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ABSTRACT 

 

Reassessment of the stratigraphic position of the Waterloo Farm black shale from 

Grahamstown, South Africa, revealed that it is situated in the uppermost Witpoort 

Formation, as opposed to the middle of the Witpoort Formation as previously 

reported. This argillaceous unit appears to be contemporaneous with globally 

correlated black anaerobic sediments intimately associated with the Hangenberg 

Extinction, the final and most important pulse of the end Devonian extinction 

event. 

 

The Waterloo Farm fauna is one of only seven significant faunas from the end 

Famennian, and one of only two from Gondwana. The other one, from Morocco, 

was situated in the palaeotropics of northern Gondwana whereas Waterloo Farm, 

situated near the palaeo South Pole, provides the only high latitude locality.  

Extensive fieldwork resulted in 511 catalogued fossil fish specimens. These 

comprise at least 21 taxa of which least 2 are agnathan, 7 placoderm, 4 

acanthodian, 2 chondrichthyan, 1 actinopterygian and 5 sarcopterygian. 

Sarcopterygians include an onychodont, a coelacanth, a tristichopterid and an 

isolated cleithrum of an advanced stem group tetrapodomorph close to the 

elpistostegalian grade. 

 

Priscomyzon riniensis, the oldest lamprey, exhibits many of the key 

specialisations of modern lampreys including a large oral disc, circumoral teeth 

and a branchial basket. Analysis of Priscomyzon revealed that lampreys are 

ancient specialists that, having acquired key specialisations before the end of the 

Devonian period, survived with relatively little change for 360 million years. 

Shark fossils include Antarctilamna ultima (sp. nov.), a new species of a 

Gondwanan genus previously considered to have gone extinct before the late  

Devonian, and Plesioselachus doryssa. These taxa are basal to the crowngroup  

chondrichthyan radiation and provide insight into the primitive condition of 

chondrichthyans.   
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A new coelacanth species, Paradiplocercides kowiensis (gen. et sp. nov.), 

represents one of the most completely preserved early coelacanths and offers 

insights into the early diversification of coelacanths, and sequences of 

morphological changes in the early part of the coelacanth phylogenetic tree.  

 

Analyses of relative abundance of taxa at Waterloo Farm demonstrate a 

significant taphonomic filter in favour of organisms with numerous large bony 

elements and the resultant inappropriateness of extrapolating population structure 

from conventional methodologies. Exclusion of specimens derived from hard 

tissue alone, as well as those from single taxon death assemblages, produced a 

result more likely to reflect population structure, being more consistent with 

extrapolated trophic levels. 

 

Comparison of the Waterloo Farm fauna fossils with those from the earlier 

Devonian Bokkeveld Group and overlying lower Carboniferous Witteberg Group, 

as well as published records from parts of South America and Antarctica that also 

bounded the Agulhas Sea during this time, indicates a distinctive Agulhas Sea 

faunal province. The Agulhas Sea fauna is the highest latitude Devonian faunal 

region, having existed, in a near polar setting, in the semi enclosed Agulhas Sea. 

This fauna inherited much of its diversity from a mid Devonian Agulhas Sea 

fauna characterised by Gondwanan endemic sharks, gyracanthid acanthodians and 

phlyctaeniid arthrodire placoderms, but lacking many taxa, which characterise 

other mid Devonian Gondwanan successions. 

 

The approach of Laurussia to Gondwana towards the end of the Devonian  

permitted an exchange of marginal marine taxa, which were previously separated  

by deep oceans with anoxic bottom waters. Together with moderation of global 

climatic gradients, this allowed augmentation of the mid Devonian relict 

population inhabiting the Agulhas Sea, during the Late Devonian. New faunal 

elements from Laurussia and eastern Gondwana resulted in a diverse, though  
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unique, fauna with many characteristic Late Devonian taxonomic groups 

incapable of penetrating this high latitude environment. The Aguhlas Sea fauna  

was nonetheless subject to exactly the same end Devonian extinction profile as 

tropical coastal and temperate deep-sea environments. The abrupt nature of this 

event, at the end of the Famennian, is evidenced by the presence of various taxa 

from Waterloo Farm, formerly thought to have gone extinct before the 

Famennian.   

 

The Agulhas shark, Plesioselachus and the acanthodian Gyracanthides were the 

only members of this fauna to survive the Hangenberg extinction event. During 

the Carboniferous the Agulhas Sea was repopulated by a diverse actinopterygian 

fauna with Laurussian affinities.  
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Figure 3.1  Holotype of Priscomyzon riniensis gen. et sp. nov.  This 360-Myr-old 

lamprey is the earliest example known in the fossil record, showing most of the 

specialized feeding structures present in modern forms.  a, part, and b,  

counterpart of holotype AM5750.  Total length of specimen 42mm.  c,  

Interpretive drawing of the holotype.  Abbreviations: ac, annular cartilage; blb, 

bilobed structure; bra, branchial arch; brb, branchial basket; cm, circular mouth; 

ct, circumoral teeth; df, dorsal fin; hyb, hypobranchial bar; h/eb, 

hypotrematic/epitrematic bar; oc, otic capsule; od, oral disc; ol, outer lip; or, 

orbital region; sc, styliform cartilage; 1-7, positions of gill pouches. 

 

Figure 3.2  Reconstruction of Priscomyzon riniensis, illustrating tadpole-like body 

proportions and large oral disc, compared with post-metamorphic modern 

lamprey, Lampetra fluviatalis.  a, Reconstruction of Priscomyzon in dorsal 

(upper) and left lateral (lower) views.  b, Macropthalmia stage of Lampetra (28) 

showing anterior location of orbit and smaller oral disc, both positioned in front of 

branchial region.  Total length of specimen 116mm.  Drawings in a and b scaled 

to show equivalent head lengths: from anterior limit of the oral disc to rear of the 

branchial region.  Horizontal bars indicate anterior-posterior span of oral disc in 

each species. 

 

Figure 3.3  Cladograms showing the hypothesized position of Priscomyzon among 

early craniates.  a, Strict consensus of 42 shortest trees: length 211 steps, 

consistency index 0.63, homoplasy index 0.37, retention index 0.7, rescaled 

consistency index 0.44. Priscomyzon lies within a polytomy of fossil and modern 

lampreys. Bremer support values are circled at nodes (cf. refs 2,18; see 

Supplementary Information for details). b, Single tree from analysis of re-

weighted character set: cyclostomes (hagfishes and lampreys) are paraphyletic;  

Euphanerops (1,3) is a stem lamprey on basis of homoplastic synapomorphies.  
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Numbered brackets indicate major monophyletic groups: 1, Craniata; 2, 

Myxiniformes; 3, Vertebrata; 4, Petromyzontiformes; 5, Gnathostomata.  

 

Figure. 4.1.1  Recent phylogenies of Chondrichthyes A, Two theories of 

interrelationships summarised by Janvier, 1996. A, Cladoselachidae;  

B, Eugenodontidae; C, Petalodontida; D, Symmoriidae; E, Stethacanthidae; F, 

Holocephali; G, Iniopterygia; H, Xenacanthiformes; I, Ctenacanthus; J, 

Hybodontiformes; K, Neoselache. B, Two cladistic solutions recovered by Coates 

and Sequeira (2001). 

 

Figure. 4.1.2  Plesioselachus macracanthus, AM4817, holotype, partial 

articulated skeleton, A, B, photographs of part and counterpart, C, line drawing 

based on part and counterpart. Scale bar represents 50mm. cf, caudal fin, chy, 

ceratohyal, df, diazonal foramen, dfs, dorsal fin spine, dm, dorsomedial angle, pf, 

pectoral fin, pl, posteriolateral, sc, scapularcoracoid, bp, Bothriolepis anterior 

ventrolateral plate. 

 

Figure 4.1.3  Plesioselachus macracanthus, A, AM5745, photograph of complete 

isolated anterior dorsal fin spine B, AM4866, paratype, photograph of distal 

portion of a dorsal fin spine, with partial fin impression (adf), C, AM5746, 

photograph of isolated scapularcoracoid, D, AM5747, photograph of isolated 

scapularcoracoid, E, AM4817, photograph of denticles on the caudal fin. 

 

Figure 4.1.4   Antarctilamna ultima, AM5743, holotype, dissociated mandibular 

arch, A, C, photographs of part and counterpart, B, D, line drawings of part and 

counterpart.Scale bars represent 50 mm. 

 

Figure 4.1.5  Antarctilamna ultima, AM5744, paratype, fin spine, cartillagenous 

fragments and ceratohyal, A, photograph, B, line drawing. Scale bar represents 

100 mm. 

 

 



 xiv 

 

Figure 4.1.6  Antarctilamna ultima, A, AM5744, detail of fin spine, B, AM5743, 

tooth associated with palatoquadrate. Scale bar represents 10 mm in B, 2 mm in 

D. 

 

Figure 4.1.7  Isolated diplodont teeth, A, photograph of AM5751, Antarctilamna 

tooth in labial view, B, line drawing of AM5751, C, E, photographs of AM5752, 

AM5753 Antarctilamna teeth in  baso-lingual view, D, F, line drawings of 

AM5752, AM5753, G, photograph of AM5749, ? Antarctilamna tooth in lateral 

view, H, line drawings of AM5753 . Scale bars represent 5mm.  

 

Figure 4.1.8  Comparison of chondrichthyan mandibular arches, A,C, 

Antarctilamna ultima  (AM5743), B,D, ? Antarctilamna prisca fragments from 

the Bunga Beds as reconstructed by Young (1982), E, reconstruction of 

Antarctilamna ultima based on AM5743, F, ‘C’ wildungensis (after Gross, 1938), 

G, Orthacanthus (after Hotton, 1952), H, Akmonistion (after Coates and Sequera, 

2001). 

 

Figure 4.1.9  Comparison of Chondrichthyan neurocrania, A-B, Waterloo Farm 

Antarctilamna in ventral view (AM5748), A, photograph, B, line drawing. Scale 

bar represents 20 mm, C, Bunga Beds Antarctilamna in ventral view, reinterpreted 

and modified from Young (1982), D, G, Doliodus problematicus in ventral and 

dorsal views (Maisey, 2009), E,H, Xenacanthus in ventral and dorsal views 

(Schaeffer, 1981), F,I, ‘Cladodoides’ wildungensis (Maisey, 2005).    

 

Figure  4.1.10  AM5741, whole bodied juvenile chondrichthyan, A, B, 

photographs of part and counterpart, C. line drawing based on part and 

counterpart. Scale bar represents 5mm. 

 

Figure. 4.2.1  Onychoselache traquairi, NMS 1998.35.2.  A, photograph of new, 

articulated specimen showing pre-pelvic region of individual exposed in 

dorsolateral view.  B, line drawing of specimen.  Scale bar represents 5 mm. 
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Figure. 4.2.2  Onychoselache traquairi, type specimen NMS 1885.54.1, camera 

lucida drawing of complete specimen (composite of part and counterpart).  Scale 

bar represents 20 mm. 

 

Figure. 4.2.3  Onychoselache traquairi, NMS 1998.35.2, detail of cranial and 

branchial region. Scale bar represents 5 mm. 

 

Figure. 4.2.4  Neurocrania in dorsal view (anterior towards top of page). A, 

Onychoselache traquairi, from NMS 1998.35.2. B, Hamiltonichthys mapesi, from 

Maisey (1989). C, Egertonodus basanus, from Maisey (1983).  

Figure. 4.2.5  Pectoral girdles in lateral view (anterior towards left of page). A, 

Onychoselache traquairi, NMS 1998.35.2, photograph of girdle, whitened with 

ammonium chloride.  B, Onychoselache traquairi, NMS 1998.35.2, line drawing 

of girdle.  Scale bars represent 5 mm.  C, Lissodus cassangensis, from Maisey 

(1982).   

 

Figure. 4.2.6  Onychoselache traquairi pectoral fins.  A, photograph of NMS 

1998.35.2, left pectoral fin, whitened with ammonium chloride.  B, NMS 

1998.35.2, left pectoral fin with parts of subjacent right pectoral fin (stippled).  

Scale bars represent 5 mm.  C, NMS 1974.23.14, left pectoral fin. D, NMS 

1885.54.1, left pectoral fin.  C and D after Dick and Maisey (1980), emended after 

reference to original material. 

 

Figure. 4.2.7  Onychoselache traquairi.  A, NMS 1998.35.2, anterior dorsal fin 

spine and basal cartilage.  B, cephalic spine (anterior to right of page).  C, series 

of scales from flank region, probably associated with lateral line canal (anterior to 

left of page).  D, NMS 1885.54.1, tooth from close to mandibular symphysis, 

labial surface.  E, NMS 1885.54.1, tooth in crown view from mid-region of  

dentition (labial surface to top of page; anterior to left).  Scale bars represent 

10mm in A, 5mm in B-C, 1mm in D-E.  
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Figure. 4.2.8  Onychoselache traquairi (Dick, 1978), new reconstruction.  A, 

lateral view, and B, dorsal view of cranium and appendicular skeleton.  Scale bar 

represents 10 mm. 

 

Figure. 4.2.9  Early chondrichthyan pectoral girdles and fins. A, Tristychius 

arcuatus, new specimen HM V8299 from the Manse Burn Formation, Glasgow.  

B, interpretive diagram of HM V8299.  C, Plesioselachus macracanthus, new 

specimen AM5746 from the Witteport Formation, Grahamstown, South Africa.  

D, interpretive diagram of AM5746.  E, Akmonistion zangerli, UCMZ GN1047, 

adapted from Coates and Sequeira (2001).  F, Onychoselache traquairi, diagram  

 

of NMS 1998.35.2 reversed for ease of comparison; pectoral fin (grey) included 

for contrast of fin-to-girdle proportions with Tristychius and Akmonistion. Scale 

bars represent 10 mm in A-B, 20mm in C-E, 5mm in F. 

 

Figure. 4.2.10  A, hypothesized relationships among hybodont elasmobranchs 

from Maisey (1989) with revised and expanded character distribution numbered 

on branches; for character states and conditions see text.  Lengths of internal 

branches along tree backbone (double lined) proportional to number of character 

changes.  B, phylogeny plotted against geological timescale (numbers indicating 

millions of years; ICS 2004 Timescale: Gradstein et al. 2004) showing minimum 

dates for divergences in the hybodontiform evolutionary radiation (black squares 

mark earliest occurrence of taxon; not the complete taxon range).  Data sources: 

Neoselachii marked by Hopleacanthus: Schaumberg 1982; Tristychius and 

Onychoselache from present work; Hamiltonichthys: Maisey 1989; Lissodus: 

Rees and Underwood 2002, note that more inclusive definitions would extend 

Lissodus range to Early Carboniferous (Duncan 2004) or Late Devonian (Duffin 

2001); Lonchidion: Rees and Underwood 2002; Palaeobates: Zangerl 1981; 

Hybodus: Maisey 1987; Egertonodus, Maisey 1987; Acrodus: Cappetta et al. 

1993; Asteracanthus: Cappetta 1987; Tribodus: Maisey et al. 2004. 
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Figure.  4.2.11  Hybodontiform skeletons drawn to similar dimension for direct 

comparison.  A, Tristychius arcuatus, reconstruction from Dick (1978) modified 

to include revised pectoral skeleton.  B, Onychoselache traquairi. C, 

Hamiltonichthys mapesi, after Maisey (1989). D, composite Mesozoic 

hybodontoid encompassing Lissodus, Hybodus and Egertonodus, after Maisey 

(1982). 

 

Figure. 4.2.12  Pectoral fin patterns (anterior to left of page).  A, Onychoselache 

traquairi.  B, Lissodus cassangensis, after Maisey (1982).  C, Chiloscyllium 

plagiosum (bamboo shark).  D, Hemiscyllium ocellatum (epaulette shark).  C and 

D after Goto et al. (1999).  In each, the mesopterygium is shaded grey. 

 

Figure 5.1  Paradiplocercides kowiensis holotype (AM5754). A: part a; B: 

counterpart b; C: Composite drawing of holotype based largely on AM5754a with 

details of jaws restored from AM5754b. Scale bar = 5mm. 

 

Figure 5.2  Paradiplocercides kowiensis holotype (AM5754). A: detail of head in 

AM5754a; B: detail of head in AM5754b; C: Composite drawing of head based  

largely on AM5754a with details of jaws restored from AM5754b; D: 

Reconstruction of head; (form of spiracular and subopercular as well as number of 

supraorbitals conjectural). Scale bar = 5mm.   

 

Figure 5.3  Paradiplocercides kowiensis paratype (AM5756). A: part a; B: 

counterpart b; C: Composite drawing of AM5756 based largely on AM5756a with 

extremities of first dorsal and caudal fins restored from AM5756b. Scale bar = 

5mm. 

 

Figure 5.4  Paradiplocercides kowiensis paratype (AM5755). A: part a; B: 

counterpart b; C: Composite drawing of AM5755 based largely on AM5755. 

Scale bar = 5mm. 

 

Figure 5.5  Coelacanth operculae from Waterloo Farm, showing a progressive 

change in ornament with increasing size. Scale bar = 3mm. 
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Figure 5.6  Paradiplocercides kowiensis: Reconstruction based on AM5754, 

AM5755 and AM5756. Scale bar = 5mm. 

 

Figure. 5.7  Comparison of body form of various coelacanths: A, Miguashaia 

bureaui, B, Diplocercides heiligostockiensis, C, Paradiplocercides kowiensis, D, 

Allenypterus montana, E, Rhabdodema elegans, F, Latimeria chalumnae   

(modified after Cloutier, 1996 (A), Jessen, 1973 (B), Forey, 1998 (D), Forey, 

1981 (E), Millot and Anthony, 1958 (F)). 

 

Figure 5.8  Comparison of the dermal skull of various early coelacanths: A, 

Miguashaia bureaui, B, Diplocercides heiligostockiensis, C,D, Diplocercides 

kayseri, E, Paradiplocercides kowiensis, F, Rhabdoderma elegans (modified after  

 

Cloutier, 1996 (A), Jessen, 1973 (B), Stensio, 1937 (C), Forey, 1998 (D),  Forey, 

1981 (F)). 

 

Figure 5.9  Comparison of the internal skeleton and dermal skeletal fin rays of the 

caudal fin of various early coelacanths. A, B, Paradiplocercides kowiensis, C, 

Diplocercides heiligostockiensis, D, Diplocercides kayseri, E, Miguashaia 

bureaui, F, Rhabdoderma elegans, G, Holopterygius nudus, H, Allenypterus 

montana (A, AM4912/BPCr1001, B, AM5754, D, drawn from photographic plate 

VI 3, Stensio, 1937, C, E-H modified respectively after Jessen, 1973, Cloutier, 

1996, Forey, 1981, Friedman and Coates, 2006 and Forey, 1998). 

 

Figure 5.10  Comparison of favoured phylogenetic trees of early coelacanths: A, 

Forey (1998),  B, Friedman and Coates (2006), C, Gess new.  

 

Figure 5.11  Stratocladogram of early coelacanths, based on phylogenetic analysis 

of Gess, with Styloichthys and Gavinia added after Friedman. 

 

Figure 5.12  Graph illustrating the size distribution of specimens attributed to 

Paradiplocercides kowiensis. 
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Figure 6.1  Stratigraphic section of the Bokkeveld and Witteberg Groups of the 

Cape Supergroup (in the Western Cape). Modified after Theron and Thamm 

(1990), following Cotter (2000). 

 

Figure 6.2  Gondwanan reconstruction with position of the South Pole and main 

latitudes reconstructed for Late Devonian/ Early Carboniferous (modified after 

Scotese and Barrett, 1990). Select Mid-Late Devonian fossil localities: AS Aztec 

Siltstone, Lashley range, Antarctica; C, Canowindra, New South Wales, Australia; 

MH, Mount Howitt, Victoria, Australia; SP, Sierra de Perijá, Venezuela, South 

America; WF, Waterloo Farm, Eastern Cape, South Africa.  

 

Figure 6.3  Priscomyzon riniensis,  a,b, Part and counterpart of holotype AM5750. 

c, Interpretive drawing based on AM5750. ac, annular cartilage; blb, bi-lobed 

structure; branchial basket; cm, circular mouth; ct, circumoral teeth; hyb,  

 

hypobranchial bar; h/eb, hypotrematic/epitrematic bar; oc, otic capsule; od, oral 

disc; ol, outer lip; or orbital region; sc, styliform cartilage; 1-7, position of gill 

pouches. (modified after Gess, et al., 2006).  

 

Figure 6.4   Indeterminate Agnatha:  a,c AM5815, part and counterpart; b, 

interpretive drawing of AM5815 based on part and counterpart; d, AM5818. 

ac, annular cartilage, bra, branchial arches, or, orbit, sn, snout.  

 

Figure 6.5  Arthrodira:  a, Groenlandaspis riniensis, reconstruction of adult 

carapace based on type specimen (AM4898) (after Long et al., 1997) with spinal 

plate modified after type material; b, Groenlandaspis riniensis juvenile, AM5908; 

c, ndeterminate phlyctaeniid 1, AM4908; d, indeterminate phlyctaeniid 2, 

AM5939. 

 (ADL, anterior dorsolateral plate; Al, anterior lateral plate; Ce, central plate; IL,  

interolateral plate; llc, main lateral line canal; MD, median dorsal plate; Nu, 

nuchal plate; P, pineal plate; PDL, posterior dorsolateral plate; PL, posterior  

lateral plate; PNu, paranuchal plate; PRO, preorbital plate; PSO, postsuborbital  
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plate; PTO, postorbital plate; R, rostral plate; SO, suborbital plate; soc, 

supraorbital sensory-line canal; Sp, spinal plate).  

 

Figure 6.6  Arthrodira and Ptyctodontida : a, Africanaspis doryssa holotype, 

AM5246, median dorsal plate; b, Africanaspis species two, AM5920, median 

dorsal plate (photographic reconstruction of part and counterpart); c-d, 

ptyctodontida indet. anterior median ventral plate: c, AM5386; d, interpretive 

drawing after Anderson, et al., 1999 (a).   

 

Figure 6.7  Antiarcha, Bothriolepis africana: a, reconstruction of adult carapace in 

dorsal view (after Long et al., 1997); b, juvenile carapace, AM5954. 

(ADL, anterior dorsolateral plate; AMD, anterior median dorsal plate; CD1, 2, 

central dorsal plates 1 and 2; dlg, dorsolateral sensory-line canal; L, lateral plate; 

Mm2, mesial marginal plate 2;  Ml2, mesial lateral plate 2; Mxl, mixilateral plate; 

Nu, nuchal plate; PMD, posterior median dorsal plate; PMG, postmarginal plate; 

PNu, paranuchal plate; PP, postpineal plate; PrM, premedian plate). 

 

Figure 6.8  Acanthodii: a, Diplacanthus acus holotype, AM5739; b, Interpretive 

line drawing of AM5739 (after Gess, 2001) with tail modified after AM5740; c, 

Diplacanthus acus caudal region, AM5740; d, Diplacanthidae, second species, 

AM5820; e, gyracanthid spine, AM4892. adfs, anterior dorsal fin spine, afs, anal 

fin spine, cl, caudal lobe of caudal fin, cfw, caudal fin webb, is, intermediate 

spine, orb, orbit, pf, pectoral fin, pfs, pelvic fin spine, pdf, posterior dorsal fin, 

pdfs, posterior dorsal fin spine.  

 

Figure 6.9   Acanthodii, Acanthodidae: a,b, AM5824 in part and counterpart; c, 

interpretive drawing of AM5824. (af, anal fin; afs, anal fin spine; cfw, caudal fin 

web; chl, chordal lobe of caudal fin; dfs dorsal fin spine; Mb, Meckelian bone; 

pfs, pectoral fin spine. 

 

Figure 6.10  Chondrichthyes: a, Plesioselachus macracanthus, isolated dorsal fin 

spine, AM5745, photographically restored from part and counterpart;  
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b, Antarctilamna, isolated dorsal fin spine, AM5744; c, Antarctilamna, isolated 

tooth in labial view, AM5751; d, interpretive line drawing of AM5751; e, 

Antarctilamna tooth in lateral view, AM5749; f, interpretive line drawing of 

AM5749. 

 

Figure 6.11  Antarctilamna juvenile, AM5741; a, b, specimen in part and 

counterpart; c, interpretive line drawing of AM5741 based on part and 

counterpart.  

adf, anterior dorsal fin, cf, caudal fin, dfs, dorsal fin spine, mc, Meckel’s cartilage, 

orb, orbit, pdf, posterior dorsal fin, pf, pectoral fin, sc scapulocoracoid.   

 

Figure 6.12  Osteichthyes: a, Actinopterygii, maxilla, AM5792; b, 

Onychodontiformes, maxilla, AM5880; c, Coelacanthiformes, AM5754; d, 

Dipnoi: c.f. Andreyevichthys, parasphenoid, AM6501; e, Osteolepiformes, c.f. 

Hyneria, scale. 

as, anterior squamosal overlap area, ps, posterior squamosal overlap area  

an, angular, cf, caudal fin, cl, cleithrum, df, dorsal fin, gu, gular, op, operculum, 

or, orbit, te, trailing edge. 

 

 

Figure 6.13  Osteichthyes, Osteolepiformes, comparison of cleithra: a, 

Eusthenopteron, after model made by Stensio based on P.222 (cast in the 

University of Chicago collection); b, Waterloo Farm cleithrum indet., AM6545; c, 

Tiktaalik rosaea, (cast of NUFV112 in the University of Chicago collection). As, 

anterior shoulder. 

 

Figure 6.14  Pie charts of relative abundance of different groups represented at 

Waterloo Farm: a, Analysis 1 with proportions calculated on the basis of all 

fossils excluding disarticulated scales; b, Analysis 2 with proportions calculated 

on the basis of specimens including soft tissue or pelt impressions; c, Analysis 3  

with proportions calculated on the basis of specimens including soft tissue or pelt 

impressions with the exception of coelacanths in the 3-6 cm range. 
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Figure 6.15  Stratigraphic distribution and ranges of vertebrate taxa in the 

Bokkeveld and Witteberg Groups, Cape Supergroup.   

 

Figure 6.16  Various fossil localities positioned according to palaeogeographic 

reconstructions: a: Givetian (AF, Adolphspoort Fm; AS, Aztec Siltstone; KK, 

Klipbokkop Fm; P, Poland) b: Famennian; (A, Andreyevka; B, Belgium; CB, 

Celsius Berg; CS, Cleveland shale; M, Morocco; NSW, New South Wales S, 

Scotland; T, Turkey;  M, Morocco; NSW, New South Wales, RH, Red Hill) c: 

Visean; (S, Scotland; WA, Waaipoort Formation). Green, continental; red, 

marginal marine, blue, open marine. Maps after Scotese & Mckerrow (1990) 

modified in region of Iapetus Sea. 
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CHAPTER 1     INTRODUCTION 

1.1 GENERAL INTRODUCTION 

During the Devonian Period (417-354 Ma) (Palmer and Geissman, 1999) important 

biodiversity changes occurred as plants and aquatic vertebrates diversified into a wide 

range of orders and the colonisation of land by both plants (Algeo et al., 2001) and 

vertebrates (Clack, 2002) began.  

From very small and simple taxa, at the beginning of the Devonian, plants evolved 

into a wide range of taxa, reaching the size of trees within sphenopsid, lycopod and 

various branches of the progymnosperm stock by the end of the Period. The evolution 

of bryophytes, and pteridophytes (ferns) also occurred during this Period. With the 

exception of the angiosperms, the major divisions of the plant kingdom, as we see 

them today, were established by the end of the Devonian (White, 1990). Fish reached 

their broadest ordinal diversity during the Devonian as many ancient orders, which 

would become extinct towards the end of the Period, co-existed with emergent new 

orders. As a result, the Devonian is often referred to as „the age of fishes‟(Long, 

1995). 

Important biogeographic changes occurred during the Devonian, but due to paucity of 

collected material, their expression in Western Gondwana (southern Africa and South 

America) has, until recently, been little known. During the Early and Middle 

Devonian there was marked global biological provincialism, whilst toward the end of 

the Devonian there was a move to global cosmopolitanism, in both plants and fish 

(eg. Boucot, 1988, Young, 1990). Palaeontologists view this, in part, as a symptom of 

the coalescence of the landmasses currently forming North America with those of 

current north western Europe, to form Laurussia, during the Middle Devonian and the 

probable closure of the Iapetus sea between Laurussia and Gondwana towards the 

Late Devonian (Young, 1993), which was accompanied by climatic and sea level 

changes, increasing exchanges of taxa, and many extinctions (Clack, 2002). During 

the Devonian, South Africa‟s southern margin formed one of the shores of the semi-
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enclosed, high latitude, Agulhas Sea, which was also bounded by portions of what are 

now South America and Antarctica. 

Extensive studies of marine invertebrates from the Early and Mid Devonian 

Bokkeveld Group of South Africa (eg. Oosthuizen, 1984; Hiller, 1990), and the 

contiguous strata of South America and the Falkland Islands has led to the definition 

of a distinct Malvinokaffric cold water fauna of Early and Mid Devonian 

invertebrates, dominated by brachiopods.  Preliminary surveys of the depauperate 

Bokkeveld fish taxa (Plumstead, 1977; Chaloner et al., 1980; Oelofsen, 1981; 

Almond and Evans, 1996; Anderson et al., 1999), suggests that in addition to its 

unique invertebrate fauna the Malvinokaffric realm also had a unique combination of 

vertebrate taxa (Young, 1987). This fauna, which was dominated by arthrodire 

placoderms, acanthodians and sharks, has closest affinities with those from East 

Gondwana (Anderson et al., 1999). 

At the Late Devonian Frasnian-Famennian boundary, a major extinction event led to 

widespread extinctions amongst plants, followed by a new radiation of taxa. It has 

been suggested that this was precipitated by continental movements bringing 

Gondwana into the antarctic region, resulting in its extensive glaciation – which may 

have lowered global temperatures and sea levels (Clack, 2002). An alternate a model 

has been proposed which suggests that lower global temperatures, resulted from 

reduced atmospheric carbon dioxide levels, due to the rapid spread of Archaeopteris 

forests during the Frasnian (Algeo et al., 2001). This led to increased levels of fixed 

carbon entering drainage systems, perhaps helping to account for the global 

frequency of carbon rich anaerobic sediments during the Famennian (Algeo et al., 

2001). 

A number of minor extinction peaks occurred during the Famennian, culminating in a 

major event (the Hangenberg extinction event) at the end of the Famennian (Algeo et 

al, 2001). This was characterised by extensive extinction amongst marine organisms 

(Clack, 2002), possibly triggered by widespread marine regression (Janvier, 1996), or 

environmental consequences of the rapid diversification and spread of seed-bearing 

plants into relatively dry habitats (Algeo et al., 2001). The Hangenberg extinction 
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event, in which 50% of jawed vertebrate diversity was lost, represents a first-order 

magnitude event for jawed vertebrates, comparible to the end-Cretaceous and end-

Permian events (Sallan and Coates, 2009).  

Biodiversity of the post-Devonian world was radically different from that of the 

Devonian and was characterised by verdant, botanically diverse terrestrial 

environments inhabited by insects, arthropods and tetrapod vertebrates, with the 

waters dominated by a new diversity of fish. The first appearances of the taxonomic 

groups that characterise the post-Devonian world (such as gymnosperm plants and 

tetrapod vertebrates) occurred in Late Devonian (Frasnian and Famennian) rocks, 

where they co-inhabited with those groups that would shortly become extinct, or 

greatly reduced. 

Previously studied Late Devonian fish and plant communities from around the world, 

were preserved in strata deposited in lower latitude, often tropical, environments. In 

contrast palaeomagnetic studies place the South African Devonian strata at about 75 

degrees south (Scotese and McKerrow, 1990), at a time of global cooling. In South 

Africa the Famennian is represented by the Witpoort Formation of the Witteberg 

Group, which was laid down at far higher latitude than most known fossil localities of 

this important age. Until recently, these strata had yielded very little record of life. 

 

1.2  LITERATURE REVIEW  

Lower Witteberg Group rocks of South Africa comprise marginal marine derived 

quartzites and shales. The late Givetian through to the end of the Frasnian is 

represented by rocks of the Weltevrede Subgroup, whereas the Famennian (latest 

Devonian) is represented by rocks of the Witpoort Formation (the lowermost 

subdivision of the Lake Mentz Subgroup). These are overlain by the remainder of the 

Lake Mentz Subgroup, Early Carboniferous in age, which comprises the balance of 

the Witteberg Group and which has been reviewed elsewhere (Evans, 1997; Evans, 

2005). 
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This review covers literature concerning fossils of the Devonian portion of the 

Witteberg and is divided into three sections. The first of these covers a hundred year 

period from 1857 to 1957 during which a number of fragmentary fossils were 

described and a range of form taxa erected.  

After a ten year dearth of literature, a number of publications (between 1967 and 

1988) attempted reviews of these earlier descriptions, and introduced some additional 

fossil material. This is discussed in the second section. Following the discovery of the 

Waterloo Farm fossil locality in the Witpoort Formation, in 1985, a larger quantity of 

far better preserved material has become available for study, and has become the 

subject of a series of papers published between 1992 and 2001.  

 

1.2.1   1857 - 1957.   EARLY WORK RELATING TO DEVONIAN 

WITTEBERG PALAEONTOLOGY 

The earliest reference to fossils confidently assigned to the Witteberg Group is that of 

Bain (1857, p. 759) who wrote, “...numerous species of Carboniferous plants have 

been found near the Kowie River, Woest‟s Hill, Howison‟s Poort and other localities, 

in the Talcose schist.” 

The Kowie River material came from Weltevrede Sub-group rocks near Port Alfred, 

but the exact position of the Woest Hill locality has not been re-established. The old 

Woest Hill Pass, which still connects Southwell to Grahamstown traverses both 

Weltevrede Subgroup and Witpoort Formation strata. A very thin black shale is 

present near the bottom of the pass, fairly deep within the Weltevrede Subgroup, and 

is the most likely locality to have yielded the fossils recorded by Bain. 

 The Howison‟s Poort locality mentioned by Bain is about fifteen metres above the 

base of the Witpoort Formation sequence (Hiller and Taylor, 1992). It comprises a 

black shale, less than a metre thick, within a cliff of quartz rich sandstones. Until the 

1980s this remained essentially the only known fossil locality within the Witpoort 

Formation. 
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Fossils from the Weltevrede Subgroup in the vicinity of Port Alfred and Bathurst 

were submitted for identification to Bristow of the British Geological Survey in 1869. 

He reported the presence of Sigillaria, Stigmaria, Lepidodendron, Lepidostrobus, 

Halonia, and Selaginites (Bristow, 1870). No voucher material exists for these 

identifications and all seem improbable. As Bristow was simultaneously describing 

material from various parts of the world it is possible that he may have become 

confused and, as Plumstead (1967 p. 1) suggests, the identifications may have been 

based on material from another land as “not one of these genera is now known to 

occur in the Cape System.”  

Jones (1872) mentions occurrences of  “Lepidodendron” found by Atherstone, Bain 

and others from the Riversdale and Swellendam districts and probably refers to 

Leptophloem australe (McCoy, 1874), a lycopod stem type with rhombic „leaf‟ scars. 

This is borne out by the fact that Schwarz (1906) described material collected by Bain 

and others, as Lepidodendron albanense, which has subsequently been synonymised 

with Leptophloem australe (Plumstead, 1967).  

Schwarz (1906) also described a number of other lycopod stems from the Upper 

Bokkeveld Group and Weltevrede Subgroup of the Witteberg Group. One of these is 

a form taxon for lycopod stems with well spaced oval „leaf‟ scars and (rarely) short 

simple tapering bracts, described as Bothrodendron irregulare Schwarz 1906. Seward 

(1932) moved it to the genus Haplostigma ,whilst Anderson and Anderson (1985) 

have emended it to Haplostigma irregularis.  

Seward (1909) synonymised some of Schwartz‟s extraneous taxa with 

‘Bothrodendron irregulare’. He also included within it some new specimens, which 

probably came from Howison‟s Poort. Haplostigma (Bothrodendron) irregularis has 

also been reported from the Witpoort Formation (Gess and Hiller, 1995a).  Another 

designation of Schwarz (1906) was Bothrodendron caespitosum which was emended 

to Archaeosigillaria caespitosum by Plumstead (1967) and Archaeosigillaria 

caespitosa by Anderson and Anderson (1985). A single fragment attributable to this 

genus has subsequently been collected from the Witpoort Formation near 

Grahamstown (Gess and Hiller, 1995a).  
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Rogers and Du Toit (1909: 159) in their review of the Geology of the Cape Colony 

report  “In the Eastern Province there are black carbonaceous shales, which are 

different from any beds in this series that have been found in the west. The Witteberg 

beds have so far yielded no remains of animals, and only rather poor specimens of 

plants which have not been satisfactorily determined for want of good material.” 

They go on to provide a tentative short list of species synthesised from Feistmantel 

(1889).  

Rogers and Du Toit (1909) referred to Spirophyton, which they considered to be a 

good stratigraphic indicator for the Witteberg Group, and to be a seaweed. 

Spirophyton has more recently been understood to be a trace fossil (eg. Plicka, 1970). 

Body fragments of a eurypterid associated with the Weltevrede Subgroup plant 

fossils from Port Alfred were assigned to the genus Hastimima by Woodward (1909). 

In 1930 Hoeg published a description of a plant from the Lower Bokkeveld Group of 

the old Blaauwkranz River Pass on the Port Elizabeth to Knysna road. This is 

significant as the generic name of Dutoitia pulchra Hoeg 1930 was later applied 

(Plumstead, 1967) to entirely unrelated taxa from the Weltevrede and Witpoort 

Formations of the Witteberg Group. Hoeg (1967) redescribed and illustrated the 

Dutoitia pulchra material in his global review of the psilophytes.  

A conchostracan from the plant fossil bearing Port Alfred Weltevrede Sub-group 

rocks was described by Rennie (1934) as Palaeesteria sp.   

Krausel and Dolianiti (1957) in a work dealing mainly with South American 

Devonian plants included a description of possible lycopod stems from Upper 

Bokkeveld Group strata at Schietkraal near Steytlerville. These they assigned to a 

new genus and new species Palaeostigma sewardii Krausel and Dolianiti 1957. This 

generic name would later also be applied to Witpoort Formation fossils (Anderson 

and Anderson, 1985). 
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1.2.2 1967- 1988 : REVIEWS OF DEVONIAN WITTEBERG                                                                                  

PALAEONTOLOGY  

Chaloner (1967) in his global review of fossil lycopods recognised only Haplostigma 

irregularis (Schwartz) Seward 1932 and Palaeostigma sewardii Krausel and 

Dolianiti 1957 from the South African Devonian. 

The first attempt at a complete taxonomic revision of the plant fossils of the Cape 

Supergroup was made by Plumstead (1967). She accepted Dutoitia pulchra Hoeg 

1930, Palaeostigma sewardii Krausel and Dolianiti 1957 and Haplostigma irregulare 

(Schwarz 1906) Seward 1932. Bothrodendron caespitum Schwarz 1906 she 

reassigned to Archaeosigillaria caespitosum (Schwarz 1906) Plumstead 1967. 

Lepidodendron albanense Schwarz 1906 was synonymised with Leptophloem 

australe (McCoy 1874) Walton 1926. In addition Plumstead placed those specimens 

of lycopod stems bearing microphylls in Drepanophycus Goppert, erecting two 

species, Drepanophycus schwarzi Plumstead 1967 and Drepanophycus kowiense 

Plumstead 1967. She believed that she recognised Protolepidodendron eximium 

Frenguelli 1954 from near Vondeling, and erected a new taxon Protolepidodendron 

theroni Plumstead 1967 for additional material. 

In the same publication, Plumstead described a few fragmentary specimens of double 

pendulous fructifications from the thin black shale at Howison‟s Poort as Dutoitia 

maraisia Plumstead 1967. In addition she included somewhat larger club-shaped 

fructifications from the Weltevrede Formation of Port Alfred as Dutoitia alfreda 

Plumstead 1967. From Howison‟s Poort she described a single fragmentary leaflet 

with bifurcating venation as Platyphyllum albanense Plumstead 1967.  

Anderson, J.M. and Anderson, H.M. (1985) undertook a detailed re-examination of 

South Africa‟s plant fossils, including those of the Witteberg Group. They retained 

Dutoitia pulchra, Dutoitia alfreda, Dutoitia maraisia, Palaeostigma sewardii, 

Haplostigma irregulare (which they changed to Haplostigma irregularis), 

Archaeosigillaria caespitosum (which they changed to Archaeosigillaria caespitosa), 

Leptophloem australe and Platyphyllum albanense (of which they published more 

complete material). 
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The material for both Plumstead‟s “Protolepidodendron” species as well as 

“Drepanophycus schwarzi” were identified as varying taphonomies of 

Archaeosigillaria caespitosa, and Drepanophycus kowiense was renamed as 

Haplostigma kowiensis.  

In addition they erected a  number of new taxa. To Palaeostigma Krausel and 

Dolianiti 1957 they added Palaeostigma gracilis from the Lower Bokkeveld, and 

Palaeostigma robusta from the Witpoort Formation at Howison‟s Poort. A new 

genus, Longicatrix Anderson and Anderson 1985, was created for lycopod-like stems 

with closely packed, spirally arranged, longitudinally elongated leaf scars. This was 

based on material of uncertain age from Port St. Johns.  

Anderson and Anderson (1985 p 93) further created a new form genus, 

Praeramunculus, “for Gondwana Devonian twigs/branchlets of unknown affinity 

which obviously fall neither in the Psilophyta or Lycophyta.” In it they placed four 

new species, P. oppositiramus from the Bokkeveld, P. striatiramus from the 

Waaipoort, and P. alternatiramus from the Witpoort Formation at Howison‟s Poort. 

In addition they renamed Calamnophyton capensis Plumstead 1967 as 

Praeramunculus capensis (Plumstead 1967) Anderson and Anderson 1985. They 

described a small stem fragment displaying apparent filament-like foliage from the 

Howison‟s Poort site as a new genus and species, Howisonia rara.  

Thus by 1985 only six plant taxa were recognised from the Witpoort Formation. 

These were Dutoitia maraisia, Palaeostigma robusta, Platyphyllum albanense, 

Praeramunculus alternatiramus, Howisonia rara and Leptophloem australe. In 

addition, Spirophyton (a trace fossil) was known to occur within the Witpoort. No 

animal fossils had been reported. 

Rayner (1988) used the small-primitive-psilophyte identification of Dutoitia maraisia 

to argue, against all other evidence, for an early Devonian age of the Witpoort 

Formation. It is worth noting though that Gess and Hiller (1995a) have demonstrated, 

conversely, by comparison with more complete material, that Dutoitia maraisia 

consists of the extreme terminal fructifications of a tree-sized organism. The type 
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material of Praeramunculus alternatiramus, which was collected from the same 

locality, almost certainly consists of fairly distal axes of the same organism.   

 

1.2.3   1992 – 2001 :  PALAEONTOLOGICAL RESEARCH ON THE                                                                                                                                                       

.              WITPOORT FORMATION WATERLOO FARM LOCALITY  

The exposure in 1985 of a far larger, more accessible and more fossiliferous black 

shale layer in new road cuttings at Waterloo Farm to the immediate south of 

Grahamstown led to extensive palaeontological discoveries within the Witpoort 

Formation. Hiller and Taylor (1992) carried out a stratigraphic analysis of Witteberg 

sequences near Grahamstown, including those exposed in 1985. They demonstrated 

that the palaeolagoons in which the black shales of the Witpoort Formation were 

deposited, formed on the protected side of a series of barrier islands and beaches cut 

by tidal inlets.  

Taylor and Hiller (1993) demonstrated that, despite a stratigraphic distance of up to 

200 metres between the Howison‟s Poort locality and the Waterloo Farm locality on 

the Grahamstown bypass, Dutoitia maraisia, Praeramuculus and Leptophloem 

australe were present at both localities. They compared two other forms to Dutoitia 

alfreda and Haplostigma kowiensis, previously described from more fragmentary 

material found in the Weltevrede Formation. In addition Taylor and Hiller (1993) 

noted frond fragments of the genus Archaeopteris, large trilete spores, fragments of 

strap-like vegetation, bifurcating „terminally lobed‟ seaweeds, and two types of 

symmetrical small whorls, one octagonal and one hexagonal – which they referred to 

as „daisy-wheel sporangia‟.  

Hiller and Taylor (1992) noted the presence of the antiarch placoderm fish, 

Bothriolepis, which together with Archaeopteris, added support to the dating of the 

Witpoort Formation as Upper Devonian, Famennian.   

Gess‟ identification of the arthrodire Groenlandaspis, his reconstruction of its head 

and trunk plates, and his identification of a coelocanth actinistian first appeared in 

Anderson et al. (1994). These authors further drew attention to the Bothriolepis 
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remains, as well as gyracanthid acanthodian spines, and identified a partial 

sarcopterygian (lungfish) parasphenoid (compared to that of Andreyevichthys of the 

Famennian of Russia), as well as the abundance of large sarcopterygian scales at the 

locality. The same paper also reported a chondrichthyan skeleton postulated to be a 

holocephalan, a phyllolepid placoderm, a petalichthid placoderm and palaeoniscoid 

scales. The chondrichthyan remains are no longer considered to be those of a 

holocephalan, and no petalichthid or phyllolepid remains have been found at the 

locality. The „phyllolepid‟ head and trunk armour were shown to belong to the 

Groenlandaspis occurring at the locality (Gess and Hiller, 1995a, pg. 278, fig.45C; 

Long et al., 1997). The spinal plate identified as that of a petalichthid was identified 

in Gess and Hiller (1995a) as a groenlandaspidid spinal plate and in Long et al. 

(1997) as that of the Groelandaspis later described. It is, however, more likely to be 

that of a different groenladaspidid, possibly Africanaspis. The „palaeoniscoid‟ scales 

were shown to be, most likely, fragments of decorticating Leptophloem australe 

stems (Gess and Hiller, 1995a, pg. 254, fig. 23A; pg. 256, figs 25A-C, F-H). Far 

smaller, isolated, palaeoniscoid scales, however, have been subsequently reported 

from the locality.  

Gess and Hiller (1995a) revealed the trace fossils Cruziana and Rusophycos, as well 

as a horizontal helical infaunal burrow within the tidal delta deposits immediately 

underlying the black shale. They also recorded small ’Spirophyton‟ like structures 

from within the shale, in addition to numerous coprolites.   

The most common phaeophyta were the „terminally-lobed algae‟ reported by Taylor 

and Hiller (1993) and compared by Gess and Hiller (1995a) to Hungerfordia Fry and 

Banks 1955. They compared other long strap-like bifurcating forms to Yeaia Douglas 

1983. Gess and Hiller (1995a) identified the „daisy wheel sporangia‟ of Taylor and 

Hiller (1993) as charophytes, defining four different species. A possible rhyniopsid 

gametophyte was reported as well as Dutoitia alfreda, which Plumstead previously 

believed to be a rhyniopsid, and remains of Zosterophyllopsida (Gess and Hiller, 

1995a).    
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Lycopods reported by Gess and Hiller (1995a) included at least two types of fertile 

bracts putatively assigned to the herbaceous lycopsida. Probable pendulous cones 

were postulated to be the fertile material of Leptophloem australe. Fine axes bearing 

microphylls were also reported. Two Leptophloem stems, from the underlying 

sandstone, are the first ever reported in which the subaerial portion is preserved. Also 

recorded from the black shale, were a number of other lycopod or lycopod-like stem 

types. These include Haplostigma irregularis, Longicatrix, Archaeosigillaria, and 

Palaeostigma robusta. Abundant frond remains and a single fertile structure of a 

species of the progymnnosperm Archaeopteris were reported. A possible second 

species was also noted as well as woody-seeming axes of the Praeramunculus type, 

associated with fructifications of the Dutoitia maraisia type and fine bifurcating 

“leaves”. 

Gess and Hiller (1995a) also illustrated a large range of phaeophyte and plant 

incertae sedis, consisting of reproductive and vegetative structures, in addition to 

large progymnosperm-like trunks. 

Arthropods reported by Gess and Hiller (1995a) include several species of ostracod, 

at least one conchostracan and fragmentary eurypterid limb and body remains.  

Gess and Hiller (1995a) illustrated Groenlandaspis placoderm material, suggested the 

presence of a second groenlandaspid, and illustrated another arthrodire identified by 

Long (pers. comm.), later to be named Africanaspis (Long et al., 1997). Also 

illustrated by Gess and Hiller (1995a) were Bothriolepis (antiarch placoderm) plates, 

gyracanthid acanthodian spines, chondrichthyan specimens, a putative reconstruction 

of the chondrichthyan and the remains of two crossopterygian taxa - small actinistians 

(coelocanths), and isolated elements of a large rhipidistian, which they considered 

was probably a eusthenopterid (=tristichopterid). Finally they illustrated the lungfish 

parasphenoid reported in Anderson et al. (1994), and some problematica.      

Gess and Hiller (1995b) provided full taxonomic descriptions of the four charophyte 

taxa, assigning them the new genera and species: Octochara crassa, Octochara 

gracilis, Hexachara setacea and Hexachara riniensis.   
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Anderson H. M., Hiller and Gess (1995) provided a description of the well-

represented species of Archaeopteris, naming it Archaeopteris notosaria and 

discussed palaeogeographic and climatic implications of its occurance. 

The Yeaia and Hungerfordia material were described by Hiller and Gess (1996) who 

created the new species Yeaia africana and Hungerfordia fionae. They demonstrated 

that Buthotrephis dichotoma Douglas and Jell 1985 from the Early Devonian of 

Victoria, Australia is a synonym of Hungerfordia trichotoma Fry and Banks 1955 

from the Late Devonian of New York, differing only from Hungerfordia fionae in 

lacking small round buds of the type found on some specimens of the latter. 

 Long, Anderson, M. E., Gess and Hiller (1997), described the placoderm fish, 

Groenlandaspis riniensis, Africanaspis doryssa, and Bothriolepis africana. 

Groenlandaspis riniensis, the largest Groenlandaspis known most closely resembles 

Groenlandaspis antarctica (Ritchie, 1975) from the Aztec Siltstone of Antarctica. 

Bothriolepis africana, also unusually large, was considered to be closely allied to 

Bothriolepis baretti (Young, 1988) from the Late Givetian of Antarctica. 

Anderson, M.E., Long, Gess, and Hiller (1999) described the earlier reported 

chondrichthyan as Plesioselachus macracanthus. New material, however, calls for a 

revision of this description (Gess, 2002). 

Anderson, M.E., Long, Evans, Almond, Theron and Bender (1999) provided a short 

review of  Middle and Late Devonian fishes of South Africa giving suggested 

biogeographic affinities. They described the Fammenian (Waterloo Farm) assemblage 

as consisting of Bothriolepis africana, Groenlandaspis riniensis, Africanaspis 

doryssa, an unidentified ptyctodont placoderm, the undetermined gyracanthid 

acanthodian, a coelocanth (actinistian) similar to Diplocercides, a chondrichthyan, a 

large sarcopterygian close to Eusthenodon, a lungfish close to Andreyevichthys, and 

unidentified palaeoniscoid actinopterygians. Their list included a new identification 

by Long, that of a ptyctodontid, based on two anterior ventral plates previously listed 

in Gess and Hiller (1995a) as plates possibly belonging to an unknown 

groenlandaspidid. Anderson et al. (1999) reviewed the published lower taxonomic 

affinities of the various formally described fish species. They then provided a 
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comparison of the overall fauna with other faunas, based on the proportions of 

different higher taxa.  

Gess (2001) described Diplacanthus acus, a new species of diplacanthid from 

Waterloo Farm.  

The remarkably good preservation of the fish fossil fauna from the Waterloo Farm 

locality, as well as the diversity of fish taxa, begs more thorough sampling and 

discription or reasessment of significant taxa. In particular, description of new 

material of Petromyzontiformes, chondrichthyans and coelacanths is required, as well 

as an assessment of the biodiversity and biogeography of this unique Agulhas Sea 

Famennian fish fauna. 
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CHAPTER 2     MATERIALS AND METHODS 

2.1   EXCAVATION AND PREPARATION 

Fieldwork for this project was undertaken mainly on Waterloo Farm, situated south 

of Grahamstown in a rock cutting through the Famennian (Late Devonian) Witpoort 

Formation. During the fieldwork phase of this project the road cutting containing the 

locality was unexpectedly involved in a major structural failure, and the South 

African National Roads Agency Limited ordered it to be cut back into a slope. As the 

shale was too crumbly to mine mechanically, it was systematically removed in 

blocks, with the assistance of seven labourers.  Approximately 70 cubic meters of 

shale blocks were removed and stacked in sheds over a seven month period. This 

guaranteed continued access to excavation material for the duration of the study and 

beyond. Shale layers are split apart layer by layer along fine bedding planes, by 

forcing an Okapi pocket knife blade between them. Where this is not possible, a small 

sledge hammer and flat brick chisel are used. Due to the nature of the shale, fossils 

are often only partially exposed by fractures running obliquely to the bedding, or by 

material pulling away from adjacent layers.  Lengthy preparation with a small blade 

was required for many specimens, every effort being made to remove the counter 

material in large enough flakes for its simultaneous reconstruction – as the part and 

counterpart frequently present different information. Fragmentary specimens were 

reconstructed using water soluble Alcolin cold glue.  

Three hundred and twenty nine (329) new fish fossil specimens from Waterloo Farm 

were accessioned into the Albany Museum collection during this study, of which 323 

represented bones, associations of bones and soft tissue impressions. The remaining 

six represented isolated scales, which were not systematically collected due to their 

largely belonging to a single taxon. This large number of fossils has allowed a more 

in depth study of the site, revision of existing descriptions, new descriptions and the 

recognition of evidence for twice the number of taxa than were formally recognised.  

Material was photographically recorded using a variety of techniques depending on 

the taphonomy and preservation. Larger specimens were placed on a copy table with 

an adjustable camera mount and details of soft-tissue outlines, for example, were 
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illuminated using one-directional light and, where details were fine, photographed 

through a microscope. In conjunction with the specimens, black and white prints 

taken under various lighting, were used to aid in the production of accurate line 

drawings illustrating the important features of new material.  

Analysis of the material included comparison with specimens from the mid-Devonian 

Bokkeveld and early Carboniferous upper Witteberg Groups, which are housed in the 

collections of Iziko (South African) Museum in Cape Town, the Council for 

Geosciences in Belville, and the Montagu Museum in Montagu. Fieldwork was twice 

conducted in rocks of the Bokkeveld Group near Warmwatersberg in the Klein Karoo 

to collect new material. 

Comparative collections of Devonian and Carboniferous fish fossils, from other parts 

of the world, were examined at the Museum of Victoria in Melbourne, Australia, the 

Cleveland Museum in Cleveland, and the Field Museum in Chicago, United States of 

America  

2.2  TAPHONOMY AND PRESERVATION  

The fossils found at Waterloo farm represent the remains of organisms that were 

buried in black anaerobic mud in a low energy embayment of a coastal estuarine 

lagoon. Larger organisms were not buried quickly enough to facilitate fossilisation in 

their entirety. Rather, they were subject to decay and scavenging - large fish being 

reduced to scatterings of scales and bones, or bony plates, prior to burial. Numerous 

coprolites and fish drags (curved or sinuous linear traces left by fish brushing the 

surface of the mud whilst swimming) occur throughout the stratigraphic range of the 

outcrop of fish fossil bearing shale. This indicates that the overlying water column in 

this part of the lagoon was generally oxygenated enough to support an active 

ecosystem. 

Sulphuric briny conditions led to dissolution of original bony material. The resultant 

voids acted as templates for fibrous, silvery white, secondary metamorphic 

phyllosilicate fills. These phyllosilcates fills have been extensively altered to white 

kaolin clay, during uplift. 



 23 
 
 

Although smaller fish were often similarly reduced to dissociated elements before 

burial, they were occasionally buried whole. When this occurred anaerobic 

conditions, within the sediment, completely arrested their decay. 

Although bony material is often poorly preserved at the Waterloo Farm locality, an 

exceptional preservational feature of the locality is that cartilaginous elements and 

delicate soft tissue impressions have been preserved, and are highlighted by mineral 

films. With dewatering and burial of the sediments the fossil impressions have 

become highly compressed. 

2.3   CURATION 

Due to the soft, friable nature of the material it is ideally housed in air-tight dust-free 

drawers, or where specimens are too large, in secure dust-free wooden boxes. Glass 

topped former insect cabinet drawers have been made available at the Albany 

Museum, in addition to further cabinet space.  

2.4   IMAGING 

Non destructive imaging techniques were utilised. Much of the important detail is 

represented by thin mineral films possessing a directional fabric which, on being 

rotated, is illuminated at one angle and goes into extinction at another. Specimens 

were therefore placed beneath a pole-mounted Nikon SLR camera with a macro lens, 

and revolved until maximum illumination, from a directed light source, was achieved. 

At this point they were photographed at minimum aperture with a cable release. 

Images were recorded on black and white emulsion film or digitally. Specimens 

showing relief were also photographed from various angles with a low, directional 

light source, to highlight relief. 

Large photographic prints were produced from which, in close conjunction with the 

specimens, drawings were prepared. 

Attempts, by previous collaborators, to prepare the material for latex peeling, by 

cleaning off the mineral coating, and painting the specimens with glyptol, proved 

extremely destructive in the majority of cases.  Though this has not been re-
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attempted, information has been extracted, during this study, from specimens 

previously prepared in this manner, through the preparation of peels and their 

photography after coating with ammonium chloride.  
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 CHAPTER 3   PETROMYZONTIFORMES OF THE WATERLOO FARM 

LOCALITY     

3.1 A LAMPREY FROM THE DEVONIAN PERIOD OF SOUTH AFRICA*  

 

Robert W. Gess
1
, Michael I. Coates

2
 & Bruce S. Rubidge

1 

 

1
  Bernard Price Institute (Palaeontology), School for Geosciences, University of 

Witwatersrand, Johannesburg, 2050, South Africa. 

2
  Department of Organismal Biology, University of Chicago, Chicago, IL 60637, 

USA. 

 

Lampreys are the most scientifically accessible of the remaining jawless 

vertebrates, but their evolutionary history is obscure.  In contrast to the rich 

fossil record of armoured jawless fishes, all of which date from the Devonian 

period and earlier (1-3), only two Palaeozoic lampreys have been recorded, both 

from the Carboniferous period(1).  In addition to these, the recent report of an 

exquisitely preserved Lower Cretaceous example (4) demonstrates that 

anatomically modern lampreys were present by the late Mesozoic era.  Here we 

report a marine/estuarine fossil lamprey from the Famennian (Late Devonian) 

of South Africa (5,6), the identity of which is established easily because many of 

the key specializations of modern forms are already in place.  These 

specializations include the first evidence of a large oral disc, the first direct 

evidence of circumoral teeth, and a well-preserved branchial basket.  This small 

agnathan, Priscomyzon riniensis gen. et sp. nov., is not only more conventionally 

lamprey-like than other Palaeozoic examples (7,8), but is also some 35million 

years older.  This finding is evidence that agnathans close to modern lampreys 

had evolved prior to the end of the Devonian period.  In this light, lampreys as a 

whole appear all the more remarkable: ancient specialists that have persisted as 

such and survived a subsequent 360 million years. 

 

Gess, R.W., Coates, M.I. & Rubidge, B.S. (2006). A lamprey from the Devonian 

period of South Africa. Nature 443, 981-984. 
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Hyperoartia Müller, 1844 

Petromyzontiformes Berg, 1940 

Priscomyzon riniensis gen. et sp. nov. 

 

Etymology.  Generic name from Latin prisco (ancient) and myzon (a lamprey).  

Specific name from Rini, the Xhosa name for Grahamstown and the surrounding 

valley. 

Holotype.  Albany Museum, Grahamstown, Eastern Cape, catalogue number 

AM5750. 

Locality and horizon.  Waterloo Farm, Grahamstown, South Africa; Witpoort 

Formation, Witteberg Group, Famennian, Late Devonian (5,6). 

Diagnosis.  A small lamprey differing from all other living and fossil lampreys in 

having a large oral disc, the diameter of which approximately equals the length of the 

branchial region, and accounts for around half of total head length.  A circumoral ring 

of 14 simple teeth is present, the posterior members of which are largest; there are no 

associated radiating series or plates of supplementary teeth.  The first gill pouch is 

ventral to the otic capsule.  Total body length is little more than 4.2 cm, post-

branchial body shape is elongate and tapering, and only 1.5 times the head length.  

The dorsal fin extends from the immediate posterior of the branchial region. 

Description.  The 4.2-cm-long specimen of Priscomyzon is preserved in ventral 

view, in part (Fig. 1a) and counterpart (Fig. 1b) on a natural bedding plane.  No post-

depositional distortion is apparent in associated plant axes.  The most striking feature 

of Priscomyzon is its large oral disc, edged with a soft outer lip, supported by an 

annular cartilage, and surrounding a circular mouth (Fig. 1c).  This is the first clear 

evidence of a Palaeozoic lamprey with an oral disc, and the disc is proportionately 

larger than those of similarly sized, post-metamorphic, living forms (Fig. 2).  In 

contrast, the oral disc of the Late Carboniferous lamprey Mayomyzon (7,8), if present, 

is much smaller (9), and no remnant of a disc is preserved in the Early Carboniferous 

lamprey Hardistiella (10).  The lamprey identity of the putative oral disc of Pipiscus 

(11) is uncertain (12). 
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 Priscomyzon displays a set of 14 evenly spaced teeth surrounding the mouth.  

These are the first teeth to be discovered in any fossil lamprey, and resemble the 

circumoral arrangements of 19 or more teeth present in modern forms such as 

Ichthyomyzon, Petromyzon, Caspiomyzon and Geotria (13).  In Priscomyzon, the 

posterior circumoral teeth appear more elongate than the remainder, whereas in 

modern forms lateral or anterior teeth tend to be largest.  Modern lamprey circumoral 

teeth usually display specialized shapes, and such teeth are often the largest of 

multiple series radiating to the oral disc perimeter.  In comparison, the circumoral 

teeth of Priscomyzon are very simple, and in this respect probably primitive.  

Irregularly shaped objects in the centre of the mouth (oesophageal opening, Fig. 1c) 

might be traces of teeth from the apical cartilage of the “tongue” complex, as in living 

hagfishes and lampreys (14). 

 Several rod-like structures are preserved posterior to the oral disc.  These 

include a possible styliform cartilage and parts of further cartilages from the 

underside of the neurocranium (Fig. 1).  Ovoid patches flanking the midline are 

interpreted as the otic capsules.  The lighter colour of these indicates denser 

mineralization, but otherwise the capsule material resembles that of surrounding 

skeletal remains.  Otic capsules overlap the anterior of the branchial skeleton, a 

condition also seen in Mayomyzon (7,8), but restricted to larval stages in living forms 

(9) and absent from Mesomyzon (4) (the reconstruction in Fig.2a illustrates the 

difference in cranial lay-out).  The position of the orbits is less clear because there are 

no darkened areas indicative of eye locations, as in Mayomyzon (7,8), Hardistiella 

(10) and Mesomyzon (4). 

 The branchial skeleton of Priscomyzon is preserved in greater detail than that of 

Mesomyzon (4); gill arrangements in Mayomyzon are preserved only as dark imprints 

(7,8), while evidence of the branchial apparatus in Hardistiella (10) is fragmentary 

(15).  In Priscomyzon, much of the right and parts of the left branchial baskets are 

preserved.  The posterior five branchial arches are well defined, including evidence of 

at least two sets of horizontal bars (further bars may be obscured by matrix): the 

hypobranchials and either hypo- or epitrematic bars (Fig. 1).  Anterior to these, areas 

of lesser mineral concentration suggest the presence of seven branchial pouches in 

total.  Of the two Carboniferous lamprey species, Mayomyzon displays five pairs of 
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gill pouches with indications of a further two (7), and a possible juvenile specimen of 

Hardistiella shows at least six branchial units (16).  In Priscomyzon a bi-lobed 

structure posterior to the branchial skeleton corresponds to the expected position of 

the heart.  However, it is not clear that this is evidence of a pericardial cartilage 

capsule, as in modern lampreys. 

 The post-branchial body of Priscomyzon is much narrower than the head and 

tapers posteriorly (Fig. 1).  It is also exceptionally short: only 1.5 times head length, 

compared to 3.3 times head length in the similarly sized Mayomyzon.  Faint 

impressions of small lunate ridges are present, but their significance is unknown.  

Details of the dorsal fin are limited, although it is evident that it originates 

immediately behind the branchial region and extends as a continuous fold towards the 

caudal extremity.  This resembles conditions in an ammocoete rather than in modern 

adult lampreys, in which separate anterior and posterior dorsal fins are located in the 

posterior half of the body (Fig. 2b).  Like Mayomyzon, the single dorsal fin of 

Priscomyzon is continuous with the caudal fin (7,8), whereas in Hardistiella the two 

fins might be more widely separated (10). 

 To explore the phylogenetic position of Priscomyzon, and examine the effects 

of these new data upon the existing hypotheses of relationships among jawless fossil 

and Recent vertebrates, we built upon data matrices from refs 2, 17 and 18.  

Relationships among these taxa are problematic because nucleotide sequence data 

tend to support cyclostome monophyly (hagfishes plus lampreys as sister group to 

gnathostomes) (19,20), while morphological analyses usually favour cyclostome 

paraphyly (hagfishes as sister group to lampreys plus gnathostomes) (2,18,20).  As 

well as adding new taxa (4), our data set accounts for recent discoveries of lamprey-

like conditions in putative stem-gnathostomes (3,21), and includes characters 

describing similarities among the feeding apparatuses of living agnathans (14).   

 Phylogenetic analysis (22) of 21 taxa and 115 characters (see Supplementary 

Information) yields 42 shortest trees (most parsimonious solutions to the data set), 

with many of the major groupings found in ref. 2.  A strict consensus of these places 

Priscomyzon in a polytomy of fossil and Recent lampreys (Fig. 3a).  A further 

polytomy at the base of vertebrates highlights increased instability among the 

relationships of „unarmoured‟ fossil agnathans (1,12,23), although analysis of a 
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reduced taxon set shows strong support for cyclostome paraphyly (see Supplementary 

Information).  Analysis of the complete data set with enforced cyclostome 

monophyly (see Supplementary Information) increases tree length by only 8%, 

largely as a result of character losses along the hagfish branch, and with few changes 

to the gnathostome stem.  Analysis of characters re-weighted after the first tree search 

(without enforced topological constraints) results in a single shortest tree (Fig. 3b), 

linking the „naked anaspid‟ Euphanerops (3) to the base of a lamprey stemgroup.  

This result echoes previous suggestions about the relationships of these clades (1,20). 

 The discovery of Priscomyzon within a Late Devonian marginal marine 

estuarine environment (5,6) pushes the minimum date of lamprey-like fishes back by 

some 35 million years, and provides a new minimum date for molecular-clock-based 

estimates of the cyclostome crown-node.  The well developed oral disc, annular 

cartilages, and circumoral teeth of Priscomyzon suggests the evolutionary long-term 

stability of a highly specialized parasitic feeding habit.  Lampreys have long been 

recognized as highly apomorphic (13) but only now is it possible to appreciate just 

how ancient these specializations are.  In this particular sense, lampreys might be 

described as “living fossils” (24), and Priscomyzon adds new phylogenetic 

perspective to studies employing modern agnathans as model systems for insight into 

primitive vertebrate conditions (25-27). 

 

METHODS 

Phylogenetic analysis was performed with the phylogenetic package PAUP*4.0b10 

(ref. 22).  See Supplementary Information for the list of 115 characters with sources 

of reference, the data matrix, and a strict consensus of six trees obtained when 

cyclostome monophyly was enforced as a topological constraint. 

 

Suppementary Information is linked to the online version of the paper at 

www.nature.com/nature. 
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Figure 3.1  I  Holotype of Priscomyzon riniensis gen. et sp. nov.  This 360-Myr-old 

lamprey is the earliest example known in the fossil record, showing most of the 

specialized feeding structures present in modern forms.  a, part, and b,  counterpart of 

holotype AM5750.  Total length of specimen 42mm.  c,  Interpretive drawing of the 

holotype.  Abbreviations: ac, annular cartilage; blb, bilobed structure; bra, branchial 

arch; brb, branchial basket; cm, circular mouth; ct, circumoral teeth; df, dorsal fin; 

hyb, hypobranchial bar; h/eb, hypotrematic/epitrematic bar; oc, otic capsule; od, oral 

disc; ol, outer lip; or, orbital region; sc, styliform cartilage; 1-7, positions of gill 

pouches. 
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Figure 3.2  I  Reconstruction of Priscomyzon riniensis, illustrating tadpole-like 

body proportions and large oral disc, compared with post-metamorphic modern 

lamprey, Lampetra fluviatalis.  a, Reconstruction of Priscomyzon in dorsal (upper) 

and left lateral (lower) views.  b, Macropthalmia stage of Lampetra (28) showing 

anterior location of orbit and smaller oral disc, both positioned in front of branchial 

region.  Total length of specimen 116mm.  Drawings in a and b scaled to show 

equivalent head lengths: from anterior limit of the oral disc to rear of the branchial 

region.  Horizontal bars indicate anterior-posterior span of oral disc in each species. 
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Figure 3.3  Cladograms showing the hypothesized position of Priscomyzon 

among early craniates.  a, Strict consensus of 42 shortest trees: length 211 steps, 

consistency index 0.63, homoplasy index 0.37, retention index 0.7, rescaled 

consistency index 0.44. Priscomyzon lies within a polytomy of fossil and modern 

lampreys. Bremer support values are circled at nodes (cf. refs 2,18; see 

Supplementary Information for details). b, Single tree from analysis of re-weighted 

character set: cyclostomes (hagfishes and lampreys) are paraphyletic; Euphanerops 

(1,3) is a stem lamprey on basis of homoplastic synapomorphies. Time axis (myr) and 

temporal ranges of taxa (bold lines) from refs 1,3,4,12,18,23. Numbered brackets 

indicate major monophyletic groups: 1, Craniata; 2, Myxiniformes; 3, Vertebrata; 4, 

Petromyzontiformes; 5, Gnathostomata.  
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3.2   A  LAMPREY FROM THE DEVONIAN PERIOD OF SOUTH AFRICA: 

SUPPLEMENTARY INFORMATION 

 

Specimen photography 

The specimen (Fig. 1, AM5750) shows a directional mineral fabric, illuminating at 

one angle to directional light and becoming extinct at 90 degrees thereto.  

Photographs were taken with a cable release, in one-directional light, using a Nikon 

SLR with macro lens, mounted on a tripod. Images taken at minimum aperture were 

recorded on B/W emulsion film, from which prints were produced. Immersion of the 

specimen to enhance contrast was precluded by the extremely absorbant and friable 

nature of both specimen and matrix.  No digital image enhancement procedure has 

been used. 

 

Phylogenetic analysis 

All analyses were completed using the program PAUP* (ref. 22), employing the 

branch and bound search algorithm, computed stepwise with the furthest addition 

sequence.  All 42 optimal trees were saved.  Tree statistics and strict consensus 

topology are provided in Fig. 3a. 

 

Taxa 

Taxa were selected on the basis of their use in recent analyses, namely those in refs 2, 

17, and 18.  The present work did not set out to duplicate the detailed tests run in refs 

2 and 18.  For this reason, large terminal groups were included, in full awareness of 

the additional hypotheses of monophyly that these clades bring to the present work.  

Twenty one taxa were included.  Cephalochordates (amphioxus) and tunicates were 

used as the outgroup.  Other taxa are: Myxinoidea - hagfish (Recent), Myxinikela 

(Carboniferous), Haikouichthys (Early Cambrian), Euphanerops (Devonian), 

Mayomyzon (Carboniferous), Priscomyzon (Devonian), Mesomyzon (Cretaceous), 

Petromyzontida - lampreys (Recent), Euconodonta (Late Cambrian-Triassic), 

Jamoytius (Silurian), Anaspida (Silurian-Devonian), Astraspis (Ordovician), 

Heterostraci (Silurian-Devonian), Arandaspida (Ordovician), Loganellia (Silurian), 

Turinia (Devonian), Galeaspida (Silurian-Devonian), Osteostraci (Silurian-
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Devonian), jawed vertebrates (Ordovician-Recent).  Mayomyzon is treated as an adult 

because of lack of evidence regarding possible ancient lamprey metamorphosis.  

Should described Mayomyzon material represent subadults, it may be characterised by 

primitive features not typical of the adult form (ref. 9).  Hardistiella (ref. 10) is not 

included in the analyses because of the limited information available to code into the 

character matrix. 

 

Characters 

Most of the 115 characters are from Janvier (ref. 17), subsequently reviewed by 

Donoghue and colleagues (refs 2 and 18).  For discussions of characters, readers 

should refer to these sources, as well as sources including refs 1 and 20.  In the case 

of polymorphic characters for higher taxa (e.g. gill number in galeaspids), the state 

coded for here is the state that appears plesiomorphous in current phylogenies (of 

these taxa).  However, some new characters were added and others recoded in the 

light of recent discoveries.  Several of these concern conditions of the so-called 

„naked anaspid‟ Euphanerops, which is now known to have cyclostome-like 

cartilage, and, in particular respects, lamprey-like gills (refs 3 and 21).  Additional 

morphological characters are used to describe features of the feeding apparatus of 

hagfish and lampreys.  These observations were taken initially from Yalden‟s 

argument for cyclostome monophyly (ref. 14), and, as in this earlier work, 

observations were checked against original dissections of hagfish and lamprey 

material (MIC).  Yalden generated a list of eleven potential synapomorphies of 

Recent hagfishes and lampreys, all of which were summarized in the single character 

“cartilaginous copula associated with tongue protractor and retractor muscles: 

absent/present”, used in refs 2 and 18.  Here, this complex of features is expanded 

(conservatively) to three characters, numbers 62-64.  Other characters were included 

to describe the position of the otic capsule, the presence of series of circumoral teeth, 

and the anteriormost level of dorsal fin insertion.  Most characters used in the present 

analyses are binary; in instances where character codes are hierarchical, inapplicable 

(„?‟) scores are entered for conditions in taxa where codes are illogical.  Where 

multistate characters are used, these are treated as unordered in all analyses. 
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Character re-weighting, enforced constraints, and reduced taxon subset 

Character re-weighting was imposed according to rescaled consistency index (RC) 

and best-fit options in PAUP*. 

Cyclostome monophyly has been found repeatedly in analyses of nuclear, 

mitochondrial, and other molecular sequence data (refs 19, 20).  Recent 

palaeontological studies have identified cyclostome characteristics in stemgroup 

gnathostomes (refs 3, 21), and gnathostome-like characters in the earliest craniates 

(ref. 23).  For these reasons it was considered timely to explore the implications of 

cyclostome monophyly for the growing morphological data set used to analyse 

relationships of jawless fossil vertebrates.   

Following the results of the initial analysis, a polytomy subtending Myxinoidea - 

hagfish (Recent), Myxinikela (Carboniferous), Euphanerops (Devonian), Mayomyzon 

(Carboniferous), Priscomyzon (Devonian), Mesomyzon (Cretaceous) and 

Petromyzontida - lampreys (Recent) was imposed.  This topological constraint was 

loaded as a „backbone‟ in the branch and bound option, saving all compatible trees.  

A strict consensus of the resultant six trees is shown in Supplementary Figure 1a.   

In addition, analysis of a reduced taxon set was undertaken to explore underlying 

signal in the data matrix.  The Agreement Subtrees option in PAUP* produced a tree 

excluding Haikouichthys, Euconodonta, Jamoytius, and Euphanerops; Myxinikela, 

Mayomyzon, Mesomyzon, and Galeaspida were also cut from this supplementary 

analysis.  The resultant tree is shown in Supplementary Figure 1b.  Bremer support 

(decay) and bootstrap values identify robust nodes within the basic architecture of a 

morphology-based phylogeny of basal vertebrates including fossil taxa (compare 

values with those shown in Figure 3a).  Support for Priscomyzon as a lamprey, the 

gnathostome total group, and the Vertebrata is strong.  In contrast, relationships 

among arandaspids, heterostracans, and thelodonts within the gnathostome stem 

group are much weaker. 

 

Supplementary Figure 1  I  a, Strict consensus of six trees obtained when 

cyclostome monophyly is enforced as a backbone constraint.  Tree length extended 

from 211 to 236 steps, most of which accounts for reversals along the branch leading 

to myxinoids.  The structure of the gnathostome stemgroup is changed, with 
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thelodonts (Loganellia and Turinia) joined to a monophyletic clade of anaspids, 

arandaspids, heterostracans, and Astraspis.  b,  Single tree obtained from reduced 

taxon set (no enforced constraints; cyclostomes paraphyletic), showing robust support 

for hypothesized stem-gnathostome relationships for majority of fossil jawless 

vertebrates (compare values with those shown in Figure 1).  Tree length 181 steps, 

consistency index 0.73, homoplasy index 0.27, retention index 0.73, rescaled 

consistency index 0.53.  Bremer support values circled at nodes; bootstrap values 

(10,000 replicates) shown adjacent.   

 

 

Character list. 

 (a) Brain, sensory and nervous system 

1.  Neural crest absent = 0, present = 1 

2.  Olfactory peduncles absent = 0, present = 1 

3.  Pineal organ absent = 0, present and covered = 1, present and uncovered 

= 2 

4.  Pituitary divided to adenohypophysis and neurohypophysis absent = 0, 

present = 1 

5.  Adenohypophysis absent = 0, simple = 1, segmented and 

compartmentalised = 2 

6.  Optic tectum absent = 0, present = 1 

7.  Cerebellum absent = 0, present = 1 

8.  Pretrematic branches in branchial nerves absent = 0, present = 1 

9.  Flattened spinal chord absent = 0, present = 1 

10.  Ventral and dorsal spinal nerve roots united, absent = 0, present = 1 

11.  Mauthner fibres in central nervous system absent = 0, present = 1 

12.  Synaptic ribbons in retinal receptors absent = 0, present = 1 

13.  Number of nasal openings: none = 0, paired = 1, single median = 2 

14.  Nasohypophyseal opening serving respiration (nasohypophyseal duct) 

absent = 0, present = 1 

15.  Single nasohypophyseal opening, absent = 0, present = 1 

16.  Position of nasohypophyseal opening: none = 0, terminal = 1, dorsal = 2 
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17.  Olfactory organ absent = 0, paired = 1, unpaired = 2 

18.  Extrinsic eye musculature absent = 0, present = 1 

19. Otic capsule anterior to branchial series, absent = 0, present = 1 

20. Number of semicircular canals in labyrinth: none = 0, one = 1, two = 2, 

three = 3 

21.  Vertical semicircular canals forming loops, absent = 0, present = 1 

22.  Externally open endolymphatic ducts absent = 0, present = 1 

23.  Sensory-line system with neuromasts absent = 0, present = 1 

24.  Electroreceptive cells absent = 0, present = 1 

25.  Sensory-line grooves or canals absent = 0, present on head only = 1, 

present on head plus body = 2 

26.  Sensory-line absent = 0, enclosed in grooves = 1, enclosed in canals = 2 

 

(b) Mouth and branchial sytem 

27. Pouch-shaped gills absent = 0, present = 1 

28. Single confluent branchial opening, absent = 0, present = 1 

29. Elongate branchial series: more than 10 gill pouches/slits = 0, fewer than 

10 = 1 

30. Gill openings lateral and arranged in slanting row, absent = 0, present = 1 

31. Position of gill openings: laterally = 0, ventrally = 1 

32.  Opercular flaps associated with gill openings, absent = 0, present = 1 

33. Endodermal gill lamellae, absent = 0, present = 1 

34. Gill lamellae with filaments, absent = 0, present = 1 

35. Mouth terminal = 0, ventral = 1 

36. Oral hood absent = 0, present = 1. 

37. Velum absent = 0, present = 1 

 

(c) Circulatory system 

38. Relative position of atrium and ventricle of heart: well separated = 0, 

close to each other = 1 

39. Closed pericardium absent = 0, present = 1 

40. Open blood system absent = 0, present = 1 
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41. Paired dorsal aortae absent = 0, present = 1 

42. Large lateral head vein absent = 0, present = 1 

43. True lymphocytes absent = 0, present = 1 

44. Subaponeurotic vascular plexus absent = 0, present = 1 

 

(d) Fins and fin-folds 

45. Dorsal fin: separate dorsal fin absent = 0, present = 1 

46. Dorsal fin originates at posterior of branchial series = 0, restricted to 

posterior of trunk and/or caudal region = 1. 

47. Anal fin separate, absent = 0, present = 1. 

48. Unpaired fin ray supports closely set, absent = 0, present = 1 

49. Paired lateral fin folds absent = 0, present = 1 

50. Constricted pectorals absent = 0, present = 1 

51. Pelvic fins/flap, absent = 0, present = 1 

52. Tail shape: no distinct lobes developed = 0, ventral lobe much larger than 

dorsal = 1, dorsal lobe much larger than ventral = 2, dorsal and ventral 

lobes almost equally developed = 3. 

53. Chordal disposition relative to tail development, isochordal = 0, 

hypochordal = 1, hyperchordal = 2 

54. Preanal median fold absent = 0, present = 1 

 

(e) Skeletal 

55. Ability to synthesise creatine phosphatase absent = 0, present = 1 

56. Visceral arches fused to the neurocranium absent = 0, present =1 

57. Horny teeth absent = 0, present = 1 

58. Circumoral teeth absent = 0, present = 1 

59. Circumoral teeth arranged in radiating series, absent = 0, present = 1 

60. Trematic rings absent = 0, present = 1 

61. Arculia absent = 0, present = 1 

62. Piston cartilage and apical plate, absent = 0, present = 1. 

63. Midline retractor muscle, dorsal to piston cartilage, and paired protractor 

muscles, absent = 0, present = 1. 
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64. Longitudinally aligned tooth rows providing transverse bite, absent = 0, 

present 1. 

65. Jaws (dorsoventral bite), absent 0, present = 1 

66. Chondroitin 6-sulphate in cartilage, absent = 0, present = 1 

67. Braincase with lateral walls, absent = 0, present = 1. 

68. Neurocranium entirely closed dorsally and covering the brain, absent = 0, 

present = 1 

69. Occiput enclosing vagus and glossopharyngeal nerves, absent = 0, present 

= 1 

70. Annular cartilage absent = 0, present = 1 

71. Large oral disc absent = 0, present = 1 

72. Tentacles strengthened by cartilages; absent = 0, present = 1 

73. Trunk dermal skeleton absent = 0, present = 1 

74. Perichondral bone absent = 0, present = 1 

75. Calcified cartilage absent = 0, present = 1 

76. Cartilage composed of huge clumped chondrocytes, absent = 0, present = 

1. 

77. Calcified dermal skeleton absent = 0, present = 1 

78. Lamellar aspidin, absent = 0, present = 1 

79. Cellular bone, absent = 0, present = 1 

80. Dentine absent = 0, present = 1 

81.  Dentine absent = 0, mesodentine = 1, orthodentine = 2. 

82. Enamel/oid absent = 0, (monotypic) enamel = 1, enameloid (bitypic 

enamel) = 2 

83. Three-layered exoskeleton consisting of a basal lamella, middle spongy 

(or cancellar) layer and a superficial (often ornamented) layer: absent = 0, 

present = 1 

84. Cancellar layer in exoskeleton, with honeycomb-shaped cavities, absent = 

0, present = 1 

85. Composition of the scales/denticles/teeth: absent = 0, made up by single 

odontode = 1, made up by several odontodes = 2 

86. Scale shape: scale absent = 0, diamond-shaped = 1, rod-shaped = 2. 
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87. Oak-leaf-shaped tubercles, absent = 0, present = 1 

88. Oral plates absent = 0, present = 1 

89. Denticles in pharynx absent = 0, present = 1 

90. Dermal head covering in adult state: absent = 0, small micromeric = 1, 

large (macromeric) dermal plates or shield = 2 

91. Large unpaired ventral and dorsal dermal plates on head, absent = 0, 

present = 1 

92. Massive endoskeletal head shield covering the gills dorsally, absent = 0, 

present = 1 

93. Sclerotic ossicles absent = 0, present = 1 

94. Ossified endoskeletal sclera encapsulating the eye, absent = 0, present = 1 

 

(f) Physiological 

95. Blood volume more than 10% of body volume = 0, less than 10% =1 

96.  Haemoglobins with low oxygen affinity and significant Bohr effect, 

absent = 0, present = 1 

97.  Nervous regulation of heart, absent = 0, present = 1 

98.  Heart response to catecholamines, absent = 0, present = 1 

99. High blood pressure, absent = 0, present = 1 

100. Hyperosmoregulation, absent = 0, present = 1 

101. High proportion of serine and theronine collagen, absent = 0, present = 1 

102. Presence of lactate dehydrogenase 5, absent = 0, present = 1 

103. Pituitary control of melanophores, absent = 0, present = 1 

104. Pituitary control of gametogenesis, absent = 0, present = 1 

105. High metabolic rate, absent = 0, present = 1 

106. Ion transport in gills, absent = 0, present = 1 

 

(g) Miscellaneous 

107. Typhlosole in intestine, absent = 0, present = 1 

108. Spleen absent = 0, present = 1 

109. Collecting tubules in kidneys absent = 0, present = 1 

110. Condensed and discrete pancreas absent = 0, present = 1 
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111. A islet cells in endocrine pancreas absent = 0, present = 1 

112. Male gametes shed directly through the coelom, absent = 0, present = 1 

113. Forward migration of postotic myomeres, absent = 0, present = 1 

114. Sexual dimorphism, absent = 0, present = 1 

115. Larval phase, absent = 0, present = 1 

 

 

Data set 

 

Tunicata             

000000000000000000?0000000010??00000000000000?0000000?0000?0000000000

0000000000000000000000000000000000000100001001 

Cephalochordata      

00?000000000000000?00000000000001000100010000?000000010000?0000000000

0000000000000000000000000000000000000000000001 

Myxinoidea           

10?1110010002111201100001110000010001000100101000000011110?1011100000

0010001000000000000000000000000000000000001100 

Myxinikela           

10??????????2111??1???????101?00??00????????010?0000?0??10??0??10?????010

00?000000000000000000????????????????????? 

Petromyzontida       

10212100101120121112001121101100110111110010110100011011111111110110

01100001000000000000000000111111111111111111111 

Mesomyzon            

10????????????????1???????101?00?101?????????10?000110?1111?????0?1???100

00?000000000000000000????????????????????? 

Priscomyzon          

10????????????????0???????101?00??011???????000?000????11101????0?10?1100

00?000000000000000000????????????????????? 
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Mayomyzon            

10???????????0?2??0???????101?00??011???????010?000(01)0??1??01?1??0?10?10

0000?000000000000000000????????????????????? 

Haikouichthys        

10????????????????1????????01000??00????????1001?000???000??10000?????000

00?000000000000000000????????????????????? 

Heterostraci         

111???1?????????1?02101?22111000?100???????101000003111??0??1??00?????00

100?110120112111021000????????????????????? 

Astraspis            

1?1??????????????????01?11101100???????????1?1??000???1?????????0???????10

0?11012210211??11??0????????????????????? 

Arandaspida          

1?1?????????????????????21100100??00????????010??00??01??0??????0?????001?

??1??000112211021?10????????????????????? 

Anaspida             

1?2?????????2?12????????21100100??00????????01111001101??0??????0?????001

00?110000002201010000????????????????????? 

Jamoytius            

1???????????2?11??????????10010???10?????????0??100??01??0?1????0????1001?

???????????200000000????????????????????? 

Euphanerops          

1?????????????????????????100100?100?????????11000011?1????1????0????100?0

1100000??00?00000000????????????????????? 

Osteostraci          

1021?11?????2012?102111?22101011?110?11?01?1110101022011?0??1??00?1110

001110101110102101020111????????????????????? 

Galeaspida           

112??11?????21121?021?1?22101011?110?????1?1?1??000??011?0??1??00?111000

1110110000001101020100????????????????????? 
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Loganellia           

1?????????????????????1?22?01100??00????????11101003101??0?????00?????001

00?110110001100110000????????????????????? 

Turinia             

1?????????????????????????1011?0??00?????????1?010??1?1?????????0?????0010?

?1101200011001100?0????????????????????? 

Jawed vertebrates    

1111211101111000111311112200100101000111111011110112201000?0100011111

0001110101121102100110010111111111111111110010 

Euconodonta          

1????????????????11????????0???????0????????01010001101?00?????10??0?00?00

0?100131002000100000????????????????????? 
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CHAPTER 4    CHONDRICHTHYES OF THE WATERLOO FARM 

LOCALITY 

 

4.1 Chondrichthyan fossils from the Late Devonian (Famennian) Witpoort 

Formation of South Africa, provide exemplars of primitive taxa.  

 

ABSTRACT 

 

Purported chondrichthyan scales and teeth are known from the Early Silurian and 

possibly the Late Ordovician, whilst spines attributed to chondrichthyans are known 

from the Late Silurian onwards. Endoskeletal elements and articulated carcasses are 

extremely scarce before the Late Devonian and Early Carboniferous, by which time 

they were diverse and generally much derived. The Early Devonian has yielded 

Pucapampella, consisting of a few fragmentary isolated neurocrania and, recently, the 

anterior of a carcass of Doliodus with an acanthodian-like suite of spines. From the 

Middle Devonian, Gladbachus, a whole-body fossil of a fin-spine lacking, apparently 

edentulous form has been described, as well as Antarctilamna, known from anterior 

portions of an articulated specimen in external ventral view with associated teeth and 

a fin spine. A few fragmentary endoskeletal elements have also been attributed to 

Antarctilamna. So apparently diverse are these taxa that their relationships to each 

other, to isolated tooth, spine and scale taxa, and to crown group chondrichthyans 

have hitherto not been understood. 

 

New material from the Witpoort Formation (Witteberg Group, Cape Supergroup) of 

Waterloo Farm (Grahamstown, South Africa) though Late Devonian in age, sheds 

light on these early chondrichthyans. Plesioselachus, formally described from 

Waterloo Farm, is redescribed and reinterpreted on the basis of new material. In 

addition, a new species of Antarctilamna is described, differing only in proportions 

from the Middle Devonian species. The new material includes far better preserved 

elements than those previousely described, allowing for far better understanding of 

the genus. 
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Antarctilamna closely resembles Doliodus in the structure of their fin spines, teeth, 

neurocranium and palatoquadrate, though it has a single fin spine, in common with 

many early chondrichthyans. Antarctilamna and Plesioselachus are interpreted as 

primitive chondrichthyans that, in the absence of more derived taxa in the polar 

Agulhas Sea, survived until the latest Famennian. It is suggested that loss of paired 

fin spines occurred only once in chondrichthyans and that the similarity between 

Doliodus and Antarctilamna therefore indicates that they are both close to common 

ancestors of crown group chondrichthyans. Insights from these taxa shed light on the 

relationships of other taxa.  A single dorsal fin spine, as is seen in Antarctilamna, is 

postulated to have been the chondrichthyan condition following loss of abundant 

spines, including paired fin spines. Lack of fin spines in Gladbachus represents a 

further derivation also acquired, perhaps independently, in symmoriids, eugenodonts 

and petalodonts. Presence of a single dorsal fin spine, as is found in Cladoselache, 

stethacanthids, xenacanths and most holocephalans, represents retention of a 

primitive condition. Elasmobranchs (ctenacanthids, hybodonts and neoselachians) 

appear to be the most conservative group of chondrichthyans, retaining the least 

derived endoskeletal elements. Amongst elasmobranchs, duplication of the dorsal fin 

spine may have happened only once, on the lineage leading to „ctenacanths‟ and 

hybodonts. The grouping of Cladoselache, symmoriids and stethacanthids shares 

distinctive derivations of the mandibular arch, not seen in elasmobranchs or other 

chondrichthyan groups, as well a lateral articulation for the pectoral fin, otherwise 

independently acquired in hybodonts. 

 

4.1.1  INTRODUCTION   

 

Understanding of the interrelationships of early chondrichthyans has been greatly 

hampered by the extreme scarcity of Palaeozoic chondrichthan material, other than 

isolated spines, teeth and scales. This has contributed to lack of consensus regarding 

chondrichthyan relationships and classification systems (Janvier, 1996). A 

comprehensive review of the taxonomic and phylogenetic systems of 

chondrichthyans is not intended. Until the nineteen eighties all chondrichthyans were 

generally considered to either be elasmobranchs (all shark and ray like forms), with 
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amphistylic jaw suspensions or holocephalans (chimaeroids and bradyodonts), in 

which the palatoquadrate is fused or partially fused to the neurocranium. This latter 

condition permitted a crushing bite and was associated with large platelike crushing 

teeth. The elasmobranchs were divided into cladodonts, ctenacanths, xenacanths, 

hybodonts and neoselachians (which included all modern elasmobranchs). 

Cladodonts were generally considered the most primitive „grade‟, whilst the 

hybodonts were commonly believed to include the ancestors of neoselachians 

(Janvier, 1996). 

 

 In adition to the ctenacanths (e.g. Ctenacanthus), hybodonts (e.g Onychoselache and 

Tristychius), xenacanthids (e.g. Orthacanthus and Xenacanthus) and cladoselachids 

(Cladoselache), Zangerl (1981) included the symmoriids (eg. Cobelodus, Denaea and 

Stethacanthus), eugenodonts (e.g. Caseodus, Edestes and Helicoprion), petalodonts 

(e.g. Petalodus) and orodonts (eg. Orodus) within the Elasmobranchi (Zangerl, 

1981). The iniopterygians he included within the same subdivision (subclass 

Subterbranchialia) as the holocephalans and bradyodonts (Zangerl, 1981). 

 

From the beginning of the nineteen eighties extensive cladistic analyses have been 

conducted utilising exemplars of the main classical groupings, leading to the 

recognition of a number of higher fossil clades (Janvier, 1996). Janvier summarised 

some of the major hypotheses (Schaeffer, 1981; Young, 1982; Maisey, 1984, 1986; 

Mader, 1986 ) of chondrichthyan interrelationships (Janvier, 1996), (Fig 4.1.1 A). 

The Cladoselachidae (A, e.g. Cladoselache), Eugenodontida (B, e.g. Caseodus and 

Helicoprion) and Petalodontida (C, e.g. Petalodus and Belantsea) were considered to 

have originated basal to the split between elasmobranchs and holocephalans. The 

Symmoriida, comprising the Symmoriidae (D, e.g. Cobelodus and Denaea) and 

Stethacanthidae (E, e.g. Stethacanthus and Falcatus) were considered to either be part 

of the stem group of [holocephalans and elasmobranches, F-K] or of holocephalans 

(F). In this latter case the Iniopterygia (G, e.g. Iniopteryx) formed a trichotomy with 

elasmobranchs and holocephalans, whereas when Symmoriidae were considered to 

occupy a more basal position, the Iniopterygia formed the sistergroup of 

holocephalans. Elasmobranchs appeared monophyletic and to comprise the 
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xenacanths (H, e.g. Xenacanthus and Expleuracanthus), ctenacanths (I, e.g. 

Ctenacanthus), and the Euselachi (J-K), which include hybodonts (J, e.g. Hybodus, 

Onychoselache and Hamiltonichthys) and neoselachians (K, e.g. all recent sharks).  

Within the elasmobranchs, whether the xenacanths were the most basal member or 

whether they formed a basal clade with the ctenacanths, was the only discrepancy 

(Janvier, 1996).  

 

The dialogue concerning early chondrichthyan interrelationships is ongoing, 

accompanied by redescription of existing taxa, the search for useful characters, and 

phylogenetic analyses (e.g. (Lund and Grogan, 1997, Coates and Sequeira, 2001. 

Maisey, 2001, Maisey, 2005, Maisey, 2007, Coates and Gess, 2007). 

 

In a rigorous analysis of well understood taxa (Coates and Sequeira (2001) (Fig. 1B) 

(utilising 86 characters as compared to 26 in Maisey, (2001)), the elasmobranch clade 

remained robust with xenacanths (Orthacanthus and Diplodoselache) representing 

the most basal division and possible „ctenacanths‟ (Ctenacanthus, „Cladodoides’ 

wildungensis, „C.‟ hassiacus) in a dichotomy with hybodonts/euselachians (eg. 

Tristichius, Onychoselache and Hybodus) (Coates and Sequeira, 2001). Hybodonts 

and neolselachians (constituting the Euselachi) have been resolved as sistergroups 

(Coates and Gess, 2007). In the analysis of Coates and Sequeira (2001), Cladoselache 

formed a group with stethacanthids and symmoriids, though whether this group 

represents the stem lineage of holocephalans or of elasmobranchs could not be 

adequately resolved (Coates and Sequeira, 2001).  

 

Coates and Sequeira (2001) noted that „ctenacanths‟, as traditionally grouped, may 

not be monophyletic. This concern was expressed by Janvier (1996) as the pectinate 

ornament on the dorsal spine is the only character used to unite what may be merely  

generalised Devonian to Permian elasmobranchs, which though abundant are 

generally known from only isolated spines, teeth and scales. He suggested that 

„ctenacanths‟ may also be characterised as posessing „cladodont‟ type teeth (with a 

main central cusp and smaller lateral cusps), and compound scales made up of many 

odontodes attached to a single base (Janvier, 1996). Williams (1998) demonstrated 
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co-occurrence within a specimen of Tamiobatis vetustus of a Tamiobatis 

neurocranium, „ctenacanth‟ spine, cladodont teeth and compound scales made up of 

many odontodes. As the neurocranium based genus, Tamiobatis, is associated with a 

specimen otherwise exhibiting „ctenacanth‟ characters it may provide an example of a 

„ctenacanth‟ neurocranium. Ginter and Maisey (2007) have proposed that the 

Ctenacanthidae forms a monophyletic clade that should provisionally be restricted to 

species combining ctenacanth spines, Tamiobatis-like neurocrania, cladodont teeth 

and compound scales. They consider the Ctenacanthidae to include Cladodus, 

Tamiobatis, Ctenacanthus and perhaps Cladodoides (Ginter and Maisey, 2007). 

 

As yet, no consensus regarding Chondrichthyan interrelationships and taxonomic 

systems has been achieved and since the analysis of Coates and Sequeira (2001) 

a number of alternate systems (e.g. Ginter, 2004; Hampe et al. 2004; Lund and 

Grogan, 2004) have been proposed. These analyses have attempted to include a 

number of taxa known only from teeth, which may not be reliable taxonomic 

indicators. 

 

Indeed it is the continued reliance on isolated teeth, spines and scales, due to the 

virtual absence of articulated material or even reliably assigned internal elements of 

early chondrichthyans, that has represented the greatest stumbling block to 

ellucidation of their interrelationships. In the absence of „primitive‟ examples the 

relative apomorphy or plesiomorphy of characters is not always apparent. Articulated 

chondrichthyans are fairly well known from Late Devonian and Early Carboniferous 

strata, but were already specialised into a number of specialised clades. Possible 

chondrichthyan spines date back to the Late Silurian (Zhu Min, 1998), whereas 

purported chondrichthyan teeth and scales have been reported from the early Silurian 

or possibly Late Ordivician (reviewed by Turner, 2004).  

 

Chondrichthyan and acanthodian records based on isolated scales and teeth are 

problematical as Acanthodii are not monophyletic with regard to Chondrichthyes 

(e.g. Brazeau, 2009). Acanthodians are known from scales dating back to the Early 

Silurian and possibly mid Ordovician (Smith and Sansom, 1997), but are virtually 
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unknown from endoskeletal remains. Until recently the only described acanthodian 

neurocranial and mandibular arch remains were those of  Permian, Acanthodes 

(Miles, 1973), now considered highly apomorphic (Brazeau, 2009). Subsequent 

description of fragmentary remains of the neurocranium and mandibular arch of the 

„climatiid acanthodian‟, Ptomacanthus, from the Early Devonian of Canada (Brazeau, 

2009) has cast doubt on acanthodian monophyly, suggesting that some „acanthodians‟ 

are chondrichthyans. 

 

 No pre-Devonian chondrichthyan endoskeletal remains are known and only a few 

significant specimens have been recovered from the early to mid Devonian. These 

include neurocranial fragments from the Middle Devonian of Bolivia (Janvier and 

Suarez-Riglos, 1986; Gagnier et al., 1989) and Early Devonian of South Africa 

(Anderson et al., 1999;  Maisey, 2001; Maisey and Anderson, 2001), assigned to 

Pucapampella (Janvier and Suarez-Riglos, 1986). Apart from a few fragments of the 

visceral skeleton these are not directly associated with any other material (Maisey, 

2001). Both specimens come from fully marine environments within the Agulhas Sea 

and ecologically co-occur with spines of Machaeracanthus (Janvier and Suarez-

Riglos, 1986; Anderson et al., 1999). Pucapampella has been interpreted as a 

possibly very basal chondrichthyan due to its lack of many apomorphic characters 

uniting other chondrichthyans, and its apparent retention of various generalised 

gnathostome characters such as a ventral otic fissure. (Maisey, 2001). Its extremely 

incomplete nature undoubtedly contributes to its apparent lack of apomorphic 

characters. 

 

Middle Devonian Antarctilamna has been described from anterior portions of an 

articulated specimen preserved in external ventral view, with associated teeth and a 

fin spine, from non-marine derived strata of Antarctica. Spines, teeth, and fragments 

of neurocranium and mandibular arch, from the Bunga Beds of New South Wales, 

Australia, have also been attributed to Antarctilamna prisca (Young, 1982; Long and 

Young, 1995). These are congeneric, though possibly not cospecific.  
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Gladbachus adentatus (Heidke, U.H.J. and Kratschmer, K., 2001) from the upper 

Middle Devonian of Germany is a whole bodied dorsally preserved a fin-spineless 

and reportedly edentulous shark, displaying fragmentary remains of the cranium, 

jaws, hyoid arches, gill basket and pectoral girdle.  

 

Most recently, a partial articulated Early Devonian shark from estuarine derived strata 

of Canada has been described. Doliodus problematicus, previously described from 

teeth (Woodward, 1892), was found to have abundant fin spines, including paired fin 

spines, at one time thought to be a synapomorphy of acanthodian fishes (Miller, et al., 

2003). This specimen has also provided the opportunity to reconstruct the 

neurocranium and parts of the upper mandibular arch of an undoubtedly primitive 

shark (Maisey et al, 2009). So apparently diverse are these taxa that their 

relationships to each other, to isolated tooth, spine and scale taxa, and to crown group 

chondrichthyans have hitherto not been understood (Maisey et al. 2009). 

 

New material herein reported, though from the Late Devonian Witpoort Formation of 

South Africa, includes taxa that appear to have been morphologically stable since the 

Middle Devonian. A new species of Antarctilamna, though substantially younger 

than the mid Devonian Antarctilamna prisca, differs only in details of proportion. Re-

interpretation of Plesioselachus reveals that it had a dorsal fin spine of a type that co-

occurs with Antarctilamna in the mid Devonian strata of South Africa. The new 

chondrichthyan material, including endoskeletal elements and articulated material, 

therefore speaks to the need for more material displaying Early to Middle Devonian 

shark morphologies.     

 

4.1.2  MATERIALS AND METHODS 

 

All of the Witpoort Formation chondrichthyan material discussed comes from a 

single black shale lens exposed in 1985 during the formation of a road-cutting south 

west of Grahamstown, Eastern Cape, South Africa. It is part of a package of black 

shale lenses interbedded within quartz arenites of the uppermost Witpoort Formation, 
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a Famennian subdivision of the Witteberg Group. These rocks are interpreted as 

having been deposited as sediments in a barrier island complex, the black shale 

representing anaerobic muds deposited in a back barrier lagoon, with both marine and 

fresh water inputs (Hiller and Taylor, 1992). This shale lens and a few lesser adjacent 

shales constitute the only known Late Devonian locality in southern Africa to have 

yielded faunal remains and, in addition to chondrichthyan remains, has provided 

evidence of a diverse fish fauna, including a lamprey (Gess et al., 2006), arthrodire 

and antiarch placoderms (Long et al., 1995), acanthodians (Gess and Hiller, 1995a, 

Gess 2001), actinopterygians (pers. obs.) and sarcopterygians (Gess and Hiller, 

1995a). Arthropods, algae, charophyte algae and plants have also been recorded 

(Gess and Hiller, 1995a; Gess and Hiller, 1995b; Hiller and Gess, 1996).  

 

Fossil specimens are preserved as whitish clay infills between highly compressed 

upper and lower impressions of elements. Apparently due to low ph conditions, all 

original cartilagenous or bony material was dissolved and the resultant cavities filled 

with a phyllosilicate mineral, which was subsequently altered to white kaolinite clay. 

No internal structure of bone or mineralized cartilage is preserved. Impressions of 

soft tissue are preserved in some specimens, presumably following incidents of rapid 

burial in anoxic sediments. 

 

The fossil impressions are preserved in clayey black shale, and were exposed by 

splitting the shale along bedding planes. Further preparation was conducted with the 

tip of a knife blade. Material is stored in a repository at the Albany Museum in 

Grahamstown. They are accessioned with Albany Museum numbers, prefixed by 

AM.  

 

Attempts were made, by previous collaborators on the description of Plesioselachus, 

to obtain latex peals of the original type material. Mineralised material was washed 

off with dilute ethyl alcohol, the specimens were coated with a solution of diluted 

Glyptol, and latex peals were made. The resolution of the latex peals was very poor, 

and unfortunately the soft tissue impressions on the type specimen were almost 

entirely lost.  
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New, previously undescribed, chondrichthyan material from Waterloo Farm includes 

additional, better-preserved postcranial material attributable to Plesioselachus 

macracanthus, mandibular arches, teeth and a spine belonging to a previously 

unrecorded species of Antarctilamna, as well as an Antarctilamna neurocranium and 

soft tissue impression of a juvenile which may be conspecific.  

 

4.1.3  PLESIOSELACHUS MACRACANTHUS 

 

Plesioselachus macracanthus (Anderson et al., 1999) is a Late Devonian 

(Famennian) shark that was originally known from only two specimens. The 

holotype, AM 4817 (fig. 4.1.2 A-C), consists of a partial skeleton with counterpart 

collected in 1989. A matching distal portion of a dorsal fin spine with associated fin 

impression and partial counterpart, AM 4866 (fig. 4.1.3 B), was also referred to this 

species. 

 

Interpretation of these specimens has changed through time. Subsequent to the 

original description of Plesioselachus macracanthus a number of new specimens 

have been found through ongoing excavations of the same shale lens. These comprise 

isolated spines and scapulocoracoids, some of which are better preserved than those 

hitherto known. The distal region of the most complete spine exactly mirrors the 

well-preserved distal region of the type and paratype of Plesioselachus in general 

shape, arrangement of tuberculated costae and possession of slightly hooked posterior 

denticles. In general outline the new scapulocoracoids perfectly agree with that of the 

holotype, though they are substantially larger and better preserved.  Aditional 

material indicates a need for a thorough re-interpretation of corresponding elements 

within the type material. Re-examination of the holotype in conjunction with newly 

discovered material has led to a new interpretation of the morphology and systematic 

position of Plesioselachus.  
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Previous interpretations of Plesioselachus macracanthus Anderson et al. 1999  

 

Both AM 4817 and AM 4866 were mentioned, and AM4817 partially illustrated, in 

an initial announcement of the fish fossil remains discovered at Waterloo Farm 

(Anderson et al., 1994). Anderson et al. (1994) considered AM 4817 to be the 

incomplete skeleton of a holocephalan, „on the basis of evident features, such as a 

synarcium, long first dorsal fin spine, lack of a second dorsal fin and spine, simple 

scapulocoracoid and three simple pectoral basals‟. The specimen was considered to 

comprise two lower jaws, a palatoquadrate, spinal column, synarcual cartilage, 

scapulocoracoid, fin impression, entire dorsal fin spine and parts of the puboischiatic 

bar and basipterygium. The fin impression was interpreted as being comprised of 

three simple pectoral basals and 21or 22 cartilaginous radials. Diamond-shaped 

dermal denticles in the tail region were noted.  

 

These specimens were subsequently more extensively illustrated by Gess and Hiller 

(1995). Because these authors doubted aspects of the original interpretation, including 

identification of a synarcual cartilage, the material was not considered to be of a 

holocephalan in the strict sense. It was referred to the Paraselachimorpha (Lund, 

1992) on the basis of superficial resemblance, including possession of a single 

anteriorly situated dorsal fin spine. The Paraselachimorpha, with apparently non 

hyostylic jaw suspension, was included within the Holocephali, because of the 

convention of dividing elasmobranch and holocephalan chondrichthyans, on the 

characteristics of their jaw suspensions, either evidenced or extrapolated from tooth 

type. The Paraselachimorpha comprised the Iniopterygii, Orodontiformes, 

Copodontiformes, Petalodontiformes and Psammosteiformes (Lund, 1992; Long, 

1995). On the basis of their dentition Petalodonts, psammodonts and copodonts had 

formerly been included in the Holocephali, as members of the Bradyodonti (e.g. 

Romer, 1945). Unfortunately very little information on the jaw suspension of 

Plesioselachus was readily apparent and no teeth were known. 
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In their description of Plesioselachus, Anderson et al. (1999), stated that its 

taxonomic affinities were uncertain because of the incomplete nature of the material 

together with lack of detail and consensus among phylogenetic hypotheses of early 

chondrichthyan interrelationships. They postulated that Plesioselachus macracanthus 

„may be some pre-xenacanthiform relict‟, or „reminiscent of early 

holocephalomorphs.‟  In these works, the holotype was considered to comprise a pair 

of lower jaws, a palatoquadrate, labial cartilage, spinal column, scapulocoracoid, fin 

impression, entire dorsal fin spine, dorsal fin basal and biramal pelvic basipterygia. 

The fin impression was interpreted as comprising 10 or 11 pectoral fin radials 

(Anderson et al., 1999). 

 

MATERIAL 

 

AM4817, (fig. 4.1.2 A-C, 4.1.3 E), the holotype of Plesioselachus macracanthus, 

consists of the part and counterpart of the lateral impression of a moderately decayed 

individual, lacking most of the head but preserving much of the body skeleton, the 

elements of which are slightly displaced. In 1995 the specimen was cleaned of white 

mineral traces and coated with  Glyptol cement, which had been diluted with acetone, 

in order to facilitate latex pealing. 

 

AM4866, (fig. 4.1.3 B), the paratype, consists of the distal portion of an anterior 

dorsal fin spine,  associated with a faint fin impression. 

 

AM5746, (fib. 4.1.3 C) and AM5747, (fig. 4.1.3 D) are isolated scapulocoracoids, 

and AM5745 (fig. 4.1.3 A) is a complete anterior dorsal fin spine of Plesioselachus. 

These three specimens were found subsequent to the original description of 

Plesioselachus.  

 

All specimens are housed in the Albany Museum (AM), Grahamstown, Eastern Cape, 

South Africa 
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Anatomical abbreviations  

 

cf: caudal fin; chy: ceratohyal; df: dorsal fin; dfs: dorsal fin spine; hyo: 

hyomandibula; pf: pectoral fin; sc: scapulocoracoid;  

 

SYSTEMATIC PALAEONTOLOGY 

 

                          

                                       Class   CHONDRICHTHYES  Huxley, 1880 

 

                                  Subclass   ELASMOBRANCHII  Bonaparte, 1832 

 

                                      Genus   PLESIOSELACHUS  Anderson et al, 1999 

 

 

 Type species   Plesioselachus macracanthus Anderson et al., 1999 

 

Revised diagnosis. A shark characterised by a large anterior dorsal fin spine, on 

which numerous noded costae extend from the base towards the tip, reducing in 

number distally. In lateral profile the spine has a well rounded proximal end from 

which it gradually broadens for a third of its length, coinciding with a posteriorly 

orientated basal opening. Thereafter it is recurved, tapering evenly towards a point, 

with paired posterior margins fringed with small, slightly hooked denticles. The spine 

is hollow proximally and the basal opening forms a deep cleft in the anterior edge of 

the spine. 

 

Scapulocoracoid with tall broad scapular process exhibiting pronounced dorsomedial 

and posterolateral angles connected by a straight posterodorsal margin. Anterior edge 

curving down to the anterior dorsal shoulder of the coracoid. Coracoid  

anteroposteriorly broad with a distinct anterior shoulder and a posteriorly directed 

articular area for the attachment of the pectoral fin.  Lateral face of the 
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scapulocoracoid in the region of the fin articulation smooth. Diazonal foramen  

anterodorsal to articular region. 

 

Caudal fin with chordal and hypochordal lobes. Chordal lobe covered in parallel rows 

of simple, rhombic dermal denticles. 

                                                     

 

                                         Plesioselachus macracanthus Anderson et al., 1999      

 

                                  Text-figures 1 and 2   

 

Holotype. AM4817 (fig. 4.1.2 A-C, 4.1.3 E) 

 

Paratype. AM4866 (fig. 4.1.3 B) 

 

Material. The holotype, the paratype, AM5746 (fig. 4.1.3 C), A M5747 (fig. 4.1.3 D) 

(scapulocoracoids) and AM5745 (fig. 4.1.3 A) (a dorsal fin spine). 

 

Type locality and horizon. Exposure of upper Witpoort Formation shale (latest 

Famennian, Late Devonian) at Waterloo Farm, Grahamstown, Eastern Cape, South 

Africa 

 

Diagnosis. As for genus. 

 

Description. 

 

Prebranchial Skeleton. The only prebranchial remains of this species are a 

ceratohyal, a hyomandibula, and a partial third cartillage, representing either a second 

ceratohyal or a Meckel‟s cartilage, preserved on AM4817 (fig. (fig. 4.1.2 ). These 

cartilages are twisted round and downwards, the right element (ceratohyal/Meckel‟s 

cartilage) intercepting the lower edge of the rock slab, suggesting that any cephalic 

remains were situated beyond the lower edge of the rock. The hyomandibula is still 
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articulated with the ceratohyal and the two diverge from each other anteriorly. The 

ceratahyal is flattened, broadest posteriorly with dorsal and ventral surfaces 

converging distally. The hyomandibula is incomplete but appears to have been 

substantially shorter than the ceratohyal.  

 

This author differs from Anderson et al. (1999a) in which the ceratohyal was 

interpreted as a Meckel‟s cartilage and the left hyomandibula, together with another 

cartilage fragment (possibly a fragment of the right hyomandibula), as a portion of 

fragmented palatoquadrate. The elements here interpreted as a ceratohyal and a 

hyomandibula are not only more consistent in general outline with this interpretation, 

but are notably devoid of a dental trough or groove and any scalloping or other 

indication of tooth attachment sites.  

 

Poorly preserved fragments anterior and ventral to the preserved portion of the 

vertebral column are likely to include fragments of the branchial apparatus, which 

otherwise is not preserved. 

 

Vertebral column. The slightly contracted sinuous line of the vertebral column is 

clearly visible on AM4817. Cervical vertebrae are not preserved. Posterior to the 

pectoral girdle and dorsal fin spine, a trace of the vertebral column extends 31cm to 

the remains of the caudal fin, which extends a further 6 cm. Only neural arches are 

preserved, and these (about 40) only along the anterior half of the line, which may 

equate to the thoracic region. Arches are anterioposteriorly narrow and closely 

packed, with a short posteriorly directed spine. The notochord was unconstrained, 

with no development of a centrum, as is present in the trunk vertebrae of hybodonts 

(Janvier, 1996). The preserved neural arches closely resemble the 40 thoracic arches 

of the stethacanthid, Akmonistion, (Coates and Sequeira, 2001). There is no indication 

that Plesioselachus had calcified ribs, as are present in hybodonts and most 

xenacanths, such as Expleuracanthus and Orthocanthodes (though not 

Diplodoselache which is generally considered a primitive xenacanth (e.g. Soler-

Gijon, 2004)) 
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Dorsal fins and finspine. No internal structure of the dorsal fins is preserved. In 

AM4817 a 16 cm long laterally compressed fin spine is preserved in the expected 

position of the anterior dorsal fin, above the pectoral girdle. The spine is slightly 

recurved, with noded costae (reminiscent of those of „ctenacanths‟) extending from 

the basal margin to the distal extremity. Hooked posterior denticles are apparent in 

places. The basal termination is rounded, with the basal opening posteriorly 

orientated. About 12 costae are preserved near the base but there were probably about 

20. The spine was badly damaged and portions are missing.  

 

AM4866, the original paratype, (fig. 4.1.3 B) consists of the distal portion of a 

Plesioselachus spine with an associated triangular fin impression, which does not 

extend to the extreme termination. It is also possible, in this specimen, to see 

impressions of a left and a right posterior margin, both of which bear posterior 

denticles. The anterior attachment of the dorsal fin extended between these two 

denticulated margins. 

 

A number of other spines from the locality may be confidently assigned to this taxon 

due to overall resemblance, most significantly AM5745 (fig. 4.1.3 B). 

 

AM5745, the most complete Plesioselachus spine, is 22.5 cm long. It is gently 

recurved and reaches its widest point at about a third of its length, where the basal 

opening encounters the posterior margins, at the apex of the postero-basal opening. 

Damage during excavation revealed that, at least proximally, the spine is hollow with 

a unique anterior cleft. Costae extend from the basal margin, where there are 20, 

towards the tip, incrementally reducing in number towards the distal end. Lack of a 

naked basal region suggests that the spine was not deeply embedded but positioned 

astride the midline of the body. The anterior cleft will have allowed greater overlap 

with the flanks and therefore better support, perhaps required due to the spine‟s 

unusual length, in the absence of a deep insertion. The exposed posterior margin is 

fringed, from the dorsal end of the basal opening to the tip, with slightly hooked 

posterior denticles  
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There are notable similarities between the dorsal fin spine of Plesioselachus and 

those of various climatiiform „acanthodians‟ of the Gyracanthidae (including 

Gyracanthides) and the Climatiidae, including Early Devonian Climatius, 

Brachiacanthus, and Parexus. These spines are laterally broad, recurved, very 

shallowly embedded and ornamented with costae, which are generally ribbed or 

noded (Denison, 1979), though they appear to have lacked an anterior notch. Those of  

Gyracanthides had costae that ran obliquely across the lateral surface to terminate on 

the leading edge, whereas the costae of climatiid spines tended to be more apically 

directed. In Parexus the spine, like that of Plesioselachus was situated above the 

pectoral region and protruded far beyond a short, proximal fin webb. Distally it was 

furnished with two rows of posterior denticles. Details of the degree of insertion and 

shape of the basal opening are not available (Denison, 1979). In common with other 

climatiids Parexus also had second dorsal fin, anal fin, paired fin, and intermediate 

spines (Denison, 1979). Nonetheless, in a recent analysis focussing on acanthodians 

and basal gnathostomes, Brazeau resolved the climatiids, Brachiacanthus, Climatius 

and Parexus, as a clade originating within the base of the chondrichthyan clade 

(Brazeau, 2009). Early Devonian Ptomacanthus, formerly considered to be a 

climatiid (e.g. Denison, 1979, Janvier, 1996) has similar spines. Brazeau (2009) has 

suggested, after a thorough reinvestigation of the basicranial region that it may 

represent a basal chondrichthyan.  

 

Isolated sinacanth spines from the Late Silurian of China were also hollow, shallowly 

inserted and ornamented with „pectinate‟ costae (not dissimilar to those of 

„ctenacanths‟) which, in most specimens, extend from the basal opening towards the 

apex (Zhu Min, 1998). A large range of spines have been attributed to a number of 

genera and species, including some fairly elongate forms with a posteriorly facing 

basal opening (e.g. Zhu Min, 1998, Fig. 2E) attributed to Sinacanthus wuchangensis 

P‟an, 1959. The basal opening is neither as elongate nor as posteriorly orientated as 

that of Plesioselachus, and Sinacanthus does not exhibit posterior denticles. Denticles 

are present on the posterior margins of the spines of sinacanth genus, 

Neosinacanthus, P‟an and Liu, 1975. In Neosinacanthus, however, the spines are 

very squat, rarely exceeding their basal width in height. A cross section through the 
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basal opening of one specimen (Zhu Min, 1998, Figs 3D,F) indicates that no anterior 

notch was present. Although sinacanths were originally considered to be acanthodians 

(P‟an, 1959,1964), Gagnier et al. suggested that they might be chondrichthyans 

(Gagnier et al., 1988). On the basis of the histology of spines of Neosinacanthus, and 

an additional taxon, Tarimacanthus bachuensis Zhu, 1998, as well as faunal 

associations, Zhu asserted that sinacanths are more correctly viewed as 

chondrichthyans, and sinacanth specimens therefore represent the earliest known 

chondrichthyan spines (Zhu, 1998).  

 

Doliodus  problematicus, which provides the oldest articulated remains of a well 

established chondrichthyan (Miller, et al., 2003) has spines comparable with C. 

latispinosis (Miller, et al., 2003). Described as a ctenacanth Ctenacanthus latispinosis 

on the basis of spine ornament (Whiteaves, J.F., 1881), this species was subsequently 

reassigned to Climatius (Woodward, 1892). Though well-understood more 

crownward chondrichthyan taxa have only dorsal fin spines, those in the articulated 

Doliodus specimen are clearly pectoral fin spines (Miller, et al., 2003). Miller, et al. 

made a comparison with the spines of Antarctilamna, which they suggested could 

also represent pectoral fin spines, because of the relative position of the spine and 

other elements in the Antarctilamna type specimen (fig. 2, Young, 1982) (Miller, et 

al., 2003). It is worth noting that the reconstructed position of the spine of 

Antarctilamna  relative to other elements in the type specimen, is hypothetical. The 

specimen consists of a number of incomplete fragments with no contact or overlap 

between the spine bearing portion and those bearing impressions of the branchial 

region (Young, 1982).  

 

Antarctilamna (Young, 1982), identified on the basis of distinctive teeth and spines 

from Antarctica, is widespread in mid Devonian Gondwanan faunas (Janvier, 1996), 

including those of South Africa (Almond and Evans, 1996). The earliest 

Antarctilamna recorded consists of a spine from the Early Devonian (Pragian) of 

Seripona, South America, which co-occurs with sinacanths and climatiiform 

acanthodians (Janvier and Suarez-Riglos, 1986, Gagnier et al.,1988). In its latest 

occurrence it co-occurs with Plesioselachus at Waterloo Farm (see below). The spine 
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of the Antarctilamna holotype is incomplete, though it is supplemented by attributed 

taxa from the Bunga Beds of Australia (Young, 1982). The ornamentation of noded 

or pectinate costae was originally described as being of the „ctenacanthiform type‟ 

(Young, 1982). In common with the spines of Plesioselachus, sinacanths and 

climatiid acanthodians, those of Antarctilamna lack a large smooth basal insertion 

area, and were apparently not deeply inserted. Like those of Plesioselachus they had a 

posteriorly oriented basal opening (Young, 1982). The spine of Plesioselachus differs 

from that of Antarctilamna in having hooked denticles along the twin posterior 

margins, a far more elongate form, and an anteriorly opening notch connected to the 

basal opening. 

    

Importantly, the current author differs from Anderson et al. (1999a) who interpreted 

the spine of AM4817 as having a smooth pointed insertion area and a triangular basal 

plate. Costae clearly extend the entire length of the spine, and the ventrally tapering 

outline proposed in Anderson et al. (1999a) is a result of breakage and loss of 

material. In addition, the current author differs from Anderson et al. (1999a) in 

interpreting the elements visible anterior to the spine as fragmentary remains of two 

Bothriolepis africana trunk plates (including an anterior ventrolateral plate). These 

plates are not evidence of a shark fin-spine basal plate exposed by the breakaway of 

the spines anterior edge (contra Anderson et al., 1999a).   

 

There is no trace of a second dorsal fin spine in AM4817. However, it is possible that 

a second, although spineless, dorsal fin was present. This condition is present in a 

juvenile Antarctilamna from the same locality (fig. 4.1.10A-C). 

 

Caudal and anal fins. Faint impressions of the caudal fin are present in AM4817, 

though rock damage in this area has obliterated certain details. Evidence of the axial 

lobe is provided by an impression of skin covered in rows of rhombic scales. A 

hypochordal fin lobe is represented by decayed internal structures, including radials, 

anteroventral to the axial lobe. An anal fin is not preserved. 
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Pectoral girdle. The left scapulocoracoid is well preserved in AM4817. New 

interpretation thereof is strongly influenced and supplemented by AM5746 (fig. 4.1.3 

C) and AM5747 (fig. 4.1.3 D), two substantially larger isolated scapulocoracoids 

from the same locality. Second to dorsal fin spines, these are the most frequently 

preserved elements of Plesioselachus, perhaps indicating that they were more 

mineralised than other internal skeletal elements.   

 

 The scapular process is tall with prominent posterolateral and dorsomedial angles 

connected by an approximately straight posterodorsal margin. Laterally the scapular 

process exhibits a tall shallow recess. The anterior of the scapular process is more 

thickly mineralised than the posterior, the anterior margin being thickest dorsally and 

narrowing ventrally. A foramen for the diazonal nerves and blood vessels is situated a 

little above the level of the pectoral fin articulatory condyle. The coracoid is 

anteroposteriorly broad with a distinct anterior shoulder, slightly dorsal to the 

articulatory condyle, but below the level of the diazonal foramen. The articulatory 

condyle faces posteriorly, and in AM4817 still articulates with the pectoral fin. A 

distinct curved ridge is evident in AM5746, traversing the coracoid, posteriorly from 

the anterior shoulder, towards the rear of the diazonal foramen. A ventrolateral ridge 

separates the ventromedial portion of the coracoid, from the probable site of 

attachment of the pectoral fin depressor muscles. Most specimens of the 

scapulacoracoid of Plesioselachus are laterally compressed such that the formally 

posteriorly facing surfaces for the origin of the pectoral fin levator and depressor 

muscles now protrude beyond the posterolateral edge (Coates and Gess, 2007).  This 

interpretation differs from that of Anderson et al. (1999a) in which the ventrolateral 

ridge is interpreted as the articular surface for the pectoral fin. 

 

Posterior orientation of the articular surface for the pectoral fin, as seen in 

Plesioselachus, is the primitive condition for gnathostomes (Jessen 1972, Janvier, 

1996). This condition persists in chimaeroids (Stahl 1999; Grogan and Lund, 2000) 

and in the majority of non-batoid fossil and recent elasmobranches (Daniel 1922). A 

laterally positioned, near-horizontal pectoral fin articulation, however, occurs in 

stethacanthids (Coates and Sequeira, 2001), symmoriids (Zangerl, 1981; Janvier, 
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1996), Cladoselache (Bendix-Almgreen, 1975) and, independently, in some early 

hybodontiforms, such as Onychoselache (Coates and Gess, 2007). 

 

Pectoral fin. AM4817 exhibits a faint impression of the pectoral fin, with the 

posterior edge uppermost and impressions of some of the radials present. Details of 

the internal structure of the fin are not clear and we consider it unwise to attempt 

reconstruction on current material. It is impossible to validate the reconstructions 

proposed either in Anderson et al. (1995) or Anderson et al. (1999a). Significantly, 

no spines are associated with the pectoral fins 

 

Pelvic girdle and fin. No definite evidence for these structures is present in AM4817. 

The item interpreted in Anderson et al. (1999) as „biramic pelvic basipterygia‟, might 

not be part of the shark specimen, as it is indistinguishable from fragments of 

phaeophyte axes present at Waterloo Farm. 

 

Scales and dentition . Simple rhombic scales are visible on the caudal lobe of the 

caudal fin of AM4817 (fig. 2E). A small number of scales are also apparent in the 

ventral trunk region. Lack of scales, over most of the body, may reflect loss due to 

decay. Alternately it may result from possible sub adult status of the type specimen 

(further suggested by the small size of its pectoral girdle and fin spine relative to 

some disassociated examples). Full squamation in acanthodians and chondrichthyans 

is often an adult condition (Cloutier, 2010). Posterior-anterior development of 

squamation has been recognised in fossil acanthodian and shark ontogenies as well as 

some extant sharks (Cloutier, 2010). Zidek (1985) has demonstrated that in 

Acanthodes bridgei, squamation of the caudal region is followed by that of the 

midline and ventral regions. 

 

No Plesioselachus oral or branchial teeth are yet recognised.  
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DISCUSSION 

 

A chondrichthyan identity of Plesioselachus is easily established. The form of the 

scapula of Plesioselachus, for example, displays not only a tall scapular process, 

which is a commonality between many acanthodians and chondrichthyans, but also, a 

posterior lateral angle, and a diazonal foramen dorsal to the articular area, which are 

synapomorphies of Chondrichthyes, though subsequently lost in hybodonts (Coates 

and Gess, 2007). Plesioselachus is dissimilar to the most basal chondrichthyans, 

which include Doliodus (Miller, et al., 2003) and possibly Ptomacanthus, 

Brachiacanthus, Climatius and Parexus (Brazeau, 2009), in that it does not have 

paired fin spines. 

 

 The presence of a single fin spine situated over the pectoral girdle is shared with 

stethacanthids, Cladoselache, most holocephalans and, to a lesser extent, basal 

xenacanths such as Diploselache (in which the spine is more posteriorly situated). 

Plesioselachus lacks important synapomorphies of Holocephali including presence of 

a synarcual cartilage, mineralised vertebral centra in the trunk region, and 

characteristic modifications of the hyoid arch related to specialised holocephalan jaw 

suspension. 

 

 In having a posteriorly orientated pectoral fin articulation on the scapulocoracoid 

Plesioselachus retains the primitive condition for gnathostomes, lacking the 

modifications found in symmoriids, stethacanthids and Cladoselache.  

 

Is Plesioselachus, therefore, more closely related to xenacanths, the remaining 

monospinal grouping, than to other chondrichthyans, as has been suggested of 

Antarctilamna (Young, 1982; Janvier 1996)? Derivation of the highly specialised 

xenacanths from a form similar to Plesioselachus is credible in light of recent studies 

that demonstrates that the spine of crown xenacanths, inserted behind the skull, was 

derived from a spine positioned in front of the first dorsal fin, just behind the pectoral 

girdle, through differential growth of the proximal portion during early ontogeny 
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(Soler-Gijon, 2004). Xenacanths furthermore had a spineless second dorsal fin and, 

primitively, a heterocercal tail (Soler-Gijon, 2004). 

 

 The fin spine of Plesioselachus, like that of Antarctilamna, does not however 

strikingly resemble that of xenacanths. It resembles spines of taxa once considered to 

be climatiiform acanthodians because of their possession, or presumed possession, of 

numerous spines (including paired fin spines), but now considered to be basal 

chondrichthyans, because of their spine microstructure (sinacanths) (Zhu Min, 1998), 

or because paired fin spines are no longer considered a synapomorphy of 

acanthodians (Ptomacanthus, Brachiacanthus, Climatius and Parexus) 

(Brazeau,2009).  

 

Xenacanth spines are subcircular in cross section, fairly straight, deeply embedded, 

with a ventrally to posterioventrally oriented apperture, are ornamented with fine 

striae and generally situated behind the skull (though see above). Those of 

Plesioselachus are laterally flattened, recurved, hardly embedded, with a posteriorly 

oriented aperture, longitudinal noded costae and a position above the pectoral girdle. 

 

Apart from the lack of a deep insertion area, the spines of Plesioselachus most 

resemble those of  some „ctenacanths‟, including specimens assigned to Ctenacanthus 

from the Cleveland shale. Cleveland Museum specimen 8107, for example, is 

laterally flattened and recurved in much the same way as that of Plesioselahcus. The 

noded longitudinal costae of the two specimens are very comparable, and twin rows 

of posterior denticles are likewise born on the posterior margins. This „ctenacanth‟ 

spine was not as deeply embedded as those of xenacanths and, in common with that 

of Plesioselachus, has a long posteriorly orientated opening. The anterior dorsal fin 

spine of „ctenacanths‟ is, furthermore, situated above the pectoral girdle. 

 

Amongst elasmobranchs, therefore, Plesioselachus most resembles xenacanths in 

spine number, but most closely resembles ctenacanths in type and position of spine. It 

does not seem unreasonable, therefore, that Plesioselachus is the product of a very 

early radiation of chondrichthyans, postdating loss of pectoral fin spines, but 
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predating the development of deeply inserted spines, and the divergence of 

xenacanths and „ctenacanths‟ amongst elasmobranchs.  

 

The original reduction in spine number, within chondrichthyans, may have been from 

possession of numerous spines, as in Doliodus (Miller, et al., 2003), to the possession 

of a single dorsal fin spine (suggested to be the primitive condition by Young, 1982), 

situated above the pectoral girdle. Such a condition has seemingly been inherited by 

holocephalans (with a few derived exceptions), Cladoselache, stethacanthids, 

Plesioselachus, Antarctilamna (see below) and basal xenacanths. Amongst 

elasmobranchs a deeper insertion of the spine was developed, (rendering an anterior 

notch to the basal opening redundant). Duplication of the first dorsal fin spine to 

produce a near identical second dorsal fin spine may have occurred once amongst 

elasmobranchs, on a lineage leading to ctenacanths (that originally retained a 

primitive ornament), hybodonts and neoselachians.      

 

The greater similarity of Plesioselachus to elasmobranchs than to holocephalans, 

stethacanthids, Cladoselache, eugenodonts and petalodonts, may reflect the highly 

derived nature of these latter taxa and the relative conservatism of the elasmobranchs. 

 

  

4.1.4  ANTARCTILAMNA ULTIMA sp. nov.  

 

Antarctilamna ultima is here presented for the first time, and represents the second 

species of chondrichthyan to be described from the Famennian of South Africa. 

 

MATERIALS  

 

The type material of Antarctilamna ultima consists of two large slabs of rock 

AM5743 (40cm by  40cm) (figs 4.1.4 A-D;  4.1.6 C,D) and AM5744 (70cm by 

40cm) (figs 4.1.5 A,B; 4.1.6 A,B), together with counterslabs, recovered in close 

proximity to each other, during emergency excavations of a collapsed outcrop in 

1999. 
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AM5743 preserves a pair of complete but dissociated mandibular arches associated 

with diagnostic Antarctilamna teeth and a single ceratohyal. AM5744 is covered with 

numerous cartilaginous fragments, a diagnostic Antarctilamna spine, and a ceratohyal 

that closely matches that of AM5743 in both proportions and size. Comparison of the 

thickness and nature of the bedding planes containing fossils in the two slabs, as well 

as adjacent layers, suggests that they represent a single layer, containing the remains 

of a single individual. 

 

A number of isolated teeth, AM5751- AM5753 (figs 4.1.7 A-F) are presumed to 

belong to this species. Additional material that may belong to this species including a 

neurocranium (figs 4.1.7 A-B) and juvenile sharks (fig 4.1.10) are also discussed. 

   

All specimens are housed in the Albany Museum (AM), Grahamstown, Eastern Cape, 

South Africa. 

 

Anatomical abreviations  

 

chy: ceratohyal; fs: fin spine; mc: Meckel‟s cartilage; ls: lateral surface; ms: medial 

surface; pq: palatoquadrate 

 

SYSTEMATIC PALAEONTOLOGY 

 

                          

                                       Class   CHONDRICHTHYES  Huxley, 1880 

 

                                  Subclass   ELASMOBRANCHII  Bonaparte, 1832 

 

                                      Genus    ANTARCTILAMNA     Young, 1982 

                                      

                                                    Antarctilamna ultima, sp. nov. 
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Etymology: ultima, Latin, the last in a series. 

Text figures, figs 4.1.4-4.1.7 

Holotype.  AM5743, comprising a pair of disassociated mandibular arches and a 

ceratohyal,  together with counterslabs. 

Paratype. AM5744, comprising a fin spine, ceratohyal and other fragments, together 

with counterslabs. 

Other material. Isolated teeth (AM 5751-5753) (Fig 4.1.7)  

Diagnosis.   A large species of Antarctilamna. One dorsal fin spine, which was 

superficially inserted and ornamented with noded costae. Costae originate 

sequentially on the anterior profile, occasionally bifurcate and terminate close to the 

lip of the posteriorly orientated basal opening. The posterior profile of the fin spine 

approximately equals the length of the basal opening giving rise to a shorter, more 

low angled spine than those from the Bunga Beds of New South Wales attributed to 

Antarctilamna prisca (Young, 1982).  

 

Teeth are diplodont with one or three smaller intermediate cusps and cristae with an 

alignment slightly more vertical than the long axis of the lateral cusps. Those of the 

type specimen differ from those of the holotype of A. prisca, in which the main cusps 

are more robust and divergent. Ontogenetic variation is however probable. The base 

is coronobasally thin, laterally oval and without a basal button.  

 

Palatoquadrate „cleaver shaped‟ in lateral view, with an elongate otic process, of 

which the dorsal outline approaches the horizontal. The posterior condyle of the 

palatoquadrate, that articulated with the glenoid of the Meckel‟s cartilage, is situated 

at the posteroventral limit of a notably thickened convex posterodorsal border. 

Anterodorsally this border terminates in a pronounced process, from which the 

outline dives steeply anterioventrally to merge with the palatine ramus. Ventrally the 

outline of the otic process is gently concave, giving way to a convex outline beneath 

the palatine ramus. The palatine ramus is dorsolaterally far broader and more 

forwardly extensive than has been reconstructed for A. prisca, extending beyond the 

otic process for almost half of the length of the palatoquadrate. A uniform dental 

trough parallels the ventral palatine outline for the anterior two thirds of the 
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palatoquadrate. Above the dental trough the palatine ramus has a deep, medially 

orientated shelf. Anteriorly it has an articular surface for the neurocranium and a shelf 

for the nasal capsules. 

 

Mandibular articulation is significantly higher than the biting surface, unlike in the 

reconstructed  A. prisca palatoquadrate in which the articular area for the mandible is 

lower than the biting surface (Young, 1982). The mandible is approximately the same 

length as the palatoquadrate, implying a forwardly opening mouth. A broad dental 

trough opposed that of the palatoquadrate. Posteriorly and ventrally a medially 

directed flange was separated from the laterally directed surface by a posteroventral 

ridge. This ridge forms the ventrolateral mandibular angle and will have increased the 

rigidity of the jaw. The medially directed flange probably provided a good insertion 

area for the aductor musculature (cf. Coates and Sequeira, 2001).       

  

The ceratohyal, approximately two thirds of the length of the Meckel‟s cartilage, was 

broad, flattened, and anteriorly tapering. 

 

Description.  

 

Mandibular arch.  Both left and right palatoquadrates are well preserved in lateral 

aspect in AM5743 (fig. 4.1.4 A-D, 4.1.8 A,C), albeit in a highly flattened state. Slight 

differences in proportions are due to distortion during the process of flattening. In 

general form the palatoquadrate has the „meat cleaver shape‟ common to amphistylic 

Palaeozoic chondrichthyans, including xenacanthids, early „ctenacanthids‟, 

cladoselachians, symmoriids (Xangerl, 1981), and stethacanthids (Coates and 

Sequeira, 2001).  

 

 The length of the dorsally expanded posterior portion, the otic process (or quadrate) 

slightly exceeds that of the suborbital palatine ramus. In ventral outline the 

palatoquadrate is gently sigmoidal, concave beneath the otic process and convex 

below the palatine ramus. An articular condyle for the mandible is situated at the 

posteroventral limit of a notably thickened convex posterodorsal border. The border 
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rises steeply from the condyle for about half of its length, then curves forwards to 

approach the horizontal, before terminating in a pronounced anterodorsal process, 

which may have formed part of the articular complex for articulation with the 

postorbital process on the braincase. From this anterodorsal corner the outline of the 

otic process plunges in a steep curve before merging with the palatine ramus. The 

faint impression of a subhorizontal ridge dorsoventrally midway up the quadrate is 

possibly equivalent to a similarly positioned ridge on the medial surface of the 

quadrate of the holotype of Orthacanthus texensis (Field Museum, Chicago, UF86).   

 

 In both palatoquadrates the palatine ramus appears approximately 60% deeper than 

in life, due to a broad shelf (that may have extended medially beneath the orbit) but 

has been flattened into the same plane as the main surface. A similar shelf, likewise 

often flattened into the lateral plane (pers. obs. e.g. Orthacanthus, UF86) is seen in 

many fossil xenacanth palatoquadrates (sometimes included in their reconstructed 

lateral outline (e.g. Zangerl, 1981)), as well as „ctenacanth‟ palatoquadrates in which 

it is less medially extensive (e.g. Cleveland Shale Ctenacanthus (Cleveland Museum 

9450)). Two or three lateromedial ridges, presumed to have constituted an articular 

area for the neurocranium, are situated at the anterior end of the medial shelf. Similar 

ridges, situated in this position, also occur in xenacanths (e.g. Orthacanthus (UF86)) 

and „ctenacanths‟ (e.g. Cleveland Shale Ctenacanthus (Cleveland Museum 9450)). 

The dental trough of A. ultima is well preserved despite post mortem flattening and 

extends, parallel to the ventral outline, for the anterior two thirds of the 

palatoquadrate. Along the ventral lip a chain of small notches are presumed to be for 

the tooth families.  

 

The palatoquadrates of A. ultima are far better preserved than those from the Bunga 

Beds attributed to A. prisca (Young, 1982). It seems likely that the Bunga beds 

specimens are attributable to Antarctilamna, although their fragmentary state of 

preservation has clearly proved misleading. The palatine ramus of Antarctilamna was 

much larger than previously envisaged (Young, 1982), representing almost half the 

length of the palatoquadrate. The gently sigmoid ventral surface did not have a 

ventral process as reported for CPC21212 from the Bunga Beds (Young, 1982) and 
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this apparent feature of CPC21212 may result from breakage. A flange, posterior to 

the thickened posterodorsal border in CPC21212 is probably a preservational artifact. 

Both Bunga Beds specimens are posteroventally incomplete and interpretation of the 

mandibular articulation based on CPC21212 is therefore unreliable.         

 

There is a marked similarity between the palatoquadrate of Antarctilamna ultima, and 

that of Doliodus as far as is apparent in a published scan of the endoskeleton of the 

head region (Figure 6 of Maisey et al. (2009)).  Although posterodorsally incomplete 

and posteriorly disrupted the Doliodus palatoquadrate is closely comparable to those 

of Antarctilamna ultima in the general shape and proportions of the anterior two 

thirds. The dental trough is similarly simple and of comparable length and depth. 

There is a suborbital shelf with an anteriorly situated articular surface and a long, 

anteriorly angled subnasal region. The otic process is slightly longer than the postotic 

palatine ramus with a high, anterodorsal shoulder terminating in a small process 

above the postotic articular surface. It is ventrally slightly concave in lateral outline, 

giving way to a convex profile beneath the palatine ramus. 

 

The left Meckel‟s cartilage of A. ultima is well preserved, whereas the right, has been 

badly distorted. The articulation of the mandibular arch was situated higher that the 

oclusial surface, resulting in a fairly deep bite. A dental trough is clearly evident, 

which opposed that of the palatoquadrate and likewise extended for approximately 

the anterior two thirds of the element. Although this trough intercepted the anterior 

end of the Meckel‟s cartilage at approximately the mid point between the dorsal and 

ventral surfaces it became progressively shallower posteriorly. A prominent ridge 

parallels the ventral margin of the Meckel‟s cartilage. This ridge is present in other 

early chondrichthyans such as Orthacanthus, Akmoniston (Coates and Sequeira, 

2001) and Cleveland Shale Ctenacanthus (pers. obs. 9540), and is interpreted as the 

ventrolateral mandibular angle (Coates and Sequeira, 2001). Cartilage preserved 

ventral and posterior to this ridge was probably medially directed in life. Posteriorly 

the mandible resembles the preserved posterior of a Meckel‟s cartilage from the 

Bunga Beds, preserved together with the palatoquadrate fragment CPC21213 and 

attributed to Antarctilamna prisca (fig. 13A, Long and Young, 1995). 
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In general terms the mandibular arch of Antarctilamna resembles those of other early 

amphistylic chondrichthyans including, stethacanthids (Fig 4.1.8 H), symmoriids, 

cladoselachians, xenacanthids (Fig 4.1.8 G), and early „ctenacanthids‟ (Fig 4.1.8 F), 

though it is easily differentiated from those of stethacanthids such as Akmonistion 

(Coates and Sequeira, 2001) (Fig 4.1.8 H), symmorids such as „Cobelodus’ (Maisey, 

2007) and Cladoselache. These latter taxa exhibit a consistently anteriodorsally 

angled posterior margin to the otic process (Bendix-Almgreen, 1975; Coates and 

Sequeira, 2001; Maisey, 2007) unlike that of Antarctilamna (Fig 4.1.8), which is 

more elongate, with a subhorizontal anterior half. The palatine ramus of 

stethacanthids, symmorids and Cladoselache is much narrower dorsoventrally 

(Bendix-Almgreen, 1975; Coates and Sequeira, 2001; Maisey, 2007) than that of 

Antarctilamna, not extending dorsal to the area of tooth origination in the 

stethacanthid, Akmoniston (Coates and Sequeira, 2001). The tooth families of 

Akmoniston, are clearly borne in a series of distinct scallops parallel to the biting edge 

of the palatine ramus and Meckel‟s cartilage, as opposed to the simple dental trough 

of Antarctilamna. Most significantly, whereas in Antarctilamna the dorsal outline of 

the mandible, posterior to the biting surface, slopes gently upwards towards the 

articulation, in stethacanthids, symmorids and Cladoselace a distinct angle directs the 

dorsal outline ventrally towards an articulation situated horizontal to, or even below, 

the level of the biting surface (Lund, 1985, 1986; Coates and Sequeira, 2001; Maisey, 

2007), (fig 4.1.8 H). 

 

In lateral aspect the mandibular arch of Antarctilamna is more similar to those of 

xenacanths (eg. Orthacanthus, UF86; Hotton, 1952; fig 4.1.8 G) and „ctenacanths‟ 

(e.g. Ctenacanthus, Cleveland Museum 9540; ‘C’ wildungensis, Gross, 1938; 

Williams, 1998; fig 4.1.8 F). In common with Antarctilamna both have a very similar 

lateral profile, including a dorsoventrally deep bite, elongate otic process, 

dorsoventrally broad suborbital palatine ramus, well-developed dental trough, and 

similarly positioned articular areas. In having a broad medially directed surface of the 

palatoquadrate, beneath the orbit, Antarctilamna more closely resembles xenacanths. 

In addition, the dental trough of Orthacanthus, like that of Antarctilamna is more 
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uniform than those of „Ctenacanthus’ (CM9540) or the ctenacanthid “C” 

wildungensis (fig. 6B, Gross, 1937) in which there are distinct scallops for the 

individual tooth families.  

 

Hyoid arch. The ceratohyal, preserved better in AM5744 (fig 4.1.5) than AM5743 

(fig 4.1.6), was approximately two thirds of the length of the Meckel‟s cartilage, 

blade-like and distally tapering, not unlike that of Plesioselachus (see above). 

 

Mandibular dentition. Diplodont teeth are intimately associated with the mandibular 

elements (Fig 4.1.4 A,C), scattered in their vicinity, occasionally still in apparent 

families of up to six teeth. Though very small (4mm anterior-posteriorly across the 

base) and poorly preserved, they clearly display two main cusps, with one to three 

intermediate cusps (figs 4.1.6 C-D). It is probable that three was the standard number, 

with the central cusp being larger than the two flanking it. Cristae with an alignment 

slightly more vertical than the long axis of the lateral cusps are clearly apparent. 

These teeth are very like Antarctilamna teeth from the Bunga Beds, associated with 

the cartilages of CPC21213 (Long and Young, 1995), but differ slightly from those 

from Antarctica, including the holotype of A. prisca, in which the lateral cusps are 

more robust and divergent. 

   

 Larger isolated Antarctilamna teeth from Waterloo Farm are more robust with more 

divergent main cusps (fig. 4.1.7) than those of the holotype. All specimens have 

cristae that tend to be slightly more vertical in alignment than the long axis of the 

lateral cusps. The largest of these are chiefly preserved in baso-lingual view, with the 

tips of the two robust lateral cusps projecting from behind the oval base. One 

specimen, preserved in labial view (fig 4.1.7. A,B), has a large intermediate cusp 

clearly apparent between the slightly divergent lateral cusps, which are more robust 

than those from Antarctica. It had a greater labial portion to the base than specimens 

from Antarctica (Fig. 4, Long and Young, 1995). Large Antarctilamna teeth from 

Waterloo Farm are likely to be conspecific with A. ultima, indicating that ontogeny 

affects the structure of Antarctilamna teeth.   
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Due to the orientation of the teeth it was impossible to establish presence or absence 

of a button on the lingual torus as reported by Long and Young from a single A. 

prisca tooth (Long and Young, 1995, fig 13E), presence of which would provide a 

potential synapomorphy with xenacanths. The degree to which the base eclipses the 

cusps in basolingually preserved specimens suggests that a lingual expansion of the 

base was present in A. ultima.   

 

The teeth of A. ultima (and indeed Antarctilamna in general) strongly resemble those 

of Doliodus problimaticus (Woodward, 1892; Turner, 2004), in possession of a 

shallow laterally oval base, two large divergent outer cusps (subcircular in outline) 

and one to three small intermediate cusps. Teeth of A. prisca and A. ultima, however, 

had a larger lingual extension of the base, and more numerous, robust cristae on the 

cusps than Doliodus problimaticus. There are also similarities between the teeth of 

Antarctilamna and those of xenacanth sharks. These similarities have been used to 

support a close relationship between Antarctilamna and the xenacanths (Young, 

1982) or to suggest that Antarctilamna is a stem group xenacanth (e.g. Long and 

Young, 1995; Janvier 1996). Similarities between the teeth of Antarctilamna and 

those of xenacanths (cf. Hampe 1993, 2002) include possession of two large 

divergent lateral cusps with one or more small intermediate cusps and a base with a 

lingual extension. In other ways, the teeth of Antarctilamna are quite distinct from 

those of xenacanth sharks. Whereas the teeth of Antarctilamna have a plate like base, 

which is oval in basal view, the bases of xenacanth teeth are thick and subcircular to 

linguolabially elongate. In addition the bases of Antarctilamna teeth do not have the 

marked basal tubercle invariably seen labially situated on the underside of xenacanth 

teeth. The lateral tooth cusps of xenacanths are flattened and blade like (Hampe, 

2002) whereas those of Antarctilamna, are subcircular in cross section (pers. obs. mid 

Devonian specimens from South Africa;  fig. 13E, Young and Long, 1995). Cristae 

are generally present only along the lateral edges of xenacanth teeth and may be 

serated (e.g. Orthacanthus). In Diplodoselache and Triodus additional longitudinal 

cristae are present, but these are apically directed and confined to the cusp tips 

(Hampe, 2002). 
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Similarities with non diplodont taxa may also be observed. For example the shallow 

laterally oval base, more developed on the lingual side and lacking a basal button, 

with multiple cusps bearing strong cristae extending their full length, recalls 

cladodont teeth such as those associated with Cleveland „Ctenacanthus’ (e.g. 

CM9540) (pers. obs.). 

 

Spine. The spine was laterally broad, and is preserved in lateral profile in AM5744. It 

was evidently shallowly embedded as the ornament extended virtually to the lip of 

the basal opening. The basal opening was posteriorly directed, with a convex lateral 

profile, extending for 54% of the length of the spine. It diverged from the anterior 

profile of the spine by 20°. Distally, beyond the basal opening, the posterior profile of 

the spine is gently recurved and converges with the distally convex anterior profile. A 

narrow unornamented portion parallel to the posterior dorsal edge may represent the 

posterior surface, displaced during compression, or a medial ridge as is reported in 

the Bunga Beds specimens (Young, 1982). The rest of the spine is externally 

ornamented with longitudinal noded costae that multiply proximally through 

sequential origination along the anterior edge, or occasionally by bifurcation. 

Approximately 30 costae are present. There is no evidence of posterior denticles. 

 

 In general proportion the spine resembles that of the type specimen of Antarctilamna 

prisca, from the mid Devonian of Antarctica (Young, 1982). This spine was 

unfortunately incomplete distally, and is only shown as part of a sketch map of the 

type specimen (Young, 1982 , Text figure. 2). As illustrated it has, in contrast to that 

of Anarctilamna prisca, a generally convex postero dorsal profile, with only a slightly 

recurved tip. It only has about 15 costae as opposed to 30 in A. ultima. This 

difference in the number of costae could be attributable to size as the spine of A. 

ultima is about twice the size of that of A. prisca.    

 

The spine of A. prisca is characterised, in the original description, by better-preserved 

and illustrated spines from the Bunga Beds in New South Wales, Australia (Young, 

1982). The Bunga Beds spines, though clearly congeneric with A. prisca, may not be 

conspecific as they are not identical. The spines, though the same size as that of the 
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holotype from Antarctica, and about half the size of that from Waterloo Farm are 

more elongate. In CPC1699, illustrated in lateral aspect (TEXT fig. 5A, Young, 

1982), the angle between the basal margin and the posterodorsal margin is reached 

after less than 30% of the length of the spine, as opposed to 54% in A. ultima and 

about 50% in the type specimen of A. prisca. Basal margins of the Bunga Beds spines 

consistently diverge from the anterior profile by 30° (Young, 1982), a less acute 

angle than the 20° divergence seen in A. ultima. As in the type specimen of A. prisca, 

the posterodorsal silhouette is convex in the Bunga Beds spines, not concave and 

gently recurved as in A. ultima. The number of coastae varied between 15 and 30 in 

Bunga Beds specimens (Young, 1982), and there appears, from illustrated material, to 

have been less origination of costae along the anterior edge (Young, 1982). 

  

The spines of Antarctilamna share with Plesioselachus a long, posteriorly orientated 

basal opening, lack of a deep insertion area, and possession of longitudinal noded 

ridges. Those of Antarctilamna are easily distinguished from those of Plesioselachus, 

due to the far more elongate and recurved form of the latter, as well as its possession 

of posterior denticles, and an anterior notch to the basal opening. Costae of 

Plesioselachus spines are more apically directed with a greater origination by 

bifurcation than in Antarctilamna ultima, in which there is more origination of costae 

along the anterior edge. This may reflect differential growth patterns that result in a 

more elongate spine in Plesioselachus and a „stubbier‟ spine in Antarctilamna.  

 

In a paper describing the first articulated remains of Doliodus problematicus, Miller 

et al. (2003), noted a similarity between the pectoral fin spines of Doliodus and the 

spines of Antarctilamna, though unfortunately the spines of Doliodus were not 

illustrated beyond their inclusion in a rough sketch of the specimen. They proposed 

that the spine of Antarctilamna prisca might also be a pectoral fin spine, because in 

the type specimen it has a similar orientation relative to other elements, to that of the 

pectoral fin spines of the Doliodus specimen (Miller et al., 2003). The reconstructed 

position of the Anarctilamna spine relative to other elements in the type specimen is, 

however, hypothetical as there is no contact or overlap between the spine bearing 

portion of the Antarctilamna bearing nodule, and the remaining portions (Young, 
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1982). Miller et al. (2003) indicated that the spines of Doliodus may be conspecific 

with isolated spines described as  „Ctenacanthus‟ latispinosis (Whiteaves, 1881) but 

reassigned to Climatius (Woodward, 1892).  

 

Antarctilamna spines like those of Plesioselachus are similar to those of climatiid 

climatiiform „acanthodians‟, the spines of which were also laterally broad, very 

shallowly embedded and ornamented with longitudinal noded costae (Denison, 

1979). With the exception of the first dorsal fin spine of Parexus recurvus the spines 

of these taxa, like Antarctilamna, lacked posterior denticles. Though the fin spines of 

climatiids were more elongate with a less posteriorly directed basal opening than 

those of A. prisca and A. ultima, similarities are significant in light of a recent 

analysis which indicates that of a number of climatiids, including Ptomacanthus, 

Brachiacanthus, Climatius, and Parexus, should be viewed as basal chondrichthyans, 

despite their possession of numerous spines including paired fin spines (Brazeau, 

2009).     

 

Similarly, sinacanth spines from the Late Silurian may not be those of acanthodians 

as originally assumed (P‟an, 1959, 1964) but of early chondrichthyans. These spines 

were also superficially inserted with noded costae extending from the basal opening 

towards the apex. Those of Neosinacanthus, unlike those of Antarctilamna, had 

posterior denticles and a ventrally directed basal opening.  As a general rule spines of 

Sinacanthus are more elongate than those of Antarctilamna, with a less posteriorly 

directed basal opening (fig. 3, Zhu, 1998). The holotype of Sinacanthus triangulatus, 

has a posteriorly orientated basal opening, though the spine is longer, relative to 

width, than that of Antarctilamna (fig. 2, Zhu, 1998). The illustrated spine ornament 

of sinacanths (Zhu, 1998) differs from that of Antarctilamna in consisting of more 

lightly noded costae.  

 

Antarctilamna spines, originally considered to be acanthodian (Richie, 1971) were at 

one point considered to be those of the shark spine genus Ctenacanthus, due to the 

strong similarity of the ornament of the costae (McPherson, 1978). Ctenacanth spines 

further resemble those of Antarctilamna in that they are laterally broad and somewhat 
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flattened, with a posterior surface bounded by paired margins and a posteriorly 

orientated basal opening. Ctenacanthus, however, has denticles along the posterior 

margins and a comparatively deep insertion area (pers. obs.).  

 

ADITIONAL  ANTARCTILAMNA  MATERIAL 

 

 ANTARCTILAMNA NEUROCRANIUM 

 

A fossil neurocranium from Waterloo Farm is identified here as Antarctilamna sp. 

due to its close resemblance to the Antarctilamna neurocranium previously described 

from the Bunga Beds (Young, 1982). It is most likely that it belongs to Antarctilamna 

ultima. This comparison assumes that the Bunga Beds specimen was eroneously 

described back to front. 

 

AM5748 (fig 4.1.9 A,B), comprises a compressed isolated neurocranium exposed in 

ventral view with some features of its dorsal aspect apparent through the ventral 

surface. It was in a moderate state of decay and disintegration at the time of burial. 

The post orbital processes were either buried in the sediment or had shared off during 

decay. (An isolated skull of Tamiobatis described by Williams displays post orbital 

processes that have similarly sheared off but have not yet become separated from the 

neurocranium (fig. 2, Williams, 1998)). The anterior portions of the olfactory 

capsules are somewhat displaced and fragmentally preserved.  

 

The otico-occipital portion of the neurocranium is elongate and diamond shaped in 

ventral view. It diverges anteriorly from the occipital cotylus at about 35 ° until it 

reaches its maximum width between the lateral otic processes (fig. 4.1.9 B, lop) 

Thereafter it converges at a similar angle for the second third of its length until the 

presumed level of the postorbital processes (fig. 4.1.9 B, p.pop). Between the orbital 

capsules (fig. 4.1.7 B, orb) the ventral surface narrows, posteriorly, to one third of its 

maximum width. A pair of ethmoidal processes (fig. 4.1.9 B, et) thereafter broaden 

the ventral surface. Anterior to this its lateral outlines gradually converge, revealing 

the more dorsally situated paired nasal processes (fig. 4.1.9 B, np). Partially decayed 
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remains of the less well-mineralised anterior portions of the olfactory capsules (fig. 

4.1.7 B, olcap) are apparent.    

 

The neurocranium is very narrow in the region of the occipital cotylus and a pair of 

foramina (fig. 4.1.9, f1) are positioned immediately anterior thereto. These are 

presumed to be for the lateral aortic canal, as in „ctenacanths‟ (eg Tamiobatis) and 

xenacanths (e.g. Xenacanthus) (Coates and Sequeira, 1998). Between these foramina 

a broad medial depression (fig. 4.1.9 B, ?ipdf) extends anteriorly  beyond the level of 

the lateral otic processes. This is interpreted as an impression of a posterior dorsal 

fontanelle, pressed through from the dorsal surface.  

 

This new specimen allows us to reconsider two otico-occipital neurocranial fragments 

reported from the Bunga Beds and attributed to Antarctilamna prisca (Young, 1982). 

It is apparent that these specimens were originally reconstructed back to front, the pre 

orbital process being mistaken for the lateral otic process and visa versa. They were, 

as such, extensively, convincingly and erroneously interpreted as closely resembling 

the neurocranium of Xenacanthus (Young, 1982). This interpretation has been widely 

accepted (e.g. Janvier, 1996), fuelling the theory that Antarctilamna is a primitive 

xenacanth (e.g. Long and Young, 1995; Janvier, 1996). 

 

When Young‟s 1995 reconstruction, based on the two Bunga Beds specimens, is 

viewed in reverse with interpretive lines removed (fig. 4.1.9 C) it provides material 

for comparison with the Waterloo Farm neurocrania, as well as other recently 

described material (see below). The shape and anterio-posterior proportions of the 

Bunga Beds neurocranium closely match those of the Waterloo Farm specimen. The 

otico occipitals of the Bunga Beds material are, anteriorly and posteriorly broader 

than the Waterloo Farm specimen with less acute medium lateral angles. A portion of 

the post orbital process, preserved in one specimen from the Bunga Beds, displays a 

foramen anteriorly (fig. 4.1.9 C, pf), interpreted here as the palatine foramen. This 

foramen is characteristically present in this position in elasmobranchs (Coates and 

Sequeira, 1998). Two further fenestra (fig. 4.1.9 C, f2, f3) and an associated surface 
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canal, not preserved in AM5748, are preserved posterolateral to the post orbital 

pocesses of the Bunga Beds specimens,.   

 

There are striking similarities between  Antarctilamna neurocrania and a recently 

described neurocranium of Doliodus problematicus (Maisey et al., 2009) (fig. 4.1.9 

D,G). Like the Antarctilamna neurocrania, that of Doliodus has a ventrally diamond 

shaped otico occipital region, the mid lateral angles of which coincide with small 

lateral otic processes. The outline of the ventral surface narrows anteriorly to a third 

of its maximum width beneath the posterior of the orbital capsules. Thereafter it 

broadens to form a pair of suborbital shelfs, before narrowing anteriorly beneath the 

nasal processes. Posteriorly it has a pair of forama for the lateral aortic canals (fig. 

4.1.9. f1), though these are not as posteriorly set as in AM5748. Anterior to these are 

a further two pairs of forama (fig. 4.1.9.D f2, f3), linked together by curved 

anterolaterally directed surface canals, that exactly match the similarly positioned set 

of forama and canals on the Bunga Beds Antarctilamna specimens (fig. 4.1.7.B f2, 

f3). A narrow, shallow, medial depression occurs in common with Bunga Beds 

Antarctilamna. The broad posterior dorsal fontanelle of Doliodus (fig. 4.1.9.G pdf) 

closely matches in situation, size and shape, the impression of the fontanelle seen in 

AM5748. This fontanelle is far wider than the median endolymphatic fossa of 

xenacanths (fig. 4.1.9.H, pdf) the „ctenacanth‟-like (Ginter and Maisey, 2007) 

Cladodoides (fig. 4.1.9.I pdf) or any other known shark, besides Antarctilamna.  

 

The neurocranium of Doliodus differs from that of  Antarctilamna specimens in 

relative proportions. It has a shorter, broader otico-occipital region, about half the 

length of the entire neurocranium, as opposed to two thirds of the length in AM578. 

The otico-occipital of Doliodus is slightly broader than long, whereas in both 

described Antarctilamna examples it is a third longer than broad. The reconstructed 

occipital termination of the neurocranium is far wider in Doliodus than in AM578 or 

the Bunga Beds examples, which it more closely resembles. 

  

The slender neurocranial form of Antarctilamna recalls less plesiomorphic sharks 

such as the xenacanths and „ctenacanths.‟ In Xenacanthus (fig. 4.1.9.E,H) the post 
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orbital region likewise contributes about two thirds to neurocranial length. The otico-

occipital is also diamond shaped with  mid lateral angles, though these are far less 

acute than in Antarctilamna or Doliodus. The lateral otic processes (fig. 4.1.9.E, lop) 

of Xenacanthus are more extensive than in Antarctilamna and Doliodus. The most 

posterior foramina (fig. 4.1.9.E, f1) are similarly positioned to those of AM578. Two 

pairs of foramina, postorbitally situated and linked by a shallow surface canal (fig. 

4.1.9.E, f2, f3) are clearly equivalent to those in Antarctilamna and Doliodus though 

they are more anterioposteriorly orientated. The posterior dorsal fontanelle of 

Doliodus and Antarctilamna is largely closed in xenacanths, as in „ctenacanths‟ 

which retain a narrow endolymphatic fossa anteriorly and the foramen magnum 

posteriorly.  

 

„Cladodoides wildungensis’ neurocranium (Maisey, 2005; fig. 4.1.9.F,I), likewise has 

a diamond shaped otico-occipital region, though the lateral otic processes are far 

more posteriorly situated. Like Bunga Beds Antarctilamna and Doliodus the otico-

occipital has a narrow medial depression bounded, as in Antarctilamna, by narrow 

ridges. The orbital region is more elongate than in Antarctilamna and Xenacanthus, 

recalling the proportions of Doliodus. The suborbital shelf is broader than in 

Antarctilamna prisca,  Xenacanthus and Doliodus and does not taper anteriorly. The 

lateral fenestra (fig 4.1.9. f2, f3) are not linked by a shallow surface canal as in 

Doliodus, Antarctica and Xenacanthus. 

 

  JUVENILE ANTARCTILAMNA REMAINS 

 

Specimens of juvenile or embryonic chondrichthyans are preserved, at Waterloo 

Farm, as whole bodied impressions in a variety of stages of decay. These invariably 

have a single dorsal fin spine situated over the pectoral girdle. AM5741 (fig. 4.1.10 

A-C) is 28 mm long  and exceptionally well preserved in lateral view. Although 

damaged in the pelvic region as a result of the process of rock splitting, comparison 

of part and counterpart allow for reconstruction of a fairly complete silhouette, as 

well as some internal features (fig. 4.1.10 C). Bloat and disruption is evident in the 

branchial and pectoral region. Juvenile status of AM5741 is supported by its 
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extremely small size, large head, disproportionately large dorsal fin spine and 

incompletely mineralised vertebral column. Large heads and proportionately larger 

dorsal spines (relative to body length) than those of adults also occur in juveniles of 

recent sharks and Upper Carboniferous xenacanths (Soler-Gijon, 2004). The presence 

of a fully developed  spine with several costae and mineralised head and pectoral 

girdle elements suggest juvenile rather than embryonic status (cf. Soler Gijon, 2004). 

 

The mouth is forward opening. The Meckel‟s cartilage, slender and posteriorly 

upturned towards the articular region, resembles that of Antarctilamna prisca. The 

position of the orbital capsule may be discerned. Two separate triangular dorsal fins 

are present. The anterior dorsal fin is preceded by a posterodorsally inclined spine 

with a superficial insertion, situated immediately above the pectoral girdle. About six 

costae are visible on the spine, which originate in the basal region and extend distally 

to terminate sequentially at the anterior edge. An abrupt increase in density of 

mineralisation midway along the posterior edge is taken to represent the confluence 

between the posteriorly directed basal opening and the posteriorly closed distal 

portion of the spine, which is gently recurved, similar to that of A. ultima. The dorsal 

fin extended most of the length of the spine, though it is very faintly preserved 

distally. It is evident, from the degree of mineralisation, that the dorsal fin was more 

substantial adjacent to the basal opening. The second dorsal fin was smaller and 

lacked a fin spine.  

 

The posterolateral edge of the pectoral girdle is visible anterior to the triangular 

pectoral fin. The scapular process is tall and anterodorsally directed with prominent 

posterolateral and dorsomedial angles connected by an approximately straight 

posterodorsal margin. Ventral to the posterolateral angle the scapulocoracoid outline 

is smooth and convex until the articular area is encountered near the ventral limit of 

the body. Thereafter the posterior margin of the coracoid is anteriorly directed. As far 

as comparison is possible, the scapulocoracoid morphology is closely comparable to 

that of Plesioselachus, suggesting a shared primitive condition. The pectoral fin lacks 

a fin spine, as in Plesioselachus*. Partially due to damage, details of the pelvic and 

anal fins are not preserved, though an interruption of the ventral outline level with the 
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second dorsal fin, indicates the position of the pelvic fin. Some mineralised neural 

arches are visible in the anterior part of the vertebral series, posterior to the first 

dorsal fin.   

 

The superficially inserted spine of AM5741, exhibiting a laterally convex basal 

opening extending for about half of the spines posterior outline and a gently recurved 

distal half, together with its ornamentation of costae extending from the anterior 

margin to the basal opening, supports identification with Antarctilamna. This 

identification is further supported by correspondance of the lateral outline of the 

Meckel‟s cartilage, and co-occurrence with A. ultima.  

 

* (Discovery, within 50cm of each other (in a weathered and crumbly outcrop), of an 

adult Antarctilamna ultima spine and a spineless articulated pectoral fin further attest 

that Antarctilamna lacked a pectoral fin spine). 

 

DISCUSSION    

 

Though Antarctilamna shares many similarities with xenacanth and „ctenacanth‟ 

sharks, it most closely resembles Doliodus in the structure of its teeth, fin spines, 

neurocranium and palatoquadrate. Antarctilamna differs from Doliodus in having a 

single dorsal fin spine as opposed to an acanthodian-like suite of spines. 

The close morphological resemblance between Doliodus and Antarctilamna in other 

regards suggest that both these taxa retain many primitive characters. Assuming that 

loss of paired fin spines occurred only once in chondrichthyans and was accompanied 

by loss of all but one dorsal fin spine, Antarctilamna might approximate the common 

ancestor of crown group chondrichthyans. 

 

If this were so, the numerous similarities beween Antarctilamna, xenacanths and 

„ctenacanths‟ indicate that these latter taxa represented the most conservative 

chondrichthyan branch, which retained the least derived spines, dentition, mandibular 

arches and neurocrania. With the exception of euselachians, which probably 
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originated amongst the „ctenacanths‟, all other chondricthyan groups would be more 

highly derived descendants of primitive elasmobranch-like ancestors. 

 

 Antarctilamna  exhibits remarkable morphological conservatism.  In all comparable 

features A. ultima and A. prisca, from the mid Devonian (Givetian) differ only in 

minor details of proportion. Antarctilamna spines and teeth are also known from the 

mid Devonian (Givetian) of South Africa (Almond and Evans, 1996). They, and 

undescribed endoskeletal elements, are also very similar to those of A. prisca, though 

the spines are more elongate (pers. obs.). Antarctilamna, identified on the basis of 

isolated teeth, was widespread in Gondwana during the Middle Devonian and has 

also been recorded from South America, Saudi Arabia and Iran (Ginter 2004), though 

it was not previously known to have survived into the Late Devonian. This late 

survival of Antarctilamna in the polar Agulhas Sea was accompanied by that of 

Plesioselachus, that likewise had a superficially embedded fin spine. Indeed it is 

notable that, in Middle to Late Devonian strata representing Agulhas Sea sediments, 

there do not appear to be any chondrichthyan spines other than superficially inserted 

ones. The Agulhas Sea was apparently colonised by the mid Devonian with 

chondrichthyans belonging to an early radiation, that thereafter remained virtually 

unchanged and unchallenged to the end of the period. This is curious when it is 

considered that, outside the Agulhas Sea, sharks with superficially embedded spines 

and simple diplodont teeth were seemingly extinct by the Late Devonian (Ginter, 

2004). Other ecosystems had been colonised by a diversity of highly derived 

chondrichthyans.  

 

A late Famennian deep marine assemblage, preserved in the Cleveland Shale, 

contains a range of Ctenacanthus  spine taxa characterised by deeply inserted noded 

costate spines, Tamiobatis neurocrania, thought to be „ctenacanthid‟, species of 

Cladoselache with internalised first dorsal fin spines, stethacanthids with highly 

specialised first dorsal fin spines, and a range of tooth taxa including Orodus and 

Phoebodus (Carr and Jackson, 2008). Direct comparison between the Waterloo Farm 

fauna and Cleveland Shale fauna should be cautiously performed as they represent 

respectively an estuarine marginal marine ecosystem and a deep marine assemblage. 
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Very few comparable late or latest Famennian estuarine environments are known. 

One notable example is the Andreyevka 2 site from central European Russia, a near 

tropical Laurussian locality, in which the only chondrichthyan known is a 

eugenodont. The Chaffee Group deposits of Colorado, which represent a shallow 

marginal marine environment, contain Ctenacanthus and a holocephalan, Sandalodus 

minor. Ketleri in Latvia, the remaining well-studied late Famennian marginal marine 

locality has not yet yielded  chondrichthyan remains (Salan and Coates, 2010).   

 

Late Middle to Late Devonian open marine deposits are unknown from the Agulhas 

Sea. Fully-marine derived rocks from the Early Devonian of South Africa and early 

Middle Devonian of Bolivia do not yield Antarctilamna or Plesioselachus-like 

remains, but rather spines of Machaeracanthus and neurocranial remains of 

Pucapampella. These taxa were coeval with the estuarine Doliodus described from 

Laurussia, perhaps suggesting that Pucapampella was fully marine whilst  Doliodus 

and Antarctilamna were estuarine in habitat. 

 

It is notable that Antarctilamna attained a considerable size. In order to get a 

conservative estimate of the body length of the A. ultima holotype the length of the 

mandibular arch, 15cm, was multiplied by 7 (according to the ratio of mandibular 

arch to body length in the juvenile Antarctilamna (AM5741)). This suggests that it 

was about a metre long. The presence of some isolated Antarctilamna teeth from 

Waterloo Farm, five times the size of the largest associated with the holotype, 

suggests that Antarctilamna reached several metres in length.  

 

4.1.5  CONCLUSION 

 

Plesioselachus and Antarctilamna both represent early elasmobranchs which retained 

the superficial spine insertion of basal chondrichthyans, but no longer had paired fin 

spines. Similarities between the spines, mandibular arches, dentition and neurocrania  

of Antarctilamna and Doliodus suggest that Antarctilamna may otherwise be little-

derived from stem chondrichthyans. This view is supported by the absence, in 

Antarctilamna, of many synnapomorphies that unite more crowngroup clades. If loss 
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of paired fin spines occurred only once amongst chondrichthyans, then all 

chondrichthyans would be descended from a common ancestor displaying characters 

primitive to the crowngroup, but lacking paired fin spines. It is possible that 

Antarctilamna approximates the last common ancestor of crown-chondrichthyans. 

 

If this hypothesis is entertained, theories regarding the order of aquisition of various 

character states of chondrichthyes can be extrapolated. For example it follows that the 

common ancestor of crown-chondrichthyans had two dorsal fins, one above the 

pectoral girdle and one approximately above the pelvic girdle, a heterocercal tail, and 

a single superficially inserted fin spine (associated with the first dorsal fin) which was 

ornamented with noded costae. Lack of fin spines in Gladbachus is a subsequently 

derived condition also acquired, perhaps independently, in symmoriids, eugenodonts 

and petalodonts. Presence of a single dorsal fin spine, as is found in Cladoselache, 

stethacanthids, xenacanths and most holocephalans, represents retension of the 

character state of their last common ancestor. 

 

 On the basis of their neurocranium, mandibular arch and pectoral girdle 

elasmobranchs (xenacanths, „ctenacanths‟, hybodonts and neoselachians) would be 

the most conservative group of chondrichthyans. Amongst elasmobranchs, 

duplication of the dorsal fin spine may have occurred only once, on the lineage 

leading  from the last common ancestor of elasmobranchs to the common ancestor of 

ctenacanths and hybodonts. The grouping of Cladoselache, symmoriids and 

stethacanthids shares distinctive derivations of the mandibular arch, not seen in 

elasmobranchs or other chondrichthyan groups, as well as a lateral articulation for the 

pectoral fin, otherwise independently acquired in hybodonts. 

 

Collection of further material from Waterloo Farm is hoped to elucidate more 

morphological characters of Antarctilamna, which will aid phyllogenetic testing of 

these hypothesis.  
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Figure. 4.1.1 Recent phylogenies of Chondrichthyes A, Two theories of 

interrelationships summarised by Janvier, 1996. A, Cladoselachidae; B, 

Eugenodontidae; C, Petalodontida; D, Symmoriidae; E, Stethacanthidae; F, 

Holocephali; G, Iniopterygia; H, Xenacanthiformes; I, Ctenacanthus; J, 

Hybodontiformes; K, Neoselache. B, Two cladistic solutions recovered by Coates 

and Sequeira (2001). 
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Figure. 4.1.2 Plesioselachus macracanthus, AM4817, holotype, partial articulated 

skeleton, A, B, photographs of part and counterpart, C, line drawing based on part 

and counterpart. Scale bar represents 50mm. cf, caudal fin, chy, ceratohyal, df, 

diazonal foramen, dfs, dorsal fin spine, dm, dorsomedial angle, pf, pectoral fin, pl, 

posteriolateral, sc, scapularcoracoid, bp, bothriolepis anterior ventrolateral plate 
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Figure 4.1.3 Plesioselachus macracanthus, A, AM5745, photograph of complete 

isolated anterior dorsal fin spine B, AM4866, paratype, photograph of distal portion 

of a dorsal fin spine, with partial fin impression (adf), C, AM5746, photograph of 

isolated scapulocoracoid, D, AM5747, photograph of isolated scapulocoracoid, E, 

AM4817, photograph of denticles on the caudal fin. 
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Figure 4.1.4 Antarctilamna ultima, AM5743, holotype, dissociated mandibular 

arch, A, C, photographs of part and counterpart, B, D, line drawings of part and 

counterpart. Scale bars represent 50 mm.  
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Figure 4.1.5 Antarctilamna ultima, AM5744, paratype, fin spine, cartilaginous 

fragments and ceratohyal, A, photograph, B, line drawing. Scale bar represents 100 

mm. 
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Figure 4.1.6 Antarctilamna ultima, A, AM5744, detail of fin spine, B, AM5743, 

tooth associated with palatoquadrate. Scale bar represents 10 mm in B, 2 mm in D. 
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Figure 4.1.7  Isolated diplodont teeth, A, photograph of AM5751, Antarctilamna 

tooth in labial view, B, line drawing of AM5751, C, E, photographs of AM5752, 

AM5753 Antarctilamna teeth in  baso-lingual view, D, F, line drawings of AM5752, 

AM5753, G, photograph of AM5749, ? Antarctilamna tooth in lateral view, H, line 

drawings of AM5753 . Scale bars represent 5mm.  
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Figure 4.1.8 Comparison of chondrichthyan mandibular arches, A,C, 

Antarctilamna ultima  (AM5743), B,D, ? Antarctilamna prisca fragments from the 

Bunga Beds as reconstructed by Young (1982), E, reconstruction of Antarctilamna 

ultima based on AM5743, F, „C’ wildungensis (after Gross, 1938), G, Orthacanthus 

(after Hotton, 1952), H, Akmonistion (after Coates and Sequeira, 2001).      

 

 



 104 
 
 

 

Figure 4.1.9  Comparison of Chondrichthyan neurocrania, A-B, cf. 

Antarctilamna ultima from Waterloo Farm in ventral view (AM5748), A, photograph, 

B, line drawing. Scale bar represents 20 mm, C, Bunga Beds Antarctilamna in ventral 

view, reinterpreted and modified from Young (1982), D, G, Doliodus problematicus 

in ventral and dorsal views (Maisey, 2009), E,H, Xenacanthus in ventral and dorsal 

views (Schaeffer, 1981), F,I, „Cladodoides’ wildungensis (Maisey, 2005)    
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Figure  4.1.10  AM5741, whole bodied juvenile cf. Antarctiilamna, A, B, 

photographs of part and counterpart, C. line drawing based on part and counterpart. 

Scale bar represents 5mm.  
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4.2  DISCUSSION OF WATERLOO FARM PECTORAL GIRDLES IN 

RELATION TO OTHER EARLY SHARKS: 

 

 A NEW RECONSTRUCTION OF ONYCHOSELACHE TRAQUAIRI, 

COMMENTS ON EARLY CHONDRICHTHYAN PECTORAL GIRDLES, 

AND HYBODONTIFORM PHYLOGENY 

 

by MICHAEL I. COATES* and ROBERT W. GESS† 

*Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 

57
th

 Street, Chicago, IL 60637, USA; e-mail: mcoates@uchicago.edu 

†Bernard Price Institute (Palaeontology) School for Geosciences, University of 

Witwatersrand, Johannesberg 2050 South Africa; e-mail: robg@imaginet.co.za 

 

 

Abstract: A new, third, specimen of Onychoselache traquairi from the Viséan 

(Holkerian) of Scotland allows a significant revision of the anatomy of this stem-

group elasmobranch.  This first report of material from the Mumbie quarry exposure 

of the Glencartholm fish beds presents a new reconstruction of Onychoselache 

showing broad-based cephalic and nuchal spines, and exceptionally large pectoral 

fins.  Details of the jaws, braincase, and postcranial skeleton demonstrate that 

Onychoselache is a well-characterised member of the Hybodontiformes.  

Comparisons of the pectoral skeleton with other early chondrichthyan examples, 

including new material of Tristychius arcuatus and Plesioselachus macracanthus, 

highlight a range of early chondrichthyan conditions that are incorporated into a 

revised hybodontiform phylogeny.  Close resemblence between Onychoselache, 

Mesozoic and late Palaeozoic hybodonts implies that these clades diverged within the 

Carboniferous and Permian.  Major differences between Onychoselache and the 

coeval Tristychius (a modified reconstruction of which is included) indicate that the 

Neoselachii-Hybodontiformes split is probably Late Devonian, consistent with 

records of isolated teeth.  The pectoral fins of Onychoselache, while unique among 

Palaeozoic forms, resemble those of Recent bamboo and epaulette sharks 

mailto:robg@imaginet.co.za
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(Orectolobiformes).  The functional corollary of this convergence is that 

Onychoselache represents an instance of a non-tetrapod early vertebrate with a near-

walking gait. 

 

(Coates, M.I. and Gess, R.W. (2007). A new reconstruction of Onychoselache 

traquairi, comments on early chondrichthyan pectoral girdles, and hybodontiform 

phylogony, Palaeontology 50,6: 1421-1446.) 

 

Key words: Palaeozoic, Chondrichthyes, elasmobranch, Hybodontiformes, 

phylogeny, function, fins. 

 

 

 

ONYCHOSELACHE TRAQUAIRI Dick, 1978 is a small Lower Carboniferous shark 

that until recently was known from only two specimens, both from the Viséan of 

Scotland.  The holotype, NMS 1885.54.1 (part and counterpart), was collected from 

Glencartholm, Eskdale, one of the classic Scottish Palaeozoic fish localities.  For 

summaries of the historical and palaeobiological significance of Glencartholm, see 

works by Schram (1983) and Dineley and Metcalf (1999).  When first described in 

the late nineteenth century (Traquair 1888), the original specimen attracted attention 

because it appeared to have a pectoral fin with a remarkably advanced skeletal 

pattern.  Such was the modern aspect of this fin that it prompted Woodward (1924, p. 

342) to remark that „sharks closely related to the Triassic and Jurassic Hybodus and to 

the succeeding Cestracion, with the di-basal mode of insertion of the pectoral fin, 

were already in existence at the beginning of the Carboniferous Period.‟  Thanks to 

Maisey's numerous studies of hybodont sharks (1982, 1983, 1989 and references 

therein), and large-scale phylogenetic analyses of the elasmobranch crown radiation 

(Shirai 1996; de Carvalho 1996; Maisey et al. 2004), the suggested relation of 

Onychoselache to Cestracion (Heterodontus) can be disregarded.  However, the 

proximity of Onychoselache to hybodont sharks needs to be reexamined (Dick and 

Maisey 1980; Maisey 1989; Maisey et al. 2004), as does the significance of the 

unusual fin pattern; these basic questions frame the contents of this article. 
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The present work results from the discovery of only the third specimen of O. 

traquairi, which, appropriately enough, was found by the discoverer of the second 

Onychoselache specimen: the noted fossil collector Mr S. P. Wood (Dick and Maisey 

1980).  The new specimen, reported and described here for the first time, allows a 

substantial reassessment of Onychoselache skeletal anatomy.  Given the significance 

attached to the pectoral girdle and fins in this species, a short review of early 

chondrichthyan pectoral skeletal morphologies is also included.  This introduces 

further new data, concerning the pectoral girdle and fin of Tristychius arcuatus 

Agassiz, 1837 (and a modifaction of Dick‟s, 1978, reconstruction), and a new 

description of the girdle of the Devonian chondrichthyan Plesioselachus 

macracanthus Anderson et al., 1999.  Pectoral skeletal characters taken from this 

overview are incorporated into a reexamination of the relationships of Onychoselache 

to hybodonts and higher elasmobranchs, and the broader implications of this 

phylogeny are examined for what new light they shed upon current hypotheses of 

early elasmobranch diversity and evolution.  Finally, the functional implications of 

the unsual pectoral fins are considered, and contrasted with standard palaeoecological 

scenarios of early elasmobranchs as generalised, pelagic marine predators. 

 

Previous interpretations of Onychoselache traquairi Dick, 1978 

 

For most of its collections-based history, the holotype of Onychoselache, NMS 

1885.54.1, was included in the genus Tristychius Agassiz, 1837, within which it 

switched back and forth between the physically larger species, Tristychius arcuatus 

Agassiz, 1837, (Traquair, 1888), and the smaller, more similarly sized T. minor 

(Traquair 1903) now recognised as a nomen dubium (Dick 1978).  Woodward (1924) 

produced a more complete description of NMS 1885.54.1, and returned it to T. 

arcuatus.  Subsequently, Moy-Thomas (1936, 1939) prepared the specimen further, 

exposed much of the postcranium, and erected the Suborder Tristychii (of the Order 

Protoselachii) to accommodate such curiously advanced forms relative to their Lower 

Carboniferous selachian contemporaries.  Moy-Thomas‟s (1936) reconstruction 

appeared in his seminal „Palaeozoic Fishes‟ (Moy-Thomas 1939, fig. 16.D), and 

again in the comprehensively revised second edition (Moy-Thomas and Miles 1971, 
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fig. 9.9), wherein it remained identified as T. arcuatus and classified as a member of 

the Suborder Ctenacanthoidei.  Zangerl's (1973) initial attempt to identify a series of 

major divisions or 'basic designs' among early chondrichthyans allied T. arcuatus to 

the phalacanthous sharks, the membership of which resembled Moy-Thomas and 

Miles' (ibid.) Ctenacanthoidei.  It was not until Dick‟s (1978) monograph on T. 

arcuatus, that NMS 1885.54.1 was recognised as sufficiently distinct from 

Tristychius to warrant the erection of a new genus and species: Onychoselache 

traquairi.  This was also the first work in which both genera, Tristychius and 

Onychoselache, were formally hypothesized as members of the Hybodontiformes. 

Importantly, Dick‟s (1978) taxonomic revision of NMS 1885.54.1 was 

augmented by the discovery (by Mr S. P. Wood) of a second Onychoselache 

specimen, NMS 1974.23.14, from the Viséan Wardie shales at Wardie near 

Edinburgh.  This specimen demonstrated that the fins were tri-basal rather than di-

basal, and contributed to the modified version of Moy-Thomas‟s (1936) 

reconstruction published in Zangerl‟s (1981, fig. 60) „Handbook of Paleoichthyology, 

Volume 3A‟.  Here, too, Onychoselache was classified within the Hybodontoidea.  

However, it is Dick and Maisey's (1980) complete reworking of the Onychoselache 

material that provides the current, definitive picture of this „putative Paleozoic 

hybodont‟ (Maisey 1989, p. 38; Janvier 1996, p. 143), and identifies five 

synapomorphies as evidence of hybodontoid affinity.  Despite such apparent strength, 

this phylogenetic hypothesis has been eroded by the enlarged data set obtained from 

more subsequent descriptions of hybodontoids, all of which are geologically younger 

(Maisey 1982, 1983, 1986, 1987, 1989; Rieppel 1982; Maisey and de Carvalho 1997; 

Maisey et al. 2004).  As the hybodont sharks have accumulated an exceptionally 

well-defined monophyletic identity among fossil chondrichthyans, a morphological 

gulf has emerged separating the mostly Mesozoic Hybodontoidei from less well 

known earlier taxa such as Onychoselache and Tristychius.   

Maisey's (1989) cladogram of Hybodontiformes retains only three 

synapomorphies uniting Onychoselache with the hybodontoids, while de Carvalho's 

(1996) elasmobranch phylogeny excludes Onychoselache and Tristychius from the 

hybodontiforms altogether, echoing Maisey‟s (1984) earlier hypothesis that placed 

Tristychius as sistergroup to Hybodus plus all more derived elasmobranchs.  Most 
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recently, Maisey and colleagues (2004) have cast further doubt on the hybodont status 

of Onychoselache, noting that, like Tristychius, it seems to lack a series of likely 

synapomorphies uniting hybodonts and neoselachians (neoselachian inclusiveness 

used here in the sense adopted by de Carvalho 1996), and that a group comprising 

Tristychius, Onychoselache and hybodonts might even be paraphyletic without 

neoselachians.  Thus, the phylogenetic location of Onychoselache is tied to broader 

questions such as the determination of neoselachian origin as well as the 

characterization of hybodonts.  Finally, despite, or perhaps because of, such 

continued uncertainty surrounding the affinities of Onychoselache (and Tristychius), 

in the most recent faunal lists for Wardie and Glencartholm localities Onychoselache 

has, once again, been classified within the nebulous ctenacanthiforms (Dineley and 

Metcalf 1999). 

 

GEOLOGICAL CONTEXT AND AGE 

 

The new, third, specimen of Onychoselache, NMS 1998.35.2 (Text-fig. 1), originates 

from a previously unreported locality, Mumbie Quarry, opened and excavated in the 

early 1990s by Mr S. P. Wood on private land belonging to the estates of the Duke of 

Buccleugh.  Now partly back-filled and overgrown, the quarry site is on the southern 

fringe of Glencartholm Wood, adjacent to the exposures of the Glencartholm 

Volcanic Beds, including the fish bed horizon, along the eastern bank of the River 

Esk.  Mumbie Quarry fish horizons are thus lateral equivalents of the Glencartholm 

fish beds (source of the first specimen, holotype: NMS 1885.54.1; Text-fig. 2): 

Glencartholm, Dumfries District, Dumfries and Galloway Region, Scotland, 

Ordnance Survey Grid reference NY 376795. 

 The Glencartholm fish bed is a thin unit within the Glencartholm Volcanic 

Beds of the Upper Border Group of the Calciferous Sandstone (Lumsden et al. 1967).  

The Glencartholm Volcanic Beds correlate with and span the Holkerian-Asbian 

Substage boundary of the Viséan, (George et al. 1976; Cossey et al. 2004), indicating 

that the age of the fish-bed is close to 332.5 Ma (ICS 2004 Timescale: Gradstein et al. 

2004).  The collecting history and original site localities at Glencartholm are not 

entirely clear, although an apparent third site, Tarras Water Foot (Geikie 1881; 
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Traquair 1881, 1890, 1903; Moy-Thomas 1937; Westoll 1951), is now thought to be 

identical to those at Glencartholm.  It is possible that fossiliferous strata were 

dynamited beyond further use by Moy-Thomas in the 1930s (Lumsden et al. 1967; 

Schram 1983), although Dineley and Metcalf (1999) speculated on future collecting 

potential following some exploratory trenching.  In practise, throughout the early 

1990s, Mumbie Quarry provided the only effective, albeit temporary, access to „one 

of the most important Palaeozoic fossil fish sites in the world‟ (Dineley and Metcalf 

1999, p. 286). 

Schram (1983) presented the Glencartholm biota as a death assemblage 

deposited in a near-shore marine environment.  The Glencartholm (and thus Mumbie) 

fauna includes organic body fossils but calcareous shells are rare, having been 

demineralised or replaced.  This was interpreted as evidence of quick burial, low 

oxygen and low pH values, allowing whole bodies to remain intact but the mineral 

content to be attacked by the acid conditions.   

The second specimen, NMS 1974.23.14, originates from nodule bed 7 (Wood 

1975) of the Wardie Shales seashore exposure between Granton Harbour and Trinity 

Bridge, Wardie, Edinburgh, Scotland (NT 245771).  The Wardie shales are 

stratigraphically close to the middle of the Lower Lothian Oil Shale Group (Dick 

1978; Dinely and Metcalf 1999), and date to the Holkerian Substage of the Viséan, 

between 339 and 337.5 Ma (Gradstein et al. 2004). 

Wardie shales are interpreted as having accumulated in thick black sediments 

of a large lagoon, frequently isolated from the open sea (Greensmith 1965).  Near-

articulated nodule-enclosed chondrichthyan remains, as well as those of plants and 

other vertebrates, indicate undisturbed, stagnant conditions, similar to those in a 

thermally stratified lake (Hesselbo and Trewin 1984).  Despite the presence of 

chondrichthyans, it is thought that the Wardie fauna is non-marine, and probably 

representative of the lake-shore biota (Wood 1975; Dick 1981; Dineley and Metcalf 

1999). 
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MATERIAL AND METHODS 

 

Glencartholm (NMS 1885.54.1) and Mumbie Quarry (NMS 1998.35.2) specimens of 

Onychoselache are preserved in calcareous shale.  Both are exposed in lateral view 

with cartilages retaining three-dimensional relief.  The Glencartholm specimen is 

almost complete but the Mumbie Quarry specimen includes only the anterior half of 

the body: the second dorsal fin, pelvic region and tail are missing.  It should also be 

noted here that the holotype (NMS 1885.54.1) was prepared somewhat coarsely either 

directly or indirectly by Traquair, Woodward, and Moy-Thomas.  In places the fossil 

cartilage is now in a poor condition.  Use of solvents to enhance specimen to matrix 

contrast is not recommended. 

 The Wardie Onychoselache (1974.23.14) is preserved in a siderite nodule, and 

exposed in dorsoventral view.  Much of the cartilage is cleaved through and exposed 

on part and counterpart.  Like the Mumbie specimen, it includes the mostly complete 

skeleton anterior to the pelvic region, and parts of the second dorsal fin are present. 

 No preparation has been conducted on any of the specimens following loan 

from the National Museums of Scotland.  Specimen coating with ammonium chloride 

has been used to enhance morphological detail in certain photographs, although this 

obscures contrast between fossil cartilage and matrix.  Camera lucida drawings were 

made using a Zeiss Stemi M-11 microscope and drawing tube.  Photographs were 

taken with a Nikon D70 digital camera and Sigma 105mm DG macro lens.   

 

Institutional abbreviations.  AM, Albany Museum, Grahamstown, South Africa; HM, 

Hunterian Museum, Glasgow University, Glasgow; NHM, The Natural History 

Museum, London; NMS, National Museums of Scotland, Edinburgh; UCMZ, 

University of Cambridge Museum of Zoology, Cambridge. 

 

Anatomical abbreviations.  afsp, anterior dorsal finspine; art, articular fossa; artc, 

articular condyle; ash, anterior shoulder; ba, branchial skeleton; bp, basal plate; bv, 

basiventral; cbrf, coracobranchial fossa; cp, coracoid plate; csp, cephalic spine; df, 

foramen for diazonal verve and brachial artery; dfr, dental furrow; dntf, pectoral fin 

denticles; endf, endolymphatic fossa (rim); fdr, foramen for dorsal root nerve; ffr, 
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foramen and furrow; flr, flange and recess for pectoral retractor and extensor muscles; 

fm, foramen magnum; gf, glenoid fossa; hrg, horizontal ridge/groove; hypc, hypotic 

cartilage; ibs, interbasal space; lng, lingual buttress; lop, lateral otic process; mc, 

Meckel‟s cartilage; mcr, median crest; mpt, metapterygium; mspt, mesopterygium; 

na, neural arch; nc, neurocranium; nsp, nuchal spine; oc,otic capsule; ocp, occipital 

plate; or, orbit rim; pc, procoracoid; pcf, precerebral fontanelle; pfl, left pectoral fin; 

pfr, right pectoral fin; pla, posterolateral angle; pop, postorbital process; pq, 

palatoquadrate; pr, pleural ribs; prpt, propterygium; pv, pelvic fin and girdle; rfr, 

radial fringe; sb, scapular buttress; scp, scapular process; sor, supraorbital ridge; vlr, 

ventrolateral ridge. 

 

SYSTEMATIC PALAEONTOLOGY 

 

Class  CHONDRICHTHYES  Huxley, 1880 

Subclass  ELASMOBRANCHII  Bonaparte, 1832 

Plesion  HYBODONTIFORMES  Maisey, 1989 

 

Genus ONYCHOSELACHE Dick, 1978 

 

Type species.  Onychoselache traquairi Dick, 1978 

 

Revised diagnosis.  A small (160-250mm long) hybodontiform shark with a series of 

about twelve to fourteen large, hook-like denticles along the anterior margin of each 

pectoral fin.  A single, large, broad based, tricuspid cephalic spine covers the otic 

region on each side of the cranium.  Two large, bicuspid, nuchal spines saddle the 

dorsal midline between the occiput and first dorsal finspine.  Further hook-like 

denticles, sometimes fused at their bases into multicuspid scales, are positioned 

around the cheek and jaws.  Teeth are low crowned and tumid, with deep roots 

lacking a lingual torus.  Finspines have three or four thin costae on each side; the 

hindmost finspine is more recurved and stouter than the anterior one.  The articular 

area for the pectoral fin is situated on the lateral surface of the girdle, with the 

propterygial area anterodorsal to the metapterygial condyle.  Pectoral fins are large 



 114 
 
 

and plesodic, with elongate basal radials accounting for more than a third of 

maximum fin length.  Mesopterygium and metapterygium curve oppositely, 

enclosing a large inter-basal space. 

 

Onychoselache traquairi Dick, 1978. 

Text-figures 1-3, 4A, 5A, B, 6-8, 9F, 11B, 12A 

Synonomy.  See Dick, 1978. 

 

Holotype.  NMS 1885.54.1 (part and counterpart), complete individual, housed in the 

National Museum of Scotland, Edinburgh, UK. 

 

Paratype.  NMS 1974.23.14A/B, pre-pelvic skeleton  

 

Material.  The holotype, the paratype, and NMS 1998.35.2, a pre-pelvic skeleton. 

 

Type locality and horizon.  Exposure of the Glencartholm Volcanic Beds (Holkerian, 

Viséan, Lower Carboniferous), in the banks of the River Esk, near Glencartholm, 

Dumfries District (Dumfries and Galloway Region), Scotland. 

 

Diagnosis.  As for the genus. 

 

Description  

 

Comparison of Onychoselache anatomy with other hybodontoid species follows 

taxonomic usage based upon fossils preserving articulated skeletal remains rather 

than isolated teeth and finspines (cf. Maisey, 1989).  Consequently, it should be noted 

that former exemplar species of Hybodus Agassiz, 1837, presented in standard 

monographs of hybodont anatomy (Maisey 1982, 1983), have since been removed to 

new genera.  Thus, the former Hybodus basanus Egerton, 1845, and H. fraasi Brown, 

1900, are now species of the genus Egertonodus Maisey, 1987.  Similarly, Hybodus 

cassangensis Teixera, 1956, is designated Lissodus cassangensis following Maisey's 

(1989) comments in the description of the hybodontoid Hamiltonichthys mapesi, as 
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well as Duffin's (2001) and Rees and Underwood's (2002) synopses of the genus 

Lissodus Brough, 1935.  Species retained in the genus Hybodus include H. delabechei 

Woodward, 1889, H. hauffiensis Fraas, 1889, and H. reticulatus Agassiz, 1837.  A 

new restoration of Onychoselache traquairi, summarising conclusions drawn from 

the following description and interpretation, is shown in Text-figure 8. 

 

Neurocranium.  The neurocranium (Text-figs 1-4) is crushed dorsoventrally in all 

three specimens of Onychoselache; exposed in dorsal view in Glencartholm and 

Mumbie specimens, and incompletely revealed in ventral view in the Wardie 

specimen.  Although the calcified cartilage, visibly formed discrete tesserae (Dean 

and Summers 2006), of NMS 1998.35.2 is in many places pitted and broken, it is in 

much better condition than the neurocranial roof of NMS 1885.54.1 and retains 

diagnostic three-dimensional relief (best observed with low-angle lighting).  The 

most seriously damaged area of NMS 1998.35.2 is the otico-occipital region, where 

the occipital plate with an attached portion of the hypotic cartilage (basicranial floor) 

is separated from the main body of the neurocranium (Text-fig. 3).  Except for this 

major break, the condition of this specimen is remarkably like that of NHM P2208, a 

flattened cranium of Hybodus reticulatus (Maisey 1987, figs 2-3). 

 In dorsal aspect, the neurocranial roof of Onychoselache is broadest across the 

postorbital processes (Text-figs 3, 4A).  Unlike the neurocrania of more basal 

chondrichthyans, such as Akmonistion (Coates and Sequeira 1998), maximum width 

is significantly less than its length.  The orbits occupy most of the anterior half of the 

neurocranium.  Supraorbital ridges are present, but these are rounded and situated 

more medially than previously described.  These ridges appear to extend forwards 

from the paired humps that overlie the anterior parts of the otic capsules.  The 

ethmoid region is not widely flared, and the precerebral fontanelle is small. 

The postorbital processes are anteroposteriorly broad, but the posterior region 

of each is either damaged, or, in NMS 1998.35.2, obscured by the left side cephalic 

spine (Text-fig. 3).  Visible parts of these processes are consistent with those of 

hybodontoids and quite unlike the narrow laterally directed spar of Tristychius (Dick 

1978).  There is no evidence of a highly mineralised region indicative of a postorbital 

articular surface for the palatoquadrate or hyomandibula.  Otico-occipital proportions 
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are short and broad.  The anteriormost rim of an endolymphatic fossa appears to be 

marked by a well-formed lip indented into the rear of the neurocranial roof of NMS 

1998.35.2.  In comparison with Hamiltonichthys and Egertonodus, the fossa is 

situated more posteriorly, and in this respect might be plesiomorphic (Coates and 

Sequeira 1998; Maisey 2001b).  The posterior region of the fossa is unknown, and 

likewise the more dorsal parts of the occipital plate.  Cavities revealing the position 

and size of the otic capsules are exposed through damaged areas of the neurocranial 

roof of NMS 1998.35.2.  These show that the otic capsules extended anteriorly to lie 

between the postorbital processes.  Pits within the exposed otic capsule on the left 

side of the neurocranium probably represent recesses for otic canal ampullae.  When 

re-scaled to match the ethmo-occipital length of Egertonodus, the overall proportions 

of the neurocranium of Onychoselache are similar in dorsal view (Text-fig. 4). 

The condition of the broken and separated surfaces of the occipital plate and 

hypotic cartilage (Text-fig. 3) indicate that there were no persistent embryonic 

fissures.  Furthermore, the occipital plate shows no evidence of a posterior projection 

surrounding the foramen magnum or notochordal cotylus, as suggested by the ventral 

exposure of the neurocranium in the Wardie specimen (Dick and Maisey 1980, Text-

fig. 2: NMS 1974.23.14).  The posterolateral angle on each side of the occipital plate 

is marked by a well calcified, rounded and quite prominent lateral otic process.  The 

form of these processes resembles an exaggerated version of the process preserved in 

dorsoventrally flattened specimens of H. reticulatus (Maisey 1987).  Such processes 

are unknown in Hamiltonichthys (Maisey 1989).  A small patch of basicranial plate is 

preserved below the ethmoid region in NMS 1998.35.2, but insufficient to reveal 

anything of significance to the neurocranial description. 

  

Mandibular arch.  The anterior part of the palatoquadrate of NMS 1998.35.2 is 

reasonably well preserved (Text-figs 1, 3), but the quadrate region is obscured by the 

displaced Meckel‟s cartilage.  The quadrate portion of the palatoquadrate in NMS 

1885.54.1 (Text-fig. 2) is similarly obscured by cartilage, which in this case consists 

of debris from the leading edge of the adjacent coracoid plate.  The most complete 

quadrate region is exposed in NMS 1974.23.14 and this, significantly, curves laterally 

and away from the braincase wall.  Therefore, it is highly unlikely that such a jaw slid 
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beneath the postorbital process, as in Egertonodus (Maisey 1983).  It is also difficult 

to reconcile the present data with the bar-like form of the upper jaw hypothesized in 

the previous reconstruction of Onychoselache (Dick and Maisey 1980).  In fact, the 

anterior part of the anterodorsal edge of the palatoquadrate is thickened, probably to 

provide a surface for the ethmoid articulation.  There is no trace of a large otic 

process in any of the three specimens.  Instead, it appears that the dorsalmost peak of 

the upper jaw is achieved within the orbital region.  The descending rim of the 

palatoquadrate, extending posteriorly from this peak, is rounded and well calcified 

(NMS 1998.35.2).   

 Meckel‟s cartilage in NMS 1998.35.2 is exposed in mesial view.  The articular 

region is broken, although preserving evidence of greater mineralisation surrounding 

the fossa (Text-fig. 3).  The furrow for tooth families has been flattened post-mortem, 

but indicates that it was shallow and restricted to the anterior third of the biting 

margin, anterior to the deepest part of the mandible.  This is consistent with the 

condition inferred from the fractured lower jaw in NMS 1885.54.1.  In comparison, 

the tooth furrow of Hybodus cf. reticulatus extends for about half of Meckel‟s 

cartilage length (Maisey 1987, fig. 17). 

 

Hyoid and gill arches.  In NMS 1998.35.2 a series of slender cartilages are preserved 

between the pectoral girdle and the posterior of the neurocranium (Text-fig. 3).  Dick 

and Maisey (1980) identified similar cartilage fragments, although many fewer in 

number, in NMS 1885.54.1 as possible pharyngobranchials, whereas Woodward 

(1924) interpreted them as branchial rays.  Here, in broad agreement with Dick and 

Maisey, the cartilages are interpreted as parts of the primary branchial arches (Text-

fig. 2).  However, because of the nested chevron pattern formed in NMS 1998.35.2, it 

seems likely that these cartilages include the incompletely exposed edges of 

epibranchials and ceratobranchials.  No distinguishable parts of the hyoid arch are 

preserved in any of the three Onychoselache specimens.  This absence might be 

significant, because multiple, articulated specimens of Hamiltonichthys also lack 

hyoid arch material (Maisey 1989), perhaps reflecting a shared trend in calcification 

along the visceral skeletal series (hyoid arches are well preserved in other 

hybodontoid material: Maisey 1982, 1987). 
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Vertebral column.  NMS 1998.35.2 preserves most of the first 30 vertebrae in a near-

articulated condition (Text-fig. 1).  As in previous descriptions, there are no centra, 

and the notochord was probably unconstricted.  Calcified parts include dorsal (neural) 

and ventral (haemal) components, with the latter extended as ribs in the pectoral and 

trunk regions.  All parts of the vertebral column appear as a double series, indicating 

that left and right halves were not fused.  This is also apparent within the less well 

preserved although more complete vertebral series of NMS 1885.54.1 (Text-fig. 2).  

Many neural arches are marked anteroventrally by what appears to be a foramen for a 

dorsal spinal nerve root, thereby corroborating Maisey‟s (1982) inference that such 

arches are the equivalents of the interdorsals of modern elasmobranchs.  Foramen 

presence indicates that the calcified parts of these arches extended further ventrally 

than those of Hamiltonichthys and other, more derived, hybodonts (Maisey 1982, 

1989).  Neural components each have a matching basiventral component, many of 

which bear ribs (Maisey 1982). 

 Preservation quality of the new specimen allows a more detailed description of 

the anterior vertebral series (Text-fig. 3).  The cervical region includes about eight 

vertebrae: five are preserved in situ, and space for perhaps three more lies between 

these and the rear edge of the pectoral girdle.  This total is significantly fewer than the 

14 or 15 cervical arches in many other Palaeozoic chondrichthyans, such as 

Cobelodus (Zangerl and Case 1976) and Akmonistion (Coates and Sequeira 2001).  

As in Tristychius (Dick 1978), Lissodus (Maisey 1982; Duffin 2001) and 

Egertonodus (Maisey 1982), the cervical neural arches of Onychoselache are shorter 

than post-pectoral examples.  The first two neural arches are slightly procumbent, as 

in Tristychius; others in the cervical region are low and anteroposteriorly broad.  

Neural arches 8-10 lie below the basal cartilage for the first dorsal fin.  Like those in 

Tristychius, they project anterodorsally and display a variety of shapes not present in 

the more uniform trunk series.  From vertebrae 11 and more caudally, all neural 

arches lean posterodorsally, and taper to narrow apices.  The remainder of the 

vertebral series is consistent with Dick and Maisey's (1980) description based upon 

NMS 1885.54.1 (Text-fig. 2). 
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 Pleural ribs (cf. Maisey 1982) extend from the basiventrals of at least vertebra 4 

and more posterior members of the axial skeleton (Text-figs 1-2).  NMS 1998.35.2 

shows no evidence of cervical or pectoral level ribs, but suggestions of such ribs are 

present on the holotype, NMS 1885.54.1, cf. Dick and Maisey‟s (1980) restoration.  

Cervical ribs are otherwise recorded in Tristychius and, perhaps, Lissodus; conditions 

in Hamiltonichthys are uncertain.  The distribution of rib lengths is most completely 

revealed by NMS 1885.54.1, and greatest rib length occurs at around vertebra 15.  A 

more anteriorly located peak in rib length is characteristic of Hybodus, Lissodus, 

Egertonodus and Hamiltonichthys.  Rib heads and basiventrals are well calcified, 

resembling most closely those of Lissodus (Maisey 1982; Duffin 2001), but the rib 

shafts are rather slender, gracile and, in most examples, broken. 

 

Dorsal fins.  The anteriormost point of first dorsal fin insertion lies directly above and 

behind the pectoral girdle.  The internal skeleton of the fin is known only from the 

cartilaginous basal plate (Text-figs 1-2, 7A).  This is well preserved in NMS 

1998.35.2: the edges are intact and the entire plate is attached in its natural position to 

the finspine.  The ventral profile of the finspine and plate combined is accommodated 

by the matching profile of the subjacent neural arch series.  This appears to be a 

widespread phenomenon among early sharks, and other well-preserved examples are 

known in taxa as diverse as Tristychius (Dick 1978) and Akmonistion (Coates and 

Sequeira 2001).  The basal plate is sub-triangular: the anterior ventral angle is drawn 

into a distinct process, as in the equivalent basal plate of Tristychius (Dick 1978).  

The posterior ventral angle is cut off, obliquely, as in the first basal plate of Lissodus 

(Maisey 1982; Duffin 2001).  However, unlike Lissodus, there is no trace of a 

calcified radial extending from the consequent process projecting from the posterior 

edge of the plate.  Unlike previous reconstructions, most notably Moy-Thomas‟s 

(1936) in which both dorsal fins project at an angle of about 40 degrees relative to the 

horizontal body axis, in NMS 1998.35.2 the angle for the first dorsal fin and spine is 

only 30 degrees.   

 The second dorsal fin is known exclusively from NMS 1885.54.1 (Text-fig. 2).  

The present work adds nothing to Dick and Maisey's (1980) interpretation and 

reconstruction, including presence of calcified fin radials.  The anterior insertion level 
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of the second dorsal fin lies close to vertebrae 28 and 29 (these body proportions are 

restored mainly from NMS 1885.54.1), in register with the pelvic fins and girdle.  

This is markedly unlike conditions in Tristychius, Hamiltonichthys and Lissodus 

(Text-fig. 11) in which the second dorsal fin lies posterior to the pelvic fin, and pelvic 

levels lie at vertebral numbers in the low thirties.  The angle of second dorsal finspine 

insertion remains close to 40 degrees above horizontal; this difference between dorsal 

fin angles is widespread among early selachians: Ctenacanthus costellatus (Moy-

Thomas 1936); Tristychius (Dick 1978); hybodontoids (Maisey 1982, 1989).  The 

basal plate of the second dorsal fin in NMS 1885.54.1 is (now) somewhat 

fragmentary, although present; Dick and Maisey‟s restoration is accepted in the 

present work. 

 

Anal fin and caudal fin.  Like the second dorsal fin, caudal and anal fins are known 

only from NMS 1885.54.1 (Text-fig. 2).  The present work has little to add to Moy-

Thomas's (1936) and Dick and Maisey's (1980) interpretations, although here it is 

considered significant that there is no direct evidence for an upturned caudal axis.  

Moy-Thomas expressed uncertainty about caudal fin structure because of the slight 

down-turn of the fin towards the (holotype) specimen edge.  In Dick and Maisey's 

account, this down-turn is explained as the result post-mortem trunk muscle 

contraction, and they restored a conventional heterocercal tail profile.  Their 

explanation remains plausible, but down-turned or similarly distorted tails are not 

apparent in other hybodont fossils.  The functional interpretation applied here to the 

body-form of Onychoselache is compatible with the tail axis remaining as preserved 

in NMS 1885.54.1: near-horizontal, consistent with conditions in hypothesized 

modern analogues. 

 

Pectoral girdle.  Pectoral girdle shape (Text-figs 1-2, 5A-B) departs significantly 

from the most recent restoration (Dick and Maisey, 1980), and returns to the more 

gracefully curved form of earlier descriptions (Woodward 1924; Moy-Thomas 1936).  

However, new features are also apparent which link pectoral morphology of 

Onychoselache to that of Lissodus cassangensis (Text-fig. 5C; Maisey 1982).   
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In NMS 1998.35.2 the pair of well-calcified, separate scapulocoracoids is 

situated in a position consistent with Dick and Maisey‟s (1980) reconstruction, but 

each includes a tall, slender, curved scapular process.  Unlike the rest of the skeleton, 

the pectoral girdle is composed of what appears to be non-tesselated calcified 

cartilage (Text-fig. 5A-B; terminology for varieties of mineralized cartilage taken 

from Dean and Summers 2006).  Damaged surfaces of the Glencartholm (NMS 

1885.54.1) and Wardie (NMS 1974.23.14) scapulocoracoid specimens are granular, 

suggesting a spherulitic or globular microstructure.  In this context it is noteworthy 

that in Recent elasmobranchs, such as Squalus acanthias, the thickly buttressed 

anterior of the scapulocoracoid has a core of what appears to be areolar calcified 

cartilage, as present in the vertebral centra (Dean and Summers 2006).  In 

Onychoselache, the broad, rounded, anterior face of the scapular process would 

provide ample area for the origin of the cuccularis muscle (as in Recent 

elasmobranchs).  No separate suprascapulars have been found.  Each scapular process 

is very stout: subcylindrical in cross section and tapering to a narrow dorsomedial 

angle, unlike the morphologically simpler scapulae of most other Palaeozoic 

chondrichthyans (cf Akmonistion, Tristychius).  The „dorsolateral angle‟ of the 

scapular process, as previously interpreted (Dick and Maisey 1980) is an artefact 

reflecting the plane of cleavage through cartilage and surrounding matrix in the 

Wardie specimen.  In fact, the whole process is semi-crescent shaped in lateral aspect, 

with a gently concave anterior surface and a thin, strongly convex, posterior rim.  As 

previously noted (Dick and Maisey 1980), there is some mesial curvature so that the 

acute apices terminate close to the basal plate of the first dorsal fin.   

The lowermost third of the scapular process above the coracoid plate is 

marked by a large, well defined, posterior concavity, the dorsal limit of which might 

be the homologue of the dorsolateral angle of other early chondrichthyan 

scapulocoracoids.  A narrow flange projects posteriorly from the medial rim of this 

concave embayment, resembling a similar although smaller flange present in 

Lissodus cassangensis (Text-fig. 5B; Maisey 1982; Duffin 2001).  Comparison with 

extant chondrichthyans indicates that this large recess and flange could have 

accommodated insertions of the mesioventral pectoral retractor muscle, as well as 

providing a broad area of origin for the pectoral fin levator muscles. 
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 The coracoid region consists of a large subrectangular plate.  These are 

preserved in NMS 1998.35.2, although the full extent of the ventral margin is 

unknown.  The coracoid plate is also present in the holotype (NMS 1885.54.1), where 

it overlaps and obscures the quadrate-articular region of the mandibular arch.  In life, 

much of coracoid plate must have curved towards its counterpart.  The unusually 

complex articular area for the pectoral fin is well preserved in NMS 1998.35.2, (Text-

fig. 5A-B), and, when restored with likely in-life curvature, situated at the 

ventrolateral prominence of the girdle.  The articular surface, instead of comprising a 

simple horizontal crest, consists anteriorly of a prominent, laterally directed although 

shallow glenoid fossa.  Posteriorly, this glenoid fossa merges with a large rounded 

condyle, situated on the posterodorsal angle of the coracoid.  The long axis of the 

entire articular area is oriented anterodorsally.  The anterolateral extent of the 

articular surface is unusual, and otherwise associated with batoids among Recent 

taxa, and symmoriids, stethacanthids and cladoselachians among Palaeozoic taxa.  A 

large foramen for the brachial artery and diazonal nerve lies just below the forward 

part of the glenoid; this is also preserved in NMS 1974.23.14.  In most other 

Palaeozoic chondrichthyans, such as Akmonistion, this is located dorsal to the 

posterior part of the fin articulation, as in extant holocephalans.  The position in the 

present example resembles that of the coracoid foramen of Recent elasmobranchs, 

such as Squalus acanthias.  Onychoselache bears no evidence of a complementary 

foramen above the articulation, as is often present in Recent elasmobranchs. 

The anterodorsal rim of the coracoid plate is divided from the anterior rim of 

the scapular region by an anteriorly projecting angle, and the coracoid rim bears a 

shallow groove.  The same combination of features is also apparent within the 

pectoral girdle of Lissodus cassangenis (Maisey 1982; Duffin 2001), although the 

coracoid portion of the girdle is more dorsoventrally extensive, and the level of fin 

articulation situated higher on the flank (Text-fig. 5C).  In L. cassangensis (and in the 

present work) this coracoid groove is interpreted as a site of origin for 

coracobranchial and coracoarcual muscles (Maisey 1982).  The large rectangular 

coracoid plate in Onychoselache is unique among fossil chondrichthyans.  It is 

noteworthy that this would have provided an unusually broad insertion area for the 

origin of pectoral fin depressor muscles, as well as for the hypobranchial muscles. 
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Pectoral Fin.  Like the pectoral girdle, the pectoral fins of NMS 1998.35.2 include 

new data.  As preserved, the left pectoral fin is flattened against the trunk with the 

leading (anterior) edge uppermost and the ventral, flexor, surface exposed (Text-figs 

1, 6A).  Where the trailing edge of the left fin is damaged, the better-preserved 

posterior rim of the right fin is revealed.  These fin skeletons are large, and, on the 

basis of denticle distribution, it is very likely that the pectoral fins were plesodic (cf. 

Dick and Maisey 1980), meaning that the endoskeleton extended distally to the fin 

perimeter.  As an approximate measure of fin-to-body proportions, the longest axis of 

the fin endoskeleton exceeds 50 per cent of pectoral to pelvic girdle distance (Text-

figs 2, 8).  These extraordinary proportions contrast strongly with the condition of 

Maisey's (1982) Hybodus sp. composite skeleton (Text-fig. 11D), in which the 

equivalent fin length measures around 25 per cent of inter-girdle distance; further 

contrasts are emphasized in Text-figure 9. 

 The three basals of the fin are elongate, accounting for more than a third of 

proximodistal fin length.  In NMS 1998.35.2 the proximal ends of the basals are 

overlapped (Text-fig. 6A-B).  The proximal surface of the propterygium matches 

closely the dimensions of the glenoid, with which it is assumed to have articulated by 

means of the proximal head fitting within the shallow fossa.  As in many recent 

sharks and Hybodus, the propterygial articular surface is larger than those of either 

the mesopterygium or metapterygium.  It appears that these two posterior basals 

articulated with the large condylar surface on the rear of the scapulocoracoid.  

Articular surfaces of all three basals are robust and well calcified. 

 The propterygium is much as previously described: the leading edge is convex 

(as in other hybodontiforms: Maisey 1982), and the overall broad form, rather than 

„narrow‟ (Dick and Maisey 1980, p. 368) resembles the blade of a palette knife.  As 

in Tristychius, the leading edge is longer than the trailing edge, but the distal articular 

surface faces somewhat more posterolaterally.  The mesopterygium is sickle-shaped 

with a broad, anterolaterally directed distal edge, and a strongly concave trailing 

edge.  In NMS 1998.35.2 the posterodistal extremity of this region is covered by the 

overlapping metapterygium; the most complete distal outline is preserved in NMS 

1974.23.14 (Text-fig. 6C).  The distal mesopterygial rim bears a series of articular  
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surfaces for the majority of the radials.  An acute angle lies between the opposing 

distal surfaces of the propterygium and mesopterygium, absent from previous 

reconstructions based on less complete fin specimens.  The metapterygium has a 

narrow proximal stem, defined by the concave anterior and posterior edges of the 

plate.  The anterior edge is longer than the posterior, so that the distal edge faces 

posterolaterally.  The concave anterior edge of the metapterygium and concave 

posterior edge of the mesopterygium enclose a large and distinctive inter-basal space, 

shown clearly in NMS 1974.23.14 (Text-fig. 6C) and 1885.54.1 (Text-fig. 6D). 

 Most of the radials, i.e. those distal to the propterygium and mesopterygium, 

are arranged as a simple series with a single point of articulation dividing proximal 

from distal segments.  These radials are long and slender, and the distal segments 

narrow gradually throughout their length, terminating close to the fin margin.  

However, radials distal to the metapterygium form a more complicated pattern, 

extending from a few, short and broad cartilages proximally, to a fringe of slender 

distal elements supporting the trailing edge (Text-fig. 6A-B, D). This fringe lies 

within the area of Dick and Maisey‟s reconstruction that was considered largely 

speculative. 

 The propterygium in NMS 1998.35.2 supports two radials distally.  The leading 

(anterior) radial is much shorter than others of the series; the distal end has a joint 

surface indicating the presence of at least one further distal unit, as in radials 2-8.  

Proximal parts of radials 2 and 3 are separate, unlike the fused examples in the right 

pectoral fin of NMS 1974.23.14.  Radials 1 and 2 have a distinctive, anteriorly 

directed, proximal articular surface.  The mesopterygium of NMS 1998.35.2 supports 

at least six radials along its distal margin; the left mesopterygium of NMS 1974.23.14 

bears about eight radials, and that of NMS 1885.54.1 six or seven (note that the 

reconstruction in Text-figures 8 and 12A is based mostly upon NMS 1998.35.2).  As 

in Dick and Maisey's (1980) description, the tips of the posteriormost pair of 

mesopterygial radials approach the fin apex. 

 Radials distal to the metapterygium are disarticulated to varying degrees in all 

specimens.  Parts of the distal fringe of radials identified in NMS 1998.35.2 are also 

present in the holotype, NMS 1885.54.1.  In NMS 1998.35.2, a series of squat 

cartilages underlie the tip of the metapterygial plate, and these are comparable to the 
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larger radial cartilages present in NMS 1974.23.14.  However, the pattern of these 

cartilages is inconsistent with Dick and Maisey‟s reconstruction.  All specimens 

preserve multiple radial cartilages with a single proximal articular surface and two or 

more distal surfaces, scattered adjacent to the metapterygium.  These indicate a 

proximal to distal branched pattern of radials, as shown in the new reconstruction 

(Text-figs 8, 12A).   

Large denticles, which probably lay along the fin margin, are (again) present 

in NMS 1998.35.2, although in this example they are scattered across the fin apex 

and over the trailing edge.  The restoration, however, retains Dick and Maisey‟s 

hypothesis that these bordered only the leading edge of the fin. 

 

Pelvic girdle.  No new data are added here to Dick and Maisey's (1980) description.  

NMS 1885.54.1 is the only specimen to show the pelvic skeleton (Text-fig. 2).  Pelvic 

girdle halves are separate in this male individual; each half has a long curved process 

extending from the articular region.  The process is reconstructed as lying 

horizontally within the body; the process base has an elongate fossa penetrated by a 

foramen.  The articular region bears two facets separated by a concavity.  The facets 

articulated with the first pelvic radial and the basipterygium (metapterygium) of the 

clasper, respectively.  The concavity supported the base of the second radial. 

 

Pelvic fin.  Moy-Thomas (1936) and Dick and Maisey (1980) presented the pelvic 

fins in reasonable detail.  In NMS 1885.54.1 the pelvic fins are partly disarticulated 

and, in agreement with Dick and Maisey's restoration (after Tristychius arcuatus, 

Dick 1978) each supports a clasper.  Note that the first pelvic radial is broader than 

the following radials.  This distinct first radial identity is also present in 

Hamiltonichthys (Maisey, 1989), Lissodus, and Hybodus (Maisey 1982).  Like 

Hamiltonichthys, the first radial supports a more distal radial, and like Lissodus, the 

vast majority of the pelvic radials articulate directly with the basipterygial bar.  The 

clasper complex extends from the rear of the basipterygium in Onychoselache, and 

consists of three radial-bearing segments, the rearmost of which supports a more 

pointed, posteriorly directed radial resembling the beta-cartilages of Lissodus and 

Hybodus (Maisey 1982). Beyond these radial-bearing segments lies a single segment 



 126 
 
 

lacking any radials, directly proximal to the base of the long, pointed, terminal 

cartilage. 

 

Scales.  The body of Onychoselache is mostly naked, but, like many fossil and 

Recent chondrichthyans, it bears a few specialised scales or denticles restricted to 

particular areas of the skin (Text-figs 1, 2, 6A-B, 7B, C).  None of these scales 

resembles a form-taxon recognized elsewhere, and all examples are non-growing, and 

therefore synchronomorial (Reif 1978). 

 In NMS 1998.35.2, as in the previously described specimens, characteristic 

hook-like denticles run along the distal part of the leading edge of the pectoral fin, 

with a few scattered along the trailing extremity of the fin edge.  The histology of 

these scales has not been investigated beyond surface inspection.  In agreement with 

Dick and Maisey (1980), the bases are rounded and probably osteodentinous; the 

cusps are enamelled. There is some variation in size, with the largest situated towards 

the distal end of the leading edge. 

 Newly revealed features of the dermal skeleton of NMS 1998.35.2 include 

massive (relative to body-size), multicuspid, cephalic spines armouring the cranial 

roof (Text-figs 1, 7A), and nuchal spines (Text-figs 1, 3) armouring the region 

between the occiput and the first dorsal fin-spine.  Hints of these extraordinary spines 

are present in the Wardie specimen (Dick and Maisey 1980, p. 370), and re-

inspection of the holotype counterpart (NMS 1885.54.5) reveals a partial cephalic 

spine in situ above the right otic capsule (Text-fig. 2).  Each cephalic spine consists of 

at least three cusps extending from a broad, subtriangular osteodentine base.  Each 

cusp is strongly curved posteriorly and flattened mesio-laterally.  In life, the areas 

covered by the spine-bases encompassed the cephalic spine sites known for 

Egertonodus and Hamiltonichthys (Maisey 1982, 1989).  There is, however, no clear 

recess or fibrocartilaginous platform for spine attachment, as in Tribodus (Maisey and 

de Carvalho 1997).  Two nuchal spines saddle, in series, the cervical or 

suprabranchial region.  Each nuchal spine has an arched base formed from 

osteodentine, with a pair of large cusps: one projecting dorsolaterally from either side 

of the dorsal midline. 
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 Further large denticles are scattered across the cranium of NMS 1998.35.2, 

mostly around the rear of the jaws (Text-fig. 3).  Some of these denticles consist of 

linear series of three or more cusp units.  These closely resemble examples known 

from the Glencartholm and Wardie specimens (Dick and Maisey 1980).  NMS 

1998.35.2 also shows, for the first time, lateral line scales present along the anterior 

of the flanks (Text-fig. 7C).  Each of these scales consists of a simple, thin, 

subtriangular plate, and these occur in pairs: one lying above and one below the 

course of the sensory canal.  Lateral line scales have otherwise been recorded in 

Egertonodus fraasi (Brown 1900, quoted in Maisey 1986). 

 

Mandibular and pharyngeal dentition.  The mandibular dentition is best preserved in 

the holotype, NMS 1885.54.1; few teeth are exposed in NMS 1998.35.2 and 

1974.23.14.  All teeth found thus far are entirely consistent with Woodward's (1924) 

and Dick and Maisey's (1980) descriptions.  As in Hamiltonichthys (Maisey 1989), 

the teeth of Onychoselache resemble those of Lissodus and Lonchidion (Duffin 2001; 

Rees and Underwood 2002; Duncan 2004).  Of the many forms attributed to these 

genera, Onychoselache mandibular teeth resemble most closely those identified as 

Lissodus cf. zideki (Soler-Gijon 1993; Duffin 2001, p.157, fig. 4), although Rees and 

Underwood (2002) diagnose this form-taxon as falling beyond the range of Lissodus. 

Onychoselache teeth are small (less than 1mm in length) and linguo-labially 

narrow, with a smooth median crest on the enamelloid crown (Text-figs 7D, E).  The 

crown has no vertical cristae, lateral cusps or cusplets.  A low bulge or buttress 

projects from the lingual surface, dividing it into two slightly concave areas.  

Lingual-labial orientation of these teeth is determined from tooth position within the 

holotype gape.  A similar swelling is present on the lingual surface of 

Hamiltonichthys mandibular teeth; likewise for Acronemus (Rieppel 1982), a Triassic 

elasmobranch associated with hybodonts on the basis of its dentition, but little else.  

However, Duffin (2001) Rees and Underwood (2002) and Duncan (2004) identify 

such buttresses as lying on the labial surface of Lissodus and Lonchidion teeth.  These 

conflicting interpretations have been discussed elsewhere (Maisey 1989: 25); the 

point here is to note that Onychoselache provides a third in-situ example conflicting 

with the standard orientation of Lissodus-like teeth. 
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Following Duncan's (2004) terminology, in all Onychoselache teeth the crown 

is divided from the root by a horizontal ridge/groove interface.  Tooth roots are deep 

and lack a lingual or labial torus.  The labial face of the root is perforated by 

expanded foramina, each opening with an associated furrow.  As noted for the Wardie 

specimen (NMS 1974.23.14), and as indicated by the groove for tooth families in 

Meckel‟s cartilage in NMS 1998.35.2, the dentition was restricted to the anterior third 

of the biting margin (anterior to the deepest part of the mandible).  Dick and Maisey 

estimated fifteen tooth families present in each jaw ramus, with each family including 

at least four teeth. Teeth closest to the jaw symphysis are narrowest; more distally or 

laterally sited teeth are broadest. 

No trace of any pharyngeal dentition has been found. 

 

Dorsal finspine.  The anterior dorsal finspine of NMS 1998.35.2 (Text-fig. 7A) is 

well preserved, and in better condition than those of Glencartholm and Wardie 

specimens.  Finspine proportions are as described previously, although the general 

outline is hardly „stubby‟ (Dick and Maisey 1980).  In contrast with those of 

Tristychius arcuatus (Dick 1978), the radius of Onychoselache spine curvature is 

more even throughout the spine length. 

 The posterior hook-denticles are well developed.  There are four costae per 

side, with a single costa anteriorly.  Traces of the vascular network resemble those 

present in Mesozoic hybodontid finspines.  In lateral view, the profile of the proximal 

end of the anterior finspine lacks the concavity and acute tip reconstructed previously.  

 The posterior dorsal finspine is known only from the holotype, NMS 1885.54.1, 

and little can be added to existing descriptions except to note the poor condition of 

the specimen. 

 

Gut trace. NMS 1998.35.2 includes a gut trace, manifest as a dark strand of material 

extending posteriorly from the rear of the pectoral girdle, and partly obscured by the 

broad pectoral fins (Text-fig. 1A).  The trace includes fragments of what appears to 

be arthropod cuticle.  A cololite is positioned below the first dorsal fin; its wrinkled 

surface suggesting traces of a spiral groove formed by the ruga of the stomach corpus 

(Gans and Parsons 1964).   
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PECTORAL GIRDLE DIVERSITY AMONG EARLY CHONDRICHTHYANS 

 

These new Onychoselache data highlight specializations of the pectoral girdle and 

fin.  Pectoral fins have been used repeatedly as the material basis for characters in 

phylogenetic hypotheses (e.g. Zangerl 1973, 1981; Maisey 1984; Coates and Sequeira 

2001), but girdle morphologies are largely unexplored.  Here, three further 

scapulocoracoids (Text-fig. 9) are summarized for comparison with previously 

mentioned hybodontiform examples (Text-fig. 5).  The variety of girdle shapes 

reflects their various functional roles: as pectoral fin supports, as mechanical 

separators between trunk and visceral arch musculo-skeletal systems, and as 

origination sites for cucullaris and hypobranchial muscles (Gudo and Homberger 

2002).  Given this mixture of biomechanical demands, it is likely that clade-specific 

morphologies are present, and that these reflect phylogenetic pattern. 

  

Tristychius arcuatus.  Despite the historical attribution of Onychoselache traquairi to 

Trystychius, the pectoral skeletons (girdle and fin) of these taxa are dissimilar (Dick 

1978).  Differences are amplified in the present comparison by reference to a 

previously undescribed specimen of T. arcuatus, HM V8299 (Text-figs 9A-B; noted 

previously by Wood 1982, and Dick et al. 1986), from the Manse Burn formation 

(Serpukhovian, Mississippian) of Bearsden, Glasgow (Clark 1989).  This material is 

diagnosed as Tristychius arcuatus Agassiz 1837 on the basis of the dorsal finspine, 

pectoral fin and girdle morphology, and consists of well preserved, more-or-less 

articulated, calcified cartilages contained within a fine-grained black shale. 

 The Tristychius scapular process has prominent posterolateral and dorsomedial 

angles separated by a strongly concave posterodorsal margin (Text-fig. 9A-B).  The 

pectoral fin insertion is situated within the ventral 20 percent of the total height of the 

girdle.  The lateral surface of the scapular process is crushed so that the likely area for 

insertion of hypaxial flank muscles resembles a tall, shallow recess.  This hollow may 

be a preservational artefact, but it indicates that the anterior margin of the scapular 

process was more substantially mineralized than the thinly calcified posterior margin.  

This robust, anterior, buttressed area broadens ventrally; the coracoid region broadens 
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further still, and becomes increasingly concave in anterior and lateral aspects, 

providing a wide hollow for the origin of the coracoarcual and coracobranchial 

muscles.  From HM V8299, in which left and right side coracoids overlap ventrally, it 

appears likely that the two sides of the pectoral girdle met along the ventral midline 

(contra Dick 1978).  There is no well-preserved diazonal foramen, although a 

damaged area dorsal to the ridge formed by the ventro-lateral margin of the coracoid 

might be a remnant of this.  A well mineralized ventro-lateral ridge resembles a 

similarly positioned example in the scapulocoracoid of Recent chondrichthyans, 

marking the anterolateral boundary of the origin of the pectoral fin depressor muscles.  

There is no evidence that the fin inserted on or anterolateral to this ridge, as 

reconstructed by Dick (1978).  On the basis of HM V8299 (and consistent with the 

condition of previously described material), the pectoral fin articulation is not visible 

in lateral view, and must have been positioned posteriorly.  In this context it is worth 

noting that in Recent, non-batoid, elasmobranchs the pectoral articulation is generally 

posterior and positioned vertically or obliquely (Daniel 1922).  In the Upper 

Pennsylvanian hybodontiform Hamiltonichthys (Maisey 1989) the pectoral fin is 

attached similarly to only a narrow area at the rear of the girdle.   

 Although not the primary subject of this discussion, the pectoral fin of HM 

V8299 (Text-fig. 9A-B) deserves comment because it is well preserved and lacks 

only the distal extremity (like other specimens Tristychius pectoral fins: Dick 1978).  

From HM V8299 it appears that the fin had only two basals: there is no evidence of a 

mesopterygium.  The propterygium is larger than previously reconstructed, and, as in 

Onychoselache, broader proximally than the metapterygium.  The Tristychius 

metapterygium directly supports three pre-axial and one post-axial radial, distally.  

The previously reconstructed mesopterygium might be a rim-fragment of either the 

propterygium or the metapterygium.  Note that in this and previously described 

specimens (Dick 1978) the fin is oriented with the leading edge downwards: the 

propterygium ventral to the metapterygium.  The same orientation is present in the 

hybodonts Hamiltonichthys (Maisey 1989) and Lissodus (Maisey 1982), whereas in 

Onychoselache the fin articulation is rotated so that the propterygium is uppermost 

(Text-figs 1, 5A, 8A, 9F). 
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Plesioselachus macracanthus.  The partly articulated remains of this early 

chondrichthyan are known from the Late Devonian (Famennian) Witpoort Formation 

of South Africa (Anderson et al. 1999).  Plesioselachus is included in this 

comparison because little has been reported concerning Devonian chondrichthyan 

pectoral skeletons (Bendix-Almgreen 1975, on Cladoselache is a noteworthy 

exception).  The availability of new material of (AM5746, Text-fig. 9C-D) from the 

original locality provides the first opportunity for a detailed look at this early, and 

perhaps primitive, girdle. 

 The Plesioselachus scapulocoracoid, like that of Tristychius, has prominent 

posterolateral and dorsomedial angles (incomplete in the figured specimen), but the 

posterodorsal margin separating these is more-or-less straight.  Once again, the 

scapular process lateral surface shows evidence of a tall, shallow recess (Text-fig. 

9C-D).  Similarly, the anterior of the scapular process is more thickly mineralized 

than the posterior, but, unlike Tristychius and Onychoselache, the anterior margin is 

thickest dorsally and narrows ventrally, towards the dorsal rim of the coracoid region.  

Also unlike Tristychius, there is a well preserved foramen for the diazonal nerves and 

blood vessels, situated just above the assumed level of the pectoral fin articulation.  

The coracoid is anteroposteriorly broad, with an anterior shoulder just below the level 

of the diazonal foramen.  A distinct, curved ridge traverses the coracoid, extending 

posteriorly from the anterior shoulder back towards the rear of the diazonal foramen.  

The significance of this ridge is uncertain.  As in Tristychius, a ventro-lateral ridge is 

present, and this does not appear to be the articular surface for the pectoral fin (contra 

Anderson et al. 1999).  Like Tristychius, the articular surface for the pectoral fin was 

positioned posteriorly.  There is no trace of an articular ridge or fossa on the lateral 

surface.  However, unlike the Tristychius specimen illustrated in Text-figures 9A-B, 

the Plesioselachus scapulocoracoid is compressed laterally so that posteriorly facing 

surfaces for the origin of pectoral fin levator and depressor muscles now protrude 

beyond the posterolateral edge.  As preserved, a damaged area of cartilage projects, 

posterior to the diazonal foramen, across these surfaces.  This damaged area is 

interpreted as the remains of the condylar area for the attachment of the pectoral fin. 
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Akmonistion zangerli.  Included because it exemplifies pectoral girdle conditions in 

stethacanthids, symmoriids, and, to a significant extent, cladoselachians (Zangerl 

1981, Janvier 1996), this taxon (like the new Tristychius specimen) is from the 

Mississippian Manse Burn formation of Bearsden, Glasgow (Clark 1989).  The 

description here (based mostly on specimen UCMZ GN1047, Text-fig. 9E) is not 

novel relative to previous work (Coates and Sequeira 2001), but certain features are 

given new emphasis. 

 The scapulocoracoid surface consists of clearly differentiated tessellate 

calcified cartilage, and the dorsal apex of the process has prominent posterolateral 

and dorsomedial angles separated by a gently concave posterodorsal margin.  The 

lateral surface of the scapular process shows little evidence of a recess for the 

hypaxial flank muscles, and the anterior margin is not noticeably thicker than the 

posterior margin.  The coracoid region extends ventrally, and the curvature of the 

anterior edge resembles that of Plesioselachus: there is a distinct shoulder.  However, 

the posterior edge is strongly concave, so that much of the coracoid area present and 

directly below the rear of the scapular process in Plesioselachus is absent in 

Akmonistion.  As if compensating for this missing region, in Akmonistion a 

subtriangular procoracoid is present directly anterior to the coracoid.  Presumably, 

this procoracoid was directed medially in life, with the slightly concave external 

surface directed anterolaterally, and providing a significant proportion of the 

origination area for the hypobranchial muscles. 

 The posterior margin at the base of the scapular process is also concave, above 

a posteriorly projecting condylar surface that articulates with the metapterygium.  In 

many specimens, a crescent-shaped area of mineralized cartilage under- or overlies 

the concave scapular margin, (Text-fig. 9E).  This is the collapsed posterior face of 

the scapular process, and in life probably provided an origin for the pectoral levator 

muscles and perhaps a pronator muscle (inserting on the metapterygial plate).  A 

well-formed diazonal canal passes from the mesial to lateral surface, above the level 

of the pectoral fin articulation.  As in Onychoselache (Text-fig 9F), the articular area 

for the pectoral fin is on the lateral face of the scapulocoracoid.  In Akmonistion, this 

articular region consists of a horizontal crest (articulating with a series of iteratively 

similar radials) extending anteriorly from the metapterygial condyle.  
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Morphological characters of chondrichthyan pectoral girdles 

 

A tall scapular process entirely separate from the rear of the chondrocranium, appears 

to be the most distinguishing feature of a chondrichthyan pectoral girdle.  

Unfortunately, this is not a uniquely chondrichthyan characteristic, because examples 

are widespread among acanthodians.  It is the presence of a posterolateral angle 

(lacking its lateral component in flattened fossils) that is uniquely chondrichthyan 

(Text-fig. 9A-E).  Chimaeroids might retain this primitive condition (see examples in 

Stahl 1999 and Grogan and Lund 2000), while secondary absence (of this angle) is a 

likely synapomorphy of hybodonts (Text-fig. 5) and neoselachians.  The functional 

significance of the posterolateral angle is not entirely clear, although some indication 

is provided by chimaeroids, in which a specialized division of the superficial flank 

musculature (the dorsal pectoral retractor) inserts on the posterior angle at the 

scapular process apex (MIC, pers. obs.). 

 An aperture for the transmission of diazonal nerves and blood vessels, passing 

laterally through the base of the base of the scapular process, anterior and dorsal to 

the area of fin articulation, is probably a general condition for early chondrichthyans 

(Text-fig. 9C-F).  Some acanthodians show a similar opening, the subscapular fossa, 

but examples of this opening are consistently in a more ventral position, almost 

within the area of fin articulation (Miles 1973; Long 1983; Heidtke 1993).  Absence 

of a diazonal foramen in early chondricthyans (e.g. Tristychius) is probably a derived 

condition, and likewise the location of the foramen ventral to the area of fin 

articulation (e.g. Onychoselache). 

 Presence of an anterior shoulder on the coracoid is widespread among early 

chondrichthyans (Text-fig. 9C-E): xenacanths (Heidtke 1999) can be added to 

examples already noted.  Conditions in early holocephalans are unclear (Stahl 1999; 

Grogan and Lund 2000).  Reduction of this feature results in a continuously concave 

anteromedial edge, from the dorsal apex of the scapular process to the anterior 

extremity of the coracoid.  Such absence appears to be a derived characteristic of 

neoselachian girdles, in addition to Tristychius (Text-fig. 9A-B) and hybodontiforms 

(Maisey 1982, 1989). 
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 The shallow, grooved anterodorsal rim of the coracoid, exemplified by 

Onychoselache and Lissodus (Text-fig. 5) in which there is a coracobranchial fossa, is 

a synapomorphy of many hybodontiform elasmobranchs (Text-figs 5, 9F, 11B,D) 

Maisey 1982 fig. 12). 

 Separate procoracoid cartilages are known in stethacanthids (Text-fig. 9E), 

symmoriids, and several of the enigmatic eugeniodontid sharks (Zangerl 1981).  The 

separate coracoid cartilage of xenacanths (Heidtke and Schwind 2004) appears to be 

homologous with the procoracoid, as described here, although such cartilages might 

occur in conjunction with an addition set of (pre) procoracoids in Orthacanthus 

(Heidtke 1999) 

 In gnathostomes, the articular area for the pectoral fin is primitively on the 

posterior face of the pectoral girdle (Jessen 1972; Janvier 1996).  This condition 

persists in chimaeroids (Stahl 1999; Grogan and Lund 2000) and in many, perhaps 

most, examples of non-batoid fossil and Recent elasmobranchs (Daniel 1922; note 

also the condition in the text-book standard exemplar, Squalus acanthias: Gudo and 

Homberger 2002).  In various chondrichthyan groups, articular areas for pre-

metapterygial basal radials have moved to lie, obliquely, along the posterolateral edge 

of the girdle, or on the lateral face of the girdle.  Among hybodontiforms, 

Onychoselache is unusual in two respects: the articular area is on the lateral face of 

the girdle, and the propterygium is uppermost (Text-fig. 9F); this might explain the 

unusual „ventral‟ location of the diazonal foramen.  Independently, a laterally 

positioned, near-horizontal pectoral fin articulation occurs in stethacanthids (Text-fig. 

9E), symmoriids (Zangerl 1981, Janvier 1996) and Cladoselache (Bendix-Almgreen 

1975). 

 Two characters, the presence of a shoulder joint with strong propterygial 

support, and the presence of a rotated pectoral attachment so that the primitive 

metapterygial axis no longer parallels the main body axis, have been suggested as a 

synapomorphies of Hybodontiformes and Neoselachii (Maisey 1984, characters 32 

and 33; Maisey 1989, characters 1 and 2).  Neither of these is used in the present 

work, because both rest on the hypothesis that the kind of fin and girdle pattern 

present in Akmonistion (or Cladoselache) is primitive.  Outgroup comparison 

suggests that this is unlikely (Coates 2003).  It is more probable that primitive 
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chondrichthyan pectoral girdles articulated with two or three basal radials, perhaps 

like those of „Ctenacanthus’ costellatus (Moy-Thomas 1936), or the similarly 

proportioned fin of Tristychius (Text-fig. 9A-B).  Strong propterygial (and 

mesopterygial) support is probably primitive, whereas emphasis on metapterygial 

support is a specialized condition (chondrichthyan examples include xenacanths and 

symmorriids; osteichthyan examples include sarcopterygians).  Where a 

metapterygial axis occurs it is oriented anteroposteriorly, whether in Tristychius 

(Text-fig. 9A-B), xenacanths (Heidtke and Schwind 2004), stethacanthids (Coates 

and Sequeira 2001), holocephalans (Grogan and Lund 2000), or the neoselachian 

Hopleacanthus (Shaumberg 1982).  There is no reoriented axis distal to the 

metapterygium in Onychoselache and other, more derived, hybodontiforms. 

 

DISCUSSION OF PHYLOGENETIC RELATIONSHIPS 

 

Maisey (1989) offered a detailed hypothesis of relationships among the 

Hybodontiformes, the branching sequence of which is shown in Text-figure 10A. 

However, as noted in the introduction, subsequent work has changed the context 

insofar as de Carvalho (1996) and Maisey and colleagues (Maisey et al. 2004), now 

favour exclusion of Onychoselache and Tristychius from the hybodonts, as well as 

from the larger clade of hybodonts plus neoselachians.  These ideas about the content 

and position of a hybodont clade provide the context for the present reinterpretation 

of Onychoselache.  A character list taken mainly from these sources is presented 

below, but this is edited and supplemented with new characters (and notes on 

character states) from the current re-description and discussion of pectoral skeletal 

conditions. 

 From the outset of the present study, it was clear that these new Onychoselache 

data are consistent with the branching pattern of Maisey‟s (1989) initial analysis 

(which included Onychoselache).  Changes introduced here mainly concern character 

distribution along the „back-bone‟ at the base of the tree.  However, no computer 

assisted parsimony analysis of hybodont data has been completed, either in the 

present or in previous studies.  Nodes within Maisey‟s (1989) Hybodontoidei are only 

weakly supported (Text-fig. 10A), and as yet incompletely described Mesozoic 
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hybodonts display conditions that might conflict with the current hybodontoid tree 

topology (Maisey et al., 2004).  Completion of a detailed morphological character 

analysis incorporating Mesozoic hybodonts is beyond the scope of the present work.  

It follows that the tree presented here, like those from Maisey (1989, fig. 35) and 

Maisey et al. (2004, fig. 2), is 'manual', in that it represent a hypothesis of 

relationships among hybodont genera defended by sets of synapomorphies on a node-

by-node basis. 

Characters and scores for Onychoselache summarized below are 

supplemented with notes comparing conditions to those in Tristychius and outgroup 

taxa. 

 

Character list 

 

All comments and scores for character conditions concern Onychoselache unless 

stated otherwise.  Data sources: Egertonodus from Maisey (1982, 1983, 2004); 

Hamiltonichthys from Maisey (1989); Hopleacanthus from Schaumberg (1982); 

Lissodus from Maisey (1982) and Duffin (2001); Tribodus from Maisey (2004) and 

Maisey and de Carvalho (1997); Tristychius from Dick (1978) and original 

specimens. [M] indicates character statement from Maisey (1989); [MEA] indicates 

character statement from Maisey et al. (2004). 

 

Cranial features 

3.  Glossopharyngeal canal present [M]: unknown; present in Tristychius. 

4.  Dorsal otic ridge lacks horizontal crest: present.  Numerous examples of such 

creasts are known amongst early chondrichthyan neurocrania (Coates and 

Sequeira 1998). 

5.  Perilymphatic openings: unknown; present in Tristychius. 

6.  Otico-occipital fissure closed behind endolymphatic fossa: present.  Persistent 

fissures dividing mineralised units within neurocrania are well known in early 

osteichthyans; their presence in early chondrichthyans is the subject of ongoing 

study (Coates and Sequeira 1998; Maisey 2001b, c).  

7.  Metotic fissure closed: present. 
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8.  Ventral otic fissure closed: present. 

9.  Occipital block wedged between otic capsules: probably present given 

resemblance to neurocranial proportions in Egertonodus; Tristychius similarly 

uncertain, although the occipital crest extends forwards to the fenestra vestibulae 

between the posterior semicircular canals (pers. obs. NMS 1972.27.455A, 

1974.23.44A; cf. Dick 1978, text-figs 7, 9).  This is comparable to the condition 

in Squalus (cf. Maisey 1983, fig. 15). 

10.  Ampulla of anterior semicircular canal between or anterior to level of postorbital 

process: present; unknown in Tristychius. 

11.  Crus absent between anterior and posterior semicircular canals: unknown in 

Tristychius and early hybodonts, but Egertonodus and Tribodus are now known 

to lack the crus, a condition otherwise unique to Neoselachians, and linked to 

directional hearing (Maisey, 2001a; 2004). 

12.  Pre-ampullary part of the posterior semicircular canal extends dorsally to 

perilymphatic fenestra, so that the canal forms a complete circuit; separation of 

utricular and saccular regions; posterior canal duct present; medial chondrified 

otic capsular wall present.  All of these features of the otic capsule are unknown 

in Onychoselache, Tristychius, and early hybodonts, but Egertonodus and 

Tribodus share these conditions with Neoselachians (Maisey, 2001a; Maisey et 

al. 2004). 

17.  Trochlear foramen above or anterior to optic foramen: unknown; present in 

Tristychius, Egertonodus and neoselachians. 

21.  Otic capsules located between postorbital processes [M; MEA]: present. 

27.  Large, down-turned postorbital process [M; MEA]: present insofar as 

preservation and shape resembles condition of Hamiltonichthys; absent in 

Tristychius. 

28.  Inflated and elongate jugular canal [M]: preservation suggests presence of 

elongate canal, but degree of inflation unknown. 

29.  Postorbital articulation lacking [M; MEA]: articulation absent; Tristychius retains 

the primitive condition (articulation present). 

14.  Posterior (otic) portion of palatoquadrate reduced: present; Tristychius otic 

expansion also reduced. 
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20.  Branchial arches beneath rear of neurocranium: absent; present in Tristychius. 

50.  Palatoquadrates lacking ethmoid buttresses and oriented transversely [MEA]: 

absent. 

 

Paired fins and girdles  

1.  Scapular process narrow dorsally and lacking posterolateral angle: present; absent 

in Tristychius.  

2. Scapulocoracoid with a continuously concave anteromedial edge (coracoid 

anterodorsal shoulder reduced or absent): present; present in Tristychius, 

hybodontiforms and neoselachians. 

18. Imperforate scapulocoracoid, foramen for diazonal nerves and blood vessels 

missing: absent; present in Tristychius, with no convincing trace of foramen. 

23.  Coracobranchial fossa (grooved leading edge): present; absent in Tristychius and 

neoselachii. 

32.  Pectoral fin articulation on lateral face of coracoid: present; absent in Tristychius. 

33.  Pectoral fin articulation oriented anterodorsally (propterygium uppermost): 

present; absent in Tristychius. 

40.  Coracoid and scapular regions of subequal length [M]: absent; present in 

Lissodus and more derived hybodonts. 

19. Di-basal fin, separate mesopterygium missing: absent; present in Tristychius. 

22.  Pattern of pectoral basals and radials: no specialized cartilages forming axis 

distal to metapterygial plate: present; absent (i.e. semblance of axis retained) in 

Tristychius and Hopleacanthus, suggesting independent loss of the axial 

cartilages in hybodonts and neoselachians. 

25.  Propterygium with convex leading edge: present; absent in Tristychius. 

34.  Mesopterygium sickle-shaped: present; absent in Tristychius. 

35.  Five or more simple radials distal to the metapterygium; absent in Onychoselache 

and Tristychius, this feature is a synapomorphy of pectoral fins in 

Hamiltonichthys and more derived hybodontiforms. 

36.  Puboischiadic bar in males [M]: absent; present in Hamiltonichthys and more 

derived hybodonts. 



 139 
 
 

41.  Puboischiadic bar in females [M]: unknown (sole specimen of pelvic skeleton is 

male); present in Lissodus and more derived hybodonts. 

26.  Enlarged pelvic propterygium [M]: present; absent in Tristychius, although 

previous works have scored this as present.  Pelvic fin specimens of Tristychius 

show no thickening of the anteriormost radial. 

42.  Pelvic propterygium terminal -no distal cartilages: absent; present in Lissodus 

and more derived hybodonts. 

 

Axial skeleton 

16.  Calcified pleural ribs [M]: present. 

37.  Low number (10-12) of pleural ribs [M; MEA]: absent; present in 

Hamiltonichthys and more derived hybodonts. 

 

Teeth, scales, and spines 

30.  Low-crowned teeth [M]: present; absent in Tristychius. 

31.  Tooth crowns with a lingual swelling [M]: present; absent in Tristychius. 

38.  Elongate lateral teeth [M]: absent (although lateral teeth are longer than teeth 

flanking the symphysis). 

47.  Osteodont teeth with anaulacorhize base [M; MEA]: absent. 

48.  High-crowned multicuspid teeth [M; MEA]: absent. 

49.  Teeth with columnar osteodentine [M; MEA]: unknown. 

13.  Synchronomorial (non-growing) denticles: present; also present in Tristychius, 

which, like Onychoselache, bears few scales restricted to regions such as fin 

leading edges. 

15.  Fin-spines possess large retrorse denticles and smooth ribs [M]: present. 

24.  Cephalic spines [M; MEA]: present. 

43.  Cephalic spines with constricted basal plate, lateral and posterior lobes, massive 

central cusp, and retrorse barb [M; MEA]: absent. 

44.  „Convict arrow‟-shaped cephalic spines [M; MEA]: absent. 

45.  Sphenonchus cephalic spines [M; MEA]: absent. 

39.  Finspines have convex posterior wall, denticles adjacent to posterior midline [M; 

MEA]: absent. 
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46.  Finspines with numerous bifurcating or intercalating costae or tubercle rows 

[MEA]: absent. 

 

Character distribution   

 

The complete sequence of character distribution is shown in Text-figure 10A, while 

the following summary concerns only those nodes that are central to the present 

discussion. Synapomorphies supporting the sister-group relationship between the 

Neoselachii and hybodont sharks including Tristychius and Onychoselache include 

the following: (1) scapular process narrows dorsally and lacks a posterodorsal angle 

(absent/reversed in Tristychius); (2) scapulocoracoid with a continuously concave 

anteromedial edge (coracoid anterodorsal shoulder reduced or absent); (3) 

glossopharyngeal canal present (unknown in Onychoselache); (4) dorsal otic ridge 

lacks horizontal crests; (5) perilymphatic openings present (unknown in 

Onychoselache); (6) otico-occipital fissure closed posterior to the endolymphatic 

fossa; (7) metotic fissure closed; (8) ventral otic fissure closed; (9) occipital unit 

wedged between otic capsules; (10) anterior semicircular canal ampullae between or 

anterior to level of postorbital processes; (13) synchronomorial scales.  The following 

characters are unknown for Onychoselache, Tristychius, and Hamiltonichthys: (11) a 

crus lacking between anterior and posterior semicircular canals; (12) pre-ampullary 

part of the posterior semicircular canal extends dorsally to perilymphatic fenestra, so 

that the canal forms a complete circuit; separation of utricular and saccular regions; 

posterior canal duct present; medial chondrified otic capsular wall present.   

The following synapomorphies support the hypothesized sister-group 

relationship between Tristychius and hybodont sharks including Onychoselache: (14) 

Posterior (otic) portion of palatoquadrate reduced; (15) fin spine with large retrorse 

denticles; (16) calcified pleural ribs; (17) the trochlear foramen level with or anterior 

to the optic foramen (unknown in Onychoselache). 

 Synapomorphies supporting the hypothesized sister-group relationship between 

Onychoselache and other hybodonts include: (21) otic capsules between the 

postorbital processes; (22) pectoral fins lacking an axis of cartilages extending from 

the metapterygial plate; (23) pectoral girdle with a coracobranchial fossa; (24) 



 141 
 
 

cephalic spines; (25) propterygium with convex leading edge; (26) enlarged pelvic 

propterygium; (27) large down-turned postorbital processes; (28) jugular canal 

elongate and inflated (uncertain in Onychoselache); (29) palatoquadrate articulation 

with postorbital process absent; (30) low crowned teeth; (31) teeth with lingual 

swelling on crown. 

 Synapomorphies uniting Hamiltonichthys and higher hybodonts include: (35) 

five or more simple radials distal to the metapterygium; (36) puboischiadic bar in 

males; (37) few pleural ribs; (38) elongate lateral teeth; (39) fin spine with convex 

posterior wall and retrorse denticles positioned at the midline. 

 

Implications for hybodontiform phylogeny   

 

Character distribution reinforces existing hypotheses that hybodonts are the extinct 

sister group of neoselachians.  The number of synapomorphies supporting the 

Hybodontiformes (sensu Maisey 1989) is increased from two to four, and the total 

supporting the Hybodontoidei (sensu Maisey 1989) is increased from 11 to 16 (Text-

fig. 10A).  However, the largest change concerns support for Onychoselache as a 

hybodontiform (exemplied by the reconstructions in Text-fig. 11), increased from one 

to eleven synapomorphies.  Placing Onychoselache on the common stem of 

hybodontiforms and neoselachians (cf. de Carvalho 1996) would require secondary 

losses or independent gains affecting features of the paired fins, braincase, dentition, 

and scales.  In contrast, the phylogenetic location of Tristychius remains less secure.  

Nevertheless, of the four characters used by Maisey et al. (2004) to exclude 

Tristychius from the united hybodonts and neoselachians, the condition of a crus 

between anterior and posterior semicircular canals is unknown; the anterior extent of 

the occipital block between the otic capsules is difficult to determine, although a 

Squalus-like condition is plausible on the basis of external morphological markers; 

the absence of a puboischiadic bar now appears primitive for neoselachians and 

hybodonts (including Onychoselache and female Hamiltonichthys); and 

synchronomorial scales are present (rather than absent). 

Onychoselache can now be used as a well-supported marker for the minimum 

date of the base of the Hybodontiformes stratigraphic range, locating it within the 
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Holkerian, between 337.5 and 339 million years ago.  This represents an extension of 

almost 40 million years beyond what used to be the most secure marker for early 

hybodont sharks, the node-date for the Hybodontoidei, established in Maisey's (1989) 

description of the Upper Carboniferous genus Hamiltonichthys (Virgilian, 299-305 

myr); also implied in the discussion of Maisey et al. (2004).  The new Onychoselache 

data set further presents a clearly justified revision for entries in widely cited fossil 

database compendia, such as The Fossil Record 2 (see Capetta et al., in Benton 

1993).  In this, the Superfamily Hybodontoidea Zangerl 1981 is dated, albeit 

tentatively, to the late Devonian on the basis of „Ctenacanthus‟ vetustus, a species 

with no obvious relation to hybodontid sharks, but perhaps some affinity to 

xenacanths and Cladodoides (Schaeffer 1981; Williams 1998; Maisey 2001b; 2005). 

Anchoring hybodont monophyly to at least the Lower Carboniferous has the 

further result of stabilizing the implied stratigraphic range extension of the 

neoselachian stem-group.  Hopleacanthus, from the Upper Permian of Germany 

(Schaumberg 1982) is the earliest widely agreed member of the neoselachian stem.  

Below this, the next node in the elasmobranch tree for which there is some consensus 

is that which unites hybodontids and neoselachians.  Relationships within and 

between earlier groups, such as xenacanths, cladoselachians, ctenacanths, and 

stethacanthids, are too unstable to provide agreement about how these clades link to 

elasmobranch, holocephalan, or chondrichthyan stem-groups (Janvier 1996; Coates 

and Sequeira 2001).  The variety of emerging mid-Devonian forms (Heidtke and 

Krätschmer 2001; Maisey 2001c; Miller et al. 2003) seems unlikely to resolve this 

problem in the near future.  Consequently, Onychoselache (and Tristychius) brackets, 

with Hopleacanthus, a 60 plus myr gap in the record of neoselachian elasmobranch 

fossil articulated remains, because no taxa are currently known to subdivide this long 

internal branch (Text-fig. 10B).  Candidates include Sphenacanthus (Dick 1998) and 

Wodnika (Schaumberg 1977), but relevant analyses are unlikely to be completed in 

the near future for want of adequate morphological material and taxonomic revision.  

This gap resembles a similar void in the marine record of actinopterygians (Hurley et 

al. in press; Sepkoski 2002).  The causes of these incomplete fossil records probably 

overlap, and one factor likely to be held in common is the lack of sedimentary 

formations in the latter part of the Palaeozoic (Peters 2006). 
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Isolated teeth are standard alternatives to articulated remains as markers for 

temporal, palaeoecological, and biogeographic taxon range estimates.  In the present 

work, attention has been drawn to the close resemblance of Onychoselache teeth to a 

subset of teeth attributed to Lissodus.  Lissodus cassangensis articulated skeletal 

material is undoubtedly hybodontoid (Maisey 1989; Duffin 2001), but the array of 

tooth-forms attributed to Lissodus, reviewed recently by Duffin (2001), Rees and 

Underwood (2002), and Duncan (2004), diverges considerably from those of L. 

cassangensis.  This raises questions about their diagnostic value.  The discovery that 

some of the more deviant Lissodus tooth-forms resemble those of another 

hybodontiform genus (i.e. Onychoselache) suggests that these teeth are useful as an 

ichthyolithic signal of hybodontiform (but not hybodontoid) distribution.  In turn, this 

supports the hypothesis that these isolated teeth provide a hybodontiform record 

spanning marine, brackish and freshwater deposits from the Fammennian to the 

Maastrichtian (Duffin 2001).  This represents only a modest range-extension beyond 

that shown in Text-figure 10B. However, some uncertainty remains, as illustrated by 

a recent hypothesis of close phylogenetic relationship between hybodonts and 

holocephalans based upon shared characteristics of tooth structure (Ginter and 

Piechota 2004).   

Finally, the present phylogeny hints that a significant part of early hybodont 

evolution is unknown.  In terms of character change, the longest internal branch in 

Text-figure 10A lies at the base of the tree, between the nodes for Tristychius and 

Onychoselache (plus higher hybodontiforms).  Unless arguing for an exceptional 

burst of rapid morphological change, this suggests that a wide range of undiscovered 

early hybodont sharks were present by the earliest Carboniferous, and had probably 

radiated within the Late Devonian, consistent with Duffin‟s (2001) conjecture.  The 

series of closely spaced branching events spanning the Permo-Triassic boundary 

(Text-fig. 10B) probably represents a second artefact of record incompleteness.  This 

(again) correlates with a similar gap in the record of ray-finned fishes (Hurley et al. in 

press), and the availability of sedimentary formations in the latter part of the 

Palaeozoic (Peters 2006).  
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MORPHOLOGY, FUNCTION, AND PALAEOECOLOGY 

 

The new Onychoselache material shows that much of the morphological signature of 

what is often treated as a classic Mesozoic shark clade was in place by the early 

Carboniferous.  This agrees with Maisey's (1986) speculation that the Upper Jurassic 

hybodontids represent a now extinct group of ecological generalists with an arrested 

evolutionary pattern, and that by the late Mesozoic they might well have qualified as 

„living fossils‟.  However, inferences of bradytelic evolution (Simpson 1944) are 

usually based upon patterns of limited change along the main trunk or backbone of a 

phylogenetic tree, while side-branch autapomorphies tend to be overlooked.  

Although terminal specialisations are uninformative about relationships among clade 

members, they harbour additional signals of morphological variation (Friedman and 

Coates 2006), and some of this diversity is now emerging among the hybodontiforms.  

At one extreme of their phylogeny, Tribodus, from the Albian stage of the 

Cretaceous, displays an almost sturgeon-like suspensorium with the jaws slung 

beneath the braincase and a gape extending barely forwards of the otic capsules 

(Maisey and de Carvalho 1997).  And at the other, the present subject, 

Onychoselache, displays an extraordinary set of pectoral fins as well as a unique suite 

of cephalic and nuchal spines (Text-fig. 11B-D). 

 Relative to all other hybodonts, the Onychoselache pectoral skeleton (Text-figs 

5 - 6, 8, 12A) is specialized in terms of its complex, robust and well mineralized 

girdle articular surfaces; the tall, concave recess in the rear of the scapular process; 

the large coracoid plate; the presence of elongate, robust fin basals enclosing a large 

inter-basal space; and presence of hooked denticles around the fin margin.  However, 

the uniqueness of these morphologies is diminished if the range of comparison is 

expanded to include Recent chondrichthyans.  It turns out that Woodward (1924) was 

correct to highlight modern aspect of these fins, because similar examples are present 

among the Orectolobiformes (carpet sharks): most notably the epaulette shark, 

Hemiscyllium ocellatum, and bamboo shark, Chiloscyllium plagiosum (Goto et al. 

1999; Wilga and Lauder 2001) (Text-fig. 12).  The most striking similarities concern 

the shapes of the mesopterygium and metapterygium, but comparison with a 
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generalized hybodont pectoral fin (Text-fig. 12B) highlights further resemblances in 

the distribution of distal radials.  

 Explanations of such homoplasy (excluding phylogenetic error) usually fall 

along a continuum between scenarios of parallel and convergent evolution: 

parallelism signifying predominantly developmental causes, and convergence a 

functional-adaptive account.  In practise, convergence is rarely separable from 

parallelism, and both kinds of explanation are outlined here.  At present, 

chondrichthyan fin development is the focus of only occasional attention as 

researchers explore beyond tetrapod (mouse and chick) limbs and teleost (zebrafish) 

fins in order to investigate more general aspects of vertebrate morphogenesis (Neyt et 

al. 2000; Tanaka et al. 2002; Freitas et al. 2006).  The relevance of the present fossil 

data to this topic is limited: it signifies that characteristics of specialized fin patterns 

found in Recent sharks were achieved independently in a clade branching from a 

node close to the base of the elasmobranch stem-group.  A 'phenotypic proxy' (Geeta 

2003) argument could be used to suggest that such homoplasy is evidence of an 

underlying developmental synapomorphy.  However, the biological content of such a 

conjecture is, for the present, limited. 

From the functional-adaptive perspective, if morphological convergence is an 

indicator of biomechanical/adaptive similarity, then these new Onychoselache data 

present an alternative to hybodonts as 'ecological generalists'.  Chiloscyllium 

plagiosum and Hemiscyllium ocellatum, like Onychoselache, possess pectoral fins 

that are characterised by extended basal cartilage outgrowth, as well as projecting, 

specialized articular surfaces on their girdles, relative to their most immediate 

outgroups.  Soft tissue anatomy is better understood in H. ocellatum (Goto et al. 

1999) than C. plagiosum, and in this species it is noteworthy that an extra muscle is 

present, the levator pectoralis inferior, the insertions of which extend around the 

mesopterygium and the inter-basal gap.  The depressor pectoralis is also developed to 

an unusual extent anterolaterally.  H. ocellatum also possesses an elongated anterior 

pelvic basal cartilage, and this, too, is associated with an anterolaterally developed 

depressor muscle.  Again, this compares well with the enlarged anterior pelvic basal 

and radial in Onychoselache.  The importance of these structural peculiarities in 

bamboo and epaulette sharks is that these species use their pectoral and pelvic fins to 
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rest on and move about the substrate (Wilga and Lauder 2001).  Epaulette sharks are 

known to use both sets of fins for walking over submerged surfaces, using a gait 

comparable to a slow-walking trot (Pridmore 1995).  Moreover, the unusual 

flexibility of these kinds of fins in bamboo sharks has been analysed via fluid 

kinematics to demonstrate that they are used to generate strong negative lift when 

holding position on the substrate (Wilga and Lauder 2001). 

These functional data from modern analogues suggest that Onychoselache 

represents an early elasmobranch in which the paired fins and girdles were adapted 

similarly, for station holding and, perhaps, submerged walking.  Such functions 

inferred from bamboo and epaulette sharks are consistent with what can be guessed at 

from the remainder of Onychoselache anatomy.  The tail is low and almost linear, the 

branchial region is short, and the jaw articulation, as far as it is known, resembles the 

flexible hyostylic condition of more derived hybodontids.  If labial cartilages of the 

kinds known in Egertonodus (Maisey 1982, 1983) and Tristychius (Dick 1978) were 

present, they would add to the overall interpretation of Onychoselache as a benthic 

dwelling suction-feeder.  Cephalic and nuchal spines probably protected vulnerable 

surfaces anterior to the first dorsal fin-spine, although as secondary sexual characters 

(known in more recent hybodonts: Maisey 1982), mating behaviour functions cannot 

be precluded.   

As a closing remark, chondrichthyans are rarely included among the 

numerous fish groups modelled as exploiting the increasingly diverse and nutrient-

rich aquatic margins and shallows of early terrestrial ecosystems (Janvier 1996; Clack 

2002).  Here, it appears that Onychoselache, from the near-shore marine fauna of 

Glencartholm and the brackish to freshwater lagoonal setting of Wardie provides a 

specialized exception. 
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Figure. 1.  Onychoselache traquairi, NMS 1998.35.2.  A, photograph of new, 

articulated specimen showing pre-pelvic region of individual exposed in dorsolateral 

view.  B, line drawing of specimen.  Scale bar represents 5 mm. 
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Figure. 2.  Onychoselache traquairi, type specimen NMS 1885.54.1, camera lucida 

drawing of complete specimen (composite of part and counterpart).  Scale bar 

represents 20 mm. 
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Figure. 3.  Onychoselache traquairi, NMS 1998.35.2, detail of cranial and branchial 

region. Scale bar represents 5 mm. 
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Figure. 4.  Neurocrania in dorsal view (anterior towards top of page). A, 

Onychoselache traquairi, from NMS 1998.35.2. B, Hamiltonichthys mapesi, from 

Maisey (1989). C, Egertonodus basanus, from Maisey (1983).  

 

 



 161 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5.  Pectoral girdles in lateral view (anterior towards left of page). A, 

Onychoselache traquairi, NMS 1998.35.2, photograph of girdle, whitened with 

ammonium chloride.  B, Onychoselache traquairi, NMS 1998.35.2, line drawing of 

girdle.  Scale bars represent 5 mm.  C, Lissodus cassangensis, from Maisey (1982).   
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Figure. 6.  Onychoselache traquairi pectoral fins.  A, photograph of NMS 1998.35.2, 

left pectoral fin, whitened with ammonium chloride.  B, NMS 1998.35.2, left pectoral 

fin with parts of subjacent right pectoral fin (stippled).  Scale bars represent 5 mm.  

C, NMS 1974.23.14, left pectoral fin. D, NMS 1885.54.1, left pectoral fin.  C and D 

after Dick and Maisey (1980), emended after reference to original material. 
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Figure. 7.  Onychoselache traquairi.  A, NMS 1998.35.2, anterior dorsal fin spine and 

basal cartilage.  B, cephalic spine (anterior to right of page).  C, series of scales from 

flank region, probably associated with lateral line canal (anterior to left of page).  D, 

NMS 1885.54.1, tooth from close to mandibular symphysis, labial surface.  E, NMS 

1885.54.1, tooth in crown view from mid-region of dentition (labial surface to top of 

page; anterior to left).  Scale bars represent 10mm in A, 5mm in B-C, 1mm in D-E.  

 



 164 
 
 

 

 

 

 

 

 

 

 

 

 

Figure. 8.  Onychoselache traquairi (Dick, 1978), new reconstruction. A, lateral 

view, and B, dorsal view of cranium and appendicular skeleton.  Scale bar represents 

10 mm. 
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Figure. 9.  Early chondrichthyan pectoral girdles and fins. A, Tristychius arcuatus, 

new specimen HM V8299 from the Manse Burn Formation, Glasgow.  B, interpretive 

diagram of HM V8299.  C, Plesioselachus macracanthus, new specimen AM5746 

from the Witteport Formation, Grahamstown, South Africa.  D, interpretive diagram 

of AM5746.  E, Akmonistion zangerli, UCMZ GN1047, adapted from Coates and 

Sequeira (2001).  F, Onychoselache traquairi, diagram of NMS 1998.35.2 reversed 

for ease of comparison; pectoral fin (grey) included for contrast of fin-to-girdle 

proportions with Tristychius and Akmonistion. Scale bars represent 10 mm in A-B, 

20mm in C-E, 5mm in F. 
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Figure. 10.  A, hypothesized relationships among hybodont elasmobranchs from 

Maisey (1989) with revised and expanded character distribution numbered on 

branches; for character states and conditions see text.  Lengths of internal branches 

along tree backbone (double lined) proportional to number of character changes.  B, 

phylogeny plotted against geological timescale (numbers indicating millions of years; 

ICS 2004 Timescale: Gradstein et al. 2004) showing minimum dates for divergences 

in the hybodontiform evolutionary radiation (black squares mark earliest occurrence 

of taxon; not the complete taxon range).  Data sources: Neoselachii marked by 

Hopleacanthus: Schaumberg 1982; Tristychius and Onychoselache from present 

work; Hamiltonichthys: Maisey 1989; Lissodus: Rees and Underwood 2002, note that 

more inclusive definitions would extend Lissodus range to Early Carboniferous 

(Duncan 2004) or Late Devonian (Duffin 2001); Lonchidion: Rees and Underwood 

2002; Palaeobates: Zangerl 1981; Hybodus: Maisey 1987; Egertonodus, Maisey 

1987; Acrodus: Cappetta et al. 1993; Asteracanthus: Cappetta 1987; Tribodus: 

Maisey et al. 2004. 
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Figure. 11.  Hybodontiform skeletons drawn to similar dimension for direct 

comparison.  A, Tristychius arcuatus, reconstruction from Dick (1978) modified to 

include revised pectoral skeleton.  B, Onychoselache traquairi. C, Hamiltonichthys 

mapesi, after Maisey (1989). D, composite Mesozoic hybodontoid encompassing 

Lissodus, Hybodus and Egertonodus, after Maisey (1982). 
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Figure. 12.  Pectoral fin patterns (anterior to left of page).  A, Onychoselache 

traquairi.  B, Lissodus cassangensis, after Maisey (1982).  C, Chiloscyllium 

plagiosum (bamboo shark).  D, Hemiscyllium ocellatum (epaulette shark).  C and D 

after Goto et al. (1999).  In each, the mesopterygium is shaded grey. 
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CHAPTER 5    COELACANTHS OF THE WATERLOO FARM LOCALITY 

 

5.1  Fossil Coelacanth juveniles from the Devonian of South Africa shed                              

light on the order of character acquisition in coelacanths  

 

Abstract:  New material allows the description of a Famennian coelacanth from 

South Africa, principally known from small, presumed juvenile individuals. 

Paradiplocercides kowiensis (gen. et sp. nov.) is closely allied to Diplocercides with 

which it uniquely shares an unusually shaped lachrymojugal, as well as a symmetrical 

diphycercal tail retaining expanded neural and haemal elements.  Paradiplocercides 

is distinguished from Diplocercides by a number of derived characters, including 

possession of larger anterior parietals, a more crescent-shaped post orbital with a 

more anteriorly positioned infraorbital canal, and a far smaller squamosal, which does 

not approach the skull roof.  

 

The described Paradiplocercides kowiensis material preserves evidence regarding the 

form of all the fins. It is clear that, though the pelvic and anal fins have small basal 

lobes, the second dorsal fin does not have a basal lobe. Diplocercides, in this regard, 

is less plesiomorphic than Paradiplocercides, as it has a small lobe on the second 

dorsal fin. This apparent character reversal in Paradiplocercides may derive from the 

juvenile state of the type material. Most specimens of Paradiplocercides are between 

3 and 6 centimetres in length. They have large eyes, and the dermal bones of the skull 

are ornamented with long wavy ridges, similar to those of more plesiomorphic 

coelacanths such as Gavinia. Larger operculae from Waterloo Farm indicate that, 

with greater maturity, the ridges on the dermal bones broke down into elongate 

tubercles reminiscent of the ornament of Diplocercides and more crownward taxa. 

 

Taxonomic analysis of Paradiplocercides, within the coelacanth clade, places it 

immediately crownward of Diplocercides, between the lineages of morphologically 

usual Devonian and Carboniferous coelacanths, providing further clues regarding the 

order of acquisition of coelacanth characters. The phylogenetic analysis also suggests 
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that the clade including the unusual Devonian Holopterygius and Carboniferous 

Allenypterus branches from the coelacanth stem-lineage immediately crownward of 

Paradiplocercides. Analytic difficulties regarding taxa that exhibit parallel 

acquisition of characters, and are incompletely known are highlighted. 

 

The presence of abundant juveniles within an estuarine setting strongly parallels the 

discovery of similarly sized juveniles of Rhabdoderma exiguus, in an estuary of the 

Upper Carboniferous, together with eggs and yolk-sack larvae. It is, therefore, highly 

likely that Paradiplocercides, like Rhabdoderma, was using the sheltered estuarine 

environment as a nursery. 

 

5.1.1  INTRODUCTION 

 

Coelacanths are members of the Sarcopterygii, a group characterised, principally, by 

possession of a monobasal articulation of the paired fins, the musculature of which 

forms a basal lobe (Janvier, 1996). Sarcopterygians all have an endoskeletal urohyal, 

a rearmost gill arch which articulates with the preceding one, more than four sclerotic 

plates and an ascending process of the palatoquadrate (Janvier, 1996).  

 

Living sarcopterygian groups include the Dipnoi (lungfishes) Actinistia (coelacanths) 

and Tetrapoda (tetrapods). Extinct clades include the Porolepiformes (stem group 

dipnoans); the Rhizodontiformes, Osteoloepiformes and Panderichthyida (stem group 

tetrapod groups) and the Onychodontiformes (incertae sedis stem sarcopterygians) 

 (Ahlberg, 1991; Cloutier, 1991; Janvier, 1996). Of these, coelacanths are currently 

considered to represent the second most basal divergence, with only the 

Onychodontiformes being more basal (eg. Ahlberg, 1991; Cloutier, 1991; Friedman, 

2007). Meemannia, Psarolepis and Achaonia, some of the earliest known 

Sarcopterygii, from the Lower Devonian (Lochkovian) of China (Chang and Yu, 

1981, 1984; Chang, 1982; Yu, 1990, 1998; Zhu and Schultze, 1997; Zhu et al. 1999, 

2001, 2006; Zhu and Yu, 2002, 2004) are even more basal (eg. Friedman, 2007). 
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Early, essentially Devonian, coelacanths play an important role in understanding the 

generalised, basal, characteristics of the Sarcopterygii (eg. Friedman, Coates and 

Anderson, 2007). 

 

5.1.1.1  Historical Review 

 

For most of the twentieth century the only known mid Devonian coelacanth material 

consisted of an isolated ethmosphenoid portion of the braincase of Euporosteus 

(Jaekel, 1927) from the Givetian of Germany.  

 

Late Devonian coelacanths were initially represented by skull material of 

Diplocercides kayseri (v. Koenen, 1895), from the Frasnian of Germany. One 

specimen, originally described as Diplocercides kayseri, and probably conspecific 

therewith (Forey 1998) was redescribed by Stensio (1937) as Nesides schmidti, 

having been serially ground to produce a detailed wax model, which forms the basis 

for our knowledge of the primitive coelacanth brain case. The description of 

Latimeria (Smith, 1939; Millot and Anthony, 1958, 1965; Millot, Anthony and 

Robineau, 1978) would later allow comparison between this ancient form and the 

recent example (Jarvik, 1980), demonstrating extreme conservatism in the coelacanth 

neurocranium (Jarvik, 1980; Forey, 1998). 

 

 Stensio (1937) described additional specimens of Diplocercides kayseri, including 

one exhibiting the proximal portion of the caudal fin. Stensio (1937) furthermore 

described an additional species of Diplocercides, Diplocercides jaekeli (Stensio, 

1922, 1937), on the basis of a single dissociated head with anterior scales, also from 

the Frasnian of Germany.  

 

The description of Chagrinia enodis (Schaeffer, 1962), from the Late Devonian 

(Famennian) of Ohio, U.S.A. provided the first recognised whole-bodied impression 

of a Devonian coelacanth. Unfortunately its affinities are unclear as the specimen is 

poorly preserved, showing few distinguishing features. Some detail of the tail is 

apparent, which is symmetrical and diphycercal (Schaeffer, 1962).  
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As the few recognised Devonian coelacanths appeared fairly uniform in structure and 

contained many of the unique characters associated with later coelacanths, these were 

taken to be synapomorphies of the entire group. As a result, coelacanths were seen as 

exemplars of a group that had emerged suddenly, and then remained largely 

unchanged for 300 million years. “So conservative is the composition of these fishes” 

wrote Miles in 1971, “that the earliest and latest species differ essentially only in the 

degree of ossification of the skull” (Moy-Thomas and Miles, 1971, pg. 127). He 

characterised coelacanths as possessing two external nostrils, no choana, two dorsal 

fins (the anterior situated in front of the centre of the body), lobed second dorsal and 

anal fins with an internal skeleton similar to that of the paired fins, a diphycercal 

three lobed tail, a large hyomandibula with a double articulation with the 

neurocranium, lack of a maxilla and quadratojugal, a coronoid process, reduced 

dentary, a single splenial, an elongate angular, a unique extracleithrum in the shoulder 

girdle, and a number of more generalised Sarcopterygian characters (Moy-Thomas 

and Miles, 1971).  

 

Additional post-cranial material of a Devonian coelacanth was described by Jessen in 

1973. This badly distorted postcranium, together with a well-preserved skull, from 

the Frasnian of Germany, provided the type material for a new species Nesides 

(Diplocercides) heiligenstockiensis ((Jessen, 1973) Cloutier, 1991), the skull being 

consistent with those of other Diplocercides species. Jessen was able to attempt the 

first full body reconstruction of Diplocercides, which exhibited a diphycercal tail and 

lobed anal and second dorsal fins (Jessen, 1973).   

 

Writing after the complete description of the extant Latimeria (Smith, 1939; Millot 

and Anthony, 1958, 1965; Millot, Anthony and Robineau, 1978), Jarvik (1980)  

endorsed Huxley‟s (1861) opinion that coelacanths formed an exceedingly well-

defined group that had existed for a long period of time, „with remarkably little 

change”, commenting that, „later investigations have confirmed that coelacanths are a 

uniform and conservative group‟ (Jarvik, 1980, pg. 275). Latimeria, due largely to 
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this perceived conservatism, was popularly termed a “living fossil” (e.g. Smith, 

1956).  

 

Romer (1945) proposed that the coelacanths, previously considered to be one family, 

the Coelacanthidae be subdivided into four families, the Diplocercididae, including 

all then known Devonian taxa, the Coelacanthidae, containing all Carboniferous to 

Cretaceous taxa, with the exception of the highly specialised Triassic Laugia, which 

he placed in the Laugiidae, and the Latimeriidae, containing the extant Latimeria. 

Although much debate has subsequently occurred regarding the grouping of post 

Devonian taxa and the number of families represented, the Devonian taxa known to 

Romer (1945) have continued, (with some exceptions (e.g. Moy-Thomas and Miles, 

1971)), to be regarded as a natural group, commonly called the Diplocercidae in 

hierarchical classification systems (e.g. Vorobjeva and Obruchev (1967); Andrews 

(1973); Lund and Lund (1985)). 

 

Demonstration of the coelacanth identity of the Frasnian Miguashaia bureaui 

(Schultze, 1973) by Cloutier (1991) and its redescription (Cloutier, 1996), provided 

the first example of an early coelacanth exhibiting many diagnostic modifications of 

the skull, (including the absence of a maxilla and an abbreviated dentary), but not a 

diphycercal tail, nor a lobe associated with the second dorsal fin (Cloutier, 1996). A 

lobe associated with the anal fin was furthermore only developed in adult individuals 

(Cloutier, 1996).  

 

Cloutier (1991) carried out a thorough taxonomic analysis of the coelacanths. He 

concluded that Miguashaia represented the sister group of all other known 

coelacanths, established that coelacanths are far more morphologically diverse than 

was until then assumed, and demonstrated that Latimeria is significantly derived. 

Diplocercides, „Nesides‟ and Miguashaia were the only Devonian taxa considered 

completely enough known for inclusion in his analysis. Cloutier (1991), in concord 

with Forey (1981), recognised the validity of the Diplocercidae, restricted to 

Diplocercides  „Nesides‟, Chagrinia and Euporosteus, as distinct from post Devonian 
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taxa, the classification of which he considered in need of revision.  Schultze erected a 

new family, the Miguashaiidae for Miguashaia (Schultze, 1993).  

 

Forey (1998) conducted a cladistic analysis of coelacanths. His phylogeny showed a 

close congruence between stratigraphic age and branching sequence. This echoed 

previous tree based propositions (Schaeffer, 1941; Forey, 1981 and Forey, 1991), and 

was consistent with earlier Linnaean subdivisions (e.g. Schultze, 1993). Forey (1998) 

avoided the use of hierarchical designations above generic level, for Palaeozoic taxa. 

Miguashaia and Diplocercides (which Forey took to include Nesides) were the only 

Devonian coelacanths included, and sequentially terminate the most basal two 

divergences on the coelacanth phylogenetic tree. The known Carboniferous 

coelacanth taxa terminate the following six divergences, followed by Mesozoic and 

recent taxa (Forey, 1998). 

 

Forey (1998) diagnosed coelacanths as sarcopterygian fishes showing: a well-

developed intracranial joint, a rostral organ, two external nostrils, a single bone 

(lachrymojugal) beneath the eye, upright jaw suspension with a triangular palate, a 

tandem jaw articulation, a reduced dentary, two infradentaries of which the angular is 

largest and is dorsally expanded, a separate large anterior coronoid, absence of a 

maxilla, submandibulars and branchiostegals, possession of a subdermal urohyal, a 

shoulder girdle free from the skull and having an extracleithrum, a sail-like first 

dorsal fin lacking radials, mirror image second dorsal fin and anal fin endoskeletons 

resembling those of the paired fins, a caudal fin with a single series of radials distal to 

neural and haemal spines, circular and deeply overlapping scales lacking ganoine or 

cosmine and ornamented with enamel-capped ridges, tubercles and denticles.  

 

Subsequently, somewhat fragmentary coelacanth remains from the mid Devonian 

(Givetian) of Australia were described as Gavinia syntrips (Long 1999). Gavinia 

uniquely shares many plesiomorphic postcranial characters with Miguashaia, 

including a heterocercal tail with numerous distally branching lepichondrichia (Long, 

1999) and a second dorsal fin lacking a basal lobe (Fig. 8, Long, 1999). In the 
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possession of a parasymphysial tooth whorl (Long, 1999) and a less reduced dentary  

(Fig. 6, Long, 1999) Gavinia appears more plesiomorphic than Miguashaia.   

 

Surprisingly, considering coelacanths‟ accepted basal divergence from the 

sarcopterygian lineage (Forey, 1998), which was known to extend back to or beyond 

the earliest Devonian (Chang, 1982; Chang and Yu, 1984; Zhu et al., 2001; Zhu and 

Yu, 2004) no coelacanths older than the late Middle Devonian were, until recently, 

known.  

 

The description of a purported coelacanth dentary, Eoactinistia foreyi (Johanson et 

al., 2006) from the Early Devonian, Pragian, of Australia, appears to greatly extend 

the range of known coelacanth species. The dentary is short with a row of tooth 

sockets along the dorsal edge. It is squarish and less slender than those of later 

coelacanths. Enigmatically, Eoactinistia exhibits a dentary pore near the ventral edge 

of the dentary, a feature not found in other sarcopterygian groups, but considered an 

innovation of more recent coelacanths, having been acquired during the 

Carboniferous (Forey, 1998). Assuming coelacanth identity this suggests a massive 

ghost lineage between Eoactinistia and Carboniferous taxa, or parallel development 

of a visible dentary pore. Definate coelacanth identity of  Eoactinistia is unfortunately  

hard to establish due to the very limited nature of the specimen.        

 

The reinterpretation of the Early Devonian (Lochkovian) Styloichthys, previously 

interpreted as a basal porolepiform (Yu, 1990) or the sistergroup of dipnomorphs and 

tetrapodomorphs (Zhu and Yu, 2002), as a basal coelacanth (Friedman, 2007), has 

further deepened the coelacanth stem. Known only from disarticulated skull and jaw 

bones, Styloichthys exhibits a number of unique coelacanth characters, such as a 

substantially abbreviated dentary (approximately 45% of the mandibular length), a 

ventral mandibular flange (which corresponds to the gular overlap area), and linear 

remodelling of oral denticles, though it uniquely retains a maxilla (Friedman, 2007). 

 

Redescription of the Givetian to Frasnian Holopterygius nudus (Jessen, 1973), 

originally described as an actinopterygian, as a coelacanth (Friedman and Coates, 
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2006), indicated that coelacanths were already morphologically diverse during the 

Devonian and that the fossil record is more incomplete than was formerly recognised.  

Its leaf-shaped post-cranium, with elongate diphycercal tail and eel-like body 

diverges strongly from its known contemporaries, but help to support a sistergroup 

relationship with the Carboniferous Allenypterus (Melton, 1969). On the basis of their 

phylogenetic analysis, Friedman and Coates (2006) concluded, that the branch 

leading to Holopterygius and Allenypterus was immediately crownward of that 

leading to Diplocercides. This suggests that Diplocercides must have originated 

deeper in the Devonian than was formerly imagined (Friedman and Coates, 2006). 

 

Friedman, Coates and Anderson (2007), described the first known primitive 

coelacanth pectoral endoskeleton (Shoshonia arctopteryx) from the Middle-Late 

Devonian Givetian-Frasnian. The described specimen was restricted to a pectoral 

appendage and adjacent flank, however, the distinctive flanged, interlocking pattern 

of the fin lepichondria verified its coelacanth identity. In general morphology the 

pectoral fin most resembled that of Miguashaia, though having fewer lepichondria 

(Friedman, Coates and Anderson, 2007). It demonstrates that the primitive pectoral 

fin endoskeleton of coelacanths was strongly asymmetrical, in common with that of 

both plesiomorphic actinopterygians, and basal tetrapodomorphs. The symmetrical 

arrangement seen in Latimeria is, therefore, like that of dipnomorphs, a derived 

condition. This has important implications for the understanding of tetrapod limb 

development.  It also further demonstrates the high degree of derivation within the 

coelacanth clade (Friedman, Coates and Anderson, 2007). 

 

Various additional fragmentary coelacanth remains have also been reported from the 

Late Devonian. These include Coelacanthus welleri (Eastman, 1908), known from a 

partial head and body without fins from the Famennian of Iowa. Forey (1998) 

examined the specimen and considered it to closely resemble Diplocercides jaekeli. 

Fragmentary evidence for Diplocercides has also been reported from the Famennian 

of central Iran (Janvier, 1977). Coelacanth remains from Morocco (Lelièvre and 

Janvier, 1988) are considered consistent with Diplocercides jaekeli (Forey, 1998). 

The Famennian of Poland has produced disarticulated skull bones identified as those 
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of Diplocercides kayseri, and a second unidentified Diplocercides species (Szrek, 

2007). This latter identification is based on very incomplete material that does not 

exhibit any exclusive Diplocercides characters and differs from known species of 

Diplocercides (Szrek, 2007). It may be that greater coelacanth diversity in the 

Famennian has been masked by a tradition of assigning fragmentary generalised Late 

Devonian remains to the genus Diplocercides. 

 

Detailed analysis of the coelacanth clade coinciding with the rigorous development of 

comparative character matrices, the discovery of new material, and the recognition of 

a number of Devonian coelacanth taxa, formerly assigned to other taxonomic 

groupings due to their failure to display crown group characters, is eroding the 

traditional view of coelacanths. It becomes increasingly difficult to characterise them 

as a group that arose fairly suddenly towards the end of the Devonian, with most of 

their crowngroup characters, and then remained static. A greater taxonomic diversity 

of coelacanths from the Devonian can therefore be expected. 

 

For more than 100 years coelacanths from the Carboniferous were represented by 

specimens that are (Moy-Thomas, 1937; Forey, 1998) attributable to a single genus, 

Rhabdoderma (Reis, 1888), which was widely distributed in Europe, Britain and 

North America, for most of the Carboniferous (Forey, 1998). The accepted exemplar 

of this genus is the type species Rhabdoderma elegans (originally Coelacanthus) 

(Newberry, 1856) from the Upper Carboniferous Westphalian of Ohio, U.S.A., which 

has been studied in exacting detail (Huxley, 1866; Moy-Thomas, 1937; Forey, 1981) 

(fig 7D). Another significant species attributed to this genus is Rhabdoderma 

exiguum (originally Coelacanthus exiguus) (Eastman, 1902), from the Upper 

Carboniferous deposits of Mazon Creek, Illinois, U.S.A.. The ascribed material 

includes extremely juvenile examples, some of which still exhibit remnants of a yolk 

sac (Schultze, 1972, 1980).  

 

The diversity of known Carboniferous coelacanths was greatly expanded by the 

description of four new monospecific genera, Caridosuctor, Hadronector, 

Polyosteorhynchus and Lochmocercus (Lund and Lund, 1984) from the Early 
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Carboniferous of Montana, as well as the redescription of Allenypterus (fig. 7E), 

formerly described as an Actinopterygian (Melton, 1969), as a highly unusual 

coelacanth (Lund and Lund, 1984, 1985). Later workers, (eg. Cloutier, 1991 and 

Forey, 1998), have found that many aspects of Lund and Lund‟s interpretation of the 

material are unreliable. Much of their interpretation of the skulls can, furthermore, not 

be verified, due to destruction during preparation. Latex peals of some material 

remains, and has subsequently been reinterpreted by Cloutier (1991) and Forey 

(1998). 

 

5.1.1.2  Geological and Palaeoenvironmental Setting 

 

This paper reports new material derived from a Late Devonian (Famennian) aged 

black shale lens bedded within quartzite strata of the Witpoort Formation (Lake 

Mentz Subgroup, Witteberg Group, Cape Supergroup). This fossil locality was 

exposed in 1985 during roadworks at Waterloo Farm south west of Grahamstown 

(Rhini), Eastern Cape, South Africa. The quartzites are interpreted as having been 

deposited in a barrier island complex, with the black shale representing anaerobic 

mud deposited in a back barrier lagoon of mixed marine and fresh water  (Hiller and 

Taylor, 1992; Gess, 2002). This is the only known Late Devonian locality in southern 

Africa to have yielded faunal remains. These include a diversity of fish taxa including 

a lamprey (Gess et al., 1996), arthrodire and antiarch placoderms (Long et al., 1995), 

acanthodians (Gess and Hiller, 1995; Gess 2001), actinopterygians (pers. obs.), as 

well as dipnoan and tristichopterid crossopterygians (Gess and Hiller, 1995).  

 

Although remains of small coelacanths were recognised in material excavated during 

the mid 1990s (Anderson et al., 1994; Gess and Hiller, 1995), these specimens were 

not well enough preserved to allow for taxonomic analysis. Subsequent excavations 

have produced a far larger sample of specimens, including a small number in which 

anatomical details are preserved in exquisite detail. These latter specimens are all 

presumed juveniles. More fragmentary material of larger individuals provides 

evidence for ontogenetic change.  
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5.1.2  MATERIALS AND METHODS 

 

Shale layers are prised apart using a hand held knife blade or a hammer and flat 

chisel. The coelacanth fossils are compressions in which, during diagenesis, organic 

material was replaced by a silvery-white phyllosilicate, which later altered to soft 

white kaolinite clay. Superimposition of features from left, right and inside the body 

occurs in some of the specimens. 

 

Fine preparation of key specimens was conducted under a binocular microscope, 

utilising the distal point of a porcupine quill. Photographs were either taken using a 

Nikon SLR with macro lens and black and white emulsion film, or, through a 

microscope, using a digital camera. Drawings were either prepared by tracing large 

photographic prints, in conjunction with microscopic examination or by using a 

camera lucida attached to a binocular microscope. 

 

All specimens have been deposited in the palaeontological collection of the Albany 

Natural History Museum in Somerset Street, Grahamstown, Eastern Cape Province, 

South Africa. 

 

Most of the known material appears to consist of juveniles. These include whole or 

partial body impressions (figs 5.1-5.4) of 28 individuals derived from a 3 to 6 

centimetre size range (fig 5.12). The whole-bodied material has generally large heads 

and eyes, and differs in ornamentation from larger individuals, approximately 9 of 

which are represented, principally by isolated operculae (fig. 5.5 C,F). The anterior 

portion of a partially dissociated individual, which may have reached 15 centimetres, 

has operculae equal in size to the largest isolated example. These fragmentary 

remains of  larger individuals provide important clues regarding ontogenetic change 

in early coelacanths. This is significant as both juvenile and adult specimens have 

been used as exemplars of extinct coelacanth taxa. Due to their exceptional 

preservation juvenile specimens from Waterloo Farm are used to diagnose a new 

taxon whilst giving due cognisance to ontogenetic variation.   
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The interrelationships of early coelacanths were explored by including the new taxon 

in the character matrix of Forey (1998), as updated and extended by Friedman and 

Coates (2005). This matrix was subjected to parsimony analysis using the branch-

and-bound algorithm in PAUP v. 4.0b (Swofford, 2002). Further characters were 

added, and a number of trees were generated (see Phylogenetic Analysis below).  

 

      

5.1.3. SYSTEMATIC PALAEONTOLOGY 

  

Osteichthyes Huxley, 1880 

 

Sarcopterygii Romer, 1955 

 

Actinistia Cope, 1871 

 

    Paradiplocercides gen. nov.  

 

Type species:  

 

Paradiplocercides kowiensis sp. nov., Late Famennian, Witpoort Formation  

 

Diagnosis 

 

Paradiplocercides is described from small, assumed juvenile, individuals with large heads 

and eyes. With Diplocercides and other early coelacanths it shares a single bone 

(lachrymojugal) beneath the eye, a tandem jaw articulation, a reduced dentary, two 

infradentaries of which the angular is largest and is dorsally expanded, a separate 

large anterior coronoid, absence of a maxilla, submandibulars and branchiostegals, a 

shoulder girdle free from the skull, presence of an extracleithrum, a caudal fin with a 
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single series of radials distal to neural and haemal spines, and linear remodelling of 

oral denticles.  

 

In common with Diplocercides, Paradiplocercides has a symmetrical diphycercal 

tail. It uniquely shares with Diplocercides kayseri and D. jaekeli an elbow-like, 

ornamented, ventral expansion of the lachrymojugal, not found in any other 

coelacanths.  

 

Paradiplocercides differs from Diplocercides in possession of large anterior parietals 

approaching the size of the posterior parietals; in having a larger, more crescent-

shaped post orbital in which the infraorbital canal runs along the anterior margin, and 

by the possession of a far smaller squamosal which does not approach the skull roof. 

 

Paradiplocercides is distinguished from coelacanths more plesiomorphic than 

Diplocercides, such as Miguashaia and Gavinia, by possession of two pairs of 

parietals, the presence of a pre-orbital, a supraorbital canal that follows a sutural line, 

a diphycercal tail and unbranched fin rays. It is distinguished from more crownward 

coelacanths, other than Holopterygius, by the presence of broad neural and haemal 

spines and radials in the caudal skeleton. Paradiplocercides is easily distinguished 

from Holopterygius by its more conventional overall form and lack of keel scales. 

 

  Etymology 

 

The generic name alludes to the general resemblance of Paradiplocercides to 

Diplocercides. 

 

  Type material 

 

Holotype: AM 5754 (a & b), a slightly disrupted whole-bodied specimen preserved in 

part and counterpart, approximately 50 mm in length (figs 5.1, 5.2). 

 

Paratypes: AM 5756 (a & b) (fig. 5.3), AM5755 (a & b) (fig. 5.4),  
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Other material examined: AM5757- AM5781, AM4912(BPCr1001-1007,1010,1045),                                                                                                                 

AM4889 

 

  Paradiplocercides kowiensis 

 

Diagnosis and type material: as for genus. All material from a single shale lens at 

Waterloo Farm, Grahamstown/Rhini, Eastern Cape Province, South Africa. 

 

  Etymology 

 

The specific name refers to the Kowie River, which drains the hills from which the 

material was collected. From Xhosa, ultimately from Khoisan. 

 

5.1.4  DESCRIPTION 

 

Paradiplocercides is described from presumed juvenile organisms. The description is 

based on AM5754 (figs 5.1, 5.2), except where stated.  

   

The dorsal profile of the skull is convex (fig. 5.2), with a parietonasal shield 

marginally longer than the postparietal shield and extrascapulars combined. The 

postparietal shield alone is approximately 68% the length of the parietonasal shield, 

measured along the mid-line. Coelacanth history is characterised by a progressive 

extension of the front portion of the skull which has increased the relative gape of 

coelacanths (Forey, 1998). Forey (1991) explored this proportional relationship in 20 

coelacanth taxa as a possible proxy for the harder to estimate relationship between the 

anterior and posterior portions of the neurocranium. He identified trends in the 

coelacanth lineage, finding that whilst the postparietal shield of Diplocercides 

(kayseri) (fig. 5.8 C)  is 65% of the length of the parietonasal, in Carboniferous 

(Caridosuctor and Rhabdoderma (fig. 5.8 F)) and more plesiomorphic Mesozoic taxa 
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(Coelacanthus, Laugia, Spermatodus and Sassenia) it ranges between 73% and 85%, 

whereas in all more crownward Coelacanths, it varies between 36% and 54% (Forey, 

1991). The one Carboniferous taxon that falls outside of this pattern is Allenypterus 

(fig. 5.7D), which represents a uniquely derived lineage, in which the postparietal is 

50% of the length of the parietonasal. In Miguashaia (fig. 5.7 A), by contrast, the 

equivalent value is roughly 100% (Fig. 3.3 A, Forey, 1998). Paradiplocercides, 

therefore, most closely approaches Diplocercides kayseri in the relative lengths of the 

parietonasal and postparietal shields. 

  

The joint between the parietal and postparietal shields is slightly undulating in 

Paradiplocercides, neither as straight as that of Diplocercides kayseri (Fig. 1, 

Stensio, 1937;) nor as deeply notched as those of Hadronector (Fig. 44, Lund and 

Lund, 1985) and Rhabdoderma (Forey, 1981), but approaching the condition reported 

in Caridosuctor (Fig. 24, Lund and Lund, 1985). Two pairs of parietals are present; 

the anterior pair being slightly smaller. In contrast, Miguashaia has only one pair of 

parietals (Cloutier, 1996). In Diplocercides kayseri the anterior parietals are very 

small compared to the posterior ones (Stensio, 1937). Two pairs of parietals are found 

in Carboniferous and more recent taxa, the anterior pair commonly approaching the 

size of the posterior pair (Forey, 1998). The Carboniferous Caridosuctor (Fig. 24, 

Lund and Lund, 1985) provides a marked exception in which the anterior pair is 

substantially smaller than the posterior pair, whereas in Hadronector the anterior pair 

is uniquely separated by an intranasal (Fig 44, Lund and Lund, 1985). 

 

Details of the more anterior portion of the snout of Paradiplocercides are not clear. 

However, a number of individual dermal bones are apparent and two pairs of large 

nasals are preserved in AM5756 (fig 5.3). There is no evidence of internasal bones, 

unlike the condition found in Diplocercides kayseri (Stensio, 1937) and Hadronector 

(Lund and Lund, 1985; Forey 1998). This reflects the pattern in the remaining 

Carboniferous and later coelacanths (Forey, 1998). Three, or possibly four, 

supraorbitals are situated between the first parietal and the orbit. This differs from the 

condition in Diplocercides kayseri in which there are six (Stensio, 1937) and more 

recent taxa in which the number of supraorbitals is very variable, though generally 
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greater than four (Forey, 1998). The more basal Miguashaia, however, has only four 

supraorbitals (Cloutier, 1996).  

 

There are five extrascapulars in Paradiplocercides (figs, 5.1, 5.2), as opposed to only 

three in Miguashaia (Cloutier, 1996) (fig. 5.8 A), Diplocercides kayseri (Stensio, 

1937) (fig. 5.8 C) and Hadronector (Lund and Lund, 1985; Forey 1998), but in 

common with Rhabdoderma (Forey, 1981) (fig. 5.8 F) and Caridosuctor (Lund and 

Lund, 1985) as well as most Permo-Triassic taxa (Forey, 1998). Intriguingly Lund 

and Lund recorded an extra pair of small, “post-temporal” bones, in contact with the 

lateral extrascapular and opercular of Hadronector (fig. 2, Lund and Lund, 1984; figs 

35, 43, 44, Lund and Lund, 1985), which probably represent an extra lateral 

extrascapular pair. Forey (1998) interpreted Allenypterus as having only three 

extrascapulars, whereas Lund and Lund (1985) interpreted it as having five. 

 

Supratemporals are set into the post parietal. This matches conditions in 

Diplocercides kayseri (Stensio, 1937) (fig. 5.8 C), Diplocercides heiligenstockiensis 

(Jessen, 1973) (fig. 5.8 B), Hadronector, Caridosuctor and Allenypterus (Forey, 

1998), but differs from Rhabdoderma (Forey, 1981) (fig. 5.8 F) in which the 

supratemporals are situated ventral to the post parietal. The otic canal may follow a 

sutural coarse between the post parietal and the adjacent supraorbital series, before 

extending posteriorly onto the post parietal and anteriorly along the suture between 

the first parietal and the supraorbital series, where its presence is suggested by a 

mineralised line. 

 

The premaxilla (fig. 5.2C) is large, containing the anterior opening of the rostral 

organ. An anterior notch in the lateral rostal patially accommodated the anterior 

nostril, which was positioned between the the lateral rostral and the premaxilla.  

Posteriorly the lateral rostral extends, ventral to the anterior portion of the 

lachrymojugal, to a point below the position of the orbit. Its exact postero-ventral 

outline is lost due to rock breakage, however, its ventral extent is suggested by an 

imprint on the pterygoid. The preorbital is large, but its exact shape is difficult to 

determine. 
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Cheek bones completely cover the cheek, closely abutting one another, as in all 

Palaeozoic actinistian taxa  (Forey, 1998). Widest dorsally, the postorbital is large, 

and approximates a crescent shape. The squamosal is triangular and much smaller 

than compared to the preopercular and the postorbital. It does not project further 

dorsally than the medial point of the orbit (fig. 5.8 E). This is markedly different from 

the squamosal of Diplocercides which is large and extends dorsally behind the post 

orbital to meet the skull roof, in all species (Stensio, 1937; Jessen, 1973) (fig. 5.8 B-

D). 

 

Approximating the size of the postorbital, the preopercular is closely associated with 

the squamosal, together with which it approximates a quadrant in outline. Along its 

entire anterior margin the preopercular abuts the lachrymojugal. It possesses a small 

anterior protrusion that extends this contact to near the ventral limit of the 

lachrymojugal. 

 

In Paradiplocercides the post orbital, squamosal and preopercular are arranged one 

below the other, resembling the condition in Carboniferous coelacanths and differing 

from that in Diplocercides, in which the squamosal is situated posterior to the post 

orbital.  

 

The lachrymojugal, like that of Diplocercides kayseri (fig. 5.8 C,D) and D. jaekeli 

(Stensio, 1937), though possibly not D. heiligenstockiensis (Jessen, 1973; Cloutier, 

1991) (fig. 5.8 B) has an elbow-like, ventral expansion which, in Paradiplocercides, 

is more posteriorly situated and less acute than in the Diplocercides species. No 

anterior extension is exhibited by the lachrymojugal, which abuts the dorsal margin 

of the lateral rostral. 

 

The jugal canal extends dorsally parallel to the posterior edges of the postorbital and 

squamosal before turning sharply, through the squamosal, to join the infraorbital 

canal. The infraorbital canal thereafter follows the anterior edge of the post orbital 

(fig. 5.8 E). This agrees with the condition found in known Carboniferous 
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coelacanths (Forey, 1998) (fig. 5.8 F), and represents a further departure from the 

condition found in Miguashaia (fig. 5.8 A) and Diplocercides kayseri (fig. 5.8 C) in 

which the infraorbital canal runs through the centre of the post orbital (Cloutier, 1996, 

Stensio, 1937). Consistent with other Palaeozoic coelacanths (Forey, 1998) the 

sensory canals do not appear to open to the surface through large pores 

 

A subopercular is not clearly apparent in the holotype of Paradiplocercides (fig. 5.2) 

as the relevant portion of the head is badly damaged due to breakage into the gill 

chamber. In the counter specimen (fig. 5.2B) ornamented bone is present in this area. 

An ornamented bone in close contact with the anterior-ventral edge of the operculum 

in AM5756 (fig. 5.3) is interpreted to be a subopercular.  

 

The operculum is very large, widest dorsally, with an overlap area along its 

anteriodorsal edge, and a broad, curved posterior edge which slightly overlaps the 

pectoral girdle (figs. 5.2, 5.3 & 5.5). The exact outlines of the operculum are not clear 

in AM5754 (figs 5.1, 5.2), but its form is clear in a number of examples (fig 5.5), 

including AM5756 (fig 5.3). A small spiracular is present (fig. 5.2 A, C), though it is 

only fragmentally preserved and its exact shape (fig 5.2 D) is speculative. 

 

Ornamentation on the head of Paradiplocercides, in specimens within the 

predominant size range, consists of anterior-posteriorly arranged wavy parallel ridges 

which are visible on the post parietal and posterior parietal. Furthermore, arising on 

the posterior portions of the cheek bones, similar ridges extend continuously in an 

approximately anterior to posterior direction across the operculum (fig. 5.2 C). These 

ridges are similar to those on the cheek and operculum of Gavinia (Long, 1999). The 

fine linear ornament on the dermal bones of the skull is seen in an ontogenetic series 

of isolated operculae (fig. 5.5) to break down with greater maturity into elongate 

tubercles, not dissimilar to those seen in specimens of Diplocercides kayseri (Stensio, 

1937, plate 1). 

 

In Paradiplocercides (at least within the studied age group) the general linear pattern 

of the dermal bone is extended by finer ridges on the scales. Ridges continue, in 
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parallel, across the entire width of the exposed portion of the scales, and align with 

those on previous and subsequent scales. These ridges are of even prominence and 

may reach 8 or 9 in number. They are similar to those of Diplocercides kayseri (fig. 

vi,1, Stensio, (1937)), though in Diplocercides kayseri some scale ridges are not 

continuous across the entire width of the exposed surface.  

 

A ring of small, fairly evenly sized sclerotic ossicles, is preserved within the orbit of 

AM5754. This reflects a general sarcopterygian condition found in early coelacanths 

such as Miguashaia (Cloutier, 1996). Gradual reduction of these ossicles, starting 

during the Carboniferous, culminated in their loss by the dominant coelacanth lineage 

during the Triassic (Forey, 1998). Jurassic Coccoderma was the only post Triassic 

genus to retain sclerotic ossicles (Forey, 1998).  

 

A carbonised, orbicular, body underlying the posterior margin of the spiracular in 

AM5744 (fig 5.2) is taken to represent the trace of an otolith. A similar body, paired 

in dorsal view, is visible in a number of specimens of Paradiplocercides. Though 

present in Latimeria (Carlstrom, 1963), otoliths have rarely been noted in 

descriptions of fossil coelacanths. First noted in Rhabdoderma huxleyi (Forey, 1981) 

they have more recently been demonstrated in Undina, Diplurus, Rhabdoderma and 

Whiteia (Clack, 1996). Amongst Devonian coelacanths otoliths have previously been 

reported only in Holopterygius (Friedman and Coates, 2005). 

 

The lower jaw of Paradiplocercides is long and shallow (fig. 5.2). The dentigerous 

surface of the dentary is 34% of the length of the jaw, angled anteriorly, with between 

15 and 20 teeth individually fused to it. An anterior coronoid series of simple tooth 

plates is present, the hindmost of which overlaps the posterior margin of the dentary 

(fig. 2C, co). The principle coronoid is triangular, large, and extends forward to 

almost meet the dentary. 

 

In relative length the dentary matches that of Diplocercides kayseri (Fig. 7, Stensio, 

1937), which is a little under 35% of the jaw length, whilst that of Diplocercides 

heiligenstockiensis (fig. 3, Jessen, 1973) is, similarly, 33% of the jaw length. 
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Diplocercides kayseri (fig. 7, Stensio, 1937) (fig. 5.8 C) and Diplocercides 

heiligenstockiensis (fig. 3, Jessen, 1973) (fig. 5.8 B) also exhibit an anteriorly angled 

orientation of the dentary. There is, furthermore, a similarity between the angulars of 

Diplocercides kayseri (Fig. 7, Stensio, 1937) and Paradiplocercides, however the 

principle coronoid of Diplocercides kayseri (Fig. 7, Stensio, 1937) is not as large as 

that of Paradiplocercides (Fig. 2) and does not approach the dentary (Fig. 7, Stensio, 

1937).  

 

Many specimens of Paradiplocercides, including AM5744, exhibit sub-parallel lines 

on the principle coronoid (fig. 5. 2 C). These are interpreted as denticle rows 

impressed through from the lingual surface. Such parallel denticle rows 

characteristically line much of the oral cavity of early coelacanths (Friedman, 2007). 

Denticle rows were already present on the prearticular of Styloichthys, the most 

plesiomorphic known coelacanth (Friedman, 2007). They have been recorded on the 

lingual surface of the principle coronoid of Diplocercides kayseri (plate 3, Stensio, 

1937) but the pattern of their arrangement differs from that on the coronoid of 

Paradiplocercides.  

 

Gular plates of Paradiplocercides extend beyond the jaw rami and exhibit gular pit 

lines (Fig. 5.2 C). They and the lower jaw, like the cheek and operculum, are 

ornamented with longitudinal ridges, which on the gular plate are coarser and 

concentric. Both in form and in ornament the gular plates are reminiscent of those of 

Diplocercides kayseri (Stensio, 1937, plate 1), as well as isolated gular plates from 

the Holy Cross mountains attributed thereto (Szrek, 2007). Those of 

Paradiplocercides, however, exhibit far fewer ridges, which are unbroken. Due to 

their far smaller size, this difference could be attributed to their younger ontogenetic 

age. 

 

Paradiplocercides’ urohyal is best preserved in AM4912(BPCr 1045) (Fig. 59C-E, 

Gess and Hiller, 1995) is narrow anteriorly, splaying into a gradual fork posteriorly. It 

has broad, well-rounded lateral “wings” that extend from near the anterior extremity 
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and broaden posteriorly. This is the general form of the coelacanth urohyal, which is 

very constant in shape (Forey, 1998). This specimen has been subsequently damaged. 

 

The shoulder girdle, consisting of a cleithrum, anocleithrum and extracleithrum is 

broad, like that of Diplocercides kayseri (Stensio, 1937), but because of its 

preservation within the body the girdle is difficult to reconstruct. The lobe of the 

pectoral fin is situated low on the pectoral girdle, close to the ventral outline of the 

body (fig. 5.1 C; 5.7 C). This is the condition seen in Diplocercides 

heiligenstockiensis (Jessen, 1973; Cloutier, 1996) (fig. 5.7 B), Miguashaia  (fig. 5.7 

A) and Shoshonia (Friedman, Coates and Anderson, 2007) as well as most early 

sarcopterygia and actinopterygians (Janvier, 1996). The position of the pectoral fin is 

unknown in other Devonian coelacanths, whereas in Carboniferous (fig. 5.7 D, 5.7 E) 

and later taxa it assumes a position approximately half way up the flank, as in 

Latimeria (fig. 5.7 F)(Forey, 1998). 

  

The first dorsal fin of Paradiplocercides has nine fin rays, which are unbranched, 

smooth and segmented distally (figs 5.1, 5.3 & 5.6). At least 8 fin rays are found in 

the second dorsal fin of AM5756 (fig. 5.3). It echoes the first dorsal in the absence of 

a basal lobe, and possibly in the number of fin rays. It is, however, far less commonly 

preserved than the first dorsal fin and evidently was less robust. No evidence for a 

basal lobe is to be found in any of the material examined. In this Paradiplocercides 

differs from almost all reconstructable coelacanths including Diplocercides 

heiligenstockiensis (Jessen, 1973) but excepting Gavinia, Miguashaia (fig. 5.7 A) and 

Allenypterus (fig. 5.7 D) (Long, 1999, fig. 8; Cloutier, 1996; Lund and Lund, 1984, 

1985; Forey, 1998). In Allenypterus this may be accounted for by its generally 

unusual body form, however lack of this lobe in Gavinia and Miguashaia suggests 

that this was also the condition in plesiomorphic coelacanths. In this way they 

resemble the Onychodontiformes, though a lobe is developed in Dipnomorpha and 

Rhizodontiformes (Janvier, 1996). This suggests parallel acquisition of this character 

in Actinistia and in the stem of Dipnomorpha and Tetrapoda. 
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Pelvic fins of AM5755 (fig. 5.4), which are abdominal and situated slightly posterior 

to the first dorsal fin, display a small basal lobe. The anal fin has a similarly sized 

basal lobe, which in AM5756 and AM5755 (figs 5.3, 5.4) is situated slightly posterior 

to the second dorsal fin. This fin position is similar to that in Diplocercides 

heiligenstockiensis (fig. 5.7B) and Carboniferous coelacanths (such as Rhabdoderma) 

(fig. 5.7 E), with the exception of the peculiarly modified Allenypterus (Lund and 

Lund, 1984, 1985; Forey, 1998) (fig. 5.7 D), in which the pelvic and anal fins are 

both situated more posteriorly and lack basal lobes. Paradiplocercides (fig. 5.7 C) 

also differs from Miguashaia (fig. 5.7 A) in which the pelvic fin is situated 

substantially more posteriorly, and a slight lobe on the anal fin is only developed in 

adult specimens (Cloutier, 1996).  

  

The caudal fin, most clearly preserved in AM 5756 (fig. 5.3) is diphycercal and symmetrical, 

with 11 fin rays, and a small additional anterior ray base in both dorsal and ventral lobes. The 

adjacent neural and haemal radials of AM5754 (fig. 5.1, 5.9B) are broad and abutting. In 

AM4912/BPCr1001 the junction between some neural radials and neural spines is apparent, 

indicating that the neural and haemal spines articulating with the caudal radials were equally 

broad (fig 5.9 A). They thus differed from pre-caudal neural and haemal spines which are 

long, narrow and well spaced (fig. 5.1). In at least the anterior half of the caudal fin of 

AM5754, each radial supports two fin rays. More posteriorly the fin rays are separated more 

widely from one another. The central lobe bears finer rays, arranged symmetrically in dorsal 

and ventral pairs.   

      

    5.1.5  PHYLOGENETIC ANALYSIS 

 

In order to explore phylogenetic relationships amongst early coelacanths, 

Paradiplocercides was analysed according to Forey‟s data matrix for coelacanths, 

including 108 characters and 30 genera (Forey, 1998), as updated (with corrections, 

an additional character and a newly assigned taxon) by Friedman and Coates (2005). 

Paradiplocercides’ determinable character states were added to the data matrix. 

Following Forey (1998) and Friedman and Coates (2005), actinopterygians and 

porolepiforms were included as outgroups. The six most poorly known taxa with the 

exception of Holopterygius were omitted, following Forey (1998). Forey found that 
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these taxa masked much of the structure of concensus trees generated from the data 

matrix, because their high percentage of missing values led to generation of numerous 

spurious trees (Forey, 1998).  

 

The resultant matrix was subjected to parsimony analysis using the branch-and-bound 

algorithm in PAUP v. 4.0b (Swofford, 2002), with all characters and taxa weighted 

equally. 200 shortest trees of 245 steps were found (CI=0.453, RI=0.72). A strict 

consensus of these 200 trees resolved Miguashaia and Diplocercides sequentially as 

the two most basal coelacanths. It placed Paradiplocercides in a polytomy with 

Hadronector, Lochmocercus, Polyostereorhynchus and [Allenypterus + 

Holopterygius]. With the exception of Holopterygius and Paradiplocercides all of 

these genera are Carboniferous. Rhabdoderma and Caridosuctor, the remaining 

Carboniferous genera, fell within a second polytomy, one of two into which most 

later coelacanths fell. Except for the addition of Paradiplocercides this was consistent 

with the result obtained, without reweighting, by Friedman and Coates (2005).   

 

To obtain better resolution, characters were reweighted by the maximum value of 

their rescaled consistency indices, according to the „best fit‟ option and a new 

heuristic search was conducted. 3 characters were parsimony uninformative and were 

excluded. Six trees of 89.13 steps were obtained (CI = 0.663, RI = 0.8670). In a strict 

consensus of these six trees Carboniferous coelacanths (together with Holopterygius 

and Paradiplocercides) were well ordered, with the relative positions of 

Paradiplocercides and Lochmocercus being the only ambiguity amongst Palaeozoic 

coelacanths. Successively more crownward plesions along the coelacanth stem above 

Diplocercides were Hadronector, [Allenypterus + Holopterygius], Lochmocercus, 

Paradiplocercides/Polyosteorhynchus, Caridosuctor and Rhabdoderma. The addition 

of Paradiplocercides and the positioning of Hadronector between Diplocercides and 

[Allenypterus + Holopterygius] were the only difference between this tree and the 

reweighted tree obtained by Friedman and Coates (2005) (fig. 5.10 B). The relative 

order of early Carboniferous taxa relative to one another also differed from that in the 

preferred cladogram of Forey (1998), in which Lochmocercus, Allenypterus, 
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Hadronector, Polyosteorhynchus and Caridosuctor were arranged as successively 

more crownward plesions above Diplocercides (fig. 5.10 A).  

 

The relative instability of the positions of Hadronector, [Allenypterus + 

Holopterygius], Lochmocercus and Polyosteorhynchus between these trees was 

noted.  

 

 A crownward position of Paradiplocercides relative to Hadronector and 

Lochmocercus is inconsistent with various of its morphological features: such as the 

possession of an elbow like extension of the lachrymojugal (much like that of 

Diplocercides), broad neural and haemal arches and radials in the caudal fin 

(otherwise characteristic of Miguashaia, Diplocercides heiligenstockiensis and 

Holopterygius), the low position on its pectoral girdle of the pectoral fin and its lack 

of a second dorsal fin. A number of characters relevant to the taxonomy of stem 

group coelacanths were therefore added to the character matrix. 

 

These are: 

 

Character 110: absence (0) or presence (1) of an elbow-like ventral extension of the   

                         lachrymojugal 

 

Character 111: insertion of the pectoral fin low on the pectoral girdle – near the    

                         ventral outline of the body (0) or high on the girdle approximately 

half way up the flank(1) (character 42,Cloutier, 1991) 

 

Character 112: anal fin without (0) or with (1) a basal lobe 

 

Character 113: second dorsal fin without (0) or with (1) a basal lobe 

 

Character 114: preopercular distant from (0) or adjacent to/abutting (1) lachrynojugal 
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The new matrix was subjected to parsimony analysis using the heuristic search with 

simple additional sequence algorithm (limited to 1000 replicates) with all characters 

unweighted and all taxa unconstrained. Far greater resolution of Palaeozoic taxa was 

obtained than with the original matrix used. In a strict consensus of 470 trees only 

one unresolved branching sequence presented itself within Palaeozoic coelacanths. 

This was in the relative order of the branches leading to Caridosuctor and 

Rhabdoderma.  

 

 In addition, the most parsimonious trees included some in which porolepiforms fell 

within the basal coelacanths, immediately crownward of Miguashaia. Therefore a 

constraint tree was built using Mac Clade (Maddison and Maddison, 2003), in which 

coelacanth monophyly was imposed. This constraint was loaded into PAUP and 

enforced as a topological constraint. A new, otherwise identical, heuristic search was 

then conducted and only 10 trees of 263 steps were obtained. Apart from the relative 

positions of Caridosuctor and Rhabdoderma, these trees differed only in the relative 

positions of a number of Mesozoic taxa. 

 

 As the intention of the phylogenetic analysis was to explore the relationships of 

Palaeozoic taxa, Mesozoic taxa that generated a large number of polytomies were 

reduced in number. Garnbergia, Holophagus, Libys, Macropoma, Undina, Diplurus, 

Chinlea, Axelrodichthys and Mawsonia  were excluded. Mesosoic to Recent 

coelacanths retained included more plesiomorphic forms comprising Sassenia, 

Laugia, Coccoderma and Whiteia, as well as the most recent form, Latimeria. An 

otherwise identical heuristic search was then conducted and only 2 trees of 189 steps 

were obtained (CI = 0.5820, RI = 0.6489), differing in the relative positions of 

Rhabdoderma and Caridosuctor. That in which Rhabdoderma is placed more 

crownward than Caridosuctor (fig. 5.10 C) was favoured as it is, in this regard, 

consistent with the reweighted analysis conducted with the original data set, the only 

strict consensus tree obtained in which resolution of the positions of these two taxa 

was obtained. It is furthermore in achord with the relative ages of the exemplars of 

these two taxa as well as the analyses of Forey (1998) (fig. 5.10 A) and Friedman and 

Coates (2005) (fig. 5.10 B). This analysis is entirely consistent with that of Forey 
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(1998) except with regard to the relative positions of Allenypterus, Lochmocercus, 

Polyosteorhynchus and Hadronector, in which it resembles that of Friedman and 

Coates (2005).     

 

A bootstrap analysis was conducted to explore the node strength of the tree. 1000 

replicates were created and a 50 % majority–rule consensus tree was generated. 

Although the positions of Miguashaia and Diplocercides remained stable, this 

collapsed Paradiplocercides and [Holopterygius + Allenypterus] into a polytomy 

with Hadronector, Lochmocercus and Polyosteorhynchus. Rhabdoderma and 

Caridosuctor fell into a later polytomy, together with most younger coelacanths. The 

node leading from Miguahaia to Diplocercides and all other coelacanths, had 93% 

support. All other nodes relating to palaeozoic coelacanths had support values of less 

than 54 %. 

 

The results of the favoured phylogenetic tree (fig. 5.10 C) were plotted against the 

accepted time ranges of genera to produce a stratocladogram of Devonian and 

Carboniferous coelacanths, updating those of Forey (1998), (fig. 5.10 A) and 

Friedman and Coates (2005) (fig. 5.10 B). To this was added the phylogenetic inter 

relationships of Styloichthys, Gavinia, Miguashaia and Diplocercides as diagnosed 

by Friedman (2007, fig. 11) to create an updated image of the basal portion of the 

coelacanth tree (fig. 5.11). 

 

5.1.6  DISCUSSION 

 

5.1.6 a Morphological comparison with early coelacanths 

 

5.1.6 a.i Relative proportions of the cheek 

 

Relative to conditions in primitive coelacanths, in more derived examples the length 

of the postorbital region of the skull has been reduced because of the extension of the 

front portion of the skull. To quantify this trend in early coelacanths, the length of an 

arc from a mid anterior position on the premaxilla to the furthest point on the 
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opercular was compared to the difference between this length and that of a similar arc 

extending to the posterior of the orbit. In Paradiplocercides the post orbital region 

was found to represent between 47 and 50 percent of the total head length.  In 

Miguashaia (fig. 5.8 A) the percentage contribution to head length of the post orbital 

region was calculated to be 74%, in Gavinia, 71%, and in Diplocercides (Nesides) 

(fig 5.8 B), 55% (following the reconstructions of Cloutier (1996), Long (1999), 

Jessen (1973) respectively). Amongst Carboniferous coelacanths, the post orbital 

region does not exceed 50%, being 47% in Lochmocercus, 42 % in Caridosuctor, 42 

% in Polyosteorhynchus, 38% in the unusual Allenypterus (after reconstructions in 

Lund and Lund, 1984), 45 or 47% in Hadronector (after Cloutier, 1991; Lund and 

Lund, 1985) and 47% in Rhabdoderma (after Forey, 1981) (fig. 5.8 E). These latter 

values are similar to those of all later coelacanths, in which the arrangement of bones 

in this region of the skulls has reached a high degree of stability. 

 

Shortening of the cheek region was, in part, achieved through rearrangement of the 

relative position of the post orbital, squamosal and preopercular. In coelacanths that 

branch from the base of the coelacanth clade, such as Miguashaia (Fig. 5, Cloutier, 

1996) and Gavinia (Long, 1999), the post orbital, squamosal, and preopercular are 

arranged one behind the other in an anterior- posterior orientation (fig. 5.8 A). The 

squamosal dominates the cheek, extending from the upper jaw, dorsally, to abut or 

nearly abut the skull roof.   

 

In Diplocercides (fig. 5.8 B,C,D) the post orbital dermal skeleton is substantially 

shortened by reduction of the squamosal, allowing the preopercular to be situated 

below the squamosal, in anterior contact with the lachrymojugal (Stensio, 1937). The 

squamosal ceases to form a part of the upper jaw line, but continues to be situated 

posterior to the post orbital, in contact with the skull roof. 

 

In Paradiplocercides (fig. 5.8 E) and Carboniferous coelacanths, the shortening of the 

post orbital dermal armour was complete, the squamosal having, in turn, come to be 

situated below, rather than behind, the post orbital (and having ceased to approach the 

skull roof). 
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This arrangement, in which the post orbital, squamosal and preopercular are arranged 

one below the other, albeit sometimes diagonally, with the pre-opercular approaching 

the lachrymojugal, is the general state of more crownward coelacanths. Notable 

exceptions include the Triassic Sassenia (Stensio, 1921, Forey, 1998), in which the 

squamosal once more dominates the cheek, separating the pre-opercular from the 

lachrymojugal, and the most crownward taxa such as Latimeria, in which reduction 

of the cheek bones increases their degree of separation. The Carboniferous genus 

Rhabdoderma (Newberry, 1856, Forey, 1981) has postorbital, squamosal, and 

preopercular situated essentially one above the other, however the squamosal is very 

large and apparently separates the preopercular from the lachrymojugal, thereby 

contributing to a more highly arched oral profile, which parallels the arched palate of 

Rhabdoderma (fig 7.1, Forey, 1998,) (fig. 5.8 F). In Hadronector (Lund and Lund, 

1984, 1985; Cloutier, 1991; Forey, 1998), although there is very little agreement on 

the exact dermal bone boundaries, the squamosal appears to extend dorsally, behind 

the post orbital, as far as the spiracular. A reversal in Hadronector is implied, unless 

it is misplaced in the coelacanth tree.    

 

Paradiplocercides in which the squamosal neither approaches the skull roof nor the 

mouth, and the preopercular which is situated ventral to the squamosal extensively 

abuts the lachrymojugal, therefore  exhibits both of the structural changes involved in 

shortening of the post-orbital dermal skeleton. Only the first of these changes is 

apparent in Diplocercides. Both are either present, or further modified in all 

Carboniferous and more recent taxa (except Hadronector).  

 

5.1.6 a.ii Relative length and orientation of the dentary 

 

General mandibular morphological trends in coelacanth evolution include reduction 

of dentary length and anterior inclination of the dentary. Teeth on the dentary 

comprise a single row of individual teeth in early coelacanths whearas in more 

apomorphic coelacanths teeth are borne in groups on dentary tooth plates, or are lost. 
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The dentaries of Paradiplocercides (fig. 5.8 E) and Diplocercides species (fig. 7, 

Stensio, 1937; fig. 3, Jessen, 1973) (fig. 5.8 B) are forwardly angled and have 

dentigerous surfaces equivalent in length to 33-35% the length of their mandibles. 

This proportional length is close to those of most other mid to late Devonian 

examples. These include Holopterygius (40% ) (fig 1, Friedman and Coates, 2005) 

and Gavinia (35%) (fig. 6, Long, 1999). In Miguashaia (fig. 5, Cloutier, 1996) (fig. 

5.8 A) this proportion is only 18% in adult individuals though in juveniles of the 

same species (fig.1, Cloutier, 1996), it is 27%. In the Early Devonian Styloichthys 

(Zhu and Yu, 2002), the tooth-bearing portion of the jaw represents almost 50% of its 

length (fig. 1, Zhu and Yu, 2002, fig. 5, Zhu and Yu, 2004). 

 

By contrast, the dentigerous surfaces of the dentaries of Carboniferous coelacanths 

are relatively shorter than those of Paradiplocercides and Diplocercides, constituting 

25% of jaw length in Rhabdoderma (fig. 5, Forey, 1981) (fig. 5.8 F), 26% in 

Caridosuctor (fig. 22, Lund and Lund, 1985), and 28% in Hadronector (fig. 43, Lund 

and Lund, 1985). The equivalent surface in Allenypterus (figs 5.3, 11.2, Forey, 1998) 

is approximately 31%, though it was probably edentulous (Friedman and Coates, 

2005).  

 

Unlike Paradiplocercides and Diplocercides, the other known Devonian coelacanths, 

Styloichthys (fig. 5, Zhu and Yu, 2004), Gavinia (Long, 1999), Miguashaia (fig. 5, 

Cloutier, 1996) and Holopterygius (fig 1, Friedman and Coates, 2005) did not have 

forwardly angled dentaries which were common amongst later coelacanths. This is 

marked in Hadronector (fig. 43, Lund and Lund, 1985), Caridosuctor (ig. 21, Lund 

and Lund, 1985; fig. 5.3A, Forey, 1998) and Allenypterus (fig. 60, Lund and Lund, 

1985; fig. 5.3 B, Forey, 1998), but also apparent in Polyosteorhynchus (fig. 56, Lund 

and Lund, 1985), Rhabdoderma (fig. 5, Forey, 1981) and possibly Lochmocercus (fig 

69, Lund and Lund, 1985).  

 

The Devonian coelacanths, Styloichthys (fig. 1.i, Zhu and Yu, 2002), Gavinia (Long, 

1999), Miguashaia (Cloutier, 1996), Diplocercides kayseri (fig 7, Stensio, 1937), 

Diplocercides heiligenstockiensis (fig. 3, Jessen, 1973) and Holopterygius (Friedman 
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and Coates, 2005) all resemble Paradiplocercides in possessing a single row of 

individual teeth on the dentary. So too does Lochmocercus (fig. 69, Lund and Lund, 

1985; Forey, 1998). All remaining coelacanths were either edentulous or bore dentary 

teeth on separate tooth plates (Forey, 1998). Tooth plates have been demonstrated in 

Rhabdoderma (fig. 5, Forey, 1981), Caridosuctor, and Polyosteorhynchus, (Lund and 

Lund, 1985), though not Allenypterus, which was probably edentulous (Friedman and 

Coates, 2005). 

 

If Holopterygius is the sister group of Allenypterus (Friedman and Coates, 2005), 

then reduction in dentary length, forward angling of the dentary, and loss of 

individually borne teeth, are independantly aquired in the lineage leading to 

Allenypterus and that leading to most other coelacanths. 

 

5.1.6 a.iii   Dermal ornament of the head 

 

Fine linear ornament, of a similar appearance to that of juvenile specimens of 

Paradiplocercides, is also present on the cheek bones and operculae of young 

coelacanths from the Mason Creek biota, of the Upper Carboniferous Francis Creek 

Shale of Illinois (e.g. UC14389 in the Field Museum, Chicago) (pers. obs.). These 

specimens are considered to be juveniles and young (Schultze, 1972) and have been 

described as Rhabdoderma exiguus (Eastman, 1902) or R. exiguum (Shultze, 1972), a 

generic allocation accepted by Forey (1998) and all other authors. Likewise, a fairly 

small coelacanth, UF 270 (in the Field Museum), identified as Rhabdoderma elegans 

((Newberry), 1856, Moy-Thomas, 1937), from the Carboniferous Freeport Coal of 

Ohio, exhibits an operculum clearly ornamented with parallel, continuous wavy 

ridges (pers. obs.). This ornamentation is markedly different from the „elongate 

tubercles (Cloutier, 1981) surrounded by ridges‟ (Forey, 1998) considered to be 

diagnostic of Rhabdoderma, and suggests that, as in Paradiplocercides, the adult 

dermal bone ornament pattern was derived, through ontogenetic derivation, from a 

linear ornament recalling that of the more plesiomorphic Gavinia (Long, 1999). This 

implies that dermal ornament is a potentially misleading taxonomic indicator in 

Palaeozoic coelacanths. Nonetheless the only non Devonian genus of Diplocercides, 
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from the Lower Carboniferous of Ireland, Diplocercides davisi ((Moy Thomas) 1937; 

Cloutier, 1981), consisting of isolated head bones was removed from Rhabdoderma 

due to a strong similarity of its opercular ornament, to that of Diplocercides (Cloutier, 

1981; Forey 1998). It is therefore a possibility that Diplocercides davisi may 

represent a sub adult Rhabdoderma.   

 

5.1.6  a.iv  Caudal fin 

 

Diphycercal tails are common to almost all coelacanths, though unusually modified in 

Holopterygius (Friedman and Coates, 2007) (fig. 5.9 G) and Allenypterus (Forey, 

1998) (fig. 5.9 H). By contrast Gavinia (Long, 1999) and Miguashaia (Schultze, 

1973; Cloutier, 1996) (fig 5.9 E), the most plesiomorphic taxa in which the caudal fin 

is known, have heterocercal caudal fins more closely resembling those of early 

actinopterygians such as Moythomasia (Gardiner, 1984). 

 

Gavinia and Miguashaia have far more numerous and closely packed fin rays in all 

their fins than do more crownward coelacanths. In addition the fin rays bifurcate. 

These two trends are also seen in the pectoral fin of Shoshonia (Friedman, Coates and 

Anderson, 2007). Like Paradiplocercides (fig. 5.9 A,B), Gavinia and Miguashaia 

have broad caudal neural and haemal arches, coupled with broad radials, each of 

which supports more than one fin ray. In contrast to Paradiplocercides, Miguashaia 

(fig. 1b, Cloutier, 1996) also has broad abutting neural and haemal spines 

substantially anterior to the caudal fin. This is also the case in Diplocercides 

heiligenstockiensis, which additionally retains substantially more fin rays (Jessen, 

1973) than are found, either in Paradiplocercides, or Carboniferous coelacanths. 

Whereas in Paradiplocercides the anteriormost radials each support two fin rays (fig. 

5.9 B), in Diplocercides heiligenstockiensis the anteriormost five radials support three 

fin rays, with two per radial more posteriorly (Jessen, 1973) (fig. 5.9 C). In 

Diplocercides kayseri (fig. 5.9 D), although there are substantially more caudal fin 

rays than in Paradiplocercides, the first eight radials support only two 

lepichondrichia each (Stensio, 1937, fig. 6.2). Jessen records a branched caudal 

lepidotrichium (Jessen, 1973, pg. 169) in Diplocercides heiligenstockiensis. 
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Bifurcation of lepidotrichia is, by contrast, not seen in any of the fins of 

Paradiplocercides or post Devonian coelacanths.   

 

Forey (1998) characterised the genus Diplocercides as possessing broad and abutting 

haemal and neural arches, as this is the case in Diplocercides heiligenstockiensis (fig. 

5.9 C) (Jessen, 1973). By contrast, in describing the tail of Diplocercides kayseri 

Stensio (1937, pg. 39) stated, „the endoskeleton of the caudal fin is of the ordinary 

Coelacanthid type.‟ As illustrated in Stensio (1937, Plate 6), the caudal radials are not 

remarkably broad or abutting in this species (fig. 5.9 D). This is problematic as the 

condition in Paradiplocercides might be thought of as intermediate between the 

states found in these two Diplocercides species, though in many other features, 

including possession of far more numerous lepichondichia, they both appear more 

plesiomorphic than Paradiplocercides. As the caudal region described by Stensio 

(1937) was identified on the basis of scale ornament and stratigraphy alone, it may 

not be unequivicable. Alternately there may have been ontogenetic changes in this 

character.  

 

Interestingly in Hadronector (fig. 36, Lund and Lund, 1985) the haemal and neural 

arches and radials of the caudal region, though not as broad as those of 

Paradiplocercides, were likewise broader than those of the rest of its body and are 

not dissimilar to those attributed to Diplocercides kayseri (Stensio, 1937). Although 

Friedman and Coates (2005) considered that Holopterygius did not clearly have 

abutting neural and haemal arches, they are certainly broader and more closely 

aligned than in most coelacanths (fig. 5.9 G), approaching the condition found in 

Diplocercides heiligenstockiensis (Jessen, 1973). Unlike in Paradiplocercides, but 

similar to the condition found in Diplocercides heiligenstockiensis (Jessen, 1973) and 

Miguashaia (fig. 1b, Cloutier, 1996), the neural and haemal arches of Holopterygius 

are equally broad throughout the length of the body (fig. 1, Friedman and Coates, 

2005). In possessing three lepidochondrichia per radial, at least in the anterior region 

of the caudal fin, Holopterygius also most resembles Diplocercides 

heiligenstockiensis (Jessen, 1973). 
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Although thought to be the sister group of Holopterygius (Friedman and Coates, 

2005), the Carboniferous Allenypterus, in keeping with other Carboniferous and later 

coelacanths (Forey, 1998), has more slender, widely spaced, neural and haemal 

arches with similarly slender radials. In addition it has only one to two fin rays per 

radial (Fig. 11.2, Forey, 1998). 

 

5.1.6  b  Phylogeny  

 

The stratocladogram of Devonian and Carboniferous coelacanths (fig. 5.11) based on 

the phylogenetic analysis (fig. 5.10 C), like that of Forey (1998) (fig. 5.10 A) and 

Friedman and Coates (2005) (fig 5.10 B), displays a high degree of congruence 

between the branching order and the stratigraphic order of the taxa. In the 

stratocladogram presented by Forey (1998) the branching order of all Devonian and 

Carboniferous coelacanths was consistent with their stratigraphic order. That of 

Friedman and Coates (2005), however, by introducing Givetian to Frasnian 

Holopterygius as the sistergroup of Carboniferous Allenypterus, broke down the 

ordered staircase of taxa. Their cladogram demonstrated early diversification of 

coelacanths, and therefore indicated a far more incomplete fossil record thereof. Not 

only did it suggest a lengthy ghost lineage between Holopterygius and Allenypterus 

but, as these two appear more apomorphic than Diplocercides, it also required the 

latter to have a ghost lineage stretching back to, at least, the early Frasnian. The new 

analysis (fig. 5.10 C, 5.11) suggests that Paradiplocercides should have been 

preceded by a similarly lengthy ghost lineage.  

 

The nodes between Paradiplocercides and Hadronector are not well supported, and 

were recovered in less than 50% of trees generated from randomly re-sampled data 

during the bootstrap analysis. Forey (1998) failed to resolve the relationships between 

Lochmocercus, Hadronector, Allenypterus and more derived coelacanths without 

reweighting, attributing the difficulty to missing data. In addition to incomplete 

knowledge of the character states a high degree of homoplasy is demonstrated 

amongst early coelacanths. This is evident in an exploration of some character states 

reported in Diplocercides, Paradiplocercides, Holopterygius, and Allenypterus. 
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Together with Lochmocercus and Chagrinia these genera are uniquely united by 

having non-heterocercal tails (in common with all more derived coelacanths), whilst 

retaining more than one fin ray per caudal fin radial (in common with all more 

plesiomorphic taxa).  

 

Paradiplocercides closely resembles Diplocercides and the two share with more 

plesiomorphic taxa, in contrast to Allenypterus, a pectoral fin borne low on the 

pectoral girdle. (Cloutier, 1991) coded Lochmocercus as having a pectoral fin high on 

the pectoral girdle but this is not certain from the figure of the type specimen (Fig 5, 

Lund and Lund, 1984)). Paradiplocercides also uniquely shares with Diplocercides 

kayseri and D. jaekeli, though possibly not D. heiligenstockiensis, an elbow-like 

ventral expansion of the lachrymojugal.   

 

Paradiplocercides is seemingly more closely related to relatively advanced 

coelacanths than is Diplocercides, because it possesses larger anterior parietals, a 

larger, more crescent shaped post orbital in which the infraorbital canal runs along the 

anterior margin, a far smaller squamosal that does not approach the level of the skull 

roof, and far fewer fin rays. 

 

Only two features appear more plesiomorphic in Paradiplocercides than in 

Diplocercides: the linear cheek ornament, and the absence of a second dorsal fin lobe 

(in common with Gavinia and Miguashaia). The former appears to be a juvenile 

character that, with growth, is replaced by an ornament similar to that of 

Diplocercides (fig. 5.5). Ontogeny may also explain the anomalous lack of a second 

dorsal fin lobe. Support for this hypothesis comes from Miguashaia, in which a lobe 

on the anal fin is lacking in the smallest specimens but is present in larger individuals 

(Cloutier, 1996). As the second dorsal fin is not preserved in any non-juvenile 

Paradiplocercides specimens, its adult state remains moot.  

 

Paradiplocercides‟ possession of broad haemal and neural arches in the caudal fin (in 

common with Miguashaia, Gavinia and Diplocercides heiligenstockiensis) separates 

it from all more apomorphic coelacanths, with the exception of the unusual 
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Holopterygius. In terms of the lineage of more generalised coelacanths, (i.e. 

excluding Holopterygius and Allenypterus), Late Devonian (Famennian) 

Paradiplocercides therefore fits, morphologically, between the Late Devonian, 

Frasnian (and possibly Famennian) Diplocercides and Early Carboniferous to recent 

taxa, though it does exhibit early reduction in first dorsal fin rays. 

 

A greater degree of complexity is masked by the practice of considering 

Diplocercides as if a single taxon in phylogenetic analyses. Diplocercides is, for 

example, generally coded as having posterior neural and haemal arches broad and 

abutting one another (Forey, 1998; Friedman and Coates, 2005), in common with 

Miguashaia. Diplocercides heiligenstockiensis certainly has broad neural and haemal 

arches both in the caudal region (where they are accompanied by broad caudal 

radials) and anterior thereto. However a specimen attributed to Diplocercides kayseri 

(specimen‟c‟, Plate vi, Stensio, 1937) has haemal and neural arches that are far more 

slender, with those of the caudal region, together with their associated radials, being 

no broader than those of some Carboniferous taxa . They are substantially more 

slender than those of Holopterygius or those of the caudal region of 

Paradiplocercides (fig. 5.9).   

 

According to the character matrices of Forey (1998) and Friedman and Coates (2005) 

the only mutually known character that clearly places Allenypterus in a more 

crownward position than Paradiplocercides, is the unambiguous possession of 

slender haemal and neural arches and their associated caudal radials (Forey, 1998, 

character 90). 

 

Placement of Allenypterus more crownward than Diplocercides is supported by a 

number of characters. These are: supraorbital canals opening through bones as single 

large pores (Forey, 1998, character 23), absence of anterior pit lines (Forey, 1998, 

character 24), squamosal not reaching skull roof (Forey, 1998, character 34), 

infraorbital canal running along the anterior margin of the postorbital (Forey, 1998, 

character 45), dentary without ornament (Forey, 1998, character 63), and posterior 

neural and haemal spines not abutting (Forey, 1998, character 90). 
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Of these, characters 34 and 45 are also known in Paradiplocercides where they are 

ranked the same. Forey's Character 90, alone, (posterior neural and haemal spines not 

abutting), therefore supports a position for Allenypterus more crownward than 

Paradiplocercides.  

 

In Holopterygius character 90 is scored as unknown by Friedman and Coates (2005), 

though its neural and haemal spines are certainly far broader than those of 

Allenypterus. Changing the coding of this character in Holopterygius did not change 

the shape of the most parsimonious tree. Of the other apomorphic characters 

supporting the position of Allenypterus crownward of Diplocercides, character 23 

(large pores) is the only other one apparent in Holopterygius. 

 

The position of Holopterygius as the sister taxon of Allenypterus is strongly 

supported by it‟s unusual body form, as well as it‟s possession of ventral keel scales 

(Friedman and Coates (2005), character 109). According to the existing matrices of 

Forey (1998) and Friedman and Coates (2006), therefore, only the lack of broad, 

abutting haemal and neural spines in Allenypterus places it more crownward than 

Paradiplocercides, whereas only the sistergroup relationship between Allenypterus 

and Holopterygius supports the latter‟s position crownward of Paradiplocercides. In 

having broad haemal and neural arches, not only in the caudal region, but throughout 

its body length Holopterygius is however unlike Allenypterus and is apparently more 

plesiomorphic than Paradiplocercides.   

 

Allenypterus‟ position crownward of Paradiplocercides is strengthened by the 

addition of a character (character 111) relating to the position of the pectoral fin. In 

all taxa up to and including Paradiplocercides the pectoral fin is close to the ventral 

outline of the body, but in Allenypterus and most other post Devonian coelacanths it 

is situated far higher on the flank. Unfortunately the state of this character in 

Holopterygius is not apparent. Part of the difficulty in interpreting the 

interrelationships of these four genera is the paucity of information that can be 

extracted from the only known specimen of Holopterygius, making its phylogenetic 
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position largely dependant on Allenypterus. Support for a sistergroup relationship 

between these two taxa, based on their unusual body form and the presence of keel 

scales, cannot therefore be adequately tested to exclude the possibility of parallel 

adaptation to a specific niche.  

 

In a number of ways Holopterygius is more plesiomorphic than Allenypterus. Like 

coelacanth taxa more plesiomorphic than Diplocercides it does not have a forward 

inclination of the dentary, whereas Allenypterus like Diplocercides and more 

crownward coelacanths does. The dentary of Holopterygius is also far larger, relative 

to its jaw length, than that of Allenypterus and has, in common with Lochmocercus 

and more plesiomorphic taxa, a single row of individual teeth. By contrast 

Allenypterus is edentulous, lacking a row of fused teeth, in common with all taxa 

more apomorphic than Lochmocercus which are either edentulous or have tooth 

plates.  

 

Assuming that the most parsimonious tree generated by PAUP is correct, a large 

number of parallel developments have simultaneously occurred in the coelacanth 

lineage leading from Holopterygius to Allenypterus, and that leading towards 

crowngroup coelacanths. These included acquisition of a forwardly angled dentary 

(Holopterygius having previously lost this character), reduction of dentary length, 

loss of individual dentary teeth, and reduction of haemal and neural arch width in 

both the trunk and caudal regions. Interestingly a similar homoplastic reduction of 

arch and radial width appears to have occurred within the Diplocercides clade, 

between the lineages of Diplocercides heiligenstockiensis and Diplocercides kayseri.   

 

Finally it is worth revisiting the classic view that coelacanth crown group characters 

arose early in the coelacanth clade, which then remained largely static through time 

(eg. Huxley, 1861; Moy-Thomas and Miles, 1971; Jarvic, 1980). Ahlberg (1992) 

presented the acquisition of the unusual lobed anal and second dorsal fins of 

coelacanths, together with the coelacanth diphycercal tail, as a probable example of a 

sudden dramatic, successful homeotic-like mutation evident in the fossil record. As 

outlined above it is clear that these characters were not simultaneously acquired. A 



 206 
 
 

small basal lobe to the anal fin is apparent in Gavinia (Long, 1999) and larger 

specimens of Miguashaia (Cloutier, 1996), which both lack a lobe on the second 

dorsal fin and a diphycercal tail. Paradiplocercides exhibits the characteristic 

coelacanth caudal fin and lobe associated with the anal fin, but not a basal lobe of the 

second dorsal fin. Diplocercides and most more-apomorphic taxa demonstrate all 

three crowngroup states, though the fin lobes are not nearly as well developed as in 

the extant taxon. It is clear then that acquisition of a small basal lobe to the anal fin 

was followed by that of a diphycercal tail and lastly by that of a basal lobe to the 

second dorsal fin.  

 

Likewise it is demonstrated above that the rearrangement of the cheek region, the 

reduction and adaptation of the dentary, and the modification of the axial skeleton in 

coelacanths were gradually and incrementally acquired. Just as Cloutier (1991) and 

Forey (1998) were able to demonstrate that coelacanths have not remained static 

since the Devonian, but are in fact highly derived, it is now possible to assert that 

their crown group characters did not arise suddenly during the Late Devonian, but 

evolved gradually and sequentially over tens of millions of years. It appears, 

therefore, that in this instance, apparent uniformity within a clade, as well as 

apparently abrupt evolutionary change in the fossil record, were actually indicators of 

an incomplete fossil record.  

 

5.1.6 c  Reproduction and Ecology 

 

Examples of the extant coelacanth, Latimeria, have been collected with near-full-term 

juveniles within the reproductive tract (Smith et al., 1975; Bruton et al., 1992), 

indicating that they give birth to live young. The possibility of live bearing by 

coelacanths had already been proposed for the Upper Jurassic genus Undina, 

following the discovery of anterior facing juveniles in the abdominal cavity of 

Undina pencillata (Watson, 1927). This interpretation has recently been corroborated 

(Clack, 1996). 
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The discovery of large numbers of eggs, yolk sac juveniles and juveniles of 

Rhabdoderma exiguus (Schultze, 1972), in the Upper Carboniferous Mazon Creek 

fauna, however, indicates that coelacanths were not always ovoviviparous and that 

Rhabdoderma was probably oviparous. Lack of non-juvenile specimens, furthermore, 

suggests that the estuarine environment of the Mazon Creek fauna provided a safe 

spawning ground for coelacanths living in another aquatic habitat (Schultze, 1972; 

Schultze, 1980). 

 

It is, therefore, significant that the Waterloo Farm shale is interpreted as having been 

deposited in a quiet embayment of a back-barrier lagoonal estuary (Gess and Hiller, 

1995) (on the shores of the Agulhas Sea). In addition, more than 75% of 

Paradiplocercides specimens belong to a single age group, ranging in size between 3 

and 6 centimetres (fig. 5.12). This strongly suggests an estuarine breeding-ground or 

nursery, probably in the shallow embayment where the shale was deposited. The 

evidence of this behaviour in a Devonian coelacanth suggests it‟s early utilisation by 

coelacanths. 

 

 Use of estuaries as a safe haven for juveniles of predominantly marine species is 

common in recent environments. Along, the Eastern Cape coast of South Africa, for 

example, 34 of 80 fish species occurring in estuaries are, to a varying extent, utilising 

this strategy. Of these, 14 species, including the Spotted Grunter (Pomadasys 

commersonni) and Cape Stumpnose (Rhabdosargus holubi), are entirely dependant 

on estuaries. The majority spawn close inshore, allowing young fry and even larvae to 

enter estuaries soon after hatching. Fluctuations in temperature, salinity and turbidity 

in estuaries, to which the eggs are particularly sensitive, are overcome by paternal 

mouth brooding in White Seacatfish (Galeichthys feliceps), which spawn in estuaries, 

whereas Eagleray (Myliobatis aquila) and Marbled Electric Ray (Torbedo 

fuscomaculata) enter estuaries to give birth to live young (Whitfield and Bok, 1998). 

On the basis of comparison with mouth brooding catfishes, Balon (1991) has mooted 

that Rhabdoderma exiguum may have been a mouthbrooder.  
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Although the juvenile Paradiplocercides specimens are of approximately the same 

size range as those of Rhabdoderma exiguum (Schultze, 1980), it is not possible to 

recognise yolk sac juveniles. In addition, due to the frequently somewhat bloated and 

dorsally contracted state of the specimens, the presence or absence of a partially 

resorbed yolk sac is not unambiguously established. Only use of the estuarine 

environment as a nursery is therefore strongly indicated with regard to 

Paradiplocercides.  

 

Sometimes several whole-bodied specimens of Paradiplocercides are found on the 

same horizon, suggesting that they died as a result of a sudden stress within the 

environment. Considering the anoxic nature of the sediment (Gess, 2002), at a time of 

globally low oxygen levels (Algeo, et al., 2001) this stress may have been an oxygen 

deficiency. Alternately, considering the markedly high latitude position of southern 

Africa during the late Devonian (Scotese and McKerrow, 1990), temperature 

fluctuations are not unlikely to have killed shoals of juvenile fish sheltering in 

shallow water. 

 

5.1.7  Conclusion 

 

Paradiplocercides provides an important addition to the scant record of early 

coelacanths, highlighting a greater than previously expected diversity amongst 

Devonian taxa. The resemblance of many of its elements to those of Diplocercides 

suggests that this diversity may formerly have been concealed, in part, by a tradition 

of  “binning” generalised Late Devonian, and even Early Carboniferous, fragmentary 

remains in this latter genus. Ontogenetic transformations demonstrated in the 

ornament of Paradiplocercides dermal bones, indicate that dermal bone ornament, 

formerly used as a character in assigning incomplete material to genera, is unreliable. 

Records of Diplocercides from the Carboniferous, relying on dermal ornament type 

are therefore dubious.   
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Paradiplocercides apparently represents the least plesiomorphic Devonian 

coelacanth, apart from Holopterygius. The unusual anguiliform Holopterygius may 

represent a more crownward Devonian derivation leading towards similarly 

specialised Carboniferous Allenypterus. This phylogenetic solution requires a 

remarkable degree of homoplasy between anguiliform and non-anguiliform Devonian 

to Carboniferous taxa. A high degree of homoplasy is, however, evident in other Late 

Devonian and Carboniferous taxa. Coupled with the incomplete nature of many key 

specimens this results in a most parsimonius phylogenetic tree that may become 

unstable with discovery of new taxa and new material of existing taxa, as well as 

more rigorous analysis of existing material. It would not be surprising if the 

interrelationships of early coelacanths prove to be more complex. 

The growing array of Devonian coelacanths demonstrates that crowngroup characters 

were not rapidly, or simultaneously, acquired towards the end of the Devonian, as 

once believed. Rather, they were gradually and sequentially acquired during the 

Devonian. Towards the end of the Devonian a number of diverse lineages probably 

coexisted, including seemingly plesiomorphic taxa such as Miguashaia; the group 

from which most post Devonian probably descended, including Diplocercides and 

Paradiplocercides; and specialised anguiliform taxa such as Holopterygius.  

Carboniferous coelacanths demonstrate less diversity, and tend to group together in 

phylogenetic analyses, suggesting that they belong to a post Devonian radiation. 

Allenypterus is currently thought of as representing a different surviving lineage to 

that of other Carboniferous coelacanths, having a sistergroup relationship with Late 

Devonian Holopterygius. Better preserved material of Holopterygius will be required 

to establish whether this is true or whether Allenypterus is more closely related to 

Carboniferous taxa and resembles Holopterygius due to similar environmetal 

adaptations.    

Taphonomic and sedimentary evidence suggests that Paradiplocercides was using the 

shallow still embayment of a coastal estuarine lagoon as a nursery area for juvenile 

coelacanths, pre-empting a strategy apparently employed by a Carboniferous species 

attributed to Rhabdoderma. 
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Abbreviations used 

 

a.f, anal fin; ang, angular; ano, anocleithrum; c.f, caudal fin; cla, clavicle; cle, 

cleithrum; co, coronoid; d1/d.f1, first dorsal fin; d.f2 second dorsal fin; de, dentary; 

ext; extrascapular; ext.l, lateral extrascapular; ext.m, median extrascapular; gu, gular; 

gu.p.l, gular pit line; hr, haemal radial; hs, haemal arch spine; lj, lachrymojugal; lr, 

lateral rostral; l.p.art, left prearticular; n.c, nasal capsule; na; nasal; nr, neural radial; 

ns, neural arch spine; op, operculum; or, orbit; ot, otic capsule; pa, parietal; p.co, 

principal coranoid; pec. f, pectoral fin; pel.f, pelvic fin; pmx, premaxilla; po, 

postorbital; pop, preoperculum; pop.s.c, preopercular sensory canal; pp, postparietal;  

pt, pterygoid; preo, preorbital; r.ang, right angular; so, supraorbital; s.o, sclerotic 

ossicle; sop; suboperculum; spi, spiracular; spl splenial; sq, squamosal; stt, 

supratemporal; sy, symplectic; ex, extracleithrum  

 

APPENDIX: DATA USED IN PHYLLOGENETIC ANALYSIS 

 

Character states used in phylogenetic analysis 

 

Characters 1-108, (Forey, 1998), character 109 (Friedman and Coates, 2005), 

character 111 (= character 42, Cloutier, 1991), characters 110, 112-114, new. New 

data in bold 

 

1. Margin of dermal intracranial joint: straight (0), deeply notched (1). 

2. Snout bones: free from one another (0), fused (1). 

3. Median rostral: single median rostral or internasal (0), several median rostrals 

or internasals (1). 

4. Premaxillae: paired (0), fragmented (1). 

5. Dorsal lamina of premaxilla: present (0), absent (1). 
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6. Anterior opening of rostral organ: within premaxilla (0), within separate 

rostral ossicle (1). 

7. Parietals: one pair (1), two pairs (2). 

8. Anterior and posterior pairs of parietals: similar size (0), dissimilar size (1). 

9. Number of supraorbitals/tectals: fewer than 8 (0), greater than 10 (1). 

10. Preorbital absent (0), present (1). 

11. Descending process of parietal: absent (0), present (1).    

12. Intertemporal: absent (0), present (1). 

13. Postparietal descending process: absent (0), present (1). 

14. Supratemporal descending process: absent (0), present (1). 

15. Extrascapulars: sutured with postparietals (0), free (1). 

16. Extrascapulars: behind skull roof (0), part of roof (1). 

17. Number of extrascapulars: three (0), five (1), more than seven (2). 

18. Posterior margin of the skull roof: straight (0), embayed (1). 

19. Supraorbital sensory canal: passes through ossification centres (0), follows a 

sutural course (1). 

20. Medial branch of otic canal: absent (0), present (1).   

21. Otic canal joining supratemporal canal: absent (0), present (1). 

22. Anterior branches of supratemporal commissure: absent (0), present (1). 

23. Supraorbital sensory canals opening through bones as: single large pores (0), 

bifurcating pores (1), many tiny pores (2). 

24. Anterior pit line: absent (0), present (1). 

25. Middle and posterior pit lines: within posterior half of postparietal (0), within 

anterior third (1). 

26. Pit lines: marking postparietals (1), not marking (0). 

27. Parietals and postparietals ornamented with: enamel-capped ridges/tubercles 

(0), unornamented (1), marked by coarse rugosites (2). 

28. Parietals and postparietals: without raised areas (0), with raised areas (1). 

29. Cheek bones: in contact/overlapping (0), separated (1). 

30. Spiracular (postspiracular): absent (0), present (1). 

31. Preoperculum: absent (0), present (1). 
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32. Suboperculum: absent (0), present (1). 

33. Quadratojugal: absent (0), present (1). 

34. Squamosal: not reaching skull roof (0), reaching skull roof (1). 

35. Lachrymojugal: not expanded anteriorly (0), expanded (1). 

36. Lachrymojugal: ending without anterior angle (0), angled anteriorly (1). 

37. Squamosal: large (0), reduced to narrow tube (1). 

38. Preoperculum: large (0), reduced to narrow tube (1). 

39. Preoperculum: undifferentiated (0), developed as a posterior tube-like canal-bearing 

portion and an anterior blade-like portion (1). 

40. Anterodorsal excavation in postorbital: absent (0), present (1). 

41. Postorbital: without anterior process (0), with process (1). 

42. Postorbital: plate-like (0), reduced to narrow tube (1). 

43. Postorbital: lying wholly behind intracranial joint (0), spanning joint (1). 

44. Infraorbital canal: within postorbital, with simple pores opening directly from 

main canal (0), anterior and posterior branches within the postorbital (1). 

45. Infraorbital canal: running through centre of postorbital (0), running along                   

Anterior margin of the postorbital (1). 

46. Jugal sensory canal: simple (0), with prominent branches (1). 

47. Jugal canal: running through centre of bone (0), running along ventral margin 

of squamosal (1). 

48. Pit lines: marking bones (0), failing to mark bones (1). 

49. Ornament on cheek bones absent (0), present (1). 

50. Openings for infraorbital, jugal and preopercular sensory canals: many small 

pores (0), few large pores (1).   

51. Lachrymojugal: sutured to preorbital and lateral rostral (0), lying in sutural 

contact with tectal-supraorbital series (1). 

52. Sclerotic ossicles: absent (0), present (1). 

53. Retroarticular and articular: co-ossified (0), separated (1). 

54. Dentary teeth: fused to dentary (0), on separate tooth plates (1).  

55. Number of coronoids at anterior end of jaw: zero (0), one (1), two (2) three 

(3), four (4). 

56. Coronoid opposite posterior end of dentary: not modified (0), modified (1). 
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57. Dentary: simple (0), hook-shaped (1). 

58. Oral pit line: short, confined to angular (0), long, reaching forward to dentary 

and/or splenial (1). 

59. Oral pit line: located at centre of ossification of angular (0), removed from 

the centre of ossification (1). 

60. Subopercular branch of mandibular sensory canal: absent (0), present (1). 

61. Dentary sensory pore: absent (0), present (1). 

62. Ornament of lower jaw: ridged (0), tubercular (1). 

63. Dentary: with ornament (0), without ornament (1). 

64. Splenial: with ornament (0), without ornament (1). 

65. Dentary: without prominent lateral swelling (0), with swelling (1). 

66. Principle coronoid: lying free (0), sutured to angular (1). 

67. Coronoid fangs: absent (0), present (1). 

68. Prearticular and/or coronoid teeth: pointed and smooth (0), rounded and 

marked with fine striations. 

69. Orbitosphenoid and basisphenoid regions: co-ossified (0), separate (1). 

70. Basisphenoid: extending forward to enclose optic foramen (0), optic foramen 

lying within separate interorbital ossification or cartilage (1). 

71. Processus connectens: meeting parasphenoid (0), failing to meet (1). 

72. Basipterygoid process: absent (0), present (1). 

73. Antotic process: not covered by parietal descending process (0), covered. 

74. Temporal excavation: lined with bone (0), not lined (1). 

75. Otico-occipital: solid (0), separated to prootic/opisthtoic (1). 

76. Supraoccipital: absent (0), present (1). 

77. Vestibular fontanelle: absent (0), present (1). 

78. Buccohypophysial canal: opening through parasphenoid (0), closed (1). 

79. Parasphenoid: without ascending laminae anteriorly (0), with ascending 

laminae (1). 

80. Suprapterygoid process: absent (0), present (1). 

81. Vomers: not meeting in midline (0), meeting medially (1). 

82. Prootic: without complex suture with basioccipital region (0), with suture (1). 
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83. Superficial ophthalmic branch of anterodorsal lateral line nerve: not piercing 

antotic process (0), piercing antotic process (1). 

84. Process on braincase for articulation of infrabranchial: absent (0), present (1). 

85. Separate lateral ethmoids: absent (0), present (1). 

86. Separate basioccipital: absent (0), present (1). 

87. Dorsum sellae: small (0), large and constricting entrance to cranial cavity 

anterior to intracranial joint (1). 

88. Extracleithrum: absent (0), present (1). 

89. Anocleithrum: simple (0), forked (1). 

90. Posterior neural and haemal spines: abutting one another (0), not abutting (1). 

91. Occipital neural arches: not expanded (0), expanded (1). 

92. Ossified ribs: absent (0), present (1). 

93. Diphycercal caudal fin: absent (0), present (1). 

94. Caudal fin rays: more numerous than radials (0), equal in number (1). 

95. Fin rays: branched (0), unbranched (1). 

96. Fin rays in D1: more than ten (0), eight or nine (1), less than eight (2). 

97. Caudal lobes; symmetrical (0), asymmetrical (1). 

98. Fin rays in D1: without denticles (0), with denticles (1). 

99. Paired fin rays: not expanded (0), expanded (1). 

 100.  Pelvic fins: abdominal (0), thoracic (1). 

    101.  Basal plate of D1: with smooth ventral margin (0), emarginate and       

       accommodating the tips of adjacent neural spines (1). 

    102.  Basal support of D2: simple (0), forked anteriorly (1). 

    103.  Median fin rays: not expanded (0), expanded (10. 

104. Scale ornament: not differentiated (0), differentiated (1). 

105. Lateral line openings in single scales: single (0), multiple (1). 

106. Scale ornament: enamel ridges or tubercles (0), rugose bone only (1). 

107. Swimbladder: not ossified (0), ossified (1). 

108. Pelvic bones on each side: separate from one another (0), fused over their 

entire length (1). 

109. Ventral keel scales: absent (0), present (1).    

    110:  Lachrymojugal with an elbow-like ventral extension: absent (0), present (1) 
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    111:  Insertion of the pectoral fin, low on the pectoral girdle (0), high on the   

             pectoral girdle (1). 

    112: Anal fin without (0) or with (1) a basal lobe. 

    113: Second dorsal fin without (0) or with (1) a basal lobe. 

    114: Preopercular distant from (0) or adjacent to/abutting (1) lachrymojugal 

 

Taxon-by-character matrix 

 

According to Forey (1998), as modified by Friedman and Coates (2005), with coding 

of additional characters added in bold. 

 

Allenypterus 

0?????2001 ?0??000010 000000001? 1100000000 01001??101 010???0110 

001000???? ?????????? ???????101 0010101000 0000000010 1001 

 

Axelrodichthys 

1000112100 101001111? 1020?12010 1000101100 1011000120 1011401??0 

1?11110110 001111?0?? 110?1111?1 1111110100 0101?11000 1110 

 

Caridosuctor 

1000002101 ?0??001011 0000100001 11??000000 000??00010 0101410000 

1010001??? ?????????? ???????101 ?011101000 1100?01000 111? 

 

Chinlea 

00?01?2000 10??0011?1 10????2011 100?110000 001?0???20 10???11??? 

1?11001??? ?????????? ???????1?1 ?11111?000 ?101?1?000 111? 

 

Coccoderma 

10?011210? 1001001011 0020101010 100?001100 0001001100 01?1410000 

1111000??? ?????????? ???????111 1011100011 0100111100 1110 

 

 



 216 
 
 

Coelacanthus 

00?11?2100 10010011?1 10?0?1101? ??00001??0 010?1?1?10 0101410??0 

1?110000?? ?????????? ???????101 0011101000 0100?01000 1110 

 

Diplocercides  

001???2101 0000000010 0021100001 1101000000 0000000010 0100300100 

0000000001 1101001101 ?010000??0 0010100000 ??0000???1 0111 

 

Diplurus 

00001?2110 1010102111 1000?11011 1000100000 0100111101 101??00000 

1?11000010 001?11?00? ??0?111101 1111110100 0101?00000 1111 

 

Garnbergia 

??????21?0 ?0?????1?? ????????1? 10001100?0 000?????1? 10???????? ?????????? 

?????????? ?????????? ?????1?0?? 0100?0??00 1??? 

 

Hadronector 

00100021?1 ?0??000010 0010100001 1100??0000 000?1?0?10 010???0010 

000000???? ?????????? ???????101 ?011100000 010??01000 1111 

 

Holophagus 

10?01?2110 101110?111 1?20?10010 1100100000 000?1??110 101??11001 

1110001??? ????11???? ?1??1??1?1 1011110110 0110?01000 1111 

 

Holopterygius 

?0?0?????? ?????????? ??0??????? ?????????? ?????????? ??00??0??? ??????00?? 

???????00? ???????10? 00101?1??? ?00???0?10 ???? 

 

Latimeria 

0011112110 1011102111 1100102111 1100100011 0001111111 1011411011 

1?11001010 0010110010 1100111101 1011120100 0100100000 1110 
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Laugia 

11?0??1?01 1001001011 0000?10010 0000000000 0001001110 0101400000 

1111000011 101110110? ?000101101 1011111011 0100?01100 111? 

 

Libys 

0???1????? 10111??111 1?00?11010 1000100010 000?1???01 ?1?1411001 

1?110001?? ?????????? ???????111 1011110110 0110101000 1110 

 

Lochmocercus 

?????????? ????????10 100???0001 11??000000 00?01000?0 01?0?00??0 

00??000??? ?????????? ???????101 ??10100000 100??0?000 ?11? 

 

Macropoma 

01?0?12110 1011102111 1120?10010 1?00100011 0001101110 10114?1011 

1111000010 001011?01? 110?111111 1011120100 0101101000 1110 

 

Mawsonia 

1?????2100 10100111?1 1020?12010 ?000100100 101?000120 0011??1??0 

1?111101?? ?????????? ?????????1 ??111?0100 0101?1?0?? ???0 

 

Miguashaia 

00?0001?0? 01??000000 002?00000? 1101??0000 000?000?10 ?1?0??001? 

?0??0000?? ?????????? ???????1?0 ??0000?000 ??0000??00 0100 

 

Paradiplocercides 

00???020?1 ?0??00101? ??????0001 1100000000 00001?0010 01?0??0??? 

?0???0???? ?????????? ???????100 ?010110000 ??00?0??01 0101 

 

Polyosteorhynchus 

00?0002101 ???100?010 101???0001 11?0000000 000?1?0010 0101?00010 

10??000??? ?????????? ???????1?1 10111?1000 1000?00000 1111 
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Rhabdoderma 

1000002001 1001001011 0000100001 1100000000 0000110010 0101410000 

1001001011 10110?0000 ?000101101 0011100000 1100001000 1110 

 

Sassenia 

10????2?01 100100?01? ?020100011 1101000000 0000100010 01?1?10??0 

111100??01 1011001?01 ?0011011?? ?????????? ???0?0??00 ???0 

 

Spermatodus 

1000002101 100110?111 ?020?1001? 1101000000 00?????010 010141?000 

?1???01110 101??0110? ?00?101??? ?????????? ???0?0???? ???? 

 

Undina 

00?00?2110 101110211? 1?2???0110 1100??0000 000?101110 101??1101? 

1100001010 001011?01? ?1??111101 ?011110100 010010100? 111? 

 

Whiteia 

00?0002001 1001101111 1000100011 1100010000 0001110010 011141101? 

1111000010 00111??00? 11011111?1 0011120100 0100100000 1111 

 

Porolepiformes 

00100?1??0 0000000000 00210?0001 1111??0000 0000000010 01003000?0 

0?00001001 01?000?101 000?0?0000 000000?000 000000000? 1110 

 

Actinopterygii 

?0000?1??0 010000?000 00211?0000 1111???00? ???????010 ?1004000?0 

000000000? ?1??001100 00010000?1 000000?000 0?000000{0/1}? 0001  
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Figure 5.1  Paradiplocercides kowiensis holotype (AM5754). A: part a; B: 

counterpart b; C: Composite drawing of holotype based largely on AM5754a with 

details of jaws restored from AM5754b. Scale bar = 5mm. 
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Figure 5.2   Paradiplocercides kowiensis holotype (AM5754). A: detail of head in 

AM5754a; B: detail of head in AM5754b; C: Composite drawing of head based 

largely on AM5754a with details of jaws restored from AM5754b; D: Reconstruction 

of head; (form of spiracular and subopercular as well as number of supraorbitals 

conjectural). Scale bar = 5mm.   
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Figure 5.3   Paradiplocercides kowiensis paratype (AM5756). A: part a; B: 

counterpart b; C: Composite drawing of AM5756 based largely on AM5756a with 

extremities of first dorsal and caudal fins restored from AM5756b. Scale bar = 5mm 
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Figure 5.4   Paradiplocercides kowiensis paratype (AM5755). A: part a; B: 

counterpart b; C: Composite drawing of AM5755 based largely on AM5755. Scale 

bar = 5mm 
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Figure 5.5   Coelacanth operculae from Waterloo Farm, showing a progressive 

change in ornament with increasing size. Scale bar = 3mm 
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Figure 5.6   Paradiplocercides kowiensis: Reconstruction based on AM5754, 

AM5755 and AM5756. Scale bar = 5mm 
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Figure. 5.7  Comparison of body form of various coelacanths: A, Miguashaia 

bureaui, B, Diplocercides heiligostockiensis, C, Paradiplocercides kowiensis, D, 

Allenypterus montana, E, Rhabdodema elegans, F, Latimeria chalumnae   

(modified after Cloutier, 1996 (A), Jessen, 1973 (B), Forey, 1998 (D), Forey, 1981 

(E), Millot and Anthony, 1958 (F)) 
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Figure 5.8  Comparison of the dermal skull of various early coelacanths: A, 

Miguashaia bureaui, B, Diplocercides heiligostockiensis, C,D, Diplocercides kayseri, 

E, Paradiplocercides kowiensis, F, Rhabdoderma elegans (modified after Cloutier, 

1996 (A), Jessen, 1973 (B), Stensio, 1937 (C), Forey, 1998 (D),  Forey, 1981 (F)) 
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Figure 5.9  Comparison of the internal skeleton and dermal skeletal fin rays of 

the caudal fin of various early coelacanths. A, B, Paradiplocercides kowiensis, C, 

Diplocercides heiligostockiensis, D, Diplocercides kayseri, E, Miguashaia bureaui, 

F, Rhabdoderma elegans, G, Holopterygius nudus, H, Allenypterus montana (A, 

AM4912/BPCr1001, B, AM5754, D, drawn from photographic plate VI 3, Stensio, 

1937, C, E-H modified respectively after Jessen, 1973, Cloutier, 1996, Forey, 1981, 

Friedman and Coates, 2006 and Forey, 1998) 
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Figure 5.10  Comparison of favoured phylogenetic trees of early coelacanths: A, 

Forey (1998),  B, Friedman and Coates (2006), C, Gess new.  
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Figure 5.11  Stratocladogram of early coelacanths, based on phylogenetic analysis 

of Gess, with Styloichthys and Gavinia added after Friedman 
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Figure 5.12   Graph illustrating the size distribution of specimens attributed to 

Paradiplocercides kowiensis. 
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CHAPTER 6    FISH BIODIVERSITY AND BIOGEOGRAPHY OF THE 

WATERLOO FARM LOCALITY 

 

     6.1  HIGH LATITUDE FISH BIODIVERSITY OF THE LATE FAMENNIAN, 

EVIDENCE FROM WATERLOO FARM, SOUTH AFRICA      

 

            The Waterloo Farm locality fish fauna is of crucial significance to an understanding 

of biogeographical and faunal changes towards, and at, the end of the Devonian. A 

massive vertebrate extinction event, responsible for the loss of more than forty 

percent of gnathostome higher-level groups, characterised the end of the Devonian 

(Sallan and Coates, 2010). Understanding of the character and timing of this event are 

reliant on faunal records from the Late Devonian and particularly the Famennian. As 

faunas vary between landmasses, climatic zones and habitats, a meaningful synthesis 

should be based on a representative spectrum of faunas.  

 

            At present 18 significant Famennian faunas are recognised, of which Waterloo Farm 

is the only high latitude example and the only marginal marine one from Gondwana. 

Only three other Famennian faunas have been documented from Gondwana, two of 

which are interpreted as freshwater and one as open marine. The remainder of 

important Famennian faunas are Laurussian in origin. Of these only two are estuarine 

or marginal marine (Sallan and Coates, 2010). Not surprisingly Waterloo Farm 

provides the only Famennian record of a number of groups. Three of these were 

formerly thought to have gone extinct at the end of the Frasnian, contributing to the 

perception that the end Devonian extinction, amongst vertebtrates, had significant 

beginning and end Famennian components (eg. Janvier, 1996).  

 

            Contary to the perception of a significant end Frasnian/early Famennian vertebrate 

extinction most genera of a characteristic Middle Devonian marginal marine Agulhas 

Sea fauna are shown to have survived till the latest Famennian. Augmentation of this 

fauna occurred towards the end of the Devonian, in part, through taxonomic exchange 
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with Laurussia, enabled by closure of the Iapetus Sea. An entirely new fauna, 

dominated by actinopterygians, post-dated the Famennian in the Agulhas Sea. 

            Exceptional soft tissue preservation at Waterloo Farm is utilized in an exploration of 

taxonomic bias in the fossil record, and has the potential to be used in future 

ontogenetic studies.  

             

In section 6.1 the stratigraphic position of Waterloo Farm is re-evaluated and 

considered in terms of global stratigraphic correlations, which have identified 

uniform sedimentary and eustatic trends in the Famennian. It is concluded that the 

strata at Waterloo Farm are latest Famennian in age and correlatable with the marker 

layer of the Hangenberg Extinction Event. This event which marks the end of the 

Devonian, was responsible for a loss of over 50% of gnathostome diversity, including 

more than 40 percent of gnathostome higher groups. It is called after the Hangenberg 

shale in Germany which forms part of a globally synchronous continuum of black 

mudrocks reflecting anoxic environmental conditions.  

 

The palaeoenvironment at Waterloo Farm is considered to have been a quiet 

embayment near the mouth of a distally stagnant back barrier coastal lagoon. Earlier 

Devonian and Early Carboniferous Agulhas Sea faunas from South Africa are known 

from far more fragmentary remains. Differences between the depositional 

environments in which these were deposited are discussed.    

 

            Section 6.2 provides a brief review of described fish fossils from Waterloo Farm. 

Importantly early misidentifications, which continue to be cited in review papers, are 

noted. As a large number of unrecorded taxa have been collected from Waterloo 

Farm, section 6.3 provides an updated, annotated faunal list. 

 

            The relative abundance of higher taxonomic groupings is explored in section 6.4. 

Standard methodologies are first applied, consisting of simple numeration of 

systematically collected specimens and calculation of proportional representation. 

Whether the resultant data is more a reflection of palaeopopulation trends or 

preservational potential is considered. Further analyses are conducted with different 
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criteria to explore types of taphonomic selectivity, and ultimately to extrapolate likely 

palaeopopulation trends. Resultant insights into taphonomic filters provide improved 

capacity for making comparisons with other palaeofaunas.  

 

            Section 6.5 places Waterloo Farm within the biostratigraphic context of the Cape 

Supergroup, providing a critical review of reported fish fossils as well as hitherto 

unreported material. This provides the basis for a comparison, in section 6.6, with 

other Devonian Agulhas Sea faunas from South America, the Falklands Islands and 

Antarctica. Together these provide a record of faunal changes through time in the 

Agulhas Sea, which are discussed in relation to other faunal regions. Evidence is 

presented for isolation, stasis and endemism in the Agulhas Sea during the Middle to 

Late Devonian, followed by enrichment during the Late Devonian, as a result of 

faunal exchange with Laurussia due to closure of the Iapetus Sea and migration of 

taxa from East Gondwana. Sudden, widespread extinction at the end of the 

Famennian is evidenced, congruent with the Hangenberg Extinction Event. Records 

are provided from Waterloo Farm of lineages formerly thought to have become 

extinct at the end of the Frasnian, providing evidence that late Devonian extinction of 

vertebrates was acutely focused on the Hangenberg event. Early Carboniferous 

Agulhas Sea faunas are shown to be radically different from those of the Devonian, 

with few relict lineages, and evidence for recolonisation by cosmopolitan post 

extinction taxa.        

 

6.1.1 AGE AND SETTING 

 

6.1.1.1  Stratigraphic Setting and Depositional Environment 

 

The Witpoort Formation of the Witteberg Group (fig. 6.1) consists of mature quartz 

arenites, interpreted as having been deposited along a linear, sandy coastline (Hiller 

and Taylor, 1992). Occasional thin black shale horizons occur at intervals through the 

Witpoort Formation (Theron, 1992). The most prominent two of these are the first, 

near the base of the Formation, and last, closely approaching its upper limit. Almond 

(pers. com., 2010) has observed that black shales, with silvery impressions of plant 
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fragments, are found just above the base as well as near the top of the Witpoort 

Formation, over much of its lateral extent. 

 

 In the Grahamstown area a black shale horizon, that outcrops near the base of the 

Witpoort sequence at Howison‟s Poort, has yielded a small number of fragmentary 

plant remains preserved as silvery impressions (Bain, 1857, Plumstead, 1967, 

Anderson and Anderson, 1985). Similar outcrops containing plant fragments and, in 

addition, Spirophyton trace fossils are present above the base of the Witpoort 

Formation at other localities in the district (pers. obs.). A far thicker horizon, of 

stacked black shales, in the uppermost Witpoort Formation, was exposed in a series 

of road cuttings at Waterloo Farm in 1985, during construction of the N2 road bypass 

to the south of Grahamstown. This horizon was originally reported to be roughly in 

the middle of the Witpoort sequence (Hiller and Taylor, 1992, Theron, 1993), 

possibly because quartzites of the Carboniferous Floriskraal Formation, capping the 

ridge behind, were mistaken for the top of the Witpoort Formation.  

 

At Waterloo Farm the N2 bypass section includes lenses of exceptionally 

fossiliferous shale, containing trace fossils including Spirophyton, silvery impressions 

of plants and, uniquely, fish and arthropods (Gess and Hiller, 1995a).   

 

Cooper (1986) correlated South African sea level curves to determine the ages of 

units within the Cape Supergroup, demonstrating a Late Devonian (Famennian) age 

for the Witpoort Formation and a Frasnian age for the underlying Weltevrede 

subgroup. He considered the Devonian-Carboniferous boundary to be at, or near, the 

contact between the clean white quartzites of the Witpoort Formation (which he 

correlated with the Famennian regression) and the fine black sediments of the 

overlying Kweekvlei Formation (which he interpreted as a reflection of the 

Tournasian transgression) (Cooper, 1986).  

 

This idea is consistent with palaeontological evidence, such as the presence of Late 

Devonian type plants in the Weltevrede Subgroup and lower Witpoort Formation 

(Plumstead, 1967) and the occurrence of the Givetian to Frasnian articulate 
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brachiopod, Tropidolepis, near the top of the Weltevrede subgroup (Boucot et al., 

1983). Palynological evidence suggesting a late Tournasian to Visean age for the 

upper Witteberg Waaipoort Formation (fig. 6.1) (Streel and Theron, 1999) provides 

further support for the dating scheme of Cooper (1986). Additional palaeontological 

evidence comes from the extensive flora (Gess and Hiller, 1995) (including the Late 

Devonian cosmopolitan, Archaeopteris (Anderson et al., 1995)) from the upper 

Witpoort Waterloo Farm locality, as well as the palaeoichthyological evidence 

discussed below. 

 

The black shale lenses exposed at Waterloo Farm are interpreted as the product of 

anaerobic sediments deposited in an estuarine lagoon situated behind a sandy barrier 

bar (Hiller and Taylor, 1992). They appear to be coeval with a series of quartzites to 

the east, interpreted as components of this barrier system. Abundant trace fossils 

(including Cruziana, Rusophycos (Gess and Hiller, 1995) and Psammichnites (id. J. 

Almond, 2010), as well as plant fossils similar to those found in the black shales, are 

preserved in the quartzites and in interbedded thin reddish shales.  

 

Fossil fish remains have been found in three black shale lenses, close to the 

associated barrier-sand deposits. The uppermost of these three is the richest source of 

fossils, and the subject of many years of excavation and study. The greatest part of 

the black shale horizon outcrop, stretching for hundreds of metres to the west of these 

lenses, appears to be devoid of vertebrate and arthropod fossils and traces. Quantities 

of plant material, often comprising tangles of vascular plant branches, are nonetheless 

preserved therein. Large tree trunks, exceeding 20cm in width, have also been found 

and suggest the proximity of a wooded environment. It is likely that the lack of fish 

and arthropod fossils within these latter beds resulted from low oxygen levels which 

were exacerbated by the large volumes of decaying plant matter. The relatively rich 

upper fossil fish lens is less carbonaceous than adjacent deposits to the west and 

contains isolated, more fragmentary, plant remains.  An abundance of diverse fish 

derived trace fossils suggests that the water column, at this point, was less anaerobic 

because of its greater proximity to the marine ebb and flow. 
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Anoxic conditions, within the sediment accumulated below the aerated water, 

sometimes resulted in exceptionally good preservation of small organisms buried 

rapidly enough to avoid the ravages of scavenging and decay. Larger organisms 

tended to be disassociated and stripped of soft tissue prior to burial. The sulphurous, 

acidic nature of the sediment caused poor preservation of large bony elements, 

generally represented by mineralised compressions.  

 

6.1.1.2.   Palaeogeographic and climatic setting 

 

Waterloo Farm represents the only significant high latitude ecosystem known from 

the Famennian, providing one of only four significant latest Devonian vertebrate 

faunas from Gondwana. An additional 13 notable Famennian faunas are known from 

Laurussia. The majority of contempory examples, including the other three from 

Gondwana, are either open marine or freshwater. Only three other marginal 

marine/estuarine fish faunas have been studied, all of low latitude Laurussian origin 

(Sallan and Coates, 2010). Being of latest Famennian age Waterloo Farm provides a 

unique window into fish diversity, immediately prior to the Second Global Extinction 

Event.     

 

At this time southern Africa formed part of western Gondwana (Lelièvre et al., 1993). 

The palaeolagoon at Waterloo Farm drained into the high latitude Agulhas Sea, 

bounded by what is now south-western South America, the Southern Cape coast of 

South Africa and part of West Antarctica (Scotese and Barrett, 1990) (fig. 6.2). This, 

in turn, opened northwards into the Palaeopacific Ocean. The South Pole was situated 

over southwestern Gondwana, most likely in the vicinity of present day Argentina 

(Scotese and Barrett, 1990), on the western shores of the Agulhas Sea. This 

placement would imply that the Waterloo Farm locality was within 10 to 15 degrees 

of the South Pole. 

 

The earlier Devonian rocks of the Bokkeveld Group were deposited along earlier 

phases of the same shoreline, though it is important to note that, in response to an 

interplay between global sea-level changes (Cooper, 1986), basin subsidence (Theron 
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and Loock, 1988) and climate (Almond et al. 2002), the nature of the coastline and 

therefore the ecological and depositional settings were not constant. Deposition of 

sedimentary rocks of the Bokkeveld Group was associated with wave dominated 

arctuate deltas (Theron, 1972, Tankard and Barvis, 1982). Minor shoreline changes 

led to cycles of construction and destruction of these delta systems (Hiller and Taylor, 

1992).  

 

Early Devonian, Emsian, fish fossils in the Gydo Formation of the Bokkeveld Group 

(fig. 6.1) are associated with shallow marine invertebrate assemblages (Almond and 

Evans, 1996), possibly accumulated on the outer delta slopes. These assemblages 

(dominated by articulate brachiopods, bivalves, crinoids and trilobites) are 

characteristic of the endemic (invertebrate defined) Ordovician to mid Devonian 

Malvinokaffric realm, shared with the Falklands and regions of South America 

(particularly Bolivia and southern Brasil) that also formed part of the Agulhas Sea 

(Hiller and Theron, 1998). It has been interpreted as the fauna of a shallow arctic-type 

epicontinental sea (Cooper, 1982; Grabert, 1970). 

 

Fish remains of the Mid Devonian, Givetian, Adolphspoort and Klipbokkop 

Formations (Bokkeveld Group) (fig. 6.1) are not associated with these typical marine 

faunas, but with bivalves and plant fossils including small lycopod stems. Their 

depositional environment has been interpreted as probably that of the tops of deltas 

(Almond and Evans, 1996; Almond, pers comm., 2009), with trace fossil indices 

suggesting a restricted marine to freshwater environment (Almond and Evans, 1996).  

 

Changes in sedimentation, following the end of the Weltevrede Subgroup (lower 

Witteberg Group) bear evidence for a shift, in the Late Devonian, towards a linear 

barrier-beach shoreline, in an environment of falling sea levels, characterised by the 

supermature quartz arenites of the upper Witpoort Formation (Hiller and Taylor, 

1992). Embedded within these, the fossil rich black shale at Waterloo Farm, 

represents sediment accumulated within a back barrier coastal lagoon and preserved 

during a minor transgressive event (Hiller and Taylor, 1992). Evidence for this 

transgression, in the form of black shales deposited along the palaeoshoreline 
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(presumably in a number of different depositional settings) is found throughout the 

extensive outcrop of the Witpoort Formation (pers. comm., J. Almond, 2010). 

 

By Early Carboniferous (Visean) times, when fish fossils were again preserved, strata 

which comprise the Waaipoort Formation were laid down in an increasingly restricted 

basin with a steadily more freshwater character (Evans, 2005). 

 

These progressive environmental changes during deposition of the rocks of the Cape 

Supergroup were accompanied and influenced by the gradual drift of the 

intracontinental Agulhas Sea towards the South Pole (e.g. Crowell and Frakes, 1973). 

This, coinciding with global cooling, led to a cessation in sedimentation by the mid 

Carboniferous as the region was covered by a polar ice cap (Theron, 1993). Later 

deposition of the basin-wide Dwyka diamictite (at the base of the Karoo Supergroup) 

in the Late Carboniferous to Early Permian (e.g. Theron, 1993), occurred as south 

western Gondwana moved further from the pole (e.g. Crowell and Frakes, 1973) and 

a warmer global climate developed, resulting in deglaciation. 

 

An earlier, lesser, pulse of glacial activity is evidenced by Early Carboniferous 

diamictites of the Miller Formation (Kommadagga subgroup) (Theron, 1993), which 

intermittently overly the Waaipoort Formation in the Eastern Cape. In the Western 

Cape Province they have probably been removed by the later more widespread 

Dwyka glacial event (Visser and Loock, 1982).  

 

Possible evidence for even earlier, Famennian, pulses of glacial activity have been 

reported in Witteberg Group rocks of the uppermost Witpoort Formation. Numerous 

diamictite lenses found therein, in the Western Cape Province, have been interpreted 

as possible deglaciation deposits (Almond et al., 2002). At many places these 

deposits underly well-laminated black shales of the upper Witpoort Formation, which 

Almond et al. (2002) interpret as evidence for a sudden deepening event, possibly 

caused by deglaciation. They suggest that the marine regression evidenced during 

earlier deposition of the Witpoort Formation quartz arenites might have resulted from 

uptake of water by the onset of a glacial phase (Almond et al., 2002). This is 
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consistent with interpretation of global eustatic changes in the Late Devonian as 

deriving from Gondwanan glaciation (Streel et al., 2000) 

 

The latest Famennian strata of Bolivia (Diaz-Martinez, 1994) and Brasil (Caputo, 

1985), which would have been even closer to the South Pole, have yielded far more 

dramatic glacigenic deposits. In Bolivia these may be up to 130m thick, containing 

clasts several metres in diameter and rafted blocks of sandstone which can be over 

100m in length (Diaz-Martinez, 1994). Coeval production of a sequence strongly 

resembling the upper Witpoort and overlying Kweekvlei Formations (Almond et al., 

2002) within 30 kilometres of the Bolivian glacial debrites (Diaz-Martinez, 1994) 

supports the probable connection between these sediments and the glacial episode 

clearly evidenced in Bolivia and Brasil (Almond et al., 2002). 

 

These Late Devonian glacial deposits differ from the laterally continuous massive 

mid to Late Carboniferous Dwyka Group diamictites, in their localised occurrence. 

This suggests deposition from glaciers that did not form part of a continuous ice cap. 

Streel et al. (2000), have suggested that high latitude glaciation during the Famennian 

was of the mountain glacier type. Glaciation was coincident with a slight increase in 

global temperature, and an attenuation of (palynologically calculated) latitudinal 

vegetation zones towards the end of the Famennian (Streel et al., 2000). This 

attenuation reflected the rapid spread of coastal wetland forests from low to high 

latitudes (Streel et al., 2000), as is also evident from the Waterloo Farm flora (Gess 

and Hiller, 1995a). 

 

Mountain glaciation may have resulted from an increasing influx of warm waters into 

high latitude coastal areas, leading to increased snowfall in the cold, higher altitude, 

interior (Streel et al., 2000). Reduction or closure of the Iapetus Sea, between 

Gondwana and Laurussia towards the end of the Devonian, may have resulted in a 

cyclical movement of currents within the Palaeopacific Ocean, which carried warm 

tropical waters towards higher latitudes (Streel et al., 2000). A contemporary 

analogue may be provided by the west coast of New Zealand‟s South Island which is 

warmed by southwardly moving warm subtropical waters, leading to a coastal belt of 
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rainforest, backed by perpetually snow covered peaks. These generate glaciers that 

carve valleys through the forest belt towards the Tasman Sea (pers. obs.).  

 

6.1.1.3.  The End-Devonian Extinction Event 

 

A severe extinction event affecting plants, invertebrates and vertebrates, marks the 

end of the Devonian, and apparently spanned the Famennian as a series of sub events, 

which were taxonomically selective. Each of these appears to be associated with a 

black anoxic shale layer, deposited during a brief global transgressive event, which 

can be correlated across and between continents (Algeo et al., 2001). Eustatic 

changes have been attributed to Gondwanan glaciation (Streel, et al., 2000), but fail 

to adequately explain the extreme level of anoxia indicated (Algeo et al., 2001). 

 

Climatic instability during the Late Devonian may have been triggered by rapid 

global spread of the first (Archaeopteris) forests during the Frasnian, compounded by 

colonisation of dryer areas by the first seed-plants towards the end of the Famennian 

(Algeo et al., 2001). Steadily dropping temperatures throughout most of the Late 

Devonian may reflect similarly dropping atmospheric CO2 levels. CO2 decrease 

possibly resulted from a greater drawdown of atmospheric CO2 for generation of 

biomass, as well as increased weathering of silicates (Algeo et al., 2001). Greater 

terrestrial biomass raised levels of fixed C entering drainage systems, perhaps leading 

to bacterial depletion of oxygen in aquatic systems. Burial of carbon rich material 

during short-lived marine transgressions removed it from the Carbon cycle, 

exacerbating the CO2 crisis. The resultant anaerobic black shale layers are those 

coincident with the various stages of the Famennian extinction event (Algeo et al., 

2001).   

 

The most important and widespread two of these events, which practically bracket the 

Famennian (Streel et al., 2000), are the Kellwasser extinction event, which 

approximately coincides with the Frasnian/Famennian boundary (and mainly affected 

invertebrate and plant communities), and the Hangenberg extinction event, near the 
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end of the Famennian and therefore the Devonian/Carboniferous boundary (Algeo et 

al., 2001).  

 

The Hangenberg extinction event, which occurred within the same brief (<100ka) 

miospore zone as the Latest Famennian Brasilian and Bolivian glaciation (Streel and 

Liege, 1998; Streel et al., 2000), was the finale of the Second Global Extinction 

Event (Streel et al., 2000) and was responsible for widespread extinction of fish taxa. 

Sallan and Coates have demonstrated that reports linking significant loss of vertebrate 

taxa to the Kellwasser event are the result of incomplete sampling of the Famennian 

fossil record (Sallan and Coates, 2010), further evidence for which is discussed 

below. Over 50 percent of gnathostome diversity, including more than 40 percent of 

gnathostome higher groups, was lost during the Hangenberg Event (Sallan and 

Coates, 2010).  

 

  The Hangenberg Extinction Event is named after the black, organic rich marine 

Hangenberg shale of the Rheinisches Schiefergebirge of Germany (Walliser, 1984), 

which is part of a globally synchronous continuum of black mudrocks reflecting 

widespread anoxic environmental conditions (Caplan and Bustin, 1999). This shale 

has been recognised from areas of lower palaeolatitude distributed across North 

America, Western Europe, Eastern Europe and China (Caplan and Bustin, 1999). 

Similarly aged black anaerobic shales have also been noted from east and western 

Australia, western Antarctica, eastern South America and West Africa (Caplan and 

Bustin, 1999). 

 

It is proposed here that the thin, transgression related, anaerobic carbon rich layers 

within the Famennian Witpoort Formation of South Africa are congruent with those 

found in Famennian rocks from around the world, and may be correlated on 

stratigraphic and eustatic grounds. Accordingly those of the lowermost Witpoort 

Formation, exposed at Howisonspoort, correlate with the marker layers of the 

Kellwasser extinction event, whereas that of the uppermost Witpoort Formation 

(exposed at Waterloo Farm) is the local expression of the global sedimentary event 

associated with the Hangenberg extinction. This implies that the Waterloo Farm 
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locality provides a record of a fish fauna coincident with one of the most significant 

vertebrate extinction events recognised in the fossil record. Only six other end 

Famennian faunas are well known, the only other Gondwanan one (Tafilalt, 

Morocco) being tropical and open marine.  

 

6.1.2  REVIEW OF DESCRIBED FISH FOSSILS FROM THE WITPOORT           

FORMATION 

 

Hiller and Taylor (1992) first noted the presence of the antiarch placoderm fish, 

Bothriolepis, from Waterloo Farm. Anderson et al. (1994) recognised Bothriolepis, 

the arthrodire placoderm Groenlandaspis, a coelacanth, gyracanthid acanthodian 

spines, a partial lungfish parasphenoid, as well as abundant large sarcopterygian 

scales from the locality. Furthermore they reported a chondrichthyan skeleton 

postulated to be a holocephalan, a phyllolepid placoderm, a petalichthyid placoderm 

and „palaeoniscoid‟ (i.e. actinopterygian) scales. The chondrichthyan remains are no 

longer considered to be those of a holocephalan (eg. Coates and Gess, 2007), and no 

petalichthyid or phyllolepid remains have been found at the locality. The 

„phyllolepid‟ head and trunk armour were shown to belong to the Groenlandaspis 

occurring at the locality (Gess and Hiller, 1995, pg. 278, fig.45C; Long et al., 1997). 

The spinal plate identified as that of a petalichthyid was identified in Gess and Hiller 

(1995) as a groenlandaspidid spinal plate and in Long et al. (1997) as that of the 

Groenlandaspis later described. It is more likely to be that of a different 

groenlandaspidid. The „palaeoniscoid‟ scales were shown to be fragments of 

decorticating Leptophloem australe stems (Gess and Hiller, 1995, pg. 254, fig. 23A; 

pg. 256, figs 25A-C, F-H). Diagnostic actinopterygian remains have been collected 

subsequently (see below).  

Gess and Hiller (1995) identified and illustrated specimens of Groenlandaspis, a 

second groenlandaspid, a third arthrodire later to be named Africanaspis (Long et al., 

1997), Bothriolepis, gyracanthid spines, a chondrichthyan, small coelacanths, isolated 

elements of a large “rhipidistian” sarcopterygian which they considered was probably 

a eusthenopterid, the lungfish parasphenoid reported in Anderson et al. (1994) (which 
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they considered to most resemble Andreyevichthys from the Famennian of Russia), 

and some problematica. 

Long et al. (1997) described the placoderm fish Groenlandaspis riniensis, 

Africanaspis doryssa, and Bothriolepis africana. Groenlandaspis riniensis, the largest 

Groenlandaspis known, was interpreted as most closely resembling Groenlandaspis 

antarctica (Ritchie, 1975) from the Aztec Siltstone of Antarctica. Bothriolepis 

africana, also unusually large, was considered to be closely allied to Bothriolepis 

baretti (Young, 1988) from the Late Givetian of Antarctica. 

Anderson et al. (1999a) described the earlier reported chondrichthyan as 

Plesioselachus macracanthus. New material, however, calls for a complete revision 

of this description. 

Anderson et al. (1999b) provided a short review of Middle and Late Devonian fishes 

of South Africa. They described the Famennian (Waterloo Farm) assemblage as 

consisting of Bothriolepis africana, Groenlandaspis riniensis, Africanaspis doryssa, a 

gyracanthid acanthodian, a coelacanth similar to Diplocercides, a chondrichthyan, a 

large sarcopterygian close to Eusthenodon, a lungfish close to Andreyevichthys, and 

an unidentified palaeoniscoid actinopterygian. Their list also included a new 

identification by Long of a ptyctodontid arthrodire, based on two anterior ventral 

plates previously listed in Gess and Hiller (1995) as plates possibly belonging to an 

unknown groenlandaspidid.  

Gess (2001) described Diplacanthus acus, a new species of diplacanthid acanthodian 

from Waterloo Farm.  

A fossil lamprey representing a new genus and species was described as Priscomyzon 

riniensis by Gess et al. (2006). 

Taxa are summarised and evidence for a number of previously unreported taxa is 

discussed below so as to enable a synthesis of the entire fish fauna of the Witpoort 

Formation. An updated faunal list will also be valuable as early misidentifications of 

Waterloo Farm specimens continue to appear in reviews. 
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6.1.3  FAUNA OF WATERLOO FARM 

 

Vertebrate fauna are summarised below, grouped according to conventional higher 

taxa. Although there is evidence that acanthodians and perhaps placoderms may not 

be monophyletic (e.g. Brazeau, 2009), this is contested, at least with regard to 

placoderms (Young, 2010)  

 

6.1.3.1. Agnatha 

 

A number of small, unarmoured, jawless fish are preserved as soft tissue impressions. 

These are all assigned to the Petromyzontiformes. They appear to exhibit 3 main 

structural forms, though to what extent these reflect ontogeny (cf. Hardisty and 

Potter, 1971) or taphonomic changes (cf. Sanson et al., 2010) is not entirely clear.  

 

6.1.3.1.1. Priscomyzon riniensis (Gess et al. 2006)   

 

Priscomyzon is represented by a single specimen, 4.2 cm long, preserved in ventral 

view (fig. 6.3). It is assigned to the Petromyzontidae, because of its possession of 

many of the key specialisations for the behavioural characteristics of modern 

lampreys. These include the possession of a large oral disc with a soft lip, centred by 

a circular mouth surrounded by circumoral teeth. In addition, a branchial basket, with 

seven gill pouches is evident. The chief differences between Priscomyzon and 

modern lampreys lies in its shorter, more tadpole-like body form, wider branchial 

basket and smaller number of less specialised teeth (Gess et al. 2006). Priscomyzon 

has  proportionately the largest circumoral disc of any known lamprey, living or 

extinct, which may help to account for its possession of a broad branchial basket. 

This specimen is the oldest described fossil lamprey by 35 million years (Gess et al. 

2006). 
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6.1.3.1.2.  Indeterminate agnatha                 

  

Five specimens (see appendix) display a similarly shaped body and branchial basket 

to that of Priscomyzon, but lack the characteristic large oral disc of an adult lamprey 

(fig. 6.4 a-c). They do, nonetheless, exhibit a small annular cartilage-like structure. 

As late transformational stages and young post-metamorphic recent lampreys exhibit 

many of the features of their corresponding adults, except the large suctorial annular 

cartilage (Hardisty and Potter, 1971), it is possible that these specimens represent 

sub-adult Priscomyzon individuals. This would be consistent with their smaller size, 

being between 25 mm and 27 mm long. It might also provide the first suggestion of 

metamorphosis in ancient lampreys. Recent lampreys have a blind microphagous 

larval stage, which is infaunal in the upper reaches of river systems. Many species are 

anadromous and following metamorphosis into their adult form make their way to the 

sea for the next phase of their lives, before returning to rivers to breed. Hardisty and 

Potter suggest that young post metamorphic lampreys may spend a considerable time 

in estuaries adjusting to marine conditions (Hardisty and Potter, 1971). If these 

specimens are lampreys then they provide evidence that lamprey body plan and life 

history are ancient.             

   

One specimen, AM4818 (fig. 6.4d), that probably exceeded the adult Priscomyzon in 

length, possesses a narrower branchial basket than either Priscomyzon or the 

indeterminate agnathans discussed above and is strongly reminiscent of a dorso-

ventrally preserved specimen (Bardack and Zangerl, 1971) of the Carboniferous 

lamprey Mayomyzon pieckoensis (Bardack and Zangerl, 1968).  Although it could 

represent a second species of lamprey-like soft-bodied agnathan, it is also possible 

that this specimen represents a decayed Priscomyzon adult. Taphonomic studies have 

demonstrated that the annular cartilage is one of the first losses during lamprey decay 

(Sanson et al., 2010), and subsequent collapse of the trunk region would not be 

inexplicable. Sanson et al. (2010) have demonstrated that decay of soft tissued 

organisms selectively destroys characters that are synnapomorphies of higher groups 

before more plesiomorphic characters. This results in organisms being assigned 
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increasingly primitive phylogenetic positions depending on their degree of 

decay(Sanson et al., 2010).   

 

6.1.3.2   Placodermi 

 

Placoderm  remains are abundant at the Waterloo Farm locality. These include 

disassociated plates or scatters of plates, derived from a large spectrum of carapace 

sizes, clearly representing a wide range of ages in many taxa. Entire carapaces 

representing small to medium sized individuals are also sometimes preserved. These 

are difficult to fully interpret as they have been reduced to near-two-dimensional 

compressions. Less abundant are associated impressions of the unarmoured posterior 

portion of the body.   

 

6.1.3.2.1  Arthrodira: Groenlandaspis riniensis 

 

The sample is numerically dominated by groenlandaspid-like phlyctaeniid arthrodire 

placoderm remains. A large range of specimens have been collected representing 

articulated arthrodire carapaces, scatters of disassociated dermal plates, as well as 

isolated dermal plates. These represent at least five species. Groenlandaspis riniensis 

(Long et al, 1997) (fig. 6.5a,b), which reached a substantial size, was the most 

abundant. This species corresponds to the Groenlandaspis sp. of Gess and Hiller 

(1995), although some confusion has arisen due to the incorrect assignment of the 

spinal plate of a different species to Groenlandaspis riniensis in the description by 

Long et al. (1997). This is significant as the spinal plate of Groenlandaspis riniensis 

is characteristically shorter (figs. 47a, 49D, Gess and Hiller, 1995), than that of other 

groenlandaspid arthrodires occurring at Waterloo Farm, overlapping the anterior 

lateral plate for most of its length. The anterior lateral trunk plate of this species is 

almost as broad as long with a relatively straight anterior margin, making it easily 

distinguishable. The median dorsal plate has a low profile with a posteriorly directed 

apex. A substantial size range is recorded, including juveniles such as AM5900 (fig. 

6.5b), which is a total of 25 mm long, with a dermal armour of 10 mm long. By 

contrast one isolated anterior-lateral plate (AM6582) is 155 mm long indicating a 
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dermal armour of approximately 450 mm and a total length of about 1125 mm or 

1.125 metres long.   

 

6.1.3.2.2  Arthrodira: Indeterminate phlyctaeniid 1 

 

A number of isolated spinal plates and intact carapaces belong to a species in which 

the spinal plate is substantially more elongated than that of Groenlandaspis riniensis 

and extends posterior to the anterior-lateral for approximately half of its length (fig. 

6.5c). These include AM4908 , AM4867, and AM4907, categorised as “type 2 

groenlandaspidids” by Gess and Hiller (1995) (figs 50B, 50I and 51, Gess and 

Hiller,1995). 

 

6.1.3.2.3  Arthrodira: Indeterminate phlyctaeniid 2 

 

Less common are carapaces and spinal plates of a third arthrodire species. These have 

remarkably large spinal plates that extend posterior to the anterior lateral plate for 60 

percent of their length, terminating beyond the posterior margin of the trunk armour 

(Fig. 6.5d) 

 

6.1.3.2.4  Arthrodira: Africanaspis doryssa 

 

Two additional phlyctaeniid arthrodire species are easily distinguished amongst the 

material from Waterloo Farm due to their extremely high median dorsal plates. That 

with the higher median dorsal, originally noted by Gess and Hiller (1995) as “type 

three groenlandaspidid,” was described as Africanaspis doryssa (Long et al., 1997). 

The median dorsal plate of Africanaspis doryssa (fig. 6.6a) is twice as high as long 

and overlapped the anterior of the anterior dorsolateral plate ventrally as far as the 

articular condyle (Long et al., 1997). This degree of anterior overlap between the 

medium dorsal and anterior dorso-lateral is not seen in other published phlyctaeniid 

arthrodires, including Tiaraspis (Gross, 1962), an Early Devonian groenlandaspidid 

genus in which the medium dorsal is similarly extremely high. Five specimens which 

may definitely be attributed to this species due to possession of the distinctive median 
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dorsal plate are now known, with median dorsal plates ranging from 9mm to 75mm 

long. As this is a clear indicator of trunk armour length, it is possible to roughly 

estimate, based on the tail length of the similar taxon below, that this translates to full 

body lengths ranging between 45 mm and 375 mm 

 

6.1.3.2.5  Arthrodira: Africanaspis species 2 

 

Ongoing collection has demonstrated the presence of a second, previously 

undescribed, species of phlyctaeniid arthrodire with an unusually high median dorsal 

plate (fig. 6.6b). AM5242, a single somewhat broken median dorsal of this species 

was collected during the 1990s. Gess and Hiller (1995, fig 52E) first noted this 

specimen as possibly representing another groenlandaspidid. Long et al. (1997) 

considered that the marked differences in proportion and ornamentation between this 

specimen and the median dorsal plates of Africanaspis doryssa, could be attributed to 

ontogeneric change, as AM5242 was larger than the known Africanaspis doryssa 

specimens. Ongoing collection has provided additional specimens of both 

Africanaspis doryssa and this taxon, ranging from very small to much larger 

individuals. It is now clear that a second phlyctaeniid with a high median dorsal plate 

is represented. It is provisionally assigned to Africanaspis as it shares with 

Africanaspis doryssa an extremely long anterior overlap between the median dorsal 

and anterior dorsolateral plates. One partially disassociated specimen of this species 

includes a completely preserved post-carapace, permitting reconstruction of full body 

lengths. The four specimens definitely attributable to this species ranged, in life, 

between 100mm and 275mm long.    

 

6.1.3.2.6   Ptyctodontida 

 

A ptyctodont placoderm has been reported, on the basis of two disassociated anterior 

median ventral plates (fig. 6.6c-d), identified by J. Long amongst indeterminate 

placoderm remains illustrated or listed in Gess and Hiller (1995) (Anderson et al., 

1997). 



 260 
 
 

 

6.1.3.2.7   Antiarcha: Bothriolepis africana 

 

Antiarch placoderms were represented by a single, fairly abundant, species of 

Bothriolepis (Hiller and Taylor (1992); Anderson, et al (1994); Gess and Hiller 

(1995)), Bothriolepis africana (Long et al., 1997) (fig. 6.7), which was an unusually 

large representative of this genus. Long et al. (1997) considered that Bothriolepis 

africana was most closely allied to Bothriolepis barretti (Young, 1988) from the late 

Givetian of Antarctica. Specimens have been collected with restored trunk armour 

lengths ranging from 20 mm to 300 mm, which translates, based on the proportions of 

the two smallest individuals (which have preserved soft tissue), into full body lengths 

varying between 52 mm and 780 mm.   

 

6.1.3.3   Acanthodii 

 

Robust spines, probably representing a single species of acanthodian, are readily 

recognised from Waterloo Farm. Other acanthodian taxa are almost exclusively 

known from small whole-bodied impressions indicating that, once dissociated, the 

more delicate spines of these species most likely pass unnoticed amongst the ever 

present mass of fragmented plant axes.  

 

6.1.3.3.1  Gyracanthidae: cf. Gyracacanthides sp. 

 

Isolated large robust spines ornamented with distinctive diagonally transverse 

tuberculated ridges (fig. 6.8e) are infrequently found at Waterloo Farm and have been 

identified as Gyracanthid spines (Anderson et al., 1994; Gess and Hiller, 1995). 

These are provisionally assigned to Gyracanthides. In one case a group of dissociated 

spines was recovered that probably derived from a single individual (Gess and Hiller, 

1995). 
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6.1.3.3.2   Diplacanthidae: Diplacanthus acus 

 

This species was described (Gess, 2001) from a near complete whole-bodied 

individual, approximately 100 mm long (fig. 6.8a), as well as a few other fragments 

(fig. 6.8c). The only Gondwanan species assigned to this genus, it is also the most 

deep bodied and has exceptionally long thin ribbed spines. The intermediate spines 

are, conversely, extremely reduced (Gess, 2001). A similarly shaped deep-bodied 

diplacanthoid acanthodian, Culmacanthus stewarti (Long, 1983) has been described 

from Mount Howitt in Australia. Due to its apparent lack of intermediate spines, it 

has been assigned its own genus and family, Culmacanthidae (Long, 1983). The type 

specimen is incomplete. It lacks the head and pectoral region due to rock loss, and is 

slightly disrupted in the potential site of the intermediate spine (pers. obs.). 

Considering the extremely small size of the intermediate spine in Diplacanthus acus, 

the presence of a residual spine in Culmacanthus stewarti cannot be completely 

excluded. Description of Diplacanthus acus provided the first record of a 

diplacanthid from the Famennian, diplacanthids having been thought to have gone 

extinct by the end of the Frasnian (Janvier, 1996)  

 

6.1.3.3.3   Diplacanthidae: Indeterminate species 

 

The presence of a second diplacanthid is evidenced by a single, previously 

undescribed, specimen collected in 2007 (fig. 6.8d). AM5820 consists of most of a 

small whole-bodied individual, approximately 50 mm long. It is distinguished on the 

basis of a less deep body form, shorter more curved spines and an elongate extension 

of the caudal lobe of the caudal fin.  

 

6.1.3.3.4   Acanthodidae                                                   

 

A single specimen (AM5824) (fig. 6.9) is assigned to the Acanthodidae. Consisting 

of a 100 mm long body imprint of a slightly decayed individual with an elongate 

body form, it appears dorsally contracted, but with the caudal region turned ventrally. 

Disruption and sediment deformation in the abdominal region may have been caused 
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by an overlying plant stem. Most of the head region has been lost due to rock 

breakage. The dorsal and anal fins, as well as much of the caudal fin are well 

preserved as is a long slender pectoral fin spine. The position of the pelvic fin is not 

apparent. 

 

6.1.3.4 Chondrichthyes 

 

Chondrichthyan remains include those of at least two adult taxa, in the form of dorsal 

fin spines, teeth, pieces of cartilaginous endoskeleton and skin impressions, either 

isolated or in varying degrees of association. All known teeth from Waterloo Farm 

are diplodont and all spines appear to have been superficially inserted. In addition, 

small whole-bodied soft tissue impressions of sub-adult chondrichthyans have been 

collected. 

 

6.1.3.4.1   Plesioselachus macracanthus 

 

Plesioselachus macracanthus (Anderson et al., 1999) (fig. 6.10a) was originally 

described from only two specimens. The holotype, AM4817, consists of a partial 

skeleton with counterpart collected in 1989. It exhibits a large anterior dorsal fin 

spine, scapulocoracoid, faint pectoral fin impression, partial caudal fin with lozenge 

shaped denticles and a number of other fragments. The fin spine is slender and 

slightly recurved with numerous node-bearing costae extending from the base 

towards the tip. The posterior margins of the spine, are fringed with small, slightly 

hooked posterior denticles. A matching distal portion of a dorsal fin spine with 

associated fin impression and partial counterpart, AM 4866, was also referred to this 

species  (Anderson et al., 1999). 

 

Interpretation of these specimens has varied a great deal through time (Anderson et 

al., 1994; Gess and Hiller, 1995; Anderson et al., 1999). Subsequent to the 

description of Plesioselachus macracanthus (Anderson et al., 1999) a number of 

attributable new specimens have come to light. These additional finds, whilst clearly 

conspecific with the type material, call for its complete reinterpretation. On the 
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evidence of isolated fin spines it may be estimated that Plesioselachus reached at 

least 1m in length. No teeth have yet been found associated with Plesioselachus 

material. 

 

6.1.3.4.2  Antarctilamna ultima 

 

A number of specimens may clearly be referred to a new species of this genus. These 

include two large slabs of rock, AM5743 and AM5744, together with counterslabs, 

recovered in close proximity to each other. AM5743 preserves a single ceratohyal and 

a complete pair of disassociated mandibular arches, associated with diagnostic 

Antarctilamna teeth. AM5744 is covered with numerous cartilaginous fragments, a 

diagnostic Antarctilamna spine (fig. 6.10b), and a ceratohyal that closely matches that 

of AM5743 in both proportions and size. A number of isolated spines and larger 

isolated teeth (fig. 6.10c-d), are also presumed to belong to this species. A rough 

estimate assuming a constant relationship between tooth width, mandibular length 

and body length suggests that Antarctilamna ultima reached five metres in length.    

 

Five specimens of juvenile shark are known from Waterloo Farm, ranging in length 

from 28 mm to 100 mm. They characteristically have a large head, long tapering 

body, and a single dorsal fin spine, shallowly inserted above the level of the pectoral 

girdle.  

 

AM5741, a 28 mm long juvenile in lateral view (fig. 6.11) is assigned to 

Antarctilamna, making it the first recorded Devonian chondrichthyan known from a 

juvenile specimen (cf. Cloutier, 2010). Although it was damaged in the pelvic region 

during excavation, comparison of part and counterpart allow for reconstruction of a 

fairly complete silhouette (6.11C). Its juvenile status is supported, not just by its 

extremely small size, but also by its very large head and branchial region, which 

together exceeded a quarter of its body length (cf. Soler-Gijon, 2004). Two separate 

triangular dorsal fins were present, the foremost of which supported a large, 

shallowly embedded fin spine, situated immediately above the pectoral girdle. About 

six costae are visible which extend longitudinally from the basal region, before 
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terminating sequentially against the anterior edge. The second dorsal fin appears to 

lack a fin spine. The posterolateral edge of the pectoral girdle is visible, articulating 

with the proximal portion of the triangular pectoral fin. This provides the first 

evidence of the body form of Antarctilamna, an important exemplar of primitive 

chondrichthyans (in prep.). Prior to the discovery of Antarctilamna at Waterloo Farm 

this genus was not believed to have survived beyond the Frasnian. 

  

6.1.3.5  Actinopterygii       

 

A small number of specimens may be confidently assigned to the Actinopterygii (see 

appendix). These consist of whole bodied soft tissue outlines, predominately of 

assumed juveniles, in addition to somewhat larger isolated dermal bones of possible 

adults. Most commonly preserved and recognised of these are maxillae (fig. 6.12a) 

and mandibles. All specimens are consistent with a single taxon. The scales resemble 

those of Moythomasia (Gardiner, 1984). 

 

6.1.3.6   Sarcopterygii 

 

Sarcopterygian remains are fairly abundant at Waterloo Farm. These are dominated 

by the remains of two species, a coelacanth, known chiefly from small whole-bodied 

specimens, and a large tristichoperid represented by hundreds of large scales as well 

as a number of isolated bones and groups of bones. Two other sarcopterygians are 

identified from small numbers of specimens. The presence of scales and isolated 

bones that do not appear to conform with these four taxa, suggests that further 

sarcopterygian species were also present. 

 

6.1.3.6.1  Onychodontiformes 

 

A single small maxilla (AM5880), from a thin black shale horizon in close proximity 

to the shale lens from which most vertebrate material has been collected, is assigned 

to the Onychodontiformes (fig. 6.12b). It is characteristically high, posterior to the 

orbit, and may be distinguished from those of actinopterygians by the presence, 
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dorsally, of overlap areas for two similarly sized bones. This is consistent with 

Onychodontiformes, such as Strunius (Jessen, 1966) in which the high post orbital 

region of the maxilla is overlapped by two similarly sized squamosals. 

Actinopterygii, by contrast, lack squamosals and the high posterior region of their 

maxilla is only overlapped dorsally by the preopercular (Min and Schultze, 2001).   

 

6.1.3.6.2  Coelacanthiformes 

 

The most abundant (non-scale) sarcopterygian remains found at Waterloo Farm are 

from a species of coelacanth (Gess and Hiller, 1995), represented by numerous 

whole-bodied impressions of individuals varying between 30 and 60 millimetres (fig. 

6.12c). These are interpretted as juveniles because of the large size of heads and 

orbits relative to total body length. It is likely that they utilised the quiet estuarine 

environment as a nursery. Fragments, including isolated operculae, of larger 

individuals suggest that this species reached at least 150 mm in length.  

 

Though resembling Diplocercides, the Waterloo Farm coelacanth is easily 

distinguished on the basis of a number of dermal skull and fin characters. 

Phylogenetically, it is interpreted as being slightly crownward of Diplocercides. 

 

It is noted that a few very large isolated sarcopterygian scales from the site resemble 

those of the plesiomorphic Miguashaia, though no bones are currently associated 

with them and no certainty exists regarding their identity.  

 

6.1.3.6.3  Dipnoi:  Andreyevichthys 

 

The anterior end of an isolated lungfish parasphenoid was amongst the early material 

collected at Waterloo Farm, and was compared to a number of taxa including 

Andreyevichthys (Anderson et al. 1994). Gess and Hiller (1995) considered it most 

similar to that of Andreyevichthys (Krupina, 1987). A far better preserved complete 

parasphenoid, AM6501 (fig. 6.12d), collected at Waterloo Farm in 2007, is, allowing 
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for compression, indistinguishable from Andreyevichthys. Large lungfish-like scales 

are also occasionally found.  

 

6.1.3.6.4  Osteolepiformes: cf. Hyneria 

 

The scales (fig. 6.12e) and characteristically ornamented disassociated dermal bones 

of a tristichopterid are fairly common at Waterloo Farm. Some remains are derived 

from individuals that reached more than two and a half metres in length, but smaller 

individuals are also represented. Early finds were first mentioned and illustrated by 

Gess and Hiller (1995 pp 294-296) as an “osteolepiform rhipidistian”, which was 

“probably a Eusthenopterid.” Comparison of the abundant scales with those of other 

known tristichopterids has, during this review, produced a perfect match with pictures 

of those of Hyneria lindae (Thomson, 1968). An extensive, deeply folded margin to 

the trailing edge of the scales, is considered to be a unique chararacteristic of Hyneria 

(Daeschler pers. comm. 2007). Ornamentation on the dermal bone remains was also 

consistent with dermal bone of Hyneria illustrated in Thomson (1968). 

 

6.1.3.6.5  Osteolepiform cleithrum: incertae sedis  

 

Although its exact affinities are not known, a 370 mm long cleithrum from Waterloo 

Farm (fig. 6.13b) deserves special mention. Preserved in part and counterpart 

AM6545 displays many key morphologies otherwise seen in the elpistostegalian-fish, 

Tiktaalik roseae (Daeschler et al., 2006). In general outline it deviates in only one 

regard from the cleithrum of Tiktaalik (Shubin et al., 2006) (fig. 13c). Like Tiktaalik, 

AM6545 has a backwardly sloping, slightly expanded dorsal end and a much 

reduced, forwardly extended ventral end. However, like (more plesiomorphic) 

tristichopterids (fig. 6.13a) AM6545 has an anteriorly directed shoulder for 

attachment of the clavicle (fig. 6.13, as). Loss of this feature appears to be a 

synapomorphy unique to Tiktaalik and limbed tetrapods.  

 

Reduction of the ventral end of the cleithrum, a trend which continued in tetrapods, 

gave increased exposure of the scapulocoracoid, and therefore freer movement of the 
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pectoral appendage (Clack, 2002). Such reduction of the ventral end of the cleithrum 

is not seen in any tristichopterid in which the cleithrum is well known, and therefore 

uniquely unites AM6545, Tiktaalik and limbed tetrapods. 

 

The linear ornament on AM6545 is more like that of Eusthenopteron or Hyneria than 

the ornament on the dermal bones of Tiktaalik. Indeed the ornament is not dissimilar 

to that on the fragmentary cleithrum of Hyneria (fig 5, Thomson, 1968). Were it the 

only type of tristichopterid-elpistostegalid-type cleithrum at Waterloo Farm, it would 

be tempting to assign it to the Hyneria-like fish. This would confirm Thomson‟s 

(1968) contention, based largely on skull proportions that, amongst known 

tristichopterids, Hyneria most closely resembled advanced tetrapodomorphs 

(panderichthyid, elpistostegid, and limb-bearing tetrapods). 

 

Although some more fragmentary, smaller cleithral remains from Waterloo Farm 

closely resemble AM6545, other, similarly ornamented specimens appear 

inconsistent therewith. Amongst these is AM5389 (fig 62D, Gess and Hiller, 1995) 

the greater portion of a large cleithrum preserved amongst dozens of compatibly sized 

Hyneria-type scales. AM6545 may, therefore, belong to a second stem group 

tetrapodomorph, which would probably have exceeded 3.5 metres in length. As 

collecting is ongoing at Waterloo Farm and Redhill (from which Hyneria was 

described), greater clarity may be forthcoming in the future. 

 

 

6.1.4  RELATIVE ABUNDANCE OF FOSSILS 

 

The relative abundance of larger taxonomic groupings is explored in this section. 

Standard methodologies are first applied. These consist of simple numeration of 

systematically collected specimens according to higher taxonomic subdivisions and 

calculation of proportional representation. The meaning of the resultant data is 

considered. The question is posed as to whether the results of this type of analysis can 

be used to extrapolate population structure or whether its signature is entirely 

overprinted by taphonomic and methodological factors. The possibility of gross 
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inflation of numbers of taxa with abundant robust dermal bones is tested by a second 

analysis containing only specimens exhibiting some soft tissue or pelt preservation. 

This second analysis provides a radically different abundance profile, demonstrating 

that the apparent abundance of taxa with numerous durable elements is grossly 

exaggerated in a simple analysis. Taphonomic biases in the second analysis are noted, 

including probable proximity to the depositional environment. Coelacanths within a 

narrow size range, which form mass mortality assemblages are excluded from a third 

analysis, to further explore palaeopopulation structure. The results of this analysis are 

more convincing than those of the first analysis, when considered in terms of the 

likely trophic structure of the ecosystem. All three data sets are utilized to inform a 

discussion of the possible population structure of the palaeolagoon. This study also 

provides a good basis for understanding the likely significance of presence or absence 

of evidence, for various taxa, from horizons lacking exceptional soft tissue 

preservation.    

       

 

6.1.4.1  Analysis one: based on all identifiable specimens excluding dissociated 

scales 

 

A total of 511 fish specimens from Waterloo Farm have been accessioned into the 

collection of the Albany Museum, including isolated scales and scatters of scales. 

During early collecting, which provided the material for previous studies, 182 

specimens were collected, of which 71 represented disassociated scales or scatters of 

scales and 111 represented bones, scatters of bones or soft tissue impressions. During 

subsequent collection, scales have not been systematically collected, as the majority 

are of the Hyneria-like type which are disproportionately represented on some 

horizons, where they may be derived from single decomposed individuals. During 

this study a further 329 fish specimens have been accessioned into the Albany 

Museum collection, of which 6 represent isolated scales or groups of scales, and 323 

represent bones, scatters of bones or soft tissue impressions. Thus a total of 434 

specimens, excluding those only representing scales, were available for study. Of 
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these 367 were well understood and therefore included in this study of relative 

abundance.   

 

Due to difficulties in identifying relatively closely related species on the basis of 

isolated elements of individuals of different ages, specimens have been binned 

according to more inclusive biological units (following Parent and Cloutier, (1996)), 

cognisant that they may not all be monophyletic (Brazeau, 2009). These are the 

“agnatha”, Antiarchi, Arthrodira, Acanthodii, Chondrichthyes, Actinopterygii, 

Onychodontiformes, Actinistia, Dipnoi and Osteolepiformes (see table 4.1.1). 

Percentages have been rounded off to the nearest whole number. 

 

 

Table 4.1.1                               no. (total = 367)           percentage of total (total = 102) 

 

“agnatha”                                            8                                                 2 

 Antiarchi                                          50                                               14  

 Arthrodira                                      160                                               44 

 Acanthodii                                       10                                                 3 

 Chondrichthyes                                32                                                 9 

 Actinopterygii                                  18                                                 5 

 Onychodontiformes                            1                                               <1 

 Actinistia                                          40                                                11  

 Dipnoi                                                2                                                  1   

Osteolepiformes                                46                                                13 

 

 

The assemblage (fig. 6.14a) is dominated by placoderms, which make up more than 

fifty percent of fossils. Arthrodire placoderms are the most abundant being 

represented by 44 % of the fossils. Antiarch placoderms, represented here by 

Bothriolepis africana, make the second largest contribution (14%).  
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Osteolepiforms, largely represented by the robust dissociated bones of a large 

Hyneria-like taxon, are the next most frequently collected vertebrate fossils from 

Waterloo Farm, making up 13% of the sample. Actinistians, represented, by and 

large, by small whole-bodied individuals make up 11% of the sample, whilst 

chondrichthyans make up 9%. Dipnoans, actinopterygians, acanthodians, 

onychdontiforms and agnathans each make up five or less percent of the sample. 

 

Were this data used to extrapolate the population structure of the ecosystem in the 

adjacent environment, the environment could be said to have been overwhelmingly 

dominated by placoderm fish. These were largely arthrodires but the single species of 

antiarch, alone, outnumbered any non-placoderm grouping. The large Hyneria-like 

predator, according to this approach, was the most abundant non-placoderm. The 

most abundant other groupings would be actinistians and sharks, with dipnoans, 

actinopterygians, acanthodians, onychodontiforms and agnathans being numerically 

insignificant.    

 

It is, however, valuable to explore what taphonomic filters may be transforming 

relative sample sizes. Variable preservational potential of different organisms and 

variable potential for multiple scoring of individuals might, alternately, be seen as the 

principle factors reflected in the relative sample sizes.Working from this premise 

alone, without considering environmental factors (discussed below), one could 

extrapolate that placoderms are so well represented due to their abundant possession 

of durable dermal bony plates. Their sample size is further skewed by the fact that 

when these are found as isolated plates, each one is accessioned as an additional 

placoderm specimen.  

 

The Hyneria-like taxon with its large durable bones, generally found as isolated 

bones or small associations of bones, is therefore not surprisingly the next most 

commonly represented taxon. The preservation potential of chondrichthyans is 

relatively low, the cartilaginous skeleton yielding far more readily to decay than the 

bony skeletons of the more common large bony taxa. The only large durable elements  
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associated with the Chondrichthyes are the dorsal fin spines, of which the taxa 

present may have had only one each, as compared to the multiple durable bony 

elements of the aforementioned bony taxa. Teeth within the most common 

Chondrichthyan size range were small and are not easily recognised due to 

replacement with clay. Of the smaller fish the osteichthyans (actinistians and 

actinopterygians) are the best represented. Acanthodians are recognised from a mere 

3% of specimens. Agnathans, which are small in size, lack bony elements or spines, 

and have soft bodies, are represented by only 2% of specimens.   

 

Two anomalies stand out from a preservational interpretation of the above results. 

Firstly dipnoans, which should have a preservational potential not much less than that 

of osteolepids, are known from only two bones (and a small number of large scales). 

This may suggest that they were only occasional visitors or imports from an adjacent 

environment. Secondly, only one isolated bone appears to belong to an 

onychodontiform. Significantly this is one of the only vertebrate specimens that does 

not come from the single channel fill that has yielded almost all known vertebrate 

material at Waterloo Farm.    

 

 

6.1.4.2  Analysis two: based on specimens exhibiting soft tissue or pelt 

impressions 

 

To test the possibility that the results of analysis one are a reflection of preservational 

potential rather than a true reflection of relative abundance, a second survey was 

performed in which only specimens exhibiting soft tissue preservation, or at least pelt 

remains, were included. A more equitable preservational potential of soft tissue is 

assumed, though it is accepted that a narrow ecological filter, relating to proximity to 

the microhabitat of preservation, is being introduced. A total of 73 specimens 

qualified for inclusion in this survey. These were analysed according to the same 

taxonomic categories presented in Table 1 (see Table 4.2.1). 
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Table 4.2.1                                    no. (total =73)         percentage of total (total = 100) 

 

 

“agnatha”                                           8                                                 11 

 Antiarchi                                           2                                                   3  

 Arthrodira                                       10                                                 14 

 Acanthodii                                        5                                                   7 

 Chondrichthyes                                 6                                                   8 

 Actinopterygii                                   6                                                   8 

 Onychodontiformes                           0                                                   0 

 Actinistia                                          33                                                 45  

 Dipnoi                                                0                                                   0   

Osteolepiformes                                  3                                                   4 

 

 

The overwhelmingly most common taxonomic group, according to this analysis (fig 

6.14b) was the Actinistia, which constituted 45% of the specimens included.  

Arthrodire placoderm specimens represent the second most common group, 

contributing 14% to the total. Agnathans, which were amongst the least significant 

groupings, according to the first analysis, were the third most abundant taxa, 

represented by 11% of the specimens. Acanthodians, chondrichthyans and 

actinopterygians were somewhat less common ranging between 7% and 8%. 

Osteolepiforms (4%) and antiarch placoderms (3%) were the least common 

groupings. Onychodontiforms and dipnoans were unrepresented.     

 

The results of this analysis (fig. 6.14b) differ radically from those of the first analysis 

(fig. 6.14a) in the far more modest contribution of placoderms to the sample. Whereas 

they represented 58 % of all individual fossils included in the first analysis, in this 

analysis they constituted a mere 17 % of the total study group. Arthrodire placoderms 

were, nonetheless, the second most numerous grouping. Antiarch placoderms, the 

second most abundant grouping according to the original analysis were the least 

significant numerically present group according to the second analysis. This deflation 
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of placoderm dominance suggests that the superabundance of placoderm fossils in 

Waterloo Farm derived collections reflects, to a large degree, the greater number of 

easily preserved elements within their skeletons. 

 

Similarly osteolepiforms, third most common element of the fauna, which constituted 

13% of the material in the first analysis, accounted for a mere 4% of the material in 

the second analysis, making it the second least common group present. 

 

Conversely, soft-bodied agnathans, which have no easily preserved hard elements and 

small acanthodians, which have few, experienced corresponding inflation of their 

percentage of abundance. 

 

With the possible exeption of the high percentage of Actinistia, this result is probably 

more accurate than that in analysis one, though only with regard to those organisms 

which lived in, or came into, the microhabitat where preservation occurred. The 

superabundance of Actinistia within the second sample needs to be considered in 

light of the fact that these are, with a very few exceptions, all small (presumed 

juveniles) from within a very narrow size range. They are often concentrated on 

individual bedding planes and frequently show very little disruption or loss of 

elements. It is suggested that they represent juveniles that used the shallow still 

waters of the depositional environment, as a nursery. They were occasionally killed 

by sudden stressful events such as anoxia or temperature fluctuations. It is, therefore, 

likely that their abundance was very localised and, in this analysis, inflated by death 

assemblages or a death assemblage. 

 

 Systematic layer by layer excavation of the main lense was only conducted during 

1993 and 1994. Due to steady collapse of the outcrop and periodic roadworks the 

exact microstratigraphic position of most specimens is not known. Suggestively 

however during the 1993 – 1994 excavation the majority of coelacanth specimens 

collected were found scattered over a single bedding plane. Subsequently collected 

specimens include some in which more than one individual is represented on a single 

slab. 
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 A third analysis was therefore conducted that sought to address this possible filter. 

 

6.1.4.3  Analysis three: based on specimens exhibiting soft tissue but excluding 

small juvenile actinistia 

 

Parent and Cloutier (1996), in analysing relative abundance figures within collections 

of Frasnian fossil fish from Miguashaia, found their results to be skewed by inclusion 

of large numbers of specimens of the small acanthodian, Triazeugacanthus. These 

were chiefly collected from four horizons corresponding to mass mortality 

assemblages. As a result they recalibrated their results by excluding specimens of 

Triazeugacanthus collected from these four horizons (Parent and Cloutier, 1996). 

 

Following this methodology, to further explore the relative abundance of other 

taxonomic groupings within the sample, all whole-bodied actinistian remains in the 

three to six centimetre size range were excluded. This left only three actinistian 

specimens and reduced the sample size to 43 (see Table 4.3.1). 

 

Table 4.3.1                                   no. (total =43)         percentage of total (total=102)  

 

“agnatha”                                           8                                                 18 

 Antiarchi                                           2                                                   5  

 Arthrodira                                       10                                                  23 

 Acanthodii                                        5                                                  12 

Chondrichthyes                                 6                                                  14 

Actinopterygii                                   6                                                  14 

Onychodontiformes                          0                                                    0 

Actinistia                                           3                                                    7  

Dipnoi                                               0                                                    0   

Osteolepiformes                                3                                                    7 

 



 275 
 
 

In this analysis coelacanths may be overly penalised. Otherwise however the result 

(fig. 6.14c) does not seem a grossly implausible reflection of relative faunal 

abundance, when considered in terms of the trophic pyramid structure observed in 

recent ecosystems. The principle predators of an ecosystem (occupying the highest 

trophic level) comprise a smaller portion of its biomass than their prey, which in turn 

comprise less biomass than their prey (or other food source). This results from loss of 

energy at each trophic level, through its use for biological processes. The base of the 

pyramid is comprised of primary producers in the form of plants and algae (Molles, 

2010). Unless substantially smaller than their prey, predators are outnumbered by 

prey. According to analysis three the top predators, osteolepiforms and 

chondrichthyes are uncommon to moderately common, small predators such as 

Actinopterygians, climatiid acanthodians, (and perhaps Actinistia) were moderately 

common; whereas organisms of lower trophic level, such as phlyctaeniid arthrodires 

(that may well have lived on micro-organisms associated with decay, including that 

of plant matter) and agnathans (that chiefly lacked a large annular cartilage and may 

have been microphagous), were fairly abundant. Nonetheless, analysis three serves 

only as a guide towards understanding of population trends in the broader ecosystem, 

due to its inherent selectivity. 

 

 Clearly, together with the second analysis, the third analysis favours organisms 

which were small and lived or came into the area of preservation, or those that had 

young that did. Benthic organisms, such as the placoderms present, would also be 

favoured over more pelagic and nektonic species.  

 

All three analyses, as well as the differences between them, may help to inform 

speculation on palaeopopulation structure.  
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6.1.4.4  Extrapolated Population Structure  

 

In both the first (fig. 6.14a) and the third (fig. 6.14c) analyses arthrodire placoderms, 

principally represented by groenlandaspidid phlyctaeniid arthrodires, were the most 

common fish group recorded. This suggests that they numerically dominated the 

lagoonal environment. They appear to have spent most of their life cycle within the 

environment, as they are represented by a full range of individuals, from those which 

were extremely small through to remarkably sizeable individuals, within at least one 

taxon.  

 

Chondrichthyans, which achieved  moderately high percentages in both the first and 

third analyses were undoubtably a fairly common and important component of the 

ecosystem,  ranging in size from individuals less than 3 cm long to others several 

metres long. The fairly small number of shark,s teeth collected may result from 

difficulty in recognising isolated teeth of small individuals that were probably 

resident in the micro environment. Large individuals may have only occasionally 

entered this environment, possibly to give birth, or their remains may have drifted in 

from a closely adjacent environment. 

 

Acanthodians and actinopterygians, which appear, according to the first analysis, to 

have been very minor elements within the ecosystem may well, according to the third 

analysis, have been almost as abundant as chondrichthyans. With the exception of the 

gyracanthid acanthodian, representatives of these groups were all of relatively small 

size, compared to other fish taxa present. The gyracanthid is the only acanthodian 

recorded only from the remains of large individuals exhibiting no soft tissue 

impressions. This suggests that they may only have entered the depositional 

environment as vagrant adults, or may have occasionally drifted in as floating 

carcasses. 

 

Antiarch placoderms, which appear fairly abundant following the first analysis, were 

only a minor element within the fauna, following the third analysis. Their seeming 

abundance has been greatly inflated by the unusually good preservational potential of 



 277 
 
 

their dermal armour elements. A full range of carapace sizes suggest that they were 

permanent residents within the environment 

 

Soft bodied agnathans of the types discussed above, which are otherwise completely 

unknown from the Devonian and were an extremely minor faunal element according 

to the first analysis, appear to have been fairly abundant according to the third 

analysis. Only one specimen exhibited the large annular disc characteristic of most 

adult lampreys (Gess et al., 2006). The other, smaller, specimens may represent late 

transformational or young post metamorphic lampreys. It is not impossible that they 

formed an important part of the lower trophic levels of the Waterloo Farm and other 

Devonian ecosystems but, due to their extremely low preservational potential, have 

generally not been recorded.  

 

Actinistians, which are amongst the most abundant non-placoderms in the first 

analysis (fig. 6.14a) and the overwhelmingly most common grouping in the second 

analysis (fig. 6.14b) are overly represented by small juveniles associated with mass 

mortality type horizons. Their presence may therefore be exaggerated due to local 

abundance within the shallow waters where the deposition of the sample occurred, 

and they were therefore artificially deflated in the third analysis. It is noteworthy  that 

in the other two analyses they vastly outnumber similarly sized small whole-bodied 

Actinopterygii and they may well have been overly deflated in the third analysis. It is 

likely that they provided a significant contribution to the middle trophic levels of the 

ecosystem.   

 

The absence of dipnoans and onychodontiforms in the third sample (fig. 6.14c) 

probably reflects their absence from the immediate environs of deposition. 

Onychodontiforms are indicated by a single maxilla that was found in a slightly 

different, adjacent, shale horizon representing a slightly different subenvironment. 

Lungfish are only represented by a few large isolated scales and by two disarticulated 

parasphenoids, suggesting that they may not have been permanent inhabitants of the 

lagoonal embayment, but may have entered the lagoon either actively or passively 

from a neighbouring environment. Interestingly, the first found of the two 
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parasphenoids was within a dense layer of Hyneria-like scales, suggesting the 

possibility that it may have been imported into the environment in the form of 

stomach contents. 

 

In the first analysis osteolepiforms are the most commonly represented non-

placoderm grouping. Most of the material consists of isolated jaw and dermal armour 

bones of the large Hyneria-like taxon. This taxon was probably the dominant predator 

within the environment, though the extremely good preservational potential of its 

elements, and their generally disassociated condition, is likely to have exaggerated 

the biological abundance of the organism represented. Their contrary position, as one 

of the least common elements, in the third analysis, is probably a true reflection of 

their abundance, considering their high trophic level.   

 

The Cleveland Shale (fig 6.16b, CS), which represents the most populous known 

Famennian vertebrate community is likewise dominated by arthrodire placoderm 

remains. It has abundant chondrichthyans as its next most numerous grouping, a 

small number of actinopterygians, and a single actinistian, though no acanthodians or 

osteolepiform sarcopterygians (Carr and Jackson, 2008). Arthrodires from Cleveland 

are all members of the brachythoracid group, open marine predators (e.g. 

Dunkleosteus) and possible filter feeders (Titanichthys) (Hansen, 1996), as opposed 

to the benthic phlyctaeniid arthrodires found at Waterloo Farm which are 

characteristic of marginal marine to freshwater environments. Dunkleosteus and 

Titanichthys, giant brachythoracids found in the Cleveland Shale, were widespread in 

tropical marine waters and are also found in strata from European Laurussia (e.g. 

Belgium and Poland) and from north Gondwana (Tafilalt, Morocco) (fig 6.16, M)  

(Sallan and Coates, 2010). The chondrichthyan fauna of the Cleveland Shale similarly 

has no overlap with that of Waterloo Farm, being comprised of relatively derived taxa 

such as Cladoselache, a number of species of stethacanthids and sharks of the 

ctenacanth grade. By contrast the chondrichthyans from Waterloo Farm belong to a 

very early radiation that was apparently extinct by the Late Devonian, outside of the 

Agulhas Sea. This significant faunal difference derived from persistence into the Late 

Devonian of endemic Agulhas Sea faunal elements.   
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Before biogeographic discussion is resumed in section 6.1.6 it is necessary to review 

the fish fossil record of the Cape Supergroup of South Africa, as this is long overdue 

and provides the basis for discussions of endemism, its breakdown and the effects of 

the Hangenberg event.  

 

6.1.5  STRATIGRAPHIC DISTRIBUTION OF FISH IN THE CAPE 

SUPERGROUP  

 

Changing faunal trends amongst fish in the Agulhas Sea during the Devonian, and 

after the Hangenberg Extinction event, have not previously been reviewed. Although 

the rocks and fossils of the Cape Supergroup have received only scant attention 

despite excellent outcrops, large collections have been amassed at Izeko Museums 

and the Council for Geosciences. Although most of the fossils in these collections are 

of invertebrates, there is also a small fish component. In addition, fossils are held in 

the Montagu and Albany museums. These collections, combined with the exceptional 

Waterloo Farm collection enable a meaningful review that informs a biogeographic 

discussion in section 6.1.6. 

 

6.1.5.1.  Ordovician 

 

Conodonts (Promissum pulchrum (Kovacs-Endrody, 1986)) are known from the Late 

Ordovician shale of the Soom Member of the Cederberg Formation (Table Mountain 

Group) (Theron et al., (1990)  Aldridge et al., (1993)).  An unarmoured agnathan fish 

informally reported from the Soom shale (e.g. J.N.Theron pers. comm. in Evans, 

1996) was not traced. 

 

 The coarse sandy strata of the overlying Nardouw Subgroup, representing the 

Silurian Period, have as yet yielded no fossils.   
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6.1.5.2.   Early Devonian: Emsian 

 

Vertebrate fossils are not well known from the Devonian and Carboniferous strata of 

southern Africa, however a few important assemblages have been studied (fig. 6.15). 

The oldest of these is the Emsian (Cooper, 1986) Gydo Formation, lowermost 

subdivision of the, lower Bokkeveld Group, Ceres subgroup, in which scarce fish 

fossil remains are found in association with typical Malvinokaffric cool-water, marine 

shelly assemblages (Almond and Evans, 1996). 

 

Specimens from the Gydo Formation include three fragmentary specimens that have 

been identified as the remains of the trunk armour of primitive antiarch placoderms 

(Anderson et al., 1999c). Isolated spines of the cosmopolitan „ishnacanthid 

acanthodian‟ Machaeracanthus, have also been noted (Schwarz, 1900, Oosthuisen, 

1984, Anderson et al., 1999c). Chondrichthyan remains (external moulds of prismatic 

cartilage) include fragmentary branchial arch material, an apparent scapulocoracoid, 

probable fin elements, and a nearly complete chondrocranium (Oosthuisen, 1984, 

Anderson et al., 1999c). The fin elements have been compared to those of 

Zamponiopteron from the Emsian to Eifelian of Bolivia (Anderson et al., 1999c, 

Maisey et al, 2002). Although the exact provenance of the chondocranial specimen 

curated by the Council for Geosciences (Anderson et al., 1999c) is not known, there 

is consensus that the phosphatic nodule in which it occurs, is consistent with the 

mode of preservation of fossils from the Gydo Formation. This makes it the earliest 

known chondrichthyan chondrocranium. Maisey and Anderson (2001) redescribed 

the chondrocranium, concluding that it most closely resembled material referred to 

Pucapampella from the Emsian to Eifelian of Bolivia (Maisey and Anderson, 2001) 

and shared with it many plesiomorphic characters previously only known in 

osteichthyans, such as a persistent cranial fissure (Maisey and Anderson, 2001).   
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6.1.5.3    Early Devonian: Eifelian 

 

The Eifelian aged Tra Tra Formation, also of the Ceres Subgroup has produced only 

one definite vertebrate fossil, that of a large isolated possible lungfish scale 

(Anderson et al., 1999).  

 

6.1.5.4.     Middle Devonian: Givetian 

A Givetian aged Adolphspoort Formation (Traka Subgroup) (fig. 6.16 a, AF) fish 

fauna is associated with lycopod remains and bivalves. The fossiliferous horizons are 

interpreted as marginal marine delta top deposits (Almond and Evans, 1996; Almond 

pers comm., 2009). Extreme deformation of sediments during the Cape folding event 

has greatly distorted many specimens. Nonetheless it is the best-collected pre Late 

Devonian vertebrate fauna in southern Africa, largely due to sustained collecting by 

Abraham de Vries, a farmer at the Warmwaterberg in the Klein Karoo. His early 

material provided the type material of Barrydalaspis theroni (Chaloner et al., 1980), 

an arthrodire placoderm now considered congeneric with Groenlandaspis (Long, 

1996, collection note). Chaloner et al. (1980) noted that some of the arthrodire 

material appeared to be very different in proportion and suggested that it belonged to 

a second “phlyctaenaspid arthrodire.” Personal examination of the material suggests 

that the apparent differences between the two groups of voucher specimens, as well 

as the unusually splayed form of the Barrydalaspis type, probably arise from the 

extreme deformation of the host strata. The presence of additional phlyctaeniid 

arthrodire placoderm species from the Adolphspoort Formation is, nonetheless, not 

excluded. Chaloner et al., (1980) noted the presence of a spine bearing oblique 

tuberculated ribs, which they attributed to the climatiform acanthodian, 

Gyracanthides. They considered it almost identical to that of Gyracanthides warreni 

from the Aztec Siltstone of Victorialand (Chaloner et al., 1980). One specimen 

identified as a chondrichthyan (Chaloner et al., 1980), or possibly placoderm 

(Janvier, 1996) egg case is now known to be incompletely illustrated (pers. obs.) and 

is most likely to represent an unusual invertebrate body fossil.    
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Later collections from the Adolphspoort Formation, made by Abraham de Vries, 

remained unstudied until after his death. Almond and Evans (1996) recognised that 

additional significant specimens had been assembled. These included spines and teeth 

of the pan-Gondwanan chondrichthyan, Antarctilamna, as well as other unidentified 

spines. They furthermore noted „articulated squamation and fin spines of various 

small to moderate sized acanthodians‟ (Almond and Evans, 1996), identified by 

Anderson et al. (1999) as „an unidentified climatiiform.‟ A subsequent fieldtrip 

revealed that similar fish fossils could also be found along strike from the 

Warmwaterberg at Hondewaterstasie (Anderson et al., 1999). During a visit by 

myself to Hondewaterstasie in September 2007 a spine of the Plesioselachus type 

was collected.  

 

Almond and Evans (1996) revealed that the contemporaneous Klipbokkop Formation 

(fig. 6.16 a, KK) in the Cederberg included less distorted horizons containing fish, 

lycopod and bivalve assemblages. Here too, sedimentary indices were seen to support 

a restricted marine or freshwater delta top environmental setting. This interpretation 

was supported by the presence of dwarf „Spirophyton‟ trace fossils. Almond and 

Evans (1996) also reported the presence of disarticulated Antarctilamna and 

acanthodian fin spines and placoderms plates (Almond and Evans, 1996).  

 

Further collecting in the Klipbokkop Formation uncovered fossil teeth of  

Antarctilamna, as well as two other shark genera, Portalodus and Aztecodus, 

previously described from the similarly aged (non Agulhas Sea) Aztec Siltstone of 

Antarctica. In addition to groenlandaspidid remains, fragments of a more primitive 

holonematid phlyctaeniid arthrodire placoderm were identified by John Long in 1997. 

A single Onychodus – like tooth whorl was also collected (Anderson et al., 1999). 

 

 Evans (2005) reported a possible Machaeracanthus spine from this horizon. Study of 

the specimen, by myself (with Evans) in 2007 failed to establish convincing evidence 

for this identification. 
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6.1.5.5    Late Middle Devonian: Late Givetian 

 

The Wagendrift Formation (basal Weltevrede Subgroup, Witteberg Group) has 

provided scant fragmentary fossil fish material which remains to be described. 

Material in the Council of Geosciences collection includes small elongate shark-like 

fin spines with noded ribs of the Plesioselachus type, in addition to placoderm 

remains strongly reminiscent of Barrydaleaspis (Groenlandaspis) theroni and 

possibly also fragments of Osteolepiform fish bone, one of which appears to display a 

vermicelli-like dermal ornament (pers. obs.). These were collected from a mud chip 

conglomerate layer at Rooiberg, interpreted as having originated along a prograding, 

storm-dominted, siliclastic shoreline (pers. comm. Almond and Evans, 2007). 

Ichnofossils in the Wagen Drift Formation reflect restricted, marginal marine to 

brackish estuarine palaeoenvironments (pers. comm. Almond and Evans, 2007). 

 

6.1.5.6   Late Devonian: Famennian 

 

As discussed above, all Famennian aged fossils described from South Africa are 

derived from a single outcrop at Waterloo Farm near Grahamstown, South Africa 

(6.16 b, WF). This important black shale lens is interpreted as a product of anaerobic 

sediments deposited in a quiet embayment near the mouth of an estuarine lagoon 

(Gess and Hiller, 1995a).  

 

Agnatha are represented by soft-bodied forms, including the lamprey Priscomyzon 

riniensis, which displays a large sucker disc. The other  forms lack obvious sucker 

discs but may represent sub-adult lamprey forms, including that of Priscomyzon.  

 

Fossil collections of this fauna are numerically dominated by Groenlandaspis 

riniensis (Long et al, 1997), which reached a substantial size. Two other species 

(including Africanaspis doryssa (Long et al., 1997)), characterised by extremely high 

median dorsal plates, were less abundant and more modest in size. At least two 

further phlyctaeniid arthrodire taxa were also present. A ptyctodont placoderm has 
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been reported on the basis of two isolated plates (Anderson et al., 1997). Antiarch 

placoderms were represented by Bothriolepis africana (Long et al., 1997).  

 

Acanthodians were fairly diverse, though not commonly preserved, and included a 

large gyracanthid (Gess and Hiller, 1995), two diplacanthid species, including 

Diplanthus acus (Gess, 2001) and an acanthodid (Gess, obs.). Chondrichthyans 

included Antarctilamna, (Gess, obs.) and Plesioselachus macracanthus (Anderson, et 

al.,1999). Antarctilamna is known from juveniles of 2.8 cm total length to the teeth of 

individuals that are postulated to have been several metres in length.   

 

A small unidentified actinopterygian was not commonly preserved. Sarcopterygians 

were more diverse and more numerous. The most abundant of these was a coelacanth 

(Gess and Hiller, 1995; Gess, in prep.), represented by numerous juvenile individuals. 

A dipnoan comparable to Andreyevichthys was present, as well as a sizable 

tristichopterid (Gess and Hiller, 1995), similar to Hyneria. A large isolated cleithrum, 

representing a several metre long sarcopterygian, has many features in common with 

elpistostegalids. 

 

Trace fossils within the shale lens include a number of types of fish drag traces (Gess 

obs.), as well as dwarf Spirophyton fossils (Gess and Hiller, 1995) identical to those 

reported by Almond et al. (1996) from the older Klibbokkop Formation. A wide 

range of algal and plant fossils are also associated with the fish fossils and associated 

strata. These include phaeophyte algae (Gess and Hiller, 1995a), charophyte algae 

(Gess and Hiller, 1995b), a range of lycopods such as Haplostigma and Leptophloem, 

stems of the Praeranunculus type (which have been shown to represent the woody 

stems of a probable progymnosperm, the fertile structures of which are represented by 

Dutoitia maraisia (Gess and Hiller, 1995)), and fronds of the progymnosperm 

Archaeopteris (Gess and Hiller 1995a, 1995b). Arthropod remains include those of 

ostracods, conchostracans (Gess and Hiller, 1995a) and a large cyrtoctenid eurypterid 

(Gess, 2004).   
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6.1.5.7.   Early Carboniferous: Tournasion to Visean 

 

The Waaipoort Formation (Lake Mentz Subgroup, upper Witteberg Group) (fig. 6.16 

c, WA) has been dated palynologically as late Tournasian to Visean (Streel and 

Theron, 1999) and contains the only record of an Early Carboniferous fish fauna in 

southern Africa. Localities with fish fossils are fairly widespread and, at most of 

these, the fish are present in calcitic or phosphatic nodules. At a single locality, 

Schiethoogte in the Eastern Cape, a 15 cm thick blackish layer consisting of siltstone 

and fine-grained sandstone contains two thin horizons closely packed with the 

remains of exclusively actinopterygian fish. These clearly represent mass mortality 

events (Marais, 1963; Evans, 2005), possibly resultant from anoxic episodes (Evans, 

1997). Jubb (1965) described  Mentzichthys walshi based on one of these fish. 

Gardiner (1969) described a further 10 species of actinopterygian, which included six 

additional genera, from various outcrops in the Waaipoort Formation. These were 

Mentzichthys theroni,  Mentzichthys maraisi, Mentzichthys jubbi, Australichthys 

longidorsalis, Aesturichthys fulcratus, Willowmoreichthys striatulus, Sundayichthys 

elegantulus, Dwykia analensis, Adroichthys tuberculatus and Soetendalichthys 

comtoni (Gardiner, 1969).  

 

Gardiner considered that many of these genera were closely related to those of the 

Tournasion to Visean Cementstone Group of Scotland (fig. 6.16 c, S) (Gardiner, 

1969). Evans (1996, 2005) demonstrated the need for a thorough revision of  

Waaipoort Formation fish descriptions, taking cognisance of recent advances in early 

fish studies. Evans (2005) concluded that 15 “palaeoniscoid” actinopterygian species 

are represented.  

 

A number of partial acanthodian (Gardiner, 1973; Evans, 1997) and  putative shark 

(Oelofsen, 1981 and Evans, 1997) spines and also scales have been reported from 

some of the nodule bearing localities. Those spines with noded oblique ridges, 

sometimes associated with acanthodian-like scale impressions were identified as 

Gyracanthides (Evans, 1997).  
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Gardiner (1973) placed one isolated spine, on which the ridges are smooth, more 

widely spaced and near longitudinally orientated, in the genus Acanthodes. J.A. Long 

(pers. comm. to Evans, 1997) pointed out that the multiple ridges on this specimen 

preclude this identification as Acanthodes has a single ridge. Whether or not it is a 

member of the Acanthodidae has not been established.  

 

Ctenacanthiform sharks reported by Evans (1997, 1999) are equivocal. One specimen 

(F83), mentioned by Oelofsen (1981), consists of a pelt with an in situ proximal 

portion of a dorsal fin spine. Although no details of the spine are evident Evans 

(1997) postulated that this specimen may represent a „ctenacanth‟ shark, an identity 

apparently supported by its somewhat poorly preserved rhomboidal scales bearing 

longitudinal striae. A similar scale patch (PW182) was referred to the same taxon  

(Evans 1997). „Ctenacanths‟ are defined on the basis of  „pectinate‟ ornamentation of 

the fin spines (consisting of longitudinal ridges with interdigitating lateral 

expansions) which is absent from their smooth basal insertion area. „Ctenacanths‟ are 

further characterised as posessing „cladodont‟ type teeth (with a main central cusp 

and smaller lateral cusps), compound scales made up of many odontodes attached to a 

single base (Janvier, 1996), and a „Tamiobatis-like‟ neurocranium (Williams, 1998; 

Ginter and Maisey, 2007). As the rhomboidal scales described and illustrated by 

(Evans, 1997) are not consistent with those of „ctenacanths‟, a ctenacanth 

identification of  F83 and PW182 is not accepted. As described and illustrated they 

appear not dissimilar to those attributed by Evans to gyracanthid acanthodians, eg. 

GB62.34 (Evans, 1997, pg 99, Plate 3.21).   

        

Evans (1997) and Long (pers. comm. to Evans, 1997) tentatively assigned material to 

Protacrodus, including an isolated tooth in lingual view (PW143). This specimen was 

not well illustrated and was not examined during this study. In addition a pelt 

associated with a smooth inserted spine base from a different locality (B0352) was 

tentatively assigned to Protacrodus „on the basis of the inserted spine which has a 

smooth base‟ (J.A. Long pers. comm in Evans, 1997, pg. 109). This is surprising as 

presence or absence of dorsal spines in Protacrodus has not been demonstrated 

(Zangerl, 1981). B0352 was elsewhere described with greater certainty as an 
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„articulated but incomplete ctenacanth shark‟ (Evans, 1997, Explanation of Plate 

3.30). Protacrodus is not considered a ctenacanth (eg. Zangerl, 1981; Ginter, 2004). 

Spine ornament (which is diagnostic of „ctenacanths‟) is not preserved. The scales do 

not appear from the plate to resemble those of ctenacanths (cf. Janvier, 1996; 

Williams 1998). As illustrated the scales are indistinguishable from those of 

GB62.34, attributed by Evans to a gyracanthid acanthodian (Evans, 1997, pg 99, 

Plate 3.21) and are not incompatable with those of „acanthodians‟. B0352 is here 

considered indeterminate. There is therefore no definite evidence of „ctenacanth‟ 

sharks in the Waaipoort Formation. The apparent presence of a chondrichthyan tooth 

differing from those from the Devonian strata of South Africa is noted, though its 

identity as Protacrodus could not be confirmed.    

 

A small spine fragment illustrated by Loock (1967) was re-examined by Long and 

Evans who compared its ornament to that of Antarctilamna specimens from the 

Adolphspoort Formation (Evans, 1997). An additional shark spine, identified by 

Evans (1997) as „? Acanthodii problematicum‟ was re-examined by this author and 

identified, on the basis of its distinctive shape, parallel longitudinal costae and 

posterior denticles, as the dorsal fin spine of a Plesioselachus-like taxon. As 

Plesioselachus spines have a similar ornament to those of Antarctilamna, the 

fragment previously reported could be from of a Plesioselachus spine. 

 

In addition to the fish fauna the Waaipoort Formation has yielded the Eurypterid, 

Cyrtoctenus wittebergensis (Waterston et al., 1985), thin-shelled bivalves, a range of 

ichnofossils, lycopod stem fragments and “Praeranunculus” type stems (Evans, 

1997). 

 

The Waaipoort Formation has most commonly been interpreted as a marginal marine 

environment, possibly lagoonal (eg. Whitfield, 1988; Dwyer, 1991 and Theron, 1993) 

or deltaic (eg. Johnson, 1976; Matshoba 1994). Based largely on the actinopterygian 

fish which were assigned to eight families, six of which were also believed to have 

representatives in the apparently lacustrine Cementstone group of Scotland 

(Rhadinichthyidae, Holuridae, Atherstoniidae, Canobiidae, Amphicentridae and 
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Platysomidae), the palaeoenvironment of the Waaipoort Formation has been 

considered lacustrine (Marais, 1963; Jubb, 1965 and Gardiner, 1969). 

 

Evans (1997) vigorously championed this latter view, re-examining the sedimentary 

evidence and providing alternative interpretations thereof, suggesting that the 

depositional environment consisted of one or possibly two, large, enclosed, possibly 

brackish non-marine lake(s). She furthermore asserted that the presence of 

actinopterygians belonging to similar families to those of the Cementstone fauna, a 

gyracanthid, a charophyte gyrogonite, abundant plant material, possible unionid 

bivalves and a Cyrtoctenid, together with a far lower fish diversity than that of the 

Witpoort Formation, suggest the presence of a non-marine environment (Evans, 

1997). She suggested (p. 170) that the sharks might have migrated to and from 

„marine influenced environments.‟  

 

Without pursuing this debate at length it is worth noting that an early actinopterygian 

is also known from the estuarine Witpoort Formation deposit at Waterloo Farm, as 

are gyracanthid spines, abundant plant and charophyte remains and a large 

Cyrtoctenid (see above). Identification of a plesioselachid shark from the Waaipoort 

provides another taxon in common with Waterloo Farm. The reduced fish 

biodiversity between these two faunas reflects global changes between the Devonian 

and Carboniferous resultant from the Hangenberg Extinction Event. Furthermore 

representatives of the Rhadinichthyidae, Holuridae, Atherstoniidae, Canobiidae, 

Amphicentridae and Platysomidae occur in Scottish Visean near shore marine faunas, 

such as Glencartholm (Moy-Thomas and Bradley Dyne, 1938; Sallan and Coates, 

2010). The family Rhadinichthiidae is also found in the marine uppermost 

Carboniferous Dwyka shales at Ganikobus, Namibia (Gardiner, 1962).  

 

Palaeontological evidence, does not therefore exclude the possibility of a marine 

influence in the Waaipoort Formation and it is possible that the lacustrine basins 

postulated by Evans (1997, 2005), could have been the last remnants of the shrinking 

Agulhas Sea, perhaps semi or seasonally cut off from the open ocean.  
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6.1.6  BIOGEOGRAPHY 

 

Famennian faunas strongly reflected habitat related specialisation as well as 

biogeographic disparity. The inability of marginal marine taxa to cross open sea 

environments with anaerobic bottom waters, contributed to mid Devonian faunal 

provincialism, as is evidenced by the converse Late Devonian faunal exchange 

between Gondwana and Laurussia, due to closure of the Iapetus Sea. 

 

Comparison of the changing South African (Devonian) fish fossil faunas with those 

of contemporary Agulhas Sea deposited strata of south-western South America, the 

Falkland Islands, and west Antarctica demonstrate that a unique semi-isolated 

Agulhas Sea fish fauna emerged during the Devonian. This fauna, well established by 

the mid Devonian, persisted to the end of the Late Devonian. Towards the end of the 

Devonian it was augmented by an influx of new taxa, reflecting a global breakdown 

of provincialism. During the Hangenberg extinction event, at the end of the period, 

the Agulhas Sea fish community was decimated, in accordance with global higher 

taxonomic selection trends. A few members of the Agulhas Sea fish fauna persisted 

into the Early Carboniferous where they coexisted with more typically Carboniferous 

actinopterygian and possibly shark taxa.    

 

The presence of a unique Agulhas Sea or Malvinokaffric fish fauna, paralleling the 

well-demonstrated Malvinokaffric invertebrate fauna, has been suggested (Young, 

1987; Maisey, 2002). Alternately, African and South American fish fossils have been 

discussed in terms of a hypothetical West Gondwanan faunal province (Lelièvre et 

al., 1993). This province was largely defined in terms of current continental margins 

and stretched from the semi-isolated polar Agulhas Sea to the palaeotropical deposits 

of North Africa and parts of Southern Europe (Lelièvre et al., 1993), which were 

influenced by their continental connection to East Gondwana and were in close 

proximity to Laurussia. This research indicates that a distinct Agulhas Sea fauna may 

be recognised during most of the Devonian.     
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6.1.6.1. Early Devonian: Lochkovian to Pragian 

 

Although no fish fossils of this age are known from South Africa a fish fossil fauna 

has been described from the Lochkovian to Pragian of Seripona, Bolivia (Janvier and 

Suarez-Riglos, 1986). This fauna comprises scales of a large thelodont, Turinia 

gondwana, resembling those of east Gondwanan Victoria Land, Antarctica and 

Australia (Gagnier, 1987; Gagnier et al.,1988, 1989; Lelièvre et al., 1993); 

acanthodians, including a gyracanthid (Gyracanthus seriponensis); a climatiform 

(Climatius enodicosta) and others (Gomponchus pluriformis, Nodonchus rectus, 

Onchus punctatus and Onchus sicaeformis); probable sharks (Bolivacanthus sagitalis,  

and Sinacanthus boliviensis) and spines of the shark Antarctilamna seriponensis 

(Janvier and Suarez-Riglos, 1986; Gagnier et al.,1988). Sinacanthus is a putative 

shark genus previously known from the Early Devonian of China, whereas the 

acanthodian fauna is fully consistent with Siluro-Devonian faunas of Europe and 

North America (Janvier and Suarez-Riglos, 1986)). By contrast, Antarctilamna, 

which became a widespread part of mid Devonian Gondwanan faunas, remained a 

Gondwanan genus and experienced its longest range in the Agulhas Sea (see below). 

 

6.1.6.2   Early Devonian: Emsian 

 

The Early Devonian (Emsian) rocks of the Gydo Formation (Bokkeveld Group) of 

South Africa contain the remains of an unidentified primitive antiarch placoderm, 

compared by Long (in Anderson et al., 1999c) to early antiarchs of the China region; 

a primitive shark, similar to Pucapampella and fin fragments compared to 

Zamponiopteron. The most common fossil remains from these beds are paired fin 

spine impressions of the acanthodian (or possibly early chondrichthyan (Janvier, 

1996)), Machaeracanthus (Schwarz, 1900; Oosthuisen, 1984, Anderson et al., 1999c; 

Maisey and Anderson, 2001). Machaeracanthus has also been recorded from Agulhas 

Sea derived strata of the Early Devonian of Brazil (Katzer, 1897; Lelièvre et al., 

1993), as well as the Emsian of Ellsworth Land (western Antarctica) and the Falkland 

Islands (Maisey, et al., 2002). 
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The Emsian-Eifelian of Bolivia has produced Machaeracanthus (Maisey et al., 

2002), the type material of Pucampumpella, Zamponiopteron, and the rhenaid 

placoderm Bolivosteus (Janvier and Suarex- Riglos, 1986). Unlike Machaeracanthus, 

which had a cosmopolian distribution in the Early Devonian (and persisted until the 

mid Devonian in Laurussia (Zidek, J., 1981)), these latter three taxa are unknown 

from rocks deposited outside the Agulhas Sea. Maisey et al. (2002) have therefore 

suggested that they provide evidence for an endemic Malvinokaffric vertebrate realm 

within the Agulhas Sea (Maisey et al., 2002).  

 

6.1.6.3   Middle Devonian: Givetian 

 

By Mid Devonian (Givetian) times this Early Devonian fauna had been replaced, in 

the South African fossil record, by one largely represented by arthrodire placoderms 

of the genus Groenlandaspis and sharks, of which Antarctilamna was the most 

common. Other sharks include the aditional diplodont tooth forms, Portalodus and 

Aztecodus and a Plesioselachus spine. Acanthodians include a Gyracanthides-like 

taxon and a possible second climatiiform acanthodian. An unidentified holonematid 

phlyctaeniid arthrodire (perhaps more basal than Groenlandaspis) and an 

onychodontiform sarcopterygian are present.  

 

Whether this apparent sudden faunal change since the Emsian represents a shift in the 

taxonomic makeup of the Agulhas Sea fauna, perhaps due to its invasion by more 

widespread Gondwanan taxa, or whether it is the result of a shift from a pure marine 

depositional environment to a marginal marine, river mouth associated one is difficult 

to test. The earlier noted presence of Antarctilamna in Early Devonian strata of 

Seripona suggests that its absence from the marine, Early Devonian, of South Africa 

may be habitat related. 

 

The South African Givetian fauna, though having this one continuity with the older 

Seripona fauna, differs from all earlier Agulhas faunas in having phlyctaeniid 

arthrodire placoderms, including Groenlandaspis, which has also been cautiously 

identified from the Givetian of the Falkland Islands (Maisey et al., 2002).  
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By the Givetian, arthrodire placoderms already had a long history outside the 

Agulhas Sea, having arisen (possibly in China), early in the Silurian and diversified 

into Laurussia, China and east Gondwanan Australia by the early Devonian (Janvier, 

1996; Young, 1994). Groenlandaspidids form part of a probable Emsian to Eifelian 

fauna from the western Amadeus basin of central Austalia (Young, 1994) and 

Groenlandaspis antarcticus (Ritchie, 1975) has been described from the Givetian 

(Young, 1999) Aztec Siltstone succession of (non-Agulhas) eastern Antarctica .  

 

The Aztec siltstone (Young, 1994, Long, 1995), which has been interpreted as a 

freshwater setting (Young, 1982) is the highest latitude east Gondwanan Givetian 

faunal sequence known (fig. 6.16 a, AS) and correspondingly the most proximal to 

the Agulhas Sea (fig. 2). It and the Agulhas Sea faunas have a significant faunal 

overlap. Uniquely Aztecodus, Portalodus and Antactilamna also occur in the Aztec 

Siltstone, (as do two other shark tooth types, Mcmurdodus and Anareodus) (Long, 

1995). Although Antarctilamna was widespread throughout Gondwana during the 

Middle Devonian (Janvier, 1996), Aztecodus and Portalodus are not found in lower 

palaeolatitude localities. Gyracanthides, which occurred throughout Gondwana 

during the Early and Middle Devonian (Janvier, 1996) was likewise a common taxon 

between the Aztec siltstone fauna (Young, 1982; Long, 1995) and that of the Agulhas 

Sea, suggesting that, like Antarctilamna, it must have been capable of adapting to a 

wide range of climatic zones.   

 

The Aztec siltstone evidences a far greater faunal diversity than that of the Middle 

Devonian Agulhas Sea faunas. The diverse placoderm fauna of the Aztec Siltstone 

included antiarch placoderms, represented by ten species of Bothriolepis and one 

Venezuelepis (formally Pambulaspis) as well as more diverse arthrodire placoderms 

including phlyctaeniids, and phyllolepid placoderms. Acanthodians were likewise 

more diverse and osteichthyans included actinopterygians, and a broad range of 

osteolepiforms, porolepiforms and Dipnoi (Long and Young, 1995; Young and 

Moody, 2002). 
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Another significant east Gondwana fauna of Givetian age is that of the Mount Howitt 

Formation (fig. 6.2; 6.16 a, MH). Not very geographically distant from the Aztec 

Siltstone, during the Devonian, the Mount Howitt depositional environment is 

likewise considered freshwater (Long, 1999d). Apart from a single species of 

Groenlandaspis, the Mount Howitt fauna contains two phyllolepid arthrodires 

(including Austrophyllolepis), three species of Bothriolepis; culmacanthid and 

acanthodid acanthodians, actinopterigians, the actinistian, Gavinia, Dipnomorpha 

such as Barwickia and Howidipterus; as well as the Tetrapodomorpha, 

Marsdenichthys and Beelarongia (Young, 1994; Long, 1999d).  

 

A Givetian to Frasnian north-west Gondwanan fauna, of similar palaeolatitude to 

Mount Howitt, from the Sierra de Perijá, western Venezuela (fig. 6.2; 6.16 a, SP)), is 

dominated by Bothriolepis (Bothriolepis perija) remains, accompanied by a 

phyllolepid arthrodire similar to Australophyllolepis, a possible ptychtodont 

arthrodire and both dipnoan and osteolepiform scales. In addition it has yielded 

Machaeracanthus spines, and, in common with the Aztec siltstone, both 

antarctilamnid spines and remains of the otherwise unknown placoderm, 

Venezuelepis. Bothriolepis perija is also most closely compared to species from 

Antarctica and eastern Australia (Young and Moody, 2002). 

 

 The close similarity of the Sierra de Perijá fauna, from the extreme west of 

Gondwana, to east Gondwanan faunas from Victoria, Australia and the Aztec 

Siltstone of Antarctica, suggests that rather than East and West Gondwanan Faunal 

Provinces, by the Middle Devonian a widespread low latitude Gondwanan faunal 

province existed. This province, in contrast to Middle Devonian (high latitude) 

Agulhas Sea faunas, significantly included species of Bothriolepis, phyllolepid 

arthrodires, and diverse sarcopterygians. 

 

6.1.6.4. Late Devonian: Famennian 

 

Apart from isolated actinopterigian scales from Bolivia (Janvier and Suarez-Riglos, 

1986), the only Late Devonian fish fossils known from the Agulhas Sea are those that 
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comprise the Waterloo Farm fauna. They indicate that the fauna established in the 

Agulhas Sea by the Givetian persisted until Late Devonian (Famennian) times, albeit 

in an enriched form. Groenlandaspid arthrodires remained the dominant placoderms, 

and the sharks Antarctilamna and Plesioselachus remained, despite their complete 

disappearance from other geographic regions by the Late Devonian (Ginter, 2004). 

Gyracanthides-like acanthodians and onychodontiform sarcopterygians also 

persisted. Only primitive holonematid placoderms, Aztecodus and Portalodus sharks, 

and the additional climatiiform acanthodian, found in the Middle Devonian rocks, are 

seemingly absent from those of the Late Devonian.  

 

The Late Devonian fauna is more diverse than that of the Middle Devonian, in the 

presence of naked agnatha, such as Priscomyzon, the antiarch placoderm, 

Bothriolepis africana, high crested gloenlandaspidid arthrodire placoderms such as 

Africanaspis, ptychnodontid arthrodires, diplacanthid and acanthodid acanthodians, 

actinopterygians, coelacanths, the lungfish Andreyevichthys and an osteolepiform 

sarcopterygian close to Hyneria. 

 

This apparent sudden increase in fish taxonomic diversity by Late Devonian times 

may result, in part, from preservational bias. It is clear that the fine-grained, still 

water, anaerobically deposited rocks at Waterloo Farm are far more favourable to the 

preservation of small soft tissue organisms than the coarser more high energy Middle 

Devonian rocks (though rare pelt impressions of sharks or acanthodians, and 

occasional shark cartilages occur). The presence in Middle Devonian rocks of a single 

onychodontiform symphysial tooth whorl from the Klipbokkop Formation, and 

possible osteolepiform bone fragments from the Wagendrift Formation, together with 

a sarcopterygian scale from the Early Devonian, hints at an unrecorded 

sarcopterygian history along the margin of the Agulhas Sea. Likewise, although 

actinopterygian remains are absent from the Middle Devonian strata of South Africa, 

they have been reported from the Givetian Belen Formation of Bolivia (Gagnier, et 

al., 1989).  
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The presence of more delicate osteichthyans, such as small actinopterygians and 

actinistians, in the Late Devonian of the Cape Supergroup, may therefore be more a 

reflection of the exceptional preservation at Waterloo Farm and the absence thereof in 

mid Devonian Agulhas strata, than of sudden faunal change between them. The same 

may well be true of soft-bodied agnatha, such as Priscomyzon, less well armoured 

arthrodires such as the ptychnodontid, and more delicate acanthodians of the 

Acanthodidae and Diplacanthidae.  Indeed, as diplacanthids and culmacanthids are 

not known beyond the Frasnian in other sequences (Janvier, 1996), an earlier 

introduction into the Agulhas Sea is implied. 

 

Lack of Bothriolepis in Agulhas Sea Middle Devonian fossil faunas is, by contrast, 

unlikely to result from preservational bias, considering its high preservational 

potential. Bothriolepis, known in China since the Early Devonian, Eifelian (Wang 

1994) became virtually cosmopolitan in the Middle and Late Devonian (Long, 1995), 

except in the Agulhas Sea. It was abundant in eastern Gondwana, for example, 

throughout deposition of the Middle to early Late Devonian Aztec siltstone (Young, 

1988). Its late appearance in the Famennian of Waterloo Farm represents a genuine 

change in the Agulhas Sea fauna. The presence of only one species of Bothriolepis 

(or indeed antiarch placoderm), at Waterloo Farm, furthermore suggests a recent 

arrival in the Agulhas Sea without sufficient time for diversification. Similarities 

between Bothriolepis africana (Long et al., 1997) from Waterloo Farm and 

Bothriolepis baretti  from the Aztec Siltstone have been used to suggest derivation of 

Bothriolepis africana from an East Gondwanan environment (Long et al., 1997). 

Comparison has centred on a few characters of perceived phylogenetic importance, in 

particular the shape of the preorbital recess. Phylogenetic analysis of the position of 

Bothriolepis africana within the genus Bothriolepis, incorporating information from 

the larger number of additional specimens now available for study, could be used to 

test this hypothesis.  

 

There is also a close similarity between Groenlandaspis riniensis from Waterloo 

Farm and Groenlandaspis antarctica (Young, 1995) from the Aztec Siltstone (Long 

et al., 1997), as well as the undescribed Groenlandaspis from the Mount Howitt 
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fauna of Victoria, Australia (pers obs.). Intriguingly, although only Groenlandaspis 

co-occurred in the Givetian Mount Howitt fauna and the contemporary faunas of the 

Agulhas Sea, there are greater similarities between the Mount Howitt fauna and the 

much younger one of Waterloo Farm. Both include Groenlandaspis and Bothriolepis, 

acanthodidids, actinopterygians as well as, respectively, Culmacanthus and 

Diplacanthus, (which are not entirely dissimilar – see above). Similarities between 

Middle Devonian faunas of eastern Australia and the Late Devonian Agulhas Sea 

fauna, suggest that enrichment of the Agulhas Sea during the Late Devonian was 

partially through constrained migration from the more southerly reaches of east 

Gondwana. This may have been facilitated by a slight warming of polar coastal 

waters due to changes in oceanic circulation (Streel et. al., 2000). 

 

 Some typically east Gondwanan fish groups were, nonetheless, unable to spread to 

these higher latitudes. Phyllolepid arthrodires which invariably form part of Middle 

Devonian faunas of New South Wales, Australia and Antarctica (Young, 1994), and 

are known from Middle Devonian Venezuela (Young and Moody, 2002), spread 

throughout Laurussia during the Famennian (e.g. Lane and Cuffy, 2005) but have 

never been found in Agulhas Sea derived rocks. Similarly, the antiarch placoderm 

Remigolepis that, with Bothriolepis and Groenlandaspis, comprised the placoderm 

population of east Australian (south eastern Gondwanan) Famennian faunas (Young, 

1994), and which was also found in the Late Devonian of Laurussia (e.g Lebedev, 

1992), has not been found at Waterloo Farm. Agulhas Sea osteichthyan diversity was 

also very limited with, for example, no porolepiform ever recorded, despite their 

otherwise widespread distribution during the Devonian.  

 

Faunal influences on the Agulhas Sea towards the end of the Devonian were not 

restricted to those from east Gondwana. The scaumenaciid lungfish Andreyevichthys, 

found at Waterloo Farm, is otherwise known in Gondwana only from a Turkish 

Famennian fauna (Lelièvre et al., 1993) (fig. 6.16 b, T). It is better known as the most 

common member of the Late Famennian, marine, Andreyevka locality near Tula in 

Russia (fig. 6.16 b, A), where it occurs with the antiarch placoderms, Bothriolepis 

and Remigolepis, the onychodont Strunius, the large osteolepiforms, Chrysolepis and 
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Eusthenodon, sharks, bradyodont holocephalans, and the fairly advanced aquatic 

tetrapod, Tulerpeton. (Lebedev, 1992).  

 

Large osteolepiforms, such as the Hyneria-like tristichopterid tetrapodomorph 

common at Waterloo Farm, have a high preservational potential and their absence 

from Middle Devonian and earlier Agulhas strata is significant. The bone fragments 

from the uppermost Givetian Wagendrift Formation provide the earliest record of a 

possible osteolepiform in the Agulhas Sea.  

 

In East Gondwana the tristichopterid Notorhizodon occurs in the Givetian Aztec 

Siltstone. Mandagera and Cabonnichthys have been described from the Frasnian 

Canowindra fauna of New South Wales (eastern Australia) (fig. 2), and Eusthenodon, 

(the sister group of Hyneria), which is also known from Celsius Berg, Greenland (fig. 

6.16 b, CB), Russia (e.g. Andreyevka) and Belgium (fig. 6.16 b, B), has been 

recognised from the Famennian Worange Point Formation and Hunter Siltstone of 

New South Wales, Australia (Ritchie, 2006, Young, 2008) (fig. 6.16 b, NSW). 

Hyneria, however, is completely absent from East Gondwana and is previously 

known only from the latest Famennian Red Hill locality in Pennsylvania, North 

America (fig. 6.16 b, RH). As with Andreyevichthys, a late Devonian exchange of 

taxa, between the Agulhas Sea and Laurussia is implied. This is consistent with a 

globally observed breakdown of Early to Middle Devonian provincialism and a move 

towards greater cosmopolitanism in the Late Devonian (Young, 1993), possibly 

caused by the increasing proximity of Laurussia and Gondwana, coupled with 

resultant changes in oceanic circulation (Young, 1993; Streel, et al., 2000).  

 

A Laurussian origin for Hyneria would be consistent with the idea that 

tristichopterids arose in Laurussia and expanded into Gondwana from the Givetian 

(Johanson and Ahlberg, 2001). Young has alternately proposed that tristichopterids 

may have arisen in Gondwana and spread from there to Laurussia (Young, 2008). 

According to this scenario Hyneria might have derived from a Eusthenodon-like 

ancestor that entered the Agulhas Sea during the latest Givetian from East Gondwana, 

and spread to Laurussia during the Late Devonian.  
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The latest Famennian Red Hill fauna, from which Hyneria was described, is one of 

the better-known non-marine Laurussian faunas of its age. It includes the placoderms, 

Groenlandaspis pennsylvanica, a second small groenlandaspidid, Turriaspis elector, 

with an extremely high medium dorsal plate, (reminiscent of Africanaspis from 

Waterloo Farm), and Phyllolepis, the sharks, Ageleodus pectinatus and Ctenacanthus, 

the acanthodian Gyracanthus, actinopterygians, the porolepiform sarcopterygian, 

Holoptychius, a lungfish, a megalichthyidid osteolepidid sarcopterygian, another 

rhizodont sarcopterygian and at least two tetrapods, Designathus rowei and 

Hynerpeton bassetti (Daeschler and Cressler, 1997).   

 

Aquatic tetrapods are increasingly found to have been widespread in Laurussian 

marginal marine faunas by the Famennian (Clack, 2007). Recent studies show that 

the basic modifications that permitted vertebrate life on land were established in 

tetrapods by the end of the Devonian (Clack and Coates, 1995), having perhaps been 

acquired by the early mid Devonian (Niedzwiedzki, 2010), though exploitation of 

new terrestrial niches did not occur until the early Carboniferous (Clack and Coates, 

1995). Tetrapod stem group „tristichopterid‟ fish known from the late Givetian 

onwards co-existed (during the Frasnian) with more crownward „elpistostegalid‟ fish, 

(Clack, 2002). Clack (2007) suggested a causal link between this transition and 

oxygen crises of the Late Devonian, proposing that steady adaptation towards 

enhanced air breathing, which later permitted terrestrialisation, was originally driven 

by increasing anoxia in shallow water systems (Clack, 2007). Likewise, early 

development of the front limbs has been proposed as a means of lifting the back of 

the head clear of the water for air breathing (Shubin et al., 2004, 2006).  

 

All currently known elpistostegalids come from Frasnian palaeolagoons and coastal 

inlets of Laurussia, (with the exception of Panderichthys that first appeared in the 

Givetian), leading to the proposal that Laurussia was the cradle of tetrapod-like fish 

and probably tetrapods (Daeschler et al., 2006). In accord with this idea, the earliest 

identified limbed tetrapod, Elginerpeton was described from the Frasnian of Scat 

Crag, Scotland, and almost all other Devonian limbed tetrapods having been 
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discovered in Famennian strata of Laurussia (Clack, 2007). Two exceptions are 

Sinostega, a partial tetrapod jaw from the Famennian of northwest China (Zhu et al., 

2002) and Metaxygnathus, a tetrapod jaw recovered from latest Frasnian deposits in 

New South Wales, eastern Australia (Campbell and Bell, 1977). In addition, tetrapod 

tracks were recorded from the, apparently Frasnian, Genoa River strata of New South 

Wales (Warren and Wakefield, 1972; Young, 2007). A remarkable correspondance 

between phylogeny and stratigraphy was apparent, placing the emergence of 

tetrapods soundly in the Frasnian to Famennian. Discovery of clear tetrapod tracks in 

stratigraphically well constrained early mid Devonian, Eifelian, rocks of intertidal 

origin from Poland has, however, indicated that this impression may have derived 

from sampling bias. Both elpistostegalids and early tetrapods must have had lengthy 

parallel ghost lineages by the Late Devonian (Niedzwiedzki et al., 2010).   

 

The discovery of a large cleithrum at Waterloo Farm, which shows many features in 

common with elpistostegalid tetrapodomorphs, indicates that taxa close to the Late 

Devonian advanced tetrapod stem were not confined to the warm tropical waters of 

Laurussia (e.g. Daeschler et al., 2006) but also included large cold-water Gondwanan 

forms. Survival of this grade of tetrapodomorph beyond the Frasnian is recorded for 

the first time, indicating that it survived until the Hangenberg Extinction Event.   

 

In addition to the marginal marine to onshore communities (discussed above due to 

their comparability to the Waterloo Farm fauna), deep open-sea environments of 

Famennian Laurussia and northern Gondwana, left records of distinctive faunas. The 

best studied of these is the open-sea Cleveland shale fauna of North America, 

(preserved beneath anaerobic bottom waters). Diverse arthrodires, sharks and 

actinopterygians inhabited the oxygenated upper waters (Carr and Jackson, 2008). 

These included at least 22 species of arthrodires belonging to 18 genera (Carr and 

Jackson, 2008). Chiefly short-trunk-armoured deep-water brachythoracids they are 

typified by Dunkleosteus terelli (Newberry, 1873), their largest exemplar which 

reached six to seven meters in length. The mandibular structure of „Dunkleostids‟, 

suggests a predatory to carrion feeding lifestyle (Hansen, 1996). Titanichthys 

(Newberry, 1885), which may have reached nine metres, was a possible filter feeding 
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form (Hansen, 1996). In contrast to the marginal marine to freshwater faunas, 

discussed above, no phlyctaeniid arthrodire or antiarch placoderms have been 

recorded from the Cleveland Shale. 

 

Sharks were well represented in the Cleveland shale and included several species of 

the genus Cladoselache, one of which reached at least 1.5 metres in length (Williams, 

1990). These were often remarkably well preserved, and frequently contain 

paleoniscoid remains. A variety of other sharks from the unit are represented, largely 

by isolated teeth and spines. These include Diademodus hydei, three species of 

Stethacanthus, a number of species of Ctenacacanthus, two species of Tamiobatis, 

Monocladus, and teeth indicative of a hybodont (Carr and Jackson, 2008). All shark 

taxa based on articulated specimens, from the Cleveland shale, belong to a single 

palaeoenvironmental group, i.e. cladodont-toothed surface hunters (Williams, 1990). 

They therefore represent a limited fraction of Famennian taxa (Ginter, 2004), which 

has no overlap with the restricted chondrichthyan fauna of the Devonian Agulhas Sea.  

 

Famennian faunas, therefore, strongly reflected habitat related specialisation as well 

as biogeographic disparity. The inability of marginal marine taxa to cross open sea 

environments, with anaerobic bottom waters, contributed to mid Devonian faunal 

provincialism, as is evidenced by the converse Late Devonian faunal exchange 

between Gondwana and Laurussia, due to closure of the Iapetus Sea.    

 

6.1.6.5   Early Carboniferous: Visean 

 

The Early Carboniferous (Visean) fauna of the Waaipoort Formation, of the 

Witteberg Group (Cape Supergroup), demonstrates a marked change in the Agulhas 

Sea fauna. The clearest departure from the Devonian faunas is the complete absence 

of placoderm and sarcopterygian remains. The Waaipoort fauna is numerically 

dominated by actinopterygian taxa, which exhibited diverse body forms, and 

represented a range of taxa, many of which are closely comparable to those from the 

Cementstone fauna of Early Carboniferous Scotland. A shark taxon compared to 

Protacrodus is seen for the first time in the Agulhas succession. Devonian relicts 
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included the shark, Plesioselachus, as well as the gyracanthid and possible 

acanthodid acanthodians. 

 

In the complete disappearance of placoderms and acanthodians except acanthodids 

and gyracanthids, the Agulhas succession is in accord with faunal successions around 

the world. The Hangenberg extinction event, in the latest Famennian, resulted in the 

total extirpation of all placoderm groups, irrespective of environmental setting. Of the 

acanthodians only gyracanthids and acanthodids survived the end of the Devonian 

(gyracanthids subsequently survived until the Late Carboniferous, and acanthodids 

until the early Permian). In addition, many Sarcopterygian groups were decimated, 

including most osteolepids and lungfish (Janvier, 1996). 

 

The unique persistence, in the Agulhas Sea, of characteristically mid Devonian 

Gondwanan sharks such as Plesioselachus and Antarctilamna into the Famennian and 

early Carboniferous, may have resulted from their early adaptation to cold water 

environments. The rise of other groups of sharks, such as the “ctenacanths”, in more 

tropical, possibly Laurussian environments, may have been followed by their initial 

spread throughout warmer waters, entirely displacing earlier “Gondwanan sharks” by 

the end of the Frasnian (Ginter, 2004), in all but the polar regions of the Agulhas Sea 

(pers obs.). Hypothetically the instability of climate during the Famennian 

characterised by rapid fluctuations and increasingly cold conditions in tropical areas 

(Algeo et al. 2001) may have forced the „Protacrodus-like’ taxon to adapt to cooler 

water conditions. This would have allowed them to invade higher latitude 

environments during the warmer cycle suggested by the Tournasion transgression. 

Thus we see evidence for these shark groups, for the first time, in the Visean 

Waaipoort Formation, in addition to Plesioselachus, which is stratigraphically 

represented for the last time.   

 

The emergence of Pangea, following closure of the Iapetus Sea during the Late 

Devonian, allowed freer movement of taxa along the coastlines of the formerly 

separate land masses of Laurussia and Gondwana. This permitted a diverse 
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actinopterygian fauna, allied to that of Laurussian Scotland, to populate the Agulhas 

Sea following the end Devonian extinction. 

 

6.1.7  CONCLUSION 

 

The latest Famennian Waterloo Farm fish fauna was a marginal marine, estuarine, 

community preserved in Agulhas Sea sediments correlateable to those associated with 

the Hangenberg Extinction Event. This final component of the phased End Devonian 

Extinction severely affected vertebrate taxa, leading to global extinction of placoderm 

fish, all non gyracanthid or acanthodid acanthodians, as well as many groups of 

lungfish and osteolepiform sarcopterygians.  

 

The semi enclosed Agulhas Sea, was situated in a near polar setting, making it the 

highest latitude Devonian faunal region to have been studied. It had a uniquely 

limited fauna, presumably influenced by variable tolerance to polar conditions 

amongst vertebrate groups.          

 

The Waterloo Farm fauna inherited much of its diversity from a mid Devonian 

Agulhas Sea fauna characterised by Gondwanan endemic sharks, gyracanthid 

acanthodians and phlyctaeniid arthrodire placoderms but lacking many taxa, such as 

phyllolepid placoderms, antiarch placoderms, and osteolepiform sarcopterygians, 

which characterise other mid Devonian Gondwanan successions. 

 

The same influences that limited the taxonomic diversity of the Agulhas Sea may 

have insulated it against changes that affected other faunas towards the end of the 

Frasnian, when sharks such as Antarctilamna, diplacanthoid acanthodians and 

elpistostegalid-like tetrapodomorphs may, elsewhere, have gone extinct. Reasons for 

this might include preadaptation to harsh environmental conditions, and protection 

from competition with emergent fish groups that had not yet developed cold tolerant 

species. 
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Towards the end of the Devonian, perhaps due to closure or near closure of the 

Iapetus Sea and a subsequent change in oceanic circulation patterns, some reduction 

in global climatic gradient appears to have occurred, at least along coastlines. This, 

together with increased proximity of the major continents, resulted in widespread 

distribution of a characteristic Late Devonian lowland forest ecotype, as well as a 

breakdown of faunal provincialism seen amongst Early to Middle Devonian fish taxa. 

 

Moderation of climatic extremes appears to have allowed augmentation of the mid 

Devonian relict population inhabiting the Agulhas Sea during the Late Devonian. 

Large osteolepiform sarcopterygians possibly entered the Agulhas Sea towards the 

end of the Givetian whilst the cosmopolitan antiarch, Bothriolepis, is first seen in the 

Famennian Waterloo Farm strata, having possibly been derived from an east 

Gondwanan population.  

 

The presence of the lungfish, Andreyevichthys, otherwise known from Russia, and the 

tristichopterid tetrapodomorph, Hyneria, formerly found only in Pennsylvania, 

provide clear evidence for faunal exchange with Laurussia during the Late Devonian.  

This presumably followed closure of the Iapetus Sea, suggesting that marginal marine 

taxa were previously constrained by their inability to cross open sea environments, 

with anaerobic bottom waters. 

 

The combination of relict Middle Devonian Gondwanan endemics with East 

Gondwanan and Laurussion migrants resulted in a diverse, though unique, Agulhas 

Sea fauna by the end of the Devonian. Many characteristic, cosmopolitan, Late 

Devonian taxonomic groups such as phylolepid and remigolepid arthrodire 

placoderms and ctenacanth sharks appear to have remained incapable of penetrating 

this high latitude environment.  

 

Identification of a cleithrum of an advanced piscean tetrapodomorph, from Waterloo 

Farm indicates that despite prior evidence (eg. Daeschler, 2006), tetrapodomorphs of 

this grade were not confined to tropical (Laurussian) waters, but had also adapted to 

high (Gondwanan) latitudes.  
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This unique cold-adapted ecosystem was nonetheless subject to exactly the same 

extinction profile at the end of the Devonian as tropical coastal and temperate deep-

sea environments. Stratigraphic correlation between Waterloo Farm strata and the end 

Devonian highlights the dramatic and sudden nature of the Hangenberg Extinction 

Event by demonstrating numerical dominance of arthrodire placoderms in a latest 

Famennian ecosystem, Famennian expansion of the range of antiarch placoderms, 

and the persistence of diplacanthid acanthodians, Antarctilamna and elpistostegalid-

like tetrapodomorphs until the beginning of the Hangenberg Extinction Event.  

 

Evidence from the Early Carboniferous Waaipoort Formation indicates that, of the 

Agulhas Sea fauna, only the shark Plesioselachus and the acanthodian Gyracanthides 

definitely survived the Hangenberg extinction event. The Agulhas Sea was then 

repopulated by a diverse actinopterygian fauna with Laurussian affinities.  

 

Finally, it is worth noting that many taxa from Waterloo Farm exhibit ontogenetic 

information, including sharks and possibly lampreys, the only two groups for which 

no juvenile examples have previously been reported from the Devonian (Cloutier, 

2010). Cloutier has pointed out the important role that the study of fossil ontogenies 

can play in elucidating past developmental patterns (Cloutier, 2010). The 

exceptionally good preservation of small organisms at Waterloo Farm, in close 

proximity to an area rich in juvenile fish, provides potential for important future 

studies.   
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Appendix : Catalogue by taxa (of identified piscean bones and body impressions) 

 

1.1   Priscomyzon riniensis (Gess et al. 2006)   

1) AM5750 ST1 

 

1.2   Indeterminate agnatha   

1) AM5813 ST1  2) AM5814 ST2  3) AM 5815 ST3  4) AM5816 ST4   5) AM5819 

ST5 6) AM5817 ST1  7)AM5818  ST2  

 

2  Placodermi 

 

2.1 Groenlandaspididae 

1) AM4818  2)AM4819  3)AM4867  4)AM4875   5)AM4879  6)AM4883  7) 

AM4884  8) AM4886 9) AM4890  10) AM4893   11) AM4895  12)AM4896  13) 

AM4898 14) AM4899 15) AM4902 16) AM4903-4906 17) AM4907 18) AM4908 

ST1 19) AM5383   20) AM5235 21) AM5236  22) AM5241 23) AM5242  24) 

AM5244  25) AM5246  26) AM5247   27) AM5384   28) AM5385  29) AM5387  30) 

AM5388 31-46)  AM5650-5651, AM5654-AM5667  47) AM5670  48-50) AM5686-

AM5688  51) AM5886 ST2  52) AM5887  53) AM5890  54) AM5900 55) AM5901 

56) AM5902   57) AM5903  58) AM5904  59) AM5905  60) AM5906 ST3    61) 

AM5907 ST4   62) AM5908 ST5 63) AM5909 ST6   64) AM5911 ST7  65) AM5912 

66) AM5913  67) AM5914  68) AM5915 ST8  69) AM5916  70) AM5917  71) 

AM5918 72) AM5919  73)  AM5920  74) AM592 ST9  75) AM5922  76) AM5923 

77)AM5924  78) AM5925   79) AM5926   80) AM5927  81)AM5928 ST10  82) 

AM5929   83) AM5930   84) AM5931  85) AM5932  86) AM5933  87) AM 5934 88) 

AM5935   89) AM5937  90) AM5938   91) AM5939  92) AM5940  93) AM5941 94) 

AM5942   95) AM5943   96) AM5944ss  97) AM5945  98)AM4946   99) AM4947 

100) AM4948    101) AM4949   102) AM5982  103)  AM5983    104)AM5984  105) 

AM5985  106) AM5986    107) AM5987    108) AM5988   109) AM5989   110) 

AM5990   111) AM6536    112) AM6537  113) AM6539    114) AM6540   115) 

AM6543    116) AM6546   117) AM6547   118) AM6548   119) AM6550    120) 

AM6555  121) AM6559  122) AM6560  123)AM6561   124) AM6562   125-127) 
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AM6563-AM6565   128) AM6568  129) AM6569  130) AM6571  131) AM6572  

132) AM6573   133-157)  AM6575-6599    

 

2.2  Ptyctodontida 

AM5386, 5652, 5653  

 

2.3  Bothriolepidae 

AM 4816  2)AM4881  3)AM4882  4) AM4885  5)AM4888 6)AM4891  7) AM 

4897 8)AM 4900  9) AM4901  10) AM 4911  11)AM5239  12) AM5668  13) AM 

5669  14) AM5722  15) AM5737  16) AM5885 17) AM5950  ST1  18) AM5951 

ST2   19-48) 5952-5981  49)AM6544  50)  AM6558  

 

3 Acanthodii 

 

3.1 Gyracanthidae 

1) AM4892  2) AM4880  3) AM6538 

 

3.2 Diplacanthidae type 1 

1) AM5739 ST1   2) AM5740 ST2    3) AM5741  4) AM5831 ST3   5) AM5832 

 

3.3  Diplacanthidae  type 2 

1) AM5820 ST1 

 

3.4 Acanthodidae 

1) AM5824 ST1 

 

4 Chondrichthyes 

 

4.1 Antarctilamna 
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1) AM5743  2) AM 5744  3)  AM5748  4) AM5751   5) AM5752   6) AM5753  7) 

AM5848  8) AM5850   9) AM5851  10) AM5853 11) AM5855 

 

4.2 Plesioselachus 

12) AM4817  ST1   13) AM4866  ST2    14) AM5367   15) AM5745   16) AM5746    

17) AM5747  18) AM5836   19) AM5852 

 

4.3 Juvenile chondrichthes 

20) AM5821 ST4    21) AM5822  ST5   22) AM 5825  ST6  23) AM 5742 ST3 

 

4.4 Other chondrichthyan remains 

24) AM 5243    25) AM5245   26) AM5749   27) AM5827  28) AM5828   29) 

AM5829   30) AM5830  31) AM5849   32) AM5854 

 

5  Actinopterygii 

1)  AM5785  ST1  2) AM5786  ST2   3)AM5787  4) AM5788  5) AM5789  6) 

AM5790  ST3  7) AM5791 ST4  8) AM5792  9) AM5793  10) AM5794  11) 

AM5795  12) AM5799  13) AM5833 ST5  14)  AM5837 15) AM6549  ST6 16) 

AM6554  17) AM6556  18) AM6557 

 

6  Sarcopterygii   

 

6.1  Onychodontiformes  

1) AM5880 
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6.2 Coelacanthiformes 

1-6) AM4912(BpCr1001)-AM4912(PbCr1006)  ST1-ST6   7) AM4912(BpCr1010) 

ST7  8) AM4912(BpCr1045) 9) AM5754  ST8  10) AM5755 ST9   11-29) AM5756 -

AM5774  ST10-ST28  30) AM5775  31) AM5776  32) AM5777 AM 33) AM5778   

34) AM5779 ST29  35) AM5780 ST30  36) AM5781 37) AM5782 ST31  38) 

AM5783  ST32  39) AM5784  ST 33  40) AM4889   

 

6.3 Lungfish 

1)AM4821   2)AM6501 

 

6.4  Osteolepiformes 

1) AM4868   2) AM5221  3) AM5249  4) AM5389a  5) AM5389b  6) AM 5389d 

ST1 7) AM5389e  8) AM5389ad  9-10) AM5389f-AM5389g, 11) AM5389j  12) 

AM5390    13) AM5391  14) AM5393   15) AM5394  16) AM5568  17-18) AM5671 

- AM5672 19) AM5675  20) AM5888  21) AM6502   22) AM6503  23) AM6504  

24) AM6505 25) AM6506 26) AM6508 27) AM6509  28) AM6510  29) AM6511  

30) AM6512 31) AM6513  32) AM6514  33) AM6515  34) AM6516  35) AM6517 

36-39)AM6518 –6521  40-41) AM6523-AM6534  42) AM6541 ST2  43) AM6542  

44) AM6545 45) AM6552 ST3  46) AM6553     
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 Figure 6.1  Stratigraphic section of the Bokkeveld and Witteberg Groups of the 

Cape Supergroup (in the Western Cape). Modified after Theron and Thamm (1990), 

following Cotter (2000). 
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Figure 6.2   Gondwanan reconstruction with position of the South Pole and main 

latitudes reconstructed for Late Devonian/ Early Carboniferous (modified after 

Scotese and Barrett, 1990). Select Mid-Late Devonian fossil localities: AS Aztec 

Siltstone, Lashley range, Antarctica; C, Canowindra, New South Wales, Australia; 

MH, Mount Howitt, Victoria, Australia; SP, Sierra de Perijá, Venezuela, South 

America; WF, Waterloo Farm, Eastern Cape, South Africa. * = South Pole.  
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Figure 6.3 Priscomyzon riniensis,  a,b, Part and counterpart of holotype AM5750. c, 

Interpretive drawing based on AM5750. ac, annular cartilage; blb, bi-lobed structure; 

branchial basket; cm, circular mouth; ct, circumoral teeth; hyb, hypobranchial bar; 

h/eb, hypotrematic/epitrematic bar; oc, otic capsule; od, oral disc; ol, outer lip; or 

orbital region; sc, styliform cartilage; 1-7, position of gill pouches. (modified after 

Gess, et al., 2006). 
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Figure 6.4   Indeterminate Agnatha:  a,c AM5815, part and counterpart; b, 

interpretive drawing of AM5815 based on part and counterpart; d, AM5818. 

ac, annular cartilage, bra, branchial arches, or, orbit, sn, snout  
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Figure 6.5  Arthrodira:  a, Groenlandaspis riniensis, reconstruction of adult 

carapace based on type specimen (AM4898) (after Long et al., 1997) with spinal 

plate modified after type material; b, Groenlandaspis riniensis juvenile, AM5908; c, 

ndeterminate phlyctaeniid 1, AM4908; d, indeterminate phlyctaeniid 2, AM5939. 

 (ADL, anterior dorsolateral plate; Al, anterior lateral plate; Ce, central plate; IL, 

interolateral plate; llc, main lateral line canal; MD, median dorsal plate; Nu, nuchal 

plate; P, pineal plate; PDL, posterior dorsolateral plate; PL, posterior lateral plate; 

PNu, paranuchal plate; PRO, preorbital plate; PSO, postsuborbital plate; PTO, 

postorbital plate; R, rostral plate; SO, suborbital plate; soc, supraorbital sensory-line 

canal; Sp, spinal plate)  
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Figure 6.6  Arthrodira and Ptyctodontida: a, Africanaspis doryssa holotype, 

AM5246, median dorsal plate; b, Africanaspis species two, AM5920, median dorsal 

plate (photographic reconstruction of part and counterpart); c-d, Ptyctodontida indet. 

anterior median ventral plate: c, AM5386; d, interpretive drawing after Anderson, et 

al., 1999 (a).   
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Figure 6.7   Antiarcha, Bothriolepis africana: a, reconstruction of adult carapace in 

dorsal view (after Long et al., 1997); b, juvenile carapace, AM5954. 

(ADL, anterior dorsolateral plate; AMD, anterior median dorsal plate; CD1, 2, central 

dorsal plates 1 and 2; dlg, dorsolateral sensory-line canal; L, lateral plate; Mm2, 

mesial marginal plate 2;  Ml2, mesial lateral plate 2; Mxl, mixilateral plate; Nu, 

nuchal plate; PMD, posterior median dorsal plate; PMG, postmarginal plate; PNu, 

paranuchal plate; PP, postpineal plate; PrM, premedian plate). 
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Figure 6.8  Acanthodii: a, Diplacanthus acus holotype, AM5739; b, Interpretive line 

drawing of AM5739 (after Gess, 2001) with tail modified after AM5740; c, 

Diplacanthus acus caudal region, AM5740; d, Diplacanthidae, second species, 

AM5820; e, gyracanthid spine, AM4892. adfs, anterior dorsal fin spine, afs, anal fin 

spine, cl, caudal lobe of caudal fin, cfw, caudal fin webb, is, intermediate spine, orb, 

orbit, pf, pectoral fin, pfs, pelvic fin spine, pdf, posterior dorsal fin, pdfs, posterior 

dorsal fin spine  
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Figure 6.9   Acanthodii, Acanthodidae: a,b, AM5824 in part and counterpart; c, 

interpretive drawing of AM5824. (af, anal fin; afs, anal fin spine; cfw, caudal fin 

web; chl, chordal lobe of caudal fin; dfs dorsal fin spine; Mb, Meckelian bone; pfs, 

pectoral fin spine. 
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Figure 6.10   Chondrichthyes: a, Plesioselachus macracanthus, isolated dorsal fin 

spine, AM5745, photographically restored from part and counterpart; b, 

Antarctilamna, isolated dorsal fin spine, AM5744; c, Antarctilamna, isolated tooth in 

labial view, AM5751; d, interpretive line drawing of AM5751; e, Antilamna tooth in 

lateral view, AM5749; f, interpretive line drawing of AM5749.  
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Figure 6.11  Antarctilamna juvenile, AM5741; a, b, specimen in part and 

counterpart; c, interpretive line drawing of AM5741 based on part and counterpart.  

adf, anterior dorsal fin, cf, caudal fin, dfs, dorsal fin spine, mc, Meckel‟s cartilage, 

orb, orbit, pdf, posterior dorsal fin, pf, pectoral fin, sc scapularcoracoid   
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Figure 6.12  Osteichthyes: a, Actinopterygii, maxilla, AM5792; b, 

Onychodontiformes, maxilla, AM5880; c, Coelacanthiformes, AM5754; d, Dipnoi: 

cf. Andreyevichthys, parasphenoid, AM6501; e, Osteolepiformes, cf. Hyneria, scale. 

as, anterior squamosal overlap area, ps, posterior squamosal overlap area  

an, angular, cf, caudal fin, cl, cleithrum, df, dorsal fin, gu, gular, op, operculum, or, 

orbit, te, trailing edge. 
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Figure 6.13  Osteichthyes, Osteolepiformes, comparison of cleithra: a, 

Eusthenopteron, after model made by Stensio based on P.222 (cast in the University 

of Chicago collection); b, Waterloo Farm cleithrum indet., AM6545; c, Tiktaalik 

rosaea, (cast of NUFV112 in  the University of Chicago collection). as, anterior 

shoulder 
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Figure 6.14   Pie charts of relative abundance of different groups represented at 

Waterloo Farm: a, Analysis 1 with proportions calculated on the basis of all fossils 

excluding disarticulated scales; b, Analysis 2 with proportions calculated on the basis 

of specimens including soft tissue or pelt impressions; c, Analysis 3 with proportions 

calculated on the basis of specimens including soft tissue or pelt impressions with the 

exception of coelacanths in the 3-6 cm range. 
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Figure 6.16  Various fossil localities positioned according to palaeogeographic 

reconstructions: a: Givetian (AF, Adolphspoort Fm; AS, Aztec Siltstone; KK, Klipbokkop Fm; 

P, Poland) b: Famennian; (A, Andreyevka; B, Belgium; CB, Celsius Berg; CS, Cleveland shale; M, 

Morocco; NSW, New South Wales S, Scotland; T, Turkey;  M, Morocco; NSW, New South Wales, 

RH, Red Hill) c: Visean; (S, Scotland; WA, Waaipoort Formation). Green, continental; red, marginal 

marine, blue, open marine. Maps after Scotese & Mckerrow (1990) modified in region of Iapetus Sea.   
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CHAPTER 7    CONCLUSION  

 

Importantly Waterloo Farm provides the only Famennian record of several vertebrate 

clades. Three of these, Diplacanthus, Antarctilamna and an elpistostegalid-like taxon 

belong to the Diplacanthida, the „Antarctilamna-Wellerodus group‟ (of Turner, 1997) 

and the elpistostegalian group repectively. Each of these groups was thought to have 

gone extinct by or at the end of the Frasnian (eg. Janvier, 1996; Ginter, 2004; 

Daeschler, 2006). This contributed to the impression that the high point of the end-

Devonian extinction event occurred at the end of the Frasnian (Raup and Sepkoski, 

1982) during the Kellwasser event (Schindler, 1990), with the subsequent end-

Famennian event being of minor importance (Raup and Sepkoski, 1982). Sallan and 

Coates (2010) have argued that the end-Famennian Hangenberg event (Walliser, 

1984; Caplan and Bustin, 1999) was the real end-Devonian event comprising one of 

the Big Five extinction events. Sallan and Coates (2010) suggest that, for vertebrates 

at least, the apparent Kellwasser event represents an instance of “backsmearing” 

caused by insufficient sampling of Famennian localities. New records from Waterloo 

Farm provide strong evidene for an acute and pronounced Hangenberg event by 

demonstrating that three groups thought to have gone extinct at the end of the 

Frasnian, survived until the end of the Famennian. The unusual faunal makeup of 

Waterloo Farm derives from its unique palaeogeographic position and undersampled 

habitat.  

 

Waterloo Farm was situated in polar regions during the Famennian, whereas all other 

known faunas were of low latitude. Only three other Famennian faunas have been 

documented from Gondwana, two of which are interpreted as freshwater and one as 

open marine. The remainder of important Famennian faunas are Laurussian in origin. 

Of these only two are estuarine or marginal marine (Sallan and Coates, 2010). 

 

The Waterloo Farm locality (exposed in the uppermost, Witpoort Formation of the 

Witteberg Group, at Waterloo Farm, Grahamstown) singularly, for this unit, contains 

impressions of fish, arthropods and both terrestrial and aquatic plants. These are 
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taxonomically remarkably diverse and were preserved in anaerobic sediments 

deposited near the mouth of an estuarine lagoon. Shales at Waterloo Farm, associated 

with reaches of the lagoon more distant from the mouth contain, almost exclusively, 

the remains of terrestrial plants, suggesting that much of the lagoon was too anoxic to 

support life. Black shales in the uppermost Witpoort Formation are widely distributed 

(pers. comm. Almond, 2010) and stratigraphically correlate with black anaerobically 

deposited latest Famennian rocks throughout the world. These resulted from a short-

lived marine transgression associated with the Hangenberg Extinction Event (Caplan 

and Bustin, 1999).  

 

At Waterloo Farm anoxic sediments preserved soft tissue impressions of small 

organisms buried rapidly enough to avoid scavenging and decay. Larger organisms 

were disassociated and stripped of soft tissue prior to burial.  

 

This study has doubled the known fish diversity of Waterloo Farm and consequently 

the Witpoort Formation, identifying evidence for a minimum of 20 taxa. The fish 

fauna includes small, unarmoured, jawless fish preserved as soft tissue impressions. 

Priscomyzon riniensis (Gess et al., 2006) is clearly an ancient lamprey with a large 

oral disc. Other forms may include juvenile lampreys. Placoderm (armour plated) fish 

remains are abundant. These include disassociated plates or scatters of plates of a 

range of sizes, entire carapaces of small to medium sized individuals and, less 

abundantly, impressions of the unarmoured posterior portions of the body. 

Groenlandaspid-like phlyctaeniid arthrodire remains, of at least five species, 

dominate. Groenlandaspis riniensis (Long et al, 1997) was most abundant. Another 

groenlandaspidid, Africanaspis doryssa (Long et al., 1997), was one of two with an 

extremely high median dorsal plate. A ptyctodont arthrodire has also been reported 

(Anderson et al., 1997). Antiarch placoderms were represented by Bothriolepis 

africana (Long et al., 1997). Robust spines of acanthodians (spiny finned fish) 

represent a single species of gyracanthid. Other acanthodian taxa, known from small 

whole-bodied impressions, are an acanthodidid and two diplacanthids including 

Diplacanthus acus (Gess, 2001). The chondrichthyans, Plesioselachus dorysa 

(Anderson, et al., 1999) and Antarctilamna ultima (sp. nov.) are known from dorsal 
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fin spines, teeth, cartilaginous elements, skin impressions and small whole-bodied 

impressions. Actinopterygian (ray finned) fish are represented by small soft tissue 

outlines, and larger isolated elements including maxillae and mandibles of a single 

taxon. Scales resemble those of Moythomasia. Sarcopterygian (lobe finned fish) 

remains are dominated by remains of a coelacanth (known chiefly from small whole-

bodied specimens varying between 30 and 60 mm), and a large tristichopterid (similar 

to Hyneria) represented by hundreds of large scales, as well as isolated bones and 

groups of bones. Three other sarcopterygians: a lungfish comparable to 

Andreyevichthys, an onychodontiform and an elpistostegalid-like taxon are identified 

from small numbers of disarticulated bones. 

 

This study has taken an in depth look at a number of taxa of particular significance to 

current dialogues. These include Priscomyzon riniensis (Gess et al., 2006), the oldest 

known lamprey, which was described as part of this study. Lampreys and hagfishes 

are the only surviving jawless vertebrates, though they both appear highly 

specialised. Examination of Priscomyzon demonstrates that the specialisations of 

lampreys, including possession of a large oral disc with circumoral teeth are ancient. 

This was unexpected as the only two previously known Palaeozoic lamprey species, 

though at least 35 million year younger, did not exhibit these characters.  

  

Shark fossils were analysed. A rediagnosis of Plesioselacus macracanthus was 

executed. It was demonstrated that Plesioselachus was a primitive shark with a single 

dorsal fin spine, superficially inserted astride the body margin immediately dorsal to 

the pectoral girdle. Several well preserved scapulocoracoids assignable to this taxon 

are amongst the few known chondrichthyan examples from the Devonian, and shed 

important light on the probable basal condition of the Chondrichthyan pectoral girdle 

(Coates and Gess, 2007). 

 

A second (previously unknown) species of shark, Antarctilamna ultima, was 

described. It is clearly assignable to Antarctilamna, an existing genus of Gondwanan 

shark that was thought to have gone extinct by the end of the mid Devonian. The type 

specimen includes a well-preserved mandibular arch, ceratohyal, teeth and dorsal 
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spine. Together with a neurocranium and a wholebodied juvenile from Waterloo 

Farm, these fossils permit reinterpretation of Antarctilamna. Although attempts have 

previously been made to understand both Antarctilamna and Plesioselachus in terms 

of traditional northern hemisphere higher taxonomic groupings, they both represent 

an early radiation of sharks, which uniquely persisted in the Agulhas Sea up to and 

beyond the end of the Devonian. New interpretation suggests that they represent the 

most primitive well known chondrichthyans lacking pectoral fin spines. As such they 

provide much needed exemplars of  primitive chondichthyans.  

 

A new genus and species of coelacanth, Paradiplocercides kowiensis, has been 

described and analysed from presumed juvenile specimens that are thought to have 

used the estuary as a nursary. This fossil sample provides one of few reconstructible 

taxa of early coelacanth. Previously unknown details of the early transformations of 

the coelacanth cheek, fins and axial skeleton are elucidated. Phylogetic analysis of 

Paradiplocercides within a matrix of known coelacanths adds to a growing picture of 

unsuspected diversity in the Devonian and highlights a high level of homology 

amongst Late Devonian and Carboniferous species. Taxonomically significant 

ontogenetic changes in ornament are demonstrated in a growth series of 

Paradiplocercides operculae, casting doubt on identifications of early coelacanths 

based on cheek ornament. 

 

Comparison with other faunas of the former Agulhas Sea allows for definition of a 

unique polar Agulhas Sea fauna, reflecting habitat related specialisation as well as 

biogeographic disparity. The inability of marginal marine taxa to cross open sea 

environments, with anaerobic bottom waters, contributed to mid Devonian faunal 

provincialism, as is evidenced by the converse Late Devonian faunal exchange 

between Gondwana and Laurussia, due to closure of the Iapetus Sea. 

 

Taxa characteristic of the Agulhas Sea fauna, which was well established by the mid 

Devonian, persisted to the end of the Late Devonian. Before the end of the Devonian 

taxonomic diversity was augmented by an influx of new taxa from Laurussia, 

reflecting a global breakdown of provincialism. During the Hangenberg extinction 
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event, at the end of the period, the Agulhas Sea fish community was decimated, in 

accordance with global higher taxonomic selection trends. At least two members of 

the Agulhas Sea fish fauna persisted into the Early Carboniferous where they 

coexisted with more typically Carboniferous actinopterygian taxa.    

 

Exceptional soft tissue preservation at Waterloo Farm has provided unique insights 

into the structure of early lampreys, sharks, coelacanths and other organisms, as well 

as allowing exploration of taxonomic filters in Devonian assemblages. Further 

excavation and analysis of the site may be relied on to provide additional soft tissue 

morphologies as well as ontogenetic series. Furthermore, Waterloo Farm‟s unique 

combination of palaeogeogragraphic location and habitat guarantee that it will 

continue to contribute towards an understanding of changing faunal patterns in the 

Devonian and conditions immediately prior to the Second Global Extinction.  
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