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Abstract

The work presented extends and contributes to research in the visualisation of

discharge channels with an expectation to extend to lightning channels. Although

previous work in this area has produced three-dimensional (3D) information of

discharge channels, there has not been a method to visualise the channel and

the characteristics of its shape in a 3D environment. In the research presented,

photographed discharge channels are reconstructed in a virtual interactive 3D envi-

ronment.

It is found that single-channelled discharges produce models that correctly follow the

inferred channel paths from the photograph datasets. Single-channelled discharges

have also been verified in the controlled laboratory environment, providing confi-

dence in the two-image reconstruction algorithm. The algorithm is shown to fail

for an angular separation of cameras less than 15◦, which produces thicker channel

segments. It is further shown that branched discharge channels can produce models

that correctly follow the channel paths. If images are not accurately normalised

for lens correction and slight camera tilts, missing segments and duplication of

reconstructed branches are evident in the models. Furthermore, it is shown that

the algorithm also fails for image perspectives with angular separations less than

15◦, additional redundant branches are produced in addition to thicker channel

segments.
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Chapter 1

Introduction

Lightning models form a large basis of research into further investigating the physical

construction and progression of the meteorological phenomenon [1]. These models

have a significance into understanding the nature of discharge channels through

the examination of the shape, tortuosity, span, factors affecting its formation, risk

involved with Cloud-to-Ground (CG) events and provides a scope for minimising

such dangers. The software simulation of lightning channels have become a necessity

for analysing an otherwise fast, intangible and non-repeatable event. This study

provides a investigation into the feasibility of reconstructing lightning discharge

channels, which is compared with data produced from High Voltage (HV) laboratory

investigations. Multiple digital images photographed of discharges are used as the

fundamental datasets in conjunction to camera positions relative to the discharge

locations. These reconstructed discharge channel models are examined within a

three-dimensional (3D) virtual environment to visualise the channel using pan, tilt

and zoom user capabilities.

A system is designed to capture two-dimensional (2D) images of a discharge channel

and represent the discharge as a 3D model within a 3D interactive environment. Two

key investigations are conducted in the form of small-scale HV laboratory and large-

scale physical lightning experiments. The investigations provide two fundamental

channel shapes involved with discharge channels: single-channelled and multiple-

channelled discharges. The use of image data on each of these shapes will provide

verfication on the algorithms used to reconstruct the channels. The results from

these investigations are compared to determine the feasibility of reconstructing

lightning discharge channel models using digital images.

Chapter 2 discusses the background information associated with lightning, the
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photography of lightning, lightning modelling methods and 3D modelling methods.

A review on existing research associated with this work is also identified.

Chapter 3 evaluates the approach taken on the proposed solution to determining

the feasibility of reconstructing a 3D model of a lightning discharge channel. The

assumptions and constraints are presented to determine the necessary approach

concerning the problem statement. The motivation behind the undertaking of this

research is provided with its significance in the field of lightning research.

Chapter 4 provides an overview on the system design . The system is discussed

from its photography of discharge channels, to the production of the reconstructed

model. A discussion of the photographic equipment used for the investigations is

provided, including the operations and limitations involved. Data conditioning of

the images is discussed to isolate discharge channel information in each frame, and

prepare Boolean images as inputs into the modelling framework. Reconstruction

algorithms are discussed for the reconstructing both single- and multiple-channelled

discharges. The testing methodology in determining the accuracy of reconstructed

models is also discussed.

Chapter 5 investigates the reconstruction of discharges in a small scale HV labo-

ratory environment. This investigation allows for the controlled simulation of the

camera positioning which can be compared to the physical scenario with regards to

natural lightning. Several tests are performed to evaluate the performance of the

algorithm configurations and provide verification of reconstructing single-channeled

and multiple-channelled discharges.

Chapter 6 investigates the reconstruction of natural lightning discharges in the large,

uncontrolled, physical lightning environment using a limited set of photographed

images. Single-channelled and multiple-channelled discharge channels are recon-

structed.

Chapter 7 summarises the results of the laboratory and physical investigations.

A discussion of the project feasibility and the future work of reconstructing

single-channelled and multiple-channelled discharges and an evaluation of the system

is provided. All results are provided with respect to the reconstruction system

discussed in Chapter 4.

Chapter 8 discusses the final findings of the system and its investigation scenarios

and provides a conclusion to the work.
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Appendix A summarises additional information on cameras and camera options for

the photography of discharge channels.

Appendix B presents a paper published and presented at a peer-review conference,

to provide a background and motivation for this research investigation.

Appendix C presents a paper published and presented at a peer-review conference,

to provide ground work on the system and preliminary testing performed in the HV

laboratory.

Appendix D presents a paper published and presented at a peer-review conference,

providing an investigation into larger discontinuous laboratory gaps.

Appendix E presents a paper published and presented at a peer-review conference, to

provide preliminary laboratory work into investigating reconstructions of discharges

if cameras are placed at different elevations.

Appendix F presents a paper published and presented at a peer-review conference,

providing confidence in reconstructing branched lightning discharge channels with

no 3D definition.

Appendix G presents a paper published and presented at a peer-review conference,

producing a reconstruction of single-channelled lightning discharge.
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Chapter 2

Background

Lightning research started with ground-level observations [2]. These fast, almost

instantaneous events (durations of µs) are typically recorded in a two-dimensional

(2D) capacity. With the development of camera technology, more information

has been resolved through faster camera framerates and monitoring techniques.

Simulated lightning models take it a step further to understand its statistical nature.

Through the advancement of computer technology, new exciting ways to represent

the lightning event have been made possible, whether for research or entertainment

media purposes. By combining the two technologies, the possibility for recon-

structing three-dimensional (3D) lightning discharge channels using photographs of

a lightning event can be achieved.

Existing research which provides insight into the development of this work is sum-

marised in four parts. Firstly, the lightning phenomenon is discussed and classified.

Secondly, the photography of the fast transient discharge events is defined. Then,

research relating to lightning attachment to or extending from tall structures is

discussed and two towers in Johannesburg are introduced and evaluated. Finally,

several different ways of representing lightning by means of models are discussed,

which leads to the options available for 3D modelling methods. In particular, a 3D

reconstruction method for modelling High Voltage (HV) discharge channels that was

developed in 2008 is briefly discussed [3]. This study extends the real application to

lightning discharge channels using the same system basis developed in 2008. A full

discussion of the system is presented with additional adjustments.

Section 2.1 provides a brief discussion on the lightning discharge is presented to

cover the lightning terminology that is used in this document.

Section 2.2 discusses the challenges of lightning photography ; this includes an
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overview of current solutions and a discussion of possible camera solutions for this

work.

Section 2.3 investigates the interaction between lightning and tall structures.

This is conducted by introducing some notable ground-work on this topic by Eriksson

in 1978 [4], and then identifying tall structures around the world that are currently

platforms for lightning research. Two tall towers in Johannesburg, South Africa are

introduced: Brixton tower and Hillbrow tower.

Section 2.4 discusses the existing three-dimensional modelling methods for

lightning. The simulation of lightning is not new or uncommon. However, the

reconstruction of lightning discharge channels of known, photographically recorded

events is a relatively new topic and not extensively documented. Therefore, ex-

isting methods that closely resemble the basis of this study are reviewed and the

reconstruction of lightning or HV channels is discussed in the existing research.

2.1 The Lightning Discharge

(a) (b)

Figure 2.1: Cloud to ground (CG) lightning in the same frame as Cloud-to-Cloud

(CC) lightning. (a) In one event, a downward CG lightning strike in the distance

(left) preceeds a CC lightning event along the base of the clouds, branching towards

the camera position. (b) Downward negative lightning flash as a CG strike (left)

with CC activity in the same frame (right).

This section introduces simple terms that relate to the lightning discharge, which is

addressed in the rest of this document. In Figure 2.1, a sample of the two common

types of lightning are demonstrated, the downward negative Cloud-to-Ground (CG)
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lightning strike, and Cloud-to-Cloud (CC) lightning. Each of these lightning types

are discussed in more detail.

Lightning Nomenclature

In different contexts, there are several defining nomenclature for lightning termi-

nology that is used. This document refers to classical definitions of lightning

terminology; in particular ‘negative discharge’ and ‘positive discharge’ is defined

below:

Negative discharge: A discharge that is initiated by a negative leader,

independent of direction of leader propagation.

Positive discharge: A discharge that is initiated by a positive leader,

independent of direction of leader propagation.

2.1.1 Cloud-to-Cloud (CC) Lightning

The more commonly occurring type of lightning is referred to as Cloud-to-Cloud

(CC) or Intra-Cloud (IC) lightning. Two examples of these types of lightning

discharges are illustrated in Figure 2.2. This is a blanket-term for the following

types of discharges [1]:

• Intracloud (from one charge center to another charge center in the same cloud),

• Intercloud (from one charge center in a cloud to another charge center in a

different cloud) and,

• Cloud-to-air discharges (from a charge center in a cloud to a charge pocket in

the air).

2.1.2 Ground Lightning Flashes

The ground flash is the type of lightning discharge that engineers in the lightning

field of research are mostly concerned about, and is commonly termed the Cloud-to-

Ground (CG) for downward discharges, and ground-to-cloud for upward discharges.
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(a) (b)

Figure 2.2: Cloud-to-cloud (CC) lightning. (a) Possible intercloud lightning,

(b) Cloud-to-air lightning.

Lightning ground discharges are initiated by charge separation in a cumulonimbus

cloud, forming a charge center in the cloud [1, 5]. From this charge center, a charge

column or stepped leader is created, comprised of positive or negative charge carriers.

The stepped leader is a self-sustaining process and can also split into branches that

propagate towards the ground, depending on the leader polarity. The electric field

is increased on the ground due to the approaching stepped leaders. Therefore,

upward connecting leaders are initiated from higher points on the ground of the

opposite polarity that travel upwards to meet with the approaching downward

stepped leader. The intersection between the downward stepped leader and the

connecting leader, also called the final jump, determines the striking or termination

point of the lightning flash. The point of intersection from the ground termination

location is called the striking distance. At the point of intersection, a return stroke

travels up the channel back to the cloud. The return stroke illuminates the channel

such that the naked eye can observe the lightning event, and is usually synonomous

with CG lightning.

A large majority of ground flashes contain several strokes, where subsequent strokes

occur due to the remaining charge in the charge center of the cloud travels down the

path of the initial return stroke channel, causing the flickering visual characteristic

of lightning. A lightning flash can be made up of multiple strokes with the same, or

sometimes unique termination points.
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(a) (b)

Figure 2.3: Negative downward lightning, the most common type of CG lightning

usually portrayed by downward branching.

Downward Negative CG Lightning

The most common type of CG lightning flash is a downward negative discharge,

believed to account for approximately 90% of all CG flashes [1]. Negative downward

lightning is visually characterised by the appearance of multiple downward branching

in the channel propagation towards the ground, as demonstrated in Figure 2.3.

This type of lightning discharge is initiated by the generation of negative charge

centers near the bottom of the cloud [1, 5]. From this charge center, a negatively

charged stepped leader is created and often splits into branches that propagate

towards the ground.

Downward Positive CG Lightning

Positive CG discharges are less common than its negative counterpart, and is

believed to account for approximately 10% of all CG flashes [1]. Early studies of this

lightning type produced some confusion and misclassification. However, attention

was brought to continued research of positive flashes due to several characteristic

properties, which includes high recorded currents, being the dominant type in cold

seasons (most notable in Japanese winter storms). Visual characteristics of positive

CG flashes include:

1. Mostly single strokes (per flash)

2. Long continuing currents (tens to hundreds of milliseconds)
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3. Return stroke preceeded by cloud activity

4. Long horizontal channels (tens of kilometers)

These positive CG flashes have been reported to occur at the beginning or towards

the end of a thunderstorm, once most of the negative charge has been depleted from

the clouds [1]. It is believed that the flashes are initiated in the upper positive region

of the thundercloud, although there is also evidence of long horizontal discharges

initiated from other layers (such as the layer near the 0◦ isotherm).

Upward Lightning

(a) (b)

Figure 2.4: Upward lightning on Brixton tower visually characterised by branching

in the upward direction.

Upward lightning mostly propagates from points on the ground which produce a

concentrated electric field [1, 4]. The field is often enhanced by higher ground or

structure geometries with relative heights of approximately 100m. Higher objects

tend to produce a higher probability of initiating upward discharges. Upward

lightning is visually characterised by the appearance of upward branching in the

channel propagation, as demonstrated in Figure 2.4. Upward lightning can also be

classified by polarity; the classical definition defining the polarity according to the

initiating leader from the ground, and the newer definition defined by Rakov and

Uman defines the polarity according to the charge lowered to the ground [1]. This

document uses the classical definition of lightning polarity.
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2.2 Lightning Photography

Early observations of lightning started with open-aperture photography. Lightning

is only visible within several microseconds and each flash takes on a unique channel

path. Despite these challenges, lightning photography has helped to immortalise

lightning flashes and assisted researchers to identify common characteristics of the

different types of lightning. Further information is provided in Appendix A.

Hoffert and Walter obtained the first useful photographs around 1889 − 1902 that

showed the seperate strokes of a lightning flash [2]. This was achieved by manually

rocking an ordinary camera on a set axis with an open lens exposure. Due to

this manual nature, the time intervals between strokes could not be accurately

determined. Later, the Boys camera played an important role into providing some

additional understanding in the temporal nature the lightning strokes and subse-

quent strokes, measuring of time intervals between strokes to a few microseconds.

With the advancement of technology, high speed cameras with aperture speeds

ranging to 50, 000 frames per second (fps) or more, have provided opportunities

to observe phenomena surrounding lightning flashes that have yet to be discovered.

Despite the development of cameras reaching speeds of approximately 700, 000 fps,

the camera framerates are limited by the image resolution. As speeds get higher,

image resolutions are subsequently traded off.

2.2.1 Challenges of Lightning Photography

To reconstruct a lightning discharge channel, photographs of an actual lightning

flash event must be captured. The difficulties involved with capturing images of

a lightning flash are listed below. Some of these difficulties also apply to the

photography of general HV channels.

• Event duration

• Intensity of the light discharged

• Unpredictability (or statistical nature) of the event occurrence

• Lack of verification methods
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The short duration of the discharge event presents a difficulty with conventional

photography techniques, and requires a specific choice in the image capture device

or specialised techniques. The intensity of the light emitted from the event may

need to be considered to more photosensitive devices; this varies with the camera

placement from the targetted event. The unpredictability of the event refers to two

specific factors: its position and its time of appearance. This makes the photography

of lightning flashes a statistical problem. From a research point of view, in order to

reconstruct an object, verification needs to be performed with the original object.

This becomes an issue with a lightning or HV discharge channel, due to its unique

discharge path.

For the scope of this work, the use of multiple camera perspectives is essential

in capturing the same discharge channel. Several difficulties arise with a multiple

camera system, which include the synchronisation of the camera devices and the

triggering mechanisms involved, suitable placement of cameras around a known

lightning attachment region and accompanying permission for access, and varying

distances and elevations of camera locations.

2.2.2 Existing Research: Photography of Lightning

There are several researchers that make use photography of lightning, and often

lightning occurring at tall structures. These researchers investigate lightning dis-

charge attachments to tall structures using 2D digital images from conventional

video cameras, or high-speed cameras. These studies provide valuable insight into

the photography of lightning discharges in relation to physical current measurements

taken at the instrumented tower. No mention of a 3D model is included in these

papers, although some produce images from multiple capture devices to provide

a sense of spatial distribution. Additional discussion on lightning photography is

covered in Section 2.3.1.

In 1978, Eriksson examined lightning flashes to a 60-m tall mast using two cameras

spaced approximately 90◦ apart [4]. Eriksson’s investigation is discussed in more

detail in Section 2.4.3.

In 2008, Cummins et al provided some preliminary experimental results that could

ultimately lead to producing a time-resolved 3D model of CG lightning discharges [6].

The paper describes an experimental design, equipment used, and experimental

logistics for photographing lightning discharges from different perspectives, citing
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the challenges in ensuring synchronised camera operation of different perspectives

at remote sites. The preliminary results provide 2D time-resolved images of negative

and positive flashes, and recoil leaders.

In 2008, Saba et al produced research on lesser-documented characteristics of positive

leader using high-speed video photography [7]. A combination of high-speed cameras

were used in conjunction with Lightning Detection Network (LDN) data for analysis

of storms in Brazil and USA.

2.3 Lightning to Tall Structures

Lightning study observations of frequently struck structures have formed an impor-

tant component of lightning research [4, 8, 9, 10]. Since lightning has a tendency

to terminate to (or initiate from) the tallest object in its immediate area — these

structures are typically tall or isolated. It has also been found that structures taller

than 60 meters have the ability to initiate upward lightning [4]; the higher and more

slender the structure, the higher the probability of initiating upward lightning.

In 1978, Eriksson devised equations to determine the lightning incidence to towers;

these equations are still largely being used in the present day [4]. The set of emperical

equations defined the following:

1. An effective height of a structure taking into account the slenderness ratio;

2. The total structure incidence given the ground flash density and the height of

the structure; and

3. A probability based calculation for upward vs downward flashes from/to the

structure.

Eriksson’s equation in Equation 2.1 provides the expected incidence of the tall

structurem, given the effective height of the structure, Heff in m and the ground

flash density of the surrounding area, Ng in flashes/km2/year [11]. Additionally,

Eriksson and Meal’s equation in Equation 2.2 determines the percentage of upward

incidence to a tall structure [12], where Pu is the percentage of upward incidence,

and Hs is the height of the structure in m.
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N = 24× 10−6 ×H2.05
s ×Ng (2.1)

where
N = Lightning incidence, flashes

Hs = Height of structure in m (or Heff )

Ng = Ground flash density, flashes/km2/year

Pu = 52.8ln(Hs)− 250 78 < Hs < 518 (2.2)

where
Pu = Upward probability of flashes to a structure, %

Hs = Height of structure (or Heff ), m

2.3.1 World-Wide Lightning Research of Tall Structures

Many tall towers, wind turbines and chimneys have been under observation for

studying lightning and its characteristics. Notable tall structures include:

• Canadian National (CN) tower in Toronto (553 m tall) [1, 8, 13, 14, 15],

• Peissenburg tower in Munich (160 m tall on 288 m high mountainous ter-

rain) [1],

• Gaisberg tower in Salzburg (100 m tall +1287 m above sea level) [1]

• Council for Scientific and Industrial Research (CSIR) mast in South Africa

(60 m) [4],

• Ten-tower configuration in South Dakota (various heights) [16, 17] and

• Fukui Chimney in Japan [18].

CN tower, Peissenburg tower and Gaisburg tower have the advantage of being the

tallest object in the immediate area. Since these towers (or their effective heights)

are so tall, they have a high probability of triggering upward lightning and tower

tips are often situated too high up for optical recordings due to cloud cover or mist.
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These towers are therefore limited in their observed lightning types and photographic

observations to upward flashes. Each of these towers measure lightning on the tower

tips by means of Rogowski coils and electromagnetic sensors.

The CSIR mast was designed to attached downward lightning flashes to its tip and

as of present day, has been decommisioned. Although, an example of a site with a

wider range of lightning observations is in Rapid City, South Dakota, USA, which

consists of ten towers with heights ranging from 91 m to 191 m situated on a ridge

approximately 180 m above the surrounding terrain [16, 17]. This site observes both

upward and downward lightning using a combination of high speed, normal speed

(60 fps) and still cameras, and electromagnetic field sensors.

2.3.2 Towers in Johannesburg, South Africa

Johannesburg is a city in South Africa, situated in the southern hemisphere with a

high ground flash density region of approximately 7.5 – 12 flashes/km2/year [19, 20].

By considering the Johannesburg skyline in Figure 2.5 and with the high ground flash

density in mind, two towers are identified as good candidates to observe lightning

attachment: Brixton tower and Hillbrow tower. Both towers have been historically

common subjects for lightning research in Johannesburg [9, 21].

Brixton Tower

Brixton tower is commercially known as Sentech tower, and formally known as

Hertzog tower [21]. Its construction was completed in 1962. It is approximately

237 m tall and stands quite prominently as the tallest structure in the immediate

2 km radius area.

The expected lightning incidence to the tower is found to be 23.72 flashes/year,

Figure 2.5: Brixton (237 m) and Hillbrow towers (270 m tall) are indicated as

the highest points in the Johannesburg skyline to date, laterally separated by

approximately 4.8 km.
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using Eriksson’s equation in Equation 2.1. Given the height of the tower, Eriksson

and Meal’s equation in Equation 2.2 determines a 61.53% probability of triggering

upward lightning. This means there is an approximate 40% probability of downward

lightning leaders being intercepted by upward propagating leaders initiated from the

tower. This is a much higher probability than most of the world-wide structures

mentioned in Section 2.3.1. Therefore, Brixton tower has a larger variety of upward

flashes and downward lightning interception occurring at its tip.

(a) (b)

Figure 2.6: Negative downward flashes on Brixton tower, appearing to originate

from overhead the location of the surveillance camera. Flash occurring on (a) 1

January 2011 at 15:44:56.980s (b) 8 February 2011 at 17:56:12.100s.

In 1969, Malan observed lightning activity flashing to the tower; noting some strange

thunderstorm behaviour around the tower [21]. The extracts have been taken from

the paper as a reference:

It came as a surprise to find that the 770 ft Hertzog Tower is practically

never struck by lightning when an active thunderstorm passes overhead.

...

Very rarely one of the 2 km distant flashes to ground has been observed

to produce a long horizontal branch which ends on the Tower.

– D.J. Malan (1969) [21]

Similar ‘long horizontal branch(es)’ ending on Brixton tower have been observed in

the onset of this study. Such long horizontal channels, specific to downward negative

lightning attaching to the tower, appear to originate in a cloud charge center located

overhead the building housing one of the surveillance cameras, located approximately
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2 km from the tower. Sample images of such cases illustrating the discharges channels

terminating on the tip of Brixton tower is shown in Figure 2.6.

Appendix B presents a recent study on lightning observed with relation to Brixton

tower, which also serves as a motivation for studying lightning in 3D [22]. This

paper attempts to determine the position of a lightning strike with an unknown

termination point. A ‘third’ dimension is obtained using matched LDN data.

Hillbrow Tower

Hillbrow tower was previously known as the JG Strijdom Tower, named after a

former South African prime minister [23]. Hillbrow tower is 270 m tall, which

makes it one of the highest human made structures in Africa. Its construction

was completed in April 1971. It is located approximately 4.8 km east of Brixton

tower. In Figure 2.7, a possible lightning flash to Hillbrow tower is presented, where

the tower tip is concealed by the tree top.

Figure 2.7: Possible flash to Hillbrow tower photographed from surveillance location

of the tower.
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2.4 3D Lightning Modelling Methods

The concept of three-dimensional modelling is not conventionally associated with

the reconstruction of lightning discharge channels. Although this topic is primarily

based on the reconstruction of 3D models, a broad overview of lightning modelling is

presented. This overview includes the scientific simulation of lightning, in its various

applications, and graphic simulation of lightning in digital media.

Existing research directly related to this research topic is discussed more exten-

sively. These works include the computational reconstruction of lightning or HV

discharge channels using discharge channel information from photographed images.

A complete overview of these solutions is provided, from theoretical studies to

reconstruction of actual discharge events.

Definitions

The term ‘modelling’ is understood as a term used when a physical quantity is

represented in a different medium; in the modern day, usually consisting of com-

puter based representation. In this document, the terms ‘model’, ‘simulation’, and

‘reconstruction’ are used with the following definitions in mind:

Model: A schematic description of a system, theory, or phe-

nomenon that accounts for its known or inferred prop-

erties and may be used for further study of its character-

istics. — TheFreeDictionary.com

Simulation: The representation of the behaviour or characteristics of

one system through the use of another, esp. a computer

program designed for the purpose. — Dictionary.com

Reconstruction

(or Reconstruct):

To re-create in the mind from given or available informa-

tion. — Dictionary.com

2.4.1 Scientific Lightning Simulation Methods

In the scientific field of lightning research, CG lightning leader propagation is most

simply simulated by a straight downward propagating leader [24]. This kind of
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assumption is usually based from research involving the final jump and striking

distances – in the case of a downward negative leader connecting to a positive upward

leader. Similar assumptions are made in the study of the effects of the return

stroke [25]. This simplified representation of a straight downward propagating leader

is, of course, not the case for natural lightning, but has its merits in the study of

fundamental processes.

In 1990, the notable lightning leader propagation simulation was developed by

Dellera and Garbagnati [26, 27]. This research provided insight into the statistical

nature of simulated lightning paths.

In 2009, Gulyás and Szendenik presented a preliminary mixed physical-probabilistic

3D model to simulate downward negative lightning in relation to ground topogra-

phy [28]. The purpose of this solution is, as discussed by the authors, to simulate

the likely lightning termination points in a given ground topography and provide a

performance evaluation of simulated lightning protection on affected areas. This

computer simulation tool is based on a 2D solution, which combines concepts

based on physical and probabilistic lightning simulation modelling methods. The

development of the proposed 3D simulation model is intended to provide a more

realistic scenario of the ground geometry (i.e. spatial distribution of buildings), and

the resulting lightning termination points of the CG downward strikes.

2.4.2 Rendered Applications

Lightning simulations have mostly been rendered for visual purposes. This includes

digital art, video media (animation) and gaming. The simulation of 3D lightning is

mostly used within the gaming industry. Several solutions to simulating a lightning

channel have been accomplished within the computational application of visualising

lightning channels.

In 1994, Reed and Wyvill were the first to visually simulate lightning using con-

ventional ray-tracing techniques in the computer graphics field [29]. Their method

referred to Dellera and Garbagnati’s paper on scientifically simulating the light-

ning stroke leader progression, by means of probabilistically determining the leader

progression using particle systems [26, 27]. Their simulation was used to render a

realistic looking lightning model for animation purposes, so their solution included

background scenery and using the model as a light source to provide a glowing effect

on nearby objects.
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In 2001, Dobashi et al used Reed and Wyvill’s lightning simulation method to

determine the scattering effect of the lightning light source on surrounding clouds

and atmospheric particles [30].

These solutions have one major flaw; there is no deterministic way of knowing what

lightning actually looks like. By using Dellera and Garbagnati’s lightning simulation

method, these computational solutions only simulate theoretical lightning, which is

what many people have come to believe is the physical appearance of lightning. This

research seeks to reconstruct lightning channels from actual events, as opposed to

merely simulating the phenomenon using probabilistic methods.

2.4.3 Existing Research: 3D Channel Reconstruction

This section reviews the past published methods that have been used to reconstruct

the channel shape of the lightning flash, or HV discharge channels for various

different applications. These methods include a brief description of the environment

in which the discharge channel was photographed, the camera considerations and

subsequent geometries, and the reconstruction methods.

These works provide more relevant background information to reconstruction mod-

elling applications, as most other lightning modelling techniques (determined in

Section 2.4) consider a set of emperical equations and computationally determine a

theoretical propagation path of the lightning channel.

Eriksson’s Three-Dimensional Lightning Reconstruction

In 1979, Eriksson investigated the striking distances of downward negative discharges

striking the CSIR mast in Pretoria, South Africa using a 3D analysis of lightning

photographs [31]. This methodology is described in further detail in this section.

Two image perspectives were obtained at an angular separation of 109◦ for seven

flashes. Cameras were placed facing up towards the mast tip at different inclined

angles (depending on distance from mast and location of the camera), such that

corrections needed to be made through geometrical anyalsis. These corrections were

performed by a computer tool (termed Flash), which was developed by the National

Research Institute for Mathematical Sciences. Both cameras were fitted with a
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graticule grid in front of the lens which provided a scaling measurement with respect

to the focal point of the camera.

The lightning channel information from the images was extrapolated to a 2D Carte-

sian plane, transformed and superimposed onto a (y-z)-x Cartesian plane where the

y and z axis extends upwards in the same direction and the origin is defined as the

mast tip. This transformation was also performed by Flash.

Eriksson defines an overall error in the reconstruction procedure of 3%, citing that

the main errors are determined by input errors and the digitisation process of the

images. Of the seven flashes recorded by the two cameras, only three were classified

as downward negative, and were therefore candidates for reconstruction to determine

striking distances.

Liu and Rapson’s Reconstruction Method

In 2009, Liu and Rapson established a preliminary system to produce a 3D model of

a discharge channel in a controlled laboratory environment [3]. This paper reference

has been provided in Appendix C, but the method is discussed briefly in this section.

It should be noted that this method is the basis of the reconstruction method used

in this study.

Multiple digital images were taken using three surveillance cameras of a discharge

channel from a large HV air-insulated rod-rod gap within a laboratory. The images

were filtered and processed to render a 3D model of the discharge channel using an

application built from open-source software for cross-platform capabilities.

y

x

z

(a) (b)

Figure 2.8: A basic representation of the reconstruction method.



Chapter 2 — Background 21

Figure 2.8 illustrates a simplified representation of functionality of the algorithm [3].

The reconstruction method was based on recreating the laboratory scenario in a

virtual environment, as shown in Figure 2.8a. The 3D problem is reduced to a series

of 2D geometric calculations, by extending normals from the image to the center,

and creating a pixel-high cylinder where the normals meet, as shown in Figure 2.8b.

Gu et al’s Reconstruction Method

In 2011, Gu et al devised a method to reconstruct a long air discharge channel to

study the tortuosity of the channel [32]. A 2-meter long positive switching impulse

gap was investigated in the study. A set of geometric equations were presented

which infer the three-dimensional information of images taken from two orthoganally

placed cameras that have been normalised to boolean images, and channel height.

2.5 Conclusion

This chapter has described four parts that pertain to the foundation of this work: the

lightning discharge; the photography of lightning, lightning research to tall structures

and general 3D modelling and reconstruction methods in representing the lightning

discharge.

The following chapter defines the problem statement to this work. The approach

taken to accomplish this work is outlined through a discussion of the system de-

signed to produce 3D recnstructions of discharge channels and methods used for its

evaluation.



22

Chapter 3

Approach Taken

An overview of the work addressed in this study is discussed in this

chapter, providing the problem statement, the methodology, and the con-

tribution of this work. The methodology used to perform the feasibility

study is provided in the context of the system designed to reconstruct

three-dimensional (3D) discharge channel reconstructions, and the test

data used to perform an evaluation of the system performance.

3.1 Problem Statement

Despite advances in lightning research, there are still many questions left unanswered

about the topic of lightning. It is well known that lightning often takes on very

unique channel shapes, as illustrated in Figure 3.1. It is often very difficult to per-

ceive the channel shape and path with a naked eye or even with the use of expensive

camera equipment without the third spatial dimension. With multiple perspectives

of a specific lightning flash, it is still difficult to perceive its 3D characteristics if no

processing steps are undertaken to represent the channel in three dimensions.

Therefore, the digital reconstruction of a 3D model would provide researchers with

an additional dimension with which to analyse lightning flashes. By obtaining a

3D representation of a discharge channel (lightning or high voltage discharge) the

channel can be properly analysed in an interactive 3D visualised space, with options

to zoom, tilt and pan.

A system is designed to photograph multiple two-dimensional (2D) images of a

discharge channel from different spatial perspectives and represent the discharge as
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Time series of a tortuos lightning channel with unknown spatial

distribution taken on 19 December 2010 at 02:52:42 − 0.930 s. (a) CC preceeding

ground flash (Reference time: +0 s) (b) CG discharge (+0.100 s) (c) +0.210 s

(d) +0.330 s (e) +0.660 s (f) +0.770 s.

a 3D model. Two investigations are conducted and compared in order to determine

the feasibility of reconstructing lightning discharge channel models using digital

images.

3.2 System and Evaluation

A system is designed and developed to accept digital images and associated camera

positions to render a 3D reconstructed lightning model. The scope of the study

includes testing the system against images obtained from laboratory-generated and

natural lightning discharge channels. The two investigations provide the test infor-

mation to determine the feasibility of the system for practical implementation on a

3D reconstruction of natural lightning attachment to tall structures. The study is

scoped to follow three distinct components.

1. System design (Chapter 4)

2. Testing: HV laboratory investigation (Chapter 5)

3. Testing: Physical lightning investigation (Chapter 6)
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The High Voltage (HV) laboratory investigation provides appropriate test data for

determining the validity of the system within a controlled environment and indicates

a preliminary small-scaled example of some difficulties in the setup of necessary

equipment. The nature of the controlled investigation provides the means of a

preliminary study to determine and correct for different camera positions. This

provides a small scale solution to the topic at hand.

The physical lightning investigation includes the reconstruction of two lightning

flashes to produce an accurate and usable reconstructed model. This investigation

includes more complication than the controlled laboratory environment in terms of

camera logistics, storage, and statistical predictability. This therefore limits the

number of discharges that can be reconstructed.

A feasibility study is developed from the individual investigations, for both single-

channelled and branched discharges. The success of the laboratory investigation

can potentially produce a 3D reconstructed discharge channel with acceptable error

margins from an image dataset obtained in a controlled environment. This acts as

a small-scale solution to the approach. The success of the physical investigation

produces a 3D reconstructed discharge channel from data captured from a naturally

occurring lightning strike. A comparison arising from the success criteria of the

two investigations allow for determining the feasibility of extending the system to a

real-world applications.

3.3 Contribution of this Dissertation

By obtaining a 3D representation of a discharge channel — either a HV discharge

or lightning, the channel can be properly analysed in 3D visualised space. The

motivation behind this research stems from the fact that lightning research has

previously been limited to 2D representations. Most 3D lightning models are based

from theoretical knowledge based on the work of Dellera and Garbagnati [26, 27] or

created for aesthetic purposes for digital media such as 3D games, movies and flight

simulators [29, 30, 33].
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3.3.1 Main Contribution

Due to the fast transient nature of the lightning event; a strike is difficult to fully

perceive with a naked eye; let alone in a 3D perception. Even with the photography

of certain strikes, the physical distribution and dimensions of the lightning channel

can only be assumed by channel or branch luminosity, which may differ depending

on the amount of charge associated with the branch in question.

A single photographed images only provides information in 2D, which limits eval-

uations of specific case studies, such as mentioned in Appendix B [22]. Current

research discussed in Section 2.2.2, consists of conventional 2D image capture of

lightning discharge channels for specified studies, which does not provide an accurate

spatial distribution of the channel. This generates a need to develop a system that

is capable of reconstructing a discharge channel within 3D space, providing a more

accurate spatial distribution of a channel, which is able to encompass its directional

data and split branches.

This research serves to be a stepping stone toward the reconstruction of 3D lightning

models. By constructing a 3D model of a discharge channel, a better understanding

of how the path of a large HV discharge channel or lightning flash develops its

pattern in a more comprehensive manner, which can provide more information to

better model the lightning channel.

In the case of lightning, a better understanding of the termination points, and the

(a) (b)

Figure 3.2: Demonstration of downward negative flashes that appear to be inter-

cepted by upward leaders from the ground. This is demonstrated by a sharp change

of direction in the channel path.
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striking distances can be evaluated. If a 3D model can be constructed of the lightning

flashes in Figure 3.2, the actual striking distance can be determined from the sharp

change in path direction, without inferring a distance based on its 2D representation.

3.3.2 Possible Extension to this Work

The use of 3D reconstructions of HV and lightning discharge channels provides

comprehensive details on the channel path over its duration. There are several

applications expected for reconstructed 3D discharge channels. This includes channel

tortuosities, as described in Gu et al’s application in which channel tortuosities are

calculated from a series of positive switching discharge channels [32]. Applications

also include the evaluation of striking distances of lightning flashes to tall structures

as discussed in Eriksson’s work [31]. This study can also be extended to electromag-

netic field simulations of a the propagation of the lightning path, given the known

3D co-ordinates of the lightning channel. Lastly, further extension can be applied

to time resolved lightning leader propagation provided several assumptions made

about the stepped leader lengths.

The following chapter defines the system designed for perform 3D reconstructions of

discharge channels. The photography of discharge channels and processing of images

is included as part of the system. The system also includes the reconstruction

algorithms used to produce models of a 3D nature from images and the relative

positions of cameras obtaining the images.
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Chapter 4

System Design

A system is developed to capture images of High Voltage (HV) and light-

ning discharge channels at multiple perspectives and process the images

to render a reconstructed three-dimensional (3D) model of the discharge

channel. This chapter discusses the components of the system, including

the photography of the discharges, image processing to identify channel

information, extrapolation of 3D channel information, and testing and

evaluation methods.

4.1 System Overview

Figure 4.1: Block diagram demonstrating the three-dimensional reconstruction

system overview and flow.

An overview of the system and general flow diagram is presented in Figure 4.1. The

system includes the photography of discharges, image storage methods, synchroni-

sation issues, processing of images and relevant discharge information, and finally

rendering the data to a 3D model. The processing stages are presented, from image

insertion to producing a 3D model in an interactive user environment. For further

information on the ground-work for this system, refer to Appendix C [3]. The testing

of discharge channel image data used to validate the system capabilities is presented

in Chapters 5 and 6.
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4.2 Photographic Equipment

The capture of image data takes into consideration the acquisition of image data

through a variety of cameras and optical filtering. This process includes the choice

of cameras used for discharge channel photography, management of the resulting

image data and optical filters that are required. Each subsection discussed in the

image capture component is described in Figure 4.2, which applies to all discharge

environments: HV or lightning discharges.

Figure 4.2: Discharge image acquisition using optical filters and cameras.

4.2.1 Data Filtering: Optical

Photographed images require only the intense light of the discharge channel in the

captured frame. For the purpose of this study, only wavelengths of the visible light

visible spectrum (380 to 750 nm) are required for modelling the discharge [34]. The

insignificant data needs to be filtered out; this includes the experimental environment

and additional glare occurring due to the discharge. Optical filters are used to obtain

usable data in the images. A combination of cross-polarised filters and camera

configurations provide images that can be used for the reconstruction. The use of

the filters is also widely dependent on the camera lens control capabilities.

The images in Figure 4.3 display the different captured image variation using differ-

ent layers of optical filters. It may be assumed that all images presented in this study

are filtered with any combination of these filters, unless otherwise stated. Figure 4.3a

shows the image captured of a lightning discharge channel without optical filters.
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(a) (b)

Figure 4.3: Comparison of lightning images with different optical filter combinations.

These images are taken from separate lightning events with the same camera. (a) No

filters (b) Cross-polarised filters.

(a) (b) (c)

Figure 4.4: Comparison of high voltage discharge images with different optical filter

combinations. These images are taken from separate lightning events with the same

camera. (a) Cross-polarised filters (b) Cross-polarised and infrared filters (c) Cross-

polarised, infrared and violet filters.

It can be observed that the image is extremely overexposed. Two linearly polarised

lenses are placed perpendicularly to construct a cross-polarised filter, which reduces

the glare and intensity of light entering the lens. The image captured from this filter

is illustrated in Figure 4.3b.

In a HV laboratory environment, an additional combination of filters are used, due

to the close proximity of cameras to the discharge channel location. Figure 4.4a

demonstrates how cross-polarised filters do not sufficiently reduce the light entering

the lens. Additional infrared filters are used to reduce a portion of visible light
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spectrum to the capture device. By using the infrared filter, the light in the

infrared spectrum is allowed through the filter. The image captured from this filter

is illustrated in Figure 4.4b. The violet filter is used to further reduce the light

wavelengths to the capture device. By using the violet filter, only the lower end

of the light spectrum is allowed to pass. The image captured from this filter is

illustrated in Figure 4.4c.

A disadvantage to using optical filters is the possible loss of image detail brought

about by damaged lenses but this is neglected for the purpose of this experiment.

The optical filters have also shown to produce reflections on some recorded images,

as shown in Figure 4.8.

4.2.2 Cameras

The traditional camera specifications are discussed in Section 4.2.3, in relation to

settings chosen for discharge channel photography. These cameras are disadvantaged

in the fact they they need to operate in unusual electromagnetic environments, and

these issues are discussed in Sections 4.2.4 and 4.2.5. Additional cameras features

are discussed in Sections 4.2.6 and 4.2.7. It should be noted that the camera settings

mentioned in this section are not all inclusive of the camera functionality, but merely

the configurations used for the purposes of this study.

A range of relatively low-cost Internet Protocol (IP) surveillance cameras from

Axis® Communications have been chosen [35]. The cameras have various advan-

tages regarding its configuration flexibility and additional features that standard

camera technology lack. Additional features include networking capabilities; remote

storage and triggering options, providing the capability to automate photography

of discharge channels [36, 37, 38]. A combination of four different Axis models (of

varying quantities) are used in a variety of applications. The four camera models

are listed below:

• Axis 207W

• Axis 207MW

• Axis M1011

• Axis P1344
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This section discusses the cameras that have been used in this system, describing the

operation of each camera model and providing a summary of the camera usage and

status to date (refer to Table A.1 in Appendix A). It should be noted that the use of

different camera models may produce some differences in image quality and captured

information, therefore presenting mismatching information when comparing two or

three images of the same event. This may impact on the quality of reconstructed

models resulting from the system, but image processing steps are discussed in

Section 4.3 to minimise these image differences.

4.2.3 Camera Operation

All the camera models measure framerates in frames per second (fps), and have a

maximum framerate of 30 fps, although becomes limited with the use of an image

pre-buffer (described below). The 207W model has a maximum resolution of 640×
480, although the 207MW, M1011 and P1344 have options for higher resolutions in

the mega-pixel range. The cameras operate according to the settings as shown in

Table A.1 in Appendix A, but are described in further detail in this section.

An advantage to using a surveillance camera includes the ability to manage the cam-

era feeds from a single processing unit, specifically a laptop. The commununication

options are discussed further in Section 4.2.6. The cameras all have web interface

capability, which provides a live view of the camera feed and possibility of remote

triggering, assuming cameras are being monitored at the time. The camera settings

enable options for a timer pre-buffer and a post-buffer, which limits the amount of

data recorded. The pre-buffer function is essential for external triggering, as it is

only activated once the discharge has occurred.

Since the 207W model was the original camera model used, and the most limited in

functionality, many operational settings were callibrated according to this camera

model. The 207W Random Access Memory (RAM) limits the duration of the pre-

buffer to 2 s, which then operates at a framerate of 10 − 15 fps. The frame rate is

therefore used to optimise the buffer setting. For most discharges, it is expected

that only one image would capture the channel, but lightning discharges can have

durations lasting several microseconds, and therefore, being captured over several

frames.

To reduce the number of steps that need to be taken on image processing, the images

are set to record in greyscale, since only the intense white light from the discharge is
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required. This option is readily available in all camera models except for the P1344

model.

4.2.4 Camera Safety in Laboratory Environment

The main concern with operating electronics in a high electromagnetic environment

(transients in particular), is shielding and electrical isolation of the circuits. This is

due to the transient behaviour of the discharge, which may introduce surges in the

circuit. With this in mind, fragile electronics, such as processing units need to be

protected from the surrounding area of the discharge. This is particularly important

to consider when operating a camera in the HV laboratory environment. Therefore,

this has an effect on the power options, data storage and general communications

to the camera.

The specific operations of camera safety is discussed in this section, and a summary

of the camera safety capabilities is provided in Table 4.1.

Table 4.1: Camera safety capabilities for operation in either the high voltage

laboratory or phyical lightning investigations.

Camera Communications Power Operation

Model Isolation Isolation Location

Axis 207W yes − lightning

Axis 207MW yes − lightning

Axis M1011 − − lightning

Axis P1344 yes yes HV/lightning

Electrical Isolation of Communications

The wireless option in the 207W and 207MW models provides an advantage in the

network connection through electrical isolation in the communications link. This

is important since the cameras do not have onboard memory, and need to store

recorded data to an external source. Therefore, by using the wireless option, these

cameras are unaffected by the transients through its communications link.
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The M1011 operates much like the 207 range cameras, without wireless functionality.

The camera communicates only through an ethernet Local Area Network (LAN)

cable and stores to an external source, and therefore cannot be used within a

laboratory environment.

The P1344 cameras have on-board storage, through the use of a removable Secure

Disk (SD) card slot, and all components of the sensitive camera electronics are

enclosed in a metal casing.

Electrical Isolation of Power Supply

Using electrically isolated camera setups in the HV laboratory investigations are

necessary to adequately protect cameras from electromagnetic transients and stray

capacitances. All the camera models have an external input power option, with

additional ports for external triggering. Isolated power supplies have been used for

each of the camera models, depending on its model specifications, and limitations

and results are presented.

The 207 camera range and the M1011 camera have an input voltage with a small

range of variance of 5 ± 2% V [36]. Through an attempt to isolate the circuit with

a 5 V regulated power supply, it is found that the cameras require a high start up

current; which cannot be readily provided by a simple LM7805 regulator.

The M1344 cameras have variable input voltage range of 8 − 20 V. This allows the

usage of a common 12 V lead acid battery connected directly with the input terminals

to power an single camera in a HV laboratory. Small lead acid batteries are used

for portabilty of cameras to remote sites.

4.2.5 Camera Limitations in Functionality

It is important to note the limitations in the functionality of each camera model, in

relation to photographing discharge channels, as the images have a direct propor-

tionality to the quality of models that are produced. Common disadvantages of using

these cameras are that images get spliced and overexposure (or even underexposure)

of the lens with the use of an optical filter.

The 207 and M1011 camera ranges have additional limitations, in particular with

the photography of HV discharge channels in image quality, fixed iris and the
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requirement for a network connection to record images. The use of the M1344

cameras reduce all the additional limitations.

Image Corruption

Due to the fast nature of a lightning flash, the shutter speed of the cameras become

significant. Although the cameras operate at 15 fps, which is considered a relatively

slow frame rate, the camera is often capable of capturing a full flash without

encountering an image splice produced by the shutter speed of the image refreshing

process. However, the shutter speed is shown to be finite with respect to the lightning

discharge event through the evidence of horizontal image splicing.

Figure 4.5: Image splicing for Axis 207W. Two subsequently occurring discharges

are captured between a frame change, Marker 1 indicates the bottom portion of the

first flash, and Marker 2 indicates the top portion of the second flash.

In Figure 4.5, two subsequently occurring downward negative discharges are pho-

tographed in one frame, indicated by Markers 1 and 2. Each discharge is missing

information due to the finite shutter speed with respect to the speed of this discharge

event. The offset of the shutter can be seen in the band between Markers 1 and 2.

In addition to the image splicing caused by the shutter speed, the P1344 model has

another process of corrupting the images as shown in Figure 4.6. From experimen-

tation, the cameras often record corrupted image data mostly in the pre-buffered

data. It is assumed that this has to do with file format encoding, and can only be

resolved through updating the camera firmware – at present this problem has not

been resolved in the firmware updates.
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(a) (b)

Figure 4.6: Image splicing and pre-buffer induced corruption of information for Axis

M1344. Images are taken of the same discharge, 94◦ laterally separated. (a) Vertical

image splicing, (b) Vertical image splicing and pre-buffer corruption.

Overexposure

The cameras are intended for the purpose of capturing graphical discharge informa-

tion occurring at a set point, i.e. tower terminations. Discharges occurring in the

surrounding region of the termination point are often photographed by the cameras,

and can either be underexposed, or overexposed. The use of optical filters are used

to optimise the photography of discharges at the intended termination point.

(a) (b)

Figure 4.7: Overexposure for Axis 207W with the use of optical filters. (a) Overex-

posed frame (b) Normal frame of overexposed flash 20 ms after (a) is photographed.
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However, the exposure of the lens during a lightning event will be discussed with re-

gards to surrounding flashes. The overexposed frame occurs occasionally, and whites

out the channel definition to unusable image information, as shown in Figure 4.7a.

A comparison of an overexposed frame with a normally exposed frame is shown in

Figure 4.7a and b. These images occur 20µs apart using the same camera.

Discharges that are underexposed may not provide enough of a change in pixels to

trigger the motion detection functionality in the cameras, and therefore not recorded.

These events may be assumed to be a little concern in this study.

Image Obstructions

The camera was situated indoors, behind a glass window, which would explain some

of the light distortions in some of the frames due to rain droplets. An example of

this can be observed in Figure 4.7b, indicated by the three rings of light close to the

position of the flash.

Additionally, the cameras are occasionally placed in positions where physical ob-

structions can be observed in the frame. It can be seen that in these cases, portions

of the lightning flash are obscured, and therefore limit the extent of the potential

models which can be reconstructed.

Surface Reflections

On some occasions, the images are corrupted by reflections of the channel. The re-

flections are either caused by windows (of indoor setups or outdoor camera housings)

or the optical filters place in front of the lens. Most images that obtain reflections

have a single ghosted reflection of the original channel. A double reflection is rarely

recorded on the image, as shown in Figure 4.8. In total, there are three resulting

reflections of the original channel, indicated by Markers 2, 3 and 4.

4.2.6 Network and Communication

Being IP cameras, the range of cameras all have an ethernet LAN connection for

communicating with the cameras from an external processing unit. This is the most
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Figure 4.8: Channel reflections recorded on an image taken with the Axis 207W.

The number of the reflections depend on the intensity of the illuminosity, either

one or three reflections. Marker 1 indicates the original channel, Marker 2 indicates

the first reflection (more common), Markers 3 and 4 indicate reflections of 1 and 2,

respectively.

basic form of communication used with all the cameras for configuration, general

setup and maintenance.

External Storage

The 207 camera range, and M1011 require a connection to a network to operate as

required. In the HV laboratory, the 207 cameras are connected wirelessly to the

network. Cameras upload and store the recorded image feed through a File Transfer

Protocol (FTP) server to a specified directory on the network.

On-Board Storage

Cameras with on-board storage provide the opportunity for the camera to operate

without a network; i.e. server or dedicated processing unit. This means that cameras

can operate in remote areas, and only require a constant power supply.

The P1344 cameras have an option to use the on-board SD card slot. Maintenance

regarding the collection of data from SD cards is therefore dependant on the amount

of motion activity in the area and the size of the memory card.
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4.2.7 Data Formats

The 207 range of cameras have an option to save its recorded feed to individual

Joint Photographic Experts Group - Image file format (JPEG) image files. Although

JPEG file formats tend to be more lossy than others, it serves the purpose that is

required of this study. This option allows for quicker file processing; as relevant

files can be readily identified and the modelling framework accepts JPEG formats

as inputs.

Although the M1344 cameras also have the same option to save individual JPEG

files, the usage of the on-board storage to SD card has limited the saved file formats

to a short video Matroska video (MKV) format. Therefore, all feeds from the M1344

require video-to-image conversions; and are converted to JPEG files for consistency.

4.3 Data Conditioning

The images needed be to filtered further so the channel information could be isolated.

Due to the greyscale ambiguities from the photographed images, digital filtering

was required. Once the images were filtered to explicit black and white images,

the relevant data was extrapolated from the images and conditioned to provide a

reconstructed model.

4.3.1 Pre-Processing of Discharge Channel Images

The application requires black and white images to extract the relevant pixels from

the image. By imitating a typical image of a discharge channel in its surrounding

environment, the lighter pixels represent the channel information, and the darker

pixels are regarded as redundant information. To ensure that the automated pro-

cesses involved with channel reconstruction do not encounter grey-pixel ambiguities,

the images are transformed into a Boolean image, where a white pixel (colour value:

255) represents a TRUE, and a black pixel (colour value: 0) represents a FALSE.

The image processing methods are programmed in Cplusplus (C++) for automata-

tion – with the use of Visualisation Tool-Kit (VTK) open-source libraries. The

documentation for VTK provides terminology that is used in this study [39]. The

term ‘filter’ is used to describe a process that accepts image inputs (single or multiple
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images, depending on functionality), performs a task to change the input data, and

produces output images (single or multiple images) as a result. The image processing

filters are developed in an object oriented scheme. The digital filtering (or image

processing) provides a means to isolate the channel information. The images are

reduced in size for improving the processing efficiency of the rendering. Five filters

are used according to Table 4.2.

Table 4.2: Image processing filters using basic implementation of existing VTK

classes.

Filter Name VTK Class Implementation

Channel Identification vtkImageDifference

Black and White Boolean vtkImageThreshold

Smoothing vtkAnisotropicSmoothing2D

Merge -

Resize -

Tracking and Cropping vtkImageResize

Some images are manually processed, and then filtered again in the application.

Manual processing includes highlighting of certain qualities in images that may be

lost in the automated filtering processes. Digital filters are implemented before the

modelling stage to provide usable data for rendering a 3D model.

Channel Identification Filter

If a discharge channel is identified in a series of sequential images, shown in Fig-

ure 4.9, the series images is isolated and categorised by date and event number. Two

images before significant pixel change define the beginning of the series, and two

images after the pixel change defines the end. A sample of the resulting difference

image produced by the filter is shown in Figure 4.10.

The first image in the series, labelled by Marker 1 in Figure 4.9 is used to compare

iteratively with the rest of the series. This method of obtaining image comparisons

is due to the fact that thunderstorms can have durations of a few hours and ambient

environmental conditions may change significantly to cloud cover patterns or the

position of the sun. By implementing the comparison of images with an image
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Figure 4.9: Channel isolation using image pixel difference comparisons with an image

occurring several frames before the channel is photographed. Marker 0 indicates the

fixed image, Markers 1−3 indicate images identified with significant pixel difference.

several frames before the occurrence of the lightning event, these environmental

changes can be ignored, and will not affect the identification of the lightning channel.

The difference filter produces a count of the number of pixels with a different colour

value. If a significant pixel difference is detected (as determined by the operator),

the resulting difference image is saved for further processing, as would be the case

for Markers 1− 3.

Black and White Boolean Filter

Once the difference image is produced, identifying the lightning channel still requires

some processing, since the channel is usually surrounded by a gray scatter. This filter

can also be known as the discharge channel isolation filter, as the purpose of this

filter is to provide the Boolean image as the input to reconstruction framework.

General images of discharge channels – in particular, lightning channels – range

from having very faint gray-scale channel definition to overexposure of the frame. A

pixel threshold level between 0 and 255 can be used to identify the lightning channel

information, where 0 represents black pixels and 255 represents white pixels. This

filter changes the image pixels to monochromatic shade, operating as a Boolean

filter, where any pixel above the selected threshold is changed to white pixel, and

below the threshold is changed to black.

Figure 4.11 demonstrates the use of the Black and White Boolean filter using

Figure 4.11a threshold value of 70 and Figure 4.11b threshold value of 100. It

can be seen that the lower the threshold values, the larger scatter noise that is

introduced into the image, as depicted in right channel of Figure 4.11a. Although

the higher threshold value, produces images with more limited channel information
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(a)

(b)

Figure 4.10: Image difference of a lightning event occurring on 8 February 2011 at

18:13:47.900. (a) Original image (b) Difference image with a mismatch of 40, 063

pixels (of 600× 480 image resolution).



Chapter 4 — System Design 42

(a)

(b)

Figure 4.11: Black and White Boolean filter using threshold values between (0−255)

implemented for sample images used in Figure 4.10. (a) Threshold value of 70

(b) Threshold value of 100.
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Figure 4.12: Smooth Bool process.

when the channel is thinner, as depicted in the right channel of Figure 4.11b.

Smoothing Filter

From Figure 4.11, it is seen that the hard threshold value produces an image with

specked channel definition for certain threshold values. This filter is designed to

smooth out the edges of the channel definition (according to an operator defined

scatter constant). In addition to smoothing out channel edges, this filter can diffuse

stray white pixels not connect to the channel. The use of this filter may require a

few iterations, depending of the quality of image that is photographed. The process

involved with using this filter is illustrated in Figure 4.12.

The drawback to using this filter includes the possible introduction of image errors

through the attempt to optimise the quality of image, such as introducing thicker

channel widths, or lost channel information. It is also a manually intensive process

that requires trial and error for optimising the channel quality. An example is shown

of the Smooth and Black and White Boolean filter combination used to optimise

channel definition in Figure 4.13. These images provide two iterations to illustrate

the purpose of the filter.

The alternative to using this filter is through manual processing of images, using

an image processing tool. This process is time-consuming and defining the channel

shape and definition is very subjective. However, manual image processing provides

a level of intelligence in determining channel shape, and can help to ensure that no

information is lost.
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(a)

(b) (c)

(d) (e)

Figure 4.13: Smooth and Boolean filter iterations (a) Original image with focus area

labelled with Marker 1 (b) First iteration of Smooth filter with scatter constant set

to 5 (c) First iteration with Boolean filter with threshold at 90 (d) Second iteration

of Smooth filter with scatter constant set to 20 (e) Second iteration with Boolean

filter with threshold at 80.
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Figure 4.14: Isolated images amalgamated in a single image to reduce timing issues.

Merge Filter

Some recorded events have limited time-resolved channels, which presents issues

with matching camera timing of different perspectives. To resolve this, all images

of the event are amalgamated into one single image. The resulting images would be

similar to an image captured if the camera exposure is kept open for the duration

of the event. The functionality of this filter is only used where necessary.

Once the series of images have been filtered to a Boolean image, the images are

loaded into a merge filter. Since input images are already in Boolean format, if a

pixel is represented by a value of 255 (white), it needs to be presented in the final

image. Each pixel is checked in each input image. If there is a white value in any one

of the pixels, the discrete output image map sets the corresponding pixel position

with a value of 255. The initial value for all each pixel in the output map is set to 0

(black). A simple demonstration of the function of this filter is shown in Figure 4.14.

Resize Filter

This filter is required to ensure that the channel information for each perspective

is sized correctly. The placement of cameras and the differing camera resolutions

result in images photographing discharge channels are different resolutions. This

resize functionality is performed manually in an image processing tool. This step is

important for the 3D reconstruction, as no intelligence is included in the algorithm

to account for mismatched channel sizes in different perspectives. The heights of the

white channel pixels are adjusted to the size of the image with the largest channel

resolution.
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Tracking and Crop Filter

This is the last filter which is used as part of the data conditioning process and

requires all the input images for one channel reconstruction to perform its function.

This filter tracks the channel information from the images, and ensures that all

channel heights are the same. If they are not, the filter scales the images to fit the

largest channel height.

To reduce on computing memory and processing time, the set of images are sent

through the cropping filter. This is accomplished by reducing each image to an

identical size for the reconstruction process. This filter takes into consideration the

image orientation required of the individual image and rotates them individually,

according to user specified commands. This filter is constructed using four individual

developed classes.

4.4 Three-Dimensional Reconstruction Algorithm

The 3D algorithm is written in C++ programming language, with the use of VTK —

an open source, cross-platform visualisation toolkit. The application can reconstruct

a model with 3D definition using two or three images; each configuration may have

different options for reconstruction.

Using the VTK 3D environment demonstrated in Figure 4.15a, the filtered images are

arranged on a set of axes in 3D space, mapping the experimental setup. This is setup

through the reconstruction framework, which translates user defined commands to

necessary reconstruction environment preparation. The origin, (0, 0), of the setup

is representative of the centre of the setup. The images are placed in the relative

position as the original placement of cameras, facing the origin. The centre point of

the image is placed tangentially to the origin, offset by a user-defined radius.

The algorithm has been designed to process the setup in layers over the y-axis,

as shown in Figure 4.15b. This method eliminates the third dimension, reducing

the algorithm to a two-dimensional (2D) problem, as demonstrated in Figure 2.8b.

Normals of the white segments are projected to the centre of the setup, where they

are compared to the normals from other perspectives. Each layer of the discharge is

assumed to have a cylindrical body. The centres of two images determine the centre

point of the cylinder, where the average thickness of the images determine the radius
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(a) (b)

Figure 4.15: A simple branched channel generated as an example to illustrate

the image placement in the reconstruction environment. (a) Reconstructed model

about environment origin surrounded by images contributing to its reconstruction

(b) Zoomed view illustrating the stacked nature of the model design.

of the cylinder. The third image is used to verify the existence of the cylinder for

branched channels. In the example provided in Figure 4.15, the mirrored image of

the channel definition placed 180◦ provides the verification required for branched

channels.

4.4.1 Limitations of Model Reconstruction

There are several factors that limit the accuracy and the resulting detail of the

reconstructed models. Since the accuracy cannot be easily determined, due to the

fact that direct comparison cannot be made with the original discharge channel,

this level of accuracy cannot be quantified. Therefore, the accuracy can only be

determined with reference to the photographed images.

The limitations dictating the accuracy of the reconstructed model are identified and

noted using an example of two perspectives of a captured lightning flash, Figure 4.16

and Figure 4.17. The first perspective is labeled with reference to Camera 1 as shown

in Figure 4.16 taken at 0◦ and the second perspective is referred to as Camera 2 as

shown in Figure 4.17 taken at a lateral separation of 34◦.
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Model Resolution

The accuracy of the reconstructed lightning model is soley dependent on the quality

of image input into the system. For images with low resolution, limited lightning

information can be obtained from the image, and slight variations in the channel

shape can be missed in the reconstructed model.

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Camera 1 — Timing inconsistencies capturing different levels of

information, in particular, Frame 2 producing branching information not evident

in any other frame of the event. (a) Frame 1, (b) Frame 2, (c) Frame 3, (d) Frame 4,

(e) Frame 5, (f) Frame 6.

(a) (b) (c)

Figure 4.17: Camera 2 — Matching lightning event captured 34◦ from Figure 4.16

at a lower image resolution. (a) Frame 1, (b) Frame 2, (c) Frame 3.
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The image resolution is based on the camera resolution and the distance away from

the discharge location. In the laboratory investigation and the physical investigation,

a combination of different cameras and different distances from the discharge are

utilised. The difference in photographed channel resolution requires scaling of

images. In most cases, images with lower resolution are enlarged to match the

size of the high resolution images. This results in crude channel definition on the

lower resolution image, and likely introduces a loss of channel definition and thicker

reconstructed channels.

With reference to the set of images taken from a single CG lightning event, Camera 1

resolution produces a channel height (from cloud to ground) of 155 pixels, whereas

Camera 2 resolution produces the same channel in 54 pixels. This results in a scaling

ratio of almost 1 : 3.

To demonstrate this point, a comparison of Camera 1, Frame 2 in Figure 4.16b and

Camera 2, Frame 1 in Figure 4.17a. In the perspective of Camera 1, it can be seen

the branching information has been captured, but in the perspective of Camera 2,

a hint of branching can be seen, but cannot be properly defined. This therefore

limits the model to only reconstructing the return stroke of the channel due to the

limitation of image comparison.

Quality of Input Boolean Images

The automation of image conditioning may result is the loss of significant lightning

information. It may also result in the introduction of greyscale noise, depending on

the chosen image threshold. In addition, the thickness of the channel in the Boolean

image is partially determined by the threshold limit, and has a direct effect on the

reconstructed model.

Synchronisation of Camera Information

Using multiple cameras, the information photographed may not capture the same

level of channel detail due to unsynchronised devices. In the reconstruction of

discharge channels, matching of camera images from different perspectives usually

results in the loss of some channel detail. This drawback is partially resolved through

merging the time-series images into one single frame, as described in Section 4.3.1.
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The problem with this method appears if one camera does not capture any signficant

information in certain branches.

4.4.2 Two-Image Reconstruction

The basic reconstruction algorithm implementation is shown in Figure 4.18, for

an example of two images placed at 90◦ separation. The center of the channel

segment is determined by the intersection of the center normals and the radius of

the channel segment is determined by averaging each center intersection with the

outer image segment borders. Labels are annotated on the figure for reference to

variables discussed in Equation 4.1.

Rcs =
r1 + r2 + r3 + r4

4
(4.1)

where
Rcs = Radius of channel segment, pixels

rn = Radial distance from segment center normal intersection point,

where n = {1, 2, 3, 4}, pixels

Figure 4.18: Basic channel reconstruction algorithm for single-channelled discharges,

resolving channel segments by a series of two-dimensional geometric problems.
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The use of two images for reconstruction limits the model to a single channelled

discharge. This is due to certain redundancies that occur when branches are

introduced, which is described in more detail in Figure 4.19.

4.4.3 Three-Image Reconstruction

For three images, the algorithm used to reconstruct the models is altered to suit an

additional image. The main use for three-image reconstruction is the resolution of

channel branches. In Figure 4.19a, if there are branched structures in the images,

there are four intersections of the normals, defining four channel centers in the

model. This redundancy is resolved with the use of the third image, as shown in

Figure 4.19b.

In addition, Figure 4.19b demonstrates the ideal case for images that are placed

in the perfect eye-level position in relation to the channel model. This algorithm

represents the case that all normals intersect in one co-ordinate. Since center normals

are defined by the channel width and position in the image, this coordinate is often

variable depending several factors, including the camera exposure and the level of

filtering, and the image quality.

The real case for reconstructing channels using three input images in this framework

cannot use this algorithm as it stands, since placement of input images cannot be

exactly matched from the original camera perspectives. Therefore, a compromise

is made, by using the third image to resolve redundant channels in the setup.

The problem with using this technique is the decision on which images get used

for the channel reconstruction, and which one image is used to resolve redundant

channels. Therefore, the algorithm currently stands at using all the information,

each image taking a turn at resolving redundant channels, and merging the resolved

channels together, as shown in the process presented by Figure 4.20a-c). Table 4.3

summarises steps shown in resolving each channel segment with reference to the

figure illustrations. Each resolved channel is labeled by the resolving image, for

consistency. For example, resolved channel C1 is resolved by intersection of I1 and

constructed using information from I2 and I3.

The constructed channel segments have two options for reconstruction: first detect

and segment averaging. First detect option constructs all three resolved channel

segments, C1, C2 and C3. This is demonstrated in Figure 4.21, using resolved channel

segments in Figure 4.20. If the first detect option is not used, then assuming that
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(a)

(b)

Figure 4.19: Redundancies for branched channels from images. (a) Two branches are

assumed as part of the channel, and two are assumed by be redundant (b) Resolving

channel branch redundancies using a third image.
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(a) (b)

(c)

Figure 4.20: Algorithm for constructing channel segments from three images to

resolve channel redundancies, using the third image as verification (a) Construction

of C1 using I1 for verification (b) Construction of C2 using I2 for verification

(c) Construction of C3 using I3 for verification.

Table 4.3: Three-image reconstruction algorithm steps to reconstructing channel

segments for first detect option.

Cylinder Resolving Reconstruction Figure

Number Image Images Reference

C1 I1 I2 & I3 Figure 4.20a

C2 I2 I1 & I3 Figure 4.20b

C3 I3 I1 & I2 Figure 4.20c

Ctotal all all Figure 4.21
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Figure 4.21: Channel segment constructed from resolved channel segments C1, C2

and C3 from Figure 4.20 if first detect option is true.

the reconstruction algorithm processes images in the order of I1, I2 and then I3,

image information from I3 is only used to verify the existance of a channel segment,

and therefore C3 is constructed as part of the model, as shown in Figure 4.20c.

The use of this option in the algorithm presents inconsistencies in the reconstructed

discharge channel, whichever option is chosen.

The segment averaging option averages the locations and radii of resolved channel

segments per y-axis iteration of the reconstruction and constructs only one channel

segment in each iteration. The use of this option is best for the reconstruction of

single channelled discharges. This option can either be set to TRUE or FALSE, in

conjunction with the first detect option. In total, there are four different options

configurations that can be used in the reconstruction of models using three-image

inputs.
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4.5 Testing Framework

There are seven reconstruction algorithm options, which are listed in Table 4.4

(adapted from [3]). Branching definition can only be reconstructed with the avail-

ability of three images, and the average option may not be used for any branched

image information. The first detect option can be used to reconstruct for all cases.

Table 4.4: All seven algorithm options available for individual reconstruction cases

for two or three image reconstructions.

Case Images Branching Average First Detect

001 I1, I2, I3 False True True

002 I1, I2, I3 False True False

003 I1, I2, I3 True/False False True

004 I1, I2, I3 True/False False False

005 I1, I2 False – True

006 I2, I3 False – True

007 I1, I3 False – True

In order to quantify the accuracy of resulting models, the corresponding images of the

model are used for pixel matching of channel information with the original Boolean

image. This comparison is achieved using a tester application. This comparison is

shown with two arbitrary shapes in Figure 4.22. An image difference is produced

from the tester application, which identifies the pixel mismatch between the two

images. The number of mismatched pixels is also provided as εpm. Equation 4.2

provides the error calculation for the model verification.

Epm =
εpm

Ih × Iw
× 100 (4.2)

where
Epm = The percentage error of mismatched pixels, %

εpm = The number of mismatched pixels, pixels

Ih = Height of the tested images, pixels

Iw = Width of the tested images, pixels



Chapter 4 — System Design 56

(a) (b) (c)

Figure 4.22: Testing procedure comparing pixel mismatching of two images (a) Circle

(represents original Boolean image) (b) Square (represents image of model at same

perspective) (c) Difference between the two images indicated by white pixels.

The height and width of the compared images must be identical in order for this

comparison to obtain successful results. It should be noted that the error calculation

takes into account the total error of the entire image, and not only of the significant

channel information. This may provide a misleading result, since the calculation is

a function of the image size (which includes the majority black pixels).

The arithmetic testing method does not provide a pixel-by-pixel matching accuracy,

and comparison of reconstructed channel paths. Additionally, model accuracies are

determined visually by a manual case-by-case analysis. The accuracy of recon-

structed models will examine three properties: channel shape, continuity and the

presence of significant channel duplication.

4.6 Conclusion

The system designed to reconstruct discharge channels in 3D is completely modular.

A simple summary of the stages required for the system to operate includes the

photography of discharges from several perspectives; image processing to isolate

the channel information; inferring the information to 3D cartisian co-ordinates; and

testing the accuracy of the resulting models.

The photographic equipment describes the use of Axis cameras and a combination of

cross-polarised, infrared and violet optical filters. The cameras provide an automatic

triggering functionality and the optical filters reduce the glare of the fast transients

preventing overexposure of the image.
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Once images of the discharges are acquired, data conditioning needs to be performed

to produce Boolean images. The Boolean images required represent white pixels as

channel information, and black pixels as redundant information. This is obtained

through a combination of digital filters developed in C++ and VTK: channel iden-

tification; black and white Boolean; smoothing; merge; tracking and cropping; and

resize filters.

The 3D reconstruction of the discharge channels requires the inputs of Boolean

images and the respective angular separation of the camera perspectives about the

channel location. The algorithm used to extrapolate the 3D information simplifies

the problem to a series of 2D geometric calculations. One-pixel high channel

segments resulting from the 2D geometric calculations are stacked to produce the

discharge channel shape and structure.

Two main algorithms are implemented; two-image and three-image reconstructions.

The two-image reconstruction algorithm is designed as the simplest form of the

algorithm intended for single-channeled discharges. The three-image reconstruction

algorithm is designed to reduce redundancy on branched discharge channels. Each

algorithm has a set of configurations defining options first detect and average to

either TRUE or FALSE.

The testing framework defines a comparison between the Boolean input image, and

the matching image perspective of the reconstructed model. Two methods of testing

are defined, an arithmetic method in comparing the level of mismatch between

images and visual testing.

The following chapter describes the first step in the evaluation of the system perfor-

mance under laboratory conditions. This is the first set of evaluations made on the

system capabilities in reconstructing HV discharge channels, providing insight into

the performance of the system and its reconstruction algorithm configurations.
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Chapter 5

HV Laboratory Investigation

A series of small scale tests are performed in the HV laboratory, as

a proof-of-concept to reconstructing discharge channels for lightning.

The small scale tests help to identify and replicate some challenges

expected in the large scale lightning investigation. With the successful

reconstruction of laboratory discharge channels, confidence can be gained

in reconstructing large scale lightning discharge channels.

5.1 Overview

This chapter describes small scale testing on the reconstruction of discharge channels

in a controlled laboratory environment. Although the purpose of this investigation

extends to the reconstruction of lightning discharges, it has been found that monitor-

ing high voltage testing procedure using video recordings is a useful tool for gathering

information on unexpected failure, since burn marks, damaged insulation and carbon

by-products are usually the only visual indication of failure due to flashover. Even

in the presence of a human operator, the failure can escape the the naked eye and

the full extent of the damage may not be perceived. Therefore showing that the

reconstruction of high voltage laboratory discharge channels has its own merits.

Several gap configurations are investigated, with different combinations of camera

positions. The system is also tested with the photographed information under all its

different configurations. Each experiment is briefly discussed, including the gap con-

figuration setup, camera combinations and positions, resulting reconstructed models

and the contributing factors from each experiment. Each individual experimental
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setup modularly investigates different aspects of the reconstruction problem and

provides insight and confidence into the system capabilities:

1. Experiment A-1: General investigation

2. Experiment A-2: Single-channel verification

3. Experiment A-3: Branched-channel evaluation

For additional information on work performed regarding laboratory discharge chan-

nels, refer to Appendices. The work discussed in Appendix C introduces the

preliminary testing performed using HV discharge channels discussed further in

Experiment A-1 [3]. The work discussed in Appendix D provides an investigation

into large discontinuous laboratory gaps using two higher resolution cameras [40].

Lastly, the work discussed in Appendix E provides an overview to preliminary

investigations into reconstructing channels from different camera heights [41]. From

the investigation, it is concluded that camera angles below eye-level in the range of

0−18◦ provide inconclusive results, due to the absence of a third camera perspective

to provide validation of channels.

The advantage to testing small scale experiments in a high voltage laboratory is the

fact that testing is done in a controlled environment. Although this may seem trivial,

it is important to iteratively test the capabilities of the cameras in the presence of

high transient electromagnetic fields. As identified in Section 2.2, lightning has

multiple unknown variables associated with its formation and appearance. The

controlled environment allows for the prediction of several unknown characteristics

such as providing:

• a predetermined position of a discharge (governed by the gap geometry);

• an approximated length of the discharge channel (determined by the gap size);

• a predictable time to flashover (given by the voltage level and gap geometry);

and

• flexible camera positions relative to the discharge channel (due to the scale of

the laboratory environment with relation to a large scale lightning investiga-

tion).

Although the propagation of lightning is governed by the leader mechanism, which is

more closely replicated by a switching impulse over a gap of more than 10−30 meters,
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with long front times (in the order of hundreds of microseconds) [26], the small scale

testing of discharge channel photography is achieved by flashing over a large air

gap with the use of voltage impulses. These voltage impulses are produced by a

multi-stage impulse generator (or Marx Generator) and are typically used to test

the induced effects of lightning or operational surges of protection equipment. As

a proof of concept, a voltage impulse over a large air gap can produce a highly

illuminated discharge channel, which sufficiently replicates the visual effects that

are required for this investigation.

5.2 Experiment A-1: General Investigation

The focus of this experiment is to determine how many cameras, and which camera

positions would produce the best 3D reconstructed models. A direct comparison of

the two-image and three-image reconstruction algorithm is also obtained across the

board of all photographed datasets. This is discussed in more detail in Section 5 of

Appendix C [3].

5.2.1 Experimental Setup

A rod-to-rod gap configuration with a gap length of 0.83 m was used, which de-

termines the height of the discharge channel. The rod-to-rod configuration usually

gives rise to single-channelled discharges, although occasionally branched channel

are observed. The breakdown voltage in air was obtained at approximately 550 kV

with the given gap configuration. The general setup in the high voltage laboratory

is provided in Figure 5.1. Three wireless cameras from the Axis 207 range are used

at equal distances from the gap configuration. The wireless cameras communicate

with a local laptop via an ad-hoc network; and all triggered information is saved

directly to the laptop.

The cameras were placed in several angular formations to determine the ideal camera

angles for three-dimensional reconstruction of the system. There are five angles that

were tested: 30◦, 45◦, 60◦, 90◦, and 120◦ as shown in Figure 5.2, which provided a

wide range of angles to evaluate.

Several additional factors needed to be taken into consideration: location, height,

distance, and angles. The location of each camera was important to consider for
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Figure 5.1: Experimental setup for laboratory Experiment A-1 to determine the

optimal camera positions for reconstruction — Current camera configuration at 45◦.

protection purposes. The cameras were therefore place at a radius of 1.7 m away

from the gap setup, or Device Under Test (DUT). Each of the cameras were placed

at the same height above the ground of 1.035 m, which is also the same height as

the grounded rod electrode at the base of the DUT setup.

5.2.2 Reconstruction Results

Two sets of images were photographed from each camera angle configuration, result-

ing in a total of ten image datasets. Using Equation 4.2, the pixel mismatch error

(Epm) calculated from this dataset was determined at 11%, and the optimal angular

separation for camera positions was 45◦. This information was taken from a small

dataset, and an error calculation that includes a large redundancy. Additionally,

many modelled reconstructions produced mismatched channel paths, mostly due

to input images having mismatched channel sizes. Despite the measured camera

positions from the DUT providing similar gap lengths in the camera frames, this

size mismatch still played a large factor.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Three-camera angular separations for Experiment A-1 (a) Camera

separation of 30◦ (b) Camera separation of 45◦ (c) Camera separation of 60◦

(d) Camera separation of 120◦, and (e) Camera separation of 90◦.
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5.2.3 Discussion

The testing procedures used to analyse these image sets does not provide a com-

prehensive measure of the reconstructed model accuracy. Visual analysis still needs

to be performed in each case, as provided in Table 5.1. Each reconstruction case

(as specified in Table 4.4) is examined for all ten image datasets. The correct

channel path is determined through visual comparison, and direct pixel matching

has not been implemented for this observation. The presence of missing channel

segments and significant channel duplication may mean that the images are mis-

aligned. Cases 001 − 004 provide three images per dataset, since all three images

are involved in the reconstruction. Cases 005− 007 include two images per dataset,

although Case 007 lacks two sets of data for 90◦ camera separation, as using images

at 0◦ and 180◦ would not provide a relevant model.

Table 5.1: Visual evaluation of all laboratory datasets providing number of

reconstructed images containing the listed characteristics.

Case True or Correct Missing Significant

No. False Path? Segments? Duplication?

001 True 23 3 0

False 7 27 30

002 True 21 21 0

False 9 9 30

003 True 15 0 21

False 15 30 9

004 True 15 18 12

False 15 12 18

005 True 20 2 –

False 0 18 –

006 True 14 0 –

False 6 20 –

007 True 16 2 –

False 0 14 –
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The information presented in Table 5.1 can to identify some specifics about how

the algorithm configurations perform on a specified dataset. It can be seen that for

visually matched channel shapes, the averaging option provided by Cases 001 and

002 reconstructs models that give the approximate shape of the channel expected

to be reconstructed. However, this is only visually matched, and any further

investigation into the precision of the channel segment locations could result in

a considerate deviation in position. If the averaging option is not used, there is a

50% chance of achieving the correct channel path, which is offset by an observation

of significant duplication of the channel branches, where only a single (or one split)

should exist. Although it can be seen that for best reconstructions, only two images

should be used, as observed in Cases 005− 007.

For best continuation of the reconstructed channel path, the first detect option

provides the best results, as shown in Cases 001 and 003. This option ensures

that any channel segment that is verified gets reconstructed as part of the channel

and provides minimal missing segments, as shown in Figure 4.20. Additionally, the

first detect option is seen to provide good channel continuation in the two-image

reconstructions in Cases 005− 007. This option can produce branching information

from two image reconstructions, although it has a 25% chance of being the correct

branch combination for a single split branch.

5.3 Experiment A-2: Single-Channelled Verification

With the use of three cameras in single channelled discharge testing, it is possible

to perform model verification tests to determine the accuracy of the reconstructed

model. This is accomplished by reconstructing the channel with two perspectives,

and using the third image for comparison at the respective perspective.

5.3.1 Experimental Setup

This evaluation uses images taken from the setup discussed in Section 5.2. A sample

of three original image perspectives photographed from 120◦ camera separation is

used to demonstrate the method of analysis and is provided in Figure 5.3.
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(a) (b) (c)

Figure 5.3: A set of images samples taken in the high voltage laboratory investigation

with three camera perspectives at eye level (a) Camera 1 at 0◦ (b) Camera 2 at 120◦

(c) Camera 3 at 240◦.

5.3.2 Reconstruction Results

The model is reconstructed for image perspectives of 120◦ apart, as shown in

Figure 5.4. Verification is performed from the image taken at 240◦ demonstrated in

Figure 5.4c. This perspective is chosen as the verification image due to the curved

channel shape seen at this perspective, and not represented directly in the other two

images. If the reconstructed model can replicate the curved channel shape as seen

in the image from this perspective, it can be assumed that single-channel recon-

struction only requires the use of two images. This would also provide verification

that reconstructed discharge channels using the single-channel algorithm correctly

reconstructs models given the images and corresponding angular separations.

5.3.3 Discussion

A direct comparison is made at the 240◦ perspective between the channel information

taken from the original image, the filtered image and the reconstructed image

of the model without direct input from the original perspective. The original

image is presented in a cropped form in Figure 5.5a, the filtered image of the

third perspective is shown in Figure 5.5b, and the reconstructed model at the

corresponding perspective is produced in Figure 5.5c. The reconstructed model

has an underlying image (in the background of the model) of the original channel

shape (thinned version of Figure 5.5b).
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(a) (b) (c)

Figure 5.4: Reconstructed model from Figure 5.3. Input data can be seen behind

the model channel, to match the accuracy of reconstructed channel path and shape

for Cameras 1 and 2. (a) Camera 1 at 0◦ (b) Camera 2 at 120◦ (c) Perspective of

reconstructed model at 240◦.

(a) (b) (c)

Figure 5.5: Verification through comparing third photographed image from Cam-

era 3 at 240◦, not used as an input for the model reconstruction. (a) Original image

(b) Boolean image (c) Reconstructed model at corresponding angle (background

underlay of channel shape of original channel, for direct comparison).
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It can be seen that the reconstructed model follows the shape of the third verification

image, without the use of the original image as input data. The top portion of the

channel follows the correct shape, which includes the stepped bevelling along the

channel above the curve. Although at the top of the channel, the direction is tilted

towards the right with respective to the observed perspective. This implies that there

may be camera lens curvature that would need correction, or one of the cameras may

be placed at a slight tilt. This may be explained by the fact that cameras are placed

at the same level as the ground electrode, and the focal points of the cameras are

tilted slightly upwards. This should be corrected with subtle image normalisation.

Nonetheless, the bottom down appears to correctly follow the original shape without

any significant offset. Therefore, this evaluation has provided some confidence in the

two-image reconstruction algorithm.

5.4 Experiment A-3: Branched-Channel Evaluation

Most discharge channels have branched characteristics, and lightning discharge

channels no exception. It should be noted that branched channels can only be recon-

structed using the three-image reconstruction algorithm described in Section 4.4.3.

If only the two-image reconstruction algorithm is used with the first detect option,

branched definition could be reconstructed, but the resolved paths have a one in

four chance of being correct. This investigation focuses on laboratory discharge

channels with 3D spatial definition, and the use of two and three perspectives to

reconstruct the model. Furthermore, this investigation evaluates the capabilities of

the three-image reconstruction algorithm.

5.4.1 Experimental Setup

This evaluation uses images taken from the setup discussed in Section 5.2. Since

branched channels occur rarely in a rod-to-rod gap setup, only one discharge is

discussed. The three Boolean images photographed for this discharge were taken

at a 45◦ camera separation. Two models are reconstructed: a two-image model

(Part 1) and a three-image model (Part 2). Table 5.2 provides a summary of the

model configurations in each part.
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Table 5.2: Reconstruction configurations for branched HV discharge channel

evaluation using two- and three-image algorithms.

Property Part 1 Part 2

Images Used I2, I3 I1, I2, I3

Angular Separation 45◦ 45◦

Model Configuration Case 006 Case 004

First detection setting true false

Average setting false false

5.4.2 Reconstruction: Part 1

Two of the three images are used for this investigation, I2 and I3 (or Case 006). The

Boolean images are provided in Figure 5.6a and c. These two images were chosen for

the significant branching detail that is required to resolve branched channels using

the first detect option.

(a) (b) (c) (d)

Figure 5.6: Reconstructed model of branched HV discharge channel using two input

images. In each pair, shows the resulting Boolean image (left), and corresponding

perspective of the reconstructed model (right) (a-b) Perspective 2 at 45◦ (c-

d) Perspective 3 at 90◦.

From the reconstructed images in Figure 5.6b and d, it can be seen that reconstructed

model paths match the original images. But despite the fact that two-image recon-

structions for branched images can produce visually accurate models these models
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reconstruct an ambiguity and may not yield accurate branched paths. Therefore,

the presence of this ambiguity means that models from this type of reconstruction

cannot be used for accurate analyses.

5.4.3 Reconstruction: Part 2

This example presents Case 004 for the model reconstruction and is shown in

Figure 5.7. The images show the Boolean image placed on the left of each pair

and the corresponding perspective of the reconstructed model is on the right. The

reconstruction modelling parameters are indicated in Table 5.2.

(a) (b) (c) (d) (e) (f)

Figure 5.7: Reconstructed model of branched HV discharge channel. In each pair,

shows the resulting Boolean image (left), and corresponding perspective of the

reconstructed model (right) (a-b) Perspective 1 at 0◦ (c-d) Perspective 2 at 45◦

(e-f) Perspective 3 at 90◦.

The model presented in Figure 5.7 appears to generally follow the channel path

given the specific perspective matching.

5.4.4 Discussion

If a direct comparison is made on the channel paths reconstructed from the investi-

gations in Part 1 and Part 2, as shown from a similar arbitrary perspective of both

reconstructed models in Figures 5.8 and 5.9, it can be seen that there is a significant

difference in the branched paths the model reconstructed. This is explained by
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(a) (b)

Figure 5.8: Image of the two-image reconstructed model at an arbitrary perspective

indicating inaccurage branching definition. (a) Full length with marked focus

(b) Zoomed image of marked focus.

the fact that two-image reconstructions using the first detect option resolves the

first channel segment per center normal, and therefore reduces the reconstructed

ambiguity. However, this is does not yield accurate models.

Therefore, branched definition can only be accurately defined by a third image

perspective. Despite the fact that reconstructed models using three-images, the

models are not perfect. Upon closer inspection as indicated by Figure 5.9, it

is seen that the reconstructed model has two major flaws: reconstructed channel

discontinuity and duplicated branches in the branch split.

It is difficult to produce perfect camera positions in the laboratory without spe-

cialised equipment, and slight tilts and inaccuracies can reflect in the reconstructed

models through meshed duplication of branches or missing segments. In addition,

limitations in the reconstruction algorithm and current framework can also be a

contributing factor. For the branched channels to be accurately modelled using

this algorithm, the framework could include some intelligence to properly align the

images, such that corresponding channel information can be matched properly to

avoid discontinuities and duplicated branches. It is noted that input images of two

pixels or less would result in discontinuities, due to the lack of valid normals being

extended from the image data. This means that refinement on the current modelling

algorithm may be required in future.
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(a) (b)

Figure 5.9: Image of the three-image reconstructed model at an arbitrary perspective

indicating duplicated channels per branch and missing segments. (a) Full length with

marked focus (b) Zoomed image of marked focus.

5.5 Conclusion

This investigation has provided some confidence in the system capabilies in pro-

ducing 3D reconstruction of HV laboratory discharge channels. Each successful

reconstructed model has provided a small-scale proof-of-concept to reconstructing

discharge channels in a controlled environment. Although model accuracies cannot

be fully determined through a comparison with input images, confidence is gained

through a direct comparison between image perspectives of reconstructed models

and the original Boolean images. This comparison provides a good indication to

determine the accuracy of the model from each known perspective.

The difference in algorithm configurations have been tested against a set number

of images taken at different angular separations. All datasets obtained contain

three image perspectives at a set angular displacement. It has been shown that

by averaging the channel segments per y-axis iteration, generally correct channel

paths can be obtained. This is determined by visual comparison and the resulting

models may not necessarily be used for a detailed analysis. It is noted that this

may not be accurate enough for research purposes. The first detect option for three-

image reconstructions provides better channel continuation, but also increases the
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channel duplication of the model. These errors may be indicative of slight image

mis-alignment.

The two-image reconstructions of single-channelled discharges provide accurate chan-

nel paths, good channel continuation, and no channel duplication. Additionally, the

models have been verified using a third perspective matching. It has been seen that

complicated channel paths have been duplicated in the third perspective comparison,

although it is evident that there is an offset on the channel tilt. Cameras are placed

at the same level as the ground electrode, and the focal points of the cameras are

tilted upwards.

The best branched definition is reconstructed using Case 004 (no first detect and no

averaging), which minimalises the redundant duplication of branches. Nevertheless,

duplication of channel branches cannot be completely eliminated, given that camera

perspectives cannot be perfectly matched according to required spatial specifications.

Additional intelligence to the framework functionalities can be incorporated to

ensure that reconstructed models are optimised. The averaging option may not be

used to reconstruct branched definition. Additionally, using the first detect option

for two-image reconstructions can provide some branching definition, but has a 25%

chance of providing accurate branching locations.

Now that the system has successfully reconstructed small-scale laboratory discharges,

the following chapter describes a preliminary investigation into the reconstruction

of single-channelled and branched lightning discharges.
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Chapter 6

Physical Lightning Investigation

A series of tests are performed to reconstruct lightning image data

to 3D models of the photographed discharge channels. An evaluation

is performed on preliminary tests of single-channelled and multiple-

channelled (or branched) lightning discharges.

6.1 Overview

This chapter describes a preliminary investigation into reproducing the 3D details

of full-scaled lightning discharges, taking into account the simple single-channlled

discharge, and the more complex branched case. Image data is obtained from other

researchers (with their permission). The following investigations are discussed in

this section:

1. Investigation B-1: Single channel (Tuscon)

2. Investigation B-2: Multiple channels (South Dakota)

A preliminary investigation was performed on one branched Cloud-to-Cloud (CC)

lightning channel in Appendix F [42]. Since only one perspective was obtained, no

3D definition could be reconstructed. The model reconstructed was a flat channel

that was reconstructed in 3D space, and correctly constructed the branched channel

definition. This preliminary study provides some confidence in the reconstruction

algorithm and its ability to reconstruct multiple branches in a channel.
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It should be noted that the camera elevations have not been taken into account

in the reconstructions of these lightning channels, as proper analysis has not been

performed in the laboratory investigation. The evaluations of the reconstructed

lightning models should all be noted with a possible error due to omission. Future

evaluations can be performed with elevation correction and used to compare with

the results found in this section.

6.2 Experiment B-1: Single Channel (Tuscon)

In this investigation, a single-channelled lightning discharge channel is reconstructed

using images taken from Dr. Saba in 2007 [43]. Two successive flashes, with different

channel shapes, were photographed with this setup. An example of one of the

recorded lightning flashes is discussed in Appendix G. This section discusses the

second photographed flash.

6.2.1 Experimental and Setup

(a) (b)

Figure 6.1: Images taken of a lightning flash in Tuscon USA in 2007 for two different

perspectives approximately 34◦ apart. (a) Camera S1 (b) Camera S2.

A lightning flash was recorded in high speed video from two different perspectives

in Tuscon, USA [43]. The cameras were placed at approximately 34◦ angular

separation. A sample of the two images from the videos are provided in Figure 6.1a

and b. It should be noted that there are significant resolution disparities in the

two images (discussed briefly in Section 4.4.1), which would reflect in the model

resolution.
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6.2.2 Reconstruction Results

The original lightning images in Figure 6.1a and b were processed to produce Boolean

images. These images were used to reconstruct a 3D model of the lightning discharge

channel, as shown in Figure 6.1. For Camera S1 perspective, the Boolean image and

corresponding model image – referenced at 0◦ – is provided in Figure 6.2a and b.

For Camera S2 perspective, the Boolean and model image – referenced at 34◦ – is

provided in Figure 6.2c and d.

(a) (b) (c) (d)

Figure 6.2: Reconstructed model of a single channelled lightning flash. (a) Cam-

era S1: Boolean image (b) Camera S1: Reconstructed image (c) Camera S2: Boolean

image (d) Camera S2: Reconstructed image.

6.2.3 Discussion

It is evident through visual comparison that the reconstructed model correctly

follows the path of the lightning channel in the images. In Figure 6.2b and d, several

segments are missing along the path of the reconstructed channel. These missing

segements correspond to the thinner areas of the channel, which demonstrates how

the reconstruction method fails when the channel is less than three pixels in width.

This has been a common observation from previous tests, and is explained by the

fact that normals may not be generated if a channel is one pixel or two pixels wide.

The reconstructed model has evident resolution errors, which is indicated in Fig-

ures 6.3 and 6.4. This set of images shows the propagation of errors in the re-

construction process in a direct comparison of each stage. The particular area of

interest, which clearly illustrates this error is highlighted in Figure 6.3. This segment
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Figure 6.3: Original image from Camera S1 perspective indicating area of interest

for demonstrating errors in resolution in the reconstructed model.

(a) (b) (c)

Figure 6.4: Zoomed in area of interest showing resolution errors on the reconstructed

lightning model from Camera S1 perspective. (a) Original image (b) Boolean image

(c) Corresponding image of reconstructed model.

is chosen for its clear variation in channel definition in the original image. The

original image, Boolean image and corresponding model image reflecting the area of

interest is presented in Figure 6.4a–c.

It can be seen from a comparison of Figure 6.4a with Figure 6.4b that the digital

filtering stage already introduces minor errors in the definition of the channel

information. These errors may not be significant, but has a direct effect to the

quality of the model that is reconstructed, as the Boolean image is the only input

defined to the modelling stage.

A comparison of Figure 6.4b with Figure 6.4c demonstrates the resolution errors that
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are subsequently introduced to the reconstructed model. It should be noted that the

thickness of the channel is determined by an averaging of radii of verified channel

segments, and therefore producing additional width errors if compared to the original

image from Camera S1 perspective. Due to the cruder resolution of the original

image from Camera S2 perspective, the resulting resolution of the reconstructed

channel of the model is bulkier and less defined. If different camera resolutions are

used to record the same lightning flash, these resolutions should be a contributing

factor in the camera placements.

6.3 Experiment B-2: Multiple Channels (South Dakota)

In this investigation, an upward lightning discharge channel with multiple branches

is reconstructed using images taken from Mr. Warner in 2010 [44]. Five cameras

captured the discharge channel from four different positions. The flash consists of

two significant parts: upward branching leaders from the tower tip, and a return

stroke extended across the horizon. Figure 6.5a presents the photographed image

of the branched upward leader channels for Camera W1, which will be the focus of

this investigation. The return stroke for this flash is presented in Figure 6.5b for

the same camera perspective. It should be noted that these two frames have been

selected from several frames illustrating the time resolved propagation of the flash.

(a) (b)

Figure 6.5: Camera W1 perspective of upward lightning leader propagation of

a branched flash photographed at multiple perspectives. (a) Multiple channels

(b) Return stroke.
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6.3.1 Experimental Setup

Five cameras participated in the photography of an upward flash from the South

Dakota tower occurring in 2010. The locations of the camera setup, relative eleva-

tions and radial distances are presented in Table 6.1. All the cameras are located on

lower ground in relation to the tower position, which is demonstrated by a negative

relative elevation value.

(a) (b)

(c) (d)

Figure 6.6: Upward lightning leader propagation of a branched flash photographed

from Camera W2 to Camera W5. (a) Camera W2 (b) Camera W3 (c) Camera W4

(d) Camera W5.

The multiple perspectives on the upward branched leader propagation are presented

in Figure 6.6. It can be seen that Camera W2 and Camera W3 have little or no

distortion on the image, whereas Camera W4 and Camera W5 were photographed

with fisheye lenses and therefore contain a large amount of distortion. The lightning

discharge captured in Camera W5 is much clearer than the photographed image in

Camera 4 due to its closer proximity to the towers.
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Table 6.1: Geographic information of cameras in relation to a flash photographed

on a tower in South Dakota.

Location Relative Radial

Reference Co-ordinates Elevation (m) Distance (km)

Tower 44.0687◦N 103.2514◦W − −

Camera W1 44.0324◦N 103.2728◦W −271 4.40

Camera W2 44.0336◦N 103.2857◦W −152 4.77

Camera W3 44.0348◦N 103.2880◦W −146 4.78

Camera W4 44.0348◦N 103.2880◦W −146 4.78

Camera W5 44.0615◦N 103.2501◦W −186 0.80

Table 6.2: Configurations for cameras participating in the photography of the flash

occurring on the South Dakota tower.

Camera Lateral Camera Image

Reference Separation Lens Distortion)

Camera W1 0◦ f/1.3, 3 mm -

Camera W2 12◦ f/1.4, 2.8 mm minor

Camera W3 15◦ – -

Camera W4 15◦ fisheye 1.4 mm significant

Camera W5 330◦ fisheye 1.4 mm significant

For reconstruction, Camera W1 is used as the reference camera, as its image provides

the clearest resolution and the most information on the lightning discharge, as shown

in Figure 6.5. The lateral separation of the remaining cameras are measured in

relation to Camera W1, and presented in Table 6.2. This table also presents the

specific camera information based on lenses used on the cameras and identifying any

significant image distortion which requires normalisation on the lens curvature.
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6.3.2 Reconstruction Consideration

Since only three images are required for branched reconstructions, images from

Camera W1, Camera W2 and Camera W3 are used in the reconstruction. Due to

the major fisheye lens distortion on channel information captured from Camera W4

and Camera W5, the corresponding images are omitted from the reconstruction in

this investigation.

The three images participating in the reconstruction of the branched channel present

different portions of the channel in the captured frame. This is corrected digitally

to ensure that all the images include channel information that is mutually inclusive.

The comparison is performed by a crude matching of channel shape. This matching

method is unique to this case, because images are close in angular separation (i.e.

12◦ and 15◦ in relation to Camera W1 at 0◦), and no significant change is observed

in the channel shape from all perspectives.

Due to the acute angular separation on the three images, the variance of the channel

information is limited. This fact may produce inaccurate reconstructed models, as

the three-image algorithm was not designed for such small angular separations. To

evaluate the capabilities of the algorithm (for the use of two and three images)

efficiently, three tests are performed on the image data:

• Part 1: Fully Branched Channel

• Part 2: Simplified Branched Channel

• Part 3: Single Branched Channel

6.3.3 Reconstruction Results: Part 1

The fully branched lightning channel is reconstructed to test the capability of the

reconstruction algorithm for branched discharge channels. In particular, this set of

images tests the algorithm under the condition of acute angular separation of the

input images.

The filtered Boolean images of the three perspectives are provided in Figure 6.7.

The resulting images illustrating the reconstruction of the three-image model for

the two branched-channel is presented in Figure 6.8.
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(a) (b) (c)

Figure 6.7: Fully branched channel Boolean images of upward flash return stroke;

cropped to include mutually inclusive data of the channel (a) Camera W1 at 0◦

(b) Camera W2 at 12◦ (c) Camera W3 at 15◦.

(a) (b) (c)

(d)

Figure 6.8: Reconstructed lightning channel of the fully branched channel of

the upward flash return stroke using two images (a) Reconstructed perspective

of Camera W1 (b) Reconstructed perspective of Camera W2 (c) Reconstructed

perspective of Camera W3 (d) Triple duplication of a channel.
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It is difficult to discern any useful information from the images taken from corre-

sponding angles of the input images in Figure 6.8 (a-c). Despite this, it can be seen

that there are channel thicknesses much greater than the original channel widths

depicted in the input images. Additionally, it can be seen that redundant channels

are also reconstructed.

To investigate this reconstruction in greater detail, a different perspective is high-

lighted, in the form of Figure 6.8 (d). This image demonstrates the existance of an

offset occurring in the placement of the images, which produces three individual

channels that appear to follow a similar channel shape. This implies that the

images are not correctly aligned, and therefore reconstructs a ”ghosting” effect on

the channels.

6.3.4 Reconstruction Results: Part 2

The lightning branching information is simplified to the usage of only two branches

for reconstruction. This should provide the basic test for branched channel recon-

struction using the three-image reconstruction algorithm.

(a) (b) (c)

Figure 6.9: Two-branched channel Boolean images of upward flash return stroke;

cropped to include mutually inclusive data of the channel (a) Camera W1 at 0◦

(b) Camera W2 at 12◦ (c) Camera W3 at 15◦.

The filtered Boolean images of the three perspectives are provided in Figure 6.9.

The resulting images illustrating the reconstruction of the three-image model for

the two branched-channel is presented in Figure 6.10.
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(a) (b) (c)

(d)

Figure 6.10: Reconstructed lightning channel of the two-branched channel of

the upward flash return stroke using two images (a) Reconstructed perspective

of Camera W1 (b) Reconstructed perspective of Camera W2 (c) Reconstructed

perspective of Camera W3 (d) Extent of the full model.

6.3.5 Reconstruction Results: Part 3

A single channelled discharge for the flash is investigated in the form of the return

stroke occurring for the tower flash. This provides the simplest form of reconstruc-

tion on a concept that has already shown to be sucessful. The difference is using three

images for the reconstruction, and the acute angle at which images are obtained.

The filtered Boolean images of the three perspectives are provided in Figure 6.11.

Two reconstructions are performed for this test, three-image and two-image recon-

structions. This allows for the comparison in the performance of the two different

algorithms on the same set of data at small angles of separation. The resulting

images illustrating the reconstruction of the two-image model is presented in Fig-

ure 6.12 and the three-image model is presented in Figure 6.13.

The two-image reconstruction demonstrates a model that correctly follows the path

of the channel — as expected. The significant observation from this model is the
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(a) (b) (c)

Figure 6.11: Single branched channel Boolean images of upward flash return stroke;

cropped to include mutually inclusive data of the channel (a) Camera W1 at 0◦

(b) Camera W2 at 12◦ (c) Camera W3 at 15◦.

(a) (b)

Figure 6.12: Reconstructed lightning channel of the single branched channel of

the upward flash return stroke using two images (a) Reconstructed perspective of

Camera W1 (b) Reconstructed perspective of Camera W3.

greater relative thickness of the channel in comparison to the thickness of the original

images, therefore, producing disproportionately thick channel segments.

The three-image reconstruction appears to include a large amount of unwanted

information, particularly at the top and bottom of the channel. Closer observation

of this model reveals that redundant channel segments are included in the model;

i.e. the y-axis does not present unique channel information and therefore appearing

to form branching. It is expected that this is partially due to alignment of the three

images.
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(a) (b) (c)

Figure 6.13: Reconstructed lightning channel of the single branched channel of

the upward flash return stroke using three images (a) Reconstructed perspective

of Camera W1 (b) Reconstructed perspective of Camera W2 (c) Reconstructed

perspective of Camera W3.

6.3.6 Discussion

The reconstruction of this particular set of images has tested the reconstruction of

discharge channels using images taken at acute angles more than the capabilities of

the reconstruction algorithm for branching channels. It has been shown that such

acute angular separation on the input images greatly distorts the channel that is

reconstructed. Despite the fact that models could not be correctly reconstructed,

some conclusions can still be made regarding the reconstruction of multiple channels

and reconstructions from input images from very acute angular separations.

Reconstructed Channel Thickness

The reconstruction of this discharge channel has produced models that have branches

of the channel that appear much thicker than the original image portrays. This

is expected according to the reconstruction algorithm; the radius of each channel

segment is determined by the intersections of outer normals of the white segments in

the image. At acute angles, the positions of the outer intersection points would occur

far from the center of the channel segment. This is demonstrated in an example of

images placed at 10◦ separation shown in Figure 6.14.
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Figure 6.14: Channel thickness distortion modelled in the reconstruction due to

acute angles.

Duplicated Branches Reconstructed in Incorrect Positions

It is evident in the images of the models reconstructed that there are several

additional branches that are reconstructed, and should not appear in the channel.

This is clearly evident in Figure 6.8d and Figure 6.10d. This is likely due to

a problem with proper alignment of the images coupled with the extreme acute

angle of the input images. The algorithm for three-image reconstruction is designed

on a verification of cylinders, and because cylinders are so large in radius due to

the extreme acute angles, incorrect data is being incorrectly verified as a channel

segment. This is illustrated in the series of images in Figure 6.15a–c demonstrating

each step of the verification process.

Additional Image Information

The use of these images from Camera W4 and Camera W5 would provide addi-

tional channel information for future reconstructions and verification of channel

reconstructions. In particular the use of Camera W5 would provide a marginally

greater angular separation for the reconstruction, which could possibly provide a

better reconstructed model, if image correction can be sufficiently achieved. The

use of these two images would require significant image correction, of which open

source applications do not provide functionality for this type of fisheye lens.

Since Camera W3 and Camera W4 are placed in the same position, the image

correction of Camera W4 can be matched with the image provided by Camera W3

to provide a level of accuracy. Camera W4 and Camera W5 use the same fisheye
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(a)

(b)

(c)

Figure 6.15: Verification process for redundant channels at acute angles. (a) Identi-

fication of cylinder centers and respective points (marked with ’x’) to calculate radii

(b) Virtual cylinders with radii determined by the averaged distances of ‘x’ points

(c) Third image verification incorrectly identifying all cylinders as valid.
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lens, so given an appropriate match of Camera W3 and Camera W4 images due

to corrections, the same image correction can theoretically be applied to the image

from Camera W5.

6.4 Conclusion

The reconstruction of lightning discharge channels have provided similar results

to the reconstructed channels from the HV laboratory environment. These re-

constructions have demonstrated similar errors to the HV laboratory models, such

as missing segments and branch duplication. This shows that reconstructions are

mostly dependant on the quality of the input Boolean images, showing that the pre-

processing steps are a vital part to obtaining success reconstructions. Despite the

fact that reconstructed channels look similar to those produced from HV discharge

channels, there has been no verification performed on the two sets of images.

It has been shown that the model resolution is only as good as its weakest image

resolution. This should be noted for when camera resolutions are vastly differ-

ent, or if camera positions relative to the lightning flash differ significantly. It

is recommended that if multiple camera resolutions are used to photograph the

same discharge channel, that cameras with weaker resolutions be used in the closest

possible site.

Additional conclusions have been made, regarding the use of acute image per-

spectives. In this investigation, it has been shown that not only do the acute

angular separation of less than 15◦ produce thicker channel segments for single and

multiple branched channels. This is demonstrated in Figure 6.14. In addition to

the branched channel scenario, duplicated ‘ghosting’ channels are produced due to

incorrect validation of the channel segments. This is demonstrated in Figure 6.15.

This chapter has highlighted some difficulties that become evident in the large scale

lightning investigation into reconstructing the channels in 3D, and also presented

some of the limitations in the design of the reconstruction algorithms. The following

chapter discusses the comparison of the HV laboratory investigation and the physical

lightning investigation. Future extension to this study is also provided.
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Chapter 7

Discussion and Future Work

In this chapter, the results of the laboratory investigation are compared

with the results from the physical lightning investigation. The system

is evaluated in its modular components through the results and future

reommendations in the refinement of each component are made.

7.1 Summary

The feasibility of reconstructing discharge channels from digital images is based

on evidence collected from several different sources, and the actual reconstruction

is based entirely on the reconstruction procedure discussed in Chapter 4. This

feasibility study therefore discusses the results of the investigation based on the

system mentioned herein and possible extensions to the project.

Table 7.1 provides a general summary of all the experiments discussed in Chapters 5

and 6 that have been performed for the feasibility study. The conclusion made for

each experiment is provided in the table, including the channel shape, number of

image inputs, angular separation of the cameras. For the channel shape option, S

denotes single-channelled discharges, and B denotes branched. The conclusions made

for each experiment provides the trend of whether datasets produced correct channel

paths, and if the model reconstruction has been verified through an additional

comparison. Each scenario is discussed further in this chapter.
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Table 7.1: Summary of all experiments performed for reconstruction of discharge

channels under various algorithm configurations.

Experiment Channel Image Angular Correct

No. Shape (S/B) Inputs Separation Path? Verified?

A1 S/B 2− 3 Various True True

A2 S 2 120◦ True True

A3 B 2 45◦ False True

A3 B 3 45◦ True True

Appendix F B 1 – True –

B1 S 2 34◦ True –

B2 B 3 0◦, 12◦, 15◦ False –

B2 S 2 0◦, 15◦ True –

B2 S 3 0◦, 12◦, 15◦ False –

7.2 Single-Channelled Investigation

The reconstruction of single-channelled discharges is best suited with the use of

the two-image reconstruction algorithm discussed in Section 4.4.2. The three-image

reconstruction algorithm may also be used in the single-channelled discharge investi-

gation, but has shown to produce duplicated channels and occasionally discontinuous

channels.

The reconstruction of single-channelled discharges have been shown to be reproduce

the general shape of the discharge channel path through visual matching with

original images. This is determined by overlaying the reconstructed model over

the original image at its respective camera perspective. It has been noted that

possible inaccuracies may be based on resolution, lens curvature, and camera tilt.

7.2.1 Laboratory Discharges

Using a small-scale investigation of HV discharge channels, the reconstruction of

single-channelled discharges have shown to reproduce channel paths that generally

match in shape and size. The averaging option produces channels that visually
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follow the general path, but may not necessarily provide an accurate reproduction

of the original channel path. The use of the first detect option provides good channel

continuation, whereby minimal missing channel segments are reconstructed, but also

produce more significant meshed branching duplication.

From Figure 5.4, two images are used to reconstruct a single channelled laboratory

discharge. Three cameras recorded the discharge at an angular separation of 120◦.

The image displaying the most channel curvature was omitted from the reconstruc-

tion. The reconstructed model produced similar curvature to the omitted image,

and on comparison, it is shown that a tilting factor separates the mismatching to

the original image. This type of verification has produced confidence in the basic

two-image reconstruction algorithm.

7.2.2 Lightning Discharges

From the physical investigation on two single-channelled lightning flashes in Tuscon,

it can be seen that the reconstructed channels match well with the original images

from the photographed perspective. This investigation demonstrated the limitations

in model resolution due to one image perspective lacking relevant channel detail.

It should be noted that if different camera resolutions will be used in a setup,

cameras with weaker resolutions are recommended to be placed closer to the intended

termination point. There were only two perspectives photographed for this lightning

event, and no additional perspective could provide verification on the larger scaled

reconstruction.

In addition, the return stroke of a flash from South Dakota taken at very acute

camera angles (≤ 15◦) has also been investigated. The two-image reconstruction

algorithm produces channels that follow the general path, but constructs channel

widths that are much thicker than expected from the original images at very acute

image angles. This is due to the thickness of each cylinder segment is dependant

on the intersections of each white-pixel segment extended from the original image,

and at very acute angles, the intersection points are much further away from the

cylinder centers, resulting in exaggerated radii. The three-image reconstruction

algorithm produces disproportionately thick channel segments, but still follows the

general path of the discharge channel shape.
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7.2.3 Discussion

Two-image reconstructions cannot be readily verified if there is no additional per-

spective to provide comparison on the reconstructed model. If only two images

are recorded of a discharge channel, the only conclusion that can be made is that

recontructed segments match the path and thickness of the original image at the

given camera perspective at both perspectives.

The availability of three or more camera perspectives allows for the verification of

the two-image reconstruction algorithm. This has been verified in a controlled small-

scale environment, but the larger scaled environment investigating lightning flashes

has not yet provided verfication.

Three camera perspectives can also provide verification on the three-image algo-

rithm, although additional errors may be introduced to the model, such as missing

channel segments and duplicated channel segments, which are both indications of

slightly mis-aligned input images.

7.3 Multiple-Channelled Investigation

The reconstruction of multiple-channelled discharge channels is shown to generally

follow the channel path. As the three-image reconstruction algorithm stands, incon-

sistencies are introduced to the reconstructed channel through attempting to equally

use all the image information.

7.3.1 Laboratory Discharges

The laboratory investigation produced one branched discharge channel with cameras

placed at 45◦ separations. The channel has a single split, which provided the simplest

evaluation of the reconstruction algorithm. The reconstructed channel demonstrates

two known limitations of the three-image reconstruction algorithm: resolved channel

segment inconsistencies and missing channel segments.
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7.3.2 Lightning Discharges

The physical lightning investigation has also produced one event of a multiple-

branched upward discharge channel photographed from five different perspectives,

taken from South Dakota. Two camera perspectives are omitted from the investiga-

tion due to significant image distortion from the fisheye lenses used. The remaining

three cameras recording the event are placed in very acute angles of≤ 15◦ seperation.

The reconstruction of multiple channels with images taken from the very acute angles

provided general channel paths, but included errors such as redundant channels and

disproportionately thick channel segments. These errors have been found to be

caused by the design of the reconstruction algorithm.

Reconstructing branched discharge channels using one branched image perspective

provides a proof-of-concept for more complex branched channels. This tests the

scenario for 90◦ camera separations where one image provides no branching informa-

tion. This investigation does not resolve any 3D channel information, but accurately

reconstructs the branched channel using the three-image reconstruction algorithm.

It is shown from this investigation that the algorithm fails for very thin channels i.e.

one or two pixels in width.

7.3.3 Discussion

Multiple-channelled discharge reconstructions are successful under ideal conditions;

i.e. 90◦ angular separation (with no 3D definition) and 45◦ separation in the

laboratory environment. The best algorithm configuration for resolving channel

branching for one double branched channel is Case 004. The algorithm fails in the

reconstruction of multiple channels at very acute angles ≤ 15◦, by reconstructing

redundant channels and producing channel widths that are much thicker than

portrayed in the original images.

It is important to use three input images for branched channels. Despite the fact

that two-image reconstructions using the first detect option can provide acceptable

models, it is hard to determine whether the resolved channel branches are correctly

modelled, or if the ambiguities have been resolved instead. There is a 25% chance

of the branches being correctly placed. A third image is imperative in providing

the channel segment validation, and eliminating the ambiguity branched channels

present.
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7.4 System Evaluation

This investigation has shown that the system still has several flaws; and due to

these flaws, has resulted in imperfect discharge channel reconstructions. Despite the

errors observed, the weaknesses of the system are known, and as a proof of concept,

the system has been shown to be successful in reconstructing discharge channels,

with confidence gained in its single-channelled reconstructions. The known system

flaws are discussed and critiqued in this section, leading up to a plan to extend this

current work and the system capabilities.

7.4.1 Reconstruction Framework

The reconstruction framework refers to the process involved after image processing,

and before the reconstruction algorithm is applied. This framework determines the

virtual environment for reconstruction, which deals with the image placement with

respect to the origin of the environment. This part of the system has not been

directly tested in the scope of this study, but through the investigations in this

study, some future modifications have been identified to provide more optimised

channel reconstructions. This may include providing feedback functionality to the

placement of images in the virtual environment, to produce optimised models with

minimal missing segments and reduce channel duplication.

7.4.2 Image Pre-Processing

The filtering of images to the Boolean images used as inputs for the reconstruction

algorithm has shown a successful elimination of redundant image information, and

the successful identification of relevant discharge channel information.

Nonetheless, this investigation has identified the need to normalise images according

to camera tilt or camera lens curvature. An additional pre-processing step on the

images can be incorporated to resolve this problem and assist in producing more

accurate models.
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7.4.3 Reconstruction Algorithms

The general method in reconstructing discharge channels using stacked cylinder

segments has been shown to be a simple method of tackling a complex 3D problem.

Common faults found in general method used in the reconstruction algorithms

have shown to produce missing channel segments (most notably demonstrated by

Figures 5.7 and 6.2) and disproportionate channel widths at acute image perspectives

(as demonstrated in Figure 6.14).

Missing channel segments have been found to result from input image data with

channel sections of less than 3 pixels in width. If channel sections are not at least

3 pixels wide, a center, left and right normal cannot be extended from the relevant

white pixels, resulting in a null channel segment and a discontinuity in reconstructed

model. Future modifications would have to either limit the system from accepting

channel widths less than 3 pixels in width, or would need to account for these narrow

channel portions.

Disproportionate channel widths appearing in the reconstructed model are a result

of the method in which the channel segment radii are calculated. This method was

originally designed for angles of separation of over 30◦. It was assumed at the time

that camera perspectives smaller than that would not provide sufficient 3D spatial

information significant enough to reconstruct a model. The channel segment radius

is calculated from the intersection of a center normal of a white channel section in

one image with a left or right normal of a corresponding white seciton in another

image from a different perspective. This dynamic radius is dependant on the angle

of separation on the input image perspectives, which does not make logical sense

and should be revised.

Future modifications made to this algorithm would include the calculation of channel

segment radii independant of the image angular separation, and only based on the

width of the white sections of the input images. This means that diameters will

be calculated as an average of corresponding channel widths in the 1-pixel high

sections. If intersections of far left and right normals with center normals are no

longer required in the algorithm, this could reduce the number of required normals

per 1-pixel high which image section to only one center normal. The application

of this would also solve problem concerning missing channel segments due to thin

channel widths.
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Two-Image Reconstruction Algorithm

The two-image reconstruction algorithm has been validated in its ability to correctly

reconstruct a discharge channel given only two perspectives (as shown in Figure 5.5).

A valid model has been verified using a comparison with a third perspective that has

not been used in the system as an input to the recontruction. The resulting model

demonstrates a slight tilt in a portion of the reconstructed channel, but this offset is

a result of the image alignment, and not the fault of the reconstruction algorithm.

Three-Image Reconstruction Algorithm

The reconstruction algorithm for three-image inputs have shown to produce redun-

dant channel segments, sometimes meshed about a similar axis (as demonstrated in

Figure 5.9), or extended far from the model center (as demonstrated in Figure 6.10d).

Duplicated channel meshing provides an indication that images are not properly

aligned, and therefore slight offsets occur in the calculated cylinder segment centers.

The meshed channel branches can be solved by a re-evaluation of the verification

method for channel segments, and can probably be optimised in the positioning of

the images providing the best fit for the channel. However, this is out of the scope

of this investigation. Occasionally, missing segments may also present the same

indication.

An acute angular separation of the image perspectives produces redundant channel

branches extended far from the model center, as demonstrated in Figure 6.15.

A possible modification to the reconstruction algorithm has been provided for

preventing the reconstruction of these redundant channels in Section 7.4.3.

7.4.4 Testing Model Accuracy

Currently, the most useful method of testing the accuracy of the reconstructed

models is through a visual comparison of the Boolean image and the image of the

matching model perspective. The visual comparison comprises of an evaluation

of a matching channel shape, segment continuity and whether signficant channel

duplication is reconstructed. These evaluations are performed using a side-by-side

comparison of the Boolean image and the image of the reconstructed model at the

same perspective.



Chapter 7 — Discussion and Future Work 97

The testing framework currently provides two automated evaluations: the percent-

age mismatch between the two images, and the percentage error of total white

pixels reconstructed from a perspective matching. Both calculations provide a vague

indication of the reconstructed model perspective, and little conclusion can be made

with the results of each calculation.

Future improvements to the testing framework could provide better functionality to

the automated testing of the image datasets through image processing. This would

reduce evaluation times and provide a more accurate description of the reconstructed

models. This could be achieved in two ways:

1. Direct pixel matching of the two images and,

2. Idenfication of pixel coordinates demonstrating branching of branch tips and

matching coordinates of both images.

Additionally, models can be compared using the reconstructed coordinates of the

channel segments, which may include the position of the segment center and the

calculated radius. This test would only be able to be performed on models recon-

structed from the same set of data, such as a comparison between the algorithm

configurations, Cases 001− 007.

7.4.5 Future Work on Image Data

A future objective of the work regarding this project is the collection of multiple

lightning perspectives with the camera setup in Johannesburg, either on Brixton

tower or Hillbrow tower. The collection of this image data would be more stringently

monitored and will provide wider angular separation on image datasets than was

provided from South Dakota as discussed in Section 6.3.

In Johannesburg, there are two cameras are currently monitoring Brixton tower,

one camera monitoring Hillbrow tower and another camera monitoring the Johan-

nesburg skyline. The lightning incidence of the towers in question are discussed in

Section 2.3.2. For the purpose of future 3D lightning reconstructions, the Brixton

tower setup is discussed in this section.

Camera locations in relation to Brixton tower are provided in Table 7.2, and pro-

duced graphically in Figure 7.1. Observation of Brixton tower has been operational
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Table 7.2: Geographic information for Brixton tower and the relative camera

locations.

Location Co-ordinates Elevation (m) Distance (km)

Brixton Tower 26◦11′33′′S 28◦00′25′′E 1779 –

Site 1 26◦11′29′′S 28◦01′32′′E 1714 1.88

Site 2 26◦11′10′′S 28◦00′30′′E 1739 0.71

Figure 7.1: Camera views on Brixton tower indicating an approximate 70◦ separation

between the two sites.

since November 2009 from Site 1. The camera was set up to face Brixton tower from

an observation point at the University of the Witwatersrand. The physical distance

between the location of the tower and the observation site is approximately 1.88 km.

Observation at Site 2 includes a portable setup using an Axis P1344. No image

sets have been recorded from Site 2 due to difficulties in remote monitoring and the

overall statistical nature of lightning to tall structures, as highlighed in Section 2.2.1.

The collection of such image data is expected to be a long-term goal of this project.

The collection of image data in this setup will provide testing information for

different camera elevations, as shown in Figure 7.2. An elevation normalisation

on the images would need to be implemented and properly tested for this scenario.
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Figure 7.2: Two camera sites providing vastly different camera elevations observing

Brixton tower.

This would also open up the scope of channels that can be photographed with

the current equipment, including the possible 3D reconstruction of rocket-triggered

lightning channels – currently an ongoing project performed by the research group.

Additionally, more lightning images from different perspectives will be collected

from multiple sources to start building up a database of lightning channels. With

current camera technology, lightning channels are being recorded in high-speed,

which provides a time resolution of leader propagations. If this information can

be captured from favourable angular separations, this could open up a scope for

time-resolved lightning channels.

The following chapter summarises the findings of this work, in regard to the evalu-

ation of the system and the two discharge environment investigations.
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Chapter 8

Conclusion

A system has been introduced and described for producing images capable of recon-

structing 3D models of discharge channels. Each component of the system is modular

and can be refined without difficulty. The system capabilities and limitations have

been evaluated through the investigation of HV laboratory discharges, and full scale

lightning discharges. Each discharge environment has produced at least one sample

of single-channelled and multiple channelled discharges, which are used to evaluate

both two- and three-image reconstruction algorithms.

It can be seen that results from the laboratory and natural lightning investigations

are similar; showing the relevance of conducting small scale tests to determine

preliminary results for channel reconstruction. Several fundamental conclusions can

be made using small-scale reconstructions of discharge channels. This includes the

performance of all the algorithm configurations involved with two- and three-image

reconstructions. From small scale investigations, the best algorithm configurations

can be determined for use in lightning channel reconstructions, once images have

been obtained. In addition, verification has been performed on the two-image

reconstruction algorithm, which provides confidence in the reconstructed models,

provided that input images are set according to the angular specifications.

The reconstruction of lightning channels obtained from different sources has provided

an acceptable proof-of-concept. Although, the image datasets have also indicated the

limitations in the current reconstruction algorithms. The reconstruction of complex

lightning channels with multiple branches cannot be fully evaluated, due to the

limited image data set. Nonetheless, acceptable models have been reconstructed for

a two-branched laboratory channel.

Additional work needs to be performed on the system to provide more accurate
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and comprehensive models. This includes the addition of an image pre-processing

step to provide sufficient normalisation for camera elevation, tilt and lens curvature.

This also includes tweaking the reconstruction algorithm such that channel widths in

images less than three pixels wide can be properly reconstructed without producing

missing segments. The algorithm also needs to be changed to produce channel

segments that are not dependant on the angle of separation, as this has shown to

provide inaccurate models in the form of thicker channel segments and duplicated

branches. Testing models through visual evaluation has provided some insight, but

is largely subjective. Direct pixel comparisons need to be made on the Boolean and

model images to produce proper matching of channel data.

Although natural lightning investigations have been assessed using image data taken

from different image sources, an evaluation on lightning images recorded from the

Johannesburg camera setup must still be performed as an extension to this project.

This is subject to the statistical nature of the lightning event to tall structures, and

the difficulties experienced from remote monitoring and placement of cameras.
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Appendix A

Discharge Channel Photography

A.1 Introduction

The photography of discharge channels is not trivial. This appendix provides a

summary of the camera technologies that can be used to photograph the fast

transient events. Furthermore, additional information is provided on the current

cameras available for this investigation.

A.2 Possible Camera Solutions

There are several capture devices and techniques available for capturing an image

of a lightning discharge channel. Five types of capture devices have been identified

as the more commonly used techniques at present time for photographing lightning

channels. This discussion will provide a brief comparison of each type.

• Converter camera and streak camera

• High-speed video camera

• Still-digital camera

• Digital video camera

• Analogue still camera

Converter and streak cameras are capable of measuring very fast phenomena such

as the propagation of the leader or return stroke [18]. With this in mind, they
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have insufficient recording time to measure entire discharge channel. High-speed

video cameras can optically observe an entire discharge, but is very expensive.

The advantage of using the high time resolution cameras is that the chance of

overexposure to the image sensor is very rare, as seen in image comparisons in [8].

The digital video camera can record entire flashes, although the time resolution

is not capable of distinguishing individual strokes. The analogue still camera is

capable of capturing fast phenomena by leaving the aperture open for long exposure,

which is useful for eliminating the problem of triggering the camera shutter. The

drawback with the still-analogue option occurs with overexposure of the film and the

need for processing the film before it could be properly analysed. The conventional

still/video cameras provide an affordable solution, although the image sensor has a

high possibility of being overexposed.

The other problems pertinent to photographing lightning are addressed with spe-

cial techniques. There are certain methods that help to eliminate the problems

mentioned with the photography of lightning. Over-exposure of the image sensor

caused by the intense light flooding the lens is solved by using optical filters, which is

significant in the absence of aperture control on the camera. The uncertainty of the

strike termination point is eliminated by focusing the camera to capture lightning

attachment on a tall structure. Another issue is the lack of certainty for when a

strike will occur. This problem can be addressed with the use of an electromagnetic

sensor or light sensor, which could be expected to trigger the capture device when

a strike is sensed.

A.3 Summary of Camera Settings

Chronologically, cameras of the Axis 207 range were obtained first (four 207W

and one 207MW). These cameras were originally chosen for its wireless property.

Through discovered limitations in these camears, discussed further in Section 4.2.4,

an Axis M1011 was obtained to replace damaged cameras. At the time, the 207 range

was discontinued, and the M1011 was the upgraded version. At a later stage, four

Axis P1344 cameras were obtained, which were considerably more expensive, but

have power options that are beneficial for use in high electromagnetic environments,

discussed in further in Section 4.2.4. These cameras also presented an indoor or

outdoor installation option, providing more flexibility in camera positioning.
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The usage of all the cameras discussed are summarised in Table A.1. The camera

capabilities provided for each camera type demonstrates the highest or maximum

setting. Some settings are variable and can be reduced to less complex specifications.

Table A.1: General camera settings configured for the laboratory and/or physical

investigation.

Camera Property 207W 207MW M1011 P1344

Relative Cost low moderate moderate high

Electrical Isolation − − − 12 battery

Quantity 4 1 1 4

Damaged 3 1 0 0

Currently Operational 1 0 1 4

Location 1 (L1) − 1 (L2) 1 (L3)

1 (L4)

2 variable

Resolution (pixels) 640× 480 1280× 1024 1024× 640 1280× 800

Frame-rate (fps ) 10− 15 10− 15 10− 15 30

Trigger motion motion motion motion

Pre-buffer (s) 2 2 2 2

Optical Zoom − − − yes

Set Colour Option greyscale greyscale greyscale variable

Image Slicing vertical vertical unknown pre-buffer

wireless/ wireless/

Communication LAN LAN LAN LAN

Storage Method FTP FTP FTP on-board

Storage Location directory directory directory SD card

File Format JPEG JPEG JPEG MKV

Data Conversion − − − MKV to JPEG
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A.4 Conclusion

This appendix provides some camera technology which can used in the photography

of discharge channels. This is not an all-inclusive list of technologies available.

Lastly, surveillance camera technologies used in this study have been provided.
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Appendix B

Motivation for Three-Dimensional

Study of Lightning

B.1 Preamble

This appendix is a paper that was accepted and presented for publication by

the International Conference on Lightning Protection (ICLP) in 2010, hosted in

Cagliari, Sardinia. The paper is entitled: Observation of Lightning Discharges

on Brixton Tower .

B.2 Paper Description

This paper discusses general observations of lightning to Brixton Tower in Johan-

nesburg, and presents a photographed case of downward lightning appearing to

trigger upward lightning on a nearby tower. Lightning data from the South African

Lightning Detection Network (SALDN) is used to analyse the photographed events

through matching of the times and location data.

This investigation proved through the fact that only one camera perspective captured

this event, and therefore provides the scope and motivation for reconstructing 3D

models of lightning.
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ABSTRACT

Observations of lightning strikes to Brixton Tower in South
Africa are investigated in this paper. The tower is topograph-
ically situated in an ideal location to study lightning strikes,
and has the benefit of a physical height of 250 m. Observa-
tions presented in this paper were made through photographic
recordings of lightning events from November 2009 to May
2010. Lightning data from the Southern African Lightning
Detection Network (SALDN) is used to match recorded light-
ning strokes to photographed events. The SALDN provides
the associated stroke parameters for assessment of the events
in terms of peak current values as well as rise and decay times.
Particular focus is given to studying positive polarity events.
This includes an investigation into positive strikes to the tower
and an event of a downward positive flash that appears to ini-
tiate an upward flash from the tower.

1 INTRODUCTION

Lightning study observations of frequently struck
structures have formed an important component of
lightning research [1–4]. Since lightning has a tendency
to attach to the tallest object in its immediate area —
these structures are typically tall or isolated. Brixton
Tower (also known as Sentech Tower) is a structure that
stands 250 m tall in Johannesburg, South Africa [1].
It is an ideal site for observing lightning activity, due
to its elevated topographical location, physical height
and lower-rise buildings in the immediate vicinity. An
observation point was set up to photograph lightning
strikes to the structure. Several events are compared
to the corresponding lightning data from the South
African Lightning Detection Network (SALDN). Some
of these events, which feature mostly positive polarity
flashes, are presented and analysed in this paper.

2 BACKGROUND

Brixton Tower stands quite prominently as the
tallest structure in the immediate area. This topo-
graphical advantage prompted the setup of the surveil-
lance system to collect optical lightning data attaching
to the tower for a work involving the reconstruction of
three-dimensional models from photographs [5]. Light-

ning data from the SALDN is used to quantify current
parameters of the attaching lightning discharges to the
tower. Using both optical and SALDN data, motiva-
tion is presented for using Brixton Tower as a observa-
tion point for lightning events. This takes the form of
an investigation into the flash count of the tower, up-
ward vs. downward strikes, and positive vs. negative
polarity strikes.

2.1 Surveillance Considerations

A low-cost surveillance camera was set up to
face Brixton Tower from an observation point at the
University of the Witwatersrand. The local area
has a high ground flash density, Ng, of 7.5 – 12
flashes/km2/year [6, 7]. Photographs of the lightning
activity was triggered by motion detection. The cam-
era was situated indoors, behind a glass window, which
explains some blemishes in the frames and light distor-
tions due to rain droplets. An infrared filter was placed
over the camera lens to reduce the light intensity to the
image sensor.

The observation point was specifically set up for a
project that requires optical lightning data. Therefore,
no corresponding electromagnetic fields, or current val-
ues were measured for the associated lightning events
at the surveillance site. The surveillance camera used
has a frame-rate of 10 frames per second with the use
of a pre-buffer, essential for capturing the images [5].
This leaves a general time-resolution within the range
of 100±20 ms. Since only one perspective of the light-
ning event is photographed, most of the spatial distri-
bution of the events were limited to a two dimensions.
The reliability of the motion detection triggering is un-
known, and it is possible that some events may not
have been captured.

2.2 The Southern African Lightning Detection Net-
work (SALDN)

The SALDN is a lightning location system consist-
ing of 20 Vaisala LS7000 sensors (19 sensors in South
Africa and 1 located in Swaziland) [7, 8]. The light-
ning detection network was commissioned by the South
African Weather Service (SAWS) and has been opera-
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tional since January 2006.
At present, the South African system has not been

calibrated using ground-truth data. An early investi-
gation was performed into the ground stroke count of
the area around Brixton Tower using the historical data
from the SALDN presented in Figure 1. A ground flash
density of 20 flashes/km2/year is suggested, assuming
an average stroke number per flash of 2.5 [9]. This
preliminary study of the SALDN is subject to further
investigation.

Figure 1: Ground stroke count for Brixton Tower (and Hillbrow
Tower) area using SALDN data for 801 days of obser-
vation on an approximate 1 km2 grid.

In order to compare the SALDN data with the pho-
tographs, strokes reported by the SALDN need to be
matched to the photographs through timing and posi-
tion of known strikes. The preferred method of doing
this would be to compare times, however, since the
surveillance was not initially intended for comparison
purposes, it was not synchronised to a standard time.
It was noted that the camera clock was approximately
2:30 minutes off standard time. Consequently, absolute
time comparison is difficult.

However, as Figure 1 shows, a high density of
strokes occurs in the location of the Brixton Tower at
(26◦ 11’ 32.82” S, 28◦ 00’ 24.73” E) and Hillbrow Tower
at (26◦ 11’ 12.51” S 28◦ 02’ 57.66” E) — a nearby tower
4.8 km east north-east of Brixton. Clearly, the
SALDN is recording lightning strokes to the Brix-
ton Tower although there is a slight offset in the re-
ported location. Given this, the assumption is made
that strokes reported within this area and within
the approximate time of the correlating photographs
are, indeed, the photographed strikes. The identi-
fied strokes had a maximum latitudinal deviation of

26◦ 10’ 48” S to 26◦ 12’ 00” S and a longitudinal devia-
tion of 27◦ 57’ 00” E to 28◦ 01’ 30” E. The reported data
was examined for up to 5:00 minutes after the recorded
time of a photograph.

2.3 Preliminary Flash Count to the Tower

A flash count investigation from existing data will
serve as an indicator for the high lightning activity to
the tower. Using Eriksson’s empirically derived equa-
tion in Equation 1 [10], the expected annual light-
ning incidence, N , to the 250 m tall tower is 15 to 24
flashes/year.

N = 24× 10−6 ×H2.05
s ×Ng (1)

where Hs is the height of the structure in m and Ng is
the ground flash density in flashes/km2/year. An effec-
tive height is recommended [2], but since the tower is
slender in comparison to its height, the physical height
is used. Using Equation 2 [11], the probability of up-
ward flashes occurring on Brixton Tower is 61.53%.

Pu = 52.8ln(Hs)− 230 (2)

The predicted flash count to the tower and upward
probability is compared to the observed incidence in
Table I.

Table. I. Flash Incidence to Brixton Tower.

Result Upward
(flashes/year) Probability

Eriksson 61.53%
Ng = 7.5 15 -
Ng = 12 24 -

Surveillance* 19 63.16%**
SALDN 20 -

* Lightning incidence for only 7 months of a year.

** 12 of 19 recorded flashes displayed upward branching, the

remaining flashes were inconclusive on the direction of propaga-

tion.

The surveillance has been operational for the bulk
of the 2009/2010 thunderstorm season in South Africa.
A total of 19 strikes to the Brixton Tower were recorded
by the surveillance, which falls between the two calcu-
lated flash densities of 15 to 24. Although the pre-
diction accounts for a year’s worth of data, the thun-
derstorm season is expected to provide the bulk of the
flashes to the tower since it includes a large portion of
the South African thunderstorm season. This shows
that the flash density has shown an increase since 7.5
flashes/km2/year was reported.

Of the 19 strikes to the tower, 14 could be con-
fidently identified from the SALDN data. Within this
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(a) (b)

Figure 2: Downward flash triggers upward flash from Brixton Tower (a) downward flash 16:29:33.850 (b) upward flash 16:29:33.970

dataset, 3 strikes were recorded with a positive polarity
(21.4%), and 11 were recorded with a negative polarity
(78.6%).

3 ANALYSIS OF SURVEILLANCE

The surveillance provides evidence of lightning
flashes to the tower. Two notable observations have
been made, which include an event in which a down-
ward flash triggers an upward flash, and an investiga-
tion into positive strikes observed.

3.1 Downward Triggers Upward

Figure 2 (a)-(b) presents what appears to be a
downward strike, which initiates the triggering of an
upward strike through the enhancement of the local
electric field. This data was taken during a short day-
time thunderstorm on 2009-11-02, 16:29.

3.1.1 Descending Flash Analysis

The first frame shown in Figure 2 (a) demonstrates
a highly charged channel from the cloud charge centre
in the left side of the frame to a structure behind the
Brixton Tower. The downward path does not seem very
tortuous although it has a minor branch directly behind
the tower. The attachment point of the main chan-
nel has a two-dimensional distance of 176.5 m from the
base of the tower, and 235.3 m from its minor branch
attachment. These distance values were obtained using
the a pixel-to-distance ratio using the tower height as
a reference.

A flash proceeded by a large amount of cloud activ-
ity, (mostly) single stroke flash, long horizontal chan-
nels and minimal branching are characteristics of pos-
itive lightning [12, 13]. This is further supported by
the SALDN, which recorded a positive stroke located

within the two-dimensional distance of the primary
channel from the downward flash in Figure 2 (a). The
detected stroke had a recorded return stroke of 16 kA
with a rise time of 10.6µs and a peak-to-zero time
of 14.2µs. It appears that the upward flash was not
recorded by the system.

Since the downward channel has been determined as
a positive flash, conventional attractive radius calcula-
tions do not apply to this situation. Petrov and Waters
formulated an expression to relate positive downward
stroke return current, Ip and height of the structure
to the striking distance (or attractive radius, Ra) [14].
Petrov and D’Alessandro later revised the expression to
accommodate structure heights greater than 200 m [15].
An attractive radius R+

a of 28 m is determined for a
positive peak current of 16 kA, which shows that there
is little possibility of the stroke leader intercepting any
upward leaders from the tower.

R+
a = 0.103[(Hs + 30)Ip]2/3 (3)

Figure 3: Scaled overhead view of the downward positive flash de-
tected by the SALDN with respect to the surveillance
setup. a1−4: Downward flash indicators, b1: Brixton
Tower, c1: Charge centre indicator, O1: Surveillance
location.
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(a) (b)

Figure 4: Positive strikes to the tower as recorded by the surveillance (a) 2010-01-07 (b) 2010-04-20.

Figure 3 shows a graphical representation of the
analysis performed for the downward flash. The down-
ward stroke detected by the SALDN is marked by
a1 with an error ellipse around the point of detec-
tion. There lies a 50% probability that the stroke ap-
pears within the error ellipse. The downward stroke as
viewed by surveillance in Figure 2 (a) is represented
by the extended line from the camera at O1 through
a2 which is 176.5m south of the tower location. This
line intersects with the error ellipse at a3 and a4, which
provides a higher probability of the stroke termination
point location between the two points.

This criterion alone does not explicitly provide con-
clusions that the descending positive leader could not
intercept an ascending negative leader from the tower.
The path of the downward leader from a charge centre
in the clouds must be evaluated to confidently conclude
that attachment to the tower was not possible in this
situation. The charge activity in the clouds is assumed
to be the position of the charge center. This is marked
by c1 in Figure 3, using the high-rise building directly
below the charge centre as an indicator. A line is ex-
tended from the camera through c1 to provide a depth
perception lacking in the frame, which indicates the
possible locations of the charge center. Unfortunately,
further analysis cannot be performed due to the lack of
a second optical perspective. This illustrates the im-
portance of obtaining a three-dimensional perspective
of the lightning channel.

3.1.2 Ascending Flash Analysis

The second frame in Figure 2 (b) clearly demon-
strates a branched upward strike from the Brixton
Tower 120 ms later. This frame shows that the down-
ward strike is still illuminated. The upward leader is

assumed to be a negative leader for two reasons; charge
intensification will be negative at the tip of the tower,
induced by a positive stroke, and the upward stroke ap-
pears to be highly branched, which is a common char-
acteristic of negative leaders.

Most upward lightning assessments consider the
positive ascending leader scenario i.e. Rizk’s upward
leader inception criteria in [16–19], but do not consider
the negative ascending leader scenario. This assess-
ment cannot be taken further without knowledge of
the leader inception criteria for a negative leader. Fur-
thermore, the charge intensification of the tower cannot
be determined due to unknown initial conditions of the
tower tip before the downward stroke and due to the
unknown propagation of the downward channel path.

3.2 Observed Positive Strokes

Positive strikes are known to be less frequent than
their negative counterpart. There were a total of three
positive strokes recorded by the surveillance camera
with corresponding SALDN data. Stroke 2009-11-02 is
the downward positive stroke mentioned in Section 3.1,
the only stroke not attached to the tower. The remain-
ing two are presented in Figure 4, where (a) has com-
pletely overexposed the frame without any evidence
of branching (in any of the captured frames) and (b)
has evidence of upward branching. Each of the strikes
contain only one recorded stroke, as expected. The
SALDN data also records rise times (τ1) and peak-to-
zero times (τ2) for each detected stroke, as presented
in Table II.

Equations reproducing positive-polarity waveshape
curves have not been produced due to the limited num-
ber of recorded positive strokes [20]. Heidler’s func-
tion Equation 4 was implemented to produce the wave-
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shapes in Figure 5 for demonstrative purposes, even
though it was emperically derived for negative first
strokes [21].

Table. II. Parameters measured by the SALDN for observed

positive strokes to and around Brixton Tower.

Stroke Ip (kA) τ1 (µs) τ2 (µs) Q0(C)*
2009-11-02 16 10.6 14.2 3.6
2010-01-07 19 2.6 30.2 19.7
2010-04-20 7 9.8 15.6 2.4

* The charge value is estimated using Equation 6 and the pa-

rameters in Table II.

i0(t) =
I0
η

(
t
τ1

)n
(

1 + t
τ1

)n exp
(−t
τ2

)
(4)

where

η = exp

(
−τ1
τ2

(
nτ2
τ1

) 1
n

)
(5)

The drawback to using Equation 4 was that steep-
ness factor parameter n was varied in order to obtain
the correct peak current. By tending n to ∞ the cur-
rent peak tends to the measured current values, but the
front time becomes increasingly steep, with the wave-
form only rising approximately 10µs after it was ini-
tially meant to rise. For the strokes on 2009-11-02 and
2010-04-20, n=4 and 2010-01-07 n=30 to achieve the
correct peak current values.
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Figure 5: Simulated waveforms of positive strokes using Equa-
tion 4 to and around Brixton Tower from parameters
in Table II.

Q0 =
(
I0τ2
η

)∫ ∞

0

ξne−ξ

(τ1/τ2)n + ξn
dξ (6)

where
ξ = t/τ2 (7)

It can be seen that 2010-01-07 has a large area un-
der the curve. By performing charge transfer calcula-
tions from Equation 6 shown in Table II [21], the charge
of this stroke appears to be significantly greater than
the other two strokes. This fact could account for the
overexposed frame in Figure 4 (a), despite its relatively
low current peak of 19 kA compared to the median peak
documented by Saba et al of 28 kA [13].

4 FUTURE WORK AND ANALYSIS

This work has been limited by using two-
dimensional spatial distribution. Work is currently in
progress to provide another perspective of the tower at
an approximate 90◦ separation. The additional view
point will provide the possibility for reconstructing a
three-dimensional channel of the flash.

A full analysis of the flash count of Brixton Tower
needs to be made after at least a year’s worth of in-
formation has been captured, which will provide a
more accurate indication of the relationship between
expected probabilities and recorded data. This may
provide an increased flash count, which would suggest
a higher ground flash density in Johannesburg.

At this stage is no instrumentation on the tower,
and therefore the SALDN provides the only measured
lightning parameters. Steps will be taken to provide in-
strumentation to correspond with the photographic im-
ages. Furthermore, the SALDN will be fully evaluated
in terms of detection efficiency and location accuracy
using ground-truth data in the future.

5 CONCLUSIONS

From the work presented in this paper, photo-
graphic records of lightning strikes to Brixton Tower
have relevance to general lightning assessments, includ-
ing upward vs. downward and positive polarity vs.
negative polarity analyses, and observations of unique
lightning events.

Although the SALDN has not been tested rigor-
ously against ground-truth data, it is evident that flash
densities are higher at high-rise towers (Brixton and
Hillbrow Towers). This provides confidence in using the
lightning data from the SALDN in these assessments,
particularly in the absence of measurements conducted
at the site.

This paper presents the limitations of using one op-
tical perspective, therefore providing scope for three-
dimensional reconstruction of lightning discharge chan-
nels.
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Appendix C

Ground-Work for System

C.1 Preamble

This appendix is a paper that was accepted and presented for publication by the

South African Universities’ Power Engineering Conference (SAUPEC) in 2009,

hosted in Stellenbosch, South Africa. The paper is entitled: Laboratory Inves-

tigation into Reconstructing a Three Dimensional Model of a Discharge

Channel Using Digital Images.

C.2 Paper Description

The paper describes the ground work for the system, which details the development

of a system that converts 2D images of a discharge channel into a 3D model. The

discharge was created in a controlled environment using impulse generator. Digital

capture devices were placed in five different configurations to investigate optimal

placement. A 550 kV impulse discharge with arc length 0.83 m was captured using

three wireless web-interface cameras. Optical and digital filtering was used to pre-

processing of the images before the 3D modelling stage. A software application

was developed for the model reconstruction, which was implemented in the form

of an adaptable modelling framework. A simple modelling algorithm has been

implemented to complete the proof of concept. The model ultimately can be used to

aid in understanding the shape, formation and propagation of a lightning discharge

channel for scientific research.
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Abstract. This paper details the development of a system that converts two dimensional (2D) images of a discharge 
channel into a three dimensional (3D) model. The discharge was created in a controlled environment using impulse 
generator. Digital capture devices were placed in five different configurations to investigate optimal placement. A 
550 kV impulse discharge with arc length 0.83 m was captured using three wireless web-interface cameras. Optical 
and digital filtering was used to pre-processing of the images before the 3D modelling stage. A software application 
was developed for the model reconstruction, which was implemented in the form of an adaptable modelling 
framework. A simple modelling algorithm has been implemented to complete the proof of concept. The model 
ultimately can be used to aid in understanding the shape, formation and propagation of a lightning discharge channel 
for scientific research. 
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1. INTRODUCTION 

The advancement of technology in the field of 
computer processing power and rendering 
capabilities has provided the platform to create three 
dimensional (3D) models of discharge channels. 
Such models can be used to determine many aspects 
of a discharge channel, namely the arc length, the 
angles at the origin, termination, branches, and speed. 
Ultimately, the objective would be to reconstruct a 
discharge channel on a large scale, such as High 
Voltage (HV) arcs in the form of lightning, and 
equipment flashovers.  

A software application was developed to reconstruct 
a 3D model of a discharge channel from digital 
images. This is a preliminary investigation into the 
reconstruction of a 3D model, which will ultimately 
provide a proof of concept. The application was 
tested by creating a discharge channel within a 
controlled environment. An impulse discharge, 
replicating a lightning discharge was elected for 
testing, as it is the more challenging discharge to 
capture digitally. If the test for an impulse discharge 
is proven successful, all other discharge types would 
be easier to implement. This experiment is a small 
scale contribution toward a practical application. The 
final aim for the system is to provide a solution that 
is cost effective, abstracts the user from complexity 
and has an adaptable modelling system. 

An investigation on previous work in this field is 
presented. Using new techniques and the results from 
previous work it was possible to develop a suitable 
methodology. In this paper the modelling framework 
is briefly discussed, the experimental setup is 
explained and execution is examined. The testing 
procedure and obtained results will be presented, 
followed by a discussion of suitable applications and 
future work requirements. 

2. BACKGROUND 

A brief discussion on existing solutions pertaining to 

aspects of the problem is produced. This includes an 
examination of past solutions and the problems 
relating to the photography of an impulsive 
discharge. 

2.1 Previous Solutions 

Creating a 3D model of a discharge channel is not a 
new concept. In 2005 John Morkel and Brian Wylie 
used still analogue cameras and advanced neural 
networks to capture and generate a model [1, 2]. 
While their work demonstrates that modelling of a 
discharge channel is possible, much work needs to be 
done before a completed modelling solution is 

developed. 

2.2 Photography of an Impulse Discharge 

The duration of a typical pulse of a lightning 
(otherwise referred to as an impulse) discharge only 
lasts approximately 30-90 µs [3]. To capture a 
channel of such a short interval onto an image, 
suitable capture devices need to be acquired. Data 
acquisition techniques differ between the 
implementation of digital and analogue photography 
methods. The exposure time must be reduced such 
that the intense light produced by the discharge does 
not overexpose the image sensor (digital) or the film 
(analogue). The relevant information desired for 
capture is specifically the visual wavelengths of light. 

3. APPROACH/METHODOLOGY 

The approach developed to generate, capture and 
model a discharge channel is divided into two 
sections, namely the modelling framework and the 
experimental setup. The modelling framework covers 
the software and imaging techniques to create the 
model. The experimental setup involves the 
generation and capture of the impulse discharge 
channel. A broad overview of the approach is 
illustrated in Figure 1. 



 

Figure 1: Overview of the approach developed. 

4. MODELLING FRAMEWORK 

The adaptive modelling framework developed is 
named SPARKY, as it models HV discharges in 3D 
space. The framework is open source (under the 
GNU General Public License, version 3), to allow 
future developers to easily expand and adapt the 
framework to their needs and enhance the initial 
functionality. SPARKY is cross-platform, 
independent of the underlying operating system, 
allowing it to be run on almost any platform. This 
ensures that the framework can be adapted to any 
configuration.  

4.1 SPARKY Architecture 

In order to provide an interactive model, a suitable 
rendering library is required. To reduce the time 
required for development, a pre-existing library is 
used. The library chosen for this framework is 
Visualization Toolkit (VTK), as it is free for use and 
has been extensive testing [4]. 

The architecture of SPARKY is established over 
several layers. Each layer interacts with the layer 
above and below, as illustrated in Figure 2. This level 
of abstraction helps to decouple the layers from the 
implementation of classes that surround it. The 
interaction between the various layers use well 
defined interfaces, to ensure proper operation. 

Operating System

User Interface

SPARKY Core

Visualization Toolkit (VTK)

Graphics

Interfaces

 

Figure 2: Architecture illustrating layer interaction. 

The User Interface provides both a command line 
interface for user input and an interactive rendering 
window. The information is exchanged between the 
User Interface and the underlying framework via 
SPARKY Core. In order to save and load digital 
images and models, a set of readers and writers are 
grouped under InputOutput. As VTK is not part of 
the code implemented in SPARKY, Interfaces are 

required. To ensure that the digital images meet the 
requirements for the modelling, Filtering is required. 
The modelling algorithms are stored under 
Modelling. Rendering provides abstraction between 
SPARKY and VTK for the interactive model. To aid 
in debugging a simple Logging system is provided. 

4.2 Digital Filtering 

The use of digital filters is necessary to process the 
images to usable data. SPARKY requires monotone 
images of identical sizes. 

 

(a) 

 

(b) 

 

 

 

 

(c) 

Figure 3: An image processed using various digital 
filters (a) smoothing filter, (b) black and white 
Boolean filter (c) track, compare and crop. 

The images in Figure 3 display a progression of the 
three filter layers used in the digital filtering process. 
A smoothing filter in Figure 3 (a) levels out the edges 
of the discharge. The black and white Boolean filter 
in Figure 3 (b) converts the greyscale image to a 
monotone image, representing the discharge as pure 
white pixels and redundant information as pure 
black. The filter in Figure 3 (c) tracks the discharge 
within the frame and extrapolates the discharge 
information and cropping the significant data from 
the image. A set of images are processed through the 
last filter to obtain the maximum size of the 
discharge. This filter takes into consideration the 
rotation required of the individual image. The images 
are resized to the maximum dimensions of the 
discharge, and cropped so that the image sizes are all 
identical. 

4.3 Three Dimensional Placement 

Figure 4: Basic model reconstruction method. 

In order to reconstruct the model, the digital images 
need to be placed to match the experimental setup, as 
illustrated in Figure 4. Placing the images in 3D 
space before being modelled, allows for the 



algorithm to focus on determining a model without 
any image processing requirements.  

The captured images can be rotated to correct for 
camera orientation, such as clockwise, counter-
clockwise and a full 180˚ as necessary. 

4.4 Generating the 3D Model 

As the algorithm is non-trivial, it has been divided 
into several modules, each performing a single task. 
The current implementation is able to use two or 
three images to generate a model. The interaction 
between the three core modules is presented in 
Figure 5. The division of the algorithm supports 
abstraction during the implementation. 

 

Figure 5: Core modules for the reconstruction 
algorithm. 

The algorithm is simplified to layers along the y-axis. 
This method eliminates the third dimension, reducing 
the algorithm to a 2D problem. Normals of the white 
segments (discharge) are projected to the origin of 
the setup, where they are compared to the normals 
from other perspectives (as shown in Figure 4). The 
normals for all the images are generated in the 
Generate Normals module. This module ensures that 
only a full valid set of normals is generated. The 
normals are used in Reconstruct the 3D Model to find 
the points of intersection. These points are used to 
generate the cylinders that define the model. 

If the end-user enables the option to average the 
cylinders, the module Average the Model is called. 
This module determines a single cylinder for every y-
axis (height). This option cannot be used when 
modelling branched discharge channels. 

A second option (only available for three image 
reconstructions), First Detect, can be invoked by the 
user. This option adjusts the algorithm to define the 
first circle as valid, and the remaining ones as 
possible. These remaining circles are then only valid 
if additional images can verify them. 

4.5 Rendering 

The rendering process in SPARKY is a two step 
process: capture the 3D model back to 2D images for 
analysis, and provide an interactive model. The 
model is automatically captured by placing the 
camera as in the experimental setup and saving a 
screenshot, which is repeated for all angles. After this 
is completed, the end user can interact with the 
model by altering the camera by: panning, zooming, 
rolling, varying the azimuth, and elevation. 

5. EXPERIMENTAL SETUP 

The experimental setup examines the setup 
concerning the HV laboratory; the equipment 

required for digital capture and camera placement 
considerations. 

5.1 High Voltage Laboratory 

The HV laboratory provides a means to produce an 
impulsive discharge channel within a controlled 
environment. This provides a predetermined position 
of a discharge for experimentation and offers a 
predictable voltage level of the discharge. The 
experiment in the HV laboratory replicates a 
downward positive lightning discharge. The general 

setup of the HV laboratory is illustrated in Figure 6. 

Figure 6: Experimental setup for data capture of a 
discharge channel. 

An impulse (Marx) generator was used to create the 
highest direct current (dc) voltage as possible [5]. A 
gap length of 0.83 m was produced, which 
determines the height of the discharge channel. The 
breakdown in air was obtained at approximately 
550 kV with the given gap length. The gap setup 
used a rod-to-rod configuration, which primarily 

provided a single branchless channel.  

5.2 Digital Capture 

There are two stages to the photography of the 
discharge: the capture device considerations 
(acquisition and configuration), and optical filtering. 
The device selected for digital capture was the Axis 
207W wireless web camera [6], primarily used for 
surveillance purposes. The image sensor available in 
this camera is a CMOS sensor. The camera has a 
maximum frame rate of 30 frames per second (fps) 
and a resolution of 640 × 480. Three of these cameras 
were used to investigate three different angular 
perspectives of a discharge for 3D reconstruction. 
This camera was chosen for a number of reasons: 
networking capabilities; wireless option; web 
interface; triggering options; cross platform operating 
system potential; additional functionality and output 
formats. Disadvantages of using these cameras were 
the limited image quality, fixed iris, no zooming 



functionality and a high start up current. The cameras 
are protected from interference caused by the 
discharge by floating the circuit on an isolation 
transformer. 

(a) (b) (c) 

Figure 7: Images captured with various optical filters 
(a) cross polarised filter, (b) cross polarised and 
infrared filter, and (c) cross polarised, infrared and 
violet filter. 

One of the challenges of capturing image data on a 
discharge channel is the high light intensity 
associated with it. Optical filters were used to isolate 
relevant information in the frame. The images in 
Figure 7 display a progression of three filter layers 
used to isolate the visible wavelengths of light. The 
first filter in Figure 7 (a) consists of a cross polarised 
filter, which dampens the amount of visible light 
reaching the capture device. The second filter in 
Figure 7 (b) was added to reduce the amount of 
infrared, and the third in Figure 7 (c) reduced violet 
wavelengths. 

 (a) (b) (c) 

Figure 8: Captured images at 90° angle separation 
(a) on camera 1, (b) on camera 2, (c) on camera 3. 

Error! Reference source not found. displays a 
typical set of optically filtered images resulting from 
this stage. The cameras were synchronised using a 
network time protocol server. A pre-trigger time 
buffer was set to ensure that the relevant information 
is captured. The camera was activated by a website 
trigger. The information was managed using a file 
transfer protocol server. The information was 
received as individual JPEG files. The discharge only 
appeared on one of the incoming frames, which was 
expected due to the low frame rate.  

5.3 Camera Placement 

Optimal placement of the devices was required for 
reconstructing the 3D model of the discharge. There 
were several factors that needed to be taken into 
account: location, height, distance, and angles. The 
location was important to consider for safety reasons. 
The capture devices needed to be protected against 

the HV discharge, whereby a safety perimeter was set 
up at a radius of 1.7 m away from the intended 
discharge. Identical heights were accomplished at 
1.035 m above the ground. The distances of each 
capture device to the intended striking area were 
determined by the specific focal length of the device, 
such that the captured image contained the same 
height of the discharge arc. The capture devices were 
placed in several angular formations to establish 
optimum camera angles. The formations also 
provided feedback on the accuracy of the 3D 
algorithm. There were five angles tested: 30°, 45°, 
60°, 90°, and 120°. This provided a wide range of 

angles to evaluate results. 

6. TESTING PROCEDURE 

The testing of the entire system provides a means of 
determining the accuracy of the model, while 
ensuring that the software operates without error.  

6.1 Software 

To ensure that the source code developed for the 
framework performs as expected, several testing 
techniques were used. These techniques include: 
validation of the user requirements, proving the 
source code is functional, obtaining results from end-
user tests and verification of platform independence. 
There are four definitions that can be used to measure 
the overall effectiveness of the design as a 
framework. 

Maintainability: As the framework was developed 
using a prototyping approach, the source code 
implemented is not highly maintainable, requiring 
preventive maintenance to be performed. No 
perfective maintenance is required as the end-user 

requirements have been achieved. 

Functionality: Functionality is defined as the ability 
of the software solution to meet requirements when it 
is used under specified conditions [7]. When 
considering the overall requirements, it can be seen 
that the overall system is functional. 

Reliability: Reliability refers to the ability of the 
software solution to maintain a level of performance 
under specified conditions [7].  With the limited 
sample data sets, the overall system performs 
consistently with no visible problems. The 
framework appears to be reliable. 

Coupling: Coupling is used to measure how 
dependant classes are on one another [7]. From the 
architecture, it is clear that the underlying VTK 
library interfaces directly with seven of the units, 

making the framework extremely coupled to VTK. 

6.2 Algorithm 

The testing procedure for the algorithm was used to 
determine if the models could be used for scientific 
research. The testing was performed using two 
independent tests:  



a) A visual comparison of the input images to the 
model, dependent on human judgement is made.  

b) A tester application, SPARKY Tester, was 
developed to detect inconsistent pixels in the 
images and return a percentage error. 

The visual comparison indicated the overall tracking 
of the model to the discharge, while the tester 
application provided a percentage error.  

Table 1: Testing procedure used for model analysis. 

Case Images Required Average First Detect 

001 3 Yes Yes 

002 3 Yes No 

003 3 No Yes 

004 3 No No 

005 2 - Yes 

006 2 - Yes 

007 2 - Yes 

 

The model can be rendered by altering the algorithm 
configuration, as discussed in Section 4.4. Table 1 
displays the seven different test cases implemented 
for each set of images. A total of seventy tests were 
presented for all the cases and angles. 

7. RESULTS 

Screen shots were taken of the 3D models in the 
angular placements of the original images. Two types 
of testing were implemented: visual assessment and 
pixel comparison techniques. Since a discharge 
channel cannot be reproduced, it was difficult to 
verify which angle produced the optimum solution. 
Only two sets of images were taken from each 
angular configuration, due to limited experimental 
time. The results from the pixel comparison tests are 
displayed in Table 2.  

Table 2: Results from all the test cases in each 
camera angle configuration. 

 

Case 

Percentage of pixel mismatch (%) 

30° 45° 60° 90° 120° 

001 10.59 8.43 8.01 11.84 12.51 

002 9.07 13.20 13.02 13.27 11.95 

003 18.47 6.94 15.12 10.70 9.83 

004 10.29 13.55 12.43 12.56 11.30 

005 8.06 6.35 9.70 11.96 12.30 

006 12.96 14.09 10.87 10.29 12.32 

007 9.23 10.33 7.77 - 6.92 

Average 11.24 10.41 10.99 11.77 11.02 

 

It was observed that camera placements at 45° 
provided the least percentage error of 6.35 %. This is 
an acute angled configuration that can only provide 

images for a limited perspective of the discharge. It 
was not possible to validate the perspectives on the 
opposite region of the channel. The quantised results 
from SPARKY Tester in Table 2 present an overall 
error of approximately 11%. 

8. DISCUSSION 

There are several areas which can be improved upon 
to provide a complete solution. The expansions 
expected for the modelling framework and camera 
placement are presented. 

8.1 Modelling Framework 

As the framework is still under development, there 
are several factors that currently limit the framework: 

c) User Interface: Define an adaptable graphical 
user interface to transfer information. 

d) Improve the Filtering and Modelling hierarchy: 
Allow for better integration of future modules. 

e) Due to interfacing issues to the VTK library, 
smart pointers have not been implemented 
throughout all the classes. 

f) The underlying code is not decoupled 
sufficiently from VTK and wrapper classes need 
to be implemented. 

These four limitations need to be resolved before 
further functionality is added, to reduce underlying 
framework errors.  

8.2 Camera Placement 

Accurate comparison of the angular configurations 
can only be achieved with an array of multiple 
cameras arranged in the required formation. This will 
provide an adequate number of images for 
comparisons over a single discharge. This needs to be 
supplemented with a precise camera placing strategy. 
If the cameras can be placed more accurately, 
comparisons with reconstructed model results could 
be more adequately achieved.  

8.3 Future Work 

There are two main reasons for developing this 
product. Firstly, it allows more scientific research 
based on natural lightning by mounting cameras 
around high-rise buildings. Secondly, this principle 
can be expanded to use x-ray plates to capture the 
propagation of the strike through the earth’s surface. 

Before this solution can be implemented for 
applications in scientific research, several areas of 
expansion are required.  

8.4 Modelling Framework 

The framework functionality can be expanded as 
follows: 

Video Playback: To enable end-users to view the 
propagation of the lightning strike, the framework 
must be expanded to allow multiple images to be 
loaded. These images must then be modelled 
individually and provide an interface similar to a 



video recorder, to step through the sequence of 
models. 

Modelling Libraries: The advanced modelling 
algorithms require external libraries for 
implementation. Based on the algorithm, suitable 
libraries must be sourced and tested. The models can 
then be tested to determine their suitability for 
scientific study. 

8.5 Digital Capture 

The solution can be improved by implementing 
capture devices with additional functions, such as 
optical zoom, iris exposure control. Zoom functions 
would improve the image size and quality, also 
provide extra safety for the devices. The function for 
iris control would improve the exposure of the image, 
allowing for a more accurate capture of the 
discharge.  

An extension to the project would include a fourth 
dimension: time. The frame rate required for this 
option is expected to be in the range of 100,000 fps. 
This would ultimately provide a 3D reconstruction of 
a lightning discharge channel propagating through 
space. 

8.6 Testing Procedure 

The analysis of the system results requires a high 
level of user interaction. A more automated system 
needs to be developed. The system should return the 
error to the user with the rendered model. This will 
enable the user to interpret the model without 
additional steps. 

9. CONCLUSION 

The overall solution was implemented to prove the 
plausibility of the concept. As a result, the system 
was successfully executed to produce 3D 
reconstructed models of lightning discharges from 
several a single framed images. The modelling 
framework was analysed to indicate future work that 
needs to be performed, before the addition of more 
advanced algorithms should be considered. 

The algorithm that was designed can create a model 
from two or three images. When using three images 
for reconstruction, the model error increases, due to 
misalignment of the individual cameras placement 
and limitations on the implemented algorithm. The 
quantised modelling error provides a total inaccuracy 
of only 11%; on top of that several improvements can 
be added as extensions to the already acceptable 
solution. The inaccuracy of the model shows that it is 
not suitable for scientific research. 

The impulse discharge was successfully captured 
using the Axis 207W capture devices and 
extrapolated using a combination of optical and 
digital filters. An optimal angular placement was 
obtained at 45° camera separation. The captured data 
was usable for reconstructing the visible light emitted 

from a discharge.  

The implementation of the future work indicated in 
this paper will further expand this solution from a 
plausible concept to a practical application.  
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Appendix D

High Voltage Testing on Large

Channel Paths with Discontinuities

D.1 Preamble

This appendix is a paper that was accepted and presented for publication by the

International Symposium on High Voltage Conference (ISH) in 2011, hosted in

Hannover, Germany. The paper is entitled: A Method of Creating Graphical

3D Reconstructions of High Voltage Discharge Channels Using Digital

Images.

D.2 Paper Description

The paper briefly describes the three-dimensional reconstruction system and tests

the capability of the system with an irregular gap geometry in the SABS high voltage

testing laboratory at NETFA. Two image perspectives of each flashover were taken

from a 5.85 m floating object setup of switching impulse U50 tests. This investigation

marks the first usage of Axis P1344 cameras. An example of the reconstruction

process is provided of the discontinuous irregular discharge channel shape and

presents the reconstruction in the three-dimensional interactive environment. The

paper concludes the successful reconstruction of single-channelled flashover discharge

channels with with a discontinity.
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Abstract: This paper describes a method used for graphically reconstructing three-
dimensional flashover discharge channels within an interactive virtual environment. The 
system for reconstructing high voltage discharge channels is presented, with an example 
of the reconstruction process using tests from a 5.85 m floating object setup of switching 
impulse U50 tests. This work provides the possibility of studying photographed flashover 
events in the form of a reconstructed model with the ability to zoom, tilt and rotate the 
channel within a three-dimensional environment. 
 

 
1 INTRODUCTION 

Flashover is often a desired effect in high voltage 
testing, but in the case of flashover occurring in 
live, operating equipment, the resulting damage 
can be catastrophic. Burn marks, damaged 
insulation and carbon by-products are usually the 
only visual indication of failure due to flashover. 
Even if an operator is available to witness the 
failure, the naked eye may not be able to fully 
perceive the extent of damage, as the discharge 
channel of a flashover is fast and almost 
instantaneous with µs durations. 

By obtaining a three-dimensional (3D) 
representation of a flashover discharge channel, 
the channel can be properly analysed in a three-
dimensional visualised space. This paper will 
discuss the three-dimensional reconstruction of 
single-channelled flashover discharges from a 
large floating object setup, a total gap length (from 
high voltage electrode to earth electrode) of 
5.85 m. An example will be presented throughout 
this paper, from the image acquisition to the 
completed reconstructed model. 

2 BACKGROUND 

Although it is not customary to photograph high 
voltage discharge channels in the laboratory, 
similar discharge channels are usually 
photographed in the form of lightning. With the 
development of more sophisticated camera 
technology, a move toward high speed cameras 
has opened up even more possibilities in 
researching the mechanisms behind these fast-
occurring transients. In addition, there are obvious 
visual parallels that can be drawn between 
lightning and high voltage flashover channels. This 
paper makes use of only standard speed camera 
images of flashover channels to demonstrate a 
reconstruction procedure that can be extendable to 
high speed camera footage. 

There is significant value in understanding the 
physical distribution of a high voltage discharge 
channel, as this is often an indication of 
weaknesses in equipment designs and 
understanding how the electric fields are affected 
in live-testing. The physical distribution of high 
voltage discharge channels is typically considered 
using photography of the discharge channel from a 
single perspective.  

One photographic perspective also lacks the ability 
to fully grasp the spatial propagation of the 
channel, which highlights a need to develop a 
system that is capable of reconstructing a 
discharge channel within three-dimensional space. 

3 SYSTEM OVERVIEW 

A system was designed and developed to 
reconstruct high voltage discharges in three 
dimensions using photographic images coupled 
with the locations of cameras in relation to the test 
setup. An important feature of its design is the 
reusability of the system to different types of 
discharge channels, which specifically takes 
Boolean black and white images discharges as 
inputs. This system was previously tested using 
0.83 m long single-channelled high voltage 
discharges in a small scale test [1], [2], and in a 
lightning environment using one image of a 
branched lightning discharge as a preliminary 
investigation [3]. Each of these tests proved to be 
successful in reconstructing a three-dimensional 
model from test images. 

Figure 1 provides a block diagram representing 
each stage of the reconstruction process. This 
paper describes an overview of the modelling 
procedure; from obtaining photographs of the high 
voltage discharge channels, to creating the models 
in a three-dimensional interactive virtual 
environment. 



 

Figure 1: Overview of the system for the three-dimensional lightning reconstruction application.

3.1 Reconstruction Application 

The reconstruction framework and algorithm was 

developed in C++ using a visualization toolkit 

library (VTK). The application framework accepts 

two or three image perspectives as inputs to the 

system. Two image inputs enable the 

reconstruction of single-channeled discharges, and 

three image inputs enable reconstruction of 

multiple channeled discharges. 

 
3.1.1 Image Processing   An image of a flashover 
often includes extra information that is not required 
in the reconstruction of the channel. The 
framework includes a number of built-in automated 
digital filters to eliminate this redundant 
information. These filters replace pixels that 
represent the discharge channel with white pixels 
(pixel value of 255), and negative space 
information as black pixels (pixel value of -255). 
Depending on the quality of the input images, 
manual image processing may be implemented to 
correctly categorise ambiguous grey pixels. 

3.1.2 Reconstruction Algorithm   The digitally 
processed images are placed in the three-
dimensional virtual environment in corresponding 
position to original relative camera positions as 
demonstrated by Figure 2a for 90º camera 
separations. In this example, the simplest 
demonstrative sets of data are used; i.e. mirror 
images of the branched data, and a flat 90º angle. 
The reconstructed flashover discharge channel is 
centred about the y-axis (i.e. x = 0 and z = 0) in 
this virtual environment. 

The modelling problem is three-dimensional and 
can be complicated if all the dimensions are 
tackled at once. Therefore, the modelling algorithm 
has been simplified to a series of two-dimensional 
geometric problems. For example, consider a 
single-channelled discharge channel that has two 
camera perspectives demonstrated in Figure 2b. 
Looking at the scenario from a bird’s eye view, the 
first white pixel band at the top of each image 
extends three perpendicular normals from each 
image towards the y-axis. Each normal is extended 
from a specific point in the one-pixel high band of 
white pixels. The points are demonstrated in Figure 
2b and listed below: 

a. Leftmost white pixel 

b. Rightmost white pixel in a continuous band 

c. Middle position between point a. and b. 

The middle normals of each image are compared 
for an intersection. If an intersection between the 
normals exists, a one-pixel high cylinder is created, 
The intersection points of the leftmost and 
rightmost white pixel positions are used to 
calculate the radius of the cylinder as 
demonstrated in Figure 2b. This process is 
repeated to produce a reconstructed model that is 
constructed by a series of stacked cylinders.  

This method fails if the channel width is too thin 
(i.e. one or two pixels wide), and when the angle of 
separation between the perspectives is too small, 
i.e. less than 30º or too oblique (150º-210º). 
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(a)  
(b) 

Figure 2: A graphical representation of the three-dimensional reconstruction algorithm which reduces the 
problem to a series of two-dimensional geometric solutions. (a) Processed lightning images placed in at 
positions of 90º-separations in a three-dimensional virtual environment with a simple representation of 
extended normals to reconstruct a channel. (b) Overhead two-dimensional perspective with relevant points in 
a data image extending geometric normals towards the y-axis. 



  

(a) (b) 

Figure 3: Physical laboratory setup (a) Floating object U50 setup with varying gap distances dG1 and dG2. 
(b) Two camera setup, laterally separated by 94º in relation to the DUT (experimental setup).  

 

Table 1: Gap configurations recorded during U50 
tests of the floating object setup in Figure 3a. 

Gap 
Configuration 

dG1 (mm) dG2 (mm) 

1 1170 3510 
2 1560 3120 
3 1950 2730 

 

4 EXPERIMENTAL SETUP 

The experimental setup will discuss specifics of the 
gap configuration and the camera setup. 

4.1 Discharge Environment 

Image test datasets of flashovers were obtained 
from a floating object, double rod-to-rod gap 
configuration in air, with rounded tip electrodes. 
The gap configuration is illustrated by Figure 3a, 
where dG1 is the distance of the gap between the 
high voltage electrode and the floating object and 
dG2 is the distance of the gap between the lower 
portion of the floating object and the ground 
electrode. 

A U50 test procedure was implemented to the setup 
using a 90/3010 µs switching impulse with an 
approximate peak voltage of 1.45 MV applied to 
the high voltage electrode at the top of the setup. 
Iterations of the gap configuration were obtained 
by varying the position of the floating electrode 
between the fixed high voltage and earth 
electrodes. Of the full range of U50 tests, three gap 
configurations were recorded, which are presented 
in Table 1.  

4.2 Image Acquisition 

Two camera perspectives were used during the 
U50 tests of the floating object setup. Figure 4a and 
4b show the two perspectives of the same 
flashover of one gap configuration 1 breakdown 
(taken from Table 1). The cameras were placed 
approximately 13 m away from the test setup 
(DUT) with a lateral separation of 94º. Figure 3b) 
indicates the general floor plan with the camera 
positions in relation to the experimental setup. 

Identical surveillance cameras were used, which 
have several specific functions that allowed for 
automating the recording process, listed below: 

1. 8-20 V input power 

2. Trigger by motion detection 

3. Pre-buffer 

4. Local memory storage 

Given the large input voltage range of the 
cameras, each camera was electrically isolated 
during the test runs, using small 12 V (5 Ah) lead 
acid batteries. The customisable motion detection 
functionality enabled the camera to trigger without 
any manual intervention. A one second pre-buffer 
was implemented to ensure information was not 
lost, and 3-second duration videos were stored on 
a local removable SD card. 

The cameras were operating at 15 frames per 
second with image dimensions of 1280 × 800. 
These settings produced videos with one or two (or 
none) frames with flashover image information. 



 
 

 (a) Camera 1 (0º) 
 

 
 

(b) Camera 2 (94º) 

Figure 4: Sample set of images of flashover occurring over a floating object with Gap Configuration 1 as 
presented in Table 1 for three-dimensional reconstruction. 

 
(a) 

 
(b) 

 
(c) 

 
 (a) 

 
(b) 

 
(c) 

(i) Perspective 1 (0º) 
 

(ii) Perspective 2 (94º) 

Figure 5: Reconstruction model input images and correlating images of outputs. (i) Perspective 1 relating to 
Camera 1 at an angular reference of 0º. (ii) Perspective 2 relating to Camera 2 at 94º of Camera 1. 
(a) Digitally filtered image. (b) Three-dimensional reconstruction in three-dimensional environment. (c) Test 
image presenting the difference between image (a) and (b). 

 

Figure 6: Three-dimensional model in the virtual interactive environment, flanked by image data on either 
side. Perspective 1 image place at 0º (right) Three-dimensional reconstruction  (middle) Perspective 2 image 
place at 94º (left). 



5 MODEL AND VIRTUAL ENVIRONMENT 

The channel information is isolated from the 
original images through digital filtering, in Figure 5a 
– for perspective 1 and 2 (i and ii). The digital 
filtering process also required a manual scaling of 
images, to ensure that the correct comparative 
data is used. The three-dimensional model is 
constructed using the digitally filtered images and 
the resulting an image of three-dimensional model 
taken at the same corresponding angle to the 
original perspective for comparison, as 
demonstrated in Figure 5b. 

Figure 6 illustrates a sample window of the 
interactive virtual environment, featuring the 
reconstructed flashover model demonstrated in 
Figure 5. The reconstructed model is placed in the 
centre of the setup, with a set of x-y-z axes at the 
base of the model. On either side of the model is 
the digitally filtered images (placed in respective 
positions to the original perspectives), of which 
normals were extended from in order to create the 
model.  

6 TESTING 

Visually, it is evident that the reconstructed model 
correctly follows the path of the flashover channel 
in the image. As the original flashover channel 
information can only be projected from the 
photographed information, the testing procedure 
primarily tests the accuracy of the reconstruction 
algorithm, by comparing input data to output data. 

Figure 5c – for perspective 1 and 2 (i and ii) – 
demonstrates an image highlighting (with white 
pixels) the difference between the digitally filtered 
image and the image of the model in the 
corresponding perspective. 

It can be seen that perspective 2 demonstrates a 
larger mismatch in pixels, than perspective 1. This 
is expected, since part of the original image is 
over-exposed due to the recording mechanics of 
CMOS camera chips. Since the reconstruction 
algorithm takes the average width of the channel 
from each of the images, it could be assumed that 
the reconstructed model is represented as thicker 
than it should be. This is also buffered by the fact 
that the photographed channel width is dependent 
on the exposure time of the CMOS sensors, which 
would vary for individual cameras operating on 
isolated circuits. 

7 FUTURE WORK 

The reconstruction of single-channelled flashover 
discharges does not demonstrate the full capability 
of the reconstruction system. Tests using simple 
discharge channels will be implemented in the 

future, which would include complex lightning 
channel structures. 

Currently, there is a significant amount of manual 
modifications that are made in the digital filtering 
process, which is mostly represented by the 
manual scaling of images. Future work requires the 
implementation of an automated reconstruction 
system. 

Furthermore, since current methods of testing only 
consider image mismatches, a more accurate and 
comprehensive testing framework needs to be 
implemented to quantify the error associated with 
the reconstruction algorithm – this will have a large 
effect on branched channel structures. 

8 CONCLUSION 

The algorithm has been shown to provide 
successful path reconstructions of single-
channelled flashover discharge channels, for a 
floating object experimental setup. Further 
investigations include the three-dimensional 
reconstruction of branched channels and complex 
lightning channels. Several modifications need to 
be implemented to the current system for better 
automation and an accurate testing framework. 
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Appendix E

Small-Scale Investigation on

Reconstruction with Cameras at

Different Elevations

E.1 Preamble

This appendix is a paper that was accepted and presented for publication by the In-

ternational Conference on Grounding and Earthing & 4th International Conference

on Lightning Physics and Effects Conference (LPE) in November 2010, hosted in

Salvador, Brazil. The paper is entitled: Preliminary Investigation into Three-

Dimensional Reconstruction of Laboratory High Voltage Discharges us-

ing Photographs Taken from Different Elevation Perspectives.

E.2 Paper Description

This paper describes the investigation on processing discharge channel reconstruc-

tions with cameras at different elevations at relatively small angular variations.

Limited conclusions can be made on this investigation, but it can be shown that

reconstructed model qualities are dependent on the image qualities from the cameras.
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Abstract – High voltage discharge channels have bee n re-
constructed in three-dimensions using photographic im-
ages at different height perspectives. This work pr ecedes 
the reconstruction of lightning discharges attachin g to tall 
towers, in particular, Brixton Tower in South Afric a. One of 
the challenges presented in this environment includ es the 
selection of camera locations facing the tower whic h will 
likely be associated with height perspectives. The results of 
preliminary small scale tests performed in the high  voltage 
laboratory are presented for a 0.66 m gap with elev ation 
angles between 0º-18º. It is found that the two cam eras pro-
vide inconsistent image data, which may require a p re-
processing stage for three-dimensional reconstructi on. 
 
1 - INTRODUCTION 
 
The study of lightning activity at tall structures has been 
an integral part of research into the meteorological phe-
nomenon. At present, most lightning research using opti-
cal recordings has mostly been limited to two-
dimensional perspectives. Several papers detail the use 
of two camera perspectives used to provide depth per-
ception of the channel [1-3], but none have attempted a 
three-dimensional reconstruction of the discharge chan-
nel. This paper will detail a laboratory investigation into 
the reconstruction of high voltage discharge channels, 
with the intention of expanding to field experiments with 
natural or triggered lightning attachment to a tall tower. 
Modifications of an existing three-dimensional recon-
struction method will be presented for the channel re-
construction [4-5]. 

This work investigates the challenge of reconstructing a 
three-dimensional channel using optical cameras record-
ing at different elevations. This is a preliminary investiga-
tion that looks into the accuracy of the algorithm used to 
normalize images at elevation to an eye-level approxima-
tion. 
 
2 - BACKGROUND 
 
A 250 m tall tower, namely Brixton Tower, is situated in 
Johannesburg, South Africa and is being monitored for 
lightning activity through photographic surveillance [6]. 
Additional perspectives will be set up to provide the 
depth perception required for three-dimensional recon-
struction. 
 
Figure 1 shows the expected scenario for obtaining opti-
cal lightning data striking Brixton Tower. There are two 
prospective recording sites for photographing lightning 
flashes to Brixton Tower from different perspectives. 
There is an approximate 70º lateral angular separation 
between the two sites, which should provide significant 
depth perception for three-dimensional reconstruction. 
Although the sites provide appropriate depth perception, 
the locations of these two sites would present some diffi-
culties for reconstruction, as Site 1 is approximately eye-
level, whereas Site 2 has a large acute angled perspec-
tive. 
 

 
Figure 1: The camera placement expected for lightning channel 
reconstruction of lightning strokes occurring on Brixton Tower. 
Associated heights, distances and expected angular elevations 
are included. 
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Figure 2: Camera elevation range to the discharge channel with 
respect to the zenith – angles ranging from 40°-70° . In this ex-
ample, a rod-to-rod gap configuration is used.  



 

3 - BASIC CONSIDERATIONS 
 
A laboratory investigation is essential to evaluate the 
effectiveness of reconstructions with cameras at different 
elevations before reconstructing lightning channels on a 
large-scale setup. The investigation simulates the ex-
pected channel reconstruction challenge of differing 
camera elevations, and therefore evaluating the three 
dimensional algorithm for this scenario. High voltage 
discharge channels were created a rod-to-rod gap confi-
guration. The expected channel length for this investiga-
tion was approximately 0.66 m. 
 
3.1 - CAMERA CONSIDERATIONS 
 
The use of three surveillance cameras was intended for 
the laboratory testing. The test configurations were de-
fined to provide a preliminary evaluation of the effective-
ness of the three-dimensional reconstruction algorithm. 
The two cameras used were of the same model, which 
have a motion detection triggering mechanism and an 
image pre-buffer. The cameras were placed 2 m away 
from the discharge channel, which is relatively close 
range and therefore optical filters were used for each 
camera to dampen the intensity of the channel. 
 
3.1 - CAMERA PLACEMENT 
 
There were two tests that were implemented: Mirrored 
test (cameras placed at 180º separation) and 90º sepa-
ration test. Each of these tests had one camera at eye 
level, while the height of the second camera varied in 
each scenario, as provided in Table 1. These heights do 
not provide a zenith angle up to 40º which is the angle 
required for Site 2 from Figure 1. The zenith angles pro-
vided in Table 1 will provide a proof of concept for the 
elevation reconstruction method. For the consistency 
through this paper, Camera 1 was defined as the refer-
ence camera, at 0° and 0 cm elevation. Camera 2 was 
varied accordingly. 
 
Table 1: Camera height variations and the corresponding eleva-

tion angles. 
Height below 
eye level (cm) 

Elevation Angle 
(α) 

Zenith Angle  
(β) 

18.00 5.14º 84.82º 
35.26 10º 80º 
65.00 18º 72º 

The mirrored test provides a quantifiable comparison for 
a channel path that is always random. Twelve samples of 
the mirrored test with the cameras both at approximately 
eye-level were obtained. A further five samples were 
taken of each varied height from Table 1 of one camera. 
General error trends will be used to determine the effec-
tiveness of the modified algorithm which will account for 
cameras at different elevations. 
 
4 – THREE-DIMENSIONAL RECONSTRUCTION 
 
The three-dimensional reconstruction method illustrated 
in Figure 3 was developed by Liu and Rapson in 2008 
[4]. The algorithm that reconstructed three-dimensional 
models of high voltage channels assumed that the cam-
eras photographed images of equal elevation from two or 
three perspectives. Liu later reconstructed lightning 
channels attaching to Brixton Tower with only one cam-
era perspective, by using a mirrored image and a white 
straight-lined image in the three-dimensional environ-
ment [5]. This method, illustrated in Figure 3, successful-
ly reconstructed a two-dimensional branched lightning 
channel in an interactive three-dimensional environment. 
A revision of this algorithm must be considered to ac-
count for multiple captured photograph perspectives from 
cameras located at different elevations. 
 
4.1 – RECONSTRUCTION METHOD 
 
The images taken from the test setup were filtered to 
Boolean black and white images using Liu and Rapson’s 
three-dimensional reconstruction application. This was 
necessary for the reconstruction application to clearly 
identify the discharge channel information from the im-
age, and remove any grey-scale ambiguity. Figure 4 (a) 
and (b) provide an example of a photograph taken of a 
discharge channel which is filtered to black and white 
Boolean pixels, removing any grayscale ambiguity for the 
channel information. Figure 4 (c) shows an image of the 
rendered model. This image is taken at the same angular 
separation as the test environment of the camera. Figure 
4 (d) follows the example into the testing stage, which 
provides the pixel mismatch indicated by the white pixels. 
These pixels are counted by a tester application, which 
provides the value for the ε parameter in Equation (1). 
The example provided in Figure 4 was an image taken 
from Camera 2 at eye-level (0 cm elevation). 
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Figure 3: Example of reconstruction of mirror-image a test using 
the existing algorithm for three-dimensional reconstruction of 
eye-level camera perspectives. This shows the projection of 
normals from white pixels to the center; intersections define the 
discharge channel. 
 

 

   
(a) (b) (c) (d) 

Figure 4: An example of the testing process from Camera 2 
(a) Original image (b) Digitally filtered black and white Boolean 
image (c) Rendered model (d) Pixel mismatch of (b) and (c). 



 
Figure 5: Results obtained from the mirrored test to obtain a 
percentage mismatch for each camera and each elevation test. 

 
Figure 6: Results obtained from the 90° separation test to obtain 
a percentage mismatch for each camera and each elevation 
test. 
 

5 – TESTING 
 
Although the mirrored tests cannot provide any three-
dimensional definition, it has value in determining the 
accuracy of image data that is obtained. Reconstructing 
high voltage channels from these tests would require the 
implementation of Liu’s method mentioned in Section 4 
and illustrated in Figure 3. 
 
The model accuracy was determined using a tester ap-
plication that compares the pixel mismatch of two given 
images [4-5]. A percentage mismatch is determined us-
ing Equation (1), where ε is the pixel mismatch deter-
mined by the tester application, h and w account for the 
height and width of the tested image in pixels. The tester 
application requires identical image sizes, so there could 
only be one value for h and w. 
 

100% ×
×

=
wh

error
ε

 
 

(1) 

 
The error calculation may provide a misleading result, as 
it takes into account the total error of the entire image, 
and not only of the significant channel information. There 
were a few reasons that may have accounted for the 
error: the thickness of the channel did not match; and the 
image of the model was slightly off-centered, providing a 
mismatched image for comparison. 
 
Ten samples were taken of the mirrored test with both 
cameras at the same elevation. All subsequent test con-
figurations had five samples recorded. 
 
6 – RESULTS 
 
Figure 5 and Figure 6 provide the resulting average 
trends obtained for the mirrored and 90° separation test 
from the values shown in Table 2. 
 
The test results would show a larger percentage error for 
the test with Camera 2 at the lowest elevation if camera 
elevation plays a significant role in the reconstruction 
process. From Table 2, the results from Camera 2 ap-
peared to provide an accurate description of what would 
be expected for the mirrored tests. There is a steady 
upward trend to higher percentage mismatches to the 
digitally filtered image, and the image taken from the 
reconstructed model. This expectation breaks down for 
each of all other scenarios, and the consistency of Cam-
era 2 is questioned with a resulting trend for the 90° se-
paration test that reverses the original expectation. 

 
The large percentage errors obtained from Camera 1 
may be attributed to its higher light sensitivity than that of 
Camera 2, which was evident in each of the photographs 
taken for each test. Although the cameras are identical, 
with the use of identical optical filters and equal radial 
placements from the discharge channel, the cameras 
had both been used for different surveillance periods 
preceding these experiments. 
 
The consistent results from Camera 1 can be considered 
as a correct representation of what may be expected in 
the larger scale scenario, as the largest angle of eleva-
tion (referred to α as in Figure 1) of 18°. Tests using 
more extreme angles of elevation need to be performed 
to provide any conclusive comments. 
 
The example of a reconstructed discharge channel in 
Figure 4 (a) demonstrates how inconsistencies from 
simple tests can be identified. The modeling algorithm 
used for this channel uses first edge detection [4]. This 
produces a segment of the channel whenever normals 
meet (demonstrated in Figure 3). It is evident that there 
are two channels created over one another; the one in 
front appearing to be shorter in length. This presents the 
need for preprocessing the image data possibly by scal-
ing the smaller image. This inconsistency may occur 
from the curvature of the camera, imperfect camera 
placements and non-specific filtering schemes for differ-
ent light intensities. 
 
Table 2: Averaged percentage errors for each discharge chan-
nel reconstruction test for cameras located at different eleva-
tions, using the percentage error calculation presented in Equa-
tion (1). Camera 1 is placed at 0 cm elevation for each scenario. 

Percentage error for each test (%) 

Camera 2 
Elevation 
(cm) 

Mirrored Test 90° Separation Test 
Camera 

1 
Camera 

2 
Camera 

1 
Camera 

2 

0 9.59* 2.61* 8.92 4.70 

-18 7.25 7.12 8.02 1.96 

-35 8.06 9.91 8.49 0.84 

-65 7.43 12.57 13.87 0.14 
* Ten samples were taken for the mirrored test at cameras of 

equal elevation. Five samples were taken for all other scena-
rios. 



 

 
Figure 7: An example of a three-camera configuration for photo-
graphing the high voltage discharges in terms of angular separa-
tion and elevation. 

 
Figure 8: Image eye-level normalization method for an image 
taken at a different elevation.  

 
7 - DISCUSSION 
 
It can be seen from the results that the use of identical 
cameras (and setup) can still provide inconsistencies in 
the reconstruction of discharge channels. These incon-
sistencies can be addressed through modification of the 
reconstruction system (which may include a reassess-
ment of the algorithm used). 
 
7.1 – THREE CAMERA CONFIGURATION 
 
A more comprehensive laboratory test will be performed 
with the availability of a third camera. Several camera 
placement configurations will be considered for a 
branched discharge channel, which will provide a proof 
of concept for a more accurate representation of upward 
lightning that occurs from Brixton Tower. Examples are 
shown in Figure 2 and Figure 7. In particular: 

1. A reference Camera 1 will be placed at eye-
level to the high voltage discharge channel, at 
0º separation). 

2. A lower elevation Camera 2 will be placed be-
low eye-level with zenith angles (β) ranging from 
40º - 70º. This camera will also be varied later-
ally (θ) from 30°-90° separation from Camera 1. 

3. An eye-level mirrored Camera 3 will be placed 
180° from Camera 2 for eye-level normalization 
comparison. 

 
7.2 – MODIFICATIONS FOR CAMERA ELEVATIONS 
 
The easiest way to account for images taken from differ-
ent camera elevations would be to normalize the images 
to eye-level as shown in  
Figure 8. This would avoid any unnecessary modification 
to the existing modeling algorithm. Since this method is 
based on pixels, it may present resolution problems for 
the normalized image. 
 
Once the image is normalized to eye-level, it can be 
compared with the mirrored eye-level image in order to 
test the accuracy of the normalization method. 
 
7.3 – LARGE SCALE EXPERIMENTS 
 
Liu successfully reconstructed two-dimensional branched 
lightning channel models using one camera perspective 

into a three-dimensional interactive environment using 
Liu and Rapson’s reconstruction application [5]. This 
work has shown that discharge channel reconstructions 
can be accomplished for small elevation angles without 
any modification to the reconstruction algorithm. With the 
ground work set in place, large scale reconstructions will 
be attempted for lightning attachment to Brixton Tower. 
 
7 - CONCLUSION 
 
This investigation has shown that elevation angles be-
tween 0° and 18° have inconclusive results. Camera 2 
has provided an expected trend in one of the test confi-
gurations by increasing the pixel mismatch according to 
a greater angle of elevation. Camera 1 provided a mostly 
random trend, which may suggest that the elevation an-
gles are too slight to show any significant difference. 
Tests using the modification method mentioned in Sec-
tion 7.2 may provide more conclusive results. 
 
The use of a third camera will provide an extra reference 
point to the random shape of the high voltage discharge 
channel; although this may even present more inconsis-
tencies to the reconstruction. 
 
Identical camera setups may still introduce inconsisten-
cies into the discharge channel reconstructions. More 
preprocessing steps need to be taken to reduce the re-
sulting errors from the image data inconsistencies. 
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Appendix F

Preliminary Testing on One Image

Perspective of Lightning

F.1 Preamble

This appendix is a paper that was accepted and presented for publication by the

South African Universities’ Power Engineering Conference (SAUPEC) in 2010,

hosted in Johannesburg, South Africa. The paper is entitled: A Preliminary

Investigation into 2D Reconstruction of Branched Lightning Discharge

Channels in a 3D Environment .

F.2 Paper Description

The paper describes the results for reconstruction testing of actual lightning events.

This mainly tests the modelling framework’s ability to reconstruct models from

actual lightning pictures that incorporate branching of the channel, thus producing

2D reconstructed models within a 3D environment.



A PRELIMINARY INVESTIGATION INTO 2D RECONSTRUCTION
OF BRANCHED LIGHTNING DISCHARGE CHANNELS IN A 3D
ENVIRONMENT

Y.C. Liu and K.J. Nixon

Dept. of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa

Abstract. The study of lightning models provides insight into understanding the behaviour of the natural
phenomenon. By producing 3D lightning models, a greater understanding of the spatial propagation of a lightning
channel can be obtained. A preliminary study was performed to determine whether branched lightning channels
could be modelled from one photograph in a 3D environment. Photographs of lightning strikes were obtained using
Axis 207 surveillance cameras. Cross-polarised optical filters were used to limit the captured light intensity of
the strike. The digital images captured from the cameras were processed manually using an image editor. Three
images were used to create a model; the orginal image, a white straight-line image and a mirrored image of the
original. These images were placed with 90◦ separation in the 3D environment. Fourteen branched models were
reconstructed. An average error of 1.68% was calculated for an image comparison between the filtered image and
a model image. This paper extends on work performed by Liu and Rapson in 2008.

Key Words. 3D reconstruction model, branched lightning channels, lightning photography, image processing.

1. INTRODUCTION

L IGHTNING models form the basis of research
into further investigating the physical behaviour

of the natural phenomenon [1]. By obtaining a three
dimensional (3D) representation of a lightning dis-
charge, the channel can be properly analysed in a
3D visualised space. A system was implemented to
capture two dimensional (2D) images of a discharge
channel and represent the lightning discharge as a
3D model. Liu and Rapson designed, developed and
implemented a preliminary system [2], which was
tested primarily using single-channelled high voltage
discharges in a controlled laboratory environment.
This paper extends their work, by testing the mod-
elling capabilities of branched lightning channels.
This paper provides an overview of the modelling
procedure; from photographing the lightning chan-
nels, to creating the models in a 3D environment.
Examples are provided for each stage using one
model dataset. Five models are presented to provide
a variation of results.

2. PROBLEM STATEMENT

The nature of lightning occurrences is studied to
broaden the understanding of the lightning mecha-
nism. This knowledge provides a beneficial contri-
bution to lightning protection systems and further
understanding the nature of this phenomenon. Light-
ning protection becomes evident with a cloud-to-
ground (CG) strike with the potential to cause damage
to electrically sensitive devices, power distribution
lines and even structural buildings [3]. The physical
distribution of lightning events is typically considered
using photography of the discharge channel from a
single perspective. This solution lacks the ability to
fully grasp the spatial propagation of the channel,
which highlights a need to develop a system that is
capable of reconstructing a discharge channel within
3D space. The reconstruction must ultimately be able
to determine the channel’s directional data and distin-
guish between split branches. By constructing a 3D

model of a discharge channel, a better understanding
of how the path of a large channel or lightning strike
develops its pattern.

3. BACKGROUND

The difficulties involved with the photography of
lightning, and a brief summary of the 3D modelling
solution developed by Liu and Rapson will be briefly
discussed.

3.1 Photography of Lightning:

The basis of modelling a lightning discharge requires
photographs of the channel. The difficulties involved
with capturing images of a lightning strike include:
the flash duration and the unpredictability of the oc-
currence. For research purposes, it is difficult to verify
whether the correct data of the channel is captured on
the photograph. There are several research solutions
to the photographing lightning channel attachments
to tall structures, such as studies performed on the
Fukui Chimney in Japan [4], CN Tower in Toronto,
Canada [5] [6] [7]. These papers investigate lightning
attachments to tall structures using digital images
from conventional video cameras, or high-speed cam-
eras. These studies provide valuable insight into the
photography of lightning discharges. No mention of
a 3D model is included in these papers, although
some produce images from multiple capture devices
to provide a sense of spatial distribution. Cummins
et al provide preliminary experimental results that
could ultimately lead to producing a time-resolved
3D model of CG lightning discharges [8].

3.2 Liu and Rapson’s Solution

The 3D reconstruction of general high voltage chan-
nels provides insight into their formation, and ulti-
mately its spatial propagation.
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Fig. 1: A basic representation of the reconstruction method (a) 3D
reconstruction algorithm (b) A 2D representation of the algorithm
using cylinders for modelling [2].

Liu and Rapson devised a method of recreating the
laboratory scenario in a software application, extend-
ing normals from the image to the central y-axis,
and creating a pixel-high cylinder where the normals
meet [2]. Figure 1 (a) and (b) illustrate a simplified
representation of the algorithm functionality. The
system produces a 3D model of a discharge chan-
nel samples from in a controlled environment. They
focused on reconstructing unbranched high voltage
channels in a laboratory environment. This modelling
algorithm provided a total error of 11% from 70 tests,
through the comparison of the filtered image to an
image of the model from the same perspective.

4. SYSTEM OVERVIEW

The system developed by Liu and Rapson [2] was
modified to account for a physical investigation,
which is the focus of this paper. The physical inves-
tigation considers a discharge environment in a real-
world scenario, which includes the capturing of image
test data from lightning strikes. The system described
in Figure 2 will attempt to render an accurate 2D
model of the channel in 3D space. The following lists
a summary of the system and contents of this paper.

1) The discharge environment is selected to pro-
vide image samples of the lightning strikes.

2) The method of acquiring photographs, and op-
timising the data is discussed.

3) The image processing required for reconstruct-
ing the model is demonstrated, including the
data filtering and description of the algorithm
used.

4) An example of the reconstructed model will be
presented with a discussion on the modelling
capabilities.

5) The testing framework and the sampled results
will be presented and discussed.

5. DISCHARGE ENVIRONMENT AND DATA
ACQUISITION

The test data was taken in the late thunderstorm
season in Johannesburg, South Africa. The reason
for obtaining test data in this location was due to its
high ground flash density. The capture of image data
includes the consideration of the devices used and
optical filters required. Figure 3 displays a set of test
images resulting from this stage. The images provide
a time-resolved lightning strike with multiple strokes.
This would provide a scope for future reconstruction
of time-resolved models.

(a) (b)

Fig. 3: Consecutive images with 10 ms time separation taken of
a cloud-to-cloud (CC) lightning strike.

The camera used for digital capture was the
Axis 207W wireless surveillance IP camera [9]. The
camera was set according to the settings as demon-
strated in Table 1. These were chosen as per the
implemented system in [2].

Table 1: Camera configuration for the physical investigation.

Parameter Value
Frame rate (fps) 15
Pre-Buffer (s) 2
Resolution (pixels) 640× 480
Colour Grayscale
Triggering method Motion detection

Captured images require the data of only the in-
tense light of the discharge channel. For the pur-
pose of the experiment, only wavelengths of the
visible light spectrum were desired for modelling the
discharge [10]. The insignificant data needed to be
filtered out. Optical filters were required to obtain the
usable data in the images. A combination of cross-
polarised filters and camera configurations provided
images that could be used for the reconstruction. The
images in Figure 4 demonstrated the different varia-
tions in the captured images using different layers of
optical filters. A disadvantage to using optical filters
is the possible loss of image detail brought about by
damaged lenses but this is neglected for the purpose
of this experiment.

Discharge 

Environment

Data 

Acquisitioning

Data

Conditioning

Reconstructed 

Model

- Live Lightning Events - Capture Devices

- Data Filtering: Optical

- Data Filtering: Digital

- Algorithm

- 3D Environment

Testing 

Framework

- Image Comparison

Fig. 2: Block diagram demonstrating the expected system overview and flow.



(a) (b)

Fig. 4: Different images taken with and without filters. (a) No
filters (b) Cross-polarised filters.

Figure 4 (a) shows the image captured of a lightning
discharge channel without optical filters. It is ob-
served that the image is extremely overexposed. Two
linearly polarised lenses are placed perpendicularly
to construct a cross-polarised filter, which reduces
the intensity of light entering the lens. The image
captured from this filter is illustrated in Figure 4 (b).

6. DATA CONDITIONING

The images needed be to filtered further so the
channel information could be isolated. Due to the
greyscale ambiguities from the photographed images,
digital filtering was required. Once the images were
filtered to explicit black and white images, the rel-
evant data was extrapolated from the images and
conditioned to provide a reconstructed model.

6.1 Data Filtering: Digital

The application requires black and white images to
extract the relevant data points from the image. The
white pixels represent the channel information, and
the black pixels are ignored. The digital filtering pro-
vides a means to isolate the channel information. The
images were manually processed, and then filtered
again in the application. This may seem ambiguous,
but the purpose of manually filtering the images
ensured that the less pronounced branches in the
channel were portrayed in the model. The filtering in
the application just ensures that the inserted images
have usable data.

(a) (b)

Fig. 5: Manually processed images taken of lightning strike.

The images in Figure 5 depict the result of manually
filtering the photographs from Figure 3, using an im-
age editor. These images were overlayed and amalga-
mated to combine the discharge channel information,
as shown in Figure 6. Each of these images can be
used as individual test samples.

Fig. 6: Amalgamated lightning strike from individual images.

The images were inserted into the modelling frame-
work in the preparation of data conditioning. The
filtering process includes a tracking function, to de-
termine the relevant channel information from the
image, and crops it to a smaller size, to decrease the
processing time of the reconstruction.

6.2 Algorithm

The 3D algorithm was written in C++ programming
language, integrated with VTK — an open source,
cross-platform visualisation toolkit. The application
could reconstruct a model using two or three im-
ages; each configuration may have different options
for reconstruction. Using the VTK 3D environment,
the filtered images were arranged on a set of axes
in 3D space, mapping the experimental setup. The
algorithm was designed to process the setup in layers
over the y-axis. This method eliminated the third
dimension, reducing the algorithm to a 2D problem,
as demonstrated in Figure 1. Normals of the white
segments were projected to the centre of the setup,
where they were compared to the normals from other
perspectives. Each layer of the discharge was assumed
to have a cylindrical body. The centres of two images
determined the centre point of the cylinder, where the
average thickness of the images determined the radius
of the cylinder. The third image was used to verify
the existence of the cylinder.

y

xz

Fig. 7: Algorithm for one image reconstruction.

Since only one image perspective was taken per
lightning strike, it was expected that the model could
not have any 3D definition. Thus, a white straight-
line image was placed 90◦ from the original image, as
depicted in Figure 7. Due to algorithm limitations for
two images, the split branches in the channel were not
accounted for, and only the main channel at which the



points intersected was modelled. This was resolved
by using three images place with a 90◦ separation.
The third image was created using the image editor
to provide a mirrored imaged of the original. This
was placed 180◦ from the original image to identify
the channel branching.

7. MODEL

Fourteen models were constructed using test data ob-
tained in the physical investigation. Figure 8 provides
an example of the models that were created. A visual
comparison of the model with the filtered image used
for the reconstruction is presented. The image of
the reconstructed model was taken from the same
perspective as the filtered image for the appropriate
comparison.

(a)

(b)

Fig. 8: Filtered image (a) compared to reconstructed model (b).

It can be observed that the algorithm is not perfect,
and does not flawlessly reconstruct the channel path,
even with the ambiguity of the mirrored image. The
reconstruction seems to break down when the channel
thickness thins in the path. This could be explained
by the fact that the original image and the mirrored
image do not get perfectly aligned to receive the
logical identifier as an indication that a cylinder
exists. This property is confirmed in some of the
other samples which produce continuation of thicker
channels and corresponding paths.

8. TESTING AND RESULTS

In order to quantitatively verify the model accuracy,
the images in Figure 8 were compared using a tester
application. An image difference in pixels was pro-
duced, identifying the pixel mismatch between the
two images. Equation 1 provides the error calculation
for the model verification, where ε is the pixel mis-
match determined by the tester application, h and w
account for the height and width of the tested image
in pixels.

% error =
ε

h× w
× 100 (1)

Table 2: Testing information for model

Parameter Value
Image difference ε 321.51
Height h (pixels) 500
Width w (pixels) 160
Percentage Error (%) 0.40

There could only be one value for h and w, since
the tester application requires identical image sizes.
The error calculation takes into account the total error
of the entire image, and not only of the significant
channel information. This may provide a misleading
result, since the calculation is a function of the image
size (which includes the redundant black pixels).
Equation 1 presents an error of 0.40% for the created
model in Figure 8 using the information in Table 2.
All fourteen samples were tested with the results
provided in Figure 9 with an average error of 1.68%.
It should be noted that Model 1 in Figure 9 is the
model demonstrated as the running example within
this paper. The error ranges from 0.16 to 8.47%,
which is a considerably large range and could be
accounted for by several different factors. There were
a few things that specifically accounted for the error:
the thickness of the channel did not match; there were
missing links in the channel path; and the image
of the model was slightly off-centred, providing a
mismatched image for comparison.
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Fig. 9: Results for error calculation of branched test models.

It was only possible to determine the error of the
filtered image to the image acquired from the model
from the same perspective. Other errors occuring in
the system that should be taken into account, but
could not be quantified include: lightning to optically
filtered images, optically filtered images to manually
filtered images, manually filtered images to applica-
tion filtered images.

9. ANALYSIS

The models of fourteen datasets were successfully
reconstructed. The models provided an average error
in comparison to the filtered images of 1.68%, even
though the error calculation has been identified as



being misleading. Also, the cylinder radius for the
channel was determined by the thickness of the
straight-line image placed 90◦ relative to the lightning
image, which could account for the inaccuracies of
the model thickness. This work presents the first
recorded testing data of the algorithm using branched
channels acquired from a physical investigation. The
full system error could not be easily quantified.

The average error of the high voltage discharges from
[2] can be seen to differ by an order of magnitude
to the average error obtained in the physical investi-
gation of this paper. This could be accounted for by
several factors from the laboratory investigation: more
tested datasets and a combination of the different
algorithm configurations (differing when using 2 or
3 images), more images with possible inaccurate
angular placements in the environment setup.

10. FUTURE WORK

More models need to be reconstructed and tested
for the physical investigation in order to provide a
better perspective on the algorithm performance. This
will also provide better comparisons to the test data
obtained from the experimental investigation.

A detailed testing platform needs to be established,
taking into account only the significant information,
instead of testing the entire image. This includes
determining the reason for the offsetted image of the
model for error comparison, thus providing a better
means for comparison. Currently, a more comprehen-
sive testing framework is being developed. This test
would compare two images with a branched channel
which would determine the points of branching and
channel path termination. This would map out the
position of the points in question and compare the
number of significant points and accuracy of the
image of the reconstructed model.

Of course, this paper provides a proof of concept to
obtaining 3D models of lightning discharges. This
provides a platform for reconstructing the lightning
models using multiple-perspective images of a strike.
This would require a scaled version of the work
performed in [2].

11. CONCLUSION

This paper presented a preliminary investigation into
considering the plausibility of modelling a 2D light-
ning image in a 3D environment. It has been shown
that it is possible to capture lightning images us-
ing an Axis 207 surveillance camera with a cross-
polarised optical filter. The channel information was
extracted from the image using manual and applica-
tion filtering. Fourteen branched discharge channels
were successfully modelled using three images per
photograph. The algorithm configuration using three
images with a 90◦ -separation provided an error of
1.68% from fourteen test models. A comprehensive

testing method needs to be developed to obtain a more
accurate error calculation. Additional test data needs
to be obtained in order to provide more models for
comparison. And lastly, this proves that in theory, by
scaling the system in [2], a 3D model of a branched
lightning channel can be obtained.
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Appendix G

Single-channelled Lightning Testing

G.1 Preamble

This appendix is a paper that was accepted and presented for publication by the

International Conference on Atmospheric Lightning (ICAE) in 2011, hosted in Rio

de Janeiro, Brazil. The paper is entitled: A Method of Creating Graphical

Three-Dimensional Reconstructions of Lightning Discharge Channels us-

ing Digital Images.

G.2 Paper Description

This paper briefly describes the reconstruction method and uses lightning image

information from Tuscon USA in 2007 courtesy of Dr Marcelo Saba. Two image

perspectives, separated laterally by approximately 34◦, were taken of the single-

channelled lightning flash, and this paper describes the reconstruction process of

the flash in question.
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Reconstructions of Lightning Discharge Channels using 

Digital Images 

Y.C. Liu1, K.J. Nixon1, I.R. Jandrell1  

 

1. School of Electrical & Information Engineering,  

University of the Witwatersrand, Johannesburg, South Africa 

 

ABSTRACT: This paper describes a method used for graphically reconstructing three-dimensional lightning 

channels within an interactive virtual environment. Typically, lightning is optically observed using one or two 

perspectives of a specific stroke or flash. Two camera perspectives provide depth to the channel that one 

perspective lacks, but these are limited to an ability to discern the contents. This work provides the possibility of 

studying a lightning discharge channel from an actual event in the form of a reconstructed model with the ability 

to zoom, tilt and rotate the channel within a three-dimensional environment. 

 

1. INTRODUCTION 

Lightning models form the basis of research into further investigating the physical behaviour of the natural 

phenomenon [Rakov and Uman, 2003]. By obtaining a three-dimensional (3D) representation of a lightning 

discharge, the channel can be properly analysed in a three-dimensional visualised space. A system was 

implemented to capture two-dimensional (2D) images of a discharge channel and represent the lightning 

discharge as a three-dimensional model.  

 

2. PROBLEM STATEMENT 

Lightning research started with ground-level observations [Malan, 1963]. These fast, almost instantaneous 

events with µs durations were recorded in a two-dimensional capacity with standard camera technology. The 

physical distribution of lightning events is typically considered using photography of the discharge channel from 

a single perspective. This limitation leads to some critical assumptions about the nature of lightning channel 

propagation which become translated to theoretical analyses. This solution also lacks the ability to fully grasp the 

spatial propagation of the channel, which highlights a need to develop a system that is capable of reconstructing 

a discharge channel within three-dimensional space. The reconstruction must be able to successfully determine 

the directional data of the channel and distinguish between split branches.

3. SYSTEM OVERVIEW 

A system was designed and developed to reconstruct three-dimensional reconstruction of lightning 

discharges using photographic images coupled with geographical locations of the cameras in relation to the 

lightning termination point. This system was previously tested using single-channeled high voltage discharges in 

a small scale test [Liu et al, 2009; Liu et al, 2010b], and in a lightning environment using one image of a 

branched lightning discharge as a preliminary investigation [Liu and Nixon, 2010a]. Each of these tests proved 

successful in recreating a three-dimensional reconstruction of test images. 

____________________ 
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Figure 1 provides a block diagram representing each stage of the reconstruction process. This paper 

describes an overview of the modelling procedure; from obtaining photographs of the lightning channels, to 

creating the models in a three-dimensional interactive virtual environment.  

 

Figure 1: Overview of the system for the three-dimensional lightning reconstruction application. 

 

3.1 Reconstruction Application 

The application created for the reconstruction of the three-dimensional lightning models was developed in 

C++ using a visualization toolkit library (VTK). The application framework accepts two or three images of the 

same lightning flash from two or more perspectives. The option for two images was developed for 

single-channeled discharges, as branched channels would create ambiguities in the reconstruction. This 

ambiguity was solved by developing an option for three images. The current reconstruction algorithm requires 

image perspectives with a lateral separation of approximately 30º to 150º for optimal reconstruction. 

 

3.1.1. Image Processing 

The reconstruction application identifies the lightning pixel data using a number of built-in automated digital 

filters. These filters replace pixels that represent the lightning flash with white pixels (pixel value of 255), and 

redundant information as black pixels (pixel value of -255). Depending on the quality of the input images, 

manual image processing may be implemented to correctly catergorise ambiguous grey pixels. 

 

3.1.2. Reconstruction Algorithm 

The processed images are placed in the three-dimensional virtual environment, in the corresponding position 

to its original camera position as demonstrated by Figure 2a for 90º camera separations. In this virtual 

environment, the lightning discharge channel is centered about the y-axis (i.e. x = 0 and z = 0).  

The three-dimensional reconstruction algorithm has been simplified to a series of two-dimensional 

geometric problems. For example, consider a single-channeled discharge channel that has two camera 

perspectives demonstrated in Figure 2b. From the first white pixel band at the top of each image, three 

perpendicular normals are extended from each image towards the y-axis. Each normal is extended from a 

specific point in the 1-pixel high band of white pixels. The points are demonstrated in Figure 2b and listed 

below: 

a. Leftmost white pixel 

b. Rightmost white pixel in a continuous band 

c. Middle position between point a. and b. 

 

The middle normals of each image are compared for an intersection. If an intersection between the normals 

exists, a one-pixel high cylinder is created, using the intersection points of the leftmost and rightmost white pixel 

positions to calculate the radius of the cylinder as demonstrated in Figure 2b. This process is repeated to produce 

a reconstructed model that is constructed by a series of stacked cylinders. 
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(a) 

 

(b) 

Figure 2: A graphical representation of the three-dimensional reconstruction algorithm which reduces the 

problem to a series of two-dimensional geometric solutions. (a) Processed lightning images placed in at positions 

of 90º-separations in a three-dimensional virtual environment with a simple representation of extended normals 

to reconstruct a channel. (b) Overhead two-dimensional perspective with relevant points in a data image 

extending geometric normals towards the y-axis.  

 

3.2 Lightning Image Test Data 

Two perspectives of a lightning flash were recorded in Tuscon USA in 2007 [Saba, 2010]. The cameras 

were positioned at a lateral separation of approximately 34º. The two images can be seen in Figure 3a and 3b. 

 

 

 (a) 

 

(b) 

Figure 3: Lightning images taken in Tuscon USA in 2007 of the same flash from two different perspectives 

approximately 34º apart [Saba, 2010]. (a) Camera 1. (b) Camera 2. 

4. MODEL AND TESTING 

A three dimensional model has been reconstructed using the images in Figure 3a and 3b. The input images 

and resulting model of the reconstruction application is shown in Figure 4. Camera 1 perspective is shown in 

Figure 4a and 4b, and Camera 2 perspective required a manual scaling process and is shown in Figure 4c and 4d. 

The yellow vertical rod is representative of the y-axis mentioned in Figure 2a. 

Visually, it is evident that the reconstructed model correctly follows the path of the lightning channel in the 

image. In Figure 4b, the mid-section is missing some information, and further inspection indicates that the area 

correlates to a very thin channel width in Figure 4a. This has been a common observation from previous tests, 

and is explained by the fact that normals may not be generated if a channel is one-pixel wide. 
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(a) 

 

(b) 

 

 (c) 

 

(d) 

Figure 4: Reconstruction model input images and correlating images of outputs. (a) Digitally filtered Camera 1 

image. (b) Three-dimensional reconstruction of Camera 1 image compared to (a) in three-dimensional 

environment. (c) Digitally filtered Camera 2 image. (d) Three-dimensional reconstruction of Camera 2 image 

compared to (c) in three-dimensional environment. 

5. FUTURE WORK AND CONCLUSIONS 

Current work involves the reconstruction of larger data-sets, including branched lightning flashes. 

Furthermore, a testing framework needs to be implemented to accurately quantify the error associated with the 

reconstruction algorithm. A testing framework currently exists, but is based solely on pixel mismatches from 

input and output images, which can be misleading for comparisons of larger images to smaller images. 

The algorithm has been shown to provide successful path reconstructions of single-channeled lightning 

discharge channels, but fails when pixel widths of channels become too thin. Further investigations into solving 

this discontinuity problem will need to be conducted without having to compromise the input image data. 
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