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Abstract

World-wide pressure on existing power distribution systems calls for action to be

taken in order to curb the energy deficit. The concept of a smart grid can assist

since a significant function is the improvement of energy efficiency in transmission

and usage. This is also known as energy management. Load forecasting can

indirectly aid energy management by raising user awareness to reduce the peak and

total power usage. Load forecasting has been implemented using many different

methods over the years, from statistical methods to computational intelligence

methods. Combinations of methods also exist to enhance the forecasting capabilities.

Following from observations made, it was hypothesised that a fuzzy logic load

forecasting algorithm could be improved by incorporating an optimisation technique

such as genetic algorithms.

In order to observe the effects of a genetic algorithm on a fuzzy logic load forecasting

system, MATLAB® was used to implement a load forecasting algorithm using fuzzy

logic systems and genetic algorithms. The fuzzy logic systems used the day (week or

weekend), the time of day and the historic power usage to perform the forecasting.

The genetic algorithm adjusted the fuzzy logic parameters to minimise the peak and

total energy errors in a 24 hour period.

Using data from one week prior to the test yielded the most accurate results after

considering varying quantities of input data. The results obtained from five case

studies indicated a good correlation between the forecast and measured values.

Initial results were obtained using a priori knowledge of the behaviour of the

system, then the genetic algorithm was implemented. The full week forecast results

showed an average improvement, for the five cases, of 4.32 and 18.95 times for the

peak energy error and the total energy error respectively. This indicates that the

dissertation hypothesis was proven to be correct.
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Chapter 1

Introduction

The existing power distribution systems world-wide are currently experiencing energy

deficits. This necessitates a rapid enhancement of the existing system architecture.

One way in which this can be achieved is by implementing the concept of a smart

grid. Functional requirements of a smart grid include the more effective distribution

and use of available power, which can be considered energy management. This can

be achieved by implementing a means of control over the total energy and the peak

energy usage. Load forecasting could be used indirectly to create user awareness

to the total and peak power usage and thus aid in energy management. Load

forecasting has been implemented for many years using different techniques ranging

from statistical methods to various computational methods.

This dissertation hypothesises that a fuzzy logic system used for load forecasting

will be improved (implying a reduction in errors) by incorporating an optimi-

sation technique such as genetic algorithms.

This dissertation is structured as follows:

Chapter 2 introduces the background pertaining to load forecasting and its place

in research today. The concept of a smart grid is discussed as well as the subsequent

result of energy management. It is hypothesised that load forecasting can help

achieve the required energy management and thus several different methods of load

forecast are discussed.

Chapter 3 provides a detailed description of the development and implementation

of the load forecasting algorithm and associated features using fuzzy logic systems
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Chapter 1 — Introduction

and genetic algorithms. The necessary assumptions and constraints to enable

implementation are presented and the performance criteria are described.

Chapter 4 begins with the tests and results determining the required amount of

input data to yield accurate results. Detailed case studies are then presented to show

the effect that the genetic algorithm has on the load forecasting results. Analysis of

the results finalise the research findings.

Chapter 5 proposes several factors of the algorithm structure to alter to be inves-

tigated further. The purpose of the additional investigation would be to observe

the effects on the performance of the load forecasting algorithm. Several recommen-

dations are also proposed in order to potentially improve the existing performance

criteria and provide additional knowledge about the algorithm performance. Simple

tests are performed were possible to substantiate the recommendations.

Chapter 6 concludes the dissertation and provides a summation of the most

pertinent results obtained in the research.

Appendix A details and compares previously implemented load forecasting me-

thods across a range of categories such as the requirements; the forecast period and

the mean absolute percentage error. This is in support of Chapter 2.

Appendix B provides important definitions pertaining to fuzzy logic and genetic

algorithms, as required for Chapter 3.

Appendix C documents the MATLAB® scripts that were developed for the load

forecasting algorithm. This is in support of Chapter 4.

Appendix D contains additional maps, graphs and other data to enhance the

understanding of the case studies performed in Chapter 4.

2



Chapter 2

Background

Chapter Overview: The first step to understanding any problem is to establish

and comprehend existing information pertaining to the problem. This chapter

presents information leading to the development of the research topic in load

forecasting. A brief description of the current grid architecture is covered,

followed by an overview of a smart grid concept as well as descriptions of several

of the existing methods for load forecasting.

2.1 Current Grid Architecture

Current power distribution systems are built based on an architecture that has been

used for over a century [1]. A depiction the current power distribution system is

shown in Figure 2.1 [2]. Quality of service and reliability is maintained by creating

sufficient generation and distribution with surplus capacity to allow for fluctuations

and growth [1].

This architecture needs to be enhanced since there is an increase in power demand

world-wide [3] and is witnessed in South Africa by the increasing number of regional

black-outs [4]. These black-outs are due to surplus power reserves being reduced to

below 10 % while a healthy reserve is stated to be between 17 - 20 % [5]. Another

indication that an enhancement of the current power distribution system is necessary

can be seen in the increasing pollution levels and other environmental impacts [1, 3]

that need to be counteracted.

3



Chapter 2 — Background

Generation DistributionTransmission

…

Figure 2.1: A representation of the existing power distribution system architecture.

2.2 Overview of a Smart Grid

Although there are many different interpretations of the smart grid concept, there

is no single unified solution in order to implement a smart grid. Based on current

literature the power distribution system of the future, or what is considered a smart

grid, enhances the current power transmission grid by incorporating monitoring,

control and communications [2, 6, 7].

By incorporating the additional functionality, the consensus as to the functions a

smart grid should be capable of includes [1, 2, 6]:

1. More efficient and optimised use of available assets,

2. The introduction of customer participation,

3. The ability to incorporate all distributed generation and energy storage sys-

tems,

4. Improved quality of service,

5. Self-healing by rapid response to disturbances in the system,

6. Resistance against man-made attacks and natural disasters and

7. The allowance for new products, services and markets to emerge.

4



Chapter 2 — Background

The first function can be achieved by introducing energy management, and incor-

porating the second function. Energy management is an important factor in the

world today since it focuses on increasing the efficiency of most energy consuming

processes [8]. Thus, energy management can be used to monitor and control the

efficiency of the usage and distribution of power. Load forecasting is not the solution

to the energy management issue, but a tool in its implementation [9]. Using the

requirements of energy management as a base, load forecasting can be used to

indirectly improve the usage of power by raising user awareness and making the end-

process more efficient (assuming the user provides the necessary intervention) [10].

The distribution of energy can be made more efficient, again indirectly, due to load

forecasting. The power producer can forecast what the load would be and ensure

that a sufficient quantity is provided.

2.3 Overview of Existing Methods of Load Forecasting

Load forecasting is the prediction of the power usage for a chosen area, which can

be implemented using several different techniques that include:

• Statistical models (Such as regression models and time series models).

• Computational intelligence models (Such as expert systems; artificial neural

networks; fuzzy logic systems).

• Combinations of methods

2.3.1 Statistical Models

Statistical models for load forecasting can be broadly classified into two categories

depending on how the load is treated. The first method assumes the pattern of the

load is a time series signal and can thus perform time series analysis to obtain the

desired result. The second method strives to obtain the relationship between power

usage and weather variables, using regression analysis [11, 12].

5
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Time Series Models

The power usage could be approximated as a time series since it can be assumed to be

periodic on various scales (such as daily, weekly and seasonally). This approximation

is accurate so long as the periodicity holds true. When fluctuation is introduced then

the time series analysis fails. The Box-Jenkins method is considered to be the most

efficient forecasting technique assuming the analysed time series is stationary [13, 14].

Regression Analysis Models

Regression analysis effectively performs curve fitting to manipulate the output to

the desired value [14]. In order to implement regression analysis the correct input

data must be available and the basic functional elements must be assumed. This

models the system and allows for the regression coefficients to be solved [11, 15, 16],

as indicated in Equation 2.1.

y(t) = b0 + b1x1(t) + · · ·+ bnxn(t) + a(t) (2.1)

where y(t) is the predicted power; x1(t),· · · ,xn(t) is the explanatory variables cor-

responding to y(t); a(t) is a random variable constantly varying with a zero mean;

and b0, b1, · · · , bn are the regression coefficients [15].

2.3.2 Computational Intelligence Models

The emergence of computational intelligence has led to several methods being

developed and applied to load forecasting.

Expert Systems

Expert systems are computer based algorithms that would require knowledge of an

expert user to solve a well bounded problem domain [17]. Expert systems can

be used in diagnostics, planning, control and it could even be used to forecast

loads. This type of system replicates the knowledge and thought processes of a

6
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‘human expert’ [18]. Expert systems have a configuration similar to that shown in

Figure 2.2 [17, 19].

UserFact interpreter and
inference engine

Knowledge engineering

Knowledge base Human expert

Figure 2.2: Overview of a typical expert system.

The knowledge base incorporates the data required to perform the process, such as

power and weather for the load forecasting case. The inference engine uses a set of

defined rules to search the knowledge base for the required data and interprets the

results to produce the final output [19, 20]. The user interacts with the inference

engine to define the search parameters and the human expert interacts with the

knowledge base to produce the database that defines the expert system.

Artificial Neural Networks

Artificial neural networks, or more generally neural networks, are the computational

simulation of the learning characteristics and pattern recognition of the human

brain [21]. This ability to mimic the brain allows for the diverse application of

neural networks to many different concepts such as system control, optical recog-

nition and even load forecasting. Typical neural networks have a configuration

similar to that shown in Figure 2.3 which is known as a ‘percepton’ artificial neural

network [20, 22, 23].

The feed-forward network consists of ‘neurons’ (the quantity depending on the

desired application) that are shown in Figure 2.4 [22]. These neurons will ‘fire’

if the bias of the input passes the threshold of the activation function. The most

commonly used activation function is the sigmoid function [11, 22].

The neural network can be trained using various different algorithms including
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Figure 2.3: Overview of a general artificial neural network.
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Figure 2.4: Simplified model of an artificial neuron.

the generalised delta rule, back propagation, genetic algorithms and other algo-

rithms [23, 24, 25]. The training process physically changes the biasing threshold

for each neuron such that the desired output is achieved for a known input-output

pair.

Fuzzy Logic Systems

Fuzzy logic systems are generally applied to systems in which the mathematical

model is non-linear or poorly understood. They typically have a configuration similar

to that shown in Figure 2.5 [22], known as the Mamdani fuzzy logic system due to

the linguistic nature of the rule-base [22, 26, 27, 28].

The inputs to the system are converted from crisp to fuzzy values in the fuzzification

step. The fuzzy values are then interpreted by the fuzzy inference engine. The

most common principle used for the fuzzy inference engine is the max-min inference

process [22, 27]. When this is combined with the fuzzy rule-base (‘Mamdani-style’

rules because of the linguistic nature), the inputs can be quantified in a universe of

discourse. During the defuzzification step the resulting fuzzy value is interpreted as

a crisp value for each rule. The crisp values are then combined using the desired

8
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equation thus yielding the final output of the fuzzy logic system [20, 22, 26, 27].

Fuzzification DefuzzificationFuzzy inference

Fuzzy rule-base
In

pu
t d

at
a

Fo
re

ca
st

Figure 2.5: Overview of a Mamdani fuzzy logic system.

2.3.3 Combination of Methods

In addition to the above mentioned individual methods, there are hybrid methods

that combine at least two of the methods mentioned to improve the results. Two

common combinations of methods include the hybrid fuzzy-regression [29] and the

hybrid fuzzy-neural networks [30, 31]. Further details can be found in the relevant

papers written by Liang and Cheng [29]; Srinivasan, Chang and Tan [30]; Srinivasan

and Lee [31] as well as Liao [32].

2.3.4 Comparison of Load Forecasting Methods

Several different implementations of each of the above mentioned methods have been

compared in Table A.1 (in Appendix A), where the error that is presented is the

mean absolute percentage error (MAPE), given in Equation 2.2.

MAPE =
1

n

n∑
i=1

|Pforecast(i)− Pmeasure(i)|
Pmeasure(i)

× 100 (2.2)

Table 2.1 shows the average of the presented errors for each of implementations inves-

tigated. Each method of load forecasting had at least two different implementations

to calculate the average errors.

9
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Table 2.1: Average errors for each forecasting method based on the results presented

in Table A.1.

Forecasting method Average error

Time series analysis 1.11 %

Regression analysis 1.97 %

Expert systems 2.05 %

Artificial neural networks 2.11 %

Fuzzy logic systems 2.43 %

Combined methods 1.48 %

It can be inferred from Table 2.1 that the most effective method of load forecasting

(based on the results presented in Table A.1) was the time series analysis. The

method that yielded the highest average error was the fuzzy logic system. The

trend observed was the more input data required yielded the lower MAPE across all

forecasting methods.

The combination of methods reduced the forecasting MAPE. Incorporating the fuzzy

logic system into the regression model, by Liang and Cheng [29], improved the

MAPE by 13.00 % when compared to the regression analysis model by the same

authors. The fuzzy-neural method, by Liao [32], improved the MAPE by 8.55 %

when compared to the genetic algorithm optimised neural network created by the

same author.

Due to these observations, it was proposed that fuzzy logic systems be investigated

further and combine it with other methods, such as genetic algorithms, to illustrate

the improved performance of the hybrid system.

10



Chapter 3

Development of the Load Forecasting

Algorithm

Chapter Overview: For this investigation into load forecasting, fuzzy logic

systems were combined with genetic algorithms to provide the desired hybrid

system. This chapter documents the development of the fuzzy logic systems

for the load forecasting algorithm, as well as the development of the genetic

algorithm to accurately parameterise the algorithm. The necessary assumptions

and constraints are presented as well as the performance criteria. Important

definitions to aid the understanding of this chapter are given in Appendix B.

3.1 Assumptions and Constraints

Several assumptions and constraints were necessary in order to implement the load

forecasting algorithm. These are:

• The original load profile that the system was designed for was a wing of a single

floor of the Chamber of Mines engineering building at the University of the

Witwatersrand (henceforth known as the University), with a profile illustrated

in Figure 3.1.

• Power usage data (input and forecast) was normalised on 0 kWh - 12 kWh (due

to the original load profile) to ensure that any load could be accommodated.
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Figure 3.1: Sample load profile to illustrate the need to distinguish between (a):

Week and (b): Weekend days in the load forecasting algorithm.

• 30 minute intervals were considered the normal period for forecasts (as per the

South African power utility measurements, and measurements performed on

the University campuses).

• 24 hours was considered the shortest time scale for the forecast in order to

calculate performance.

• The maximum period for load forecasting was limited to a full week to reduce

the required amount of input data.

• Week was defined as Monday to Friday, and weekend was defined as Saturday

and Sunday.

• Public holidays were modelled as weekend days where necessary.

• Weather had minimal impact within the week long timescale and as such was

neglected for the study.

• The fuzzy logic systems for each of the test cases were all the same before

implementing the genetic algorithm to allow for comparison of the genetic

algorithm performance.
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These assumptions and constraints ensured the results obtained from the load

forecasting algorithm would be accurate and valid, while remaining uncomplicated

and prompt in operation.

3.2 Definition of Performance Criteria

Two criteria were defined to evaluate the performance of the load forecasting algo-

rithm. They were:

1. The difference between the forecast peak load and the measured peak load for

a 24 hour period (or peak energy error),

Epeak =
|max(Pforecast)−max(Pmeasured)|

max(Pmeasured)
× 100 (3.1)

and

2. The difference between the total energy required for the forecast load and the

measured load in a 24 hour period (or total energy error),

Etotal =

∫ n

1

|Pforecast(t)− Pmeasured(t)|
Pmeasured(t)

dt× 100 (3.2)

where: Pforecast is the forecast power usage,

Pmeasured is the measured power usage,

n is the maximum number of terms in the forecast period.

It should be noted that the integral in Equation 3.2 was performed using trapezoidal

numerical integration to give a close approximation to the true value.

These performance criteria were chosen since they are some of the most important

factors when considering energy management [10]. If the peak load and the total

energy usage in a 24 hour period can be forecast then the user can implement

methods of reducing it, or the power producer can plan accordingly to ensure that

the required peak is available. This would lead to a greater awareness of the power

usage and possibly improve bill management for the user. The defined performance

criteria utilised a backwards comparison approach, meaning the performance could

only be established for the week-ahead forecast once the week had been completed.
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In order to evaluate the effectiveness of the genetic algorithm, a simple equation was

defined to show the ratio between the result before and after the genetic algorithm

was implemented. This ratio can also be considered the improvement factor due to

the genetic algorithm. This is illustrated as:

GAimprove =
Ebefore

Eafter
(3.3)

where: Ebefore is the error before the genetic algorithm is implemented,

Eafter is the error after the genetic algorithm is implemented.

3.3 Outline of the Load Forecasting Algorithm

The load forecasting algorithm comprised of two fuzzy logic systems performing the

load forecasting, one for weekday forecasts and the other for weekend forecasts due to

differences in the observed trends for the types of day as illustrated in Figure 3.1. The

inputs to the algorithm were the time of day and the historic power usage. A third

input was the day of the week, however it would not impact the fuzzy logic systems.

It rather selected which of the fuzzy logic systems to use whether the day was during

the week or weekend. A genetic algorithm was developed to adjust the parameters for

the fuzzy logic membership functions and rules to maximise the performance of the

load forecasting algorithm. The genetic algorithm was not implemented in real-time,

but rather once a week (every seven days) due to computational requirements. For

each new week the genetic algorithm would need to be reimplemented to maintain

a high level of accuracy. The logical flow diagram of the algorithm is illustrated in

Figure 3.2, where the output of the load forecasting algorithm is shown in blue.
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Figure 3.2: Flow diagram showing the processes for the load forecasting algorithm.

3.4 The Fuzzy Logic Systems

The fuzzy logic systems that were designed followed the structure depicted in

Figure 3.3. Both fuzzy logic systems were designed to be the same structure, and

only the parameters would differ between week days and weekend days.

The input and output sets of the fuzzy logic system used a symmetrical Gaussian

distribution for each of the membership functions, seen in Equation 3.4 with µ and

σ being some of the variables that were parameterised during the genetic algorithm

parameterisation loop. The continuous nature of the Gaussian distribution allows

for enhanced optimisation since there are no discontinuous points at which the
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Figure 3.3: Overview of the fuzzy logic system used in the load forecasting algorithm.

optimisation could fail.

f(x) = e−
1
2

(x−µ)2

σ2 (3.4)

where: µ is the mean of the distribution,

σ is the standard deviation of the distribution.

The positions (µ) and widths (σ) of each of the membership functions for the input

and output fuzzy sets were selected on a trial-and-error basis to yield the most

accurate results.

3.4.1 Fuzzification Process

Two input sets were used in the fuzzy logic system to fuzzify the crisp input values.

The required inputs were the time of day, shown in Figure 3.4(a), and the historic

power usage, shown in Figure 3.4(b).

The crisp values were passed to the fuzzy logic systems, and converted to fuzzy values

through the fuzzification process. The crisp value (on the x-axis) was assigned a

degree of membership (on the y-axis) based on which membership function curve it

corresponded to.
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Figure 3.4: Input fuzzy sets for (a): Time and (b): Historic power usage used in the

load forecasting algorithm

3.4.2 Fuzzy Inference Engine

Fuzzy inference was established by using a linguistic fuzzy rule-base as well as the

max-min inference process. The fuzzy rule-base consisted of 20 Mamdani-type

linguistic rules, shown in Table 3.1. The weight of each rule, being a variable for

parameterisation using the genetic algorithm, was initially set to one. This implied

that each rule contributes to the final output equally. The rules were derived using

a priori knowledge of the behaviour of the system, based on the load profile shown

in Figure 3.1.

3.4.3 Defuzzification

The outputs of the fuzzy inference engine were combined with a single crisp output

set, shown in Figure 3.5, to defuzzify the fuzzy values. This yielded the desired crisp

value, being the forecast load profile.
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Table 3.1: Mamdani-style fuzzy rule-base used in the load forecasting algorithm.

1 IF Time is Early Morning AND Power is Low THEN Forecast is Very Low

2 IF Time is Early Morning AND Power is Medium THEN Forecast is Low

3 IF Time is Early Morning AND Power is Medium THEN Forecast is Medium

4 IF Time is Early Morning AND Power is High THEN Forecast is High

5 IF Time is Morning AND Power is Low THEN Forecast is Very Low

6 IF Time is Morning AND Power is Medium THEN Forecast is Low

7 IF Time is Morning AND Power is Medium THEN Forecast is Medium

8 IF Time is Morning AND Power is High THEN Forecast is High

9 IF Time is Noon AND Power is Low THEN Forecast is Very Low

10 IF Time is Noon AND Power is Medium THEN Forecast is Low

11 IF Time is Noon AND Power is Medium THEN Forecast is Medium

12 IF Time is Noon AND Power is High THEN Forecast is High

13 IF Time is Evening AND Power is Low THEN Forecast is Very Low

14 IF Time is Evening AND Power is Medium THEN Forecast is Low

15 IF Time is Evening AND Power is Medium THEN Forecast is Medium

16 IF Time is Evening AND Power is High THEN Forecast is High

17 IF Time is Night AND Power is Low THEN Forecast is Very Low

18 IF Time is Night AND Power is Medium THEN Forecast is Low

19 IF Time is Night AND Power is Medium THEN Forecast is Medium

20 IF Time is Night AND Power is High THEN Forecast is High
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Figure 3.5: Output fuzzy set used in the forecaster.

The mean of maximum calculation was used for defuzzification. An example of this

is shown in Figure 3.6. This calculation determines the mean value of all the possible

crisp values that correspond to the maximum output fuzzy value, thus yielding a

single predicted value.
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0 24 0 12

0 12Time Power Prediction

Figure 3.6: Illustration of the mean of maximum defuzzification calculation. Time =

10h00; Historic power usage = 10 kWh; Predicted power usage (after defuzzification)

= 9.9 kWh.

3.5 The Genetic Algorithm

The genetic algorithm developed to optimise the load forecasting algorithm, similar

to the conventional genetic algorithm shown in Figure 3.7 [33, 34, 35], consisted

of 44 variables in the population. The variables were the µ and σ for each of the

fuzzy membership functions in all of the input and output fuzzy sets, as well as the

weight of each rule in the fuzzy rule-base. The lower and upper bounds for each of

the variables were defined to ensure the genetic algorithm could converge to a final

solution that was within the fuzzy problem-space (or universe of discourse).

Population

Evaluation
.

Fitness function

Reproduction
.

Crossover & Mutation

Generations

Figure 3.7: Overview of a conventional genetic algorithm.

3.5.1 Background

Genetic algorithms are search procedures that serve as an effective method of

simulating evolution and natural selection. Due to this feature, genetic algorithms

have found significant use in the field of optimisation [20, 36]. The most notable

work on genetic algorithms was that by Holland (1975) [33] advancing the theoretical

knowledge as well as Goldberg (1989) [34] who developed innovative applications.
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The genetic algorithm functions by creating an initial population of chromosomes (or

solutions), based on the number of variables and the desired population size. Each

solution is evaluated and ranked according to a defined fitness function. The ‘fittest’

solutions are then selected to breed the next generation of solutions, including

evolutionary effects such as gene crossover and mutation [20, 22, 35, 37]. The

flow process for a conventional genetic algorithm is shown in Figure 3.7.

3.5.2 Chromosome Representation

The chromosome of the genetic algorithm was the initial ‘guess’ at the variables to

be solved. The initial guesses as to the initial chromosome for a week day and a

weekend day can be seen in lines 3 and 4 of Table 3.2, Table 3.3 and Table 3.4.

These values were determined using a priori knowledge of the system. Thus the

fuzzy logic systems were ‘tuned’ until accurate results were obtained. Lines 1 and 2

in Table 3.2, Table 3.3 and Table 3.4 indicate the lower and upper boundary of the

search space for the chromosome such that the fuzzy logic systems were contained

within the defined universe of discourse.

Table 3.2: Chromosome information of the genetic algorithm for the fuzzy input

membership functions.

Time Power

µ σ µ σ

1. Lower [0 0 0 0 0] [0.01 0.01 0.01 0.01 0.01] [0 0 0] [0.01 0.01 0.01]

2. Upper [25 25 25 25] [5 5 5 5 5] [13 13 13] [4 4 4]

3. Week [0 6 12 18 24] [1.8 1.8 1.8 1.8 1.8] [0 6 12] [1.8 0.9 1.8]

4. Weekend [0 6 12 18 24] [4.2 2.0 3.2 2.0 3.9] [0 6 12] [2.5 2.5 2.5]

Table 3.3: Chromosome information of the genetic algorithm for the fuzzy output

membership funcitons.

Forecast

µ σ

1. Lower [0 0 0 0] [0.01 0.01 0.01 0.01]

2. Upper [13 13 13 13] [4 4 4 4]

3. Week [0 5.5 6.5 12] [3.6 0.9 0.9 3.6]

4. Weekend [0 5.5 6.5 12] [3.8 1.8 1.8 3.8]
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Table 3.4: Chromosome information of the genetic algorithm for the fuzzy rule set

weights.

Fuzzy Rule Weights

1. Lower [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

2. Upper [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

3. Week [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

4. Weekend [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

The population size was set to 120 to ensure greater variability in the population.

The maximum number of generations was set to 200 such that adequate cycles were

completed to converge on the global solution.

3.5.3 Objective/Fitness Functions

The fitness function defined for the genetic algorithm was the average of the two

performance criteria, as indicated in Equation 3.5. This ensured that the average of

the two errors was reduced to a minimum, since the MATLAB® implementation of

the fitness function sought the global minimum solution.

Ffit =
Epeak + Etotal

2
(3.5)

Fitness scaling was selected to be rank scaling. This improved the probability of the

fittest of the population to progress to the next generation. The stopping criteria

for the genetic algorithm was set to a fitness function tolerance of 1× 10−9.

3.5.4 Reproduction

The method of genetic reproduction was implemented as stochastic uniform function.

The parents resulting from this process underwent the two major reproduction

processes, crossover and mutation. An elitist method was adopted to ensure at

least four of the weaker offspring continued to the following generation.
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Crossover

The percentage of the population affected by crossover was set to 0.8, meaning that

80 % of the next generation was created due to crossover. The crossover function

used was the scattered function to ensure a diverse population of offspring.

Mutation

Since the percentage of the population being affected by crossover was 0.8, the

percentage affected by mutation was thus 0.2, meaning mutation accounted for 20 %

of the following generation. The mutation function used was the adaptive feasible

function. This allowed for a potentially weak chromosome to become stronger and

improve the fitness of the population.

Generations

Once the new population had been completely created, the next generation began.

The offspring became the parents in the new fitness function test and the process

repeated until the maximum number of generations was reached (set to 200 genera-

tions for this study) or the fitness function tolerance was fulfilled (defined as 1×10−9

for this study).

3.6 Structure of the Load Forecasting Algorithm

The algorithm was developed and implemented using MATLAB® toolboxes. The

fuzzy logic system was created using the fuzzy logic toolbox and the genetic algo-

rithm was created using the optimisation toolbox. The load forecasting algorithm,

genetic algorithm and performance criteria calculation processes are shown in Fi-

gure 3.8.
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Figure 3.8: Structure of the load forecasting algorithm (in black) and the accompa-

nying performance evaluation and optimisation processes (in grey).
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Chapter 4

Algorithm Testing, Results and

Analysis

Chapter Overview: This chapter presents the results of different tests perfor-

med to determine the input data requirements to yield the most accurate results,

and for each of the case studies described. The case studies were performed

before and after the genetic algorithm was implemented to observe the effects of

the genetic algorithm on the fuzzy logic systems. Five different load profiles were

tested. The loads were (from largest to smallest): the Eastern Cape Province

in South Africa; as well as the East Campus at the University of the Wit-

watersrand, Johannesburg, South Africa (henceforth known as the University),

Barnato Hall student residence at the University, Chamber of Mines engineering

building at the University and a single plug point with a variable load. Graphical

results are only generated for after the genetic algorithm implementation for

illustrative purposes. The MATLAB® code used to develop the load forecasting

algorithm is presented in Appendix C. Additional information pertaining to the

case studies is given in Appendix D.
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4.1 Preliminary Algorithm Testing to Determine Input

Requirements

The desired amount of input data required was determined by using a varying

number of weeks’ historic power usage data as the input to the load forecasting

algorithm. Three options were considered: using one, two or three weeks’ data prior

to the test as the input to the algorithm. The input for the two weeks and three

weeks options was the average of the data from each of the two and three weeks prior

to the test respectively. The results for each of these tests are shown in Table 4.1.

Table 4.1: Error calculations for the varying inputs test before the genetic algorithm

was implemented.

Quantity of input data Epeak (%) Etotal (%) Average (%)

One weeks data 0.36 3.28 1.82

Two weeks data 4.55 4.26 4.40

Three weeks data 2.91 5.79 4.35

The results indicate that using data from a week prior to the test yielded the most

accurate prediction capabilities with an average error of 1.82 % determined from

Epeak and Etotal. This was better than using either of the two other proposed inputs

by a factor of approximately 2.4. Therefore using data from one week prior to the

test was used for the detailed case studies.
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4.2 Case 1 - Eastern Cape Province in South Africa

The energy usage data for this case was obtained from the South African power

producer. The area of the load profile, relative to the whole country, is shown in

Figure D.1 in Appendix D. The results for the load forecasting test on this load can

be seen in Table 4.2. A graphical summary of the week-long forecast can be seen in

Figure 4.1(b). Individual daily summaries to better illustrate the load forecasting

capabilities can be seen in Figure D.2 to Figure D.8 in Appendix D.

Table 4.2: Load forecasting results for the Eastern Cape Province, before and after

the genetic algorithm (GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 2.62 3.99 0.28 0.01

Tuesday 0.03 2.58 2.94 0.00

Wednesday 0.68 0.43 0.68 0.50

Thursday 4.71 1.27 1.66 0.01

Friday 2.29 5.97 0.16 0.01

Week Average 2.06 2.85 1.14 0.11

Saturday 38.72 9.91 0.50 0.01

Sunday 4.13 8.17 0.07 0.00

Weekend Average 21.43 9.04 0.29 0.01

AVERAGE 7.60 4.62 0.90 0.08

The average peak error over the period of a week was 0.90 % and the average

total energy error was 0.08 % for the forecast load after the genetic algorithm was

implemented. When compared to the results from before the genetic algorithm

implementation (Epeak - 7.60 % and Etotal - 4.62 %), an improvement due to the

genetic algorithm by factors of 8.45 and 60.26 for Epeak and Etotal respectively was

observed.
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Figure 4.1: (a): Input to the load forecasting algorithm and (b): Full week forecast

for the Eastern Cape Province in South Africa.
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4.3 Case 2 - East Campus at the University

Load profile data was acquired from the installed power meters for the main feed of

East Campus at the University (shown in Figure D.9, Appendix D). The results for

the load forecasting test on this load can be seen in Table 4.3. A graphical summary

of the week-long forecast can be seen in Figure 4.2(b). Individual daily summaries

to better illustrate the load forecasting capabilities can be seen in Figure D.10 to

Figure D.16 in Appendix D.

Table 4.3: Load forecasting results for East Campus at the University, before and

after the genetic algorithm (GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 4.00 5.74 0.00 0.01

Tuesday 4.83 4.77 0.34 0.01

Wednesday 8.00 3.61 9.00 0.00

Thursday 2.22 4.49 1.11 2.25

Friday 2.86 2.86 0.18 0.00

Week Average 4.38 4.29 2.13 0.45

Saturday 1.90 4.40 3.28 0.00

Sunday 5.54 9.11 0.18 0.01

Weekend Average 3.72 6.76 1.73 0.00

AVERAGE 4.19 5.00 2.01 0.32

The average peak error over the period of a week was 2.01 % and the average

total energy error was 0.32 % for the forecast load after the genetic algorithm was

implemented. When results from the fuzzy logic implementation alone (Epeak -

4.19 % and Etotal - 5.00 %) were compared to the fuzzy logic and genetic algorithm

combination, an improvement due to the genetic algorithm by factors of 2.08 and

15.40 for Epeak and Etotal respectively was seen.
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Figure 4.2: (a): Input to the load forecasting algorithm and (b): Full week forecast

for East Campus at the University.
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4.4 Case 3 - Barnato Hall Student Residence at the

University

Load profile data was acquired from the installed power meters for the main feed

of the Barnato Hall student residence at the University (shown in Figure D.17,

Appendix D). Barnato Hall provides housing for 370 students each with individual

rooms [38].

The results for the load forecasting test on this load can be seen in Table 4.4. A

graphical summary of the week-long forecast can be seen in Figure 4.3(b). Individual

daily summaries to better illustrate the load forecasting capabilities can be seen in

Figure D.18 to Figure D.24 in Appendix D.

Table 4.4: Load forecasting results for the Barnato Hall student residence at the

University, before and after the genetic algorithm (GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 6.91 3.64 3.86 5.21

Tuesday 6.88 10.72 3.53 0.04

Wednesday 3.38 9.47 0.16 5.71

Thursday 5.26 6.25 0.21 4.09

Friday 15.86 12.75 0.09 5.40

Week Average 7.66 8.57 1.57 4.09

Saturday 33.66 19.26 0.05 0.57

Sunday 30.08 1.61 9.80 2.60

Weekend Average 31.87 10.44 4.93 1.58

AVERAGE 14.58 9.10 2.53 3.37

The average peak error over the period of a week was 2.53 % and the average

total energy error was 3.37 % for the forecast load after the genetic algorithm was

implemented. When compared to the results from before the genetic algorithm

implementation (Epeak - 14.58 % and Etotal - 9.10 %), an improvement due to the

genetic algorithm by factors of 5.76 and 2.70 for Epeak and Etotal respectively was

observed.
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Figure 4.3: (a): Input to the load forecasting algorithm and (b): Full week forecast

for the Barnato Hall student residence at the University.
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4.5 Case 4 - Chamber of Mines Building at the Univer-

sity

Load profile data was acquired from the installed power meters for the Chamber

of Mines engineering building, on the West Campus at the University, shown in

Figure D.25 in Appendix D. A wing of a single floor of the building, that was

designated office area, was used for the test case to illustrate the load forecasting

capability for an office environment.

The results for the load forecasting test on this load can be seen in Table 4.5. A

graphical summary of the week-long forecast can be seen in Figure 4.4(b). Individual

daily summaries to better illustrate the load forecasting capabilities can be seen in

Figure D.26 to Figure D.32 in Appendix D.

Table 4.5: Load forecasting results for a wing of a single story of the Chamber of

Mines engineering building at the University, before and after the genetic algorithm

(GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 0.36 0.42 0.18 0.10

Tuesday 0.36 0.53 0.18 0.25

Wednesday 0.36 0.00 0.18 0.02

Thursday 0.36 1.26 0.18 0.03

Friday 5.00 3.34 0.20 0.95

Week Average 1.29 1.11 0.19 0.27

Saturday 2.00 0.12 1.00 0.03

Sunday 2.00 0.98 1.00 0.00

Weekend Average 2.00 0.55 1.00 0.02

AVERAGE 1.49 0.95 0.42 0.20

The average peak error over the period of a week was 0.42 % and the average

total energy error was 0.20 % for the forecast load after the genetic algorithm was

implemented. The genetic algorithm exhibited improvements to the original fuzzy

logic load forecasting algorithm (Epeak - 1.49 % and Etotal - 0.95 %) by factors of

3.57 and 4.79 for Epeak and Etotal respectively.
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Figure 4.4: (a): Input to the load forecasting algorithm and (b): Full week forecast

for the Chamber of Mines engineering building at the University.
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4.6 Case 5 - Single Plug Point with a Variable Load

Load profile data was measured using a digital power meter. A single plug point

was used, with the load being a computer and the power meter (to provide the base

load) and a coffee machine as the variable (non-stochastic) load. The load could be

said to be non-stochastic since the use of the coffee machine varied from day to day

as well as at different times during the day.

The results for the load forecasting test on this load can be seen in Table 4.6. A

graphical summary of the week-long forecast can be seen in Figure 4.5(b). Individual

daily summaries to better illustrate the load forecasting capabilities can be seen in

Figure D.33 to Figure D.39 in Appendix D.

Table 4.6: Load forecasting results for a single plug point with a variable load, before

and after the genetic algorithm (GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 2.37 23.64 0.31 0.30

Tuesday 6.82 21.84 3.59 0.49

Wednesday 15.51 26.49 8.24 3.28

Thursday 15.29 22.83 6.69 3.15

Friday 0.48 1.23 6.74 0.45

Week Average 8.09 19.21 5.11 1.53

Saturday 9.00 16.06 6.50 0.63

Sunday 8.30 18.50 0.33 1.06

Weekend Average 8.65 17.28 3.42 0.85

AVERAGE 8.25 18.66 4.63 1.34

The average peak error over the period of a week was 4.63 % and the average

total energy error was 1.34 % for the forecast load after the genetic algorithm was

implemented. When this result was compared to the results from before the genetic

algorithm implementation (Epeak - 8.25 % and Etotal - 18.66 %), an improvement due

to the genetic algorithm by factors of 1.78 and 13.96 for Epeak and Etotal respectively

was shown.
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Figure 4.5: (a): Input to the load forecasting algorithm and (b): Full week forecast

for a single plug point with a variable load.
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4.7 Analysis of Results

A summary of the full week forecasts for each of the case studies is shown in

Table 4.7. It illustrates a consolidated view of the performance criteria (before

and after implementation of the genetic algorithm) as well as the genetic algorithm

improvement factors.

Table 4.7: Overall average results for the week-ahead forecast for each of the five

case studies, showing the results for before and after the genetic algorithm (GA)

was implemented as well as the GA improvement factor.

Before GA After GA GAimprove

Epeak (%) Etotal (%) Epeak (%) Etotal (%) Epeak Etotal

Case 1 7.60 4.62 0.90 0.08 8.44 57.75

Case 2 4.19 5.00 2.01 0.32 2.08 15.63

Case 3 14.58 9.10 2.53 3.37 5.76 2.70

Case 4 1.49 0.95 0.42 0.20 3.55 4.75

Case 5 8.25 18.66 4.63 1.34 1.78 13.93

AVERAGE 7.22 7.67 2.10 1.06 4.32 18.95

As can be seen in Table 4.7 above, the average peak energy error before the

genetic algorithm was implemented was 7.22 %. This was reduced to 2.10 % after

implementing the genetic algorithm, indicating an improvement factor of 4.32 times.

This implies that, on average across the five case studies, the genetic algorithm

hybrid load forecasting algorithm reduced the errors by approximately four times

when compared to the fuzzy logic load forecasting algorithm only.

The same inferences can be made for the total energy error. The error before the

genetic algorithm was implemented was 7.67 %. This was reduced to 1.06 % after

implementing the genetic algorithm. Thus an improvement factor of 18.95 times

was observed.
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Based on the results achieved the following observations were made regarding the

load profiles, the load forecasting algorithm and the corresponding errors (perfor-

mance criteria):

• Week and weekend load profiles were very similar for the Eastern Cape Pro-

vince and the East Campus load.

• Barnato Hall and the single plug point had a more discernable difference

between the week and weekend load profiles.

• Chamber of Mines had the most distinct difference between the week and

weekend load profiles.

• The algorithm was highly susceptible to fluctuations in the load profile.

• Both defined errors were increased when significant differences were observed

between the test week and algorithm input week data.

• The peak error was influenced more by fluctuations in the power usage data

than the total energy error.

• Due to the definition of the performance criteria, a surplus or deficit in peak

forecast and total energy usage forecast could not be distinguished based on

the numerical value only.

• The computation time for the load forecasting algorithm was, on average,

less than two seconds. However, the genetic algorithm computation time was

approximately two hours when implemented using a 2.00 GHz CPU with 2 GB

RAM. This illustrated the need to operate the load forecasting algorithm in

‘real-time’, while the genetic algorithm needs to be implemented separately

before integrating the results into the system.

Despite the errors varying substantially, the load forecasting algorithm was found

to function satisfactorily. The genetic algorithm took an increased calculation time

when compared to the actual load forecasting calculation time due to the number of

variables, population size and the maximum number of generations. However, due

to the improvement exhibited on the performance criteria, it is still recommended

for use in the overall algorithm.
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Recommendations for Future Work

Chapter Overview: Following the completion of testing of the algorithm,

enhancements and recommendations were made to further the study. This

chapter focuses on several enhancements to the load forecasting algorithm and

recommendations that could improve the current performance of the algorithm.

Where possible simple tests have been implemented to verify the recommenda-

tions.

Nomenclature

The following applies to each of the equations in this Chapter.

Pforecast is the forecast power usage,

Pmeasured is the measured power usage,

n is the maximum number of terms in the forecast period.

In order to enhance the current study several items could be investigated further to

observe the effects on the results. These could include:

• Developing a separate model for public holidays instead of relying on the

assumption that public holidays can be modelled as weekend days.

• Adding additional fuzzy inputs for weather phenomenon.

• Altering the fuzzy logic system structure by varying the number of membership

functions, rules and defuzzification technique.
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• Using different genetic algorithm operators, such as the fitness function, scaling

and selection, as well as others.

• Implementation of a shorter sample period for the forecasts (and measurements

for validation) to allow for a faster response to the undesired fluctuations on

the load profile.

During the course of the study, several implementation issues gave rise to the

following recommendations:

• Absolute errors should not be used for the existing error calculations such that

errors can be determined to be either surplus of deficit of what is required.

• In order to accurately compare this method against those already implemented,

an additional calculation needs to be performed, the mean absolute percentage

error (MAPE).

• The inputs to the fuzzy logic systems can be altered such that the instanta-

neous error is considered, and can aid in improving the existing performance

criteria.

5.1 Definition of New Performance Criteria

Re-evaluating the original performance criteria, the following indicates the require-

ments for the new performance criteria:

1. The difference between the forecast peak load and the measured peak load for

a 24 hour period,

Epeak =
max(Pforecast)−max(Pmeasured)

max(Pmeasured)
× 100 (5.1)

and

2. The difference in the total energy required for the forecast load and the

measured load in a 24 hour period,

Etotal =

∫ n

1

Pforecast(t)− Pmeasured(t)

Pmeasured(t)
dt× 100 (5.2)
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A sample of the new results is shown in Table 5.1, using the same input data as for

Case 4 in Chapter 4. The results clearly indicate whether the forecast was greater

or less than the measured power usage. This aids the user to easily interpret the

results such that the correct procedure for decreasing or maintaining the load can

be implemented.

Table 5.1: Load forecasting results using the new performance criteria for the load

forecasting algorithm, before and after the genetic algorithm (GA) was implemented.

Before GA After GA

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 0.36 0.42 -0.18 -0.10

Tuesday 0.36 -0.53 -0.18 -0.25

Wednesday 0.36 -0.00 -0.18 -0.02

Thursday 0.36 1.26 -0.18 0.03

Friday 5.00 3.34 0.20 0.95

Week Average 1.29 0.90 -0.11 0.12

Saturday 2.00 -0.12 -1.00 -0.03

Sunday 2.00 -0.98 -1.00 0.00

Weekend Average 2.00 -0.55 -1.00 -0.02

AVERAGE 1.49 0.48 -0.36 0.08

When the performance criteria are negative, it implies that the forecast is below the

measured load usage. When the performance criteria are positive, it implies that

the forecast is above the measured load usage. The overall average for this test case

is now -0.25 % as opposed to 0.37 % as it was before changing the performance

criteria.

5.2 Using the Mean Absolute Percentage Error

The MAPE, shown in Equation 2.2, is the most commonly used means of evaluating

load forecasting algorithm performance, based on observations made in Chapter 2

and Appendix A.

This calculation provides the average of the absolute errors that has been calculated
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between each of the input and output data points of the algorithm. The MAPE was

calculated for each of the case studies in Chapter 4, after the genetic algorithm was

implemented and is shown in Table 5.2.

Table 5.2: Mean absolute percentage error calculations for each of the presented

case studies.

Week average Weekend average Average

Case 1 25.72 29.46 26.79

Case 2 11.30 12.51 11.65

Case 3 19.69 19.70 19.69

Case 4 12.64 31.42 18.00

Case 5 15.71 18.19 16.42

AVERAGE 17.01 22.06 18.51

These results indicate that the load forecasting algorithm does not compare to

the previously implemented algorithms. However, due to the defined performance

criteria, it does not detract from the performance of the algorithm. The overall

average MAPE was 18.15 % which is significant in comparison to the average MAPE

of the fuzzy logic systems described in Chapter 2 and Appendix A. In future studies

other methods need to be employed to reduce the MAPE as well as maintain the

existing performance criteria.

5.3 Revising the Fuzzy Logic Systems

The fuzzy logic systems used in the load forecasting algorithm can be simplified and

enhanced by altering the input sets as well as incorporating additional assumptions.

If it is assumed that the historic power input is always a full 24 hour period (meaning

48 data points at half hour intervals) starting from 12:00 then the ‘Time’ input fuzzy

set can be removed.

Using Equation 5.3 the instantaneous error (Einst) can be determined. The instan-

taneous error can be incorporated as an input to the fuzzy logic systems such that

when the error is large, the forecast power usage is adjusted accordingly to ensure

a more accurate prediction. The revise load forecasting algorithm and associated

features could be structured as shown in Figure 5.1.
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Figure 5.1: Structure of the revised load forecasting algorithm (in black) and the

accompanying performance evaluation and optimisation processes (in grey).

Einst = Pforecast − Pmeasured (5.3)

A flow diagram to show the proposed logic flow for the algorithm is shown in

Figure 5.2, with the output shown in blue. The error signal is initially assumed to

be zero, however after the first week this will be replaced by the calculated values.

The principle of the algorithm is the same as the original algorithm; however the

error signal from the previous week will be fed forward to the current week to aid

with the forecasting.

It is predicted that advantages to implementing this recommendation include:

• Fewer variable parameters, thus faster genetic algorithm computation time,

• Uses the defined performance criteria, and

• Reduced MAPE.
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Figure 5.2: Flow diagram showing the proposed logic for the revised load forecasting

algorithm.

The greatest disadvantage of implementing this recommendation is the necessity

for more input data. It requires recall of the results from the previous week to

implement the current week. A sample solution using this proposed method is shown

in Table 5.3. The revised fuzzy logic systems in this test case had 33 parameters as

opposed to the 44 in the original algorithm.
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Table 5.3: Load forecasting results using the revised fuzzy logic systems (FLS) and

the old method for comparison.

Original FLS Revised FLS

Epeak (%) Etotal (%) Epeak (%) Etotal (%)

Monday 0.33 0.09 0.33 0.01

Tuesday 3.58 1.25 0.33 0.56

Wednesday 5.18 0.17 8.14 1.70

Thursday 5.18 1.65 8.14 0.03

Friday 0.33 0.68 0.88 0.97

Week Average 2.92 0.77 3.56 0.65

Saturday 0.75 0.09 0.75 0.18

Sunday 0.75 0.07 0.75 0.40

Weekend Average 0.75 0.08 0.75 0.29

AVERAGE 2.30 0.57 2.76 0.55

The original load forecasting algorithm yielded an overall average error (between

Epeak and Etotal) of 1.13 % while the revised algorithm yielded an overall error of

1.31 %. The revised algorithm computation time was approximately 30 minutes less

than that for the original algorithm. This indicates that the revised method shows

promise and could yield better results if taken further. The revised algorithm is also

favourable when the MAPE is compared between the original algorithm and the

revised algorithm. The original algorithm had an average MAPE of 50.65 % while

the revised algorithm had an average MAPE of 29.20 %. This is an improvement

by a factor of 1.7 times.
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Conclusion

The current energy short-fall that is being experienced world-wide, especially in

South Africa, could potentially be improved by the concept of a smart grid. This

is partially achieved by using energy management schemes such that the total and

peak energy usage is monitored and maintained at a desired level. This can be

indirectly implemented by load forecasting. Load forecasting would raise the user

awareness to power usage, and also afford the power producer the knowledge of the

total and peak energy required.

Load forecasting has been implemented many times in the past, using a variety of

techniques. Short to medium term forecasters (an hour-ahead up to a month-ahead

forecast) were considered and compared. It was discovered that the classic statistical

methods yielded the most accurate forecasts, however required the greatest quantity

of input data. It was also observed that combining different methods (called hybrid

systems) yielded more accurate results. This led to the dissertation hypothesis - fuzzy

logic systems for load forecasting can be improved by incorporating an optimisation

technique. For this research, the optimisation technique used was genetic algorithms.

A load forecasting algorithm was developed, fulfilling certain assumptions and constr-

aints, in MATLAB® using the fuzzy logic and optimisation toolboxes to generate

the desired subsystems to make up the algorithm. The inputs to the algorithm

were the day (week or weekend), time of day and the historical power usage. The

performance criteria for the algorithm were defined to be the peak energy error and

the total energy error, both in a 24 hour period.
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During testing, data from one week prior to the test as the input was found to

yield the most accurate results, by a factor of 1.4 times when compared to the other

test cases. Using this knowledge, the algorithm was tested on five different test

cases. They were the Eastern Cape Province in South Africa, East campus at the

University, Barnato Hall student residence at the University and Chamber of Mines

engineering building at the University, as well as a single plug point with a variable

load. The algorithm indicated favourable results using the a priori knowledge for

configuration. However, the genetic algorithm indicated a marked improvement to

the results.

The most drastic improvement was observed for the Eastern Cape Province case,

showing an improvement of 8.44 and 57.75 times for the peak energy error and total

energy error respectively. The lowest improvement factors were for the Chamber of

Mines case, still showing an improvement of 3.55 and 4.75 times for each of the above

errors respectively. This was due to the load forecasting algorithm being designed

for the Chamber of Mines case data originally.

The average peak energy error for all the presented cases, before implementing

the genetic algorithm, was 7.22 %. This was reduced to 2.10 %, thus showing an

improvement of 4.32 times. The average total energy error, before implementing

the genetic algorithm, was 7.67 %. Implementing the genetic algorithm reduced

this error to 1.06 % indicating an improvement of 18.95 times. Thus the hypothesis

was proven to be correct. Due to the computation time of the genetic algorithm

(approximately two hours), the optimisation loop could not be operated in real-

time. The fuzzy logic load forecaster computed the forecast in approximately two

seconds and thus could be operated in real-time if required.

Enhancements and recommendations were proposed in order to further the research

and potentially improve the performance of the load forecasting algorithm. Where

possible, basic tests were performed to substantiate the recommendations.
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Appendix A

Detailed Comparison of Load

Forecasting Implementations

Chapter Overview: Several different methods of load forecasting have been

implemented in the past. This chapter summarises and provides a comparison

between different implementations for each of the load forecasting methods. The

year the implementation was created; requirements for the method, forecast per-

iod and the mean absolute percentage error (MAPE) were some of the conditions

for comparison. At least two different implementations are presented for each

of the load forecasting methods to provide a more comprehensive comparison.
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Appendix B

Important Definitions

Chapter Overview: This chapter focuses on providing important definitions

and principles to understand fuzzy logic systems and genetic algorithms in

Chapter 3. The definitions for fuzzy logic systems were adapted from [22, 26,

27, 43, 44]. The definitions for genetic algorithms were adapted from [22, 34,

37, 45, 46] and the MATLAB® help files.

B.1 Fuzzy Logic Systems

Universe of discourse: The universe of discourse is the range over which all the

crisp values can lie. This is illustrated in Figure B.1. Typically the lower and upper

bounds of the universe of discourse correspond with the minimum and maximum

values of the system variables.

Membership functionDegree of membership

Minimum Maximum

Universe of discourse

Figure B.1: Illustration of a universe of discourse, a fuzzy membership function and

the degree of membership.
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Crisp value: Crisp values are physical values that lie in the set of real numbers.

These values most typically come from sensors and provide measured values of the

variable.

Fuzzification: The fuzzification process (or fuzzifying) involves the mapping of

the crisp values onto the corresponding universe of discourse. It then assigns the

newly mapped values a degree of membership according to the membership functions

within the fuzzy set.

Fuzzy value: A fuzzy value corresponds to the degree of membership assigned

during the fuzzification process.

Membership function: The membership function defines a particular fuzzy set

within the universe of discourse. The membership function assigns the degree of

membership of the crisp values that fall into the set. This is illustrated in Figure B.1.

Degree of membership: Degree of membership is the indication of the sense of

belonging to a particular linguistic variable. The higher the degree of membership

the more the value belongs. An example of this is given in Figure B.1.

Fuzzy rule-base: A Mamdani-style fuzzy rule-base consists of a collection of IF-

THEN antecedent-consequent style rules. The rule-base is constructed using a priori

knowledge of the system so the behaviour can be linguistically described. These rules

characterise the goals of the system.

Max-min inference: The max-min inference is a process whereby the fuzzy values

and the fuzzy rule-base can be integrated in order to obtain output fuzzy values.

This can be better described as follows:

Assuming A and B are two fuzzy sets within a universe of discourse U . They have

membership functions µA and µB respectively. It should be noted that the union

(fuzzy OR - Equation B.1) and intersection (fuzzy AND - Equation B.2) operations

are important in the max-min inference.

µA
⋃

B(u) = max {µA(u), µB(u)} ∀u ∈ U (B.1)

µA
⋂

B(u) = min {µA(u), µB(u)} ∀u ∈ U (B.2)
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Since the rules in the fuzzy rule-base have the form

IF a is A AND b is B THEN u = C

and each rule is combined by the fuzzy OR, then the rule can be mathematically

inferred as:

µC(u) = max [min {µA(u), µB(u)}] (B.3)

Defuzzification: The defuzzification process (or defuzzifying) implies the output

fuzzy values are reverse mapped into the real set, and thus a crisp value is obtained.

An example of defuzzification can be seen in Figure 3.6, from Chapter 3.

B.2 Genetic Algorithms

Chromosome: A chromosome is the set of input variables for the genetic algorithm.

This can be considered the genetic material constituting the solution you are solving

for.

Population: The genetic population is a randomly generated group of chromosomes

Fitness function: The fitness function is a performance index such that the fittest

chromosomes in the population will survive to the next generation. The fitter the

parent, the greater the probability of selection for reproduction.

Fitness scaling: Fitness scaling converts the scores achieved from the fitness

function to a range suitable for the function selected for reproduction.

Rank scaling: Rank scaling orders each individual according to their fitness, so

the strongest come first and the weakest last.

Fitness function tolerance: The fitness function tolerance defines the stopping

condition for the genetic algorithm. When the change in the weighted fitness function

value becomes less than the fitness function tolerance the genetic algorithm stops.

Reproduction: Reproduction is the process where a selected chromosome is combi-

ned with another chromosome (the parents) to form a new chromosome of different

genetic composition (the offspring).
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Stochastic uniform: The stochastic uniform function implies that a good mix of

genes (weak and strong) would be selected at a uniform random interval for breeding.

Parents: The parents are the selected chromosomes for reproduction.

Offspring: The offspring are the results of reproduction between two parents

(crossover), or a single parent (mutation).

Crossover: Crossover determines the amount of genetic material from each parent

that contributes to the new offspring. This is illustrated in Figure B.2.

Parent 1

Parent 2

Offspring

Figure B.2: Illustration of parental crossover in genetic reproduction.

Scattered function: The scattered function ensures that each of the offspring

inherited a random amount of the two parents’ genes thus giving rise to a diverse

population.

Mutation: Mutation is the random change in a gene within the chromosome of

the offspring, as illustrated in Figure B.3. This is controlled by the mutation rate.

Mutation allows for greater survey of the problem space.

Original 
chromosome

New 
chromosome

Figure B.3: Illustration of mutation of a chromosome on the fifth gene.

Adaptive scattered function: The adaptive scattered function allowed for a

randomly generated number to be added to a random chromosome to make it differ

from the original chromosome.

Generations: Once the new population has be created, the genetic algorithm

progresses to the next generation. This is a factor that indicates how many times

the population has changed.
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Appendix C

MATLAB® Code Listings

Chapter Overview: MATLAB® was used to implement the developed compo-

nents of the load forecasting algorithm. This chapter contains the code listing for

the load forecasting algorithm. The code shown is for the fuzzy logic system and

genetic algorithm creation, definition of the fitness functions, initialisation of

the algorithm as well as the calculation and display of the performance criteria

errors.
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C.1 Fuzzy Logic System Creation

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: createFLS.m

3 % Author: Craig Carlson

4 % Description: Function to create the fuzzy logic systems

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [ output ] = createFLS(input, choice)

8

9 t = input(1:10); p = input(11:16); pr = input(17:24);

10 w = input(25:44);

11

12 forecast = newfis('Forecaster');

13

14 forecast = addvar(forecast,'input', 'Time', [0 24]);

15 forecast = addmf (forecast,'input', 1,'EMorn','gaussmf',[t(1) t(6)]);

16 forecast = addmf (forecast,'input', 1,'Morn','gaussmf', [t(2) t(7)]);

17 forecast = addmf (forecast,'input', 1,'Noon','gaussmf', [t(3) t(8)]);

18 forecast = addmf (forecast,'input', 1,'Even','gaussmf', [t(4) t(9)]);

19 forecast = addmf (forecast,'input', 1,'Night','gaussmf',[t(5) t(10)]);

20

21 forecast = addvar(forecast,'input', 'Power', [0 12]);

22 forecast = addmf (forecast,'input', 2,'Low','gaussmf', [p(1) p(4)]);

23 forecast = addmf (forecast,'input', 2,'Med','gaussmf', [p(2) p(5)]);

24 forecast = addmf (forecast,'input', 2,'High','gaussmf', [p(3) p(6)]);

25

26 forecast = addvar(forecast,'output', 'Prediction', [0 12]);

27 forecast = addmf (forecast,'output',1,'V Low','gaussmf',[pr(1) ...

pr(5)]);

28 forecast = addmf (forecast,'output',1,'Low','gaussmf', [pr(2) pr(6)]);

29 forecast = addmf (forecast,'output',1,'Med','gaussmf', [pr(3) pr(7)]);

30 forecast = addmf (forecast,'output',1,'High','gaussmf',[pr(4) pr(8)]);

31

32 RULES = [ ...

33 1 1 1 w(1) 1

34 2 1 1 w(2) 1

35 3 1 1 w(3) 1

36 4 1 1 w(4) 1

37 5 1 1 w(5) 1

38 1 2 2 w(6) 1

39 2 2 2 w(7) 1
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40 3 2 2 w(8) 1

41 4 2 2 w(9) 1

42 5 2 2 w(10) 1

43 1 2 3 w(11) 1

44 2 2 3 w(12) 1

45 3 2 3 w(13) 1

46 4 2 3 w(14) 1

47 5 2 3 w(15) 1

48 1 3 4 w(16) 1

49 2 3 4 w(17) 1

50 3 3 4 w(18) 1

51 4 3 4 w(19) 1

52 5 3 4 w(20) 1 ];

53

54 forecast = addrule(forecast,RULES);

55 forecast.defuzzMethod = ('mom');

56

57 if choice == 1

58 writefis(forecast,'WeekForecaster'); output = 1;

59 elseif choice == 2

60 writefis(forecast,'WkndForecaster'); output = 1;

61 else

62 output = 0;

63 end

64

65 end
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C.2 Genetic Algorithm Code

C.2.1 Genetic Algorithm Creation

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: GA Tool.m

3 % Author: Craig Carlson

4 % Description: Function to generate the genetic algorithm parameters

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [x,fval,exitflag,output,population,score] =

8 GA Tool(nvars,lb,ub,PopulationSize Data,EliteCount Data,...

9 Generations Data,InitialPopulation Data,TolFun Data,choice)

10

11 % Start with the default options

12 options = gaoptimset;

13 % Modify options setting

14 options = gaoptimset(options,'PopulationSize', PopulationSize Data);

15 options = gaoptimset(options,'EliteCount', EliteCount Data);

16 options = gaoptimset(options,'Generations', Generations Data);

17 options = gaoptimset(options,'InitialPopulation', ...

InitialPopulation Data);

18 options = gaoptimset(options,'TolFun', TolFun Data);

19 options = gaoptimset(options,'Display', 'final');

20

21 if choice == 1

22 [x,fval,exitflag,output,population,score] = ...

23 ga(@FLSweek GA,nvars,[],[],[],[],lb,ub,[],options);

24 elseif choice == 2

25 [x,fval,exitflag,output,population,score] = ...

26 ga(@FLSwknd GA,nvars,[],[],[],[],lb,ub,[],options);

27 else

28 fprintf('Incorrect output selected!')

29 end
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C.2.2 Fitness Functions

Weekday Fitness Function

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: FLSweek GA.m

3 % Author: Craig Carlson

4 % Description: Fitness function for the week day genetic algorithm.

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function output = FLSweek GA( input )

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 % global input power output power time

11 global TestMon TestTues TestWed TestThurs TestFri time

12 global OutMon OutTues OutWed OutThurs OutFri

13

14 createFLS(input,1);

15 a = readfis('WeekForecaster');

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % Prediction section

19 for i = 1:1:48

20 t = (i−1)/2;

21 % Perform predictions

22 predMon(i) = evalfis([t,TestMon(i)], a);

23 predTues(i) = evalfis([t,TestTues(i)], a);

24 predWed(i) = evalfis([t,TestWed(i)], a);

25 predThurs(i) = evalfis([t,TestThurs(i)], a);

26 predFri(i) = evalfis([t,TestFri(i)], a);

27 end

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 % Calculation Section

30 % Peak Energy Error

31 pkErrMon = (abs(max(predMon) − max(OutMon)) /max(OutMon)) *100;

32 pkErrTues = (abs(max(predTues) − max(OutTues)) /max(OutTues)) *100;

33 pkErrWed = (abs(max(predWed) − max(OutWed)) /max(OutWed)) *100;

34 pkErrThurs = (abs(max(predThurs) − max(OutThurs)) /max(OutThurs))*100;

35 pkErrFri = (abs(max(predFri) − max(OutFri)) /max(OutFri)) *100;

36

37 % Total Energy Error

38 % Calculate total energy required by output
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39 enMon = trapz(time,OutMon); enTues = trapz(time,OutTues);

40 enWed = trapz(time,OutWed); enThurs = trapz(time,OutThurs);

41 enFri = trapz(time,OutFri);

42 % Calculate total energy required by prediction

43 enpMon = trapz(time,predMon); enpTues = trapz(time,predTues);

44 enpWed = trapz(time,predWed); enpThurs = trapz(time,predThurs);

45 enpFri = trapz(time,predFri);

46 enErrMon = (abs(enpMon − enMon) / enMon) *100;

47 enErrTues = (abs(enpTues − enTues) / enTues) *100;

48 enErrWed = (abs(enpWed − enWed) / enWed) *100;

49 enErrThurs = (abs(enpThurs − enThurs)/ enThurs) *100;

50 enErrFri = (abs(enpFri − enFri) / enFri) *100;

51

52 pkWeekAvg = (pkErrMon+pkErrTues+pkErrWed+pkErrThurs+pkErrFri)/5;

53 enWeekAvg = (enErrMon+enErrTues+enErrWed+enErrThurs+enErrFri)/5;

54 WeekAvg = (pkWeekAvg+enWeekAvg)/2;

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57 output = WeekAvg;

58 end

Weekend Fitness Function

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: FLSwknd GA.m

3 % Author: Craig Carlson

4 % Description: Fitness function for the weekend day genetic algorithm.

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function output = FLSwknd GA( input )

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 % global input power output power time

11 global TestSat TestSun time

12 global OutSat OutSun

13

14 createFLS(input,2);

15 b = readfis('WkndForecaster');

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % Prediction section
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19 for i = 1:1:48

20 t = (i−1)/2;

21 % Perform predictions

22 predSat(i) = evalfis([t,TestSat(i)], b);

23 predSun(i) = evalfis([t,TestSun(i)], b);

24 end

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 % Calculation Section

27 % Peak Energy Error

28 pkErrSat = (abs(max(predSat) − max(OutSat)) /max(OutSat)) *100;

29 pkErrSun = (abs(max(predSun) − max(OutSun)) /max(OutSun)) *100;

30

31 % Total Energy Error

32 % Calculate total energy required by output

33 enSat = trapz(time,OutSat); enSun = trapz(time,OutSun);

34 % Calculate total energy required by prediction

35 enpSat = trapz(time,predSat); enpSun = trapz(time,predSun);

36 enErrSat = (abs(enpSat − enSat) / enSat) *100;

37 enErrSun = (abs(enpSun − enSun) / enSun) *100;

38

39 pkEndAvg = (pkErrSat+pkErrSun)/2;

40 enEndAvg = (enErrSat+enErrSun)/2;

41 WkndAvg = (pkEndAvg+enEndAvg)/2;

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 output = WkndAvg;

45 end
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C.3 Algorithm Initialisation

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: InitialSettings.m

3 % Author: Craig Carlson

4 % Description: Configuration for the initial settings for the fuzzy

5 % logic systems and genetic algorithm.

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 % Setting the lower and upper limits for the GA.

11 nRules = 20; % Number of rules

12 tl = [0.01 0.01 0.01 0.01 0.01 0 0 0 0 0];

13 pl = [0.01 0.01 0.01 0 0 0];

14 prl = [0.01 0.01 0.01 0.01 0 0 0 0]; wl = zeros(1,nRules);

15 tu = [5 5 5 5 5 25 25 25 25 25]; pu = [4 4 4 13 13 13];

16 pru = [4 4 4 4 13 13 13 13]; wu = ones(1,nRules);

17 % Configuring the necessary information for the GA

18 nvar = 44; lower = [tl pl prl wl]; upper = [tu pu pru wu];

19 pop = 120; elite = 4; generations = 200;

20 ftol = 1e−9;

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 % Creating the first pass at the desired input for weekday predictions

24 t = [1.8 1.8 1.8 1.8 1.8 0 6 12 18 24]; p = [1.8 0.9 1.8 0 6 12];

25 pr = [3.6 0.9 0.9 3.6 0 5.5 6.5 12]; w = ones(1,nRules);

26 % Creating the first pass at the desired input for weekend predictions

27 t2 = [4.2 2.0 3.2 2.0 3.9 0 6 12 18 24]; p2 = [2.5 2.5 2.5 0 6 12];

28 pr2 = [3.8 1.8 1.8 3.8 0 5.5 6.5 12]; w2 = ones(1,nRules);

29

30 week input = [t p pr w]; wknd input = [t2 p2 pr2 w2];

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.4 Algorithm Calculations and Results

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Filename: AlgResults.m

3 % Author: Craig Carlson

4 % Description: Error calculation and display for algorithm testing.

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 % Input data

9 time = 0:0.5:23.5;

10 data = dlmread('Data.csv',',','B2..B1009');

11

12 variable = max(data)/12;

13 data = data/variable; % Normalise data

14

15 for i = 1:1:48

16 TestMon(i) = data(7 *48+i);

17 TestTues(i) = data(8 *48+i);

18 TestWed(i) = data(9 *48+i);

19 TestThurs(i) = data(10 *48+i);

20 TestFri(i) = data(11 *48+i);

21 TestSat(i) = data(12 *48+i);

22 TestSun(i) = data(13 *48+i);

23

24 OutMon(i) = data(14 *48+i);

25 OutTues(i) = data(15 *48+i);

26 OutWed(i) = data(16 *48+i);

27 OutThurs(i) = data(17 *48+i);

28 OutFri(i) = data(18 *48+i);

29 OutSat(i) = data(19 *48+i);

30 OutSun(i) = data(20 *48+i);

31 end

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 createFLS(week input,1); a = readfis('WeekForecaster');

35 createFLS(wknd input,2); b = readfis('WkndForecaster');

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37

38 for i = 1:1:48

39 t = (i−1)/2;

40
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41 % Perform predictions

42 predMon(i) = evalfis([t,TestMon(i)], a);

43 predTues(i) = evalfis([t,TestTues(i)], a);

44 predWed(i) = evalfis([t,TestWed(i)], a);

45 predThurs(i) = evalfis([t,TestThurs(i)], a);

46 predFri(i) = evalfis([t,TestFri(i)], a);

47 predSat(i) = evalfis([t,TestSat(i)], b);

48 predSun(i) = evalfis([t,TestSun(i)], b);

49

50 % Part calculation for the MAPE

51 errMon(i) = OutMon(i) − predMon(i);

52 errTues(i) = OutTues(i) − predTues(i);

53 errWed(i) = OutWed(i) − predWed(i);

54 errThurs(i) = OutThurs(i) − predThurs(i);

55 errFri(i) = OutFri(i) − predFri(i);

56 errSat(i) = OutSat(i) − predSat(i);

57 errSun(i) = OutSun(i) − predSun(i);

58 end

59

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 % Calculation Section

62 % Peak Energy Error

63 pkErrMon = (abs(max(predMon) − max(OutMon)) /max(OutMon)) *100;

64 pkErrTues = (abs(max(predTues) − max(OutTues)) /max(OutTues)) *100;

65 pkErrWed = (abs(max(predWed) − max(OutWed)) /max(OutWed)) *100;

66 pkErrThurs = (abs(max(predThurs) − max(OutThurs)) /max(OutThurs))*100;

67 pkErrFri = (abs(max(predFri) − max(OutFri)) /max(OutFri)) *100;

68 pkErrSat = (abs(max(predSat) − max(OutSat)) /max(OutSat)) *100;

69 pkErrSun = (abs(max(predSun) − max(OutSun)) /max(OutSun)) *100;

70

71 pkWeekAvg = (pkErrMon+pkErrTues+pkErrWed+pkErrThurs+pkErrFri)/5;

72 pkEndAvg = (pkErrSat+pkErrSun)/2;

73 pkAVG = ((pkWeekAvg*5)+(pkEndAvg*2))/7;

74

75 % Total Energy Error

76 % Calculate total energy required by output

77 enMon = trapz(time,OutMon); enTues = trapz(time,OutTues);

78 enWed = trapz(time,OutWed); enThurs = trapz(time,OutThurs);

79 enFri = trapz(time,OutFri);

80 enSat = trapz(time,OutSat); enSun = trapz(time,OutSun);

81 % Calculate total energy required by prediction

82 enpMon = trapz(time,predMon); enpTues = trapz(time,predTues);

83 enpWed = trapz(time,predWed); enpThurs = trapz(time,predThurs);

84 enpFri = trapz(time,predFri);
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85 enpSat = trapz(time,predSat); enpSun = trapz(time,predSun);

86 enErrMon = (abs(enpMon − enMon) / enMon) *100;

87 enErrTues = (abs(enpTues − enTues) / enTues) *100;

88 enErrWed = (abs(enpWed − enWed) / enWed) *100;

89 enErrThurs = (abs(enpThurs − enThurs)/ enThurs) *100;

90 enErrFri = (abs(enpFri − enFri) / enFri) *100;

91 enErrSat = (abs(enpSat − enSat) / enSat) *100;

92 enErrSun = (abs(enpSun − enSun) / enSun) *100;

93

94 enWeekAvg = (enErrMon+enErrTues+enErrWed+enErrThurs+enErrFri)/5;

95 enEndAvg = (enErrSat+enErrSun)/2;

96 enAVG = ((enWeekAvg*5)+(enEndAvg*2))/7;

97

98

99 WeekAvg = (pkWeekAvg+enWeekAvg)/2;

100 WkndAvg = (pkEndAvg+enEndAvg)/2;

101 AVG = (WeekAvg+WkndAvg)/2;

102

103

104 % Mean Absolute Percentage Error

105 mapeMon = mean(((sum(abs(errMon)) / sum(OutMon)) *100));

106 mapeTues = mean(((sum(abs(errTues)) / sum(OutTues)) *100));

107 mapeWed = mean(((sum(abs(errWed)) / sum(OutWed)) *100));

108 mapeThurs = mean(((sum(abs(errThurs)) / sum(OutThurs)) *100));

109 mapeFri = mean(((sum(abs(errFri)) / sum(OutFri)) *100));

110 mapeSat = mean(((sum(abs(errSat)) / sum(OutSat)) *100));

111 mapeSun = mean(((sum(abs(errSun)) / sum(OutSun)) *100));

112

113

114 mapeWeekAvg = (mapeMon+mapeTues+mapeWed+mapeThurs+mapeFri)/5;

115 mapeWkndAvg = (mapeSat + mapeSun)/2;

116 mapeAVG = (mapeWeekAvg*5 + mapeWkndAvg*2)/7;

117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

121 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

122 % Printing out results to the command window

123 fprintf('**********************************************************\n')

124 fprintf(' PkE EnE ...

Average\n')

125 fprintf('**********************************************************\n')

126 fprintf('Monday %6.2f %6.2f\n', pkErrMon, ...

enErrMon)
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127 fprintf('Tuesday %6.2f %6.2f\n', pkErrTues, ...

enErrTues)

128 fprintf('Wednesday %6.2f %6.2f\n', pkErrWed, ...

enErrWed)

129 fprintf('Thursday %6.2f %6.2f\n', pkErrThurs, ...

enErrThurs)

130 fprintf('Friday %6.2f %6.2f\n', pkErrFri, ...

enErrFri)

131 fprintf(' \n')

132 fprintf('WeekAvg %6.2f %6.2f ...

%6.2f\n',...

133 pkWeekAvg, enWeekAvg, ...

WeekAvg)

134 fprintf(' \n')

135 fprintf('Saturday %6.2f %6.2f\n', pkErrSat, ...

enErrSat)

136 fprintf('Sunday %6.2f %6.2f\n', pkErrSun, ...

enErrSun)

137 fprintf(' \n')

138 fprintf('WkndAvg %6.2f %6.2f ...

%6.2f\n',...

139 pkEndAvg, enEndAvg, ...

WkndAvg)

140 fprintf('==========================================================\n')

141 fprintf('Average %6.2f %6.2f ...

%6.2f\n',...

142 pkAVG, ...

enAVG, AVG)

143 fprintf('==========================================================\n')

144 fprintf('Weekday MAPE = %6.2f and Weekend MAPE = ...

%6.2f\n',mapeWeekAvg, mapeWkndAvg)

145 fprintf('AVERAGE MAPE = %6.2f\n', mapeAVG)

146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

147 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix D

Additional Information for the Case

Studies

Chapter Overview: A week long view of the load profile and the results of

the load forecasting algorithm give an indication of the performance of the algo-

rithm. However to provide a clearer understanding of what is happening smaller

intervals need to be given. This chapter presents the additional information

required for the case studies in Chapter 4. This includes maps indicating the

area covered for the tests, break-down of the load composition and the daily

load profile graphs (Monday to Sunday). The area map for Case 1 was taken

from Google Earth. The area maps for Case2, Case 3 and Case 4 were adapted

from [47, 48] at the University of the Witwatersrand, Johannesburg South Africa

(henceforth known as the University).
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D.1 Case 1 - Eastern Cape Province in South Africa

Figure D.1: Map of South Africa (taken from Google Earth) showing the area the

load profile was taken from, for the Eastern Cape Province test.
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Figure D.2: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Monday.
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Figure D.3: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Tuesday.
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Figure D.4: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Wednesday.
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Figure D.5: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Thursday.
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Figure D.6: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Friday.
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Figure D.7: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Saturday.
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Figure D.8: Normalised load profile and the predicted power usage for the Eastern

Cape Province for a general Sunday.
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D.2 Case 2 - East Campus at the University

Figure D.9: Map of Main Campus at the University showing the area the load profile

was taken from, for the East Campus test.
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Figure D.10: Normalised load profile and the predicted power usage for East Campus

at the University for a general Monday.
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Figure D.11: Normalised load profile and the predicted power usage for East Campus

at the University for a general Tuesday.
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Figure D.12: Normalised load profile and the predicted power usage for East Campus

at the University for a general Wednesday.
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Figure D.13: Normalised load profile and the predicted power usage for East Campus

at the University for a general Thursday.
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Figure D.14: Normalised load profile and the predicted power usage for East Campus

at the University for a general Friday.

02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:000

2

4

6

8

10

12

Time

Po
w

er
 U

sa
ge

 (k
W

h)

 

 

Measured Power Usage
Predicted Power Usage

Figure D.15: Normalised load profile and the predicted power usage for East Campus

at the University for a general Saturday.
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Figure D.16: Normalised load profile and the predicted power usage for East Campus

at the University for a general Sunday.
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D.3 Case 3 - Barnato Hall Student Residence at the

University

Figure D.17: Map of West Campus at the University showing the area the load

profile was taken from, for the Barnato Hall student residence test.
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Figure D.18: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Monday.
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Figure D.19: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Tuesday.
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Figure D.20: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Wednesday.
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Figure D.21: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Thursday.
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Figure D.22: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Friday.
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Figure D.23: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Saturday.
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Figure D.24: Normalised load profile and the predicted power usage for the Barnato

Hall student residence at the University for a general Sunday.
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D.4 Case 4 - Chamber of Mines Building at the Uni-

versity

Figure D.25: Map of West Campus at the University showing the area the load

profile was taken from, for the Chamber of Mines test.
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Figure D.26: Normalised load profile and the predicted power usage for a wing of a

single floor of the Chamber of Mines building at the University for a general Monday.
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Figure D.27: Normalised load profile and the predicted power usage for a wing of a

single floor of the Chamber of Mines building at the University for a general Tuesday.
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Figure D.28: Normalised load profile and the predicted power usage for a wing

of a single floor of the Chamber of Mines building at the University for a general

Wednesday.
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Figure D.29: Normalised load profile and the predicted power usage for a wing

of a single floor of the Chamber of Mines building at the University for a general

Thursday.
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Figure D.30: Normalised load profile and the predicted power usage for a wing of a

single floor of the Chamber of Mines building at the University for a general Friday.
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Figure D.31: Normalised load profile and the predicted power usage for a wing

of a single floor of the Chamber of Mines building at the University for a general

Saturday.
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Figure D.32: Normalised load profile and the predicted power usage for a wing of a

single floor of the Chamber of Mines building at the University for a general Sunday.
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D.5 Case 5 - Single Plug Point with a Variable Load

Table D.1: Components connected for the single plug point test measurements.

Components

Base Load

Computer (for data recording)

Digital Power Meter

Variable Load

Coffee Machine
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Figure D.33: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Monday.
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Figure D.34: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Tuesday.
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Figure D.35: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Wednesday.
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Figure D.36: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Thursday.
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Figure D.37: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Friday.
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Figure D.38: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Saturday.
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Figure D.39: Normalised load profile and the predicted power usage for a single plug

point with a variable load for a general Sunday.
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