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Abstract 

Captive environments can provide a variety of sources of stress for animals with 

space limitation being one of the primary contributors. Spatial restrictions may result in 

psychological stress by which the memory and learning of animals can become impaired. 

One solution to spatial stress has been to increase the size of the enclosure for captive 

animals. In my dissertation, I questioned the rationale of providing increased space by 

investigating whether more space leads to greater use of space.  

My study had 2 aims. Firstly, I tested whether the previous experience of an 

individual, or of a group of individuals in a small area, would influence the subsequent use of 

space when they were introduced into larger enclosures. I used 4 different species 

(chimpanzees, striped mice, woodlice and cockroaches). Secondly, I tested whether the 

spatial perceptions were dependent on neuronal complexity in terms of cognitive ability, i.e. 

is space use of a species related to neuronal complexity. Chimpanzees and striped mice were 

considered to have greater neuronal complexity than woodlice and cockroaches since 

mammals display more complex cognition compared to arthropods. The chimpanzees 

comprised of 8 individuals at the Johannesburg Zoo, 7 of which were transferred from a 10 m 

x 10 m enclosure, in which they were housed for 2 (second youngest individual) to 25 years 

(oldest chimpanzee), to a 2500 m2 enclosure (in which the youngest chimpanzee was born), 

and their space use was evaluated in terms of subgroup space use in the enlarged enclosure. 

Chimpanzees are naturally social and thus I examined group instead of individual spacing. 

Chimpanzee subgroups, which comprised 2 or more chimpanzees, consistently restricted their 

space use in the enlarged enclosure to the size of their old enclosure, choosing their positions 

within the enclosure based on the presence of shade availability. Striped mouse space use was 

evaluated in terms of individual space use because striped mice from the mesic grasslands of 

South Africa are solitary living. Individual striped mice were placed into an enlarged arena 

(200 cm x 15 cm x 100 cm; L x H x B) after being restricted in a smaller cage (36.5 cm x 

20.5 cm x 15 cm) for 60 days and their space use and distance travelled were measured 

against the area of their old housing. The space use of restricted striped mice was evaluated 

against a control group. The striped mice from the restricted group restricted their space use 

to the size of their original housing, with those having a shy personality showing more 

restricted space use than bold individuals. Woodlouse and cockroach space use was evaluated 

in same sex pairs, as woodlice and cockroaches tend to form aggregations naturally. Both 

species were originally housed in an 8 cm2 area for 14 days and their space use in an enlarged 
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arena of 154 cm2 was evaluated and compared against control groups of both species. 

Woodlice restricted their movements within the size of their original housing, with previously 

restricted males restricting the area used and previously restricted females restricting the 

distances travelled. While male cockroaches travelled shorter distances than females, the 

cockroaches did not spatially restrict their movements in the enlarged arena, indicating that 

they may be displaying a rebound effect.  

My study demonstrated that previous experience in restricted housing does have an 

effect on subsequent space use in an enlarged area. This notion of previous experiences 

influencing later experiences is the foundation of learned helplessness. Learned helplessness 

is the passive response to mostly aversive stimuli in which an organism has no control over 

the outcome of the situation and thus gives up after repeated failure. Learned helplessness 

appears to be a plausible explanation for the space restriction in chimpanzees, striped mice 

and woodlice, as these three species restricted their space use based on the previous 

experience of less available space. Chimpanzees and striped mice had higher occurrences of 

restricted movements compared to woodlice, indicating that learned helplessness with respect 

of space use maybe graded according to neuronal complexity. I conclude that providing 

additional space may not address the welfare concerns of captive animals, because more 

space did not disrupt earlier spatial restriction. However, the implications of exposure to 

restricted space needs to be considered for all species in captive environments, especially 

animals in release programs, as exposure to restricted space may contribute to the expression 

of learned helplessness, with space use in an enlarged area being influenced by previous 

restrictions. 
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Chapter 1 

 

Rationale  

Restricted space apparently causes stress for animals in captivity, with spatial 

restrictions contributing to memory and learning impairment. Therefore, providing 

appropriate housing for captive animals is an important concern for animal managers as it 

affects the well-being and breeding success of an animal (Morgan and Tromborg, 2007).  

My study is concerned with understanding how captive animals, housed originally in 

restricted space, used additional space made available to them later. In particular, my project 

aimed to investigate whether animal space use was related to the neuronal complexity of a 

species.  

One method of assessing the influence of neuronal complexity on space use, 

following spatial restrictions, is to consider species with varying neuronal complexity. To this 

end, my study considered 4 species with different neuronal complexity. This change of 

available space could have implications of how each species utilised the space in the enlarged 

area, by either keeping movements or in the case of the chimpanzees, inter-individual 

distances, restricted to the old housing size; by having no change in space use; or by having 

an increase in subsequent space use.  Memory & learning, space use and navigation have 

been considered as they each contribute to gaining a holistic understanding of the space use 

of previously restricted individuals. The stress of a captive environment can influence 

learning and memory; this in turn can influence an animal’s space use. 

 

Memory and learning 

Learning and memory are 2 aspects of cognition (Duncan and Petherick, 1991). 

Learning is a process by which new information is acquired (Squire, 1987), while memory 

can be considered as the process by which the learned knowledge is retained and recalled 

(Bailey et al., 1996); memory is thus a consequence of learning (Squire, 1987). Learning and 

memory give rise to expectation or anticipation which can allow for animals to regulate effort 

put into tasks (Duncan and Petherick, 1991). Learning and memory enable animals to track 

changes in the spatial and temporal distribution of food (Krebs and Inman, 1992), modify 

behaviour based on experience (Kandel, 2001), or relocate nesting sites for brood care, 

protection and shelter (Menzel and Müller, 1996). All animals have some capacity to learn, 

with the modification of their behaviour as a result of experience (Evans, 1984). 
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There are various types and forms of memory, such as long-term, visual and working 

memory, and each necessitates specific anatomical structures depending on the specific 

memory task (Goldman-Rakic, 1996). There are 2 main types of memory: explicit (or 

declarative) and implicit (or non-declarative) memory. Explicit memory is the conscious 

recall of information, such as places or faces, and is particularly well developed in the 

vertebrate brain (Bailey et al., 1996). Implicit memory is the non-conscious recall of motor 

skills and includes simple associative forms (e.g. classical conditioning) and non-associative 

forms (e.g. habituation) (Bailey et al., 1996). Understanding these types of memory is of 

importance to my study because of the differences in the way the test species used in my 

study retain information of being previously housed in restricted housing.  

 

Spatial memory 

Spatial memory is responsible for recording information about the surrounding 

environment and spatial orientation of an individual. The main structures and processes 

involved in spatial memory of mammals, insects and crustaceans are discussed below since 

representative of these taxa have been selected for study. 

 
Mammals  

The hippocampus plays an important role in terms of spatial memory processing 

(Becker et al., 1980; Schenk and Morris, 1985). It is involved with spatial mapping and place 

learning which is distinct from other forms of learning such as cue or response learning 

(Nadel and Macdonald, 1980). The hippocampal system is differentially involved in tasks 

that require working memory, which is associated with flexible responses to a stimulus that 

changes from trial to trial, but is not involved with tasks that require reference memory, 

which is composed of fixed responses to a stimulus that remain constant from trial to trial 

(Olton and Papas, 1979).    

Hormones and neurotransmitters mediate the spatial memory tasks. Acetylcholine is 

important for spatial navigation (Winkler et al., 1995), corticosterone is important for spatial 

memory formation (Oitzl and de Kloet, 1992) and decision making processes (Sandi et al., 

1997), and epinephrine (adrenaline) is important for memory enhancement (Gold and van 

Buskirk, 1975). The amygdala, which plays a central role in the modulation and processing of 

emotions (von Gunten et al., 2000), is critical for mediating the influence these hormones 

have in the hippocampus (McGaugh, 2000).  
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Insects  

Arthropods generally have much smaller brains than vertebrates, but because they can 

also have smaller neurons, their brains can still be very complex (Loesel, 2005).  Kandel and 

Abel (1995) found that the mammalian hippocampus and mushroom bodies of the 

Drosophila brain appear to share attributes of biochemical pathways of memory storage. The 

mushroom body of the insect is essential for short-term memory in odour discrimination tasks 

(de Belle and Heisenberg, 1994; Heisenberg, 1998; Zars, 2000), and is involved in place 

memory (Mizunami et al., 1998). 

Krashes et al. (2007) suggested that different lobes of mushroom bodies have 

different roles in memory, where neurotransmission of different subsets of mushroom body 

neurons contribute to memory acquisition, retrieval and stabilisation. Though mushroom 

bodies play a role in learning and memory, they are not the centre of memory formation; 

rather, they have an important role in a wider neural system that supports learning and 

memory (Mizunami et al., 1998).  

 

Crustaceans 

Crustaceans and insects have many neural features in common (Strausfeld, 1998).  

Nonetheless, crustacean brains do not have mushroom bodies, and instead they possess 

accessory lobes and hemiellipsoid bodies. The accessory lobes are thought to be involved in 

higher order integration of visual, mechano-sensory, and olfactory information (Sandeman et 

al., 1995). 

Movement detector neurons (MDNs) from the lobula (third optic ganglion) appear to 

be the central elements for acquisition and retention of visual memory (Tomsic et al., 2003). 

The study by Tomsic et al. (2003) on Chasmagnathus, found that the changes in the response 

of a group of MDNs closely reflected behavioural changes that come about during learning, 

and that the persistence of these changes corresponds with memory retention.  

 

Stress effects on learning and memory 

Stress can impede memory (Williams et al., 1998) and affect spatial learning (Brucato 

et al., 1996). Chronic stress impairs the rate of spatial learning in Sprague-Dawley rats, 

Rattus norvegicus,(Park et al., 2001), has been shown to affect memory processes in tree 

shrews, Tupaia glis, (Ohl and Fuchs, 1999), and Wistar–Imamichi rats, Rattus norvegicus, 

showed impairment in maze learning performance after chronic stress exposure (Nishimura et 
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al., 1999). The impaired learning and memory from chronic stress is thought to be as a result 

of altered properties of hippocampal plasticity (Kim et al., 2006). Since stress can have an 

effect on learning and memory in animals, for the purposes of my study, it is important to 

consider how animals will react to captive environments, which can be stressful, and how 

exposure to these stressful captive environments may impair learning and memory and thus 

influence space use of animals.  

 

Space use 

Some animals thrive in captivity while others suffer. These differences in success are 

dependent on constraints imposed on natural behaviours e.g. Clubb and Mason (2003), who 

looked at the pacing in carnivores, and stating that wide-ranging lifestyles in the wild predict 

the extent of infant mortality and stereotypy. Preventing the natural behaviours of an animal 

could lead to stress and frustration as well impairment on brain development, particularly in 

naturally wide-ranging species (Clubb and Mason, 2003). Although animals that have large 

home ranges in nature may require a large amount of space in captivity, it may not 

necessarily hold true for every situation. The space use of animals in nature is often 

determined by a variety of factors, such as feeding behaviour, with home ranges dependent 

on food availability, searching strategies (Price, 1999) or availability of possible mates 

(Cooper and Randall, 2007). For example, the ranging patterns of gorillas, Gorilla gorilla 

beringei, depend on food availability and quality, with the latter being deemed more 

important (Vedder, 1984). Therefore, the home range size of gorillas will be dependent on 

food availability; greater food availability could decrease home range size. However, home 

range size is sometimes unrelated to foraging. An animal may be motivated to explore an area 

for its own sake (Price, 1999; Leone et al., 2010) and would thus require a large amount of 

space in captivity regardless of food, as was seen in laboratory mice, Mus musculus, which 

explored new areas regardless of the composition of the enclosure (Sherwin and Nicol, 1997). 

Among the many stressors that captive environments induce in animals, space 

limitation is one of the primary contributors of captivity-induced stress (Morgan and 

Tromborg, 2007). Space restrictions can have adverse effects on the behaviour of an animal 

(Arakawa, 2005), which is further exacerbated by a lack of enrichment (Newberry, 1995; 

Beattie et al., 1996). Rats, Rattus norvegicus, reared in poor, restricted environments display 

a decrease in activity levels in open-field tests (Arakawa, 2005), and pen size affects the 
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growth rate and levels of aggression of pigs, Susscrofa domesticus, (Morgan and Tromborg, 

2007).  

The perception that an animal has about space influences how available space is used 

(Sherwin and Nicol, 1997). Animals develop an expectation about their environment through 

learning or instinct and when an animal is faced with a challenge, the response employed will 

depend on this expectation and the situation itself (Meehan and Mench, 2007). If there is a 

mismatch between an animal’s expectation and the prevailing environment, frustration 

develops. If the problem is controllable (e.g. needing to open a latch to gain food that was 

previously inaccessible) frustration decreases, but if not solved (e.g. not being able to access 

the food at all) frustration will increase, leading to stress because of physiological and 

behavioural changes (Meehan and Mench, 2007).  

 

Determinants of space use in captivity 

For many species, the quality of space appears to be more important than the quantity 

of space (Stoinski et al., 2001; Hosey, 2005). In nature one of the most common factors 

affecting space use is the tendency to confine activities to particular areas in the home range 

(Horne et al., 2008). Animals generally use space disproportionately based on ecological 

factors, where some areas are used more than others (Samuel et al., 1985; Marriott and 

Meyers, 2005), which will depend on the availability of resources (Matthiopoulos, 2003). In 

the natural environment, animals will move to areas where required resources, such as food 

or shelter are available; the same would happen in captive environments. In natural habitats, 

animals orient themselves in specific ways depending on available objects, like perches and 

vegetation cover to scan for predators. In captivity, objects available are often used in a 

similar manner based on innate survival tendencies, e.g. trees may be used to scan the 

enclosure or may be used by animals to hide from perceived threats, such as large crowds of 

people (Marriott and Meyers, 2005).  

The presence of barriers can also have an impact on how space is used. Gorillas 

(Stoinski et al., 2001; Ross et al., 2009) and chimpanzees, Pan troglodytes, (Ross et al., 

2009) show a strong preference for being near structures such as walls, mesh barriers and 

corners. House mice, Mus domesticus, tend to remain close to walls or other objects, allowing 

them to be in contact (i.e. thigmotaxis) with the environment and aiding in protection (Jensen 

et al., 2003). Though not the only sensory cue of importance, tactile information plays an 

important role in environment familiarisation (Basil and Sandeman, 2000) and is also 
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important for invertebrates like cockroaches, Periplaneta americana, (Camhi and Johnson, 

1999) crayfish, Orconectes rusticus, (Alberstadt et al., 1995) and woodlice, Porcellio scaber, 

(Hughes, 1987), where tactile cues can aid in guiding locomotion and influence the direction 

in which they turn. In addition to tactile cues, landmark identification can also aid in guiding 

locomotion, helping animals to orientate themselves in space (Collett et al., 1986).  

 

Navigation 

Many species use landmark identification to locate target areas (Hoffmann, 1983; 

Vannini and Cannicci, 1995; Collett, 1996) and the orientation of many species is based on 

memorising space. Locations are either memorized by an egocentric coding, based on route-

based information, or an exocentric coding, which is based on location-based information 

(Benhamou et al., 1990). Navigation strategies that are employed to locate these target areas 

can differ depending on the species and the purpose of movement, such as locating food 

(Durier and Rivault, 2000) or locating areas for shelter (Kingsford et al., 2002).  

Place memory in mammals has usually been considered in terms of cognitive maps as 

proposed by Tolman (1948), where an animal’s world is centrally represented in the brain 

and being constantly updated (Mizunami et al., 1998). In insects, such as bees and ants, place 

memory involves image matching where an insect moves until its current retinal image 

matches a previously stored view of the environment. Image matching depends on the 

memory of patterns of defined size and shape (Collett, 1996).  While navigation for insects 

involves memory it is not solely dependent on place memory; insects often maintain a 

constant angle with the direction of sunlight or even with a plane of polarisation. These basic 

mechanisms of orientation may involve learning (Evans, 1984).  

 

 

Sex and age effects of space use 

Space use can differ between the sexes. In meadow voles, Microtus pennsylvanicus, 

the daily ranges of males are greater than the ranges of females (Madison, 1980). Male 

chimpanzees tend to band together and defend large ranges whereas females are more 

exploratory, leaving their home ranges at sexual maturity and at times associating with more 

than one chimpanzee community (Williams et al., 2002).   

Age also has an effect on space use. The space use of broiler chickens, Gallus gallus 

domesticus, declines with increasing age (Newberry and Hall, 1990). In rats, Rattus 
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norvegicus, the juveniles are sensitive to limiting space (whereas older rats are sensitive to 

stocking density) but the adverse effects that space limits had on individuals weakened with 

maturity (Arakawa, 2005).  

Newberry (1995) points out that previous experience is also an important 

consideration with regard to space use, and the movements of an animal in, for example, a 

new area may depend on the early or previous experiences of that animal. An interesting case 

study is provided in white leghorn chickens, Gallus gallus domesticus, that were brooded for 

7 weeks in separated pens and were then allowed to roam around all pens. When given the 

option to roam, they did not freely intermingle and preferred remaining in the vicinity of the 

pen where they were brooded (Newberry and Hall, 1990). A possible explanation for this 

limitation on space use is that the chickens were afraid (i.e. neophobic) of the novel 

environment (Jones, 2002) and thus preferred staying in the familiar brooding area. 

Alternatively, this example of the white leghorn chickens can be explained by the learned 

helplessness hypothesis, where animals perceive that a situation is independent of their 

behaviour and thus they inhibit their responses based on the expectancy that their actions 

yield no alternative outcome (Martinko and Gardner, 1982). So with regard to the white 

leghorn chickens, the chickens were not moving beyond the environment they had been 

exposed to originally even though there was an increase in the amount of available space. The 

chickens may have had the perception that they would not able to move beyond the point of 

the original barrier that had previously separated the pens from each other.  

 

Objectives and aims  

The study has 2 objectives 

• To establish whether the previous experience of an individual or of a group of 

individuals in a restricted space influences the subsequent use of space in larger areas. 

• To establish whether the space use in the enlarged area is related to the neuronal 

complexity of the test species.  

Four species were selected for study, including chimpanzees, Pan troglodytes, striped mice, 

Rhabdomys dilectus dilectus, German cockroaches, Blattella germanica, and common 

woodlice, Porcellio scaber. 

 

Aim 1. The main aim is to ascertain space use of 4 species by quantifying the surface area 

used by each species.  
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� Question: If previous experience in restricted space does influence subsequent space 

use, I ask whether there is a relationship between space use and neuronal complexity. 

 

Layout of the dissertation  

Because of the phylogenetic differences among the species and the idiosyncrasies of the 

housing, sociality, and potential experimental manipulation of the species, I have provided 

specific aims and predictions for each species separately in the following chapters. The 

sampling duration per species was scaled according to the relative body size, movement 

patterns and activity levels of each species.  

Apart from the present chapter (General Introduction), my dissertation comprises of 4 

experimental chapters (Chapters 2-5) and a general discussion chapter (Chapter 6). Chapter 2 

focuses on the space use of the chimpanzees, Pan troglodytes. The age, sex and behavioural 

effects as well as the influence of shade on space use are considered. Chapter 3 focuses on the 

space use of striped mice, Rhabdomys dilectus dilectus, where test subjects could be assigned 

to treatment and control groups to assess whether space use is influenced by previous 

experience. Additionally, the sex and personality effects of striped mice on space use are 

considered. Chapter 4 considers the space use of woodlice, Porcelio scaber, where treatment 

and control groups were created to assess whether previous restrictions influence subsequent 

space use of male and female woodlice. Chapter 5 considers the space use of male and female 

cockroaches, Blatella germanica, and compares the space use of individuals from control and 

restricted groups. Chapter 6 is a general discussion and conclusion section. One reference 

section is provided. Because of the abovementioned format, there may be some repetition of 

methodological details or discussion. Figures and tables are numbered in sequence for the 

entire dissertation, and not per chapter.   
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Chapter 2 

Experiment 1: Chimpanzees 

Introduction 
Chimpanzee biology 

Chimpanzees, Pan troglodytes, live in social groups of 20 to over 100 members of 

both sexes (Goodall, 1986). Chimpanzees are semi-territorial omnivores (Busse, 1978) and 

have a fission-fusion society (Williams et al., 2002), where males and females have different 

space use patterns. Males are philopatric and defend a territory, whereas females move away 

from their natal group; females shift their core areas and join and leave male territorial groups 

at any time (Williams et al., 2002; Reynolds, 2005). Female space use can be related to male-

defended ranges and female composition. Females may alter their space use patterns to stay 

within male-defended boundaries or their patterns may be influenced by feeding competition 

with other females (Williams et al., 2002). Females generally spend time on their own, i.e. 

with no other adults present, rather than forming cohesive groups (Wrangham and Smuts, 

1980), and their ranges may overlap over 2 groups (Williams et al., 2002). Food resources are 

an important determinant of space use in nature, influencing the positions of home ranges of 

males and females (Lwanga, 2006).   

Social learning is important for the acquisition of novel behaviour (Boesch, 1991). 

Chimpanzees have a good memory and a high capacity for learning and solving problems, 

acquiring knowledge through trial and error, observational and perceptual learning, where 

positive and negative reinforcement aid in the learning process (Goodall, 1986). Young 

chimpanzees learn about their environment through play and exploration, and these early 

experiences can have a subsequent effect on adult learning skills (Goodall, 1986).  

Free-living chimpanzees live mainly in forests where they experience relatively stable 

temperatures seasonally and they experience nearly constant shade provided by the tree 

canopy cover (Goodall, 1986), indicating that shade is important to chimpanzees. 

Temperature and sun exposure both influence chimpanzee activity, behaviour and space use; 

where chimpanzees would increase their time on the ground and resting, and decrease their 

feeding, with increasing temperatures. Time exposure to sunny areas was temperature 

dependent with chimpanzees moving to dense, cool areas during the hottest times of the day 

(Kosheleff and Anderson, 2009). In captive environments, chimpanzees prefer spaces as high 
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as 15m above the ground and areas with features such as columns, edges and corners which 

are used for buffering against environmental extremes (Ross and Lukas, 2006).  

Inter-individual distance between chimpanzees in nature is not well recorded in the 

literature, especially since free-living chimpanzees do not form spatially cohesive social 

groups, with individuals associating with different subgroups, so that the subgroups 

constantly change composition and size (Chapman et al., 1995). These fission-fusion 

societies, as well as the dense forest habitat of the chimpanzees, are confounding factors for 

evaluating the distances between individuals and to establish whether they are part of the 

same subgroup. Consequently, subgroups are generally categorised by the number of 

individuals in the group rather than by the amount of space occupied (Nishida, 1968; 

Chapman et al., 1995; Matsumoto-Oda et al., 1998). Nonetheless, some studies on free-living 

chimpanzees considered subgroups to be individuals with inter-individual distances between 

35 m (Bates and Byrne, 2009) and 100 m (Wrangham and Smuts, 1980) during activity. 

 

Aims and predictions 

In addition to the main aim - to ascertain space use of 4 species by quantifying the 

surface area used by each study species (Chapter 1) - I had 4 additional aims for the study of 

space use by the chimpanzees, each with its own prediction/s. 

In the following text ‘space restricted’ or ‘restricted subgroup space use’ refers to the 

dimensions that a subgroup occupies at any one point in time i.e. covering the dimensions of 

the old enclosure. Therefore if one subgroup is more restricted than another, that subgroup is 

staying within the dimensions of the old enclosure more often than the less restricted 

subgroup.  

 

 

Aim 2. Examine the space use of males and females to assess whether space use is sex 

specific.   

� I predict that females will be less space-restricted than males, as female chimpanzees 

naturally move around more than males, as is seen in nature (Williams et al., 2002). 

Aim 3. Establish space use by adults and juveniles to assess whether space use is age 

specific.  

� Assuming there are differences in space use with regard to age, I predict juveniles to 

be less space restricted than adults because juveniles of most primate species tend to 
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be more active than adults, as has been observed in captive chimpanzees and bonobos, 

Pan paniscus, where play is at its highest in juveniles (Palagi et al., 2004). Some of 

the youngest juvenile chimpanzees at the Johannesburg Zoo also spent the least 

amount of time in the old enclosure and the youngest chimpanzee was born in the new 

enclosure. Therefore, juveniles may use space differently to adults in the enlarged 

enclosure as they have had less exposure to restricted housing.  

Aim 4. Ascertain the association between space use and behaviour by determining the 

predominant behaviours displayed by individuals when they were part of a subgroup and not 

part of a subgroup. 

� I predict that small subgroups would be characterised by higher frequencies of space 

restricting behaviours (e.g. inactive behaviour, socio-positive behaviour) while large 

subgroups or individuals not part of any subgroups, would show higher frequencies of 

walking or behaviours like locomotory play.    

Aim 5. Establish the association between space use and shade provided by trees or walls to 

assess whether space use in chimpanzees is influenced by the presence of shade. 

� I predict that individuals will restrict their movements and activities to areas where 

there is shade, since chimpanzees are naturally found in areas where there is high tree 

canopy cover (Goodall, 1986). If so, spatial restriction might be influenced by the 

available shade.  

 

Study subjects 

During my study, the group of chimpanzees at the Johannesburg Zoo comprised 4 

males and 4 females. The 4 males consisted of 2 adults (Yoda and Thabu), 1 adolescent 

(Amber) and 1 weaned juvenile (Charles). The females consisted of 3 adults (Lilly, Daisy and 

Zoe) and 1 weaned juvenile (Joyce). Yoda (the dominant male), Amber, Charles, Zoe and 

Joyce were the offspring of Thabu and Daisy. Lilly (the dominant female) was acquired from 

an Angolan zoo by the Jane Goodall Institute. All individuals, apart from Charles, were 

originally housed in a smaller enclosure of 100 m2 (before 2004), until they were moved to a 

new enclosure of 2500 m2 (after 2004). 

The chimpanzees were fed fruits, vegetables, primate pellets and primrose oil twice 

daily at 09:30 and at 15:30. Their food was scattered randomly around the enclosure, thus 

preventing clustering at any 1 point in the enclosure, and to stimulate foraging activity.  
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Old enclosure 

Until 2004, the chimpanzees were part of either an orphan group or a family group. 

Each group was housed in separate 10 m x 10 m enclosures, each surrounded by a water moat 

on 2 sides and walls on the other 2 sides (Figure 1). The enclosure of the orphan group had 2 

public viewing points in front of the water moat.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Within both enclosures, there were rocks, ropes, climbing shelves and dead tree 

stumps for climbing. There were also night rooms for each group with jungle gyms and ropes 

(Figure 1). 

 
 
New enclosure 

During my study (2009), the chimpanzees were housed together in a large enclosure 

of 2500 m2 (Figure 2). Only the original family group (Daisy, Thabu, Amber, Joyce, Charles, 

Zoe and Yoda) was still present and 1 orphan individual, Lilly, who was housed with the 

family group. The group had access to an indoor enclosure at night (which had jungle gyms 

and ropes). My study was done on the space use of the chimpanzees in the outdoor enclosure, 

which was divided into 2 sections by a large wall with a connecting door. There were water 

access points, ropes, trees, tree stumps and plastic barrels for swinging and climbing in both 

Figure 1. The old chimpanzee outdoor enclosures at the Johannesburg Zoo 
(prior to 2004; Courtesy of L. Duncan). 



 

sections. The walls of the enclosure wer

present along the top of the walls and along the water access points. There were 

public viewing points: 3 large, ground level windows in the left wall; an open viewing area 

close to the water access points; and a 2.5

enclosure.  

Sampling 

Space use and behaviour of the chimpanzees were both sampled. I sampled space use 

by evaluating subgroup and individual movements over 

behavioural sampling, I recorded the season, weather and use of shaded areas. Details are 

provided below. 

 

Space-use  

Space use sampling was done for 60 non

between March and July 2009. Each observation lasted 

Figure 2. The new chimpanzee outdoor enclosure at the Johannesburg Zoo (after 
2004). Dashed lines in the bottom left represent the
housing areas for the orphan and family groups (Courtesy of L. Duncan).
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sections. The walls of the enclosure were approximately 8m high. Electric fencing was 

present along the top of the walls and along the water access points. There were 

large, ground level windows in the left wall; an open viewing area 

points; and a 2.5 m platform which had a view of both sides of the 

Space use and behaviour of the chimpanzees were both sampled. I sampled space use 

by evaluating subgroup and individual movements over space and time. In addition to 

behavioural sampling, I recorded the season, weather and use of shaded areas. Details are 

Space use sampling was done for 60 non-consecutive days (i.e. sampling sessions) 

9. Each observation lasted 1 hour and was conducted in the 

. The new chimpanzee outdoor enclosure at the Johannesburg Zoo (after 
Dashed lines in the bottom left represent the size and location of the original 

housing areas for the orphan and family groups (Courtesy of L. Duncan). 

e approximately 8m high. Electric fencing was 

present along the top of the walls and along the water access points. There were 3 different 

large, ground level windows in the left wall; an open viewing area 

m platform which had a view of both sides of the 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Space use and behaviour of the chimpanzees were both sampled. I sampled space use 

space and time. In addition to 

behavioural sampling, I recorded the season, weather and use of shaded areas. Details are 

consecutive days (i.e. sampling sessions) 

hour and was conducted in the 

. The new chimpanzee outdoor enclosure at the Johannesburg Zoo (after 
size and location of the original 
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morning, mid-morning or afternoon on different days. Sampling took place after the 

chimpanzees had been fed. During feeding, which was at 9:30am, food was scattered around 

the enclosure to encourage the chimpanzees to search for food. This scatter feeding by the 

zoo keepers, as well as my sampling approximately half an hour after they had been fed, 

reduced space-use bias because the chimpanzees did not congregate in a specific place each 

day to feed and thus reduced the potential bias in the data sampling.  

Space use by the chimpanzees was recorded by taking photographs with a Kodak 

C613 camera set at 3X optical zoom. To enable both the photography and behavioural 

observations, I used a simultaneous sampling technique. Samples were taken every 5 minutes 

in which photographs were taken and behaviours of individuals were recorded 

simultaneously. Sampling sessions were 1 hour long, resulting in 12 data points each of 

photographs and observations per sampling session.  

Photographs were taken of the chimpanzee subgroups. A subgroup was considered as 

comprising of 2 or more individuals as well as any individual that was less than 10m away 

from another individual. This distance was used to compare space use against the previous 

housing of 10m x 10m. I also recorded excursions by individuals, which was defined as an 

individual moving away from and returning to the subgroup in under 5 minutes; any absence 

over 5 minutes was not considered as an excursion. If at any given sampling time, all the 

chimpanzees were scattered around the enclosure (all individuals >10 m apart) and did not 

form any subgroups, they were recorded as scattered and no photographs were taken. 

At the end of the sampling sessions, I used the photographs to identify and assess the 

size of the areas occupied by each chimpanzee subgroup at an instantaneous time sampling 

interval of 5 minutes (Figure 3).  

 

 

 

 

 

 
 

Subgroup within 10 m x 10 m   Subgroup >10 m x 10 m        No subgroup formation  
 
Figure 3. Examples of chimpanzee subgroups of different sizes and the absence of subgroup 
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In order to improve sampling accuracy, 2 methods were used to measure the area used 

by subgroups at 1 time sampling point. In the first method, the positions of the chimpanzees 

that formed a subgroup were plotted onto a map of the enclosure drawn to scale. The area 

occupied by that subgroup, every 5 minutes for 1 hour, was evaluated using a grid that ranged 

from 10m x 10m to 20 m x 20 m. An edge effect of 1 m was included in the grid 

measurement, resulting in grids of 11 m x 11 m to 21 m x 21 m (Figure 4). The area that the 

chimpanzees occupied in the outdoor enclosure was matched against 2 categories: within the 

11m x 11m grid or greater than the 11m x 11m grid. Only 2 categories were evaluated to 

assess whether or not space use was influenced by the size of the previous housing. 

 

13 m 

12 m 

            11 m 

                                           11 m 12 m 13 m 

 

 

 

 

Figure 4. Representation of the grids that were use to assess space use of chimpanzee 
subgroups. 

 
In the second method, measurements were taken in the enclosure from selected 

landmarks (e.g. from a tree to a rock or a tree to a wall) to obtain reference distances within 

the enclosure, and to ground-truth the observations. The measurements were taken when the 

chimpanzees were in their night room. These distances were used to estimate the distances 

between individuals within a subgroup. The locations of individual chimpanzees were plotted 

on a map of the enclosure using these estimated distances and the area covered by the 

subgroups was evaluated using the grid method (Figure 4). The measurements were added 

together and averaged to gain the total of measurements that fell within, and outside of 11 m 

x 11 m. The data collected from both sampling techniques were used to ascertain whether 

chimpanzees restricted their movements to the space covered by the old enclosure size, or 

whether their space use was greater than that of the old enclosure. 

Space use was evaluated in 2-dimensions only, and any individuals in trees were 

considered to be within a subgroup (e.g. 11 m x 11 m). When evaluating the area of space 

Chimpanzee 
group at one 
point in time 

One chimpanzee 
in a group 
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used, barriers between individuals were considered, so that if there was a rise or a wall 

blocking 1 chimpanzee from the view of another, they were not considered to be part of the 

same subgroup, as suggested by Bettinger et al. (2005), who maintained that visual separation 

was an important mechanism for decreasing aggression, as individual chimpanzees did not 

perceive one another when obstructed by physical barriers.   

 

Subgroup and individual movements over space and time 

The spatial and temporal movements made by subgroups were also evaluated. To 

evaluate space-use temporally, I recorded how the subgroups moved within an hour session, 

i.e. whether the subgroup remained within an 11 m x 11 m area, increased their space use to a 

larger area, or if no subgroups formed. This was done for all 60 hours sampled.  

To evaluate space-use spatially, I recorded whether and how chimpanzee subgroups 

within 11 m x 11 m moved around the enclosure, i.e. did they stay in the same area or move 

to a different area within the enclosure; this was done only for subgroups within 11 m x 11 m 

since this was the focus of my study. Only 44 of the 60 sessions met this criterion and were 

used for further analyses. Individual movements were also recorded to ascertain which 

individuals moved within and between subgroups. A matrix was created to record how often 

each individual was part of a subgroup and was also used to assess how often other 

individuals were part of the same subgroup, e.g. Thabu was in the same subgroup as Daisy x-

number of times. This was done to establish which individuals interacted with each other the 

most number of times. Understanding how individuals formed subgroups was of importance 

because it is indicative of group composition, which is a component of how an individual 

used the available space and could help identify whether adult males, adult females or 

juveniles were more readily forming subgroups.  

 

Behaviour sampling and recording use of shaded areas, weather and season 

During the sampling sessions, the behaviour of each chimpanzee was recorded every 

5 minutes, resulting in a focal individual time sampling protocol, with an instantaneous 

recording rule. The simultaneous sampling technique discussed in ‘Space-use sampling’ was 

used. The behaviours were sampled according to 9 behavioural categories (Table 1).  

The use of sunny or shaded areas by the chimpanzees was recorded during each 

behaviour recording. Individual chimpanzees were recorded as being in the sun only if they 

were completely in the sun. These data were used to investigate whether or not chimpanzees 

used particular parts of their enclosure because of the presence of shade.  
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Table 1. Behaviours that were scored for chimpanzees at the Johannesburg Zoo. 

Behaviour Definition  

  

Abnormal Behaviours included chronic masturbation, unusual repetitive behaviour, self 

biting or hair pulling 

 

Climbing  Climbing trees, swinging on ropes  

 

Excursions  The moving away and returning of individuals from a subgroup in under 5 

minutes 

 

Foraging  Eating food that had been scattered around the enclosure and drinking from 

water moat 

 

Inactive Resting or sleeping 

 

Interacting 

with public   

Individuals approaching the windows or fences and engaging with the public, 

including chimpanzees knocking on windows or clapping hands  

 

Play Any type of play: social play with other chimps – wrestling, rolling, chasing 

each other; playing alone by swinging from ropes or playing with objects like 

sticks 

 

Socio-

negative 

Agonistic behaviour directed towards other chimpanzees, including screaming, 

chasing and fighting with other chimpanzees 

 

Socio-

positive 

Affiliative behaviour, such as grooming, embracing directed towards or 

received by other chimpanzees  
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The weather was recorded in order to compare the space use of the chimpanzees 

under varying environmental conditions. The weather type was scored according to the 

following categories: sunny, sunny with clouds, and overcast.  

Season was categorised based on the time of the year the sampling took place and was 

classified broadly as late summer/autumn (sampling before 1st June 2009) and winter 

(sampling after 1st June 2009). 

 

Data analysis 

Space use data were analysed using a chi-squared analysis to evaluate whether there 

were differences between the number of small subgroups (11 m x 11 m) to large subgroups 

(>11 m x 11 m) that formed during the entire sampling period, for summer and winter and 

under different weather conditions. The chi-squared analyses were run using InStat version 3 

(GraphPad Software, 2003). Since there were only 5 overcast days, comparisons were made 

between these 5 days and randomly selecting 5 days under each of the sunny and cloudy 

weather categories; this was done 3 times by selecting 3 x 5 days from the sunny and cloudy 

categories. A heterogeneity chi-squared analysis was used to compare weather influences on 

space use; a heterogeneity chi-squared test is appropriate when analysing multiple subgroups 

of a larger data, since it compares each group (3 in my case) separately against the average of 

the overall data set (Zar, 1996).  

Space use and chimpanzee presence in the shade/sun was evaluated for an individual 

chimpanzee and not a subgroup basis because some individuals forming a subgroup could 

have been in the sun while others could have been in the shade, so that a subgroup of 

chimpanzees could have been occupying space in the sun as well shade at 1 sampling point. 

These data were then analysed based on whether the individual in the sun/shade was part of a 

subgroup that was covering an area equal to or less than 11 m x 11 m, greater than 11 m x 11 

m or was not part of any subgroup. The data were analysed using a Generalised Linear Model 

(GLZ) as this allowed for comparisons for occupancy in sunny and shaded areas between all 

3 subgroup size categories, making no assumptions of normality or homogeneity of variance 

and permitting the data to be fitted to a binomial distribution. I further investigated the 

consistency of space use and whether chimpanzee space use was constant over space and 

time. I used a transition matrix to evaluate whether the chimpanzee subgroups were 

consistent in their space use over time, as described below.  
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Each space-use size category was assigned a number: 11 m x 11 m = 1; >11 m x 11 m 

= 2; and no subgroup formation = 0. No subgroup formation meant that all chimpanzees were 

greater than 11m from each other; thus they were not forming what was considered a 

subgroup (individuals less than 11m apart) for this experiment. For each 1 hour observation 

session, a number score (0, 1, 2) was assigned for space use at every 5 minute sampling 

interval, resulting in a 12 number sequence for each hour. I then recorded how many changes 

or consistencies there were per space-use size category.  

An example of a 1 hour sample:  1 1 1 2 2 1 2 0 1 1 1 1. Staying within a 1 category 

occurred 5 times; transition from 1 to 2 occurred twice, transition from 0 to 1 occurred once, 

etc. Transitions were then recorded in a matrix and the proportion of transitions was 

evaluated for the whole sampling period (Table 2). 

 

Table 2. An example of the table used for chimpanzee group transitions. 

Transition  
From  

 
To 

Proportion 

0 0 0 
1 1 5/11 = 0.45 
2 2 1/11 = 0.10 
Transition to a different space-use category  
E.g. 1 to 2, 2 to 0, etc... 

5/11 = 0.45 

 

 

The transitions over space were used to evaluate how chimpanzee subgroups within 

11 m x 11 m moved over the enclosure. The change over space was evaluated by establishing 

how often a subgroup remained in the same place and how often a subgroup moved to a 

different area, which was evaluated by any group movement 11m from the original group 

position. A chi-squared analysis was used to analyse the differences between moving around 

the enclosure and remaining in the same place. 

For the behavioural data, abnormal behaviour occurred rarely (<2 % of all 

observations) and was not considered for further analysis. A Factor Analysis was performed 

on the behavioural data to examine which behaviours rarely occurred. The first 2 factors of 

the Factor Analysis were considered and they cumulatively explained 35% of the dataset. 

Socio-negative (first: second factor - 0.012; 0.22), Excursions (0.26; -0.144) and Interaction 

with the public (0.26; -0.04) had the lowest factor loadings and were excluded from further 

analysis. 
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The behavioural data and shade/sun exposure data were analysed using a GLZ with a 

binomial distribution and probit link function, in which I tested whether there were 

differences in the behaviours (response category) between age and sex (adult male, adult 

female and juvenile) and grouping categories (subgroups that were smaller than 11 m x 11 m, 

larger than 11 m x 11 m, and when individuals were not part of any subgroups). 

An all effects model from the GLZ was used to ascertain which variables had a 

significant effect on the model output. Based on these results, appropriate first, second and/or 

third order effects were selected using user-defined protocols in the final model selection. 

Beta coefficients and confidence intervals (95%) were used to detect specific differences in 

the categorical variables when the Wald statistics for the effects were significant. GLZ 

analyses were run in Statistica version 6 (StatSoft, Inc. 2001). 

An analysis was conducted on the interactions of individuals compared to the 

likelihood of interaction with each member of the chimpanzee group. For this, a matrix of 

how often individuals were part of the same subgroup was analysed using the software 

Matman™ (De Vries et al., 1993). The matrix was used to calculate adjusted residuals with 

positive (occurring more often than expected by chance) and negative (occurring less often 

than expected by chance) residuals calculated and expressed according to a Z-distribution. 

In the following text subgroup sizes will be labelled “small” for subgroups within 

11m x 11m and “large” for subgroups larger than 11 m x 11 m.  

Experimental procedures were approved by the Animal Ethics Screening Committee 

of the University of the Witwatersrand (clearance number 2007/57/01).  

 

Results 

Space use 

Total space use 

The space use of chimpanzees was evaluated by examining the frequency of 

chimpanzees being in small subgroups and large subgroups. Space use was evaluated for the 

60 hour sampling sessions, regardless of seasonal and environmental effects. Chimpanzees 

formed small subgroups significantly more frequently (97%) than large subgroups (3%)  

(χ2
1 =702.39, p<0.001). 
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Seasonal variation  

The space use of subgroups was then categorised according to season. There was no 

significant difference between summer and winter (χ2
1 =1.54, p=0.215). In winter, small and 

large subgroups formed 98% and 2% of the time respectively and in summer small and large 

subgroups formed 97% and 3% of the time respectively. 

 

Weather  

Subgroups were also categorised according to their occurrence during different 

weather types, namely sunny, cloudy and overcast. There were no significant differences in 

space use with respect to the 3 weather categories (χ2
2 =0.84; p=0.900; heterogeneity χ2), 

with the chimpanzees occurring in small subgroups (97%) more often than occurring in large 

subgroups (3%) on sunny, cloudy and overcast days  

 
Age and sex  

There were differences in space use of adult males, adult females and juveniles. 

Following the all effects model protocol, age/sex, subgroup size and subgroup size*age/sex 

were significant predictors of the space use in the final GLZ model (Table 3).  

 

Table 3. Results from the GLZ analysis analysing the space use of adult male, adult female 
and juvenile chimpanzees. 

 Statistics results  

Age/sex Wald χ2
2=122.96, p<0.001 

Subgroup size Wald χ2
2=3521.52, p<0.001 

Subgroup size*age/sex Wald χ2
4=94.77, p<0.001 

 

 

Specific differences were identified using beta estimates and confidence intervals 

(95%). Whiskers on the graph represent 95% confidence limits as exact frequency values 

were plotted on the graph (Figure 5). For the subgroup size*age/sex interaction, adult males 

participated in small subgroups significantly less often than adult females and juveniles. 

There was a significant difference between adult female and juvenile presence in large 

subgroups, with adult females participating more than juveniles.  
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Figure 5. Mean frequency of presence in 3 subgroup categories for adult male, adult female 
and juvenile chimpanzees. Bars with the same letters within each subgroup size category 
(small, large, not part of a subgroup) are not significantly different. Whiskers denote 95% 
confidence limits. 

 
Adult males were not part of a subgroup significantly more often than adult females 

and juveniles. Not considering the sex and age effects on subgroup formation, small 

subgroups formed more frequently than no subgroup, which occurred more frequently than 

large subgroups (Figure 5). 

 

 

Transitions 

Temporal  

Chimpanzee sub-groups remained as small subgroups (0.920) more often than 

they did in large subgroups, not forming a sub-group or moving to a different space-use size 

category. The chimpanzee sub-groups consistently remained within the same space-use size 

category over the entire sampling period (Table 4). 
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Table 4. Proportion of transitions and consistencies between size classes of chimpanzee 
subgroups. (0 = no subgroup, 1 = small subgroup, 2 = large subgroup) 

Transition From  
To 

Proportion 

0 0 0.002 

1 1 0.920 

2 2 0.014 

Different space-use category  0.065 

 

Space 

There was a significant difference between chimpanzee subgroups remaining in the 

same area compared to those moving to different areas within the enclosure (χ2
2=256.46, 

p<0.001); subgroups remained within the same area 77% of time and moved to other areas 

23% of time. The chimpanzee subgroups were therefore restricting their movements over 

space.  

 

Behaviour and space use 

The behaviours performed varied among individuals in different subgroup sizes over 

the total sampling period. Subgroup size, behaviour and subgroup size*behaviour were 

significant predictors of chimpanzee space use in the final GLZ model (Table 5).  

 

Table 5. Results from the GLZ analysing the behaviour of adult male, adult female and 
juvenile chimpanzees while part of subgroup of different sizes. 

 Statistics results 

Subgroup size Wald χ2
2=7135.43, p<0.001 

Behaviour Wald χ2
5=430.70, p<0.001 

Subgroup size*behaviour Wald χ2
9=712.11, p<0.001 

 

Collectively, small subgroups had a behavioural profile distinct from large subgroups 

and not being part of a group (Figure 6). For the behaviours, inactivity was the most common 

behaviour, followed by socio-positive, play and walking. Inactivity and socio-positive 

behaviour were displayed significantly more often than the other 4 behaviours. For the sub-

group size*behaviour interaction, inactivity was significantly greater when chimpanzees were 

not part of any subgroups, compared to when chimpanzees were part of a subgroup. Socio-

positive behaviour only occurred when chimpanzees were part of a subgroup but there was no 
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difference in socio-positive behaviour between small or large subgroups (Figure 6). Walking 

occurred more frequently when individuals were not part of a subgroup, with no differences 

seen between large and small subgroups. The occurrence of playing, foraging and climbing 

behaviours was not different between the 3 subgroup types, with foraging and climbing being 

displayed the least of all the analysed behaviours. 
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Figure 6. Predicted means of total observed behaviours performed by chimpanzee subgroups 
or by chimpanzees not part of a subgroup over the 60 day sampling period. Bars with the 
same letters within each subgroup size category (small, large, not part of a subgroup) are not 
significantly different. Whiskers denote standard error according to least squares means. 

 

Sun/Shade and space use 

Chimpanzee subgroups and individuals were categorised according to their 

occupation of sunny and shaded areas. Only their presence in sunny and shaded areas and 

subgroup size*sun/shade were significant predictors of chimpanzee space use in the final 

GLZ model (Table 6).  
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Table 6. Results from the GLZ analysing the presence of subgroups types in sunny and 
shaded areas. p-values highlighted in bold are significant. 

 Statistics results 

Presence in sunny and shaded areas Wald χχχχ2
1=366.78; p<0.001 

Group size Wald χ2
2=0.00; p=1.000 

Subgroup size*sun/shade Wald χχχχ2
2=38.41; p<0.001 

 

Chimpanzees occupied shaded areas more often than sunny areas (Figure 7). For the 

subgroup size*sun/shade interaction, individuals were present in shaded areas more often 

when they were not part of a subgroup compared to being part of small subgroups; there was 

no difference between small and large subgroups (Figure 7). Group size did not have a 

significant effect in the final GLZ model (Table 6). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The presence of chimpanzee subgroups in sunny and shaded areas of the enclosure 
when they were part of small and large subgroups and when they did not form subgroups. 
Bars with the same letters are not significantly different. Whiskers denote standard error 
according to least squares means.   

 
Behaviours and interactions of individuals 

Descriptive statistics are presented for the dominant behaviours performed by 

individuals and individual interactions because the 8 individuals displayed different levels of 
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each behaviour, precluding the use of probability statistics. For this reason, behaviours are 

summarised and presented as percentages of occurrence (Table 7). When being part of a 

subgroup, different individual chimpanzees displayed particular behaviours more frequently 

than others. The most predominant behaviour was inactivity followed by socio-positive 

behaviour and play. 

 

 

Table 7. Percentage occurrence of the most and second most predominant behaviours 
performed by individuals when they were part of a subgroup. 

  Individual Predominant 
Behaviour 

% 2nd most 
predominant 

% 

Adult 
Males 

Thabu Inactive 75 Socio-positive 16 
Yoda Inactive 49 Socio-positive 38 
Amber Inactive 55 Socio-positive 21 

Adult 
Females 

Lilly Inactive 62 Socio-positive 23 
Zoe Inactive 63 Socio-positive 28 
Daisy Socio-positive 50 Inactive 37 

Juveniles Joyce Socio-positive 39 Play 22 
Charles Play 45 Socio-positive 29 

 

 

For travelling behaviours, which included walking and excursions, juveniles showed 

the highest percentage (13.95%) followed by adult males (8.96%) and adult females (7.61%).  

 

 

Five significant pair associations were identified among individuals (χ2
41=1437.33; 

p<0.05, Table 8). Only the positive residuals of the association between individuals, 

expressed according to a Z-distribution, are displayed in Table 8, because they indicate 

associations between individual chimpanzees. The most significant associations (i.e. 

individuals most likely to associate with each other) occurred between Zoe: Daisy; Zoe: 

Charles and Daisy: Joyce (Z=3.29, p<0.001). Zoe was also likely to associate with Joyce 

(Z=2.58, p<0.01) and Daisy was also likely to associate with Lilly (Z=1.96; p< 0.05).  
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Table 8. Likelihood of chimpanzee individuals associating with each other more often than 
expected by chance. 

Probability of 
associations 

Zoe Amber Lilly Charles Daisy Joyce Thabu Yoda 

Likely   Daisy  Lilly    
 Z=1.96, p<0.05)         

More likely Joyce     Zoe   
(Z=2.58, p<0.01)         

Most likely Daisy   Zoe Zoe Daisy   
(Z=3.29, p<0.001) Charles     Joyce    

 

Discussion 

This chapter of my study considered how chimpanzees in the Johannesburg Zoo 

utilised the available space in their enclosure and whether space use was influenced by the 

previous experience in restricted space. Subgroups were used for the evaluation of space use 

since chimpanzees tend to travel, forage and socialise in subgroups (Doran, 1997) within 

their home ranges that span from 11 km up to 340 km depending on the habitat (Yamagiwa, 

1999). I expected the chimpanzees to utilise the enlarged, enriched area that was available to 

them more extensively as it has been suggested that complex environments will promote 

increased activity and will be utilized extensively (Clarke et al., 1982; Perkins, 1992). 

However, I found that chimpanzees formed small subgroups significantly more frequently 

than large subgroups, and thus occupying a small portion, about 25% of the available space 

of 2500m2, at any 1 point in time. One possible reason for the lack of use of a larger space is 

that the chimpanzees have been in this large enclosure for over 5 years and the novelty of the 

environment may have worn off. Celli et al. (2003) demonstrated that as animals become 

accustomed to available stimuli under normal conditions, the novelty of the stimuli wears off 

and the animals show a decrease in manipulation of the available objects and an increase in 

inactivity.   

There was temporal consistency in subgroup space use, with subgroups remaining 

small more often than remaining large or changing from small to large and vice versa. There 

was also spatial consistency where subgroups tended to remain in any given area of the 

enclosure rather than moving between areas. The chimpanzees were utilising the entire 
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enclosure, but they just tended to mostly remain in a chosen position within the enclosure as 

small subgroups that were the same size as their previous housing.  

  Subgroup formation was seasonally unvarying with the use of restricted space being 

the same in summer and winter. Subgroup formation was also unvarying under different 

weather conditions: chimpanzee subgroups restricted their space use on sunny, cloudy and 

overcast days. In free-living chimpanzees, there are differences in group movement patterns 

(Vedder, 1984), space use and composition in different seasons based on food availability 

(Doran, 1997). Since food availability in captive environments is predictably available, it is 

understandable that the chimpanzee subgroups would not show seasonal differences in space 

use; thus, other factors may be driving space use. 

I also aimed to establish whether or not restricted space use was age/sex specific. All 

the chimpanzees were more likely to be part of a small subgroup rather than a large subgroup 

or not being part of a subgroup, with adult males not being part of any subgroups or 

participating in small subgroups significantly less than adult females and juveniles. This was 

unexpected as free-living female chimpanzees spend time foraging alone while males form 

close associations to defend territories (Williams et al., 2002). Thus, I expected that adult 

females would be less spatially restricted than adult males and would be part of large 

subgroups or not part of any subgroups more often than adult males. A possible reason for 

this finding is that in captive environments males do not need to maintain specific territories 

as resources are not limited (since territorial behaviour is dependent on a predictable food 

supply; Zahavi, 1971; Kinnaird, 1992; Herbinger et al., 2001), so forming groups to defend 

constantly available resources is not a necessity. This has been seen in Hawaiian 

Honeycreepers, Vestiaria coccinea, Himatione sanguinea, and Loxops virens, which ceased 

resource area defence when nectar was regionally superabundant (Carpenter, 1987). 

With regard to females, captive adult female black spider monkeys, Ateles fusciceps 

robustus, which have very similar social patterns to chimpanzees, tend to form close 

associations with other females and their offspring, especially during periods of infant 

rearing, where females are likely to form clusters and associate with other females who have 

infants (Eisenberg, 1976). This may be of importance to my study as infants were present 

during my observations at the zoo.  

I also predicted that juveniles would be less spatially restricted than adults. Since the 

juveniles were in the previous 10 m x 10 m enclosure for a much shorter time than the adults 

(with the youngest having been born in the enlarged enclosure), they would be less likely to 

show restrictions in their space use. Chimpanzees also display the highest activity levels as 



37 
 

juveniles, displaying high levels of play behaviour (Palagi et al., 2004), with adults showing 

high frequencies of inactivity (Videan, 2006). Juveniles would have associated with adult 

females (i.e. parental and alloparental care; Pusey, 1990), and most probably moved around 

with the females as a group; this could have potentially influenced my assessment of juvenile 

space use, as juvenile space use may have been affected by the presence of other individuals 

(i.e. social influences; Keeling and Duncan, 1989). Behaviour of individuals can influence 

subgroup formation and can affect how space is utilised. Therefore, I needed to consider 

social interactions as well as individual behaviours in order to evaluate my prediction, which 

will be discussed below. 

Individual interactions may be an important determinant of how subgroups might 

move around the enclosure and how they utilise space, as particular individuals may follow 

others, whether it is following siblings, parents or potential mates (Sugiyama and Koman, 

1979). Therefore, even though juveniles were part of small subgroups they also had the 

highest frequency of movement (walking and excursions) in the enclosure compared to 

adults. There was a high frequency of play seen in juveniles, which is expected, as play is 

seen predominantly in juvenile primates, facilitating physical and social development (Palagi, 

2006). Play (especially locomotory play) can lead to greater space use, as individuals are 

moving around the available space. The greater frequency of movement coupled with the 

high frequency of play, led the juveniles to utilise more space than the adult males and 

females. However, while these trends in the data suggest that the juveniles were utilising 

more space within the enclosure than adults it still needs to be empirically tested with a larger 

juvenile sample size, which unfortunately was not possible in my study 

My next aim was to ascertain the association between space use and behaviour. 

Activities of individuals can affect the distances between individuals and thus social spacing 

(Keeling and Duncan, 1991). There was support for my predictions with regard to space use 

and behaviour. Individuals that were not part of a subgroup and thus not spatially restricted 

displayed higher frequencies of non-restricting behaviours, such as walking, whereas 

spatially restricted individuals showed higher frequencies of spatially restricting behaviours, 

such as socio-positive behaviour. This is expected as socio-positive behaviour is associated 

with subgroup formation especially small subgroup formation as individuals can interact 

closely with one another. During social grooming sessions, the close contact of grooming 

would give rise to short inter-individual distances (McGrew and Tutin, 1978), and thus 

subgroups would utilise less space. All types of subgroups were characterised by high 

frequencies of inactivity and similar frequencies of play behaviour. These behaviours were 



38 
 

ubiquitous across all subgroup types suggesting that they are not associated with any group 

size, regardless of group members or size. Inactivity does not require one to be part of a 

subgroup and it appears to not be a group dependent behaviour; so inactivity (which includes 

resting and sleeping) could result in an individual being left alone if the rest of the subgroup 

moves away, or could become part of a subgroup if other chimpanzees congregate around the 

solitary individual. Play behaviour could be characteristic of individuals that are part of any 

subgroup size as different forms of play behaviour can be associated with different subgroup 

sizes. Individuals playing in close contact with one another would be associated with small 

subgroup formation whereas individuals playing on their own may either be associated with 

large subgroup formation or they may be completely apart from a subgroup.  

The final aim was to establish the association between space use and shade provided 

by trees or walls to assess whether chimpanzee space use was influenced by the presence of 

shade. Shade availability is an important resource as it reduces heat load and can alter 

behaviour as was seen in feedlot heifers, Bos primigenius taurus, (Mitlohner et al., 2002). 

Shade could be a very important resource for captive chimpanzees, as their free-living 

counterparts live in dense forests that have high shade availability (Kosheleff and Anderson, 

2009), and thus shade could influence chimpanzee space use and behaviour.  

In order to determine whether restricted space use is influenced by shade availability I 

would have had to show: i) that space use is restricted mainly to shaded areas; ii) that there is 

no consistency of space use in different seasons, with greater space use occurring in Winter 

and more restricted space use in summer according to the relative importance of shade during 

these seasons; and iii) there should be no consistency in space use under different weather 

conditions, with greater use of space on overcast days (100% cloud cover) compared to sunny 

days (no cloud cover). If shade is a factor of restricted space use, the chimpanzees should not 

be in small subgroups on overcast days as there is no need for them to restrict themselves 

spatially. 

I found that there was a greater use of shaded areas than sunny areas in the enclosure 

for the whole sampling period for all subgroup types. However, space use of subgroups was 

seasonally unvarying and did not differ under different weather conditions with small 

subgroups forming just as frequently on sunny as overcast days. Thus, shade would not be a 

possible factor of restricted space use as shade use was constant under all conditions with 

individuals remaining in small subgroups even when there was complete shade cover. 

However, this study has shown that shade is of importance to chimpanzees since the 

subgroups occupied areas in the shade far more often than areas in the sun. Therefore, even 
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though reduced space use was not dependant on shade availability, chimpanzees selected 

areas based on the presence of shade.  
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Chapter 3 

Experiment 2: Striped mice 

Introduction 
The African striped mouse, Rhabdomys dilectus dilectus, is a muroid rodent that is 

widely distributed throughout a variety of biomes within southern Africa (Skinner and 

Chimimba, 2005). Striped mice are terrestrial and diurnal with peaks of crepuscular activity 

(Perrin et al., 2001). The striped mouse is an opportunistic omnivore, feeding mainly on grass 

seeds, and a high proportion of insects during the breeding season (Perrin et al., 2001).  

In the eastern mesic grasslands of South Africa, striped mice have a solitary lifestyle, 

in which both sexes have intra-sexually exclusive territories but male territories overlap 

several female territories and association between the sexes is restricted to mating (Schradin 

and Pillay, 2005b). Males  in the grasslands have been found to have significantly larger 

home ranges (12446 ± 2000 m2) than females (5760 ± 1098 m2) (Schradin and Pillay, 2005b). 

Territories are maintained through aggression towards conspecifics (Perrin et al., 2001).  

 

Aims and predictions 

In addition to the main aim of the study (Chapter 1), 3 more aspects of space use were 

considered for the striped mice. These are presented as 3 aims below together with specific 

question/predictions. 

 

Aim 2: To determine the total movement of the striped mice by quantifying distance travelled 

to establish how space used by individuals relates to distance travelled. 

Were individuals travelling longer or shorter distances in relation to the size of area 

they cover? The influence of previous restriction may be overridden if individuals travel long 

distances under natural conditions.  

Aim 3: Establish space use of males and females to assess whether space use is sex specific.   

I predicted that males would be less space-restricted than females, as females have 

been found to use less space than males in nature (Schradin and Pillay, 2004a). 

Aim 4: Establish the space use of bold and shy striped mice to assess whether personality 

type (bold or shy) influences space use. 
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I expected that bold individuals would be less spatially restricted than shy individuals 

because bold individuals show greater levels of exploratory behaviours (Fraser et al., 2001).  

I tested these aims by comparing the space use behaviour of striped mice that were 

maintained in smaller ‘restricted’ housing with those maintained in a larger ‘non-restricted’ 

cage. In the following sections, “restricted” refers to individuals that were housed in the small 

Lab-o-tecTM cages and control/“non-restricted” refers to individuals housed in the large     

200 cm x 15 cm x 100 cm tanks.  

 

Study subjects 

For this study, 40 (20 male and 20 female) captive born (F1) striped mice were used, 

originating from a population in Pretoria (25º 40‟ S; 28º 30‟ E), South Africa. Bold and shy 

striped mice were identified prior to the experiment in order to obtain the appropriate sample 

size with an equal number of males and females that were bold and shy; there were 10 bold 

and 10 shy individuals per sex category (Personality tests are described in an Appendix). 

They were housed in the Milner Park Animal Unit, University of the Witwatersrand, under 

partially controlled environmental conditions 14L: 10D light: dark cycle (lights on at 05h00); 

22ºC-24ºC and 30-60% rH. Subjects were bred in clear Lab-o-tecTM cages (36.5 cm x 20.5 cm 

x 15cm; L x H x W). At weaning (16 days of age; Schradin and Pillay, 2004b), they were 

individually housed, as they are a solitary living species (Schradin and Pillay, 2005b), in Lab-

o-tecTM cages (36.5 cm x 20.5 cm x 15 cm). Each individual was provided with wood 

shavings as bedding and a handful of grass and shredded tissue paper as nesting material.  

Individuals were also provided with a PVC nest-box (13 cm x 10 cm x 10 cm). Epol® 

mouse cubes and water were available ad libitum. Fresh fruit (apples, pears, paw paw) or 

vegetables (lettuce, carrots, broccoli) and mixed seed were provided daily per individual. A 

handful of nesting material and cardboard toilet rolls were provided bi-weekly for 

enrichment. Cages were cleaned every 2 weeks, and the cage contents replaced. 

A control group of 40 (20 male and 20 female) F1 striped mice was also established, 

with 10 bold and 10 shy individuals per sex category. Individuals of the control group were 

bred in Lab-o-tecTM cages (36.5 cm x 20.5 cm x 15 cm). At weaning (16 days old), the 

individuals that were being used as the control in my experiment were housed individually in 

large tanks (200 cm x 15 cm x cm 100 cm) with a surface area approximately 26 times 

greater than that of the Lab-o-tecTM cages. These large tanks were provisioned in a similar 

manner to the restricted group in the Lab-o-tecTM cages.  
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Sampling 

After being restricted in the Lab-o-tecTM cages or housed in large tanks for 60 days 

(individuals were 76 days old), the striped mice were placed individually into a test arena 

(tank measuring 200 cm x 15 cm x 100 cm). Striped mice were tested individually because 

they are solitary-living in nature. The base of the tank was covered with wood shavings and 

the tank was covered with a perforated lid to prevent the striped mice from escaping during 

video recording (see below) took place. The tank was cleaned with disinfectant soap and air-

dried between tests to reduce carry-over odour effects. To minimise anxiety, the original 

housing cage was placed into the test arena, and the test subjects were allowed to enter into 

the test arena unaided. The control group was also video-recorded in the test arena, which 

was the same size as their home tank.  

The behaviour of test subjects was video recorded with a Sony Handycam for 30 

minutes between 08h00-12h00, as striped mice are most active during these times (Schradin, 

2006) and no human observers were present in the room during recording time. 

 

Space use recording of striped mice 

At the end of the sampling sessions, the video recordings of the striped mice were 

used to trace the routes that each individual made between stops, i.e. every time an individual 

stopped moving, a tracing of the preceding route was made (Figure 8). This was done for 20 

routes travelled per individual, 10 at the beginning of the filming session and 10 at the end of 

the filming session.   

 

Route 1                Route 2            Route 3             Route 4 
 

 

 

Figure 8. Diagrammatic representation of route tracings of the movement of individual 
striped mice. (S = point where a route starts; F = point where a route finishes) 

 
 

The tracings were used to assess whether the individual movements were restricted to 

the size of the restricted housing. This was evaluated by placing a 375 mm x 215 mm (365 

mm x 205 mm with 10 mm edge all around) grid, the size of the restricted cage, over each 
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route, and the distance travelled was matched against 2 categories: within the 375 mm x 215 

mm grid or greater than the 375 mm x 215 mm grid (Figure 9).  

 

 

 

 

 
 
 
 
Figure 9. Diagrammatic representation of an example of how space use of a striped mouse 
route was evaluated. 

 
This was different to how the chimpanzee space use was measured; the striped mice 

showed greater activity and continuous space use was sampled and thus distance could be 

measured whereas the chimpanzee space use was instantaneous sampling of a specific point 

in time.  

The total distance that was travelled collectively per individual was also measured. 

The data collected were used to ascertain whether striped mice restricted their movements to 

an area the size of the smaller housing or whether their space use was unaffected by previous 

experience in restricted space. The data were also used to establish whether there were 

differences in space use for males and females and bold and shy individuals.  

 

Data analysis 

Space use and total distance travelled was analysed using a Generalized Linear Model 

analysis (GLZ) with a binomial distribution and probit link function, in which I tested 

differences in space use (restricted/non-restricted space use to the size of the original 

housing; response category) between sex and treatment (restricted and control). 

An all effects model from the GLZ was used to ascertain which variables had a 

significant effect on the model output. Based on these results, appropriate first, second and/or 

third order effects were selected using user-defined protocols in the final model. Beta 

coefficients and confidence intervals (95%) were used to detect specific differences in the 

categorical variables when the Wald statistics for the effects were significant. GLZ analyses 

were run in Statistica version 6 (StatSoft, Inc. 2001). There was no difference between the 
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first 10 routes and last 10 routes (Wald χ2
1=0.80; p=0.370) and these were pooled in the final 

analyses resulting in 20 routes per individual. 

I next tested whether there were significant differences in space use and distance 

travelled (response variable) between sex (fixed factor: male or female) and personality 

(fixed factor: bold or shy), using a GLZ analysis, with the number of routes travelled coded 

as a covariate.  

I further ran a regression analysis on the number of routes travelled and the total 

distance travelled for all individuals to assess the relationship between these 2 variables.  

Experimental procedures were approved by the Animal Ethics Screening Committee 

of the University of the Witwatersrand (clearance number 2006/94/03).  

 

Results 

Personality, sex and space restriction 

There were significant differences in area covered for the restricted and control 

groups. Following the all effects model protocol, treatment, personality and treatment*sex 

were significant predictors of area covered in the final GLZ model (Table 9). Sex, 

personality*sex and treatment*personality were not significant predictors of area covered in 

the final GLZ model.  

 

Table 9. Results from the GLZ tests analysing the space use of bold and shy females from 
control and restricted groups. p-values highlighted in bold are significant.  

 Statistics results 

Treatment Wald χχχχ2
1=435.81; p<0.001 

Personality Wald χχχχ2
1=29.27; p<0.001 

Sex Wald χ2
1=1.09; p=0.295 

Treatment*personality Wald χ2
1=0.17; p=0.682 

Treatment*sex Wald χχχχ2
1=7.61; p=0.005 

Personality*sex Wald χ2
1=0.35; p=0.552 

 

 

For the treatment effect, the restricted group, regardless of sex and personality, 

limited their space use significantly more often than the control group (Figure 10). Shy 

individuals restricted their movements significantly more often than bold individuals.  
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Figure 10. Predicted mean of distances covered by striped mice in an area less than or equal 
to the base area of the restricted housing. Bars with the same letters within each sex category 
are not significantly different. Whiskers denote standard error according to least squares 
means.  

 
 

For the treatment*sex interaction, males and females from the experimental group 

restricted their movements more than the males and females from the control group, with 

males restricting their space use more than females in the control groups and females 

restricting their space more than males from the restricted group (Figure 10). 

 
Distances travelled by striped mice 

There were significant differences in distances travelled for the restricted and control 

groups. Following the all effects model protocol, the number of routes travelled, treatment, 

personality, sex, treatment*personality, treatment*sex and personality*sex were all 

significant predictors of distance travelled in the final GLZ model (Table 10). For the graphs 

of the distances travelled actual distance travelled was plotted, thus whiskers denote 95% 

confidence limits.  
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Table 10. Results from the GLZ analysing the distances travelled of bold and shy females 
from control and restricted groups. p-values highlighted in bold are significant.  

 Statistics results  

Number of routes travelled  Wald χχχχ2
2=11540.74; p<0.001 

Treatment Wald χχχχ2
1=21069.27; p<0.001 

Personality Wald χχχχ2
1=649.92; p<0.001 

Sex Wald χχχχ2
1=242.38; p<0.001 

Treatment*personality Wald χχχχ2
1=253.16; p<0.001 

Treatment*sex Wald χχχχ2
1=1963.78; p<0.001 

Personality*sex Wald χχχχ2
1=197.40; p<0.001 

 
 
 

For the treatment effect, the restricted group travelled shorter distances compared to 

the control group (Figure 11). In the control group, the distances travelled out of an area the 

size of the restricted housing were significantly greater than the distances travelled within an 

area the size of the restricted housing. In other words, individuals were not confining the 

distances they travelled within the size of their previous housing. For the restricted group, the 

distances travelled within the size of the restricted housing were greater than the distances 

travelled out of the size of the restricted housing.  
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Figure 11. Total distance travelled within and beyond the area of the size of the restricted 
housing by individual striped mice from control and restricted groups. Bars with the same 
letters within each group (control and restricted) are not significantly different. Whiskers 
denote 95% confidence limits. 

 
Distances and routes travelled 

For the striped mice, there was a significant and strong positive relationship between 

the number of routes travelled and the total distance travelled (R2=0.69; p<0.001; Figure 12). 

Individuals from the control group had the widest range of routes travelled and distance 

travelled. For the control, distances travelled out of the area of the size of the restricted 

housing were all above 1000 mm and the number of routes travelled was between 2 and 19 

routes. The number of routes travelled within the size of the restricted housing was between 3 

and 18 routes and the total distances travelled per individual were all less than1500 mm.  
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Figure 12. Distances travelled within and out of the area of the size of the restricted housing 
by individual striped mice from control and restricted groups in relation to the number of 
routes travelled per individual. 
 
 

In comparison, for the restricted group, all the distances travelled within the area of 

the size of the restricted housing were between 1500 mm and 2500 mm, with individuals 

travelling between 15 and 20 routes (Figure 12). All the distances travelled out of the size of 

the restricted housing were below 2500 mm and individuals travelled between 0 and 4 routes.  

 

Discussion 

The second chapter of my study considered how spatial restrictions on striped mice 

would influence their subsequent space use in an enlarged area. Grassland Rhabdomys have a 

solitary lifestyle. Female and male home ranges are 5760 ± 1098 m2 and 12446 ± 2000 m2 

respectively (Schradin and Pillay, 2005b). Therefore, the space use of striped mice was 

evaluated using individual movements rather than movements of a group. Overall, I found 

that prior spatial restriction did influence subsequent space use for striped mice in an enlarged 

area.  
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My first aim was to ascertain the space use of striped mice by quantifying the surface 

area used and thus establish whether they were restricting their movements to the size of the 

original, restricted housing. The restricted group limited their movements to the size of their 

old housing significantly more than the control group. Thus their experience in the restricted 

housing influenced their subsequent space use in an enlarged area. However, studies to date 

have not considered how restricting space use will affect subsequent space use. 

My next aim was to quantify the distance travelled by the striped mice to establish 

how the space used related to the distances the individuals were travelling. For the control 

group, distance travelled was positively correlated to the area covered, long distances were 

travelled in routes that covered an area outside the size of the restricted housing and short 

distances were covered in routes that were within the size of the restricted housing. For the 

restricted group, a reversal of this pattern was observed, because there were longer distances 

for routes that covered an area within the size of the restricted housing compared to distances 

covering an area outside the size of the restricted housing. Thus, restricted individuals were 

travelling long distances but keeping these movements confined to the size of the original, 

restricted housing 

Next I aimed to establish whether space use was sex specific. There were no 

differences in the space use between males and females, a finding that contrasted with my 

prediction that females would be more spatially restricted than males, as females have smaller 

home ranges (Schradin and Pillay, 2004b). However, male striped mice have been found to 

travel longer distances than females in captivity (Mackay, 2011). In my study, males travelled 

longer distances than females. Thus, my findings indicate that males had higher spatial 

restriction than females even though there were no sex differences in space use, as males 

travelled longer distances and females travelled shorter distances within similar space.  

Finally, I aimed to establish the space use of bold and shy striped mice to assess 

whether personality types affect space use. It is known from the literature that bold 

individuals explore more than shy individuals (Fraser et al., 2001; Rodel et al., 2006), and 

thus I predicted that bold striped mice would be less spatially restricted than shy striped mice 

as they would travel further while exploring the new environment. There was a difference in 

space use for bold and shy striped mice, but there were no differences for bold and shy 

striped mice between treatments. Overall, bold striped mice travelled longer distances. There 

was a general decrease in distance travelled following restricted space for both bold and shy 

striped mice but the decrease in distance travelled was more pronounced for shy striped mice. 

Shy striped mice that were not previously restricted travelled longer distances than restricted 
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and non-restricted bold mice. However, shy striped mice that had been restricted travelled the 

shortest distances compared to the restricted and non-restricted bold striped mice. Thus, the 

spatial restrictions affected shy striped mice more than bold striped mice with regard to the 

distances they travelled. 
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Chapter 4 

Experiment 3: Common woodlice 

Introduction 

Common woodlouse biology 

Woodlice, Porcellio scaber (Isopoda, Oniscidea), are terrestrial isopods (Edney, 

1968). Woodlice inhabit mesic habitats (Hassall et al., 2010) and are important detritivores, 

participating in the decomposition process of leaf litter (Zimmer and Topp, 1997). 

Woodlice have cuticles that lack external waxy layers, making them sensitive to 

desiccation, and thus their survival is dependent on minimising water loss (Hassal et al., 

2010). Aggregation is important for minimising water loss and at low densities P. scaber 

spends time searching for other individuals with which to aggregate (Hassal et al., 2005), and 

will also actively seek out moist shelters when posed with desiccating conditions (Hassal et 

al., 2010). They are positively thigmotactic (touch) and negatively phototactic (light) under 

most conditions (Hughes, 1992).  

Sensitivity to desiccation makes speed of movement and turn alternations important 

for woodlice to move away from unfavourable environments quickly (Morris, 1999). 

Although few studies have investigated the structure of the isopod brain (Warburg and 

Rosenberg, 1978), Kupfermann (1966) stated that turn alternations appeared to be mediated 

by some form of short-term memory. While there has been uncertainty about whether the 

memory mechanism is peripheral or central, Beale and Webster (1971) found that the 

differential activity of right and left legs was a sufficient condition for producing a strong 

bias in the direction of subsequent turns and thus concluded that a peripheral mechanism 

could not be discounted.  

 

Aims 

In addition to the main aim (Chapter 1), 2 further aspects were considered for space 

use in the woodlice. I have provided the aims and accompanying questions below. 

 
Aim 2: To ascertain the total movement of the woodlice by quantifying distance travelled to 

establish how space used by individuals relates to distance travelled. 
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Will individual woodlice travel longer distances but still restrict their space use to the 

surface area of their old housing? The influence of previous restriction may be overridden 

because individuals travel long distances under natural conditions.  

Aim 3: Establish space use of males and females to assess whether space use is sex specific.   

 
 

Materials and methods 

Study subjects 

Restricted group  

For this study, 40 woodlice (20 male and 20 female), with a size range between  

10 mm - 15 mm, were collected from gardens in Johannesburg, South Africa and were placed 

in same-sex pairs, because they are a group living species and they tend to aggregate (Hassal 

et al., 2005), in plastic circular bottles with a base area of 8 cm2 and a height of 2cm. The 

bases of the bottles were covered with soil in order to maintain a more naturalistic 

environment. The woodlice were provided with leaf litter and carrot slices for food (D. 

Macullum 2010, pers. comm.). Dampened cotton wool was placed in the bottles to maintain a 

moist environment. The bottles were checked daily to ensure the woodlice had sufficient food 

and the cotton wool was moist. The bottles were covered with tin foil as woodlice generally 

live under rocks or logs where they are exposed to minimal sunlight; small holes were 

punctured into the foil to allow air to circulate in the bottles. The woodlice were kept in the 

plastic bottles for 14 days before they were used in experiments and video recorded (see 

below, page 53). All experiments were conducted in summer and all test subjects were 

exposed to ambient conditions in a laboratory at the University of the Witwatersrand.  

Controls 
A control group of 40 woodlice (20 male and 20 female) were also video recorded in 

the same manner as the restricted individuals. The woodlice for the control group were kept 

under the same conditions as the restricted individuals but in containers that had a base area 

of 154 cm2 with 4 cm high walls.  

 

Sampling 

Two weeks after being housed in the 8 cm2 housing (restricted group) and the 154 cm2 

housing (control group), the woodlice pairs were placed into a test arena 20 times the size of 

the restricted group housing, the same size as the control group housing. To minimise 



 

anxiety, the original bottles in which the restricted pairs were housed were placed into the 

arena, allowing the individuals to move into the arena unaided. For the control pairs, the 

original housing tub was tipped into the arena and individuals emerged into the arena 

unaided. Since the individuals were housed as pairs, they were filmed in pairs in the test 

arena (Figure 13). The arena had a base area of 154

high. The walls were covered in Vaseline® to prevent the individuals from climbing up the 

sides, ensuring they remained within the test arena for the whole test time. A Perspex lid was 

placed on top of the arena as an added precaution to prevent test subjects from esca

floor of the arena was covered with soil and there were 

woodlice with areas for thigmotaxis within the arena.

Figure 13. A photograph of an

Each pair from the restricted and control group was placed in the arena and was 

marked with non-toxic, luminous yellow acrylic paint. Woodlice pairs were video

with a Sony Handycam for 5 minutes in a dark room during night

between 20:00 and 23:00, because woodlice are nocturnal and shy away from light 

(Cloudsley-Thompson, 1956). The paint aided in observing the individuals when being 

filmed using the night-shot setting on the camera. 

In the following text, “restricted” refers

cm2 housing and control/“non-

housing.  

2.5 cm 
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anxiety, the original bottles in which the restricted pairs were housed were placed into the 
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sides, ensuring they remained within the test arena for the whole test time. A Perspex lid was 

placed on top of the arena as an added precaution to prevent test subjects from esca

floor of the arena was covered with soil and there were 3 plastic partitions to provide the 
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arena, allowing the individuals to move into the arena unaided. For the control pairs, the 
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unaided. Since the individuals were housed as pairs, they were filmed in pairs in the test 
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ls were covered in Vaseline® to prevent the individuals from climbing up the 

sides, ensuring they remained within the test arena for the whole test time. A Perspex lid was 

placed on top of the arena as an added precaution to prevent test subjects from escaping. The 

plastic partitions to provide the 
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Space use recording of woodlice 

At the end of the sampling sessions, the video recordings of the woodlice were used to 

trace the routes that each individual made between stops. This was done for 20 routes 

travelled per individual, 10 at the beginning of the filming session and 10 at the end of the 

filming session. The same tracing techniques discussed for the striped mice were applied to 

the woodlice movements (Chapter 3, Figure 8). In the following text, ‘movements’ refers to 

the travelling of the woodlice.  

The tracings were used to assess whether or not the individual movements of the 

woodlice were restricted to the size of their old housing in the restricted group. The area of 

the space use was evaluated by placing a circular grid, the size of the restricted housing, over 

each route, and the area covered was matched against 2 categories: within the 8.5 cm2 (8 cm2 

with 1 mm edge effect) circle or greater than the 8.5 cm2 circle (Figure 14). The total distance 

that was travelled per route per individual was also measured.  

 

 

 

 

 

 

 

 

 

Figure 14. Diagrammatic representation of the way in which space use of each woodlouse 
route was evaluated. 

 

These sampling techniques were applied to both the restricted and control group pairs 

to assess whether there were differences in movements of restricted and non-restricted 

individuals and whether exposure to restricted space limited movement in the test arena. 

The data collected were used to ascertain whether woodlice restricted their 

movements to the area of the smaller housing or whether their space use was unaffected by 

previous experience in restricted space. The data were also used to establish whether there 

were differences in space use for males and females. 

 

 

Route tracing 

8.5 cm2 grid 

Grid larger 
than 8.5 cm2 
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Data analysis 

I used a Variance Components Analysis with an expected mean squares model to 

investigate whether individuals in a same-sex pair influenced one another’s movements in the 

test arena. Treatment, sex and movements within and out the size of the restricted housing 

were fixed effects, individual was a random effect and distance and frequency (tested 

separately) were the dependent factors. Individual was not a significant predictor of distance 

(F40=0.89; p=0.651) or frequency (F40=0.98; p=0.516) of movement within and out the size 

of the restricted housing. Therefore, this predictor was not considered further.   

Space use and total distance travelled for individuals were analysed using the same 

statistical analyses that were used for striped mice (Chapter 3). Analyses were run in 

Statistica version 6 (StatSoft, Inc. 2001). The first 10 routes and last 10 routes (Wald χ2
1 = 

0.25; p=0.615) were not significant predictors of the response variables in the final GLZ and 

these were pooled in the final analyses resulting in 20 routes per individual. I also tested 

whether space use and distance travelled (response category) differed between sex categories 

(categorical variable), with number of routes travelled coded as a covariate. I further ran a 

regression analysis on the number of routes travelled and the total distance travelled for all 

individuals, to assess the relationship between these 2 variables.  

 

 

Results 

Space use of male and female woodlice in control and treatment groups 

There were differences in area covered for the restricted and control groups. 

Following the best subsets model protocol, treatment, sex and treatment*sex were significant 

predictors of the area covered in the final GLZ model (Table 11).  

 

 

Table 11. Results from the GLZ analysis of the space use of male and female woodlice from 
control and restricted groups.  

 Statistics results 

Treatment Wald χχχχ2
1=10.74; p=0.001 

Sex Wald χχχχ2
1=9.08; p=0.015 

Treatment*sex Wald χχχχ2
1=4.53; p=0.036 
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The restricted group restricted their movements more often than the control group 

(Figure 15). For the sex effect, males limited their movements to the size of their restricted 

housing more than females. For the treatment*sex interaction, males from the restricted group 

limited their movement significantly more often than males from the control group as well as 

females from both the control and restricted groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 15. Predicted mean of woodlice movements covering an area less than or equal to the 
base area of the restricted housing. Bars with the same letters are not significantly different. 
Whiskers denote standard error according to least squares means. 

 
Distances travelled by woodlice 

There were no differences in distances travelled for the restricted and control groups. 

Following the all effects model protocol, the number of routes travelled, sex and 

treatment*sex were significant predictors of the distance travelled in the final GLZ model 

(Table 12). For the graphs of the distances travelled actual distance travelled was plotted thus 

whiskers denote 95% confidence limits.  
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Table 12. Results from the GLZ analysing the distance travelled by male and female 
woodlice from control and restricted groups. p-values highlighted in bold are significant. 

 Statistics results 

Distances travelled Wald χ2
1 = 0.50; p=0.478 

Number of routes travelled Wald χχχχ2
1= 9204.36; p<0.001 

Sex Wald χχχχ2
1 = 472.52; p<0.001 

Treatment*sex Wald χχχχ2
1 = 836.02; p<0.001 

 
 

For the sex effect, overall, females travelled longer distances than males. For the 

treatment*sex effect, females from the control group travelled significantly longer distances 

than all the other males and females (Figure 16). Males from the restricted and control groups 

travelled significantly longer distances than females from the restricted group. Distances 

travelled out of the size of the restricted housing for all groups were significantly greater than 

distances travelled within the size of the restricted housing.  

 
 
Distances and routes travelled 

There was a significant and strong positive relationship between the number of routes 

travelled and the total distance travelled (R2= 0.60; p<0.001; Figure 17). For the control and 

restricted groups, an increase in the number of routes was associated with an increase in the 

total distance travelled. Woodlice from the restricted and control groups travelled the shortest 

distances when they were within the size of the restricted housing and the longest distances 

when outside the size of the restricted housing.  
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Figure 16. Total distance travelled within and out of the size of the restricted housing by 
individuals from control and restricted groups. Bars with the same letters within each group 
(control and restricted) are not significantly different. Whiskers denote 95% confidence 
limits. 

 
 

 
 
Figure 17. Distances travelled within and out of the area of the size of the restricted housing 
by individual woodlice from control and restricted groups in relation to the number of routes 
travelled per individual. 

0

5000

10000

15000

20000

25000

30000

Male Female Male Female

Control Group Restricted Group

T
o

ta
l d

is
ta

n
ce

 t
ra

ve
lle

d
 in

 m
m

Within

Out

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20

D
is

ta
n

ce
 tr

av
el

le
d

 in
 m

m

Number of routes travelled

Control group - Within

Control group - Out

Restricted group -
Within
Restricted group - Out

y= 225.26 + 0.59* 
R2= 0.60; p <0.001 

a 

b

d 

c a 

b 

c

d 



59 
 

Discussion 

I considered how spatial restrictions imposed on common woodlice would influence 

their subsequent space use in an enlarged area. Woodlice are very sensitive to desiccation and 

thus tend to aggregate with other individuals to minimise water loss (Hassal et al., 2005). 

Since woodlice are generally found in close contact with other woodlice individuals, the 

woodlice in this experiment were housed and tested in pairs to attempt to mimic these natural, 

social conditions. Overall, I found that previous experience did influence subsequent space use 

in woodlice. 

My first aim was to ascertain the space use of woodlice by quantifying the surface 

area used and thus establishing whether the woodlice were restricting their movements to the 

size of the original, restricted housing. Comparing space use between control individuals and 

spatially restricted individuals is the only (plausible) method of assessing space use in the 

woodlice of this study, since the distances woodlice travel in natural and captive 

environments is not known. Individual woodlice from the restricted group restricted their 

movements to the size of their old housing more often than the control individuals. Thus, the 

experience of woodlice individuals in the restricted housing influenced their subsequent 

space use.  

My second aim was to quantify the distances that woodlice from restricted and control 

groups travelled to ascertain whether restricted space influences distances travelled in an 

enlarged area. Bayley et al. (1997) compared the locomotor behaviour of woodlice, Oniscus 

asellus, from contaminated sites with clean sites used as a control and found that woodlice 

from 5 control sites displayed a velocity, on a soil substrate, between 10.0 mm.s-1 and 12.9 

mm.s-1 (I report velocity as Bayley et al. (1997) did not define how distance travelled by 

woodlice was measured). If equated to my project where the filming lasted 5 minutes, 

individuals that moved continuously would cover 3435 mm. This distance is almost 3 times 

the average distance travelled per individual from the restricted group (as well as the control 

group) in my study, so it would appear that distance travelled is being influenced by restricted 

housing. However, there were no significant differences in distances travelled between 

control and restricted groups. So while it is evident that in natural conditions, woodlice travel 

longer distances than seen in the individuals from my experiment, O. asellus individuals from 

the study by Bayley et al. (1997) were taken from the field and then tested within a few days, 

whereas the individuals from my experiment were kept for a long period of time in more 

restrictive environments than their counterparts found in natural environments. Additionally, 
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the species used in the Bayley et al. (1997) experiment were different to the species used in 

my study, and the distances travelled may be species-specific. The woodlice in my 

experiment were only filmed at night whereas the woodlice in the Bayley et al. (1997) 

experiment were filmed in daylight hours, which could have influenced the speed that the 

photophobic woodlice ran (Morris, 1999).  

My final aim was to establish space use of males and females to assess whether space 

use was sex specific. I did not expect to find any differences in space use for males and 

females because there have been no accounts of sex differences in literature. In terms of area 

covered, males from the restricted group were more restricted than those of the control group 

and all the females; males in the restricted group kept to within the confines of the size of the 

restricted housing more often. However, the restricted housing influenced the distances that 

females travelled more than males. While the distances travelled by restricted individuals 

were shorter than control individuals, females travelled the longest distances (control group) 

and the shortest distances (restricted group). So, even though restricted space did not 

influence subsequent space use in females, it influenced the distances they travelled, whereas 

males did not show a difference in distance travelled, only a difference in area covered. Thus 

confinement to restricted space could be said to influence male space use and female 

distances travelled.  
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Chapter 5 

Experiment 4: German cockroaches 

Introduction 

The German cockroach, Blattella germanica, (Dictyoptera Blattelidae) is one of the 

most notorious pest species because it can survive well in any human habitation (Rivault, 

1989). The German cockroach is omnivorous (Cloarec and Rivault, 1991), nocturnal, and 

prefers a moist and warm environment, making it a regular inhabitant of kitchens and 

bathrooms (Cornwell, 1968). 

Shelter is an important resource for cockroaches (Deneubourg et al., 2002) and thus 

accurate homing behaviour is important for cockroaches, so that they can return to shelters 

after foraging excursions. German cockroaches use idiothetic cues (information concerning 

an individual’s orientation in an environment that is acquired by reference to a previous 

orientation of its body; Allaby, 1999), and learned visual cues to return to shelters after 

foraging (Durier and Rivault, 2000). Durier and Rivault (2001) found that German 

cockroaches learn the locations of specific resources in their home ranges and associate 

particular locations with specific resources, thus improving their foraging efficiency.  

Cockroaches can also learn to avoid unpleasant situations. They are capable of 

associating a stimulus with punishment or reward, whereby they can be trained to avoid 

unpleasant situations by flexing their legs or remaining in lighted areas (which they would 

usually avoid) in order to avoid shock (Evans, 1984). 

Male and female cockroaches differ in their occupancy of shelters. Gravid females do 

not eat and tend to stay in shelters until they deposit oothecae, and following this, start to feed 

again and may even accept a second mating (Rivault, 1989). Males are more mobile, 

spending the least amount of time in shelters and tend to hold a strategic place near receptive 

females (Rivault, 1989).  

 

Aims and predictions 

In addition to the main aim (Chapter 1), 2 further aspects were considered for space 

use in the cockroaches. I have provided the aims and accompanying questions/predictions 

below. 

Aim 2: To ascertain the total movement of the cockroaches by quantifying distance travelled. 
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 How does the space use of individuals relate to the distance they travel? Will 

individuals travel longer distances but still restrict their space use to the surface area of their 

old housing as was observed in woodlice and striped mice. 

Aim 3: Establish space use of males and females to assess whether space use is sex specific.   

I predicted that males would be more space restricted than females because males are 

found to disperse less (Bret and Ross, 1985) and do not travel over long distances (Rivault, 

1989) compared to females. 

 
  

Materials and methods 

Study subjects 

Restricted group  

Cockroaches were obtained from South African National Standards (SANS) labs. 

Forty cockroaches (20 male and 20), with a size range between 15 mm – 20 mm, were used 

in experiments. The cockroaches were placed in same-sex pairs, since they are group living 

(Ame´ et al., 2006), in plastic circular bottles with a base area of 8 cm2 and a height of 2 cm. 

The bases of the bottles were covered with soil and the cockroaches were provided with 

Epol® mouse cubes, which had been crushed into a powder, for food and wet cotton wool for 

moisture, as suggested by Vincent Nell at SANS. The bottles were covered with mesh to 

allow air to circulate in the bottles. The bottles were checked daily to ensure the cockroaches 

had sufficient food and the cotton wool was moist. The cockroaches were kept in the plastic 

bottles for 2 weeks before being used in experiments. All experiments were conducted in 

Spring and all test subjects were exposed to ambient conditions in a laboratory at the 

University of the Witwatersrand.  

Controls 
A control group of 40 cockroaches (20 male and 20 female) were also video recorded 

in the same manner as the restricted individuals. The cockroaches for the control group were 

kept in the same conditions as the restricted individuals but in containers that had a base area 

of 154 cm2 with 4 cm high walls.  

 

Sampling 

The same techniques that were used for sampling the space use of the woodlice were 

applied to the cockroaches. The same type of arena that was used during the filming of the 
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space use in woodlice was also used for the cockroaches (Chapter 4, Figure 13). A pair of 

same-sex cockroaches was filmed in a dark room during night-time hours between 20:00 and 

23:00, because cockroaches are nocturnal and shy away from light (Rivault and Durier, 

2004).  

In the following text, “restricted” refers to individuals that were housed in the small 8 

cm2 housing and control/“non-restricted” individuals refers to individuals housed in the large 

154 cm2 housing.  

 

Space use recording of cockroaches 

At the end of the sampling sessions, the video recordings of the cockroaches were 

used to trace the routes that each individual made between stops. The same tracing techniques 

discussed for the striped mice and woodlice were applied to the cockroach movements 

(Chapter 3, Figure 8).  

The tracings were used to assess whether or not the individual movements of the 

cockroaches were restricted to the size of their old restricted housing. The same technique of 

area measurement that was used for the woodlice movements were applied to the 

cockroaches (see Chapter 4 Space use recordings of woodlice; Figure 14).  

These sampling techniques were applied to both the restricted and control group pairs 

to assess whether there were differences in movements of cockroaches housed in restricted 

and non-restricted conditions and whether limited movement was influenced from being 

exposed to restricted space.  

The data collected were used to ascertain whether cockroaches restricted their 

movements to the area of the smaller housing or whether their space use was unaffected by 

previous experience in restricted space. The data were also used to establish whether there 

were differences in space use for males and females. 

 

Data analysis 

I used a Variance Components Analysis with an expected mean squares model to 

investigate whether individuals in a same-sex pair influenced one another’s movements in the 

test arena. Treatment, sex and movements within and out the size of the restricted housing 

were fixed effects, individual was a random effect and distance and frequency (tested 

separately) were the dependent factors. Individual was not a significant predictor of distance 
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(F40=24.39; p=0.516) or frequency (F40=0.27; p=0.999) of movement within and out the size 

of the restricted housing. Therefore, this predictor was not considered further.  

Space use and total distance travelled for individuals were analysed using the same 

statistical analyses that were used for striped mice and woodlice (Chapter 3 and 4). Analyses 

were run in Statistica version 6 (StatSoft, Inc. 2001). The first 10 routes and last 10 routes 

(Wald χ2
1=0.14; p=0.706) were not significant predictors of the response variables in the 

final GLZ and these were pooled in the final analyses resulting in 20 routes per individual. I 

also tested whether space use and distance travelled (response category) differed between sex 

categories (categorical variable), with number of routes travelled coded as a covariate. I also 

ran a regression analysis on the number of routes travelled and the total distance travelled for 

all individuals, to assess the relationship between these 2 variables.  

 

Results 

Space use of male and female cockroaches 

There were no differences in area covered for the restricted and control groups. 

Following the best subsets model protocol, treatment, sex and treatment*sex were not 

significant predictors of the area covered in the final GLZ model (Table 13). 

 

Table 13. Results from the GLZ analysing space use of male and female cockroaches from 
control and restricted groups.  

 Statistics results 

Treatment Wald χ2
1=0.54; p=0.461 

Sex Wald χ2
1=0.15; p=0.697 

Treatment*sex Wald χ2
1=0.45; p=0.501 

 

 

Distances travelled by cockroaches 

There were significant differences in distances travelled for the restricted and control 

groups. Following the best subsets model protocol, the number of routes travelled, treatment 

and sex were significant predictors of distance travelled in the final GLZ model. For the 

graphs of the distances travelled actual distance travelled was plotted, thus whiskers denote 

95% confidence limits.  
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Sex*treatment was not a significant predictor of distance travelled in the final GLZ 

model (Table 14). Beta estimates and confidence intervals (95%) revealed that for the 

treatment effect, overall, the restricted group travelled longer distances than the control 

group.  

 

Table 14. Results from the GLZ analysing the distance travelled by male and female 
cockroaches from control and restricted groups. p-values highlighted in bold are significant. 

 Statistics results 

Number of routes travelled Wald χχχχ2
1 = 273.56; p<0.001 

Treatment Wald χχχχ2
1 = 241.55; p<0.001 

Sex Wald χχχχ2
1 = 2086.99; p<0.001 

Sex*treatment  Wald χ2
1 = 0.046; p=0.829 

 

 

The restricted group covered the shortest and longest distances when they were 

covering distances within and out of the size of the restricted housing, respectively (Figure 

18). For the sex effect, females travelled longer distances than males. Females travelled the 

longest distances when they were covering distances out of the size of the restricted housing 

and males travelled the shortest distances when they were covering distances within the size 

of the restricted housing (Figure 18).  
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Figure 18. Total distance travelled within and out of the size of the restricted housing by 
individuals from control and restricted groups. Bars with the same letters within each group 
(control and restricted) are not significantly different. Whiskers denote 95% confidence 
limits. 

 
 
 
 
Distances and routes travelled 

There was a significant but weak positive relationship between the number of routes 

travelled and the total distance travelled (R2= 0.34; p<0.001; Figure 19). The distances and 

routes travelled within the area size of the restricted housing for the control and restricted 

groups were similar, with the total distances for both categories being below 750 mm (yellow 

triangles and blue diamonds in Figure 19). The distances covered out of the size of the 

restricted housing for the control and restricted groups were also similar to each other; an 

increase in routes travelled correlated to an increase in distance travelled.  
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Figure 19. Distances travelled within and out of the size of the restricted housing by 
individual cockroaches from control and restricted groups in relation to the number of routes 
travelled per individual. 

 

 

Discussion 

My final experiment considered how spatial restrictions imposed on German 

cockroaches would influence their subsequent space use in an enlarged area. Cockroaches are 

group living (Ameét al., 2006), so I housed and filmed them in pairs. Jeanson et al. (2003) 

evaluated the movements of German cockroach larvae in a bounded space. They found that 

the average velocity along the periphery of the circular arena was 10.6 mm.s-1. When equated 

to the time of my sampling (5 minutes), the individual cockroach would have travelled 3180 

mm; this is more than 4 times the distance travelled by the restricted and control cockroaches 

in my experiment. However, the control and restricted individuals from my study were kept 

for a long period of time in restrictive environments whereas the individuals in the Jeanson et 

al. (2003) study had never been restricted at all. The study by Jeanson et al. (2003) showed 

that cockroaches do travel long distances when they have not been previously exposed to 

restrictive environments.  
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My first aim was to ascertain the space use of cockroaches by quantifying the surface 

area used. I found that there were no differences in space use between control and restricted 

individuals. These results were unexpected since exposure to restricted space has been shown 

to influence subsequent space use in an enlarged area in the other species that I studied 

(Chapters 2, 3 and 4) and I expected the restricted housing to have an effect on the 

subsequent space use of cockroaches in an enlarged area. Being exposed to restricted space 

does not appear to influence cockroach space use in an enlarged area. 

However, when considering the total movements of the cockroaches (Aim 2), I found 

that overall, individuals from the restricted group travelled longer distances than the control 

group. This was also unexpected since there were no differences in area covered and if there 

was a difference in movement, I expected the restricted individuals to cover shorter distances 

in response to exposure to restricted space. Since cockroaches were not showing restrictions 

in their space use and previously restricted individuals were travelling longer distances than 

control individuals, the cockroaches’ movements might reflect a rebound effect. The 

cockroaches increased their locomotion when given the opportunity to be in a larger 

environment. This resembles the findings of a study on rabbits, Oryctolagus cuniculus, which 

were transferred between pens of different sizes (Dixon et al., 2010). When the rabbits were 

moved from small pens to larger pens they increased their activity levels thus showing a 

rebound effect with increasing activity when being exposed to greater available space (Dixon 

et al., 2010).   

My final aim was to establish the space use of males and females to assess whether 

there were sex differences in the space use of cockroaches. There were no differences in area 

covered but there were differences in distance travelled because females travelled longer 

distances than males. This concurred with my prediction because male cockroaches are found 

to disperse less (Bret and Ross, 1985) and travel shorter distances (Rivault, 1989) compared 

to female cockroaches. 
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Chapter 6  

General discussion 

To briefly recapitulate the findings of my study: space use in chimpanzee, striped 

mouse, woodlouse and cockroach test subjects was influenced by the previous experience of 

restricted housing in different ways. Chimpanzees restricted their inter-individual distances 

and striped mice and woodlice restricted their movements to the size of their previous, 

restricted housing. Conversely, cockroaches showed a rebound effect following exposure to 

restricted housing. In selected species, sex and personality effects were considered and 

comparisons to control groups and the effect of shade availability were used to determine the 

factors influencing spatially restricted movements. For the chimpanzees, shade availability, 

which would be the most likely explanation for restricted space use within the enclosure, was 

found to only influence spatial position and not the size of the space utilised. Other possible 

factors that could have been predictors of chimpanzee space use include the time of day, the 

maximum daily temperature, the percentage of available shade, the inter-individual distances, 

and the age-sex composition. In addition to group size not being random, however, these 

factors were found to not be good predictors of space use (Duncan, 2012).  For the striped 

mice, woodlice and cockroaches the only variable that changed was the size of the enclosure 

they were exposed to. Since the striped mice and woodlice did restrict their movements to the 

size of their original housing, it appears that the previous experiences of these individuals 

were influencing their subsequent space use. This notion of previous experiences influencing 

later experiences is the foundation of learned helplessness which might explain the observed 

phenomena.   

 

Learned helplessness 

The learned helplessness hypothesis was proposed by Overmier and Seligman (1967) 

when they observed that after various rounds of inescapable shock treatments, dogs stopped 

trying to escape even after the shock treatments desisted. The learned helplessness effect is a 

passive response to aversive stimuli whereby the organism perceives that it has no personal 

control over the outcome of the situation, giving up after repeated failure (Santrock, 2002). 

There is the perception that the outcome is independent of the response since there is no 

personal control over the environment (Grimes, 1981). Passivity arises, where the motivation 

to regain control over a situation or to learn a new way of escape is lost (Barber, 1986). The 



70 
 

organism “needs” to expect that the outcome is uncontrollable, since mere exposure will not 

have the same effect, i.e. an organism just being exposed to an uncontrollable situation will 

not show learned helplessness (Abramson et al., 1980). The organism needs to be exposed to 

an uncontrollable situation often enough that it comes to expect that the situation is 

uncontrollable. This expectation comes about from repeated punishment or failure to achieve 

a goal (Martinko and Gardner, 1982).  

The learned helplessness effect has been observed in a variety of taxa, including mice, 

cats, rats, primates and fish (Maier and Seligman, 1976). There have even been accounts of 

the learned helplessness effect in isolated insect ganglia (Eisenstein and Carlson, 1997), 

suggesting that learned helplessness can occur in a variety of contexts. Learned helplessness 

has been studied largely in humans because of its medical importance. Learned helplessness 

is viewed as a sign of depression (Santrock, 2002), and has been widely used as a model for 

depression (Vollmayr and Henn, 2001). Behaviours associated with learned helplessness 

include passivity, inactivity, non-responsiveness and immobility (Eisenstein and Carlson, 

1997). Therefore, if animals show high passivity or inactivity, they could be displaying 

learned helplessness as their behaviour does not allow for them to change their circumstances 

e.g. they do not realise they can move beyond a specific point as they have not attempted to 

approach that point.  

At least 3 studies best demonstrate learned helplessness in animals. 1) Exposing rats, 

Rattus norvegicus, to uncontrollable tail shock resulted in them attempting to escape from an 

area, but when shock treatment desisted, the rats exhibited a deficit in learning to escape from 

escapable stress in future situations and also exhibited an exaggerated fear response 

(Greenwood et al., 2003). 2) Similarly, dogs, Canis lupus familiaris, exposed to shock 

treatment when they approached a specific area, stopped approaching the area even after 

shock treatments desisted (Grimes, 1981). 3) Beasor (2006) describes how pike, Esox lucius, 

that previously fed on guppies, Poecilia reticulata, and were then separated from the guppies 

with a glass sheet repeatedly struck the glass barrier, and eventually stopped approaching the 

guppies. When the barrier was removed, the pike still refrained from approaching the 

guppies. In all of these examples, animals were exposed to an initially uncontrollable 

situation. Once the situation had become controllable, the animals still continued to respond 

in the same manner as when the situation was uncontrollable. 

Learned helplessness examples usually centre on animals receiving unpleasant, 

uncontrollable stimuli, such as the shock treatment mentioned in the first 2 examples. 

However, being exposed to an unpleasant stimulus may not be the only way for learned 
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helplessness to develop. Maier (1980), even states that the situations do not necessarily need 

to be aversive; learned helplessness has occurred in situations with positive, negative and 

neutral stimuli. The important component of learned helplessness is that animals perceive that 

a situation is beyond their control and thus they inhibit their responses based on the 

expectancy that their actions yield no alternative outcome (Martinko and Gardner, 1982).  

Therefore, instead of receiving shock treatment to develop learned helplessness, one could be 

physically abused, fail school tests repeatedly or be exposed to a restricted environment. The 

important component is the controllability of the situation (Maier and Seligman, 1976).  

I propose that the learned helplessness phenomenon could also be applied to animals 

in captive environments exposed to restricted space. Animals that have been exposed to a 

particular sized housing for a long time and are then moved to an enlarged area may not 

move beyond the size of the old housing even though there is more space available. If this 

occurs, the animals may be displaying learned helplessness, as they are not utilising the space 

beyond which they have known from their past, as was seen with white leghorn chickens and 

pike. If animals do show spatial restrictions in an enlarged area, would this phenomenon 

occur across a wide variety of captive species? Is learned helplessness in terms of space use 

related to neuronal complexity, so that species with high and low cognitive abilities show 

learned helplessness? If the expression of learned helplessness is not related to the cognitive 

levels of an animal, one would expect that animals with higher cognition, like mammals, and 

animals with lower cognition, like arthropods, would both display learned helplessness in 

terms of space use when introduced into an enlarged environment.  

 

Learned helplessness and spatial learning 

Song et al. (2006) investigated the effects of learned helplessness and chronic mild 

stress on the cognitive function of rats in a Morris water maze task, and found that learned 

helplessness and chronic mild stress significantly impaired spatial learning and memory. This 

was a consequence of up-regulation of plasma corticosterone concentration, and down-

regulation of the hippocampal brain derived neurotrophic factor (BDNF) and cAMP-response 

element-binding protein (CREB) levels (Song et al., 2006). Changes with BDNF and CREB 

could lead to reduced hippocampal volume (Duman et al., 2000) which is said to be 

correlated with a decline in verbal and visual memory (von Gunten et al., 2000). A 

relationship between depression and spatial cognition was found in patients with Parkinson’s 
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disease where only patients with depression symptoms had impaired working memory 

(Uekermann et al., 2003). 

 

Factors influencing the expression of learned helplessness 

There were some inadequacies with the original learned helplessness hypothesis, 

since individual differences were not taken into account (Abramson et al., 1980). The 

response to failure, especially in humans, is dependent on an individual’s personality and 

level of self-esteem (Martinko and Gardner, 1982). It also depends on the reaction to failure 

and whether lack of success of an animal is attributed to internal or external factors (Grimes, 

1981; Powell et al., 1990). The reformulated theory of learned helplessness includes these 

attributes (Abramson et al., 1989). Another consideration is the age of the animal, since 

young children have reduced susceptibility to learned helplessness in comparison to adults 

(Fincham and Cain, 1986). 

Hellhammer et al. (1984) postulated that animals that are exposed to inescapable 

situations show a deficit in the subsequent acquisition of behavioural skills, due to 

acetylcholine-mediated inhibition of avoidance motivation and serotonin-mediated inhibition 

of behavioural activity. Hormones regulate the activity of cells and organs and thus contribute 

to the expression of specific behaviours (Solomon et al., 1996). Hormones and 

neurotransmitters therefore need to be considered with regard to understanding the expression 

of learned helplessness. Clearly, those hormones and neurotransmitters related to stress and 

depression would be of interest, particularly uncontrollable stress (Weiss et al., 1981; Maier 

and Watkins, 2005). Several hormones and neurotransmitters may be implicated including 

glucocorticoids, norepinephrine, acetylcholine, serotonin and dopamine (Checkly, 1996). 

Although I do not test hormone levels in my study, the relationship between hormones and 

various brain regions, like the hippocampus, is an important consideration since a captive 

environment provides a source of stress which can have an influence on the learning and 

memory of the study animals, and ultimately influence space use.  

 

Learned helplessness in chimpanzees   
When provided with more space in their new enclosure, the chimpanzee subgroups 

were found to restrict their space use to the size of their previous housing. Several factors 

were considered for the chimpanzee space use study, with shade availability being a possible 

major contributor to this use of restricted space. However, since shade was found to not be a 
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predictor of chimpanzee restricted space use an alternative explanation could be learned 

helplessness. The learned helpless effect involves animals inhibiting their responses based on 

the expectation that their actions yield no alternative outcome (Martinko and Gardner, 1982). 

Therefore, the chimpanzees may be restricting their space use as a result of their previous 

experience in more restricted housing. 

 If learned helplessness is a predictor of space use then I would have expected 

chimpanzee subgroups to be: i) consistent in restricting their space use to 11m x 11m; ii) 

show seasonal consistency in space use; iii) show consistency of space use in different 

weather conditions; and iv) show a high frequency of inactivity (specifically the individuals 

in the sub-groups). In my study, all the predictions that were made for learned helplessness as 

a possible predictor of space use have been met. Space use by the chimpanzee subgroups 

within the enclosure was found to be consistently restricted to the size of their old housing; 

this is particularly important as the pattern of consistent spatially restricted subgroups appears 

to conform to the principles of learned helplessness (M. Seligman, 2010, pers. comm.).There 

was spatially and temporally restricted use of space in all seasons under all weather 

conditions, with a high occurrence of inactivity in adult males and females. The low levels of 

inactivity coupled with the greater occurrence of movement around the enclosure could 

suggest that juveniles are not showing learned helplessness to the same extent as the adults; 

this may support the idea that juveniles are less susceptible to learned helplessness compared 

to adults (Fincham and Cain, 1986). Inactivity has been singled out from the sampled 

behaviours as it is a behavioural marker of learned helplessness (Zhukov and Vinogradova, 

2002). 

Since the space usage of chimpanzees in the old enclosure was not known and there 

was no possibility to manipulate the enclosure of the chimpanzees, these predictions could 

support other explanations. Comparing space use in the old enclosure as well as the new 

enclosure could shed further light on space use following spatial restrictions.  

 
 

Learned helplessness in striped mice 

The movements of striped mice in an enlarged area were influenced by their 

experience in restricted housing. This could lend support to the idea of learned helplessness 

influencing space use of striped mice. Learned helplessness has been displayed in many 

rodents that have been exposed to aversive stimuli (Caldarone et al., 2000; Chourbaji et al., 

2005) and rodents also are used as models of learned helplessness and depression (Edwards et 
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al., 2000; Yacoubi and Vaugeois, 2007). In my study, previously restricted individuals 

travelled long distances but confined these distances within the size of their previous housing. 

This lends further support to the idea of space use being linked to learned helplessness, since 

restricted individuals travelled longer distances within the confines of the size of the original 

housing, akin to moving within an invisible barrier, whereas non-restricted individuals did 

not keep their movements to within the confines of the size of the original housing.  

Even though there were no sex differences in space use between male and female 

striped mice, males travelled longer distances within the size of the previous housing 

compared to the females, showing a more pronounced spatial restriction. Studies have found 

sex differences with regard to learned helplessness. Sex differences may be related to the 

species of study [e.g. humans (Shors and Leuner, 2003) and non-humans (e.g Wistar rats, 

Steenbergen et al., 1990); human females are more susceptible to learned helplessness than 

human males, whereas the opposite occurs in male and female nonhuman animals.] Single or 

group housing (Palanza, 2001) or exposures to a single stress or repeated stressors (Kennett et 

al., 1986) are also predictors of sex differences. Female Sprague-Dawley rats are more 

resistant to single stressors but they fail to respond to repeated stressors, whereas the opposite 

occurs in males (Kennett et al., 1986; Alonso et al., 1991). Inescapable shock has stronger 

and more long lasting effects in male Wistar rats compared to females, with males having 

suppressed activity (Steenbergen et al., 1991).  

 

Learned helplessness in woodlice  

Individual woodlice from the restricted group restricted their movements to the size of 

their old housing more often than the control individuals. This lends support to the idea of 

learned helplessness affecting the space use of woodlice, as the experience of restricted 

housing conditions influenced space use in a larger area. There have not been any studies on 

learned helplessness in woodlice nor are there many studies investigating the space use of 

woodlice, so it is difficult to quantify the movements of woodlice in normal circumstances. 

However, the study on the Chasmagnathus crab by Tomsic et al. (2003) mentioned 

previously (Chapter 1) and a study by Johnson (1977) on individual recognition in banded 

shrimp, Stenopus hispidus, suggests that crustaceans are able to learn and retain memories to 

some extent. Thus, it may be possible for woodlice to ‘remember’ being in restricted space. 

Woodlice, Armadillidium vulgare, have shown the ability to display new, problem solving 
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behaviours when faced with difficult situations (Moriyama, 2004), suggesting that they 

possibly have the ability to learn from the consequences of previous behaviours. 

Since woodlice from the control and restricted groups originated from the exact same 

conditions, with the only difference being housing size in captivity, it seems plausible to say 

that previous experiences can affect subsequent space use in woodlice and that they can show 

learned helplessness. The possible presence of learned helplessness in woodlice suggests that 

learned helplessness in terms of space use can occur in arthropods as well as mammals. 

 

Absence of learned helplessness effect 

When exposed to an enlarged environment, the cockroaches did not restrict their 

movement. The cockroach movements seemed to reflect a rebound effect by increasing their 

locomotion when presented with more space. A possible reason (other than a rebound effect) 

why cockroaches did not display learned helplessness is that cockroaches were not reared in 

restricted spaces, so there is a possibility that developmentally they had passed a stage (i.e. 

sensitive period),whereby the spatial environment is likely to influence their future spatial 

perceptions. A classical example of the influence that an early environment has on the 

perception of future situations has been shown in kittens, Felis catus, where those that had 

been reared in the dark at different ages were placed in a stationary cylinder covered by a 

rotating drum with black and white stripes, showed effects of different types of visual 

deprivation (Daw and Wyatt, 1976).    

If the spatial environment does influence future spatial perceptions in cockroaches, 

future studies could manipulate the age of the cockroaches used, to evaluate at what age 

cockroaches need to be confined in order to show learned helplessness. Additionally the 

holding time in restricted space could also be manipulated, to investigate how long an animal 

needs to be exposed to restricted space in order to develop learned helplessness; this would 

be applicable to all the species tested. Woodlice may not have been similarly affected as 

cockroaches as the longevity of specific development stages would differ from cockroaches 

because of the inherent differences in their life history biology which is discussed below. 

Is learned helplessness evident? 
Few studies have examined how animals utilise and cope with more space, especially 

in captive environments (Marriott and Meyer, 2005). The focus of space utilization research 

on captive environments has mainly been on animal reactions to decreases in available space 

(Coelho and Bromblett, 1981; Caws and Aureli, 2003) or it has focused on the effect of 
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enrichment on animal space use by increasing enclosure complexity (Odberg, 1987; Schapiro 

and Bloomsmith, 1994). While a decrease in available space is unfavourable for good welfare 

and an increase in available space is viewed as enrichment for many species, the utilisation of 

the greater available space may be dependent on previous experiences. If this is the case, it is 

important to consider how an animal’s previous experience in a more spatially restricted 

environment will affect its subsequent space use when provided with more space.   

My study has shown that previous experiences in more spatially restricted 

environments do affect subsequent space use, where animals will restrict their movements 

and spacing to the size of their original restricted housing. Since shade availability was not a 

factor influencing chimpanzee inter-individual distances and restricted striped mice and 

woodlice individuals restricted their movements to the size of their original housing more 

than control individuals, learned helplessness seems the most plausible explanation for 

restricted movements. Though learned helplessness studies have not focused on animal space 

use, the design of a captive environment is comparable to the environments that psychologists 

used to generate learned helpless behaviour; they are designed to prevent attempts at escape 

(McBride, 1984). This was shown in pike and white leghorn chickens that were discussed in 

Chapter 1. The pike and white leghorn chicken examples demonstrated that when animals 

have been previously restricted and are given the opportunity to escape they may fail to do so 

as they perceive that they are not able to move beyond a specific point. The spatial 

restrictions of these 2 examples are slightly different to the spatial restrictions shown in my 

study. In the white leghorn chicken and pike, individuals did not move beyond the point 

where a barrier was previously located. In my study, individuals moved around all the 

available space, but they just kept their movements, or inter-individual distances, restricted to 

the size of the previous housing.  

While learned helplessness appears to be the most plausible explanation for restricting 

subsequent space use, how can we be certain the animals were not just restricting their space 

use to areas that would occur in nature, particularly the chimpanzees? This can be answered 

by examining more closely the space use in nature. Chimpanzees are a group-living species 

that tend to form subgroups naturally, so how would one separate natural subgroup formation 

from learned helplessness? The first consideration is that subgroups in nature consist of 

individuals that are much further apart than those I observed in these captive chimpanzees. 

Wrangham and Smuts (1980) consider subgroups to be chimpanzees within 100m of each 

other, and therefore any individuals that were less than or equal to 100m away from another 

would form part of the same subgroup. The chimpanzees in the zoo can be widely spaced 
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since in natural conditions they use vast areas and the current zoo environment provides the 

space for a wide distribution; there was enough space in the enclosure for individuals to 

spread themselves out considerably, with about 312m2 of space per chimpanzee and food was 

scattered within the enclosure to encourage foraging over wide areas. However, my findings 

showed that while the chimpanzees at the zoo had the opportunity to be widely distributed, 

they were more likely to be part of a subgroup (individuals within 11m of each other), staying 

in much closer proximity to each other than seen in nature; furthermore, it is unusual for 

chimpanzees to remain close together in captivity (J. Goodall 2011, pers comm.)” 

The second point that needs to be considered is when individual chimpanzees 

occurred on their own. If chimpanzees are often on their own and not part of a subgroup, how 

can we tell whether learned helplessness is being displayed because being far apart from 

other individuals suggests that learned helplessness is not being displayed, because I have 

defined the expression of learned helplessness in terms of on the occurrence of chimpanzees 

being closely located to each other? This can be answered by considering how chimpanzee 

subgroups are restricting their space use. For the chimpanzees, restricted space use is a group 

space phenomenon where individuals within a subgroup are performing activities within an 

imaginary “barrier”; in this case a “barrier” of 11m x 11m.  

The boundary of the “barrier” is determined by social group spacing with the total 

area occupied being determined by all the individuals within the subgroup. The hypothesis of 

learned helplessness is supported if social subgroups remain within the bounded space. By 

my interpretation of learned helplessness, the chimpanzee subgroups do not need to remain in 

the exact same area over time, as long as they displayed restricted space use while travelling 

around the enclosure. Subgroup cohesion can be associated with behaviours that do not 

require movement over space, such as inactivity and social grooming, whereas subgroup 

fission can be associated with behaviours that require movement like walking (Lehmann et 

al., 2007), in which case perceived “barriers” will be “broken down”. My findings showed 

that individuals that were part of a subgroup, more frequently displayed behaviours that were 

associated with subgroup cohesions, like socio-positive behaviour, and individuals that were 

not part of a subgroup more frequently displayed behaviours that were associated with 

subgroup fission, like walking. Whether chimpanzees perceive restrictions as an individual 

effect as well as a group effect remains to be tested since the results from the striped mice and 

woodlice (Chapters 3 and 4) suggest that it can also be an individual effect. Therefore, 

individual chimpanzees sitting or performing activities on their own would be within their 
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own 11m x 11m “barrier” as they would be perceiving space on an individual basis, as was 

tested and shown in the woodlice and striped mice.  

The same concept that was discussed for the chimpanzees applies to the striped mice 

and woodlice, where there would be the perception of a “barrier”. For these species tested, 

the perception of a “barrier” would be an individual space phenomenon and not a group 

space phenomenon since striped mice were individually housed and tested and the woodlice 

individuals were not influencing each other’s movements i.e. there was no group effect. The 

single movement an individual made (path moved between stops) occurred within a 

perceived barrier, and therefore the distances they travelled between stops were limited to the 

size of their original, spatially restricted housing.  

Though it is evident that the space use of the captive chimpanzee subgroups is much 

more restricted than their natural counterparts, it is more difficult to determine whether the 

movements of the striped mice, woodlice and cockroaches are more restricted than their 

natural counterparts. Individual movements that animals make between stops are not widely 

studied, and for this reason the control groups used in the experiments with striped mouse, 

woodlouse and cockroach experiments were the best way to evaluate whether there was this 

perception of a “barrier”. Since the striped mice and woodlice from the treatment group did 

restrict their individual movements significantly more than the control group, it seems 

plausible to assume that the restricted individuals in essence perceive a “barrier” and restrict 

their movements accordingly by halting their movements when they reach the imagined 

“edge”.   

Perceived loss of control is the underlying basis of learned helplessness (Baum et al., 

1986), and as a result memory and learning of an individual can be compromised (Song et al., 

2006). However, if an individual is displaying learned helplessness, it would have to 

remember a previous suffering (stressor) in the first place. In my study, the test species would 

have to have an altered perception of space or some form of memory of being restricted in 

order to remain restricted in the enlarged area. The perception of available space would be 

based on the memory of previous experience; in this case, the animals remember not having 

the ability of moving further than a specific distance. Therefore, this could be a self-

perpetuating phenomenon where memory leads to restricted space use, and these restrictions 

then have adverse effects on the animal’s memory, thus reinforcing the spatial restricting 

behaviour. Memory ultimately ends up being altered by the behaviour it helped generate. 

An alternative consideration for restricted space use is habit formation. Wolpe (1968) 

discussed how cats, Felis catus, that were exposed to shock treatment developed a permanent 
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habit of anxiety responses. They displayed these neurotic anxiety-response habits in their 

shock-cages as well as rooms that looked similar to the rooms where the shock treatments 

were performed. Even after the shock treatments desisted, the cats did not show any 

weakening of anxiety. The same can be applied to the 3 captive species of my experiment 

that have been exposed to a new environment, yet still maintained their use of restricted space 

that they experienced previously. Wolpe’s (1968) study relates to learned helplessness yet 

also leads to the idea of habit formation. Habits can form, or be triggered, based on the 

context of a situation where they would be controlled by antecedent stimuli (Yin and 

Knowlton, 2006); in my study, this would be restricted space. The chimpanzees, striped mice 

and woodlice may have developed the habit of using restricted space based on the experience 

in smaller housing.  

There is still much uncertainty regarding the detailed mechanisms that underlie habit 

formation but there are attempts at trying to understand how synaptic plasticity in basal 

ganglia alters the output of neural networks (Yin and Knowlton, 2006). One of the principal 

differences between habit formation and learned helplessness is that a habit can be easily 

created and broken (Holland et al., 2006), whereas learned helplessness deals with more 

permanent changes in brain function (Weiss et al., 1981). Learned helplessness is a cognitive 

function of expectations about the environment (Overmier, 2002), and is associated with 

changes in hormone levels arising from stressful situations (Checkly, 1996). The 

chimpanzees had been in the enlarged enclosure for almost 5 years by the time my study took 

place. If group spacing was as a result of habit formation, it would be expected that the habit 

would most likely have been broken after such a long time of being exposed to an enlarged 

enclosure. Whether the woodlice and striped mice are restricting movements as a result of 

habit formation would need to be further tested as they were not exposed to the new, enlarged 

area for a long time before the experiment was conducted.  

Many studies have shown that learned helplessness is accompanied by changes in the 

serotonergic system (Dwivedi et al., 2005) with a profound depletion of serotonin (Petty et 

al., 1994) and an elevation of corticosterone levels (Dwivedi et al., 2005; Song et al., 2006). 

Whether the hormones are the drivers of change or as a consequence of learned helplessness 

is not clear, but there is an obvious association between the two, such that several classes of 

anti-depressant drugs can reverse learned helplessness (Sherman et al., 1982). Additionally, 

voluntary freewheel running has been found to decrease the behavioural effects of 

uncontrollable stress in Sprague Dawley rats (Greenwood et al., 2003), and social buffering 

has been found to decrease glucocorticoid responses in many social species by moderating 
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the Hypothalamic-Pituitary-Adrenocortical (HPA) system which is sensitive to stressful 

situations like perceived loss of control (Hennessy et al., 2009), which is the underlying basis 

of learned helplessness (Baum et al., 1986). The underlying neuro-endocrine system needs to be 

examined in order to confirm whether the space use restrictions are as a result of learned 

helplessness rather than habit formation.  

 

Is learned helplessness related to neuronal complexity? 

My study has shown that a variety of species can display learned helplessness but I 

further question whether learned helplessness is dependent on neuronal complexity, i.e. do 

mammals and arthropods of varying neuronal complexity all show learned helplessness? 

Sporns (2003) defined complexity as a degree to which a neuronal system integrates 

specialised information and a structural network produces a pattern of functional interactions. 

Another definition of complexity is the number of distinguishable components, which would 

range from the anatomical components to behavioural components (i.e. physiologically 

distinct processes and behaviourally distinct perceptions; Bullock, 2002). For the purposes of 

this study, neural complexity will refer to the cognitive ability of the test species in relation to 

the other 3 test species - chimpanzees are considered to have the highest cognitive ability as 

chimpanzees display very advanced cognitive abilities (Byrne and Whiten, 1992; Hare and 

Tomasello, 2004), followed by striped mice and finally woodlice and cockroaches which 

have the lowest cognitive ability, since complex cognition in arthropods is said to be rare 

(Maclaurin, 1998) and arthropods display less complex behaviour than mammals (Mizunami 

et al., 1999). Mizunami et al. (2004) compared the functional characteristics of the arthropod 

and mammalian brain. Speed and economy were a priority of information processing for the 

arthropod brain, whereas precise and flexible information processing was a priority for the 

mammalian brain. For this reason, the species chosen were selected because of their distinct 

neuronal complexity in order to test whether or not learned helplessness is related to neuronal 

complexity.   

Chimpanzees (97%) and striped mice (95.25%) showed a markedly reduced space use 

following restrictions (percentages indicate the occurrence of restricted space use in the total 

sampled). Woodlice (35.28%) also showed restricted space use following experience in 

restricted housing. While it may appear that woodlice do not show spatial restrictions since 

the percentage of restricted space use for woodlice is much lower than the chimpanzees and 

striped mice, it needs to be considered that there was a significant difference in space use 
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between control and restricted woodlice, indicating their space use was influenced by 

previous restrictions. This indicates that space restriction and learned helplessness is not an 

all or nothing effect depending on neuronal complexity but may be graded according to 

neuronal complexity, since the 2 mammal species seem to display it more markedly than 

arthropods. I say this even though the cockroaches displayed a rebound effect to restricted 

housing, which may be a species-specific reaction. It is interesting that the cockroaches 

displayed a rebound effect and the woodlice did not.  

The inherent differences in the biology and life history of species are a very important 

consideration for the differences seen in their reactions to restricted space. Chimpanzees have 

the longest life span of about 59 years (Herndon et al., 1999), followed by woodlice (3 years; 

Johnson, 1982) and striped mice (1-2 years; Schradin and Pillay 2005a) and cockroaches 

have the shortest life span (250 days; Nojima et al., 1999). The lifespan of the woodlice, 

striped mice and chimpanzees are much longer compared to the lifespan of cockroaches, 

which do not survive beyond 8 months.   

The lifespan of an animal is linked to its life history strategy with different life history 

strategies requiring different behavioural capabilities (Mizunami et al., 1999). Animals that 

are small with a short life span, in this case the cockroach, and have a low chance of survival 

into adulthood cannot invest energy in complex memory or learning as they need to spend 

most of their energy on producing large numbers of offspring (Mizunami et al., 1999). 

Conversely, memory and learning are important components of the biology of longer lived 

animals, in this case striped mice and chimpanzees, as longer lived animals tend to respond to 

environmental change by modifying individual behaviour (Mizunami et al., 1999). Woodlice 

are exceptional in that they have longer lifespan than striped mice, but this does not take into 

account the metabolic rates of the species and potential seasonal diapauses in woodlice 

(Mocquard et al., 1989), which may extend the life span of these crustaceans. 

 

Welfare and conservation implications 

Since there is a strong case for the role of learned helplessness in influencing the use 

of restricted space across a variety of taxa, there needs to be considerations of how learned 

helplessness, in terms of space use, relates to animal welfare and the possible implications of 

animal reintroductions into natural environments.  

In captive environments, if restricted space use is as a consequence of habit 

formation, it may be altered by providing enrichment that requires animals to utilise more 
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space and ultimately “break the boundaries”. This can be achieved by rotating various stimuli 

and resources within the enclosure, like food and toys, which may encourage the animals to 

use the area more extensively and break the habit of staying spatially restricted. However, if 

restricted space use is the result of learned helplessness resulting from brain dysfunction, 

ideally animals should not be in captive environments. However, this is not always a realistic 

consideration. Therefore, there needs to be a focus on promoting increased space use and 

increasing controllability within the captive environment. Since learned helplessness is not 

dependent on contextual conditions (Mark, 1983), if animals were provided with a variety of 

controllable obstacles, would this promote the perception of control over a variety of 

situations and thus decrease the negative effects associated with learned helplessness (e.g. 

inactivity, hormone changes)? Would providing stimuli in blocks that mirror the old enclosure 

size encourage captive animals to utilise more space while maintaining spatial restrictions? 

The reintroduction of animals is often difficult, particularly with chimpanzees 

(Goossens et al., 2005) as they respond aggressively to strangers (Goodall, 1986). 

Reintroductions and are not always a successful process (Treves and Naughton-Treves, 

1997), with the success of release programs possibly being further hindered by animals that 

may not use available space optimally, either by restricting their individual movements or 

their social spacing to the size of their original captive housing.  

Personality and sex effects are also an important consideration for animal welfare as 

sex and personality may have an influence on how animals react to more space, whether they 

are released back into natural environments or given more space in captivity.  

 

Conclusion and future studies 

The previous experience of an individual or of a group of individuals in restricted 

space does appear to influence subsequent use of space in an enlarged area. Learned 

helplessness was the most likely contributor to restricted space use but restricted space use, as 

a result of learned helplessness, does not seem to be neuronal complexity dependent as it was 

seen in 3 species with varying degrees of neuronal complexity. Nonetheless, my study does 

not fully exclude the possibility of habit formation. 

The environments of the striped mice, woodlice and cockroaches were comparatively 

better controlled compared to the environment of the chimpanzees; future studies on the 

effect of previous experiences on space use in captive chimpanzees could consider 

manipulating shade, temperature and spatial heterogeneity. Spatial heterogeneity is important 
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for chimpanzees as they generally avoid open space, preferring to be close to mesh walls, 

corners and doorways (Ross et al., 2009), and they prefer spaces above the ground (Ross and 

Lukas, 2006). By manipulating the various elements that the chimpanzees are exposed to 

(temperature, spatial heterogeneity, shade availability), it may possible to provide more 

definite conclusions about the effects of learned helplessness because one could identify 

which particular element/s influence space use in captive chimpanzees.  

Given that learned helplessness does not seem to be neuronal complexity dependent, 

the implications of exposure to restricted space needs to be considered for all species in 

captive environments, especially animals in release programs. Future studies should look at 

the exposure time to restricted environments to evaluate how long an animal needs to be 

exposed to spatially restricted environments in order to develop learned helplessness. The 

holding time for each species could be manipulated to quantify the maximum time that an 

animal needs to be exposed to restricted space before developing learned helplessness. Future 

studies could also look at the space use of animals from release programs to assess whether 

these animals in unrestricted natural environments are restricting their movements and space 

use to the size of their original, captive housing post release. Some data collected on post-

released vervet monkeys, Cercopithecus aethiops, showed that a troop released into suitable 

habitat, displayed spatial restriction several months after release (Bratt, 2010). This study 

indicates that spatial restriction may influence release programmes. There should also be 

comparisons made between individuals of different birth origin, i.e. wild caught and captive 

born, exposed to restricted space to assess whether animals from natural environments would 

be similarly affected as captive born individuals, since the behaviour and reactions of captive 

born animals are known to differ from wild caught counterparts (Jones et al., 2011).  

Finally, in order to properly distinguish between learned helplessness and habit 

formation, future studies should consider looking at the underlying hormonal basis of the 

behaviour that follows exposure to restricted space.  
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Appendix 

Personality tests 

Four tests were used to assess the personality type of non-stereotypic striped mice 

(after Joshi 2009). Bold and shy categories were allocated to individuals based on the 

responses to all 4 personality tests. Bolder individuals would have spent more time in the 

light compartment in the light-dark test; they would have had a slower startle response in the 

startle-response test and shown less anxiety related behaviours. Bolder individuals would 

recover more quickly from the startle response test and thus have a shorter latency to return to 

the light chamber, they would have spent less time near the periphery of the cage in the open 

field test, they would have had a shorter latency to approach the novel object and they would 

have showed higher frequencies of exploratory behaviours e.g. rearing/jumping or biting and 

sniffing novel objects; and lower frequencies of anxiety related behaviours e.g. freezing, 

digging.  

 

Light-dark and startle response tests 

For these 2 tests, I used a glass tank (400 mm x 250 mm x 120 mm), that was divided 

into 2 compartments by a Perspex® wall: one half of the tank was painted black (dark) and 

the other half was transparent (light; Appendix Figure). The wall had a small opening for the 

test subject to move between the light and dark compartments (Appendix Figure). A lid was 

placed on top of the tank to prevent the test subject from escaping while video recording took 

place. The tank was cleaned with disinfectant soap and air-dried between tests to reduce 

carry-over odour effects. 

 

 

 

 

 

 

 

 

Appendix Figure. A diagrammatic representation of the experimental tank used to assess the 

personality of test subjects in light-dark and startle response tests. 

 

Passage 
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Dark 
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Light-dark test  

At the start of tests, a test subject was placed in the dark compartment. Behaviour was 

video recorded for 5 minutes immediately thereafter. Behaviour was only scored in the 

“light‟ side of the test tank where the subject was visible. I scored the following variables 

from the video recordings: latency to move from the dark to the light compartment; latency to 

return to the dark compartment after first entry into the light compartment; number of 

transitions from the light to the dark compartment; and the location (i.e. centre or periphery) 

of where the most time was spent in the light compartment. I also recorded the frequency of 

anxiety-related behaviours (e.g. freezing, jumping, cage digging, rearing) and grooming 

(Appendix Table) in the light compartment.  

 

Startle response test  

The startle response test followed immediately after the light-dark test. On the test 

subject’s next entry into the light compartment (at the end of the 5 minute light-dark test), I 

startled the subject by clapping my hands next to the tank, and it immediately retreated into 

the dark area. All the parameters scored in the light-dark test were scored in this test for a 

further 5 minutes.  

 

Open-field test 

Each test subject was placed singly in the centre of a tank (400 mm x 250 mm x 120 

mm) and behaviour was then video recorded for 10 minutes. I recorded the frequency of 

anxiety-related behaviours (freezing, digging, rearing, jumping; Appendix Table) and the 

location of the test subject (centre or periphery) in the tank.  

 

Novel object test 

The novel object test followed immediately after the open-field test. A novel round 

plastic object (110mm x 10mm x 15mm) was placed in the opposite corner of the tank, 

relative to the subject. The individual was video recorded for a further 10 minutes, and the 

frequencies of the following behaviours were scored: latency to approach the novel object; 

behaviours displayed on approaching the novel object (sniffing, biting, rearing and jumping; 

Appendix Table); the number of rears and jumps (indicating exploration); and the number of 

grooming events. 
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Appendix Table. Definition of behaviours scored in the open-field and light-dark tests for 

striped mice Rhabdomys 

Behaviour  Description 

Freezing  Individual freezes and crouches, usually in the corner of the tank  

Jumping  Individual jumps in corners of the tank on its hind legs but not 

repetitively  

Cage digging  Individual digs in the corners of the tank  

Rearing  Individual stands on its hind legs and leans against the wall of the 

tank and rears against it  

Grooming  Individual sits and cleans itself  

Sniffing  Individual sniffs the novel object which is indicative of interaction 

with novel object  

Biting  Individual bites and/or manipulates the novel object which is 

indicative of interaction with novel object  

 
 


