

x = 10
2.119

 
x = 131.5 
LD50 = 131.5 μg 

 
 

After calculating the LD50 for each replicate, the mean LD50 and the standard error can be 

calculated (Table A2). 
 
Table A1. Percentage mortality data for a replicate of blood-fed FUMOZ-RH mosquitoes, exposed to varying 

doses of Permethrin, 18 hours after feeding.   

Dosage (μg) Log (Dosage) Percentage Mortality 

10 1.00 0.00 
25 1.40 4.20 
50 1.70 9.50 

100 2.00 34.80 
250 2.40 68.20 
500 2.70 95.83 

1000 3.00 100.0 
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y = 58.191x - 73.346

R2 = 0.9356
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Figure A1. Percentage mortality plotted against log (dosage) for the blood-fed Fumoz-RH mosquitoes exposed to 

Permethrin 18 hours post blood feeding. The equation of the regression line and the R
2 

value are shown. 

 

Table A2. LD50 values for the FUMOZ-RH unfed cohort used in the 18 hour exposures. 

 LD50 

Replicate 1 131.51 
Replicate 2 97.53 
Replicate 3 115.03 
Replicate 4 90.60 
Replicate 5 129.97 
Replicate 6 156.66 
Replicate 7 174.24 
Replicate 8 125.73 
Replicate 9 135.93 

Mean 128.58 

SE 8.77 
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          APPENDIX B 

RNA Extraction and Amplification for Microarray Analysis 

RNA was extracted from 10 to 15 mosquitoes using the PicoPure
TM 

RNA Isolation Kit 

(Arcturus Bioscience, Inc.) following manufacturer‟s guidelines. Briefly, the mosquitoes were 

placed in a 1.5ml microcentrifuge tube and then placed on ice. Extraction buffer (100 μl) was 

added to the tubes and the mosquitoes were ground using a sterile pestle. After the mosquitoes 

were finely ground, the tubes were incubated at 42˚C for 30 minutes. During the waiting 

period an RNA purification column was pre-conditioned by pipetting 250 μl conditioning 

buffer onto the column and incubating for 5 minutes at room temperature. The column was 

then centrifuged at 16 000g for 1 minute. 

After incubating the RNA extractions at 42˚C, the samples were centrifuged at 12 000g for 1 

minute. The supernatant was transferred to a clean 1.5ml microcentrifuge tube and 100 μl 70% 

ethanol added. The mixture was then pipetted onto the pre-conditioned column and 

centrifuged at 6g for 2 minutes. A second centrifuge step was carried out at 16 000g for 30 

seconds. Wash buffer 1 (100 μl) was pipetted onto the column which was then centrifuged at 8 

000g for 1 minute. In order to limit DNA carry over, a DNase I treatment was included in the 

protocol. DNase I solution (5 μl) was mixed with 35 μl RDD buffer (RNase-Free DNase Set, 

Qiagen) and then pipetted onto the column. The column was incubated at room temperature 

for 15 minutes. 

The column was then rinsed with 40 μl wash buffer 1, followed by centrifugation at 8000g for 

15 seconds. Wash buffer 2 (100 μl) was pipetted onto the column which was then centrifuged 
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at 8 000g for 1 minute. A second wash of 100 μl wash buffer 2 was pipetted onto the column 

and then centrifuged at 16 000g for 2 minutes. The column was centrifuged twice more at 16 

000g for 1 minute, to remove the remaining traces of the wash buffers. The column was 

transferred into a clean 0.5 ml collection tube.  

By gently touching the surface of the column with the pipette tip, an aliquot of 30 μl elution 

buffer was pipetted onto the column. The column was incubated at room temperature for 1 

minute after which it was centrifuged 100g for 1 minute. This was immediately followed by 

16 000g for another minute. The RNA extraction passed through the column and collected in 

the 0.5ml collection tube. The total RNA quantity and quality was assessed by 

spectrophotometry using the RNA-40 setting on the Nanodrop machine (Nanodrop 

Technologies, UK). Samples with less than 200 ng.μl
-1

 of RNA were excluded from the 

following steps. 

Approximately five micrograms of total RNA was amplified using the RiboAmp
TM 

amplification kit (Arcturus Bioscience, Inc.) according to manufacturer‟s instructions. Briefly, 

to each RNA sample 1 μl of Primer A was added. The RNA samples were then incubated at 

65˚C for 5 minutes. After incubation the tubes were placed onto ice for at least 1 minute. A 

first strand amplification mix was made using 7 μl of first strand master mix and 2 μl first 

strand enzyme. Once the RNA samples were cooled, the 9 μl of first strand master mix was 

added. The samples were then incubated at 42˚C for 45 minutes. After incubation the samples 

were placed on ice to cool. First strand nuclease mix (2 μl) was added to the samples which 

were then incubated at 37˚C for 20 minutes. This was followed by an enzyme denaturation 

step at 95˚C for 5 minutes. The samples were then placed on ice to cool. To each of the first 
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strand sample tubes, 1 μl of Primer B was added. The samples were briefly denatured at 95˚C 

for 2 minutes and then chilled on ice for at least 2 minutes. A second strand amplification mix 

was made using 29 μl second strand master mix and 1 μl second strand enzyme. Once the 

samples were cooled, the 30 μl second strand master mix was added. The samples were then 

incubated at 25˚C for 5 minutes; 37˚C for 10 minutes; 70˚C for 5 minutes. After incubation the 

samples were placed on ice to cool. 

Whilst the samples cooled on ice, the nucleic acid purification column was prepared. Room 

temperature DNA binding buffer (250 μl) was pipetted onto the column and allowed to stand 

at room temperature for 10 minutes. The column was then centrifuged at 16 000g for 1 minute. 

The second strand synthesis sample was ten mixed with 200 μl of DNA binding buffer and 

pipetted onto the column. The column was centrifuged briefly at 6g for 2 minutes, followed by 

10 00g for 30 seconds. The column was then rinsed with 250 μl DNA wash buffer and then 

centrifuged at 16 000g for 2 minutes. The column was then placed in a clean 0.5 ml collection 

tube and 16 μl of elution buffer pipetted onto the surface of the column. The buffer was 

distributed by gently tapping the column and tube. This was followed by a five minute 

incubation at room temperature. The cDNA was then eluted by centrifuging the column at 1 

000g for 1 minute, immediately followed by 16 000g for 1 minute. 

For each sample, an IVT reaction mix was created by mixing the following: 8 μl IVT buffer, 

12 μl IVT master mix and 4 μl IVT enzyme mix. This 24 μl IVT mixture was combined with 

the eluant above. The samples were mixed well and incubated at 42˚C for 6 hours. After 

incubation the samples were treated with DNase in order to remove the remaining DNA. The 
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antisense RNA (aRNA) was then purified using a freshly prepared nucleic acid purification 

column. The column was prepared by pipetting 250 μl RNA binding buffer onto the column 

and allowing it to incubate at room temperature for 10 minutes. The column was the 

centrifuged at 16 000g for 1 minute. To each sample 200 μl of RNA binding buffer was added 

and the mixture was pipetted onto the column. The column was centrifuged at 6g for 2 

minutes, immediately followed by 10 000g for 30 seconds. RNA wash buffer (200 μl) was 

pipetted onto the column and centrifuged at 16 000g for 2 minutes, immediately followed by 

16 000g for 1 minute. The column was placed into a clean 0.5 ml collection tube and 30 μl 

elution buffer added directly onto the column. The column was tapped gently to distribute the 

elution buffer and then incubated at room temperature for 5 minutes. The column was then 

centrifuged at 1 000g for 1 minute, immediately followed by 16 000g for 1 minute. The 

quantity and quality of product was confirmed using the Nanodrop machine (minimum cutoff 

values: 1000 ng.μl
-1

 and a 260/280 ratio of at least 1.7).  

Cy Dye Labeling of RNA for Microarrays  

The resulting aRNA (8 μg) was placed in 0.2 ml PCR tubes with 1.3 μl random hexamers (50 

μM, Invitrogen Life Technologies) and 2 μl RNA spike-in control from the Lucidea Universal 

Score Card (Amersham Biosciences Ltd, UK). These were incubated at 70˚C for 5 minutes 

followed by 4˚C for at least 2 minutes. The samples were then reverse transcribed to cDNA 

using Superscript III reverse transcriptase kit (Invitrogen) and fluorescently tagged Cy3- and 

Cy5-dUTPs (Amersham Biosciences Ltd, UK). Reverse transcription was carried out at 50˚C 

for 2½ hours. 
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To stop the reaction and degrade the original aRNA template, 1 μl of a 1M NaOH, 20 mM 

EDTA solution was added. The Cy-labeled targets were then combined and cleaned using the 

illustra
TM

 CyScribe
TM

 GFX
TM

 Purification Kit (GE Healthcare, USA).  

Briefly, to each Cyscribe column 500 μl of capture buffer was added. The labeled cDNAs 

were then added to the column and mixed with the capture buffer. Each cDNA set consisted of 

a Cy3 labeled cDNA and it corresponding Cy5 labeled sample. Since Cy dyes are light 

sensitive, the columns were kept under foil at all times. The columns were then centrifuged at 

13 000 rpm for 30 seconds. The flow through was discarded and the columns placed in clean 

collection tubes. To each column, 600 μl of wash buffer (containing ethanol) was added and 

the column centrifuged again at 13 000 rpm for 30 seconds. The flow through was discarded 

and the columns placed in clean collection tubes. The wash step was then repeated twice more. 

A final spin at 13 000 rpm for 10 seconds was carried out in order to remove any remaining 

ethanol.  The columns were then placed in clean collection tubes. Elution buffer was pre-

warmed to 37˚C and 60 μl added to each column. The columns were allowed to incubate at 

room temperature for 2 – 4 minutes and then centrifuged at 13 000 rpm for 2 minutes. A 

further 40 μl of elution buffer was added to the columns and allowed to incubate at room 

temperature for 2 to 4 minutes. A final centrifuge at 13 000 rpm for 2 minutes eluted the 

remaining labeled sample. 

 After purification, dye incorporation was assessed using a Nanodrop machine (Nanodrop 

Technologies, UK) and the microarray (33-factor) settings. A minimum cDNA yield of 15 

ng.μl
-1

; minimum dye incorporation of 0.1 pmol.μl
-1

 for each Cy dye and a 260/280 ratio of 
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less than two, were the cutoff values used to control the efficiency of labeling and purification. 

Finally, 5 μg of poly dA oligo (Sigma) was added to each target set, combined and then 

vacuum dried using an Eppendorf Concentrator 5301 (Eppendorf, Hamburg) set at 45°C for 30 

minutes.  

Preparation of the Detox Chip and Pre-Hybridisation 

The detox chips used in this study were prepared for hybridisation using the Pronto! Universal 

Microarray Hybridisation Kit (Corning Inc, ref 40026). The following solutions were prepared 

in advance for the An. funestus hybridisations. These solutions were at 3 x recommended 

concentrations. The An. gambiae hybridisations used the solutions made up according to 

manufacturer‟s guidelines. If two slides needed to be prepared at the same time, they could be 

prepared back to back in 50 ml Falcon tubes. 

Wash Solution 1: 75 ml Universal Wash Reagent A, 3.75 ml Universal Wash Reagent B and 

171.25 ml deionized water.  

Wash Solution 2: 75 ml Universal Wash Reagent A and 425 ml deionized water.  

Wash Solution 3: 300 ml Wash Solution 2 and 200ml deionized water. 

The pre-soak steps are started by warming the Pronto! Universal Pre-Soak Solution and the 

Pronto! Universal Pre-Hybridisation Solution to 42°C for at least 30 minutes. After the 

solutions were warm, 500 μl sodium borohydride solution was added to 50 ml Universal Pre-

Soak Solution in a 50ml Falcon Tube. The microarray slide was then immersed into the 

sodium borohydride-Pre-soak solution and incubated at 42°C for 20 minutes. The slide was 
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then transferred to Wash Solution 2 and incubated at 25°C for 30 seconds. The slide was then 

transferred to a fresh container of Wash Solution 2 for a further 30 seconds. Next the slide was 

transferred to the Universal Pre-Hybridisation Solution and incubated at 42°C for 15 minutes. 

The slide was then transferred back to a fresh container of Wash Solution 2 and incubated at 

25°C for 1 minute. Lastly, the slide was rinsed in two rinses of Wash Solution 3 at 25°C for 30 

seconds. The slide was dipped briefly into nuclease-free water (at 25°C) and then placed in a 

clean 50ml Falcon tube. The slide was then dried by centrifugation: 2 500 rpm for 2½ minutes. 

At his stage the slide is ready for hybridisation and should remain in a dust free, dark container 

until ready for use. 

Target preparation and Hybridisation onto the Detox Chip 

The dried pellets resulting from the cy dye labeling were resuspended in 15.5 μl of long 

hybridisation buffer (Corning Inc.) and denatured at 95°C for 5 minutes. The samples were 

then centrifuged at 13 000 rpm for two minutes and then kept in the dark at room temperature 

until they were loaded onto the array. Targets were pipetted onto the center of a 22x22 

hybrislip (Grace Biolabs). The microarray slide was then lowered, DNA side down, onto the 

coverslips. Care was taken not to allow the coverslips to move once they were on the array. 

The microarray slides were then placed in a hybridisation chamber. Hybridisation was carried 

out in a water bath at 38°C and 42°C for the An. funestus and the An. gambiae experiments 

respectively (Christian et al., 2011b; David et al, 2005). Hybridisation was carried out for 16 

hours in hybridisation chambers that had approximately 40 μl of 3x SSC buffer distributed 

around the inner edges.  
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Post-Hybridisation Washing of the Detox Chip and Scanning 

For the An. funestus hybridisations, post-hybridisation washes were carried out at 38°C for 

half the specified times (Christian et al., 2011b). The An. gambiae hybridisations on the detox 

chip were washed at 42°C for the recommended wash times, according to manufacturer‟s 

guidelines for the Pronto! Universal Microarray Hybridisation Kit (Corning Inc.). Wash steps 

requiring room temperature were carried out as close to 25°C as possible. Wash solutions were 

prepared as for the pre-soak protocol above.  

Prior to starting the post hybridisation washes, Wash Buffer 1 was warmed to 38°C (An. 

gambiae hybridisations) or 42°C (An. funestus) for at least 30 minutes. The incubation times 

set out below are those for An. funestus hybridisations. 

After removing the slide from the hybridisation chamber it was immersed in Wash Solution 1 

for 1 to 2 minutes. As soon as the both coverslips lifted off the slide, it was transferred to a 

fresh container of Wash Solution 1 and incubated for 2½ minutes. Directly after this, the slide 

was transferred to a container of Wash Solution 2, at room temperature, and incubated for 5 

minutes. The slide was then transferred to Wash Solution 3, again at room temperature, for 1 

minute. The wash step using Wash Solution 3 was repeated twice more. The slide was dried 

by centrifugation at 2 500 rpm for 2 minutes.  

All the slides were scanned immediately after drying. Scanning was carried out using a 

GenePix 4000B scanner (Axon Instruments, Molecular Devices, USA). The photomultplier 

(PMT) range was adjusted to fall within 500 – 750V for each channel of detection thereby 

resulting in an overall intensity ratio as close to 1 as possible. The resulting TIFF files were 

analysed using the GenePix Pro 6.0 software (Axon Instruments). Preprocessing according to 
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the following cutoff values was used to determine spot quality. If a spot met either of the 

following criteria, it was excluded from analysis: a signal to noise ratio of less than 3 and or 

spot intensity values of greater than 65,000. The raw intensity values were then imported into 

the Limma 2.4 software running in the R 2.9.0 package of Bioconductor for analysis 

(Gentleman et al., 2004). 
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APPENDIX C 

 
 

Programming Code Used for Microarray Analysis 

  

Programming code for analysing the data generated for the Detox Chip hybridisations. Lines 

preceded by “#” and in blue font are descriptions of the programming code below and would 

not be entered into the program. 

 

#Data Analysis of the microarray slides hybridised with blood fed and unfed An. gambiae 

GAH #cDNA. This was done in order to determine which genes are differentially expressed in 

#response to the blood meal. 

setwd("C:/Documents and Settings/belindas/Desktop/GAH GPR Files for Analysis") 

library(limma) 

utils:::menuInstallLocal() 

#Select the Statmod package in its zipped format 

#Read in the list of slides and spot types for the analysis 

targets<-readTargets() 

table<-read.table("spotfile.txt", header = TRUE, sep = "\t", as.is = TRUE, nrows = 8) 

spottypes<-table 

targets 

spottypes 

#Read in the image data for each microarray slide 

RG<-read.maimages(targets$FileName, source = "genepix", 

wt.fun=wtflags(weight=0,cutoff=0)) 

#Read in the gal file. This file gives information relating to the location of each probe on the 

#array and what the target is  

RG$genes<-readGAL("New_An gambiae detox gal May 2007.gal") 

#Confirm that the printer layout has been read correctly 

names(RG$printer) 

RG$printer 

#Read in the status of each spot in the arrays 

RG$genes$Status<-controlStatus(spottypes,RG, spottypecol = "Spottype", verbose = TRUE) 

 

#Plot the MA plots of the raw data. Bear in mind that the outliers will not be seen. 

#Command x11 below opens a graphics window for the graphs to be viewed 

x11() 

plotMA(RG, array=1, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=2, legend = T, ylim=c(-10,10)) 
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x11() 

plotMA(RG, array=3, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=4, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=5, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=6, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=7, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=8, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=9, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=10, legend = T, ylim=c(-10,10)) 

x11() 

plotMA(RG, array=11, legend = T, ylim=c(-10,10)) 

 

x11() 

imageplot(log2(RG$Rb[,1]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,1]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,2]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,2]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,3]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,3]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,4]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,4]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,5]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,5]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,6]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,6]),RG$printer,low="white", high="green") 

x11() 
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imageplot(log2(RG$Rb[,7]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,7]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,8]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,8]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,9]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,9]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,10]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,10]),RG$printer,low="white", high="green") 

x11() 

imageplot(log2(RG$Rb[,11]),RG$printer,low="white", high="red") 

x11() 

imageplot(log2(RG$Gb[,11]),RG$printer,low="white", high="green") 

 

#The following lines of code are the background correction for each of the channels. The 

#normexp method for correction is the recommended method. The offset adds a factor of 50 to 

#each of the values so that the log transformed values at the lower ranges are shrunk towards 

#zero, giving a better looking fit. 

RGb<-backgroundCorrect(RG, method="normexp",offset=50) 

x11() 

plotMA(RGb,array=1,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=2,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=3,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=4,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=5,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=6,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=7,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=8,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=9,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=10,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=11,legend=T,ylim=c(-6,6)) 

 

#Normalize within arrays 

nonDE<-grep("Calib*",RG$genes[,"Name"]) 

MA<-normalizeWithinArrays(RGb, 

method="loess",iterations=5,bc.method="subtract",offset=0) 

x11() 

plotMA(RGb,array=1,legend=T,ylim=c(-5,5)) 
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plotMA(RGb,array=2,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=3,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=4,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=5,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=6,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=7,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=8,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=9,legend=T,ylim=c(-5,5)) 

plotMA(RGb,array=10,legend=T,ylim=c(-6,6)) 

plotMA(RGb,array=11,legend=T,ylim=c(-5,5)) 

 

 

#Draw boxplots for the background distribution 

x11() 

boxplot(data.frame(log2(RG$Rb)),main="Red background",notch=TRUE) 

x11() 

boxplot(data.frame(log2(RG$Gb)),main="Green background",notch=TRUE) 

#Normalize between arrays 

MAbet<-normalizeBetweenArrays(MA,method=„Aquantile‟) 

x11() 

plotDensities(MAbet) 

#Start to do Bayesian stats and draw top table 

design<-modelMatrix(targets,ref='Unfed') 

design 

MAbet$M<-MAbet$M[MAbet$genes$Status=="cDNA",] 

MAbet$A<-MAbet$A[MAbet$genes$Status=="cDNA",] 

MAbet$genes<-MAbet$genes[MAbet$genes$Status=="cDNA",] 

i<-order(MAbet$genes$ID) 

MAbet<-MAbet[i,] 

#Calculate the consensus correlation between the arrays 

cor<-duplicateCorrelation(MAbet, ndups=4, design) 

cor 

cor$concensus.correlation 

#start to fit Bayesian stats to the data and create the top table 

fit<-lmFit(MAbet,design,ndups=4,correlation=cor$consensus.correlation) 

fit<-eBayes(fit) 

UnfedvsBloodfed<-(topTable(fit,adjust="fdr",number="all")) 

UnfedvsBloodfed 

#Save the toptable which is a file of all the data for each target 

write.table(UnfedvsBloodfed,file="C:/Documents and Settings/belindas/Desktop/Gambiae 

GPR Files for Analysis/toptable.txt",sep="\t",row.names=FALSE) 

volcanoplot(fit,coef=1, highlight=15,names=fit$genes$Name, main= “Bloodfed vs Unfed”) 
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APPENDIX D 
Optimisation of RPL8 for Use as a Reference Gene 

 

Although amplification using the RPL8 primer resulted in good amplification curves (Figure 

D1), this primer pair could not be included in the analysis. The primer pair targeting the RPL8 

gene yielded more than one amplification product, evidenced by double peaks in the melt 

curve analysis (Figure D2). 

 

Figure D1. Amplification curves for the RPL8 primer pair. (Red lines = blood fed An. funestus; blue lines = 

unfed An. funestus; green lines = no template control). 

 

 

Figure D2. Melt curve for the RPL8 primer pair. Note the double peaks indicating the presence of two 

amplification products. (Red lines = blood fed An. funestus; blue lines = unfed An. funestus; green lines = no 

template control). 
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APPENDIX E 

 
Collins DNA Extraction Method 

Detailed below is the DNA extraction protocol used in Chapter 4. This protocol is described in 

Collins et al. (1987). 

 

All pipette tips, 1.5ml microcentrifuge tubes and pestles for grinding were autoclaved for 20 

minutes at 121°C. A heating block was set 70°C and allowed to reach the temperature at least 

half an hour before use. Grinding buffer was prepared by mixing 1.6 ml 1M NaCl, 1.095 g 

sucrose, 2.4 ml 0.5 M EDTA, 1 ml 10% SDS, 2 ml 1 M Tris-Cl (pH 8.6). The final volume 

was made up to 20ml using dH2O. 

 

Using sterile forceps, the specimen placed into a 1.5ml microcentrifuge tube. The mosquito 

was ground dry, as finely as possible. The pestle was not removed from the tube, whilst 200 µl 

grinding buffer was added. The specimen was ground again until very fine. The pestle was 

removed, ensuring that no mosquito parts remained on it. Whilst removing the pestle, it was 

ensured that not too much liquid was removed at the same time. 

 

The closed tubes were then incubated in the heating block at 70°C for 30 minutes, never 

longer than 1 hour. After incubating, the tubes were removed from the heating block and 28 µl 

8 M KAc was added. The mixtures were vortex by tapping the tube. The tubes were then 

placed on ice for 30 minutes, followed by centrifugation for 20 minutes at 13 000rpm. The 
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supernatant was pipetted off into a clean 1.5ml microcentrifuge tube taking care not to disturb 

the pellet. The pellets were then discarded.  

Ice cold 100% ethanol (400 µl) was added to the supernatent and mixed by inverting the tube. 

The tubes were incubated overnight at -20°C. The samples were then centrifuged for 30 

minutes, 13 000 rpm. The 100% ethanol was then pipetted off and discarded, taking care not 

to disturb the pellet. Traces of salt were removed by adding 200 µl ice cold 70% ethanol to the 

tube containing the pellet. The tubes were then centrifuged at 13 000 rpm for 30 minutes. The 

70% ethanol supernatant was then pipetted off and the pellet allowed to air dry on the lab 

bench. The extracted DNA was then re-suspended in 200 µl of 1 x TE.  

 

An extraction positive and negative control was included in every extraction. Positive controls 

were specimens of known identity, harvested from laboratory colonies.  

 

Multiplex PCR for the Identification of An. funestus Group 

This PCR was run according to the method of Koekemoer et al. (2002). The primers used in 

the PCR are detailed in Table E1 below. The 12.5 µl PCR reaction mixtures were made up as 

follows: 1.25 µl of 10x PCR buffer (500 mM KCl, 100mM Tris-HCl, pH 8.3), 1.5mM MgCl2, 

3.3 pmol/primer of each primer, 200µM of each dNTP, and 0.5 units taq DNA polymerase. 

Approximately 0.5 to 1 µl of DNA was added to each reaction tube. Positive controls for each 

species were included, using specimens that have been previously identified. A no template 

control was included as well as the DNA extraction controls. 
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The PCR cycles were programmed as follow: initial denaturation at 94°C for 2 minutes; 

followed by 30 cycles of 94°C for 30 seconds, 45°C for 30 seconds, and 72°C for 40 seconds. 

A final extension step was included at 72°C for 5 minutes. The PCR products were 

electrophoresed on a 2.5% TAE agarose gel stained with ethidium bromide. 

 

Table E1. Table of primers used in the An. funestus multiplex PCR (Koekemoer et al., 2002). 

Primer Sequence Tm 
(°C) 

UV TGT GAA CTG CAG GAC ACA T 55.3 
FUN GCA TCG ATG GGT TAA TCA TG 52.4 
VAN TGT CGA CTT GGT AGC CGA AC 58.0 
RIV  CAA GCC GTT CGA CCC TGA TT 58.8 
PAR TGC GGT CCC AAG CTA GGT TC 60.5 
LEES TAC ACG GGC GCC ATG TAG TT 60.2 

 

Plasmodium falciparum Sporozoite ELISA 

The ELISA protocol used to detect P. falciparum sporozoites is that of Wirtz et al. (1987). 

Briefly, the following solutions were prepared in advance: blocking buffer (0.5% casein boiled 

in 100 ml 0.1N NaOH until dissolved, 0.002% phenol red, made up in 1 x Phosphate Buffered 

Saline, pH 7.4); grinding buffer (blocking buffer containing 0.5% Nonidet P-40 (NP-40, 

Sigma); PBS-Tween (1x PBS with 0.005% Tween-20 (Sigma)). 

The head and thorax of each mosquito was placed in a clean 1.5ml microcentrifuge tube. 

Using a clean pestle for each specimen, the samples were ground in 50 µl of grinding buffer. 

Any mosquito parts remaining on the pestle were rinsed off into the microcentrifuge tube by 

pipetting a further 150 µl grinding buffer over the pestle. Homogenates were frozen at -70°C 

until ready for use. An antibody plate was prepared the day before the ELISA was run using a 
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U-shaped 96 well ELISA plate. For each 96 well plate, fresh antibody solution was prepared 

(5 ml PBS with 40 µl MAb PF 2A10 (KPL, Maryland USA, Cat # 3701242)). Using a 

multichannel pipette, 50 µl of antibody solution was dispensed into each well on the plate. The 

plate was wrapped with plastic wrap and foil and incubated at 4°C overnight. Following this, 

the wells were cleared of antibody solution and filled with blocking buffer and incubated at 

room temperature for 1 hour. 

During this incubation step, the mosquito homogenates were thawed on ice and the positive 

and negative controls prepared. The seven negative controls consisted of freshly ground 

mosquitoes acquired from colony material from the VCRU insectary. Positive control was 

prepared by mixing 50 µl blocking buffer with 1 µl of Pf2+ antigen (donation from RA 

Wirtz).  

After the 1 hour incubation, the wells were aspirated. Positive control was added to the first 

well on the top row of the plate (A1). Negative controls were added to the last seven wells, on 

the last row of the plate (H6 to H12). Samples (50 µl) were added from well A2 onwards. The 

plate was allowed to incubate for 2 hours at room temperature. 

The wells were then washed twice using PBS-Tween. A peroxidase mix of 5.6 ml blocking 

buffer and 10 µl peroxidase Pf2A10 (KPL, Maryland USA Cat # 3700242) was prepared and 

50 µl aliquoted into each well. The plate was then incubated for 1 hour at room temperature. 

The wells were then washed with PBS-Tween solution, three to four times. Following this, 

100 µl of ABTS peroxidase substrate (KPL, Maryland USA, Cat # 506601) was added to each 

well. The plate was covered in foil and allowed to incubate at room temperature for 30 to 60 
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minutes. The absorbance of the solutions was then read at a wavelength of 414 nm, using an 

ELISA plate scanner (Multiskan Ascent, Thermo Electron Corp.). 

The cutoff value for the absorbance of reactive samples was calculated by finding twice the 

average absorbance of the negative controls. Samples that displayed absorbances equal to or 

greater than this cutoff value were flagged as potential positive samples. These specimens 

were then run through a second ELISA to confirm positivity for P. falciparum parasites.  
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APPENDIX F  

Nanodrop results of MalaF DNA 

 

Figure F1. Nanodrop results of the seven unamplified MalaF specimens and a set of randomly chosen 

identifiable MalaF specimens. 

 

The DNA extractions of the unidentifiable MalaF specimens fell within the range of 10 to 

50ng.ul
-1

. This is a good yield of DNA which should have given amplicon in the MalaF PCR. 

A small number of identified MalaF specimens were randomly chosen and nanodropped. 

These samples exhibited a variation in DNA concentrations from approximately 9 to 80ng.ul
-1

.  
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The absorbance ratio of a DNA sample measured at 260nm/280nm, gives a good indication of 

the purity of the sample. A ratio above 1.8 is considered acceptable, where as a ratio below 1.8 

is considered to be contaminated with protein and/or phenol (Sambrook et al., 1989).  Only 

two of the unidentified specimens had low 260/280 ratios: specimen 5 and 7. Both of these 

specimens did however result in amplicon when tested using the in-house PCR. 
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