
Adjoint-based optimization for optimal control problems

governed by nonlinear hyperbolic conservation laws

Elimboto Yohana

A dissertation submitted for the degree of a
master of science

School of Computational and Applied Mathematics,

University of the Witwatersrand,

Johannesburg, South Africa.

May 20, 2012



Abstract

Research considered investigates the optimal control problem which is constrained by a hy-

perbolic conservation law (HCL). We carried out a comparative study of the solutions of the

optimal control problem subject to each one of the two different types of hyperbolic relaxation

systems [64, 92]. The objective was to employ the adjoint-based optimization to minimize the

cost functional of a matching type between the optimal solution and the target solution. Nu-

merical tests were then carried out and promising results obtained. Finally, an extension was

made to the adjoint-based optimization approach to apply second-order schemes for the optimal

control problem in which also good numerical results were observed.
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1. Introduction

Hyperbolic conservation laws (HCLs) is an active research field with rapidly increasing appli-

cations in areas such as fluid mechanics, aircraft designs, traffic flows, elasticity and relativity.

This work is devoted to discuss the mathematical framework and numerical solutions for the

adjoint-based optimization of the optimal control problem subject to one-dimensional relaxation

systems of HCLs. We are interested in the numerical solutions of optimization problems gov-

erned by a system of hyperbolic conservation laws (HCLs). The approach under consideration

is called adjoint, and in this case, it requires solutions of two systems of equations in each

optimization cycle, as it is explained in the later sections.

Since 1970s, there has been intensive research in the field of HCLs. This research has accelerated

the applications of HCLs in fields such as Computational Fluid Dynamics (CFD) [89]. HCLs

are very important in our daily life because they model different sorts of physical processes.

Several studies conducted led to successful application of HCLs in science [27, 82], technology of

combustion, detonation, aerodynamic designs and gas dynamics [49, 125], to name only a few.

Today, there is a lot of research which aims to apply HCLs in solving challenging problems in

engineering and science (reactive flows, multi-component flows, groundwater flows, semiconduc-

tors and meteorology), economical and industrial platforms. There are typical applications of

HCLs, such as Buckley Leverett [126] in modeling flows in oil and gas reservoirs, the shallow

water equations in meteorology and oceanography, equations of magnetohydrodynamics (MHD)

in studying supernovas in astrophysics, also applied in plasma physics, solid mechanics; and

Euler Equations in aircraft designs and traffic flow models [4, 79, 126]. Some other references

on successful applications of HCLs are found in [63].

Apart from numerous existing literature on the relaxation approach to solutions of HCLs, to

our knowledge, few reports are available on the optimal control problems subject to relaxation

systems. In this study, we investigated two relaxation approaches as constraints to the opti-

mization problem (to be defined later), namely: the JIN XIN relaxation approach [64], and the

discrete velocity model approach in [5, 92]. Contrary to the existing results in [10, 94, 128], we

have extended the adjoint method to second-order relaxing schemes for numerical optimization

of the problem governed by nonlinear scalar and systems of HCLs. Effective relaxation ap-

proaches have been developed and their performances compared in connection to adjoint-based

optimization. The aim is to minimize the cost functional that matches the optimal solution and

the target, subject to this set of relaxation systems.

1.1 Objectives of the Study

Objectives for this study are as follows:

1
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• to derive optimality systems for the two variants of the relaxation system: the JIN XIN

relaxation approach, [64] and the discrete kinetic model [92]. The optimality system is

comprised of the systems of equations, namely: state equations, the co-state equations and

the optimality condition, which are then discretized in the numerical implementation;

• to derive first-order relaxing schemes and test them by solving different systems of HCLs,

including the real world examples and apply these solution procedures to the problem

of optimal control. The interest has been to realize the more computationally effective

approach, challenging them, pointing out drawbacks and giving suggestions whenever nec-

essary. We have comparatively checked the validity of the two approaches and drawn

conclusions based on their numerical results;

• Investigation of the application of second-order relaxing schemes for the solutions of HCLs

and for the optimal control problem as well.

Successful optimization in this sense, depends on suitable approach used to approximate solu-

tions of HCLs. HCLs exhibit unique behavior and require special treatment, (see [18, 33, 67,

69, 75, 78, 126]) for their solutions. Generally, numerical schemes for hyperbolic conservation

laws available in the literature are numerous. In this regard, it is not possible to explore all

of them under this limited space, but in the following section, we discussed some common and

frequently used numerical methods for solutions of HCLs.

1.2 Solutions of nonlinear hyperbolic conservation laws

In the past decades, numerous numerical methods have been developed to solve nonlinear hyper-

bolic conservation laws. The most challenging feature of the nonlinear hyperbolic conservation

laws is the development of singularities as their solution evolves with time. These singularities

which are jumps are also called shock waves. In general, the property of nonlinear hyperbolic

conservation law is that, even if the solution at a given time is smooth, it may in general develop

discontinuities at a later time.

Different methods have been used to solve HCLs, with some attempts to generalize solution

approaches to high orders of accuracy. For many years, traditional numerical schemes have been

used to solve partial differential equations (PDEs). Most of these schemes are not suitable for

solving PDEs especially when the function is discontinuous as their solutions, often result into

over-smeared representation of shocks or oscillations near discontinuities [121]. Under nonlinear

conservation laws (CLs) for example, some schemes fail to capture the correct direction of infor-

mation propagation yielding incorrect or oscillatory solutions. There are well known methods

under this category, namely, Lax-Wendroff second-order method [108], upwind method [109],

Godunov’s method [47], methods of Hyman [61], MacCormack method [85], Rusanov method
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[111], method of Boris and Book [16], method of Harten and Zwas [54], Glimm’s method [32]

and the random choice method [33]. These methods rely on approximation of derivatives ap-

pearing in the differential equations by finite difference method (FDM) [130, 131], finite volume

method (FVM) [29, 123] or finite element method (FEM) [30, 31, 66] to obtain discrete forms of

PDEs. Detailed discussion on these methods with applications in some cases is found in [106],

and basics for the conservation laws-based ideas were discussed in [76].

It is preferred and it has been found valuable to use finite volume methods [77] in the setting of

nonlinear hyperbolic conservation laws. The Godunov’s method that was introduced in [47] for

the purpose of solving the Euler Equations of gas dynamics in the presence of discontinuities for

example, is probably the most appealing finite volume approach. Although the derivation of both

finite difference and finite volume methods may be quite different, the resulting representation

formulae may be identical, but normally, each method is interpreted differently. Finite volume

methods involve solutions of Riemann problems. There are well known and frequently used

approximate Riemann solvers [125] in finite volume or high-resolution methods reported in

various papers and books: The all-shock solver [32], Osher Solver [100], which is an extension

of the Engquist-Osher method [39, 40, 41] derived for scalar conservation laws, the HLLE solver

[57] and its improvement in [36], and the Roe solver scheme [110]. Riemann problems are usually

computationally costly, and one would therefore like to devise a method that avoids solution of

the Riemann problem.

Finite volume methods like Godunov’s method are at most first-order accurate on smooth regions

of solution and in general, these methods perform poorly near or at shock waves or other

discontinuities giving very smeared approximations. An improvement is made by developing a

method which can be interpreted as a correction phase to the solution of the Riemann problem

and through reconstruction of the finite volume fluxes to obtain high-resolution versions of

the finite volume methods. High-resolution methods resolve discontinuities more sharply and

produce at-least second-order accurate solutions in smooth regions of the flow at the same time

trying to remain faithful to the physics of the problem by avoiding nonphysical oscillations near

discontinuities. Most high-resolution methods for capturing shocks are based on solutions of

Riemann problems between states in neighboring grid cells. Numerous literature rich in history

and development of these methods is presented in various books [1, 46, 65, 76, 107, 120, 125].

Second-order methods include for example, Monotone upstream-centred Scheme (MUSCL) [71,

72, 73] and flux-corrected transport (FCT) algorithms by Boris and Book [16] for nonlinear

conservation laws.

The class of high-resolution methods also includes high-order accurate finite difference essentially

non-oscillatory (ENO) [53, 55, 58, 133, 134] and its extension, weighted ENO [26, 43, 83, 101, 116]

schemes designed for problems with piecewise smooth solutions containing discontinuities [119].

ENO and WENO schemes use nonlinear adaptive procedure to automatically choose the locally
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smoothest stencils in order to avoid interpolating across discontinuities. The class of these

schemes has been successful applied to problems containing shocks as well for smooth solutions

with complex structures. ENO and WENO methods are among of the more recent classes

which efficiently solve hyperbolic conservation laws. Stable spatial discretization for hyperbolic

conservation laws with high-resolution schemes such as ENO [133, 134] and WENO [26, 43, 101]

are usually applied in combination with strong stability-preserving (SSP) time discretizations

methods discussed below.

Most of these numerical approaches to PDEs, especially HCLs uses semi-discrete methods. These

approaches first discretize the PDE in space to obtain a system of ordinary differential equations

(ODEs) while retaining continuous time. The ODE is then discretized in time by an appropriate

ODE method, typically TVD [48, 54, 56, 98, 99, 117, 118, 124] or SSP [49, 50, 117, 119] Runge-

Kutta methods [50, 52, 112, 113, 119]. For Runge-Kutta schemes, one may decide to use multi-

level [62, 90] or one-step methods. Multi-level schemes, such as TVD high-order Runge-Kutta

time discretizations are rarely used in practice because they are not self starting in the sense

that they may need other methods at initial levels to get started. However, these methods

may also require large storage during computations. As a result, usually one-step Runge-Kutta

TVD methods are preferable because they need low storage and are self starting. Low storage

Runge-Kutta methods are discussed in [25, 132]. The advantage of semi-discrete method is that

high-order accuracy in space and time can be achieved through a decoupled process, making

them much simpler than the fully discrete ones. Due to this reason, high-order schemes, such

as Runge-Kutta type time discretizations can easily be applied in combination with different

spatial discretizations.

TVD Semi-discrete schemes in combination with Runge-Kutta methods have been a success

story in many numerical applications. It has been shown in [48], even if linearly stable, non-

TVD Runge-Kutta methods may develop oscillations. It is, therefore, recommended to always

maintain TVD property in both time and spatial discretizations for high-order schemes. SSP

methods have been widely applied in many areas, some of them include compressible flow [130],

incompressible flow [105], viscous flow [123], atmospheric transport [29]. For a complete list of

references on applications of SSP methods, an interested reader may consult [49].

There is another numerical approach analogous to Godunov’s method based on flux-vector

splitting which evaluates fluxes at the cell average discussed in [78]. Mathematical discussion

based on this approach is found in various literature referenced in [78]. Equivalent flux-vector

splitting approaches have since then been developed, they include Steger-Warming [122], Beam

scheme [115], the Marquina flux [35, 86], and the one introduced in [74], followed by a number

of other variants and improvements reported in [80, 81].
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1.3 Relaxation system

We considered relaxation approximation to HCLs as was first discussed in [64]. Since the first

introduction in [64], numerous discussion on relaxation schemes have been emerging [13, 10, 17,

94, 116]. Analysis on the existence and uniqueness of the solution for the relaxation approach

described in [64] was given in [129].

A different relaxation framework has been introduced in [6, 5]. This relaxation system basically

takes the form of the discrete BGK [14] model approximation. Under this relaxation setting,

estimates on the discrete schemes as well as convergence analysis for first-order and second-order

spatial dimensions have been studied [6]. Further study is found in [88, 91, 92, 93].

Relaxation methods are based on the replacement of the nonlinear systems of HCLs on a con-

tinuous level (before any kind of discretization) by a semilinear system with a stiff relaxation

source term. This system reverts to the original conservation law as the relaxation parameter

tends to zero. Convergence analysis for scalar hyperbolic conservation law has been fully real-

ized. The case of systems is an ongoing research problem. In numerical computation, our focus

is on relaxing schemes which are the limits for small positive relaxation parameter.

We have chosen the relaxation method due to its promising features of simplicity which can lead

to generalization to both higher orders and high dimensional systems of HCLs without further

modification. However, relaxation approximation preserves the hyperbolic nature of the system

on the expense of additional source terms and additional equations. The semilinearity structure

of the relaxation system allows for Riemann-solvers free treatment and avoids the computation of

Jacobians. All these features make this method incredibly advantageous especially in situations

where Jacobians and Riemann problems are difficult to solve [64].

1.4 Adjoint-based optimal control

There is a lot of theoretical and numerical discussion of hyperbolic conservation laws in the

optimal control setting. It is well known that a flow generated by hyperbolic conservation laws

is not differentiable with respect to the linear structure of L1 even for scalar 1D case [10, 21].

A generalized notion of differential structure for maps taking values within a class of piecewise

Lipschitz functions was studied in [22], and the flow generated by a HCL was proven to be

differentiable in this generalized sense. The list of papers [15, 19, 20] discuss the notion of shift

differentiability of the flow generated by a system of conservation law. The latter two papers also

introduce a new differential structure on the BV space of integrable functions having bounded

variation. It is also shown in [19], that the flow generated by a scalar conservation law is generally

differentiable with respect to this new introduced structure. Adjoint and sensitivity calculus

based on shift differentiability in the optimal control of entropy solutions of scalar conservation
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laws with source term is discussed in [127]. First-order necessary optimality conditions for

systems of conservation laws are given in [23]. This discussion on differentiability of conservation

laws is motivated by its applications in the optimal control problems.

HCLs are highly applied in the optimal control problems [15, 20, 22, 84, 127] - finding some

geometry that optimizes performance subject to a set of constraints [44]. Applications of con-

servation laws in optimization are becoming more prominent in traffic flow, turbulent flow, gas

dynamics, trajectory planning and in aircraft designs. Discussion on adjoint-based optimization

of problems governed by partial differential equations (PDEs) is presented in [45, 51]. Many

adjoint-based softwares for CFD have been developed by different pioneers. These include:

adjoint-based optimal designs with an application to designing business jets [44], adjoint ap-

proach to aerodynamic designs [37, 38], adjoint approach to shape and airfoil designs [2, 24] and

continuous adjoint formulation [3, 95]. For trade-off between continuous and discrete adjoint

approach to automatic aerodynamic optimization, consult [89].

Several authors including [60] have employed the nonsmooth optimization in combination with

the adjoint methods for subgradient computation. They studied the optimal control of flows with

discontinuities and tested the approach using one dimension (1D) Riemann problem of Euler

Equations. In the cases where gradient-based methods were employed, either discontinuities

were ignored or means to circumvent their effects were employed. In many situations shocks

were smoothed using numerical dissipation. It has been shown that smoothing is sometimes

equivalent to modifying the cost function [87].

In realistic situations one has to deal with nonlinear systems. The nonlinearity in systems of

HCLs poses both analytical and numerical difficulties to their solutions due to discontinuities

that may arise. Since it is generally known that the semi-group generated by a HCL is not

differentiable in L1 even in the scalar, 1D case [10]; and the solution of HCL is needed in the

optimization cycle, it is therefore important to pay close attention to its solution.

The adjoint approach is robust in the sense that all sensitivities are calculated only once via

the adjoint equation in each iteration cycle regardless of the number of control parameters [51].

In combination with the adjoint approach, the relaxation method becomes more appealing.

However, the adjoint approach avoids unnecessary repetition which we would encounter if we

would have opted to use sensitivity-based optimization, hence may reduce CPU time and memory

required for storage.

1.4.1 Organization of the work

To this point, the scope, and plan of the work are outlined as follows: The next Chapter is

devoted to discuss useful mathematical and physical notions that are important for this study.

It is very important to clearly understand the physics of the problem since this serves as a
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fundamental tool to successfully solve numerically an optimization problem. This is particularly

true because numerical solutions of the optimization problem and that of HCLs are a coupled

process, in the sense that, the optimization cannot be achieved independently of the solution of

HCL. It is known that discontinuities may arise in the solution of HCL; thus both mathematical

and physical analysis must be carried out correctly prior to numerically solving HCLs. We

therefore discussed general physical and mathematical behavior underlying the HCLs. It is in

this Chapter, where we introduced and discussed the concept of adjoint-based optimization.

Next, we presented a brief mathematical explanation of relaxation systems, for both relaxation

approximation and the discrete kinetic model. Finally, we discussed and applied the Lagrangian

approach to derive optimality systems based on relaxation approaches for the two variants of

the relaxations: the JIN XIN [64] and the discrete kinetic model [92]. The derived optimality

systems then help in determining the gradients of the cost functional during the numerical

optimization process. Optimality system is comprised of the flow equations, the adjoint system

and the optimality conditions. In Chapter three, we centered our discussion on derivation of

relaxing schemes. Under this Chapter, relaxing schemes from the two relaxation approaches

mentioned previously were constructed. For iterative optimization process, we had to discretize

equations that comprise the optimality systems. Thus discretization is done under this Chapter,

where we use the method of lines (MOL) to discretize the systems of flow and adjoint equations.

With the MOL, we proceeded by discretizing the spatial domain while retaining the relaxation

HCL continuous in time, to form systems of ODEs, and then we suitably discretized in time by

appropriately applying Runge-Kutta methods. For time discretization, we used TVD Runge-

Kutta methods, where as for first-order spatial discretization, a simple upwind method is applied.

Total variation diminishing (TVD) monotone upstream-centered schemes (MUSCL) scheme was

constructed for second-order spatial discretizations by using minmod slope-limiter. In Chapter

four, we presented and discussed numerical results for both solutions of HCLs and the optimal

control problem. Optimal control results obtained by applications of both first-order and second-

order relaxing schemes are presented in this Chapter. The two approaches are compared and

conclusions drawn based on obtained numerical results. In Chapter five, a brief remark and

general conclusions based on the achieved outcomes were given. Finally, we pointed out the

possibilities for future extension of this research as well as challenges that may be encountered.

.



2. Mathematical Framework

2.1 Governing System of Conservation Laws

Conservation laws (CLs) are usually time-dependent systems of partial differential equations.

They describe the conservation of quantities such as mass, momentum and energy, and are

usually nonlinear if they have to model most of the dynamic situations. These equations are

hyperbolic in nature. In one dimensional space, the equations take the form

ut + f(u)x = 0, u(x, t = 0) = u0(x), t ∈ [0,∞), x ∈ (−∞,∞) (2.1.1)

where u : RxR+ → Rm is a vector with m conserved quantities uj , and f : Rm → Rm is the

vector-valued function called the flux function, in which each jth component fj(u) is a function

of components uj of u. The equation is called scalar when m = 1. Equations of type (2.1.1)

often describe transport phenomena and they are popularly referred to as the Cauchy problems.

If we integrate equation (2.1.1) over a given subdomain [x1, x2], we obtain

d

dt

∫ x2

x1

u(x, t)dx =

∫ x2

x1

ut(x, t)dx (2.1.2)

= −
∫ x2

x1

f(u(x, t))xdx

= f(u(x1, t)− f(u(x2, t)) = [inflow at x1]− [outflow at x2]. (2.1.3)

Hence, the primal formulation of the typical conservation law (2.1.1) stipulates that the time

rate of change in the amount of quantity u inside any given interval [x1, x2] is balanced by the

rate of flux of this quantity through the boundary points of the subdomain. The only change in

u is due to the quantity entering or leaving the domain of interest through the boundaries.

The more general system (2.1.1) is called hyperbolic if the mxm Jacobian matrix of its flux

function f(u), for values of

u =



u1

u2

.

.

.

um


, and f(u) =



f1

f2

.

.

.

fm


(2.1.4)

8
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Figure 2.1: Initial solution and final solution at time = 0.5 for the linear advection equation

given by

a(u) =
∂f

∂u
=



∂f1
∂u1

. . . ∂f1
∂um

∂f2
∂u1

. . . ∂f2
∂um

. . .

. . .

. . .
∂fm
∂u1

. . . ∂fm
∂um


(2.1.5)

has real eigenvalues and a complete set of m linearly independent eigenvectors corresponding

to these eigenvalues (i.e., the Jacobian matrix is diagonalizable). If eigenvalues are distinct, the

general system (2.1.1) is said to be strictly hyperbolic.

By explicit differentiation of the second term in (2.1.1), that is

∂f(u)

∂x
= a(u)ux, (2.1.6)

equation (2.1.1) can be written in a quasi-linear (nonconservative) form

ut + a(u)ux = 0. (2.1.7)

When f(u)x = aux in (2.1.1) with a a constant, we have a linear system.

Hyperbolic PDEs are used to model transport systems whose conserved information is carried

from one point to another within those systems. Solutions to HCLs may be visualized as

propagating waves, Figure 2.1. When the system is nonlinear, even if initial conditions are

smooth, characteristics can intersect causing the profiles to generate jump discontinuities which

propagate as shocks (the wave compresses in one part and stretches on in another), see Figure

2.2. In many cases smooth solutions do not exist, and solutions are sometimes multi-valued.
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Figure 2.2: Initial and final solution of the Inviscid Burgers’ equation at time t = 0.5

Discontinuities in the solutions of nonlinear hyperbolic conservation laws pose serious difficulties

which the classical approaches cannot handle. As a result, a number of mathematicians and

scientists researching in the field of HCLs started to consider what are called weak solutions,

which allow for the development of discontinuous waves. The problem is further complicated

due to the fact that in the context of weak solutions, the uniqueness is lost. Several approaches

have been developed which set up proper criteria for identifying admissible weak solutions. The

most common approach is to use vanishing viscosity [33] and entropy functions [75]. To be able

to design efficient numerical methods for HCLs, we need a clear understanding of their analytical

structures. In the next section, we discuss briefly ideas related to hyperbolic systems.

2.2 General Hyperbolic Systems

Hyperbolic systems arise in many disciplines especially where the wave motion or advective

transport phenomena are involved. Such disciplines include; fluid dynamics, traffic flows, acous-

tics, elastodynamics, optics, geophysics, biomechanics, the theory of elasticity, electromagnetic

waves, direct and inverse scattering and general theory of relativity [70, 77] and many other

areas [49]. Hyperbolic systems are basically waves, usually formulated mathematically in terms

of time dependent PDEs. The simplest of all hyperbolic systems is the equation (2.1.7) when

a is constant. Detailed analysis on the general hyperbolic system framework is found in many

books [70, 75, 77, 114, 125].

2.2.1 Linear hyperbolic systems

Linear hyperbolic system

ut +Aux = 0, u(x, 0) = u0(x) (2.2.1)
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where u : R×R+ → Rm and A ∈ Rm×m is a constant matrix, is called a system of conservation

laws with the flux function f(u) = Au. The system is called hyperbolic if A is diagonalisable

with real eigenvalues; and is called strictly hyperbolic when eigenvalues are distinct. This system

is simple and serves as a model for studying more general hyperbolic systems.

2.2.2 Nonlinear hyperbolic systems

The most outstanding challenge many scientists and researchers face when solving nonlinear

hyperbolic systems is the tendency of their solutions to develop shock waves. These waves

normally develop as abrupt jumps. Therefore, the most distinguished nonlinear feature is the

breaking of the solution waves into shocks. The simplest of the nonlinear hyperbolic system is

the first-order PDE (2.1.7).

2.2.3 Diagonalization of hyperbolic systems

Matrix (or systems) diagonalization is important in physics and engineering and it has common

applications in such areas as stability analysis, the physics of rotating bodies and small oscilla-

tions of vibrating systems. In order to analyze and solve the general system (2.2.1), it had been

found useful to transform the dependent variables u(x, t) to another set of dependent variables

v(x, t).

In order to be able to illustrate the concept of diagonalization and make this transformation,

we consider an arbitrary matrix A in a general linear hyperbolic system (2.2.1). A matrix A is

said to be diagonalizable if it can be expressed as

A = RDR−1 (2.2.2)

where D = (λ1, . . . , λm) is a diagonal matrix of eigenvalues and R = [r1, . . . , rm] is the matrix

of right eigenvectors corresponding to the eigenvalues λi of A. From (2.2.2), AR = RD; that’s

Arp = rpλp where p = 1, . . . ,m.

A system (2.2.1) is said to be diagonalizable if the coefficient matrix A is diagonalizable.

2.2.4 Transform to characteristic variables

The concept of characteristic variables can be well understood by considering the general linear

hyperbolic framework (2.2.1). We follow the same presentation style adapted by Toro [125] and

LeVeque [75] for this discussion.

Multiplying (2.2.1) by R−1 and substituting A = RDR−1 we get

R−1ut +R−1(RDR−1)ux = 0. (2.2.3)
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Since R−1 exists, we can define new set of dependent variables v = (v1, . . . , vm), and through

transforming v = R−1u, we have

vt +Dvx = 0. (2.2.4)

The new variables v are called characteristic variables. D is diagonal, so (2.2.4) results (de-

couples) into m independent scalar equations

(vp)t + λp(vp)x = 0, p = 1, . . . ,m. (2.2.5)

Each of these equations is a linear advection equation with a constant coefficient, whose solution

(by method of characteristics) is

vp(x, t) = vp(x− λpt, 0). (2.2.6)

When we write the system (2.2.4) in full it becomes

v1

v2

.

.

.

vm


t

+



λ1 . . . 0

0 . . . 0

. . .

. . .

. . .

0 . . . λm





v1

v2

.

.

.

vm


x

= 0. (2.2.7)

These are governing PDEs in terms of characteristic variables. The characteristic speed is λi

and there are m characteristic curves satisfying m ordinary differential equations (ODEs)

xt = λp, p = 1, . . . ,m. (2.2.8)

This is useful information that is needed for transformation of a relaxation system (2.5.2). In

the next section, we considered what is called weak solutions to (2.1.1).

2.3 Weak Solutions

We consider a Cauchy (initial-value problem (IVP)) for scalar conservation laws in one space

dimension ut + f(u)x = 0 in R× (0,∞)

u(x, t) = u0(x) on R× t = 0,
(2.3.1)

f : R → R and u0 : R → R are given and the unknown is, u(x, t) = u : R × [0,∞) → R.

As it is known, the method of characteristics (MOC) is the classical method for solving the
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IVP for the general first-order PDE with two independent variables. The goal of the MOC

when applied to a PDE is to reduce it to an ODE along some characteristic curves, and the

ODE can then be integrated to obtain the desired solution. Singularities are inevitable to the

solution of the hyperbolic conservation law (2.3.1), and it is proven in literature [42] that, there

does not, in general, exist a smooth solution of (2.3.1) for all times t > 0; smooth solution can

only exist locally. Since we are interested in the global behavior of this solution, we need to

re-formulate the problem by setting a general framework that allows some sort of generalized

or weak solutions. Weak solutions are not classical [4], not necessarily differentiable, and they

satisfy CLs point-wise. Weak solutions are also not necessarily unique and they may not be

physical. Due to that, extra conditions such as Oleinik entropy condition [97] and Lax’s entropy

condition [68], which narrows down weak solutions; singling out admissible ones may need to

be imposed. The reader may refer to various existing standard literature such as [33, 42] for

classical treatment of weak solutions.

Since we cannot in general find a classical solution of (2.3.1), we must devise some means to

solve for a more general solution u which is the solution of an IVP (2.3.1). We can achieve

this by temporarily assuming u is smooth and multiply the PDE (2.3.1) by an arbitrary test

function Φ with continuous first derivatives, in R and then to integrate by parts, so that we can

transfer the derivatives onto Φ. Our test functionΦ : R× [0,∞)→ R is smooth, with

compact support,
(2.3.2)

that means the function vanishes outside or on the boundaries of the compact subset of the

domain of interest. Now we multiply the PDE (2.3.1) by Φ. Integrating the equation (2.3.3),

0 =

∫ ∞
0

∫ ∞
−∞

(ut + f(u)x)Φdxdt (2.3.3)

by parts (Using Fubini’s Theorem), we have

(2.3.4)−
∫ ∞

0

∫ ∞
−∞

uΦtdxdt+

∫ ∞
−∞

uΦ|∞0 dx−
∫ ∞

0

∫ ∞
−∞

f(u)Φxdxdt+

∫ ∞
0

f(u)Φ|∞−∞dt = 0.

We assume that Φ vanishes near the boundaries of R, and with the initial condition u = u0(x)

on R× {t = 0}, we obtain the identity∫ ∞
0

∫ ∞
−∞

uΦt + f(u)Φxdxdt+

∫ ∞
−∞

u0(x)Φ(x, 0)dx = 0. (2.3.5)

Weak solutions will be employed in the derivation of the adjoint systems to the relaxation

systems that we consider in the subsequent sections.
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2.4 Relaxation Approaches

The aim of relaxation approach is to transform a nonlinear conservation law into a system of

linear convective equations with a nonlinear source term. A good approximation to the original

conservation law is achieved by solving relaxation system for a positive parameter ε� 1. Such

relaxation systems are stiff. The relaxation method replaces a nonlinear system by a semilinear

system with great advantage that it can be solved numerically by avoiding computationally costly

Riemann solvers. Here, we have considered two classes of relaxation approaches, namely the

relaxation approximation [64] and the discrete kinetic model [5] for the purpose of optimization.

2.5 JIN XIN Relaxation Approximation Methods

We choose relaxation approach [6, 10, 28, 64, 116] because of its simplicity and easy generaliza-

tion; that is, the system is easily extended to high-order schemes or multi-dimensional systems

and their solutions can be treated similarly like in scalar 1D case. It has also been noted that,

relaxation schemes preserve the hyperbolic structure on the expense of additional terms. How-

ever, semi-linearity is perhaps the most attractive feature of relaxation structure which allow for

Riemann-solvers free treatment. We consider the model Riemann - Cauchy problem (the IVP

with piecewise constant data), 1D scalar HCL of the form

∂u

∂t
+
∂f(u)

∂x
= 0; x ∈ R, t ≥ 0, u ∈ R (2.5.1)

with initial data u(x, 0) = u0(x).

To obtain a relaxation system, we introduce a linear system with a stiff lower order term∂u
∂t + ∂v

∂x = 0

∂v
∂t + a∂u∂x = −1

ε (v − f(u))
(2.5.2)

where ε is the small positive parameter called relaxation rate, v is the artificial variable and

a is a positive constant (characteristic speed) of the relaxation system (2.5.2); satisfying the

sub-characteristic condition

a− (f ′(u))2 ≥ 0. (2.5.3)

In the limit ε→ 0, the relaxation system (2.5.2) can be approximated to

v = f(u),
∂u

∂t
+
∂f(u)

∂x
= 0. (2.5.4)

We can use Chapman-Enskog expansion to show that condition (2.5.3) must hold [116].
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2.5.1 Chapman-Enskog analysis for JIN XIN relaxation system

We take the first order approximation for v,

vε = f(uε) + εv1; (2.5.5)

thus

vεx = f(uε)x + ε(v1)x. (2.5.6)

Substituting (2.5.6) into the first equation of system (2.5.2), we have

uεt + f(uε)x + ε(v1)x = 0,

=⇒ uεt + f(uε)x = −ε(v1)x. (2.5.7)

Substituting (2.5.5) into the second equation of (2.5.2)

(f(uε) + εv1)t + auεx +
1

ε
(f(uε) + εv1 − f(uε)) = 0, (2.5.8)

f(uε)t + ε(v1)t + auεx + v1 = 0, (2.5.9)

f(uε)t + auεx + v1 = O(ε). (2.5.10)

We redefine f(uε) so as to eliminate its derivative with respect to t, this goes as follows:

∂f

∂uε
∂uε

∂t
+ auεx + v1 = O(ε). (2.5.11)

Using uεt = −vεx,

∂f

∂uε
(− [f(uε) + εv1])x + auεx + v1 = O(ε), (2.5.12)

− ∂f
∂uε

∂f

∂x
− ε ∂f

∂uε
∂v1

∂x
+ auεx + v1 = O(ε), (2.5.13)

− ∂f
∂uε

∂f

∂uε
∂uε

∂x
− ε ∂f

∂uε
∂v1

∂x
+ auεx + v1 = O(ε). (2.5.14)

Therefore,

−f ′(uε)2uεx + auεx = O(ε)− v1. (2.5.15)

Substituting (2.5.7) into (2.5.15) and dropping the O(ε) term, we have the second order PDE

for uε, i.e.,

uεt + f(uε)x = −ε
[(
f ′(uε)2 − a

)
uεx
]
x
. (2.5.16)

Hence the relaxation system (2.5.2) converges to the system of conservation laws (2.5.1) iff the

sub-characteristic condition (2.5.3) is satisfied.
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2.5.2 Diagonalization of JIN XIN relaxation system

We consider a system of hyperbolic conservation laws in one space dimension,

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ R, t > 0 (2.5.17)

where u ∈ Rm, f(u) ∈ Rm and f(u) is assumed to be a smooth function. Through relaxing

system (2.5.17), we have what we call a relaxation system,∂u
∂t + ∂v

∂x = 0,

∂v
∂t +A∂u

∂x = −1
ε (v − f(u))

(2.5.18)

where v ∈ Rm, A = diag(a1, a2, . . . , am) is a positive diagonal matrix, and ε is the relaxation

rate.

We are looking for the characteristic variables of the system (2.5.18). To do so, we have to

diagonalize the relaxation system (2.5.18).

First we need to transform relaxation system (2.5.18) into the form:

~Ut + ~F (~U)x = −1

ε
~G(~U) (2.5.19)

where ~U =

(
u

v

)
. (2.5.20)

We write the linear hyperbolic part (left side of (2.5.19)) in the form below:(
u

v

)
t

+

(
0 I

A 0

)(
u

v

)
x

= −1

ε
~G(~U). (2.5.21)

In compact form, (2.5.21) can be re-written as

~Ut + Ã~Ux = −1

ε
~G(~U) (2.5.22)

with

Ã =

(
0 I

A 0

)
. (2.5.23)

The linear hyperbolic part of (2.5.22),

~Ut + Ã~Ux = 0, ~U(x, 0) = ~Uo(x) (2.5.24)

where ~U : R× R+ → R2m and ~F (~U) = Ã~U

is said to be diagonalizable if the coefficient matrix Ã is diagonalizable.

We now make a local transformation to the hyperbolic system (2.5.24) by computing its charac-

teristic variables. To be able to do that, we follow the same presentation style adapted by [125]

and [75].
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2.5.3 Characteristic variables for JIN XIN relaxation system

In this section we will again consider a scalar conservation law for clarity. Extension to a system

is straight-forward. We consider the general linearized hyperbolic system[
u

v

]
t

+

[
0 1

a 0

][
u

v

]
x

= 0. (2.5.25)

We define characteristic variables

~V = (V1, V2)T = R−1~U (2.5.26)

where R is the matrix of right eigenvectors and R−1 is its inverse. We solve for eigenvalues of

the matrix [
0 1

a 0

]
, (2.5.27)

λp, p = 1, 2.

Thus λ1,2 = ±a
1
2 .

The matrix of right eigenvectors associated with λ1,2 = ±a
1
2 is given by

R =
[
r1 r2

]
=

[
−a−

1
2ω a−

1
2 ω̄

ω ω̄

]
. (2.5.28)

Note: characteristic variables ~V = (V1, V2)T = R−1~U .

But

R−1 =
1(

−a−
1
2ωω̄ − a−

1
2ωω̄

) [ ω̄ −a−
1
2 ω̄

−ω −a−
1
2ω

]
. (2.5.29)

So

~V =

 1

2a−
1
2 ω

1
2ω

1

2a−
1
2 ω̄

1
2ω̄

[ u

v

]
, (2.5.30)

=

(
v

2ω
− u

2a−
1
2ω
,
v

2ω̄
+

u

2a−
1
2 ω̄

)
= (V1, V2). (2.5.31)

Choosing ω = ω̄ = 1
2 , we have

~V = (V1, V2) =
(
v − a

1
2u, v + a

1
2u
)
. (2.5.32)
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We re-write system (2.5.25) as[
v − a

1
2u

v + a
1
2u

]
t

+

[
−a

1
2 0

0 a
1
2

][
v − a

1
2u

v + a
1
2u

]
x

= 0. (2.5.33)

Next we introduce a different relaxation system presented in [5, 88, 92] namely the discrete

kinetic system. This relaxation system is simply a BGK model [14] considered in the next

section.

2.6 A BGK Model

Consider a general system of conservation laws

∂tu+
D∑
j=1

∂jFj(u) = 0, (2.6.1)

where

(x, t) ∈ RD × [0,∞), u = u(x, t) ∈ U a convex subset of Rm, (2.6.2)

Fj : U → Rm, j = 1, . . . , D, are smooth functions.

A BGK model is a system

∂tfi + λi∂xfi =
1

ε
(Mi(u)− fi), i = 1, . . . , L, (2.6.3)

with ε > 0, L ≥ N and for each i ∈ {1, . . . , L},

fi = (f1
i , . . . , f

m
i ) ∈ Rm; (2.6.4)

λi = (λi1, . . . , λiD) ∈ RD; (2.6.5)

Mi(u) : Rm → Rm. (2.6.6)

Let u :=
∑L

i fi,

and assume the components of the Maxwellians, Mi, are denoted by

M1
i , . . . ,M

m
i , i = 1, . . . , L. (2.6.7)

Consider the consistency conditions

L∑
i=1

Mi(u) = u, (2.6.8)
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L∑
i=1

λijMi(u) = Fj(u), j = 1, . . . , D. (2.6.9)

Consider also solutions f ε of (2.6.3) (suppose that they form a bounded sequence, independent

of ε, and that uε → u, as ε→ 0). Then from (2.6.3),

M(uε)→M(u) and f ε →M(u). (2.6.10)

If we sum (2.6.3) over i, we obtain,

∂t

L∑
i=1

fi +

L∑
i=1

D∑
j=1

λij∂jfi =
1

ε
(

L∑
i=1

Mi(u)−
L∑
i=1

fi). (2.6.11)

From the analysis above, we can write (2.6.1) as

∂tu
ε +

D∑
j=1

∂j

(
L∑
i=1

λijMi(u)

)
= 0. (2.6.12)

Using condition (2.6.9), we obtain (2.6.1) by allowing ε→ 0 in equation (2.6.12).

The flux Fj , the fixed velocities λi, and the Maxwellians Mi are usually chosen to satisfy the

compatibility conditions (2.6.8) and (2.6.9).

Normally, discrete kinetic system can be treated in a similar manner like a BGK model. In the

next section, we introduce the problem that we have considered for optimization in conjuction

with adjoint-based method, which is also discussed in the subsequent sections.

2.7 Problem Formulation and Adjoint Approach to Optimiza-

tion

We are interested in minimizing the objective functional

J(u(x, T ;u0)(u0), u0;ud) =
1

2

∫
Ω
|u(x, T ;u0)− ud(x)|2dΩ (2.7.1)

subject to a system of HCL (2.1.1), where u is the solution of (2.1.1) at a terminal time T , u0

is the initial condition and ud is the target solution.

Our aim is to compute the optimal initial values u0(x) that will generate optimal solution u(., T )

which matches to a given target solution ud at terminal time T .

The approach used is presently known as the method of Lagrange multipliers, named after

its developer, Joseph Louis Lagrange (1736 - 1813), to formulate the problem (2.7.1) as an

unconstrained optimal control problem. Hence we need to optimize

L(u(x, T ;u0)(u0), u0, λ;ud) = J(u(x, T ;u0)(u0), u0;ud) + λ

(
∂u

∂t
+
∂f(u)

∂x

)
, (2.7.2)
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where λ is the co-state variable. The term optimal control refers to the fact that one is try-

ing to determine some control parameter which causes a process to minimize (maximize) some

performance measure at the same time satisfying a set of physical constraints. In this case, the

optimization cycle for the adjoint-based method for the minimization of the problem (2.7.1),

needs two solutions from two systems of hyperbolic conservation laws, the state systems (flow

equations) and the adjoint systems to the relaxation systems (2.5.2, 2.6.3). The adjoint sys-

tems are derived using the formal Lagrangian approach. This is carried out in the next two

subsections.

2.7.1 Derivation of the optimality system from JIN XIN relaxation system

We are interested in the optimization of the objective function

J(u(x, T ), u0;ud) =
1

2

∫
Ω
|u(x, T ;u0)− ud(x)|2dΩ (2.7.3)

constrained by relaxation system in (2.5.18), where u0 is the control variable, u(x, T ;u0) the

solution at time T with initial condition u0 and ud is the desired profile. We want to solve this

optimization problem by using the adjoint approach. Problem (2.7.3) can thus be written as an

unconstrained optimal control problem,

L = L(u(x, T ), u0, λ;ud) = J(u(x, T ), u0;ud) +

∫ T

0

∫
Ω
λ

[
ut + vx

vt + aux +1
ε (v − f(u))

]
dxdt

(2.7.4)

where λ = [p, q]T is the co-state variable which is assumed to be a smooth function with compact

support in Ω and λ = 0 on the boundaries of Ω. To derive the optimality system, we set first

variations of L with respect to each of the variables λ, u, v and u0 equal to zero.

For convenience, we assume that p and q are smooth functions and integrate by parts, the second

term on the left side of (2.7.4) there by transferring the derivatives onto p and q. Setting the

first partial derivative of L in (2.7.4) with respect to λ = [p, q]T equal to zero, we have the

relaxation system (2.5.18). After integrating

L = J(u(x, T ), u0;ud) +

∫ T

0

∫
Ω

[
p(ut + vx) + q(vt + aux +

1

ε
(v − f(u)))

]
dxdt; (2.7.5)
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by parts, we have

(2.7.6)

L = J(u(x, T ), u0;ud) +

∫
Ω
up|T0 dx−

∫
Ω

∫ T

0
uptdtdx+

∫ T

0
pv|∂Ωdt

−
∫ T

0

∫
Ω
vpxdxdt+

∫
Ω
vq|T0 dx−

∫
Ω

∫ T

0
vqtdtdx+ a

∫ T

0
qu|∂Ωdt

− a
∫ T

0

∫
Ω
uqxdxdt+

∫ T

0

∫
Ω

q

ε
(v − f(u))dxdt.

Assume, that u and v vanish at the boundaries of Ω, then

(2.7.7)

L = J(u(x, T ), u0;ud) +

∫
Ω

[uT pT − u0p0] dx−
∫

Ω

∫ T

0
uptdtdx−

∫ T

0

∫
Ω
vpxdxdt

+

∫
Ω

[vT qT − v0q0] dx−
∫

Ω

∫ T

0
vqTdtdx− a

∫ T

0

∫
Ω
uqxdxdt

+

∫ T

0

∫
Ω

q

ε
(v − f(u))dxdt.

To get the adjoint system we set the first partial derivatives of L with respect to u and v equal

to zero from (2.7.7) above.

Thus,

(2.7.8)
∂L

∂u
=

∂J

∂u(x, T )

∂u(x, T )

∂u
−
∫

Ω

∫ T

0
ptdtdx− a

∫ T

0

∫
Ω
qxdxdt−

∫ T

0

∫
Ω

∂f(u)

∂u

q

ε
dxdt

= 0,

results to

−pt − aqx = f ′(u)
q

ε
, p(x, t = T ) = pT (x). (2.7.9)

Again,

∂L

∂v
= −

∫ T

0

∫
Ω
pxdxdt−

∫
Ω

∫ T

0
qtdtdx+

∫ T

0

∫
Ω

q

ε
dxdt = 0, (2.7.10)

yields

−qt − qx = −q
ε
, q(x, t = T ) = qT (x). (2.7.11)

Therefore, we have the system of adjoint equations:

−pt − aqx = f ′(u)
q

ε
, p(x, t = T ) = pT (x), (2.7.12)

−qt − qx = −q
ε
, q(x, t = T ) = qT (x),
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with terminal conditions

pT (x) = uT (x)− ud, qT (x) = 0 (2.7.13)

resulting from setting ∂L
∂uT

= 0 and ∂L
∂vT

= 0.

Setting the partial derivative of L with respect to u0 equal to zero, gives the optimality condition

∂J

∂u0
=

∫
Ω

[
p0 −

∂f(u0)

∂u0

q0

ε

]
dx. (2.7.14)

This simplifies to the gradient

Ju0 = p0 + f(u0)q0. (2.7.15)

The relaxation system (2.5.18), with the initial conditions, adjoint equations (2.7.12) and the

gradient (2.7.15) together with the terminal conditions (2.7.13) form what we call the optimality

system.

2.7.2 Derivation of the adjoint system for the discrete kinetic model

We adapt the same approach, we have used to derive the optimality system for the relaxation

approximation above. Consider the Maxwellians of the form

Mi(u) = αiu+ βiA(u), (2.7.16)

= αi

N∑
j=1

fj + βi

N∑
j=1

λjfj , (2.7.17)

and a discrete kinetic model

fit + λifix =
1

ε
(Mi(u)− fi). (2.7.18)

We use Lagrangian approach to augment the objective function

J(u(x, T )(uo);ud) =
1

2

∫
Ω
|u(x, T )− ud|2dΩ, (2.7.19)

that is,

(2.7.20)
L = L(u(x, T )(u0), pi;ud)

= J(u(x, T )(u0);ud) +

∫ T

0

∫
Ω
pi

[
fit + λifix −

1

ε
(Mi(u)− fi)

]
dxdt.

We introduce the Maxwellians and re-write the Lagrangian functional

(2.7.21)L= J(u(x, T )(u0);ud) +

∫ T

0

∫
Ω
pi

fit+λifix−
1

ε

 n∑
j=1

αifj +
N∑
j=1

βiλjfj − fi

 dxdt.
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Let us integrate

∫ T

0

∫
Ω
pi

fit + λifix −
1

ε

 n∑
j=1

αifj +

N∑
j=1

βiλjfj − fi

 dxdt
by parts by assuming that p′is are smooth functions and transfer derivatives onto p′is. After

integrating, we can re-write equation (2.7.21) as follows,

L = J(u(x, T )(u0);ud) +

∫
Ω
pifi|T0 dx−

∫
Ω

∫ T

0
fipitdtdx+

∫ T

0
piλifi|∂Ωdt−

∫ T

0

∫
Ω
λifipixdxdt

−
∫ T

0

∫
Ω

1

ε
pi

 N∑
j

αifj +
N∑
j

βiλjfj − fi

 dxdt.
(2.7.22)

Assume that f ′is vanish at the boundaries of Ω, then

(2.7.23)

L = J(u(x, T )(u0);ud) +

∫
Ω

[piT fiT − pi0fi0] dx−
∫

Ω

∫ T

0
fipitdtdx−

∫ T

0

∫
Ω
λifipixdxdt

−
∫ T

0

∫
Ω

pi
ε

 N∑
j=1

αifj +
N∑
j=1

βiλjfj − fi

 dxdt.
Setting the first partial derivative of L with respect to pi equals to zero, we have the relaxation

system (2.7.18).

Similarly,

(2.7.24)
∂L

∂fi
= −

∫
Ω

∫ T

0
pitdtdx−

∫ T

0

∫
Ω
λipixdxdt−

∫ T

0

∫
Ω

1

ε

[
N∑
i=1

αipi +
N∑
i=1

βiλipi− pi

]
dxdt

= 0,

implies that

−
∫

Ω

∫ T

0
pitdtdx−

∫ T

0

∫
Ω
λipixdxdt−

∫ T

0

∫
Ω

1

ε

[
N∑
i=1

αipi +
N∑
i=1

βiλipi − pi

]
dxdt = 0. (2.7.25)

We finally end up with the adjoint equation

−pit − λipix =
1

ε

[
N∑
i=1

(αipi + βiλipi)− pi

]
, (2.7.26)

pi(x, T ) = Mi(uT , ud), i = 1, . . . , L. (2.7.27)
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Up to this point, we have briefly pointed out mathematical framework related to HCLs and

adjoint-based optimization in general. This framework serves as a foundation for the numerical

solution of HCLs as well as for the optimization process. In the next Chapter, we consider

the discretization methods for the relaxations systems (2.5.2, 2.6.3), and also for the derived

adjoint systems (2.7.12, 2.7.26). The subsequent Chapter is thus devoted to discussing effective

numerical schemes for solutions of relaxation systems and adjoint equations which we used for

optimization.



3. Discretizations of the Relaxation

Systems

Due to the fact that conservation laws like the Euler Equations are nonlinear, it may not be

possible to obtain explicit solution formulae. Sometimes explicit solutions for Riemann problems

may be computed in terms of shocks, rarefaction waves and compound shocks. The procedure is

usually tedious, and it may be extremely difficult for more complicated Riemann data. Therefore,

there is a need to develop efficient numerical methods to approximate or simulate solutions of

hyperbolic conservation laws. However, in order to obtain numerical solutions, the first step is

to discretize the continuous PDEs (HCLs in this case) to obtain their discrete versions. This

Chapter is therefore focused on discretizations of both flow and adjoint equations for the two

relaxation models under consideration. In our solution approach, we used the semi-discrete

method in combination with the Implicit-Explicit (IMEX) [10, 102] Runge-Kutta schemes. To

achieve second-order accuracy in space, we employed a combination of semi-discrete scheme

(Method of lines) and the MUSCL approach following the work of Van Leer [73]. We started by

considering the discretization of the relaxation method considered in [64], and then the discrete

kinetic model [5, 6, 92]. Derived numerical schemes will be tested for the 1D solutions of scalar

and systems of HCLs.

3.1 Construction of the First-order JIN XIN Relaxing Scheme

We develop a numerical discretization, first order in time and space for the relaxation system

discussed in [6]. We employ the method of lines (MOL) [63], where we first consider spatial dis-

cretization of a system while retaining it continuous in time. For time discretization, we employ

TVD Runge-Kutta time discretizations method. We follow similar trend for the discretization

of discrete kinetic model.

3.1.1 Spatial discretization

We start the discretization process by considering the following definitions: We denote by hj a

grid point, with grid spacing hj = xj+ 1
2
−xj− 1

2
, where xj+ 1

2
= jhj + 1

2hj , and a uniform discrete

time step, 4t = tn+1 − tn for n = 0, 1, 2 . . . . Next we approximate wn
j+ 1

2

= w(xj+ 1
2
, tn), and

define

Dxwj =
wj+ 1

2
− wj− 1

2

hj
. (3.1.1)

25
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Proceeding with the method of lines (MOL) to treat spatial and time discretization separately,

we write system (2.5.2) with discretized space in conserved form
∂uj
∂t + 1

hj

(
vj+ 1

2
− vj− 1

2

)
= 0

∂vj
∂t + 1

hj
a
(
uj+ 1

2
− uj− 1

2

)
= −1

ε (vj − fj),
(3.1.2)

where

fj =
1

hj

∫ x
j+1

2

x
j− 1

2

f(u)dx = f

 1

hj

∫ x
j+1

2

x
j− 1

2

udx

+O(h2) (3.1.3)

= f(uj) +O(h2), (3.1.4)

which is the averaged quantity. With an accuracy of O(h2), system (3.1.2) can be written as
∂uj
∂t + 1

hj

(
vj+ 1

2
− vj− 1

2

)
= 0

∂vj
∂t + 1

hj
a
(
uj+ 1

2
− uj− 1

2

)
= 1

ε (vj − f(uj)).
(3.1.5)

We have seen that by the method of characteristics, the relaxation system (2.5.2) has two

characteristics variables (2.5.32),

v ± a
1
2u (3.1.6)

with characteristics speeds respectively, ±a
1
2 .

Applying the first order upwind scheme to (3.1.6) gives,(v + a
1
2u)j+ 1

2
= (v + a

1
2u)j = vj + a

1
2uj

(v − a
1
2u)j+ 1

2
= (v − a

1
2u)j+1 = vj+1 − a

1
2uj+1.

(3.1.7)

Solving (3.1.7) for unknowns uj+ 1
2

and vj+ 1
2
, we haveuj+ 1

2
= 1

2(uj + uj+1)− 1
2a
− 1

2 (vj+1 − vj)

vj+ 1
2

= 1
2(vj + vj+1)− 1

2a
1
2 (uj+1 − uj),

(3.1.8)

and plugging (3.1.8) into (3.1.2) gives the first order semi-discrete upwind approximation to

(2.5.2),
∂uj
∂t + 1

2hj
(vj+1 − vj−1)− 1

2hj
a

1
2 (uj+1 − 2uj + uj−1) = 0

∂vj
∂t + a 1

2hj
(uj+1 − uj−1)− 1

2hj
a

1
2 (vj+1 − 2vj + vj−1) = −1

ε (vj − f(uj)).
(3.1.9)
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3.1.2 TVD Runge-Kutta time discretization

We consider an Implicit-Explicit (IMEX) algorithm presented in [10] for the time discretization

of the relaxation system (2.5.2). This algorithm takes two steps: implicit step for stiff ordinary

differential equation (ODE), and an explicit step for the system of advection equations, see for

example a more recent work on TVD Runge-Kutta time discretizations construction by Pareschi

for relaxation systems [103, 104].

Before discretizing system (2.5.2), we split the system into two parts: a system of “stiff“ ODE,ut = 0

vt = −1
ε (v − f(u));

(3.1.10)

and a non-stiff advection system, ut + vx = 0

vt + aux = 0.
(3.1.11)

Following the same discretization as in [10, 64], we proceed as follows: starting with initial

conditions unj , v
n
j = f(u∗j ),

u∗j = unj , v
∗
j = vni −

4t
ε

(v∗j − f(u∗j )), (3.1.12)

u
(1)
j = u∗j −4tD∗xv∗j , v

(1)
j = v∗j −4taD∗xu∗j , (3.1.13)

un+1
j = unj , v

n+1
j = vnj . (3.1.14)

We can explicitly write

v∗ =

(
ε

ε−4t

)(
vnj −

4t
ε
f(u∗j )

)
, (3.1.15)

u
(1)
j = u∗j −

4t
2hj

(v∗j+1 − v∗j−1) +
4t
2hj

√
a(u∗j+1 − 2u∗j + u∗j−1), (3.1.16)

v
(1)
j = v∗j −

a4t
2hj

(u∗j+1 − u∗j−1) +
4t
2hj

a√
a

(v∗j+1 − 2v∗j + v∗j−1); (3.1.17)

v∗∗j = v
(1)
j −

4t
ε

(v∗∗j − fj(u∗∗j ))− 2
4t
ε

(v∗j − fj(u∗j )) (3.1.18)

v∗∗j =

(
ε

ε+4t

)(
v

(1)
j +

4t
ε
fj(u

∗∗
j )

)
− 2

(
4t

ε+4t

)
(v∗j − fj(u∗j )). (3.1.19)
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Then u and v can be updated as

u
(2)
j = u∗∗j −

4t
2hj

(v∗∗j+1 − v∗∗j−1) +
4t
2hj

√
a(u∗∗j+1 − 2u∗∗j + u∗∗j ), (3.1.20)

v
(2)
j = v∗∗j −

4t
2hj

a(u∗∗j+1 − u∗∗j−1) +
4t
2hj

a√
a

(v∗∗j+1 − 2v∗∗j + v∗∗j−1). (3.1.21)

In the following Section, we derive the discrete version of the adjoint relaxation system (2.7.12).

Analogously to the flow equations, discretization process for both space and time is achieved

separately, and then, the two semi-discrete schemes are merged to obtain a full discrete scheme.

3.2 First-order Discretization of the Adjoint System

We employ similar approach for the discretization of the adjoint system as we did for the forward

equations, following the same method by [10]. The adjoint system is solved backward in time.

3.2.1 Spatial discretization

We consider the set of adjoint equations (2.7.12) and write them as a linear system,[
p

q

]
t

−

[
0 1

a 0

][
p

q

]
x

= 0. (3.2.1)

As it is shown in [10], the characteristic variables p±
√
aq satisfy

−∂t(p±
√
aq)∓ a∂x(p±

√
aq) = 0, (3.2.2)

∂t(−p∓
√
a(−q))∓ a∂x(−p±

√
a(−q)) = 0. (3.2.3)

Remember that the adjoint equation is solved backward in time, thus an upwind discretization

for the linear system (3.5.29) advects p±
√
aq and −p±

√
a(−q) with velocity ∓

√
a. Therefore,

(p+
√
aq)j+ 1

2
= pj+1 +

√
aqj+1, (p−

√
aq)j+ 1

2
= pj −

√
aqj , (3.2.4)

and finally, we have

pj+ 1
2

=
1

2
(pj + pj+1) +

√
a

2
(qj+1 − qj), (3.2.5)

qj+ 1
2

=
1

2
(qj+1 + qj) +

1

2
√
a

(pj+1 − pj).

Substituting −p for p and −q for q, we obtain,

pj+ 1
2

= −pj + pj+1

2
−
√
a
qj+1 − qj

2
, (3.2.6)

qj+ 1
2

= −qj + qj+1

2
− pj+1 − pj

2
√
a

.
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In the following Subsection, we derive a discrete TVD Runge-Kutta type time discretization

scheme. Finite-difference equations (3.2.6) are incorporated in this discretization process to

have a full discrete scheme.

3.2.2 TVD Runge-Kutta time discretization for the adjoint system

The adjoint scheme is therefore given by,

p
(1)
j = pn+1

j , q
(1)
j = qn+1

j , (3.2.7)

p∗j = p
(1)
j +

4t
ε
q∗j fj(u

∗
j )−4taD∗xq∗j , (3.2.8)

where

D∗xq
(1)
j =

1

hj

(
q

(1)

j+ 1
2

− q(1)

j− 1
2

)
, (3.2.9)

and

q
(1)

j+ 1
2

= −
q

(1)
j + q

(1)
j+1

2
−
p

(1)
j+1 − p

(1)
j

2
√
a

, (3.2.10)

q
(1)

j− 1
2

= −
q

(1)
j + q

(1)
j−1

2
−
√
a
p

(1)
j − p

(1)
j−1

2
. (3.2.11)

Thus,

p∗j = p
(1)
j +

4t
ε
q∗j fj(u

∗
j ) +

1

2

4t
hj
a
(
q

(1)
j+1 − q

(1)
j−1

)
+

1

2

4t
hj

a√
a

(
p

(1)
j+1 − 2p

(1)
j + p

(1)
j−1

)
. (3.2.12)

Similarly,

q∗j = q
(1)
j −

4t
ε
q∗j −4tD∗xp

(1)
j , (3.2.13)

where

D∗xp
(1)
j =

1

hj

(
p

(1)

j+ 1
2

− p(1)

j− 1
2

)
, (3.2.14)

p
(1)

j+ 1
2

= −
p

(1)
j + p

(1)
j+1

2
−
√
a
q

(1)
j+1 − q

(1)
j

2
, p

(1)

j− 1
2

= −
p

(1)
j + p

(1)
j−1

2
−
q

(1)
j − q

(1)
j−1

2
√
a

. (3.2.15)

Hence,

q∗j = q
(1)
j −

4
ε
q∗j +

1

2

4t
hj

(
p

(1)
j+1 − p

(1)
j−1

)
+

√
a

2

4t
hj

(
q

(1)
j+1 − 2q

(1)
j + q

(1)
j−1

)
(3.2.16)
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or explicitly,

q∗j =

(
ε

ε+4t

)
q

(1)
j +

(
ε

ε+4t

)
4t
2hj

(
p

(1)
j+1 − p

(1)
j−1

)
+

(
ε

ε+4t

)√
a

1

2

4t
hj

(
q

(1)
j+1 − 2q

(1)
j + q

(1)
j−1

)
,

(3.2.17)

pnj = p∗j , q
n
j = q∗j . (3.2.18)

Next Section discusses what is called MUSCL method, as was first developed by Sweby [124], for

construction of higher-order relaxing schemes. Schemes developed using this approach satisfy

TVD property and are utmost second-order accurate.

3.3 MUSCL, TVD High Resolution Schemes: JIN XIN Relax-

ation Scheme

Higher resolution schemes give more appealing results by circumventing some drawbacks such

as smearing of solutions at the corners and prevention of oscillations. Construction of TVD

or MUSCL schemes uses linear combinations of low order schemes and high order accurate

schemes by using some limiter function [78, 119, 124]. In general these schemes give sharper

solutions than first-order schemes and improve solutions to at least first-order accuracy across

discontinuities.

3.3.1 Construction of MUSCL, TVD second-order in space schemes

We construct a slope limiter type scheme but with enough diffusion to avoid oscillations by

following exactly the same approach as presented by [64]. We consider the piecewise linear

interpolation to the rth components of v ± a
1
2u,

(v +
√
aru)j+ 1

2
= (v +

√
aru)j +

1

2
hjσ

+
j , (3.3.1)

(v −
√
aru)j+ 1

2
= (v −

√
aru)j−1 +

1

2
hj+1σ

−
j+1; (3.3.2)

where u and v are respectively, the rth components of U and V , such that 1 ≤ r ≤ m, and σ±j

is the slope of v ±√aru on the jth cell. We use one of the well known Sweby’s limiter [124],

σ±j =
1

hj
(vj+1 ±

√
aruj+1 − vj ∓

√
aruj)Φ(θ±j ), (3.3.3)

where

θ±j =
vj ±

√
aruj − vj−1 ∓

√
aruj−1

vj+1 ±
√
aruj+1 − vj ∓

√
aruj

(3.3.4)
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and the minmod slope Φ(θ) = max(0,min(1, θ)), where

minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|). (3.3.5)

From (3.3.1)

uj+1 =
1

2
(uj + uj+1)− 1

2
√
ar

(vj+1 − vj) +
1

4
√
ar

(hjσ
+
j + hj+1σ

−
j+1), (3.3.6)

vj+1 =
1

2
(vj + vj+1)−

√
ar
2

(uj+1 − uj) +
1

4
(hjσ

+
j − hj+1σ

−
j+1). (3.3.7)

We also have

uj− 1
2

=
1

2
(uj−1 + uj)−

1

2
√
ar

(vj − vj−1) +
1

4
√
ar

(hj−1σ
+
j−1 + hjσ

−
j ), (3.3.8)

and

vj− 1
2

=
1

2
(vj−1 + vj)−

√
ar
2

(uj + uj−1) +
1

4
(hj−1σ

+
j−1 − hjσ

−
j ). (3.3.9)

Substituting terms from (3.3.6 - 3.3.9) into the system
∂uj
∂t + 1

hj
(vj+ 1

2
− vj− 1

2
)

∂vj
∂t + a

hj
(uj+ 1

2
− uj− 1

2
) = −1

ε (vj − f(uj)),
(3.3.10)

we have

∂uj
∂t

+
1

hj
(vj+1−vj−1)−

√
ar

2hj
(uj+1−2uj +uj−1)− 1

4hj
(hj+1σ

−
j+1−hj(σ

+
j +σ−j )+hj−1σ

+
j−1) = 0,

(3.3.11)

and

(3.3.12)

∂vj
∂t

+

√
ar

2hj
(uj+1 − uj−1)−

√
ar

2hj
√
ar

(vj+1 − 2vj + vj−1)

+
ar

4hj
√
ar

(hj+1σ
−
j+1 + hj(σ

+
j − σ

−
j )− hj−1σ

+
j−1) = −1

ε
(vj − f(uj)).

Equations (3.3.11, 3.3.12), though in semi-discrete form but actually take the form of ODEs.

In the next paragraph, we obtain a full discrete scheme by appropriately applying TVD Runge-

Kutta method for time discretizations.
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3.3.2 TVD, Runge-Kutta second-order in time discretization

We follow the same Runge-Kutta time discretization algorithm as for the first-order scheme.

The discretization proceeds as follows:

u∗ = un, vn = f(u∗), (3.3.13)

v∗ = vn +
4t
ε

(v∗ − f(u∗)), (3.3.14)

v∗ =

(
ε

ε−4t

)
(vn − 4t

ε
f(u∗)), (3.3.15)

u(1) = u∗ −4tD+v
∗ = u∗ − 4t

hj

(
v∗
j+ 1

2

− v∗
j− 1

2

)
, (3.3.16)

v(1) = v∗ −4taD+u
∗ = v∗ −4ta 1

hj

(
u∗
j+ 1

2

− u∗
j− 1

2

)
. (3.3.17)

Defining fluxes at the cell boundaries as in (3.1.8), we re-write (3.3.16) and (3.3.17) above as

(3.3.18)
u(1) = u∗ − 4t

2hj

(
v∗j+1 − v∗j−1

)
+

√
ar4t
2hj

(
u∗j+1 − 2u∗j + u∗j−1

)
+
4t
4hj

(
hj+1σ

−∗
j+1 − hj(σ

+∗
j + σ−∗j ) + hj−1σj−1σ

+∗
j−1

)
,

(3.3.19)
v(1) = v∗ − a4t

2hj

(
u∗j+1 − u∗j−1

)
+

a4t
2
√
arhj

(
v∗j+1 − 2v∗j + v∗j−1

)
− a4t

4
√
arhj

(
hj+1σ

−∗
j+1 + hj(σ

+∗
j − σ

−∗
j )− hj−1σ

+∗
j−1

)
.

Again, we write

u∗∗ = u(1), (3.3.20)

v∗∗ =

(
ε

ε+4t

)(
v(1) +

4t
ε
f(u∗∗)

)
−
(

24t
ε+4t

)
(v∗ − f(u∗)), (3.3.21)

(3.3.22)

u(2) = u∗∗ − 4t
hj

(v∗∗
j+ 1

2

− v∗∗
j− 1

2

)

= u∗∗ − 4t
2hj

(v∗∗j+1 − v∗∗j−1) +

√
ar4t
2hj

(u∗∗j+1 − 2u∗∗j + u∗∗j )

+
4t
4hj

(
hj+1σ

−∗∗
j+1 − hj(σ

+∗∗
j + σ−∗∗j ) + hj−1σ

+∗∗
j−1

)
,
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(3.3.23)

v(2) = v∗∗ − a4t
hj

(u∗∗
j+ 1

2

− u∗∗
j− 1

2

)

= v∗∗ − a4t
2hj

(u∗∗j+1 − u∗∗j−1) +
ar4t

2
√
arhj

(v∗∗j+1 − 2v∗∗j + v∗∗j−1)

− ar4t
4
√
arhj

(
hj+1σ

−∗∗
j+1 + hj(σ

+∗∗
j − σ−∗∗j )− hj−1σ

+∗∗
j−1

)
,

and then,

un+1 =
1

2
(un + u(2)), vn+1 =

1

2
(vn + v(2)). (3.3.24)

Next, we discretize the adjoint equations 2.7.12. These equations are a set of HCLs, therefore,

as for the first-order adjoint discretization, the resulting scheme is relaxing, but it is solved

backward in time.

3.4 Discretization of the Adjoint Equation, Second-order in Time

and Space

We consider the discretization of the adjoint equation, second-order in time and space. Basically,

the discretization is the same as for the first order scheme. We review the derivation of this

scheme, and materials and the presentation style are adapted from [10].

3.4.1 Spatial discretization

We present a second-order in space accurate discretization of the adjoint equations derived under

subsection (2.7.1). We recall the finite difference approximation derived previously (3.2.5) by

considering the characteristic variables p±
√
aq, that is,

pj+ 1
2

=
1

2
(pj + pj+1) +

√
a

2
(qj+1 − qj), (3.4.1)

qj+ 1
2

=
1

2
(qj+1 + qj) +

1

2
√
a

(pj+1 − pj).

Using the polynomial Γ, the procedure is formulated as follows:

(p+
√
aq)j+ 1

2
= (p+

√
aq)+

j+ 1
2

= Γj+1(xj+ 1
2
; Φ+), (3.4.2)

(p−
√
aq)j+ 1

2
= (p−

√
aq)−

j+ 1
2

= Γj(xj+ 1
2
; Φ−), (3.4.3)

from which we obtain

pj+1 =
1

2

(
Γj(xj+ 1

2
; Φ−) + Γj+1(xj+ 1

2
; Φ+)

)
(3.4.4)

qj+1 =
1

2
√
a

(
Γj+1(xj+ 1

2
; Φ+)− Γj(xj+ 1

2
; Φ−)

)
. (3.4.5)
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The superscripts + and − correspond to the right and left cell of a cell boundary at xj+ 1
2
. The

first-order scheme can, therefore, be represented by the polynomial taking the form:

Γj(x; Φ) = Φ (3.4.6)

which are polynomials defined in terms of characteristic variables. The second-order scheme

applies polynomials taking the form:

Γj(x; Φ) = Φj + σ(Φj)(x− xj) (3.4.7)

where

Φ−j = pj −
√
aqj , Φ+

j = pj +
√
aqj . (3.4.8)

Thus the second-order terms can be formulated as follows:

(3.4.9)

pj+ 1
2

=
1

2

(
(Γj(xj+ 1

2
; Φ−) + Γj+1(xj+ 1

2
; Φ+)

)
=

1

2

(
Φ−j + σ(Φ−j )(xj+ 1

2
− xj) + Φ+

j+1 + σ(Φ+
j+1)(xj+ 1

2
− xj+1)

)
=

1

2

(
Φ−j +

1

2
σ(Φ−j ) + Φ+

j+1 −
1

2
σ(Φ+

j+1)

)
=

1

2

(
pj −

√
aqj +

1

2
σ−j + pj+1 +

√
aqj+1 −

1

2
σ+
j+1

)
=

1

2

(
pj + pj+1 +

√
a(qj+1 − qj) +

1

2
(σ−j − σ

+
j+1)

)
;

similarly,

(3.4.10)

qj+ 1
2

=
1

2
√
a

(
(Γj+1(xj+ 1

2
; Φ+)− Γj(xj+ 1

2
; Φ−)

)
=

1

2
√
a

(
Φ+
j+1 + σ(Φ+

j+1)(xj+ 1
2
− xj+1)− Φ−j − σ(Φ−j )(xj+ 1

2
− xj)

)
=

1

2
√
a

(
Φ+
j+1 −

1

2
σ(Φ+

j+1)− Φ−j −
1

2
σ(Φ−j )

)
=

1

2
√
a

(
pj+1 +

√
aqj+1 −

1

2
σ+
j+1 − pj +

√
aqj −

1

2
σ−j

)
=

1

2
√
a

(
−pj + pj+1 +

√
a(qj+1 + qj)−

1

2
(σ+
j+1 + σ−j )

)
=

1

2
(qj+1 + qj) +

1

2
√
a

(−pj + pj+1)− 1

4
√
a

(σ+
j+1 + σ−j ).

Replacing p by −p and q by −q, we have

pj+ 1
2

=
1

2

(
−pj − pj+1 +

√
a(−qj+1 + qj) +

1

2
(σ−j − σ

+
j+1)

)
, (3.4.11)
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qj+ 1
2

=
1

2
(−qj+1 − qj) +

1

2
√
a

(pj − pj+1)− 1

4
√
a

(σ+
j+1 + σ−j ) (3.4.12)

where

(3.4.13)σ−j = (Φ−j+1 − Φ−j )φ(θ−j )

= (pj+1 −
√
aqj+1 − pj +

√
aqj)φ(θ−j ),

(3.4.14)σ+
j+1 = (Φ+

j+2 − Φ+
j+1)φ(θ+

j+1)

= (pj+2 +
√
aqj+2 − pj+1 −

√
aqj+1)φ(θ+

j+1).

Furthermore,

φ(θ±j ) = φ

(
Φ±j − Φ±j−1

Φ±j+1 − Φ±j

)
. (3.4.15)

Again replace p by −p and q by −q, and re-write:

(3.4.16)
σ−j =

[
−pj+1 +

√
aqj+1 + pj −

√
aqj
]
φ

(
−pj +

√
aqj + pj−1 −

√
aqj−1

−pj+1 +
√
aqj+1 + pj −

√
aqj

)
=
[
−(pj+1−

√
aqj+1)− (−(pj −

√
aqj))

]
φ

[
−(pj −

√
aqj)− (−(pj−1 −

√
aqj−1))

−(pj+1 −
√
aqj+1)− (−(pj −

√
aqj))

]
;

(3.4.17)

σ+
j+1 =

[
−pj+2 −

√
aqj+2 + pj+1 +

√
aqj+1

]
φ

[
−pj+1 −

√
aqj+1 + pj +

√
aqj

−pj+2 −
√
aqj+2 + pj+1 +

√
aqj+1

]
=
[
−(pj+2 +

√
aqj+2)− (−(pj+1 +

√
aqj+1))

]
× φ

[
−(pj+1 +

√
aqj+1)− (−(pj +

√
aqj))

−(pj+2 +
√
aqj+2)− (−(pj+1 +

√
aqj+1))

]
.

To conform with the format of the adjoint equations, equations (3.4.11) and (3.4.12) are written

as

pj+ 1
2

= −
[

1

2
(pj + pj+1)−

√
a

2
(qj − qj+1)− 1

4
(σ−j − σ

+
j+1)

]
, (3.4.18)

qj+ 1
2

= −
[

1

2
(qj+1 + qj)−

1

2
√
a

(pj − pj+1) +
1

4
√
a

(σ+
j+1 + σ−j )

]
. (3.4.19)

3.4.2 Time discretizations

We now turn to the second-order TVD Runge-Kutta time discretization to construct an algo-

rithm for the solution of the adjoint equations. Similar to the first-order adjoint, discretization

takes two steps, explicit step for convective equation and implicit step for the stiff ODE part,



Section 3.4. Discretization of the Adjoint Equation, Second-order in Time and Space Page 36

but we can reformulate the scheme and write all steps as explicit as possible. The Runge-Kutta

type discretization for the adjoint system we are reviewing was first published in [10]. Obviously,

we have:

p
(2)
j =

1

2
pn+1
j , q

(2)
j =

1

2
qn+1
j ; (3.4.20)

(3.4.21)
q∗∗j =

(
ε

ε+4t

)
q

(2)
j +

(
ε

ε+4t

)
4t
2hj

[
(p

(2)
j+1 − p

(2)
j+1) +

√
a(q

(2)
j+1 − 2q

(2)
j + q

(2)
j−1)

]
+

(
ε

ε+4t

)
4t
4hj

[
σ−j−1 − (σ+

j + σ−j ) + σ+
j−1

]

(3.4.22)
p∗∗j = p

(2)
j + q∗∗j

4t
ε
f
′
(u∗∗j ) + a

4t
2hj

[
(q

(2)
j+1 − q

(2)
j−1) +

1√
a

(p
(2)
j+1 − 2p

(2)
j + p

(2)
j−1)

]
− a√

a

4t
4hj

[
σ−j−1 + (σ+

j − σ
−
j )− σ+

j+1

]
;

p
(1)
j = p∗∗j , q

(1)
j = q∗∗j ; (3.4.23)

q∗j =

(
ε

ε+4t

)
q

(1)
j −

(
ε

ε+4t

)
24t
ε
q∗∗j

+

(
ε

ε+4t

)
4t
2hj

[
(p

(1)
j+1 − p

(1)
j−1) +

√
a(q

(1)
j+1 − 2q

(1)
j + q

(1)
j−1)

]
+

(
ε

ε+4t

)
4t
4hj

[
σ−j−1 − (σ+

j + σ−j ) + σ+
j+1

]
,

p∗j = p
(1)
j −

4t
ε
f
′
(u∗∗j )(q∗j − 2q∗∗j )

+ a
4t
2hj

[
(q

(1)
j+1 − q

(1)
j−1) +

1√
a

(p
(1)
j+1 − 2p

(1)
j + p

(1)
j−1)

]
− a√

a

4t
4hj

[
σ−j−1 + (σ+

j − σ
−
j )− σ+

j+1

]
,

pnj =
1

2
pn+1
j + p∗j , q

n
j =

1

2
qn+1
j + q∗j (3.4.24)

There is an alternative reformulation provided in [10] which can also be considered.

We adapt similar procedures in order to develop relaxing schemes for discrete kinetic relaxation

system as for JIN XIN relaxation system. In the sequel, therefore, we discuss the derivations

of relaxing schemes up to second -order in time and space for the kinetic flow equation and for

its dual adjoint equation as well. Our intention is to realize both JIN XIN and kinetic relaxing

schemes through numerical experimentations.
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3.5 Relaxing Scheme for the Discrete Kinetic Relaxation system

We consider discretization of a BGK-like model

∂tf
ε
i + λi∂xf

ε
i =

1

ε
(Mi(Pf

ε)− f εi ), i ∈ {1, . . . , N}, (3.5.1)

which is the model based on a kinetic approximation of the problem (2.6.1) with initial conditions

f ε(x, 0) = f ε0(x) = Mi(u
0), (3.5.2)

where Mi are Lipschitz (piecewise C1) continuous functions called Maxwellians, defined on Rm,

and other conditions are satisfied as discussed under Section (2.6).

3.5.1 Discretization of the discrete kinetic model, first-order in time and

space

For spatial discretization of the discrete kinetic model, we use the results discussed under sub-

section (3.1.1), the outcome is a simple upwinding. For the Runge-Kutta time discretization

scheme, we employ the operator splitting approach and split the relaxation system (2.7.18) into

stiff ODE and an advection system. Considering Maxwellian functions Mi(u) = αiu + βiA(u),

Mi(u) ∈ Rm, (i = 1, 2, 3), we have for stiff ODE,

u∗j = unj , f
n
j,i = Mj,i(u

∗
j ), (3.5.3)

∂tfi =
1

ε
(Mi(u)− fi), =⇒ f∗j,i = fnj,i +

4t
ε

(Mj,i(u
∗
j )− f∗j,i). (3.5.4)

And for advection system,

∂tfi + λiOxfi = 0, (3.5.5)

(3.5.6)
f
n+ 1

2
j,i = fnj,i +4tD∗xf∗i

= fnj,i − λi
4t
hj

(f∗j+1,i − f∗j−1,i) +
|λi|
2

(f∗j+1,i − 2f∗j,i + f∗j−1,i),

un+1
j =

∑
j

f
n+ 1

2
j,i , fnj,i = Mj,i(u

n+1
j ). (3.5.7)

For practical reasons, for example for two-velocities (N = 2) discrete kinetic model, we can

choose Maxwellians to take the form [5],

Mi(u) =
1

2

(
u± A(u)

λi

)
λ1 = λ, λ2 = −λ. (3.5.8)
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3.5.2 Spatial discretization for the discrete kinetic model, second-order in

space

We consider the discretization constructed by MUSCL method (reconstruction-transport-projection

method) on transport part that is presented in [5]. There slope limiters are constructed by using

piecewise linear function. However, reconstruction is made with particular interest on boundary

coefficients, therefore, in our case we only draw information that are valuable for our construc-

tion.

We define χi = |λ|4thj .

For positive velocity λi, and for all j ≥ 0, we find that

f
n+ 1

2
j,i = (1− χi)fnj,i + χif

n
j−1,i − hj

χi(1− χi)
2

(σj,i − σj−1,i) . (3.5.9)

For all j ≥ 0, and for non-positive velocities, λi, we have

f
n+ 1

2
j,i = (1− χi)fnj,i + χif

n
j+1,i − hj

χi(1− χi)
2

(σj+1,i − σj,i) . (3.5.10)

We use a minmod slope for all j ≥ 0,

σni,j = minmod

(
X1,i,j

4fn
j+ 1

2
,i

hj
, X2,i,j

4fn
j− 1

2
,i

hj

)
(3.5.11)

where

minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|), (3.5.12)

and

4fn
j+ 1

2
,i

= fnj+1,i − fnj,i, 4fnj− 1
2
,i

= fnj,i − fnj−1,i. (3.5.13)

X1,i,j and X2,i,j can be chosen according to [5].

3.5.3 Second-order Runge-Kutta time discretizations for the discrete kinetic

model

We applied a 3-velocities model relaxation system, corresponding to λ1 = −λ2 = λ > 0 and

λ0 = 0, which was proposed in [7],

∂tf
ε
i+

∂tf
ε
i0

∂tf
ε
i−

+

−

λi∂xf
ε
i+

λi∂xf
ε
i−

=

=

=

1
ε (Mi+(u)− f εi+),

1
ε (Mi0(u)− f εi0),

1
ε (Mi−(u)− f εi−), i = 1, . . . , N.

(3.5.14)
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For simplicity we drop superscript ε and subscript i writing respectively, equations associated

with λ1, λ0 and λ2 as

∂tf+

∂tf0

∂tf−

+

−

λ∂xf+

λ∂xf−

=

=

=

1
ε (M+(u)− f+),

1
ε (M0(u)− f0),

1
ε (M−(u)− f−).

(3.5.15)

For Runge-Kutta time discretization, we split the system above into two parts: the collision/stiff

ODE part

∂tf+

∂tf0

∂tf−

=

=

=

1
ε (M+(u)− f+),

1
ε (M0(u)− f0),

1
ε (M−(u)− f−),

(3.5.16)

and the transport system

∂tf+

∂tf0

∂tf−

+

−

λ∂xf+

λ∂xf−

=

=

=

0,

0,

0.

(3.5.17)

As for the first-order scheme, we then develop an Explicit-Implicit scheme, which takes two

stages, one for stiff part and another for advection system, therefore, for unj = u∗j ,

∂tf+ =
1

ε
(M+(u)− f+), ∂tf0 =

1

ε
(M0(u)− f0), ∂tf− =

1

ε
(M−(u)− f−), (3.5.18)

f∗j,+

f∗j,0

f∗j,−

=

=

=

fnj,+

fnj,0

fnj,−

−

−

−

1
ε (Mj,+(u∗j )− f∗j,+),

1
ε (Mj,0(u∗j )− f∗j,0),

1
ε (Mj,−(u∗j )− f∗j,−),

(3.5.19)

(3.5.20)
f

(1)
j,+ = f∗j,+ −4tλDxf

∗
j,+

= f∗j,+ − χi(f∗j,+ − f∗j−1,+)− hj
χi(1− χi)

2

(
σ∗j,+ − σ∗j−1,+

)
,
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(3.5.21)
f

(1)
j,− = f∗j,− +4tλDxf

∗
j,−

= f∗j,− + χi(f
∗
j+1,− − f∗j,−)− hj

χi(1− χi)
2

(
σ∗j+1,− − σ∗j,−

)
,

f∗∗j,+

f∗∗j,0

f∗∗j,−

=

=

=

f
(1)
j,+

f
(1)
j,0

f
(1)
j,−

+

+

+

4t
ε (Mj,+(u∗∗j )− f∗∗j,+)

4t
ε (Mj,0(u∗∗j )− f∗∗j,0)

4t
ε (Mj,−(u∗∗j )− f∗∗j,−)

+

+

+

24t
ε (Mj,+(u∗j )− f∗j,+),

24t
ε (Mj,0(u∗j )− f∗j,0),

24t
ε (Mj,−(u∗j )− f∗j,−),

(3.5.22)

(3.5.23)
f

(2)
j,+ = f∗∗j,+ −4tλDxf

∗∗
j,+

= f∗∗j,+ − χi(f∗∗j,+ − f∗∗j−1,+)− hj
χi(1− χi)

2

(
σ∗∗j,+ − σ∗∗j−1,+

)
,

(3.5.24)
f

(2)
j,− = f∗∗j,− +4tλDxf

∗∗
j,−

= f∗∗j,− + χi(f
∗∗
j+1,− − f∗∗j,−)− hj

χi(1− χi)
2

(
σ∗∗j+1,− − σ∗∗j,−

)
,

fn+1
j,+ =

1

2
(f

(2)
j,+ + fnj,+), fn+1

j,− =
1

2
(f

(2)
j,− + fnj,−), fn+1

j,0 = f∗∗j,0 (3.5.25)

where

un+1
j =

1

2

∑
i

(f
(2)
j,i + fnj,i). (3.5.26)

3.5.4 Time and space adjoint discretizations of discrete kinetic model, second-

order

We consider the discretization of the adjoint system (2.7.26) (derived under Subsection 2.7.2),

−∂tpi − λi∂xpi =
1

ε
(Mi(u)− fi) i = 1, . . . , 3. (3.5.27)

If we write the system in an extended form

−∂tp+

−∂tp0

−∂tp−

+

−

λ∂xp+

λ∂xp−

=

=

=

1
ε (M+(u)− f+)

1
ε (M0(u)− f0)

1
ε (M−(u)− f−),

(3.5.28)
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we see that the linear transport system of adjoint equations

−


p+

p0

p−


t

−


λ 0

0 0

0 −λ



p+

p0

p−


x

= 0, (3.5.29)

is analogous to the system (3.5.29), so it is possible to derive its characteristic variables by

selecting appropriate values for the scaling factors. Therefore, it is enough to conclude that, by

following analysis under Subsection 3.4.1, we can deduce flux-differences at the cell boundaries

for the adjoint system (3.5.28) to be

(3.5.30)
(pj+ 1

2
,+ − pj− 1

2
,−) = −1

2
[(pj+1,+ − pj−1,+) + λ(pj+1,+ − 2pj,+ + pj−1,+)]

− 1

4

[
(σ+
j+1,+ − (σ+

j,+ + σ−j,+) + σ−j−1,+)
]
,

(3.5.31)
(pj+ 1

2
,− − pj− 1

2
,−) = −1

2

[
(pj+1,− − pj−1,−) +

1

λ
(pj+1,− − 2pj,− + pj−1,−)

]
− 1

4λ

[
(σ+
j+1,− − (σ+

j,− − σ
−
j,−)− σ−j−1,−)

]
.

Thus, second-order Runge-Kutta time discretization for the adjoint system (3.5.28) would be

p
(2)
j,+ =

1

2
pn+1
j,+ , p

(2)
j,− =

1

2
pn+1
j,− , (3.5.32)

(3.5.33)

p∗∗j,+ = p
(2)
j,+ −

4t
ε

(
Mj,+(u∗∗j )− f∗∗j,+

)
− λ4tDxp

(2)
j,+

= p
(2)
j,+ −

4t
ε

(
Mj,+(u∗∗j )− f∗∗j,+

)
+ λ
4t
2hj

[
(p

(2)
j+1,+ − 2p

(2)
j−1,+) + λ(p

(2)
j+1,+ − 2p

(2)
j,+ + p

(2)
j−1,+)

]
+ λ
4t
4hj

[
σ

+(2)
j+1,+ − (σ

+(2)
j,+ + σ

−(2)
j,+ ) + σ

−(2)
j−1,+

]
,

(3.5.34)

p∗∗j,− = p
(2)
j,− +

4t
ε

(
Mj−(u∗∗j )− f∗∗j,−

)
+ λ4tDxp

(2)
j,−

= p
(2)
j,− +

4t
ε

(
Mj−(u∗∗j )− f∗∗j,−

)
− λ4t

2hj

[
(p

(2)
j+1,− − p

(2)
j−1,−) +

1

λ
(p

(2)
j+1,− − 2p

(2)
j,− + p

(2)
j−1,−)

]
− 4t

4hj

[
σ

+(2)
j+1,− − (σ

+(2)
j,− − σ

−(2)
j,− )− σ−(2)

j−1,−

]
,
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p
(1)
j,+ = p∗∗j,+, p

(1)
j,− = p∗∗j,−, (3.5.35)

(3.5.36)

p∗j,+ = p
(1)
j,+ −

1

ε

(
Mj,+(u∗j )− f∗j,+

)
+

24t
ε

(
Mj,+(u∗∗j )− f∗∗j,+

)
− λ4tDxp

(1)
j,+

= p
(1)
j,+ −

1

ε

(
Mj,+(u∗j )− f∗j,+

)
+

24t
ε

(
Mj,+(u∗∗j )− f∗∗j,+

)
+ λ
4t
2hj

[
(p

(1)
j+1,+ − 2p

(1)
j−1,+) + λ(p

(1)
j+1,+ − 2p

(1)
j,+ + p

(1)
j−1,+)

]
+ λ
4t
4hj

[
σ

+(1)
j+1,+ − (σ

+(1)
j,+ + σ

−(1)
j,+ ) + σ

−(1)
j−1,+

]
,

(3.5.37)

p∗j,− = p
(1)
j,− −

4t
ε

(
Mj,−(u∗j )− f∗j,−

)
+

24t
ε

(
Mj,−(u∗∗j )− f∗∗j,−

)
+ λ4tDxp

(1)
j,−

= p
(1)
j,− −

4t
ε

(
Mj,−(u∗j )− f∗j,−

)
+

24t
ε

(
Mj,−(u∗∗j )− f∗∗j,−

)
− λ4t

2hj

[
(p

(1)
j+1,− − p

(1)
j−1,−) +

1

λ
(p

(1)
j+1,− − 2p

(1)
j,− + p

(1)
j−1,−)

]
− 4t

4hj

[
σ

+(1)
j+1,− − (σ

+(1)
j,− − σ

−(1)
j,− )− σ−(1)

j−1,−

]
,

pnj,+ =
1

2
(pn+1
j,+ + p∗j,+), pnj,−

1

2
(pn+1
j,− + p∗j,−). (3.5.38)

As for all other numerical schemes, discretized schemes reviewed under this Chapter needs nu-

merical implementation for analysis, visualization and presentation of results. Due to this, it

is customary to consider a truncated spatial and time domain of interest for numerical com-

putational purposes. The truncated spatial domain needs to be supplemented at its ends by

boundary conditions, which is the subject of the subsequent Section.

3.6 Boundary conditions

Numerical solutions are not computed over the whole domain R. Therefore, we had to truncate

a reasonable computational domain of our interest [xL, xR]. This truncation of course suggests

that boundary conditions must be imposed. In our computations, we used two types of bound-

ary conditions: periodic boundary conditions and transparent (non-reflecting Neumann type)

boundary conditions.

3.6.1 Periodic boundary conditions

In this case, the scheme requires two ghost cells, one on the left of the domain and another one

on the right. This means if we consider our truncated domain to be [xL, xR], then the two ghost
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cells are respectively xL −4x and xR +4x on the left and right sides. Therefore, numerically

we set un0 = unN and unN+1 = un1 .

3.6.2 Transparent boundary conditions

Transparent (non-reflecting Neumann type) boundary conditions are usually imposed such that,

the values of the cell next to the boundary are the same as for the ghost cells, i.e., un0 = un1 ,

unN+1 = unN .

We have described the imposition of the boundary conditions using macroscopic variable u,

similar imposition is to be considered with the microscopic variables.

3.6.3 Algorithm for gradient computing

The optimal control method under consideration involves the computation of the cost functional

2.7.1 gradient. This gradient is used to modify the design variable (in our case initial condition)

which adjusts in such a way to produce optimal solution that matches the given target. To

compute the gradient of the 2.7.1 and incorporate it in the optimal control method, we need to

follow the following procedures:

• We first linearize the nonlinear CLs (2.1.1) to have its relaxation form 2.5.18;

• Derive its adjoint system;

• Solve for the flow variable u(., T ) forward in time;

• Use the solution of the flow variable above at the terminal time T to solve for the adjoint

variable backward in time;

• Use the adjoint variable and the control variable u0 to evaluate the gradient of the cost

functional (2.7.1), Ou0J ;

• Update the control variable by using the gradient obtained above and the chosen step size

by making a step in the negative gradient direction,

u0new = u0old − αOu0J ; (3.6.1)

• Repeat processes (3-6) until a minimization is reached.

This algorithm gives a brief overview of the adjoint-based optimization. We specifically applied

this algorithm to optimize the Euler Equations of Gas dynamics that models transportation

of gases in pipelines [9, 11, 12]. To insure convergence of the optimization process some rules,
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such as Armijo step-size rule described in [8], have been considered to automatically choose the

optimal value of α by making step towards the steepest descent direction.

Derivation of relaxing schemes from relaxation systems of hyperbolic conservation laws, has

been the major focus of this Chapter. These schemes were tested for the numerical solutions

of linear, nonlinear scalar and systems of hyperbolic conservation laws. Accurate solutions of

HCLs has been a central point to our research because they form important components of

the adjoint-based optimization procedure being discussed. Numerical tests for both solutions of

HCLs and for the adjoint-based optimization method are discussed in the next Chapter.



4. Numerical Results

This Chapter deals with the numerical findings as a result of implementation of the two relaxing

schemes derived under Chapter 3 which include simulations of the solutions and optimization

results for scalar and systems of HCLs. We have considered the advection equation, the inviscid

Burgers’ Equation and the systems of HCLs, specifically, system of Euler Equations. We first

looked for their solutions and then employed adjoint-based control summarized by the algorithm

3.6.3 as an optimal control strategy. Two relaxing schemes: The JIN XIN scheme described in

[64] and the discrete kinetic scheme presented in [5, 92] are compared for both solutions of

HCLs and for the problem of optimization as well. Schemes developed are TVD, based on the

method of lines associated with Runge-Kutta type time discretizations. Second-order accuracy

in solution is achieved through second-order MUSCL type space discretization coupled with

a second-order Runge-Kutta time splitting scheme using minmod slope limiter introduced by

Sweby in [124].

All numerical results that will be presented in a sequel are performed with intel core i5, 2.67

GHZ, and 4G RAM machine, and programs developed using Python scripting language. Briefly,

this chapter is devoted to present, describe and analyze numerical results obtained from our

experiments.

4.1 Numerical Discretizations of Spatial and Temporal Domains

We take the first step to discretize both the time and spatial domains. We consider a bounded

domain of R, [xL, xR]. For the sake of simplicity, the domain [xL, xR] is divided uniformly into

a sequence of M + 1 points, m = 0, . . . ,M , such that x0 = xL, xM = xR ; with a mesh size

4x = 1
M . The temporal domain is considered to be [0, T ], discretized into N time levels, tn,

with time step, 4t = tn+1 − tn, and the horizon time is given by T = N4t. Our interest is to

have the approximation of the form unj .

4.2 General Descriptions

We computed the approximate solutions for both scalar and systems of HCLs on a uniform

mesh, with 200, 400, 800, and 1600 grid points and present results for different values of time.

We choose fixed time step 4t and spatial step 4x related by the stability condition 4t =

CFL4x/√amax, where CFL is the Courant-Friedrichs-Lewy number, and amax is the maximum

of the characteristic speeds. Without loss of generality, we considered solutions on the spatial

computational domain [0, 1], and a mesh with M + 1 grid points. Where possible, numerical

45
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solutions are compared with exact solution or a reference (depicted by red solid line) solved with

the number of grid points M = 1600.

For the two relaxing schemes, JIN XIN and the discrete kinetic scheme, the macroscopic variable

u is linked to microscopic fi by the Maxwellians

Mi(u) = αiu+ βiA(u), (4.2.1)

= αi

N∑
j=1

fj + βi

N∑
j=1

λjfj , (4.2.2)

where Maxwellians must be monotone preserving according to [5]. Next, we define the following

variables related to discrete kinetic schemes, that will be used throughout the course of this

Chapter: for a system with two velocity model we have λ1 = −λ2, while for three velocities

discrete kinetic scheme, we have λ3 = −λ1, where λ2 is set to 0. Furthermore, we set α = α1 =

α3, α2 = 1− 2α; β = β2,

β1 =
1

2

(
− 1

λ3
− β

)
;β3 =

1

2

(
1

λ3
− β

)
. (4.2.3)

For two velocity model, we obviously have the diagonal relation

Mi(u) =
1

2

(
u± Ai(u)

λi

)
, λ1 = λ, λ2 = −λ (4.2.4)

between macroscopic u and Maxwellians. Here, we restrict numerical results for discrete kinetic

model to two or three velocities scheme. A relaxation rate ε = 10−8 is considered for both

schemes.

In the sequel, we start to present numerical results obtained with the schemes we have derived

in Chapter 3 for various HCLs problems. The aim is to develop accurate numerical solutions to

be incorporated during adjoint-based optimal control process.

4.3 Numerical Experiments for Scalar HCLs

We start by presenting numerical solutions for the linear, and then nonlinear scalar HCLs,

for both JIN XIN [64] and discrete kinetic [5] relaxation models. We have chosen to start

with the solutions of the model linear and nonlinear scalar HCLs which serve as prototype to

generalization to systems of HCLs and multi-dimensional problems.

4.3.1 Numerical experiments for scalar linear HCLs

We consider the numerical solution of the one-dimensional version of the linear transport equa-

tion

ut + aux = 0, ∀(x, t) ∈ R× R+ (4.3.1)
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with initial condition u(x, 0) = u0(x).

To be specific, we consider the linear transport equation (4.3.1) with initial data

u0(x) = sin(2πx). (4.3.2)

Solution of the HCL (4.3.1) is implemented with periodic boundary conditions for a = 1 over

time T = 1 and the computational domain [0, 1] using the two relaxing schemes described in [64]

and [5]. We repeat this experiment for the second-order relaxing schemes. Obviously, solutions

displayed in Figure 4.1(a) for the first-order scheme, and in Figure 4.1(b) for the second-order

scheme are good approximations.

Again, we solve the transport equation (4.3.1) for discontinuous initial Riemann data defined as

u0(x) =

2 if x < 0.5

1 if x > 0.5,
(4.3.3)

implemented over time T = 0.3 for a = 1, but this time together with transparent boundary

conditions. First-order, Figure 4.2(c) and second-order, Figure 4.2(d) numerical solutions for

both relaxing schemes are quite well approximated.

4.3.2 Numerical experiments for scalar nonlinear HCLs

Most natural phenomena can be described by nonlinear models. In such models, the velocity

field, for example, a simple case a(x, t) = u(x, t) depends on the solution itself. Hence the

quasilinear transport equation (4.3.1) becomes

ut + uux = 0. (4.3.4)

If we assume that the solution u is smooth, equation (4.3.4) is equivalent to the equation

ut +

(
1

2
u2

)
x

= 0, (4.3.5)

which is a conservative form of (4.3.4). The HCLs (4.3.5) is called inviscid Burgers Equation.

To start with, we consider the model nonlinear HCL (4.3.5), i.e.,

ut + f(u)x = 0, f(u) =
1

2
u2 (4.3.6)

with smooth initial data

u0 =
1

2
+ sin(x), x ∈ [0, 2π] (4.3.7)

for a = 1.3 over different time periods of T = π
4 and T = 2.0. Computational domain is taken

to be [0, 1].
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(a) First-order smooth solution with initial data

(4.3.2), T = 1

(b) Second-order test, same parameters as for 4.1(a)

(c) First-order shock solution with initial data (4.3.3),

T = 0.3

(d) Second-order test, same parameters as for 4.1(c)

Figure 4.1: Solution of the linear advection equation (4.3.1) for JIN XIN scheme (black solid line

with squares at data points), kinetic scheme (green asterisk), and a reference solution (red solid line)

for a = 1, M = 400 and ε = 10−8. The x-axis represents the space variable x and the y-axis

represents the advected quantity, u.



Section 4.3. Numerical Experiments for Scalar HCLs Page 49

Here we have tested the two relaxation approaches with HCL (4.3.6) for smooth initial data

(4.3.7) implemented together with periodic boundary conditions. We first display a smooth

solution at some finite time, T = π
4 , Figure 4.2(a), and then we allow the solution to evolve over

a bit larger time, T = 2.0, so that it develops a shock, Figure 4.2(b). These results are obtained

with the first-order relaxing schemes. We then repeat the previous experiments with the second-

order relaxing schemes and display results in Figures 4.2(c), 4.2(d), computed respectively, over

T = π
4 and T = 2. As depicted by Figures, both solutions are close approximations of the true

solution.

(a) Smoot solution at time, T = π
4

, first-order test (b) Shock solution at time, T = 2, first-order test

(c) Smooth solution, T = π
4

, second-order test (d) Shock solution, T = 2, second-order test

Figure 4.2: Solution of the Burgers’ Equation using JIN XIN scheme (black solid line with squares at

data points), kinetic scheme (green asterisk), and a reference solution (red solid line) for a = 1.3,

M = 400 and ε = 10−8. The x-axis represents the space variable x and the y-axis represents the

conserved quantity, u.
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Next, we consider a discontinuous initial Riemann data

u(x, 0) =

1 if x < 0.5

0 if x > 0.5.
(4.3.8)

This time, the HCL (4.3.6) is solved over T = 0.5 together with transparent boundary conditions,

where a = 1. We obtain good results with first-order relaxing scheme, Figure 4.3(a) and second-

order relaxing scheme as well, Figure 4.3(b).

Finally we consider the last example under this Section for discontinuous initial Riemann data

given by

u(x, 0) =

−1 if x < 0.5

1 if x > 0.5,
(4.3.9)

implemented with transparent boundary conditions over time period T = 0.2. Again, we take

a = 1. Well approximated solutions with the first and second order schemes for this set of data

are, respectively shown in Figures 4.2(c) and 4.2(d).

We have tested the two relaxing schemes, first and second order in time and space for the

solutions of the linear and nonlinear HCLs evolved from two types of data: smooth sine wave

and the Riemann data. As we have seen, two types of solutions are depicted: smooth and

discontinuous ones. Here, a pair of solutions, one with and another one without shock both

evolving from smooth initial data (4.3.7) is depicted by Figure 4.2. Discontinuous solutions

evolved from a pair of discontinuous Riemann data (4.3.8, 4.3.9) are illustrated by Figure 4.3.

Solutions to both schemes are very well approximated, and in the case of solution in which

discontinuity, (Figures 4.2(b), 4.2(d)) would arise after a finite time, care is well taken and the

solution is non-oscillatory as well.

4.4 Numerical Solutions for Systems of HCLs

Systems of conservation laws occur in many natural interesting phenomena and are useful for

the modeling of complex physical systems, especially those which involve interaction of many

unknowns. Systems of HCLs are, therefore, one of the suitable tools for modeling physical

dynamical systems, in areas such as CFD and aerodynamic designs. Here, we considered the

solution of 1D system of Euler Equations, and in particular, applied this solution for illustration

of the optimization process under consideration.

We solved numerically the nonlinear m×m system

ut + f(u)x = 0, (4.4.1)
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(a) Shock solution with initial Riemann data (4.3.8)

at time, T = 0.5, first-order test

(b) Shock solution with initial Riemann data (4.3.8),

T = 0.5, second-order test

(c) Rarefaction wave solution with initial Riemann

data 4.3.9 at time, T = 0.2, first-order test

(d) Rarefaction wave solution with initial Riemann

data (4.3.9), T = 0.2, second-order test

Figure 4.3: First and second-order numerical solutions for JIN XIN and discrete kinetic relaxing

schemes. The x-axis represents the space variable x and the y-axis represents the velocity field, u.
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of HCLs in one space dimension, where

u = [u1, . . . , um]T (4.4.2)

is the vector of unknown conserved variables, and

f = [f1, . . . , fm]T (4.4.3)

is the vector of flux functions. When m = 1, the system (4.4.1) reduces to scalar HCL.

We have begun the solution of nonlinear systems of HCLs by first considering a linear system

ut +Aux = 0, (4.4.4)

which is the simplest case of (4.4.1). Specifically, we consider the one-dimensional wave equation

utt − a2uxx = 0, (x, t) ∈ (0;L)× R+, (4.4.5)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0;L]. (4.4.6)

The wave equation (4.4.5) can be transformed into a system of first-order equations by making

change of variables v = ux, and w = −ut. With these changes, the wave equation (4.4.5) reduces

to

vt + awx = 0 (4.4.7)

wt + avx = 0, (x, t) ∈ (0;L)× R+, (4.4.8)

supplemented with initial conditions

v(x, 0) = v0(x) = 0, (4.4.9)

w(x, 0) = −1

a

∫ x

0
u1(s)ds+ c, u1(x) = sin(πx), x ∈ [0;L]. (4.4.10)

We solved the system of equations (4.4.7) with boundary conditions for L = 1 (see Figure 4.4).

Accurate numerical solution solved with suitable initial and boundary conditions

u(x, 0) = 0, ut(x, 0) = 0 (4.4.11)

u(0, t) = 0; u(π, t) = 0, (4.4.12)

can be compared to analytical solution u(x, t) = 1
a sin(at) sin(x).

Good approximations for both schemes are obtained for the solution of the problem discussed

above. Our intention here is that, the linear model equation provides crucial information for

generalization to nonlinear systems. Thus, we carried out tests to numerically solve these kind

of problems, especially those with propagating discontinuities.
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Figure 4.4: Solution of the wave equation (4.4.5), JIN XIN scheme (black solid line with squares at

data points), kinetic scheme (green asterisk), and exact solution (red solid line); T = π
2 , M = 400,

ε = 10−8, a = 1. The x-axis represents the space variable x and the y-axis represents the wave

profile, u.

4.5 Numerical Solutions for Nonlinear Systems of HCLs

We embark to consider relaxing schemes for the solution of the nonlinear systems of HCLs. As

we have already explored the development of these schemes, discretization in space is achieved

by the operator splitting approach associated with TVD Runge-Kutta type time discretizations

up to second-order in time. Second-order accuracy in space is achieved by employing minmod

slope limiter through MUSCL reconstruction on the transport part. Other slope-limiters can

also be considered. This kind of discretization is suitable for circumventing discontinuities at the

same time increasing accuracy. We started by testing comparatively the two first-order relaxing

schemes, and then repeat experiments with the examples we have surveyed for the first-order

schemes with the second-order in time and space more accurate schemes.

As we have mentioned in the previous sections, our intention has been to solve numerically 1D

nonlinear system of HCLs for the purpose of optimization. We devised a means to obtain accu-

rate approximations to solutions of these systems, and emphasized on accuracy as an important

ingredient and central tool to optimization process under consideration.

Consider the approximate numerical solution of the 1D Euler Equations of gas dynamics in a

conserved form

∂

∂t
ρ+

∂

∂x
m = 0 (4.5.1)

∂

∂t
m+

∂

∂x
(ρu2 + p) = 0 (4.5.2)

∂

∂t
E +

∂

∂x
(u(E + p)) = 0, (4.5.3)
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where ρ, u, m = ρu, p, and E are, respectively, the density, velocity, momentun, pressure and

total energy of the gas. For a perfect gas, E is related to other quantities by

E =
p

γ − 1
+

1

2
ρu2 (4.5.4)

where γ constitutes the thermodaynamic property of the gas and is the rato of specific heat

coefficients.

The system (4.5.1) takes the form

ut + f(u)x = 0, (4.5.5)

when we write

u =


ρ

m

E

 , f(u) =


m

ρu2 + p

u(E + p)

 . (4.5.6)

The relaxation system for (4.5.5) takes the form∂u
∂t + ∂v

∂x = 0,

∂v
∂t +A∂u

∂x = −1
ε (v − f(u)),

(4.5.7)

where A = diag{ai}, ai > 0, for 1 ≤ i ≤ 3,

and its equivalent discrete kinetic relaxation takes the form (3.5.1).

Mathematical analysis [34, 125] shows that, the relaxation (4.5.7) of the Euler equation (4.5.5)

can be decomposed as A = P ∧ P−1 where

∧ =


u− a 0 0

0 u 0

0 0 u+ a

 , (4.5.8)

P =


1 1 1

u− a u u+ a

H − au 1
2u

2 H + au

 , (4.5.9)

and

P−1 =


1
2(α1 + u

a ) −1
2(α2u+ 1

a) α2
2

1− α1 α2u −α2

1
2(α1 − u

a ) −1
2(α2u− 1

a) α2
2

 (4.5.10)
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such that α1 = (γ−1)u2

2a2
and α2 = γ−1

a2
. Here a =

√
γ pρ =

√
γRT is the local sound speed, H is

the Enthalpy, R the universal gas constant and T is the temperature of the gas.

The relaxation system (4.5.7) therefore has three eigenvalues given by

λ− = u− a, λ0 = u, λ+ = u+ a. (4.5.11)

For computational tests, we can make the choices according to [64], i.e., a1, a2, a3 = sup|u− a|,
sup|u|, sup|u + a|, respectively, or a1 = a2 = a3 = max(sup|u − a|, sup|u|, sup|u + a|), where

sup is an abbreviation for supremum, and supremum is defined as the least upper bound value

of a given set. We then solved the two relaxation systems (4.5.7) and (3.5.1) for the parameters

of our choice.

4.5.1 Sod Shock Tube Problem

Our computational tests involved experimentation with the Sod’s data for the Shock Tube

problem. To be able to understand the idea behind the shock tube we had to consider a long

1D tube which is closed at its ends and initially filled with a gas separated by a membrane at

the middle. The gas has a high pressure and density in one section of the tube than the other,

Figure 4.5. The velocity of the gas is initially zero everywhere. When the membrane is suddenly

removed at time t = 0, causes the high speed flow of the gas from high to low pressure region,

Figure 4.6. Assumming that the net flow is uniform across the tube, there will be variation in

only one direction, and this variation can be described or modeled by 1D Euler Equations of

gas dynamics considered. Detailed descriptions of the shock tube problem is found in [59, 76].

4.5.2 First and second order numerical tests

We implemented schemes we derived under Chapter 3 with the Riemann data defined in this

way: uL = (ρL, vL, pL) corresponds, respectively, to the density, velocity and pressure on the

left part of the domain for 0 ≤ x < 0.5; and uR = (ρR, vR, pR) is the data corresponding

to density, velocity and pressure on the right part of the domain for 0.5 ≤ x ≤ 1. All (unless

stated otherwise) tests for the system of the Euler equations are carried for the following set of

values: T = 0.17, the computational spatial domain [0, 1], M = 400 grid points, CFL (Courant-

Friedrichs-Lewy) = 0.75 and ε = 10−8. In addition, for the second-order relaxing schemes we

used minmod slope limiter.

We have begun the solution of the Euler equations for the following pair of Riemann data:

uL = (1.25, 0.0, 1.2), uR = (0.25, 0.0, 0.25). We take a1 = 1.0, a2 = 2.5, a3 = 5.2. Results

obtained with the first and second order relaxing schemes presented in Figure 4.7 show that the

two schemes well agree to each other.
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Figure 4.5: Sketch of the initial configuration of the shock tube at time t = 0. PL, TL, VL and

PR, TR, VR are, respectively pressure, temperature and velocity; on the left and right part of the

tube.
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Figure 4.6: Sketch of the shock tube showing waves interaction after the membrane breakdown,

t > 0.

We consider a second example, solved with initial condition uL = (1.45, 0.0, 1.5), uR =

(0.45, 0.0, 0.5). This time we have chosen a1 = 2.2, a2 = 2.5, a3 = 5.0. Solutions computed

over time length T = 0.17 are displayed in Figure 4.8. Density, velocity and pressure profiles for

both schemes are reasonably equivalent.

Finally, consider the last example evolved from initial data uL = (2.5, 0.0, 2.0), uR =

(0.5, 0.0, 0.6) computed over same time horizon T = 0.17 as for previous examples, and present

simulated results in Figure 4.9. Simulations show that, solutions obtained with two different

relaxing schemes are comparable in terms of appearance and accuracy as well.

These examples demonstrate that the two relaxing schemes under consideration are basically

equivalent and give similar results.

We have implemented first and second-order schemes derived under Chapter 3. We observed

from a series of figures that second-order solutions are more sharper compared to the first-order

ones. As compared, all the numerical results for the two relaxing schemes presented for different

meshes show that the two schemes, the JIN XIN and the discrete kinetic reasonably give similar

results. We have computed solutions for the meshes of 200, 400, 800, 1600 points for the sake

of comparison. Clearly, results show that all schemes convergence with mesh refinement, but

beyond 400 grid points, numerical experiments reveal that refinement is no longer necessary as
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.7: First and second order numerical solutions for density, velocity and pressure profiles

with JIN XIN and discrete kinetic schemes, for 1D Euler Equations at time, T = 0.17, uL =

(1.25, 0.0, 1.2), uR = (0.25, 0.0, 0.25), for a1 = 1.0, a2 = 2.5, a3 = 5.2, M = 400 and

ε = 10−8. The x-axis represents the space variable x and the y-axis represents density (top),

velocity (middle) and pressure (bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.8: First and second order numerical solutions for density, velocity and pressure profiles

with JIN XIN and discrete kinetic schemes, for 1D Euler Equations at time, T = 0.17, uL =

(1.45, 0.0, 1.5), uR = (0.45, 0.0, 0.5); a1 = 2.2, a2 = 2.5, a3 = 5.0, M = 400 and ε = 10−8.

The x-axis represents the space variable x and the y-axis represents density (top), velocity (middle)

and pressure (bottom).



Section 4.5. Numerical Solutions for Nonlinear Systems of HCLs Page 60

(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.9: First and second order numerical solutions for density, velocity and pressure profiles with

JIN XIN and discrete kinetic schemes, for 1D Euler Equations at time, T = 0.17, uL = (2.5, 0.0, 2.0),

uR = (0.5, 0.0, 0.6); a1 = 3.5, a2 = 4.5, a3 = 5.5, M = 400 and ε = 10−8. The x-axis represents

the space variable x and the y-axis represents density (top), velocity (middle) and pressure (bottom).
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solutions are already sharper at this point (see Figures 4.10, 4.11). Thus, only numerical results

for 400 grid points are presented, and this grid could be used for optimization as well. However,

one would obviously expect that, decreasing mesh sizes indeed give more accurate results but

also leads to a higher run-time. Another observation is that, some set of data introduce more

viscosity, see for example in Figure 4.9, considerably smearing contact discontinuities while

others produce sharper solutions even for first-order schemes especially with increased grid

refinement.

We have numerically demonstrated that the two relaxing schemes discussed in [5] and [64] which

we also have surveyed and discussed under Chapter 3 are equivalent. In addition, these numerical

results further verify the applicability and the robustness of the methods we have considered.

This solution approach is promising, and in the next Section it is considered and employed as

an essential tool in an optimization procedure.

4.6 Adjoint-Optimization Tests

We present first-order and second-order optimal control results for scalar nonlinear hyperbolic

conservation laws and the one-dimensional systems of Euler Equations for the two relaxing

schemes, JIN XIN and discrete kinetic schemes derived under Chapter 3. The optimal control

is carried out by matching the numerical solution to the target for a given time length. The

minimization process therefore involves the cost functional of L2 norm of the difference between

the computed solution and a desired one. Briefly, optimization process is an implementation

of the algorithm described under Subsection 3.6.3. In addition to the algorithm, we employed

Wolfe conditions [96, 8] to restrict the choice of the step-size α which is used to modify the

functional gradient (2.7.15) that perturb the flow solution. The control parameters are chosen

to be initial values of density, velocity and pressure. Existence of the optimal control solution

can be conceptualized from numerical displays. We obtained good match between the numerical

solution and the desired one for both first and second order schemes.

As described, the optimal control process is of matching type in which we iteratively compute

some solution u(x, T )(u0) (depicted by green solid line) to match with a target solution ud(x, T ).

The process starts by choosing some initial guess u0, and then using the relaxing schemes derived

under Chapter 3, we solve the HCL to obtain the solution u(x, T ), a function of u0 at some

terminal time T . The functional gradient (2.7.15) is calculated and used at every optimization

cycle to modify the design parameter u0, and each modified u0 is evolved by the relaxing scheme

until the optimal solution u(x, T ) that matches the target is attained. The whole optimization

process is summarized by the algorithm 3.6.3. We denote by V (x, T )(u0) the initial solution

obtained by solving the flow equation once forward in time, where V is any conserved quantity

(density, velocity and pressure for the Euler system of equations). Optimal denotes the numerical
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(a) First-order (b) Second-order

(c) First-order (d) Second-order

(e) First-order (f) Second-order

Figure 4.10: Comparing first-order and second-order solutions for different grids with JIN XIN scheme;

T = 0.17, uL = (2.5, 0.0, 2.0), uR = (0.5, 0.0, 0.6); a1 = 2.0, a2 = 3.5, a3 = 5.5, ε = 10−8.

The x-axis represents the space variable x and the y-axis represents density (top), velocity (middle)

and pressure (bottom).
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(a) First-order (b) Second-order

(c) First-order (d) Second-order

(e) First-order (f) Second-order

Figure 4.11: Comparing first-order and second-order solutions for different grids with discrete kinetic

scheme. Same parameters as in Figure 4.10. The x-axis represents the space variable x and the

y-axis represents density (top), velocity (middle) and pressure (bottom).
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solution that matches the desired profile (solution) and the desired profile is called Target. We

used as a stopping criterion the functional (2.7.1) absolute value, |J(u0, ud)| < 10−4.

4.6.1 Optimization tests for scalar nonlinear HCLs

Under this Subsection, we present optimal control results for scalar nonlinear HCLs. We consider

the Burgers’ Equation (4.3.4) with Initial condition for the target solution

u0(d) =
1

2
+ sin(x), (4.6.1)

and the design parameter (initial guess) for optimal solution

u0 = sin(x) (4.6.2)

for x ∈ [0, 2π]. Optimal control first and second order results for both schemes are, respectively,

presented in Figures 4.12 and 4.13. It is clear that we obtained a good match between optimal

and the target solutions for this example.

4.6.2 Optimization tests for systems of nonlinear HCLs

In this minimization process, initial guess for the target solution is comprised of the Sod shock

tube data for system of Euler Equations,

uL = (1.0, 0.0, 1.0), uR = (0.125, 0.0, 0.1). (4.6.3)

The target solution for the initial data (4.6.3) is obtained using a1 = 1.0, a2 = 1.68, a3 = 5.045

over T = 0.17. We present optimal control results first-order and second-order in time and space

for the two relaxing schemes derived under chapter 3. These results are for the minimization of

the problem (2.7.1) with a system of Euler equations (4.5.1) as a constraint.

The first example we considered matches the target to the optimal solution computed from the

set of data uL = (1.2, 0.078, 1.2), uR = (0.325, 0.285, 0.295), a1 = 2.183, a2 = 3.004, a3 =

4.286 over the time T = 0.17. The optimal solution for density, pressure and velocity were found

to be in a very good agreement with the target for both schemes. First and second order optimal

control results for JIN XIN scheme and discrete kinetic scheme are, respectively, potrayed in

Figures 4.14, 4.15.

We considered the second example in which also the optimal solutions for the density, velocity

and pressure match exactly with the target solutions. Optimal solutions are solved for values of

initial condition, uL = (1.2, 0.2, 1.25), uR = (0.32, 0.73, 0.32), a1 = 2.47, a2 = 3.5, a3 = 4.36.

We carried computations over usual time T = 0.17. First and second order results for this set

of data are displayed in Figure 4.16 for JIN XIN scheme and in Figure 4.17 for discrete kinetic

scheme.
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(a) Optimization with smooth solution using JIN

XIN scheme, T = π
4

(b) Optimization with smooth solution using ki-

netic scheme, T = π
4

(c) Optimization with shock solution using JIN

XIN scheme, T = 2

(d) Optimization with shock using kinetic scheme,

T = 2

Figure 4.12: First-order adjoint-based optimization of scalar nonlinear HCL results for JIN XIN and

kinetic schemes, M = 400 and ε = 10−8. The x-axis represents the space variable x and the y-axis

represents the conserved quantity, u.
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(a) Optimization with smooth solution using JIN

XIN scheme, T = π
4

(b) Optimization with smooth solution using ki-

netic scheme, T = π
4

(c) Optimization with shock solution using JIN

XIN scheme, T = 2

(d) Optimization with shock using kinetic scheme,

T = 2

Figure 4.13: Same parameters as in Figure 4.12 but second-order tests. The x-axis represents the

space variable x and the y-axis represents the conserved quantity, u.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.14: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

The optimal solution is shown by the red solid line and target by black solid line with squares at

data points, T = 0.17, uL = (1.2, 0.078, 1.2), uR = (0.325, 0.285, 0.295), a1 = 2.183, a2 =

3.004, a3 = 4.286, M = 400 and ε = 10−8. The x-axis represents the space variable x and the

y-axis represents density (top), velocity (middle) and pressure (bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.15: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results

obtained with discrete kinetic scheme. Optimal solution is depicted by the red solid line and target

by black solid line with squares at data points, same parameters as used for Figure 4.14. The x-axis

represents the space variable x and the y-axis represents density (top), velocity (middle) and pressure

(bottom).



Section 4.6. Adjoint-Optimization Tests Page 69

(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.16: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for density,

velocity and pressure profiles with JIN XIN scheme at time, T = 0.17, uL = (1.2, 0.2, 1.25),

uR = (0.32, 0.73, 0.32), a1 = 2.47, a2 = 3.5, a3 = 4.36, M = 400 and ε = 10−8. The x-axis

represents the space variable x and the y-axis represents density (top), velocity (middle) and pressure

(bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.17: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for density,

velocity and pressure profiles with discrete kinetic scheme. Same parameters as in Figure 4.16. The

x-axis represents the space variable x and the y-axis represents density (top), velocity (middle) and

pressure (bottom).
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Thirdly, we present results for initial Riemann data uL = (1.24, 0.1852, 1.25), uR = (0.366, 0.629, 0.33).

We chose a1 = 1.96, a2 = 2.9, a3 = 4.33. As for the previous examples, we obtained good match

between the optimal and target solutions. Results are visualized in Figures 4.18 and 4.19.

Finally, we considered an example presented in [60]. In this case, initial optimal solutions are

solved for values of Sod data initial condition, uL = (1.0, 0.0, 1.0), uR = (0.125, 0.0, 0.1), and

the target is the solution of the initial conditions uL = (1.1, 0.0, 1.1), uR = (0.2, 0.0, 0.2) for

a1 = 1.6, a2 = 2.82, a3 = 4, 25. Computations are carried over usual time T = 0.17. First

and second order results for this example are given in Figure 4.20 for JIN XIN scheme and in

Figure 4.21 for discrete kinetic scheme. Good match between optimal and target solutions was

observed.

4.7 Functional Convergence

We conclude the analysis of the optimal control results presented above by giving a brief con-

vergence history for the two relaxing schemes. Under this analysis, the representative optimal

control example associated with a set of data uL = (1.2, 0.078, 1.2), uR = (0.325, 0.285, 0.295)

whose computations were carried over time T = 0.17 is chosen. The two graphs below summa-

rizes the progressive minimization of the cost functional with the number of iterations for both

the first-order and second order relaxing schemes. Results show that second-order schemes take

few iterations to converge than first-order ones. However, the number of optimization iterations

are independent of the grid size.

4.8 Comparison of Computation time

Besides qualitatively and physically comparing optimal control results for the JIN XIN scheme

and the discrete kinetic scheme discussed in the previous Sections, we also discuss briefly about

the computation time taken for simulation of these results. The time needed for the JIN XIN

scheme to converge is larger than that needed for the discrete kinetic scheme. Obviously, time

taken for the algorithm to converge for both schemes increase with the number of discretization

points, M . The computation time for a representative example is reported in Tables 4.1 and

4.2 for the space discretization with M = 200, 400, 800 grid points against NI, the number

of iterations. All computations are performed on a 2.67 GHZ Intel Core dual i5 processor using

python 2.5.6.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.18: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for density,

velocity and pressure profiles with JIN XIN scheme at time; T = 0.17, uL = (1.24, 0.1852, 1.25),

uR = (0.366, 0.629, 0.33), a1 = 1.96, a2 = 2.9, a3 = 4.33, M = 400 and ε = 10−8. The x-axis

represents the space variable x and the y-axis represents density (top), velocity (middle) and pressure

(bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.19: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for density,

velocity and pressure profiles obtained with the discrete kinetic scheme. Same parameters as in Figure

4.18. The x-axis represents the space variable x and the y-axis represents density (top), velocity

(middle) and pressure (bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.20: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for

density, velocity and pressure profiles with JIN XIN scheme at time, T = 0.17, uL = (1.0, 0.0, 1.0),

uR = (0.1, 0.0, 0.125) for optimal; and uL = (1.1, 0.0, 1.1), uR = (0.2, 0.0, 0.2) for target.

a1 = 1.96, a2 = 2.9, a3 = 4.33, M = 400 and ε = 10−8. The x-axis represents the space variable

x and the y-axis represents density (top), velocity (middle) and pressure (bottom).
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 4.21: First-order (Left) and second-order (Right) 1D Euler Equations optimal control results.

Optimal (red solid line) and target (black solid line with squares at data points) solutions, for density,

velocity and pressure profiles with discrete kinetic scheme at time, T = 0.17. Same parameters as

in Figure 4.20. The x-axis represents the space variable x and the y-axis represents density (top),

velocity (middle) and pressure (bottom).
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(a) Covergence history for first-order schemes (b) Convergence history for second-order schemes

Figure 4.22: Convergence history for the solution of the optimization problem computed with the first

order (left) and second-order (right) relaxing schemes for both JIN XIN and discrete kinetic schemes.

The x-axis represents the number of iterations and the y-axis represents the cost functional value.

Table 4.1: Computational time for first-order JIN XIN and discrete kinetic schemes

M NI JIN XIN Discrete kinetic

200 22 1.8245× 10+2 1.26× 10+2

400 22 9.07168× 10+2 4.9572× 10+2

800 22 1.9837× 10+3 1.2961× 10+3

Table 4.2: Computational time for second-order JIN XIN and discrete kinetic schemes

M NI JIN XIN Discrete kinetic

200 15 4.3234× 10+2 2.97× 10+2

400 15 1.7576× 10+3 1.1453× 10+3

800 15 3.2761× 10+3 2.370× 10+3



5. Conclusions

This research has been a tour on a mixed survey of well-known results and the present contribu-

tions. A great deal of theoretical perspectives from previous works has been substantiated by the

numerical results obtained, second-order adjoint-based optimization in this context. However,

a review and development of effective numerical schemes has been central to our optimization

approach.

Research has been focused on the adjoint approach to optimize problem constrained by nonlinear

systems of HCLs. We started by deriving the optimality systems for the two relaxation approach

discussed, we then developed their corresponding relaxing schemes: first and second order in

time and space. These schemes were then tested for both the solutions and the adjoint-based

optimal control of the scalar and systems of HCLs. Contrary to the existing numerical results

in [10, 94, 128], we have managed to utilize the theoretical second-order adjoint scheme derived

in [10], and obtained up to second-order optimal control numerical results. Although for the

second-order optimal control, the descent is computed via a first-order gradient method, we are

convinced that this is a reasonable estimate since all the coupling information that involve in

calculation of gradient come from the second-order schemes. However, we reviewed the first-

order optimal control numerical results discussed in [10, 94, 128], and through generalization

we were able to develop new adjoint relaxing schemes, first-order and second-order in time and

space for the discrete kinetic model. The coupling information obtained by solving flow and

adjoint systems during optimization cycle, enabled us to complete the optimization process, the

first and second order numerical results obtained are promising and comparable.

Talking from efficient point of view, computer runtimes for both schemes, of the flow equations

and that of the adjoint equations are almost equal. But the discrete kinetic scheme takes

shorter computer runtime compared to the she JIN XIN scheme. Results convince that storage

requirements are solely equal since each scheme fundamentally handles and processes almost the

same amount of data during computations. We can roughly draw that, a single optimization

cycle is equivalent to solving two to three times the flow equation. If there are extra constraints

added to the optimization algorithm in order to satisfy certain conditions, this may no longer

be the case.

Care have been taken in solving the adjoint systems as discontinuities soon develop when solving

backward in time. This realm is due to the fact that solutions for HCLs are not easily reversible

and highly unstable even for scalar conservation laws. Characteristics interact immediately

loosing the correct track of information propagation. We realized that, there must be a means

to check that stability condition is satisfied at every optimization cycle. Therefore, information

that pertains to insuring stability condition is subject to change at every step. Comparing the

two schemes for flow and adjoint equations in term of stability, adjoint scheme is more prone

77



Page 78

and suffers severely than the scheme for the flow equations.

This study has been motivated by the fact that, both the HCLs and the adjoint-based opti-

mization considered have a lot of applications in the real life. For example, transport equation

in modeling chemical processes and pollutants in a river, Burgers’ Equation could be applied

in modeling traffic flows. For systems of HCLs, we have considered the Euler Equations of gas

dynamics, typically applied in modeling gas in pipelines and in aircraft configurations. It is our

expectations that, this study could have contributions in these areas of applications and also

brings challenges to researchers and scientists for further investigations.

It was never expected that, this study could explain all, and it has not done so far. We hope

this study will be judged, not primarily by the degree to which it explains, but by the extent to

which it lays down the foundation for further work. Options for further research in the context

of this work are diverse. One may decide to extend this research to incorporate much higher-

order schemes during optimization process. It is also possible to extend this work to deal with

multi-dimensional problems, especially when bearing in mind that the approach is featured by a

number of valuable characteristics which make it easily extendable. However, adjoint approach

to optimization, as we have discussed, can be inter-twined with other numerical schemes for

optimization purpose apart from relaxing. More importantly, is to consider high than first-order

optimality conditions for adjoint-based optimization. Finally, our future work may involve one

or more of the possible extensions we have mentioned, most likely, we intend to apply similar

ideas to consider high order optimality conditions.
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Verlag, Berlin, 1992.

[77] R. J. LEVEQUE. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in

Applied Mathematics. Cambridge University Press, 2002.

[78] R. J. LEVEQUE, D. MIHALAS, E.A. DORFI, and E. MULLER. Computational Methods

for Astrophysical Fluid Flow: Swiss Society for Astrophysics and Astronomy, 27th Saas-

Fee Advanced Course Lecture Notes. Springer-Verlag, Berlin Heidelberg New York, 1997.

[79] M. J. LIGHTHILL and G. B. WHITHAM. A theory of traffic flow on long crowded roads.

Proc. R. Soc., London A, 229:317–345, 1955.

[80] M.-S. LIOU. A sequel to ausm: Ausm+. to appear. J. Comp. Phys.

[81] M.-S LIOU. and C. J. STEFFEN Jr. A new flux splitting scheme. J. Comp. Phys., 107:107,

1993.

[82] T. P. LIU. Hyperbolic conservation laws with relaxation. Comm. Math. Phys., 108:153–

175, 1987.

[83] X. LIU, S. OSHER, and T. CHAN. Weighted essentially non-oscillatory schemes. J.

Comput. Phys., 115:200–212, 1994.

[84] Z. LIU and A. SANDU. On the properties of discrete adjoints of numerical methods for

the advection equation. Int. J. for Num. Meth. in Fluids, (56):769–803, 2008.

[85] R. MAcCORMACK. Proceedings of the Second International Conference on Numerical

Methods in Fluid dynamics, Lecture Notes in Physics, (M. Holt, Ed.). 8, 1971.

[86] A. MARQUINA. Local piecewise hyperbolic reconstruction of numerical fluxes for non-

linear scalar conservation laws. SIAM J. Sci. Comput., 15:892, 1994.



BIBLIOGRAPHY Page 85

[87] T. MATSUZAWA and M. HAFEZ. Optimum shape design using adjoint equations for

compressible flows with shock waves. International Journal for Computational Fluid Dy-

namics, 7(3):343–365, 1998.

[88] V. MILISIC. Stability and convergence of discrete kinetic approximations to an initial-

boundary value problem for conservation laws. Proceeding of the Amer. Math. Soc., to

appear, 97:595–633, 2004.

[89] S. K. NADARAJAH and A. JAMESON. A Comparison of the Continuous and Discrete

Adjoint Approach to Automatic Aerodynamic Optimization. AIAA Paper 2000-0667,

2000.

[90] M. NAKASHIMA. Embedded pseudo-Runge-Kutta methods. SIAM J. Numer. Anal.,

28:1790–1802, 1991.

[91] R. NATALINI. Convergence to equilibrium for the relaxation approximations of conser-

avtion laws. Comm. Pure Appl. Math., (49):795–823, 1996.

[92] R. NATALINI. A discrete kinetic approximation of entropy solutions to multidimensional

scalar conservation laws. J. Differential Equations, 148(2):292 – 317, 1998.

[93] R. NATALINI and A. TERRACINA. Convergence of a relaxation approximation to a

boundary value problem for conseravtion laws. Comm. Partial Differential Equations,

(26):1235–1252, 2001.

[94] J.-M. T. NGNOTCHOUYE, M. HERTY, and M. K. BANDA S. VEELKEN. Relaxation

Approaches to the Optimal Control of the euler Equations. Computational and Applied

Mathematics (Accepted).

[95] N. T. NGUYEN. Continuous Adjoint-Based Optimization of Hyperbolic Equations with

Nonlinear Differential Equation Constraints on Periodic Boundary Conditions, Preprint.

[96] J. NOCEDAL and S. J. WRIGHT. Numerical optimization. Springer-Verlag, New York,

NY, 1999.

[97] O. OLEINIK. On the uniqueness of the generalised solution of the Cauchy problem for a

non-linear systems of equations occurring in mechanics (Russ.). Usp. Mat. Nauk. (N.S.),

12:169–176, 1957.

[98] S. OSHER and S. CHAKRAVARTHY. High Resolution Schemes and the Entropy Condi-

tion. SIAM J. Numer. Anal., 21(5):955–984, October 1984.

[99] S. OSHER and S. CHAKRAVARTHY. Very High Order Accurate TVD Schemes. IMA

Vol. Math. Appl., 2:229, 1986.



BIBLIOGRAPHY Page 86

[100] S. OSHER and F. SOLOMON. Upwind difference schemes for hyperbolic systems of

conservation laws. Math. Comput., 38:339–374, 1982.

[101] L. PARESCHI, G. PUPPO, and G. RUSSO. Central Runge-Kutta schemes for hyperbolic

conservation laws. SIAM J. Sci. Comp., 26:979–999, 2005.

[102] L. PARESCHI and G. RUSSO. Implicit-Explicit Runge-Kutta schemes for stiff systems of

differential equations. Recent Trends in Numerical Analysis (Eds. Brugano, Trigiante),

3:269–284, 2000.

[103] L. PARESCHI and G. RUSSO. Asymptotically SSP schemes for hyperbolic systems with

stiff relaxation. Hyperbolic problems: Theory, Numerics, Applications: Proceedings of the

Ninth International Conference on Hyperbolic Problems Held in CaItech, Pasadena, pages

241–255, 2003.

[104] L. PARESCHI and G. RUSSO. Implici-Explicit Runge-Kutta schemes and applications

to hyperbolic systems with relaxation. J. Sci. Comput., 25(1-2):129–155, 2005.

[105] S. PATEL and D. DRIKAKIS. Effects of preconditioning on the accuracy and efficient of

incompressible flows. International Journal for Numerical Methods in Fluids, 47:963–970,

2005.

[106] R. PEYRET. Handbook of Computational Fluid Mechanics. Academic Press, Nice, 1995.

[107] R. PEYRET and T. D. TAYLOR. Computational Methods for Fluid Flow. Springer, 1983.

[108] R. RICHTMYER. A Survey of Difference Methods for Non-Steady Fluid Dynamics, NCAR

Technical Note 63-2, National Center for Atmospheric Research. 1962.

[109] R. RICHTMYER and K. MORTON. Difference Methods for Initial-Value Problems. 2nd

ed. Interscience, New York, 1967.

[110] P. L. ROE. Approximate Riemann solvers, parameter vectors, and difference schemes. J.

Comput. Phys., 43:357–372, 1981.

[111] V. V. RUSANOV. J. Comp. Math. Math. Phys. USSR, (2), 1962.

[112] S. J. RUUTH and R. J. SPITERI. Two barriers on strong-stability-preserving time dis-

cretization methods. Journal of Scientific Computation, 17:211–220, 2002.

[113] S. J. RUUTH and R. J. SPITERI. Higher-order strong-stability-preserving Runge-Kutta

methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal., 42:974–

996, 2004.



BIBLIOGRAPHY Page 87

[114] G. B. WHITHAM F. R. S. LINEAR AND NONLINEAR WAVES. JOHN WILEY and

SONS, 1974.

[115] R. H. SANDERS and K. H. PRENDERGAST. The possible relation of the 3-kiloparsec

arm to explosions in the galactic nucleus. Astrophys. J., 188:489, 1974.

[116] H. J. SCHROLL. Relaxed High Resolution Schemes for Hyperbolic Conservation Laws.

Journal of Scientific Computing, 21(2):1–11, October 2004.

[117] C. SHU. Total-variation diminishing time discretizations. SIAM J. Sci. and Stat. Comput.,

9:1073–1084, 1988.

[118] C.-W SHU. TVB uniform high-order schemes for conservation laws. Math. Comp., 49:105–

121, 1987.

[119] C.-W. SHU and S. OSHER. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[120] G. SOD. Numerical Methods for Fluid Dynamics. Cambridge University Press, 1985.

[121] G. A. SOD. A Survey of Several Finite Difference Methods for Systems of Nonlinear

Hyperbolic Conservation Laws. Journal of Computational Physics, (27):1–31, 1978.

[122] J. L. STEGER and R. F. WARMING. Flux vector splitting of the inviscid gas dynamic

equations with applications to finite-difference methods. J. Comp. Phys., 40:263, 1981.

[123] Y. SUN, Z. J. WANG, and Y. LIU. Spectral (finite) volume method for conservation laws

on unstructured grids VI: Extension to viscous flow. J. Comput. Phys., 215:41–58, 2006.

[124] P. K. SWEBY. High resolution schemes using flux limiters for hyperbolic conservation

laws. SIAM J. Num. Anal., 21:995–1011, 1984.

[125] E. F. TORO. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical

Introduction. 3rd Edition. Springer-Verlag, Berlin, Heidelberg, 2009.

[126] J. A. TRANGENSTEIN. NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIF-

FERENTIAL EQUATIONS. Cambridge University Press, 2007.

[127] S. ULBRICH. A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic

conservation laws with source terms. SIAM J. Control Optim., 41(3):740, 2002.

[128] S. VEELKEN, M. HERTY, J.-M. T. NGNOTCHOUYE, and M. K. BANDA. Optimal

Control of the Euler Equations via Relaxation Approaches. PAMM, 10(1):595–596, Novem-

ber 2010.



BIBLIOGRAPHY Page 88

[129] W. C. WANG and Z. XIN. Asymptotic limit of initial boundary-value problems for con-

servation laws with relaxational extensions. Comm. Pure Appl. Math., 51:505–535, May

1998.

[130] Z. J. WANG and Y. LIU. The spectral difference method for the 2D euler equations on

unstructured grids. In 17th AIAA Computational Fluid Dynamics Conference. AIAA,

2005.

[131] Z. J. WANG, Y. LIU, G. MAY, and A. JAMESON. Spectral difference method for un-

structured grids II: Extension to the euler equations. J. Sci. Comp., 32(1):45–71, 2007.

[132] J.H. WILLIAMSON. Low-storage Runge-Kutta schemes. J. Comput. Phys., 35(MR: 81a:

65070):48–56, 1980.

[133] L. DEL ZANNA and N. BUCCIANTINI. An efficient shock-capturing central-type scheme

for multidimensional relativistic flows: I. hydrodynamics. Astronomy and Astrophysics,

390:1177–1186, 2002.

[134] L. DEL ZANNA, N. BUCCIANTINI, and P. LONDRILLO. An efficient shock-capturing

central-type scheme for multidimensional relativistic flows: II. magnetohydrodynamics.

Astronomy and Astrophysics, 400:397–414, 2003.


	Abstract
	List of Tables
	List of Figures
	Introduction
	Objectives of the Study
	Solutions of nonlinear hyperbolic conservation laws
	Relaxation system
	Adjoint-based optimal control
	Organization of the work


	Mathematical Framework
	Governing System of Conservation Laws
	General Hyperbolic Systems
	Linear hyperbolic systems
	Nonlinear hyperbolic systems
	Diagonalization of hyperbolic systems
	Transform to characteristic variables

	Weak Solutions
	Relaxation Approaches
	JIN XIN Relaxation Approximation Methods
	Chapman-Enskog analysis for JIN XIN relaxation system
	Diagonalization of JIN XIN relaxation system
	Characteristic variables for JIN XIN relaxation system

	A BGK Model
	Problem Formulation and Adjoint Approach to Optimization
	Derivation of the optimality system from JIN XIN relaxation system
	Derivation of the adjoint system for the discrete kinetic model


	Discretizations of the Relaxation Systems
	Construction of the First-order JIN XIN Relaxing Scheme
	Spatial discretization
	TVD Runge-Kutta time discretization

	First-order Discretization of the Adjoint System
	Spatial discretization
	TVD Runge-Kutta time discretization for the adjoint system

	MUSCL, TVD High Resolution Schemes: JIN XIN Relaxation Scheme
	Construction of MUSCL, TVD second-order in space schemes
	TVD, Runge-Kutta second-order in time discretization

	Discretization of the Adjoint Equation, Second-order in Time and Space
	Spatial discretization
	Time discretizations

	Relaxing Scheme for the Discrete Kinetic Relaxation system
	Discretization of the discrete kinetic model, first-order in time and space
	Spatial discretization for the discrete kinetic model, second-order in space
	Second-order Runge-Kutta time discretizations for the discrete kinetic model
	Time and space adjoint discretizations of discrete kinetic model, second-order

	Boundary conditions
	Periodic boundary conditions
	Transparent boundary conditions
	Algorithm for gradient computing


	Numerical Results
	Numerical Discretizations of Spatial and Temporal Domains
	General Descriptions
	Numerical Experiments for Scalar HCLs
	Numerical experiments for scalar linear HCLs
	Numerical experiments for scalar nonlinear HCLs

	Numerical Solutions for Systems of HCLs
	Numerical Solutions for Nonlinear Systems of HCLs
	Sod Shock Tube Problem
	First and second order numerical tests

	Adjoint-Optimization Tests
	Optimization tests for scalar nonlinear HCLs
	Optimization tests for systems of nonlinear HCLs

	Functional Convergence
	Comparison of Computation time

	Conclusions

