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Introduction 

The corrections suggested by the internal and external examiners were very 

helpful to improve the present dissertation. I have taken into consideration all of 
their suggestions and reworked the original dissertation. The dissertation is now 

longer, more detailed and has more logical flow. New figures have been added 

along with an appendix, which was missing from the previous dissertation. 
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Internal Examination Corrections 

1. Need to indicate the number of independent runs that gave rise to the results 

presented. 

2. Include steps taken to get the reactor up and running, as evidence to mastering 

his techniques. 

3. Provide more results and increase the volume of the thesis. 

4. Include more data from the preliminary reactor set up. 

5. Include more data involving the effects of major parameters when it comes to 

bioreactor maintenance; i.e. temperature, dissolved oxygen levels, pH etc. 

6. Include more information about retention times i.e. how the HPLC works to 

determine the different metabolites that were produced. 

7. Take out all the short terms, i.e. it’s and aren’t. 

8. Consistency when it comes to giving measurements, i.e. 20L, not 20l. 

9. Include a space between the unit and number of measurement, i.e. 5 days, not 

5days. 

10. Use alternative terms to “I”, “We” and “Our”. 

11. Change the page numbering so that before the introduction and literature 

review the numbering is in Roman Numerals (i, ii, iii, iv…etc) and afterwards 

it should be Arabic numerals. 

12. Refer the readers to Figures and tables before presenting them, “?”. Use the 

tables and figure numbers in the text to minimize the use of “the above table” 

etc. 

13. Re-organize the section titles and numbering. Esp. Literature review section. 
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Abstract 

*Line 8: add the word “on” between ‘focused’ and ‘the’. 

*Line 11-12: removed the section after ‘metabolites of interest’. I.e. Removed: ‘such 

as citric acid and itaconic acid’ 

Abstract:	  

The depletion of petroleum and other platform chemical resources are a global 

concern; therefore alternative substrates must be identified to replace these current 

sources. Thus allowing research in fungal biotechnology to prosper, as filamentous 

fungi can utilize second-generation feedstocks or agricultural waste to produce these 

petroleum derived platform chemicals. This research focuses on the ability of 

filamentous fungi to use different second-generation feedstocks such as wheat bran 

and sugar cane bagasse to generate platform chemicals of interest, namely being 

itaconic acid (IA) and other organic acids of interest, such as citric acid. This study 

focused on the metabolite producing capabilities of Aspergillus terreus, initially in a 

shake flask fermentation environment and then in an Airlift Bioreactor environment 

utilizing hydrolyzed wheat bran and sugar cane bagasse as a substrate source to 
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produce metabolites of interest. The initial shake flask fermentation experiment 

involved inoculation and incubating A. terreus in hydrolyzed wheat bran with 

additional minerals at 30°C for 5 days at a pH range of between 3-4. The result 

yielded itaconic acid and citric acid concentrations of 1.01g/l and 6.23g/l at their 

peaks, respectively. The airlift bioreactor was run for 16 days with a constant pH 

range between 3-4, at a temperature of 30°C with a dissolved oxygen level of 20g/l. 

The result of the study yielded a high itaconic acid and citric acid concentration 

peaking at 59.4 g/l and 59.2 g/l, respectively.  

 

*Note: Abstract was reworked as according to the external examiners requirements. 

Chapter 1 

*Section 1.1.2. Can be subdivided and more information on metabolism can be given. 

1.1.1 Current	  Examples	  of	  Filamentous	  Fungi	  in	  Industry:	  

1.1.1.1 Filamentous	  Fungi:	  

Filamentous fungi are the microorganisms of choice to produce these platform 

chemicals due to their ability to secrete vast amount of enzymes that generate high 

metabolite yield (3) (4) (5), they grow in the form of multicellular filaments called 

hyphae, which generate connected networks with multiple genetically identical nuclei, 

which make up the mycelium (3). Filamentous fungi have potential regarding their 

highly efficient metabolite producing capabilities; humans have only been able to 

harness a fraction of this potential (6).  

1.1.1.2 Fungal	  Biotechnology	  in	  Industry:	  	  

Fungal biotechnology is currently utilized in many industries, such as for the 

production of medical supplies, such as; Penicillin, which is produced by the fungi 

Penicillium chrysogenum. Lovastatin a cholesterol-lowering drug is produced by 

Aspergillus terreus and Cyclosporine an immunosuppressant drug used in organ 

transplant procedures is produced by Tolypocladium inflatum (4). Several other 

products which filamentous fungi produce are often taken for granted as they are so 

commonly used and include products of the food industry, such as; cheese produced 

by Penicillium spp., soy sauce and sake produced by Aspergillus oryzae (5). The main 

reason why filamentous fungi are utilized in industry is due to the high activity of 
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fungi's enzymatic secretions. These extracellular enzymes allow fungal biomass to 

degrade plant cell walls and to generate large concentrations of metabolites. 

Penicillium simplicissimum is another fungus of interest; it is currently employed by 

industry due to its high xylanase activity. It is used in the paper producing process to 

bleach wood pulp (8). This fungus is commonly known to produce succinate from 

glucose and studies have been conducted under aerobic and anaerobic conditions to 

investigate the pathways involved (8). P. simplicissimum has been observed to secrete 

low levels of succinate. Succinic acid is the predominant acid produced under 

anaerobic conditions. Fungal pellet formation was shown to be important in obtaining 

maximum succinate production rates, and therefore raised the possibility of fumarate 

respiration as a biochemical mechanism for succinate production under anaerobic 

conditions (8). However it is known that succinic acid or succinate is produced as an 

intermediate during the The Citric Acid cycle (TCA), where citric acid or citrate is the 

final product. Therefore this fungus is another perfect candidate to evaluate the 

production of organic acids when utilizing a second-generation feedstock such as 

lignocellulose substrate obtained from agricultural waste.  

1.1.1.3 Aspergillus	  Niger	  and	  Citric	  Acid	  

Another important fungi utilized in industry is Aspergillus niger which became the 

primary microorganism in the production of citric acid, exceeding production from 

extracting citric acid from lemons. A. niger can metabolize many carbon sources such 

as sucrose and or glucose to produce vast amounts of citric acid for a fraction of the 

cost as opposed to using lemons (9) (22). The current industrial process using 

Aspergillus niger and the production of citric acid, which is also a metabolite of 

interest as listed by the United States Department of Energy, ranges between 200 g/l 

to 240 g/l, when utilizing glucose/sucrose is utilized as the main substrate source. 

There are many uses for citric acid in the food and beverage industry, the carbonated 

beverage industry accounted for 50% of the total citric acid production in 1990 (8) 

(22).  A. niger generates citric acid via the TCA in the fungus’s metabolic pathway, 

by taking up glucose into the cell and converting it to the three-carbon acid, pyruvate 

via the glycolytic pathway, which occurs in the cytosol. Subsequently the newly 

formed pyruvate molecule is decarboxylated to form acetyl-CoA catalyzed by the 

mitochondrial pyruvate dehydrogenase complex and another pyruvate molecule is 
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carboxylated to oxaloacetate in the cytosol by pyruvate carboxylase (8). The 

oxaloacetate is transported into the mitochondrion of the fungi and combined with 

acetyl-CoA to form citrate. This product is passed out of the mitochondrion and 

eventually secreted of the cell. The high yields of citric acid production process are 

possible because all six carbons of the substrate, glucose or fructose, are conserved in 

the six-carbon product citric acid, through the glycolytic pathway and the actions of 

two additional enzymes, pyruvate carboxylase and citrate synthase (8) (22). 

 

Figure 1. The Simplified Metabolic Pathway Leading to Citric Acid Production in Aspergillus niger (8) 

Citrate synthase is the end terminal enzyme in the citric acid biosynthetic pathway. 

Mg2+ and ATP inhibit the enzyme from A. niger, however citrate the product of citrate 

synthase is not an inhibitor of the enzyme itself. Other enzymes of the citric acid cycle 

also have significant effects on the production of citric acid, as aconitase inhibition 

would theoretically lead to an accumulation of citrate by inhibiting subsequent flux 

during the citric acid cycle (8) (9). Another enzyme, isocitrate dehydrogenase could 

have a deleterious effect on citric acid production by decarboxylating isocitrate, which 

is required to be in equilibrium with citrate via aconitase activity. The NADP+ specific 

isocitrate dehydrogenase has been purified from A. niger and found to be present in 

both the cytosol and mitochondrion (10). It was published that isocitrate 

dehydrogenase is inhibited by ATP and citrate via chelation of enzymatic Mg2+ (10). It 

was also noted that intracellular Mg2+concentrations would have little effect to the 

overall process (8). Citric acid accumulated extracellularly to a final concentration of 

about 1.0M, therefore an active export system must exist to remove citrate from the 
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cytosol, where the normal citrate concentration is only 2 – 30mM (8). Citrate export 

requires low Mn2+concentrations in the range known to be required for efficient citric 

acid production (11). On the other hand, citrate import required Mn2+both for induction 

of expression of the citrate importer as well as for its function (9) (11). These results 

provide an additional explanation of the multiple effects of Mn2+on the physiology of 

A. niger under citric acid production conditions. Aspergillus niger is known to produce 

three major metabolites when undergoing fermentation. These include 2 - 

carboxylmethyl - 3 - hexyl-maleic acid anhydride, 2 - methylene - 3 - hexyl-

butanedioic acid and 2 - methylene - 3 - (6 - hydroxyhexyl)-butanedioic acid (12) (13). 

*Section 1.3. More information regarding the South African DOE can be added, i.e. 

the SA DOE’s standing on the issues under discussion. This will then highlight where 

the study fits both in South African and global contexts. 

1.3	  Department	  of	  Energy	  and	  Platform	  Chemicals:	  

The department of energy is an organization that exists in many countries and 

operates in government to monitor aspects regarding energy. Its main responsibilities 

include; energy conservation, energy-related research, radioactive waste disposal, and 

domestic energy production. The South African DOE ensures that diverse energy 

resources are made available, in sustainable quantities and at affordable prices in 

support of economic growth and poverty alleviation. DOE also sponsors many basic 

and applied scientific research programs. Platform chemicals as mentioned earlier are 

building block chemicals, which have a high transformation potential into new 

families of useful molecules. Most platform chemicals are derived from fossil fuels 

such as petroleum, of which there are limited resources remaining, therefore 

biotechnology has been utilized in order to generate these chemicals directly from 

biomass. Biomass as a renewable feedstock offers the opportunity to replace fossil 

fuels as a source of energy, materials and chemicals. Sugars, oils and other 

compounds generated from biomass can be converted into platform chemicals directly 

or as by-products from fuel products in processes analogous to the petrochemical 

industry today. Improvements and innovations to existing biological and chemical 

processing of sugars will provide the opportunity for the production of high-value 

chemicals and products from biomass and reduced reliance on petrochemical-derived 

products. The platform chemical of choice that this study focuses on is IA and citric 
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acid, due to it being a relatively expensive organic acid and due to its wide use in 

industry respectively, when compared to its counter-parts, such as, lactic acid, 

succinic acid etc. Renewable energy sources, other than biomass (the energy from 

plants and plant-derived materials), have not yet been exploited optimally in South 

Africa. 

 

*Information on current trends with regards to the improvement in fermentative 

production of similar metabolites can be included; can be in the form of growth 

parameters and/or genetic engineering. Information can be used from section 4.1.3. 

And 4.1.4. and chapter 5. This will provide a base for inclusion incorporation of the 

data suggested under general comments.  

1.5	  Fungal	  Growth	  Parameters:	  

Optimum fungal growth experimental parameters as published by Nubel and Rabajak 

include an incubation temperature of 37 – 40° C as well as continuous aeration will 

allow for optimum fungal metabolism to occur. A low starting pH within the range of 

3–5 is required, followed by a lower optimum operating pH within the range of 2.2 – 

3.8. A high glucose concentration is required ideally ranging between 10 to 20%. 

Sufficient nitrogen must be present, as well as a high magnesium sulfate concentration 

of 0.5% of the total fermentation volume. Low phosphate levels are required to limit 

the amount of mycelial growth as increased mycelial growth would result in 

overcrowding and recycling of IA could occur (18). Finally adequate levels of the 

trace metals, which include zinc, copper, and iron are required (8) (18). IA production 

by A. terreus shares many of the characteristics of citric acid production by A. niger 

due to their ability to proliferate well on a variety of monosaccharides, disaccharides, 

and polysaccharides (8). 

*Note: New section added to the literature review. 

1.8	  Strain	  Modification:	  

Aspergillus terreus has been modified in many ways, including strain selective 

breeding and genetic modification to improve the yield of its metabolites, such as; IA 

and Lovastatin. Such alterations to A. terreus include; strain improvement via 

mutagenesis as product inhibition, which plays a vital role in fungi metabolism (25) 

(26). A. terreus also has as a form of self preservation as too much acid production 
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would change the operating parameters of its environment thus inhibiting normal 

metabolic functions, therefore there is a need to select an IA tolerant strain to 

overcome this problem which results in low IA yields (27) (28). Screening six hundred 

and seventy colonies, Yashiro et al. isolated the strain TN-484 in 1995. Industrially 85 

g/l of IA was produced using this strain in a 100-kl scale fermenter utilizing simple 

media consisting of corn steep liquor, small amounts of minerals and glucose (14) (23) 

(24) (25) (29).  

1.8.1	  Genetic	  Transformation:	  

The general method of genetic transformation of filamentous fungi, begins firstly by 

removing the permeability barrier presented by the cell wall of the fungus, either by 

treatment with lithium acetate or by enzyme degradation using crude extracts found in 

snail gut (29) or by using a Trichoderma extract commercially known as Novozym 

234 (29) to produce protoplasts. Some filamentous fungi require a mixture of enzyme 

extracts to produce a sufficient amount of protoplasts. This is followed by the removal 

of the cell wall by utilizing an osmotic stabilizer such as 0.6 potassium chloride or 

1.2M sorbitol, the choice of which stabilizer is used depends on the species of fungus, 

the two Aspergillus species, A. niger and A. terreus make use of 1.2M and 0.55M 

sorbitol respectively as their osmotic stabilizers (29). DNA is then added to the 

protoplast suspension in the presence of 10-50mM calcium chloride and then followed 

by the addition of a solution of polyethylene glycerol, which initiates the uptake of the 

DNA by the protoplasts. The treated protoplasts are then allowed to proliferate of 

selective medium that selects for only the transformed cells (30). The selectable 

markers that can be used are genes that complement a nutrition requirement mutation, 

which allows the growth of the fungus in absence of the required nutritional factor 

(27).  

1.8.2	  Limitations	  regarding	  Fungal	  Genetic	  transformation:	  

There is a limitation to this methodology as it requires the recipient fungal species to 

be a mutant strain and this is often undesirable in industrial strains (20). The solution 

to this drawback is the use of positive selection systems, which is based on 

supplementation of antimetabolites, for example; oligomycin resistance, prokaryotic 

antibiotic resistance genes such as kanamycin or G418 resistance (29). Another 

alternative system utilized the amdS gene isolated from A. nidulans, which codes for 
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acetamidase, an enzyme that allows the growth on acetamide as a sole nitrogen or 

carbon source (7). Several other fungal species such as A. niger lack the amdS gene, 

which allows for easier selection of transformants, therefore making it a useful marker 

for transformation (30). The frequency of transformants is 10-100 stable transformants 

per µg. A similar technique to transform industrial fungi is to disrupt the gene 

functioning by homologous recombination using a defective gene or a gene that has 

been disrupted by a selectable marker, this method produces null mutations that 

eliminate the chance of undesirable traits developing in industrial strains of 

filamentous fungi (26) (27).  

1.8.3	  Future	  Prospects	  and	  other	  Transformation	  Methods:	  

Future prospects involving the heterologous expression of genes in filamentous fungi, 

where current gene expression systems rely on either powerful inducible or 

constitutive promoters, and homologous promoters are preferred to the production host 

as mentioned above to enhance organic acid production (31). There is however a 

disadvantage involving the constitutive expression of housekeeping gene promoters is 

that the promoters are functional during growth and therefore unsuitable for over 

expression of foreign proteins that might be toxic to the host cells. Another major 

disadvantage of inducible gene promoters, such as the powerful cbh1 gene promoter, 

is their repression by glucose and other carbon sources therefore they can severely 

affect the yield of protein secreted. These promoters can be regulated by the induction 

of carbon and nitrogen compounds and the pH of the growth medium (24).  

Experiments have shown a novel metabolically independent expression system that 

can be regulated by oestrogenic compounds and it has been tested in Aspergillus. A. 

nidulans and A. niger transformants are highly sensitive with regards to acquiring 

oestrogen responsive elements or low levels of oestrogenic substances such as 

diethylstilbestrol, this therefore allows this research to be utilized in the detection of 

xenoestrogens in food and in the environment (4). Other experiments involving the 

modification of the traditional method for cultivating filamentous fungi for protein 

production have been researched. Whereas instead of a submerged fermentation 

occurring in liquid media, solid-state fermentation, which is supported by high yields 

of the secreted metabolites, obtained in these systems can be utilized instead (16). Due 
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to the physical mode of growth and gene regulation of fungi in solid-state 

fermentation, differ from fungi grown in liquid cultures (4).  

Another vital factor in the development of transgenic fungal expression systems is the 

establishment of effective transformation protocols across fungal genera to add 

efficiency and flexibility to high throughput screening for evolved proteins and 

different metabolites of interest (21). Advancement in observation procedures 

including; microscopy technologies, such as fluorescence resonance energy transfer 

and fluorescent life time imaging, allows scientists to visualize metabolic pathways 

and protein–protein interactions in living systems therefore allowing greater 

understanding with regards to these areas, as fluorescent imaging, coupled with 

molecular biology, bioinformatics, biochemistry, genomics and proteomics, will 

redesign the concept of microbial metabolite production (21). 

Another transformation method, which is being used more commonly in experiments 

involving the genetic transformation of filamentous fungi, is biolistic bombardment 

and inclusion of the seven barrels Hepta adaptor system has noticeably increased the 

number of transformations achieved (32). Agrobacterium-mediated transformation 

method has also gained a lot of interest, and claims of up to 100–1000 times greater 

efficiency of the T-DNA transfer and chromosomal integration, compared with 

conventional methods mentioned before, as one is aware that the T-DNA of the 

bacterium Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and 

human cells (26). We are entering an era of accelerating development of novel fungal 

fermentations and transformations due to the exponential increase and development of 

information and tools to exploit nature. Therefore there are many methods our study 

can be expanded with regards to higher yield of organic acids from agricultural waste. 

*Changed the following according to the examiners requirements: 

 

*Page 10, Section 1.1.1: If one were to => If one was to. 

*Original “...if one were to...” 

*New “...if one was to...” 
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*Page 11, Second Paragraph: 

*Original “...Granted as they so commonly...”  

*New “...granted as they are commonly...” 

 

*Page 11, Second Paragraph:  

*Original “Fungis’ ”  

 *New “fungi’s” 

 

*Page 11, Second Paragraph:  

*Original “to secreted” 

*New  “to secrete” 

 

*Page 11-12: The current industrial...Department of Energy - Reword to convey 

information.  

*Original “The current industrial process involving Aspergillus niger and the 

production of citric acid, which is also a metabolite of interest as listed by the United 

States Department of Energy.” 

*New “The current industrial process using Aspergillus niger and the production of 

citric acid, which is also a metabolite of interest as listed by the United States 

Department of Energy, ranges between 200 g/l to 240 g/l, when utilizing 

glucose/sucrose is utilized as the main substrate source.” 

*Page 12: Industrial production… 

*Removed “in concentrations of” 

*Page 17, Section 1.7 Last Sentence:  
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*Moved the sentence to methodology. “The Aspergillus terreus utilized in this study 

was ordered and obtained from The Agricultural Research Council of South Africa in 

Pretoria.” 

 

*Page 17, Section 1.8:  

*Removed “is so that they are able to” 

 

*Page 18, AIM: Rephrased the paragraph to be more precise. 

*Original “The objective of the study is to produce itaconic acid (IA) and citric acid 

(CA) in levels of excess of 60g/l from sugar cane bagasse and or wheat bran, which 

has been chemically digested to produce a hydrolysate, which A. terreus will utilize, 

the fermentation and itaconic acid production will take place in an Airlift bioreactor, 

the pH and dissolved oxygen parameters will be constantly monitored using a 

DataTaker DT50 machine and samples containing itaconic acid will be assayed using 

High Performance Liquid Chromatography.” 

*New “The objective of the study is to produce itaconic acid (IA) and citric acid (CA) 

in levels of excess of 60g/l from chemically digested sugar cane bagasse and or wheat 

bran hydrolysate, using A. terreus, the fermentation and itaconic acid production will 

take place in an Airlift bioreactor, the pH and dissolved oxygen parameters will be 

constantly monitored using a DataTaker DT50 machine and samples will be assayed 

using High Performance Liquid Chromatography.”  

  

*Page 18, Objective 1: Reworded the beginning of the sentence. 

*Original “The successfully hydrolyze wheat bran and sugar cane bagasse via 

chemical digestion to provide a nutrient source for the fungus to utilize.” 

*New “To successfully hydrolyze wheat bran and sugar cane bagasse and provide a 

nutrient source for the fungus to utilize.” 
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Chapter 2 

1. Included the names of the manufacturers of the equipment and their locations. 

2. Used past tense when presenting the methods. 

3. Example Page 22 Section 2.6 

a. Avoided the inclusion of results in the methodology. 

b. Included the above information in the results to show that you, that I 

had a difficult time in performing the experiments. 

Chapter 3 

1. Included the x-axis on the Figure. Page 27, Figure 5. 

 
Figure 6. The Utilization of Agricultural Waste as Substrates for Organic Acid Production by 

A. terreus 
*Note Figure 5. Became Figure 6. Due to the added Figure 2. 

 

 

 

Figure 2. Chemical structure of Itaconic Acid 
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2. Reworked the methods for 3.3 and 3.4. 

*Original  

3.3	  Airlift	  Bioreactor	  Design	  and	  Assembly	  Strategy	  
The Airlift Bioreactor parts and machinery was obtained from Prof. Vince Gray’s lab 

in OLS, it consists of a 2 liter fermentation chamber connected to another 5 liter 

collection chamber via master flex tubing and the nutrients are recycled into a 10 liter 

feedstock barrel also via master flex tubing. The airlift bioreactor consists of three 

separate chambers, one being a 5L fermentation chamber where the airlift apparatus is 

housed along with a wire gauze chamber, created from flexible plastic netting with 1-

2mm spaces, this was placed in the center of the fermentation chamber and the fungal 

pellets were seeded directly into this chamber to prevent the pellets from depositing on 

the oxygen feeding tubes and nutrient entry point, therefore preventing blockage of 

oxygen flow, media agitation and nutrients from entering the fermentation chamber 

and also, most importantly to prevent the fungi from flowing into the neighboring 

product collection chamber which was a 10L flask. The reason for the separate 

collection and nutrient supply chambers is so that the product being produced won’t be 

mixed together with the incoming new nutrients until it has been pumped back into the 

fermentation chamber to avoid contamination by fungal enzymes still present in the 

fermentation product. 

3.4	  Airlift	  Bioreactor	  Fermentation	  
The entire bioreactor will be set up to run independently and the pH will be 

maintained to be between 3-4 and dissolved oxygen levels will be monitored using a 

DataTaker DT50 machine, in order to maintain it at 20g/l, the temperature of the 

fermentation chamber was kept constant via circulating 35-40°C water in the 

surrounding structure of the fermentation chamber to maintain the temperature within 

the fermentation chamber at 30°C. Master-flexes were set up to recycle the nutrients at 

a rate of 15ml/hour. The reason a 2L airlift bioreactor was used for this study is that 

it’s the first step to scaling up from the initial shake flask fermentation experiment, it’s 

function was to have a continuous supply of oxygen and nutrients to create the ideal 

environment for the fungus to achieve maximum metabolite (IA/CA) production. 

Three samples were taken daily from the product recovery chamber and were frozen 
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immediately in the -20°C freezer. The experiment was carried out for 16 days, once 

fungal biomass had ceased to increase and had reached equilibrium.	  

*New 

3.3	  Airlift	  Bioreactor	  Design	  and	  Assembly	  Strategy	  
The Airlift Bioreactor parts and machinery was obtained from Prof. Vince, it consists 

of a 2 liter fermentation chamber made up of Perspex connected to a Pyrex 5 liter 

collection Erlenmeyer Flask via Watson Masterflex Tubing and the nutrients are 

pumped via a Cole Palmer Masterflex L/S and recycled into a 10 liter Pyrex vat 

feedstock barrel also connected via Watson Masterflex Tubing. Fermentation 

hydrolysate was pumped from the 10 liter Pyrex feedstock vat using a Cole Palmer 

Masterflex L/S operating at 15 ml/h to the airlift fermentation chamber, which houses 

the airlift apparatus along with a wire gauze chamber, created from flexible plastic 

netting with 1-2mm spaces, this was placed in the center of the fermentation chamber 

and the fungal pellets were seeded directly into this chamber to prevent the pellets 

from depositing on the oxygen feeding tubes and nutrient entry point, therefore 

preventing blockage of oxygen flow, media agitation and nutrients from entering the 

fermentation chamber and also, most importantly to prevent the fungi from flowing 

into the neighboring product collection chamber. Within the fermentation chamber the 

fungi utilize the nutrients within the hydrolysate and produce itaconic acid, the product 

was then pumped to the collection vat also using a Cole Palmer Masterflex L/S 

operating at 15 ml/h. The reason for the separate collection and nutrient supply 

chambers is so that the product being produced won’t be mixed together with the 

incoming fresh nutrients to avoid contamination by fungal enzymes still present in the 

fermentation product.  

3.4	  Airlift	  Bioreactor	  Fermentation	  
The entire bioreactor was set up to run independently and the pH will be monitored by 

a Eutech Instruments Alpha-pH800 pH/ORP controller and was maintained between 

pH 3-4. Dissolved oxygen levels was pumped into the fermentation chamber using a 

KNF LAB Laboport Air Pump and the subsequent oxygen levels were monitored 

using a DataTaker DT50 machine, in order to maintain it at 20 g/l, the temperature of 

the fermentation chamber was kept constant via A Mannheim boehringer Liquitherm 

FT Water Bath circulating 35-40 °C water in the surrounding structure of the 

fermentation chamber to maintain the temperature within the fermentation chamber at 
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30°C. Cole Palmer Master-flexes were set up to recycle the nutrients at a rate of 15 

ml/h. The reason a 2 l airlift bioreactor was used for this study is that it’s the first step 

to scaling up from the initial shake flask fermentation experiment, it’s function was to 

have a continuous supply of oxygen and nutrients to create the ideal environment for 

the fungus to achieve maximum metabolite (IA/CA) production. Three samples were 

taken daily from the product recovery chamber and were frozen immediately in the -

20°C freezer. The experiment was carried out for 16 days, once fungal biomass had 

ceased to increase and had reached equilibrium.	  

 

3. The Original Table 1 was moved to the appendix,  

 

4. Included more information on reactor set up. 

*Done in Methodology. 

Chapter 4 

Discussion was completely reworked as per the requirements of the external 

examiner; please see below for changes made. 

Chapter 5 

Chapter 5 was also completely reworked as per the requirements of the external 

examiner; please see below for changes made. 

References 

The References section was also completely reworked as per the requests from both 

examiners; it has been changed from Alphabetically ordered to Arranged due to the 

order of appearance in the text.  
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External Examination Corrections 

1. Literature Review was reworked. I.e. To create more of a logical flow to the 

sections; inserted more subheadings to allow the literature review to flow 

better and work on the references. 

*Original 

Chapter	  1:	  

1.1	  Literature	  Review:	  

1.1.2 Global	  Dilemma:	  	  
Worldwide the human population is increasing at an astonishing rate, this therefore 

creates a high demand for energy that we as humans have become accustomed to and 

require to maintain our current standard of living. Thereby generating a thirst for new 

energy resources with the ability to supply power to newly emerging markets, from the 

fast developing Asian super powers in the form of The Peoples Republic of China and 

India.  

This has left many industries with a huge dilemma, being; how can this planet 

continue to support the increasing number of inhabitants with a diminishing amount 

of arable land available. To make the situation worse is that the many advances in 

current biotechnology research are directed at the production of biofuels. This is to 

support the growing demand for fuel, especially considering the global recession and 

the ever-dwindling fossil fuel reserves (4). Filamentous fungi play an important role 

in the production of biofuels, as they are able to generate high levels of enzymes that 

are used in hydrolysis of cellulosic biomass (4). However a recent study conducted in 

Germany stated that if one were to utilize the entire agricultural land available for 

food production and alter it to produce crops for biofuel production it would only 

cover 7% of the gas bill, due to the low energy generated from biofuel combustion 

(16). Alternatively the metabolite producing capabilities of filamentous fungi can be 

put to better use. 

1.1.2	  Current	  Examples	  of	  Filamentous	  Fungi	  in	  Industry:	  
Filamentous fungi are the microorganisms of choice to produce these platform 

chemicals due to their ability to secrete vast amount of enzymes that generate high 

metabolite yield (17)(28)(33), filamentous fungi grow in the form of multicellular 

filaments called hyphae, which generate connected networks with multiple genetically 
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identical nuclei, which make up the mycelium (17). Filamentous fungi have endless 

potential regarding their highly efficient metabolite producing capabilities; humans 

have only been able to harness a fraction of this potential (19). Fungal biotechnology 

is currently utilized in many aspects of industries, such as for the production of 

medical supplies, such as; Alexander Fleming’s famous antibiotic, Penicillin, which is 

produced by the fungi Penicillium chrysogenum. Lovastatin a cholesterol-lowering 

drug is produced by Aspergillus terreus and also Cyclosporine an immunosuppressant 

drug used in organ transplant procedures is produced by Tolypocladium inflatum (28). 

Several other products which filamentous fungi produce are often taken for granted as 

they as so commonly used. These include products of the food industry, such as; 

cheese produced by Penicillium spp., soy sauce and sake produced by Aspergillus 

oryzae (5). The main reason why filamentous fungi are utilized in industry is again 

due to the activity of fungi's’ enzymatic excretion capabilities. These extracellular 

enzymes allow fungal biomass to degrade plant cell walls and to generate large 

concentrations of metabolites. Penicillium simplicissimum is another fungus of 

interest; it is currently employed by industry due to its highly efficient xylanase 

activity. It’s used in the paper producing process to bleach wood pulp (18). This 

fungus is commonly known to produce succinate from glucose and studies have been 

conducted under aerobic and anaerobic conditions to investigate the pathways 

involved (18). P. simplicissimum is observed to secreted low levels of succinate. 

Succinic acid is the predominant acid produced under anaerobic conditions. Fungal 

pellet formation was shown to be important in obtaining maximum succinate 

production rates, and therefore raised the possibility of fumarate respiration as a 

biochemical mechanism for succinate production under anaerobic conditions (18). 

However it is known that succinic acid or succinate is produced as an intermediate 

during the ‘The Citric Acid cycle’ TCA, where citric acid or citrate is the final 

product, therefore this fungus is another perfect candidate to evaluate the production 

of organic acids when utilizing a second generation feedstock such as, lignocellulose 

substrate obtained from agricultural waste. Another important fungi utilized in 

industry is Aspergillus niger which became the primary microorganism in the 

production of citric acid, by taking over the burden from extracting citric acid from 

lemons, A. niger can metabolize many carbon sources such as sucrose and or glucose 

to produce vast amounts of citric acid for a fraction of the cost as opposed to using 
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lemons (8). The current industrial process involving Aspergillus niger and the 

production of citric acid, which is also a metabolite of interest as listed by the United 

States Department of Energy. Industrial production of citric acid by filamentous fungi 

ranges in concentrations of between 200g/L to 240g/L, when utilizing glucose/sucrose 

is utilized as the main substrate source. A. niger generates citric acid via the TCA in 

the fungus’s metabolic pathway, by taking up glucose into the cell and converting it to 

the three-carbon acid, pyruvate via the glycolytic pathway, which occurs in the 

cytosol. Subsequently the newly formed pyruvate molecule is decarboxylated to form 

acetyl-CoA catalyzed by the mitochondrial pyruvate dehydrogenase complex and 

another pyruvate molecule is carboxylated to oxaloacetate in the cytosol by pyruvate 

carboxylase (18). The then formed oxaloacetate must be transported into the 

mitochondrion of the fungi and combined with acetyl-CoA to form citrate. This 

product is passed out of the mitochondrion and eventually excreted out of the cell. The 

high yields of citric acid production process are possible because all six carbons of the 

substrate, glucose or fructose, are conserved in the six-carbon product citric acid, 

through the glycolytic pathway and the actions of two additional enzymes, pyruvate 

carboxylase and citrate synthase (18). 

 

Figure 1. The Simplified Metabolic Pathway Leading to Citric Acid Production in Aspergillus niger (18) 

Citrate synthase is the terminal enzyme in the citric acid biosynthetic pathway. Mg2+ 

and ATP inhibit the enzyme from A. niger, however citrate the product of citrate 

synthase is not an inhibitor of the enzyme itself. Other enzymes of the citric acid cycle 

also have significant effects on the production of citric acid, as aconitase inhibition 
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would theoretically lead to an accumulation of citrate by inhibiting subsequent flux 

during the citric acid cycle (8)(18). Another enzyme isocitrate dehydrogenase could 

have a deleterious effect on citric acid production by decarboxylating isocitrate, which 

is required to be in equilibrium with citrate via aconitase activity. The NADP+ specific 

isocitrate dehydrogenase has been purified from A. niger and found to be present in 

both the cytosol and mitochondrion (20). It was published that isocitrate 

dehydrogenase is inhibited by ATP and citrate via chelation of enzymatic Mg2+ (20). It 

was also noted that intracellular Mg2+concentrations would have little effect to the 

overall process (18). Citric acid accumulated extracellularly to a final concentration of 

about 1.0M, therefore an active export system must exist to remove citrate from the 

cytosol, where the normal citrate concentration is only 2 – 30mM (18). Citrate export 

requires low Mn2+concentrations in the range known to be required for efficient citric 

acid production (22). On the other hand, citrate import required Mn2+both for induction 

of expression of the citrate importer as well as for its function (8)(22). These results 

provide an additional explanation of the multiple effects of Mn2+on the physiology of 

A. niger under citric acid production conditions. There are many uses for citric acid in 

the food and beverage industry, the carbonated beverage industry accounted for 50% 

of the total citric acid production in 1990 (18).  

1.2	  Introduction	  to	  Itaconic	  Acid:	  
Due to increasing interest in sustainable development within the biotechnological 

field, industries are making many attempts to replace petrochemical-based monomers 

with organic substitutes. IA for example is one of the promising substances within the 

group of organic acids known as platform chemicals, which can be utilized to derive 

many other useful chemicals from. IA is a white crystalline unsaturated dicarbonic 

acid with one carboxyl group conjugated to the methylene group, it costs around US$ 

2/kg (25). Current organic acid industrial processes involving filamentous fungi 

currently utilize substrates such as pure glucose, xylose, starch and sucrose etc. These 

chemicals are relatively expensive, as stated in a review by Okabe, M. in 2009 the 

carbon source accounts for around 25% of the production costs and most importantly 

these sources are depleting due to the current circumstances the world faces caused by 

exponential growth of the human population (14), where more food, fuel and 

importantly space is required to grow these nutrient sources.  
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This study is focused on seeking out an alternative source of renewable substrates that 

can be utilized to maintain the current luxuries we have available, with regards to food 

and the textile industry. This study mainly focuses on the ability of A. terreus to utilize 

wheat bran and sugar cane bagasse as nutrient sources to generate platform chemicals 

of interest; i.e. organic acids such as; gluconic acid, succinic acid, fumaric acid, citric 

acid, lactic acid, L-malic acid and most importantly Itaconic acid. IA produced by 

Aspergillus terreus has been classified by the United States Department of Energy as a 

platform chemical that has the potential to give rise to many other useful chemicals, 

such as itaconic diamide, 3 - Methylpyrrollidine and 3 - Methyl THF (18). 

1.3	  Department	  of	  Energy	  and	  Platform	  Chemicals:	  
The department of energy is an organization that exists in many countries and 

operates in government to monitor aspects regarding energy and safety of handling 

nuclear material. Its main responsibilities include; energy conservation, energy-

related research, radioactive waste disposal, and domestic energy production. DOE 

also sponsors many basic and applied scientific research programs. Platform 

chemicals as mentioned earlier are building block chemicals, which have a high 

transformation potential into new families of useful molecules. Most platform 

chemicals are derived from fossil fuels such as petroleum, of which there are limited 

resources remaining, therefore biotechnology has been utilized in order to generate 

these chemicals directly from biomass. Biomass as a renewable feedstock offers the 

opportunity to replace fossil fuels as a source of energy, materials and chemicals. 

Sugars, oils and other compounds generated from biomass can be converted into 

platform chemicals directly or as by-products from fuel products in processes 

analogous to the petrochemical industry today. Improvements and innovations to 

existing biological and chemical processing of sugars will provide the opportunity for 

the production of high-value chemicals and products from biomass and reduced 

reliance on petrochemical-derived products. The platform chemical of choice that this 

study focuses on is IA and citric acid, due to it being a relatively expensive organic 

acid and due to its wide use in industry respectively, when compared to its counter-

parts, such as, lactic acid, succinic acid etc. 

1.4	  Substrates	  Utilized:	  	  
The main issue regarding feedstock choice is that all natural resources are being 

depleting, such primary choice or first generation feedstocks, being petroleum from 
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which platform chemicals can be derived from are running out. The global human 

population is increasing thus the demand for energy is always on the rise. To solve this 

problem one must resolve to other forms of feedstocks, i.e. renewable and abundant 

second-generation feedstocks. Such feedstocks that have the potential to be utilized in 

industry to generate platform chemicals include; cellulose powder and milled 

newspaper were used as a substrate to produce lactic acid by L. delbruckii in the 

presence of cellulases extracted from Trichoderma reesei (32)(35). The highest 

conversion occurred at pH 5 after 120 hours of fermentation and for cellulose (100g/l) 

and newspaper (50g/l) were 52 and 23g/l respectively (32). Corn stover and sugar cane 

bagasse has been utilized to generate citric acid via fermentation by Aspergillus niger 

(18) and Jatropha seed cake has been fermented using Aspergillus terreus to generate 

IA, with a maximum yield of 24.45g/l after 120 hours of fermentation (10).  

1.5	  Fungal	  Growth	  Parameters:	  
Optimum fungal growth experimental parameters as published by Nubel and Rabajak 

states that an incubation temperature of 37 – 40° C as well as continuous aeration must 

be maintained for optimum fungal metabolism to occur. A low starting pH within the 

range of 3–5 is required, followed by a lower operating pH within the range of 2.2 – 

3.8. A high glucose concentration is required ideally ranging between 10 to 20%, also 

sufficient nitrogen must be present, as well as a high magnesium sulfate concentration 

of 0.5% of the total fermentation volume. Low phosphate is also required to limit the 

amount of mycelial growth as increased mycelial growth would result in overcrowding 

and recycling of IA could occur (1), finally adequate levels of the trace metals, which 

include zinc, copper, and iron is required (1)(18). Since IA production by A. terreus 

shares many of the characteristics of citric acid production by A. niger, due to their 

ability to proliferate well on a variety of monosaccharides, disaccharides, and 

polysaccharides (18). 

Aspergillus niger is known to produce three major metabolites when undergoing 

fermentation these include; 2 - carboxylmethyl - 3 - hexyl-maleic acid anhydride, 2 - 

methylene - 3 - hexyl-butanedioic acid and 2 - methylene - 3 - (6 - hydroxyhexyl)-

butanedioic acid (3)(12).  

1.6	  Aspergillus	  terreus	  and	  Itaconic	  Acid:	  
Examples of other metabolites produced by the filamentous fungal species Aspergillus 

terreus, include; Asterriquinone, which is an antitumor metabolite. A. terreus is more 
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commonly known to produce terrain, which is another fungal metabolite that inhibits 

the epidermal proliferation of skin equivalents, however the metabolite of interest this 

study is focusing on is IA from A. terreus, which is utilized in the polymer industry 

where it is an important ingredient in the manufacturing of synthetic fibers, coatings, 

adhesives, thickeners and binders (9) (12)(18)(34).The first reported source of IA was 

by the fungus Aspergillus itaconicus, which hence coined the name itaconic acid. 

Following this ground breaking discovery, it was observed that A. terreus also 

produced IA and in higher concentrations (7)(9). Lockwood and Reeves (1945) 

experimented with more than 300 isolates of A. terreus and came to the conclusion 

that eleven species were efficient producers of IA, when utilizing glucose as a 

substrate source with a resulting yield of 45% (18). Current work regarding 

fermentation parameters and the biochemistry of IA production has been performed 

utilizing strain NRRL 1960 of A. terreus. Thereby resulting in an efficient process for 

the fermentation of sucrose in molasses to IA been patented in 1962 by Nubel and 

Rabajak with a reported yield 70% 18).   

More than 80,000 tons of IA is produced worldwide each year and are sold at a price 

of around US$ 2/kg (2)(21)(25). The IA production yielded from liquid sucrose is 

higher than 80 g/l. The widespread use of IA in synthetic resins, synthetic fibers, 

plastics, rubbers, surfactants, and oil additives has resulted in an increased demand for 

this product. However, at present, the IA production capacity exceeds the demand 

because this product has a restricted range of applications. Studies have been actively 

conducted in different biomedical fields such as; dental, ophthalmic, and drug 

delivery. The reason behind the research is to extend the range of applications of 

itaconic acid. Recently, many researchers have attempted to replace the carbon source 

used for microbial production of IA with cheaper alternative substrates (25). However, 

there is still a need for new biotechnology innovations that would help to reduce the 

production costs, such as innovative process development and strain improvement to 

allow the use of a low-quality carbon source (25).  

1.7	  Strain	  Modification:	  
Aspergillus terreus has been modified in many ways to improve the yield of its 

metabolites, such as; IA and Lovastatin. Such alterations to A. terreus include; strain 

improvement via mutagenesis as product inhibition, which plays a vital role in fungi 

metabolism (6)(13). A. terreus also has as a form of self preservation as too much acid 
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production would change the operating parameters of its environment thus inhibiting 

normal metabolic functions, therefore there is a need to select an IA tolerant strain to 

overcome this problem which results in low IA yields (15)(26). Screening six hundred 

and seventy colonies, Yashiro et al. isolated the strain TN-484 in 1995. Industrially 

85g/l of IA was produced using this strain in a 100-kl scale fermenter utilizing simple 

media consisting of corn steep liquor, small amounts of minerals and glucose 

(6)(23)(25)(29)(30). The Aspergillus terreus utilized in this study was ordered and 

obtained from The Agricultural Research Council of South Africa in Pretoria. 

1.8	  High	  Carbohydrate	  Content	  leading	  to	  High	  Acid	  Production:	  
Due to the high carbohydrate content made available to the fungus in artificial growth 

medium the filamentous fungi are able to produce these organic acids at astonishing 

rates. Naturally these filamentous fungi proliferate in soils, where they would not 

encounter high concentrations of free sugars; therefore they have evolved a tight 

regulation of organic acid production (12)(18)(30). Fungi produce organic acids is so 

that they are able to outcompete and inhibit the growth of competitors by lowering the 

pH of the surrounding environment thereby restricting growth of competitors. Also the 

chelating capabilities of citric acid coupled with the increasing solubility of most metal 

compounds at acidic pH would allow Aspergillus niger to proliferate in environments 

containing metals present in an insoluble state or in low concentrations. The resulting 

low pH also deters rapidly growing bacteria and many fungi species, which can’t grow 

below pH 3 (18). In the case of Aspergillus terreus IA plays a similar role in inhibiting 

competitors for nutrients (18). 

*New 

Chapter	  1:	  Literature	  Review	  

1.1	  Energy	  Requirements	  and	  Fungi	  in	  Industry	  

1.1.3 Global	  Dilemma:	  	  
Worldwide the human population is increasing at an astonishing rate, this therefore 

creates a high demand for energy that we as humans have become accustomed to and 

require to maintain our current standard of living. This generates a thirst for new 

energy resources to supply power to emerging markets, from the fast developing Asian 

super powers in the form of The Peoples Republic of China and India.  
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This has left many industries with a dilemma; how can this planet continue to support 

the increasing number of inhabitants with a diminishing amount of arable land 

available. To make the situation worse is that the many advances in current 

biotechnology research are directed at the production of biofuels. This is to support 

the growing demand for fuel, especially considering the global recession and the ever-

dwindling fossil fuel reserves (1). Filamentous fungi play an important role in the 

production of biofuels, as they are able to generate high levels of enzymes that are 

used in hydrolysis of cellulosic biomass (1). However a recent study conducted in 

Germany stated that if one was to utilize the entire agricultural land available for food 

production and alter it to produce crops for biofuel production it would only cover 7% 

of the gas bill, due to the low energy generated from biofuel combustion (2). 

Alternatively the metabolite producing capabilities of filamentous fungi can be put to 

better use. 

1.1.4 Current	  Examples	  of	  Filamentous	  Fungi	  in	  Industry:	  

1.1.4.1 Filamentous	  Fungi:	  
Filamentous fungi are the microorganisms of choice to produce these platform 

chemicals due to their ability to secrete vast amount of enzymes that generate high 

metabolite yield (3) (4) (5), they grow in the form of multicellular filaments called 

hyphae, which generate connected networks with multiple genetically identical nuclei, 

which make up the mycelium (3). Filamentous fungi have potential regarding their 

highly efficient metabolite producing capabilities; humans have only been able to 

harness a fraction of this potential (6).  

1.1.4.2 Fungal	  Biotechnology	  in	  Industry:	  	  

Fungal biotechnology is currently utilized in many industries, such as for the 

production of medical supplies, such as; Penicillin, which is produced by the fungi 

Penicillium chrysogenum. Lovastatin a cholesterol-lowering drug is produced by 

Aspergillus terreus and Cyclosporine an immunosuppressant drug used in organ 

transplant procedures is produced by Tolypocladium inflatum (4). Several other 

products which filamentous fungi produce are often taken for granted as they are so 

commonly used and include products of the food industry, such as; cheese produced 

by Penicillium spp., soy sauce and sake produced by Aspergillus oryzae (5). The main 

reason why filamentous fungi are utilized in industry is due to the high activity of 
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fungi's enzymatic secretions. These extracellular enzymes allow fungal biomass to 

degrade plant cell walls and to generate large concentrations of metabolites. 

Penicillium simplicissimum is another fungus of interest; it is currently employed by 

industry due to its high xylanase activity. It is used in the paper producing process to 

bleach wood pulp (8). This fungus is commonly known to produce succinate from 

glucose and studies have been conducted under aerobic and anaerobic conditions to 

investigate the pathways involved (8). P. simplicissimum has been observed to secrete 

low levels of succinate. Succinic acid is the predominant acid produced under 

anaerobic conditions. Fungal pellet formation was shown to be important in obtaining 

maximum succinate production rates, and therefore raised the possibility of fumarate 

respiration as a biochemical mechanism for succinate production under anaerobic 

conditions (8). However it is known that succinic acid or succinate is produced as an 

intermediate during the The Citric Acid cycle (TCA), where citric acid or citrate is the 

final product. Therefore this fungus is another perfect candidate to evaluate the 

production of organic acids when utilizing a second-generation feedstock such as 

lignocellulose substrate obtained from agricultural waste.  

1.1.4.3 Aspergillus	  Niger	  and	  Citric	  Acid	  

Another important fungi utilized in industry is Aspergillus niger which became the 

primary microorganism in the production of citric acid, exceeding production from 

extracting citric acid from lemons. A. niger can metabolize many carbon sources such 

as sucrose and or glucose to produce vast amounts of citric acid for a fraction of the 

cost as opposed to using lemons (9) (22). The current industrial process using 

Aspergillus niger and the production of citric acid, which is also a metabolite of 

interest as listed by the United States Department of Energy, ranges between 200 g/l 

to 240 g/l, when utilizing glucose/sucrose is utilized as the main substrate source. 

There are many uses for citric acid in the food and beverage industry, the carbonated 

beverage industry accounted for 50% of the total citric acid production in 1990 (8) 

(22).  A. niger generates citric acid via the TCA in the fungus’s metabolic pathway, 

by taking up glucose into the cell and converting it to the three-carbon acid, pyruvate 

via the glycolytic pathway, which occurs in the cytosol. Subsequently the newly 

formed pyruvate molecule is decarboxylated to form acetyl-CoA catalyzed by the 

mitochondrial pyruvate dehydrogenase complex and another pyruvate molecule is 
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carboxylated to oxaloacetate in the cytosol by pyruvate carboxylase (8). The 

oxaloacetate is transported into the mitochondrion of the fungi and combined with 

acetyl-CoA to form citrate. This product is passed out of the mitochondrion and 

eventually secreted of the cell. The high yields of citric acid production process are 

possible because all six carbons of the substrate, glucose or fructose, are conserved in 

the six-carbon product citric acid, through the glycolytic pathway and the actions of 

two additional enzymes, pyruvate carboxylase and citrate synthase (8) (22). 

 

Figure 1. The Simplified Metabolic Pathway Leading to Citric Acid Production in Aspergillus niger (8) 

Citrate synthase is the end terminal enzyme in the citric acid biosynthetic pathway. 

Mg2+ and ATP inhibit the enzyme from A. niger, however citrate the product of citrate 

synthase is not an inhibitor of the enzyme itself. Other enzymes of the citric acid cycle 

also have significant effects on the production of citric acid, as aconitase inhibition 

would theoretically lead to an accumulation of citrate by inhibiting subsequent flux 

during the citric acid cycle (8) (9). Another enzyme, isocitrate dehydrogenase could 

have a deleterious effect on citric acid production by decarboxylating isocitrate, which 

is required to be in equilibrium with citrate via aconitase activity. The NADP+ specific 

isocitrate dehydrogenase has been purified from A. niger and found to be present in 

both the cytosol and mitochondrion (10). It was published that isocitrate 

dehydrogenase is inhibited by ATP and citrate via chelation of enzymatic Mg2+ (10). It 

was also noted that intracellular Mg2+concentrations would have little effect to the 

overall process (8). Citric acid accumulated extracellularly to a final concentration of 

about 1.0M, therefore an active export system must exist to remove citrate from the 
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cytosol, where the normal citrate concentration is only 2 – 30mM (8). Citrate export 

requires low Mn2+concentrations in the range known to be required for efficient citric 

acid production (11). On the other hand, citrate import required Mn2+both for induction 

of expression of the citrate importer as well as for its function (9) (11). These results 

provide an additional explanation of the multiple effects of Mn2+on the physiology of 

A. niger under citric acid production conditions. Aspergillus niger is known to produce 

three major metabolites when undergoing fermentation. These include 2 - 

carboxylmethyl - 3 - hexyl-maleic acid anhydride, 2 - methylene - 3 - hexyl-

butanedioic acid and 2 - methylene - 3 - (6 - hydroxyhexyl)-butanedioic acid (12) (13). 

1.2	  Introduction	  to	  Itaconic	  Acid:	  
Due to increasing interest in sustainable development within the biotechnological 

field, industries are making many attempts to replace petrochemical-based monomers 

with organic substitutes. IA (C5H6O4) for example is one of the promising substances 

within the group of organic acids known as platform chemicals, which can be utilized 

to derive many other useful chemicals from. IA is a white crystalline unsaturated 

dicarbonic acid with one carboxyl group conjugated to the methylene group, it costs 

around US$ 2/kg (14). Current organic acid industrial processes involving 

filamentous fungi currently utilize substrates such as pure glucose, xylose, starch and 

sucrose etc. These chemicals are relatively expensive. As stated in a review by Okabe, 

M. in 2009 the carbon source accounts for around 25% of the production costs and 

most importantly these sources are dwindling.  

Figure 2. Chemical structure of Itaconic Acid 

This study is focused on seeking out an alternative source of renewable substrates that 

can be utilized to maintain the current luxuries we have available, with regards to food 

and the textile industry. This study mainly focuses on the ability of A. terreus to utilize 

wheat bran and sugar cane bagasse as nutrient sources to generate platform chemicals 

of interest; i.e. organic acids such as; gluconic acid, succinic acid, fumaric acid, citric 
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acid, lactic acid, L-malic acid and most importantly IA. IA produced by Aspergillus 

terreus has been classified by the United States Department of Energy as a platform 

chemical that has the potential to give rise to many other useful chemicals, such as 

itaconic diamide, 3 - Methylpyrrollidine and 3 - Methyl THF (8). 

1.3	  Department	  of	  Energy	  and	  Platform	  Chemicals:	  
The department of energy is an organization that exists in many countries and 

operates in government to monitor aspects regarding energy. Its main responsibilities 

include; energy conservation, energy-related research, radioactive waste disposal, and 

domestic energy production. The South African DOE ensures that diverse energy 

resources are made available, in sustainable quantities and at affordable prices in 

support of economic growth and poverty alleviation. DOE also sponsors many basic 

and applied scientific research programs. Platform chemicals as mentioned earlier are 

building block chemicals, which have a high transformation potential into new 

families of useful molecules. Most platform chemicals are derived from fossil fuels 

such as petroleum, of which there are limited resources remaining, therefore 

biotechnology has been utilized in order to generate these chemicals directly from 

biomass. Biomass as a renewable feedstock offers the opportunity to replace fossil 

fuels as a source of energy, materials and chemicals. Sugars, oils and other 

compounds generated from biomass can be converted into platform chemicals directly 

or as by-products from fuel products in processes analogous to the petrochemical 

industry today. Improvements and innovations to existing biological and chemical 

processing of sugars will provide the opportunity for the production of high-value 

chemicals and products from biomass and reduced reliance on petrochemical-derived 

products. The platform chemical of choice that this study focuses on is IA and citric 

acid, due to it being a relatively expensive organic acid and due to its wide use in 

industry respectively, when compared to its counter-parts, such as, lactic acid, 

succinic acid etc. Renewable energy sources, other than biomass (the energy from 

plants and plant-derived materials), have not yet been exploited optimally in South 

Africa. 

1.4	  Substrates	  Utilized:	  	  
Renewable and abundant second-generation feedstocks, such as those that have the 

potential to be utilized in industry to generate platform chemicals include; cellulose 

powder and milled newspaper. These were used as a substrate source to produce lactic 
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acid in a study by L. delbruckii in the presence of cellulases extracted from 

Trichoderma reesei (15) (16). The highest conversion occurred at pH 5 after 120 hours 

of fermentation and for cellulose (100 g/l) and newspaper (50 g/l) were 52 and 23 g/l 

respectively (15). Corn stover and sugar cane bagasse has been utilized to generate 

citric acid via fermentation by Aspergillus niger (8) and Jatropha seed cake has been 

fermented using Aspergillus terreus to generate IA, with a maximum yield of 24.5 g/l 

after 120 hours of fermentation (17). However due to their availability, sugar cane 

bagasse and wheat bran were chosen to be used for this study.  

1.5	  Fungal	  Growth	  Parameters:	  
Optimum fungal growth experimental parameters as published by Nubel and Rabajak 

include an incubation temperature of 37 – 40° C as well as continuous aeration will 

allow for optimum fungal metabolism to occur. A low starting pH within the range of 

3–5 is required, followed by a lower optimum operating pH within the range of 2.2 – 

3.8. A high glucose concentration is required ideally ranging between 10 to 20%. 

Sufficient nitrogen must be present, as well as a high magnesium sulfate concentration 

of 0.5% of the total fermentation volume. Low phosphate levels are required to limit 

the amount of mycelial growth as increased mycelial growth would result in 

overcrowding and recycling of IA could occur (18). Finally adequate levels of the 

trace metals, which include zinc, copper, and iron are required (8) (18). IA production 

by A. terreus shares many of the characteristics of citric acid production by A. niger 

due to their ability to proliferate well on a variety of monosaccharides, disaccharides, 

and polysaccharides (8). 

1.6	  Aspergillus	  terreus	  and	  Itaconic	  Acid:	  
Examples of other metabolites produced by the filamentous fungal species Aspergillus 

terreus, include; Asterriquinone, which is an antitumor metabolite. A. terreus is more 

commonly known to produce terrain, which is another fungal metabolite that inhibits 

the epidermal proliferation of skin equivalents, which is an in vitro skin model using 

to conduct experiments on processes involving the skin, such as wound healing 

and keratinocyte migration. The metabolite of interest this study is focusing on is IA 

from A. terreus. This is utilized in the polymer industry where it is an important 

ingredient in the manufacturing of synthetic fibers, coatings, adhesives, thickeners and 

binders (8) (13) (19) (20) (23). The first reported production  synthesis of IA was by 

the fungus Aspergillus itaconicus, which hence coined the name itaconic acid. 
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Following this discovery, it was observed that A. terreus also produced IA and in 

higher concentrations (7) (9) (23). Lockwood and Reeves (1945) experimented with 

more than 300 isolates of A. terreus and came to the conclusion that eleven species 

were efficient producers of IA, when utilizing glucose as a substrate source with a 

resulting yield of 45% (8). Current work regarding fermentation parameters and the 

biochemistry of IA production has been performed utilizing strain NRRL 1960 of A. 

terreus. 

More than 80,000 tons of IA is produced worldwide each year and are sold at a price 

of around US$ 2/kg (2) (14) (21). The IA production yielded from liquid sucrose is 

higher than 80 g/l. The widespread use of IA in synthetic resins, synthetic fibers, 

plastics, rubbers, surfactants, and oil additives has resulted in an increased demand for 

this product. However, at present, the IA production capacity exceeds the demand 

because this product has a restricted range of applications. Studies have been actively 

conducted in different biomedical fields such as; dental, ophthalmic, and drug 

delivery. The reason behind the research is to extend the range of applications of 

itaconic acid. Recently, many researchers have attempted to replace the carbon source 

used for microbial production of IA with cheaper alternative substrates (33). However, 

there is still a need for new biotechnology innovations that would help to reduce the 

production costs, such as innovative process development and strain improvement to 

allow the use of a low-quality carbon source (33).  

1.7	  High	  Carbohydrate	  Content	  leading	  to	  High	  Acid	  Production:	  
Due to the high carbohydrate content made available to the fungus in artificial growth 

medium the filamentous fungi are able to produce these organic acids at high rates. 

Naturally these filamentous fungi proliferate in soils, where they would not encounter 

high concentrations of free sugars; therefore they have evolved a tight regulation of 

organic acid production (8) (13) (24). Fungi produce organic acids to outcompete and 

inhibit the growth of competitors by lowering the pH of the surrounding environment 

thereby restricting growth of competitors. In addition the chelating capabilities of 

citric acid coupled with the increasing solubility of most metal compounds at acidic 

pH would allow Aspergillus niger to proliferate in environments containing metals 

present in an insoluble state or in low concentrations. The resultant low pH also deters 

rapidly growing bacteria and many fungi species, which can’t grow below pH 3 (8). In 
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the case of Aspergillus terreus IA plays a similar role in inhibiting competitors for 

nutrients (8). 

1.8	  Strain	  Modification:	  
Aspergillus terreus has been modified in many ways, including strain selective 

breeding and genetic modification to improve the yield of its metabolites, such as; IA 

and Lovastatin. Such alterations to A. terreus include; strain improvement via 

mutagenesis as product inhibition, which plays a vital role in fungi metabolism (25) 

(26). A. terreus also has as a form of self preservation as too much acid production 

would change the operating parameters of its environment thus inhibiting normal 

metabolic functions, therefore there is a need to select an IA tolerant strain to 

overcome this problem which results in low IA yields (27) (28). Screening six hundred 

and seventy colonies, Yashiro et al. isolated the strain TN-484 in 1995. Industrially 85 

g/l of IA was produced using this strain in a 100-kl scale fermenter utilizing simple 

media consisting of corn steep liquor, small amounts of minerals and glucose (14) (23) 

(24) (25) (29).  

1.8.1	  Genetic	  Transformation:	  
The general method of genetic transformation of filamentous fungi, begins firstly by 

removing the permeability barrier presented by the cell wall of the fungus, either by 

treatment with lithium acetate or by enzyme degradation using crude extracts found in 

snail gut (29) or by using a Trichoderma extract commercially known as Novozym 

234 (29) to produce protoplasts. Some filamentous fungi require a mixture of enzyme 

extracts to produce a sufficient amount of protoplasts. This is followed by the removal 

of the cell wall by utilizing an osmotic stabilizer such as 0.6 potassium chloride or 

1.2M sorbitol, the choice of which stabilizer is used depends on the species of fungus, 

the two Aspergillus species, A. niger and A. terreus make use of 1.2M and 0.55M 

sorbitol respectively as their osmotic stabilizers (29). DNA is then added to the 

protoplast suspension in the presence of 10-50mM calcium chloride and then followed 

by the addition of a solution of polyethylene glycerol, which initiates the uptake of the 

DNA by the protoplasts. The treated protoplasts are then allowed to proliferate of 

selective medium that selects for only the transformed cells (30). The selectable 

markers that can be used are genes that complement a nutrition requirement mutation, 

which allows the growth of the fungus in absence of the required nutritional factor 

(27).  
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1.8.2	  Limitations	  regarding	  Fungal	  Genetic	  transformation:	  
There is a limitation to this methodology as it requires the recipient fungal species to 

be a mutant strain and this is often undesirable in industrial strains (20). The solution 

to this drawback is the use of positive selection systems, which is based on 

supplementation of antimetabolites, for example; oligomycin resistance, prokaryotic 

antibiotic resistance genes such as kanamycin or G418 resistance (29). Another 

alternative system utilized the amdS gene isolated from A. nidulans, which codes for 

acetamidase, an enzyme that allows the growth on acetamide as a sole nitrogen or 

carbon source (7). Several other fungal species such as A. niger lack the amdS gene, 

which allows for easier selection of transformants, therefore making it a useful marker 

for transformation (30). The frequency of transformants is 10-100 stable transformants 

per µg. A similar technique to transform industrial fungi is to disrupt the gene 

functioning by homologous recombination using a defective gene or a gene that has 

been disrupted by a selectable marker, this method produces null mutations that 

eliminate the chance of undesirable traits developing in industrial strains of 

filamentous fungi (26) (27).  

1.8.3	  Future	  Prospects	  and	  other	  Transformation	  Methods:	  
Future prospects involving the heterologous expression of genes in filamentous fungi, 

where current gene expression systems rely on either powerful inducible or 

constitutive promoters, and homologous promoters are preferred to the production host 

as mentioned above to enhance organic acid production (31). There is however a 

disadvantage involving the constitutive expression of housekeeping gene promoters is 

that the promoters are functional during growth and therefore unsuitable for over 

expression of foreign proteins that might be toxic to the host cells. Another major 

disadvantage of inducible gene promoters, such as the powerful cbh1 gene promoter, 

is their repression by glucose and other carbon sources therefore they can severely 

affect the yield of protein secreted. These promoters can be regulated by the induction 

of carbon and nitrogen compounds and the pH of the growth medium (24).  

Experiments have shown a novel metabolically independent expression system that 

can be regulated by oestrogenic compounds and it has been tested in Aspergillus. A. 

nidulans and A. niger transformants are highly sensitive with regards to acquiring 

oestrogen responsive elements or low levels of oestrogenic substances such as 

diethylstilbestrol, this therefore allows this research to be utilized in the detection of 
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xenoestrogens in food and in the environment (4). Other experiments involving the 

modification of the traditional method for cultivating filamentous fungi for protein 

production have been researched. Whereas instead of a submerged fermentation 

occurring in liquid media, solid-state fermentation, which is supported by high yields 

of the secreted metabolites, obtained in these systems can be utilized instead (16). Due 

to the physical mode of growth and gene regulation of fungi in solid-state 

fermentation, differ from fungi grown in liquid cultures (4).  

Another vital factor in the development of transgenic fungal expression systems is the 

establishment of effective transformation protocols across fungal genera to add 

efficiency and flexibility to high throughput screening for evolved proteins and 

different metabolites of interest (21). Advancement in observation procedures 

including; microscopy technologies, such as fluorescence resonance energy transfer 

and fluorescent life time imaging, allows scientists to visualize metabolic pathways 

and protein–protein interactions in living systems therefore allowing greater 

understanding with regards to these areas, as fluorescent imaging, coupled with 

molecular biology, bioinformatics, biochemistry, genomics and proteomics, will 

redesign the concept of microbial metabolite production (21). 

Another transformation method, which is being used more commonly in experiments 

involving the genetic transformation of filamentous fungi, is biolistic bombardment 

and inclusion of the seven barrels Hepta adaptor system has noticeably increased the 

number of transformations achieved (32). Agrobacterium-mediated transformation 

method has also gained a lot of interest, and claims of up to 100–1000 times greater 

efficiency of the T-DNA transfer and chromosomal integration, compared with 

conventional methods mentioned before, as one is aware that the T-DNA of the 

bacterium Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and 

human cells (26). We are entering an era of accelerating development of novel fungal 

fermentations and transformations due to the exponential increase and development of 

information and tools to exploit nature. Therefore there are many methods our study 

can be expanded with regards to higher yield of organic acids from agricultural waste. 

1.9	  Analysis	  Using	  High-‐Performance	  Liquid	  Chromatography:	  
The HPLC utilized a column that holds chromatographic packing material, i.e. the 

stationary phase, in our case being an ion exchange column is used, which operates on 
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the basis of selective exchange of ions in the sample with counter-ions in the 

stationary phase (35). Ion exchange is performed with columns containing charge-

bearing functional groups attached to a polymer matrix. The functional ions are 

permanently bonded to the column and each has a counter-ion attached. The sample 

will then be retained via replacing the counter-ions of the stationary phase with its own 

ions. The sample is eluted from the column by changing the properties of the mobile 

phase do that the mobile phase will now displace the sample ions from the stationary 

phase. A pump is utilized to maintain the pressure of between 40.2 – 41.2 bar and a 

flow rate of 0.8 ml/min for the mobile phase, which was 0.001 M H2SO4, which was 

pumped through the column, and a Refractive Index Detector of 8.85 nRIU was used 

to show the retention times of the molecules (34). The concept behind the HPLC is to 

compare the retention time of each of the molecules within the sample and compare it 

to that of the calibrated standards of citric acid and itaconic acid, the retention time 

varies depending on the interactions between the stationary phase, the molecules being 

analyzed, and the solvent used.  As the samples which have stronger interactions with 

the stationary phase than with the mobile phase will elute from the column less 

quickly, and thus have a longer retention time. 

 

2. Reworked the Aims and Objectives. 

*Original 

Aim:	  	  
The objective of the study is to produce itaconic acid (IA) and citric acid (CA) in 

levels of excess of 60g/l from sugar cane bagasse and or wheat bran, which has been 

chemically digested to produce a hydrolysate, which A. terreus will utilize, the 

fermentation and itaconic acid production will take place in an Airlift bioreactor, the 

pH and dissolved oxygen parameters will be constantly monitored using a DataTaker 

DT50 machine and samples containing itaconic acid will be assayed using High 

Performance Liquid Chromatography.  

 

Objectives:	  
 

1. The successfully hydrolyze wheat bran and sugar cane bagasse via chemical 

digestion to provide a nutrient source for the fungus to utilize. 
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2. To successfully set up and operate a 5L airlift bioreactor that recycles the 

nutrients. 

3. To utilize this bioreactor to produce metabolites of interest, namely; IA and 

CA in concentrations in excess of 60g/l. 

 

*New 

Aim:	  	  
The objective of the study is to produce itaconic acid (IA) and citric acid (CA) in 

levels of excess of 60g/l from chemically digested sugar cane bagasse and or wheat 

bran hydrolysate, using A. terreus, the fermentation and itaconic acid production will 

take place in an Airlift bioreactor, the pH and dissolved oxygen parameters will be 

constantly monitored using a DataTaker DT50 machine and samples will be assayed 

using High Performance Liquid Chromatography.  

 

Objectives:	  
 

1. To successfully hydrolyze wheat bran and sugar cane bagasse and provide a 

nutrient source for the fungus to utilize. 

2. To successfully set up and operate a 5 l airlift bioreactor that recycles the 

nutrients. 

3. To utilize this bioreactor to produce metabolites of interest, namely; IA and 

CA in concentrations in excess of 60 g/l. 

 

3. The materials and methods were reworked, as logical flow is essential. Also 

listed the equipment used etc. 

*Original 

Chapter	  2:	  

Materials	  and	  Methods:	  	  

2.1	  Bioreactor	  Nutrient	  Medium	  Formulation:	  	  
The methodology utilized for this study would initially begin with the 

preparation of the growth medium or hydrolysate. Wheat bran a form of agricultural 

waste was obtained from Prof. Gray’s biotechnology lab in the Oppenheimer Life 

Sciences building at the University of the Witwatersrand’s East Campus and used it as 
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the raw materials due to its abundance and accessibility and in the case of other 

agricultural waste the inability of humans to utilize it as a nutrient source. Wheat bran 

like sugar cane bagasse consists mainly of lignocellulose, which is made up of 

hemicellulose, cellulose and lignin. Other forms of agricultural waste that contain 

lignocellulose include; wood residues such as sawmill and paper mill waste, municipal 

paper waste, agricultural residues including corn stover and dedicated energy crops 

which are mostly composed of fast growing tall, woody grasses.  All of these above 

mentioned substrate sources are of very poor quality with regards to nutritional value, 

and the current method of utilization by combustion to generate energy. In current 

industrial production of organic acids, the energy generated via combustion of these 

lignocellulose sources are used to heat the distilling vats. 

Lignocellulose is a rigid structure and most fungi aren’t able to gain access to the 

sugars trapped within the lignin outer lining, therefore creating a requirement of 

chemical pretreatment to release the encapsulated sugars. Chemical digestion of the 

wheat bran and sugar cane bagasse involves, pretreatment of biomass using 

concentrated acid such as Sulphuric acid the ratio of approximately 2:1 (w/w) with 

regards to acid and lignocellulose pulp. Thereby for the first batch of hydrolysate, 

336ml of 70% Sulphuric acid was added to 200g of bran within a 5 litre Schott bottle 

and mixture was then rolled for 24 hours at 30ºC using a bench top shaking incubator 

from the Chemical Engineering Department in the Richard Ward Building on The 

University of the Witwatersrand’s East Campus. Following this the oak coloured 

wheat bran became a black tar-like mixture after 24 hours. 2400 ml of water was then 

added to wash the mixture and allow for hydrolysis to occur, where the glycosidic 

bonds between the lignocelluloses’ polysaccharides are to be cleaved, this resulting 

mixture was then transferred and incubated at 95 ºC for 3 hours in the same bench top 

incubator with no agitation. The 5-litre Schott bottle was partially opened to allow for 

the newly formed hydrogen gas to escape as hydrolysis takes place. Calcium 

hydroxide (CaOH2) was then added to achieve neutralization of the suspension 

resulting in a pH ranging between of 5.5‑6.5 is reached, sulfate removal occurs 

simultaneously due to the addition of calcium hydroxide. At this point the fluid 

thickened to a cement-like liquid. This slurry was then centrifuged for 20 min. at 6000 

rpm to achieve an RCF of approximately 16000m/s2 using a Beckman J2-21 centrifuge 

to separate the CaSO4 and other solids (lignin) from the liquid containing the sugars 
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released from the biomass. The glucose and xylose concentration was analyzed using 

Prestige Smart System Test Strips provided by Dr. Karl Rumbold and the result 

collated with that in literature being 25.35 g/l for glucose and 26.84 g/l for xylose 

released from de-starched bran. The supernatant containing the sugars was then 

removed, autoclaved at 121° C and stored at -20 ºC, to inhibit the proliferation of any 

microbes which would deplete the glucose and xylose released from the wheat bran, 

thereby the hydrolysate was frozen until it was used for fermentation. 

The second-generation feedstock utilized in the Airlift Bioreactor experiment setup is 

sugar cane bagasse, which was kindly donated by the Illovo Sugar Company based in 

KwaZulu Natal. The lignocellulose source was then chemically digested in the same 

manner as wheat bran the only difference being that the hydrolysate production will 

be up scaled, i.e. 840ml of 70% Sulphuric acid was added to 500g of sugar cane 

bagasse within a 10 litre Schott bottle and mixture was then rolled for 24 hours at 

30ºC using a bench top shaking incubator from the Chemical Engineering Department 

in the Richard Ward Building on The University of the Witwatersrand’s East Campus. 

The oak coloured bagasse also became a black tar-like mixture after 24 hours. 4800 

ml of water was then added to wash the mixture and allow for hydrolysis to occur, 

this occurred in a 20L beaker, where the glycosidic bonds between the 

lignocelluloses’ polysaccharides are to be cleaved, this resulting mixture was then 

transferred and incubated at 95 ºC for 3 hours in the same bench top incubator with no 

agitation. Calcium hydroxide (CaOH2) was not used to neutralize the suspension, 

instead 1.76l Ammonium Nitrate was added to achieve neutralization of the 

suspension resulting in a pH ranging between of 5.5‑6.5 being reached. The mixture 

was then filtered overnight to remove all the unwanted debris left over from the sugar 

cane bagasse.   

2.2	  Fungal	  Strain	  Pre-‐Experiment	  Preparation:	  
Aspergillus terreus was ordered and obtained from The Agricultural Research Council 

of South Africa in Pretoria. The fungus was then sub-cultured onto 15% MEA (Malt 

Extract Agar) and allowed to proliferate in the 30° C incubation room for 24 hours, 

thereby generating 30 plates with 10 plates of the single fungal species, which was 

then refrigerated at 4° C. 

2.3	  Additional	  Minerals:	  
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The additional supplement minerals were made up to concentrations in de-mineralized 

water, these include; 8 g/l Ammonium chloride, 0.3 g/l magnesium chloride 

hexahydrate, 40 mg/l EDTA (Disodium salt), 2 mg/l zinc sulphate heptahydrate, 1 

mg/l calcium chloride dihydrate, 0.2 mg/l sodium molybdate dihydrate, 0.4 mg/l cobalt 

(II) chloride hexahydrate, 2 mg/l copper (II) sulphate pentahydrate, 0.5 g/l ammonium 

sulphate, 15 mg/l ferrous sulphate heptahydrate and 1 mg/l manganese (II) chloride 

tetrahydrate. The ph was adjusted using di potassium hydrogen phosphate and di 

sodium hydrogen phosphate anhydrous, The above minerals and ions were made up 

separately and autoclaved, except for the EDTA and the ferrous sulphate heptahydrate 

which were sterile filtered due to precipitation forming after being autoclaved. These 

additional minerals helped provide a broad-spectrum growth medium when coupled 

with the hydrolysate, which housed the sugars that would be metabolized to form the 

organic acids. 

2.4	  Inoculation:	  	  
The fungus was allowed to sporulate, then utilizing distilled water and sterile glass 

beads the spores were washed and counted using a hemocytometer, then 

approximately 106 spores of each species were seeded into triplicate 1000 ml pre-

autoclaved Erlenmeyer flasks containing the 150 ml minerals and 100 ml of the 

hydrolysate, thereby making up a total volume of 250 ml within each Erlenmeyer 

flask. Then shake flask fermentation at 250 rpm was implemented in the 30° C 

incubation room, as the flasks would be constantly shaken to ensure that continuous 

aeration occurs which is vital to achieve maximum metabolite production.  

2.5	  Shake	  Flask	  Fermentation:	  
The experiment was carried out over a period of 5 days during which rapid sampling 

was performed at 0H, 24H, 48H, 72H and 96H, where 10 ml of each sample was 

removed and centrifuged at 25G’s and the supernatant was then sterile filtered using 

45µm filters, to discard of any remaining fungal hyphae. The samples were then 

frozen utilizing dry ice to quench the metabolism. The pellet obtained from 

centrifugation was then placed into the drying oven in the Biology Building room 223 

for 24 hours at 72° C after which it was weighted out and used to calculate the amount 

of fungal biomass. After 96 hours the experiment was terminated due to the fungal 

biomass reaching equilibrium. Wet pellets were stored on ice and used for the 

bioreactor part of the study. 
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2.6	  Bioreactor	  set-‐up	  and	  preparation:	  	  
The Airlift Bioreactor was obtained from Prof. Vince Gray’s lab in OLS, it consists of 

a 2 liter fermentation chamber connected to another 5 liter collection chamber and the 

nutrients are recycled into a 10 liter feedstock barrel. The entire bioreactor will be set 

up to run independently and the pH will be maintained to be between 3-4 and 

dissolved oxygen levels will be monitored using a DataTaker DT50 machine, in order 

to maintain it at 20g/l. A wire gauze chamber with 1-2mm spaces was placed in the 

center of the fermentation chamber and the pellets were seeded directly into this 

chamber to prevent the pellets from depositing on the oxygen feeding tubes and 

nutrient entry point, therefore preventing blockage of oxygen flow, media agitation 

and nutrients from entering the fermentation chamber and also, most importantly to 

prevent the fungi from flowing into the neighboring product collection chamber, as 

problems were encountered beforehand with the first attempt to run this bioreactor 

where the fungi mycelium grew over the exit outlet connecting the pipe from the 

fermentation chamber to product collection enclosure and therefore created a water 

proof seal, and with the pump rate continuously pumping fresh and recycled nutrients 

into the fermentation chamber all of the fluid had no place to escape the fermentation 

chamber therefore it over flowed and exploded out the top of the bioreactor damaging 

the airlift bioreactor’s lid, however with the wire gauze in place it prevented this form 

happening in later experiments. 

*Note: Figure was removed to save space. 

2.6.1	  Maintenance	  of	  optimum	  experiment	  parameters:	  	  
Temperatures of the bioreactor was be maintained by passing warm water around the 

fermentation chamber from the 60 degrees water bath, therefore heating the 

fermentation chamber to 30 degrees Celsius.  The pH will be adjusted using nitric 

acid, and NaOH whilst the oxygen levels can be adjusted accordingly on the Airlift 

Bioreactor chamber itself. The oxygen input levels can also be controlled by agitation 

of the media. Due to it being and airlift bioreactor shear forces would be at a 

minimum, thus allowing for optimum proliferation of the submerged pellets. 

2.7	  Product	  recovery:	  	  
The itaconic acid produced in the fermentation chamber would be extracted in the 

collection chamber in 10 ml samples, then the amounts of itaconic acid produced will 

then be assayed using High Performance Liquid Chromatography and finally the 
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samples will then underwent rapid dehydration in the drying oven in the 3rd year lab. 

To extract the itaconic acid in powder form. 

2.8	  Analysis:	  
The frozen fungal product samples were then defrosted at room temperature and 

analyzed utilizing High-Performance Liquid chromatography, which is an advanced 

form of column chromatography where the Bio-Rad 125-0115 column, with a length 

of 150mm, a diameter of 7.8mm and a particle size of 9mm, which was provided by 

Dr. Karl Rumbold. This column was used to separate, identify, and quantify the 

compounds present within the samples taken from the fermentation experiments. The 

HPLC utilized a column that holds chromatographic packing material, i.e. the 

stationary phase, in our case being an ion exchange column is used, which operates on 

the basis of selective exchange of ions in the sample with counter-ions in the 

stationary phase. Ion exchange is performed with columns containing charge-bearing 

functional groups attached to a polymer matrix. The functional ions are permanently 

bonded to the column and each has a counter-ion attached. The sample will then be 

retained via replacing the counter-ions of the stationary phase with its own ions. The 

sample is eluted from the column by changing the properties of the mobile phase do 

that the mobile phase will now displace the sample ions from the stationary phase. A 

pump is utilized to maintain the pressure of between 40.2 – 41.2 bar and a flow rate of 

0.8 ml/min for the mobile phase, which was 0.001 M H2SO4, which was pumped 

through the column, and a Refractive Index Detector of 8.85 nRIU was used to show 

the retention times of the molecules. The concept behind the HPLC is to compare the 

retention time of each of the molecules within the sample and compare it to that of the 

calibrated standards of citric acid and itaconic acid, the retention time varies 

depending on the interactions between the stationary phase, the molecules being 

analyzed, and the solvent used.  As the samples which have stronger interactions with 

the stationary phase than with the mobile phase will elute from the column less 

quickly, and thus have a longer retention time. 

*New 

Chapter	  2:	  

Materials	  and	  Methods:	  	  

2.1	  Bioreactor	  Nutrient	  Medium	  Formulation:	  	  



	   44	  

The methodology utilized for this study would initially begin with the preparation of 

the growth medium or hydrolysate. Wheat bran a form of agricultural waste was 

obtained from Prof. Gray’s biotechnology lab in the Oppenheimer Life Sciences 

building at the University of the Witwatersrand’s East Campus. The wheat bran was 

used as the raw materials due to its abundance and accessibility and most importantly 

the inability of humans to utilize it as a nutrient source. Wheat bran like sugar cane 

bagasse consists mainly of lignocellulose, which is made up of hemicellulose, 

cellulose and lignin. Other forms of agricultural waste that contain lignocellulose 

include wood residues such as sawmill and paper mill waste, municipal paper waste, 

agricultural residues including corn stover and dedicated energy crops which are 

mostly composed of fast growing tall, woody grasses.  All of these above mentioned 

substrate sources are of very poor quality with regards to nutritional value, and the 

current method of utilization by combustion to generate heat energy to heat the 

distilling vats. 

Chemical pretreatment of the lignin is required to release the encapsulated sugars. 

Chemical digestion of the wheat bran and sugar cane bagasse involves, pretreatment of 

biomass using concentrated acid such as sulphuric acid in a ratio of approximately 2:1 

(w/w) with regards to acid and lignocellulose pulp. For the first batch of hydrolysate, 

336 ml of 70% sulphuric acid was added to 200 g of bran within a 5 l Schott bottle and 

the mixture was then rolled for 24 hours at 30ºC using a bench top shaking. Following 

this the oak coloured wheat bran became a black tar-like mixture after 24 hours. 2400 

ml of water was then added to wash the mixture and allow for hydrolysis to occur, 

where the glycosidic bonds between the lignocelluloses’ polysaccharides were 

cleaved. This resulting mixture was then transferred and incubated at 95 ºC for 3 hours 

in the same bench top incubator with no agitation. The 5 l Schott bottle was partially 

opened to allow for the newly formed hydrogen gas to escape as hydrolysis takes 

place. Calcium hydroxide (CaOH2) was then added to achieve neutralization of the 

suspension resulting in a pH ranging between of 5.5‑6.5 is reached and sulfate 

removal occurs simultaneously due to the addition of calcium hydroxide. At this point 

the fluid thickened to a wet cement-like liquid. This slurry was then centrifuged for 20 

min. at 6000 RPM to achieve an RCF of approximately 16000 m/s2 using a Beckman 

J2-21 centrifuge to separate the CaSO4 and other solids (lignin) from the liquid 

containing the sugars released from the biomass. The glucose and xylose concentration 
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were analyzed using Prestige Smart System Test Strips and the result collated with 

that in literature being 25.35 g/l glucose and 26.84 g/l xylose were released from the 

chemically digested wheat bran. The supernatant containing the sugars was then 

removed, autoclaved at 121° C and stored at -20 ºC to inhibit the proliferation of any 

microbes which would deplete the glucose and xylose released from the wheat bran. 

Thereafter the hydrolysate was frozen until it was used for fermentation. 

The second-generation feedstock utilized in the Airlift Bioreactor experiment setup is 

sugar cane bagasse, which was kindly donated by the Illovo Sugar Company based in 

KwaZulu Natal. The lignocellulose source was then chemically digested in the same 

manner as wheat bran the only difference being that the hydrolysate production will 

be up scaled, i.e. 840ml of 70% Sulphuric acid was added to 500g of sugar cane 

bagasse within a 10 litre Schott bottle and mixture was then rolled for 24 hours at 

30ºC using a bench top shaking incubator. The oak coloured bagasse also became a 

black tar-like mixture after 24 hours. 4800 ml of water was then added to wash the 

mixture and allow for hydrolysis to occur, this occurred in a 20L beaker, where the 

glycosidic bonds between the lignocelluloses’ polysaccharides were cleaved, the 

resulting mixture was then transferred and incubated at 95 ºC for 3 hours in the bench 

top incubator with no agitation. 1.76 l Ammonium Nitrate was added to achieve 

neutralization of the suspension resulting in a pH ranging between of 5.5‑6.5 being 

reached. The mixture was then filtered overnight to remove all the unwanted debris 

left over from the sugar cane bagasse.   

2.2	  Fungal	  Strain	  Pre-‐Experiment	  Preparation:	  
Aspergillus terreus was ordered and obtained from The Agricultural Research Council 

of South Africa in Pretoria. The fungus was then sub-cultured onto 15% Malt Extract 

Agar (MEA) and allowed to proliferate in the 30° C incubation room for 24 hours. 

2.3	  Additional	  Minerals:	  
The additional supplement minerals were made up to concentrations in de-mineralized 

water, these include; 8 g/l Ammonium chloride, 0.3 g/l magnesium chloride 

hexahydrate, 40 mg/l EDTA (Disodium salt), 2 mg/l zinc sulphate heptahydrate, 1 

mg/l calcium chloride dihydrate, 0.2 mg/l sodium molybdate dihydrate, 0.4 mg/l cobalt 

(II) chloride hexahydrate, 2 mg/l copper (II) sulphate pentahydrate, 0.5 g/l ammonium 

sulphate, 15 mg/l ferrous sulphate heptahydrate and 1 mg/l manganese (II) chloride 

tetrahydrate. The ph was adjusted using di potassium hydrogen phosphate and 
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anhydrous di sodium hydrogen phosphate, The above minerals and ions were made up 

separately and autoclaved, except for the EDTA and the ferrous sulphate heptahydrate 

which were sterile filtered due to precipitation forming after being autoclaved. These 

additional minerals helped provide a broad-spectrum growth medium when coupled 

with the hydrolysate, which housed the sugars that would be metabolized to form the 

organic acids. 

2.4	  Inoculation:	  	  
The fungus was allowed to sporulate, then utilizing distilled water and sterile glass 

beads the spores were washed and counted using a hemocytometer, then 

approximately 106 spores of were seeded into triplicate 1000 ml pre-autoclaved 

Erlenmeyer flasks containing the 150 ml minerals and 100 ml of the hydrolysate, 

thereby making up a total volume of 250 ml within each Erlenmeyer flask. Following 

this shake flask fermentation at 250 RPM was implemented in the 30° C incubation 

room, as the flasks would be constantly shaken to ensure that continuous aeration 

occurs which is vital to achieve maximum metabolite production.  

2.5	  Shake	  Flask	  Fermentation:	  
Shake flask fermentation was carried out over a period of 5 days during which rapid 

sampling was performed at 0 HRS, 24 HRS, 48 HRS, 72 HRS and 96 HRS, where 10 

ml of each sample was removed and centrifuged at 5000 RPM and the supernatant was 

then sterile filtered using 45 µm filters, to discard of any remaining fungal hyphae. 

The samples were then frozen utilizing dry ice to quench the metabolism. The pellet 

obtained from centrifugation was then placed into the drying oven for 24 HRS at 72 

°C after which it was weighed out and used to calculate the amount of fungal biomass. 

After 96 HRS the experiment was terminated due to the fungal biomass reaching 

equilibrium. Wet pellets were stored on ice and used for the bioreactor part of the 

study. 

2.6	  Bioreactor	  set-‐up	  and	  preparation:	  	  
The Airlift Bioreactor Fermentation Chamber was obtained from Prof. Vince Gray, it 

consists of a 2 l fermentation chamber made of Perspex interconnected via Watson 

Masterflex Tubing to another 5 l Pyrex collection chamber and the nutrients are 

recycled into a Pyrex 10 l feedstock vat. A Mannheim boehringer Liquitherm FT 

Water Bath was also connected to circulate warm water around the fermentation 

chamber to maintain the temperature. The entire bioreactor was set up to run 
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independently and the pH in the fermentation chamber was maintained between 3-4 

and was monitored using a Eutech Instruments Alpha-pH800 pH/ORP controller and 

oxygen was pumped into the fermentation system using a KNF LAB Laboport Air 

Pump and the subsequent dissolved oxygen levels were monitored using a DataTaker 

DT50 machine, in order to maintain it at 20 g/l. Liquid was pumped from the 

feedstock vat to the fermentation chamber and then to the collection vat via a Cole 

Palmer Masterflex L/S operating at 15 ml/h. A wire gauze chamber with 1-2 mm 

spaces was placed in the center of the fermentation chamber and the pellets were 

seeded directly into this chamber. This was to prevent the pellets from depositing on 

the oxygen feeding tubes and nutrient entry point. Therefore preventing blockage of 

oxygen flow, media agitation and nutrients from entering the fermentation chamber. 

This was also to prevent the fungi from flowing into the neighboring product 

collection chamber, as problems were encountered beforehand with the first attempt to 

run this bioreactor. The fungi mycelium grew over the exit outlet connecting the 

fermentation chamber to product collection chamber creating a water proof seal, and 

with the pump rate continuously pumping fresh and recycled nutrients into the 

fermentation chamber all of the fluid had no place to exit the fermentation chamber. 

Therefore it over flowed and exploded out the top of the bioreactor damaging the 

airlift bioreactor’s lid, however with the wire gauze in place it prevented this form 

happening in later experiments.  

*Note: Figure was removed to save space. 

2.6.1	  Maintenance	  of	  optimum	  experiment	  parameters:	  	  
Temperatures of the bioreactor was be maintained by passing warm water from the 

Mannheim boehringer Liquitherm FT Water Bath around the fermentation chamber 

from the 60 degrees water bath, therefore heating the fermentation chamber to 30 °C.  

The pH was adjusted during the hydrolysis phase whilst the oxygen levels were 

adjusted accordingly on the Airlift Bioreactor chamber itself. The oxygen input levels 

also controlled the agitation of the media. Due to it being an airlift bioreactor shear 

forces would be at a minimum, thus allowing for optimum proliferation of the 

submerged pellets. 
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2.7	  Product	  recovery:	  	  
The itaconic acid produced in the fermentation chamber was extracted in the collection 

chamber in 10 ml sample vials and the quantity of itaconic acid produced were 

assayed using High Performance Liquid Chromatography.  

2.8	  Analysis:	  
The frozen fungal product samples were then defrosted at room temperature and 

analyzed utilizing HPLC, which is an advanced form of column chromatography with 

the Bio-Rad 125-0115 column, a length of 150 mm, a diameter of 7.8 mm and a 

particle size of 9 mm. This column was used to separate, identify, and quantify the 

compounds present within the samples taken from the fermentation experiments.  

4. Rechecked the units used when presenting the results of the experiments, 

Table 1 was moved to the appendix. 

5. Discussion was completely reworked, to create more Logical flow. 

*Original 

Chapter	  4	  

4.1	  Discussion:	  	  

4.1.1	  Chemical	  Digestion	  of	  Lignocellulose	  
The method described by Roman et al regarding chemical degradation of 

lignocellulose sources such as wheat bran and sugar cane bagasse, which allows for 

the release of the encapsulated sugars within the lignin barriers can be utilized to 

transform agricultural waste into a viable feedstock source for filamentous fungi to 

utilize in order to generate chemicals/metabolites of interest. Also due to the glucose 

concentration being in the range of 25-30 g/l it is sufficient enough to sustain fungal 

growth and provide these fungal species with enough nutrients to generate citric acid, 

itaconic acid and oxalic acid.  

4.1.2	  Citric	  Acid	  and	  Itaconic	  Acid	  Turnover	  
The current rate of citric acid production reported by Magnuson et al stated a 80% 

turn-over for A. niger when utilizing pure glucose and sucrose syrup as a substrate 

source, our study depicted a 200% citric acid turn-over from A. terreus in the airlift 

bioreactor environment and most importantly to note that agricultural waste of very 

low quality is used instead, thereby receiving a 200% turnover is a very good result, 

this is however only compared to the glucose present in the fermentation chamber, 

however in it assumed that due to our second generation feedstock being sugar cane 
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bagasse, which contains high levels of sucrose, which therefore explains the resulting 

high turn over rate. The turnover rate of itaconic acid production by A. terreus 

patented in 1962 by Nubel and Rabajak with a reported yield of 70% and utilized 

sucrose in molasses as its primary substrate source, our study showed a maximum 

yield of also around 200% for A. terreus, which can also be attributed to the sucrose 

being present in the feedstock source. Considering that we were able to obtain 

common organic acids and a more rare and expensive example such as itaconic acid 

and in such high quantities from essentially waste, therefore determining that there is 

potential for industry to adopt similar methods. As currently the reason why industry 

hasn’t adopted these methods already is down to the simple fact that money plays an 

issue, being that the lignocellulose did come from agricultural waste which is very 

abundant and almost cost free, however the chemicals used to degrade it would far out 

weigh the cost of simply adding pure glucose and/or sucrose syrup directly. This is 

only for the time being as the worlds population is increasing exponentially and the 

requirement for energy and substrates sources are depleting as mentioned earlier, 

therefore this research is aimed at improving the burden that will be placed on the 

agricultural industry in the future. With predictions of global populations to increase to 

the ten billion range within the next 100 years, this would mean that the costs of 

agricultural yield in all forms will increase due to the high demand, that includes 

substrates to produce organic acids, as glucose and sucrose could be put to better use if 

it was providing humans with nutrition instead of supplying fungi with nutrient 

sources.  

4.1.3	  Potential	  of	  Fungal	  Bioreactors	  for	  the	  Future	  
As mentioned before our study would not only lower the burden of food production in 

the future, but it can also be utilized to eliminate huge amounts of agricultural waste 

that will be generated due to the increase in agricultural developments in the future 

and in turn generate more useful products to aid the ever-increasing human population, 

which has recently reached to over 7 billion. Therefore many aspects of this study 

must be optimized in further research as only then can this study fulfill its full 

potential to better mankind in the years to come.    

4.1.4	  Methods	  to	  Enhance	  Metabolite	  Production	  
When looking at our study, one can determine a number of aspects that may be altered 

in order to achieve a better result, the first being, the experimental parameters, as our 
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experiment, one could only control a number of parameters, that being the pH, the 

Dissolved Oxygen Levels, the temperature and the flow rate of the nutrient source. 

The current method for citric acid production utilizing A. niger took over 100 years to 

perfect and generate the high yields of organic acids (18). Therefore it would take 

further experiment to test all the present variables individually and then 

simultaneously to determine what effects they have on the organic acid yield. Ideally 

itaconic acid should be focused on as it is a more rare and expensive platform 

chemical, and is generated in much lower quantities than citric acid, therefore in our 

study we have chosen to further investigate the metabolite producing capabilities of A. 

terreus due to it’s ability to secrete large amounts of itaconic acid. As citric acid 

production worldwide was recorded at 879 000 metric tons in 1998, where as the 

production of itaconic acid is only recorded at around 15 000 metric tons, as it’s price 

is very high due to the costs involved to manufacture it (18). An alternative method to 

optimize acid production utilizing agricultural waste is by genetically modifying the 

fungal species to generate larger quantities of organic acids via homologous 

recombination, for example using plasmid vectors to knock out genes that delay or 

decrease organic acid production and/or by enhancing promoters that increase the 

metabolism of citric acid and itaconic acid. Therefore after identifying the growth 

parameters that the fungi require in order to secrete the metabolites of interest in high 

quantities and making them more efficient when scaled up to an industrial level, thus 

we have only covered part of the process, as fungi found naturally in the wild are only 

designed by evolution to be able to produce a certain amount of organic acids as it 

only requires it in small amounts to ensure it’s prolonged survival, however humans 

have tried to transform this microorganism into a metabolite factory and maximize it’s 

organic acid, hormone or protein producing capabilities. This can only be done with 

genetic engineering, as by altering the genes of the fungi, one can truly transform it 

into a metabolite producing factory, this would be accomplished by shifting it’s 

priorities from simply producing these organic acids, for example to survive, to only 

producing organic acids and putting it’s survival second.  

 

 

 

 



	   51	  

*New 

Chapter	  4	  

4.1	  Discussion:	  	  

4.1.1	  Chemical	  Digestion	  of	  Lignocellulose	  
The method described by Roman et al (24) regarding chemical degradation of 

lignocellulose sources such as wheat bran and sugar cane bagasse, which allows for 

the release of the encapsulated sugars within the lignin barriers can be utilized to 

transform agricultural waste into a viable feedstock source for filamentous fungi to 

utilize in order to generate chemicals/metabolites of interest. Also due to the glucose 

concentration being in the range of 25-30 g/l it is sufficient to sustain fungal growth 

and provide these fungal species with enough nutrients to generate organic acids of 

interest; citric acid, itaconic acid and oxalic acid.  

4.1.2	  Operating	  the	  5	  l	  Airlift	  Bioreactor	  	  

Stirred tank fermentors are currently the most important type of bioreactor used in 

industrial production processes (37) (38). The stirred tank fermentor has it’s own 

disadvantages and has been proved to be unsuitable for certain production systems. 

The reasons are due to technical, economical and biological factors (38). The airlift 

reactor has been widely studied. An airlift bioreactor does not require mechanical 

agitation and does not have moving parts. Therefore the energy demand of running 

such a reactor is considerably reduced when compared to running a stirred tank 

fermentor (38). Airlift bioreactor’s only requires about a third of the energy needed for 

stirred tank fermentors and also airlift bioreactors can be easily assembled and 

operated (38). 

The airlift bioreactor for this study was successfully set up to run independently. The 

fungal growth parameters were recorded and maintained using the DataTaker DT50, 

this was done to ensure that the fermentation chamber was at a stable temperature and 

had sufficient amount of dissolved oxygen to ensure maximum fungal proliferation. 

Previous fermentation studies involving filamentous fungi utilized solid-state 

fermentation procedures. Submerged fungal fermentation experiments within a 

bioreactor environment tend to encounter problems with regards to pellet formation 

and microbial washout; both these issues were addressed by first performing a shake 

flask fermentation experiment where the fungal pellets can be pre-formed prior to 
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inoculation. The reason for the pellets being pre-formed is so that the spores being 

used in the experiment aren’t washed out of the fermentation chamber of the airlift 

bioreactor. However during the initial run of the experiment, washout did occur and 

the fungus began to proliferate within the collection chamber. Thereby causing the 

product, IA to be broken down and metabolized due to lack of fresh nutrients available 

to the washed out spores/pellets.  

The problems encountered with the initial run included the complete blockage of the 

exit piping leading from the fermentation chamber to the collection chamber. This 

caused the top of the fermentation chamber to blow up due to the build up of pressure 

and fresh nutrients being pumped in constantly. To solve this particular problem, a 

plastic cage was constructed out of 1-2 mm plastic wire gauze, with the measurements 

5 cm diameter, 20 cm high and this cage was submerged into the center of the 

fermentation and the pellets were seeded directly into this cage. After which the cage 

was sealed. This aided the experiment in three ways, firstly it prevented the previous 

scenario from reoccurring, and secondly it also prevented the fungal pellets from 

depositing onto the oxygen feeder tubes and causing blockage. Finally the third reason 

why the plastic cage was so successful is that if confined the fungi to the optimum 

location within the fermentation chamber, i.e. it was located right next to where the 

warm water from the water bath was being circulated, where the temperature was most 

stable. The location also was away from the oxygen feeders where shear forces were at 

a minimum to maintain the pellet’s structural rigidity, as the pellet size and structure is 

vital to obtain maximum metabolite output.  
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Figure 9. The Fungal Pellet Cage made from Plastic Gauze 

*Note: New figures were added. 

Figure 9 shows both the original fungal pellet cage constructed from plastic gauze and 

the diagram of the fungal pellet cage within the running bioreactor. The concept of the 

draft tube was adopted from the study conducted by Okabe, M. et al. in 1993 where 

they developed a draft tube that was inserted into the fermentation tank to perform a 

similar function as the fungal pellet cage in out experiment.  
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Figure 10.  Schematic diagram of the Airlift bioreactor with the draft tube (38) 

*Note: New figures were added. 

Figure 10 shows the airlift bioreactor Okabe, M. et al. (38) utilized with their draft 

tube. No. 1 on the diagram is the Antifoam reservoir, No. 2 is the antifoam controller, 

3 is the pump, 4 is the water jacket circulating heated water to maintain the 

fermentation chamber’s temperature, 5 is the draft tube of interest that is the concept 

of the fungal pellet cage (38). No. 6 is the stainless steel sparger, no. 7 is the flow 

meter and no. 8 is the air compressor, used to maintain oxygen levels within the 

fermentation chamber to be 50% of the saturated value. No. 9 is the Dissolved Oxygen 

meter, no. 10 is the level controller, no. 11 is the sterilized water tank and no. 12 is the 

condenser. No. 13 works in conjunction with Dissolved Oxygen meter and it is the 

Dissolved Oxygen probe, no. 14 is the antifoam sensor, no. 15 is the level sensor and 

no. 16 is the stainless steel sieve that makes up the top and bottom of the draft tube. 

No. 17 is the sampling port of the airlift bioreactor (38). 

The results yielded by Okabe, M. et al. (38) showed that the maximum itaconic acid 

concentration was 63 g/l after 4 d, and the IA production rate was 0.66 g/l/h, which is 

two fold higher than for draft tubes with one sieve or without the sieve which is 
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usually 0.26- 0.30 g/l/h (38). Therefore from the results of Okabe, M. et al. (38) we 

can’t really compare that to our study as in the case of the fungal pellet cage, if it was 

removed the entire experiment would not work as pellet over flow and blockage would 

occur, however when the stainless steel sieve was not used or was used at the bottom 

of the draft tube in Okabe, M. et al. experiment (38), cell growth, itaconic acid 

concentration and glucose consumption were similar. However, when the draft tube 

was covered with the sieves at the bottom and top, the product yield based on the 

consumption of glucose with and without the stainless steel sieve was 0.53 and 0.45 

g/g, respectively (38). The reason why the airlift bioreactor with stainless steel sieves 

yielded a high itaconic acid production rate remains unclear (38). This could be 

another reason why our organic acid production level was so high when utilizing such 

low-grade substrate, as the inclusion of such a apparatus seems to enhance the IA 

production rate as it concentrates the fungal pellets in the optimum environment within 

the fermentation chamber. 

Also from the study conducted by Okabe, M. et al. they determined that to achieve 

maximum itaconic acid production, an intermediate state between pellet and the pulp 

state of A. terreus must be achieved. Due to if the mycelia form pellets, the nutrients 

being provided are limited inside the pellets, while if the mycelia form a pulp state, 

oxygen transfer decreases due to the increase in viscosity in culture broth (38). 

Therefore, it is desirable that the mycelia form an intermediate state between pellets 

and the pulp state for the efficient production of itaconic acid (38).  

The intermediate state of mycelia was achieved using a draft tube covered with 

stainless steel sieves on the top and bottom (38), a similar effect was created when 

utilizing the fungal pellet cage in our study. Although the fungi were seeded into the 

fermentation chamber in pellet form they can quickly adapt to the new environment. A 

portion of the seeded fungi began to form such intermediate structures by growing on 

the walls of the cage and spreading out, instead of all forming pellets. As this 

intermediate structure was optimally suited to the airlift bioreactor environment, it 

could also explain the high product yields of 59.35 g/l (200 % turnover) reported in 

this study.  
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4.1.3	  Citric	  Acid	  and	  Itaconic	  Acid	  Turnover	  
The current rate of citric acid production reported by Magnuson et al (8) stated a 80% 

turn-over for A. niger when utilizing pure glucose and sucrose syrup as a substrate 

source, our study depicted a 200% citric acid turn-over, which is considered very high 

concentrations of acid being produced with regards to the amount of glucose available 

within the hydrolysate. When considering the amount of glucose used and the amount 

of IA produced from A. terreus in the airlift bioreactor environment and most 

importantly to note that agricultural waste of very low quality is used instead, thereby 

receiving a 200% turnover is a very good result, this is however only compared to the 

glucose present in the fermentation chamber, however it is assumed that due to our 

second generation feedstock being sugar cane bagasse, which contains high levels of 

sucrose that were not detected by the HPLC, which therefore explains the resulting 

high turn over rate.  

The turnover rate of itaconic acid production by A. terreus patented in 1962 by Nubel 

and Rabajak with a reported yield of 70% utilized sucrose in molasses as its primary 

substrate source (8). Our maximum yield of 200% for A. terreus can also be attributed 

to the undetected sucrose being present in the feedstock source. Considering that we 

were able to obtain common organic acids and a rare organic acid such as IA, in such 

high quantities, therefore makes this study significant to the organic acid industry. 

These products were metabolized from essentially waste, therefore determining that 

there is potential for industry to adopt similar methods to produce these organic acids 

of interest. As currently the reason why industry has not adopted these methods is due 

to the issues such as operating costs and the economical aspect, even though the 

lignocellulose obtained did come from agricultural waste, which is very abundant and 

almost cost free, however the chemicals used to degrade it would far out weigh the 

cost of adding pure glucose and/or sucrose syrup directly. With predictions of global 

populations to increase to the ten billion range within the next 100 years, this would 

mean that the costs of agricultural yield in all forms will increase due to the high 

demand, that includes the substrates from which organic acids are produced, as 

glucose and sucrose could be put to better use if it was providing humans with 

nutrition instead of supplying fungi with nutrient sources. Thereby creating the need to 

find an alternative substrate from which organic acids of interest like IA can be 

synthesized from. 
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4.1.4	  Methods	  to	  Enhance	  Metabolite	  Production	  
When looking at our study, one can determine a number of aspects that may be altered 

in order to achieve a better result, the first being, the experimental parameters, as our 

experiment, one could only control a number of parameters, that being the pH, the 

Dissolved Oxygen Levels, the temperature and the flow rate of the nutrient source. 

The current method for citric acid production utilizing A. niger took over 100 years to 

perfect and generate the high yields of organic acids (8). Therefore it would take 

further experiment to test all the present variables individually and then 

simultaneously to determine what effects they have on the organic acid yield. Greater 

focus should be put on IA as it is a more rare and expensive platform chemical and it 

is produced in much lower quantities than citric acid. As citric acid production 

worldwide was recorded at 879 000 metric tons in 1998, where as the production of 

itaconic acid is only recorded at around 15 000 metric tons, IA’s price is very high due 

to the costs involved to manufacture it (8).  

An alternative method to optimize acid production from agricultural waste is by 

genetically modifying the fungal species to generate larger quantities of organic acids 

via homologous recombination, by using plasmid vectors to knock out genes that 

delay or decrease organic acid production and enhancing promoters that increase the 

metabolism of citric acid and itaconic acid.  

Therefore after identifying the growth parameters that the fungi require in order to 

secrete the metabolites of interest in high quantities and making them more efficient 

when scaled up to an industrial level. As fungi found naturally in the wild are only 

designed by evolution to be able to produce a certain amount of organic acids, as it 

only requires it in small amounts to ensure it’s prolonged survival. Humans have tried 

to transform this microorganism into a metabolite factory and maximize its organic 

acid, hormone or protein producing capabilities. This can only be done with genetic 

engineering, as by altering the genes of the fungi, one can truly transform it into a 

metabolite producing factory, this would be accomplished by shifting its priorities 

from simply producing these organic acids to survive, instead to only producing 

organic acids and putting it’s survival second.  

Another method previously mentioned in the literature review on how metabolite 

production can be increased is strain modification, as many studies have been 
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conducted focusing on IA production, but very few have focused on strain 

modification. Kobayashi et al. reported that IA production was sup- pressed during 

cultivation since the produced IA significantly inhibited the growth of A. terreus (36). 

Therefore in order to overcome product inhibition during the growth of the fungus, it 

is preferable to select an IA resistant mutant strain, which will lead to improvement of 

IA production. A study conducted by Yahiro, K. et al. focused on the IA production 

by the mutant A. terreus strain TN-484 in a 2.5 l Airlift Bioreactor, where they 

achieved a maximum IA concentration of 72.5 g/l after a period of six days (37). 

Yahiro, K. et al. results showed a higher IA concentration than this study, as their 

substrate used for fungal metabolism was pure glucose, which is a very important 

factor when considering up scaling this technology to an industrial level. As the 

substrate accounts for more than 25% of the total production cost, therefore by using 

agricultural waste we can significantly reduce the total production costs (37). 

 

6. Chapter 5 was reviewed and moved to the literature review section and more 

conclusions were added to this chapter. 

 

*Original 

Chapter	  5	  

Outlook	  

5.1	  Genetic	  Transformation:	  
The general method of genetic transformation of filamentous fungi, begins firstly by 

removing the permeability barrier presented by the cell wall of the fungus, either by 

treatment with lithium acetate or by enzyme degradation using crude extracts found in 

snail gut (23) or by using a Trichoderma extract commercially known as Novozym 

234 (23) to produce protoplasts. Some filamentous fungi require a mixture of enzyme 

extracts to produce a sufficient amount of protoplasts. This is followed by the removal 

of the cell wall by utilizing an osmotic stabilizer such as 0.6 potassium chloride or 

1.2M sorbitol, the choice of which stabilizer is used depends on the species of fungus, 

the two Aspergillus species, A. niger and A. terreus make use of 1.2M and 0.55M 

sorbitol respectively as their osmotic stabilizers (23). DNA is then added to the 

protoplast suspension in the presence of 10-50mM calcium chloride and then followed 

by the addition of a solution of polyethylene glycerol, which initiates the uptake of the 
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DNA by the protoplasts. The treated protoplasts are then allowed to proliferate of 

selective medium that selects for only the transformed cells (23). The selectable 

markers that can be used are genes that complement a nutrition requirement mutation, 

which allows the growth of the fungus in absence of the required nutritional factor 

(15).  

5.2	  Limitations	  regarding	  Fungal	  Genetic	  transformation:	  
There is a limitation to this methodology as it requires the recipient fungal species to 

be a mutant strain and this is often undesirable in industrial strains (34). The solution 

to this drawback is the use of positive selection systems, which is based on 

supplementation of antimetabolites, for example; oligomycin resistance, prokaryotic 

antibiotic resistance genes such as kanamycin or G418 resistance (23). Another 

alternative system utilized the amdS gene isolated from A. nidulans, which codes for 

acetamidase, an enzyme that allows the growth on acetamide as a sole nitrogen or 

carbon source (5). Several other fungal species such as A. niger lack the amdS gene, 

which allows for easier selection of transformants, therefore making it a useful marker 

for transformation (23). The frequency of transformants is 10-100 stable transformants 

per µg. A similar technique to transform industrial fungi is to disrupt the gene 

functioning by homologous recombination using a defective gene or a gene that has 

been disrupted by a selectable marker, this method produces null mutations that 

eliminate the chance of undesirable traits developing in industrial strains of 

filamentous fungi (15) (26).  

5.3	  Future	  Prospects	  and	  other	  Transformation	  Methods:	  
Future prospects involving the heterologous expression of genes in filamentous fungi, 

where current gene expression systems rely on either powerful inducible or 

constitutive promoters, and homologous promoters are preferred to the production host 

as mentioned above to enhance organic acid production (24). There is however a 

disadvantage involving the constitutive expression of housekeeping gene promoters is 

that the promoters are functional during growth and therefore unsuitable for over 

expression of foreign proteins that might be toxic to the host cells. Another major 

disadvantage of inducible gene promoters, such as the powerful cbh1 gene promoter, 

is their repression by glucose and other carbon sources therefore they can severely 

affect the yield of protein secreted. These promoters can be regulated by the induction 

of carbon and nitrogen compounds and the pH of the growth medium (24).  
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Experiments have shown a novel metabolically independent expression system that 

can be regulated by oestrogenic compounds and it has been tested in Aspergillus. A. 

nidulans and A. niger transformants are highly sensitive with regards to acquiring 

oestrogen responsive elements or low levels of oestrogenic substances such as 

diethylstilbestrol, this therefore allows this research to be utilized in the detection of 

xenoestrogens in food and in the environment (28). Other experiments involving the 

modification of the traditional method for cultivating filamentous fungi for protein 

production have been researched. Whereas instead of a submerged fermentation 

occurring in liquid media, solid-state fermentation, which is supported by high yields 

of the secreted metabolites, obtained in these systems can be utilized instead (35). Due 

to the physical mode of growth and gene regulation of fungi in solid-state 

fermentation, differ from fungi grown in liquid cultures (28).  

Another vital factor in the development of transgenic fungal expression systems is the 

establishment of effective transformation protocols across fungal genera to add 

efficiency and flexibility to high throughput screening for evolved proteins and 

different metabolites of interest (33). Advancement in observation procedures 

including; microscopy technologies, such as fluorescence resonance energy transfer 

and fluorescent life time imaging, allows scientists to visualize metabolic pathways 

and protein–protein interactions in living systems therefore allowing greater 

understanding with regards to these areas, as fluorescent imaging, coupled with 

molecular biology, bioinformatics, biochemistry, genomics and proteomics, will 

redesign the concept of microbial metabolite production (33). 

Another transformation method, which is being used more commonly in experiments 

involving the genetic transformation of filamentous fungi, is biolistic bombardment 

and inclusion of the seven barrels Hepta adaptor system has noticeably increased the 

number of transformations achieved (31). Agrobacterium-mediated transformation 

method has also gained a lot of interest, and claims of up to 100–1000 times greater 

efficiency of the T-DNA transfer and chromosomal integration, compared with 

conventional methods mentioned before, as one is aware that the T-DNA of the 

bacterium Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and 

human cells (13). We are entering an era of accelerating development of novel fungal 

fermentations and transformations due to the exponential increase and development of 
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information and tools to exploit nature. Therefore there are many methods our study 

can be expanded with regards to higher yield of organic acids from agricultural waste. 
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Chapter 5: Conclusions 
*The conclusions have been reworked. 

*Original  

Conclusions:	  
The organic acids mentioned in this study have the potential to be utilized more in the 

near future. The production of these acids by this alternative fermentation method 

gives industry a new option to generate commodity chemicals from renewable 

resources. Many current research programs studying the production of these “green” 

chemicals are still in the experimental stage, however with the advances made towards 

self-sustainable industrial processes with better knowledge of biological and 

biochemical regulations, better biocatalysts can be generated to overcome the current 

limitations. Therefore with further research, agricultural and food residues along with 

municipal waste can be utilized as useful feedstocks and efficiently converted into 

valuable products. In conclusion the production of organic acids presents a great 

opportunity to recycle and reutilize natural resources, thus lifting the strain on non-

renewable resources. 

*New 

Chapter	  5	  

Conclusions:	  
The fungus successfully produced the metabolites of interest IA and CA in an airlift 

bioreactor environment that utilized the hydrolysate produced from chemical 

digestion. The concentrations produced are of sufficient quantity, being 59.4 g/l and 

59.2 g/l for IA and CA respectively as the objective was to produce both metabolites 

in excess of 60 g/l. Therefore showing that agricultural waste, sugar cane bagasse and 

wheat bran can be hydrolyzed and subsequently used to produce high concentrations 

of metabolites of interest. The production methods of the two organic acids in this 

study have the potential to be utilized in industry. As the production by this alternative 

fermentation method gives industry a new option to generate commodity chemicals 

from renewable and inexpensive resources.  

Current industrial research programs studying the production of these “green” 

chemicals are still in the experimental stage, limitations, such as operating cost have 

restricted the progress of such research to be up scaled to an industrial level, however 

with the advances made towards self-sustainable industrial processes coupled with 
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better knowledge of biological and biochemical regulations, better biocatalysts can be 

discovered and produced to overcome the current limitation of operating costs by 

increasing and sustaining product yield. Therefore with further research, agricultural 

and food residues along with municipal waste can be used as feedstocks for industrial 

acid production. In conclusion the production of organic acids presents a great 

opportunity to recycle and reutilize natural resources, thus lifting the strain on non-

renewable and/or expensive resources. 
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Appendix: An Appendix was added as per the request from both examiners. 

*New 

Appendix 
Table 2: HPLC Analysis Results for the 48 Samples (g/l) extracted from the Airlift Bioreactor during the 16 Days 

of Fermentation 

HPLC Sample No. Xylose Glucose Itaconic Acid Citric Acid 
1 0.00 29.58 0.00 0.00 
2 0.00 28.75 0.00 0.00 
3 0.00 29.27 0.00 0.00 
4 0.00 29.04 0.00 0.00 
5 0.00 28.59 0.00 1.46 
6 0.00 28.87 0.00 0.00 
7 0.00 29.10 0.00 0.00 
8 0.00 29.12 0.00 2.14 
9 0.00 28.84 0.00 10.10 
10 0.00 27.52 0.00 13.84 
11 0.00 28.12 0.00 12.67 
12 0.00 26.67 8.94 11.86 
13 0.00 27.32 9.14 13.21 
14 2.91 22.92 25.74 14.33 
15 0.00 26.11 21.28 20.15 
16 2.27 16.98 25.80 21.13 
17 2.52 18.23 27.00 21.81 
18 2.19 15.82 23.96 26.88 
19 2.22 15.98 25.01 23.95 
20 2.49 15.01 42.51 25.01 
21 2.26 14.61 31.45 42.02 
22 2.18 14.10 30.24 32.41 
23 2.49 15.78 33.60 31.31 
24 2.11 12.67 35.81 34.81 
25 1.99 11.69 29.13 29.00 
26 2.51 13.23 52.35 25.17 
27 1.90 10.33 34.23 35.01 
28 1.87 9.95 34.53 34.10 
29 1.78 8.57 40.08 41.27 
30 1.77 8.42 41.02 40.11 
31 2.09 8.12 54.97 45.48 
32 1.67 6.69 46.03 46.11 
33 1.69 4.10 53.45 56.01 
34 1.72 5.10 51.04 51.11 
35 1.65 2.97 55.46 55.09 
36 1.63 2.68 55.53 57.04 
37 1.54 0.00 56.67 57.00 
38 1.59 2.09 55.48 56.89 
39 1.83 2.31 61.68 63.61 
40 1.51 0.00 55.90 57.70 
41 1.89 0.00 66.08 56.85 
42 1.52 0.00 56.05 52.11 
43 0.73 0.00 32.91 29.10 
44 0.75 0.00 34.07 24.68 
45 0.59 0.00 0.00 22.10 
46 0.61 0.00 0.00 18.31 
47 0.60 0.00 0.00 0.00 
48 0.00 0.00 0.00 0.00 

 


