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Abstract and Keywords 

 

Initiatives in many countries to improve learner performances in mathematics in poor 
communities have been described as largely unsuccessful mainly due to their cursory treatment of 
curriculum alignment. Empirical evidence has shown that in high achieving countries the notion 
of coherence was strongly anchored in cognitively demanding mathematics programs. The view 
that underpins this study is that a cognitively demanding and coherent mathematics curriculum 
has potential to level the playing field for the poor and less privileged learners. In South Africa 
beyond 1994, little has been done to understand the potential of such coherent curriculum in the 
context of the NCSM. This study examined the levels of cognitive demand and alignment 
between the written, tested and taught NCSM. The study adopted Critical Theory as its 
underlying paradigm and used a multiple case study approach. Wilson and Bertenthal’s (2005) 
dimensions of curriculum coherence provided the theoretical framework while Webb’s (2002) 
categorical coherence criterion together with Porter’s (2004) Cognitive Demand tools were used 
to analyse curriculum and assessment documents. Classroom observations of lesson sequences 
were analysed following Businskas’ (2008) model of forms of mathematical connections since 
connections of different types form the bases for high cognitive demand (Porter, 2002). The 
results indicated that higher order cognitive skills and processes are emphasized consistently in 
the new curriculum documents. However, in the 2008 examination papers the first examinations 
of the new FET curriculum, lower order cognitive skills and processes appeared to be 
emphasized, a finding supported by Umalusi (2009) and Edwards (2010). Classroom observations 
pointed to teachers focusing more on rote learning of both concepts and procedures and less on 
procedural and conceptual understanding. Given the widespread evidence of the tested curriculum 
impacting on the taught curriculum, this study suggests that this lack of alignment between the 
advocated curriculum on one hand, the tested and the taught curricula on the other, needs to be 
investigated further for it endangers the teaching and learning of higher order cognitive skills and 
processes in the FET mathematics classrooms for the poor and less privileged. Broader evidence 
suggests that this would work against efforts towards supporting the upward mobility of poor 
children in the labour market. 

Keywords: 
curriculum coherence, alignment index, mathematical connections, critical theory, cognitive 
demand 
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CHAPTER ONE - INTRODUCTION 
 

 

1.1 NATURE OF THE PROBLEM   
 

Recent curriculum reforms in mathematics and science in many developing countries 

including South Africa, come as an attempt to address issues of inequity and exclusion 

both educational and social. In South Africa the introduction of outcomes based 

education (OBE) in 1997 was intended to redress the legacy of apartheid by promoting 

the development of high skills throughout the school-leaving population in order to 

prepare South Africa’s workforce for participation in an increasingly competitive global 

economy (Le Grange, 2007). Given that in South Africa mathematics learners from 

communities which were previously marginalized during the apartheid era continue to be 

outperformed by those from the previously advantaged communities, researchers argue 

that despite many of the new education policies being acclaimed by international experts 

as some of the best in the world, there is little evidence that the goals of transformation, 

including redress, equity and democracy, have been achieved in practice (Fleisch, 2008; 

Sayed & Jansen, 2001).   

 

Lamenting the credibility of Senior Certificate pass  rates in South Africa against public 

opinion that standards had dropped Muller (2005, p. 43) wrote;  
The largely invisible outcome, invisible to school educators, that is though not invisible to 
employers or university admission officers, was that the schooling system was emitting a 
cohort or two which had reduced opportunities to demonstrate higher-level cognitive 
skills, had possibly not even been taught them and, in far too many cases, therefore did not 
have them.  

 

The contention was that standards had actually dropped despite the upward trend in pass 

rates post democracy. Muller supported this claim with empirical evidence from Umalusi 

research forums which analysed the cognitive demand levels of the papers set in 1992, 

1993, 1999 and 2003. Muller argued that the results were ‘unambiguous’: school 

expectations as expressed by the complexity of the examination questions had declined 
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because of the level of cognitive demand which was low. Muller (2005, p. 44), posited 

that, whether advertently or inadvertently, low cognitive demand and challenge was a 

threat to the learning health of the nation and suggested that it should be addressed; 

(i) in the curricular statements 

(ii) in the manuals of exemplars 

(iii) in textbooks and learning materials 

(iv) in examination papers; and 

(v) in marking standards   

To Lolwana (2005), the issue of the standards of the school leaving or matriculation 

certificate could not be separated from the curriculum. Her argument was that while the 

issue of standards was not a simple one, as standards meant different things to different 

people, it could still be assumed that there would be consensus in the view that the notion 

of standards must include some agreement on (a) the nature of the content or knowledge 

to be acquired (b) the amount or volume and depth of that content and (c) the cognitive 

skills to be acquired in the process of learning (Lolwana, , op cit).  Literature has shown 

that while the tested curriculum exerts more pressure on the taught curriculum, the key to 

the standards debate lay in the curriculum as a whole (intended, tested and taught) more 

than in the examinations (tested) as a component of the curriculum (Trumpelmann, 

1991). According to Trumpelmann (op cit), not only was there a need for an overall 

strategy for checking the alignment of the stages but there was also a need for regular and 

systematic checks on the cognitive demand health at the different stages of the 

curriculum process. Given that the National Curriculum Statement for Mathematics 

(NCSM) came into operation after these observations had long been made, this research 

examined the cognitive demand levels of and the alignment between the written, the 

tested and the taught curriculum for mathematics at FET level. This also followed 

empirical evidence from large scale studies internationally which bring the taught 

curriculum within the alignment framework and suggest that an aligned, as well as 

cognitively demanding curriculum across written, tested and taught could be one possible 

way of leveling the playing field for the poor and the minority students as it has potential 

to reduce the achievement gap (Squires, 2009).  
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1.2 SCOPE AND BOUNDARIES 
 

Using a battery of cognitive demand tools this research analysed the content of the 

written, the tested and the taught national curriculum statement for mathematics.  In this 

study the term ‘cognitive demand’ is used in two ways to describe learning opportunities 

in line with Zurawsky’s (2006), recommendations.  
The first way is linked with the curriculum policy – how much math? The second way 
relates to how much thinking is called for in the classroom. Routine memorisation 
involves low cognitive demand, no matter how much advanced the content is. 
Understanding mathematical concepts involves high cognitive demand, even for the basic 
content (Zurawsky, 2006, p. 1).  

 

Guided by this definition (discussed further in chapter 2), the overview document, the 

mathematics subject statement, its learning programme guidelines and its assessment 

standards were analysed in order to establish the levels of cognitive demand and the 

alignment between those components of the written curriculum. The 2008 exemplar 

papers (the first papers published to give teachers an indication of the reformed FET 

curriculum introduced in 2006) were also analysed using the same cognitive demand 

tools in order to establish whether they were testing at the same level of cognitive 

demand as was intended in the written curriculum. Four Grade 11 mathematics teachers 

were then observed each teaching a series of five lessons related to algebraic topics. 

Three of the teachers were teaching LO2 (Functions and Algebra) and one teacher was 

teaching LO1 (Number Patterns). A more detailed justification for this choice is made in 

chapter three – Research Design and Methodology. A total of 300 pages of transcribed 

data were generated from the video recordings of classroom observations.  

 

The focus of the classroom observations was on the teachers due to my research interest 

in how they translated the written curriculum into practice. The aim was to establish to 

what extent these mathematics teachers’ approaches created opportunities for pupils to 

learn higher order processes and cognitive skills in mathematics. In terms of teacher 

strategies that enhance learner development of higher order cognitive and process skills, 

lessons learnt from the TIMSS studies are that high cognitive demand mathematics 

programs generally deviate in important ways from the “normal” approaches to 
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mathematics instruction and classroom practice (Zurawsky, 2006). The countries with 

high scores in mathematics focused on building connections among mathematics ideas, 

facts, and procedures. Higher performing countries avoided reducing mathematics tasks 

to mere procedural exercises involving basic computational skills, and they placed greater 

cognitive demands on students by encouraging them to focus on concepts and 

connections among those concepts in their problem solving. Task rigour was maintained 

when teachers pressed for justifications, explanations and meaning through questioning 

or other feedback (Hiebert et al., 2003; Stigler & Hiebert, 2004). Borrowing from these 

notions, the questions that guided classroom observations were; ‘In what ways does the 

teacher work to promote either more procedural exercises involving basic computational 

skills or towards encouraging learners to make connections between concepts and/or 

procedures? In what ways does the teacher press for, or provide justification and 

explanations for mathematical decisions made?’ Analysis of the teachers’ lesson 

transcripts was framed around the conceptual/procedural framework, guided by 

Businskas’ (2008), model of types of mathematical connections. The justifications and 

explanations that teachers gave, analysed within this framework, were then used as 

indicators of the quality in terms of the levels of cognitive demand of the connections 

made.  

  

The rationale for moving from document analysis, to test analysis and then to classroom 

observations was premised on the view that knowing the cognitive demand of the written 

curriculum is important because the written curriculum is the starting point and target for 

both the tested and the taught. Knowing the cognitive demand of the tested curriculum is 

important because student achievement is measured only for the content tested. Knowing 

the cognitive demand of the taught is important because, other things being equal, 

students in situations of poverty in particular, tend to have opportunities to learn only 

what they are taught (Squires, 2009). It has also been argued that the cognitive demand of 

the taught curriculum is a powerful predictor of variance in student achievement gains, 

and helps explain a portion of the achievement gap between students from different 

backgrounds (Mullis, Martin, & Foy, 2008). Measures of cognitive demand levels of the 
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written, the tested and the taught curriculum therefore provide a window into 

investigating the quality of implementation of a new curriculum.      


 

While many examples have been used to highlight the nature of discrimination in the 

colonial system of education common in the African countries prior to democracy, 

perhaps Verwoerd’s (1954), speech at the Second Reading of the Bantu Education Bill in 

South Africa stands out as the most infamous illustrations of what necessitated change, 

especially in mathematics education, for many African countries including South Africa; 
When I have control over native education I will reform it so that the natives will be 
taught from childhood to realize that equality with Europeans is not for them … What is 
the use of teaching the Bantu mathematics when it cannot use it in practice? (House of 
Assembly Debates, vol. 78 Aug. – Sept. 1953, p3585) 

 

Consistent with this view towards the education of the natives, the apartheid system in 

South African education, sought to discriminate and differentiate people by preparing 

learners differently for the positions they were expected to occupy in social, economic 

and political life (Chisholm, 2005). Post-apartheid curriculum reforms in mathematics 

and science post democracy in South Africa make claims that they come as an attempt to 

address such issues of inequity and exclusion both educationally and socially. Common 

within these curricula is their emphasis on school systems targeting the development of 

students’ higher-order cognitive and process skills, especially in mathematics and science 

(Edwards, 2010). The justification for targeting such higher order cognitive and process 

skills is that they are viewed as being inextricably intertwined with the ability to solve 

real life problems. In the case of South Africa this was also in line with the two principles 

of social transformation and high knowledge and high skills drawn from the new 

constitution.  

 

In pursuit of those objectives, South Africa has experienced enormous changes in the 

field of education in the last decade evidenced by the introduction of Continuous 

Assessment (CASS) in 1996 with curriculum 2005 (C2005) being launched in 1997, 

followed by the Revised National Curriculum Statement at GET phase in 2000, followed 
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by the National Curriculum Statement (NCS) at FET phase in 2006. The most recent 

proposed changes are contained in the Curriculum and Assessment Policy Statement 

(CAPS) (2010). However, despite many of these new education policies being acclaimed 

by international experts as some of the best in the world, there is little evidence that the 

goals of transformation, including redress, equity and democracy, have been achieved in 

practice (Sayed & Jansen, 2001). The South African education system has continued to 

be criticized for failing close to 60% of the candidates in general and 90% of Black 

students in particular (Motala & Pampallis, 2007). In a recent report to the Council of 

Education Ministers the South African Department of Basic Education highlighted the 

persistently strong correlation between poverty and performance (Department of Basic 

Education, 2010). On the international scene South Africa has continued to perform 

poorly in all the TIMSS studies that it has participated in (3 times) since 1995. Following 

this negative trend further internal disaggregating of the learners’ scores by type of 

school has been undertaken by local researchers (Long, 2007a). The results of this 

disaggregation showed that the distribution of students’ marks on TIMSS correlated 

strongly with racial groupings, and ultimately, those groups of learners who were 

previously marginalized during the apartheid era continued to be outperformed by the 

previously advantaged learners (Fleisch, 2008). All this has led researchers to lament that 

whilst the post apartheid curricula for Black and White schools in South Africa at 

intended curriculum level are technically similar, apartheid continues to show its ugly 

face. This is untenable in a country where efforts are being made to reverse such 

disparities. Without a deep understanding of how mathematics and science education in 

the post apartheid era addresses issues of exclusion/inclusion, it is likely that policy 

approaches will continue to misinterpret the challenges of inclusion.  

 

Schmidt, Wang and McKnight (2005), posited that there were lessons that could be learnt 

from such studies as TIMSS that might help countries like South Africa to respond to 

challenges they faced in their Mathematics education. They argued that participating on 

the international studies such as TIMSS did not only provide opportunities for 

participating countries to evaluate their Mathematics and Science programs in an 

international context, but pointed out that empirical evidence also suggested that the top 
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achieving countries on TIMSS have cognitively demanding and coherent or aligned 

mathematics curricula. They also cited several studies showing that such curricula had 

potential to level the playing field for the poor and minority students and reduce the 

achievement gap between the poor and the rich (Gentile & Lalley, 2003; Kulik, Kulik, & 

Bangert-Drowns, 1990; Squires, 2005a, 2005b, 2009; Wishnick, 1989). The major policy 

implication was that if countries were serious about reducing inequality, it would be 

important to provide all students with a challenging Mathematics curriculum that was 

coherent, focused and cognitively demanding not only by an individual country’s own 

sense of what this might mean, but by international standards.  

 

But despite the observation that alignment can "cancel out" more traditional predictors of 

student achievement such as socioeconomic status, gender and race, some researchers 

suggest that little attention is given to alignment issues by many curriculum models 

(Squires, 2005a, 2005b, 2009). In South Africa post 1994 this concern was first raised by 

the Curriculum Review Committee as they commented that implementation of 

Curriculum 2005 had been confounded by lack of curriculum alignment between the 

standards and assessment (DoE, 2000). Zeroing in on the exact nature of this 

misalignment Muller (2004), lamented the decline of cognitive demand in the Grade 9 

examination papers as the major contributing factor to the drop in standards. In the 

context of the NCS Edwards (2010), did an analysis of alignment and the cognitive 

demand levels of the revised Physical Science Curriculum at FET level and noted that the 

examination papers from 2008 – 2009 were mostly testing lower order skills and 

processes. His recommendation thereof was that more needed to be done to understand 

specifically the cognitive demand levels and alignment thereof between the written, the 

tested and the taught components of the National Curriculum Statement (NCS). Despite 

the rapid transformation of the school curriculum after 1994, researchers consistently 

point to this gap as a possible explanation for poor learner performances. Within this 

doctoral study I hoped to contribute to this identified gap in studies focused on alignment 

as a means of identifying and understanding some of the root causes of poor performance 

by those learners from previously disadvantaged communities.    
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As a mathematics teacher educator in one of the Teacher Training Colleges in Zimbabwe, 

I found myself faced with the challenge of implementing a new curriculum in 2005. This 

new policy shift came about as a result of a recommendation from a study which was 

carried out by the Nziramasanga Commission of 1998.  From its findings, and other 

findings prior to this commissioned research, there was overwhelming evidence that a 

great number of pupils did not like mathematics and were not doing well in the subject 

(Kilborn, Dhliwayo, Gudza, & Ngaru, 1996).  This, in the commission’s view, was 

mainly because of a teaching force, especially at primary level, with inadequate skills to 

cope with the demands of the subject.  The commission then recommended, among other 

strategies, some changes in the way primary school teachers were to be recruited and 

trained.  But while the new policy was explicit on the image of the ‘new teacher’, it did 

not specify “how” the new mathematics teacher would be trained thereby creating again, 

a ‘dislocation’ between policy and practice.  

 

In my case, I had to find a way of coping with the new policy expectation, a challenge 

that consequently gave birth to my interest in reform research generally and mathematics 

education reform in particular. This interest however, was only catapulted into becoming 

a reality when I was offered an opportunity to study as a PhD Fellow working on a DfID 

funded ‘Implementing Curriculum Change’ (ICC) project in South Africa. Curriculum 

change in mathematics in South Africa, which the ICC project investigated, is similar to 

the Zimbabwean experience in a number of ways. Firstly, the reforms in both cases were 

triggered by a trend of poor performances in mathematics, especially by learners from 

previously disadvantaged communities, and so both have a specific intention to 

contribute towards the improvement of teaching/learning of mathematics in such 

environments. Secondly, in both reforms researchers have pointed to a possible policy 

‘dislocation’ between the written and the taught curriculum, pointing to the need to 

investigate the challenges of implementing reforms in mathematics education.  
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1.5 IMPORTANCE OF THE STUDY 
 

In discussing the importance of curriculum alignment studies in general and this one in 

particular, this study acknowledges that the claims made about the importance of 

alignment studies are contestable and as such alignment represents a necessary but not 

sufficient ingredient in the recipe for greater student achievement (Roach, Niebling, & 

Kurz, 2008). On one side there is a preponderance of research that has established strong 

links between a student’s socio economic status, teacher effect, and gender as predictors 

of success on norm referenced standardized tests (Brophy, 1986; Roach, et al., 2008). On 

the other side, there is also some semblance of logic that seems to hold in the argument: 

“If learner performances were greatly influenced by socioeconomic factors then one 

would have expected a positive correlation between learner performances and the gross 

national products (GNP) of their respective countries on the international scene. Why for 

example, would countries such as USA and South Africa continue to be outperformed by 

their counterparts with a much lower (GNP)?” This kind of logic became one of the 

driving forces behind research that tried to unravel the socioeconomic, cultural and 

instructional factors that explain why children in certain countries dramatically 

outperform their counterparts in economically comparable countries. More recently 

research has shown that, contrary to the long standing view about the power of 

demographics on learner performance, alignment was more powerful in predicting 

student achievement (Wishnick, 1989) and that alignment effect was more powerful for 

low achievers than for high achievers (Porter, Smithson, Blank, & Zeidner, 2007; 

Schmidt & Prawat, 2006; Squires, 2009). In one of the most complex alignment studies 

undertaken, the relative effects of seventeen critical factors that contribute to learner 

performances were examined and the results in summary were as follows: 

(a) socioeconomic status accounted for only 1% of the norm referenced 

standardised test (NRST) performance variance while the alignment effect 

accounted for 36.72% on the same performance scale  
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(b) Taken as a whole, other variables (gender, teacher effect, and 

socioeconomic status) accounted for only 3% of the NRST performance 

variance 

(c) The alignment effect was more powerful for low achievers than for high 

achievers 

(d) The lower the degree of instructional alignment the higher the influence of 

demographic variables (Wishnick, 1989, p. 154). 

According to Squires (2009), these were stunning findings given the vast majority of 

research that shows a strong connection between demographic factors and performance. 

These results provided compelling evidence to support the view that curriculum 

alignment was a potential criterion that could provide results negating effects of race, 

socioeconomic status and gender. In South Africa researchers have also shown a 

correlation between poverty and performance (Department of Basic Education, 2010) and 

according to van der Berg (2007), in such circumstances government policy typically 

moves to what is thought to be the next best thing – providing added resources to those 

schools. Yet broad evidence from the experience in the United States and the rest of the 

world suggests that this is an ineffective way to improve quality (van der Berg, op cit). 

Resource inputs to improve educational quality may first require some other conditions 

for quality education to be met such as curriculum alignment. All these observations 

suggest that alignment could be a possible lens through which to study poor performance 

of learners in less privileged schools in South Africa. However, TIMSS results suggest it 

is only when the aligned curriculum is also cognitively demanding that positive effects 

can be noticed and it is in this context that this study is important.     

 

This study drew from the large scale (ICC) project whose objective was to understand the 

potential impact of mathematics and science curriculum reforms on the quality of 

education in previously disadvantaged schools. Specifically the PhD study was interested 

in understanding the level of cognitive demand and curriculum alignment in the NCSM at 

FET level. The broader significance of my study is also in its concern with the 

opportunity to learn mathematics i.e. the way mathematics as a subject is actually taught 

in the classroom traced back and compared with how content is prescribed in the official 
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curriculum statements. Research has shown that teachers’ ability to create opportunities 

for pupils to learn cognitively demanding mathematics is a good predictor of 

mathematical achievement or empowerment especially of the learners from previously 

disadvantaged communities (Squires, 2009). 

 

Alignment studies are also important in the context of a changed curriculum as such 

studies guide teaching and learning. For example, if there is no alignment between what 

is taught as specified in the content standards and what is tested, then schools may well 

teach to the test and ignore the desired content standards. The implication thereof would 

be that if cognitively demanding content was not being assessed it was probably not 

being taught or learned even though it was espoused. On the other hand if schools teach 

according to the desired cognitively demanding assessment standards and the tests are not 

aligned, the learners’ results may give a false impression of the students’ performance 

relative to the desired content standards. The negative impact on remedial action may be 

great because the real cause of the problem may not be addressed (Edwards, 2010).     

 

Borrowing from alignment research elsewhere, this study was premised on the view that 

there are benefits that accrue both at the systemic level and at the specific subject level 

when alignment is present. At the systemic level, standards based school reforms, which 

are presented as national curriculum in South Africa and many other countries, define a 

vision of what is important for a country’s children to learn. According to Schmidt et al., 

(2005) standards based school reforms are based on an assumption that the education 

system should be guided by content standards defining what it is that students should be 

expected to know or do. If content standards are seen as policy instruments used to 

articulate the vision, or framework, of a subject-matter discipline to its educational 

system, then one of the most important questions that should be asked is whether those 

standards reflect a coherent framework. If they do not, the result will be a ‘splintered 

vision’, something more analogous to the concept of ‘diffusion’ in science indicating lack 

of order or direction. 
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The importance of curriculum alignment is also seen in that a poorly aligned curriculum 

is likely to result in underestimation of the effect of instruction on learning. Teachers may 

be ‘teaching up a storm’, but if what they are teaching is neither aligned with the state 

standards nor the state assessments; then their teaching is in vain.  Anderson (2002, p. 

259), puts this in the form of a metaphor; “This is the educational equivalent of a tree 

falling in the forest with no one around… no demonstrated learning, no recognised 

teaching”. Literally this means the falling tree (high pass rates claimed from the 

assessments) is making a noise which no one really pays attention to. Proper curriculum 

alignment enables us to understand the differences in the effects of schooling on the 

students’ achievement. Even in an accountability focused curriculum environment, 

curriculum alignment is still central to such accountability programs. If students are 

going to be held accountable for their learning, then schools must also be held 

accountable by demonstrating that they provide students with opportunities to learn to 

meet the standards that have been set. Anderson (2002), for example, cited an example of 

a lawsuit that was successfully filed against the state of Florida in 1979 where the 

argument was that it was unconstitutional to deny high school diplomas to students who 

had not been given the opportunity to learn the material covered on an assessment that 

was a requirement for graduation.   

 

Teachers are also likely to give more importance to curriculum documents if alignment 

exists because the documents, which are central in this scenario, will be more useful in 

teaching students. Alignment can also improve the effectiveness and efficiency of the 

school system by providing feedback on standards that need more work, so money and 

time can be allocated based on need.  In an aligned system student progress is more easily 

mapped through different assessments tools at different levels of the system.             

 

1.6 PROBLEM STATEMENT AND OBJECTIVES  
 

In South Africa post democracy, Senior Certificate pass rates rose steadily from a 49% in 

1998 to 73% in 2003 then slightly dropped to 71% in 2004 (Ndaba, 2005). While the 

department of education patted itself on the back for this great achievement serious 
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doubts were expressed about the extent to which these results reflected an actual 

improvement in the performance and quality of candidates (Ndhlovu, 2004). 

Authoritative sceptics argue that while the pass rates are rising the system has not done 

enough to make a rise in passes credible, hence current assessment is not telling the 

public what it ought to know (Foxcroft, 2004; Lolwana, 2005; Loock & Grobler, 2005; 

Muller, 2004; Ndaba, 2005; Ndhlovu, 2004; Taylor, Muller, & Vinjevold, 2003). Public 

opinion often suggests that standards must have dropped such that it has become easier to 

pass or do well but the consequences are detrimental especially for the learners from 

previously disadvantaged societies which current reforms purport to serve (Lolwana, 

2005; Muller, 2004). It is in light of such conflicting observations that some researchers 

have questioned the validity of the claims in many of the new education policies in South 

Africa about redress, equity and democracy for  there is little evidence to show that such 

goals of transformation have been achieved in practice (Sayed & Jansen, 2001). Without 

a deep understanding of how mathematics education in the post apartheid era addresses 

issues of exclusion/inclusion, it is likely that policy approaches will continue to 

misinterpret the challenges of inclusion. According to Muller (2004), all these concerns 

point to the question of standards – have the South African expectations as expressed by 

their level of cognitive demand declined?  

 

Given these conflicting observations this study aimed at: 

1. Examining the level of cognitive demand in the mathematical knowledge 

and skills as articulated in the written and tested NCSM within the 

reformed FET curriculum introduced in 2006. 

2. Examining the level of alignment within the written and between the 

written and tested curriculum.  

3. Observing 4 Grade 11 mathematics teachers teach a series of algebra 

focused lessons in order to determine (a) the extent to which their 

practices created opportunities for pupils to learn higher order cognitive 

processes and skills and (b) the nature of alignment of the taught 

curriculum with the written and the tested curricula.         
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1.7 RESEARCH PARADIGM 
  

The main research paradigm for several centuries has always been that of Logical 

Positivism.  This paradigm is based on a belief in an objective reality. However, reform 

researchers have argued that positivist science has proved to have some deficiencies 

when it has been removed from the closely defined laboratory setting and asked to cope 

with the kind of organized complexity facing humanity in the real world (McKenna, 

2010). Although there are many other paradigms which researchers have adopted in 

trying to understand complexities of the real world, this research adopted critical theory 

as its broad paradigm. The critical paradigm aims not only to understand the structural 

shaping of experience but to do so with a view to effect change. The study aimed at 

understanding curriculum coherence within the South African context with the belief that 

the results thereof can contribute to making desirable change (McKenna, 2010). In terms 

of curriculum theory, the critical approach has a concern with the emancipatory function 

of teaching and learning. The curriculum statements make claims that new reforms target 

the poor and minority groups and by studying the way the new reforms are being 

implemented in the target communities, I hoped to understand in depth the extent to 

which the new reforms opened up opportunities to grapple with higher order cognitive 

processes and skills.      

 

Realist/critical theory approaches tend to rely on a combination of qualitative and 

quantitative methods and usually incorporate methods such as interviews, observations 

and analyzing texts to elicit participants’ ways of knowing and seeing. This study used 

both quantitative and qualitative tools to measure the levels of cognitive demand as well 

as levels of alignment. Document analysis and video recording were also used as the data 

collection methods. Research which falls into the realist paradigm category is usually 

conducted in more natural settings and so more situational or contextual data is collected. 

In this study Grade 11 mathematics teachers were observed teaching in their normal set 

ups without manipulating their environment in any way.  Research designs associated 

with this paradigm provide opportunities for discovery (emergent knowledge) as opposed 

to manipulating the environment and proceeding by testing an a priori hypothesis. The 
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study did not go into the classrooms with an a priori hypothesis to test but the analysis of 

the written curriculum and the tested curriculum did provide comparative lenses for the 

empirical data.    

1.8 OUTLINE OF CHAPTERS  
The following is a brief outline of the chapters of this research

1.8.1 CHAPTER ONE - INTRODUCTION  
 

Chapter one introduces the reader to the problem of poor performance in mathematics of 

learners from previously disadvantaged communities in South Africa. It then provides 

empirical evidence to show that the poor continue to be outperformed to date. This is 

despite claims made by policy makers that new reforms come as an attempt to address 

such issues of inequity. There is empirical evidence that suggests that alignment has 

potential to improve performance by previously disadvantaged learners and that when 

curricula are cognitively demanding and aligned learners are likely to learn effectively 

and improve their performances as a result. This justifies why this study was interested in 

having alignment with higher cognitive demand as a focus. This was all premised on the 

view that curriculum alignment was a potentially cost effective criterion that could 

provide results limiting effects of race, socioeconomic status and gender

 

1.8.2 CHAPTER TWO – LITERATURE REVIEW   
 

This chapter begins with an overview of the history of curriculum development. It traces 

this to the time of and cites the contributions made by Tyler (1949), and Bruner (1960), 

which have endured to this day. Tyler for example identified four critical questions that 

must be asked or answered when a curriculum is developed and the literature review 

shows how these design features are evident in the 2006 South African National FET 

Curriculum Statement for Mathematics. His model was organised around the following 

four corresponding principles: (a) defining goals, (b) establishing corresponding learning 

experiences, (c) organising learning experiences to have a cumulative effect and (d) 

evaluating outcomes. The fact that they must be corresponding suggests that coherence 
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must be considered at design stages. Bruner (1960), has advocated that fundamental ideas 

must be identified, and once identified, they must allow a student to move from a 

primitive and weak grasp of the subject matter to a stage in which s/he has a more refined 

and powerful grasp. This process of allowing a student to move from a primitive and 

weak grasp of the subject to a more powerful grasp is a key characteristic feature of 

developmental coherence. Following on from this contribution by Bruner (op cit), the 

literature review argues that developmental coherence, defined in terms of the deepening 

and extension of understanding of content, should also be examined. That the 

fundamental ideas should be constantly revisited and reexamined so that understanding 

deepens and extends over time, also points to the need to examine the cognitive demand 

of the mathematical knowledge and skills in the curriculum. Within the alignment studies 

literature, coherence and cognitively deeper understanding are described in relation to the 

following aspects: making conceptual links (Schmidt & Prawat, 2006), evolving from 

particulars to deeper structures (Schmidt, Wang & McKnight, 2005) and descriptions of 

the successively more sophisticated ways of thinking (Wilson & Draney, 2009). While it 

is acknowledged that today curriculum alignment has become more complex, Howard 

(2007), argued that regardless of the theoretical orientation or practical perspective, 

hearkening back to Bruner, Tyler and others before them, curriculum writers still 

emphasize the importance of curriculum coherence which should not only be sequential, 

but should enable students to make ever-deepening inquiries into central concepts and 

principles.              

 

By way of contextualizing the study, and explaining the gap in knowledge that this study 

aims to address, the literature review cites the South African researchers who have argued 

that pass rates are rising but standards are dropping (Muller, 2004; Taylor, et al., 2003), 

that this was due to misalignment between the curriculum and assessment (Chisholm, 

2000) as well as the level of cognitive demand which was declining in the examination 

papers, (Muller, 2004), that this was more detrimental to learners from poor communities 

(Department of Basic Education, 2010; Fleisch, 2008; Long, 2007a) and that this level of 

cognitive demand needed to be investigated further (Edwards, 2010).    

 



 17 

This background flows into the central concern in this study - the extent to which high 

levels of cognitive demand were evident in the National Curriculum Statement and the 

degree of alignment between this written curriculum, the tested and the taught curricula 

in terms of cognitive demand. In the literature review, I then examine how others have 

researched curriculum coherence, and this leads to the adoption of Wilson and 

Bertenthal’s (2005), coherence framework as the key conceptual framework for this 

study. The justification for its choice is given in more detail in the literature review 

chapter. The framework posits that a successful system of standards based education is 

horizontally coherent if the curriculum, instruction and assessment are all aligned with 

the standards and target the same goals for learning. The system is developmentally 

coherent if it takes into account what is known about how students’ mathematical 

understanding develops over time. It is vertically coherent if the curriculum instruments 

accorded with school practice. While Wilson and Bertenthal’s (2005), framework 

provides a description of these types of alignments and uses the term curriculum in a 

more restricted sense with specific reference to the content as specified in the written 

curriculum, Squires’ (2009) provided a model showing the relationship between the 

different components of a curriculum. The model views the term curriculum in a more 

embracive sense with curriculum/content, textbooks and the standards as constituting the 

written curriculum, the assessment (standardised tests, curriculum embedded tests) as 

constituting the tested curriculum and instruction (lesson plans, teachers’ instructional 

strategies and mastery learning students’ assignments) as constituting the taught 

curriculum. It is this Squires’ (op cit) broader model of the written, the tested and the 

taught curriculum that this study adopted but restricted its focus only on the level of 

coherence between the content and standards (written curriculum), the standardised tests 

(tested curriculum) and the teacher’s instructional strategies (taught curriculum) in the 

context of the South African NCSM at FET level. The literature review finally sets the 

study in the critical paradigm and adopts a multiple case study design
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1.8.3 CHAPTER THREE – RESEARCH DESIGN AND METHODOLOGY 
 

This chapter starts by justifying why the multiple-case design was adopted for this study. 

Document analysis is employed as a method of collecting data. Porter’s (2007), 

alignment indices (quantitative techniques), are introduced and explained. These are used 

in judging the overall level of cognitive demand and alignment within the documents 

themselves (internal consistency) and in relation to the examination papers (external 

consistency). Webb’s (2005), categorical coherence criterion (qualitative technique) is 

used to support the cognitive demand analyses as it compares the content within specific 

categories of the written curriculum and the examination papers with the aim of 

identifying and explaining in which categories content is of a low/high cognitive demand. 

Video recording is adopted and justified as the data source for the classroom observations 

of the four grade 11 teachers. Businskas’ (2008), model of mathematical connections is 

used to analyse teachers’ utterances in relation to their potential to enable learners’ 

development of higher order cognitive skills and processes. To ensure validity and 

reliability in this study cognitive demand tools were discussed, contextualized, tried and 

tested by three experts in mathematics and then pilot tested by the researcher, details of 

which are also provided in chapter 3. That the study employed a ‘multiple case design’ 

approach also ensured validity and reliability in that each case is viewed as an experiment 

and the presumption was that the greater the number of case studies that show replication 

the greater the rigour with which theory would have been established. The ethical 

considerations that were envisaged were also discussed in detail together with the steps 

taken to ensure that the research would be conducted within an “ethic of respect” to those 

who participate
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1.8.4 CHAPTER FOUR – RESULTS OF DOCUMENT ANALYSIS 
 

This chapter starts by addressing the first research question of this study “What is the 

level of cognitive demand of the mathematics knowledge and skills in the NCSM at FET 

level?” Judging by the data counts in the different categories of the cognitive demand 

matrices used to analyse the curriculum documents, the notion of the NCSM placing 

emphasis on higher order skills and processes such as investigating, generalizing, 

problem-solving and proving is explored and discussed in detail. In addressing the second 

question of whether or not the curriculum documents were coherent in articulating this 

message, the results were analysed in terms of internal consistency as well external 

coherence. In terms of internal consistency, sequential as well as hierarchical 

development of content in the content standards from one grade to the other, were also 

analysed. By way of measuring the levels of external consistency, alignment indices were 

calculated between the examination papers and the content standards and detailed 

discussions followed thereof. Webb’s categorical criterion is also used to explain the 

levels of alignment and the results were also compared with observations made, in 

Physical Science, by Edwards (2010), and in Mathematics by Umalusi (2009), after 

extensive analyses by groups of experts in mathematics education. Using a categorical-

concurrence criterion, areas where differences are more pronounced were identified.  

1.8.5 CHAPTER FIVE –
 

The aim of classroom observations was to examine both qualitatively and quantitatively 

how teachers structured students’ opportunities for learning higher order skills and 

processes. In this chapter teacher utterances were categorized according to Businskas 

(2008), types of connections with three levels of cognitive demand measured and scored 

as follows: level 0 if the connection was mathematically faulty, level 1 if the connection 

was mathematically acceptable but lacked further articulation and/or justification, and 
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level 2 if the connection was mathematically acceptable and was accompanied with 

further articulation and/or justification.   

 

Given that the instructional representations that students encounter define the formal 

opportunities for learning about the subject content, one of the key focuses of the 

analyses of teacher utterances was on the connections that the teachers 

enabled/constrained through different representations. Ball (2003), has suggested that 

effective teachers of mathematics have to use mathematically appropriate and 

comprehensible definitions, represent ideas carefully, mapping between a physical or 

graphical model, the symbolic notation, and the operation or process. Research into 

classroom interaction has also shown that teachers are constantly engaged in this process 

of defining and constructing a mental image of some mathematical object and using 

instructional representations in the process (Businskas, 2008; McDiarmid, Ball, & 

Anderson, 1989b). McDiarmid et al. (1989b) have argued that good instructional 

representations correctly and appropriately represent the substance and the nature of the 

subject being taught. They further posited that precision of definitions and lack of 

ambiguity in statements was a fundamental principle of mathematics learning. All these 

factors were considered in the analyses of teacher utterances and the detailed discussions 

that followed thereof.  


 

In trying to establish whether the tested curriculum is aligned with the written curriculum, 

the question this study was trying to address concerned the validity of the testing 

instruments in relation to the higher order skills and processes that are targeted in the 

curriculum. Classroom observations were concerned about how teacher practices were 

responding to the targeted higher order cognitive skills and processes. In this chapter the 

discussion focuses on the findings on alignment and the degree and nature of higher order 

cognitive skills and processes that were present within the written documents, the 

examination papers and the teacher utterances. The discussion provides some 

implications of the findings in terms of mathematical teaching and learning in less 

privileged classes that were observed.        
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CHAPTER TWO - LITERATURE REVIEW AND 
CONCEPTUAL FRAMEWORK  

 
 
 

2.1 INTRODUCTION 
 
Given that this study focuses on the level of alignment in the NCSM, tracing the 

historical origins and the development of curriculum coherence over the years was 

considered valuable in a number of ways. The understanding of what has consistently 

formed the logic underlying alignment was critical in shaping the focus of this study and 

in supporting some of the arguments that were raised in the process. Foundational works 

on curriculum coherence are often traced back to the work of Tyler (1949), and Bruner 

(1960). These two authors’ work, among the first books on curriculum to be published, 

continue to be discussed and used for their sound foundations and because the ideas 

therein have been amongst the most enduring (Howard, 2007).  

2.1.1 TYLER’S CURRICULUM MODEL 
 

In 1949 Tyler published his classic text on curriculum development with a model which 

has come to be known as the product process in the history of curriculum development 

(Howard, 2007). The model was organised around the following four corresponding 

principles: (a) defining goals, (b) establishing corresponding learning experiences, (c) 

organising learning experiences to have a cumulative effect and (d) evaluating outcomes. 

For almost 30 years after Tyler’s publication, his principles remained the accepted 

approaches to curriculum development. Although the same principles are now applied to 

newer ideas and considerations that either extend or reinterpret them, they still guide the 

essential questions of curriculum development today. While the term alignment was not 

used explicitly in Tyler’s product model there are ‘catch’ words which point in that 

direction of alignment. For example, when one considers that ‘corresponding learning 

experiences’ had to be established with the ‘defined goals’ as the reference point, the 
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need for alignment between those two components of the curriculum is implied. Not only 

were the learning experiences to be corresponding with the defined goals but these 

learning experiences were also supposed to be organised in such a manner that they 

would ‘have a cumulative effect’. Tyler, (1977) followed his earlier proposition arguing 

that;  
The primary educational function of organisation is to relate the various learning 
experiences which together comprise the curriculum so as to produce the maximum 
cumulative effect in attaining the objectives of the school. The significant question to ask 
about any scheme of organisation is: How adequately does it provide reinforcement of the 
several learning experiences so that they produce a maximum cumulative effect? (p. 48).  

 

In the catch words “corresponding” or “relating the various experiences” as well as 

“maximum cumulative effect”, the notion of both horizontal as well as developmental 

coherence respectively began to emerge, and these are concepts around which the 

research questions for this study were formulated. Both concepts are discussed in more 

detail later in this chapter. 

2.1.2 BRUNER’S CURRICULUM MODEL 
 

A decade after Tyler published his classic text, Bruner met with a group of scientists, 

scholars and educators in 1959 to “examine the fundamental processes involved in 

imparting to students a sense of the substance and method of science”  (Bruner, 1960, p. 

xvii). Although their concern was in the improvement of science education, important 

themes emerged from these meetings that were also to have major implications not only 

for science education, but for education in general. For example Bruner advocated that 

fundamental ideas must be identified, and once identified, they must allow a student to 

move from a primitive and weak grasp of the subject matter to a stage in which s/he has a 

more refined and powerful grasp. Bruner also advocated that as times goes by, students 

return again and again to the fundamental ideas, building on them, making them more 

complex, and understanding them more fully. These ideas had earlier been cited in the 

work of Whitehead (1929), who wrote; 
Let the main ideas which are introduced into a child’s education be few and important, and 
let them be thrown into every combination possible. The child should make them his own, 
and should understand their application here and now (p. 2) 
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In these propositions the notion of developmental coherence mentioned above, re-

emerged and this again is a concept around which my research questions 2 and 3 were 

formulated. Generally this type of coherence looks at whether both the written curriculum 

and the taught curriculum take into account the abilities and understanding that are 

needed for learning to progress at each stage of the process of mathematical development. 

Since then researchers have continued to contextualize and redefine what is desirable, 

essential or important for learners to know but the idea of coherence remains evident in 

all current efforts towards the ‘fundamental processes’ of learning. Currently, an 

influential book on curriculum development is by Wiggins and McTighe  (2005). They 

call their approach to understanding curriculum design, ‘backward design’ and they cite 

the Tyler model as providing the logic behind their new idea. However, their design 

avoids the mechanistic predisposition of behaviorism in Tyler’s work and offer ideas 

incorporating formative assessment with latest thinking in assessment. They name their 

design ‘backward’ because it starts with the end, the desired results first, then works 

backwards through the determination of acceptable evidence to a curriculum based on 

acceptable or desirable goals. In determination of desired results, Wiggins and McTighe’s  

(2005), also reference Bruner (1960), reiterating his idea that these essential concepts and 

principles are what should ‘anchor’ the curriculum, whether it be a unit of study, a 

course, or a major field comprised of a number of courses.  This idea of anchoring the 

curriculum again points in the direction of coherence in that the essential concepts are 

used as pillars that provide stability, or security or connection between the different 

curriculum components.  

2.2  COGNITIVELY DEMANDING KNOWLEDGE AND SKILLS  
 

A difficulty arises in trying to use the essential concepts to anchor the curriculum, 

because no consensus has so far been reached on value laden issues related to what 

constitutes ‘essential concepts’, ‘important mathematics’, ‘fundamental ideas’, and 

‘desired results’. Indeed research reveals important differences in how school systems 

define such learning goals. For example, Muller and Subotzky (2001), say the question of 

what knowledge is needed by millennial citizens and their societies in these rapidly 

changing times is asked frequently. What is most striking is that the answers tend to fall 



 24 

into two mutually exclusive categories. The first category provides answers in terms of 

cultural, political or moral knowledge and skills. The second category, growing 

increasingly influential, provides an answer in terms of skills and knowledge for 

economic productivity – the cognitively demanding knowledge and skills purportedly 

required for a rapidly changing world. Some writers encapsulate this increasing salience 

and reach of knowledge in modern life with the term knowledge society in which 

‘science and technology have extensively heightened society’s capacities to act upon 

itself, its institutions and its relations to the natural environment’ (Stehr, 1994). Within 

this context, mathematics gains its high status in industrialized nations because of its 

socio-economic utility as a form of what has also been referred to as 

‘technical/administrative knowledge’ (Apple, 1992). The accumulation and control of 

this knowledge was essential in science-based industries. So it is not merely a question of 

access to knowledge becoming important to all citizens in modern society, but of access 

to and command of the marginal additions to knowledge becoming key (Muller & 

Subotzky, 2001). This suggests that questions must be asked about the quality of 

knowledge being accessed by citizens for according to Lewis and Smith (1993), 
Learning to be effective in higher order thinking is important for everyone; it is not a frill, 
nor is it a skill that only “gifted children” can or need to develop. Any time an individual 
is faced with a perplexing situation or a situation where it is necessary to decide what to 
believe or do, higher order thinking is necessary (p. 136)  

 

Despite this realisation of the need for such quality in knowledge and skills for life in 

general or for economic productivity in particular, many African governments, with a 

firm foundation in an egalitarian philosophy, pursue a democratic agenda in which they 

strive in principle for equality in social, political, economic and educational rights and 

opportunities. Consistent with this view, social programs (including education) planned 

for their citizens are based on a notion of parity, fairness, impartiality or equal 

opportunity for all – comprising what Muller and Subotzky (2001), referred to as cultural, 

political and moral knowledge and skills.  In South Africa post democracy, Lolwana 

(2005), points to a similar political massification of education. She posits that the new 

democratic government, acutely aware of the inequalities and divisions in the education 

system, prioritized its effort to equalize inputs into the system, to remove racial divisions, 
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and to be inclusive in all decision-making structures, including the standards-setting and 

evaluation processes of the Senior Certificate examinations.  

 

However, Apple (1992), warns that too much democracy culturally and politically could 

be one of the major causes of “our” declining economy and culture. An over-emphasis on 

distribution tends to detract from the equally powerful demands placed on the education 

system to produce technically oriented knowledge that can be controlled and utilized by 

the economy. With specific reference to mathematics, Diezmann and Watters (2002), 

argue that the concept of equal opportunity for all seems to be ill defined to mean basic 

numeracy. Similar sentiments are echoed by Muller and Subotzky (2001), who posit that 

the notion of access to education for all resembles political knowledge (education as a 

human right) which was and largely is a ‘low-skill’ one, by which is meant that a small 

minority attains high skills (those who attend special/private schools), while a large 

majority who attend mostly public schools attains fairly mediocre skills. 

 

Apple (1992), argues that it was not only in the treatment of race, gender, and class 

differences in schools that society should be cognisant of inequalities but this realisation 

needed to be extended to some of the predominant uses of mathematical knowledge.  In a 

knowledge economy, massification of education tends to reproduce inequalities all over 

again albeit in a different form. A ‘unified high-skill’ educational transformation could 

change that and lead the economy and its society toward winning nationhood.  

 

Across the world developed and developing countries have in recent years revised their 

school and higher education curricula to take account of the knowledge and skills 

required to participate in a globalizing twenty-first century world (Vinjevold, 2005). In 

these countries, there appears to be some convergence on the view that when describing 

any content of instruction with the goal of building an indicator with a strong predictive 

value for gains in student achievement, that content must be described not only by the 

particular topics covered but also by the cognitive demand levels of the activities which 

students are to be engaged in with those topics (Porter, 2002). So while there might be no 

consensus on what constitutes ‘essential concepts’, ‘important mathematics’, 
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‘fundamental ideas’, and ‘desired results’ this study takes the view that higher order 

cognitive skills and processes are desirable for more equitable educational outcomes and 

for economic productivity. There is empirical evidence to suggest that of the two 

categories of knowledge comprising on one hand political, cultural and moral knowledge 

and skills, and on the other higher order skills and knowledge for economic productivity, 

the latter is more prominently espoused in many educational reforms.  

2.3 FOUNDATION OF OUTCOMES BASED CURRICULUM 
 

The first concern for this study emanating from this historical development of curriculum 

coherence had to do with how the NCSM was designed. Reform of the curriculum in 

many parts of the world has centred on standards-based systems of education. Outcome-

based education, which is a typical example of such standards-based systems, has formed 

the foundation for curriculum reform in South Africa post 1994. Borin et al., (2008) posit 

that (OBE) has its roots in strategic planning, where descriptions of the future conditions 

that students are likely to encounter, serve as the starting point for its design which helps 

to guide the establishment of significant outcomes. Four key design elements characterize 

(OBE) and these are (a) focus on significant outcomes, (b) design curriculum to achieve 

outcomes, (c) set high expectations for achievement and (d) provide multiple 

opportunities to receive instruction and demonstrate learning.  The four elements which 

characterize (OBE) are reminiscent of the simple, logical and rational model originating 

from Tyler’s model (Borin, et al., 2008). In the case of South Africa, these components 

are evident in the structure of the National Curriculum Statement for Mathematics 

(NCSM) which in this study was conceptualized as follows:  
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Fig. 2.1  COMPONENTS OF THE NCSM 

 
 

According to the South African Government Gazette of 6 October 2003, the FET NCS 

Grades 10 – 12 (General) consists of the following documents: (a) the overview 

document (b) the subject statement (c) the learning programme guidelines and (d) the 

assessment guidelines. Redolent of the Tyler (1949) model of curriculum design, the 

foundation or philosophy is articulated in the overview document. The 

content/competencies or learning goals which identify what we want students to learn are 

articulated in the various subject statements. The approach or learning activities which 

identify how students will learn what we want them to learn and which specifies how this 

learning has to happen, are all contained in the learning programme guidelines and the 

assessment, which shows how this learning has to be evaluated or how we will know how 

students have achieved the intended goals is articulated in the assessment guidelines.  

 

Thus there is a prima facie rational logic in the design features of the curriculum with an 

assumption of a well aligned backward design from goals into curriculum, into 

assessment and into classroom practices. Yet learners continue to perform badly despite 

what appears to be well aligned design features at the document level. This disparity is 

cause for concern in the case of South African reforms post 1994 as can be evidenced by 

this quote from Sayed and Jansen (2001); 

N C S 
Overview Document 

Subject Statement 
 Mathematics 

Learning Programme 
Guidelines  

Assessment Guidelines & 
Standards  
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Despite many of our new education policies being acclaimed by international experts as 
some of the best in the world, there is little evidence that the goals of transformation, 
including redress, equity and democracy, have been achieved in practice (p. 2).       

 

This suggested that translating policy coherence into improved instructional coherence 

and student learning was not only elusive but was more complex than just the designing 

of the curriculum components. Falling back on the historical development the question 

that kept ringing was; “If curriculum coherence has been valued for such a long time, and 

its design features continue to feature in current curriculum reforms in South Africa, then 

what other possible explanations are there to justify why learners continue to perform 

way below expectations in mathematics?” This suggested that an in-depth exploration of 

alignment, incorporating higher order cognitive demand within and across the written, 

into the tested and into the taught curricula, would be useful.   

2.4 THE CONCERN AND THE GAP  
 

This study acknowledges that many approaches have been developed for assessing 

alignment between the different components of a curriculum. Webb (1997), for example 

developed four different criteria for judging alignment i.e. categorical concurrence, range 

of knowledge, balance of representation and depth of knowledge. The Webb alignment 

method refers to the broadest level of content expectations as “standards,” the 

intermediate level of content as a “goal” and the most specific level as “content 

objectives.” Within this broadest level of content expectations or standards, Webb 

identified four categories as follows:  

(a) Number Sense 

(b) Algebraic Operations 

(c) Geometry – Solid 

(d) Data Analysis and Statistics (Webb, 2002).   

Categorical concurrence indicates whether the same or consistent categories of content 

appear in both the content standards and the assessment items. This measurement is made 

after the broad levels of content expectations have been refined to the most specific level 

of content objectives. Range-of-knowledge correspondence indicates whether the span of 

knowledge expected of students by a standard is the same as, or corresponds to, the span 
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of knowledge that students need to answer assessment items or activities correctly. 

Balance of representation provides an index of the degree to which one curriculum 

objective is given more emphasis on the assessment than another. Lastly, depth-of-

knowledge consistency is intended to represent the level of complexity required by the 

objectives and assessment items. The depth-of-knowledge criterion indicates whether 

what is elicited from students on an assessment is as complex for the content area as what 

students are expected to know and do as stated in the model academic standards. 

 

 While all these attributes were taken into consideration as aspects of horizontal 

alignment in chapter 4 of this study, the structure of the whole study was particularly 

concerned with understanding the levels of alignment between the different components 

of the NCSM with respect to the last attribute i.e. the depth of knowledge consistency 

criterion. This was consistent with the earlier position taken in this study that cognitively 

demanding knowledge and skills are particularly critical for economic productivity. This 

focus was also in line with the problem statement which raised concerns about falling 

standards - that school expectations had declined in terms of cognitive demand and that 

this posed a threat to the learning health of the nation especially those from previously 

disadvantaged communities.  

 

In trying to locate a possible gap in knowledge, the literature search for this study, 

cognisant of the numerous alignment studies that have been documented, was guided by 

and  focused specifically on alignment studies both internationally and locally that: 

1. have been guided by this criterion of quality defined in terms of depth of 

knowledge or cognitive demand levels.   

2. have investigated the power of instructional alignment in relation to the 

power of demographics that have usually explained differences in learner 

achievement in mathematics.  

3. have shown how aligned curriculum can level the playing field for the poor 

and minority students and reduce the achievement gap in mathematics.  
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2.4.1 INTERNATIONAL LITERATURE SEARCH  
 

Internationally, the work of Bloom (1976), is cited among the earliest which focused on 

the power of alignment. According to Squires (2009), this is the first look at a system of 

curriculum that has been shown to improve results. Bloom (1976) believed that a scope 

and sequence of learning tasks could be designed so that higher learning outcomes were 

ensured for all and not just some students. His mastery learning theory centred around the 

alignment of curriculum embedded tests to the written and the taught curriculum and 

emphasized that the scope and sequence of instructional tasks – the curriculum – would 

make a difference in students’ performances and that all students could reach high 

standards. Three common elements of the mastery learning system were:  

1. explicit instructional objectives, hierarchically sequenced, which students are 

expected to obtain 

2. criterion-referenced assessment to evaluate and provide feedback on the 

achievement of those objectives 

3. remedial instruction for students who did not achieve the desired standard of 

performance   (Gentile & Lalley, 2003, p. 156) 

Findings from and further reviews of mastery learning research indicated that mastery 

learning is successful at raising achievement levels of approximately 80% of students to 

the high levels now enjoyed by only 20% of students (Squires, 2009). The effect size was 

such that an average 50th percentile student would move up to about the 77th percentile in 

achievement (Block & Burns 1989 p.28). Bloom’s mastery learning theory of 

instructional quality implies that the school controls factors that affect student outcomes 

i.e. outcomes are not predetermined by race, culture or socioeconomic status, but are 

under the control of the school.  

 

Cohen (1987) also focused his studies specifically on the alignment aspects and coined 

his work ‘instructional alignment’. Central to his theory was that lack of excellence in 

American schools was not caused by ineffective teaching but mostly by misaligning what 

teachers teach, what they intend to teach, and what they assess as having been taught. His 

findings were that misalignment of instruction to testing caused low-aptitude students to 
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fail, while high-aptitude students succeeded.  When instruction and assessment were 

aligned during sample lessons both low and high aptitude students scored well on 

curriculum embedded tests. The quantitative effect of this alignment on achievement was 

measured and showed that a student scoring at a 50th percentile would increase to 

between 84th and 98th percentile. This measure also clearly showed that alignment was 

generally more important for low-aptitude students than for high-aptitude students, with 

low aptitude students making greater gains when alignment was present.  

 

Wishnick’s (1989), study proposed to investigate the power of instructional alignment 

compared to the power of demographics that have usually explained significant amounts 

of norm referenced standardised achievement test (NRST) scores variance. This followed 

a preponderance of research that established strong links between students’ 

socioeconomic status, teacher effect, and gender as predictors of success on norm 

referenced standardised tests. The question that guided Wishnick’s study was ‘If the 

curriculum and assessments are aligned, will this correlation still hold true?’ He then 

identified seventeen critical features that contribute to alignment and analysed their 

effects on achievement. The findings of the study in a nutshell were that: 

• Alignment is more powerful in predicting student achievement than 

socioeconomic status, gender, or teacher.  

• Socioeconomic status accounted for only 1% of the NRST performance 

variance while the alignment effect accounted for 36.72% on the same 

performance scale. This means that whether a student received free or 

reduced lunch had almost nothing to do with how well s/he scored on the 

NRST. 

• The alignment effect is more powerful for low achievers than for high 

achievers. Low achievers do better when instructional outcomes are clear 

and instruction is congruent with post-instructional assessment. 

• Taken as a whole, other variables (gender, teacher effect and 

socioeconomic status) accounted for only 3% of the NRST performance 

variance 
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• The lower the degree of instructional alignment the higher the influence of 

demographic variables (Wishnick, 1989, p. 154). 

    

Guided by similar interests, Porter and colleagues in the ‘Reform Up Close’ project 

(1993, 1994) studied high schools which were implementing change in curriculum. To 

describe the enacted (taught) curriculum across the schools they employed a detailed and 

conceptually rich set of descriptors that were organised into three dimensions: topic 

coverage, cognitive demand and mode of presentation (Porter & Smithson, 2001). Topic 

coverage included ninety-four categories (for example, ratio, volume, expressions, and 

relations between operations) and there were seven descriptors for modes of representation 

i.e. exposition, pictorial models, concrete models, equations/formulas, graphical, laboratory 

work, and fieldwork. Cognitive demand included nine descriptors: memorize, understand 

concepts, collect data, order/compare/estimate, perform procedures, solve routine 

problems, interpret data, solve novel problems, and build/revise proofs. Of particular 

importance to this doctoral study are the cognitive demand descriptors which were later 

compressed into five levels of cognitive demand as discussed in more detail in the 

methodology chapter.  

 

Porter found that content of mathematics and science courses appeared not to have been 

compromised by increased enrollments (in more difficult courses) but that the enacted 

curriculum in high school mathematics and science was not at all in alignment with the 

curriculum reform toward higher-order thinking and problem solving for all students 

(Porter, et al., 2007). When they controlled for prior achievement and students’ poverty 

levels using an HLM (Hierarchical Linear Model) they were able to demonstrate a strong 

positive and significant correlation (.49) between the content of instruction and student 

achievement gains confirming earlier findings that aligned instruction is linked to 

increased student outcomes (Porter, et al., 2007). These studies suggest an emancipatory 

approach to curriculum alignment issues as they show with statistical confidence that 

disadvantaged children suffer disproportionately from incoherent curricula (Schmidt et 

al., 2002; Squires, 2009), suggesting almost a cause and effect relationship between 

incoherent curricula and poor performance of learners in previously disadvantaged 
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communities. The recommendation made by Porter (2002) for example, was that if poor 

and minority children are to have epistemic access to education or receive a high quality, 

standards-based education – and ultimately reduce the achievement gap – then the 

instruction they receive must be cognitively demanding and aligned with the state content 

standards. 

 

Of the international alignment studies, the TIMSS project is so far the largest and most 

rigorous cross-national set of studies of curriculum and alignment yet undertaken. It has 

probably been the most influential in terms of curriculum change globally hence it gets 

relatively more attention in this literature review. The TIMSS project has uncovered 

some key conditions that make up what appears to be necessary, though not sufficient, 

conditions for the realization of higher achievement in mathematics and science for large 

numbers of school-children. Notable differences between the intended/written, the 

tested/assessed and the taught/enacted curricula of countries exhibiting high levels of 

mean student achievement in mathematics and those of countries with lower mean 

achievement levels point to key elements common among most high achieving countries 

that are not shared by most low-achieving countries (W. H. Schmidt, et al., 2005). In high 

achieving nations, when goals first enter the curriculum they receive concentrated 

attention with the expectation that they can be mastered and that students can be prepared 

to attain a new set of progressive goals in ensuing grades. The view is that demanding 

standards require more sophisticated content taught in depth, as students make progress 

through the grades. In high achieving countries, rigorous standards go through a dynamic 

process of focused and coherent transitions from simple to increasingly more complex 

content and skills. So in most of these countries, each new grade sees a new set of 

curricular goals receiving concentrated attention to prepare for and build toward 

mastering more challenging goals yet to come. 

 

Analyses of data from this mammoth study of students in over forty countries teased out 

some of the variables that affected performance in mathematics and science. According 

to Squires (2009), one of the guiding questions of the analyses was “If students in Japan 

and Thailand perform better in mathematics than those in the United States, what helps to 
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produce those differences?” The results showed that gross national product (GNP) as a 

measure of a country’s wealth was not strongly related to achievement gains in either 

mathematics or science (Schmidt et al., 2001). These findings also noted little 

relationship between socioeconomic status and student outcomes when alignment was 

controlled confirming earlier findings that the curriculum alignment was more important 

than socioeconomic status in determining learning gains.  

 

In terms of design, the TIMSS project has developed a reputation of a well designed 

study, “valued for its rich comparative information about educational systems, 

curriculum, school characteristics, and instructional practices” (Wang2001, p. 15). The 

design allows researchers to link variation in learners’ achievement scores with the 

characteristics of an educational system for the purpose of improving specific 

components of the system (Schmidt et al., 2001). For example an analysis of TIMSS data 

indicated that the scores of white students in the United States were exceeded by only 

three other nations compared to black American school children who were beaten by 

every single nation (Berliner, 2001). In South Africa a similar disaggregation of the 

learners’ scores by type of school also showed that distribution of marks on TIMSS 

correlated strongly with racial groupings with Black Schools being out performed by 

White Schools (Long, 2007b). These results highlight the need for within country 

analysis to identify community groups who are disadvantaged in school systems intended 

to provide opportunities for all learners, irrespective of their background characteristics. 

Such an analysis when linked with further qualitative contextual investigations, can 

inform policies intended to address inequalities and provide quality education for all 

(Frempong, 2010). 

 

Another lesson that can be learnt from TIMSS is that despite the myriad of content 

standards in mathematics and lack of an agreed upon or universal list of such standards, 

these can be described in terms of performance standards defined in terms of cognitive 

demand levels where there is relatively less controversy/disagreement. TIMSS developed 

a list of mathematics and science performance standards so that curriculum from various 

nations could be described, compared and analysed. Empirical evidence suggests that 
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there is relative convergence on the view that excellence must be demanded of all 

learners and that content must reflect quality measured by the cognitive demand levels of 

the activities which students are to be engaged with those topics (Porter, 2002). In 

developing the performance standards, the TIMSS framework used three dimensions i.e. 

content, performance expectations and general perspectives to analyse mathematics 

curricula in the participating countries. Under performance expectations, the student 

behaviours used to define the mathematics framework were classified into the following 

four cognitive domains: knowing facts and procedures, using concepts, solving routine 

problems, and reasoning (Mullis, et al., 2003) with their corresponding descriptors as 

follows:  
Table 2.1 TIMSS FRAMEWORK OF PERFORMANCE EXPECTATIONS (Mullis et al., 2003) 

COGNITIVE 

DOMAINS  

Knowing Facts 

and Procedures 

Using 

concepts 

Solving 

routine 

problems 

Reasoning 

 

 
DESCRIPTORS 

 

Recall 

Recognise/identify 

Compute 

Use tools  

Know 

Classify 

Represent  

Formulate 

Distinguish  

Select 

Model 

Interpret 

Apply 

Verify/check 

Hypothesize/conjecture/predict 

Analyse 

Evaluate 

Generalise 

Connect 

Synthesize/integrate 

Solve non-routine problems 

Justify/prove  

 

In general the cognitive complexity of tasks in these cognitive domains, increased from 

one broad cognitive domain to the next with the first column being the least demanding 

end of the cognitive spectrum and the last column being the most demanding end 

(Ginsburg, Cooke, Leinwand, Noell, & Pollock, 2005). While the TIMSS study placed 

solving routine problems as a domain label at a higher level 3 of this cognitive demand 

continuum, other rubrics consider it as a descriptor of a lower level skill. However the 

descriptors used in that domain (apply, verify etc) would still fit into level 3 (Strategic 

Thinking) according to Webb’s (2002), depth-of-knowledge levels. This just confirms 

why Cuban (1984), referred to the defining of thinking skills, as a ‘conceptual swamp’ 

because of the considerable variations that exist about these mathematical tools. Suffice it 

to say that this also provided a resource to tap from in terms of construction of a 
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cognitive demand tool for document analysis in my study. The intent in the TIMSS’ 

cognitive demand continuum was to allow for a progression from knowing a fact, 

procedure, or concept to using that knowledge to solve a problem, and from use of that 

knowledge in uncomplicated or familiar situations to the ability to engage in systematic 

reasoning. Mullis et al., (2003) cautioned that cognitive complexity should not be 

confused with item difficulty for it was possible to create easy or challenging items for 

nearly all the cognitive skills listed above. However, it was expected that item difficulty 

should not affect the designation of the cognitive skill.  

 

In the countries participating in the TIMSS 1999 video study for example, the 

mathematical tasks presented during lessons were analysed following similar cognitive 

demand levels. The findings were that in top performing countries such as Japan for 

example, 17% of the content was at low complexity level and 39% at high complexity 

level; whereas in Australia for example, 77% of the content was at low complexity level 

and only 8% at high complexity level (Hiebert et al., 2003, p. 71). In the TIMSS 1999 

video study also, the ability to maintain the high-level demands of cognitively 

challenging tasks during instruction was the central feature that distinguished classroom 

teaching in countries where students exhibited high levels of mathematics performance 

(Silver, 2009).  

 

In the TIMSS studies, while there were differences in terms of content standards among 

the top performing countries, indications were also that in each case choices had been 

made so that each country’s curriculum was coherently organised (Shepard, Hannaway, 

& Baker, 2009). For example, the mathematics and science curricula in the Czech 

Republic, Japan, Korea and Singapore (top performing countries) reflected a hierarchical 

sequencing of topics designed to move progressively toward more advanced topics and 

deeper understanding of the structure of the discipline (Shepard, et al., 2009).  

 

In terms of assessment and consistent with the view that assessment should provide 

evidence that cognitively demanding goals have been achieved; high achieving countries 

also designed their tests framed around different levels of cognitive demand. Certain 
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assumptions are made when tests are designed according to different levels of cognitive 

demand one of which is that any assessment of mathematics learning should first and 

foremost be anchored in that which has been identified as desirable or important 

mathematics (National Research Council, 1993). The second assumption points again to 

the quality of the assessment. According to Zurawsky (2006), there can be no equity in 

assessment as long as excellence is not demanded of all; if we want excellence, the level 

of expectation must be set high enough so that, with effort and good instruction, every 

student will learn the important mathematics. Because assessment is key to determining 

what students learn and how teachers teach, it must be reshaped in a manner consistent 

with the new vision of teaching and learning.  Improved assessment is required to 

complement and support the changes under way in mathematics education, both in the 

kinds of mathematics that are taught and in the ways in which they are taught. 

Assessment can contribute to students’ opportunities to learn important mathematics only 

if they are based on standards that reflect high-expectations for all students.  

 

With regard to the plan of instruction, high performing countries avoided reducing 

mathematics tasks to mere procedural exercises involving basic computational skills 

(Schmidt & Prawat, 2006). The fundamental premise of such educational reforms that 

focused on cognitively demanding curriculum was that the intended curriculum served to 

support the creation of opportunities for students to learn. To be effective in promoting 

learning the view was that the enactment of the intended curriculum would neither simply 

be a matter of covering the content specified in the curriculum, nor just a matter of the 

amount of time devoted to teaching them. High performing countries therefore placed 

greater cognitive demands on students by encouraging them to focus on concepts and 

connections among those concepts in their problem solving (Squires, 2009). The findings 

showed that in classrooms in which instructional tasks were set up and enacted at high 

levels of cognitive demand, students did better on measures of reasoning and problem-

solving than did students in classrooms in which such tasks declined into merely 

following the rules, usually with little understanding. In successful classrooms, task rigor 

was maintained when teachers pressed for justifications, explanations and meaning 

through questioning or other feedback (Zurawsky, 2006).  
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In summary a number of important messages come through from all these alignment 

studies most important of which are: 

(a) Alignment is more powerful in predicting student achievement than race, gender 

or socioeconomic status. 

 (b)  Curriculum alignment was important for low-aptitude students than for high-

aptitude students with low aptitude students making greater gains when alignment 

was present.  

(c) This alignment should be anchored in cognitively demanding performance 

standards.   

(d) When anchored in cognitively demanding standards curriculum had potential to 

reduce the achievement gap between the previously advantaged and previously 

disadvantaged learners. 

(e) If we wanted students to develop the capacity to think, reason and problem solve 

then classroom practices need to be designed to give students opportunities to 

learn cognitively complex content.  

(f) It was possible to use curriculum alignment as an emancipatory approach to 

address inequalities in the educational needs of previously disadvantaged learners. 

 

In conclusion, empirical evidence internationally has continued to make similar 

recommendations about demanding standards, about levels of expectations being set 

high, about more sophisticated content being taught in depth as learners progressed from 

one grade to the other and about placing greater cognitive demand on students. These 

features of the written, the tested and the taught curriculum have resulted in the 

specification of many of the key features of curricula that would promote high 

achievement. This international literature search helped focus this study on the 

examination of quality defined in terms of cognitive demand within the written, tested 

and taught NCSM and to analyse whether these curriculum components were organised 

in a manner that would ‘anchor the curriculum’ around the cognitively demanding 

knowledge and skills and enable learners especially from previously disadvantaged 

communities to deepen their understanding of such concepts.  
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2.4.2 SOUTH AFRICAN LITERATURE REVIEW  

 

In South Africa post democracy outcomes based education (OBE) made similar quality 

claims in that ‘high expectations for achievement’ had to be set (Borin, et al., 2008). The 

question that then guided the local literature search was “What empirical evidence is 

there to show that high expectations of achievement exist in the mathematics policy 

rhetoric and in specifications?”   

 

The literature search revealed that generally when a new reform is introduced there are 

certain buzz words which are identified with it and these tend to sway researchers in a 

particular direction. For example Sayed et al., (2007) posited that the prolific writer 

Jonathan Jansen and his proposition that ‘(OBE) would fail’, provoked so much debate 

which swayed educational researchers into two camps with some supporting this view 

and others trying to allay the fears thereof.  According to Breen (2005), the research 

terrain in South African education post democracy has tended to be motivated and 

informed by concerns that cut across subject areas and so the immediate questions 

considered how the organization of learning in schools reflected these broader 

educational aims.  

 

However, attention to issues of coherence in mathematics education curricula began to 

rise amidst concerns that pass rates were rising but standards were dropping (Muller, 

2004; Taylor, et al., 2003). Misalignment of the curriculum (Chisholm, 2000) as well as 

the level of cognitive demand which was declining in the examination papers, (Muller, 

2004, 2005; Umalusi, 2009) were raised as key issues within this problem. Analyses of 

the nature and pattern of these poor performances show that this was more detrimental to 

learners from poor communities (Department of Basic Education, 2010; Fleisch, 2008; 

Long, 2007a; Reddy, 2006). This suggested that levels of cognitive demand needed to be 

investigated further in the intended/written, the tested/assessed and the taught/enacted 

curriculum  (Edwards, 2010). Edwards (op cit) then followed this up with a study on the 

levels of cognitive demand and coherence between the Physical Science Curriculum and 
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the exemplar papers for 2008, the examination papers for 2008 and 2009 respectively. 

His document analysis revealed that the curriculum was aligned with all the exemplar and 

the examination papers but the concern was that the focus in each of those documents 

was on lower order cognitive and process skills. His recommendation was that this should 

be investigated in the other curriculum statements, in their manuals of exemplar papers, 

in their textbooks and learning materials, in their examination papers and in their marking 

standards. Reaffirming these concerns, Lolwana (2005), proposed not only for regular 

and systematic checks on the cognitive demand health at the different stages of the 

curriculum processes, but also pointed to the need for an overall strategy for checking the 

alignment of all the stages.       

  

What emerges from the South African literature search is that although attempts have 

been made to attend to issues of alignment among standards, assessment, textbooks and 

classroom practice, international literature would  argue that these are ‘skeletal match-

ups’, outlining similar topics without addressing deeper issues of conceptual congruence 

between challenging curricular goals and the underlying structure of pre-requisite topics 

and skills needed to achieve them (Shepard, et al., 2009).  They attribute these skeletal 

match-ups to a highly political process of developing encyclopedic content standards that 

often left out more complex, discipline-based expertise about how knowledge, skills, and 

conceptual understanding can be developed together in a mutually reinforcing way. They 

further posit that in the standards negotiation process, these more complex 

understandings are usually replaced by inclusive but disorganized lists of topics.     

Fuhrman (1993), had earlier pointed in this direction as he proposed that the idea of 

coherent policy should not be about consistency for its own sake but consistency in 

service of ‘high quality goals’ for student learning.  

 

But judging by the focus of the studies done in South Africa post 1994, there appeared to 

be a paucity of studies focusing on curriculum coherence in mathematics, driven by 

cognitively demanding standards, as a possible approach to addressing issues of poor 

performance by learners in the previously disadvantaged communities. Considering that 

the idea of coherent policy was not about consistency for its own sake but that there was 
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empirical evidence to suggest that there were gains in student performance when 

curriculum was consistent in service of ‘high quality goals’, this study saw a potential 

gap in knowledge that could be filled. Alignment studies are therefore important as South 

Africa is a developing country with disparities of educational access that learners 

continue to experience as a result of inequitable policies of the past. Not only are 

alignment studies important in addressing the concerns of the learners from poor and 

minority groups, but in the context of changed curriculum they may also give an 

indication of the reform efforts when the assessment results are published (Edwards, 

2010).   

2.5 THE PURPOSE OF THE STUDY 
 

It is in this context that the research questions for this study were not phrased to answer 

more general ‘laundry list’ matches or ‘skeletal-match ups’ between the different 

curriculum components. Instead, the purpose of this study was to critically examine to 

what extent the different components of the written, the tested and the taught 

mathematics curriculum were cognitively demanding and then understanding to what 

extent the components were organised around those cognitively demanding knowledge 

and skills in order to enhance teaching and learning of mathematics with a focus on 

schools serving communities which were previously disadvantaged. 

2.6 THEORETICAL FRAMEWORK- (Bernstein’s pedagogic device) 
 
In problematising this research, I highlighted how the apartheid system in South African 

education, used mathematics to discriminate and differentiate people. I then made 

reference to post-apartheid claims that curriculum reforms come as an attempt to address 

such issues of inequity and exclusion both educationally and socially. Common within 

these curricula is the emphasis on school systems targeting the development of students’ 

higher-order cognitive and process skills, especially in mathematics and science. Though 

couched in different phraseology, the consistent message that comes out from literature 

could be summarised in Apple’s (2003) words that the national curriculum is ‘not so 

much being implemented’ in schools as being ‘recreated’, not so much ‘reproduced’ as 
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‘produced’. This is so because curriculum policy is not a coherent policy as it represents 

conflicting arguments which become visible when analysing the discourses represented in 

the policy process i.e. from policy production through to its implementation. Westbury 

(2003), posits that the term “curriculum” must always be seen as symbolizing a loosely-

coupled system of ideologies, symbols, discourse, organisational forms, mandates, and 

subject and classroom practices. According to Bowe, Ball and Gold (1996) as cited in 

(Ketlhoiwe, 2005), practitioners do not confront policy texts as naïve readers, they come 

with history, with experience, with values and purposes of their own and they have vested 

interests in the meaning of policy. This suggests that policy writers therefore cannot 

control the meanings of their text.  Curriculum questions are situated on a macro, meso 

and micro levels and they represent contesting and conflicting perspectives which are 

important in order to understand the implementation process in relation to the intended 

curriculum. 

 

By raising the question from coherence in theory to coherence in practice, this study 

attempts to address these complexities of policy formation, its distribution and its 

implementation. The presumption is that policy is not simply received and implemented 

but rather that it is subjected to a complex process of interpretation and then recreation. 

This whole idea of tracing the curriculum process from formulation to implementation 

was meant to address three important issues (1) to what extend are the intended, assessed 

and enacted curricula speaking with the same voice in relation to high-order cognitive 

skills (2) – to what extent are the higher order cognitive skills likely to be achieved in 

practice and (3) are the goals of transformation, including redress, equity and democracy 

therefore being achieved in the previously disadvantaged schools? These questions 

resonate with Bernstein’s(2000a) notion of the pedagogic device,  which helps to 

illustrate the multiple and complex relations which intervene in the production and 

reproduction of educational goals in the various fields. In his pedagogic device Bernstein 

was concerned with the production, the distribution and evaluation of official knowledge 

and how this knowledge is related to structurally determined power relations. 

One of his conceptualisations of this pedagogic device was through what he identified as 

the three pillars of public education. Bernstein (1977) presented a structuralist view of 
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education when he posited that there are three pillars of public education, these being: 

curriculum, pedagogy and evaluation.  

 
Fig. 2.2 Bernstein’s Three Pillars of Education 

 

 
 

In explaining these three pillars of education, Bernstein (ibid) wrote; 

Formal educational knowledge can be considered through three message 
systems: curriculum, pedagogy and evaluation. Curriculum defines what counts 
as valid knowledge, pedagogy is what counts as valid  transmission of knowledge, 
and evaluation defines what counts as a valid realization of this knowledge on the 
part of the taught (p. 85)   

 

Bernstein’s concept of the pedagogic device provides a way of describing the internal 

construction of any pedagogic communication of knowledge through there hierarchical 

and interrelated sets of rules. These rules specify the transmission of suitable contents 

under time and context, and perform the significant function of monitoring the adequate 

realisation of the pedagogic discourse. The rules operate over three fields each of which 

have their own ‘rules of access, privilege and special interest’: 

• The field of production where the new knowledge discourses are generated 
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• The field of recontextualisation where discourses appropriated from the field of 

production are recontextualised, simplified and transformed into a new pedagogic 

discourse; and 

• The field of reproduction where recontextualised discourses are transformed a 

second time for general consumption, where pedagogy and curriculum are 

actually enacted in schools (Apple, 2003; Parker, 2004).  

In relation to my study, I am raising research question (1) in relation to the cognitive 

demand of the mathematical content as articulated in the written curriculum (field of 

production), research question (2) in relation to the cognitive demand of the mathematical 

content as articulated in the examination papers (field of recontextualisation) and 

research question (3) in relation to the cognitive demand of mathematical content as 

enabled/constrained during classroom interactions (field of reproduction). Bernstein 

(2000b) notes that when discourse moves from the original site of production to a new 

position a transformation happens. In that process there may well be contradictions, 

cleavages and dilemmas created between these fields and his pedagogic device 

theoretically models this distinction and the potential discursive gaps between these 

fields. In other words, Bernstein argues that disciplinary knowledge does not equal the 

educational knowledge of that discipline  

 

Explaining this recontextualising process his view was that it entails a principle of de-

location, which involves selective appropriation of discourse from the field of production, 

and a principle of relocation of that discourse as a legitimate discourse within the 

recontextualising field. He further suggests that in the processes of de-location and 

relocation, the original discourse can undergo ideological transformation according to the 

play of the specialised interests in the recontextualising field. Further explaining these 

ideas about the curriculum process, Neves (2004) says that the text of any curriculum 

represents the official pedagogic discourse (OPD) produced in the official 

recontextualising field (Department of Education) and is the result of multiple influences 

from state, symbolic control and economy together with international influences. The text 

is subjected to recontextualising processes in the pedagogic recontextualising field when 
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it is used, for example in the construction of tests, textbooks or in professional 

development programmes.  It is then further transformed through the pedagogic discourse 

of reproduction (PDR). Both the curriculum text (OPD), the tests, textbooks or 

professional development text (PDR) are recontextualised in the reproduction context, at 

the level of the teacher’s pedagogic practice in the classroom. The model illustrates that 

when pedagogic discourses produced at the level of the official and pedagogic 

recontextualising fields are incorporated and developed into pedagogy at the transmission 

level, they still undergo a recontextualising process, which is influenced by the specific 

context of each school, community context, and the pedagogic practices of the teacher. In 

this way the discourse reproduced in the schools and classrooms is influenced by the 

relationships (school community; teacher-learner), which characterise its specific 

transmission contexts (Neves, 2004).    

 

What is critical is that Bernstein was concerned with more than the description of the 

production and transmission of knowledge; he was concerned with the question of 

education and inequality that form the original basis of current curriculum reforms in 

many countries and applied his theory to understand the education process and its 

consequences for different groups. He was concerned not with the way in which such 

functioning leads to consensus but with how it forms the basis of privilege and 

domination. Thus Bernstein’s theory of education should be understood in terms of the 

concepts of classification, framing and evaluation, and their relationship to the structural 

aspects of his sociological project (Sadovnik, 2001). Whereas classification is concerned 

with the organization of knowledge into the curriculum, framing is related to the 

transmission of knowledge through pedagogic practices. Framing refers to the location of 

control over the rules of communication and, according to Bernstein if classification 

regulates the voice of a category then framing regulates the form of its legitimate 

message. Furthermore frame refers to the degree of control teacher and pupil posses over 

the selection, organization, pacing and timing of the knowledge transmitted and received 

in the pedagogical relationship. Therefore, strong framing refers to a limited degree of 

options between teacher and students, weak framing implies more freedom.    
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Reflecting on Bernstein’s ideas within the South African context, Parker (2004) 

highlighted that in each arena ideological struggle takes place as different agents and 

agencies attempt to dominate the distribution, recontextualisation and evaluation of 

pedagogic discourse at different levels of the system. The pedagogic device as outlined 

by Bernstein thus generates ‘a symbolic ruler of consciousness’, the question becomes 

thus; whose ruler, what consciousness? Drawing on this Parker (2004) asks, does the 

state control the pedagogic device through the policy they generate; or do the various 

recontextualisers do that?    

2.7 RESEARCH PARADIGM 

2.7.1 INTRODUCTION 
 

Paradigms act as perspectives providing a rationale for research and commit the 

researcher to particular methods of data collection, observation and interpretations. 

Research paradigms can be seen as descriptions of views of how knowledge is 

constructed, that is, of what counts as truth (McKenna, 2010).  Researchers generally 

posit that it is on the issues of “the nature of reality, the nature of knowledge, and the 

concept of truth” that paradigm designations differ. Because of these different views to 

the nature of knowledge many paradigms have been identified with other scholars 

arguing that research can either be qualitative or quantitative and nothing else (Guba & 

Lincoln, 1994). However, with quantitative and qualitative being positioned at the 

opposite ends of the continuum many other paradigms have emerged in between.  The 

names of research paradigms associated with each of these views to the nature of 

knowledge vary from textbook to textbook because of the “untidy reality” of research. 

However, Habermas (1972), posited that knowledge was constructed according to three 

fundamental human interests, namely the “technical” the “practical” and the 

“emancipatory” interests. The paradigms associated with each of those three human 

interests are: 

(a) positivism (technical) 

(b) interpretivism (practical) 

(c) critical theory  (emancipatory) 
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Because each discipline’s academic literacies have evolved out of  particular views of 

knowledge, it is useful to consider paradigms in terms of the possible approaches to 

views of knowledge construction that become evident in the various approaches to 

curriculum studies. Below are brief descriptions of the philosophical assumptions 

associated with each view to the nature of knowledge. 

2.7.2 THE POSITIVIST PARADIGM 
 

The technical paradigm, also known as rational curriculum planning (Knight, 2001), or 

positivist paradigm  (McKenna, 2010), assumes there is a logical way of proceeding, 

redolent of scientific method. This systematic approach begins with specifying goals, 

proceeding to objectives, thence to curriculum, instruction, assessment of learning and 

then evaluation. The positivist paradigm is often termed the “default paradigm” and its 

assumptions are frequently used as the criteria against which all research is assessed 

(McKenna, 2010). This paradigm identifies a reality that can be discovered, measured 

and manipulated. Knowledge is seen to be value-free and neutral and is attained by the 

objective observation of reality, which is out there. In this approach, the curriculum could 

be simplified to the following equation: objectives + inputs = outputs. Positivist studies in 

curriculum development are usually concerned with being able to predict and control the 

environment redolent of the Tyler model that has been discussed earlier. The immediate, 

measurable and methodological aspects of the curriculum are valued highly.  Although 

the critiques of the positivist paradigm have been influential, victory has often gone to it 

because it has a common sense quality that fits well with the managerialisms that have 

dominated the public sector (Knight, 2001), and because it plays well as a populist 

political position.    

 

A key objection to Tyler’s positivist approach, could be Knight’s (2001) critic of 

positivist approaches to curriculum processes as he argued;  
…there is nothing wrong with having goals and expressing them as open outcomes. 
Trouble comes when precise outcomes are linked with indeterminate processes, when they 
are expressed in generic terms as if achievements were independent of context; when 
attempts are made to deck them with false precision; and when it is assumed that anything 
important can be described by precise, generic outcomes (p. 379). 
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Critics of the positivist paradigm then suggested other alternatives to the view of 

knowledge, thereby giving birth to the emergence of many other paradigms. 

2.7.3 THE INTERPRETIVIST PARADIGM 
 

Interpretivism and constructivism are related approaches to research which emerged from 

critiques of positivism in the social sciences and in this study they are used 

interchangeably. They are paradigms which are usually used to discuss research 

associated with practical interests and the purpose of research in the interpretive 

paradigm is to understand a specific context as it is without manipulating the 

environment as would be the case in the positivist paradigm. The practical interest relates 

to the desire to take the “right action (practical action) within a particular environment” 

(Grundy, 1987, p. 13). The practical interest “generates knowledge in the form of 

interpretive understanding which can inform and guide practical judgement”(Carr & 

Kemmis1986, p. 135). In this paradigm reality is seen as a construction, which is relative 

to its context – as such this paradigm does not attempt to generalise or replicate.   It is 

context driven and curriculum design within this paradigm thus tries to understand 

teaching and learning in terms of the environment in which they take place. Knowledge, 

here, is seen to be a process of making meaning through interaction. The curriculum is 

not viewed as a linear equation but is rather seen as an ongoing activity shaped by 

interaction between the educator, the learner, classroom and the broader context. While 

positivism, as a research design seeks to control the environment, research in the 

interpretive paradigm seeks to extend human understanding thereof so that we can exist 

harmoniously within it.  

2.7.4 THE CRITICAL THEORY 
 

According to Clark (1999) critical theory is best described using Ortner’s (1993) phrase 

as an “issues-oriented ethnography” as it seeks to explore the ways in which societal 

issues and their contradictions are worked out in the context of complex “lived” lives that 

are situated with reference to class, race, place, gender, and other identifications. Critical 

or Realist Paradigms have emerged more recently and in the context of the debate about 
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validity of interpretive research methods and the need for appropriate criteria for 

evaluative qualitative research (Silverman2001). Critical realists assume that there are 

real world objects apart from the human knower i.e. there is an objective reality. Because 

critical theory brings a specific standpoint and theoretical orientation to its research 

questions, it cannot be said to be humanistic in the sense that usually defines qualitative 

research. While qualitative, interpretive research foregrounds the meanings research 

participants ascribe to their own actions, critical researchers seek analytically to place 

such actions in a wider context that is limited by economic, political, ideological forces, 

forces that might otherwise remain unacknowledged. Critical theorists thus require a 

greater measure of autonomy from the persons studied, or to use anthropological terms, a 

more ‘etic’ (outsider) than ‘emic’ (insider) position from which to analyze and construct 

arguments (Clark, 1999).    

 

Research that aspires to be critical seeks, as its purpose of inquiry, to confront injustices 

in society. Critical researchers assume that the knowledge developed in their research 

may serve as a first step towards addressing such injustices. As an approach with a 

definite normative dimension, the research aims for a transformative outcome, and thus is 

not interested in ‘knowledge for knowledge’s sake’ but to do so in order to effect change. 

Some critical researchers, in fact argue that a ‘neutral’ stance toward research can too 

easily play into the conservative agendas of those who would rather preserve than 

challenge the status quo (Ferguson & Golding, 1997).  With specific reference to 

education, critical theorists such as Carr and Kemmis (1986), suggest that the critical 

approach has a concern with the emancipatory function of teaching and learning. The 

curriculum would be scrutinized for ingrained power relations. The questions asked of 

the curriculum would be “whose interests are served by the curriculum, what curriculum 

would promote greater equity, emancipation and social justice, how is power distributed 

in the teaching learning process and how can it be more equitably distributed” (Grundy, 

1987, p. 122). According to McKenna (2010), in the case of a critical approach to an 

outcomes-based curriculum, great emphasis would be placed on determining who is 

being served by the outcomes selected and in whose interests the assessment criteria are 

designed. 
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In terms of their ontological and epistemological standpoints, realist perspectives are 

grounded in a theoretical belief that our knowledge of reality is imperfect and that we can 

only know reality from our perspectives of it.  Attaining truth or objectivity is impossible, 

but is a goal that all research should strive for as this is believed to lead to more rigorous 

research (Silverman, 2001). Because our ability to know this reality is imperfect, claims 

about this reality must be subject to wide and critical examination to achieve the best 

understanding of reality possible. Objectivity remains as an ideal that researchers attempt 

to attain through careful sampling and specific research techniques. It is also possible to 

evaluate the extent to which objectivity is attained and this is achievable through 

evaluation of arguments in light of a community of scholars and researchers of which the 

researcher is part. By posting a reality that can separate the subject and object, the realist 

paradigm provides an objective reality against which researchers can compare their 

claims and the extent to which they ascertain truth. This is sometimes called credibility or 

trustworthiness of an account. In contrast to some humanistic qualitative researchers who 

rely upon the claims of science to affirm their study’s validity, critical researchers 

distance themselves from methodologies that are imported from the natural sciences. 

Qualitative research that emerges from a critical perspective is often viewed as being at 

the meta-theoretical level, which may encompass and draw from other paradigms, 

offering an explanation of the workings of power that are often unexamined in logical 

positivist approaches (with their focus on causal relations between variables) and in 

humanistic approaches (with their focus on human explanations of actions or meanings) 

(Clark, 1999). Critical research often encounters from its audience less perceived need to 

argue for a study’s validity using terms imposed from logical positivism. The test of 

validity in critical research is directly related to its stated purpose of inquiry.  The 

research is therefore valid to the extent that the analysis provides insights into the systems 

of oppression and domination that limit human freedoms, and on a secondary level, in its 

usefulness in countering such systems.  

 

Realist approaches tend to rely on a combination of qualitative and quantitative methods 

and usually incorporate methods such as interviews, observations and analyzing texts to 
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elicit participants’ ways of knowing and seeing. Research which falls into the realist 

paradigm category is usually conducted in more natural settings and so more situational 

or contextual data is collected. Research designs associated with this paradigm provide 

opportunities for discovery (emergent knowledge) as opposed to manipulating the 

environment and proceeding by testing an a priori hypothesis. In terms of data analysis, 

critical researchers assume that their task is to expose the hidden assumptions that guide 

both research respondent statements and often, initial analyses of data. Researchers 

therefore bring a level of scrutiny to their task that includes rooting out the meanings of 

what is left unsaid as well as that which is stated. The research is verified as other 

members of the research community offer corroboration that has come from their own 

research experiences.       

2.7.5 THE RATIONALE FOR ADOPTING THE CRITICAL PARADIGM 
 

The broad use of paradigms in discussions of curriculum design is not in order to judge 

which paradigm is best but rather the question should be understood as a matter of values 

and ethical choice.  One has to choose which paradigms to work within and does so on 

the basis of his/her values (Luckett, 1995). When one adheres to a new paradigm one 

adopts a new way of observing, reflecting on and describing the world. For example 

Connole (1998), reminds researchers that beneath this jargon of (positivist, interpretivist 

and critical) paradigms, there is a familiarity to each of them: 
In the everyday world of less than strictly scientific enquiry it is possible to see all of these 
approaches at work. Most of us are inclined to empiricism when deciding which bank will 
lend us money most cheaply or where to insure our car. When we are trying to understand 
a friend who is recounting an upsetting incident we are much more likely to operate in an 
interpretive mode. The appearance of a politician on our television screen tends to trigger 
a shift into the critical approach as we pr(OBE) for distortions and hidden agendas. When 
questioning the tenacity of gender roles in the division of housework we may want to 
adopt a deconstructionist approach towards our own ambivalences. Thus none of these 
approaches is wholly unfamiliar (p. 21). 

 

Consistent with this view, a number of researchers find the quantitative-qualitative 

continuum idea attractive because rather than dividing paradigms into two separate 

groups (e.g. positivism is quantitative; interpretivism is qualitative) it asserts that there is 

no ‘right’ paradigm (Niglas, 2007; Onwuegbuzie, 2000). It was after considering the 

ontological and epistemological assumptions behind each paradigm together with these 
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guiding principles that a critical paradigm was adopted in this study. The overall aim of 

this study was to understand how curriculum alignment, as a change strategy, might 

contribute to improved learner performances in mathematics in the previously 

disadvantaged schools of South Africa. Through his pedagogic discourse Bernstein 

presented a complex analysis of the recontextualisation of knowledge through the 

pedagogic device, arguing that schools reproduce what they are ideologically committed 

to eractidicating i.e social class advantages in schooling and society. This study is 

concerned with the production,  distribution and reproduction of official mathematical 

knowledge and how this knowledge is related to structurally determined power relations.    

According to Stenhouse (1975), a curriculum is an attempt to communicate the essential 

principles and features of an educational proposal in such a form that it is open to critical 

scrutiny and capable of effective translation into practice. He suggests that a curriculum 

is rather like a recipe in cookery. It can be criticised on nutritional or gatronomic grounds 

– does it nourish the students and does it taste good- and it can be criticised on the 

grounds of practicality.  

 

Curriculum documents and programs are so constructed not just because of what is 

considered to be the best for the learner but because curriculum is social and political 

process. Critical theory inquires into the taken-for-grantedness of situations, interactions 

and experiences, and exposes both enabling and constraining issues (Thompson, 2003). 

In education critical theory also known as critical pedagogy can provide a theoretical and 

practical lens through which to understand and anlyse educational change processes and 

to see important aspects of them that are overlooked in more technical-rational 

explanations.  Critical pedagogy studies the role which schools play in maintaining the 

social stratification of society, and the possibilities for social change through the schools. 

“Critical pedagogy is both a way of thinking about and negotiating through praxis the 

relationship among classroom teaching, the production of knowledge, the larger 

institutional structures of the school, and the social and material relations of the wider 

community, society, and nation state.” 

Common questions for the critical educator include: 

(1) What knowledge is most worth? 
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(2) Whose knowledge is most important? 

(3) What knowledge should/should not be taught? 

(4) How does the structure of the school contribute to the social stratification of our 

society? 

(5) What is the relationship between knowledge and power? 

(6) What does this imply for our children? 

(7) What is the purpose of schooling – is it to ensure democracy or to maintain the 

status quo and support big business? 

(8) How can teachers enable students to become critical thinkers who will promote 

true democracy and freedom? 

Justifying crtical pedagogy Shor, argues that once we accept education’s role as 

challenging inequality and dominant myths rather than as socialising students into the 

status quo, we have a foundation needed to invent practical methods. Critical pedagogy, 

then is defined by what it does—as a pedagogy which embraces a raising of the 

consciousness, a critique of society, as valuing students’ voices, as honouring students’ 

needs, values and individuality, as a hopeful, active pedagogy which enables students to 

become truly participatory members of society who not only belong to the society but 

who can and do create and re-create that society, continually increasing freedom. 

Marcuse states that liberation “presupposes a knowledge and sensibility which the 

established order, through its class system of education, blocks for the majority of the 

people. Freire states that there is no such thing as a neutral educational process.” 

Education either functions as an instrument that is used to facilitate the integration of the 

younger generation in to the logic of the present system and bring about conformity to it, 

or it becomes ‘the practice of freedom’ the change or means by which men and women 

deal critically and creatively with reality and discover how to participate in the 

transformation of the world.” 
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Consistent with the critical paradigm this research’s aim was not only to understand the 

structural shaping of curriculum alignment but to do so in order to effect change. 

Although the research started with a document analysis of the NCSM, the major part of 

the study was carried out in schools from previously disadvantaged communities. It was 

motivated by a claim in the NCSM that suggests that curriculum reforms in mathematics 

and science in South Africa, come as an attempt to address issues of inequity and 

exclusion both educational and social. According to Le Grange (2007), the introduction 

of (OBE) in South Africa was intended to redress the legacy of apartheid by promoting 

the development of skills throughout the school-leaving population in order to prepare 

South Africa’s workforce for participation in an increasingly competitive global 

economy.  
The new curriculum is designed to embody the values, knowledge and skills envisaged in 
the constitution of the new democratic South Africa. It provides learners with the 
opportunity to perform at the maximum level of their potential and focuses on high levels 
of knowledge and skills, while promoting positive values and attitudes DoE (2008a, p. 2).  

 

Contrary to this claim, Edwards (2010), shows how the 2008 pass rates of 62,5% 

declined in 2009 to a 60.6%. The  Department of Basic Education (2010), did a further 

disaggregation of the 2009 results and showed how they correlated very strongly with the 

poverty levels with the learners from the previously disadvantaged communities hardly 

making it through the system. International participation on TIMSS and a further 

disaggregation of the scores done by the Human Sciences Research Council had earlier 

revealed that performance of learners correlated strongly with the racial groupings and 

ultimately those groups of learners who were previously marginalized during the 

apartheid era continue to be outperformed by the previously advantaged learners (Long, 

2007a).   

 

Consistent with the critical paradigms, the concern of this research related to 

understanding the nature and degree of access to higher order cognitive knowledge and 

skills across a sample of historically disadvantaged schools.  Empirical evidence has 

shown that in our global economy and democratic society, limiting mathematics 

education to selected  students, whether deliberately or unintentionally, was unacceptable 

(Zurawsky, 2006), because college and workforce require the same levels of readiness in 
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mathematics in all students irregardless of their race, gender or any other social 

classification. The view was that all students require a greater level of “cognitive 

demand” in mathematics. It is in this context that, after noticing the “rise” in pass rates 

against public opinion that standards were falling in South Africa, Umalusi (2005), raised 

the question: ‘Have our expectations as expressed by the level of cognitive demand 

declined?’ According to Muller (2004), if this did not become the fundamental question 

that we attempted to answer, then it should not be surprising that ‘we’ appear to be 

making little headway with increasing the attainment levels of candidates in subjects 

where specialised skills are required like Mathematics.    

 

This research hoped to contribute to the change process by attempting to answer this 

question. The first research question aimed at examining the level of cognitive demand in 

the NCSM using data from the lineage of curriculum texts. Because the critical paradigm 

aims at objective reality, the research employed the use of cognitive demand tools 

(quantitative)  to judge the levels of cognitive demand and alignment in the mathematics 

curriculum documents borrowing from Porter’s (2002), alignment studies cited earlier. 

To ensure credibility or trustworthiness of this categorization, the coding was done 

following some rubrics in the form of cognitive demand tables. The coding followed 

debriefing with experts on the use of these cognitive demand tools - proponents of which 

define, as well as exemplify, the content that would fit into each of the categories of the 

cognitive demand tables. In objective reality there is a presumption that any other 

interested person using the same tools should obtain the same data.  

 

The second research question followed up from the analysis of the mathematics content 

in the written documents and examined the levels of cognitive demand in and alignment 

with the 2008 exemplar papers. Alignment in literature has been defined as the degree to 

which curriculum components are in agreement and serve in conjunction with one 

another to guide the system towards students learning what they are expected to know 

and do (Webb, 2002). With reference to the alignment checks in the South African 

context, many reports point to a tick list approach to ascertaining whether all assessment 

standards had been covered, rather than considering the quality of the assessment 
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procedures and whether the appropriate content had been covered.  Yet the emphasis 

should be on the quality of the relationship between the two (Edwards, 2010), and in this 

study this quality criterion was the motivating factor for examining the cognitive demand 

levels of the exemplar paper.  

 

Because the study aimed at objective reality it employed the services of an examiner and 

a moderator of mathematics papers to interpret and contextualize the cognitive demand 

tools. The team of experts worked with the content in both the examination papers and 

the assessment standards to exemplify what would count as a task requiring a learner to 

memorize or apply routine procedures or such other knowledge level. This again was 

consistent with the assumption in the critical paradigm that objective reality could be 

achievable through evaluation by a community of scholars (Silverman, 2001). 

Mathematical tools were also used to measure the levels of agreement amongst the 

researcher and the experts i.e. an inter-rater reliability was calculated. After the coding 

was complete, mathematical tools were employed again to calculate the level of 

alignment (alignment index) between the content in the assessment standards with the 

content of the examination papers. Details of these strategies can be found in the 

methodology chapter but suffice it to say all these were measures aimed at getting as 

close as possible to objective reality thereby improving the credibility and trustworthiness 

of the study.  

  

Consistent with the view that all students require a greater level of “cognitive demand” in 

mathematics, the third research question was concerned with how teachers created 

opportunities for learners to learn the higher order cognitive skills and processes in 

mathematics. Similar quantitative tools were also employed in the coding of video data. 

To ensure credibility and trustworthiness of the coding tools they were presented to other 

scholars during PhD seminars and professional conferences such as ICME, SAARMSTE 

and AMESA so that they were critiqued and sharpened. These are examples of external 

audits suggested as strategies associated with the critical paradigms. After the 

mathematical calculation of the different numerical indicators of alignment, more 

qualitative techniques were then employed in describing other non numerical indicators 
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e.g. sequencing of content in the curriculum documents as well as in the classroom 

interactions. The research employed a multiple case study as an approach and document 

analysis and observation as methodologies for collecting data from the documents and the 

classrooms respectively. All these are methodological processes that are associated with 

the critical paradigm.   

2.8 THE CURRICULUM AS A SYSTEM THAT MUST COHERE 
 

There are four main views about curriculum alignment, which are common in literature 

i.e. (a) incoherence is inevitable (b) the subsystems that comprise the whole must work 

well both independently and together for the system to function as intended (c) 

curriculum coherence should serve as an accountability tool, and (d) curriculum 

coherence should guide effective teaching and learning.  Each of these views reflects a 

different philosophy and has a different implication on implementation as discussed 

below.  

 

The first view to curriculum coherence is that incoherence is inevitable after all. Scholars 

who hold this view posit that the rather confused and contradictory nature of messages in 

policy documents is deliberate and inevitable because standards act as a ‘slogan system’ 

under which educators, the public, and funding agencies of varying political and 

ideological persuasions can fit under the umbrella (Apple, 1992a). Apple posits that if 

they are to be effective, ‘slogan systems’ must have a ‘penumbra of vagueness’ so that 

each of these groups, groups often at odds with each other, can believe that “there is 

something in it for us”.  The implication thereof for implementation was that curriculum 

coherence was simply an inevitable consequence of multiple and often competing 

interests.  

 

However Apple, (1992a), was quick to point out that successful ‘slogan systems’ cannot 

be too vague, they need to be specific enough to offer something to practitioners. If they 

do not, the result will be a ‘splintered vision’ analogous to the concept of “diffusion” in 

science. In such an environment teachers face a configuration of demands that often 

contradict one another. This second view follows from a systems perspective that posit 



 58 

that education is a system that is composed of subsystems, or parts, that each serve their 

own purposes but also interact with other parts in ways that help the larger system to 

function (Wilson & Bertenthal, 2005). Because the system and its subsystems are 

organised around a specific goal, the subsystems that comprise the whole must work well 

both independently and together for the system to function as intended. “The very nature 

of organisations argues that we succeed when all parties are rowing in the same 

direction” (Schmoker & Marzano, 2000, p. 21). Viewed in this context of a system and 

its subsystems, and consistent with the three primary components of a written curriculum, 

tested curriculum and taught curriculum some scholars posit that a system naturally 

functions effectively if those components are all aligned with each other. Consistent with 

this view, performance-based standards are established in such a way that they are 

attached to powerful stakes such as progress through and graduation from school, 

admission to higher education and access to employment opportunities and training. 

Consequently performance-based standards become self-regulatory systems in that the 

powerful stakes promote the achievement of desired outcomes without having to resort to 

coercion, which was the norm in previous reform periods (Cohen & Hill, 1998). The 

result is that curriculum coherence is taken as a function of management (Finley, 2000) 

with no specific strategy being employed to check that the subsystems are indeed 

working together for the common good.  

 

The third and perhaps the most common view to curriculum coherence is that it should 

serve as an accountability tool (Finley, 2000). Because education is heavily funded by the 

state from tax-payers’ money, policy makers have a responsibility to account for such 

funds and standardized test results have always been used as evidence that the tax-payers’ 

money was used effectively and efficiently. Where coherence has been used in this sense, 

educational assessment has been driven largely by accountability concerns rather than for 

educational priorities. This view is usually popular with politicians since it gives them the 

political mileage that they badly need (Finley, 2000). It is common in such cases that 

tests are made easy, tests results only reflect norm referenced grades and not criterion 

referenced grades, test results are usually scaled upwards to conceal actual performance 

and examination results are announced focusing on quantity or ‘bean counting’ rather 
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than quality.  In the absence of expressly articulated educational principles to guide 

assessment, political, technical and practical criteria then become the de facto ruling 

principles (National Research Council, 1993).  

 

The last view to curriculum coherence is that it should guide effective teaching and 

learning. One strategy of the last decade was the push for coherence in educational policy 

with the expectation that aligned policy would result in better teaching and learning 

(Herman & Webb, 2007). Rather than viewing coherence as a management or an 

accountability tool, the belief in this view was that curriculum alignment should be a 

normal part of the process of planning teaching/learning activities. The argument was that 

if standards are seen as policy instruments used to articulate the vision, or framework, of 

a subject-matter discipline to its educational system, then it was also important that those 

standards reflect a coherent framework. In this view coherent policy means giving a sense 

of direction to the educational system by specifying policy purposes, it means 

establishing high-quality goals about what students should know and be able to do and 

then coordinating policies that link the goals. The concern becomes quality rather than 

quantity. Assessment tools are then designed in such a way that they measure deep 

understanding of concepts and processes. The premise is that it is only when assessments 

are aligned with both standards and classroom instruction that assessment results can 

provide sound information about how well teachers are doing in helping students to attain 

the standards. This view of alignment represents a promising framework for analyzing 

the extent to which components of the educational system are coordinated, and its 

measurement has the potential to provide empirical evidence of the potential of classroom 

instruction to influence student achievement (Roach, et al., 2008). Because this study 

aimed at finding ways of improving learner performances in the context of new reform, it 

took this view of curriculum coherence as a tool for improving instruction and student 

learning. Drawing from the literature, the next sections discuss some of the different 

forms of coherence that a curriculum can take.   
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2.8.1 ALIGNMENT/COHERENCE DEFINED 
 

According to Stenlund (2007), the notion of curriculum alignment has recently become 

one of the most important principles of education reform. Curriculum alignment is 

typically understood as a systems approach to the development and evaluation of a 

curriculum.  A systems approach has three basic components: inputs, process and output. 

Similarly Broski (1976), lists three steps in the development of a curriculum: define, 

develop and evaluate leading to the three major elements of the triad i.e. content, 

instruction and assessment. Alignment in this sense means that the three functions are 

directed toward the same ends and reinforce each other rather than working at cross-

purposes (Pellegrino, 2006) and if any of the functions is not well synchronized with the 

others, it will disrupt the balance and skew the educational process. Alignment was being 

used to characterize the agreement or match among a set of documents or multiple 

components of an educational system. This view of curriculum alignment is also echoed 

in this definition: 
A good teaching system aligns teaching method and assessment to the learning activities 
stated in the objectives, so that all aspects of this system are in accord in supporting 
appropriate student learning. This system of constructive alignment is based on the twin 
principle of constructivism in teaching and alignment in learning (Biggs1999, p. 11). 

 

Today, alignment of the components of a curriculum has become more complex and one 

of the models used to conceptualize this complexity is a spider web configuration as 

shown in figure 2.2, illustrating not only their interconnectedness, but also their 

vulnerability (Webb, 2005). 
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Fig. 2.3 SPIDER WEB RELATIONSHIPS (Ottenvanger, van de Akker, & de Feiter, 2007) 

                     
 

Although emphasis on specific components may vary from time to time, at some point, 

alignment of all the components has to occur to create and maintain coherence. The 

spider web illustrates a familiar observation and seems a very appropriate metaphor for 

understanding curriculum development and analysis. It points to the complexity of efforts 

to improve the curriculum in a balanced, consistent and coherent manner in that pulling at 

one or more of the strings of the web will cause the rest of the web to shift (Ottenvanger, 

et al., 2007). However, if the other strings do not move along adequately, the tension in 

the web may cause it to break. This is similar to what would happen with the components 

of the curriculum if they were not aligned hence point to the need to ensure coherence 

within the components. 

 

While curriculum alignment has been modelled in many different ways, the common 

conceptualisation has been the three components model comprising the written, the 

taught and the tested curriculum (English, 1992).  
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Fig. 2.4 CURRICULUM ALIGNMENT (Anderson, 2002)  
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Anderson (2002), provided this alignment view in the form of a triangle which shows the 

relationships between the three primary components of a curriculum i.e. (Side A) 

objectives or standards, (Side B) instructional activities and supporting materials, and 

(Side C) assessments. The sides of the triangle represent the relationships between pairs 

of components: (Side A) objectives with assessment, (Side B) objectives with 

instructional activities and materials, and (Side C) assessments with instructional 

activities and materials.  According to Anderson (2002), curriculum alignment is 

represented by the entire triangle and so requires a strong link between objectives and 

assessment, between objectives and instructional activities, and between assessments and 

instructional activities.   

 

Current views on curriculum alignment however find this definition of coherence 

insufficient because of its reference to a general curriculum framework which could 

imply mere alignment of a ‘laundry list’ of content without consideration of other 

important aspects of the specific subject area (Schmidt, Wang & McKnight, 2005; 

Wilson & Bertenthal, 2005). In fact this ‘laundry list’ view of alignment is cited by 

Fullan (1996), as one of the possible reasons why the systemic reform approach had 

limited impact on school practice.  Similarly, Squires (2009), suggests that alignment is 
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becoming more precise such that the meaning  has been further differentiated so that a 

match is not just a match of one set of content to another but also to other characteristics, 

such as balance, range and level of difficulty. In a subject like mathematics for example, 

lack of coherence might manifest itself in the introduction of a topic before the 

prerequisite knowledge that makes a reasonable understanding of the topic possible 

(sequencing of topics) – suggesting that besides the cursory correspondence between 

content in the different components of the curriculum, coherence or alignment should 

also take into consideration logical sequencing of that content. Lack of coherence might 

also manifest itself in the introduction of content (sequencing of content) within the same 

topic before the prior content knowledge that makes a reasonable understanding of the 

subject matter possible. This seems to suggest that curriculum coherence was more 

complex than just the two dimensional linear relationships evident in both the spider web 

and the triangular configurations above.  
 
Squires’ (2009), model provided a three dimensional alignment matrix that he used to 

organise literature review of the various ways that researchers had studied curriculum 

alignment. In this model the written curriculum comprises the textbooks, the curriculum 

(subject statement) and the assessment standards. The taught curriculum comprises the 

actual instructions and the lesson plans. The tested curriculum comprises the standardized 

tests, the curriculum embedded tests and students’ assignments.   
Fig. 2.5  ALIGNMENT RELATIONSHIPS by (Squires 2009) 
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This alignment matrix does not only reaffirm the complexity of curriculum alignment that 

Webb’s spider web depicted but it presents that complexity in a different form.  It can be 

argued that a three dimensional model depicted in Squires’ alignment matrix does not 

only have the potential to capture the horizontal alignment between different components 

of the curriculum but it also has the potential to allow analysis of the other forms of 

alignment like the vertical alignment to happen.  Squires did not however use this model 

to study curriculum alignment but the matrix was a product of superimposing different 

research studies that have focused on different aspects of curriculum alignment.  

According to Squires (2009), any of these categories can be aligned to each other 

depending on the objectives of the study, highlighting not only the complexity of the 

concept of curriculum alignment but also the possibilities of handling such complexity. 

Consistent with the three research questions of this study, a path was also carved within 

this maze and that path is highlighted by the bold lines connecting curriculum/subject 

statement and standards, (written curriculum) standardized assessment (tested 

curriculum) and instruction (taught curriculum). This also followed Anderson’s (2002), 

postulation that these were the three primary components of a curriculum. Note that there 

is also a bold line underneath the white line joining the written/content standards and the 

standardized tests which does not look evident in the above diagram but which comes out 

clearly in the model for this study in chapter 3.    

2.8.2 WORKING DEFINITION OF CURRICULUM ALIGNMENT 
 

While the concept of coherence has been used in different ways as discussed above, 

Wilson and Bertenthal (2005), provide a definition that appears to capture the current 

view that alignment is not just a match of one set of content to another but also to other 

characteristics such as logical and hierarchical sequencing. They start off with the general 

view that is shared by many researchers, that a system, such as a curriculum, is 

considered coherent if the subject statement or objectives, instruction and assessment are 

all aligned with each other. Wilson and Bertenthal (op cit) then go deeper into this 

relationship by using such terms as ‘horizontal coherence’, ‘vertical coherence’ and 

‘developmental coherence’ to distinguish aspects of alignment within a curriculum. They 
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contend that a successful system of standards based education is horizontally coherent if 

the curriculum, instruction and assessment are all aligned with the standards, target the 

same goals for learning, and work together to support student developing mathematical 

proficiency. The system is developmentally coherent if it takes into account what is 

known about how students’ mathematical understanding develops over time and the 

mathematical content knowledge, abilities and understanding that are needed for learning 

to progress at each stage of the process. There are two common views to vertical 

alignment both of which contributed to the framing of this study. The first view shared by 

Wilson and Bertenthal (op cit), is that an educational system is vertically coherent if the 

curriculum instruments accorded with school practice i.e. there is shared understanding 

(policy-makers, parents, teachers, students etc.) of the goals for mathematics education 

that underlie the standards, as well as consensus about the purposes and uses of the 

standards. The second view is that vertical alignment examines whether standards at one 

grade level are built upon standards at the previous grade levels (Squires, 2009).  

2.8.3 WORKING DEFINITION OF HORIZONTAL COHERENCE   
 

An education system is generally composed of many interconnected, mutually 

reinforcing components, including curriculum, assessment, teacher professional 

development and research and evaluation (Howard, 2007), each of which influences and 

is influenced by the other components. Horizontal coherence has generally been viewed 

as the degree to which the pieces of a curriculum work together, provide support for 

teaching and learning, and convey consistent messages to learners (Case, 2005). 

Horizontal coherence refers to the situation in which components such as curriculum, 

instruction, standards, and assessments are all grounded in a common model of cognition, 

learning and representation.  

 

This type of coherence takes various forms some of which point to internal consistency 

(links between the different documents that constitute the NCSM) and some which are 

indicators of external consistency (e.g. examination papers). Starting with those that point 

to internal consistency, one such type is what Webb (2005), referred to as sequential 
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development. According to Squires (2009), sequential development means developing 

documents in sequence so that the first document (e.g. state standards) is aligned and 

used as reference for the second document (e.g. curriculum frameworks or assessments). 

A similar approach of ensuring this horizontal alignment is one which creates common 

descriptions of a curriculum, then analyses the alignment between the common 

descriptions and other parts of the educational system, such as standards, assessments, 

and instructional plans (La Marca, 2001; Porter, et al., 2007). According to Squires (op 

cit) none of these approaches had specific criteria for judging alignment; in many cases it 

was just alignment based strictly on the content of the standards and that of the 

assessment. 

 

Some of the attributes that could also be analysed in this form of coherence include 

categorical coherence i.e. the same category of content appears both in the standards and 

in the other documents. For example, if learner-centred philosophy is at the heart of the 

curriculum , it should be clear how this approach is reflected in other components of the 

curriculum such as instructional materials and assessments; similarly if  “problem 

solving” appeared as a major heading in the standards, one would expect “problem 

solving” to be a major heading and infused in the other specifications (Anderson, 2002). 

Balance of representation is yet another attribute that could be analysed under this type of 

horizontal coherence. Balance of representation provides an index of the degree to which one 

curriculum objective is given more emphasis on the assessment than another. This is premised on 

the view that all the standards need to be consistently represented in the different 

documents. Another view of internal consistency that has been identified by researchers 

has to do with the order in which content is arranged in a learning programme. Following 

this view of curriculum coherence, Schmidt et al. (2005, p. 529) say,  

We define content standards, in the aggregate to be coherent if they are articulated over 
time as a sequence of topics and performances consistent with the logical and, if 
appropriate, hierarchical nature of the disciplinary content from which the subject-matter 
derives. That is, what students are taught should reflect not only the topics that fall within 
a certain academic discipline, but also the key ideas that determine how knowledge is 
organised and generated within that discipline. This implies that “to be coherent” a set of 
content standards must evolve from particulars to deeper structures inherent in the 
discipline. These deeper structures then serve as a means for connecting the particulars (p. 
528)      
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The general view that researchers hold is that if content standards are not based on the 

progressive structure that is reflective of the discipline then they are likely to appear 

arbitrary and will look more like a ‘laundry list’ of topics. A subtler aspect in which this 

lack of coherence might manifest itself is in the introduction of a topic in the written 

curriculum before the pre-requisite knowledge that makes a reasonable understanding of 

that topic possible. Elsewhere this view is treated as developmental coherence (Wilson 

and Bertenthal, 2005) but in this study it is being taken in this context as an aspect of 

internal consistency.  

 

With specific reference to the second view of horizontal coherence the concern is with 

taking an external audit of the curriculum components against the many other 

interconnected, mutually reinforcing components, including textbooks, assessment, teacher 

professional development and research and evaluation. Because of the impact assessment has 

on teaching and learning the concern with this relationship has mainly been with the 

extent to which assessment measures the important curricular objectives. From this 

perspective, horizontal curriculum alignment has been defined as the extent of agreement 

between academic standards documents and the assessment(s) used to measure student 

achievement of those standards (Bhola, Impara, & Buckendahl, 2003). Roach, Niebling, 

& Kurz (2008), view this particular type of alignment as the extent to which curricular 

expectations and assessments are in agreement and work together to provide guidance for 

educators’ efforts to facilitate students’ progress toward desired academic outcomes. 

Webb (2002), viewed this alignment as the degree to which expectations and assessment 

are in agreement and serve in conjunction with one another.  

 

Consistent with the research questions and cognisant of the fact that within the time 

frame of a PhD study it might not be possible to analyse in more detail the many 

interconnected, mutually reinforcing components of an education system, this study also 

broadly adopted this rather limited but more powerful view of horizontal coherence i.e. 

the extent to which assessments are aligned with standards/objectives in the NCSM. This 

followed empirical evidence that also suggests that most approaches have focused only 
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on measuring the extent to which assessments are aligned with standards/objectives 

(Anderson, 2005; Bellis, 1999; Bhola, et al., 2003). While the major focus was on the 

external links between the taught curriculum and the tested curriculum the discussions 

however touched though slightly, on internal consistency as discussed above especially 

within the curriculum documents.  

2.8.4 RATIONALE FOR HORIZONTAL COHERENCE   
 

From a systems perspective education is viewed as a system that is composed of 

subsystems, or parts that help the larger system to function. The subsystems that 

comprise the whole must work well both independently and together for the whole to 

function as intended. The very nature of organisations argues that we succeed when all 

parties are rowing in the same direction. 

 

Although horizontal coherence has been defined in different ways as discussed earlier, in 

this study the focus is on the links between the written curriculum and the tested 

curriculum. There are two basic reasons why this type of coherence has attracted so much 

attention from researchers, including this particular study. Firstly from a rational 

curriculum planning perspective, in stating the objectives of a curriculum a claim is made 

about what the learners will do and this must be validated through assessment lest those 

claims remain rhetoric. According to Knight (1995, p. 13):   
In writing a mission statement, a programme `plan or a validation document, skilled 
drafting allows us to lay claims to a wonderland of concepts, skills, competences and the 
like, of which our students are to be made citizens. However, for those who want to know 
about the quality of a course, programme or institution, the test is whether these goals are 
assessed and how well they are assessed. In a sense, the way students are assessed is the 
‘DNA evidence’ of their learning experiences. …if there is no evidence of appropriate 
assessment, then the DNA evidence belies the claim. At best, the absence of assessment 
suggests that our intentions have not been completely realised. At worst, it says that our 
intentions were rhetoric, for the benefit of auditors, not students    

 

Another justification for this focus is that there is not only the perception that student 

learning is closely linked to assessment, but also strong evidence to show that students 

indeed learn strategically in order to maximize their chances of obtaining good grades. 

Matching the objectives of assessment to the objectives of the subject or course, is part of 

the alignment suggested by Biggs (1996), to enhance student learning. Research has 
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demonstrated how assessments exert direct and indirect control over curriculum and 

teaching practice at different levels of the school system. According to Biggs (2003), 

“backwash” happens when the assessment determines what and how students learn more 

than the curriculum does. Brown & Knight (1994) share a similar view as they also claim 

that assessment shapes the curriculum as it defines what students regard as important and 

how they spend their time. In other words students will learn for the assessment and 

according to Biggs (2003), “They would be foolish if they didn’t” (p. 141). Viewed in 

this way tests therefore act as ‘traps’ into which both teachers and students find it 

difficult to escape. So what is assessed determines what is taught and what is learnt. 

Brown and Knight (1994), capture all this in their claim that: 
… Assessment defines what students regard as important, how they spend their time, and 
how they come to see themselves as students and then as graduates. It follows, then that it 
is not the curriculum which shapes assessment, but assessment which shapes the 
curriculum …..(p. 12).  

 

While the logic on the need to link standards with assessments looks simple, its 

implications are quite profound (National Research Council, 1993). The metaphor ‘You 

can’t fatten a hog by weighing it’ has been used several times to point to some of the 

dilemmas of educational assessment. Experience reveals enormous gaps between current 

assessment practices and the new goals for mathematics education. There is general 

consensus that for education to be effective, curriculum, instruction and assessment must 

harmonize for their mutual support. However, the path from general consensus to specific 

assessment is far from clear.  

 

A number of weaknesses, which I will in more detail explain shortly, have been identified 

in the current assessment practices. One of the criticisms has been that educational 

assessment has been driven largely by practical and technical concerns rather than 

educational priorities (National Research Council, 1993). For too long a narrow focus on 

efficiency and reliability has meant that examinations required students to perform a large 

number of small tasks rather than engage in complex problem solving or such other 

important mathematical skill. The concern for test developers have been more about 

coverage where tests are designed by following a check-off lists of mathematical topics. 

In the absence of expressly articulated educational principles to guide assessment, 
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technical and practical criteria have become de facto ruling principles (National Research 

Council, 1993). Current reforms recognise that students must learn to reason, create 

models, prove theorems, and argue points of view but current assessment practices do not 

support this vision and often work against it.   

 

Assessment can be the engine that propels reform forward, but only if education rather 

than measurement is the driving force. Pointing again to the need for identifying the 

important concepts, researchers argue that important mathematics must shape and define 

the content of assessment. Rather than forcing mathematics to fit assessment, assessment 

must be tailored to the mathematics that is important to learn. The goal ought to be 

assessment tasks that elicit student work on the meaning, process, and uses of 

mathematics. To be effective as part of the educational process, assessment should be 

seen as an integral part of learning and teaching rather than as the culmination of the 

process. However, there is an observation that current assessment practices provide little 

information about whether students have developed the skills and concepts they need to 

live and work in the 21st century 

 

Given this situation, ensuring that assessment measures the intended learning processes 

and outcomes seems appropriate in order to encourage students to learn what the 

curriculum would like them to learn (Santhanam, 2002). So, in a way assessment should 

address precisely those performances that are valued and conversely the performance 

valued in an assessment system should provide a model of the goals of the curriculum. 

Due to this relationship between standards/objectives and assessment and the power or 

control that assessment exerts on the curriculum system, reform researchers argue that: 

“If we do not model in our assessment all the learning outcomes that we value, then our 

curriculum will degenerate to reflect our impoverished assessment”(Clarke, 1996, p. 

329). Yu, Kennedy, Fok, & Chan (2006), confirm the need for this link as they warn that 

curriculum change will not be effective without making corresponding changes in 

assessment and to them the quickest way to change student learning is to change the 

assessment system. 
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2.8.5 WORKING DEFINITION OF VERTICAL COHERENCE   
 

What emerges from the literature is that vertical alignment can occur at a macro, meso or 

micro level of an education system. At a macro level vertical alignment implies a 

connection between policies and initiatives at various levels of governance (Case, 2005). 

The view is that national policies should guide and be coordinated with those at the state, 

provincial, and district levels so that resources allocated at the national level are 

appropriately applied at the state and local levels to have maximum impact on schools 

and classrooms. From this macro perspective, vertical alignment refers to the 

coordination of policies up and down structural layers; it connects and aligns policies and 

programs through the hierarchical levels of the system (Howard, 2007). According to 

Case (2005), standards and assessment represent only one part of an education system the 

other parts include curricula, textbook content, the opinions of stakeholders, classroom 

instruction and student achievement outcomes. An education system is vertically 

coherent if there is shared understanding (policy-makers, parents, teachers, students etc.) 

of the goals for mathematics education that underlie the standards, as well as consensus 

about the purposes and uses of the standards (Wilson & Bertenthal, 2005). In terms of 

how the three research questions for this study were formulated, it could be argued that 

the whole study was focusing on vertical coherence at a macro level i.e. the manner in 

which the written or intended curriculum is translated into classroom practice.   

 

At a meso level, if one views the progression of a learner from one grade up the ladder to 

the next grade as a process requiring coordination, then vertical alignment articulates the 

logical and consistent order for teaching the standards-based content in a subject area 

from one grade level or course to the next (Case & Zucker, 2005). According to Squires 

(2009), four questions guide studies into vertical alignment at this level i.e. (a) What level 

of concurrence is there between objectives for the two successive grades? (b) To what 

extent do comparable objectives increase in depth from one grade to the next? (c) To 

what extent does the range of content increase from one grade to the next? (d) How does 

the balance of representation change from one grade to the next?   
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At a micro level one can also argue that in a subject such as mathematics where content is 

mostly hierarchical, the same questions that were raised by Squires (2009), can be raised 

about progression from one topic or content to the other. Consistent with that view, I 

argue that vertical alignment can also articulate the logical and consistent order for 

teaching the standards-based content in a subject area from one topic/content to another. 

In the document analysis it is this vertical alignment at grade and topic level that was 

found more useful in this study.      

2.8.6 WORKING DEFINITION OF DEVELOPMENTAL COHERENCE   
 

Developmental coherence emerged recently as deficiencies were noticed in the traditional 

view which according to Wilson (2009), starts with a limited idea of the way in which 

curriculum might inform instruction. The concern was that standards should take into 

consideration the patterns of development of students as they progress from novices to 

experts in a particular discipline.  With specific reference to mathematics, Wilson and 

Bertenthal  (2005), posit that a system of education is developmentally coherent if it takes 

into account what is known about how students’ mathematical understanding develops 

over time and the mathematical content knowledge, abilities and understanding that are 

needed for learning to progress at each stage of the process. This view suggests that 

developmental coherence could be viewed as (a) ‘a picture of the path students typically 

follow as they learn, (b) a description of the skills, understandings and knowledge in the 

sequence in which they typically develop (Masters & Forster, 1996)’ or (c) ‘descriptions 

of the successively more sophisticated ways of thinking about an idea that follow one 

another as students learn’. These views suggest that developmental coherence should 

exist both in the curriculum documents in terms of the way mathematical content is 

sequenced as well as in classroom practices in terms of how that mathematics content 

could best be taught. This again confirms the complexity of curriculum alignment that 

Squires (2009), alluded to earlier as one can notice aspects of both vertical and horizontal 

coherence that have been discussed in the preceding sections. 
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In the curriculum documents developmental coherence suggests an orderly development 

and sequencing of content and mathematical experiences for students (NCTM, 2009). 

Such progressions include careful sequencing of content, developing skills, identifying 

connections across mathematical strands, using multiple representations, and relating the 

mathematics to its applications (NCTM, 2009). This study had no intention to pursue this 

view of developmental coherence in detail, as it was assumed that issues of content 

sequencing would be dealt with sufficiently as an aspect of horizontal coherence as 

discussed earlier. 

 

In this study it is the second view of developmental coherence that is taken i.e. 

developmental coherence in relation to classroom practices. With specific reference to 

what goes on in the classroom, Wilson and Draney (2009) advance a position regarding 

developmental coherence by focusing on the idea of learning progressions which they 

define as :  

… descriptions of the successively more sophisticated ways of thinking about an 
important domain of knowledge and practice that can follow one another as children learn 
about and investigate a topic over a broad span of time. They (learning progressions) are 
crucially dependent on instructional practices if they are to occur. (p. 7)   

 
This idea of learning progressions suggests an orderly development and sequencing, of 

content and mathematical experiences for students. Wang and Murphy (2004), share 

similar views in what they have coined ‘instructional coherence’ which they defined as 

causally linked activities/events in terms of the structure of the instructional content and 

the meaningful discourse reflecting the connectedness of topics, which benefit students’ 

learning of mathematics. This also seems to resonate with ‘didactic coherence’  a term 

coined by Andrews (2009), and defined as the logic implicit in the sequencing of 

concepts, and the extent to which learners are offered connected and integrated 

experiences of mathematics. According to Silverman and Clay (2009), when the focus is 

on developmental coherence, the emphasis is not just on doing and learning the 

mathematics, but rather on developing a scheme of understanding within which a variety 

of mathematical ideas are connected and that can serve as a conceptual anchor for 

mathematics instruction. This view takes into consideration the teacher’s ability to create 

opportunities for learners to acquire a profound/deeper understanding of fundamental 
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mathematics which Ma (1999), defined as a well-organised mental package of highly 

connected concepts and procedures evidenced by knowing how and also why the 

sequence of steps in any computation makes sense. So to be able to design and deliver a 

developmentally coherent lesson a teacher must therefore carefully delineate key 

mathematical concepts and their associated procedures, identify what children at various 

stages understand and what they struggle to learn, and then create opportunities for 

children’s deep acquisition of both concepts and procedures (Rittle-Johnson & Alibali, 

1999).  

2.8.7 DEVELOPMENTAL COHERENCE IN CLASSROOM CONTEXTS 
 

The justification for developmental coherence is premised on the view that education 

cannot be planned without some reference to development (Kelly2009), and that formal 

education cannot take place without the adoption of some stance towards development 

(Blyth, 1984:7).  One of the strengths claimed for the developmental view to curriculum 

approaches is its central concern with individual empowerment; what Bernstein (1996) 

called ‘competence’ as opposed to a ‘performance’ mode of pedagogic practice. It sees 

the individual as an active being who is entitled to have control over his/her destiny or act 

autonomously and consequently sees education as a process by which the development of 

the child’s ability to act autonomously becomes a central feature. If formal education is 

conceived as some kind of guided development to bring about certain changes in pupils’ 

behaviours then the key issue becomes the nature of that guidance (Kelly, 2009). 

 

There is literature that supports developmental coherence in any learning environment in 

general and in mathematics classrooms in particular. Lambert & McCombs (1998), for 

example, identified the goal of learning in general as the development of meaningful, 

coherent representations of knowledge, constructed through linking new information with 

existing knowledge in meaningful ways. With specific reference to mathematics, 

Romberg and Kaput (1999), posit that learning mathematics in a meaningful way requires 

focusing on important mathematical ideas and assisting students to organise these ideas 

into a coherent whole. This coherence, they argue, provides students with a unified 

conceptual understanding of the domain of mathematics. This seems consistent with a 
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‘competence’ as opposed to a ‘performance’ mode of pedagogic practice as propounded 

by Bernstein (1996).   

 

Schmidt et al. (2005), also show the importance of developmental coherence. They argue 

that if one of the major purposes of schooling is to help students develop an 

understanding of the various subject matters deemed important by society, such as 

mathematics and science, then the definition of ‘understanding’ is important to examine, 

as a way of viewing the delivery of each discipline intended for schooling. Schmidt et al. 

(ibid) posit that the goal of helping students understand the subject is facilitated by 

making visible to them an emerging and progressive sense of its inherent structure. 

Bruner described this as: 
… opting for depth and continuity in our teaching … to give ….[the student] the 
experience of going from a primitive and weak grasp of some subject to a stage in which 
he has a more refined and powerful grasp of it (p. 334) 

 

Viewing it as a curriculum delivery issue and pointing to the need to investigate 

developmental coherence in the mathematics classrooms in South Africa, the 2009 

curriculum review report argued that the new curriculum was never researched or 

properly trialled and as a result there was a fair amount of criticism of curriculum 

delivery and implementation (DoE, 2009). Umalusi (2009) also reported that at the FET 

level, while the desired sequencing of content and skills was clear, this was not always 

the case for the means of achieving this progression in practice.  

2.8.8 TYPES OF COHERENCE AND MY RESEARCH QUESTIONS   
 

Having provided some working definitions of the different types of alignment with the 

intention of falling back on them to answer the three research questions of this study, this 

section provides the mapping of the questions and the types of coherence as was 

envisaged:  
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Table 2.2  RESEARCH QUESTIONS AND TYPES OF ALIGNMENT 
Research Question  Horizontal 

Alignment 

Vertical 

Alignment  

Developmental 

Alignment  

1 What levels of cognitive demand are evident 

in the mathematical knowledge and skills as 

articulated in written components of the 

NCSM?  

 X X 

2 To what extent are the written and the tested 

components of the NCSM aligned in terms of 

the cognitive demand levels? 

 

X 

  

3 To what extent do Grade 11 teacher practices 

create opportunities for pupils to learn higher 

order cognitive processes and skills?     

  

 

 

 

 

X 

 

The concern in the first research question was with vertical and developmental coherence 

as the documents were analysed in terms of the cognitive demand levels as well as 

internal consistency (links between the documents that constitute the NCSM). The second 

research question was concerned with horizontal coherence as it analysed the external 

consistency between the standards and the examination papers. In the classroom 

observations developmental coherence was considered primarily in terms of how teachers 

sequenced the content for learners during their teaching/learning. This was the concern in 

the third research question of this study. 

 

This study did not intend to develop a specific research question addressing vertical 

coherence at a macro level for some important reasons. In the interest of maintaining the 

scope of this research within manageable limits, the view taken was that the issue to do 

with there being a shared understanding between policy makers, teachers, parents and 

learners could constitute a large scale research by itself. However, through the way the 

teachers implemented the curriculum it was presumed possible to make some inferences 

about this shared understanding especially between policy intentions and the teachers’. 

Another reason was that, while there is general consensus on the benefits that accrue 

from the alignment of expectations and assessment, the curriculum resides in the 
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realization of these expectations in practice (Barnes, Clarke, & Stephens, 2000). The 

argument put forth was that an analysis of the system’s existing documentation of 

curriculum expectations and assessment arrangements only determined the degree of 

alignment in a ‘narrow’ sense. The recommendation was that researchers should move 

beyond document analysis and examine what teachers actually do in the classroom. 

These observations suggest that it is more important to understand how the written 

curriculum translates into practice than to understand what sense teachers make of the 

curriculum. 

 

Consistent with those views, Wilson and Bertenthal’s (2005) framework of horizontal, 

vertical and developmental coherence was considered broadly sufficient to analyse both 

the theoretical aspects (internal consistency) of the curriculum as articulated in the policy 

documents and how the rhetoric in the policy documents is being assessed (external 

consistency) and also how it finally translates into practice. 

2.8.9 WORKING DEFINITION OF COGNITIVE DEMAND 
 

Because this study intended to make judgments about levels of cognitive demand in the 

components of the NCSM it was also important to have an understanding of this 

cognitive demand concept. According to Edwards and Dall’Alba (1981), no single theory 

of learning was found to be adequate to allow the articulation of a definition of cognitive 

demand. Each theory reflected some distinctions but failed to account satisfactorily for 

others perceived to be of importance. This according to Edwards and Dall’Alba (op cit ), 

was in agreement with the conclusion reached by Bloom (1956), when attempting to 

construct the Taxonomy of Educational Objectives – Cognitive Demand; 
We were reluctantly forced to agree with Hilgard (1948) that each theory of learning 
accounts for some phenomena very well but is less adequate in accounting for others. 
What is needed is a larger synthetic theory of learning than at present seems to be 
available (Bloom1956, p. 17).   

 

In the absence of an adequate theory, Edwards and Dall’Alba’s (op cit ) concept of 

cognitive demand drew from a range of theorists because to them education was a 

practical discipline, much richer than any one theory could encompass (Tamir 1980). 

Because this study examined levels of cognitive demand in the documents as well as in 
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the classroom activities, the entry point into the term cognitive demand was used in two 

ways to describe learning opportunities in line with Zurawsky’s (2006) 

recommendations.  
The first way is linked with the curriculum policy – how much math? The second way 
relates to how much thinking is called for in the classroom. Routine memorisation 
involves low cognitive demand, no matter how much advanced the content is. 
Understanding mathematical concepts involves high cognitive demand, even for the basic 
content (Zurawsky, 2006, p. 1).  

 

Moving deeper into this concept, Edwards and Dall’Alba (1981), defined cognitive 

demand as the demand which is placed on cognitive abilities, through the dimensions of 

complexity, openness, implicitness and level of abstraction. They then provided a scale of 

cognitive descriptors that formed the foundation for developing a tool for this study. 

Their scale of cognitive demand was derived from an analysis of and ranking of tasks in 

order of increasing cognitive demand according to the cognitive demand construct as 

defined. Although this model is not exhaustive in terms of what their analysis revealed, 

their observations were that tasks appeared to fall into six distinct groups, corresponding 

to six levels of cognitive demand with the following descriptors;  
 
Fig. 2.6  COGNITIVE DEMAND LEVELS WITH DESCRIPTORS   

 
 

Cognitive 
Demand 

Scale  

Group 1 
 

recall or memorise 
specifics, simple 

measurement, 
observe, collect, 
organise, repeat 

Group 2  
 

plot, translate, 
summarise, observe 
with discrimination, 

simple 
extrapolation 

Group 3 
 

relate, simple 
hypothesizing, 

develop an 
operational 
definition 

Group 4 
 

understand & apply 
a model, internalise 

a concept, 
calculate, apply a 

rule, compare  

Group 5 
 

generalise, 
hypothesize, 

integrate, isolate 
variables, generate 

relevant criteria 

Group 6 
 
 

evaluate, assess the 
impact, link a 

model with reality 
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While the definition together with the descriptors gives a general guide on what 

constitutes a cognitive demand skill, the next challenge was to distinguish which of these 

descriptors constituted lower order and higher order respectively.  

2.8.10 DEFINING HIGHER ORDER AND LOWER ORDER THINKING 
 

Cognitive scientists have hypothesized different levels of knowledge since Bloom’s work 

50 years ago but there is overall lack of common terminology.  However, according to 

Lewis and Smith (1993), there is general agreement that lower order and higher order 

thinking skills can be distinguished but for a given individual the need to use higher order 

thinking will depend upon the nature of the task and the person’s intellectual history. 

Higher order and lower order skills have been described in different ways a few of which 

will be discussed here. 

 

Maier (1933), for example used the terms reasoning or productive behaviour in contrast 

with learned behaviour or reproductive thinking to distinguish between higher order and 

lower order thinking respectively. His definition of productive and reproductive thinking 

provided a useful distinction between lower order and higher order thinking. Through 

experiments, Maier (op cit) found that learned behaviour came from contiguous 

experiences with previous repetitions of the relationships involved in the learned 

behaviour patterns. However, behaviour integrations that are made up of two or more 

isolated experiences are qualitatively different, arise without previous repetitions and 

consequently are new. This constitutes “reasoning” which is used to solve problems. For 

Maier (1933), a problem arises when behaviour is blocked because a desired end is not at 

once attainable. Another view of higher order thinking which is linked to problem solving 

is offered by the Commission on Science Education of the American Association for the 

Advancement of Science, who argue that a problem solving activity consists of basic and 

integrated processes (Lewis & Smith, 1993). The basic processes include observing, 

measuring, inferring, predicting, classifying, and collecting and recording data. The 

integrated processes include interpreting data, controlling variables, defining 

operationally, formulating hypotheses and experimenting. The hierarchy represented by 
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the basic processes and the integrated processes suggest a difference between lower order 

and higher order thinking skills. 

 

In further defining higher order thinking Bartlett (1958), extended the idea of integrating 

past experience by using the term gap filling (Lewis & Smith, 1993). Bartlett (op cit) 

believed that thinking involved one of three gap filling processes: interpolation (the 

filling of information that is missing from a logical sequence), extrapolation (extending 

an incomplete argument or statement), reinterpretation (rearrangement of information to 

effect a new interpretation). Bartlett (1958), defines thinking as: 
...the extension of evidence in accord with that evidence so as to fill up gaps in the 
evidence: and this is done by moving through a succession of interconnected steps (p. 75).                 

 

From observations in classrooms and interviews, Newman (1990), concluded that lower 

order thinking demands only routine or mechanical application of previously acquired 

information such as listing information previously memorized and inserting numbers into 

previously learned formulas. In contrast, higher order thinking “challenges the student to 

interpret, analyze, or manipulate information” (Newman, 1990, p. 44).  

 

Newman (1990), also made an important point that since individuals differ in the kinds of 

problems they find challenging, higher order thinking is relative. A task requiring higher 

order thinking by one individual may require only lower order thinking by someone else. 

Accordingly, “to determine the extent to which an individual is involved in higher order 

thinking, one would presumably need to know something about the person’s intellectual 

history” (p. 45). For my study, Newman’s point adds another important dimension, to the 

understanding of higher order thinking, which allows analysis of developmental 

coherence as seen in descriptions of successively more sophisticated ways of thinking 

from one grade to the other. Because cognitive demand descriptors are not grade specific, 

what Newman (op cit) points to is that a learner at Grade 11 for example may be asked to 

‘define’ and yet a learner at Grade 12 may also be asked to ‘define’ but in the absence of 

the mathematical idea to be defined one could not possible judge that defining is a lower 

order cognitive skill because the idea could be of a lower order cognitive demand at 

Grade 12 level but defining that same concept for a Grade 4 learner might be a higher 
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order cognitive demand. So instead of looking at descriptors such as ‘define’ or 

‘compare’ or ‘identify’ in isolation, (which are all lower order cognitive demand 

descriptors) Newman’s point suggests deeper analysis be made of the (what) 

mathematical idea that is being defined, identified or compared and at what grade level 

and by who. In my study such analysis was critical in order to make qualitative 

judgements about developmental coherence from one grade to the other which when 

taken in Newman’s context seems to be based on the presumption that ‘defining’ or 

identifying’ gets more cognitively demanding as one progresses from one grade to the 

next.  

 

Newman’s point also suggests that one would presumably need to know something about 

the person’s intellectual history in order to determine the extent to which an individual is 

involved in higher order thinking. This study however did not intend to have a major 

focus on whether or not learners were actually involved in higher order thinking. Instead 

the major focus of classroom observations was on analysing the strategies used or the 

extent to which the teachers created opportunities that enabled/constrained learners 

developing these higher order skills and processes. However learner responses observed 

within the teachers’ video were used in some instances to support arguments raised 

within those analyses of teacher strategies. In the document analysis the major focus was 

on cognitive demand descriptors in relation to the cognitive demand levels of content in 

the curriculum documents and in the examination papers details of which are given in the 

research design chapter.  

 

For the purposes of document analysis the challenge was to develop a tool that could be 

used to make such judgements. In doing so, this study examined a number of frameworks 

that have been used to distinguish different levels of cognitive demand in mathematical 

tasks, some of which have been discussed earlier in this chapter. Although these 

frameworks differed in many ways, they are quite consistent in distinguishing the 

extremes (lower order and higher order) of cognitive demand (Ginsburg, et al., 2005; 

Mullis, et al., 2003; Silver, Mesa, Morris, Star, & Benken, 2009). Low-demand tasks 

exclusively involve recalling, remembering, implementing, or applying facts and 
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procedures which is in contrast to high-demand tasks, which require students to analyze, 

create, or evaluate facts, procedures, and concepts or to engage in metacognitive activity. 

A great deal of discussion has gone into how many levels of cognitive demand should be 

made, what the distinctions should be and how they should be defined. However in 

Porter’s view (2002), perfect clarity is not achievable. What was more important was to 

have distinctions of cognitive demand descriptors that were understood in the same way 

by each of the raters. Porter et al., (2007) took over 20 years developing such a cognitive 

demand tool which this study found useful and adapted as follows:    
 
Table 2.3   LANGUAGE FREQUENTLY ASSOCIATED WITH PERFORMANCE GOALS (Porter, 2002, p. 13)  

Lower order skills/procedures Higher order skills/procedures  

A B C D E 

Memorize 

facts, 

definitions, 

formulas 

Perform 

procedures/solve 

routine 

problems 

Communicate 

understanding 

of concepts 

Solve non-

routine 

problems/make 

connections 

Conjecture, 

generalize, 

prove 

Recognise 

Identify 

Recall 

Recite 

Name 

Tell  

Do computations 

Make observations 

Take measures 

Compare 

Develop fluency 

Communicate 

mathematical 

ideas 

Use 

representations to 

model 

mathematical 

ideas 

Explain findings 

and results from 

statistical 

analyses 

Explain 

reasoning 

Describe 

Select  

Apply and adapt 

a variety of 

appropriate 

strategies to solve 

non-routine 

problems 

Apply 

mathematics in 

context outside 

mathematics 

Analyze data, 

recognize 

patterns 

Explore 

Judge    

Complete proofs 

Make and 

investigate 

mathematical 

conjectures 

Infer from data 

and predict 

Determine the 

truth of a 

mathematical 

pattern or 

proposition   

 

Notice that Porter’s tool only had five categories or levels of cognitive demand but did 

not explicitly distinguish them between lower order and higher order.  But borrowing 
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from the literature on the definition of higher order and lower order thinking it was 

possible to link the descriptors given in Porter’s tool with those proposed for lower order 

and higher order thinking respectively. This distinction was critical in this study in order 

to analyse and confirm/refute claims made in the policy rhetoric about targeting higher 

order knowledge and skills.              

2.9 ANALYTICAL FRAMEWORK 
 

Research on instructional practice in mathematics classrooms has identified a number of 

activities that facilitate learners’ development of higher order concepts, skills and 

processes. Cognitively undemanding activities included recalling facts and applying well-

rehearsed procedures to answer simple questions quickly and efficiently without much 

attention to explanation, justification, or the development of meaning (Stigler & Hiebert, 

1999). Such pedagogy is at odds with current conceptualisations of how people learn best 

when the goal is developing understanding which offer learners an opportunity to develop 

proficiency with complex high-level cognitive processes (Stigler & Hiebert, 1999, Silver, 

et al., 2009). On the other hand Zurawsky (2006), posits that cognitively demanding 

activities include using procedures and algorithms with attention to practices such as 

conjecturing, justifying, explaining and interpreting (procedural/conceptual dichotomy). 

Empirical evidence shows that high performing countries on TIMSS avoided reducing 

mathematics tasks to mere procedural exercises involving basic computational skills as 

they placed greater cognitive demands on students by encouraging them to focus on 

concepts and connections among those concepts in their problem solving (Zurawsky, 

2006). High achieving countries created opportunities for learners to make connections 

by following through on the rich potential implied within the problem statements. They 

also gave the students an opportunity to work on problems that required them to construct 

relationships among ideas, facts and procedures and to engage in mathematical reasoning 

such as conjecturing generalizing and verifying. 

  

Consistent with how developmental coherence was linked with deeper understanding of 

mathematical concepts and procedures, and how high and low cognitively demanding 

activities also reflect the procedural/conceptual frame, Skemp’s (1978) distinction 
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between instrumental understanding and relational understanding seemed plausible as an 

a priori analytical framework. Skemp’s views are mirrored in Hiebert and Lefebvre’s 

(1986) notion of conceptual orientations to knowledge versus procedural orientations 

which is a key framework that has been related to quality within the mathematics 

education terrain and that also speaks in favour of competence as opposed to mere 

performance. These orientations have origins in several theories of learning and cognition 

which posit that our behaviour is shaped by at least two different kinds of knowledge: 

one providing an abstract understanding of the principles and relations between pieces of 

knowledge in a certain domain, and another one enabling us to quickly and efficiently 

solve problems. In recent empirical research in mathematics learning the former is 

frequently named conceptual knowledge, while the later is labelled procedural knowledge 

(Baroody, 2003; Schneider & Stern, 2010). Hiebert and Lefebvre (1986) defined 

procedural knowledge thus: 
 Procedural knowledge […] is made up of two distinct parts. One part is composed of the 
formal language, or symbol representation system of  mathematics. The other part 
consists of the algorithms, or rules, for completing mathematical tasks. The second part of 
procedural knowledge consists of rules, algorithms or procedures used to solve 
mathematical tasks. They are step-by-step instructions that prescribe how to complete 
tasks. A key feature of procedures is that they are executed in a predetermined linear 
sequence. It is the clearly sequential nature of procedures that probably sets them apart 
from other forms of knowledge (p6).  

 

On the other hand: 
Conceptual knowledge is characterised most clearly as knowledge that is rich in 
relationships. It can be thought of as a connected web of knowledge, a network in which 
the linking relationships are as prominent as the discrete pieces of information. 
Relationships pervade the individual facts and propositions so that all pieces of 
information are linked to some network. In fact, a unit of conceptual knowledge cannot be 
an isolated piece of information; by definition it is a part of conceptual knowledge only if 
the holder recognizes its relationship to other pieces of information. (p3-4) 

For decades, researchers in the field of mathematics education and cognitive psychology 

have been interested in the relationship between conceptual and procedural knowledge. A 

number of questions have been asked about how these two types of knowledge are 

conceived and how they are linked, including which one develops first and whether one 

is necessary for the development of the other. Despite a long history of research on the 

relations between conceptual and procedural knowledge, the conflicting theoretical 

viewpoints have not converged on a universally agreed upon position but rather have 

been subject of ongoing debates (Schneider & Stern, 2010).   
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It is not the intention to delve much into the conflicting viewpoints that emerge from such 

debates, but rather to take a position which forms the springboard for this study. 

Generally procedural and conceptual knowledge have been discussed frequently as if 

they existed on a continuum. The predominant assumption in the field was that at one 

endpoint of this continuum lie procedural knowledge – identified when skills became 

routine and could be executed with fluency, in other words, when such knowledge had 

become “automatized” (Newton & Star, 2009; Star, 2005). At the other endpoint of the 

continuum lie acquisition of concepts identified when factual or principled knowledge 

could be used to recognize, identify, explain, evaluate, judge, create, invent, compare and 

choose i.e. when such knowledge was understood. Star (2005), and his colleagues saw a 

number of deficits in this view where procedural knowledge was oversimplified to mean 

rote learning and how conceptual knowledge was also oversimplified to mean deep 

understanding. Many other terminological distinctions that have been introduced to refer 

to different aspects of knowledge (e.g. generic/domain specific, formal/informal, 

elaborated/compiled, implicit/explicit, and tacit/inert) have not been spared this criticism 

as they also reflect this tendency to collapse many dimensions into one.   

 

Star (2000), Star and Seifert (2002), proposed that there are different ways in which one 

can know mathematical concepts and procedures and to them skillful execution in 

mathematics could mean two very different things. On one hand, skillful execution 

involves being able to use procedures rapidly, efficiently, with minimal error, and with 

minimal conscious attention; in other words to execute a procedure automatically or by 

rote. On the other hand, being “skilled” means being able to select appropriate procedures 

for particular problems, modifying procedures when conditions warrant, and explaining 

or justifying one’s steps to others; i.e. is to execute a procedure thoughtfully or 

deliberately, rationally, mindfully or intelligently. Star and Seifert (2002), then suggested 

that there could be other ways in which a procedure could be executed other than rote, 

some of which could be characterized as “intelligent” or even indicative of procedural 

understanding. They further argued that there was some evidence to suggest that such 

knowledge exists. Similarly they argued that there could also be qualitatively different 
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ways in which one can know mathematical concepts as these concepts can be 

“memorized” at one extreme or “understood” on the other. 

 

To challenge what they viewed as a ‘simplistic’ view to procedural and conceptual 

understanding and to suggest alternative ways in which this topic could be conceptualized 

and studied Star (2000), analysed studies done from 1983 – 1996 on the relationship 

between concepts and procedures and noted that almost all the studies were from the 

topic areas of counting, single-digit addition, multi-digit addition and fractions – all areas 

of study in elementary school. Tapping from this analysis of these empirical studies on 

the topic, the researcher argued that there was a notable reliance on elementary school 

mathematics as the predominant domain of inquiry in the study of procedural and 

conceptual knowledge and that there was an equally notable absence of studies of the 

development of procedural and conceptual knowledge in algebra, geometry, and calculus. 

A common perception from the analysed studies was that in the absence of conceptual 

knowledge of place value for example, a student could only know how to add multi-digit 

numbers by rote. Similarly in the absence of conceptual knowledge of fractions, a student 

could only know the procedure of adding fractions by rote. The researcher posited that 

research emphasis on elementary school procedures tended to obscure the existence of 

what he termed ‘procedural understanding’ through the exclusive focus on knowledge of 

procedures as necessarily superficial or rote.  He further posited that it was also difficult 

to conceive of having understanding of a procedure when one only considered the 

relatively simple and short procedures learned in elementary school.  

 

Star and Rittle-Johnson (2009), then followed their theory that there are different ways in 

which one can know mathematical concepts and procedures with a study on high school 

mathematics focusing on more complex and abstract procedures such as those learned in 

algebra and calculus and hypothesized that it was possible to conceive of a non-

conceptual yet deep way in which a procedure could be known – something they coined 

‘procedural understanding’. Results from their research suggested that such knowledge 

existed and their proposition was that distinguishing between knowledge types and depth 

of knowledge had the potential to illuminate alternative ways in which conceptual and 
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procedural knowledge could be known and understood (Star, 2000, 2005; Star & Rittle-

Johnson, 2009; Star & Seifert, 2002). Many developmental psychologists have found it 

useful to treat knowledge not as a unitary construct but as differentiated into at least two 

kinds of knowledge: (a) conceptual knowledge, facilitating understanding of abstract 

principles, and (b) procedural knowledge, assisting in solving concrete problems 

(Schneider & Stern, 2010) both of which can cognitively be represented at a superficial 

as well as at a deep level. It is this conceptualisation of procedural and conceptual 

understanding that this study takes. 

 

Star  (2005), maintained his earlier proposition that deep procedural knowledge would be 

knowledge of procedures that is associated with comprehension, flexibility and critical 

judgment and that it is distinct from but possibly related to knowledge of concepts. He 

then defined procedural understanding as he had suggested earlier thus:    
 … to understand a procedure is to have a planning knowledge – knowledge of such things 
as the order of steps, the goals and sub-goals of steps, the environment or type of situation 
in which the procedure is used, constraints imposed upon the procedure by the 
environment or situation, and any heuristics or common sense knowledge which are 
inherent in the environment or situation. This knowledge is abstract and deep, but not 
necessarily conceptual …..(Star, 2000, p. 6)   

 

This definition seems to differentiate between ‘procedural understanding’ and 

‘surface/superficial procedural knowledge’ terms which have always been viewed as 

being synonymous with low level understanding. Procedural understanding as seen by 

Star (op cit) seems to resonate with VanLehn and Brown’s (1980); teleological semantics 

of a procedure which they defined as;  
 …knowledge about [the] purposes of each of its parts and how they fit 
together….Teleological semantics is the meaning possessed by one who knows not only 
the surface structure of a procedure but also the details of its design (p. 95).  

 

According to this view a procedure can be cognitively represented on multiple levels. On 

a very superficial level, a procedure may be represented simply as a chronological list of 

actions or steps; on a more abstract level, a procedure can include planning knowledge in 

its representation. Planning knowledge includes not only the surface structure but also 

“the reasoning that was used to transform the goals and constraints that define the intent 

of the procedure into its actual surface structure” (VanLehn & Brown, p. 107).   
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 Along the memorized and understood continuum the predominant view has also been 

that superficial/rote/memorization of concepts/procedures is “bad” while deep 

understanding of both is “good.” While there might be fewer disputes on the view that 

deep understanding of either procedures or concepts is good, the ‘rote is bad’ view has 

also been a subject of contestation. Empirical evidence suggests that under some 

circumstances children learn important mathematical ideas through rote e.g. counting, 

and later develop an understanding of the concepts underlying it. According to  Rittle-

Johnson and Alibali (1999), several studies have shown that children count or even add 

starting by rote but often understand the principle of commutativity for addition even 

though they never received instruction on the principle. Because children do not receive 

instruction on counting principles and commutativity principles, understanding of these 

principles is probably abstracted from their experiences. These studies suggest that rote 

learning is only bad if it does not eventually result in deeper understanding. However 

while some studies have shown that procedural knowledge could lead to gains in deep 

conceptual understanding and vice versa (Rittle-Johnson & Alibali, 1999), the strengths 

of their influences might not be symMatrical. There is more empirical evidence to 

suggest that gains in deep conceptual understanding led to fairly consistent improvements 

in procedural understanding. It is against such empirical evidence that Star (2000), 

proposed the broadening of the current conception of procedural/conceptual knowledge 

to include the depth of knowledge at endpoint of acquisition of both concepts and 

procedures.  

 

Consistent with this view and in an attempt to describe knowledge more parsimoniously 

some researchers’ proposition was for separating the characteristics of knowledge into 

type of knowledge (procedural/conceptual) and quality of knowledge (superficial/deep) 

(Star, 2000). The notion of quality of knowledge seems to resonate with the view that 

understanding exists on a continuum;  
 ... Everyone understands to some degree anything that they know about. It also follows 
that understanding is never complete; for we can always add more knowledge, another 
episode, say, or refine an image, or see new links between the things we know already   
(White & Gunston, 1992, p. 6) 
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Depth of knowledge refers to the extent that knowledge is firmly anchored in a person’s 

knowledge base and the dimensions of depth of knowledge are surface (superficial) 

versus deep, with the implication that surface is poor and deep is good (Star, 2000). Deep 

level knowledge of both concepts and procedures is preferred because it is associated 

with comprehension and abstraction and with critical judgment and evaluation.  Deep-

level knowledge has been structured and stored in memory in a way that is maximally 

useful for the performance of tasks, while surface-level knowledge is associated with rote 

learning, reproduction, and trial and error. Deep understanding of both procedural and 

conceptual knowledge should be the ultimate goal and priority of all mathematics 

learning as it refers to an integrated and functional grasp of mathematical ideas. Students 

with deep understanding know more than isolated facts and methods. They understand 

why a mathematical idea is important and the kinds of contexts in which it is useful. They 

have organised their knowledge into a coherent whole, which enables them to learn new 

ideas by connecting those ideas to what they already know (Kilpatrick, Swafford, & 

Findell, 2001).  

 

With specific reference to LO2 (Functions and Algebra) which is one of the focus areas 

of this study, the NCSM suggest that both procedural and conceptual knowledge is 

valued, but at a deeper level as evidenced by this statement:   
 It is important that the Learning Programme provides for appropriate experiences of these 
problem types, and that it develops the underlying concepts and techniques to enable 
learners to experience the power of algebra as a tool to solve problems. The emphasis is 
on the objective of solving problems and not on the mastery of isolated skills (such as 
factorization) for their own sake (Department of Education, 2003, p. 13).    

 

Star (2000), provided a categorization of the types of knowledge and the quality of 

knowledge respectively as discussed  above:  
 
Table 2.4 QUALITIES OF PROCEDURAL AND CONCEPTUAL KNOWLEDGE (Star2000).  

KNOWLEDGE 

TYPE 

KNOWLEDGE QUALITY 

 Superficial Deep 

Procedural Automatized procedures  Procedural understanding 

Conceptual Memorized concepts  Conceptual understanding  
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This study took the view that competence in a mathematical domain requires knowledge 

of both concepts and procedures (Rittle-Johnson, Siegler, & Alibali, 2001). Both 

procedural and conceptual knowledge are therefore important and must be inculcated in 

the classroom. Both can also be associated with degrees of quality with both categories 

possibly having ‘superficial’ as well as ‘deep’ knowledge. In this study another view 

taken was that the relations between conceptual and procedural knowledge are 

bidirectional suggesting that improved procedural knowledge can lead  to improved 

conceptual and vice versa. This follows empirical evidence that has shown that 

knowledge of concepts and knowledge of procedures are positively correlated although 

their influence on one another may not be equivalent (Rittle-Johnson & Alibali, 1999). 

This suggests that the two might be learned in tandem rather than independently with no 

fixed order in the acquisition of the two but with deep understanding of both concepts 

and procedures being the more preferred endpoint of acquisition (Rittle-Johnson, Star, & 

Durkin, 2010). Premised on the view that procedural and conceptual understanding 

should complement each other for meaningful understanding with deep understanding of 

both concepts and procedures being the more preferred endpoint of acquisition, this study 

became more concerned about quality of teacher utterances rather than focusing on the 

distinction as to whether the utterances or actions were rooted in conceptual or in 

procedural knowledge. What is then fore-grounded are the connections that teachers 

enable/constrain and the extent to which such connections in turn enable/constrain deep 

conceptual and procedural understanding.     

2.10 INDICATORS OF QUALITY OF MATH KNOWLEDGE  
 

In developing the analytical tool, this study borrowed from a number of researchers 

including Businskas(2008), Kilpatrick et al., (2001), National Council of Teachers of 

Mathematics (1989), Sierpinska (1996) before moving to connections. Businskas (2008) 

was one of the researchers who seemed to use the term ‘conceptual understanding’ to 

mean deep understanding of both procedural as well as conceptual knowledge as 

discussed earlier. There is evidence in her model of mathematical connections (as will be 

seen later) that suggests both conceptual and procedural connections were identified in 
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her study yet she continued to describe the deep understanding of both as ‘conceptual 

understanding’. Consistent with the view that both procedural and conceptual knowledge 

can be associated with degrees of quality with both categories possibly having 

‘superficial’ as well as ‘deep’ knowledge, Businskas model was analysed in more detail 

as a potential tool but the term ‘deep understanding’ will be used in place of her 

‘conceptual understanding’. Businskas (2008) posited that while deep understanding 

could be visualized from different perspectives, describing it in terms of making 

mathematical connections was evident in the work of several well respected mathematics 

educators. Empirical evidence shows that high performing countries on TIMSS for 

example placed greater cognitive demands on students by encouraging them to focus on 

concepts and connections (Andrews, 2009). According to Zurawsky (2006), elevated 

thinking processes come into play when students focus on mathematical concepts and 

connections among those concepts. High-level cognitive processes require emphasis on 

reasoning about and connecting ideas and solving complex problems (Silver, et al., 

2009). According to the NCTM, (2000) making connections is usually treated as 

synonymous with (or perhaps an indicator of) “deeper and more lasting understanding.” 

Barmby et al.,  (2009), echo similar sentiments as they contend that;  
 In order to examine someone’s understanding of a mathematical concept, it is important 
that we examine the connections that a person makes to that concept. Of course, we cannot 
see these internal connections directly; rather, we must observe the connections that a 
person can demonstrate and then infer understanding from these. ….However it is not just 
a case of looking at the number of connections but the quality or strength of the 
connections as well. (pp. 5 - 6) 

 

Both the research literature and the pedagogical literature stress the value and importance 

of making mathematical connections, the rationale being that making connections will 

allow students to better understand, remember, appreciate and use mathematics. These 

views from international literature point to mathematical connections as a potential 

indicator of quality featuring within ‘deep conceptual’ and ‘deep procedural’ 

understandings. This led to the question of whether there was similar evidence in the 

NCSM. 
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2.11 CONNECTIONS AND THE NCSM  
 

With specific reference to the NCSM at FET level in South Africa, Mwakapenda (2008), 

argued that relationships, hence connections were at the heart of the definition of 

mathematics and that the curriculum makes connections among the key elements of the 

learning outcomes and experiences to be gained by learners. Below is a table that 

suggests this focus from Grade 10 right through to Grade 12 (Mwakapenda, 2008, p. 191)    
Table 2.5 COMPETENCE DESCRIPTIONS FOR LEARNER ACHIEVEMENT  

BY THE END OF GRADE 10 THE 

LEARNER WITH MERITORIOUS 

ACHIEVEMENT CAN  

MAKE CONNECTIONS AMONG BASIC 

MATHEMATICAL CONCEPTS (DOE, 2003 P. 74) 

By the end of grade 11 the learner with 

meritorious achievement can 
make connections between important mathematical ideas 

from this and lower grades (DoE, 2003 p. 75) 

By the end of grade 12 the learner with  

satisfactory achievement can 
make connections across important mathematical ideas 

and provide arguments for inferences (DoE, 2003 p. 77) 

By the end of grade 12 the learner with 

outstanding achievement can 
synthesize across different outcomes and make 

connections with other subjects (DoE, 2003 p. 78) 

 

Mwakapenda (2008), also analysed the Learning Programme Guidelines, and showed that 

from Learning Outcomes 1 right through to Learning Outcome 4 there were statements 

that suggested the prevalence of connections across learning outcomes. Phrases and 

words such as generalizing, identifying patterns, modelling, integration within and across 

subjects, identifying rules and relationships, which are prevalent in the document all, 

suggest making connections in one way or the other. Parker (2004) made similar 

observations when she commented: 
 Whereas the earlier curriculum was very much product oriented working on the basis of 
‘received’ knowledge, this curriculum is not – it is more practice oriented and focused on 
producing “connected knowledge”. It focuses on the practices of mathematics (e.g. 
investigating, making conjectures, justifying, generalising) rather than simply the skills 
(e.g. factorising) and products (e.g. laws of exponents); and on making meaning not only 
through problem solving contexts, but also within the structure of mathematics itself (p. 6)    
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Mwakapenda (2008) then concluded that the NCSM in South Africa, was:   
  ... replete with demands upon educators and learners for making connections, producing 
representations and working in integrated modes within mathematics and across 
curriculum disciplines(p. 201).  

 

In summary, this seemed to suggest that one possible indicator of the development of 

deep understanding or lack thereof within the learners would be the manner in which the 

teacher created opportunities for learners to make such connections. With specific 

reference to the creation of opportunities for learners to make mathematical connections, 

Weinberg (2001) acknowledges that learners might make connections spontaneously but 

“we cannot assume that the connections will be made without some intervention”(p. 26). 

The implied role for the teacher was to act in ways that would promote learners’ making 

of these mathematical connections.  

 

While Mwakapenda (2008), acknowledged that the emphasis on connections therein was 

consistent with developments in mathematics education globally, he however pointed to 

the same important gap that appears not to have been recognised both in theory and 

practice which has to do with the preparedness of teachers to work in a reformed 

curriculum that demands making mathematical connections. He commented that the 

practices that are being asked of teachers are often difficult to define, and that they 

require a substantive re-orientation not only of teachers’ practices but also of their beliefs 

about mathematical ideas, teaching and learning. Similarly Adler and Reed (2002) argued 

that teachers needed to develop a specialised pedagogy “for the complex task of 

transforming this knowledge into appropriate opportunities for learning in school”(p. 

151). It is in this context that this study tried to understand the nature of the strategies that 

FET mathematics teachers employed and to what extent such strategies 

enabled/constrained learners’ abilities to make connections. 

2.12 SUMMARY 
 

This chapter started off from the history of curriculum alignment. It traced this to the time 

of and cited the contributions made by Tyler (1949) and Bruner (1960) which have 

endured to this day. Tyler for example identified four critical questions that must be 
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asked or answered when a curriculum is developed and the literature review shows how 

these design features are evident in the National Curriculum Statement for Mathematics. 

His model was organised around four corresponding principles which suggest coherence 

must be considered at design stages. Bruner then advocated that fundamental ideas must 

be identified, and once identified, they must allow a student to move from a primitive and 

weak grasp of the subject matter to a stage in which he has more refined and powerful 

grasp. But the literature shows lack of consensus on what constitutes fundamental or 

important mathematical ideas.  

 

The recommendations thereof were that important goals should instead be described in 

terms of quality defined in terms of cognitive demand. These should then anchor the 

curriculum in that all its components should target such higher order thinking knowledge 

and skills. A preponderance of the literature articulates the need for learners to have 

higher order knowledge and skills in mathematics. The justification was that these were 

skills which prepared the learner for the field of work and so empowered the learners 

both economically and socially. These were also skills needed by any nation for 

economic development.   

 

Having established what should anchor the curriculum, the design features of the NCSM 

were then analysed. There was prima facie evidence of rational logic in the design 

features and these were acclaimed internationally. The concern then became alignment of 

the curriculum components with a depth of knowledge criterion. This then guided the 

literature search on such alignment studies. International literature showed that lack of 

excellence in American schools was caused by misalignment between the written, the 

tested and the taught curriculum justifying why curriculum alignment was important. 

There is also empirical evidence which shows that alignment was a more powerful 

predictor of student achievement than demographic factors and that this alignment effect 

on student performance was more powerful for low achievers. These findings suggested 

that alignment could be used as a lens through which researchers could look into issues of 

inequalities which manifest in poor performances of learners from previously 

disadvantaged communities. This international literature review also provided a guide on 
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the descriptors of cognitive demand that formed the bases of search for cognitive demand 

tools used by other researchers. 

 

The South African literature search showed that post democracy researchers were more 

concerned about educational issues that cut across disciplines pointing to the need for 

regular checks especially on alignment and the cognitive demand health of the education 

system and its subsystems. The literature search for such alignment studies showed that 

there appeared to be a paucity of studies on alignment driven by the quality of knowledge 

measured in terms of cognitive demand. This then provided a rationale for the study 

examining the extent to which levels of cognitive demand were evident in the National 

Curriculum Statement and the justification for curriculum coherence.  

 

The literature review set the study in the critical paradigm which is driven by an 

emancipatory objective and attempts to challenge the status quo. Curriculum rhetoric 

makes claims about empowering the previously disadvantaged learner through an 

education system that targets higher order knowledge and skills yet such claims do not 

appear to translate into reality. A variety of views to curriculum alignment are discussed 

with some researchers arguing from a political perspective that misalignment was 

inevitable after all because stakeholders have incompatible expectations about what an 

educational system should deliver. Those arguing from a systems perspective put it that 

subsystems of a whole should work together for the common good of the whole. 

Researchers arguing from an emancipatory perspective put it that in order to redress 

inequalities, the educational goals must be guided by a quality criterion measured in 

terms of cognitive demand. This then justified why this study was located in the critical 

theory paradigm.  

 

Some working definitions of curriculum coherence, horizontal coherence, vertical 

coherence and developmental coherence are then offered. Cognitive demand descriptors 

are identified and the definition of lower order and higher order thinking is given. The 

next chapter details the methodology and the data collection tools for this study.  
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CHAPTER THREE - RESEARCH DESIGN AND 
METHODOLOGY

 
 

3.1 INTRODUCTION 
 

Literature suggests that the way researchers develop their research designs is 

fundamentally affected by a number of factors which included the specific interest of the 

researcher (Dooley, 2002; Noor, 2008; Rowley, 2002; Yin, 1994; Zainal, 2007). Rowley 

(2002) for example sees a research design as the logic that links the data to be collected 

and the conclusions to be drawn to the initial questions of a study. It ensures coherence. 

The design of a study can be thought of as a blueprint detailing what will be done and 

how this will be accomplished. Research design involves determining how a chosen 

method will be applied to answer the chosen research question(s). Key aspects of 

research design include: research methodology, participant/sample collection and 

assignment, (if different conditions are being explored); and data collection procedures 

and instruments.  

 

The specific interest of this study was in understanding the level of cognitive demand and 

coherence in and between the different components of the NCSM. It was triggered by a 

combination of observations both locally and internationally. Locally (in South Africa) it 

was observed that while pass rates were rising, standards were falling in mathematics. 

Internationally, statistical analysis showed that poor performances in over 40 countries 

that took part in the TIMSS studies including South Africa could be attributed to the level 

of coherence in the curricula for those respective countries. This study then became 

interested in curriculum coherence as a specific phenomenon and aimed at using it as a 

lens to see how theory translates into practice in the South African classroom context. 

The study hoped to achieve this not by controlling variables (as was the case in the large 

scale TIMSS studies) but rather by observing all of the variables and their interacting 
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relationships across a small sample of schools. This was premised on the view that while 

it was worthwhile to have a general picture as was established by the large scale studies, 

it is sometimes even more important to understand specific cases and ensure a more 

holistic and in-depth approach to research in a specific context. 

  

Consistent with this view, the case study design was considered more appropriate for this 

study and a number of reasons were identified in order to justify why. Unlike quantitative 

analysis which observes patterns in data at the macro level on the basis of the frequency 

of occurrence of the phenomenon being observed, case studies observe the data at the 

micro level (Rowley, 2002). Basically a case study is an in-depth study of a particular 

situation rather than a sweeping statistical survey.  It is a method used to narrow down a 

very broad field of research into easily researchable topic. Whilst it might not answer a 

question completely, it has the potential however to give some indications and allow 

further elaboration and hypothesis creation on the subject.  The case study research 

design is useful for testing whether scientific theories and models actually work in the 

real world. For psychologists, anthropologists and social scientists case study designs 

have been regarded as a valid method of research for many years (Yin, 1994).  

 

Case studies can involve single or multiple cases. If two or more cases are shown to 

support the same theory, replication can be claimed. In analytical generalisation, each 

case is viewed as an experiment, and not a case within an experiment. The greater the 

number of case studies that show replication the greater the rigour with which a theory 

has been established. Multiple case designs are preferred on the basis of this replication 

logic because multiple cases can be regarded as equivalent to multiple experiments. The 

more cases that can be marshalled to establish or refute a theory, the more robust are the 

research outcomes. A frequent question is how many cases should be included in a 

multiple case study? There is no simple answer to this question but the caution from 

literature was that cases needed to be carefully selected so that they either produce similar 

results (literal replication), or produce contrasting results but for predictable reasons 

(theoretical replication) (Rowley, 2002).    

 



 98 

The unit of analysis is the basis for the case. It may be an individual person, or an event, 

(such as a decision, a programme, an implementation process or organisational change), 

or an organisation or team or department within the organisation. It may sometimes be 

difficult to identify the boundaries of the unit of analysis.  A key issue is that the case 

study should only ask questions about the unit of analysis, and any sub-units; sources of 

evidence and the evidence gathered are determined by the boundaries that define the unit 

of analysis. In the next section the multiple-case research design is described in more 

detail and justification is also provided as to why it was considered appropriate for this 

study. 

3.2 A MODEL OF THE STUDY 
 

Curriculum has many different components and meanings but within those versions the 

most common elements are those of the three components-model comprising the written, 

the taught and the tested curriculum (English1992). According to Squires (2009), this 

three-components-model provides a first cut in examining the problem of alignment and 

consistent with how the research questions were conceptualized in this study, it is this 

three-model-configuration that was adapted. Squires’ model had to be adapted because it 

captures the many components of the curriculum and their possible linkages at the same 

time. However while this study acknowledged the complexity, there was need to strike a 

balance between complexity and manageability considering the time constraints of a PhD 

study. Squires (2009), suggested that the various alignments as depicted by his model (on 

page 58) present different levels of complexity and the definitions of such alignments 

also take into account the different time perspectives (daily for lesson planning versus 

yearly or longer for state standards). It was after taking all these factors into consideration 

that the model below was adopted for this study.   
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Fig. 3.1  THE THREE COMPONENTS MODEL OF ALIGNMENT  
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The three dimensional cuboids in the model allowed the examination of the cognitive 

demand levels within each of the three components, the written, the tested and the taught 

curriculum. This was consistent with the three research questions which were raised in 

this study as well as Bernstein’s three pillars of education. The written curriculum in the 

context of the NCSM comprises the subject statement (which Squires loosely refers to as 

curriculum) and the standards (which the NCSM refers to as assessment standards). In the 

context of the NCSM these two complement each other in articulating the content or what 

the learners are expected to know hence they represent the written curriculum in the 

model above. Broadly the other components that would normally constitute the written 

curriculum such as the learning programme guidelines and the assessment guidelines 

were not considered in this model as some of them (e.g. learning programme guidelines) 

focus more on strategies for delivering content whereas the focus of my document 

analysis was on cognitive demand levels of the content. However the analyses will cite 

examples from any of these other documents where appropriate to support certain 

arguments raised.  In as far as the taught curriculum is concerned, the specific focus was 

on actual instruction, and hence the lesson plans and learner assignments were also left 

out. Similarly with the tested curriculum the interest was with the exemplar papers for 

2008 as they were the first standardised tests available for the revised FET mathematics 

curriculum – hence curriculum embedded tests and learner exercises were also left out.    
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Mapping the model with the multiple cases the study was conceptualized as follows: 

 
Fig. 3.2  MODEL OF THE CASE STUDIES  

 
 

Because the unit of analysis could be an individual person or a document depending on 

what the researcher desired to focus on (Zainal, 2007), this study considered the written 

curriculum as contained in the different documents of the NCSM as a unit of analysis that 

could be studied in its own right. Similarly the tested curriculum as seen through the 

examination papers was also considered as a unit of analysis in its own right and finally 

the enacted curriculum as seen through the way in which the 4 selected teachers taught 

algebra related topics were considered as four multiple cases at the enacted curriculum 

level of the study. Across all these units, there was a focus on higher order cognitive 

demand and the level of coherence.  

3.3 DATA COLLECTION METHODS USED 

3.3.1 PREAMBLE 
 

According to Rowley (2002), case study research can be based on any mix of quantitative 

and qualitative approaches.  Tools used in this type of data collection are usually surveys, 
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interviews, document analysis and observation, although standard quantitative measures 

such as questionnaires are also used. Consistent with the title of my study “from 

coherence in theory to coherence in practice…” the research questions were also 

conceptualized at both the theoretical level and at the practical level. Similarly my data 

collection methods and instruments were also conceptualized at the theoretical level i.e. 

those that could be used to establish alignment among the documents, as well as at the 

implementation level i.e. those that could be used to measure level of coherence between 

the documented vision and the classroom practices.  

3.3.2 DOCUMENT ANALYSIS AS MY METHOD FOR QUESTIONS 1 AND 2 
 

At the policy or theoretical level, Roach et al., (2008) outlined three methods for 

establishing the alignment among the policy elements of curriculum i.e. content, 

instruction and assessment systems. These are (a) sequential development (b) expert 

review, and (c) document analysis. Sequential development involves creation and 

acceptance of one policy element, which subsequently serves as a “blueprint” for the 

creation of additional policy elements. The process of expert review involves the 

convening of a panel of content experts to review the policy elements and determine the 

extent of their “match” or alignment. Document analysis involves the coding and analysis 

of documents that represent the different policy elements. Of these three approaches, 

document analysis was adopted because the other two methods are useful at curriculum 

design and developmental level. In other words, they help in creating the documents 

while on the other hand document analysis works with already existing documents. 

 

The study employed document analysis as a way of collecting data required to answer the 

first two research questions that were conceptualized at the theoretical level. As implied 

by its name, document analysis, also commonly referred to as content analysis or extant 

data analysis, refers to the processes of locating and analyzing facts or trends in already 

existing documents (Witkin & Altschuld, 1995). It is the gathering of information used in 

a formal description of the text, studying and analyzing the content and then processing 

and understanding of the contents in the documents so that conclusions may be drawn. 

According to Pershing (2002a), document analysis therefore refers to the analysis of any 
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type of document for the purpose of gathering facts. With specific reference to rational 

curriculum planning and design, Knight (1995), refers to this process as curriculum 

auditing (of the intended curriculum) and argued that it is a good way to stimulate 

discussion about curriculum coherence. This kind of analysis can be used to draw 

inferences about the degree to which pedagogic practices are likely to be in sync with the 

curriculum goals which have been framed in response to the expectations of the citizens 

for whom policy is designed. The choice of this method was premised on the view that 

documents can contribute a different level of analysis on the gap between official policy 

and practice (Bryman, 1989).  

3.3.3 ANALYTICAL TOOL FOR RESEARCH QUESTIONS 1 AND 2 
 

In looking for coherence through the curriculum documents, the guiding principle was to 

understand the key goals underlying the reformed FET mathematics curriculum and 

inevitably the first question to be addressed was; “What are the desirable goals in this 

change and of what quality are they?” The term ‘desirable’ was being used in this context 

of something that was being championed or advocated for. The cognitive demand tools 

would in this case determine what was advocated for or the desirable goals in the new 

curriculum. This would be achieved through the analysis of content standards and 

observing where the emphasis was with specific attention to lower/higher order skills and 

procedures. If the content standards were clustered say around the lower order or the 

higher order skills and processes; then that which was emphasized would constitute the 

‘advocated for’ or ‘desirable goals’ of the curriculum in this study. The analysis would 

then move on to find out how aligned the documents (theory) and classroom interactions 

(practice) were with reference to the desirable goals. The decision for this single focus 

approach to what is ‘desirable’ was guided by empirical evidence which suggests that 

most approaches to study alignment begin with one set of standards/goals and then 

measure the extent to which assessments are aligned to that specific set of standards/goals 

(Liang & Yuan, 2008). Their findings from such approaches provide important lessons 

for those pursuing alignment analyses in standards-based reform in that the analysis 

remains focused.  
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In the South African context, the claim made in the curriculum is that the critical 

principles of social transformation and high knowledge and high skills were drawn from 

the new constitution of the Republic. It is further claimed that the mastery of these higher 

level mathematical skills and knowledge depended to a large extent on mathematical 

processes such as investigating patterns, formulating conjectures, arguing for the 

generality of such conjectures and formulating links across the domains of mathematics 

to enable critical thinking (DoE, 2008a, p. 69). The Learning Programme Guidelines 

(Department of Education, 2008, p. 11) specify that; 
As a way to achieve the mathematics learning outcomes, teaching and learning in 
mathematics focuses on the development of learners towards the four Learning Outcomes. 
Central to the attainment of the learning outcomes is the development of mathematical 
process skills e.g. investigating, conjecturing, organizing, analyzing, proving, problem 
solving, modelling. 

 

The cognitive demand tools designed by Edwards and Dall’Alba (1981) as well as those 

by Porter’s (2002, 2004, 2007) categorise these skills as belonging to the higher order 

level. The interest in this study was to find out to what extent the curriculum documents 

were consistent in articulating this message and how far teacher practices were creating 

opportunities for learners to develop the high knowledge and skills.    

 

While Wilson and Bertenthal (2005), Ottenvanger et al., (2007), and Squires (2009), have 

all contributed to the framework for understanding curriculum alignment in this study, 

their frameworks offered less precise tools for measuring the extent to which alignment 

of cognitively demanding mathematics is evident in the policy documents. Because of the 

centrality of alignment to current policy logic, for the past 25 years researchers have been 

trying to develop such tools for measuring curriculum content and alignment. Porter et 

al., (2002, 20042007) have developed such a tool, with descriptors as discussed before, 

which differs from other efforts to measure the content of instruction and alignment in 

two important ways. It is premised on the increasing evidence that estimating curriculum 

alignment based on both knowledge and cognitive processes is superior to other methods 

of estimating alignment (Gamoran, Porter, Smithson & White1997).  
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These researchers have argued that;  
...to predict student achievement gains from knowledge of the content of instruction, a 
micro-level description of content that looks at cognitive demands by type of knowledge is 
the most useful approach considered to date (p. 331).  

 

They further posit that a micro-level description of content was needed in order to be able 

to make more precise alignment decisions  (Porter, et al., 2007). Porter’s tools work on 

the presumption that independent and replicable descriptions of the content of 

instructional practice and instructional material can be made. A single language for 

measuring content ensures description at a consistent level of depth and specificity. The 

single language then generates data counts that allow alignment to be measured across a 

large number of instructional materials and instructional practices. The procedure 

developed by Porter has demonstrated a strong relationship between alignment and 

student achievement gains and is one of the few approaches to alignment analyses 

approved by both the Institute for Education Sciences (IES) and the National Science 

Foundation (NSF) (Webb2005).  

 

Using that frame this study then analysed the content (assessment) standards of the 

NCSM at Grade 11 level. Using an extract from the assessment standards for Grade 11 

the table below shows how each of the assessment standards were categorized following 

Porter’s tool and how the total of 10 data counts for LO1 (Number and Number 

Relationships) were arrived at. The interpretation given to 11.1.1 for example was that 

‘understanding that not all numbers are real’ required the learners to recall, recognise, 

identify - hence memorise (coded A) the definition and characteristic features of a real 

number and perhaps recall the existence of the set of numbers referred to as the 

imaginary numbers. In 11.1.2, 11.1.3 and 11.1.4 the interpretation given was that these 

were examples were learners are required to compute or solve routine problems – hence 

perform procedures (coded B). Both 11.1.2(c) and 11.1.5 required the learners to use 

representations to model mathematical ideas or to describe – hence communicating 

understanding of concepts (coded C). In 11.1.6 this was a case of solving non-routine 

problems (coded D). Lastly in 11.1.3 (a),(b) and (c) the assessment standards required the 

learners to determine the truth of a mathematical pattern, make and investigate 
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mathematical conjectures, provide proof of a conjecture – hence (coded E). All the other 

assessment standards for the remaining three learning outcomes (LO2, LO3, and LO4) 

were coded in a similar way.       
Table 3.1  How coding of assessment standards for Grade 11 was done 

WE KNOW THIS WHEN THE LEARNER IS ABLE TO: 

Assessment standard  code 

11.1.1 Understand that not all numbers are real  A 

11.1.2  

(a) simplify expressions using the laws of exponents for rational exponents 

B 

(b) Add, subtract, multiply and divide simple surds B 

(c) demonstrate an understanding of error margins   C 

11.1.3  

(a)  Investigate number patterns hence  

 

 

E 

(b) make conjectures and generalizations E 

(c) provide explanations and justifications and attempt to prove conjectures E 

11.1.4 Use simple compound growth formulae to solve problems B 

11.1.5 demonstrate an understanding of different periods of compound 

growth and decay 

C 

11.1.6 solve non-routine unseen problems D 

 

This resulted in a mathematical process oriented categorization, based on Porter’s tools. 

The table then ended with 1 data count in column A, 3 data counts in column B, 2 data 

counts in column C, 1 data count in column D and 3 data counts in column E for LO1 

(Number and Number Relationships). The complete table of all data counts for all the 

learning outcomes is shown below.   
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Table 3.2   Matrix for Mathematics Assessment Standards Grade 11(adapted from Porter, 2002)  

 

So, the way the cognitive demand table above is interpreted is that columns A and B are 

the constituencies of lower order skills and processes while columns C, D and E 

constitute higher order skills and processes based on the definitions of higher/lower order 

thinking as discussed in the previous chapter. There were 6 scores for example, in the 

assessment standards for (Number and Number Relationships) that were identified as 

higher order requiring learners either to communicate understanding, problem solve or 

conjecture, generalize and prove. If one were to take totals of columns C (11), D (19) and 

E (20) for example, it might be clear how this tool was useful in terms of answering the 

first research question for this study i.e. “What is the level of cognitive demand in the 

mathematical concepts, processes and skills as articulated in the written and tested 

NCSM at FET level?” Not only did this tool enable this study to answer this first research 

question, but the same tool also became useful in answering the second research question, 

“How coherent are the curriculum documents as they articulate these skills and 

LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 

Lower Order   Higher Order  

 

Memorize 

 

 

 

A 

 

Perform 

procedures 

 

 

B 

 

 

 

 

 

Total 

 

Communicate 

understanding 

 

 

C  

Solve 

non-

routine 

problems 

 

D 

 

Conjecture/ 

generalize/ 

prove 

 

E 

 

 

 

 

 

Total 

(Number and 

Number 

Relationships)hips 

1 3 4 2 1 3 6 

Functions and 

Algebra 

3 4 7 5 5 5 15 

Space, Shape and 

Measurement  

0 1 1 0 10 9 19 

(Data Handling 

and Probability) 

2 2 4 4 3 3 10 

TOTAL 6 10 16 11 19 20 50 
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knowledge?” This would be achieved through comparison of the cognitive demand 

scores from another table similar to this one but with scores for the exemplar papers.  

 

The central idea behind Porter’s tool is the development of a uniform language which 

makes it possible to build what he has called an ‘alignment index’ (Porter, 2002). His 

alignment index P was calculated using the following formula: 

Alignment Index P = 1 -
2

∑ − yx
, where x denotes cell proportion in one matrix and y 

denotes cell proportion in another matrix. So in this case once the content matrix for the 

Assessment Standards (written document) was done another matrix for the examination 

papers (Standardized tests) was developed using the same cognitive demand table. The 

corresponding cells in each of the two matrices were then compared to arrive at the 

alignment index. Measuring alignment became a question of the extent to which the 

proportions in one content matrix matched the proportions in another content matrix. The 

possible values of this alignment index range from 0 (no alignment at all) to 1.0 (perfect 

alignment). The argument in favour of this type of alignment analysis was that it 

provided a relatively precise mathematical procedure for calculating the degree of 

alignment or similarity between any two descriptions employing the same descriptive 

language (Edwards2010; Squires, 2009).   

3.3.4 VIDEO RECORDING TO ANSWER QUESTION 3  
 

Traditionally, attempts to measure classroom teaching have used teacher questionnaires 

because they are economical, simple to administer and usually can be transformed easily 

into data files ready for statistical analysis. However using questionnaires has its own 

limitations which researchers believe could be overcome by direct observations of 

classrooms. According to Rich and Hannafin (2009), video technologies afford largely 

untapped potential to support and document the processes of teaching practices. These 

tools provide potentially important methods for scrutinizing instructional decisions within 

specific teaching contexts. Video is generally thought to be a valuable medium for 

exploring teaching and learning because it captures much of the richness of the class 

setting (Seago, 2004). There is widespread agreement that researchers and teachers will 
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gain more from watching authentic, realistic classrooms than from watching staged 

interactions (Sherin, Linsenmeier, & van Es, 2009). According to Hiebert at al.,(2003), 

video offers a promising alternative for studying teaching in that the method has 

significant advantages over other means of recording data for investigating teaching. 

Some of the advantages are that video; 

(1) enables the study of complex processes like teaching/learning 

(2) enables coding from multiple perspectives 

(3) can provide the time and space needed to reflect on classroom-interactions 

(4) stores data in a form that allows new analyses at a later time 

(5) facilitates integration of qualitative and quantitative data 

(6)  facilitates communication of the results 

Because of these anticipated benefits, video recording was chosen as the method for 

collecting data to answer the research question 3 that was conceptualized at the practical 

level.  

3.3.5 ANALYTICAL TOOL FOR QUESTION 3  
 

The aim of classroom observations was to examine both quantitatively and qualitatively 

how teachers structured students’ opportunities for learning the higher order skills and 

processes. In this regard opportunity for learning was less a measure of curriculum 

coverage, than an analysis of the didactic strategies exploited and mathematical 

knowledge and skills encouraged by teachers (Andrews, 2009). Guided by an important 

finding from the TIMSS Video Study and the literature detailed in the previous chapter, 

that explicitly making mathematical connections during mathematics class positively 

impacted students opportunities to learn (Hiebert et al.2003) the analytical tool focused 

on this aspect as a key feature within higher order cognitive demand. In developing an 

analytical tool for identifying mathematical connections in the teacher utterances and 

activities, this study first analysed a number of conceptualizations of mathematical 

connections from different perspectives. What was evident from literature were the 

following conceptualisations; equivalent representations in mathematics as a form of 

connection (Hodgson, 1995; Weinberg, 2001), abstraction as a form of connection (Noss 

& Hoyle, 1996), concept to concept links (Zazkis, 2000), unifying themes as a form of 
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connection (Coxford, 1995), modelling as a form of connection (National Council of 

Teachers of Mathematics, 1989), problem solving as a form of connection (Evitts, 2004) 

and different functional representations as another form of mathematical connections 

(Boaler, 2002).   

 

Businskas (2008), suggested a model with 5 forms of mathematical connections which 

encompassed these orientations. Her proposition was that basically connections could be 

viewed from three perspectives (a) as a relationship between mathematical ideas (b) as a 

relationship that is constructed by the learner and (c) as a process that is part of the 

activity of doing mathematics. She further argued that all three ways of considering 

connections were viable but her specific interest was in connections as an idea, as a 

product of mental activity from the point of view of the teacher. Businskas’ (2008) study 

was underpinned by the view that teachers have to understand mathematics as an 

interrelated web of ideas (connections as a feature of mathematics) themselves before 

they can devise strategies and examples (connections as a process of making 

mathematical relationships) that would make it easier for students in turn, to build such 

relationships.  The questions guiding her study were: “How do secondary mathematics 

teachers conceptualize mathematical connections? What are the characteristics of the 

explicit mathematical connections that teachers are able to articulate?” From her study 

she was then able to summarize the types of mathematical connections that teachers 

articulated with illustrative examples, hence developed this model inductively as follows:  
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Table 3.3 FORMS OF MATHEMATICAL CONNECTIONS 
 FORM OF 

CONNECTION 
CODE DESCRIPTION EXAMPLE 

 
 
 
 
 
1 
 

 
 
 
 
 
Different 
Representation 

 
 
 
 
 
DR 
 

Alternate representation: i.e. A is an 
alternate representation of B  

The two representations 
are from different modes 
like symbolic, graphic, 
pictorial, manipulative, 
verbal, written etc.   

Equivalent Representation: i.e. A is 
equivalent to B  - equivalent here is 
used to distinguish from representations 
in different forms and so refers to 
concepts that are represented in different 
ways within the same form of 
representation  

 3 + 2 is equivalent to 2 +3 
is equivalent to 5;  
f(x) = ax2 + bx + c is 
equivalent to f(x) = a(x –
p)2 + q. In these examples 
both A and B are symbolic 

 
 
 
 
2 

 
 
 
 
Part-whole 
Relationship  

 
 
 
 
PWR 

A is included in (is a component of) B; 
B includes (contains) A i.e. this is a 
hierarchical relationship between two 
concepts 

A vertex is a component 
of a parabola (and a 
parabola contains a vertex) 

A is a generalisation of B; B is a 
specific instance (example) of A. This is 
another kind of a hierarchical 
relationship  

ax2 + bx + c = 0 is a 
generalisation of 2x2 + 7x 
+ 3 = 0 (quadratic 
equations) Part-whole 
relationships include 
examples, inclusions and 
generalisations. 

3 Implication IM A implies B (and other logical 
relationships) i.e. this connection 
indicates a dependence of one concept 
on another in some logical way. If 
....Then.... 

The degree of an equation 
determines the maximum 
number of possible roots 

4 Procedure P A is a procedure used when working 
with object B  

 Making a tree diagram is 
a procedure used to 
describe a sample space 
(probabilities). 

5 Instruction-
oriented 
Connection 

IOC A and B are both prerequisite 
concepts/skills that must be known in 
order to understand/learn C. This form 
of connection also includes extension of 
what students already know - linking 
new concept to prior knowledge 

Factors and multiples are 
concepts that must be 
known in order to 
understand working with 
fractions    

 

 

It is important to note that Businskas (op cit) did not provide a table with codes like the 

one above – both the table and the codes were added by me as I will elaborate shortly. 

The codes were developed from the phrases that she used to describe these connections 

e.g. code IOC from Instruction Oriented Connections. She however provided both a 

description and an example for each form of connection that appeared identifiable in a 
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typical mathematics classroom situation following the analyses she made of teachers’ 

responses. 

 

Businskas’ goal was to identify emerging themes in teachers’ understanding of 

mathematical connections in the context of thinking about their practice. The assumption 

was that it was possible to identify connections and then explicitly describe all their 

relationships to diagram a web similar to a concept map which could then become the 

reference point for instruction and assessment. My study could be viewed as extending 

Businskas work in that I was interested in looking at how teachers acted in ways that 

promoted learners’ building of mathematical connections as conceptualized by teachers 

in Businskas’ (2008) study. In that view these types of connections became the reference 

point for trying to understand instruction in the context of new reform in some selected 

South African FET schools.  

 

The decision to make Businskas connections as the reference point was reached after 

considering that these were descriptions of the mathematical connections that were 

prevalent in teachers’ descriptions of their conceptualisations of mathematical 

connections based primarily on their classroom experiences with learners i.e. classroom 

based. So I saw potential in that these connections were likely to feature prominently in 

my participants’ lessons thereby allowing richer analyses of how the mathematical 

connections were enabled or constrained.    

 

Another reason was that the model appeared robust within Businskas’ study. The 

connections identified were not constrained by the topic as the study was able to capture 

a wide range of mathematical connections that teachers articulated across a span of 

mathematical topics from number theory, geometry, trigonometry, algebra calculus and 

probability (Businskas, 2008). The model was field tested and was found to be 

applicable. It also attempted to bring mathematical connections to a fine grain level 

(which teachers need in the South African classrooms) when compared with prior 

research with similar foci e.g. the mathematics education traditions of Europe (METE) 

project (Andrews, 2009). This argument can be supported using one example from the 
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METE project where a code (SK) for structural knowledge was developed. (SK) was 

identifiable through teacher emphasizing connections between different mathematical 

entities but the term ‘different mathematical entities’ seems rather too broad yet in 

Businskas model the same notion of structural knowledge appears to have been captured 

more precisely by breaking it down into specific forms of connections, supporting the 

argument that the model has finer grains of mathematical connections.   

 

Another reason for opting to start with Businskas’ model was its potential to capture 

teachers’ pedagogical content knowledge of connections through the different definitions 

or representations that they made. Prior research e.g. METE project (Andrews, 2009), 

Learner Perspective Study (Clarke & Hoon2005)  and TIMSS 1995 & 1999 Video 

studies (Hiebert et al.2003) which also used this higher order cognitive demand 

framework seemed to work on the presumption that teacher’s subject matter knowledge 

was generally good. In fact in the TIMSS Video Studies the teachers who took part were 

exemplary mathematics teachers from high achieving countries and in the METE project 

the researchers were explicit in that the sequences of lessons were taught by teachers 

regarded locally as effective in the manner of the learner’s perspective study (Andrews, 

2009). Within the NCSM itself, Parker (2004), posited that there was this same 

presumption: 
.... The national curriculum statement Grades 10 – 12 ...visualizes teachers who are 
qualified, competent, dedicated and caring. They will be able to fulfil the various roles 
outlined in the Norms and Standards (DoE, 2003b, p. 5) 

 

However, in the South African educational terrain literature abounds that suggest 

teacher’s subject matter knowledge is weak (Adler, 2009; Brodie & Pournara, 2005; 

Graven, 2005; Harley & Wedekind, 2004; Howe, 1999; Long, 2007a; Taylor & 

Vinjevold, 1999). Considering that literature also suggests that studying teachers’ 

pedagogical efforts to promote the making of mathematical connections necessitates 

considering the intersection of three frameworks – their subject matter knowledge, their 

general pedagogical knowledge and their specific pedagogical content knowledge 

(Shulman, 1986), it was considered important for this study to look for a model that 

would capture teacher’s subject matter knowledge of the mathematical connections.  



 113 

 

A number of indicators were available for looking into the teachers’ subject matter 

knowledge of the connections. Ferrini – Mundy et al. (2007) for example, posited that in 

mathematics education research it was common and plausible to assume that secondary 

school mathematics teachers have had some exposure to more advanced versions of 

mathematical ideas than those that appear in the secondary curriculum. In that sense 

teachers had to ‘trim’ mathematical or contextual content in a way that was 

mathematically acceptable but which also left intact the content to be learned. Ferrini – 

Mundy et al (op cit) see this trimming as; 
… a transformation of mathematical ideas from a more advanced or rigorous form to a 
form that preserves the essence but that will be accessible to students, considering their 
backgrounds, understanding, and knowledge. Trimming involves scaling down, and 
intentionally and judiciously omitting detail and modifying levels of rigour, and also being 
able to judge when a student, or textbook presentation, is trimming, and if so, whether the 
trimming is appropriate. It includes reducing one’s own mathematical understanding to a 
form that is accessible for a student, or that connects well to the mathematics students 
bring to the context. Trimming includes the interpretation and judgment a teacher must use 
in considering a textbook’s treatment of a mathematical concept or process. (p. 41 - 42) 

 

Closely related to this notion of trimming, McDiarmid, Ball and Anderson,  (1989b) 

argued that teachers were constantly engaged in a process of constructing and using 

instructional representations of subject matter knowledge which define students’ formal 

opportunities for learning about the subject matter. These instructional representations 

form a wide range of models including verbal, symbolic, graphical, concrete 

representations as well as definitions, activities, questions, examples and analogies. It is 

through the representations they select and the ways they use them that teachers convey 

messages to their pupils about both the substance and nature of the subject matter they 

teach, hence trimming.  This notion of trimming could also be related to Ma’s (1999) 

view of having a “clear idea of what is the simplest form of a certain mathematical idea” 

(p. 47). Key in this idea of trimming is that whatever mathematical decisions are made 

important mathematical features must be retained while reducing complexity in ways that 

made the content accessible to students. In trimming there is also need to anticipate later 

mathematical ideas that students will encounter. In elementary mathematics for example, 

a frequent example is how the adage “multiplying makes bigger” can cause problems for 



 114 

students when they later encounter multiplication of whole numbers by fractions between 

zero and one. 

  

From an initial analysis of data in my study it would appear this notion of trimming 

mathematical ideas for student access would be accommodated very well in Businskas 

(op cit), category of connections through different presentations (DR) – a category 

comprising 2 subcategories i.e. alternate representation and equivalent representation as 

discussed within the table of connections earlier.  Within the alternate representation 

subcategory, the two representations of a concept used are from different modes like from 

verbal to symbolic or graphic to pictorial or manipulative to written etc. On the other 

hand, within the equivalent representation subcategory, Businskas says equivalent here is 

used to distinguish from representations in different modes/forms and so refers to 

concepts that are represented in different ways within the same form of representation. 

She cites definitions of concepts when given from verbal to verbal or from written to 

written using different descriptors or words as an example of equivalent representation. 

Teachers give such equivalent and alternate representations of concepts more often in 

their interaction with the learners as McDiarmid, Ball and Anderson,  (1989b) explained 

in detail.  

3.3.6 REFINING THE CODES FOR THE ANALYTICAL TOOL 3  
 

The point of departure though was that Businskas was interested in connections from a 

static perspective as mental objects that teachers construct hence one could not possibly 

make judgement about the quality or depth-of-knowledge of that connection. However, in 

my study I was interested in connections from a dynamic view as a process of making 

such connections hence linking connections to conceptual/procedural depth. This would 

enable me to explore these mathematical connections and the quality of such connections 

(higher order/lower order levels) in the context of teacher’s actual practice.  This 

followed from the view that much of the mathematics education literature that describes 

useful activities for promoting the making of connections seems based, at least implicitly, 

on a view of making connections as a process (Businskas, 2008). Taking this view meant 
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adjusting certain components of the model suggested by Businskas to allow judgment of 

the quality in terms of higher order or lower order levels of the connections.        

 

In developing these adjustments this study also borrowed some ideas from the METE 

project which had a similar focus. In the METE project Andrews (2009) identified 

mathematical reasoning (MR) where the teacher encouraged learners’ development and 

articulation of justification and argumentation. This notion of justification and 

argumentation appeared to be critical in my cognitive demand framework in that it is 

explicitly espoused in the NCSM and it also appeared key to the distinction between 

lower order cognitive demand and higher order cognitive demand knowledge. Deep 

understanding or higher order cognitive demand is associated with showing how and why 

something works in mathematics and if the ‘why’ or justification was not explicit or 

implicit then the utterance/activity was considered superficial or of lower order cognitive 

demand e.g. just telling learners what to do without worrying about why it works i.e. just 

automating the routine.  Without necessarily including an extra (MR) code into my 

model, but building on the METE project code design, the notion of justification was 

infused into the coding following the higher order thinking descriptors discussed within 

the previous chapter. So this notion of articulation, justification and argumentation was 

then considered an indication of higher order cognitive demand or deeper understanding 

of knowledge and skills and coded at level 2.  In the TIMSS Mathematics Quality 

Analysis Group, Hiebert et al., (2003) used a similar coding system although their focus 

was on the extent to which a lesson included some development of the mathematical 

concepts and procedures. Their presentation ratings also took into account the quality of 

mathematical arguments. Higher ratings meant that sound mathematical reasons were 

provided by the teacher (or students) for concepts and procedures.  Mathematical errors 

made by the teacher reduced the ratings. A rating of 1 indicated a lesson that was 

descriptive or routinely algorithmic with little mathematical justification provided by the 

teacher or students for why things work the way they do. A rating of 5 indicated a lesson 

in which the concepts and procedures were mathematically motivated, supported, and 

justified by the teacher or students (Hiebert et al.2003). 
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However, this coding or rating of 1 - 5 lacked clarity in contextualizing it, especially in 

the absence of examples of what would constitute a connection that is partially developed 

2, moderately developed 3, or substantially developed 4. On the other hand, Andrews’ 

(2009) coding of absent 0 and present 1 appeared problematic in that coding an absent 0 

connection had the potential of bringing in subjective analyses. Coding 1 present would 

also be insufficient in terms of measuring the degree or quality of the connections. This 

study then struck some balance between these many models and developed its own 3 

level coding scheme borrowing from these other models. Because this study considered 

that it was going to be subjective and problematic to record something that was absent as 

0, in this study coding at level 0 would imply a mathematical connection that was present 

but mathematically problematic, level 1 would imply present and mathematically correct 

but superficial or routinely algorithmic with no further explanation or justification and 

level 2 present, correct and articulated (deep). 

 

Because of the complexity inherent in mathematical concepts, this study acknowledges 

that the model developed here could not possibly capture all the mathematical 

connections that could be made by teachers as they interact with their learners. Empirical 

evidence has shown that because of the one-to-many relationships between mathematical 

concepts (Ma, 1999), it was not possible to account for every conceivable form of teacher 

action and objective in relation to these connections (Andrews, 2009). However judged 

by their prevalence in teachers’ descriptions, these mathematical connections were 

considered a sufficient reference point for this study for getting at the range of cognitive 

demand levels opened up across a sequence of lessons by each teacher.   

3.3.7 EXAMPLES OF CODING USING LIVE DATA  
 

Here are some examples of how live data for this study were coded in accordance with 

these three levels and in relation to each of Businskas’ five types of connections. In one 

of the episodes from the live transcribed data, the teacher was trying to define the word 

“calculus” to the learners and she said;  

 Say for instance I mean it’s calculus it has the word calculate within it. Ok. So we 
will be calculating something but there are rules that we need to follow.  
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I found such an utterance easy to place within the connections through different 

representation (DR) category suggested by Businskas above as the teacher attempted to 

trim the concept ‘calculus’ for the learners. However, as discussed earlier trimming 

includes reducing one’s own mathematical understanding to a form that is accessible for 

students giving them a clear idea of what is the simplest form of a certain mathematical 

idea. Considering that mathematically sound definitions are critical for a deep 

understanding, this trimmed definition of calculus appears to be problematic in that it 

does not seem to offer learners a clear idea of what is the simplest form of calculus as a 

mathematical concept. Considering that the whole set of lessons for this teacher for the 

whole week were on calculus and that no other definition was given later, it is doubtful 

whether the definition given by the teacher transformed the mathematical idea of calculus 

from a more advanced or rigorous form, which it is, to a form that was accessible to the 

students. The teacher’s utterance was then coded (DR0). 

 

In another example the teacher was dealing with factorisation of polynomials and in this 

specific instance it was a quadratic expression which had to be factorised. So the teacher 

says;   

What we are going to do here is, we have got the following expression on the 
board.  (The teacher had written a2 + 14a + 48 on the board). We want to choose 
factors which when you add them they give us +14a and when we multiply them 
they give us +48. Which are the two factors? 

 

This utterance was considered to be in the procedure (P) category since the teacher was 

focusing on the process or method of identifying factors of 48 that would lead to the 

correct factorization of the quadratic expression.  The utterance was coded as P1 as it was 

considered mathematically acceptable but lacking precision in language because no 

factors of 48 can add up to 14a but there are factors that can add up to its coefficient 14 

that is 8 and 6. There was also no justification for the procedure, instead the focus 

appeared to be on ‘what to do’, but not ‘why’ we do it. 
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Prior research which has employed coding of mathematical interactions in classroom 

situations acknowledge that such methods of data collection inevitably result in multiple 

coding but importantly, the affordance of multiple coding allowed for important 

distinctions in teacher behaviours to be highlighted (Andrews, 2009).  In this study 

multiple coding was also inevitable and this last example shows how double coding was 

accommodated within the same utterance.  

 

This teacher’s lessons were focusing on expansion of brackets and then collecting and 

dealing with the like terms in the process of simplifying the expanded algebraic 

expression. At this stage the two brackets had been expanded and the teacher was now 

dealing with the collection of like times in 2a3 + a2 + a– a – 2a2 – 1. The final answer was 

presented as 2a3 - a2 – 1 but while most learners in that class saw how the + a– a 

eliminated each other some learners seemed unclear as to where the - a2 (middle term) 

was coming from. Here is what one of the learners said;   

Learner: U a2 kee? So where is that a2coming from? 
 

So the explanation that was given is as follows;     

2a3 + a2– 2a2 – 1. You see (learner’s name). You got the 2a3 then you have the +a2 
then the -2a2. It’s just like saying 1 – 2 its -1. So there it has got to be - a2. 

  

This analogy shows at least two equivalences as follows; a2 is equivalent to 1a2 and -1a2 

could also be written as -a2. Judged by the learners’ nodding of heads in agreement after 

this analogy was given, it can be argued that the analogy (equivalent representation) 

reduced the complexity of the mathematical idea in ways that made the content accessible 

to students hence it was coded DR2. The same analogy was also as an example of part-

whole relationship PWR according to Businskas model.  Part-whole relationships include 

examples, inclusions and generalisations of the form A is a generalisation of B; B is a 

specific instance (example) of A. In this analogy a2 – 2a2 was viewed as a generalisation 

of which 1 – 2 is an example. Both of them are generally showing the same reasoned idea 

of 1 a single item/thing minus 2 of the same items/things. Consistent with the view that 

high-level cognitive processes require emphasis on reasoning about and connecting ideas 
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this analogy was also considered an instance of such reasoning and connection of 1 -2 

with a2 – 2a2  hence it was coded as PWR2.   

 

Here is another episode from a lesson which was focusing on number patterns:   

Teacher: Right suppose you are given a list of numbers starting with; (Teacher 
writes on the board 3; 6; 9 ;). Somebody tell me the next number. (One learner 
says 12) Teacher: 12 he says the next number will be 12. Anybody who does not 
agree? (Teacher puts his hand up and pauses, no disagreement from the learners; 
teacher folds his arms and asks). But how do we know its 12? Suppose somebody 
comes in from a distance and says its 13. Why 12 why not 13? (Teacher names 
and points to a student to give a reason why)  

 
This episode was considered as an example of an instruction oriented connection (IOC) 

defined in Businskas’ model as including extension of what students already know. In 

this case one can notice the teacher following up on learner responses and building their 

deeper understanding from what they already know. The teacher did not just accept 12 as 

a correct answer but wanted learners to support their choice of 12 with reasons. This 

teacher utterance/episode was considered as a form of representation where the 

development and articulation of justification and argumentation appeared evident. 

Consistent with how probing for reasoning and justification has been linked with higher 

order thinking in the literature review, asking learners for justification why 12 and not 

any other value was then coded as IOC2.  

 

The last example also comes from this same set of lessons on number patterns where the 

teacher was discussing the following pattern: 3; 5; 7; 9; 11; ….. At this stage of the 

discussion the general term Tn = 2n + 1 had been generated 

 

Teacher: If our general term is linear.  Alright.  OK.  (Points to the linear 
equation Tn = 2n + 1). A linear general term will generate a sequence in which 
the first difference is constant.  OK?  This first difference is constant.  

  
3  5  7  9  11 
 2  2  2  2  

 
You’ve got 2, 2, 2, and 2 (referring to the constant difference between the consecutive 
terms)    
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This episode was considered to be an example of a connection where A implies B. 

According to Businskas model this connection indicates a dependence of one concept on 

another in some If ....Then.... logical way. In this case if it is a linear sequence then 1st 

difference is constant or alternatively if 1st difference is constant then it is a linear 

sequence. Because the teacher was not just telling the learners (rote) but did it with 

articulation and justification the episode was coded as IM2. 

3.3.8 THE FINAL ANALYTICAL TOOL FOR LIVE DATA  
 

Juxtaposed onto my lower/higher order cognitive demand framework, the first three 

forms of connections in the Businskas’ model DR, PWR, and IM captured 

utterances/activities at different levels of conceptual knowledge. The last two forms of 

connections P and IOC captured utterances/activities at different levels of procedural 

knowledge. This follows Forrester and Chinnappan’s (2010) view that procedural 

knowledge includes knowing the algorithm/method (code P) applicable to a particular 

type of a mathematical task, which if followed correctly, is guaranteed to give a correct 

answer to the task.  A second view is that procedural knowledge may also mean the 

teacher’s technique, method of performance or way of accomplishing (code IOC) i.e. the 

manner and ability with which the mathematics teacher employs the technical skills to 

teach a mathematical concept (Forrester & Chinnappan, 2010).  

 

Consistent with how lower order and higher utterances would be identified as articulated 

earlier, in the final modified model for this study, if a teacher utterance/activity/episode 

appeared to recognise an opportunity for a particular mathematical connection e.g. 

different representation (DR) then it would be coded DR0 if that connection was 

mathematically problematic. If that particular form of mathematical connection was 

recognised at a rote/superficial level it would be coded DR1, and when recognised with 

further justification and/or articulation DR2. Similarly all the other types of connections 

would be coded at these three different levels. Consistent with the view that deep 

understanding of both procedural and conceptual knowledge should be the ultimate goal 

and priority of all mathematics learning as it refers to an integrated and functional grasp 

of mathematical ideas, the conceptual/procedural distinction was not fore grounded in the 
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analytical tool. Its inclusion in the literature review was meant to enable important 

distinctions in teacher behaviours to be highlighted and richer discussions of the findings 

to be made. The final version of the analytical model for this study fore-grounded levels 

of knowledge quality and was then conceptualized thus:  

 
Table 3.4 ANALYTICAL MODEL FOR CASE STUDY 3 

FORM OF 

CONNECTION 

LEVELS OF KNOWLEDGE 

QUALITY  

Code 0 1 2 

DR    

PWR    

IM    

P    

IOC    

 

3.3.9 THE FOCUS OF THE VIDEO RECORDINGS    
 

A series of lessons on expansion of brackets of binomials and trinomials, factorization of 

binomials and trinomials, calculus and number patterns for the whole week were video 

recorded and transcribed for each of the four teachers (2 female, 2 male) from three 

different high schools around Johannesburg. In the transcriptions an utterance/activity 

was considered as a unit of analysis and both teacher and learner utterances/activities 

were numbered for easier reference. This utterance/activity was defined in the same 

manner that Andrews (2009), defined an episode which was that part of a lesson where 

the teacher’s didactic intent remained constant. Thus an utterance/activity could be as 

short as a teacher’s request for a learner’s explanation or justification, or it could be as 

long as a teacher’s explanation of a mathematical procedure together with the 

diagrams/models thereof. But unlike Andrews’ (op cit) use of the term episode to mean 

both didactic and managerial activities, in this study an utterance/activity was considered 

and coded specifically as a didactic activity.       
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Of the four sets of lessons which were video recorded, 3 were on LO2 (Functions and 

Algebra) and one set of lessons was specifically Number Patterns which is a section of 

LO1 (Number and Number Relationships).  There are a number of reasons leading to the 

choice of and the deliberate bias towards LO2 (Functions and Algebra). In the NCSM, 

this learning outcome (LO2 Functions & Algebra) is given greater weighting in that the 

distribution of marks in the Assessment Guidelines stipulates that 105 marks (70%) of the 

total of 150 marks in Paper 1 should come from LO2 (DoE, 2008b, p. 12). From the 

document analysis it was also argued that judged by the data counts in table 4.2 which 

categorized content from the written curriculum that the NCSM placed more emphasis on 

LO2 (Functions and Algebra). 

 

Besides these quantitative measures of relative emphasis, there are other forms of 

qualitative evidence in the NCSM that point to the curriculum placing more emphasis on 

LO2 (Functions and Algebra). The power of the concepts of algebra and functions is 

evident in the constitution of these concepts as being central to the acquisition of 

mathematical knowledge and its structures needed for learners to understand their world. 

For example according to the DoE (2003a, p. 12),  
A fundamental aspect of this outcome is that it provides learners with versatile and 
powerful tools for understanding their world while giving them access to the strength and 
beauty of mathematical structure. The language of algebra will be used as a tool to study 
the nature of the relationship between specific variables in a situation. The power of 
algebra is that it provides learners with models to describe and analyse such situations.     

 

Within the NCSM there are quite a number of statements which also show how this 

learning outcome (LO2) cuts across all the four learning outcomes in which FET learners 

are expected to demonstrate their achievement. Firstly within LO2 itself the relationship 

between functions and algebra is seen in that algebra serves as a tool for working 

proficiently in functions, and proficiency in both algebra and functions enables learners 

to work efficiently in four representations of mathematical activity, namely, numerical, 

graphical, verbal and symbolic. The connections among these four representations are 

made possible through proficiency in both algebra and functions. Within LO1 (Number 

and Number Relationships) the role of functions and algebra is seen in that learners are 

expected to “expand their capacity to represent numbers in a variety of ways and move 
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flexibly between representations” (DoE, 2003a, p. 12).  Within LO3 (Space, Shape and 

Measurement) the expectation is that for learners to work proficiently in their study of 

space, shape and measurement they need to use both algebraic and geometric knowledge 

which enables them to “link algebraic and geometric concepts through analytical 

geometry” and to “analyse natural forms, cultural products and processes as 

representations of shape and space” (DoE, 2003a, p. 14). Within LO4 learners engage in 

collecting, organising, analysing and interpreting data to solve related problems. It is in 

the area of data analysis and interpretation that learners begin to appreciate concepts 

learnt in LO2 (Functions and Algebra) as these concepts enable learners to “become 

critically aware of the deliberate abuse in the way data can be represented to support a 

particular viewpoint” (DoE, 2003a, p. 14). According to Mwakapenda (2008), there is 

therefore a requirement that teachers structure learning experiences and situations that 

develop these key concepts and enable learners to “experience the power of algebra as a 

tool to solve problems”(DoE, 2003a, p. 13)  

 

International literature also demonstrates the central role played by functions and algebra 

in the acquisition of mathematical knowledge. An observation made by Star and Rittle-

Johnson (2009), was that competence in algebra is increasingly recognized as a critical 

milestone in students’ middle and high school years. Algebra has always represented 

students’ first sustained exposure to the abstraction and symbolism that makes 

mathematics powerful (Kieran, 1992). In addition to its central role in mathematics, 

algebra also serves as a critical “gatekeeper” course, in that earning a passing grade has 

become a de facto requirement for many educational and workplace opportunities (Star & 

Rittle-Johnson2009).  Yet students’ difficulties in algebra have been documented in 

international assessments and there is empirical evidence to suggest that the transition 

from arithmetic to algebra is a notoriously difficult one with teachers facing numerous 

challenges (Blume & Heckman, 1997). It was after considering all these factors that the 

study wanted to find out how teachers were coping in an area which seemed to be 

emphasized both in the NCSM and in international literature yet notoriously difficult for 

both learners and teachers.  

 



 124 

The choice of a lesson sequence on Number Patterns (in LO1 in the FET curriculum) was 

guided firstly by the widely accepted belief in mathematics literature of the links that 

exist between patterns and functions (Radford, 2010; Sfard, 1991; Warren, 2006; Warren 

& Cooper, 2008).  A number of researchers are of the view that abstracting patterns is the 

basis of structural knowledge (Sfard, 1991; Warren, 2006) with some claiming that when 

one recognizes the structure of the system one engages in, explains this structure to others 

by such means as encoding it in a diagram or applying some overarching framework then 

mathematics exists (Presmeg, 1997). Students begin their study of functions in the 

primary grades, as they observe and study patterns in nature and create patterns using 

concrete models. Warren and Cooper (2008), argue that a common approach used for 

introducing algebra to young adolescents is a ‘pattern approach to algebra’ where learners 

explore patterns and express these patterns as functions and algebraic expressions. 

Radford (2010), shares a similar view that pattern generalisation is considered one of the 

prominent routes for introducing students to algebra. Students in high school then move 

to expand their knowledge of algebra as they analyze a variety of different types of 

number patterns/sequences, including arithmetic and geometric sequences, whose 

behaviour is then expressed using functional notation. In that sense it can be argued that 

through functions algebra provides the language in which to communicate the patterns in 

mathematics. The various number patterns in mathematics are formed by the functions 

that define the relation between the consecutive numbers in the series hence patterns, 

relationships, and functions continue to provide a unifying theme for studying 

mathematics in high school. 

 

There is also a long standing observation that patterns pervade every part of our lives - 

more so in mathematics - and provide a sense of order in what might otherwise appear a 

chaotic world. This pattern-based thinking, using patterns to analyze and solve problems, 

is an extremely powerful tool for doing mathematics. Students who are comfortable 

looking for patterns and then analyzing those patterns to solve problems can also develop 

deep understanding of new concepts in the same way. Because patterns provide clear 

insights into mathematical understanding it is not surprising that mathematics as a 

discipline has often been regarded as the ‘science of patterns and relationships’ (NCTM, 
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1989). In the NCSM a similar view of the nature of the discipline is that mathematics is 

based on observing patterns, with rigorous logical thinking which leads to theories of 

abstract relations (DoE, 2008a, p. 9).   

3.4 SAMPLING    
 

This study employed purposive sampling to arrive at the participants. Kerlinger (1986) 

described purposive sampling as another type of non-probability sampling where the 

characteristics of the participants are used as the basis for selection and the number of 

participants is less important than the criteria used to select them. Purposive sampling is 

characterised by the use of judgement and a deliberate effort to obtain representative 

samples by including typical areas or groups in the sample.  Purposive sampling groups 

participants according to preselected criteria relevant to a particular research question.  

 

With respect to the selection of the schools to participate on this study, a number of 

factors were taken into consideration. The study aimed at understanding how the new 

curriculum was implemented in the less privileged communities, so such communities 

formed the population from which to sample the participating schools.  The first port of 

call was the official policy documents on poverty. South African Education Department 

introduced a new policy in 2007 in which it classified schools and assigned each one a 

poverty score using data from the community in which the school is located. This 

“poverty score”, was created by assessing “income, unemployment rates and the level of 

education of the community, which are weighted to assign a poverty score for the 

community and the school (Sayed & Motala, 2009, p. 3)  This score known as a poverty 

quintile ranges from Quintile 1 (Q1) to Quintile 5 (Q5) with (Q1) being the poorest and 

(Q5) the least poor and Q1 – Q3 being no fee paying schools in Gauteng Province.   

 

So initially the study intended to identify Q1 – Q3 schools around Johannesburg. 

However it became apparent that such a criterion would be problematic. While the 

creation of a national quintile system had been welcomed, it was realized later it had its 

own problems. In some provinces such as Gauteng, some schools formerly deemed poor 

now found themselves located in the less poor quintiles (Department of Basic Education, 
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2010). This meant that the poverty score which considers both poverty of the community 

and the poverty of the school may not always accurately capture the learner population of 

the school. Searching from the archives, for other indicators of poverty, two inner city 

schools and one township school around Johannesburg were identified as possible sites 

for the study. 

 

These neighbourhoods are known for their high levels of population density, 

unemployment, poverty and crime. During the apartheid era these townships were created 

away from the city centre to house mainly black labourers, who worked in mines and 

other industries in the city. The inner city was later to be reserved for white occupation as 

the policy of segregation took root. The perennial problems of townships since their 

inception included poor housing, overcrowding, high unemployment and poor 

infrastructure. This has seen settlements of shacks made of corrugated iron sheets 

becoming part of the landscape.  

 

So taking these factors into consideration, schools dealing with these predominantly 

black communities were identified through shared information from other research 

projects that were taking place in the Gauteng Schools. Letters requesting for their 

participation were sent out, preliminary school visits were made to the schools that 

showed interest and eventually three schools were selected to participate on this study.  

3.5 VALIDITY AND RELIABILITY  
 

According to Golafshani (2003), although reliability and validity are tools of an 

essentially positivist epistemology, these concepts are viewed differently by qualitative 

researchers who strongly consider the way these concepts are defined in quantitative 

terms as inadequate. If we see the idea of testing as a way of information elicitation then 

the most important test of any qualitative study is its quality; hence the difference in 

purposes of evaluating the quality of studies in quantitative and qualitative is one of the 

reasons that the concept of reliability is irrelevant in qualitative research. Although 

reliability and validity are treated separately in quantitative studies, these terms are not 

viewed separately in qualitative research. Instead, terminology that encompasses both 
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such as credibility, transferability and trustworthiness is used. In qualitative research, the 

idea of discovering truth through measures of reliability and validity is replaced by 

trustworthiness, which is defensible and establishing confidence in the findings (Lincoln 

& Guba, 1985). Seale (1999), asserts that in qualitative research the term trustworthiness 

of a research report lies at the heart of issues conventionally discussed as validity and 

reliability while Lincoln and Guba (1985), argue that sustaining the trustworthiness of a 

research report depends on the issues, quantitatively, discussed as validity and reliability. 

So while the terms validity and reliability are an essential criterion for quality in 

quantitative paradigms, in qualitative paradigms the terms credibility, neutrality, 

consistency and applicability are essential criteria for quality (Healy & Perry, 2000; 

Lincoln & Guba, 1985).  

 

If the validity or trustworthiness can be maximized or tested then more credible and 

defensible results may lead to generalisability which is one of the concepts suggested by 

Stenbacka (2001) as the structure for both doing and documenting high quality qualitative 

research. Triangulation is typically a strategy (test) for improving the validity and 

reliability of research or evaluation of the findings.  Mathison (1988), elaborates this by 

saying; 
Triangulation has risen as an important methodological issue in naturalistic and qualitative 
approaches to evaluation [in order to] control bias and establishing valid propositions 
because traditional scientific techniques are incompatible with the alternate epistemology 
(p. 13).       

 Triangulation is defined to be a validity procedure where researchers search for 

convergence among multiple and different sources of information to form themes or 

categories in a study (Golafshani, 2003). To improve the analysis and understanding of 

others, triangulation is a step taken by researchers to involve several investigators or peer 

researchers’ interpretation of the data at different time or location. In a related way, a 

qualitative researcher can use investigator triangulation and consider the ideas and 

explanations generated by additional researchers studying the research participants.  

 

In terms of ensuring validity and reliability of this study the research employed various 

quality assurance methods. Firstly the proponents of the cognitive demand tools that were 

used provided examples of content that would go into each cognitive level which made it 
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easier for raters to reach consensus thereby increasing the inter-rater reliability. These 

tools were also presented and sharpened at PhD seminars as well as local and 

international conferences. The same tools were tried and tested by experts in mathematics 

at Senior Certificate Level (inter-rater reliability of 0,84) and were finally pilot tested by 

the researcher. Evidence of credibility is also  based on similar findings from other 

research analysing the new Matric papers e.g. (Umalusi, 2009). Although Edward’s 

(2010) research focused on the Physical Science curriculum, he used exactly the same 

tool by Porter (2002) in his analysis of the FET curriculum and the results of his 

alignment research were also used to buttress the findings of this study.   

 

The design of this study was also conceptualized with validity and reliability in mind. As 

alluded to in the methodology chapter this study employed a multiple case design with 

four teachers teaching a series of five lessons each for the whole week. It was hoped that 

if more cases were shown to support the same theory, replication could be claimed. In 

analytical generalisation, each case is viewed as an experiment, and not a case within an 

experiment. The greater the number of case studies that show replication the greater the 

rigour with which a theory has been established. Multiple case designs are preferred on 

the basis of this replication logic because multiple cases can be regarded as equivalent to 

multiple experiments. The more cases that can be marshaled to establish or refute a 

theory, the more robust are the research outcomes.  

3.6 ETHICAL CONSIDERATIONS: 
 

Educational researchers have a responsibility to ensure that in whatever research 

paradigm they work, their research should be conducted within an “ethic of respect” to 

those who participate (Clarke2004). Good research practice should therefore involve a 

partnership and whenever possible should be guided by the needs of the participants who 

should be an important concern to the researcher. So an ethical relationship in research is 

one that regards the other (participant) as an end and not as a means to an end.  

 

The following were the more general ethical considerations that were envisaged together 

with the possible strategies the researcher employed in addressing them. I first applied for 
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ethics clearance from the University Ethics Committee which was granted. Through 

letters of request to the department of education, the school principals and the participant 

teachers, the parties to this research went into a contractual agreement that the data 

collected in this research would remain confidential. I then informed the prospective 

participants through personal visits to the schools of the aims and objectives of the 

project then sought their informed consent to participate either as interviewees, 

respondents to questionnaires, or video recordings’ participants of the research.  

Participants were also informed as to where the data collected and reports thereof would 

be presented or published and that, unless it was considered of benefit to the participants 

and only after getting their approval, this research would not identify both people and 

schools by their names and communication through conferences presentations, journal 

papers and other forums would observe this anonymity throughout. Research is built on 

mutual trust, i.e. participants will provide correct information and the researcher also 

keeps no hidden agendas. This mutual trust was emphasized during communication with 

the prospective participating teachers and was maintained throughout the research period. 

The participants were also informed of their right to discontinue participation if they so 

wished.  However the researcher marketed the research and presumably all the four 

teachers identified saw value in the research evidenced by their continued participation 

throughout the period of research. 

 

The object of study in this research was teacher classroom practices, which comprise 

their actions, associated attitudes, beliefs and knowledge with reference to the NCSM at 

FET level. Because these were issues to do with the ‘image of a person’ they also raised a 

number of ethical questions like: “Whose perspective is being documented? Whose 

practice do we seek to understand and for whose benefit?” Researchers who have done 

relational educational research advise that an ethical way of doing such research would 

call for a commitment on the part of the researcher key to which was a commitment to 

reciprocity (Piquemal, 2000). Reciprocity implies that both the researcher and 

participants are involved in a relational dialogue in which they share, give and receive.  

In this study, the researcher informed the participants upfront that this study was a 

practice oriented analysis of learning where the participant teachers would, in a collegial 



 130 

manner, be observed teaching. Discussions that would follow thereof were meant to 

benefit all i.e. the researcher, the participant teacher and the participant learners. Such 

discussions offered opportunities for both reflective feedback and a launching pad for 

different and possibly better strategies leading to improved learner performance. 

Classroom events and not individual subjectivities formed the constituent elements 

through which the research intended to identify patterns of classroom practices.  This in 

turn would allow both the researcher and the participant teachers to interrogate the 

curriculum expectations and the classroom settings with respect to practices they afforded 

and constrained. The question that the research was concerned with was the extent to 

which the characteristics of higher order cognitive skills and processes as claimed in the 

national curriculum statement for mathematics were evident in classroom practices and 

what might be learned from the correspondence or inconsistency in the occurrence of 

some of the observed classroom patterns. Without an understanding of these processes, 

attempts to improve teaching practices and learning outcomes in mathematics classrooms 

in South Africa would have little chances of success. 

 

A number of ethical issues were also envisaged to emerge from both the collection and 

use of video-based data in this research.  For example the presence of a camera intrudes 

on the natural environment being studied i.e. their privacy and in a way then research 

influences the researched. So participants in this research were informed of the nature and 

purpose of the filming to help them allow their privacy to be shared by the researcher and 

therefore try to ‘act naturally’ and minimize distraction.  Another ethical issue that could 

emerge from this research is that of ownership of digital video based documents. The 

issue of the researcher’s right to use material generated from such video recordings 

during conference presentations or other forms of publications in a way impinges on both 

the participants’ intellectual property rights and the need for confidentiality (Schuck & 

Kearney, 2004). This constraint meant that if I wished to use a clip in which there was 

potential that learners or teachers could be clearly identified, I would have to find a way 

to disguise the identity of their faces.  This would be achieved through the use of video 

editing like ‘masking’. Another way of that was used to get around the problem was that 

during filming, I would concentrate on getting video footage of the activity rather than 
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the learners or the teachers.  This was also be achieved by recording them from behind so 

that they could not be identified. Alternatively, the video recordings could simply be used 

for analytic purposes only and never be shown to the public. 

3.7 SUMMARY  
 

This chapter started by justifying why the multiple-case design was appropriate for this 

study. Document analysis was employed as a method of collecting data. Porter’s 

alignment indices (quantitative techniques) were proposed for judging the level of 

cognitive demand and the level of alignment within the documents themselves (internal 

consistency) and in relation to the examination papers (external consistency). Webb’s 

(2005) categorical coherence criterion (qualitative technique) was proposed to compare 

the content within the documents themselves and against the examination papers. Video 

recording was adopted as the method for collecting data in the remaining four cases of 

teachers. The video recordings were going to focus mainly on LO2 (Functions and 

Algebra) and LO1 (Number and Number Relationships) with a specific interest on 

Number Patterns. The justification for this choice was articulated. Businskas’ (2008) 

model of mathematical connections was proposed to analyse teachers’ 

utterances/activities in relation to their potential to enable learners’ development of 

higher order cognitive skills and processes. The next chapter now presents the findings 

from the document analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
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CHAPTER FOUR – DOCUMENT ANALYSIS 
 

 

4.1 INTRODUCTION 
 
In looking for coherence through the curriculum documents, the study borrowed from 

Pershing (2002b), who advised that a document analysis should start by answering the 

question: ‘ What performance problem, quality improvement initiative, or evaluation 

criterion is to be analyzed from the documents or artefacts?’ So the analysis started by 

identifying what was espoused in the NCSM. The term ‘espoused’ is being used in this 

context of something that is being championed or advocated for, which was not being 

advocated for before - hence ‘new’. The justification for this single focus approach to 

what is ‘new’ is that most approaches to study alignment begin with one set of standards 

and then measure the extent to which assessments are aligned to that specific set of 

standards/objectives (Liang & Yuan, 2008). Their findings from such approaches provide 

important lessons for those pursuing alignment analyses in standards-based reform in that 

when there is a single focus the analysis also remains focused. This was also in line with 

Bruner’s (1960) and Whitehead’s (1929), long standing recommendations that the 

important goals should be identified and that these should be high quality goals which 

should then anchor the curriculum. 

 

Following from this question and consistent with the overall aim of the study, the second 

question aimed at examining the extent to which the documents were consistent both 

internally (amongst the documents) and externally (against the examination papers) in 

articulating this vision. Because the same set of cognitive demand tools were used to 

address both the identification of the espoused mathematics and to ascertain the levels of 

coherence in the documents, the results for those two questions are presented and 

discussed concurrently.  
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4.2 RESULTS 1 AND 2 
 

This section starts with observations made about developmental coherence. The concept 

of developmental coherence as discussed in the previous sections of this study was 

viewed from two perspectives. Within the documents it can be viewed in terms of 

whether the content is based on a progressive or hierarchical structure consistent with the 

logical nature of the discipline. The decision to look across the three grades (10 – 12) at 

FET level was taken on the premise that richer analysis of development coherence in 

terms of logical progression and hierarchical development of content would best be 

achieved by looking across the grades. An extract of the assessment standards is provided 

in a table below to highlight some of the observations made from this document analysis. 

Notice again that in the South African context the term Assessment Standards is not used 

in the context of the tested curriculum but it actually refers to what would be called 

content standards in other contexts. In that sense Assessment Standards are actually part 

of what is being considered as the written curriculum in this study. 

 

The table below is an extract of Assessment Standards compiled from the NCSM 

(Department of Education, 2003, pp. 16 - 21) across (Grades 10 – 12). 
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Table 4.1 AN EXTRACT FROM THE NCSM SHOWING SEQUENCING OF CONCEPTS    
LO 1 ASSESSMENT STANDARDS 

 

 

 

Number and 

Number 

Relationships 

Grade 10 Grade 11 Grade 12 

We know this when the learner is able to: 

10.1.1 Identify rational 

numbers and convert 

between terminating and 

recurring decimals. 

10.1.2 (a) Simplify 

expressions using the 

laws of exponents 

(b) establish between 

which 2 integers any 

simple surd lies 

(c) round rational and 

irrational numbers to an 

appropriate degree of 

accuracy  

11.1.1 Understand that 

not all numbers are real 

 

 

11.1.2 (a) simplify 

expressions using the 

laws of exponents for 

rational exponents. 

(b) Add, subtract, 

multiply and divide 

simple surds 

(c) demonstrate an 

understanding of error 

margins   

12.1.1 Understand that not all 

numbers are real 

 

 

12.1.2 Demonstrate an 

understanding of the definition 

of a logarithm and any laws 

needed to solve real-life 

problems e.g. growth and 

decay 

10.1.3 Investigate 

number patterns and 

hence 

(a) make conjectures and 

generalizations 

(b) provide explanations 

and justifications and 

attempt to prove 

conjectures 

10.1.4 Use simple 

compound growth 

formulae to solve 

problems 

10.1.5 demonstrate an 

understanding of the 

fluctuating foreign 

exchange rates 

10.1.6 solve non-routine , 

unseen problems 

11.1.3 Investigate 

number patterns hence  

(a) make conjectures and 

generalizations 

(b) provide explanations 

and justifications and 

attempt to prove 

conjectures 

11.1.4 Use simple 

compound growth 

formulae to solve 

problems 

11.1.5 demonstrate an 

understanding of 

different periods of 

compound growth and 

decay  

11.1.6 solve non-routine 

unseen problems 

12.1.3 (a) Identify and solve 

problems involving number 

patterns, including but not 

limited to geometric sequences 

and series 

(b) Correctly interpret sigma 

notation 

(c) Prove and correctly select 

formula for …  

12.1.4 (a) Calculate the value 

of n in the formula 

(b) Apply knowledge of 

geometric series to solve….. 

12.1.5 Critically analyse 

investment and loan options… 

12.1.6 Solve non-routine , 

unseen problems 
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If one looks at the structure of the standards one could immediately notice a prima facie 

evidence of the concept of sequential development that Webb (2005), referred to. 

Sequential development meant developing documents in sequence so that the first 

document is aligned and used as reference for the second document. Looking at this table 

one could notice that the Grade 10 standards build on to the Grade 11 standards which in 

turn also build on to the Grade 12 standards. This can be evidenced by the fact that the 

assessment standards for each grade are placed against those of the next grade allowing a 

one to one match of the items to be made as one progresses from Grade 10 right through 

to Grade 12.   

 

Judged by the descriptors of lower and higher order cognitive demand given in the 

literature earlier, one could notice that there is some evidence of developmental 

coherence within the grades. For example in Grade 10 the standards get more cognitively 

demanding from 10.1.1 identify rational umbers, 10.1.2 simplify expressions 10.1.3 

investigate number patterns, 10.1.4 use simple compound growth formula to solve 

problems 10.1.5 demonstrate an understanding of the fluctuating foreign exchange rates 

10.1.6 solve non routine problems. Identifying rational numbers would denote a recall 

skill which is at the lowest end of the cognitive demand scale of the grade 10 content, 

while solving non routine problems would denote a higher order cognitive skill. 

Developmental coherence can also be noticed in that as the assessment standards progress 

from one grade to the next they appear to become more cognitively demanding going up. 

For example the item Grade 10.1.5 says demonstrate an understanding of the fluctuating 

foreign exchange rates, Grade 11.1.5 says demonstrate an understanding of different 

periods of compound growth and decay, Grade 12.1.5 says critically analyse investment 

and loan options. One can notice that the assessment standards, at least within a learning 

outcome, articulate concepts and skills that are progressing from lower to higher order 

both within the grades and from one grade to the other.  
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This seems consistent with policy rhetoric which suggests conceptual progression in three 

stages i.e. stage 1 subject framework, stage 2 work schedule and stage 3 lesson plan. 

According to the Learning Programme Guidelines, 
 The subject framework (stage 1) should indicate the increasing depth of difficulty across 
Grades 10 – 12. Progression in a grade (stage 2) should be evident in the increasing depth 
of difficulty in that particular grade. Grade specific progression is achieved by 
appropriately sequencing the groupings of the integrated learning outcomes and 
assessment standards in the work schedule. In the individual Mathematics classroom 
(stage 3) increasing depth of difficulty should be shown in the activities and lesson plans 
(Department of Education, 2008, p. 16).  

 

Pages 22 – 48, of the learning programme guidelines then provide some examples of 

work schedules for the different grades. Looking through the schedules one could notice 

that from week 1 through to week 4 there is evidence of promotion of multiple 

representation (numerical, verbal, graphical and symbolic) and there is a deliberate 

attempt to promote the development of higher order thinking/reasoning skills (make and 

test conjectures then generalize the effects of the parameters…). What stands out clear in 

all the examples is the continuous intention to have progression from lower order to 

higher order and the multiple representations of mathematical concepts as the espoused 

approaches to learning and teaching of mathematics.  

 

However within the same structure of the standards one could also notice that there is a 

clear focus on performance descriptors yet an equally conspicuous lack of specification 

of content is evident. For example looking at 10.1.3 Investigate number patterns and 

hence (a) make conjectures and generalizations (b) provide explanations and 

justifications and attempt to prove conjectures, one can notice that the same descriptors 

are used at the next grade level 11.1.3 Investigate number patterns and hence (a) make 

conjectures and generalizations (b) provide explanations and justifications and attempt to 

prove conjectures. Similarly the last set of standards across the three grades in the table 

above, 10.1.6 says solve non-routine, unseen problems, 11.1.6 says the same thing solve 

non-routine, unseen problems and 12.1.6 says exactly the same thing solve non-routine, 

unseen problems. Falling back on Newman’s point as discussed in chapter 2, in the 

absence of specification of ‘what’ is being investigated, solved or explained at the 

different grades policy rhetoric might be constrained in claiming developmental 
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coherence or progression between grades in such circumstances. So while the learning 

outcomes are designed to apply across all grades from R to 12, they have been heavily 

criticised for creating artificial similarities around what is learnt at different levels (Dada, 

et al., 2009). Critics have pointed to lack of specificity and detail in content because 

outcomes are specified in a general and often generic way.  

 

This seems to confirm why for the last ten years, (OBE) has been under persistent attack 

in South Africa. A wide range of both local and international research argues that 

outcomes inhibit the clear specification of what content, concepts and skills needed to be 

taught and learnt (Donnelly, 2005; Jansen, 1998; Muller, 2004, 2005; Muller & 

Subotzky, 2001). According to Donnelly (2005),  what results from an (OBE) curriculum 

are curriculum and assessment descriptors that are often vague, ambiguous, difficult to 

measure and low in academic content (p. 38).  There is evidence that teachers at these 

different grade levels struggle to make sense of some of these requirements yet one key 

criteria for considering curricula is the extent to which they make available to teachers 

statement which are “clear, succinct, unambiguous, measurable, and based on essential 

learning as represented by subject disciplines” (Donnelly, 2005, p. 8).  So while there are 

some indications of a system that takes into account what is known about how students’ 

mathematical understanding develops over time, the NCSM also appears to lack 

specificity on the mathematical content knowledge, abilities and understanding that are 

needed for learning to progress at each stage of the process.  

 

Having said that about the structural links that appear to be evident in the content 

standards the discussion now moves into more quantitative ways that were used to judge 

levels of alignment. In doing so the study acknowledges that the Assessment Standards 

represent only a summarised and therefore small sample of the intended curriculum 

because of lack of detail alluded to earlier. Similarly, examination papers are also by 

nature a small sample taken from the intended curriculum. Because this study analysed 

the level of alignment using mainly the assessment standards and 2008 exemplar papers 

as the major source documents, inevitably the results are based on a small sample of the 

intended curriculum. The decision to sample only the 2008 exemplar papers was made 
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due to the fact that at the time of doing the document analysis, no national examination 

based on the new FET curriculum had been written yet. Due to its relatively small size, 

this subsample of the 2008 exemplar papers might not be representative of the entire 

sample of the FET mathematics curriculum. The results are therefore raw percentages 

rather than weighted percentages and ratings shown in the figures are descriptive in terms 

of the relationship that existed between the 2008 exemplar papers and the assessment 

standards. With no statistical comparisons having been made the figures might therefore 

have low inferential power. However in order to ensure validity and reliability in the 

findings they were also corroborated with findings from other research with a similar 

focus.  

 

When coding data from the content standards and the exemplar papers, two experts were 

consulted - one who sets papers for FET National Examinations and one who is a 

moderator of these papers making a total of three raters with the researcher. This 

followed Lombardi et al., (2010), who recommended that most alignment studies use 

between three and ten expert raters and the error attribute to these raters should be as 

small as possible. There was a debriefing with the researcher and the two experts in order 

to come to a consensus as to what content would be coded under each of the cognitive 

levels of the tool.  Coding of the content standards was relatively straight forward in view 

of the fact that, in the absence of content, these are stated mainly in the form of 

descriptors such as identify, simplify, investigate, and provide an explanation and 

justification for. These descriptors had an almost perfect match with the descriptors in 

Porter’s cognitive demand tool as discussed in chapter 2, (p77) such that there was very 

little reinterpretation if any to be done by coders.   

 

The Matrix X in table 4.2 below first gives the data counts showing how the items in the 

Grade 11 curriculum standards were coded with respect to the different categories.  
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Table 4.2   MATRIX X FOR DATA COUNTS OF ASSESSMENT STANDARDS GRADE 11 
LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 
Lower order level  Higher order level 

 

A 

 

B 
 

Sub-

totals 

 

  

 

C 

 

D 

 

E 

 

F 

 

Totals  

(Number and 

Number 

Relationships)hi

ps 

1 3 4 2 1 3 6 

 

10 

Functions and 

Algebra 

3 4 7 5 5 5 15 22 

Space, Shape 

and 

Measurement 

0 1 1 0 10 9 19 20 

(Data Handling 

and Probability) 

2 2 4 4 3 3 10 14 

TOTAL 6 10 16 11 19 20 50 66 

 

The decision to use Grade 11 standards was made after taking a number of validity and 

reliability issues into consideration. Firstly from the document analysis there is evidence 

that the design features of the assessment standards are such that each grade standards are 

placed against those of the next grade allowing a one to one match of the items to be 

made as they progressed from Grade 10 right through to Grade 12. Such a design feature 

results in similar numbers of items falling into each category on the cognitive demand 

scale such that any of the grade curriculum standards (grades 10 – 12) which were so 

sequentially developed would have produced a similar table above - hence validity and 

reliability of data would not be compromised.  

 

Another consideration was that Porter’s alignment index can best be described as a 

measure of relative emphasis (Porter, et al., 2007) in that their cognitive demand tool 

does not directly compare content in two different documents. What it does is that it 

places content for each document into cognitive demand categories based on the 



 140 

descriptors discussed in chapter 2, then compares the relative emphasis of the two 

documents. That way it was possible to compare a Grade 1 curriculum with say a Grade 6 

curriculum.  Similarly my study was not comparing Grade 11 content standards directly 

with the content in the Grade 12 Exemplar papers but in accordance with this tool, 

content in Grade 11 curriculum was first placed into cognitive demand categories 

independent of the exemplar papers then the same was done for the exemplar papers. It 

was only after doing this that an alignment index (measure of relative emphasis) was 

calculated. But I have also argued that the structural designs for the Grade 10, 11 and 12 

content standards are the same - hence a similar alignment index (measure of relative 

emphasis) would still have been obtained if any of those grades’ 10 – 12 content 

standards had been compared with the exemplar papers. This should allay fears about 

credibility of the data and the results thereof.   

 

The other reason for using Grade 11 curriculum standards was that classroom 

observations were to be done in Grade 11 classes following standard practice in South 

Africa that recommends that research be done in non examination grades. A Grade 12 is 

considered as a writing class in the sense that it is where standardised testing at FET (end 

of phase) level is done. The concern generally is that allowing researchers to use 

learners/teachers as research participants in such classes might interfere with their 

preparations for the final examinations. So in terms of tracing the translation of the 

written/intended curriculum into the taught curriculum the Grade 11 curriculum standards 

were used so that richer and more informed comparisons would be made between data 

obtained from classroom observations and what was in the written curriculum.        

 

So going back to the table of coded data above, the way Matrix X in table 4.2 is 

interpreted is that there are 5 items for example, in the assessment standards for 

Functions and Algebra, 9 items for Space, Shape and Measurement that require learners 

to conjecture, generalize and prove. There were two major areas of interest in this table 

4.2  i.e. data counts in relation to learning outcomes  and data counts in relation to lower 

order level and higher order levels. The data counts in relation to learning outcomes 

would enable me to identify in which learning outcome the NCSM placed more 
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emphasis. The intention was to focus classroom observations on a learning outcome that 

was considered relatively more important in the NCSM.  Analysis of data counts in 

relation to cognitive demand levels would enable judgement to be made on whether or 

not high quality goals were espoused. 

 

Looking across the rows of learning outcomes, it would appear the NCSM places more 

emphasis on LO2 (Functions and Algebra). It has the highest total of 22 counts. Having 

done this comparison of data counts by learning outcomes the next thing was to attempt 

to answer the first research question of this study; “What levels of cognitive demand are 

evident in the mathematical knowledge and skills as articulated in the written 

curriculum?”  Cognitive demand levels are represented by the columns from A lowest to 

E highest. An analysis of those totals of columns reveals the following A = 6, B =10, C = 

11, D = 19, E = 20. The columns A and B comprising data counts at lower order levels 

have a total of 16 counts while columns C, D and E comprising data counts at higher 

order levels have a total of 50 counts. The skewness towards these higher order level 

categories appeared more pronounced in LO3 Space, Shape and Measurement where 

there were 19 scores in the three categories C, D and E against 1 in column B (lower 

order level) representing a 95% bias towards these higher order level categories. This 

data count alone seemed to affirm the pronouncement in the Learning Programme 

Guidelines (LPG) that:  
As a way to achieve the mathematics learning outcomes, teaching and learning in 
mathematics focuses on the development of learners towards the four learning outcomes. 
Central to the attainment of the learning outcomes (LO’s) is the development of 
mathematical process skills e.g. investigating, conjecturing, organizing, analyzing, 
proving, problem solving, modelling (Department of Education, 2008, p. 11).  

 

However caution should also be taken in the interpretation of these data counts in view of 

the lack of content specification that was alluded to earlier. Suffice it to say judged by 

these data counts one can argue that the NCSM’s espousal of high order level skills and 

processes is evident within the assessment standards.   

 

After having completed the coding of data in Matrix X table 4.2, these data were 

processed for proportional quantification. This quantification process transforms the data 
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counts into proportional values e.g. cell A1 or (1,1) transforms thus:  
66
1 = 0 where 1 is 

the value in the cell and 66 is the total of such cell values (16 lower order level + 50 

higher order level) in the matrix. Notice that the proportional values are given correct to 1 

decimal place. This procedure is repeated for all other cells to give another Matrix X in 

table 4.3 now with proportional values as opposed to data counts. Once completed, the 

proportional values across all content descriptions for any given document should add up 

to 1. It is on these proportional values that alignment analyses are conducted (Porter, 

2004).  

 
Table 4.3 MATRIX X WITH PROPORTIONAL VALUES  

LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 

Lower order level Higher order level 

 

Memorize 

 

 

 

A 

 

Perform 

procedures 

 

 

B 

 

Communicate 

understanding 

 

 

C 

Solve 

non-

routine 

problems 

 

D 

 

Conjecture/ 

generalize/ 

prove 

 

E 

(Number and 

Number 

Relationships)hips 

0 0 0 0 0 

Functions and 

Algebra 

0 .1 .1 .1 .1 

Space, Shape and 

Measurement 

0 0 0 .2 .2 

(Data Handling and 

Probability) 

0 0 .1 .1 0 

 

After completing this initial coding, the next task was to code the content in the exemplar 

papers. Key to this coding process was that comparison of tasks had to be at the level of 

processes rather than content – which made comparison across Grade 11 curriculum and 

Grade 12 exemplar papers more possible since the process descriptors are the same right 

across the three grades 10 – 12 of the FET level. However, coding of content in the 



 143 

exemplar tasks was not as straight forward as coding of assessment standards since 

exemplar tasks use descriptors in context e.g. solve the equation 2x + 2 = 12. In such 

cases a decision had to be made as to whether such a solution would require a routine 

procedure (lower order) or it would be non-routine (higher order). In order to achieve 

this, I also borrowed from Newman’s (1990) suggestion that one would need to know 

something about the person’s intellectual history in determining the cognitive demand 

levels of a task in relation to that particular person. In this case the intellectual history 

was not measured by the levels of understanding of the Grade 12 learners but the 

reference point was the Grade 12 curriculum. It was possible to tell what was expected of 

Grade 12 learners intellectually by looking at the demands of the curriculum at that level 

hence determine whether or not a task was a lower order or higher order one for a Grade 

12 learner. So when coding content in the exemplar papers the cognitive demand 

descriptors as discussed in the literature review were also used in the context of each task 

to decide the category into which the task would be placed. This was also consistent with 

Newman’s (1990) point that we needed to analyse the descriptors such as define, identify, 

name, and compare in conjunction with the mathematical idea ‘the what’ and ‘the who’ 

in order to make appropriate judgement about lower order and higher order skills and 

processes. This was important because the exemplar papers specify content unlike the 

curriculum standards which appear to focus more on descriptors of processes than 

content. Just to have a feel of how the categorization was done across Porter’s 5 

categories, here are some examples of tasks taken from the 2008 exemplar papers and 

how they were coded in this study across porter 5 categories. 
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Table 4.4 EXAMPLES OF CODING OF CONTENT IN EXEMPLAR PAPERS  
EXAMPLE TASK CATEGORY 

1 Consider the sequence: 2;5;2;9;2;13;2;17;…Write down the next two 
terms given that the pattern continues 

A Lower order 
cognitive 
demand  2 solve for x: x2 – 10x = 24 B 

3 Using a search line and your graph, determine the number of Acuna  and 
Matata minibuses that will yield a maximum profit (data had been 
provided in the question) 

C  
 
 

Higher order 
cognitive 
demand 

4 
Explain why the equation 

2
11

4

4

=
+

x
x

 has no real roots 
D 

5 Calculate the amount that must be invested monthly into a sinking fund 
to cover the replacement cost of the bus in 4 years’ time if the interest 
paid by the financial institution is 9% per annum compounded monthly. 
Payments are made at the end of each month. (certain information had 
been provided). 

E 

 

Task 1 was interpreted in accordance with the distinction made by Lewis and Smith 

(1993) between basic (lower order) and integrated (higher order) processes. Their view is 

that basic processes include observing and inferring and in this case our view was that the 

task required the student to observe the pattern and then to make an inference about the 

next two terms – therefore a lower order task. Task 2 was interpreted in accordance with 

Newman’s (1990) definition of a lower order task which he views as demanding only 

routine or mechanical application of previously acquired information and or formulae. 

Our view was that this task required the learners to factorise a quadratic expression which 

could be achieved by inserting numbers into a previously learned formula.  This in 

Maier’s (1933) view could be a typical example of a learned behaviour which came from 

contagious experiences with previous repetitions. Learners are usually drilled on 

factorization of such types of trinomials hence we considered this task a lower order one 

as it required them to know/remember the procedure. Task 3 was interpreted in 

accordance with Lewis and Smith’s (1993) view of integrated process (higher order) 

which required the learner to manipulate, analyze, and interpret data. The view taken in 

this analysis was that this task required systematic reasoning or communicating 

understanding on the part of the learners hence a higher order task. Task 4 was in our 

view requiring the learner to prove that the given equation had no roots and then to justify 

why this was so. This would be a typical example of a process of defining operationally, 

solving a non-routine problem, an integrated process according to Lewis and Smith’s 

(1993) which is therefore higher order. Task 5 in our view required the learners to solve a 
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non-routine problem. I noted from the discussions with the other two raters that with all 

these varying descriptors, there was no perfect agreement when placing content into the 

five categories especially between columns A and B (lower order) then columns C, D and 

E (higher order). However there was a general consensus on the distinction between 

higher order and lower order tasks. After having agreed generally on how coding would 

proceed, some items from the exemplar papers were independently pilot coded during 

this debriefing exercise and then cross checked to see how much the team was in 

agreement/disagreement. The inter-rater reliability for the three raters was 0.84. This 

index of dependability is considered quite high (Porter, 2002). The coding then proceeded 

after that and below is Matrix Yin table 4.5 showing the data counts of the different 

cognitive demand categories.  
 
 
 
Table 4.5      MATRIX Y FOR 2008 GRADE 12 EXEMPLAR PAPERS 1 & 2  - DATA COUNTS 

 

 

LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 

Lower order level Higher order level Totals  

 

Memorize 

 

 

 

A 

 

Perform 

procedures 

 

 

  B 

 

Communicate 

understanding 

 

 

C 

Solve non-

routine 

problems 

 

 

D 

 

Conjecture/ 

generalize/ 

prove 

 

E 

A+B+C+D+

E 

 

 

 

F 

(Number and 

Number 

Relationships)hips 

2 9 2 0 0 13 

Functions and 

Algebra 

7 20 2 2 2 33 

Space, Shape and 

Measurement 

5 22 6 2 1 36 

(Data Handling and 

Probability) 

1 6 2 1 1 11 

TOTALS 15 57 12 5 4 93 

 

Having done the categorization of tasks according to the cognitive demand levels the next 

step was to convert them to their proportional values as was the case with the content 

standards. Table Y in table 4.6 below shows the result of that conversion into 

proportional values. 
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Table 4.6  MATRIX Y FOR 2008 GRADE 12 EXEMPLAR PAPERS 1 & 2 –PROPORTIONAL VALUES  

LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 

Lower order level Higher order level 

 

Memorize 

 

 

 

A 

 

Perform 

procedures 

 

 

B 

 

Communicate 

understanding 

 

 

C 

 

Solve non-

routine 

problems 

 

D 

 

Conjecture/ 

generalize/ 

prove 

 

E 

(Number and Number 

Relationships)hips 

0 .1 0 0 0 

Functions and Algebra .1 .2 0 0 0 

Space, Shape and 

Measurement 

.1 .2 .1 0 0 

(Data Handling and 

Probability) 

0 .1 0 0 0 

 

At this stage it was now possible to attempt to answer the second research question of this 

study; “To what extent are the written and tested components of the NCSM aligned in 

terms of cognitive demand levels?” To determine the level of alignment between the two 

sets of data, a cell-by-cell comparison was then made for each corresponding proportion 

from the cells of the two proportion matrices X in table 4.3 and Y in table 4.6. The 

alignment measure between those two cells reports the relative emphasis of instruction 

content in common as defined by the cognitive demand descriptors. This value can be 

determined in two ways, which complement each other but yield the same mathematical 

result. The first procedure that is going to be discussed here is the one that is readily 

understood and easier to calculate (Roach, et al., 2008).  It makes use of the smaller of 

the two values taken from the comparison of the two corresponding cells. The process is 

repeated for each pair of cells in the matrices, to end up with a matrix like table 7 below. 
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Table 4.7 MATRIX FOR ALIGNMENT INDICATOR 
LEARNING 

OUTCOME 

CATEGORY OF COGNITIVE DEMAND 

 

Memorize 

 

 

 

A 

 

Perform 

procedures 

 

 

B 

 

Communicate 

understanding 

 

 

C 

Solve 

non-

routine 

problems 

 

D 

 

Conjecture/ 

generalize/ 

prove 

 

E 

(Number and 

Number 

Relationships)hips 

0 0 0 0 0 

Functions and 

Algebra 

0 .1 0 0 0 

Space, Shape and 

Measurement 

0 0 0 0 0 

(Data Handling 

and Probability) 

0 0 0 0 0 

 

To obtain the final alignment index the values held in common for each pair of cells (the 

smaller of the two numbers in the comparison) are then summed across all cells. For my 

comparisons between the assessment standards and the exemplar papers the resulting 

alignment value was: 

 Alignment Index P = 0.1 

The second procedure aggregates the absolute value of the difference between each pair 

of corresponding cells across all the cells of the matrix X in tables 4.3 and matrix Y in 

table 4.6. This total is then divided by 2 and the result is subtracted from 1 to end up with 

the alignment index. For my comparisons between the assessment standards and the 

exemplar papers the resulting alignment value was: 

 

                                  

2.0
2
6.11

2
1

=−=

−
−= ∑ yx

AI
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There is a small difference in the two alignment indices resulting from the two routes. 

Suffice to say that both indices 0.1 and 0.2 reflect a weak alignment.  Although two 

Curriculum, Instructional and Assessment (CIA) components could be in perfect 

alignment (i.e. a P score of 1), a more typical result is a score between 0 (no match) and 1 

(perfect alignment). The researchers who have developed this alignment index have 

indicated that the larger the value of the index, the better the alignment (Porter, et al., 

2007). In view of the fact that this alignment index can best be described as a measure of 

relative emphasis, it can be argued that there is some disparity between what the NCSM 

assessment standards emphasize and what is being emphasized in the exemplar papers. 

However, a low alignment index such as the 0.2 obtained here is not necessarily a bad 

thing if this is due to the examination including more cognitively demanding items than 

the standards. There is empirical evidence showing a positive impact of testing on 

teaching due to the relative emphasis of the topics and cognitive demand (Liu, et al., 

2009). This is expected given the ‘back wash’ effect that has been cited in the literature. 

Teachers may use the items to adopt more student-centred pedagogies or they will use it 

to drive their lessons in a teacher-centred way (Edwards2010).      

 

So the determination of an alignment index only marks the beginning of more 

comprehensive alignment analyses because usually an attempt has to be made to account 

for the low or high alignment index and to see where the differences in emphasis could 

be. According to Roach et al., (2008), usually reviewers have to make qualitative 

judgments considering what objectives in standards seem to be over-assessed and what 

objectives seem to be under-assessed or not assessed at all.   

 

Having confirmed this position, the next task then was to analyse whether there were 

some other indicators of horizontal coherence. Webb’s (2005), categorical-concurrence 

criterion was used at the next level of analysis. According to Webb (op cit), an important 

aspect of alignment between standards and assessment is whether both address the same 

content categories. The categorical-concurrence criterion provides an indication of 

alignment if both documents incorporate the same content. This criterion is met if the 

same or consistent categories of content appear in both documents.  
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Within this broader context of categorical-concurrence, Edwards (2010), used the concept 

of discrepancies to analyse ratios of corresponding cells from two alignment matrices 

developed within the lower order /higher order framework. These discrepancies represent 

the differences between the ratios in the assessment standards table 4.3 (Matrix X) and in 

the examination papers table 4.6 (Matrix Y). Because the cells for the assessment 

standards are coming first in each case, negative discrepancies indicate that the 

assessment standards place less emphasis on that particular content at that particular 

cognitive level while the exemplar papers place more emphasis on the same content at the 

same cognitive level. Similarly positive discrepancies indicate that the assessment 

standards place more emphasis on that particular content at that particular cognitive level 

while the exemplar papers place less emphasis on the same content at the same cognitive 

level. A discrepancy of 0 indicates equal emphasis by both the assessment standards and 

the exemplar papers.  The following four tables present the discrepancies by cognitive 

level in each of the four learning outcomes from (LO1) – (LO4).      
 
 
Table 4.8  DISCREPANCIES BY LEARNING OUTCOME (LO1), WITH DIRECTION  
  Memorise 

 
 
 
A 

Perform 

procedures 

 

B 

Communicate 

Understanding 

 

C 

Solve non-

routine 

problems 

D 

Conjecture/ 

generalise/ 

 

E 

(Number and 

Number 

Relationships) 

AS 0 0 0 0 0 

EX 0 .1 0 0 0 

Discrepancy 0 -0.1 0 0 0 

 

Starting with table 4.8 above for example, the discrepancies shown in the last row 

indicate that both the assessment standards and the exemplar papers placed equal 

emphasis on LO1 (Number and Number Relationships) at all the cognitive levels except 

performing procedures (column B) where the assessment/content standards placed less 

emphasis than the exemplar papers.  

 

I need to explain in a little more detail how to interpret the numbers in these tables in 

order to bring out the meanings and interpretations of the discrepancies thereof. For 
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example the zeros along the row for assessment (content) standards do not suggest that 

there were no assessment standards for LO1 Number at all but because the concept of 

discrepancies is based on comparing ratios these zeros are actually measures of relative 

emphasis hence ratios. Going back to the Matrix X for content standards with data 

counts, we would notice that there are 3 items in the row for LO 1 Number & Number 

Relationships under the cognitive demand column B (Perform procedures). There is a 

total of 66 items coded in this whole matrix. This number 3 when expressed as a ratio of 

66 gives (0,045) which when rounded off to one decimal gives (0) a measure of relative 

emphasis of the LO1 Number & Number Relationships at this cognitive demand level as 

compared to total data counts for all the four learning outcomes coded on this matrix. 

Similarly all the other 0’s along this row and any other value in these discrepancy tables 

were determined in the same way as ratios or measures of relative emphasis. These 

figures suggest that in terms of higher order skills there was equal emphasis in the two 

documents being compared but the exemplar papers had more emphasis at lower order 

skills than the assessment standards with respect to LO1.  
 
Table 4.9  DISCREPANCIES BY LEARNING OUTCOME (LO2), WITH DIRECTION  
  Memorise 

 
 
 
A 

Perform 

procedures 

 

B 

Communicate 

Understanding 

 

C 

Solve non-

routine 

problems 

D 

Conjecture/ 

generalise/ 

 

E 

Functions and 

Algebra 

AS 0 .1 .1 .1 .1 

EX .1 .2 0 0 0 

Discrepancy -0.1 -0.1 0.1 0.1 0.1 

 

This table shows that in LO2 (Functions and Algebra), the curriculum placed more 

emphasis at the higher order levels C, D, and E while exemplar papers placed less 

emphasis at that same level. Exemplar papers placed more emphasis at the lower order 

levels of memorizing and performing procedures while the content standards placed less 

emphasis at the same level.  
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Table 4.10 DISCREPANCIES BY LEARNING OUTCOME (LO3), WITH DIRECTION  
  Memorise 

 
 
 
A 

Perform 

procedures 

 

B 

Communicate 

Understanding 

 

C 

Solve non-

routine 

problems 

D 

Conjecture/ 

generalise/ 

 

E 

Space, Shape 

and 

Measurement 

AS 0 0 0 .2 .2 

EX .1 .2 .1 0 0 

Discrepancy -0.1 -0.2 -0.1 0.2 0.2 

 

A striking observation from an analysis of the policy documents, together with these 

discrepancy matrices, is the curriculum expectation with regards LO3 Space, Shape and 

Measurement. A look through the assessment standards starting with 11.3.1 on page 33, 

right through to 11.3.5 on page 35 of the assessment (content) standards reflects a skewed 

expectation towards categories D and E (highest) of the cognitive demand scale. This is 

evidenced by the prevalence of higher order cognitive demand descriptors such as, 

investigate, prove, derive and apply, investigate, generalize and apply, establish and 

apply. This has the effect of placing these expectations in the columns with the highest 

levels of the cognitive demand matrix (D + E = 0.4) yet when one looks through the 

exemplar papers, one notes that out of 36 tasks that were testing this learning outcome, 

22 tasks were in the routine procedures (lower level) of the cognitive demand matrix and 

only three were testing problem solving, hence the cumulative discrepancy of (0.4)         
 
Table 4.11  DISCREPANCIES BY LEARNING OUTCOME (LO4), WITH DIRECTION  
  Memorise 

 
 
 
A 

Perform 

procedures 

 

B 

Communicate 

Understanding 

 

C 

Solve non-

routine 

problems 

D 

Conjecture/ 

generalise/ 

 

E 

(Data 

Handling and 

Probability) 

AS 0 0 .1 .1 0 

EX 0 .1 0 0 0 

Discrepancy 0 -0.1 0.1 0.1 0 

 

In (Data Handling and Probability), there is evidence also that the assessment standards 

placed more emphasis in communicating understanding and solving non-routine 

problems than the exemplar papers. There was equal emphasis at both extremes of the 

cognitive demand levels in this learning outcome. While the discrepancies may look 
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insignificant when broken down by learning outcomes, the cumulative effect is 

significant in terms of a skewed combined comparison.  

 
Table 4.12 DISCREPANCIES FOR ALL LO’S BY COGNITIVE LEVEL, WITH DIRECTION  
 Memorise 

 
 
 
A 

Perform 

procedures 

 

B 

Communicate 

Understanding 

 

C 

Solve non-

routine 

problems 

D 

Conjecture/ 

generalise/prove 

 

E 

Assessment 

Standards 

0 .1 .2 .4 .3 

Exemplar 

Papers 

.2 .6 .1 0 0 

Discrepancy -0.2 -0.5 0.1 0.4 0.3 

 

An analysis of the cumulative discrepancies in columns C, D and E which focus on the 

higher order levels of communicating understanding, solving non-routine problems, 

conjecturing, generalizing and proving seem to reveal some glaring disparities. For 

example, the sum of proportional values in those 2 cells for assessment standards is 0.7 as 

compared to a sum of 0 from the corresponding cells from the exemplar papers.  This 

suggests that while the assessment standards place significant emphasis on those higher 

order skills and processes, the exemplar papers provided very little emphasis at all on 

these higher order skills and processes in their requirements. 

 

While these results had been obtained in November 2008 before the actual examination 

paper had been written, six months later Umalusi (2009), made an analysis of both sets of 

the exemplar papers and the examination papers for 2008 and summarised their findings 

with this comment:  
…However, the team was interested to note that the shift in the NSC curriculum towards 
more modelling, problem-solving and a focus on mathematical processes (like 
conjecturing, justifying, generalising etc.) was not reflected in either the exemplar papers 
or final papers to the extent that the team had imagined it would be, judging by the 
contents of the NSC curriculum (p. 70) 

 
This seems to confirm that indeed the NCSM espouses the higher order skills but the 

tasks in the examination papers were not pitched to the same level of cognitive demand. 
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With specific reference to the learning outcome 3 Space, Shape and Measurement, 

Umalusi also made similar observations in that: 
 

….the team found that almost all of the items dealing with transformation geometry as 
well as most of the statistics items in the 2008 NSC exemplar papers and the final papers 
were relatively easy in terms of cognitive demand. These levels comprise a possible 
reason as to why the NSC exemplar papers and the final Paper 2 papers were significantly 
easier than previous High Grade papers (p. 70) 

 
The findings from these analyses help to confirm and therefore support the credibility of 

my findings in a number of ways. Firstly I argued that an analysis of the structural design 

of the NCSM shows that the content standards were sequentially developed from one 

grade to another such that the distribution of content into cognitive demand levels for 

each grade from Grade 10 – 12 would be similar. Measuring the alignment index of the 

exemplar papers against the content standards for any of those three grades whose 

curricula were sequentially developed would not yield any difference. While Umalusi 

(2009) did not specify which content standards were compared with the 2008 exemplar 

and examination papers, but assuming they used the Grade 12 content standards or any 

other, their findings which are similar to mine would still work in support of my 

argument that any of those three content standards would yield the same alignment 

results as similar process skills are mentioned across all 3 grades.  

 

The Umalusi findings also confirm results from other quantitative measures from my 

study, such as discrepancies between cells, which showed that there were significant 

differences in LO3 Shape, Space and Measurement with exemplar papers focusing on the 

lower order cognitive levels while the content standards focused on the higher order 

cognitive levels. This observation was taken into consideration when deciding what the 

focus of the lesson observations would be, details of which are given in chapter 3.  

 

Although Umalusi did not use a quantitative measure of the overall alignment between 

examinations and the curriculum, as was the case in this study, they still confirmed that 

emphasis in the NCSM is on higher order cognitive skills and processes while the 2008 

exemplar and examinations papers measured lower order skills and processes.           
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Umalusi had this to say about the papers being used as models for future examinations: 
 

While recognizing that the examiners were faced with a difficult task in setting the first 
round of ‘new’ mathematics examinations, the team did express concern about some 
aspects of the 2008 NSC exemplar and final papers as models for future mathematics 
examinations. The most apparent issue was the lack of sufficient challenging questions to 
distinguish between achievement levels of the top candidates. In addition, the strong 
weighting towards skills at the lower end of the cognitive demand type, was of concern (p. 
70).  

 
About the team’s general concerns with regards the quality of the papers: 
     

In addition, the team felt that, given the emphasis in the NCSM curriculum documents, the 
2008 exemplar and final papers did not give sufficient attention to the following aspects 

● Application and modelling 
● Mathematical processes (e.g. investigating, generalising, conjecturing, 

justifying 
● Problem solving 
● Communication (expressing arguments, demonstrating reasoning ability 

(p.71) 
The team was also concerned that, given the similarity between the exemplar papers, 
preliminary examinations, additional exemplars and the final papers, teachers might 
already have assumed that future examinations will continue to be of this style and 
standard. The team thus felt that particular care needs to be taken when setting the 2009 
exemplar and examinations, to not entrench these qualities (p. 71) 

 

Umalusi (op cit) then put the implications of their findings in the African context and 

argued that examination results in Africa are high stakes and are the most popular 

determinant of access to higher education and the world of work. In that sense they hold 

great significance as a rite of passage, thereby providing incentives and motivation for 

students to learn. ‘Teachers teach for examination success’, is a commonly repeated 

phrase all over Sub-Saharan Africa. Assessment and evaluations that only require 

students to reproduce facts and definitions will inevitably train students for rote learning 

and memorization of facts, no matter what the curriculum wishes to aim at. Similarly;   
Assessment and qualifications that only test methodological and social competences lack 
the achievement of clear exit skills, and have proven to lead to an ‘anything goes’ attitude 
(Umalusi, 2009, p. 58)   

 

Putting these findings in the global context, the World Bank Report 2007 also noted that 

for mathematics in Ghana and South Africa, 90 per cent or more students did not reach 

even the low international benchmark scale of 400 in the TIMSS 2003  (Mullis, et al., 

2008, p. 59). TIMSS intended to mainly measure higher cognitive skills. This same report 

notes that pass rates in South Africa since 1994 have raised concerns in the country (p. 
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62). Commenting on the composition of the South African basic education examinations 

consisting of 75% CASS and 25% CTA, their observation was that students passing such 

examinations are widely reported to lack basic reading, writing and mathematical skills.  

They concluded by lamenting; “The validity of the assessment and reliability of the 

subsequent certificate awarded are questioned and yet to be proven” (Mullis, et al., 2008, 

p. 65)      

4.3 SUMMARY 
 

The results from this document analysis show that in terms of structure the NCSM 

appears to be internally consistent and developmentally coherent. There is evidence to 

show that the assessment standards from one grade to the other intend to build on one 

another hence there is a prima facie evidence of sequential developed. Within each 

grade, from grade 10 – 12, there is also evidence to show that the assessment standards 

attempt to articulate concepts and skills that are progressing from lower to higher order.  

 

Comparing the assessment standards with the exemplar papers, an alignment index of 

0,1 was obtained from one method and by way of triangulation of the methods 0,2 was 

obtained using a different method. In each case the alignment index is very low, pointing 

to some disparity between what the assessment standards appear to emphasize and what 

the exemplar papers seemed to test. A categorical –concurrence criterion was then used 

to analyse which learning outcomes could have possibly contributed to this low 

alignment index. The results showed that there was an almost equal emphasis from both 

the assessment standards and the exemplar papers in LO1 (Number and Number 

Relationships). However the discrepancies got more pronounced in LO2 (Functions 

Algebra), in LO4 (Data Handling and Probability) with the highest discrepancies being 

observed in LO3 Space, Shape and Measurement. Such discrepancies help to point to 

areas that need to be revisited when tests are being developed in future. Umalusi (2009) 

made similar observations about the pronounced difference in emphasis between the 

assessment standards and the examination papers in relation to LO3 Space, Shape and 

Measurement.   
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While the study observed these pronounced differences in emphasis on LO3, this 

observation however did not influence the decision on what was going to be observed in 

the classrooms. The interpretation of these discrepancies is that these are just temporary 

differences in relative emphasis between the written curriculum and the 2008 exemplar 

papers. They are temporary in the sense that another set of examination papers coming 

after the 2008 exemplar papers might have shown a pronounced difference in emphasis 

say in LO4 (Data Handling and Probability). So these discrepancies or differences in 

relative emphasis are not in anyway an indication of the overall emphasis of the 

curriculum. They have an implication only for future revision of tests or examination 

papers. Classroom observations were guided by what was emphasized in the curriculum 

statement as this was considered to be more sustainable and judged by the totals of data 

counts in table 4.2, this happened to be LO2 (Functions and Algebra).             

4.4 CONCLUSION 
 

This document analysis showed that the NCSM places more emphasis on LO2 (Functions 

and Algebra). The document analysis also helped to answer the first research question: 

“What levels of cognitive demand are evident in the mathematical knowledge and skills 

as articulated in the written curriculum?” Judged by the data counts in table 4.2 one can 

argue that in the NCSM what stands out are the high order level skills and processes. The 

second research question was: “To what extent are the written and tested components of 

the NCSM aligned in terms of cognitive demand levels?” Judged by the two alignment 

indices of 0.1 and 0.2 respectively, one can argue that the tested component of the NCSM 

as represented by the 2008-exemplar papers had a weak alignment with the written 

component of the NCSM. This was due to the exemplar papers testing mainly lower 

order knowledge and skills as opposed to the espoused higher order knowledge and skills 

in the written/intended curriculum. Using the categorical-concurrence criterion measured 

in terms of discrepancies between the assessment standards and the exemplar papers the 

results also showed that the most pronounced differences were in LO3 Shape, Space and 

Measurement where the exemplar papers tested more lower order items while the 

curriculum emphasized higher order skills and processes in that same learning outcome. 

A similar pattern can be seen in LO2 and LO4.    



 157 

 

CHAPTER FIVE – EMPIRICAL RESULTS 
 

5.1 INTRODUCTION 
 

In this section I describe and explore all the four teachers’ instructional practice as a 

response to the research question: “How do FET mathematics teacher practices foster the 

development of mathematical knowledge and process skills that are espoused in the 

NCSM?” I compare the utterances and activities with the aim of exploring the 

relationship between the FET mathematics curriculum expectations and the teachers’ 

instructional practice. I will start with individual teachers’ analysis then summary for 

each teacher followed by an overview analysis of all the four teachers looking for 

emerging patterns across all four teachers. 

 

5.2 TEACHER ‘R’- EXPANSION OF TRINOMIALS  
 
Teacher R’s lessons for the whole week were all on LO 2 Functions and Algebra and 

focused on the expansion of brackets or finding products of binomials and trinomials. All 

the tasks that learners worked with for the whole week were of the following structures:  

1. (a + b)(x + y + z) binomial x trinomial where all three signs are positive 

2. (a + b)(x - y + z) binomial x trinomial where two signs are positive 

3. (a + b)(x + y - z) binomial x trinomial where two signs are positive 

4. (a + b)(x - y - z) binomial x trinomial where one sign is positive 

5. (a - b)(x - y - z) binomial x trinomial where all three signs are negative 

6. (a – b)(x – y + z) binomial x trinomial where two signs are negative 

7. (a – b)(x + y – z) binomial x trinomial where two signs are negative 

8. (a – b)(x + y + z) binomial x trinomial where two signs are positive 

 

Below is a table with data excerpts from teacher R’s lessons exemplifying how live data 

was placed into each of the categories and levels. In the same table I also exemplify an 
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utterance which was numbered but not coded because it was considered to be of no 

mathematical significance in accordance with how an episode was defined i.e. in this 

study an utterance/activity/episode was considered and coded specifically as a didactic 

activity. 
Table 5.1 Excerpts from Teacher R’s coded utterances 
Episode/Utterance/Activity Code Comment 
Teacher:  
 
You say yes Mam (referring to a female 
learner). You got it? All right. Now we 
agreed here (underlining the a3 + b3) that 
this is the difference between two cubes.  

 
DR0 
 

 
Defining  a3 + b3 as difference of 
2 cubes was considered 
mathematically problematic 
because what conceptualisation 
would learners get of difference 

Learner: 
(3x2 + xy – 2y2) (x + 2y)  
3x3 + 6x2y + x2y + 2xy2 – 2xy2 - 4y3 
3x3 + 7x2y – 4y3 
 
Teacher: 
 
What are you saying about her approach? 
How did she approach this? She was 
finding the product of binomials and 
trinomials using the distributive law.  Did 
she apply the distributive law?  
 

DR1 Tr was concerned that the learner 
‘did not’ apply the distributive law 
because the learner did not re-
arrange the two polynomials to 
start with the binomial on the left. 
This  gives a limited 
understanding of the distributive 
law i.e. it is associated with a 
specific arrangement of the 
polynomials  

Teacher: 

Explains that instead of 5

3
1 x  this can be 

written as 
3

5x  and instead of 23

3
1 yx  we 

could also write 
3

23 yx  

 

 
DR2 

This was after a lengthy 
discussion with examples showing 
a clear understanding of these 
equivalent representations 

Teacher: 
Eeeh, the question says find the product of 
these binomials, it’s a binomial and a 
trinomial (and she writes on the board) 
(a + b) (a2 – ab + b2) and we must find the 
product, alright. From what we have been 
doing all along. By just looking at that 
expression, by just looking at, by 
inspection, what is the answer for it? 
 

 
 
 
PWR0 
 
 
 
 
 
 
 

Before this episode, the teacher 
had asked the learners to listen 
attentively so that she could 
generalise from the specific 
examples that had been worked 
with. But despite having asked the 
learners to listen attentively, Tr 
still did not say what could be 
generalized. Now this episode 
suggests that she wants them to be 
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able to abstract the general from 
the specific examples that have 
been worked with.  
Is it possible to find this product 
by mere inspection? 

Teacher:  
 
I’m going to highlight all the answers. Ok 
which ones are missing? Let’s look at the 
answer for A. I’m going to write the 
answers only.  
 A: 2a3 - a2 – 1   
 B: a3 – 1   
 C: 3x3 + 7x2y – 4y3 
 D: 8a3 + 27   
 E: b3 – 64 
 F: a3 – 2a2 + 2a – 1 
 G: b3 -8b2 + 32b – 64 
What is B, (she checks to see that all the 
answers are there) so all the answers are 
there? So when you look at those answers 
what can you say? The power is always a 
cube, by the first term. 
 

PWR1 There is some connection though 
superficial in that the observation 
made does not appear to be 
generalisable to all cases e.g. can 
we say 2a3 or 3x3 are cubes? 

Teacher: 
(Coming to the rescue) This is addition and 
this is subtraction and we are starting from 
the left side to the right side. Which means 
you have to say +a2 – 2a2, which gives you 
 –a2? It’s almost like saying 1 – 2 then you 
get -1. 
 

PWR2 The teacher was showing how 
 a2 – 2a2 is a generalisation of  
1 -2    

Teacher: 
Let’s do the next one and we want to close 
this chapter.  Here we have got  
( x- y) (x2 + xy + y2) then our approach is 
distributive law  then my brackets are   
x ( x2 + xy + y2) - y ( x2 + xy + y2)  then 
what is going to be my final answer?  
 

 
IM0 

 
In this case this episode came 
after the teacher had given the 
impression that learners could be 
able to get the final answer from 
observing a certain arrangement 
of these polynomials. This implied 
a pre-determinable result just by 
looking at the structure but Tr had 
not shown how this could be 
achieved so the class could not 
forge ahead from here      

No episodes for this teacher were coded  IM1  
No episodes for this teacher were coded  IM2  
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Tr:  
In this case the teacher was showing how 
to go about the expansion of this bracket
  







 −−






 22
3

2
1

3
4

2
1

3
2 yxyxx   

(Shows how to arrive at the answer  
6

2 5x  ) 

Got it? I heard somebody saying Uhuuuu. 
Then you go to the next one, you are going 
to do the same  

 
3

2 3x  x 
3

4xy  

 
P0 

 
Procedure is not correct, at the 
second stage where the teacher 
ignores the sings and instead of 
multiplying  

3
2 3x  x - 

3
4xy she multiplies  

 
3

2 3x  x 
3

4xy .  She did it several 

times and in this case it lead to an 
incorrect answer. 

Teacher: 
Let us look at this question. Question 
number 3 we are given (a + b) (a2 – ab + 
b2) we are still applying the distributive 
law. Our second step is  
a ( a2 – ab + b2)   b( a2 – ab + b2)  Then 
what is going to be our final answer? 
 

 
P1 
 

 
Again ignoring the signs but in 
this case it led to a correct answer 
because the signs which were 
ignored were positive    

Teacher: 
The task was 
 (b – 4) ( b2 – 4b + 16 ) after which she 
explained how to move to the next step  
b ( b2 – 4b + 16 )  – 4( b2 – 4b + 16 ) 
explained how to remove the brackets 
b3 – 4b2 + 16b – 4b2 + 16b – 64  
After that we try to collect the like terms 
which are  
 b3 – 4b2 + 16b – 4b2 + 16b – 64  
and this is our final answer  
 b3 -8b2 + 32b – 64 
 

 
 
P2 

This was considered a clear and 
justified explanation of how  to 
deal with the signs and the like 
terms – reflects deep 
understanding of multiplying 
trinomials  

Teacher:  
 
See where the sign comes in. Right. So 
when we do  calculations here, we don’t 
put those negatives but we are going to 
multiply when we finish up this. So we say 

 x
y 2

1
3

4xy  and then (pointing to the 

negative signs of these two fractions 

 
 
 
IOC0 

This was coded in the IOC 
category because the teacher was 
following up on a learner’s work. 
The two terms that were supposed 

to be multiplied here were - x
y 2

1 -

3
4xy But to instruct learners to 

leave out the signs until they finish 
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in the initial brackets) it is going to be 
negative multiplied by negative and it 
 is going to give us a positive in the 
answer. Now what is the answer for this 
one?   

has already proved futile 
elsewhere where even the Tr 
ended up with incorrect answers 
because she ignored the signs 
until the end  

Learner: 
(a – 1) ( a2 – a + 1)   
a  ( a2 – a + 1)  – 1 ( a2 – a + 1)   
a3 – a2 + a – a2 + a - 1  
a3 – 2a + 2a – 1) 
 
Teacher: 
 
He could not solve that problem further. 
Something is missing there. Where did he 
go wrong? Who can chip in? Who can help 
(learner’s name)? Wait; wait who hasn’t 
been on the chalk board before? The final 
step needs some attention. Where did he go 
wrong? 
 

IOC1 Teacher is following up on 
student’s work points to a specific 
step (final) but still delegates the 
responsibility to the class. The 
class however took quite long to 
see what was wrong with the final 
step. The follow up was therefore 
considered not to be so productive 
hence coded as IOC1   

No episodes for this teacher were coded  IOC2  

Who was in charge for question A that’s 

you (pointing to a learner). Who was in 

charge for question B stand up? (Pointing  

to different learners) B stand up, C stand 

up, D stand up and E stand up.  That’s we 

have A, B, C, D. Finding the product of 

binomials and trinomials applying the 

distributive law, let us start with A, let us 

check A. Let us look at their work starting 

with A. Did he apply the distributive law? 

(Speaking to LA) They say (class) 

explaining what you did. 

Not 

coded 

at all 

This was considered as an 

example of an administrative or 

managerial activity.  

 

 

I will now comment on teacher R’s utterances/activities within the different types of 

connections as discussed in the research design chapter. 
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Table 5.2    Totals of Teacher R’s coded utterances (n = 98)  
 

FORMS OF 

MATHEMATICAL 

CONNECTION 

               
              LEVELS OF KNOWLEDGE 

QUALITY 

Code 0 1 2 

Different Representation DR 

 

28 5 3 

Part-whole Relationship PWR 3 6 2 

Implication IM 10 0 0 

Procedure P 7 19 10 

Instruction-oriented 

Connection 

IOC 14 5 0 

 Totals  62 35 15 

 

 

5.2.1 Episodes coded as indicating Different Representation (DR) 
 

A total of 36 utterances by the teacher were coded as indicating connection through 

different representations. This category captured utterances/activities where the same 

concept had the potential to or was represented in two or more ways. There are two 

subcategories which in this model constitute connections through different 

representations and these are alternate representations and equivalent representations. 

Alternate representations are those in different modes i.e. it could be from verbal to 

symbolic and equivalent representations are those in the same mode. The codes used in 

this category were at three hierarchical levels DR0, DR1, and DR2 as explained earlier, 

with DR0 as the lowest and DR2 as the highest respectively. 

 

Three utterances/activities were coded at DR2 level and these are #19, #28 and #274. 

These are utterances which could be associated with forms of representation where 

learners’ development and articulation of justification and argumentation appeared 

evident. In #19 for example the learner seemed to show a conceptual understanding of 

how (a2 – 2a2) gives (–a2) by using an analogy “It’s just like saying 1 – 2 = -1.”  
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Considering that some learners in this class had difficulties in seeing what had happened 

to 2a2 and where the –a2 was coming from, it can be argued that this analogy reflects a 

learner with a connected understanding of concepts. In activity #28, the learner went 

straight into multiplying within the brackets without rearranging the polynomials to start 

with the binomial on the left as had been suggested by the teacher i.e.  

 (3x2 + xy – 2y2) (x + 2y)  
 3x3 + 6x2y + x2y + 2xy2 – 2xy2 - 4y3 
 3x3 + 7x2y – 4y3 
This learner appeared to recognise equivalent representation through the commutative 

law where a x b is equivalent to b x a. Within those two steps she was also able to 

efficiently deal with the like terms that eliminate each other and those that do not 

eliminate each other. When asked to explain her working, she was able to articulate and 

justify  how she got each of the six terms after removing the brackets. Judged by the way 

she explained herself, it can be argued she appears to show a deep understanding of 

multiplying polynomials. In #274 the learner explains that instead of 5

3
1 x  this can be 

written as 
3

5x  and instead of 23

3
1 yx  we could also write

3

23 yx . This again seems to 

reflect a clear understanding of equivalence.   

 

The main reason why these learners’ activities were coded despite the fact that the study 

focused on teacher utterances was because of the teacher’s reaction that followed such 

representations.  For example after activity #28, because the learner did not rearrange the 

polynomials to start with the binomial on the left, the teacher raised the question for the 

class: “Did she apply the distributive law (# 35)” and the class response was “No ”. Even 

after another learner had rearranged the above task to start with the binomial on the left (# 

40) as (x + 2y) (3x2 + xy – 2y2) the teacher still raised the same question “Did he apply 

the distributive law (# 43)” and the class response was again a “No (#44)”.   

 

Although initially this appeared more like a procedural issue, with the teacher preferring 

a certain arrangement of the polynomials, however other comments later revealed that 

there could be some problems in the way the distributive law was being represented or 
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conceptualized. For example, here are some of the teacher’s comments that followed after 

one learner had indicated that she understood learner C’s method better;  

“So next time you should read the question because the question says apply the 
distributive law (# 48). We are following instructions. Ok, Ok if it was just 
ordinarily finding the product of binomials and trinomials she was, really she was 
correct but now in brackets there are those finer lines in a question that say we 
can get the same answer but if it was in an exam I was not going to credit her 
because she did not follow instructions from the question which is very important 
(# 50).”  

 

The implications seemed to be that there was another ‘ordinary’ way of multiplying 

binomials and trinomials which was not distributive and the way learner C had done the 

multiplication was not recognised as the distributive law and would not earn marks in an 

examination. It can be argued that a mathematically sound conceptualisation of the 

distributive law was critical considering that the whole set of lessons for the whole week 

was focused on this image. If this was the main objective for the lessons; the question 

that then comes to mind is “What image did the teacher and the rest of the class have of 

the distributive law?”  

 

Without going into the complex interpretations of the distributive law, the basic idea is 

that in mathematics pairs of parentheses or brackets such as ( ), [ ], { }, are one way that 

is used to group parts of an expression together to show exactly in what order the 

operation is to be done. Thus, for example, when we write 2(3 + 5), we mean “add 3 to 5 

first, then multiply the result by 2.” Thus 2(3 + 5) = 2 x 8 = 16. This expression can also 

be interpreted to mean that the multiplication by 2 is to be done (distributed) to every 

term inside the brackets. Thus 2(3 + 5) = 2 x 3 + 2 x 5 = 6 + 10 = 16 which is the same 

final result as before. In the sequence of steps in this example we say that we are 

expanding the brackets. If we use the symbols a, b, and c for example to represent any 

three numbers, then the overall process can be symbolized as:  

 a(b + c) = a x b + a x c. 

Since we could have put any real numbers in place of 2, 3, and 5 above, and still have 

obtained a true equation, we say that multiplication of real numbers distributes over 

addition of real numbers. It can also be stated in words: The result of first adding several 
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numbers and then multiplying the sum by some number is the same as first multiplying 

each separately by the number and then adding the products. In other words, one need not 

add what is in parenthesis before multiplying as long as one multiplies each of the 

addends first by the desired multiplier. The sum of these results will be equivalent to the 

desired expression. The property is true for any number of addends. This rule is called the 

distributive law for multiplication. It shows how multiplication of the bracketed 

expression by ‘a’ is “distributed” to all of the terms in the brackets.  

 

Given then an example such as (3x2 + xy – 2y2) (x + 2y) that learner C was tasked with, it 

basically meant that she had to multiply all three terms in the trinomial by both terms in 

the binomial. The number of products she would get had to be the number of terms in the 

first factor times the number of terms in the second factor. In this case she would get in 

all 3 × 2 = 6 terms, which may reduce to 5 or less after adding or subtracting the like 

terms. But from the knowledge of some of the laws of operations we know that no matter 

in what order multiplication is carried out, the product will always be the same: ab = ba. 

This is called the commutative law of multiplication and in the example above it can be 

shown that the trinomial and the binomial can be multiplied in any order (this 

multiplication is both left and right distributive) and the results are logically equivalent. 

The learners’ utterances/activities seemed to incorporate all these big ideas of dealing 

with the expansion of brackets of polynomials. However the teacher appeared to be 

discouraging the development of such connections.  

Activities #29, #35, #48, #206 and #294 were all coded as DR1. As discussed earlier, 

these are activities where connections were being recognised but in a manner that would 

limit (superficial) the learners’ conceptual understanding. In #29 for example, the teacher 

says: 

 I was even thinking that as you cancel out the like terms you use coloured chalk 
so that even us the blind people can be able to see that. Right.  

Dealing with the like terms seems to be defined or represented in terms of cancellations 

of like terms despite the fact that the problem that the learner was dealing with #28 had 

some like terms which did not ‘cancel out’. In #35 the teacher commented on the 
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approach used in #28 and asked the class “Did she apply the distributive law?” While the 

approach favoured by the teacher might not be mathematically incorrect, it however 

appears she only accepted her arrangement (binomial x trinomial) as the only correct 

representation of the distributive law. In #48 the same view is emphasized by the teacher. 

In #294 and in response to a question raised earlier by a learner as to whether in the 

fraction 
y
x

3
4 it was possible to write the 4/3 as 

3
11  the teacher says: “So far leave it like 

that.” It can be argued that while all these utterances were not mathematically incorrect, 

they however limited learners’ abilities to make mathematical connections hence coded 

as DR1 since no justification was provided as to why.    

The highest number 28 of utterances in this category were coded as DR0 which implies 

that the connections were recognised in ways that were mathematically faulty. In 

activities #7, #8, #37, #39, #41, #43, #45, and #50, the main issue was about the 

definition or representation of the distributive law. The teacher was reluctant to accept 

both the alternative and/or equivalent representations and preferring to define distributive 

law as being associated with a specific arrangement. Notice that most of these utterances 

have also been double coded P1, the argument being that as a procedure putting the 

binomial on the left will yield a mathematically correct answer but to deny the learners to 

work with either alternative or equivalent versions would be problematic in terms of their 

conceptual understanding. In #50 for example, the teacher categorically refused to accept 

an equivalent representation claiming she would not award marks for it. Given that 

throughout the week the definition of the distributive law was not explicitly given by the 

teacher and that some learners’ correct versions were discouraged, it can be argued that 

the teacher might not have created a comprehensive mental image (abstraction) of the 

distributive law.  

In the next set of utterances #93, #98, #100, these were also coded as DR0 because the 

teacher appeared to represent dealing with like terms as cancellation of like terms. This 

representation appeared to be problematic in that learners tended to cancel out like terms 

even where such like terms were not eliminating each other resulting in incorrect answers 

in a number of tasks like in #93. In utterances #124, #127, #130, and #132, the teacher 
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seemed to be saying when multiplying binomials and trinomials we are either squaring or 

cubing and the result was either a difference of two squares or a difference of two cubes. 

This again appeared to be problematic in that it did not seem to give learners a 

mathematically acceptable representation of products of polynomials.   In #136, and #138 

the issue was about a correct equivalent i.e. (a3 – a2b +ab2 + a2b – ab2 – b3) would not be 

equivalent to (a3 + b3) but the teacher accepted this as the correct answer.  This was 

followed by the teacher defining (a3 + b3) as a difference of two cubes in #160, #162, and 

#168. In #170 and #203 the teacher asked the learners to find an answer for or work out 

(a2 – b2), a task which appeared to require factorization as opposed to finding products of 

polynomials, which was the focus of the series of lessons for the whole week.  There 

appears to be a disconnection here because finding an answer for (a2 – b2) in a context 

where learners were dealing with expansion of brackets would imply they had to expand 

the brackets and yet in this case it would appear this might not have been possible. In 

view of the fact that the teacher did not show an example of how to work with this 

problem right through the week, despite learners experiencing problems with this specific 

task, it can be argued that the teacher did not define “finding an answer for” in a manner 

that would enable learners to conceptualize what was required of that task.     

In #253, the issue was about the teacher accepting (2p2 + 3q2)(5p – 6pq + q2) as being 

equivalent to 10p3 – 12p3q + 4p2q2 + 15pq2 – 18pq3 + 6q4 as provided by a learner in 

#235. In #301 the disconnection appeared to be in the teacher exemplifying x2 in the 

middle of a fraction 2

2
1 x as implying that it is for both the numerator and the denominator 

and so could be written as 2

2

2
1

x
x .  In #314, #318 and #337 the issue was about leaving the 

negative signs out when multiplying resulting in the equivalence being violated.  

5.2.2 Episodes coded as Part-Whole Relationship (PWR): 
 

These connections are of the forms: A is included in B and A is a generalisation of B. In 

teacher R’s series of lessons, a total of 11 utterances/activities were coded as belonging to 

this part-whole connection category. The utterances #19 and #24 were coded at the 
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highest level as PWR2. In both cases the analogy of 1-2 given by the learner to explain a2 

- 2a2 demonstrates how a2 – 2a2 is a generalisation of 1 – 2. It can be argued that the 

learner is demonstrating a conceptual understanding of subtracting algebraic expressions 

which is connected to the arithmetic from which such subtraction is abstracted.    

 

A total of 6 utterances were coded at the second level of PWR1. These are 

utterances/activities where generalisations are recognised but they appear to be 

superficial in that the observations made do not appear to be generalisable to all cases. 

For example in #112, the power is always a cube, in #114 that is numbers, indeed these 

generalisations are true in the specific cases in which they were being observed but 

cannot be generalized to all cases of multiplying binomials and trinomials. In #120 while 

the teacher emphasized that these generalisations could be observed in ‘some’ cases, she 

did not however provide the learners with the characteristics of those ‘some’ cases which 

would enable the learners to generalise in such cases hence it can be argued that the 

connections are again superficial. In #132 and #138 the generalisation appeared to be that 

when multiplying a binomial and a trinomial ‘we’ are cubing and the result is a difference 

of two cubes - again a superficial connection in that this might not apply to all cases. 

Admittedly this would have been coded differently had the teacher exemplified how the 

learners could distinguish those cases where the result was always a difference of two 

cubes and where learners could get numbers at the end.  

 

A total of three utterances #145, #147 and #308, have been coded as PWR0. In #145 for 

example the teacher says:  

 Listen attentively I want to give you the in conclusion from the past information in 
the past exercises that we did. I want us to look at this right.  Eeeh, the question 
says find the product of these binomials, it’s a binomial and a trinomial (and she 
writes on the board) (a + b) (a2 – ab + b2) and we must find the product, alright. 
By just looking at that expression, by just looking at, by inspection, what is the 
answer for it? 

 

This statement seemed to suggest that she wanted them to be able to abstract the general 

from the specific examples that have been worked with. But despite having asked the 

learners to listen attentively, the teacher still did not say what could be generalized which 
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would enable the learners to find the answer by mere inspection. In #147, the same 

message was repeated that products of polynomials could be found by mere inspection 

but she still did not say what it was that learners should look for in order to get that 

answer. Instead she asked them to work out again in their scribblers #153. In #308 the 

teacher instructed the learners to put the variable in 2

2
1 x next to the numerator. While this 

might be mathematically acceptable there however appears to be some inconsistency in 

the generalisation. For example in #301 and with reference to the same fraction, the 

teacher said in the middle would mean it is for both the numerator and the denominator 

and even represented it thus  
3

2 3x  x 2

2

2
1

x
x  but now it means it is for the numerator. In that 

case the generalisation would contradict itself resulting in learners having an unclear 

understanding of what happens when the variable is in the middle of a fraction.   

 

Research has shown that generalisation is one of the most fundamental and important 

mathematical thinking process in that it demonstrates that students are able to analyse 

problem situations in a variety of different ways (Driscoll, 1999). Kaput (1999), defined 

generalisation as  
 …deliberately extending the range of reasoning or communication beyond the case or 
cases considered, explicitly identifying and exposing commonality across cases or lifting 
the reasoning or communication to a level where the focus is no longer on the cases or 
situations themselves but rather on the patterns, procedures, structures, and relationships 
across and among them (p. 136) 

 

It is a process that allows us to look beyond the particularities of a mathematical situation 

and make conclusions such as ‘that’s a case of ...’ or ‘this will always hold true as long as 

....’ In all these cases it could be argued that the teacher appeared not to identify explicitly 

and expose the commonalities across the cases that were being dealt with hence the 

learners appeared not clear about the generalisations they were expected to make.  
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5.2.3 Episodes coded as indicating connection through Implication (IM): 
 

In this category no utterances were coded at IM1 and IM2 levels. A total of 10 utterances 

were all coded at the IM0 level implying that the ‘if –then’ connections were implied 

without making mathematical sense to the learners.  For example in #124, #130, #160 

and #162, these are utterances where the teacher gave an impression that if ‘we’ are 

finding the product of two binomials or a binomial and a trinomial then we are squaring 

or cubing respectively which would not be mathematically true. In #136, the teacher 

utterance implied some pre-determinable result could be obtained just by looking at the 

arrangement of the polynomials but still does not say what learners should specifically 

look for in order to give an answer without working. In #203 and with reference to the 

expression a2 – b2, the teacher said “Remember we said let’s work it out. We said let’s 

work it out. Is she correct?” this was after the learner had given a2 – b2 as the answer 

after having ‘worked it out’. In this context ‘working it out’ would imply finding 

products of polynomials because that was what the lessons were all about but for this task 

that implication appeared not logically holding because learners could not possibly 

expand brackets which were not there. In fact the teacher later abandoned this task 

through to the end of the week and never showed the learners how it could be ‘worked 

out’. 

 

In #301 the activity implied that if x2 is in the middle of a fraction then it is both for the 

numerator and for the denominator and again this is not mathematically true hence the 

implication would not hold logically. In #314, #318 and #319 the main issue is about 

leaving the negative signs out implying e.g. that 
3

2 3x  x - 
3

4xy was the same as 
3

2 3x  x 

3
4xy . Mathematically such connections do not hold logically because once the negative 

sign has been left out then the equivalence does not also hold.  
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5.2.4 Episodes coded as indicating connection through Procedure (P): 
 

These are utterances which reflected a procedural connection i.e. A is a procedure when 

working with object B. A highest total of 36 utterances were recorded in this category. 

According to Businskas (2008), this prevalence of utterances showing presence or lack 

thereof of procedural connections was to be expected given teachers’ embedded view of 

mathematics as ‘doing questions’. Research has shown that whether or not they are aware 

of it, teachers are constantly engaged in a process of constructing and using instructional 

representations and that this concept of instructional representations tightened the 

connection between subject matter and method (procedure). McDiarmid, Ball and 

Anderson (1989b), then argued that the instructional representations that students 

encounter define their formal opportunities for learning about the subject – the possible, 

not the inevitable. It is the degree to which the methods/procedures used by the teacher in 

representing or formulating the subject matter to make it comprehensible to the learners 

that helps us to judge an utterance as P0, P1 or P2.  

 

Within my data set this is the category also with the highest number of utterances (10) 

coded at the highest level of P2. Some of the defining features of this level of procedural 

connection include competence in using a range (flexibility) of mathematical procedures, 

ability to select a procedure that would be efficient in solving a specific problem and the 

ability to explain and justify methods selected for working out a problem.  

 

Evidence of flexibility in the procedure is shown especially in # 28, #30 and #34 where 

the learner is showing a different arrangement of the trinomials and multiplying without 

having to break the binomial into two monomials before multiplying as shown in this 

excerpt. 

(3x2 + xy – 2y2) (x + 2y)  
 3x3 + 6x2y + x2y + 2xy2 – 2xy2 - 4y3 
 3x3 + 7x2y – 4y3 
In this excerpt one can notice that the binomial was not brought to the left hand side with 

the trinomial going to the right hand side. The binomial was not broken into two 

monomials before multiplying. The apparent advantage is that the like terms 
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automatically come adjacent to each other in the next step so that they become relatively 

easy to identify and work with. This would be evidence of an ability to select a procedure 

that would be efficient in solving a specific problem. 

    

 In #26, #28, #30 and #34 the procedure is well articulated and justification. Let me use 

an excerpt which followed the above rearrangement of the polynomials. In this excerpt 

one can notice evidence of the ability to explain and justify methods selected for working 

out a problem.  

I notice that that there is no other groups of x3 and so this comes down (pointing 
to the 3x3 coming down into the answer section). These two + 6x2y + x2y add up to 
+7x2y. The + 2xy2 and – 2xy2 they cancel out because of the signs. The -4y3 

remains as it is and so this is the final answer. 
 3x3 + 7x2y – 4y3.  

 

All these are examples showing a deep procedural understanding of dealing with the 

expansion of polynomials. In #63, #67 and #73 there appears to be similar precision in 

the procedure as well as in the answers, especially when working with negative signs 

which appeared to be problematic elsewhere. In #100, #106 and #237 there is also 

evidence of an ability to deal with the signs and the like terms which appears also to 

reflect deep understanding of multiplying polynomials.     

 

A total of 19 utterances were coded at P1 level and these are utterances of a procedural 

nature which were considered to be mathematically sensible but where the teacher 

appeared to simply tell the learners what they ought to know with no flexibility in 

creating access to knowledge. Research has shown that mathematicians use a number of 

established and accepted procedures to respond to problem situations. The 

recommendation thereof was that students should learn a repertoire of mathematical 

procedures so that when confronted with a problem situation, they would have a number 

of ways of working ‘at their fingertips’ from which to choose (Sawyer, 2008). P1 coding 

started at utterances #7 and #8 where the procedure of canceling the like terms out, which 

the teacher suggested, would yield a correct result when the like terms were such that 

they would eliminate each other. However, it is not always the case that like terms will 

eliminate each other hence suggesting that learners have to cancel out like terms had the 
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potential to inhibit their procedural understanding of how to deal with the like terms 

when multiplying polynomials in general. There is evidence later in the lesson of where 

learners were just cancelling the like terms even where such like terms were not 

eliminating at all as evidenced in the snapshot below.  

 
Fig. 5.1 CANCELLATION OF LIKE TERMS  

 
 

In #11, #13, #77 and #136 there was lack of precision in dealing with the like terms 

hence the procedures were partially correct. In #37, #41, #43, #45, #48, #50, #243 and 

#294 the teacher suggested a specific arrangement or procedure for multiplying 

polynomials i.e. (x + 2y) (3x2 + xy – 2y2) binomial to the left and trinomial to the right. 

However while the teacher’s procedures would yield mathematically correct results there 

appears to be lack of procedural flexibility in that alternatives or equivalent 

representations were not accepted. This was also likely to inhibit learners’ deep 

procedural understanding. In #46, #55, #132 and #355 the signs were being ignored 

hence the procedures and the final results would only be correct if the signs so ignored 

were positive signs.   

 

A total of 7 utterances were coded at the lowest level (P0) of this category. These 

utterances are different from those that were previously coded P1 in that these are cases 

where the procedures were more of rote learning which resulted in getting incorrect 

answers. In # 93 and #98 the issue was about cancelling of like terms even where they did 

not eliminate each other. For example in #93 a learner expanded her brackets to   a3 – a2 
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+ a – a2 + a – 1 after which she then cancelled out the like terms and remained with a3 – 

1 as the final answer. It took long for the learners to realize that the meaning of cancelling 

like terms did not always mean making them disappear as had been suggested earlier and 

this is evidenced in # 230 where the learner explained her steps in expanding the brackets 

as follows:  

  
 (a – b)2 = (a –b)(a – b) 
 = a2 –ab – ab + b2  
 = a2 – 2ab + b2    

In this case the like terms were identified, collected and subtracted/added but not 

cancelled and the class commented “Ohhhoooo we don’t cancel the like terms!” . 

Although the teacher later warned the learners thus: “Remember we used coloured chalk 

to highlight the like terms. You can do the same even in your scribblers; you can tick the 

like terms so that you don’t make a mistake #265”. It would appear there were some 

learners who still remained with this notion of cancelling out even where the like terms 

were not eliminating each other. This can be evidenced again by the snap shot (Fig 5.1). 

It can be seen in the snapshot above that this learner had now mixed the two ideas in that 

while he continued to cancel out the like terms, he still managed to add and subtract them 

as opposed to just cancelling and eliminating them like in the previous example. 

 

In #314, #318, #326 and #337 the issue was about leaving negative signs when 

multiplying polynomials. These utterances were also different from those that were 

previously coded P1 in that these were cases where such leaving out of the negative signs 

would also result in getting incorrect answers.  

5.2.5 Episodes coded as indicating Instruction-oriented connections (IOC): 
 

These are utterances where the connections were of the form: A and B are both 

prerequisites concepts or skills that must be known in order to understand/learn C. This 

form of connection also includes extension of what students already know thereby linking 

new concept to prior knowledge.  According to Kahan, Cooper and Bethea (2003), the 

mathematical development of a lesson or unit is important for effective teaching. The 

content should not appear to be a collection of disjointed, isolated topics, and it should be 
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sequenced so that topics are studied in a sensible order with prerequisite content being 

taught first or reinforced as needed. In this category no utterance was coded at the highest 

level (IOC2). 

 

A total of 5 utterances were coded at the second level (IOC1) of this category. This is 

where the teacher appears to be building on the learners’ prior knowledge but somehow 

does not do so comprehensively.  In #21 for example, there is evidence of the teacher 

building on the learner’s prior knowledge although she delegates this responsibility to the 

class.  In #68 when the teacher says “So far so good …” this also appears to be building 

on the learner’s confidence by acknowledging what the learner has done correctly so far. 

In #78, #80, and # 84 the teacher appears to be closely following the learner’s work but 

still delegates the responsibility to the class to confirm whether the work was correct or 

not. 

 

 A total of 14 utterances were coded at the lowest level (IOC0) of the category.  In #11 

for example the teacher says “I don’t know we are waiting for your answer” after a 

learner appeared stuck on how to deal with like terms which did not cancel out.  While it 

might be argued that the teacher was trying to get the learner to think for herself, there is 

evidence immediately after this comment where the learner just wrote down an incorrect 

answer. This appears to justify the argument that the learner genuinely needed the 

teacher’s help which did not come in both #11 and #23. In #92 after some debate whether 

a learner’s work was correct or not the teacher says: “I don’t know. I’m looking at my 

answer here (pointing to her answer book). I don’t know what’s wrong.” It could also be 

argued that the teacher appears to check for an answer in her work-book instead of 

following the learner’s work to identify exactly where there is a mistake. In this case the 

learner’s working was quite correct but what appeared interesting was that after checking 

the answer in her book she still did not confirm that the learner’s answer was in fact 

correct. Although in #103 the teacher confirmed that the answer had been correct long 

back, in terms of making an instruction-oriented connection it is now not clear why the 

teacher took so long to confirm a correct answer.  
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In #153 the teacher also appeared not to build on what the learners had been doing up to 

that stage. Instead of helping learners after they had expressed in #150 and #152 that they 

were not sure of how they could find a solution by mere inspection, the teacher gave 

them another task requiring more working and this did not seem to support her earlier 

suggestion that learners could find a product of polynomials by mere inspection. In #189 

the teacher appeared not to have provided an instruction-oriented connection between 

expansion of brackets and factorization in that all the examples that had been worked 

with so far required the learners to expand brackets and none of the tasks required the 

learners to factorize like in this case of a2 – b2. Yet the teacher was asking the learners to 

work it out.     

  

In #233 the teacher whether deliberate or in error appears again not to work with 

learners’ prior knowledge by avoiding working out a2 – b2 which the learners appear to 

be struggling with. In #251 the teacher also seems not to be building on the learner’s 

work as it appears she could not specifically locate where the learner went wrong. She 

says, “Somewhere she is wrong” #249 and when the class says “Where” #250 she points 

to the term (-18pq3) which in fact was correct. Later in #253 and #257 after the learner 

had explained how she got the -18pq3 the teacher says, “Ok no problem so the answer is 

very right.” This was despite the fact that the learner’s answer in #235 had some errors in 

it.  In #282 the teacher again seems not to be following the learner’s working on the 

board because she asks the class “Is she on the right track so far?” but despite that she 

still goes on to instruct the class to check their work against this same learner’s working 

implying that the work is correct.  In #304 the teacher again does not seem to build on the 

conceptualisation she has given the learners in #301 where she said a variable in the 

middle of a fraction would mean it is for the numerator and the denominator and even 

represented it thus  
3

2 3x  x 2

2

2
1

x
x . However, when the learner in #303 wants this confirmed 

the teacher says “You want me to give you an answer for this?” She still does not give an 

answer despite the class saying “Yes Mam” in #305. Instead she goes on in #308 to offer 

a different representation i.e. the variable is for the numerator.  In #330 the teacher says, 

“So when we do calculations here, we don’t put those negatives but we are going to 
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multiply when we finish up this.”  To instruct learners to leave out the signs until they 

finish has already proved futile elsewhere where even the teacher herself ended up with 

incorrect answers because she ignored the signs until the end.  In #347 the teacher seems 

done with the week’s lessons on expansion of brackets but what seems interesting is that 

she points learners’ attention to the next activity 5.10 whose focus is on the identification 

of like terms. In terms of instructional oriented connection this appears to be a typical 

example where the connections were of the form ‘A and B are both prerequisite concepts 

and skills that must be known in order to understand/learn C’.  Identification of like 

terms is a pre-requisite skill that should have been known in order to understand how to 

deal with the products of polynomials. Even if this was the next activity in the text-book, 

learners could not possibly go to it after they had dealt with all these different types of 

products and be able to make sense of the connections. Ball (2003), suggested that 

effective teachers of mathematics have to make judgments about the mathematical 

quality of instructional materials and modify as necessary and this could be one good 

example where the teacher had to modify the order of the teaching material in the text-

book.  

5.2.6 Key messages emerging from Teacher R’s teaching of the distributive law: 
 

The discussion of what emerges from Tr R’s teaching is guided by the following: 

(a) what aspects of connections does the teacher appear to handle well 

(b) what aspects appear to be problematic 

(c) what are the underlying features in each case 

(d) how do the strengths and weaknesses relate to the orientations in the curriculum. 

 

The discussion starts by summarizing all the teacher’s utterances/activities for the whole 

week into the different codes under which they were captured. Below is a graph fig. 5.2 

that summarizes the coding of teacher R’s utterances and activities for the whole week. 
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Fig. 5.2 SUMMARY OF TEACHER R'S UTTERANCES BY QUALITY OF KNOWLEDGE LEVELS 

 
 

 
Fig. 5.3 COMPARISON OF Tr R’s CODED UTTERANCES 

 
 

The decision to represent knowledge types in bar charts was not arrived at without 

considering that knowledge by its nature is an abstract concept and perhaps a continuous 

variable. However according to McBurney and White (2010) although a variable may be 
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continuous, its measurement is often discontinuous. They gave an example of height 

which is a continuous variable but which is generally measured to the nearest metre or 

centimeter both of which are discontinuous. Similarly they contended that knowledge of 

psychological research methods for example may be a continuous variable, but it is often 

measured by the number of items correct on a test – a discontinuous measure.  However, 

they argued that this does not make knowledge a discrete variable because it would be 

impossible in principle to measure knowledge as finely as one wished (McBurney & 

White, 2010, p. 123).  Similarly procedural or conceptual knowledge may also be a 

continuous variable but in this study it is being measured by the number of teacher 

utterances – a discontinuous measure which can well be represented in the form of bar 

charts. There is also empirical evidence to further support this view as occurrences of 

conceptual and procedural knowledge and other forms of knowledge have been 

represented on bar charts by researchers including (Forrester & Chinnappan, 2010; J. 

Hiebert, et al., 2003; Rittle-Johnson, et al., 2001).  

 

Having justified the use of bar charts in this section of the study I now try to explicate 

meaning from the figures. An overview of the graph above shows that the highest 

numbers of utterances, 36 in each, were recorded in the category of connections through 

different representations and procedural connections respectively. This was to be 

expected given that research into classroom interaction has shown that teachers are 

constantly engaged in a process of defining and constructing a mental image of some 

mathematical object and using instructional representations in the process (Businskas, 

2008; McDiarmid, et al., 1989b). However, McDiarmid et al. (1989b) suggested that 

good instructional representations correctly and appropriately represent the substance and 

the nature of the subject being taught. They further posited that precision of definitions 

and lack of ambiguity in statements was a fundamental principle of mathematics learning. 

Similarly Ball (2003), provided further elaboration and suggested that effective teachers 

of mathematics have to use mathematically appropriate and comprehensible definitions, 

represent ideas carefully, mapping between a physical or graphical model, the symbolic 

notation, and the operation or process. Given that the instructional representations that 

students encounter define the formal opportunities for learning about the subject content 
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the question that might quickly come to the fore is what stands out as key in this teacher’s 

representation of the distributive law in view of the fact that this was the focus of all the 

lessons for the whole week. To enable a deeper engagement with the question Fig. 5.1 

above shows a further disaggregating of the connections which reflect the relative 

frequencies within each of the categories under which they were coded. What this relative 

frequency graph seems to highlight is that connections through different representations 

both alternate and equivalent (DR) appeared faulty in close to 80% of the cases and 

restricted in another 10%.  However in the procedural connection most of the utterances 

and activities (57%) fell into the level 1 category and (24%) into the level 2 category 

indicating that a total of (81%) of them were not faulty.  

 

Besides those two categories, this graph also shows that opportunities for learner 

procedural and conceptual understanding (level 2) were created in relative fewer 

utterances i.e. 8% in the different representations category, 19% in the part-whole 

relationships and 23% in the procedural connections category.  Going back to the 

literature review chapter; one might recall that in the NCSM the espoused view is that 

mastery of mathematics was key to democratic citizenship and this mastery depended to a 

large extent on mathematical processes such as investigating patterns, formulating 

conjectures, arguing for the generality of such conjectures and formulating links across 

the domains of mathematics to enable critical thinking (Department of Education, 2008a). 

All these are skills identifiable with deep understanding that are also inextricably 

intertwined with the ability to solve real life problems. What this graph seems to portray 

is that on average only 10% of the teacher’s utterances had the potential to develop such 

deep understanding.  

 

A significant number of opportunities for learner rote or superficial understanding (level 

1) were created i.e. 12% in the different representations category, 56% in the part-whole 

relationships, 55% in the procedural connections category and 27% in the instruction-

oriented connections category respectively. Let us recall that in level 1 of all the 

categories, connections were being recognised in a manner that was mathematically 

acceptable but limited in their potential to develop learners’ deeper understanding. For 
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example the emphasis by the teacher that when multiplying a binomial and a trinomial, 

the binomial must always come first # 38 and #40, is not mathematically faulty, but 

maybe in the teacher’s view it might have been procedurally efficient yet it could be 

argued that this could be conceptually limiting in terms of deep understanding of dealing 

with expansion of polynomials. However this emphasis on procedural fluency or 

automation without showing the learners why the process worked the way it did could be 

explained in a number of different ways in the South African context.  

 

One of the observations in mathematical reform literature was that while current reform 

emphasizes the importance of the interconnectedness among mathematical topics and the 

connections of mathematics to other domains and disciplines, a number of factors tend to 

militate against such practices. For example in an assessment driven education system, 

there is increased demand for accountability on the part of all players including teachers. 

In some cases, teacher and administrator compensation is based on how well students 

perform on mandated tests. Standards have therefore become a very high stakes issue in 

public education with communities insisting on strong performance. With the current 

increased demand for accountability on the part of the teachers measured by student 

performance on mandated tests, the task of teaching for conceptual understanding appears 

overwhelming to teachers who struggle to find enough time to complete even routine 

duties. This is also compounded by the fact that current assessment practices do not seem 

to support this vision of teaching for deeper understanding and often work against it. 

Educational assessment has now been driven largely by practical and technical 

expedience rather than educational priorities. These constraints of efficiency have led to 

mathematics assessment following an atomistic approach where low-level skills were 

emphasized. Yet in a standards based environment common in many nations including 

South Africa, there is empirical evidence to suggest that there is a lot of teaching to the 

test with teachers focusing on topics and skills that are included in the examinations and 

devoting a lot of time to acclimatizing students to examination-type questions 

(Ottenvanger, et al., 2007). Teaching for the tests in which low-level skills were 

emphasized appears to have led to a new push for the basics, but unfortunately these new 
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basics are not the basics needed for future success in the world beyond school 

(English2008).  

 

In teacher R’s case there is evidence that seems to point to this teaching for procedural 

efficiency in the test. For example, when learners pressurized the teacher to accept 

alternative representations of the distributive law the teacher in her defence made 

reference to examinations pointing out that ordinarily those alternatives would be 

acceptable but she would not award marks if this was in an examination.  It would appear 

that the teacher’s concern here was about performance in the examinations rather than 

competence in the world beyond school hence the use of mnemonic techniques such as 

‘binomial to the left trinomial to the right’ when multiplying polynomials and  ‘variable 

in the middle of a fraction must be next to the numerator’ when working with fractions. 

Admittedly mnemonic techniques learned by rote may provide connections among ideas 

that make it easier to perform mathematical operations in the examination, but they may 

not lead to deep understanding of both procedures and concepts.  

 

A significant number of opportunities for learners to develop both procedural and 

conceptual understanding appear to have been lost (level 0) in 78% of the (DR) different 

representations category, 24% of the (PWR) part-whole relationships, 100% of the (IM) 

implication category, 20% of the (P) procedural connections category and 72% of the 

(IOC) instruction-oriented connections category respectively. Utterances coded at this 

level were characterized mainly by the teacher creating opportunities for a flawed 

understanding of key mathematical ideas or facts during instruction. According to Kahan, 

Cooper and Bethea (2003), teacher weaknesses may become manifest in inaccurate 

mathematical statements, careless and otherwise. In this case such weaknesses were 

particularly prevalent when the teacher was summarizing the week’s lessons by trying to 

identify patterns in the results obtained from multiplying binomials and trinomials. Some 

of the teacher’s “in conclusions” included; ‘When we are multiplying a binomial by 

another binomial we are squaring (#162), and when we multiply a binomial by a 

trinomial we are cubing (# 130), and the result is a difference of 2 cubes (#132) and that 

a3 + b3 was a product of (a + b) (a2 – ab + b2) and an example of a difference of 2 cubes 
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(#136, #160, #168)’. Hiebert et al., (2003) for example highlighted some characteristic 

features of Japanese math classrooms which were regarded as indicating some 

indispensable elements of mathematics classroom instruction that are valued and 

emphasized. These included highlighting and summarizing the main points. In this 

teacher’s summary of the main points it is not quite clear what she wanted the learners to 

see as the main ideas about the multiplication of binomials and trinomials.  This can be 

evidenced by the learners themselves admitting they were confused (#150, #152, #184).  

 

In terms of highlighting and summarizing the main points it would appear there was also 

faulty representations in particular suggesting gaps in their subject matter knowledge. 

This could be explained again by the observations made earlier that in South Africa 

literature abounds that suggest teacher’s subject matter knowledge is weak (Adler, 2009; 

Brodie & Pournara, 2005; Graven, 2005; Harley & Wedekind, 2004; Howe, 1999; Long, 

2007a; Taylor & Vinjevold, 1999). 

 

In terms of Teacher R responding to the expectations of the NCSM, one would argue on 

both the affirmative and the negative.  If one considers that assessment comprises an 

important component of the curriculum and if those assessments are also testing for 

procedural fluency as was argued before and the teacher is also teaching for procedural 

fluency then in that sense it can be argued that she is meeting the expectations of the 

curriculum. However, if one takes deep understanding as a long term goal of the NCSM 

which cannot possibly be tested in the normal standardized tests then it can be argued that 

the teacher was unable to get learners to formulate links, identify patterns, and draw valid 

generalisations about the multiplication of binomials and trinomials.  

5.3 TEACHER ‘B’- TEACHING CALCULUS 
 
Teacher B’s lesson for the whole week were all on LO2 (Functions and Algebra) and 

focused on Calculus with specific interest on gradient. Below is a table with data excerpts 

from teacher B’s lessons exemplifying how live data was placed into each of the 

categories and levels.  
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Table 5.3    Excerpts from Teacher B’s coded utterances   
Episode Code Comment 
And remember here we are talking of gradient of a line. 
Okay. So be it, this is what It’s horizontal, (and teacher 
draws a horizontal line)    

 
So if you have a horizontal line what does it tell you about 
the gradient? We have a horizontal gradient.   

 

DR0 

 
A horizontal line is being defined 
as having a horizontal gradient   

 Look at the gradient of aaaa… let’s say y = 2x + 1 the 
gradient is what its 2 okay a positive 2. It’s a value that is 
greater than what than 0 okay. So the gradient will be 
increasing okay and if it was y = -2x + 1. Haa. It’s negative 
so it’s what its decreasing. Okay. So the gradient of a line 
when, you talk of a gradient of a line given an equation of  a 
straight line,  okay a linear equation the coefficient of x is 
what is the gradient.  Okay. So the sign before the 
coefficient is the one that tells you the gradient is what 
positive or it’s what negative.   

 

 

DR1 

Here the teacher is able to 
identify the gradient correctly as 
the value of m in a standard 
equation for a straight line i.e.  
y = mx + c but what does it mean 
to say when this m-value is 
positive it is increasing and when 
it is negative it is decreasing?  

You can either do it in a table form whereby you have your 
input and your output. So you have what x as the input and 
then y as the as the output. We are going to substitute the x 
values into the function and then we will get what the y 
values.  So we have f(x) = x2 + 1. 
 

x -2 -1 0 1 2 
y 5 2 1 2 5 

 
(The teacher then completes the table of values after which 
she raises another  question) 
 

DR2 Another form of representing a 
function which appeared to be 
well explained 
 

 
Will all these lines have the same gradient? Haa. It won’t. 
So this one (referring to one whose arrow is pointing up) is 

it increasing or is it decreasing? It’s what its increasing. So 

if it’s increasing we are talking of what greater than what 0 

okay. So if it’s decreasing (referring to one whose arrow is 

pointing down) we are talking of less than 0 and if it’s 

horizontal it’s what? Haa. If it’s horizontal it’s close to…If 

it’s increasing it’s greater than 0 okay if it’s decreasing its 

less than 0 and if it’s horizontal it’s what? It’s equal …to 

PWR0 This forward slanting line is 

being given as a case/ example of 

lines having a decreasing 

gradient and whether this 

‘decreasing’ was a slip of the 

tongue to mean negative, in both 

cases of either decreasing or 

negative gradient it was 

mathematically problematic 

hence it was coded as PWR0   
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what to 0. 

 

PWR1 This forward slanting line is 
being given as an example of 
lines having an ‘increasing’ 
gradient. Here the teacher was 
being given the benefit of doubt 
in her interpretation of 
‘increasing’ to mean positive 
gradient hence coded as PWR1  
 

No episodes for this teacher were coded  PWR2  

So here we talk of average gradient but we have an actual 

gradient between two points and you can only calculate a 

gradient (of a curve) when you have two points. 

 

IM0 

This seems to imply that you 
cannot calculate the gradient of 
a curve at a point but only 
between two points on the curve 
which mathematically would be 
problematic for learners 

None of this teacher’s episodes was coded IM1  
None of this teacher’s episodes was coded IM2  
Motion, chemical reaction, ok, like if you have a tumor and 
they want see if using radiation will make that tumor to 
shrink they will use, they will use calculus.  So it is a very 
important mathematic tool. Okay. It was invented in I think 
in the 17th century. One of the Mathematicians was 
Newton. 

 

 

P0 

 
Calculus as a procedure to see if 
using radiation will make a 
tumour to shrink  

Ok you used decimals all of you…. (After which the teacher 
takes the learners’ decimal values into consideration and 
starts working with decimals instead. The challenge came 
when she tried now to locate the position of these values on 
the y axis)  
0.3 ok now, where is 0.3, ok, -0.3, I usually discourage 
learners to use decimals, ok because if you have used 

1,
2
1,

3
1

−  it won’t be as accurate as you want it to be but it 

will be better than using 0.3 and 0.5 …….. 

 

 

 

P1 

 
Teacher’s values are correct but 
equivalent values discouraged 
because teacher claims proper 
fractions are better than 
decimals in this case. This tends 
again to limit learners’ deep 
procedural understanding when 
plotting points on a graph   

You can either do it in a table form whereby you have your 
input and your output. So you have what x as the input and 
then y as the as the output. We are going to substitute the x 
values into the function and then we will get what the y 
values.  So we have f(x) = x2 + 1. 

P2 Correct procedure for drawing 

graphs 

(Prior to this the teacher had stated that a function can be 
linear or quadratic) ….One x value is related to one y value. 
It can... A function can be a one to one but it can also be a 
many to one. So define the word function.  

IOC0 Teacher does not seem to bring 
out the differences between a 
one-to-one and a many-to-one 
function building on the 
examples of linear and quadratic 
functions that the class had been 
discussing 
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Teacher: How do I identify a linear function? 

Learner: Straight line 

Learner: The graphs 

Teacher: 
Is determined by x. If x is to the exponent 1 you are talking 
of a linear function if it’s a square it’s what? Quadratic. 
Okay. That is how you differentiate between the two 
functions. Okay. So now I have written a function: f(x) = x2 
+ 1. This is what linear or quadratic?  

IOC1 Correct but again Tr does not 
seem to be building on learner’s 
responses because both straight 
line and graphs would have been 
acceptable but it looks like she is 
interested in the exponent of x to 
distinguish the types of functions 

None of this teacher’s episodes was coded  IOC2  

 

5.3.1 Episodes coded as indicating Different Representations (DR): 
 

Two utterances were coded at the highest level DR2 and these are #41 and #44. These are 

utterances which could be associated with forms of representation where learners’ 

development and articulation of justification and argumentation appeared evident.  In #41 

for example, the teacher shows a complete table of values as another form of representing 

a function which had been given on the board in algebraic form. In #44 this table of 

values is again represented in graphical form which is yet another correct form of 

representing a function.      

 

Three utterances were coded at the second level DR1 and these are #5, #32 and #82. 

These are utterances where connections were recognised but in a manner that would limit 

(superficial) the learners’ conceptual understanding. In #5 for example, the teacher 

defines calculus as having to do with limits, derivatives and differentiation. While these 

terms are indeed linked to calculus but they are terms that need further defining 

themselves hence it can be argued that the teacher seemed not to have ‘a clear idea of 

what is the simplest form of this mathematical idea’ (Ma, 1999). In other words it would 

appear she was unable to scale down or trim the concept so that it could easily be 

accessible to the learners.  In fact throughout the series of lessons, the teacher never 

attempted to define the terms derivative and differentiation. She kept scratching through 

the definition of limits, functions and domain without exhausting any of them such that 

the learners would be able to link them with the concept of calculus.  
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In #32 the teacher says: 

When you substitute the x value you get a y value so the x value is the input and 
the y value is what the output. 

 

This is being given as a definition of a function but it appears to lack mathematical 

precision especially considering that the teacher had earlier on said a function can be a 

one-to-one or a many-to-one in (#30). These are critical features of a function which do 

not seem to come out clearly in the above definition in the absence of further articulation. 

In #82 the teacher represents a positive gradient in the form of a forward slanting line i.e. 

/ but there seems to be lack of precision again when the teacher claims that the gradient 

would be increasing in this case. So one would imagine what conceptualisation learners 

would make of a positive and increasing gradient in a straight line. Considering that 

earlier on the teacher had said that the gradient of curve changes but that of a straight line 

is constant, this was likely to confuse the learners leaving them with no clear 

understanding of the mathematical concept that was being focused on.  

 

Thirteen utterances were coded at the lowest level DR0 and these are #9, #19, #24, #26, 

#45, #51, #80, #82, #82, #85, #103, #107 and #113. These are utterances where 

connections were recognised in ways that were mathematically faulty. In the utterances 

#9 – 45 the issue is about the definition of calculus which is first given (#9) as “there is 

the word calculate in it, so we will be calculating.”  The question could be; ‘What exactly 

would learners be calculating in calculus and how different would this be from any other 

calculations that are done in other areas of mathematics which are not calculus?’ Later on 

the teacher defines calculus as having something to do with limits, functions, derivatives 

and differentiation. At that point the utterances are coded DR1 because indeed these are 

terms which can be linked to calculus, but one was hoping that each of these terms would 

be defined in a more comprehensive manner that would enable the learners to see the 

links. However the teacher kept on introducing another new term to define the previous 

one. In #19 for example, the teacher asks “Do you understand the word limit?” but before 

this term had been defined the teacher introduces another term in #24 when she says “By 
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the way what is a function?” yet another one in #26 “What is the domain?” and back in 

#45 “Now coming back to the word limit ….. Now I want to explain the term limit what it 

means.” Immediately after this the teacher substitutes different values into f(x) = x2 +1 in 

what appears to be a haphazard manner which does not seem to bring out the concept of a 

limit. She then ends the lesson by saying; “Now we have talked of the word limit and we 

will get back into the word limit as we go on” (#46). In short it is doubtful whether 

learners would have made sense of any of these terms because each one was defined in 

terms of the next and yet another with the result that no comprehensive definition was 

given at all.   

 

In #51 the teacher seems to suggest that the gradient is negative (-3) because the points 

are on the negative side – but negative side of what is not clear. On a Cartesian plane for 

example, gradient whether positive or negative is determined by the slant of the lines and 

not by where such lines are positioned. In #80 the teacher seems to suggest that a 

horizontal line has a horizontal gradient and #82 the utterances suggest that a forward 

slanting line / drawn from bottom going up has a positive gradient which is increasing 

while a similar forward slanting line / but drawn from top going down has a negative 

gradient which is decreasing.  It is clear within those same utterances 80 – 82 that the 

teacher could identify the value of m in the standard equation for a straight line y = mx + 

c as standing for the gradient but it is also clear that the teacher could not exemplify 

positive and negative gradient using line segments.  In #85 the teacher suggests that 

learners can only calculate the gradient of a curve when they have two points. To define 

the gradient of a curve in this way would certainly be problematic for the learners as they 

might never be able to deal with this concept. The gradient of a curve is generally 

measured/defined at a specific point on the curve. 

 

In #103 the teacher seems to suggest that when learners divide 1 by 0 and get error on 

their calculators, the mathematical language for that is ‘undefined’. In #107 the teacher 

seems to confirm that -0.33 is less than -0.5. In #113 when comparing the equation 
x

y 1
=  



 189 

with the standard equation q
x
kaxg += .)( for a hyperbola the teacher seems to suggest 

that a = 1 but “We do not have a value for q.” Yet q = 0 in this case. All these appear to 

be faulty mathematical statements which had the potential to limit the learners’ deep 

understanding of the mathematical ideas that were being dealt with in this series of 

lessons.    

5.3.2 Episodes coded as indicating Part-Whole Representations (PWR): 
 

A few utterances (4) were coded in this category for this teacher’s series of lessons 

indicating that she made a few generalisations. This is understandable considering that 

generalisations are usually made after making a number of observations and identifying 

patterns thereof. No utterance was coded at the highest level PWR2. Only one utterance 

#82 was coded at the second highest level PWR1. In this utterance the teacher makes a 

generalisation that a forward slanting line / but drawn from down going up has a positive 

gradient and the gradient is increasing. This statement is partially true as indeed such a 

slanting line has a positive gradient but that the gradient is increasing contradicts a 

mathematical fact that the gradient on a straight line is constant. 

 

Three utterances were coded at the lowest level PWR0 indicating that there were some 

mathematical faults in them.  In #10 for example, the teacher says; “So whatever that we 

do in Math is related to our daily lives.” This kind of generalisation suggests that Math 

only has utility value yet mathematics can be done for its own sake (aesthetic value) and 

not necessarily that it has particular relevance to the everyday.  In #82 the teacher makes 

another generalisation that a forward slanting line / but drawn from top going down has a 

negative gradient and the gradient is decreasing. In #85 the teacher makes another 

generalisation about the gradient of a curve as she says;  

 So here we talk of average gradient but we have actual gradient between two 
points and you can only calculate a gradient when you have two points.”    
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5.3.3 Episodes coded as indicating connections through Implications (IM): 
 

A total of only three utterances were all coded at the lowest level (IM0) in this category. 

In #54 for example the teacher asks a question with reference to the gradient of a curve;  

 If it changes …will we still talk of an actual gradient like when we talk of a 
straight line graph? We will talk of what, average gradient because the gradient 
is not constant.  

 

This statement seems to imply that a straight line graph has ‘actual gradient’ because it 

has a constant gradient, but it is doubtful whether mathematically there is something 

called actual gradient. Apparently this term continued to be used right through the series 

of lessons. In that same utterance the teacher also says;  

 So the gradient at these two points …will be called the actual gradient but 
knowing that the gradient of a curve changes.   

 

To suggest that the gradient between any two points on a curve is called actual gradient, 

implies that there is a constant gradient between these two points and that implication is 

mathematically faulty as it contradicts the fact that the gradient on a curve changes. In 

#85 the teacher makes a statement which implies that one cannot calculate the gradient at 

any given point on a curve since one has to know or be given two points in order to 

calculate the gradient. 

   

5.3.4 Episodes coded as indicating connections through Procedure (P): 
 

A total of nine utterances were coded in this category. Two of them #40 and #41 were 

coded at the highest level of P2 basically the teacher was showing correct but different 

procedures of representing a function.  

 

Two utterances #97 and #110 were coded at the second highest P1 of this category. In 

#97 for example the teacher shows a correct procedure for calculating an output given an 
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input of a function. However, an equivalent procedure of working with decimals is 

discouraged as the teacher says;  

 I usually discourage learners to use decimals, ok because if you have used 
(proper fractions) it won’t be as accurate as you want it to be but it will be better 
than using (decimals).  

 

In #110 the teacher suggests that learners can use any of the Cartesian Planes that they 

have drawn before to plot the graph of any other function.  

 Use any of your Cartesian planes, any that you have in your book, so you are 
wasting time…  

 

This was after the teacher had noticed that the learners were trying to draw a Cartesian 

plane for each of the graphs they had been tasked to draw. However, when using graphic 

calculators for plotting graphs of functions, learners usually don’t see the need for 

choosing an appropriate scale for the axes since the calculator does that automatically but 

when plotting the points for a graph manually on a Cartesian plane the skill to choose an 

appropriate scale on both axes is extremely important as a Cartesian Plane scaled for one 

graph might not be appropriate for a different function.    

 

Five utterances were coded at the lowest level under this category. In #18 for example, 

the teacher says,  

 If you have a tumour and they want to see if using radiation will make that tumour 
to shrink, they use calculus. So it is a very important mathematical tool…   

 

It is not clear how calculus could be used as a mathematical tool in this process of getting 

the tumour to shrink. In #45 the procedure used to demonstrate the concept of limits does 

not seem to be making any mathematical sense.  In #49 the teacher suggests that 12

12

xx
yy

−
−

 

is the formula for finding the gradient of a curve.  This procedure might not also lead the 

learners to a correct understanding of the gradient of a curve. This is followed up in #51 

with the teacher using coordinates of two specific points to substitute into that formula in 

order to calculate the gradient but by convention the gradient is calculated at a specific 

point on the curve hence it can be argued the procedure is problematic. In #54 the teacher 

comments after calculating the gradient using the two specific points on the curve;  
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 So the gradient at these two points will be what will be…. It will be called the 
actual gradient but knowing that the gradient of a curve changes. That is why we 
call it what? We talk of average gradient.  

 

However the teacher still does not show how that ‘average gradient’ is calculated and 

how different the gradient of a straight line is from the gradient of a curve. 

5.3.5 Episodes coded as indicating Instruction-oriented connections (IOC): 
 

A total of 16 utterances were coded under this category. Of those utterances, none was 

coded at the highest level IOC2. Two utterances were coded at the second highest level 

IOC1. In #32 and 36 the teacher suggests correctly that;  

 We talked about functions. We talked about linear functions. We talked about 
quadratic functions. Okay. How do I identify a linear function? Is determined by 
x. If x is to the exponent 1 you are talking of a linear function if it’s a square it’s 
what? Quadratic. Okay. That is how you differentiate between the two functions. 
Okay. So now I have written a function: f(x) = x2 + 1. This is what linear or 
quadratic? 

 

Prior to these utterances the teacher had just explained that a function can be a one-to-one 

or a many-to-one but in terms of making an instructional oriented connection it appears 

she does not build on this fact as she seems not to mention which of those two linear and 

quadratic would be a one-to-one and many-to-one function.  

 

A total of thirteen utterances were coded at the lowest level IOC0 of this category. In #14 

the teacher seems not to recognize that the term calculus has a different meaning in 

Biology for example from the mathematical one she wanted the learners to focus on.  

After she had asked how in engineering people could make use of calculus one learner’s 

response was 

  Mineral mass in the body” in #13.  

 

However she does not appear to build or extend on this knowledge to enable the learners 

to make a distinction between calculus as in mineral mass in the body and calculus as 

used in mathematics.  In #9, #26, #30, #57, #59 the learners are using statements like “To 

explain it more further” to define calculus and “It shows us the height above the earth’s 
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surface” to define gradient and the teacher seems to be regurgitating the same statements 

as given by the learners without asking the learners to show the connections and neither 

does she build on that information herself to bring out clearly the meanings of those 

concepts. In #54 the teacher again does not seem to bring out the differences between a 

one-to-one and a many-to-one function despite having mentioned earlier on that functions 

could be distinguished that way.  In #57 despite having mentioned that the gradient of a 

curve changes but is sometimes constant, she does not show where it begins to change 

and where it becomes constant – all this does not seem to come out yet this was critical 

information in this series of lessons. In #67 the teacher does not suggest the link between 

calculus and the ability to go to the moon. In #79 the teacher quickly abandons gradient 

of curves and goes back to gradient of straight lines again suggesting that the way we 

calculate those gradients was the same. In #89 the teacher’s summary seems not to 

highlight the main points dealt with in this lesson. In #109 the teacher does not make a 

follow up despite some learners having noticed that it was false to say that -0.33 is less 

than  - 0.5.   

5.3.6 Key messages emerging from Teacher B’s teaching of Calculus: 
 

The discussion of what emerges from Tr B’s teaching is again guided by the following: 

(a) What aspects of connections does the teacher appear to handle well? 

(b) What aspects appear to be problematic? 

(c) What are the underlying features in each case? 

(d) How do the strengths and weaknesses relate to the orientations in the curriculum? 

  

Table 5.4 and Fig. 5.4 below summarize all the teacher’s utterances/activities for the 

whole week into the different codes under which they were captured. 
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Table 5.4 Totals of Teacher B’s coded utterances (n = 42) 
 

FORMS OF 

MATHEMATICAL 

CONNECTION 

 
              LEVELS OF KNOWLEDGE 

QUALITY 

Code 0 1 2 

Different Representation DR 

 

13 3 2 

Part-whole Relationship PWR 3 1 0 

Implication IM 3 0 0 

Procedure P 5 2 2 

Instruction-oriented 

Connection 

IOC 13 2 1 

 Totals  37 8 5 

 
 
Fig. 5.4 SUMMARY OF TEACHER B’s UTTERANCES 
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The teacher starts the series of lessons by asking the learners for the definition of the 

word calculus. Learner responses reflect some prior knowledge as they mention that it 

has to do with limits, derivatives, differentiation and that calculus is used to describe a 

system of rules.  The teacher then summarizes learners’ contributions by saying;  

 I mean its calculus it has the word calculate within it. Ok, so we will be 
calculating something but there are rules that we need to follow.    

 

One of the fundamental principles of mathematics revolves around explicit definitions of 

terms and symbols. O’Connor (1999) discusses different types of mathematical 

definitions and these include stipulative, working, dictionary and formal. Stipulative and 

working definitions are developed as part of an interaction or an exploratory activity; 

while dictionary and formal are given by a text. The definitions students used in this 

conversation can be described as working and stipulative definitions. It could be argued 

that this is productive for the students are actually participating in an activity that may be 

closer to the practice of scientists and mathematicians than to school practices of using 

only dictionary definitions (Ball, 2003).  

 

However, knowing definitions for teaching requires being able to understand and work 

with them sensibly, treating them in a way that is consistent with the centrality of 

definitions in doing and knowing mathematics. For example the centrality of definitions 

of Calculus is that when learners are studying the rates of change in mathematics, they 

are in the branch of mathematics called Calculus. From the way the teacher summarizes 

this discussion on the definition of Calculus this seems not to come out as the impression 

learners might get is that any calculation is in the branch of Calculus because there is the 

word ‘calculate’ in it. Knowing how definitions function, and what they are supposed to 

do, together with also knowing a well accepted definition in the discipline, would equip a 

teacher for the task of developing a definition that has mathematical integrity and is also 

comprehensible to students (Ball, Hill & Bass, 2005).      

 

In this discussion it can also be argued that learners were using terms like, limits, 

derivatives and differentiation that also required further definitions before learners could 
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really grasp the mathematical object that was targeted. If these terms were compared with 

a much simpler term of “rate of change” as defining Calculus, it can be argued that they 

were less likely to enable learners to have a clear conceptual understanding of the term.  

Empirical evidence has shown that in order to make sense to the learners, definitions 

must be based on elements that are themselves already defined. A definition of a 

mathematical object is useless, no matter how mathematically refined or elegant, if it 

includes terms that are beyond the prospective user’s knowledge. The implication is that 

teachers must be able to choose and develop a definition that is mathematically 

appropriate and also usable by students at a particular level (Ball, Hill & Bass2005). 

 

The teacher opens the next discussion with a statement;  

 So now what ever we do in Maths is related to our daily lives.  

 

It might appear this statement was over generalised because not everything we do in 

mathematics could be linked to the everyday. One of the most important attributes of 

mathematics, and one that gives it much of its power, is its abstract nature. Using 

mathematical language with care, and understanding how definitions and precision shape 

mathematical problem solving and thinking are crucial elements to understanding 

mathematics.   

 

In the next discussion, it would appear the focus was on the application of Calculus in 

everyday lives. Teacher utterances and activities here appear to be productive as learners 

were able to mention population growth, motion, chemical reaction, and shrinking of a 

tumour which are all examples of rates of change where the concept is applicable. 

However there is a learner who mentioned that in Engineering, Calculus can be used to 

find mineral mass in the body. According to Moschkovich (2004), learning mathematics 

involves in part a shift from everyday to a more mathematical and precise use of 

language. Students use resources from both everyday and mathematical discourses to 

communicate mathematically. Learning the mathematical meanings of words describes 

one important aspect of learning mathematics. This learner for example understands the 

term Calculus as used in medical terms with reference to ‘a hard lump produced by the 
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concretion of mineral salts; found in hollow organs or ducts of the body.” While the 

teacher acknowledges the learner’s contribution by saying; “Mineral mass in the body of 

what, human beings, animals,” she quickly diverts the talk to focus on population growth. 

Contrasting everyday meanings with the more restricted meaning of the mathematics 

register points to these multiple meanings as possible sources of misunderstanding in 

classroom discussions. But everyday meanings are not only obstacles; they are also 

resources for developing mathematical competence. Mounting evidence from cognitive 

science research shows that pupils’ prior knowledge and beliefs powerfully influence the 

way they make sense of new ideas. Children’s understanding of subject matter is the 

product of an interaction between the ideas, information and understandings they bring 

and the new ideas and information that they are presented (Moschkovich, op cit). So their 

ability to understand new information depends in part on the fit between the new 

information and the ideas they encounter and the schemata they have developed to assess 

and organise new information or experience.  

 
The next discussion appeared to be focused on the understanding of the term limit, a 

word which had earlier on been used to define Calculus. In mathematics, the concept of a 

"limit" is used to describe the value that a function or sequence "approaches" as the input 

or index approaches some value. The teacher states this concept quite explicitly as she 

says;  

 So when x approaches 2 okay the limit of f(x) will be equals to 5.  

 

However, it is the representation of the concept of ‘approaching’ that might not have 

been productive for the learners. The phrase ‘approaching a certain value’ suggests some 

systematic trajectory, one that would enable learners to see the link between the verbal 

representation of a limit and the numerical representation of it. However, asking learners 

to substitute values for x in the function f(x) = x2 + 1 appeared not to be consistent with 

this verbal representation as the teacher asked the learners to use 1,9; 1,9999; 2,9; 2,9999; 

2,05; 2,025 in that order. Representation is a central feature of the work of mathematics 

teaching (McDiarmid, et al., 1989b). Skill and sensibilities with representing particular 

ideas or procedures is as fundamental as knowing their definitions. Teachers need to be 
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able to use representations skilfully, choose them appropriately and map carefully 

between given representations.  

 

Going into the next discussion the teacher starts by asking “What is the purpose of a 

gradient?” It is not quite clear here what kind of response the teacher was expecting from 

the learners but one learner said; “It shows us the height above the earth’s surface.” 

Although there was more probing from the teacher, the learners appeared not to get what 

exactly the teacher wanted. In an effort to get learners to respond, the teacher then gave 

examples like,  

 Let’s take a rocket okay. Is the rocket only going to influence the height above sea 
level? You talk of what in Science gravity – so what is happening there? You 
know rockets people okay what is happening there? Do you remember 
McShuttleworth – so what happened there? What happens to the air?” 

 

The way the teacher is trying to ask questions, explain and get responses from the 

learners seems to confirm research findings that suggest that teaching requires an 

awareness and understanding of fundamental mathematical connections (Moschkovich, 

2004). It would appear that understanding of gradient through real life situations might be 

problematic. Judging by the examples she is focusing on, this teacher seems to be 

working with the notion of gradient as the degree to which something inclines; a slope. 

However, it is doubtful whether the notion of a negative gradient has a real life 

equivalent. Empirical evidence has shown that mathematics teachers need to know a 

great deal more about a slope than the phrase ‘rise over run’ (McDiarmid, Ball, & 

Anderson, 1989a). They may need to think about the relationship between slope as a 

mathematical device and slope as a phenomenon of everyday life if they are to represent 

the concept in a way that makes sense to pupils. In addition, they need to think about 

slope as a way of understanding relationships within mathematics – for instance, as a way 

of representing the covariance of two variables. They may need to see that this concept 

and related concepts have application in many other fields, from engineering to sociology 

to economics to business.  All these are issues which seem not to be addressed from the 

manner in which the explanations and questions are coming from the teacher. As a result 

of similar observations on the problematics of content area, one of the recommendations 
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was that the standard  way to teach calculus for such diverse application is to abstract the 

material and teach the core principles that apply in all situations (Wilson, Fernandez & 

Hadaway1993). 

  

In this discussion it can also be observed that there was some misconception in the way 

negative gradient was presented graphically. Both slanting lines drawn on the board in 

fact represent a positive gradient yet the teacher seemed to say one of them was showing 

an increase and another one showing a decrease in the gradient. From the way the teacher 

is also explaining negative gradient as decreasing and positive gradient as increasing 

learners might end up with a misconception. Often slope is calculated as a ratio of "rise 

over run" in which run is the horizontal distance and rise is the vertical distance. This 

ratio becomes positive (positive gradient) if the change in both the rise and run are 

positive or when both of them are negative. The ratio becomes negative (negative 

gradient) when the change in either the rise or run is positive and the other one negative. 

This does not seem to come out clearly from the way the teacher is talking about 

increasing gradient and decreasing gradient. However given an equation of a linear 

function she explains this gradient productively as she says;  

 So the sign before the coefficient is the one that tells you the gradient is what 
positive or it’s what negative.  

 

Teaching requires the ability to represent ideas and connect carefully across different 

representations - symbolic, graphical, and geometric (Moschkovich, 2004). It requires 

knowing ideas and procedures in detail, and knowing them well enough to represent and 

explain them skilfully in more than one way.  

 

In terms of making a connection between the gradient of a straight line and that of a 

curve learners might not have been able to make this connection from the way the teacher 

explained.  

 So here we talk of average gradient (referring to a curve) but we can have actual 
gradient between two points and you can only calculate a gradient (of a curve) 
when you have two points.”  
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It might not be very clear here what the teacher meant by the terms average gradient and 

actual gradient. But mathematics is precise and precision is necessary in the doing of 

mathematics and in the communication of mathematics. The meaning of terms, 

operations, and symbols of mathematics must be completely unambiguous or else 

communication gets lost and mathematics slips away. Students who are unsure of what 

they are talking about cannot hope to solve problems with such ambiguous underpinnings 

(Wilson, Cooney & Stinson2005). For students and teachers to communicate effectively 

about mathematics they must all have precise meanings for symbols and terms in 

common. This is easy to overlook, and often overlooked, in situations where content 

seems elementary, but this is exactly when that precision should start. 

 

In view of the fact that this lesson was a follow up on the lesson focusing on Calculus it 

might also be interesting to discuss the connection between these two lessons in terms of 

logical sequencing of content. It is essential that learners appreciate and make use of the 

connections of one part of mathematics with another as this ability forms the basis of 

application of mathematical concepts into other areas of mathematics, into other subjects 

and into their daily lives. Mathematical reasoning makes use of the structural 

organisation by which the parts of mathematics are connected to each other and if this 

reasoning ability is not developed in the students, then mathematics simply becomes a 

matter of memorizing large numbers of disconnected facts and following a set of 

procedures without thought as to why they make sense.  

 

Through teacher question in the previous Calculus lesson, learners came up with such 

terms as limits, derivatives, differentiation which link very well with what was being 

focused on in this particular lesson. In Calculus the derivative is a measure of how a 

function changes as its input changes. The derivative of a function at a chosen input value 

describes the best linear approximation of the function near that input value. The process 

of finding a derivative is called differentiation. So differentiation could be defined as a 

method to compute the rate at which a dependent output y changes with respect to the 

change in the independent input x. This rate of change is called the derivative of y with 
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respect to x. If x and y are real numbers, and if the graph of y is plotted against x, the 

derivative measures the slope of this graph at each point. 

 

The simplest case is when y is a linear function of x, meaning that the graph of y against 

x is a straight line. In this case, y = ƒ(x) = m x + c, for real numbers m and c, and the slope 

m is given by    

 
 

This gives an exact value for the slope of a straight line. In this lesson the teacher’s 

explanation brought this concept out clearly and at that stage the teaching tasks were 

quite productive. However building on it into getting learners to understand its 

relationship with the gradient of a curve seemed to be problematic. Firstly for non-linear 

functions, the rate of change varies along the curve. While this came out clearly in this 

lesson it would appear learners were then deprived of the connections between positive 

gradient, negative gradient and zero gradient, which the teacher had talked about, and 

which could all be exemplified in the quadratic curve that the teacher focused on with the 

class and which she drew on the board.  
Figure 5.5 Graph of f(x) = x2 + 1 

 

On the left hand side of the y axis the curve has a negative gradient, at the turning point 

the gradient is zero and on the right hand side of the y axis, the curve has a positive 

gradient. However the teacher did not talk about these concepts in this context and it can 

be argued that this compromises the learners’ abilities to form and to reason with these 

mathematical structures.   
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So, while change in y over change in x gives an exact value for the slope of a straight 

line, if the function ƒ is not linear (i.e. its graph is not a straight line), then the change in y 

divided by the change in x (the gradient) varies. Differentiation is a method to find the 

gradient function for that curve which in turn leads to finding an exact value for this rate 

of change at any given value of x.  Graphically the concept could be explained as follows: 

Rate of change as a limiting value 
 
Fig. 5.6 The tangent line at [x, f(x)]  

 

http://upload.wikimedia.org/wikipedia/commons/d/d2/Tangent-calculus.svg
http://upload.wikimedia.org/wikipedia/commons/d/d2/Tangent-calculus.svg
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Fig. 5.7 The secant to a curve y = f(x) determined by points [x,f(x)] and [x+h, f(x+h)] 

 

 
 
 
 
Fig. 5.8 The tangent line as limit of secants 

 

The idea, illustrated by the three figures above, is to compute the rate of change as the 

limiting value of the ratio of the differences 
x
y

∆
∆   as x∆ becomes infinitely small. By 

http://upload.wikimedia.org/wikipedia/commons/6/61/Secant-calculus.svg
http://upload.wikimedia.org/wikipedia/commons/6/61/Secant-calculus.svg
http://upload.wikimedia.org/wikipedia/commons/d/dc/Lim-secant.svg
http://upload.wikimedia.org/wikipedia/commons/d/dc/Lim-secant.svg
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moving the two points closer together so that y∆  and x∆  decrease, the secant line more 

closely approximates a tangent line to the curve, and as such the slope of the secant 

approaches that of the tangent.  Using differential calculus, one can then determine the 

limit, or the value that  
x
y

∆
∆  approaches as  y∆  and x∆  get closer to zero; it follows that 

this limit is the exact slope of the tangent. 

 

In this lesson the teacher attempted this procedure and from the teaching tasks it would 

appear that the concept of limits was meant to lead into learners’ understanding of this 

view of gradient of a curve at a particular point.  The procedure above shows that there is 

a link between a tangent to a curve at a point and a secant of the curve that passes through 

that same point. The gradient of a secant to the curve y = f(x) through [c,f(c)] and [x;f(x)] 

is given by the formula:  
cx

cfxfm
−
−

=
)()( . This formula comes directly from the formula 

for the gradient of a straight line: 
12

12

xx
yym

−
−

= , and learners were familiar with this 

formula for gradient of a straight line.  However, the process seemed to be unproductive 

for the learners as the teacher could not show the learners; 

(a) how the secant revolved about the fixed point 

(b) that the limit of its revolving was the tangent line 

(c) that as x gets closer and closer to c (from either side) and the gradient of the 

secant becomes closer and closer to the gradient of the tangent at [c;f(c)]  

(d) that the tangent line is the limiting position of the secant 

(e) that the limiting value of the gradient of the secant at a point is defined to be the 

gradient of the tangent at that point or simply the gradient of the curve at that 

point. 

Unfortunately the teacher abandoned the concept of limits before these links were shown 

and although she promised the learners that “we will get back to the word limit as we go 

on” she never came back to it until the end of the lesson. So it can be argued that learners 
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were not presented with an opportunity to create these critical connections hence the 

purpose of talking about limits and where that talk fits in the whole structure might have 

been blurred to the learners.      

 
In the discussion about the table of values, two critical issues seem to stand out 

conspicuously in terms of mathematical procedures and reasoning with mathematical 

concepts. In terms of using appropriate tools and conventions one could start by 

analysing the comment by the teacher when learners used calculators to complete the 

table of values;  

 I usually discourage learners to use decimals, ok because if you have used 

1,
2
1,

3
1

−  it won’t be as accurate as you want it to be but it will be better than 

using 0.3 and 0.5 ...   
 

The teachers’ comments here seem to suggest that there is one correct way of completing 

the table of values. This could be evidence that the teacher was trying to control the open 

ended process (using decimal fractions to plot the coordinates of points on the Cartesian 

plane) in order to ensure the desired learning outcome for all the students i.e. ‘the 

conventional way of completing tables of values using either whole number values or 

proper fractions.    

 

In terms of providing reasons why, it is also interesting to note that the teacher’s 

comments seem to suggest that proper fractions are not as accurate as decimals but they 

are better to use when plotting graphs. However she does not provide the rationale why 

this is so. This seems to confirm Kelly’s (2006) observation that the negotiation of 

meaning is rare in mathematics classrooms, replaced with statements of “fact” offered by 

the teacher for acceptance by the students and replicated under examination conditions. 

Negotiation requires dialogue in the classroom, something that is often difficult to 

manage, and viewed by many teachers as an inefficient use of limited classroom time. 

However, classroom environments that foster the production of multiple voices provide a 

rich learning environment for students and teachers. According to Bruner (1986), 

mathematical discussions within the classroom that engage multiple voices including 



 206 

those of teachers, students and other texts support the constant negotiation and recreation 

of cultural meaning. 

 
In terms of making mathematical explanations which are comprehensible for students 

using a language which is shared by the community of mathematicians one could analyse 

the term “error” as used by the teacher to define an undefined number. While the teacher 

was trying to get the learners to conceptualise a number in the form 
0
a  as an undefined 

number, learners might have missed an opportunity to conceptualise it correctly as the 

teacher seemed to associate it with a calculator display of error. According to Harden 

(2000), the teacher as a representative of the historical practice of mathematics is of 

utmost importance in structuring the discourse of the classroom to reflect the discourse of 

communities of mathematicians. In this utterance, it might have been unproductive for 

the learners to associate an undefined number with “error” as displayed on their 

calculators especially considering that almost all the students in this class had calculators 

for daily use.  The teacher ‘cues’ ‘undefined’ as following from error on calculation 

rather than from the idea of dividing a number by 0. This is an important concept in 

mathematics which should have been followed up using different examples so that 

learners would end up with a generalisable understanding of what this concept was all 

about. 

 

While the discussion on the plotting of negative decimal fractions progressed, the teacher 

raised a question; “Ok between -0.5 and -0.33 which one is bigger?” The learners’ 

response seems to suggest that -0,5 was bigger and the teacher seems to confirm this 

response; “-0.5 so -0.33 is less than - 0.5” The fundamental principles of mathematics 

revolve around precision both in the process and in the communication of mathematical 

ideas. An important point to note is that negative numbers present their own unique 

challenges which students need to be aware of. The decimal -0.33 is in fact greater than -

0,5 and such misconceptions could easily be carried forward into other related areas in 

mathematics or in other studies.  
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In the next discussion, the teacher emphasised once more that learners should not use 

calculators.  The task here was for the learners to make a table of values for the 

hyperbola
x

y 8
= . Going through the learners’ work there was evidence that some learners 

had not conceptualised an undefined number. The corresponding value for y when x was 

0 was given as 8 by some learners since division without a calculator did not result in the 

‘error’ as denoting an undefined number.  This seems to support the argument that the 

teacher’s definition of an undefined number might not have been productive for the 

learners.  

 

In the next set of utterances the teacher gave instruction that learners could use any of 

their previous Cartesian planes in the interest of saving time. This again might have been 

problematic for the students. Some learners then went on and copied the Cartesian plane 

they had used for the equation 
x

y 1
= in the interest of saving time. In terms of 

modelling for concept formation, it was critical for the learners to understand that when 

drawing graphs manually, the skill of deciding on an appropriate scale to use has 

inescapable consequences as each graph demands some critical thinking on what scale to 

use. Throughout this utterance the teacher seemed to ignore this as she urged learners to 

use any of the Cartesian planes they had drawn earlier.  This seemed to imply that any 

scale would work with any graph but this might not always be the case as can be 

evidenced by some of the graphs that were drawn by the learners which failed to bring 

out the features of a hyperbola.  

 

In winding up the series of lessons, the teacher tried to link the equation 
x

y 1
= that the 

learners had worked on with the standard equation for the hyperbola q
x
kaxg += .)(  that 

had been on the board at the beginning of the lesson. The teacher raised the question;  

 “What is the value for q? This graph 
x

y 1
=  ok what is the value for a. (Name of 

student) said 1 and then what is the value for q? Haah! The graph is given by 
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q
x
kaxg += .)(  (After some few seconds of silence the teacher then went on to 

say). We do not have a value for q. Ok. This is the standard graph…….”  
 

For the teacher to suggest there is no value for q might not have been productive for the 

learners in terms of understanding the standard equation for a hyperbola. In fact the 

values for a and q were 1 and 0 respectively.  In view of the fact that the teacher 

suggested the next lesson was going to focus on the effects of changes in a and q, it was 

critical for learners to have a clear understanding of those values in the standard equation 

for a hyperbola. This understanding appeared uncertain given the somewhat ambiguous 

explanation given by the teacher in this discussion.  

 
What the relative frequency graph seems to highlight is that connections through different 

representations both alternate and equivalent and part-whole-representation appeared 

faulty (level 0) with this teacher in close to 80% of the cases and 100% in the if-then 

category. A significant number of opportunities for learner rote or superficial 

understanding (level 1) were created i.e. 20% in the different representations category, 

22% in the part-whole relationships, 20% in the procedural connections category and 

10% in the instruction-oriented connections category respectively. Let us recall that in 

level 1 of all the categories, connections were being recognised in a manner that was 

mathematically acceptable but limited in their potential to develop learners’ deeper 

understanding.  

 

The graph (Fig. 5.4) also shows that opportunities for learner’s deep procedural and 

conceptual understanding (level 2) were created in relative fewer utterances i.e. 5% in the 

different representations category, 22% the procedural connections category and 6% in 

the instructional oriented connections.  What the graph seems to portray is that on the 

whole the teacher’s utterances had little potential to develop deep procedural and 

conceptual understanding.  



 209 

 

5.4 TEACHER ‘T’- FACTORISATION OF TRINOMIALS  
 
Teacher T’s lessons for the whole week were all on LO2 (Functions and Algebra) and 

focused on factorization of trinomials. Below is a table with data excerpts from teacher 

T’s lessons exemplifying how live data was placed into each of the categories and levels.  
Table 5.5  EXCERPTS FROM TEACHER T’S CODED UTTERANCES 
This was the polynomial to be factorised  
7ab – 28a2b + a2b + 4a2 and learners had 
already listed the factors of 28 after 
multiplying 7 x 4 (the first and last 
coefficients respectively)   
Teacher: 
Then the next thing was, we have got this 
number here (putting a circle around -
28). That’s where the problem is. How do 
we deal with that number in the middle? 
We have all the factors of 28 but if we add 
any of these factors of 28 do we get this 
number here? 

DR0 The number -28 cannot be defined 
as a middle term in this case and in 
any case this would have been -27 if 
the like terms had been dealt with 
first. 

                                                                                                                                                                                                        
                                            
 
 
 
                                                                                                                          
 
The next thing we are going to do is we 
are going to say a x 8 (showing the cross 
multiplication) and we put 8a here (on the 
right hand side of the first rectangle). 
Then we are going to say 6 x a (again 
showing the cross multiplication) then we 
put 6a here. Because we cross multiplied 
these numbers here? So it means the 
correct factors the first one is this one. 
Are we together (putting a circle around 
the factors in the first rectangle and 
writing) (a + 8) and the second one is 
what?    (a + 6) 
 

DR1 Lack of precision in presentation 
because we are not only cross 
multiplying here but there is also 
vertical multiplication of terms i.e.  
a x a and 6 x 8 

(Pointing to a2 +14a+48).  
Teacher: 

DR2 This was considered to be a sound 
definition of a trinomial 

a      +     8 

a      +     6 



 210 

So we are saying this a2 is a term on its 
own. Are we together?  Then the second 
14a it’s a term on its own. The next one is 
48 it’s also a term on its own. So we are 
saying this is a trinomial because we have 
got 1, 2, 3 what, 3 terms.   
None of the episodes for the teacher were 

coded 

PWR0  

This is how you factorise the trinomials 
but now we are going to check. Let’s 
check by multiplying. We are going to say 
a x a = a2, a x 6 = 6a, 8 x a= 8a and 8 x 
6 = 48. What is the next step now? 
 

PWR1 True but some trinomials may not be 
factorised this way as it turned out 
later in this series of lessons hence 
to generalise this way may mislead 
the learners 
 

None of the episodes for the teacher were 
coded 

PWR2  

None of the episodes for the teacher were 
coded 

IM0  

Teacher:  
Let’s start from here (Now writes a new 
task on the board   n2 -16mn + 15m2. 
learners then shout the factors of )   
 
 
 
 
  
 
These are the possible factors of 15m2. So 
from this list of possible factors we are 
saying if we add the factors they must give 
us a what, a -16mn. (So he puts them in 
the rectangle of factors and does the cross 
multiplication which does not yield the 
middle term). So it means these two 
factors are what? Are wrong …. 
 

 
 
 
IM1 
 

 
If the cross multiplied terms do not 
yield a sum equal to the middle term 
then the factors are not correct - yes 
but sometimes the teacher 
contradicts this by suggesting it is 
the sum of the coefficients which 
should yield the middle term. It is 
for that reason that even in listing 
the factors here, only the 
coefficients( 1 x 15) were considered 
yet it should have been 1n2 x 15m2  - 
no factors of m’s here can give a 
middle term with mn.  Notice that 
this episode was also coded P0 
because procedurally the products 
of each pair of listed factors do no 
give 15m2n2      

None of the episodes for the teacher were 
coded 

IM2  

Teacher:  
This is what is going to happen. Let me 
show you how.  Let’s start with those two 
factors (pointing to the first 2)  
 
 

P0 Ignoring the signs resulting in 
incorrect answer 
 

1m       15m 
3m        5m 
-m        -15m 
-3m      -5m 
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                                                    2y                                                                                                                                        
                                                      + 
                                                              70y  
                                                              72y 
  
Let’s check now.  They don’t give us -13y 
so it means we cannot use these two 
factors are we together. 
Teacher:  
Let’s try to list down the common factors 
of 48. As pairs. They must be in pairs.  
 

P1 Learners at this level should be able 
to identify factors of 48  that add up 
to the coefficient of the middle term 

 
Earlier on from 3t2 – 9t – 5t + 15 the 
learners had been able to factorise thus  
3t(t – 3) – 5(t – 3) leading to the final 
answer of (3t - 5)(t – 3) 
 
Teacher: 
I have got a question what about if he 
wrote something like this (he reverses the 
middle terms  from  3t2 – 9t – 5t + 15 and 
writes )  
 3t2 – 5t – 9t + 15   
Is it going to affect our answer? Is it 
going to affect our answer? 

P2 Probing the learners for procedural 
flexibility.  

Teacher:  
 
Listen; is it possible that you find an 
expression like that? 
 

IOC0 This kind of comment might not be 
helpful to the learners, in fact there 
are trinomials which cannot be 
factorised and this could have been 
explained in a similar way by asking 
learners for factors  of the last term 
that add to the middle term  

Teacher:  
If we multiply 8 and 6 we get what 48. But 
before we do anything we have to take 
note of the sign before this 48. The sign is 
a what? 

IOC1 Agreed but this could have come 
much earlier so that the learners 
could keep that in mind from the 
word go as they looked for the pairs 
of factors.  

None of the episodes for the teacher were 
coded 

IOC2  

5y      -     2   

Y      +   14 
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5.4.1 Episodes coded as different representations (DR): 
 
Only one utterance was coded at the highest level DR2. However, this utterance was 

coded twice because in that same utterance #5 the teacher gives a sound definition of a 

coefficient and a trinomial. 

 

Eight utterances were coded at the second level DR1 and these are utterances where 

connections appeared to be made but at a superficial/rote level. In #26 and with reference 

to the binomials in these rectangles the teacher says; “… because we cross multiplied 

these numbers here…” 
                               
                                                              8a                                      
                                                           + 
                                                              6a 
                                                  14a 
 

As a way of just checking whether the factors are correct, this representation might be 

acceptable but when checking to see whether the two binomials when expanded can give 

us the original trinomial, this representation does not seem to connect with the expansion 

of brackets of (a + 8)(a + 6). The arrows suggest only a cross multiplication of a x 6 and a 

x 8 yet the a’s should also be multiplied and the 8 and 6 should also be multiplied. Hence 

it might be more meaningful if there could also be arrows showing cross multiplication as 

well as vertical multiplication for learners to have a deep understanding of what is going 

on.  In #44 the middle term that learners have to check with seems not to be defined 

precisely/accurately. The teacher lists all the possible factors of 15m2 and says;  

 These are the possible factors of 15m2. So from this list of possible factors we are 
saying if we add the factors they must give us a what, a (-16mn)  

 

But the factors that were identified -m and -15m can only add to -16m and not the -16mn 

which is the middle term. In #102 the teacher suggests that to reduce 9t2 – 42t + 45 the 

learners have to factorise it first. Here the step of taking out a common factor 3 does not 

seem to be distinguished from the process of factorization of which it is only a part. To 

a      +     8 

a      +     6 
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suggest that we factorise first then we factorise again may confuse the learners. In #140 

the way common factors are being defined might be problematic for learners. After 

taking out the common factor 3 and factorising the inner brackets as follows:  3{t (3t – 5) 

-3(3t - 5)} the teachers says;  

 So we are going to say the numbers in the brackets are the same, (pointing to the 
highlighted factors). Can you see them? So we are going to take one of them. 
Even if you take this one, (pointing to the second bracket) if you choose this one 
you have also chosen this one.  

 

The explanation given by the teacher suggests that taking out a common factor is about 

choice yet learners needed to be able to identify common factors of this nature and 

connect such a process to say 13x – 8x  where the common factor x is taken out and is 

equivalent to x(13 - 8) = 5x.  In # 160 the teacher suggests with reference to swapping the 

signs of the following factors of -10; “Let’s say they are the same because we just swap 

the signs.” 
 
 
  

 

 

 
While the swapping of signs might not have an effect on their product, it however has an 

effect on their sum, which in this context of factorization is related to the middle term. So 

to suggest that they are the same only in relation to their product of -10 might inhibit the 

learners’ ability to see the connection they also have with the middle term which is 

critical in this context.   After having identified the correct factors of 10 that would add 

up to 7, in #179 the teacher says; “So we are going to say – x2 + 5x + 2x – 10” but does 

not say why this has to be done.  Equivalence needs articulation here i.e. why are we 

writing the expression this way? In this case it would have been important for learners to 

see how – x2 + 5x + 2x – 10 and – x2 + 7x – 10 were equivalent but that breaking the +7x 

into those two parts would allow for factorization in parts. In #181 the issue is about how 

common factors seem to be defined. It would appear “common” is being taken as “what 

is apparent” hence in dealing with the factorization of  – x2 + 5x + 2x – 10 the teacher 

ends up with x (-x + 5) + 2(x – 5). In this case there was need to look beyond what the 

5 -2 
-5                           2 
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common eye can see so that identifying the not so apparent factors e.g. x (-x + 5) - 2(-x + 

5)would yield other sets of ‘apparent’ common factors. In fact this ability to see beyond 

the eye became such a stumbling block that there was confusion on this task till the end 

of the lesson which also happened to be the end of the series of lessons.  In #200 and with 

reference to the binomials in the rectangles: 

                                
 
                                                                                                             
                            -    -                         5x  
                                                                       
                                                              +                                      
                                                              2x 
                                                              7x 
 

The cross multiplication yields a correct middle term of the trinomial – x2 + 7x – 10 but 

the rule (look for factors of -10 which add to 7) seems not to apply yet this is the rule that 

the learners have been given right through the series of lessons.    

 

Nine utterances were coded at the lowest level DR0 of this category. In #70 and #72 the 

issue is about ignoring signs when multiplying resulting in incorrect products. In #70 for 

example the teacher cross multiplies -14 and y in the rectangles and gets 14y. Clearly one 

can notice that equivalence is violated through ignoring the sign resulting in an incorrect 

answer. After factoring 3 out of 9t2 – 42t + 45 a learner got 3t2 – 14t + 15 and in #104 the 

teacher suggests this is okay and advises the learner to proceed with the factorization but 

the two expressions are not equivalent without the 3 being shown outside the bracket i.e. 

3(3t2 – 14t + 15). In # 144 and with reference to the polynomial 7ab – 28a2b + a2b + 4a2, 

the term – 28a2b is being defined as the middle term. However, in terms of both its 

position in the polynomial and its value the term – 28a2b cannot possibly be defined as a 

middle term because it does not fall in the middle and in any case this middle term would 

have been -27a2b  if the like terms had been dealt with first. In #156 the issue is about 

how the coefficient is being defined in the trinomial – x2 + 7x – 10. With reference to the 

first term in this trinomial, for the teacher to say;  

 Let’s take this one as a 1 are we together? Let’s take the coefficient as what 1  

 

-x     +    5        
 

x            -2 
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would be misleading to the learners. In #169 the teacher goes back to the same coefficient 

and says lets go to the coefficient negative. Yet in #187 the coefficient is again taken as 

positive. The question then would be “What image of a coefficient do the learners get in 

such circumstances?” In #163 whether by error or what the teacher keeps referring to a 

coefficient as an exponent. 

5.4.2 Episodes coded as indicating part-whole relationships (PWR): 
 

As defined in the model earlier, part whole relationships include examples, inclusions and 

generalisations. In this set of lessons there was only one utterance coded at the second 

level PWR1 in this category. In #26 the teacher uses this example;  
                                                                                                                                 
                                                               
                                                               
                                                   
 

He then gives a statement which suggests a generalisation that this is the way to factorise 

trinomials implying that this rectangle method works in all cases.  However as it turned 

out during the series of these lessons, this approach worked well with some and not all 

trinomials as some required a different approach altogether.  Let us recall again that 

research has shown that generalisation is one of the most fundamental and important 

mathematical thinking process in that it demonstrates learners’ abilities to identify 

patterns and commonalities across cases that were being dealt with.  

5.4.3 Episodes coded as indicating connections through implication (IM): 
 
Only two utterances were coded at level IM1 of this category and in both case utterances 

#30 and #46 the implication was that if the cross multiplied terms do not yield a sum 

equal to the middle term then the factors are not correct. While this observation appeared 

to make mathematical sense for the learners it would also appear that the teacher 

sometimes contradicted this by suggesting that it is the sum of the factors which should 

yield the middle term. 

   

a      +     8 

a      +     6 



 216 

 

5.4.4 Episodes coded as indicating connections through procedure (P): 
 

Let us recall that these are utterances, which would be showing that A is procedure used 

when working with object B. Two utterances were coded at the highest level P2 in this 

category. In #28 for example, the teacher shows a correct procedure of dealing with the 

expansion of polynomials and in #118 there is evidence of the teacher probing the 

learners for procedural flexibility. 

 

There are ten utterances which were coded at the second level P1 of this category. In # 7 

and with reference to the trinomial a2 + 14a + 48 the teacher says to the learners;  

 

 The next thing is you are going to leave this middle term alone (putting a circle 
around 14a in the trinomial”) but does not explain why.  In #9 he says; “Let’s try 
to list down the common factors of 48. As pairs. They must be in pairs.  

 

Procedurally this makes mathematical sense but when one considers the number of pairs 

of factors involved this might not be economic in terms of time. Learners at this level 

should be able to identify factors of 48 that add up to the coefficient of the middle term. 

In#20 the teacher suggests to the learners that they have to look for factors of 48 that will 

add up to the middle term 14a but such factors do not exist so the issue is about precision 

in mathematical language. In #26 the teacher suggests that this is the way to factorise 

trinomials implying that this rectangle method works in all cases.  

                                                                                                                                                                                                           
                                                                                              

                                                               
                                                               
                                                   
  
However as it turned out during the series of these lessons, this approach works well with 

some and not all trinomials as some require a different approach altogether.  In #59 and 

with reference to the trinomial n2 -16mn + 15m2 the teacher has all along given the 

impression that learners have to look for factors of +15m2 which add up to the middle 

term i.e.  -16mn. The class then agreed that the following were the correct factors. 

a      +     8 

a      +     6 
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                                                                  -mn                                                                                                                                
                                                      + 
                                                                 - 15mn 
                                                      - 16mn 
 

However when one looks carefully at the terms being added one notices that they are not 

factors of 15m2 , so one gets the impression that there was need for a more precise 

description of the procedure or the rule. In #124 and with reference to the factorization of 

9t2 – 42t + 45 as t (3t – 5) -3(3t - 5), the 3which has been factored out is left out of this 

process. In#126 the reason why one of the common factors (3t - 5), has to be outside the 

brackets of (3t – 5) (t – 3) does not seem to be clear. What is in brackets is also another 

example of common factors but this does not seem to be the message that the teacher is 

putting across to the learners. Instead he says they have to choose one of the brackets 

because they are the same. In #181 and with reference to the factorization of – x2 + 7x – 

10 from – x2 + 5x + 2x – 10 through to x (-x + 5) + 2(x – 5) it would appear as a 

procedure the focus was on the ‘apparent’ common factors. However it would appear this 

task required the learners to go beyond the ‘apparent’   so that the factorization would 

result with more apparent common factors. 

 

Eleven utterances were coded at the lowest level P0. In #70, #72, #158, #165, #187 and 

#200 the issue is about dealing with the negative sign in the multiplication resulting in an 

incorrect product. In #140 and with reference to the factorization of 3{t(3t – 5) -3(3t -  

5)} the teacher suggests taking out the highlighted common factor is about choosing any 

one of them yet learners needed to see the connection between this not so familiar form 

of common factors and any others that might be a bit more obvious. In #142, #144 and 

with reference to the polynomial 7ab – 28a2b + a2b + 4a2  there was need to rearrange the 

polynomial starting with 4a2 consistent with mathematical convention, but more 

importantly there was need to deal with the like terms – 28a2b + a2b first as these had an 

effect on the middle term (-27a2b instead of -28a2b).   In #198 the teacher suggests that;  

 So we are going to play around with these factors  

 

n      -     m 
 

n     -     15m 
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Mathematically, learners cannot be expected to play around with factors; they should 

have an explicit route that they have to follow in order to be able to factorise these 

trinomials. 

5.4.5 Episodes coded as indicating instructional oriented connections (IOC): 
 

No utterances from this class were coded at the highest level IOC2 of this category. 

Sixteen utterances were coded at the second level (IOC1). In #12 for example the teacher 

advises the learners when they are looking for the factors of 48 that;  

 But before we do anything we have to take note of the sign before this 48.   

 

This is an important hint for the learners but this only came after the learners had gone 

way into the listing of pairs of factors, all of which were positive while the negative 

factors were totally ignored. This hint could have come much earlier so that the learners 

could have kept that in mind from the word go as they looked for the pairs of factors. In 

#51 and #59 with reference to the trinomial n2 -16mn + 15m2 the learners have already 

identified that 1m and 15m are factors of 15m2 but they do not give the middle term when 

added. Despite this important observation by the learners the teacher still takes those 

factors and puts them in the rectangles and goes through the whole process of cross 

multiplication and adding the products only to get +16mn. Because learners had already 

understood what the rule was, it was important for the teacher to build on that and focus 

on more critical issues rather than continue with the cumbersome trial and error method. 

In #55 and #70 the issue is about the instruction on changing position and/or signs of the 

pairs of factors e.g. 7 and -4 becoming -7 and 4. While changing signs and/or position 

might not have an effect on the product of the factors learners should however be made 

aware of the effect this has on the sum of the factors which in this context of factorization 

has an important relationship with the middle term of the trinomial. Change of position of 

factors sometimes affects correct factorization in that a specific factor sometimes has to 

go into a specific bracket. For example in the factorization of 5y2 – 13y – 28 = (5y + 7) (y 

– 4), changing either the signs or the position of 7 and -4 would result in incorrect 

factorization. In #82 and related to this same trinomial the teacher does not appear to be 

consistently building on the rules he has given the learners i.e. look for factors of the last 
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term that add up to the middle term. These factors of 7 and -4 do not add to the middle 

term of -13y, but the factors are ‘accidentally correct’ because incidentally they are also 

correct factors of -140 (5 x -28) which would have been the more systematic route for 

this factorization. So in the absence of a systematic procedure the learners are likely to 

get the correct solution by superficial/rote procedures. In #91 the teacher says to the 

learners;  

 Today we want to shift from our method to (another) method. So we have got 
number 19 (on the board)  

 

The teacher had written 9t2 – 42t + 45. The concern in this utterance as well as in #100 is 

that the teacher seems not to be explicit about the strengths and weaknesses of each 

method and which one would be best under what circumstances – so learners just shift 

from one method to another and hopefully find out for themselves what works and what 

does not. In #104 after the learner had factored out the 3 in 9t2 – 42t + 45 the teacher 

needed to explain what happens to it because the learner ended up with 3t2 – 14t + 15 and 

continued to factorise it without considering the 3 factored out. In #175 and with 

reference to the trinomial  – x2 + 7x – 10  the teacher still wants learners to list all the 

possible factors of 10 despite the fact that one learner has already identified the factors 

that add up to 7 the middle term. 

 

A total of eleven utterances were coded at the lowest level (IOC0) of this category. In 

#66 for example a learner had asked the teacher what would happen if the trinomial had 

been like: 

 She comes and writes on the board   22 1516 m
mn

n +−  

 

The teacher’s response was;  

 Listen; is it possible that you find an expression like that?”  

 

For the teacher to give this kind of comment might suggest that all trinomials can be 

factorised and this might not have been helpful to the learners because in fact there are 

such trinomials which cannot be factorised. Here was an opportunity to explain in a 
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similar way by asking learners for factors of the last term that add to the middle term – 

the rule that they had learnt. Learners would then have concluded by themselves that such 

a trinomial cannot be factorised. In #84 the teacher gives learners a totally different task 

4a4 – 20a2b2 + 9b4 from the ones that he has used as examples on the board. However the 

teacher does not show the links with the worked examples and has not given an 

explanation on how to deal with this type of a trinomial. This is followed up in #88 by a 

comment;  

 

 This side no one has got it right; do something about it”.  

 

So while there is evidence to show that learners are struggling with the task the teacher 

still says do something about it. Again this might not be helpful to the learners and is 

further compounded by the fact that the lesson ended without having got feedback from 

the teacher and on the following day the teacher started on another different task without 

having shown the learners how to deal with this kind of a problem. In #106 the teacher 

discourages a learner from continuing with a certain method of factorization by saying;  

 I want the second method. I know you know this one. Let’s try the second method. 
There are so many ways of killing a cat  

 

This was despite the fact that the learner had not even finished the factorization process 

raising questions as to whether he actually knew how to factorise using this method.  

Perhaps the teacher could have waited for the learner to finish thereby confirming 

whether the learner indeed knew this method after which he would then challenge the 

same learner or others to use another different method. In #149 after having struggled 

with the factorization of the polynomial 7ab – 28a2b + a2b + 4a2 without success, a 

learner suggests;  

 We arrange starting with 4a2 + a2b – 28a2b +7ab  

However the teacher seems to buy this suggestion without realizing that even this re-

arrangement would not yield a correct result without the learners identifying that there 

are two like terms in the middle which had to be dealt with first. In#152 the teacher ends 

the lesson without resolving this factorization but surprising again the next day’s lesson 

starts with different tasks without this task having been solved.  In #192 after having 
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struggled again with the factorization of the trinomial – x2 + 7x – 10 the teacher says to 

the learners;  

 In other words this method, some of you they cannot do this method. Are we 
together?  If  you are not well prepared to use this method you can use the other 
what, method.   

 

This was despite the fact that the teacher had not shown any other method that would 

work for this problem and that the teacher been working this problem on the board with 

the whole class. So for him to accuse learners of not being able to use a method was just 

trying to apportion blame – it seemed like the teacher could not handle trinomials of this 

nature. In #198 and with reference to the same trinomial the teacher says;  

 So we are going to play around with these factors. So we are saying of these 
factors which ones will you add to give us what; +7x?  

 

To instruct learners to play around with factors might not be helpful as an instructional 

strategy. This can be evidenced by the fact that the lesson ended without having solved 

this problem #204. Learners cannot play around with factors; instead they should have an 

explicit and systematic route that they have to follow in the process of factorization of 

trinomials.   

5.4.6 Key messages emerging from Teacher T’s teaching  
 

The discussion of what emerges from Tr T’s teaching is again guided by the following: 

(a) What aspects of connections does the teacher appear to handle well? 

(b) What aspects appear to be problematic? 

(c) What are the underlying features in each case? 

(d) How do the strengths and weaknesses relate to the orientations in the curriculum? 

The discussion starts by summarizing all the teacher’s utterances/activities for the whole 

week into the different codes under which they were captured. 
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Table 5.6 TOTALS OF TEACHER T’S CODED UTTERANCES  

 

FORMS OF 

MATHEMATICAL 

CONNECTION 

 
              LEVELS OF 

KNOWLEDGE QUALITY 

Code 0 1 2 

Different Representation DR 

 

9 8 2 

Part-whole Relationship PWR 0 1 0 

Implication IM 0 2 0 

Procedure P 11 10 2 

Instruction-oriented 

Connection 

IOC 11 16 0 

 Totals  31 37 4 

 
Fig. 5.9 Summary of teacher T’s utterances by quality of knowledge levels  
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This relative frequency graph seems to suggest that learners’ opportunities for deep 

understanding (level 2) were created in only 10% in the DR category and 9% in the P 

category. A significant number of opportunities for learner rote or superficial 

understanding (level 1) were created as follows: 42% in the DR category, 100% in the 

PWR category and 100% in the IM category, 42% in the P category and 60% in the IOC 

category respectively.  This also suggests that the teacher’s utterances were 

mathematically faulty in 48% in the DR category, 49% in the P category and 40% in the 

IOC category.       

 

One of the major challenges observed in this series of lessons was the teacher’s inability 

to analyse a method so that the learners could appreciate where it was more suitable to be 

used, what its strengths and weaknesses are and how efficient it was to use. Choice of a 

method to use seemed to be guided by the teacher opting for that method and not by its 

appropriateness for that particular task. During this week’s observations, the teacher also 

appeared not to be very comfortable working with negative numbers. The teacher often 

suggested that leaving out the negative sign would have no effect on the result yet this 

proved problematic in quite a number of cases. Another observation made was the 

teacher’s inability to deal with unexpected questions from the learners. The question 

posed by one learner required the teacher to realize that just like in factorising numbers, 

there are some which are prime whose factors are 1 and the number itself. Similarly we 

can also have polynomials that cannot be factorised further and the example given by the 

learner in one of the lessons was a typical example of such a polynomial. However the 

teacher discarded it as a task that would never be expected. Lastly, this teacher appeared 

not to build on what the learners already knew. After having explained the rule that when 

factorising the type of trinomials that they were dealing with, learners had to look for 

factors of the last term in the trinomial that would add to the middle term, the teacher 

went on to insist that learners had to list all the factors of that last term. This proved to be 

cumbersome especially when one considers some numbers like 72 can have a very long 

list of factors. It was evident that at this level that the learners were able to identify 

factors of the last term that would add up to the middle term which the teacher could have 

exploited and moved on thereby being efficient with time. 
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5.5 TEACHER ‘M’- TEACHING NUMBER PATTERNS 
 
Teacher M’s lessons for the whole week were on LO1 (Number and Number 

Relationships)hips and specifically focused on Number Patterns. Below is a table with 

data excerpts from teacher M’s lessons exemplifying how live data was placed into each 

of the categories and levels.   

 
Table 5.7 EXCERPTS FROM TEACHER M’S CODED LIVE DATA 
Episode/utterance/activity Code Comment 
Tr:   
Right. Then the second one, but did you use 
any formula? How did you get that general 
term?  
Learner: I just looked at it 
Tr: 
You just looked at it and then you got it 
right. Ok good. Yaa it’s a method, it’s a 
method as well, you just look at things and 
then get them right it’s a method. Just look 
at things and then get them right.   

DR0 Just looking at and getting things 
right is being defined as a 
method- surely a learner could 
not possibly look at a sequence 
and get the general term - at 
least there should be reasoning 
that happens 

T:  [writes (2)] So our T3 will be equal to 4 
[writes = 4] It appears here in the sequence 
[points to the sequence 1; 2; 4; 8; 16…] 
Like I say keep it as a recursive formula.  
We must be able to generate a sequence to 
find the general formula. 

DR1 While the critical components of 
the recursive formula have been 
discussed there is nowhere the 
formula it has been presented in 
its complete form  

Tr:   
Wonderful.  That’s good.  So here it will be 
Tk-1 Any problem with that?  [writes Tk-1 + 
3]  So before Tk it becomes equal to Tk-1 + 
3 [points to that equation] In other words we 
are saying a term that comes just before Tk 
is Tk-1.  We agree? 

 
DR2 

 
A term that comes before k is 
defined as k – 1- This definition 
again after some well articulated 
discussion 

None of the episodes for the teacher were 
coded  

PWR0  

Tr:   
Ok wonderful, she has made a very good 
observation here.  You see. What she is 
saying is; do you see kuti there is always a 
difference of 2 between any two successive 
terms. There is a difference of 2. Now there 
is a difference of 2 here and she has 

PWR1 There is a generalisation that 
can be made about all linear 
sequences with a constant 
difference of 2 in that they all 
become 2n + b and all linear 
sequences with a constant 
difference of 3 they all become 



 225 

observed ok there is always a 2 here 
(referring to the 2 in Tn = 2n+ 1 of the 
general term) She also made an observation 
to say there is a difference of 2 between any 
two successive terms here (referring to the 
sequence -4; -2; 0; 2; ...) and now there is a 
common difference of 2 there is also a 2 
here (referring to the 2 in Tn = 2n – 6; the 
general term). Then she came this side and 
she made an observation to say there is a 
difference of what of 4 between any two 
successive terms here (referring to the 
sequence 3; 7; 11; 15...) and then there is a 
4 here (referring to the 4 of Tn = 4n – 1; the 
general term for the sequence.) It’s ok, its 
alright 

3n + b and so on. However this 
does not appear to be made from 
the teacher’s comments yet it is 
such a critical observation that 
the learner has made which 
would guide them in generating 
the general terms of the linear 
sequences. .   

T: It might be quadratic, it might be cubic or 
it could be something else. 

PWR2 Here the teacher is very cautious 
about the generalisation that can 
be made after one has observed 
that the 1st difference is not 
constant (It might….) 

None of the episodes for the teacher were 
coded  

IM0  

T: Right.  Sh….., if the differences are not 
constant, what does that, what does that tell 
you? 
L: Its quadratic 
L: Its cubic  
T: That’s correct.  This difference here is not 
constant, what does it tell you? 

IM1 If the 1st difference is not 
constant we cannot tell whether 
its quadratic or cubic all we can 
tell is that it is not linear 
(precision in mathematical 
statements)  

Tr: 
 It suggests linear.  If the first difference is 
constant that suggests a linear general term.  
How then shall we find…  We know 
definitely that one [points to quadratic 
equation on the board]? Now how shall we 
find a general term now?  How shall we find 
a general term?  All we know is it takes the 
form Tn 

IM2 If there is 1st constant difference 
this suggests a linear general 
term – this kind of conclusion 
was arrived at after some well 
articulated examples had been 
discussed in detail 

None of the episodes for the teacher were 
coded  

P0  

Teacher:  
Term number 2 is a 6 term number 3? 
(teacher says all this while underlining the 
subscript of T and the value of the term).       
T1   T2  T3  T4    T5 …T10 … 

P1 Showing the connection between 
term value and term number in a 
sequence as a way of predicting 
unknown terms in the sequence 
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 3      6    9    12    15      30       
There appears a pattern, a relationship 
between the term number and (pointing to 
the subscript and the term value) good what 
about term number n? What shall term 
number n be? 
T: Its okay? (Teacher underlines the general 
term. It can also be in terms of k. If you got 
Tk what will it be in this case (teacher writes 
on the board Tk =  ) 

P2 Showing flexibility in the way we 
could write the general term 

T:  suppose we consider the sequence now 1; 
8; 27; … (teacher folds arms and walks 
around smiling while learners look at the 
board and discuss but the all agree there is 
no pattern )Alright let us put that one on 
stand by for a while. What about here 
(teacher writes) 1; 4; 9; 16; …? Do you 
observe any pattern there? 

IOC0 Sequencing of tasks might not 
benefit the learners in terms of 
observing patterns inherent in 
them- learners had just done 
sequences whose general term is 
linear yet this one had a cubic 
general term.  

T: It’s ok; a common difference, a difference 
of 2 between any two successive terms and 
we have a 2 here and here the difference 
between any two successive terms is 4 and 
we have a 4. Right then how would you come 
up with this 1 and this -6 (pointing to the 
second parts of the general term)? Ok, all 
right ... Yes 

IOC1 Indeed there is a connection 
between the constant difference 
in a linear sequence and the 
coefficient (first constant) 2 in 
the general term but teacher 
seems not to articulate why it is 
so     

T: suppose we have got a sequence of 
numbers (teacher writes: 4; 7; 10;) T: Do 
you observe a pattern to find term number 
ten there that will enable us to predict the 
tenth term. We want to predict the tenth 
term. Yes what will the tenth term be? (class 
shouts 31, 32 - teacher chooses a response 
from one learner) She says term number ten 
will be 32. Alright suppose somebody comes 
in from a distance and says why 32? Why 
not 31? 

IOC2 Following learner’s response 
and probing for justifying 
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Table 5.8 TOTALS OF TEACHER M’S CODED UTTERANCES  
 

FORMS OF 

MATHEMATICAL 

CONNECTION 

 
              LEVELS OF 

KNOWLEDGE QUALITY 

Code 0 1 2 

Different Representation DR 

 

2 15 27 

Part-whole Relationship PWR 0 8 7 

Implication IM 0 4 12 

Procedure P 0 10 18 

Instruction-oriented 

Connection 

IOC 9 4 27 

 Totals  11 41 91 

Fig. 5.10 Summary of Teacher M’s Utterances 
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5.5.1 Episodes coded as indicating Different Representations (DR):  
 
The highest number of this teacher’s utterances (44) was coded in this category. Of these 

27 were coded at the highest level 2. In # 72 and #74 the teacher comprehensively defines 

a subscript as symbolised in Tn denoting a term number and distinguishes it clearly from 

Tn where T is being multiplied by n. In #108 the teacher offers a comprehensive 

definition of a general term which is given in terms of an unknown where ‘we’ substitute 

to generate the sequence. In #746, #752, #762, and #771 the teacher gives valid 

equivalences of T1, T2, T3, and T4 respectively in terms of a and b  which appear to have 

been generated from a comprehensive process of analysing how the quadratic sequence 

was growing both numerically and algebraically. In #1053, #1060, #1070, #1088, #1094, 

#1118, #1138, #1168, #1184, #1199, #1203 and #1214 the teacher gives valid 

equivalences of the differences between successive terms as well as their constant 

difference in terms of a and b  which also appear to have been generated from a 

comprehensive process of analysing a quadratic sequence both numerically and 

algebraically. These equivalences proved critical in helping the learners to generate a 

system of equations which appeared to form a strong foundation for coming up with the 

general term or explicit formula for any given quadratic sequence. In #1773, #1861 and 

#1866 the teacher gives comprehensive definitions and equivalent representations of the 

recursive formula in relation to linear sequences. 

 

A total of 15 utterances were coded at the second level 1. In #11, #17, #19, the definition 

of successive numbers offered by the teacher might inhibit learners’ deep understanding 

in that it would appear the teacher does not emphasize the fact that these successive 

numbers should be following the same order that has been observed in the sequence. In 

#102 the teacher seems to be defining a general term as in a manner that might give 

learners the impression that there is only one general term, yet there is a general term for 

all linear sequences i.e. Tn = an + b, then there is a general term for all linear sequences 

with a common difference of say 3 i.e. Tn = 3n + b then there is a general term for a 

specific linear sequence e.g. Tn = 3n + 1. In #381, #388, and #395 the issue is about the 
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two constants a and b in the general term for a linear sequence whose relationship is such 

that a + b = T1, but from the way the teacher defines them continues to look like this 

relationship is accidental. The logical connection between them does not appear to come 

out explicitly yet it is a critical step for learners to be able to generate the general rule.  In 

#403, #405 and #408 the teacher defines linear and quadratic functions in a manner that 

does not seem to show why they considered as such. In analytical geometry, the term 

linear function is sometimes used to mean a first degree polynomial function of one 

variable. These functions are “linear” because they are precisely the functions whose 

graph in the Cartesian coordinate plane is a straight line. If for example the terms 3; 6; 9; 

12; …of a sequence were to be plotted in a Cartesian plane against their term numbers, 

the resultant graph would be a straight line graph hence such sequences are defined as 

liner sequences. It is likely that learners might have a superficial understanding of how 

such sequences get defined as linear or quadratic. In #1864 and #2127, the issue is about 

the definition of the recursive formula where the teacher emphasises that ‘we’ need to 

know at least T1 for us to have a complete recursive formula but in all the examples that 

the teacher used none of them shows the formula in its complete form e.g. Tn = 2Tn – 1 

where T1 =  3.  

 

There are only two utterances coded at the lowest level 0 suggesting that this teacher was 

relatively strong in his own understanding of the concepts that he was dealing with in this 

series of lessons. In #247 the teacher says; “So the pattern is in the difference” and it can 

be argued that such a definition of a pattern might not give learners a clear sense of what 

a number pattern is. In #295, the teacher seems to suggest that it is a method to just look 

at a sequence and get things right yet a method is something more strategic than just mere 

looking and getting answers. In fact it is doubtful that learners could just look at a 

number sequence without some thought process and get things right.              

5.5.2 Episodes coded as indicating Part-whole Relationships (PWR):  
 

A total of 7 utterances were coded at the highest level 2 in this category. In #573 the 

teacher arrives at an important generalisation with the learners about the connection 

between the degree of a polynomial for the general term of a sequence and the level at 
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which the constant difference can be found. For example whenever the polynomial is a 

2nd degree as in Tn = an2 + bn + c the constant difference is always at the second level. In 

#875 the teacher also makes an important generalisation that whenever the first difference 

is not constant in a sequence one can always conclude that the sequence is not linear.  

 It might be quadratic, it might be cubic or it could be something else  

In #1097 and #1629 the teacher draws another important generalisation that 2a is always 

equal to the second difference between terms in a quadratic sequence. Subsequent to that 

the other generalisations are that in #1637 T1 is always equal to a + b + c and in #1641 

the first difference in any quadratic sequence is always equal to 3a + b. With reference to 

the recursive rule the teacher draws a generalisation in #1928 that whenever the previous 

term is being multiplied by say 2 the recursive rule will always be Tk = 2Tk -1 and T1 has 

to be known.    

 

A total of 8 utterances were coded at the second level 1 of this category. In #344 there is 

a generalisation that is implied from the learner’s observation about all linear sequences 

with a constant difference of 2 that their general term will always be 2n + b and all linear 

sequences with a constant difference of 3 their general term will always be 3n + b and so 

on. However the teacher appears not to explicitly put that in algebraic terms yet it is such 

a critical observation that the learner has made and that would also help the learners when 

challenged to generate the general term of any linear sequence. In #421 and #504the 

teacher makes a generalisation that when we have a linear general term the first 

difference is constant but while this is true the concern was that we could not possibly 

conclude that there is a constant first difference by just observing one case of a linear 

sequence hence it could be argued that such a generalisation might have been 

prematurely or superficially made. In #539 and #546 the learners indeed make valid 

generalisations, however these might have limited application since the kind of sequences 

from which such generalisations were drawn do not appear to be commensurate with the 

curriculum requirements for the learners at this level. In grade 11, learners are expected 

to investigate number patterns where there is a constant second difference between the 

consecutive terms i.e. the general term is quadratic. In #618 the teacher draws a valid 
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generalisation that if the first difference is constant this suggests a linear general term but 

when the teacher asks for justification why it is linear the class says;  

 Because its first difference is constant  

While this generalisation is mathematically valid, there appears to be some redundancy in 

that it is using the same semiotic system to generate as well as justify the generalisation 

i.e. constant difference is being used as an indicator for a linear sequence which in turn is 

defined in terms constant difference. Radford (2010), posits that the sense of generality 

achieved through words and gestures is not the same as the one achieved through a 

formula or a graph. While one semiotic system may provide us with specific ways to 

signify or to say certain things, another semiotic system may provide us with other or 

even better ways of signification. Citing the principle of nonredundancy and with specific 

reference to pattern activities, he further argues that the objectification of a mathematical 

structure behind a pattern that was mediated by words and gestures may be deepened by 

an activity mediated through other types of signs.  This seems to suggest that a different 

e.g. visual example like graphing the inputs and outputs of the sequence might have 

enhanced the learners’ understanding of a linear sequence. In #863 the teacher makes a 

valid generalisation that any two equations generated from the relationships of variables 

in a linear sequence can be used to solve for the unknown variables. However it might 

not be as simple as any two because there has to be a strategic selection of the two 

equations that have to be used.     

 

There are no utterances coded at the lowest level 0 again suggesting that this teacher was 

relatively strong in his own understanding of the concepts that he was dealing with in this 

series of lessons.          

5.5.3 Episodes coded as indicating some connection through implication (IM):  
 

A total of 12 utterances were coded at the highest level 2 of this category. In #533,    

#607, #612 and #1353 the argument being raised there is that if there is a first constant 

difference this suggests a linear general term. On the other hand in #870 if the first 

difference is not constant then all we can conclude is that the general term is not linear.  

In #945, the teacher guided the learners to argue that if the second difference is constant 
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then the sequence is quadratic and if the general term is quadratic #964, then T1 = a + b + 

c. If the first difference in a quadratic sequence is 10 #1118, then 3a + b = 10 and if the 

first term of this sequence is 3 in #1138 then a + b + c = 3.   Lastly in #1373, the teacher 

guides the learners to argue that if the general term is consistent in generating the correct 

terms in a sequence, then it is correct. All these are sound mathematical arguments which 

were critical in laying a strong foundation for generating the general term for these 

sequences.  

 

Only 4 utterances were coded at level 1 of this category. In all the first three cases #788, 

#816 and #820 these are follow through statements of the nature 6 – 2b + b = 5 ⇒  -2b + 

b = -1. In #868 the teacher responds “That’s correct” after the learners had suggested that 

if the first difference is not constant then the sequence is quadratic #866 and it is cubic 

#867. These statements lack mathematical precision in that if the first difference is not 

constant, all we can be able to tell is that the sequence is not linear but we can conclude 

that it is either quadratic or cubic.  

 

There are no utterances coded at the lowest level 0 again suggesting that this teacher was 

relatively strong in his own understanding of the concepts that he was dealing with in this 

series of lessons.          

5.5.4 Episodes coded as indicating some Procedural connection (P):  
 

A total of 18 utterances were coded at the highest level 2 of this category. In # 104 for 

example the teacher is showing flexibility in the way learners could write the general 

term. In #168 the teacher is showing the link between the term number (input) and the 

value of the term (output). In #196, #201, #775, #855, #916, #1184, #1278, #1282, 

#1366, #1371, #1430, #1440 and #1643 the teacher is showing comprehensive 

procedures of how the learners could generate the general term of the sequences and how 

they could test or prove their correctness. In #2024 the teacher gives a comprehensive 

explanation why T1 is a critical component of the recursive rule for a number sequence. 
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A total of 10 utterances were coded at the second level 1 of this category. In #37, #45, 

and #90 the main reason why these have been coded as P1 is that these are basic 

procedures which learners at this stage would have been expected to handle without the 

need for further articulation. In #386, #389 and #696 the way the teacher deals with the 

relationship of a + b = T1 for a linear sequence and the proof of its general term thereof 

continues to look as though this is accidental. The mathematical logic of that relationship 

does not appear to come out explicitly from the teacher’s talk. In #651 the relationship of 

a = constant difference with reference to a general term for a linear sequence perhaps 

needed further articulation in view of the potential it had to confuse the learners. In 

analytical geometry a linear function can be written in the slope-intercept form as y = mx 

+ b where m and b are constants. This also happens to be the form in which the general 

term for a linear sequence was written in this series of lessons. Written in this form the 

constant m is often called the slope or gradient, while b is the y – intercept. From the way 

a linear sequence grows e.g. 3; 7; 11; 15... Learners can notice that we are constantly 

adding a 4 (constant difference) to the previous term to get to the next term. This seems 

to suggest that when this same sequence is written in its algebraic form (general term) the 

constant b in the general term should be equal to this 4 (constant difference). However 

when one looks at the general term for this sequence, this in fact is not the case as can be 

evidenced that its general term is Tn = 4n -1. There is evidence of a learner having this 

confusion in #314 when she said;      

 Yaah. Then why is it that you can’t write like Tn = ... + 4? Why do you have to 
 write – 1 that’s my question?        
 

The teacher does not appear to deal with this genuine confusion adequately opting to say 

in #330 and #332  

 Okay, alright I thought you had made an observation. Okay order, alright  okay, 
let’s give somebody else a chance  
 
Despite this the learner insisted in #331, 

 Sir I do have an observation....., 

However it would appear the teacher was not getting the learner’s argument and therefore 

continued to ignore this critical disconnection between the two ways of representing a 

linear sequence right through the series of lesson. In # 1362 the teacher suggests that 
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learners have to divide both sides of –b = -7 by -1 in order to get to the final stage of 

working this equation out. While this is mathematically valid it might not be the only way 

of dealing with such a task because learners could also multiply both sides by -1. 

Dividing both sides of an equation by -1 proved challenging later on in # 1556 when the 

learner was presented with this task –c = 0 and wanted to divide both sides by -1 to make 

the c positive. It would appear it was easier to multiply -1 by 0 than to divide -1 into 0.  

In #1889 the issue is about the purpose that would be served by a recursive rule in a 

situation where the general (explicit) term for that sequence had already been found. 

 

There are no utterances coded at the lowest level 0 again suggesting that this teacher was 

relatively strong in his own understanding of the concepts that he was dealing with in this 

series of lessons.          
 

5.5.5 Episodes coded as indicating Instructional Oriented Connections (IOC):  
 
A total of 27 utterances were coded at the highest level 2 in this category. In all the 

following utterances #5, #56, #74, #108, #130, #138 #148, #151, #159, #166, #205, #305, 

#746, #977, #1005, #1013, #1021, #1220, #1244, #1266, #1351, #1364, #1436, #1767, 

#1786, #2000 and #2018 the teacher is either offering justification or logical explanation 

as to why the relationships are the way they are or he is following up on learners’ 

observations and guiding them through questioning so that they move from what they 

know to what they don’t know. 

 

A total of 4 utterances were coded at this second level 1 of this category. In #66 and #359 

the teacher is agreeing with an observation made by a learner an indication that he is 

following what the learner is doing. However he does not offer at this stage some 

justification or further explanation as why there is this relationship between the constant 

difference in a linear sequence and the coefficient in the general term i.e. a linear 

sequence with a constant difference of 3 has a general term of the form 3n + b. In #386 

the relationship of a +b = T1 continues to look as though it is just accidental because the 

teacher does not at this stage offer some logical explanation as to why there is such a 

relationship in a linear sequence. In #1704 it appears this is just a common slip of the 
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tongue where both the teacher and the learners keep referring to a common difference of 

3 between the terms as 3 times bigger.  It is clear the teacher is following up on what the 

learners are observing but he does not seem to focus their attention on precision of 

mathematical statements.  However it can be observed from the way the learners are 

proceeding with their arguments that they mean the next term is 3 bigger than the 

previous one although they say 3 times bigger.  

 

A total of 9 utterances were coded at the lowest level 0 of this category. In #224, #226 

and #233 there appears to be a haphazard order in which the tasks are presented by the 

teacher i.e. linear sequence, cubic sequence, and quadratic sequence then back to linear 

sequence - some of which are not in the curriculum at this level.   This tended to inhibit 

learners abilities to identify patterns in these sequence as can be evidence in #227 and 

#230 where the learners say there is no pattern in the sequences. In #301 and #330 a 

learner makes an observation that there appears to be no connection between the constant 

difference in a linear sequence and the constant in the general rule that would generally 

be referred to as the y-intercept i.e. in the sequence 4; 7; 10; 13;… there is a constant 

difference of 3 but in its general term of Tn = 3n +1 there is +1 and not +3.  The teacher 

seems to ignore this genuine concern throughout the series of lessons. In #359 a learner 

suggests a recursive rule but the teacher deliberately or otherwise decides to ignore the 

learner. In #660 a learner makes an observation that suggests that in a linear sequence the 

constant difference is equivalent to the a of the Tn = an + b (the general term) but in a 

quadratic sequence the constant difference does not appear anywhere. The teacher again 

does not appear to deal with this observation at all. In #1708 the teacher introduces the 

recursive rule long after the general term or explicit rule has already been dealt with and 

the question would be what purpose the recursive rule would serve other than just the 

learners knowing there is something called a recursive formula.          

5.5.6 What key messages emerge from Teacher M’s teaching of Number Patterns 
 

The discussion of what emerges from Tr M’s teaching is again guided by the following: 

(a) What aspects of connections does the teacher appear to handle well? 

(b) What aspects appear to be problematic? 
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(c) What are the underlying features in each case? 

(d) How do the strengths and weaknesses relate to the orientations in the curriculum? 

 Let me start by summarizing all the teacher’s utterances/activities for the whole week 

into the different codes under which they were captured. 
 
Fig. 5.11 Summary of Teacher M’s Utterances by quality of knowledge 
 

 
 
What this relative frequency graph seems to suggest is that teacher M is quite a strong 

mathematics teacher. This can be evidenced by the fact that most of his utterances (61% 

in DR category, 46% in the PWR category, 76% in the IM category, 64% in the P 

category and 68% in the IOC category) were coded in the highest level 2 of these 

respective categories. This suggests that the teacher created opportunities for learners’ 

deep understanding in most of the utterances in this series of lessons. In fact in this series 

of teacher M’s lessons there were no utterances which were mathematically faulty in the 
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mathematically faulty in the DR category. Generally most of his definitions of 

mathematical terms were characterised by well thought out examples which clearly 

brought out mathematically accurate meanings. The strategies were justified and well 

explained and learners’ observations were pr(OBE)d with questions that solicited clear 

articulation and reasons why. In terms of responding to curriculum expectations it could 

be argued that in the majority of cases the teacher utterances and activities had the 

potential to develop deep understanding of concepts and procedures related to the topic 

Number and Patterns.        

 

While the teacher appears to be very strong one of the challenges that emerged in his 

series of lessons was the order in which his tasks were presented especially his decision 

to deal with the recursive rule towards the end of the week after he had dealt thoroughly 

with the general term or explicit rule earlier. There is empirical evidence to suggest that 

as an instruction oriented connection, the recursive rule should have been dealt with 

before the general term.  For example, Warren (2006), posits that approaches used to find 

the general rule i.e. defining the growing pattern in relation to its position in the pattern, 

appear to fall into three broad categories. These are; 

(a) Using one example to predict the relationship between uncountable examples 

(induction or trial and error). 

(b) The additive strategy where connections among consecutive elements are 

exploited (recursive e.g. for each next step you add 3). 

(c) Functional strategy where a relationship is formed between the term number and 

the term value (general term e.g. step number multiplied by 2 add 1).  

These strategies tend to be hierarchical (Redden, 1996; Stacey, 1989; Warren, 2006) and 

once students perceive a pattern in a certain way, it is difficult for them to abandon their 

initial perception. Past research has shown that there is a propensity for students to use (a) 

one example to predict the relationship between uncountable examples and (b) the 

additive strategy by connecting consecutive elements (Warren, 2006).  Research has 

shown for example that children’s very first experience with sequences come along with 

the following type of numerical reasoning in which one is asked to fill in a missing 

number in a chain of numbers such as:  
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 1, 4, 7, 10, _ 

The fact that each term exceeds the previous one by 3 is an example of a recurrence 

relation in which each term has a certain relation with the previous term(s).  Each term of 

the sequence is a function of the preceding term.  There is evidence from this series of 

lessons of learners using the differences as their entry point into understanding 

sequences.  For example when learners were given this sequence; 

 1, 8, 27… and asked if they observed any pattern, the responses were: 

 #227 that’s not a sequence,  

 #230 no pattern.  

In fact the teacher had to abandon this sequence altogether for one reason or the other but 

immediately when he wrote; 1, 4. 9, 16… on the board the learners were able to visualize 

the sequence through the differences (3, 5, 7,) even though this sequence could also be 

seen in terms of squaring the term number.  In #314 when the teacher was dealing with 

the general term of the linear sequence; 3, 7, 11, 15… there was clear evidence that 

learners continue to see sequences in the recursive as one learner commented;      

 Yaah. Then why is it that you can’t write like Tn = ... + 4? Why do you have to 
 write – 1 that’s my question?        
 

This suggests that the teacher should have dealt with the recursive rule before he 

attempted to find the general terms of the sequences they were dealing with as recursive 

rules are easy to understand and it has also been shown that this is the general entry point 

into sequences. There is also evidence to show that learners were experiencing problems 

with the recursive rule especially after they had already learnt the explicit or general 

term. This seems to confirm the observation that once students perceive a pattern in a 

certain way, it is difficult for them to abandon their initial perception. 

 

While recursive sequences are easy to understand, their shortcoming is that they are 

difficult to deal with. For example for one to get to say the 100th term in a sequence; one 

would have to first find the first through to ninety-nine terms.  The teacher alluded to this 

difficulty in #305 when he said;  

 … But there are times when it becomes very very difficult to obtain the general 

term by mere inspection… 
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This then would have provided a justification for and an entry point into the general term 

of the sequence, which expresses the nth term in terms of n and independent of the 

previous terms of the sequence.   

5.6 Key messages emerging from all the four teachers 
 
The discussion of the key messages emerging from the four teachers’ teaching of algebra 

related topics is also guided by the questions: 

(a) What aspects of connections do these four teachers appear to handle well? 

(b) What aspects appear to be problematics? 

(c) What are the underlying features in each case? 

(d) How do the strengths and weaknesses relate to the orientations in the 

curriculum? 

Table 5.9 shows a breakdown of all the utterances into the different categories into which 

they were coded. 
 
Table 5.9 SUMMARIES OF ALL TEACHERS’ UTTERANCES (n = 377) 

 

FORMS OF 

MATHEMATICAL 

CONNECTION 

 
              LEVELS OF 

KNOWLEDGE QUALITY 

Code 0 1 2 

 

Total  

Different Representation DR 

 

52 31 34 117 

Part-whole Relationship PWR 6 16 9 31 

Implication IM 13 6 12 31 

Procedure P 23 41 32 96 

Instruction-oriented 

Connection 

IOC 47 27 28 102 

 Totals  141 121 115 377 
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Figure 5.12 Summary of data counts for all four teachers in different categories 
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What this summary graph reveals is that the highest number of the teachers’ connections 

was created in the Different Representations category, followed by Instructional Oriented 

connections and Procedural connections respectively. This appears to be a consistent 

pattern when the teacher utterances were analysed individually as the figure 5.13 

confirms. 

 
Figure 5.13 Comparison of individual case summaries for 3 popular categories  
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In each of the four cases one can notice that DR has the highest data counts or 

frequencies. With the exception of case 1 the second highest frequencies are, in all the 

other three cases, found in the IOC category. Although the study did not have a specific 

intention of investigating the relative occurrences of these different types of connections 

this still confirms the strength of case-study design i.e. its ability to capture the emergent 

and immanent properties of life (Noor, 2008). It also confirms the observation made by 

Zainal (2007) that case studies allow the investigation of contextual realities and the 

differences between what was planned and what actually occurred. In this study, these 

emergent results could be useful especially in planning staff development activities as 

they point to what teachers do more often in their classrooms.  

 

The emerging findings that the DR, P and IOC categories have the highest number of 

data counts, are also consistent with earlier classroom observations which have shown 

that teachers are constantly engaged in a process of defining and constructing a mental 

image of some mathematical object and using instructional representations in the process 

(Businskas, 2008; McDiarmid, et al., 1989b). This development of consistent findings, 

over multiple cases can be considered a very robust finding for according to Zainal 

(2007), multiple-case design shows evidence through replication rather than sampling 

logic. By linking several pieces of information from the cases to some theoretical 

proposition, multiple-case design enhances and supports the results especially where a 

‘chain of evidence’, either quantitatively or qualitatively, are systematically recorded. 

This also confirms the research assumptions that two or more cases should be included 

within the same study precisely because the investigator predicted that similar results 

(replication) would be found. According to Noor (2008), if such replication is indeed 

found for several cases, this enhances the accuracy, validity and reliability of the results 

hence we can have confidence in the overall findings.  

 

Having said that about the emerging results, the key question this study raised was 

whether the NCSM as a standards-based reform was making a difference in the type 

and/or quality of instruction experienced by students. The major concern was with the 

quality of connections that teachers made during their interaction with the learners as 
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they taught algebra related topics. This was judged by levels of knowledge and the 

summary graph (Fig. 5.14) using figures extracted from Table 5.9 above shows the 

results of that comparison.    
Figure 5.14 Comparison by quality of knowledge     
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What this summary graph reveals is that the highest number of the four teachers’ 

connections was either faulty (level 0) or superficial (level 1). Apparently the differences 

in heights amongst the three bars in the graph above might not reveal the magnitude of 

the problem, but when one considers that level 2 of cognitive demand should be the target 

of classroom practices then putting the level 0 and 1 bars together one can notice a 

cumulative 70% off target in the teachers’ utterances and activities.  

 

In chapter one this study argued that cognitively demanding knowledge and skills were 

essential for economic productivity and important for everyone irrespective of their 

backgrounds. Knowing the cognitive demand of the taught curriculum was also important 

because other things being equal, students in situations of poverty in particular, tend to 

have opportunities to learn only what they have been taught. So the cognitive demand of 
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the taught curriculum is a powerful predictor which helps explain a portion of the 

achievement gap between students from different backgrounds. Again I address the 

question of replication of these results by comparing the four individual cases in terms of 

this quality of knowledge criterion.  

 
Figure 5.15 Comparison of level of knowledge quality by individual case 
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Looking at Fig. 5.15 one might notice that with the exception of case 4, the lowest 

frequencies in all the other three cases were again recorded in the targeted level 2 

category indicating that minimal opportunities were created for learners to develop higher 

order thinking skills. The first two bars in each of the first three cases again confirm that 

those teachers’ connections during classroom interactions were either faulty (level 0) or 

focused at a superficial level (level 1). A further disaggregation of the different categories 

of connections from Table 5.9 shows that the highest number of faulty (level 0) or 

superficial (level 1) connections was made again in the DR category followed by the IOC 

category then the P category. Capturing the importance of all these three forms of 

connections in conceptual development, one summary of research concluded that the five 

components used by successful teachers to help students develop mathematical ideas are: 

attending to perquisites, developing relationships, employing representations, attending to 

student perceptions, and emphasising the generality of mathematical concepts (Good, 

Grouws, & Ebmeier, 1983).  
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5.7 Summary of emerging messages  
 

I will now consider the role played by each of these categories of teacher knowledge in 

effective classroom practice. Starting with different representations, literature suggests 

that instructional representations play such an important role in the development of 

student understanding (Ball, 2003; NCTM, 2009; Shulman, 1986).  While there are many 

examples of representations in literature, with some researchers viewing representations 

synonymously with the whole process of teaching, in this study representations were 

viewed specifically in line with Lesh et al., (1987) as an aspect of the process of teaching 

which provides multiple perspectives for the same concepts or mathematical ideas and 

these included verbal/written representations of a mathematical idea, symbolic 

representations such as equations and formulas, graphical representations, manipulatives, 

and visual representations such as pictures and diagrams. From this perspective, 

instructional representations can be described as the words, pictures, graphs, objects, 

numbers, symbols, and contexts (including examples, metaphors, and analogies) that 

teachers use during instruction to communicate abstract mathematical ideas to students 

(Berenson & Nason, 2003). Goldin (2002) referred to this view of representations as the 

signs, objects or actions that symbolize, depict  or encode something other than itself.   

 

Empirical evidence suggests that this activity of representing is considered a fundamental 

and core activity of teaching mathematics (Ball2001) because the ways in which 

mathematical ideas are represented is fundamental to how people understand and use 

those ideas (NCTM, 2009). Shulman (1986) also describes the uses of representations 

within the category pedagogical content knowledge (PCK): 
Within the category of pedagogical content knowledge I include, for the most regularly 
taught topics in one’s subject area, the most useful forms of representations of those ideas, 
the most powerful analogies, illustrations, examples, explanations, and demonstrations – 
in a word, the ways of representing and formulating the subject that make it 
comprehensible to others (p. 9).   

    

Literature also suggests that teachers need to know a variety of instructional 

representations to use during instruction. Wilson et al., (1987), term this variety of 

representations as a representational repertoire - that consists of the metaphors, 
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analogies, illustrations, activities, assignments and examples that teachers use to 

transform the content for instruction. The appropriate use of multiple instructional are 

considered crucial in students’ conceptual development of fundamental understanding 

(Post & Cramer, 1989). Empirical evidence has shown that effective teachers of 

mathematics use mathematically appropriate and comprehensible definitions, 

representing ideas carefully, mapping between a physical or graphical model (Ball, 

2003). Because representations of mathematical ideas are so important to conceptual 

development (Ball, 1991), these representations should be carefully developed but the 

findings in this study generally point to problems in the manner in which these three of 

the four teachers represented the mathematical ideas and concepts within the algebra 

related topics that were observed. Within the South African research terrain Davis and 

Johnson (2007) also made similar observations that most of classroom time was spent on 

the exposition of mathematical ideas, principles and definitions within which “mostly 

teachers briefly referred to definitions but without discussing or explicating the 

mathematical reasons for the productions of the definitions” (p. 123).  Their conclusion 

was that there was a ‘weak curriculum coherence’ which could be predicated in their 

language as the extent of teachers and students operation on grounding ideas, principles 

and definitions of the contents of a field of knowledge when teaching and learning (Z. 

Davis & Johnson, 2007).  Their findings also concurred with the TIMSS findings that this 

weak coherence, which limited students’ opportunities to learn, persistently characterised 

many of the system’s high-poverty schools (Smith, Smith, & Bryk, 1998). Given that the 

instructional representations that students encounter define the formal opportunities for 

learning about the subject content, findings from my study show that opportunities for 

learners to develop deep understanding of both mathematical procedures and skills were 

likely to have been lost in the majority of cases. 

 

With reference to procedural connections, in this study connections of this form were 

defined as A is a procedure used when working with B. Linking representations and 

procedures, Davis (2004) argued that the resource that enabled one to monitor correct 

rules or procedures was the knowledge of the mathematical ideas, principles and 

definitions that function as grounds for those rules and if teachers appear to be providing 
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students with a great deal of information on what (mathematical ideas and concepts), but 

students still fail, then it is likely that they are not providing sufficient information on 

how to do so (the procedure). This suggests that conceptual knowledge (understanding 

the "what and why") is important for the development of procedural fluency, while fluent 

procedural knowledge supports the development of further understanding and learning. In 

that sense, production of a solution to a standard problem requires that one knows both 

what to do (the mathematical idea or concept) and how to do what needs to be done (the 

procedure). Unfortunately knowing what to do does not necessarily imply knowing how 

to do what needs to be done and judged by Table 5.9 which shows that the third highest 

number of faulty (level 0) or superficial (level 1) connections was made in the P category 

one could possible infer that it was likely that the teachers observed were not providing 

sufficient information on how to do the mathematical solutions (the procedure).    

 

With reference to instruction oriented connection, in this study this form of connection 

was defined in terms of how A and B are both prerequisites concepts/skills that must be 

known in order to understand C. This form also includes linking new concepts to prior 

knowledge or extension of what students already know.  The importance of taking 

account of students’ ideas is captured in Ausubel’s (1968) statement that the most 

important signle factor influencing learning is what the learner already knows. Fostering 

better understanding in students requires taking time to attend to the ideas they already 

have, both ideas that are incorrect and ideas that can serve as a foundation for subsequent 

learning. Resnick (1988), concluded that without explicit assistance in connecting ideas 

or procedures people do not usually learn concepts simply by building up pieces of 

knowledge. His view was that unless materials attend to students’ prior knowledge and 

teachers are alerted to it, the sequence of activities might be inappropriate and further 

misconceptions may develop or achievement will be diminished partially due to 

persistent errors. Empirical evidence suggests that students learn efficiently when their 

teachers first structure new information for them and help them relate it to what they 

already know, then monitor their performance and provide corrective feedback recitation, 

drill, practice, or applications activity (Peterson & Leatham, 2009).  
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CHAPTER SIX – DISCUSSION AND CONCLUSION 
 

6.1 INTRODUCTION 
 

This study was particularly concerned with understanding the levels of alignment 

between the written, the tested and the taught components of the NCSM with respect to 

the depth-of-knowledge consistency criterion. This was premised on the view that 

cognitively demanding knowledge and skills were critical for economic productivity and 

development. The focus on cognitively demanding knowledge and skills was triggered by 

concerns raised that school expectations had declined in terms of cognitive demand and 

that this threatened the learning health of the nation especially those from previously 

disadvantaged communities. Within this broader concern for alignment three types of 

alignment were investigated i.e. horizontal alignment, developmental alignment and 

vertical alignment. Literature on alignment suggests that before any alignment analysis 

can be done, the starting point should be answering the question: ‘What performance 

problem, quality improvement, or evaluation criterion is to be analysed?’ This then led 

into the first research question of this study.   

6.2 RESEARCH QUESTION 1 
 

The question was: “What levels of cognitive demand are evident in the mathematical 

knowledge and skills as articulated in the written curriculum?” In attempting to answer 

this research question, content from the Grade 11 Subject Statement and the Assessment 

Standards for mathematics was placed into categories of a cognitive demand tool. Using a 

range-of-knowledge criterion to guide the data counts first with respect to learning 

outcomes, the results showed that LO2 (Functions and Algebra) had the highest number 

of entries. Judged by that range-of-knowledge criterion it was possible to conclude that 

the NCSM places more emphasis on LO2 (Functions and Algebra). Within the written 

curriculum, the Subject Assessment Guidelines also confirm this position evidenced by 

the rubric on distribution of final examinations marks where 70% of the Paper 1 marks 
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are allocated to LO2 (Functions and Algebra). International literature also evidence to 

justify the bias towards functions and algebra. These findings then guided the research 

further into classroom observation where the focus would be on this LO2 as it was 

considered to be relatively more important in the NCSM. 

 

Data counts within the cognitive demand tables and in relation to higher order – lower 

order levels revealed these were distributed in the ratio 4:1 respectively. Judged by this 

finding it can be argued that the espoused quality of knowledge of mathematics in the 

NCSM as reflected through the cognitive demand tools is the higher-order cognitive 

knowledge and skills.  This skewness towards higher-order cognitive knowledge and 

skills was more pronounced in LO3 Space, Shape and Measurement. Both positions of 

the NCSM espousing higher order knowledge and the skewness in LO3 were also 

confirmed by other researchers who argued that the curriculum for mathematics targeted 

the development of higher-order cognitive knowledge and skills in the learners (Umalusi, 

2009).    

6.3 RESEARCH QUESTION 2 
 

The second question focused on horizontal coherence and concerned the issue of how this 

official position was articulated through the different curriculum documents. It was 

phrased thus; “To what extent are the written and tested components of the NCSM 

aligned in terms of cognitive demand levels?” Within this broader view of horizontal 

coherence, the analysis started by looking at the internal consistency of content within the 

written components of the curriculum. The concern was whether or not the content was 

developed based on a progressive or hierarchical structure consistent with the logical 

nature of mathematics as a discipline. Judged by the sequential development of the 

assessment standards from Grade 10 through Grade 11 to Grade 12, the results showed 

that there was logical progression consistent with the logical nature of mathematics. 

Judged by the cognitive demand of content within each grade and from one grade to the 

next, the results also show that there was developmental coherence of a hierarchical 

nature from lower order to higher order as the assessment standards progressed within 

grades and from one grade to the next.           
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Having looked at the different aspects of internal consistency, the second view of 

horizontal coherence as defined in this study was specifically concerned about external 

consistency i.e. the level of alignment between the components of the written curriculum 

with the exemplar papers in terms of cognitive demand. Using a combination of cognitive 

demand tools overall low alignment indices of 0.1 and 0.2 were established from two 

different formulae. The results from more detailed analyses show this low alignment 

index was a result of exemplar papers placing more emphasis at the lower order levels of 

memorizing and performing procedures while the content standards placed less emphasis 

at these lower levels but more on higher order skills of generalising, conjecturing and 

solving non-routine problems. In view of the fact that this alignment index can best be 

described as a measure of relative emphasis, it can be argued that there is some disparity 

between what the NCSM assessment standards emphasize and what is being emphasized 

in the exemplar papers.  

 

With specific reference to horizontal coherence it could therefore be argued that the 

documents that constitute the NCSM seem to be presenting a coherent message internally 

but a splintered vision externally. In other words the espoused HOCS seem to be 

articulated consistently through the policy documents but differently especially between 

the assessment standards/objectives and exemplar papers. While HOCS are treated as a 

critical outcome in the subject statement, and espoused through the assessment standards, 

the national exemplar papers seem to downplay that orientation. The final analysis could 

be that so far ‘the DNA evidence’ of the assessments seems to ‘belie the claim’ that 

learners will learn HOCS in mathematics. 

6.4 RESEARCH QUESTION 3 
 

The third and final research question for this study was concerned with how policy 

rhetoric translates into practice. In view of the findings from document analysis that 

higher order knowledge and skills were espoused in the written/intended curriculum the 

question which had to be answered was; “To what extent do Grade 11 mathematics 

teacher practices create opportunities for pupils to learn higher order cognitive processes 
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and skills?” Using an analytical tool developed around five types of connections that 

earlier research had identified as being prevalent in classroom interactions; the 

summarised results for all the four teachers show the following distribution of teacher 

utterances/activities/episodes in their order of prevalence: Different Representations 31%, 

Instruction Oriented Connections 27%, Procedural Connections 25%, Part-Whole 

Relationships 8% and Implications 8% respectively. This seems to be consistent with 

similar research findings that have shown that teachers are constantly engaged in a 

process of defining and constructing a mental image of some mathematical object and 

using instructional representations in the process. Given that the instructional 

representations that students encounter define the formal opportunities for learning about 

mathematics, and that effective teachers of mathematics have to use mathematically 

precise and comprehensible definitions, represent ideas carefully mapping between the 

different modes the question then was of what quality these representations and 

instruction oriented connections were. A further disaggregation of the relative 

frequencies within each category showed that 44% of the Different Representations were 

at level 0 (faulty) and 27% of them were at level 1 (rote/superficial) leaving only 29% at 

level 2 (higher order or deep understanding). Within the Instruction Oriented connections 

46% of them were at level 0 (faulty) and 26% of them were at level 1 (rote/superficial) 

leaving only 28% at level 2 (higher order or deep understanding). Within the Procedural 

category 24% were at level 0 (faulty) and 43% of them were at level 1 (rote/superficial) 

leaving only 33% at level 2 (higher order or deep understanding). These disparities were 

more pronounced when the disaggregation was done for each individual teacher showing 

that in some cases different representations appeared faulty in as high as 80% of the 

teacher’s utterances and 10% restricted or rote, leaving only 10% of the utterances with a 

potential to develop learner’s deep understanding of concepts and procedures.  This trend 

was observed in 3 of the 4 teachers and what appears to have pushed the averages up was 

that in one teacher different representations fell into level 2 (higher order) in 61% of the 

cases and level 0 (rote/superficial) in 0,5% indicating generally that this was a very 

strong teacher when compared with the other three. Overall what these results show is 

that within the series of lessons by the four teachers that were observed in this study 
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opportunity for pupils to learn higher order cognitive processes and skills was not created 

in the majority of the teacher utterances and activities.         

6.5 IMPLICATIONS FOR IMPLEMENTATION 
 

In trying to establish whether assessments are aligned with the curriculum objectives, the 

question this study was trying to address was to do with the validity of the testing 

instruments in relation to the higher order knowledge and skills that are espoused in the 

curriculum. While there are divergent views on issues of test validity in public 

examinations, there seems to be some consensus on the backwash effects of such tests. 

Several studies have shown that high-stakes testing encourages teachers to use methods 

that conform to the content of the test, which in itself is not a problem according to Biggs 

(2003). Viewed in this sense, tests that measure complex concepts and extended 

reasoning are likely to encourage stimulating instruction which result in higher-level 

thinking and problem solving skills being developed in the learners. The danger however 

comes when the test measures only simple knowledge and skills. In such cases teaching 

to the test, as certain studies have shown, results in superficial rote learning and an 

inevitable deskilling of learners.  

 

In view of this observation that teaching to the test is inevitable, it would mean that 

alignment or nonalignment between the curriculum objectives and assessment has a 

number of implications for all the stakeholders. As long as test validity is conceived of in 

terms of the constructs embodied in the broad curriculum objectives there is little 

problem because then the tests are measuring what the learners are expected to learn and 

the public can have confidence that the grades so obtained are likely to be a true 

reflection of knowledge and skills gained. Nevertheless, when test items are prepared 

which reflect noncontent objectives, or are nonaligned with the objectives then the 

validity of these items is questioned. To the extent that flaws in validity are built into the 

system in order to serve the interests of particular groups, it becomes very difficult to 

validate that learners learnt what they were supposed to learn.  
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Students’ grades in such high stakes examinations then tend to be misleading the public 

because of this lack of alignment. More than any other groups, the various institutions of 

higher education make direct use of public examination results. Students are admitted to 

these institutions almost entirely on the basis of their performance in public 

examinations. With specific reference to courses that require mathematics as an entry 

requirement, if higher order cognitive skills are not tested in the examination, both 

students and institutions of higher education could be misled by public examination 

results leading into wrong career choices. This can have devastating effects especially on 

the part of the students in that both time and other resources are lost when they find out 

that they cannot cope with the demands of a course which they sincerely believed they 

were capable of taking. Such students have been known to loose self-confidence and the 

whole purpose for life. Consequently, higher education institutions have also been known 

to have insurmountable challenges of having to counsel such students or having to design 

bridging courses and such other strategies to enable the students to cope. In most cases 

through-put rates for graduates in such courses tend to drop significantly when compared 

with the enrolment for first year study. This is not then solving the initial problem of lack 

of human resources in areas such as Actuarial Sciences, Engineering, Accountancy and 

Teaching just to name a few. 

 

In terms of impact on curriculum implementation, the view is that there is an organized 

body of knowledge that students need to know so that society might cohere around a 

common identity (Crocker, 1991). Assessment is then seen as an important method to 

determine whether these skills were being learned and if not, it proved the need to return 

to a ‘back to basics’ approach to ensure they were being assed and in turn being taught. 

The impact of assessment on the whole system of education can therefore be seen in that 

the curriculum is usually reduced to that which can be or has been tested, and this 

becomes a self-perpetuating loop when what is assessed becomes what is valued, which 

then becomes what is taught. Hence researchers have argued that no effective curriculum 

change can take place without changing the assessments regime. 
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6.6 RECOMMENDATIONS  
 

In terms of making long term recommendations from such alignment studies, Liang & 

Yuan (2008), cautioned that any examination paper is a sample or snapshot of all that 

could possibly be tested. The suggestion is that alignment analyses should be an ongoing 

activity as this constitutes part of quality assurance in the curriculum development 

process. However, in the short term it is important to note that every public examination 

has an immediate labeling effect on that particular cohort of learners being tested. Seen in 

this sense then, the issue of quality assurance in every single public examination paper 

becomes paramount. Those charged with this responsibility of testing should therefore be 

cognizant of the fact that if learners are expected to learn higher order cognitive skills 

then it is imperative that public examinations should test such skills. If not, then that 

validation process becomes flawed and the public could be misled by the results thereof. 

 

With specific reference to results obtained of alignment using categorical-concurrence 

criterion, LO3 Space, Shape and Measurement had the highest discrepancies indicating 

the skewness of the exemplar papers, which was also confirmed by the Umalusi analyses. 

Such discrepancies are however temporary in that they point to differences in relative 

emphasis specifically between the 2008 exemplar papers in relation to the curriculum. 

Making long term recommendations from such discrepancies is therefore constrained 

unless the trend is observed over a longer period of time. In such cases what continues to 

be tested becomes the taught curriculum in the classrooms because of the wash back 

effects. Generally such discrepancies have a short term implication as they help point to 

areas that need to be revisited when the next tests are being developed. The 

recommendation would be that such categorical-concurrence analyses should form part of 

quality assurance and be carried out each time an examination gets set or gets written.  

 

This alignment study has also shown that the NCSM appears to lack specificity on the 

mathematical content knowledge, abilities and understanding that are needed for learning 

to progress at each stage of the process. It could also be one of the reasons why there is a 

low alignment index between the assessment standards and the exemplar papers. In the 
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absence of the specification of content policy rhetoric might also be constrained in 

claiming developmental coherence or progression between grades. Lack of content 

specificity also poses problems for teachers in terms of implementation and it also makes 

it difficult for one to measure the extent to which learners are achieving curriculum 

objectives. All these shortcomings point to the need for the curriculum to be specific in 

terms of content for the benefit of all stakeholders.  

 

 In terms of pedagogy, this study does not make any immediate recommendations for 

practice as there is still a need to do further investigations in order to establish the extent 

of the prevalence of teacher practices that were observed in this study.  

6.7 CONTRIBUTIONS 
 

One contribution that I perceive as coming from my study is the 3 level-model (table 3.4) 

for analysing mathematical connections that teachers make during their interactions with 

learners in their everyday practices.  In developing this tool for identifying mathematical 

connections in the teacher utterances and activities, this study first analysed a number of 

views about mathematical connections from different perspectives. What was evident 

from literature was that relationships, hence connections were at the heart of the 

definition of mathematics and that many countries make mathematical connections 

among the key elements of the learning outcomes and experiences to be gained by 

learners. However, I found two critical gaps in this literature that my model could 

possibly fill. Firstly the teachers who took part in studies that suggest that making 

connections positively impacted on students’ opportunities to learn higher order skills, 

were exemplary mathematics teachers suggesting that both their subject matter 

knowledge and the connections they enabled were of high quality. In such cases the tools 

used to capture such connections work on this presumption that the teachers’ subject 

matter knowledge is of high quality hence quality of the connections they enabled is 

assumed likewise. Businskas (2008), model which formed the basis of my model would 

be a good example as it talks about different types of connections without any mention or 

focus on the quality of such connections. Yet in the South African classrooms teachers’ 

subject matter knowledge is reported to be generally weak. I argue that making 
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mathematical connections during mathematics class positively impacts students’ 

opportunities to learn higher order skills only if the connections are not faulty and are not 

superficial but mathematically precise and conceptually deep. Considering that literature 

also suggests that studying teachers’ pedagogical efforts to promote the making of 

mathematical connections necessitates considering the intersection of three frameworks – 

their subject matter knowledge, their general pedagogical knowledge and their specific 

pedagogical content knowledge (Shulman, 1986), it was important for this study to 

develop a model that would capture teachers’ subject matter knowledge in relation to the 

different types of mathematical connections hence I saw the need to build a depth-of-

knowledge criterion onto each mathematical connection that was identified by Businskas 

(2008) before.  

 

The second gap I perceived was that much of the mathematics education literature that 

describes such mathematical ideas like defining, generalising and making connections 

does so mostly from a process perspective which does not allow judgment of quality of 

such definitions, generalisations and making connections in practice. In other words 

‘defining’ is regarded as a lower order process in literature while generalising is regarded 

as a higher order process. But in practice a definition or a generalisation can be faulty, 

can be correct but without further articulation, or it can be accurate and well articulated 

with examples.  These levels of quality have an impact on the learners’ ability to develop 

higher order or lower order levels of the connections. Hence I argue that especially in the 

South African context, there is need for a tool that can capture classroom interactions 

taking cognizance of all these quality factors. It was from combining contributions from 

literature on mathematical connections with that on depth-of-knowledge levels, that this 

study then struck some balance between these many models and developed its own 3 

level coding scheme as shown in table 3.4. I see potential in my model to capture such 

quality in these representations and instruction oriented connections which researchers 

need especially in the South African classrooms where teacher’s subject matter 

knowledge is reported to be generally weak.  
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6.8 LIMITATIONS 
 

One of the limitations that I perceive in my study is that document analysis was based on 

a small sample of the curriculum due to the fact that both the subject statement and the 

assessment standards lack content specificity. The comparison between the written 

curriculum and tested curriculum was based primarily on process descriptors of cognitive 

demand, especially in the written curriculum, such as ‘learners will solve non-routine 

problems’. In such cases the precision in the alignment index might be compromised. 

However the low alignment between the written curriculum content and the tested 

curriculum as reflected in the examination papers has been confirmed in other studies -

hence the generalisability of the findings with respect to the low alignment between the 

written curriculum and the tested curriculum might be considered credible.     

 

A second limitation this study was its focus on only one set of the 2008 exemplars, which 

in turn would limit the generalisability of the alignment indices. Another limitation was 

the comparison between the Grade 11 curriculum content with Grade 12 exemplar papers 

posed by the need to trace the written Grade 11curriculum into practice yet Grade 11 is 

not an examination grade hence no external examination for it.  However it has been 

argued that the three FET grade 10 – 12 curricula are designed from the same process 

descriptors suggesting that similar results would still have been obtained by comparing 

any of those three written curricula with the 2008 Grade 12 exemplar papers. This 

argument can be supported by the fact that similar follow up studies comparing the Grade 

12 written curriculum with the same 2008 exemplar papers together with the actual 2008 

and 2009 examination papers found similar (low alignment) results thereby adding 

credibility to the findings of my study.  

 

With specific reference to empirical data from lesson observations, only four teachers 

were observed teaching and so the generalisability of the findings is only limited to the 

cases that were studied. This is the nature of case studies. However, the findings lay a 

foundation for what could be considered in future research especially when one considers 
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that studies done elsewhere also pointed to teachers focusing more on rote learning of 

both concepts and procedures and less on procedural and conceptual understanding.  

6.9 FUTURE RESEARCH 
 

Moving forward from such an alignment study I see two complimentary possibilities 

(a) Extending this study to other areas in order to determine the extent of the prevalence 

of teacher practices that were observed in this study. This would help to focus the design 

and development of teacher development programmes.   

(b) Running concurrently with the extension of the study into other areas I also see 

potential in carrying out alignment analyses of the pre-service teacher training 

programmes and teacher development strategies in order to determine the extent to which 

these programmes are in line with the expectations of the new reforms. 

6.10 REFLECTIONS 
 

In the process of collecting classroom data one thing that struck me throughout the series 

of lessons was the way teachers followed textbook tasks in the specific order they were 

presented even where such order might have disrupted the logic inherent in the 

mathematical idea being focused on. For example in one of the lessons on number 

patterns the first task was focusing on this linear sequence 3, 5, 7, 9…. and the following 

task immediately after that was focusing on a cubic sequence 1, 8, 27, 64…Although the 

terms linear and cubic had not been introduced at this stage, in the context of trying to 

find a general term for these sequences such an order might not have been logical. To me 

this raised questions about trimming as discussed in chapter 2 and 3. Trimming includes 

the interpretation and judgment a teacher must use in considering a textbook’s treatment 

of a mathematical concept or process. The question I remain asking myself after this 

study is “Do mathematics teachers ever question the order or content of textbook tasks?”  

6.11 CONCLUDING REMARKS 
 
In the concluding remarks I go back to Bernstein (2000b) who notes that when discourse 

moves from the original site of production to a new position a transformation happens. In 
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this study this transformation appears to be highlighted in the way the written curriculum 

documents consistently send the message that higher order cognitive skills are espoused 

yet on the other hand both the pedagogy (taught curriculum) and the examination papers 

(evaluation of the curriculum) would appear to send a different message i.e. lower order 

cognitive skills appear to be tested in the examination papers and taught in the 

mathematics classrooms. This seems to resonate with Bernstein’s  argument that 

disciplinary knowledge does not equal the educational knowledge of that discipline 

because the process of  production and transmission of knowledge may well have 

contradictions, cleavages and dilemmas created between these fields. 

 

In Bernstein’s analysis of this process he  was concerned with more than the description 

of the production and transmission of knowledge; he was concerned with the question of 

education and inequality that form the original basis of current curriculum reforms in 

many countries. In conceptualising the research questions for this study, I showed how 

the written curriculum’s vision is to address issues of inequity and exclusion by 

promoting the development of high skills throughout the school-leaving population but as 

this study showed, both teachers and tests (examinations) constrain the trasmission of 

such skills hence I argue that the interests of these school-leaving citeznes are not likely 

to be served due to the contradictions caused during the recontextualisation process.   
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