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Abstract

The classical moment problem concerns distribution functions on the real

line. The central feature is the connection between distribution functions

and the moment sequences which they generate via a Stieltjes integral. The

solution of the classical moment problem leads to the well known theorem

of Favard which connects orthogonal polynomial sequences with distribu-

tion functions on the real line. Orthogonal polynomials in their turn arise

in the computation of measures via continued fractions and the Nevanlinna

parametrisation. In this dissertation classical orthogonal polynomials are in-

vestigated first and their connection with hypergeometric series is exhibited.

Results from the moment problem allow the study of a more general class

of orthogonal polynomials. q-Hypergeometric series are presented in anal-

ogy with the ordinary hypergeometric series and some results on q-Laguerre

polynomials are given. Finally recent research will be discussed.
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Chapter 1

Classical orthogonal

polynomials

The classical orthogonal polynomials were the first to be studied. Because

they present the simplest case of orthogonality they are used in this chapter

to introduce the various special characteristics of orthogonal polynomials.

Hypergeometric series are presented because of their usefulness in expressing

the classical polynomials. The Chebyshev polynomials are exhibited as a

verification of the properties of orthogonal polynomials. The last part of the

chapter presents the Jacobi, Gegenbauer, Hermite and Laguerre polynomials.

1.1 Basic theory of orthogonal polynomials

In an introduction to generalized Fourier series (cf. [27] p.43 for instance) a

set {φn}∞n=0 of functions of a real variable is said to be orthonormal if∫ b

a

φnφmdx = δmn,

where δmn =

 0, if m 6= n,

1, if m 6= n.
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Suppose that this set is a set of polynomials and the interval (a, b) is (−1, 1).

Let P0(x) = 1√
2
. Define p1(x) as

p1(x) = x− 1√
2

∫ 1

−1

x
1√
2
dx,

then ∫ 1

−1

p1(x)
1√
2
dx =

∫ 1

−1

x
1√
2
dx−

∫ 1

−1

x
1√
2
dx

∫ 1

−1

1

2
dx = 0.

Define P1(x) by

P1(x) =
p1(x)√∫ 1

−1

p2
1(x)dx

then ∫ 1

−1

P 2
1 (x)dx = 1.

Let pk(x) be defined by

pk(x) = xk −
k−1∑
j=0

{[∫ 1

−1

xkPj(x)dx

]
Pj(x)

}
and let Pk(x) be defined by

Pk(x) =
pk(x)√∫ 1

−1

p2
k(x)dx

.

Assume that for k, j < n ∫ 1

−1

Pj(x)Pk(x)dx = δjk.

Then ∫ 1

−1

pn(x)Pk(x)dx

=

∫ 1

−1

xnPk(x)dx−
n−1∑
j=0

{[∫ 1

−1

xnPj(x)dx

] ∫ 1

−1

Pk(x)Pj(x)dx

}
=

∫ 1

−1

xnPk(x)dx−
∫ 1

−1

xnPk(x)dx = 0
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since

∫ 1

−1

Pj(x)Pk(x)dx = δjk for k < n. Then by definition of Pk(x), for

k ≤ n ∫ 1

−1

Pn(x)Pk(x)dx = δnk.

Because the case k > n is the same as the above with the roles of n and k

reversed, it is true in general that∫ 1

−1

Pn(x)Pk(x)dx = δnk,

so that {Pn(x)}∞n=0 is an orthonormal set of polynomials. This set of polyno-

mials is known as the Legendre polynomials (cf. [41], p.86), and the algorithm

used to obtain them is the famous Gram-Schmidt process (cf. [15], p.13).

Throughout the chapter when referring to a continuous Riemann inte-

grable function w(x) satisfying w(x) > 0 for x ∈ (a, b) it will be assumed

that ∫ b

a

xnw(x)dx <∞

for n = 0, 1, 2, . . . (cf. [15], p.2).

Lemma 1.1.1. Let Pn(x) be an arbitrary real polynomial of degree n, n =

0, 1, 2, . . . and w(x) be continuous and positive on (a, b). Then∫ b

a

P 2
n(x)w(x)dx > 0.

Proof. No polynomial has infinitely many zeros. Because w(x) > 0 is contin-

uous, there is an interval (between two possible zeros of Pn(x), if any exist,

otherwise on an arbitrary closed bounded subinterval of (a, b)) where the

product P 2
n(x)w(x) is greater than ε > 0. If δ > 0 is the length of this inter-

val then the lower Riemann integral of this product is greater than or equal

to δε > 0.

Lemma 1.1.2 (cf. [15], p.2). Let Pn(x) be an arbitrary real polynomial of

degree n and w(x) be continuous and positive on (a, b). The functional defined

by

µ(Pn(x)) =

∫ b

a

Pn(x)w(x)dx

3



on the space of real polynomials (i.e. polynomials with real coefficients) is

linear.

Proof. Let α be a real constant and Pn(x), Pm(x) be arbitrary real polyno-

mials of degree n and m respectively. Then∫ b

a

αPn(x)w(x)dx = α

∫ b

a

Pn(x)w(x)dx

and ∫ b

a

(Pn(x) + Pm(x))w(x)dx =

∫ b

a

Pn(x)w(x)dx+

∫ b

a

Pm(x)w(x)dx

by the linearity of the Riemann integral.

Definition 1.1.3 (cf. [42], p.150). Define 〈·, ·〉 for the functional µ by

〈Pn(x), Pm(x)〉 = µ(Pn(x)Pm(x))

where Pn(x) and Pm(x) are arbitrary real polynomials of degree m and n

respectively and x ∈ R.

Lemma 1.1.4 (cf. [2], p2). 〈·, ·〉 is an inner product on the space of real

polynomials of a real variable.

Proof. It is required to verify the following properties.

(a.) 〈Pn(x), Pm(x)〉 = 〈Pm(x), Pn(x)〉,

(b.) 〈α1Pl(x) + α2Pm(x), Pn(x)〉 = α1〈Pl(x), Pn(x)〉+ α2〈Pm(x), Pn(x)〉,

(c.) 〈Pn(x), Pn(x)〉 > 0 for Pn(x) not identically zero,

where Pl(x), Pm(x) and Pn(x) are arbitrary polynomials of degrees l,m and

n respectively and α1, α2 are arbitrary real numbers.

The first and second conditions are obvious consequences of Definition 1.1.3

in terms of the integral. The third condition follows from Lemma 1.1.1.
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With the inner product established it follows by application of the Gram-

Schmidt process that there is a set of polynomials {Pn(x)}∞n=0 where Pn(x)

has degree n for n = 0, 1, 2, . . . such that

〈Pn(x), Pm(x)〉 = δmn. (1.1.1)

Definition 1.1.5 (cf. [42], p.148). A set of polynomials {Pn(x)}∞n=0, where

Pn(x) has degree n, satisfying

〈Pn(x), Pm(x)〉 = hnδnm (1.1.2)

where hn > 0 and 〈·, ·〉 is generated by w(x) > 0 is called a set of orthogonal

polynomials with respect to the weight function w(x).

In the general case of an orthogonal polynomial set it is not necessary

that hn > 0 (cf. [42], p.148). However, the most interesting work has been

done under the assumption hn > 0 and this assumption is used here. This

assumption is entailed by the choice that w(x) > 0.

It is obvious from the linearity of the functional µ that any real multiple

of an orthogonal polynomial is an orthogonal polynomial. In particular if in

(1.1.2) Pn(x) is divided by h
1
2
n , the resulting polynomial satisfies (1.1.1). The

process of multiplying orthogonal polynomials by a real constant is called

normalisation. This changes the value of hn in (1.1.2).

Definition 1.1.6 (cf. [15], p.7). In the case where hn = 1 the polynomials

Pn(x) are said to be orthonormal.

Definition 1.1.7 (cf. [15], p.10). In the case where the leading coefficient of

each polynomial in a set of orthogonal polynomials is 1, the polynomials are

referred to as monic orthogonal polynomials.

The following theorem will be proved in Chapter 2, Section 2.5.

Theorem 1.1.8 (cf. [15], p.12). A set of orthogonal polynomials is uniquely

determined up to constant multiples.
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Polynomials constitute a vector space and the concept of a simple set

arises as a natural consequence.

Definition 1.1.9 (cf. [42], p.147). If {Pn(x)}∞n=0 is a set of polynomials such

that Pn(x) has degree n for each n = 0, 1, 2 . . ., then {Pn(x)}∞n=0 is called a

simple set.

A simple set constitutes a linear basis for the space of polynomials.

Lemma 1.1.10 (cf. [42], p.147). Any polynomial can be expressed as a finite

linear combination of polynomials from a simple set.

Proof. Let {Pn(x)}∞n=0 be a simple set. Let pm(x) be an arbitrary polynomial

of degree m. Let Am be the leading coefficient of pm(x) and Bm be the leading

coefficient of Pm(x). Then pm(x)− Am

Bm
Pm(x) is a polynomial of degree m− 1

or less. This process can be applied to each new polynomial generated in this

way, and the process stops once the constant term has been eliminated in this

fashion, giving

pm(x)−
m∑
k=0

ckPk(x) = 0,

where some of the ck may be zero.

If the simple set {Pn(x)}∞n=0 is orthonormal then the coefficients ck are

determined by ck = 〈pk(x), Pk(x)〉 (cf. [2], p.18).

An equivalent and useful form of the orthogonality relation can be intro-

duced as follows.

Theorem 1.1.11 (cf. [42], p.148). Let {Pn(x)}∞n=0 be a simple set of polyno-

mials. This set is an orthogonal set with respect to the weight function w(x)

continuous and positive on (a, b) if and only if it satisfies∫ b

a

Pn(x)xkw(x)dx = 0, k = 0, 1, 2, . . . , n− 1,

or, using the inner product,

〈Pn(x), xk〉 = 0, k = 0, 1, 2, . . . , n− 1.
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Proof. Suppose that {Pn(x)}∞n=0 is an orthogonal set. By definition it is also

a simple set. Consequently

xk =
k∑
i=0

aiPi(x),

and ∫ b

a

Pn(x)xkw(x)dx =

∫ b

a

Pn(x)
k∑
i=0

aiPi(x)w(x)dx = 0

by linearity of µ and because k < n. If the condition∫ b

a

Pn(x)xkw(x)dx = 0, k = 0, 1, 2, . . . , n− 1

holds, then because {xk}∞k=0 is a simple set,

Pk(x) =
k∑
i=0

bix
i,

and ∫ b

a

Pn(x)Pk(x)w(x)dx =

∫ b

a

Pn(x)
k∑
i=0

bix
iw(x)dx = 0

for k < n and then also for k 6= n because if k > n then n takes the place of

k in the above. If k = n then,∫ b

a

P 2
n(x)w(x)dx > 0,

since w(x) is positive, continuous and Riemann integrable.

If a simple set consists of polynomials with real coefficients and the poly-

nomial which is to be expressed as a linear combination from that set also

has real coefficients then the constants ck in the expansion are real numbers.

Lemma 1.1.12 (cf [15], p.12). If {Pn(x)}∞n=0 is a set of orthogonal polyno-

mials and pn(x) is an arbitrary polynomial of degree n then

µ(Pn(x)pn(x)) = knµ(Pn(x)xn),

where kn is the leading coefficient of pn(x).

7



Proof. By Lemma 1.1.10

pn(x) = knx
n +

n−1∑
k=0

akPk(x)

µ(Pn(x)pn(x)) = µ(Pn(x){knxn +
n−1∑
k=0

akPk(x))

= knµ(Pn(x)xn) +
n−1∑
k=0

akµ(Pn(x)Pk(x))

= knµ(Pn(x)xn).

Orthogonal polynomials satisfy several useful identities, one of which is

the three-term recurrence relation.

Theorem 1.1.13 (cf. [5], p.244). Let {Pn(x)}∞n=0 be a set of orthogonal

polynomials corresponding to the functional µ (or the weight function w(x)

which generates µ), and let kn be the leading coefficient of Pn(x). Then there

exist real sequences {an}∞n=0, {bn}∞n=0 and {cn}∞n=1, such that for n ≥ 1 the

three-term recurrence relation

Pn+1(x) = (anx+ bn)Pn(x)− cnPn−1(x),

P0(x) = k0, P−1(x) = 0 holds. Here anan−1cn > 0 for n = 0, 1, 2 . . ., and if

hn is as in Definition 1.1.5 then

an =
kn+1

kn
, cn+1 =

an+1

an

hn+1

hn
.

Proof. Select an so that Pn+1(x) − anxPn(x) has degree n or less. Then

because {Pn(x)}∞n=0 is a simple set there exist constants dk such that

n∑
k=0

dkPk(x) = Pn+1(x)− anxPn(x).

Multiplying both sides of this equation by Pk(x) for k < n− 1 and applying

µ gives 0 = dkhk, and because hk > 0 for k ≥ 0, dk = 0 for k < n − 1. Let

cn = −dn−1 and bn = dn and the required recurrence results. The choice of

8



an immediately gives an =
kn+1

kn
. Multiply the recurrence relation by Pn−1(x)

and apply µ to obtain

0 = anµ(Pn(x)xPn−1(x))− cnµ(P 2
n−1(x)). (1.1.3)

The leading coefficient of xPn−1(x) is

kn−1 =
kn−1

kn
kn,

so

xPn−1(x) =
kn−1

kn
Pn(x) +

n−1∑
k=0

ekPk(x).

Substituting for xPn−1(x) in (1.1.3), gives

an
kn−1

kn
hn = cnhn−1.

Recognising that
kn−1

kn
=

1

an−1

and dividing by hn−1 gives the last part of the

result.

Alternative non-linear recurrence relations have been found for classical

orthogonal polynomials (cf. [17]). The three-term recurrence relation estab-

lishes a connection between orthogonal polynomials and a particular Markoff

process called a birth and death process (cf.[32], [33]). A two term recurrence

relation can be constructed which connects orthogonal polynomials to inverse

scattering theory (cf. [10]).

Another important relation satisfied by orthogonal polynomials is the

Christoffel-Darboux formula.

Theorem 1.1.14 (cf. [5], p.246). If {Pn(x)}∞n=0 is a set of orthogonal poly-

nomials and hi, ki are as in Theorem 1.1.13 with i = 0, 1, 2, . . . then

n∑
i=0

Pi(x)Pi(y)

hi
=

kn
kn+1

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

(x− y)hn
.

9



Proof. Multiplying the three-term recurrence relation in Theorem 1.1.13 by

Pn(y) gives

Pn(y)Pn+1(x) = (anx+ bn)Pn(x)Pn(y)− cnPn−1(x)Pn(y).

Swapping x with y gives

Pn(x)Pn+1(y) = (any + bn)Pn(y)Pn(x)− cnPn−1(y)Pn(x).

Subtract the second equation from the first and get

Pn(y)Pn+1(x)− Pn(x)Pn+1(y) = an(x− y)Pn(x)Pn(y)

+
an
an−1

hn
hn−1

(Pn−1(y)Pn(x)− Pn−1(x)Pn(y)) .

Divide by anhn(x− y) and take Pn(x)Pn(y) to one side to obtain

Pn(x)Pn(y)

hn
=

1

an

1

hn

Pn(y)Pn+1(x)− Pn(x)Pn+1(y)

x− y

+
1

an−1

1

hn−1

Pn−1(x)Pn(y)− Pn−1(y)Pn(x)

x− y
.

Summing the terms gives a telescoping series which establishes the result.

Corollary 1.1.15 (cf [5], p.247). As a particular case of the Christoffel-

Darboux formula

n∑
i=0

P 2
i (x)

hi
=

kn
kn+1

P ′n+1(x)Pn(x)− P ′n(x)Pn+1(x)

hn

Proof. This is obtained by taking the limit as y → x and using l’Hôpital’s

rule.

If kn < 0 for any n then multiplying Pn(x) by−1 makes kn > 0 and doesn’t

substantially change the three-term recurrence relation. In what follows it will

be assumed that kn > 0.

Because hn > 0 and kn > 0 for all n,

P ′n+1(x)Pn(x)− P ′n(x)Pn+1(x) > 0 (1.1.4)

10



for all x ∈ R (cf [5], p.247).

The zeros of real line orthogonal polynomials satisfy several useful prop-

erties.

Theorem 1.1.16 (cf [15], p.27). The zeros of real line orthogonal polynomials

are real, simple and are contained in (a, b), where (a, b) is the interval of

orthogonality.

Proof. µ(Pn(x)) = 0 so it can’t be the case that Pn(x) ≥ 0 on (a, b). Pn(x)

has at least one zero of odd multiplicity in (a, b). Let π(x) be the polynomial

π(x) = (x− x1)(x− x2) . . . (x− xm)

where x1, x2, . . . , xm are the zeros of odd multiplicity of Pn(x) in (a, b). If

m < n then µ(Pn(x)π(x)) = 0 by orthogonality. But Pn(x)π(x) doesn’t

change sign on (a, b). If Pn(x)π(x) ≤ 0 then −Pn(x)π(x) ≥ 0, giving

µ(−Pn(x)π(x)) > 0 or µ(Pn(x)π(x)) < 0. If Pn(x)π(x) ≥ 0, it follows that

µ(Pn(x)π(x)) > 0. Either way there is a contradiction. So m = n i.e. all the

zeros are simple and contained in (a, b) and therefore real as well.

Theorem 1.1.17 (cf [15], p.28). If {Pn(x)}∞n=0 is a set of orthogonal polyno-

mials then the zeros of Pn(x) and Pn+1(x) interlace for all n, i.e. for every

two consecutive zeros of Pn+1(x) there is one zero of Pn(x) between them.

Proof. From (1.1.4), it follows that P ′n+1(x)Pn(x) > 0 for each zero of Pn+1(x).

Since, by Rolle’s theorem, P ′n+1(x) changes sign between each of the zeros of

Pn+1(x), Pn(x) also changes sign between each of these zeros and must have

a zero between each of them.

1.2 Hypergeometric series

Gauss was the first to propose the study of series of hypergeometric type. In

1812 he presented a paper which considered the series (cf. [20]),

1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 + . . . .

11



This sum converges to an analytic function (in some domain) and is denoted

by 2F1(a, b; c; z) or

2F1

 a, b

c
; z

 .
The hypergeometric series arises in the theory of differential equations (cf.

[43], [55]), and can also be used for the representation of several important

sets of orthogonal polynomials.

Definition 1.2.1 (cf. [20], p. xii). The symbol (a)n is called Pochammer’s

symbol and denotes the product

(a)n =
n∏
k=1

(a+ k − 1) (1.2.1)

where

(a)0 = 1.

With the Pochammer symbol defined a more concise definition of the

hypergeometric series is possible.

Definition 1.2.2 (cf. [42], p.45). 2F1(a, b; c; z) denotes the series

∞∑
n=0

(a)n(b)n
(c)nn!

zn.

A natural question to ask is: when does the above series converge? The

ratio test suffices to answer this question.

Theorem 1.2.3 (cf. [42], p.45). If a, b and c are neither negative integers

nor zero, then 2F1(a, b; c; z) converges for |z| < 1.

Proof. Using the ratio test gives,

lim
n→∞

∣∣∣∣(a)n+1(b)n+1z
n+1

(c)n+1(n+ 1)!

(c)nn!

(a)n(b)nzn

∣∣∣∣ = lim
n→∞

∣∣∣∣(a+ n)(b+ n)

(c+ n)(n+ 1)
z

∣∣∣∣ = |z| < 1.

Convergence on the unit circle requires conditions on the parameters of

the series.

12



Theorem 1.2.4 (cf. [42], p.46). For |z| = 1, 2F1(a, b; c; z) converges for

<(c− a− b) > 0.

The proof of this theorem can be found in [42] on page 46.

Although not a hypergeometric function, the gamma function features

commonly in identities concerning hypergeometric functions.

Definition 1.2.5 (cf. [5], p.6). For <(x) > 0

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Using analytic continuation the gamma function can be made analytic

everywhere except for poles at the negative integers (cf. [5], p.7). Using the

definition of the Gamma function as an integral it is simple to obtain a well

known reduction formula of the gamma function.

Theorem 1.2.6.

Γ(x+ 1) = xΓ(x).

Proof. Using integration by parts∫ ∞
0

txe−tdt = [tx(−e−t)]∞0 − x
∫ ∞

0

tx−1(−e−t)dt.

The first term on the right disappears and the second term is xΓ(x), as

required.

Another identity which will be used in this discussion is the reflection

formula.

Theorem 1.2.7 (cf. [5], p.9).

Γ(x)Γ(1− x) =
π

sin(πx)
.

The proof uses contour integration and the relation

Γ(x)Γ(y)

Γ(x+ y)
=

∫ ∞
0

sx−1

(1 + s)x+y
ds.

13



Full details can be found in [5] on page 9.

As already mentioned, the hypergeometric series arises in the theory of

differential equations. Specifically it arises as the solution of the so-called

hypergeometric equation (cf. [43]).

Definition 1.2.8 (cf. [43], p.169). The second order differential equation,

x(1− x)y′′ + [γ − (α + β + 1)x]y′ − αβy = 0, (1.2.2)

where α, β and γ are complex constants, is referred to as the hypergeometric

equation.

The equation (1.2.2) has a regular singular point at x = 0. Consequently,

the Frobenius method can be used to obtain a power series solution (cf. [43],

[27]). In particular (cf. [43], p.169) there is a solution with exponent zero,

i.e. of the form

y =
∞∑
n=0

anx
n.

Following the usual steps in power series solutions (cf. [43], p.82)

y′ =
∞∑
n=1

nanx
n−1, y′′ =

∞∑
n=2

n(n− 1)anx
n−2,

so that the equation becomes

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=2

n(n− 1)anx
n + γ

∞∑
n=1

nanx
n−1

−(α + β + 1)
∞∑
n=1

nanx
n − αβ

∞∑
n=0

anx
n = 0.

Note that

∞∑
n=2

n(n− 1)anx
n−1 =

∞∑
n=0

n(n− 1)anx
n−1

γ

∞∑
n=1

nanx
n−1 = γ

∞∑
n=0

nanx
n−1

14



and
∞∑
n=2

n(n− 1)anx
n =

∞∑
n=0

n(n− 1)anx
n

(α + β + 1)
∞∑
n=1

nanx
n = (α + β + 1)

∞∑
n=0

nanx
n.

Equating coefficients of xn gives, for n ≥ 1

an =
(α + n− 1)(β + n− 1)

n(γ + n− 1)
an−1.

In particular, if a0 = 1 the result is

an =
(α)n(β)n
n!(γ)n

,

i.e. the solution is a hypergeometric series, which explains the name given to

the equation.

If a, or b is a negative integer, say −n then 2F1(a, b; c;x) is a terminating

series and represents a polynomial in x with degree n. This can be observed

by realising that

(−n)n+1 =
n∏
k=0

(−n+ k) = 0.

An important use of the hypergeometric series is its role as a representa-

tion for the classical orthogonal polynomials.

Definition 1.2.9 (cf. [42], p.73). The generalised hypergeometric function is

denoted pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) or

pFq

 a1, a2, . . . , ap

b1, b2, . . . , bq
; z

 =
∞∑
n=0

p∏
i=1

(ai)n

q∏
j=1

(bj)n

zn

n!
.

Here p stipulates the number of numerator parameters and q the number of

denominator parameters.

An important special case of the generalised hypergeometric function is

obtained from the binomial theorem.
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The binomial theorem gives the result (cf. [42], p.47),

(1− x)−a =
∞∑
n=0

(−a)(−a− 1)(−a− 2) . . . (−a− n+ 1)(−1)nxn

n!

=
∞∑
n=0

a(a+ 1)(a+ 2) . . . (a+ n− 1)xn

n!

=
∞∑
n=0

(a)nx
n

n!
= 1F0(a;−;x).

1.3 Chebyshev polynomials

A simple trigonometric identity can be used to derive the orthogonality rela-

tion for the Chebyshev polynomials.

Lemma 1.3.1 (cf. [15], p.1).∫ π

0

cosmθ cosnθdθ =
π

2
δmn (1.3.1)

except for n = m = 0, in which case the integral gives π.

Proof. Using a familiar trigonometric identity,

cosmθ cosnθ =
1

2
{cos(m+ n)θ + cos(m− n)θ} . (1.3.2)

For m 6= n∫ π

0

cosmθ cosnθdθ

=
1

2

{
1

m+ n
sin(m+ n)θ

∣∣∣∣π
0

+
1

m− n
sin(m− n)θ

∣∣∣∣π
0

}
= 0,

and for m = n, cos(m− n)θ = cos 0 = 1, so the integral reduces to

1

2

∫ π

0

dθ =
π

2
.

If m = n = 0 then ∫ π

0

cos 0 cos 0dθ =

∫ π

0

dθ = π.
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The next step in arriving at the Chebyshev polynomials is the fact that

cosnθ is a polynomial in powers of cos θ.

Lemma 1.3.2 (cf. [15], p.2). For n a natural number, cosnθ is a polynomial

in powers of cos θ with degree n, where degree refers to the highest power in

cos θ.

Proof. The proof uses induction. cos 0 = 1 and cos 1θ is a polynomial in cos θ

of degree 1 trivially. Suppose the statement is true for all m < n. By (1.3.2)

cosnθ = cos(n− 1 + 1)θ = 2 cos(n− 1)θ cos θ − cos(n− 2)θ. cos(n − 1)θ has

degree n − 1 by the inductive hypothesis, so cos(n − 1)θ cos θ has degree n

and the remaining term does not affect the degree.

Definition 1.3.3 (cf. [41], p.71). Using Lemmas 1.3.1 and 1.3.2, the nth

Chebyshev polynomial Tn(x) is defined by

Tn(x) = cosnθ

where x = cos θ.

Theorem 1.3.4 (cf. [15], pp.71, 252). The Chebyshev polynomials Tn(x)

satisfy the orthogonality relation∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
dx =

π

2
δmn

except for n = m = 0 in which case the integral is equal to π.

Proof. All that is required, is to realise that the substitution x = cos θ in

(1.3.1) results in dx = − sin θdθ or

dθ = − 1√
1− cos2 θ

dx = − 1√
1− x2

dx.

This theorem establishes the weight function,

w(x) =
1√

1− x2
,
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which is positive on the interval (−1, 1) as corresponding to the orthogonality

relation of the Chebyshev polynomials.

The relationship Tn(x) = cosnθ allows the exact determination of the

zeros of Tn(x) for arbitrary n.

Lemma 1.3.5 (cf. [41], pp.71, 252). The zeros of Tn(x) are

cos

(
(2j − 1)π

2n

)
j = 1, 2, . . . , n.

Proof. This statement follows from the fact that the zeros of cosnθ in the

interval (0, π) occur where nθ = (2j − 1)π
2
, or

θ =
(2j − 1)π

2n
,

j = 1, 2, . . . n. Using the relation x = cos θ then gives the zeros of Tn(x).

There are n zeros (so they are simple) and they lie in (−1, 1) (so they are

real).

The above result demonstrates the phenomenon of real, simple zeros con-

tained in the interval of orthogonality, which characterises orthogonal poly-

nomials.

The polynomials Tn(x) are, strictly speaking, the Chebyshev polynomials

of the first kind. The Chebyshev polynomials of the second kind are a closely

related family of orthogonal polynomials, which are denoted by Un(x).

Lemma 1.3.6 (cf. [41], p.71).

sin(n+ 1)θ

sin θ

is a polynomial in powers of cos(θ) with degree n.

Proof. Again using induction,

sin 1θ

sin θ
= 1

18



is a polynomial in cos θ with degree 0. Supposing the statement is true for

m < n, the elementary identity from trigonometry

sin(m+ n)θ + sin(m− n)θ = 2 sinmθ cosnθ

gives

sin(n+ 1)θ = 2 sinnθ cos θ − sin(n− 1)θ

or
sin(n+ 1)θ

sin θ
= 2

sinnθ

sin θ
cos θ − sin(n− 1)θ

sin θ
. (1.3.3)

The first term on the right hand side of (1.3.3) is, by hypothesis, a polynomial

in cos θ of degree n − 1 multiplied by cos θ (i.e. has degree n). The second

term on the right is a polynomial in cos θ of degree n − 2 and substracting

does not affect the degree.

Definition 1.3.7 (cf. [15], p.5). The Chebyshev polynomial of the second

kind is denoted by Un(x) and

Un(x) =
sin(n+ 1)θ

sin θ

for x = cos θ.

Theorem 1.3.8 (cf. [41], p.71). The Chebyshev polynomials of the second

kind Un(x) satisfy the orthogonality relation∫ 1

−1

Un(x)Um(x)
√

1− x2dx =
π

2
δmn.

Proof. In a similar approach to the proof for the Chebyshev polynomials of

the first kind the trigonometric representation of the polynomials is used.∫ π

0

sin(n+ 1)θ sin(m+ 1)θdθ

=

∫ π

0

sin(n+ 1)θ

sin θ

sin(m+ 1)θ

sin θ
sin2 θdθ

=

∫ 1

−1

Un(x)Um(x)
√

1− x2dx.
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Because x = cos θ and dx = − sin θdθ. Using the identity

sin(n+ 1)θ sin(m+ 1)θ =
1

2
(cos(m− n)θ − cos(m+ n)θ)

the same reasoning as in the proof for Tn(x) shows that the orthogonality

condition above holds, and furthermore the exceptional case that occurred

for the Tn(x) where n = m = 0 does not occur because sin((n + 1)θ) is

indexed from n+ 1 rather than n.

Lemma 1.3.9 (cf. [41], p.71). The polynomials Tn(x) and Un(x) satisfy the

recurrence relations,

Tn+1(x) = xTn(x)− (1− x2)Un−1(x) (1.3.4)

and

Un(x) = xUn−1(x) + Tn(x) (1.3.5)

Proof. Again invoking trigonometric identities gives the results,

cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ

or

cos(n+ 1)θ = cosnθ cos θ − (1− cos2 θ)
sinnθ

sin θ

substituting x, Tn(x) and Un(x) in the above gives the first result. Also,

sin(n+ 1)θ = cos θ sinnθ + sin θ cosnθ

or
sin(n+ 1)θ

sin θ
= cos θ

sinnθ

sin θ
+ cosnθ

giving the second result.

Theorem 1.3.10 (cf. [15], p.20). The Chebyshev polynomials Tn(x) satisfy

a three-term recurrence relation of the form

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.
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Proof. Using the identity

cos(n+ 1)θ + cos(n− 1)θ = 2 cosnθ cos θ,

which is a particular case of (1.3.2) gives the result on substituting x = cos θ

and using Tn(x) = cosnθ.

Theorem 1.3.11. The Chebyshev polnomials of the second kind Un(x) satisfy

the three-term recurrence relation

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1.

Proof. The relation (1.3.5) immediately gives

Tn(x) = Un(x)− xUn−1(x).

Substituting for Ti(x), i = n, n+ 1 in (1.3.4) results in

Un+1(x)− xUn(x) = xUn(x)− x2Un−1(x)− (1− x2)Un−1(x),

which, after cancelling terms, gives the result.

1.4 Other classical polynomials

The classical orthogonal polynomials are important in various applications

and are the most thoroughly studied. The polynomials bear the names of

the famous mathematicians who studied them: Jacobi, Legendre, Laguerre,

Hermite, Gegenbauer and Chebyshev.

In the hypergeometric equation (1.2.2), setting t as the independent vari-

able and replacing α, with −n, β with n + α + β + 1 and γ with α + 1, the

resulting equation is (cf. [49], p.62)

t(1− t)y′′ + [α + 1− (α + β + 2)t]y′ + n(n+ α + β + 1)y = 0. (1.4.1)

For the purposes of this section the constants α, β and γ in the above equation

are real numbers. This hypergeometric equation has a solution of the form,

2F1(−n, n+ α + β + 1;α + 1; t).
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Applying the substitution
1− x

2
= t to the equation (1.4.1) (cf. [49], p.60)

with −1

2

dy

dt
=
dy

dx
and denoting

dy

dx
by y′ leads to the differential equation

(1− x2)y′′ + [β − α− (α + β + 2)x]y′ + n(n+ α + β + 1)y = 0. (1.4.2)

This establishes that (1.4.2) has a solution of the form

2F1

(
−n, n+ α + β + 1;α + 1;

1− x
2

)
,

which by previous considerations is a polynomial of degree n.

Definition 1.4.1 (cf. [50], p.151). The Jacobi polynomials are given by the

hypergeometric series

P (α,β)
n (x) =

(
n+ α

n

)
F

(
−n, α + β + n+ 1;α + 1;

1− x
2

)
, (1.4.3)

where α > −1 and β > −1.

In the above (cf. [50], p.73)(
α + n

n

)
=

(α + 1)(α + 2) . . . (α + n)

n!

is a normalisation constant and refers to the binomial coefficient which can

be expressed as a quotient of gamma functions by(
α + n

n

)
=

Γ(α + n+ 1)

n!Γ(α + 1)
.

Lemma 1.4.2 (cf. [41], p.88). Up to normalisation P
(0,0)
n (x) = Pn(x) where

Pn(x) is the nth Legendre polynomial. Similarly disregarding normalisation

P
(− 1

2
,− 1

2
)

n (x) = Tn(x) and P
( 1
2
, 1
2

)
n (x) = Un(x).

These polynomials are known as ultraspherical or Gegenbauer polynomials

(cf. [42], p.276).

Definition 1.4.3 (cf. [42], p.276). In the Jacobi polynomial P
(α,β)
n (x) set

α = β. The resulting polynomial P
(α,α)
n (x) is called an ultrashperical polyno-

mial.
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Definition 1.4.4 (cf. [42], p.277). The polynomials {Cν
n(x)}∞n=0 defined by

Cν
n(x) =

(2ν)nP
(ν− 1

2
,ν− 1

2
)

n

(ν + 1
2
)n

are called the Gegenbauer polynomials.

Because orthogonal polynomials are determined up to constant multiples

it is clear that the Gegenbauer polynomials are essentially the same as the

ultraspherical polynomials.

Theorem 1.4.5 (cf. [42], p.258). The Jacobi polynomials

P
(α,β)
n (x), satisfy the orthogonality relation∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = hnδmn, hn > 0, (1.4.4)

where α, β > −1.

Proof. By definition the Jacobi polynomials satisfy the differential equation

(1− x2)
d2

dx2
P (α,β)
n (x) + [β − α− (α + β + 2)x]

d

dx
P (α,β)
n (x)

+ n(n+ α + β + 1)P (α,β)
n (x) = 0. (1.4.5)

Using the fact that β − α− (α + β + 2)x = (1 + β)(1− x)− (1 + α)(1 + x)

and multiplying by (1− x)α(1 + x)β, (1.4.5) can be rewritten

(1− x)α+1(1 + x)β+1 d
2

dx2
P (α,β)
n (x)

+ [(1 + β)(1− x)− (1 + α)(1 + x)](1− x)α(1 + x)β
d

dx
P (α,β)
n (x)

+ n(n+ α + β + 1)(1− x)α(1 + x)βP (α,β)
n (x) = 0. (1.4.6)

By the product rule (1.4.6) is

d

dx
[(1− x)1+α(1 + x)1+β d

dx
P (α,β)
n (x)]

+ n(1 + α + β + n)(1− x)α(1 + x)βP (α,β)
n (x) = 0. (1.4.7)

Multiply (1.4.7) by P
(α,β)
m (x) and substract the same equation with n replaced

by m and multiplied by P
(α,β)
n (x) to get equation (1.4.8).
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[Hint: to obtain equation (1.4.8) perform the first differentiation on the right

hand side]

[n(1 + α + β + n)−m(1 + α + β +m)](1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)

=
d

dx
[(1− x)1+α(1 + x)1+β{P (α,β)

n (x)
d

dx
P (α,β)
m (x)− P (α,β)

m (x)
d

dx
P (α,β)
n (x)}].

(1.4.8)

Finally integrate both sides of (1.4.8) to get

(n−m)(1 + α + β + n+m)

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx

=

[
(1− x)1+α(1 + x)1+β{P (α,β)

n (x)
d

dx
P (α,β)
m (x)− P (α,β)

m (x)
d

dx
P (α,β)
n (x)}

]1

−1

.

It follows that for m 6= n (1.4.4) is 0 while for m = n the integral is positive

because (1− x)α(1 + x)β is continuous and positive over (−1, 1).

By examining the weight functions of the Legendre polynomials and the

polynomials Tn(x) and Un(x) it is established that these polynomials are

special cases of the Jacobi polynomials. In fact they are ultraspherical poly-

nomials.

An alternative approach to the Jacobi polynomials defines them in terms

of the orthogonality relation. By demonstrating that they satisfy the differ-

ential equation (1.4.5) and that they are the only solution of this equation,

it follows that they have the representation (1.4.3).

Theorem 1.4.6 (cf. [49], p.60). Let P
(α,β)
n (x) be a polynomial that satisfies

the orthogonality relation (1.4.4). Then P
(α,β)
n (x) satisfies the differential

equation,

(1− x2)y′′ + [β − α− (α + β + 2)x]y′ + n(n+ α + β + 1)y = 0,

Proof. First note that

d

dx
[(1− x)α+1(1 + x)β+1y′] + n(n+ α + β + 1)(1− x)α(1 + x)βy
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= −(1− x)α(1 + x)β(α + 1)(1 + x)y′ + (1− x)α(1 + x)β(β + 1)(1− x)y′

+(1− x2)(1− x)α(1 + x)βy′′ + (1− x)α(1 + x)βn(n+ α + β + 1)y

which after collecting coefficients of y(i) and dividing by (1−x)α(1+x)β gives

(1.4.2). Assume that y = P
(α,β)
n (x).

d

dx
[(1− x)α+1(1 + x)β+1y′] = −(α + 1)(1− x)α(1 + x)β(1 + x)y′

+(β + 1)(1− x)α(1 + x)β(1− x)y′ + (1− x)α(1 + x)β(1− x2)y′′

i.e.
d

dx
[(1− x)α+1(1 + x)β+1y′] = (1− x)α(1 + x)βz, (1.4.9)

where z is a polynomial of degree n. Showing that z satisfies the orthogonality

relation of P
(α,β)
n (x) establishes that z = AP

(α,β)
n (x), where A is a constant.

Let π(x) be an arbitrary polynomial of degree < n, then∫ 1

−1

d

dx
[(1− x)α+1(1 + x)β+1y′]π(x)dx

= (1− x)α+1(1 + x)β+1y′π(x)| 1
−1 −

∫ 1

−1

(1− x)α+1(1 + x)β+1y′π′(x)dx.

By definition α + 1 > 0 and β + 1 > 0, so evaluating the first term at −1

and 1 causes it to disappear. This also happens integrating by parts a second

time, giving ∫ 1

−1

y
d

dx
[(1− x)α+1(1 + x)β+1π′(x)]dx.

If π(x) has degree 0 this vanishes, otherwise, by the same reasoning as in the

calculation of (1.4.9), this is equal to∫ 1

−1

yp(x)(1− x)α(1 + x)βdx

where p(x) has degree < n. As a result the integral is zero, so z satisfies the

orthogonality condition and is equal to Ay, where A is a constant. Using the

derivation of (1.4.9) the leading coefficient of z is

(−α− 1)nkn + (−β − 1)nkn + (−n(n− 1))kn,

25



where kn is the leading coefficient of y. This gives that A = −n(n+α+β+1),

which proves that P
(α,β)
n (x) satisfies the differential equation.

It can be established that P
(α,β)
n (x) is the only polynomial solution of

(1.4.2).

Theorem 1.4.7 (cf. [49], p.61). If y is a polynomial solution of

(1− x2)y′′ + [β − α− (α + β + 2)x]y′ + n(n+ α + β + 1)y = 0

then it is a constant multiple of P
(α,β)
n (x).

The proof of this result can be found in [49] on page 61.

From these results the previously given representation of the Jacobi poly-

nomials as a hypergeometric series is established.

Definition 1.4.8 (cf. [42], p.187). The Hermite polynomials {Hn(x)}∞n=0 are

defined by the generating function

e2xt−t2 =
∞∑
n=0

Hn(x)tn

n!
.

Theorem 1.4.9 (cf. [42], p. 189). Hn(x) satisfies the Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proof. Because Hn(x) is the Taylor coefficient of tn in the expansion of e2xt−t2

as a Maclaurin series in t it follows that

Hn(x) =

[
dn

dtn
e2xt−t2

]
t=0

.

The differentiation is with respect to t, so

e−x
2

Hn(x) =

[
dn

dtn
e−(x−t)2

]
t=0

.

Let x− t = w so that

e−x
2

Hn(x) = (−1)n
[
dn

dwn
e−w

2

]
w=x

.

The result follows by multiplying both sides by ex
2
.
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As a consequence of Theorem 1.4.9 the orthogonality relation for the Her-

mite polynomials can be derived.

Theorem 1.4.10. The Hermite polynomials satisfy the orthogonality relation∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = hnδmn, (1.4.10)

hn > 0.

Proof. Using the Rodrigues’ formula, the integral (1.4.10) reduces to∫ ∞
−∞

(−1)n+mex
2 dn

dxn
e−x

2 dm

dxm
e−x

2

dx

= (−1)n
∫ ∞
−∞

dn

dxn
e−x

2

Hm(x)dx. (1.4.11)

From
dk

dxk
e−x

2

= P (x)e−x
2

for some polynomial P (x), it follows that[
dk

dxk
e−x

2

]x=∞

x=−∞
= 0

for any natural number k. If m < n then integration by parts can be used

to eliminate Hm(x) from the integral (1.4.11) so that the integral is equal to

zero. If m = n then because e−x
2

is positive and continuous and H2
n(x) ≥ 0

and not identically zero the integral is positive.

Let {P (1)
n (x)}∞n=0 be the unique (up to normalisation) set of polynomials

satisfying, ∫ ∞
0

P (1)
n (x)P (1)

m (x)x−
1
2 e−xdx = hnδnm,

and let {P (2)
n (x)}∞n=0 be the unique set of polynomials satsifying∫ ∞

0

P (2)
n (x)P (2)

m (x)x
1
2 e−xdx = hnδnm.

{Hn(x)}∞n=0 is closely related to these sets.
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Theorem 1.4.11 (cf. [41], p.88). The relation H2n(x) = AP
(1)
n (x2) and the

relation H2n+1(x) = BxP
(2)
n (x2) hold, where A and B are constants depending

on normalisation.

Proof. The orthogonality condition is established. For odd exponents of x

less than 2n ∫ ∞
−∞

P (1)
n

(
x2
)
x2k+1e−x

2

dx = 0

because P
(1)
n (x2) and e−x

2
are even functions while x2k+1 is an odd function

so the integrand is odd and disappears. For even exponents of x less than

2n, the substitution t = x2 gives dt = 2xdx, x2k−1 = tk−
1
2 2k−

1
2 . By the same

reasoning as above the integrand is even, so equal to twice the integral from

0 to ∞. Carrying out the substitution gives∫ ∞
−∞

P (1)
n

(
x2
)
x2ke−x

2

dx = 2k−
1
2

∫ ∞
0

P (1)
n (t)tk−

1
2 e−tdt = 0

by the orthogonality condition for P
(1)
n (x), so the first part of the result is

established. For even exponents of x less than 2n∫ ∞
−∞

xP (2)
n

(
x2
)
x2ke−x

2

dx = 0,

because x is an odd function and the other functions in the integrand are

even so the integrand is odd. For odd exponents of x less than 2n, the same

substitution as in the previous case results in,∫ ∞
−∞

xP (2)
n

(
x2
)
x2k+1e−x

2

dx = 2k+ 1
2

∫ ∞
0

P (2)
n (t)tk+ 1

2 e−tdt = 0.

The polynomials P (1)(x) and P (2)(x) are specific examples of a more gen-

eral class of polynomials.

Definition 1.4.12 (cf. [42], p.204). The Laguerre polynomials {Lαn(x)}∞n=0

are defined by the Rodrigues’ formula

Lαn(x) =
x−αex

n!

dn

dxn
{e−xxn+α}.

Because the polynomials considered here have real coefficients it is stipulated

that α ∈ R. It is also stipulated that α > −1.
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As with the Hermite polynomials the Rodrigues’ formula can be used to

derive the orthogonality relation for the Laguerre polynomials.

Theorem 1.4.13 (cf. [42], p.205). The Laguerre polynomials satisfy the

orthogonality relation∫ ∞
0

Lαn(x)Lαm(x)xαe−xdx = hnδnm, (1.4.12)

hn > 0.

Proof. Using the Rodrigues’ formula the integral (1.4.12) reduces to

1

n!

∫ ∞
0

dn

dxn
(e−xxn+α)Lαm(x)dx. (1.4.13)

lim
x→∞

e−x = 0 and lim
x→0

xα+n−k = 0 so

[
dk

dxk
(e−xxn+α)

]∞
0

= 0

for any natural number k < n. For m < n this fact can be used to elimanate

Lαm(x) from (1.4.13) with integration by parts. For m = n, e−x is positive

and continuous over [0,∞) and (Lαn(x))2 ≥ 0 and not identically zero, so the

integral is positive.

The discussion of the Laguerre polynomials makes it clear that the poly-

nomials {P (1)(x)}∞n=0 and {P (2)(x)}∞n=0 which generate the Hermite polyno-

mials are, up to normalisation, the Laguerre polynomials {L−
1
2

n (x)}∞n=0 and

{L
1
2
n (x)}∞n=0 respectively.
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Chapter 2

The moment problem

The moment problem requires the generalisation of the Riemann integral to

the Riemann-Stieltjes integral. An important concept for Riemann-Stieltjes

integration is the function of bounded variation which generates the integral.

In particular the functions of bounded variation which are also distribution

functions are important here. The first part of the chapter examines the rudi-

ments of Riemann-Stieltjes integration. Subsequently results are developed

for distribution functions. With the foundations laid the concept of a mo-

ment problem is introduced. It is shown how the Hamburger moment problem

gives rise to a generalisation of the classical case of orthogonal polynomials

and a proof of Theorem 1.1.8 is given. Several examples of moment prob-

lems are given and necessary and sufficient conditions are obtained for the

existence of solutions. The most important result of the chapter is Favard’s

theorem which establishes the connection between the moment problem and

orthogonal polynomials.
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2.1 Distribution functions

Let {xk}∞k=0 be a sequence of arbitrary real numbers and {ak}∞k=0 be a sequence

of positive real numbers. Assume that

∞∑
k=0

|Pn(xk)ak| <∞

for an arbitrary polynomial Pn(x) of degree n. Define a binary relation 〈·, ·〉

on the space of real polynomials of a real variable by

〈Pn(x), Pm(x)〉 =
∞∑
k=0

Pn(xk)Pm(xk)ak.

This binary relation is well defined because of the Cauchy-Schwarz inequality.

By definition

〈Pn(x), Pm(x)〉 = 〈Pm(x), Pn(x)〉,

and because of absolute convergence

〈α1Pl(x) + α2Pm(x), Pn(x)〉 = α1〈Pl(x), Pn(x)〉+ α2〈Pm(x), Pn(x)〉.

Also, 〈Pn(x), Pn(x)〉 > 0, because all of the terms in the sum are positive.

As a result of this 〈·, ·〉 is an inner product on the space of polynomials

(cf. [2], p.2), and the Gram-Schmidt process discussed in Chapter 1 can be

applied to obtain a set of polynomials satisfying the orthogonality relation,

∞∑
k=0

Pn(xk)Pm(xk)ak = hnδnm, hn > 0.

An example of this phenomenon is the Charlier polynomials (cf. [15], p.4),

which satisfy
∞∑
k=0

Pn(k)Pm(k)
ak

k!
=
eaan

n!
δnm,

for a > 0 a real constant.

This is a valid case of orthogonality but falls outside the scope of Rie-

mann (or Lebesgue) integration in establishing an orthogonality condition.
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To investigate cases such as this, the concept of a distribution function will

be discussed.

An important concept in the characterisation of distribution functions is

the variation of a function.

Definition 2.1.1 (cf. [44], p.10). Let f(x) be an arbitrary real valued function

defined on the interval (a, b). Let Π be the set of all partitions

π = {(xi, xi+1)|i = 1, 2, 3, . . . , n, a = x1 < x2 < . . . < xn = b}

of (a, b). The total variation of f(x) on (a, b) is denoted by T (a, b) and is

defined to be

T (a, b) = sup
π∈Π

n−1∑
i=1

|f(xi+1)− f(xi)|.

Definition 2.1.2 (cf. [44], p.10). A function f(x) is said to have bounded

variation on an interval (a, b) if T (a, b) <∞.

Definition 2.1.3 (cf. [44], p.10). The indefinite total variation of a function

f(x) on an interval (a, b) denoted T (x) is defined as T (a, x).

Non-decreasing functions can be used to totally characterise the class of

functions of bounded variation.

Lemma 2.1.4 (cf.[44], p.10). If T (x) is the indefinite total variation of a

funtion of bounded variation f(x) for the interval (a, b), x, y ∈ (a, b) and

y > x then T (y) = T (x) + T (x, y).

Proof. Inserting a point into a partition of (a, y) can not decrease the sums

n−1∑
i=1

|f(xi+1)− f(xi)|.

If the point is x then partitions of (a, x) and (x, y) can be considered seper-

ately. This means that T (a, y) = T (a, x) + T (x, y) which is what was re-

quired.
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Theorem 2.1.5 (cf. [44], p.10). Every function of bounded variation is the

difference of two bounded non-decreasing functions.

Proof. Let f(x) be a function of bounded variation on the interval (a, b). Then

f(x) is bounded because it has bounded variation. T (x) is bounded below by

zero and above by T (a, b). It follows that T (x)− f(x) is also bounded.

f(x) = T (x)− {T (x)− f(x)},

is the required decomposition. From Lemma 2.1.4 T (x) is non-decreasing. It

remains to show that for y ∈ (a, b) and y > x, T (x) − f(x) ≤ T (y) − f(y).

After rearranging this is

f(y)− f(x) ≤ T (y)− T (x).

T (y)− T (x) = T (x, y) and by definition |f(y)− f(x)| ≤ T (x, y).

Definition 2.1.6 (cf. [52], p.239). Let f(x) and α(x) be real valued functions

defined on the interval (a, b). Let a = x1 < x2 < . . . < xn = b be a partition

of (a, b) and let xi ≤ vi ≤ xi+1, i = 1, 2, . . . , n − 1. The Riemann-Stieltjes

integral of f(x) with respect to α(x) is defined by,∫ b

a

f(x)dα(x) = lim
δ→0

n−1∑
k=1

f(vk){α(xk+1)− α(xk)}, (2.1.1)

where δ = max(xi+1−xi), i = 1, 2, . . . , n−1. The Riemann-Stieltjes integral of

a function exists if the same limit is obtained irrespective of how the partitions

are taken.

The importance of functions of bounded variation in this theory is summed

up by the following theorem.

Theorem 2.1.7 (cf. [52], p.241, [46], p.66). If f(x) is continuous and α(x)

has bounded variation in the interval [a, b], then the Riemann-Stieltjes integral

of f(x) with respect to α(x) exists.
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Proof. f(x) is continuous on the closed interval [a, b] so it is uniformly con-

tinuous. That is, for every ε > 0 there is a δ such that if

π = {(xi, xi+1)|a = x1 < x2 < . . . < xn = b} is a partition of [a, b] where

the intervals [xi, xi+1], i = 1, 2, . . . , n − 1, have maximum length δ, then

|f(xi+1) − f(xi)| < ε, i = 1, 2, . . . , n − 1. Such a partition will be called an

ε-partition. Let S(xk, vk) denote the sum

n−1∑
k=1

f(vk){α(xk+1)− α(xk)}

generated by some ε-partition πk. Let πkl be a new partition obtained by

adding points to πk such that xk,l+1 denotes the lth point of πkl added to πk

between xk and xk+1, xk,1 = xk. Let m(k) denote the number of points added

to the interval [xk, xk+1] and set xk,m(k)+2 = xk+1. The index l runs from 1 to

m(k)+2. Let vkl be chosen in the interval [xk,l, xk,l+1]. If f(vkl)−f(vk) = εkl,

it follows that |εkl| < ε. S(xkl, vkl) will be the sum generated by πkl. Now

|S(xk, vk)− S(xkl, vkl)|

=

∣∣∣∣∣∣
n−1∑
k=1

m(k)+1∑
l=1

f(vkl){α(xk,l+1)− α(xk,l)} − f(vk){α(xk+1)− α(xk)}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
k=1

m(k)+1∑
l=1

εkl{α(xk,l+1)− α(xk,l)}

∣∣∣∣∣∣
< ε

n−1∑
k=1

m(k)+1∑
l=1

|α(xk,l+1)− α(xk,l)| ≤ εT (a, b),

where T (a, b) is the total variation of f(x) on (a, b). Let S(x, v) and S(x′, v′)

be sums generated by two
ε

2
-partitions π and π′. Let S(x′′, v′′) be generated

by the partition π′′ obtained by adding the points of π to the points of π′.

Then using the above and the triangle inequality

|S(x, v)− S(x′′, v′′)| < ε

2
T (a, b) and |S(x′, v′)− S(x′′, v′′)| < ε

2
T (a, b),

so

|S(x, v)− S(x′, v′)| < εT (a, b). (2.1.2)
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Let a decreasing sequence of numbers εp > 0, lim
p→∞

εp = 0, be given. For each p

let S(x(p), v(p)) be a sum generated by an εp-partition. For any η > 0, (2.1.2)

gives an N such that

|S(x(p+n), v(p+n))− S(x(p), v(p))| < η, for p > N, n = 1, 2 . . . .

This is a Cauchy sequence of real numbers so

lim
p→∞

S(x(p), v(p)) = I <∞

exists. If S(x, v) is a sum corresponding to an arbitrary
ε

2
-partition, then

|S(x, v)− I| ≤ |S(x, v)− S(x(p), v(p))|+ |S(x(p), v(p))− I|

≤ εT (a, b) + η,

so convergence doesn’t depend on how partitions are taken. The Riemann-

Stieltjes integral exists and is equal to I.

The Riemann-Stieltjes integral satisfies several useful properties some of

which are analogous to properties of the Riemann integral. For instance, the

Riemann-Stieltjes integral satisfies a formula for integration by parts.

Lemma 2.1.8 (cf. [52], p.240). If the Riemann-Stieltjes integral of f(x) with

respect to α(x) on the interval (a, b) exists then the Riemann-Stieltjes integral

of α(x) with respect to f(x) exists and,∫ b

a

f(x)dα(x) = f(b)α(b)− f(a)α(a)−
∫ b

a

α(x)df(x).

Proof. The partition πx = {(xi, xi+1)|a = x1 < x2 < . . . < xn = b} generates

a dual partition choosing v1 = a and vn−1 = b (which is permitted in Defini-

tion 2.1.6), πv = {(vi, vi+1)|a = v1 < v2 < . . . < vn−1 = b}. It can be seen that

the coefficient of α(xk) in (2.1.1) is (−f(vk) + f(vk−1)), except for the case

α(x1) which has coefficient −f(v1) and the case α(xn) which has coefficient
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f(vn−1). Using these facts, the right hand side of (2.1.1) considered as a finite

sum can be rewritten as

α(b)f(b)− α(a)f(a) +
n−1∑
k=2

α(xk)(−f(vk) + f(vk−1))

= α(b)f(b)− α(a)f(a)−
n−1∑
k=2

α(xk)(f(vk)− f(vk−1)).

Subsequent partitions πv = {(vi, vi+1)|a = v1 < v2 < . . . < vm−1 = b} can

be chosen arbitrarily with new xk chosen satisfying vk−1 ≤ xk ≤ vk, and the

reduction of the length of the intervals (vk−1, vk) toward zero coincides with

the reduction of the length of the intervals (xk, xk+1) toward zero.

The following lemmas illustrate the role that the Stieltjes integral plays

as a linear functional.

Lemma 2.1.9 (cf. [52], p.241). The Stieltjes integral is a linear functional

on continuous functions,∫ b

a

[f1(x) + f2(x)]dα(x) =

∫ b

a

f1(x)dα(x) +

∫ b

a

f2(x)dα(x)

and ∫ b

a

cf(x)dα(x) = c

∫ b

a

f(x)dα(x).

Proof. In the right hand side of (2.1.1) substitute f1(vk) + f2(vk) for f(vk) so

that it becomes

lim
δ→0

n−1∑
k=1

(f1(vk) + f2(vk)){α(xk+1)− α(xk)}

= lim
δ→0

n−1∑
k=1

f1(vk){α(xk+1)− α(xk)}+ lim
δ→0

n−1∑
k=1

f2(vk){α(xk+1)− α(xk)}.

Similarly

lim
δ→0

n−1∑
k=1

cf(vk){α(xk+1)− α(xk)}

= c lim
δ→0

n−1∑
k=1

f(vk){α(xk+1)− α(xk)}.
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In fact any continuous linear functional on the Banach space C[a, b] of

continuous functions on an interval [a, b] is given by the Stieltjes integral of

the function with respect to a function of bounded variation (cf. [44], p.110).

Lemma 2.1.10 (cf.[52], p.241). The Stieltjes integral is a linear functional

on the function of bounded variation with respect to which the integration is

carried out, i.e.∫ b

a

f(x)d[α1(x) + α2(x)] =

∫ b

a

f(x)dα1(x) +

∫ b

a

f(x)dα2(x)

and ∫ b

a

f(x)d[cα(x)] = c

∫ b

a

f(x)dα(x)

Proof. Again referring to (2.1.1),

lim
δ→0

n−1∑
k=1

f(vk){(α1(xk+1) + α2(xk+1))− (α1(xk) + α2(xk))}

= lim
δ→0

{
n−1∑
k=1

f(vk){α1(xk+1)− α1(xk)}+
n−1∑
k=1

f(vk){α2(xk+1)− α2(xk)}

}

= lim
δ→0

n−1∑
k=1

f(vk){α1(xk+1)− α1(xk)}+ lim
δ→0

n−1∑
k=1

f(vk){α2(xk+1)− α2(xk)}.

Finally

lim
δ→0

n−1∑
k=1

f(vk){cα(xk+1)− cα(xk)} = c lim
δ→0

n−1∑
k=1

f(vk){α(xk+1)− α(xk)}.

In what follows the case of indefinite Riemann-Stieltjes integration will

often be used.

Definition 2.1.11 (cf. [52], p.243). The indefinite Riemann-Stieltjes integral

is defined in analogy with the case for the Riemann integral by,∫ ∞
−∞

f(x)dα(x) = lim
a→−∞

lim
b→∞

∫ b

a

f(x)dα(x).

Certain Riemann-Stieltjes integrals can be reduced to Riemann integrals.
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Theorem 2.1.12 (cf. [52], p.241). If α(x) has a continuous derivative α′(x)

on (a, b) and f(x) is Riemann-Stieltjes integrable with respect to α(x) on (a, b)

then, ∫ b

a

f(x)dα(x) =

∫ b

a

f(x)α′(x)dx.

Proof. By the mean value property in each interval [xk, xk+1] in (2.1.1) there

is a point vk such that

α(xk+1)− α(xk) = α′(vk)(xk+1 − xk).

Choosing all vk in (2.1.1) according to this rule gives the result.

A bounded non-decreasing function is clearly a function of bounded vari-

ation. In fact the variation of such a function α(x) on an interval (a, b) is

α(b)− α(a).

Definition 2.1.13 (cf. [15], p.51). A bounded non-decreasing function α(x)

satisfying ∫ ∞
−∞

xndα(x) <∞

for n = 0, 1, 2, . . . is called a distribution function.

Returning to the example of the Charlier polynomials, if α(x) is taken

as a step function with jumps of size
ak

k!
at the non-negative integers k then

from (2.1.1),∫ ∞
0

Pn(x)Pm(x)dα(x) = lim
δ→0

j−1∑
i=0

Pn(vi)Pm(vi){α(xi+1)− α(xi)},

where the partitioning is undertaken in the same way as in (2.1.1). If (xi, xi+1)

is an interval where this step function is constant then α(xi+1)−α(xi) = 0 and

this interval contributes nothing to the sum. On the other hand if (xi, xi+1) is

an interval where only one jump occurs (with fine enough partitions at most

one can occur) then α(xi+1)− α(xi) =
ak

k!
. As the partitions are taken more

finely any interval containing a jump becomes smaller and, in the limit, vi → k
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where k is some positive integer where a jump occurs. Because Pn(x)Pm(x)

is a continuous function the result of this limiting process is∫ ∞
0

Pn(x)Pm(x)dα(x) =
∞∑
k=0

Pn(k)Pm(k)
ak

k!
,

so that the step function generates a Stieltjes integral which corresponds to

the functional introduced at the beginning of the section.

In a similar way the classical polynomials have continuous Riemann in-

tegrable weight functions w(x) > 0. The indefinite Riemann integral of one

such function over the interval of orthogonality (a, b) gives a function α(x)

which is non-decreasing (because w(x) > 0) and bounded (because w(x) is

Riemann integrable on (a, b)) and has a continuous derivative everywhere in

(a, b) (by the fundamental theorem of calculus). Theorem 2.1.12 then gives

that for any continuous function f(x) defined on (a, b)∫ b

a

f(x)dα(x) =

∫ b

a

f(x)α′(x)dx =

∫ b

a

f(x)w(x)dx,

so that all classical cases of orthogonality can be represented by Stieltjes

integrals.

2.2 Uniqueness of distributions

A distribution function was defined to be bounded and non-decreasing. Such

a function can be discontinuous but its discontinuities satisfy restrictive con-

ditions. For instance a distribution function can only have countably many

discontinuities otherwise the sum of the jumps at these discontinuities would

have to be infinite (and the function would be unbounded).

Lemma 2.2.1 (cf. [31], p.19). If α(x) is a distribution function on (a, b) and

c ∈ (a, b) then

α(c−) = lim
x→c−

α(x) = sup
x<c

α(x)
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and

α(c+) = lim
x→c+

α(x) = inf
x>c

α(x),

exist. For c = a only the second relation holds, and for c = b only the first.

Proof. Because α(x) is a non-decreasing and bounded function the set

{α(x)|a ≤ x < c}

is bounded above and non-empty so sup
x<c

α(x) exists. Let ε > 0, then as a

property of the supremum there is an xε such that

sup
x<c

α(x)− α(xε) < ε, and because α(x) is non-decreasing, this difference can

only get smaller for other values of x in (c− xε, c), giving

sup
x<c

α(x)− ε < α(x) ≤ sup
x<c

α(x) < sup
x<c

α(x) + ε,

for x ∈ (c − xε, c). Letting ε go to zero gives the required limit. Because of

the symmetry between the supremum and infimum, the same approach can

be used for the cases α(c+), α(a+) and α(b−).

Lemma 2.2.2 (cf. [31], p.20). Let α(x) be a function which is bounded and

non-decreasing on (a, b). Then α(x) has at most countably many discontinu-

ities.

Proof. Let a partition

a = x0 < x1 < x2 < . . . < xn = b

of (a, b) be given. Let yk ∈ (xk, xk+1). Then α(xk+) ≤ α(yk) and α(yk−1) ≤

α(xk−) so

α(xk+)− α(xk−) ≤ α(yk)− α(yk−1).

Because α(y0) ≥ α(a+) and α(yn) ≤ α(b−)

α(a+)− α(a) ≤ α(y0)− α(a)
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and

α(b)− α(b−) ≤ α(b)− α(yn).

Adding the inequalities over the index k the terms α(yk) are telescoping and

cancel leaving

α(a+)− α(a) +
n∑
k=1

[α(xk+)− α(xk−)] + α(b)− α(b−) ≤ α(b)− α(a).

Let An = {x ∈ (a, b)|α(x+)− α(x−) >
1

n
}. If {xi}ki=1 ⊂ An then

α(b)− α(a) ≥
k∑
i=1

[α(xi+)− α(xi−)] >
k

n
,

so k has to be finite because α(b)−α(a) <∞ and the union
∞⋃
n=1

An is therefore

countable.

Theorem 2.2.3 (cf. [40], p.2). The complement of any countable set in an

interval (a, b) is dense in that interval.

Proof. Let A =
∞⋃
n=1

{an} be a countable subset of (a, b), and I be an arbitrary

subinterval of (a, b). Let I1 be a closed subinterval of I such that a1 /∈ I1. For

i > 1 let Ii be a closed subinterval of Ii−1 such that ai /∈ Ii. Then
⋂∞
n=1 In 6= ∅,

so the complement of A has non-empty intersection with I.

In (2.1.1) the Riemann-Stieltjes integral of a continuous function f(x)

with respect to a distribution function α(x) was defined as∫ b

a

f(x)dα(x) = lim
δ→0

n−1∑
k=1

f(vk){α(xk+1)− α(xk)},

where δ = maxxk{xk+1−xk}. If α(x) has a discontinuity at a point xd then as

the partitions get finer the contribution made by the point xd to the integral

is given by f(xd)d, where d is the jump at xd. Because only the jump matters
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and not the specific value of α(xd) a distribution function can take on any

value c in the interval

sup
x<xd

α(x) < c < inf
x>xd

α(x),

and still generate the same value for the integral of f(x). It seems unrea-

sonable that the same exception could hold for points of continuity. These

considerations are dealt with in the following theorem.

Theorem 2.2.4 (cf. [52], p.243). For the relation∫ b

a

f(x)dα(x) = 0

to hold for all continuous functions f(x) it is necessary and sufficient that

α(x) = α(a) for x = b and for all x in (a, b) except countably many points

where α(x) is discontinuous.

Proof. If the integral is zero for all continuous functions f(x) then in particu-

lar it is zero for f(x) = 1. In this case the sums that make up the integral are

telescoping for all partitions and the integral is equal to α(b) − α(a), which

gives α(b) = α(a). Now let f(x) be the continuous function

f(x) =

 x if a ≤ x ≤ v

v if x > v

then

0 =

∫ v

a

xdα(x) + v

∫ b

v

dα(x).

Using integration by parts gives

vα(v)− aα(a)−
∫ v

a

α(x)dx+ vα(b)− vα(v),

and since α(b) = α(a) this is

(v − a)α(a)−
∫ v

a

α(x)dx.
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If v is a point of continuity of α(x) then take the derivative with respect to

v, which gives

α(a)− α(v) = 0.

Suppose that α(a) = α(b) = α(v) for v any point of continuity of α(x) in (a, b).

The set of discontinuities is countable, so the set of points of continuity is

dense. As a result the endpoints of intervals in the partitions can be chosen

to miss discontinuities and so that the maximum length of intervals in the

partitions go to zero. The limit exists and is unique because α(x) has bounded

variation.

Because of this theorem, if α1(x) and α2(x) are distributions whose dif-

ference is constant at a and b and at points of continuity then by Lemma

2.1.9, ∫ b

a

f(x)dα1(x)−
∫ b

a

f(x)dα2(x) =

∫ b

a

f(x)d(α1(x)− α2(x)) = 0.

2.3 Measure and decomposition

It was seen that some distributions have continuous derivatives, and in this

case the Stieltjes integral reduces to∫ ∞
−∞

f(x)dα(x) =

∫ ∞
−∞

f(x)α′(x)dx.

Some distributions are jump functions and the Stieltjes integral reduces to

∞∑
k=0

f(xk)ak.

These two cases can be generalised and a further case occurs that was not

even treated previously, the case of a singular distribution.

Every distribution function (in fact every function of bounded variation)

generates a measure via, for instance, the Daniell scheme (cf.[46]). An advan-

tage to using measure is that if Lpα denotes the collection of functions f(x)
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such that ∫ ∞
−∞
|f(x)|pdα(x) <∞,

where integration is carried out with respect to the measure generated by

α(x), then Lpα(x) is a Banach space with respect to the norm (cf. [1], p.34)

‖f(x)‖ =

{∫ ∞
−∞
|f(x)|pdα(x)

} 1
p

.

The question of when polynomials are dense in this Banach space has been

comprehensively dealt with in [8]. Questions relating to Riemann-Stieltjes

integrability and Lebesgue-Stieltjes integrability are dealt with in [29].

The discussion will still focus on the distribution functions that generate

the associated Lebesgue-Stieltjes measures.

Characterisation of the different cases of distributions is closely related to

concepts from Lebesgue measure and integration.

Definition 2.3.1 (cf. [44], p.5). A subset of the real line is said to have

Lebesgue measure zero if it can be covered by countably many intervals, of

any kind, of arbitrarily small total length.

The following lemma will be used to prove Theorem 2.3.4.

Lemma 2.3.2 (cf. [44], p.6). Let g(x) be a function defined in the interval

[a, b] such that g(x+), g(x−) and g(x) exist and are finite for the interval

(a, b). For a, g(a+) must exist and be finite and for b, g(b−) must exist and

be finite. Let G(x) = max{g(x−), g(x), g(x+)} for x ∈ (a, b), G(a) = g(a+),

G(b) = g(b−). Let E be the set of points x ∈ (a, b) such that there is a ζ > x

and g(ζ) > G(x). Then E is either empty or it is a finite or countable union

of open disjoint intervals (ak, bk), satisfying g(ak+) ≤ G(bk).

Proof. Let x0 and ζ be points satisfying x0 < ζ, G(x0) < g(ζ). Because

G(x) ≥ g(x+) there is an interval [x0, x0 + ε) such that G(x) < g(ζ) for

x ∈ [x0, x0 + ε). Similarly there is an interval (x0 − ε, x0] where this holds.
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Taking the union of the largest possible of these intervals for each such x0 gives

the decomposition of E into disjoint open intervals. Let (ak, bk) be an interval

in the decomposition and let x ∈ (ak, bk). Let x1 be the largest number in

(x, bk] such that G(x) ≤ G(x1). If x1 < bk, then the ζ1 corresponding to

x1 would be greater than bk. Because bk is not in E, G(bk) ≥ g(ζ1), but

G(x1) > G(bk) and G(x1) < g(ζ1), so G(x1) < G(x1), a contradiction. It

follows that x1 = bk. Letting x→ ak gives the result.

Definition 2.3.3 (cf. [44], p.7). Let h > 0. The lower and upper right

derived numbers λr and Λr are given by

Λr = lim sup
h→0

f(x+ h)− f(x)

h
, λr = lim inf

h→0

f(x+ h)− f(x)

h
.

The lower and upper left derived numbers Λl and λl are defined analogously,

with f(x+ h) replaced by f(x− h).

A function f(x) has a finite derivative at a point x if all of its derived

numbers are finite and equal. If a set has Lebesgue measure zero it will be

called a null set. A property that holds everywhere except on a null set will

be said to hold almost everywhere.

Theorem 2.3.4 (cf. [44], p.11). Every function h(x), of bounded variation,

has a finite derivative h′(x) almost everywhere.

Proof. The result is first proved for a bounded non-decreasing function f(x).

It is sufficient to prove that

Λr <∞ and (2.3.1)

Λr ≤ λl, (2.3.2)

almost everywhere. Applying (2.3.2) to the function −f(−x) gives Λl ≤ λr

so that

Λr ≤ λl ≤ Λl ≤ λr ≤ Λr <∞.
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Denote by E∞ the set where Λr = ∞ and f(x) is continuous. This set is

contained in the set EC of points where Λr > C and f(x) is continuous. Let

x ∈ EC . Then there is a point ζ such that

f(ζ)− f(x)

ζ − x
> C.

Setting g(x) = f(x)− Cx and G(x) = max{g(x−), g(x), g(x+)} gives

G(x) < g(ζ), by continuity at x. By Lemma 2.3.2 EC is covered by countably

many disjoint intervals (ak, bk) and g(ak+) ≤ G(bk) or

f(ak+)− Cak ≤ f(bk+)− Cbk, or f(ak+)− Cak ≤ f(b−)− Cbk, if bk = b,

which gives

C(bk − ak) ≤ f(bk+)− f(ak+), or C(bk − ak) ≤ f(b−)− f(ak+), if bk = b.

Summing the above yields

C
∑
k

(bk − ak) ≤ f(b)− f(a),

because f(x) is non-decreasing. Because C can be made arbitrarily large, the

total length of the covering intervals can be made to go zero. As a result, E∞

has Lebesgue measure zero. Now, let 0 < c < C be two given numbers. Let

Ec be the collection of points where λl < c and f(x) is continuous. If x is a

point of continuity of f(x) where λl < c then −x is a point of continuity of

f(−x) where λr > c, so for every point of Ec there is an h such that

f(−x+ h)− f(−x)

h
> c.

If x− h = ζ the condition reads

f(−ζ)− f(−x)

x− ζ
> c. (2.3.3)

Let gc(x) = f(−x)+cx and Gc(x) = max{gc(x−), gc(x), gc(x+)}. By Lemma

2.3.2, there are countably many disjoint intervals (−bk,−ak) where (2.3.3)

can hold and g(−bk+) ≤ Gc(−ak) so

f(−bk+) + cbk ≤ f(−ak−) + cak,
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which gives

c(−ak + bk) ≤ f(−ak−)− f(−bk+).

Reflecting these intervals around the origin gives

f(bk−)− f(ak+) ≤ c(bk − ak).

The total length of the intervals (ak, bk) will be denoted by Σ1. Let

gC(x) = f(x) − Cx and GC(x) = max{gC(x−), gC(x), gC(x+)}. For each

interval (ak, bk) generate the set of points in (ak, bk) where GC(x) satisfies

the conditions of Lemma 2.3.2. This set is covered by a collection of disjoint

intervals (akl, bkl) for each k. Σ2 will denote the total length of the intervals

(akl, bkl). The following identity then holds

CΣ2 ≤ cΣ1.

To verify this it suffices to recognise that if bkl = bk for some k then

GC(bkl) = gC(bk−). Alternately applying Lemma 2.3.2 to the remaining

intervals for the functions gc(x) and gC(x) generates a sequence of families of

intervals whose lengths Σn satisfy

Σ2n ≤
c

C
Σ2n−1 ≤

( c
C

)n
Σ1 → 0, as n→∞.

The set EcC where f(x) is continuous and Λr > C and λl < c at the same

time is contained in all of the intervals generated above so it has Lebesgue

measure zero. The union of the countable family of sets EcC , for c and C

rational numbers, contains all points where f(x) is continuous and Λr > λl.

This is a countable union of sets of measure zero, so it also has measure zero.

The points of discontinuity of f(x) have not been considered, but according

to Lemma 2.2.2 there are only countably many such points so the collection

of them has Lebesgue measure zero. It follows that a bounded non-decreasing

function f(x) has a derivative almost everywhere. By Theorem 2.1.5, every

function of bounded variation is the difference of two bounded non-decreasing
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functions. Using the linearity of the derivative on this decomposition gives

the result.

Absolutely continuous distributions constitute a very important type of

distribution function.

Definition 2.3.5 (cf. [44], p.51). Let {(αk, βk)}nk=0 be a countable collection

of disjoint real intervals where n is finite or infinite. A function f(x) of

bounded variation is said to be absolutely continuous if for any ε > 0, there

is a δ > 0, such that
n∑
k=0

(αk − βk) < δ

implies that
n∑
k=0

|f(αk)− f(βk)| < ε.

Choosing the trivial covering of a single interval and letting its length go

to zero shows that absolutely continuous functions are necessarily continuous

(cf.[31], p.155).

In this context absolutely continuous functions are a powerful generalisa-

tion of the weight functions that occur in the case of classical polynomials.

Theorem 2.3.6 (cf. [44], p.53). A function f(x), of bounded variation, is

absolutely continuous if and only if it is the indefinite Lebesgue integral of its

almost everywhere derivative f ′(x).

The proof of this result can be found in [44] on page 50. Because of this

result, if a distribution α(x) is absolutely continuous, then∫
f(x)dα(x) =

∫
f(x)α′(x)dx.

Results on absolutely continuous functions can be found in [51].

Definition 2.3.7 (cf. [44], pp.13, 14). Let {un}∞n=0 and {vn}∞n=0 be absolutely

convergent series and {xn}∞n=0 be a countable sequence of points in the interval
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(a, b). The function

f(x) =
∑
xn≤x

un +
∑
xn<x

vn,

defined on (a, b) is called a saltus function. It is continuous everywhere except

the points {xn}∞n=0 and has jumps from the left and right at xn equal to un

and vn respectively.

Jump from the left at x refers to |f(x)− f(x−)|, and jump from the right

at x refers to |f(x+)− f(x)|.

From the above definition a saltus function can be badly behaved. For

instance the set {xn}∞n=0 can be chosen as the rational numbers in (a, b), so

that f(x) has discontinuities which are dense in (a, b).

Let the real numbers in [0, 1] be given by their ternary expansions (ex-

pansions in base three); i.e. if x ∈ [0, 1], then

x = 0.a1a2a3 . . . ,

where 0 ≤ ai ≤ 2 is a natural number for each i. The Cantor set is the

set of real numbers with ternary expansions which contain no 1′s (cf. [31],

pp.27-29). A number whose ternary expansion ends with 2000 . . . can also be

represented by an expansion which ends 1222 . . .. In this instance the repre-

sentation which ends 2000 . . . is chosen. A number whose ternary expansion

ends 0222 . . . can also be represented by an expansion which ends 1000 . . ..

In this instance the representation which ends 0222 . . . is chosen. The Cantor

set can be obtained constructively.

Divide [0, 1] into three and remove the open middle third. Then remove

the open middle thirds of the remaining outer intervals and at each step re-

move the open middle thirds of the remaining intervals. This algorithm works

because the middle third interval has 0.1 beginning the ternary expansion of

any number contained in it, and the closed outer intervals have 0.0 and 0.2

respectively. At the nth step, numbers in the remaining intervals have ternary

expansions with no 1′s in the first n places, so that in the limit n → ∞ the
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Cantor set is obtained. The total length of the remaining set at each step is(
2

3

)n
→ 0 as n → ∞. It follows that the Cantor set has Lebesgue measure

zero.

The Cantor function ω(x) maps x = 0.a1a2 . . . in the Cantor set to

ω(x) = 0.b1b2 . . ., where bi =
ai
2

for each i and f(x) is interpreted as the

binary expansion of a real number in [0, 1] (cf. [31], pp.29,30). For x not in

the Cantor set, it follows from the construction that x is in one of the open

intervals removed at some step in the algorithm. The end points of such an

interval are in the Cantor set and the image of the smaller endpoint under

the Cantor function is the same as that of the larger endpoint (cf. [31], p.29).

For x in such an interval let ω(x) = ω(x′) where x′ is the smaller endpoint

of the interval. Defined like this the Cantor function is continuous and non-

decreasing (cf. [31], pp.29,30) but not absolutely continuous. On the one

hand it maps a null set (the Cantor set) onto a set with positive measure

(the interval [0, 1]) and on the other hand it is constant almost everywhere

(so ω′(x) = 0 almost everywhere) and can’t be represented as the indefinite

integral of its almost everywhere derivative.

Definition 2.3.8 (cf. [44], p.53). A continuous function f(x) of bounded

variation satisfying f ′(x) = 0 almost everywhere, is called a singularly con-

tinuous function.

Examples of singularly continuous functions are given in [25]. Singularly

continuous functions are often associated with fractal sets. Orthogonal poly-

nomials associated with Julia sets have been used to solve problems related

to singularly continuous distributions (cf. [9]).

The three cases above exhaust the characterisation of distributions and

give rise to a canonical decomposition of distribution functions.

Theorem 2.3.9 (cf. [44], pp.15, 53). Every function f(x) of bounded varia-
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tion can be decomposed into a sum

f(x) = j(x) + a(x) + s(x),

where j(x) is a pure jump saltus function, a(x) is absolutely continuous and

s(x) is singularly continuous.

j(x) is constructed to have the same jumps and discontinuities as f(x). Using

Theorem 2.3.6,

a(x) =

∫ x

a

f ′(x)dx− f(a),

where f ′(x) is the almost everywhere derivative of f(x). The function s(x)

is then continuous and singularly continuous because f ′(x) = a′(x) almost

everywhere and j′(x) = 0 almost everywhere (cf. [44], pp.11, 15, 52, 53).

2.4 Stieltjes’ and Hausdorff’s problems

The example of the Charlier polynomials where the function α(x) which gen-

erated the Riemann-Stieltjes integral was a step function, shows the impor-

tance of where the function α(x) is increasing in calculating the value of the

integral. In particular intervals where α(x) is constant can be disregarded in

the calculation.

Definition 2.4.1 (cf. [3], p.46). x is a point of increase (or point of growth)

of a distribution function α(x), if

∀ε > 0, α(x+ ε)− α(x− ε) > 0.

Let α(x) be a bounded non-decreasing function satisfying∫ ∞
−∞

xndα(x) <∞,

n = 0, 1, 2, . . . where the integral is a Riemann-Stieltjes integral. Furthermore

suppose that α(x) is constant for all values of x less than zero (i.e. all points
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of increase of α(x) occur in [0,∞)). Then the integral can be rewritten∫ ∞
0

xndα(x).

Integrating each xn generates a sequence of real constants {µn}∞n=0. A natural

question that arises is when an arbitrary sequence of real constants can be

represented by a Stieltjes integral like this.

Definition 2.4.2 (cf. [52], p.327). Given an arbitrary sequence of real con-

stants {µn}∞n=0, the problem of finding a bounded non-decreasing function α(x)

satisfying ∫ ∞
0

xndα(x) = µn,

is called the Stieltjes moment problem, and the constants {µn}∞n=0 are called

moments.

Stieltjes solved this problem and invented the Stieltjes integral in the same

famous paper (cf. [48]). Stieltjes’ problem was a generalisation of a problem

formulated by Chebyshev while studying what he called ‘the limiting values

of integrals’ (cf. [11]).

Definition 2.4.3 (cf. [45], p.8). Let {µn}∞n=0 be a sequence of real constants.

The problem of finding a bounded non-decreasing function α(x) satisfying∫ 1

0

xndα(x) = µn,

is called the Hausdorff moment problem.

The Hausdorff moment problem is a specific instance of the Stieltjes mo-

ment problem; any solution to a Hausdorff moment problem is also the so-

lution to a Stieljes moment problem. The solution of the Hausdorff moment

problem is related to the theory of totally monotone sequences (cf. [53], [28]).
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2.5 Hamburger’s moment problem

Definition 2.5.1 (cf. [15], p.71). Given an arbitrary sequence of real numbers

{µn}∞n=0, the problem of finding a distribution function α(x) satisfying,∫ ∞
−∞

xndα(x) = µn,

is called the Hamburger moment problem.

This generalisation of the Stieltjes moment problem was undertaken by

Hamburger in [26]. An immmediate question is whether the solution to a

moment problem is unique.

Definition 2.5.2 (cf. [45], p.9). A moment problem is called determined (or

determinate) if any two solutions are equivalent.

Definition 2.5.3 (cf. [45], p.52). A moment problem is called indeterminate

if there exist solutions which are not equivalent.

Any solution to the Stieltjes moment problem is also a solution to the

Hamburger moment problem.

Because the interval (−1, 1) can be linearly transformed into any other

finite interval, the conditions for solving this problem are very similar to the

conditions for solving the moment problem for another finite interval (cf. [4]).

This problem is more general than Hausdorff’s moment problem because a

solution need not also be a solution to Stieltjes’ moment problem.

Definition 2.5.4 (cf. [1], p.2). In analogy with the work in Chapter 1 a

functional µ is defined on the space of polynomials of a real variable by

µ

(
n∑
k=0

akx
k

)
=

n∑
k=0

akµk

where µk is the kth element of a given sequence of moments.

By definition the functional µ is linear.
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Definition 2.5.5 (cf. [45], p. xiii). A linear functional µ on a space of

functions M is non-negative if whenever f(x) ≥ 0 and f(x) ∈M ,

µ(f(x)) ≥ 0.

If α(x) is a distribution function it is obvious that∫ b

a

f(x)dα(x) ≥ 0

for any continuous f(x) satisfying, f(x) ≥ 0, x ∈ (a, b).

Lemma 2.5.6 (cf. [52], p.244). Let Pn(x) be an arbitrary polynomial which

is greater than or equal to zero over (a, b) and not identically zero. Then α(x)

is a distribution function with infinitely many points of increase in an interval

(a, b) if and only if ∫ b

a

Pn(x)dα(x) > 0

Proof. The proof is similar to the proof of Lemma 1.1.1. No polynomial has

infinitely many zeros, so there is an interval containing a point of increase of

α(x), such that Pn(x) > ε1 > 0 on this interval. α(x) has positive variation

over the interval equal to ε2. The contribution of this interval to the integral

is at least ε1ε2 > 0. For the converse if α(x) has finitely many points of

increase then the polynomial pn(x) with double roots at each of these points

and no other roots gives ∫ b

a

pn(x)dα(x) = 0.

Definition 2.5.7 (cf. [1], p.2). A linear functional µ on the space of poly-

nomials is called positive if, whenever an arbitrary polynomial Pn(x) satisfies

Pn(x) ≥ 0 and Pn(x) is not identically zero then µ(Pn(x)) > 0.

So a necessary condition for the Hamburger moment problem to have a

solution is that µ be a non-negative functional on the space of polynomials. In

order that the solution have infinitely many points of increase it is necessary

that µ be a positive functional on the space.
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To solve the Hamburger moment problem it is necessary to establish which

polynomials are non-zero on the entire axis (−∞,∞).

Lemma 2.5.8 (cf. [41], p.77). Any polynomial Pn(x) which is non-negative

on the entire real axis can be represented by,

Pn(x) = q2(x) + r2(x)

where q(x) and r(x) are polynomials with real coefficients.

Proof. Any polynomial with real coefficients can be factorised into the prod-

uct of linear factors and irreducible quadratic factors. For a polynomial to be

non-negative on the entire real line the linear factors must have even multi-

plicity, and the irreducible quadratic factors must be of the form

(x− x0)2 + y2
0, x0, y0 ∈ R. (2.5.1)

This follows by completing the square and recognising that the polynomial

must be non-negative for x = x0. Because y0 is allowed to be 0 (2.5.1)

accounts for pairs of linear factors as well. The identity

(p2
1 + l21)(p2

2 + l22) = (p1p2 + l1l2)2 + (p1l2 − p2l1)2 (2.5.2)

can be verified by multiplying out both sides. Using (2.5.1) pairs of double

linear factors and/or irreducible quadratic factors have the form of the left

hand side of (2.5.2). The right hand side of (2.5.2) has the form of one of

the factors on the left hand side. Repeatedly applying (2.5.2) reduces the

original polynomial to an expression which has the form of the right hand

side of (2.5.2), where p1, p2, l1 and l2 may be polynomials of any degree.

This yields the result.

Multiplying out the square on one of the polynomials above gives

q2(x) =
n∑
i=0

n∑
j=0

xi+jaiaj,
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where ai and aj are real numbers arising from the representation

q(x) =
n∑
k=0

akx
k. Applying µ to this sum gives

µ(q2(x)) =
n∑
i=0

n∑
j=0

µi+jaiaj.

Because ai and aj can take on arbitrary real values, the necessary condition

stated earlier, but now specific to the Hamburger moment problem is

n∑
i=0

n∑
j=0

µi+jaiaj ≥ 0,

for ai, aj arbitrary real numbers.

The non-negativity of these quadratic forms is equivalent to the non-

negativity of determinants generated by the moment sequence. This idea

arises in the theory of real symmetric matrices (cf. [6], pp.479-485).

Theorem 2.5.9 (cf. [45], p.5). For the Hamburger moment problem corre-

sponding to the sequence {µn}∞n=0 to have a solution, it is necessary that the

determinants

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

. . .
...

µn−1 µn . . . µ2n−1

µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
be non-negative. For the solution to have infinitely many points of increase it

is necessary that these determinants be positive.

As a convention D−1 = 1 unless otherwise stipulated. Let µ be a positive

functional defined on polynomials as above. Define 〈·, ·〉 for real polynomials

of a real variable by

〈Pn(x), Pm(x)〉 = µ(Pn(x)Pm(x))

where Pn(x) and Pm(x) are arbitrary such polynomials. This definition is

almost the same as that given in Chapter 1 but without appeal to an integral.
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It is easy to establish that 〈·, ·〉 is linear in both of its arguments, satisfies

〈Pn(x), Pm(x)〉 = 〈Pm(x), Pn(x)〉 and because of positivity, µ(Pn(x)) > 0 for

any polynomial Pn(x) ≥ 0 and not identically zero. As a result, a positive

moment functional µ generates a canonical inner product on the space of

polynomials, and the Gram-Schmidt algorithm can be applied to generate a

set of polynomials orthogonal with respect to µ.

Using the moments associated with a set of orthogonal polynomials, it is

a simple matter to investigate uniqueness. This furnishes a proof of Theorem

1.1.8. The coefficients of an orthogonal polynomial satisfy the equations (cf.

[4], p.5)

a0µ0 + a1µ1 + . . .+ akµk = 0

a0µ1 + a1µ2 + . . .+ akµk+1 = 0

...
...

...
...

a0µk−1 + a1µk + . . .+ akµ2k−1 = 0.

The system has rank k because Dk−1 > 0 so the solution space is one dimen-

sional.

Lemma 2.5.10 (cf [1], p.4). The nth orthogonal polynomial associated with

a positive functional is given by the formula∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1 µn

µ1 µ2 . . . µn µn+1

...
...

. . .
...

...

µn−1 µn . . . µ2n−2 µ2n−1

1 x . . . xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof. This can be seen by multiplying the last row by xm, m ≤ n and

applying µ. For all m < n the determinant will have linearly dependent rows

and for m = n it will be greater than zero.

By Lemma 1.1.12 µ(P 2
n(x)) = knµ(Pn(x)xn) where kn is the leading coef-

ficient of Pn(x). µ(Pn(x)xn) = Dn and expanding along the bottom row in
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the determinant representation above gives kn = Dn−1. These facts give the

determinant representation of the orthonormal polynomials (cf. [1], p.3)

1√
Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn−1 µn

µ1 µ2 . . . µn µn+1

...
...

. . .
...

...

µn−1 µn . . . µ2n−2 µ2n−1

1 x . . . xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5.3)

The proofs of identities such as the three-term recurrence relation, Christoffel-

Darboux formula and properties of zeros given in the first chapter only used

the fact that the positive weight function w(x) generated a positive functional

on polynomials, by means of integration. As a result all of these identities

are established for general orthogonal polynomials orthogonal with respect to

some positive functional.

Consider the three-term recurrence relation

Pn+1(x) = (anx+ bn)Pn(x)− cnPn−1(x),

where for kn the leading coefficient of Pn(x), an =
kn+1

kn
and cn =

an
an−1

hn
hn−1

.

If {Pn(x)}∞n=0 is an orthonormal set of polynomials, then hn = 1 and dividing

the recurrence by an results in

xPn(x) =
1

an
Pn+1(x)− bn

an
Pn(x) +

1

an−1

Pn−1(x).

So the recurrence can be expressed in terms of two sequences {dn}∞n=0 and

{en}∞n=0 where dn =
1

an
and en = − bn

an
for each n. Using the determinant

form of the orthonormal polynomials gives kn =

√
Dn−1√
Dn

> 0 so that dn > 0

for each n (cf. [4], p214).

These two sequences can be used to construct an infinite Jacobi matrix
e0 d0 0 0 . . .

d0 e1 d1 0 . . .

0 d1 e2 d2 . . .
...

...
...

...
. . .

 ,
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which plays an important role in the connection between orthogonal polyno-

mials and distribution functions. This matrix has also been used to connect

the Hamburger moment problem with spectral analysis of Jacobi matrices

(cf. [24]).

Unlike the monic orthogonal polynomials, the orthonormal polynomial of

the nth degree is not uniquely determined. If Pn(x) is an orthonormal polyno-

mial of degree n then so is −Pn(x). By choosing the leading coefficients of the

orthonormal polynomials so that they alternate in sign a set of orthonormal

polynomials can be constructed such that dn < 0 for each n in the recurrence

relation and Jacobi matrix. However, if it is assumed that kn > 0 for each n,

then dn > 0.

2.6 Existence of solutions

Throughout the preceeding discussion an important idea has been the func-

tional generated first by a weight function, then by a distribution function and

finally by a moment sequence. The result that a distribution function gener-

ates a non-negative functional on its Riemann-Stieltjes integrable functions

demonstrated the necessity that the functional associated with a moment se-

quence also be non-negative, because the integral is always an extension of a

moment functional.

If a specific interval is under consideration a slight modification to the

earlier definition of non-negativity is necessary. The linear functional µ will

be called non-negative if for f(x) ≥ 0 ∀x ∈ (a, b), µ(f(x)) ≥ 0. If µ is a

non-negative functional and f(x) ≥ g(x) on (a, b) then f(x) − g(x) ≥ 0 on

(a, b) and µ(f(x))− µ(g(x)) ≥ 0, so µ(f(x)) ≥ µ(g(x)).

Theorem 2.6.1 (cf. [4], p.127). Let P be the space of real polynomials of a

real variable, (a, b) be a given interval of real numbers (the case of a and b

infinite included) and {xk}∞k=0 be the rational numbers contained in (a, b). A
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non-negative linear functional µ defined on P can be extended to the set of

functions

wxk(x) =

 1 if a ≤ x ≤ xk

0 if xk < x ≤ b

preserving its non-negativity.

Proof. Start with wx0 . Let Pn(x) denote an arbitrary polynomial satisfy-

ing Pn(x) ≤ wx0(x) and Pm(x) denote an arbitrary polynomial satisfying

wx0(x) ≤ Pm(x), in particular if Pn(x) is 0 and Pm(x) is 1 this holds. As a

result there is at least one number ζ satisfying

sup
Pn(x)

µ(Pn(x)) ≤ ζ ≤ inf
Pm(x)

µ(Pm(x)).

Choose an arbitrary such number ζ and define µ(wx0(x)) = ζ. Then it is

shown below that for any polynomial Pr(x) in P and real constant c satisfying,

Pr(x) + cwx0(x) ≥ 0,

µ(Pr(x) + cwx0(x)) = µ(Pr(x)) + cµ(wx0(x)) ≥ 0,

where x ∈ (a, b). If c > 0 then −1
c
Pr(x) is a polynomial less than or equal to

wx0(x) on (a, b) and by the above

−1

c
µ(Pr(x)) ≤ µ(wx0(x)),

which gives the required result. If c < 0 then −1
c
Pr(x) is a polynomial greater

than or equal to wx0(x) on (a, b) and by the above

−1

c
µ(Pr(x)) ≥ µ(wx0(x)),

which similarly gives the required result. This process is repeated for wx1(x)

except that now the supremum and infimum can be take over linear combi-

nations of polynomials and wx0(x). In this way the process is continued for

wxk(x), k = 2, 3, . . . and because the set of functions {wxk(x)}∞k=0 is count-

able and well-ordered each function in the set is included at some step in the

algorithm.
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Having extended the functional to this set of functions it is now possible to

construct a solution to the moment problem. The specific problem considered

will be the Hamburger problem.

Theorem 2.6.2 (cf. [1], p.71, [4], p.126). For the Hamburger moment prob-

lem to have a solution it is necessary and sufficient that the moment functional

generated by it be non-negative.

Proof. Necessity has been deomonstrated on page 54. For sufficiency as-

sume that µ is a non-negative functional generated by a Hamburger moment

problem and also assume that µ has been extended to the set of functions

{wxk(x)}∞k=0 discussed above. Define α(x) for x ∈ {xk}∞k=0 = Q by,

α(xk) = µ(wxk(x)).

If xk ≥ xj, then by defintion wxk(x) ≥ wxj(x), so

α(xk) ≥ α(xj). (2.6.1)

The rational numbers are dense in R so α(x) can be extended to R by

α(x) = sup
xk<x

α(xk), (2.6.2)

where xk is a rational number. The function α(x) is non-decreasing and

bounded. The non-decreasing property follows from (2.6.1) and (2.6.2). The

boundedness is ensured because sup
x
α(x) = µ(1) = µ0 and

inf
x
α(x) = µ(0) = 0. Choose points

−B = τ0 < τ1 < . . . < τN = B,

where τj ∈ Q and B > 1 for every j, such that in each interval [τi, τi+1],

max
x∈[τi,τi+1]

xk − min
x∈[τi,τi+1]

xk < ε. Construct the functions

F k
N(x) =

n−1∑
j=0

τ kj {wτj+1
(x)− wτj(x)}.
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If |x| > B then the wτj(x) are equal to the same number (1 or 0) for each

j so F k
N(x) = 0. If x ∈ (τi, τi+1] then wτj(x) = 0 for j ≤ i and for j > i,

wτj+1
(x) = wτj(x) = 1 so that the only non-zero term in the sum is τ ki wτi+1

(x)

i.e. in this case F k
N(x) = τ ki . Because of the condition in choosing the τi,

i = 0, 1, . . . , N , if −B ≤ x ≤ B and k is odd then 0 ≤ xk − F k
N(x) < ε

whereas if k is even and −B ≤ x < 0 then −ε < xk − F k
N(x) ≤ 0 and if

0 ≤ x ≤ B then 0 ≤ xk − F k
N(x) < ε. So for −B ≤ x ≤ B

|xk − F k
N(x)| < ε.

Let n = 2k. For |x| > B, xk − F k
N(x) = xk and because B > 1 for k

even 0 < xk <
xn

B
and for k odd |xk| < xn

B
. This combined with the other

inequality gives in the entire interval (−∞,∞),

|xk − F k
N(x)| < ε+

xn

B
,

or

−x
n

B
− ε < xk − F k

N(x) < ε+
xn

B
.

Apply µ to both sides to get

−µn
B
− µ0ε < µk −

N−1∑
j=0

τ kj {α(τj+1)− α(τj)} < µ0ε+
µn
B
.

Letting δ → 0 where δ = max
i
{τi+1−τi} causes ε to go to zero and generates a

Stieltjes integral, which exists because xk is continuous and α(x) has bounded

variation. The inequality now reads

−µn
B

< µk −
∫ B

−B
xkdα(x) <

µn
B
.

Letting B tend to infinity gives the result.

Theorem 2.6.3. A Hamburger moment problem {µn}∞n=0 has a solution with

infinitely many points of increase if and only if the associated functional µ is

positive.
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Proof. By the above theorem a Hamburger moment problem has a solution

if and only if the associated functional is non-negative. By Lemma 2.5.6 and

Definition 2.5.7 the solution has infinitely many points of increase if and only

if the associated functional is positive.

The strength of this approach is that the same proof with appropriate, but

not substantial, modifications can be used to show that for an arbitrary in-

terval (a, b) on the real line, a necessary and sufficient condition for a solution

to exist is that the functional µ generated by the problem be non-negative on

polynomials relative to the interval (cf. [45]).

Lemma 2.6.4 (cf. [41], p.78). Any polynomial which is non-negative in

[0,∞) can be represented as

q2(x) + r2(x) + x{s2(x) + t2(x)},

where q(x), r(x), s(x) and t(x) are polynomials with real coefficients.

Proof. All roots of odd multiplicity of a polynomial P (x) which is non-

negative for x ∈ [0,∞) are non-positive. P (x) can be factorised with factors

(x− x0)2 + y2
0, x0, y0 real, and x+ x1, x1 ≥ 0.

Either of these factors can be represented by the expression

p2
1 + q2

1 + x(r2
1 + s2

1).

The right hand side of the identity

[p2
1 + q2

1 + x(r2
1 + s2

1)][p2
2 + q2

2 + x(r2
2 + s2

2)]

= [(p2
1 + q2

2)(p2
2 + q2

2) + x2(r2
1 + s2

1)(r2
2 + s2

2)]

+ x[(p2
1 + q2

1)(r2
2 + s2

2) + (r2
1 + s2

1)(p2
2 + q2

2)]

has two terms which are non-negative on the whole real line. Applying Lemma

2.5.8 then gives the result.
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Theorem 2.6.5 (cf. [45], p.5). A necessary and sufficient condition for the

Stieltjes moment problem to have a solution is that

n∑
i=0

n∑
j=0

µi+jaiaj ≥ 0 (2.6.3)

and
n∑
i=0

n∑
j=0

µi+j+1aiaj ≥ 0, (2.6.4)

for ai, aj arbitrary real numbers.

Proof. From the above a necessary and sufficient condition for a solution to

exist is that the functional µ generated by the problem be non-negative on

[0,∞). µ(q2(x)) gives (2.6.3) and µ(xs2(x)) = µ

(
n∑
i=0

n∑
j=0

xxi+jaiaj

)
which

gives (2.6.4).

Using the criteria for existence of a solution to the Hamburger moment

problem the fundamental theorem connecting orthogonal polynomials and the

moment problem can be established. This result establishes that any Jacobi

matrix 
e0 d0 0 0 . . .

d0 e1 d1 0 . . .

0 d1 e2 d2 . . .
...

...
...

...
. . .

 ,

with en ∈ R and dn > 0 for all n corresponds to a distribution function α(x).

The polynomials {Pn(x)}∞n=0 which satisfy a three-term recurrence relation

xPn(x) = dnPn+1(x) + enPn(x) + dn−1Pn−1(x),

with parameters {en}∞n=0 and {dn}∞n=0 are orthonormal with respect to α(x).

This result is known as Favard’s theorem.

Theorem 2.6.6 (Favard’s Theorem cf. [4], p.216). Let sequences {dn}∞n=0

and {en}∞n=0 be given such that en ∈ R and dn > 0. Then there is a distribu-

tion function α(x) such that the polynomials Pn(x) generated by the recurrence
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relation

xPn(x) = dnPn+1(x) + enPn(x) + dn−1Pn−1(x),

P−1(x) = 0, P0(x) =
1
√
µ0

, where µ0 > 0 is arbitrary, are orthonormal with

respect to α(x).

Proof. Because {Pn(x)}∞n=0 is a simple set, two arbitrary real polynomials

G(x), H(x) each of degree n, can be expanded as a linear combination of

polynomials Pk(x), 0 ≤ k ≤ n such that

G(x) =
n∑
k=0

ζkPk(x)

H(x) =
n∑
k=0

ηkPk(x).

Define 〈·, ·〉 by,

〈G(x), H(x)〉 =
n∑
k=0

ηkζk.

It follows that

1. 〈G(x), H(x)〉 = 〈H(x), G(x)〉

2. 〈G1(x) +G2(x), H(x)〉 = 〈G1(x), H(x)〉+ 〈G2(x), H(x)〉

3. 〈αG(x), H(x)〉 = α〈G(x), H(x)〉

4. 〈G(x), G(x)〉 > 0, if G(x) is not identically 0.

It is natural to define a functional µ on polynomials R(x) by decomposing

R(x) into factors S(x) and T (x) so that

µ(R(x)) = 〈S(x), T (x)〉,

but for this definition to hold it is must be shown that µ takes the same value

irrespective of the decomposition of R(x) into factors. To this end note first

that the three-term recurrence relation gives

xPi(x) = diPi+1(x) + eiPi(x) + di−1Pi−1(x)
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and the trivial sum Pi(x) =
n∑
k=0

δikPk(x) holds for Pi(x), where i = 0, 1, 2 . . . , n

and n = 0, 1, 2 . . .. These facts give

〈xPi(x), Pk(x)〉 = 〈Pi(x), xPk(x)〉. (2.6.5)

If G(x) and H(x) are arbitrary polynomials where xG(x) = x

n∑
k=0

ζkPk(x),

xH(x) = x

n∑
k=0

ηkPk(x) then (2.6.5) and linearity of 〈·, ·〉 give

〈xG(x), H(x)〉 = 〈G(x), xH(x)〉. (2.6.6)

Finally if F (x) is some polynomial of degree not greater than n then

F (x) =
n∑
k=0

akx
k and (2.6.6) leads to the conclusion

〈F (x)G(x), H(x)〉 = 〈G(x), F (x)H(x)〉,

which establishes that µ is well-defined. A moment sequence can be defined

by

µi+j = µ(xi+j), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . .

By definition µ(Pn(x)Pm(x)) = 〈Pn(x), Pm(x)〉 = δnm. For this sequence to

generate a distribution function it is sufficient that the quadratic forms,

n∑
i=0

n∑
j=0

µi+jaiaj, (2.6.7)

where ai, aj are real numbers be non-negative. Equation (2.6.7) is

µ(q2(x)) = 〈q(x), q(x)〉 > 0 for some polynomial with real coefficients q(x).

The condition is satisfied and a distribution function α(x) can be constructed

so that ∫ ∞
−∞

Pn(x)Pm(x)dα(x) = δnm,

because the integral is an extension of the functional µ.

Conditions have been found which relate the determinacy of a Hamburger

moment problem to the coefficients in the three-term recurrence relation of a

set of orthogonal polynomials (cf. [13]).
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If α1(x) is a distribution generated by the Jacobi matrix with the choice

µ0 = 1 then α2(x) = cα1(x) is a distribution generated by the Jacobi matrix

with the choice µ0 = c. Without loss of generality the choice µ0 = 1 will be

used throughout the rest of the discussion (cf. [1], p.3).

Under this choice of µ0, k0 the coefficient of the 0th orthonormal polyno-

mial is
1
√
µ0

= 1. So dn =
kn
kn+1

gives

n−1∏
i=0

1

di
=

n−1∏
i=0

ki+1

ki
=
kn
k0

= kn.

As a result if pn(x) is the nth monic orthogonal polynomial and Pn(x) is the

nth orthonormal polynomial then

Pn(x) = knpn(x) =

{
n−1∏
i=0

1

di

}
pn(x). (2.6.8)

2.7 The true interval of orthogonality

Theorem 2.7.1 (cf. [15], p.59). If α(x) is a distribution function with in-

finitely many points of increase and {Pn(x)}∞n=0 is the set of orthogonal poly-

nomials generated by α(x) on the interval (a, b), then between any two zeros

of Pn(x) there is a point of increase of α(x).

Proof. Suppose that there are two zeros x1 and x2 of Pn(x) such that α(x)

has no point of increase between them. Then the polynomial

Q(x) = P 2
n(x)

1

(x− x1)(x− x2)

is non-negative outside the interval (x1, x2), and because α(x) has no points

of increase in (x1, x2) this interval contributes nothing to the integral so that∫ b

a

Q(x)dα(x) > 0.

This contradicts the orthogonality condition because Q(x) is the product of

an orthogonal polynomial and a polynomial of lower degree.
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This establishes that wherever there are zeros of orthogonal polynomials

there are also points of increase of the associated distribution. It can be

shown (cf. [45], pp.106-113) that a solution of the associated moment problem

exists with all of its points of increase contained in the smallest closed interval

containing the roots of all of the orthogonal polynomials {Pn(x)}∞n=0. This

interval is also the smallest interval for which there exists a solution with all

points of increase contained in it.

2.8 The trigonometric moment problem

Instead of the functions {xn}∞n=0 the trigonometric moment problem examines

the functions {einx}∞n=−∞, together with a sequence of constants {νn}∞n=−∞,

νn = ν−n. In analogy with the moment problems considered so far, a linear

functional ν is defined on linear combinations of these functions (cf. [4], p.1)

ν

(
n∑

k=−n

ake
ikx

)
=

n∑
k=−n

akνk.

Definition 2.8.1 (cf. [23], p.742). Given a sequence of constants {νn}∞n=−∞,

νn = ν−n the problem of finding a bounded non-decreasing function σ(θ) such

that
1

2π

∫ 2π

0

einxdσ(x) = νn,

is called the trigonometric moment problem.

Using a generalisation of the approach for the Hamburger moment prob-

lem it can be established that the trigonometric moment problem is solvable

if and only if the functional ν is non-negative relative to the interval [0, 2π]

(cf. [4], p.180). In the event that a solution σ(θ), with infinitely many points

of increase, exists an inner product can be constructed on the set of complex

polynomials of a complex variable by setting

〈Pn(z), Pm(z)〉 =

∫ 2π

0

Pn(eiθ)Pm(eiθ)dσ(θ).
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To verify this it suffices to establish the properties (cf. [2], p.2)

(a.) 〈Pn(z), Pm(z)〉 = 〈Pm(z), Pn(z)〉,

(b.) 〈α1Pl(z) + α2Pm(z), Pn(z)〉 = α1〈Pl(z), Pn(z)〉+ α2〈Pm(z), Pn(z)〉,

(c.) 〈Pn(z), Pn(z)〉 > 0 for Pn(z) not identically zero.

The first property can be established directly from the definition by con-

sidering the real and imaginary parts of the integrand. The second property

follows from the linearity of the integral. The third property is a consequence

of the fact that Pn(z)Pn(z) = |Pn(z)|2 > 0 and σ(z) is non-decreasing and

has infinitely many points of increase.

Using the Gram-Schmidt process a set of orthogonal polynomials given

by {Pn(z)}∞n=0 can be constructed. Because the integration is carried out on

the unit circle of the complex plane these polynomials are often called unit

circle orthogonal polynomials (or polynomials orthogonal relative to a circle

(cf. [1], p.182)).

If the moments of a solvable trigonometric moment problem are real then

the resulting distribution can be transformed into a distribution which is the

solution of an ordinary moment problem on the interval (−1, 1). Conversely a

distribution function which solves a moment problem on the interval (−1, 1)

can transformed into a distribution which solves a trigonometric moment

problem with real moments (cf. [22], p.169, [23], pp.757-760). The connection

between orthogonal polynomials on the real line and on the unit circle has

been used to transfer known facts about distributions on the real line to

distributions on the unit circle (cf.[37]). Analogies between the recurrence

relations for unit circle orthogonal polynomials and polynomials orthogonal

on the real line have been explored (cf. [10], [21]). The trigonometric moment

problem can also be solved using continued fractions. This establishes a

connection between the problem and Schur’s algorithm for bounded analytic

functions in the unit circle (cf. [36]).
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Chapter 3

Continued fractions

The earliest investigations of the moment problem were undertaken with con-

tintued fractions (cf. [48]). They continue to be an important avenue for

research in orthogonal polynomials. The chapter begins with an overview of

essential theorems from the theory of continued fractions. Next, Jacobi con-

tinued fractions are introduced. Jacobi continued fractions have an essential

connection with orthogonal polynomials and the classical moment problem.

This connection is exhibited using asymptotic series. A truncated Jacobi con-

tinued fraction is used to present the limit circle and limit point cases which

arise for indeterminate and determinate moment problems respectively. Fi-

nally the Nevanlinna parametrisation of solutions to an indeterminate mo-

ment problem is presented.

3.1 Basic theory

Definition 3.1.1 (cf. [15], p.77, [19], p.58). Let {an}∞n=1 and {bn}∞n=0 be

infinite sequences of complex numbers. A continued fraction is defined as the
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formal expression

b0 +
a1

b1 +
a2

. . .
+

an

bn + . . .

.

If the sequences are infinite the continued fraction is called an infinite con-

tinued fraction, otherwise it is called a finite continued fraction.

This expression in some instances converges to a complex number. In

order to study convergence of a continued fraction, the fraction is truncated

and the behaviour of the truncated fractions is studied, in analogy with the

partial sums of an infinite series.

Definition 3.1.2 (cf. [15], p.77). Let the sequences above be truncated at the

nth term, leaving {ak}nk=1, {bk}nk=0. Then the finite continued fraction

Cn = b0 +
a1

b1 +
a2

. . .
+
an

bn

,

is called the nth convergent of the continued fraction generated by the se-

quences {an}∞n=1 and {bn}∞n=0.

It is difficult to gauge the behaviour of the convergents just by looking

at the continued fraction. It can be shown by back substitution that an

arbitrary finite continued fraction reduces to a ratio of two complex numbers.

A recurrence relation exists to calculate the nth convergent of an arbitrary

continued fraction by providing an expression for the numerator and for the

denominator.

Theorem 3.1.3 (cf. [19], p.59). Let the nth convergent Cn of the continued

fraction generated by the sequences {an}∞n=1 and {bn}∞n=0 be given by the ratio
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Cn =
An
Bn

,

Then An and Bn satisfy the recurrence relations

An+1 = bn+1An + an+1An−1,

Bn+1 = bn+1Bn + an+1Bn−1,

where A−1 = 1, A0 = b0, B−1 = 0 and B0 = 1.

Proof. C0 = b0 and C1 = b0 +
a1

b1

. Since C0 =
A0

B0

=
b0

1
, and

C1 =
A1

B1

=
b1b0 + a1

b11 + 0
=
b1A0 + a1A−1

b1B0 + a1B−1

the hypothesis holds for C1. Assume

the hypothesis holds for any nth convergent of an arbitrary continued fraction.

Cn+1 is the same as Cn except that bn +
an+1

bn+1

is substituted for bn, so C ′n =

Cn+1 is an nth convergent for some continued fraction and the hypothesis can

used to calculate its value,

C ′n =

(bn +
an+1

bn+1

)An−1 + anAn−2

(bn +
an+1

bn+1

)Bn−1 + anBn−2

.

An−1, An−2, Bn−1 and Bn−2 are not affected by the new choice of bn (because

of the recurrence relation) so,

Cn+1 =

(bnAn−1 + anAn−2) +
an+1

bn+1

An−1

(bnBn−1 + anBn−2) +
an+1

bn+1

Bn−1

=

An +
an+1

bn+1

An−1

Bn +
an+1

bn+1

Bn−1

.

Multiplying the last fraction by
bn+1

bn+1

gives the result.

Lemma 3.1.4 (cf. [35], p.12). Let

ζ = b0 +
a1

b1 +
a2

. . .
+

an

bn + u

.
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Then

ζ =
An + uAn−1

Bn + uBn−1

.

Proof. In Theorem 3.1.3 simply replace
an+1

bn+1

with u to obtain this result.

Lemma 3.1.5 (cf. [35], pp.12,14). If An, Bn, an and bn are as above for

each n then

AnBn−1 − An−1Bn = (−1)n−1a1a2 . . . an,

and
An
Bn

− An−1

Bn−1

=
(−1)n−1a1a2 . . . an

BnBn−1

, n ≥ 1. (3.1.1)

Proof. A1B0 −A0B1 = (b1b0 + a1)1− (b11)b0 = a1. Assuming the hypothesis

for n and using Theorem 3.1.3,

An+1Bn − AnBn+1 = (bn+1An + an+1An−1)Bn

− An(bn+1Bn + an+1Bn−1)

= −an+1(AnBn−1 − An−1Bn)

= (−1)na1a2 . . . anan+1.

To get the second part of the result divide both sides by BnBn−1.

It is possible to transform the parameters of a continued fraction while

maintaining the same value for the convergents.

Theorem 3.1.6 (cf. [52], p.19). Let An and Bn be the approximants of the

continued fraction

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

.

73



Then the continued fraction

b0 +
c1a1

c1b1 +
c1c2a2

c2b2 +
c2c3a3

c3b3 + . . .

,

has approximants A′p = c0c1c2 . . . cpAp and B′p = c0c1c2 . . . cpBp, where c0 = 1.

This means that the approximants of the transformed continued fraction are

the same as the original continued fraction.

Proof. A−1 = 1, A0 = b0, B−1 = 0, B0 = 1 are unaffected by the transforma-

tion so A′0 = c0A0 and B′0 = c0B0. Suppose that the hypothesis holds for k,

then using the formula for computing the approximants Ap gives

A′k+1 = ck+1bk+1A
′
k + ck+1ckak+1A

′
k−1

= bk+1ck+1ckck−1 . . . c0Ak + ak+1ck+1ckck−1 . . . c0Ak−1

= ck+1ckck−1 . . . c0Ak+1.

The same reasoning establishes the result for Bk+1.

If ak 6= 0 for each k then the parameters ck can be determined so that

ckck−1ak = 1 and all of the transformed numerators are 1.

Every rational number can be expanded as a finite continued fraction

using the Euclidean division algorithm.

Theorem 3.1.7 (cf. [35], p.1). Let a rational number be given by
x0

x1

,

x0 > x1 > 0 then there is a finite sequence of parameters {bk}nk=0 which are

positive integers such that

x0

x1

= b0 +
1

b1 +
1

. . .
+

1

bn

.
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Proof. x0 = b0x1 +x2 where x2 < x1 is the remainder after dividing x0 by x1.

Similarly

x1 = b1x2 + x3

x2 = b2x3 + x4

x3 = b3x4 + x5

...

xn−1 = bn−1xn + xn+1

xn = bnxn+1.

This descending sequence of natural numbers must terminate. For each k
xk−1

xk
= bk−1 +

1
xk
xk+1

and the continued fraction expansion follows.

3.2 Jacobi continued fractions

The parameters of an orthonormal set of polynomials {dn}∞n=0 and {en}∞n=0,

dn ∈ R and en > 0 for each n, generate a Jacobi matrix
e0 d0 0 0 . . .

d0 e1 d1 0 . . .

0 d1 e2 d2 . . .
...

...
...

...
. . .

 . (3.2.1)

Denote by kn the leading coefficient of the nth orthonormal polynomial. dn

was defined to be
1

an
=

kn
kn+1

. Denote by pn(x) the polynomials satisfying

pn+1(x) = (x− en)pn(x)− d2
n−1pn−1(x), (3.2.2)

p0(x) = 1, p−1(x) = 0. Let
1

kn
Pn(x) = pn(x) then equation (3.2.2) gives

1

kn+1

Pn(x) = (x− en)
1

kn
Pn(x)− dn−1

kn−1

kn

1

kn−1

Pn−1(x).

Multiply by kn and use dn =
kn
kn+1

to get

dnPn+1(x) = (x− en)Pn(x)− dn−1Pn−1(x),
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P0(x) = k0, P−1(x) = 0. This is the three-term recurrence relation for the

orthonormal polynomials so pn(x) is the nth monic orthogonal polynomial.

Definition 3.2.1 (cf. [52], pp.64,103). A continued fraction

1

x− e0 −
d2

0

. . .−
d2
n

x− en+1 − . . .

,

where en ∈ R and dn > 0 are sequences associated with a real infinite Jacobi

matrix, is called a Jacobi continued fraction.

The above definition is narrower than the definition found elsewhere (cf.

[54]), but it is sufficient to encompass all cases of this continued fraction

occurring here.

Using Theorem 3.1.3 to compute the approximants An and Bn gives

An+1 = (x− en)An − d2
n−1An−1,

Bn+1 = (x− en)Bn − d2
n−1Bn−1,

A0 = 0, A1 = 1, B−1 = 0, B0 = 1. It is immediate from the preceding

calculations and these formulae that Bn is the nth monic orthogonal polyno-

mial generated by the Jacobi matrix (3.2.1), and An is the (n − 1)th monic

orthogonal polynomial generated by the Jacobi matrix
e1 d1 0 0 . . .

d1 e2 d2 0 . . .

0 d2 e3 d3 . . .
...

...
...

...
. . .

 . (3.2.3)

The Euclidean division algorithm which was used to generate the contin-

ued fraction expansion of a rational number can also be used on polynomials

as the familiar polynomial long division. In a completely analogous way this
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gives rise to a continued fraction expansion for a rational function. This

analogy is thoroughly developed in [34].

Theorem 3.2.2 (cf. [35], p.248). Let
f1

f0

, be a rational function, i.e. a ratio

of two polynomials f1 and f0. Furthermore let the degree of f1 be less than

the degree of f0. Then there exist polynomials {bk}nk=0 such that

f1

f0

=
1

b0 +
1

b1 +
1

. . .
+

1

bn

.

Proof. f0 = b0f1 + f2 where f2 is the remainder after dividing f0 by f1 and

f2 has degree less than f1. Similarly

f1 = b1f2 + f3

f2 = b2f3 + f4

...

fn−1 = bn−1fn + fn+1

fn = bnfn+1.

Consequently
f1

f0

=
1
f0
f1

=
1

b0 +
1

f1
f2

, and in general
fk−1

fk
= bk−1 +

fk+1

fk
. The

required expansion follows.

The convergents of a Jacobi continued fraction are rational functions and

an equivalent continued fraction representation for the convergents can be

obtained from this algorithm. It is important to determine when an arbitrary

rational function can be written as a Jacobi continued fraction.
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Theorem 3.2.3 (cf. [52], pp.165-167). Let
f1

f0

be a rational function where

the polynomials f1 and f0 are given by

f0 = a00z
n + a01z

n−1 + . . .+ a0n,

f1 = a11z
n−1 + a12z

n−2 + . . .+ a1n,

then the continued fraction expansion of
f1

f0

is a Jacobi continued fraction if

the determinants

∆0 = a00

∆1 = a11

∆2 =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a00 a01 a02

0 a11 a12

∣∣∣∣∣∣∣∣∣

∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15

a00 a01 a02 a03 a04

0 a11 a12 a13 a14

0 a00 a01 a02 a03

0 0 a11 a12 a13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

where a0p = a1p = 0 if p > n, are all greater than zero.

Details of the proof can be found in [52] on pages 165-167.

3.3 Asymptotic expansions

Definition 3.3.1 (cf. [39], p.4). Let f(z) and g(z) be functions of a complex

variable z. If
|f(z)|
|g(z)|

is bounded as z →∞ then

f(z) = O(g(z)),

or f(z) is O(g(z)).
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Definition 3.3.2 (cf. [5], p.611). Let f(z) be a function of a complex variable

in an unbounded region D of the complex plane and
∞∑
k=0

akz
−k be a formal

power series. If

f(z) =
n−1∑
k=0

akz
−k +Rn(z),

and Rn(z) = O(z−n) as z → ∞ in D, then the formal series
∞∑
k=0

akz
−k is

called an asymptotic expansion for f(z).

Lemma 3.3.3 (cf. [39], p.19). If f(z) has an asymptotic expansion
∞∑
k=0

fkz
−k

and g(z) has an asymptotic expansion
∞∑
k=0

gkz
−k then h(z) = f(z)g(z) has an

asymptotic expansion
∞∑
k=0

hkz
−k where hk =

k∑
i=0

figk−i.

The proof can be found in [39] on page 19.

If
∞∑
k=0

akz
−k is an asymptotic expansion for

1

G(z)
, where G(z) is a poly-

nomial of degree n, then the first n coefficients of the expansion must be zero

because
1

G(z)
is O(z−n).

Let
f1

f0

be a rational function which can be expanded as a Jacobi continued

fraction. Let the nth approximant of the Jacobi continued fraction be denoted

by
qn(z)

pn(z)
. Referring to (3.1.1) the approximants to the continued fraction

satisfy

qn+1(z)

pn+1(z)
− qn(z)

pn(z)
=

(−1)n(−d2
0)(−d2

1)(−d2
2)(−d2

3) . . . (−d2
n−1)

pn+1(z)pn(z)
(3.3.1)

=
d2

0d
2
1d

2
2d

2
3 . . . d

2
n−1

pn+1(z)pn(z)

If a rational function can be expanded as a Jacobi continued fraction then

because it is a finite continued fraction (as can be seen from the expansion

algorithm in Theorem 3.2.2), it is the nth (and final) convergent of the con-
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tinued fraction,
f1

f0

=
qn(z)

pn(z)
. As a result

f1

f0

− qi(z)

pi(z)
=

n−1∑
k=i

(
qk+1(z)

pk+1(z)
− qk(z)

pk(z)

)

=
n−1∑
k=i

d2
0d

2
1d

2
2d

2
3 . . . d

2
k−1

pk+1(z)pk(z)
(3.3.2)

This difference is O(z−2i−1), so the asymptotic expansion of
f1

f0

coincides with

the asymptotic expansion of
qi(z)

pi(z)
up to the coefficient of

1

z2i
(cf. [52], p.167).

Suppose an asymptotic expansion
∞∑
k=0

µk
zk+1

is given, and that the deter-

minants

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

. . .
...

µn−1 µn . . . µ2n−1

µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.3.3)

are positive. Construct a rational function (cf. [52], p.168)

µ0z
2n + µ1z

2n−1 + µ2z
2n−2 + . . .+ µ2n−1z + t

z2n+1
=

2n−1∑
k=0

µk
zk+1

+
t

z2n+1
. (3.3.4)

The numerator and denominator polynomials are

f1 = µ0z
2n + µ1z

2n−1 + µ2z
2n−2 + . . .+ µ2n−1z + t

f0 = 1z2n+1.

Using the determinant condition it is sufficient for this rational function to

have a Jacobi fraction expansion that

∆0 = 1 > 0

∆1 = µ0 > 0

∆2 =

∣∣∣∣∣∣∣∣∣
µ0 µ1 µ2

1 0 0

0 µ0 µ1

∣∣∣∣∣∣∣∣∣ > 0
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∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 µ3 µ4

1 0 0 0 0

0 µ0 µ1 µ2 µ3

0 1 0 0 0

0 0 µ0 µ1 µ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

...

∆n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 . . . t

1 0 0 . . . 0

0 µ0 µ1 . . . µ2n−1

...
...

...
. . . 0

0 0 µ0 . . . µn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

Expanding ∆2 down the first column gives

∆2 = (−1)

∣∣∣∣∣∣ µ1 µ2

µ0 µ1

∣∣∣∣∣∣ = D1.

Similarly

∆3 = (−1)

∣∣∣∣∣∣∣∣∣
µ2 µ3 µ4

µ1 µ2 µ3

µ0 µ1 µ2

∣∣∣∣∣∣∣∣∣ = D2.

In general for k < n+ 1, ∆k = Dk−1 > 0. ∆n+1 = tDn−1 + c where c is a real

constant. For large enough t, ∆n+1 > 0. The rational function
f1

f0

satisfies

the conditions for a Jacobi continued fraction expansion and by (3.3.4) the

asymptotic expansion of
f1

f0

coincides with the aymptotic expansion
∞∑
k=0

µk
zk+1

up to the coefficient of
1

z2n
. Suppose a rational function

f1

f0

coincides with the

asymptotic expansion up to the coefficient of
1

z2l
and a rational function

f ′1
f ′0

coincides with the asymptotic expansion up to the coefficient of
1

z2m
where

m > l. Let
ql(z)

pl(z)
and

q′l(z)

p′l(z)
be the lth convergents of

f1

f0

and
f ′1
f ′0

. Then since
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the asymptotic expansion of

ql(z)

pl(z)
− q′l(z)

p′l(z)
,

starts at
a2l

z2l+1
, the asymptotic expansion of

ql(z)p′l(z)− q′l(z)pl(z),

must start at
b0

z
. So

ql(z)pl(z)′ − q′lpl(z) = 0 +R1(z) (3.3.5)

or ql(z)p′l(z)− q′l(z)pl(z) = O(z−1). Because ql(z)p′l(z)− q′l(z)pl(z) is a poly-

nomial it must be zero to be O(z−1)(cf [52],p.169). This shows that there is a

unique formal infinite Jacobi continued fraction associated with an asymptotic

expansion satisfying (3.3.3). Let {µn}∞n=0 be a sequence of moments satisfying

(3.3.3) then this sequence generates a positive moment functional with asso-

ciated orthogonal polynomials. Let pn(z) be the nth monic orthogonal poly-

nomial associated with the moment functional µ generated by the moment

sequence. The coefficient of
1

zk
in the product pn(z)

∞∑
k=0

µk
zk+1

is
n∑
i=0

µk−1+ici

where ci is the coefficient of zi in pn(z). Because µ(zk−1pn(z))=
n∑
i=0

µk−1+ici,

the coefficient of
1

zk
for k = 0, 1, . . . , n in the above product is 0 (cf. [52],

p.196). The product is a polynomial qn(z) added to an asymptotic expansion

starting with the term with
1

zn+1
, so pn(z)

∞∑
k=0

µk
zk+1

− qn(z) =
∞∑
k=n

ak
zk+1

.

The rational function
qn(z)

pn(z)
coincides with

∞∑
k=0

µk
zk+1

up to the term with

1

z2n
. Recalling (3.3.2), the nth approximant of the Jacobi continued fraction

generated by this asymptotic expansion also conincides with the expansion up

to the term with
1

z2n
. The difference between

qn(z)

pn(z)
and this nth approximant

is O(z−2n−1). This gives rise to the identity (3.3.5) with l replaced with n

and q′l(z) and p′l(z) replaced with the numerator and denominator of the
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nth approximant. It follows that the function
qn(z)

pn(z)
is identical with the nth

approximant generated by the Jacobi continued fraction. It is immediate that

the Jacobi continued fraction generated by the asymptotic expansion is the

same as the Jacobi continued fraction generated by the three-term recurrence

relation for the orthogonal polynomials associated with the moment sequence

(cf. [52], pp.165-167,197).

Theorem 3.3.4 (cf. [52], p.247). If α(x) is a distribution function then the

integral

F (z) =

∫ ∞
−∞

dα(x)

z − x
, (3.3.6)

represents a function which is analytic for z in the upper half plane.

There is a canonical inversion formula for retrieving the distibution func-

tion α(x) from the function F (x).

Theorem 3.3.5 (cf. [52], p.250).

1

π
lim
y→0

∫ t

s

=[F (x+ iy)]dx =
α(s− 0) + α(s+ 0)

2
− α(t− 0) + α(t+ 0)

2
.

where α(s+ 0) = lim
x→0

α(s+ x), α(s− 0) = lim
x→0

α(s− x) and similarly for t.

The integrand of (3.3.6) can be expanded using

1

z − x
=

1

z
+

x

z(z − x)
,

so in general
1

z − x
=

1

z
+
x

z2
+ . . .+

xn−1

zn
+

xn

zn(z − x)
.

This leads to the expansion∫ ∞
−∞

dα(x)

z − x
=
µ0

z
+
µ1

z2
+ . . .+

µn−1

zn
+

∫ ∞
−∞

xndα(x)

zn(z − x)
. (3.3.7)

It can be shown (cf. [52], pp.322-324) that (3.3.7) generates an asymptotic

expansion for

∫ ∞
−∞

dα(x)

z − x
in any half-plane =(z) ≥ δ > 0. Any convergent

subsequence of the convergents of the Jacobi continued fraction generated by
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this asymptotic expansion will have the same asymptotic expansion (cf. [52],

p.316). It is known from prior results that the condition that the determinants

Dp > 0 is necessary and sufficient for a solution to the moment problem to

exist.

Theorem 3.3.6 (cf. [52], pp.231,324). If α(x) is a solution of a moment

problem with moments {µn}∞n=0 it can be recovered from a function

F (z)=

∫ ∞
−∞

dα(x)

z − x
(3.3.8)

and the limit of each convergent subsequence of the convergents of the Jacobi

continued fraction generated by the asymptotic expansion of (3.3.8) is one of

the functions F (z).

This leaves open the question of whether there are other functions F (z)

and how to obtain them.

3.4 Limit circle and limit point

Throughout this section it will be assumed that =(z) 6= 0.

Let the Jacobi continued fraction

1

z − e0 −
d2

0

. . .−
d2
n

z − en+1 − . . .

, (3.4.1)

be given.

Denote by qn(z) and pn(z) the nth numerator and denominator of the

convergents of this continued fraction. Then qn(z) and pn(z) are the monic

orthogonal polynomials generated by the Jacobi matrices (3.2.1) and (3.2.3).
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Definition 3.4.1 (cf. [45], p.33). The truncated continued fraction

1

z − e0 −
d2

0

. . .−
d2
n

z − en+1 −
1

τ

, (3.4.2)

is called the generalized approximant of the continued fraction (3.4.1).

By Lemma 3.1.4, the truncated continued fraction in (3.4.2) reduces to

qn(z)− 1

τ
qn−1(z)

pn(z)− 1

τ
pn−1(z)

=
qn(z)τ − qn−1(z)

pn(z)τ − pn−1(z)
.

In the equivalence transformation of Theorem 3.1.6 let c1 = 1, c2 =
1

d0

,

c3 =
1

d1

. . ., then the transformed continued fraction of (3.4.1) has

qn(z)

d0d1d2 . . . dn−1

as its nth numerator and
pn(z)

d0d1d2 . . . dn−1

as its nth denomina-

tor. Referring to (2.6.8) the denominator is the nth orthonormal polynomial

Pn(z) generated by the Jacobi matrix associated with the continued fraction.

The transformed nth numerator will be denoted by Qn(z). The correspond-

ing truncated continued fraction (3.4.2) under the equivalence transformation

reduces to
Qn(z)τ −Qn−1(z)

Pn(z)τ − Pn−1(z)
.

Substituting Pn(z) for pn(z) and Qn(z) for qn(z) in (3.3.1) gives

Qn(z)

Pn(z)
− Qn−1(z)

Pn−1(z)
=

1

dn−1Pn(z)Pn−1(z)
,

or

Qn(z)Pn−1(z)−Qn−1(z)Pn(z) =
1

dn−1

. (3.4.3)

The three-term recurrence relation for the orthonormal polynomials is

zPn(z) = dnPn+1(z) + enPn(z) + dn−1Pn−1(z).
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This is a particular case of the recurrence relation

µzk = dkzk+1 + ekzk + dk−1zk−1. (3.4.4)

This recurrence relation admits a formula analogous to the Christoffel-Darboux

formula.

Lemma 3.4.2 (cf. [1], p.9). Let zk be a solution of (3.4.4) with the parameter

µ and yk be a solution of (3.4.4) with parameter λ, then

(µ−λ)
n−1∑
k=m

ykzk = dn−1(yn−1zn− ynzn−1)− dm−1(ym−1zm− ymzm−1), (3.4.5)

holds.

Proof. Multiply (3.4.4) by yk to obtain

µzkyk = dkzk+1yk + ekzkyk + dk−1zk−1yk. (3.4.6)

Similarly multiply the relation

λyk = dkyk+1 + ekyk + dk−1yk−1

by zk to obtain

λykzk = dkyk+1zk + ekykzk + dk−1yk−1zk. (3.4.7)

Subtracting (3.4.7) from (3.4.6) gives

(µ− λ)zkyk = dk(ykzk+1 − yk+1zk)− dk−1(yk−1zk − ykzk−1). (3.4.8)

The sum is telescoping and the result is obtained.

Recall that it is assumed that µ0 = 1. Under this assumption the initial

conditions for the orthonormal polynomials are given by

P−1(z) = 0, P0(z) = 1, P1(z) =
z − e0

d0

.
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The parameters for the difference equation (3.4.4) are real so if Pn(z) is a

solution of (3.4.4) then Pn(z) = Pn(z) is also a solution. For m = 1 and

substituting Pk(z) for zk, Pk(z) for yk, z for µ and z for λ in (3.4.5) gives

(z − z)
n−1∑
k=1

|Pk(z)|2 = dn−1(Pn(z)Pn−1(z)− Pn−1(z)Pn(z))

−d0(P1(z)P0(z)− P0(z)P1(z)).

The last term on the right is

−d0

(
z − e0

d0

− z − e0

d0

)
= (−1)(z − z) = −(z − z)|P0(z)|2.

So that

(z − z)
n−1∑
k=0

|Pk(z)|2 = dn−1(Pn(z)Pn−1(z)− Pn−1(z)Pn(z)). (3.4.9)

Theorem 3.4.3 (cf. [1], p.11). For z fixed the function

wn(z, τ) =
Qn(z)τ −Qn−1(z)

Pn(z)τ − Pn−1(z)
, n = 0, 1, 2, 3 . . .

maps the real line onto a circle in the complex plane with centre

Qn(z)Pn−1(z)−Qn−1(z)Pn(z)

Pn(z)Pn−1(z)− Pn−1(z)Pn(z)

and radius
1

|z − z|
n−1∑
k=0

|Pk(z)|2

Proof. For fixed z, wn(z, τ) is a Möbius transformation so the image of the

real axis is a generalised circle in the complex plane. It suffices to compute

the radius and centre.

(Qn(z)Pn−1(z)−Qn−1(z)Pn(z))(Pn(z)τ − Pn−1(z))

− (Qn(z)Pn−1(z)−Qn−1(z)Pn(z))(Pn(z)τ − Pn−1(z))

=Qn(z)Pn−1(z)Pn(z)τ −Qn(z)Pn−1(z)Pn−1(z)
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−Qn−1(z)Pn(z)Pn(z)τ +Qn−1(z)Pn(z)Pn−1(z)

−Qn(z)Pn−1(z)Pn(z)τ +Qn(z)Pn−1(z)Pn−1(z)

+Qn−1(z)Pn(z)Pn(z)τ −Qn−1(z)Pn(z)Pn−1(z)

=(Qn(z)τ −Qn−1(z))(Pn(z)Pn−1(z)− Pn−1(z)Pn(z))

The above calculations show that

Qn(z)τ −Qn−1(z)

Pn(z)τ − Pn−1(z)
=
Qn(z)Pn−1(z)−Qn−1(z)Pn(z)

Pn(z)Pn−1(z)− Pn−1(z)Pn(z)

− Qn(z)Pn−1(z)−Qn−1(z)Pn(z)

Pn(z)Pn−1(z)− Pn−1(z)Pn(z)

Pn(z)τ − Pn−1(z)

Pn(z)τ − Pn−1(z)
.

Notice that ∣∣∣∣∣Pn(z)τ − Pn−1(z)

Pn(z)τ − Pn−1(z)

∣∣∣∣∣ = 1

and the argument of the last term on the right is a function of τ only, so the

centre is as stipulated and the radius is given by∣∣∣∣∣Qn(z)Pn−1(z)−Qn−1(z)Pn(z)

Pn(z)Pn−1(z)− Pn−1(z)Pn(z)

∣∣∣∣∣ .
It has been shown in (3.4.3) that Qn(z)Pn−1(z) − Qn−1(z)Pn(z)=

1

dn−1

. By

(3.4.9)

1

dn−1(Pn(z)Pn−1(z)− Pn−1(z)Pn(z))
=

1

(z − z)
n−1∑
k=0

|Pk(z)|2
,

so that the radius is as required.

The circle wn+1(z, τ) is contained in the circle wn(z, τ) (cf. [1], p.13).

They have a common point because (cf. [1], p.14)

wn+1(z, 0) = wn(z,∞) =
Qn(z)

Pn(z)
.

Kn(z) will be used to denote the circumference and interior of the circle

wn(z, τ).
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From the formula for the radius for fixed z, if

∞∑
k=0

|Pk(z)|2 =∞,

then the circles reduce to a point in the limit, while if

∞∑
k=0

|Pk(z)|2 <∞

then the limit of the circles is a circle. These two cases will be referred to as

the limit point case and the limit circle case. The limit circle corresponding

to z will be denoted by K∞(z).

Theorem 3.4.4 (cf. [1], pp.34, 41). The limit circle case corresponds to

an indeterminate moment problem and the limit point case to a determinate

moment problem.

3.5 The Nevanlinna parametrisation

Theorem 3.5.1 (cf. [1], pp.16-19). If the series
∞∑
k=0

|Pk(z)|2 converges for

any z then it converges uniformly on compact subsets of the complex plane.

The same holds for the series
∞∑
k=0

|Qk(z)|2.

As a consequence of this theorem if the limit circle case holds for a single

point then it holds for all points z with =(z) 6= 0. In this section it will be

assumed that the limit circle case holds.

Define four polynomials An(z), Bn(z), Cn(z) and Dn(z) by

An(z) = dn−1{Qn−1(0)Qn(z)−Qn(0)Qn−1(z)},

Bn(z) = dn−1{Qn−1(0)Pn(z)−Qn(0)Pn−1(z)},

Cn(z) = dn−1{Pn−1(0)Qn(z)− Pn(0)Qn−1(z)},

Dn(z) = dn−1{Pn−1(0)Pn(z)− Pn(0)Pn−1(z)}.
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Lemma 3.5.2. The function wn(0, u) where u is any complex number defines

a Möbius transformation which maps the half plane =(u) ≥ 0 onto the half

plane =(wn(0, u)) ≤ 0.

Proof. Pn(0), Pn−1(0), Qn(0) and Qn−1(0) are real numbers so the Möbius

transformation
Qn(0)u−Qn−1(0)

Pn(0)u− Pn−1(0)

leaves the real line invariant. It is sufficient to show that an arbitrary point

in the half plane =(u) > 0 is mapped to the half plane =(wn(0, u)) < 0.

wn(0, i) =
Qn(0)i−Qn−1(0)

Pn(0)i− Pn−1(0)

=
(Qn(0)Pn(0) +Qn−1(0)Pn−1(0))− i(Qn(0)Pn−1(0)− Pn(0)Qn−1(0))

(P 2
n(0) + P 2

n−1(0))

=
(Qn(0)Pn(0) +Qn−1(0)Pn−1(0))− i( 1

dn−1
)

(P 2
n(0) + P 2

n−1(0))
.

So =(wn(0, i)) = − 1

(P 2
n(0) + P 2

n−1(0))dn−1

< 0.

Lemma 3.5.3 (cf. [1], p.15). The function,

wn(z, τ) =
Qn(z)τ −Qn−1(z)

Pn(z)τ − Pn−1(z)

can be expressed as

wn(z, τ) =
Cn(z)t− An(z)

Dn(z)t−Bn(z)
,

where t is a real number depending on τ .

Proof.

−Qn−1(0)Pn(0) +Qn(0)Pn−1(0) =
1

dn−1

6= 0,

so An(z) and Cn(z) are linearly independent combinations of Qn(z) and

Qn−1(z). As a result any linear combination of Qn(z) and Qn−1(z) can

be obtained using a linear combination of An(z) and Cn(z). In particular

the linear combination Qn(z)τ − Qn−1(z) can be obtained in this way, i.e.

a1Cn(z)−a2An(z) = Qn(z)τ −Qn−1(z). The same holds for Bn(z) and Dn(z)
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in relation to Pn(z)τ − Pn−1(z). Furthermore because An(z) is the same lin-

ear combination of Qn(z) and Qn−1(z) (in terms of coefficients) as Bn(z) is

of Pn(z) and Pn−1(z) and this relationship exists between Cn(z) and Dn(z)

also, a1Dn(z)− a2Bn(z) = Pn(z)τ − Pn−1(z). Let t =
a1

a2

, then

Qn(z)τ −Qn−1(z)

Pn(z)τ − Pn−1(z)
=
a1Cn(z)− a2An(z)

a1Dn(z)− a2Bn(z)

=
Cn(z)t− An(z)

Dn(z)t−Bn(z)
.

The real number t can be calculated explicitly as follows. It is sufficient to

equate the coefficients of Qk(z) and Qk−1(z) in Ck(z)t−Ak(z) and c(Qk(z)τ−

Qk−1(z)).

c(Qk(z)τ −Qk−1(z)) = tdn−1(Pk−1(0)Qk(z)

− Pk(0)Qk−1(z))− dn−1(Qk−1(0)Qk(z) +Qk(0)Qk−1(z))

cτ = dn−1(tPk−1(0)−Qk−1(0))

c = dn−1(tPk(0)−Qk(0))

(tPk(0)−Qk(0))τ = tPk−1(0)−Qk−1(0)

t(Pk(0)τ − Pk−1(0)) = Qk(0)τ −Qk−1(0)

t =
Qk(0)τ −Qk−1(0)

Pk(0)τ − Pk−1(0)

= wn(0, τ).

Using the three-term recurrence formula for the orthonormal polynomials

gives (cf. [1], p.14)

An+1(z) = dn{Qn(0)Qn+1(z)−Qn+1(0)Qn(z)}

= Qn(0){(z − en)Qn(z)− dn−1Qn−1(z)}

−Qn(z){(−en)Qn(0)− dn−1Qn−1(0)}

= dn−1{Qn−1(0)Qn(z) +Qn(0)Qn−1(z)}+ zQn(0)Qn(z)

= An(z) + zQn(0)Qn(z).
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So An+1(z)− An(z) = zQn(0)Qn(z). Similar calculations show that

Bn+1(z)−Bn(z) = zQn(0)Pn(z)

Cn+1(z)− Cn(z) = zPn(0)Qn(z)

Dn+1(z)−Dn(z) = zPn(0)Pn(z).

Because Q0(z) = 0, A1(z) = 0, and zQ0(0)Q0(z) = 0,

An(z) =
n−1∑
k=1

Ak+1(z)− Ak(z) = z

n−1∑
k=0

Qk(0)Qk(z).

Q1(z) =
q1(z)

d0

=
1

d0

, so B1(z) = −1, and

Bn(z) = −1 + z

n−1∑
k=0

Qk(0)Pk(z).

C1(z) = 1 so

Cn(z) = 1 + z
n−1∑
k=0

Pk(0)Qk(z).

D1(z) = 0 so

Dn(z) = z
n−1∑
k=0

Pk(0)Pk(z).

A(z) will be used to denote lim
n→∞

An(z) and similarly for B(z), C(z), D(z).

Theorem 3.5.4 (cf. [52], p.101). The functions A(z), B(z), C(z), D(z) are

entire.

Proof.

A(z) = lim
n→∞

An(z) = z
∞∑
k=0

Qk(0)Qk(z).

By uniform convergence of
∞∑
k=0

|Qk(z)|2 on compact subsets of the complex

plane, for |z| < M for an arbitrary 0 < ε < 1 and for i = 0, 1, 2, . . . there is a

natural number N such that for m > N

m+i∑
k=m

|Qk(z)|2 < ε

M
.
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Under these conditions
m+i∑
k=m

|Qk(0)|2 < ε

M
. For |z| < M , Schwartz’s inequality

gives

|z|
m+i∑
k=m

|Qk(0)Qk(z)| ≤M

√√√√m+i∑
k=m

|Qk(0)|2
m+i∑
k=m

|Qk(z)|2 < ε.

Similar reasoning for B(z), C(z) and D(z) completes the proof.

For z fixed the Möbius transformation wn(z, u) maps the half plane

=(u) ≥ 0 into the interior of the circle Kn(z) (cf. [52], pp.66, 71). Recall

wn(z, u) =
Cn(z)wn(0, u)− An(z)

Dn(z)wn(0, u)−Bn(z)
.

Because wn(0, u) maps the half plane =(u) ≥ 0 onto the half plane

=(wn(0, u)) ≤ 0, if wn(0, u) is replaced by any function θ(z) analytic for

=(z) > 0 and for =(z) > 0 satisfying =(θ(z)) ≤ 0 then the function

wn(z) =
Cn(z)θ(z)− An(z)

Dn(z)θ(z)−Bn(z)

will have its values in Kn(z) for =(z) > 0 and for each n (cf. [52], p.320). Let

F (z) = lim
n→∞

wn(z).

Then

F (z) =
C(z)θ(z)− A(z)

D(z)θ(z)−B(z)
(3.5.1)

(cf. [52], p.320).

In the limit circle case, a function is called an equivalent function of a

Jacobi continued fraction if it is analytic for =(z) > 0 and for =(z) > 0 takes

all of its values inside the limit circles K∞(z) (cf. [52], p.231). Every equiva-

lent function of a Jacobi fraction can be represented by the formula (3.5.1).

Furthermore in the limit circle case every solution of the moment problem

corresponding to a Jacobi continued fraction corresponds to an equivalent

function of the Jacobi continued fraction (cf. [52], pp.324, 326).
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Theorem 3.5.5 (The Nevanlinna Parametrisation cf. [52], pp.321, 326).

If θ(z) is analytic in the upper half-plane and satisfies =(θ(z)) ≤ 0 for =(z) >

0, or if θ(z) ≡ ∞, then the function

F (z) =
C(z)θ(z)− A(z)

D(z)θ(z)−B(z)
,

is one of the functions F (z) mentioned in Theorem 3.3.6. The function cor-

responds to the Jacobi continued fraction generated by the moment sequence

{µn}∞n=0 via an asymptotic series. Each of these functions can be represented

by the formula

F (z)=

∫ ∞
−∞

dα(x)

z − x
,

where α(x) is a solution of the moment problem with moments {µn}∞n=0. The

solution α(x) corresponding to the function F (z) can be recovered with the

Stieltjes inversion formula. Every solution to an indeterminate moment prob-

lem corresponds to one of these functions F (z).

The Nevanlinna parametrisation gives a complete characterisation of so-

lutions to an indeterminate Hamburger moment problem.
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Chapter 4

Symmetric moment problems

A special case of the moment problem arises when the odd moments are

zero. In the classical cases this is a consequence of the weight function be-

ing even. In general this situation is called a symmetric moment problem.

Every symmetric Hamburger moment problem generates a Stieltjes moment

problem and every Stieltjes moment problem generates a symmetric Ham-

burger moment problem. This connection is presented and used to obtain a

connection between the orthogonal polynomials generated by the Hamburger

moment problem and the Stieltjes moment problem respectively. Symmetric

moment problems give rise to chain sequences. These are special numerical

sequences generated by the parameters of the three-term recurrence relation.

To conclude the chapter basic results on chain sequences are given.

4.1 Symmetric distributions

Definition 4.1.1 (cf. [14], p.332). A Hamburger moment problem {µn}∞n=0

such that the odd moments µ2n+1 are zero is called a symmetric moment

problem.

It will be assumed that all symmetric moment problems considered here

have at least one solution.
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Definition 4.1.2 (cf. [14], p.332). A solution α(x) of a moment problem is

called symmetric if α(−x) + α(x) = C, C a real constant.

Lemma 4.1.3. Let α(x) be a distribution, a, b > 0 and let f(x) be a contin-

uous function, then∫ b

−a
f(−x)dα(−x) = −

∫ a

−b
f(x)dα(x). (4.1.1)

Proof. Let −b < t1 < t2 < . . . < tn = a, be a partition of (−b, a). Let

−a < x1 < x2 < . . . < xn = b be a partition of (−a, b) such that xk = −tn+1−k

for each k. For vk chosen in [xk, xk+1], −vk is in [tn−k, tn+1−k]. Let un−k = −vk.

n−1∑
k=1

f(−vk){α(−xk+1)− α(−xk)} =
n−1∑
k=1

f(un−k){α(tn−k)− α(tn+1−k)}

= (−1)
n−1∑
k=1

f(un−k){α(tn+1−k)− α(tn−k)}

= (−1)
n−1∑
k=1

f(uk){α(tk+1)− α(tk)},

where the order of summation was reversed for the last step. Constructing

all partitions in this way and taking the limit as the partitions become finer

gives the required identity.

Theorem 4.1.4 (cf. [14], p.332). Suppose that α1(x) is a distribution func-

tion with moments {µn}∞n=0, µ2n+1 = 0 for each n. Then

α2(x) =
1

2
[α1(x)− α1(−x)]

is a distribution function with the same moments as α1(x) and is a symmetric

solution of the moment problem.

Proof. In (4.1.1) let a = b, then∫ b

−b
(−x)ndα1(−x) = −

∫ b

−b
xndα1(x)

(−1)n+1

∫ b

−b
xndα1(−x) =

∫ b

−b
xndα1(x)
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As b→∞

(−1)n+1

∫ ∞
−∞

xndα1(−x) =

∫ ∞
−∞

xndα1(x).

Using Lemma 2.1.10 the even moments of −α1(−x) are the same as the even

moments of α1(x). By hypothesis the odd moments are zero, so in fact all

moments are equal. Again using Lemma 2.1.10 and the assumption about

the odd moments, the moments of

α2(x) =
1

2
[α1(x)− α1(−x)]

are the same as the moments of α1(x) and α2(x) + α2(−x) = 0.

Let α(x) be a symmetric solution of a symmetric moment problem, then

it generates a set of orthogonal polynomials which will be denoted by Sn(x).

Lemma 4.1.5 (cf. [14], p. 332). The polynomials {Sn(x)}∞n=0 satisfy Sn(x) =

(−1)nSn(−x).

Proof. By assumption α(x) + α(−x) = C, C ∈ R. Let α2(x) = α(x) +

α(−x) ≡ C, and kn be the leading coefficient of Sn(x). Because α2(x) is

a constant function, the integral of any continuous function with respect to

α2(x) is zero. In particular,

0 =

∫ ∞
−∞

Sn(−x)(−x)mdα2(x)

=

∫ ∞
−∞

Sn(−x)(−x)mdα(x) +

∫ ∞
−∞

Sn(−x)(−x)mdα(−x)

=

∫ ∞
−∞

Sn(−x)(−x)mdα(x)−
∫ ∞
−∞

Sn(x)(x)mdα(x).

Thus ∫ ∞
−∞

(−1)mSn(−x)xmdα(x) =

∫ ∞
−∞

Sn(x)xmdα(x) = 0 m < n.

It follows that {Sn(−x)}∞n=0 is a set of orthogonal polynomials corresponding

to α(x). Such a set is determined up to constant multiples, so to establish

the result it is sufficient to note that the leading coefficient of Sn(−x) is

(−1)nkn.
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This result implies that S2n(x) is a linear combination of even powers of

x and S2n+1(x) is a linear combination of odd powers of x.

Throughout the rest of this chapter it will be assumed that the polyno-

mials Sn(x) are monic, i.e. kn = 1. The function α(x) is non-decreasing and

bounded on (−∞,∞), so in particular it is non-decreasing and bounded on

[0,∞).
√
x is non-decreasing on [0,∞), so α(

√
x) will be non-decreasing on

[0,∞), bounded above by α(∞) <∞ and below by α(0) > −∞.

Lemma 4.1.6. Let f(x) be a continuous function on [0, b], b > 0. Let α(x)

and ψ(x) be distributions such that ψ(x) = α(
√
x).

∫ b
1
2

0

f(x2)dα(x) =

∫ b

0

f(x)dψ(x). (4.1.2)

Proof. Let 0 = x1 < x2 < . . . < xn = b
1
2 be a partition of (0, b

1
2 ). Let

0 = t1 < t2 < . . . < tn = b be a partition of (0, b) such that tk = x2
k. For vk

in [xk, xk+1] v2
k is in [tk, tk+1]. Let uk = v2

k.

n−1∑
k=1

f(v2
k){α(xk+1)− α(xk)} =

n−1∑
k=1

f(uk){α(
√
tk+1)− α(

√
tk)}

=
n−1∑
k=1

f(uk){ψ(tk+1)− ψ(tk)}.

If all partitions are constructed in this way, then in the limit the required

identity is obtained.

Lemma 4.1.7. The moments of α(x) and ψ(x) are related by∫ ∞
−∞

x2ndα(x) = 2

∫ ∞
0

xndψ(x).

Proof. If the distribution α(x) has a jump at the point 0 then it contributes

nothing to the calculation of the moments of α(x) because xn has a zero at 0

for each n.∫ ∞
−∞

x2ndα(x) =

∫ 0

−∞
x2ndα(x) +

∫ ∞
0

x2ndα(x)
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= −
∫ ∞

0

(−x)2ndα(−x) +

∫ ∞
0

x2ndα(x)

= −
∫ ∞

0

x2nd[C − α(x)] +

∫ ∞
0

x2ndα(x)

= 2

∫ ∞
0

x2ndα(x).

Letting b→∞ in (4.1.2) gives∫ ∞
−∞

x2ndα(x) = 2

∫ ∞
0

xndψ(x).

This shows that ψ(x) is a distribution. Let {Pn(x)}∞n=0 be the monic

polynomials orthogonal with respect to ψ(x).

Theorem 4.1.8 (cf. [14], p.332). Pn(x2) = S2n(x) for each n.

Proof. Using the linearity of the integral,∫ ∞
−∞

Pn(x2)x2mdα(x) = 2

∫ ∞
0

Pn(x)xmdψ(x)

= 0, for 2m < 2n.∫ ∞
−∞

Pn(x2)x2m+1dα(x) = 0, for 2m+ 1 < 2n,

because Pn(x2)x2m+1 is a polynomial with only odd powers of x. {Pn(x2)} is

a set of monic orthogonal polynomials of degree 2n with respect to α(x) so

Pn(x2) must be identical to S2n(x) for each n.

Because x > 0 for x ∈ [0,∞), the function ω(x) given by

ω(x) =

∫ x

0

xdψ(x),

is non-decreasing. Furthermore, ω(x) is bounded above by∫ ∞
0

xdψ(x) =
1

2
µ2,

and below by 0. Using (4.1.2)∫ ∞
−∞

x2n+2dα(x) = 2

∫ ∞
0

xnxdψ(x)
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= 2

∫ ∞
0

xndω(x),

so ω(x) is a distribtion. Let {Kn(x)}∞n=0 be the monic polynomials orthogonal

with respect to ω(x).

Theorem 4.1.9 (cf. [14], p. 332). xKn(x2) = S2n+1(x).

Proof. Using linearity∫ ∞
−∞

xKn(x2)x2m+1dα(x) = 2

∫ ∞
0

Kn(x)xmdω(x)

= 0, for 2m+ 1 < 2n+ 1∫ ∞
−∞

xKn(x2)x2mdα(x) = 0, for 2m < 2n+ 1,

because x2m+1Kn(x2) is a polynomial with only odd powers of x.

{xKn(x2)}∞n=0 is a set of monic orthogonal polynomials with respect to α(x)

such that xKn(x2) has degree 2n + 1 for each n. Consequently xKn(x2) =

S2n+1(x) for each n.

The process above can be undertaken in the reverse direction. That is,

given a distribution with points of increase contained in [0,∞), a symmetric

distribution with points of increase in (−∞,∞) can be constructed. The

polynomials Pn(x), Kn(x) and Sn(x) can also be constructed with the same

relationship existing between them (cf. [12], pp.1-3).

Let ψ(x) be a distribution with points of increase in [0,∞). Then x2 is

non-decreasing on [0,∞) so ψ(x2) is non-decreasing on [0,∞). Also, x2 is non-

increasing on (−∞, 0), so ψ(x2) will be non-increasing on (−∞, 0) and−ψ(x2)

will be non-decreasing on (−∞, 0). It follows that α(x) = sgn(x)ψ(x2) is non-

decreasing on (−∞,∞). α(x) is bounded above by ψ(∞) <∞ and below by

−ψ(∞) > −∞. α(x) + α(−x) = 0 so using the approach in Lemma (4.1.7)∫ ∞
−∞

x2ndα(x) = 2

∫ ∞
0

xndψ(x)∫ ∞
−∞

x2n+1dα(x) = 0.
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So α(x) is a symmetric distribution associated with a symmetric moment

problem.

4.2 Chain sequences

Definition 4.2.1 (cf. [15], p. 91). A sequence of real numbers {an}∞n=0 is a

chain sequence if there is another sequence {gn}∞n=−1, such that

0 ≤ g−1 < 1, 0 < gn < 1, n ≥ 0

an = (1− gn−1)gn, n = 0, 1, 2, 3 . . . .

The sequence {gn}∞n=−1 is called the parameter sequence corresponding to the

given chain sequence.

In some references gn is allowed to be zero for n ≥ 0 (cf. [52], p.79).

This case does not arise in the present discussion and is excluded from the

definition.

It will be shown that there is a connection between Stieltjes moment

problems and chain sequences. The first step is the following theorem.

Theorem 4.2.2 (cf. [52], p.67). Let {dn}∞n=0 and {en}∞n=0 be real sequences.

There exists a real sequence {gn}∞n=−1 such that

d2
n = enen+1(1− gn−1)gn, 0 ≤ gn ≤ 1, n = 0, 1, 2, . . . (4.2.1)

if and only if en ≥ 0 for all n and

n∑
i=0

eiζ
2
i + 2

n−1∑
i=0

diζiζi+1 ≥ 0,

where ζi is an arbitrary real number for all i.

From this result the following can be deduced.

Lemma 4.2.3. The ratio
d2
n

enen+1

101



is a chain sequence if and only if

n∑
i=0

eiζ
2
i + 2

n−1∑
i=0

diζiζi+1 ≥ 0,

where ζi is an arbitrary real number for all i, dn 6= 0 and en > 0 for all n.

Proof. If
d2
n

enen+1

is a chain sequence, then dn 6= 0, en ≥ 0 for all n and

n∑
i=0

eiζ
2
i + 2

n−1∑
i=0

diζiζi+1 ≥ 0,

where ζi is an arbitrary real number for all i. All that remains is to observe

that en 6= 0 for each n. If

n∑
i=0

eiζ
2
i + 2

n−1∑
i=0

diζiζi+1 ≥ 0,

where ζi is an arbitrary real number for all i, dn 6= 0 and en > 0 for all n,

then (4.2.1) holds, gn 6= 0 for all n except possibly n = 0 and gn 6= 1 for all

n.

Let α(x) be a solution of a Stieltjes moment problem {µn}∞n=0 with in-

finitely many points of increase and with orthonormal polynomials

{Qn(x)}∞n=0. Let the real parameters of the orthonormal three-term recur-

rence relation be {en}∞n=0 and {dn}∞n=0. α(x) satisfies these properties if and

only if dn 6= 0 for all n, and

µ

x{ n∑
i=0

aix
i

}2
 =

n∑
i=0

n∑
j=0

µi+j+1aiaj ≥ 0,

where ai is an arbitrary real number for 0 ≤ i ≤ n. Because the polynomials

{Qn(x)}∞n=0 are a simple set, (cf. [1], p. 7)

µ

x{ n∑
i=0

aix
i

}2
 = µ

x{ n∑
i=0

ζiQi(x)

}2
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=
n∑
i=0

n∑
j=0

ζiζjµ(xQi(x)Qj(x))

=
n∑
i=0

n∑
j=0

ζiζj(diδi+1,j + eiδij + di−1δi−1,j)

=
n∑
i=0

eiζ
2
i + 2

n−1∑
i=0

diζiζi+1 ≥ 0.

Setting ζk = δik in the above gives ek ≥ 0, k = 0, 1, 2, . . ..Because dn 6= 0

for each n referring to (4.2.1) gives |en| > 0 for each n, so en > 0. Conse-

quently
d2
n

enen+1

is a chain sequence if and only if {dn}∞n=0 and {en}∞n=0 are the parameters from

the orthonormal recurrence for a set of polynomials generated by a solution

α(x) of a Stieltjes moment problem with infinitely many points of increase.

The polynomials {Sn(x)}∞n=0 satisfy the three-term recurrence relation

Sn+1(x) = xSn(x)− γnSn−1(x),

γn > 0 n ≥ 1, S−1(x) = 0, S0(x) = 1. The absence of a constant coefficient

of Sn(x) is due to the fact that Sn(x) has either only odd powers of x or only

even powers of x. It is stipulated here that γ0 = 0 (cf. [12], p.2).

It is known that the monic polynomials {Pn(x)}∞n=0 and {Kn(x)}∞n=0 sat-

isfy three-term recurrence relations

Pn+1(x) = (x− cn)Pn(x)− λnPn−1(x)

Kn+1(x) = (x− un)Kn(x)− vnKn−1(x),

such that cn, un are real, λn, vn > 0 and P−1(x) = K−1(x) = 0, P0(x) =

K0(x) = 1.

Considering the recurrence relation for S2n(x) and the connection between

Sn(x), Pn(x) and Kn(x) gives (cf. [12], p.2)

Pn(x2) = x2Kn−1(x2)− γ2n−1Pn−1(x2)
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so that when x replaces x2,

Pn+1(x) = xKn(x)− γ2n+1Pn(x). (4.2.2)

The recurrence for S2n+1(x) gives,

xKn(x2) = xPn(x2)− γ2nxKn−1(x2),

which after first dividing by x and then replacing x2 with x gives

Kn(x) = Pn(x)− γ2nKn−1(x). (4.2.3)

Solving for Pn(x) in (4.2.3) and substituting into (4.2.2) gives for Kn(x)

Kn+1(x) + γ2n+2Kn(x) = xKn(x)− γ2n+1Kn(x)− γ2n+1γ2nKn−1(x)

Kn+1(x) = (x− γ2n+2 − γ2n+1)Kn(x)− γ2n+1γ2nKn(x).

Solving for Kn(x) in (4.2.2) and substituting into (4.2.3) gives for Pn(x)

Pn+1(x) + γ2n+1Pn(x) = xPn(x)− γ2nPn(x)− γ2nγ2n−1Pn−1(x)

Pn+1(x) = (x− γ2n+1 − γ2n)Pn(x)− γ2nγ2n−1Pn−1(x).

It follows that

cn = γ2n+1 + γ2n, λn = γ2nγ2n−1, (4.2.4)

un = γ2n+2 + γ2n+1, vn = γ2n+1γ2n, n ≥ 1.

These relations establish that
λn+1

cncn+1

and
vn+1

unun+1

are chain sequences. This is because (cf. [12], p.4) 0 < γ2n < cn, so γ2n =

gn−1cn and γ2n+1 = (1− gn−1)cn, giving

λn+1

cncn+1

=
γ2n+2γ2n+1

cncn+1

(4.2.5)
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= (1− gn−1)gn,

in this case g−1 = 0 because γ0 = 0. The same reasoning applies for

vn+1

unun+1

, (4.2.6)

except that g−1 > 0 has to hold because γ1 > 0.

Lemma 4.2.4 (cf. [15], p. 92). Let {an}∞n=0 be a chain sequence. If {gn}∞n=−1

and {hn}∞n=−1 are parameter sequences for {an}∞n=0 then gk < hk if and only

if g−1 < h−1.

Proof.

(1− gn−1)gn = an = (1− hn−1)hn

so
gk
hk

=
1− hk−1

1− gk−1

.

The left hand side is less than 1 if and only if the right side side is less than

1; this happens if and only if

gk−1 < hk−1.

Definition 4.2.5 (cf. [15], p. 93). If {an}∞n=0 is a chain sequence and

{mn}∞n=−1 is a parameter sequence corresponding to {an}∞n=0, then {mn}∞n=−1

is called a minimal parameter sequence if m−1 = 0.

By the above lemma this definition amounts to the fact that the parame-

ters {mn}∞n=−1 are less than any other parameters of the sequence.

Definition 4.2.6 (cf. [15], p. 94). Let {an}∞n=0 be chain sequence, then

{Mn}∞n=−1 is called a maximal parameter sequence if Mk > gk, k ≥ −1, for

any other parameter sequence {gn}∞n=−1.
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Theorem 4.2.7 (cf. [15], p. 93). Let {an}∞n=0 be a chain sequence. If

{gn}∞n=−1 is a parameter sequence for {an} and g−1 > 0 then for every number

h−1, 0 ≤ h−1 < g−1, there is a corresponding parameter sequence {hn}∞n=−1

for the chain sequence {an}∞n=0.

In particular the preceding theorem implies the existence of minimal pa-

rameters for a given chain sequence.

Theorem 4.2.8 (cf. [15], p. 94). If {an}∞n=0 is a chain sequence then it has

a maximal parameter sequence {Mn}∞n=−1.

Theorem 4.2.9 (cf. [15], p. 101). A parameter sequence {Mn}∞n=−1 is a

maximal parameter sequence for a chain sequence if and only if

∞∑
n=0

M0M1 . . .Mn

(1−M0)(1−M1) . . . (1−Mn)
=∞.

If the maximal parameter sequence {Mn}∞n=−1 corresponding to the chain

sequence {an}∞n=0 satisfies M−1 = 0 then it is also a minimal parameter se-

quence and as a result there is only one parameter sequence corresponding to

{an}∞n=0.

The parameters of the polynomials Pn(x) can correspond to a chain se-

quence with unique parameters because the given parameter sequence for

(4.2.5) satisfied g−1 = 0. However, the parameters of the polynomials Kn(x)

necessarily correspond to a chain sequence with non-unique parameters, be-

cause the given parameter sequence for (4.2.6) satisfied g−1 > 0.

From the prior discussion, the chain sequence (cf. [14], p. 334)

λn+1

cncn+1

has minimal parameters m−1 = 0

mn−1 =
γ2n

cn
.

The chain sequence
vn+1

unun+1
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has non-minimal parameters

gn =
γ2n+1

un
.

By choosing different parameters 0 ≤ hn < Mn , hn 6= gn for each n a new

choice for γn is arrived at via γh0 = 0,

γh2n+1 = hnun

γh2n+2 = un − γ2n+1.

The same polynomial set Kn(x) with recurrence sequences {un}∞n=0, {vn}∞n=0

corresponds to families of polynomials {Shn(x)}∞n=0 and {P h
n (x)}∞n=0 (cf. [12],

p. 5).

Lemma 4.2.10 (cf. [52], p.79). A constant term sequence {a}∞n=0 is a chain

sequence if and only if

0 < a ≤ 1

4
.

Proof. Let {gn}∞n=−1 denote a parameter sequence for {a}∞n=0. If a >
1

4
, then

(1− gn−1)gn >
1

4
,

so

(
√

(1− gn−1)−√gn)2 ≥ 0

(1− gn−1) + gn
2

≥
√

(1− gn−1)gn >
1

2

gn > gn−1.

The sequence of parameters is increasing and bounded above so it converges

to a limit g. (1 − g)g ≥ 1

4
but if (1 − g)g >

1

4
then by the above g > g, so

(1 − g)g =
1

4
. This means that that the terms of the chain sequence must

converge to
1

4
i.e. the chain sequence is not constant. If 0 < a ≤ 1

4
, then

solving the quadratic equation

g(1− g) = a
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g2 − g + a = 0

leads to

g =
1 +
√

1− 4a

2
,

which gives a constant parameter sequence {g}∞n=−1 for the given chain se-

quence.

A discussion of results on chain sequences can be found in [18].
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Chapter 5

Moment problems of classical

polynomials

The classical orthogonal polynomials are discussed in light of the previous

work. The Chebyshev polynomials are associated with a symmetric moment

problem and this connection is used to explore the theory introduced in the

previous chapter. Jacobi matrices of the Chebyshev polynomials are given.

Moments are computed for the Chebyshev, Legendre, Hermite and Laguerre

polynomials and it is shown that the moment problems associated with these

orthogonal polynomial sets are determinate.

5.1 Chebyshev polynomials moment problem

The recurrence relation for the Chebyshev polynomials {Tn(x)}∞n=0 was given

in Theorem 1.3.10 by

Tn+1(x) = 2xTn(x)− Tn−1(x),

with initial conditions

T0(x) = 1, T1(x) = x.
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From this it can be deduced that T2n(x) has only even powers of x and

T2n+1(x) has only odd powers of x. Because {Tn(x)}∞n=0 is a simple set,

x2n+1 =
2n+1∑
k=0

anTn(x).

However, because T2k(x) has only even powers of x, a2k = 0 for 0 < k < n.∫ 1

−1

x2n+1 1√
1− x2

dx =
n∑
k=0

a2k+1

∫ 1

−1

T2k+1(x)
1√

1− x2
dx = 0,

because ∫ 1

−1

T2n+1(x)
1√

1− x2
dx = 0

n = 0, 1, 2 . . ., by the orthogonality condition. It is concluded that the mo-

ment problem associated with {Tn(x)}∞n=0 is symmetric. For the second kind

polynomials Un(x) the same recurrence relation is satisfied (see Theorem

1.3.11) and the initial conditions are

U0(x) = 1, U1(x) = 2x.

Similar reasoning to the case of {Tn(x)}∞n=0 shows that {Un(x)}∞n=0 are asso-

ciated with a symmetric moment problem.

Recall that from the orthogonality relation for the Chebyshev polynomials

∫ 1

−1

T 2
n(x)

1√
1− x2

dx =


π

2
, n ≥ 1

π, n = 0,

so the orthonormal Chebyshev polynomials are given by

T ′0(x) =
T0(x)√
π

and

T ′n(x) =

√
2

π
Tn(x), n ≥ 1.

For the time being let {Pn(x)}∞n=0 denote the orthonormal Chebyshev poly-

nomials. Then

P2(x) = 2xP1(x)−
√

2P0(x)
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Pn+1(x) = 2xPn − Pn−1(x), n ≥ 2.

Dividing the above recurrences by 2 and examining the result gives the

Jacbobi matrix associated with the Chebyshev polynomials
0 1√

2
0 0 . . .

1√
2

0 1
2

0 . . .

0 1
2

0 1
2

. . .
...

...
...

...
. . .

 ,

where en = 0 for each n, d0 =
1√
2

, and dn =
1

2
, n ≥ 1 are the sequences

{en}∞n=0 and {dn}∞n=0 from the orthonormal recurrence relation.

For the rest of this section let Tn(x) denote the monic Chebyshev polyno-

mial of degree n. Then

T2(x) = xT1(x)− 1

2
T0(x)

Tn+1(x) = xTn(x)− 1

4
Tn−1(x), n ≥ 2.

Let the sequence {γn}∞n=0 be given by γ0 = 0, γ1 =
1

2
, γn =

1

4
, n ≥ 1. The

sequences {cn}∞n=0 and {λn}∞n=0, can then be constructed using the formula

(4.2.4). It follows that

λ1

c0c1

=
1

2
and

λn+1

cncn+1

=
1

4
,

is a chain sequence. The minimal parameters of this chain sequence are

m−1 = 0 and mn =
1

2
n ≥ 0.

These are also the maximal parameters since referring to Theorem 4.2.9

∞∑
n=0

m0m1 . . .mn

(1−m0)(1−m1) . . . (1−mn)
=
∞∑
n=0

1
2

n+1

1
2

n+1 =∞.

So this chain sequence determines its parameters uniquely.

Recalling that ∫ 1

−1

U2
n(x)
√

1− x2dx = π, ∀n.
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The Jacobi matrix for the Chebyshev polynomials of the second kind is given

by 
0 1

2
0 0 . . .

1
2

0 1
2

0 . . .

0 1
2

0 1
2

. . .
...

...
...

...
. . .

 .

Let Un(x) now denote the monic Chebyshev polynomial of the second kind.

Then

Un+1(x) = xUn(x)− 1

4
Un−1(x).

Let γ0 = 0, γn = 1
4
, n ≥ 1. Then the chain sequence

λn+1

cncn+1

is identical to that obtained from the Chebyshev polynomials of the first kind.

Consider the chain sequence

vn+1

unun+1

=
1

4
, n ≥ 0.

This is the maximal constant chain sequence. It can be seen from the cal-

culation for the Chebyshev polynomials of the first kind that the parameters{
1

2

}∞
n=−1

are the maximal parameters of this sequence (cf. [52], p. 80). The

minimal parameters can be calculated by setting m−1 = 0 and noting that

inductively (cf. [52], p. 80)

m0 =
1

4
=

1

2

(
1− 1

2

)
if mn−1 =

1

2

(
1− 1

n+ 1

)
then

mn =
1

4

1

(1− 1
2
(1− 1

n+1
))

=
1

2

n+ 1

n+ 2

=
1

2

(
1− 1

n+ 2

)
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From (4.2.4),

un =
1

2

and the parameters generated by the original choice of {γn}∞n=0 are

γ2n+1

un
=

1

2
.

So the original recurrences generate the maximal parameter sequence associ-

ated with the chain sequence.

Theorem 5.1.1. The even moments {µ2n}∞n=0 of the Chebyshev polynomials

of the first kind {Tn(x)}∞n=0 are given by

µ2n =
(2n)!

22n(n!)2
π.

Proof.∫ π

0

cos2n(θ)dθ = (sin(θ) cos2n−1(θ))π0 + (2n− 1)

∫ π

0

sin2(θ) cos2n−2(θ)dθ

= (2n− 1)

∫ π

0

(1− cos2(θ)) cos2n−2(θ)dθ∫ π

0

cos2n(θ)dθ =
2n− 1

2n

∫ π

0

cos2n−2(θ)dθ.

Iterating this relation with the initial condition∫ π

0

cos0(θ)dθ = π,

gives
2n− 1

2n

2n− 3

2n− 2

2n− 5

2n− 4
. . .

1

2
π, (5.1.1)

which is the required result.

The even moments associated with the polynomials of the second kind

{Un(x)}∞n=0 are given by∫ π

0

cos2n(θ) sin2(θ)dθ =

∫ π

0

(1− cos2(θ)) cos2n(θ)dθ

=

∫ π

0

cos2n(θ)dθ −
∫ π

0

cos2n+2(θ)dθ
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= µ2n − µ2n+2, (5.1.2)

where µ2n is the 2nth moment associated with the polynomials of the first

kind.

From relation (5.1.1) the moments of the polynomials of the first kind are

all less than 1. Furthermore it is seen from the fact that the even moments

of {Un(x)}∞n=0 are positive and (5.1.2) that the even moments of {Tn(x)}∞n=0

are a decreasing sequence.

A condition that guarantees determinacy of a moment problem is if the

moments of a distribution grow slowly enough.

Lemma 5.1.2 (cf. [47], p88). Let {µn}∞n=0 be the moments of a solvable

Hamburger moment problem. Suppose there are positive constants C and R

such that

|µn| ≤ CRnn!,

then the moment problem is determinate.

It can be seen from the above discussion and the lemma that the moment

problems associated with {Tn(x)}∞n=0 and {Un(x)}∞n=0 are determinate.

5.2 Legendre moment problem

The moments {µn}∞n=0 of the Legendre polynomials are given by

µn =

∫ 1

−1

xndx =
1

n+ 1
− (−1)n+1

n+ 1

= 0, n odd

=
2

n+ 1
, n even.

The moments are all less than 1 and the even moments form a decreasing

sequence. By Lemma 5.1.2 the Legendre moment problem is determinate.

The Legendre moment problem is also a symmetric problem.
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5.3 Ultraspherical polynomials

Definition 5.3.1 (cf. [15], p. 44). Jacobi polynomials P
(α,β)
n (x) which satisfy

α = β are called ultrashperical polynomials.

It was mentioned earlier that the Chebyshev polynomials of the first and

second kind and the Legendre polynomials are examples of ultraspherical

polynomials. It is known that the weight function for Jacobi polynomials is

(1− x)α(1 + x)β.

If α = β this becomes

(1− x2)α,

which is an even function. Because of this, all moment problems associated

with ultraspherical polynomials are symmetric moment problems. The ap-

proach used to prove that Tn(x) and Un(x) are associated with symmetric

moment problems can be used to prove that a moment problem is symmetric

if and only if the associated monic orthogonal polynomials {Pn(x)}∞n=0 satisfy

Pn+1(x) = xPn(x)− γnPn−1(x),

P1(x) = x, P0(x) = 1.

On the one hand a symmetric orthogonal polynomial of odd degree is a sum

of odd powers of x and a symmetric orthogonal polynomial of even degree

is a sum of even powers of x so the recurrence and initial conditions hold

in this case. With the recurrence and initial conditions given, the proof for

Tn(x) reworded suffices to show that the moment problem is symmetric. A

class of orthogonal polynomials that have a similar recurrence relation to the

symmetric case (except that P1(0) 6= 0) has been studied (cf. [16]).
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5.4 Hermite and Laguerre moment problems

Define α(x) by

α(x) =

∫ x

−∞
e−t

2

dt.

The integrand is positive, so α(x) is non-decreasing. α(x) is bounded above

by ∫ ∞
−∞

e−x
2

dx =
√
π.

Using integration by parts and the fact that xne−x
2 → 0 as x → ∞ or

x → −∞ then gives that α(x) has finite moments, so it is a distribution.

Because e−x
2

is an even function x2n+1e−x
2

is odd so all of the odd moments of

α(x) vanish; i.e. α(x) is associated with a symmetric moment problem. α(x)+

α(−x) =
√
π so α(x) is a symmetric distribution. The polynomials which are

orthogonal with respect to α(x) are the Hermite polynomials {Hn(x)}∞n=0.

Because orthogonal polynomials are essentially the same up to normalisation

it is stipulated that the polynomials Hn(x) are monic.

Following the discussion in Section 4.1 let ψ(x) be the distribution defined

by ψ(x) = α(
√
x) for x ∈ [0,∞). Then

dψ(x) =
dα(
√
x)

dx
dx =

1

2
x−

1
2 e−xdx.

Let {Pn(x)}∞n=0 be the monic polynomials orthogonal with respect to ψ(x).

Then Pn(x2) = H2n(x).

Let ω(x) be the distribution defined by

ω(x) =

∫ x

0

tdψ(t),

and {Kn(x)}∞n=0 be the monic polynomials orthogonal with respect to ω(x).

Then

dω(x) = xdψ(x) =
1

2
x

1
2 e−xdx,

and xKn(x2) = H2n+1(x).
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Let the function να(x) be defined by,

να(x) =


0 if x ≤ 0∫ x

0

tαe−tdt if x > 0

where α > −1 is a real number. This function is non-decreasing, because

tαe−t is positive for t ∈ [0,∞). The integral converges for all x ∈ [0,∞)

and represents the incomplete gamma function γ(α+ 1, x) (cf. [5], p197). In

particular the total variation of να(x) is given by∫ ∞
0

tαe−tdt = Γ(α + 1),

which is finite for all real α > −1. The discussion in the previous chapter

indicates that it is sufficient to consider the weight function which generates

να(x). Because of it’s relation with the gamma function it is easy to represent

all of the moments associated with να(x)∫ ∞
0

xndνα(x)

=

∫ ∞
0

xnxαe−xdx

= Γ(α + n+ 1) <∞,

so να(x) is a distribution function.

The polynomials orthogonal with respect to να(x) are the Laguerre poly-

nomials {Lαn(x)}∞n=0. Let α = −1

2
. Then from the orthogonality relations∫ ∞

0

L
− 1

2
n (x)L

− 1
2

m (x)x−
1
2 e−xdx = hnδmn hn > 0∫ ∞

0

Pn(x)Pm(x)x−
1
2 e−xdx = gnδmn gn > 0,

it follows, that L
− 1

2
n (x2) = CPn(x2) = CH2n(x), C a real constant, which is a

result from Chapter 1.

Similarly from the orthogonality relations∫ ∞
0

L
1
2
n (x)L

1
2
m(x)x

1
2 e−xdx = hnδmn hn > 0
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∫ ∞
0

Kn(x)Km(x)x
1
2 e−xdx = gnδmn gn > 0,

it follows, that xL
1
2
n (x2) = AxK(x2) = AH2n+1(x), A a real constant.

As in the previous chapter, the moments of α(x) can be related to the

moments of ψ(x) by ∫ ∞
−∞

x2ndα(x) = 2

∫ ∞
0

xndψ(x).

The moments of ψ(x) can then be related to the moments of ν−
1
2 (x):∫ ∞

0

xndψ(x) =
1

2

∫ ∞
0

xnx−
1
2 e−xdx

=
1

2

∫ ∞
0

xndν−
1
2 (x).

It follows that ∫ ∞
−∞

x2ndα(x) = Γ

(
n+

1

2

)
.

Lemma 5.1.2 can be used to establish the determinacy of the moment

problem associated with the Laguerre polynomials.

The moments of να(x) are given by

µn = Γ(α + n+ 1),

where α > −1 is real. Let m be the smallest integer greater than α then

because Γ(x) is an increasing real-valued function for x > 2 real (this can be

seen from the relation Γ(x+ 1) = xΓ(x)),

Γ(α + n+ 1) < C1Γ(n+m+ 1),

for all n and a suitably chosen real C1 > 0 (because there can only be two

moments before n+ α + 1 > 2). Also, Γ(n+m+ 1) = (n+m)!, and

(n+m)! =
m∏
k=1

(n+ k)n!

= Pm(n)n! < enn!
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for large enough n. Choose C2 > 0 such that for all n

Γ(α + n+ 1) < C1C2e
nn!.

Then if C = C1C2 and R = e the conditions of Lemma 5.1.2 are established.

Because the odd moments of the Hermite polynomials are zero and the

even moments are moments of Laguerre polynomials, the same constant C

that was used for the laguerre polynomials satisfies the conditions of the

lemma and for R the choice R = e is sufficient. This shows that the moment

problem associated with the Hermite polynomials is also determined.
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Chapter 6

q-Extensions

q-Extensions are a current field of active research in orthogonal polynomials

and special functions. To begin the chapter the basic theory is provided. The

theory presented is applied to the q-Laguerre orthogonal polynomials and the

associated q-Laguerre moment problem.

6.1 Basic hypergeometric series

By assigning a parameter q to a class of special functions, and in particular

to the hypergeometric series, analogues of the functions have been discovered

which preserve many important properties. As q → 1 the original functions

are recovered. These analogues are called q-analogues or q-extensions.

Hypergeometric series are built from Pochammer symbols so it is natural

that in extending the hypergeometric series an extension of the Pochammer

symbol is obtained. This is given by the q-shifted factorial.

Definition 6.1.1 (cf. [20], p.3). The symbol (a; q)n is called the q-shifted

factorial and is given by

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1), n = 1, 2, 3, . . .

(a; q)∞ =
∞∏
k=0

(1− aqk), |q| < 1
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(a; q)0 = 1.

lim
q→1

1− qa

1− q
= a

so

lim
q→1

(q; q)n
(1− q)n

= n!

and in general

lim
q→1

(qa; q)n
(1− q)n

= (a)n

where (a)n is Pochammer’s symbol (1.2.1).

Some identities with q-shifted factorials will be frequently used in basic

hypergeometric series so they are given here explicitly.

Lemma 6.1.2 (cf. [20], p.6).

(a; q)n =
(a; q)∞

(aqn; q)∞
.

Proof.

(a; q)∞
(aqn; q)∞

=

n−1∏
k=0

(1− aqk)
∞∏
k=n

(1− aqk)

(aqn; q)∞

=
(a; q)n(aqn; q)∞

(aqn; q)∞

= (a; q)n.

Definition 6.1.3 (cf. [20], p. 4). Here the symbol

(
n

2

)
denotes

n(n− 1)

2
.

Lemma 6.1.4 (cf. [20], p.6).

(a−1q1−n; q)n = (a; q)n(−a−1)nq−(n
2). (6.1.1)
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Proof. First note that

(
n

2

)
=
n(n− 1)

2
=

n−1∑
k=0

k. Then

(a; q)n(−a−1)nq−(n
2) =

n−1∏
k=0

(qk − a−1)q−(n
2)

=
n−1∏
k=0

(1− a−1q−k)
n−1∏
k=0

qkq−(n
2)

=
n−1∏
k=0

(1− a−1q1−nqk)

= (a−1q1−n; q)n,

where the order of the product was reversed at the third step to get the

result.

Lemma 6.1.5 (cf. [20], p.6).

(q−n; q)n = (q; q)n(−1)nq−(n+1
2 ).

Proof.

(q; q)n(−1)nq−(n+1
2 ) =

n∏
k=1

(1− q−k)
n∏
k=1

qkq−(n
2)−n

=
n−1∏
k=0

(1− q−k−1)

= (q−n; q)n,

where the order of the product was reversed for the last step.

Products of q-shifted factorials are common and a compact notation is

used for them.

Definition 6.1.6 (cf. [20], p.6).

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n . . . (am; q)n

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ . . . (am; q)∞.
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Letting q → 1 in the series (cf. [20], p.3)

φ(qa, qb; qc; q, z) =
∞∑
n=0

(qa; q)n(qb; q)n
(q; q)n(qc; q)n

zn,

gives the hypergeometric series

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn.

For this reason the series φ(qa, qb; qc; q, z) where |q| < 1 is called the basic

hypergeometric series, where basic refers to the base q. This series is the

extension or analogue of the ordinary hypergeometric series which was antic-

ipated at the beginning of the chapter. The series can be further generalised

by replacing qa, qb and qc by complex parameters a, b and c.

Lemma 6.1.7 (cf. [20], p.3). The series φ(a, b; c; q, z) converges absolutely

for |z| < 1 and |q| < 1.

Proof. The ratio test gives

lim
n→∞

∣∣∣∣(a; q)n+1(b; q)n+1z
n+1

(c; q)n+1(q; q)n+1

(c; q)n(q; q)n
(a; q)n(b; q)nzn

∣∣∣∣
= lim

n→∞

∣∣∣∣ (1− aqn)(1− bqn)

(1− cqn)(1− qn+1)
z

∣∣∣∣ = |z| < 1

for |q| < 1.

Definition 6.1.8 (cf. [20], p.4). The generalised basic hypergeometric series

is given by

rφs(a1, a2, . . . , ar; b1, b1, . . . , bs; q, z)

=
∞∑
n=0

(a1; q)n(a2; q)n . . . (ar; q)n
(q; q)n(b1; q)n . . . (bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn

where the symbol

(
n

2

)
is as above and q 6= 0 when s+ 1 < r.

The q-binomial theorem is a q-analogue for the ordinary binomial theorem

and can be used to derive a q-analogue of the ordinary exponential function.
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Theorem 6.1.9 (cf. [7], p. 350).

1φ0(a;−; q, z) =
∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

(6.1.2)

for |z| < 1, |q| < 1.

Proof. Let ha(z) be the series

∞∑
n=0

(a; q)n
(q; q)n

zn.

Then since (a, q)0 = (aq; q)0 = 1,

ha(z)− haq(z) =
∞∑
n=1

(a; q)n − (aq; q)n
(q; q)n

zn

=
∞∑
n=1

(aq; q)n−1

(q; q)n
[1− a− (1− aqn)]zn

= −a
∞∑
n=1

(1− qn)(aq; q)n−1

(q; q)n
zn

= −a
∞∑
n=0

(aq; q)n
(q; q)n

zn+1

= −azhaq(z).

Similarly

ha(z)− ha(qz) =
∞∑
n=1

(a; q)n
(q; q)n

(zn − qnzn)

=
∞∑
n=1

(a; q)n
(q; q)n−1

zn

=
∞∑
n=0

(a; q)n+1

(q; q)n
zn+1

= (1− a)zhaq(z).

So haq(z) =
ha(z)− ha(qz)

(1− a)z
and

ha(z)− ha(z)− ha(qz)

(1− a)z
= −azha(z)− ha(qz)

(1− a)z
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ha(z)(z − az + az − 1) = ha(qz)(az − 1)

ha(z) =
(1− az)

(1− z)
ha(qz).

Iteration gives

ha(z) =
(az; q)n
(z; q)n

ha(q
nz).

and as n→∞

ha(z) =
(az; q)∞
(z; q)∞

ha(0) =
(az; q)∞
(z; q)∞

.

If a = qc, then as q → 1− in (6.1.2) the ordinary binomial series is ob-

tained, i.e.

1F0(c;−; z) =
∞∑
n=0

(c)n
n!

zn.

Ramanujan’s sum formula will feature in the following considerations.

Theorem 6.1.10 (cf. [20], p.126).

∞∑
n=−∞

(a; q)n
(b; q)n

zn =

(
q,
b

a
, az,

q

az
; q

)
∞(

b,
q

a
, z,

b

az
; q

)
∞

,

for

∣∣∣∣ ba
∣∣∣∣ < |z| < 1.

Analogues of the well-known special functions play an important role in

the theory of basic hypergeometric series. In particular the analogue of the

gamma function is used here.

Definition 6.1.11 (cf. [20], p.17). The q-analogue of the gamma function is

defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x,

0 < q < 1.
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It can be shown (cf. [20], p. 17) that

lim
q→1−

Γq(x) = Γ(x).

Lemma 6.1.12 (cf. [20], p. 17).

Γq(x+ 1) =
1− qx

1− q
Γq(x)

Proof.

Γq(x+ 1) =
(q; q)∞

(qx+1; q)∞
(1− q)−x

=
1− qx

1− q
(q; q)∞

(1− qx)
∏∞

k=0(1− qx+1+k)
(1− q)1−x

=
1− qx

1− q
Γq(x).

Recalling that lim
q→1−

1− qx

1− q
= x shows that this relation is the q-analogue

of the familiar relation

Γ(x+ 1) = xΓ(x),

satisfied by the ordinary gamma function. Iteration gives

Γq(x+ n) =
(qx; q)n
(1− q)n

Γq(x). (6.1.3)

Lemma 6.1.13.
Γq(x+ n)

Γq(x)
=

(qx; q)n
(1− q)n

.

Proof.

Γq(x+ n)

Γq(x)
=

(qx; q)n
(1− q)n

Γq(x)

Γq(x)

=
(qx; q)n
(1− q)n

.

6.2 q-Laguerre polynomials

Definition 6.2.1 (cf. [20], p.19). Let 0 < q < 1, then

∫ ∞
0

f(x)dqx is used

to denote the series

(1− q)
∞∑

n=−∞

f(qn)qn (6.2.1)
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The set of points {qn}∞n=−∞ forms a partition of the interval [0,∞) and

qn is unbounded for large enough negative n. Furthermore, as q → 1−, the

partitions get finer so that in the limit (cf. [20], p.19)

lim
q→1−

(1− q)
∞∑

n=−∞

f(qn)qn =

∫ ∞
0

f(x)dx,

for any continuous function f(x). For this reason the operator given by (6.2.1)

can be seen as a q-analogue of the Riemann integral on the interval [0,∞).

Suppose a distribution function α(x) is given. Then if c > 0 is a real

constant, cα(x) is still bounded, non-decreasing and has finite moments, i.e.

cα(x) is a distribution function and by Lemma 2.1.10∫ ∞
−∞

f(x)d[cα(x)] = c

∫ ∞
−∞

f(x)dα(x).

Let q be fixed such that 0 < q < 1, and let α(x) be a function constant except

for jumps of size anq
n at the points qn, where each an > 0 is chosen so that

the series
∞∑

n=−∞

|Pn(qn)anqn|

converges for an arbitrary polynomial Pn(x), then α(x) is a distribution func-

tion and so is (1− q)α(x). The constants {an}∞n=0 can be thought of together

as generated by a weight function w(x) defined so that w(qn) = an. The

distribution (1− q)α(x) generates a canonical inner product on polynomials

〈·, ·〉 which is given by

〈Pn(x), Pm(x)〉 =

∫ ∞
0

Pn(x)Pm(x)w(x)dqx.

Using this inner product a set of orthogonal polynomials corresponding to

the weight function w(x) can be generated. In contrast with the classical

polynomials this weight function only needs to be defined at the points qn.

The q-binomial theorem can be used to derive a q-analogue of the expo-

nential function. The ordinary binomial series gives

ez =1 F0(0;−; z) =
∞∑
n=0

zn

n!
.
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Definition 6.2.2 (cf. [20], p. 9). Let |z| < 1, |q| < 1 and define eq(z) by

eq(z) =1 φ0(0;−; q, z) =
∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
.

By prior considerations lim
q→1−

eq(z(1− q))= ez.

Recall that the Laguerre polynomials satisfied the orthogonality condition∫ ∞
0

Lαn(x)Lαm(x)xαe−xdx = hnδmn.

The q-Laguerre polynomials Lαn(x; q) can be defined by the orthogonality

relation (cf. [38], p.24)

1

A

∞∑
k=−∞

Lαn(qk; q)Lαm(qk; q)
qkα+k

(−(1− q)qk; q)∞

=
(qα+1; q)n
qn(q; q)n

, m = n

= 0, m 6= n,

where

A =
∞∑

n=−∞

qkα+k

(−(1− q)qk; q)∞
.

Using the q-integral operator this definition can be written more com-

pactly.

Definition 6.2.3 (cf. [38],p.24). The q-Laguerre polynomials are defined by

the orthogonality condition

1

A(1− q)

∫ ∞
0

Lαn(x; q)Lαm(x; q)xαeq(−(1− q)x)dqx (6.2.2)

=
(qα+1; q)n
qn(q; q)n

, m = n

= 0, m 6= n,

where A is as above.

A can be chosen arbitrarily with the polynomials invariant up to normal-

isation, but for this specific choice of A the 0th moment

µ0 =
1

A(1− q)

∫ ∞
0

xαeq(−(1− q)x)dqx = 1.
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The classical Laguerre polynomials can be represented by the hypergeo-

metric series
(α + 1)n

n!
1F1(−n;α + 1;x).

Theorem 6.2.4 (cf. [38], p.21). The q-Laguerre polynomials Lαn(x; q) can be

represented by

Lαn(x; q) =
(qα+1; q)n

(q; q)n

n∑
k=0

(q−n; q)kq
(k
2)(1− q)k(qn+α+1x)k

(qα+1; q)k(q; q)k

=
(qα+1; q)n

(q; q)n
1φ1(q−n; qα+1; q,−(1− q)qn+α+1x).

Theorem 6.2.5 (cf. [38], p.26). The q-Laguerre polynomials satisfy a three-

term recurrence relation of the form

xLαn(x; q) = − (1− qn+1)

(1− q)q2n+α+1
Lαn+1(x; q)

+

{
(1− qn)

(1− q)q2n+α
+

(1− qn+α+1)

(1− q)q2n+α+1

}
Lαn(x; q)− (1− qn+α)

(1− q)q2n+α
Lαn−1(x; q).

Lα0 (x; q) = 1, Lα1 (x; q) = −qα+1x+
(1− qα+1)

1− q
.

6.3 The q-Laguerre moment problem

Theorem 6.1.10 can be used to calculate the moments {µn}∞n=0 associated

with the q-Laguerre polynomials.

Lemma 6.3.1 (cf. [38], p.24).

∞∑
k=−∞

qβk

(aqk; q)∞
=

(
aqβ,

q1−β

a
, q; q

)
∞(

qβ, a,
q

a
; q
)
∞

. (6.3.1)

Proof. Theorem 6.1.10 gives

∞∑
n=−∞

(a; q)n
(b; q)n

xn =

(
q,
b

a
, ax,

q

ax
; q

)
∞(

b,
q

a
, x,

b

ax
; q

)
∞

,

129



for

∣∣∣∣ ba
∣∣∣∣ < |x| < 1. Using Lemma 6.1.2, this can be rewritten

∞∑
k=−∞

(bqk; q)∞(a; q)∞
(aqk; q)∞(b; q)∞

xk =

(
q,
b

a
, ax,

q

ax
; q

)
∞(

b,
q

a
, x,

b

ax
; q

)
∞

∞∑
k=−∞

(bqk; q)∞
(aqk; q)∞

xk =

(
q,
b

a
, ax,

q

ax
; q

)
∞(

a,
q

a
, x,

b

ax
; q

)
∞

Setting b = 0, x = qβ and noting that (0; q)∞ = 1 gives the result.

With this formula a different form for the constant A can be given.

A =

(
−(1− q)qα+1,

q−α

−(1− q)
, q; q

)
∞(

qα+1,−(1− q), q

−(1− q)
; q

)
∞

.

Theorem 6.3.2 (cf. [38], p. 25). The nth moment µn associated with the

q-Laguerre polynomials when it is stipluated that µ0 = 1 is given by

µn =
(qα+1; q)nq

−αn−(n+1
2 )

(1− q)n
. (6.3.2)

Proof. The nth moment is given by

1

A(1− q)

∫ ∞
0

xnxαeq(−(1− q)x)dqx

=
∞∑

k=−∞

(qk)n(qk)αqk

A(−1(1− q)qk; q)∞

=
1

A

(
−(1− q)qn+α+1,

q−n−α

−(1− q)
, q; q

)
∞(

qn+α+1,−(1− q), q

−(1− q)
; q

)
∞

=

(
qα+1,−(1− q),− q

(1− q)
,−(1− q)qα+n+1,

−q−α−n

(1− q)
, q; q

)
∞(

−(1− q)qα+1,
−q−α

(1− q)
, q, qα+n+1,−(1− q),− q

1− q
; q

)
∞

,
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where (6.3.1) was used in the last step. Using Lemma 6.1.2 and cancelling

like terms in numerator and denominator this reduces to(
qα+1,− q−n−α

(1− q)
; q

)
n

(−(1− q)qα+1; q)n
.

In Lemma 6.1.4 set a = −qα+1(1− q) to get

(qα+1; q)nq
−αn−(n+1

2 )

(1− q)n
,

which is what was required.

Lemma 6.3.3 (cf. [7], p.353).∫ ∞
0

xαeq(−(1− q)x)dx =
Γ(−α)Γ(α + 1)

Γq(−α)
, 0 < q < 1,<(α) > −1.

Let x ∈ [0,∞) and 0 < q < 1, then (1− q)x > 0 and

eq(−(1− q)x) =
1

(−(1− q)x; q)∞

=
1

∞∏
k=0

(1− (−(1− q)x)qk)

=
1

∞∏
k=0

(1 + (1− q)x)qk
> 0

Let α > −1 and x ∈ [0,∞) then xα > 0. Consequently the function α(x)

defined by the integral

α(x) =
Γq(−α)

Γ(−α)Γ(α + 1)

∫ x

0

xαeq(−(1− q)x)dx,

where α > −1, 0 < q < 1, exists because the integrand is continuous and

positive and the integral is bounded above by

Γq(−α)

Γ(−α)Γ(α + 1)

∫ ∞
0

xαeq(−(1− q)x)dx = 1.

Because the integrand is positive α(x) is non-decreasing.
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Theorem 6.3.4 (cf. [38], p. 24). The nth moment of α(x) is given by

µn =
(qα+1; q)nq

−αn−(n+1
2 )

(1− q)n
.

Proof. First note that

n+

(
n

2

)
= n+

n(n− 1)

2
=
n2 + 2n− n

2
=

(
n+ 1

2

)
.

By Lemma 6.3.3,

µn =
Γq(−α)

Γ(−α)Γ(α + 1)

∫ ∞
0

xα+neq(−(1− q)x)dx

=
Γq(−α)Γ(−α− n)Γ(α + n+ 1)

Γq(−α− n)Γ(−α)Γ(α + 1)
.

Lemma 6.1.13 gives
Γq(−α)

Γq(−α− n)
=

(q−α−n; q)n
(1− q)n

.

Using a = qα+1 in Lemma 6.1.4 then gives

Γq(−α)

Γq(−α− n)
=

(−1)n(qα+1; q)nq
−αn−(n+1

2 )

(1− q)n
.

The reflection formula for the gamma function gives

Γ(−α− n)Γ(α + n+ 1)

Γ(−α)Γ(α + 1)
=

π

sin(−πα)

sin(−πα− πn)

π

=
(−1)n sin(−πα)

sin(−πα)
.

Combining the above gives

µn =
(qα+1; q)nq

−αn−(n+1
2 )

(1− q)n
.

This establishes that α(x) is a distribution function. Futhermore the mo-

ments of α(x) are identical with the moments associated with the q-Laguerre

polynomials given in (6.3.2). As a result the q-Laguerre polynomials are or-

thogonal with respect to at least two distributions which can’t be equivalent

because one is continuous and the other discrete (cf. [38], pp.24, 25). The
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moment problem associated with the q-Laguerre polynomials is indeterminate

(cf. [7], p.354).

Denote by ψ(x) the distribution

ψ(x) = C

∫ x

0

xαeq(−(1− q)x)dx

C =
Γq(−α)

Γ(−α)Γ(α + 1)
.

ψ(x) is a solution of a Stieltjes moment problem and an associated symmet-

ric distribution α(x) can be constructed via α(x) = sgn(x)ψ(x2). Departing

slightly from the notation in the discussion of symmetric moment problems

the polynomial that was denoted by Pn(x) will be denoted by pn(x). Then

pn(x) = C1L
α
n(x; q), where C1 is chosen so that pn(x) is monic. The polyno-

mials Kn(x) are the monic polynomials orthogonal with respect to xdψ(x).

These polynomials are just C2L
α+1
n (x; q), where C2 is chosen for the monic

normalisation. The monic symmetric polynomials Sn(x) orthogonal with re-

spect to α(x) are then obtained from the relations

S2n(x) = pn(x2)

S2n+1(x) = xKn(x2).

The recurrence for the q-Laguerre polynomials is given in Theorem 6.2.5.

This is not the monic or the orthonormal form of the three-term recurrence.

Recall that the leading coefficient of Lαn(x; q) is

kn =
(q−n; q)nq

(n+1
2 )+nα+n2

(1− q)n

(q, q; q)n
,

and that

(q−n; q)n = (q; q)n(−1)nq−(n+1
2 ),

so that

kn =
qn(n+α)(q − 1)n

(q; q)n
.
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This gives

pn(x) =
(q; q)n

qn(n+α)(q − 1)n
Lαn(x; q)

Kn(x) =
(q; q)n

qn(n+α+1)(q − 1)n
Lα+1
n (x; q).

The recurrence relation for the polynomials {pn(x)}∞n=0 is then

x
qn(n+α)(q − 1)n

(q; q)n
pn(x) = − (1− qn+1)

(1− q)q2n+α+1

qn
2+2n+nα+α+1(q − 1)n+1

(q; q)n+1

pn+1(x)

+
(1 + q − qn+1 − qn+α+1)

(1− q)q2n+α+1

qn(n+α)(q − 1)n

(q; q)n
pn(x)

− (1− qn+α)

(1− q)q2n+α

qn
2−2n+nα−α+1(q − 1)n−1

(q; q)n−1

pn−1(x).

Dividing the above by
qn(n+α)(q − 1)n

(q; q)n
,

gives (cf. [30], p.159)

xpn(x) = pn+1(x) +
(1 + q − qn+1 − qn+α+1)

(1− q)q2n+α+1
pn(x)

+
(1− qn)(1− qn+α)

(1− q)2q4n+2α−1
pn−1(x), (6.3.3)

p0(x) = 1, p1(x) = x− (1− qα+1)

(1− q)qα+1
. (6.3.4)

This is the monic form of the recurrence relation i.e.

pn+1(x) = (x− en)pn(x)− d2
n−1pn−1(x).

and immediately gives the sequences associated with the orthonormal poly-

nomials

dn =

√
(1− qn)(1− qn+α)

(1− q)2q4n+2α−1
,

en =
(1 + q − qn+1 − qn+α+1)

(1− q)q2n+α+1
.
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The polynomials {pn(x)}∞n=0 are the denominators of a Jacobi continued

fraction. The associated numerators {qn(x)}∞n=0 are the polynomials which

satisfy (6.3.4), but with initial conditions

q0(x) = 0, q1(x) = 1.

From the sets {qn(x)}∞n=0 and {pn(x)}∞n=0 the orthonormal polynomials

{Pn(x)}∞n=0 and {Qn(x)}∞n=0 can be obtained using (2.6.8)

Pn(x) =
1

d0d1 . . . dn−1

pn(x)

Qn(x) =
1

d0d1 . . . dn−1

qn(x).

Recall the polynomials used in deriving the Nevanlinna parametrisation

An(z) = dn−1{Qn−1(0)Qn(z)−Qn(0)Qn−1(z)},

Bn(z) = dn−1{Qn−1(0)Pn(z)−Qn(0)Pn−1(z)},

Cn(z) = dn−1{Pn−1(0)Qn(z)− Pn(0)Qn−1(z)},

Dn(z) = dn−1{Pn−1(0)Pn(z)− Pn(0)Pn−1(z)}.

Theorem 6.3.5 ([38], p.36). Let

Lα∞(x; q) = lim
n→∞

Lαn(x; q),

then Lα∞(x; q) is an entire function and is given by

Lα∞(x; q) =
(qα+1; q)∞

(q; q)∞

∞∑
k=0

qk
2+αk(1− q)k(−x)k

(qα+1; q)k(q; q)k
.

The functions A(z), B(z), C(z) and D(z) have been computed and are

given by (cf.[30], pp.163-166)

A(z) = − 1− q
(qα,−z; q)∞

{
∞∑
n=0

znq
n(n+1)

2

(q; q)n(1− qn−α){
(qa; q)∞L

α
∞(z; q) + ((q; q)∞ − (qα+1; q)∞)Lα−1

∞ (z; q)
}

− (qα; q)∞
(q−α; q)∞

L−α∞ (z; q)− ((q; q)∞ − (qα+1; q)∞)
(q; q)∞

(q−α; q)∞
L1−α
∞ (z; q)}
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B(z) =

[
1

1− qα
− (q; q)∞

(qα; q)∞

]
Lα−1
∞ (z; q)− Lα∞(z; q)

C(z) =
z

(−z; q)∞
Lα+1
∞ (z; q)

∞∑
n=0

znq
n(n+1)

2

(q; q)n(1− qn−α)

+
(q; q)∞

(−z, q−α; q)∞
Lα−1
∞ (z; q)

D(z) = zLα+1
∞ (z; q).
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