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Abstract

The importance of Orlicz spaces in the study of mathematics of finance came

to the for in the 2000’s when Frittelli and his collaborators connected the

theory of utility functions to Orlicz spaces. In this thesis, we look at how

Orlicz spaces play a role in financial mathematics. After giving an overview of

scalar-valued Orlicz spaces, we look at the first fundamental theorem of asset

pricing in an Orlicz space setting. We then give a brief summary of scalar risk

measures, followed by the representation result for convex risk measures on

Orlicz hearts. As an example of a risk measure, we take a detailed look at the

Wang transform both as a pricing mechanism and as a risk measure. As the

theory of financial mathematics is moving towards the set-valued setting, we

give a description of vector-valued Orlicz hearts and their duals using tensor

products. Lastly, we look at set-valued risk measures on Orlicz hearts, proving

a robust representation theorem via a tensor product approach.
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Chapter 1

Introduction

Mathematical finance is a subset of applied mathematics, that attempts to understand

and model the financial markets. Financial mathematics uses highly technical and abstract

branches of mathematics to explain very practical applications that affect peoples’ everyday

lives. The first to enter into this field was Louis Bachelier [9], with a discussion of the use

of Brownian motion to evaluate stock options. However, at the time, this contribution was

only of interest in academia. One of the first influential works of mathematical finance was

by Harry Markowitz, who looked at the theory of portfolio optimisation. Simultaneously,

William Sharpe developed the theory to determine the correlation between the stocks and

the market. For their pioneering work, Markowitz and Sharpe, along with Merton Miller,

shared the 1990 Nobel Memorial Prize in Economic Sciences - the first time awarded for work

in finance. Robert Merton and Paul Samuelson extended the then existing theory by re-

placing one-period models by continuous time, Brownian-motion models, and the quadratic

utility function by a general increasing, concave utility function. In 1973, Fischer Black and

Myron Scholes published their results on the modeling of financial markets with stochastic

models. They changed the way mathematics of finance was viewed and since then, research

in mathematics of finance has expanded significantly.

A large part of mathematics of finance is based on two theorems, called the fundamental

theorems of asset pricing. This name was first coined by P.H. Dybvig and S. Ross in 1987

[53]. These theorems link the concepts of no arbitrage and market completeness to the

theory of martingales.

The first fundamental theorem of asset pricing relates the principle of no arbitrage to the

existence of an equivalent martingale measure. The no arbitrage principle takes on various

forms, depending on, amongst other things, the completeness of the market and whether

1



2 Chapter 1 Introduction

the underlying asset is bounded or not. The definition of no arbitrage is relatively weak and

does not always imply the existence of an equivalent martingale measure. Hence, Kreps [107]

introduced the concept of no free lunch, followed by Delbaen and Schachermayer’s notion

of no free lunch with vanishing risk [39]. These concepts allow for the first fundamental

theorem of asset pricing to hold in a more general setting. The type of equivalent martingale

measure (e.g. local martingale, sigma-martingale, . . . ), that the first fundamental theorem

shows to exist, depends on the finiteness of the probability space, the boundedness and the

continuity of the price process and whether time is considered to be discrete or continuous.

The existence of an equivalent martingale measure in the market model is important,

as it is required to price derivatives. The price of a derivative is the discounted expected

value of the future payoff of the derivative under some risk-neutral measure.

The second fundamental theorem of asset pricing connects market completeness to the

uniqueness of the equivalent martingale measure. This theorem was first introduced by

Harrison and Kreps [81] for finite probability spaces. Due to an example by Artzner and

Heath [7], there was doubt whether the second fundamental theorem holds in general.

However, Jarrow, Jin and Madan [88] showed that modifying the definition of completeness

allows for the second fundamental theorem of asset pricing to hold in general.

In complete markets, the set of equivalent martingale measures consist of a unique el-

ement and hence, it is possible to get a perfect hedge that eliminates all the risk. Each

contingent claim has a unique, preference-independent price, which is consistent with no

arbitrage. In the real world, however, market frictions, for example transaction costs, non-

traded assets and portfolio constraints, create an incomplete market, where perfect replica-

tion is not possible. Therefore, there are infinitely many equivalent martingale measures,

resulting in a range of prices for each contingent claim, which are all consistent with no

arbitrage.

The problem then, is to determine a criterion for selecting one of the equivalent mar-

tingale measures. There are various ways to tackle this: the super replication method, the

use of a minimal distance criterion, convex risk measures or the maximisation of expected

utility.

In incomplete markets, there are claims that have an intrinsic component of risk, which

cannot be hedged. Therefore, it makes sense to look at the preference structure of the

investors in the market and introduce a description of the investor in terms of his utility

function. To use the utility maximisation approach, it is necessary to solve the stochastic

control problem of finding the optimal investment. There are two methods to find the

solution to the stochastic control problem. The first was developed by Merton [124], which
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reduces the problem to a partial differential equation (PDE) and solves it numerically.

However, these PDE’s are generally intractable if not virtually impossible to solve. The

theory was extended by Davis [34, 35], Hendersen and Hobson [85] and others. The second

method involves duality theory and stochastic calculus. It was first developed by Pliska [131]

in 1984 and has since been improved and generalised by numerous others, most notably by

Karatzas et al. [96] and Delbaen and Schachermayer [39, 40, 141].

Now, that a preference structure has been included in the valuation procedure, it is

only natural to look at including it in other concepts of mathematical finance. To make

this possible, it is necessary to look at a different mathematical setting. Instead of using

the popular Lp-space setting, where 0 ≤ p ≤ ∞, as has been done up until 2005, Biagini

and Frittelli [15] consider a generalisation of the Lp-space: an Orlicz space, named after

the Polish mathematician Wladyslaw Orlicz [128]. The utility function is used to generate

the Orlicz space, and this space with its dual is then used to define a preference-dependent

concept of no arbitrage and to prove a robust representation of convex risk measures.

Frittelli [64] uses the theory of Orlicz spaces to extend the concept of no free lunch to

the Orlicz space setting, introducing a new notion called no market free lunch*. He, then,

proves a new version of the first fundamental theorem of asset pricing, which states that no

market free lunch*, defined on the Orlicz space, is equivalent to the existence of a sigma-

martingale measure. For the proof of this theorem, it is necessary to adapt the minimax

theorem to an Orlicz space setting. The minimax theorem plays an important role in the

convex analysis of optimisation problems. In the financial setting it transforms the original

expected utility maximisation problem into its dual form, which in some cases is easier to

solve.

Now that we are looking at no arbitrage in an Orlicz space, it makes sense to look at risk

measures in this setting as well. It has always been important to look at and understand

the risks investors undertake when taking on certain financial positions. There are two

main classifications of monetary risk measures: static risk measures and dynamic risk mea-

sures, the difference being that dynamic risk measures are time-dependent. In the 1960’s

Markowitz introduced the notion of using variance and correlation coefficients to quantify

risk. As this is only accurate for elliptical distributions, Artzner et al. [6] presented an

axiomatic approach to define risk measures. Their risk measures, called coherent risk mea-

sures, have to be monotonic, translation invariant, positively homogeneous and subadditive.

Since risk does not necessarily increase in a linear manner, Heath [84] introduced convex risk

measures in a finite probability space, which was later independently generalised by Föllmer

and Schied [60] and Frittelli and Rosazza Gianin [62] to all probability spaces. Instead of
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the positive homogeneity and the subadditivity conditions, they require the risk measure

to be convex. Coherent risk measures are thus, special cases of convex risk measures.

Cheridito and Li [26] looked at risk measures on Orlicz hearts, proving a robust rep-

resentation for these risk measures. Their representation theorem is similar in form to

those obtained by Artzner et al. [6] and Föllmer and Schied [60], amongst others. Biagini

and Frittelli [16] proved a representation result for risk measures on Frechet lattices, which

generalises Cheridito and Li’s results. Orlicz spaces are examples of Frechet lattices.

In most of the literature, the risky portfolio under consideration is a given real-valued

random variable and the risk measure is a map into R. In other words, these risk measures

do not consider portfolio aggregation. In reality, however, investors have access to different

markets and form multi-asset portfolios. It is not always possible or desirable to transform

a multi-dimensional portfolio into a position in one financial market, i.e. the position cannot

be described by one real number. The reason for this could be transaction costs, liquidity

bounds, fluctuating exchange rates, etc.

Thus, we actually require a risk measure that takes values in Rd and gives us a value

in Rm, where m ≤ d. These m markets could, for example, be money market accounts in

different currencies. In other words, it is necessary to look at risk measures in a set-valued

setting.

Set-valued risk measures have gained in popularity over the past few years. Jouini et

al. [91] were among the first to introduce the set-valued coherent risk measures. Since then,

Hamel et al. [77, 78, 79] extended the approach of Jouini et al. to define set-valued convex

risk measures and Konstantinides and Kountzakis [101] used the ideas from Stoica [149]

and Jaschke and Küchler [89] to define a risk measure on partially ordered normed linear

spaces.

Hamel et al. [77, 78, 79] defined convex set valued risk measures on the space Lp(P,Rd)
of Bochner p-integrable functions with values in Rd. Their method for the case 1 ≤ p <∞
can be generalised to include spaces HΦ(P,Rd) of Rd-valued Orlicz hearts. In view of the

connection between utility functions and real-valued Orlicz spaces, as noted above, this

extension to Orlicz spaces may be of interest. We use tensor products of Banach lattices

and Banach spaces to generalise the results of Hamel et al. .

The thesis is set up as follows. For detailed information on the required results from

functional analysis, tensor product theory and convex analysis, the reader is referred to the

appendices. Chapter 2 considers scalar-valued Orlicz spaces. We define Young functions,

the Orlicz space and heart and look at two norms on these spaces. We, then, look at the dual

theory of and optimisation in Orlicz spaces. In Chapter 3, we look at the different variations
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of the definition of no arbitrage and the first fundamental theorem of asset pricing. We first

provide an overview, which can be found in [115]. Next, equivalent martingale measures in

Orlicz spaces are considered, before we look at Frittelli’s concept of no market free lunch.

Lastly, we look at how these concepts can be explained in an Orlicz space setting. In

particular, we look at the minimax theorem and Frittelli’s notion of no market free lunch*.

Then, in Chapter 4, we move on to risk measures. We give a brief history of the literature

and then look at Cheridito and Li’s representation theorem of risk measures on Orlicz hearts.

We end the chapter with some examples. Chapter 5 extends one of the examples given in

the previous chapter. It looks at Choquet pricing and gives as an example, a complete

description of the Wang transform, introduced by Wang [160] in 1997. The section on

pricing exotic options using the Wang transform is new (see [117]). We, then, compare the

Wang transform to the Esscher-Girsanov transform, the proof of which is new (see [113]).

To conclude this chapter, we look at comonotonic convex risk measures and how the Wang

transform can be used as a risk measure. Vector-valued Orlicz spaces and their duals are

then defined and characterised in Chapter 6. Except for the known results, stated for the

convenience of the reader, the material in this chapter is new and [114] is based on it. We

describe the vector-valued Orlicz heart in terms of a suitable tensor product. We use this

description to characterise martingale convergence in Banach space-valued Orlicz spaces

and also to describe the Radon-Nikodým property in such spaces. Lastly, in Chapter 7,

risk measures on vector-valued Orlicz hearts are considered. Except for the first section in

this chapter, almost everything is new (see [116]). We show that the results of Hamel et

al. [79] can be obtained via a tensor-product approach. In addition, by the tensor product

approach and using a result from Labuschagne and Offwood [114], we get a representation

of set-valued convex risk measures on vector-valued Orlicz hearts.



Chapter 2

Scalar-valued Orlicz spaces

Orlicz spaces are named after Wladyslaw Orlicz, who together with Zygmunt William Birn-

baum, introduced them (see [18, 128]). The theory of Orlicz spaces was further developed

in the 1930’s by Orlicz and subsequently by many other mathematicians. The develop-

ment of the theory and applications of Orlicz spaces was boosted by the works of Zaanen

[166] and Krasnoselskii and Rutickii [106]. It is now a mature theory with many important

applications (see [134] for more details).

Modern probability theory, which plays an important role in financial mathematics, is

generally based in an Lp-space setting. However, Lp-spaces are in some cases not broad

enough. To include utility functions into the theory of financial mathematics, one needs to

consider a generalisation of Lp-spaces: Orlicz spaces.

The importance of Orlicz spaces in the study of mathematics of finance came into the

spotlight in the 2000’s, when Frittelli and his collaborators connected the theory of utility

functions to Orlicz spaces (see [15, 16, 17, 65]). This will be explained in detail in Chapter

3.

In this chapter, we familiarise the reader with the theory of scalar-valued Orlicz spaces.

We first define the Orlicz space and the Orlicz heart. We then look at two norms, the

Luxemburg norm and the Orlicz norm, and give some of their properties. Duality and

optimisation in Orlicz spaces are also discussed. Most of this chapter is based on [54], [134]

and [167].

6



7 Chapter 2 Scalar-valued Orlicz spaces

2.1 Definition

Consider a σ-finite measure space (Ω,F , P ) and let p and q be such that 1 < p < ∞ and
1
p + 1

q = 1. Let u, v ≥ 0 and consider the function

Φ(u) =
up

p
.

The derivative of this function is given by φ(u) = up−1, the inverse of which is φ−1(v) =

v
1
p−1 = vq−1, which in turn is the derivative of the function Ψ(v) = vq

q . In other words,

the properties of the Lp-space and its Banach dual, the Lq-space, are closely related to the

functions up and vq.

These properties motivated W.H. Young (1912) to develop the following generalisation.

Instead of using φ(u) = up−1, define a non-decreasing, left-continuous function φ(u) for

u ≥ 0 such that φ(0) = 0 and φ(u) → ∞ as u → ∞. Let ψ(v) be the inverse function of

φ(u). Then, define

Φ(u) =

∫ u

0
φ(t) dt and Ψ(v) =

∫ v

0
ψ(t) dt,

where u, v ≥ 0. The functions Φ and Ψ are called Young functions or sometimes Orlicz

functions.

Definition 2.1.1. A Young function is a function Φ : [0,∞) → [0,∞] satisfying the fol-

lowing conditions:

(i) Φ(0) = 0,

(ii) Φ is left-continuous, i.e. lim
u↑x

Φ(u) = Φ(x),

(iii) Φ is non-decreasing,

(iv) Φ is convex and

(v) Φ is non-trivial, i.e. Φ(u) > 0 for some u > 0 and Φ(u) <∞ for some u > 0.

The convexity of the Young function Φ implies that Φ is continuous except possibly at

a single point, where it jumps to ∞. So condition (ii) is only required at that one point.

For the dual space of an Orlicz space, we require the definition and some properties

of complementary Young functions. Let v = φ(u), where u ≥ 0, be a non-decreasing, left-

continuous, real function such that φ(0) = 0 and φ does not vanish identically. Let u = ψ(v)

denote the generalised left continuous inverse of φ given by
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ψ(y) = inf{x ∈ (0,∞) : φ(x) ≥ y}.

This means that

• if φ is discontinuous at u = a, then ψ(v) = a for φ(a−) < v < φ(a+),

• if φ(u) = c for a < u ≤ b but φ(u) < c for u < a, then ψ(c) = a,

• if φ(u) has a finite limit l as u→∞, then ψ(v) =∞ for v > l , and

• ψ(0) = 0.

The above defined function ψ is non-decreasing and its generalised left-continuous in-

verse is given by φ. The functions, defined by

Φ(u) =

∫ u

0
φ(t) dt and Ψ(v) =

∫ v

0
ψ(t) dt for all u, v ≥ 0,

are called complementary Young functions.

This leads to an important theorem, linking the multiplication of the domain to a sum

in the range.

Theorem 2.1.2. (Young’s inequality) Let Φ and Ψ be complementary Young functions.

Then for all u, v ≥ 0, we have

uv ≤ Φ(u) + Ψ(v),

where equality is obtained if and only if v = φ(u) or u = ψ(v).

Corollary 2.1.3. For all u, v ≥ 0, we have

Φ(u) = max{uv −Ψ(v) : v ≥ 0},

ψ(v) = sup{uv − Φ(u) : u ≥ 0},

where the sup may be replaced by max if ψ(v) <∞.

Note that Φ(u)
u → ∞ as u → ∞ if and only if Φ(u) → ∞ as u → ∞ which in turn is

equivalent to Ψ(v) < ∞ for all v ≥ 0. If lim
u→∞

Φ(u) = l is finite, then, as defined before,

ψ(v) = Ψ(v) =∞ and we will say that Ψ jumps.

Using Young functions, we can define the Young class.
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Definition 2.1.4. The Young class YΦ(P ) = YΦ(Ω,F , P ) is the set of all P -measurable

functions f on Ω for which

MΦ(f) :=

∫
Ω

Φ(|f |) dP <∞.

The Young class YΨ(P ) is defined similarly. These sets of functions are called complementary

Young classes and MΦ is called the modular of f for Φ.

The convexity of Φ implies that MΦ is convex which in turn implies that the Young

class YΦ(P ) is a convex set.

In general Young classes fail to be vector spaces. Therefore, we need to consider a more

general set of functions.

Definition 2.1.5.

(i) The Orlicz space for Φ, denoted by LΦ(P ) = LΦ(Ω,F , P ), is the set of all measurable

functions f : Ω → R such that MΦ(fa ) < ∞ for some a > 0. The space LΨ(P ) is

defined similarly.

(ii) The heart of the Orlicz space, denoted by HΦ(P ) = HΦ(Ω,F , P ), is the set of all

measurable functions f : Ω → R such that MΦ(fa ) < ∞ for all a > 0. The space

HΨ(P ) is defined similarly.

The spaces LΦ(P ) and LΨ(P ) are ideals in L0(P ), as is readily verified, and are therefore

Dedekind complete Riesz spaces. The spaces LΦ(P ) and LΨ(P ) are called complementary

Orlicz spaces. Both Orlicz [128] and W.A.J. Luxemburg [120] introduced norms on these

spaces. Although these norms are different, they are equivalent. We will first focus on the

Luxemburg norm.

Definition 2.1.6. The Luxemburg norm of a measurable function f ∈ LΦ(P ) is defined by

NΦ(f) = inf{a > 0 : MΦ

(f
a

)
≤ 1}.

Theorem 2.1.7. The Luxemburg norm is a Riesz norm in LΦ(P ).

See [167] for a proof of this theorem.

Note that if f ∈ LΦ(P ), then MΦ( fn) < ∞ for some integer n. But |f |n → 0 a.e. as

n → ∞, so Φ( |f |n ) → 0 a.e.. By the dominated convergence theorem, MΦ( fn) ≤ 1 for some

n and NΦ(f) < ∞. Conversely, if NΦ(f) < ∞, then clearly f ∈ LΦ(P ). Hence, another
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description of LΦ(P ) is the set of all f with NΦ(f) < ∞. This looks very similar to the

definition of an Lp-space.

Theorem 2.1.8.

(i) If 0 ≤ NΦ(f) <∞, then MΦ( f
NΦ(f)) ≤ 1 .

(ii) If NΦ(f) ≤ 1, then MΦ(f) ≤ NΦ(f) ≤ 1.

(iii) If NΦ(f) > 1, then MΦ(f) ≥ NΦ(f) > 1.

Combining (ii) and (iii), we get that in LΦ(P ), NΦ(f) ≤ 1 if and only if MΦ(f) ≤ 1 (see

[167]).

Theorem 2.1.9.

(i) The set LΦ(P ) is a Banach lattice.

(ii) The set HΦ(P ) is a closed vector subspace of LΦ(P ) and HΦ(P ) ⊆ YΦ(P ) ⊆ LΦ(P ).

(iii) If (fn) ⊆ LΦ(P ) is an increasing nonnegative sequence with NΦ(fn) ≤ 1 for all n,

then the pointwise limit f = lim fn belongs to LΦ(P ) and NΦ(f) ≤ 1.

HΦ(P ) has some properties that LΦ(P ) generally does not have.

Theorem 2.1.10. Let Φ be a finite Young function.

(i) HΦ(P ) has an order continuous norm.

(ii) HΦ(P ) is the closure in LΦ(P ) of the integrable simple functions.

Moreover, HΦ([0, 1]) is separable.

Due to these properties, it is generally easier to work with HΦ(P ) than LΦ(P ).

2.2 Comparing Orlicz spaces with Lp-spaces

As mentioned earlier, Lp-spaces are special cases of Orlicz spaces. Let p be given with

1 ≤ p <∞. Then

Φp(x) =
xp

p
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is a Young function with conjugate Φq, where 1
p + 1

q = 1. Clearly, the Orlicz space LΦp(P )

and its heart HΦp(P ) are both equal to Lp(P ). The Luxemburg norm, however, is given by

NΦp(f) =
1

p
1
p

‖f‖p .

The following two propositions show how Orlicz spaces compare to L1(P ) and L∞(P ).

Proposition 2.2.1. Let Φ be a Young function. If Φ(u) = ∞ for some u, then LΦ(P ) ⊆
L∞(P ) and HΦ(P ) = {0}.

Proof. Suppose Φ(u0) = ∞ and let f ∈ LΦ(P ). Then MΦ(fa ) < ∞ for some a > 0. This

implies that |f |a < u0 a.e. and hence, f ∈ L∞(P ).

If we take f ∈ HΦ(P ), then MΦ(fa ) < ∞ for all a > 0, which implies |f | ≤ au0 a.e. for

all a > 0. In particular, |f | ≤ nu0 for all n ∈ N. As L0(P ) is an Archimedean Riesz space,

|f | = 0, i.e. f = 0.

Proposition 2.2.2. If (Ω,F , P ) is a probability space, then

L∞(P ) ↪→ LΦ(P ) ↪→ L1(P ),

i.e. then there exists constants c, k ∈ R such that NΦ(f) ≤ k ‖f‖∞ for all f ∈ L∞(P ) and

‖f‖1 ≤ cNΦ(f) for all f ∈ LΦ(P ).

Proof. Let f ∈ L∞(P ). Then there exists k ∈ N such that |f | ≤ k1 a.e., where 1(ω) = 1

a.e. for all ω ∈ Ω. Let l > 0 such that Φ(l) <∞. Then |f |
k/l ≤ l1 a.e. and∫

Ω
Φ
( |f |
k/l

)
dP ≤

∫
Ω

Φ(l) dP ≤ Φ(l)P (Ω) = Φ(l) <∞.

Hence, f ∈ LΦ(P ).

For the second part, choose an a > 0 with Φ(a) > 0 and b with 0 < b ≤ Φ(a). Consider

the graphs of the Orlicz function y = Φ(x) and the straight line y = Φ(a)
a x. By the convexity

of Φ, we have for u ≥ a that Φ(u) ≥ Φ(a)
a u. As b < Φ(a), it follows that Φ(a)

a u ≥ b
au. Hence

Φ(u) ≥ b
au. Let C = a

b + a. Now, if f ∈ LΦ(P ), let r = NΦ(f) and compute

1

r

∫
|f | dP =

∫
{|f |≥ar}

|f |
r
dP +

∫
{|f |<ar}

|f |
r
dP

≤ a

b

∫
Φ
( |f |
r

)
dP + aP (Ω)

≤ a

b
+ a = C.

That is, ‖f‖1 ≤ Cr = CNΦ(f).
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2.3 The ∆2-condition

In this section, we define the condition that results in LΦ(P ) = HΦ(P ).

Definition 2.3.1. The Young function Φ is said to satisfy a ∆2-condition if there exists a

constant M > 0 such that

Φ(2u) ≤MΦ(u) for all u ≥ 0.

If there exists a u0 > 0 such that the above holds for all u ≥ u0, then Φ is said to satisfy a

∆2-condition for large u.

This ∆2-condition is a sufficient condition for YΦ(P ) to be a vector space.

Theorem 2.3.2. If Φ satisfies the ∆2-condition, then YΦ(P ) is a vector space. If Ω is of

finite measure and Φ satisfies ∆2-condition for large u, then YΦ(P ) is a vector space.

Theorem 2.3.3. If Φ satisfies the ∆2-condition, then LΦ(P ) = HΦ(P ).

Corollary 2.3.4. Let Φ be a strictly positive Young function satisfying the ∆2-condition.

Then the following statements hold:

(i) Integrable simple functions are dense in LΦ(P ).

(ii) If (fn) is an increasing sequence in LΦ(P ) and supNΦ(fn) <∞, then (fn) converges

in norm.

(iii) Modular convergence is equivalent to norm convergence in LΦ(P ), i.e. NΦ(f−fn)→ 0

if and only if MΦ(f − fn)→ 0.

Moreover, LΦ([0, 1]) is separable.

2.4 The Orlicz norm

Proposition 2.4.1. Let Φ and Ψ be complementary Young functions. If f ∈ LΦ(P ) and

g ∈ LΨ(P ), then the product fg is integrable and∫
|fg| dP < 2NΦ(f)NΨ(g).

As mentioned before, Luxemburg, as well as Orlicz, introduced norms on the Orlicz

space. We will now define the Orlicz norm.
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Definition 2.4.2. The Orlicz norm of g ∈ LΨ(P ) is defined as the norm of the bounded

linear functions:

‖g‖Ψ = sup
{∣∣∣ ∫ fg dP

∣∣∣ : f ∈ LΦ(P ),NΦ(f) ≤ 1
}

= sup
{∣∣∣ ∫ fg dP

∣∣∣ : MΦ(f) ≤ 1
}
.

The next proposition shows some simple variants of the definition of the Orlicz norm.

Proposition 2.4.3. Let g ∈ LΨ(P ). Then

(i)

‖g‖Ψ = sup
{∫
|fg| dP : f ∈ LΦ(P ), NΦ(f) ≤ 1

}
.

(ii)

‖g‖Ψ = sup
{∫
|fg| dP : f integrable simple, NΦ(f) ≤ 1

}
.

(iii) If Φ is finite, then

‖g‖Ψ = sup
{∫
|fg|dP : f ∈ HΦ(P ), NΦ(f) ≤ 1

}
.

The Orlicz space LΦ(P ) carries two equivalent norms, that will be used in this thesis.

The first one is the Luxemburg norm, given by

NΦ(f) = inf{k : k > 0,

∫
Φ
( |f |
k

)
dP ≤ 1},

and the second one is the Orlicz norm, given by

‖f‖Φ = sup{
∫
|fg|dP : g ∈ LΨ(P ),NΨ(g) ≤ 1}.

An important relationship between the Orlicz norm and the Luxemburg norm, as well

as the relationship between the Orlicz norm and the modular, are shown in the following

theorem.

Theorem 2.4.4. Let g ∈ LΨ(P ). Then

(i) NΨ(g) ≤ ‖g‖Ψ ≤ 2NΨ(g), i.e. the Luxemburg norm NΨ and the Orlicz norm ‖·‖Ψ are

equivalent.

(ii) ‖g‖Ψ ≤ 1 +MΨ(g).
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2.5 Duality for Orlicz spaces

Remark 2.5.1. Since Orlicz spaces are Banach lattices, we know from Theorem A.4.4 that

the Banach dual and the order dual coincide, i.e. (LΦ(P ))∗ = (LΦ(P ))∼ and therefore so do

the bands (LΦ(P ))∼c and (LΦ(P ))∗c of order continuous elements in (LΦ(P ))∼ and (LΦ(P ))∗.

Added to this, it is known, (see [167]), that in an Orlicz space LΦ(P ), the spaces of order

continuous and σ-order continuous functions coincide, i.e.

(LΦ(P ))∼n = (LΦ(P ))∼c .

Therefore, using Theorem A.2.5, we can decompose the Banach dual of the Orlicz space

LΦ(P ) into the following:

(LΦ(P ))∗ = (LΦ(P ))∗c ⊕ (LΦ(P ))∗s.

From the theory of Banach function spaces, (LΦ(P ))∗c = (LΦ(P ))∼c is known as the

associate space of LΦ(P ) and we will denote it by L′Φ(P ). The proofs of the following three

theorems can be found in [167].

Theorem 2.5.2. The space LΦ(P ) and the associate space L′Ψ(P ) of LΨ(P ) contain the

same functions, i.e. L′Ψ(P ) = (LΨ(P ))∼c = LΦ(P ). Similarly, the space LΨ(P ) and the

associate space L′Φ(P ) of LΦ(P ) contain the same functions.

Theorem 2.5.3. If LΦ(P ) is equipped with the Luxemburg norm, then its associate space is

LΨ(P ) with the Orlicz norm. If LΦ(P ) is equipped with the Orlicz norm, then its associate

space is LΨ(P ) with the Luxemburg norm. Similar facts hold if Φ and Ψ are interchanged.

Hence, the second associate space of LΦ(P ) with either the Luxemburg or the Orlicz norm

is again LΦ(P ) with the same norm. Similarly for LΨ(P ).

Theorem 2.5.4. Let Φ and Ψ be finite complementary Young functions with Φ continuous

and let (Ω,F , P ) be a σ-finite measure space. Then (HΦ(P ))∗ = LΨ(P ) and for each

x∗ ∈ (HΨ(P ))∗, there is a unique gx∗ ∈ LΦ(P ) such that

x∗(f) =

∫
Ω
fgx∗ dP , f ∈ HΦ(P ),

‖x∗‖ = sup{|x∗(f)| : NΦ(f) ≤ 1, f ∈ HΦ(P )} = ‖gx∗‖Ψ ,

‖x∗‖′ = sup{|x∗(f)| : ‖f‖Φ ≤ 1, f ∈ HΦ(P )} = NΨ(gx∗).

Thus ‖x∗‖ and ‖x∗‖′ are equivalent norms for (HΦ(P ))∗.
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Note that we can equivalently write the norm of x∗ ∈ (HΦ(P ))∗ as

‖x∗‖ = sup{|x∗(f)| : MΦ(f) ≤ 1, f ∈ HΦ(P )},

using the remark after Theorem 2.1.8.

Corollary 2.5.5. Suppose Φ and Ψ are finite complementary Young functions. If Ψ sat-

isfies the ∆2-condition, then the Banach dual of LΨ(P ) is LΦ(P ). If Φ satisfies the ∆2-

condition, then the bidual of HΨ(P ) is LΨ(P ). If both Ψ and Φ satisfy the ∆2-condition,

then LΦ(P ) and LΨ(P ) are reflexive, i.e. LΦ(P ) = (LΦ(P ))∗∗ and LΨ(P ) = (LΨ(P ))∗∗.

The next theorem is an important result, which shows that Orlicz spaces are in fact

semi-M-spaces (see Appendix A.5 for more details on semi-M-spaces).

Theorem 2.5.6. The Orlicz space LΦ(P ) is a semi-M-space.

Proof. [167, Theorem 133.6] As before, the Luxemburg norm and the Orlicz norm of LΦ(P )

are denoted by NΦ and ‖·‖Φ respectively. By Theorem 2.4.4, we have NΦ(f) ≤ ‖f‖Φ and

‖f‖Φ ≤ 1 + MΦ(f) for every f ∈ LΦ(P ). Hence, NΦ(f) ≤ 1 + MΦ(f). Assume that

nonnegative functions u1 and u2 are given such that NΦ(u1) = NΦ(u2) = 1. Thus, by

Theorem 2.1.8, we have MΦ(u1) ≤ 1 and MΦ(u2) ≤ 1. Let (vn) be a sequence of functions

in LΦ(P ) such that u1 ∨ u2 ≥ vn ↓ 0 and let u = u1 ∨ u2. The function u is equal to u1 on

a certain subset A of Ω and equal to u2 on the complementary subset Ac. Hence,

MΦ(u) =

∫
Ω

Φ[u(x)]dP

=

∫
A

Φ[u1(x)]dP +

∫
Ac

Φ[u2(x)]dP

≤MΦ(u1) +MΦ(u2)

≤ 2.

Since u ≥ vn ↓ 0, we have by the continuity of Φ that Φ[vn(x)] ↓ 0 for almost every x ∈ Ω

and therefore MΦ(vn) ↓ 0. Following from this, we have that

lim
n→∞

NΦ(vn) ≤ 1 + lim
n→∞

MΦ(vn) = 1.

This shows that LΦ(P ) is a semi-M-space.

The next result is a consequence of Theorem A.5.3.

Corollary 2.5.7. The disjoint complement of the set of all σ-order continuous linear func-

tions (LΦ(P ))∗s is an AL-space.
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T. Ando [1] was the first to prove that for an Orlicz space LΦ(P ), the space (LΦ(P ))∗s

is an AL-space.

Now that we have classified the dual space of an Orlicz space, we can look at decomposing

it. Denote the annihilator of HΦ(P ) by (HΦ(P ))annh, which by definition is the set of

elements of (LΦ(P ))∗ that vanish on HΦ(P ), i.e.

(HΦ(P ))annh = {z ∈ (LΦ(P ))∗ : z(f) = 0 for all f ∈ HΦ(P )}.

We could not find a proof for the following result in the literature. The proof presented

here is due to the author.

Theorem 2.5.8. If Φ is continuous and finite, then

(LΦ(P ))∗ = (HΦ(P ))∗ ⊕ (HΦ(P ))annh.

Proof. Using Remark 2.5.1, we can decompose (LΦ(P ))∗ into

(LΦ(P ))∗ = (LΦ(P ))∗c ⊕ (LΦ(P ))∗s.

By Theorem 2.5.2 and Theorem 2.5.4, we have that (Lφ(P ))∗c = (HΦ(P ))∗.

It remains to show that (LΦ(P ))∗s = (HΦ(P ))annh. Let γ ∈ (HΦ(P ))annh. By the

definition of (HΦ(P ))annh, we have that γ ∈ (LΦ(P ))∗. Thus, we can write γ = γc + γs,

where γc ∈ (LΦ(P ))∗c and γs ∈ (LΦ(P ))∗s. Then, for all h ∈ HΦ(P ), γ(h) = γc(h) + γs(h),

where γ(h) = 0 by definition and γc and γs are disjoint. Hence, γc = −γs on HΦ(P ). This

implies that γs ∈ (LΦ(P ))∗c = (HΦ(P ))∗. However, (LΦ(P ))∗c and (LΦ(P ))∗s are disjoint

and so we must have γs = 0 on HΦ(P ). Hence, γc = 0 on HΦ(P ). Thus, we can write

γ = γs ∈ (LΦ(P ))∗s, i.e. (HΦ(P ))annh ⊆ (LΦ(P ))∗s.

Let g ∈ (LΦ(P ))∗s. Since (LΦ(P ))∗s is a band projection, there exists a projection

Ps : (LΦ(P ))∗ → (LΦ(P ))∗s. By the surjective property of this projection, there exists

h ∈ (LΦ(P ))∗ such that Ps(h) = g. There also exists a band projection Pc : (LΦ(P ))∗ →
(LΦ(P ))∗c = (HΦ(P ))∗ such that h = Pch + Psh = Pch + g. Hence, if x ∈ HΦ(P ), then

h(x) = Pch(x), i.e. (h − Pch)(x) = 0. But (h − Pch)(x) = Psh(x) = g(x) = 0. Thus

g ∈ (HΦ(P ))annh and (LΦ(P ))∗s ⊆ (HΦ(P ))annh.

Remark 2.5.9. It can be shown, without the use of Theorem A.2.5, that (HΦ(P ))annh is

norm and order isomorphic to (LΦ(P )/HΦ(P ))∗. See [134] for more details.

To conclude this section, we will look at some simple but interesting examples of Orlicz

spaces. The following examples also show how the choice of Young function influences where

the Lp-spaces fit into the Orlicz space setting.
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Example 2.5.10. (These examples are taken from [26]).

1. For Φ(x) = x, we have

Ψ(y) =

{
0 for y ≤ 1

∞ for y > 1

and

HΦ(P ) = LΦ(P ) = L1(P ), NΦ(·) = ‖·‖1 , LΨ(P ) = L∞(P ), ‖·‖Ψ = ‖·‖∞ .

2. If Φ(x) = xp for 1 < p <∞, then Ψ(y) = p1−qq−1yq, and we have

HΦ(P ) = LΦ(P ) = Lp(P ), NΦ(·) = ‖·‖p , LΨ(P ) = Lq(P ), ‖·‖Ψ = ‖·‖q .

3. If Φ(x) = eλx − 1 for λ > 0, then

Ψ(y) =

{
0 for y ≤ λ
y
λ log( yλ)− y

λ + 1 for y > λ

and L∞(P ) ⊆ HΦ(P ) ⊆ Lp(P ) ⊆ LΨ(P ) ⊆ L1(P ) for all 1 < p <∞.

2.6 Optimisation in Orlicz spaces

The Orlicz space duality can be used to solve some optimisation problems. One such prob-

lem will be discussed in detail in Chapter 3. For more details regarding convex optimisation,

the reader is referred to Appendix C.

Let (Φ,Ψ) be complementary Young functions and consider their Orlicz spaces LΦ(P )

and LΨ(P ). If F : R→ [−∞,∞] and F ∗ : R→ [−∞,∞] are lower semi-continuous, convex

and not identically equal to ∞, then

KF (x) = E[F (x)], for all x ∈ HΦ(P )

and

KF ∗(x
∗) = E[F ∗(x∗)], for all x∗ ∈ LΨ(P )

define convex functions KF : HΦ(P )→ [−∞,∞] and KF ∗ : LΨ(P )→ [−∞,∞] respectively.

The question that arises is: If F and F ∗ are conjugates, are KF and KF ∗ conjugates? Both

Rockafellar [135] and Kozek [103] showed that this is true, Rockafellar solved it for Lp-spaces

and Kozek for Orlicz spaces. They both, however, addressed it in more generality. For the

details, see the above mentioned references.
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Theorem 2.6.1. Let (Φ,Ψ) be complementary Young functions. Let F : R → [−∞,∞]

and F ∗ : R→ [−∞,∞] be lower semi-continuous convex functions, which are not identically

equal to ∞. If F and F ∗ are conjugates, then KF and KF ∗ are conjugate to each other.

The next theorem is required to prove the minimax theorem, stated and proved later in

the thesis.

Theorem 2.6.2. Let (Φ,Ψ) be complementary Young functions. Let F : R → [−∞,∞]

and F ∗ : R→ [−∞,∞] be lower semi-continuous convex functions, which are not identically

equal to ∞. If F and F ∗ are conjugates, then the conjugate of KF is given by

(KF )∗(x∗) = KF ∗(x
∗
c) + sup{x∗s(x) : x ∈ C},

where x∗ = x∗c + x∗s is the decomposition of x∗ into its σ-order continuous part, x∗c , and its

singular part, x∗s, and C = dom(KF ).

2.7 Conditional expectations on Orlicz spaces

To be able to use Orlicz spaces in place of Lp-spaces, we need to define conditional expec-

tations on Orlicz spaces. If (Ω,F , P ) is a probability space and Φ : [0,∞) → [0,∞] is a

Young function, it was noted earlier that

L∞(P ) ↪→ LΦ(P ) ↪→ L1(P ).

Theorem 2.7.1. Let (Ω,F , P ) be a probability space, F1 a sub σ-algebra of F and Φ :

[0,∞)→ [0,∞] a Young function. Then the restriction of E[ · |F1] : L1(F , P )→ L1(F1, P )

to LΦ(P ), again denoted by E[ · |F1], is a map E[ · |F1] : LΦ(F , P ) → LΦ(F1, P ) such that

‖E[ · |F1] ‖ = 1. A similar statement holds if LΦ(P ) is replaced by HΦ(P ).

Proof. Let f ∈ LΦ(P ). Consider the convex function φ = Φ ◦ | · |. By Jensen’s inequality

Φ
(∣∣E[f |F1]

∣∣) = φ
(
E[f |F1]

)
≤ E[φ(f)|F1] = E

[
Φ(|f |)

∣∣F1

]
a.s.. But then

MΦ

(
E[f |F1]

)
=

∫
Ω

Φ
(∣∣E[f |F1]

∣∣)dP ≤ ∫
Ω
E
[
Φ(|f |)

∣∣F1

]
dP = MΦ(f).

Consequently, E[f |F1] ∈ LΦ(P ). It also follows from

NΦ(f) ≤ 1 ⇒ MΦ(f) ≤ NΦ(f) ≤ 1

⇒ MΦ

(
E[f |F1]

)
≤ 1

⇒ NΦ

(
E[f |F1]

)
≤ 1,
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that NΦ(E[f |F1]) ≤ NΦ(f). The latter implies that ‖E[ · |F1]‖ ≤ 1. However, as E[ · |F1] is

a projection, we must have that ‖E[ · |F1]‖ ≥ 1. Thus ‖E[ · |F1]‖ = 1.



Chapter 3

No free lunch in Orlicz spaces

The concept of the first fundamental theorem of asset pricing plays a very important role

in mathematical finance. There are various versions of this fundamental theorem, but all

come down to a similar form: The absence of some form of arbitrage is equivalent to the

existence of an ‘equivalent martingale measure’ for the stochastic processes representing

the discounted prices of the financial securities in the market. Section 3.1 gives part of the

history of the first fundamental theorem of asset pricing.

In Section 3.2, we take a look at equivalent martingale measures in an Orlicz space

setting.

In an incomplete market, the pricing of contingent claims can be done via various

techniques, one of which is by considering the preference structure of the investor. In other

words, utility functions are used to measure an investor’s preference for wealth and how

much risk they are willing to undertake to gain more wealth. It, thus, makes sense to look

at how this preference structure can be included into the first fundamental theorem. In this

regard, Frittelli [63] introduced a concept, which he called ‘no market free lunch’. This will

be defined in Section 3.4 and we give the relationship between Frittelli’s concept and the

original definitions of no arbitrage. Frittelli shows that there exists an equivalent separating

measure if and only if there is no market free lunch with respect to monotone concave utility

functions.

However, no market free lunch is only equivalent to the existence of a separating mea-

sure. To find a condition, that includes the preference structure, and is equivalent to the

existence of a sigma-martingale measure, Frittelli [64] introduces the concept of ‘no market

free lunch*’. He then uses Orlicz space theory and utility maximisation to show that it is

equivalent to the existence of a sigma-martingale measure. This is discussed in Section 3.5.

20
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3.1 No free lunch

This section is based on [41], see also [115].

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space, where we assume that the fil-

tration satisfies the usual conditions of right continuity and completeness, as defined in

Appendix A. The variable T denotes a fixed time horizon, which can take on the value

∞. The Rd-valued càdlàg (see Definition A.6.2) semimartingale S = (St)t∈[0,T ], where

St = {S1
t , S

2
t , . . . , S

d
t }, represents the discounted price process of d tradeable assets. Let P

be the set of all probability measures equivalent to P .

The investor has an initial endowment of x and there are no restrictions on the quan-

tities he can buy, sell or short sell. A predictable process H = (Ht)t∈[0,T ], where Ht =

{H1
t , H

2
t , . . . ,H

d
t }, gives the amounts invested in each tradeable asset respectively.

We denote by
∫ t

0 Hs · dSs the Itô integral of Ht with respect to St.

Definition 3.1.1. An Rd-valued S-integrable predictable process H is called admissible if

there exists a constant c such that for all t ∈ [0, T ],

(H · S)t =

∫ t

0
Hs · dSs ≥ c P -a.s..

We denote the set of all admissible processes by

H1 = {H ∈ P(S) : (H · S)t ≥ −c for all t ∈ [0, T ] and for some c > 0},

where P(S) denotes the set of predictable and S-integrable processes.

The financial interpretation of c is a finite credit line, which the investor must respect in

his trading. This lower bound on the investors losses, allows (H ·S)∞ to exist and bans so-

called doubling strategies, where the losses are not bounded below. This restriction traces

back to Harrison and Pliska [82], and is now a standard assumption in the literature. This

also implies that any wealth process XT = x+
∫ T

0 Hs · dSs is bounded below.

Set

K = {(H · S)T : H ∈ H1}

and

C = (K − L+
0 (P )) ∩ L∞(P )

= {f ∈ L∞(P ) : f ≤ g for some g ∈ K}.

The set K represents the cone of all claims that are replicable at zero cost via admissible

trading strategies. The set (K − L+
0 (P )), defined by

(K − L+
0 (P )) = {f ∈ L0(P ) : f ≤ g P -a.s. for some g ∈ K},
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is the cone of all claims in L0(P ) that can be dominated by a replicable claim. In other

words, it is the cone of super-replicable claims and consequently, C is the cone of bounded

super-replicable claims. A contingent claim g ∈ L∞(P ) is super-replicable at price 0 if we

can achieve some other contingent claim f , f ≥ g, with zero net investment by pursuing

some predictable trading strategy H. Thus it might be necessary to ‘throw away money’

to arrive at g (also known as ‘free disposal’).

The notion of separating measures, which will be defined next, was introduced by Bellini

and Frittelli [11].

Definition 3.1.2. A P -absolutely continuous probability measure Q is called a separating

measure if K ⊆ L1(Ω,F , Q) and EQ[k] ≤ 0 for all k ∈ K. It is called an equivalent separating

measure if in addition Q ∈ P. We denote the set of separating measures by M.

The set M of separating measures can also be written as

M = {Q << P : EQ[w] ≤ 0 for all w ∈ C}.

If S is bounded (resp. locally bounded), then M reduces to

M = {Q << P : S is a Q-martingale (resp. local martingale)}.

Generally, if M 6= ∅, then the set of sigma-martingale measures Mσ(S) 6= ∅ and the

L1(P )-norm closure of Mσ(S) is equal to M. See Appendix A for more details on sigma-

martingales.

The ability to price a contingent claim is based on the first fundamental theorem of

asset pricing. The first fundamental theorem of asset pricing essentially states that the

existence of an equivalent separating measure is equivalent to a properly defined condition

of no arbitrage or no free lunch. The different notions of no arbitrage depend on different

closures of C.

Definition 3.1.3. A semimartingale S satisfies the condition of no arbitrage (NA) if

K ∩ L+
0 (P ) = {0},

or equivalently

C ∩ L+
∞(P ) = {0}.

The NA property has an obvious interpretation: the terminal payoffs cannot be positive

for all admissible trading strategies as this implies that the investor will make a profit with

probability 1, i.e. he makes a profit without taking on any risk. This cannot be allowed.
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Harrison and Pliska proved that for a finite probability space and a discrete time filtra-

tion, we have NA equivalent to the existence of an equivalent martingale measure. Dalang,

Morton and Willinger extended this to infinite probability spaces.

In continuous time, the no arbitrage condition is too weak to imply the existence of

an equivalent martingale measure. Kreps realised that the purely algebraic notion of no

arbitrage has to be complemented with a topological notion. Thus, he introduced the notion

of no free lunch.

Definition 3.1.4. A semimartingale S satisfies the condition of no free lunch (NFL) if

C
∗ ∩ L+

∞(P ) = {0},

where C
∗

denotes the weak-star closure of C.

The process S admits a free lunch, if there exists a random variable f ∈ L+
∞(P )\{0} and

a net (fα)α∈I = (gα−hα)α∈I such that gα =
∫ T

0 Hα
t dSt, for some admissible trading strategy

Hα, hα ≥ 0 and (fα)α∈I converges to f in the weak-star topology of L∞(P ). Economically,

this implies that although f itself is not allowed to be of the form
∫ T

0 Ht dSt, for some

admissible H (this would be an arbitrage), it is required that f can be approximated by fα

in a suitable topology. In this approximation, people are allowed to ‘throw money away’,

which is represented by the hα.

Kreps then proved the following theorem. He used a separability assumption in his

proof, which is not necessary, as Yan [165] showed. Hence, Delbaen and Schachermayer

named the theorem after both these authors.

Theorem 3.1.5 (Kreps-Yan theorem). A locally bounded stochastic process S satisfies the

condition of no free lunch if and only if there exists an equivalent local martingale measure.

Delbaen and Schachermayer found the economic interpretation of NFL problematic, as

there is no control on the maximal loss obtained when using the trading strategy that gives

the gain of gα. They asked themselves the following [41]:

(i) Can we find a requirement being closer to the original notion of NA and such that a

version of the fundamental theorem of asset pricing still holds?

(ii) Can the weak∗ topology be replaced by a finer topology?

(iii) Is it possible to replace the net (fα)α∈I by a sequence (fn)∞n=0?

(iv) Is it really necessary to allow for the ‘throwing away of money’?
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Added to the above drawbacks, if the semimartingale is not locally bounded, the Kreps-

Yan theorem no longer holds. Hence, Delbaen introduced no free lunch with bounded risk,

followed shortly by Delbaen and Schachermayer’s [39, 40] introduction of the notion of no

free lunch with vanishing risk.

Definition 3.1.6. A semimartingale S satisfies the condition of no free lunch with bounded

risk (NFLBR) if

C̃ ∩ L+
∞(P ) = {0},

where C̃ is the set of all limits of weak-star converging sequences of elements of C.

The process (St) satisfies NFLBR if and only if there does not exist a (0,∞]-valued

random variable f and a sequence (fn) ⊆ K such that fn ≥ −1 for all n ∈ N and lim
n→∞

fn = f

P -a.e.. An arbitrageur knows that in any case he can at most lose one unit of money, while

as n increases, the net gain fn becomes pointwise arbitrarily close to f .

Shortly thereafter, Delbaen and Schachermayer introduced no free lunch with vanishing

risk.

Definition 3.1.7. A semimartingale S satisfies the condition of no free lunch with vanishing

risk (NFLVR) if

C ∩ L+
∞(P ) = {0},

where C denotes the closure of C with respect to the norm topology of L∞(P ).

In NFLVR, the weak star topology is replaced by the topology of uniform convergence.

Now S allows for a free lunch with vanishing risk, if there exists f ∈ L+
∞(P )\{0} and

sequences (fn)∞n=0 = ((Hn · S)∞)∞n=0 ∈ K, where (Hn)∞n=0 is a sequence of admissible

integrands, and (gn)∞n=0 satisfying gn ≤ fn, such that

lim
n→∞

‖f − gn‖∞ = 0.

The term vanishing risk is explained by the fact that the negative parts ((fn)−)∞n=0 and

((gn)−)∞n=0 tend to zero uniformly.

With this new concept of NFLVR and the notion of sigma-martingales, Delbaen and

Schachermayer proved the fundamental theorem of asset pricing for the most general semi-

martingale market model.

Theorem 3.1.8. For any semimartingale S, the following are equivalent:

(i) S satisfies NFLVR,
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(ii) Mσ(S) ∩ P 6= ∅.

As C ⊆ C ⊆ C̃ ⊆ C
∗
, we have that NFL ⇒ NFLBR ⇒ NFLVR ⇒ NA. Surprisingly,

we actually have that NFL ⇔ NFLBR ⇔ NFLVR. This is due to the following theorem,

proved by Kabanov [93].

Theorem 3.1.9. Under NFLVR, C = C
∗
.

3.2 Equivalent martingale measures on Orlicz hearts

The existence of an equivalent martingale measure is of vital importance in mathematics

of finance, as it is required to price financial instruments in a risk neutral setting. In

this section, we show the necessary and sufficient conditions to ensure the existence of an

equivalent martingale measure on an Orlicz heart.

3.2.1 Yan’s theorem in Banach lattices

If E is a Banach lattice and e ∈ E+, let

Ee :=
⋃
n∈N

[−ne, ne],

where

[u, v] := {x ∈ E : u ≤ x ≤ v} for all u, v ∈ E.

Let

pe(x) = inf{λ > 0 : x ∈ [−λe, λe]} for all x ∈ Ee.

It is well-known that pe is an M -norm on Ee. If Ee = E, then e is called a quasi-interior

point of E, where Ee denotes the norm closure of Ee in E.

The following theorem by Nagel [125, 126] is based on Kakutani’s M -space and L-space

characterizations (see Kakutani [94, 95]).

Theorem 3.2.1. Let E be a Banach lattice with order continuous norm and with a quasi-

interior point e ∈ E+. Then, there exists a probability space (Ω,F , P ) such that

L∞(P ) ↪→ E ↪→ L1(P ) and L∞(P ) ↪→ E∗ ↪→ L1(P ),

where L∞(P ) and E are dense order-ideals in E and L1(P ) respectively, and L∞(P ) and

E∗ are dense order-ideals in E∗ and L1(P ) respectively, where the duality is given by

〈x, x∗〉 =

∫
Ω
x∗x dP.
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Moreover, L∞(P ) is the Banach lattice (Ee, pe) and e is the function 1 : Ω → R, which is

1 a.s..

The following theorem was proved by Yan for E = L1(P ) [165] and by Ansel and

Stricker for E = Lp(P ), where 1 ≤ p < ∞ [2]. We generalise it to Banach lattices with

order continuous norm and quasi-interior points, by means of Nagel’s theorem. The proof

is adapted from Ansel and Stricker [2].

Theorem 3.2.2. Let K be a convex subset of E such that 0 ∈ K. The following statements

are equivalent.

(i) There exists z∗ ∈ E∗ such that z∗ > 0 a.s. and

sup
ξ∈K

z∗(ξ) <∞.

(ii) For all η ∈ E+ with η 6= 0, there exists c > 0 such that cη /∈ K − L+
∞(P ).

(iii) For all A ∈ F with P (A) > 0, there exists c > 0 such that c1A /∈ K − L+
∞(P ).

If, in addition K is a cone, then the following statements are equivalent to (i), (ii) and (iii).

(iv) For all A ∈ F with P (A) > 0, we have 1A /∈ K − L+
∞(P ).

(v) E+ ∩ (K − L+
∞(P )) = {0}.

Proof. It is clear that (ii) ⇒ (iii).

(iii) ⇒ (i): Suppose condition (iii) is satisfied. Consider A ∈ F such that P (A) > 0.

By assumption, there exists a real-number c > 0 such that c1A /∈ K − L+
∞(P ). Since

K − L+
∞(P ) is convex, we have by the Hahn Banach theorem that there exists y∗ ∈ E∗ such

that

sup
ξ∈K,η∈L+

∞(P )

y∗(ξ − η) < cy∗(1A). (3.1)

Let ξ = 0 ∈ K and η = a1{y∗<0}, where a > 0. Then we get

−ay∗(1{y∗<0}) < cy∗(1A),

i.e.

−y∗(1{y∗<0}) <
c

a
y∗(1A).

By the Archimedean property of R, we have y∗(1{y∗<0}) ≥ 0 and therefore y∗ ≥ 0 a.s..
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Letting η = 0, we get

sup
ξ∈K

y∗(ξ) ≤ cy∗(1A) <∞.

Consequently

H := {x∗ ∈ (E∗)+ : sup
ξ∈K

x∗(ξ) <∞}

is non-empty, as y∗ ∈ H from our above proof. Let

C = {{z∗ = 0} : z∗ ∈ H}.

We want to show that if z∗n ∈ H for all n ∈ N with {z∗n = 0} ∈ C, then
⋂
n{z∗n = 0} ∈ C.

Let (z∗n) be any sequence in H. By (3.1), the sequences (sup
ξ∈K

z∗n(ξ))n∈N and (||z∗n||E∗)n∈N

are bounded. Let

cn = sup
ξ∈K

z∗n(ξ) and dn = ||z∗n||E∗ .

Define

z∗ =
∑
n

bnz
∗
n,

where the bn’s are such that bn ≥ 0 for all n,
∑

n bncn < ∞ and
∑

n bndn < ∞. As

||z∗||E∗ <
∑

n bndn <∞ and z∗ ≥ 0, we have z∗ ∈ (E∗)+. Since

sup
ξ∈K

z∗(ξ) ≤
∑
n

bn sup
ξ∈K

z∗n(ξ) =
∑
n

bncn <∞,

it follows that z∗ ∈ H. By the construction of z∗, we have {z∗ = 0} =
⋂
n{z∗n = 0}.

Hence, there exists z∗ ∈ H such that P (z∗ = 0) = inf
c∈C

P (c).

We will show that z∗ > 0 a.s.. Suppose that P (z∗ = 0) > 0. Let y∗ ∈ H satisfy (3.1)

with A = {z∗ = 0}. As shown above, we have 0 < y∗(1A) = y∗(1{z∗=0}) and the random

variable y∗ + z∗ ∈ H with

P (y∗ + z∗ = 0) = P (z∗ = 0)− P (z∗ = 0, y∗ > 0) < P (z∗ = 0),

which contradicts the fact that P (z∗ = 0) = inf
c∈C

P (c). Therefore, z∗ > 0 a.s., proving (iii)

⇒ (i).

(i) ⇒ (ii): Suppose (ii) is not satisfied. Then there exists η ∈ E+ with η 6= 0 such that

for all n ∈ N, we have nη ∈ K − L+
∞(P ). Hence, there exists (zn) ⊆ K − L+

∞(P ) such that

for n ∈ N
||nη − zn||E ≤

1

n
.

Also, there exists kn ∈ K and ln ∈ L+
∞(P ) such that zn = kn − ln. Let δn = nη − kn + ln,

then ||δn||E ≤ 1
n .
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If z∗ is a random variable in E∗ such that z∗ > 0 a.s., then we have

z∗(kn) = nz∗(η) + z∗(ln)− z∗(δn)

≥ nz∗(η)− z∗(δn).

By definition, we have

||z∗||E∗ = sup{|z∗(z)| : ||z||E ≤ 1} ≥ |z∗(nδn)| ≥ nz∗(δn).

Thus,

z∗(kn) ≥ nz∗(η)− z∗(δn)

≥ nz∗(η)− 1

n
||z∗||E∗ .

Hence, supξ∈K z
∗(ξ) =∞, showing that condition (i) is not satisfied.

Next, assume that K is a cone.

(v)⇒ (ii): Assume that E+∩ (K − L+
∞(P )) = {0}. We will prove this by contradiction.

Assume there exists η ∈ E+ such that for all c > 0, cη ∈ K − L+
∞(P ). This implies that

cη /∈ E+, which is a contradiction as E+ is a Banach lattice.

(ii) ⇒ (v): Assume that (ii) holds. Once again, we will prove this by contradiction.

Assume there exists a ∈ E+ ∩ (K − L+
∞(P )). Then a ∈ E+, which, by (ii), implies that for

all c > 0 ca /∈ K − L+
∞(P ) , and a ∈ K − L+

∞(P ). However, as K is cone, we have that for

all c > 0, ca ∈ K − L+
∞(P ), which is a contradiction.

(iii) ⇔ (iv): Follows similarly.

3.2.2 Equivalent martingale measures

In this section, we take a look at an application of Theorem 3.2.2, which will give us a

condition for the existence of an equivalent martingale measure. We prove the theorems for

Banach lattices. The application of these theorems to Orlicz hearts will be a special case.

The proofs are adapted from Stricker [150].

Let H be a predictable, simple process, i.e. H =
∑n−1

i=1 λi1(ti,ti+1], where 0 ≤ t0 < t1 <

· · · < tn ≤ 1 and λi = (λ1
i , . . . , λ

d
i ) ∈ Rd is a random Ft-measurable vector. We denote

by (H ·X)t the stochastic integral of the predictable process H = (H1, . . . ,Hd) ∈ Rd with

respect to the semimartingale X = (X1, . . . , Xd) ∈ Rd. We suppose that (H ·X)0 = 0. If

H is locally bounded, then it is well known that

(H ·X)t =

d∑
j=i

∫ t

0
Hj
s dX

j
s .
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Let X be a Rd-valued, càdlàg, adapted semimartingale with Xt ∈ E for all t ∈ [0, 1].

In this section, we consider the following special case of the convex set K of the previous

section. Let

K = {(H ·X)1 : H is predictable, simple and bounded}.

By considering this cone K, we may add another equivalent condition to those in Theorem

3.2.2.

Theorem 3.2.3. The following are equivalent.

(v) E+ ∩ (K − L+
∞(P )) = {0}.

(vi) There exists a probability measure Q equivalent to P and with density dQ
dP ∈ E

∗ such

that X is a Q-martingale.

Proof. (v) ⇒ (vi): Assume that condition (v) holds, then condition (i) of Theorem 3.2.2

also holds. Thus, by Theorem 3.2.2, there exists a random variable z∗ ∈ (E∗)+ such that

sup
ξ∈K

z∗(ξ) < ∞. Hence, z∗(k) ≤ supξ∈K z
∗(ξ) for all k ∈ K. Since K is a cone, we get for

all n ∈ N that

z∗(k) ≤ 1

n
sup
ξ∈K

z∗(ξ).

Thus, by the Archimedean property, we have that z∗(k) = 0 for all k ∈ K. In other words,

z∗((H · X)1) = 0 for all predictable, simple and bounded processes H. Let dQ = z∗dP .

Then dQ
dP ∈ E

∗ and X is a martingale under Q. Thus, we have shown that there exists a

probability measure Q equivalent to P and with Radon-Nikodým derivative dQ
dP ∈ E

∗ such

that X is a Q-martingale.

(vi) ⇒ (v): If Q is equivalent to P , the Radon-Nikodým derivative dQ
dP = z∗ belongs

to E∗ and z∗ > 0. If X is a martingale under Q, then z∗((H ·X)1) = 0 for all previsible,

simple, bounded H. Thus z∗(k) = 0 for all k ∈ K, i.e.

sup
k∈K

z∗(k) = 0 <∞.

Hence, condition (i) of Theorem 3.2.2 is verified with z∗ = dQ
dP and (v) holds.

IfX is continuous we can weaken condition (v) of Theorem 3.2.3 by replacingK − L+
∞(P )

with K, as is shown in the next theorem.

Theorem 3.2.4. Let X be a continuous, adapted process with values in Rd. Let Xt ∈ E
for all t ∈ [0, 1]. Then there exists a probability Q equivalent to P and with Radon-Nikodým

derivative dQ
dP ∈ E

∗ such that X is a Q-martingale if and only if E+ ∩K = {0}.
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Proof. ⇒: Assume that there exists a probability Q equivalent to P and with Radon-

Nikodým derivative dQ
dP ∈ E

∗ such that X is a Q-martingale. Then, by Theorem 3.2.3, we

have that E+∩(K − L+
∞(P )) = {0}. As K ⊆ K − L+

∞(P ), we must have that E+∩K = {0}.
⇐: Conversely, suppose that E+ ∩K = {0}. We show, using a contradiction argument,

that 1A /∈ K − L+
∞(P ) is satisfied for all A ∈ F with P (A) > 0. Assume there exists A ∈ F

with P (A) > 0 such that 1A ∈ K − L+
∞(P ). Then we can find a sequence of positive,

bounded, random variables (Bn), a sequence of previsible, simple, bounded processes (Hn)

and a set A ∈ F with P (A) > 0, such that (Hn ·X)1 −Bn converges to 1A.

We will construct two sequences (Un) and (B′n) such that

- B′n ∈ L+
∞(P ),

- Un is a previsible, simple, bounded process,

- ((Un ·X)1) is bounded in E and

- ((Un ·X)1 −B′n) converges to 1A.

To construct these sequences, we introduce the stopping time

Tn =

{
1 if (Hn ·X)t < 1 for all t ∈ [0, 1]

inf{t > 0 : (Hn ·X)t ≥ 1} otherwise.

Note that (Hn ·X)−1 ≥ (Hn ·X)−Tn ≥ 0. In fact (Hn ·X)−1 tends to 0 in E. We also have that

0 ≤ (Hn ·X)+
Tn
≤ 1. Thus, the sequence (Hn ·X)Tn = (Hn ·X)+

Tn
− (Hn ·X)−Tn is bounded

in E.

However, the process 1[0,Tn]Hn is not simple.

It is well known that there exists a decreasing sequence of stopping times (Tm)m∈N with

lim
m→∞

Tm = Tn. Let

T ′m =

{
Tm if |(Hn ·X)Tn − (Hn ·X)Tm | ≤ 1

1 otherwise.

Then, we see that

lim
m→∞

‖(Hn ·X)Tn − (Hn ·X)T ′m‖ = 0. (3.2)

We can thus choose m such that ‖(Hn ·X)Tn − (Hn ·X)T ′m‖ ≤
1
n .

Let Un = 1[0,T ′m]Hn and B′n = 1{Tn<1}∩Ac + 1{Tn=1}Bn. Then Un is a simple and

bounded process and B′n ∈ L+
∞(P ). But

(Hn ·X)Tn −B′n =


(Hn ·X)1 −Bn on {Tn = 1}
0 on Ac ∩ {Tn < 1}
1 on A ∩ {Tn < 1}.
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Therefore, (Hn ·X)Tn −B′n converges to 1A in E. From (3.2), we see that (Hn ·X)T ′m −B
′
n

also converges to 1A.

Since ((Un · X)1) is bounded, we can extract a sub-sequence which converges weakly

to a random variable Y . As K is convex and closed in the strong topology, Y ∈ K. But

(Hn ·X)1−Bn converges to 1A in E, with the result that the weak convergence of (Hn ·X)1

leads to the weak convergence of Bn to a random variable B ≥ 0. Thus, Y = B + 1A 6= 0.

This shows that Y ∈ E+, contradicting our assumption that E+ ∩K = {0}.
Hence, 1A /∈ K − L+

∞(P ). Hence, there exists a probability Q equivalent to P and with

Radon-Nikodým derivative dQ
dP ∈ E

∗ such that X is a Q-martingale.

Let (Φ,Ψ) be complementary finite Young functions. As HΦ(P ) is a Banach lattice

with order continuous norm, e = 1 is a quasi-interior point of HΦ(P ) and we have that

L∞(P ) ⊆ HΦ(P ) ⊆ L1(P ), we can specialise Theorem 3.2.2 and Theorem 3.2.3 to Orlicz

hearts by letting E = HΦ(P ).

In incomplete markets, there does not exist a unique equivalent martingale measure

that can be used to price contingent claims. One method of choosing an equivalent pricing

measure, is to incorporate a preference structure into the pricing techniques. This is done

via utility funtions, which will be introduced in the next section.

3.3 Utility functions

There are two different ways to model the prices of assets: via a no arbitrage model or

via a capital asset pricing model. The latter is based on balancing supply with demand

among investors who have utility functions that convert units of consumption into units of

satisfaction. In other words, utility functions are used to measure an investor’s preference

for wealth and how much risk he is willing to undertake to gain more wealth. While the

no arbitrage model allows for precise quantitative insights into the market in a complete

market setting, the utility based methods are currently the only theoretically defensible way

to model in incomplete markets [144].

Definition 3.3.1. A utility function u : R→ [−∞,∞] is a non-decreasing, twice differen-

tiable function, with the following properties:

(i) non-satiation, i.e. u′(x) > 0, where u′ denotes the first derivative of u.

(ii) risk aversion, i.e. u′′(x) < 0, where u′′ denotes the second derivative of u.
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The non-satiation property implies that the the utility increases with wealth, i.e. that

more wealth is preferred to less wealth, and that the investor never has enough wealth.

The risk aversion property implies that the utility function is concave, i.e. that the

marginal utility of wealth decreases as wealth increases. This concavity of the utility func-

tion captures the trade-off between risk and return. In other words, the gain of one dollar to

someone who only has one dollar is worth more than to someone who already has a million

dollars.

Different investors can have different utility functions, as long as they satisfy the above

mentioned properties.

By comparing expected utility of payoffs instead of expected payoffs, and choosing the

utility function judiciously, it is possible to capture an investor’s attitude towards the trade-

off between risk and return. Therefore, in the theory of portfolio optimisation, a rational

investor will always try to maximise his expected utility of wealth.

Definition 3.3.2. The principle of expected utility maximisation involves finding the opti-

mal portfolio, by solving the following:

max
I∈H

E[u(X(I))],

where H is the set of all feasible investment options and X(I) is the terminal value of the

investment I after the given time period.

Note, that this expectation is computed under the real-world probability measure and

not the risk-neutral one. It would not make sense to work under the risk-neutral measure.

Under this measure, the stock and the money market account have the same expected rate

of return and hence, the investor would only invest in the money market.

Example 3.3.3 (A fair game). Consider the function defined by

u(x) =
√
x.

As

u′(x) = 0.5x−0.5 > 0 and u′′(x) = −0.25x−1.5 < 0,

we have that u is a utility function. Assume that the investor’s initial wealth is $5 and

assume that there is only one investment available. In this investment a fair coin is flipped.

If it comes up heads, the investor wins $4, increasing his wealth to $9. If it comes up tails,

the investor loses $4, decreasing his wealth to $1. This is called a fair game as the expected
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gain is 0.5(4) + 0.5(−4) = 0. Will the investor choose to play this game if he follows the

principle of expected utility maximisation?

If he refuses to play the game, he has an expected utility of
√

5 = 2.24. If he decides to

play the game, his expected utility becomes 0.5
√

1 + 0.5
√

9 = 2. Since 2.24 is greater than

2, the investor will refuse to play the game.

In general, a risk-averse investor will never choose an investment whose expected return

is 0%. In other words, the property of risk aversion implies that investors attach more

weight to losses than they do to gains of equal magnitude.

If we change the probability of a good outcome to 75%, then the expected outcome is

$7, the expected return is 40% and the expected utility would be 0.75
√

9 + 0.25
√

1 = 2.5.

Since 2.5 is greater than 2.24, the investor would be willing to make the investment. The

expected return of 40% is a ‘risk premium’, which compensates him for undertaking the

risk of the investment.

Definition 3.3.4.

(i) The certainty equivalent for an investment with outcome given by a random variable

x, is denoted by c and is defined by

u(c) = E(u(x)).

(ii) The risk premium for an investment with outcome given by a random variable x, is

denoted by ρ and is defined by

ρ(x) = E[x]− c.

An investor with current wealth less than the certainty equivalent will consider the

investment attractive, while an investor with current wealth greater than the certainty

equivalent will not. Note that since the utility function is an increasing function, maximising

expected utility is equivalent to maximising the certainty equivalent.

Definition 3.3.5. Suppose that u is a twice continuously differentiable utility function on

Ω. Then

α(x) = −u
′′(x)

u′(x)

is called the Arrow-Pratt coefficient of absolute risk aversion of u at level x.

The most general class of utility functions used in practice, is called the hyperbolic

absolute risk aversion class, also known as the HARA class. A utility function falls into the
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HARA class, if its Arrow-Pratt coefficient of absolute risk aversion is hyperbolic, i.e.

α(x) =
1

ax+ b

for a, b ∈ R. This class is obtained as follows. Let c ∈ R and p ∈ [0, 1). For p 6= 0, define

up(x) =



1
p(x− c)p if x > c

0 if 0 < p < 1 and x = c

−∞ if p < 0 and x = c

−∞ if x < c.

For p = 0, define the logarithmic utility function

u0(c) =

{
ln(x− c) if x > c

−∞ if x ≤ c.

We end this section with another example.

Example 3.3.6 (Optimising a portfolio). Consider an investment, which returns −10%

with probability 1
2 and +20% with probability 1

2 . The investor has the choice to invest any

part of his total wealth of $100 in the risky asset. We will consider the following utility

function. For any λ < 1, λ 6= 0, let

uλ(x) =
xλ − 1

λ
.

Then,

u′λ(x) = xλ−1 > 0

u′′λ(x) = (λ− 1)xλ−2 < 0.

Let θ be the amount invested in the risky asset and the investor does nothing with the

remaining 100− θ. The two possible outcomes are:

Bad outcome: x = 0.9θ + (100− θ) = 100− 0.1θ.

Good outcome: x = 1.2θ + (100− θ) = 100 + 0.2θ.

The expected utility of the outcome is

f(θ) =
1

2
u(100− 0.1θ) +

1

2
u(100 + 0.2θ)

=
(100− 0.1θ)λ − 1

2λ
+

(100 + 0.2θ)λ − 1

2λ

=
1

2λ
[(100− 0.1θ)λ + (100 + 0.2θ)λ − 2].
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Figure 3.1: Utility Hill for λ = −3.

Figure 3.1 shows the certainty equivalent of the function u−1(f(θ)) for λ = −3. Since

maximising expected utility is equivalent to maximising the certainty equivalent, Figure

3.1 indicates that the optimal amount to invest in the risky asset in the case of λ = −3 is

approximately $59.

Figure 3.2: Utility Hill for λ = −5.

Figure 3.2 shows the corresponding graph for λ = −5. For this more risk averse investor,

the optimal amount to invest in the risky asset is approximately $39.

Since, this example is relatively simple, we can find the exact optimal portfolio. The

value of θ that maximises f(θ), is given by

θ =
100(2

1
A − 1)

0.2 + 0.1(2
1
A )
,

where A = 1 − λ. The number A is called the coefficient of risk aversion. As λ decreases,

investors become more risk averse and vice versa.
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Figure 3.3: Amount invested in risky asset as coefficient of risk aversion changes.

Figure 3.3 shows how much the investor should invest in the risky asset as a function

of his risk aversion. It is interesting to note that an investor with a very low coefficient of

risk aversion, should actually invest more than his total wealth in the risky asset.

3.4 No market free lunch

In this section we will consider the positive cone of L∞(P ) excluding zero, i.e. L+
∞(P )\{0}.

Note that the set

{w ∈ L∞(P ) : P (w ≥ 0) = 1 and P (w > 0) > 0},

as considered in [63], is equal to L+
∞(P )\{0}.

We will interpret each element w ∈ L+
∞(P )\{0} as the time T payoff of a claim.

If we short sell this claim, then we will receive a positive amount now, but will have to

pay back −w at time T . But today we could also choose an admissible trading strategy,

with zero (or negative) initial cost, that might ‘hedge’ the claim w. At time t, our payoff

will then be f − w, where f ∈ C.

Lemma 3.4.1. If for some w ∈ L+
∞(P )\{0} and f ∈ C

f − w ≥ 0 P -a.s.,

then the no arbitrage condition is violated.

Proof. Select w ∈ L+
∞(P )\{0} and f ∈ C = (K−L+

0 (P ))∩L∞(P ) such that f−w ≥ 0 P -a.s..

Since both f, w ∈ L∞(P ), we have f − w ∈ L+
∞(P ).
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Since f ∈ (K − L+
0 (P )), we can write f = k − l where k ∈ K and l ∈ L+

0 (P ). Then

f − w = k − (l + w),

where l + w ∈ L+
0 (P ). Hence f − w ∈ (K − L+

0 (P )) and thus f − w ∈ C. In other words,

f − w ∈ C ∩ L+
∞(P ), which implies that arbitrage is possible.

Definition 3.4.2. The essential infimum, denoted by ess inf f , is given by

ess inf f = sup{z : f ≥ z a.e.}.

Lemma 3.4.3. The following are equivalent.

(i) There is FLVR.

(ii) There exist w ∈ L+
∞(P )\{0} and a sequence (fn) ⊆ C such that

lim
n→∞

‖fn − w‖∞ = 0. (3.3)

(iii) There exist w ∈ L+
∞(P )\{0} and f ∈ C such that

sup
f∈C
{ess inf

Ω
(f − w)} ≥ 0. (3.4)

Proof. To show (i) ⇔ (ii) is trivial.

(ii) ⇒ (iii): Suppose there exist w ∈ L+
∞(P )\{0} and a sequence (fn) ⊆ C such that

lim
n→∞

‖fn − w‖∞ = 0. Let f̃n = fn − (fn − w)+ for all n ∈ N. Then (f̃n) ⊆ C and

− 1

n
≤ f̃n − w ≤ (fn − w)− (fn − w)+ ≤ 0.

Hence,

ess inf
Ω

(f̃n − w) ≥ − 1

n
,

and so

sup
f∈C
{ess inf

Ω
(f − w)} ≥ 0.

(iii) ⇒ (ii): Suppose there exist w ∈ L+
∞(P )\{0} and f ∈ C such that

sup
f∈C
{ess inf

Ω
(f − w)} ≥ 0. Then, for all n ∈ N, there exists fn ∈ C such that

ess inf
Ω

(fn − w) ≥ − 1

n
.
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Let f̃n = fn − (fn − w)+. Then f̃n ∈ C and

− 1

n
≤ f̃n − w ≤ (fn − w)− (fn − w)+ ≤ 0 ≤ 1

n
.

Hence, we have that

lim
n→∞

||f̃n − w||∞ = 0.

Let U be a certain set of utility functions u : R → [−∞,∞]. We assume that the

preference ” � ” of the investors in the market under consideration can be represented by

the expected utility, i.e.

f1 � f2 ⇔ EQ[ u(f1) ] ≥ EQ[ u(f2) ],

where Q ∈ P, u ∈ U and f1, f2 ∈ L0(P ).

Frittelli [63] introduced the notion of a market free lunch that depends on the preferences

of the investors in the market. Market free lunch with respect to U is defined as follows.

Definition 3.4.4. [63, Definition 3] There is a market free lunch with respect to U if for

all P ∈ P and u ∈ U, there exists w ∈ L+
∞(P )\{0} such that

sup
f∈C

EP [ u(f − w) ] ≥ u(0). (3.5)

Hence, there is no market free lunch (NMFL(U)) with respect to U if for all w ∈ L+
∞(P )\{0}

there exist P ∈ P and u ∈ U such that

sup
f∈C

EP [ u(f − w) ] < u(0).

This definition clearly depends on the set of utility functions, which we choose. The

above definition only makes economical sense if our utility function is non-decreasing on R.

Consider w ∈ L+
∞(P )\{0} such that Equation 3.5 holds. A market free lunch implies that

all investors in the market, who are represented by their beliefs P ∈ P and their preferences

u ∈ U, regard the risk w as a free lunch, as each investor can hedge the risk g in such a way

that their preferences and beliefs are not compromised.

Consider the following families of utility functions

U0 = {u : R→ [−∞,∞] : u is non-decreasing on R},

U1 = {u ∈ U0 : u is left continuous at 0 ∈ int(dom(u))} and

U2 = {u ∈ U0 : u is finite-valued and concave on R}.

Note that U2 ⊆ U1 ⊆ U0 and NMFL(U0)⇒ NMFL(U1)⇒ NMFL(U2).
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Proposition 3.4.5.

(i) NMFL(U0) ⇔ NA.

(ii) NMFL(U1) ⇔ NFLVR.

Proof. ([63, Proposition 5]) (i): Assume that an arbitrage opportunity exists. We need to

show that there exists w ∈ L+
∞(P )\{0} such that (3.5) holds. Consider w ∈ C∩L+

∞(P )\{0}.
Since L+

∞(P )\{0} ⊆ L∞(P ), we have that w ∈ C ∩ L∞(P ), which shows that w is an

arbitrage opportunity. Then, for u ∈ U0

sup
f∈C

EP [u(f − w) ] ≥ EP [u(w − w) ] = u(0),

i.e. there is a MFL(U0).

Conversely, assume there exists a MFL(U0), i.e. there exists w ∈ L+
∞(P )\{0} such that

sup
f∈C

EP [u(f −w) ] ≥ u(0) holds for all P ∈ P and u ∈ U0. Take P ∈ P and define u ∈ U0 by

u(x) =

{
0 for x ≥ 0

−∞ for x < 0.

Thus, sup
f∈C

EP [u(f − w) ] ≥ 0 and due to the definition of u, there must exist f ∈ C such

that P (f − w ≥ 0) = 1, i.e. by Lemma 3.4.1, there is an arbitrage opportunity.

(ii): Let n ≥ 1. Suppose there is a free lunch with vanishing risk. Then, by Lemma

3.4.3, there exist w ∈ L+
∞(P )\{0} and a sequence (fn) ⊆ C such that (3.4) is satisfied.

From the left continuity of u at 0, there exists εn > 0 such that if −εn < x ≤ 0, then

u(x) > u(0)− 1
n .

For each n, there exists δn > 0 such that lim
n→∞

‖fn − w‖∞ > δn. Set f̃n := fn−(fn−w)+.

Then f̃n ∈ C and −δn < (f̃n − w) ≤ 0 P -a.s.. Hence, u(f̃n − w) > u(0) − 1
n P -a.s.. Thus,

we can conclude that sup
f∈C

EP [u(f − w) ] ≥ u(0), i.e. a MFL(U1) exists.

Conversely, suppose that there exists a MFL(U1). Take P ∈ P and for all n ≥ 1, define

un by

un(x) =

{
0 for x > − 1

n

−∞ for x ≤ − 1
n .

Then un ∈ U1. By assumption there exists w ∈ L+
∞(P )\{0} such that sup

f∈C
EP [un(f −w) ] ≥

un(0) = 0 for all n ≥ 1. Hence, there exists fn ∈ C such that P (fn − w ≤ − 1
n) = 0, i.e.

such that ess inf(fn − w) ≥ − 1
n for all n ≥ 1. Thus, sup

f∈C
{ess inf(f − w)} ≥ 0, which, by

Lemma 3.4.3, implies that there exists a FLVR.
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This proposition shows that the difference, from an economic perspective, between NA

and NFLVR is due to the differing preferences of the investors.

Under this new concept of NMFL, Bellini and Frittelli [11] proved another version of

the fundamental theorem of asset pricing.

Theorem 3.4.6. For any semimartingale S, the following are equivalent:

(i) S satisfies NMFL(U2),

(ii) M∩ P 6= ∅.

We will not prove this theorem here, as we will be considering an alternative version of

it in Section 3.5, which we will then prove. See [14] for a proof of Theorem 3.4.6.

If S is not locally bounded, then M cannot be reduced to a simpler form. Hence, we

need to introduce a new setup, introduced by Frittelli [64], which allows us to work with

unbounded processes.

3.5 No free lunch in Orlicz spaces

3.5.1 The optimisation problem

The analysis of any optimisation problem depends greatly on the definition of the domain

of optimisation and the objective function. In a financial setting, it is very helpful to ensure

that the optimal value is finite. Therefore, the utility maximisation problem, given by

sup
k∈D

E[ u(x+ k) ],

where u is the utility function, x is the initial wealth of the investor and D is an appropriate

set of admissible strategies, requires the specification of

1. the financial market model and the admissible terminal wealths,

2. the technical assumptions on the utility function and

3. some joint conditions on the market model and the utility function.

The market model and the admissible terminal wealths have been described in Section 3.1.

The utility function u : R → [−∞,∞] is increasing and concave on (a,∞), where

a ∈ [−∞, 0) and, if a is finite, then u(x) = −∞ for all x ≤ a. Hence, u(x) must satisfy

lim
x→−∞

u(x) = −∞.
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Two widely used utility functions satisfy the above conditions. They are stated in the

following example.

Example 3.5.1.

1. The logarithmic utility function is given by

u(x) =

{
ln(1 + x) for x > −1

−∞ for x ≤ −1.

In this example, we have a = −1.

2. The exponential utility function is given by

u(x) = −e−x for x ∈ R.

Here a = −∞.

Figure 3.4 shows the general shape of a utility function, that satisfies these conditions.

Figure 3.4: General shape of a Utility function.

In general, our class of utility functions includes all those functions, for which

lim
x↓0

u(x)

x
<∞

and those functions, which are constant for x ≥ x0, where x0 ∈ R is fixed.
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Definition 3.5.2.

(i) The utility function u satisfies the Inada conditions if

lim
x↓−∞

u′(x) = −∞ and lim
x↑∞

u′(x) = 0.

(ii) The utility function u satisfies the reasonable asymptotic elasticity condition RAE(u)

introduced in [104, 141] if

lim inf
x→−∞

xu′(x)

u(x)
> 1 and lim sup

x→∞

xu′(x)

u(x)
< 1.

When working with a locally bounded semimartingale, the above two technical condi-

tions ensure that the optimisation problem has a solution. This is shown in [141]. However,

it has been shown [13, 105] that within a specific market model one may state more general

necessary and sufficient conditions on the utility function that allow the dual approach of

the optimisation to work and ensure the existence of an optimal investment. The advan-

tages of the RAE(u) condition is that it is easily verified and the most commonly used

utility functions satisfy it.

Lastly, we need to look at the joint conditions between the market model and the utility

function. The duality approach to the optimisation problem requires the convex conjugate

Φ of the utility function u, given by

Φ(y) = sup
x∈R
{u(x)− xy}.

This is just the Legendre-transform of x 7→ −u(−x). Note that Φ′ = −(u′)−1.

Definition 3.5.3. A probability Q << P has finite generalised entropy if its density dQ
dP

satisfies the integrability condition

E[ Φ(
dQ

dP
) ] <∞,

where Φ denotes the convex conjugate of the utility function u.

Given Φ, we denote the set of pricing measures with finite generalised entropy by MΦ.

In general, the optimisation problem above does not admit an optimal solution if D = K.

It was first shown in Bellini and Frittelli [11] that if

sup
k∈K

EP [u(x+ k)] < lim
y→∞

u(y),
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then the following duality relation holds

sup
k∈K

EP [u(x+ k)] = min
Q∈M

min
λ>0

{
λx+ EP

[
Φ(λ

dQ

dP
)
]}
,

without any further assumptions on the utility function. In this section, we show a gener-

alised version of this relation as done in [15].

Frittelli proves a clear financial interpretation of the set MΦ. Pricing by Q ∈ MΦ

guarantees that the investor cannot reach his maximum possible utility.

The utility maximisation problem can take on various forms. We will state it now as in

the work of Biagini and Frittelli [15, 64]. We are trying to solve the following problem

sup
H∈H

EP [u(x+ (H · S)T )], (3.6)

where

- u is the utility function of the investor, which is assumed to be concave and increasing

over its proper domain,

- x is the initial endowment of the investor, x ∈ dom(u),

- T is the time horizon,

- H is the proper class of admissible Rd-valued predictable processes, which represent

the allowed trading strategies,

- P is the real-world probability measure,

- S is an Rd-valued càdlàg semimartingale defined on the filtered probability space

(Ω,F ,F, P ), where the filtration F satisfies the usual assumptions of right continuity

and completeness and F0 is trivial, i.e. consists only of null sets and their comple-

ments,

- (H · S)T is the terminal gain of the investor when following strategy H.

Initially, this maximisation was done over H1 (see [104, 141, 13]). However, when S

is non-locally bounded, H1 may reduce to the null set, making the maximisation trivial.

This may happen if, for example, S is a compound Poisson process with unbounded jump

sizes. Therefore, we need to enlarge this set by introducing the less-restrictive notion of

W -admissible strategies. This extension of the notion of admissibility was first used by

Delbaen and Schachermayer [40] in the context of the fundamental theorem of asset pricing,

and subsequently by Biagini and Frittelli [15] in the context of utility maximisation.
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Definition 3.5.4. Let W ∈ L0(P ) be a fixed random variable. The predictable and S-

integrable process H is W -admissible if there exists a nonnegative constant c such that for

all t ≤ T ,

(H · S)T ≥ −cW.

The set of all W -admissible trading strategies is defined by

HW = {H ∈ H : (H · S)t ≥ −cW for some c > 0 and for all t ∈ [0, T ]}.

In other words, the random variable W controls the losses in trading and, in order to build

a reasonable utility maximisation, should satisfy two conditions. These two conditions are

stated next.

Definition 3.5.5. A random variable W ≥ 1 is suitable for the process S if for each

i = 1, . . . , d, there exists a process H i ∈ H such that

P ({ω : H i
t(ω) = 0 for some t ≥ 0}) = 0

and

|(H i · Si)t| ≤W for all t ∈ [0, T ].

The set of suitable random variables is denoted by S.

The suitability condition changes the integrability of the stochastic integral.

Definition 3.5.6. A positive random variable W is compatible with the utility function u

if

EP [ u(−αW ) ] > −∞ for all α > 0

and weakly compatible with u if

EP [ u(−αW ) ] > −∞ for some α > 0.

We call a suitable and compatible random variable a loss variable.

Stochastic integrals formed with W -admissible strategies enjoy good mathematical prop-

erties, when the random variable W satisfies suitability with the market and compatibility

with the preference structure.

The problem we are trying to solve is written in terms of an optimisation over stochastic

processes, however, to use the duality arguments, we need it to be written as an optimisation
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over random variables. Therefore, given a suitable and compatible random variable W , we

define the set of terminal values obtained from W -admissible trading strategies by

KW = {(H · S)T : H ∈ HW }.

The primal optimisation problem can then be written as

sup
k∈KW

EP [ u(x+ k) ].

Note that for the duality, W does not necessarily have to be suitable. But this property

is very desirable, as it makes the domain of maximisation KW non-trivial.

The next step is to identify an appropriate cone CW , related toKW , and invoke Fenchel’s

duality theorem (see Appendix C). To do this, we need to choose an appropriate Banach

space and its order dual, so that we can define the polar set (CW )◦. Classically, the

spaces (L1(P ), L∞(P )) were used to deal with locally bounded traded assets. Biagini and

Frittelli [64], however, wanted to accommodate more general markets and decided to use

an appropriate Orlicz space, which is defined in the next section. The following choice was

mainly made because of the similarity between the compatibility condition and the heart

of the appropriate Orlicz space.

3.5.2 The Orlicz space associated with u

To create an Orlicz space using a utility function we need to find a convex function which

is related to the concave utility function.

Lemma 3.5.7. If u is a utility function, then û : [0,∞)→ [0,∞] defined by

û(x) = −u(−x) + u(0),

is a Young function.

Figures 3.4 and 3.5 can be used to aid in the proof of Lemma 3.5.7.

The Orlicz space induced by û is given by

Lû(P ) = {f ∈ L0(P ) : E[ û(α|f |) ] <∞ for some α > 0}

and we endow it with the Luxemburg norm

Nû(f) = inf{a > 0 : Mû(
f

a
) ≤ 1}.
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Figure 3.5: General shape of û.

Using Corollary 2.1.3, the convex conjugate function Φ̂ of û is given by

Φ̂(y) = sup
x
{xy − û(x)},

which is also a Young function, and therefore we can introduce the Orlicz space LΦ̂(P )

given by

LΦ̂(P ) = {f ∈ L0(P ) : E[ Φ̂(α|f |) ] <∞ for some α > 0},

which we endow with the Orlicz norm

‖f‖Φ̂ = sup{E[ |fg| ] : g ∈ Lû(P ) and E[ û(g) ] ≤ 1}.

The heart of the Orlicz space Lû(P ) is given by

Hû(P ) = {f ∈ L0(P ) : E[ û(α|f |) ] <∞ for all α > 0}.

The utility function is increasing and concave on (a,∞). We will consider the two

possible cases: either a is finite or a is infinite.

• The case a < 0 is finite.

Since û is a Young function, we have that −u(−x) + u(0) ≥ 0 for all x. Therefore,

for all |x| ≤ −a and y > 0, we have

xy − û(x) = xy + u(−x)− u(0)

≤ xy

≤ −ay.
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Hence, Φ̂(y) ≤ −ay, and in particular Φ̂(α|y|) ≤ −aα|y|. Taking expectations on

both sides results in

E[ Φ̂(α|y|) ] ≤ E[ −aα|y| ] = −aαE[ |y| ].

Now, if we take f ∈ L1(P ), then

E[ Φ̂(α|f |) ] ≤ −aαE[ |f | ] <∞

and f ∈ LΦ̂(P ). This and Proposition 2.2.2 show that LΦ̂(P ) = L1(P ).

Since û(y) = ∞ for some y, we have by Proposition 2.2.1 and 2.2.2, that Lû(P ) =

L∞(P ) and Hû(P ) = {0}. Since Lû(P ), LΦ̂(P ), L1(P ) and L∞(P ) are Banach spaces,

we also have that the Luxemburg norm Nû and the Orlicz norm ‖·‖Φ̂ are equivalent

to the ‖·‖∞-norm and the ‖·‖1-norm respectively. This follows from a well known

result in functional analysis, see Theorem A.3.2.

• The case a = −∞.

The function û is continuous and consequently the subspace Hû(P ) is a Banach space

with the inherited û-norm. We will look at two examples, one with the exponential

utility and one with a linear utility.

Example 3.5.8.

1. Let u(x) = −e−x, then û(x) = ex − 1, Φ(y) = y ln y − y and

Φ̂(y) = (|y| ln |y| − |y|+ 1)1{|y|≥1}.

Therefore

Lû(P ) =
{
f ∈ L0(P ) : E[ eα|f | ] <∞ for some α > 0

}
,

Hû(P ) =
{
f ∈ L0(P ) : E[ eα|f | ] <∞ for all α > 0

}
, and

LΦ̂(P ) =
{
g ∈ L0(P ) : E[ |g| ln |g| ] + (lnα− 1)E[ |g| ] <∞ for some α > 0

}
.

2. Let u(x) = x, then û(x) = x, Φ(y) =∞ for all y ≥ 0 and

Φ̂(y) = (∞)1{|y|≥1} = δ{|y|≤1}.

So, Lû(P ) = L1(P ) = Hû(P ) and LΦ̂(P ) = L∞(P ).
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Note that the Young function û carries information about the utility function at large

losses, in the sense that for α > 0 we have that

EP [ û(α|f |) ] <∞ ⇔ EP [ u(−α|f |) ] > −∞.

Hence, a random variable W is compatible with a utility function u if and only if W ∈ Hû(P )

and weakly compatible if and only if W ∈ Lû(P ). The suitability condition shows that

(H · S)t is an element of the ideal generated by W in Lû(P ).

Next we need to have a look at the duality. As mentioned before, we can generally

decompose the Banach dual of the Orlicz space Lû(P ) into the following:

(Lû(P ))∗ = (Lû(P ))∗c ⊕ (Lû(P ))∗s.

Depending on the nature of u, this decomposition can be reduced to more familiar

spaces.

• If a is finite, then Lû(P ) = L∞(P ) and the above decomposition reduces to the

Yosida-Hewitt decomposition for elements of (L∞(P ))∗, i.e.

(L∞(P ))∗ = L1(P )⊕ (Lû(P ))∗s.

• If a = −∞, then û is continuous and û(x) = 0 if and only if x = 0, and by Theorem

2.5.8 we have

(Lû(P ))∗ = (Hû(P ))∗ ⊕ (Hû(P ))annh = LΦ̂(P )⊕ (Hû(P ))annh.

Note that Biagini and Frittelli proved in [15, Proposition 11], that (Hû(P ))annh is an AL-

space. However, it is just a special case of Corollary 2.5.7.

Another thing to note is that Hû(P ) = L∞(P )
û

and consequently

z ∈ (Lû(P ))∗s ⇔ z(f) = 0 for all f ∈ L∞(P ).

Therefore, we can identify zc ∈ (Lû(P ))∗c of any z ∈ (Lû(P ))∗+ with its Radon-Nikodým

derivative dzc
dP ∈ LΦ̂(P ) and we write its action on f ∈ Lû(P ) as

zc(f) =

∫
Ω
f dzc

= Ezc [f ].

Now that we have defined and characterised the appropriate Orlicz space and its dual,

we can return to the optimisation problem.
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3.5.3 The minimax theorem

The minimax theorem, established by John von Neumann [155], is a decision rule used

in decision theory, statistics and philosophy for minimising the maximum possible loss.

Informally, the minimax theorem states that for every two-person, zero-sum game with

finite strategies, there exists a value V and a mixed strategy for each player, such that

(a) given player 2’s strategy, the best payoff possible for player 1 is V, and

(b) given player 1’s strategy, the best payoff possible for player 2 is -V.

The name minimax arises because each player minimises the maximum payoff possible for

the other, and, since the game is zero-sum, he also maximises his own minimum payoff.

Before we can generalise the minimax theorem to Orlicz spaces, some theory is needed.

Firstly, we need to state the monotone convergence theorem and an extension thereof, as

we will require these theorems in the proof of a lemma, that allows us to change the set

over which we are optimising.

Theorem 3.5.9 (Monotone convergence theorem). Consider the measure space (Ω,F , P ).

Let (hi) be an increasing sequence of nonnegative Borel measurable functions, and let h(ω) =

lim
n→∞

hn(ω) for ω ∈ Ω. Then ∫
Ω
hn dP →

∫
Ω
h dP .

This theorem is restricted to nonnegative sequences. If the nonnegativity assumption is

dropped, then the following extension, taken from [8, Theorem 1.6.7], allows one to make

the same conclusion.

Theorem 3.5.10 (Extended monotone convergence theorem). Consider the measure space

(Ω,F , P ). Let g1, g2, . . . , g, h be Borel measurable.

(i) If h ≤ gn for all n, where
∫

Ω h dP > −∞ and gn ↑ g, then∫
Ω
gn dP ↑

∫
Ω
g dP .

(ii) If gn ≤ h for all n, where
∫

Ω h dP <∞ and gn ↓ g, then∫
Ω
gn dP ↓

∫
Ω
g dP .

The following lemma is also required to prove that we can change the set over which we

are optimising.



50 Chapter 3 No free lunch in Orlicz spaces

Lemma 3.5.11. Let W 6= 0 and W ∈ L+
û (P ). If n ∈ N and f ∈ KW , then

f ∧ n1 ∈ (KW − L+
0 (P )) ∩ Lû(P ).

Proof. Since f ∈ KW , there exists c > 0 such that f ≥ −cW , i.e. −f ≤ cW . But cW > 0,

and hence f− = (−f) ∨ 0 ≤ cW . Since û is an increasing function and W ∈ L+
û (P ),

û(f−) ≤ û(cW )⇒
∫

û(f−) dP ≤
∫

û(cW ) dP <∞,

showing that f− ∈ L+
û (P ). It follows from

0 ≤ f+ ∧ n1 ≤ n1,

that f+ ∧ n1 ∈ L∞(P ) ⊆ Lû(P ). Using f+ ∧ n1, f− ∈ Lû(P ) and the identity

f ∧ n1 = f+ ∧ n1− f−

established in Lemma A.1.10, it follows that f ∧ n1 ∈ Lû(P ). Furthermore,

f ∧ n1 = f − (f − f ∧ n1),

where f ∈ KW and f − f ∧ n1 ∈ L+
0 (P ). Hence, f ∧ n1 ∈ KW − L+

0 (P ). Therefore,

f ∧ n1 ∈ (KW − L+
0 (P )) ∩ Lû(P ),

which completes the proof.

The next lemma proves that we can change the set over which we are optimising.

Lemma 3.5.12. Let W 6= 0 and W ∈ L+
û (P ) and let x be such that −∞ < E[u(x) ] <∞.

Then

sup
f∈KW

E[ u(x+ f) ] = sup
f∗∈(KW−L+

0 (P ))∩Lû(P )

E[ u(x+ f∗) ].

Proof. Since f ∈ KW can be written as f = f − 0, it follows that KW ⊆ KW − L+
0 (P ),

which implies that

sup
f∈KW

E[u(x+ f) ] ≤ sup
f∈KW−L+

0 (P )

E[u(x+ f) ].

Let f ∈ KW − L+
0 (P ), then f can be written as f = k − l, where k ∈ KW and l ∈ L+

0 (P ).

Then

E[u(x+ f) ] = E[u(x+ k − l) ]

≤ E[u(x+ k) ]

≤ sup
f∈KW

E[u(x+ f) ].
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Consequently,

sup
f∈KW−L+

0 (P )

E[u(x+ f) ] ≤ sup
f∈KW

E[u(x+ f) ].

Hence,

sup
f∈KW

E[u(x+ f) ] = sup
f∈KW−L+

0 (P )

E[u(x+ f) ]

≥ sup
f∗∈(KW−L+

0 (P ))∩Lû(P )

E[u(x+ f∗) ].

To prove the reverse inequality we need to use the extension of the monotone convergence

theorem, stated above in Theorem 3.5.10. Firstly, note that by Lemma A.1.10

f ∧ n1 ↑ f,

since 1 is a weak order unit of L0(P ). Hence, x+f∧n1 ↑ x+f and, since u is left-continuous,

u(x+ f ∧ n1) ↑ u(x+ f).

But 0 ∈ KW , so

sup
f∈KW

E[u(x+ f) ] ≥ E[u(x) ] > −∞.

Pick any f ∈ KW satisfying E[u(x + f) ] > −∞. Consider fn = f ∧ n, which is in

(KW − L+
0 (P )) ∩ Lû(P ) by Lemma 3.5.11. Then

u(x+ fn) = u(x+ f+ ∧ n)1{f≥0} + u(x− f−)1{f<0}

≥ u(x)1{f≥0} + u(x− f−)1{f<0}.

Let h = u(x)1{f≥0} + u(x − f−)1{f<0} and gn = u(x + fn). Then h ≤ gn for all n and

E[h] ≥ −∞. The extended monotone convergence theorem gives

E[u(x+ fn) ] ↑ E[u(x+ f) ],

and since fn = f ∧ n ∈ (KW − L+
0 (P )) ∩ Lû(P ),

sup
f∈KW

E[ u(x+ f) ] ≤ sup
f∗∈(KW−L+

0 (P ))∩Lû(P )

E[ u(x+ f∗) ],

which completes the proof.

Therefore, given a loss variable W ∈ L+
û (P ), we define

CW (P ) = (KW − L+
0 (P )) ∩Hû(P ).

This cone represents those random variables that can be super-replicated by trading strate-

gies in HW and have the same type of boundedness as W .
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We also define the concave function Ku : Lû(P )→ [−∞,∞) by

Ku(f) = E[u(f) ]

and let D be its proper domain, i.e.

D = {f ∈ Lû(P ) : E[u(f) ] > −∞}.

Proposition C.13 can be used to characterise the above function. Note that a simi-

lar result holds for concave functions. This proposition allows us to prove the following

proposition characterising Ku.

Proposition 3.5.13. The concave function Ku on Lû(P ) is proper and it is norm-continu-

ous on the interior of its proper domain, which is not empty. Moreover, there exists a norm

continuity point of Ku that belongs to CW (P ).

Proof. [15, Proposition 16] By Proposition C.13, the first statement is equivalent to the

existence of a non-empty open set O on which Ku is not everywhere equal to ∞ and is

bounded below by a constant c ∈ R.

Firstly, we show that on the unit ball U of Lû(P ), the function Ku is everywhere less

than ∞. If x ∈ U , then by Jensen’s inequality and the fact that Lû(P ) ⊆ L1(P ), it follows

that |E[x|]| ≤ E[ |x| ] < ∞. So, using Jensen’s inequality again and the definition of the

utility function, Ku(x) = E[u(x) ] ≤ E[u(|x|) ] ≤ u(E[x]) <∞.

Secondly, we show that Ku is uniformly bounded below on the unit ball U ∈ Lû(P ).

For all x ∈ U , E[ û(x) ] ≤ 1 and E[ û(x−) ] ≤ 1. Hence

−Ku(−x−) = −E[u(−x−) ]

= E[−u(−x−) ]

= E[ û(x−)− u(0) ]

= E[ û(x−) ]− u(0)

≤ 1− u(0)

and so Ku(x) ≥ Ku(−x−) ≥ u(0)− 1, i.e. Ku is uniformly bounded below.

The second statement follows from the following. Let z ∈ −U+, then z ∈ Lû(P ). Also,

z can be written as z = 0− (−z), which shows that z ∈ KW − L+
0 (P ). Hence, z ∈ CW (P )

and −U+ ⊆ CW (P ).

Note that the above proof shows that Ku is finite on the unit ball U .
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Proposition 3.5.14. If z ∈ (Lû(P ))∗s with z ≥ 0, then

‖z‖(Lû)∗ = sup{z(f) : f ≥ 0, f ∈ Lû(P ) such that E[ û(f) ] <∞}. (3.7)

Proof. By definition,

‖z‖(Lû)∗ = sup{‖z(f)‖ : Nû(f) ≤ 1, f ≥ 0}.

Since z is nonnegative and using Theorem 2.1.8, we can complete the proof.

For the convenience of the reader, we recall that the utility function u : R → [−∞,∞]

is increasing and concave on (a,∞), where a ∈ [−∞, 0).

Lemma 3.5.15. Let z ∈ ((Lû(P ))∗s)
+. Then

‖z‖(Lû)∗ = sup
f∈D

z(−f).

In the case where a is finite,

‖z‖(Lû)∗ = −az(Ω).

Proof. Since z ≥ 0,

sup
f∈D

z(−f) = sup
(−f)≥0, f∈D

z(−f).

Now, f ∈ D implies that E[u(f)] > −∞, which is equivalent to E[û(−f)] < ∞, where −f
is nonnegative. Therefore,

sup
f∈D

z(−f) = sup{z(−f) : −f ≥ 0, (−f) ∈ Lû(P ) such that E[û(−f)] <∞},

and using Proposition 3.5.14 completes the first part of the proof.

For a finite, we have

‖z‖(Lû)∗ = sup{z(f) : f ∈ L+
û (P ), f < −a} = −az(Ω),

as sup
f∈L+

û (P ), f<1

z(f) = z(Ω).

To describe the dual variables, we define the negative polar cone by

(CW (P ))◦− = {z ∈ (Hû(P ))∗ = LΦ̂(P ) : z(f) ≤ 0 for all f ∈ CW (P )}

and the subset of normalised functions in (CW (P ))◦− by

MW (P ) = {Q ∈ (CW (P ))◦− : Q(1Ω) = 1}.

Thus, the elements of MW (P ) are probability measures, which are absolutely continuous

with respect to P .
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Remark 3.5.16. By definition, if Q ∈MW (P ) and f ∈ CW (P ), then EQ[f ] ≤ 0.

In general,

Mσ(S) ∩ LΦ̂(P ) ⊆MW (P ),

and it can be shown, see [15], that if W ∈ S ∩Hû(P ), then

Mσ(S) ∩ LΦ̂(P ) =MW (P ). (3.8)

Next, we will state the special case of Rockafellar and Kozek’s theorem, Theorem 2.6.2,

required for the proof of Theorem 3.5.18.

Theorem 3.5.17. Suppose that F : R → (−∞,∞] and F ∗ : R → (−∞,∞] are convex,

lower semi-continuous conjugate functions, not identically equal to ∞, and that there exists

f ∈ Lû(P ) such that KF (f) = E[F (f)] <∞. If KF ∗(g) <∞ for some g ∈ LΦ̂(P ), then the

convex conjugate K∗F : (Lû(P ))∗ → (−∞,∞] of KF is given by

K∗F (z) = KF ∗

(dzr
dP

)
+ sup{zs(f) : f ∈ dom(KF )}.

Now we can state and prove the required version of the minimax theorem, as proved by

Biagini and Frittelli (see [15, Theorem 21]).

Theorem 3.5.18. Let u : R→ [−∞,∞] be increasing and concave on the interior (a,∞),

a ∈ [−∞, 0), of its effective domain and let lim
x→−∞

u(x) = −∞.

(i) If there exists W ∈ L+
û (P ) such that sup

f∈KW

E[u(x+ f) ] < lim
y→∞

u(y) for some x > a,

then MW is not empty and

UW (x) := sup
H∈HW

E[u(x+ (H · S)T ) ]

= sup
f∈KW

E[u(x+ f) ]

= sup
f∗∈CW (P )

E[u(x+ f∗) ]

= min
λ>0,Q∈MW (P )

{
λ(x+ ‖Qs‖) + E[ Φ

(
λ
dQc
dP

)
]
}
, (3.9)

where Q = Qc+Qs is the decomposition of Q into its σ-order continuous and singular

part.

(ii) If W ∈ Hû(P ), then the set MW (P ) can be replaced by the set Mσ(S) ∩ LΦ̂(P ) and

no singular term appears in the duality formula above.
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Proof. (i): Firstly, we will prove the result for x = 0. Using Theorem 3.5.17, the concave

conjugate function of Ku is given by

Ju(z) = −KΦ(zc)− sup
f∈D
{zs(−f)}

= −E[ Φ(zc) ]− sup
f∈D
{zs(−f)}

= −E[ Φ(
dzc
dP

) ]− sup
f∈D
{zs(−f)}.

From Lemma 3.5.15,

Ju(z) = −E[ Φ(
dzc
dP

) ]− ‖zs‖ .

Due to Proposition 3.5.13, we know that an interior point of CW (P ) exists and hence, we

can apply the Fenchel duality theorem, or more specifically we can use Equation (C.1), to

get

sup
f∈CW (P )

Ku(f) = sup
f∈CW (P )

E[u(f) ]

= min
z∈(CW (P ))◦

−Ju(z)

= min
z∈(CW (P ))◦

{
E[ Φ

(dzc
dP

)
] + ‖zs‖

}
. (3.10)

Let z̃ ∈ (CW (P ))◦ be such that

min
z∈(CW (P ))◦

{
E[ Φ

(dzc
dP

)
] + ‖zs‖

}
= E[ Φ

(dz̃c
dP

)
] + ‖z̃s‖ .

We next prove the claim that MW (P ) is not empty. Assume that z̃c = 0. Then

sup
f∈CW (P )

E[u(f) ] = Φ(0) + ‖z̃s‖ ≥ lim
x→∞

u(x),

since Φ(0) = lim
x→∞

u(x). This contradicts the assumption that sup
k∈KW

E[u(k)] < lim
x→∞

u(x).

Hence, z̃c 6= 0. Let ẑ = z̃c
‖z̃c‖ , then ‖ẑ‖ = 1 and consequently dẑ

dP ∈ M
W (P ), i.e. MW (P ) is

not empty.

Returning to (3.10) and reparametrising our optimisation problem via MW , which

consist of all the functions of norm 1, we have that

sup
f∈CW (P )

Ku(f) = min
λ>0,Q∈MW (P )

{
E[ Φ

(
λ
dQc
dP

)
] + λ ‖Qs‖

}
.

Next we look at the case where x 6= 0. Let ux(f) = u(x + f). Then ux is finite on

(ax,∞), where ax = a− x < 0, and Kux is given by Kux(f) = E[u(x+ f)] with Dx = D− x
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as its domain. Now, we can use the same method as when x = 0, noting that the conjugate

of ux is given by Φx(g) = xg + Φ(g) and thus, the concave conjugate of Kux is given by

Jux(z) = −xzc(Ω)− E[Φ(
dzc
dP

)]− sup
f∈Dx

zs(−f).

However, sup
f∈Dx

zs(−f) = sup
g∈D

zs(−g) + xzs(Ω), so

Jux(z) = −E[Φ(
dzc
dP

)]− xz(Ω)− ‖zs‖ .

Using this in Fenchel’s theorem and simplifying as in the case where x = 0, completes the

proof.

(ii): The singular term disappears due to the fact that the dual of Hû(P ), which is

LΦ̂(P ), has no singular part. Using (3.8), we can replace MW (P ) by Mσ(S) ∩ LΦ̂(P ).

The following corollary is a reformulation of Theorem 3.5.18, required for the preference-

dependent version of the first fundamental theorem of asset pricing presented in the next

section. The constant initial endowment x is replaced by a random variable B, which is

assumed to be bounded. For a more general version of Theorem 3.5.18, where the random

variable is not necessarily bounded, the reader is referred to [17].

If S ∩Hû(P ) is not empty, define

Hû =
⋃

W∈S∩Hû(P )

HW .

Then, Hû does not depend on any particular W ∈ S ∩Hû(P ).

Corollary 3.5.19. Assume B ∈ L∞(P ) and suppose that there exists W ∈ Hû(P ) with

W ≥ 1 and satisfying

sup
H∈HW

EP [u(B + (H · S)T ) ] < lim
y→∞

u(y).

Then

(i) MW (P ) is not empty and

UW (B) := sup
H∈HW

EP [u(B + (H · S)T ) ]

= min
λ>0,Q∈MW (P )

{
λEQ[B] + EP [ Φ(λ

dQ

dP
) ]
}
.

(ii) If in addition, W ∈ S ∩ Hû(P ), then Mσ(S) ∩ LΦ̂(P ) is not empty and HW can be

replaced by Hû and MW (P ) by Mσ(S) ∩ LΦ̂(P ).
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Now that we have stated and proved the minimax theorem, we can state and prove

Frittelli’s new version of the fundamental theorem of asset pricing.

3.5.4 No market free lunch*

In this section, we specialise the definition of a market free lunch to a subset Pû of the

probability measures P. Define

Pû = {Q ∼ P : S ∩Hû(Q) 6= ∅}.

Then, similar to Section 3.4, Frittelli [64] defines a market free lunch* with respect to

U, which will be based on the Orlicz space.

Definition 3.5.20. There is a market free lunch* with respect to U if for all P ∈ Pû and

u ∈ U, there exists w ∈ L+
∞(P )\{0} such that

sup
f∈Hû

EP [ u(f − w) ] ≥ u(0). (3.11)

Hence, there is no market free lunch* (NMFL*(U)) with respect to U if for all w ∈
L+
∞(P )\{0}, there exists P ∈ Pû and u ∈ U such that

sup
f∈Hû

EP [ u(f − w) ] < u(0). (3.12)

We need the following result, due to Halmos and Savage [75] to prove the preference

dependent version of the first fundamental theorem of asset pricing.

Theorem 3.5.21 (Halmos-Savage theorem). Let M be a set of P -absolutely continuous

probability measures on F , which is closed under countable convex combinations. Suppose

that for each set A ∈ F with P (A) > 0, there exists Q ∈ M with Q(A) > 0. Then, there

exists Q0 such that, for all sets A ∈ F with P (A) > 0, Q0(A) > 0; that is, Q0 and P are

equivalent probability measures.

Theorem 3.5.22. NMFL*(U2) ⇐⇒Mσ(S) ∩ P 6= ∅.

Proof. ⇐: Assume there exists Q ∈Mσ(S)∩ P. We need to show that for all w ∈ L+
∞\{0},

there exist P ∈ Pû and u ∈ U2 such that (3.12) holds. By Proposition A.8.6, since Q

is a sigma-martingale measure, there exist a d-dimensional Q-martingale N and a positive

predictable N -integrable process ϕ such that Si = ϕ·N i. Then N i = ϕ−1 ·Si is a martingale
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and its maximal process (N i)∗ = sup
t≤T
|N i

t | is Q-integrable. Let

W = 1 +

d∑
i=1

sup
t≤T
{|(ϕ−1 · Si)t|}.

Then W ∈ L1(Q). By definition |(ϕ−1 · Si)t| ≤ W for all t and i, where ϕ−1 is a positive

predictable Si-integrable process. Hence W is suitable.

Consider u ∈ U2 such that it is strictly increasing and lim
x→−∞

u(x) = x. It follows that

lim
x→∞

û(x) = x+ u(0). Since û(0) = 0, we must have that

û(x) ≤

{
x+ u(0) if u(0) ≥ 0

x if u(0) < 0.

Now, let f ∈ L1(Q), i.e.
∫
|f | dQ <∞. Then, for all a > 0,

∫
û
( |f |
a

)
dQ ≤


∫ ( |f |

a + u(0)
)
dQ <∞ if u(0) ≥ 0∫ |f |

a dQ <∞ if u(0) < 0,

i.e. f ∈ Hû(Q). Hence, in conjunction with Proposition 2.2.2, Hû(Q) = L1(Q).

Since W is integrable with respect to Q, we have that W ∈ L1(Q) = Hû(Q), which

shows that W is compatible. Therefore, W ∈ Hû(Q) ∩ S and by definition, Q ∈ Pû.

Since W ∈ Hû(Q) ∩ S, we have by Equation (3.8) that

MW (Q) = Mσ(S) ∩ LΦ̂(Q) = Mσ(S) ∩ L∞(P ).

The last equality follows from the fact that Hû(Q) = L1(Q) and (L1(Q))∗ = L∞(Q). Since

Q ∼ P , we also have that L∞(Q) = L∞(P ).

Since 1 ∈ LΦ̂(P ), we have that Q ∈ Mσ(S) ∩ L∞(P ) and hence, Q ∈ MW (Q). Thus,

using Remark 3.5.16, it follows that EQ[f ] ≤ 0 for all f ∈ CW (Q).

Let g ∈ L+
∞(P )\{0}. Using Jensen’s inequality and the fact that u is increasing,

EQ[u(f − g) ] ≤ u(EQ[f ]− EQ[g]) ≤ u(−EQ[g]) ≤ u(0). (3.13)

Thus, we can deduce that

sup
f∈CW (Q)

EQ[u(f − g) ] < u(0),

which implies

sup
f∈Hû(Q)

EQ[u(f − g) ] < u(0),
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completing the first part of the proof.

⇒: Assume that for all g ∈ L+
∞\{0} there exist u ∈ U2, P ∈ Pû and W ∈ Hû(P ) ∩ S

such that

sup
f∈CW (P )

EP [u(f − g) ] < u(0) ≤ u(∞).

From Corollary 3.5.19, we can deduce that there exist Qg ∈ Mσ(S) ∩ LΦ̂(P ) and λg > 0

that attain the minimum in the dual problem, i.e.

u(0) > sup
f∈Hû(P )

EP [u(f − g) ]

= min
λ>0,Q∈Mσ(S)∩LΦ̂(P )

{
− λEQ[g] + EP [Φ

(
λ
dQ

dP

)
]
}

= −λgEQg [g] + EP [Φ
(
λg
dQg
dP

)
]

≥ −λgEQg [g] + u(0),

where the last inequality follows from

Φ(y) = sup
x∈R
{u(x)− xy} ≥ u(0) for all y ≥ 0.

In particular, let g = 1A, where A ∈ F satisfies P (A) > 0. Using the above, we

have that 0 > −λ1AQ1A(A). In other words, for all A ∈ F with P (A) > 0, there exists

Q1A ∈Mσ(S)∩LΦ̂(P ) such that Q1A(A) > 0. By the Halmos-Savage theorem, there exists

Q0 ∈Mσ(S) ∩ LΦ̂(P ) ⊆Mσ(S) such that Q0 ∼ P , i.e. Mσ(S) ∩ P 6= ∅.

Corollary 3.5.23. NMFL(U2) ⇔ NFLVR

Proof. This follows easily from Theorem 3.1.8 and Theorem 3.5.22.

Klein [100] states that NMFL(U2) ⇔ NFL. In our opinion there is a gap in the first

part of the proof, as we cannot verify the first inequality on page 4 line 17. However, using

the above corollary along with Theorem 3.1.9 proves her statement.



Chapter 4

Scalar-valued risk measures on

Orlicz hearts

It is important, both theoretically and practically, to be able to quantify the risk involved

in a financial position and hence, decide if it is acceptable or not. For this reason, different

ways to quantify risk and various risk measures have been proposed in the literature.

Markowitz proposed to use the variance of the return distribution to measure the risk

associated with each investment, and in the case of a portfolio, i.e. a combination of assets, to

look at the covariance between all pairs of investments. The main innovation by Markowitz

was to use the joint distribution of returns of all assets. A joint distribution is characterised

by the marginal properties of each component random variable and by their dependence

structure. Markowitz used the mean and the variance to describe the marginal properties

and the linear correlation coefficient between each pair to describe the dependence structure.

However, the only class of random variables for which the linear correlation coefficient can

be used as a dependence measure, is the class of elliptic distributions, like the normal or

t-distribution with finite variances.

Another disadvantage of using the variance as a risk measure, is the asymmetry in the

financial interpretation, i.e. only the downside risk plays a role, whereas the variance gives

both upside and downside risk.

A popular risk measures is value at risk (VaR). VaR has been around since the early

1900’s but JP Morgan was the first to coin the term ‘value at risk’ in a report by 30 people

entitled: Derivatives: Practices and Principles [92]. VaR with parameter α answers the

following question: what are your expected losses in one day (week, year, . . . ) with a

given probability α. In other words, what percentage of your investment is at risk? The

60
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disadvantages of VaR are that it is model dependent and that it does not decrease when we

diversify the portfolio. See Section 4.4 for more details.

This lead Artzner et al. [4] to introduce an axiomatic definition of a risk measure, which

they called a coherent risk measure. Their results are based in a finite probability space.

This was later extended to an infinite probability space by Delbaen [42]. Independently

around the same time, Wang et al. [158] published similar results on the closely related

topic of insurance premia.

The theory of risk measures can be split into two parts: static risk measures, like value

at risk and coherent risk measures, and dynamic risk measures, which were proposed by

Cvitanic and Karatzas [33] and Wang [163]. In this chapter, we will only look at static risk

measures.

4.1 Definition

Measuring risk is equivalent to establishing a correspondence ρ between the space X of ran-

dom variables (for instance the returns of a given set of investments) and the real numbers,

i.e. risk measures are defined as functions from some set of possible scenarios to the reals

and they need to satisfy certain conditions of consistency, as defined below.

Definition 4.1.1. Let X be a vector subspace of L0(P ) that contains all constant functions.

A map ρ : X → (−∞,∞] is called a monetary risk measure on X if it has the following

properties:

(i) Finiteness at 0, i.e. ρ(0) ∈ R.

(ii) Monotonicity, i.e. if x ≤ y, then ρ(x) ≥ ρ(y) for all x, y ∈ X .

(iii) Translation invariance, i.e. if m ∈ R, then ρ(x+m1) = ρ(x)−m for all x ∈ X , where

1(ω) = 1 a.e. for all ω ∈ Ω.

The monetary risk measure is called coherent if it also satisfies

(iv) Positive homogeneity, i.e. if λ ≥ 0, then ρ(λx) = λρ(x) for all x ∈ X .

(v) Subadditivity, i.e. ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X .

The translation invariance property (also known as the cash additivity property) implies

that by adding a sure return to a random return, the risk will decrease by that sure amount.
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If we are working with a loss variable x, then (iii) becomes ρ(x + m1) = ρ(x) + m for all

m ∈ R. From here onwards we will write only m for m1 as is customary in the literature.

Subadditivity seems like a natural requirement as diversification should not increase the

risk. Artzner et al. [6] explain it by the phrase ‘a merger does not create extra risk’. Note

that subadditivity implies ρ(λx) ≤ λρ(x). The positive homogeneity gives us the other

inequality. Artzner et al. [5, 6] justify the latter inequality by liquidity considerations. An

investment λX would be less liquid and hence, more risky than λ smaller investments.

In many situations, however, the risk of a position might increase in a non-linear manner

with the size of the position. This suggests that the conditions of positive homogeneity and

subadditivity should be relaxed. Therefore, Heath [84] introduced convex risk measures in

a finite probability space, which was later independently generalised by Föllmer and Schied

[60] and Frittelli and Rosazza Gianin [62] to all probability spaces. Convex risk measures

are defined as follows.

Definition 4.1.2. A map ρ : X → (−∞,∞] is called a convex risk measure if it satisfies

the conditions of monotonicity, translation invariance and

(vi) Convexity, i.e. ρ(λx + (1 − λ)y) ≤ λρ(x) + (1 − λ)ρ(y) for any λ ∈ (0, 1) and for all

x, y ∈ X .

Note that coherent risk measures are special cases of convex risk measures. It can be shown

that any positively homogeneous function is convex if and only if it is subadditive. Convex

risk measures are sometimes called weakly coherent.

If there is uncertainty in the interest rate, then El Karoui and Ravanelli [57] suggest

replacing cash-additivity with cash-subadditivity.

Definition 4.1.3. A map ρ : X → (−∞,∞] is cash-subadditive if for all x ∈ X and m ∈ R

ρ(x+m) ≥ ρ(x)−m. (4.1)

Cash-subadditivity implies that when m is subtracted from a future position the present

capital requirement cannot be increased by more than m. Note that (4.1) is equivalent to

ρ(x−m) ≤ ρ(x) +m for all x ∈ X .

Cerreia-Vioglio et al. [22] then suggest that once cash-additivity has been replaced by

cash-subadditivity, convexity should be replaced by quasiconvexity, in order to maintain

the original interpretation in terms of diversification.
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Definition 4.1.4. A map ρ : X → (−∞,∞] is quasiconvex if for any λ ∈ (0, 1) and for all

x, y ∈ X
ρ(λx+ (1− λ)y) ≤ max(ρ(x), ρ(y)). (4.2)

Cerreia-Vioglio et al. [22] state that quasiconvexity ‘allows a complete disentangling

between the diversification principle, which is arguably the central pillar of risk management,

and the assumption of liquidity of the riskless asset, which is an abstract simplification’.

The economic counterpart of quasiconvexity of risk measures is quasiconcavity of utility

functions. In this thesis we only consider convex risk measures.

To compare all these different types of risk measures, representation theorems can be

helpful. A lot of work has gone into finding the dual representation theorems of risk measures

with different properties.

Artzner et al. [5, 6] and Föllmer and Schied [60] modelled future financial positions

by elements of the set L(Ω) of all real-valued functions on a finite sample space Ω and

a coherent, convex or monetary risk measure is a map ρ : L(Ω) → R satisfying certain

properties. They show that every monetary risk measure can be expressed as

ρ(x) = inf{m ∈ R : x+m ∈ A} for all x ∈ X ,

where A = {x ∈ L(Ω) : ρ(x) ≤ 0} is the set of acceptable positions, and that every convex

risk measure has a convex dual representation of the form

ρ(x) = sup
Q∈Mp

{EQ[−x]− α(Q)} for all x ∈ X , (4.3)

where Mp is the set of all probability measures on Ω and α is a function from Mp to

(−∞,∞]. Note thatMp is independent of x. If ρ is coherent, then α can be chosen so that

it only takes the values 0 or ∞, and thus (4.3) reduces to

ρ(x) = sup
Q∈Q

EQ[−x] for all x ∈ X ,

where Q = {Q ∈Mp : α(Q) = 0}.
Economically, this representation tells us that ρ(x) is the minimal amount which has

to be added to a position x to make it acceptable. The function α is called the penalty

function and it penalises different probabilities, depending on how likely they are to occur.

In the literature, the standard proofs of the robust representations involve the separating

hyperplane theorem and become more involved in a general framework. It is also noteworthy,

that the representation changes depending on the set L(Ω). If, for example, one looks at

L∞(P ), the robust representation formula involves finitely additive measures and to reduce

it to σ-additive measures, additional continuity assumptions are required.
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4.2 Acceptance sets

The acceptance set describes all those positions that the regulator or investor deems as

acceptable in terms of risk.

Definition 4.2.1. Let X be a linear subspace of L0(P ) that contains all constant functions.

Let ρ : X → (−∞,∞] be a monetary risk measure. The set Aρ given by

Aρ = {x ∈ X : ρ(x) ≤ 0},

is called the acceptance set of ρ.

The following propositions, taken from Cheridito and Li [26], shows the connection

between risk measures and certain sets of random variables.

Proposition 4.2.2. Let X be a linear subspace of L0(P ) that contains all constant func-

tions, and ρ : X → (−∞,∞] a monetary risk measure with acceptance set Aρ. Then, for

x ∈ X ,

ρ(x) = inf{m ∈ R : x+m ∈ Aρ}.

Furthermore, the following properties are satisfied by Aρ:

(i) inf{m ∈ R : m ≥ z for some z ∈ Aρ} ∈ R.

(ii) For all x ∈ X , inf{m ∈ R : x+m ≥ z for some z ∈ Aρ} ∈ (−∞,∞].

(iii) For all x ∈ Aρ, {y ∈ X : y ≥ x} ⊆ Aρ.

(iv) If (xn) is a sequence in Aρ such that ||xn − x||∞ → 0 for some x ∈ X , then x ∈ Aρ,
i.e. Aρ is closed with respect to || · ||∞. Moreover, if ρ is convex, then so is Aρ. If ρ

is coherent, then Aρ is a convex cone.

(v) If ρ is real-valued, then Aρ has the following property: For all x ∈ X , inf{m ∈ R :

x+m ≥ z for some z ∈ Aρ} ∈ R.

Proof. Assume x + m ∈ Aρ. It follows from the definition of Aρ and the translation

invariance property that ρ(x) ≤ m for all m ∈ R. Therefore,

ρ(x) = inf{m ∈ R : x+m ∈ Aρ}.

(iii): Let y0 ∈ {y ∈ X : y ≥ x}. By the monotonicity, ρ(y0) ≤ ρ(x) ≤ 0 and hence,

y0 ∈ Aρ.
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(ii): Using (iii), we get that

{m ∈ R : x+m ≥ z for some z ∈ Aρ} ⊆ {m ∈ R : x+m ∈ Aρ}.

Since x+m ≥ x+m, we have equality in the above. Therefore,

ρ(X) = inf{m ∈ R : x+m ≥ z for some z ∈ Aρ}

and since ρ(x) ∈ (−∞,∞], we get (ii).

(i): ρ(0) = {m ∈ R : m ≥ z for some z ∈ Aρ} ∈ R.

(iv): Consider a sequence (xn) ⊆ Aρ with ||xn − x||∞ → 0 for some x ∈ X . Then, for

all ε > 0, there exists n ≥ 1 such that x ≥ xn − ε. By the monotonicity and the translation

invariance,

ρ(x) ≤ ρ(xn − ε) = ρ(xn) + ε ≤ ε,

and thus, x ∈ Aρ.
Now, assume that ρ is convex and let x, y ∈ Aρ. Then for λ ∈ (0, 1)

ρ(λx+ (1− λ)y) ≤ λρ(x) + (1− λ)ρ(y) ≤ 0,

i.e. λx+ (1− λ)y ∈ Aρ. Thus, Aρ is convex.

It is obvious that if ρ is coherent, then Aρ is a convex cone.

(v): Assume ρ is real-valued. By the proof of (ii), we have that

ρ(x) = inf{m ∈ R : x+m ≥ z for some z ∈ Aρ}.

Proposition 4.2.3. Let X be a vector subspace of L0(P ) that contains all constant func-

tions, and B a subset of X with properties (i) and (ii) of Proposition 4.2.2.

(i) Then

ρB(x) = inf{m ∈ R : x+m ≥ z for some z ∈ B}

defines a monetary risk measure on X , whose acceptance set AρB is the smallest

subset of X that contains B and satisfies (iii) and (iv) of Proposition 4.2.2.

(ii) If B is convex, then so is ρB.

(iii) If B is a convex cone, then ρB is coherent.

(iv) If B satisfies condition (v) of Proposition 4.2.2, then ρB is real-valued.
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Proof. (i): First we will show that ρB is a monetary risk measure. Consider

ρB(0) = inf{m ∈ R : m ≥ z for some z ∈ B}.

Since B satisfies property (i) of Proposition 4.2.2, we have that ρB(0) ∈ R. Next let x ≤ y,

then we have

{m ∈ R : x+m ≥ z for some z ∈ B} ⊆ {m ∈ R : y +m ≥ z for some z ∈ B}.

Thus, when looking at the infimum of each set, we have that ρB(x) ≥ ρB(y). It is easy to

show that ρB has the translation invariance property. We have proved that ρB is a monetary

risk measure.

Consider x ∈ B. Then x+m ≥ x for all m ≥ 0. Hence

R+ ⊆ {m ∈ R : x+m ≥ z for some z ∈ B}

and ρB(x) ≤ inf R+ = 0, i.e. x ∈ AρB . Thus B is contained in AρB .

Now, consider a subset C of X with B ⊆ C and satisfying (iii) and (iv) of Proposition

4.2.2. We need to show that AρB ⊆ C. Thus, consider x ∈ AρB . Then

inf{m ∈ R : x+m ≥ z for some z ∈ B} ≤ 0.

Hence, there exists zn ∈ B ⊆ C such that x + 1
n ≥ zn for n ≥ 1. By (iii) of Proposition

4.2.2, we have x + 1
n ∈ C and since x + 1

n → x as n → ∞, we have by (iv) of Proposition

4.2.2 that x ∈ C, proving our claim.

(ii): Assume that B is convex. First, let λ ∈ (0, 1) and consider

λρB(x) = inf{λm ∈ R : x+m ≥ z for some z ∈ B}

= inf{m1 ∈ R : λx+m1 ≥ λz for some z ∈ B}.

Let

U1 = {m1 ∈ R : λx+m1 ≥ λz for some z ∈ B}

and

U2 = {m2 ∈ R : (1− λ)y +m1 ≥ (1− λ)z for some z ∈ B}.

Take u ∈ U1 + U2. Then, u = u1 + u2, where for some z1, z2 ∈ B, λx + u1 ≥ λz1 and

(1− λ)y + u2 ≥ (1− λ)z2. Hence,

λx+ (1− λ)y + u ≥ z,
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where z = λz1 + (1− λ)z2 ∈ B, as B is convex. Thus

U1 + U2 ⊆ {m ∈ R : λx+ (1− λ)y +m ≥ λz for some z ∈ B},

proving that ρB is convex.

(iii): Assume that B is a convex cone. By the convexity of B we get that ρB is convex.

All we need to show is that ρB is positive homogeneous. Let λ > 0 and consider

ρB(λx) = inf{m ∈ R : λx+m ≥ z for some z ∈ B}

= inf{m ∈ R : x+
m

λ
≥ z

λ
for some z ∈ B}

= inf{λn ∈ R : x+ n ≥ z1 for some z1 ∈ B}

= λ inf{n ∈ R : x+ n ≥ z1 for some z1 ∈ B}

= λρB(x).

Note that if z ∈ B, we have z
λ ∈ B, as B is a cone. Hence, we have shown that ρB is coherent.

(iv): If B satisfies (v) of Proposition 4.2.2, then ρB is by definition real-valued.

The following two examples are taken from [61].

Example 4.2.4. Consider the worst case measure ρmax defined by

ρmax(x) = − inf
ω∈Ω

x(ω) for all x ∈ X .

The corresponding acceptance set A is given by the convex cone of all nonnegative functions

in X . Thus, ρmax is a coherent measure of risk. It is the most conservative measure of risk

in the sense that any monetary risk measure ρ on X with ρ(0) = 0 satisfies

ρ(x) ≤ − inf
ω∈Ω

x(ω) = ρmax(x).

Example 4.2.5. Let Q be a set of probability measures on (Ω,F), and consider a mapping

γ : Q → R with sup
Q∈Q

γ(Q) <∞. Suppose that a position is acceptable if

EQ[x] ≥ γ(Q) for all Q ∈ Q.

In other words, γ(Q) is a lower bound for the expected value. The acceptance set A of such

positions satisfies properties (ii) and (iii) of Proposition 4.2.2 and it is convex. Hence, the

associated risk measure ρA is convex and is of the form

ρA(x) = sup
Q∈Q
{γ(Q)− EQ[x]}.
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Alternatively, we can write

ρA(x) = sup
Q∈P
{EQ[−x]− α(Q)},

where the penalty function α : P → (−∞,∞] is defined by α(Q) = −γ(Q) if Q ∈ Q and

α(Q) =∞ otherwise. Note that ρA is coherent if γ(Q) = 0 for all Q ∈ Q.

As mentioned before, representation theorems are important in the study of risk mea-

sures. In 2002, Föllmer and Schied [60] proved the following representation theorem for

convex risk measures. They assume that ρ : L∞(P )→ R.

Theorem 4.2.6. [60, Theorem 6] Suppose X = L∞(Ω,F , P ), P is the set of probability

measures, which are absolutely continuous with respect to P , and ρ : X → R is a convex

risk measure. Then the following properties are equivalent:

(i) There is a function α : P→ (−∞,∞] such that

ρ(x) = sup
Q∈P
{EQ[−x ]− α(Q)} for all x ∈ X . (4.4)

(ii) The acceptance set Aρ associated with ρ is σ(L∞(P ), L1(P ))-closed.

(iii) The risk measure ρ possesses the Fatou property, i.e. if the sequence (xn)n∈N ⊆ X
is uniformly bounded and xn converges in probability to some x ∈ X , then ρ(x) ≤
lim infn ρ(xn).

(iv) If the sequence xn ⊆ X decreases to x ∈ X , then ρ(xn)→ ρ(x).

This considers bounded random variables. However, most models in financial mathe-

matics allow for random variables, which are not bounded, and therefore, it makes sense

to look at risk measures on larger sets than L∞(P ). This has been done by numerous

people, amongst them Delbaen [42] and Cheridito et al. [25], who investigated convex risk

measures on L0(P ), Frittelli and Rosazza Gianin [62], who provide robust representations

for real-valued risk measures on Lp-spaces, and various others (see [26] for more details).

Cheridito and Li [26] extended the theory on risk measures to Orlicz spaces, which will be

discussed in the next section.
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4.3 Risk measures on Orlicz hearts

4.3.1 Monotone functionals on Banach lattices

Before we can state and prove the theorem which gives us the robust representation of a

convex risk measure on an Orlicz heart, we need a few definitions and properties of monotone

functionals on Banach lattices.

Definition 4.3.1. Consider two normed spaces X and Y. A function f : X → Y is

Lipschitz-continuous if there exists a positive constant K ∈ R such that

||f(x1)− f(x2)|| ≤ K||x1 − x2||,

for all x1, x2 ∈ X .

It can be shown that any monetary risk measure ρ is Lipschitz continuous with respect

to the supremum norm || · ||∞, i.e.

|ρ(x)− ρ(y)| ≤ ||x− y||∞.

Lemma 4.3.2. If f is an increasing function from a Banach lattice X to (−∞,∞], then

core(dom(f)) = int(dom(f)).

Proof. Since int(A) ⊆ core(A) for every A ⊆ X , we just have to show that core(dom(f)) ⊆
int(dom(f)). By way of contradiction, assume that f is real-valued on an algebraic neigh-

bourhood of x ∈ X but not on a neighbourhood of x. Then there exist elements zn ∈ X ,

n ≥ 1 with norm ||x− zn|| ≤ 4−n and f(zn) =∞. We also have that ||x− z+
n || ≤ 4−n and

f(z+
n ) =∞. Let y+

n = x− z+
n . Then ||y+

n || ≤ 4−n and f(x+ y+
n ) =∞.

Define y =
∑

n≥1 2ny+
n . By assumption, there exists an ε > 0 such that f(x + ty) ∈ R

for t ∈ [0, ε]. It follows that for all n with ε2n ≥ 1, we have

∞ > f(x+ εy) ≥ f(x+ ε2ny+
n ) ≥ f(x+ y+

n ) =∞,

a contradiction. So there has to exist a neighbourhood of x on which f is real-valued.

For every proper convex function f , the conjugate f∗, as defined previously, is given by

f∗(x∗) = sup
x∈X
{x∗(x)− f(x)}.

The conjugate is a σ(X ∗,X )-lower semi-continuous, convex function from X ∗ to (−∞,∞].

It is immediate from the definition of f∗ that

f(x) ≥ f∗∗(x) = sup
x∗∈X ∗

{x∗(x)− f∗(x∗)}.
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The next proposition, taken from [169, Corollary 2.2.12], is required for the proof of

Theorem 4.3.4.

Proposition 4.3.3. Let X be a normed space and f : X → [−∞,∞] a proper convex

function. Suppose that x0 ∈ domf and for some p > 0 and m ≥ 0

f(x) ≤ f(x0) +m

for all x ∈ X such that |x − x0| ≤ p. Then for all p′ ∈ (0, p) and x, y ∈ X such that

|x− x0| ≤ p′ and |y − x0| ≤ p′, we have

|f(x)− f(y)| ≤ m

p
· p+ p′

p− p′
||x− y||.

Now we can state and prove the following, as done by Cheridito and Li in [26].

Theorem 4.3.4. Let f be an increasing, convex function from a Banach lattice X to

(−∞,∞]. For all x ∈ core(dom(f)),

(i) there exists a neighbourhood of x on which f is Lipschitz-continuous with respect to

the norm on X ,

(ii) f is subdifferentiable at x, and

(iii) f(x) = max
x∗∈X ∗

{x∗(x)− f∗(x∗)}.

Proof. (ii): By Lemma 4.3.2, every x ∈ core(dom(f)) has a neighbourhood contained in

domf . So it follows from Proposition C.14 that f is continuous and subdifferentiable at x.

(iii): Note that if f is increasing then f∗ is finite at most over (X∗)+. Since f is

subdifferentiable, there exists a positive subgradient x∗ ∈ X ∗ of f such that for all y ∈
int(domf) we have

f(x)− f(y) ≥ x∗(x− y),

i.e.

x∗(y)− f(y) ≥ x∗(x)− f(x).

As this holds for all x ∈ X , we have

x∗(y)− f(y) = max
x∈X
{x∗(x)− f(x)} = f∗(x∗).

This chain of equalities implies that

f(y) = x∗(y)− f∗(x∗) = max
x∗∈X ∗

{x∗(y)− f∗(x∗)},
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where the last equality is satisfied because f(y) ≥ x∗(y) − f∗(x∗) automatically holds for

any x∗ ∈ X ∗.
(i): Since f is continuous at x, there exists a neighbourhood of x on which f is bounded

and hence, (i) follows from Proposition 4.3.3.

Remark 4.3.5. Theorem 4.3.4 is a special case of the extended Namioka-Klee theorem

proved by Biagini and Frittelli [16]. Biagini and Frittelli prove this theorem for a proper,

convex and monotone increasing function on a Frechet lattice, which is a generalisation of

a Banach lattice. By using a Frechet lattice, Biagini and Frittelli obtain a representation

result that holds for Orlicz spaces as well as Orlicz hearts.

4.3.2 Dual Representation

We will now look at risk measures on Orlicz hearts. Let (Φ,Ψ) be complementary finite

Young functions. The Orlicz space, heart and norm and the Luxemburg norm are defined

as in Chapter 2. We will identify a probability measure Q ∈ P on (Ω,F) with its Radon-

Nikodým derivative ξ = dQ
dP ∈ L1(P ). Define

R(P ) = {ξ ∈ L1(P ) : ξ ≥ 0, EP [ ξ ] = 1},

and let RΨ(P ) = R(P ) ∩ LΨ(P ).

Remark 4.3.6. Let X be an ordered locally convex topological vector space, endowed with

a topology τ , for which X and its Banach dual space X ∗ form a dual system. The space of

positive continuous linear functionals, i.e. the positive polar cone of X+ is given by

(X+)◦ = {x∗ ∈ X ∗ : x∗(x) ≥ 0 for all x ∈ X+}.

If z∗ ∈ (X+)◦ and z∗(1) = 1, then z∗ is a probability density in (X+)◦. By the Radon-

Nikodým theorem, the probability density z∗ can be identified with its associated probability

measure Q by setting z∗ = dQ
dP . Therefore, we have

z∗(x) = EP [ z∗x ] = EQ[x].

The concept of a penalty function is crucial to the theory of risk measures as it defines

the robust representations.

Definition 4.3.7.

(i) A map α : RΨ(P )→ (−∞,∞] is called a penalty function on RΨ(P ) if it is bounded

from below and not identically equal to infinity.
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(ii) The penalty function α : P→ (−∞,∞] satisfies the growth condition with respect to

the norm || · || if there exist a ∈ R and b > 0 such that

α(Q) ≥ a+ b ‖Q‖ for all Q ∈ P. (4.5)

(iii) For any penalty function α on RΨ(P ), we define for all x ∈ X

ρα(x) = sup
Q∈RΨ(P )

{EQ[−x ]− α(Q)}, (4.6)

and call the right hand side of (4.6) a robust representation of ρα.

Since the Orlicz norm and the Luxemburg norm are equivalent, a penalty function α

satisfies the growth condition with respect to the Orlicz norm if and only if α satisfies the

growth condition with respect to the Luxemburg norm.

Remark 4.3.8. We repeat here as a reminder some properties of the Orlicz and Luxemburg

norms. Note that by the definitions of the L1-norm and the L∞-norm, we have for Q ∈
LΨ(P ) that EQ[y] ≤ ||y||∞ and EQ[−y] ≤ || − y||∞ = ||y||∞.

Also, by the definition of the Orlicz norm

||Q||Ψ ≥
∫
|Q · y − x
NΦ(y − x)

|dP

NΦ(y − x)||Q||Ψ ≥
∫
|Q(y − x)|dP

= EQ[|y − x|]

= EQ[|x− y|]

≥
∣∣EQ[x− y]

∣∣
≥ EQ[x− y],

where the second last inequality follows from Jensen’s inequality.

Proposition 4.3.9. The function ρα given by (4.6) defines a lower semi-continuous convex

monetary risk measure on HΦ(P ) with values in (−∞,∞].

Proof. First, consider

ρα(0) = sup
Q∈RΨ(P )

{−α(Q)} = − inf
Q∈RΨ(P )

α(Q) <∞,

as α is bounded below.
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Secondly, let x ≤ y. Then EQ[−x]−α(Q) ≥ EQ[−y]−α(Q) for all Q ∈ RΨ(P ), proving

the monotonicity. Translation invariance is clear. To show that ρα is convex, let λ ∈ (0, 1).

Then,

λρα(x) + (1− λ)ρα(y)

= sup
Q∈RΨ(P )

{EQ[−λx ]− λα(Q)}+ sup
Q∈RΨ(P )

{EQ[−(1− λ)y ]− (1− λ)α(Q)}

≥ sup
Q∈RΨ(P )

{EQ[−λx− (1− λ)y ]− α(Q)}

= ρα(λx+ (1− λ)y).

To show that the risk measure ρα is lower semi-continuous at x, we have to show that

for every ε > 0, there exists δ > 0 such that for all y ∈ Nδ(x), where Nδ(x) is the δ-

neighbourhood of x, we have ρα(x)− ρα(y) < ε. Consider

E[−x] ≤ E[|x− y|] + E[−y]

= ||x− y||1 + E[−y]

≤ KNΦ(x− y) + E[−y]

for some K, as we have the continuous embedding L∞ ↪→ LΦ ↪→ L1. Hence,

E[−x]− α(Q) ≤ KNΦ(x− y) + E[−y]− α(Q)

≤ KNΦ(x− y) + ρα(y).

Thus,

ρα(x) ≤ KNΦ(x− y) + ρα(y),

i.e. ρα(x)− ρα(y) ≤ KNΦ(x− y) < ε if and only if NΦ(x− y) < δ := ε
K .

The next theorem characterises penalty functions, which satisfy the growth condition.

Theorem 4.3.10. Let α be a penalty function on RΨ(P ). The following are equivalent.

(i) α satisfies the growth condition with respect to || · ||Ψ.

(ii) core(dom(ρα)) 6= ∅.

(iii) ρα is real-valued and every x ∈ HΦ(P ) has a neighbourhood on which ρα is Lipschitz-

continuous with respect to NΦ(·).
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Proof. We show (iii) ⇒ (ii) ⇒ (i) ⇒ (iii). The first implication is trivial.

(ii) ⇒ (i): Assume that ρα is real-valued on an algebraic neighbourhood of x ∈ HΦ(P ).

Since the mapping y → ρα(−y) is increasing, we obtain from Lemma 4.3.2 that there exists

an ε > 0 such that ρα is real-valued on the closed ball Bε(x) with radius ε around x. Since

L∞(P ) is NΦ-dense in HΦ(P ), there exists a sequence (yn)n≥1 of bounded random variables

such that NΦ(yn− x) ≤ ε2−n−2. Assume that α does not satisfy the growth condition with

respect to || · ||Ψ. Then there exists a sequence of probability measures (Qn)n≥1 in RΨ(P )

such that for all n ≥ 1

α(Qn) < −n− ||yn||∞ + ε2−n−2||Qn||Ψ.

Since (LΨ(P ), || · ||Ψ) is the norm dual of (HΦ(P ),NΦ(·)) and by the definition of the Orlicz

norm, there exists for every n ≥ 1, zn ∈ HΦ(P ) such that zn ≤ 0, NΦ(zn) ≤ 1 and

EQn [−zn] =

∫
−znQndP

=

∫
| − znQn|dP

≥ ||Qn||Ψ

≥ 1

2
||Qn||Ψ.

The random variable z = ε
∑

n≥1 2−nzn is in HΦ(P ) with norm NΦ(z) ≤ ε. As zn ≤ 0 and

ρα is monotonic and using Remark 4.3.8, we get

ρα(x+ z)

≥ ρα(x+ ε2−nzn)

≥ EQn [−x− ε2−nzn]− α(Qn)

≥ EQn [−yn] + EQn [yn − x] + ε2−nEQn [−zn] + n+ ||yn||∞ − ε2−n−2||Qn||Ψ

≥ −||yn||∞ −NΦ(yn − x)||Qn||Ψ + ε2−n−1||Qn||Ψ + n+ ||yn||∞ − ε2−n−2||Qn||Ψ

= ||Qn||Ψ
[
−NΦ(yn − x) + ε2−n−1 − ε2−n−2

]
+ n

= ||Qn||Ψ
[
−NΦ(yn − x) + ε2−n−2

]
+ n

≥ 0 + n

= n

for all n ≥ 1. But this contradicts the finiteness of ρα on Bε(x). Therefore, α must satisfy

the growth condition with respect to || · ||Ψ, and (i) is proved.
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(i) ⇒ (iii): Assume there exist constants a ∈ R and b > 0 such that α(Q) ≥ a+ b||Q||Ψ
for all Q ∈ RΨ(P ). Choose x ∈ HΦ(P ). There exists x̄ ∈ L∞(P ) with NΦ(x− x̄) ≤ b, and

we obtain

EQ[−x]− α(Q) = EQ[−x̄] + EQ[x̄− x]− α(Q)

≤ ||x̄||∞ +NΦ(x̄− x)||Q||Ψ − a− b||Q||Ψ

≤ ||x̄||∞ − a

for all Q ∈ RΨ(P ). This shows that ρα(x) ≤ ||x̄||∞− a <∞. Hence, ρα is real-valued. The

rest of (iii) follows from Theorem 4.3.4 (i) with f(x) = ρα(−x).

Cheridito and Li [26] show that every convex monetary risk measure ρ on HΦ(P ) with

core(dom(ρ)) 6= ∅ has a robust representation with penalty function

ρ#(Q) = sup
x∈Aρ

EQ[−x], (4.7)

for Q ∈ RΨ(P ) and that ρ# is the minimal penalty function of ρ. Since x+ ρ(x) ∈ Aρ for

all x ∈ HΦ(P ), Equation (4.7) can equivalently be written as

ρ#(Q) = sup
x∈HΦ(P )

{EQ[−x]− ρ(x)} (4.8)

for Q ∈ RΨ(P ).

Now we are ready to state and prove the representation theorem for risk measures on

Orlicz hearts.

Theorem 4.3.11. Let ρ : HΦ(P ) → (−∞,∞] be a convex monetary risk measure with

core(dom(ρ)) 6= ∅. Then

(i) ρ is real-valued,

(ii) ρ#, defined by

ρ#(Q) = sup
x∈HΦ(P )

{EQ[−x]− ρ(x)},

is a penalty function on RΨ(P ) satisfying the growth condition with respect to || · ||Ψ,

and

(iii) for all x ∈ HΦ(P )

ρ(x) = max
Q∈RΨ(P )

{EQ[−x ]− ρ#(Q)}. (4.9)
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Moreover, if ρ = ρα for a penalty function α on RΨ(P ), then ρ# is the greatest convex,

σ(LΨ(P ), HΦ(P ))-lower semi-continuous minorant of α.

Proof. Consider the function f(x) = ρ(−x) for x ∈ HΦ(P ). Then f is increasing and

convex. Note that

f∗(Q) = sup
x∈HΦ(P )

{EQ[x]− f(x)}

= sup
x∈HΦ(P )

{EQ[x]− ρ(−x)}

= sup
y∈HΦ(P )

{EQ[−y]− ρ(y)}

= sup
y∈Aρ

EQ[−y]

=

{
ρ#(Q) if Q ∈ RΨ(P )

∞ if Q ∈ LΨ(P )\RΨ(P ).

To get the last equality, we adapt the proof of Lemma 4.30 of Föllmer and Schied [60].

Consider Q ∈ LΨ(P )\RΨ(P ), i.e. Q is not absolutely continuous with respect to P . Then

there exists A ∈ F such that Q(A) > 0 but P (A) = 0. Take any x ∈ Aρ and define

xn = x− n1A for n ∈ N. Then ρ(xn) = ρ(x), i.e. xn ∈ Aρ. Hence,

f∗(Q) ≥ EQ[−xn]− ρ(xn)

≥ EQ[−x] + nQ(A)→∞.

Thus, it follows from Theorem 4.3.4 (iii), that for all X ∈ core(dom(f)),

ρ(x) = f(−x) = max
Q∈LΨ(P )

{EQ[−x]− f∗(Q)} (4.10)

≥ max
Q∈RΨ(P )

{EQ[−x]− f∗(Q)}

= max
Q∈RΨ(P )

{EQ[−x]− ρ#(Q)}. (4.11)

This shows that ρ has a continuous affine minorant. Therefore, the greatest lower semi-

continuous minorant coρ of ρ (defined in Appendix C), also called the lower semi-continuous

hull of ρ, is proper. Since ρ is convex, we have that the greatest lower semi-continuous

minorant coρ is equal to the lower semi-continuous envelope ρ̄ of ρ. Hence, we obtain from

Theorem C.18 that ρ̄ = ρ∗∗, i.e.

ρ̄(x) = sup
Q∈RΨ(P )

{EQ[−x]− ρ#(Q)}
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for all x ∈ HΦ(P ).

Since ρ̄ is proper for all x ∈ X and ρ(0) ∈ R, we get −∞ < ρ̄(0) < ρ(0) <∞. Also,

ρ̄(0) = − inf
Q∈RΨ(P )

ρ#(Q).

This implies that ρ# is bounded below and not identically equal to ∞, and hence ρ# is a

penalty function.

Furthermore, core(dom(ρ̄)) ⊇ core(dom(ρ)) 6= ∅. So, Theorem 4.3.10 yields that ρ̄ is

real-valued and ρ# satisfies the growth condition.

(Note that a set is nowhere dense if and only if its closure has non-empty interior. Also,

a convex set has the same interior points as its closure. Thus, if the interior of a convex set

is non-empty, then the set is dense.) By Lemma 4.3.2, the interior of the convex set domρ

is non-empty, thus we have that domρ is dense in HΦ(P ).

Now assume that there exists y ∈ HΦ(P )\domρ, i.e. ρ(y) = ∞. Then, by Eidelheit’s

separation theorem, Theorem C.3, there exists ξ ∈ LΨ(P )\{0} such that

sup
x∈domρ

EP [xξ] ≤ EP [yξ].

Then select z ∈ HΦ(P ) such that

sup
x∈domρ

EP [xξ] ≤ EP [yξ] < EP [zξ].

However, since domρ is dense in HΦ(P ) and z ∈ HΦ(P ), we have that there exists z0 ∈ domρ

such that for all ε > 0

EP [zξ] = EP [zξ − z0ξ] + E[z0ξ]

≤ Kε+ sup
x∈domρ

EP [xξ]

≤ sup
x∈domρ

EP [xξ]

< EP [zξ].

This is a contradiction of the density of domρ in HΦ(P ) and the continuity of EP . Hence,

ρ must be real-valued. The equality in representation (4.9) now follows from (4.11) and the

fact that ρ is real-valued.

To prove the last part of the theorem, let α be a penalty function onRΨ(P ) with ρ = ρα.

Denote by α̂ the function from LΨ(P ) to (−∞,∞] which is equal to α on RΨ(P ) and ∞
on LΨ(P )\RΨ(P ). Then f∗ is the biconjugate of α̂ in the duality (LΨ(P ), HΦ(P )). Since

α̂ is bounded from below, it follows from Theorem C.18 that f∗ is the greatest convex,
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σ(LΨ(P ), HΦ(P ))-lower semi-continuous minorant of α̂. Since ρ# is the restriction of f∗ to

RΨ(P ), this completes the proof.

For every non-empty subset Q of RΨ(P ),

α(Q) =

{
0 for Q ∈ Q
∞ for Q /∈ Q

is a penalty function on RΨ(P ). It is easily verified, that the corresponding risk measure

ρQ(x) = sup
Q∈Q

EQ[−x ]

is coherent and α satisfies the growth condition if and only if Q is || · ||Ψ-bounded. Hence,

Theorem 4.3.10 can be written as follows.

Corollary 4.3.12. Let Q be a non-empty subset of RΨ(P ). Then the following conditions

are equivalent:

(i) Q is || · ||Ψ-bounded;

(ii) core(dom(ρQ)) 6= ∅;

(iii) ρQ is real-valued and Lipschitz-continuous with respect to NΦ(·).

Proof. We once again show (iii) ⇒ (ii) ⇒ (i) ⇒ (iii). The first implication is trivial.

(ii) ⇒ (i): This follows from the fact that α satisfies the growth condition if and only if

Q is || · ||Ψ-bounded. This is easily verified.

(i) ⇒ (iii): For all x, y ∈ HΦ(P ) and Q ∈ Q, we have

ρQ(x) ≤ EQ[y − x] + EQ[−y] ≤ NΦ(x− y)||Q||Ψ + ρQ(y)

and analogously

ρQ(y) ≤ NΦ(x− y)||Q||Ψ + ρQ(x).

So if (i) holds, then K = sup
Q∈Q
||Q||Ψ is finite and

|ρQ(x)− ρQ(y)| ≤ KNΦ(x− y).

Thus, for a coherent risk measure ρ, Theorem 4.3.11 reduces to the following.
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Corollary 4.3.13. Let ρ : HΦ(P )→ (−∞,∞] be a coherent risk measure with acceptance

set Aρ. If core(dom(ρ)) 6= ∅, then ρ is real-valued and can be represented as

ρ(x) = max
Q∈Q

EQ[−x ],

where x ∈ HΦ(P ) and Q is a || · ||Ψ-bounded, convex set given by

Q = {Q ∈ RΨ(P ) : EQ[x] ≥ 0 for all x ∈ Aρ}.

Proof. Let ρ be a coherent risk measure. Then ρ is a convex risk measure and by Theorem

4.3.11, we have that

ρ(x) = max
Q∈RΨ(P )

{EQ[−x]− ρ#(Q)}.

Next, we claim that if ρ is coherent we get

ρ#(Q) =

{
0 for Q ∈ Q
∞ otherwise,

where Q = {Q ∈ RΨ(P ) : EQ[X] ≥ 0 for all X ∈ Aρ}. First, note that

ρ#(Q) = sup
x∈HΦ(P )

{EQ[−x]− ρ(x)}

= − inf
x∈HΦ(P )

{EQ[x] + ρ(x)}.

Secondly, for λ > 0,

ρ#(Q) = sup
x∈HΦ(P )

{EQ[−x]− ρ(x)}

= sup
λx∈HΦ(P )

{EQ[−λx]− ρ(λx)}

= λρ#(Q),

by the positive homogeneity of ρ. Hence, we must have that ρ#(Q) = 0 if

EQ[x] + ρ(x) ≥ 0 (4.12)

for all x ∈ HΦ(P ) and ρ#(Q) = ∞ otherwise. Lastly, note that if EQ[x] + ρ(x) ≥ 0, then

EQ[x] ≥ 0 if and only if x ∈ Aρ. Conversely, if EQ[x] ≥ 0 for x ∈ Aρ, then we always have

that EQ[x] + ρ(x) ≥ 0. Thus, (4.12) is equivalent to EQ[x] ≥ 0 for x ∈ Aρ, proving our

claim.
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4.4 Examples of risk measures

For this section, fix some real-valued random variable x on a probability space (Ω,F , P ).

The random variable x represents the profit or loss of some asset or portfolio.

Definition 4.4.1. Given α ∈ (0, 1).

(i) The lower α-quantile of x is given by qα(x) = inf{x0 ∈ R : P (x ≤ x0) ≥ α}.

(ii) The upper α-quantile of x is given by qα(x) = inf{x0 ∈ R : P (x ≤ x0) > α}.

Value at risk (VaR) is a good example of a popular risk measure that is in general

not coherent. For a given portfolio, probability and time horizon, VaR is defined as the

threshold value such that the probability, that the loss on the portfolio over the given time

horizon exceeds this value, is the given probability level.

Definition 4.4.2. Given a confidence level α ∈ (0, 1), VaRα at level α of x is given by

V aRα(x) = q1−α(−x).

Note that VaR is not even weakly coherent as, in general, it fails the subadditivity

condition. This implies that VaR might discourage diversification. As VaR is dependent

on the distribution used, the subadditivity of VaR also depends on which distribution is

chosen. If the underlying distribution is elliptic, like the normal or t-distribution, then VaR

is coherent (see [55] for more details and a proof). In spite of VaR’s drawbacks, it has met

the favour of regulatory agencies and has thus become a vital part of financial regulations.

Another risk measure, introduced by Artzner et al. [6], which is easy to compute but

once again is, in general, not coherent is the tail conditional expectation (TCE).

Definition 4.4.3. Assume E[x−] <∞.

(i) The lower tail conditional expectation at level α of x is given by

TCEα(x) = −E[x|x ≤ qα(x) ].

(ii) The upper tail conditional expectation at level α of x is given by

TCEα(x) = −E[x|x ≤ qα(x) ].

In general, TCE does not define a subadditive risk measure.

An example of a coherent risk measure is the worst conditional expectation, introduced

by Artzner et al. [6].
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Definition 4.4.4. Assume E[x−] <∞. The worst conditional expectation (WCE) at level

α of x is defined by

WCEα(x) = − inf{E[x|A] : P (A) > α}.

WCE is coherent but only useful in a theoretical setting as it requires the knowledge of

the whole underlying probability space.

The natural coherent alternative to VaR is expected shortfall (ES), sometimes also

called conditional value at risk or tail loss. It was also introduced by Artzner et al. [6] and

it answers the question: if things do get bad, what is the expected loss?

Definition 4.4.5. Assume E[x−] <∞. The expected shortfall at level α of x is defined as

ESα(x) = − 1

α

(
E[x1{x≤qα(x)}] + qα(x)(α− P (x ≤ qα(x)))

)
.

If the distribution is continuous then ES can be written as

ESα(x) = E[x|x < V aRα(x) ].

It is easy to show that ES is coherent, continuous with respect to α and monotone in α.

It is also possible to define a risk measure with respect to a utility function. Consider

an investor, whose preferences can be represented by a utility function u : R → R, which

is increasing and concave and satisfies lim
x→−∞

u(x) = −∞. Without loss of generality, we

assume that u(0) = 0. Using the Orlicz space associated with the utility function as defined

in Section 3.5.2, it is possible to find a risk measure linked to the utility function.

Proposition 4.4.6. The downside risk Θ : Hû(P )→ (−∞,∞] given by Θ(x) = E[−u(x)],

is a well-defined proper, convex, monotone decreasing and order lower semi-continuous func-

tion, which admits the representation

Θ(x) = sup
x∗∈L+

Φ̂
(P )

{x∗(−x)− E[Φ(x∗)]}.

For a proof of this result, see Biagini and Frittelli [16]. The function Θ satisfies all the

properties of a convex risk measure, except for translation invariance.

The function ζu : Hû(P )→ (−∞,∞] defined by

ζu(x) = sup
Q<<P, dQ

dP
∈L+

Φ̂
(P )

{
EQ[−x]− E

[
Φ
(dQ
dP

)]}
is a well-defined, order lower semi-continuous, convex risk measure. This risk measure is

the greatest, order lower semi-continuous, convex risk measure smaller than the downside

risk Θ. See [16] for more details.
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If u is the quadratic-flat utility function, defined by

u(x) =

{
−x2

2 for x ≤ 0

0 for x ≥ 0,

then Lû(P ) = L2(P ) and for x ∈ L2(P ), we have

Θ(x) =
1

2
E[(x−)2] = sup

y∈L+
2 (P )

{
E[−yx]− 1

2
E[y2]

}
and

ζu(x) = sup
dQ
dP
∈L+

2 (P )

{
EQ[−x]− 1

2
E
[(dQ
dP

)2]}
.

If u is an exponential utility function, defined by u(x) = −e−x + 1, then for x ∈ Hû(P ),

we have Θ(x) = E[e−x − 1] and

ζu(x) = lnE[e−x]

= sup
Q<<P, dQ

dP
∈L+

Φ̂

{
EQ[−x]− EQ

[
ln
(dQ
dP

)]}
,

which is known as the entropic risk measure.

Another way to define a risk measure with respect to a utility function is as follows.

Consider a utility function u, a probability measure Q ∈Mp and fix some threshold c ∈ R.

Define the set

A = {x ∈ X : EQ[u(x)] ≥ u(c)}.

Clearly, this set satisfies the axioms of an acceptance set and thus, ρA is a convex risk

measure. One can extend this by defining acceptability in terms of a whole class Q of

probability measures, i.e.

A =
⋂
Q∈Q
{x ∈ X : EQ[u(x)] ≥ u(cQ)},

where sup
Q∈Q

cQ <∞.

This definition of acceptability can be described in terms of a loss function instead of a

utility function. Suppose that l : R→ R is an increasing convex loss function, which is not

identically constant. For a position x ∈ L∞(P ), the expected loss is given by EP [ l(−X) ].

Let x0 be an interior point in the range of l. A position x will be called acceptable if the

expected loss is bounded by x0, i.e. the acceptance set is given by

A = {x ∈ L∞(P ) : EP [ l(−x) ] ≤ x0}. (4.13)



83 Chapter 4 Scalar-valued risk measures on Orlicz hearts

The risk measure ρA can be represented in the form

ρA(x) = max
Q∈M

{EQ[−x]− αmin(Q)}.

The minimal penalty function can be calculated for different loss functions. For example,

if l(x) = eβx, then the minimal penalty function can be described in terms of relative entropy.

The reader is referred to Föllmer and Schied [61] for more details.

Lastly, consider a set function c : F → [0, 1] such that c(∅) = 0, c(Ω) = 1 and c(A) ≤
c(B) if A ⊆ B. Define for all x ∈ X , the integral∫

X dc =

∫ 0

−∞
c(x > x0)− 1)dx0 +

∫ ∞
0

c(x > x0)dx0.

This is known as the Choquet integral, which will be defined and described in detail in the

next chapter. The Choquet integral of loss

ρ(x) =

∫
(−x)dc

is a positively homogeneous monetary risk measure on X . In Chapter 5, we will characterise

these risk measures as ‘comonotonic risk measures’ and prove a representation theorem.

An example of the set function c is the Wang transform, introduced by Wang [159].

This will be discussed in detail in the next chapter.



Chapter 5

Wang transform as a risk measure

In this chapter, we consider a risk measure that has its roots in actuarial science. At the

end of Chapter 4, we mentioned the Wang transform [159] as an example of a static risk

measure. In this chapter we will develop the theory for this. As the Wang transform is a

special case of a Choquet integral, we first define comonotonicity and the Choquet integral

and state some representation results for the Choquet integral. We then describe how the

Choquet integral can be used to price contingent claims in mathematics of finance. Before

we can define the Wang transform and show how it can be used to price financial risk, we

define stochastic differential equations and give some of their properties. We also state and

prove the necessary condition required on the parameters of the Wang transform to ensure

arbitrage-free pricing, as shown by Pelsser [130].

Section 5.4.2 is new and is based on [117]. In this section, we show how the Wang

transform can be used to price exotic options. Section 5.5 is based on original work by

Labuschagne and Offwood [113] and shows that the Wang transform is in fact a special case

of the Esscher-Girsanov transform.

Then, we define comonotonic convex risk measures and state the representation theorem

for these risk measures, giving an alternate proof to the original by Song and Yan [148].

Lastly, we show how the Wang transform can be used as a risk measure.

Note that in this chapter, we use the capital X for random variables, as is customary

in statistics. In the rest of the thesis, we reserve the capital X for spaces.

84
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5.1 Comonotonicity and the Choquet integral

5.1.1 Comonotonicity

The term ‘comonotonic’ comes from ‘common monotonic’ and the theory surrounding

comonotonicity is discussed amongst others by Schmeidler [143] and Yaari [164].

Definition 5.1.1. The set A ⊆ Rn is comonotonic if for any x and y in A, either x ≤ y or

y ≤ x holds, where x ≤ y means that xi ≤ yi for all i.

A set A ⊆ Rn is comonotonic if for any x and y in A, the inequality xi < yi for some

i, implies that x ≤ y. As a comonotonic set is simultaneously non-decreasing in each

component, it is also called a non-decreasing set.

Next we define a comonotonic random vector X = (X1, . . . , Xn). The support of a

random vector X is a set A ⊆ Rn for which P[X ∈ A] = 1.

Definition 5.1.2. A random vector X = (X1, . . . , Xn) is comonotonic if it has comonotonic

support.

In the following theorem, some equivalent characterisations are given for the comono-

tonicity of a random vector.

Theorem 5.1.3. A random vector X = (X1, X2, . . . , Xn) is comonotonic if and only if one

of the following equivalent conditions holds:

(i) X has a comonotonic support.

(ii) X has a comonotonic copula, i.e. for all x = (x1, x2, . . . , xn), we have

FX(x) = min{FX1(x1), FX2(x2), . . . , FXn(xn)},

where FX denotes the cumulative distribution function (cdf) of X.

(iii) For U ∼ Uniform(0, 1), we have

X =d (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)).

(iv) There exist a random variable Z and non-decreasing functions fi, i = 1, . . . , n, such

that

X =d (f1(Z), f2(Z), . . . , fn(Z)).



86 Chapter 5 Wang transform as a risk measure

Proof. This proof is taken from [44].

(i) ⇒ (ii): Assume that X has comonotonic support B. Let x ∈ Rn and let Aj be

defined by

Aj = {y ∈ B : yj ≤ xj} j = 1, . . . , n.

Due to the comonotonicity of B, there exists an i such that Ai = ∩nj=1Aj . Hence, we find

FX(x) = P(X ∈ ∩nj=1Aj) = P(X ∈ Ai) = FXi(xi)

= min{FX1(x1), FX2(x2), . . . , FXn(xn)}.

The last equality follows from Ai ⊆ Aj , so that FXi(xi) ≤ FXj (xj) holds for all j.

(ii) ⇒ (iii): Now assume that FX(x) = min{FX1(x1), FX2(x2), . . . , FXn(xn)} for all

x = (x1, . . . , xn). We have for all x ∈ R and p ∈ [0, 1], that

F−1
X (p) ≤ x⇔ p ≤ FX(x).

Thus,

P(F−1
X1

(U) ≤ x1, F
−1
X2

(U) ≤ x2, . . . , F
−1
Xn

(U) ≤ xn) = P(U ≤ FX1(x1), . . . , U ≤ FXn(xn))

= P(U ≤ min
j=1,...n

{FXj (xj)})

= min
j=1,...n

{FXj (xj)}.

(iii) ⇒ (iv): Straightforward.

(iv) ⇒ (i): Assume that there exists a random variable Z with support B, and non-

decreasing functions fi, i = 1, . . . , n, such that

X =d (f1(Z), f2(Z), . . . , fn(Z)).

The set of possible outcomes of X is {f1(z), f2(z), . . . , fn(z) : z ∈ B}, which is obviously

comonotonic. This implies that X is comonotonic.

Definition 5.1.4. A family C of subsets of Ω is called a chain if for all C1, C2 ∈ C either

C1 ⊆ C2 or C2 ⊆ C1.

The following proposition and its proof is taken from Parker [129] and it characterises

comonotonicity in terms of chains.

Proposition 5.1.5. The functions f : Ω→ R and g : Ω→ R are comonotonic if and only

if, for all α, β ∈ R, the subsets {f ≥ α} and {g ≥ β} form a chain.
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Proof. Suppose that for all α, β ∈ R, the sets {f ≥ α} and {g ≥ β} form a chain. Let

s, t ∈ Ω be such that f(s) > f(t) and set α = f(s) and β = g(t). Since t /∈ {f ≥ α} and

t ∈ {g ≥ β}, it must be that {f ≥ α} ⊆ {g ≥ β}. It follows that s ∈ {g ≥ β}, that is

g(s) ≥ g(t). Thus, f and g are comonotonic.

Conversely, suppose that there exists α, β ∈ R such that {f ≥ α} and {g ≥ β} do not

form a chain. Then there exists s, t ∈ Ω such that s ∈ {f ≥ α}\{g ≥ β} and t ∈ {g ≥
β}\{f ≥ α}. This means that f(s) ≥ α > f(t) and g(t) ≥ β ≥ g(s), i.e. f and g are not

comonotonic.

Denneberg [43] defines comonotonicity of functions in terms of chains.

Definition 5.1.6. A class C of functions from Ω to [−∞,∞] is called comonotonic if⋃
X∈C

ΛX

is a chain, where ΛX = {{X > x} : x ∈ [−∞,∞]} ∪ {{X ≥ x} : x ∈ [−∞,∞]}.

Clearly a class of functions C is comonotonic if and only if each pair of functions in C is

comonotonic. The following proposition gives equivalent conditions for a pair of functions

to be comonotonic.

Proposition 5.1.7. For two functions X,Y : Ω → [−∞,∞], the following conditions are

equivalent.

(i) X and Y are comonotonic.

(ii) There is no pair ω1, ω2 ∈ Ω such that X(ω1) > X(ω2) and Y (ω1) < Y (ω2).

(iii) For all ω1, ω2 ∈ Ω, we have

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0.

For the following two conditions, we suppose that X and Y are real-valued.

(iv) There exists a function Z : Ω → R and increasing functions u and v on R such that

X = u(Z) and Y = v(Z).

(v) There exist continuous and increasing functions u and v on R such that u(z)+v(z) = z

for z ∈ R, X = u(X + Y ) and Y = v(X + Y ).
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Proof. (i) ⇒ (ii): Assume there exists ω1, ω2 ∈ Ω such that X(ω1) < X(ω2) and Y (ω1) >

Y (ω2). Defining A = {X > X(ω1)} and B = {Y > Y (ω2)}, we get ω2 ∈ A\B and

ω1 ∈ B\A, contradicting (i).

(ii)⇒ (i): Assume there exists A ∈ ΛX and B ∈ ΛY such that A * B and B * A. Then,

choosing ω1 ∈ A\B and ω2 ∈ A\B, we get X(ω1) > a ≥ X(ω2) in the case A = {X > a}
and X(ω1) ≥ a > X(ω2) in the case A = {X ≥ a}. In any case, we have X(ω1) > X(ω2)

and similarly Y (ω1) < Y (ω2), contradicting (ii).

(ii) ⇔ (iii): Straightforward.

Now assume X,Y are real-valued. The implications (v) ⇒ (iv) ⇒ (ii) are trivial.

(ii) ⇒ (v): Let Z = X + Y . First, we define u, v on Z(Ω). We show that z ∈ Z(Ω)

possesses a unique decomposition

z = x+ y

for some x ∈ X(ω), y = Y (ω) and ω ∈ Ω. Define u(z) = x and v(z) = y. Only the

uniqueness of the decomposition has to be checked. Assume there are ω1, ω2 ∈ Ω such that

X(ω1) + Y (ω1) = z = X(ω2) + Y (ω2).

Then X(ω1) −X(ω2) = −(Y (ω1) − Y (ω2)). From (ii) we get that the last expression has

to be zero, i.e. X(ω1) = X(ω2) and Y (ω1) = Y (ω2), hence uniqueness.

Next we check if u and v are increasing. Take z1, z2 ∈ Z(Ω) with z1 < z2. Then, there

are ω1, ω2 ∈ Ω such that

X(ω1) + Y (ω1) = z1 < z2 = X(ω2) + Y (ω2).

Then X(ω1)−X(ω2) < −(Y (ω1)− Y (ω2)). This inequality is compatible with (ii) only if

X(ω1)−X(ω2) ≤ 0 and Y (ω1)− Y (ω2) ≤ 0,

i.e. u(z1) ≤ u(z2) and v(z1) ≤ v(z2).

Next, we need to prove that u, v are continuous on Z(Ω). First notice

u(z) ≤ u(z + h) ≤ u(z) + h

for z, z + h ∈ Z(Ω), h > 0. The first inequality follows from the monotonicity of u, the

second follows from

z + h = u(z + h) + v(z + h)

≥ u(z + h) + v(z)

= u(z + h) + z − u(z).
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Similarly, u(z)−h ≤ u(z−h) ≤ u(z) for z, z−h ∈ Z(Ω), h > 0. These inequalities together

imply the continuity of u at z. Similarly, we can show that v is continuous.

It remains to show that u, v can be extended continuously from Z(Ω) to R. We first

extend to the closure Z(Ω). If z is only a one-sided boundary point, the continuous extension

generates no problem since we deal with increasing functions. If z can be approximated

from both sides through points of Z(Ω), the above inequalities imply that the left sided and

right sided continuous extensions coincide. Finally the extension of u and v from Z(Ω) to R
is done linearly on each connected component of R\Z(Ω) in order to maintain the condition

u(z) + v(z) = z.

IfX and Y are comonotonic, the outcomes ofX and Y always move in the same direction

(good or bad), thus there is no hedge or diversifiability when pooling the two risks.

The following lemma is taken from Parker [129].

Lemma 5.1.8.

(i) Any function f and any constant function are comonotonic.

(ii) If f and g are comonotonic then so are αf and g for all α > 0.

(iii) If f and h are comonotonic and g and h are comonotonic, then f + g and h are

comonotonic.

(iv) If f , g and h are pairwise comonotonic, then max{f, g} and h are comonotonic, as

are min{f, g} and h.

(v) Comonotonicity is not transitive as can be seen by considering the indicator functions

of subsets of Ω.

(vi) Let A,B ∈ Ω. Then 1A and 1B are comonotonic if and only if A ⊆ B or B ⊆ A.

5.1.2 The Choquet integral

Let µ : P(Ω) → R+ be a monotone set function, where P(Ω) denotes the power set of Ω,

and let X : Ω→ [−∞,∞] be an arbitrary function on Ω. Then the function

SX(x) = Sµ,X(x) = µ(X > x)

is decreasing and is called the (decreasing) distribution function of X with respect to µ. The

pseudo-inverse function S̃µ,X of Sµ,X , also called the quantile function of X with respect to
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µ, is given by

S̃µ,X(p) = inf{x : Sµ,X(x) ≥ p}.

Let µ : S → [0,∞] be a monotone set function and assume Ω ∈ S ⊆ P(Ω). Given an

upper µ-measurable function X : Ω→ [−∞,∞] with decreasing distribution function Sµ,X

and quantile function S̃µ,X , we define the asymmetric integral of X with respect to µ by∫
Xdµ =

∫ µ(Ω)

0
S̃µ,X(t) dt.

This integral is often called the Choquet integral after Gustave Choquet [29]. The asym-

metric integral can also be expressed in terms of the distribution function as follows∫
Xdµ =

∫ ∞
0

Sµ,X(x) dx if X ≥ 0.

This is Choquet’s [29] original definition. For arbitrary upper µ-measurable X, we have∫
X dµ =

∫ 0

−∞
(Sµ,X(x)− µ(Ω)) dx+

∫ ∞
0

Sµ,X(x) dx if µ(Ω) <∞.

If µ(Ω) =∞, then the asymmetric integral can only be defined for X ≥ 0.

Proposition 5.1.9. If µ is a monotone set function on P(Ω) and X,Y : Ω → [−∞,∞]

are functions, then the Choquet integral has the following properties:

(i)
∫
1A dµ = µ(A) for A ∈ P(Ω).

(ii) Positive homogeneity, i.e.
∫
cX dµ = c

∫
X dµ if c ≥ 0.

(iii) Monotonicity, i.e. X ≤ Y implies
∫
X dµ ≤

∫
Y dµ.

(iv) Asymmetry, i.e. if µ is finite, then∫
(−X) dµ = −

∫
X dµ̄, where µ̄(A) = µ(Ω)− µ(Ac).

(v) +-Translation invariance, i.e.
∫

(X + c) dµ =
∫
X dµ+ cµ(Ω) for c ∈ R.

(vi) Comonotonic additivity, i.e. if X and Y are comonotonic and real-valued, then∫
(X + Y ) dµ =

∫
X dµ+

∫
Y dµ.

Remark 5.1.10. We call property (v) ‘+-translation invariance’ as not to confuse with the

translation invariance property in Chapter 4.
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Let S ⊆ P(Ω) be a set and µ : S → [0,∞] a monotone set function. As explained in

Appendix A, a function X : Ω→ [−∞,∞] can be decomposed into its positive and negative

parts

X = X+ −X−, X+ = 0 ∨X, X− = (−X)+.

If X is µ-measurable, then X+ and −X− are upper µ-measurable. Since X+ and −X− are

comonotonic functions, we have for X real-valued∫
X dµ =

∫
X+ dµ+

∫
(−X−) dµ

=

∫
X+ dµ−

∫
X− dµ̄ if µ(Ω) <∞.

5.1.3 Integral representation theorems

Let (Ω,F) be a measurable space. The set of all monotonic set functions µ : F → [0, 1],

which are normalised to µ(Ω) = 1, is denoted by M1,m. Let φ : X → R. We define the

following properties:

(i) Comonotonic additivity, i.e. if X,Y are comonotonic, then

φ(X + Y ) = φ(X) + φ(Y ).

(ii) Comonotonic convexity, i.e. if X and Y are comonotonic, then

φ(λX + (1− λ)Y ) ≤ λφ(X) + (1− λ)φ(Y ).

Let µ ∈ M1,m. For X ∈ X , the Choquet integral of X with respect to µ can also be

written as

µ(X) =

∫ 0

−∞
[µ(X ≥ x)− µ(Ω)] dx+

∫ ∞
0

µ(X ≥ x) dx (5.1)

=

∫ 0

−∞
[µ(X ≥ x)− 1] dx+

∫ ∞
0

µ(X ≥ x) dx.

Given a family G of functions X : Ω → [−∞,∞] and a functional Γ : G → [−∞,∞], a

monotone set function γ on P(Ω) is said to represent Γ if

Γ(X) =

∫
Xdγ, X ∈ G.

The following is known as Greco’s representation theorem [72].

Theorem 5.1.11. Given a family G of functions on Ω with properties
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(i) X ≥ 0 for all X ∈ G, and

(ii) aX,X ∧ a,X −X ∧ a ∈ G if X ∈ G and a ∈ R+,

and given a monotonic functional Γ : G → R which satisfies comonotonic additivity and the

following continuity properties

(i) lima↘ Γ(X −X ∧ a) = Γ(X) for X ∈ G, X ≥ 0 (lower marginal continuity), and

(ii) limb→∞ Γ(X ∧ b) = Γ(X) for X ∈ G,

then there exists a monotone set function γ : P(Ω)→ R, which represents Γ.

Song and Yan [147] use a particular version of Greco’s representation theorem, applied

to bounded functions.

Theorem 5.1.12. Let H be a family of bounded functions on Ω with properties

(i) aX,X ∧ a,X −X ∧ a ∈ H if X ∈ H and a ∈ R+,

(ii) X + 1 ∈ H for X ∈ H.

Then, if Γ is a real functional on H with Γ(1) = 1 and satisfying monotonicity, positive

homogeneity and comonotonic additivity, then there exists γ ∈ M1,m representing Γ in the

sense that γ(X) = Γ(X) for all X ∈ H.

5.2 Choquet pricing

Choquet pricing has recently been introduced as an alternative to traditional pricing prin-

ciples in insurance (see [159]) and in finance (see [24]). The Choquet integral, which is a

non-linear generalisation of the Lebesgue integral, has several properties that cause it to

be especially suitable for pricing insurance contracts or financial assets. Choquet pricing

implies that an insurance contract or a financial asset with payoff X is priced by taking the

Choquet integral of X with respect to a concave capacity.

Definition 5.2.1. Let S be any set and H any subset of S. A set function ν : H → [0,∞)

is a capacity if ν(∅) = 0, ν(Ω) = 1 and ν satisfies monotonicity with respect to set inclusion,

i.e. A ⊆ B ⇒ ν(A) ≤ ν(B). A set function ν is concave if for all A,B ∈ H

ν(A ∪B) + ν(A ∩B) ≤ ν(A) + ν(B).
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It is easily verified, that for a non-decreasing function g : [0, 1] → [0, 1] with g(0) = 0

and g(1) = 1, and a probability measure Q, the set function ν = g ◦ Q is a capacity.

The function g is called a distortion function or a distortion operator, as it transforms a

probability distribution FX to a new distribution g(FX).

One can define a Choquet integral with respect to a capacity by replacing µ by the

capacity ν in Equation (5.1).

The intuition behind using a Choquet integral as a pricing method is shown by the

following. Let FX be the cumulative distribution function of a random variable X, i.e.

FX(x) = P (X ≤ x). The decumulative distribution function is given by

SX(x) = P (X > x) = 1− FX(x).

Then SX is a non-increasing function from R+ to [0, 1].

Proposition 5.2.2. The expected value of a random variable X can be written as

E[X] =

∫ 0

−∞
(SX(x)− 1) dx+

∫ ∞
0

SX(x) dx.

Proof. Firstly, let X ≥ 0. Then X can be written as X =
∫∞

0 1{X>u} du. Using Fubini’s

theorem to change the order of integration, we have

E[X] =

∫ ∞
0

E[1{X>u}] du

=

∫ ∞
0

P (X > u) du

=

∫ ∞
0

SX(u) du.

Next, let X ≤ 0. As above, X has the representation X =
∫ 0
−∞−1{X<u} du. Then

E[X] =

∫ 0

−∞
−E[1{X<u}] du

= −
∫ 0

−∞
P (X < u) du

=

∫ 0

−∞

(
P (X > u)− 1

)
du

=

∫ 0

−∞

(
SX(u)− 1

)
du.

As X = X+ −X−, the result follows.

Alternatively, the above proposition can be restated in terms of the cdf.
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Proposition 5.2.3. The expected value of a random variable X can be written as

E[X] = −
∫ 0

−∞
FX(x) dx+

∫ ∞
0

[1− FX(x)] dx.

This expansion of the expected value leads to a different method of calculating the risk

adjusted premium for a risk.

Definition 5.2.4. The risk adjusted premium Hg[·] with respect to a distortion operator

g is given by the Choquet integral

Hg[X] =

∫ 0

−∞
(g(SX(x))− 1) dx+

∫ ∞
0

g(SX(x)) dx (5.2)

for any risk X with decumulative distribution function SX .

Another method of characterising the transformation of a probability distribution is

using the Radon-Nikodým derivative. The following proposition shows how a continuous

distortion function and the Radon-Nikodým derivative are related.

Proposition 5.2.5. Given any continuous and differentiable distortion function

S∗X(x) = g(SX(x)),

its Radon-Nikodým derivative is given by the derivative of g with respect to x evaluated at

SX(x).

Proof. Firstly, S∗X(x) = 1−F ∗X(x), thus d
dxS

∗
X(x) = −f∗X(x). As S∗X(x) = g(SX(x)), we get

d

dx
S∗X(x) = −f∗X(x) =

d

dx
g(SX(x)).

Using the chain rule,

−f∗X(x) =
dg

dx
(SX(x)) · dSX

dx
(x).

Since, dSX
dx (x) = d

dx(1− FX(x)) = −fX(x), we have

f∗X(x)

fX(x)
=
dg

dx
(SX(x)),

which proves the proposition.

Note that the Radon-Nikodým derivative of a distortion function can also be given by

the derivative of g with respect to x evaluated at FX(x). The proof follows similarly.
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This theorem provides a way to compute the distorted probability density function

(pdf),

f∗X(x) =
d

dx
F ∗X(x) =

d

dx
g(FX(x)) = f(x)g′(FX(x)),

where f is the original probability density function of X.

Expressing an asset as a negative loss, it can be shown that

Hg[−A] = −Hg∗ [A],

where g∗(u) = 1− g(1− u) is called the dual distortion operator.

The dual distortion operator links the distortion of the decumulative distribution func-

tion to the distortion of the cumulative distribution function, i.e. S∗X(x) = g(SX(x)) if and

only if F ∗X(x) = g∗(FX(x)).

5.3 Stochastic differential equations

Assume that the evolution of traded assets in the economy can be described by stochastic

differential equations. Suppose we have a traded asset Xt, whose price follows the stochastic

differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (5.3)

where Wt is a Brownian motion under the ‘real world’ measure P , µ(t,Xt) is referred to as

the drift and σ(t,Xt) the volatility. The dWt-term can be interpreted as a noise term with

E[dWt] = 0 and E[(dWt)
2] = dt. Note that the paths of Brownian motions are continuous

functions of time that are nowhere differentiable. Thus, the usual rules of integration and

differentiation cannot be applied to Brownian motion.

The most common process, that a traded asset follows, is called geometric Brownian

motion, which is given by

dXt = µXtdt+ σXtdWt.

Here, Xt is lognormally distributed with parameters µ and σ.

A stochastic differential equation with a zero dt-term is a martingale.

A financial derivative is an asset in the market, whose value at some time T in the future

is given by a function f(XT ). The expected value of the payoff f(XT ) at time t ≤ T is

given by u(t, x) = E[f(XT )|Xt = x], where u satisfies the Kolmogorov backward equation,

defined next.
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Definition 5.3.1. Let the stochastic differential equation for the process x(t) be given by

Equation (5.3). The Kolmogorov backward equation for a function u(t, x) is given by

∂

∂t
u(t, x) + µ(t, x)

∂

∂x
u(t, x) +

1

2
σ2(x, t)

∂2

∂x2
u(t, x) = 0,

for t ≤ T with boundary condition u(T, x) = f(x).

Definition 5.3.2 (Itô’s lemma). Let the stochastic differential equation for the process x(t)

be given by Equation (5.3). Let the function g(t, x) be continuous and twice differentiable.

Define Yt = g(t, x), then the stochastic differential equation for Yt is given by

dYt =
[ ∂
∂t
g(t, x) + µ(t, x)

∂

∂x
g(t, x) +

1

2
σ2(t, x)

∂2

∂x2
g(t, x)

]
dt

+ σ(t, x)
∂

∂x
g(t, x)dWt.

Lastly, we state a fundamental result of stochastic analysis, called Girsanov’s theorem.

Girsanov’s theorem states that if we change the probability distribution of a stochastic

process, then we only change the dt-coefficient of the stochastic differential equation.

Theorem 5.3.3 (Girsanov). For any stochastic process Kt, such that
∫ t

0 K
2
sds < ∞ a.s.,

consider the stochastic process

Rt = e
∫ t
0 KsdWs− 1

2

∫ t
0 K

2
sds,

where Wt is a Brownian motion under the probability measure Q. Define the probability

measure Q∗ as dQ∗ = RtdQ. Then

W ∗t = Wt −
∫ t

0
Ksds

is a Brownian motion under Q∗.

The process Rt is often called the Radon-Nikodým derivative and Kt the Girsanov kernel

or Girsanov exponent. To see what effect a change in probability has on a stochastic process,

we proceed as follows. The change in probability measure results in a Radon-Nikodým

derivative Rt. Applying Itô’s lemma to Rt, we obtain its stochastic differential equation

and can infer the Girsanov kernel Kt. The stochastic differential equation for Xt under the

new probability measure Q∗ can now be obtained by substituting dWt = dW ∗t +Ktdt. For

example, the stochastic process Xt, which follows (5.3) under Q, follows

dXt = µ(t,Xt)dt+ σ(t,Xt)(dW
∗
t +Ktdt)

=
(
µ(t,Xt) + σ(t,Xt)Kt

)
dt+ σ(t,Xt)dW

∗
t , (5.4)
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under Q∗. The change in measure only changed the coefficient of the dt-term.

For arbitrage-free pricing, we need the discounted price process to be a martingale under

the risk-neutral measure. Hence, we require Equation (5.4) to have zero drift. The only

possible choice for the Girsanov kernel is thus

Kt = −µ(t,Xt)

σ(t,Xt)
. (5.5)

This expression is known as the market price of risk.

5.4 The Wang transform

The Wang transform was defined by Wang [159], as a universal pricing method for pricing

both financial and actuarial risk. This transform connects the traditional actuarial standard

deviation loading principle, Yaari’s economic theory of risk [164], CAPM and the option-

pricing theory (see [159] for more details).

Definition 5.4.1. Let Φ denote the standard normal cumulative distribution function, i.e.

Φ(x) =
∫ x
−∞

1√
2π
e−

1
2
s2ds, and let α ∈ R. Then gα : [0, 1]→ [0, 1], defined by

gα(p) = Φ[Φ−1(p) + α],

defines a distortion operator, called the Wang transform.

Assuming that X follows a normal distribution, this operator shifts the pth quantile of

X, i.e. the value y such that P (X ≤ y) = p, by a positive or negative value α, and then

re-evaluates the normal cumulative probability for the shifted quantile. The parameter α

can be viewed as the market price of risk. By shifting the quantiles to the left, i.e. assigning

higher probabilities to lower values, the Wang transform allows for pessimistic behaviour

and by shifting the quantiles to the right, it allows for more optimistic attitudes.

The first derivative of the Wang transform is given by

dgα(p)

dp
= e−αp−

α2

2 > 0

and the second derivative by

d2gα(p)

dp2
= −α

√
2π e

p
2
−αp−α

2

2 .

Thus gα is continuous and increasing for all α, convex for α < 0 and concave for α > 0.



98 Chapter 5 Wang transform as a risk measure

Wang [159] uses the following Choquet integral with respect to gα to define the risk

adjusted premium H[·, α] of a risk X:

H[X,α] =

∫ 0

−∞
[gα(SX(x))− 1] dx+

∫ ∞
0

gα(SX(x)) dx. (5.6)

It is easy to verify that the Choquet integral with respect to the Wang transform H[X,α]

has the following properties:

(i) min(X) ≤ H[X,α] ≤ max(X).

(ii) H[X,α] is an increasing function of α.

(iii) H[c, α] = c and H[X + c, α] = H[X,α] + c.

(iv) If b > 0, then H[bX, α] = bH[X,α] and if b < 0, then H[bX, α] = bH[X,−α].

(v) If α < 0, then H[X,α] < E[X], and if α > 0, then H[X,α] > E[X].

(vi) If X1 and X2 are comonotonic, then H[X1 +X2, α] = H[X1, α] +H[X2, α].

(vii) If α > 0, thenH[X1+X2, α] ≤ H[X1, α]+H[X2, α], and if α < 0, thenH[X1+X2, α] ≥
H[X1, α] +H[X2, α].

Remark 5.4.2. Note that 1 − gα(1 − u) = g−α(u). Thus, 1 − g−α(FX(x)) = 1 − g−α(1 −
SX(x)) = gα(SX(x)). The dual distortion operator of gα is, hence, given by

g∗α(p) = g−α(p).

This implies that when valuing an asset, we need to work with −α. Hence, the risk adjusted

premium defined in (5.6), can also be written as

πWT
X (α) = −

∫ 0

−∞
g−α(FX(x)) dx+

∫ ∞
0

(1− g−α(FX(x))) dx. (5.7)

Wang’s asset pricing approach involves applying H[X,α] to the present value of an asset

to get the risk-neutral price. Underlying this is the assumption that the certainty equivalent

of a risky cash flow is the market price and H[X,α] can be seen as the certainty equivalent.

In order to derive pricing results using H[X,α], the α is calibrated in such a way that the

certainty equivalent is consistent with the market price of the asset. More formally, α is

determined in such a way that the martingale condition is fitted for all T , i.e. solves the

following equation

EWT [XT |Ft] = Xt,
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where EWT [·] refers to the conditional expectation under the Wang transform distribution

defined above.

Proposition 5.4.3.

(i) If X ∼ Normal(µ, σ2), then gα(SX) ∼ Normal(µ+ ασ, σ2).

(ii) If X ∼ Lognormal(µ, σ2), then gα(SX) ∼ Lognormal(µ+ ασ, σ2).

Proof. (i): For X ∼ Normal(µ, σ2), we have

SX(t) = P (X > t) = 1− P
(X − µ

σ
≤ t− µ

σ

)
= 1− Φ[

t− µ
σ

]

= Φ[− t− µ
σ

]

by symmetry of the standard normal. Then

gα(SX(t)) = Φ[Φ−1[SX(t)] + α]

= Φ
[
Φ−1

(
Φ[− t− µ

σ
]
)

+ α
]

= Φ[− t− µ− ασ
σ

] = SZ(t),

where Z ∼ Normal(µ+ ασ, σ2). Also

H[X,α] =

∫ 0

−∞
[gα(SX(t))− 1] dt+

∫ ∞
0

gα(SX(t)) dt

=

∫ 0

−∞
[SZ(t)− 1] dt+

∫ ∞
0

SZ(t) dt

= E[Z] = µ+ ασ.

(ii): Follows similarly to (i), replacing t by ln t.

Proposition 5.4.4. The Radon-Nikodým derivative corresponding to the Wang

transform is given by

RNDg(x) = e−αΦ−1(FX(x))− 1
2
α2
.

Proof. Let

f(x) = Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
y2
dy

and h(x) = Φ−1(x) such that f(h(x)) = h(f(x)) = x. Note that Φ(x) can be written as

Φ(x) =
1

2

[ 2√
π

∫ x√
2

0
e−t

2
dt+ 1

]
.
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Also, note that d
dx(f(h(x))) = 1. But

d

dx
(f(h(x))) =

df

dx
(h(x)) · dh

dx

=
d

dx

(1

2

[ 2√
π

∫ x√
2

0
e−t

2
dt+ 1

])∣∣∣∣∣
h(x)

· dh
dx

=
1√
π
e−

h2(x)
2 · 1√

2
· dh
dx

=
1√
2π
e−

h2(x)
2 · dh

dx
.

Thus,

dh

dx
=
√

2πe
1
2
h2(x),

where h(x) = Φ−1(x).

The Wang transform is given by

g(u) = Φ(Φ−1(u) + α) =

∫ Φ−1(u)+α

−∞

1√
2π
e−

1
2
y2
dy

and hence, its Radon-Nikodým derivative is given by

g′(u) =
d

du

∫ Φ−1(u)+α

−∞

1√
2π
e−

1
2
y2
dy

=
1√
2π
e−

1
2

(Φ−1(u)+α)2 · d
du

(Φ−1(u) + α)

=
1√
2π
e−

1
2

(Φ−1(u))2−αΦ−1(u)− 1
2
α2 ·
√

2πe
1
2

(Φ−1(u))2

= e−αΦ−1(u)− 1
2
α2
.

Finally, substituting u = FX(x), we get our result.

An important question that arises, is how did Wang decide on this particular distortion?

What follows next, hopefully clears up this question.

Assume the stock price follows geometric Brownian motion, i.e.

dSt = µStdt+ σStdWt,

where Wt is a Brownian motion under the real world measure P . Then the solution to this

stochastic differential equation is

St = S0e
(µ−σ

2

2
)t+σWt .
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To be able to price, we need to transform our probability measure into the risk-neutral

measure under which the discounted price process is a martingale. Thus, we apply Gir-

sanov’s theorem. The risk-neutral probability Q is determined by the Radon-Nikodým

derivative

Rt = e−(µ−r
σ

)Wt− 1
2

(µ−r
σ

)2t

and therefore, W ∗t = Wt + (µ−rσ )t is a Brownian motion under Q. The stock dynamics then

become

dSt = rStdt+ σStdW
∗
t .

Now

P (St ≤ x) = P (lnS0 − (µ− σ2

2
)t+ σWt ≤ lnx)

= Φ
[ ln(S0

x )− (µ− σ2

2 )t

σ
√
t

]
.

Under the risk-neutral measure,

Q(St ≤ x) = Φ
[ ln(S0

x )− (r − σ2

2 )t

σ
√
t

]
= Φ

[ ln(S0
x )− (µ− σ2

2 )t

σ
√
t

+
µ− r
σ

√
t
]

= Φ
[
Φ−1[P (St ≤ x)] +

µ− r
σ

√
t
]
.

This derivation works for any attainable contingent claim of the form XT = h(ST ),

where h is a positive, increasing function. Hence,

EQ[XT ] =

∫ ∞
0

Q(XT > x)dx = H[XT ,−
µ− r
σ

√
T ].

Next, let us consider the case, where the underlying security price has a lognormal

distribution with time-varying drift and volatility. Let Xt be a variable following

dXt = µ(t)dt+ σ(t)dWt,

where Wt is a Brownian motion under the real-world probability P . Written more formally,

we have

Xt = X0 +

∫ t

0
µ(s) ds+

∫ t

0
σ(s) dWs.

Assume that the underlying security price is given by St = eXt , then by Itô’s lemma, we

have

dSt =
(
µ(t) +

1

2
σ2(t)

)
Stdt+ σ(t)StdWt.
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Since Xt ∼ Normal(X0 +
∫ t

0 µ(s) ds,
∫ t

0 σ
2(s) ds), we obtain

P [St ≤ x] = P [Xt ≤ lnx]

= Φ

[
lnx− (X0 +

∫ t
0 µ(s) ds)√∫ t

0 σ
2(s) ds

]
.

Let γt denote the market price of risk for the security St. The market price of risk is

determined in such a way that the security price discounted to the present value at the

risk-free rate will be a martingale under the risk-neutral probability measure. Thus, γt will

be equal to

γt =
µ(t) + 1

2σ
2(t)− r

σ(t)
.

By Girsanov’s theorem, we have that W ∗t = Wt +
∫ t

0 γsds is a Brownian motion under

the risk-neutral measure Q. Hence, Xt follows

dXt =
(
µ(t)− σ(t)γt

)
dt+ σ(t)dW ∗t

under Q. The probability distribution under Q becomes

Q[St ≤ x] = Q[Xt ≤ lnx]

= Φ

[
lnx− (X0 +

∫ t
0 (µ(s)− σ(s)γs)ds)√∫ t
0 σ

2(s)ds

]

= Φ

[
lnx− (X0 +

∫ t
0 µ(s) ds)√∫ t

0 σ
2(s)ds

+

∫ t
0 σ(s)γsds√∫ t

0 σ
2(s)ds

]

= Φ

[
Φ−1[P [St ≤ x]] +

∫ t
0 σ(s)γsds√∫ t

0 σ
2(s)ds

]
. (5.8)

Define

gγ(u) = Φ

[
Φ−1[u] +

∫ t
0 σ(s)γsds√∫ t

0 σ
2(s)ds

]
,

then the risk adjusted premium becomes

H[Y, γ] =

∫ ∞
0

gγ
(
P (Y > u)

)
du

for any nonnegative random variable Y . From Equation (5.8), we have

Q(ST > x) = g−γ
(
P (St > x)

)
and since EQ[St] =

∫∞
0 Q(St > x)dx, it follows that EQ[St] = H[St,−γ].
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5.4.1 Pricing financial risk

The following proposition simplifies matters when we are dealing with functions of standard

normal random variables.

Proposition 5.4.5. Let Z be a standard normal variable and h a continuous increasing

function with range in [0,∞). If X = h(Z) and α ∈ R, then

H[X,α] = E[h(Z + α)].

Proof. We have

H[X,α] =

∫ ∞
0

gα(SX(t)) dt.

Now

SX(t) = P (X > t) = P (h(Z) > t) = P (Z > h−1(t)) = Φ(−h−1(t))

and

gα(SX(t)) = Φ[Φ−1(Φ(−h−1(t))) + α]

= Φ[−h−1(t) + α]

= P (Z > h−1(t)− α)

= P (h(Z + α) > t).

Therefore

H[X,α] =

∫ ∞
0

gα(SX(t)) dt = E[h(Z + α)].

Corollary 5.4.6. Let Z be a standard normal variable and h be of the form

h(x) =

{
0 for x ∈ [0, a]

h2(x) for x ∈ (a,∞),

where h2 is a continuous increasing function with range in [0,∞) and a ∈ R. If X = h(Z)

and α ∈ R, then

H[X,α] = E[h2(Z + α)].

Proof. Since

P (h(Z) > t) = P (h2(Z) > t),

the corollary follows easily by suitably adapting the proof of Proposition 5.4.5.
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This corollary will be required to price binary options.

Note that if we replace the standard normal cumulative distribution function in the

Wang transform by the cumulative distribution function F of a symmetric distribution, i.e.

gα(x) = F (F−1(x) + α),

then the above proposition and corollary still hold.

Proposition 5.4.5 allows for the easy computation of prices of claims that can be written

as functions of standard normal random variables.

Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) and let St be the price of a

security at time t. We assume that St follows geometric Brownian motion, i.e.

dSt = µStdt+ σStdWt,

where Wt is a Brownian motion under the real-world measure P . Since St follows geometric

Brownian motion, it is well known that ST = h(Z), where

h(Z) = S0e
(µ−σ

2

2
)t+σ

√
tZ .

Hence, using Proposition 5.4.5,

H[ST ,−α] = E[h(Z − α)]

= E[S0e
(µ−σ

2

2
)T+σ

√
TZ−σ

√
Tα]

= S0e
(µ−σ

2

2
)T−σ

√
Tα+σ2

2
T .

For the condition of no arbitrage to hold, we need the price of ST at time 0 to be the

future value of the current security price erTS0. Thus α = µ−r
σ

√
T and

S0 = e−rTH[ST ,−α].

In other words, we used α to calibrate the discounted certainty equivalent of the security

price on a future date to the initial price of the security.

Next we shall look at pricing a European call option using the Wang transform. The

payoff of a European call option with strike K and maturity T is given by

C(T,K) = (ST −K)+,

where (x)+ = max(x, 0). Once again we can write this payoff as a function of a standard

normal random variable C(T,K) = f(Z), where f(Z) = (S0e
(µ−σ

2

2
)T+σ

√
TZ −K)+. Then
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using Proposition 5.4.5, we get

H[C(T,K),−α] = E[f(Z − α)]

=

∫ ∞
−∞

(
S0e

(µ−σ
2

2
)T−σ

√
Tα+σ

√
Tz −K

)+ 1√
2π
e−

z2

2 dz.

The region of integration is determined by the values of z for which

S0e
(µ−σ

2

2
)T−σ

√
Tα+σ

√
Tz ≥ K.

Solving for z results in

z ≥
ln(KS0

)− (µ− σ2

2 )T + σ
√
Tα

σ
√
T

.

Let zmin denote the minimum value for which the latter inequality holds. Then

H[C(T,K),−α] =

∫ ∞
zmin

(
S0e

(µ−σ
2

2
)T−σ

√
Tα+σ

√
Tz −K

) 1√
2π
e−

z2

2 dz

= S0e
µT−σ

√
Tα

∫ ∞
zmin

e−
σ2

2
T+σ

√
Tz 1√

2π
e−

z2

2 dz −K
∫ ∞
zmin

1√
2π
e−

z2

2 dz

= S0e
µT−σ

√
Tα

∫ ∞
zmin

1√
2π
e−

1
2

(z−σ
√
T )2
dz −K

∫ ∞
zmin

1√
2π
e−

z2

2 dz

= S0e
µT−σ

√
TαΦ(−zmin + σ

√
T )−KΦ(−zmin).

Using α = µ−r
σ

√
T as calculated above, i.e. calibrating the call option price to the

underlying security price, results in the Black-Scholes price of a call option at time 0. It

makes sense that we should use the same α as when pricing the underlying security.

The above shows that the Wang transform is consistent with arbitrage-free pricing in

the setting of geometric Brownian motion with constant coefficients.

What happens if you let the traded asset be described by a general stochastic process?

Let Xt be a traded asset that follows (5.3). The question Pelsser [130] asked himself, is

which probability measure, i.e. Girsanov transformation, is implied by the Wang transform?

To investigate this, we have to find the stochastic differential equation, which gives rise

to the Wang measure, which we will denote by FWT and, as above, is given by

FWT (p) = Φ(Φ−1(F (p)) + α(t, T )). (5.9)

Since the Girsanov transformation only affects the dt-coefficient of the stochastic process,

the Girsanov transformation will give rise to the following stochastic differential equation

for the process Xt:

dXt =
(
µ(t,Xt) + σ(t,Xt)K

WT
t

)
dt+ σ(t,Xt)dW

WT
t ,

where WWT
t is a Brownian motion under the ‘Wang probability measure’ and KWT

t denotes

the Girsanov kernel associated with the Wang transform.
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Proposition 5.4.7. The Wang transform is consistent with arbitrage-free pricing if and

only if the following conditions on µ(t,Xt) and σ(t,Xt) are satisfied

∂

∂x

(
µ(t,Xt)

∂F
∂x

φ(Φ−1(F ))

)
= 0

and
∂

∂x

(
σ(t,Xt)

∂F
∂x

φ(Φ−1(F ))

)
= 0,

where φ denotes the derivative of Φ, i.e. the standard normal probability density function.

Proof. The function FWT has to satisfy the Kolmogorov backward equation, i.e.

∂

∂t
FWT + (µ(t,Xt) + σ(t,Xt)K

WT
t )

∂

∂x
FWT +

1

2
σ2(Xt, t)

∂2

∂x2
FWT = 0. (5.10)

This implies that

(µ(t,Xt) + σ(t,Xt)K
WT
t ) =

∂
∂tF

WT + 1
2σ

2(t,Xt)
∂2

∂x2F
WT

− ∂
∂xF

WT
.

Using Equation (5.9), we get

∂

∂t
FWT =

φ(Φ−1(F ) + α)

φ(Φ−1(F ))

[ ∂
∂t
F + φ(Φ−1(F ))

∂

∂t
α
]
,

∂

∂x
FWT =

φ(Φ−1(F ) + α)

φ(Φ−1(F ))

∂

∂x
F and

∂2

∂x2
FWT =

φ(Φ−1(F ) + α)

φ(Φ−1(F ))

[ α

φ(Φ−1(F ))
(
∂

∂x
F )2 +

∂2

∂x2
F
]
.

Substituting these equations into (5.10) and using the fact that F satisfies the Kol-

mogorov backward equation, yields

σ(t,Xt)K
WT
t =

(φ(Φ−1(F ))
∂F
∂x

)∂α
∂t
− 1

2
σ2(t,Xt)

( ∂F
∂X

φ(Φ−1(F ))

)
α.

To find the conditions under which the Wang transform is consistent with arbitrage-free

pricing, we must substitute the market price of risk σ(t, x)KWT
t = −µ(t, x) into the above

equation. This results in the following differential equation in α

∂

∂t
α(t, T ) = −

(
µ(t, x)

∂F
∂x

φ(Φ−1(F ))

)
+

1

2

(
σ(t, x)

∂F
∂x

φ(Φ−1(F ))

)2
α(t, T ).

Note that a necessary condition for this proposition to hold, is that the ratio µ(t,Xt)
σ(t,Xt)

is

a function of time only. Pelsser [130] thus concludes that, since the Wang transform is in

general not consistent with no arbitrage, it should not be seen as a universal framework for

pricing.
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5.4.2 Pricing exotic options

The Wang transform is not only consistent with the Black-Scholes option pricing formula

for vanilla options, as shown by Hamada and Sherris [76], but also for more exotic options,

as is shown in this section. This section is new and due to the author.

Proposition 5.4.8. Consider an option with underlying f , maturity T , strike K and payoff

(fT −K)+. If the underlying f follows geometric Brownian motion, i.e.

dft = µ̂ftdt+ σ̂ftdWt,

where W is a Brownian motion, µ̂ is the drift and σ̂ is the volatility, then e−r(T−t)H[f,−α]

with α = µ̂−r
σ̂

√
T − t reduces to the equivalent Black-Scholes price.

Proof. If f follows the process dft = µ̂ftdt+ σ̂ftdWt, then the value of fT at time t can be

written as

fT = fte
(µ̂− 1

2
σ̂2)(T−t)+σ̂

√
T−tz,

where z is a standard normal random variable.

Thus the payoff of the option can be written as

(fT −K, 0)+ = (fte
(µ̂− 1

2
σ̂2)(T−t)+σ̂

√
T−tz −K, 0)+.

Let

h(z) = (fte
(µ̂− 1

2
σ̂2)(T−t)+σ̂

√
T−tz −K)+,

then h is increasing and continuous. Apply Proposition 5.4.5 to obtain

H[fT ,−α] = E[h(z − α)]

=

∫ ∞
−∞

(fte
(µ̂− 1

2
σ̂2)(T−t)+σ̂

√
T−t(z−α) −K)+fZ(z)dz.

Let z∗ be the value of z such that fT = K, i.e

z∗ =
ln(Kft )− (µ̂− 1

2 σ̂
2)(T − t) + σ̂

√
T − tα

σ̂
√
T − t

.
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Thus

H[fT ,−α] = E[h(z − α)]

=

∫ ∞
z∗

(fte
(µ̂− 1

2
σ̂2)(T−t)+σ̂

√
T−t(z−α) −K)+fZ(z)dz

= fte
(µ̂− 1

2
σ̂2)(T−t)−σ̂

√
T−tα+ 1

2
σ̂2(T−t)

∫ ∞
z∗

1√
2π
e−

1
2

(z−σ̂
√
T−t)2

dz

−K
∫ ∞
z∗

fZ(z)dz

= fte
µ̂(T−t)−σ̂

√
T−tαΦ[−(z∗ − σ̂

√
T − t)]−KΦ[−z∗].

Setting α = µ̂−r
σ̂

√
T − t, results in

−(z∗ − σ̂
√
T − t) =

ln( ftK ) + (r + 1
2 σ̂

2)(T − t)
σ̂
√
T − t

,

which is commonly referred to as d1 and

−z∗ =
ln( ftK ) + (r − 1

2 σ̂
2)(T − t)

σ̂
√
T − t

,

which is referred to as d2. Then

H[fT ,−α] = fte
r(T−t)Φ[d1]−KΦ[d2].

Discounting yields the Black-Scholes price.

The following example illustrates various applications of Proposition 5.4.8.

Example 5.4.9.

(i) Standard European option

First, we need to ensure that the proposition holds for vanilla European options. The

underlying of a standard normal European option is a stock which follows

dSt = µStdt+ σStdWt.

This is just a straightforward application of Proposition 5.4.8.

(ii) Margrabe option

A Margrabe option, named after William Margrabe [122], gives the holder the right

but not the obligation to exchange one asset for another. The Margrabe option can be

seen as a generalisation of the Black-Scholes model. The insights into the derivation
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of the Margrabe option price is useful in other applications of option pricing. For

example, a vanilla European option can be viewed as a Margrabe option, where the

asset exchanged is cash.

Assume we have two assets S1 and S2, which follow

dS(i) = µiS
(i)dt+ σiS

(i)dWi, for i = 1, 2,

where the Wi’s are correlated Brownian motions with correlation ρ12. Then the payoff

of the Margrabe option at expiry T is given by (S
(1)
T − S

(2)
T , 0)+. Using S(2) as the

numéraire, we can rewrite the payoff as

(
S

(1)
T

S
(2)
T

− 1, 0)+.

The underlying in this case is S(1)

S(2) and the strike is 1.

We first need to find the process that
S

(1)
T

S
(2)
T

follows. Let f(S(1), S(2)) = S(1)

S(2) . By the

multivariate version of Itô’s lemma, we get

df =
S

(1)
t

S
(2)
t

(
[µ1 − µ2 + σ2

2 − σ1σ2ρ12]dt+ σ1dW1 − σ2dW2

)
.

Let σ̂dW ∗ = σ1dW1 − σ2dW2, where

σ̂2 = σ2
1 + σ2

2 − 2σ1σ2ρ12

and dW ∗ ∼ Normal(0, σ̂2dt). Thus,

df = µ̂fdt+ σ̂fdW ∗,

where µ̂ = µ1 − µ2 + σ2
2 − σ1σ2ρ12.

Note that since we used S(2) as the numéraire, we have that r = 0 and hence

α =
µ̂

σ̂

√
T − t

will yield the Black-Scholes price.

(iii) Geometric basket option

A basket option is an option whose underlying is a sum or average of different as-

sets. To price an arithmetic basket option, which uses an arithmetic average as the

underlying, Monte Carlo techniques are often used. To reduce the variance in the com-

putational price of the arithmetic basket option, the geometric basket option, which
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uses a geometric average as the underlying and can be priced using Proposition 5.4.8,

can be used as a control variate.

Thus, we will take a closer look at a geometric basket option. The payoff of this option

takes the form (
√
S(1)S(2) − K, 0)+. The processes S(1) and S(2) follow geometric

Brownian motion, i.e.

dS(i) = µiS
(i)dt+ σiS

(i)dWi, for i = 1, 2,

where the Wi’s are correlated Brownian motions with correlation ρ12.

The underlying in this case is
√
S(1)S(2) and the strike is K. We first need to find the

process that
√
S(1)S(2) follows. Let f(S(1), S(2)) =

√
S(1)S(2). By the multivariate

version of Itô’s lemma, we get

dft = ft

([1

2
µ1 +

1

2
µ2 +

1

8
σ2

1 +
1

8
σ2

2 +
1

8
σ1σ2ρ12

]
dt+

1

2

(
σ1dW1 + σ2dW2

))
.

Let σ̂dW ∗ = 1
2(σ1dW1 + σ2dW2), where

σ̂2 =
1

4
(σ2

1 + σ2
2 + 2σ1σ2ρ12)

and dW ∗ ∼ Normal(0, σ̂2dt). Thus,

dft = µ̂ftdt+ σ̂ftdW
∗,

where

µ̂ =
1

2
µ1 +

1

2
µ2 +

1

8
σ2

1 +
1

8
σ2

2 +
1

8
σ1σ2ρ12.

Setting

α =
µ̂

σ̂

√
T − t,

reduces e−r(T−t)H[f,−α] to the Black-Scholes price.

(iv) Asset-or-nothing

Next we take a look at the two main types of binary options: the asset-or-nothing

and the cash-or-nothing option. The binary options market can reveal the market’s

estimate of the current skewness in the market.

Consider an asset-or-nothing call option with strike K and maturity T . The payoff

of this option is given by

AoN(K,T ) = ST1{ST≥K},
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where S follows geometric Brownian motion with drift µ and volatility σ.

Let

h(z) = S0e
(µ− 1

2
σ2)T+σ

√
Tz
1
{S0e

(µ− 1
2σ

2)T+σ
√
Tz≥K}

.

Then h is an increasing, continuous function. Letting

z∗ =
ln(KS0

)− (µ− 1
2σ

2)T + σ
√
Tα

σ
√
T

,

we have by Proposition 5.4.5 that

H[AoN(K,T ),−α] = E[h(z − α)]

=

∫ ∞
z∗

S0e
(µ− 1

2
σ2)T+σ

√
T (z−α)fZ(z)dz

= S0e
µT−σ

√
TαΦ[−(z∗ − σ

√
T )].

If α = µ−r
σ

√
T , then e−rTH[AoN(K,T ),−α] is equal to the Black-Scholes price.

(v) Cash-or-nothing

Consider a cash-or-nothing call option with strike K and maturity T , whose payoff

is give by

CoN(K,T ) = 1{ST≥K}.

If we let

h(z) = 1{ST≥K}(z)

=

{
0 for z ∈ [0,K]

h2(z) for z ∈ (K,∞),

where h2(z) = 1 is continuous and non-decreasing. Hence, by Corollary 5.4.6 we have

H[CoN(K,T ),−α] = E[h2(z − α)]

=

∫ ∞
z∗

fZ(z)dz

= Φ[−z∗],

where z∗ is as in (iv). Then, letting α be as above and discounting, yields the Black-

Scholes price.

The next example is a practical application of using the Wang transform to price exotic

options.
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Example 5.4.10. This example is purely an illustration of the use of the Wang transform

compared to the Black-Scholes price and the parameters were chosen arbitrarily. To apply

the methods described in the paper to real world data, one would need to look at for example

stochastic interest rates and volatilities, which is left for further research.

As in Hamada and Sherris [76], we implemented Wang’s approach using simulation. We

simulated lognormal security prices and use these to estimate the relevant α. Consider a

Margrabe option to exchange S(1) for S(2) in half a years time. We first show that the

Wang price for a Margrabe option with the above-derived value for α converges to the

Black-Scholes price. The following parameters were used:

- r = 8%,

- S
(1)
0 = 20, µ1 = 16% and σ1 = 20%,

- S
(2)
0 = 25, µ2 = 10% and σ2 = 15%, and

- ρ = 0.2.

Figure 5.1 shows the convergence of both the Wang price to the Black-Scholes price and

of α to the true value of 0.2407. The convergence is relatively quick, i.e. not many paths

are required to get a fairly accurate price.

Figure 5.1: Convergence of Wang price and of alpha

One of the disadvantages of the Black-Scholes model is the lack of flexibility in the

derived prices. Thus, we would like to see what prices the Wang transform could yield. To
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do this, we compare the Wang price to the Black Scholes price for varying α in the case of

the above-described Margrabe option. This is shown in Figure 5.2.

Figure 5.2: Wang price vs alpha

As can be seen in Figure 5.2, it is possible to obtain a wide variety of prices using the

Wang transform, while the Black Scholes price remains constant. It should be noted that

some of the prices obtained using the Wang transform could lead to arbitrage opportunities

(see Pelsser [130]).

We obtained similar results for the geometric basket option and the asset-or-nothing

option [117].

5.5 The Esscher-Girsanov transform vs. the Wang

transform

The price of a financial security that satisfies the condition of no arbitrage, is found by

using a risk-neutral probability measure, which is generally a transformation of the real-

world probability measure. This change of measure is referred to as ‘risk-neutralising’ the

statistical distribution. In complete markets, there is a unique risk-neutral probability

measure and thus a unique price. In incomplete markets, however, there can be infinitely

many risk-neutral probability measures and as of yet no consensus on how to choose one.
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The use of exponential tilting to risk-neutralise the real-world distribution has been

considered by numerous authors including Bühlmann [21], Gerber and Shiu [67], Wang

[159, 161, 162] and Goovaerts and Laeven [70]. Bühlmann [21] developed an economic

premium principle based on exponential tilting. A special case of exponential tilting and of

Bühlmann’s economic premium principle is the Esscher transform, named after the Swedish

actuary Fredrik Esscher [59]. Gerber and Shiu [67] used the Esscher transform to price

options whose underlying follows a Lévy process. Goovaerts and Laeven [70] introduced a

variation of the Esscher transform, which they called the Esscher-Girsanov transform.

Independently, whilst trying to find a unifying approach for pricing insurance and fi-

nancial risk, Wang introduced a distortion function, which is called the Wang transform.

Kijima and Muromachi pointed out in [97] that the Esscher-Girsanov transform and

the Wang transform are technically the same, claiming that Wang [161] contains a proof

thereof.

This section explicitly gives the proof of that fact and shows that the Esscher-Girsanov

price is equivalent to Wang’s risk adjusted premium. This section is based on Labuschagne

and Offwood [113].

5.5.1 The Esscher transform

The Esscher transform was developed to approximate the aggregate claim amount distribu-

tion around a point of interest x0, by applying an analytic approximation, the Edgeworth

series, to the transformed distribution with the parameter θ chosen such that the new mean

is equal to x0. The reason the transform was required, is the fact that the Edgeworth

approximation performs well in the vicinity of the mean, but not so well in the tails.

The Esscher transform was originally a transformation of distribution functions.

Definition 5.5.1. Given a cumulative distribution function F (x) and a parameter θ, the

Esscher transform is defined by

dF θ(x) =
eθxdF (x)∫
eθydF (y)

.

If F (x) admits a density f(x), then F θ(x) has the density

fθ(x) =
eθxf(x)∫
eθyf(y)dy

.

In the statistical literature this is a special case of exponential tilting.
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Definition 5.5.2. The exponential tilting of X with respect to Y is given by

f∗X(x) =
E[eλY |X = x]

E[eλY ]
fX(x).

Note that FX and its Esscher transform F θX have the same null sets and are thus equiv-

alent distributions. For a normal cdf with mean µ and variance σ2, its Esscher transform is

a normal cdf with mean µ+ θσ2 and variance σ2.

The real-valued function, given by

πEssX (θ) =

∫ ∞
−∞

xdF θX =
E[XeθX ]

E[eθX ]
,

is known as the Esscher premium or the Esscher price with parameter θ.

The Esscher transform for probability measures is defined analogously.

Definition 5.5.3. Given a probability space (Ω,F , P ), a random variable X and a param-

eter θ, the Esscher transform, sometimes called the Esscher measure, is defined by

dP θ =
eθXdP

E[eθX ]
,

provided the expectation exists.

The Esscher transform has a sound economic meaning. Bühlmann [21] argues that

in the real world, premiums do not only depend on the risk to be covered but also on

the surrounding market conditions. Thus, he considered a risk-exchange model, where all

individual agents act to maximise their own expected utility.

Consider risk exchanges among agents j = 1, 2, . . . , n. Each investor is characterised by

his utility function uj(x), where u′j(x) > 0 and u′′j (x) ≤ 0, and his initial wealth Wj . The

investor faces the risk of a potential loss of Xj(ω) and buys a risk-exchange Yj(ω). While

the original risk Xj belongs to the investor j, the risk-exchange Yj can be bought/sold in

the market. Bühlmann pointed out in [21] that the pricing density η(ω), defined by

Price(Yj) =

∫
ω
Yj(ω)η(ω)dP (ω),

can be seen as a distortion of the real-world probabilities.

Definition 5.5.4. The pair {Ye,j , ηe} are in equilibrium if

(i) for all j, E[uj(Wj −Xj + Ye,j − Price(Yj))] is a maximum among all possible choices

of the exchange variables Yj , and
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(ii)
∑n

j=1 Ye,j(ω) = 0 for all ω ∈ Ω.

In the equilibrium, Ye,j is called the equilibrium exchange and ηe the equilibrium price

density.

Bühlmann [21] then proved the following theorem.

Theorem 5.5.5. Assume that each investor has an exponential utility function

uj(x) = 1− e−θjx.

Then the equilibrium price density satisfies

ηe(ω) =
eθZ(ω)

E[eθZ ]
,

where

Z =
n∑
j=1

Xj(ω)

is the aggregate risk and θ satisfies

θ−1 =
n∑
j=1

θ−1
j .

The parameter θj can be seen as the risk aversion index of the jth agent. Using Theorem

5.5.5, the equilibrium price for any risk X is given by

πBuhlX (θ) =
E[XeθZ ]

E[eθZ ]
.

Note that if Z is replaced by X in the above, this results in the Esscher transform, i.e.

the Esscher transform is a special case of Bühlmann’s economic principle.

5.5.2 The Esscher-Girsanov transform

Instead of considering the random variable X, Goovaerts and Laeven [70] consider the

extended real-valued function Φ−1(FX(x)), where Φ−1 denotes the inverse distribution

function of the standard normal distribution. It is known that if FX is continuous, then

Φ−1(FX(x)) is normally distributed with mean 0 and variance 1.

From here onwards we will assume that each of the random variables we are working

with has a continuous cdf.
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Definition 5.5.6. Given a cdf F (x) and parameters h, v ∈ R, the Esscher-Girsanov trans-

form is defined by

dF
(h,v)
X (x) =

ehvΦ−1(FX(x))

E[ehvΦ−1(FX(X))]
dFX(x) = ehvΦ−1(FX(x))− 1

2
h2v2

dFX(x). (5.11)

The parameter h can be interpreted as the absolute risk aversion and v as the penalty

parameter. Goovaerts and Laeven attached the name of Girsanov to the probability measure

transform defined above, to emphasize the close resemblance between the Radon-Nikodým

derivative used in (5.11) and that used in Girsanov’s theorem. It is easy to verify that for

a normal cdf with mean µ and variance σ2, its Esscher-Girsanov transformation is normal

with mean µ+ hvσ and variance σ2. If we let v = σ, then the Esscher-Girsanov transform

reduces to the Esscher transform.

Goovaerts and Laeven [70] axiomatically characterise a pricing mechanism involving the

Esscher-Girsanov transform. Their pricing mechanism can generate arbitrage-free prices for

financial derivatives with an underlying asset driven by a general diffusion process. Similar

to the paper by Goovaerts et al. [69], the pricing mechanism of Goovaerts and Laeven [70]

allows for a mixture function, weighting the different values of h. We assume the mixture

function to be degenerate.

Definition 5.5.7. The Esscher-Girsanov price of the random variable X, with parameters

h ≤ 0 and v > 0, is given by

πvX(h) = E[XehvΦ−1(FX(x))− 1
2
h2v2

].

5.5.3 The Esscher-Girsanov transform vs. the Wang trans-

form

Goovaerts and Laeven [70], Kijima and Muromachi [97] and Wang [162] pointed out that

a connection exists between the Esscher-Girsanov transform and the Wang transform. In

this section, we prove this fact.

Proposition 5.5.8. Let α = hv and let X be a random variable with pdf fX(x). The pdf

generated by the Wang transform with parameter −α is equal to the pdf generated by the

Esscher-Girsanov transform with parameters h and v.

Proof. By Proposition 5.4.4, the pdf generated by the Wang transform with parameter −α
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is given by

fWT
X (x) = eαΦ−1(FX(x))− 1

2
α2
fX(x) = ehvΦ−1(FX(x))− 1

2
h2v2

fX(x),

which by Definition 5.5.6 is the Esscher-Girsanov transformed pdf of X.

Alternatively, we can also show that the cdf of the Esscher-Girsanov transform is equal

to the Wang transform, as is done in the next proposition.

Proposition 5.5.9. Let α = hv and let X be a random variable with cdf FX(x). The cdf

generated by the Esscher-Girsanov transform with parameters h and v is equal to the cdf

generated by the Wang transform with parameter −α.

Proof. The Esscher-Girsanov transform is given by

dF ∗X = ehvΦ−1(FX(x))− 1
2
h2v2

dFX .

Thus,

F ∗X(x) =

∫ x

−∞
ehvΦ−1(FX(t))− 1

2
h2v2

dFX(t).

Let y = Φ−1(FX(t)), then dy =
√

2πe
1
2

(Φ−1(FX(t)))2
dFX and substituting this into the

integral results in

F ∗X(x) =
1√
2π
e−

1
2
h2v2

∫ Φ−1(FX(x))

−∞
ehvy · e−

1
2
y2
dy

=
1√
2π
e−

1
2
h2v2

∫ Φ−1(FX(x))

−∞
e−

1
2

(y−hv)2+ 1
2
h2v2

dy

=

∫ Φ−1(FX(x))

−∞

1√
2π
e−

1
2

(y−hv)2
dy

= Φ(Φ−1(FX(x))− hv).

This is equal to the Wang Transform with parameter −hv = −α.

Proposition 5.5.10. Let hv = α and let X be a random variable with pdf fX and contin-

uous cdf FX . The Esscher-Girsanov price for a risk X with parameters h and v is equal to

Wang’s risk adjusted premium for X with parameter α.

Proof. Wang’s risk adjusted premium for X with parameter α, using (5.7), is given by

πWT
X (α) = −

∫ 0

−∞
Φ(Φ−1(FX(x))− α)dx+

∫ ∞
0

[1− Φ(Φ−1(FX(x))− α)] dx.
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Let c(x) = Φ−1(FX(x))− α, then

πWT
X (α) = −

∫ 0

−∞

∫ c(x)

−∞

1√
2π
e−

1
2
t2dt dx+

∫ ∞
0

∫ ∞
c(x)

1√
2π
e−

1
2
t2dt dx.

Next, we need to change the order of integration. Letting k(t) = F−1
X (Φ(t + α)) and

γ = Φ−1(FX(0))− α, we get

πWT
X (α) = −

∫ γ

−∞

∫ 0

k(t)

1√
2π
e−

1
2
t2 dx dt+

∫ ∞
γ

∫ k(t)

0

1√
2π
e−

1
2
t2 dx dt

= −
∫ γ

−∞

1√
2π
e−

1
2
t2(0− k(t)) dt+

∫ ∞
γ

1√
2π
e−

1
2
t2(k(t)− 0) dt

=

∫ ∞
−∞

1√
2π
e−

1
2
t2k(t) dt

=

∫ ∞
−∞

1√
2π
e−

1
2
t2F−1

X (Φ(t+ α)) dt.

Substituting y = t+ α, we get

πWT
X (α) =

∫ ∞
−∞

1√
2π
e−

1
2

(y−α)2
F−1
X (Φ(y))) dy. (5.12)

On the other hand, the Esscher-Girsanov price for X is given by

πvX(h) = E[XehvΦ−1(FX(x))− 1
2
h2v2

]

=

∫ ∞
−∞

xehvΦ−1(FX(x))− 1
2
h2v2

fX(x)dx. (5.13)

Let y = Φ−1(FX(x)), then dy =
√

2πe
1
2
y2
dFX . Substituting this into (5.13), we get

πvX(h) =

∫ ∞
−∞

1√
2π
e−

1
2

(y−hv)2
F−1
X (Φ(y))dy. (5.14)

As (5.12) is the same as (5.14), we have that πWT
X (α) = πvX(h).

Note that the relationship between the parameters is different in Proposition 5.5.10

compared to Propositions 5.5.8 and 5.5.9. This is due to the way the risk adjusted pre-

mium is defined. Traditionally, one applies the distortion function to the tail probabilities

(decumulative distribution function) rather than the regular probabilities (cumulative dis-

tribution function). We followed this tradition, however, the price we paid is that the sign

of the parameter α in the propositions does not correspond. If the risk adjusted premium

is defined in the following way

πWT
X (α) = −

∫ 0

−∞
gα(FX(x)) dx+

∫ ∞
0

(1− gα(FX(x))) dx

=

∫ 0

−∞
(g−α(SX(x))− 1) dx+

∫ ∞
0

g−α(SX(x)) dx,

then Proposition 5.5.10 would be stated as follows and the proof follows similarly.
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Proposition 5.5.11. Let hv = α and let X be a random variable with pdf fX and contin-

uous cdf FX . The Esscher-Girsanov price for a risk X with parameters h and v is equal to

Wang’s risk adjusted premium for X with parameter −α.

5.5.4 Discussion

In the previous section, we showed that in a static setting, the Esscher-Girsanov transform

and the Wang transform coincide. However, the two transforms are not equivalent. The

Esscher-Girsanov transform is a two-parameter transform and can therefore never be fully

equivalent to the one-parameter Wang transform. This becomes apparent in the dynamic

setting, where the two parameters in the Esscher-Girsanov transform start to play a distinct

role. The two-parameter Esscher-Girsanov transform can generate arbitrage-free prices for

financial derivatives governed by general diffusion processes as shown by Goovaerts and

Laeven [70] and emphasised by Badescu et al. in [10]. This, however, is not true for the

one-parameter Wang transform, as was explicitly shown by Pelsser [130]. It proves that the

Esscher-Girsanov transform is not equivalent to the Wang transform in a dynamic setting.

5.6 Comonotonic convex risk measures

Let α : M1,m → R ∪ {∞} be any functional such that inf
µ∈M1,m

α(µ) is finite. If we define

ρ : X → R by

ρ(X) = sup
µ∈M1,m

(µ(X)− α(µ)),

then ρ is monotonic, +-translation invariant and comonotonic convex. The function ρ

defined above is called a comonotonic convex risk measure.

The following theorem proves the representation theorem for comonotonic convex risk

measures in terms of Choquet integrals.

Theorem 5.6.1. If ρ : L∞(P ) → R satisfies monotonicity, +-translation invariance and

comonotonic convexity, then ρ is of the form

ρ(X) = max
µ∈M1,m

(µ(X)− α(µ)) for X ∈ L∞(P ), (5.15)

where

α(µ) = sup
ρ(X)≤0

µ(X) for µ ∈M1,m.
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Proof. We may assume without loss of generality that ρ(0) = 0. For any X ∈ L∞(P ), let

X1 = X − ρ(X), then ρ(X1) = ρ(X − ρ(X)) = 0 by +-translation invariance. Hence,

α(µ) ≥ µ(X1) = µ(X)− ρ(X)

for all µ ∈M1,m. Thus, for X ∈ L∞(P ), we have

ρ(X) ≥ sup
µ∈M1,m

(µ(X)− α(µ)).

For a given X, we will now construct some µX ∈M1,m such that

ρ(X) ≤ µX(X)− α(µX), (5.16)

which, in view of the previous step, will prove our representation (5.15). If ρ(X) 6= 0, then

there exists ε ∈ R such that ρ(X) + ε = 0. By the +-translation invariance of ρ, we have

ρ(X + ε) = 0. Then letting Y = X + ε, we have ρ(Y ) = 0. Thus, it suffices to prove (5.16)

for ρ(X) = 0.

The subset B of Aρ, defined by B = {Y ∈ L∞(P ) : ρ(Y ) < 0}, is not convex. However,

using the following notation

Y ∼ Z ⇔ Y,Z comonotonic,

we define the set [X] = {Z ∈ B : Z ∼ X}, i.e. Z ∈ [X] if and only if there exists non-

decreasing functions u and v such that X = u(W ) and Z = v(W ) for some W . This set is,

by definition, convex.

As ρ(X) = 0, we have that X /∈ B and therefore X /∈ [X]. By the Hahn-Banach

theorem, there exists a non-trivial (linear) θX ∈ (L∞(P ))∗, such that

sup
Y ∈[X]

θX(Y ) ≤ θX(X).

Define ρ∗ : L∞(P )→ R by

ρ∗(Y ) = sup{θX(Z) : Z ≤ Y, Z ∼ X}.

Then ρ∗ is monotonic increasing and positive homogeneous.

Next we show that ρ∗ is comonotonic additive. Let Y1, Y2 ∈ L∞(P ) be comonotonic.

Then there exists continuous and increasing functions u, v on R such that u(z) + v(z) = z

for z ∈ R and

Y1 = u(Y1 + Y2) and Y2 = v(Y1 + Y2).
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For any Z ∼ X with Z ≤ Y1 +Y2, we have u(Z) ≤ u(Y1 +Y2) = Y1 and v(Z) ≤ v(Y1 +Y2) =

Y2. Since Z ∼ X, there exists a random variable W and non-decreasing functions h and

g such that Z = h(W ) and X = g(W ). Therefore, we have that u(Z) = u(h(W )) and

v(Z) = v(h(W )), which implies u(Z) ∼ X and v(Z) ∼ X. Hence,

ρ∗(Y1) + ρ∗(Y2) ≥ θX(u(Z)) + θX(v(Z)) = θX(u(Z) + v(Z)) = θX(Z).

We have shown that ρ∗(Y1) + ρ∗(Y2) ≥ θX(Z) for all Z ∼ X with Z ≤ Y1 + Y2, thus

ρ∗(Y1) + ρ∗(Y2) ≥ sup{θX(Z) : Z ≤ Y1 + Y2, Z ∼ X} = ρ∗(Y1 + Y2).

Conversely, let Z1 ∼ X and Z2 ∼ X such that Z1 ≤ Y1 and Z2 ≤ Y2. Define Z = Z1+Z2.

Then, by Lemma 5.1.8, Z1 + Z2 ∼ X and Z ≤ Y1 + Y2. By the definition of ρ∗, we have

ρ∗(Y1 + Y2) ≥ θX(Z) = θX(Z1) + θX(Z2).

Taking the supremum over all Z1 ∼ Y1 such that Z1 ≤ Y1 and all Z2 ∼ Y2 such that Z2 ≤ Y2,

we get

ρ∗(Y1 + Y2) ≥ ρ∗(Y1) + ρ∗(Y2),

proving that ρ∗ is comonotonic additive.

Note that ρ∗(X) = θX(X).

We also have that L∞(P ) satisfies all the conditions required in Theorem 5.1.12. There-

fore, by Greco’s representation theorem for bounded functions, Theorem 5.1.12, there exists

µX ∈M1,m representing ρ∗.

If ρ(Y ) ≤ 0, then ρ(Y − ε) < 0 for any ε > 0. This, along with the fact that ρ(X) = 0,

implies that Y − ε < Y ≤ X and hence, ρ∗(Y − ε) ≤ ρ∗(X) = θX(X).

Thus, we have that

µX(Y )− ε = µX(Y − ε) = ρ∗(Y − ε) ≤ θX(X).

Finally, we have

α(µX) = sup
ρ(Y )≤0

µX(Y ) ≤ θX(X),

µX(X)− α(µX) ≥ ρ∗(X)− θX(X) = θX(X)− θX(X) = 0 = ρ(X).
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5.7 The Wang transform as a risk measure

Recently, risk measures based on distortion probabilities have been developed in actuarial

science and applied to insurance rate making. As mentioned at the end of Chapter 4, the

Wang transform can be used to measure risk. Assume that X is a loss random variable (i.e.

X < 0 for a gain and X > 0 for a loss) and has distribution function FX(x).

Definition 5.7.1. The family of distortion risk measures is defined as the mean under the

distortion probability F ∗X(x) = g(FX(x)), where g is a distortion function. In other words,

ρ(X) = E∗[X] := −
∫ 0

−∞
g(FX(x)) dx+

∫ ∞
0

(1− g(FX(x))) dx.

Note that the distortion risk measure is just a Choquet integral.

Proposition 5.7.2. A distortion risk measure is coherent if and only if the associated

distortion function is concave.

For the proof of this proposition see the properties of the Choquet integral in Section 5.1.

Distortion risk measures can be seen as a generalisation of some of the known risk

measures. VaRα corresponds to the distortion

g(u) =

{
0 for u < α

1 for u ≥ α.

This function is not necessarily concave, and hence is not coherent.

TVaR corresponds to the distortion

g(u) =

{
0 for u < α
u−α
1−α for u ≥ α,

which is continuous everywhere but not differentiable at u = α.

ES, however, cannot be written as a distortion risk measure.

Wang [159] suggested using the Wang transform as a risk measure as follows.

Definition 5.7.3. For a random variable x with distribution Fx, define a risk measure for

capital requirement as follows:

1. For a preselected security level α, let λ = Φ−1(α).

2. Apply the Wang transform: F ∗X(x) = Φ[Φ−1(FX(x))− λ].

3. Set the capital requirement to be the expected value under F ∗X : WTα(X) = E∗[X].
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Example 5.7.4. Figure 5.7.4 shows an example of how the Wang transform measure differs

to VaR, TVaR and ES.

Figure 5.3: Wang transform vs. other risk measures.



Chapter 6

Vector-valued Orlicz spaces

The importance of Orlicz spaces in the study of mathematics of finance came to the fore

in the 2000’s when Frittelli and his collaborators connected the theory of utility functions

to Orlicz spaces (see [15, 16, 17, 65]). This was explained in Chapter 3. Orlicz spaces

now also play an important role in the theory of risk measures (see [16, 26]), as was already

discussed in Chapter 4 and will be expanded upon in the next chapter. In some applications

of mathematics of finance (as in the case of systemic risk), the theory of the real-valued

case has to be extended to the multi-valued case (see [91]). In particular, there have been

recent developements in the theory of set-valued risk measures. A neat way to work with

these set-valued risk measures is, in our opinion, via tensor products. Thus, to define a

set-valued risk measure on a vector-valued Orlicz space, we need to describe these Orlicz

spaces as suitable tensor products.

The aim of this chapter is to give descriptions of Banach space-valued Orlicz spaces and

of their duals. We use the former to derive the latter.

The latter is motivated by the important role that the dual of the real-valued Orlicz heart

plays in utility maximisation problems and in the risk measure representation theorems, as

in [15, 16, 17, 26, 65]. We use the above mentioned descriptions to characterise martingale

convergence in Banach space-valued Orlicz spaces and also to describe the Radon-Nikodým

property in such spaces.

We refer the reader to Appendix B for the preliminaries on tensor products and to

Chapter 2 for Orlicz spaces.

This chapter is organised in the following way. In Section 6.1 we describe the Y -valued

Orlicz heart HΦ(P, Y ); more precisely, we show that the Y -valued Orlicz heart HΦ(P, Y ) is

isometrically isomorphic to the l-completed tensor product HΦ(P )⊗̃lY of the scalar-valued

125
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Orlicz heart HΦ(P ) and Y .

The main result of Section 6.2 is the characterisation of the equality of (HΦ(P )⊗̃lY )∗

and (HΦ(P ))∗⊗̃lY ∗ in terms of the Radon-Nikodým property on Y ∗.

We show that the l-norm is associative. As an application thereof, we give an alternative

proof of a result noted by Popa, which states that for any separable Banach lattice E and

any Banach space Y , E∗ and Y have the Radon-Nikodým property if and only if E∗⊗̃lY
has the Radon-Nikodým property. Via a deep result of Talagrand, E∗ may be replaced by

E in the above mentioned result. This, together with the results of Section 6.1, enables

us to describe the Radon-Nikodým property in HΦ(P, Y ) in terms of the Radon-Nikodým

property on HΦ(P ) and Y . The latter extends a result of Sundaresan (see [151]) and of

Turret and Uhl (see [154]).

Section 6.5 deals with the convergence of norm bounded martingales in HΦ(P, Y ), char-

acterised in terms of the Radon-Nikodým property on Y . Note that the contents of this

chapter are new and are based on [114].

6.1 Connecting HΦ(P, Y ) to HΦ(P )⊗̃lY
Let (Ω,F , P ) be a probability space, Φ a finite Young function and Y a Banach space. The

purpose of this section is to show that HΦ(P, Y ) is isometrically isomorphic to HΦ(P )⊗̃lY .

First we recap the following definitions. A function s : Ω → Y is simple if there exist

y1, y2, . . . , yn ∈ Y and sets A1, A2, . . . , An ∈ F such that s =
∑n

i=1 yiχAi . Here, χAi denotes

the characteristic function of Ai, given by χAi(ω) = 1 when ω ∈ Ai and χAi(ω) = 0 when

ω 6∈ Ai. A function f : Ω → Y is called P -measurable if there exists a sequence of simple

functions (sn) with limn→∞ ‖sn − f‖ = 0 P -a.s..

Moreover, HΦ(P, Y ) is NΦ-closed in LΦ(P, Y ). If Φ is finite, then the set S(P, Y ) of

step-functions, defined by{
n∑
i=1

yiχAi : χAi is P -integrable, yi ∈ Y, n ∈ N

}
,

is ‖ · ‖Φ-dense in HΦ(P, Y ).

If Y = R, then we write LΦ(P ) = LΦ(P,R) and HΦ(P ) = HΦ(P,R).

Define γ by

γ(f, y) = f(t)y for all (f, y) ∈ HΦ(P )× Y and t ∈ Ω.

Then γ : HΦ(P )×Y → HΦ(P, Y ) is a bilinear map. It is well-known that the unique linear
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map κ : HΦ(P )⊗l Y → HΦ(P, Y ) for which κ ◦ ⊗ = γ, is given by(
κ

(
n∑
i=1

fi ⊗ yi

))
(t) =

n∑
i=1

fi(t)yi for all t ∈ Ω.

Regarding the continuity of κ, we have the following result.

Lemma 6.1.1. Let (Ω,F , P ) be a probability space, Φ a finite Young function and Y a

Banach space. The canonical map κ : HΦ(P )⊗l Y → HΦ(P, Y ), defined by(
κ

(
n∑
i=1

fi ⊗ yi

))
(t) =

n∑
i=1

fi(t)yi for all t ∈ Ω,

is a continuous linear map with ‖κ‖ ≤ 1.

Proof. We identify HΦ(P )⊗Y with its image κ(HΦ(P )⊗Y ) in HΦ(P, Y ). The norm induced

on (the image of) HΦ(P )⊗ Y is given by

NΦ(u) = inf

{
a > 0 :

∫
Ω

Φ

(
1

a

∥∥∥∥∥
n∑
i=1

fi(t)yi

∥∥∥∥∥
)
dP (t) ≤ 1

}
for all u =

∑n
i=1 fi ⊗ yi ∈ HΦ(P )⊗ Y and is independent of the representation of u.

We show that NΦ(u) ≤ ‖u‖l for all u ∈ HΦ(P )⊗Y . Let u =
∑n

i=1 fi⊗ yi ∈ HΦ(P )⊗Y .

Then, for any a > 0,

1

a

∥∥∥∥∥
n∑
i=1

fi(t)yi

∥∥∥∥∥ ≤ 1

a

n∑
i=1

‖yi‖ |fi|(t),

and since Φ is non-decreasing,

Φ

(
1

a

∥∥∥∥∥
n∑
i=1

fi(t)yi

∥∥∥∥∥
)
≤ Φ

(
1

a

n∑
i=1

‖yi‖ |fi|(t)

)
.

Hence,

NΦ(u) = inf

{
a > 0 :

∫
Ω

Φ

(
1

a

∥∥∥∥∥
n∑
i=1

fi(t)yi

∥∥∥∥∥
)
dP (t) ≤ 1

}

≤ inf

{
a > 0 :

∫
Ω

Φ

(
1

a

n∑
i=1

‖yi‖ |fi|(t)

)
dP (t) ≤ 1

}

= NΦ

(
n∑
i=1

‖yi‖ |fi|

)
,

which implies that

NΦ(u) ≤ inf

{
NΦ

(
n∑
i=1

‖yi‖ |fi|

)
: u =

n∑
i=1

fi ⊗ yi

}
= ‖u‖l.
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It is well-known that the set S(P ) of step-functions, defined by{
n∑
i=1

λiχAi : χAi is P -integrable, λi ∈ R, n ∈ N

}
,

is dense in HΦ(P ) (see [54]).

Lemma 6.1.2. Let (Ω,F , P ) be a probability space, Φ a finite Young function and Y a

Banach space. Then

S(P )⊗ Y :=

{
n∑
i=1

χAi ⊗ yi : χAi is P -integrable, yi ∈ Y, n ∈ N

}

is dense in HΦ(P )⊗̃lY .

Proof. Suppose that
∑n

i=1 fi ⊗ yi ∈ HΦ(P ) ⊗ Y . Let ε > 0 be given. As S(P ) is dense in

HΦ(P ), there exist s1, s2, . . . , sn ∈ S(P ) such that

NΦ(fi − si) <
ε∑n

i=1 ‖yi‖
for i = 1, 2, . . . , n.

Hence,

NΦ

(
n∑
i=1

‖yi‖fi −
n∑
i=1

‖yi‖si

)
< ε,

from which we get that ∥∥∥∥∥
n∑
i=1

fi ⊗ yi −
n∑
i=1

si ⊗ yi

∥∥∥∥∥
l

< ε.

But, for each i, we have that si =
∑k

j=1 λ
i
jχAij

, where each χAij
is P -integrable and λi ∈ R.

Consequently, S(P )⊗ Y is dense in HΦ(P )⊗̃lY .

The following is the main result of this section.

Theorem 6.1.3. Let (Ω,F , P ) denote a probability space, Φ a finite Young function and

Y a Banach space. Then the canonical map κ : HΦ(P )⊗̃lY → HΦ(P, Y ), defined by

(
κ

(
n∑
i=1

fi ⊗ yi

))
(t) =

n∑
i=1

fi(t)yi for all t ∈ Ω,

is a surjective isometry.

Proof. We first show that ‖u‖l ≤ NΦ(u) for all u ∈ S(P )⊗ Y .
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Consider u =
∑n

i=1 χAi⊗yi ∈ S(P )⊗Y for which {Ai : 1 ≤ i ≤ n} is a mutually disjoint

set and
⋃n
i=1Ai = Ω. It follows from

n∑
i=1

‖yi‖χAi(t) =

∥∥∥∥∥
n∑
i=1

χAi(t)yi

∥∥∥∥∥
that

NΦ(u) = inf
{
a > 0 :

∫
Ω

Φ

(
1

a

∥∥∥∥∥
n∑
i=1

χAj (t)yi

∥∥∥∥∥
)
dP (t) ≤ 1

}
= inf

{
a > 0 :

∫
Ω

Φ

(
1

a

n∑
i=1

‖yi‖χAj (t)

)
dP (t) ≤ 1

}
= NΦ

(
n∑
i=1

‖yi‖χAj

)

≥ inf

{
NΦ

(
n∑
i=1

‖yi‖χAj

)
: u =

n∑
i=1

χi ⊗ yi

}
= ‖u‖l.

By Lemma 6.1.1, we get that κ : S(P )⊗l Y → S(P, Y ) is an isometry.

By the definition of κ, we also have that κ (S(P )⊗l Y ) = S(P, Y ). As S(P, Y ) is dense

in HΦ(P, Y ), κ : S(P )⊗l Y → S(P, Y ) is a surjective isometry and since S(P )⊗ Y is dense

in HΦ(P )⊗̃lY , it follows that κ has an extension (again denoted by) κ : HΦ(P )⊗̃lY →
HΦ(P, Y ) which is a surjective isometry.

Theorem 6.1.3 provides a connection between the theory of HΦ(P, Y )-spaces and the

theory of l-tensor products. We exhibit some applications of this connection in later sections

and in the next chapter.

6.2 (HΦ(P, Y ))∗

Let Φ be a finite Young function and Y a Banach space. The aim of this section is to

describe (HΦ(P, Y ))∗. We first do some preparation.

Let E be a Banach lattice. We recall the following definition from [142, Chapter IV,

Section 3].

Definition 6.2.1. A linear map T : E → Y is called cone absolutely summing if for every

positive summable sequence (xn) in E, the sequence (Txn) is absolutely summable in Y .
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The space

Lcas(E, Y ) = {T : E → Y : T is cone absolutely summing}

is a Banach space with respect to the norm defined by

‖T‖cas = sup

{
n∑
i=1

‖Txi‖ : x1, . . . , xn ∈ E+,

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ = 1, n ∈ N

}

for all T ∈ Lcas(E, Y ) (see also [45]).

Cone absolutely summing maps extend the Chaney-Schaefer l-tensor product in the

following sense: The canonical map Wu : E∗ ⊗l Y → Lcas(E, Y ), given by

Wux =

n∑
i=1

x∗i (x)yi for all x ∈ E,

for u =
∑n

i=1 x
∗
i ⊗ yi is an isometry (see [142, Chapter IV, Section 7] and [23, 90, 111]).

Chaney [23] proved that Y has the Radon-Nikodým property if and only if Lp(P )⊗̃lY =

Lcas(Lq(P ), Y ) for any probability measure space (Ω,F , P ), 1 < p <∞ and 1
p + 1

q = 1.

The following was shown in [31].

Theorem 6.2.2. A Banach space Y has the Radon-Nikodým property if and only if E∗⊗̃lY =

Lcas(E, Y ) for any separable Banach lattice E for which E∗ has order continuous norm.

The following was proved in [111].

Lemma 6.2.3. If E is a Banach lattice and Y a Banach space, then u ∈ E⊗̃lY if and only

if u =
∑∞

i=1 xi ⊗ yi, where∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥
E

<∞ and lim
i→∞
‖yi‖Y = 0. (6.1)

Moreover,

‖u‖l = inf

{∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ sup ‖yi‖ : u =
∑
i

xi ⊗ yi,

∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ <∞, lim
i→∞
‖yi‖ = 0

}
.

The following lemma is required to prove the main result of this section.

Let (Ω,F , P ) be a probability space, 1 < p <∞, 1
p + 1

q = 1, and define the function Φ

by Φ(u) = up

p for all u ∈ [0,∞). Then Φ is a finite Young function and the Orlicz heart

associated with Φ is Lp(P ), endowed with the norm p
− 1
p ‖ · ‖Lp(P ).
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Lemma 6.2.4. Let (Ω,F , P ) be a probability space and 1 < p < ∞. Then the Banach

lattice (Lp(P ), p
− 1
p ‖ · ‖p) is reflexive.

Proof. Let 1
p + 1

q = 1. We claim that (Lp(P ), p
− 1
p ‖ · ‖p)∗ = (Lq(P ), p

1
p ‖ · ‖q). Indeed, if

f ∈ (Lp(P ), p
− 1
p ‖ · ‖p)∗, then f : Lp(P )→ R is a continuous linear function and

‖f‖ = sup{|f(x)| : p−
1
p ‖x‖p ≤ 1}

= p
1
p sup{|f(x)| : ‖x‖p ≤ 1}

= p
1
p ‖f‖q,

proving our claim. Consequently,

(Lp(P ), p
− 1
p ‖ · ‖p)∗∗ = (Lq(P ), p

1
p ‖ · ‖q)∗ = (Lp(P ), p

− 1
p ‖ · ‖p).

Theorem 6.2.5. Let Y be a Banach space. Then Y has the Radon-Nikodým property if

and only if (HΦ(P ))∗⊗̃lY = Lcas(HΦ(P ), Y ) for any probability space (Ω,F , P ), and all

finite Young functions Φ for which HΦ(P ) is separable and (HΦ(P ))∗ has order continuous

norm.

Proof. Suppose Y has the Radon-Nikodým property. Let (Ω,F , P ) be a probability space

and Φ a finite Young function for which HΦ(P ) is separable and (HΦ(P ))∗ has order con-

tinuous norm. It follows from Theorem 6.2.2 that (HΦ(P ))∗⊗̃lY = Lcas(HΦ(P ), Y ).

Conversely, suppose that (HΦ(P ))∗⊗̃lY = Lcas(HΦ(P ), Y ) for any probability space

(Ω,F , P ), and all Young functions Φ for which HΦ(P ) is separable and (HΦ(P ))∗ has order

continuous norm. Let (Ω,F , P ) be a probability space, 1 < p < ∞, 1
p + 1

q = 1, and define

Φ by Φ(u) = up

p for all u ∈ [0,∞). Then Φ is a finite Young function which yields Lp(P ),

endowed with the norm p
− 1
p ‖ · ‖Lp(P ), as Orlicz heart. Let T ∈ Lcas(Lp(P ), Y ). Then

‖T‖cas = p
− 1
p ‖T‖

Lcas((Lp(P ),p
1
p ‖·‖Lp(P )),Y )

. (6.2)

By assumption, we have that

(Lq(P ), p
− 1
p ‖ · ‖Lq(P ))

∗⊗̃lY = Lcas((Lp(P ), p
1
p ‖ · ‖Lp(P )), Y ).

An application of Lemma 6.2.3 yields T =
∑∞

i=1 xi ⊗ yi, where

p
1
p

∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥
Lp(P )

=

∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥
(Lq(P ),p

− 1
p ‖·‖Lq(P ))

∗

<∞ and lim
i→∞
‖yi‖Y = 0.

By (6.2) and Lemma 6.2.3, we get T ∈ Lp(P )⊗̃lY , which completes the proof.
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The following description of (HΦ(P, Y ))∗ is the main result of this section.

Theorem 6.2.6. Let Y be a Banach space. Then Y ∗ has the Radon-Nikodým property

if and only if (HΦ(P )⊗̃lY )∗ = (HΦ(P ))∗⊗̃lY ∗ for any probability space (Ω,F , P ), and all

finite Young functions Φ for which HΦ(P ) is separable and (HΦ(P ))∗ has order continuous

norm.

Proof. It is well known that (HΦ(P )⊗̃lY )∗ = Lcas(HΦ(P ), Y ∗) (see [142]). An application

of Theorem 6.2.5 yields the desired result.

6.3 Associativity of the l-norm

In this section, we consider the associativity of the l-norm. For this purpose, we recall some

known facts about the l-norm from [23, 90, 111, 112, 142].

If E and F are Banach lattices, then E⊗̃lF is a Banach lattice, with positive cone

(E⊗̃lF )+ given by the l-closure of the projective cone

E+ ⊗ F+ :=
{ n∑
i=1

xi ⊗ yi : n ∈ N, x1, · · · , xn ∈ E+, y1, · · · , yn ∈ F+

}
of E and F ,

|x⊗ y| = |x| ⊗ |y| for all x ∈ E and y ∈ F,

and ‖ · ‖l is a Riesz norm on E⊗̃lF .

If Y is a Banach space, the m-norm on Y ⊗ E is given by

‖u‖m = inf

{∥∥∥∥∥
n∑
i=1

‖xi‖ |yi|

∥∥∥∥∥ : u =

n∑
i=1

xi ⊗ yi

}
.

It is well known that the linear bijection t : E ⊗l Y ↪→ Y ⊗m E, given by

t(x⊗ y) = y ⊗ x,

is an isometric isomorphism (see [23, 111, 112, 142]). Moreover, it follows from [111, Theo-

rem 3.2] that

‖u‖l = inf

{∥∥∥∥∥
n∑
i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑
i=1

xi ⊗ yi

}
for all u ∈ E ⊗l Y

and

‖u‖m = inf

{∥∥∥∥∥
n∑
i=1

|yi|

∥∥∥∥∥ sup
1≤i≤n

‖xi‖ : u =
n∑
i=1

xi ⊗ yi

}
for all u ∈ Y ⊗m E.
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It is also well known that if E,F and Y are vector spaces, then there exists a unique

linear bijection γ : E⊗ (F ⊗ Y )→ (E⊗F )⊗ Y such that γ (x⊗ (y ⊗ z)) = (x⊗ y)⊗ z (see

[73]).

Theorem 6.3.1. Let E and F be Banach lattices and Y a Banach space. The unique linear

bijection γ : E ⊗ (F ⊗ Y ) → (E ⊗ F ) ⊗ Y such that γ (x⊗ (y ⊗ z)) = (x ⊗ y) ⊗ z for all

(x, y, z) ∈ E × F × Y , has a unique extension Γ : E⊗̃l(F ⊗̃lY )→ (E⊗̃lF )⊗̃lY , which is an

isometric isomorphism.

Proof. We first show that γ : E ⊗l (F ⊗l Y ) → (E ⊗l F ) ⊗l Y is continuous and ‖γ‖ ≤ 1.

Let w ∈ E ⊗l (F ⊗l Y ). Then

w =
n∑
i=1

xi ⊗ ui for x1, . . . , xn ∈ E and u1, . . . , un ∈ F ⊗l Y,

and for each i, where 1 ≤ i ≤ n,

ui =
m∑
j=1

yij ⊗ zij for yi1, . . . , y
i
m ∈ F and zi1, . . . , z

i
m ∈ Y.

Hence,

w =
∑
i,j

xi ⊗ (yij ⊗ zij) and γ(w) =
∑
i,j

(xi ⊗ yij)⊗ zij .

Since

‖γ(w)‖(E⊗lF )⊗lY ≤
∥∥∥∥∑

i,j

|xi ⊗ yij |
∥∥∥∥
E⊗lF

sup
i,j
‖zij‖

=

∥∥∥∥∑
i,j

|xi| ⊗ |yij |
∥∥∥∥
E⊗lF

sup
i,j
‖zij‖

≤
(∥∥∥∥∑

i

|xi|
∥∥∥∥ sup

i,j
‖yij‖

)
sup
i,j
‖zij‖

≤
∥∥∥∥∑

i

|xi|
∥∥∥∥(∥∥∥∥∑

i,j

|yij |
∥∥∥∥ sup

i,j
‖zij‖

)
,

it follows that

‖γ(w)‖(E⊗lF )⊗lY ≤
∥∥∥∥∑

i

|xi|
∥∥∥∥ sup

i
‖ui‖F⊗lY ,

and consequently, ‖γ(w)‖(E⊗lF )⊗lY ≤ ‖w‖E⊗l(F⊗lY ).

Next, we show that γ−1 : (E ⊗l F )⊗l Y → E ⊗l (F ⊗l Y ) is continuous and ‖γ−1‖ ≤ 1.

Consider the linear bijection δ : Y ⊗m (F ⊗m E)→ (Y ⊗m F )⊗m E, defined by

δ(y ⊗ (f ⊗ e)) = (y ⊗ f)⊗ e.
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Let w ∈ Y ⊗m (F ⊗m E). Then

w =
n∑
i=1

xi ⊗ ui for x1, . . . , xn ∈ Y and u1, . . . , un ∈ F ⊗m E,

and for each i, where 1 ≤ i ≤ n,

ui =
m∑
j=1

yij ⊗ zij for yi1, . . . , y
i
m ∈ F and zi1, . . . , z

i
m ∈ E.

Hence,

w =
∑
i,j

xi ⊗ (yij ⊗ zij) and δ(w) =
∑
i,j

(xi ⊗ yij)⊗ zij .

Since

‖δ(w)‖(Y⊗mF )⊗mE ≤ sup
i,j
‖xi ⊗ yij‖Y⊗mF

∥∥∥∥∑
i,j

|zij |
∥∥∥∥

=
(

sup
i
‖xi‖ sup

i,j
‖yij‖

)∥∥∥∥∑
i,j

|zij |
∥∥∥∥

= sup
i
‖xi‖

(
sup
i,j
‖yij‖

∥∥∥∥∑
i,j

|zij |
∥∥∥∥),

it follows that

‖δ(w)‖(Y⊗mF )⊗mE ≤ sup
i
‖xi‖

∥∥∥∥∑
i

|ui|
∥∥∥∥
F⊗mE

.

Consequently,

‖δ(w)‖(Y⊗mF )⊗mE ≤ ‖w‖Y⊗m(F⊗mE).

But, as (E⊗̃lF )⊗̃lY and Y ⊗̃m(F ⊗̃mE) are isometrically isomorphic, the map

δ : Y ⊗̃m(F ⊗̃mE) ↪→ (Y ⊗̃mF )⊗̃mE

is continuous with ‖δ‖ ≤ 1 and as (Y ⊗̃mF )⊗̃mE and E⊗̃l(F ⊗̃lY ) are isometrically isomor-

phic, we get that γ−1 : (E ⊗l F )⊗l Y → E ⊗l (F ⊗l Y ) is continuous and ‖γ−1‖ ≤ 1.

Since ‖γ‖ ≤ 1 and ‖γ−1‖ ≤ 1, we get that ‖γ‖ = 1. Hence, γ : E ⊗l (F ⊗l Y ) →
(E ⊗l F ) ⊗l Y is an isometry. By a standard density argument γ has a unique extension

Γ : E⊗̃l(F ⊗̃lY )→ (E⊗̃lF )⊗̃lY , which is an isometric isomorphism.

As an application of the associativity of the l-norm, we derive a result noted by Popa

in [132] (see Theorem 6.3.7 below).

First, we recall some necessary terminology from [30, 31]. Let (Ω,F , P ) be a finite

measure space, 1 ≤ p < ∞ and (Fi) an increasing sequence of sub σ-algebras of F . Let E

be a Banach lattice and Y a Banach space.
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Definition 6.3.2.

(i) If (Ti) is a commuting sequence (i.e. TiTj = Ti = TjTi for all i ≤ j) of contractive

projections on Y , then (Ti) is called a BS-filtration on Y .

(ii) If (Ti) is a BS-filtration on E such that each Ti ≥ 0 and the range R(Ti) of Ti, for

each i ∈ N, is a (closed) Riesz subspace of E, then (Ti) is called a BL-filtration on E.

It is well known that the sequence (E[ · | Fi]) of conditional expectations on Lp(P ) is a

BS-filtration on Lp(P ).

In [142, p.214] it is shown that, if T : E → E is a projection which is strictly positive

(i.e. {f ∈ E : T (|f |) = 0} = {0}) on a Banach lattice E, then R(T ) is a Banach sublattice

of E. Thus, the sequence (E[ · | Fi]) of conditional expectations on Lp(P ) is a BL-filtration

on the Banach lattice Lp(P ).

Definition 6.3.3.

(i) If (Ti) is a BS-filtration on Y and (fi) ⊆ Y , then the pair (fi, Ti) is a martingale in

Y , if Tifj = fi for all i ≤ j.

(ii) If (fi, Ti) is a martingale in Y , then (fi, Ti) is fixed if there exists f ∈ Y such that

fi = Tif for all i ∈ N.

Let

M(Y, Ti) = {(fi, Ti) is a martingale in Y : supi ‖fi‖ <∞},

Mnc(Y, Ti) = {(fi, Ti) ∈M(Y, Ti) : (fi) is norm convergent in Y } , and

Mf(Y, Ti) = {(fi, Ti) ∈M(Y, Ti) : (fi, Ti) is fixed} .

It is easily verified that if (Ti) is a BS-filtration on E, then the sequence of adjoint

maps (T ∗i ) is a BS-filtration on E∗. It is known that if Y is a Banach space and (Ti) is a

BL-filtration on E, then (T ∗i ⊗l idY ) is a BS-filtration on E∗⊗̃lY (see [31]), and (Ti⊗l idY )

is a BL-filtration on E⊗̃lY (see [30]).

We require the following two theorems taken from [31].

Theorem 6.3.4. ([31, Theorem 3.8]) Let Y be a Banach space. Then the following are

equivalent.

(i) Y has the Radon-Nikodým property.
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(ii) E∗⊗̃lY = Lcas(E, Y ) for all separable Banach lattices E with order continuous dual.

(iii) M(E∗⊗̃lY, T ∗i ⊗l idY ) = Mf(E
∗⊗̃lY, T ∗i ⊗l idY ) for all separable Banach lattices E

with order continuous dual and all BL-filtrations (Ti) on E.

(iv) M(E⊗̃lY, Ti⊗l idY ) =Mnc(E⊗̃lY, Ti⊗l idY ) for all separable reflexive Banach lattices

E with order continuous dual and all complemented quasi-interior preserving BL-

filtrations (Ti) on E.

(v) M(E⊗̃lY, Ti⊗l idY ) =M(E, Ti)⊗̃lY for all separable reflexive Banach lattices E with

order continuous dual and all complemented quasi-interior preserving BL-filtrations

(Ti) on E.

Theorem 6.3.5. ([31, Corollary 3.9]) Let Y be a Banach space. Then Y ∗ has the Radon-

Nikodým property if and only if E∗⊗̃lY ∗ = (E⊗̃lY )∗ for all separable Banach lattices E

with order continuous dual.

The following result was noted by Popa (see [132]) and an alternative proof may be

found in [109].

Theorem 6.3.6. Let E and F be Banach lattices each with order continuous norm. Then

E⊗̃lF has order continuous norm.

Based on a martingale approach and the associativity of the l-tensor product, we give

an alternative proof for Popa’s Radon-Nikodým theorem [132].

Theorem 6.3.7. (Popa) Let Y be a Banach space and let E be a separable Banach lattice.

Then E∗ and Y have the Radon-Nikodým property if and only if E∗⊗̃lY has the Radon-

Nikodým property.

Proof. Suppose E∗ and Y have the Radon-Nikodým property. We verify that E∗⊗̃lY has

the Radon-Nikodým property, by using Theorem 6.3.4.

Consider a separable Banach lattice F for which F ∗ has order continuous norm. Let

(Ti) be a BL-filtration on F and let (fi, T
∗
i ⊗l idE∗⊗̃lY ) be a norm bounded martingale in

F ∗⊗̃l(E∗⊗̃lY ). As F is separable and E∗ has the Radon-Nikodým property, Theorem 6.3.5

implies that F ∗⊗̃lE∗ = (F ⊗̃lE)∗. Since E and F are separable, it readily follows that F ⊗̃lE
is separable. The assumption that E∗ has the Radon-Nikodým property implies that E∗

has order continuous norm ([125]). Theorem 6.3.6 then yields the order continuity of the
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norm of F ∗⊗̃lE∗ = (F ⊗̃lE)∗. Hence,
(
fi, (Ti⊗l idE)∗⊗l idY

)
is a norm bounded martingale

in (F ⊗̃lE)∗⊗̃lY and (Ti⊗l idE) is a BL-filtration on F ⊗̃lE. As Y has the Radon-Nikodým

property by assumption, an application of Theorem 6.3.4 yields that
(
fi, (Ti⊗l idE)∗⊗l idY

)
is fixed. By Theorem 6.3.1 the l-norm is associative, so under identification, the martingale

(fi, T
∗
i ⊗l idE∗⊗̃lY ) in F ∗⊗̃l(E∗⊗̃lY ) is fixed. Thus, by Theorem 6.3.4, E∗⊗̃lY has the

Radon-Nikodým property.

Conversely, if E∗⊗̃lY has the Radon-Nikodým property, then E∗ and Y have the Radon-

Nikodým property, as both spaces are closed subspaces of E∗⊗̃lY (see [52, p.217]).

6.4 The Radon-Nikodým property in HΦ(P, Y )

The aim of this section is to consider the Radon-Nikodým property in HΦ(P, Y ). This

requires a stronger version of Popa’s Radon-Nikodým Theorem: E∗ needs to be replaced by

E in Theorem 6.3.7. This requires an application of the following highly non-trivial result

noted by Talagrand in [152, 153] (see also [125]).

Theorem 6.4.1. Let E be a separable Banach lattice. Then E has the Radon-Nikodým

property if and only if E is the dual of a separable Banach lattice.

The main result needed for describing the Radon-Nikodým property in HΦ(P, Y ) is the

following.

Theorem 6.4.2. Let Y be a Banach space and let E be a separable Banach lattice. Then

E and Y have the Radon-Nikodým property if and only if E⊗̃lY has the Radon-Nikodým

property.

Proof. Suppose that E and Y have the Radon-Nikodým property. As E is separable, there

exists a separable Banach lattice E0 such that E = E∗0 , by Talagrand’s theorem. By

Theorem 6.3.7, E⊗̃lY has the Radon-Nikodým property.

Conversely, if E⊗̃lY has the Radon-Nikodým property, then E and Y have the Radon-

Nikodým property, as both spaces are closed subspaces of E⊗̃lY (see [52, p.217]).

As a consequence of Theorems 6.1.3 and 6.4.2, we obtain the following result.

Theorem 6.4.3. Let (Ω,F , P ) denote a probability space, Φ a finite Young function and

Y a Banach space. Then HΦ(P ) and Y have the Radon-Nikodým property if and only if

HΦ(P, Y ) has the Radon-Nikodým property.
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Corollary 6.4.4. Let (Ω,F , P ) denote a probability space, Φ a finite Young function and

Y a Banach space. If the ∆2-condition holds for large u, then LΦ(P ) and Y have the

Radon-Nikodým property if and only if LΦ(P, Y ) has the Radon-Nikodým property.

Proof. If the ∆2-condition holds for large u, then HΦ(P, Y ) = LΦ(P, Y ) for any Banach

space Y . Thus, the result follows from Theorem 6.4.3.

Sundaresan [151] and Turret and Uhl [154] obtained results weaker than Corollary 6.4.4

under different assumptions on LΦ(P ).

6.5 Martingale convergence in HΦ(P, Y )

Let F1 be a sub σ-algebra of F and 1 ≤ p <∞. The conditional expectation of f ∈ Lp(P, Y )

relative to F1, denoted by E[f | F1], is the unique F1-measurable element of Lp(P, Y ) which

is given by ∫
A
E[f | F1]dP =

∫
A
fdP for all A ∈ F1.

The map E[ · | F1] : Lp(P, Y ) → Lp(P, Y ) is a contractive linear projection (see [30, 52]).

Furthermore, if we identify S(P, Y ) and S(P )⊗ Y , then

E

[
n∑
i=1

χAi(·)yi | F1

]
= (E[ · | F1]⊗ idY )

(
n∑
i=1

χAi ⊗ yi

)
, (6.3)

where E[χAi |F1] denotes the conditional expectation of χAi ∈ Lp(P ) (see [30, 52]). Since

S(P, Y ) is dense in Lp(P, Y ), and since S(P ) ⊗ Y is dense in Lp(P )⊗̃lY , it follows that

the conditional expectation operator E[ · | F1] on Lp(P, Y ) is the continuous extension of

E[ · | F1]⊗ idY to Lp(P )⊗̃lY .

Next, we consider the situation in Banach space-valued Orlicz spaces.

Lemma 6.5.1. Let (Ω,F , P ) be a probability space, F1 a sub σ-algebra of F and Φ a finite

Young function.

(i) The conditional expectation operator E[ · | F1] on L1(P, Y ) restricted to LΦ(P, Y ),

again denoted by E[ · | F1], is a contractive projection from LΦ(P, Y ) to LΦ(P, Y ).

(ii) The conditional expectation operator E[ · | F1] on L1(P, Y ) restricted to HΦ(P, Y ),

again denoted by E[ · | F1], is a contractive projection from HΦ(P, Y ) to HΦ(P, Y ).
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(iii) The continuous extension to HΦ(P )⊗̃lY of E[ · | F1] ⊗ idY : S(P ) ⊗ Y → S(P ) ⊗ Y
is the conditional expectation operator E[ · | F1] : HΦ(P, Y )→ HΦ(P, Y ).

Proof. (i): Let f ∈ LΦ(P, Y ). Then there exists a > 0 such that Φ( 1
a‖f‖) ∈ L1(P ).

Consider φ = Φ ◦ ‖ · ‖, which is a convex function. By Jensen’s inequality, we get that

Φ

(
1

a

∥∥E[f |F1]
∥∥) = φ

(
E
[

1

a
f |F1

])
≤ E

[
φ

(
1

a
f

)
|F1

]
= E

[
Φ

(
1

a
‖f‖

)∣∣F1

]
a.s..

Hence, E[f |F1] ∈ LΦ(P,X) and NΦ(E[f |F1]) ≤ NΦ(f). But, as E[·|F1] is a projection, we

get that NΦ(E[f |F1]) = NΦ(f). Thus, E[ · | F1] : LΦ(P,X) → LΦ(P,X) is a contractive

linear projection.

(ii): Let f ∈ HΦ(P, Y ). Then, Φ( 1
a‖f‖) ∈ L1(P ) for every a > 0. As in (i), it follows

that E[·|F1] : HΦ(P, Y )→ HΦ(P, Y ) is a contractive linear projection.

(iii): Suppose that Φ is a finite Young function. If χAi ∈ L1(P ), then χAi ∈ HΦ(P ) and

E[χAi |F1] ∈ HΦ(P ). As S(P, Y ) is dense in HΦ(P, Y ) and S(P )⊗Y is dense in HΦ(P )⊗̃lY ,

it follows from (6.3) that the continuous extension of E[ · | F1] ⊗ idY to HΦ(P )⊗̃lY is the

conditional expectation E[ · | F1] on HΦ(P, Y ).

A martingale (fn) in HΦ(P, Y ) is norm-convergent if there exists f ∈ HΦ(P, Y ) such that

NΦ(f − fn)→ 0 as n→∞. From this point on we shall simply refer to a norm-convergent

martingale as convergent.

Theorem 6.5.2. Let Y be a Banach space. Then Y has the Radon Nikodým property if and

only if for all probability spaces (Ω,F , P ), all filtrations (Fi), and all finite Young functions

Φ for which HΦ(P ) is separable and reflexive, every NΦ-bounded martingale (fi,Fi) in

HΦ(P, Y ) is NΦ-convergent.

Proof. Assume that Y has the Radon Nikodým property. Let (Ω,F , P ) be a probabil-

ity space, (Fi) a filtration, and Φ a finite Young function for which HΦ(P ) is separable

and reflexive. Suppose that (fi,Fi) is a martingale in HΦ(P, Y ) such that supi ‖fi‖l =

supiNΦ(fi) <∞.

Let
∨∞
i=1Fi denote the σ-algebra generated by

⋃∞
i=1Fi. It is readily verified that

the conditions of (d) in Theorem 6.3.4 are satisfied by the sequence
(
E[ · | F1],E[ · |

F2], . . . ,E[ · |
∨∞
i=1Fi]

)
.

It follows from (a) of Theorem 6.3.4 that the martingale (fi,Fi) is NΦ-convergent.

Conversely, assume that for all probability spaces (Ω,F , P ), all filtrations (Fi), and all

finite Young functions Φ for which HΦ(P ) is separable and reflexive, every NΦ-bounded
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martingale (fi,Fi) in HΦ(P, Y ) is NΦ-convergent.

Let (Ω,F , P ) be a probability space, 1 < p <∞, and (Fi) a filtration, and suppose that

(fi,Fi) is a martingale in Lp(P, Y ) such that supi ‖fi‖l = supi ∆p(fi) < ∞. We show that

the martingale (fi,Fi) in Lp(P, Y ) is norm convergent.

Define Φ by Φ(u) = up

p for all u ∈ [0,∞). Then Φ is a finite Young function which yields

Lp(P ), endowed with the norm p
− 1
p∆p, as Orlicz heart. By Lemma 6.2.4, (Lp(P ), p

− 1
p∆p)

is reflexive. As supi p
− 1
p ‖fi‖l = supi p

− 1
p∆p(fi) < ∞, the assumption implies that (fi,Fi)

is p
− 1
p∆p(·)-convergent; hence, (fi,Fi) is also ∆p(·)-convergent.

Thus, for all probability spaces (Ω,F , P ), 1 < p <∞ and all filtrations (Fi) of F , every

norm bounded martingale (fi,Fi) in Lp(P, Y ) is norm convergent. It is well-known that the

latter is equivalent to Y having the Radon-Nikodým property (see [52]).
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Set-valued risk measures on Orlicz

hearts

The concept of coherent risk measures together with its axiomatic characterisation was

introduced by Artzner et al. [6] in 1999 in a finite probability space setting and generalised to

a general probability space setting by Delbaen [42] in 2002. The following approach was used

in defining the risk measure. Among the set of all possible financial positions, an investor

chooses a subset A of acceptable positions, which he regards as risk-free. The risk measure

ρ(x) then corresponds to the extra capital required at the beginning of the investment in

some ‘secure’ instrument, usually a money market account, so that the resulting position is

acceptable, i.e. x + ρ(x) ∈ A. The axioms are there to guarantee the economic coherence

of the risk measure.

The concept of risk measures has been studied and extended by many authors. Föllmer

and Schied [60] and independently Frittelli and Rosazza Gianin [62] generalised the defi-

nition of a risk measure to a convex risk measure. Cheridito et al. [25] extended the dual

representation of both coherent and convex risk measures to the space of càdlàg processes.

Cheridito and Li [26, 27] looked at convex risk measures in an Orlicz space setting.

In all the above-mentioned methods, the risky portfolio under consideration is a given

real-valued random variable and the risk measure is a map into R. In other words, these

risk measures do not consider portfolio aggregation. In reality, however, investors have

access to different markets and form multi-asset portfolios. It is not always possible or

desirable to transform a multi-dimensional portfolio into a position in one financial market,

i.e. the position cannot be described by one real-valued number. The reason for this could

be transaction costs, liquidity bounds, fluctuating exchange rates, etc.

141
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Thus, we could require a risk measure that takes values in Rd and gives us a value in

Rm, where m ≤ d. These m markets could, for example, be money market accounts in

different currencies. In other words, it is necessary to look at risk measures in a set-valued

setting.

Set-valued risk measures have gained in popularity over the past few years. Jouini et

al. were among the first to introduce the set-valued coherent risk measure (see [91]). Since

then, amongst others, Hamel et al. [77, 79] extended the approach of Jouini et al. to define

set-valued convex risk measures and Konstantinides and Kountzakis [101] used the ideas

from Stoica [149] and Jaschke and Küchler [89] to define risk measures on partially ordered

normed linear spaces.

Hamel et al. [78, 79] defined convex set valued risk measures on the space Lp(P,Rd) of

Bochner p-integrable functions with values in Rd. Their method for the case 1 ≤ p < ∞
can be generalised to include spaces HΦ(P,Rd) of Rd-valued Orlicz hearts. In view of the

connection between utility functions and real-valued Orlicz spaces, as noted by Frittelli

and his co-workers [15], this extension to Orlicz spaces may be of interest. We use tensor

products of Banach lattices and Banach spaces to achieve our goal.

The reader is advised to first proceed to the appendix for an outline of the basic relevant

preliminaries on tensor products, Bochner spaces and the l-norm of Chaney and Schaefer.

Using the result from Chaney and Schaefer [23, 142] that states that Lp(P,Rd) is iso-

metrically isomorphic to Lp(P )⊗̃lRd, we show that the results of Hamel et al. [79] can be

obtained via a tensor-product approach. In addition, by the tensor product approach and

using a result from Labuschagne and Offwood [114], we get a representation of set-valued

convex risk measures on vector-valued Orlicz hearts.

This chapter is based on [116].

7.1 Set-valued setting

Hamel et al. [79] replaced the range (−∞,∞] of the risk measure defined in Chapter 4, by

an appropriate space to generalise the notion of risk measures to a set-valued setting. For

this purpose, we need to fix some terminology and notation.

Let Y be a Banach lattice and let G ⊆ Y be a Banach subspace of Y . The set of all

subsets of G will be denoted by P(G).

For all M,L ∈ P(G), we denote the Minkowski sum M + L of M and L by

M + L = {m+ l : m ∈M and l ∈ L},
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with the convention ∅+M = M+∅ = ∅ for all M ∈ P(G), where the empty set is considered

to be closed and convex.

A cone C is a subset of a vector space for which λC ⊆ C for all λ > 0. If, in addition,

C is convex, then C is called a convex cone.

Define KY ⊆ Y to be a closed convex cone such that Y+ ⊆ KY . This cone generates a

reflexive, translative relation in Y , given by

x ≤KY y ⇐⇒ y − x ∈ KY .

We do not assume that ≤KY is antisymmetric (i.e. we do not assume that KY ∩ (−KY ) =

{0}). We do assume that KY ∩ (−intY+) = ∅.
We consider the cone K on G induced by the cone KY . As K = KY ∩G, we have that

K is closed and convex, G+ ⊆ K and the ordering on Y induced by KY and the ordering

on G induced by K is the same.

The order relation ≤K can be canonically extended to P(G) by A ≤K B if and only if

B ⊆ A + K or equivalently A ⊆ B −K. Hence, for A,B ∈ P(G), A ≤K B if and only if

B+K ⊆ A+K. We say that two sets A,B ∈ P(G) are equivalent if A ≤K B and B ≤K A,

i.e. A+K = B +K. Thus, we define the set

PK = {M ∈ P(G) : M = M +K}

and can identify it with the set of equivalence classes with respect to the above-mentioned

equivalence relation. For A,B ∈ PK , we have A ≤K B if and only if B ⊆ A.

Next we define some concepts in this set-valued setting with respect to the partial

ordering ≤K .

Definition 7.1.1.

(i) A function f : X → P(G) is convex if for all λ ∈ (0, 1) and x, y ∈ X

f(λx+ (1− λ)y) ≤K λf(x) + (1− λ)f(y).

(ii) The convex hull of a function f : X → P(G) is the (uniquely determined) function

cof : X → P(G) which satisfies epi(cof) = co(epif).

(iii) A function f : X → PK is subadditive if for all x, y ∈ X

f(x+ y) ≤K f(x) + f(y).
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(iv) A function f : X → PK is positive homogeneous if for all t > 0 and x ∈ X

f(tx) ≤K tf(x).

Proposition 7.1.2. A function f : X → P(G) is convex if and only if the epigraph, defined

by

epif = {(x, g) ∈ X ×G : g ∈ f(x) +K},

is convex.

The image space of a set-valued convex function f : X → P(G) is the collection of upper

convex subsets of G defined by

PcK = {M ∈ P(G) : M = co(M +K)}.

Definition 7.1.3.

(i) A function f : X → P(G) is closed if epif ⊆ X × G is a closed set with respect to

the product topology on X ×G.

(ii) The closed hull of a function f : X → P(G) is the (uniquely determined) function

clf : X → P(G) which satisfies epi(clf) = cl(epif).

A closed function automatically maps into the collection of upper closed subsets of G

defined by

K = {M ⊆ G : M = cl(M +K)}.

The Minkowski sum of two closed sets in G is not closed in general, but the addition ⊕,

defined by

M1 ⊕M2 = cl(M1 +M2),

has the property that ⊕ : K×K → K. Moreover, ⊕ is commutative, associative and for all

M ∈ K, we have

M ⊕K = K ⊕M = M.

We also have that 0M = K for M ∈ K. In other words, the convex cone K serves as zero

element in the space (K,⊕,⊆).

Finally, a closed convex function f : X → P(G) maps into the collection of upper closed

convex subsets of G, defined by

Kc = {M ⊆ G : M = cl co(M +K)}.
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Note that PK ⊆ Kc ⊆ K and PK ⊆ Kc ⊆ PcK . Also, note that properties like convexity

depend both on the function and on the cone.

Consider a function F : X → K. The graph of F is given by

graphF = {(x, g) ∈ X ×G : g ∈ F (x)},

the epigraph of F by

epiF = {(x, g) ∈ X ×G : g ∈ F (x) +K}

and its effective domain by

domF = {x ∈ X : F (x) 6= ∅}.

If F : X → PK , then graphF = epiF . Note that F is convex if and only if its graph is

convex, and F is closed if and only if its graph is a closed subset of X ×G.

Definition 7.1.4.

(i) The function F : X → PK is called proper if and only if domF 6= ∅ and F (x) 6= G for

all x ∈ X .

(ii) The function F is called K-proper if domF 6= ∅ and (F (x) − K)\F (x) 6= ∅ for all

x ∈ X .

These two definitions coincide if K is generating, i.e. K −K = G.

Definition 7.1.5. A subset Y of X is sequentially closed if, whenever (xn) is a sequence

in Y converging to x, then x must also be in Y .

Proposition 7.1.6. Let K ⊆ G be a cone and F : X → Kc be convex and sequentially

closed (i.e. graphF is sequentially closed in the product topology on X ×G). If there exists

x0 ∈ domF such that F (x0) +K ⊆ F (x0), then F (x) +K ⊆ F (x) for all x ∈ domF .

Proof. Assume there exists x0 ∈ domF such that F (x0)+K ⊆ F (x0). This implies that for

g0 ∈ F (x0) and k ∈ K, we have g0 + nk ∈ F (x0), i.e. (x0, g0 + nk) ∈ graphF for all n ∈ N.

Consider x ∈ domF and g ∈ F (x), i.e. (x, g) ∈ graphF . The convexity of F implies that

1

n
(x0, g0 + nk) +

n− 1

n
(x, g) = (

1

n
x0 +

n− 1

n
x,

1

n
g0 +

n− 1

n
g + k) ∈ graphF

for all n ∈ N. Taking the limit as n→∞ and using the fact that epiF is sequentially closed,

we get (x, g + k) ∈ graphF , which completes the proof.
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Let X and G be separated locally convex spaces with topological duals X ∗ and G∗

respectively. The positive polar cone of K is given by

K◦ = {g∗ ∈ G∗ : g∗(g) ≥ 0 for all g ∈ K}

and the negative polar cone by K◦− = −K◦.
In the (extended) real-valued case, where R := R ∪ {−∞,∞}, the Fenchel conjugate of

a function f : X → R is f∗ : X ∗ → R, the definition of which is repeated here for ease of

reading: for all x∗ ∈ X ∗,
f∗(x∗) = sup

x∈X
{x∗(x)− f(x)}. (7.1)

To extend this to the set-valued case, x∗(x) in (7.1) has to be replaced by a set-valued

function that has appropriate properties.

In the case, where G is a real linear space containing at least two elements, Hamel [77]

showed that S(x∗,g∗), defined for x∗ ∈ X ∗ and g∗ ∈ G∗\{0} by

S(x∗,g∗)(x) = {g ∈ G : x∗(x) + g∗(g) ≤ 0} for all x ∈ X ,

provides a suitable replacement. Then S(x∗,g∗) : X → P(G).

Consider the special case where G = Rm. Note that the dual of Rm is isometrically

isomorphic to Rm; the map θ : (Rm)∗ → Rm, defined by

θ(v)(u) = vTu,

is such an isomorphism. Then, by replacing the g∗(g) by vTu in the definition of S(x∗,g∗),

you arrive at the version in Hamel et al. [79] and by replacing the x∗(x) with E[XTY ], you

arrive at the version in Hamel and Heyde [77].

Lemma 7.1.7. For each x∗ ∈ X ∗ and g∗ ∈ G∗\{0}, the function S(x∗,g∗) has the following

properties:

(i) S(x∗,g∗)(x+ y) = S(x∗,g∗)(x) + S(x∗,g∗)(y) for all x, y ∈ X ,

(ii) S(x∗,g∗)(tx) = tS(x∗,g∗)(x) for all x ∈ X and t 6= 0, and

(iii) S(y∗+tx∗,g∗)(x) = S(y∗,g∗)(x) + tS(x∗,g∗)(x) for t > 0 and x ∈ X .

Proof. (i) Consider u1 ∈ S(x∗,g∗)(x1) and u2 ∈ S(x∗,g∗)(x2). Then x∗(x1) + g∗(u1) ≤ 0 and

x∗(x2) + g∗(u2) ≤ 0. Hence,

x∗(x1 + x2) + g∗(u1 + u2) = x∗(x1) + g∗(u1) + x∗(x2) + g∗(u2) ≤ 0,
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which implies u1 + u2 ∈ S(x∗,g∗)(x1 + x2).

For the converse inclusion, consider u ∈ S(x∗,g∗)(x1 +x2) and u1 ∈ S(x∗,g∗)(x1) such that

x∗(x1) + g∗(u1) = 0. Such a u1 always exists because g∗ 6= 0. Set u2 = u− u1. Then

x∗(x2) + g∗(u2) = x∗(x1 + x2) + g∗(u− u1)− x∗(x1)

= x∗(x1 + x2) + g∗(u) ≤ 0.

Thus, u2 ∈ S(x∗,g∗)(x2), which proves the desired inclusion.

(ii) Follows easily, using (i) repetitively.

(iii) First, note that

S(y∗,g∗)(x) + tS(x∗,g∗)(x)

= {g ∈ G : y∗(x) + g∗(g) ≤ 0}+ t{g ∈ G : x∗(x) + g∗(g) ≤ 0}

= {g ∈ G : y∗(x) + g∗(g) ≤ 0}+ {g ∈ G : x∗(x) +
1

t
g∗(g) ≤ 0}

= {g ∈ G : y∗(x) + g∗(g) ≤ 0}+ {g ∈ G : tx∗(x) + g∗(g) ≤ 0}.

Let v ∈ S(y∗,g∗)(x) + tS(x∗,g∗)(x), then v = v1 + v2, where

y∗(x) + g∗(v1) ≤ 0

and

tx∗(x) + g∗(v2) ≤ 0.

Thus,

y∗(x) + g∗(v1) + tx∗(x) + g∗(v2) = y∗(x) + tx∗(x) + g∗(v) ≤ 0,

i.e. S(y∗,g∗)(x) + tS(x∗,g∗)(x) ⊆ S(y∗+tx∗,g∗)(x).

Conversely, let u ∈ S(y∗+tx∗,g∗)(x). Then, y∗(x) + tx∗(x) + g∗(u) ≤ 0. Take u1 such that

y∗(x) + g∗(u1) = 0. Let u2 = u− u1. Hence,

tx∗(x) + g∗(u2) = y∗(x) + tx∗(x) + g∗(u− u1)− y∗(x)

= y∗(x) + tx∗(x) + g∗(u)− (y∗(x) + g∗(u1))

= y∗(x) + tx∗(x) + g∗(u)

≤ 0.

Hence, u1 ∈ S(y∗,g∗)(x) and u2 ∈ tS(x∗,g∗)(x) and thus

u = u1 + u2 ∈ S(y∗,g∗)(x) + tS(x∗,g∗)(x),

completing the proof.
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A classical starting point of convex analysis is to prove that a proper closed convex

function is the pointwise supremum of its affine minorants.

A function h : X → P(G) of the form h(x) = S(x∗,g∗)(x) + {g} for some x∗ ∈ X ∗,
g∗ ∈ K◦−\{0} and g ∈ G is called an affine function. If an affine function h satisfies

h(x) ≤K F (x) for all x ∈ X , then h is called an affine minorant of F . In other words, if h is

an affine minorant of F , then F (x) ⊆ h(x) +K for all x ∈ X . The case g∗ = 0 is excluded,

to avoid improper minorants.

Lemma 7.1.8. The epigraph of an affine function is convex.

Proof. Let x∗ ∈ X ∗, g∗ ∈ K◦−\{0} and g ∈ G. Consider the affine function h : X → P(G)

given by

h(x) = S(x∗,g∗)(x) + {g}.

It is easy to show that h is convex by using the properties of S(x∗,g∗). Thus, the epigraph

of an affine function is convex.

The following theorem and proof are taken from [77].

Theorem 7.1.9. The following properties are equivalent for a function F : X → PK .

(i) The function F is the pointwise supremum of its K-proper affine minorants.

(ii) The function F is closed and convex into Kc and K-proper, or F ≡ G or F ≡ ∅.

The equivalence remains true if ‘K-proper’ is replaced with ‘proper but not K-proper’.

Proof. (i) ⇒ (ii): Assume that F is the pointwise supremum of its K-proper affine mino-

rants. If F has no K-proper affine minorants, then F will be the pointwise supremum of

the empty set, i.e. it will be identically G.

Assume that the family of affine minorants of F is nonempty. As F is the pointwise

supremum of its K-proper affine minorants, its epigraph is the intersection of the closed

convex epigraphs of the affine functions. Hence, F is closed and convex.

As F is K-proper, F cannot attain the value G. To see this, let F (x) = G. Hence, there

exists g ∈ (G−K)\G, i.e. there exists g1 ∈ G and k ∈ K with k 6= 0 such that g = g1 − k
and g /∈ G. But K ⊆ G and since G is a vector space, we must have that g1 − k ∈ G, a

contradiction. Thus, F (x) 6= G.

If one of the affine minorants is K-proper, i.e. (h(x)−K)\h(x) for some affine minorant

h, then since suph ⊆ h, we must have that the supremum is also K-proper or it is ∅.
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(ii) ⇒ (i): The converse will be proved by showing that for all (x0, g0) /∈ graphF , there

is a K-proper (proper but not K-proper) affine minorant h such that graphF ⊆ graph h

and (x0, g0) /∈ graph h. In other words, we show that h is an affine minorant but all points

that are not in F are also not in h.

Assume that F is closed and convex into Kc. Consider (x0, g0) /∈ graphF . Since graphF

is closed and convex, we can separate it from (x0, g0), getting x∗ ∈ X ∗, g∗ ∈ G∗ and α ∈ R
such that for all (x, g) ∈ graphF

x∗(x) + g∗(g) ≤ α < x∗(x0) + g∗(g0). (7.2)

As domF 6= ∅, there exists y ∈ domF , such that F (y) 6= ∅. Hence, there exists h ∈ F (y),

i.e. (y, h) ∈ graphF . Since F : X → PK , we have that F (y) ⊆ PK , i.e. F (y) = F (y) + K

(and as K is a cone, we have tK ⊆ K). Thus, if h ∈ F (y), then there exists h1 ∈ F (y) such

that h = h1 + tk ∈ F (y), i.e. (y, h1 + tk) ∈ graphF , for all t ≥ 0 and k ∈ K.

Thus,

x∗(y) + g∗(h+ tk) ≤ x∗(x0) + g∗(g0)

g∗(h) + tg∗(k) ≤ x∗(x0 − y) + g∗(g0)

g∗(k) ≤ 1

t
[x∗(x0 − y) + g∗(g0)− g∗(h)].

By the Archimedean property of the reals, we must have that g∗(k) ≤ 0 for all k ∈ K, i.e.

g∗ ∈ K◦−.

First, we assume that F is K-proper. Let g∗(k) < 0 for all k ∈ K. As g∗ is onto, there

exists ḡ ∈ G such that g∗(ḡ) = α. Consider g ∈ F (x), then using Inequality (7.2), we get

x∗(x) + g∗(g − ḡ) ≤ 0,

i.e. g − ḡ ∈ S(x∗,g∗)(x). This implies, that g ∈ S(x∗,g∗)(x) + {ḡ}, i.e.

F (x) ⊆ {ḡ}+ S(x∗,g∗)(x)

for all x ∈ X .

On the other hand, if v ∈ {ḡ}+ S(x∗,g∗)(x), then v = ḡ + v1, where x∗(x) + g∗(v1) ≤ 0.

This implies that

x∗(x) + g∗(v − ḡ) ≤ 0

x∗(x) + g∗(v) ≤ g∗(ḡ) = α.

In other words, if v ∈ {ḡ}+S(x∗,g∗)(x), then x∗(x)+g∗(v) ≤ α. Therefore, by Equation (7.2),

we have that (x0, g0) does not belong to the graph of the affine function {ḡ}+ S(x∗,g∗)(x).
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Next assume g∗(k) = 0 for all k ∈ K. Equation (7.2) yields the existence of β > 0 such

that for all (x, g) ∈ graphF

x∗(x) + g∗(g) ≤ x∗(x0) + g∗(g0)− β. (7.3)

Take (x1, g1) and k ∈ K such that x1 ∈ domF , g1 ∈ F (x1) and g1 − k /∈ F (x1). This is

possible as F is K-proper. Using the separation argument, we obtain (x∗1, g
∗
1) ∈ X ∗ ×K◦−

and γ ∈ R such that for all (x, g) ∈ graphF

x∗1(x) + g∗1(g) ≤ γ < x∗1(x1) + g∗1(g1 − k). (7.4)

If g∗1(k) = 0 and substituting (x, g) = (x1, g1) ∈ graphF into Equation (7.4), we get a

contradiction. Thus, we may conclude that g∗1(k) < 0 for all k ∈ K. Choose

s > max{0, 1

β
(γ − x∗1(x0)− g∗1(g0))}.

Multiply Equation (7.3) by s and add the result to the left inequality of Equation (7.4).

We obtain, for all (x, g) ∈ graphF

(x∗1 + sx∗)(x) + (g∗1 + sg∗)(g) ≤ γ + s(x∗(x0) + g∗(g0)− β)

< γ + sx∗(x0) + sg∗(g0)− γ + x∗1(x0) + g∗1(g0)

= (x∗1 + sx∗)(x0) + (g∗1 + sg∗)(g0),

where the last inequality comes from the definition of s. Thus we get Equation (7.2) with

x∗, g∗ and α replaced by x∗1 +sx∗, g∗1 +sg∗ and γ+s(x∗(x0)+g∗(g0)−β). Since g∗1 +sg∗ < 0,

the desired conclusion follows as in the first part.

Secondly, assume that F is proper but not K-proper. Since F is not K-proper and

in view of Proposition 7.1.6, we have that F (x) − K ⊆ F (x) for all x ∈ domF . Assume

g∗(k) < 0 for all k ∈ K and let g ∈ F (x) for some x ∈ domF . Then Equation (7.2) yields

for all t > 0

x∗(x) + g∗(g − tk) < x∗(x0) + g∗(g0)

g∗(k) >
1

t
(x∗(x− x0) + g∗(g − g0)).

By the Archimedean property, we get that g∗(k) ≥ 0 for all k ∈ K, a contradiction.

Thus, we only need to consider the case where g∗(k) = 0 for all k ∈ K. As F is proper,

we have that F (x) 6= G for all x ∈ domF . Hence, there exists x2 ∈ domF and g2 ∈ G

such that g2 /∈ F (x2). Using the separation argument, there exists (x∗2, g
∗
2) ∈ X ∗ ×G∗ and

γ2 ∈ R such that

x∗2(x) + g∗2(g) ≤ γ2 < x∗2(x2) + g∗2(g2).
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The rest follows by a similar argument as in part 2 of the K-proper case.

Corollary 7.1.10. Let f : X → PcK be convex.

(i) The closure of f is convex and maps into Kc.

(ii) If h : X → Kc is closed and convex such that f(x) ⊆ h(x) for all x ∈ X , then

(clf)(x) ⊆ h(x) for all x ∈ X .

(iii) For all x ∈ X , (clf)(x) 6= G if and only if there exists (x∗, g∗) ∈ X ∗ ×K◦−\{0} and

g ∈ G such that for all x ∈ X

(clf)(x) ⊆ S(x∗,g∗)(x) + {g}.

(iv) If there exists x0 ∈ X such that (clf)(x0) = G, then (clf)(x) = G for all x ∈
dom(clf) ⊇ domf .

Proof. (i): The closure of a convex set is convex. Hence, cl(graphf) = graph(clf) is convex,

which implies that (clf) is convex.

(ii): This is due to the fact that graphf ⊆ graph h, which implies that

graph(clf) ⊆ graph(cl h).

Since graph h is closed, we have that

graph(cl h) ⊆ graphh.

(iii): If clf is proper, the result follows from Theorem 7.1.9. If clf is not proper, then

x∗ = 0, g∗ ∈ K◦−\{0} and g = 0 yields a minorant since in this case, clf = ∅. The converse

follows from (ii), with h being the affine minorant.

(iv): This follows from Proposition 7.1.6.

For the duality theory, the definitions of the conjugate and biconjugate are very impor-

tant. Hamel [77] defines them as follows.

Definition 7.1.11. The conjugate −F ∗ of F : X → K is defined by

−F ∗(x∗, g∗) = cl
⋃
x∈X

[F (x) + S(x∗,g∗)(−x)],

and the biconjugate F ∗∗ of F by

F ∗∗(x) =
⋂

(x∗,g∗)∈X ∗×K◦−\{0}

[−F ∗(x∗, g∗) + S(x∗,g∗)(x)].
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The minus sign of −F ∗ should be read as part of the symbol. This notation is used, so

that no subtraction needs to be defined and so that F +K and −F ∗ have the same image

space.

For F : X → P(G) and g∗ ∈ K◦−\{0}, define a function ϕF,g∗ : X → [−∞,∞] by

ϕF,g∗(x) = inf
g∈F (x)

−g∗(g).

The classical Legendre-Fenchel convex conjugate of ϕF,g∗ is given by

ϕ∗F,g∗(x
∗) = sup

x∈X
{x∗(x)− ϕF,g∗(x)}.

We have that

ϕ∗F,g∗(x
∗) = sup

x∈X ,g∈F (x)
{x∗(x) + g∗(g)} := σgraphF (x∗, g∗).

The function σgraphF : X ∗ ×G∗ → [−∞,∞] is called the support function of the graph

of the set-valued function F . The following lemma relates this support function to −F ∗.

Lemma 7.1.12. For F : X → P(G), x∗ ∈ X ∗ and g∗ ∈ K◦\{0}, it holds

−F ∗(x∗, g∗) = {g ∈ G : g∗(g) ≤ σgraphF (x∗, g∗)}, (7.5)

and for all x ∈ X ,

F ∗∗(x) =
⋂

(x∗,g∗)∈X ∗×K◦−\{0}

{g ∈ G : x∗(x) + g∗(g) ≤ σgraphF (x∗, g∗)}. (7.6)

Proof. Firstly, we claim that

{g ∈ G : g∗(g) < σgraphF (x∗, g∗)} ⊆
⋃
x∈X

[F (x) + S(x∗,g∗)(−x)].

To show this, let g ∈ {g ∈ G : g∗(g) < σgraphF (x∗, g∗)}. Then

g∗(g) < σgraphF (x∗, g∗)

= sup
x∈X ,g∈F (x)

{x∗(x) + g∗(g)}.

Thus, there exists (x, ḡ) ∈ graphF such that g∗(g) ≤ x∗(x) + g∗(ḡ). Rewriting this, we

have that x∗(−x) + g∗(g − ḡ) ≤ 0, i.e. g − ḡ ∈ S(x∗,g∗)(−x). Hence, ḡ ∈ F (x) and g − ḡ ∈
S(x∗,g∗)(−x), which proves our claim.

Conversely, we claim that⋃
x∈X

[F (x) + S(x∗,g∗)(−x)] ⊆ {g ∈ G : g∗(g) < σgraphF (x∗, g∗)}.
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Let g ∈
⋃
x∈X [F (x) + S(x∗,g∗)(−x)]. Hence, there exists x ∈ domF , such that g = ḡ + g′,

where ḡ ∈ F (x) and g′ ∈ S(x∗,g∗)(−x). By the definition of ϕF,g∗(x), we have that g∗(ḡ) ≤
−ϕF,g∗(x) and using the definition of S(x∗,g∗), we get g∗(g′) ≤ x∗(x). Hence,

g∗(g) = g∗(ḡ + g′) ≤ x∗(x)− ϕF,g∗(x) ≤ σgraphF (x∗, g∗),

which proves our second claim. Thus, we have shown that

{g ∈ G : g∗(g) < σgraphF (x∗, g∗)} ⊆ F ∗(x∗, g∗) ⊆ {g ∈ G : g∗(g) < σgraphF (x∗, g∗)},

which proves the first part.

Let g ∈ F ∗∗(x) and x∗ ∈ X ∗, g∗ ∈ K◦−\{0}. Then there exists g1 ∈ −F ∗(x∗, g∗) and

g2 ∈ S(x∗,g∗)(x) such that g = g1 + g2. Equation (7.5) gives g∗(g1) ≤ σgraphF (x∗, g∗) and the

definition of S(x∗,g∗) gives x∗(x) + g∗(g2) ≤ 0. Hence,

x∗(x) + g∗(g) = g∗(g1) + x∗(x) + g∗(g2) ≤ σgraphF (x∗, g∗).

Conversely, let x∗(x) + g∗(g) ≤ σgraphF (x∗, g∗) for g ∈ G, x ∈ X , x∗ ∈ X ∗ and g∗ ∈
K◦−\{0}. As g∗ is surjective, there exists g2 ∈ G such that x∗(x) + g∗(g2) ≤ 0. Thus,

x∗(x) + g∗(g − g2) ≤ σgraphF (x∗, g∗).

The next three propositions give some of the important properties of the conjugate and

biconjugate functions.

Proposition 7.1.13.

(i) The conjugate −F ∗ of F is a well-defined map from X ∗ × K◦− into Kc. Moreover,

−F ∗(x∗, g∗) is of the form {g} + S(x∗,g∗)(0) for some g ∈ G or it is an element of

{G, ∅}.

(ii) The biconjugate F ∗∗ of F is a well-defined map from X into Kc.

See [77] for a proof of this proposition.

Proposition 7.1.14 (Set-valued Young-Fenchel’s inequalities). For each x ∈ X , x∗ ∈ X ∗

and g∗ ∈ K◦−\{0}, we have

(i) F (x)⊕ S(x∗,g∗)(−x) ⊆ −F ∗(x∗, g∗); and

(ii) F ∗∗(x) ⊆ S(x∗,g∗)(x)⊕−F ∗(x∗, g∗).

Proposition 7.1.15. Let F1, F2, F : X → K. Then
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(i) F1 ⊆ F2 ⇒ −F ∗1 ⊆ −F ∗2 ⇒ F ∗∗1 ⊆ F ∗∗2 ; and

(ii) F ⊆ F ∗∗.

The proofs of Proposition 7.1.14 and Proposition 7.1.15 are consequences of the defini-

tions of −F ∗ and F ∗∗.

The biconjugation theorem is stated next.

Theorem 7.1.16. A proper function F : X → Kc is closed and convex if and only if

F ∗∗(x) = F (x) for all x ∈ X .

Proof. First, let F be a proper closed convex function. We claim that every affine minorant

of F is also one of F ∗∗. Let x∗ ∈ X ∗, g∗ ∈ K◦\{0} and g ∈ G such that for all x ∈ X

F (x) ⊆ {g}+ S(x∗,g∗)(x).

Adding S(x∗,g∗)(−x) on both sides and taking the union over all x ∈ X , we get

−F ∗(x∗, g∗) ⊆ {g}.

Once again, adding S(x∗,g∗)(x) to both sides we obtain

−F ∗(x∗, g∗) + S(x∗,g∗)(x) ⊆ {g}+ S(x∗,g∗)(x).

Then, taking the intersection on both sides over x∗ ∈ X ∗, g∗ ∈ K◦\{0}, results in

F ∗∗(x) ⊆ {g}+ S(x∗,g∗)(x),

proving the claim.

Corollary 7.1.10 ensures that the set of proper affine minorants of F is nonempty and

Theorem 7.1.9 shows that F is the pointwise supremum of such minorants. Since, by

Proposition 7.1.15, we have F (x) ⊆ F ∗∗(x) for all x ∈ X , the result follows.

Conversely, assume F (x) = F ∗∗(x) for all x ∈ X . Then by Proposition 7.1.13, we have

that F ∗∗ is closed and convex.

7.2 Duality in tensor products

We let X = E⊗̃lY , the completed l-tensor product, where E and Y are Banach lattices and

let 0 < e ∈ E. Let G be a Riesz subspace of Y . Then the Banach lattice E⊗̃lG may be

considered as an l-normed closed Riesz subspace of E⊗̃lY .
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To extend the ordering induced by the cone KY to E⊗̃lY , we define

C = cll(E+ ⊗KY ),

i.e. C is the l-norm closure of

E+ ⊗KY =
{
x ∈ E ⊗ Y : x =

n∑
i=1

xi ⊗ yi for n ∈ N, x1, . . . , xn ∈ E+, y1, . . . , yn ∈ KY

}
in E⊗̃lY . Then, C is a closed convex cone in E⊗̃lY . Note that if g ∈ K, then e⊗ g ∈ C.

The polar cone of C is given by

C◦ = {x∗ ∈ (E⊗̃lY )∗ : x∗(x) ≥ 0 for all x ∈ C},

and the negative polar cone of C by C◦− = −C◦.

Definition 7.2.1. Let F : E⊗̃lY → K be a function.

(i) If for all x ∈ E⊗̃lY and g ∈ G,

F (x+ e⊗ g) = F (x) + {−g},

then F is called translative with respect to 0 < e ∈ E.

(ii) If for all x1, x2 ∈ E⊗̃lY ,

x2 − x1 ∈ C ⇒ F (x1) ⊆ F (x2),

then F is called monotone with respect to a convex cone C ⊆ E⊗̃lY .

Lemma 7.2.2. Let g∗ ∈ K◦−\{0}.

(i) If x∗ ∈ C◦−, then the function S(x∗,g∗) : E⊗̃lY → Kc is monotone with respect to C.

(ii) If g∗(g) = x∗(e⊗g) for all g ∈ G, then the function S(x∗,g∗) : E⊗̃lY → Kc is translative

with respect to 0 < e ∈ E.

Proof. (i) Consider x1, x2 ∈ E⊗̃lY such that x2−x1 ∈ C and x∗ ∈ C◦−. Then, x∗(x2−x1) ≤
0, which implies that 0 ∈ S(x∗,g∗)(x2 − x1). Then,

S(x∗,g∗)(x2) = S(x∗,g∗)(x2 − x1 + x1)

= S(x∗,g∗)(x2 − x1) + S(x∗,g∗)(x1)

⊇ S(x∗,g∗)(x1),
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proving the monotonicity.

(ii) Assume x∗(e⊗ g) = g∗(g) for all g ∈ G. Consider x ∈ E⊗̃lY and g ∈ G. Then

x∗(x+ e⊗ g) + g∗(u) = x∗(x) + x∗(e⊗ g) + g∗(u)

= x∗(x) + g∗(g + u).

Hence,

S(x∗,g∗)(x+ e⊗ g) = {u ∈ G : x∗(x) + g∗(g + u) ≤ 0}

= {v − g ∈ G : x∗(x) + g∗(v) ≤ 0}

= {v ∈ G : x∗(x) + g∗(v) ≤ 0}+ {−g}

= S(x∗,g∗)(x) + {−g},

which proves the translativity.

Define the zero-sublevel set of F : X → K by

AF = {x ∈ X : 0 ∈ F (x)} = {x ∈ X : K ⊆ F (x)}.

Note that if F is monotone and 0 ∈ F (0), then C ⊆ AF .

The positive polar cone of AF is given by

A+
F = {x∗ ∈ X ∗ : x∗(x) ≥ 0 for all x ∈ AF }

and the negative polar cone by A−F = −A+
F .

Proposition 7.2.3.

(i) If F is convex, then AF is convex.

(ii) If F is positive homogeneous, then AF is a cone.

Proof. (i) Assume that F is convex. Take x, y ∈ AF . This implies that 0 ∈ F (x) and

0 ∈ F (y). Since F is convex, we have for λ ∈ (0, 1)

λF (x) + (1− λ)F (y) ⊆ F (λx+ (1− λ)y).

Hence, 0 ∈ F (λx+ (1− λ)y). Thus, λx+ (1− λ)y ∈ AF , showing that AF is convex.

(ii) Assume that F is positive homogeneous, i.e. F (λx) = λF (x) for all λ > 0. Thus, if

0 ∈ F (x), then it must be that 0 ∈ F (λx). In other words, for all x ∈ AF , we have that

λx ∈ AF for λ > 0. This proves that AF is a cone.
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The next theorem states the representation result for proper, closed, convex functions.

Theorem 7.2.4.

(i) Let F : E⊗̃lY → Kc be proper, closed, convex, translative with respect to e ∈ E,

monotone with respect to C and 0 ∈ F (0). Then

−F ∗(x∗, g∗) =

{
cl
⋃
x∈AF S(x∗,g∗)(−x) if (x∗, g∗) ∈ Y

G if (x∗, g∗) /∈ Y,
(7.7)

where

Y = {(x∗, g∗) ∈ C◦− ×K◦− : x∗(e⊗ g) = g∗(g) for all g ∈ G}.

(ii) The dual representation of F is

F (x) =
⋂

(x∗,g∗)∈Y

[
S(x∗,g∗)(x)− cl

⋃
x∈AF

S(x∗,g∗)(−x)
]

(7.8)

for all x ∈ E⊗̃lY .

Proof. Our proof is based on [79, p. 27, Theorem 6.2].

(i) First, note that for x∗ ∈ (E⊗̃lY )∗ and g∗ ∈ K◦−\{0}, we have

cl
⋃
x∈AF

S(x∗,g∗)(−x) ⊆ cl
⋃
x∈AF

[F (x) + S(x∗,g∗)(−x)] ⊆ −F ∗(x∗, g∗).

For the converse inclusion, consider (x∗, g∗) ∈ Y, x ∈ domF and g ∈ F (x). Then

S(x∗,g∗)(−x) + {g} = S(x∗,g∗)(−x− e⊗ g).

We claim that

S(x∗,g∗)(−x− e⊗ g) ⊆ cl
⋃
x∈AF

S(x∗,g∗)(−x). (7.9)

To prove this inclusion, consider u ∈ S(x∗,g∗)(−x− e⊗g). Thus, x∗(−x− e⊗g) +g∗(u) ≤ 0.

Let y = x + e ⊗ g. Since g ∈ F (x), we have that 0 ∈ F (x) + {−g}. As F (x) + {−g} =

F (x+ e⊗ g), we have that y = x+ e⊗ g ∈ AF and x∗(−y) + g∗(u) ≤ 0. Hence,

u ∈
⋃
x∈AF

S(x∗,g∗)(−x),

which proves our claim. As (7.9) holds for all g ∈ F (x), we have

S(x∗,g∗)(−x) + F (x) ⊆ cl
⋃
x∈AF

S(x∗,g∗)(−x).



158 Chapter 7 Set-valued risk measures on Orlicz hearts

Hence,

−F ∗(x∗, g∗) ⊆ cl
⋃
x∈AF

S(x∗,g∗)(−x)

whenever (x∗, g∗) ∈ Y.

It remains to show that if (x∗, g∗) /∈ Y, then −F ∗(x∗, g∗) = G. We will show the

converse. Consider x∗ ∈ X ∗ and g∗ ∈ K◦−\{0}. Assume −F ∗(x∗, g∗) 6= G. By Proposition

7.1.13, −F ∗(x∗, g∗) ⊆ {g}+ S(x∗,g∗)(0) for some g ∈ G. Hence,

−∞ < sup
g0∈−F ∗(x∗,g∗)

g∗(g0) ≤ g∗(g) <∞.

Note that because F is proper, we know that −F ∗(x∗, g∗) 6= ∅.
Since F is translative, we have for arbitrary w ∈ G,

−F ∗(x∗, g∗) = cl
⋃

x∈E⊗̃lY

[F (x) + S(x∗,g∗)(−x)]

= cl
⋃

x∈E⊗̃lY

[
F (x+ e⊗ w) + S(x∗,g∗)(−x− e⊗ w)]

⊆ −F ∗(x∗, g∗) + {−w}+ S(x∗,g∗)(−e⊗ w).

This results in

sup
g0∈−F ∗(x∗,g∗)

g∗(g0) ≤ sup
g0∈−F ∗(x∗,g∗)

g∗(g0)− g∗(w) + x∗(e⊗ w).

Hence, x∗(e⊗ w)− g∗(w) ≥ 0 for all w ∈ G. This is only possible, if g∗(w) = x∗(e⊗ w).

As F is C-monotone and 0 ∈ F (0), we have that C ⊆ AF .

By the Young-Fenchel inequality, the definition of AF and the fact that C ∈ AF , we

have for all x ∈ C,

S(x∗,g∗)(−x) ⊆ F (x) + S(x∗,g∗)(−x) ⊆ −F ∗(x∗, g∗).

Since C is a cone, if x ∈ C, then tx ∈ C for all t > 0. Thus,

S(x∗,g∗)(−tx) ⊆ −F ∗(x∗, g∗).

Applying g∗ to this inclusion, we get for all t > 0,

tx∗(x) ≤ sup
g0∈−F ∗(x∗,g∗)

g∗(g0) ∈ R.

The Archimedean property of R implies that x∗(x) ≤ 0. Since, x is an arbitrary element in

C, we have x∗ ∈ C◦−. Putting all this together, we get (x∗, g∗) ∈ Y.

(ii) Finally, the dual representation formula (7.8) is a consequence of Equation (7.7) and

Theorem 7.1.16.
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Theorem 7.2.4 can be specialised to functions that are also positively homogeneous.

This is stated in the next theorem.

Theorem 7.2.5.

(i) Let F : E⊗̃lY → Kc be proper, closed, convex, translative with respect to e ∈ E,

monotone with respect to C, 0 ∈ F (0) and positively homogeneous, then

−F ∗(x∗, g∗) =

{
S(x∗,g∗)(0) if (x∗, g∗) ∈ Y and x∗ ∈ A−F
G if (x∗, g∗) /∈ Y or x∗ /∈ A−F .

(7.10)

(ii) The dual representation of F is

F (x) =
⋂

(x∗,g∗)∈Y, x∗∈A−F

S(x∗,g∗)(x) (7.11)

for all x ∈ E⊗̃lY .

Proof. Our proof is based on [79, p. 27, Theorem 6.2].

(i) For the case where F is also positive homogeneous, if (x∗, g∗) ∈ Y, we have by The-

orem 7.2.4, that −F ∗(x∗, g∗) = cl
⋃
x∈AF S(x∗,g∗)(−x). Since 0 ∈ AF , we have S(x∗,g∗)(0) ⊆

cl
⋃
x∈AF S(x∗,g∗)(−x).

On the other hand, if x∗ ∈ A−F , then x∗(x) ≤ 0 for all x ∈ AF . Hence,

g ∈ S(x∗,g∗)(−x) = {u ∈ G : g∗(u) ≤ x∗(x)}

implies g ∈ S(x∗,g∗)(0). This gives cl
⋃
x∈AF S(x∗,g∗)(−x) ⊆ S(x∗,g∗)(0).

Now, assume x∗ /∈ A−F . Then, there exists x ∈ AF such that x∗(x) > 0. Because F is

positively homogeneous, we have by Proposition 7.2.3 that AF is a cone. Therefore, tx ∈ AF
for t > 0. Thus,

cl
⋃
x∈AF

S(x∗,g∗)(−x) ⊇
⋃
t>0

{g ∈ G : g∗(g) ≤ tx∗(x)} = G.

Hence, cl
⋃
x∈AF S(x∗,g∗)(−x) = G, whenever x∗ /∈ A−F .

(ii) The dual representation formula (7.11) is a direct consequence of Equation (7.10)

and Theorem 7.1.16.

7.3 Risk measures on the l-tensor product

Definition 7.3.1. Let 0 < e ∈ E. A function ρe : E⊗̃lY → K is called a set-valued

monetary e-risk measure if it satisfies
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(R0) Normalisation, i.e. K ⊆ ρe(0) and ρe(0) ∩ (−intK) = ∅;

(R1) C-monotonicity, i.e. x− y ∈ C implies ρe(y) ⊆ ρe(x);

(R2) Cash additivity (also called translation invariance), i.e. ρe(x+ e⊗ u) = ρe(x) + {−u}
for all x ∈ E⊗̃lY and u ∈ G.

If, in addition, ρe satisfies

(R3) Convexity, i.e. λρe(x) + (1− λ)ρe(y) ⊆ ρe(λx+ (1− λ)y) for λ ∈ (0, 1),

then ρe is called a set-valued convex e-risk measure.

If ρe satisfies (R0), (R1) and (R2) and

(R4) Positive homogeneity, i.e. ρe(cx) = cρe(x) for all x ∈ E⊗̃lY and c > 0;

(R5) Subadditivity, i.e. ρe(x1) + ρe(x2) ⊆ ρe(x1 + x2) for all x1, x2 ∈ E⊗̃lY ;

then ρe is called a set-valued coherent e-risk measure.

If E = Lp(P ), where 1 ≤ p ≤ ∞, and e = 1 : Ω → R, is defined by 1(ω) = 1 a.e., we

denote ρ1 by ρ. The properties of ρ1 can be interpreted as in the scalar-valued case, see for

example [60].

For the definition of the acceptance sets, we require some form of closedness. Hamel

et al. [78] introduced the following notion. A set A ∈ E⊗̃lY is directionally closed with

respect to 0 < e ∈ E, if for any x ∈ E⊗̃lY and any sequence (uk)k∈N ⊆ G with lim
k→∞

uk = 0,

it follows from x+ e⊗ uk ∈ A for all k ∈ N, that x ∈ A.

Definition 7.3.2. Let 0 < e ∈ E.

(i) An e-acceptance set is a set Ae ⊆ E⊗̃lY which satisfies

(A0) u ∈ K implies e⊗ u ∈ Ae and u ∈ −intK implies e⊗ u /∈ Ae;

(A1) Ae is directionally closed with respect to e; and

(A2) Ae + C ⊆ Ae.

(ii) If, in addition, Ae is convex, then Ae is called a convex e-acceptance set.

(iii) If Ae satisfies (A0), (A1), (A2) and is a convex cone, then Ae is called a coherent

e-acceptance set.
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Note that (A2) and the definition of C imply that Ae+e⊗u ∈ Ae for u ∈ K. Moreover,

by (A0), we have 0 ∈ Ae and hence, by (A2), C ⊆ Ae.
The next two theorems show the one-to-one relationship between set-valued risk mea-

sures and acceptance sets.

Theorem 7.3.3.

(i) Let ρe : E⊗̃lY → K be a monetary e-risk measure. Then

Aρe = {x ∈ E⊗̃lY : 0 ∈ ρe(x)}

is an acceptance set.

(ii) If ρe is convex, then so is Aρe.

(iii) If ρe is coherent, then Aρe is a coherent e-acceptance set.

Proof. (i) First we show (A0). Let u ∈ K. Then by (R0), u ∈ ρe(0). By (R2), ρe(e⊗ u) =

ρe(0 + e ⊗ u) = ρe(0) + {−u}. Since u ∈ ρe(0), it must be that 0 ∈ ρe(e ⊗ u). Hence,

e ⊗ u ∈ Aρe . Next, let u ∈ −intK. Then by (R0), u /∈ ρe(0). Similarly as above, by (R2),

0 /∈ ρe(e⊗ u) and e⊗ u /∈ Aρe .
Secondly, we show (A1). Let x ∈ E⊗̃lY , (uk)k∈N ⊆ G with lim

k→∞
uk = 0 and x+e⊗uk ∈

Aρe . Then, by the definition of Aρe and (R1), we have 0 ∈ ρe(x+ e⊗ uk) = ρe(x) + {−uk}.
In other words, uk ∈ ρe(x) for all k ∈ N. Since, ρe maps into K, ρe(x) is closed. Hence,

0 ∈ ρe(x), implying that x ∈ Aρe . Thus, Aρe is radially closed with respect to e.

Lastly, we check (A2). Let x1 ∈ Aρe and x2 ∈ C. Then (x1 + x2)− x1 ∈ C and by (R1)

0 ∈ ρe(x1) ⊆ ρe(x1 + x2). Thus, x1 + x2 ∈ Aρe , as desired.

(ii) This was proved in Proposition 7.2.3.

(iii) If ρe is coherent, then by Proposition 7.2.3, we have that Aρe is a cone. As positive

homogeneity and subadditivity imply convexity, we have by (ii), that Aρe is convex.

Theorem 7.3.4.

(i) Let Ae ⊆ E⊗̃lY be an e-acceptance set. Then ρAe, given by

ρAe(x) = {u ∈ G : x+ e⊗ u ∈ Ae},

is a monetary risk measure.

(ii) If Ae is convex, then so is ρAe.



162 Chapter 7 Set-valued risk measures on Orlicz hearts

(iii) If Ae is a coherent acceptance set, then ρAe is a coherent e-risk measure.

Proof. (i) First, we show that ρAe maps into K, i.e. we need to show that ρAe(x) + K ⊆
ρAe(x) and ρAe(X) is closed for each x ∈ E⊗̃lY . Let u ∈ ρAe(x) and v ∈ K. Then, by

the definition of ρAe , X + e ⊗ u ∈ Ae. By (A2), we have x + e ⊗ (u + v) ∈ Ae, and hence,

u+ v ∈ ρAe(x). Consider a sequence (uk)k∈N ⊆ ρAe(x) with lim
k→∞

uk = u. By the definition

of ρAe ,

x+ e⊗ uk = (x+ e⊗ u) + e⊗ (uk − u) ∈ Ae,

for all k ∈ N. Since Ae is directionally closed, this implies that x+ e⊗ u ∈ Ae, which gives

u ∈ ρAe(x). This proves that ρAe(x) is closed for each X ∈ E⊗̃lY .

Now, we can show (R0). By (A0) and the definition of ρAe , we get u ∈ ρAe(0) if u ∈ K
and u /∈ ρAe(0) if u ∈ −intK.

Next, we need to show (R1). Let x1, x2 ∈ E⊗̃lY such that x2 − x1 ∈ C. Consider

u ∈ ρAe(x1). Then, x1 + e⊗ u ∈ Ae. As Ae + C ⊆ Ae, we have that

x1 + e⊗ u+ (x2 − x1) ∈ Ae.

This implies that x2 + e⊗ u ∈ Ae, i.e. u ∈ ρAe(x2). Therefore, ρAe(x1) ⊆ ρAe(x2).

Lastly, let us show (R2). Let X ∈ E⊗̃lY and u ∈ G. By the definition of ρAe , we have

ρAe(x+ e⊗ u) = {v ∈ G : x+ e⊗ u+ e⊗ v ∈ Ae}

= {v ∈ G : x+ e⊗ (u+ v) ∈ Ae}

= {w ∈ G : x+ e⊗ w ∈ Ae}+ {−u}

= ρAe(x) + {−u}.

(ii) Now, assume Ae is convex. Let λ ∈ (0, 1) and u ∈ λρAe(x) + (1 − λ)ρAe(y). Then,

we can write u as u = λu1 + (1 − λ)u2 for some u1 ∈ ρAe(x) and u2 ∈ ρAe(y). Therefore,

x+ e⊗ u1 ∈ Ae and y + e⊗ u2 ∈ Ae. As Ae is convex, we have

λ(x+ e⊗ u1) + (1− λ)(y + e⊗ u2) ∈ Ae.

But,

λ(x+ e⊗ u1) + (1− λ)(y + e⊗ u2)

= λx+ (1− λ)y + λ(e⊗ u1) + (1− λ)(e⊗ u2)

= λx+ (1− λ)y + e⊗ (λu1 + (1− λ)u2)

= λx+ (1− λ)y + e⊗ u.
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Hence, λx + (1 − λ)y + e ⊗ u ∈ Ae, thus, u ∈ ρAe(λx + (1 − λ)y), proving that ρAe is

convex.

(iii) If Ae is a coherent acceptance set, then Ae is a convex cone. By (ii), we have that

ρAe is convex. Consider x, y ∈ E⊗̃lY and u ∈ ρAe(x) + ρAe(y). Then, u = u1 + u2, where

u1 ∈ ρAe(x) and u2 ∈ ρAe(y). This means that x+ e⊗ u1 ∈ Ae and y + e⊗ u2 ∈ Ae. Since

Ae is a cone, we have that

x+ e⊗ u1 + y + e⊗ u2 = x+ y + e⊗ u ∈ Ae.

Thus, u ∈ ρAe(x+ y), proving that ρAe is subadditive. Using the subadditivity repeatedly,

we can show that ρAe is positive homogeneous and hence coherent.

Hamel and Heyde [78] consider a set-valued expectation and a set-valued upper ex-

pectation in the setting of Lp(P,Rd). We extend these notions to the framework under

consideration.

A dual pair is a triple (U, V, 〈 ·, ·〉), consisting of vector spaces U and V and a bilinear

mapping 〈 ·, ·〉 : U × V → R such that

• 〈u, v〉 = 0 for all u ∈ U implies v = 0, and

• 〈u, v〉 = 0 for all v ∈ V implies u = 0.

We recall from [142] that if E is a Banach lattice and 0 < e ∈ E, then e is a quasi

interior point of E provided that clE{y ∈ E : |y| ≤Me for some M ∈ R+} = E.

It is well known that 1 is a quasi interior point of Lp(P ) for 1 ≤ p <∞.

Definition 7.3.5. Consider the dual pair (E⊗̃lY, (E⊗̃lY )∗, 〈 ·, · 〉), where 〈x, x∗〉 = x∗(x),

and let 0 < e ∈ E. For all x∗ ∈ (E⊗̃lY )∗, define Ex∗G,e and Fx∗G,e respectively, for all

x ∈ E⊗̃lY , by

Ex
∗
G,e(x) = {g ∈ G : 〈x− e⊗ g, x∗〉 = 0}

and

Fx
∗
G,e(x) = {g ∈ G : 〈x− e⊗ g, x∗〉 ≤ 0}.

In the case E = Lp(P ) and e = 1 : Ω→ R, defined by 1(ω) = 1 a.e., we denote Fx∗G,1 by

Fx∗G .

We can now state the dual representation result first for set-valued coherent e-risk

measures defined on the completed l-tensor product.
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Theorem 7.3.6. Let ρe : E⊗̃lY → Kc be proper and closed. The function ρe is a coherent

e-risk measure if and only if, for all x ∈ E⊗̃lY ,

ρe(x) =
⋂

Z∗∈C◦∩A+
ρe

FZ
∗

G,e[−x]. (7.12)

Proof. Let ρe : E⊗̃lY → Kc be a proper closed coherent e-risk measure.

If Z∗ ∈ (E⊗̃lY )∗, define a function z∗ : G→ R by

z∗(g) = Z∗(e⊗ g) for all g ∈ G.

Then z∗ = Z∗ ◦ j, where j : G→ E⊗̃lY is the canonical embedding, given by j(g) = e⊗ g.

As j(K) ⊆ C, it follows that Z∗ ∈ C◦ implies z∗ ∈ K◦.
Since (−Z∗,−z∗) ∈ Y for Z∗ ∈ C◦, Theorem 7.2.5 implies that for all x ∈ E⊗̃lY ,

ρe(x) =
⋂

Z∗∈C◦∩A+
ρe

S(−Z∗,−z∗)(x).

Furthermore, if Z∗ ∈ C◦, then as already noted, z∗ ∈ K◦, and we get

S(−Z∗,−z∗)(x) =
{
g ∈ G : 〈x,−Z∗〉 − 〈g, z∗〉 ≤ 0

}
=
{
g ∈ G : 〈−x, Z∗〉 − 〈e⊗ g, Z∗〉 ≤ 0

}
=
{
g ∈ G : 〈−x− e⊗ g, Z∗〉 ≤ 0

}
= FZ

∗
G,e[−x],

proving the representation.

Conversely, we need to show that (7.12) is a coherent e-risk measure.

First, we show that (R0) holds. Note that

FZ
∗

G,e[0] = S(−Z∗,−z∗)(0) = {g ∈ G : z∗(g) ≥ 0}.

As z∗ ∈ K◦, we have that z∗(k) ≥ 0 for all k ∈ K. Hence, K ⊆ FZ∗G,e[0] for all Z∗ ∈ C◦∩Aρ+
e

.

Therefore, K ⊆ ρe(0).

Assume ρe(0) ∩ (−intK) 6= ∅. Select g ∈ G such that g ∈ ρe(0) and g ∈ −intK. From

g ∈ −intK and z∗ ∈ K◦, we get z∗(g) ≤ 0. From g ∈ ρe(0), we get

g ∈ FZ
∗

G,e[0] for all Z∗ ∈ C◦ ∩A+
ρe .

Thus, z∗(g) ≥ 0, a contradiction. In other words, we must have ρe(0) ∩ (−intK) = ∅.



165 Chapter 7 Set-valued risk measures on Orlicz hearts

Next, note that

FZ
∗

G,e[−x− e⊗ g] = {u ∈ G : −Z∗(x+ e⊗ g)− z∗(u) ≤ 0}

= {u ∈ G : −Z∗(x)− z∗(u+ g) ≤ 0}

= {v − g ∈ G : −Z∗(x)− z∗(v) ≤ 0}

= FZ
∗

G,e[−x] + {−g}.

Hence, ρe(x+ e⊗ g) = ρe(x) + {−g}, proving translativity with respect to e.

Lastly, consider x, y ∈ E⊗̃lY such that x− y ∈ C. Let g ∈ FZ∗G,e(−y). Then

−Z∗(y)− z∗(g) ≤ 0.

Hence, −Z∗(x) + Z∗(x− y)− z∗(g) ≤ 0 and

−Z∗(x)− z∗(g) ≤ −Z∗(x− y) ≤ 0 as Z∗ ∈ C◦,

showing that g ∈ FZ∗G,e(−x), i.e. FZ∗G,e(−y) ⊆ FZ∗G,e(−x) for all Z∗ ∈ C◦. Therefore, ρe(y) ⊆
ρe(x), proving the C-monotonicity.

Using the properties of S(−Z∗,−z∗), we know that

FZ
∗

G,e[tx] = tFZ
∗

G,e[x] for t 6= 0

and

FZ
∗

G,e[x1 + x2] = FZ
∗

G,e[x1] + FZ
∗

G,e[x2].

Hence, ρe is both positive homogeneous and subadditive.

Next, we state and prove the representation of set-valued convex e-risk measures defined

on the completed l-tensor product.

Theorem 7.3.7. Let ρe : E⊗̃lY → Kc be proper. If ρe is a closed convex e-risk measure,

then for all x ∈ E⊗̃lY ,

ρe(x) =
⋂

Z∗∈C◦

[
FZ
∗

G,e[−x] + αmin(Z∗)
]
, (7.13)

where the penalty function αmin : C◦ → G is given by

αmin(Z∗) = cl
⋃

x0∈Aρe

FZ
∗

G,e[x0] for Z∗ ∈ C◦.

Moreover, αmin is the minimal penalty function that represents ρe, i.e. any penalty function

α for which (7.13) holds, satisfies αmin(Z∗) ⊆ α(Z∗) for all Z∗ ∈ C◦.
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Proof. (i): Let ρe : E⊗̃lY → Kc be a proper closed convex e-risk measure. Define z∗ as in

the proof of Theorem 7.3.6.

Then, Theorem 7.2.4 implies that for all x ∈ E⊗̃lY ,

ρe(x) =
⋂

Z∗∈C◦

[
S(−Z∗,−z∗)(x) + cl

⋃
x0∈Aρe

S(−Z∗,−z∗)(−x0)
]
.

We also have by the proof of Theorem 7.3.6, that S(−Z∗,−z∗)(x) = FZ∗G,e[−x].

Let

αmin(Z∗) = cl
⋃

x0∈Aρe

FZ
∗

G,e[x0],

giving us the required representation.

Finally, let α be any penalty function for ρe. Then, for all Z∗ ∈ C◦, we have that

ρe(x) ⊆ FZ
∗

G,e[−x] + α(Z∗).

Hence,

α(Z∗) ⊇ ρe(x) + FZ
∗

G,e[x] for all x ∈ E⊗̃lY,

i.e.

α(Z∗) ⊇ cl
⋃

x∈E⊗̃lY

[
ρe(x) + FZ

∗
G,e[x]

]
⊇ cl

⋃
x∈Aρe

[
ρe(x) + FZ

∗
G,e[x]

]
⊇ cl

⋃
x∈Aρe

FZ
∗

G,e[x] = αmin(Z∗),

as required.

Next, we present applications of our main result, Theorem 7.3.7.

Corollary 7.3.8. Suppose that Y ∗ has the Radon-Nikodým property.

(i) Let 1 ≤ p <∞ and 1
p + 1

q = 1 and ρe : Lp(P, Y )→ Kc. In addition to the descriptions

of ρe in Theorem 7.3.7, C◦ and FZ∗G,e are respectively, given by

C◦ = {Z∗ ∈ Lq(P, Y ∗) : Z∗(c) ≥ 0 for all c ∈ C}

and, for all x ∈ Lp(P, Y ),

FZ
∗

G,e[x] =

{
g ∈ G :

∫
Ω
x(ω)Z∗(ω) dP ≤ z∗(g)

}
,

where z∗ = Z∗◦j and j : G→ E⊗̃lY is the canonical embedding, given by j(g) = e⊗g.
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(ii) Let (Ψ,Ψ∗) be complementary finite Young functions and ρe : HΨ(P, Y ) → Kc. In

addition to the descriptions of ρe in Theorem 7.3.7, C◦ and FZ∗G,e are respectively,

given by

C◦ = {Z∗ ∈ LΨ∗(P )⊗̃lY ∗ : Z∗(c) ≥ 0 for all c ∈ C}

and, for all x ∈ HΨ(P, Y ),

FZ
∗

G,e[x] =

{
g ∈ G :

∫
Ω
x(ω)Z∗(ω) dP ≤ z∗(g)

}
,

where z∗ = Z∗◦j and j : G→ E⊗̃lY is the canonical embedding, given by j(g) = e⊗g.

(iii) Let E be a separable Banach lattice with order continuous norm and a quasi interior

point 0 < e ∈ E and ρe : E⊗̃lY → Kc. In addition to the descriptions of ρe in

Theorem 7.3.7, C◦ and FZ∗G are respectively, given by

C◦ = {Z∗ ∈ E∗⊗̃lY ∗ : Z∗(c) ≥ 0 for all c ∈ C}

and, for all x ∈ E⊗̃lY ,

FZ
∗

G,e[x] =

g ∈ G :
∑
i,j

x∗i (xj)y
∗
i (yj) ≤

∑
i

x∗i (e)y
∗
i (g)

 .

where x =
∑

j xj ⊗ yj, for some sequences (xi) ⊆ E and (yi) ⊆ F such that

‖
∑

i |xj |‖E < ∞ and limn→∞ ‖yj‖Y = 0, and Z∗ =
∑

j x
∗
j ⊗ y∗j , for some sequences

(x∗i ) ⊆ E∗ and (y∗i ) ⊆ Y ∗ such that ‖
∑

i |x∗j | ‖E∗ <∞ and limn→∞ ‖y∗j ‖Y ∗ = 0.

Proof. (i) Let Y ∗ be a Banach space with the Radon-Nikodým property. If (Ω,F , P ) is

a probability space, 1 ≤ p < ∞ and 1
p + 1

q = 1, then ((Lp(P, Y ), (Lq(P, Y
∗), 〈 ·, ·〉), where

〈 ·, ·〉 : Lp(P, Y )× Lq(P, Y ∗)→ R is given by

〈u, v〉 =

∫
Ω
u(t)v(t) dP,

is a dual pair (see [52]).

By the respective definitions of C◦ and FZ∗G,e, it follows that

C◦ = {Z∗ ∈ Lq(P, Y ∗) : Z∗(c) ≥ 0 for all c ∈ C}

and, for all x ∈ Lp(P, Y ),

FZ
∗

G,e[x] =

{
g ∈ G :

∫
Ω
x(ω)Z∗(ω) dP ≤ z∗(g)

}
,
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where z∗ = Z∗ ◦ j and j : G→ E⊗̃lY is the canonical embedding, given by j(g) = e⊗ g.

(ii) Let Y ∗ be a Banach space with the Radon-Nikodým property. If (Ω,F , P ) is a

probability space, and Ψ a finite Young function with complementary finite Young function

Ψ∗, then ((HΨ(P, Y ), (LΨ∗(P, Y
∗), 〈 ·, ·〉), where 〈 ·, ·〉 : (HΨ(P, Y )×LΨ∗(P, Y

∗)→ R is given

by

〈u, v〉 =

∫
Ω
u(t)v(t) dP,

is a dual pair (see [114]). The rest follows as in (i).

(iii) If E is a separable Banach lattice with order continuous norm and a quasi interior

point 0 < e ∈ E, then (E⊗̃lY,E∗⊗̃lY ∗, 〈 ·, ·〉), where 〈 ·, ·〉 : E⊗̃lY × E∗⊗̃lY ∗ → R is given

by

〈u, v〉 =
∑
i,j

x∗i (xj)y
∗
i (yj),

and u =
∑

j xj ⊗ yj , for some sequences (xi) ⊆ E and (yi) ⊆ Y such that ‖
∑

i |xj |‖E <∞
and limn→∞ ‖yj‖Y = 0, and v =

∑
j x
∗
j ⊗ y∗j , for some sequences (x∗i ) ⊆ E∗ and (y∗i ) ⊆ Y ∗

such that ‖
∑

i |x∗j |‖E∗ <∞ and limn→∞ ‖y∗j ‖Y ∗ = 0, is a dual pair (see [31]).

By the respective definitions of C◦ and FZ∗G,e, it follows that

C◦ = {Z∗ ∈ E∗⊗̃lY ∗ : Z∗(c) ≥ 0 for all c ∈ C}

and, for all x ∈ E⊗̃lY ,

FZ
∗

G,e[x] =

g ∈ G :
∑
i,j

x∗i (xj)y
∗
i (yj) ≤

∑
i

x∗i (e)y
∗
i (g)

 ,

where x =
∑

j xj⊗yj , for some sequences (xi) ⊆ E and (yi) ⊆ F such that ‖
∑

i |xj |‖E <∞
and limn→∞ ‖yj‖Y = 0, and Z∗ =

∑
j x
∗
j ⊗ y∗j , for some sequences (x∗i ) ⊆ E∗ and (y∗i ) ⊆ Y ∗

such that ‖
∑

i |x∗j | ‖E∗ <∞ and limn→∞ ‖y∗j ‖Y ∗ = 0.

Remark 7.3.9. Consider the case Y = Rd and G = Rm. Let Ei = 1 for all 1 ≤ i ≤ d and

identify g = (g1, . . . , gm) ∈ Rm and (g1, · · · , gm, 0 . . . , 0) ∈ Rd. Then

(1⊗ g) =

m∑
i=1

giE
i.

Consequently, for all Z∗ ∈ Lq(P,Rd) and X ∈ Lp(P,Rd) (respectively, Z∗ ∈ LΨ(P )⊗̃lRd and

X ∈ HΨ(P,Rd)) we may replace the expression for FZ∗G [x] in Corollary 7.3.8 (i) (respectively

(ii)) by

FZ
∗

G [x] =
{
u ∈ Rm :

∫
Ω

(
x−

m∑
i=1

uiE
i
)
· Z∗ dP ≤ 0

}
.

This yields the expression as considered by Hamel et al. [79] for the case Lp(P,Rd).



Appendix A

Appendix: Functional analysis

background

A.1 Riesz spaces

To properly understand the concept of duality, it is necessary to know some important

properties about certain Riesz spaces. This section will cover these properties. The reader

is referred to [32], [54], [167] and [168] for more details. Most theorems in this chapter are

taken from [168].

Definition A.1.1. (X,≤) is a partially ordered set if ≤ is a partial ordering, i.e.

(i) x ≤ x for all x ∈ X,

(ii) x ≤ y and y ≤ z implies x ≤ z and

(iii) x ≤ y and y ≤ x implies x = y.

We will denote the partially ordered set (X,≤) by X if it is clear which partial ordering

is meant.

Definition A.1.2. Let X be a partially ordered set.

(i) If every subset of X consisting of two elements has a supremum and an infimum then

X is called a lattice.

(ii) We denote sup{x, y} by x ∨ y and inf{x, y} by x ∧ y for all x, y ∈ X.

(iii) We write x+ = x ∨ 0, x− = (−x) ∨ 0 and |x| = x+ + x−.

169
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(iv) xn ↑ x denotes that (xn) is an increasing sequence and x = sup{xn : n ∈ N}.

Definition A.1.3. The real vector space E is called an ordered vector space if E has a

partial ordering satisfying

(i) f ≤ g ⇒ f + h ≤ g + h for every f, g, h ∈ E and

(ii) f ≥ 0⇒ αf ≥ 0 for every α ≥ 0 in R.

If E is also a lattice with respect to the partial ordering, then E is called a Riesz space or

a vector lattice.

Riesz spaces allow for the following algebraic structures.

Definition A.1.4. Let E be a Riesz space.

(i) R ⊆ E is called a Riesz subspace if R is a vector subspace of E and for all x, y ∈ R
we have x ∧ y ∈ R and x ∨ y ∈ R.

(ii) S ⊆ E is called solid if f ∈ S implies
[
-|f |, |f |

]
⊆ S.

(iii) A ⊆ E is called an ideal if A is a solid vector subspace.

(iv) An ideal B ⊆ E is called a band if for all D ⊆ B with f = supD, we have f ∈ B.

Definition A.1.5. Let E be a Riesz space. Then E is called

(i) Archimedean if inf{un : n ∈ N} = 0 for all u ∈ E+.

(ii) Dedekind complete if every non-empty subset of E that is bounded above (bounded

below) has a supremum (infimum).

Definition A.1.6. Let E be a Riesz space. We say that f, g ∈ E are disjoint if |f |∧ |g| = 0

and we write f⊥g. If D is a non empty subset of E, then the set

Dd = {f ∈ E : f⊥g ∀ g ∈ D}

is called the disjoint complement of D. This set is sometimes denoted by D⊥.

Definition A.1.7. A map P : E → E is a projection if P 2x = P (Px) = Px for all x ∈ E.

Definition A.1.8. A band B in a Riesz space E is called a projection band if

E = B ⊕Bd.
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Let B be a projection band of a Riesz space E. The map PB : E → B, defined by

PB(x) = x1, where x = x1 + x2, x1 ∈ B and x2 ∈ Bd, is a linear projection and a Riesz

homomorphism, i.e. |PBx| = PB|x|. Moreover, PB is order continuous, i.e. if 0 ≤ xα ↑ x in

E, then PB(xα) ↑ PB(x). Furthermore, for all x ∈ E+

PB(x) = sup{y ∈ B : 0 ≤ y ≤ x}.

If B⊕Bd = E for every band B in E, then E is said to have the projection property. It

is well-known that Archimedean Riesz spaces have the projection property and Riesz spaces

with the projection property are Dedekind complete.

For any nonempty subset D of the Riesz space E, the intersection of all bands containing

D is called the band generated by D, denoted by BD. In particular, if D consists of one

element u, then we write BD = Bu and Bu is called the principle band generated by u.

The projection determined by a principal projection band Bu is denoted by Pu. It is

known, see [167], that for all x ∈ E+,

Pu(x) = sup{x ∧ n|u| : n ∈ N}. (A.1)

Definition A.1.9. An element e > 0 in the Riesz space E is called a weak order unit if

Be = E.

If e is a weak order unit of E, then (A.1) implies x ∧ ne ↑ x for all x ∈ E+. The next

result shows that the positivity assumption on x is not required.

Lemma A.1.10. If the Riesz space E has a weak order unit e ∈ E+, then

x ∧ ne ↑ x for all x ∈ E.

Proof. For any x ∈ E

x ∧ ne = (x ∧ ne)+ − (x ∧ ne)−

= (x ∧ ne) ∨ 0− (−(x ∧ ne)) ∨ 0

= (x ∨ 0) ∧ (ne ∨ 0)− ((−x) ∨ (−ne)) ∨ 0

= x+ ∧ ne− ((−x) ∨ (−ne) ∨ 0)

= x+ ∧ ne− ((−x) ∨ 0)

= x+ ∧ ne− x−.

Since x+ ≥ 0, using the above we know that x+ ∧ ne ↑ x+. Therefore,

x ∧ ne = x+ ∧ ne− x− ↑ x+ − x− = x,
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which completes the proof.

Consider a vector subspace A of a vector space V . We can divide V into equivalence

classes modulo A by introducing an equivalence relation in V defined by saying that f and

g in V are equivalent if and only if f − g ∈ A. The set of all equivalence classes is called

the quotient space of V modulo A and is denoted by V/A.

The quotient space V/A is a vector space if we define the vector space operations by

[f ] + [g] = [f + g] and

α[f ] = [αf ]

for all [f ], [g] ∈ V/A and α ∈ R.

Theorem A.1.11. If A is an ideal in the Riesz space E, then the quotient space E/A is

a Riesz space with respect to the following partial ordering: given [f ] and [g] in E/A, we

write [f ] ≤ [g] whenever there exists elements f1 ∈ [f ] and g1 ∈ [g] satisfying f1 ≤ g1.

A.2 Order duality

Now that we know the basics of Riesz spaces we can start looking at the definitions of

algebraic and order duals and look at some of their important properties.

Definition A.2.1. Let X and Y be vector spaces.

(i) A linear operator is a map T : X → Y that satisfies T (αx + βy) = αT (x) + βT (y)

for each α, β ∈ R and x, y ∈ X.

(ii) We shall denote by L(X,Y ) the vector space of all linear operators from X into Y .

(iii) In the case where Y = R, we shall denote L(X,Y ) by X#. The elements of X# are

called linear functions and X# is called the algebraic dual of X.

Definition A.2.2. Let E and F be Riesz spaces and let T : E → F be a linear operator.

(i) T is said to be a positive operator if x ≥ 0 in E implies T (x) ≥ 0 in F .

(ii) T is said to be order bounded if T maps any order interval in E into an order interval

in F . We will denote the set of all order bounded linear operators by Lb(E,F ).

(iii) T is said to be regular if T can be written as T = T1 − T2 where both T1 and T2 are

positive. We will denote the set of all regular linear operators by Lr(E,F ).



173 Chapter A Appendix: Functional analysis background

(iv) T is called order continuous if for any downwards directed set D ⊆ E with D ↓ 0 we

have inf{|T (f)| : f ∈ D} = 0 in F . The vector space of all order continuous operators

in Lb(E,F ) is denoted by Ln(E,F ).

(v) T is called σ-order continuous if for any monotone sequence (fn) in E with fn ↓ 0

we have inf{|T (fn)| : n ∈ N} = 0 in F . The vector space of all σ-order continuous

operators in Lb(E,F ) is denoted by Lc(E,F ).

Theorem A.2.3. Let E be a Riesz space and F a Dedekind complete Riesz space. Then

Lb(E,F ) is a Dedekind complete Riesz space.

The following result shows how the spaces Lr(E,F ) and Lb(E,F ) are related.

Theorem A.2.4. If E and F are Riesz spaces with F Dedekind complete and T : E → F is

a linear operator, then T is regular if and only if T is order bounded, i.e. then Lr(E,F ) =

Lb(E,F ).

Since R is a Dedekind complete Riesz space, we have that if F = R, then order bounded

linear functionals on E are the same as regular linear functionals on E. This space of all

order bounded linear functionals is called the order dual of E and is denoted by E∼.

We will denote the set of all order continuous linear functional of E by E∼n and the set

of all σ-order continuous linear functionals of E by E∼c . Their disjoint complements will be

denoted by E∼t and E∼s respectively. The elements of E∼s are called singular elements.

Since E∼ is Dedekind complete, it has the projection property and we have the following

theorem taken from [167].

Theorem A.2.5. Let E be a Riesz space. Then

(i) E∼c is a projection band in E∼, i.e.

E∼ = E∼c ⊕ E∼s .

Therefore, for any φ ∈ (E∼)+, there exists a unique decomposition

φ = φc + φs,

with φc ∈ (E∼c )+ and φs ∈ (E∼s )+.

(ii) Similarly for E∼n and E∼t , i.e.

E∼ = E∼n ⊕ E∼t .
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The following result, also taken from [167], gives a complete description of φc and φs

for φ ≥ 0.

Theorem A.2.6. For any φ ≥ 0 in E∼ and u ≥ 0 in E, the σ-order continuous component

φc of φ satisfies

φc(u) = inf{limφ(un) : 0 ≤ un ↑ u}.

Hence, φ is singular, i.e. φ = φs, if and only if for any ε > 0, there exists a sequence

0 ≤ un ↑ u in E such that 0 ≤ φ(un) < ε for all n.

A.3 Banach lattices

The next step is to introduce norms on Riesz spaces which are compatible with the order

structure.

Definition A.3.1. Let X be a real vector space. A map ‖ · ‖ : X → R is called a norm if

(i) ‖f‖ ≥ 0 for all f ∈ X and ‖f‖ = 0 if and only if f = 0,

(ii) ‖αf‖ = |α|‖f‖ for all f ∈ X and α ∈ R and

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f , g ∈ X.

The pair (X, ‖ · ‖) is called a normed space. If (X, ‖ · ‖) is complete with respect to the

norm, i.e. every norm Cauchy sequence has a limit in X, then (X, ‖ · ‖) is called a Banach

space.

We denote the normed space (X, ‖ · ‖) by X and call X a Banach space, if it is clear

which norm is meant. The next theorem shows that if a vector space is complete with

respect to two norms, then the two norms must be equivalent.

Theorem A.3.2. Let ‖ · ‖1 and ‖ · ‖2 be norms on a vector space X. If (X, ‖ · ‖1) and

(X, ‖ · ‖2) are Banach spaces, then ‖ · ‖1 is equivalent to ‖ · ‖2, i.e. there exist α, β ∈ R such

that α‖ · ‖1 ≤ ‖ · ‖2 ≤ β‖ · ‖2.

Definition A.3.3. Let E be a Riesz space.

(i) If E is equipped with a norm ‖ · ‖, then ‖ · ‖ is called a Riesz norm if for all f, g ∈ E
with |f | ≤ |g|, we have that ‖f‖ ≤ ‖g‖.

(ii) A Riesz space E equipped with a Riesz norm is called a normed Riesz space.
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(iii) If a normed Riesz space E is complete with respect to the norm, then E is called a

Banach lattice.

Definition A.3.4. The normed Riesz space E is said to have an order continuous norm if

for any subset D ↓ 0 in E, we have inf{‖f‖ : f ∈ D} = 0. The norm is said to be σ-order

continuous if for any sequence fn ↓ 0 in E, we have ‖fn‖ ↓ 0.

We next define some special types of Banach lattices, which we will encounter at a later

stage.

Definition A.3.5. Let E denote a normed Riesz space.

(i) (E, ‖ · ‖) is called an L-normed space if ‖ · ‖ satisfies ‖x + y‖ = ‖x‖ + ‖y‖ for all

x, y ∈ E+. An L-normed Banach lattice is called an AL-space.

(ii) (E, ‖ · ‖) is called an M -normed space if ‖ · ‖ satisfies ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖ for all

x, y ∈ E+. An M -normed Banach lattice is called an AM -space.

A.4 Norm duality

In this section, we will define the Banach dual of normed Riesz spaces and relate Banach

duals to order duals.

Definition A.4.1. Let X and Y be normed spaces. A linear operator T : X → Y is said

to be norm bounded if there exists a constant A > 0 such that ‖Tx‖ ≤ A ‖x‖ for all x ∈ X.

Definition A.4.2. Let X and Y be normed spaces.

(i) We define the normed space L(X,Y ) by

L(X,Y ) := {T ∈ L(X,Y ) : T is norm bounded}

together with the operator norm ‖ · ‖, defined by

‖T‖ = sup{ ‖Tx‖ : ‖x‖ ≤ 1} for all T ∈ L(X,Y ).

(ii) In the case where Y = R, we will denote L(X,Y ) by X∗. The elements of X∗ are

called linear functionals and X∗ is called the continuous dual space or the Banach

dual space of X.
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If X is a normed space and Y is a Banach space, then L(X,Y ) is also a Banach space

with respect to the operator norm. In particular, we have that X∗ is a Banach space.

Theorem A.4.3. Let E and F be Banach lattices with F Dedekind complete. Then, for

all T ∈ L(E,F ) and T ≥ 0,

‖T‖ = sup{‖Tx‖ : 0 ≤ x ∈ E, ‖x‖ ≤ 1}.

Theorem A.4.4. If E is a Banach lattice, then E∗ = E∼.

Definition A.4.5. Let X and Y be Banach spaces and T : X → Y a bounded linear map.

Then the adjoint T ∗ : Y ∗ → X∗ of T is given by[
T ∗(y∗)

]
(x) = y∗(Tx),

for all x ∈ X and y∗ ∈ Y ∗.

A.5 Semi-M-spaces

In this section, we explain what is meant by a semi-M-space and characterise these spaces

in terms of AL-spaces.

Definition A.5.1. Let (E, ‖·‖) be a normed Riesz space. The space E is called a semi-

M-space if it has the property that for all u1 and u2, positive elements in E with ‖u1‖ =

‖u2‖ = 1 and for any sequence (vn) with u1 ∨ u2 ≥ vn ↓ 0, we have lim ‖vn‖ ≤ 1.

Example A.5.2.

1. If E is an M-space, then E is also a semi-M-space, as in this case

‖u1‖ = ‖u2‖ = 1⇒ ‖u1 ∨ u2‖ = 1.

2. If the norm ‖·‖ is σ-order continuous, then E is a semi-M-space, as in this case

vn ↓ 0⇒ lim ‖vn‖ = 0.

The following is an important characterisation of semi-M-spaces.

Theorem A.5.3. The normed Riesz space E is a semi-M-space if and only if the band E∗s

in the Banach dual E∗ is an AL-space.
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Proof. [167, Thm 119.2] We will only prove the one direction. The proof of the other

direction is not necessary in this thesis but can be found in the above reference.

Assume that E is a semi-M-space. The norms of E and E∗ will be denoted by ‖·‖
and ‖·‖∗ respectively. Let φ1 and φ2 be positive elements of E∗s . Then, ‖φ1 + φ2‖∗ ≤
‖φ1‖∗ + ‖φ2‖∗. We need to prove this inequality in the other direction.

Let ε > 0 be given. Since E is a semi-M-space, it follows from Theorem A.4.3, that

there exists positive elements u1 and u2 in E such that ‖u1‖ = ‖u2‖ = 1,

φ1(u1) > ‖φ1‖∗ − ε and φ2(u2) > ‖φ2‖∗ − ε.

Set u = u1 ∨u2 and φ = φ1 +φ2. Then u ∈ E+ and 0 ≤ φ ∈ E∗s . Hence, by Theorem A.2.6,

there exists a sequence 0 ≤ wn ↑ u in E such that φ(wn) < ε for all n. Writing vn = u−wn
for all n, we have that u1 ∨ u2 = u ≥ vn ↓ 0 and so lim ‖vn‖ ≤ 1 as we assumed that E is

a semi-M-space. Therefore, there exists a natural number n0 such that ‖vn‖ < 1 + ε for all

n ≥ n0. For these values of n, we get

‖φ1 + φ2‖∗ = ‖φ‖∗

≥ φ
( vn

1 + ε

)
= φ

(u− wn
1 + ε

)
≥ φ

( u

1 + ε

)
− ε

1 + ε

=
1

1 + ε

{
φ1(u) + φ2(u)− ε

}
≥ 1

1 + ε

{
φ1(u1) + φ2(u2)− ε

}
≥ 1

1 + ε

{
‖φ1‖∗ + ‖φ2‖∗ − 3ε

}
.

Hence, for all ε > 0, we have ‖φ1 + φ2‖∗ ≥ 1
1+ε

{
‖φ1‖∗ + ‖φ2‖∗ − 3ε

}
, which implies

that ‖φ1 + φ2‖∗ ≥ ‖φ1‖∗ + ‖φ2‖∗. This proves that ‖·‖∗ is 1-additive on E∗s . Since E∗s is a

band in the Banach space E∗, it is norm complete and therefore, E∗s is an AL-space.

The proof of the theorem that E is a semi-M-space if and only if E∗s is an AL-space is

due to de Jonge [37]. However, he assumed that E has the principal projection property to

prove it. Fremlin noted that the principle projection property is superfluous.

Orlicz spaces are an example of non-trivial semi-M-spaces [167].
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A.6 Measure Theory

Let Ω be a non-empty set. A collection S of subsets of Ω is called an algebra on Ω if S has

the following properties:

(i) Ω ∈ S,

(ii) if A ∈ S then Ac ∈ S, and

(iii) if A1, A2, . . . , An ∈ S, then
⋃n
i=1Ai ∈ S.

An algebra S on Ω is called a σ-algebra if it is closed under countable unions, i.e. if Ak ∈ S
for k ∈ N, then

⋃∞
k=1Ak ∈ S. It is easily seen that a σ-algebra is closed under countable

intersections.

If Ω is a non-empty set and S a σ-algebra on Ω, then (Ω, S) is called a measurable space

and the sets in S are called measurable sets.

Let (Ω, S) be a measurable space. A function µ : S → [0,∞] is called a measure if

µ(∅) = 0 and µ is σ-additive, i.e. if (Ak)k∈N is a sequence of disjoint sets in S, then

µ(
∞⋃
k=1

Ak) =
∞∑
k=1

µ(Ak).

The triplet (Ω, S, µ) is called a measure space. If µ(Ω) = 1, then µ is called a probability

measure and (Ω, S, µ) is called a probability space. If µ(Ω) < ∞, then µ is called a finite

measure. A measure µ is called σ-finite if there exists a sequence (Xk)k∈N of sets in S such

that Ω =
⋃∞
k=1Xk and µ(Xk) <∞ for every k ∈ N.

Financial mathematics is based on the theory of stochastic processes. Hence, it is very

important to understand what a stochastic process is and the concepts surrounding it. Most

of this section is taken from [86, 87, 123].

Definition A.6.1. A stochastic process (Xt)t∈I is a collection of real-valued random vari-

ables Xt : Ω → R, indexed by t ∈ I, where I is some index set. When I = N, then X is

called a discrete-time process and when I = R+, then X is called a continuous-time process.

The following definition classifies a widely-used type of stochastic process.

Definition A.6.2. A function x : R+ → R is called right continuous with left limits or

more commonly càdlàg, if the left limit xt− and the right limit xt+ are finite and xt = xt+

for all t ∈ R+. A process is called càdlàg if all its sample paths are càdlàg almost surely.
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In financial mathematics, the idea of the flow of information plays an important role.

This is formalised through the concept of filtrations.

Definition A.6.3. Consider a probability space (Ω,F , P ). A family of σ-algebras F =

(Ft)t∈R+ is called a filtration if Fs ⊆ Ft ⊆ F for all s ≤ t ∈ R+. If we endow a probability

space with a filtration F, such that

F0 ⊆ F1 ⊆ · · · ⊆ FT = F ,

then the combined structure (Ω,F ,F, P ) is called a filtered probability space.

The filtration F is used to model the flow of information. As time passes, an observer

knows more and more detailed information, that is finer and finer partitions of Ω.

Definition A.6.4. A random variable X on (Ω,F) is called a Ft-measurable function if

for any Borel set B ∈ B, the set {ω : Xt(ω) ∈ B} is a member of Ft.

The definition of Ft-measurable is equivalent to {ω : Xt(ω) ≤ x} ∈ Ft for all x ∈ R.

Definition A.6.5.

(i) Consider a probability space (Ω,F , P ). The σ-algebra F is called P -complete if and

only if A ⊆ B with B ∈ F such that P (B) = 0 implies that A ∈ F .

(ii) A filtered probability space (Ω,F ,F, P ) is complete if the σ-algebra F is P -complete

and F0 contains all the P -null sets of F .

Definition A.6.6. A filtered probability space (Ω,F ,F, P ) is said to satisfy the usual

conditions if it is complete and the filtration is right continuous, i.e.

Ft = Ft+ :=
⋂
t>s

Fs.

The right continuity implies that any information known immediately after t is also known

at t.

Definition A.6.7. A nonnegative random variable τ , which is allowed to take the value

∞, is called a stopping time with respect to the filtration F if

{τ ≤ t} ∈ Ft for all t ∈ R+.
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Definition A.6.8. Let τ be a stopping time. The stopped process Mt∧τ is defined by

Mt∧τ = M τ
t = 1{t<τ}Xt + 1{t≥τ}Xτ for all t ∈ R+.

Definition A.6.9.

(i) A process X is said to be adapted to F if Xt is Ft-measurable for every t ∈ R+.

(ii) A process X is said to be predictable with respect to F, if it is one of the following:

(a) a left-continuous adapted process, in particular, a continuous adapted process.

(b) a limit (almost sure, in probability) of left-continuous adapted processes.

(c) a regular right-continuous process such that, for any stopping time τ , Xτ is

Fτ -measurable, where Fτ is the σ-algebra generated by the sets A∩{T < t} for

A ∈ Ft.

(d) a Borel-measurable function of a predictable process.

(iii) A process X is locally bounded if sup
0≤t≤T

|Xt| <∞, i.e. if there exists a sequence (τn) of

stopping times, increasing almost surely to ∞, such that the stopped processes Xτn
t

are uniformly bounded for each n ∈ N.

We next define processes with finite variation, as this will be needed to define certain

types of martingales.

Definition A.6.10. Let t ∈ R+. A sequence of partitions (πnt )n∈N of the interval [0, t],

with πnt = {tn0 , . . . , tnmn} for each n ∈ N and lim
n→∞

‖πnt ‖ = 0, is called a Riemann sequence.

Definition A.6.11. Let X be a càdlàg adapted process and for each t ∈ R+, choose a

Riemann sequence (πnt )n∈N. For p > 0 and for the partition πnt , define

S(p)(X,πnt ) =

mn−1∑
i=0

|Xtni−1
−Xtni

|p.

If for each t ∈ R+

V
(p)
t (X) := lim

n→∞
S(p)(X,πnt ) <∞ a.s.,

then the process V (p)(X) is well-defined and is called the pth variation of X.

Definition A.6.12. A càdlàg adapted process A is of finite variation if V
(1)
t (A) <∞ a.s.

for all t ∈ R+. A càdlàg adapted process A is of bounded variation if sup
t∈R+

V
(1)
t (A) <∞.
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A.7 Lp-spaces

Let (Ω,F , P ) be a measure space and denote by L0(P ) the set of measurable functions

f : Ω→ R. It is well-known that L0(P ) is an ordered vector space under pointwise addition,

scalar multiplication and ordering. Moreover, L0(P ) is a Dedekind complete Riesz space,

in which the following identities hold:

(f ∨ g)(ω) = max{f(ω), g(ω)} a.e. and (f ∧ g)(ω) = min{f(ω), g(ω)} a.e.

for all f, g ∈ L0(P ). Two measurable real functions f and g on Ω are equivalent if they

agree almost everywhere, i.e. f ∼ g if and only if f = g a.e.. It follows easily that ∼ is an

equivalence relation.

The space L0(P ) is defined to be the collection of equivalence classes of (P -a.e. equal)

measurable functions, i.e.

L0(P ) = L0(P )/ ∼ .

Endowed with the canonical addition, scalar multiplication and order of quotient spaces,

L0(P ) is a Dedekind complete Riesz space (see [168]).

The space L∞(P ) comprises of the equivalence classes of measurable functions, which

are essentially bounded, i.e. inf{M > 0 : |f | ≤ M a.e.} < ∞. Then L∞(P ) is a Banach

lattice with respect to the essential sup norm, defined by

‖f‖∞ = inf{M > 0 : |f | ≤M}.

For 1 ≤ p <∞, the space Lp(P ) is defined to be the collection of equivalence classes of

measurable functions f for which
∫

Ω |f |
pdP < ∞. Then Lp(P ) is an ideal in L0(P ) (and

therefore a Dedekind complete Riesz space in its own right). Moreover, Lp(P ) is a Banach

lattice with respect to the p-norm ‖ · ‖p defined by

‖f‖p =
(∫

Ω
|f |pdP

) 1
p
.

It is well known that 1 is a weak order unit in Lp(P ) for p = 0 and 1 ≤ p ≤ ∞.

What is interesting about the duals of the Lp-spaces is that they are themselves Lp-

spaces. The Riesz representation theorem, stated next, shows how these duals can be

represented.

Theorem A.7.1. Suppose 1 ≤ p < ∞, P is a σ-finite positive measure on Ω, and Φ is a

bounded linear functional on Lp(P ). Then there exists a unique g ∈ Lq(P ), where q is the

exponent conjugate of p, i.e. 1
p + 1

q = 1, such that

Φ(f) =

∫
Ω
fgdP for all f ∈ Lp(P ).
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Moreover, if Φ and g are related as above, then we have

(i) ‖Φ‖p = ‖g‖q and

(ii) Φ ≥ 0 if and only if g ≥ 0.

In other words, Lp(P ) is isometrically and order isomorphic to (Lq(P ))∗, under the

stated conditions.

The following is one of the fundamental results of measure and integration theory.

Theorem A.7.2 (Radon-Nikodým theorem). Let P and Q be positive bounded measures

on a σ-algebra F in a set Ω. Then there exists a unique g ∈ L1(P ) such that

Q(E) =

∫
E
gdP for all E ∈ F .

The function g is called the Radon-Nikodým derivative of Q with respect to P , usually

denoted by dQ
dP .

Note that dQ
dP is called the density of the measure Q if

∫
Ω
dQ
dP dP = 1.

Let (Ω,F , P ) be a probability space and F1 a sub σ-algebra of F . If f ∈ L1(P ), define

Q(A) =

∫
A
f(ω)dP (ω) for all ω ∈ F1.

Then Q : F0 → R is a measure which is absolutely continuous with respect to P , i.e. if

A ∈ F1 and P (A) = 0, then Q(A) = 0, denoted by Q << P . By the Radon-Nikodým

theorem, there exists g ∈ L1(P ) which is P -almost surely unique, F1-measurable and∫
A
f(ω)dP (ω) =

∫
A
g(ω)dP (ω) for all ω ∈ F1.

As is customary, g is called the conditional expectation of f relative to F1, and is denoted

by E[f |F1] (or alternatively by EF1 [f ]).

If viewed as an operator on L1(P ), it is well-known that E[ · |F1] has the following

properties.

Theorem A.7.3. Let (Ω,F , P ) be a probability space and F1 a sub σ-algebra of F . Then

the map E[ · |F1] : L1(P )→ L1(P ) has the following properties:

(i) E[ · |F1] is linear,

(ii) E[ · |F1] is positive,

(iii) E[1|F1] = 1 a.s.,
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(iv) E
[
E[ · |F1]

∣∣F1

]
= E[ · |F1]; i.e. E[ · |F1] is idempotent,

(v) if F2 is a sub σ-algebra of F and F1 ⊆ F2, then

E
[
E[ · |F1]

∣∣F2

]
= E

[
E[ · |F2]

∣∣F1

]
= E[ · |F1],

(vi) E[ · |F1] is order continuous,

(vii) if φ : R → R is convex, then φ(E[ · |F1]) ≤ E[φ(·)|F1], which is known as Jensen’s

inequality, and

(viii) ‖E[ · |F1] ‖ = 1.

Moreover, if 1 ≤ p < ∞, the restriction of E[ · |F1] to Lp(P ), again denoted by E[ · |F1], is

a map E[ · |F1] : Lp(P )→ Lp(P ) such that ‖E[ · |F1] ‖ = 1.

A.8 Martingales

The theory of martingales is central to all of financial mathematics. In this section we will

define some of the basic concepts.

Definition A.8.1. A process M is called a P -martingale if

1. M is adapted to F,

2. Mt is integrable for all t ∈ R+ and

3. EP [ Mt|Fs ] = Ms for all s ≤ t ∈ R+.

If it is clear from the context what the measure is, we call a P -martingale a martingale.

Definition A.8.2. A P -martingale M is uniformly integrable if

lim
n→∞

sup
t∈R+

∫
{|Mt|≥n}

|Mt| dP = 0.

Definition A.8.3. An adapted process Mt is called a local P -martingale if there exists a

sequence of stopping times τn, such that τn ↑ ∞ and for each n the stopped process Mt∧τ

is a uniformly integrable martingale in t.

The most general processes, for which stochastic calculus has been developed, are semi-

martingales.
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Definition A.8.4. A regular càdlàg adapted process S is a semimartingale if it can be

represented as a sum of two processes: a local martingale Mt with M0 = 0 and a process of

finite variation At with A0 = 0, and

St = S0 +Mt +At.

If we consider a process S with unbounded jumps, then we need to introduce another

type of martingale, which allows for the fundamental theorem of asset pricing to be defined

in a more general setting. The concept of sigma-martingales was introduced by Chou [28]

and Émery [58], although the name was first coined by Delbaen and Schachermayer [40].

Definition A.8.5. A Rd-valued semimartingale S is called a sigma-martingale if there

exists a Rd-valued martingale M and an M -integrable predictable R+-valued process ϕ

such that S = ϕ ·M .

The following characterisation of sigma-martingales was noted by Émery [58].

Proposition A.8.6. Let S be a d-dimensional semimartingale on (Ω,F , (Ft)t∈[0,T ], Q).

The following conditions are equivalent:

(i) S is a sigma-martingale.

(ii) There exists (scalar) processes Ki with paths, which Q-a.s. never touch zero, such

that Ki is predictable and Si-integrable under Q and Ki · Si is a local martingale.

(iii) There exists a d-dimensional martingale N and a positive (scalar) process ϕ, with

each ϕi predictable and N i-integrable under Q, such that Si = ϕi ·N i.

We will denote the set of sigma-martingales measures absolutely continuous with respect

to P by Mσ(S), i.e.

Mσ(S) = {Q << P : S is a sigma-martingale under Q}.

Note that if S is bounded (resp. locally bounded), then

Mσ(S) = {Q << P : S is a martingale (resp. local martingale) under Q}.

The following example of sigma-martingales is taken from [40].

Example A.8.7.

1. A local martingale is a sigma-martingale.
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2. Let (Ω,F , P ) be such that there are two independent stopping times T and U defined

on it, both having an exponential distribution with parameter 1. Define M by

Mt =


0 for t < T ∧ U
1 for t ≥ T ∧ U and T = T ∧ U
−1 for t ≥ T ∧ U and T = T ∧ U .

It is easy to verify thatM is almost surely well-defined and is a martingale with respect

to the filtration (Ft)t∈R+ generated by M . Let ϕt = 1
t . Then, ϕt is predictable (as it

is deterministic) and it is M -integrable. Define X = ϕ ·M , i.e.

Xt =


0 for t < T ∧ U

1
T∧U for t ≥ T ∧ U and T = T ∧ U
− 1
T∧U for t ≥ T ∧ U and T = T ∧ U .

The process X is well-defined but fails to be a martingale as E[|Xt|] =∞ for all t > 0.

X also fails to be a local martingale as E[|XT |] =∞ for each stopping time T that is

not identically zero (see [58] for more details). But of course, X is a sigma-martingale.

Definition A.8.8. A probability measure Q on (Ω,F) is called an equivalent (local/sigma)

martingale measure for S if Q is equivalent to P , i.e. P (A) = 0 if and only if Q(A) = 0

(they agree on impossible events), and S is a (local/sigma) martingale under Q.



Appendix B

Appendix: Tensor products on

Banach spaces

B.1 Definition

In this section, we assume that X, Y and Z are vector spaces.

Definition B.1.1. A mapping A : X×Y → Z is bilinear if it is linear in each variable, i.e.

A(a1x1 + a2x2, y) = a1A(x1, y) + a2A(x2, y) and

A(x, b1y1 + b2y2) = b1A(x, y1) + b2A(x, y2)

for all xi, x ∈ X, yi, y ∈ Y and scalars ai, bi, i = 1, 2.

We denote the vector space of bilinear mappings from X × Y into Z by B(X × Y,Z).

If Z is the scalar field, then we write B(X × Y ).

Definition B.1.2. A tensor product of the vector spaces X and Y is a pair (T, t) consisting

of a vector space T and a bilinear mapping t : X × Y → T which satisfies the following

universal mapping property:

(UMP) If (G,A) is a pair consisting of a vector spaceG and a bilinear mappingA : X×Y → G,

then there exists a unique linear mapping Al : T → G such that A = Al ◦ t.

It is well known, and easy to prove, that the pair (T, t) is essentially unique. The pair

is denoted by (X ⊗ Y,⊗), and X ⊗ Y is referred to as the tensor product of X and Y .
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For x ∈ X and y ∈ Y , define

(x⊗ y)(A) = A(x, y) for all A ∈ B(X × Y ).

As x⊗ y is a linear map on B(X × Y ), the space X ⊗ Y is (under isomorphism) the vector

subspace in

(B(X × Y ))′ = {f : B(X × Y )→ R : f is linear}

spanned by {x⊗ y : x ∈ X, y ∈ Y }, which shows that X ⊗ Y exists.

A typical tensor in X ⊗ Y has the form

u =
n∑
i=1

λixi ⊗ yi, (B.1)

where n ∈ N, λ ∈ R, xi ∈ X and yi ∈ Y . The representation of u is not necessarily unique.

The mapping (x, y) → x ⊗ y can be seen as a type of multiplication on X × Y , which

has the following properties:

(i) (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,

(ii) x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

(iii) λ(x⊗ y) = (λx)⊗ y = x⊗ (λy),

(iv) 0⊗ y = x⊗ 0 = 0.

Because of (iii), the representation of a tensor u given in (B.1) can be rewritten as

u =
n∑
i=1

xi ⊗ yi.

The primary purpose of tensor products is to linearise bilinear mappings.

Proposition B.1.3. For every bilinear map A : X × Y → Z, there exists a unique linear

mapping Ã : X ⊗ Y → Z such that A(x, y) = Ã(x ⊗ y) for all x ∈ X and y ∈ Y .

Thus, L(X ⊗ Y,Z) is isomorphic to B(X × Y,Z). In particular, if Z = R, then we have

B(X × Y ) = (X ⊗ Y )∗.

In other words, the special bilinear map (x, y) → x ⊗ y acts as a ‘universal’ bilinear

map, i.e. every other bilinear map on X × Y factors through this one via a linear mapping

on the tensor product. This is graphically represented by Figure B.1.

An important consequence of this result is that the tensor product X ⊗ Y of vector

spaces X and Y always exists and is unique up to isomorphism.
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Figure B.1: Tensor maps

B.2 Norms on tensor products

Next we consider the question of how to define a norm on the tensor product of two Banach

spaces? Let X and Y be Banach spaces. It is natural to require that

||x⊗ y|| ≤ ||x|| ||y||.

Let u ∈ X ⊗ Y . If u =
∑n

i=1 xi ⊗ yi, then it follows from the triangle inequality that

||u|| ≤
n∑
i=1

||xi|| ||yi||.

This must hold for each representation of u, thus

||u|| ≤ inf{
n∑
i=1

||xi|| ||yi||},

where the infimum is taken over all representations of u.

Definition B.2.1. The projective norm is defined as

π(u) = inf
{ n∑
i=1

||xi|| ||yi|| : u =
n∑
i=1

xi ⊗ yi
}
.

Proposition B.2.2. Let X and Y be Banach spaces. Then, π is a norm on X ⊗ Y and

π(x⊗ y) = ‖x‖ ‖y‖ for x ∈ X and y ∈ Y .

The tensor product endowed with the projective norm π is denoted by X ⊗π Y . Unless

X and Y are finite-dimensional, this space is not complete. Thus, we denote its completion

by X⊗̃πY .
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Now, let E be a Banach lattice and Y a Banach space. A norm introduced by Chaney

and Schaefer, which creates what is called an l-tensor product, is defined by

‖u‖l = inf

{∥∥∥∥ n∑
i=1

‖bi‖ |ai|
∥∥∥∥ : u =

n∑
i=1

ai ⊗ bi

}
for all u ∈ E ⊗ Y.

Then ‖ · ‖l is a norm on E ⊗ Y such that ‖a ⊗ b‖l = ‖a‖ ‖b‖ for all a ∈ E and b ∈ Y .

Moreover, if Y is a Banach lattice, then the norm completion E⊗̃lY of E ⊗ Y with respect

to ‖·‖l is a Banach lattice, with positive cone (E⊗̃lY )+ given by the closure of the projective

cone

E+ ⊗ Y+ =
{ n∑
i=1

xi ⊗ bi : n ∈ N, x1, · · ·xn ∈ E+ and b1, · · · bn ∈ Y+

}
,

with respect to ‖ · ‖l.

B.3 The Bochner space Lp(P, Y ) as a tensor prod-

uct

Let (Ω,F , P ) denote a probability space.

A function s : Ω→ Y is simple if there exist y1, y2, . . . , yn ∈ Y and sets A1, A2, . . . , An ∈
F such that s =

∑n
i=1 yiχAi . Here, χAi denotes the characteristic function of Ai, given by

χAi(ω) = 1 when ω ∈ Ai and χAi(ω) = 0 when ω 6∈ Ai.
A function f : Ω → Y is called P -measurable if there exists a sequence of simple

functions (sn) with limn→∞ ‖sn − f‖Y = 0 P -a.s..

For 1 ≤ p <∞ and Y a Banach space, let Lp(P, Y ) denote the space of (classes of a.e.

equal) Bochner p-integrable functions f : Ω→ Y and denote the Bochner norm on Lp(P, Y )

by ∆p, i.e.

∆p(f) =

(∫
Ω
‖f‖pY dP

)1/p

for all f ∈ Lp(P, Y ).

For p =∞, let L∞(P, Y ) = {f : Ω→ Y P -measurable : ess sup ‖f‖ <∞} and

∆∞(f) = ess sup ‖f‖ for all f ∈ L∞(P, Y ).

Consider the bilinear map ψ : Lp(P )× Y → Lp(P, Y ), given by

ψ(f, y)(ω) = f(ω)y for all ω ∈ Ω.

Then the induced linear map ψl : Lp(P )⊗ Y → Lp(P, Y ) is described by

ψl(f ⊗ y)(ω) = f(ω)y for all ω ∈ Ω.
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The map ψl is injective. Thus, Lp(P, Y ) contains a copy of Lp(P )⊗ Y and we may induce

the Bochner norm. The normed space (Lp(P )⊗ Y, || · ||p) is denoted by Lp(P )⊗∆p Y .

Chaney and Schaefer extended Lp(P, Y )-spaces by means of an appropriate tensor prod-

uct of a Banach lattice E and a Banach space Y . They achieved this by using the well

known fact that Lp(P, Y ) is isometrically isomorphic to the norm completion Lp(P )⊗̃∆pY

of Lp(P )⊗∆p Y , where ∆p is a reasonable cross norm on Lp(P )⊗ Y (see [52]). It is known

that if E is a Banach lattice and Y a Banach space, and if the tensor product E ⊗ Y of E

and Y is endowed with the norm ‖ · ‖l, then

(i) ‖a⊗ b‖l = ‖a‖ ‖b‖ for all a ∈ E and b ∈ Y (see [23, 31, 110, 111, 142]), and

(ii) if E = Lp(P ) and 1 ≤ p <∞, then ‖ · ‖l = ∆p (see [23, 31, 111, 142]).
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Appendix: Convex analysis

In this section, we will introduce some notions and results on convex sets and functions.

Consider a vector space X .

Definition C.1.

(i) A set A is convex if for all λ ∈ [0, 1] and x, y ∈ A, λx+ (1− λ)y ∈ A.

(ii) A set C in a vector space is said to be a cone with vertex at the origin if x ∈ C implies

that αx ∈ C for all α ≥ 0. A cone with vertex p is defined as a translation p+C of a

cone C with vertex at the origin. If the vertex of a cone is not explicitly mentioned

then it is assumed to be the origin.

(iii) The convex hull of the subset A is the set

coA =
⋂
{C ⊆ X : A ⊆ C,C convex}.

(iv) The closed convex hull of the set A ⊆ X is the set coA = cl(coA), i.e. the smallest

closed convex set containing A.

The convex hull can also be represented as

coA =
{ n∑
i=1

λixi : n ∈ N, (λi) ⊆ R+, (xi) ⊆ A,
n∑
i=1

λi = 1
}
.

We will denote by int(A) the interior of a subset A with respect to the norm-topology,

i.e. the open set which is the union of all open subsets of A. By core(A) we denote the

algebraic interior, i.e. the set of all points x ∈ A with the property that for every y ∈ A,

there exists ε > 0 such that x+ ty ∈ A for all t ∈ [0, ε]. We always have int(A) ⊆ core(A).
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Theorem C.2. Let C be a convex subset of the topological vector space X . Then the

following holds.

(i) The closure of C, denoted by cl(C), is convex.

(ii) The interior of C is convex.

(iii) If int(C) 6= ∅, then cl(int(C)) = cl(C) and int(cl(C)) = int(C).

(vi) If int(C) 6= ∅, then core(C) = int(C).

Theorem C.3 (Eidelheit). Let A and B be two non-empty convex subsets of the topological

vector space X . If int(A) 6= ∅ and B ∩ int(A) = ∅, then there exist x∗ ∈ X ∗\{0} and α ∈ R
such that for all x ∈ A and y ∈ B

〈x, x∗〉 ≤ α ≤ 〈y, x∗〉 ,

or equivalently,

sup
x∈A

x∗(x) ≤ inf
y∈B

x∗(y).

In the case of locally convex spaces, we have the following.

Theorem C.4. Let X be a locally convex space and A,B ⊆ X be two non-empty convex

sets. If A is closed, B is compact and A ∩ B = ∅, then there exist x∗ ∈ X ∗\{0} and

α1, α2 ∈ R such that for all x ∈ A and y ∈ B

〈x, x∗〉 ≤ α1 < α2 ≤ 〈y, x∗〉 ,

or equivalently,

sup
x∈A

x∗(x) < inf
y∈B

x∗(y).

Definition C.5. Let A be a subset of the normed space X . The positive polar cone of A

is given by

A◦ = {x∗ ∈ X ∗ : 〈x, x∗〉 ≥ 0 for all x ∈ A}.

and the negative polar cone of A by

A◦− = {x∗ ∈ X ∗ : 〈x, x∗〉 ≤ 0 for all x ∈ A}.

Both A◦ and A◦− are nonempty, convex cones.
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Next, we define some notations and definitions for extended real-valued convex functions.

For a function f : X → [−∞,∞], we denote the domain of f by

domf = {x ∈ X : f(x) <∞}

and the epigraph of f by

epif = {(x, t) ∈ X × R : f(x) ≤ t}.

Definition C.6.

(i) The function f : X → [−∞,∞] is proper if domf 6= ∅ and f(x) > −∞ for all x ∈ X .

(ii) The function f : X → [−∞,∞] is convex if for all x, y ∈ domf and λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

(iii) The function f : X → [−∞,∞] is lower semi-continuous if {x ∈ E : f(x) > k} is an

open set for all k ∈ R.

(iv) The function f : X → [−∞,∞] is subdifferentiable if for all x ∈ E, the set

∂f(x) = {r∗ ∈ E∗ : f(x)− f(y) ≤ r∗(x− y) for all y ∈ E},

is non-empty.

Note that a function is lower semi-continuous if for any net (xα) ⊆ E converging to

some x ∈ E, f(x) ≤ lim infα f(xα). This definition is equivalent to (iii) above.

The following theorem states some properties of convex functions. For a proof of this

theorem see [169, Theorem 2.1.1].

Theorem C.7. Let f : X → [−∞,∞]. The following statements are equivalent.

(i) The function f is convex.

(ii) The domain of f is a convex set.

(iii) The epigraph of f is a convex subset of X × R.

Theorem C.8. If fi : X → [−∞,∞] is convex for every i ∈ I (I 6= ∅), then sup
i∈I

fi is

convex. Moreover,

epi(sup
i∈I

fi) =
⋂
i∈I

epifi.
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Definition C.9. The lower semi-continuous envelope or lower semi-continuous regularisa-

tion f̄ of the function f : X → [−∞,∞] is defined by

f̄(x) = inf{t ∈ R : (x, t) ∈ cl(epif)}.

Since cl(epif) is closed, we have that epif̄ = cl(epif).

Theorem C.10. Let f : X → [−∞,∞] be a convex function. Then the following holds.

(i) The function f̄ is convex.

(ii) If g : X → [−∞,∞] is convex, lower semi-continuous and g ≤ f , then g ≤ f̄ .

(iii) The function f̄ does not take the value −∞ if and only if f is bounded from below by

a continuous affine function.

The lower semi-continuous and convex function, which is naturally associated with the

function f : X → [−∞,∞] is called the lsc convex hull of f , is denoted by cof and defined

by epi(cof) = cl(co(epif)). We have that cof ≤ f̄ ≤ f .

Theorem C.11. If the convex function f is bounded above on a neighbourhood of a point

of its domain, then f is continuous on the interior of its domain. Moreover, if f is not

proper, then f is identically −∞ on int(domf).

Corollary C.12. Let f : X → [−∞,∞] be a convex function. Then f is continuous on

int(domf) if and only if int(epif) is non-empty in X × R.

The following result is proved by Ekeland [56, Proposition I.2.5].

Proposition C.13 ([56]). Let f : X → [−∞,∞] be a convex function. The following

statements are equivalent:

(i) There exists a non-empty open set O on which f is not everywhere equal to −∞ and

is bounded above by a constant c <∞.

(ii) f is a real-valued function, and it is continuous over the interior of its effective

domain, which is not empty.

The next proposition is taken from [139, Proposition 3.1].
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Proposition C.14. Suppose that X is a Banach lattice and f : X → [−∞,∞] is proper,

convex and monotonic. Then, f is continuous and subdifferentiable on the interior of its

domain.

Definition C.15. The conjugate f∗ : X ∗ → [−∞,∞] of a function f : X → [−∞,∞] is

given by

f∗(x∗) = sup
x∈X
{〈x, x∗〉 − f(x)}.

The conjugate is sometimes also known as the Fenchel conjugate. In the next theorem,

we state some properties of conjugate functions.

Theorem C.16. Let f, g : X → [−∞,∞].

(i) The conjugate f∗ is convex.

(ii) The Young-Fenchel inequality holds, i.e. for all x ∈ X and x∗ ∈ X ∗

f(x) + f∗(x∗) ≥ 〈x, x∗〉 .

(iii) f ≤ g implies that g∗ ≤ f∗.

(iv) f∗ = f̄∗ = (cof)∗ and f∗∗ ≤ cof ≤ f̄ ≤ f .

Theorem C.17. Let f : X → R be proper, lower semi-continuous and convex. Then f∗ is

lower semi-continuous in the weak* topology (w∗-lsc), proper and convex and f∗∗ = f .

Theorem C.18. Let f : X → R have non-empty domain. Let cof denote the lower semi-

continuous convex hull of f and f̄ the lower semi-continuous hull of f , i.e. epif̄ = cl(epif).

(i) If cof is proper, then f∗∗ = cof ; if cof is not proper, then f∗∗ = −∞.

(ii) Suppose that f is convex. If f is lower semi-continuous at x̄ ∈ domf , then f(x̄) =

f∗∗(x̄); moreover if f(x̄) ∈ R, then f∗∗ = f̄ and f̄ is proper.

Proof. (i): The function cof is convex and lsc. If cof is proper, using Theorem C.17 and

Theorem C.16 (iv), we have that

cof = (cof)∗∗ = f∗∗.

If cof is not proper, since dom(cof) ⊇ domf 6= ∅, cof takes the value −∞. Hence,

f∗ = (cof)∗ =∞, and so f∗∗ = −∞.
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(ii): Since f is convex, we have cof = f̄ . Also, since f is lower semi-continuous at

x̄, we have that f̄(x̄) = f(x̄). If f(x̄) = −∞, then it is obvious that f∗∗(x̄) = f(x̄). Let

f(x̄) ∈ R. Then, f̄(x̄) ∈ R and so f̄ is proper. From the first part, we have that f∗∗ = f ,

as f∗∗(x̄) = f̄(x̄) = f(x̄).

For any convex functional f defined on a convex set C in a vector space X , define [f, C]

by

[f, C] = {(r, x) ∈ R×X : x ∈ C, f(x) ≤ r}.

Note that [f, C] is a convex set in R × X . If you think of the R axis as being the vertical

axis in the R×X space, then the set [f, C] can be thought of as the region above the graph

of f . The set [f, C] is sometimes called the epigraph of f over C.

Proposition C.19. The function f defined on the convex domain C is convex if and only

if [f, C] is a convex set.

For a proof, see [119].

Next, we need to analyse, when this set [f, C] contains interior points.

Proposition C.20. If f is a convex function on the convex domain C in a normed space

and C has nonempty relative interior int(C), then the convex set [f, C] has a relative interior

point (r0, x0) if and only if f is continuous at the point x0 ∈ int(C).

Since the utility function is a concave function, the theory for concave functions is

considered. Given a concave function g defined on a convex set D of a vector space, define

the set

[g,D] = {(r, x) : x ∈ D, r ≤ g(x)}.

The set [g,D] is convex and the result of Proposition C.20 can be extended to it.

Definition C.21. Let f be a convex function and g a concave function defined, respectively,

on the convex sets C and D in the normed space X . The conjugate sets C∗ and D∗ are

defined by

C∗ = {x∗ ∈ X ∗ : sup
x∈C
{〈x, x∗〉 − f(x)} <∞},

D∗ = {x∗ ∈ X ∗ : inf
x∈D
{〈x, x∗〉 − g(x)} > −∞}.
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The functions f∗ and g∗ conjugate to f and g respectively are defined by

f∗(x∗) = sup
x∈C
{〈x, x∗〉 − f(x)},

g∗(x∗) = inf
x∈D
{〈x, x∗〉 − g(x)}.

It is relatively easy to verify that both C∗, f∗ and D∗ are convex and g∗ is concave.

Applications of these conjugate functions to optimisation problems are looked at next.

The problem under consideration is

inf
C∩D
{f(x)− g(x)},

where f is convex over C and g is concave over D. In standard minimisation problems, g

is usually zero.

The following result plays an important role in the thesis.

Theorem C.22 (Fenchel duality theorem). Let X be a normed space and assume that

(i) f is a convex function on the convex set C ⊆ X ,

(ii) g is a concave functions on the convex sets D ⊆ X ,

(iii) C ∩D contains points in the relative interior of C and D,

(iv) either [f, C] or [g,D] has nonempty interior, and

(v) inf
x∈C∩D

{f(x)− g(x)} is finite.

Then

inf
x∈C∩D

{f(x)− g(x)} = max
x∗∈C∗∩D∗

{g∗(x∗)− f∗(x∗)},

where the maximum on the right is attained by some x∗0 ∈ C∗ ∩D∗.
Moreover, if the infimum on the left is attained by some x0 ∈ C ∩D, then

max
x∈C
{〈x, x∗0〉 − f(x)} = 〈x0, x

∗
0〉 − f(x0)

and

min
x∈D
{〈x, x∗0〉 − g(x)} = 〈x0, x

∗
0〉 − g(x0).

See [119] for a proof of this theorem.

The problem we will be considering requires finding the supremum of a concave function.

Thus, setting f(x) = 0 in Fenchel’s duality theorem above, yields

sup
x∈D

g(x) = min
x∗∈D∗

−g∗(x∗). (C.1)
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Note as well that in our problem D is a convex cone and hence D∗ will be the polar cone

of D.
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[139] Ruszczyński A. and A. Shapiro (2006): Optimisation of convex risk functions. Math-

ematics of Operations Research, 31, 433 - 452.

[140] Ryan, R.A. (2002): Introduction to tensor products of Banach spaces. Springer-

Verlag, London.

[141] Schachermayer, W. (2000): Optimal investment in incomplete markets when wealth

may become negative. Annals of Applied Probability, 11, 694 - 734.

[142] Schaefer, H.H. (1974): Banach lattices and positive operators. Springer-Verlag,

Berlin-Heidelberg-New York.

[143] Schmeidler, D. (1986): Integral representation without additivity. Proceedings of the

American Mathematical Society, 97, 255 - 261.

[144] Shreve, S.E. (2005): Stochastic calculus for finance I. The binomial asset pricing

model. Springer-Verlag.

[145] Skala, H.J. (1999): Comonotonic additive operators and their representations. Glas-

gow Mathematical Journal, 41, 191 - 196.



210 BIBLIOGRAPHY

[146] Skala, H.J. (2002): Generalised comonotonically additive operators: Representations

by Choquet integrals. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 10, 329 - 346.

[147] Song, Y. and J. Yan (2006): The representation of two types of functionals on

L∞(Ω,F) and L∞(Ω,F ,P). Science in China Series A: Mathematics, 49, 1376 - 1382.

[148] Song, Y. and J. Yan (2009): Risk measures with comonotonic subadditivity or con-

vexity and respecting stochastic orders. Insurance: Mathematics and Economics, 45,

459 - 465.

[149] Stoica, G. (2006): Relevant coherent measures of risk. Journal of Mathematical Eco-

nomics, 42, 794 - 806.

[150] Stricker, C. (1990): Arbitrage et lois de martingale. Annales de l’I.H.P., Section B,

26, 451 - 460.

[151] Sundaresan, K. (1977): The Radon-Nikodým theorem for Lebesgue-Bochner function

spaces. Journal of Functional Analysis, 24, 276 - 279.

[152] Talagrand, M. (1983): La structure des espaces de Banach réticulés ayant la propriété
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