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Abstract

The online aerodynamic parameter estimation of a miniature unmanned helicopter using
Neural Network techniques has been presented. The simulation model for the miniature
helicopter was developed using the MATLAB/ SIMULINK software tool. Three trim condi-
tions were analyzed: hover flight, 10m/s forward flight and 20m/s forward flight. Radial
Basis Function (RBF) online learning was achieved using a moving window algorithm which
generated an input-output data set at each time step. RBF network online identification was
achieved with good robustness to noise for all flight conditions. However, the presence of
atmospheric turbulence and sensor noise had an adverse effect on network size and memory
usage. The Delta Method (DM) and the Modified Delta Method (MDM) was investigated
for the NN-based online estimation of aerodynamic parameters. An increasing number high
confidence estimated parameters could be extracted using the MDM as the helicopter tran-
sitioned from hover to forward flight.
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Chapter 1

Introduction

1.1 Research Background

There has been a steady growth in the development of rotorcraft unmanned aerial vehicles
(UAVs) using reconfigurable flight control (RFC) systems (Kumar et al., 2003). The global
idea behind RFC is that after a failure has occurred, the flight control system is adapted such
that the overall system characteristics minimize or mitigate further closed loop system de-
terioration. This is usually achieved through the online alteration of the control system’s
characteristics in the event the aircraft sustains flight control system performance degrada-
tion.

These adaptive systems have greatly improved the reliability in robotics operations which
include: surveillance, disaster assistance, search and rescue (civilian and military), data and
image acquisition of targets/areas, electronic attack, strike missions, suppression and/or de-
struction of enemy air defense. Boeing A160 Hummingbird is an example of an unmanned
helicopter (see Figure.1.1) which integrates these new technologies allowing for greater en-
durance and altitude than any other helicopter in operation. It has a maximum speed of 258
km/h, endurance of over 20 hours and a service ceiling of 9150m.

However, human factors have been consistently identified as a major cause of unmanned
aircraft accidents (Williams, 2004; Williams, 2006). The percentage of accidents attributed to
human error ranges between 70 to 80 percent. Understanding these factors is important to
improve the reliability of these aircraft to a level comparable to manned aircraft. The devel-
opment of reconfigurable flight control systems with online parameter estimation techniques
is one way to improve the reliability of unmanned aircraft (de Weerdt, 2005).

A good example proving the desirability of a reconfigurable flight control system in rotor-
craft , is the accident of the Navy-owned Vertical Take-off and Landing Tactical Unmanned
Aerial Vehicle (VTUAV), Fire Scout (see Figure.1.2). The investigation conducted on the 4th
of November 2000 revealed that human error combined with a damage of the onboard anten-

1
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Figure 1.1: Boeing A160 Hummingbird UAV.

nas during ground handling, led to the accident. The damaged antennas emitted an incorrect
signal causing the radar altimeter to incorrectly track the altitude. The antennas issued a false
reading which indicated that the Fire Scout was at an altitude of 2ft above the ground when,
in fact, it was hovering at an altitude of 500ft. After the ’land’ command was given, the guid-
ance and control system interpreted the incorrect altitude signal indicating that the Fire Scout
was landing. As in accordance with flight procedure, the command was given to shut down
the engine which caused the aircraft to crash. It was concluded that a unique approach to
automation and procedures often results in unforeseen and costly outcomes (Williams, 2004).

Figure 1.2: Navy Fire Scout in flight.

1.2 Research Rationale and Motivation

A neural network-based approach to the system identification of miniature helicopters has
shown to facilitate the development of accurate and flight-validated model (Samal et al.,
2008). As neural networks do not require to estimate initial values for the parameterized
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model, the helicopter stability derivatives can be directly computed from flight or simulated
data.

This research study could have a potential impact on reducing development cost for applica-
tions such as: development of aerodynamic databases for training simulators and controller
design. The parallel nature and fast adaptability of neural networks are well suited for con-
troller hardware design and implementation for miniature helicopters.

1.3 Problem Statement

The rigid rotorhead of miniature helicopters permits for large rotor forces and moments
which enables them to perform sustained inverted flight. For many years, these systems
have been described using linearized models of the various steady state flight conditions
such as hover and forward flight. This approach is insufficient as a higher order model is
required to completely describe the dynamics of this special class vehicle. Moreover, the ex-
act order and structure of the mathematical model is needed to apply parametric estimation
techniques such as Maximum likelihood and Kalman filter. An alternative approach is re-
quired for the design of these unmanned systems, fully exploiting the capabilities presented
by their complex dynamic behaviour.

A neural network-based online aerodynamic parameter estimation methodology is proposed.
Neural networks do not require a priori information of the system. As general function ap-
proximators, they are able to identify the underlying dynamics of an unstable, nonlinear and
uncertain system within a noisy environment using flight data. The online application of this
method will take us a step further in answering whether the design of a flight reconfigurable
unmanned systems with the full capability of miniature helicopter can be achieved.

1.4 Literature Review

Miniature helicopters have been used extensively in the development of unmanned aerial
vehicles. Their inherent ability to take-off and land vertically, hover, forward flight and
aerobatic maneuvers have made them ideal for flight through confined spaces such as ur-
ban areas. The Yamaha R-50 (RTMAx) is a commercial model-scale helicopter which has
become a popular platform for many researchers (Mettler et al., 1999; Mettler, Kanade and
Tischler, 2000; Mettler, Kanade, Tischler and Messner, 2000). This aircraft was originally de-
signed for crop-dusting applications, but was later modified by Carnegie Mellon Robotics
Institute for vision-based autonomous flight (Mettler et al., 1999).

Miniature helicopters have a higher thrust-to-weight ratio than their full-scale counterparts
(Gavrilets et al., 2003). Firstly, as the vehicle size decreases, the moments of inertia decrease
with the fifth power of the scaling factor. Secondly, the rotor head of a miniature helicopter is
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relatively stiffer allowing for large rotor forces and moments. Many of these helicopters can
produce negative thrust enabling sustained inverted flight and making miniature helicopters
outperform most agile full-scale helicopters (Gavrilets et al., 2003). The complex interactions
taking place between the rotor wake, fuselage and tail in full-scale helicopters are negligible
in comparison to the large rotor forces and moments generated from the rotor control inputs
in miniature helicopters. Gavrilets (2003) concluded that applying detailed first-principle
modelling techniques (Prouty, 1986; Padfield, 1996) on miniature helicopters is inadequate
as there is a dramatic increase in agility as the flight vehicle size reduces.

Modelling techniques based on system identification have been used to derive linear mod-
els (Mettler et al., 1999; Mettler, Kanade and Tischler, 2000; Ljung, 1997), control system
design (Mettler, Kanade, Tischler and Messner, 2000), aerodynamic parameter identifica-
tion/estimation (McNally and Bach Jr., 1988) and validation of detailed non-linear first-
principle models (Tischler, 1995). Frequency domain identification methods such as CIFER
(Mettler et al., 1999; Mettler, Kanade and Tischler, 2000; Mettler, Kanade, Tischler and Mess-
ner, 2000; Tischler, 1995) have been used to develop accurate parameterized models around
specific trim conditions. In the last twenty years, methods to generate real-flight and simu-
lated data have been used extensively for aerodynamic parameters estimation (McNally and
Bach Jr., 1988). Within the rotorcraft system identification framework, these modelling tech-
niques limit the operation of model-scale helicopter UAV to hover and low-speed forward
flight as the inherent state space modelling approach does not account for powered flight
dynamics and possible in-flight reconfiguration (Mettler, Kanade and Tischler, 2000). Kim
and Tilbury (2004) have attempted to solve this problem by including fly-bar dynamics in
the mathematical model of the Ikarus ECO unmanned helicopter.

1.4.1 Online aerodynamic parameter estimation methods

Conventional methods

As early as the 1970s, maximum likelihood methods have been largely used for param-
eter estimation problems. In this approach, the stability and control parameters are as-
sumed and then used in the aerodynamic model to validate the dynamic model (Samal
et al., 2008). Moreover, maximum likelihood methods proved they can handle both process
and measurement noises. They can also be used to estimate noise covariance which elimi-
nates the problem of specifying a weighting matrix for the covariance of measurement noise
errors (Mehra et al., 1974). A maximum likelihood method using Gauss-Newton algorithm
(Jategaonkar, 2000) was used to develop a MATLAB-based parameter identification toolbox
for the miniature unmanned helicopter ARTIS at DLR (Lorenz and Chowdhary, 2005).

Output error methods can be considered as maximum likelihood methods where process
noise is not present. It is arguably the most widely applied methods to estimate aerodynamic
derivatives from flight data. These methods can be applied to nonlinear systems with arbi-
trary complexity, although the presence of atmospheric turbulence often yields biased results
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(Jategaonkar, 2008). Moreover, equation error methods can be seen as maximum likelihood
methods where no measurement noise is present and all the states are measured (Mehra
et al., 1974). These methods have been used for model structure development and parameter
estimation of a F/A-18E Super Hornet (Paris and Bonner, 2004).

Kalman filtering is also a well known technique for state and parameter estimation. It is
a recursive estimation procedure using measurement data sets in sequence. The assumed
states are improved at each time step by taking prior states estimates and new data from
succeeding state estimation. This approach was used with a sensor model to estimate the
states of the USC AVATAR miniature unmanned helicopter (Jun et al., 1998).

Morelli (2000) made use of frequency-domain equation error method for the real-time pa-
rameter estimation from flight test data of a F-18 High Alpha Research Vehicle (HARV). A
recursive Fourier transform algorithm applied to a linear dynamic state-space model was
used for real-time data analysis. The presence of high Gaussian random white noise and
simulated data dropout, which represented high frequency noise, did not prevent the pa-
rameter estimates to converge to their true value. Lack of a priori information increased the
convergence time, which made this method inadequate for adaptive or reconfigurable flight
control application.

Velo and Walker (1997) presented a note on the aerodynamic parameter estimation of high
performance aircraft using the Extended Kalman Filtering method. Values for the process
and measurement noise covariance were assumed to produce estimates of the states and a
predicted state estimation error covariance. The white noise process of intensity, also known
as pseudo-noise, was used to account for modelling errors by allowing the parameter time
variation to compensate for unmodelled dynamics. This allows faster convergence of the
parameter estimates at the expense of increased parameter error variance by keeping the
filter gains high.

de Weerdt (2005) used an Extended Kalman Filter algorithm for the aerodynamic parame-
ter estimation of a F-16 aircraft. The state values were estimated and at the same time the
real values of the measurement biases were computed. This method uses the linearized
state-space model about the most recent state estimate at each time step, allowing for the
sequential updating of model parameters. Difficulties were found in the estimation of the
measurement biases and rotational accelerations. However, the estimation of the aerody-
namic model was based on the interpolation of low-speed static and dynamic wind tunnel
test results.

Song et al. (2001) compared two online parameter estimation techniques for a fault toler-
ant flight control system application. It was observed that conventional least square regres-
sion methods such as: Recursive least square (RLS), RLS with a forgetting factor, Modified
Sequential Least Square, real-time Batch Least squares and the extended Kalman filtering
methods lacked parameter reliability in the presence of unmodelled noise and cross-coupled
control inputs (Lombaerts et al., 2009)
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Neural network-based methods

The exact order and structure of a mathematical model might not be known to apply pa-
rameter estimation techniques. Since helicopter is a complex, highly coupled and non-linear
system, it needs a higher-order method to completely describe the system. In addition, mea-
surement noise generated by sensors and structural vibration adds to the system identifi-
cation problem. The non-conventional neural network-based methods are an alternative
non-parametric approach that has gained popularity in high-performance autopilot, control
systems and parameter estimation (White and Sofge, 1992; Demuth and Beale, 2002).

Neural networks are broadly classified on the basis of the type of connectivity between the
processing elements (neurons), the type of architecture, and the number of layers in the net-
work. Two types namely: recurrent neural networks (RNNs) and feed-forward neural net-
works (FFNNs) have been extensively applied to the aerodynamic parameter identification
of non-linear systems (Songwu and Basar, 1998; Kumar et al., 2008). RNNs are dynamic
neural networks incorporating output feedback. They appear in different forms such as:
Non-linear Auto Regressive eXogenous (NARX) input model, ANN with internal memory
known as Memory Neuron Networks and Recurrent MultiLayer Perceptron (RMLP) net-
works. A comparative study was done on these networks for the identification of helicopter
dynamics from flight data (Kumar et al., 2003).

FFNNs are static in nature. They work as function approximators and are capable of approx-
imating any continuous function to any degree of accuracy. However, this leads to a black-
box model where there is no tangible relation to the physical parameters that can be attached
to the model structure or the computed weights (Raisinghani, Ghosh, and Kalra, 1998). The
radial basis function is an alternative to the nonlinear parameter neural networks as the net-
work weights are adjusted using the Least squares method. It can be regarded as a special
two-layer FFNN which is linear in the parameters by fixing all the RBF centers and non-
linearities in the hidden layer. RBF networks can result in poor estimations unless a sys-
tematic approach to center selection is undertaken (Chen et al., 1991). RBF networks have
been extensively used in numerous parameter estimation studies (Raisinghani, Ghosh and
Khubchandani, 1998; Raisinghani and Ghosh, 2001; Singh and Ghosh, 2007; Song et al., 2005).
The multi-layer perpectron (MLP) is the more popular type of FFNNs used for parameter es-
timation, although it has some drawbacks such as: slow convergence rate, computational
memory and sensitivity to outliers (Kumar et al., 2008).

Raisinghani, Ghosh, and Kalra (1998) applied the delta and zero method for aircraft param-
eter estimation using FFNNs from simulated and real-flight data. The delta method (DM)
is based on the understanding that a stability derivative is the variation of the aerodynamic
force or moment caused by a small variation in one of the motion/control variables about the
nominal value, while other variables remain constant (Raisinghani, Ghosh and Khubchan-
dani, 1998). In contrast, the zero method is based on the ratio of aerodynamic coefficient to
the motion/control variable, due to a change of motion/control variable while all the other
variables are set to zero. Specific use of these methods with RBFNs (Kumar et al., 2008), and
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within a frequency domain context, has been explored (Raisinghani and Ghosh, 2001). Mini-
mization of the output layer error was done using a back propagation algorithm (BPA) with
the gradient descent method.

However, these methods had yielded different estimates at different time points making the
delta method less than perfect. Moreover, large standard deviations in the estimated param-
eters, caused the results to loose credibility (Raisinghani and Ghosh, 2001). To rectify this
problem, the ’modified’ delta method has been applied for estimation of lateral-directional
parameters (Singh and Ghosh, 2007). This is very similar to the delta method except that
the mapping of input-output variations is considered. This method was applied on the DLR
fixed-wing testing aircraft system (Singh and Ghosh, 2007).

Songwu and Basar (1998) investigated the problem of driving noise using FFNN and RBF
network models based onH∞ identification algorithm. It was found that this scheme and the
genetic algorithms-based scheme outperformed the backpropagation algorithm in terms of
speed of convergence. It was concluded that RBFNs were better suited for low-dimensional
systems as it has fewer parameters to identify.

Later that year, the delta and zero methods were again used by Raisinghani, Ghosh and
Khubchandani (1998), for the estimation of aircraft stability and control derivatives. How-
ever the presented results had the cases whereby multistep 3-2-1-1 input, arbitrarily varying
input, sinusoidal input and a variation of these for both aileron and rudder was introduced.
Robustness of the methods with respect to measurement noise was demonstrated through
its application on both simulated and flight data. It was deduced that the delta method could
be used as an alternative and complementary to existing parameter estimation methods such
as the maximum likelihood methods.

Raisinghani and Ghosh (2001) developed the delta method for frequency domain applica-
tion using a discrete Fourier Frequency Transform (FFT) with real flight data. The frequency
transform output variable was split into real and imaginary parts. Then, the delta method
was performed on both parts separately and plotted at each frequency. The mean value of
the normal distribution was taken as the estimated value and the sample standard deviation
about the mean as the measure of accuracy of the estimates. The results produced much
lower standard deviation of estimates and correlated well with literature. This methodol-
ogy proved very effective in eliminating high frequency noise while retaining signal content
essentially intact.

Singh and Ghosh (2007) applied the modified delta method (MDM) in aircraft parame-
ter estimation. The neural network was trained using differential variation of aircraft mo-
tion/control variables as inputs and coefficients as outputs. This method was validated
using both simulated and real flight data. Modified back-propagation algorithm was in-
troduced as the traditional approach leads to extremely slow convergence for very small
values and large values often lead to parasitic oscillations. This method yielded estimates
with lesser standard deviations and unlike popular estimation algorithms, it did not require
order of magnitude information for the parameters.
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Kumar et al. (2008) implemented the integration of the delta method and feedforward neu-
ral networks for a full-scale helicopter. This was applied on a RBF and MLP network. The
simulated data was generated using a 6-DOF nonlinear simulation model. The modified
3211 pilot control input was used for rotorcraft parameter estimation. The RBFN based delta
method was found to be suitable for rotorcraft parameter estimation as it enables the compu-
tation of aerodynamic derivatives in both the transition regime and high speed flight regime.

Suresh et al. (1995) worked on the identification of lateral and longitudinal dynamics of a
helicopter using recurrent neural networks. FFNNs with linear filters also known as the
Narendra’s model and RNNs with internal memory (MNN) was used. The training and
testing error for MNN was far less than the Narendra’s model which has more number of
weights due to delay lines. It was concluded that fine-tuning of the network parameters can
further enhance the performance of the networks.

A comparative study into the identification of helicopter dynamics based on flight data using
recurrent neural networks was presented in (Kumar et al., 2003). The NARX, MNN and
RMLP networks were used to identify longitudinal and lateral dynamics of the helicopter at
various speeds. The research platform was a four-bladed soft in-plane hingeless main rotor
and a four bladed tail rotor with conventional mechanical controls. These networks could be
trained on-line and off-line but their application would depend on a priori knowledge and
amount of training data available.

de Weerdt (2005) investigated the problem of reconfigurable flight control system using on-
line neural network-based parameter estimation techniques. The adaptive nature of the
aerodynamic model was based on the assumption that thrust and mass distribution data
was available at all times. A hyperbox structure for the whole flight envelope was defined
to resolve the recency effect which occurs during online identification whereby the neural
network is unable to retain the approximation accuracy of the previous Input-Output map-
pings. However, this led to the construction of many neural networks in order to completely
describe the full-envelope aerodynamic model. Off-line learning of a longitudinal aerody-
namic model was performed in order to validate the proposed RFC system.

Savran et al. (2006) developed a neural network-based adaptive identification model for
three angular rates of a high performance aircraft. This model made use of a first-in first-
out stack to store certain history of the input-output data to be used for offline and online
training of the neural networks. The convergence time was reduced by using Levenberg-
Marquardt optimization method with a trust region approach. It was concluded that the
stack method enhanced the adaptive neural network capabilities in compensating for sys-
tem uncertainties and adapt to parameter changes in real time.

The online identification using adaptive RBF-based neural networks was investigated by
Jafari et al. (2007). They applied a modified growing and pruning radial basis functions
(GAP-RBF) and the minimal resource allocation network (MRAN) for the online identifica-
tion of nonlinear systems. The Unscented Kalman Filter (UKF), with a variable forgetting
factor, was used as a learning algorithm to update the neural network parameters. Unlike
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batch training, the series of training samples, were presented one-by-one to the network. Al-
though these methods update the network parameters in real-time, their networks initially
start at a neuron count of zero which leads to big errors in the identification results and slow
convergence time.

1.4.2 Flight control reconfiguration using neural network

Leitner et al. (1995) conducted a study bridging the gap between adaptive neural network
and helicopter nonlinear modelling. Emphasis was on the network architecture and the ef-
fect varying adaptation gain had on the control system tracking capability. The analysis of
the feedback inversion error was used to decide the network architecture and the basis func-
tions. A proportional plus derivative (PD) control law was used to shape the response and
the adaptive signal sole purpose was to cancel the inversion error. The approximate nature
of the inverse method required the neural network model to be developed using off-line
training. So high adaptation gains resulted as a trade-off for short control activity although
the spill-over effect due to actuator saturation was not quantified. Pallett and Ahmad (1991)
investigated real-time flight control of a miniature helicopter using neural networks. The
identification strategy made use of the multilayer perceptron (MLP) networks for the offline
training of the inverse dynamics. This is done so that network initial weights are close to the
operating point of the system. The control design techniques were based on linearized state
equations in the hover and vertical flight conditions.

Chuntao and Yonghong (2006) investigated the hysteresis characteristics of piezoelectric ac-
tuators in relation to the adaptive control of neural networks. Construction of the complex
hysteresis inversion model was avoided by using the backstepping technique and backlash
inversion to compensate the backlash nonlinearity. It was assumed the actuator output and
all states of plant are measurable which is seldom achieved in the identification and con-
trol of model helicopters. Johnson and Kannan (2005) had a tracking objective but this was
handled by an inner-outer loop control architecture approach. Their autonomous unmanned
helicopter model made use of hedging to prevent outerloop adaptation of inner loop dynam-
ics and avoid incorrect adaptation while at the control limits.

Calise and Rysdyk (1997) investigated nonlinear adaptive control using neural networks and
the model inversion method. However, cross-coupling between fast rotational states and
slow translational states was excluded in the inversion. The objective was to demonstrate
how neural networks are capable of adapting to errors caused by the linearized inversion
model. The control law was defined through the neural network weight adaptation which
guaranteed the boundedness of the tracking error. The same method was used by Mun-
zinger (1998) in the development of a real-time flight simulator for an experimental model
helicopter.

Suresh and Kannan (2008) developed a direct adaptive controller design using neural net-
works for an unstable unmanned research aircraft. A neural network with linear filters and
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back propagation through time learning algorithm was used. The bounded input-output re-
quirement is overcome through the use of an offline-online training strategy. The adaptive
nature of the neural controller was tested using center of gravity variation, system matrix
uncertainty and control surface loss. Nonlinear simulations were conducted to analyze the
robustness of the proposed control scheme. It was found that control effort required in direct
adaptive scheme is lesser than the indirect adaptive control law.

Recently, Guo et al. (2010) presented an active fault accommodation strategy in the presence
of actuator fault and input constraints. A combination of a direct adaptive control algorithm
with multiple model switching was used to construct the reconfigurable flight controller. An
adaptive observer to reconfigure the plant is designed using RBFN. The RBF were used to
approximate the model uncertainty and the multiple models describe all the fault scenarios.

1.4.3 Identified gaps

• Least Square methods are the most popular methods for online parameter estimation
and flight control. Although they inherently improve the signal-to-noise ratio, pro-
vided the noise covariance parameters are given, they require accurate a priori knowl-
edge of the system dynamics and initial system parameters which is very difficult to
get for miniature unmanned helicopters.

• MLP and RNN networks have been used extensively for the parameter estimation of
the stability and control derivatives of nonlinear dynamic systems. Unlike RBF net-
works, these methods have slow convergence time and need large amount of required
training data. This subsequently complicates their application to online estimation
problems.

• The modified delta method has not been used for the parameter estimation of a minia-
ture unmanned helicopter. Specific focus has been placed on a correlation between
neural network performance to system identification accuracy.

1.5 Research Question

Can the online application of a neural network-based aerodynamic parameter estimation
method be achieved for the design of a flight reconfigurable unmanned system?

1.6 Research Objectives

The aim of this study is to develop a simulation model that can accurately estimate aerody-
namic parameters of miniature unmanned helicopter in real-time for flight control reconfig-



CHAPTER 1. INTRODUCTION 11

uration in the presence of state and measurement noise. The following sub-objectives should
be noted:

• Development of a miniature unmanned helicopter simulation model.

• Evaluation of the trim and stability characteristics for a miniature unmanned heli-
copter.

• Evaluation of Neural Network architectures for nonlinear model identification.

• Online aerodynamic parameter estimation (stability and control derivatives) for a minia-
ture unmanned helicopter using radial basis function networks (RBFN) and multilayer
perceptron networks (MLPN).

• NN model structure selection for flight control reconfiguration.

• Evaluation of the NN-based control methodologies for reconfigurable flight control
design.

• Evaluation of the robustness and performance of a miniature helicopter reconfigurable
flight control system.

1.7 Research Scope and Limitations

In this research, the online aerodynamic parameter estimation of a miniature unmanned he-
licopter using neural network techniques is studied. A simulation facility for a miniature
unmanned helicopter is developed using the MATLAB/SIMULINK software suite. The on-
line estimation of the stability and control derivatives using RBFN-based DM and MDM is
achieved for three flight conditions namely: hover, forward 10m/s flight and forward 20m/s
flight. A structure of a NN-based reconfigurable flight control system is also proposed.

Due to time and financial constraints, the following limitations applies to this research:

1. Only the MATLAB/SIMULINK software suite was used for all computations.

2. Real-time flight data for a miniature unmanned helicopter was not used.

3. The flapping rates ȧ1, ḃ1 were not estimated but were part of the simulated data used
for parameter estimation.

4. MLP model identification and aerodynamic parameter estimation was not performed.

5. RBF spread constant optimization was not investigated.

6. Only the mean squared error validation criterion was used. one-step ahead (OSA) and
model predictive outputs criteria were discarded.

7. Unsteady flight and acrobatic manoeuvers were not considered.
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1.8 Research Methodology

The research methodology outline is shown in Figure 1.3. A miniature unmanned helicopter
is the proposed platform for this study. The dynamic model of a X-Cell .60 unmanned he-
licopter developed by Gavrilets et al. (2003) is used to develop the mathematical model in
MATLAB/SIMULINK environment. The blade element theory is used to derive the nonlin-
ear equations of motion. A simulation database containing inputs and outputs time histories
will be developed for both hover and forward flight conditions.

1 - Mathematical Model 
 

• Equations of motion 
• Instrumentation model 
• Atmospheric turbulence 
• SIMULINK model 
• Trim analysis and validation. 
 

 

2 - Simulated Flight Data 
 

• Flight Test maneuvers design 
• Simulate flight data  
• Data acquisition 
• Data processing 
• Power spectrum analysis 
 

4 - Reconfigurable Flight Control 
 

• NN-based controller structure design 
o Direct adaptive control 
o Dynamic inversion adaptive control 

• RFC performance evaluation 
 

3 - Online Parameter 
Estimation 

 

• Online Estimation Model 
• Delta method 
• Modified delta method 
• Algorithm performance evaluation 
 

Figure 1.3: Methodology outline.

Instrumentation model

It is assumed that the sensor data is contaminated due to the vibration transferred by the
airframe to the sensors. A measurement noise model will be developed which includes pro-
cess and measurement noise at the inputs and outputs. A Gaussian noise model has been
considered although specific focus on gyros low-frequency noise will be implemented.

Atmospheric turbulence model

Miniature helicopters are susceptible to atmospheric turbulence during flight. This effect is
introduced through random signals from a white noise generator passing through a first-
order filter to simulate various strengths of atmospheric turbulence.
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Data acquisition

Simulated data should include enough information on the system dynamics to facilitate the
system identification process. Specific maneuvers have to be designed to expose the response
to inputs and the coupling effects. Lorenz and Chowdhary (2005) classified the maneuvers
in the following categories:

• Varying 3-2-1-1 and doublet sweeps on individual inputs: To expose the effect of in-
put/output relation.

• Combined varying 3-2-1-1 and doublet sweeps on two or more inputs: To expose the
input coupling effects.

Data processing

The data files are expected to contain the following simulated parameters: pitch rate (q),
pitch attitude (θ), roll rate (p), roll attitude (φ), yaw rate (r), longitudinal (ax), lateral (ay) and
normal accelerations (az). The inputs to the servo actuators i.e collective (δcol), aileron (δlat),
elevator (δlon), and tail rotor pitch (δped) will also be logged.

Parameter estimation algorithms

The following indirect ways of extracting stability and control derivatives from a trained
network will be applied for parameter estimation:

• Delta Method.

• Modified Delta method.

The parameter estimation algorithm will be evaluated using the following criteria (Song
et al., 2001):

• Convergence error of estimated parameters.

• Confidence levels of the estimated parameters through standard deviation computa-
tion.

• Network neuron size.

• Network memory usage.

• Robustness to process and measurement noise.
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Reconfigurable flight control

The following NN-based control methodologies have been investigated:

1. Direct adaptive control

2. Dynamic inversion adaptive control

The neural network reconfigurable flight control law will be based on the estimated aero-
dynamic parameters. Attitude control will form the basis of the validation process with the
following specifications:

1. Eigenvalue location

2. Gain and phase margins

3. Crossover frequency

1.9 Research Contributions

This study introduces a novel approach to the online aerodynamic parameter estimation of
a miniature unmanned helicopter using neural network-based techniques. The following
contributions have been identified:

1. Development and validation of a Xcell.60 miniature helicopter simulation facility for
system identification applications.

2. Online application of RBFN to the aerodynamic parameter estimation of a miniature
unmanned helicopter in hover and forward flight.

3. The application and comparison of the DM and MDM using RBFN for a miniature
unmanned helicopter.

1.10 Dissertation Outline

The layout of this dissertation is as follows: Chapter 2 describes the development of a minia-
ture helicopter simulation model. Chapter 3 analyzes the trim and stability condition of
the helicopter in various flight phases with emphasis on natural modes of motion. Chap-
ter 4 describes the online identification and aerodynamic parameter estimation using neural
networks. Chapter 5 describes flight control reconfiguration using neural networks. Conclu-
sions and recommendations for this research are given in Chapter 6.



Chapter 2

Development of a Miniature
Unmanned Helicopter Model

2.1 Description of X-Cell.60 Helicopter

2.1.1 Airframe characteristics

The X-Cell.60, shown in Figure 2.1 is a very popular helicopter among hobby pilots for aer-
obatics and recently for research in highly maneuverable autonomous flight (Mettler et al.,
1999). The X-Cell.60 is manufactured by Miniature Aircraft with a rigid hingeless rotor head.
This allows for large rotor control moments resulting in high roll and pitch angular rates.
In comparison to the more popular Yamaha R-50 (RTMax), the X-Cell has a larger thrust-to-
weight ratio permitting fast acceleration, high load factors and sustained inverted flight.

The Bell-Hiller stabilizer bar is a secondary rotor consisting of two paddles mounted at each
end of a steel rod and connected to the rotor shaft by a swashplate mechanism (see Figure
2.2). The bar receives the same cyclic input as the main rotor but is less sensitive to airspeed

Figure 2.1: Miniature X-Cell.60 helicopter.

15
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Figure 2.2: Helicopter stabilizer bar

and wind gusts due to a smaller blade Lock number (non-dimensional rotor parameter giv-
ing ratio between aerodynamic and inertial forces).The bar acts like a lagged attitude rate
feedback (Prouty, 1986), designed to help the pilot control the helicopter attitude dynamics.

Swashplate mechanism, shown in Figure 2.3, is used as blade pitch control system. Its pur-
pose is to vary the pitch of the blade both in magnitude and as a function of azimuth angle
(angular position around the rotor hub). Unlike large helicopter which uses an intermediate
mechanical mixing system, the X-Cell.60 helicopter makes use of the CCPM (Collective and
Cyclic Pitch Mixing) to reduce the mechanical complexity and servo workload. The CCPM
mixes the collective, cyclic longitudinal and cyclic lateral control inputs using software with
three independent servos directly connected to the swashplate arranged in a 90 or 120 de-
grees design (Mettler, 2003).

Figure 2.3: Helicopter swashplate mechanism

Most miniature helicopters use a heading lock gyro (see Figure 2.4). This acts as a yaw
damping system using the negative feedback of the helicopter heading rate, provided by an
angular rate gyroscope (gyro). Its purpose is to counter wind and main rotor reaction torque.
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Using the gyro capabilities to ’sense’ self-induced tail movements, a signal is generated to
the actuator which in turn changes the tail rotor collective pitch to maintain constant heading
(Day, 2005).

Figure 2.4: Helicopter Yaw Gyro

The X-Cell.60 is also equipped with a powerful .90 size engine and an electronic governor or
speed controller whose function is to maintain constant rotor speed. Table 2.1 gives general
characteristics of a X-Cell helicopter.

Table 2.1: Physical Characteristics of the X-Cell.60

Rotor speed 1600-1700 rpm
Tip speed 127-135 m/s
Dry weight 4.5 kg
Instrumentation 7.6 kg
Engine 2-stroke air cooled
Flight Autonomy 12 minutes

2.1.2 Instrumentation

Equipping a miniature aerobatic helicopter with multiple sensors puts hard requirements on
the computing system. The measurements must be integrated and collected in real-time to
accurately and directly measure the rapidly changing vehicle states. Instrumentation rigs
fastened to the helicopter often limit the degrees of freedom and restrict the helicopter to
hover flight experimentation (Mettler, 2003).

The development of the flight test instrumentation on the X-Cell.60 was done by Massachusetts
Institute of Technology (MIT) (Gavrilets et al., 2003). A low-latency, high update rate unit
GPS receiver was used, improving the accuracy of the attitude and velocity estimates us-
ing an onboard Extended Kalman Filter (EKF). The avionics suite is comprised of an inertial
measurement unit which consists of three gyros and three accelerometers which supplies
data at 50 Hz.
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2.2 Rotorcraft Modelling

Rotorcraft modelling often falls within two categories: first-principles modelling and mod-
elling using system identification. The former approach is a comprehensive analysis of all
the vehicle’s physical features. This makes the model suitable for a wide range of operating
conditions but typically results in a large number of states. The latter approach focuses on
developing compact and easier-to-understand models that capture the essence of the plant
dynamics. This is achieved by estimating the system’s responses from flight data collected
during flight and ground experiments (Mettler, 2003).

The modelling approach is based on a study done by Mettler (Mettler, 2003) on the char-
acteristics of small-scale helicopter dynamics using identification techniques. He applied
identified parameterized linear models for both hover and forward flight on MIT’s X-Cell.60
(Gavrilets et al., 2003). These models neglected complex interactions between the rotor wake,
fuselage and tail due to the large rotor forces and moments produced in miniature heli-
copters.

Both hover and forward flight conditions are accurately modeled by a rigid-body model aug-
mented with a first-order rotor and stabilizer bar dynamics with the exclusion of inflow dy-
namics. The lateral and longitudinal tip-path-plane (TPP) flapping equations were defined
by lumping the coupled rotor and stabilizer bar equations into one first-order effective rotor
equation. This allows the model to accurately predict the vehicle angular response to aggres-
sive control inputs for the full range of the angular motion. A detailed study of the identifi-
cation process used on the Yamaha R-50 and the X-Cell.60 can be found in (Mettler, 2003).

The goal of the mathematical model is to develop a simulation facility valid over the hover,
slow speed (10 m/s) and medium speed (20 m/s) forward flight conditions using the MAT-
LAB/SIMULINK software suite. A modular approach was undertaken to construct the aero-
dynamic model, sensor models, actuator models and atmospheric model. The helicopter
parameters, derived from experimental tests, are listed in Table 2.2 (Mettler, 2003).

2.2.1 Assumptions

The rotorcraft model was developed using the following assumptions (Gavrilets et al., 2003):

1. The cross-axis moments of inertia are small and the principal axes coincide with the
axes of the body reference system.

2. The fuselage center of pressure coincides with the c.g., therefore the moments created
by three fuselage aerodynamic forces are neglected.

3. X-Cell cyclic control authority is dominated by the hub torsional stiffness making the
modelling of the inflow transients less critical.
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Table 2.2: Parameters of MIT Instrumented X-Cell.60 Helicopter

Parameter Value Parameter Value
Anomδlon

4.2 rad/rad Iyy 0.34 kg.m2

amr 5.5 rad−1 Izz 0.28 kg.m2

atr 5.0 rad−1 Kβ 54 N.m/rad
Bnom
δlat

4.2 rad/rad Ki 0.02 rad−1

CvfLα 2.0 rad−1 Kp 0.01 sec/rad
ChtLα 3.0 rad−1 Kµ 0.2
CmrD0

0.024 lht 0.71 m
CmrTmax 0.0055 ltr 0.91 m
cmr 0.058 m m 8.2 kg
CtrD0

0.024 nes 9.0
CtrTmax 0.05 ntr 4.66
ctr 0.029 m Ωnom 167 rad/s
δtrimr 0.1 rad P idleeng 0.0 Watts

εtrvf 0.2 Pmaxeng 2000.0 Watts

fsp 12.5 Hz Rmr 0.775 m
fsq 9.0 Hz Rtr 0.13 m
fsr 9.6 Hz Sfusx 0.1 m2

γfb 0.8 Sfusy 0.22 m2

hmr 0.235 m Sfusz 0.15 m2

htr 0.08 m Sht 0.01 m2

Iβmr 0.038 kg.m2 Svf 0.012 m2

Ixx 0.18 kg.m2 ξs 0.05

4. The influence of the cyclic input and roll rate on thrust are of second order for an
advance ratio of µ < 0.15 are neglected.

5. At hover, the vertical acceleration was represented by a linear function.

6. The rotor in-plane force, which contributes to the drag and side force was lumped with
the fuselage forces.

7. The main rotor flapping angle β is represented as a Fourier series of the blade azimuth
angle ψ, with the first three coefficient retained.

8. The main rotor and stabilizer bar flapping dynamics were lumped and represented by
the TPP flapping dynamics with only two states.

9. The pitch and roll cross-coupling flapping coefficients were neglected.

10. The contribution of the rotor moments is approximated using a linear torsional spring
with constant stiffness.

11. The main rotor thrust vector remains perpendicular to the TPP.

12. Small flapping angles are considered, thus allowing linear approximation of the main
rotor force components to be along the helicopter body axes.

13. The engine torque response to throttle changes can be considered instantaneous.
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14. The engine governor is modeled as a proportional-integral feedback controller.

15. Throttle servo dynamics are much faster than the rotorspeed dynamics and are ne-
glected.

2.3 Rotorcraft Equations of Motion

2.3.1 Rigid-body equations of motion

 

 

Z, w, N, r, ψ 

X, u, L, p, Φ 

Y, v, M, q, θ 
TRT  

 MRT  

 MRQ  

  HTF  

VFF  

    FF  

c.g 

Figure 2.5: Moments and forces acting on the helicopter

The helicopter is a vehicle that is free to rotate and translate in all six degrees of freedom.
Newton-Euler method is used to develop the rigid body equations. These equations are
expressed in the inertial reference frame and derived from the principle of conservation of
linear and angular momentum. For constant vehicle mass m and moment of inertia (inertia
tensor I), they are:

m
dIv

dt
= F (2.1)

I
dIω

dt
= M (2.2)

where F = [X Y Z]T is the vector of external forces on the vehicle center of gravity and
M = [L M N ]T is the vector of external moments. Their orientations are shown in Figure
2.5. In a helicopter, the external forces and moments are produced by: the main rotor and
the tail rotors representing the control forces and moments, the gravitational forces and the
aerodynamic forces produced by the fuselage, vertical fin and horizontal stabilizer.

Using moving reference frame principles (Padfield, 1996), the equations of motion can be
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expressed with respect to the body-fixed reference frame:

mv̇ +m(ω × v) = F (2.3)

Iω̇ + (ω × Iω) = M (2.4)

where v = [u v w]T and ω = [p q r]T are the fuselage velocities and angular rates in the body-
fixed frame, respectively. The angular orientation of the aircraft is described by Euler angles.
Euler angles refer to a specific sequence of rotations about the vehicle body axes namely: the
yaw angle ψ (about the z axis), pitch angle θ (about the ’new’ y axis), and roll angle (φ about
the new ’x’ axis). The rotation matrix LBI refer to the transformation of a vector coordinates
in the inertial reference axis to vector coordinates in the helicopter body-fixed reference axis.
This is given as:

LBI =


cosθcosψ cosθsinψ −sinθ

sinφsinθcosψ − cosφsinψ sinφsinθsinψ + cosφcosψ sinφcosθ

cosφsinθcosψ + sinφsinψ cosφsinθsinψ − sinφcosψ cosφcosθ

 (2.5)

The gravity vector in the inertial reference frame has the components, g = [0 0 g]T . Its effect
on the body reference axis can be written as:

u̇ = vr − qw − gsinθ + (Xmr +Xfus) /m

v̇ = wp− ur + gsinθcosφ+ (Ymr + Yfus + Ytr + Yvf ) /m

ẇ = uq − vp+ gcosφcosθ + (Zmr + Zfus + Yht) /m

ṗ = qr (Iyy − Izz) /Ixx + (Lmr + Lvf + Ltr) /Ixx

q̇ = pr (Izz − Ixx) /Iyy + (Mmr +Mht) /Iyy

ṙ = pq (Ixx − Iyy) /Izz + (Nvf +Ntr −Qe) /Izz
φ̇ = p+ (qsinφ+ rcosφ)tanθ

θ̇ = qcosφ− rsinφ

ψ̇ = (qsinφ+ rcosφ)secθ

ẋE = u(cosθcosψ) + v(sinφcosψ − cosφsinψ) + w(cosφsinθcosψ + sinθsinψ)

ẏE = u(cosθcosψ) + v(sinφcosψ + cosφsinψ) + w(cosφsinθcosψ − sinθsinψ)

żE = usinθ − v(sinφcosθ)− w(cosφcosθ)

The set of acting forces and moments are represented as follows: ()mr for main motor, ()tr for
tail rotor, ()fus for fuselage, ()vf for the vertical fin and ()ht for horizontal stabilizer. These
are shown in Figure 2.5.
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2.3.2 Rotor equations of motion

To account for rotor dynamics, we need simplified expressions for the rotor equations of
motion. These equations will be used to express the rotor forces and moments acting on the
helicopter center of gravity. In rotor aerodynamics, the blade of the rotor has a similar role
as the wing of an airplane. The main difference occurs when the helicopter moves forward,
the advancing blade sees a higher airspeed than the retreating blade causing asymmetry in
the aerodynamics (Mettler, 2003).

The velocity at the blade is represented by a tangential and perpendicular componentUT and
UP respectively. The latter acts into the page of the hub plane. These velocity components
contribute towards: rotor rotation about the hub, rotor inflow and the blade flapping motion.

The tangential velocity component at a blade station y can be written as:

UT = Ωy + (U∞cosαD)sinΨ (2.6)

The perpendicular velocity component is made of the rotor inflow velocity (described later)
vi, the free-stream velocity U∞, the vehicle rotation (angular rates p and q) and the blade
flapping rate:

UP = U∞sinαD + vi − y(psinψ + qcosψ) + yβ̇ (2.7)

The magnitude of the resultant velocity at the blade element is

U =
√
U2
P + U2

T (2.8)

The incremental lift produced by the blade element acting normal and in-line to the resultant
airspeed respectively can be computed (Prouty, 1986)

dL =
1

2
ρU2cClααdy (2.9)

dD =
1

2
ρU2cCdααdy (2.10)

c is the blade chord length and Clα and Cdα are the airfoil lift and drag curve slopes respec-
tively. The in-plane and out-of-plane forces components acting on the blade element can be
deduced:

dFz = dLcosΦ + dDsinΦ ≈ dL (2.11)

dFx = dLsinΦ + dDcosΦ ≈ dD (2.12)

The total lift and drag forces are obtained by integrating the elemental forces along the blade
length. The equations for the blade flapping motion are derived from the balance of mo-
ments about the flapping hinge. Figure 2.6 shows a rigid blade with the main forces and
moments acting. The blade aerodynamic force Faero, the centrifugal force Fcent, the inertial
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Figure 2.6: Forces and moments acting on the rotor blade.

forces Finertia (resulting from the rigid body equations) and the moment Mk produced by
the flapping restraint.

The complete expression of the inertial and aerodynamic forces, not included here, typically
consist of contributions from the vehicle angular and linear acceleration and the Coriolis
acceleration. The elemental inertial force, produced the acceleration due to blade flapping,
Finertia = mdyβ̈, the elemental centrifugal force component normal to the blade element is
given as Fcent = mdyΩ2yβ. Writing the balance of moments acting on the flapping hinge, we
obtain ∫ R

0
ydFzdy −

∫ R

0
y
[
myβ̈ −mdyΩ2yβ

]
dy − kββ = 0 (2.13)

Rearanging the terms

∫ R

0
ydFzdy −

∫ R

0
my2dy

[
β̈ + Ω2β

]
− kββ = 0 (2.14)

By definition, the blade moment of inertia about the flapping hinge is given:

∫ R

0
my2dy

def→ Iβ (2.15)

Differentiating Eq.2.14 with respect to the angular blade position Ψ and Ψ = Ωt, we get

β̈ = Ω2 δ
2β

δΩ2
= Ω2β′′ (2.16)

Substituting Eq.2.15 and 2.16 into Eq.2.14 gives:

IβΩ2 [β′′ + β
]

+ kββ =

∫ R

0
ydFzdy (2.17)

Using the mass-spring-damper (MSD) system to rearrange the above equation as follows:

β′′ +

(
1 +

kβ
IβΩ2

)
β =

1

IβΩ2

∫ R

0
ydFzdy (2.18)

where the coefficient of β is square of natural flapping frequency ratio λβ (relative to the
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rotor angular speed Ω):

λ2
β = 1 +

kβ
IβΩ2

=
ω2
β

Ω2
(2.19)

ωβ is the natural flapping frequency. It can be shown that for a teetering rotor (kβ = 0), the
natural flapping frequency is equal to the rotor angular speed Ω (λβ = 1).

2.4 Aerodynamic Model

The aerodynamic model is based on a linear state-space model developed from a combi-
nation of first-principle vehicle dynamics, physical insight and frequency-response analysis
(Gavrilets et al., 2003).

2.4.1 Main rotor forces and moments

Thrust

Assuming steady and uniform inflow, the settling time of the inflow transients at hover is
given:

τλ =
0.849

4λtrimΩmr
(2.20)

The thrust coefficient is given as:

CT =
T

ρ(ΩmrRmr)2πR2
mr

(2.21)

where T is the main rotor thrust. Then the following systems of equations can be solved
iteratively:

λ0 =
CT

2ηw
√
µ2
mr + (λ0 − µzmr)2

(2.22)

CidealT =
amrσmr

2

(
θ0

(
1

3
+
µ2

2

)
+
µzmr − λ0

2

)
(2.23)

The thrust coefficient is limited by the maximum rotor thrust procuded by the engine:

CmaxT =
Tmax

ρ(ΩmrRmr)2πR2
mr

(2.24)
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here

µmr =

√
(u− uwind)2 + (v − vwind)2

ΩmrRmr
(2.25)

µzmr =
w − wwind
ΩmrRmr

(2.26)

σmr =
2cmr
πRmr

(2.27)

It needs to be noted that the maximum thrust produced by the main rotor can be directly
related to the weight of the helicopter as:

Tmax = 2.5mg

Torque

The main rotor torque can be approximated as a sum of induced torque and torque due to
the profile drag on the blades.

CQmr =
Qmr

ρ(ΩmrRmr)2πR3
mr

= CT (λ0 − µz) +
CD0σmr

8

(
1 +

7

3
µ2
mr

)
(2.28)

whereCQmr is the main rotor torque coefficient, CD0 is the profile drag coefficient of the main
rotor blade. The profile drag variation with collective setting is small and ignored.

Main rotor moments and flapping dynamics

Based on the assumptions given is Section 2.2.1, the flapping motion is a 2π periodic function
described as a Fourier series:

β(Ψ) = β0 − β1ccosΨ− β1ssinΨ− β2ccos2Ψ− β2ssin2Ψ− ... (2.29)

Ignoring the second and higher harmonics in the Fourier series:

β(Ψ) = β0 − β1ccosΨ− β1ssinΨ (2.30)

The stabilizer bar flapping contributes to the change of the main rotor blade pitch angle θ
through a mechanical linkage:

θ(Ψ) = θ0 + θlonsinΨ + θlatcosΨ + ksβs (2.31)
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The swashplate Bell mixer changes the cyclic pitch angle of both main rotor and the stabilizer
bar. The stabilizer bar paddles are free to teeter about the rotor shaft. Hence, the stabilizer bar
does not produce any significant force and moment on the rotor hub. The damping ratio of
the flapping motion can be correlated to the Lock number of the blades considered (Gavrilets
et al., 2003). The Lock number represents the ratio of aerodynamic to inertial forces defined
as:

γ =
ρcaR4

Iβ
(2.32)

The main rotor blades have a much higher Lock number than the stabilizer bar blades pro-
ducing a smaller time constant in their response to cyclic inputs. Based on the assumptions
given in Section 2.2.1, lateral and longitudinal flapping dynamics by first-order equations
can be deduced:

ḃ1 = −p− b1
τe
− 1

τe

δb1
δµv

v − vwind
ΩmrRmr

+
Bδlat
τe

δlat (2.33)

ȧ1 = −q − a1

τe
− 1

τe

(
δa1

δµ

u− uwind
ΩmrRmr

+
δa1

δµz

w − wwind
ΩmrRmr

)
+
Aδlon
τe

δlon (2.34)

where Bδlat and Aδlon are effective steady-state lateral and longitudinal gains from the cyclic
inputs to the main rotor flap angles. δlat and δlon are the lateral and longitudinal cyclic control
inputs and τe is the effective rotor time constant for the rotor and the stabilizer bar.

The moments of inertia was determined by using the torsional pendulum tests. τe was ap-
proximated by estimating the hub torsional stiffness given as:

τe =
16

γfbΩmr
(2.35)

where γfb is the stabilizer Lock number. Experiments showed that Bδlat and Aδlon grow with
rotor speed given as:

Bδlat = Bnom
δlat

(
Ω

Ωnom

)2

(2.36)

Aδlon = Anomδlon

(
Ω

Ωnom

)2

(2.37)

where Ωnom is the nominal operating rotor speed at 167 rad/s. The flapping due to trans-
lational velocity is caused by an increase of lift on the advancing blade with respect to the
retreating blade thereby causing a moment with a 90 degree gyroscopic phase lag on the main
rotor. The stabilizer bar dramatically reduces the flapping response to gusts (Gavrilets, 2003)
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so a scaling coefficient had to be included. The longitudinal dihedral derivative is given as:

δa1

δµ
= 2Kµ

(
4δcol

3
− λ0

)
(2.38)

Kµ is the scaling coefficient to include the stabilizer effect. Kµ = 0.2 for this helicopter. The
longitudinal and lateral dihedral derivatives are equal in magnitude and both cause the rotor
to flap away from the incoming air.

δb1
δµv

= −δa1

δµ
(2.39)

The upward heave movement of the helicopter causes a higher lift on the advancing blade
which causes a moment on the rotor hub. The same stabilizer scaling coefficient is used:

δa1

δµz
= Kµ

16µ2

(1− µ2/2)(8 |µ|+ amrσmr)
(2.40)

Rotor flapping is the dominant effect on rotor moments. The restraint is approximated using
a linear torsional spring with constant stiffness coefficient Kβ . This results in a longitudinal
(pitch) and lateral (roll) moments:

Mk,lon = Kβa1 (2.41)

Lk,lat = Kβb1 (2.42)

Once flapping occurs, the rotor thrust vector tilts and contributes to the rotor-fuselage mo-
ments. Assuming the thrust vector tilts proportionally to the rotor flapping angles, the total
main rotor pitch and roll moments can be deduced as:

Mmr = (Kβ + Thmr) a1 (2.43)

Lmr = (Kβ + Thmr) b1 (2.44)

where hmr is the distance between the rotor head and the fuselage center of gravity.

Rotor forces

For small advance ratios (see Section 2.2.1), the rotor forces are given as:

Xmr = −Tmra1 (2.45)

Ymr = Tmrb1 (2.46)
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Zmr = −Tmr (2.47)

2.4.2 Engine, governor and rotorspeed model

The rotorspeed dynamics can be modeled as:

Ω̇ = ṙ +
1

Irot
[Qe −Qmr − ntrQtr] (2.48)

where the main rotor torque is given as:

Qmr =
CQ

ρ (ΩmrRmr)
2 πR3

mr

(2.49)

where Qe is the engine torque (positive clockwise), Qtr is the tail rotor torque, ntr is the tail
rotor gear ratio and Irot is the total rotating inertia referenced to the main rotor defined as:

Irot = 2Iβmr + Iesn
2
es + 2Iβtrn

2
tr (2.50)

where Iβmr and Iβtr are the main and tail rotor blade inertias respectively. Ies is the inertia of
the engine shaft and all components rotating at the engine speed, nes is the engine gear ratio.
Experiments have allowed Irot to be estimated as (Gavrilets et al., 2003):

Irot = 2.5Iβmr (2.51)

2.4.3 Fuselage forces

Hover and forward flight speeds below the induced velocity at hover, the rotor downwash
is deflected by forward and side velocity. This creates a force opposing the movement. The
X and Y drag forces created by the fuselage can be expressed within this flight regime:

Xfus = Sfusx

1

2
V 2
imr

u

Vimr

Yfus = Sfusy

1

2
V 2
imr

v

Vimr

where Sfusx and Sfusy are the effective drag areas for the fuselage in the X and Y directions
respectively. However when the forward flight is higher than the rotor induced velocity, the
fuselage drag is modelled as the drag on a flat plate (Gavrilets, 2003). The X and Y forces can
thus be expressed as:

Xfus = Sfusx

1

2
U2
e

u

Ue
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Yfus = Sfusy

1

2
U2
e

v

Ue

where Ue is the trim speed. The above equations can be expanded into the following fuselage
forces:

Xfus = −Sfusx

1

2
(u− uwind)V∞ (2.52)

Yfus = −Sfusy

1

2
(v − vwind)V∞ (2.53)

Zfus = −Sfusz

1

2
(w − wwind + Vimr)V∞ (2.54)

where V∞ =
√

(u− uwind)2 + (v − vwind)2 + (w − wwind + Vimr)
2 is the total velocity acting

on the helicopter. The sign convention discussed above has been included. Based on the
fuselage projection areas, the fuselage effective areas are given as:

Sfusy = 2.2Sfusx

Sfusz = 1.5Sfusx

2.4.4 Vertical fin forces and moments

The sideforce produced by the vertical fin is given as:

Yvf = Svf
(
CvfLαV

tr
∞ + |vvf |

)
vvf (2.55)

where Svf is the vertical fin area and CvfLα is the fin lift curve slope. vvf is the side velocity
relative to the air at the fin location defined as:

vvf = v − vwind − εtrvfVitr − ltrr (2.56)

the axial velocity V tr
∞ is defined as:

V tr
∞ =

√
(u− uwind)2 + w2

tr (2.57)

where

wtr = w − wwind + ltrq −KλVimr (2.58)

Vitr is the induced velocity of the tail rotor, εtrvf is the fraction of the vertical fin area exposed
to full induced velocity from the tail rotor, ltr is the vertical distance between the c.g. and
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the tail velocity and Kλ is the wake intensity factor calculated in the tail rotor section Section
2.4.6. The vertical fin sideforce creates a yawing and rolling moment due to offsets from the
c.g.

Nvf = −Yvf ltr (2.59)

Lvf = Yvfhtr (2.60)

where htr is the tail rotor hub distance from c.g.

2.4.5 Horizontal stabilizer forces and moments

The main rotor flapping produces a weathercock effect by the horizontal stabiliser. The hor-
izontal tail produces a lift and stabilising pitching moment around the c.g. Assuming the
stabiliser is fully or partially submerged in the downwash of the main rotor, an effective
vertical speed on the horizontal tail can be determined as:

wht = w − wwind + lhtq −KλVimr (2.61)

where lht is the horizontal distance between the center of gravity of the horizontal tail and
the helicopter. The same wake factor is used for the horizontal tail as for the vertical fin and
tail rotor. The lift produced by the horizontal tail can be deduced:

Zht =
1

2
ρSht

(
ChtLα |u− uwind|wht + |wht|wht

)
(2.62)

where Sht is the horizontal stabilizer area, ChtLα = 3.0 is the lift curve slope of the horizontal
stabiliser. To accommodate for horizontal stabiliser stall, the absolute value of the horizontal
stabiliser lift is limited to:

|Zht| ≤
1

2
ρSht

(
(u− uwind)2 + w2

ht

)
(2.63)

The pitching moment can thus be determined as:

Mht = Zhtlht (2.64)

2.4.6 Tail rotor

The tail rotor is subject to a wide range of flow conditions, including those where thrust
inflow iteration algorithm fails (when the tail rotor operates within its own wake). Various
aerodynamic coefficients are defined to evaluate the tail rotor thrust but the same approach
for the main rotor computation in Section 2.4.1 is used here. In order to determine the normal
µtrz and the in-plane µtr tail rotor components, the effect of the main rotor wake on the tail
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rotor needs to be determined. This is achieved through the following variables representing
the geometric angles:

gi =
ltr −Rmr −Rtr

htr

gf =
ltr −Rmr +Rtr

htr

When the tail rotor is out of the main rotor downwash (when Vimr ≤ w − wwind), there is an
effective upwash on the tail rotor blades. This is represented by the condition:

u− uwind
Vimr − (w − wwind)

≤ gi (2.65)

In this condition Kλ = 0. If the tail rotor is fully immersed in the main rotor wake, then the
following condition needs to be satisfied:

u− uwind
Vimr − (w − wwind)

≥ gf (2.66)

In this condition Kλ = 0. If the tail rotor is partially immersed in the main rotor wake, the
tail rotor upwash factor can be expressed as:

Kλ =

u−uwind
Vimr−(w−wwind) − gi

gf − gi
(2.67)

A similar derivation as for the main rotor is used to calculate the tail rotor thrust coefficient:

CtrT =
atrσtr

2

(
δr

(
1

3
+
µ2
tr

2

)
+
µtr − λtr0

2

)
(2.68)

where

µtr =

√
(u− uwind)2 + w2

tr

ΩtrRtr
(2.69)

µztr =
vtr

ΩtrRtr
(2.70)

vertical component vtr normal to the tail rotor is defined as:

vtr = v − vwind − ltrr + htrp

the tail rotor thrust can be computed and its magnitude limited due to the blade stall as
follows:

Y tr = ftC
tr
T ρ(ΩtrRtr)

2πR2
tr (2.71)
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where ft is the fin blockage factor (Padfield, 1996) defined as:

ft = 1.0− 3Svf
4πR2

tr

(2.72)

It needs to be noted that Ωtr = ntrΩmr where ntr is the gear ratio given in Table.2.2. The
yawing and rolling moment due to c.g. offsets can be computed:

Ntr = −Ytrltr (2.73)

Ltr = Ytrhtr (2.74)

Similarly the tail rotor torque used in Eq. 2.48 can be defined as:

CQtr =
Qtr

ρ(ΩtrRtr)2πR3
tr

= CtrT (λtr0 − µztr) +
CtrD0

σtr

8

(
1 +

7

3
µ2
tr

)
(2.75)

2.4.7 Actuation models

The actuation models were a mathematical representation of the servos used in the heli-
copter. Linear transfer functions were used to model the servo dynamics. The following
transfer function has been developed (Gavrilets, 2003):

Hservo(s) =
s/104 + 1

s/33 + 1

ω2
n

s2 + 2ζωns+ ω2
n

(2.76)

The FUTABA S9402 servos were used for cyclic and collective input while the faster S9450
was used for the tail rotor pitch control. Time constants and damping ratio were determined
through experiments. For the S9402, ωn = 33 rad/sec and ζ = 0.5 while for the S9450,
ωn = 44 rad/sec and ζ = 0.6.

2.4.8 Sensor models

The PC computer boards can be used to construct the onboard computer stack installed on
the underbelly of the helicopter shown in Figure.2.7. The four pieces of boards often in-
cludes: main processing board, A/D data acquisition board, serial communication board
and DC-DC converter board.

Inertial measurement unit

The Inertial Measurement Unit (IMU) uses the gyros and accelerometers to measure angu-
lar rates, rotational and translational accelerations (resolution: 0.002g and 0.0027o, data rate
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Figure 2.7: Onboard computer system

400Hz). The UM6 Orientation Sensor from CH Robotics is a typical example. A Global Posi-
tioning System (GPS) is often included to track the helicopter relative position and velocity
(precision: 0.5o, update rate 4Hz). Although the developed SIMULINK did not take into
account rotational dynamics of the GPS box and feedback lags, it needs to be modelled when
real flight data is collected.

2.4.9 Atmospheric model

The mathematical model of atmospheric turbulence are usually derived from power spectral
functions (PSD). The power spectral density (PSD) of any function x(t) is a real function
which provides information on how x(t) is mean squared value of x(t) is distributed with
changing frequency. At any frequency ω, the PSD value represents the mean squared value
of an infinitely small section of x(t) at that frequency. The PSD function is defined as:

Φ(ω) =

lim
∆ω→0
T →∞ 1

T∆ω

T∫
0

x2(t, ω,∆ω) (2.77)

where Φ(ω) - PSD function of and x(t, ω,∆ω) is a component of x(t) which lies within speci-
fied frequency band.

Using the following relationship described as:

Ω =
ω

V0
(2.78)

where Ω and V0 are the spatial frequency and aircraft speed respectively.

The original PSD function to one transformed in the new reference frame:



CHAPTER 2. DEVELOPMENT OF A MINIATURE UNMANNED HELICOPTER MODEL34

Φ(ω) =
Φ(Ω)

V0
(2.79)

There are two most common representations of PSD functions (McLean, 1990). The first is
the Von Karman spectrum, which better represents the spectrum from records of atmospheric
turbulence. But this method is very complex and not well suited for analytical purposes. The
second is the Dryden PSD function which is more easily programmable and is used in our
model.

Φu(Ω) =
2σ2

uLu
π

1

1 + (LuΩ)2

Φv(Ω) =
2σ2

vLv
π

1 + 3(LvΩ)2

1 + (LvΩ)2
(2.80)

Φw(Ω) =
2σ2

wLw
π

1 + 3(LwΩ)2

1 + (LwΩ)2

where:
σu, σv, σw - standard deviations of u,v and w to define turbulence
Lu, Lv, Lw - scale lengths for power spectra

The above equations can also be expressed as:

Φu(ω) =
2σ2

uLu
V0π

1

1 + (Lu/V0ω)2

Φv(ω) =
2σ2

vLv
V0π

1 + 3(Lv/V0ω)2

1 + (Lv/V0ω)2
(2.81)

Φw(ω) =
2σ2

wLw
V0π

1 + 3(Lw/V0ω)2

1 + (Lw/V0ω)2

The above PSD functions can be used to generate gust signals from specified scale lengths
and intensity velocities. This is done constructing a filter which will take white noise as
inputs and output an appropriate frequency response which will correspond to the given
PSD function. This is illustrated in Figure 2.8 (McLean, 1990).

This relationship can be defined as:

Ωi(ω) = |Gjω|2 ΦN (ω) i = u, v, w (2.82)
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Figure 2.8: Gust signals from noise filter

The noise source is chosen to that similar to its power spectrum so that ΦN (ω) = 1. Then:

Ωi(ω) = |Gjω|2 i = u, v, w (2.83)

This allows the filters to generate spectral densities for the translational gust velocities:

Gu(s) =

√
Ku

s+ λu
(2.84)

Gv(s) =

√
Kv(s+ βv)

(s+ λv)2
(2.85)

Gw(s) =

√
Kw(s+ βw)

(s+ λw)2
(2.86)

where

λi =
V0

Li
i = u, v, w

βi =
V0√
3Li

i = v, w

Ku =
2V0σ

2
u

Luπ

Ki =
3V0σ

2
i

Liπ
i = v, w

Taking Equation 2.84 as an example. Then,

wg(s) =
√
Kw

(s+ βw)

(s+ λw)2
η(s) (2.87)
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where η(t) is signal from the white noise source. From Equation 2.87 it can derived that:

u̇g + λuu̇g =
√
Ku (2.88)

similarly,

v̈g + 2λvv̇g + λ2
vvg =

√
Kvβvη +

√
Kvη̇ (2.89)

ẅg + 2λwẇg + λ2
wwg =

√
Kwβwη +

√
Kwη̇ (2.90)

McLean (1990) has shown that the above transfer functions can be expressed as state space
equations to determine the turbulent velocities in the time domain. The wind shear effects
can also be determined through approximating the rate of change of the translational veloc-
ities in pitch and yaw. The pitch rate is given as:

qg =
1

V0

dwg
dt

(2.91)

and the yaw rate as:

rg =
1

V0

dvg
dt

(2.92)

According to military references, the turbulence scale lengths at low altitudes (≤ 303m),
where h is the altitude in feet, is defined (Yeager, 1998):

Lw = h (2.93)

Lu = Lv =
h

(0.177 + 0.000823h)1.2
(2.94)

The turbulence intensities σ, are given below where W20 is the wind speed at 20 feet (6m).
For light turbulence, the wind speed is 15 knots (7.6 m/s), moderate turbulence the wind
speed is 30 knots (15.3 m/s) and severe turbulence wind speed is 45 knots (22.9 m/s).

σw = 0.1W20 (2.95)

σu = σv =
σw

(0.177 + 0.000823h)0.4
(2.96)

2.5 Simulation Model

A simulation facility for a miniature helicopter UAV model was developed within the MAT-
LAB/SIMULINK software suite. Simulink uses a graphical user interface (GUI) whereby
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mathematical model is created using block diagrams. The comprehensive block library en-
ables the modelling and analysis of realistic nonlinear models thereafter using MATLAB
programming for post-processing and visualization.

Representation of the rotorcraft equations of motion and the associated aerodynamic forces
and moments was achieved using a modular approach. Figure 2.9 shows the different mod-
els of the unmanned helicopter namely: Servo actuator model; helicopter aerodynamic model;
the yaw gyro model; the IMU model and GPS model. A detailed schematic of the aerody-
namic model and equations of motion model is given in Figure 2.10 and Figure 2.11 re-
spectively. The helicopter control effectors, used for trim analysis (Chapter 3) and model
identification (Chapter 4), are described:

• δlon - longitudinal cyclic

• δlat - lateral cyclic

• δcol - collective

• δt - engine thrust level

• δr - yaw pedal

rdot

d_r

d_r 

Yaw gyro

d_lon

d_lat

d_col

d_r

d_lon 

d_lat 

d_col 

d_r 

Servo Actuators

acc

IMU

controls

d_t

acc

xyz

uvw

rdot

Helicopter

xyz

uvw

GPS

5

d_t - fixed

4

d_r

3

d_col

2

d_lat

1

d_lon

Figure 2.9: X-Cell.60 SIMULINK simulation model.

The helicopter aerodynamic model is comprised of the following subsystem models: equa-
tion of motion model; main rotor model; tail rotor model; horizontal and vertical stabiliser
model; fuselage model; engine and governor model and atmosphere model. The aerody-
namic forces (X,Y, Z) and moments (L,M,N ) from each model then summed together and
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Figure 2.10: Helicopter aerodynamic model subsystem.

used in the equation of motion model. The yaw gyro model made use of a PID controller
with the yaw rate r and yaw rotational acceleration ṙ as state inputs.

Validation of the simulation model was achieved during the trim and stability analysis whereby
time simulations of the state variables were monitored and compared with literature (Gavrilets
et al., 2003; Mettler, 2003). In hover flight, a direct comparison of the generated main rotor
thrust and the helicopter weight was used as a validation criterion.
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Figure 2.11: Helicopter equations of motion subsystem.



Chapter 3

Trim and Stability Analysis

3.1 Trim Analysis

Steady flight occurs when the helicopter is in equilibrium with respect to three forces and
three moments acting along/around the three orthogonal axes through its center of gravity.
This is called a trim point (Prouty, 1986). A trim point exists in the parameter space of a
dynamic system at which the system is in a steady state. So in the case of a helicopter, the
trim point in hover or forward flight will require the collective, cyclic and throttle setting
to produce enough thrust to counteract the weight components and the inflow drag forces
produced on the fuselage.

3.1.1 Hover flight

Helicopter hovering is the most challenging part of flying a helicopter. In practical term, it is
impossible to keep the helicopter on fixed point in space as it requires constant control inputs.
This unstable behaviour is primarily caused by helicopter rotor wake which by principle is
a dynamic effect. This is shown in Figure 3.1.

Assuming a linear and constant rotor wake, the following forces need continuous adjustment
for the helicopter to remain in a hovering flight condition:

• The collective/throttle setting is adjusted such that the vertical component of the main
rotor thrust counteracts the weight of the helicopter and the downwash force produced
by the drag on the fuselage.

• The tail rotor thrust produces a moment to counteract and it is directly linked to the
main rotor via gears/belt.

• The tail rotor side force is counteracted by the sideways tilting of the main rotor using
the cyclic control. This is done to prevent sideways drift.

40
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Figure 3.1: Helicopter rotor wake.

• The main rotor tilting induces a moment on the fuselage causing the upthrust from the
tail rotor.

• This upthrust is counteracted by the backward tilting of the main rotor using the cyclic
control.

It can be deduced that any disturbances to this delicate balancing will require constant inputs
from the pilot.

3.1.2 Forward flight

In forward flight, the rotor disk velocity distribution is asymmetric. The advancing side of
the rotor disc sees a combination of rotor speed and forward airspeed (movement through
the air mass) which is faster than the retreating side, which sees a combination of rotor speed
and a ’reduced’ forward airspeed (Prouty, 1986). This produces an uneven lift distribution
creating a rolling moment. This is illustrated in Figure 3.2.

The ingenious method of equalizing this asymmetry of lift in forward flight is to allow the
blades to flap. By connecting the blades to the hub by a method which allows a flexible up-
down motion, the advancing blade, which encounters higher lift, begins to flap upward. The
retreating blade, which encounters less lift, flaps downward (Prouty, 1986).

The increase of the forward speed introduces reverse flow on the retreating blade. The com-
pressibility effects on the advancing blade and airfoil stall on the retreating blade, define the
maximum forward speed of the helicopter (Kaletka and Hamel, 1997).
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Figure 3-18 Figure 3.2: Rotor Aerodynamics in forward flight.

3.1.3 Trim procedure

The helicopter model was trimmed using the SIMULINK Control and Estimation Tools Man-
ager. The following trim points were identified and defined:

• Hover Flight - all state variables are set to zero

• Forward Flight 10m/s - all state variables are set to zero except the body forward ve-
locity u = 10m/s

• Forward Flight 20m/s - all state variables are set to zero except the body forward ve-
locity u = 20m/s

Trim specifications are set in table form for each trim points. The known values of the system
states, inputs and outputs are set and the desired steady state signals chosen. Furthermore,
the maximum and minimum values of the system states, inputs and outputs are also spec-
ified. The gradient descent algorithm was the optimization method used for trim computa-
tion. This enforces a constraint on the output signals and force time derivatives of states to
zero.
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3.2 Stability Analysis

3.2.1 Model linearization

The helicopter model was linearized using the SIMULINK Control and Estimation Tools
Manager. Linearization refers to the function or system linear approximation at a trim point.
This is a method of accessing the local stability around an equilibrium point of a nonlinear
differential equations system. Therefore, linearization also simplifies the analysis of nonlin-
ear systems by studying its equivalent linear system near a given point. A system defined
as:

dx
dt

= F(x, t) (3.1)

the linearized system can be written as

dx
dt

= DF(x0, t) · (x− x0) (3.2)

where x0 is the point of interest (usually trim point) and DF(x0) is the Jacobian of F(x) eval-
uated at x0

The helicopter model was linearized for hover, 10m/s and 20m/s forward flight. Selection
of input and output linearization points (also called analysis Input-Output’s) was done to
configure the model prior to linearization. Using numerical perturbation, linearization is
achieved through the tracking of a signal traveling between an input and output point. This
is based on the operating or trim points defined during the trim analysis in Section 3.1.

The ’block by block analytic’ linearization algorithm was used. It linearizes the model blocks
individually and then combines the results for the whole system linearization. This method
allows the designer to customize the linearization problem by user-defining the system in-
puts and output markers as shown in Figure.3.3.

The linearized model has the following control inputs:

δlon, δlat, δcol, δr, δt

the states:
u, v, w, φ, θ, ψ, p, q, r, xe, ye, ze, a1, b1,Ω, ωi, ri

where a1, b1, Ω, ωi and ri are the longitudinal and lateral flapping angles, the rotorspeed, the
engine controller and yaw gyro integrator state values respectively. This has been reduced
to measured states from the flight instrumentation system:

u, v, w, φ, θ, ψ, p, q, r, a1, b1
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Figure 3.3: Helicopter linearization model

where a1 and b1 the longitudinal and lateral flapping angles respectively. The system outputs
are:

u̇, v̇, ẇ, u, v, w, ṗ, q̇, ṙ, p, q, r

The outputs were based on the measured variables from an Inertial Measurement Unit (IMU)
and GPS sensor. The linear system is defined in terms of the following state space equation
(excluding disturbances):

ẋ = Ax+ B (3.3)

y = Cx+ D (3.4)

where A,B,C and D are the system matrices.

3.2.2 Linearization procedure

Using ’block by block analytic’ algorithm, the model diagram was configured by selecting the
input and output linearization points. Each trim point is chosen about which to linearize the
system.

The fully parametrized linear system is represented using state space matrix form. Listing of
the state space matrices for hover, forward 10 and 20 m/s flight is given in Appendix A on
page 180. The system linearization has two purposes:

• Establishing the sign notation of the computed parameters. This is used as a model
validation criterion (see Chapter 2).

• Defining a parameter database as a baseline during the system identification process
(see Chapter 4).
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3.2.3 Natural modes of motion

A natural mode is a pattern of motion in which most parts of the system move sinusiodally
with the same frequency and damping factor. These frequencies of the normal modes are
known as its natural frequencies. The modes are orthogonal to each other, that is based on
the assumption that an excitation of one mode will never cause motion of a different mode.
These excitations leads to large amplitudes of displacements which are often destructive
(Prouty, 1986).

Given a system matrix, the eigenvalues λ are computed in such a way:

Ax = λx (3.5)

where A is an n-by-n matrix, x is a length n column of eigenvector and λ is a scalar length n
vector of eigenvalues.

The eigenvalues which represents the characteristic behaviour of the model, are given as:

λ = n± iω (3.6)

where ωn is the undamped natural frequency is given as:

ωn =
√
n2 + ω2 (3.7)

the damping ratio can also be computed:

ζ =
−n
ωn

(3.8)

The period of frequency can be calculated.

T =
2π

ωn
(3.9)

The time to double or half the amplitude of oscillation is defined for conjugate pair or real:

T1/2 =
ln2

abs(n)
(3.10)

3.3 Results

The trim points were found by simultaneously solving the six degrees of freedom equations
of motion, the main rotor force and moments equations, the tail rotor side force equation and
the two quasi-steady blade flapping equations. Model linearization was then achieved about
each trim points and the state space matrices defined.
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The simulation model was trimmed for hover, 10 m/s and 20 m/s flight at an altitude of
80m above ground. Calm wind conditions were considered with negligible atmospheric
disturbances. Table 3.1 - 3.3 show the trim values for the various flight conditions. The rotor
speed of 167 m/s was achieved for all flight conditions. The rotor disc plane has a rolling
angle of approx. 0.74 deg (0.0132 rad) starboard side in the hover flight condition. This is
in agreement with conventional helicopter dynamics as the main rotor thrust component
is opposite and equal to the tail rotor thrust in order to prevent sideways movement. As
the forward flight speed increases from 0 to 20m/s, the body pitch angle decreases from 0
to approx -19.4 deg (-0.3378 rad) and the rolling angle increases from 0.74 deg (0.0132 rad)
to 1.04 deg (0.0181 rad). The flapping dynamics were also confirmed in forward flight as
the longitudinal flapping angle increased to a value of 1.56 deg (0.0273 rad). This can be
attributed to the asymmetric lift distribution producing a 90 degree-lag force on the main
rotor blade.

These trim values were used in the nonlinear simulation model for validation. Hover flight
trim (Figure 3.4); Forward flight 10m/s (Figure 3.5); Forward flight 20m/s (Figure 3.6). The
translational velocities (u, v, w), attitude Euler angles (φ, θ, ψ), rotor flapping angles (a1, b1),
rotational rates (p, q, r) and Inertial reference c.g. position (xE , yE , zE) are simulated. The
hover flight results showed that a helicopter in hover trim is a quasi-steady condition as the
translational velocities are not in steady state shown in Figure 3.4. The yaw rate ψ peaking
at 0.04 deg/s which could be the result of the yaw rate gyro proportional ’over correcting’
through tail rotor thrust. The 10m/s and 20 m/s forward flight body rates in Figures 3.5
and 3.6 respectively, show increasing divergence specifically in the yaw rate. This is mainly
due to numerical errors as the helicopter behaves like an aircraft in straight and level flight.
This is confirmed by the helicopter inertial reference positions for 10m/s and 20m/s forward
flight.

The natural modes (eigenvalues) for the linearized system were calculated for the hover
flight, 10m/s and 20m/s forward flight. These are shown in Tables 3.4, 3.5 and 3.6 re-
spectively. From these results, the natural frequency, damping ratio, period of oscillation
and time to double or half were calculated. The hover flight condition shows four unstable
modes namely mode 7 and mode 8 and mode 9-10. Mode 7, the strongest unstable mode, is
excited in the lateral-directional plane with the yaw rate r and yaw angle ψ showing strong
inter-dependencies also seen in mode 8. Mode 9-10 represents an unstable Phugoid mode
characterized by light damping (-0.102) and low natural frequency (0.157). The large time to
double (43.2 sec) is indicative of the minimal pilot effort required to escape this unfavorable
condition. This is confirmed as helicopter body pitch θ and the forward velocity u lag each
other by 90o.

The high frequency (approx 19 rad/s) and lightly damped (approx 0.28) modes 2-3 and
modes 4-5 corresponds to the coupled fuselage/flapping/stabilizer-bar modes in the lateral
and longitudinal planes respectively. The small damping directly reflects the large rotor time
constant. This stays fairly constant from hover to high-speed forward flight consistent with
the swashplate/stabiliser bar physical properties. The strongly-coupled fuselage/flapping
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modes emphasize the importance of the rotor dynamics. The heave mode (mode 6), appears
in hover flight but is replaced by an unstable mode with value of 1.416. This confirms the
transformation of the helicopter dynamics from hover to forward flight. The absence of the
phugoid mode in Table 3.5 is due to the tail rotor being partially immersed in the main ro-
tor wake producing strong damped response to mitigate any directional oscillations. This is
confirmed by mode 6 to mode 8. The 20m/s forward flight and the hover modes are similar
in nature except the phugoid mode is stable which can be associated to fixed-wing dynam-
ics. The yaw dynamics, present throughout the flight conditions can also be seen in mode 6
to mode 8. Mode 9-10 contains strong coupling between the translational velocities (u, v, w).
This represents the yaw-roll coupling inherent in fixed-wing dynamics.
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Table 3.1: Hover trim parameter values.

Parameter Value Parameter Value
ωmr 167 rad/s p 0 rad/s
u 0 m/s q 0 rad/s
v 0 m/s r 0 rad/s
w 0 m/s xE 0 m
φ 0.0132 rad yE 0 m
θ 0 rad zE 50 m
ψ 0 rad a1 0 rad

b1 0.0013 rad
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Figure 3.4: Hover trim: (1) body velocities. (2) body Euler angles. (3) Main rotor flapping
angles. (4) body rates.
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Table 3.2: Forward flight 10m/s trim parameter values.

Parameter Value Parameter Value
ωmr 167 rad/s p 0 rad/s
u 10 m/s q 0 rad/s
v -0.0013 m/s r 0 rad/s
w -0.8168 m/s xE 0 m
φ 0.0118 rad yE 0 m
θ -0.0815 rad zE 50 m
ψ -0.0008 rad a1 0.0015 rad

b1 0.0011 rad
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Figure 3.5: Forward flight 10m/s trim: (1) body velocities, (2) body Euler angles, (3) Main
rotor flapping angles, (4) body rates.
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Table 3.3: Forward flight 20m/s trim parameter values.

Parameter Value Parameter Value
ωmr 167 rad/s p 0 rad/s
u 20 m/s q 0 rad/s
v -0.1264 m/s r 0 rad/s
w -7.0245 m/s xE 0 m
φ 0.0181 rad yE 0 m
θ -0.3378 rad zE 50 m
ψ 0 rad a1 0.0273 rad

b1 0.0016 rad
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Figure 3.6: Forward flight 20m/s trim: (1) body velocities, (2) body Euler angles, (3) Main
rotor flapping angles, (4) body rates.
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Table 3.4: Hover flight natural modes

Flight mode Eigenvalues Damping Natural Period (s) Time to
ratio Frequency half/double (s)

Mode 2-3 -4.172 ± 19.687i 0.207 20.124 0.312 0.166
Mode 4-5 -4.175 ± 14.035i 0.285 14.643 0.429 0.166
Mode 6 -0.775 - - - 0.894
Mode 7 0.476 - - - 1.455
Mode 8 0.161 - - - 4.299

Mode 9-10 0.016023 ± 0.15651i -0.102 0.157 39.937 43.261
Mode 11 -0.135 - - - 5.144

Table 3.5: Forward flight 10m/s natural modes

Flight mode Eigenvalues Damping Natural Period (s) Time to
ratio Frequency half/double (s)

Mode 2-3 -4.171 ± 19.673i 0.207 20.110 0.312 0.166
Mode 4-5 -4.104 ± 13.847i 0.284 14.442 0.435 0.169
Mode 6 1.416 - - - 0.489
Mode 7 -1.121 - - - 0.618
Mode 8 -1.405 - - - 0.493
Mode 9 -0.247 - - - 2.803

Mode 10 -0.078 - - - 8.845
Mode 11 0.085 - - - 8.181

Table 3.6: Forward flight 20m/s natural modes

Flight mode Eigenvalues Damping Natural Period (s) Time to
ratio Frequency half/double (s)

Mode 2-3 -4.155 ± 19.441i 0.209 19.880 0.316 0.167
Mode 4-5 -4.227 ± 13.633i 0.296 14.274 0.440 0.164
Mode 6 1.416 - - - 0.639
Mode 7 0.296 - - - 2.341
Mode 8 -0.161 - - - 4.295

Mode 9-10 -0.808 ± 0.112i 0.991 0.816 7.700 0.857
Mode 11 -1.514 - - - 0.458



Chapter 4

Online Model Identification and
Parameter Estimation

4.1 Flight Vehicle System Identification

Flight vehicle system identification is a highly versatile procedure which is used to rapidly
and efficiently extract dynamic models that best characterizes the measured response to con-
trols. Within the online or recursive parameter estimation, the system identification prob-
lem is to estimate the parameter values for a pre-defined model structure (Kaletka and
Hamel, 1997).

System identification plays an important role in flight vehicle development, whereby ac-
curate and validated mathematical models are required within the following (Jategaonkar,
2006):

• Investigation of system performance and characteristics.

• Verification of wind-tunnel and analytical predictions.

• Development of high-fidelity aerodynamic databases for flight simulators meeting Air-
worthiness Authority fidelity requirements.

• Support of flight envelope expansion during prototype testing.

• Derivation of high-fidelity and high-bandwidth models for in-flight simulators.

• Design of flight control laws which include stability augmentation systems.

• Reconstruction of flight path trajectory, including wind estimation and incidence anal-
ysis.

• Fault-diagnosis and adaptive control or reconfiguration.

• Analysis of handling qualities specification compliance.

52
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Figure 4.1: Instrumentation for Helicopter UAV System Identification

Different challenges have been found in rotorcraft system identification as the measured data
exhibits reduced signal-noise ratio especially for low-speed and hovering flight regimes.
These noise contributions arise from vibrations such as: rotor, engine, drive train and un-
steady inflow mass through the rotor (Tischler and Remple, 2006). Specialized flight-test ma-
neuvers have been developed to excite particular dynamics for applications within: flight dy-
namics and control, state and parameter estimation. The general approach to aircraft system
identification requires both the inputs and aircraft response to be measured and recorded. In
rotorcraft system identification, optimized control inputs and highly reliable measurements
are indispensable towards achieving unbiased estimation results (Kaletka and Hamel, 1997).

4.1.1 Flight test instrumentation

The instrumentation of any flight test vehicle represents a significant investment of resources.
Considerable care must be applied to identify the various instruments to ensure that the
flight test instrumentation system will yield the required information. As shown in Fig-
ure 4.1 (Stingu and Lewis, 2008), a typical flight test instrumentation list consists of: radio
transceivers, IMU, compass, GPS receiver, real-time controllers and a ground control station.

4.1.2 Flight test techniques

Apart from the reliability of the test instruments, system identification process relies on the
information content of the system under test, provided by the measured control inputs and
the resulting measured system responses. The test input, executed by various flight test
techniques is one of the major factors influencing the accuracy of the model parameters to
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Figure 4.2: Flight test inputs: (1) 3-2-1-1 multistep, (2) doublet.

be determined. Flight test maneuvers such as the multi-step 3211 and doublet input signals
shown in Figure 4.2, are widely applied for aircraft system identification (Kaletka and Hamel,
1997).

The multistep 3211 input signal refers to the relative time interval between control reversals.
It is used to excite a wide frequency band within a short period of time and is suited for
short period motion of stable systems (Kaletka and Hamel, 1997). The signal typically last
for 7 secs, then the controls are kept constant until the aircraft is trimmed. A recommended
approach for pilot-flown tests is described below:

1. Establish trim for the selected flight condition.

2. Generate a prescribed input in one single control and avoid controls coupling.

3. Let the aircraft respond without further control activity.

4. Trim the aircraft for the next test.

In miniature helicopters, most of the flight tests can be carried out as open-except for yaw
dynamics identification due to the active yaw damping system. The stabiliser bar, along
side the yaw gyro, is often regarded as feedback systems during the identification process
(Mettler, 2003). Depending on the identification objectives, the structure of these systems
will have to be considered.

4.1.3 Signal measurement and data analysis

Within the rotorcraft system identification, air data measurement is still a major problem
area. In full-scale helicopters, accurate measurements representing the full flight envelope
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is seldom obtained. The necessary signals are often reconstructed through kinematic rela-
tionships given by the nonlinear differential equations. Such kinematic relationships are the
blade flapping dynamics described in Section 2.4.1 since it is virtually impossible to obtain
flight data from a miniature helicopter platform (Mettler, 2003).

4.1.4 Description of the X-Cell.60 flight test

The SIMULINK environment is used to develop simulated flight test of the X-Cell.60 minia-
ture helicopter. Unlike real flight data, sensor noise and atmospheric turbulence was inserted
through a mixture of additive and multiplicative noise inputs. The control inputs used and
recorded for the tests were the stick deflection from the cyclic longitudinal δlon and cyclic
lateral δlat, collective δcol, yaw pedal δr and throttle level δt. The following vehicle variables
were recorded:

• Euler angles: roll φ, pitch θ, yaw ψ

• Angular body rates: roll p, pitch q, yaw r

• Angular body accelerations: roll ṗ, pitch q̇, yaw ṙ

• Body accelerations: ax, ay, az

• Body velocities: u, v, w

During the experiment, all the control inputs and system state variables were recorded at
50Hz. The raw flight data for hover, 10 m/s and 20 m/s forward flight was segmented for
each experimental run.

4.1.5 Key derivatives

The system identification process requires the verification of performance predictions. This
requires a mathematical model representative of the dynamics of the aircraft which is charac-
terized by coefficients or parameters whose numerical values must be determined and vary
for various flight conditions. For a miniature helicopter platform, the key derivatives are
defined as (Mettler, 2003):

• Decoupled roll and pitch dynamics - Effective rotor time constant τe, flapping spring
derivatives (Ma1 ,Lb1), effective cyclic input derivatives (Aδlon ,Bδlat)

• Coupled roll-pitch dynamics - cross-coupling derivatives (Ab1 ,Ba1), cross-axis cyclic
input derivatives (Aδlat ,Bδlon)

• Translational longitudinal and lateral dynamics - speed derivatives (Xu and Yv) and
sensor offset (hcg)
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• Heave dynamics - heave damping (Zw) and collective input sensitivity (Zδcol)

• Yaw dynamics - yaw damping (Nr), yaw rate feedback (Kr), and tail rotor pedal input
sensitivity (Nδr )

• Coupling of heave and yaw dynamics - collective-to-yaw (Nδcol) and yaw-to-collective
derivatives (Zr)

• Coupling of heave and pitch dynamics - collective-to-pitch derivative (Mδcol)

The design of flight control laws also require continuous availability of these key derivatives
to achieve high bandwidth control. It is desirable then to derive the estimates of the above-
mentioned parameters directly from flight test data in real-time. Two methods for ’online’
parameter estimation are investigated namely: The Delta Method (DM) and the Modified
Delta Method (MDM). The DM and MDM are based on model identification using Neural
Networks.

4.2 Introduction to Neural Networks

In real-world applications, some nonlinear plants cannot be parametrized linearly (Kenne
et al., 2006). In principle, the method of linearization requires the system to operate close to
its equilibrium point which may not always be practical for an unstable system with strongly
coupled nonlinearities such as a helicopter. The introduction of neural networks as an iden-
tification method without a priori information, has made neural networks the preferred al-
ternative for flight vehicle identification. Defined as general function approximators, neural
networks can approximate a function, provided a solution exists, to any desired accuracy
(White and Sofge, 1992).

Figure 4.3: Neural Network structure.

A neural network, also known as an Artificial Neural Network (ANN), is a mathematical
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Figure 4.4: A multilayer network architecture

model that tries to simulate aspects of biological neural networks. It consists of an intercon-
nected group of layers namely: the input layer, the hidden or neuron layer and the output
layer as shown in Figure 4.3. A neural network is able to change its structure based on the in-
ternal or external information that flows through the network during its learning or training
phase with minimal user input. This usually occurs through the hidden layer(s) changing
the number of neurons needed to model complex relationships between inputs and outputs.
This adaptive feature makes neural networks a powerful tool for learning complex map-
pings generated by dynamical systems with nonlinearities which is the primary goal for the
identification of nonlinear dynamic systems (Billings et al., 1992).

Neural networks are often divided into two main groups: static and dynamic networks. The
former is known as feedforward neural networks (FFNNs) and the latter as recurrent neural
networks (RNNs). The distinctive difference between FFNNs and RNNs is the absence of an
output feedback loop in FFNNs. Unlike the general application of FFNNs, the flexibility of
RNNs has been shown to be limited because a fixed number of neuron is needed for state-
space formulation (Raisinghani, Ghosh and Khubchandani, 1998). In this study, only FFNNs
will be considered.

4.3 Feedforward Neural Networks

4.3.1 Network architectures

FFNNs have their neurons arranged in layers in a massive parallel, interconnected network.
These hidden layers exist between the input and the output layers. Each neuron of a layer
is connected to each neuron of the next layer and each connection is assigned its individual
connective weight.
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Figure 4.5: Neuron topology

The structure of a multi-layered network is shown in Figure 4.4. The input layers acts as
a data holder which distributes inputs to the first hidden layer. The signals flow from the
input layer to the output layer. The ith neuron in the lth layer is shown in Figure 4.5.

The neuron has two functions namely: the combining function and the activation function.
The combining function produces an activation for the neuron vli(t) defined as

vli(t) =

nl−1∑
j=1

wlijx
l−i
j (t) + bli (4.1)

where wlij is the weight connection between the jth neuron of the l − 1 layer and the ith
neuron of the lth layer, bli is the threshold of the neuron and nl−1 is the number of neurons in
the (l − 1)th layer. The activation function performs a nonlinear transformation to give the
output xli(t)

xli(t) = F(vli(t)) (4.2)

where F is the activation or the nonlinear transformation function. xli(t) is the output of the
ith neuron of the lth layer for i = 1, ..., nl and l = 1, ...,m. Using these definitions, the mth
layer becomes the output layer and input layer can be labeled as zero. Thus n0 and nm refer
to the inputs and outputs respectively. This is illustrated in Figure 4.4 . Denoting x0

i (t) and
xmi (t) as xi(t) and ŷi(t) respectively, the ith output node weighted sum can be performed

ŷi(t) =
nm−1∑
j=1

wmij x
m−1
j (t) (4.3)

where x(t) = [x1(t) . . . xn0(t)]T is the input vector to the network. The elements of the input
vector are associated to the assigned input nodes of the network. The weights w and bias b
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Figure 4.6: Multilayer perceptron structure

are the parameters to be estimated and form elements of Θ, the parameter vector defined as:

Θ = [θ1, θ2, . . . θn0 ]T (4.4)

The objective of training the neural network model is to determine Θ such that ŷi(t) is close
to the desired output y(t). The residual error is defined as:

e(t) = y(t)− ŷ(t) (4.5)

This approach makes neural networks useful for classification tasks, recognition, vision pro-
cessing, optimization and function approximation. This is achieved using different network
architectures such as: the multilayer perceptron (MLP) and the radial basis function (RBF)
networks. The next section discusses the modelling capabilities and the learning algorithms
of the above-mentioned network structures (Billings et al., 1992).

4.3.2 Multilayer perceptron

The MLP is a layered network whereby each layer consists of computing nodes. Each node
of one layer is fully connected to all the nodes of the adjacent layer. The topology of the MLP
is shown in Figure 4.6. The first layer acts as the input layer while the last layer acts as the
output layer. All the other layers are seen as hidden layers. The input-output relationship of
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the ith node in the kth layer is defined as:

z
(k)
i =

nk−1∑
j=1

η
(k)
ij x

(k−1)
j + µ

(k)
i (4.6)

x
(k)
i = F(z

(k)
i ) (4.7)

where η(k)
ij and µ

(k)
i are the node connection weights and the threshold respectively. The

activation function F is often chosen as (Billings et al., 1992):

F(z) =
1

1 + e−z
(4.8)

or

F(z) = tanh(z) =
1− e−2z

1 + e−2z
(4.9)

Mathematical results (Ljung and Soberstrom, 1983) show that the MLP is a general func-
tion approximator which is heavily dependent on the number of hidden nodes or neurons
needed to achieve the desired training objective. MLP makes use of learning algorithms
such as: batch and recursive identification algorithms which assume the weights have been
correctly assigned. Batch and recursive identification algorithms are part of a class of predic-
tion error algorithms which have been derived for MLP for nonlinear system identification.
The summarized theory of the prediction error algorithm is described below (Billings and
Chen, 1992).

The Prediction Error Algorithm

Assume all the weights and thresholds of the MLP have been arranged into an nΘ-dimensional
vector:

Θ = [θ1 . . . θnΘ ]T (4.10)

where

nΘ =
l−2∑
i=0

(ni + 1)ni+1 + nl−1nl; n0 = n1, nl = m (4.11)

The input-output equation of the n1-input and the m-output of MLP is defined:

ŷ(t,Θ) = f̂(x(t); Θ) (4.12)

As mentioned earlier, the error residual is defined

e(t,Θ) = y(t)− ŷ(t,Θ) (4.13)
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The gradient of ŷ(t,Θ) with respect to Θ is a nΘ ×m matrix

Ψ(t,Θ) = G(x(t); Θ) =

[
dŷ(t,Θ)

dΘ

]T
(4.14)

The combination of Equation 4.12 and 4.14

[
ŷ(t,Θ)

Ψ(t,Θ)

]
=

[
f̂(x(t); Θ)

G(x(t); Θ)

]
(4.15)

the gradient of ŷ(t,Θ) with respect to θi is a 1 × m row vector denoted as ψi(t,Θ). Given
the weights and threshold of the ith node are arranged such that 1 ≤ i ≤ q, where q is the
number of nodes, then

Θ =


Θ1

...
Θq

 Ψ(t,Θ) =


Ψ1(t,Θ)

...
Ψq(t,Θ)

 (4.16)

where Ψi(t,Θ), an nΘ ×m matrix, is the gradient of ŷ(t,Θ) with respect to Θi.

It has been shown that the batch and recursive identification algorithms have the same con-
vergence properties (Ljung and Soberstrom, 1983) whereby the Θ̂(t) converges to a local
minima. The convergence of the widely used backpropagation algorithm (BPA), which is a
reduced-order recursive prediction error algorithm, is very slow. Because the MLP is non-
linear in-the-parameters, it typically has a large number of local minimal which may lie
at infinity (Billings and Chen, 1992). So when weights fall in these areas, the learning be-
comes very slow and a long time may elapse before the algorithm may escape. However,
the BPA has proven to be popular method and has been used in various disciplines (Kumar
et al., 2008; Billings et al., 1992; Ljung and Soberstrom, 1983). A detailed description of the
BPA method is given in section 4.5.1 for the parameter estimation of a nonlinear system.

4.3.3 Radial basis function

An alternative to the MLP network is the radial basis function (RBF) networks (Billings et al.,
1992). It is described as a two-layer processing structure whereby the hidden layer consists
of an array of nodes. Each node contains a parameter function called a center. The node
computes a nonlinear transformation of the neuron Euclidean distance. This is the distance
between the neuron center and network input vector. The architecture of the RBF network is
shown in Figure 4.7. The RBF network implements the mapping f̂r : Rn → R according to

f̂r(x) = η +
nh∑
j=1

ηijφ (‖x− cj‖ , ρj) , 1 ≤ i ≤ m (4.17)

where x ∈ Rn is the input vector, φ(·) is the given function from the Rn to R, ‖·‖ denotes
the Euclidean norm, η, 0 ≤ i ≤ nh, are the weights or parameters, cj ∈ Rn, 0 ≤ i ≤ nh, are
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Figure 4.7: Radial basis function network structure

the RBF centers and nh are the number centers. ρj is the centers width. Each node performs
a nonlinear transformation φ(·) of the input vector x based on the Euclidean distance to
the node center cj . Computation of weights η is achieved by performing a pseudo-inverse
a output vector f̂r(x). It has been shown that the choice of the nonlinear transformation
function φ(·) is not crucial to the performance of the RBF network (Chen et al., 1991; Billings
and Chen, 1992). Typical choices of φ(·) are the thin-plate spline function

φ(z, 1) = z2log(z) (4.18)

and the Gaussian function, shown in Figure 4.8

φ(z, ρ) = exp(−z2/ρ2) (4.19)

where ρ is a real constant. Two other common choices of φ(·) are the multiquadratic function

φ(z, ρ) =
(
z2 + ρ2

)1/2
(4.20)

and the inverse multiquadric function

φ(z, ρ) =
(
z2 + ρ2

)−1/2
(4.21)

It is assumed that φ(·) is continuous and bounded (Park and Sandberg, 1991). This is only
valid for the multiquadratic and Gaussian nonlinear functions. For this study the Gaussian
nonlinear function is used for the RBF centers. Similarities in the approximation capabilities
of the RBF and MLP (two-layer) have been proved (Billings and Chen, 1992). Just as in the
case of MLP network, the RBF network can be estimated using the prediction error estima-
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Figure 4.8: RBF neuron with Gaussian function

tion method described above. However, in order to exploit the structure of the RBF network,
a linear learning rule was developed (Chen et al., 1991; Song et al., 2005).

Unlike the MLP architecture, the RBF is linear with respect to the network weights. This
makes the learning of the network weights a linear problem thus resulting in a lower conver-
gence time. The strategy is to select some data points as centers for weight learning using the
least squares (LS) method. This, however introduced instability in the learning scheme and
increased convergence time. A more robust approach was developed called the orthogonal
least squares (OLS) method which made use of a subset selection method (Chen et al., 1991).
A detailed description of the OLS for parameter estimation is given in section 4.5.2.

4.4 Neural Network Model Identification

Model identification is defined as an extraction process by which the system dynamics is
approximated through the parametrization of a representative mathematical model using
measured data. The identification of nonlinear dynamical systems has shown success in the
presence of parameter uncertainties and measurement noise. Frequency-domain identifica-
tion methods such as CIFER (Mettler et al., 1999; Mettler, Kanade and Tischler, 2000; Mettler,
Kanade, Tischler and Messner, 2000; Tischler, 1995) have been used to develop accurate pa-
rameterized models around specific trim conditions. Time domain identification methods
have also been applied such as: the output error methods (Jategaonkar, 2008), equation error
methods (Mehra et al., 1974; Paris and Bonner, 2004) and extended Kalman filtering meth-
ods (EKF) (Jun et al., 1998). However, these methods require a priori information to estimate
all the required system parameters and fail to approximate the system dynamics globally
(Kumar et al., 2008; Suresh et al., 1995).

Due to their approximation capabilities and learning complex mappings, neural networks
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have been used as an alternative to the identification of nonlinear dynamic systems (Songwu
and Basar, 1998; Kumar et al., 2003; Singh and Ghosh, 2007; Raisinghani, Ghosh, and Kalra,
1998; Raisinghani, Ghosh and Khubchandani, 1998; Raisinghani and Ghosh, 2001). One basic
requirement in using neural networks architectures such as MLP or RBF is for these archi-
tectures to correctly model the behaviour of the dynamic system under investigation. The
neural network identification problem is to obtain a set of neuron weights values such that
the network’s response, based on a specified input set, adequately predicts the behaviour of
the given dynamic system (Polycarpou and Ioannou, 1991).

The identification of nonlinear systems of the form

ẋ = f(x) + g(x)u (4.22)

where u ∈ < is the input, x ∈ <n is the state (obtained from measurements). The identifi-
cation problem consists of choosing the appropriate identification model such that the un-
known nonlinearities of f(x) and g(x) are parametrized by the static neural network with
outputs f̂(x, θf ) and ĝ(x, θg) respectively, where θf ∈ Rnf , θg ∈ Rng are the adjustable
weights and nf , ng denote the number of weights with respect to network approximation
of f and g. Equation 4.22 can be expressed in the compact form (Polycarpou and Ioan-
nou, 1991):

ẋ = f̂(x, θ∗f ) + ĝ(x, θ∗g)u+ ν(t) (4.23)

where θ∗f and θ∗g denote the optimal weights values in the approximation of f(x) and g(x)

respectively such that

θ∗f := argθfmin
[
f(x)− f̂(x, θf )

]
(4.24)

θ∗g := argθgmin [g(x)− ĝ(x, θg)] (4.25)

and ν(t) is the modelling error defined as (Polycarpou and Ioannou, 1991):

ν(t) =
[
f(x(t))− f̂(x, θ∗f )

]
+
[
g(x(t))− ĝ(x, θ∗g)

]
(4.26)

4.4.1 Model validation

Various validation methods have been developed for the identification of the nonlinear sys-
tems in the presence of noise and input delays (Billings et al., 1992). The neural network
modelling of a system is deemed adequate only if the residuals or prediction errors e(t),
computed from the testing set, are unpredictable from all linear and nonlinear combinations
of past inputs and outputs (Billings et al., 1992). An incorrect prediction of the system output
could be caused by the following factors: incorrect input node assignment, noisy data and
insufficient hidden nodes. Although the network will be able to train and minimize the cost
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function, these factors are clearly illustrated by simulating the network with a different input
set (testing set).

Effect of noise

Real systems inherit a certain level of noise through their instrumentation or from atmo-
spheric disturbance which cannot be ignored. Noisy data (both measurement and process
noise) is known to introduce severe bias in the network input-output data. While a good
prediction is provided over the training data, an incorrect prediction often arises over the
testing data concluding the inability of the network to model the system underlying dynam-
ics thereby limiting the network performance.

Network complexity

The performance of the network is also directly linked to the size of its hidden layers and
nodes. It has been shown that increasing network complexity does not necessarily lead to
better network performance but often causes the model to become a high dimensional curve
fit to the training data (Billings et al., 1992; Billings and Chen, 1992). This is referred to as
the generalization for neural networks. This overfitting can be avoided by developing a
network model whereby the number of neurons increase incrementally until the validation
criteria has been met. No other optimization methods has been applied to minimize network
size over and above the mentioned technique.

4.4.2 Comparison of RBF and MLP

To illustrate these validation mechanisms, a RBFN and MLPN are trained and validated
using a sine-based function. Two cases of ideal and noisy data is investigated. A comparison
of the RBF and MLP network performance is also described. Given an input vector (Kar and
Behera, 2009):

x = [x1 x2]T

where x1 and x2 are the state variables. The nonlinear function f(x) is described:

f(x) = 4

(
sin(4πx1)

πx1

)(
sin(πx2)

πx2

)2

the following variable ranges have been specified:

• x1 = 0.01 to 50

• x2 = 0.01 to 50
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Figure 4.9: Surface plot of f(x): (1) Noise-free, (2) 10% noise.

An increment of 0.1 is used for both state variables resulting in 500 samples. Figure 4.9 shows
the surface plots of f(x) to be identified using neural networks. It also shows the effect noisy
state variables have on the surface plot f(x). This is used to evaluate the effect of noise on
network performance.

The training and testing sets are created by splitting the input-output data.

• Samples 1-250 for training

• Samples 251-500 for testing

A goal value of 1e-12 was used for both networks for this analysis. The RBF network spread
constant was specified at 0.8326 for all its neurons. The MLP network specifications are given
below:

1. Nodes structure - (12-20-1) (input-hidden-output)

2. Learning rate - 0.01

3. Minimum gradient - 1e-9

Table 4.1: RBF and MLP validation results

Noise-free 10% noise
RBF MLP RBF MLP

Prediction error 1.31e-6 2.33e-4 2.38e-6 0.0048
No. of neurons 12 20 12 20

Convergence time(s) 0.94 4.88 5.95 6.33

Table 4.1 compares the network performance of the RBF and MLP networks. The robustness
of the RBF algorithm can be seen as the prediction error varies slightly with a large increase
in noise. The MLP results are as expected with a large increase in error as system noise in-
creases. Since the MLP network structure must be specified prior to learning, MLP network
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Figure 4.10: Network training results: (1) Noise free, (2) 10% noise.
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Figure 4.11: Network validation results: (1) Noise free, (2) 10% noise.

complexity is unaffected by modelling errors or uncertainties. RBF network increases in com-
plexity as it tries to minimize the prediction error one neuron at a time. In this case however,
the same number of neurons (12) resulted in the noise-free and 10% noise case. This shows
the RBFN robustness to noise. Another measure of performance is the convergence time.
As expected, the MLP network showed slow convergence in both the noise-free and 10%
noise cases with 4.88 and 6.33 seconds respectively. Unlike the latter, RBF network showed
a significant increase in convergence time from 0.98 to 5.95 seconds. Although the size of
the network is unchanged, the low signal-to-noise ratio causes the weight computation to
increase as the prediction error is minimized.

Figure 4.10 shows that both networks trained adequately in the noise-free and 10% noise
cases. The complex error surface produced by the MLP network was clearly visible in the
noise-free case and resulted in the network inability to approximate at the extremities of the
sampled data (in this case the first sample). This result can also be found in (Kumar et al.,
2008). The prediction of the function f(x) underlying dynamics was investigated through
simulating both networks using the testing set shown in Figure 4.11. It is apparent that the
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Figure 4.12: NN model identification structure

MLP network resulted in large inaccuracies in both the noise-free and 10% noise cases. The
RBF network, although not clear due to scaling, showed good prediction capabilities and
robustness to noise.

It can be concluded that the RBF network is well suited for online identification. Its robust-
ness to noise, evolving network structure and the ability to identify the underlying dynamics
provides a foundation for the network to adapt to changes that occur as the helicopter moves
from one flight condition to another. The decrease in convergence time due to the effect of
noise can be circumvented through the proper choice of the spread constant and goal value.

4.4.3 Online identification

The online identification using neural networks has been studied (Jafari et al., 2007; Singh,
2005). Singh (2005) used neural networks to identify and compensate for the modelling
errors introduced by the inverse modelling of the system dynamics. The following modelling
errors were identified: partial actuator failure, weight change and center of gravity change.
Longitudinal flight control was then developed using networks for flight velocity and flight
path angle control.

The model structure for online identification is shown in Figure 4.12. Using the flight in-
strumentation described in Section 4.1.1, measured plant data (both input u and output y) is
supplied to the neural network for the identification of the underlying system dynamics. The
neural network output is given as ŷ. The residual error e is minimized by updating neuron
weights. One distinct drawback using feedforward neural networks for online identifica-
tion, is the network inability to obtain a global mapping from a single input-output pattern
without ’forgetting’ the underlying dynamics. A moving window algorithm was introduced
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to improve the network learning performance (Savran et al., 2006; Jafari et al., 2007). Savran
et al. (2006) describe it as a first-in-first-out stack to store a short history of the input output
data.

4.5 Aerodynamic Parameter Estimation

The development of flight control systems requires the mathematical model of the heli-
copter to be a close match to the real system. Preliminary parameter estimation meth-
ods such as: wind tunnel testing and computational fluid dynamics, remain valuable but
their prediction of cross-coupling effects are ineffective (Jategaonkar, 2008). The estima-
tion of stability and control derivatives is based on stringent specifications for flight con-
trol and in-flight simulator design. Frequency domain identification methods such as CIFER
(Mettler et al., 1999; Mettler, Kanade and Tischler, 2000; Mettler, Kanade, Tischler and Mess-
ner, 2000; Tischler, 1995) have been used to develop accurate parameterized models around
specific trim conditions. Morelli (2000) made use of a recursive Fourier transform algorithm
to generate a linear dynamic state-space model for real-time parameter estimation.

Aerodynamic parameter estimation using neural network, FFNNs in particular, has been ap-
plied extensively (Raisinghani, Ghosh, and Kalra, 1998; Raisinghani, Ghosh and Khubchan-
dani, 1998; Raisinghani and Ghosh, 2001; Kumar et al., 2008). The methods do not require
a priori information of the system dynamics and the aerodynamic parameters can be ex-
tracted indirectly from the flight data. Although neural networks have been primarily used
for model identification, methods such as the delta method and modified delta method us-
ing RBFN, have been able to estimate indirectly stability and control derivatives both for
simulated ideal and noisy data (Kumar et al., 2008).

Noise and data information content are two main problems that occur during online/real-
time parameter estimation (Morelli, 2000). The objective is to design a technique which is
insensitive to noise and still responds rapidly to sudden changes in the system dynamics.
Different neural network architectures such as: MLP and RBF, have been used to overcome
these problems and act as an alternative approach to aerodynamic parameter estimation.

4.5.1 MLP-based estimation

The recursive prediction error estimator has been used for the online identification of param-
eters using helicopter flight data (Suresh et al., 1995; Chen and Billings, 1989). This is derived
by minimizing the discrepancy between the measured output and the predicted output by
using a candidate model (prediction error).
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The backpropagation algorithm

The backpropagation algorithm (BPA), a class of recursive prediction error algorithm, is de-
fined using the time-varying version of the extended model in Equation 4.15

[
ŷ(t,Θ)

Ψ(t,Θ)

]
=

[
f̂(x(t); Θ); Θ̂(t− 1)

G(x(t); Θ); Θ̂(t− 1)

]
(4.27)

where Θ̂(t− 1) denotes the estimate of Θ at t. The approximate prediction error is defined

e(t) = y(t)− ŷ(t) (4.28)

the steepest (gradient) descent algorithm can be defined (Billings and Chen, 1992)

∆(t) = αm∆(t− 1) + αgΨ(t)e(t) (4.29)

with

P (t) =
[
P (t− 1)− P (t− 1)Ψ(t)(λI + ΨT (t)P (t− 1)Ψ(t))−1ΨT (t)P (t− 1)

]
/λ (4.30)

Θ̂(t) = Θ̂(t− 1) + P (t)∆(t) (4.31)

where αg and αm are the learning rate parameter and momentum constant respectively and
λ is the forgetting factor. the smoothed stochastic gradient algorithm

σi(t) = αmσi(t− 1) + αgΨi(t)e(t)

θ̂i(t) = θ̂i(t− 1) + σi(t)

}
1 ≤ i ≤ nθ (4.32)

The quantity Ψi(t)e(t) corresponds to the negative gradient of eT (t)e(t)/2 with respect to
θi and is stochastic in nature. σi is therefore stochastic gradient. Given an input-output
relationship of the ith node in the kth layer is defined as

z
(k)
i =

nk−1∑
j=1

η
(k)
ij x

(k−1)
j + µ

(k)
i (4.33)

x
(k)
i = F(z

(k)
i ) (4.34)

where η(k)
ij and µ(k)

i are the node connection weights and the threshold respectively, the BPA
for MLP training can then be formulated (see section 4.3.2)

η
(k)
ij (t) = η

(k)
ij (t− 1) + ∆η

(k)
ij (t)

µ
(k)
i (t) = µ

(k)
i (t− 1) + ∆µ

(k)
ij (t)

 (4.35)
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with

∆η
(k)
ij (t) = αm∆η

(k)
ij (t− 1) + αgδ

(k)
i (t)x

(k−1)
j (t)

∆µ
(k)
i (t) = αm∆µ

(k)
i (t− 1) + αgδ

(k)
i (t)

 (4.36)

and

δ
(l)
i = a′(z

(l)
i (t))(yi(t)− ŷi(t)) (4.37)

δ
(k)
i = a′(z

(l)
i (t))

∑
s

δ(k+1)
s (t)η

(k+1)
si (t− 1), k = l − 1, . . . , 2, 1 (4.38)

where a′(z) is the derivative of a(z).

4.5.2 RBF-based estimation

Parameter estimation using RBF-based methods have been applied (Kumar et al., 2008; Kenne
et al., 2006; Jafari et al., 2007; Park and Sandberg, 1991; Song et al., 2005). It was shown that
the linear-in-the-parameter RBF structure was able to approximate strongly coupled aero-
dynamic parameters (Kumar et al., 2008). The application of adaptive RBF-based neural
networks was investigated by Jafari et al. (2007). A growing and pruning radial basis func-
tion (GAP-RBF) and minimal resource allocation network (MRAN) were combined with an
unscented Kalman filter (UKF) training algorithm for online parameter estimation of the
system dynamics. The RBF network is discussed in more detail in section 4.3.3.

Orthogonal Least Square Algorithm

The parametrization of a regression model requires that there be one basis function per data
point. This approach quickly becomes computationally costly as new data points are made
available. The Orthogonal Least Squares (OLS) algorithm is used as a systematic approach
to radial basis centers selection (Chen et al., 1991). This method is employed as a forward
regression procedure whereby a fixed center corresponds to a given regressor in a linear
regression model. The latter is defined as:

d(t) =
M∑
i=1

pi(t)θi + e(t) (4.39)

where d(t) is the desired output (also called the dependent variable), θi are the parameters,
and pi(t) are known as the regressors which are fixed functions of x(t) such as:

pi(t) = pi(x(t)) (4.40)
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The error signal e(t) is assumed to be uncorrelated with the regressors pi(t). Assuming each
regressor to be a constant term, the problem of fixed RBF center ci selection with a given
nonlinearity φ(·) corresponds to selecting a suitable set of regressors such that e(t) can be
proved to be uncorrelated to the system regressors. Given a linear regression matrix system:

d = PΘ + E (4.41)

where

P = [p1 · · · pM ], pi = [pi(1) · · · pi(N)]T , 1 ≤ i ≤M (4.42)

Θ = [θ1 · · · θM ]T (4.43)

E = [e(t) · · · e(N)]T (4.44)

The regressor pi forms a set of basis vectors where the least squares (LS) solution Θ̂ satisfies
the condition that PΘ̂ be the projection of d onto space spanned by these basis vectors. The
square of the projection PΘ̂ is part of the desired output energy produced by the regressors.
Since regressors are generally correlated such as velocity and thrust in airplanes, the output
energy due to one regressor is not clearly defined.

The Orthogonal Least Squares method transforms the set pi into a set of orthogonal basis
vectors, and thus enables the computation of an individual basis vector (regressor) contribu-
tion to the desired output energy. The regression matrix P can be decomposed into

P = WA (4.45)

where A is an M ×M triangular matrix given as:

A =



1 α12 α13 · · · α1M

0 1 α23 · · · α2M

0 0 1 0 0
...

. . . 0 0

1 αM−1M

0 · · · 0 0 1


and W is an N ×M matrix with orthogonal columns wi such that

WTW = H (4.46)
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where H is a diagonal matrix with elements hi:

hi = wT
i wi =

N∑
t=1

wi(t)wi(t), 1 ≤ i ≤M (4.47)

Since the same space is spanned by the orthogonal vector wi and the regressors pi, Eq.4.41
can be rewritten as:

d = Wg + E (4.48)

The orthogonal (LS) solution ĝ is given as:

ĝ = H−1WTd (4.49)

or

ĝi = wT
i d/(wT

i wi), 1 ≤ i ≤M (4.50)

The orthogonal decomposition of P can be obtained using the Gram-Schmidt algorithm
(Chen et al., 1991). This method computes the one column of matrix A at a time and or-
thogonalizes P as follows: at the kth stage make the kth column orthogonal to each of the
k − 1 previously orthogonalized columns and repeat the operation for k = 2, · · · ,M . This
procedure is represented as:

w1 = p1

αik = wT
i pk/(wT

i wi), 1 ≤ i ≤ k

wk = pk −
k−1∑
i=1

αikwi

Because wi and wj are orthogonal for i 6= j, the sum squares or energy of d(t) is

dTd =
M∑
i=1

g2
i wT

i wi + ETE (4.51)

If d is the desired output vector after the mean has been removed, then the variance of d(t)
is given by

N−1dTd = N−1
M∑
i=1

g2
i wT

i wi +N−1ETE (4.52)

It can be noticed that the desired output variance is divided between regressor-induced vari-
ance and unexplained variance of d(t). Thus g2

i wT
i wi/N is the increment to the explained

desired output introduced by wi. Dividing Eq. 4.52 by N−1dTd, the explained error can be
computed:

ETE/dTd = 1− 1

dTd
g2
i wT

i wi (4.53)
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So from Eq.4.53 it can be seen that a maximum value of the ratio g2
i wT

i wi/dTd will produce
a minimum unexplained error. This approach offers an effective means of seeking a subset
of significant regressors wi that will minimize the unexplained error in the desired output.
Therefore given an error reduction ratio:

[err]i = g2
i wT

i wi/dTd (4.54)

The selection of regressors is such that

1−
Ms∑
j=1

[err]j < ρ (4.55)

where 0 < ρ < 1 is a chosen tolerance and Ms is a subset model containing the significant
regressors. The regressor selection procedure can be summarized as follows: At the first
step, for 1 ≤ i ≤M

w1 = pi

g
(i)
1 = (w(i)

1 )Td/((w(i)
1 )Tw(i)

1 )

[err]
(i)
1 = (g

(i)
1 )2(w(i)

1 )Tw(i)
1 /(dTd)

Find
[err]

(i1)
1 = max[err]

(i)
1

and select
w1 = w(i1)

1 = pi1

At the kth step, where k ≥ 2

α
(i)
jk = wT

j pi/(wT
j wj)

w(i)
k = pi −

k−1∑
j=1

α
(i)
jkwj

g
(i)
k = (w(i)

k )Td/((w(i)
k )Tw(i)

k )

[err]
(i)
k = (g

(i)
k )2(w(i)

k )Tw(i)
k /(dTd)

find
[err]

(i1)
k = max[err]

(i)
k 1 ≤ i ≤M, i 6= i1

and select

wk = w(ik)
k = pik −

k−1∑
j=1

α
(ik)
jk wj

The procedure is terminated at the Msth step when

1−
Ms∑
j=1

[err]j < ρ

The vector matrix of w(ik)
k , contained in the subset Ms, embodies the desired output energy
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hence representative of the system dynamics. Within a Neural network context, these repre-
sent the number of neuron centers ci is the hidden layers such that the output layer ’predicts’
the desired output.

4.5.3 Delta method algorithm

The Delta Method (DM) is a central different technique based on the understanding that
a stability/control derivative is the change in the aerodynamic force or moment coefficient
caused by a small variation in one of the motion/control variables about its nominal value
while all the other variables are held constant (Raisinghani, Ghosh, and Kalra, 1998). This is
defined as:

dy

dxx=xi
=
f̂(x1, . . . xi + h, . . . , xn)− f̂(x1, . . . xi − h, . . . , xn)

2h
(4.56)

where f̂(x) is the approximation of the function identified by the neural network. y and xi

are the output and input set used for function approximation. Equation 4.56 is the central
difference approximation of the derivative dy

dx at point x = xi. The following procedures
must be adhered to calculate the derivative:

1. The network is trained with a set of input-output values (training set) to create the
approximate function f̂(x).

2. Network validation is achieved using a testing set with the output residuals falling
below a set goal value.

3. The input file of the training set is ’positive’ modified by perturbing an input xi with
+h.

4. This input file is then used to generate the function approximation f̂(x)∆=+h.

5. Same process is repeated with a ’negative’ modified input file to produce the function
approximation f̂(x)∆=−h

6. Equation 4.56 can then be used to compute the derivative of interest.

Example

Considering an input-output set which includes the x-axis acceleration ax and the forward
velocity u. The computation of derivative Xu can be defined:

Xu =
dX

du xi=u
=
X+ −X−

2∆u
(4.57)

where X+ and X− are the positive and negative modified output and ∆u is the perturbation
in network input variable u.
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4.5.4 Modified delta method algorithm

The Modified Delta Method (MDM) is based on interpreting that a stability/control deriva-
tive is the ratio between the variation of the aerodynamic coefficient and the variation of
the motion/control variable while the variation in other motion/control variables are iden-
tically zero. Similarly to DM, the computation of the derivative is defined (Raisinghani and
Ghosh, 2001):

dy

dxx=xi
=
f̂(∆x1, . . .∆xi × 0, . . . ,∆xn)

∆xi
(4.58)

where f(∆x) is the approximation function using the differential variation of x. The follow-
ing procedures have been defined:

1. The network is trained with a set of differential input-output values (training set) to
create the approximate function f̂(∆x).

2. Network validation is achieved using a testing set with the output residuals falling
below a set goal value.

3. The input file of the training set is modified by changing all inputs to zero while leaving
input ∆xi unchanged.

4. This input file is then used to generate the function approximation f̂(∆xi).

5. Equation 4.58 can then be used to compute the derivative of interest.

Example

Considering an input-output set which includes the x-axis acceleration ax and the forward
velocity u. The computation of derivative Xu can be defined:

Xu =
dX

du xi=u6=0
=

∆X(∆u)

∆u
(4.59)

where ∆X(∆u) is the modified output with respect to ∆u and ∆u is the differential input
variable of u.

4.5.5 Parameter statistics

In order to evaluate the performance of the estimation methods described, statistical meth-
ods have been employed. A detailed description of the parameter statistics is given in Ap-
pendix B on page 184.
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4.5.6 Online estimation model

The performance of the online estimation model depends to a large degree on the successful
identification of the external forces and moments acting on the flight vehicle. These can
be classified as: aerodynamic, inertial, gravitational and propulsive. Because aerodynamic
forces (X,Y,Z) and moments (L,M,N) cannot be measured directly, aerodynamic modelling
followed by parameter estimation determines these parameters with respect to the related
measurements such as accelerations, angular rates, linear translations and control inputs.
The key derivatives defined within the identification model structure of a 6-DOF helicopter
are given (Lorenz and Chowdhary, 2005; Mettler et al., 1999):

ax = u̇(t) = Xuu(t) +−gθ +Xa1a1(t) +Xb1b1(t)

ay = v̇(t) = Yvv(t) + gφ+ Ya1a1(t) + Yb1b1(t)

az = ẇ(t) = Zww(t) + Za1a1(t) + Zb1b1(t) + Zδcolδcol(t)

ṗ(t) = Luu(t) + Lvv(t) + La1a1(t) + Lb1b1(t)

q̇(t) = Muu(t) +Mvv(t) +Ma1a1(t) +Mb1b1(t) +Mδcolδcol(t)

ṙ(t) = Nrr(t) +Nδrδr(t) +Nδtδt(t)

It has been shown that the yaw dynamics are augmented through the combined yaw rate of
the gyro and the tail actuator system (Mettler, 2003). The inclusion of the tail gyro dynamics
requires modelling the complex interaction of the engine drive train with the tail rotor. These
parameters can only be determined using ground experiment and cannot be obtained during
flight (Gavrilets et al., 2003) and therefore have been excluded in the estimation model.

The longitudinal and lateral blade flapping dynamics are described respectively by two cou-
pled first-order differential equations.

ȧ1(t) = −a1(t)

τe
− q +Aδlatδlat(t) +Aδlonδlon(t)

ḃ1(t) = −b1(t)

τe
− p+Bδlatδlat(t) +Bδlonδlon(t)

The rotor time constant τe includes the influence of the stabiliser bar (Mettler et al., 1999).
During online estimation these longitudinal and lateral time constants are represented as
Aa1 and Bb1 respectively. The parametrized state space matrices can be defined as follows:
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A =



Xu 0 0 0 −g 0 0 0 0 Xa1 Xb1

0 Yv 0 g 0 0 0 0 0 Ya1 Yb1
0 0 Zw 0 0 0 0 0 0 Za1 Zb1
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
Lu Lv 0 0 0 0 0 0 0 La1 Lb1
Mu Mv 0 0 0 0 0 0 0 Ma1 Mb1

0 Nv 0 0 0 0 0 0 Nr 0 0

0 0 0 0 0 0 0 −1 0 − 1
τe

0
0 0 0 0 0 0 −1 0 0 0 − 1

τe



B =



0 0 0 0 0

0 0 0 0 0

0 0 Zδcol 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 Lδcol 0 0

0 0 Mδcol 0 0

0 0 0 Nδr Nδt

Aδlon 0 0 0 0

0 Bδlat 0 0 0


Depending on the flight condition, some of the above-stated derivatives will be ignored as
their effects will be negligible. The detailed description of the key derivatives is found in
Section 4.1.5.

It needs to be noted that the yaw rate due to the engine torque Nδt can be accounted for only
in certain helicopter models where the collective and throttle servos are not mixed. This is
an available option in most RC transmitters.

4.5.7 Online estimation algorithm

RBF-based neural networks were used for the online estimation of the key derivatives de-
scribed in Section 4.1.5. As discussed in Section 4.4.2, RBF networks have a major drawback
in their inability to retain ’information’ on previous input-output patterns. This would result
in RBF learning at each time step making online model identification and parameter estima-
tion impractical and memory intensive. To tackle this problem, an algorithm for the online
estimation of aerodynamic parameters was developed. The algorithm flowchart is shown
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Figure 4.13: Online estimation algorithm flowchart.

in Figure 4.13. The moving window algorithm is used to generate an input-output data set
at each time step (t). Once RBF learning of the data set is achieved, the network is stored.
At the subsequent time step (t + 1), the new network input data is checked for steady state
signals through computing their standard deviation σ and the redundant signals are elimi-
nated. Prediction of the system underlying dynamics is validated by computing the mean
square error (MSE). If the MSE is below the threshold value (1e-5), the network is stored and
used in the time step (t+ 2) (Singh, 2005).

This estimation algorithm has enabled the prediction capabilities of the RBF network to be
applied in an online/real-time environment while minimizing computation requirements.
Once the RBF network is stored, the DM and MDM methods are applied to compute the
aerodynamic parameters as discussed in Section 4.5.3 and 4.5.4 respectively.
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4.6 Results

The online model identification using neural networks was achieved using the RBF archi-
tecture. The translational accelerations ax, ay, az , the rotational accelerations ṗ, q̇, ṙ and the
flapping rates ȧ1, ḃ1 were simulated using the following control inputs:

• δlon −→ ax, q̇ and ȧ1

• δlat −→ ay, ṗ and ḃ1

• δcol −→ ay

• δr −→ ṙ

The multistep 3211 flight maneuver was used for all control inputs during online identifi-
cation and parameter estimation. As a measure to evaluate the network performance, the
number of network neurons and memory usage was also recorded at each time step (0.02
sec). A moving window (stack) sizes of 50, 100 and 150 samples were used to generate
input-output data sets. The ideal and turbulence cases are defined as follows:

• Ideal case: Calm wind, No sensor noise

• Turbulence case: Light turbulence of 3-5m/s and 5% sensor noise

Online model identification

The online identification model (see algorithm code in Appendix C on page 186) deleted
input signals whose standard deviation and mean values were below values of 1e-6 and 1e-
7 respectively. This was done to prevent matrix ill-conditioning to cause inversion errors
during neuron weights computation. However, this approach introduced discontinuities as
different stack patterns could potentially have different input space sizes which would result
in a mismatch between the network input size and the stack input size. This problem was
overcome by having a new network created each time the stack input size changed. This is
illustrated on the flowchart in Figure 4.13. This caused the memory requirement to increase
but was compensated by evaluating the mean square error (MSE) between the system’s last
recorded output and the network’s predicted output. The network model, for a specific
input-output space, was ’re-created’ only when the MSE rose above a threshold value of
1e-5. This approach acted as a network validation technique.

Online identification results are shown for hover flight on Figure 4.14 to Figure 4.37, forward
10m/s flight on Figure 4.38 to Figure 4.61 and forward 20m/s flight on Figure 4.62 to Fig-
ure 4.88. The effect of state and measurement noise was investigated through atmospheric
turbulence and sensor noise resulting from the flight test instrumentation. The simulation
facility had the following specifications:
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• Processor: 1.73GHz Intel

• Memory: 504MB of RAM

The effect of atmospheric disturbance and sensor noise can be clearly seen in Figure 4.14. As
shown in Section 4.4.2, this has an adverse effect on network size on Figure 4.15 and memory
usage on Figure 4.16. The latter is given as a percentage of available memory. The higher the
required memory for a particular stack size configuration, the higher the convergence time
for online model identification.

The network is said to have saturated and unable to identify the input-output set when the
network size equals the stack size used for identification. ṙ identification for hover flight
in Figure 4.30, forward 10m/s flight in Figure 4.54 and forward 20m/s flight in Figure 4.81,
showed network saturation for all three stack sizes. The adverse effect of network saturation
is shown in ax identification in Figure 4.64 for the turbulence case. The network saturated
with a stack of 150 resulting in a memory usage of 85% shown in Figure 4.64. The net-
work saturation occurs when: (1) the signal-to-noise ratio decreases in the input-output data
thereby preventing the network to efficiently select the significant neuron centers, (2) matrix
ill-conditioning for network weights computation caused by input vector scaling.

The neural network model identification robustness to noise was investigated by including
state and measurement noise. Good noise attenuation results was achieved with ax identifi-
cation for all flight conditions except the 20m/s forward flight with a network size between
6 to 8 neurons shown in Figure 4.15 and Figure 4.39 respectively. The q̇ identification shows
similar results with a network size between 10 to 12 neurons shown in Figure 4.27 and Figure
4.51 respectively. The ṙ hover flight identification shows network instability in the turbulence
case in Figure 4.30. This could be caused by insufficient signal content in the network inputs
for that time period. The same effect can be seen for the az forward 10m/s flight identi-
fication in Figure 4.45. The smaller stack size of 50 samples was unaffected as the smaller
moving window allows the network to have a higher forgetting factor. The identification of
the rotor flapping dynamics ȧ1 and ḃ1 was achieved for all flight conditions in the presence
of state and measurement noise.

Online parameter estimation

The online estimation of the stability and control derivatives using RBFN-based DM and
MDM methods was achieved for all flight conditions namely: hover, forward 10m/s flight
and forward 20m/s flight. This is shown in Figure 4.89 to Figure 4.198 where all the esti-
mated parameters used a stack size of 150. 95% confidence intervals were calculated at each
time step for both the ideal and turbulence cases. The estimated parameters were then com-
pared with the linearized model parameters. It was assumed that the reference linear model
parameters stay constant throughout the flight condition. For each estimated parameter,
the stack size was varied (between 50 and 150 samples) and the number of estimated val-
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ues within 95%(high confidence) and 60%(low confidence) of the reference value are stored
and shown in Table 4.2 to Table 4.56. The estimation results are classified with respect to
the known helicopter dynamics namely: roll and pitch dynamics, longitudinal and lateral
dynamics, heave dynamics, yaw dynamics and flapping/stabiliser bar dynamics.

The longitudinal derivatives Xu, Xθ, Xa1 and the lateral derivatives Yv, Yφ, Yb1 , were identi-
fied and compared with the equivalent parameter from the linear models. The derivativeXu

could not be identified using the MDM in turbulence for hover flight in Figure 4.90, forward
10m/s flight in Figure 4.126 and forward 20m/s flight in Figure 4.162 with a maximum of 2
values of 95% confidence shown in Table 4.38. This could be due to the decrease in the signal-
to-noise ratio in the network inputs. In the MDM ideal case, the number of high confidence
values decrease from hover to high speed forward flight from 265 to 0. The DM method
produces the opposite with the number of high confidence values increasing from 0 to 47.
The derivative Yv shows consistently larger deviations with the DM method than the MDM
method for the ideal cases. This can be clearly seen for hover flight in Figure 4.96, forward
10m/s flight in Figure 4.132 and forward 20m/s flight in Figure 4.168. This is expected from
the DM method as absolute values are computed as compared to differential values for the
MDM method although the MDM method is susceptible to large outliers in areas of steady
state variables. Similar results were obtained for the inertial derivative Xθ with the forward
10m/s flight producing the lowest number of estimated values for both the DM and MDM
methods in turbulence shown in Figure 4.127 and Figure 4.128 respectively. The opposite
resulted with Yφ. The forward 10m/s flight MDM method produced 387 values with 95%
confidence in turbulence as compared to the 18 for the DM method shown in Table 4.24. The
rotor force derivatives Xa1 and Yb1 shows poor results in all flight conditions for the DM
method in turbulence with the worst estimation at forward 10m/s flight shown in Table 4.22
and Table 4.25 respectively. This could be due to the increased sensitivity to control inputs
resulting in higher deviations.

The roll derivatives Lv,Lb1 and pitch derivatives Ma1 ,Mδcol are identified. The speed deriva-
tive Lv shows poor results in all flight conditions for the DM method in turbulence with the
best estimation at forward 10m/s flight shown in Table 4.22. This could be the result of poor
signal content and high sensitivity to control inputs resulting in large deviation as shown
in Figure 4.141. The MDM time simulations can be seen for hover in Figure 4.108, forward
10m/s flight in Figure 4.144 and forward 20m/s flight in Figure 4.180. The rotor moment
derivative Lb1 shows an increase in high confidence MDM-based estimated values from 116
in hover flight to 333 in forward 20m/s flight in turbulence. In the ideal case, DM-based esti-
mated values varied from 294 in hover flight to 410 in forward 20m/s flight. This is shown in
Table 4.11 and Table 4.47 respectively. This could be due to the forward speed increasing the
sensitivity of flapping angles to control inputs, resulting in the MDM method having better
robustness qualities in the presence of state and measurement noise. Ma1 shows a similar
trend with an increase of MDM-based estimated values from 48 in hover flight to 443 in for-
ward 10m/s flight in turbulence. This is shown in Table 4.12 and table 4.30 respectively. No
DM-based estimated values could be identified in the forward 20m/s flight in turbulence
as shown in Figure 4.181. Mδcol could only identified in forward 20m/s flight due to the



CHAPTER 4. ONLINE MODEL IDENTIFICATION AND PARAMETER ESTIMATION 83

high signal content and high sensitivity to control inputs. The ideal case shows good results
with 351 high confidence MDM-based values using a stack of 150 shown in Figure 4.184. No
DM-based estimated values could be identified in turbulence as shown in Figure 4.183.

The heave derivatives Zw and Zδcol are identified. The damping derivative Zw shows poor
results in all flight conditions for the DM method in turbulence with the worst estimation
at forward 20m/s flight shown in Table 4.44. The MDM-based low confidence estimated
values increased from 0 in hover flight to 145 in forward 20m/s flight in turbulence. This
is shown in Figure 4.102 and Figure 4.174 respectively. This is expected as the identification
results showed network saturation for hover flight in turbulence in Figure 4.20 and network
instability for forward 10m/s flight in Figure 4.45. The collective derivative Zδcol showed
a similar trend with the MDM-based low confidence estimated values increasing from 0 in
hover flight to 296 in forward 20m/s flight in turbulence. This is shown in Figure 4.104
and Figure 4.176 respectively. In the ideal case, DM-based high confidence estimated values
increase from 351 in hover flight to 385 in forward 20m/s flight. This is shown in Table 4.9
and Table 4.45 respectively. This could be caused by a higher signal content as the helicopter
moves from hover flight to forward cruise flight.

The yaw derivatives Nr, Nδr and Nδt were identified. The damping derivative Nr had poor
results in all flight conditions. This could be due to the active yaw damping system produc-
ing a negative feedback to the yaw dynamics making open-loop identification and parame-
ter estimation difficult. Poor identification results through network saturation and network
instability in hover flight in Figure 4.30, forward 10m/s flight in Figure 4.54 and forward
20m/s flight 20m/s in Figure 4.81. The derivative Nδr shows the MDM-based low confi-
dence estimated values increasing from 0 in hover flight to 152 in forward 20m/s flight in
turbulence. This is shown in Table 4.14 and Table 4.51 respectively. The derivativeNδt shows
a similar trend with the MDM-based low confidence estimated values increasing from 36 in
hover flight to 219 in forward 20m/s flight in turbulence. This is shown in Table 4.14 and
Table 4.51 respectively. At stated earlier, these poor results could be the result of poor signal
content and the presence of the yaw damping control system.

The flapping/stabiliser bar derivatives Aa1 , Aδlon andBb1 , Bδlat were identified. The Aa1 and
Bb1 represent the inverse of rotor time constant τe with the influence of the stabiliser bar. The
derivative Aa1 shows the MDM-based high confidence estimated values increasing from 16
in hover flight to 351 in forward 20m/s flight in turbulence. This is shown in Table 4.16 and
Table 4.53 respectively. In the ideal case, the DM-based high confidence estimated values
decrease from 359 in hover flight to 130 in forward 20m/s flight in turbulence. This could be
the result of the DM method inability to predict the underlying model dynamics and deteri-
orating effect of the increased sensitivity to control inputs. The derivative Aδlon also shows
consistent results with MDM-based high confidence estimated values increasing from 16 in
hover flight to 351 in forward 20m/s flight in turbulence. This is shown in Table 4.17 and
Table 4.54 respectively. The derivative Bb1 shows poor results in all flight conditions in the
presence of turbulence. This could be attributed to low signal-to-noise ratio and high signal
content requirements. The derivativeBδlat shows the MDM-based high confidence estimated
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values increasing from 158 in hover flight to 351 in forward 20m/s flight in turbulence. This
is shown in Table 4.19 and Table 4.56 respectively.
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Figure 4.14: ax hover flight online identification using δlon: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.15: ax hover flight online identification using δlon: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.16: ax hover flight online identification using δlon: Memory usage (1) ideal, (2) tur-
bulence.
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Figure 4.17: ay hover flight online identification using δlat: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.18: ay hover flight online identification using δlat: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.19: ay hover flight online identification using δlat: Memory usage (1) ideal, (2) tur-
bulence.
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Figure 4.20: az hover flight online identification using δcol: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.21: az hover flight online identification using δcol: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.22: az hover flight online identification using δcol: Memory usage (1) ideal, (2) tur-
bulence.
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Figure 4.23: ṗ hover flight online identification using δlat: Time history (1) ideal, (2) turbu-
lence.

0 2 4 6 8 10
0

50

100

150

time  sec

no
. n

eu
ro

ns

stack − 50
stack − 100
stack − 150

0 2 4 6 8 10
0

2

4

6

8

10

12

14

time  sec

no
. n

eu
ro

ns

stack − 50
stack − 100
stack − 150

Figure 4.24: ṗ hover flight online identification using δlat: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.25: ṗ hover flight online identification using δlat: Memory usage (1) ideal, (2) turbu-
lence.
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Figure 4.26: q̇ hover flight online identification using δlon: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.27: q̇ hover flight online identification using δlon: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.28: q̇ hover flight online identification using δlon: Memory usage (1) ideal, (2) turbu-
lence.
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Figure 4.29: ṙ hover flight online identification using δr: Time history (1) ideal, (2) turbulence.
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Figure 4.30: ṙ hover flight online identification using δr: Network neurons (1) ideal, (2) tur-
bulence.
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Figure 4.31: ṙ hover flight online identification using δr: Memory usage (1) ideal, (2) turbu-
lence.
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Figure 4.32: ȧ1 hover flight online identification using δlon: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.33: ȧ1 hover flight online identification using δlon: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.34: ȧ1 hover flight online identification using δlon: Memory usage (1) ideal, (2) tur-
bulence.
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Figure 4.35: ḃ1 hover flight online identification using δlat: Time history (1) ideal, (2) turbu-
lence.
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Figure 4.36: ḃ1 hover flight online identification using δlat: Network neurons (1) ideal, (2)
turbulence.
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Figure 4.37: ḃ1 hover flight online identification using δlat: Memory usage (1) ideal, (2) tur-
bulence.
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Figure 4.38: ax forward 10m/s flight online identification using δlon: Time history (1) ideal,
(2) turbulence.
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Figure 4.39: ax forward 10m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.40: ax forward 10m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.41: ay forward 10m/s flight online identification using δlat: Time history (1) ideal,
(2) turbulence.
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Figure 4.42: ay forward 10m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.43: ay forward 10m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.44: az forward 10m/s flight online identification using δcol: Time history (1) ideal,
(2) turbulence.
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Figure 4.45: az forward 10m/s flight online identification using δcol: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.46: az forward 10m/s flight online identification using δcol: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.47: ṗ forward 10m/s flight online identification using δlat: Time history (1) ideal, (2)
turbulence.
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Figure 4.48: ṗ forward 10m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.49: ṗ forward 10m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.50: q̇ forward 10m/s flight online identification using δlon: Time history (1) ideal, (2)
turbulence.
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Figure 4.51: q̇ forward 10m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.52: q̇ forward 10m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.53: ṙ forward 10m/s flight online identification using δr: Time history (1) ideal, (2)
turbulence.
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Figure 4.54: ṙ forward 10m/s flight online identification using δr: Network neurons (1) ideal,
(2) turbulence.
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Figure 4.55: ṙ forward 10m/s flight online identification using δr: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.56: ȧ1 forward 10m/s flight online identification using δlon: Time history (1) ideal,
(2) turbulence.
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Figure 4.57: ȧ1 forward 10m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.58: ȧ1 forward 10m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.59: ḃ1 forward 10m/s flight online identification using δlat: Time history (1) ideal,
(2) turbulence.
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Figure 4.60: ḃ1 forward 10m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.61: ḃ1 forward 10m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.62: ax forward 20m/s flight online identification using δlon: Time history (1) ideal,
(2) turbulence.
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Figure 4.63: ax forward 20m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.64: ax forward 20m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.65: ay forward 20m/s flight online identification using δlat: Time history (1) ideal,
(2) turbulence.
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Figure 4.66: ay forward 20m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.67: ay forward 20m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.68: az forward 20m/s flight online identification using δcol: Time history (1) ideal,
(2) turbulence.
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Figure 4.69: az forward 20m/s flight online identification using δcol: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.70: az forward 20m/s flight online identification using δcol: Memory usage (1) ideal,
(2) turbulence.



CHAPTER 4. ONLINE MODEL IDENTIFICATION AND PARAMETER ESTIMATION 104

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time  sec

a L

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time  sec

a L

Figure 4.71: ṗ forward 20m/s flight online identification using δlat: Time history (1) ideal, (2)
turbulence.
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Figure 4.72: ṗ forward 20m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.73: ṗ forward 20m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.74: q̇ forward 20m/s flight online identification using δlon: Time history (1) ideal, (2)
turbulence.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

time  sec

no
. n

eu
ro

ns

stack − 50
stack − 100
stack − 150

0 2 4 6 8 10
0

50

100

150

time  sec

no
. n

eu
ro

ns

stack − 50
stack − 100
stack − 150

Figure 4.75: q̇ forward 20m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.76: q̇ forward 20m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.



CHAPTER 4. ONLINE MODEL IDENTIFICATION AND PARAMETER ESTIMATION 106

0 2 4 6 8 10
−0.01

−0.005

0

0.005

0.01

0.015

0.02

time  sec

a M

0 2 4 6 8 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time  sec

a M

Figure 4.77: q̇ forward 20m/s flight online identification using δcol: Time history (1) ideal, (2)
turbulence.
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Figure 4.78: q̇ forward 20m/s flight online identification using δcol: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.79: q̇ forward 20m/s flight online identification using δcol: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.80: ṙ forward 20m/s flight online identification using δr: Time history (1) ideal, (2)
turbulence.
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Figure 4.81: ṙ forward 20m/s flight online identification using δr: Network neurons (1) ideal,
(2) turbulence.
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Figure 4.82: ṙ forward 20m/s flight online identification using δr: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.83: ȧ1 forward 20m/s flight online identification using δlon: Time history (1) ideal,
(2) turbulence.
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Figure 4.84: ȧ1 forward 20m/s flight online identification using δlon: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.85: ȧ1 forward 20m/s flight online identification using δlon: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.86: ḃ1 forward 20m/s flight online identification using δlat: Time history (1) ideal,
(2) turbulence.
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Figure 4.87: ḃ1 forward 20m/s flight online identification using δlat: Network neurons (1)
ideal, (2) turbulence.
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Figure 4.88: ḃ1 forward 20m/s flight online identification using δlat: Memory usage (1) ideal,
(2) turbulence.
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Figure 4.89: Xu hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.90: Xu hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.2: Xu hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(34) 2(21) 0(1)

stack - 100 0(6) 0(11) 3(34) 0(2)

stack - 150 0(8) 265(265) 4(22) 0(2)
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Figure 4.91: Xθ hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.92: Xθ hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.3: Xθ hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 73(208) 42(122) 5(61) 0(0)

stack - 100 199(349) 0(284) 5(70) 0(45)

stack - 150 279(404) 320(320) 2(58) 0(0)
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Figure 4.93: Xa1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.94: Xa1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.4: Xa1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 140(243) 39(90) 8(55) 0(0)

stack - 100 238(356) 0(0) 9(59) 0(45)

stack - 150 255(359) 265(265) 4(67) 0(2)
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Figure 4.95: Yv hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.96: Yv hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.5: Y v hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(23) 0(8) 7(38) 0(0)

stack - 100 0(10) 0(171) 6(56) 0(0)

stack - 150 0(44) 0(140) 8(67) 0(0)
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Figure 4.97: Yφ hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.98: Yφ hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.6: Y φ hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(67) 0(88) 14(86) 0(0)

stack - 100 84(143) 24(305) 9(82) 0(78)

stack - 150 56(218) 25(306) 11(85) 0(0)
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Figure 4.99: Yb1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.100: Yb1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.7: Y b1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 39(167) 0(79) 8(49) 0(12)

stack - 100 129(307) 0(171) 7(61) 0(0)

stack - 150 48(298) 7(140) 10(63) 0(0)
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Figure 4.101: Zw hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.102: Zw hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.8: Zw hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 92(376) 0(61) 7(21) 0(0)

stack - 100 25(280) 98(301) 3(20) 1(2)

stack - 150 0(351) 6(414) 2(12) 0(0)
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Figure 4.103: Zδcol hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.104: Zδcol hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.9: Zδcol hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 292(292) 165(176) 1(3) 0(0)

stack - 100 404(404) 0(0) 1(18) 0(0)

stack - 150 351(397) 140(140) 1(16) 0(0)
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Figure 4.105: Lv hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.106: Lv hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.10: Lv hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(0) 2(27) 0(0)

stack - 100 0(17) 0(0) 3(32) 0(0)

stack - 150 0(0) 6(23) 5(31) 0(0)
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Figure 4.107: Lb1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.108: Lb1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.11: Lb1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 204(231) 6(6) 0(1) 24(70)

stack - 100 235(313) 171(171) 2(5) 130(244)

stack - 150 239(298) 140(140) 0(3) 116(395)
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Figure 4.109: Ma1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.110: Ma1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.12: Ma1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 208(261) 51(122) 1(49) 0(79)

stack - 100 345(364) 284(284) 0(119) 2(372)

stack - 150 359(359) 265(265) 0(111) 48(265)
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Figure 4.111: Nr hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.112: Nr hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.13: Nr hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(0) 0(0) 0(0)

stack - 100 0(0) 0(0) 0(0) 0(0)

stack - 150 0(0) 0(0) 0(0) 0(0)
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Figure 4.113: Nδr hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.114: Nδr hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.14: Nδr hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(0) 0(0) 0(1)

stack - 100 0(43) 0(0) 0(0) 0(0)

stack - 150 0(384) 0(0) 0(0) 0(0)
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Figure 4.115: Nδt hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.116: Nδt hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.15: Nδt hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(72) 0(0) 0(47)

stack - 100 6(113) 0(255) 0(0) 0(0)

stack - 150 0(219) 0(0) 0(0) 0(36)
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Figure 4.117: Aa1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.118: Aa1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.16: Aa1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 78(279) 77(90) 0(9) 0(76)

stack - 100 199(356) 0(284) 0(58) 197(242)

stack - 150 359(359) 265(265) 0(44) 16(16)
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Figure 4.119: Aδlon hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.120: Aδlon hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.17: Aδlon hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(1) 0(0) 0(0) 0(51)

stack - 100 0(2) 15(74) 0(0) 0(0)

stack - 150 358(359) 265(265) 0(0) 299(315)
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Figure 4.121: Bb1 hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.122: Bb1 hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.18: Bb1 hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 23(205) 0(0) 0(0) 0(0)

stack - 100 79(288) 0(0) 0(1) 0(0)

stack - 150 71(290) 0(0) 0(0) 0(0)
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Figure 4.123: Bδlat hover flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.124: Bδlat hover flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.19: Bδlat hover flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 105(204) 12(64) 0(0) 0(0)

stack - 100 44(268) 113(114) 0(0) 0(36)

stack - 150 179(298) 7(140) 0(0) 158(180)
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Figure 4.125: Xu forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.126: Xu forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.20: Xu forward 10m/s flight: No. of estimated values with 95(60)% confidence

Ideal turbulence
DM MDM DM MDM

stack - 50 0(35) 0(9) 0(9) 0(0)

stack - 100 13(145) 0(109) 0(3) 0(63)

stack - 150 0(92) 0(65) 0(3) 0(0)
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Figure 4.127: Xθ forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.128: Xθ forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.21: Xθ forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(49) 44(102) 0(2) 0(0)

stack - 100 38(161) 110(233) 0(0) 0(1)

stack - 150 0(264) 42(393) 0(0) 0(218)
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Figure 4.129: Xa1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.130: Xa1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.22: Xa1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 54(230) 22(205) 3(39) 0(5)

stack - 100 142(410) 133(257) 5(51) 1(63)

stack - 150 217(429) 0(0) 3(46) 0(271)
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Figure 4.131: Yv forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.

−2 0 2 4 6 8 10 12
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time  sec

Y
v

NN output
linear model

−2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time  sec

Y
v

NN output
linear model

Figure 4.132: Yv forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.23: Y v forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(74) 27(98) 6(47) 0(106)

stack - 100 21(114) 0(0) 4(57) 0(0)

stack - 150 0(138) 27(129) 8(52) 0(46)
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Figure 4.133: Yφ forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.134: Yφ forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.24: Y φ forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 66(108) 0(137) 26(116) 0(127)

stack - 100 114(166) 89(141) 15(125) 140(206)

stack - 150 155(246) 112(263) 18(128) 387(387)
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Figure 4.135: Yb1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.136: Yb1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.25: Y b1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 21(162) 0(43) 6(34) 0(51)

stack - 100 48(321) 0(0) 5(26) 31(99)

stack - 150 147(402) 0(193) 5(33) 203(249)
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Figure 4.137: Zw forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.138: Zw forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.26: Zw forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 3(386) 128(242) 0(9) 0(0)

stack - 100 32(410) 12(366) 1(5) 1(12)

stack - 150 22(385) 0(133) 0(0) 3(109)
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Figure 4.139: Zδcol forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.140: Zδcol forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.27: Zδcol forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 335(335) 10(65) 0(0) 12(12)

stack - 100 399(403) 184(184) 1(10) 0(87)

stack - 150 353(365) 245(280) 0(8) 1(217)
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Figure 4.141: Lv forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.142: Lv forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.28: Lv forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(16) 0(9) 5(22) 0(0)

stack - 100 0(0) 0(0) 3(35) 0(0)

stack - 150 0(55) 4(50) 2(26) 0(11)
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Figure 4.143: Lb1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.144: Lb1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.29: Lb1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 56(260) 52(80) 9(117) 0(37)

stack - 100 161(365) 133(181) 1(210) 135(195)

stack - 150 294(413) 202(202) 0(200) 249(249)
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Figure 4.145: Ma1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.146: Ma1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.30: Ma1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 294(311) 43(54) 18(211) 35(204)

stack - 100 400(444) 282(295) 13(259) 165(445)

stack - 150 405(446) 286(286) 5(227) 443(445)
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Figure 4.147: Nr forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.148: Nr forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.31: Nr forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(0) 0(0) 0(1)

stack - 100 0(0) 0(1) 0(1) 0(1)

stack - 150 0(6) 0(12) 0(1) 2(7)
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Figure 4.149: Nδr forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.150: Nδr forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.32: Nδr forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(34) 0(1) 0(0) 47(49)

stack - 100 0(86) 0(0) 0(0) 0(0)

stack - 150 0(213) 0(26) 0(0) 1(14)
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Figure 4.151: Nδt forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.

−2 0 2 4 6 8 10 12
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

time  sec

N
δ t

NN output
linear model

−2 0 2 4 6 8 10 12
−150

−100

−50

0

50

100

150

200

time  sec

N
δ t

NN output
linear model

Figure 4.152: Nδt forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.33: Nδt forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(12) 2(26) 0(0) 0(10)

stack - 100 0(89) 0(202) 0(0) 0(4)

stack - 150 0(165) 0(0) 0(0) 0(38)
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Figure 4.153: Aa1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.154: Aa1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.34: Aa1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 185(257) 0(17) 49(166) 1(128)

stack - 100 359(428) 148(148) 60(254) 194(234)

stack - 150 289(441) 286(286) 53(174) 53(405)
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Figure 4.155: Aδlon forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.156: Aδlon forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.35: Aδlon forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(3) 0(0) 0(5)

stack - 100 0(0) 37(38) 0(0) 0(0)

stack - 150 369(446) 328(328) 4(189) 351(351)
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Figure 4.157: Bb1 forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.158: Bb1 forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.36: Bb1 forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 64(238) 0(0) 1(85) 0(0)

stack - 100 152(325) 0(0) 1(120) 0(0)

stack - 150 254(417) 0(0) 0(85) 0(0)



CHAPTER 4. ONLINE MODEL IDENTIFICATION AND PARAMETER ESTIMATION 145

0 2 4 6 8 10
−5

0

5

10

15

20

25

30

35

40

time  sec

B
δ la

t

NN output
linear model

0 2 4 6 8 10
−5

0

5

10

15

20

25

30

35

40

45

time  sec

B
δ la

t

NN output
linear model

Figure 4.159: Bδlat forward 10m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.160: Bδlat forward 10m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.37: Bδlat forward 10m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 22(228) 0(64) 0(0) 0(0)

stack - 100 81(329) 37(127) 55(76) 140(176)

stack - 150 95(379) 206(206) 0(73) 339(421)
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Figure 4.161: Xu forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.162: Xu forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.38: Xu forward 20m/s flight: No. of estimated values with 95(60)% confidence

Ideal turbulence
DM MDM DM MDM

stack - 50 21(91) 0(12) 0(1) 0(0)

stack - 100 0(58) 0(32) 0(0) 0(0)

stack - 150 47(84) 0(351) 0(2) 2(5)
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Figure 4.163: Xθ forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.164: Xθ forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.39: Xθ forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 92(100) 1(1) 0(0)

stack - 100 0(71) 32(152) 0(0) 1(106)

stack - 150 24(97) 351(355) 0(0) 1(12)
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Figure 4.165: Xa1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.166: Xa1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.40: Xa1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 16(58) 35(60) 1(11) 0(0)

stack - 100 17(155) 60(126) 0(2) 2(69)

stack - 150 12(332) 0(430) 0(9) 1(132)
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Figure 4.167: Yv forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.168: Yv forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.41: Y v forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 25(89) 0(7) 8(48) 0(0)

stack - 100 10(123) 0(62) 7(48) 0(0)

stack - 150 59(92) 20(96) 5(72) 0(4)
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Figure 4.169: Yφ forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.170: Yφ forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.42: Y φ forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 82(191) 21(91) 58(196) 92(150)

stack - 100 227(365) 232(275) 51(220) 84(211)

stack - 150 157(430) 332(351) 21(219) 64(399)
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Figure 4.171: Yb1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.172: Yb1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.43: Y b1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 74(148) 2(2) 2(38) 0(17)

stack - 100 144(412) 22(57) 10(84) 29(32)

stack - 150 149(430) 0(19) 12(68) 0(399)
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Figure 4.173: Zw forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.174: Zw forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.44: Zw forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 37(259) 56(151) 0(1) 1(3)

stack - 100 142(343) 0(63) 0(0) 1(5)

stack - 150 95(333) 0(351) 0(0) 0(145)
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Figure 4.175: Zδcol forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.176: Zδcol forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.45: Zδcol forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 306(306) 0(0) 0(0) 1(97)

stack - 100 361(404) 60(349) 0(0) 62(405)

stack - 150 385(443) 286(351) 0(0) 0(296)
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Figure 4.177: Lv forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.178: Lv forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.46: Lv forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(0) 0(0) 0(41) 0(31)

stack - 100 0(21) 0(0) 0(1) 0(0)

stack - 150 0(36) 0(0) 2(4) 0(0)
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Figure 4.179: Lb1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.180: Lb1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.47: Lb1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 265(289) 6(6) 0(1) 69(263)

stack - 100 386(449) 91(91) 1(154) 396(458)

stack - 150 410(448) 19(19) 0(269) 333(439)
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Figure 4.181: Ma1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.182: Ma1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.48: Ma1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 88(270) 74(130) 0(0) 8(50)

stack - 100 198(417) 105(143) 0(0) 70(135)

stack - 150 231(439) 430(430) 0(0) 72(167)
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Figure 4.183: Mδcol forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.184: Mδcol forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.49: M δcol forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 149(282) 7(26) 0(2) 0(57)

stack - 100 146(395) 0(91) 0(0) 2(16)

stack - 150 248(434) 351(351) 0(0) 2(187)
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Figure 4.185: Nr forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.186: Nr forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.50: Nr forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(1) 0(0) 0(3) 0(0)

stack - 100 0(0) 0(0) 0(3) 0(0)

stack - 150 0(0) 0(0) 0(5) 0(0)
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Figure 4.187: Nδr forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.188: Nδr forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.51: Nδr forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 0(6) 0(10) 0(0) 0(5)

stack - 100 0(0) 0(0) 0(0) 0(3)

stack - 150 0(190) 0(204) 0(0) 0(152)
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Figure 4.189: Nδt forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.190: Nδt forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.52: Nδt forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 15(67) 0(13) 0(0) 1(9)

stack - 100 0(85) 5(75) 0(0) 0(2)

stack - 150 0(138) 0(197) 0(0) 0(219)
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Figure 4.191: Aa1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.192: Aa1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.53: Aa1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 92(188) 37(66) 0(1) 0(92)

stack - 100 104(335) 105(244) 0(4) 60(60)

stack - 150 130(309) 351(430) 0(1) 351(351)
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Figure 4.193: Aδlon forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.194: Aδlon forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.54: Aδlon forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 69(283) 0(0) 0(0) 0(0)

stack - 100 150(416) 0(0) 0(1) 0(0)

stack - 150 187(398) 367(367) 0(3) 351(351)
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Figure 4.195: Bb1 forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.196: Bb1 forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.55: Bb1 forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 162(276) 0(0) 1(3) 0(0)

stack - 100 177(397) 0(0) 0(19) 0(0)

stack - 150 95(351) 0(0) 0(83) 0(0)
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Figure 4.197: Bδlat forward 20m/s flight DM online estimation: (1) ideal, (2) turbulence.
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Figure 4.198: Bδlat forward 20m/s flight MDM online estimation: (1) ideal, (2) turbulence.

Table 4.56: Bδlat forward 20m/s flight: No. of estimated values with 95(60)% confidence

ideal turbulence
DM MDM DM MDM

stack - 50 179(240) 0(28) 0(0) 0(3)

stack - 100 248(359) 60(267) 0(39) 0(36)

stack - 150 155(351) 191(279) 0(99) 351(351)



Chapter 5

Reconfigurable Flight Control Design

5.1 Reconfigurable Control

The miniature helicopter is a versatile vehicle capable of aggressive maneuvers and complex
movements. Unlike their fixed-wing counterparts, helicopters have a distinct advantage of
hovering and flying backwards. Autonomy of these helicopters has shown successful appli-
cations in urban reconnaissance and search and rescue missions (Suresh et al., 1995; Kumar
et al., 2003). However, their performance has been limited by the design of the flight control
system (Johnson and Kannan, 2005). This is due to the flight control system been designed
using linearized mathematical models at various flight conditions (Savran et al., 2006). Gain
scheduling has been used to provide good performance within the flight envelope although
poor tracking performance has been shown under severe uncertainties due to unmodelled
dynamics and general fault failures (Suresh and Kannan, 2008).

In the presence of parameter uncertainties and unmodelled dynamics, reconfiguration of
the helicopter flight control law becomes desirable during different phases of flight such as:
hover, high speed cruise and autorotation. In the past years, the design of aircraft flight
control systems to accomplish reconfiguration, focused mainly on battle damage with loss
or failure of actuator surface effectiveness (de Weerdt, 2005; Chandler et al., 1995). This
approach makes use of Failure Detection Identification (FDI) and Adaptive Reconfigurable
Control (ARC) models to identify which failure has occurred. A switching mechanism chooses
which control actions should be used by identifying which model accurately predicted the
aircraft dynamics (de Weerdt, 2005). This approach requires a controller to be designed for
each failure model. To model the failures accurately, a priori knowledge of aircraft behaviour
for each failure is required, which is hard to realize (de Weerdt, 2005).

165
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5.1.1 Neural network adaptive control

In the case of a miniature unmanned helicopter, the flight controller is required to adapt
to changes in the system dynamics and reconfigure its control law to guarantee stability
throughout the entire flight envelope (Johnson and Kannan, 2005; Leitner et al., 1995; Mun-
zinger, 1998; Mettler, Kanade, Tischler and Messner, 2000). Neural networks have been
used to improve the performance of the flight control systems by adapting to varying dy-
namics and parameter uncertainties (Kar and Behera, 2009; Suresh and Kannan, 2008; John-
son and Kannan, 2005; Pesonen et al., 2004; Chuntao and Yonghong, 2006; Calise and Rys-
dyk, 1997; Savran et al., 2006). Johnson and Kannan (2002) developed a neural network-
based direct adaptive control system which enabled adaptation to the outerloop dynamics
that controls the trajectory and using Pseudo Control Hedging (PCH) to prevent adapta-
tion of the innerloop that controls attitude. This enabled the bandwidth in the outerloop
thus improving tracking performance. de Weerdt (2005) used a combination of the dynamic
inversion and neural networks to develop an adaptive controller flight control reconfigura-
tion. The neural networks were used to compensate for modelling errors introduced by the
inverse controller and also provide adaptation to any kind of unanticipated failures during
flight.

Direct adaptive control

The objective of a direct adaptive neural controller, shown in Figure 5.1, is to approximate
the control law using neural networks such that the system response follows the reference
command. The neural network input vector V is comprised of system outputs y and past
control variable deflections u and the reference command yd. The output u is the present
control variable deflections represented as:

 

 

Helicopter 
model y 

+ 
_ e 

yd 

 

Neural 
Controller 

e

u

Figure 5.1: Neural Network Direct Adaptive Control System.

u(k) = wyσ(whV ) (5.1)
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where wy is the weight matrix between the hidden layer and the output layer with h hidden
neurons, wh is the weight matrix between the input layer and the hidden layer and σ is the
activation function in the hidden layer (Billings et al., 1992). The learning goal is to find the
optimal weights such that:

J
→
min

N∑
k=1

e(k)2 (5.2)

where J is the cost function and e(k) is the difference between the desired target and the
aircraft response defined as:

e(k) = yd(k)− y(k) (5.3)

In the case of an unstable aircraft, such as the helicopter, the response of the aircraft may
grow unbounded for a bounded control input (Suresh and Kannan, 2008). This will cause
the state and output variables to escape to infinity. This problem is addressed by training the
network off-line within a finite sequence and controller weights are adapted online for any
aerodynamic uncertainty and control surface failures.

Dynamic inversion adaptive control

The method of dynamic inversion control is a form of feedback linearization which states that
if an exact form of the system dynamic equations is known, and all the states are measurable,
a controller can be formulated to make the input-output behaviour of the system that of a set
of integrators. Given the system dynamics in the form (de Weerdt, 2005):

ẋ = F (x, u, t) (5.4)

y = h(x, u, t) (5.5)

where x is the state vector, u is the control input vector and y is the output vector.

Assuming that the exact form of the system dynamic equations are known and all the states
can be measured, a controller can be formulated to make the input-output behaviour of the
system that of a set of integrators. Defining a state-space system:

ẋ = Ax+Bu (5.6)

y = Cx (5.7)

ẏ = Cẋ = CAx+ CB(u0 + ∆u) (5.8)
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where u0 is the trim control input and ∆u is the variable control input. Isolation of the control
inputs can be performed:

CB∆u = ẏ − (CAx+ CBu0) (5.9)

The objective of the dynamic inversion control law is to solve for an inversion gain matrix P
such that:

∆u = P (ẏd − ẏ0) (5.10)

where

ẏ0 = CAx+ CBu0 (5.11)

ẏd = ẏ (5.12)

y0 is the initial response and yd is the desired response from the system dynamics. Fur-
thermore, if the plant is comprised of estimated parameters which include modelling errors,
then

Â 6= A (5.13)

B̂ 6= B (5.14)

to compensate for modelling errors, Equation 5.12 can be augmented as

ẏ = f̂(x,Θ) + ẏd (5.15)

where Θ depend on the modelling errors such that

Θ = [θ1 . . . θn]T (5.16)

where n is the size of the state vector. Equation 5.15 forms part of a linear regression model
and can be solved as described in Section 4.5.2. Thus, RBF-based neural networks are then
integrated as the adaptive element to solve for the modelling errors.

5.2 Controller Development

The proposed structure of a NN-based control system is shown in Figure 5.2. The system
dynamics are identified using neural networks as described in Section 4.4. The parameter
estimation is then performed to extract aerodynamic derivatives as described in Section 4.5.
These parameters are used in the dynamic inversion control law and the neural networks
are used to compensate for modelling errors introduced by these estimated parameters. This
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forms the basis of a neural network reconfigurable flight controller (NN-RFC), which retains
stability as the aircraft moves away from its operating point. This is achieved as neural net-
works are used to compensate for the increasing modelling errors developed by the dynamic
inversion law.
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Figure 5.2: Structure of NN-RFC Control System
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A miniature helicopter state-space system can be described
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ṗ

q̇

ṙ
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(5.17)

where Â and B̂ are the estimated system and control matrices respectively. These matrices
are comprised of the estimated parameters from Chapter 4. The input vector deflections can
thus be computed based on the dynamic inverse adaptive control law:
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(5.18)

5.2.1 Attitude control

Attitude control for the R-50 small-scaled helicopter has been studied (Mettler et al., 2000).
The identified model of the vehicle dynamics explicitly accounts for the coupled rotor/ sta-
biliser/fuselage dynamics. The same approach will be used here. It is assumed that correct
model identification and parameter estimation was performed to obtain the aerodynamic
parameters for matrices Â and B̂. These matrices are given in Section 4.5.6. The MAT-
LAB/SIMULINK control system setup is given in Figure 5.3. For attitude control design,
it has been shown that the attitude loop needs to use the attitude angles and the attitude
rates for feedback (Mettler et al., 2000). The system desired output can therefore be defined:

yd = [φ φ̇ θ θ̇] (5.19)
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Figure 5.3: NN-RFC Control System Setup

where φ and θ are the roll and pitch angles respectively. The control inputs vector comprises
of the cyclic inputs δlon, δlat, collective δcol, yaw pedal δr and throttle level δt defined as:

u = [δlon δlat δcol δr δt] (5.20)

5.2.2 Attitude control system requirements

The change of the helicopter attitude has a direct effect on the longitudinal and lateral ma-
neuvers of the helicopter, thereby making attitude control performance essential for the over-
all helicopter performance. The following control requirements are specified (Mettler et al.,
2000):

• Speed of response: High bandwidth is required for good handling qualities. For full-
scale helicopters, the specification for a level 1 handling quality is around 2 rad/sec.
This also affects tracking (velocity and position) control.

• Sufficient damping of the rotor/stabiliser bar/fuselage mode: to limit the short period
roll and pitch oscillations.

• Disturbance rejection: atmospheric turbulence act as input disturbances which can be
rejected through high bandwidth attitude control.
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5.3 Controller Validation

The validation process verifies how well the developed control system ’tracts’ reference com-
mands for pitch θref and roll φref and the effects of the cross-coupling effects in the various
flight phases. To further determine conroller performance, gain and phasis margin analysis
is required. It is expected that the lightly damped rotor/stabilizer/fuselage modes, shown
in Section 3.3, constitutes a performance and robustness limitation. To optimize the attitude
control system, the following specifications have being used (Mettler et al., 2000):

• Eigenvalue location: All real parts of the system eigenvalues must less or equal to zero
in all flight phases.

• Gain and phase margins: a minimum of 45 deg of phase margin and 6dB of gain
margin must be satisfied (MIL-F-9490).

• Crossover frequency: to reduce control activity, the crossover frequency limit is set at
a Level 1 flying qualities of 10 rad/s.

It is expected to see different performance levels for each flight phase and input disturbance.
The RBF network memory usage is expected to increase as a consequence to a trade-off be-
tween controller performance and system robustness.



Chapter 6

Conclusion and Recommendations

The development of the miniature helicopter simulation model was achieved using the MAT-
LAB/ SIMULINK environment. The equations of the motion was a combination of classical
rigid body and rotor dynamics which included the effect of the stabilizer bar. This was done
by lumping the main rotor and stabilizer bar flapping dynamics into tip-path plane flapping
dynamics. The aerodynamic model was subjected to a Dryden Spectrum model to explore
the effects of atmospheric turbulence on the measured variables. The effect of slow cruise
speed (V ≈ 10m/s) on the helicopter dynamics was achieved through modelling main/tail
rotor wake interactions.

The trim and stability analysis was achieved for three trim conditions: hover flight, 10m/s
forward flight and 20m/s forward flight. Strong main/tail wake interactions resulted in
the forward 10m/s forward flight conditions as the natural modes were strongly damped.
The large perturbations in helicopter dynamics occurred due to the Phugoid mode, which
transitioned from an unstable to stable mode as the forward flight speed increases. The
relatively constant coupled rotor/stabilizer/fuselage modes is an indication of the rigid rotor
that characterizes miniature helicopters.

The use of the RBFN over MLPN network for parameter estimation was proven as the use
of the spread constant enabled the RBF-based network to accurately predict the underlying
dynamics of the system. The NN-based model identification produced satisfactory results
although the presence of atmospheric turbulence and sensor noise had an adverse effect on
network size and memory usage. The RBF networks showed good robustness to noise for
all flight conditions but this is heavily dependent on good signal-to-noise ratios.

The Delta Method (DM) and the Modified Delta Method (MDM) was investigated for the
NN-based online estimation of aerodynamic parameters. It can be clearly seen that the MDM
method complimented the RBF-based identification approach with good robustness to noise.
This could be evaluated by an increasing number of estimated parameters with high confi-
dence as the helicopter transitions from hover to forward flight. This was especially the case
for the force and moment derivatives in both longitudinal and lateral dynamics. The for-
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ward 10m/s flight condition produced the least number of high confidence parameters. This
could be due to the strong main/tail rotor wake interactions that might occur in that flight re-
gion. This is contrary to practical observations whereby forwards speeds higher than 5m/s,
generaly produce good estimation results. Moreover, poor signal content and unmodelled
dynamics prevented the accurate estimation of the yaw damping derivative.

The implementation of the neural-based adaptive control using an model inversion tech-
nique allows the use of the identified parameters in computation the required control signal
to minimize the error between the plant output and the desired output. The neural net-
works act as error compensators introduced by the inversion method. The combination of
the online estimation of the aerodynamic parameters and adaptive control results in a recon-
figurable control law robust to aerodynamic uncertainties due to unmodelled dynamics and
general fault failures.

6.1 Recommendations

• In this study, RBF networks were used for online model identification and parameter
estimation. A fixed neuron spread of 0.8326 was used and the goal/threshold value
was determined using trial and error. Using an optimization method for the neuron
spread and the goal value could improve network performance and possibly decrease
convergence time. This approach could also prevent the network to saturate when
the signal-to-noise ratio is too low for accurate model identification and parameter
estimation.

• An offline-online approach should be investigate for the accurate estimation of the yaw
dynamics. The identification of the yaw feedback rate and the controller gains is essen-
tial for successful identification and parameter estimation.

• The investigation into a variable moving window optimized to maximize high confi-
dence estimated values thereby increase the bandwidth of the reconfigurable control
system in the presence of sensor noise and atmospheric turbulence.

• A study into an alternative to neural-based adaptive control to compensate for mod-
elling inversion errors can further increase the reliability of miniature unmanned heli-
copters for urban service and their integration into civilian airspace.
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Appendix A: State Space
Representation for Stability Analysis
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Hover Flight

A =



0.0311 0 0 0 -9.81 0 0 0 0 -9.8091 0
0 0.0916 0.0009 9.8091 0 0 0.0019 0 -0.0211 0 9.8091
0 0 -0.7751 -0.1293 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0.9999 -0.0132 0 0
0 0 0 0 0 0 0 0.0132 0.9999 0 0
0 0.0846 0.0106 0 0 0 0.0070 0 -0.0769 0 405.01
0 0 0 0 0 0 0 0 0 214.42 0
0 -0.6186 0 0 0 0 -0.0514 0 0.56293 0 0

0.0025 0 0 0 0 0 0 -1 0 -8.35 0
0 0.0025 0 0 0 0 -1 0 0 0 -8.35



B =



0 0 0 0 0
0 0 0.1707 3.2515 0
0 0 -133.7566 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1.8276 11.8498 0
0 0 0 0 0
0 0 0 -86.6513 -42.7716

35.0700 0 0 0 0
0 35.0700 0 0 0
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Forward Flight 10 m/s

A =



-0.1508 0 -0.0340 0 -9.7774 0 0 0.8169 -0.0013 -9.7580 0
-0.0001 0.0761 0.0018 9.7767 0.0095 0 -0.8150 0 -10.0072 0 9.7580
-0.2976 0 -1.5604 -0.1160 0.7986 0 0.0013 10.0167 0 0 0

0 0 0 0 0 0 1 -0.0010 -0.0817 0 0
0 0 0 0 0 0 0 0.9999 -0.0119 0 0
0 0 0 0 0 0 0 0.0119 1.0033 0 0

0.0021 0.0289 0.0195 0 0 0 0.0069 0.0001 -0.0263 0 404.61
-0.0287 0 0.4161 0 0 0 0 0.2859 0 214.13 0
0.0114 -0.2113 -0.0009 0 0 0 -0.0506 -0.0008 0.1923 0 0
0.0025 0 -0.0001 0 0 0 0 -1 0 -8.35 0

0 0.0023 0 0 0 0 -1 0 0 0 -8.35



B =



0 0 -0.9450 0 0
0 0 0.1645 3.0690 0
0 0 -144.3356 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1.7687 11.1847 0
0 0 1.2242 0 0
0 0 0 -81.7880 -42.7716

35.0700 0 0.2915 0 0
0 35.0700 0 0 0
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Forward Flight 20 m/s

A =



-0.3007 0.0009 -0.0207 0 -9.2555 0 0 7.0245 -0.1264 -8.9200 0
-0.0054 0.0672 0.0042 9.2540 0.0590 0 -7.0217 0.0018 -20.0019 0 8.9200
-0.1769 0.0009 -1.9183 -0.1679 3.2508 0 0.1264 20.0074 0 0 0

0 0 0 0 0 0 1 -0.0064 -0.3512 0 0
0 0 0 0 0 0 0 0.9999 -0.0181 0 0
0 0 0 0 0 0 0 0.0192 1.0597 0 0

-0.0179 0.0074 0.0403 0 0 0 0.0101 0.0065 -0.0068 0 395.49
-0.4864 -0.0001 0.4775 0 0 0 0 0.1270 0 209.38 0
0.1496 -0.0543 -0.0525 0 0 0 -0.0742 -0.0478 0.0494 0 0
0.0034 0 0.0010 0 0 0 0 -1 0 -8.35 0

0 0.0043 0 0 0 0 -1 0 0 0 -8.35



B =



0 0 -3.9029 0 0
0 0 0.1994 3.1358 0
0 0 -174.7897 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 2.9999 11.4282 0
0 0 27.0623 0 0
0 0 0 -83.5683 -42.7716

35.0700 0 0.6248 0 0
0 35.0700 -0.0039 0 0
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Appendix B: Parameter Statistics

Mean and Confidence Interval

The mean value can be regarded as the ’central tendency’ of a variable. This is calculated as:

x̄ =
1

n

n∑
i=1

xi (1)

where n is the number of observed values of x. But this method can only be made meaning-
ful with its associated confidence intervals, which give a range of values (upper and lower
bounds) if a level of certainty p = 0.05. Then there is a 95-percent probability the population
mean will fall within these bounds. Given a random sample with a standard deviation σ, the
confidence intervals for the population mean are defined as:

z1,2 = x̄± 1.96σ/
√
n (2)

The computation of the intervals assume a normal distribution of values around the popu-
lation mean value. This method indirectly evaluates whether the RBFN has adequately rep-
resented the dynamics required to estimate the parameter within the specified confidence
level.

Variance and Standard Deviation

The variance of a variable distribution is the expected square value of the deviation of that
variable from its expected mean value. In general, the population variance with finite size n
is given by:

σ2 =
1

n

n∑
i=1

(xi − x̄)2 (3)

Standard deviation of a variable distribution is simply the square root of its variance. It
shows how much variation there is from the estimated mean value. A low standard devia-
tion indicates the data samples tend to be very close to the expected mean and a higher value
indicates the data samples are spread out over a large range of values. Denoted as σ, it is
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defined as:

σ =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (4)

Cramer-Rao Lower Bound

An important question in estimation theory is that the estimated parameter, denoted here as
θ̂ converges to the unknown target parameter θ. Unbiasedness is one desirable property that
indicates the estimator hits its target given as:

E(θ̂) = θ (5)

In this context, the Cramer-Rao Lower Bound (CRLB) will give the minimal achievable vari-
ance for any unbiased estimator. This method is often used to provide a benchmark against
which the performance of any unbiased estimator can be compared. The closer the estimate
is to the CRLB, the less its variance associated to its mean value. Given a population with
mean µ and variance σ2, the information matrix can be defined:

I =

(
n
σ2 0
0 n

2σ4

)
(6)

So given a sample with mean x̄ and variance s2 which are estimators of µ and σ2 the bound
on those estimates is given as:

V (x̄) ≥ σ2

n
(7)

and the bound on the best possible estimator of the parameter µ in terms of variance is:

V (s2) ≥ 2σ4

n
(8)

These inequalities can also be represented as a percentage away from the optimal estimate
with the lowest variance. Given the estimation is performed online, the information on the
entire population is not available therefore the CRLB will have little significance on parame-
ter reliability.
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Appendix C: Online Estimation
Algorithm

The MATLAB source code for the Modified Delta Method and Delta Method online estima-
tion algorithms is described below:

% Nonlinear Model identification

% The SIMULINK model needs to be validated based on the mathematical

% equations provided by Gravilet et al

clear all

clc

atmos = 0;

height = 50;

Lw = height/0.3028;

turb = 0;

switch atmos

case 0

sigmaW = 0;

case 1

sigmaW = 0.1*15;

case 2

sigmaW = 0.1*30;

case 3

sigmaW = 0.1*45;

end

% set flight condition

for s = 1:3

cond = s;

% --------------------LINEAR MODEL----------------------

% Initialize linear model
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[A,B,C,D,init,inputs] = InitLinearFunc(s);

% enter control signals: d_lon to d_r

for rs = 4:5

%condition for control

switch rs

case 1

meas_ch = [1 5 7];

case 2

meas_ch = [2 4 8];

case 3

meas_ch = [3 5];

case 4

meas_ch = 6;

case 5

meas_ch = 6;

end

% choice of simulation signal

ch = 1;

% Initialize nonlinear model

[Omeg0,u0,v0,w0,phi0,theta0,psi0,p0,q0,r0,xe0,ye0,ze0,a0,b0,inputs]...

= InitNonlinearFunc(cond);

% set develop identification signal

[d_lon,d_lat,d_col,d_r,d_t,noise,timespan] = SignalGen(rs,ch,inputs,cond);

% yaw gyro noise

% assume no noise for initial comparison

if noise == 0

noisemin = -1e-20;

noisemax = 1e-20;

else

noisemin = -noise;

noisemax = noise;

end

for ch_out = 1:length(meas_ch)

% sliding window parameter

for sldwin = 150

%------running nonlinear simulink model------%

[t,x,y] = sim(’OnlineModel’,timespan,...

[],d_lon,d_lat,d_col,d_r,d_t);

%----------------------------------%
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% save choice of control signal

switch rs

case 1

savech = ’dlon’;

case 2

savech = ’dlat’;

case 3

savech = ’dcol’;

case 4

savech = ’dr’;

case 5

savech = ’dt’;

end

% save choice of flight condition

switch s

case 1

fold = ’Online Estimation\ParaEst\MDM\Hover\’;

case 2

fold = ’Online Estimation\ParaEst\MDM\Forward10\’;

case 3

fold = ’Online Estimation\ParaEst\MDM\Forward20\’;

end

% create counter

counter = length(t);

window_size = size(dlon,2);

tic

for cd =1:counter

input_set = 0;

input_set = [u(cd,:);v(cd,:);w(cd,:);p(cd,:);q(cd,:);r(cd,:);...

phi(cd,:);theta(cd,:);a1(cd,:);b1(cd,:);...

dlon(cd,:);dlat(cd,:);dcol(cd,:);dr(cd,:);dt(cd,:)];

switch meas_ch(ch_out)

case 1

output_set = diff(ax(cd,:));

goal = 1e-7;

plotdisp = ’\Delta X’;

savevar = ’X’;
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par_ch = {’u’;’theta’;’a1’};

par_valplot = {’{u}’;’{\theta}’;’{a1}’};

par_tar = [A(3,3) A(3,7) A(3,15)];

case 2

output_set = diff(ay(cd,:));

goal = 1e-7;

plotdisp = ’\Delta Y’;

savevar = ’Y’;

par_ch = {’v’;’phi’;’b1’};

par_valplot = {’{v}’;’{\phi}’;’{b1}’};

par_tar = [A(4,4) A(4,6) A(4,16)];

case 3

output_set = diff(az(cd,:));

goal = 1e-7;

plotdisp = ’\Delta Z’;

savevar = ’Z’;

par_ch = {’w’;’d_col’};

par_valplot = {’{w}’;’{\delta_{col}}’};

par_tar = [A(5,5) B(5,3)];

case 4

output_set = diff(aL(cd,:));

goal = 1e-7;

plotdisp = ’\Delta L’;

savevar = ’L’;

par_ch = {’v’;’b1’};

par_valplot = {’{v}’;’{b1}’};

par_tar = [A(9,4) A(9,16)];

case 5

output_set = diff(aM(cd,:));

goal = 1e-7;

plotdisp = ’\Delta M’;

savevar = ’M’;

if (cond > 1) & (rs == 3)

par_ch = {’d_col’};

par_valplot = {’{\delta_{col}}’};

par_tar = [B(10,3)];

elseif rs == 1

par_ch = {’a1’};

par_valplot = {’{a1}’};

par_tar = [A(10,15)];

end

case 6

output_set = diff(aN(cd,:));
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goal = 1e-5;

plotdisp = ’\Delta N’;

savevar = ’N’;

if rs == 4

par_ch = {’r’;’d_r’};

par_valplot = {’{r}’;’{\delta_{r}}’};

par_tar = [A(11,3) B(11,4)];

elseif rs == 5

par_ch = {’d_t’};

par_valplot = {’{\delta_{t}}’};

par_tar = [B(11,5)];

end

case 7

output_set = diff(acc_a1(cd,:));

goal = 1e-7;

plotdisp = ’\Delta A’;

savevar = ’A’;

par_ch = {’a1’;’d_lon’};

par_valplot = {’{a1}’;’{\delta_{lon}}’};

par_tar = [A(15,15) B(15,1)];

case 8

output_set = diff(acc_b1(cd,:));

goal = 1e-7;

plotdisp = ’\Delta B’;

savevar = ’B’;

par_ch = {’b1’;’d_lat’};

par_valplot = {’{b1}’;’{\delta_{lat}}’};

par_tar = [A(16,16) B(16,2)];

end

% label signals

signals = {’u’;’v’;’w’;’p’;’q’;’r’;’phi’;’theta’;’a1’;’b1’;...

’d_lon’;’d_lat’;’d_col’;’d_r’;’d_t’};

% setup of input set differential variations

input_set = diff(input_set’)’;

% compute the standard deviation and mean value of each input signal

Idev = std(input_set’);

Imean = mean(input_set’);

[rf,s] = size(input_set);
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% initialize counter

j = 0;

count = 0;

for j = 1:rf

if ((Idev(j) < 1e-6) & (Imean(j) < 1e-7))

count(j) = 0;

else

count(j) = 1;

end

end

% find column where

meas = find(count == 0);

% eliminate signals with zero effect

input_set(meas,:) = [];

Idev(meas) = [];

Imean(meas) = [];

signals(meas) = [];

% generate estimation input/output set

est_sig = input_set;

est_out = output_set;

if cd == 1 % guaranteed at time = 0

netsize(cd) = 0;

for i = 1:j

par_est(i,cd) = 0;

lower_est(i,cd) = 0;

upper_est(i,cd) = 0;

outliers(i,cd) = 0;

end

elseif netsize(cd-1) == 0 % no network validation for size == 0

if isempty(Idev) == 0 % IFF control signal exist then proceed

spread = 0.8326;

net = newrbf(est_sig,est_out,goal,spread); % create network

nnsize = net.layers{1}.size;

nninput = net.inputs{1}.size;

netsize(cd) = nnsize;

netinput(cd) = nninput;

% modified delta method

[j,k] = size(est_sig);

for i = 1:j

variable = zeros(j,k);

variable(i,:) = est_sig(i,:);
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% simulate modified input file

mdm_out = sim(net,variable);

denom = est_sig(i,:);

% find indices that will lead to large variances

indices = find(abs(denom) < 1e-5);

denom(indices) = 0;

result = mdm_out./denom;

ind = isinf(result);

result(ind) = [];

% removal of outliers - 2 iterations

for h = 1:2

diffd = result - mean(result);

ind2 = find(abs(diffd) > std(result));

result(ind2) = [];

end

store(i) = {result};

par_est(i,cd) = mean(result);

% 95-percent probability confidence level

lower_est(i,cd) = 1.96*std(result)/sqrt(length(result));

upper_est(i,cd) = 1.96*std(result)/sqrt(length(result));

% this represents the number of outliers removed. The higher the value,

% the more reliable is the estimate

outliers(i,cd) = k - length(result);

end

else

netsize(cd) = 0;

netinput(cd) =15-length(meas);

[j,k] = size(est_sig);

% parameter remained unchanged

for i = 1:j

par_est(i,cd) = par_est(i,cd-1);

lower_est(i,cd) = lower_est(i,cd-1);

upper_est(i,cd) = upper_est(i,cd-1);

outliers(i,cd) = outliers(i,cd-1);

end

end

elseif nninput == 15-length(meas) % validation - compare input sizes

val_out = sim(net,input_set);

% compute the mean square error

error = output_set - val_out;

err_mse = sum(error.ˆ2)/length(error);

if err_mse > 1e-5 % create new network is error is above threshold

spread = 0.8326;
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net = newrbf(est_sig,est_out,goal,spread);

nnsize = net.layers{1}.size;

nninput = net.inputs{1}.size;

netsize(cd) = nnsize;

netinput(cd) = nninput;

% modified delta method

[j,k] = size(est_sig);

for i = 1:j

variable = zeros(j,k);

variable(i,:) = est_sig(i,:);

% simulate modified input file

mdm_out = sim(net,variable);

denom = est_sig(i,:);

% find indices that will lead to large variances

indices = find(abs(denom) < 1e-5);

denom(indices) = 0;

result = mdm_out./denom;

ind = isinf(result);

result(ind) = [];

% removal of outliers - 1 iterations

for h = 1:2

diffd = result - mean(result);

ind2 = find(abs(diffd) > std(result));

result(ind2) = [];

end

store(i) = {result};

par_est(i,cd) = mean(result);

% 95-percent probability confidence level

lower_est(i,cd) = 1.96*std(result)/sqrt(length(result));

upper_est(i,cd) = 1.96*std(result)/sqrt(length(result));

% this represents the number of outliers removed. The higher the value,

% the more reliable is the estimate

outliers(i,cd) = k - length(result);

end

else

netsize(cd) = netsize(cd-1);

netinput(cd) = netinput(cd-1);

[j,k] = size(est_sig);

% parameter remained unchanged

for i = 1:j

par_est(i,cd) = par_est(i,cd-1);

lower_est(i,cd) = lower_est(i,cd-1);

upper_est(i,cd) = upper_est(i,cd-1);
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outliers(i,cd) = outliers(i,cd-1);

end

end

else

if isempty(Idev) == 0 % IFF control signal exist then proceed

spread = 0.8326;

net = newrbf(est_sig,est_out,goal,spread); % create network

nnsize = net.layers{1}.size;

nninput = net.inputs{1}.size;

netsize(cd) = nnsize;

netinput(cd) = nninput;

% modified delta method

[j,k] = size(est_sig);

for i = 1:j

variable = zeros(j,k);

variable(i,:) = est_sig(i,:);

% simulate modified input file

mdm_out = sim(net,variable);

denom = est_sig(i,:);

% find indices that will lead to large variances

indices = find(abs(denom) < 1e-5);

denom(indices) = 0;

result = mdm_out./denom;

ind = isinf(result);

result(ind) = [];

% removal of outliers - 1 iterations

for h = 1:2

diffd = result - mean(result);

ind2 = find(abs(diffd) > std(result));

result(ind2) = [];

end

store(i) = {result};

par_est(i,cd) = mean(result);

% 95-percent probability confidence level

lower_est(i,cd) = 1.96*std(result)/sqrt(length(result));

upper_est(i,cd) = 1.96*std(result)/sqrt(length(result));

% this represents the number of outliers removed. The higher the value,

% the more reliable is the estimate

outliers(i,cd) = k - length(result);

end

else

netsize(cd) = 0;

netinput(cd) =15-length(meas);
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[j,k] = size(est_sig);

% parameter remained unchanged

for i = 1:j

par_est(i,cd) = par_est(i,cd-1);

lower_est(i,cd) = lower_est(i,cd-1);

upper_est(i,cd) = upper_est(i,cd-1);

outliers(i,cd) = outliers(i,cd-1);

end

end

end % IF loop

end %FOR loop network computation - per time window

[j,k] = size(est_sig);

for i = 1:length(par_ch)

for ii = 1:j

check(ii) = isequal(par_ch(i),signals(ii));

if check(ii) == 1

channel(i) = ii; % pre-determined channels

end

end

end

% PARAMETER PLOTTING SECTION

% --------------------------

for i= 1:length(par_ch)

par_plot = par_est(channel(i),:);

boundary = lower_est(channel(i),:);

% choose every 20 value

val_count = 1:20:length(par_est);

par_plot = par_plot(val_count);

boundary = boundary(val_count);

par_time = t(val_count);

errorbar(par_time,par_plot,boundary,’o:’,’Linewidth’,2);

grid on;

hold on;

plot(t,par_tar(i).*ones(1,length(t)),’k’,’Linewidth’,2);

legend(’NN output’,’linear model’);

xlabel(’time \it sec’);

ylabel(strcat(savevar,’_’,par_valplot(i)));

set(gcf,’PaperUnits’,’points’,’PaperPosition’,[40,200,500,400]);

set(gcf,’PaperType’,’A4’);

whitebg([1 1 1]);
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set(gcf,’Color’,[1,1,1]);

saveas(gcf,[fold,savevar,par_ch{i},’noise’,num2str(noise*100),’.pdf’]);

cla;

sav_plot = par_est(channel(i),:);

save([fold,savevar,par_ch{i},’noise’,...

num2str(noise*100),’stack’,...

num2str(sldwin),’.mat’],’sav_plot’);

end

end % FOR loop sliding window choice

end % FOR loop measure output choice

end % FOR loop control signal choice

end % FOR loop flight condition choice
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