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Abstract 

 

The work presented in this report details the background to surge arresters 

and surge protective device components, viz., spark gaps, gas discharge 

tubes and metal oxide varistors. Current surge protective device technologies 

are detailed for several of the larger surge protective device manufacturers 

worldwide. Tests were performed using both 8/20 µs and 10/350 µs current 

impulses to verify the voltage and current response of gas discharge tubes 

with or without series MOVs and triggering circuits. Measurements obtained 

from the test setup were compared against each other, sharing a total impulse 

current of 35.8 kA peak using an 8/20 µs waveform and 10.2 kA peak using a 

10/350 µs current impulse waveform. In the work presented, it is shown that 

series varistors dampened any voltage and current oscillatory behaviour 

superimposed from the current impulse generator due to their voltage 

clamping properties, which similarly do not allow any follow current to flow 

after a surge has subsided. No effect was seen by using a single varistor or a 

many parallel mounted varistors in series with a gas discharge tube. By using 

three electrode gas discharge tubes with a triggering circuit, the clamping 

voltage was reduced, as the gas tubes reacted faster than an equivalent 

circuit without a triggering module, which has the advantage of reducing the 

protection level for the protected equipment. 
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Chapter 1 

1  Introduction 

 

The notion of zoning seen in [1] and [2] provides an approach to protecting 

equipment against damage due to lightning induced surges entering a low 

voltage (LV) electrical system in a building. A number of lightning protection 

zones are created, where the first zone is outside the building and the last 

furthest inside the building. Surge protective devices (SPDs) are positioned at 

zone boundaries (LPZ 0 – LPZ3) so that surges due to lightning entering a 

building are progressively reduced as they pass further into the building, and 

each zone, where a portion of the surge current is diverted to ground via the 

SPD as it passes each zone. The most sensitive equipment, such as data 

cabinets and servers, are placed in the furthest protection zone inside the 

building. This concept of zoning as per [2] is illustrated in the figure below: 

 

 

 

Figure 1: Lightning Protection Zones [2] 

 

When the effects of direct lightning strikes are considered, the 10/350 µs 

current waveform (Class I) used [3]. Class II SPDs are tested with 8/20 µs 



 

 

 

2 

 

current impulses and Class III SPDs with combination 1.2/50 µs voltage 

impulse / 8/20 µs current impulse [4]. 

 

If a direct lightning strike is expected, and an external lightning protection 

system is installed, then a Class I SPD should be used at the first boundary 

and should be rated for the high energy associated with direct lightning 

strikes. The SPDs function is to divert most of the surge current to ground at 

the building entrance. This is then followed by a Class II SPD and thereafter a 

Class III SPD at the next respective zone boundaries towards the sensitive 

equipment that is being protected. It must be noted that if a direct lightning 

strike is not expected, then a Class I SPD is not required at the building 

entrance, and a Class II SPD should suffice [2]. 

 

Class I SPDs have traditionally employed mainly spark gaps due to the higher 

energy handling capability required by a Class I test. These devices usually 

have a pair of electrodes designed to break down at a certain voltage, and 

hence divert the surge currents such as those caused by direct lightning 

strikes to earth. As spark gaps are not enclosed, their response is dependent 

on environmental conditions and they unfavourably blow out hot plasma when 

they operate. A spark gap’s response to an overvoltage is the creation of an 

electrical arc between its electrodes (short-circuit of one phase to earth). This 

means that the power supply is temporarily short circuited while the spark gap 

operates to take the surge to ground through this electrical arc. If this arc is 

not extinguished after the surge has been discharged, the electrical power 

supply will maintain this arc. This phenomenon is known as follow current and 

if not interrupted it can reach the prospective short-circuit current of the power 

supply, which would inevitably lead to operation of upstream overcurrent 

protection devices. Although spark gaps can conduct high currents, they do 

not have follow current interruption properties. In order to interrupt spark gap 

follow current, some Class I SPDs offer arc quenching properties (quenching 

spark gaps) that can interrupt follow current. 

 

The high spark-over voltage of spark gaps results in an increased voltage 

protective level (highest voltage that the equipment will be subjected to). 
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There are various solutions available to decrease the spark-over voltage of 

spark gaps and one of these is to use a triggering circuit that initiates 

subsidiary discharges between the triggering and main electrodes in order to 

initiate the ignition of the main gap. The use of a triggering circuit allows the 

spark-over voltage to be reduced and hence for the residual voltage to be 

lower. 

 

Metal oxide varistors (MOVs) are usually used mostly in lower surge energy 

applications and are relatively cost-effective clamping-type devices. Class I 

LV mains SPDs use triggered three electrode spark gaps, but the recent 

advent of MOVs has also produced Class I SPDs with MOVs rather than 

spark gaps [5]. Class II SPDs traditionally use MOVs, but some 

manufacturers have shown a combination of both of these components, 

where a spark gap is connected in series with a MOV [6]. Metal oxide 

varistors are known to quench power frequency follow current of spark gaps 

when placed in series with such devices, and they also ensure that the final 

clamping voltage is not below that of the mains supply voltage. Another 

configuration was seen in [7 and 8] where a spark gap and MOV were 

connected in parallel, but careful coordination was required between these 

two devices in order to use this combination successfully. 

 

Gas discharge tubes (GDTs) are gas filled hermetically sealed spark gaps, 

which hence offer the same characteristics irrespective of environmental 

conditions, such as humidity and pressure. As GDTs are sealed they do not 

blow out hot plasma when they operate. Depending on the gasses that they 

are filled with, they have superior extinguishing properties when compared 

with spark gaps. GDTs are usually rated for smaller energy levels, i.e. for 

Class II and III applications. 

 

Spark gaps with large enough ratings to withstand partial lightning currents 

are available, but can be bulky and complex. Therefore, using several smaller 

spark gaps in parallel, as per [9], could result in simpler and hence cheaper 

products. Due to the advantages that GDTs have compared to spark gaps, it 

would be favourable to replace spark gaps with GDTs. The problem with this 
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is that GDTs with high energy ratings are expensive and bulky and at present 

three electrode GDTs for Class I applications are not commercially available. 

[10 and 11] showed parallel connected GDT arrangements for both Class I 

and II applications. 

 

It becomes important to understand the response behaviour of GDT with and 

without triggering circuits, as well as GDTs connected in series with MOVs, 

under both Class I and Class II tests, and this work focuses on these 

arrangements. 

 

1.2  Research Objective 

 

The reason for this research is firstly, to identify the various SPD technologies 

available for both Class I and II low voltage mains applications, as well as 

SPD components that make up SPDs, secondly, to setup and perform tests in 

order to identify the response characteristics of the GDTs with and without 

series connected MOVs and with and without triggering circuits and finally, to 

analyse the results in order to allow valuable comments to be made which can 

assist future SPD design. 

 

1.3  Scope of the Report 

 

Careful coordination is required between MOV and GDT in a parallel 

connected circuit in order to ensure that the GDT conducts before the MOV 

becomes overstressed. This becomes complex, and hence expensive to 

manufacture and it is simpler to rather connect a GDT in series with a MOV, 

hence this research focuses on this series configuration only. The scope of 

this report did not include for combination wave tests with 50 Hz mains and 

hence follow current investigations, as filters were not available for the  

10/350 µs current impulse generator. As Class III applications are of the least 

exposure of the three classes, this report only focuses on Class I and II 
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applications. This work does not included for parallel connected GDTs and 

only focuses on single GDT operation. 

 

1.4  Overview of the Report 

 

This research report is structured in the following manner: 

 

Chapter 2: This chapter is the literature survey that provides a brief outline of 

previous work and discusses sources of surges and impulse waveforms. 

Fundamental principles are then introduced such as gas discharge tube 

operation, voltage protection level and follow currents. The assumptions and 

limitations of existing surge arresters are also discussed. 

 

Chapter 3: The testing procedure is detailed and the test results and findings 

of both 8/20 µs and 10/350 µs current impulse tests are presented and 

explained. 

 

Chapter 4: The research report is concluded and areas of further research 

are identified. 

 

Additional supporting material is provided in the appendices as follows: 

 

Appendix A: Test result sheets. 

Appendix B: Pictures taken during testing. 

Appendix C: GDT Properties. 

 

For convenience, each chapter and appendix begins with a summary of the 

main points covered in each chapter and ends with a brief introduction to the 

following chapter. 
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In the following chapter the literature survey is seen where the background to 

surge protective devices and gas discharge tubes is provided, as well as an 

overview of previous work in this field. 
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Chapter 2 

2  Literature Survey 

 

A brief outline of previous work is provided. Fundamental 

principles are introduced such as surges and sources of surges, 

followed by voltage protection level and follow currents. Surge 

protective devices are discussed as well as surge protective 

device components in order to understand the work that will be 

presented. 

 

This chapter is the literature survey and introduces important concepts in 

order to understand the work that is being presented in this research report. It 

is important to understand what surges are, how they are created and why it 

is important to protect LV mains from surges. Surge protective devices are 

discussed followed by SPD coordination in order to understand SPD 

operation. Impulse waveforms, voltage protective level and follow current are 

presented in order to understand the limitations of SPDs and the testing 

impulse currents. Surge protective device components such as GDTs, MOVs, 

and triggered spark gaps are presented in this report as this work focuses on 

the testing of these components.   

 

2.1  Surges 

 

What was previously called transients, spikes, impulses and overvoltages are 

now formally known as surges, which is a sub-cycle voltage wave in electrical 

systems evidenced by sharp, brief disturbances in the input power voltage 

waveform, and often characterised by excessive voltage. The duration is less 

than a half-cycle of the normal voltage waveform and is generally less than a 

millisecond. This term is derived from the appearance of the abrupt 

disturbance of the normal voltage waveform and is often oscillatory-decaying. 
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2.1.1  Sources of Surges 

 

Surges may be generated by lightning or by a sudden change of system 

conditions, or both. Surge types are normally classified as lightning generated 

and all others as switching generated. Surges due to switching phenomena, 

although are more common, are generally not as severe as lightning surges. 

 

If the magnitude of overvoltage surpasses the maximum permissible levels, 

damage to equipment and undesirable system performance can be achieved. 

Surges therefore need to be reduced and protected against with SPDs to 

avoid these undesirable problems. 

 

The frequent occurrence of abnormal applied voltage stresses from transient, 

short-circuit or sustained steady-state conditions results in premature 

insulation failure, where failure by short circuit results in the final stage. 

 

Some examples of system generated and externally generated surges are 

listed below: 

 

• Direct lightning strikes. 

• High induced voltages associated with electromagnetic interference 

from indirect or adjacent lighting strikes. 

• Capacitive or inductive switching of electrical loads. 

• Electrostatic discharge. 

• Power-frequency overvoltage. 

• Transients or surges generated from heavy and light electrical 

machinery in general office or domestic environments, e.g. lifts, 

photocopy machines, etc. 

 

The focus of this work will be on surges caused by lightning. 
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2.1.2  Risks Associated With Surges 

 

The aim of limiting or mitigating surges is to prevent the following: 

 

• Danger to human life. 

• Capital investment loss in buildings and equipment. 

• Environmental danger in critical buildings or environments associated 

with flammable or explosive materials. 

• Loss of production and income, and inconvenience of system 

downtime. 

• Loss of electronically stored data. 

• Loss of irreplaceable cultural heritage. 

• Loss of service to the public. 

 

The above losses can be avoided by proper control of surges by making use 

of good earthing, lightning and surge protection systems. Depending on the 

environment or location, the expenditure required to secure this protection is 

good insurance and usually justifiable. 

 

2.2  Surge Protective Devices 

 

SPDs are used to limit and mitigate surges in LV electrical networks and 

equipment in order to limit the abovementioned risks. SPDs perform this 

function by diverting surge currents to ground, and hence away from the 

protected equipment, and by doing so they limit the voltage that the 

equipment is exposed to. SPDs only conduct under surge conditions within 

the surge protective device’s ratings, and under normal operating conditions 

they do not influence the electrical system - although MOVs  tend to exhibit a 

small leakage current as they are connected across a phase and neutral 

conductor. SPDs can consist of spark gaps, MOVs and silicone avalanche 

diodes, and there are two basic types of SPDs: 
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• Type I SPDs are current diverting (or switching type) devices. 

• Type II SPDs are voltage clamping devices. 

 

There is also a combination of the above two types of SPDs, that are called 

combination or mixed type of SPDs, that exhibit both voltage limiting and 

voltage switching characteristics in response to surges. Traditionally these 

devices make use of spark gaps and MOVs in parallel, but recent technology 

has also shown these devices connected in series [12]. 

 

2.2.1  Type I SPD 

 

Type I SPDs are known as voltage switching SPDs as they have a high 

impedance when no surge is present, but their impedance can suddenly 

change to a low value in response to a surge. Components that have these 

characteristics are spark gaps and gas discharge tubes. Gas discharge tubes 

are hermetically sealed, gas filled spark gaps that offer the same performance 

irrespective of environmental conditions such as pressure and humidity, and 

which do not blow out hot plasma when they operate. 

 

2.2.2  Type II SPD 

 

Type II SPDs are also known as voltage limiting SPDs as they have a high 

impedance when no surge is present, but their impedance continually reduces 

in response to an increased surge current and voltage. Components with 

these characteristics are typically non-linear devices such as MOVs and 

silicone avalanche diodes (SADs). 
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2.3  Coordination of SPDs 

2.3.1  Class I and II SPD Coordination 

 

The combination of a Class I and II SPD in a single unit is done by placing a 

spark gap in parallel with a MOV, which results in a high energy rating while 

still clamping the transient voltage to a relatively low level. In this 

arrangement, the clamping voltage has a reduced duration as can be seen in 

[8]. However, in most cases it is required that Class I and II SPDs are kept 

separate. 

 

Class I and II SPDs must be coordinated correctly, as MOVs in Class II SPDs 

have limited surge energy absorption capabilities. Switching type Class I 

SPDs must conduct most of the surge current, thereby preventing (and 

protecting) the Class II SPD from being overstressed. 

 

This is usually achieved by ensuring that the Class I SPD starts conducting 

the surge before the Class II SPD is overstressed, even though the Class II 

SPD conducts a small portion of the current. The most common way of 

realizing this is by separating the SPDs with an appropriately-sized inductor, 

as shown in the figure below. 

 

 

Figure 2: Coordination of Class I and II SPDs 
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The principle of operation is that V2 and VL rise fast enough, since V = L di/dt, 

so that V1 rises fast enough for the Class I SPD to start conducting before the 

Class II SPD is damaged. The minimum required inductance is given by the 

SPD manufacturer. In many cases the cable between the SPDs is long 

enough for this inductance to be achieved; otherwise a discrete inductor must 

be added. 

 

The function of the above impedance in between the Class I and Class II 

devices is to limit the current through the Class II MOV both before and after 

the Class I spark gap has operated. 

 

It is possible to use MOVs in Class I devices, in such cases the inductor or 

impedance in between the Class I and Class II devices is required to limit the 

current to the Class II device. 

 

As is detailed in Appendix C, gas discharge tubes do no operate 

instantaneously to surges as the air between its electrodes needs to ionise 

before arcing can occur between the main electrodes. This delay results in 

GDT operation of approximately 100 ns, as opposed to MOVs and SADs that 

operate in approximately 25 ns and near instantaneous (a few nanoseconds) 

respectively. MOVs are fast enough to handle transients with extremely steep 

current rises of up to 50 A / ns [13]. 

 

2.3.2  Class II and Class III SPD Coordination 

 

It must be noted that if a Class III device cannot handle a Class II surge, then 

it needs to be coordinated with a Class II device to protect it [14]. The reason 

for this is that Class III devices cannot offer Class II protection and hence they 

could be damaged and result in a hazard. SADs have a smaller current 

handling capacity and a lower voltage clamping level, and they are mostly 

used in Class III devices to offer final equipment protection. 
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2.4  SPD Components 

2.4.1  Spark Gaps 

 

Spark gaps have traditionally been used successfully for Class I SPDs due to 

their high energy handling capabilities. These devices are usually a pair of 

electrodes designed to break down at a certain voltage and hence  

short-circuit the power supply. Spark gaps must respond quickly and spark 

over when surge voltages exceed the electric strength of a system’s 

insulation. This discharge limits surge voltages to low levels and reduces the 

interference energy within a short period of time. As the high current arc is 

ignited, it prevents a further rise in surge voltage due to its constant low 

voltage which ideally is zero volts, but practically tends to that. 

 

The operation of a spark gap can be compared to a voltage controlled switch, 

i.e. it only operates or “switches” after the voltage across its terminals 

surpasses a certain threshold. Spark gaps have conductance properties that 

change rapidly when breakdown occurs, from open-circuit to quasi-short 

circuit. 

 

A disadvantage of spark gaps compared to clamping type SPDs, such as 

MOVs, is a higher spark-over voltage and hence clamping voltage. Therefore, 

some manufacturers have produced spark gaps that are triggered to flash 

over at a lower voltage, while the recent advent of MOVs with higher energy 

ratings has seen these devices used in Class I applications as well. 

 

The electrical properties of an open gas-discharge path, depends on 

environmental parameters such as humidity, gas pressure, gas type and 

pollution. A disadvantage of conventional open-air spark gaps is that they 

have a high inception voltage, and they exhaust hot plasma under operation. 

Blowing out hot plasma is a disadvantage and such a solution would require a 

special housing with a pressure release system. 
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Gas discharge tubes, such as those used in the work presented here, 

overcome the disadvantages of air spark gaps by hermetic sealing. Gas filling 

enables spark discharge conditions to be controlled by shielding against 

environmental influence, as the breakdown voltage is related to gas pressure 

and electrode separation. The favourable advantage of hermetic sealing is 

that GDTs will offer a similar response at a certain temperature, as they are 

not affected by pressure or humidity. The rare gases neon and argon are 

predominantly used in gas discharge tubes and many manufacturers apply 

activating compounds on the effective electron surface of the electrodes. This 

reduces the work function of the electrons and aids in the stability of the 

ignition voltage [15]. Some manufacturers also attach an ignition aid to the 

internal cylindrical surface of the GDT insulator which ensures a faster 

response, as it speeds up the gas discharge by distorting the electric field 

[15]. Suitable material selection of the spark gap electrodes results in reduced 

spark gap ageing, for example, graphite does not create any metallic plasma 

and abrasion of electrodes compared to metallic electrodes. 

 

GDTs show the specific behaviour that the ignition voltage increases with the 

steepness of the incoming voltage impulse, where conventional spark gaps 

only show this tendency at unpractical high steepness values. 

 

Further operating properties of GDTs such as GDT operating domains, 

electrical breakdown in gasses and time lags in electrical breakdown are 

shown in Appendix C. 

 

2.4.2  Metal Oxide Varistors 

 

MOVs are bipolar, ceramic semiconductor devices designed to limit surges. 

The term varistor is a generic name for voltage variable resistor. The 

resistance of a MOV is nonlinear and decreases as voltage magnitude 

increases. The most common SPD technology used for many years is the 

MOV and is predominantly used for Class II applications. These are clamping 
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type of devices that limit the voltage to relatively low levels when diverting 

surge currents to ground. The distinguishing feature of a metal oxide varistor 

is its exponential variation of current over a narrow range of applied voltage. 

These devices have voltage clamping properties and clamp at a set voltage, 

by giving off excess voltage or surge energy as heat. When SPDs are 

functioning in the active region, they divert energy by conducting current to 

ground and absorbing energy by converting it into heat. 

 

A common problem with MOVs is that there is a small magnitude of leakage 

current at all times. These devices are sensitive to high energy surges and 

they age quickly. Most manufacturers add thermal disconnection devices to 

MOV based SPDs to ensure that they do not ignite due to thermal runaway 

from 50 Hz mains overvoltage. 

 

In parallel connected MOV circuits the surge current is distributed throughout 

each of the MOVs, which results in an improved circuit with a higher surge 

current capability. 

 

2.4.3  Silicon Avalanche Diodes 

 

SADs operate in a similar manner to MOVs, but instead of metal oxide, these 

type of surge suppressors use silicon based diodes, similar to zener diodes. 

SADs are inherently unidirectional; therefore two SAD devices in a  

back-to-back configuration are required to clamp alternating current (AC) 

voltages. 

 

SADs have some characteristics that can be advantageous in comparison to 

MOVs. Most important, they have a sharper bend in the curve around the 

breakdown voltage, and as a result they tend to clamp closer to the normal 

peak voltage of the AC waveform. 
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The response time of SADs is faster than that of MOVs, but their energy 

ratings are much smaller, which may be important for surge suppression on 

electronic circuits with sensitive components and high-frequency signals. 

Their cost at present does not make them more advantageous for use in 

power systems, as transients are well within the range for MOVs to provide 

near instantaneous protection. 

 

For most equipment connected to an AC power system, this is not a 

significant advantage as the surge withstand capability of the equipment is 

well above the protection levels of the MOVs. However, this advantage may 

be important when protecting data lines and other sensitive electronic 

equipment at the low voltage level, where the transient voltage magnitude 

may be more critical. 

 

Silicon avalanche diodes are normally used in Class III SPDs, but they are 

also used in certain Class II applications as they clamp surges at lower levels 

than MOVs and also age slower [16]. The disadvantage of SADs is that they 

have low current handling capabilities and are also relatively expensive 

compared to MOVs. For fast rise times where the characteristics of the surge 

suppressor could be an issue the effect of voltage differences across short 

lead lengths (inductance) can be much more important than the response 

time of the actual surge protective device. 

 

2.5  Impulse Waveforms 

 

The most commonly used impulse current waveform for testing SPDs is the 

8/20 µs waveform, and is specified in several IEC standards [1 and 4]. This 

waveform covers induced lightning and switching surges. However, when the 

effects of direct lightning strikes (Class I) are considered, the 10/350 µs 

waveform is used [3]. 
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Class II SPDs are tested with 8/20 µs current impulses and Class III SPDs 

with a combination wave. The generator must be capable of delivering 8/20 µs 

current impulses in short circuit mode and 1.2/50 µs voltage impulses in open 

circuit mode. Details of this testing procedure are detailed in [17]. 

 

2.6  Voltage Protection Level 

 

The voltage protection level is dependent on the residual or clamping level of 

the arrester. The VPL of an arrester is directly related to the reaction time of 

the arrester i.e., the faster the reaction time, the lower the VPL. 

 

In many cases, the surge is lower in voltage than the VPL of the arrester or 

faster than the arrester’s reaction time and the arrester does not detect the 

transient. This is common with switching type transients that account for 50 % 

of transients that are generated by inductive loads such as air-conditioner, lift 

motors and standby generators - all of which are commonplace in most 

modern day facilities. The specification shown in [18] clearly defines the level 

at which an arrester needs to operate in order to protect electrical systems. 

 

A high voltage level for a long duration causes stress on the insulation of the 

system that is being protected. The residual voltage of a MOV stays constant 

at a high clamping voltage during the entire duration of the surge current. In a 

spark gap the residual voltage is at a high level until breakdown occurs after 

which it drops to a low voltage level. 

 

Traditionally it has been seen using the following combination of surge 

arresters to reduce surge voltage levels: 

 

• Class I spark gap based device at the building entrance 

• Decoupling inductor for coordination between Class I and II SPDs. 

• Class II MOV based device at the equipment being protected. 
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[8] indicates the impulse withstand categories for overvoltage limits and 

shows that the maximum allowed overvoltage, on a 230 V system, for a Class 

II and III device is 1.5 kV.  

 

2.7  Follow Current 

 

A gas discharge tube’s response to an overvoltage is the creation of an 

electrical arc between its electrodes (short-circuit of one phase to earth). This 

means that the power supply is temporarily short circuited while the GDT 

operates to take the surge to ground through this electrical arc. After the 

surge has been discharged the electrical power supply continues to generate 

current which maintains the arc, which is known as the follow current. A 

favourable property that spark gaps have is that they are self-restoring as they 

return to their high impedance state after the surge has subsided, provided 

that there is no follow current. 

 

This phenomenon is therefore an excessive current which may flow from the 

supply current source through the ignited spark gap, and occurs between the 

surge decay interval and the following zero crossing of the AC voltage. If not 

interrupted, the follow current reaches the prospective short-circuit current of 

the power supply (within a half-period, i.e. within 10 ms in case of 50 Hz). 

High temperatures and hence damage of equipment can occur if the arrester 

does not extinguish this follow current. An occurring follow current has to be 

extinguished at latest after the next natural AC zero crossing [19]. During this 

zero crossing the spark gap has to regain its electrical strengths between the 

main electrodes in a few microseconds. During this relatively long duration 

where the follow current flows, the energy dissipation inside of the spark gap 

is enormous. So it is an important to minimize either the follow current 

amplitude or the follow current duration. An optimal spark gap prevents any 

follow current after discharging the lightning current, but the occurrence of 

follow current also depends on the prospective short circuit current of the 

mains. Follow current has to be limited by using arc quenching spark gaps to 
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avoid the operation of the upstream protection, by drawing the prospective 

short-circuit power supply current. 

 

The occurrence of follow current on spark gaps depends on the following: 

 

• Prospective short circuit current of the low voltage system. 

• Amplitude of the surge or overvoltage. 

• Energy content of the surge or overvoltage. 

• Synchronisation angle of surge on the power supply voltage. 

 

If the time of influence of a surge is smaller than a given limit, or if the surge 

current remains smaller than a defined value, no follow current will occur. The 

power supply voltage drives follow current after the surge current has passed 

the gap. The gap has to extinguish the follow current, but the arcing voltage 

acts as a counter voltage and therefore the actual follow current in the gap is 

less than the prospective current. When the arcing voltage is equal to the 

actual value of the power supply voltage, the gap extinguishes and does not 

reignite. The reason for this is that a direct short circuit across the power 

supply will allow the prospective fault current of the supply transformer to flow. 

Thus the arc voltage must be higher than the mains supply voltage, in other 

words, current flows from a higher potential to a lower potential, hence if the 

voltage is kept at a high enough potential no current will flow. 

 

MOVs do not allow follow current to flow and hence some manufacturers use 

MOVs to ensure that their devices do not let any follow current through, while 

others use arc quenching spark gaps.  

 

It was seen in [20] that an SPD with a spark gap and MOV in parallel, 

predominantly only showed noticeable follow current at synchronisation 

angles of 240o and 270o (when incrementing the synchronisation angle in 

increments of 30o over a full cycle of the mains AC voltage). This shows that 

as the peak values of follow current get smaller, the arcing voltage reaches 

the mains voltage faster.  
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Follow current quenching capabilities have been improved in spark gaps by 

using: 

 

• Arc baffle plates. 

• Quenching plates. 

• Plastic material which releases quenching gas during heating up by an 

arc. 

• Increasing the distance between the main electrodes to increase the 

arcing voltage. 

• Building pressure during the discharge of surge current. 

• Using an arc channel which is oriented transversally to the electric 

field. 

• Triggering circuit on a 3-electrode spark gap. 

• Using MOVs. 

 

MOVs do not allow follow current to flow, as during the discharge of a surge 

current the voltage always remains above the instantaneous voltage of the 

power supply system. Follow current will always occur if the instantaneous 

value of the supply voltage is higher than the arcing voltage of a spark gap 

during the discharge of a surge. Hence, the residual voltage of an SPD needs 

to be higher than the instantaneous voltage of the power supply system. 

 

2.8  Recent SPD Developments 

 

Currently most Class I manufacturers use spark gaps with or without 

triggering circuits between phase and neutral and between neutral and earth 

conductors. Some manufacturers use MOVs for Class I protection, but these 

devices cannot protect sensitive electronic equipment effectively as the 

residual voltage is much higher than the permissible levels shown in [2]. Class 

II devices have shown MOVs connected between phase and neutral 

conductors and the use of either MOVs or spark gaps between the neutral 

and earth conductors depending on the mode of operation. Some devices use 
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spark gaps in series with MOVs throughout all phases, while others use only a 

spark gap between neutral and earth. Some manufacturers use spark gap 

technology for Class II protection as well. Various interconnections of the 

above can be done, depending on whether common mode or differential 

mode protection is required. 

 

2.8.1  Spark Gap and MOVs in Series 

 

As discussed, when spark gaps operate they cause a quasi-short circuit 

between phase and ground while mitigating a surge to ground. This means 

that the voltage collapses below the supply potential. A MOV does not allow 

this as it clamps the voltage to a set threshold. If these devices had to be 

placed in series, the overall characteristic of both these components would be 

that of the MOV. The advantage would be that once the surge had subsided 

the spark gap would return to its high impedance state and hence disconnect 

this device. This would protect the MOV as there would be no leakage 

current, MOV ageing and any unnecessary operation of these devices.  

 

The advantage of placing a MOV and spark gap in series is therefore the 

following: 

 

1. The spark gap protects the MOV as there is no constant leakage 

current or unnecessary operation. 

2. No unnecessary voltage collapse below the supply potential. 

3. No follow current is let through. 

4. The spark gap disconnects once the surge has subsided. 

 

Due to MOV clamping properties, a similar follow current quenching would be 

seen if a spark gap and MOV were placed in parallel. 

 



 

 

 

22 

 

2.8.2  Three Electrode Spark Gaps with Triggering 

Circuits 

 

The high arcing and spark-over voltage of spark gaps results in an increased 

protection level. There are various solutions available to decrease the 

electrical strength of spark gaps and one of these is to use a triggering circuit 

to initiate smaller discharges between the triggering and earth electrodes in 

order to initiate the ignition of the main spark. The use of a triggering circuit 

allows for the spark-over voltage to be reduced and hence for the residual 

voltage to be lower. This allows the spark gap to mitigate smaller amplitude or 

faster impulse surges as well. 

 

To extinguish follow current, the electrical arc voltage must be increased by 

various methods, i.e. by lengthening, cooling or multiplying of the arc. By 

using a triggered spark gap, the energy dissipation during the surge current 

will be higher, but in return the dominant energy from a power follow current is 

decreased rapidly. It was shown in [21] that short term trigger pulses, even if 

repetitive, are not able to initiate follow current through a triggered type of 

spark gap, due to their short time of interference. Circuits for triggering spark 

gaps usually contain a rather complex voltage detector and triggering pulse 

generator that is expensive. 

 

In a coordinated Class I and II SPD configuration with a decoupling coil in 

between these two devices, the decoupling coil works well with fast rising 

surges as it allows the voltage to be high enough to allow breakdown of the 

Class I spark gap. For slow rising surges the voltage will be too low to allow 

the spark gap to ignite, which will result in the Class II MOV being 

overstressed and hence damaged. This phenomenon can be eliminated by 

using a 3-electrode spark gap with an electronic triggering circuit [22] that is 

voltage dependant rather than surge rise time dependant. This will allow the 

spark gap to reach low voltage protection levels even for high amplitude 

surges. 
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2.9  Concluding Comments 

 

The background to this research was presented in this chapter by firstly 

introducing surges, sources of surges and risk associated with surges. 

Following this surge protective devices and coordination of SPDs was shown 

with a focus on SPD components such as GDTs and MOVs in order to 

understand SPD operation. Impulse waveforms, follow current and voltage 

protection level were discussed in order to understand SPD design objectives. 

Recent development of SPD technology was presented, including series 

connection of a spark gap with an MOV and triggering circuits in order to 

understand the testing that will be presented in the following chapter. 

 

The following chapter indicates the tests that were performed including the 

testing objectives, test results and findings of the tests. 
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Chapter 3 

3  Tests, Test Results and Findings 

 

This chapter details the tests performed, followed by test results 

and test findings. A table summarising all the test results is 

shown, followed by the analysis of both the 8/20 µs and  

10/350 µs impulse tests performed. The effects of MOVs and 

triggering circuits are looked at carefully. 

 

The previous chapter presented the various SPD technologies available for 

both Class I and II low voltage mains applications, as well as SPD 

components that make up SPDs. A basic overview of voltage protection level, 

follow current and impulse waveforms were shown. The effects of a triggering 

circuit and a spark gap connected in series with a MOV were described in 

order to understand the testing performed in this research. This chapter 

details the tests performed in order to identify the response characteristics of 

GDTs with and without series connected MOVs and with and without 

triggering circuits. The test results are analysed in order to allow valuable 

comments to be made which can assist future SPD design. 

 

The advantages of GDTs compared to spark gaps were described in the 

previous chapter and hence only GDTs were used in this work. In order to 

fully understand the response of GDTs, GDTs with series connected MOVs, 

and GDTs with triggering circuits, both 8/20 µs and 10/350 µs impulse current 

waveforms were used, as described in the previous chapter and [4, 23 and 

24]. 

 

Through testing the response characteristics of the above components were 

attained in order to analyse the test results. It is important to identify the 

response of 2-electrode GDTs and compare it to 3-electrode GDTs. These 

tests allowed the effect of using parallel connected smaller MOVs rather than 
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a single larger MOV in series with the GDT to be shown. Further test showed 

the response of 3-electrode GDTs with and without a triggering circuit and 

with and without series connected MOVs. 

 

3.1  Tests Performed 

 

Voltage and current waveforms under both 8/20 µs and 10/350 µs impulse 

conditions were investigated for the following circuit arrangements: 

 

• 2-Electrode GDT. 

• 2-Electrode GDT with one series MOV. 

• 2-Electrode GDT in series with many parallel connected MOVs. 

• 3-Electrode GDTs without a triggering circuit. 

• 3-Electrode GDTs with a triggering circuit. 

• 3-Electrode GDT with a triggering circuit and series MOVs. 

 

In order to be able to compare the effect adding MOVs or a triggering circuit to 

the GDTs, benchmark tests were performed with only a 2-electrode and  

3-electrode GDT for both 8/20 µs and 10/350 µs impulse current waveform 

tests. The effects of using a 3-electrode GDT compared to a 2-electrode GDT 

were done, were 3-electrode GDTs were tested by leaving the triggering 

electrode of the GDT unconnected, earthed and connected to a triggering 

circuit. 

 

The circuit diagram below shows a typical test setup circuit with a two 

electrode GDT with one series connected MOV. The MOV can either be a 

single MOV or replaced with parallel connected MOVs. The GDT can be of 

the two or three electrode type, where a triggering circuit can be used in 

conjunction with three electrode GDTs. 
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Figure 3: Circuit diagram of Test Setup 

 

The measurements were done with an oscilloscope, were a voltage probe 

was used to measure voltage and a Pearson coil was used to measure the 

current waveforms. 
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3.2  Test Results 

 

A summary of the abovementioned test results can be seen in the table 

below. Detailed test sheets of these tests are shown in Appendix A, and 

pictures taken of the test setup are shown in Appendix B. 

 

Table 1: Summary of Test Results 

Test 
No of GDT 
Electrodes 

No of 
275 V 
MOVs 

in 
Parallel 

Generator 
Charging 
Voltage  

[kV] 

Peak 
Measured 
Voltage  

[kV] 

8/20 µs 
Peak 

Current 
[kA] 

10/350 µs 
Peak 

Current 
[kA] 

1 2 None 20.00 13.00 33.4 
 

2 2 1 18.00 13.40 27.8 
 

3 2 2 20.00 13.40 31.4  
4 2 4 20.00 14.90 28.4 N/A 
5 3 (Floating) None 20.05 12.10 35.8 

 
6 3 (Earthed) None 20.00 11.10 35.8 

 
7 3 (Triggering) None 20.00 11.50 24.6 

 
8 2 None 7.06 1.30  7.08 
9 2 1 7.00 1.80 

 
6.84 

10 2 2 7.00 1.60 N/A 6.70 
11 2 4 10.00 1.80 

 
10.10 

12 3 (Triggering) None 10.00 1.55 
 

11.00 
13 3 (Triggering) 4 10.00 2.10 

 
10.20 

 

The explanation of the test results are detailed in the section below for both 

the 8/20 µs and 10/350 µs impulse waveform tests. 
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3.3  Testing Using 8/20 µs Current Impulses 

3.3.1  Effects of MOVs 

 

As can be seen in the figure below, an oscillation superimposed by the 

impulse generator was seen on the measured voltage and current waveforms. 

It was seen that introducing a MOV in series with a GDT, resulted in 

dampening of this overshoot. This is due to the voltage clamping properties 

that MOVs possess, which are also responsible for eliminating follow current 

after a surge has subsided. 

 

 

 

Figure 4: Waveforms of GDT only and GDT with single MOV 

 

As can be seen in Appendix A, there was no noticeable difference in the 

voltage and current waveforms when using a single MOV or larger paralleled 

type of MOV in series with a GDT. The overall voltage was increased by  

3 % while the current was decreased by 12 % by the introduction of MOVs. 

This could be attributed to the non-linear properties that MOVs possess, but 

also to the added impedance required to connect up the MOVs. 
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3.3.2  Using Three Electrode GDTs without Triggering 

Circuit 

 

Test results captured on the oscilloscope were superimposed in the figure 

below. It can be seen that there is no noticeable effect on 3-electrode GDTs 

when the centre electrodes are earthed or left unconnected. The reason for 

this is that no current flows through the triggering electrode when it is not 

connected to a triggering circuit. 

 

 
 

Figure 5: Waveforms of GDT with Earthed and Unconnected Triggering 
Terminals 

 

3.3.3  Using Three Electrode GDTs with Triggering Circuit 

 

When a triggering circuit was connected to the triggering electrodes, it 

resulted in an increase of approximately 40 % of the initial voltage compared 

to a similar test without a triggering circuit. This was a momentary spike, but 
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this phenomenon is due to the triggering circuit inductance coil which is 

dependent on the equation V = L 
��

��
. From this relationship, it can be seen that 

a high voltage will result from an 8/20 µs impulse current waveform as it has a 

fast rate of change. The faster the rate of change of current over time, the 

higher the output voltage will be. 

 

As can be seen in the figure below, by excluding the initial spike seen in the 

voltage waveform, the overall voltage was reduced by approximately 8 %, 

which is due to the triggering circuit increasing the response time of the GDT. 

The overall current was also reduced by approximately 30 % and this is due 

to the impedance of the triggering circuit inductor coils. 

 

 

 

Figure 6: Waveforms of GDTs with and without a Triggering Circuit 

 

It must be noted that the triggering circuit inductor designed for this work, was 

larger than actually required in order to ensure that the effects of the triggering 

circuit were evident. In practice this inductor coil needs to be correctly set to 
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ensure that triggering will occur. The design of this coil requires that the 

overall protection levels are taken into considerations, as per [2], to ensure 

that these are not exceeded. Insulation failure and damage to protected 

equipment could occur if the voltage protection level is exceeded. 

 

Triggered spark gaps are not normally used in Class II applications, but rather 

in Class I application that are tested with 10/350 µs impulse current 

waveforms that have a slower rate of change compared to those of 8/20 µs 

Class II impulse current test. As will be seen in the 10/350 µs impulse current 

testing section, the overall voltages did not exceed those of similar tests and 

they were actually lower. The reason for this is that the triggering circuit 

allowed the GDT to respond faster. 

 

3.4  Testing Using 10/350 µs Current 

Impulses 

3.4.1  Effects of MOVs 

 

As can be seen in the figure below, there was no noticeable difference in the 

voltage and current waveform when using a single MOV or a larger parallel 

type of MOV. 

 

The overall voltage was increased while the current was decreased slightly by 

using MOVs. This can be attributed to the voltage drop across the MOVs and 

the additional inductance involved with connecting the MOVs. 
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Figure 7: Waveforms of GDT in Series with Single and Parallel MOVs 

 

3.4.2  Using Three Electrode GDTs with a Triggering 

Circuit 

 

When a triggering circuit was connected to the GDT centre electrodes, it 

resulted in a decrease of up to 14 % on the overall voltage compared to a 

similar 2-electrode test without a triggering circuit. This is as a result of the 

triggering circuit allowing a smaller breakdown to occur, between the 

triggering electrode and earth electrode, as the voltage rises across the entire 

system. This smaller gap breakdown ionises the gas inside the gas discharge 

tube which allows it to respond faster to discharge the entire surge current. 

 

As can be seen in the figure below, the overall current was also slightly 

reduced in comparison to a similar test without a triggering circuit. This could 

be due to the impedance of the triggering inductor coils. 
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Figure 8: Waveforms of GDT with and without a Triggering Circuit 

 

Again, it must be noted that the triggering circuit inductor designed for this 

work was larger than actually required to ensure that the effects of this 

triggering circuit were evident. In practice this inductor coil needs to be 

correctly sized to ensure that triggering will occur and that the overall 

protection levels, as detailed in [2], are not exceeded. Insulation failure and 

damage to protected equipment could occur if these values are exceeded. 

 

3.5  Concluding Comments 

 

This chapter detailed the tests setup and tests performed in order to identify 

the response characteristics of GDTs with and without series connected 

MOVs and triggering circuits. In order to fully understand the response of 

these configurations, both 8/20 µs and 10/350 µs impulse current waveforms 

were used. The test setup was illustrated and the test result were 

summarised. The test results were analysed and the following was found: 
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• MOVs dampened oscillations superimposed by the impulse generators. 

This would similarly eliminate any follow current under a 50 Hz mains 

test superimposed with 50 Hz mains. 

• There was no noticeable difference in the voltage and current 

waveforms by using a single MOV or many parallel connected MOVs in 

series with a GDT. This means that future SPD design should use the 

cheaper and physically smaller MOV option. 

• The additional impedance of the required cabling to connect the MOVs 

together with the effects of the MOVs resulted in a slight decrease in 

the voltage waveform and an increase in the current waveforms. It 

must be noted that connecting wiring in future SPD design would be as 

short as possible to save costs and space and any inductive effects. 

• No effect was seen by replacing the 2-electrode GDTs with 3-electrode 

GDTs. There was also no effect seen by earthing or leaving the 

triggering electrode of a 3-electrode GDT floating when no triggering 

circuit was connected. This means that in future SPD design, the 

correct GDT must be used for each application, based on costs and 

size. 

• A triggering circuit introduced an initial voltage spike due to the 

inductive properties of the triggering coil. This effect can be reduced by 

careful trigger coil design to suit the SPD application by taking space 

allowances and the overall voltage protection levels into consideration 

to avoid any insulation failure. 

• A triggering circuit reduced the overall voltage as it increased the 

response time of the GDT. The current was also reduced due to the 

impedance of the triggering coils. Again, the triggering circuit needs to 

be carefully designed for each application. 

• Triggering circuits are normally used in Class I applications that are 

tested with waveforms that have a slower rate of change compared to 

those of Class II. Careful coordination will be required in combined 

Class I and II devices with a triggering circuit. 
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In summary, it would be advantageous for future SPD design to make use of 

3-electrode GDTs with series connected MOVs and a triggering circuit. The 

MOVs will eliminate any follow current and the triggering circuit will allow the 

GDT to operate faster. Careful triggering circuit design will be required in 

order to allow the GDT to operate effectively for both Class I and II 

applications. The entire circuit design must ensure that voltage protection 

levels are not exceeded to avoid insulation failure on the electrical system.  

 

The next chapter will conclude this research report, followed by the test 

sheets, test photograph and GDT property appendices. 
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Chapter 4 

4  Conclusion 

 

This research report presented a background to the various SPD technologies 

available for both Class I and II low voltage mains applications, as well as the 

operation of SPD components. It was seen that most SPD manufacturers use 

spark gap technology for Class I arresters and some make use of a triggering 

circuit as well. With the advent of high energy MOVs some manufacturers 

only use MOVs for Class I protection. Most Class II arresters make use of 

MOVs, but spark gaps were also seen connected in series with MOVs in 

these devices. 

 

Test results were presented under both 8/20 µs and 10/350 µs current 

impulse conditions. The response characteristics of both two electrode and 

three electrode GDTs were shown, with and without triggering circuits, as well 

as single or parallel connected MOVs in series with the GDTs. 

 

The analysis of the test results allowed valuable comments to be made to 

assist future SPD design. It was shown that a triggering circuit reduced the 

overall voltage due to a faster response of the GDT. No noticeable effects 

were seen by adding series MOVs to the GDTs. Due to their properties, 

MOVs do not allow any power frequency follow current to flow as they clamp 

the voltage above the instantaneous voltage of the power supply system, 

where GDTs effectively short circuit the power supply system while 

discharging a surge. 
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4.1  Scope for Further Research 

 

Combination wave tests with 50 Hz mains should be performed to view follow 

current quenching capabilities of series connected MOVs with GDTs and 

triggering circuits. Also, failure test of MOVs and GDT tests need to be 

performed to find the equivalent 10/350 µs impulse current ratings for 8/20 µs 

impulse current rated components. Ageing of these devices need to be 

identified to find how many impulses these components can withstand. 

 

Triggering circuit design needs to be performed and tested to identify whether 

a SPD can successfully be used for both Class I and II application in a mixed 

Class I and II device. 

 

Due to the high costs of higher rated GDTs and MOVs for Class I 

applications, investigations into a method of ensuring equal current sharing 

between parallel connected GDTs needs to be done, as this will reduce costs 

of SPDs as smaller and hence cheaper “off the shelf” components can be 

used to share a portion of the overall surge current. 
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Appendix A 

A  Test Results 

 

This appendix details the test results of both 8/20 µs and  

10/350 µs impulse current tests performed. Details of each test 

indicate the average temperature at time of testing, the total 

measured impulse current as well as overall voltage and 

charging voltage of the impulse current generator. 

 

A.1  Testing Using 8/20 µs Current Impulses 

 

This section details testing performed on the 8/20 µs impulse generator. As 

detailed below tests were performed with 2-electrode and 3-electrode spark 

gaps, as well as with either single or parallel connected MOVs in series with 

the GDTs. Triggering circuits were also used as indicated below with some of 

the 3-electrode tests, while in other tests the triggering electrodes were either 

earthed or left unconnected. It must be noted that hermetically sealed GDTs 

were used, which are unaffected by atmospheric pressure and humidity, 

nevertheless, the humidity was measured and is indicated in the test sheets 

below. 
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A.1.1  Two Electrode GDT Test 

 

Table A.1: Testing of Two Electrode GDT 

Date Performed 13th May 2005 8/20 µs Waveform 
Time Performed 14:41 2-Electrode GDT 
Average Temperature 23 °C No MOVs 
Average Humidity 24 % V13-A500XN 
Average Atmospheric Pressure N/A 
Total Current [kA] 33.40 
Max Voltage [kV] 13.00 
Charging Voltage [kV] 20.00 

 

 

 

 

Figure A.1 Voltage and Current Waveforms of Two Electrode GDT 
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A.1.2  Two Electrode GDT in Series with One MOV 

 

Table A.2: Testing of Two Electrode GDT with One Series MOV 

Date Performed 13th May 2005 8/20 µs Waveform 
Time Performed 15:26 2-Electrode GDT 
Average Temperature 23 °C 1 MOV 
Average Humidity 24 % V13-A500XN 
Average Atmospheric Pressure N/A S20 K275 (0451) 
Total Current [kA] 27.80 
Max Voltage [kV] 13.40 
Charging Voltage [kV] 18.00 

 

 

 

 

Figure A.2: Voltage and Current Waveforms of Two Electrode GDT with One 
Series MOV 
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A.1.3  Two Electrode GDT in Series with Two Parallel 

MOVs 

 

Table A.3: Testing of Two Electrode GDT in Series with Two Parallel MOVs 

Date Performed 13th May 2005 8/20 µs Waveform 
Time Performed 15:26 2-Electrode GDT 
Average Temperature 23 °C 2 MOVs 
Average Humidity 24 % V13-A500XN 
Average Atmospheric Pressure N/A S14 K275 (0502) 
Total Current [kA] 31.40   
Max Voltage [kV] 13.40   
Charging Voltage [kV] 20.00   

 

 

 

 

Figure A.3: Voltage and Current Waveforms of Two Electrode GDT in Series 

with Two Parallel MOVs 
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A.1.4  Two Electrode GDT in Series with Four Parallel 

MOVs 

 

Table A.4: Testing of Two Electrode GDT in Series with Four Parallel MOVs 

Date Performed 8th May 2005 8/20 µs Waveform 
Time Performed 23:27 2-Electrode GDT 
Average Temperature 23 °C 4 MOVs 
Average Humidity 47 % V13-A500XN 
Average Atmospheric Pressure N/A S20 K275 (0451) 
Total Current [kA] 28.40 
Max Voltage [kV] 14.90 
Charging Voltage [kV] 20.00 

 

 

 

 

Figure A.4: Voltage and Current Waveforms of Two Electrode GDT in Series 
with Four Parallel MOVs 
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A.1.5  Three Electrode GDT with Floating Triggering 

Electrode 

 

Table A.5: Testing of Three Electrode GDT with Floating Earth Electrode 

Date Performed 23rd March 2005 8/20 µs Waveform 
Time Performed 8:30 3-Electrode GDT 
Average Temperature 21 °C No MOVs 
Average Humidity 56 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 35.80 
Max Voltage [kV] 12.10 
Charging Voltage [kV] 20.05 

 

 

 

 

Figure A.5: Voltage and Current Waveforms of Three Electrode GDT with 
Floating Earth Electrode 
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A.1.6  Three Electrode GDT with Earthed Triggering 

Electrode 

 

Table A.6: Testing of Three Electrode GDT with Earthed Earth Electrode 

Date Performed 23rd March 2005 8/20 µs Waveform 
Time Performed 13:12 3-Electrode GDT 
Average Temperature 22 °C No MOVs 
Average Humidity 50 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 35.80 
Max Voltage [kV] 11.10 
Charging Voltage [kV] 20.00 

 

 

 

 

Figure A.6: Voltage and Current Waveforms of Three Electrode GDT with 
Earthed Earth Electrode 
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A.1.7  Three Electrode GDT with Triggering Circuit 

 

Table A.7: Testing of Three Electrode GDT with Triggering Circuit 

Date Performed 25th March 2005 8/20 µs Waveform 
Time Performed 16:17 3-Electrode GDT 
Average Temperature 23 °C No MOVs 
Average Humidity 49 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 24.60 
Max Voltage [kV] 11.50 
Charging Voltage [kV] 20.00 

 

 

 

 

Figure A.7: Voltage and Current Waveforms of Three Electrode GDT with 
Triggering Circuit 



 

 

 

49 

 

A.2  Testing using 10/350 µs Current 

Impulses 

 

This section details testing performed on the 10/350 µs impulse 

generator. As detailed below tests were performed with 2-

electrode and 3-electrode GDTs, as well as with either single or 

parallel connected MOVs in series with the GDTs. Triggering 

circuits were also used as indicated below with some of the 3-

electrode tests. It must be noted that hermetically sealed GDTs 

were used, which are unaffected by atmospheric pressure and 

humidity, nevertheless, the humidity was measured and is 

indicated in the test sheets below. 

 

A.2.1  Two Electrode GDT Tests 

 

Table A.8: Testing of Two Electrode GDT 

Date Performed 6th June 2009 10/350 µs Waveform 
Time Performed 16h46 2-Electrode GDT 
Average Temperature 21 °C No MOVs 
Average Humidity 14 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 7.08 kA 
Max Voltage [kV] 1.30 kV 
Charging Voltage [kV] 7.06 kV 
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Figure A.8: Voltage and Current Waveforms of Two Electrode GDT 
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A.2.2  Two Electrode GDT in Series with One MOV 

 

Table A.9: Testing of Two Electrode GDT in Series with One MOV 

    

Date Performed 6th June 2009 10/350 µs Waveform 
Time Performed 18h00 2-Electrode GDT 
Average Temperature 21 °C 1 MOV 
Average Humidity 14 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 6.84 kA 
Max Voltage [kV] 1.80 kV 
Charging Voltage [kV] 7.00 kV 

 

 

 

 

Figure A.9: Voltage and Current Waveforms of Two Electrode GDT in Series 
with One MOV 
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A.2.3  Two Electrode GDT in Series with Two Parallel 

MOVs 

 

Table A.10: Testing of Two Electrode GDT in Series with Two Parallel MOVs 

Date Performed 6th June 2009 10/350 µs Waveform 
Time Performed 18h00 2-Electrode GDT 
Average Temperature 21 °C 2 MOVs 
Average Humidity 14 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 6.70 kA 
Max Voltage [kV] 1.60 kV 
Charging Voltage [kV] 7.00 kV 

 

 

 

 

Figure A.10: Voltage and Current Waveforms of Two Electrode GDT in Series 
with Two Parallel MOVs 



 

 

 

53 

 

A.2.4  Two Electrode GDT in Series with Four Parallel 

MOVs 

Table A.11: Testing of Two Electrode GDT in Series with Four Parallel MOVs 

    

Date Performed 7th June 2009 10/350 µs Waveform 
Time Performed 15h27 2-Electrode GDT 
Average Temperature 21 °C 4 MOVs 
Average Humidity 14 % 
Average Atmospheric Pressure N/A 
Total Current [kA] 10.10 kA 
Max Voltage [kV] 1.80 kV 
Charging Voltage [kV] 10.00 kV 

 

 

 

 

Figure A.11: Voltage and Current Waveforms of Two Electrode GDT in Series 
with Four Parallel MOVs 
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A.2.5  Three Electrode GDT with Triggering Circuit 

 

Table A.12: Testing of Three Electrode GDT with Triggering Circuit 

    

Date Performed 7th June 2009 10/350 µs Waveform 
Time Performed 13h55 3-Electrode GDT 
Average Temperature 21 °C Triggering Circuit 
Average Humidity 14 % No MOVs 
Average Atmospheric Pressure N/A 
Total Current [kA] 11.00 kA 
Max Voltage [kV] 1.55 kV 
Charging Voltage [kV] 10.00 kV 

 

 

 

 

Figure A.12: Voltage and Current Waveforms of Three Electrode GDT with 
Triggering Circuit 
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A.2.6  Three Electrode GDT with Triggering Circuit and in 

Series with Four Parallel MOVs 

 

Table A.13: Testing of Three Electrode GDT in Series with Four Parallel 
MOVs with a Triggering Circuit 

 
    

Date Performed 7th June 2009 10/350 µs Waveform 
Time Performed 13h17 3-Electrode GDT 
Average Temperature 21 °C Triggering Circuit 
Average Humidity 14 % 4 MOVs 
Average Atmospheric Pressure N/A 

 
Total Current [kA] 10.20 kA 

 
Max Voltage [kV] 2.10 kV  
Charging Voltage [kV] 10.00 kV  

 

 

 

 

Figure A.13: Voltage and Current Waveforms of Three Electrode GDT in 
Series with Four Parallel MOVs with a Triggering Circuit 
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Appendix B 

B  Photographs of Test Setup  

 

This appendix indicates photographs taken of the test setup in the 

High Voltage laboratory at the University of the Witwatersrand, 

School of Electrical and Information Engineering. 

 

 

Figure B.1: Test Setup 

 



 

 

 

57 

 

 

Figure B.2: Test Setup of GDT Mounting Mechanism 

 

 

Figure B.3: Test Setup Connectors 
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Appendix C 

C  GDT Properties 

 

This appendix details the properties of GDTs. The four operating 

domains of GDTs are described followed by electrical breakdown 

in gases, time lags in electrical breakdown and the ionisation 

mechanism. 

 

C.1  GDT Operation 

 

There are four operating domains in the behaviour of a GDT: 

 

1. Non-operating range. 

2. Glow range. 

3. Arc range. 

4. Extinction. 

 

C.1.1  Non-operating range 

 

This domain is characterised by an approximately infinite resistance. No 

current flows in the duration that the voltage rises to the spark-over voltage. 

 

C.1.2  Glow Range 

 

Once ignition has taken place the voltage drops to the glow voltage level in 

the glow-mode range. At breakdown the conductance suddenly increases. 
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C.1.3  Arc Range 

 

As the current increases, transition to the arc mode occurs and the GDT shifts 

from the glow voltage to the arc voltage. It is in this arc mode that GDT are 

most effective, as the low arcing voltage values do not increase as high 

currents are discharged, i.e. the arc voltage stays constant as it is 

independent of the discharge current. 

 

C.1.4  Extinction 

 

As the overvoltage decreases to a value less than the glow voltage, the 

current through the GDT also decreases accordingly, until it drops below the 

minimum value necessary to maintain the arc mode, where the arc discharge 

suddenly extinguishes at the extinction voltage, and the GDT recovers its 

initial insulating properties. 

 

C.2  Electrical Breakdown in Gases 

 

Breakdown in gases is dependent on parameters such as temperature, 

pressure and electric field strength. By Paschen’s Law, V = f (pd) it can be 

seen that the breakdown voltage V is dependent on the gap separation d, and 

the gas pressure p.  

 

C.3  Time Lags in Electrical Breakdown 

 

One of the most important parameters in electrical breakdown is time. If a 

step voltage is applied to a gap, then there will be a finite time before the gap 

actually breaks down. This time is made up of two components being the 

formative time lag and the statistical time lag.  
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The statistical time lag is the time taken for a free electron to become 

available and start the electron avalanche that will lead to electrical 

breakdown across a gap. As the name implies, this time lag is variable. The 

statistical time lag can be controlled (or eliminated) by providing the free 

electrons required, which can be done by ionisation. 

 

Formative time lag is the time take for the electron avalanche to cross the 

gap, and is therefore relatively constant, but in general much faster than the 

statistical time lag. 

 

C.4  Ionisation 

 

The key process that allows electrical breakdown to occur is ionisation. 

Ionisation can happen in many different ways. Irrespective of the mechanism 

though, as the name implies, ionisation is the production of ions. Ions are 

produced when electrons are stripped from neutral atoms or molecules. The 

following four main mechanisms enable ionisation to take place: 

 

1. Ionisation by collision. 

2. Photoionisation. 

3. Ionisation by metastable atoms. 

4. Thermal Ionisation. 

 

A low energy electron may, on collision with a neutral gas atom, excite it to a 

higher energy state. When the atom returns to its relaxed state, a photon is 

emitted. This photon may be able to ionise another atom whose ionisation 

energy is lower than the photon energy. The process can be symbolically 

written as A + hν = A* + e, where A and A* represent the neutral and excited 

atoms of the gas respectively and hν represents the photon energy. For 

photoionisation to occur, hν must be greater than the atom ionisation energy. 

The photon energy is dependent on the photon wavelength, and the shorter 

the wavelength the higher the photon energy. 


