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ABSTRACT 

Differential expression analysis and feature selection is central to gene expression 

microarray data analysis. Standard approaches are flawed with the arbitrary 

assignment of cut-off parameters and the inability to adapt to the particular data 

set under analysis. Presented in this thesis are three novel approaches to 

microarray data feature selection and differential expression analysis based on 

various machine learning and soft computing paradigms. The first approach uses a 

Separability Index to select ranked genes, making gene selection less arbitrary and 

more data intrinsic. The second approach is a novel gene ranking system, the 

Fuzzy Gene Filter, which provides a more holistic and adaptive approach to 

ranking genes. The third approach is based on a Stochastic Search paradigm and 

uses the Population Based Incremental Learning algorithm to identify an optimal 

gene set with maximum inter-class distinction.  

All three approaches were implemented and tested on a number of data sets and 

the results compared to those of standard approaches. The Separability Index 

approach attained a K-Nearest Neighbour classification accuracy of 92%, 

outperforming the standard approach which attained an accuracy of 89.6%. The 

gene list identified also displayed significant functional enrichment. The Fuzzy 

Gene Filter also outperformed standard approaches, attaining significantly higher 

accuracies for all of the classifiers tested, on both data sets (p < 0.0231 for the 

prostate data set and p < 0.1888 for the lymphoma data set). Population Based 

Incremental Learning outperformed Genetic Algorithm, identifying a maximum 

Separability Index of 97.04% (as opposed to 96.39%).  

Future developments include incorporating biological knowledge when ranking 

genes using the Fuzzy Gene Filter as well as incorporating a functional 

enrichment assessment in the fitness function of the Population Based Incremental 

Learning algorithm. 
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1 INTRODUCTION 

The challenge of identifying genes which characterise types and sub-types of 

cancers is central to microarray data analysis [1]. Identifying these genes entails 

implementing a feature selection algorithm whereby genes which are 

differentially expressed are identified [2]. This thesis describes the development, 

implementation and testing, of three novel approaches to microarray data feature 

selection using soft computing and machine learning paradigms. Presented in this 

chapter is an introduction to microarrays and microarray data analysis. A review 

of current techniques for microarray data feature selection is presented, 

highlighting their major problems. The chapter also includes an overview of the 

data used for the project as well as the implementation and testing framework. 

The chapter concludes with an overview of the remainder of the thesis. 

1.1 Microarrays 

Microarrays have revolutionised the way we analyse genomic composition and 

expression by allowing for high-throughput analysis of a tissue’s genome and 

transcriptome [3].  A microarray consists of thousands of oligonucleotide probes 

(short sequences of DNA (Deoxyribonucleic acid)) bound on a chip substrate 

(glass or silicon). There are a number of different types of microarrays. Some 

microarrays, such as those manufactured by Agilent Technologies, use a dual 

colour system whereby mRNA (messenger Ribonucleic acid) content from two 

different sources are labelled with different colour reporter molecules and bound 

on the same chip. Other microarrays, such as those manufactured by Affymetrix, 

use a single colour system whereby mRNA from a single tissue type is bound on 

the chip (Figure 1.1). The microarray data used in this study were generated using 

the Affymetrix platform. Each oligonucleotide probe on an Affymetrix expression 

microarray consists of 25 base pairs sampled from the 3’ end of an annotated 

gene. 
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Figure 1.1: Affymetrix GeneChip Human Genome Expression Microarray 

One of the main applications of microarrays is gene expression analysis [1]. 

Microarrays allow for the simultaneous quantification of the expression levels of 

thousands of genes; the result being a Gene Expression Profile (GEP) for the 

sample under analysis. GEPs of different sample-types are compared and gene-

sets which are differentially expressed between the samples can be identified. 

Microarrays have also been applied to genome and proteome analysis. The 

techniques described in this thesis are applied to gene expression analysis only 

and focus on identifying differentially expressed genes.  

A microarray gene expression experiment is conducted as follows [3]:  mRNA is 

extracted from a tissue sample. The mRNA is then amplified using PCR 

(Polymerase Chain Reaction), labelled using a coloured fluorescent reporter 

molecule and hybridised onto the microarray. During hybridisation, a particular 

mRNA sequence binds to its corresponding probe on the microarray. If the 

mRNA sequence is abundant then the probe shines bright when placed under 

fluorescent light. The microarray is then scanned, resulting in an image of the 

array (Figure 1.2). Bright pixels on the image correspond to probes with a high 

density of mRNA. The image is then analysed, producing an expression value for 

each probe set present on the chip.  
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Figure 1.2: Microarray scan (.dat image).  

Expression analysis has been extensively applied in cancer research. This is due to 

the fact that the primary cause of most cancers is genetic mutation (specifically in 

oncogenes and tumour suppressor genes). Genetic mutation also alters the mRNA 

content of a cell. One example of this is the t(9;22) translocation which occurs in 

Chronic Myeloid Leukaemia (CML) [3]. The ABL oncogene from chromosome 9 

fuses onto the BCR gene on chromosome 22. The result of such a mutation is a 

hyperactive form of tyrosine kinase (encoded by ABL), resulting in the cell 

becoming highly sensitive to growth factor. This causes the cell to undergo 

mitosis before it is fully mature, resulting in the unstable, positive feedback 

production of immature myeloid cells. Therefore, CML can be identified by 

abnormal ABL and BCR expression [4, 5]. Similarly, Acute Myeloid Leukaemia 

(AML) can be identified by abnormal MYC oncogene expression [6]. 

Microarrays have been applied to a variety of cancers ranging from Leukaemia [7, 

8] to breast cancer [9] and prostate cancer [10]. The fundamental purpose of most 

of these studies has been the identification of differentially expressed genes for 
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diagnostic and/or prognostic purposes, as well as for personalised gene-therapy 

treatment.  

The techniques described in this thesis have been applied to expression array data 

generated from various cancers. Nevertheless, they can be extended to any 

expression array experiment. 

1.2 Microarray Data Analysis 

A typical expression array experiment results in data which consists of thousands 

of expression values per sample processed. Most microarray data analysis 

packages implement [11-14] five distinct steps in microarray data analysis [1, 5, 

15]. 

1. Data pre-processing (intra-chip and inter-chip normalisation). 

2. Gene Selection (identifying differentially expressed genes). 

3. Clustering (identifying common expression patterns – co-expression 

analysis). 

4. Functional Enrichment/Biological Pathway analysis (identifying the 

biological significance of the selected genes). 

5. Classification (developing a classification system for unclassified 

samples). 

1.2.1 Data Pre-processing  

Before the data can be analysed, it is necessary to [1]: 

a) Counteract any technical variation that might be present in the data, such 

as non-specific binding of mRNA and scanner noise (background 

correction and summarisation). 

b) Normalise data generated from different chips so that samples can be 

compared to one another (inter-chip normalisation). 

The most common algorithms used to achieve this (on Affymetrix expression 

array data) are MAS 5.0 [16], RMA (Robust Multi-array Analysis) [17] and 

gcRMA (Genechip RMA) [18]. MAS 5.0 does not implement inter-chip 

normalisation and only corrects for intra-chip variation. RMA corrects for inter-
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chip variation but does not correct for non-specific binding.  gcRMA combines 

inter-chip and intra-chip normalisation and is therefore the algorithm used to 

normalise all the data used in this study. Microarray data normalisation is not the 

focus of this thesis, hence, for a thorough treatment of expression array data 

normalisation techniques the reader is referred to Bolstad et. al. [19].  

1.2.2 Gene Selection 

Once the data has been normalised and summarised, it is necessary to identify 

genes which are differentially expressed [1, 2]. The most primitive metric for 

differential expression is fold change [20]. If a particular gene, on average, is 

under-expressed for one class of samples and is over-expressed for another class 

then it is identified as being a class differentiating gene. The problem with fold 

change is that it does not take into account the variance of a particular gene within 

a class, thus leading to more appropriate parametric ranking techniques based on 

hypotheses testing [1, 2]. Hypothesis testing is a method of inferring a numerical 

fact about a population based on statistical evidence attained from a sample [2]. 

For two class problems, a two tailed t-test is generally used [1, 2] (Figure 1.3) and 

for multiclass problems a multivariate, one way Analysis of Variance (ANOVA) 

is used [1, 2, 21].  

The Student t-test was first proposed by William Sealy Gosset (who published 

under the pen name ‘Student’) in 1908 [22]. The two-sample t-test is a parametric 

hypothesis test which examines whether two data-sets were sampled from the 

same distribution (or have the same mean).  

In the context of differential expression analysis, it is assumed that, for a 

particular gene, the expression values across two classes are of an unequal sample 

size and have an unequal variance. Hence an unpaired t-test is generally 

implemented on expression array data [1, 2]. The two sample, unpaired t statistic 

is calculated using the following equation: 

𝒕 = 𝒙!𝒚

𝒔𝒙𝟐

𝒏!
𝒔𝒚𝟐

𝒎

         (1.1) 
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Where: 

t = the t statistic 

𝑥 = sample mean of class x 

𝑦 = sample mean of class y 

𝑠!! = sample standard variation of class x (intra-class standard deviation) 

𝑠!! = sample standard variation of class y (intra-class standard deviation) 

n = the number of samples in class x 

m = the number of samples in class y 

Small intra-class standard deviations and a large inter-class mean difference (the 

numerator of equation 1.1) is indicative of a good class differentiating gene (small 

p-value), as is evident from Figure 1.3 A). A p-value is determined based on the 

overlap of the distributions. If the p-value is less than an arbitrary assigned p-

value cut-off (defined by the required confidence interval) then the gene is 

classified as being differentially expressed. A more recent approach combines the 

t-statistic with a Support Vector Machine to identify the differentially expressed 

gene [23-25].  

A)  

 

 

 

B) 

 

 

 

Figure 1.3: Intensity Value Probability Density Functions of a gene which is differentially expressed. B)  
Intensity Value Probability Density Functions of a gene which is not differentially expressed. Each 
curve depicts the distribution of intensity values of the two classes. 
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ANOVA, which was first advanced by Ronald A. Fisher in 1918 [26], assesses 

whether data from several groups share a common mean. In its most basic form, 

ANOVA is a generalisation of the two-sampled t-test for sampled data which 

consist of more than two classes [2, 21, 26]. ANOVA compares the sample 

variances of each of the data classes, or Mean Square Error (MSE), with the 

variance of the entire data set, or Mean Square Between (MSB). If MSB is similar 

to the MSE values then the null hypothesis stands (the classes of data was 

sampled from the same distribution) and the p-value is high. If they are different 

then at least one of the classes was sampled from a different distribution, indicated 

by a small p-value.   

In the context of gene ranking, the null hypothesis is that, for a particular gene, 

there is no difference in mean intensity values between samples from different 

classes [21]. Hence the smaller the p-value generated from the test, the better the 

gene's class differentiating ability. 

Non-parametric techniques, such as the Wilcoxon test, have also been used on 

microarray data [27]. The Wilcoxon test, first advanced by Frank Wilcoxon in 

1945 [28], is a non-parametric hypothesis test which sums the ranks of samples of 

a particular class and based on the rank sum, determines a p-value. For a 

particular gene, the samples are ranked in order of increasing intensity value. The 

rank values of the samples from each class are then summed. If the sum-of-ranks 

are similar then the gene does not differentiate between samples of different 

classes and hence will have a high p-value. If the rank sums are different then 

gene is differentially expressed. The following hypothetical example illustrates 

how the Wilcoxon test works for two genes.  

Table 1.1: Gene 1 Rank Table 

Sample Class A B B A B A 

Expression Value -4.6 -4.1 1.6 2.8 3.6 5.1 

Rank 1 2 3 4 5 6 
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Table 1.2: Gene 2 Rank Table 

Sample Class A A A B B B 

Expression Value -7.1 -6.8 -6.4 4.3 4.6 5.1 

Rank 1 2 3 4 5 6 

 

From Table 1.1, the rank sum for the samples in class A for gene 1 is 11 and for 

those in class B is 10. Since the rank sums are similar, it cannot be assumed that 

the expression values of gene 1 for class A samples were sampled from a different 

distribution to those in class B. Hence gene 1 will have a large p-value. On the 

other hand, from Table 1.2, the rank sum for the samples in class A for gene 2 is 6 

and for those in class B is 15. This is indicative of the expression values of gene 2 

for samples from class B being sampled from a different distribution to those in 

class A. Hence gene 2 will have a low p-value. 

A more recent non-parametric approach for p-value estimation involves the use of 

Receiver operating characteristic (ROC) analysis [29]. ROC analysis is used to 

assess the performance of a classifier by depicting the tradeoffs between hit rates 

and false alarm rates [30]. A ROC curve (Figure 1.4) is a plot of the sensitivity 

(true positive rate) of a classifier vs. the false positive rate [30]. 

ROC analysis was originally used in signal detection theory to assess the accuracy 

of correctly classifying radar signals [29, 30]. It has also been extensively applied 

to medical diagnostic performance analysis [31]. ROC analysis has been recently 

applied to microarray gene ranking [32], where each gene is assigned a p-value 

based on its performance as a classifier. In the context of Machine Learning, it has 

been used for model comparison by assessing the area under the ROC curve 

(AUC) and hence deriving the ROC AUC statistic [29]. This approach has been 

criticised since AUC is a noisy classification measure [33] and has been proven to 

be problematic in model selection [34]. 
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Figure 1.4: ROC curve indicating the Random classifier slope. 

An improvement of the ROC AUC statistic involves evaluating the area between 

the classifier’s ROC curve and the non-discriminatory line or random classifier 

slope [30], as depicted in Figure 1.4. Based on this area, a p-value is generated, 

evaluating the class distinctive performance of the classifier as compared to 

randomly guessing the class distribution. If the number of correctly guessed 

samples is the same the number of false alarms then the classifier is no better than 

randomly assigning class labels to each sample [30]. This is represented by the 

random classifier slope. Hence, the area between the ROC curve and the random 

classifier slope evaluates the randomness associated with the classifier. If the area 

is large, then the classifier demonstrates a high positive hit rate and a low false 

alarm rate, indicative of a good classifier, also demonstrating a low level of 

randomness. This will result in the classifier being assigned a small p-value. If, 

however, the area is small then the classifier is no better than randomly assigning 

class labels, resulting in a small p-value. 

Depending on whether or not microarray data is normally distributed determines 

whether a parametric or a non-parametric test is suited for differential expression 

1 

1 
0 

0 False Positive 

True Positive 
ROC curve 

Random classifier 
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analysis. A number of studies [35-37] have demonstrated that different hypothesis 

tests can produce different sets of differentially expressed genes on the same data 

set with some sets differing by more than 50 % (50 % of genes found by one 

algorithm were not identified by the other). This can in turn have a significant 

effect on classification accuracy as well as pathway analysis. One of the central 

themes in this thesis is the development of a holistic gene selection algorithm 

which combines both parametric and non-parametric features of the data (see 

Section 1.3). 

Since the data produced by an expression array experiment consists of the 

expression values of thousands of genes, multiple hypothesis tests are carried out 

[37]. The problem with using multiple hypothesis tests is that the number of false 

positives detected increases with the number of tests implemented [38]. For 

example, if a 95% confidence is required and 1000 differentially expressed genes 

are identified, then typically 50 genes are false positives (classified as 

differentially expressed when they are actually not). Hence a multiple hypothesis 

correction is required [37]. One of the most stringent multiple hypothesis 

correction is the Bonferroni correction [37] whereby the cut-off p-value is divided 

by the number of tests carried out, generating a more stringent p-value cut-off. For 

example, if a p-value cut-off of 0.05 is used (for 95% confidence) and there are 

25000 genes being analysed, then the corrected cut-off is 2x10-6.  

The problem with this approach is that some genes which are differentially 

expressed could be excluded due to the stringency of the corrected p-value cut-off 

[37]. As a result, a new statistic was introduced by Storey and Tibshirani [39]: the 

q-value. The q-value is based on the False Discovery Rate, introduced by 

Benjamini and Hochburg [40] and corrects for the number of false positives 

detected by a standard t-test. Selecting genes for classification based on their q-

values has become the gold standard for feature selection.  

The fundamental problem with all the approaches described in this subsection is 

that they all rely on assigning an arbitrary q-value/p-value cut-off [41]. One of the 

major themes of this thesis is the advancement of non-arbitrary approaches to 

gene selection (see Section 1.3). 
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Once the differentially expressed genes have been identified, they are analysed for 

co-expression and functional enrichment and are used to develop classifiers for 

diagnostic and prognostic purposes. 

1.2.3 Co-expression Analysis 

Co-expression analysis is carried out by identifying clusters of genes which have 

similar expression patterns across samples and samples which have similar 

expression patterns across genes [42, 43]. There are number of clustering 

techniques that are used for co-expression analysis. The most common technique 

is hierarchical clustering [44].  Specifically, agglomerative (as opposed to 

divisive) hierarchical clustering (Figure 1.5) has been used to discover new types 

and subtypes of cancers as well as to investigate tumorigenesis mechanisms [45].   

Agglomerative hierarchical clustering works as follows [45]: each data point 

(gene or sample) is placed in its own cluster. The distances between data points 

are determined, based on a distance metric (Euclidean distance, 1 – Pearson 

correlation coefficient or entropy). Initially, closer data points are paired forming 

similar clusters. Closer clusters are then also paired based on their proximity. The 

linkage scheme defines the point in the cluster from which distances are measured 

(single linkage – the nearest points, complete linkage – the furthest point, or 

average linkage – the centre of the cluster). This process is iterated until all 

samples end up in one cluster.  

Clustering is represented graphically in the form of a dendogram or cluster tree 

(Figure 1.5). Each branch on the tree represents a cluster of data points. Within 

the same tier of branches, the proximity of two clusters indicates their similarity. 

The clustered data is finally represented in the form of a heat map (Figure 1.5) 

where a colour map is used to grade expression values (typically, red represents 

high expression values while green represents low expression values).  

Hierarchical clustering is prevalent in microarray literature because it does not 

require a-priori knowledge of the number of clusters present in the data [45], 

making it completely unsupervised (the number of gene clusters are typically 

unknown). 
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Figure 1.5: Heat Map generated from Hierarchical Clustering. The cluster trees on the side and top of 
the heat map indicate proximity between different samples and clusters. Red represents over-
expression of a particular gene (relative to the median) while green represents under-expression.  

This is in contrast to other clustering algorithms, such as k-means clustering, PCA 

(Principal Component Analysis) and fuzzy-means clustering, where data is 

clustered into a predefined number of clusters (or selected randomly and then 

optimised). The downside of using hierarchical clustering is that it does not allow 

for the refinement of clusters [45]: once a set of clusters is formed, their 

configuration cannot be optimised. Nevertheless, there is no consensus as to the 

best clustering algorithm. In this study, agglomerative hierarchical clustering was 

used for all clustering due to its prevalence in microarray literature. 

1.2.4 Functional Enrichment/Biological Pathway Analysis 

Once co-expressed gene clusters have been identified, it is necessary to examine 

whether they have an over-representation of genes which are involved in a 

particular biological, molecular or cellular process [1, 46, 47].  

Gene ontology (GO) classifies gene function according to biological process, 

molecular function and cellular location. The GO terms are ordered in a 

hierarchical structure of relationships where vertical order is an assignment of 

specificity [47, 48]. 
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Functional enrichment analysis compares the representation of genes from a 

particular GO [49] term in a list of genes to its representation in the rest of the 

genome [47, 48]. This is done by implementing a Fisher’s exact test for a 2x2 

contingency table in order to establish the significance of the over-representation 

of the GO term [46]. This is followed by a multiple hypothesis test correction 

factor, based on the False Discovery Rate. 

A GO term is a group of genes which share a particular function [49].  Each GO 

term is assigned to one of the three primary ontologies: molecular, biological or 

cellular function [49]. Each term is also placed at a particular level, corresponding 

to the specialisation of its functionality: the higher the level, the more specialised 

the pathway. Each term has at least one parent (a functionally related less 

specialised level term). For example, the GO apoptotic term is a parent of the GO 

anti-apoptotic regulation term. 

Biological Pathway analysis [1, 46, 47] is similar to functional enrichment 

analysis except that genes which belong to common biological pathways are 

grouped together and defined as a functional set. 

A Fisher’s exact test is used to analyse a contingency table where the samples 

sizes are small [46]. A contingency table is used to record and analyse the 

relationship between two or more variables. From the perspective of functional 

enrichment analysis, the two variables are 1) the number of genes present in a 

particular GO term/pathway compared to the number of genes that aren't present 

and 2) the number of genes in the generated list compared to the rest of the 

genome [46]. Another approach used to analyse over-representation of genes 

belonging to a particular genetic pathway is the hyper-geometric test [50].  

Functional enrichment/biological pathway analysis serves two purposes [1]. It 

allows one to assess whether the differentially expressed group of genes has 

biological relevance thus providing a better understanding of the disease under 

examination. It can also serve as a validation of the feature selection algorithm by 

determining the biological significance of the selected features. 
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An alternative to functional enrichment analysis is Gene Set Enrichment Analysis 

(GSEA) [51]. GSEA assesses genes as a group by assigning them into a priori 

functional categories and then correlating them with their class labels. This 

approach has shown to identify subtle changes of gene expression by assessing 

global changes of a functional group [51].     

1.2.5 Classification  

The application of supervised classification systems for cancer diagnosis using 

microarray data has become prevalent [52, 53] and most microarray studies 

incorporate supervised classification as an indication of diagnostic feasibility [7, 

8, 54-58]. A number of studies have shown relatively high classification 

accuracies on types and subtypes of cancer samples ranging from lymphomas [54] 

to prostate cancer [10]. 

A wide range of supervised learning algorithms have been applied to microarray 

data for sample classification. Techniques ranging from Artificial Neural 

Networks (ANN) [59] to Support Vector Machines (SVM) [57], from K Nearest 

Neighbour (KNN) [60] to Naïve Bayesian Classifiers (NBC) [56] have been 

applied to microarray data classification and their adequacy assessed. One of the 

most thorough studies on the subject was carried out by Statnikov et. al. [57] who 

conclude that the best classifier architecture for cancer expression classification is 

the One versus Rest Multiclass Support Vector Machine. The reader is referred to 

Appendix A for a technical overview of the most common microarray data 

classifiers.  

Microarray data is an example of the ‘curse of dimensionality’ [61] where there 

are more features per sample than there are samples. Hence feature selection is 

crucial for microarray data classification. The identification of suitable features to 

use for classification is just as important as identifying the best classifier 

architecture: if the best features are chosen then even the simplest of classifiers 

can achieve high accuracies [61]. In microarray data, the most common choice of 

features is the top differentially expressed genes [7, 8, 54-57]. As mentioned, 

current techniques for identifying differentially expressed genes suffer from 

arbitrarily choosing p-value cut-offs.  
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Alternatively, the genes can be ranked in order of differential expression and a 

validation scheme can be used to select the best gene set [57]. The problem with 

this approach is that it requires the data to be split up into three (training, 

validation and testing), which is a problem in most microarray experiments where 

the sample size is much smaller than the feature space. Even the suitability of 

Leave-k-out cross validation schemes has been questioned as to its ability to 

successfully reduce over-fitting in microarray data. 

1.3 Problem Statement, Research Questions and Contributions 

It is evident from the overview of microarray data analysis that the most crucial 

stage in the analysis process is gene selection [1, 2].  Gold standard gene selection 

techniques currently rely on an arbitrary assigned p-value cut-off [41] which does 

not necessarily yield the optimal gene set for classification or for functional 

enrichment analysis. This is due to the fact that microarray data consists of 

thousands of features per sample. While a pre-assigned p-value cut off is makes 

sense when considering a data set with a high sample to feature ratio, in the case 

of microarray data it would make more sense to rank and select a feature by 

considering its relationship to the entire feature space. 

The first research question addressed in this thesis is: Can a non-arbitrary 

approach to differentially expressed gene selection be implemented which selects 

features based on their contribution to class differentiation. This approach would 

also need to outperform current gold standard approaches with regards to 

classification accuracy, while also displaying functional enrichment. In this 

approach, a feature is selected based on its comparison to the other features in the 

data set as opposed to an arbitrary assigned feature set, leading to a more data-

centric, non-arbitrary, approach.  

In Chapter 2, a novel, previously untested approach to microarray gene selection, 

based on Separability Index (SI), is presented. This approach addresses the first 

research question, resulting in a non-arbitrary, data intrinsic, technique for 

selecting differentially expressed genes. SI gene selection comprises the first 
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contribution of knowledge towards the discipline of microarray data analysis 

described in this thesis and is described in a paper by Perez et.al [62]. 

The second research question addressed in this thesis is whether a more intuitive, 

holistic, data intrinsic feature ranking algorithm can be implemented which, while 

using statistical features, is not limited by the rigid distinction between parametric 

and non-parametric approaches. In other words, can we develop a feature ranking 

technique which incorporates both parametric and non-parametric data-features? 

Such a technique would also have to be flexible enough to adapt to the specific 

data set under analysis. As discussed in Section 1.2, the ranking algorithm has a 

significant effect on classification accuracies as well as functional analysis and 

hence should be optimised accordingly.  

In Chapter 3, a gene ranking algorithm, based on Fuzzy Inference, termed the 

Fuzzy Gene Filter (FGF) is presented. The FGF is a novel, previously untested 

approach to gene ranking and attempts to incorporate both parametric and non-

parametric features for ranking genes, making it more holistic than pure 

parametric and non-parametric approaches. The FGF parameters are also 

optimised for the specific data set under analysis, allowing for a more data-centric 

approach to gene ranking. FGF forms the second contribution of knowledge 

towards the discipline of microarray data analysis described in this thesis and is 

described in a paper by Perez et.al [63]. 

The final research question addressed in this thesis is whether stochastic 

optimisation algorithms can be used for microarray feature selection to select 

better features than the standard rank select approach. In the context of microarray 

gene selection, a stochastic optimisation algorithm can be used to identify the 

optimal combination of genes to be used for classification. This approach is also 

based on identifying the optimal gene set by considering the entire feature space 

when selecting genes. In Chapter 4, the Population Based Incremental Learning 

Algorithm (PBIL) is used for microarray feature selection. This approach had 

previously not been tested on microarray data and hence forms the third 

contribution of this thesis, also described in a paper by Perez et.al [64]. 
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There are three appendices in this thesis. Appendix A describes the details of the 

classifiers used to facilitate the comparison of the various feature ranking 

algorithms described in Chapter 3. Appendix B details the Fuzzy Inference 

System used in the design of the FGF. Appendix C describes the Genetic 

Algorithm used to optimise the FGF in Chapter 3 and compared to the PBIL 

algorithm in Chapter 4. 

1.4 Data Sets 

A number of microarray data sets were used throughout the project. Initially, 

online publically available data-sets provided by Statnikov et.al. [65], were used 

to test some of the techniques presented in this thesis, specifically those presented 

in Chapters 3 and 4. The microarray data bank consists of 11 sets of microarray 

data ranging from leukaemia to prostate microarray data sets. The primary 

problem with this data is that only sample labels and expression values are 

provided. The data does not include gene annotation information hence functional 

enrichment analysis could not be implemented on this data.  

Hence, another data set, provided by the organisers of the IEEE’s Eighth 

International Conference on Machine Learning and Applications for the 

conference challenge [66], was used in Chapter 2. The data set, generated using 

the Affymetrix HG U133 plus 2.0 GeneChip is extensive, comprising 400 training 

samples: 200 breast cancers, 130 colon cancers and 70 lung cancers. Another 250 

unlabelled test samples (50 lung cancers, 100 colon cancers, and 100 breast 

cancers) were also provided. 

1.5 Implementation and Testing Framework 

All of the techniques described in this thesis were implemented and tested in 

MATLAB 7.6.0 (R2008a) on an Intel Core 2 Quad 2.4GHz PC with 8 GB RAM, 

using the Statistics [67] and Bioinformatics toolboxes [68]. Functional enrichment 

and pathway analysis were implemented on GeneSpring GX 10.0 [15], querying 

GO terms and BioPAX Pathways.  

In order to assess the performance of the algorithms described in this thesis, they 

are compared to their respective gold standard counterparts. The SI feature 
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selection approach is compared to selecting features based on an arbitrary 

assigned p-value based in classification accuracy. The FGF is compared to gold 

standard feature ranking approaches, across multiple classifiers (described in 

Appendix A). PBIL is compared to Genetic Algorithm (described in Appendix C) 

and the ANOVA rank\select approach, based on maximum SI. 

1.6 Conclusion  

Microarray data analysis consists of five steps: Normalisation, gene selection, 

clustering, classification and functional enrichment analysis. Gene selection is the 

most crucial step. Current gene selection techniques rely on arbitrary rigid 

statistics. Using various Machine Learning and Soft Computing paradigms, non-

arbitrary, holistic, intuitive algorithms for microarray feature selection are 

implemented, tested and presented in this thesis. 
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2 DIFFERENTIAL EXPRESSION ANALYSIS USING 

SEPARABILITY INDEX 

The first research question addressed in this thesis pertains to the arbitrary nature 

of gold standard approaches for differential expression analysis. Presented in this 

chapter is an approach to feature selection based on Separability Index (SI). SI is 

used since it is a non-arbitrary quantification of data separability and can be used 

to compare various feature sets for optimal class separability. The approach 

presented is a ‘rank select’ feature selection paradigm, similar to gold standard 

differential expression analysis, the only difference being the criteria by which the 

gene set is selected.  

As mentioned in the introduction (Section 1.2), classically, a differentially 

expressed gene set is selected based on a confidence interval, defining a cut-off p-

value. The cut-off is thus based on the arbitrary bias of the scientist/biologist as 

opposed to an inherent feature of the data. This could result in a suboptimal gene 

set [36], which could adversely affect classification accuracy as well as give a 

false indication of the biological framework of the disease under examination. 

This chapter introduces the concept of a SI. Its application to gene selected is then 

presented. Finally, a testing framework for the approach is described and 

empirical results are presented, evaluating the suitability of SI to gene selection. 

Results are compared to gold standard gene selection approaches. 

This chapter is based on a paper which was presented at the IEEE’s Eighth 

International Conference on Machine Learning and Applications in Miami, 

Florida in December 2009 and is published in the conference proceedings [62]. 

2.1 Separability Index 

A SI indicates the extent of separation between data from two or more classes, 

based on a group of features [69]. From a classification perspective, the more 
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class-separable the data, the simpler the classifier required and the better the 

classification accuracy obtained [69].  

There are a number of possible approaches to quantifying separability. As with 

Hypothesis testing, SI techniques can be roughly divided into parametric and non-

parametric approaches. Parametric approaches (such as those based on Gaussian 

mixture models) involve approximating density functions which best characterise 

the class distinction assigned to the data [61]. Non-parametric approaches include 

those advanced by Zighed el. al. [70] (which is based on a Cut Edge Weight 

statistic) and by Thornton [69]. 

The SI implemented here is based on the one described by Thornton [69], due to 

its relative simplicity and computational efficiency. The SI is calculated by 

determining the fraction of instances which have nearest neighbours belonging to 

the same class [69]: 

𝑆𝐼 = !
!

𝑁𝐻(𝑛)!
!!!             (2.1) 

Where: 

SI = the Separability Index 

N = the total number of instances  

n = the nth instance or data point 

NH(n) = a 1 bit binary number indicating whether the nth instance has a nearest 

neighbour belonging to its own class (1) or  does not (0).  

Thus, if a data set consists of classes which are completely separate (Figure 2.1) 

the index will have a value of 1 indicating 100% separability. If data is not class-

separable (Figure 2.2) then the index is less than 1 depending on the percentage of 

instances with nearest neighbours of the same class. 

The problem with this approach, as described by Mthembu and Marwala [71], is 

that there is no way of quantifying the degree of separability in feature-spaces 

where the classes are already separate: the data in Figure 2.1 has the same SI as 

that of Figure 2.3, even though the classes in the former are ’more’ separate. This 

is remedied by incorporating a Hypothesis Margin (HM) in assessing the extent of 
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class separability once the classes are already separate. HM measures the distance 

between an instance’s nearest hit (nearest neighbour of the same class) and its 

nearest miss (nearest neighbour of a different class). All the nearest hits and 

nearest misses are summed separately and the HM is presented as a ratio of the 

two sums. Once the classes are completely separated, the modified SI is calculated 

by taking the HM ratio relative to when the classes were minimally 100% 

separate. Using the modified SI, the data in Figure 2.3 has a larger SI than that of 

Figure 2.1.  

In the context of microarray gene selection, the SI indicates the extent that a 

particular set of genes differentiate between groups of samples under different 

conditions. It is a meaningful metric in quantifying the effectiveness of a set of 

genes in differentiating classes.  

Due to the biological nature of the data, it is not true to assume that only genes 

which show large class-separability are biologically significant [37]. For example, 

a gene which controls the expression of other genes, such as transcription factors 

[72], might be slightly differentially expressed, but the dependence of the other 

genes on its expression makes it biologically important. 

Therefore, for the purposes of microarray feature selection, the unmodified 

version of the SI is used, treating all feature-spaces which are 100% class-separate 

equally, so as to allow for the inclusion of minimally differentially expressed 

genes (various clusters of genes in Figure 2.6, specifically amongst the breast 

cancer samples, indicate the inclusion of genes which are marginally differentially 

expressed). This also reduces the computational complexity of calculating the SI. 

In the context of Evolutionary Optimisation, the SI can be used as a fitness 

function, where the feature-space is optimised to maximum SI [73]. This is 

discussed in greater detail in Chapter 4. 
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Figure 2.1: Feature set (axes) with perfect class separability hence an SI of 1 but with a small 
hypothesis margin. 

 

Figure 2.2: Feature set (axes) with poor class separability hence a low SI. 
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Figure 2.3: Feature set (axes) also with an SI of 1 but with a large hypothesis margin. 

 

2.2 SI for Differentially Expressed Gene Set Selection 

The application of SI to microarray data analysis is fairly novel. Besides for the 

author’s publication on the subject [62], more recent publications include those by 

Unger et. al [74] and Costa et. al. [75], who examine the linear separability of 

gene expression data. 

In the context of differential expression analysis, SI is used to select the optimal 

number of top ranking differentially expressed genes for classifier training and for 

functional enrichment analysis. The genes are ranked using either a parametric or 

non-parametric hypothesis test [2]. Beginning with the top ranking gene, the 

number of top-ranking genes used to calculate the SI is iteratively incremented, 

generating an SI vector.  
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Figure 2.4: A depiction of how an optimal gene set is selected. Maximum SI occurs when the 127 top 
ranking genes is used. Hence the 127 top-ranking genes are selected for classifier training and 
functional enrichment analysis. 

The entry in the SI vector with the highest SI value corresponds to the gene set 

which is optimally differentiated between samples from the different classes. If 

the nth entry is the maximum SI then the top n ranking genes form the optimal 

gene set for classification and functional enrichment analysis. An example is 

depicted in Figure 2.4: the 127 top ranking genes is the optimal number to use for 

classification. The exclusion of the other genes is thus justifiable since they 

reduce the class differentiating ability of the set of genes.    

The advantage of using SI for gene selection is that it serves as a data intrinsic 

parameter for deciding which genes to include in the gene list. Whereas 

hypothesis testing assesses each gene for differential expression, SI assesses the 

differentiability of a set of genes.  

2.3 Implementation and Testing Framework 

As mentioned in Section 1.4, the technique described here was implemented in 

MATLAB using a data set comprising 400 training samples: 200 breast cancers, 

130 colon cancers and 70 lung cancers. Another 250 unlabelled test samples (50 

lung cancers, 100 colon cancers, and 100 breast cancers) were used to test the 

classification accuracy of the features selected using this approach. The data set 

can be obtained from [66]. 

1 

0 
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Since the data consists of more than two classes, a multivariate one way ANOVA 

(see Section 1.2.2) is used to rank the genes in order of differential expression. 

Once the data has been ranked, the maximum SI cut-off is used to select the 

genes, as described in Section 2.2. This approach is compared to assigning a 

confidence interval of 99%, after a Bonferroni correction (see Section 1.2.2), 

resulting in the selection of genes with p < 1.8311x107. Bonferroni is used since it 

is more stringent than the FDR correction, and since cancers from different tissues 

are compared, a large number of differentially expressed genes are expected, 

requiring a more stringent feature selection. 

Two criteria are used to assess the performance of the approach suggested in this 

chapter (as compared to the standard approach): classification accuracy and 

pathway analysis.  

• Can the features identified using this approach outperform classical 

statistical techniques when used to train and test a classifier – 

classification accuracy. 

• Amongst the genes selected using this technique, is there an over-

representation of genes belonging to a common biological pathway – 

pathway analysis. 

2.3.1 Classifier 

A thorough review of supervised classifiers for microarray data is presented by 

Statnikov et. al [57] (for a summary and a full literature review on classifiers for 

microarray data see Appendix A). The classifier used for testing is the K-nearest 

neighbour (K-NN) classifier [76]. The K-NN classifier is an unsupervised, non-

parametric classification technique which assigns an unknown instance to the 

class with the majority of K nearest instances, where K is pre-specified or 

calculated (for details see Appendix A).  

K-NN has proven to produce high accuracies in classifying microarray data [57] 

and is one of the easiest classifiers to implement [76]. K-NN is used here since the 

feature set is chosen based on the fraction of instances which have nearest 
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neighbours belonging to the same class (see Section 2.2), which lends itself to K-

NN classification. 

2.3.2 Pathway Analysis 

As mentioned in Section 1.2, the principal methods of assessing the biological 

significance of gene lists are functional enrichment and pathway analysis. 

Functional enrichment tests for the representation of gene ontology terms within a 

list. Gene ontology (GO) classifies gene function according to biological process, 

molecular function and cellular location. The GO terms are ordered in a 

hierarchical structure of relationships where vertical order is an assignment of 

specificity [47, 48].  

To test for functional enrichment, a statistical test (e.g. Fisher’s exact) is 

employed which compares, for each GO term, the number of associated genes 

within a list to the number of genes associated to that term present in the genome 

of study [46]. Functional enrichment, therefore, serves to both validate microarray 

results and to improve biological understanding of phenotypes under 

investigation.  

Pathway analysis functions similarly to functional enrichment analysis, however, 

for pathway analysis a gene list is assessed for the enrichment of genes found 

within a database of biological pathways. This provides a deeper understanding of 

the condition of interest as pathways include specific gene entities as well as 

interactions and relationships [77]. 

2.4 Results and Analysis 

After implementing the SI feature selection, a maximum SI of 91% was achieved 

using the top 4222 ranking probe sets. The SI plot in Figure 2.5 indicates how the 

SI varies as a function of the number of top ranking probe sets used to calculate 

the SI varies. Figure 2.5 only depicts the SI variation up to the top 5000 ranking 

probe sets. Anything above 5000 yields lower SI values. The data cursor indicates 

the point of maximum separability. These probe sets were selected for further 

analysis. After applying a Bonferroni multiple hypothesis correction, 8610 

differentially expressed genes were identified. 
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2.4.1 Test Data Classification 

The K-NN classifier implemented using the genes selected based on maximum SI, 

classified 96 testing samples as colon cancer, 107 as breast cancer and 47 as lung 

cancer. The first 100 samples in the testing set are breast cancer samples, the 

second 100 samples colon cancer and the final 50 samples lung cancer, resulting 

in an accuracy of 92% was achieved. The K-NN classifier implemented on the 

genes selected based on a p-value cut-off of p < 1.8311x107 (the corrected p-value 

corresponding to a 5% confidence interval after implementing a Bonferroni 

correction) achieved an accuracy of 89.6%. 

The experiment was repeated 100 times, each time attaining the same results 

(100% repeatability). This is due to the fact that the ranking and selection 

algorithms are deterministic (stochastic approaches are discussed in chapter 4). If 

the same ranking algorithm is used, the same features are always selected, 

resulting in identical classification accuracies. 

Classification results indicate that genes selected based on the SI criterion attain a 

higher classification accuracy than those selected using classical statistical 

approaches (at least for the data set used here). This is attributed to the non-

arbitrary nature of the selected features: the features are selected based on a 

property inherent to the data (maximum class separability), as opposed to an 

arbitrary assigned cut-off p-value.  

2.4.2 Functional Enrichment and Biological Pathway Analysis 

The hierarchical clustergram of the training set, using the 4222 top ranking probe 

sets, is depicted in Figure 2.6. The clusters distinguishing each of the three types 

of cancers were empirically identified and examined for functional enrichment 

and the presence of significant biological pathways. A summary of the significant 

pathways identified from the analysis is presented in Table 2.1.  
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Figure 2.5: SI variation as a function of the number of top ranking probe sets used to calculate the SI 
increases. 

 

 
Figure 2.6: Hierarchical clustergram of the training samples, using the top 4222 differentially 
expressed probe sets. The red cluster contains predominantly colon cancer samples, the blue breast 
cancer and the green lung cancer. 
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Table 2.1: BIOPAX pathways significantly (p < 0:05) enriched for each cancer. 

Breast Colon Lung 

Androgen receptor Alpha6Beta4Integrin BCR 

 EGFR1 IL5 

 Hedgehog IL6 

 TCR TCR 

 TGFBR  

 TNF alpha/NF-kB  

The homogeneity of the expression patterns of the three types of cancers is 

indicative of their subtype variation. Colon cancer has relatively few molecular 

sub-classifications resulting in a highly homogenous expression pattern for all 

colon cancer samples. On the other hand, breast and lung cancers have more sub-

classifications, hence their expression patterns show variations, allowing for 

common subtypes to cluster closer to one another. 

The analysis is done in the context of identifying class differentiating genes and 

is, therefore, limited to differential expression unique to the specific cancer or 

tissue. Aberrant expression of genes common to all three cancer types would not 

be identified by this analysis. 

Breast Cancer: Breast cancer is well established as being highly subject to 

endocrine and epigenetic regulation [9, 78]. Gene ontology terms associated with 

breast cancer in this study generally consisted of terms involving regulation of 

transcription and nucleotide processing. This analysis identified one pathway 

unique to breast cancer; the androgen receptor pathway [79]. The breast cancer 

susceptibility gene 1 has been documented to be a co-activator of the androgen 

receptor pathway and sex-hormones specifically are known to influence the 

progression and development of breast cancer [9]. 

Colon Cancer: Biological process terms associated with colon cancer in this 

analysis were terms with general cell machinery functions such as mRNA 

transport, lipid metabolism, nuclear import and negative regulation of 

transcription. RNA transport mechanisms were most common. However, a 
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number of significant pathways were identified. According to pathway analysis 

(Table 2.1) the α-6, β-4 integrin pathways were significant. The role of integrin’s 

in cancer has been extensively investigated as they function across a broad range 

of critical biological functions including cell adhesion, motility, proliferation, 

differentiation and apoptosis [80]. The role of  π-6,  β-4 integrin in invasion by 

certain solid tumours is well established and it affects cell differentiation in 

colorectal cancers [81]. Epithelial growth factor receptor (EGFR1) pathway was 

identified in this analysis and its expression in colon cancer cells has previously 

been demonstrated and therapies which block this pathway have been modestly 

successful [82]. The hedgehog pathway (Table 2.1) has previously been 

documented to be involved in tumour development. It is most known for its 

involvement in basal cell carcinoma [83]. This analysis identified the TNF- 

/NFkB pathway. Both TNF- and NF-kB can play a role in cancer; TNF through 

inflammatory processes while NF-kB can influence the transcription of proto-

oncogenes and can stimulate uncontrolled cell proliferation [84, 85].  

Lung Cancer: Lung cancer yielded a number of highly specific GO terms; 

including porphyrin catabolism (GO:0006787) and biphenyl metabolism 

(GO:0018879). Others included antigen processing and presentation and response 

to glucocorticoid stimulation. Differential pathways in lung cancer included two 

cytokine pathways (IL5, IL6), T-cell receptor (TCR) and the B-cell antigen 

receptor (BCR). This has identified immune pathways in lung cancer compared to 

colon and breast cancer. BCR is a well-documented [86] proto-oncogene but has 

not been associated with lung cancer. 

2.5 Conclusion 

In microarray data analysis differentially expressed gene identification is crucial, 

both for classifier feature extraction, as well as for significant biological pathway 

identification. An approach to differential expression analysis, based on a 

Separability Index, was developed: after ranking the probe sets using a 

multivariate one-way ANOVA, the optimal number of top ranking probe sets was 

determined based on maximum class separability (as opposed to arbitrarily 

assigning a p-value cut-off).  



31 
 

The approach was implemented on a training dataset comprising 400 samples 

from three types of cancers: colon, breast and lung cancer. The top 4222 probe 

sets resulted in a maximum separability of 91%. These probe sets were then used 

to classify a testing dataset comprising 250 samples, using a K-NN classifier, 

achieving an accuracy of 92%. A second K-NN classifier was also trained using 

features selected based on p < 1.8311x107, which achieved an accuracy of 89.6%.  

Hierarchical clustering was used to identify clusters of genes, from the 4222, with 

similar expression patterns for each of the three cancers. These clusters were then 

examined for functional enrichment and significant biological pathways. 

Significant biological pathways and biological processes, previously described in 

cancer biology, were identified for all three cancers. 

With regards to the specific data set tested, it is thus evident that a non-arbitrary 

feature selection scheme, based on SI, is preferable to the standard approach since 

greater classification accuracies can be attained while still identifying a 

functionally enriched gene set. 

The performance is attributed to the non-arbitrary nature of the maximum SI 

selection criterion, which is an inherent property of the data, as opposed to the 

arbitrary assignment of a p-value cut-off.  
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3 FUZZY GENE FILTER 

The previous chapter deals with the selection criteria for selecting ranked genes. 

This chapter deals with the ranking of genes. The effect of different ranking 

algorithms for gene selection on classification accuracy has been extensively 

discussed [2]. As mentioned in Section 1.2, most gene ranking algorithms 

implement either parametric or non-parametric hypothesis tests. The approach 

described in this chapter combines both parametric and non-parametric data-

features with an aim to develop a more holistic gene ranking approach. This is 

done by implementing a Fuzzy Inference System (FIS) [87, 88] and the ranking 

system is named the Fuzzy Gene Filter (FGF) [63, 89].  

Furthermore, current gold standard feature ranking techniques are not optimised 

for the specific data-set under consideration [36]: the order in which genes are 

ranked is independent of the degree of class separability exhibited by the specific 

data set. Hence, a Genetic Algorithm is incorporated into the FGF, allowing it to 

adapt to each specific data-set. 

This chapter describes the design and implementation of the FGF. The FGF is 

tested using two publicly available data-sets and the results are compared to those 

of classical feature ranking techniques, as well as to results previously obtained 

using the same data-sets. The feature ranking algorithms are compared using four 

supervised classifiers :Artificial Neural Network (ANN), Support Vector Machine 

(SVM), Naïve Bayesian Classifier (NBC) and K-Nearest Neighbour (KNN) 

classifier. 

This chapter is based on a paper which was presented at the 23rd International 

Conference on Industrial Engineering and Other Applications of Applied 

Intelligent Systems, IEA/AIE 2010, in Cordoba, Spain in June 2010 and is 

published in Springer-Verlag Lecture Notes  in Artificial Intelligence series [63]. 
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3.1 Fuzzy Gene Filter Design 

The FGF [63, 89] is a rule based gene ranking technique based on a Fuzzy 

Inference System. A Fuzzy inference System [90] is a robust decisive tool which 

mimics the way human beings make decisions based on imprecise data. At the 

core Fuzzy Inference is fuzzy set theory. Fuzzy set theory, as opposed to classic 

set theory, assigns each variable a degree of membership [87]: whereas Boolean 

logic only deals with binary membership, fuzzy logic can assign a single point to 

multiple groups with varying degrees of membership. For more information on 

Fuzzy systems, see Appendix B. 

Fuzzy inference has been used in many science and engineering applications [91] 

ranging from flight control [92] to biological signal classification [93]. One of the 

most successful applications of Fuzzy inference is Fuzzy control [94]: fuzzy 

controllers have shown to outperform classical control paradigms for multiple 

input multiple output (MIMO) [95] and non-linear [96] control applications. 

Fuzzy logic has also been implemented in washing machines [97].    

Other applications of Fuzzy inference include the modelling of biological 

systems. Fuzzy modelling has also been used to model the human retina [98] 

demonstrating how Fuzzy inference can be used to model biological systems, 

which are intrinsically highly variable (within two samples of the same system) 

and complex.  

The motivation behind using fuzzy logic for gene ranking lies in its ability to 

tolerate imprecise data [88]. Fuzzy logic is suitable for microarray data analysis 

due to its inherent imprecision - expression variation of biological replicates is 

inevitable [3]. Also, due to the FGF’s heuristic nature, diverse biological and 

statistical expert knowledge can be incorporated when ranking genes. A schematic 

overview of the FGF is presented in Figure 3.1.  

The FGF is based on a Mamdani fuzzy inference architecture [99] (due to its 

intuitive implementation) and consists of five components: Input layer, input 

fuzzy membership functions, rule block, output fuzzy membership functions and 

output layer. 



34 
 

Figure 3.1: Overview of the Fuzzy Gene Filter [63]. 

3.1.1 Input Layer 

The purpose of the input layer is to extract the relevant features which are used for 

gene ranking. Whereas classical approaches are either parametric or non-

parametric, the FGF employs both elements when ranking genes. For each gene, 

three statistical features are extracted from the data: fold change, intra-class 

variability (parametric) and the sum of ranks (non-parametric).  

The fold change, for each gene, is simply the absolute value of the log2 ratio of 

the mean intensity values for the two classes [3]. The absolute value is considered 

since a 2 fold change (a log2 ratio fold change value of 1) is the same as a -2 fold 

change (a log2 ratio fold change value of -1), the only difference being whether 

the gene is over or under expressed. This simplifies the FGF since only two fold 

change membership functions need to be considered.  

Intra-class variability is calculated using the denominator of the two sample 

unpaired t-test [100]. The sum of ranks is calculated as described in Section 2.1. 

Since both low and high rank sums are indicative of differential expression, the 

mean rank sum is subtracted from each rank sum value and the absolute value is 

taken. This simplifies the FGF since only two rank sum membership functions are 

considered (large and small), as opposed to three (large, medium and small). 

3.1.2 Input Fuzzy Membership Functions  

The fuzzification of microarray data variables arises naturally from the subjective 

nature of the assignment of biologically relevant cut-off values. For example, the 

assignment of a biologically significant fold change cut-off is dependent on the 
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biological question being asked and could vary between experiments (the use of 

the universal 2 fold change cut-off has been criticised [20]). Fuzzy set theory 

allows one to take this subjectivity into account by eliminating the need to assign 

a crisp cut-off value. Instead, a region which allows for fold change values to be 

considered as being both small and large, with varying degrees, is introduced. 

The input fuzzy membership functions depict the various fuzzy sets to which each 

input can belong. For example, a gene can have a high or low fold change 

between samples from two different conditions. Hence two input membership 

functions are allocated to the fold change input variable, namely high and low, as 

depicted in Figure 3.2 There are three regions depicted in Figure 3.2: 

• The region between 0 and α, where a fold change value is defined as 100% 

low. 

• The region from β upwards defines fold change values which are 100% 

high. 

• The region between α and β where fold change values can belong to both 

low and high fuzzy sets with various degrees of membership - the fuzzy 

region. 

3.1.3 Fuzzy Parameter Optimisation  

Identifying optimal values, is crucial when ranking genes. Just as the assignment 

of a fold change cut-off value differs from data-set to data-set, so too does the 

fuzzy fold change region. Hence the optimal α and β values, for each specific 

data-set, need to be determined. 
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Figure 3.2: Input fuzzy membership functions (fold change, variance and Rank Sum). 

A genetic algorithm (GA) is employed to identify these values. GA is a population 

based stochastic optimisation technique, inspired by biological evolution [101]. A 

population of individuals is initialised. An individual is defined as a potential 

solution the function being optimised. Each individual consists of a combination 

of genes.  

GA has been applied to many real-world optimisation problems [102] ranging 

from optimal antenna design [103] to financial portfolio optimisation [104]. Early 

forms of evolutionary algorithms was originally developed in the 1960’s to solve 

various engineering problems [105], yet it wasn’t until John Holland, in his book 

Adaptation in Natural and Artificial Systems [106], formalised GA into the 

algorithm which is used today. Nevertheless, it was only in the 1990’s, with the 

advent of sufficient computational power, that GA was applied to more substantial 

problems [101], such as the travelling salesman problem [107] and job-shop 

allocation [108]. For a full overview of the Genetic Algorithm, see Appendix C.  

One of the most common applications of GA is feature selection [109]. Even 

within the context of differentially expressed gene selection, GA has been 

extensively applied [110]. In most of these applications, GA is used to identify the 

optimal combination of genes to be used for classification. Chapter 4 [64] 

explores this approach extensively, where  GA is compared to the Population 

Based Incremental Learning algorithm, with regards to microarray data feature 

selection.  
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GA has also been extensively applied to fuzzy control system optimisation [100] 

[111], whereby fuzzy parameters are optimised for a specific task. In this context, 

they are optimised to identify the gene-set which results in the maximum inter-

class separability. 

In Chapter 4, a gene (in the context of genetic algorithm) is defined as a particular 

feature to be used for classification and an individual is defined as a combination 

of features since the GA searches for the optimal gene set. In this chapter, where 

GA is used to optimise a Fuzzy Inference System, a gene is defined as an α or β 

value. Since there are three inputs, each having two membership functions, each 

individual consists of six genes. α and β values are bounded decimal numbers 

which have the following constraints: 

• α < β 

• β < Max 

• α > 0 

Where Max is the largest fold change value present in the data-set.  

After initialisation, the population undergoes iterations, or generations, of mating 

and mutation. Mating entails 'crossing over' or sharing the genes of two 

individuals to produce offspring, resulting in a new generation of potential 

solutions. Mutation entails modifying the genes of a randomly selected individual, 

preventing the algorithm from premature convergence (converging to a local 

optimum). The population is maintained at a fixed size, where an elite count is 

used to determine how many of the t-test individuals survive to the next 

generation.  

The GA is guided by a fitness function. The fitness function indicates the 

proximity of an individual to the optimum or to grade individuals. It is used when 

selecting individuals for mating and mutation. As with biological evolution, 

selection for mating favours fitter individuals.  
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Figure 3.3: FGF Parameter optimisation overview. A population of 100 potential fuzzy parameter-sets 
are iteratively guided towards identifying the optimal set. 

The fitness function used here is the Separability Index [69] (see Chapter 2). 

Genes are ranked by the FGF using specific α and β values. The fitness value is 

simply the maximum SI value attained when examining the SI values associated 

with each top ranking gene-set, as discussed in Section 2.2. An overview of the 

fuzzy parameter optimisation scheme is depicted in Figure 3.3. 

3.1.4 Fuzzy Rule Block and Output Fuzzy Membership Functions 

The rule block relates the input fuzzy variables to the output fuzzy variables, 

using a set of expert knowledge based linguistic expressions. In this application, 

expert knowledge is extracted from the underlying statistics (both parametric and 

non-parametric) as described in Section 2.1. For example, if a gene has low intra-

class variance, a high fold change and a high rank sum then the gene is deemed to 

display good class differentiability and is hence assigned to the very high output 

fuzzy membership function. On the other hand, if the gene has high intra-class 

standard deviations, a low fold change and a low rank sum then the gene displays 

poor class differentiability and is assigned to the very low output fuzzy 

membership function. If two of the three criteria for good class differentiability 

are met the gene is assigned to the high output fuzzy membership function. If only 

one criterion is met, then it is assigned to the low output membership function. 

Input fuzzy membership functions (antecedents) are combined using a min/max 

fuzzy operator: a fuzzy OR operation selects the maximum membership of the 

three fuzzy inputs while a fuzzy AND operation selects the minimum. 
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Figure 3.4: Output fuzzy membership functions. 

The output fuzzy membership functions (Figure 3.4) depict the various degrees of 

class differentiability exhibited by the gene, based on the input features: very low, 

low, high and very high class differentiability. These membership functions are 

chosen due to the fact that there are three inputs, each having two membership 

functions. The fuzzy outputs are clipped and aggregated by applying the fuzzy OR 

operation. A crisp output is attained via centroid de-fuzzification (see Appendix 

B), producing the degree of class differentiability exhibited by the gene. Class 

differentiability is expressed as a number from 0 to 1, 0 being the worst class 

differentiability, 1 being the best class differentiability. The FGF is used to rank 

all the genes present in the data. The genes are then ranked in order of class 

differentiability. 

3.2 Experimental Design 

The purpose of the experiment described in this chapter is to examine how well 

the FGF performs in ranking features for various classification architectures 

(KNN, SVM, ANN, NBC), as compared to standard feature ranking approaches 

(t-test, Wilcoxon test, ROC curve analysis). 

3.2.1 Cross-validation 

In order to assess the performance of various classifiers on features ranked by 

each of the ranking approaches, a cross-validation scheme is implemented in order 

to identify the optimal number of top ranking features to be used for classification. 

A classifier is iteratively re-trained and tested, incrementing the number of top 
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ranking genes used until the gene-set which results in highest classification 

accuracy is identified. This gene-set is then selected as the classifier input space. 

It is also necessary to identify the optimal classifier parameters, for each gene-set 

being tested. Hence, a nested stratified Leave-one-out Cross-validation (LOOCV) 

scheme is implemented [57]. The scheme consists of an inner loop and an outer 

loop. The inner loop identifies the optimal parameter values for the classifier 

(using a 10 fold cross-validation scheme). The outer loop calculates the LOOCV 

accuracy for the gene-set being tested.  

LOOCV consists of training a classifier using all samples except for one. The 

classifier is then tested using the left-out sample. This process is repeated until 

each sample has been used to test the classifier. The LOOCV accuracy is then 

determined by calculating the percentage of correctly classified left-out samples.  

LOOCV is commonly used for classification problems where there are a limited 

number of samples [57]. Typically, one would allocate three sub datasets: A 

training set (used to train the classifier), a validation set (used to identify optimal 

classifier parameters and features) and a testing dataset (used to quantify the 

performance of the classifier on ‘unseen’ data). If there is a limited number of 

samples (relative to the number of features) then it is necessary to use the training 

dataset as the validation set as well and implement a cross-validation scheme, 

such as the one described here.  

Due to the expense of generating microarray data, a typical microarray experiment 

consists of few samples, compared to the number of features generated per 

sample. Hence, LOOCV is common in microarray literature [57]. Furthermore, 

the purpose of this experiment is to compare feature ranking algorithms, as 

opposed to classifiers, hence the LOOCV accuracy is sufficient to compare 

feature sets. 

This approach is also used since it is similar to the one used by the original 

authors of the test data-sets, where a KNN classifier was used to diagnose prostate 

cancer and differentiate between Diffuse Large B-cell Lymphoma and Follicular 
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Lymphoma [54]. It is also similar to approach taken by Statnikov et.al. in a paper 

which compares various classifier architectures on microarray data [57]. 

In the inner loop of the LOOCV, the optimal parameters of the classifiers are 

identified. For each of the four classifiers tested, the following classifier 

parameters are optimised: 

• For the SVM, the upper-bound constant C is optimised, while using a 

linear kernel as suggested by Statnikov et. al. [57].   

• For the KNN classifier the optimal neighbourhood radius k is identified.  

• For the NBC the bandwidth of the initial Gaussian kernel is optimised.  

• For the ANN (MLP), the optimal number of  hidden nodes is identified 

(within the range of one hidden node to twice the number of input nodes) 

while using regularisation to prevent  over-fitting. A logistic activation 

function is used since the MLP is being used as a classifier. 

Once LOOCV has been implemented using each of the classification algorithms, 

on features ranked by each of the feature ranking techniques, classification 

accuracies are compared. An ANOVA is then implemented to examine the 

significance of the different accuracies across the various gene ranking 

algorithms. 

3.2.2 Data Sets  

The techniques were compared using two publicly available data-sets, both made 

publicly available by Statnikov [65]. The first consists of 50 healthy and 52 

cancerous prostate samples [10, 57]. The second consists of 58 Diffuse Large B-

Cell Lymphoma samples and 19 Follicular Lymphoma samples [54, 57]. The 

prostate data-set was generated using the Affymetrix HG-U95 Gene Chip and 

consists of 10509 gene expression values per sample [10]. The lymphoma data-set 

was generated using the HU6800 oligonucleotide array and consists of 5469 gene 

expression values per sample [54].  

Background correction was done using the Affymetrix MAS 5.0 algorithm. In 

addition, quantile normalisation with a median polish was also implemented. 
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Table 3.1: Prostate data set classification accuracies and number of top ranking genes (in 
parenthesis). 

 

3.3 Results and Discussion 

Table 3.1 and Table 3.2 depict the highest LOOCV accuracies attained by each 

classifier for each feature ranking algorithm, as well as the optimal number of top 

ranking genes used to obtain the accuracy (the value in parenthesis).  

3.3.1 Prostate Data Set Results 

The LOOCV accuracies attained for the various classifiers tested on the prostate 

data set are summarised on Table 3.1. Figure 3.5 depicts the butterfly diagrams of 

the various classifiers, depicting the accuracy median and 25th\75th percentiles of 

the four classifiers.  

Classifiers trained with features ranked by the FGF resulted in the highest 

accuracy, for each of the classifiers tested, compared to the other gene ranking 

techniques (p < 0.0231).  

 

 

 

 

 

 

 

Figure 3.5: Butterfly diagram for the prostate data set, displaying the distribution of classification 
accuracies for each feature ranking technique (sample 1 is the FGF, 2 the t-test, 3 the Wilcoxon test 
and 4 ROC curve analysis). 

 FGF t-test Wilcoxon test ROC 
KNN 96.1% (9) 93.1% (3) 94.1% (15) 93.1% (6) 
SVM 95.0% (3) 94.1% (14) 94.1% (19) 95.0% (8) 
NBC 94.1% (3) 93.1% (22) 93.1% (15) 94.1% (3) 
ANN 95.0% (5) 93.1% (7) 94.1% (14) 94.1% (6) 
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Table 3.2: Lymphoma data set classification accuracies and number of top ranking genes (in 
parenthesis). 

 

The classifier with the highest accuracy is the KNN classifier, attaining an 

accuracy of 96.1%, when trained using the top 9 ranking genes, as ranked by the 

FGF. The classifier with the highest accuracy is the KNN classifier, attaining an 

accuracy of 96.1%, when trained using the top 9 ranking genes, as ranked by the 

FGF. 

The prostate data-set was originally used by Singh et. al. [10] to develop a 

classifier for prostate cancer diagnosis. The maximum cross-validation accuracy 

reported in the original paper was 86% using a 16 gene model (genes were ranked 

using a signal to noise ranking scheme). Statnikov et. al. [57] reported an accuracy 

of 92% on the same data-set. All the gene ranking techniques presented here 

outperformed both studies with the FGF.  

3.3.2 Lymphoma Data Set Results 

The LOOCV accuracies attained for the various classifiers tested on the 

lymphoma data set are summarised in Table 3.2. Figure 3.6 depicts the butterfly 

diagrams of the various classifiers, depicting the accuracy median and 25th\75th 

percentiles of the four classifiers. 

Classifiers trained with features ranked by the FGF resulted in the highest 

accuracy, for each of the classifiers tested (p < 0.1888), albeit with less confidence 

that than with the prostate data set. Both the KNN and SVM classifiers attained 

the highest accuracy (100%). 

 

 FGF t-test Wilcoxon test ROC 

KNN 100% (13) 97.4% (6) 94.8% (4) 98.7% (2) 
SVM 100% (12) 98.7% (5) 98.7% (39) 98.7% (28) 
NBC 97.4% (5) 97.4% (3) 97.4% (5) 97.4% (3) 
ANN 98.7% (14) 94.8% (8) 97.4% (6) 97.4% (4) 
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Figure 3.6: Butterfly diagram for the prostate data set, displaying the distribution of classification 
accuracies for each feature ranking technique (sample 1 is the FGF, 2 the t-test, 3 the Wilcoxon test 
and 4 ROC curve analysis). 

Nevertheless, the SVM is deemed the better classifier since it was able achieve the 

maximum accuracy with fewer features (the top 12 ranking genes as opposed to 

the top 13 with the KNN classifier). Similarly, even though the features ranked by 

ROC curve analysis also resulted in 100% accuracy on the SVM, it did so with the 

top 28 features. The features ranked with the FGF achieved the same accuracy 

with only 12 top ranking features. 

The lymphoma data-set was originally used by Shipp et. al. [54]. The accuracy 

reported in the original paper was 77% using weighted voting classification 

technique. Statnikov et. al. [57] reported an accuracy of 97.5% on the same data-

set. The FGF outperformed both studies, attaining an accuracy of 100% using the 

SVM classifier. 

3.3.3 Discussion 

The performance of the FGF is attributed to the fact that it is optimised to rank 

genes in such a way that results in maximum class separability, as well as its 

incorporation of multiple features of the data when ranking genes. Furthermore, 

the FGF parameters are optimised to the specific data-set being analysed: the 

optimised fuzzy parameters for the prostate data-set are different to those of the 

lymphoma data-set. For example, the FGF α and β values for the fold change 
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membership functions, optimised for the prostate data-set, are 0.0862 and 0.7787. 

In contrast, the FGF α and β values, optimised for the lymphoma data-set, are 

0.1098 and 0.5378. 

The fold change fuzzy region for the lymphoma data-set is smaller than the 

prostate's. A small fuzzy region indicates less ambiguity in defining a gene as 

having a high or low fold change. Reduced ambiguity is a result of a clear 

distinction between genes which have a high fold change and genes which do not. 

A data-set which contains genes with high fold change values indicates that the 

data is highly class-separable. Thus, the lymphoma data is more class separable 

than the prostate data. This is due to the fact that the two types of samples being 

compared in the lymphoma data-set originate from different cell lines (B-cell vs. 

follicular) whereas the prostate samples all have the same cell lineage (the only 

difference being whether a sample is cancerous or healthy). Hence, differential 

expression between samples from the prostate data-set is less pronounced than 

those from the lymphoma data-set. 

This is also seen in the fact that the maximum SI obtained from the prostate data-

set (0.96) is less than the SI obtained from the lymphoma data-set (1). 

In terms of common features selected by the various algorithms, for the prostate 

data-set, all of the features identified by the t-test were also identified by the FGF. 

The FGF had six common features with Wilcoxon test, and yet had only two 

common features with the ROC technique. Algorithmically, this makes sense 

since the FGF incorporates elements of the t-test and the Wilcoxon test but not the 

ROC technique.  

Similar results are obtained when comparing the features identified by the various 

algorithms on the Lymphoma data-set: The FGF identified five of the six of the 

features also identified by the t-test; two of the four features identified by the 

Wilcoxon test and none of the features identified by the ROC technique. 
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3.4 Conclusion 

The development of a novel approach to expression array data feature ranking, the 

FGF, has been presented. The FGF considers both parametric and non-parametric 

data features when ranking genes. The FGF also incorporates a GA for fuzzy 

parameter optimisation.  

After a thorough comparison of the FGF with standard gene ranking algorithms 

(the t-test, Wilcoxon test and ROC curve analysis), on various classifier 

architectures (KNN, SVM, NBC and ANN), the FGF was still able to attain the 

highest LOOCV accuracy on both data-sets (p < 0.0231 for the prostate data set 

and p < 0.1888 for the lymphoma data set).  

For the prostate data set, a LOOCV accuracy of 96.1%, using the top 9 ranking 

genes, was attained the KNN classifier. For the lymphoma data set, a LOOCV 

accuracy of 100%, using the top 12 ranking genes, was attained on the SVM 

classifier. It is thus evident that (at least for the data sets tested) ranking genes 

using the FGF results in the section of a better feature set than when ranked with 

standard approaches, no matter which classifier is used for classification. The 

FGF's success is ascribed to its ability to incorporate both parametric as well as 

non-parametric data features when ranking genes as well as its ability to adapt to 

the specific data-set being analysed. 
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4 STOCHASTIC SEARCH GENE SELECTION 

The feature selection approaches presented in previous chapters are based on a 

‘rank select’ paradigm. The fundamental problem with this paradigm is that the 

features are organised in a particular order and once a cut-off has been 

determined, features that do not meet the cut-off are excluded. It is possible that 

the inclusion of ‘non-differentially’ expressed genes could result in a better 

feature space due to a possible non-linear relationship between the data and class 

distinction [112].  

Presented in this chapter is an approach to gene selection based on stochastic 

search algorithms (SSA). SSAs have been applied extensively to the field of 

feature selection [112, 113]. A stochastic or ‘guided’ random search algorithm 

explores feature space for the best combination of features to be used in a 

classifier.  

This chapter is based on a paper presented at the IEEE 26th Convention of 

Electrical and Electronics Engineers in Israel and published in the conference 

proceedings [64]. 

4.1 Stochastic Search Algorithms for Feature Selection 

SSAs can be divided up into individual based search algorithms, such as 

simulated annealing, and population based search algorithms, such as Genetic 

Algorithm (for an overview of GA see Appendix C) [114]. In the context of 

feature selection, population based search algorithms have been shown to be 

highly successful in identifying optimal feature sets, and hence is the variant 

considered for gene selection [114] [101].  

A typical SSA consists of three components [114] [101]: a generation/search 

procedure, evaluation or fitness function and stopping criteria. Generation/search 

involves randomly generating candidate solutions to the particular problem, which 

in the context of feature selection is a combination of features. A fitness function 
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evaluates the suitability of a candidate as a potential solution to the problem. The 

stopping criteria can be a predetermined number of algorithm iteration or an 

acceptable fitness level.  

In the context of feature selection, there are two types of fitness functions: 

wrapper methods and filter methods [115, 116]. Filter methods are independent of 

the classification algorithm and are based on statistical evaluation criteria. 

Wrapper methods are dependent on the classifier and evaluate a feature set based 

on classification accuracy attained when the particular features are used to train 

and test a classifier.  

Filter methods are computationally more efficient than wrapper methods since 

they do not require the training and testing of a classifier each time the algorithm 

is iterated [116]. On the other hand, since they are independent of classification 

accuracy, they suffer the risk of selecting features which are not suited for the 

particular classification accuracy being used. 

Wrapper methods on the other hand find more suitable features since they 

optimise towards maximum classification accuracy [116]. The trade-off is that 

they are computationally expensive.  

As a compromise between wrapper and filter methods, Separability Index [69] 

(see Chapter 2) can be used as the fitness function. On the one hand, it is similar 

to a wrapper method which uses a nearest neighbour classifier as its fitness 

function, and hence is also optimised towards maximum classification accuracy. 

On the other hand it is computationally inexpensive since no classifier is being 

trained and tested. Hence, SI is used as the fitness function for the approaches 

described in this chapter.  

There are many different types of SSAs [117]. In this chapter, a probabilistic 

variant termed population based incremental learning, is considered. The results 

are compared to standard GA as well as to an ANOVA based ‘rank select’ 

approach.  
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4.2 Population-Based Incremental Learning (PBIL) 

Population-Based Incremental Learning, akin to Genetic Algorithm (GA), was 

first described by Baluja [118] and attempts to integrate Evolutionary 

Optimisation with Competitive Learning. PBIL has outperformed GA in a number 

of applications, both with regards to accuracy (it does a more extensive 

exploration of every region of the search space) and speed to convergence (it lacks 

some of the complex mechanisms implemented by GA) [118]. 

PBIL maintains the fundamental aspects of GA [118]: a population of individuals 

(potential solutions) undergo iterations (generations) of ’genetic’ rearrangements 

(mutation or recombination) in order to identify the optimal solution to a 

particular problem. The problem is captured by the fitness function, which assigns 

a fitness value to each individual, depending on its proximity to the optimum. 

Each individual constitutes a set of genes. In the context of feature extraction, 

each feature is defined as a gene. An individual can either have a gene or not 

(binary encoding), translating to the selection or exclusion of a particular feature. 

As mentioned in Section 4.1, in the context of feature extraction, fitness is defined 

as being the extent of class separability exhibited by the selected features, 

quantified by the SI. Another possible fitness indication is classification accuracy, 

as advanced by Topon et.al. [119]. SI is preferred over classification accuracy 

since it is computationally less expensive (no classifier training is required). The 

primary difference between PBIL and GA is that in PBIL, the genome undergoes 

evolution as opposed to the individuals. This is implemented by the use of a 

probability vector. Each entry in the probability vector indicates the probability 

that a particular gene is selected for representation amongst individuals of the 

population. An overview of the PBIL algorithm is presented in Figure 4.1.  

 



50 
 

 

Figure 4.1: Flow Diagram of the PBIL algorithm. 

An individual is assigned genes by randomly generating a vector of normally 

distributed numbers, with a mean of 0.5 and a standard deviation of 0.1. Each 

entry in the vector corresponds to a particular gene. If the number is less than the 

corresponding entry in the probability vector then the gene is selected to be 

present in the individual. At the end of each generation, the probability vector is 

updated. This is done by modifying each entry in the probability vector, 
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depending on whether its corresponding gene is present in the fittest individual 

ever found, in accordance with equation 4.1 [118]: 

𝑃(𝑖)   =   𝑃(𝑖)  ×  (1− 𝐿𝑅)   +   𝐹𝐼(𝑖)  ×𝐿𝑅         (4.1) 

Where: 

P(i) is the ith entry in the probability vector P. 

LR is the learning rate. 

FI(i) is the ith gene of the fittest individual ever found. 

The learning rate controls the influence that the fittest individual has in altering 

the assignment of genes amongst individuals, when they are spawned. A low 

learning rate means that, if a gene is present in the best individual then the 

corresponding entry in the probability vector will only increase slightly. The 

learning rate thus has an effect on how fast the algorithm converges to a solution. 

In certain versions of PBIL, a negative learning rate is also implemented, in 

accordance with equation 4.2 [118]. This serves to steer the search away from the 

weakest individual [118]. 

𝑃 𝑖 =   𝑃 𝑖 ×   1  +   𝑁𝐿𝑅 −𝑊𝐼(𝑖)  ×  𝑁𝐿𝑅        (4.2) 

Where: 

NLR is the negative learning rate. 

WI(i) is the ith gene of the weakest individual ever found. 

Once updated, the probability vector undergoes mutation. Mutation in the context 

of PBIL involves randomly reducing or increasing the probability of each entry in 

the probability vector, thus diversifying the genetic composition of the population 

[118].  

Mutation, both in PBIL and in classical GA, prevents the algorithm from 

converging on a local optimum. Mutation is controlled by mutation probability 

and the mutation shift. The mutation probability specifies the probability of a gene 

being selected for mutation. Mutation shift indicates the extent of genetic 

mutation. A random number between 0 and 1 is generated. If the number is less 
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than the mutation probability, then the entry in the probability vector is altered as 

follows [118]: 

𝑃(𝑖)   =   𝑃(𝑖)  ×  (1−𝑀𝑆)   +𝑀𝐷  ×𝑀𝑆         (4.3) 

Where: 

MS is the mutation shift. 

MD is the mutation direction, and can either be 0 (reduce the probability) or 1 

(increase the probability). 

It has been demonstrated that mutation in PBIL is not as crucial as it is in GA 

[118]. This is due to the probabilistic nature of individual gene allocation. 

Diversity is still maintained by allowing for the possibility of excluding high-

probability genes and including low-probability genes, when spawning 

individuals. Mutation thus serves the purpose of preventing a gene probability 

from converging to an extreme value (0 or 1) too quickly, allowing for a more 

thorough search in each sector of the search space. 

4.3 Implementation  

All algorithms were implemented using MATLAB 7.6.0 (R2008a) on an Intel 

Core 2 Quad 2.4GHz PC with 3.23GB RAM. PBIL is compared to both GA and 

the most common approach to differential expressed gene analysis, namely 

ANOVA.  

The algorithms were tested on a publicly available data-set [65], comprising three 

types of leukaemia: T-Cell Acute Lymphoblastic Leukaemia (9 samples), B-cell 

Acute Lymphoblastic Leukaemia (38 samples) and Acute Myelogenic Leukaemia 

(25 samples). Each sample consists of 5329 genes and was generated using the 

Affymetrix HG-U95 Human Genome Chip [57]. 

The PBIL and GA parameters used have been empirically determined for other 

binary encoded [118] problems and hence are also used in this application. PBIL 

was implemented using a learning rate of 0.1, a negative learning rate of 0.1, a 

mutation probability of 0.02 and a mutation shift of 0.05. It was empirically 

observed that the algorithm converged within 100 generations which was set as 
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the termination criterion. It was also empirically determined that a population size 

of 1000 is sufficient to detect individuals with maximum separability: a 

population of 100 could not explore enough of the search space to find individuals 

with as high a separability as could a population of 1000, while a population of 

10000 did not find better individuals. 

A binary-encoded GA was implemented using the MATLAB Genetic Algorithm 

and Direct Search Toolbox [120]. A stochastic uniform selection with a uniform 

mutation (mutation rate = 0.01) and randomly scattered crossover was used (with 

a crossover percentage of 80%).  

Uniform mutation comprises two steps: first a fraction of the vector entries of an 

individual is selected for mutation, based on the mutation probability rate. The 

next step involves replacing each selected entry by a random number selected 

uniformly from the range for that entry. Uniform mutation was used due to its 

computational efficiency [120]. 

Random scatter crossover creates a random binary vector and selects the genes 

where the vector is a 1 from the first parent, and the genes where the vector is a 0 

from the second parent, and combines the genes to form the child. This approach 

allows for better diversity amongst new populations, when compared to other 

crossover schemes such as point crossover, and hence is preferred [101]. 

A population size of 10000 was used and the algorithm also terminated after 100 

generations (the algorithm was tested for different population sizes and number of 

generations and these values were smallest population and minimum number of 

generations necessary to achieve maximum fitness). 

Due to the stochastic nature of both PBIL and GA, and since the termination 

criterion for both algorithms is based on a fixed number of generations, it is 

possible that a different fittest individual, with a different fitness, be identified 

upon re-running the algorithms. Hence, average, best and worst separability 

values are calculated using the best individual found after 30 repeats of each 

algorithm. 
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Table 4.1: PBIL\GA\ANOVA Results Summary 

Technique Average Separability Best Separability Worst Separability Av. Feature Size 

PBIL 97.04% 98.61% 95.83% 326 

GA 96.39% 97.22% 94.44% 2652 

ANOVA (n=362) 97.22% – – 326 

ANOVA (n=2652) 91.62% – – 2652 

ANOVA (q<0.05) 94.44% – – 909 

ANOVA (q<0.01) 93.06% – – 897 

ANOVA (q<0.005) 95.83% – – 708 

ANOVA (q<0.001) 97.22% – – 416 

 

A multiple one way ANOVA (see Section 1.2.2) was implemented using the 

MATLAB Statistics Toolbox, while applying a False Discovery Rate correction, 

producing a q-value for each gene. q-value cut-offs of q < 0:05, q < 0:01 q < 

0:005 and q < 0:001 are considered (due to their frequent use in microarray 

literature). In addition, the top NGA and NPBIL genes are also considered where 

NGA and NPBIL correspond to the gene set size identified by the GA and PBIL 

algorithms respectively. 

4.4 Results and Discussion 

The results for each algorithm are summarized in Table 4.1. PBIL, on average, 

found fitter individuals than the GA (p<0.015, after running both algorithms 100 

times). It also managed to consistently find better feature-spaces than the ANOVA 

for n = 2652, q < 0,05, q < 0:01 and q < 0,005. The best PBIL run resulted in only 

a single instance with a nearest neighbour not belonging to its own class while the 

GA’s best run resulted in two instances. The best PBIL run even outperformed 

ANOVA for q < 0:001 and n = 326.  

While still allowing for diversity due to mutation, PBIL is more efficient in 

excluding redundant features than standard GA, as is evident by the smaller 

feature sizes identified. This is preferable [61] since redundant features are 

excluded from being used for classification. It is suspected that the PBIL’s 

rejection of redundant features is based on the implementation of negative 

learning when updating the probability vector. If a feature is present in the best 

individual but not in the worst, as is indicative of a differentially expressed gene, 
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then the probability of selecting that feature increases every generation. If a 

feature is present in the worst individual but not in the best one, indicating that the 

feature has an adverse effect on class separability and is hence redundant, then the 

probability of selecting that feature decreases. If, however, a feature is present in 

both the best and the worst individual then the probability remains unaltered 

(since the learning rate equals the negative learning rate). GA has no explicit 

mechanism of excluding redundant features, whereas PBIL explicitly excludes 

redundant features. 

Figure 4.2 depicts how the fitness of the best individual varies across the 

generations, for the best run of the PBIL (solid line) and Genetic Algorithms 

(dashed line) respectively. The best Individual found by the PBIL was identified 

after 87 generations. The best individual found by the GA was found after 13 

generations. 

The PBIL’s slower convergence indicates its ability to implement a more diverse 

search of the problem space than the GA. GA has a higher tendency to converge 

prematurely, causing it to converge to suboptimal solutions. This could be 

remedied by increasing the mutation rate. On the other hand, due to its 

probabilistic nature in spawning individuals, PBIL maintains diversity irrespective 

of the mutation rate [118], allowing for better exploration of the search space. 

 

Figure 4.2: Fitness variation of the fittest individual across all generations for the PBIL (solid line) and 
GA (dashed line). The algorithms converged after 87 generations and 10 generations for the PBIL and 
GA respectively. 

0 
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4.5 Conclusion 

The identification of a differentially expressed gene set is central to microarray 

data analysis, both with regards to pathway identification and the formation of a 

suitable classifier feature-space for cancer classification. The effectiveness of the 

PBIL algorithm, in identifying an optimal classification feature-space, was tested 

and compared to that of regular GA and ANOVA gene selection techniques. PBIL 

involves iteratively probabilistically evolving the genome of a search population. 

A Separability Index was used to guide the algorithms through the search-space, 

comprising various combinations of features.  

The PBIL algorithm outperformed regular GA by identifying a feature-space 

which yielded, on average, a higher class-separability (97.04% for PBIL and 

96.39% for the GA, with p<0.015 after re-running each algorithm 100 times) and 

a fewer number of genes (PBIL - 326 genes, GA - 2652). It also, on average, 

outperformed the ANOVA approach for n = 2652 (91.62%), q < 0,05 (94.44%), 

q < 0,01 (93.06%) and q < 0,005 (95.83%). The best PBIL run (98.61%) was even 

able to find a better feature set than the ANOVA for n = 326 and q < 0,001 (both 

97.22%).  

The performance of the PBIL is ascribed to its ability to steer the search away 

from the worst individuals, allowing for the exclusion of redundant features.
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5 CONCLUSION AND RECOMMENDATIONS 

Three novel approaches to microarray data feature selection and differential 

expression analysis have been presented in this thesis: 

• Gene selection based on Separability Index 

• Gene Ranking using the Fuzzy Gene Filter 

• Gene selection using Population Based Incremental Learning 

These approaches address the three research questions outlined in Section 1.3, 

dealing with the arbitrary nature of standard techniques by provide a more holistic 

approach to microarray feature selection and differential expression analysis. 

By using SI, a more data intrinsic approach to differentially expressed gene 

selection was implemented, attaining better results than standard differential 

expression analysis, while still maintaining functional enrichment. The approach 

achieved a K-NN classifier accuracy of 92% on a test data set, comprising breast, 

colon and lung cancer microarray data. 

The FGF provides a holistic approach to gene ranking incorporating both 

parametric and non-parametric features. It is also optimised for the particular data 

set under scrutiny. Genes ranked by the FGF attained significantly higher 

accuracies for all of the classifiers tested, on both data sets (p < 0.0231 for the 

prostate data set and p < 0.1888 for the lymphoma data set). When using the 

prostate data set, the FGF performed best on the KNN classifier, achieving an 

accuracy of 96.1% with the top 9 ranking genes. When using the lymphoma data 

set, the FGF performed best on the SVM classifier, achieving an accuracy of 

100% with the top 12 ranking genes.  

The performance of the FGF is attributed to the fact that it is optimised to rank 

genes in such a way that results in maximum class separability, as well as its 

incorporation of multiple features of the data when ranking genes. 
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As a possible future improvement, due to its flexibility, the FGF can incorporate 

biological knowledge associated with the particular gene being ranked. Apriori 

associations of a particular gene to the disease under discussion can also be taken 

into account when ranking. This could be incorporated as an additional input 

variable and the fuzzy rules could accommodate the associations. 

PBIL has been demonstrated to find better features (average SI = 97.04%) than 

GA (average SI = 96.39%), as well as ANOVA (SI = 94.44%), identifying 

features which collectively have a higher SI.  

The PBIL algorithm can be also improved by incorporating a functional 

enrichment estimate of the selected gene set. This could possibly be incorporated 

in the fitness function.  

Thus, the research questions presented in Section 1.3 have been addressed: less 

arbitrary, more holistic approaches to microarray gene selection have been 

developed, tested and presented while maintaining and even surpassing the 

performance of gold standard approaches. 
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APPENDIX A  SUPERVISED CLASSIFIERS FOR MICROARRAY  

DATA CLASSIFICATION   

Presented in this appendix is a brief overview of the most popular supervised 

classification algorithms used for microarray data classification [57]. Three types 

of classifiers are discussed: Artificial Neural Networks (ANN), both the Multi 

Layered Perceptron (MLP) and Radial Basis Function (RBF) configurations; 

Support Vector Machine (SVM) and K-Nearest Neighbour (KNN).  

A.1 Multi-Layered Perceptron Neural Network 

The Multi-Layered Perceptron (MLP) is the most fundamental form of neural 

network  [121]. A MLP is a feed forward neural network that consists of various 

layers or sets of nodes. 

A MLP consists of a complex network of neurons, as depicted in Figure A.1. 

Neurons form connections between nodes. Each neuron stores knowledge in the 

form of a connection strength known as a weight. A weight describes the affect a 

particular node has on the node to which it is connected. A node stores knowledge 

in the form of a bias (a value added to the inputs at the node).  

 

Figure A.1: A Three layered Multilayer Perceptron. 
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A MLP consists of various layers or sets of nodes, as depicted in Figure A.1. The 

first layer is the input layer, to which input data is presented. The input layer is 

connected to the hidden layers which are connected to the output layer, all via 

weighted neurons. 

All the inputs to a node are summed and transformed to the output via an 

activation function (symbolised by the F blocks in Figure A.1). The MLP is 

trained via back-propagation by presenting it a portion of the input data and 

comparing the outputs of the network to the target outputs, iteratively adjusting 

the weights and biases until the MLP’s outputs approximate the targeted outputs. 

A number of optimisation algorithms can be used to optimise the weights of the 

MLP, the most efficient being Scaled Conjugate Gradient (SCG). 

A.2 Radial Basis Function Neural Network 

The Radial Basis Function (RBF) [122] Neural Network has shown to be quicker 

to train than the MLP. This is due to the fact that it incorporates unsupervised 

clustering techniques in its training.  

A RBF Neural Network is a type of neural network which has three layers of 

nodes: an input layer, a hidden layer, which implements non-linear RBFs, and an 

output layer. A RBF can take on various types of distributions. The Gaussian 

distribution is the most common. The mean of the RBF is referred to as its centre 

or centroid. 

The training of a RBF neural network takes place in two stages. First, the centres 

of the RBFs are determined using k-means clustering: the input training data are 

arranged in a vector space, as depicted in Figure A.2. 

Figure A.2 depicts a simple 2 dimensional vector space and each point (white 

oval) in the space corresponds to a data point. k centres (black ovals) are 

randomly assigned to the vector space, where k is simply the number of hidden 

nodes.  
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Figure A.2: Data (white ovals) distributed in a 2 dimensional vector space, showing 2 cluster centres 
(black ovals). 

Each data point is assigned to the nearest centre, forming a set of k clusters. The 

centres then move to the centre of their respective clusters. The data points are 

then reassigned to the nearest centre and the process is repeated until the centres 

remain constant. 

The second part of RBF neural network training involves supervised training of 

the weights connecting the hidden nodes to the output node. This is generally 

done via least square regression. 

The output activation function of the RBF neural network could be linear or 

sigmoidal. For classification problems, a sigmoidal activation function is 

generally used but a linear output could also be used if the outputs are rounded to 

1 or 0.  

After training, the RBF is validated by determining the number of hidden nodes 

which produce the most accurate results and hence the optimal number of centres. 

When an unclassified data point is presented to the input layer of the RBF, it is 

passed to the hidden layer. The output value of each hidden node corresponds to 

the extent that the data point belongs to that node’s corresponding cluster 

(depending on where along the distribution the point lies). These values propagate 

to the output layer and the data point is assigned to a particular class. 
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A.3 Support Vector Machines 

Support Vector Machines (SVM), originally developed by Vapnik et.al. in the mid 

1990’s [123], are hard, non-parametric, robust classifiers, normally trained using 

supervised learning. The Support Vector Machine (SVM) is considered to be one 

of the most significant developments in Artificial Intelligent classification in 

recent years. The SVM’s insensitivity to a high dimensional input space makes it 

an ideal candidate for classification of GEP [57].  

Like RBFs, SVMs operate in vector space. The classified input data is vectorised, 

as depicted in the simplified 2 dimensional vector space in Figure A.3.  

During training, a discriminant function, or decision boundary, is generated to 

separate between the two classes. A margin between the discriminatory function 

and the nearest data points or vectors is then generated, as depicted in Figure A.3. 

The vectors which result in the largest margin are referred to as support vectors. 

Support vectors are identified through quadratic programming and Lagrange 

Multipliers. During cross-validation, the extent of influence of outliers is 

determined. Outliers can result in a decision boundary with a smaller margin, 

resulting in suboptimal classification accuracy. Therefore, an upper-bound 

constant, normally symbolised by C, is defined in order to limit the influence of 

outliers. 

 

Figure A.3: Two class data (black and white ovals) distributed in a 2 dimensional vector space, showing 
the linear discriminant function (solid line), margin (space between the two dashed lines) and support 
vectors. 
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A discriminant function is also known as a kernel. The type of kernel depicted in 

Figure A.3 is a linear kernel. Other types if kernels include polynomial kernels 

and Gaussian kernels. Generally, for high dimensional vector spaces, linear 

kernels can achieve just as good accuracies as polynomial and Gaussian kernels. 

If classes are not linearly separable, then the data is projected into a higher 

dimensional space where the classes can be separated using a linear hyperplane, as 

depicted in Figure A.4. Furthermore, SVMs can be designed to be fairly robust 

towards outliers by setting the trade-off and penalty parameters. 

SVMs are also used for GEP classification since they are fairly insensitive to the 

Curse of Dimensionality [57]: GEPs can comprise hundreds, even thousands of 

expression values per sample. Often only a few samples are available for training, 

hence conventional feed forward Artificial Neural Networks would yield poor 

results, as shown by Statnikov et. al [57]. 

An extensive comparison between various types of classifiers is presented by 

Statnikov et. al.. He concludes that the multi-class SVM (MC-SVM) is the most 

accurate classifier for microarray data. There are a number of variations of MC-

SVMs. 

 

Figure A.4: The input space in Figure A.3 is projected into three dimensional space where the classes 
are linearly separable. 
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Figure A.5: K-nearest neighbour classifier. The unknown sample is assigned to the class to which the 
majority of its neighbours belong. In this instance, the unknown sample (grey) is assigned to the class 
with the majority of 3 (the neighbourhood radius is 3). 

A.4 K-Nearest Neighbour 

K-nearest neighbour (KNN) classification is a non-parametric classification 

technique first advanced by Cover et.al. [76] in the 1960’s.  KNN assigns an 

unknown sample to the class belonging to the majority of samples in it’s 

neighbourhood.  

The neighbourhood radius is specified by the number of nearest samples required 

to make a class assignment. The optimal neighbourhood radius is either pre-

defined (for unsupervised learning) or learned during cross-validation [61]. KNN 

is the simplest of the algorithms described in this chapter (and hence the least 

computationally expensive) yet has performed well on microarray data [124]. 

A.6 Naive Bayesian Classifier  

The Naïve Bayesian Classifier (NBC) is a probabilistic classifier based on Bayes 

theorem and assumes that each feature is class-independent of one another. In the 

context of expression profiling, NBC assumes that each gene independently 

contributes to the probability that a sample belonging to a particular class [56].     
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A NBC, like any supervised classifier, undergoes training in order to establish the 

optimal parameters of the probability distribution [56]. Typically, a Gaussian 

distribution is assumed for each feature for each class and the optimal mean and 

standard deviation are identified during training.  When classifying an unknown 

sample, The NBC calculates the posterior probability of the sample belonging to 

each class, by comparing the distributions of the samples features to those 

identified during training [56] 

A.5 Conclusion 

The four most common algorithms for microarray data classification have been 

presented and discussed: MLP-ANN, RBF-ANN, SVM and KNN. Based on 

previous studies done, the most effective approaches to microarray data 

classification are SVM and KNN. Since KNN is the more computational 

inexpensive algorithm, it is used for most of the classifiers trained in this study.  
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APPENDIX B  FUZZY INFERENCE 

B.1 Introduction 

Fuzzy logic is defined as a set of mathematical principles for knowledge 

representation based on degrees of membership [87]. As opposed to Boolean 

logic, Fuzzy logic is multi-valued. Where a Boolean number is either a one or a 

zero, Fuzzy logic takes on the entire spectrum from one to zero. An element can 

be partly true and partly false at the same time. 

Fuzzy control is inspired by the human ability to make decisions based on 

imprecise information [94]. When deciding to cross the road, one does not need to 

know the roads precise width in meters in order to assess whether it is safe to 

cross or not. Fuzzy logic is an attempt to implement this imprecise human type of 

decision-making in machines, which normally deal with well defined discrete 

numeric values. The purpose of this appendix is to provide the reader with a 

background to Fuzzy modelling. 

B.2 Fuzzy Set Theory 

A Fuzzy set is a set which does not have clearly defined boundaries [87]. It is 

possible for an element to only belong partially to the set. In classic set theory, an 

element belongs to a set or doesn’t belong to a set. It cannot belong to the set and 

not belong to the set simultaneously. 

Fuzzy sets are particularly good at representing linguistic, subjective terms: a 

person can be defined as tall, average or short. Tall, average and short are Fuzzy 

sets since a particular height can be considered tall for one person, whereas 

another person can consider the same height to be average. Fuzzy set theory 

accounts for different degrees of tallness, as depicted in Figure B.1 [125]. This is 

achieved by means of membership functions. A Fuzzy membership function is a 

curve that defines how each input value is mapped to a degree of membership 

between 0 and 1.  
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Figure B.1: A Crisp Set and a Fuzzy Set describing the height of a person [125]. 

B.3 Fuzzy Logic 

Fuzzy logic implements imprecise human decision making via a set of Fuzzy rules 

[125]. Fuzzy rules implement a series of “IF…THEN” statements, which map 

imprecise conditions onto imprecise results. This is different to classical logic 

which maps precise conditions onto precise results.  

• A Classic “IF…THEN” Statement: “If car-speed = 60 km/h Then Stopping 

Distance = 30 m”.  

• A Fuzzy “IF…THEN” Statement: “If car-speed is Slow Then Stopping 

Distance is Short”. 

Both Slow and Short are intangible and are both Fuzzy sets. OR and AND 

statements also have significance in Fuzzy logic. AND implies an intersection 

between two Fuzzy variables (selecting the minimum degree of membership) 

where OR implies the union between them (selecting the maximum degree of 

membership). 

Fuzzy logic is used in rule evaluation by mapping input Fuzzified variables to 

specific output actions of a Fuzzy system. 
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B.4 Fuzzy Inference  

Fuzzy inference is the process which maps input variables to output variables via 

a complex Fuzzy system [90], comprising Fuzzy membership functions and Fuzzy 

logic rules. This process involves four steps [125]: 

1 Fuzzification of inputs. 

2 Rule evaluation. 

3 Aggregation of outputs. 

4 De-fuzzification of outputs. 

B.4.1 Fuzzification  

Fuzzification involves determining the degree of membership of each crisp input 

value, to the various Fuzzy sets [125]. This is done by passing the input values 

into Fuzzy membership functions. Each crisp input could be mapped to more than 

one fuzzy membership curve, as illustrated in Figure B.2 [125]. 
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Figure B.2: Fuzzification of the Input Variables [125]. 

In Figure B.2, A1, A2, A3, B1, B2 are the various Fuzzy sets. µ ( x ) is the degree 

of membership of the input to a particular Fuzzy set. 
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Figure B.3: The mapping of the Degree of Membership of the Antecedent to the Consequent [125]. 

B.4.2 Rule Evaluation 

Once the degree of membership of each input variable, to each Fuzzy set, is 

determined it is necessary to map the input membership values to output 

membership values. This is done by implementing a set of Fuzzy “IF…THEN” 

statements, as illustrated by Figure B.3 [125]. The input degree of membership 

values are defined as the antecedent to the Fuzzy rules. The output degree of 

membership values are defined as the consequent. Once an output degree of 

membership value is obtained, the corresponding membership curve is clipped at 

that value. 

Rule 2 states that IF the input variable x belongs to Fuzzy set A2 AND the input 

variable y belongs to the Fuzzy set B2, THEN the output variable z is mapped to 

the Fuzzy set C2.  In this particular example, the input variable x has a 

membership of 0.2 to set A2 and y has a membership of 0.7 to set B2. Therefore, 

the output membership curve C2 is clipped at 0.2, since a Fuzzy AND is 

implemented, selecting the minimum degree of membership to be mapped to the 

output. A Fuzzy OR selects the maximum degree of membership, as illustrated in 

Rule 1. 
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Figure B.4: Aggregation of each of the results from each of the rules to form a single Output Set [111]. 

B.4.3 Aggregation 

Aggregation involves combining the results of the rules, producing a single output 

set. Figure B.4 [125] illustrates how the results of the rules, depicted in Figure 

B.3, are aggregated (using the fuzzy OR operation). The clipped fuzzy 

membership functions are combined together to form the aggregated fuzzy output. 

B.4.4 De-fuzzification 

A crisp input is derived from the aggregated Fuzzy set, by determining the centre 

of mass of the output Fuzzy set, using the following equation [99]: 

∫
∫=

dx

dxxx
x

i

i

µ

µ )(
*            (B.1) 

Where *x  is the Defuzzified output, x  is the Crisp Output and )(xiµ  is the degree 

of membership of a crisp output value to a particular set. 

This is known as the Centroid de-fuzzification method. Another method is the 

Scaling de-fuzzification method, which scales the entire output set and the crisp 

value corresponding to the maximum degree of membership of the set is 

determined as the output value.   

The Fuzzy inference technique described here is known as the Mamdani inference 

system [99]. The other commonly used technique is the Sugeno inference system, 

which is not discussed here. Mamdani inference is highly efficient in capturing 

knowledge but is computationally expensive. Sugeno inference is computationally 

effective and optimal for control applications [125]. 
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B.6 Conclusion 

An introduction to Fuzzy set theory, Fuzzy logic and Fuzzy inference is given. 

The major steps involved in Fuzzy inference are dealt with: fuzzification, rule 

evaluation, aggregation and de-fuzzification.  
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APPENDIX C  GENETIC ALGORITHM 

C.1 Introduction 

GA is a population based optimization technique inspired by biological genetics 

and the Darwinian theory of evolution (survival of the fittest and natural selection) 

[101, 106]. GA performs a guided search through a population (set of numerical 

data) whereby individuals (potential solutions to a problem) undergo a ‘natural 

selection’ process in order to identify the best individual. The genetic algorithm 

described here is based on the one originally described by Holland et.al. [106]. 

An individual consists of a combination of genes, where the definition of a gene is 

application specific. For example, in feature selection, a gene is defined as a 

feature, where a gene can take on two possible states: 1 (the feature is selected) or 

0 (the feature is rejected). This is also known as binary encoding (Figure C.1) 

since an individual is represented as a binary number. Other encoding approaches 

include float point encoding where an individual is represented as a decimal 

number. The optimal combination of genes could lie dormant amongst the 

population and could come from a combination of individuals. An individual with 

a genetic combination close to the optimal is described as being fit.  

A new generation of individuals are spawned by mating two individuals from the 

current population. The fitness function is used to determine how close an 

individual is to the optimal solution. The selection function ensures that genetic 

information from the fittest individuals is passed down to the next generation, 

generating a fitter population. Eventually the population will converge on the 

optimal solution or get as close to it as possible. Implementation of a GA is 

carried out in four steps: Initialization, selection, reproduction and termination. 

 

1 0 0 1 0 
Figure C.1: Individual consisting of a number of genes using binary encoding. 
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C.1 Initialisation 

Initialization entails encoding the chromosomes into a format suitable for natural 

selection. There are several types of encoding modalities, each with their 

advantages and disadvantages. Each individual of a population can be represented 

as a binary number. Since a binary number consists of ones and zeros (base 2), 

more digits are required to define an individual than if a decimal number was used 

(base 10). This lends itself to greater diversity in chromosome representation and 

hence greater variance in subsequence generations. The problem with binary 

encoding is that most populations are not naturally represented in binary form due 

to the length of binary numbers; they are computationally expensive.  

Another form of encoding is floating point encoding. Each individual is 

represented as a floating point number or a combination of floating point 

numbers. Floating point encoding is far more efficient than binary encoding. 

Value encoding is similar but allows for characters and commands to represent an 

individual.  

C.2 Selection 

Selection of individuals for mating involves using a fitness function. A fitness 

function is used to determine how close an individual is to the optimal solution. 

The fitness function is the only part of the GA which has knowledge of the 

problem. The fitness function for the Sudoku problem is discussed in Section 3. 

After defining the fitness of each individual, it is necessary to select individuals 

for mating. There are various methods used. Two methods are discussed here. The 

Roulette technique involves first summing the fitness’s of all the individuals of a 

population and then selecting a random number between zero and the summed 

result. The fitness’s are then summed again until the random number is reached or 

just exceeded. The last individual to be summed is selected. 
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Another selection technique is the tournament method. The tournament method 

involves selecting a random number of individuals from the population and the 

fittest individual is selected. The larger the number of individuals selected, the 

better the chance of selecting the fittest individual. 

Selection ensures that the fittest individuals are more likely to be chosen for 

mating but also allows for less fit individuals to be chosen. A selection function 

which only mates the fittest individuals is termed elitist and may result in the 

algorithm converging to a local minimum. 

C.3 Reproduction 

Reproduction consists of two different genetic operations: crossover and mutation. 

Crossover is the process by which two individuals share their genes, giving rise to 

a new individual. Crossover ensures that genes of fit individuals are mixed in an 

attempt to create a fitter new generation. There are various types of crossover 

depending on the encoding type, two of which are mentioned here: simple and 

arithmetic crossover. 

Simple crossover is carried out on a binary encoded population. This involves 

choosing a particular point and all genes up until that point will come from the 

one parent while the rest comes from the other (Figure C.2). For example, one 

parent has the following binary configuration: 11010100. It is also possible to 

choose multiple points, which signify where crossover occurs. 

 

 

 

 

 

Figure C.2: Simple Crossover. Genes from the two parents are combined to form a new individual – 
the Child. All genes before the crossover point (indicated by the arrow) are derived from the Parent 1 
while the rest of the genes are derived from Parent 2. 

 

1 0 0 1 1 0 1 0 0 0 

1 0 0 0 1 
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In arithmetic crossover a new generation is created from adding a percentage of 

one individual to another. For example an individual has the value 9.3 and another 

10.7. If we select 30% from the one and 70% from the other the child will be 10.2. 

Over the course of reproduction, a child’s chromosome will go through mutation. 

Mutation is when the gene sequence of a chromosome is altered slightly, either by 

changing a gene or by changing the sequence. This is done to ensure that the 

population converge to a global minimum as opposed to a local minimum. 

C.4 Termination 

Termination: determines the criteria for the algorithm to stop. This can be once 

the optimal solution is reached but could be computationally expensive. 

Otherwise the GA can terminate once a certain number of generations has been 

reached, if the optimal solution has not been reached or once no better solution 

can be achieved. 

C.5 Conclusion 

Genetic algorithm consists of four operations which vary depending on the 

encoding scheme implemented. For binary encoding, point crossover and 

mutation are generally implemented while for float point encoding arithmetic 

crossover is generally used. For selection, a trade-off must be made between 

selecting fit individuals for mating and ensuring diversity in th epopulation to 

prevent convergence to local minima.  


