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ABSTRACT 

Cellular positioning has opened the doors for various creative technological 

expansions in the field of Location Based Services, in addition to the safety function 

that it allows for.  Despite the significant advances in cellular positioning, the 

developing and third world countries are being left behind.  Better levels of accuracies 

are required in these nations where the majority of the population cannot afford GPS-

enabled phones.   

The pattern matching technique is focused on in this research.  It involves studying 

signal patterns from the Base Stations to a mobile phone, to obtain fingerprints at 

each reference location to form a database.  During the location estimation process, 

the observed fingerprint is compared with the database, and a subsequent match is 

made. The primary advantage of this technique is that high accuracies can be 

achieved with minimal costs.    

This research focuses on studying the efficiency and accuracy of various pattern 

matching techniques which are investigated in both WCDMA and GSM networks in 

suburban areas in South Africa. Since certain areas have predominantly GSM 

coverage, it is necessary to include GSM network in this research.  In addition, the 

inclusion of both GSM and WCDMA network data can be beneficial as it provides 

further criteria for correlation.    

Field measurements are carried out to obtain the Radio Frequency measurements 

that are needed to construct the database.  Various methods are analyzed and 

enhanced to obtain better levels of accuracies during the correlation process of the 

pattern matching procedure.  This includes investigating the effects of penalty terms, 

weights, map matching, Exponential and Least Means Square approaches, as well as 

the use of measurements from GSM, WCDMA, and the combined networks. 

High levels of accuracies were obtained and it can be concluded that these techniques 

do work in a suburban area, irrespective of its geographical location.  The literature 

study shows that some of these pattern matching techniques would also yield good 

results in urban areas, while other techniques are more suitable for rural areas. 
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1. Introduction 

1.1. Background 

Cellular positioning refers to the process of locating a mobile user by utilizing 

Radio Frequency signal measurements.  In addition to the many Location 

Based Services such as requests for restaurant information by a mobile user 

or warnings about weather conditions, accurate positioning is also essential 

for emergency purposes.   For this reason, the release of the U.S. Federal 

Communication Commission report in 1999 resulted in a need for further 

study regarding this topic [1].  This report required all cellular network 

operators to be able to provide information on a mobile user‟s location for 

safety reasons to an accuracy level of 100m for 67% of the cases and 300m 

for 95% of the cases for a network based method.  A possible solution is to 

incorporate GPS technology into cellular phones. However, particularly in a 

developing or third world nation, it is impractical and expensive to expect 

every cellular phone to be replaced.  

Various common methods used in cellular positioning exist.  Cell Identification 

produces accuracies dependant on the cell size and is used in environments 

where high levels of accuracies are not needed, such as restaurant enquiries. 

The Time of Arrival and Time Difference of Arrival techniques require clock 

synchronization, which can be obtained by using more stable clocks, which in 

turn results in hardware changes leading to higher system costs. In addition 

to it requiring the installation of antenna arrays at the base stations (BS), the 

Angle of Arrival method yields poor accuracies in Non-Line of Site conditions. 

Although hybrid positioning technologies generally yield higher accuracies, 

they require greater processing power and higher network costs.   

In a perfect environment with Line of Site and no multipath propagation, it is 
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possible to obtain excellent levels of accuracies using these abovementioned 

techniques.  However, in reality phenomena such as multipath propagation 

are unavoidable.  For this reason, the pattern matching technique is studied 

further and implemented in this research since it still produces good results in 

these conditions.   

1.2. Subject of Report 

This research focuses on improving the accuracies of cellular positioning in a 

developing country.  A method which will cater for the poorer parts of the 

population that cannot afford GPS-enabled phones needs to be studied and 

improved.  At the same time, this method must cater for the rest of the 

population that choose to disable the GPS function on their phones due to its 

shortcomings such as high power consumption.   

Cellular positioning using pattern matching is also known as Database 

Correlation Method and involves studying signal patterns from the BS‟s to a 

mobile phone, to obtain “fingerprints” at each reference location.  These 

“fingerprints” together with its corresponding location forms the database.  

During the location estimation process, the observed “fingerprint” is compared 

with the database, and a corresponding match is made.   The primary 

advantage of this technique is that high accuracies can be achieved with 

minimal costs.  In addition, it allows for flexibility since the accuracy can be 

improved by just improving the model.  This is in contrast to geometric based 

technologies which require more accurate measurements to be taken, to 

improve the accuracy.  In addition, pattern matching requires no changes to 

be made to the user handsets, while no major changes need to be made to 

the network architecture which means that it can be implemented much 

faster.   

For these reasons, this research concerns the use of pattern matching as a 

means for cellular positioning in a suburban environment in a developing 

country.  It needs to be tested to ensure that it will work in any suburban 
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environment with similar environmental conditions, irrespective of its 

geographical location.  Research performed in [25, 26] shows that urban 

areas see the best results for the pattern matching method.  Thus, the tests 

carried out in a suburban area will give an indication as to whether the 

techniques tested in this research will work in an urban area as well.  This 

process is aided by several techniques that enhance and optimize the 

positioning procedure.  This includes the use of penalty terms, weights, map 

matching, as well as the influence of exponential and Least Means Square 

statistical analytic approaches.  These approaches are applied to the cost 

function which is used to correlate the sample and database fingerprints.  

Information on the BS‟s or Node B‟s available in a rural area will give an 

indication as to whether these techniques will work in a rural environment.  

The use of measurements from Wideband Code Division Multiple Access 

(WCDMA), Global System for Mobile Communication (GSM) and the 

combined networks is also analyzed.  

On another note, all four cellular operators in South Africa have implemented 

3G technology and the number of subscribers is growing rapidly. Thus it is 

essential to develop better methods of estimating the location of a mobile 

user in this network as well, while still considering those that cannot afford 3G 

handsets yet. 

1.3. Objectives of Report 

The objectives of this research are therefore to:  

 Research the various techniques used during the pattern matching 

process. 

 Determine which Radio Frequency signal measurement parameters will 

be the most beneficial. 

 Investigate and develop different algorithms to improve the accuracy of 

the correlation process in the pattern matching procedure.   
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 Determine how the cost function can be created and modified to improve 

the accuracy? 

 Determine whether clustering will produce significant improvements in the 

results. 

 Analyze and implement methods of reducing the errors obtained by the 

GPS measurements which are needed to obtain the location parameter for 

the database. 

 Test these algorithms in suburban environments.  

 Analyze the effects of several location estimates that may be obtained for 

a particular sample. 

 Determine if these techniques will work in any suburban environment, 

irrespective of its geographical location. 

 Determine if the dominance of either a GSM or WCDMA network in the 

area will affect the results considerably.  

 Establish whether the use of both GSM and WCDMA data in the pattern 

matching process will provide better results. 

 Draw conclusions on the effectiveness and feasibility of actually 

implementing the techniques in reality.   

 Recommend any improvements that can be made to improve the 

efficiency and accuracy, based on these conclusions. 

1.4. Scope and Limitations of Investigation 

This research focuses on testing the effectiveness of the pattern matching 

procedure in a suburban environment.  All other factors which could influence 

the results had to be kept constant.  These include the weather, service 

provider and type of environment.  However, comparison with research done 

previously and details on the Base Stations or Node B‟s available in these 

environments will provide information to determine whether these techniques 

have potential to work in a suburban or rural area.   
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1.5. Plan of Development 

The structure of this thesis is as follows: 

 Chapter 1 provides an introduction to the thesis.  

 Chapter 2 is a detailed explanation of the literature that was surveyed.  

This chapter provides the reader with information on the various methods 

of cellular positioning that exist, as well as on the advantages and 

disadvantages of each of them.  This chapter also motivates the choice of 

pattern matching as the method chosen in this research for cellular 

positioning.  The network architecture involved to accommodate LBS is 

also briefly explained.   

 Chapter 3 describes the key questions addressed in this thesis.  It also 

includes the methods followed to obtain the test data as well as the 

processes and analyses techniques performed. 

 

Two suburban areas with similar scenarios were chosen to carry out the 

field tests.  Measurements from both the WCDMA as well as Universal 

Mobile Telecommunications System (UMTS) networks were recorded.  A 

Sony Ericsson phone was put into Field Test Mode and used together with 

a Garmin GPS device to obtain these measurements.   

Various methods were studied and enhanced to obtain the best possible 

accuracy levels.  Rural areas can generally only detect the serving cell at 

any location point.  For this reason, a Least Means Square approach 

based on the serving Cell ID (CI) alone was analyzed.  The effect of 

clustering these serving cells was also analyzed to try to eliminate any 

outliers.  The use of the serving CI as well as the neighbouring CI‟s will 

provide more parameters for the correlation procedure.  Techniques 

carried out that use all the detected CI‟s include the Common CI‟s 

approach, Penalty Term approaches as well as the use of weights in these 

Penalty Term approaches, which all use a Least Means Square approach 
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to calculate the cost function.  The use of an exponential cost function as 

well as a Multiple Weights approach both make use of an exponential cost 

function to correlate the sample and database fingerprints.  

The GPS device has accuracy levels of up to 15m [27].  To cater for any 

errors produced by the GPS, a map matching procedure is used to match 

the measured GPS coordinates to a digital map.      

 Chapter 4 gives a detailed analysis of the results obtained using the 

various techniques in GSM and WCDMA networks.  These results are 

then summarized and compared with the results obtained in the literature 

survey.  

 Chapter 5 draws conclusions, based on the findings.  This chapter is then 

concluded with the key finding that the best result in terms of both 

reliability and accuracy was the Single Penalty Term Approach.  The 

inclusion of weights in the cost function of the Penalty Term approaches 

appeared to show no harm and only strengthened the cost function.  On 

the other hand, the clustering approach has potential of yielding relatively 

good results in rural areas, since generally only the serving cell is 

measured in this environment.  Recommendations are also made for 

future research that can improve the results.   
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2. Literature Review 

2.1. Background on Cellular Positioning 

2.1.1. Motivation for Cellular Positioning 

The subject of cellular positioning has become very popular due to the many 

advantages that it offers in terms of Location Based Services and the increasing 

public interest in this field.  In simple terms, cellular positioning refers to locating 

a cellular phone and its user by utilizing the Radio Frequency signal 

measurements.  

The need for greater study into cellular localization was motivated with the 

release of the Federal Communication Commission (FCC) report in 1999.  This 

report required, for safety reasons, that all cellular network operators be able to 

provide location identification of mobile stations, by the year 2001 [1]. 

Table 1 indicates the minimum accuracy levels required by the FCC.  All 

network-based positioning techniques require a minimum accuracy level of 100m 

for 67% of the estimations made, and a minimum accuracy of 300m for 95% of 

the estimations that are made.  Similarly, mobile-based positioning methods must 

have accuracies of at least 50m in 67% of the cases, and 100m for 95% of the 

cases.   

 Accuracy Level 

67% of calls 95% of calls 

Network-based 100m 300m 

Mobile-based 50m 100m 

Table 1: Accuracy levels required by the FCC [4] 

The FCC ruling requires that localization techniques work with existing cell phone 

networks, such as Global System for Mobile communication (GSM), General 

Packet Radio Services (GPRS) and Code-Division Multiple Access (CDMA).  

One possible solution is to incorporate GPS into cellular phones.  However, it is 
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impractical and expensive to expect every cellular phone to be replaced. More 

realistic and cost-efficient methods, which can be integrated into the existing 

wireless networks, have been developed and there is a constant need for 

improvement.   

The basic methods of estimating the location of the mobile user include, cell 

identification and Timing Advance, Time of Arrival (TOA), Time Difference of 

Arrival (TDOA) and Angle of Arrival (AOA).  However, factors such as multipath 

effects, Non Line of Site (NLOS) and the number of possible averages are 

serious limitations in such position estimation [3]. 

The positioning system can be network based or mobile based, depending on the 

bandwidth of the system as well as the computational capacity of the mobile 

station.  In the case of network based systems, the positioning function and the 

required computations are given to the network. On the other hand, the 

positioning function is done in the mobile phone in the case of mobile-based 

positioning methods.   

2.1.2. Applications of Cellular Positioning 

The applications of cellular positioning have grown tremendously.   Location 

based services are applications that utilize the position of the cellular user.  

Generally, location based services can be categorized into push services and 

pull services.  Pull services are requests sent by the mobile user asking for 

information.  These can include functional services such as ordering a taxi or it 

can be informational services such as information requests for the nearest 

restaurant or ATM.  On the other hand, push services deliver information that 

was not directly requested by the mobile user.  These can be for example 

subscription services, or emergency warnings, such as dangerous weather 

warnings.  These also include location specific advertisements, such as when a 

specific shopping complex is entered [5].  
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In South Africa, the following location based services are examples of those that 

are currently in use: 

 Vodacom’s Look4me 

This service enables a Vodacom customer to use a mobile phone or the 

internet to locate someone using a Vodacom number.  However, 

permission needs to be obtained from the other person and their phone 

must be switched on and within network coverage.  This service can be 

used for example to allow parents to keep track of their children [6].    

 Vodacom’s Look4help  

The Look 4help panic number („120‟888‟888#) is saved to speed dial and 

is pressed in an emergency situation.  Four pre-defined people will then 

be notified that the panic button has been pressed and they will be 

informed about your location [7].   

 MTN WhereRU  

This has a similar purpose to Vodacom‟s Look 4me.  If a person‟s location 

has been requested, either an SMS with details of their location, or a map 

of their whereabouts will be sent [8].    

 MTN 2MyAid  

MTN 2MyAid works in a similar manner to Vodacom‟s Look4help [9].   

 MiTRAFFIC  

By sending an sms to a certain number, this service can track down the 

location of your mobile phone and send you a report of the traffic updates 

within a 50 km radius of your location [10].  

2.1.3. Privacy Concerns 

Context based Location Based Services (LBS) involve learning the interests and 

activities of the user.  For example, if the mobile user has visited a cricket 

stadium, it could also mean that the user is also interested in sports grounds and 

sports shops.  This tends to arouse privacy concerns amongst cellular phone 

users if their preferences and history are being tracked.  To cater for this, the 
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choice to control the privacy should be the user‟s decision and not the service 

provider‟s.  The user should be notified if any information is being collected, as 

well as be given the choice of turning the context based LBS on or off [5].   

The 3GPP location services (LCS) requirements include that the mobile user‟s 

location must always be available to the service provider.  The mobile user 

should also be able to control the privacy for any value added services.  

However, in the case of emergency services, the mobile user should be able to 

be positioned at all times as per local regulatory requirements [11].   

In January 2009, there were approximately 26 000 people who were victims of 

GPS stalking annually, which is a great concern.  Many of the top Apple and 

Google Android smartphone applications send the user‟s location information to 

Apple and Google respectively.  The user has no control over this or over the 

companies that obtain the information from distributing it freely to anybody.  For 

this reason, the United States of America released the Location Privacy 

Protection Act of 2011.  The implementation of the bill now requires that any 

company who obtains the location information of a mobile user must first get the 

consent of the user before collecting his or her information or distributing their 

information to a third party [12].    

2.1.4. Common Satellite Based Localization Techniques 

2.1.4.1. Global Positioning System 

Global positioning system is a global radio-navigation system, which utilises 24 

satellites placed such that at least 5 are in view from every point on the earth and 

the controlling ground stations.  Most mobile phones today are equipped with 

GPS functionalities [13].    
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GPS works by triangulation, which involves the following steps [13]:  

1. The GPS receiver measures the distance using the travel time of radio 

signals.  

2. Time is then measured. 

3. Time is then converted to distance, thereby determining the satellite locations 

in orbit. 

4. Any delays experienced by the signal during travel, are compensated for.   

Three satellites are used in a method called triangulation, or more accurately 

referred to as trilateration. As shown in Figure 1, the signals of at least three 

satellites are used to determine the position of the user, carrying the GPS 

receiver [13].    

The time taken for the satellite signal to reach the receiver is determined by 

comparing the satellite‟s pseudorandom number code (PNC), which is a code 

unique to a satellite, with the receiver‟s PNC.  This gives an indication of the 

signal‟s travel time, which is then multiplied with the speed of light to yield the 

distance between the receiver and the satellite [13].    

 

 

Possible 

location 

estimate 
Satellite A 

Satellite C 

Satellite B 

Figure 1: The trilateration process used in the GPS process [13]
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Satellites, being almost 17 703 km‟s away, have to use extremely accurate 

atomic clocks.  Even a tiny error of a few milliseconds in the signal travel time, 

can result in an error in the calculation of the location by up to 200 miles.  On the 

other hand, a receiver‟s clock does not have to be as accurate, since any timing 

errors can be rectified by measuring the distance to a fourth satellite to 

synchronize its PNC with the satellites.  Exact positions of the satellites have to 

be known at all times.  The monitoring stations and ground antennas constantly 

monitor the satellite‟s speed, position and altitude, as well as check for any errors 

due to gravitational pull from the moon, sun and solar radiation pressure.  This 

information is then sent back to the satellites which then change the timing 

signals accordingly [13].    

2.1.4.2. Assisted GPS 

Assisted GPS (AGPS) was developed to overcome certain shortcomings 

experienced by GPS.  AGPS is capable of delivering information such as GPS 

time and satellite orbital parameters to the receiver via cellular networks.  GPS 

cannot function without this information and it poses a big problem in urban areas 

which have many obstacles.  In dense environments, the GPS receiver may not 

be able to detect all the required number of satellites.  Nevertheless, in these 

situations, the mobile phone can still detect enough Base Stations (BS).  

Although AGPS requires that the mobile phone have a partial GPS receiver, the 

calculations are still done in the network.  The AGPS server must be able to 

simultaneously detect all the same satellites as the mobile phone.  Thus, the 

mobile network can accurately determine the location of the mobile phone and 

convey this information to it [13].  Furthermore, AGPS raises privacy concerns 

since a third party assistance server has information on the user‟s location.   

2.1.5. Common Land-Based Localization Techniques 

Although location estimation exists in South Africa today by certain mobile 

operators, basic techniques have been used, and thus may not yield the best 
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possible accuracies.  The most common methods of cellular positioning have 

been discussed below. 

2.1.5.1. Cell Identification (CID) 

This technique works by using the base station to which a mobile phone is 

connected, to identify its location.  The accuracy depends on the size of the cell 

and can be between 100 meters in urban areas, to 20 kilometers in rural areas.  

For this reason, this method is used where high levels of accuracies are not 

needed, such as in climate forecast and restaurant enquiries [16].  

2.1.5.2. Signal Strength 

Since signal strength is measured in voltage per square area, by making use of 

this information and the Cell ID together with path loss models, the approximate 

location of the user can be determined.  By using the estimated distances from 

three or more base stations, the location of the mobile station can be determined.  

However, this method is dependent on many factors such as terrain and 

attenuation, which can affect the accuracy greatly [16].  

2.1.5.3. CID + Timing Advance (TA) or Round Trip Time (RTT) 

Timing Advance is the time taken for the signal to travel between the base station 

and the mobile phone.  Instead of the CID + TA for 2G networks mentioned 

earlier, 3G networks use Round Trip Time (RTT) instead of TA. TA is used in 

GSM networks to enable the mobile phone to determine how long in advance it 

must transmit in an uplink burst, such that it will arrive at the base station at the 

appropriate time slot.  Since the user‟s distance from the base station is 

dependent on timing advance, information about the location of the mobile user 

can be calculated.  Thus this information together with the CID can narrow down 

an area for the user‟s estimated location as shown in Figure 2.  TA is generally a 

value between 0 and 63.  Each step in this TA value corresponds to a step of 

550m in distance [15].  This also proves to be a shortfall since any small 

inaccuracies in the TA measurement can result in large errors in the distance due 
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to this large step size.  This method requires no hardware changes, and only 

some software changes are required in the base stations [13].   

 

Figure 2: The CID+TA process
 

2.1.5.4. Time of Arrival  

In this method, the time taken for the signal to travel between the base station 

and the mobile phone is measured.  The corresponding distance is equal to the 

measured time multiplied by the speed of light.  Using one base station in the 

calculation gives an estimate of the user‟s location as a certain radius around the 

base station.  Using a second base station will constrain the user‟s location to 2 

possible positions, where the two radii meet.  A more precise location can be 

calculated by either using past information about the route taken by the mobile 

phone, or by using a third base station. Usually, the measured distance is greater 

than the actual distance due to NLOS error [16].  NLOS errors result when there 

is no visual line of site between the transmitter and the receiver.  NLOS can 

result in the circles intersecting in more than one point which becomes 

ambiguous.  The Least Squares technique can be used together with redundant 

measurements to deal with this problem.  This technique requires both hardware 

and software changes to be made in the network and can be very expensive.  A 

further disadvantage posed by this method is that clock synchronization is 

BS 
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required, which can be obtained through using more stable clocks such as 

Rubidium or Cesium clocks.  However, this would mean hardware changes, 

increase in size of the receiver as well as problems related to power 

consumption.  This method is also sensitive to system geometry, and the 

greatest accuracy is obtained when the circles representing the user‟s possible 

location intersect at 90 degrees.  This, however, may be difficult to obtain since 

the mobile user may be constantly moving [14].  

2.1.5.5. Time Difference of Arrival (TDOA), Enhanced Time Difference  

(E-OTD) 

This process is illustrated in Figure 3 on the following page.  Two base stations 

can be used to derive a hyperbola with a constant time difference.  This 

hyperbola represents the possible locations of the mobile phone.  Thus, the 

position of the mobile phone can be found by solving the nonlinear equations 

representing at the least two hyperbolas [16].  

 𝑐 ·  𝑡1 – 𝑡2 =   (𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2  -  (𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2   ......(1) 

𝑐 ·  (𝑡1 – 𝑡3)  =  (𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2  -  (𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2   ......(2) 

In the above equation, 𝑡1, 𝑡2 and 𝑡3 represent the time of arrival of the signal from 

base stations at positions with coordinates 𝑥1, 𝑦1, 𝑥 and 𝑦 represent the 

coordinates of the mobile phone and c refers to the speed of light. 
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Since the hyperbolas are shifted due to positioning errors, they represent a set of 

nonlinear equations.  Methods such as nonlinear least-square, constrained least-

square or linearization through a Taylor series expansion are used to solve the 

equations.   

These techniques use the propagation time from three base stations.  The 

method of triangulation is then used to determine the position of the mobile 

phone.  Clock synchronization is required between base stations to be able to 

calculate the difference in time of arrival [15].     

The difference between the E-OTD and TDOA methods is that calculations for 

TDOA is done by the network provider, while that for E-OTD is done in the 

mobile device [16].  In addition, the real time differences between BS‟s are 

measured by a Location Measurement Unit (LMU), due to lack of synchronization 

between BS‟s in GSM networks. E-OTD requires new software in the mobile 

phones, as well as hardware and software changes at the BS [15].   

2.1.5.6. Angle of Arrival (AOA), Direction of Arrival (DOA) 

The angle of arrival from a mobile station can be determined by using antenna 

arrays at several base stations. In the instance where there is no Line of Site 

d1 

d3 

d2 

d3 – d1 = (constant) 

 

d3 – d2 = (constant) 

 

BS 2 

BS 1 

BS 3 

Figure 3: Intersection of hyperbolas in the TDOA technique [15]
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(LOS) component, the antenna accepts a NLOS component, which may not be 

from the direction of the MS.  Thus, it is essential that NLOS identification be 

incorporated into the system.  This technique does not require that the clocks be 

synchronized.  This technique is better suited for macrocells [16]. 

This method requires LOS to two BS‟s, and thus may not be appropriate in dense 

urban scenarios.  In 2G networks, this technique has the drawback that antenna 

arrays need to be installed at each BS.  However, in 3G networks, additional 

hardware may not be needed if adaptive BS antennas are used.  In addition, 

problems with capacity may arise since there has to be co-ordination of the 

measurements at the different BS‟s [15].  

2.1.5.7. Hybrid Positioning Technologies 

Hybrid positioning technologies are usually TOA/AOA or TDOA/AOA strategies.  

The TOA or TDOA allows for a circular estimate of the position of the mobile 

user, while the AOA yields a line estimate.  Thus, the position of the mobile user 

can be estimated as the intersection of the circle and the line.  As a result, the 

required number of reference base stations can be reduced from three in this 

scheme.  Studies have shown a significant increase in the accuracy by using this 

scheme.  However, hybrid techniques tend to require greater processing power 

and higher network costs [16]. 

 

 

 

 

. 
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2.1.6. Pattern Matching 

2.1.6.1. Introduction 

Pattern matching involves studying radio frequency patterns from a mobile 

phone, including its multipath propagation, to obtain a „fingerprint‟.  As can be 

seen from Figure 4, this „fingerprint‟ is then compared with a database, 

containing locations that have been „fingerprinted‟ earlier, and a corresponding 

match is made to determine the location.  Only the position and the signal 

information need to be stored in the database.   

 

 

This is a network based positioning method, which means that it requires no 

changes to be made to the handsets and can thus be implemented much faster.      

The primary advantage of this technique is that high accuracies can be achieved 

with minimal costs.  In addition, it allows for flexibility since the accuracy can be 

improved by just improving the model.  This is in contrast to geometric based 

technologies which require more accurate measurements to be taken, to improve 

the accuracy.  For example, it may require that time be measured more 

accurately.  This can be very difficult since highly accurate atomic clocks are 

usually already in use [14].  In addition, there is no large strain that is put on the 

Figure 4: Process used in the fingerprinting method 
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network since it just requires unexpired Network Measurement Reports (NMR) 

which are regularly sent from the user element to the base station.     

2.1.6.2. Database Correlation Method 

Laitinen et al [24] introduced the Database Correlation Method using the Least 

Mean Square approach to correlate the database with the test measurements in 

a GSM network.  The Location Area Code (LAC), Cell ID, Timing Advance and 

measured signal strength of the serving cell as well as the neighbouring cells are 

used as the parameters to form the database. The difference, or cost function, is 

calculated as follows 

                                        𝑑 𝑘 =   (𝑓𝑖 − 𝑔𝑖(𝑘))2 +𝑖 𝑝(𝑘)            ......(3) 

where 𝑓𝑖  represents the signal strength from the 𝑖𝑡𝑕  Broadcast Control Channel,  

𝑔𝑖(𝑘) is the signal strength of the 𝑘𝑡𝑕  database fingerprint and 𝑝(𝑘) is a penalty 

term for those cells that are only detected in either the database or the test 

fingerprint.   

The database fingerprint which yields the smallest value of 𝑑(𝑘) corresponds to 

the best location estimate.  Higher accuracies were obtained in the urban 

environment due to greater variations in signal strength at different points due to 

reflections off buildings, thus yielding greater diversity in the fingerprints for the 

correlation procedure.  Other factors such as body shadowing would 

comparatively have less of an impact on the signal strength variations here. 

Human body shadowing occurs when a human body obstructs the direct path of 

a signal between the transmitter and receiver. Positioning accuracies of 74 

meters for R67 and 190 meters for R90 were obtained.  Furthermore, it was 

concluded that this is the best performing method in dense urban environments 

where LOS paths are not available.   

The initial Database Correlation Method (DCM) for UMTS networks evolved 

based on that created for GSM networks [33].  Good accuracy results of smaller 

than 25 meters for 67% and 140m for 95% of the cases were obtained for a 

dense urban environment.  This technique requires the use of multipath delay 
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information from the strongest cell to form the fingerprints.  The multipath 

channels in the network are simulated using the ray-tracing tool to determine the 

impulse responses.  These impulse responses are then used to determine the 

power delay profile data.  Only the strongest cell is used since it has a certain 

delay in the beginning and one distinct peak.  In [32], Ahonen et al use both the 

signal strength and power delay profile measurements to form the database in 

UMTS networks.  The Power Delay Profile (PDP) provides details as to the 

amplitudes and delays of the multipath components of the signal.  To try and 

remove the interference, the PDP measurements above a certain threshold are 

used.  However, this technique has the disadvantages that the User Element‟s 

impulse response measurements are not standardized, and 3GPP does not 

require such measurement to be sent to the location server.  Thus this method 

requires changes to be made to hardware [23]. 

2.1.6.3. Advancements in the Database Correlation Method 

Zimmermann et al [38] uses a Gaussian probability distribution to compute the 

score and is shown below:  

                                          𝑆𝐸𝑋𝑃 =  𝑒− 
𝑝 𝑖−𝑚 𝑖

𝜎
 

2

𝑖∈𝑁∗ = 𝑒
−
 ∆𝑖𝑖∈𝑁∗

𝜎2             ......(4) 

 where 𝑝𝑖  and 𝑚𝑖  represent the predicted and measured values respectively for 

cell 𝑖.  The deviation between the predictions and the measurements are 

represented by σ.  The best location estimate is that which corresponds to the 

highest score.  𝑁∗ refers to a set of 𝑛∗ measured cells.  

However, this equation penalizes those predicted fingerprints that have a higher 

number of common cell ID‟s with the measurements.  On the contrary, it is 

reasonable to say that those fingerprints without common cell ID‟s have a very 

low possibility of being the estimate.   
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Thus, the number of available cells, 𝑛∗, is also included, and is given by equation 

5:  

                                                    𝑃𝐸𝑋𝑃 =  𝑆𝐸𝑋𝑃
𝑛∗

     ......(5) 

Those cells, 𝑛’, from the measurement, that do not occur in the prediction and 

are stronger than the weakest measured test signal, 𝑚𝑚𝑖𝑛 , have to be penalized. 

It is thus used to calculate 𝑃𝑃𝑒𝑛 .     

                                 𝑃𝑃𝑒𝑛 =   𝑃𝑃𝑒𝑛 ,𝑖𝑖∈𝑁′
𝑛 ′ =   𝑒

− 
𝑝 𝑖−𝑚𝑚𝑖𝑛

𝜎
 

2

𝑖∈𝑁∗

𝑛 ′

           ......(6) 

The final probability used to match the measurements to the fingerprints is thus 

given by: 

                                                  𝑃 =  𝑃𝐸𝑋𝑃 . 𝑃𝑃𝑒𝑛                                         ......(7) 

Timing advance is not used since GSM only provides a very granular TA value, 

where each step corresponds to 550m.  Accuracies of 607m (R67) and 1021m 

(R95) were obtained for suburban/rural area.   

Shashika et al [25, 26] have adopted a cost function which is based on the Least 

Square Means method, making use of the Manhattan distance and a penalty 

term.  This function is shown below:   

𝑑 𝑘 =  (𝑓𝑖  – 𝑔𝑖(𝑘))𝑖 +  |(𝑓𝑗  – 𝐼𝑚𝑎𝑥 )|𝑗  𝑥 𝑤𝑗 +   |( 𝐼𝑚𝑎𝑥 – 𝑔𝑘(𝑘))𝑘 | 𝑥 𝑤𝑘    ......(8) 

where 𝑓𝑖  represents the signal strength from the 𝑖𝑡𝑕  Broadcast Control Channel, 

𝑓𝑖(𝑘) is the signal strength of the 𝑘𝑡𝑕  database fingerprint, 𝑓𝑗  and  𝑔𝑘  represent 

the signal strengths of those cells that only occur in the test fingerprint or the 

database fingerprint respectively. The penalty term is represented by 𝐼𝑚𝑎𝑥  and 

corresponds to a signal strength for those cells that are only detected in either 

the database or the test fingerprint. The contribution of the penalty cell/total 

number of measurements is given by 𝑤𝑗  and 𝑤𝑘 .  It must be noted that the 



22 
 

Received Signal Strength (RSS) from the serving and neighbouring BS’s were 

used to form the fingerprints at each location. 

The location estimation is then done using the Nearest Neighbour (NN) or the 

Weighted 𝑘 Nearest Neighbour (WkNN) methods in a GSM network.  The NN 

approach identifies the location fingerprint with the highest 𝑑(𝑘) as the estimate.  

On the other hand, the WkNN approach uses the 𝑘 nearest fingerprints and 

estimates the location as a weighted average of these 𝑘 locations.  The weight 

which obtained the best results is given below:   

                                                       𝑤𝑖 =  
1

𝑑(𝑖)
 / 

1

𝑑(𝑖)𝑖                                   ......(9) 

where 𝑤𝑖  represents the weight of the 𝑘𝑡𝑕  nearest fingerprint.  

In addition, an approach was analysed where the 𝑘 nearest neighbours was 

clustered into 2 clusters geographically, using the K-means method.  The 

weighted average method was then applied to determine the closest cluster with 

either the most number of neighbours or the maximum weight.  These 

measurements were carried out in a suburban area around the University of 

Moratuwa, where it was seen that the best results for a suburban area is 

obtained by the WkNN method.   

Road 

segment

Measurements

 

Measurements are averaged 
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Measurements are averaged 

to form Fingerprint 2

Fingerprints

 

 

Figure 5: The Sliding-Window method [26]
 

Furthermore, a “Sliding Window” approach has also been incorporated, whereby 

consecutive measurements along a path were averaged as shown in Figure 5.  
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Ten consecutive measurements were averaged and the median of their location 

points was used as the fingerprint location. Five of these consecutive 

measurements from fingerprint 1 would overlap with five of the measurements 

from fingerprint 2.  This technique appeared to improve the accuracy compared 

to using separate measurements for each fingerprint, since it covers those areas 

in between measurements as well by finding the average of the varying RSS 

levels.  

Mean errors of 100m, 255m and 243m were obtained for urban, suburban and 

rural areas respectively, while it was discovered that clustering using the K-

means algorithm did not provide a significant increase in accuracy. 

Kemppi [18] has introduced a penalty term calculation, shown below 

           𝑑 𝑘 =  (𝑓𝑖  – 𝑔𝑖(𝑛))2
𝑖 +   (𝑓𝑗  – 𝐼𝑚𝑎𝑥 )2

𝑗 +  ( 𝐼𝑚𝑎𝑥 – 𝑔𝑘(𝑛))2
𝑘           ......(10) 

where 𝐼𝑚𝑎𝑥  is the penalty term and should be defined for each system depending 

on, amongst others the receiver sensitivity.  Since the function of path loss 

versus distance tends to stabilize after a certain value of distance, the value of  

𝐼𝑚𝑎𝑥  can be chosen as the signal strength.  The same symbol definitions have 

been used as is used on page 22.  

A second approach to calculating the penalty term, shown below, was also 

analysed. 

𝑑 𝑘 =  (𝑓𝑖  – 𝑔𝑖(𝑛))2
𝑖 +  

1

2
 (𝑓𝑗  – 𝑓𝑤 + 10)2

𝑗 +  
1

2
 (  𝑔𝑤– 𝑔𝑘 𝑛 + 10)2

𝑘  ....(11) 

where 𝑓𝑤  is the signal strength of the weakest cell ID in the sample fingerprint 

and 𝑔𝑤  is the signal strength of the weakest cell ID in the database fingerprint.  

However, the first approach yielded significantly better results.   

Kunczier [14, 29], as well as Khalaf-Allah et al [28] also make use of past data in 

the calculation of the present location, via the use of Bayesian networks.  

Bayesian networks use a directed acyclic graph to represent the conditional 
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independence between variables.  Bayesian networks have the advantage that 

they enable us to make use of incomplete data sets.    In addition, causal 

relationships can be determined.  This enables us to better understand the 

problem during data analysis, as well as to determine the probable outcomes in 

the presence of interventions.  Bayesian networks, together with statistical 

models enable us to combine prior knowledge with the measured data.  This 

proves to be extremely useful since prior knowledge is usually a scarce 

component.  Bayesian models can be used together with Bayesian networks to 

avoid the over fitting of data, since models can be smoothed [40].   

Kunczier [14, 29] carries out location estimation by using discrete Bayesian 

networks, where each location point in the database is represented with a 

Bayesian model which is trained with premeasured data for that location point.  

The network structure consists of nodes, which contain information about the 

serving cell ID and neighbouring cell ID‟s at each position. 

X1 X2 X3 X4 X5 X6 X7

Relationship 
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serving cell and 

neighbouring 

cells

Serving cell Neighbouring cells

  

 

Relationship 
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neighbouring 

cells

 

 

Figure 6: Optimized network structure [29] 

Figure 6 above shows an optimized network structure obtained in [29] for the 

serving cell ID (X1) and the neighbouring cell ID‟s (X2 to X7).  The directed edges 

represent the probability influence between the cells. 
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Figure 7: Circled area of interest for prior creation [29]
 

The prior distribution is created using “expert knowledge” instead of counting 

past samples.  The number of equal realizations is counted in a certain area Ai, 

with radius r around the current position as shown in Figure 7.  This optimal 

radius is calculated through separate measurements from that which was used to 

form the database.  However, it is only calculated once, and the value is used for 

the entire area.  It was seen that the accuracy obtained from the method using 

the “expert knowledge” yielded better results when compared to that obtained 

from using a non-informative prior distribution in which case both expert 

knowledge and experimental data are not available.  In the urban environment, 

using the prior knowledge which was constructed using “expert knowledge” 

resulted in errors less than 20m in 67% of the cases, which provides much better 

results compared to using the non-informative   prior [14, 29]. 

Khalaf-Allah and Kyamakya [28] use a non-recursive Discrete Bayesian filter 

(DBF) in addition to database correlation to locate the mobile user.  Received 

signal strength has been used to form the database.  Furthermore, the TA 

parameter as well as the serving cell ID is used to limit the area in which the 

mobile user could possibly be.  
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Let A be the position of the mobile user and B refer to the data used to form the 

database.  Bayes‟ theorem gives the relation between the conditional probability 

of 𝐴 given 𝐵, 𝑃(𝐴|𝐵), in terms of the prior probability of 𝐴 and 𝐵, 𝑃(𝐴) and 𝑃(𝐵), 

and the conditional probability of 𝐵 given 𝐴, 𝑃(𝐵|𝐴).  This relation is given below:  

                                             𝑃(𝐴|𝐵, 𝐶) = 
𝑃 𝐶 𝐴,𝐵 𝑃(𝐴|𝐵)

𝑃(𝐶|𝐵)
                               ......(12) 

Bayes‟ filtering works for environments that are Markovian, which states that the 

future data is conditionally independent of the past, if the present is given. 

A posterior probability density of the MS state at a given time 𝑡, over the state 

space, is referred to as the belief and is given below: 

                                            𝐵𝑒𝑙(𝑠𝑡)  =  𝑝(𝑠𝑡|𝑜𝑡 , 𝑜𝑡−1, … , 𝑜0 , 𝑚)                    .....(13) 

In (13), the state at time 𝑡 is given by 𝑠𝑡 , while 𝑜𝑡…0 represents the data that was 

measured from time 0 to time 𝑡.  The database of measurements is given by 𝑚.  

The belief is now represented by a set of 𝑛 weighted samples and is given by: 

                                                   𝐵𝑒𝑙(𝑠) ≈  { 𝑠(𝑖), 𝑤(𝑖)} 𝑖=1,...,𝑛                           ….(14) 

Each sample (𝑠(𝑖)) is given a weight (𝑤(𝑖)) which reflects the importance that is 

given to it.  The weight 𝑤(𝑖)), is defined as follows: 

             𝑤(𝑖)  =  𝑝(𝑜𝑡|𝑠𝑡 , 𝑚) =  
1

𝜎𝑅𝑥𝐿𝑒𝑣  2𝜋

𝑀
𝑗=1 𝑒−

(𝑅𝑥𝐿𝑒𝑣 𝑗 -𝑅𝑥𝐿𝑒𝑣 DBj)2

2𝜎RxLev
2                     ......(15) 

In (15), number of observed base stations is given by m.  The standard deviation 

of the measured received signal strength is given by 𝜎
RxLev

.  The measured signal 

strength from Base Station 𝑗 is represented by 𝑅𝑥𝐿𝑒𝑣𝑗 , while 𝑅𝑥𝐿𝑒𝑣DBj is the 

received signal strength obtained from the database at position 𝑠(𝑖). 
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The location is then estimated using the Maximum Likelihood Estimate (MLE), 

Weighted Average Estimate (WAE) or Trimmed Average Estimate (TAE) 

methods which are discussed in more detail below.      

MLE takes the sample with the highest weight to be the location estimate, 𝑠 . 

                                                       𝑠 = argmax𝐵𝑒𝑙(𝑠𝑡)                     ......(16) 

WAE takes the weighted average of all the samples in the belief, to be the 

location estimate. 

                                                      𝑠 =
1

 𝑤 (𝑖)𝑛
𝑖=1

 𝑠(𝑖)  ×  𝑤(𝑖)𝑛
𝑖=1            ......(17) 

TAE, on the other hand, takes the average of the 𝑘 highest weighted samples to 

be the location estimate.   

                                                     𝑠 =
1

𝑘
 𝑠(𝑖)  , 𝑘 < 𝑛𝑘

𝑖=1                                ......(18) 

The best results were obtained for TAE with an accuracy of 200m for 67% of the 

cases. This could be because it considers the best posterior data. MAE, being 

sensitive to noisy measurements, yielded the lowest accuracy. 

Singh et al [30] introduced a Signal Correlation Method which uses Artificial 

Neural Networks with the signal measurements from only one BS.  Artificial 

Neural Networks are used to train, learn and predict pattern recognition.  Drive 

tests are carried out to obtain measurements from point A to B (Route 1), from 

point B to A (Route 2) and then again from point A to B (Route 3) at a slower 

speed.  12% of Route 1‟s data is used to simulate Route 2‟s data using a 

General Regression Neural Network, forming database A.  The estimated and 

actual locations are compared to determine the error.  The worst performing data 

is then inserted into database A, forming database B.  Route 3 is then simulated 

using database B.  The worst performing data from Route 3 is finally inserted into 

database B.  This allows for the Learn-Another (LEAN) process which permits 
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one database‟s weaknesses to be studied, so that these errors can be catered 

for. 

It was discovered that the use of the LEAN process yielded much better results. 

Accuracies of 85m for 67% of the estimates, and 291.5m for 95% of the 

estimates were obtained.     

Arya et al [31] analyses the effect of parameters such as grid resolution on the 

performance, in a scenario where the propagation model has been modeled.  

The normalized correlation coefficient, 𝑝, is calculated between the stored and 

measured RSS vector as follows: 

 

                                                           𝑝𝑖 =  
<𝑠′.𝑠𝑖>

 𝑠′ . 𝑠𝑖 
                                      ……(19) 

 

The set of scanned BS‟s in each database fingerprint is given by 𝑠𝑖 , while 𝑠’ 

represents the scanned BS‟s in each sample fingerprint.  The largest correlation 

coefficient will then determine the estimated position of the User Element.  It was 

discovered that the improvement of the resolution only really improves the 

performance in those environments where the errors are low, which can be an 

idealistic situation. 

 

Borkowski and Lempiäinen [34] have studied a method presented as the Pilot 

Correlation Method (PCM) and aims to use the standard UMTS terminals.  The 

core advantage of PCM is that it is a purely network-based approach and very 

few changes have to be made to hardware and software.  PCM uses a database 

containing the most probable Common Pilot Channel (CPICH) levels for each 

defined positioning region.  Positioning region refers to the region in the network 

coverage, for which each individual entry in the database is associated.  Thus, 

positioning regions are determined according to the requirements of the LBS 

applications.  The accuracy of the PCM is determined by the size and shape of 

the positioning regions, since it affects the resolution of the estimation. When a 
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request for location is received by the SRNC, a vector with scrambling code ID‟s 

and measured Received Signal Code Power (RSCP) of visible pilots is compared 

with the database.  The Least Squares Means method is then used for 

correlation.  The deviation between the stored sample and reported 

measurement is given by: 

                                             𝑆𝐿𝑀𝑆 =   (𝑠𝑖 − 𝑚𝑖)
2

𝑖 𝜖 𝑁                                  ……(20) 

This deviation is calculated for all entries in the vector 𝑁, as well as all the 

samples in the database.  The stored sample and reported measurement are 

given by 𝑠𝑖  and 𝑚𝑖  respectively [62].  In order to save computing time, the 

database is divided according to the scrambling code ID of the first pilot.  67% of 

measurements were below 70m for urban environments and below 190m for 

suburban networks, due to larger positioning regions and distances between 

Node B cells.    

Al Hallak et al [36] uses Location Area Code (LAC), Cell ID (CI), Base Station 

Identity Code, Broadcast Control Channel (BCCH) from the serving cell in a GSM 

network, as well as the RxLev from the serving cell and the 6 strongest 

neighbouring cells.  The Maximum Likelihood formula is used to determine the 

error, e, between the signal information of the request and reference fingerprints.   

                                                      𝑒 =   (𝑀𝑖 − 𝐿𝑖)
2𝑛

𝑖=1                                …...(21) 

The measured signal strength and signal strength of the 𝑖𝑡𝑕  database fingerprint 

on the same Broadcast Control Channel is given by 𝑀𝑖  and 𝐿𝑖  respectively.  The 

database fingerprint corresponding to the lowest error will then be the best match 

for the location estimation.  The LAC and CI assist in reducing the time for 

searching through the database.  Instead of having to update the database 

whenever there is a change in the environment or network, they investigate the 

installation of a grid of radio listeners at selected points between the cells.  These 

radio listeners periodically send Network Measurement Reports to the server that 

determine the mobile position in the BS, via GPRS or SMS.  Thus any changes 
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detected by the radio listeners will allow for a corresponding adjustment of the 

parameters used. 

2.1.6.4. Propagation Models 

The database measurements can also be predicted based on propagation 

models.  Even though it is much more efficient with regards to time and effort, it 

is costly to obtain precise building and topographical data.   

Propagation models can either be created empirically or they can be site-specific, 

in other words deterministic in nature. The empirical models are formulated using 

information that is measured from the received signal.  It is easy to implement, 

does not require much computation and is not very sensitive to the geometrical 

characteristics of the environment.  Site-specific models, on the other hand, are 

based on the theory of electromagnetic wave propagation.  It requires detailed 

and accurate information of objects in the environment, and is expensive in terms 

of computation.  Nevertheless, site-specific models are more accurate and 

reliable [47]. 

The Okumura  model [39] for urban areas was developed from data obtained in 

Tokyo, Japan.  It caters for frequencies of between 150 MHz to 1920 MHz 

The Hata-Okumura model [39] simplifies the Okumura model, and is frequently 

used.  It is suitable for networks with large cells, and is not suitable for personal 

communication systems with cells that have radii smaller than about 1 km [47].   

This model caters for the following: 

 Frequencies of between 150 MHz to 1500 MHz 

 Link distances between 1 km and 20 km 

Although the computation time is short for this model, it has the disadvantage 

that it does not take into consideration the terrain details between the base 

station and mobile receiver.  However, since the base station is usually situated 
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on a hill, this should not pose a big problem.  This model also does not take 

reflection and shadowing into account [49]. 

Lee‟s model is used to estimate propagation over a flat terrain.  If the terrain is 

not flat, large errors are expected.  Correction factors are included whereby the 

model can be adjusted depending on the area. [50]  

The COST 231 project adjusted the Hata model to cater for the 1.5-2 GHz 

frequency band, and can thus be used for 3G networks.       

The extended Hata model [51] caters for: 

 Frequencies of between 150 MHz to 2000 MHz 

 Link distances between 1 km and 10 km  

Another popular model is the COST 231 Walfisch-Ikegami [51] model.  This 

model assumes that the transmitted wave propagates over rooftops through 

multiple diffraction.  Those buildings that are in line between the BS and the MS 

are represented by diffracting half screens with equal height and range 

separation.  This model should be used with care when the height of the BS is 

less than that of the buildings.   Research has shown that this model provides a 

good estimate for propagation with frequencies between 800 MHz and 2000 

MHz, as well as for distances between 0.02 km and 5 km. It works best where 

the base station antenna heights are well above the roof height.  

Site-specific models include for example, the Ray-Trace technique and Finite-

Difference Time-Domain (FDTD) models.  Both these techniques are based on 

Geometrical Optics, which approximates the propagation of high frequency 

electromagnetic waves.  The image method and Brute-Force method are two 

example of the Ray-Trace technique.  Ray-Trace does not yield very accurate 

results in environments with complex lossy objects with finite dimensions. [47]   

In [38], the Hata-Okumura model was used for suburban/rural predictions.  

Terrain obstacles have been included in these predictions by using the Epstein-
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Petersen Knife Edge model.  The propagation predictions for urban areas were 

done using the Extended Walfisch-Ikegami model, since it produces good results 

for transmitters on roof tops. Alim et al [39] carried out simulations in MATLAB to 

compare the performance of the Okumura, Hata and Lee models.  It was 

observed that as the BS antenna height increased, the propagation path loss 

decreased, where the greatest loss was seen to be for the Hata model, and the 

least loss for the Okumura model.  As the user moved the position of the MS 

antenna further away from the ground, the propagation path loss decreased, with 

the greatest loss being for the Lee model, and the least loss being for the 

Okumura Model.  As the link distance increased the propagation loss decreased, 

where the greatest loss was seen for the Lee model, and the least loss seen for 

the Okumura model. 

2.1.6.5. Post-processing Techniques 

The GPS device, which is used to determine the location coordinates to which 

the signal measurements of the fingerprint is allocated, is also prone to errors.  

GPS accuracies are on average within 15 meters.  The factors which can affect 

the accuracies include ionosphere delays, multipath errors, receiver clock errors, 

orbital errors, number of visible satellites and satellite geometry [27]. Ionosphere 

delays result from the propagation of the signal through the atmosphere.  

Multipath errors are a result of the signal's reflection off buildings and other 

objects. Receiver clock errors are a result of the fact that the GPS receiver's 

clock is not as accurate as those used in the satellites. Orbital errors arise from 

the inaccurate reporting of the satellite's location.  The number of visible satellites 

can be reduced by the signals being blocked by buildings and other large 

objects.  Satellite geometry is a factor since the best accuracies are obtained 

when the satellites are located at wide angles to each other, while their 

positioning in a straight line results in poor accuracies.   

Kemppi [18] has utilized the Map-Matching technique to cater for any errors in 

the GPS accuracy.  
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Post processing is done using a combination of filtering as well as Map-Matching.  

Map-Matching matches a certain measured location to a location on the digital 

map of the road, as displayed in Figure 8.  The direction of movement can be 

seen to be from left to right along the horizontal road segment.  However, the 

points in red have been matched incorrectly to the diagonal road segment.  Thus, 

it can be seen that the data of the previous estimated location of the user assists 

in providing better estimates of the possible current location.   

 

 

The following accuracy levels were obtained for the various techniques, 

indicating that the best method is to use both networks as well as both the post 

processing techniques [18].  

Scenario  R67 [m]  R95 [m]  

UMTS  106  379  

GSM  68  184  

GSM + UMTS  60  162  

GSM + UMTS + Kalman  69  118  

GSM + UMTS + Kalman + 

Map Matching 

46  99  

Table 2: Comparison of the accuracy levels obtained [18] 

Figure 8: The map matching technique 

Incorrectly 

matched points Road Segments 
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Gezici et al [37] cater for NLOS situations that result in large estimation errors, by 

applying Support Vector Regression (SVR) to the geo-location problem in a 

simulated environment.  The Kalman Bucy filter is then used to smooth the 

location estimates obtained after the SVR process.  Support Vector Regression 

involves taking measurements at known locations, in advance, to obtain a 

training set database.  Measurements of the mobile phone are taken and the 

SVR technique is then used to estimate the location of the user.  Structural risk 

minimization principle is used to minimize the upper bound on the expected risk, 

instead of the common method of minimizing the empirical risk directly.  The SVR 

method assumes that the training set database is valid, which requires the 

environment to remain constant.  The average error improves from 37.8m, where 

just the SVR method is used, to 21.1m when the Kalman-Bucy filter is used.   

Nypan [45] has implemented a comparison of the performance of the Hidden 

Markov Model and Kalman Filter as a filtering tool after the DCM process.  The 

states used for the Kalman Filter are position, velocity and acceleration.  The 

noise that occurred in the position and velocity are modeled as first order Markov 

processes. The acceleration is estimated by the limitations on an average 

vehicle, while the speed is input into the estimator as a virtual measurement 

corresponding to the average speed of vehicles in the area under consideration.   

It was discovered that the Kalman Filter estimator is sensitive to errors due to 

variations in speed, such as when there is very slow moving traffic.  The Hidden 

Markov Model, on the other hand, is not as sensitive to minor changes in speed, 

since the speed is modeled by the transition probability distributions where each 

state is assigned a speed distribution.  A major disadvantage of the Kalman Filter 

was discovered to be the difficulty in estimating the model parameters compared 

to the Hidden Markov Model.  Hidden Markov Models are statistical models 

where the states themselves cannot be observed, but instead some probabilistic 

function of these states is observed.  These states can be referred to as hidden 

states [46].  
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Nypan [45] considers each state in the Hidden Markov Model to correspond to a 

position interval on the road.   

The state transition probability is given by the following equation: 

                        𝑎𝑖𝑗 = 𝑃 𝑞 𝑙 + 1 =  𝑠𝑗 |𝑞 𝑙 = 𝑠𝑖 ,          𝑖, 𝑗 ∈ {1,2, … ,𝑁}          ......(20) 

where the state at time 𝑙 is given by 𝑞 𝑙 , and 𝑁 represents the number of states.  

This is the probability that the model will be in state 𝑠𝑗  at time  𝑙 + 1 , if the model 

was in state 𝑠𝑖  at time 𝑙.  This probability is estimated by the speed distribution of 

vehicles in the required area.   

The observation symbol probability distribution is given by equation 22: 

                            𝑏𝑖𝑗 = 𝑃 𝑦𝑝 𝑙 =  𝑠𝑗 |𝑞 𝑙 = 𝑠𝑖 ,          𝑖, 𝑗 ∈ {1,2, … ,𝑁}          ......(22) 

where the state at time 𝑙 is given by 𝑞 𝑙 ,  𝑁 represents the number of states, and 

the observed output at time 𝑙 is given by 𝑦𝑝 𝑙 . This is the probability of 

measuring state 𝑠𝑗  if the model is in state 𝑠𝑖  at time 𝑙.  It is estimated based on 

the cost functions of comparisons done earlier in the same area.   

The next step is to find the optimal state sequence.  The Viterbi algorithm can be 

used for this, since it finds this sequence according to the maximum likelihood 

[45, 46]. 

However, the Viterbi algorithm is complex and Nypan [45] has used an alternate 

approach.  The states 𝑞 𝑙  are chosen, which are individually most likely to occur 

at each time 𝑙.  This has the advantage of maximizing the expected number of 

accurate individual states.   

The nearest neighbour (NN) method is a very straightforward and simple 

classification method, resulting in very little processing, although it may not 

necessary yield the optimal solution.  This process involves calculating the 

difference between an unknown test element „q‟ and the elements in the training 
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data.  The element with the smallest difference from „q‟ determines the class of 

the test element.  However, this method is sensitive to outliers and the best 

method of distance estimation is not necessarily the typically used Euclidean 

estimation [19]. 

On the other hand, the kNN method involves finding the k elements in the 

database that are closest to the unknown element, q.  From these elements, the 

majority determines the class of q [19].   

2.2. Adaptations in the Technologies between GSM and UMTS 

Most of the 3G location estimation techniques were adopted from the GSM 

techniques.  The location estimation technologies that have been proposed for 

GSM networks are CID+TA, TOA, E-OTD and AGPS.  Those proposed for 

UMTS include CID+RTT, AOA, OTDOA and AGPS [20]. 

The E-OTD approach used in GSM networks has to be adapted to the Idle 

Period Downlink-Observed Time Difference of Arrival (IPDL-OTDOA) in 3G 

systems [17].  WCDMA allows Node-B‟s to transmit to users on the same 

frequencies, but encrypted in different codes.  For this reason, hearability 

becomes an issue since it becomes difficult for User Elements to pick up signals 

from Node-B‟s that are very distant.  To cater for this, at least 3 Node-B‟s are 

required, but this is not always available.  IPDL requires base stations to 

randomly cease their downlink transmission for short periods of time.  When the 

base station with the strongest signal is not transmitting, the UE can measure the 

signals from the weaker base stations [21].   
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2.2.1. Location Services Network Architecture for GSM and UMTS 

 

 

 

 

 

Figures 9 and 10 display the architecture for location services in GSM and UMTS 

networks respectively.  Those components that have been shaded in grey are 

those that have to be added to accommodate location services.  A more detailed 

explanation of these components follows.  
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Figure 9: Architecture for Location Services in a GSM network [20]
 

Figure 10: Architecture for Location Services in an UMTS network [20]
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The Gateway Mobile Location Centre (GMLC) is the first connection point to a 

mobile network, from an external LCS client. When a location request is made, 

the GLMC carries out the registration authorization.  It then sends the request to 

and receives the location estimate from the Mobile Switching Center (MSC) [20].  

The Server Mobile Location Centre (SMLC) manages the scheduling and 

coordination of the resources that are required in the location estimation process, 

and thereafter calculates the location.  In addition, it also controls the Location 

Measurement Units (LMU) that assist with the location estimation.  Two types of 

SMLC‟s exist in GSM, namely Network Switching Subsystem (NSS) based 

SMLC and Base Station Subsystem (BSS) based SMLC.  NSS based SMLC‟s 

allow signalling to the MSC, while BSS based SMLC‟s cater for signalling to the 

Base Station Controller (BSC).  In Universal Mobile Telecommunications System 

(UMTS) networks, the SMLC can be standalone or can be found within the 

Serving Radio Network Controller, or SRNC (similar to BSS based SMLC in GSM 

networks).  The standalone SMLC communicates to the Radio Network 

Controller (RNC) and allows for processing of data needed to compute the user‟s 

location [20].    

The LMU allow for techniques such as TOA or E-OTD.  By taking measurements 

from multiple BS‟s, it caters for the lack of synchronization between BS‟s.  In 

GSM networks, Type A LMU‟s communicate with the Base Transceiver Station 

(BTS) via the air interface.  Type B LMU‟s may be internal or standalone and 

communicate with the BSC.  In UMTS networks, the standalone LMU 

communicates with the Node B via the air interface, and the associated LMU, 

(within Node B), communicates with the RNC [20].   

The Home Location Register (HLR) in an UMTS network contains LCS 

information on the MS‟s and LMU‟s [20].  
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2.3. Performance Measures 

2.3.1. Accuracy 

2.3.1.1. Circular Error Probability 

Circular error probability (CERP) refers to a circle centred at the actual location of 

the mobile user, which can indicate the location estimate with a certain 

probability.  Generally the radii corresponding to 67% (R67) and 95% (R95) of 

the estimates are used and this standard is used in the results of this research.  

Thus for example, a R67 value of 100m means that 67% of the estimates had an 

error less than 100m.  A radius corresponding to 90% (R90) of the estimates is 

also used in literature.   

2.3.1.2. Root Mean Square Error 

The Root Mean Square Error (RMSE) is given by the following equation [18]:  

                                                      𝑅𝑀𝑆𝐸 =   
1

𝑛
 𝑑𝑖

2𝑛
𝑖=1                      .....(23) 

Where 𝑑𝑖  refers to the measurement error in sample 𝑖, and 𝑛 represents the 

number of samples. The RMSE complements the CERP, giving an overall 

picture, but also includes the outliers.   

2.3.2. Reliability 

The reliability of a positioning technology can be measured by the number of 

successful estimations with respect to the total number of cases [17]. 

2.3.3. Availability 

Availability can refer to the percentage of time that the user‟s location can be 

determined.  For example, the GPS method has high levels of availability 

outdoors, where the satellites are visible to the GPS receiver.  On the other hand, 

as one moves indoors or underground, the availability reduces drastically [20].   
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2.3.4. Applicability 

Applicability refers to the financial and technical aspects regarding matters such 

as software, hardware, power consumption, processing power as well as 

standardization issues such as whether the measurements are standardized or 

not [17].   

2.4. Challenges in Cellular Positioning 

2.4.1. Environmental 

2.4.1.1. Multipath Propagation 

Multipath propagation results from reflections of the electromagnetic waves off 

different objects in its path.  Multipath propagation results in fading of the signal, 

due to the signal arriving at different times and at different angles.  Fading has a 

significant role in those location systems that are dependent on signal strength.   

This also results in degradation in the hearability of the base stations. The effect 

of multipath fading can be reduced by using signal strength averaging.  

Assuming the environment remains constant, the effects of shadowing can be 

reduced by using pre-measured signal strength contours centered at the base 

stations [16].   

2.4.1.2. Non-line of Site 

Non-line of Site (NLOS) error is defined to be the extra distance that the signal 

travels, compared to the LOS path. Kai [16] attempts to identify NLOS by using 

the residual ranking algorithm.  The residuals are calculated as the square of the 

difference between the real and estimated distances.  The average Gaussian 

noise in the measurements is usually much lower than the NLOS range error.  

Thus, the residual can represent the magnitude of the NLOS error.   
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2.4.1.3. Errors in Measurement Due to Fading 

To overcome the effects of fading and errors in measurement in the received 

signal strength method, Shen et al [22] have proposed a fuzzy inference system 

that has a smoothing function.  The system model uses Direct Sequence CDMA 

(DS/CDMA).  To compensate for the shadowing error, training data from actual 

measurements, or statistical data obtained from simulations.  The measurement 

error is compensated for by giving more importance to the data that has higher 

measurement accuracy. The fuzzy inference system is one that uses a 

knowledge base, which utilizes fuzzy interference rules, and an inference engine.  

The position of the mobile station can then be estimated by using measurement 

data.  Factors such as measurement errors, as well as the propagation 

environment can be included in the knowledge base 

2.5. Summary 

In the literature survey that was conducted, it was observed that common land 

based localization techniques include Cell-ID, OTD, TDOA and E-OTD.  Cell-ID 

yields the lowest accuracy levels, especially in a suburban environment.  With 

this technique, the accuracy decreases with an increase in cell size.  OTD 

(Observed Time Difference)/ TDOA and E-OTD result in better accuracies than 

Cell-ID.  However, the accuracy depends heavily on multipath propagation and 

may perform very well in dense urban environments [17].    

These common positioning techniques generally either require the installation of 

new expensive hardware or do not yield accurate results.  The best results are 

obtained from AGPS, with GPS providing the next best results.  However, 

particularly in a developing or third world nation, it is impractical and expensive to 

expect every cellular phone to be replaced.  

In ideal conditions with perfect LOS and no multipath propagation, it is possible 

to obtain good location estimates.  However, this is not the case.  The Database 

Correlation Method (DCM), otherwise referred to as pattern matching or 
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fingerprinting, appears to yield very good results and circumvents the multipath 

problem.   

It was noted that although modeling the environment using propagation models 

saves a considerable amount of time in terms of being easier to create and 

update, topographical data is expensive to obtain.  In addition, the true 

environment is never perfect and the results obtained using simulations may be a 

bit too optimistic.  For this reason, focus has been given by the author in the 

methodology section on creating the database using field test measurements 

instead.   

The methodology section will then also focus on the use of weights, as well as 

the use of clustering and map matching, since they appear to be beneficial in 

reducing errors.  The influences of exponential cost functions, as well as 

techniques based on least mean squares were analyzed. 

To be able to produce a positioning method that does not have a heavy impact 

on costs, it appears to be wise to use measurements that are already present in 

the NMR.  For this reason, this research will focus on the signal strengths 

obtained from the various networks, and not on power delay profiles to form the 

database.   

From the research conducted, it appears that the use of both UMTS and GSM 

data assists the correlation process to obtain higher levels of accuracies.  

Kalman Filters appear to be beneficial in smoothing the location estimates in 

route tracking.  Bayesian techniques also appear to provide good levels of 

accuracy.  However, Kalman Filtering requires observations over time.  Similarly, 

Bayesian methods also require estimations over time where a number of 

fingerprints have to be collected and the estimate is made based on both the 

current as well as the previous fingerprints.  For this reason, this research has 

focused on location estimation and not on route tracking, since route tracking 

requires that factors such as prior location have to be kept track of and thus is 

not efficient in terms of memory and processing.   
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Even though Map Matching requires the availability of past data to obtain the 

best results, it can still be carried out with only the present data.  It must thus be 

determined whether this approach still produces sufficiently good estimates, with 

minimal incorrectly matched location points.   
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3. Key Research Questions and 
Methodology 

3.1. Introduction 
The aim of this project was to develop and study accurate methods of location 

estimation for mobile phones in a developing country such as South Africa.  The 

Oxford dictionary [59] defines a developing country as “a poor agricultural 

country that is seeking to become more advanced economically and socially”.  In 

the context of this research, a developing nation is one which has already 

implemented 3G technology.  The majority of the population cannot afford the 

expensive GPS enabled phones.  However, there is still a significant part of the 

population which own 3G handsets and this number is growing rapidly.  A 

method which caters for the poorer part of the population that cannot afford GPS-

enabled phones, as well as provides good levels of accuracy for the rest of the 

population who prefer to disable the GPS function on their phones, due to the 

previously mentioned shortcomings such as high rates of power consumption, is 

needed.  In addition, between 2009 and 2010, there was a 64.1% growth in 

WCDMA subscribers in Africa [52].  It is essential to develop better methods of 

estimating the location of a mobile user in this network, while still catering for the 

poorer parts of the population that cannot yet afford 3G handsets.   

This project focused on analyzing the different techniques used to correlate the 

test fingerprints to the database fingerprints in the pattern matching process for a 

suburban environment. Statistics South Africa [60] describes a rural area to be 

“farms and traditional areas characterized by low population densities, low levels 

of economic activity and low levels of infrastructure”, while urban areas are 

described as “formal cities and towns characterized by higher population 

densities, high levels of economic activities and high levels of infrastructure”.  A 

suburb is defined as “areas within a town or city proclaimed or set aside mainly 

for residing purposes”.  The suburban areas in which the tests are carried out in 
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this research can further be defined to comprise of single storey houses and 

dense foliage.   

The database was generated in a suburban environment of Lynnwood in Pretoria 

as well as in a similar environment in the SE1 suburb of Vanderbijlpark.  The 

results obtained would provide an indication as to whether these methods will 

work in any suburban area, irrespective of its geographical location.   

 It was initially agreed that a leading telecommunications company in South 

Africa would carry out the field test measurements using engineering handsets.  

However, towards the end of 2010, these had still not been purchased.  To 

continue with the field tests in time, a Sony Ericsson phone was configured and 

set to field test mode to obtain the readings.  However, the measurement of data 

using a phone put into field test mode was proved to be time consuming.  To find 

a productive compromise between time and the number of tests carried out, the 

tests were limited to suburban areas, as previously mentioned.    These results 

could then be compared to tests carried out in other research and if similar 

results were obtained, an estimate can be made of whether the techniques would 

be feasible in other environmental conditions.   

The influence of map matching on the results was also studied.  The aim was to 

improve the results by correcting the smaller errors due to inaccurate GPS 

measurements.   

The results of the different techniques were analyzed based on the average 

error, as well as on R67 and R95 errors which can then used to determine 

whether it meets the FCC requirements.   

Thus the key research questions are:  

 Study and construct various algorithms of the correlation process in the 

pattern matching procedure to obtain better accuracies.  

 What network measurements or features are necessary to provide pattern 

matching with good accuracies? 
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 How can the cost function be constructed and altered to improve the 

accuracy? 

 Will clustering the fingerprints help to eliminate outliers? 

 Test these algorithms in suburban environments. 

 Although 3G is deployed in South Africa, there are some areas which are 

not covered.  Thus both GSM and WCDMA networks must be analyzed, 

and in those cases where both will be detected, what is the advantage or 

disadvantage of using both networks?   

 Will the predominance of either GSM or WCDMA in the particular area 

affect the results greatly?  

 Will these techniques work in any suburban area, irrespective of its 

geographical location?  

 Do the techniques have potential to work in an urban or rural area? 

 If several location estimates are obtained, how will these be analyzed 

further? 

 GPS measurements are required to obtain the location parameter to which 

the RF signal measurements will be associated in the database.  Thus 

how can the errors originated by GPS measurements be eliminated?   

 Determine how effective and feasible it will be to implement the 

techniques in reality.   

 Based on the conclusions obtained, recommend any future improvements 

that can be made to produce better accuracies.   
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3.2. Obtaining Test Data 

Test data were obtained by carrying out drive tests. The area under 

consideration was divided into „pixels‟ or grids, and measurements were obtained 

for these „pixels‟ while driving along these routes.  A Garmin Nüvi 205 GPS was 

used to obtain location measurements. Therefore each pixel in the database 

contained information on the latitudinal and longitudinal GPS coordinates, GSM 

cell information, measurements of neighbouring GSM cells and WCDMA cells.  

A Sony Ericsson K810i cell phone was put into field test mode to obtain the 

required measurements.  This mode yielded similar measurements to that of 

many other commercial programs. The older phones could enter the Field Test 

Mode by just entering a code on the phone.  However, newer phones have the 

Field Test Mode disabled in order to avoid misuse.  A modification of the Global 

Data File System (GDFS) is required to activate it in these phones.  The phone is 

connected to the laptop and the XS++ [41] software tool was then used to modify 

the GDFS.   

The 6 WCDMA channels with the strongest signal, as well as the GSM cell 

information were measured.  The GSM neighbouring channels were also 

monitored.  The phone picked up signals from the WCDMA Node-B‟s in some 

areas and from GSM towers in other areas. 

The drive test is conducted at a speed of approximately 20km/h and the 

measurements are taken at roughly every 15 to 20 seconds. Thus, the 

measurements are taken with a spacing of approximately 100 meters.   

The first set of measurements was taken in Lynnwood (Pretoria).  An area of 

1.94km2 was covered as shown in Figure 11 displayed on the next page.      
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Figure 11: The area covered in Lynnwood, Pretoria (Area A) [48]  

 

Figure 12: A view of a typical street where the field tests were carried out in Lynnwood (Area A) 
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The second set of measurements was taken in the SE1 suburb in Vanderbijlpark.  

The measurements for the test samples were taken on the second day, in similar 

conditions.  An area of 1.64 km2 was covered, as can be seen in Figure 13.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: A view of a typical street where the field tests were carried out in Vanderbijlpark (Area B) 

Figure 13: The area covered in SE 1, Vanderbijlpark (Area B) [61] 
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Figures 12 and 14 are images of a typical street in Area A and Area B 

respectively.  This indicates that both the areas are residential suburban areas 

with no tall buildings, and dense foliage.  The database and sample 

measurements were taken in the earlier hours of the morning, with very little 

traffic in the area and with sunny weather conditions.  The sample measurements 

were carried out in similar conditions on a separate day.  Thus the field tests in 

Area A and Area B took a total of 4 days to cover.   

 

Figure 15: WCDMA Coverage in Area A [58] 

 

Figure 16: WCDMA Coverage in Area B [44] 
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In Figures 15 and 16, the areas shaded in red indicate the regions with WCDMA 

coverage.  Thus it can be seen that Area A has predominantly WCDMA 

coverage, while Area B has predominantly GSM coverage.   

3.3. Extracting the Data 

All the measurements observed during the field tests are explained in Appendix 

A.  However, for the purpose of this research, only the received signal levels and 

CID‟s of the serving GSM cell, GSM neighbours, as well as that of the serving 

WCDMA cell and WCDMA neighbours were used.  These parameters are 

explained in Table 3 which is given below.   

 

Category Symbol Explanation Possible values 

GSM  Cell Rxls Received Signal 

Strength 

 

Ci Cell ID  

GSM 

Neighbours 

Narf Neighbouring 

ARFCN 

 

Nrxl Neighbouring 

Received Signal 

Strength 

 

UARFC UMTS Absolute 

Radio Frequency 

Channel Number 

 

RSSI Received Signal 

Strength  

 

WCDMA W WCDMA cell type S: Serving cell 

A: Active set member 

M: Monitored neighbour 

D: Detected neighbour 

SC Scrambling Code  

RSCP Received Signal 

Code Power 

 

Table 3: Explanation of the symbols used in the GSM Cell section 
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It must be noted that the Neighbouring ARFCN and Neighbouring received signal 

strength of the 6 GSM neighbours, as well as the WCDMA cell type, UMTS 

absolute Radio Frequency, Scrambling Code and Received Signal Code Power 

for the serving WCDMA cell and the 5 WCDMA neighbours were measured.  

The most common antenna configuration for a UMTS network include 

omnidirectional, 3-sector (120° wide) or 6-sector (3 sectors 120° wide, 

overlapping with another 3 sectors 120° wide with a different frequency) [52].   

Consider the relationship between the parameters in a 6-sector hypothetical 

network, as shown in Table 4.   

NodeB 

ID 

NodeB 

Name 

Sector 

ID 

Cell ID UARFCN P-SC 

n1 Location A s1 c1 u1 p1 

n1 Location A s1 c1 u2 p1 

n1 Location A s2 c2 u1 p2 

n1 Location A s2 c2 u2 p2 

n1 Location A s3 c3 u1 p3 

n1 Location A s3 c3 u2 p3 

Table 4: Relationship between the engineering parameters in a 6-sector hypothetical network 

The channels are spread using Scrambling Codes, thus creating a differentiation 

between each sector.  The P-SC (Primary Scrambling Code) is specific to the 

cell, while the S-SC (Secondary Scrambling Code) are used by the MS when 

actively communicating with the cell [54].  Thus a Node B can serve more than 

one cell, or sector, as can be seen from Table 4 above.  A Node B can transmit 

at more than one frequency, while the scrambling code identifies the sector.  The 

UARFCN together with the Scrambling Code can thus identify the Node B sector.   

The UARFCN indicates the UMTS carrier frequencies and is calculated as 

follows: 

UARFCN = 5 x (frequency in MHz) [55]. 
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For a UMTS network, the signal strengths are measured on the Common Pilot 

Channel.  The RSS gives indication of signal strength in GSM networks and is 

measured in dBm. RSCP on the other hand, gives an indication of the signal 

strength in UMTS networks and is not measured in dBm [54].   

The field test device failed to measure the Timing Advance (TA) parameter 

during the drive tests.  Furthermore, in GSM networks, TA parameters are only 

roughly estimated with corresponding distance steps of about 550 meters.  Thus, 

TA has not been included in the methods.  

 

A database was constructed in MATLAB, which consists of data of the 

fingerprints as shown in Figure 17 below.  Each fingerprint corresponds to a 

certain location.  A similar database is constructed for the samples.   

 

 

3.4. Techniques Using the Strongest Cell 

3.4.1. Strongest Cell Approach 

For the first approach, only the signal strength from the strongest GSM or 

WCDMA cell of the database elements, 𝑔, as well as that of the samples, 𝑓, are 

considered.  Only those N elements in 𝑔 that have common CI‟s with 𝑓 are used 

to form the cost function, 𝑑 𝑘 .  This approach is based on the Least Mean 

Squares approach taken by Kemppi [18] described in section 2.1.6.3, but only 

considers the serving cells in the calculations.  This basic approach was carried 

Figure 17: The structure of the fingerprints in the database 

Fingerprint 1 

Fingerprint 2 

Fingerprint 3 

. 

. 

. 

Fingerprint n 

GPS Coord. GSM 

Cell 
GSM 

Neighbour 
WCDMA Cell 

Latitude1 
Longitude1 
 

 

 

 

Rxls 
Ci 

Narf1 Nrxl1 
Narf2 Nrxl2 
Narf3 Nrxl3 
Narf4 Nrxl4 
Narf5 Nrxl5 
Narf6 Nrxl6 

UARFC1 SC1 RSCP1 
UARFC2 SC2 RSCP2 
UARFC3 SC3 RSCP3 
UARFC4 SC4 RSCP4 
UARFC5 SC5 RSCP5 
UARFC6 SC6 RSCP6 

 

DATABASE 
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out first to obtain an understanding of the impact of the signal strengths obtained 

from the strongest cell in the measurements on the cost function used for 

correlation. 

 

For each sample 𝑠, the distance matrix is calculated as follows:  

                                                   𝑑 𝑘 =  (𝑓 –  𝑔)2𝑁
𝑘=1                                …… (24) 

The minimum value of the cost function then indicates the best matched 

fingerprint for each sample.  If 𝑓 does not appear in 𝑔, then the second strongest 

element of the database is considered to form the cost function.  For example, 

consider Figures 18 and 19 below.  For a sample fingerprint in the GSM network, 

this corresponds to Rxlss1 and Cis1 from the GSM Cell category.  Thus for each 

fingerprint in the database, an inspection is made to determine whether Cifn 

corresponds to Cis1.  If there is no match between these serving CI‟s, then it is 

checked if Cifn corresponds to the second strongest CI detected, Narf1fn.  The 

difference between Rxlss1 and the corresponding database CI‟s signal strength 

can now be found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPS Coord. GSM Cell GSM Neighbour WCDMA Cell 

Latitudefn 

Longitudefn 

 

 

 

 

Rxlsfn 

Cifn 

Narf1fn Nrxl1fn 

Narf2fn Nrxl2fn 

Narf3fn Nrxl3fn 

Narf4fn Nrxl4fn 

Narf5fn Nrxl5fn 

Narf6fn Nrxl6fn 

UARFC1fn SC1fn RSCP1fn 

UARFC2fn SC2fn RSCP2fn 

UARFC3fn SC3fv RSCP3fn 

UARFC4fn SC4fn RSCP4fn 

UARFC5fn SC5fn RSCP5fn 

UARFC6fn SC6fn RSCP6fn 

 
Figure 18: Example of a database fingerprint structure for a GSM network 
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3.4.2. Clustering Approach 

The basic Strongest Cell approach is modified and used in this approach to 

determine how effective clustering is.  This technique is similar to the previously 

mentioned approach, with the exception that the K-means method, as introduced 

in section 2.1.6.3, is used to cluster all the database fingerprints with the same 

serving CI or second strongest CI as the serving CI of the sample.  This is 

illustrated in Figure 20 on the following page.  These multiple location estimates 

for a sample occur where there is more than one value of 𝑘 producing a minimum 

𝑑 𝑘 .  The number of clusters is found by rounding 𝑀/2 to the next integer that is 

lower than or equal to it, where 𝑀 corresponds to the total number of estimates 

made for each sample.  For example in Figures 18 and 19, all the fingerprints 

that have Cifn or Narf1fn in common with Cis1 are clustered for a GSM network.  If 

10 possible location estimates are made using (24) for a particular sample, a 

total number of 5 clusters are formed.  The kNN classification method, which is 

described in section 2.1.6.5, is then used on the signal strengths to determine 

which cluster the sample belongs to.  The mean of the GPS coordinates in this 

group is then used to locate the centre point of this cluster, which defines the 

estimated location.   

GPS Coord. GSM Cell GSM Neighbour WCDMA Cell 

Latitudes1 

Longitudes1 

 

 

 

 

Rxlss1 

Cis1 

Narf1s1 Nrxl1s1 

Narf2s1 Nrxl2s1 

Narf3s1 Nrxl3s1 

Narf4s1 Nrxl4s1 

Narf5s1 Nrxl5s1 

Narf6s1 Nrxl6s1 

UARFC1s1 SC1s1 RSCP1s1 

UARFC2s1 SC2s1 RSCP2s1 

UARFC3s1 SC3s1 RSCP3s1 

UARFC4s1 SC4s1 RSCP4s1 

UARFC5s1 SC5s1 RSCP5s1 

UARFC6s1 SC6s1 RSCP6s1 

 
Figure 19: Example of a sample fingerprint structure for a GSM network 
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3.5. Techniques Using All Detected Cells 

3.5.1. Common CI’s 

The first approach carried out is referred to as the Common CI Approach in this 

research and is similar to the PCM method introduced by Borkowski et al [34] as 

described in section 2.1.6.3 and is based on the Least Means Square method.  

This is a basic approach taken to determine how the addition of information on 

signal strengths obtained from neighbouring BS‟s of the fingerprint that are 

common with neighbouring BS‟s of the sample, influences the accuracies 

obtained by using the signal strength from the strongest cell alone.  This provides 

a crucial overview of the importance of additional information on signal strengths 

to form the fingerprints.  The cost function is only based on the signal strengths 

of those CI‟s that are common between the sample and database fingerprints.  

Using Figure 21 as an example, these common CI‟s would be CI‟s A, B and C. 

This cost function is calculated using the following equation: 

                                                 𝑑 𝑘 =  (𝑓𝑖  –  𝑔𝑖(𝑘))2
𝑖                                …… (25) 

latitude 
lo

n
g
it

u
d
e 

Figure 18: Grouping of d(k) into 3 clusters, where M = 6 



57 
 

In (25), 𝑓𝑖  represents the signal strength of the 𝑖𝑡𝑕  CI in the sample that also 

occurs in the database and 𝑔𝑖(𝑘) represents the signal strength of the 𝑖𝑡𝑕  

detected CI in the 𝑘𝑡𝑕  database fingerprint which is also present in the sample. 

3.5.2. Inclusion of the Penalty Term 

This technique is an advancement to the Common CI‟s approach, where those 

CI‟s that are not in common between the database and sample fingerprints are 

penalized.  This is necessary to determine the relationship between common and 

uncommon CI‟s that occur between the database and sample fingerprints, and 

thus its impact on the results.  The Least Mean Squares approach taken by 

Kemppi [18] in Section 2.1.6.3 was attempted, and then adapted to determine the 

location estimates.   

Consider the example of a database fingerprint and sample as shown in Figure 

21.   

DATABASE FINGERPRINT  SAMPLE FINGERPRINT 

CELL ID RSS (dBm)  CELL ID RSS (dBm) 

CELL ID A -83  CELL ID A -84 

CELL ID B -84  CELL ID B -86 

CELL ID C -89  CELL ID C -93 

CELL ID D -99  CELL ID F -96 

CELL ID E -102  CELL ID G -99 

   CELL ID H -104 

Figure 19: An example of the CI's and signal strengths in a database and sample fingerprint 

The technique implemented by Kemppi [18] involves the inclusion of all the Cell 

ID‟s A to H in the calculation. However, Cell ID‟s D and E only occur in the 

fingerprint, while Cell ID‟s F, G and H only occur in the sample.  A very small 

value is assumed for the RSS of Cell ID‟s F, G and H in the database fingerprint, 

assuming that this base station is located far away from the fingerprint.  Similarly, 

this very small value, or threshold, is used for Cell ID‟s D and E, which do not 

occur in the sample.   
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Thus as mentioned in section 2.1.6.3, the difference can be calculated as follows 

            𝑑 𝑘 =  (𝑓𝑖  –  𝑔𝑖(𝑘))2
𝑖 +   (𝑓𝑗  –  𝑄)2

𝑗 +   (𝑄 – 𝑔𝑚 (𝑘))2
𝑚               …… (26) 

In (26), 𝑓𝑖  and 𝑔𝑖(𝑘)are as described for (25) while 𝑑 𝑘  is the criteria calculated, 

representing the difference between the sample and the 𝑘𝑡𝑕  database fingerprint.  

The signal strength of the 𝑗𝑡𝑕  detected CI in the sample which is not present in 

the 𝑘𝑡𝑕  database fingerprint is represented by 𝑓𝑗 .  The signal strength of the 𝑚𝑡𝑕  

CI from the 𝑘𝑡𝑕  database fingerprint, which is not present in the sample is 

represented by 𝑔𝑚(𝑘). A threshold value for signal strength is given by 𝑄 and is 

used where the specific CI is not present in either the sample or the database. 

The error, as well as the number of estimated locations per sample, was 

analyzed for varying values of 𝑄 to determine the optimal value of 𝑄. The 

technique mentioned above is referred to as Dual Penalty Term Approach in this 

research.  

This technique was adapted to exclude the CI‟s in the fingerprint that do not 

occur in the sample.  The difference is then calculated using the following 

equation: 

                                    𝑑 𝑘 =  (𝑓𝑖  – 𝑔𝑖(𝑘))2
𝑖 +   (𝑓𝑗  –  𝑄)2

𝑗                      …… (27) 

This second technique is referred to as the Single Penalty Term Approach in this 

research.   

3.5.3. Inclusion of Weights 

The influence of weights on the Penalty Term Approaches mentioned in section 

3.5.2 is tested. The inclusion of weights is an effort to improve the penalty term 

approaches by adding further means of discriminating the database fingerprints.  

The number of common CI‟s (CI‟s in the sample that appear in the database 

fingerprint) should be given more importance in the calculations.  Thus a weight 
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is calculated in this approach, which corresponds to the ratio of the number of 

common CI‟s, to the total number of CI‟s detected in the sample.   

The weight is calculated using the following equation: 

                      𝑤𝑘 =
𝑛𝑜

𝑛𝑠
         ……(28) 

 where 𝑛𝑜  is the number of CI‟s in the sample that appears in the database 

fingerprint 𝑘, and 𝑛𝑠 is the total number of CI‟s that is present in the sample.  This 

weight is then multiplied with (26) and (27).  The smallest value of the cost 

function corresponds to the fingerprint with the closest estimation.     

3.5.4. Multiple Weights Approach 

The method used by Khalaf-Allah [28] was introduced in section 2.1.6.3 and has 

been adapted in this approach.  This approach further differentiates the database 

fingerprints, in comparison to the use of weights in section 3.5.3 by including 

further criteria.  These criteria include for example a positive effect on the cost 

function if the strongest CI‟s of the database and sample fingerprints are the 

same.  It calculates a weight 𝑤(𝑖) , where  

                                     𝑤(𝑖) =  𝑤(𝑖)
𝑀𝑀 + 𝑤(𝑖)

𝑁𝐷 + 𝑤(𝑖)
𝑆𝑁                            …… (29) 

𝑤(𝑖)
𝑀𝑀  , 𝑤(𝑖)

𝑁𝐷 and 𝑤(𝑖)
𝑆𝑁  represent the measurement model, neighbourhood 

degree and strongest neighbour weights respectively. The measurement model 

weight is represented by equation 30 below: 

𝑤(𝑖)
𝑀𝑀 =   

1

𝜎𝑅𝑥𝐿 𝑒𝑣 2𝜋
𝑒

−(𝑅𝑥𝐿𝑒𝑣 𝑠
 𝑗  −𝑅𝑥𝐿𝑒𝑣 𝐷𝐵 𝑗

)2

2𝜎𝑅𝑥𝐿𝑒𝑣
2 .  

1

𝜎𝑅𝑥𝐿𝑒𝑣  2𝜋
𝑒
−(𝑅𝑥𝐿𝑒𝑣 𝑠

 𝑘 −𝑄)2

2𝜎𝑅𝑥𝐿𝑒𝑣
2 .𝑁

𝑘=1
𝑀
𝑗=1      … (30) 

In (30), M refers to the total number of CI‟s detected in the sample.  The number 

of CI‟s in the sample, which is not detected in the fingerprint, is represented by N.  

As in the previous section, 𝑄 represents a threshold.  The standard deviation of 

the detected signal strengths in the sample is given by 𝜎𝑅𝑥𝐿𝑒𝑣 .  The signal 
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strength of the 𝑗𝑡𝑕  CI in the sample is represented by 𝑅𝑥𝐿𝑒𝑣𝑠
 𝑗  , while 𝑅𝑥𝐿𝑒𝑣𝐷𝐵𝑗

 is 

the signal strength in the database fingerprint of the 𝑗𝑡𝑕  CI which was detected in 

the sample.  

The neighbourhood degree weight is given by the following equation: 

                                                         𝑤(𝑖)
𝑁𝐷 = 𝑙                                         …… (31) 

where 𝑙 is the number of CI‟s in the sample, that occurs in the fingerprint too. 

The strongest neighbour weight is given by the equation given below: 

𝑤(𝑖)
𝑆𝑁 = 𝜎𝑆𝑁  ……… (32) 

where 𝜎𝑆𝑁 equals 1 if the strongest CI in the sample corresponds to the strongest 

or second strongest CI in the fingerprint. If this is not the case, then 𝜎𝑆𝑁 = 0. 

3.5.5. Exponential 

The approach taken by Zimmermann [38] as described in section 2.1.6.3 is 

carried out to evaluate the influence of an exponential cost function.  This 

approach is tested as a variant to the Least Means Square method used in 

sections 3.5.1 to 3.5.4.  This exponential function allows for more importance to 

be given to small differences than to large differences between the sample and 

database fingerprints. 

The cost function for those cell IDs in the database fingerprint that occur in the 

sample is given by means of the following equation: 

                                           𝑃𝑐𝑜𝑚𝑚𝑜𝑛 =    𝑒− 
𝑓𝑖−𝑔𝑖

𝜎
 

2

𝑖∈𝑁∗

𝑛∗

                         ……(33) 

The number of common CI‟s is represented by 𝑛∗ in (33).  The signal strength of 

the 𝑖𝑡𝑕  detected CI in the sample is represented by 𝑓𝑖 , while 𝑔𝑖  represents the 
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signal strength of the 𝑖𝑡𝑕  detected CI in the database, which is also present in the 

sample. 

 Those CI‟s that are not common in both the database and sample fingerprints, 

are penalized as follows 

                                       𝑃𝑃𝑒𝑛 =    𝑒− 
𝑔𝑖−𝑚𝑚𝑖𝑛

𝜎
 

2

𝑖∈𝑁∗

𝑛 ′

                                 ……(34) 

In (34), 𝑛’ represents the number of CI‟s that are not common between the 

sample and database fingerprints, whereas 𝑚𝑚𝑖𝑛  represents the lowest signal 

strength in the sample fingerprint. 

The final penalty term is then calculated as follows: 

                                                𝑃 =   𝑃𝑐𝑜𝑚𝑚𝑜𝑛  . 𝑃𝑃𝑒𝑛                                     ……(35) 

3.5. Map matching 

The GPS device estimates the location of a user with only a certain degree of 

accuracy.  For this reason, the errors in the locations measured using the GPS 

device need to be reduced using the map matching technique.  To create a 

digital map of the paths taken, Google Maps [48, 61] was used to determine the 

exact GPS coordinates along the roads where the measurements were taken.  

Let (𝑠𝑥𝑖  , 𝑠𝑦𝑖
) refer to the coordinates obtained from Google Maps [48, 61] and 

(𝑚𝑥𝑗 , 𝑚𝑦𝑗 ) refer to the measured GPS coordinates used in the database.  Thus 

𝑑 𝑗 , the closest actual digital coordinates to the measured coordinates, is 

calculated by using the following equation: 

𝑑 𝑗 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚  (𝑚𝑥𝑗 − 𝑠𝑥𝑖)2 + (𝑚𝑦𝑗 − 𝑠𝑦𝑖)2   ……… (36) 
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3.6. Summary 

The various techniques mentioned in this chapter were aimed at improving the 

precision of the pattern matching method for a developing country.  These 

techniques were chosen and modified, such that an effective comparison can be 

obtained between them.  The possible variables that could affect the positioning 

algorithms had to be kept constant.  These variables included environment, time 

of day, weather and type of device used for measurements. Thus, the field tests 

carried out to form the database and samples were limited to suburban 

environments and only the geographical location was changed.  The suburban 

areas that were chosen had differing levels of dominance of either WCDMA or 

GSM networks.  The Radio Frequency signal measurements that were obtained 

during the field tests were used together with the measured GPS coordinates to 

construct a database of fingerprints.   

 

Chapter 4 will provide a detailed analysis of the results obtained by implementing 

these various techniques in two suburban environments.  The level of importance 

which should be given to those CI‟s that are common between the sample and 

database fingerprints was studied. The influence of clustering, the use of weights 

as well as the performance of the techniques in the GSM and WCDMA networks 

have been analyzed and are presented in Chapter 4.     

. 
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4. Results and Analysis 

4.1. Introduction 

The techniques mentioned in chapter 3 were tested in two suburban areas in 

South Africa.  Area A refers to the suburb of Lynnwood in Pretoria, while Area B 

refers to the suburb of SE 1 in Vanderbijlpark.  The characteristics of the areas, 

in terms of the availability of the various measurement parameters that were 

captured in a GSM and WCDMA network are described in this chapter.  The 

results obtained from varying values of the penalty term in (26) and (27), as well 

as the relationship between the weights described in (28), the penalty term and 

the accuracy that it produces is also analyzed.  The results obtained from testing 

the various techniques are then displayed and analyzed. 

4.2. Area A 

4.2.1. General 

From the field tests that were performed, 331 fingerprint measurements were 

obtained for the database, while 41 measurements were taken for the samples, 

which will be used to test the techniques presented.  Up to 6 WCDMA CI‟s 

(including the serving cell and 5 neighbouring cells) were detected per fingerprint 

location.  In the GSM network, a maximum of 7 GSM CI‟s (including the serving 

cell and 6 GSM neighbouring cells) were measured per fingerprint.  As was noted 

in chapter 3, the Lynnwood area had predominantly WCDMA coverage.   
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4.2.2. Measurement Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Distribution of strongest measured neighbouring WCDMA Base Stations with respect to 

GPS coordinates 

Figure 22 represents the distribution of the serving WCDMA cells with respect to 

location.  A total of 52 different WCDMA CI‟s were detected as the serving CI 

amongst the database fingerprints, as can be seen from Figure 22 above.  

However, 98 CI‟s were picked up altogether amongst all the WCDMA CI‟s in the 

database.  The first number in the legend indicates the UMTS Absolute Radio 

Frequency Channel Number, while the second number represents the 

Scrambling Code.  Figure 22 shows that the serving CI‟s vary quite a lot as one 

moves from one location point to the other.  Thus it appears that the serving CI 

has potential of giving a relatively good location estimate.   
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Figure 21: Distribution of the number of measured WCDMA neighbours per GPS coordinate 

The WCDMA CI‟s were detected in all the measurement positions for the 

database.  Although it was expected to ideally obtain measurements of all six 

WCDMA CI‟s in each fingerprint, all six WCDMA neighbours were only detected 

in 49.6% of the fingerprints in the database.  However, 79 % of the fingerprints 

included more than 3 WCDMA neighbours.  This is illustrated in Figure 23 and is 

due to factors such as reflections off trees, buildings and other objects in the 

environment which block the propagation of the signal.  Kemppi [18] describes 

how the number of hearable cells affects the resolution of the DCM fingerprints.  

Thus, the fewer the number of hearable cells, the greater is the area where the 

same signal levels will be measured.  
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Figure 22: Distribution of strongest measured GSM Cell ID's with respect to GPS coordinates 

As can be seen in Figure 24 above, there were 21 different GSM CI‟s that were 

detected as the serving cell in the specific area.  Even though the GSM 

neighbours were not detected in the majority of the positions, the strongest GSM 

Cell was always detected. A total of 27 GSM CI‟s were detected amongst all the 

GSM neighbours. In those location points where the GSM neighbours were 

detected, all 6 of the neighbours were detected.  In contrast to the serving 

WCDMA CI that was measured, the GSM system indicates much larger areas 

with the same serving CI‟s.  This makes it more difficult to correlate these 

location points based on serving CI‟s alone, since one has to rely heavily on the 

signal strength in these areas where the serving CI‟s match.  This may result in 

less accurate position estimates since slight fluctuations were observed in the 

signal strengths.   
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Figure 25 displayed below, indicates the distribution of the samples in relation to 

the database fingerprints.   The WCDMA neighbours were not detected at all in 

7.9% of the cases for the sample.  Similar to the GSM database, the GSM 

neighbours were not detected in the majority of the measurements.  It was only 

detected in 22% of the sample measurements.  However, the strongest GSM cell 

was always detected.  Thus it can be concluded from these preliminary 

observations that the use of GSM neighbours alone is not sufficient enough to 

distinguish the location points in the correlation procedure in this area with 

predominantly WCDMA coverage.   

 

 
Figure 23: Location of the samples with respect to the database measurements for a WCDMA network 

Figure 26 on the following page displays the resultant positions of map matching.  

Slight improvements can be seen in certain areas.   
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Figure 24: Measured locations vs. map matched locations 

4.2.3. Analysis of the Parameters 

The value of the penalty term, 𝑄, in (26) and (27) was varied from -250 to 0 and 

its impact on the accuracy was observed.  In addition, the effect of the weight, 

𝑤𝑘 , described in (28) was also analyzed.  As defined in section 3.5.2, the Dual 

Penalty Term Approach uses penalty terms for the undetected sample and 

database BS‟s and is given by (26).  The Single Penalty Term Approach only 

uses a penalty term for the undetected database BS‟s and is given by (27).  

These approaches are used with and without the weights, 𝑤𝑘 , used in (28) as 

described in section 3.5.3.  Figures 27 to 30 show the relationship between 𝑤𝑘 , 𝑄 

and the accuracy for the Penalty Term Approaches.  In those cases where more 

than one location point was estimated, the mean of the errors for these location 

points were found and an average number of estimates were recorded for the 

particular technique.  It is expected that for values of 𝑄 below the range that was 

measured for the WCDMA and GSM signal strengths, the number of estimated 

locations per sample should stabilize to a minimum.  Outside this range, 𝑄 should 

have less interference with the existing data.   
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Since this is an area which has majority WCDMA coverage, the WCDMA network 

is expected to show a more stable graph than that for the GSM network.  The 

Single Penalty Term Approach is expected to yield better results than the Dual 

Penalty Term Approach since it does not overemphasize the effect that the CI‟s 

that are not common between the database and sample fingerprints, should have 

on the cost function.  The use of weights is also expected to better the results 

since it increases the discriminative power of the cost function.   

 

Figure 25: Average Error of Dual and Single Penalty Term Approaches vs. 𝑸 for a WCDMA network 

 

Figure 26: Average number of estimates of Dual and Single Penalty Term Approaches vs. 𝑸 for a 
WCDMA network 
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 Figure 27: Average error of Dual and Single Penalty Term Approaches vs. 𝑸 for a GSM network  

It must be noted that the Dual Penalty Term Approach without 𝑤𝑘  and the Dual 

Penalty Term Approach with 𝑤𝑘  produced the overlapping graphs in Figure 29 

above. 

 

Figure 28: Average number of estimates of Dual and Single Penalty Term Approaches vs. 𝑸 for a GSM 
network 
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only deviation was seen for the Single Penalty Term Approach with 𝑤𝑘  where 𝑄 is 

equivalent to -80.  Thus the Dual Penalty Term Approach without 𝑤𝑘 , the Dual 

Penalty Term Approach with 𝑤𝑘  and the Single Penalty Term Approach without 

𝑤𝑘  produce overlapping graphs in Figure 30. 

From Figures 27 and 28 it is observed that for values of 𝑄 below -150 for the 

Single Penalty Term Approach, the average error of the samples stabilizes.  

Below this value of 𝑄, 𝑤𝑘  no longer has an impact on the accuracy or the number 

of estimates.  Thus as expected, for a value of 𝑄 outside the range of measured 

signal strengths, the Single Penalty Term Approach yields both better levels of 

accuracies as well as average number of estimates.   

In general, the use of weights does increase the discriminative power as 

expected and better results in terms of both accuracy and average number of 

estimates is seen. It appears that the use of weights has a greater impact on the 

Dual Penalty Term Approach than for the Single Penalty Term Approach in a 

WCDMA network.  This is due to the Single Penalty Term Approach having a 

more stable cost function in terms of finding a balance between the common and 

uncommon CI‟s.  However, for a value of 𝑄 outside the measured range, weights 

do not seem to have an impact on the average number of estimates.  

For the GSM network, in those locations where the GSM neighbours were 

detected, all 6 CI‟s were always picked up.  However, in the WCDMA network, 

there were fewer hearable CI‟s that were detected. For this reason, 𝑤𝑘  has a 

greater impact on the WCDMA network since this network has less discriminating 

power due to the fewer hearable CI‟s.  This can be seen in Figures 27 and 29, 

where 𝑤𝑘  improves the accuracy of both approaches in the WCDMA network.  

However, 𝑤𝑘  only has an influence on the Single Penalty Term Approach in the 

GSM network where it reduces the error.  Thus on the whole, 𝑤𝑘  adds greater 

influence on the cost function for the correlation.   
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Figures 29 and 30 indicate that values of 𝑄 smaller than -160 appear to yield the 

best results with respect to errors for the Dual Penalty Term Approach and the 

Single Penalty Term Approach in the GSM network.  In addition, the average 

number of estimations per sample stays constant for all values of 𝑄 outside the 

measured signal strength range, for the Dual Penalty Term Approach.  This is 

due to the diversity in the database fingerprints and the good discriminative 

power of the Penalty Term Approaches.  In addition, there is a less drastic 

fluctuation in the accuracy of the WCDMA network for values of 𝑄 outside the 

range.   

The lowest average error is obtained for values of 𝑄 between -190 and -180 or 

greater than -50 for the Single Penalty Term Approach.  The optimal value for 𝑄 

appears to be a value between -170 and -130 for the techniques in both the 

networks, where the error stabilizes at a relatively low value for both techniques 

used. However, to agree with the logic that those CI‟s that are not common 

between the database fingerprint and the sample, are located far away from the 

fingerprint location and thus have a very low value (as described in section 

3.5.2.), a practical value of -160 is chosen for 𝑄.  

4.2.4. Techniques Used to Improve the Correlation 

Figures 31 to 33 on pages 74 and 75 illustrate the average errors and average 

number of estimates obtained for the various location points.  It must be noted 

that in some cases, multiple possible location estimates were obtained for a 

sample.  This was particularly noted when a single network was used.  In these 

cases, all the possible estimates were considered, and the mean of their errors 

were found for that particular sample.  Multiple location estimates were further 

analyzed using data from both networks.  In addition, the same number of 

estimates was obtained with and without map matching and is displayed by 

Figure 33 on page 75.   

It is expected to see the poorest performance for the Strongest Cell technique 

since the use of the serving cell alone cannot provide enough discriminative 
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power for the correlation.  In Area A, the GSM network had larger areas of similar 

serving CI‟s, as observed in section 4.2.2.  Thus there is less discriminative 

power than in the WCDMA network and the GSM network is expected to show 

poorer results for the techniques that only use the data from the serving cell.  

Clustering is expected to improve these results even though only the strongest 

cell is used, since it eliminates outliers and it eliminates the problem of multiple 

estimates. The best results are expected for the Single Penalty Term Approach 

since it considers both the common and uncommon CI‟s in the correct proportion 

for the cost function.  On the other hand, the Dual Penalty Term Approach is 

expected to obtain higher errors than the Single Penalty Term Approach since 

the cost function gives twice as much importance to the uncommon CI‟s as to the 

common CI‟s.  The use of weights is expected to further emphasize the 

similarities between the sample and database fingerprints.  In general, the 

WCDMA network is expected to show better results than the GSM network since 

Area A is predominantly WCDMA and should thus display more diverse WCDMA 

data for the fingerprints.  The combined use of both the networks is also 

expected to improve the results since it also provides additional factors for 

comparison in the correlation process.  The common CI‟s only technique is not 

expected to perform well since it only considers the common CI‟s and those CI‟s 

that are not common have not been penalized in this process.  However, this 

technique should help in giving an indication as to how much importance should 

be given to the common and uncommon CI‟s in the cost function.  The Multiple 

Weights technique should perform better than the Exponential technique since 

the use of the detailed weights should help to further differentiate the individual 

fingerprints.  Map matching is expected to improve the results as well since it 

eliminates any errors in the GPS measurements. 
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Figure 29: Average errors for the various techniques in the different networks without Map Matching 

 

 

Figure 30: Average errors for the various techniques in the different networks with Map Matching 
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Figure 31: Average number of estimates for the various techniques in the different networks 

 

From the results obtained for the WCDMA and GSM networks in Figures 31 to 

33, it was noted that just using the strongest CI alone, without clustering, is not 

very reliable.  In both the networks, the signal strength of the strongest cell 

cannot be used alone to determine the location estimate due to fluctuations in 

signal strength.  The signal strength of the strongest and second strongest cell 

may only differ by a slight amount, which may mean that this strongest neighbour 

is detected in some cases in the same area due to multipath propagation.  Thus 

it is not reliable to use only a single cell measurement to form the database.  For 

instance, in the WCDMA network the average difference between the signal 

strengths of the serving cell and the strongest neighbour was found to be 3.4565 

for the database, while on average the difference between the minimum and 

maximum detected signal strengths of the 6 WCDMA neighbours was found to 

be 15.81.  Thus it can be seen that the difference in signal strength values of the 

neighbours is not large enough to give importance to the strongest WCDMA 

neighbour alone.  In addition, the strongest cell‟s signal strength was constant in 

certain areas for the GSM network. As a result the average number of estimates 
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for the Strongest Cell technique in a GSM network is very high at a value greater 

than 7.  More importance should be given to the cells that have the same CI as 

the sample, rather than to the signal strength.   

On the other hand, in both the GSM and WCDMA networks, clustering improved 

the accuracy significantly by eliminating outliers, resulting in the error obtained by 

clustering being only 23%-31% of that obtained by using the strongest cell alone.   

The results indicate that the best method in terms of accuracy as well as the 

number of estimates, is the use of the Single Penalty Term Approach, where the 

database CI‟s that are not common with the sample CI‟s, are ignored.  More 

importance should thus be given to how much of the sample is matched by the 

database fingerprint, and not to how much of the fingerprint has been matched 

by the sample as well.  This justifies the omission of these database CI‟s in the 

calculations, in comparison to the Dual Penalty Term Approach.   

Figure 34 demonstrates how, the addition of the database CI‟s that do not occur 

in the sample, results in a decline in the accuracy for a WCDMA network.  This is 

also observed in the GSM network.  The Dual Penalty Term Approach includes 

these abovementioned CI‟s, while the Single Penalty Term Approach does not.  

From Figure 33, it appears that the only advantage that the inclusion of these 

CI‟s in a WCDMA or GSM network yields is that there is a slight reduction in the 

multiple estimates of the location for the Dual Penalty Term Approach.  This 

could be as a result of greater discrimination of the fingerprints by the inclusion of 

these CI‟s.  However, even with a greater discriminative power, there is only a 

slight decline in the accuracy.      
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Figure 32: Comparison of Dual and Single Penalty Term Approaches for a WCDMA network 

The use of weights only saw an improvement in the accuracy for the Dual 

Penalty Term Approach in the WCDMA network.  

It is not feasible to use GSM measurements alone since it is not detected in the 

majority of cases.  Using a combination of both GSM and WCDMA 

measurements yielded the best results in the case of Strongest Cell, common CI, 

Single Penalty Term Approach and Multiple Weights approaches.  However, 

using a combination of the networks also means that both the strengths as well 

as the flaws of the two network measurements are incorporated.  

Map matching did not influence the results in the majority of the cases for the 

WCDMA and GSM networks combined.  From the average errors, only a very 

slight difference was observed in the results when map matching was used.  This 

difference is too small and is not clearly visible in the Figures 31 and 32. On 

average, the WCDMA network saw a slight decline in accuracy, while the GSM 

network saw a very small increase in accuracy.  
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This decline in accuracy is a result of the predicament pointed out in Figure 35 

above.  The measured point may be correctly matched onto the digital map.  

However, instead of correlating to a database fingerprint located closer to it on 

the same road segment, it has correlated to point y which is further away. Thus, 

this slight increase in the error which is seen in the WCDMA network is not a 

result of incorrect map matching, but rather of errors in the correlation due to the 

inadequate precision in the cost function of the techniques. 

Ideally, one reliable estimate is required.  However even after using a 

combination of WCDMA and GSM data, single estimates are only obtained for 

the Penalty Term 1 and Exponential approaches. 

4.3. Area B 

4.3.1. General 

A total of 325 fingerprints were created from the field tests to form the database, 

while 62 sample fingerprints were measured for the tests.  Although this area has 

predominantly GSM coverage, at least one WCDMA CI was detected in most of 

the location points.   

 

Figure 33: Illustration of the cause of an in increase in error due 
to map matching 
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4.3.2. Measurement Data 

Figure 36 is a display of the distribution of the number of measured WCDMA 

neighbours.  It illustrates the fact that greater than 3 neighbours were only 

measured in 30% of the locations, while only 1 neighbour was detected in 

another 31% of the locations.  However, the samples had better hearability of 

Node B‟s, with 44% of the test fingerprints containing greater than 3 neighbours.   

 
Figure 34: Distribution of the number of measured WCDMA CI’s with respect to location 
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Figure 37 illustrates that 15 CI‟s were picked up as the serving cells in the area.  

This is far less than that detected in Area A.   

 

 

Figure 35: Distribution of the strongest measured WCDMA CI's with respect to GPS coordinates 
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Figure 38 shows the distribution of the strongest measured GSM CI‟s.  It can be 

seen that 10 different CI‟s were picked up as the serving cells.  The GSM 

neighbours were detected in 99% of the locations.  In all these locations, all 6 

neighbours were picked up in the field tests.   

 

Figure 36: Distribution of the strongest measured GSM CI's with respect to GPS coordinates 

 

 

 

 

 

 

 

 

 

 



82 
 

Figure 39 illustrates the location of the samples with respect to the database 

measurements.  A separate drive test was taken to obtain the samples.   

 

Figure 37: Location of samples with respect to database measurements 

4.3.3. Analysis of the Parameters 

Figures 40 and 41 indicate the average error obtained for the Penalty Term 

Approaches for varying values of 𝑄, as in (26) and (27), in a GSM network and 

WCDMA network respectively.    As in the case of Area A, a very small value for 

𝑄 can be expected to yield the best results, if it is assumed that this undetected 

BS is located at a distance far away.  A realistically sized value should be 

assumed for this undetected BS, such that it does not negatively affect the 

influence of those BS‟s that were detected.  It is also expected that the use of 

weights should improve the results since it further correlates the samples to the 

database according to its level of importance.      
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Figure 38: Average error of Dual and Single Penalty Term Approaches vs. 𝑸 for a GSM network 

 

Figure 39: Average error of Dual and Single Penalty Term Approaches vs. 𝑸 for a WCDMA network 

Figures 40 and 41 above indicate that the average error stabilizes as the value of 

𝑄 decreases, as expected.  Within the range of 𝑄 that overlaps with the signal 

strengths that were detected amongst the common CI‟s in the fingerprint, an 

erratic behavior is seen in the graph.  This can be explained by the fact that it 

interferes with the influence of those common detected cells. The smallest value 

for the average error is obtained within this range, but cannot be used as a 

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 E
rr

o
r 

(m
)

Q 

Average Error of Dual and Single Penalty Term 
Approaches vs. Q for a GSM network

0

5

10

15

20

25

30

A
ve

ra
ge

 E
rr

o
r 

(m
)

Q

Average Error of Dual and Single Penalty Term 
Approaches vs. Imax for a WCDMA network



84 
 

reference since it will vary according to the signal strengths obtained in the 

database fingerprint.  Thus, a relatively small value of 𝑄 must be selected at a 

point where the graph tends to stabilize.  A constant value of -160 has been 

selected for 𝑄 in this research, as was used for Area A.   

Generally, it is seen that the use of weights results in an improvement in the 

error.  The use of weights in the calculations further emphasizes the importance 

of those BS‟s that are similar, resulting in this improvement.  However, for 

smaller values of 𝑄, it appears that the weights do not influence the results for 

the Single Penalty Term Approach.  This is due to the fact that the Single Penalty 

Term Approach emphasizes those CI‟s that are common, more than the Dual 

Penalty Term Approach does.  The purpose of the weight is to do just this, and 

thus it has already been catered for and does not influence the results greatly.   

The average number of estimates obtained for varying values of 𝑄 in a GSM 

network and WCDMA network are portrayed by Figures 42 and 43 respectively.  

It is expected that the values of 𝑄 that overlap with the range of signal strengths 

within the common detected BS‟s of the fingerprint will cause erratic behaviors in 

the average number of estimates.  This is as a result of this value of 𝑄 interfering 

with the signal strengths of the detected CI‟s.  The use of weights is expected to 

reduce the average number of estimates by further classifying the sample 

according to the cost factor of both the GSM part of the fingerprint, as well as the 

WCDMA part of the fingerprint.   
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Figure 40: Average number of estimates of Dual and Single Penalty Term Approaches vs. 𝑸 for a GSM 

network 

 
Figure 41: Average number of estimates of Dual and Single Penalty Term Approaches vs. 𝑸 for a 

WCDMA network 

From Figures 42 and 43, it can be seen that the results are as expected.  For 
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Penalty Term Approach.  However outside of this range, weights do not seem to 

influence the results at all.  In addition, within this range, the use of weights tends 

to stabilize the results for the Single Penalty Term Approach by adding another 

factor for the correlation of the sample with the database fingerprint.    The Dual 

Penalty Term Approach already further classifies the sample points since it uses 

those CI‟s in the database fingerprint that do not occur in the sample, as well as 

those CI‟s in the sample that do not occur in the database fingerprint, in the 

calculations.  Thus the use of weights do not influence the results since it gives 

importance to the number of common CI‟s.  This has already been emphasized 

in the calculations as mentioned above and it thus eliminates more of the 

possible fingerprint estimates.  However, even though there is a reduction in the 

number of possible estimates in this overlapping range, the Dual Penalty Term 

Approach still yields a higher level of errors.  By selecting a value of -160 for 𝑄, it 

does not fall into the overlapping range and stable results are obtained for both 

approaches.  These techniques and the influence of weights are analyzed further 

in section 4.3.4.   

4.3.4. Techniques used to Improve the Correlation 

As was observed earlier, Area B is predominantly GSM, with WCDMA coverage 

only properly reaching just under half of the area.  This area will give a good 

indication as to whether the proposed positioning solutions work in any suburban 

environment, irrespective of its geographical location or whether a WCDMA or 

GSM network is used.   

Figures 44 and 45 give a comparison of the average error obtained for the 

various techniques with the different networks, without and with map matching 

respectively.  It is expected that the worst results will be obtained for the 

Strongest Cell technique, since it only uses one CI in the correlation procedure, 

thus reducing the criteria for comparison.  Fifteen different CI‟s were detected in 

the entire area for the strongest cells in the WCDMA database fingerprints, while 

11 different CI‟s were detected amongst the strongest cells in GSM database 

fingerprints.  This results in only a coarse division of the area based on the 



87 
 

strongest CI.  To further define the location, the signal strengths of these 

strongest CI‟s are used.  However, the signal strength fluctuates considerably 

and the standard deviation of the signal strengths amongst the strongest 

neighbours in the WCDMA database fingerprints is only 6.6 and that for the GSM 

database fingerprints is 12.6.  Thus the use of just the strongest CI alone is not 

enough to distinguish the fingerprints for the correlation procedure.   

The best results are expected for the Single Penalty Term Approach since it 

gives the correct amount of importance to the fingerprints in terms of both those 

CI‟s that are common between the database and sample fingerprints, as well as 

those that are not common.  The Dual Penalty Term Approach is expected to put 

too much emphasis on those fingerprints that are not similar and thus may distort 

the cost function.  

The Multiple Weights approach is expected to yield better results as it adds 

further features to match the sample with the fingerprints.  Clustering is expected 

to better the results obtained from the Strongest Cell approach, since it correlates 

the signal strength from the serving cell of the sample with clustered fingerprints, 

instead of individual fingerprints.  These clustered fingerprints consist of two 

geographically adjacent single fingerprints and the sample signal strength is 

correlated to both these fingerprints in the clusters, thus reducing the chance of 

outliers.   

Figure 46 illustrates the average number of estimates obtained.  The highest 

number of estimates is expected for the Strongest Cell method since it only 

provides a course resolution of the area as mentioned above.  For each 

strongest CI, there is only a small standard deviation in the signal strength as 

seen earlier.  Thus the signal strength of the strongest CI does not fluctuate 

greatly.  This means that there are several cases where the test fingerprint will be 

incorrectly estimated since the closest matching signal strength for the same CI 

is used. In addition, multiple estimates are also easily made. Moreover, the signal 

strength tends to fluctuate in one particular location due to noise and 
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interference.  For this reason, multiple measurements need to be taken at any 

one location point and the average of these should be used to form the database 

fingerprint.  Therefore, the poorest results are expected for the Strongest Cell 

method since it just uses the strongest detected CI.  

Since this is a predominantly GSM area, the use of GSM data is expected to 

produce better results.  This is reinforced by the fact that in the majority of the 

location points, only a few WCDMA neighbours were detected.    The use of the 

combined networks is expected to give the best results in terms of both the 

average error as well as the average number of estimates since it now has 

double the criteria in which to match the samples to the fingerprint.  Furthermore, 

it is anticipated that using the combination of networks will result in less 

estimates being made.   

The Exponential term approach is expected to yield poorer results in terms of 

average errors since it assumes that those CI‟s from the database that are not 

detected in the sample, should be given a signal strength value equal to the 

lowest signal strength in the sample fingerprint.  However, this tends to interfere 

too greatly with the influence of those CI‟s that are common.  In addition, giving 

these uncommon CI‟s this higher value of signal strength also incorrectly implies 

that it would have been detected in the sample.   

The use of only the common BS‟s is expected to result in lower accuracies levels 

than Approaches 1 and 2. As mentioned in section 3.5.2, those CI‟s that are not 

common should be penalized.  It is expected that as in the Single Penalty Term 

Approach, more importance should be given to how much of the sample is 

matched by the database fingerprint, and not how much of the fingerprint has 

been matched by the sample as well.  The Dual Penalty Term Approach gives 

too much emphasis on those CI‟s that are not common between the database 

and sample fingerprints, such that the power of the more important common CI‟s 

get drowned out.   
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Map matching is expected to improve the results to some extent.  The errors 

produced by the GPS measurements are now catered for since the points are 

now matched to an existing grid.  This also means that it is unlikely that there will 

be an improvement in the number of estimates that are made.   

 

 

Figure 42: Average Errors obtained for the various techniques in the different networks without map 
matching 
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Figure 43: Average errors obtained for the various techniques in the different networks with map 
matching 

 

Figure 44: Average number of estimates obtained for the various techniques in the different networks 

with/without map matching 
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Clustering reduced the error of the Strongest Cell method to an average of 

50.7%.  The improvement was as predicted since this process eliminates 

outliers.  

The Exponential approach yielded a very high number of average estimates. This 

is a result of its definition of a cost function that is not unique enough to 

distinguish the differences between the fingerprints in the database.  Thus the 

average error cannot be used as a true reflection of the performance of this 

technique.  Multiple estimates are made since the penalty term is chosen to 

equal the smallest value of the sample fingerprint and thus interferes with the 

cost function and causes it to be unstable.  Thus a large number of estimates are 

made when the cost function does not correlate the sample and database 

fingerprints accurately.  Nevertheless, it can be established that the Exponential 

approach is not a reliable method in Area B since, it is not realistic to obtain 

many possible estimates in a practical situation.   

The average number of estimates did not change with map matching.  This is as 

expected, since map matching just corrects the position of the fingerprints 

slightly.  The use of map matching reduces the error to around 94%.   

Figure 44 shows that the Strongest Cell approach yields the poorest results as 

predicted for WCDMA and the combined networks.  However, the common CI 

only approach produced the poorest results for the GSM network.  This is due to 

the fact that this area is dominated by GSM, which results in many fingerprint 

locations containing common CI‟s, especially since there was only 10 different 

CI‟s that were picked up in the entire area.  For this reason, those CI‟s that are 

not common between the sample and database fingerprint become very valuable 

in the cost function.  

The best results were obtained for the Single Penalty Term Approach, for the 

GSM network as was expected.  The Single Penalty Term Approach also 

produced the best results for the WCDMA and combined networks and it was 

noted that weights did not influence the results here.  In general, GSM provides 
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better results.  This is as expected since this is a predominantly GSM area and 

the WCDMA neighbours were scarce to measure.  Using the combined network 

seems to incorporate the higher errors obtained from the WCDMA network as 

predicted.   

Observing the overall results indicates that the combined use of both networks 

reduces the number of estimates as was foreseen.  However, there was an 

increase in the number of estimates for the Strongest Cell method for the 

combined networks, compared to the GSM network.  This is due to the very high 

number of estimates that were made for the GSM case. In addition, this is a 

predominantly GSM area, thus the influence of the GSM difference term may be 

much lower than that of the WCDMA network, thus having a greater influence.  It 

is thus seen that use of the combination of both networks may not necessarily be 

the best solution in terms of accuracy since the errors in both the networks get 

incorporated. 

4.4. Summary 
 
Tables 9 to 11 in Appendix B indicate the location accuracies produced by the 

techniques in each of the networks.  These accuracies are represented by R67, 

R95 and the RMSE values respectively.  The notation MM refers to map 

matching in these tables.  

Although it is ideally hoped that the signal strengths are constant at each location 

point, and that it is only dependant on location, it was discovered that it tended to 

fluctuate a bit and was time dependant.  This meant that the signal strength 

varied slightly as time passed.  This could be a result of the fact that the 

environment is not perfect, as well as due to factors such as moving cars on the 

road and multipath propagation, which result in variations in the signal strengths.  

The lower levels of accuracy in practicality can also be due to shadow fading 

which can result for example from the varying position of the handset against the 

ear.  This together with the position at which the antenna is directed can result in 

an error in the received signal strength of about 5 – 10dB [56].  For this reason, 
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Kemppi [18] used the mean value of the measured signal levels at each location 

point to form the fingerprints.   

 

Kemppi [18] tested a DCM method based on the Least Means Square method in 

both GSM and UMTS networks in the suburban area of Olari in Finland, as well 

as in the more densely built urban area of Helsinki. This method was carried out 

in the research conducted by the author as the Dual Penalty Term Approach 

without weights.  Table 5 shows a comparison between the R67 and R95 values 

obtained for this approach in Area A and Area B in the research conducted by 

the author, and the work done by Kemppi in Olari.     

Network R67 (meter) R95 (meter) RMSE (meter) 

 Olari 

[18] 

Area 

A 

Area 

B 

Olari 

[18] 

Area 

A 

Area 

B 

Olari 

[18] 

Area 

A 

Area 

B 

UMTS 131 28.48 27.65 388 43.19 59.28 168 24.66 30.65 

GSM 71 13.89 7.96 284 20.68 36.76 196 15.01 17.9 

UMTS + 

GSM 

66 18.25 11.34 162 43.19 53.26 84 22.51 19.41 

Table 5: Comparison of the results obtained in this research, as well as by Kemppi [18] for the Dual 
Penalty Term Approach without weights and without map matching 

The average RMS results obtained in the urban area were 169.5m, 106.5m and 

78.5m for the UMTS network, GSM network and UMTS + GSM network 

respectively.  In general, there is an improvement in the result for the urban area.  

An approach similar to the Dual Penalty Term Approach without weights 

presented in this research was carried out by Lakmali et al [25, 26] in GSM 

networks of Sri Lanka in an urban area in Colombo, a suburban area in 

Moratuwa (Sri Lanka), as well as in a rural area in Kurunegala.  Where WkNN 

was not used, mean errors of 137m, 296m and 269m were obtained for urban, 

suburban and rural areas respectively.  This compares with the RMSE obtained 

in this research of 15.01m and 17.9m for the suburban Area A and Area B 

respectively, as is given in Table 5.  
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Borkowski [1] analyzed the Pilot Correlation Method in the UMTS network of 

Tampere in Finland.  The R67 results that were obtained for the urban and 

suburban environments were 70m and 170m respectively.  The Common CI‟s 

technique carried out in this research is similar to Borkowski‟s Pilot Correlation 

Method.  R67 values of 36.88m and 25.15m were obtained for the Common CI‟s 

approach in this research for Area A and Area B respectively, in the WCDMA 

network of a suburban environment.   

From these observations, it is safe to say that the Dual Penalty Term Approach 

algorithm that was carried out in the research conducted by the author, will work 

in an urban area too and possibly obtain higher levels of accuracies in the urban 

area.  Tables 9 to 11 in Appendix B indicate that the Single Penalty Term 

Approach obtained a lower value for RMSE than the Dual Penalty Term 

Approach.  Thus it can be deduced that the Single Penalty Term Approach would 

also produce good results in an urban area.  From the tests carried out by 

Lakmali et al [25, 26], it appears that the suburban area is the worst performing, 

with the rural area following close behind.  This was due to a low BS density in 

these areas.  Kemppi had an average number of hearable cells of as low as 1.8 

per fingerprint in the suburban area [18].  However, the suburban areas covered 

in this research appeared to have sufficient Node B‟s or BS‟s that were picked up 

to still obtain accurate results.  Generally in rural areas, only an omnidirectional 

serving cell can be measured and the BS‟s are located far away from each other 

[58].  Thus, contradictory to the results obtained by Lakmali et al, a much lower 

level of accuracy is expected to be observed for these areas.   It is also observed 

that the clustering method may prove to be efficient in improving the accuracy in 

the rural areas.  

 

Khalaf-Allah [57] estimated the database fingerprints for a suburban area in 

Hannover (Germany) using a 3D deterministic wave propagation model.  This 

calculates the distance from the handset to the BS, using the TA measurement, 

while catering for the error that may result from the large steps in TA.  This will 

reduce the area of search.  In the tests carried out by Khallaf-Allah [57], it was 
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discovered that the maximum likelihood estimate (which is taken in this 

research), is highly sensitive to any inaccuracies in the database.  In addition, 

estimating the location based on correlation of received signal strengths alone 

could mean that there are multiple areas with similar levels of correlation.  These 

candidates must then further be arranged according to which is more likely.  

Without further processing, a mean error of 248m was obtained for this 

technique.  This was obtained for tests where the database was created using 

3D wave propagation models.  

 

In the work done in this research conducted by the author, computational time 

was not an issue.  However, in the actual implementation of this system, there is 

a large amount of fingerprints in the database which has to be processed.  To 

help reduce the processing time, the TA values can also be included in the 

database [57].  Only the area that matches the measured TA value will be 

considered for the location estimation.   

 

Compared to research done previously, higher accuracies are obtained in the 

research done by the author.  This is due to the many BS‟s or Node B‟s that were 

detected in this research.  A common problem which was encountered in the 

research done previously was the lack of sufficient base stations.     

 

At locations that are near a cell‟s edge, there is a higher possibility of errors since 

the measurements tend to be more similar. 

 

From Tables 9 to 11 in Appendix B it can be seen that in general the Single 

Penalty Term Approach obtained the best results.  The inclusion of weights does 

no harm and only strengthens the cost function.  Even though the Strongest Cell 

technique produced the lowest level of accuracy, it still provided satisfactory 

results and can thus be used in rural areas where only the serving cell is 

generally detected.  In addition, the Clustering technique can generally improve 

these results as seen in these tables.  
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It was noted that even though the Exponential approach appears to yield decent 

levels of accuracies, it is prone to obtain too many average number of location 

estimates.  The Multiple Weights approach is also observed to yield excellent 

results.    

A shortfall of this method is that as the environment changes, the database has 

to be updated.  Thus it may be necessary to update the database at an interval of 

6 to 12 months.  For this reason, in areas where high accuracies are not 

required, it may be more feasible to use propagation models to construct the 

database.  

Overall, better results are obtained in Area B than Area A for a WCDMA network.  

On the other hand, Area A shows better accuracies than Area B for a GSM 

network.  Even though the use of a combination of the two networks may not 

produce the lowest error levels overall, the accuracy levels are still quite good.  

Thus it can be concluded that using a combination of the two networks is a safer 

approach in case the network is predominantly GSM or WCDMA. 
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5. Conclusion and Recommendations 

The aim of this research was to study, develop algorithms and test a suitable 

method for cellular positioning in South Africa, a developing country.  The 

pattern matching approach was investigated due to the benefits it yields in 

terms of being able to acquire good levels of accuracies with no changes 

required to be made to a handset.  This is particularly essential in a 

developing nation where it is unrealistic to expect every member of the 

population to purchase a new handset.   

The focus was limited to analyzing various methods of obtaining the cost 

function in suburban environments.  Suburban areas in the neighbourhoods 

of Lynnwood in Pretoria, and SE 1 in Vanderbijlpark were covered under 

similar conditions.  However, the area in Lynnwood had predominantly 

WCDMA coverage, while that in SE 1 had mainly GSM coverage.  This would 

give an indication of the feasibility of the pattern matching technique in any 

suburban area, irrespective of its dominant network type.  

Since very high accuracies cannot be obtained by simulating the environment 

using propagation models, field tests were conducted to construct the 

database instead.  The signal strengths and indicating parameters of the CI‟s 

were used as the features to form the database.  The Timing Advance 

parameter was not used due to the very coarse measurements it allows.  The 

parameters used are easily available from the network measurement reports 

and no signaling overhead is needed.     

The accuracies obtained in this research are of competitively good levels in 

comparison with that obtained by other common techniques used in literature 

surveyed.  All the techniques produced relatively good results in both the 

areas, indicating that it is safe to conclude that these techniques work in any 

suburban area.  In addition, the results obtained do meet the FCC 

requirements.   
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The paragraphs below briefly discuss the answers to the key research 

questions that were formulated in section 3.1, as well as the most significant 

findings.   

Since it is not realistic to obtain too large a number of estimates, the criteria 

for analyzing the feasibility and quality of the techniques were based on the 

average error that it produced, as well as the average number of location 

estimates.   

The dominance of the GSM or WCDMA network in an area does influence the 

results if only one network type is used in the fingerprints.  The use of both 

the networks means that the benefits and flaws of both the networks get 

incorporated and generally produces the second best results as opposed to 

using the dominating network data.  Even though the use of both the WCDMA 

and GSM measurements did not produce the best accuracy on the whole, it 

appears to be the best solution to cater for areas with different levels of 

coverage. 

Where multiple possible location estimates were made for a network, these 

had to be further reduced by using the combination of GSM and WCDMA 

network.  Although the use of combined networks saw reductions in multiple 

estimates in the majority of the cases, this was not always obtained.  On the 

other hand, the techniques which use the neighbouring CI‟s as well produced 

very low number of multiple estimates for the combined network. 

Although the Exponential approach generally obtained good levels of 

accuracies, it is prone to acquiring too many estimates, indicating that the 

cost function is too vague to correlate the sample and database fingerprints.  

The Multiple Weights approach produced excellent results.   

Although the tests were limited to a suburban area, a comparison of the 

results obtained in this research and work done previously [18, 25, 26] should 

give an indication as to whether these techniques will work in any type of 
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environment. This comparison of results enables one to conclude that the 

Penalty Term Approaches will work in both urban and suburban areas [25, 

26].  However, the rural areas may see a decline in accuracy since usually 

only the serving cell can be measured in this environment.  Even though the 

Strongest Cell technique produced the lowest levels of accuracies, it still 

yields satisfactory levels of accuracies.  On the contrary, the Clustering 

technique provided significantly better results than the Strongest Cell 

technique and is beneficial for rural areas where only the strongest cell is 

detected.   

This comparison with work done previously also shows that the results 

obtained in this research yielded significantly lower errors.  This is a result of 

a higher number of BS‟s or Node B‟s being detected in these areas.  The 

greater the density of the BS‟s or Node B‟s, the more favourable it is for the 

pattern matching process [1], since it increases the features that have to be 

correlated. 

 

In contrast to research done previously with respect to the Dual Penalty Term 

Approach, this research proved that the cost function should include the 

uncommon CI‟s between the sample and database fingerprints, as well as the 

common CI‟s in the correct proportion.  This correct proportion was obtained 

in the Single Penalty Term Approach, as opposed to the Dual Penalty Term 

Approach.   

 

Map matching only saw a slight improvement in accuracy by correcting the 

GPS errors.  However, this method is prone to errors when past data is not 

available to assist in establishing the current position. 

 

Ultimately the best and most stable results in terms of both accuracy and 

average number of estimates were obtained using the Single Penalty Term 

Approach. The inclusion of weights in the Penalty Term Approaches saw 

either no change to the results or an increase in accuracy.  Therefore the use 
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of weights proves to do no harm and only strengthens the cost function for the 

correlation procedure.   

Thus the most practical method with good levels of accuracy is the Single 

Penalty Term Approach in the combined networks scenario for suburban 

areas and it is anticipated to provide the best results in urban areas as well.   

The clustering approach is expected to be valuable in rural areas.   

 

A drawback of the pattern matching method is the process of collecting the 

measurements to construct the database, as well as having to update the 

database at predetermined intervals or when changes are made in the 

network configuration.  However, the database can be constructed using the 

measurements taken during the network deployment and optimization phase 

[59].  Alternatively, propagation models can be used to obtain the fingerprints 

for the database for areas where precise location estimates are not needed.   

 

Cellular positioning using pattern matching requires far less time to 

commercialize than many of the other common techniques which require 

hardware changes and major time consuming changes to be made to the 

network architecture.  Thus it can be implemented relatively easily.   

 

Recommendations for further work include obtaining a greater amount of 

measurements per location for the database and finding the average of these 

measurements to form the fingerprints.  This was not possible in this research 

due to the limitations of the field test equipment.  A system needs to be 

implemented to obtain an even distribution of the fingerprints according to 

location, in the database.  A grid system could be used for this, where 

fingerprints located between the grid points are averaged.  The influence of 

increasing the density of the fingerprints in the database should be studied.  

Much larger areas should be covered to determine the processing time.  In 

these cases, the fingerprints should be organized based on the CI‟s that were 

detected so that computational time can be reduced.  If mobile users have 
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GPS enabled on their phones, this information can be used together with the 

RF signal measurements to update the database when the user sends a 

query.  The impact of the various factors such as weather, type of handset, 

environment and network provider on the pattern matching results should be 

tested and fully analyzed.   
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Appendix A 

The following parameters can be obtained by the Field Test Mode in the Sony 

Ericsson phone. However, not all these parameters have been used in this 

research.  

GSM Cell 
The GSM Cell section obtained the following measurements, which are briefly 

explained in Table 6 and described in more detail thereafter. 

 
C Barf BS B Rxls C1 C2 

MCC MNC LAC Ci Rac 

 

Symbol Explanation Possible values 
C Service Type B: BCCH 

S: SDCCH  
s: Hopping SDCCH 
T: TCH 
t: Hopping TCH 
P: PBCCH 
p: Hopping PBCCH  
D: PDTCH 
d: Hopping PDTCH 

Barf  BCCH ARFCN for the 
serving cell 

 

BS Base Station Identity Code  

B Working band 1: GSM900 
4: GSM1800 

Rxls Received Signal Strength  

C1 Difference between the 
current and the acceptable 
minimum strength for the 
received signal 

 

C2 Antenna selection criteria  

MCC Serving cell Mobile Country 
Code 

 

MNC Serving cell Mobile Network 
Code 

 

LAC Serving cell Location Area 
Code 

 

Ci Cell ID  

RAC Routing Area Code  
Table 6: Explanation of the symbols used in the GSM Cell section 
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The Broadcast control channel is a downlink channel that broadcasts system 

control information [63]. The Standalone Dedicated Control Channel is a point-to-

point channel which is dedicated to one UE for transfer of control information and 

is used for location updates amongst others.  The transmission of speech or data 

is possible due to the Traffic Channel [63].  Packet Control Broadcast Channel is 

a downlink channel and it broadcasts information about the serving cell and 

neighbouring cells.  This UE makes use of this to access the network [66].  

Packet Data Traffic Channel can be either uplink or downlink and is used for the 

transfer or user information [66]. 

 

Frequency hopping is the term referred to when the transmitter changes the 

carrier frequency of the signal in a certain periodic pattern. Better signal to noise 

ratios are obtained since the signal experiences a different channel and different 

noise signals per frequency change [67].  Thus hopping SDCCH, hopping TCH, 

hopping PBCCH and hopping PDTCH represent the respective channels 

described above with the addition of frequency hopping.   

 

Absolute Radio Frequency Channel Number for the serving cell is a number that 

represents the channel and identifies its RF channels [63].  The Base Station 

Identity Code is a unique code present in the broadcast channel messages, that 

identifies the Base Station [67].  The working band used by the mobile operator is 

indicated by either GSM900 or GSM1800. 

 

C1 and C2 are criteria used for cell reselection.  C1 is a path loss criterion and 

determines the minimum signal level for cell reselection in instances where 

PBCCH is not present in the cell. C2 is used as a criteria for ranking the cells 

during cell reselection [66]. 

 

A Location Area consists of a set of cells that is defined by the mobile operator. A 

Routing Area is a subdivision of the cells in the Location Area. The Routing Area 

is used for paging by the GPRS, while the Location Area is used for paging by 
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incoming circuit-switched calls [66].  The Mobile Country Code, Mobile Network 

Code and the Location Area Code together constitute the Location Area 

Identification of the cell.  This Location Area Identification, together with the 

Routing Area Code forms the Routing Area Identification [64].  The Cell ID is a 

unique number that identifies a sector of a Base Station. 

 

GSM Neighbors 
The GSM Neighbours section produced the following measurements:   

C Barf C1 C2 

Narf Nrxl NC1 NC2 

Narf Nrxl NC1 NC2 

Narf Nrxl NC1 NC2 

Narf Nrxl NC1 NC2 

Narf Nrxl NC1 NC2 

Narf Nrxl NC1 NC2 

 

Symbol Explanation 

Narf Neighbouring ARFCN 

Nrxl Neighbouring Received 
Signal Strength 

Table 7: Explanation of the symbols used in the GSM Neighbours section 

 

Table 7 above describes the symbols used in the GSM Neighbours section and 

is explained below. 

 

NC1 and NC2 refer to the C1 and C2 for the neighbouring cells as mentioned in 

the section for the GSM Cell measurements.  C, Barf, C1 and C2 are as 

described for the GSM Cell section.  NC1 and NC2 refer to the C1 and C2 

parameters for the neighbouring cells.  Neighbouring ARFCN indicates the 

Absolute Radio Frequency Channel Number of the neighbouring cell.  
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Neighbouring Received Signal Strength gives the signal strength of the 

neighbouring cell. 

 
WCDMA Neighbours 
The WCDMA Neighbours section provided the below mentioned measurement 

parameters.  Table 8 explains these parameters briefly. 

 
Uarfc RSSI MCC MNC LAC 

WUarfc SC RSCP  EcNo  

WUarfc SC RSCP  EcNo  

WUarfc SC RSCP  EcNo  

WUarfc SC RSCP  EcNo  

WUarfc SC RSCP  EcNo  

WUarfc SC RSCP  EcNo  

 

MCC, MNC and LAC are as explained in the GSM Cells section.  

 

Symbol Explanation Possible values 

UARFC UMTS Absolute Radio 
Frequency Channel 
Number 

 

RSSI Received Signal Strength   

W WCDMA cell type S: Serving cell 
A: Active set member 
M: Monitored neighbour 
D: Detected neighbour 

SC Scrambling Code  

RSCP Received Signal Code 
Power 

 

EcNo Carrier to Noise Ratio  

Table 8: Explanation of the symbols used in the WCDMA Neighbors section 

Scrambling codes are used to spread the channels, and results in separate 

identities for transmission in each sector.  A Node B can thus transmit at more 

than one frequency, since the scrambling code allows for the sector to be 
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identified.  Each Node B sector is identified using a combination of the UARFCN 

and the Scrambling Code.  Received Signal Code Power is an indication of the 

signal strength in UMTS networks and is measured in dBm.  Carrier to Noise 

Ratio is the ratio of the RF carrier power and channel noise power [63].  The 

WCDMA cell types that can be detected in the measurements include serving 

cell, active set, monitored neighbor and detected neighbor.  The serving cell is 

the cell that the UE has currently chosen after the cell selection/reselection 

process [35].   The active set members are those cells that the UE connects with 

during a soft handover [65].  The monitored neighbours represent those cells 

whose pilot signal to noise ratio is too weak to be added to the active set, but are 

still monitored by the UE [65].  The detected neighbours are other cells in the 

network that is detected, but are not used in handover. 
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Appendix B 

The R67, R95 and RMSE values for the various techniques carried out in different networks in Areas A and B are 

presented in Tables 9 to 11.  

TECHNIQUES 67% (m) 95% (m) RMSE (m) 

Area A Area B Area A Area B Area A Area B 

No 
MM 

MM No MM MM No 
MM 

MM No 
MM 

MM No MM MM No 
MM 

MM 

Strongest Cell 67.2 67.78 55.94 53.84 79.89 80.61 87.22 85.37 58.5 58.89 51.08 48.72 
Clustering, with 
KNN 15.19 15.97 27.21 26.28 27.38 26.97 54.92 50.01 

 
15.26 15.64 28.26 25.26 

Common BS’s 
Only 36.88 36.92 25.15 24.6 47.76 48.41 59.24 50.76 

 
32.46 32.63 30.41 28.03 

Dual Penalty 
Term Approach, 

without 𝒘𝒌 28.48 28.54 27.65 28.03 43.19 42.21 59.28 50.33 

 
 

24.66 24.75 30.65 27.35 
Dual Penalty 
Term Approach, 

with 𝒘𝒌 19.91 20.29 21.22 17.84 43.19 42.21 59.28 49.69 

 
 

22.49 22.55 26.03 23.45 
Single Penalty 
Term Approach, 

without 𝒘𝒌 13.12 12.83 14.53 15.29 34.62 34.07 36.57 33.13 

 
 

16.28 16.37 20.57 18.7 
Single Penalty 
Term Approach, 

with 𝒘𝒌 13.12 12.83 14.53 15.29 34.62 34.07 36.57 33.13 

 
 

16.28 16.37 20.57 18.7 
Multiple 
weights 13.18 13.07 15.44 15.93 28.74 28.78 36.57 31.86 

 
15.28 15.36 20.06 18.66 

Exponential 28.33 30.91 30.52 28.67 53.38 54.01 63.65 52.88 32.73 32.88 30.33 27.49 
Table 9: Comparisons of the accuracies of the methods for a WCDMA network 
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TECHNIQUES 67% (m) 95% (m) RMSE (m) 

Area A Area B Area A Area B Area A Area B 

No 
MM 

MM No MM MM No 
MM 

MM No 
MM 

MM No MM MM No 
MM 

MM 

Strongest Cell 40.71 54.05 40.52 37.59 72.37 71.07 60.35 63.07 46.92 47.08 37.22 34.23 
Clustering, with 
KNN 10.99 14.35 14.24 12.74 24.04 23.74 56.6 41.09 15.81 15.55 20.37 16.01 
Common BS’s 
Only 37.39 37.38 47.22 46.13 52.1 60.07 75.37 73.97 37.13 37.34 44.9 40.86 
Dual Penalty 
Term Approach, 

without 𝒘𝒌 13.89 13.62 7.96 8.28 20.68 29.24 36.76 28.03 15.01 14.87 17.9 12.28 
Dual Penalty 
Term Approach, 

with 𝒘𝒌 13.89 13.62 7.96 8.28 20.68 29.24 36.76 28.03 15.01 14.87 17.9 12.28 
Single Penalty 
Term Approach, 
without 𝒘𝒌 13.89 13.62 6.24 6.37 20.68 32.54 36.25 28.03 15.43 15.32 14.44 10.64 
Single Penalty 
Term Approach, 

with 𝒘𝒌 13.89 13.62 6.24 6.37 20.68 32.54 25.93 22.94 15.43 15.32 13.73 9.66 
Multiple 
weights 16.61 16.22 9.01 9.78 24.94 28.89 26.37 20.39 17.33 17.21 16 11.06 
Exponential 

16.61 16.22 6.12 6.37 35.16 33.79 21.15 20.39 17.89 17.68 14.5 9.7 
 

Table 10: Comparisons of the accuracies of the methods for a GSM network 
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TECHNIQUES 67% (m) 95% (m) RMSE (m) 

Area A Area B Area A Area B Area A Area B 

No 
MM 

MM No MM MM No 
MM 

MM No 
MM 

MM No MM MM No 
MM 

MM 

Strongest Cell 20.63 20.55 14.7 14.33 31.52 31.55 38.68 30.02 18.35 18.39 22.32 15.63 
Clustering, with 
KNN 20.42 20.49 21.37 18.03 34.02 33.77 44.41 41.22 18.73 18.79 33.69 19.26 

Common BS’s 
Only 36.72 36.63 30.97 30.33 50.95 50.88 59.19 57.91 32.6 32.66 20.37 30.61 
Dual Penalty 
Term Approach, 

without 𝒘𝒌 18.25 20.42 11.34 10.39 43.19 41.73 53.26 45.81 22.51 22.38 19.41 17.24 
Dual Penalty 
Term Approach, 

with 𝒘𝒌 16.61 17.28 11.34 10.39 35.16 34.66 53.26 34.98 20.69 20.56 17.97 16.32 
Single Penalty 
Term Approach, 

without 𝒘𝒌 12.42 12.8 11.34 11.15 28.48 28.77 32.06 29.12 13.83 13.92 17.97 14.32 
Single Penalty 
Term Approach, 

with 𝒘𝒌 12.42 12.8 11.34 10.72 28.48 28.77 32.06 28.48 13.83 13.92 18.87 12.75 
Multiple 
weights 13.18 13.07 11.79 12.1 23.50 24.53 34.53 32.49 15.12 15.09 14.59 15.9 
Exponential 

28.21 28.21 6.19 6.37 53.38 54.01 21.15 20.39 29.84 29.99 22.32 9.85 
 

Table 11: Comparisons of the accuracies of the methods for a WCDMA + GSM network 


