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Abstract

In this dissertation we study the notion of symmetry on groups, topological spaces,

et cetera. The relationship between such structures with symmetries and Ram-

sey Theory is reflected by certain natural functions. We give a general picture of

asymptotic behaviour of these functions.



I warrant that the content of this dissertation is the direct result of my own work.

Any use of published or unpublished material is fully and correctly referenced.

Signature .......................

Date .......................

1



Contents

1 Introduction 4

2 Spaces 6

2.1 Filters and ultrafilters . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Ultrafilters on topological spaces . . . . . . . . . . . . . . . . . . . . . 9

2.3 The space βX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 1

Introduction

Astrologers look to the heavens and see all types of animals in the stars such as lions,

bulls and half bull-half lions. Frank Plumpton Ramsey, an English mathematician,

proved that such patterns are actually implicit in any large structure, whether it is a

group of stars or a series of numbers. For instance, given enough stars, we can always

find a group that forms any type of peculiar pattern. Ramsey Theory states that

any structure will necessarily contain an orderly substructure. As the late mathe-

matician Theodore Motzkin first proclaimed, Ramsey Theory implies that complete

disorder is an impossibility.

Chapter 2 and 3 provides the necessary background for Ramsey type Theorems and

Ramsey functions. Chapter 2 introduces filters and ultrafilters and describes how

they relate to topological spaces. The set of all ultrafilters on a topological space

βX is defined and examined. βX is also the largest compactification, or Stone-Čech

Compactification, of the discrete space X. Chapter 3 provides an introduction to

semigroups, where we extend the notion of a Stone-Čech Compactification to the

semigroup S obtaining βS. βS is interesting for its own sake and its applications to

Ramsey Theory.

Chapter 4 introduces Ramsey Theory with Theorems from Hilbert, Schur, van der

Waerden and Ramsey. Ramsey Theory can be described as the study of the preserva-

tion of properties under set partitions [18]. Ramsey’s Theorem deals with colourings

on natural numbers or graphs, Schur’s Theorem deals with colourings on the simple

plane and van der Waerden’s Theorem deals with colourings on arithmetic progres-

sions. Finite type examples are illustrated.
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Chapter 5 provides background in group theory which is necessary for Chapter 6.

The relevant notions include cyclic groups, direct sums, semidirect products and

importantly, compact groups. The Haar measure is also examined in some detail.

Chapter 6 concerns Ramsey functions and draws on definitions, theorems and con-

cepts from all previous chapters. The vital notion of symmetry is identified and

explained. Ramsey functions are analysed for finite Abelian groups and then com-

pact Abelian groups. A general picture of the asymptotic behaviour of sr(G), the

most asymmetrical maximal measure of a monochromatic symmetric subset, for

compact Abelian groups is provided.

The following quote appeared in the 1983 article titled A Tribute to F. P. Ramsey

and epitomizes the field of Ramsey Theory [12].

Unsolved problems abound, and additional interesting open questions arise faster

than solutions to the existing problems. - F. Harary
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Chapter 2

Spaces

2.1 Filters and ultrafilters

Filters were introduced by Frigyes Riesz [27] in 1908 and Stanislaw Ulam [33] in

1929. Filters are important as they provide us with ultrafilters which have been

used to prove all the fundamental results in Ramsey Theory.

In set theory, a filter is a subset of a partially ordered set (or poset). A poset is a

set whose elements are ordered but not all elements are required to be comparable

in the order. Filters appear in topology, order theory and lattice theory. Ultrafilters

are very useful and have multiple applications in topology (especially with compact

Hausdorff spaces), set theory and with Boolean algebras and general partial orders.

Throughout the dissertation we work in ZFC (Zermelo-Fraenkel system of axioms

with axiom of choice). Results (all definitions, theorems, lemmas, corollaries, propo-

sitions and proofs) from Chapter 2 can be found in [14], [21], [23] and [36].

Definition 2.1.1. A family F of subsets on a set X is called a filter if the following

conditions hold:

1. ∅ /∈ F and X ∈ F ;

2. If A,B ∈ F , then A ∩B ∈ F ;

3. If A ∈ F and A ⊆ B ⊆ X, then B ∈ X.

An example of a filter is the set of neighbourhoods of a point in a topological space.

A family F of subsets on a set X is called centered if the intersection of any finite
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number of its sets is nonempty.

The smallest filter that contains a given element is known as a principal filter, i.e.: if

x ∈ X, then the principal filter is Fx = {A ⊆ X : x ∈ A}. Thus for each x ∈ X, Fx
is the principal filter corresponding to x, the principal element. For sets, principle

filters contain a least element and are exactly the one element sets.

The family of all filters on the set X is partially ordered by the relation F1 ⊆ F2.

A filter which is maximal with respect to this order is known as an ultrafilter. All

other subsets of X are considered either almost everything or almost nothing.

Definition 2.1.2. An ultrafilter on the set X is a filter which is not properly

contained in any other filter on X.

We denote ultrafilters using lower case letters. If p and q are ultrafilters on X, then

p = q if and only if p ⊆ q.

There are two types of ultrafilters, namely principal and free. A principle ultrafilter

on X is a filter containing a least element. All principal filters are ultrafilters.

Non-principal ultrafilters are known as free ultrafilters. An ultrafilter is free if and

only if
⋂
F = ∅ and can therefore only exist on infinite sets. Free ultrafilters were

introduced by Alfred Tarski in 1930. Almost all ultrafilters on an infinite set are free

while all ultrafilters of a finite set are principle. We are unable to state examples

of free ultrafilters but we can show that they do exist using the Kuratowski-Zorn

Lemma and by proving the Ultrafilter Theorem below.

Lemma 2.1.3. (Kuratowski-Zorn). If every chain (linearly ordered set) in a par-

tially ordered set has an upper bound, then the set has a maximal element.
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Theorem 2.1.4. (Ultrafilter Theorem). Every filter on a set is contained in an

ultrafilter.

Proof:

Let F ′ be a filter on the set X and consider the collection of all filters F on X

that contain F ′. Let this collection be δ with the chain γ. There exists a filter

{F ∈ F : F ∈ γ} on X that is an upper bound for the chain γ. By the Kuratowski-

Zorn lemma, δ has a maximal element. This means that there is an ultrafilter that

contains F ′.

�

Consider an ultrafilter on the infinite set X which contains

Fx = {F ⊆ X : X\F is finite}, known as the Fréchet filter. Then there exists a free

ultrafilter on X. We now provide some theorems to describe some properties and

the structure of filters and ultrafilters.

Theorem 2.1.5. (Ultrafilter Criterion). A filter F on the set X is an ultrafilter if

and only if either A ∈ F or X\A ∈ F for every subset A of X.

Proof:

⇒. Let F be an ultrafilter on X, A ⊆ X and A /∈ F . By the definition of a filter,

F\A 6= ∅ for all F ∈ F . Since F1, F2, . . . , Fn ∈ F , then (F1\A) ∩ (F2\A) ∩ . . . ∩
(Fn\A) = (F1 ∩ F2 ∩ . . . ∩ Fn)\A = {F\A : F ∈ F} 6= ∅. By Theorem 2.1.4, there

exists an ultrafilter F ′ which contains {F\A : F ∈ F}. Since F ⊆ F ′ and hence

F = F ′. Since A ⊆ X and A /∈ F , then X\A ∈ F ′ and X\A ∈ F .

⇐. Consider a filter F satisfying either A ∈ F or X\A ∈ F and F is contained

in the ultrafilter F ′. Now, if F 6= F ′, then there exists a subset A ∈ F ′ such that

A /∈ F . Since X\A ∈ F then X\A ∈ F ′. However, since A ∩ (X\A) = ∅ this

contradicts the definition of a filter and so F = F ′. Therefore F is an ultrafilter.

�

8



Corollary 2.1.6. Let F be an ultrafilter on X and F = F1 ∪ . . .∪Fn where F ∈ F .

Then there exists an Fi such that Fi ∈ F .

Proof:

Suppose the contrary, i.e.: F1 /∈ F , . . . , Fm /∈ F . Then by the Ultrafilter Criterion

X\F1 ∈ F , . . . , X\Fm ∈ F . Now (X\F1) ∩ . . . ∩ (X\Fm) = X\F ∈ F .

Since F ∈ F and F is a filter, we obtain a contradiction and Fi ∈ F .

�

Theorem 2.1.7. (Ultrafilter Image Theorem). Let F be an ultrafilter on the set X.

For every map f : X → Y the filter f̄(F) is an ultrafilter on the set Y.

Proof:

If Y = Y1 ∪ Y2, then X = f−1(Y1) ∪ f−1(Y2). By the Ultrafilter Criterion, either

f−1(Y1) ∈ F or f−1(Y2) ∈ F . Suppose that F = f−1(Y1) and F ∈ F . We then

have that f(F ) = Y1 and f(F ) ∈ f̄(F). Thus, Y1 ∈ f̄(F). Using the Ultrafilter

Criterion we can verify that f̄(F) is an ultrafilter on Y .

�

2.2 Ultrafilters on topological spaces

Topological spaces are structures that allow formal definitions of many notions.

Definition 2.2.1. A family τ of open subsets on a set X is called a topology of X

if the following conditions hold:

1. The union of an arbitrary number of sets in τ is also in τ ;

2. The intersection of a finite number of sets in τ is also in τ ;

3. The empty set and X are both sets in τ .

The elements of X are called points and the complements of members of τ are known

as closed sets. (X, τ) is called the topological space. A set W is a neighbourhood

of a point x ∈ X if there is an open subset U ∈ τ such that x ∈ U ⊆ W . We de-

note B(x) as a collection of subsets of X that are neighbourhoods of the point x ∈ X.

9



If τ contains only the empty set and X then τ forms a trivial topology. If τ contains

the power set (the set of all subsets of X) then τ forms a discrete topology.

An equivalent definition is a topology on closed sets. In this case the following

conditions must hold:

1. The intersection of an arbitrary number of sets in τ is also in τ ;

2. The union of a finite number of sets in τ is also in τ ;

3. The empty set and X are both sets of τ .

The empty set and X are both open and closed (or clopen). We now use our

knowledge of ultrafilters to define properties of topological spaces. By definition, a

filter F on (X, τ) converges to a point x if W ∈ F for every neighbourhood W of x.

x is known as the limit of the filter F . A subset A ⊆ X is closed if and only if a limit

of any filter containing A belongs to A. Note that the family of all neighbourhoods

of x forms a filter. A topological space is called Hausdorff if any two distinct points

of the space have disjoint neighbourhoods, i.e.: the points are seperated by open

sets.

Theorem 2.2.2. A topological space (X, τ) is Hausdorff if and only if every filter

on X has at most one limit.

Proof:

Suppose (X, τ) is Hausdorff and F is a filter on X that converges to two distinct

points, say x and y. Choose two distinct neighbourhoods of x and y, say U and V

respectively. Then U ∩ V = ∅, a contradiction with the definition of a filter and so

every filter on X converges to a single point.

Now suppose that (X, τ) is not Hausdorff but every filter on X converges to a single

point. Choose two distinct points x, y ∈ X with neighbourhoods U of x and V of

y such that the U ∩ V 6= ∅. The family {U ∩ V : U ∈ B(x), V ∈ B(y)} is centered

and can be completed to a filter F . B(x) ⊆ F and B(y) ⊆ F and so F converges

to two distinct points, namely x and y. This is a contradiction.

�
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A cover of a topological space is a family of nonempty subsets of X whose union

contains X. The Heine-Borel definition of compactness states that a topological

space is compact if every open cover of X has a finite subcover, i.e.: if X is the

union of a family of open sets, there is a finite subfamily whose union is also X. A

cover is a family of nonempty subsets of X whose union contains the given set X.

This brings us to a theorem about compactness.

Theorem 2.2.3. A topological space (X, τ) is compact if and only if every ultrafilter

on X is convergent.

Proof:

Let X be a compact space with an ultrafilter F that doesn’t converge to a point

on X. For any point x ∈ X there is an open neighbourhood Ux of x such that

Ux /∈ F . Now from the cover of X by open subsets Ux, x ∈ X, select a finite

subcover X = Ux1 ∪ . . . ∪ Uxn . By Corollary 2.1.6. at least one of Ux1 ∪ . . . ∪ Uxn
belongs to F , a contradiction to the choice of these sets.

Now suppose all ultrafilters on X converge but (X, τ) is not compact. If (X, τ) is not

compact then there exists a cover Uα, α ∈ J of (X, τ) which has no finite subcover.

For every finite subset F ⊆ J let U(F ) =
⋃
{Uα : α ∈ F} and by our hypothesis

X\U(F ) 6= ∅. The centered family {X\U(F ) : F is a finite subset from J} can be

completed to an ultrafilter F . By the hypothesis F converges to some point x ∈ X.

Let Uα be an element of the cover containing x. Clearly Uα ∈ F . Let F = {α}. By

the construction of F we have X\U(F ) ∈ F , a contradiction with U(F ) ∈ F .

�

We now introduce an important result, Tychonoff’s Theorem. It states that the

product of any collection of compact topological spaces is compact. The theorem

was proved and named after Andrey Nikolayevich Tychonoff who first proved it for

powers of the closed unit interval in 1930 and later completed the full theorem in

1935. The theorem relies on the definitions of compactness and the product topol-

ogy. When the theorem was initially proved, the Balzano-Weierstrass criterion was

used as opposed to the Heine-Borel definition of compactness. Tychonoff’s Theo-

rem is considered as one of the most important results in general topology as any

construction that takes a general object to produce a compact space requires it.
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Let (Xα, τα), α ∈ J , be a collection of topological spaces. X =
∏

α∈J Xα is the

Cartesian product of Xα. The elements of X are the functions

f : J →
⋃
{Xα : α ∈ J} satisfying f(α) ∈ Xα for all α ∈ J . X equipped with

this topology is called the Tychonoff product of the family (Xα, τα), α ∈ J . The

Tychonoff topology is the weakest topology (the topology with the fewest open

sets) on the Cartesian product X such that all projections prα : X → Xα, where

prα(f) = f(α) are continuous. We now prove Tychonoff’s Theorem.

Theorem 2.2.4. (Tychonoff’s theorem). The Tychonoff product of any collection

of compact topological spaces is compact.

Proof:

Consider the ultrafilter F on X. By the Ultrafilter Image Theorem, p̄rα(F) is an

ultrafilter on the compact space (Xα, τα). Since we know that a topological space is

compact if and only if every ultrafilter on it is convergent, the ultrafilter p̄rα(F) also

converges to some point xα ∈ Xα. Let f ∈ X such that f(α) = xα for all α ∈ J . By

definition of the Tychonoff topology the ultrafilter F converges to the point f ∈ X.

Using Theorem 2.2.3 the proof is complete.

�

Let r be a positive integer and the subset Y ⊆ X be partitioned into r parts:

Y = Y1∪Y2∪ . . .∪Yr. A collection A of subsets of X is called r-regular with respect

to Y if for every partition of Y there is a subset A ∈ A such that A ⊆ Yk where

1 ≤ k ≤ r. If A * Yk for every A ∈ A then A is called non-regular.

Theorem 2.2.5. (Compactness Theorem for partitions). If a collection A of subsets

of X is r-regular with respect to X and every element of A is a finite subset, then

there is a finite subset Y ⊆ X such that A is r-regular with respect to Y .

Proof:

Let R = {1, . . . , r} and Rx be a copy of R for every x ∈ X. Consider the Tychonoff

product RX =
∏
{Rx : x ∈ X}, where each factor is endowed with the discrete

topology. Suppose the theorem is invalid. Then for every finite subset Y ⊆ X there

is a non-regular partition Y = Y1 ∪ Y2 ∪ . . . ∪ Yr. Define the characteristic function

h of this partition letting h(x) = i if and only if x ∈ Yi. Extend the function h to a

map fY ∈ RX .
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Let FY = {fK : Y ⊆ K,K is a finite subset of X}. The centered family {FY :

Y is a finite subset of X} can be completed (sets are added) to an ultrafilter F . By

the Tychonoff theorem, F converges to a point f ∈ RX .

Consider X = X1 ∪ . . . ∪Xr where Xi = {x ∈ X : f(x) = i}. By the conditions of

the theorem there is k and A ∈ A such that A ⊆ Xk. Consequently, f(x) = k for

all x ∈ A. Since F converges to f , there is a finite subset Y ⊆ X such that A ⊆ Y

and fY (x) = f(x) for all x ∈ X.

The restriction of fY to the subset Y determines a non-regular partition Y = Y1 ∪
Y2 ∪ . . . ∪ Yr. Since fY (x) = k for all x ∈ A, we achieve A ⊆ Yk, contradicting the

non-regularity of this partition.

�

2.3 The space βX

Let us define a topology on the set of all ultrafilters on the set X.

Definition 2.3.1. Let X be a discrete topological space.

1. βX = {p : p is an ultrafilter on X}.

2. Given A ⊆ X, Ā = {p ∈ βX : A ∈ p}.

Definition 2.3.2. Let X be a set and let a ∈ X. Then e(a) = {A ⊆ X : a ∈ A}.

For each a ∈ X, e(A) is the principal ultrafilter corresponding to a. We denote

ultrafilters on X using lower case letters as we can think of them as points in a

topological space. The space above is discrete because the set X can be identified

with the subset of all principal ultrafilters in βX. If x ∈ X, then {x} is a neigh-

bourhood of the principal ultrafilter x and {x} = x. Therefore, each point of X

is isolated in βX making X a discrete subspace. A base B on a topological space

(X, τ) is that every open set in τ can be written as a union of elements of B. We can

deduce that {Ā : A ⊆ X} forms a basis for a topology on βX. The topology of βX

is the topology which has these sets as a basis. The following theorem establishes

topological properties of βX.
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Theorem 2.3.3. βX is a compact Hausdorff space.

Proof:

Firstly, let us prove that βX is compact. Let U be an open cover of βX. We know

that Ā = {p ∈ βX : A ∈ p}, so each open subset of the cover on βX is the union of

these Ā’s. Therefore U = {Ā : A ∈ F}.

Let F ′ = {X\A : A ∈ F}. Suppose, to prove a contradiction, that F ′ is centered

(intersection of any of its sets is nonempty), then F ′ must be contained in some

ultrafilter p of βX. Since U is the cover of βX, there is a subset A ∈ F such that

p ∈ Ā (containing F ′). Also, since F ′ is contained in some ultrafilter p, we have

X\A ∈ p. But we know that A ∈ p, so with X\A ∈ p we have a contradiction.

Therefore F ′ is not centered.

Now choose subsets A1, . . . , An ∈ F such that (X\A1) ∩ . . . ∩ (X\An) = ∅. Then

A1 ∪ . . . ∪ An = X and we already know that Ā1 ∪ . . . ∪ Ān = βX. Therefore, we

can conclude that {Ā1, . . . , Ān} is a finite subcover of U.

Now let us prove that βX is Hausdorff. Suppose that q and r are distinct elements

of βX. Let the set A ∈ q\r. Then B\A ∈ r, where B is an arbitrary set. So Ā and

B\A are disjoint open subsets of βX containing q and r respectively proving that

βX is Hausdorff.

�

Theorem 2.3.4. Let X be any set.

1. The sets of the form Ā are the clopen subsets of βX.

2. For every A ⊆ X, Ā = clβX e[A].

3. For any A ⊆ X and any p ∈ X, p ∈ clβX e[A] if and only if A ∈ p.

4. The mapping e is injective and e[X] is a dense subset of βX whose points are

precisely the isolated points of βX.

5. If U is an open subset of βX, clβX U is also open.

14



Proof:

1. Suppose that p and q are distinct elements of βX. If A ∈ p\q, then X\A ∈ q. So

Ā and X\A are disjoint open subsets containing p and q respectively. Sets of the

form Ā are also a base for the closed sets, because βX\Ā = (X\A). Therefore each

set Ā is open and closed (clopen).

Now suppose that C is any clopen subset of βX. Let A = {Ā : A ⊆ X and Ā ⊆ C}.
Since C is open, A is an open cover of C. Since C is closed, it is also compact and

we can pick a finite subfamily F of X such that C =
⋃
A∈F . Since (A ∪B) = Ā∪B̄,

C =
⋃
F .

2. For each a ∈ A, e(a) ∈ A and therefore clβX e[A] ⊆ Ā. To prove the reverse,

let p ∈ Ā. Let B̄ denote a neighbourhood of p, then A ∈ p and B ∈ p. So

A ∩ B 6= ∅. Now choose any a ∈ A ∩ B. Since e(a) ∈ e[A] ∩ B̄, e[A] ∩ B̄ 6= ∅ and

thus p ∈ clβX e[A].

3. By 2 and the definition of Ā, p ∈ clβX e[A]⇔ p ∈ Ā⇔ A ∈ p.

4. e[X] is a dense subset of βX if any point x ∈ βX belongs to e[X] or is a limit point

of e[X]. If a, b ∈ X are distinct then X\{a} ∈ e(b)\e(a) and hence e(a) 6= e(b). For

any a ∈ X, e(a) is isolated in βX since {a} is an open subset of βX whose solitary

member is e(a). Conversely, if p is an isolated point of βX, then {p}∩ e[X] 6= ∅ and

so p ∈ e[X].

5. If U is the empty set then trivial. We therefore assume that U is not the empty

set. Let A = e−1[U ] and we claim that U ⊆ clβX e[A]. Now let p ∈ U and let B̄ be a

neighbourhood of p. Then U ∩ B̄ is a nonempty open set and by 4, U ∩ B̄∩e[X] 6= ∅.
Now pick b ∈ B with e(b) ∈ U then e(b) ∈ B̄ ∩ e[A] and B̄ ∩ e[A] 6= ∅. e[A] ⊆ U

and so U ⊆ clβX e[A] ⊆ clβX U . Therefore clβX U = clβX e[A] = Ā (by 2), and so

clβX U is open in βX.

�
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2.4 βX as the Stone-Čech compactification

The Stone-Čech Compactification was introduced independently by Marshall Stone

[31] and Eduard Čech [5] in 1937. An embedding of a topological space X into a

topological space Y is a function φ : X → Y which defines a homeomorphism from

X onto φ[X].

Definition 2.4.1. Let X be a topological space. A compactification of X is a pair

(φ,C) such that C is a compact space, φ is an embedding of X into C, and φ[X] is

dense in C.

Any completely regular space has a largest compactification called its Stone-Čech

Compactification.

Definition 2.4.2. Let X be a completely regular topological space. The Stone-Čech

Compactification of X is a pair (φ,C) such that:

1. C is a compact space;

2. φ is an embedding of X into C;

3. φ[X] is dense in C;

4. given any compact space Z and any continuous function ψ : X → Z, there

exists a continuous function ω : C → Z such that ω ◦ φ = ψ (the diagram

below commutes).

X Z

C

ψ

φ ω

When the space X is discrete, the Stone-Čech Compactification βX can be thought

of as the set of all ultrafilters on X. X is regarded as being a subspace of βX.

Theorem 2.4.3. Let X be a discrete space. Then (e, βX) is a Stone-Čech Com-

pactification of X.

Proof:

Conditions 1,2 and 3 of Definition 2.4.2 hold by Theorems 2.3.3 and 2.3.4.
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We must prove condition 4. Let Z be a compact space and let ψ : X → Z. For

each p ∈ βX, let Ap = {clZ ψ[A] : A ∈ p}. Then for each p ∈ βX,Ap has the finite

intersection property and so has a nonempty intersection. Now choose ω(p) ∈ ∩Ap.
Then we have the following diagram:

X Z

βX

ψ

e ω

We need to show that the above are commutative and that ω is continuous. To prove

ω ◦ e = ψ, let x ∈ X. Then {x} ∈ e(x) so ω(e(x)) ∈ clZ ψ[{x}] = clZ [{f(x)}] =

{ψ(x)}. So ω ◦ e = ψ.

To prove that ω is continuous, let p ∈ βX and let U be a neighbourhood of ω(p)

in Z. Since Z is regular, we can pick a neighbourhood V of ω(p) with clZ V ⊆ U

and let A = ψ−1[V]. We claim that A ∈ p so suppose instead that X\A ∈ p. Then

ω(p) ∈ clZ ψ[X\A] and V is a neighbourhood of ω(p) so V ∩ ψ[X\A] 6= ∅. This

contradicts the fact that A = ψ−1[V]. Thus Ā is a neighbourhood of p. We claim

that ω[Ā] ⊆ U , so let q ∈ Ā and suppose that ω(q) /∈ U . Then Z\clZ V is a

neighbourhood of ω(q) and ω(q) ∈ clZ ψ[A]. So (Z\clZ V) ∩ψ[A] 6= ∅, contradicting

the fact that A = ψ−1[V].

�
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Chapter 3

Semigroups

3.1 Semigroups: general notions and facts

We provide some background in Algebra relating to semigroups. The Section con-

cludes with theorems which are necessary for Hindman’s and van der Waerden’s

theorems. We assume all spaces are Hausdorff. Results from Chapter 3 can be

found in [14], [15] and [36].

Definition 3.1.1. A semigroup is a pair (S, ∗) where S is a nonempty set and ∗ is

an associative binary operation.

For the duration of this Chapter we will use the general binary operation of ∗ and

change to the additive operation in Chapter 5 which is required for Abelian groups.

There are many examples of semigroups such as (N,+) and (R, ·). We now list some

standard definitions.

Definition 3.1.2. A group is a semigroup G containing an element e such that:

1. e ∗ a = a for all a ∈ G;

2. For every a ∈ G, there is an element b ∈ G with b ∗ a = e.

Definition 3.1.3. Let (S, ∗) and (T,+) be semigroups and x, y ∈ S.

1. A homomorphism from S to T is a function φ : S → T such that φ(x ∗ y) =

φ(x) + φ(y).

2. An isomorphism from S to T is a homomorphism from S to T that is both

bijective and surjective.
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Definition 3.1.4. Let (S, ∗) be a semigroup and a, x ∈ S.

1. a is known as a left identity of S if and only if a ∗ x = x.

2. a is known as a right identity of S if and only if x ∗ a = x.

3. a is known as an identity of S if and only if a is both a left and right identity.

We now deal with idempotents which are an important notion. When dealing with

arbitrary semigroups we will denote the binary operation · and x · y as xy.

Definition 3.1.5. Let (S, ·) be a semigroup.

1. x ∈ S is an idempotent if and only if xx = x.

2. E(S) = {x ∈ S : x is an idempotent }.

3. E is a subsemigroup of S if and only if E is a semigroup under the operation

of S and E ⊆ S.

4. E is a subgroup of S if and only if E is a group under the operation of S and

E ⊆ S.

An idempotent operation or a function is an operation that can be applied multiple

times without changing the result. Examples are the union and intersection of a

set. If X is a group with identity e, then E(X) = {e}. The proof of this is simple;

assume that f ∈ E(X). Then ff = f = fe. Multiply on the left by the inverse of

f and then f = e.

Let A and B be subsets of the semigroup S with AB = {ab : a ∈ A and b ∈ B}. An

ideal is a collection of sets that are considered small. They allow for the generaliza-

tion of a property such as a multiple of an integer. Every subset of an element of

the ideal must be in the ideal and the union of any two elements of the ideal must

also be in the ideal. A general example of an the sets that form an ideal are the

subsets of K where K ⊆ X.

For simplicity of notation let us denote the semigroup (S, ·) as S and assume that ·
is known.

19



Definition 3.1.6. Let S be a semigroup.

1. The subset L of S is a left ideal of S if and only if SL ⊆ L, i.e.: ∀s ∈ S, l ∈
L we have sl ∈ L.

2. The subset R of S is a right ideal of S if and only if RS ⊆ R, , i.e.: ∀s ∈
S, r ∈ R we have rs ∈ R.

3. The subset I of S is an ideal of S if and only if I is a left and right ideal of S.

If I 6= S then I is known as a proper ideal. An ideal I is called a proper ideal of S

if I 6= S (if I = S then I is called a unit ideal). A minimal ideal is a left or right

ideal which are minimal with respect to the set they are contained within.

Definition 3.1.7. Let S be a semigroup.

1. The subset L of S is a minimal left ideal of S if and only if L is a left ideal of

S and whenever J is a left ideal of S with J ⊆ L then J = L.

2. The subset R of S is a minimal right ideal of S if and only if R is a right ideal

of S and whenever J is a right ideal of S with J ⊆ R then J = R.

A maximal ideal is a proper ideal I if there exists no other proper ideal J with

I ⊆ J .

Lemma 3.1.8. Let S be a semigroup.

1. Let x ∈ S. Then xS is a right ideal, Sx a left ideal and S × S an ideal.

2. Let e ∈ E(S). Then e is a left identity for eS, a right identity for Se and an

identity for eSe.

Proof:

1 is immediate. For 2, let e ∈ E(S). To show that e is a left identity for eS, let

x ∈ eS and pick p ∈ S such that x = ep. Then ex = eep = ep = x. Similarly, e is a

right identity for Se.

�

Lemma 3.1.9. Let S be a semigroup, I an ideal of S and L a minimal left ideal of

S. Then L ⊆ I.
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We now show that minimal left ideals are connected with each other.

Theorem 3.1.10. Let S be a semigroup with L a minimal left ideal of S and T ⊆ S.

Then T is a minimal left ideal of S if and only if there is some a ∈ S such that

T = La.

Proof:

For necessity. Pick a ∈ T . By the definition of an ideal SL ⊆ L and so SLa ⊆ La.

La ⊆ ST ⊆ T giving us that La is a left ideal of S contained in T so La = T .

For sufficiency. Since SLa ⊆ La, La is a left ideal of S. Now assume that B is a

left ideal of S and B ⊆ La. Let A = {s ∈ L : sa ∈ B}. Then A ⊆ L and A 6= ∅. We

claim that A is a left ideal of S, so let s ∈ A and t ∈ S. Then sa ∈ B and tsa ∈ B.

Since s ∈ L, ts ∈ L and so ts ∈ A as required. Therefore A = L so La ⊆ B giving

La = B.

�

Corollary 3.1.11. Let S be a semigroup. If S has a minimal left ideal of S, then

every left ideal of S contains a minimal left ideal.

Proof:

Let L be a minimal left ideal of S and J a left ideal of S. Pick a ∈ J and then by

Theorem 3.1.10, La is a minimal left ideal which is contained in J .

�

Definition 3.1.12. Let (S, ∗) be a semigroup.

1. The centre of S is {x ∈ S : for all y ∈ S, xy = yx}.

2. If x ∈ S, λx : S → S is defined by λx(y) = xy.

3. If x ∈ S, ρx : S → S is defined by ρx(y) = yx.

4. L(S) = {λx : x ∈ S}.

5. R(S) = {ρx : x ∈ S}.

The following definition sets out the topological hierarchy.
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Definition 3.1.13. 1. A right topological semigroup is a triple (S, ·, τ) where

(S, ·) is a semigroup, (S, τ) is a topological space and ρx : S → S is continuous

for all x ∈ S.

2. A left topological semigroup is a triple (S, ·, τ) where (S, ·) is a semigroup,

(S, τ) is a topological space and λx : S → S is continuous for all x ∈ S.

3. A semitopological semigroup is a right and left topological semigroup.

4. A topological semigroup is a triple (S, ·, τ) where (S, ·) is a semigroup, (S, τ)

is a topological space and · : S → S is continuous.

5. A topological group is a triple (S, ·, τ) where (S, ·) is a group, (S, τ) is a topo-

logical space, · : S → S is continuous and In : S → S is also continuous

(where In(x) is the inverse of x in S).

Definition 3.1.14. (Quotient topology). X/ v of a topological space X with the

equivalence relation v on X is defined as the set of equivalence classes of points in X

which is under the equivalence relation, together with the following topology given

to the subsets U of X/ v: a subset U of X/ v is called open if and only if the union

of the subsets is open in X.

The following two theorems are fundamental and deal with compact right topological

semigroups.

Theorem 3.1.15. Every compact right topological semigroup contains an idempo-

tent (R. Ellis).

Proof:

Let A = {K ⊆ S : K 6= ∅, K is compact, K.K ⊆ K}. Evidently, A is the set of

compact subsemigroups of S. Firstly, we show that A has a minimal member using

the Kuratowski-Zorn Lemma. Since S ∈ A, A 6= ∅ and so let C be a chain in A. C

is a collection of closed subsets of the compact space S with the finite intersection

property, i.e.: ∩C 6= ∅. ∩C is compact and a semigroup. Therefore ∩C ∈ A and so

there is a minimal member A ∈ A.

Choose an arbitrary element, say x ∈ A. We must show xx = x. We first show

that Ax = A. Let B = Ax. B 6= ∅ and since B = ρx[A] (right topological semi-

group with x ∈ A), B is the continuous image of a compact space, and thus compact.
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Now BB = AxAx ⊆ AAAx ⊆ Ax = B. Thus B ∈ A. Since B = Ax ⊆ AA ⊆ A

and A is minimal, we have B = A.

Now let C = {y ∈ A : yx = x}. Since x ∈ A = Ax, C 6= ∅. C = A ∩ p−1
x [{x}],

so C is closed and hence compact. Given y, z ∈ C, we have yz ∈ AA ⊆ A and

yzx = yx = x so yz ∈ C. Therefore C ∈ A. Since C ⊆ A and A is minimal from

above, we achieve C = A. So x ∈ C and xx = x as required.

�

Theorem 3.1.16. Let S be a compact right topological semigroup. Then every left

ideal of S contains a minimal left ideal. Minimal left ideals are closed and each

minimal left ideal has an idempotent.

Proof:

Let L be a left ideal of S. Choose x ∈ L, then Sx = ρx[S] is a compact left ideal

contained in L. Any minimal left ideal is closed and by the previous theorem, any

minimal left ideal contains an idempotent. We must therefore show that any left

ideal of S contains a minimal left ideal.

Let L be a left ideal of S, i.e.: SL ⊆ L, and let A = {T : T is a closed left ideal

of S and T ⊆ L}. Using the Kuratowski-Zorn Lemma on A, we get a left ideal N

which is minimal with respect to all of the closed left ideals contained in L. Since

every left ideal contains a closed left ideal, N must be a minimal left ideal.

�

Definition 3.1.17. 1. A semigroup is simple (left simple) if it has no proper

ideal (left ideal).

2. A semigroup S is completely simple if it is simple and there is a minimal left

ideal of S which has an idempotent.

Corollary 3.1.18. Every compact right topological semigroup has a smallest ideal

which is a completely simple semigroup.
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Definition 3.1.19. Let G be a group, I,Λ be nonempty sets, and let P = (pλi be a

Λ× I matrix with entries in G. The Rees matrix semigroup over the group G with

Λ× I sandwich matrix P , denoted f :M(G; I,Λ;P ), is the set I ×G× Λ with the

operation defined by

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

M(G; I,Λ;P ) is a completely simple semigroup. The following theorem is a special

case of the Rees-Suschkewitsch theorem proved by A. Suschkewitsch [32] for finite

semigroups and D. Rees [26] in the general case. This theorem tells us that every

completely simple semigroup is isomorphic to some Rees matrix semigroup.

Theorem 3.1.20. Let S be a completely simple semigroup. Pick e ∈ E(S) such that

Se is a minimal left ideal. Let I = E(Se), Λ = E(eS), G = eSe, and pλi = λi, and

define f :M(G; I,Λ;P )→ S by f(i, a, λ) = iaλ. Then f is an isomorphism.

Proof:

Let (i, a, λ) and (j, b, µ) be arbitrary elements of f :M(G; I,Λ;P ). Then

f((i, a, λ)(j, b, µ)) = f(i, aλjb, µ) = iaλjbµ = f(i, a, λ)f(j, b, µ),

so f is a homomorphism. Since

E(Se)eSeE(eS) = E(Se)eSeeSeE(eS) = SeeS = SeS,

f is surjective. To see that f is injective, let iaλ = jbµ. Then

a = eae = eiaλe = ejbµe = ebe = b,

i = ie = iaa−1 = iaλea−1 = jaµea−1 = jaa−1 = je = j,

λ = eλ = a−1aλ = a−1eiaλ = a−1ejaµ = a−1aµ = eµ = µ.

Hence f is an isomorphism.

�
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3.2 The semigroup βS

We have showed that βX is the Stone-Čech Compactification of the discrete space

X. It is possible to extend this notion to semigroups and show that βS is the

Stone-Čech Compactification of the discrete semigroup S. An operation used on a

semigroup S will be the same as the operation used on βS.

Theorem 3.2.1. Let S be a discrete space and let · be a binary operation defined

on S. There is a unique binary operation ∗ : βS × βS → βS satisfying the following

three conditions:

1. For every s, t ∈ S, s ∗ t = s · t;

2. For each q ∈ βS, the function ρq : βS → βS is continuous, where ρq(p) = p∗q;

3. For each s ∈ S, the function λs : βS → βS is continuous, where λs(q) = s ∗ q.

Proof:

Uniqueness and existence are proved concurrently. Let us first define ∗ on S × βS.

Define ls : S → S ⊆ βS by ls(t) = s · t for any s ∈ S. By the Stone-Čech Compact-

ification, there is a continuous function λs : βS → βS such that λs|S =ls. Define

s ∗ q =s (q) if s ∈ S and q ∈ βS. Therefore 3 holds and because λs extends ls so

does 1. The extension ls is unique because continuous functions agreeing on a dense

subspace are equal. This is the only possible definition of ∗ satisfying 1 and 3.

Now we can define ∗ on βS × βS. Define rq : S → βS by rq(s) = s ∗ q for any

q ∈ βS. There is a continuous function ρq : βS → βS such that ρq|S =rq. Define

p ∗ q = ρq(p) for ρ ∈ βS\S and ρq(s) = rq(s) = s ∗ q if s ∈ S. So ρq(p) = p ∗ q for

all p ∈ βS and 2 holds. The extension ρq is unique just like ls is unique and this is

the only possible definition of ∗ satisfying 2.

�

The following definition follows immediately since λs and ρq are continuous for all

s ∈ S and q ∈ βS respectively where s, t ∈ S. Operations on βS are distinguished

in terms of limits.
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Definition 3.2.2. Let · be a binary operation on a discrete space S.

1. If s ∈ S and q ∈ βS, then s · q lim
t→q

s · t.

2. If p, q ∈ βS, then p · q = lim
s→p

(lim
t→q

s · t).

This is equivalent to: If p, q ∈ βS, let P ∈ p and Q ∈ q, then

p · q = p− lim
s∈P

(q − lim
t∈Q

s · t).

We now prove that βS is a semigroup if S is a semigroup by proving that the

operation on βS is associative.

Theorem 3.2.3. Let (S, ·) be a semigroup. Then the extended operation on βS is

associative.

Proof:

Let p, q, r ∈ βS. Consider lim
a→p

lim
b→q

lim
c→r

(a · b) · c, where a, b, c ∈ S. Then

lim
a→p

lim
b→q

lim
c→r

(a · b) · c = lim
a→p

lim
b→q

(a · b) · r (λa·b is continuous)

= lim
a→p

(a · q) · r (ρr ◦ λa is continuous)

= (p · q) · r. (ρr ◦ ρq is continuous)

lim
a→p

lim
b→q

lim
c→r

a · (b · c) = lim
a→p

lim
b→q

a · (b · r) (λa ◦ λb is continuous)

= lim
a→p

a · (q · r) (λa ◦ ρr is continuous)

= p · (q · r). (ρq·r is continuous)

We have that (p · q) · r = p · (q · r) and so the operation · on βS is associative.

�

βS is a compact right topological semigroup by virtue of Theorem 3.2.1 and The-

orem 3.2.3. If T is a right topological semigroup then denote Λ(T ) = {x ∈ T :

λx is continuous}.
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Definition 3.2.4. Let S be a semigroup and a topological space. A semigroup com-

pactification of S is a pair (φ, T ) where T is a compact right topological semigroup,

φ : S → T is a continuous homomorphism, φ[S] ⊆ Λ(T ) and φ[S] is dense in T .

We now discuss commutativity in βS.

Theorem 3.2.5. If (S, ·) is a commutative semigroup, then S is contained in the

center of (βS, ·).

Proof:

Let s ∈ S and p ∈ βS. Then

s · q = lim
t→q

st

= lim
t→q

ts

= (lim
t→q

t) · s since ρs is continuous

= q · s.

�

Theorem 3.2.6. Let S be a discrete commutative semigroup. Then the topological

center of βS coincides with its algebraic center.

Proof:

Let p ∈ Λ(βS) and q ∈ βS. Since λp is continuous, then

p · q = q − lim
t∈S

(p · t)

= q − lim
t∈S

(t · p)

= q · p

So p is the topological and algebraic center of βS.

�
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If S is a discrete semigroup then the operation of S extends uniquely to the Stone-

Čech Compactification making βS a compact Hausdorff right topological semigroup

with S contained in its topological center.

This means that for each p ∈ βS, the right translation ρq : βS 3 x 7→ xq ∈ βS is

continuous. S is contained in its topological center means that for each s ∈ S, the

left translation λs : βS 3 x 7→ sx ∈ βS is continuous.

M. Day [7] established the initial extension while P. Civin and B. Yood [6] estab-

lished the operation on the Stone-Čech Compactification. The construction is: for

each s ∈ S, the function ηs : S 3 x 7→ sx ∈ S extends continuously to another

function η̄s : βS 7→ βS. Define s ◦ q = η̄s(q) for each s ∈ S and q ∈ βS.

For each q ∈ βS, the function γq : S 3 x 7→ xq ∈ βS extends continuously to another

function γ̄q : βS 7→ βS. Define p · q = γ̄q(p) for each q ∈ βS and p ∈ βS\S. For the

extended operation λs = η̄p and ρq = γ̄q, all right translations are continuous. R.

Ellis (Theorem 3.1.15) introduced the extension of βS as the set of all ultrafilters [8].

βS has multiple applications in Ramsey Theory, specifically van der Waerden’s The-

orem and Hindman’s Theorem. One of the reason’s for this is that βS is the largest

semigroup compactification of S. The first application of βS to Ramsey Theory was

the proof of the Finite Sums Theorem (also known as Hindman’s Theorem). The

original proof was elementary yet very complicated.

Theorem 3.2.7. (Finite Sums Theorem). Whenever N is finitely coloured, there is

an infinite subset A ⊆ N such that all finite sums of distinct elements of A have the

same colour (N. Hindman, 1974).

F. Galvin and S. Glazer provided another proof of the Finite Sums Theorem in 1975

by means of an ultrafilter on N being an idempotent of βN. This proof was short

and elegant. Soon after this, new ultrafilter proofs of all the fundamental results in

Ramsey Theory have been found using algebra βN.
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Chapter 4

Ramsey Theory

Ramsey Theory is named after Frank Plumpton Ramsey who made significant con-

tributions to the fields of economics, philosophy and mathematics before his untimely

death in 1930 at the age of twenty six. Ramsey only wrote two economics papers, one

titled A Mathematical Theory of Saving, which the great economist John Maynard

Keynes described as “one of the greatest contributions to mathematical economics

ever”.

Ramsey Theory is the study of the preservation of properties under set partitions.

Results in Ramsey Theory have two characteristics. Firstly, a result may show that

some structure exists yet the result gives no process for finding this structure. Sec-

ondly, a result may say that sufficiently large objects must necessarily contain a given

structure. The sufficiently large structures usually have massive bounds which grow

exponentially. There are several classical theorems in the field of Ramsey Theory,

many of which we will prove using the algebraic structures set out in the preceeding

chapters.

The oldest result is that of Hilbert in 1892 followed by Schur in 1916, van der

Waerden in 1927 and Ramsey in 1928. Results from Chapter 4 can be found in [11],

[18] and [23].

4.1 Ramsey’s theorem

There are two versions of Ramsey’s Theorem, namely the finite version and an

extension of the finite version, the infinite version. Frank Ramsey proved the finite
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version in 1928 yet it was only published in 1930 after his death in a paper titled

On a problem of formal logic [25]. Ramsey’s Theorem deals with colourings so let

us formalize the definition of a colouring.

Definition 4.1.1. An r-colouring of the set of natural numbers is a function

X : N→ {1, . . . , r}.

We first prove the most general form of Ramsey’s Theorem; the infinite version. Let

[N]k denote the family of all k-element subsets of the set of natural numbers.

Theorem 4.1.2. (Infinite Ramsey’s Theorem). Let k, r be natural numbers. For

every colouring X : [N]k → {1, . . . , r}, there exists an infinite subset A ⊆ N such

that all its k-element subsets have the same colours.

Proof:

Consider the case k = 1. This is an infinite version of the Pigeonhole principle.

One element subsets are merely the elements of the set of natural numbers, of which

there are an infinite number. Therefore, if we colour the set of natural numbers

using r colours, there will be a colour that occurs an infinite number of times. The

elements coloured by this colour represent the elements of our infinite set A and we

are done.

Consider the case k = 2. We represent the elements of the set [N]2 as edges of a

complete graph with N vertices. We denote this graph KN. Let the set of points

X0 = N and fix any point, say x0 ∈ X0. By the Pigeonhole principle, of the edges

connecting the point x0 with the points X0\{x0}, infinitely many have the same

colour. Let this colour be r0. Now let

X1 = {y ∈ X0\{x0} : X (x0, y) = r0}.

Again, fix any point, say x1 ∈ X1. By the Pigeonhole principle, the edges connecting

the point x1 with the points X1\{x1}, infinitely many edges have the same colour.

Let this colour be r1. Now let

X2 = {y ∈ X1\{x1} : X (x1, y) = r1}.

Continuing in this manner, we construct a sequence E = {x0, x1, x2, . . .} such that

for each edge {e, e′} which connect the points of E, the colour of {e, e′} depends

only on min{e, e′}. Let us define a new colouring X ∗(e) = X ({e, e′}) where e′ > e.
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By the Pigeonhole principle, there is an infinite monochromatic subset A with re-

spect to X , i.e: X ∗(a) = r ∀ a ∈ A. By our definition of X ∗ this means that all

two element subsets of the infinite set A, where A ⊆ E, have the same colour with

respect to X .

Consider the case k = 3. Let the set of points X0 = N and fix any point, say

x0 ∈ X0. Any colouring X : [N]3 → {1, . . . , r} forms a colouring X0 of pairs from

the set X0\{x0} due to the rule X0(i, j) = X (x0, i, j) where i, j are points of the set

X0\{x0}. By our case of k = 2, the set X0\{x0} contains an infinite subset X1 such

that X0(i, j) = r1 for distinct i, j ∈ X1.

Again, fix any point, say x1 ∈ X1 with x1 > x0. Any colouring X : [N]3 → {1, . . . , r}
forms a colouring X1 of pairs from the set X1\{x1} due to the rule X1(i, j) =

X (x1, i, j) where i, j are points of the set X1\{x1}. By our case of k = 2, the set

X1\{x1} contains an infinite subset X2 such that X1(i, j) = r2 for distinct i, j ∈ X2.

Continuing in this manner, we construct a sequence E = {x0, x1, x2, . . .} such that

the colour of any three element subset {e, e′, e′′} depends only on min{e, e′, e′′}.
Let us define a new colouring X ∗(e) = X ({e, e′, e′′}) where e′′ > e′ > e. By the

Pigeonhole principle, there is an infinite subset A ⊆ E which is monochromatic

with respect to X ∗. By our definition of X ∗ this means that all three element

subsets of the infinite set A, where A ⊆ E, have the same colour with respect to X .

The same argument can be applied to any value of k.

�

The finite version can be considered as a refinement of the pigeonhole principle,

where there is not only a certain number of pigeons in each pigeonhole, but also a

certain relationship between the pigeons.

Theorem 4.1.3. (Finite Ramsey’s Theorem). Let k, r, l be natural numbers with

k ≤ l and [1, . . . , n]k be the family of all k-subsets of {1, . . . , n}. There exists a

natural number, known as the Ramsey number, R(k, l, r) such that for every n ≥
R(k, l, r) and arbitrary colouring X : [1, . . . , n]k → {1, . . . , r}, there exists an l-subset

of the set {1, . . . , n} such that all of its k-subsets are monochrome.

Proof:

Let the family of all k-element subsets from the set of natural numbers equal the
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set X, i.e.: X = [N]k. Let U represent the family of all k-element subsets from a set

B, where B is a subset of N with cardinality l, i.e.: U = {[B]k : B ⊂ N, |B| = l}.

Consider the partition X = A1 ∪A2 ∪ . . .∪Am. By the Infinite Ramsey’s Theorem,

there exists an infinite subset A ⊆ N such that [A]k ⊆ Ai where Ai is a random

subset of X. Choose an arbitrary subset B such that B ⊂ A. Then we have that

[B]k ⊆ Ai. Therefore U is r-regular with respect to X and all subsets of U are finite

since they possess cardinality l.

By the Compactness Theorem for partitions, Theorem 2.2.5, there exists a finite

subset Y ⊆ [N]k such that the U is r-regular with respect to Y . There exists a natural

number R(k, l, r) such that Y ⊆ [1, . . . , R(k, l, r)]k. Then the subset [1, . . . , n]k is

r-regular with respect to U for all n ≥ R(k, l, r) and hence there exists an l-subset

of the set {1, . . . , n} such that all of its k-subsets are monochrome.

�

An alternative version of the Finite Ramsey’s Theorem is as follows:

Theorem 4.1.4. (Finite Ramsey’s Theorem Restated). For any given number of

colours r ∈ N and {n1, . . . , nr} ∈ N, there is a natural number, known as the

Ramsey number R(n1, . . . , nr; r), such that if the edges of a complete graph of order

R(n1, . . . , nr; r) are coloured with r different colours, it must contain a complete

subgraph of order ni whose edges are all of colour i ∈ r.

This version provides us with more practicality for an example and we will use its

notation henceforth. There are a limited quantity of Ramsey numbers that have

been discovered. For unknown Ramsey numbers, lower and upper bounds are gen-

erally computed, but these are usually over large intervals. Let us prove the example

of R(3, 3; 2):, i.e.: how many elements are required so that we guarantee either a 3

element red subgraph (triangle) or a 3 element blue subgraph (triangle)?

It is easier to use graph theory where vertices represent elements and edges represent

relationships. If we have three vertices, it is possible to have a blue or red triangle,

but not necessary. Vertices B and C may know each other but A may know neither.

With four or five vertices it is still possible to colour the edges either red or blue

without a monochromatic triangle. With six vertices it becomes impossible to colour
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the edges without a red or blue monochromatic triangle.

Fix one vertex in a six element complete graph, say A. A has five edges connected

to it. By the pigeonhole principle and without a loss of generality, A will have either

three blue lines and two red lines or two blue lines and three red lines connected to

it. Suppose A has three blue lines connected to B, C and D. Now of these three

vertices, each pair can have a blue or red line connecting them. If the lines are

all red, then we have a red monochromatic triangle between B, C and D. If any

pair between B, C and D has a blue line, say B to C, then we also have a blue

monochromatic triangle between A, B and C.

Below is a recent table of the known small Ramsey numbers and selected bounds

for two colours [24].

Upper and lower bounds on R(n1, n2; 2)

The only known Ramsey number for multiple colours is R(3, 3, 3; 3) = 17.
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4.2 Schur’s theorem

One of the earliest results in the field is credited to Issai Schur in 1916 [30]. He

was oddly motivated by the most famous of mathematical problems, Fermats Last

Theorem which was only proved in 1995. Consider the points in the simple plane

x+y = z and use any finite set of colours to assign a colour to each positive integer.

If x+y = z are all the same colour, then colour the point in the plane. Our question

is whether it is possible to colour the positive integers so that no point in the plane

is coloured. The answer is no, there must be a coloured point.

Theorem 4.2.1. (Infinite Schur’s Theorem). For every colouring X : [N]→ {1, . . . , r}
of the set of natural numbers into m colours, the equation x+y = z has a monochro-

matic solution.

Proof:

Define the colouring X ∗ : [N]2 → {1, . . . , r} by the rule

X ∗{i, j} = X (|i− j|).

By the Infinite Ramsey’s Theorem, there exists an infinite set A such that A ⊆ N and

X ∗{i, j} = constant for all distinct elements i, j ∈ A. Now choose three elements

i, j, k ∈ A where i < j < k. Then we have that the two-element subsets all have the

same colour, i.e.:

X ∗{i, j} = X ∗{j, k} = X ∗{i, k}.

But since (j − i) + (k − j) = (k − i), the solution of x+ y = z is monochromatic.

�

Theorem 4.2.2. (Finite Schur’s Theorem). There exists a least positive integer S(r)

with S(r) ≤ n, and an arbitrary colouring X : {1, . . . , n} → {1, . . . , r} such that the

equation x+ y = z has a monochromatic solution in the set {1, . . . , n}.

Proof:

Consider the family V of distinct natural numbers i, j, k satisfying i + j = k. By

the Infinite Schur Theorem, V is r-regular with respect to N. By the Compactness

Theorem for partitions, Theorem 2.2.5, V is also r-regular with respect to some

finite subset Y ⊆ N.
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We can take S(r) as a natural number such that Y ⊆ {1, . . . , S(r)}. This means

that there exists a monochrome solution of x + y = z for an r-colouring on the

interval {1, . . . , S(r)}.

�

On the set of integers, the numbers S(r) are called the Schur numbers. As an ex-

ample, take the case S(2). We would like to find the least positive integer n so that

whenever [1, n] is two coloured, there will exist x, y, z (not necessarily distinct), so

that x + y = z. S(2) must be greater than four, because a two-colouring of four

integers will not yield a monochromatic x+ y = z. Two-colouring the interval [1, 5]

does yield a monochromatic x+ y = z, and we can show why.

Assume the two-colouring of the interval [1, 5] does not yield a monochromatic

x + y = z. 1 + 1 = 2 so colour 1 red and 2 blue. 2 + 2 = 4 so colour 4 red.

1 + 4 = 5 so colour 5 blue. Now we must colour 3, but whether 3 is red or blue

makes no difference as there will always be a monochromatic x + y = z on [1, 5].

Therefore S(2) = 5.

The only known Schur numbers are S(1) = 2, S(2) = 5, S(3) = 14 and S(4) = 44.

4.3 Hindman’s theorem

Suppose the natural numbers are coloured with n different colours with each number

coloured only once. By this colouring there exists a colour c which is used an infinite

amount of times creating an infinite set. Then every finite sum over the infinite set

also has colour c. The finite sums of a set I are all those numbers that can be

obtained by adding up the elements of some finite nonempty subset of I. This is

known as Hindman’s Theorem and the set of all finite sums over I is denoted FS(I).

Let 〈an〉 be an infinite sequence of elements of the semigroup S. The notation FP

represents “finite products” and FS represents “finite sums” depending on whether

the binary operation on S is · or + respectively.
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We denote FP 〈an〉 as the collection of elements of the semigroup having the form∏r
n=1 an and FS〈an〉 as the collection of elements of the semigroup having the form∑r
n=1 an.

A subset A of S is an FP -set if there exists an infinite sequence 〈an〉 of distinct ele-

ments from A such that FP 〈an〉 ⊆ A. Alternatively, if the operation is commutative

then it is called an FS-set.

Lemma 4.3.1. If a non-principal ultrafilter p on the semigroup S is an idempotent

of the semigroup βS, then any subset A ∈ p is an FP -set.

Proof:

Let A0 = A. Since p is idempotent we have that pp = p on βS. We also know that

p ∈ A0 = {p ∈ βS : A ∈ p}. By continuity of multiplication with respect to the

second argument there exists a subset B ∈ p, B ⊆ A0, such that pB̄ ⊆ Ā0.

Now select an arbitrary element, say a1 ∈ B ∈ p. Now, since pa1 ∈ Ā0 and a1 ∈ S,

there naturally exists a subset of A0 which does not contain the element a1. Let this

set be A1. So now a1 ∈ A0\A1.

Select another arbitrary element, say a2 ∈ A1 ∈ p. Again, there naturally exists a

subset A2 ∈ p which does not contain a2. Continuing this process we can construct

a sequence 〈an〉 and decreasing subsets A0 ⊇ A1 ⊇ . . . ⊇ An ⊇ . . . such that the

element an is contained in An−1 \An for all n ∈ N. All elements of 〈an〉 are distinct

and FP 〈an〉 ⊆ A.

�

Theorem 4.3.2. (Hindman’s Theorem for semigroups). Suppose an infinite semi-

group S is either a semigroup without idempotents or a right cancellative semigroup.

Then for every finite partition S = A1 ∪ . . . ∪Ar at least one of the elements of the

partition is an FP-set.

Proof:

By Lemma 4.3.1, it is sufficient to prove the existence of a free ultrafilter on S

which is an idempotent of the semigroup βS. Suppose S contains no idempotent.

By Theorem 3.1.15, there exists an idempotent element p of the semigroup βS. By
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the condition, the ultrafilter p cannot be principal and consequently, p ∈ βS\S.

Now let S be a right cancellative semigroup. We know that βS\S is a closed

subsemigroup of the semigroup βS. Applying Theorem 3.1.15 to βS\S we find an

idempotent p ∈ βS\S.

�

From Hindman’s Theorem for semigroups it follows that for every partition N =

A1 ∪ . . . ∪ Ar there exists an FS-set Ai and an FP -set Aj. The following theorem,

Hindman’s Theorem for natural numbers, shows that i and j can be equal.

Theorem 4.3.3. (Hindman’s Theorem for natural numbers). For every partition of

the natural numbers N = K1 ∪ K2 ∪ . . . ∪ Kr there exists a subset Ki which is an

FS-set and an FP-set.

Proof:

Let J be the family of all ultrafilters on the set of natural numbers N such that all

of its elements form an FS-set. By Lemma 4.3.1, J contains all idempotents of the

semigroup β(N,+) and J 6= ∅. J is also a closed subset in the semigroup βN.

We show that J is a right ideal of the semigroup β(N, ·). Let p ∈ J and q ∈ βN.

We fix a random subset K ∈ pq, then we choose a subset Q ∈ q such that pQ̄ ⊆ K̄.

Now select a random element a ∈ Q ∈ q. Now pa ∈ K̄, and therefore there exists a

subset P ∈ p ∈ J such that Pa ⊆ K. Since p ∈ J , P is also an FS-set, and there

exists an infinite sequence 〈an〉 of distinct elements from P such that FS〈an〉 ⊆ P .

Also, Pa ⊆ K and this implies that K is an FS-set aswell. We stated that K ∈ pq
and can conclude that pq ∈ J , the family of all ultrafilters on N.

So we have that J is a right ideal and also a subsemigroup of β(N, ·) since J ⊆
βN. By Theorem 3.1.15, J contains an idempotent p of β(N, ·) and by definition,

J contains non-principal (free) ultrafilters. It therefore follows from the previous

lemma that every subset K ∈ p is an FP -set. So now every subset K is both a

FP -set and a FS-set. Now we choose a subset Ki of N = K1 ∪K2 ∪ . . . ∪Kr that

is an element of the ultrafilter p and we are done.

�
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4.4 van der Waerden’s theorem

Ramsey’s Theorem was preceeded by three other theorems all dealing with colour-

ing of the integers. van der Waerden’s Theorem was an unexpected result when

proved by the Dutch mathematician, Bartel Leendert van der Waerden, in 1927 in

the paper Beweis einer Baudetschen Vermutung [34]. The theorem states that if

the positive integers are partitioned into a finite number of subsets then at least one

of the subsets must contain arbitrarily long arithmetic progressions. Alternatively,

on the set of integers, it states that for any given colouring of the positive integers,

monochromatic arithmetic progressions cannot be avoided.

An arithmetic progression (AP) is a sequence in which each term (except the first)

differs from the previous one by a constant amount. An n-term AP is of the form

a, a + d, a + 2d, . . . , a + (n − 1)d, where a ∈ Z and d ∈ Z+. Note that the exis-

tence of arbitrarily long arithmetic progressions does not imply that infinitely long

monochromatic arithmetic progressions exist, only that for a finite number k we can

find monochromatic arithmetic progressions of length k. Arithmetic progressions

provide us with a very well organised structure.

Let S be the Tychonoff product of r copies of the semigroup β(N,+) where r is a

natural number. We represent the elements of S as vectors, i.e.: ~p = (p1, . . . , pr).

Note that S is a compact left topological semigroup with respect to the addition of

vectors. Let

E∗ = {(a, a+ d, . . . , a+ (r − 1)d) : a ∈ N, d ∈ N ∪ 0},
I∗ = {(a, a+ d, . . . , a+ (r − 1)d) : a ∈ N, d ∈ N}.

Let E and I be the closures in the semigroup S of the subsets E∗ and I∗ respectively.

Lemma 4.4.1. E is a subsemigroup of S and I is an ideal of the semigroup E.

Proof:

Let ~p = (p1, . . . , pr) and ~q = (q1, . . . , qr) where ~p, ~q ∈ E. Take an arbitrary neigh-

bourhood of ~p + ~q, say V1 × . . . × Vr. Using the continuity of the addition with

respect to the second argument, we can choose a neighbourhood U1 × . . .× Ur of ~q

such that

~p+ (U1 × . . .× Ur) ⊆ V1 × . . .× Vr.
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Now choose a ∈ N, d ∈ N ∪ {0}(d ∈ N if q ∈ I) such that

(a, a+ d, . . . , a+ (r − 1)d) = ~x where ~x ∈ U1 × . . .× Ur.

Since ~p + ~x ∈ V1 × . . . × Vr and a, a + d, . . . , a + (r − 1)d ∈ N , there exists a

neighbourhood W1 × . . .×Wr of ~p such that

(W1 × . . .×Wr) + ~x ⊆ V1 × . . .× Vr.

Again, choose b ∈ N, e ∈ N ∪ {0}(e ∈ N if p ∈ I) such that

(b, b+ e, . . . , b+ (r − 1)e) = ~y where ~y ∈ W1 × . . .×Wr.

Then ~y + ~x ∈ V1 × . . .× Vr. Now

~y + ~x = (a+ b, a+ b+ d+ e, . . . , a+ b+ (r − 1)(d+ e)).

Therefore, ~y + ~x ∈ E∗ and if either ~p ∈ I or ~q ∈ I, then we have ~y + ~x ∈ I∗.

�

Lemma 4.4.2. If p ∈ βN and ~p = (p, . . . , p) then ~p ∈ E.

Proof:

Let ~p have the arbitrary neighbourhood U1 × . . . × Ur. U = U1 ∩ . . . ∩ Ur is a

neighbourhood of the element p. Now choose an arbitrary element a ∈ N ∩ U and

we get (a, . . . , a) ∈ (U1 ∩ . . . ∩ Ur) ∩ E∗.

�

Lemma 4.4.3. If R be is a minimal right ideal of β(N,+) with p ∈ R and ~p =

(p, . . . , p), then ~p ∈ I.

Proof:

By Theorem 3.1.16 there exists a minimal right ideal, say F , in the right ideal ~p+E

of the semigroup E. Again, by Theorem 3.1.16, F is a closed subsemigroup of E

and contains an idempotent ~q ∈ F . Since ~q ∈ ~p + E, we can say that ~q = ~p + ~r for

some element ~r ∈ E.

Let ~q = (q1, . . . , qr) and ~r = (r1, . . . , rr). Then qi = p + ri ∈ p + βN. Since R is a

minimal right ideal of βN and p ∈ R, we get
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R = p+ βN = qi + βN.

Now choose an element ti ∈ βN such that qi + ti = p. Then qi + qi + ti = qi + ti = p.

Consequently, ~q + ~p = ~p and ~p ∈ F .

We now need to show that F ⊆ I. Since FI ⊆ F and FI ⊆ I, we have FI ⊆ F ∩ I.

Consequently, F ∩ I 6= ∅ and since I is an ideal and F a right ideal, we see that

F ∩ I is a right ideal of the semigroup E and by minimality of F , F ⊆ I.

�

Theorem 4.4.4. If R is a minimal right ideal of β(N,+) where p ∈ R, then every

subset A ∈ p contains arbitrarily long arithmetic progressions.

Proof:

Fix a natural number, say r and consider the element ~p = (p, . . . , p) and its neigh-

bourhood Ā× . . .× Ā. By the Lemma 4.4.3 there exists x ∈ I∗∩ (Ā× . . .× Ā). Then

~x = (a, a+ d, . . . , a+ (r− 1)d) where a, d ∈ N, while (a, a+ d, . . . , a+ (r− 1)d) ∈ A.

�

Theorem 4.4.5. (Infinite van der Waerden’s Theorem). If the set of natural num-

bers is partitioned into a finite number of subsets then at least one of the subsets

contains arbitrarily long arithmetic progressions.

Proof:

By Theorem 3.1.16, the semigroup βN contains minimal right ideals. Suppose one

of them is R. Select an ultrafilter p ∈ R and a subset of the partition being an

element of p. Apply Theorem 4.4.4 and we are done.

�

Theorem 4.4.6. (Finite van der Waerden’s Theorem). For all k, r ∈ N there exists

a unique number, known as the van der Waerden number w = w(r, k), satisfying the

condition: if n ≥ w and {1, . . . , n} = {A1, . . . , Ar} then the subset Ai contains an

arithmetic progression of length k.
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The finite version of van der Waerden’s Theorem can be explained in terms of colour-

ings. There exists a least positive integer, known as the van der Waerden number,

w = w(r, k), such that for every r-colouring of [1, n] there is a monochromatic arith-

metic progression of length k.

Proof:

Consider the family U of all k-subsets of N that are arithmetic progressions. By the

Infinite version of van der Waerden’s Theorem U is r-regular with respect to N. By

the Compactness Theorem for partitions, Theorem 2.2.5, U is r-regular with respect

to a finite subset Y ⊂ N. The required number w = w(r, k) can be determined by

the condition Y ⊆ {1, . . . , w(r, k)}.

�

Van der Waerden numbers are notoriously difficult to calculate. Let us prove

the example of w(2, 3). This is equivalent to saying that every two colouring of

[1, w(2, 3) = n] yields a monochromatic arithmetic progression of length three. We

must find w(2, 3) which is proved by elimination until the desired property is satis-

fied.

Case 1: Lower bound Prove w ≥ 9. We must show that a two colouring of the

interval [1, 8] yields an instance where there is no monochromatic three term AP.

This is easily illustrated as follows: colour 2,3,6,7 red and 1,4,5,8 blue. This avoids

any three term monochromatic AP. We could alternatively coloured 2,3,6 red and

1,4,5,7,8 blue still providing no monochromatic three term AP. Of course, we could

of coloured 1,2,3,4 red and 5,6,7,8 blue having monochromatic three term AP for

both colours. These are all wrong since a lower bound states that we only need one

instance where there is no monochromatic three term AP for a number to be a lower

bound. We therefore have w ≥ 9.

Case 2: Upper bound Prove w ≤ 9. We must show that every two colouring

of the interval [1, 9] allows monochromatic three term AP’s. Let us prove this by

contradiction. Assume there exists a two colouring of [1, 9] with no monochromatic

three term AP. Let us find this colouring. Consider the integers 4 and 6. Can they

both be coloured red? If 4 and 6 are coloured red then 2 must be blue since 2,4,6

cannot be monochromatic. 5 and 8 must also be blue since 4,5,6 and 4,6,8 cannot

41



be monochromatic. But now 2,5,8 are all blue, a monochromatic three term AP.

Therefore 4 and 6 must be different colours. Similarly neither 5 and 7 nor 3 and 5

cannot have the same colour.

Assume the colour of 3 is red. We then only have two options for the colourings of

3,4,5,6,7 namely X1 = red,blue,blue,red,red or X2 = red,red,blue,blue,red. If X1 is

the colouring of 3,4,5,6,7 then 8 must be blue due to 6,7,8 and 9 must be blue due

to 3,6,9. 1 must be red due to 1,5,9 and hence 2 must be blue due to 1,2,3. But now

2,5,8 are blue, an unavoidable monochromatic three term AP and a contradiction.

If X2 is the colouring of 3,4,5,6,7 then 2 must be blue due to 2,3,4 and 8 must be

red due to 2,5,8. 9 must be blue due to 7,8,9 and hence 1 must be red due to 1,5,9.

But now 1,4,7 are red, an unavoidable monochromatic three term AP and a contra-

diction. Therefore, every two colouring of [1, 9] yields a three term monochromatic

AP and we have w ≤ 9.

So w ≥ 9 and w ≤ 9. Therefore w(2, 3) = 9, the least positive integer that enables

us to have a monochromatic three term arithmetic progression using two colours.

Besides this example, other van der Waerden numbers known are w(3, 3) = 27,

w(4, 3) = 76, w(2, 4) = 35, w(2, 5) = 178 and w(2, 6) = 1132. Trivially, w(r, 1) = 1,

w(r, 2) = r + 1 and w(1, k) = k.

We use the notation a ↑ b for ab with evaluation proceeding from the right, i.e.:

a ↑ b ↑ c = a ↑ (b ↑ c). General upper bounds for w(r, k) are:

1. For k ≥ 2 and r = 2 [10],

w(2, k) ≤ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ (k + 9).

2. For k = 3 and r ≥ 5 [13],

w(r, 3) <

(
r

4

)3r

.
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Chapter 5

Compact groups

A subset C of P is called a chain if a, b ∈ C implies either a ≤ b or b ≤ a. The

element u ∈ P is an upper bound for C if c ≤ u for all c ∈ C, and P is called

inductive if every chain in P has an upper bound in P [9].

In the case of multiplicative groups we abbreviate a ∗ b to ab and e to 1 and in the

case of additive groups a ∗ b to a + b and e to 0. We will use additive notation for

our groups. Abelian groups are commutative groups, i.e.: a + b = b + a ∀ a, b ∈ A.

A group A is divisible if there is x ∈ A such that nx = a for all a ∈ A and n ∈ N.

Examples of divisible groups are the sets of real and rational numbers. A group is

never empty since it contains a zero.

The order of group A is denoted |A| and is the number of elements in a group. The

order of an element a ∈ A is the least positive integer n such that na = 1. A subset

B of A is a subgroup, denoted B 5 A, if and only if a, b ∈ B implies a + b ∈ B

and a ∈ B implies −a ∈ B. A subgroup of A always contains the zero of A. By

Lagrange’s theorem, |B| is a divisor of |A|. Trivial subgroups are A and {0} while

all other subgroups are called proper subgroups.

A group A is a torsion group if every element of A is of finite order and torsion free

if every element except 0 are of infinite order. A group A is a cyclic group if the

group is generated by a single element, say a. A group A is a primary group if the

orders of its elements are powers of a fixed prime p.

Results in Chapter 5 can be found in [9], [16], [28] and [35]. We now introduce
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a normal subgroup. These are subgroups that are invariant under conjugation by

members of the group.

Definition 5.0.7. A subgroup S of G is a normal subgroup of G, denoted S�G, if

aSa−1=S for all a ∈ G (S �G↔ ∀ s ∈ S, a ∈ G, aSa−1 ∈ S).

Examples of normal subgroups are: a center of a group, the subgroup consisting

of only the identity element (trivial subgroup) and the subgroup consisting of the

entire group.

If B 5 A and a ∈ A, the set a + B = {a + b | b ∈ B} is called a left coset of

A modulo B while B + a = {b + a | b ∈ B} is called a right coset of A modulo B.

Let us examine an example in order to identify the properties of cosets. Take the

multiplication table for the known group G = S3. The six elements of S3 may be

denoted by {e, b, b2, a, ab, ab2} where

e =

(
1 2 3

1 2 3

)
,

b =

(
1 2 3

3 1 2

)
= (132),

b2 =

(
1 2 3

2 3 1

)
= (123),

a =

(
1 2 3

2 1 3

)
= (12),

ab =

(
1 2 3

3 2 1

)
= (13),

ab2 =

(
1 2 3

1 3 2

)
= (23).
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We can compute that e = a2 = b3 and ba = ab2. For example ba := b ◦ a = (12)→
(132) which is equivalent to (23) = ab2. From these relations we can complete the

multiplication table of S3:

◦ e b b2 a ab ab2

e e b b2 a ab ab2

b b b2 e ab2 a b

b2 b2 e b ab ab2 a

a a ab ab2 e b b2

ab ab ab2 a b2 e b

ab2 ab2 a ab b b2 e

If B = 〈a〉 = {1, a}, then the right cosets of H in S3 are:

B = {1, a}, Bb = {b, ab}, Bb2 = {b2, ab2},

and the left cosets are:

B = {1, a}, bB = {b, ba} = {b, ab2}, b2B = {b2, ab}.

From this example we can conclude that:

1. all elements of S3 are contained in both the right and left cosets;

2. any two right (or left) cosets are either equal or disjoint;

3. the number of right cosets equals the number of left cosets;

4. right cosets are different from left cosets.

The index, denoted |A : B|, is the number of left (or right) cosets of B in A. The

cosets of A mod B form a group A/B known as a quotient or factor group. Normal

subgroups can be used to construct quotient groups from a given group. The zero

element of A/B is B and the inverse of a coset C is −C. A/B is a proper quotient

group of A if B 6= 0.
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A map α : A → B is a homomorphism (structure preserving) of A onto B if it

preserves addition, i.e.: α(a1 + a2) = αa1 + αa2 for all a1, a2 ∈ A. Every ho-

momorphism gives rise to two subgroups, namely the kernel and the image. The

kernel of α is the set Ker(α) = {a ∈ A | α(a) = 0} while the image of α is the set

Im(α) = {b ∈ B | α(a) = b for some a ∈ A}.

Proof that Ker(α) 5 A:

We know that Ker(f) is nonempty since it contains 0.

If α(a) = 0, then α(a−1) = α(a)−1 = 0.

If α(a) = 0 = α(b), then α(ab) = α(a) + α(b) = 0 + 0 = 0.

So Ker(α) 5 A.

Proof that Im(α) 5 A:

If α(a) ∈ A, then a ∈ A and so a−1 ∈ A. Since G is a group, there exists the identity

element eA ∈ A and α(eA) = eB. Now α(a−1) ∈ α(A) and α(a)α(a−1)=α(aa−1)=α(eA) =

eB. So a ∈ Im(α) implies a−1 ∈ Im(α).

If α(a), α(b) ∈ α(A), then α(a)α(b) = α(ab) ∈ α(A) since a, b ∈ G → ab ∈ A. So

a, b ∈ Im(α) implies ab ∈ Im(α).

�

If Im(α) = B, α is said to be surjective and we say α is an epimorphism. If

Ker(α) = 0, α is said to be injective and we say α is a monomorphism. An au-

tomorphism is an isomorphism from an object to itself. If both Ker(α) = 0 and

Im(α) = B, then α is one-to-one between A and B (i.e.: bijective), and we call α an

isomorphism between A and B. Two groups are isomorphic (structurally identical),

denoted A ∼= B, if there is an isomorphism α : A → B. In this case the inverse

mapping α−1: B → A exists and is also an isomorphism.

The Kernel and Image are useful to describe the relationship between quotient

groups, homomorphisms and subgroups. The following theorem says that there

is no significant difference between a quotient group and a homomorphic image.
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Theorem 5.0.8. (First Isomorphism Theorem). Let α : A → B be a homomor-

phism with Ker(α) = K. Then K is a normal subgroup of G and G/K ∼= Im(α).

Proof:

We know that K is a subgroup of G. To see that K is a normal subgroup, we must

show aKa−1 ⊂ K for every a ∈ A.

α(aKa−1) = α(a) α(K) α(a)−1 α is a homomorphism

= α(a) 1H α(a)−1 definition of K

= 1H

Hence aKa−1 is in K. Therefore K is a normal subgroup of G and G/K is well

defined. To prove the theorem we will define a map from G/K to the image of α

and show that it is a function, a homomorphism and an isomorphism.

Let θ : G/K → Im(α) be a map that sends the coset aK to α(a). Since θ is defined

on representatives we need to show that it is well defined. Let a1 and a2 be elements

of G that belong to the same coset. Then a−1
1 a2 is an element of K and α(a−1

1 a2) = 1

since K is the kernel of G. The rules of homomorphism show that α(a1)
−1α(a2) = 1

which is equivalent to α(a1) = α(a2) which implies θ(a1K) = θ(a2K). We now show

that θ is a homomorphism,

θ(a1K · a2K) = θ(a1a2K)

= α(a1a2K)

= α(a1)α(a2)

= θ(a1K)θ(a2K).

We now show that θ is an isomorphism. The kernel of θ consists of all cosets aK

in G/K such that α(a) = 1. These are exactly the elements a that belong to K

so only the coset K is in the kernel of θ. This implies that θ is an injection. Let

c be an element of Im(α) and a is pre-image. Then θ(aK) = α(a) and θ(aK) = c.

Therefore θ is surjective. So θ is an isomorphism and the theorem is proved.

�
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5.1 Direct sums

Direct sums allow us decompose complicated groups into simpler individual parts.

If a group can be broken down into these simpler parts, the group can be studied by

investigating each component of the direct sum. We can also construct new groups

from the direct sums of known groups. Almost all structure theorems on Abelian

groups involve decomposition.

Definition 5.1.1. Let Bi be a family of subgroups of A satisfying:

1.
∑

Bi = A;

2. Bi ∩
∑
j 6=i

Bj = 0 for every i ∈ I where I = {1, . . . , n}.

Then A is said to be the direct sum of its subgroups Bi, denoted:

A =
⊕
i∈I

Bi.

Each Bi is referred to as a direct summand of A. Every a ∈ A can be written in

the unique form a = bi1 + . . . + bik with bij 6= 0 belonging to different components

Bij(j = 1, . . . , k). The maps

π := a 7→ b and θ : a 7→ c

are epimorphisms (Im(α) = B and Im(α) = C). Since πb = b, θc = c, πc = 0, θb =

0, πa + θa = a and πb + θb = b, the endomorphisms (a homomorphism into itself)

π, θ of A satisfy

π2 = π, θ2 = θ, θπ = πθ = 0, π + θ = 1A. (5.1)

We know that each Bi is referred to as a direct summand of A. If there is a

subgroup C of A such that A = B⊕C then C is a complementary direct summand

or a complement of B in A. Some properties of direct summands are:

1. If A = B ⊕ C, then C ∼= A/B. Thus the complement of B in A is unique up

to isomorphism (it possesses a trivial automorphism group);

2. If A = B⊕C and if D is a subgroup of A containing B, then D = B⊕(D∩C);
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3. If A = B ⊕ C and a = b + c with a ∈ A, b ∈ B, c ∈ C, then o(a) is the least

common multiple of o(b) and o(c);

4. If A = ⊕iBi and if for every i, Ci 5 Bi then
∑

Ci = ⊕Ci. This is a proper

subgroup if A if Ci < Bi for at least one i;

5. If A = ⊕iBi, where each Bi is a direct sum, Bi = ⊕jBij, then A = ⊕i ⊕j Bij,

called a refinement of the first decomposition of A;

6. If A = ⊕i ⊕j Bij, then A = ⊕iBi with Bi = ⊕jBij.

Two direct decompositions of A, A = ⊕iBi and A = ⊕jCj are called isomorphic

if we can find a one-to-one correspondence between Bi and Cj such that the corre-

sponding components are isomorphic.

Given the groups B and C, we would like to have a group A that is the direct sum

of two of its subgroups, B′ and C ′, such that B′ ∼= B and C ′ ∼= C. The set of all

pairs of b ∈ B and c ∈ C forms a group A under the rules:

1. (b1, c1) = (b2, c2) if and only if b1 = b2 and c1 = c2;

2. (b1, c1) + (b2, c2) = (b1 + b2, c1 + c2).

The correspondences b 7→ (b, 0) and c 7→ (c, 0) are isomorphisms of B,C with sub-

groups B′, C ′ of A. We have A = B′⊕C ′ and if we think of B,C as being identified

with B′, C ′ under the above isomorphisms, then A = B ⊕ C and we call A the

external direct sum of B and C.

An important application of direct sums is the following theorem.

Theorem 5.1.2. A torsion group A is the direct sum of primary groups Ap belonging

to different primes p. The Ap are uniquely determined by A.

Proof: Let Ap consist of all a ∈ A whose order is a power of the prime p. In view

of 0 ∈ Ap, Ap is nonempty. If a, b ∈ Ap, i.e.: pma = pnb = 0 for integers m,n ≥ 0,

then pmax(m,n)(a − b) = 0, a − b ∈ Ap, and Ap is a subgroup. Every element in

Ap1+. . . +Apk is cancelled by a product of powers of p1, . . . , pk and so

Ap ∩ (Ap1 + . . .+ Apk) = 0 when p 6= p1, . . . , pk.
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Therefore the Ap generate by their direct sum ⊕pAp in A. To show that every a ∈ A
lies in this direct sum, let o(a) = m = pr11 . . . prnn with different primes pi. The

numbers mi = mp−rii where i = 1, . . . , n are relatively prime (gcd=1), and hence

there are integers s1, . . . , sn such that s1m1+. . . snmn = 1. Thus a = s1m1a+snmna

where mia ∈ Api . This is due to prii mia = ma = 0 and so a ∈ Ap1 + . . . + Apn

≤ ⊕pAp. If A = ⊕pBp is any direct decomposition of A into p-groups Bp with

different primes p, then by definition of the Ap, we have Bp ≤ Ap for all p. Since the

Bp and the Ap generate direct sums which are both equal to A, we naturally have

Bp = Ap for every p.

�

Theorem 5.1.3. An elementary p-group is the direct sum of cyclic groups of order

p.

Proof: We must show that an elementary p-group A is in the natural way a vector

space over the field Fp of p elements. pa = 0 for a ∈ A and so for n,m ∈ Z, we

have na = ma if n ≡ m mod p ((n,m) represent the same element of Fp). It is now

fairly straightforward to check the vector space axioms. Therefore, A as a vector

space over a field Fp has a basis, say {ai}i∈I . It follows that A = ⊕i∈I 〈ai〉.

�

We have called a subgroup B of A a direct summand of A if A = B ⊕ C for some

C 5 A. For the projections π : A→ B and θ : B → C, the projections of (5.1) hold.

Our attention is now turned to B. Note that B alone does not define π uniquely

unless C is known.

Lemma 5.1.4. If there is a projection π of A onto its subgroup B, then B is a direct

summand of A.

Proof: The map θ : 1A − π is an endomorphism of A, satisfying (5.1). Therefore

we have A = B ⊕ θA where θA is the kernel of π.

�

Lemma 5.1.5. If the quotient group A/B is a direct sum, A/B = ⊕i(Ai/B), and

if B is the direct summand of every Ai = B ⊕Ci, then B is a direct summand of A,

A = B ⊕ (⊕iCi) (Kaplansky).
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Proof: B and Ci generate A. Assume that we have b+c1+. . .+cn = 0 for some b ∈ B
and cj ∈ Cj where j = 1, . . . , n. With mod B, we obtain (c1+B)+. . .+(cn+B) = B.

Since cj + B ∈ Aj/B, c1 + B = . . . = cn + B = B. Thus cj ∈ B for every j, and

so cj ∈ B ∩ Cj = 0 giving b = 0. Consequently, B and the Ci generate their direct

sum.

�

If a subgroup B of a group A is shown to be a direct summand of A, then generally

it is not possible to find directly a projection A → B. One would then try to find

the complement D to B among the subgroups G of A satisfying G ∩ B = 0. A

B-high subgroup is a subgroup H of A satisfying

H ∩B = 0, and if H < H
′
5 A⇒ H

′ ∩B 6= 0.

H is maximal with respect to the property of being disjoint from B and we can say

that H + B = H ⊕ B. The existence of these B-high subgroups is guaranteed by

the Kuratowski-Zorn Lemma. A subgroup D of A is an absolute direct summand

of A if for every D-high subgroup H of A we have A = D ⊕H. We now prove two

lemmas which are essential for later on.

Lemma 5.1.6. If B is a subgroup of A and C is a B-high subgroup of A, then

a ∈ A, pa ∈ C implies a ∈ B ⊕ C ≤ A where p is a prime.

Proof: There are two cases: when a ∈ C and a /∈ C. When a ∈ C there is nothing

to be proved. When a /∈ C, then 〈C, a〉 contains, owing to the choice of C, an

element b ∈ B with b 6= 0 i.e.: b = c + ka for some c ∈ C and k ∈ Z. (k, p) = 1

because of pa ∈ C and B ∩ C = 0. Therefore, rk + sp = 1 for r, s ∈ Z and so

a = r(ka) + s(pa) = r(b− c) + s(pa) ∈ B ⊕ C.

�
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Lemma 5.1.7. Let A, B, C be as in the previous lemma. Then A = B ⊕ C if and

only if pa = b + c implies pb′ = b for some b′ ∈ B and where a ∈ A, b ∈ B, c ∈ C
(G. Gratzer).

Proof: If A = B ⊕ C and a′ = b′ + c′ where b′ ∈ B and c inC, then pa =

pb′ + pc′ = b + c which implies pb′ = b. Conversely, if pa = b + c implies pb′ = b

for some b′ ∈ B, then a− b′ satisfies the hypotheses of the previous lemma, and so

a− b′ ∈ B ⊕ C, a ∈ B ⊕ C. This demonstrates that the quotient group A/(B ⊕ C)

contains no elements of prime order, and is torsion-free. But if x ∈ A is arbitrary,

not in B ⊕ C, then 〈C, x〉 intersects B in a nonzero element b′′ = c′′ + lx where

c′′ ∈ C and an integer l. l 6= 0 since B ∩ C = 0 giving lx = b′′ − c′′ ∈ B ⊕ C and

A/(B ⊕ C) is a torsion group and we can conclude that A = B ⊕ C.

�

5.1.1 Direct sums of cyclic groups

An important type of group are cyclic groups. They are Abelian groups and are

generated by a single element, such as a, called the generator, and all other elements

are multiples of a when using additive notation. A cyclic group of the element a is

denoted 〈a〉 and represented by 〈a〉 = {na | n ∈ Z}.

If A = 〈a〉 is an infinite cyclic group, then it is isomorphic to the additive group Z of

rational integers 0,±1,±2, . . .. Therefore, all infinite cyclic groups are isomorphic

and we denote them using Z. If A = 〈a〉 is a finite cyclic group of order m, it

consists of the elements 0, a, 2a, . . . , (m − 1)a. Since ma = 0, A is isomorphic to

the additive group Z(m), the rational integers mod m. Therefore, all finite cyclic

groups of the same order m are thus isomorphic and we denote them Z(m).

Let A = 〈a〉 be a cyclic group of order m. Every ka with (k,m) = 1 generates

A. If n > 0 is an integer with n(ka) = 0, then m|nk and hence m|n. This means

o(ka) = m, and 〈ka〉= 〈a〉. Conversely, if ka generates 〈a〉, then o(ka) = m and

if we say (k,m) = d, then md−1ka = kd−1ma = 0 from o(ka) ≤ md−1 and hence

d = 1. Therefore 〈ka〉 = 〈a〉 if and only if (k,m) = 1.
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Theorem 5.1.8. (Fundamental Theorem of Cyclic groups). Subgroups of cyclic groups

are cyclic.

Proof:

Let B be a nonzero subgroup of the cyclic group 〈a〉 and n be the smallest positive

integer with na ∈ B. Now all the multiples of na belong to B, and if sa ∈ B with

an integer s = qn + r (0 ≤ r < n), then ra = sa − q(na) ∈ B implies r = 0 and

hence B = 〈na〉.

If a is of finite order m, then n|m. Now, if u, v are integers such that mu + nv =

(m,n), then (m,n)a = mua+nva = v(na) ∈ B and hence n ≤ (m,n). For alternate

divisors n ≥ 0 of m, the subgroups 〈na〉 are different, and so Z(m) has as many

subgroups as m has divisors. Of two subgroups of Z(m), one contains the other if

and only if the corresponding divisor of m divides the other. If a is of infinite order,

then so is na, and every nonzero subgroup of Z is an infinite cyclic group. 〈na〉 is

of index n in 〈a〉, and it is the only subgroup of index n.

Let A = 〈a〉 and B = 〈na〉, with n ≥ 0 a divisor of the order of a if this is finite.

Then the quotient group A/B may be generated by the coset a+B which is evidently

of order n, thus A/B ∼= Z(n). Consequently, all proper quotient groups of a cyclic

group are finite cyclic groups.

�

Lemma 5.1.9. Let G be a cyclic group of order n. For each divisor d of G, there

exists a unique subgroup G of order d.

Proof:

If a is a generator of G, then 〈an/d〉 is a subgroup of order d. Assume 〈b〉 is a

subgroup of order d. Now bd = 1 and b = am for some m. Hence amd = 1,md = nk

for some k, and b = am = (an/d)k. Therefore 〈b〉 ⊂ 〈an/d〉, and the inclusion is an

equality because both subgroups have order d.

�
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Definition 5.1.10. The Euler ϕ-function is defined as follows: ϕ(1) = 1; if h > 1,

then ϕ(h) is the number of integers k such that 1 ≤ k < h and (k, h) = 1.

Theorem 5.1.11. If n is a positive integer, then n =
∑

d|n ϕ(d), where the sum is

over all divisors d of n (1 ≤ d ≤ n).

Proof:

If C is a cyclic subgroup of a group G, let g(C) denote the set of its generators. It

is clear that G = ∪ g(C) where C varies over all the cyclic subgroups of G. When

G is cyclic of order n, we have just seen that there is a unique cyclic subgroup Cd

of order d for every divisor d of n. Therefore, n = |G| =
∑

d|n |g(Cd)|.

�

We can now characterize finite cyclic groups.

Theorem 5.1.12. A group G or order n is cyclic if and only if, for each divisor d

of n, there is at most one cyclic subgroup of G of order d.

Proof:

If G is cyclic, the result is Lemma 5.1.9. Conversely, since G = ∪ g(C), where

C ranges over all the cyclic subgroups of G, whence n = |G| =
∑
|g(C)|. By

hypothesis, for each divisor d of n, there is at most one such C of order d (and

|g(C)| = ϕ(d)). Hence
∑
|g(C)| ≤

∑
d|n ϕ(d) = n by Theorem 5.1.11. We conclude

that G must have exactly one cyclic subgroup of order d for every divisor d of n. In

particular, G has a cyclic subgroup of order d = n and G is cyclic.

�

A finitely generated Abelian group is the direct sum of cyclic groups. A free Abelian

group is the direct sum of infinite cyclic groups. If the cyclic groups are generated

by xi (i ∈ I = {1, . . . , n}), then the free group, denoted F , is: F = ⊕i∈I 〈xi〉.

F consists of all finite linear combinations

g = n1xi1 + . . .+ nkxik

with different xi1 , . . . , xik where nj are integers 6= 0 and k is a nonnegative integer.

Equivalently, a free Abelian group has elements that can be written in only a single

way as a finite linear combination of elements of a basis. The rank is the cardinality
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of a basis. Therefore, if m is the cardinal of F , we say F is of rank m.

We could also define F by starting with the nonempty set X = {xi}i∈I called a free

set of generators, and then declaring F as the collection of all formal expressions of

the form g = n1xi1 + . . . + nkxik . F is then called the free group on the set X. F ,

up to isomorphism, is uniquely determined by the cardinal number of the index set

I. Therefore, we write Fm for a free group with m generators.

To select a basis in a direct sum of cyclic groups we require the concepts of linear

independence and rank. A system {a1, . . . , ak} of nonzero elements of a group A is

linearly independent if

n1a1 + . . .+ nkak = 0 ni ∈ Z.

This, in effect, means that all coefficients ni are equal to zero (the sum is finite) if

o(ai) =∞ and o(ai)|ni if o(ai) is finite. Any two maximal linearly independent sets

in A have identical cardinality, known as the rank of A. For Abelian groups, the

rank is defined using modules over Z. A system is dependent if it is not independent.

An element of A is torsion if its order is finite and the set of all torsion elements is a

subgroup denoted T (A). The quotient group A/T (A) is the unique maximal torsion

free quotient of A and it has the same rank as A. Independence is a property of

finite character since an infinite system is independent if every finite subset is inde-

pendent. An independent system cannot contain equal elements and is therefore a

set.

An infinite system L = {ai}i∈I of elements A is independent if every finite subsys-

tem of L is independent. Independence is a therefore a finite characteristic. An

independent system can’t contain equal elements and hence it is a set.

Proposition 5.1.13. The free groups Fm and Fn are isomorphic if and only if

m = n for cardinals m,n.

Proof:

Let p be a prime and F a free group with m free generators xi. Since every element

g ∈ F has the unique form g = n1xi1 + . . . + nkxik , it is evident that g ∈ pF is
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quivalent to the simultaneous fulfillment of the divisibility relations p|n1, . . . , p|nk.
Hence F |pF as a vector space over the prime field of characteristic p, has a basis

{xi + pF} with dimension m. The assertion follows.

�

There is a one-to-one correspondence between cardinal numbers and nonisomorphic

free groups. A basic property of free groups is as follows.

Theorem 5.1.14. A set X = {xi}i∈I of generators of a free group F is a free set of

generators if and only if every mapping φ of X into a group A can be extended to a

unique homomorphism ψ : F → A.

Proof:

Let X be a free set of generators of F . If φ : xi 7→ ai is a mapping of X into a group

A, then let us define ψ : F → A as

ψ(n1xi1 + . . .+ nkxik) = n1ai1 + . . .+ nkaik .

The uniqueness of g = n1xi1 + . . . + nkxik guarantees that ψ is well defined and

it preserves addition. Conversely, assume that the subset X in F has the stated

property. Then let G be a free group with a free set {yi}i∈I of generators, where I

is the same as for X. By hypothesis, φ : xi 7→ yi can be lifted to a homomorphism

ψ : F → G, which cannot be anything else bar the map ψ : n1xi1 + . . . + nkxik 7→
n1yi1 + . . .+ nkyik . It is evident that ψ must be a homomorphism.

�

Theorem 5.1.15. If B is a subgroup of A such that A/B is free, then B is a direct

summand of A.

Proof:

By Lemma 5.1.5, it suffices to merely prove this for the case where A/B is an

infinite cyclic group, say A/B = 〈a′〉. Select an a ∈ a′ in A. Then the cosets

na′ mod B where n = 0,±1,±2, . . . are represented by the elements na of 〈a〉.
Hence A = B ⊕ 〈a〉.

�
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The following theorem provides complete information about the structure of sub-

groups of free groups.

Theorem 5.1.16. A subgroup of a free group is free.

Proof:

Let F = ⊕i∈I 〈ai〉 be a free group and suppose that the index set I is the set of

ordinals < τ and well ordered in some way. For σ 5 τ , we define Fσ = ⊕ρ<σ〈aρ〉.
If G is a subgroup of F , then let Gσ = G ∩ Fσ. Now Gσ = Gσ+1 ∩Fσ, and so

Gσ+1/Gσ
∼= (Gσ+1 + Fσ)/Fσ.

The quotient group (Gσ+1 + Fσ)/Fσ is a subgroup of Fσ+1/Fσ ∼= 〈aσ〉. We have that

either Gσ+1 = Gσ or Gσ+1/Gσ is an infinite cyclic group. By the previous theorem,

we have Gσ+1 = Gσ ⊕ 〈bσ〉 for some b ∈ Gσ+1, which is zero if Gσ+1=Gσ. It follows

that the elements bσ generate the direct sum ⊕〈bσ〉. This direct sum must be G,

since G is the union of Gσ.

�

If A is finite, then a group G = 〈A〉 is called finitely generated. The following two

theorems describe finite groups.

Lemma 5.1.17. Let A be a primary group and assume that A contains an element

g of maximal order pk. Then 〈g〉 is a direct summand of A.

Proof:

Let B be a 〈g〉-high subgroup of A. We must show that A = 〈g〉 ⊕ B. We recall

Lemma 5.1.7 and show that pa = mg + b where a ∈ A, b ∈ B,m ∈ Z implying

p|m. Due to the maximality of the order of 〈g〉, we have pk−1mg+ pk−1b = pka = 0.

Hence pk−1mg = 0 and p divides m.

�

57



The following theorem is the first proper structure theorem in the history of group

theory.

Theorem 5.1.18. A finite group is the direct sum of a finite number of cyclic groups

of prime power orders (Frobenius and Stickelberger).

Proof:

Due to Theorem 5.1.2, we can immediately restrict ourselves to p-groups. If the set

A 6= 0 is a finite p-group, then we select an element a ∈ A of maximal order pk. By

the previous lemma, A = 〈a〉 ⊕B for some B < A. Since B is of smaller order than

A, a trivial induction completes the proof.

�

Theorem 5.1.19. A p-group A is a direct sum of cyclic groups if and only if A is the

union of an ascending chain of subgroups A1 5 A2 5 . . . 5 An 5 . . . ,
⋃∞
n=1An = A,

such that the heights of elements not equal to zero of An are less than a finite bound

kn (Kulikov).

Theorem 5.1.20. Subgroups of direct sums of cyclic groups are again direct sums

of cyclic groups (Kulikov).

Proof:

Let A be a direct sum of cyclic p-groups with B a subgroup of A. A is the union of

the ascending chain A1 5 . . . 5 An 5 . . . of its subgroups, where the height of An

are bounded by kn. B is the union of the ascending chain B1 5 . . . 5 Bn 5 . . . with

Bn = B ∩ An, where the height of Bn do not exceed kn. By the previous theorem,

B is the direct sum of cyclic groups. Therefore, the theorem holds for torsion groups.

Let A be a random direct sum of cyclic groups. If T is its torsion part, then B ∩ T
is the torsion part of the subgroup B of A. Now B/(B ∩ T ) ∼= (B + T )/T 5 A/T is

a free group. By Theorem 5.1.16, B/(B + T ) is free, and so Theorem 5.1.15 implies

B = (B ∩ T ) ⊕ C for some free subgroup C of B. B ∩ T is a direct sum of cyclic

p-groups and B is therefore a direct sum of cyclic groups.

�
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5.2 Semidirect product

A semidirect product is another way that a group can be put together from two

subgroups, one of which is normal.

Definition 5.2.1. A groupG is a semidirect product ofH byK, denotedG = HoK,

if G contains subgroups H and K such that:

1. H �G;

2. HK = G;

3. H ∩K = 1.

Semidirect products are similar to direct products (a direct product is when both

subgroups are normal). A note for Chapter 6: the Quarternion group is not a

semidirect product because all subgroups of the Quarternion group are normal. Un-

like direct products, semidirect products require a homomorphism from K to the

group of automorphisms of H to get back to G, φ : K → Aut(H).

The result of applying the automorphism φ(k) for k ∈ K to h ∈ H is denoted as φk.

φk is defined to be the automorphism of H given by the conjugation:

φk : H → H,φk(h) = khk−1

which gives a homomorphism.

Theorem 5.2.2. The map k 7→ φk is a homomorphism φ : K → Aut(H).

Proof:

We must show φk1φk2 = φk1k2 for any k1, k2 ∈ K. We need to show that the

φk1φk2(h) = φk1k2(h) for any h ∈ H.

LHS: φk1φk2(h) = φk1(k2hk
−1
2 ) = k1k2hk

−1
2 k−1

1 .

RHS: φk1k2(h) = k 1k2h(k1k2)
−1 = k1k2hk

−1
2 k−1

1 .

�

G = HK, so every g ∈ G can be written in the form hk for h ∈ H and k ∈ K.

Given any two elements hk, h′k′ ∈ G, we can write their product and the inverse of

hk in the same form.
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Theorem 5.2.3. If h, h′ ∈ H and k, k′ ∈ K then

hkh′k′ = h′′k′′ and (hk)−1 = φk−1(h−1)(k−1), where h′′ = hφk(h
′) and k′′ = kk′.

Proof:

hkh′k′ = hkh′(k−1k)k′ = h(kh′k−1)kk′ = hφk(h
′)kk′ = h′′kk′ = h′′k′′ and

(hk)−1 = k−1h−1 = k−1h−1kk−1 = φk−1(h−1)k−1.

�

If we had begun with H and K and a homomorphism φ : K → Aut(H) given by

k 7→ φk we can always find some semidirect product group.

Theorem 5.2.4. Given groups H and K and a homomorphism K → Aut(H) there

is a semidirect product group G. We can construct it as follows: The underlying set

of G is the set of pairs (h, k) where h ∈ H and k ∈ K. The multiplication on this

set is given by the rule

(h, k)(h′, k′) = (hφk(h
′), kk′),

the identity element is (1, 1) and inverse is given by

(h, k)−1 = (φk−1(h−1), k−1).

Proof:

It is easy to prove that G is a group by showing that multiplication is associative

and the identity and inverse laws hold. Since G is a group, we need to show that it

is the desired semidirect product of H and K.

We have the injective maps H → G and K → G given by h 7→ (h, 1) and k 7→ (1, k)

respectively. Both these maps are homomorphisms and allow us to think of H and

K as subgroups of G. H ∩K = {(1, 1)} and HK = G since (h, 1)(1, k) = (h, k).

We need to show that H is normal in G and the action of K on H by conjugation

in G is given by the original homomorphism φ. Both follow from:

(1, k)(h, 1)(1, k)−1 = (1, k)(h, 1)(1, k−1) = (φk(h), k)(1, k−1) = (φk(h), 1).

�
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5.3 Compact groups

Definition 5.3.1. 1. A topological group G is a group together with a topology

such that multiplication (x, y) 7→ xy : G×G→ G and inversion

x 7→ x−1 : G→ G are continuous functions.

2. A compact group is a topological group whose topology is compact Hausdorff.

3. A locally compact group is a topological group whose topology is a Hausdorff

space where the identity has a compact neighbourhood.

Note that if H is a subgroup of a topological group G, then H is also a topological

group with the induced topology.

Definition 5.3.2. A morphism of topological groups is a continuous function

f : G→ H between two topological groups that is also a group homomorphism. It

is called an isomorphism of topological groups, denoted G ∼= H, if it has an inverse

morphism of topological groups.

If G is a group and X a set, we say that G acts on X if there is a function (g, x) 7→
gx : G×X → X such that 1x = x and g(hx) = (gh)x. The act is transitive if Gx X

for all x ∈ X. Gx = {g ∈ G | gx = x} for all x ∈ X is a subgroup called the stability

subgroup of G at x. A subgroup H of G gives rise to the set G/H of cosets gH

where g ∈ G. G is transitive on G/H through (g, g
′
H) 7→ gg

′
H : G×G/H → G/H

and the stability group of G at H is H.

Definition 5.3.3. A topological group G acts on a topological space X if there is a

continuous function (g, x) 7→ gx : G×X → X which is a group action on X.

Definition 5.3.4. If H is a subgroup of a topological group G, then the set G/H of

cosets gH, where g ∈ G is a topological space with respect to the quotient topology,

is called the quotient space of G modulo H or the homogeneous space of G modulo

H. If N is a normal subgroup of G, then G/N with the quotient topology is called

the quotient group of G modulo N . The quotient group R/Z will be denoted as T.
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The following proposition shows invariant objects for the action of compact groups.

Proposition 5.3.5. If a compact group G acts on a topological space X and x is

a fixed point, that is Gx = {x}, then x has a basis of G-invariant neighbourhoods.

Specifically, if U is any neighbourhood of x, then the set V =
⋂
g∈G gU is a G-

invariant neighbourhood of x contained in U.

Proof:

Since all functions y 7→ hy : X → X, h ∈ G, are bijective and hG = G we find

hV = h
⋂
g∈G

gU

=
⋂
g∈G

hgU

=
⋂
g∈G

gU

= V.

Therefore, V is G-invariant. Also, V ⊆ U since 1 ∈ G and 1U = U .

We now suppose that V is not a neighbourhood of x ∈ X and derive a contradiction

which will complete the proof. We assume that U is open. For any subset W of X

we define

GW = {g ∈ G | gW 6= ∅}.

By our supposition that V is not a neighbourhood of x, for any neighbourhood W

of x we compute

∅ 6= W\V

= W\
⋂
g∈G

gU

=
⋃
g∈G

(W\gU).

So there is some g ∈ G with W\gU 6= ∅ and then g−1W\U 6= ∅. Therefore GW 6= ∅.
Let U denote the neighbourhood filter of x. Since W ⊆ W

′ ⇒ GW ⊆ G
′
W , the family

{GW | W ∈ U} is a filter basis on G. By the compactness of G, there is an element

g ∈
⋂
W∈U GW . Then, for all neighbourhoods N of 1 in G, we have gN

⋂
GW 6= ∅,
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that is, gNW\U 6= ∅.

By the continuity of the the action, given an arbitrary neighbourhood W0 of x, we

find N and W so that NW ⊆ W0. Hence gW0 6= ∅. Therefore, every neighbourhood

W0 of x meets the set X\g−1U . This last set is closed as U and hence g−1U is open.

Therefore x ∈ X\g−1U and so gx /∈ U . But x = gx since x is a fixed point. Thus

x /∈ U which is the required contradiction since U is a neighbourhood of x.

�

Corollary 5.3.6. If G is a compact group and U any neighbourhood of the identity,

then V =
⋂
g∈G gUg

−1 is a neighbourhood of the identity which is contained in U

and is invariant under all inner automorphisms.

Proof:

Since the group G acts on G through (g, x) 7→ gxg−1 and 1 is a fixed point for this

action, we can apply Proposition 5.3.5 and the Corollary is proved.

�

We can construct many compact groups using products.

Proposition 5.3.7. If {Gj | j ∈ J} is an arbitrary family of compact groups, then

the product G =
∏

j∈J Gj with the product topology is a compact group. Every closed

subgroup H of G is a compact group.

Proof:

We can observe that the product topology makes the cartesian product of any family

of topological groups into a topological group. Due to Tychonoff’s Theorem, the

product space of any family of compact spaces is compact and therefore G is a

compact group. We also already know that any closed subgroup H of G is a compact

group.

�

For two sets X and Y , the set of all functions f : X → Y will be denoted Y X .

Definition 5.3.8. If A is an Abelian group, then the group

Hom(A,T) ⊆ TA
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of all morphisms of Abelian groups into the underlying Abelian group of the circle

group given the induced group structure and topology of the product group TA, is

called the character group of A and is denoted Â. Its elements are called characters

of A.

For any Abelian group there is always a large supply of characters.

Proposition 5.3.9. The character group Â of any Abelian group A is a compact

Abelian group.

Proof:

By Proposition 5.3.7, the product TA is a compact Abelian group. For any pair

(a, b) ∈ A×A, the set M(a, b) = {X ∈ TA | X (a+ b) = X (a)+X (b)} is closed since

X 7→ X (c) : TA → T is continuous by the definition of the product topology. But

then Â =
⋂

(a,b)∈A×A

M(a, b) is closed in TA and therefore compact.

�

A topological space in which all components are singletons (sets with exactly one

element) is called totally disconnected. Discrete spaces are totally disconnected and

so are products of totally disconnected spaces.

Definition 5.3.10. Let X and Y be sets with F ⊆ Y X . We say that f seperates

the points of X if for any two different points x1 and x2 in X, there is an f ∈ F
such that f(x1) = f(x2).

We now define coverings and simple connectivity.

Definition 5.3.11. A function f : X → Y is called a covering (covering map) if

Y has an open cover {Uj | j ∈ J} such that for each j ∈ J there is a nonempty

discrete space Fj and a homeomorphism hj : Fj × Uj → f−1(Uj) such that the

following diagram commutes:

Fj × Uj
hj //

pr2

��

f−1(Uj)

f |f−1(Uj)

��
Uj

idUj
// Uj

Note that coverings are continuous, open and surjective.
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Definition 5.3.12. A topological space X is called simply connected if it is con-

nected and has the following universal property: For any covering map p : E → B be-

tween topological spaces, any point e0 ∈ E and any continuous function f : X → B

with p(e0) = f(x0) for some x0 ∈ X, there is a continuous map f̃ : X → E such

that p ◦ f̃ = f and f̃(x0) = e0. This can be represented diagrammatically as:

X
f̃ //

idx
��

E

p

��
X

f
// B
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5.4 Haar measure

The Haar measure was introduced by Alfréd Haar, a Hungarian mathematician, in

1933. He proved that there exists an invariant measure on any seperable compact

group. Results from Section 5.4 can be found in [29]. Let E be a topological vector

space. A topological vector space is a vector space E over K = R or K = C which

is a topological group with respect to addition and for which scalar mulitplication

is continuous, i.e.: (y, x) 7→ y · x : K × EE is continuous. Let G denote a compact

Hausdorff space.

The Haar measure is written as the number µ(f) or

∫
f dµ =

∫
G

f(g) dµ(g).

Definition 5.4.1. Let G denote a compact group. A measure µ is called invariant

if µg(f) = µ(f) for all g ∈ G and f ∈ E = (C,K). It is called a Haar measure if it

is invariant and positive, that is, µ(f) ≥ 0 for all f ≥ 0. µ is called normalized if

µ(1) = 1.

The following theorem is a crucial aspect of the Haar measure. The proof of it is

long and tedious.

Theorem 5.4.2. (Existence and Uniqueness Theorem of the Haar measure). For each

compact group G, there is a unique normalized Haar measure.

The first person to prove uniqueness of the Haar measure was John von Neumann

in 1934 while André Weil proved existence. Weil’s proof made use of the Axiom of

Choice in the form of Tychonoff’s Theorem. Before we prove the theorem (using

Tychonoff’s Theorem), let us introduce some necessary definitions.

Definition 5.4.3. Let X be a topological space, and let A ⊂ X. Then A is σ-

bounded if it is possible to find a sequence of compact sets {Kn}∞n=1 with the property

that A ⊂
⋃∞
n=1Kn.

Definition 5.4.4. A left Haar measure µ on a topological group G is a Radon

measure which is invariant under left translation, i.e. µ(gB) = µ(B) for all g ∈ G.

A right Haar measure µ on a topological group G is a Radon measure which is

invariant under right translation, i.e. µ(Bg) = µ(B) for all g ∈ G.
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A Radon measure is a measure on the σ-algebra of Borel sets of a Hausdorff topo-

logical space X that is locally finite and inner regular (measure of a set can be

approximated from within by compact subsets).

Definition 5.4.5. A content λ is a set function that acts on the set of compact

sets C that is finite, nonnegative, additive, subadditive and monotone. A content

induces an inner content and an outer measure. The inner content λ∗ is defined by

λ∗ = sup{λ(K) |K ∈ C, K ⊂ A}. Let O denote the set of open sets. The outer

measure µe is defined by µe(A) = inf{λ∗(O) |O ∈ O, A ⊂ O}.

Definition 5.4.6. If µe is an outer measure, then a set A is said to be µe-measurable

if for all sets B, µe = µe(A ∩B) + µe(A
c ∩B).

We now prove the existence and uniqueness of the Haar measure using the equivalent

form:

Theorem 5.4.7. On any locally compact group G, there exists a nonzero left Haar

measure µ, and this Haar measure is unique up to a positive multiplicative constant

of proportionality.

The proof relies on four lemmas.

Lemma 5.4.8. Let λ be a content, and let λ∗ and µe be the inner content and outer

measure, respectively, induced by λ. Then for all O ∈ O and for all K ∈ C, λ∗(O) =

µe(O) and µe(int(K)) ≤ λ(K) ≤ µe(K).

Proof:

For any O ∈ O, it is clear that µe(O) ≤ λ∗(O) since we can pick O as an open

superset of O in the definition of µe. Now if O
′ ∈ O with O ⊂ O

′
, then λ∗(O) ≤

λ∗(O
′
). Hence

λ∗(O) ≤ infO′ λ∗(O
′
) = µe(O).

Therefore λ∗(O) = µe(O).

Now if K ∈ C and O ∈ O with K ⊂ O, λ(K) ≤ λ∗(O). Thus

λ(K) ≤ infO λ∗(O) = µe(K).
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If K
′ ∈ C with K

′ ⊂ int(K), then λ(K
′
) ≤ λ(K), so

µe(int(K)) = λ∗(int(K))

= supK′ λ(K
′
)

≤ λ(K).

�

Lemma 5.4.9. Let λ be a content, and let µe be the outer measure induced by λ.

Then a σ-bounded set A is measurable with respect to µe if and only if for all O ∈ O,

µe(A ∩O) + µe(A
c ∩O) ≤ µe(O).

Proof:

Let λ∗ be the inner content induced by λ, let B be a σ-bounded set and let O ∈ O
satisfying B ⊂ O. Since

λ∗(O) = µe(O) ≥ µ(A ∩O) + µe(A
c ∩O)

≥ µ(A ∩B) + µe(A
c ∩B)

we have

µe(B) = infO λ∗(O) ≥ µ(A ∩B) + µe(A
c ∩B).

The other direction and the converse follow from the definition of subadditivity and

µe measurability.

�

Lemma 5.4.10. Let µe be the outer measure induced by a content λ. Then the

measure µ that satisfies µ(A) = µe(A) for all Borel sets A is a regular Borel measure.

µ is called the induced measure of λ.

Proof:

It suffices to show that each K ∈ C is µe measurable. By the previous lemma, this

would follow from showing that µe(O) ≥ µe(O ∩K) + µe(O ∩Kc) for all O ∈ O.

Let K
′ ∈ C be a subset of O ∈ Kc, and let K̃ ∈ C be a subset of O ∩K ′c. Clearly

O ∩Kc ∈ O and O ∩Kc ∈ O. Because K
′ ∩ K̃ = ∅ and K

′ ∪ K̃ ⊂ O,
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µe(O) = λ∗(O) ≥ λ(K
′ ∪ K̃) = λ(K

′
) + λ(K̃).

Thus,

µe(O) ≥ λ(K
′
) + supK′λ(K̃)

= λ(K
′
) + λ∗(O ∩K

′c)

= λ(K
′
) + µe(O ∩K

′c)

≥ λ(K
′
) + µe(O ∩K).

Therefore,

µe(O) ≥ µe(O ∩K) + supK′ λ(K
′
)

= µe(O ∩K) + λ∗(O ∩Kc)

= λ(K
′
)

= µe(O ∩K) + µe(O ∩Kc).

Now it is necessary to show that µ(K) is finite. To do so, take L ∈ C with K ⊂
int(L). Then

µ(K) = µe(K) ≤ µe(int(L)) ≤ λ(L) <∞.

Regularity follows from

µ(K) = µe(K)

= infO {λ∗(O) | K ⊂ O,O ∈ O}

= infO {µe(O) | K ⊂ O,O ∈ O}

= infO {µ(O) | K ⊂ O,O ∈ O}.

�

Lemma 5.4.11. Let Ω be a measurable space and let h : Ω → Ω be a homeomor-

phism. Let λ and κ be contents on Ω such that for all K ∈ C, λ(h(K)) = κ(K).

Suppose that µ and v are the induced measures of λ and κ respectively. Then

µ(h(A)) = v(A) for any Borel measurable set A ∈ Ω.
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Proof:

Let λ∗ and κ∗be the inner contents induced by λ and κ respectively. Let µe and ve

be their respective outer measures. If O ∈ O then

{κ(K) | K ⊂ O,K ∈ C} = {λ(h(k)) | K ⊂ O,K ∈ C}

= {λ(A) | A = h(k)K ⊂ O,K ∈ C}

= {λ(A) | h−1(A) ⊂ O, h−1(A) ∈ C}

= {λ(A) | A ⊂ h(O), A ∈ C}.

Thus κ∗(O) = λ∗(h(O)). Now let B be a σ bounded set. Then

{κ∗(O) | B ⊂ O,O ∈ C} = {λ∗(h(O)) | B ⊂ O,O ∈ O}

= {λ∗(C) | C = h(O), B ⊂ O,O ∈ O}

= {λ∗(C) | h−1(C) | h−1(C) ⊂ B, h−1(C) ∈ O}

= {λ∗(C) | C ⊂ h(B), C ∈ O}.

Thus ve(B) = µe(h(B)). By the result of the previous lemma, if A is any Borel set,

then µ(h(A)) = v(A).

�

For the existence of the Haar measure, we must find a content λ on G which is

invariant under left translation due to Lemma 5.4.11. By Lemma 5.4.8, the induced

measure of λ will be nonzero.

Proof of Theorem 5.4.7:

Let A ⊂ G be a bounded set and B ⊂ G be a set with nonempty interior. Then let

A : B senote the lowest positive integer n such that there exists a set {gj}nj=1 ⊂ G

with the property that A ⊂
⋃n
j=1 gjB. Now let A ∈ C be a set with nonempty

interior. Let N denote the set of all neighbourhoods of the identity element of G.

Fix O ∈ N .
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Define

λOK =
K : O

A : O
for K ∈ C.

λOK satisfies 0 ≤ λO(K) ≤ K : A. λOK satisfies all the properties of a content

other than additivity.

For each K ∈ C, consider the interval IK = [0, K : A] and let Ξ =
∏
IK . By

Tychonoff’s Theorem, Ξ is compact. Ξ consists of points that are direct products of

functions φ acting on C with the property that 0 ≤ φ(K) ≤ K : A. λO ∈ Ξ for all

O ∈ N .

Now define Λ(O) = {λO′ |O
′ ⊂ O,O

′ ∈ N} given O ∈ N . If {Oj}nj=1 ⊂ N , then

Λ(
n⋂
j=1

Oj) ⊂
n⋂
j=1

Λ(Oj).

Clearly Λ(
n⋂
j=1

Oj) is nonempty. Since Ξ is compact, there is some point in the

intersection of the closures of all the Λ’s

λ ∈
⋂
O

{Λ(O) | O ∈ N}.

It is now necessary to prove that λ is in fact a content. For any K ∈ C, λ(K) is

finite and nonnegative since 0 ≤ λ(K) ≤ K : A < ∞. To prove monotonicity and

subadditivity, let ξK(φ) = φ(K). Then ξK is a continuous function. Thus if K1 and

K2 are compact sets, then

Θ = {φ | φ(K1) ≤ φ(K2)} ⊂ Ξ is closed.

Then let K1 ⊂ K2 and O ∈ N . Then λO ∈ Θ and hence Λ(O) ⊂ Θ. Since Θ is

closed, λ ∈ Λ(O) ⊂ Θ, which imples that λ is monotone and subadditive.

Now to prove additivity, first note the restricted additivity of λO. Let gO be a left

translation of O, and fix K1, K2 ∈ C so that K1O
−1 ∩K2O

−1 = ∅. If K1 ∩ gO 6= ∅,
then g ∈ K1O

−1. If K2 ∩ gO 6= ∅, then g ∈ K2O
−1. Thus there are no left trans-

lations of O that do not intersect either K1 or K2, and so λO has additivity given
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that K1O
−1 ∩K2O

−1 = ∅.

Let K1, K2 ∈ C with K1 ∩K2 = ∅. Then there is some O ∈ N satisfying K1O
−1 ∩

K2O
−1 = ∅. If O

′ ∈ N and O
′ ⊂ O, then K1O

′−1 ∩ K2O
′−1 = ∅ as well. Thus

λO′(K1 ∪K2) = λO′(K1) + λO′(K2). Then if O
′ ⊂ O,

λO′ ∈ Θ
′
= {φ | φ(K1 ∪K2) = φ(K1) + φ(K2)}.

Thus λ is additive. Therefore we have established the existence of the Haar measure

on any locally compact group.

Now we need to prove uniqueness of the Haar measure. Let µ be a left Haar measure.

Consider a nonnegative continuous function f on a locally compact group G that is

not identically zero. Since∫
G

(f) dµ > 0 we may assume that

∫
G

(f) dµ = 1.

We write

Ψ(g) =

∫
G

f(xg−1) dµ(x) where g ∈ G.

Then Ψ : G → R+ is a continuous function and also a homomorphism. Now select

a continuous function h on G and consider the convolution,

(f ∗ h)(g) =

∫
G

f(x)h(x−1g) dµ(x)

=

∫
G

f(gx)h(x−1) dµ(x).

By the definition of Ψ and

∫
G

(f) dµ = 1, we have

h(x) dµ(x) =

∫
G

h(x−1)Ψ(x−1) dµ(x).

A right translation of h give us

∫
G

h(xg−1) dµ(x) =

∫
G

h(x−1g−1)Ψ(x−1) dµ(x)

= Ψ(g)

∫
G

h((gx)−1)Ψ((gx)−1) dµ(x) =
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= Ψ(g)

∫
G

h(x−1)Ψ(x−1) dµ(x)

Therefore

Ψ(g) =

∫
G

h(xg−1) dµ(x)∫
G

h(x) dµ(x)
.

Now let v and φ be continuous functions on G and let Ψ be defined as before. Let

v be another left Haar measure. Then

∫
G

v(x) dµ(x)

∫
G

φ(y) dv(y) =

∫
G

∫
G

v(x) dµ(x) φ(y) dv(y)

=

∫
G

∫
G

v(xy) dµ(x) Ψ(y) φ(y) dv(y)

=

∫
G

∫
G

v(xy) φ(y) Ψ(y) dv(y) dµ(x)

=

∫
G

∫
G

v(y) φ(x−1y) Ψ(x−1y) dv(y) dµ(x)

=

∫
G

∫
G

φ((y−1x)−1) Ψ((y−1x)−1) dµ(x) v(y) dv(y)

=

∫
G

∫
G

φ(x−1) Ψ(x−1) dµ(x) v(y) dv(y)

=

∫
G

dµ(x)

∫
G

v(y) dv(y).

Therefore ∫
G

v dµ

∫
G

φ dv =

∫
G

φ dµ

∫
G

v dv.

Now letting v be a positive continuous function and setting

c =

∫
G

v dv∫
G

v dµ

,
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we have ∫
G

φ dv = c

∫
G

φ dµ.

The Haar measure is unique.

�

5.5 Algebraic structure of compact Abelian groups

For the purposes of torsion and divisibility we must introduce some notation and

definitions. For Abelian groups we use the endomorphism µn = {x 7→ n·x} : G→ G

where n · x = x+ . . .+ x (n times).

Definition 5.5.1. For an Abelian topological group G we let:

1. nG = Im (µn) = {n · x | x ∈ G};

2. G[n] = Ker (µn) = {x ∈ G | n · x = 0};

3. DIV(G) =
⋂
n∈N

nG.

We now introduce torsion and divisibility for an Abelian topological group G. The

torsion subgroup of G is tor(G) =
⋃
n∈NG[n], the union of all the kernels of the

endomorphisms. G is called torsion-free if tor(G) = 0. An element g ∈ G is called

divisible if for each n ∈ N there is an x ∈ G with n · x = g. The structure theorem

on divisible groups shows that there are no divisible groups other than direct sums

of Z(p∞) (torsion) and Q (torsion-free).

Theorem 5.5.2. Any divisible group G is a direct sum of quasicyclic and full ra-

tional groups. The cardinal numbers of the sets of components Z(p∞) (for every p)

and Q form a complete independent system of invariants for G.

The set of all divisible elements is denoted Div(G) and G is divisible if G ⊆ Div(G).

So Div(G) =
⋂
n∈N nG{g ∈ G | (∀ n ∈ N) (∃ x ∈ G) n · x = g}. Each Abelian

group contains a unique largest divisible subgroup which we denote div(G). Note

that div(G) ⊆ Div(G). So div(G) =
⋃
{H | H is a divisible subgroup}.

Proposition 5.5.3. 1. If G is a compact Abelian group or a discrete Abelian

group, then Div(G) = DIV(G).
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2. If G is a compact Abelian group or a discrete torsion-free Abelian group, then

div(G) = Div(G).

Proof:

1. In both cases nG is closed for all n ∈ N. Hence Div(G) = DIV(G).

2. Observe first that for all m ∈ N,
⋂
n∈N nG ⊆

⋂
n∈NmnG. As mnG ⊆

(mG ∩ nG), the family {nG | n ∈ N} is a filter base. The reverse inclu-

sion holds too and therefore
⋂
n∈NmnG =

⋂
n∈N nG = Div(G).

Now assume that G is torsion-free. Then µm is injective and thus maps nG

bijectively onto mnG. Hence µm(Div(G)) =
⋂
n∈NmnG. By our reasoning

above, Div(G) is divisible and contained in div(G), i.e. Div(G) ⊆ div(G).

Now assume that G is compact. If F is any filter base of compact subsets of

G and f : G→ G any continuous self-map, then

f(
⋂
F) =

⋂
f∈F

f(F ).

The left side is trivially contained in the right side since if y is an element of the

right side, then for each F ∈ F , the set XF = f−1(y)∩F is nonempty compact.

The set {XF : F ∈ F} is a filter base of compact sets and thus has an ele-

ment x ∈ ∩F in its intersection. So f(x) = y and thus y is also in the left side.

Applying this with F = {nG | n ∈ N} and f = µm we obtain,

µm(
⋂
n∈N

nG) =
⋂
n∈N

mnG

and hence Div(G) is divisible as in 1. We can conclude that Div(G) ⊆ div(G).

�

We now provide a proposition, theorem and corollary which we will not prove, since

the proofs require work not detailed in this dissertation. Nevertheless, the results

are required and shall be stated.
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Proposition 5.5.4. In a locally compact group G, the following hold:

1. (nG)⊥ = Ĝ[n];

2. G[n] = (nĜ)⊥;

3. nG = (Ĝ[n])⊥;

4. DIV(G) = (tor Ĝ)⊥;

5. (DIVG)⊥ = tor Ĝ.

The following theorem expresses connectivity in algebric terms in a compact Abelian

group. The connected component of the identity is the largest divisible subgroup.

Theorem 5.5.5. Let G denote a compact Abelian group and G0 is identity compo-

nent.

1. G0 = Div(G) = div(G) = (tor Ĝ)⊥.

2. G⊥0 = tor Ĝ.

3. torG
⊥

= (torG)⊥ = Div(Ĝ).

4. (Div Ĝ)⊥ = torG.

Corollary 5.5.6. For a compact Abelian group G, the following are all equivalent:

1. G is connected;

2. G is divisible;

3. Ĝ is torsion-free.

We now describe the structure of primary groups.

Definition 5.5.7. A compact Abelian group is called a compact primary group if

its character group is a primary group. A locally compact Abelian group G is called

a primary group if it is a union of compact primary groups.
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Chapter 6

Ramsey functions

Given a compact finite Abelian group G with r ∈ N, let sr(G) denote the least upper

bound of real ε > 0 such that for every measurable r-colouring of G there exists a

monochrome symmetric subset of size ε > 0. Equivalently,

sr(G) = infφ supg∈G maxi∈[r] µ({x ∈ G : φ(x) = φ(gx−1g)=i}),

where µ is the Haar measure of G, [r] = {1, . . . , r} and φ : G → [r] runs over all

measurable r-colourings of G. sr(G) is essentially the most asymmetrical maximal

measure of a monochromatic symmetric subset. If G is finite, then

sr(G) =
1

|G|
minφ maxg∈G maxi∈[r] |{x ∈ G : φ(x) = φ(gx−1g)=i}|.

In this Chapter we show sr(G) ≥ 1/r2. We also show that for every measurable B ⊆
G, there exists a measurable symmetric subset B ⊆ A such that µ(B) ≥ (µ(A))2.

We show that the estimate sr(G) ≥ 1/r2 is optimal for Abelian groups. If the group

is not Abelian, the estimate fails, and we provide a counter-example for this in Sec-

tion 6.3.1.

We give a general picture of asymptotic behaviour for sr(G) for compact Abelian

groups using the function sr(G).
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6.1 Symmetries in groups and related Ramsey func-

tions

Definition 6.1.1. Let G be a group. A symmetry on a group G with respect to a

center g ∈ G is given by the mapping ηg : G 3 x 7→ gx−1g ∈ G.

This notion appeared in [20]. It is a natural notion since

ηg = λg ◦ i ◦ λ−1
g = ρg ◦ i ◦ ρ−1

g ,

where λg : G 3 x 7→ gx ∈ G is the left translation, ρg : G 3 x 7→ xg ∈ G is the right

translation and i : G 3 x 7→ x−1 ∈ G is the inversion.

It follows from λg(x) = gx that λ−1
g (gx) = x and λ−1

g (x) = g−1x. Consequently,

λ−1
g = λg−1 and similarly, ρ−1

g = ρg−1 . Then

λg ◦ i ◦ λ−1
g (x) = λg ◦ i ◦ λg−1(x) = g(g−1x)−1 = gx−1g and

ρg ◦ i ◦ ρ−1
g (x) = ρg ◦ i ◦ ρg−1(x) = (xg−1)−1g = gx−1g.

Note that a subset S ⊆ G is symmetric if there exists an element g ∈ G, the center

of symmetry, such that gS−1g = S [39].

The following are admissible symmetries:

1. The family S of central symmetries where s : G → G is of the form s(x) =

2g − x for some g ∈ G;

2. The family S+ of symmetries where s : G→ G is of the form s(x) = g − x for

some g ∈ G.

We can immediately conclude that S ⊆ S+.
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6.2 Finite Abelian groups

We know that sr(G) is our most asymmetrical maximal measure of a monochro-

matic symmetric subset. For a finite Abelian group, we can represent sr(G) as the

greatest number of the form
k

|G|
, such that for every r-colouring of a finite group

G, there exists a monochromatic symmetric subset of cardinality k, where k ∈ N.

Results from 6.2 can be found in [39].

We now introduce σr(G). This is defined as the greatest number of the form
k

|G|
,

such that for every r-colouring X of a finite group G, there exists a subset X ⊆ G of

cardinality k and an element g such that X (x) = X (gx−1g) for all x ∈ X and k ∈ N.

For every r-colouring X : G→ {1, . . . , r} of a finite group G, let us define

S(X , g) = |{x ∈ G : X (x) = X (gx−1g)}|, g ∈ G

σr(G) = minX :G→{1,...,r}
1

|G|
maxg∈G S(X , g).

Theorem 6.2.1. For every finite Abelian group G and also for every group of odd

order

σr(G) ≥ 1

r

and consequently

sr(G) ≥ 1

r2
.

To prove this theorem we require the following lemma,

Lemma 6.2.2. Let Ai = X−1(i). For every a ∈ G, denote v(a) = |{x ∈ G : x2 = a}|.
Then ∑

g∈G

S(X , g) =
r∑
i=1

∑
(x,y)∈A2

i

v(yx−1).

Proof:

Compute in two ways the number of all triples (g, x, y) ∈ G × G × G such that

gx−1g=y. We obtain

∑
g∈G

S(X , g) =
r∑
i=1

∑
(x,y)∈A2

i

|{g ∈ G : gx−1g = y}|.
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We notice that

|{g ∈ G : gx−1g = y}| = |{g ∈ G : gx−1gx−1 = yx−1}|

= |{x ∈ G : x.x = yx−1}| since x2 = g ⇒ x = gx−1

= |{x ∈ G : x2 = yx−1}|

= v(yx−1).

�

We are now able to prove Theorem 6.2.1.

Proof of Theorem 6.2.1:

By Lemma 6.2.2,

∑
g∈G

S(X , g) =
r∑
i=1

∑
(x,y)∈A2

i

v(yx−1).

If G has odd order, then v(yx−1)=1 for all x, y ∈ G. Since the function x2
1 + . . .+x2

r,

where x1 + . . .+ xr, attains minimum when x1 = . . . = xr = C
r

,

∑
g∈G

S(X , g) =
r∑
i=1

|Ai|2 ≥
(
|G|
r

)2

+ . . .+

(
|G|
r

)2

︸ ︷︷ ︸
r

=
|G|2

r
.

If G is Abelian, then v(yx−1) > 0 if and only if yx−1 ∈ G2 = {g2 : g ∈ G} and in

this case v(yx−1) = [G : G2]. Let Cj (i ≤ j ≤ k) be cosets of G modulo G2 and let

Cj,i = Cj ∩ Ai. Then

∑
g∈G

S(X , g) =
r∑
i=1

k∑
j=1

|Cj,i |2 · k ≥ rk

(
|G|
rk

)2

· k =
|G|2

r
.

Therefore, in each case, there exists an element g ∈ G such that S(X , g) ≥ |G|
r

and

so σ(X ) ≥ 1

r
.

�
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6.2.1 σr(G) = 1
r and σr(G) = 1

We now describe finite Abelian groups with σr(G) = 1
r

and σr(G) = 1.

Theorem 6.2.3. σr(G) =
1

r
if and only if r divides |2G|.

Proof:

Define the following subgroups:

2G = {2x : x ∈ G};
B(G) = {x ∈ G : 2x = 0}.

Denote |2G| = m and |B(G)| = k. Note that mk = |G|. Consider the case when

r - m. Fix any r-colouring X on a group G. Let Cj (1 ≤ j ≤ k) be cosets of G

modulo 2G and let Cj,i = Cj ∩ χ−1(i). Then

r∑
i=1

|Cj,i |2 > r

[
m

r

]2

=
m2

r
.

Hence

∑
g∈G

S(X , g) = k
k∑
j=1

r∑
i=1

|Cj,i |2 > k2m
2

r
=
|G|2

r
.

So there is an element g ∈ G such that S(X , g) >
|G|
r

and so

σ(X ) >
1

|G|
.
|G|
r

>
1

r
.

Now consider the case when r | m. By Theorem 6.2.1, σr(G) ≥ 1
r
, so it is sufficient

to construct a colouring with σ(X ) = 1
r
. Select a subgroup F of group G such that

B(G) ⊆ F and [G : F ] = r. Then [2G : 2F ] = r. Define an r-colouring X of G as:

1. Every coset of G mod 2F is the same colour;

2. Every r cosets of G mod 2F which form a coset of G mod 2G are coloured in

r different colours.

Then

X (x) = X (2g − x)⇔ x− (2g − x) ∈ 2F ⇔
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⇔ 2(x− g) ∈ 2F

⇔ ∃f ∈ F s.t. 2(x− g − f) = 0

⇔ ∃f ∈ F s.t. x− g − f ∈ B(G)

⇔ x− g ∈ F +B(G) = F

⇔ x ∈ g + F.

So S(X , g) = |F | for all g ∈ G. Therefore σ(X ) =
S(X , g)

|G|
=
|F |
|G|

=
1

|G : F |
=

1

r
.

�

Theorem 6.2.4. σr(G) = 1 if and only if:

1. r = 1, or

2. r = 2 and G is a cyclic group of order 3 or 5, or

3. G is a Boolean group.

Proof:

Suppose none of the above cases hold. Define the subgroups 2G and B(G) as be-

fore. Now assume that |G| is even. Then both the subgroups are different from

G. Select x, y ∈ G such that x + y /∈ 2G and x − y /∈ B(G). Define the colouring

X : G→ {1, 2}. Now colour the elements x, y using the first colour, and all the other

elements of G using the second colour. Set an element g ∈ G to be an arbitrary

center of symmetry of G. Since x+y /∈ 2G, 2G−x 6= y. If 2g−x = x then 2g−y 6= y

since x − y 6= B(G). The contradiction X (a) 6= X (2g − a) or X (b) 6= X (2g − b)

follows.

Now assume that |G| is odd. Then 2G = G. In this case it is evident that the center

of symmetry is unique and any two elements of G are symmetric. Since n ≥ 7, we can

select distinct elements x, y, z ∈ G such that neither of them is a center of symmetry

for the other two, i.e.: For any distinct g ∈ G, s ∈ {x, y, z}, 2g − s /∈ {x, y, z}. To

see this, pick any distinct {x, y}. There is a unique colour g ∈ G such that y = 2g−x.

Now pick z ∈ G\{x, y, g, 2x− y, 2y − x}. Colour x, y, z with one colour and all the

other elements with another colour (r = 2). If g /∈ {x, y, z} and 2g − x = y then
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2g − z /∈ {x, y, z}, i.e.: x and y are symmetric to each other so z is symmetric to

neither. If g = {x, y, z} and g = x then 2g − y /∈ {x, y, z}, i.e.: x is the center of

symmetry g so y is not symmetric to z. It follows that there is s ∈ {x, y, z} such

that X (s) 6= X (2g − s).

�

Note that each r-colouring in the theorem is symmetric and the number of all r-

colourings of a group is rn. The number of all symmetric r-colourings for finite

Abelian groups was established in [41] and for finite groups in [40].

6.3 Compact Abelian groups

Let G be a compact Abelian group with Haar measure µ on it. We assume that

G is Hausdorff and that µ is the complete probability measure. The measure of a

subset A on a finite group G is naturally µ(A) = |A|/|G|. Results from 6.3 can be

found in [1], [2] and [3].

Definition 6.3.1. A subset A ⊆ G is said to be symmetric (centrally symmetric)

if s(A) = A for some s ∈ S+ (s ∈ S). We denote sr(G) for S and s+
r (G) for S+.

Since S ⊆ S+, sr(G) ≤ s+
r (G). Therefore, the lower estimation of sr(G) is stronger

if established for S, and the upper estimation is stronger if established for S+.

Theorem 6.3.2. Let r ≥ 2 and let G be a compact Abelian group with Haar measure

µ. Then:

1. s+
r (G) ≥ sr(G) ≥ 1

r2
;

2. if G is a finite group, then s+
r (G) > 1

r2
.

Proof:

1. In every r-colouring there is a one colour subset A of measure µ(A) ≥ 1
r

and it

immediately follows that µ(A) ≥ 1
r2

.

2. This proof requires the following proposition:

Proposition 6.3.3. Any measurable set A ⊆ G contains a centrally symmetric

subset B ⊆ A of measure µ(B) ≥ µ(A)2.
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Proof:

The subset Bg = A∩ (2g−A) with any point g ∈ G is symmetric relative to g. We

must show that µ(Bg) ≥ µ(A)2 holds for g ∈ G. The set 2G = {2g : g ∈ G} is a

compact subgroup of G and the quotient group G/2G has exponent 2, i.e.: h = −h
for all h ∈ G/2G. Let us denote the quotient map π : G → G/2G and the Haar

measures on 2G and G/2G by µ1 and µ2 respectively. µ1 induces a probability

measure that is a copy of itself on each coset π−1(h) mod 2G where h ∈ G/2G. By

[19], the inequality∫
G

f(x) dx =

∫
G/2G

∫
π−1(h)

f(x) dµ1(x) dµ2(h)

holds for any measurable function f : G → R. Let us denote the characteristic

function of the set A by XA : G→ {0, 1} and integrate the relation

µ(A ∩ (g − A)) =

∫
G

XA(x) XA(g − x) dµ(x)

with respect to g ∈ 2G using Fubini’s theorem and the Cauchy-Schwarz inequality.

∫
2G

µ(A ∩ (g − A)) dµ1(g)

=

∫
2G

∫
G

XA(x) XA(g − x) dµ(x) dµ1(g)

=

∫
2G

∫
G

XA (x)XA(g − x) dµ1(g) dµ(x)

=

∫
G/2G

(∫
π−1(h)

(∫
2G

XA(x) XA(g − x) dµ1(g)

)
dµ1(x)

)
dµ2(h)

=

∫
G/2G

(∫
π−1(h)

XA(x)

(∫
2G

XA(g − x) dµ1(g)

)
dµ1(x)

)
dµ2(h)

=

∫
G/2G

∫
π−1(h)

XA(x)

∫
π−1(−h)

XA(g) dµ1(g) dµ1(x) dµ2(h)

=

∫
G/2G

(∫
π−1(h)

XA(x) dµ1(x)

)2

dµ2(h)

≥

(∫
G/2G

∫
π−1(h)

XA(x) dµ1(x) dµ2(h)

)2

=
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=

(∫
G

XA(x) dµ(x)

)2

=µ(A)2.

By the Mean Value Theorem, there is an element 2g ∈ 2G such that

µ(A ∩ (2g − A)) = µ(B) ≥ µ(A)2.

�

We can now prove 2 of Theorem 6.3.2 by applying the following Proposition to an

arbitrary finite Abelian group G.

Proposition 6.3.4. Any measurable set A ⊂ G of measure µ(A), 0 < µ(A) < 1,

contains a symmetric measurable subset B ⊆ A of measure µ(B) > µ(A)2.

Proof:

The measure of the symmetric subset Bg = A ∩ (g − A) will be denoted by µ(Bg).

We must therefore prove that µ(Bg) > µ(A)2 for some g ∈ G. As done previously,

we integrate the relation

µ(Bg) =

∫
G

XA(x) XA(g − x) dµ(x)

with respect to g ∈ G (extended symmeteries). Note that in Proposition 6.3.3 this

integration was done with respect to g ∈ 2G.

∫
G

µ(Bg) dµ(g) =

∫
G

∫
G

XA(x) XA(g − x) dµ(x) dµ(g)

=

∫
G

XA(x)

∫
G

XA(g − x) dµ(g) dµ(x)

=

∫
G

XA(x) µ(A) dµ(x)

= µ(A)2.

If we suppose that µ(B) ≤ µ(A)2 for all g ∈ G and since∫
G

µ(Bg) dµ(g) = µ(A)2, then µ(Bg) is almost equal to µ(A)2; a contradiction.

�

85



Proposition 6.3.5. Let H be a closed subgroup of a compact Abelian group G. Then

s+
r (G) ≤ s+

r (G/H).

Proof:

Let us denote the Haar measures on G and G/H by µ and λ respectively. By

definition, the uniqueness of the Haar measure on G/H implies that the relation

λ(A) = µ(π−1(A)), where π : G→ G/H is the quotient map, holds for any measur-

able subset A ⊆ G/H.

Now let X : G/H → [r] be an arbitrary colouring of the quotient group G/H. It

suffices to prove that G/H contains a one colour symmetric set A of measure arbi-

trarily close to s+
r (G).

Let us consider the colouring X ◦π of G. If A1, . . . , Ar are the monchromatic classes

of X , then let us denote Bi = π−1(Ai) as the monochromatic classes of X ◦ π where

i ≤ r. Now fix an arbitrary positive ε. By the definition of s+
r (G), the measure of

the one colour symmetric subset B = Bi ∩ (g −Bi) in G must exceed s+
r (G)− ε.

Consider the one colour symmetric subset A = Ai ∩ (π(g) − Ai) in G/H for the

same values of i and g. Since B ⊆ π−1(A), the measure of A satisfies the bound

λ(A) = µ(π−1(A)) ≥ µ(B) > s+
r (G)−ε. Since our chosen ε can be arbitrarily small,

s+
r (G) ≤ s+

r (G/H) is proved.

�

Proposition 6.3.6. The relation s+
r (G) ≤ s+

r (H) holds for any compact Abelian

group G.

Proof:

We first prove the existence of a Borel set U that intersects each coset of G relative

to H in exactly one point. Consider a neighbourhood V of zero in G such that the

neighbourhoods of h + V and h
′

+ V of different elements h and h
′

in H do not

intersect. Now take the finite subcovering V1, . . . , Vk of the covering {g + V }g∈G
of G. The set U will belong to the algebra generated by the family of open set

{h+ Vi}h∈H where i ≤ k. Set

U0 = ∅,W0 = ∅, Ui = Ui−1 ∪ (Vi\Wi−1),Wi =
⋃

06=h∈H

(h+ Ui), and U = Uk.
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Ui and Wi do not intersect for i ≤ k and Uk ∩Wk = G. Therefore, U is a Borel

set. Note that each g ∈ G can be uniquely represented as the sum g = h+ u, where

h ∈ H and u ∈ U .

Let us denote the Haar measures on G and H by µ and λ respectively. Since H is

finite, it has a colouring X : H → [r] for which the number of elements in any one

colour subset does not exceed |H| s+
r (G). Let Ai = X−1(i) for i ∈ [r].

Now define a colouring X ′ : G → [r] of G by setting X ′(g) = X (h) for g = h + u,

where h ∈ H and u ∈ U . Under the colouring X ′ , the maximal monochromatic set

that has the colour i and is symmetric with respect to the transformation s(x) = g−x
has the form Bg = (Ai+U)

⋂
(g−(Ai+U)). By the definition of s+

r (G), the inequality

µ(Bg) > s+
r (G)− ε

holds for some arbitrary ε > 0, i ∈ [r] and g ∈ G. We must show that

µ(Bg) ≤ s+
r (H)

which with µ(Bg) > s+
r (G)− ε will prove the proposition.

Using the relation XAi+U(x) =
∑
a∈Ai

XU(x− a), we write

µ(Bg) =

∫
G

∑
a∈Ai

XU(x− a)
∑
a′∈Ai

XU(g − x− a′) dx.

Changing the order of integration and summation and setting x = y + a gives us

µ(Bg) =

∫
U

∑
a,a′∈Ai

XU(g − (a+ a
′
)− y) dy.

Since U intersects each coset in a single point, there exists a unique element h(y) ∈ H
such that g − h(y)− y ∈ U . In light of this, our previous relation becomes

µ(Bg) =

∫
U

∑
a,a
′∈Ai

a+a
′
=h(y)

1 dy

=

∫
U

|Ai ∩ (h(y)− Ai)| dy ≤
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≤
∫
U

|H|s+
r (H)) dy

= s+
r (H).

Therefore µ(Bg) ≤ s+
r (H).

�

6.3.1 Counter-example for non-Abelian groups

The estimate of sr(G) ≥ 1
r2

is optimal as we have seen for Abelian groups. For non-

Abelian groups, the estimate fails, for which we provide the only known counter ex-

ample [37]. The example requires the use of the quarternion group, Q = {±1,±i,±j,±k}.

Q is an eight element, non-commutative group and defined by

(−1)2 = 1, i2 = j2 = k2 = ijk = −1, where 1 is the identity element and −1 com-

mutes with all other elements of the group. This group provides a very interesting

Cayley table.

Quarternion multiplication is non-commutative, since, for example, the multiplica-

tion of basis elements yields jk = i but kj = −i. Using ijk = −1, we can right or

left multiply this by one of i, j, k giving us all the following possible products:

ij = k ji = −k
jk = i kj = −i
ki = j ik = −j

Note that any two elements of i, j, k can generate the entire group.

Now consider the 2-colouring of the quarternion group as a counter-example as to

why sr(Q) � 1
r2

. The symmetry x 7→ gx−1g becomes less clear due to the groups

non-commutativity. Elements of the group are only symmetric with themselves and

their negative, i.e.: 1 is only symmetric with 1 and −1, i is only symmetric with i

and −i, j is only symmetric with j and −j and k is only symmetric with k and −k.

Therefore, from s2(Q) we can identify the following colouring:
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A selected 2-colouring of the Quarternion group

It is evident that for the above arrangement and colouring, whichever element is

chosen as the center g, we are always left with two different colour monochromatic

subsets of equal measure (due to the elements being symmetric to themselves). Each

center g provides us with a subset of measure 1
8

and its symmetric element also pro-

vides us with a subset of measure 1
8
. The other elements which are symmetric to

each other do not provide monochromatic subsets.

From the definition of sr(Q) and the diagram above, maxi∈[r] = 1
8

for each colour-

ing. All other symmetric subsets are not monochromatic. Therefore, our maximum

monochromatic colouring of all the centers g ∈ Q is maxg∈Q = 1
8
.

Alternative colourings of Q will provide larger maximum monochromatic colourings

and hence maxg∈Q >
1
8
. However, the function s2(Q) requires the most asymmetrical

maximum monochromatic colouring. This is evidently achieved from the colouring

above and so minφ = 1
8
. Therefore s2(Q) = 1

8
which is less than 1

22 .

The following results can be found in [37].

Theorem 6.3.7. Let G be a compact topological group and let f : G → G be a

continuous transformation of G such that H = Im f ∗ is a subgroup of G and for every

measurable C ⊆ H,µG((f ∗)−1(C)) = µH(C). Then for every measurable C ⊆ G

there exists S ⊆ C and g ∈ G such that f(Sg−1) ⊆ Cg−1 and µ(S) ≥ (µ(C))2.

The proof of Theorem 6.3.7 is based on the following lemma.

Lemma 6.3.8. Let G be a compact topological group and let f : G → G be a

measurable transformation of G. Then for every measurable C ⊆ G there exists

S ⊆ C and g ∈ G such that f(Sg−1) ⊆ Cg−1 and
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µ(S) ≥
∫
G

XC(x)

∫
G

XC(f ∗(y)x) dy dx,

where XC(x) is the characteristic function of C ⊆ G.

Proof:

For every y ∈ G, denote S(y) = C ∩ f−1(Cy−1)y. Then

S(y) ⊆ C, f(S(y)y−1) ⊆ Cy−1, µ(S(y)) =
∫
G
XS(y)(x) dx.

It is easy to check that

XC∩D(x) = XC(x)XD(x), XCy(x) = XC(xy−1), Xh−1(C)(x) = XC(h(x)).

Consequently, XS(y)(x) = XC(x)XC(f(xy−1)y) and

µ(S(y)) =

∫
G

XC(x)XC(f(xy−1)y) dx.

Integrating this equation we obtain

∫
G

µ(S(y)) dy =

∫
G

∫
G

XC(x)XC(f(xy−1)y) dx dy

=

∫
G

XC(x)

∫
G

XC(f(xy−1)y) dy dx

=

∫
G

XC(x)

∫
G

XC(f(y−1)yx) dy dx

=

∫
G

XC(x)

∫
G

XC(f ∗(y)x) dy dx.

By the theorem of the mean, there exists g ∈ G such that

µ(S(G)) ≥
∫
G

XC(x)

∫
G

XC(f ∗(y)x) dy dx.

Put S = S(g).

�

Proof of Theorem 6.3.7:

By Lemma 6.3.8, it suffices to prove that∫
G

XC(x) =

∫
G

XC(x+ y − f(y)) dy dx ≥ (µ(C))2.
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Denote H = Im (1− f) and F = G/H. Then∫
G

XC(x)

∫
G

XC(x+ y − f(y)) dy dx

=

∫
G

XC(x)

∫
G

XC(x+ z) dz dx

=

∫
F

∫
H

XC(x+ y)

∫
H

XC(x+ y + z) dz dy dx

=

∫
F

∫
H

XC(x+ y)

∫
H

XC(x+ z) dz dy dx

=

∫
F

(∫
H

XC(x+ y) dy

)2

dx

≥

(∫
F

∫
H

XC(x+ y) dy dx

)2

=

(∫
G

XC(x+ y) dx

)2

= (µ(C))2.

Theorem 6.3.9. Let A be a compact topological Abelian group, let f be the inversion

of A, and let G = AhC4 be the semidirect product with respect to the homomorphism

C4 3 j 7→ f j ∈ Aut(A). Then for every r ≥ 2, 1/2r2 ≤ sr(G) ≤ 1/2sr(A). In

particular, if sr(A) = 1/r2, then sr(G) = 1/2r2.

Proof:

Since G contains an Abelian subgroup H = A×C2, the first inequality follows from

Theorem 6.3.7. To prove the second one, calculate

(a, f i)(a, f j)−1(a, f i) =


(2a− x, f j) if i ≡ j ≡ 0 mod (2),

(2a− x, f j) if i ≡ j ≡ 1 mod (2),

(x, f j+2) if i ≡ 0 mod (2) and j ≡ 1 mod (2),

(x, f j+2) if i ≡ 1 mod (2) and j ≡ 0 mod (2),

=

{
(2a− x, f j) if i− j ≡ 0 mod (2),

(x, f j+2) if i− j ≡ 1 mod (2).

Given any r colouring ϕ : A 7→ Zr, define the extension ϕ : G 7→ Zr by
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ϕ(x, f j) =

{
ϕ(x) if j = 0, 1,

ϕ(x) + 1 if j = 2, 3.

Let S ⊆ G be a monochrome (with respect to ϕ) and let (a, f i)S−1(a, f i) = S.

Then either S ⊆ H or S ⊆ G\H. If S ⊆ G\H, then SH = S · (0, f) ⊆ H is also

monochrome and (a, 0)S−1
H (a, 0) = SH . So we may assume that S ⊆ H.

Put P = S ∩A,Q = S ∩ (H\A), QA = Q · (0, f 2). Then P,QA ⊆ A are monochrome

(with respect to ϕ) and symmetric with respect to (a, 0) and µ(S) = µ(P )+µ(QA) =
1
4

(µA(P ) + µA(QA)). It follows from this that sr(G) ≤ 1
2
sr(A).

�

6.3.2 Ramsey functions in compact Abelian groups

We now show a general picture of asymptotic behaviour for sr(G) for compact

Abelian groups. We use the function sr(G) which is defined as

sr(G) = minφ
1

|G|
∑
g∈G

(
1

r

∑
i∈[r]

|{x ∈ G : φ(x) = φ(gx−1g) = i}|

)
.

If G is infinite, then sr(G) is defined as

sr(G) = infφ

∫
G

(
1

r

∑
i∈[r]

µ({x ∈ G : φ(x) = φ(gx−1g) = i})

)
dg.

To prove that sr(G) ≥ 1
r2

we first prove sr(G) ≥ 1
r2

. Since sr(G) ≤ sr(G) it

immediately follows that 1
r2
≤ sr(G) ≤ sr(G). Results from Section 6.3.2 can be

found in [17].

Lemma 6.3.10. Let G be an Abelian group and let B be a Boolean subgroup of G.

Then B is a direct summand of G if and only if B ∩ 2G = {0}.

Proof:

Necessity is obvious. Sufficiency: We let A = 2G + B. Since B ∩ 2G = {0}, by

the definition of a direct sum, we have A = 2G⊕B. Since G/2G is Boolean, A/2G

must be a direct summand of G/2G giving us G/2G = A/2G ⊕ C/2G where C is

some subgroup of G containing 2G. It follows that G = B ⊕ C.

�
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We denote B0(G) as our maximal Boolean subgroup of G. We can represent

B0(G) as a direct summand in the following ways: G = G/B0(G) ⊕ B0(G) and

B0(G/B0(G)) = {0}. The following lemma states the intuitive result that the

summands in the decomposition G = G/B0(G) ⊕ B0(G) do not depend, up to iso-

morphism, on the choice of B0(G).

Lemma 6.3.11. Let G be an Abelian group and let B1 and B2 be maximal Boolean

subgroups of G and direct summands. Then B1 is isomorphic to B2 and G/B1 is

isomorphic to G/B2.

Proof:

Let G = A1⊕B1 = A2⊕B2. Then we also have G = A1⊕B2 = A2⊕B1. By Lemma

6.3.10 and maximality of B1, A1 ∩B2 = 0, and by maximality of B2, B1 ⊆ A1 +B2,

so G = A1 ⊕B2.

Now G = A1 ⊕ B1 = A1 ⊕ B2 implies that B1 is isomorphic to B2. Similarly,

G = A1 ⊕B1 = A2 ⊕B1 implying that A1 is isomorphic to A2.

�

The aim of this Section is to prove the following two theorems:

Theorem 6.3.12. Suppose that ε > 0 is given and r ∈ N. Let n0, n1 ∈ N such that:

2
√

3 ln rn0 + 1
√
n0

< ε and n1 ≥
n2

0

2
.

Then for every finite Abelian group G with |G| ≥ n1

1

r2
≤ sr(G) <

1

r2
+ ε if |G/B0(G)| ≥ n0

and

sr(G/B0(G)) ≤ sr(G) < sr(G/B0(G)) + ε

otherwise.

Theorem 6.3.13. For every infinite compact Abelian group G,

sr(G) =


1

r2
if G/B0(G) is infinite

sr(G/B0(G)) otherwise.
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Let us use the following notations:

S(G, φ, g, i) = {x ∈ G : φ(x) = gx−1g = i};

s(G, φ, g, i) = µ(S(G, φ, g, i));

s(G, φ) = supg∈G maxi∈[r] s(G,φ, g, i);

s(G, φ) =

∫
G

(
1

r

∑
i∈[r]

s(G,φ, g, i)

)
dg; so

sr(G) = infφ s(G, φ) and

sr(G) = infφ s(G, φ).

Lemma 6.3.14. Let G be a compact group and let H be a continuous homomorphic

image of G. Then sr(G) ≤ sr(H) and sr(G) ≤ sr(H).

Proof:

Let f : G→ H be a continuous surjective homomorphism and let ψ be a measurable

r-colouring of H. Define the colouring φ of G by φ = ψ ◦ f . We must show that

s(G, φ) = s(H,ψ) and s(G, φ) = s(H,ψ).

Let us first show that s(G, φ) = s(H,ψ). For every x ∈ G and i ∈ [r] we have

s(G, φ, x, i) = µG({y ∈ G : φ(y) = φ(xy−1x) = i})

= µG({y ∈ G : ψ(f(y)) = ψ(f(x)f(y−1)f(x)) = i})

= µH({z ∈ H : ψ(z) = ψ(f(x)(z−1)f(x)) = i})

= s(H,ψ, f(x), i).

Therefore,

s(G, φ) = supx∈G maxi∈[r] s(G, φ, x, i)

= supx∈G maxi∈[r] s(H,ψ, f(x), i)

= supy∈H maxi∈[r] s(H,ψ, y, i)

= s(H,ψ).
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Finally, we can show that s(G, φ) = s(H,ψ).

s(G, φ) =
1

r

∑
i∈[r]

∫
G

s(G, φ, x, i) dx

=
1

r

∑
i∈[r]

∫
G

s(H,ψ, f(x), i) dx

=
1

r

∑
i∈[r]

∫
H

s(H,ψ, y, i) dy

= s(H,ψ).

�

Lemma 6.3.15. Let G be a compact group and let B be a compact Boolean group.

Then sr(G×B) = sr(G).

Proof:

By Lemma 6.3.14, we only need to prove sr(G×B) ≥ sr(G).

Let φ : G× B → [r] be a measurable r-colouring of G× B. For each y ∈ B, define

φy : G→ [r] by φy(x) = φ(x, y). Then

s(G×B, φ, (u, v), i) = µG×B({(x, y) ∈ G×B : φ(x, y) = φ(ux−1u, vy−1v) = i})

Note that x 7→ ux−1u and y 7→ vy−1v

= µG×B({(x, y) ∈ G×B : φ(x, y) = φ(ux−1u, y) = i})

= µG×B({(x, y) ∈ G×B : φy(x) = φy(ux
−1u) = i})

=

∫
B

µB({x ∈ G : φy(x)φy(ux
−1u) = i}) dy by definition

=

∫
B

s(G, φy, u, i) dy.

Then

s(G×B, φ) =

∫
G

∫
B

1

r

∑
i∈[r]

s(G×B, φ, (u, v), i) du dv =
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=
1

r

∑
i∈[r]

∫
G

∫
B

s(G×B, φ, (u, v), i) du dv

=
1

r

∑
i∈[r]

∫
G

∫
B

(∫
B

s(G, φy, u, i)dy

)
du dv

since s(G×B, φ, (u, v), i) =

∫
B

s(G, φy, u, i) dy

=
1

r

∑
i∈[r]

∫
G

(∫
B

s(G, φy, u, i) dy

)
du

=

∫
B

(
1

r

∑
i∈[r]

∫
G

s(G, φy, u, i) du

)
dy

=

∫
B

s(G, φy) dy

≥ s(G, φy) dy.

It follows that for some y ∈ B, sr(G×B) ≥ sr(G). By Lemma 6.3.14, sr(G×B) =

sr(G).

�

Proposition 6.3.16. Let G be a finite group and let B be a finite Boolean group.

Then

sr(G×B) ≤ sr(G) +
|G|
|B|

.

Proof:

Let ψ : G→ Z(r) with sr(G) = s(G,ψ) and {Ck : k < l}
⋃
{D} be a partition of B

such that |Ck| = r|G| where r|G| > |D|. It is possible for D to be the empty set or

Ck to be the empty set when l = 0.

Enumerate every Ck as {ckg,i : g ∈ G, i < r}. Now define φ : G×B → Z(r) so that

φ(x, y) = ψ(xg) + i if y = ckg,i

and

|φ−1 ∩ (G×D)| ≤ |G|2 for all i ∈ Zr.
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Then we have

S(G×B, φ, (g∗, b∗), i∗) ∩ (G× {ckg,i})
= {(x, ckg,i) : φ(x, ckg,i) = φ(g∗x−1g∗, 2b∗ − ckg,i) = i∗}

= {(x, ckg,i) : φ(x, ckg,i) = φ(g∗x−1g∗, ckg,i) = i∗}

= {(x, ckg,i) : ψ(xg) + i = ψ(g∗x−1g∗g) + i = i∗} (since φ(x, y) = ψ(xg) + i)

= {(x, ckg,i) : ψ(xg) = ψ(g∗g(xg)−1g∗g) = i∗ − i}

= {xg−1 : ψ(x) = ψ(g∗gxg−1g∗g) = i∗ − i} × {ckg,i}

= (S(G,ψ, g∗g, i∗ − i)g−1)× {ckg,i}.

It follows that

|S(G×B, φ, (g∗, b∗), i∗) ∩ (G× {ckg,i})| = |(S(G,ψ, g∗g, i∗ − i)|.

Now

|S(G×B, φ, (g∗, b∗), i∗) ∩ (G× Ck)|
=
∑
g∈G
i∈[r]

|S(G×B, φ, (g∗, b∗), i∗) ∩ (G× {ckg,i})|

=
∑
g∈G
i∈[r]

|S(G,ψ, g∗g, i∗ − i)|

=
∑
g∈G
i∈[r]

|S(G,ψ, g, i)|

= r |G|2 s(G,ψ).

This gives us

|S(G×B, φ, (g∗, b∗), i∗)| = r |G|2 s(G,ψ) + |S(G×B, φ, (g∗, b∗), i∗) ∩ (G×D)|.

We can say
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S(G×B, φ)− s(G×B, φ)

≤ 1

|G|.|B|
max(g∗,b∗) maxi∗ |S(G×B, φ, (g∗, b∗), i∗) ∩ (G×D)|

≤ 1

|G|.|B|
|G|2

=
|G|
|B|

.

�

Proposition 6.3.17. For every finite Abelian group G with B0(G) = {0}

sr(G) ≤ 1

r2
+

2
√

3 ln r|G|+ 1√
|G|

.

Proof:

We notice that the maximal Boolean subgroup of G being a direct summand is the

empty set. The inequality trivially holds for |G| = 1. This is because we can only

use one colour to colour a single element group and this results in sr(G) = 1. For

any r-colouring the inequality is thus satisfied. We therefore suppose that |G| > 1.

Let us denote B = B(G) and |B(G)| = m. Then |G| = 2n + m for some n ≥ 1. If

m = 2 and n = 1 then G = Z(4), and again the inequality immediately holds for all

r-colourings. We therefore suppose that if m = 2, then n ≥ 2.

Given δ > 0, denote N(δ) to be the number of all colourings φ : G→ [r] such that

s(G, φ) ≥ 1

r2
+ δ +

m

|G|
.

Now consider an arbitrary colouring φ. We have that s(G, φ) = s(G, φ, g, i) where

g ∈ G and i ∈ [r]. The set g + B is the set of fixed points which allow the sym-

metry G 3 x 7→ 2g − x ∈ G. The subset A = s(G, φ, g, i)\(g + B) leads us to

|A| ≥ 2n( 1
r2

+ δ). Hence

N(δ) ≤ |G|
∑

k≥n( 1
r2

+δ)

(
n

k

)
r(r2 − 1)n−k rm

≤ |G| r r|G|
∑

k≥n( 1
r2

+δ)

(
n

k

)(
1

r2

)k(
r2 − 1

r2

)n−k

≤ r|G| r|G| e
−δ2n

4 .

We used the following inequality from [4],
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∑
k≥n(p+δ)

(
n

k

)
pkqn−k ≤ e

−δ2n
4

where p and q are non negative reals with p+ q = 1. Now we solve the inequality

r|G| e−δ
2n
4 < 1

and obtain

e
−δ2n

4 <
1

r|G|

ln (e
−δ2n

4 ) < ln (
1

r|G|
)

−δ2n

4
< ln (r|G|)−1

−δ2 <
4

n
ln (r|G|)−1

δ2 >
4

n
ln (r|G|) and so

δ > 2

√
ln (r|G|)

n
.

We now show that n ≥ |G|
3

. It suffices to show that n ≥ m since n ≥ |G|
3
⇒ n ≥

2n+m
3
⇒ n ≥ m. The inequality is trivially true for m = 1 since n ≥ 1 or m = 2

since we supposed that n ≥ 2 for m = 2. We therefore suppose that m > 2.

Let b1, . . . , bk be a basis in B. Since B0(G) = {0}, there exists a1, . . . , ak in G such

that 2a1 = b1, . . . , 2ak = bk. Let H = 〈a1, . . . , ak〉. Then B ⊂ H ⊆ G,B =
⊕

k Z(2)

and H =
⊕

h Z(4). Consequently, |B| = 2k = m and |H| = 4k = m2. This leads us

to

2n ≥ m2 −m⇒ n ≥ m(m− 1)

2
≥ m (n ≥ m).

It follows that,

δ = 2

√
3 ln (r|G|)
|G|
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is a solution of the inequality. Therefore, for δ, N(δ) < r|G| and there is a colouring

φ : G→ [r] with

s(G, φ) <
1

r2
+ δ +

m

|G|

=
1

r2
+ 2

√
3 ln (r|G|)
|G|

+
m

|G|

≤ 1

r2
+ 2

√
3 ln (r|G|)
|G|

+
1√
|G|

=
1

r2
+

2
√

3 ln (r|G|) + 1√
|G|

.

�

If we define symmetries on a compact Abelian group G as mappings of the form

G 3 x 7→ g − x ∈ G (extended symmetries) where g ∈ G instead of

G 3 x 7→ 2g−x ∈ G (central symmetries) then we obtain the function s+
r (G) instead

of sr(G). We already know that sr(G) ≤ s+
r (G) and therefore

sr(G) ≤ s+
r (G) ≤ 1

r2
+

2
√

3 ln (r|G|) + 1√
|G|

.

Let us restate Theorems 6.3.12 and 6.3.13 and prove them.

Theorem 6.3.12 Suppose that ε > 0 is given and r ∈ N. Let n0, n1 ∈ N such that:

2
√

3 ln rn0 + 1
√
n0

< ε and n1 ≥
n2

0

2
.

Then for every finite Abelian group G with |G| ≥ n1

1

r2
≤ sr(G) <

1

r2
+ ε if |G/B0(G)| ≥ n0

and

sr(G/B0(G)) ≤ sr(G) < sr(G/B0(G)) + ε

otherwise.

Proof of Theorem 6.3.12:

This is the proof for the finite case. Let us denote B0 = B0(G) and G0 = G/B0.

Suppose that |G0| ≥ n0. We already have that sr(G) ≥ 1
r2

. By Lemma 6.3.14,

sr(G) ≤ sr(G0) and by Proposition 6.3.17,
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sr(G0) ≤ s+
r (G0) ≤

1

r2
+

2
√

3 ln (r|G0|) + 1√
|G0|

.

Since

2
√

3 ln (r|n0|) + 1
√
n0

< ε and |G0| ≥ n0

then

2
√

3 ln (r|G0|) + 1√
|G0|

< ε.

Now suppose that |G0| < n0. We already know that sr(G) ≤ sr(G) and by Lemma

6.3.15, sr(G) = sr(G0). Now by Proposition 6.3.16

sr(G) ≤ sr(G0) +
|G0|
|B0|

.

Since |G| ≥ n1

|B0| ≥
n1

|G0|
>
n1

n0

and so

|G0|
|B0|

<
n0
n1

n0

=
n2

0

n1

≤ ε.

�

Theorem 6.3.13 For every infinite compact Abelian group G,

sr(G) =


1

r2
if G/B0(G) is infinite

sr(G/B0(G)) otherwise.

Proof of Theorem 6.3.13:

This is the proof for the infinite case. Let us denote B0 = B0(G) and G0 = G/B0.

Suppose that |G0| is infinite. Then either G0 has arbitrarily big finite continuous ho-

momorphic images or T, the circle group, is a continuous homomorphic image of G0.

If G0 has arbitrarily big finite continuous homomorphic images then sr(G) = 1
r2

by

Lemma 6.3.14 and Proposition 6.3.17. If T is a continuous homomorphic image of
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G0 then sr(G) = 1
r2

by Lemma 6.3.14 and the fact that sr(T) = 1
r2

.

Now suppose that |G0| is finite. Again, we know that sr(G) ≤ sr(G). By Lemma

6.3.15, sr(G) = sr(G0). Since G0 is finite, B0 is infinite. For every finite Boolean

group B, G0×B is a continuous homomorphic image of G. Hence, by Lemma 6.3.14

and Proposition 6.3.16, sr(G) = sr(G0).

�
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