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ABSTRACT

The goal of this project was to evaluate the effectiveness of stochastic 
programming techniques when applied to the airline scheduling process to 

reduce the effect of stochastic flight delays. A variety  of traditional and stochastic 
programming models were developed for generating flight schedules. The 

resultant flight schedules were tested using simulations to evaluate their 
performance in real-world conditions with regard to flight delays, and their effects 

on the schedule’s operations. It was found that stochastic programming 
techniques were able to improve the delay  recovery  performance of the 

schedules at the cost of decreasing the schedule’s profit; and that flight 
schedules which are more dense with flight activity are affected more by  the 

stochastic programming techniques. The use of stochastic programming 
techniques is recommended for the cases where an airline’s flight schedule has a 

high density  of activity  and the negative effects of flight delays needs to be 
minimized.
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NOMENCLATURE

F set of flights
K set of fleets
Sk number of aircraft of fleet k
Gk set of ground arcs in fleet k’s network
Lk set of nodes in fleet k’s network
cik cost to fly flight i with fleet type k
xik 1 if flight i flown by fleet k, 0 otherwise
ygk number of aircraft on ground arc g in fleet k’s network
b1lik 1 if flight i begins at node l in fleet k’s network

-1 if flight i ends at node l in fleet k’s network, 0 otherwise
b2lgkb2lgk 1 if ground arc g begins at node l in fleet k’s network

-1 if ground arc g ends at node l in fleet k’s network, 0 
otherwise

d1ik 1 if flight i crosses the count time in fleet k’s network, 0 
otherwise

d2gkd2gk 1 if ground arc g crosses the count time in fleet k’s 
network, 0 otherwise

Nik number of arc copies of flight i in fleet k’s network
cnik cost to fly copy n of flight i with fleet type k
xnik 1 if copy n of flight i flown by fleet k, 0 otherwise
b1lnikb1lnik 1 if copy n of flight i begins at node l in fleet k’s network

-1 if copy n of flight i ends at node l in fleet k’s network, 0 
otherwise

d1nikd1nik 1 if copy n of flight i crosses the count time in fleet k’s 
network, 0 otherwise

pi penalty variable for flight i
qi seat price for flight i
dmi passenger demand for flight i
znik profit of copy n of flight i with fleet type k
hk aircraft seat capacity of fleet type k
w Number of Scenarios Generated
vr 1 if flight duplicate r is flown, 0 otherwise
Rnik Set of duplicate scenario flight arcs for copy n of flight i 

flown by fleet type k
Δ Set of scenario levels
δ Scenario level
α CCP constraint tolerance
j1rδl 1 if duplicate flight r begins at node l in scenario δ's 

network
-1 if duplicate flight r ends at node l in scenario δ's 
network, 0 otherwise

j2rδglj2rδgl 1 if ground arc g begins at node l in scenario δ’s network
-1 if ground arc g ends at node l in scenario δ’s network, 0 
otherwise
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1! INTRODUCTION

The structure of this report is as follows. Section 1 offers an introduction to the 

topics relevant to the project, presents the objectives of the project and gives a 
motivation for the project. Section 2 describes the methodology used during the 

completion of the project. Section 3 discusses the properties of flight delays and 
their distributions. Section 4 presents the various operations research models 

considered and developed for use during the project; both traditional mixed-
integer network flow models and stochastic programming models are present. 

Section 5 describes the Monte Carlo Simulation used during the project to 
evaluate the operational performance of the schedules generated. Section 6 

presents the variety  of test situations that were generated for the purpose of 
running and evaluating the models used for the project. Section 7 presents the 

variety  of parameter settings which were used for the stochastic programming 
models. Section 8 presents the observations of the project, namely  the solver 

performance measures, schedule characteristics and the Monte Carlo Simulation 
outcomes. Section 9 presents and discusses the results obtained from analyzing 

the observations. Section 10 concludes the report with a summary  of the work 
undertaken, the conclusions of the project, and recommendations.

1.1! Motivation

The creation of the flight schedules is a key  part of an airline’s operations and an 
interesting problem for the application of operations research techniques. The 

objective in mind when generating a flight schedule is to assign the most cost 
effective (or profitable) schedule whilst considering the operational constraints 

and issues, such as: maintenance schedules, fluctuating passenger demand, 
strict legislation, and stochastic events such as delays. The airline scheduling 

problem is a hard combinatorial problem to solve given the complexity of the 
constraints that have to be satisfied and the huge solution search space that has 

to be explored when searching for the optimal solution. Much research has been 
conducted in the field of airline scheduling optimization over the past few 

decades and the application of the techniques developed have yielded significant 
improvements. However, there is still room for improvement and a technique 

which has started to gain popularity  in the airline scheduling field is the 
application of stochastic programming techniques which are suited to the 

handling of unpredictable variables which follow stochastic behavior. The majority 
of work conducted on stochastic programming within the airline scheduling field 
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has been focused on the sub-problem of crew scheduling. This project will 

attempt to evaluate the applicability  of stochastic programming for the route 
scheduling and fleet assignment sub-problems of the airline scheduling process.

1.2! Literature Review

Carrier airlines operate in a highly  uncertain environment yet very  few airline 
planning and scheduling models consider this uncertainty  (Schaefer et al. 2005; 

Rosenberger et al. 2002). The planning of airline operations is a long-term 
decision that has to be taken at least three to six months before the schedule is in 

operation. These planning decisions need to be made before all the relevant data 
is available and thus forecasts and intuition are used to predict the future 

operating characteristics such that a decision can be made. These predictions 
are inherently uncertain and as a result, there is often a notable discrepancy 

between an airline’s planned and actual performance (Rosenberger et al. 2002). 
Uncertain factors include forecasted data such as passenger demand and 

unforeseen disruptions such as flight delays. Incorrectly  forecasted passenger 
demand can lead to massive losses for the airlines because of either empty 

flights or lost customers on flights which are already  fully  booked. Unforeseen 
disruptions on the day  of operation can result in the flight schedules becoming 

infeasible (Stojkovic 2002), thus requiring that they  be updated. This rescheduling 
is costly  and results in a loss of traveler goodwill (Stojkovic 2002) because it can 

lead to delayed or cancelled flights, or swapping aircraft among flights, which in 
turn can affect future deployment of aircraft and crews (Stojkovic 2002).

Traditional methods model airline scheduling problems using deterministic 

operating conditions (Yen & Birge 2006; Burke et al. 2010), which discards the 
potential disruptions and uncertainty  of the predicted values used in the model. In 

addition, Burke et al. (2010) argues that ‘current models have a strong focus on 
minimising the operating cost’ and ‘improving the utilisation of resources’, this 

often has the effect of making the schedule less robust to disruptions and thus 
highly susceptible to flight delays and cancellations.

Stochastic programming is an approach for modeling optimization problems that 

involve uncertainty. Stochastic programming allows the use of parameters which 
are unknown at the time a decision has to be made, which is invariably  the case 

with most real world problems. Airline scheduling operations are a good 
candidate for the application of stochastic programming due to the inherent 
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uncertainty  of the parameters and long-term decision process. The application of 

stochastic programming in the airline scheduling sector offers various potential 
advantages over the deterministic approach, including: creation of more robust 

schedules which results in fewer delays, reduced costs of actual airline 
performance and more feasible schedules.

The remainder of this literature review will focus on: the current and forecasted 

state of the airline industry  in general, predominate scheduling techniques used 
by  airlines, stochastic programming techniques, and the current application of 

stochastic programming in the airline industry.

1.2.1 ! Airline operations

The airline industry  operates in a highly  competitive market; competition is ever 

increasing as airlines attempt to secure and retain customers. This increased 
competition calls for more streamlined operations that reduce costs as price is 

used as the main competitive factor for winning customers; however, there is little 
difference between the ticket prices of competing airlines and all airlines have 

matching frequent flyer and discount programs (now considered order qualifiers). 
As the market nears, or is already  operating at, perfect competition airline 

operatorsʼ profits are dropping (especially  as fuel prices continue to rise and 
stock markets are failing to recover quickly from the recent financial crisis). 

Additionally, Jones and Sasser (1995) states that airlines are relatively  efficient in 
responding to competitorsʼ price changes. This leads to the airline operators 

needing to reduce costs through the better use of their resources and by 
improving scheduling decisions (Yen & Birge 2006) to remain competitive, and 

differentiate their service from the competitors such that their market share 
increases or they can charge a premium for their services.

One such competitive dimension for airliners to target, for obtaining a competitive 

advantage, is service quality. Ostrowski et al. (1993) showed that continuing to 
provide perceived high quality  services would help airlines acquire and retain 

customer loyalty. Empirical studies of demand for airline services conducted by 
the Bureau of Transport and Communication Economics (BTCE) (1994), showed 

that service quality  is central to the choice of airlines for both business and 
leisure travelers.
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Parasuraman et al. (1988) identified 10 potentially  overlapping dimensions of 

service quality; which were: tangibles, reliability, responsiveness, communication, 
credibility, security, competence, courtesy, understanding or knowing the 

customer, and access. Reliability  and responsiveness are service quality 
dimensions which are directly  affected by the selection of the flight schedule 

because flight delays and cancellations fall under those dimensions. This makes 
the construction of more robust schedules, which are less likely  to contain flights 

to be delayed or cancelled, ‘an absolute necessity  for airlines’ (Burke et al. 2010). 
Stochastic programming techniques are a candidate for improving the robustness 

of airline schedules.

Rosenberger et al. (2002) suggests that ‘major airline carriers almost never 
experience a day without disruptions’. The need for robust schedules would 

appear to be increasing as the data suggests that on-time performance is 
deteriorating (Schaefer et al. 2005). Rosenberger et al. (2002) cites Dobbyn 

(2000) whom states that ‘average daily  flight delays increased 20% from 1998 to 
1999’. Consequently  customer complaints also increased by 130%. Delay 

analysis by  Eurocontrol (2005), showed that the European airline industry  was 
suffering from an indisputable increase in delays. In 2005, as much as 20% of 

flights were delayed by 15 minutes or more.

Using data provided by the Bureau of Transportation Statistics (BTS) (2010) for 
the period between 2002 and 2010, it was found that on average 17% of flights 

were delayed (with an increase of 4% between 2002 and 2010) and 1,6% of 
flights were cancelled (with an increase of 0,4% over the period). Rosenberger et 

al. (2002) offer the following causes of the delays: air traffic controllers are 
struggling to accommodate the number of flights wanted by  the airlines, 

mechanical failures, and in particular weather all account for three-quarters of the 
delays. Burke et al. (2010) concluded, after investigating the causes of the 

delays, that 50%  are due to airline related issues, whereas 19% are due to airport 
operations.

Schaefer et al. (2001) states that for each 1% increase in air traffic, an expected 

5% increase in flight delays will occur. Burke et al. (2010) and Lan et al. (2006) 
concur that increased air travel will result in the increased congestion of airports 

and airspace, which will ‘likely’ result in a further increase in the number of 
delays. Air traffic over the period between 2002 and 2009 increased by  22% in 
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Europe (number of passengers increased by 27%) (AEA 2010) whilst air traffic in 

America increased by  22%  over the same period (BTS 2010). Analyzing the flight 
statistics provided by  BTS for the period of 2001 to 2010 for American flight 

operations, the following observation that departure delays increases with 
number of flights can be made and is presented below in Figure 1-1.

Figure 1-1: Delay Departures against Number of Flights for the years of 2001 to 

2010

The growth trend of the airline industry  is expected to continue, the International 
Air Transport Association (IATA) is forecasting an 18%  increase in international 

and domestic air traffic for the period 2010 until 2013 (IATA Industry  Fact Sheet 
December 2010). Boeing Commercial Airplanes current market outlook for the 

period 2010 to 2029 is forecasting a yearly  growth rate of 4,2% for number of 
passengers and 5,3% for air traffic. Which equates to an increase of 118%  for the 

number of passengers and 167% of air traffic for the period of 2010 to 2029, thus 
within the next two decades air traffic will more than double its current level. 

Boeing is also forecasting a 92% increase in the number of aircraft operating 
worldwide. These forecasts suggest that flight delays are to become an even 

more important issue in the future.

1.2.2 ! Airline scheduling

Aircraft seats are the airline’s product. As with any product, ‘a larger quantity 

secures sales, while extra inventory  incurs costs’ (Sherali et al. 2006). Larger 
quantities (capacity  of aircraft) results in higher operating costs, additionally 

aircraft seats are ‘perishable’ (Sherali et al. 2006) which means that any  unsold 
seats on a flight are lost or wasted. The ideal strategy for an airline is to provide 
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the exact number of seats to the passengers at exactly  the right price, this is 

clearly  a challenge in an environment that is not deterministic. The use of 
operations research techniques in the planning and scheduling of airline 

operations attempts to provide the ideal strategy using the information available.

Flight scheduling has been a primary focus of airlines because it has a great 
bearing on a ‘carrier’s profitability, its level of service and its competitiveness in 

the market’ (Yan, Tang, Fu 2008). The creation and optimization of flight 
schedules in the operations research field generally  consists of creating a 

mathematical model which describes the scheduling problem and considers 
important operational factors such as: passenger demand, ticket prices, operating 

costs, operating constraints (e.g. specifications and limitations of aircraft types, 
fleet size, airport constraints), aircraft maintenance requirements, legislation and 

crew scheduling constraints. Using optimization techniques, this model is then 
solved to satisfactory  level with regard to the theoretical optimal solution. The 

solution of the operations research model is then converted into the flight 
schedule (containing crew and maintenance schedules). 

The scheduling process for most airlines involves different departments, namely: 

the network department, the operational plan management department and 
operations control (Burke et al. 2010). The responsibility  of the network 

department is to create the initial feasible flight schedule; the main goals of this 
department are the ‘maximization of the market share, maximization of 

passenger revenue and minimization of operating costs’ (Burke et al. 2010). The 
majority  of the work detailed in this report is conducted within this department. 

Burke et al. (2010) mentions that at KLM, schedule construction takes 
approximately  2 months to complete and Rosenberger et al. (2002) states that 

typically  this process takes place at least 3 to 12 months in advance of the 
scheduled flights and that it is largely  driven by market considerations. Once the 

schedule is constructed by  the network planning department then it is passed on 
to the operational plan management department (OPMD).  The OPMD job is to 

make minor adjustments and changes to the schedule such that operational 
performance is increased and to anticipate changes in the market (Burke et al. 

2010). The operations department receives the schedule approximately  two 
weeks before the day  of the scheduled flights; it is their duty  to make last minute 

adjustments and manage the schedule on the day of operation (Burke et al. 
2010). Included in the operations departments responsibilities is the 
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implementation of recovery  processes or strategies to manage disruptions on the 

day of operation.

The construction of the flight schedule by  the network department is generally 
composed of the following optimization sub-problems: route selection, fleet 

assignment (FA), aircraft maintenance routing (MR), and crew scheduling (CSP) 
(Papadakos 2009). The flight scheduling problem is divided into these various 

sub-problems because the full optimization problem is considered 
computationally  intractable. This will be further discussed later. The subproblems 

are optimized sequentially  such that the output of one sub-problem is the input to 
the following sub-problem; this is known as the sequential approach. Airlines 

initially  commence the scheduling process with the tactical planning process of 
schedule generation, route selection, (Papadakos 2009) which produces a 

timetable of the most profitable flight legs (a leg is a flight from one specific origin 
to another specific destination at a given time) which the airline would wish to 

provide. After this, the next step is to solve the fleet assignment stage which 
decides which fleet (grouping of similar aircraft) should fly  each scheduled leg 

while using the available aircraft and maximizing profits. The next stage is the 
maintenance routing stage, also known as the aircraft rotation stage 

(Rosenberger et al. 2002), which is solved such that each aircraft is periodically 
scheduled for maintenance in accordance with legislation. The output of the MR 

stage is an individual schedule for each aircraft in the fleet. A rotation generally 
takes many days to fly, however (particularly  in europe and domestic flights) it is 

also common to have a rotation occurring within the same day (known as a daily 
route). Essentially  the scheduling of the aircraft is now complete which leads to 

the final stage of scheduling which is crew pairing, or crew  scheduling. The crew 
pairing stage devises the series of legs crew have to fly  whilst respecting labour 

rules, minimizing crew costs (Papadakos 2009) and considering the fleets types 
that each pilot and crew are qualified to fly.

Fleet assignment

Lets now consider the scheduling steps in further detail beginning with the fleet 
assignment problem. Large airline carriers typically  have more than one type of 

aircraft; a fleet is a set of planes of the same type. Sherali et al. (2006) offers the 
following description: ‘the fleet assignment problem (FAP) deals with assigning 

aircraft types, each having a different capacity, to the scheduled flights, based on 
equipment capabilities and availabilities, operational costs, and potential 
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revenues’. Gu et al. (1994) states that the driving force for this optimization is that 

different fleets produce different revenues when assigned to specific flight legs 
because of different seating capacities and operating costs; thus the fleeting 

decision highly  impacts an airlines revenues. Assigning a smaller aircraft than 
needed for a particular flight will result in lost revenues because customers will be 

‘lost’ whom can’t be placed on the flight due to insufficient capacity; conversely, 
assigning a larger aircraft than required would result in unsold seats, and 

generally higher operating costs. 

As stated above, most of the traditional approaches solve the FAP in isolation 
using the sequential method; additionally  Sherali et al. (2006) notes that 

traditional approaches often operate under ‘restrictive assumptions’ such as: 
considering the same-every-day  schedule and using point forecasts for flight 

demands. Fleet assignment problems are solved using a mixed integer multi-
commodity  model (Rosenberger et al. 2002) based on the airlines flight network 

(Sherali et al. 2006). Sherali et al. (2006) observed that there are two principal 
trends that are adopted in constructing the network for the model, namely 

connection networks and time-space networks. Connection networks use arcs 
(connection of nodes in the network) to represent connections whilst time-space 

networks use the arcs to represent flight legs. These two network constructs are 
similar in that they share the following main constraints: 1) balance constraints for 

the conversation of flow, 2) ‘cover constraints’ so that each leg is assigned to only 
a single fleet; and 3) aircraft availability  constraints which limits the usage of each 

fleet depending on the amount of available aircraft.

Sherali et al. (2006) states that the time-space network has largely  become the 
network of choice in solving the FAP. The time-space network construction 

focuses on representing flight legs and leaves the model to determine the 
connections to use whilst taking into account the constraints and the time and 

space considerations. Hane et al. (1995), Gu et al. (1994), Barnhart et al. (1998), 
Boland et al. (2000), Kniker (1998), and Sherali et al. (2006) describe the fleet 

assignment model in more detail.

Maintenance routing
Maintenance routing is strongly linked to fleet assignment and is the next step in 

the scheduling procedure. MR assigns each flight leg to a specific individual 
aircraft within the fleet such that costs are minimized and maintenance 
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requirements for each aircraft are meet. According to regulations, the 

maintenance period for each aircraft has to occur at least every  three or four days 
and this maintenance period typically  lasts for around eight hours. The critical 

requirement for the MR is that the resultant flight schedule is feasible for 
operation.

Crew scheduling

Crew scheduling (CSP) is the allocation of pilots and crew to specific aircrafts for 
specific flight legs and is not necessarily  the same as the aircraft assignments in 

MR. Crew scheduling is subject to many  constraints such as regulations, airline 
specific rules and labour agreements (Burke et al. 2010). There are two 

components to the CSP: long-term planning and short-term planning. Yen et al. 
(2006) notes that traditionally  these have been seen as two separate problems. 

Short-term planning involves making the crew assignments under short-term time 
constraints and is usually  done at the operational level (Stojkovic 1995). Long-

term planning is the traditional approach where crew  schedulers create a set of 
optimal crew itineraries to be later assigned to specific crews. Itineraries are 

usually  selected by  the crews in order of seniority. Schaefer et al. (2005) states 
that the CSP can be very  difficult to solve because of the many  ‘governmental 

and contractual regulations’ regarding pilots and that problems found in practice 
often have more than a billion possible solutions due to the enormous number of 

pairings.

Once the crew  scheduling has been completed then in essence the scheduling 
process is complete. However, in reality  disruptions occur that result in portions of 

the schedule (generally  the current day  of operation) becoming infeasible and 
thus quick decisions have to be made to adjust the immediate schedule such that 

delays and cancellations of flights can be reduced. Recovery  is the process of 
reacting to a disruption (Rosenberger et al. 2002); the optimal recovery  decision 

is hard to determine and is rarely  clear. Lettovsky (1997) reports that irregular 
operations can be responsible for as much as 3% of an airline’s operating 

expenses. Different recovery policies will give different results, however Lettovsky 
(1997) states that in practice, airlines make recovery  decisions manually  with little 

decision support. A recent trend in research in the airline operations research 
sector has been the investigation of optimizing this process and the generation of 

more robust schedules that are less susceptible to disruptions.
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Decomposed sequentially approach

Returning to the issue of deterministic and decomposed models for the airline 
scheduling process. The reason why the airline scheduling problem is 

decomposed in the sequential method is that the complete integrated problem is 
currently  computationally intractable (Papadakos 2009; Burke et al. 2010; Sherali 

et al. 2006). The main drawbacks of solving the scheduling problem using the 
sequential approach are that an optimal solution for one stage of the process 

may not necessarily  be the optimal solution for the entire system and that the 
solution from one stage may not be a feasible input for the subsequent stages 

(Papadakos 2009; Burke et al. 2010; Sherali et al. 2006). Thus this process 
results in sub-optimal results for the entire system. Burke et al. (2010) states 

‘applying deterministic and decomposed approaches is know to result in sub-
optimal schedules with many  tightly  interconnected resources, leaving less 

flexibility in the schedule to recover from delays’.

The interdependence of the various stages of the decomposed approach has 
motivated researchers to focus on the area of integrated models. Integrated 

models ‘simultaneously  consider several of these processes (stages) so as to 
achieve a better solution for the entire system’ (Sherali et al. 2006). Currently  no 

attempts have been made to integrate the entire flight scheduling system due to 
the computational effort of the resulting model. The current trend are the so 

called semi-integrated models, which integrate two or more sub-problems but not 
the entire system. The aim of these semi-integrated models was to achieve better 

quality  results and lay the framework for further research into the integration of 
the entire system. Papadakos (2009) and Sherali et al. (2006) state that 

significant savings have been achieved using semi-integrated models and the 
techniques has generated optimal or near-optimal solutions resulting in higher 

revenues for the airlines. Papadakos (2009) states that the best performing 
model available from the literature is a combination of semi-integrated models 

executed in a sequential approach. Papadakos (2009) offers this description of 
the method: ‘This method consists of initially  solving the integrated FA with MR 

problem and feeding the acquired solution of each fleet into the integrated MR 
with CP problem’. 

The obvious question is: if the fully  integrated method offers the best results then 

why  is it not used in practice? The answer is that the advantage of the integrated 
method (improved solutions) is counted and outweighed by  its disadvantage of 
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slower runtimes and complexity. As previously  stated, the full airline scheduling 

problem is considered computationally  intractable (Papadakos 2009; Sherali et 
al. 2006; Burke et al. 2010; Schaefer et al. 2005) thus the problem is solved in 

the sequentially  manner so as to reduce the computational complexity. Even with 
a network of modern computers, the complete problem could take months to be 

solved and thus its current application isn’t feasible. It is worth noting that even 
each step of the sequentially  method is a computationally difficult problem and 

that takes a significant amount of time to solve. Gu et al. (1994) has shown that 
the fleet assignment problem, even without the availability  constraints, is NP-hard 

(non-deterministic polynomial-time hard) for three fleet types. Mirabi et al. (2010) 
offer the following explanation of the properties of NP-hard problems: it ‘means 

that an efficient algorithm to solve the problem to optimality  is unavailable. 
Therefore, solving the problem by an exact algorithm is time consuming and 

computationally intractable’.

Reducing the computational time of airline scheduling models is a clear target of 
research in the area. The reduction of computational time will allow the 

formulation of more complex models that result in improved solutions. Hane et al. 
(1995) proposed a series of preprocessing steps that aimed to reduce the size of 

the network in the FA problem and thus it’s computational difficulty. These steps 
have become a standard practice (Sherali et al. 2006). Hane et al. (1995) 

reported that the size of a typical problem was reduced from 48 982 rows and 66 
942 columns to 7703 rows and 20 464 columns. Similarly, advances in the 

techniques used to solve the models have resulted in successful gains in the 
area. In general, airline scheduling models have a poor LP relaxation in the 

sense that the gap between the optimal integer programing (IP) and linear 
programming (LP) objectives can be very  large. This optimality  gap is used to 

estimate the optimality of the current solution and thus whether the current 
solution is optimal; it determines when the model is considered ‘solved’. The 

large gap between the IP and LP objectives results in longer solving periods. A 
typical solution algorithm solves the branch-and-bound integer program by 

searching depth-first and terminating upon the first encountered solution 
(Papadakos 2009). This heuristic method is common in the airline industry 

because experiments have shown that the initial solutions obtained within a short 
period of solving the model are often very  close to the final optimal solution 

obtained after the model has been completely  solved (after a long period) 
(Papadakos 2009). Mirabi et al. (2010) adds that “all previous researchers 
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preferred heuristic methods to exact algorithms” to tackle the complexity  of the 

problems (and the resulting time consuming solving). Hybridizations of genetic 
algorithms with multiple local search operators - as known as multi-meme 

memetic algorithms - are becoming increasing popular solution algorithms for the 
airline scheduling problems (Burke et al. 2010). Genetic algorithms are valued for 

their ability  to locate promising and diverse regions of the solution search space 
quickly  (Sastry  et al. 2005), however they often have difficulty  locating the local 

optimal solutions for that region. Local search methods are coupled with the 
genetic algorithm to overcome this problem.

Airline scheduling is usually  content with near-optimal solutions in practice and 

solution algorithms are usually  terminated when the optimality  gap falls within a 
user-defined constant (Mercier et al. 2005; McDaniel & Devine 1977). This leads 

us to the topic of what is considered a “good” schedule in the airline industry. 
Current models focus on ‘minimising the operating cost, improving the utilisation 

of resources and decomposing the schedule into several independent sub-
problems’ (Burke et al. 2010) however, most models discard the influence of 

potential disruptions on the day  of operation and use deterministic operating 
values in the model. The increase in airline delays has shifted the focus of airline 

schedulers from the goal of simply  maximizing the profit to maximizing the real 
world performance of the schedule. Schaefer et al. (2005) adds that the quality  of 

the schedules is not measured by  its performance in operations but rather by  its 
performance on paper assuming that everything goes to plan (which it rarely 

does, as discussed earlier). This represents a clear flaw in the scheduling 
process and it has been proposed that the evaluation of schedules should 

consider these factors. 

Another major flaw in the current scheduling models is the estimation of the 
model parameters (such as demand, fares, flight times, maintenance times, etc.) 

into deterministic values. The resultant accuracy  of the solution is fully  dependent 
on these values. Sherali et al. (2006) states that in the current airline market, 

‘demands change drastically’. This coupled with the fact that schedules are 
constructed on a long-term process (typically more than 3 months ahead of the 

scheduled flights) calls for models which consider the distributions of these 
values more accurately  and result in more robust schedules. Stochastic 

programming is a potential method to achieve these goals. Sherali et al. (2006) 
further adds that ‘robust models are imperative so as to obtain solutions that are 

23



good in not only  the ideal or expected instances, but even in the unexpected 

cases’.

1.2.3 ! Stochastic programming

Optimization under the assumption that the input data is not completely  available 

at the decision time has, in recent years, received increasing attention 
(Grothklags & Lorenz 2006). Grothklags & Lorenz (2006) conjecture that the 

world is becoming more dynamic and that data from the past, and forecasts, is 
having a decreased predictive power for planning and deciding. Stochastic 

programming merges the models of operations research and the models of 
statistical randomness (probabilities, distributions) to form a robust decision-

making tool.

‘Stochastic programming is an approach for modeling optimization problems that 
involve uncertainty’ (Shapiro & Philpott 2007). Classical deterministic optimization 

problems are formulated using known values for the model parameters, however 
real world problems are far more likely  to contain parameters which are unknown 

at the time a decision needs to be made. Stochastic programming models try  to 
take advantage of the fact that the probability  distributions for the data are known 

or can be estimated. In essence, stochastic programming is the replacement of 
deterministic values in an optimization problem with random variables or 

probability  distributions describing the true nature of the parameter; thus it allows 
management decisions which are usually  made in uncertain environments to be 

considered more accurately  with fewer assumptions. Benisch et al. (2004) add 
that in most optimization applications stochastic information about the shape of 

the future is readily  available in the form of probabilistic models built from 
historical data.

Stochastic programming has become a more viable decision-making tool in 

recent times due to the advances of computer hardware, software techniques 
and solution methods (Domenica et al. 2007; Benisch et al. 2004). Benisch et al. 

(2004) state that ‘there are considerable advantages to taking account of 
stochastic information’.

Traditional operations research techniques have approached the issue of 

uncertainty  and its effects on the solution through the use of sensitivity  analysis. 
However, it has been shown by  Higle & Wallace (2002) that this approach had a 
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number of limitations and may provide misleading conclusions in respect of the 

nature of the solution. Domenica et al. (2007) adds that, in general, sensitivity 
analysis is not a suitable approach for the understanding of uncertainty  and 

random variables within the model parameters.

There are a variety  of stochastic programming techniques that have been 
developed to suit different applications and purposes. The first method for dealing 

with stochastic parameters in stochastic programming is the expected value 
model, which optimizes the expected objective function subjected to some 

expected constraints (Baoding & Liu 1997). The second method called the 
sample average approximation (SAA) was developed by  Shapiro (2002). Third, 

chance constrained programming (CCP) was developed by  Charnes and Cooper 
(1959) which operates by  specifying a confidence level at which the desired 

stochastic constraints should be held. The next method is called dependent-
chance programming (DCP) pioneered by  Baoding and Liu (1997) which tackles 

the problem that occurs when ‘a decision system undertakes multiple certain 
tasks called events, and the decision maker wishes to maximize the probabilities 

of satisfying these events’ (Baoding & Liu 1997). Another approach to solving SP 
problems involves scenario-based analysis in which various different scenarios 

are constructed and solved in a mostly  deterministic manner. The solutions for 
each scenario are analyzed together to determine the most appropriate solution. 

Domenica et al. (2007) offers a taxonomy of SP problems which is presented in 
Figure 1-2 below.

Figure 1-2: Taxonomy of SP problems (Domenica et al. 2007)

The ‘most widely  applied and studied’ stochastic programming models are the 

two-stage linear programs (Shapiro & Philpott 2007). Two-stage models are 

realisations of the random parameters and also for the
expected value of such parameters, are broadly known
as the “distribution” problems. The terminology is based
on the consideration that the statistical distribution(al)
property of the objective value can be computed through
these models.

2.1.1.1. Expected value problem. The expected value
(EV) model is constructed by replacing the random
parameters by their expected values. Such an EV model
is thus a linear program, as the uncertainty is dealt with
before it is introduced into the underlying linear optimi-
sation model. It is common practice to formulate and
solve the EV problem in order to gain some insight into
the decision problem.

2.1.1.2. Wait-and-see problems. Wait-and-see (WS)
problems assume that the decision-maker is somehowable
to wait until the uncertainty is resolved before implement-
ing the optimal decisions. This approach therefore relies
upon perfect information about the future. Because of its
very assumptions such solution cannot be implemented
and is known as the “passive approach”. Wait-and-see
models are often used to analyse the probability distri-
bution of the objective value and consist of a family of LP
models, each associated with an individual scenario.

2.1.2. Recourse problems

2.1.2.1. Here-and-now problems. Assuming Z as
solution of the objective functions, simple (single
stage) stochastic programming model can be formulated
as follows:

ZHN ¼ min E½cðxÞx% where xa F

and F ¼ \
xeX

Fx

The optimal objective function value ZHN denotes the
minimum expected costs of the stochastic optimisation
problem. The optimal solution x*∈F hedges against all
possible events ω∈Ω that may occur in the future.

A description of the here-and-now problems can be
found in Appendix A, together with the uncertainty
measures: value of the stochastic solution (VSS) and the
expected value of perfect information (EVPI). For essential
terminology and definitive SP models, the readers are
referred to CARISMA SP workshop notes [8], Infanger
[38] and Birge and Louveaux [3].

2.2. SP software tools

The algebraic modelling languages (AML) have
played an important role in the acceptance of mathemat-
ical programming techniques as an aid to decision-
making. AMLs are declarative languages, which enable
practitioners to rapidly build structured, and scalable
optimisation models. Modern systems based on algebraic
modelling languages support the formulation and imple-
mentation of linear programming (LP), mixed integer
programming (MIP), quadratic programming (QP) and to
some extent non-linear programming (NLP) models.
These systems are readily connected to linear or non-
linear optimisers for the solution of the models under
investigation, and are able to interact with corporate data
warehouses [45] and datamarts stored in relational, object
oriented or in other emerging standards. Until recently,
however, the investigation of stochastic programming
models could not take advantage of comparable tools. In
fact, the practical exploitation of SP presents various
difficulties, which affect the whole process of modelling,
instantiation, solution and analysis of the results of SP
problems. Recently, there has been considerable progress
in the development and application of SP.

We have provided reference to a comprehensive list of
working SP systems in Table 1, since there is an ongoing

Fig. 4. Taxonomy of SP problems.
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applicable for cases where a decision needs to be made before a random event 

occurs and after the event has occurred then adjustments to the decision are 
possible. The first stage decisions need to be taken before ‘experiment’ has taken 

place and the decision needs to consider all the possible outcomes of the 
experiment. Once the experiment has taken place and its effects have affected 

the outcome of the first-stages decision then a second decision (known as the 
recourse decision) can be taken that compensates for the outcome of the random 

event and determine the optimal response. The optimal policy  from such a model 
is a single first-stage decision and a collection of recourse decisions, resulting in 

a decision rule, which define the second-stage action to be taken in response to 
each random outcome (Shapiro & Philpott 2007). Two-stage models are 

applicable for the operations department of an airline that needs to make quick 
decisions on the day of operation as disruptions affect the initial schedule.

The expected value model is constructed by replacing the stochastic random 

parameters with their expected values (e.g. mean values for distributions) such 
that it becomes a linear program. The uncertainty  is dealt with before the 

selection of the parameters for the optimization model. The EV problem is often 
used to gain insight into the decision problem (Domenica et al. 2007). 

Unfortunately, the EV model largely  ignores the stochastic properties of the 
information provided (Benisch et al. 2004) and is often inappropriate (Liu 2002). 

The sample average approximation (SAA) method has been shown to outperform 
the EV model (Benisch et al. 2004) and offer an approach which considers the 

stochastic information to a greater degree.

Chance-constraint problems incorporate the uncertainty  of certain events into the 
model through the use of probability  constraints. Bravo and Gonzalez (2009) 

state that in precise conditions some simple problems can be formulated using 
CCP but that the treatment of most problems by  CCP becomes ‘too 

cumbersome’. Man (2008) states that the CCP approach can lead to problems 
with non-convex constraint sets which are difficult to solve.

Scenario based analysis consists of constructing many diverse scenarios 

according to the stochastic data at hand which can be in the form of discrete 
distributions, or limited samples, or approximation methods, or by  expert opinion 

(Petkov  1997). Man (2008) notes that scenario-based analysis approaches 
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provide a ‘relatively  straightforward’ way  to account for uncertainty, however they 

may rely on a very large number of scenarios.

The next section will discuss the application of stochastic programming to airline 
scheduling operations.

1.2.4 ! Stochastic airline scheduling

Floudas and Pardalos (2005) describe the field of stochastic scheduling as being 
motivated by  the ‘design and operational problems arising in systems where 

scarce service resources must be allocated over time to jobs with random 
features vying for their attention’. The random features are modeled by specifying 

their probability distributions which are assumed to be known.

Traditional methods in the airline industry  model the scheduling problem as a 
deterministic model and do not explicitly consider disruptions and variance in the 

operations (Yen & Birge 2006; Rosenberger et al. 2002) even though disruptions 
occur frequently. An airlines performance can be significantly  different to the 

planned performance according to the schedule. Traditional models measure the 
performance of a schedule according to the assumption that every flight will take 

off and land as scheduled and experience no disruptions in operation 
(Rosenberger et al. 2002); however, this scenario very  rarely takes place. Since 

the traditional methods neither consider stochastic variables in the model or 
during the evaluation of the schedule, the result is the formulation of schedules 

that are not robust and highly susceptible to disruptions in the actual operations.

Yan, Tang & Fu (2008) discuss the stochastic variations that occur for the market 
demand of airline flights; Yan et al. (2008) mention that market demand usually 

varies on a daily  basis and that market share may  vary  with passenger choice 
behaviors. Market share may  also vary  according to the perceived convenience 

of the schedule for the passengers. Yan et al. (2008) conclude that passenger 
demand fluctuations arising from stochastic market conditions have to be taken 

into account when modeling the scheduling problem.

Aside from passenger demand fluctuations, the other key  reason for the 
application of stochastic programming in airline scheduling is the desire to build 

more robust schedules that handle disruptions to the schedule in a better 
manner.  Burke et al. (2010) offers the following definition for the robustness of a 
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schedule: ‘the robustness of a schedule is influenced by its sensitivity  to 

stochastic events, the flexibility  within the schedule and its stability’. Flexibility  is 
related to the number of recovery  options available in the schedule to deal with 

the effects of a disruption (can be defined according to the number of single point 
swap opportunities between aircraft in the schedule). Stability  is the measure of 

the probability  that a delay  will propagate through the rest of the schedule and 
cause further delays and disruptions. Bian et al. (2005) formally  presented an 

analytical approach for the evaluation of the robustness of airline schedules using 
features called robustness objectives. Burke et al. (2010) has proposed the use 

of Pareto optimization (Deb 2001; Landa-Silva et al. 2004; Deb 2005) for the 
improvement of robustness objectives in airline scheduling models. Burke et al. 

(2010) found that schedule reliability  was dominant through the use of sensitivity 
analysis and that increased flexibility  could result in improved performance; they 

recommend ‘schedule operators to primarily  focus on schedule reliability, and 

take schedule flexibility  into account while building the schedule’. The traditional 

approach of maximizing the profit results in schedules which maximize the 

amount of time which the aircraft is in the air (utilization). This results in a 
decrease in the amount of slack time between connecting flights in the schedule. 

Chiraphadhanakul (2010) defines slack as ‘additional time allocated beyond the 
minimum time required for each aircraft connection, passenger connection, or 

expected flight duration’. The reduction of slack time reduces the robustness of 
the schedule, since slack is desirable in robust schedules because it can 

potentially  absorb delays (Chiraphadhanakul 2010). AhmadBeygi et al. (2008) 
proposed a method that reduces delay  propagation by  redistributing the existing 

slack in the flight schedule to the points where it is needed the most. Lan et al. 
(2006) developed a robust aircraft routing model to minimize the expected 

propagated delay  along aircraft routes; they used an approximate delay 
distribution to model the delay propagation along each string. By  adjusting flight 

times without changing aircraft routing, Wu [24] revealed that significant delay 
(cost) savings can be achieved via robust scheduling.

Burke et al. (2010) offers the following recommendations for the modeling of 

airline schedules in stochastic programs: 1) The stochastic nature of flight times 
and departure handling can be modeled using γ-distributions, 2) arrival handling 

can be modeled using deterministic distributions, and 3) Changing operating 
conditions (such as weather and congestion patterns) can be modeled by 
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defining different distributions depending on the time of the day, time of the year, 

the origin/destination of the flight and the scheduled times for the activities.

Schaefer et al. (2005) and Rosenberger et al. (2002) both suggest the use of 
Monte Carlo simulation for the evaluation of the operational performance of the 

schedules produced from the stochastic models. SimAir is a Monte Carlo 
simulation of airline operations that can be used for this purpose and a more 

detailed description of the underlying stochastic model can be found in 
Rosenberger et al. (2000b). Burke et al. (2010) made use of the KLM simulation 

model for the evaluation of the operational performance of his schedules.

It has been shown that the use of stochastic programming in airline scheduling 
results in improvements of the operating performance of the schedules 

constructed (Yan et al. 2008; Schaefer et al. 2005; Rosenberger et al. 2002; 
Burke et al. 2010). However, most research into this area has been focused on 

the crew scheduling problem and stochastic attempts in the remaining portions of 
the airline scheduling process have been reduced to simple problems (using such 

assumptions as single-fleet and non-stop flight operations) due to the 
computational difficulties present. It has been shown by  Grothklags and Lorenz 

(2006) that the stochastic variant of the fleet assignment problem is PSPACE-
complete and thus very  difficult to solve. There is scope to research the creation 

of a hybrid model that attempts to incorporate the advantages of stochastic 
programming into the traditional mixed-integer scheduling models whilst keeping 

the computational requirements low; such research would most likely draw from 
the following areas of research: robustness objectives, simple stochastic solution 

algorithms (such as SAA and EVM), and the traditional scheduling models.

1.3! Objectives

1. Investigate the appropriateness of stochastic programming techniques for the 

airline scheduling problem.
2. Evaluate the performance of various operations research techniques in 

formulating and solving of the airline scheduling problem with respect to 
computational time, optimality  of solution w.r.t. the objective value, and the 

performance of the solution during simulation.
3. Offer recommendations for the selection of an appropriate technique for the 

airline scheduling problem.
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4. Identify  avenues for the further improvement of the models presented and 

offer recommendations for further research.
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2! METHODOLOGY

The goal of this research project is to evaluate the effectiveness of stochastic 

programming techniques when applied to the route scheduling and fleet 
assignment sub-problems of the airline scheduling process under the effect of 

stochastic flight delays. The distinct challenges of this project are: ensuring that 
the generated schedules are applicable and feasible in real-world conditions, and 

that the formulation and solution of the operations research model is 
computationally tractable and completes within a reasonable time frame.

The research conducted did not involve the participation of human participants as 

informants or subjects and all information was obtained from freely  available 
public sources.

The approach taken in completing this project is summarized as follows: A 

literature review was conducted, then the relevant data required for the project 
was gather from various sources, the data was then analyzed to form the 

required information for the projects models, a small test model was developed 
upon which the larger and more complex stochastic programming models were 

built, these model’s performance were evaluated using a selection of test 
situations, and, finally, the observations collected were used to form conclusions.

The methodology utilized during the completion of this project is as follows:

• Conduct a literature review. The first step of the project was to conduct a 
literature review such that the current state of research in the relevant fields 

could be established and utilized during the completion of the project. The 
main areas of focus for the literature review were: airline scheduling 

techniques, stochastic programming, and mixed-integer programming.

• Locate and obtain the relevant data required for the project regarding flight 

delays and general information regarding the commercial airline industry. 
Up-to-date information regarding flight delays and the airline industry were 

gathered from the bureau of transportation statistics in the United States of 
America. Detailed information regarding every commercial flight operated in 

the USA is freely  available. Additionally, information regarding the various 
aircraft technical specifications and the composition of the airlines fleets 

were obtained from various additional sources.
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• Analysis of the obtained data. The obtained raw data was analyzed such 

that the relevant information required for the project could be extracted. The 
key  information required for the project included: departure delay 

distributions, arrival delay  distributions, the causes and their relative 
contribution to the delays, airport locations (GPS) used for calculating 

distances, typical passenger demand for a selection of routes, aircraft 
passenger capacities, aircraft cruising speeds and range and aircraft 

operating costs.

• Generate a small test situation. A small test situation was generated for the 

use of developing and testing a small operations research model. The test 
situation contained all the necessary properties that would be relevant for 

the larger models to be developed at the later stage. 

• Generation of a small and simple naive operations research model. A small 

and simple operations research model was formulated to solve the route 
scheduling and fleet assignment problem; this small model was used for 

testing and developing the model such that the model was stable, solved 
quickly  and produced the desired schedules. Once the small model 

achieved the desired level of performance (subjective evaluation by the 
researcher) then it was used as a base upon which the more advanced 

models would be built.

• Develop new stochastic programming models. The next step was to build 

more complex models which incorporated stochastic programming 
techniques. This process is further explained in the mathematical models 

section (Section 4.4).

• Generate a test situation. For the purpose of running and evaluating the 

models, a test situation was created. The test situation was modeled on a 
local low-cost airline operator. Further information on this test situation is 

included in Section 6.1. 

• Generate additional test situations. Additional test situations were 

generated by modifying certain key  parameters of the base test situation. 
The key  parameters adjusted were: number of fleets, number of aircraft and 

length of the flight operations day. The other parameters remained 
unchanged, the different situations generated simulate different degrees of 

airline capacity and as such the density of the resultant flight schedules.

• Run and evaluate the various test situations with the various models 

developed. The developed models are run on each of the various test 
situations created and their performance is recorded. The key  performance 
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measures include: computational solving time, profit of schedule and the 

ability  of schedule to absorb delays. Monte Carlo simulation is used to 
evaluate the operational performance of the schedules generated whilst the 

solving time and profit are returned with the solution from the solver.

• Analyze the observations and drawn conclusions. The observations made 

during the running and evaluating of the developed models using the 
various test situations is now analyzed such that results can be obtained 

and the results can be used to form conclusions.

A mathematica application was developed for the purpose of generating the 
models to be solved, generating the schedule from the solution obtained from the 

solver, evaluating the performance of the schedule using Monte Carlo simulation, 
and the general analysis of the raw data and results obtained. The mathematica 

program has the following features:

• Loading and processing of the raw data obtained from the various sources 

into useful information. This information can be saved to disk for future use. 
Some of the information extracted included: location of airports, distances 

between airports, passenger demand for routes per month, aircraft 
specifications, cost per hour of operation for each aircraft type, and airline 

fleets.

• Formulation of delay distributions. Accurate empirical delay  distributions can 

be extracted from the raw  performance data of airlines operating in the 
USA. These delay distributions can be fitted to standard distribution forms 

such as the exponential distribution or they can remain as empirical 
distributions. The distributions can be saved to disk for future use.

• Calculation of model parameters and creation of models. The program can 
use the relevant data to form the developed models for use by an external 

solver. The application generates a mathematical model in the ZIMPL 
format (Koch 2004) which includes the formulation and all the values 

required. The ZIMPL model can then be converted into either a MPS or LP 
file for use with various solvers. The index file (excludes data set files) of 

the ZIMPL model is shown in Appendix B. Calculations include: flight times, 
cost price per seat per flight, and profit per passenger for each flight. The 

model created forms and considers all the constraints within the developed 
models. All necessary  decision variables, ground variables, constraints and 

coefficients of the model are created. The resultant model is written to disk.
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• Formulation of flight schedule from outputted solver solution file. The 

application can read in the solution file generated by the external solver and 
translate it into the correct selection of flights and form the flight schedule. 

The flight schedule can be outputted into a human-readable format as well 
as additional file formats including: KML (for use in Google Earth, with 

animated flight arcs depicting the schedule) and GEXF (for use in network 
graphing applications).

• Monte Carlo Simulation. The program can evaluate the performance of 
various schedules using Monte Carlo simulation and gather the relevant 

results. The results and the entire Monte Carlo simulation log table can be 
saved to disk in a human-readable format.

• The application contains a graphical user interface (GUI) for the control of 
the application. The GUI provides an easy  to use interface for generating 

and evaluating scheduling models.

The completed mathematica application consists of over 4000 lines of code and 
is included in the digital appendix. Mathematica is required for the installation and 

running of the application package.
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3! STOCHASTIC FLIGHT DELAYS

A critical dimension of service quality  for the airline industry  is the “on time 

performance” of the airline operator; it is a measure of the airlines ability to 
operate according to their flight schedule and to minimize the number of delayed 

flights. The consequences of a flight delay  are significant for the airlines; not only 
will it decrease customer goodwill, potentially  delay  other flights, and cause flight 

cancellations, but it is also becoming a critical measure by  which customers 
select airlines (there are various websites which offer detailed information for the 

specific flights and routes which a customer may  be considering). Flight delays 
are of stochastic nature and thus are difficult to predict accurately  for any  given 

day of flight operations; however there are large quantities of historic data which 
can be used to obtain distributions and information regarding flight delays. Since 

flight schedules are susceptible to flight delays, there is an advantage to 
considering these flight delay distributions during the flight scheduling modeling 

phase such that more robust schedules can be created. Presented below, in the 
remainder of this section, is an analysis of over half a million flights which 

occurred during June 2010 throughout the United States of America. The data 
was obtained from the TranStats1  service provided by  the Research and 

Innovative Technology Administration (RITA) and the Bureau of Transportation 
Statistics (BTS).

3.1! Overview Of On Time Performance

Presented in this sub-section is a summary  of the on time performance of all the 

flights operated in the US during the month of June 2010. A total of 551 688 
flights were scheduled, of which 317 795 flights departed either on or before their 

scheduled takeoff time and 333 019 flights landed at their destination on or 
before their scheduled arrival time. Thus 57,6% of departures and 60,4% of 

arrivals were on time respectively. The increase of the on time performance 
between departures and arrivals can be attributed to the following reasons: 1) 

pilots can decrease the flight time (in order to recover lost time) by increasing the 
aircraft’s speed at the cost of additional fuel consumption, 2) scheduled flight 

times are often slightly  overstated such that there is a slight buffer in the schedule 
and the airlines on time performance is improved on paper.
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The previous figures were determined with the presumption that any flight that 

operates later than its scheduled time is deemed to be delayed (even if the delay 
was only a single minute); however the general practice adopted in the industry is 

to only consider a flight delayed if the delay  is 15 minutes or longer. This general 
practice was used when attributing the delays to various causes below. Table 3-1 

presents a breakdown of the reasons attributed to the flight delays. The reasons 
are categorized as follows:

• Carrier Delay: a general delay attributed to the operations of the airline 
carrier,

• Weather Delay: a flight delay attributed to inclement weather conditions at 
either the origin or destination airports,

• National Air System (NAS) Delay: a flight delay  attributed to the operations 
of the National Air System (air traffic control),

• Security Delay: a flight delay attributed to security issues,

• Late Aircraft Delay: a flight delay  attributed to the late arrival of the aircraft 

required for the flight.

Table 3-1: Reasons For Flight Delays

Reason # of Flights Total Delay 
Time (minutes)

Average Length of 
Delay (minutes)

Cancelled 8279
Carrier 58104 2023990 34,8
Weather 7227 324997 45,0
NAS 65427 1721650 26,3
Security 404 7033 17,4
Late Aircraft 62691 2854720 45,5

Presented in Figure 3-1 is a pie chart of the total delay time per attributed flight 

delay  reason. It is a fair assumption that the airline operator has direct influence 
over the carrier delays and the late aircraft delays. These delays together 

account for 70% of the flight delays experienced.
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Figure 3-1: Percentage Breakdown Of Total Delay Time Per Attributed Flight 

Delay Reason

Flight delays can be split into two sections: departure delays and arrival delays. 
The following two sub-sections will analyze these sections in more detail.

3.2  ! Departure Delays

As mentioned above, only  57,6% of flights depart on or before their scheduled 
departure time thus 42,4% of flight departures are delayed; however a single 

measure is insufficient to fully  describe the nature of the flight departure delays 
thus a more detailed analysis was conducted. Presented in Figure 3-2 is a 

histogram of the delay  departures, the bin size is 5 minutes. The shape of the 
distribution can be represented using the Lognormal distribution with the μ and σ 

parameters set to 2,58 and 1,41 respectively. The probability  plot (plots the 
cumulative distribution function, CDF, of the distribution versus the CDF of the 

fitted distribution) of the Lognormal distribution versus the delayed departures 
distributions is shown in Figure 3-3 to illustrate the fitness of the Lognormal 

distribution (the dashed line represents the target of a perfect fit).
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Figure 3-2: Histogram Of Delayed Departures

The distribution displayed in Figure 3-2 is useful (after the probability  of a delay 

occurring is considered) for the Monte Carlo simulation used to determine the 
operating performance of the created flight schedules. It is, however, more 

appropriate to use the full distribution of departure times (including early  and on-
time departures) for the calculation of parameters for the operations research 

models. These parameters are calculated using one or more descriptive statistics 
measures. Below is a brief description of the descriptive statistic measures used 

to describe the departures distribution (shown in Figure 3-4) in Table 3-2.

• Mean: arithmetic mean is the sum of all the values divided by  the number of 

values, commonly  thought of as the average. The means presented are 
population means for the data.

• Median: the median separates the data into two halves of equal counts of 
values. It is found by  arranging the values from lowest to highest value and 

picking the middle value such that there is an even number of values on 
either side of the median value.

• Root Mean Square: The root of the mean of the squares of the values, i.e. 
each number is squared and added together, the total is divided by  the 

count of numbers in the set and this mean is rooted. Useful when the 
variates of the distribution are positive and negative.

• Trimmed Mean: the arithmetic mean with a small faction of the smallest and 
largest elements truncated from the data set (the outliers). A 20% trimmed 

mean was used.
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• Geometric Mean: indicates the central tendency  of a set of numbers (just 

like arithmetic mean); calculated by  multiplying the numbers together and 
then taking the nth root (where n is the count of numbers in the set). Useful 

for data values that are meant to be multiplied together or are exponential in 
nature.

• Variance: variance is the measure of how far a set of numbers in a data set 
is spread out from the mean value. It is calculated by obtaining the mean of 

the squares of the distance between each value and the mean of the data 
set.

• Standard Deviation: is a measure of the variability  or diversity of the values 
within a data set. It is the square root of the variance of a set.

• Mean Absolute Deviation: is the mean of the absolute deviation of each 
value from the mean.

• Median Absolute Deviation: is the median of the absolute deviations of each 
value from the median.

• Maximum: Largest value in the data set.

• Minimum: Smallest value in the data set.

Figure 3-3: Probability Plot Of Lognormal Distribution Versus Delayed Departures 

Distribution
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Figure 3-4: Histogram Of All Departure Times

Table 3-2: Descriptive Statistics of Departures Distribution (minutes)

Mean 11,3
Median 0
Root Mean Square 37,4
Trimmed Mean 1,0
Geometric Mean 0
Variance 1271,5
Standard Deviation 35,7
Mean Absolute Deviation 19,8
Median Absolute 
Deviation

5

Maximum 1324
Minimum -59

3.3! Arrival Delays

This sub-section deals with arrival delays, the difference between scheduled 

landing time and actual landing time. Arrival delays are caused by  a number of 
different factors including: 1) departure delays, 2) air traffic delays and 3) route 

adjustments due to weather, among others. Figure 3-5 presents a histogram (bin 
size of 5 minutes) of the distribution of the difference between the arrival time and 

scheduled arrival time for the analyzed flights, a negative number represents an 
early  arrival. The possible reasons for early  arrivals was mentioned in the 

opening paragraph of section 3.1 and is dependent on the length of the flight so 
that longer flights have a greater probability  of arriving early. The distribution 
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presented in Figure 3-5 will be referred to as the Standard Arrival Distribution in 

the later comparisons.

Figure 3-5: Histogram Of Difference Between Scheduled And Actual Arrival Times

Since the previous distribution is affected by  the departure time of the aircraft, a 

useful distribution to derive is the distribution of the delay  caused solely  by  the 
actual flight and the landing procedures and excluding the departure delay. This 

distribution is calculated by  taking the arrival delay  minus the departure delay  for 
each flight. The resultant distribution will be known as the Adjusted Arrival 

Distribution and is presented in Figure 3-6 below. From the Adjusted Arrival 
Distribution it is found that 23% of flights incur an additional delay  during the 

period after takeoff. Figure 3-7 represents the distribution of the additional arrival 
delays (the 23%  of flights) which would be applicable for the Monte-Carlo 

simulation, this distribution will be referred to as the Additional Arrival Delays 
Distribution.

The descriptive statistics measures for the three arrival distributions is displayed 

in Table 3-3.
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Figure 3-6: Histogram Of Adjusted Arrival Distribution

Figure 3-7: Histogram Of Additional Arrival Delays Distribution
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Table 3-3: Descriptive Statistics Of Arrival Distributions (minutes)

Standard 
Arrival 

Distribution

Adjusted Arrival 
Distribution

Additional Arrival 
Delays Distribution

Mean 7,9 -5,6 11,4
Median -2 -6 7
Root Mean 
Square

38,9 15,0 18,2

Trimmed Mean -1,0 -6,4 7,6
Geometric Mean 0 0 6,5
Variance 1449,4 194,9 200,1
Standard 
Deviation

38,1 14,0 14,1

Mean Absolute 
Deviation

22,1 9,2 9,1

Median Absolute 
Deviation

10 6 5

Kurtosis 49,1 43,0
Maximum 1315 250 250
Minimum -79 -646 1

43



4! OPTIMIZATION MODELS

This section presents and discusses the operations research mathematical 
models formulated to solve the airline scheduling problem. The discussion begins 

by introducing the traditional basic fleet assignment model.

4.1! Basic Fleet Assignment Model

The basic fleet assignment model is an application of the multi-commodity 
network flow (MCNF) problem formulation. A network, in operations research, is a 

directed graph containing nodes and arcs, which join the nodes together. Each 
arc has a flow capacity which limits the amount of flow that can travel along that 

arc for a specific period of time. The flow throughout the network must satisfy  the 
conservation of flow constraint which restricts that the amount of flow entering 

into a node must be equal to the amount of flow leaving that node. The 
exceptions to the conservation of flow constraint are the source and sink nodes 

which are the start and end of the network respectively; however the amount of 
flow leaving the source node must be equal to amount of flow entering the sink 

node thus by artificially  joining these nodes in the model the conservation of flow 
constraint is applied throughout the network. An example of a network is 

presented below in Figure 4-1. The dashed lines represent a particular feasible 
flow through the network. The conservation of flow  constraint can be explained 

using node a as an example: the amount of flow entering node a is 5 and the 
amount of flow exiting node a is the sum of 3 and 2, hence the amount of flow 

entering and exiting the node is the same and the constraint is satisfied.

A multi-commodity  network flow problem seeks to optimize the selection of which 
arcs to use to ‘transport’ each commodity whilst keeping the solution feasible with 

respect to the constraints of flow conservation, arc capacities and the demand 
satisfaction (ensuring that the required goods is transported through the network). 

It should be noted that a commodity’s collection and delivery nodes need not be 
the source and sink nodes of the network structure; this is achieved by creating 

an additional source node linked to each required node (collection node) and an 
additional sink node linked to each delivery node. These additional source and 

sink nodes are linked to super-source and super-sink nodes respectively  such 
that the basic required network structure is maintained.
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Figure 4-1: Flow Network Example

The airline’s flight network is the foundation of the basic fleet assignment model. 

The use of a network structure in the formulation of the model ensures that only 
feasible flight connections are created, there are a balanced number of aircraft of 

each type at each airport at the beginning and end of each schedule (source and 
sink nodes), and that the conservation of aircraft flow  is maintained. In the model 

the network is represented as follows. A node in the network represents a specific 
location at a specific time (for example, the location could be Johannesburg 

International Airport and the time could be 7:05 AM), nodes are created for each 
applicable point in the chosen schedule thus there will be a node for each event 

such as a departure or landing at a specific airport. For each flight in the schedule 
there will be a flight arc which connects the appropriate departure and arrival 

nodes in the network. Ground arcs represent the case when an aircraft remains 
on the ground at an airport between the event nodes, ground arcs are only 

connected between event nodes which represent the same airport and are 
connected sequentially  as illustrated in Figure 4-2 below. Wrap-around arcs are 

special case ground arcs that connect the last event node of the schedule to the 
first event node for each airport, this replaces the source and sink nodes such 

that flow balance is guaranteed and that the final schedule is repeatable and 
cyclic in nature.
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Figure 4-2: Ground And Wrap-Around Arcs

To ensure that only  feasible flight connections are made, arrival nodes are placed 

at the flight’s arrival time plus its turn-around time; thus the arrival node 
represents when the aircraft will be ready  for its next flight. If the turn-around time 

is ignored then it is possible that the solution may  require that a flight depart 
immediately  after it has just landed which is infeasible because the aircraft will 

still need to be refueled and exchange passengers among other tasks.

The basic fleet assignment model considers a schedule containing flights (which 
have departure and arrival locations and specific departure times) and optimizes 

the selection of which fleet should be used for each flight in the schedule such 
that the total cost is minimized. The network formulated for the model (discussed 

above) is duplicated for each different fleet in the model, and costs are assigned 
for each flight arc. The cost for each flight arc is calculated using the operating 

costs for that specific fleet (and may  consider factors such as fuel consumption 
and crew requirements).

Once the flight networks for each fleet are created, the basic fleet assignment 

model is formulated as shown in Figure 4-3, whilst the notation used is given in 
Table 4-1. The formulated model seeks to minimize the total cost to cover each 

flight in the schedule with only  one aircraft type (first constraint), it ensures that 
the aircraft flow is conserved at each node with the second constraint and the 

third constraint ensures that the total number of aircraft used in each fleet does 
not exceed the amount available. The third constraint ensures the amount of 

aircraft used is feasible by  counting the amount of aircraft at a specific count time 
(usually at the time of least activity, perhaps 3 AM). The sum of all the aircraft 

leaving the count time nodes (this includes both ground arcs and flight arcs) plus 
the sum of all the aircraft on flight arcs that occur during the count time, results in 

10AM 1PM 4PM 7PM7AM

JHB

Ground Arcs Wrap Arcs
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a measure of the amount of aircraft used which can be constrained to be less 

than the amount available.

Decision variables x define which fleet type covers each flight, this variable is 
defined as a binary  variable and those may  only  take the value of 0 or 1. If the 

solution value of a variable xik is 1 then that flight i is to be flown by  that fleet k. 
The zero-cost ground arc variables, y, need not be integer or binary  variables 

because more than one aircraft of a fleet type may remain on the ground at a 
specific airport at the same time and the integrality  of the network structure 

ensures that the value will an integer; however y must be non-negative.

Table 4-1: Notation For The Basic Fleet Assignment Model

F = set of flights
K = set of fleets
Sk = number of aircraft of fleet k
Gk = set of ground arcs in fleet k’s network
Lk = set of nodes in fleet k’s network
cik = cost to fly flight i with fleet type k
xik = 1 if flight i flown by fleet k, 0 otherwise
ygk = number of aircraft on ground arc g in fleet k’s network
b1lik = 1 if flight i begins at node l in fleet k’s network

-1 if flight i ends at node l in fleet k’s network, 0 otherwise
b2lgk = 1 if ground arc g begins at node l in fleet k’s network

-1 if ground arc g ends at node l in fleet k’s network, 0 otherwise
d1ik = 1 if flight i crosses the count time in fleet k’s network, 0 otherwise
d2gk = 1 if ground arc g crosses the count time in fleet k’s network, 0 otherwise
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Figure 4-3: Basic Fleet Assignment Model
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4.2! Fleet Assignment With Variable Time Windows Model

The basic fleet assignment model works with the premise that a flight schedule is 

already  available and that the only  task is to assign specific fleets to each flight in 
an optimal manner. Whilst this simplifies the fleet assignment problem, it does so 

by  reducing the opportunity  of locating better solutions. The notable weakness is 
the requirement that flight departure times are fixed and thus the flexibility of the 

model is reduced. An example of where these fixed departure times may  lead to 
an inferior answer is: Suppose that flight A lands at airport 1 at 10 AM and flight B 

departs from the same airport at 9:45 AM; it is clear that the same aircraft cannot 
be used for both flights because flight B departs before flight A lands. However, if  

the model is formulated such that the departure times for each flight can be 
adjusted then it is possible for a single aircraft to serve both flights as the 

departure time of flight B can be moved, for example, from 9:45 AM to 10:15 AM; 
this can lead to significant cost savings as it is possible that fewer aircraft will be 

required. Levin (1971) was the first to propose the use of variable time windows 
in a scheduling and fleet routing model. The time windows were modeled to allow 

departure times to occur at discrete intervals within a time window. For example, 
if a flight is required to depart some time between 8 AM and 10 AM to maintain 

passenger demand (if the flight is moved too far from its original schedule time 
then it could lose passenger demand) for that flight then the time window will be 8 

AM to 10 AM. This time window can be divided into a set number of discrete 
intervals such that possible departure times could be 8 AM, 8:15 AM, 8:30 AM, 

etc... The model will be able to determine the optimal departure time for each 
flight such that the objective function is optimized. The objective function could be 

formulated in such a manner that factors such as gate availability, passenger 
connection times, and robustness can be improved. Desaulniers et al. (1994) 

extended Levin’s model to consider more than a single fleet. Desaulnier’s model 
is the basis for the fleet assignment with variable time windows model (FAVTW) 

presented here.

The time windows can be modeled by creating copies of the flight arc at a 
specified interval (such as 5 minutes) within that flight’s time window and then 

adding the constraint that only one of the flight copies need to be selected in the 
solution. This allows the model to choose the departure time of the flight. When 

considering the interval to be selected for each problem, it is important to note 
that using a narrow interval will result in a more flexible model but will also result 

in an ‘explosion’ in the model size. A general rule of thumb is that the time taken 
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to solve a model grows exponentially with the size of the problem (number of 

variables, constraints, etc...) thus the selection of the interval must be small 
enough to ensure flexibility  whilst wide enough to allow acceptable solving times. 

This selection is mostly determined through trial and error.

The formulation of the FAVTW model is almost the same as with the basic fleet 
assignment model; the differences are the size of the resulting model and the 

constraints used. The constraints work exactly  as before, in the basic fleet 
assignment model, however they  just consider more nodes in the network due to 

the extra flight arcs that were created. The notation that is different from the basic 
fleet assignment model is given in Table 4-2 and the model formulation is shown 

in Figure 4-4. 

Table 4-2: Notation For Fleet Assignment Model With Variable Time Windows 

Model

Nik = number of arc copies of flight i in fleet k’s network
cnik = cost to fly copy n of flight i with fleet type k
xnik = 1 if copy n of flight i flown by fleet k, 0 otherwise
b1lnik = 1 if copy n of flight i begins at node l in fleet k’s network

-1 if copy n of flight i ends at node l in fleet k’s network, 0 otherwise
d1nik = 1 if copy n of flight i crosses the count time in fleet k’s network, 0 

otherwise
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Figure 4-4:  Fleet Assignment With Variable Time Windows Model

The first constraint ensures that only  one flight arc among all the copies and 
every fleet is selected for each flight required. This ensures that the model picks 

a single departure time for each flight. Since each flight copy  has its own variable, 
it is possible to assign different costs to each flight copy; this is useful if one 

wants to make it more expensive to fly a flight the further away  it is moved from 
its original scheduled time.
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4.3 ! Fleet Assignment With Time Windows And Route Selection Model

The previous two models presented rely  on the prior selection of routes to be 

flown and to a lesser extent the time at which the flight should occur. For the 
purpose of this research project the following model was developed to address 

additional considerations in the flight scheduling problem. The model is an 
extension of the FAVTW model and will be referred to as the fleet assignment 

with time windows and route selection (FARS) model. The FARS model doesn’t 
use a proposed flight schedule as its starting point but rather the forecasted 

demand for each possible flight route that the airline is considering; the FARS 
model then proceeds to determine the best selection of routes to fly (to maximize 

profit), the fleet type which should fly  each flight and the departure time of the 
flight. There are clear advantages to this approach because the optimization 

model is now considering a larger part of the decision process and thus will 
output a superior solution at the cost of additional computational time. It is in an 

airlines best interest to only  fly routes which will profitable and not to fly routes 
which will incur a loss of profit; the FARS model considers this fact and optimizes 

the objective function which considers profit. It is possible that an unprofitable 
route is selected in the solution but only  if that route allows additional profitable 

routes to be flown such that the total profit is increased. The time windows within 
the FARS model can be adjusted such that the time window encompasses the 

entire day, this allows the FARS model full flexibility  to adjust the departure times 
of the flights. However, it still allows the time windows to be constrained to a 

smaller period of time thus ensuring that certain flights only  occur at certain times 
during the day (useful for the high demand of morning flights).

The following paragraph describes the changes that were made to the previous 

models to form the FARS model. Firstly, for each possible route there is a 
demand value assigned; this demand value represents the average amount of 

passengers expected to fly  that route if the capacity  of the aircraft wasn’t an 
issue. Secondly, in addition to the number of aircraft available for each fleet, the 

capacity  of the aircraft in each fleet is introduced into the model (for example, 
fleet 1 may  have aircraft capacities of 150 passengers per flight). The FARS 

model changes the structure of the first constraint of the other models. In the 
other model, the constraint requires that each flight on the schedule be flown 

once and only once out of all the possible flight copies and fleet types. The FARS 
model does not enforce that each route be flown and allows the route to be flown 
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more than once. A specific flight arc can still only  be selected once because of 

the use of binary  variables, this is intentional as it is undesirable to have two 
flights with the same destination departing at the same time at a single airport 

(this would cause much confusion among passengers as to which aircraft they 
should be on). The first constraint in the FARS model adds together the total 

capacity  of flights selected for a route minus a new penalty variable (real number, 
non-negative) and constrains this total to be less than or equal to the passenger 

demand for that route. In essence, this constraint is recording the over-capacity 
of the flights for that route. For example, if a route has a demand of 350 

passengers and two aircraft are selected to fly  that route with capacities of 180 
and 200 respectively then the penalty  variable will be equal to 30, corresponding 

to the number of empty seats for that route. These penalty  variables are used in 
the objective function. The objective function for the FARS model now considers 

the expected profit of the schedule instead of the expected cost and as such now 
wishes to maximize that profit. The profit is calculated by  calculating the revenue 

for each flight arc if the flight was completely  full minus the cost of the flight minus 
the product of the penalty  variables and the respective seat price for that route. 

The seat prices (amount that the passenger would pay to be on that flight) are 
assumed to be fixed for each route regardless of the fleet type used; this 

assumption is applicable because a passenger wouldn’t expect to pay  more or 
less for their ticket depending on which aircraft is used, instead they  would expect 

the price to be affected by route and class of seat. 

The notation that is different from the previous models is given in Table 4-3 and 
the model formulation is shown in Figure 4-5.

Table 4-3: Additional Notation For Fleet Assignment With Time Windows And 

Route Selection Model

pi = penalty variable for flight i
qi = seat price for flight i
dmi = passenger demand for flight i
znik = profit of copy n of flight i with fleet type k
hk = aircraft seat capacity of fleet type k
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Figure 4-5: Fleet Assignment With Time Windows And Route Selection model

Without changing the mathematical formulation of the model it is still possible to 
tailor the model to the specific application required. Adjusting parameters, 

variable coefficients and the creation of variables can allow additional control of 
the resultant schedule. It is possible to exclude certain routes for certain fleets or 

for all the fleets, specify  when certain flights occur and even fix their departure 
time, specify  that for a specific route that one flight always occur during a certain 

period of the day  and if the demand is high enough then any  more flights for that 
route can be added at any time during the schedule, specify  the operating hours 

for each fleet or airport or flight, specify  the number of passengers that represent 
a break-even cost point for each flight, by adjusting the profit or cost coefficients 

of the variables it is possible to favor specific flights and departure times, and 
there is potentially even more control of the schedule possible.

4.3.1 ! Schedule formation from model solution

The solution to the FARS model would contain a list of the selected flight arcs in 

the model, the following section will describe the process of formulating the final 
flight schedule from this solution. 

The solution to the FARS model will be outputted by the solver in the form of a list 

of selected variables; this list of selected variables contains no further information 
regarding the flights chosen.  The first step for forming the schedule is to cross-

reference the list of selected variables with a table created during the formulation 
and calculation of the model and its parameters; this will result in a table listing 

the selected flights and containing information such as departure time, origin and 
destination airports, landing time and fleet type among others. A visual example 

of this first step is presented in Figure 4-6 below.
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Once the table containing the information about the selected flights has been 
created, it is still difficult to determine the final schedule, especially  with larger 

models, since the flights are not in order or assigned to specific aircraft (tail 
assignment). There is a simple iterative procedure that will form the final 

schedule and it is as follows:
1. Sort the table by departure time.

2. Split data in a table for each fleet type (whilst maintaining the sorted order).
3. Select one of the fleet tables created in step 2.

4. Select the first flight on the table and assign it to an unused aircraft of the 
correct fleet type, and remove the entry from the table.

5. Take note of the previously selected flights destination and landing time.
6. Search through the table in order and select the first flight that satisfies the 

following criteria: origin location is the same as the previously  selected flights 
destination and its departure time is after the landing (and turn-around) time 

of the previous flight. Assign the newly  selected flight to the current aircraft 
and remove the flight from the table.

7. Repeat steps 5 and 6 until no more flights can be selected.
8. If table is not empty then proceed to step 4.

9. If table is empty  then proceed to next table for another fleet and proceed to 
step 4.

10. If all tables are empty then scheduling is complete.

The resultant schedule will maintain the flow of aircraft correctly  and the schedule 
will be repeatable in a cyclical manner. An example of a final schedule 

represented within a time-space network is presented in Figure 4-7 for a two 
aircraft fleet with a time window interval of 3 hours (for space considerations).
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Figure 4-6: FARS Model Schedule Formation Step 1

Figure 4-7: Example Schedule Represented On A Time-Space Network

4.4 ! Stochastic Models

This section will introduce and discuss the adjustments made to the FARS model 

such that the stochastic nature of the flight delays is considered during the 
formulation and solving of the model. The calculation and specification of the 

flight time for each flight variable in the model is conducted during the formulation 

Solution 
Variables

x25

x215

x245

x524

x1045

x1755

Variable Origin Destination Departure Time Landing Time Fleet
1 JHB CPT 8:00 AM 10:05 AM 1
2 JHB CPT 8:15 AM 10:20 AM 1
3 JHB BLM 10:00 AM 11:25 AM 2
4 DUR CPT 1:00 PM 2:30 PM 3
5 CPT BLM 10:00 AM 12:30 PM 1

Origin Destination Departure Time Landing Time Fleet
JHB DUR 7:00 AM 8:30 AM Airbus A319
BLM CPT 4:00 PM 6:00 PM Airbus A321
BLM JHB 1:00 PM 2:30 PM Airbus A319
DUR BLM 10:00 AM 11:15 AM Airbus A319
CPT JHB 7:00 AM 9:30 AM Airbus A321
JHB BLM 10:00 AM 11:30 AM Airbus A321

Cross-Reference

10AM 1PM 4PM 7PM7AM

JHB

CPT

DUR

BLM

Ground Arcs Wrap Arcs Flight Arcs

Aircraft 1

Aircraft 2
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stage of the model (generating the MIP program to be solved by  an appropriate 

solver) and as such the flight times are fixed once the model is generated. It is 
not beneficial to model the problem in such a manner that flight times can be 

adjusted during the solving of the model for various reasons. Each change in a 
flight time would require a re-specification of the network flow constraints (which 

would make the problem more computationally  difficult to solve), additional 
constraints would need to be introduced to handle the limits of the flight times, 

and the constant changing of flight times would affect the objective values which 
would introduce problems with improving the solution and selecting an optimal 

solution. An effective way  of handling stochastic flight delays is to consider them 
as part of the flight time for each variable in the model. The consequence of this 

technique is that the stochastic behavior of the flight delays are handled during 
the formulation stage of the model and thus the model becomes deterministic in 

nature (in respect to the solver). The main advantage of this consequence is that 
computational time required to solve the model will be drastically reduced.

The FARS model discussed earlier, is in essence a naïve model which handles 

the stochastic nature of flight delays by simply ignoring them and assuming that 
no flight delays will occur. The consequence of this assumption is that potentially 

the final schedule generated will not be robust in handling flight delays and may 
not even be suitable for real-world applications. To improve the robustness of the 

final schedule, the flight delays should be considered.

4.4.1 ! Expected value (EV) model

The simplest stochastic programming technique is the Expected Value (EV) 
method. The EV method replaces the stochastic distribution of a particular 

variable with its expected value. The expected value of a random variable, whose 
behavior is described by  a distribution, is the weighted average (weighted by 

probability  of occurrence) of all the possible values that the random variable 
could be; thus it is equivalent to the mean value, or first moment, of a statistical 

distribution. Integrating the Expected Value method into the FARS model is a 
simple process. There are two flight delays to be considered for each flight, 

namely: the departure delay  (time difference between the scheduled departure 
time and the actual departure time of the flight) and the arrival delay  (time 

difference between the scheduled arrival time and the actual arrival time of the 
flight). The arrival time delay  is strongly  influenced by  the departure delay  thus an 

independent arrival delay  distribution is required; a flight duration delay  time 
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distribution is calculated to address this issue. The flight duration delay  time is the 

difference between the departure delay  time and the arrival delay time; it is, in 
other words, the difference between the scheduled flight duration time (from gate 

to gate, not actual flying time) and the actual flight duration time. The overall flight 
delay  is the sum of the departure delay and the flight duration delay. The 

calculation of the expected values for these distributions is a trivial exercise and 
thus an expected flight delay  can be obtained (for example: 15 minutes). The 

introduction of the expected flight delay  into the FARS model is rather simply: the 
sum of the expected flight delay  and the flight time is used instead of solely  the 

flight time for each variable. 

4.4.2 ! Scenario generation with chance constrained programming

The following model makes use of two stochastic programming techniques, 
namely: scenario based analysis and chance constraint problems (CCP). The 

scenario based approach introduces the stochastic variation into the model whilst 
the CCP constraints ensure that the model remains feasible even if an extreme 

value is sampled from the stochastic distribution. First, the general concept of 
how the model works is discussed, then the mathematical formulation of the 

model is introduced, and finally a deterministic heuristic which greatly  simplifies 
the model is presented.

The scenario and CCP based model (S-CCP) is based on the FARS model 

introduced earlier; the FARS model is included (and unchanged) in the S-CCP 
model, however a variety  of additional variables and constraints are introduced 

into the model. The decision variables of the S-CCP model are identical to that of 
the FARS model and no additional decision variables are added; additionally  all 

the constraints of the FARS model are still present, such as the network flow 
constraints and the aircraft cover constraints. The flight times of the decision 

variables in the FARS model portion of the S-CCP model do not include any  flight 
delays (essentially  the naive model). The first new addition to the model is that of 

the generation of multiple scenarios. Each flight variable in the FARS model is 
duplicated a specified number of times with only  a single change made, namely: 

the flight delay. The duplicates have the same take-off time, profit, origin and 
destination as the original variable; however, because of the flight delay  the 

duplicates now have different arrival times. The scenarios can be thought of as 
independent levels of the model. Each scenario (level) needs to be constrained 

by  the network flow such that the scenario is feasible. The scenario duplicate 
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variables are selected in the model by  linking them directly  to the base level’s 

decision variables; such that if a certain flight variable is selected then all the 
appropriate (linked) scenario duplicate variables also have to be selected. For 

example, if the flight variable which represents a flight from Johannesburg to 
Durban departing at 8 AM is selected then all the duplicate variables (one per 

scenario) which share the same departure time, origin, aircraft, and destination 
must also be selected. Supposing that the example flight from Johannesburg to 

Durban takes one hour to complete (including the turn-around time), then it is 
possible that the same aircraft could be used for another flight from Durban to 

Cape Town which departs at 9:15 AM. In the naive FARS model the network flow 
constraint will be satisfied and the schedule will be feasible; however, consider 

that one of the scenarios generated has a flight delay of 30 minutes for the flight 
from Johannesburg to Cape Town then the same aircraft would not be able to be 

used for the following flight because the network flow constraint for that 
scenario’s level would not be satisfied. Such a case would require that the solver 

choose another solution so that all the scenario’s network flow constraints are 
satisfied (such as moving the first flight earlier, or moving the second flight later, 

or not flying the flights). If all the constraints are to be satisfied then this approach 
can be simplified to only considering the worst-case of each flight variable (and 

its duplicates). The problem with this worst-case structure is that a single 
scenario flight can sample an extreme value from the distribution, at the end of 

the tail, that effectively  eliminates that flight from the feasible region of the 
solution space. This is an undesirable situation. 

A possible solution to this problem is the use of CCP constraints. A CCP 

constraint can be formulated in such a manner that only  a certain percentage of 
the network flow constraints on the scenario levels for a particular node (time-

space destination) need to be satisfied. The CCP constraint will only  be used for 
the scenario levels and the normal base level will retain its own network flow 

constraints which must still be satisfied; this ensures that a feasible schedule is 
always generated. To explain the principle further the following example is 

presented: Flight 1 departs at 8 AM and the scheduled flight time is one hour, 
flight 2 departs at 9:30 AM from the destination of the first flight; 5 scenarios are 

generated and the CCP constraint is formulated such that only  1 of the scenarios 
may not pass their network flow constraint. A basic visual representation is 

presented in Figure 4-8 below.
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Figure 4-8: CCP Visual Example

The situation depicted in Figure 4-8 would be a feasible solution if the CCP 

constraint was set such that at most only  one network flow constraint may be 
violated, in this case scenario 4 is violating its network flow constraint because 

flight 2 departs before its aircraft is available. If more than one network flow 
constraint was violated then the solution would be infeasible. In the example 

depicted, the CCP constraint ensures that the flight schedule is feasible and 
operates without a propagated delay 80% of the time.

The mathematical formulation of the deterministic equivalent of the S-CCP model 

is now presented. Presented in Table 4-4 is the model notation that is different 
from the previous models and the model formulation is shown in Figure 4-9.

Equation 4 for the S-CCP model ensures that all the scenario duplicate variables 

are selected when the “linked” decision variable is selected. Equation 5 is the 
CCP constraint which enforces the network flow constraints for each node for 

each scenario but also allows a specific number of network constraints to not 
hold which is equal to the value assigned to α. The duplicate scenario variables 

are also required to be binary.

08:00 09:1509:0008:4508:3008:15 09:30 09:45
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Scenario 5

Scenario 4

Scenario 3

Scenario 2
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Flight 2

58



Table 4-4: Additional Notation For The Scenario Generation With Chance 

Constrained Programming Model

w = Number of Scenarios Generated
vr = 1 if flight duplicate r is flown, 0 otherwise
Rnik = Set of duplicate scenario flight arcs for copy n of flight i flown by fleet 

type k
Δ = Set of scenario levels
δ = Scenario level
α = CCP constraint tolerance
j1rδl = 1 if duplicate flight r begins at node l in scenario δ's network

-1 if duplicate flight r ends at node l in scenario δ's network, 0 
otherwise

j2rδgl = 1 if ground arc g begins at node l in scenario δ’s network
-1 if ground arc g ends at node l in scenario δ’s network, 0 otherwise
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Figure 4-9: Scenario Generation With Chance Constrained Programming Model

If the CCP constraint tolerance variable (α) is set to zero then effectively  the 
model is constrained such that all the network flow constraints are required to 

hold for a feasible solution. Since all the flight departure times are fixed for each 
trial solution (as shown in Figure 4-8, above), the only  scenario case we need to 

worry about for each flight is the worst case (longest delay time) since if the worst 
case fits then all the others will fit too. Thus, if α is set to zero then the model can 

be simplified such that it is equivalent to the FARS model but with the flight times 
equal to the respective worst case value in the S-CCP model. This simplification 

can be modified such that it applies to any  value of α. Consider the case when 
the S-CCP model consists of 5 generated scenarios for each flight and the CCP 
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constraint tolerance value α is set to one (i.e. one scenarios network  constraint 

may be violated for each node in the network); it can be deduced that the model 
can be simplified such that the only flight time that is important for each flight is 

the fourth worst since if that scenario is valid then at least four of the five 
scenarios will be valid and the CCP constraint will be satisfied. Thus the 

simplification is that for each flight, the α highest flight times can be ignored and 
that all of the remaining flight times besides the highest remaining flight time can 

also be ignored.

Consider the case when the number of scenarios generated for the S-CCP model 
approaches infinity. As the number of scenarios approaches infinity  then there will 

be an almost infinite amount of flight duplicate variables generated which each 
have a randomly sampled flight delay from a specific flight delay distribution. Due 

to the large number of samples for each flight, the distribution of flight delays for 
each flight will approach identity  with the distribution from which they  are sampled 

from. A large number of scenarios generated would result in a very  large (and 
difficult to solve) S-CCP model and this is undesirable; however, taking 

advantage of the fact that the model effectively  contains the identical distribution 
of flight delays as the sample distribution and this coupled with the CCP 

constraint simplification is particularly  significant. If α is set to a small number 
such as one, then it is apparent that the model will effectively become a worst-

case scenario model; this is not of much use since the worst case scenario is 
typically  a flight cancellation. Thus the schedule would be empty; however if α is 

set to be a certain percentage of the number of scenarios generated then the 
constraint becomes useful. The CCP constraint now becomes a direct probability 

constraint that allows us to set the desired level of operational performance with 
respect to the handling of flight delays. For example, if α is set to be equal to 80% 

then the effective requirement is that at least 80% of the time the flights in 
schedule will not cause the next flight to occur a propagated delay; or, in other 

words, that at most 20% of the times that a flight is operated will it be subjected to 
a large enough flight delay  that it will also delay the following flight in the 

schedule. 

The above simplifications of the CCP constraint and the introduction of an infinite 
number of scenarios result in a deterministic model which can be identical to the 

FARS model in mathematical formulation. The only  adjustment that needs to be 
made to the FARS model to make it equivalent to the infinitely  large S-CCP 
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model is the selection of the flight time (which includes the flight delays). The 

calculation of the flight time is the sum of the expected flight time and the critical 
value of the flight delay  distributions. The critical value of the flight delay 

distributions is equivalent to using the inverse cumulative distribution function of 
the flight delays distribution evaluated at α. From probability  theory, the 

cumulative distribution function CDF is defined by:

The value of evaluated expression is the corresponding area underneath the 

curve (probability). Its inverse specifies for each probability  level, the point for 
which the integral equals the probability  level. This value is equivalent to a delay 

time which ensures that the CCP constraint holds for the particular level set by α.

The infinite S-CCP simplification model will be used for the project as it can be 
adjusted to represent the naive model, the expected value model and the S-CCP 

model.

PrCDF x x#a=^ h 6 @
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5! MONTE CARLO SIMULATION

Monte Carlo Simulation, otherwise known as Stochastic Simulation, is a 

simulation technique which relies on repeated random sampling of distributions in 
order to approximate the stochastic behavior of the actual system. Monte Carlo 

Simulation is used when a deterministic algorithm is unavailable for the 
evaluation of stochastic system. Monte Carlo Simulation is being used in this 

project to evaluate the “real-world” performance of the various schedules 
generated with the stochastic events being the departure delays and flight length 

(time between take-off and actual landing). The advantages of using Monte Carlo 
Simulation for this application are that the processing time is very  short, it makes 

use of the actual stochastic distributions, and offers a reliable approximation of 
the actual performance.

5.1! Implementation Of Monte Carlo Simulation

The basic program flow of the Monte Carlo Simulation implemented is shown 
below in Figure 5-1. The programmed Monte Carlo Simulation is supplied with 

the following inputs: a complete flight schedule, a saved random number stream, 
departure delay  distribution, flight delay  distribution, and the following user 

entered parameters: the chance of a departure delay  occurring and the chance of 
a flight delay  occurring. The simulation makes use of the saved random number 

streams so that each schedule evaluated can use the same set of random 
numbers, the advantage of this is that each schedule gets an equal, and fair, 

selection of delays such that the results obtained from the simulation are 
comparable. Each schedule Monte Carlo Simulation consists of multiple “runs”; a 

single run is equivalent to one actual day  in operation for the flight schedule (a 
single simulation pass through the schedule). Multiple runs are used to gain a 

more accurate approximation of the actual performance of the schedule. The 
results from all the runs are averaged to create the final Monte Carlo Simulation 

results.
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Figure 5-1: Monte Carlo Simulation Flow Diagram

A single pass simulation of a schedule is described in this paragraph. The flight 
schedule is a selection of flights to be operated during a particular day. The first 

step of the simulation process is to divide this schedule into the selection of 
flights for each particular aircraft in the fleet. The Monte Carlo Simulation is 

conducted separately  for each aircraft and each flight is simulated in order. The 
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Monte Carlo Simulation is captured within a table which records and calculates 

the various measures which are of interest. The table headings are described in 
Table 5-1 below. A simulation of each flight in the schedule is conducted in order 

and a row of the table is completed for each flight, the values entered in the table 
are affected by  the previous state of the system (the previous row in the table). 

The process is repeated for each aircraft in the fleet. The random number stream 
is used for the sampling of the distributions and for the determination of whether 

a delay will occur in the first place. Each random number is a Real number 
between 0 and 1. The process of determining whether a delay  will occur using a 

random number is conducted as follows: a random number is drawn from the 
random number stream (for example: 0.5193), this random number is compared 

against the user-entered parameter which describes the chance of a delay (for 
example: 0.424); if the random number is larger or equal to the delay  chance 

parameter then a delay  is chosen to occur (for example: 0.5193 is greater than 
0.424 thus a delay  will occur). The process of sampling from a distribution is 

similar and is conducted as follows: a random number is drawn from the random 
number stream (for example: 0.723) and used to sample from the Inverse of the 

Cumulative Distribution Function (CDF) of the distribution to obtain a value 
representing the delay  (for example: 72.5 minutes). Using Figure 5-2 as a 

reference, the random number represents a value on the Y-axis. Draw a 
horizontal line across the figure until it meets the CDF function line, at this point 

draw a vertical line down towards the X-Axis and where it crosses the X-axis is 
the representative delay. 

Figure 5-2: Example Cumulative Distribution Function
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Once the Monte Carlo Simulation has completed the specified number of runs 

then the final step of the process is to collect the information regarding the 
performance of the schedule. The measures collected are an average of the 

respective measures for each run. The measures collected are:

• Number of Flights,

• Number of Departure Delays,

• Number of Arrival Delays,

• Number of Propagated Delays (delays which affect the following scheduled 
flight),

• Number of times the operated flights exceeded the length of the scheduled 
flight day,

• Number of time the operated flights exceeded the length of an entire day 
(24 hours),

• Average Departure Delay,

• Average Arrival Delay,

• Average Propagated Delay Time,

• Average Lateness of Departures,

• Average Lateness of Arrivals,

• Percentage of Flights Affected by Propagated Delays,

• Delay  Recovery  Percentage (Total Arrival Delay  Time as a percentage of 
Total Lateness of Arrivals), Represents the ability  of the schedule to absorb 

delays.

Table 5-1: Description Of Monte Carlo Simulation Table

Heading Description (Calculation)
1 Scheduled Departure Time Read from the Flight Schedule
2 Propagated Delay Previous Flight Ready Time (17) subtracted 

from Scheduled Departure Time (1). If 
negative then set to zero.

3 Earliest Possible Departure 
Time

Scheduled Departure Time (1) + Propagated 
Delay (2)

4 Random Number # 1 Drawn from Random Number Stream
5 Departure Delay? YES, if (4) >= Departure Delay Chance 

parameter; else NO.
6 Random Number # 2 Drawn from Random Number Stream
7 Departure Delay Time If Departure Delay? (5) is YES, then sample 

from distribution;else set to zero
8 Actual Departure Time Earliest Possible Departure Time (3) + 

Departure Delay Time (7)
9 Scheduled Arrival Time Read from Schedule

10 Expected Arrival Time Actual Departure Time (8) + Flight Time
11 Random Number # 3 Drawn from Random Number Stream
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12 Flight Delay? YES, if (11) >= Flight Delay Chance 
parameter; else NO.

13 Random Number # 4 Drawn from Random Number Stream
14 Flight Delay Time If Flight Delay? (12) is YES, then sample from 

distribution;else set to zero. Flight Delay may 
be a negative value representing a faster than 
expected flight

15 Actual Arrival Time Expected Arrival Time (10) + Flight Delay Time 
(14)

16 Turn Around Time Read from the Flight Schedule. Typically 30 
minutes.

17 Ready Time Actual Arrival Time (15) + Turn Around Time 
(16)

18 Departure Time Difference Actual Departure Time (8) - Scheduled 
Departure Time (1)

19 Arrival Time Difference Actual Arrival Time (15) - Scheduled Arrival 
Time (9)

The use of Monte Carlo Simulation allows for the comparison of the performance 
of various generated schedules in an approximation of the real world conditions.

66



6! TEST SITUATION DATA SETS

A variety  of test situations were generated for the purpose of running and 

evaluating the operations research models developed for the project. A base test 
situation was created which was strongly  based on a local low-cost airline 

operating in South Africa; the base situation was then modified to form additional 
test situations which would have a different degree of schedule density  (amount 

of flying time per aircraft schedule). 

6.1! Base Situation

The base situation strongly  resembles the operating parameters of a low-cost 
airline operating in South Africa. There are eight airports served in the base 

situation and they are listed in Table 6-1 below. Presented in Table 6-2 are the 
projected passenger demand quantities for each route, the number given in the 

table refers to the number of people wishing to fly  that route per day. The code 
“NF” refers to the situation were no flight is offered for that particular route.

Table 6-1: List Of Airports Served

O.R. Tambo International Airport, Johannesburg JNB
Cape Town International Airport, Cape Town CPT
King Shaka International Airport, Durban DUR
Bloemfontein International Airport, Bloemfontein BFN
Port Elizabeth International Airport, Port Elizabeth PLZ
East London Airport, East London ELS
George Airport, George GRJ
Nelspruit Airport, Nelspruit NLP

Table 6-2: Passenger Demand Table

DestinationDestinationDestinationDestinationDestinationDestinationDestinationDestinationDestination
Airport BFN CPT DUR ELS GRJ JNB NLP PLZ

Origin

BFN 300 200 NF NF 450 NF NF

Origin

CPT 275 450 NF NF 650 NF 120

Origin

DUR 200 450 NF NF 350 NF 100

Origin ELS NF NF NF NF 95 NF NFOrigin
GRJ NF NF NF NF 105 NF NFOrigin

JNB 470 650 350 95 105 150 250

Origin

NLP NF NF NF NF NF 150 NF

Origin

PLZ NF 130 100 NF NF 250 NF
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There are additional constraints placed upon the flights between Nelspruit and 

Johannesburg; the flight from Johannesburg to Nelspruit is constrained to only 
depart between 8:30 AM and 11:00 AM, whilst the flight from Nelspruit to 

Johannesburg is constrained to only  depart between 9:45 AM and 1:30 PM. 
These additional time constraints on these flights are included to simulate the 

real-world case when a flight’s passenger demand is strongly  affected by  its 
operation times and in some cases the flight is only  feasible from a profit 

perspective if the flight occurs in a certain time frame. It is also beneficial to have 
flights between major business cities occur early  in the morning and late in the 

afternoon; this is to meet the demand of the business traveler. However, it is 
undesirable to limit the flight operation times for those routes to only  the times 

which are convenient to the business traveler thus a different approach is taken 
in handling this situation. The approach is to incentivize flights occurring during 

the peak business traveler period but still allow flights to occur at any time during 
the schedule. The incentive given is a 5% increase in profit for the applicable 

flights which will affect the solver’s optimal solution such that those flight times 
are preferentially  chosen. If additional flights between those cities are required 

then their flights at another time of the day  may  also be selected. The flights 
between Cape Town & Durban, Cape Town & Johannesburg, and Durban & 

Johannesburg have preferred departure times of 6:00 AM till 7:45 AM and 6:00 
PM till 8:30 PM. The flight network of the base situation is shown in Figure 6-1. 

The size of the airport node is relative to the amount of passengers served at that 
airport for the situation and the width of the flight arcs is proportional to the 

passenger demand for that particular route.

The aircraft fleet being operated in the base situation is shown in Table 6-3. The 
selection of aircraft and their costs are based upon a local low-cost airline 

operator. The passenger capacity, cruising speed, and range are the 
performance specifications quoted by the various aircraft manufacturers. The 

hourly flight cost was calculated using reported operating costs for those 
particular aircraft. These costs were obtained from detailed information retrieved 

from the Bureau of Transportation Statistics in the USA. The operating costs 
include fuel costs, maintenance costs, depreciation, repairs, crew costs, and 

taxes among many  other factors, These costs were averaged across all the 
aircraft of that specification and divided by  the amount of flight time. The costs 

may not be accurate for the South African environment but the relative costs 
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between aircrafts types should be accurate and that is the measure by  which the 

optimal solution is found.

Table 6-3: Aircraft Fleet Specifications

Aircraft
# 

Active
Passenger 
Capacity

Cruising 
Speed (km/h)

Range 
(km)

Hourly Flight 
Cost

Boeing 737-400 5 168 780 4204 R35 497,89
Boeing 737-800 3 189 828 5665 R30 729,04
McDonnell Douglass 
MD-81

1 172 811 2910 R29 489,77

Figure 6-1: Flight Network For Test Situations

The additional parameters for the base situation are presented in Table 6-4 

below. The turn-around time is the amount of time required after the aircraft has 
landed before it is available and ready  for its next flight. Break-even passenger 

load percentage is used to calculate the seat prices for each flight; the cost of the 
flight is first calculated and then seat price is set such that if the passenger load 
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on that flight is equal to the break-even percentage then the revenue will be equal 

to the cost for that flight. Any  more passengers over the break-even percentage 
will result in a profit for that flight whilst any  passengers less than the break-even 

point will result in a loss for that flight. In such a case depending on the 
combination of the other flights, the flight would probably  not be chosen for the 

schedule. The frames per hour parameter sets the amount of discrete time points 
used for the time-space network in the model. A higher number would result in a 

larger time-space network which would increase the size and complexity  of the 
problem. This parameter controls the compromise between the accuracy  of the 

model and its solving time. With the parameter set to four the time windows are of 
15 minute length. This was found to be a good compromise, resulting in 

acceptable solving times without adversely  affecting the solution accuracy. The 
schedule length defines the length of the operating day for the aircraft in the 

schedule and thus the schedule’s operating day  if all the aircraft schedules start 
at the same time. A schedule length of 16 hours allows enough time for 

maintenance operations which are typically  less than eight hours in length. The 
schedule start time is used for defining the specific time periods which have 

additional constraints such as time-constrained flights and preferred flight times.

Table 6-4: Additional Parameters For The Base Situation

Turn-around Time 30 minutes
Break-Even Passenger Load 65%
Frames per Hour 4
Schedule Length 16 hours
Schedule Start Time 6:00 AM

6.2! Additional Test Situations

Additional test situations were generated such that the models could be tested 
over a range of different schedule densities (percentage of operating time per 

schedule). The parameters of the base situation was modified to form these 
additional test situation data sets. The parameters which were adjusted were the 

aircraft quantities for each fleet and the schedule length. A situation with a long 
schedule length and many additional aircraft (e.g. situation ATS-7) would offer the 

theoretical optimal solution because the time constraints would have very  little 
effect on the solution whilst a situation with fewer aircraft and a shorter schedule 

length would create a densely  packed schedule. Such a schedule would have 
very  little idle slack time and thus would be highly  susceptible to flight delays. The 

schedule’s susceptibility  to flight delays is highly influenced by  the schedule’s 
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density, this why  the situations have been modified as described above. It is 

important to evaluate the stochastic models ability  to handle delays with a variety 
of schedules having different degrees of susceptibility  to flight delays. The 

additional test situations (ATS) are presented in Table 6-5, all the other 
parameters remain unchanged from the base situation.

Table 6-5: Additional Test Situations

Situation Schedule Length (hours) # 737-400s # 737-800s # MD-81s
Base 16 5 3 1
ATS-1 18 4 3 1
ATS-2 14 3 1 1
ATS-3 12 2 1 1
ATS-4 20 4 3 2
ATS-5 16 0 1 1
ATS-6 20 0 1 1
ATS-7 24 6 7 4
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7! STOCHASTIC MODEL PARAMETERS

The developed stochastic programming model is a simplified deterministic S-
CCP model. Its behavior is controlled by  adjusting the CPP constraint tolerance 

factor (α). As explained in Section 4.4.2, the adjustment of α affects the 
probability  that a flight delay will be large enough to affect additional flights in the 

schedule (a propagated delay). There is a compromise between reducing the 
probability  of propagated flight delays and the operating profit of the schedule. In 

order to understand the relationship between the operating profit, the ability  of the 
schedule to absorb delays, and the CCP constraint tolerance factor, the model 

was run on the test data sets using a variety  of settings for α. The setting for the 
model will be specified in delay  time (minutes). Table 7-1 presents the various 

parameter settings which were used for testing. Listed in the table are the 
equivalent statistical measure, the equivalent on-time percentage, the equivalent 

on-time percentage assuming that delays less than 15 minutes are not 
considered a delay, and the breakdown of the delay  time into departure delay  and 

flight delay. The CCP constraint tolerance percentage is equivalent to the on-time 
percentage for arrivals.

The naive model ignores the effect of flight delays and assumes that all flights will 

experience zero flight delays thus the delay  time setting is set to zero. Since 60% 
of the flights within the delay  distribution operate on-time, without a delay  in 

arrival time, the equivalent CCP constraint tolerance factor is 60%. The naive 
model is parameter setting #1 (PRM-1). PRM-2 was the expected value (EV) 

method which makes use of the expected value of the distribution. In this case it 
is the statistical mean of the distribution. PRM-3 uses the statistical mean plus 

the standard deviation of the distributions to obtain the delay  time. PRM-4 uses 
just the standard deviation of the distributions to obtain the delay  time. PRM-5 

uses the mean absolute deviation (MAD) of the distribution to obtain the delay 
time. PRM-6 uses the root of the standard deviation of the distributions to obtain 

the delay  time. Parameters settings 7 & 8 (PRM-7 and PRM-8) do not use a 
statistical measure of the distribution to obtain the delay time but rather makes 

use of a desired on-time arrival performance percentage (95% and 90% 
respectively). Statistical measures are used as the basis for the majority  of the 

parameter settings because the statistical measures will take more consideration 
of the properties of the distribution rather than just a specified level of 
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performance. The goal is that the best statistical measure could be confidently 

applied to many similar situations which have different distributions of data.

Table 7-1: Delay Time Parameter Settings

Delay 
Time

Statistical 
Measure

Departure 
Delay 
Time

Flight 
Delay 
Time

Departure 
On-Time 

%

Departure 
On-Time 
% (15 
Minute)

Arrival 
On-
Time 
%

Arrival 
On-

Time % 
(15 

Minute)
PRM-1 0 0 0 57,6 80,8 60,4 79,7
PRM-2 5,7 Mean 11,3 -5,6 76,7 85,8 68,3 83,0
PRM-3 55,4 Mean + 

Standard 
Deviation

47 8,4 91,4 93,7 93,3 95,1

PRM-4 49,7 Standard 
Deviation

35,7 14 88,7 91,9 92,3 94,5

PRM-5 29 Mean 
Absolute 
Deviation

19,8 9,2 82,5 88,4 87,2 91,3

PRM-6 9,7 Root 
Standard 
Deviation

6,0 3,7 70,9 83,5 73,6 85,1

PRM-7 68 95,0 96,3

PRM-8 39 90,0 93,1

7.1! Model Assumptions

The assumptions for all the models are:

• Aircraft travel at a block speed equal to its cruising speed. This assumption 
simplifies the calculation of the flight times. An airline with detailed flight times 

could easily substitute the actual flight times into the model.

• Flight costs are independent of the number of passengers on board flight.

• An Airline will wish to use as many of their aircraft in their fleet as possible to 
reduce the schedule density  without affecting the profit of the flight schedule. 

Thus they will spread flights among all the aircraft of the specified fleet type. 
This assumption is adjustable in the application. The alternative option is to use 

as few aircraft as possible.

• The Schedule to be created is for a single day. The day length parameter in the 

application can be adjusted to consider flight schedules which last longer than 
one day.
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• The flight delay distribution is identical for each airport and fleet type. The 

application allows for different flight delay distributions (both departure and 
arrival) for each airport.

• Seat prices are directly  related to flight costs. Actual airline seat pricing policies 
are complex and seats on the same aircraft can have different costs depending 

on factors such as: day  of purchase, current load factor of aircraft (passenger 
density), and discounts.
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8! OBSERVATIONS

8.1! Test Equipment Specifications

The models were solved and evaluated using the Gurobi solver (version 4.0.1) 

running on a Macintosh computer. The Gurobi solver was running on an 
academic license. The specifications of the computer used are given in Table 8-1 

below. The Gurobi solver was chosen for its relative performance against the 
following alternatives: CPLEX 12.2 and SCIP 1.2.0. The Gurobi solver 

outperformed the alternative solvers with respect to the solving time of the 
models. It was five times faster in solving the base situation model. Upon further 

analysis of the solution log files produced by  the solver, it was found that the 
optimal solution was obtained relatively quickly and that the majority  of the 

solving time was spent trying to prove the optimality  of the solution by  tightening 
the bounds of the solution. The Gurobi solver allows for the adjustment of the 

high-level solution strategy  for MIP models. By  default, the Gurobi MIP solver 
strikes a balance between finding new  feasible solutions and proving that the 

current solution is optimal. The Gurobi solver can be made to focus more 
attention on proving optimality, which is useful when the optimal solution is being 

found quickly. This was the case with the model in this project, thus the focus of 
the MIP solver was adjusted. The parameter in question is MIPFocus and it was 

set to a value of 2. Another parameter which was changed was the 
aggressiveness of the pre-solver; the aggressiveness was increased. The 

parameter Presolve was set to a value of 2. The adjustment of parameters for the 
Gurobi solver resulted in a significant decrease of solving time from 325 seconds 

to 131 seconds for the naive base situation model. Finally, a solving time limit 
was imposed of 1200 seconds. The solver time limit was imposed to speed up 

the solving of the models. The optimal solution is generally  found in less than 100 
seconds and the rest of the solving time is spent on proving optimality. In some 

cases this can take over 1200 seconds. The time limit is used to stop the solving 
process early.
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Table 8-1: Computer Specifications

Computer Brand Apple
Model MacBook
Processor Intel Core 2 Duo
Processor Speed 2,2 GHz
Number of Processors 1
Number of Cores 2
L2 Cache 4 MB
RAM Size 4 GB
Memory Type DDR2 SDRAM
Memory Speed 667 MHz
Bus Speed 800 MHz
Operating System Mac OS X 10.6.6 (Snow Leopard)
Architecture 64-bit

8.2! Observations

8.2.1! Gurobi solver solution process

Table 8-2 offers a sample of the observations whilst the complete observations 
table is included in Appendix A, Table A-1. ‘Model Code’ refers to the combination 

of test situation data set used and the model parameters used to generate that 
specific model. These codes correspond to the tables given in Sections 6 and 7. 

The size of the models are reported for both the original model (as inputted into 
the solver) and the resultant pre-solved, simplified, model. The size of the model 

is reported by the number of rows, columns, and nonzero variables present in the 
model. The optimality  gap is the maximum possible percentage difference 

between the best solution found and the current best known theoretical optimal 
solution (which may  not exist, but hasn’t been proven not to exist yet). The solver 

defaults to stopping the solving process if the optimality gap is less than 0,01%.
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Table 8-2: Sample Solver Observations

Model 
Code

Solving 
Time (s)

OriginalOriginalOriginal Pre-solvedPre-solvedPre-solved Optimality 
Gap (%)

Model 
Code

Solving 
Time (s) Rows Columns NonZero Rows Columns NonZero

Optimality 
Gap (%)

BASE 
PRM-1

66,83 1563 5445 14907 1211 5096 14286 0

BASE 
PRM-2

1200 1563 5425 14847 1193 5058 14135 0,5587

BASE 
PRM-3

213,89 1563 5209 14199 1062 4709 13174 0,0042

BASE 
PRM-4

40,52 1563 5229 14259 1070 4737 13227 0

BASE 
PRM-5

65,69 1563 5317 14523 1139 4895 13623 0,0041

BASE 
PRM-6

1200 1563 5415 14817 1191 5046 14103 0,6752

BASE 
PRM-7

115,18 1563 5153 14031 1020 4610 12876 0

BASE 
PRM-8

276,49 1563 5283 14421 1106 4828 13446 0,0094

ATS-1 
PRM-1

11,87 1755 6165 16875 1379 5792 16206 0

ATS-1 
PRM-2

14,86 1755 6145 16815 1361 5754 16055 0

ATS-1 
PRM-3

30,09 1755 5929 16167 1230 5405 15094 0

ATS-1 
PRM-4

64,73 1755 5949 16227 1238 5433 15147 0,0054

ATS-1 
PRM-5

123,22 1755 6037 16491 1309 5593 15547 0,0057

ATS-1 
PRM-6

12,34 1755 6135 16785 1359 5742 16023 0

ATS-1 
PRM-7

15,32 1755 5873 15999 1188 5306 14796 0

ATS-1 
PRM-8

74,51 1755 6003 16389 1275 5525 15368 0

8.2.2! Schedule generation

Once the solver has produced a solution (list of variables and their values) then 

the next stage of the process is to generate a schedule using that solution. The 
generated flight schedule for the BASE PRM-1 model is shown in Appendix C. 

Table 8-3 offers a sample of the observations whilst the complete observations 
table is available in Appendix A, Table A-2. ‘Aircraft Used’, ‘Unused Aircraft’, and 

the number of ‘Flights’ within the schedule are listed. The schedule is spread out, 
if possible, amongst all the aircraft of the same fleet type to reduce the schedule 

density  as much as possible. Therefore the amount of unused aircraft generally 
corresponds to the amount of aircraft in a specific fleet type which was not used 

for the schedule. The schedule density measure is the percentage of time for 
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which the aircraft are either flying or in the process of “turning-around” (i.e. all 

activities besides idle time) compared with the total schedule time for each 
aircraft. This total schedule time for each aircraft excludes any  idle time before 

the first flight of the day  and after the last flight of the day for each aircraft. The 
expected net profit for operating the schedule is given. The load factor is an 

airline industry measure which records the passenger density of the flights. It is 
the number of passengers on the flight divided by  the number of seats available 

on that flight (RPK / ASK). A value of 1 for the load factor means that every  seat 
in the aircraft has a passenger allocated to it.

Table 8-3: Schedule Observations

Model Code Aircraft 
Used

Unused 
Aircraft Flights Schedule 

Density (%) Profit (R) Load 
Factor

BASE PRM-1 3 4 26 81,66 R419 766,63 0,99692
BASE PRM-2 3 4 26 81,22 R419 086,43 0,996898
BASE PRM-3 7 0 24 55,56 R427 816,07 1
BASE PRM-4 5 2 24 52,42 R425 757,64 1
BASE PRM-5 5 2 24 78,60 R416 349,17 1
BASE PRM-6 3 4 26 78,84 R419 086,43 0,996898
BASE PRM-7 7 0 24 54,90 R431 418,48 1
BASE PRM-8 6 1 26 61,19 R430 108,76 0,996856
ATS-1 PRM-1 4 4 28 58,99 R417 730,13 0,974925
ATS-1 PRM-2 4 4 28 60,06 R417 985,63 0,974925
ATS-1 PRM-3 4 4 26 55,96 R420 073,51 0,99693
ATS-1 PRM-4 4 4 26 56,00 R420 073,51 0,99693
ATS-1 PRM-5 4 4 28 62,85 R417 857,54 0,974925
ATS-1 PRM-6 4 4 28 62,33 R417 730,13 0,974925
ATS-1 PRM-7 4 4 26 59,46 R419 766,63 0,99692
ATS-1 PRM-8 4 4 26 60,07 R416 887,58 0,994179

8.2.3! Monte Carlo Simulation

A Monte Carlo Simulation was conducted, described in Section 5, on the resultant 
schedule for each model. The observations of the simulation are given in 

Appendix A, Table A-3, whilst a sample of the observations is presented below in 
Table 8-4. ‘Percentage of Propagated Delayed Flights’ is the percentage of the 

flights simulated which experienced a knock-on delay  from the flight which 
preceded it in the schedule. ‘Delay Recovery’ is a measure of how well the 

schedule is able to recover from flight delays (i.e. not affecting the rest of the 
schedule). It is calculated by  dividing the total time of flight delays experienced by 

the total time difference between scheduled and actual arrival times. ‘Average 
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Propagated Delay’ is the average propagated delay  experienced by a flight 

delayed due to previous flight delays. ‘Total Average Propagated Delay’ is the 
average propagated delay per flight when considering all the flights including the 

flights which don’t experience that type of delay. ‘Average Time Difference 
Departures’ and ‘Average Time Difference Arrivals’ refer to the average time 

difference between the scheduled and actual departure or arrival times 
respectively. They are the average departure and arrival delays experienced by 

the passengers.

Table 8-4: Monte Carlo Simulation Observations

Model 
Code

Percentage 
of 

Propagated 
Delayed 
Flights

Delay 
Recovery 

%

Average 
Propagated 

Delay

Total 
Average 

Propagated 
Delay

Average 
Time 

Difference 
Departure

s

Average 
Time 

Difference 
Arrivals

BASE 
PRM-1

36,54 23,16 51,73 18,901 29,98 24,60

BASE 
PRM-2

23,46 36,52 42,78 10,037 21,19 15,81

BASE 
PRM-3

2,50 83,87 36,93 0,923 10,81 5,73

BASE 
PRM-4

3,54 76,68 43,86 1,553 11,74 6,66

BASE 
PRM-5

12,50 50,04 46,07 5,759 16,61 11,53

BASE 
PRM-6

20,96 38,43 44,13 9,250 20,40 15,03

BASE 
PRM-7

2,08 86,20 38,62 0,804 10,91 5,83

BASE 
PRM-8

9,62 58,34 37,99 3,653 14,14 8,77

ATS-1 
PRM-1

7,86 67,11 43,00 3,379 15,01 10,27

ATS-1 
PRM-2

11,07 58,29 46,13 5,107 16,98 12,24

ATS-1 
PRM-3

5,00 72,84 37,56 1,878 12,29 6,91

ATS-1 
PRM-4

3,85 78,97 31,84 1,225 11,20 5,82

ATS-1 
PRM-5

10,89 59,91 43,98 4,790 16,68 11,95

ATS-1 
PRM-6

8,93 63,58 44,55 3,977 15,66 10,92

ATS-1 
PRM-7

4,42 77,19 35,48 1,569 12,26 6,88

ATS-1 
PRM-8

5,58 72,16 35,64 1,988 12,52 7,14
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9! RESULTS AND DISCUSSION

No correlation could be identified between the various measures of the models, 
such as number of row, number of columns, number of variables, parameter 

setting, or even test situation data set, and the time required to solve them. It was 
expected that the size of the model would have some degree of correlation to the 

solving time of the model. No such correlation was found and the solving time 
appeared to be random in nature. This apparent random solving time could be 

attributed to the solver’s use of heuristic methods and pseudo-random numbers 
during the solving process. Therefore the solving time is dependent on how 

“lucky” the heuristic and random numbers were at finding good solutions. Since 
the Gurobi solver’s source code isn’t freely  available and its techniques for 

solving models is secret and proprietary any  further investigation into the solving 
process is not possible. However, it can be seen (by referring to Table A1 in 

Appendix A) that the solving time is generally  less than 150 seconds (87,5% of 
the models solved in under 150 seconds) which demonstrates that for the test 

situations the model is solvable in a reasonable amount of time. Thus the model 
is suitable for the application to the low-cost airline operating in South Africa. The 

model was tested on a real scenario (JetBlue Airlines operating in the United 
States of America) and performed well, solving the model in 8,8 seconds. JetBlue 

operates a large fleet in relation to the flight schedule thus the scenario resulted 
in a low schedule density. A description of the JetBlue scenario and the 

observations are included in Appendix D.

The inter-relationships between the density  of the schedule, actual departure and 
arrival delays, the ability  of the schedule to recover from delays, and the average 

propagated delay  time will have a direct effect on the success of an 
implementation of this model. Relationships between these measures is 

discussed below. The approach taken in achieving this project’s objectives 
assumes that there is a correlation between the density  of the flight schedule and 

the ability  of the schedule to recover from delays. It is expected that as the 
density  of the schedule decreases, the ability to recover from delays will increase. 

Figure 9-1 shows the scatter plot of delay  recovery  percentage versus schedule 
density  percentage. The dashed line is the best fit polynomial trend-line. There is 

a relationship between schedule density  and delay  recovery  and that delay 
recovery  ability  increases as the density of the schedule decreases. Schedule 

densities less than 35% appear to have almost zero propagated delays.
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Figure 9-1: Scatter Plot of Delay Recovery Versus Schedule Density

Figure 9-2 shows a scatter plot of average propagated delay  time per flight 

against delay  recovery  percentage. The dashed line is the best fit exponential 
trend-line. There is an exponential decrease in average propagated delay  time as 

the delay recovery percentage increases. 

Figure 9-2: Scatter Plot of Average Propagated Delay Versus Delay Recovery
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This is an expected result and shows that propagated delays are shorter in 

duration as the ability of the schedule to absorb delays increases.

Figure 9-3 shows the scatter plots of the average time difference between the 
scheduled and actual departure and arrival times against the density  of the 

schedule. The dashed lines are the best fit exponential trend-line. There is an 
increase in delays as the schedule density  increases. The scatter plots of the 

departure and arrival time differences are similar due to the obvious relationship 
between departure and arrival delays, this being that a flight which departs late 

will most likely also arrive late.

Figure 9-3: Scatter Plots of Average Delay Time Versus Schedule Density

It is apparent from the above figures that there is a relationship between schedule 

density  and the effect which flight delays have on the schedule. The effect that 
the model parameters have on the schedule density, delay  recovery  percentage, 

and the profit of the generated schedules will be considered. Each figure (9-4, 
9-5, 9-6) contains a plot for each test situation data set so that the relationships 

can be identified more clearly  and the effect of the model parameters on the 
resultant performance measure for each situation can be identified. 
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Figure 9-4 shows schedule density  versus the delay time setting used in the 

model parameters for each test situation. The dashed lines are the best fit 
polynomial trend-lines. The general trend of the plots is a decrease in schedule 

density  as the delay  time setting is increased. This is the expected behaviour and 
it allows us to adjust the delay  time setting to influence the final schedule’s 

density. It can be seen that the decrease in schedule density  is more pronounced 
for certain test situations. This can be attributed to the characteristics of each test 

situation, namely  the day  length and the amount of aircraft available. The test 
situations which have large fleets of aircraft are able to spread the flights out 

more effectively and thus have a less dense schedule to begin with. The graph 
suggests that the use of stochastic time delay  settings in the models is more 

useful and applicable to situations were the flight schedule is already  dense with 
flights (more than 75%).

Figure 9-4: Plots of Schedule Density Versus Delay Time Setting For Each Test 

Situation

Figure 9-5 shows delay  recovery  percentage versus delay  time setting for each 
test situation. The dashed lines are the best fit polynomial trend-lines. The plot 

shows a significant increase of delay  recovery  percentage as the delay  time 
setting is increase for the majority  of the test situations. This correlation validates 
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the approach taken in improving the flight schedules ability  to handle delays by 

introducing the flight delay  time setting into the models. The trend of some test 
situations gaining more benefit from the delay time setting in the model is 

repeated. The test situations which are not densely  packed in the default naive 
model seem to be affected less by  the delay  time settings. This is the expected 

behaviour and suggests that airlines operating with dense flight schedules will 
gain more advantage from using stochastic programming techniques then those 

who do not. 

Figure 9-5: Plots of Delay Recovery Versus Delay Time Setting For Each Test 

Situation

It is important to identify  the effect that the delay  time setting has on the resultant 
schedule’s profit. Figure 9-6 shows profit versus delay  time setting for each of the 

test situations. The dashed lines are the best fit exponential trend-lines. The 
figure shows that for the test situations which didn’t appear to gain any  delay 

recovery  performance as the delay  time setting was increased (Figure 9-5) also 
didn’t lose any profit by  incorporating the delay  time settings. Therefore airlines 

which are operating with flight schedules that are not dense are neither gaining 
any delay recovery performance nor losing any  net profit. The delay  time setting 

parameter has very  little effect on these schedules. The delay  time setting 
technique could be applied to these cases without consideration of the effect on 

the bottom line. However very  little benefit will be gained with respect to delay 
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recovery. On the other hand, the test situations which gained the most 

improvement of their delay  recovery  performance also experienced the biggest 
decreases in schedule profit. Thus there exists a trade-off between the profit 

obtained from a schedule and the delay recovery  performance of the schedule. 
The airline would need to resolve this trade-off by weighing the relative costs of 

each situation and deciding the best setting to use. The decision will include 
factors such as: profit, delay costs, and passenger goodwill.

Figure 9-6: Plots of Schedule Profit Versus Delay Time Setting For Each Test 

Situation

The obvious question an airline would be interested in is ‘which is the best delay 
time setting to use in the model?’. The answer is that it is dependent on the 

current situation at hand for which the schedule is being generated. Thus there is 
no single correct setting to use that will be the best for every  case. To further 

illustrate the relationships shown in the figures above, the average effect of the 
delay  time settings over the test situations is shown in Figures 9-7, 9-8, and 9-9. 

The bars in the charts are presented in order of increasing delay time setting.
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Figure 9-7 shows a bar chart of the average profit of the schedules for each 

setting of the time delay parameter in the models. Average profit decreases as 
the delay time setting is increased.

Figure 9-7: Bar Chart Of Average Profit Per Delay Time Setting

Figure 9-8 shows a bar chart of the average percentage of flights which 

experienced a propagated delay  for each setting of the time delay parameter in 
the models. The percentage of propagated delays decreases as the delay time 

setting is increased.

Figure 9-9 shows a bar chart of the average delay  recovery  percentage for the 
schedules for each setting of the time delay  parameter in the models. The delay 

recovery percentage increases with an increase in the delay time setting.
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Figure 9-8: Bar Chart Of Average Percentage Of Propagated Delayed Flights Per 

Delay Time Setting

Figure 9-9: Bar Chart Of Average Delay Recovery Percentage Per Delay Time 
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Assuming that the profit of the schedule and the delay recovery  percentage of the 

schedule are equally  important to the airline operator then it is possible to identify 
the best delay  time setting for this case. Calculating the relative percentages of 

each measure for delay  time setting (i.e largest profit gets 100% rating whilst 
smallest profit gets 0% rating for the profit portion), the sum of these measures 

can be used to get a measure of which setting offers the best compromise. Table 
9-1 shows the relative percentage ratings for the measures, whilst Figure 9-10 

shows the information in the form of a stacked bar chart, and Figure 9-11 is a bar 
chart of the compromise measure rating.

It can be seen in Figure 9-10 that the delay  time setting of 39 minutes offers the 

best solution for the case when both the profit and delay  recovery  performance of 
the schedule is equally  important to the airline. The 39 minute delay  setting 

corresponds to the parameter specification that 90% of the flights should arrive 
on or before their scheduled arrival times.

Table 9-1: Relative Percentage Performance Measures

Delay Time Setting 
(minutes)

Relative Profit 
Percentage

Relative Delay 
Recovery 
Percentage

Net Performance 
Rating

0 100,00 0,00 100,00
5,7 88,87 21,80 110,67
9,7 89,00 21,10 110,10
29 58,14 44,08 102,21
39 47,70 64,88 112,59

49,7 20,81 83,00 103,81
55,4 20,29 84,75 105,04
68 0,00 100,00 100,00
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Figure 9-10: Stacked Bar Chart Of The Relative Percentages Of Profit And Delay 

Recovery For Each Delay Time Setting

Figure 9-11: Bar Chart of Compromised Performance Rating For Each Delay 

Time Setting
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10! SUMMARY CONCLUSIONS AND RECOMMENDATIONS

10.1! Summary Of Work Completed

An investigation into the appropriateness of stochastic programming techniques 
for reducing flight delays in airline schedules was carried out. The project 

commenced with a literature review of airline scheduling techniques, stochastic 
programming techniques, and the application of stochastic programming 

techniques in airline scheduling. Relevant real airline data required for the 
completion of the project was then obtained from various sources. The data 

allowed for the use of realistic situations to be modeled. A small test situation was 
created for the development and testing of the models to be created. Various 

models were created for use in this project, including both traditional mixed-
integer models and stochastic models. A variety  of test situations were created for 

the thorough testing and evaluation of the models. The models were solved using 
an external solver (Gurobi) and the solutions were used to generate flight 

schedules. These flight schedules were tested using Monte Carlo Simulation 
techniques to evaluate their performance in real-world conditions with regard to 

flight delays. Observations were recorded and the results analyzed to determine 
the success of the project.

10.2! Conclusions

1. The appropriateness of stochastic programming techniques for the airline 

scheduling problem was investigated. Stochastic programming techniques 
were able to improve the delay  recovery  performance of the schedule at the 

cost of decreasing the schedule’s profit. Flight schedules which are more 
dense are affected more by the stochastic programming techniques.

2. The performance of various operations research techniques in formulating 
and solving the airline scheduling problem were evaluated. Observations 

were made of the computational time, optimality  of the solution and the 
performance of the solution during simulation. The results show that the 

models were applicable for use by  a local low-cost airline due to the fast 
solving times and quality of the schedules created.

10.3! Recommendations

• The use of stochastic programming techniques is recommended for cases 
where an airline’s flight schedule has a high density of activity.
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• The selection of parameters for stochastic programming models should be 

chosen using a well defined set of airline objectives such that the compromise 
between profit and flight delay  recovery  can be appropriately  balanced to 

achieve the desired performance characteristics in the final schedule.

10.3.1!Recommendations for further research

• The S-CCP model could be modified to incorporate small independent time-
windows for each flight duplicate within the scenario levels of the network 

structure. This would allow greater flexibility  of the model at the expensive of 
model size and computational time. 

• The scheduling model could be modified to incorporate additional steps of the 
scheduling process such as crew scheduling.

• Quantify the financial loses incurred due to flight delays. The financial lose 
could be used to select the most appropriate model parameters .
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APPENDIX A !! COMPLETE OBSERVATIONS

Table A-1: Complete Solver Observations

Model 
Code

Solving 
Time 
(s)

OriginalOriginalOriginal Pre-solvedPre-solvedPre-solved Optimality 
Gap (%)

Model 
Code

Solving 
Time 
(s)

Rows Columns NonZero Rows Columns NonZero
Optimality 
Gap (%)

BASE 
PRM-1

66,83 1563 5445 14907 1211 5096 14286 0

BASE 
PRM-2

1200 1563 5425 14847 1193 5058 14135 0,5587

BASE 
PRM-3

213,89 1563 5209 14199 1062 4709 13174 0,0042

BASE 
PRM-4

40,52 1563 5229 14259 1070 4737 13227 0

BASE 
PRM-5

65,69 1563 5317 14523 1139 4895 13623 0,0041

BASE 
PRM-6

1200 1563 5415 14817 1191 5046 14103 0,6752

BASE 
PRM-7

115,18 1563 5153 14031 1020 4610 12876 0

BASE 
PRM-8

276,49 1563 5283 14421 1106 4828 13446 0,0094

ATS-1 
PRM-1

11,87 1755 6165 16875 1379 5792 16206 0

ATS-1 
PRM-2

14,86 1755 6145 16815 1361 5754 16055 0

ATS-1 
PRM-3

30,09 1755 5929 16167 1230 5405 15094 0

ATS-1 
PRM-4

64,73 1755 5949 16227 1238 5433 15147 0,0054

ATS-1 
PRM-5

123,22 1755 6037 16491 1309 5593 15547 0,0057

ATS-1 
PRM-6

12,34 1755 6135 16785 1359 5742 16023 0

ATS-1 
PRM-7

15,32 1755 5873 15999 1188 5306 14796 0

ATS-1 
PRM-8

74,51 1755 6003 16389 1275 5525 15368 0

ATS-2 
PRM-1

1200 1371 4725 12939 1043 4400 12366 0,1052

ATS-2 
PRM-2

66,06 1371 4705 12879 1025 4362 12215 0

ATS-2 
PRM-3

13,23 1371 4493 12243 894 4015 11237 0

ATS-2 
PRM-4

22,47 1371 4509 12291 902 4039 11299 0,0061

ATS-2 
PRM-5

1200 1371 4597 12555 970 4197 11697 0,1749

ATS-2 
PRM-6

42,07 1371 4695 12849 1023 4350 12183 0

ATS-2 
PRM-7

5,26 1371 4433 12063 852 3911 10944 0

ATS-2 
PRM-8

1200 1371 4563 12453 937 4130 11520 0,1017
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Model 
Code

Solving 
Time 
(s)

OriginalOriginalOriginal Pre-solvedPre-solvedPre-solved Optimality 
Gap (%)

Model 
Code

Solving 
Time 
(s)

Rows Columns NonZero Rows Columns NonZero
Optimality 
Gap (%)

ATS-3 
PRM-1

16,18 1179 4005 10971 875 3704 10446 0

ATS-3 
PRM-2

19,52 1179 3985 10911 857 3666 10295 0

ATS-3 
PRM-3

12,86 1179 3785 10311 728 3333 9356 0

ATS-3 
PRM-4

7,44 1179 3789 10323 734 3343 9379 0

ATS-3 
PRM-5

17,66 1179 3877 10587 802 3501 9777 0

ATS-3 
PRM-6

18,99 1179 3975 10881 885 3654 10263 0

ATS-3 
PRM-7

54,30 1179 3713 10095 684 3215 9024 0

ATS-3 
PRM-8

9,42 1179 3843 10485 769 3434 9600 0

ATS-4 
PRM-1

5,14 1947 6885 18843 1547 6488 18126 0

ATS-4 
PRM-2

11,48 1947 6865 18783 1529 6450 17975 0

ATS-4 
PRM-3

8,68 1947 6653 18147 1398 6107 17055 0

ATS-4 
PRM-4

10,03 1947 6669 18195 1406 6131 17075 0,0023

ATS-4 
PRM-5

71,40 1947 6757 18459 1476 6289 17468 0

ATS-4 
PRM-6

5,79 1947 6855 18753 1527 6483 17943 0

ATS-4 
PRM-7

74,16 1947 6593 17967 1356 6005 16728 0

ATS-4 
PRM-8

6,72 1947 6723 18357 1443 6222 17292 0

ATS-5 
PRM-1

23,94 1050 3642 9958 818 3412 9559 0

ATS-5 
PRM-2

79,53 1050 3626 9910 804 3382 9436 0

ATS-5 
PRM-3

15,72 1050 3488 9496 716 3156 8790 0

ATS-5 
PRM-4

15,70 1050 3496 9520 724 3172 8828 0

ATS-5 
PRM-5

6,82 1050 3558 9706 770 3278 9102 0

ATS-5 
PRM-6

100,52 1050 3622 9898 802 3376 9422 0

ATS-5 
PRM-7

3,26 1050 3446 9370 688 3086 8608 0

ATS-5 
PRM-8

1,96 1050 3534 9634 744 3230 8984 0,0021

ATS-6 
PRM-1

317,76 1306 4602 12582 1042 4340 12119 0,0002

ATS-6 
PRM-2

45,31 1306 4586 12534 1028 4310 11996 0
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Model 
Code

Solving 
Time 
(s)

OriginalOriginalOriginal Pre-solvedPre-solvedPre-solved Optimality 
Gap (%)

Model 
Code

Solving 
Time 
(s)

Rows Columns NonZero Rows Columns NonZero
Optimality 
Gap (%)

ATS-6 
PRM-3

5,87 1306 4448 12120 940 4084 11350 0

ATS-6 
PRM-4

5,30 1306 4456 12144 948 4100 11388 0

ATS-6 
PRM-5

35,01 1306 4518 12330 998 4212 11678 0

ATS-6 
PRM-6

34,68 1306 4582 12522 1026 4304 11982 0

ATS-6 
PRM-7

4,36 1306 4406 11994 912 4014 11168 0

ATS-6 
PRM-8

40,09 1306 4494 12258 970 4160 11548 0

ATS-7 
PRM-1

9,77 2331 8325 22779 1883 7880 21996 0

ATS-7 
PRM-2

7,14 2331 8305 22719 1865 7842 21815 0

ATS-7 
PRM-3

5,20 2331 8093 22083 1734 7499 20895 0

ATS-7 
PRM-4

11,26 2331 8109 22131 1742 7523 20915 0

ATS-7 
PRM-5

7,06 2331 8197 22395 1812 7681 21309 0

ATS-7 
PRM-6

6,61 2331 8295 22689 1863 7830 21783 0

ATS-7 
PRM-7

4,24 2331 8033 21903 1692 7397 20568 0

ATS-7 
PRM-8

4,58 2331 8163 22293 1779 7614 21132 0

Table A-2: Complete Schedule Observations
Model 
Code

Aircraft 
Used

Unused 
Aircraft Flights Schedule 

Density (%) Profit (R) Load Factor

BASE 
PRM-1

3 4 26 81,66 R419 766,63 0,99692

BASE 
PRM-2

3 4 26 81,22 R419 086,43 0,996898

BASE 
PRM-3

7 0 24 55,56 R427 816,07 1

BASE 
PRM-4

5 2 24 52,42 R425 757,64 1

BASE 
PRM-5

5 2 24 78,60 R416 349,17 1

BASE 
PRM-6

3 4 26 78,84 R419 086,43 0,996898

BASE 
PRM-7

7 0 24 54,90 R431 418,48 1

BASE 
PRM-8

6 1 26 61,19 R430 108,76 0,996856

ATS-1 
PRM-1

4 4 28 58,99 R417 730,13 0,974925
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Model 
Code

Aircraft 
Used

Unused 
Aircraft Flights Schedule 

Density (%) Profit (R) Load Factor

ATS-1 
PRM-2

4 4 28 60,06 R417 985,63 0,974925

ATS-1 
PRM-3

4 4 26 55,96 R420 073,51 0,99693

ATS-1 
PRM-4

4 4 26 56,00 R420 073,51 0,99693

ATS-1 
PRM-5

4 4 28 62,85 R417 857,54 0,974925

ATS-1 
PRM-6

4 4 28 62,33 R417 730,13 0,974925

ATS-1 
PRM-7

4 4 26 59,46 R419 766,63 0,99692

ATS-1 
PRM-8

4 4 26 60,07 R416 887,58 0,994179

ATS-2 
PRM-1

5 0 24 70,28 R433 290,59 0,999045

ATS-2 
PRM-2

5 0 24 64,84 R436 431,31 0,999041

ATS-2 
PRM-3

5 0 24 59,57 R458 858,90 1

ATS-2 
PRM-4

5 0 24 59,47 R458 858,90 1

ATS-2 
PRM-5

5 0 24 61,14 R446 957,71 0,99696

ATS-2 
PRM-6

5 0 24 73,52 R436 834,78 0,999041

ATS-2 
PRM-7

5 0 24 60,66 R459 814,47 1

ATS-2 
PRM-8

5 0 24 56,62 R454 002,25 0,999029

ATS-3 
PRM-1

4 0 24 81,55 R442 863,46 1

ATS-3 
PRM-2

4 0 24 80,71 R449 720,31 1

ATS-3 
PRM-3

4 0 16 68,23 R382 006,69 1

ATS-3 
PRM-4

4 0 16 68,17 R382 006,69 1

ATS-3 
PRM-5

4 0 21 78,36 R424 631,50 1

ATS-3 
PRM-6

4 0 24 82,90 R449 720,31 1

ATS-3 
PRM-7

4 0 16 63,19 R331 642,07 1

ATS-3 
PRM-8

4 0 19 74,24 R409 268,32 1

ATS-4 
PRM-1

5 4 28 54,12 R422 458,00 0,980025

ATS-4 
PRM-2

5 4 28 50,00 R422 458,00 0,980025

ATS-4 
PRM-3

5 4 28 54,37 R422 458,00 0,980025
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Model 
Code

Aircraft 
Used

Unused 
Aircraft Flights Schedule 

Density (%) Profit (R) Load Factor

ATS-4 
PRM-4

5 4 28 49,76 R422 458,00 0,980025

ATS-4 
PRM-5

5 4 28 52,45 R422 458,00 0,980025

ATS-4 
PRM-6

5 4 28 50,68 R422 458,00 0,980025

ATS-4 
PRM-7

5 4 28 44,86 R425 643,93 0,982573

ATS-4 
PRM-8

5 4 28 50,91 R422 458,00 0,980025

ATS-5 
PRM-1

2 0 18 98,67 R352 030,41 1

ATS-5 
PRM-2

2 0 16 91,37 R324 041,99 1

ATS-5 
PRM-3

2 0 12 67,70 R225 130,05 1

ATS-5 
PRM-4

2 0 12 68,47 R228 603,00 1

ATS-5 
PRM-5

2 0 12 75,95 R286 046,41 1

ATS-5 
PRM-6

2 0 16 91,37 R324 041,99 1

ATS-5 
PRM-7

2 0 10 61,69 R220 287,10 1

ATS-5 
PRM-8

2 0 12 76,94 R272 332,71 1

ATS-6 
PRM-1

2 0 24 97,36 R410 449,95 1

ATS-6 
PRM-2

2 0 22 90,07 R393 053,00 0,998468

ATS-6 
PRM-3

2 0 14 68,91 R304 175,62 1

ATS-6 
PRM-4

2 0 14 69,37 R304 175,62 1

ATS-6 
PRM-5

2 0 17 78,80 R348 610,89 1

ATS-6 
PRM-6

2 0 22 90,07 R393 053,00 0,998468

ATS-6 
PRM-7

2 0 12 64,09 R286 046,41 1

ATS-6 
PRM-8

2 0 16 74,37 R324 041,99 1

ATS-7 
PRM-1

10 7 28 33,38 R422 713,50 0,980025

ATS-7 
PRM-2

10 7 28 35,16 R422 458,00 0,980025

ATS-7 
PRM-3

10 7 28 29,81 R422 458,00 0,980025

ATS-7 
PRM-4

10 7 28 31,52 R422 713,50 0,980025

ATS-7 
PRM-5

10 7 28 33,38 R422 713,50 0,980025
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Model 
Code

Aircraft 
Used

Unused 
Aircraft Flights Schedule 

Density (%) Profit (R) Load Factor

ATS-7 
PRM-6

10 7 28 34,27 R422 713,50 0,980025

ATS-7 
PRM-7

10 7 28 34,34 R422 586,09 0,980025

ATS-7 
PRM-8

10 7 28 29,70 R422 713,50 0,980025

Table A-3: Complete Monte Carlo Simulation Observations

Model 
Code

Percentage 
of 

Propagated 
Delayed 
Flights

Delay 
Recovery 

%

Average 
Propagated 

Delay

Total 
Average 

Propagated 
Delay

Average 
Time 

Difference 
Departures

Average 
Time 

Difference 
Arrivals

BASE 
PRM-1

36,54 23,16 51,73 18,901 29,98 24,60

BASE 
PRM-2

23,46 36,52 42,78 10,037 21,19 15,81

BASE 
PRM-3

2,50 83,87 36,93 0,923 10,81 5,73

BASE 
PRM-4

3,54 76,68 43,86 1,553 11,74 6,66

BASE 
PRM-5

12,50 50,04 46,07 5,759 16,61 11,53

BASE 
PRM-6

20,96 38,43 44,13 9,250 20,40 15,03

BASE 
PRM-7

2,08 86,20 38,62 0,804 10,91 5,83

BASE 
PRM-8

9,62 58,34 37,99 3,653 14,14 8,77

ATS-1 
PRM-1

7,86 67,11 43,00 3,379 15,01 10,27

ATS-1 
PRM-2

11,07 58,29 46,13 5,107 16,98 12,24

ATS-1 
PRM-3

5,00 72,84 37,56 1,878 12,29 6,91

ATS-1 
PRM-4

3,85 78,97 31,84 1,225 11,20 5,82

ATS-1 
PRM-5

10,89 59,91 43,98 4,790 16,68 11,95

ATS-1 
PRM-6

8,93 63,58 44,55 3,977 15,66 10,92

ATS-1 
PRM-7

4,42 77,19 35,48 1,569 12,26 6,88

ATS-1 
PRM-8

5,58 72,16 35,64 1,988 12,52 7,14

ATS-2 
PRM-1

37,29 21,10 48,01 17,905 27,78 22,69

ATS-2 
PRM-2

21,25 34,37 48,16 10,234 20,67 15,59

ATS-2 
PRM-3

3,75 80,22 34,18 1,282 11,56 6,48
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Model 
Code

Percentage 
of 

Propagated 
Delayed 
Flights

Delay 
Recovery 

%

Average 
Propagated 

Delay

Total 
Average 

Propagated 
Delay

Average 
Time 

Difference 
Departures

Average 
Time 

Difference 
Arrivals

ATS-2 
PRM-4

3,54 79,87 34,35 1,216 11,12 6,04

ATS-2 
PRM-5

7,92 54,45 52,55 4,160 14,21 9,13

ATS-2 
PRM-6

19,17 37,66 43,20 8,281 18,36 13,28

ATS-2 
PRM-7

2,92 84,12 31,75 0,926 10,91 5,83

ATS-2 
PRM-8

2,92 83,73 27,13 0,791 9,95 4,86

ATS-3 
PRM-1

38,96 23,72 44,74 17,429 27,93 22,85

ATS-3 
PRM-2

22,92 37,31 42,19 9,669 20,50 15,42

ATS-3 
PRM-3

3,75 82,32 37,28 1,398 13,31 7,90

ATS-3 
PRM-4

3,44 82,45 40,28 1,385 13,30 7,89

ATS-3 
PRM-5

17,38 48,17 55,87 9,711 23,64 18,73

ATS-3 
PRM-6

28,75 31,75 42,20 12,133 22,86 17,78

ATS-3 
PRM-7

1,88 86,05 51,59 0,967 12,35 6,94

ATS-3 
PRM-8

8,95 58,07 57,79 5,171 18,08 12,33

ATS-4 
PRM-1

7,68 62,82 50,78 3,899 15,22 10,49

ATS-4 
PRM-2

2,14 90,86 24,67 0,529 10,52 5,78

ATS-4 
PRM-3

4,11 79,16 38,72 1,590 12,37 7,63

ATS-4 
PRM-4

4,82 77,35 36,32 1,751 12,47 7,73

ATS-4 
PRM-5

3,21 80,67 45,16 1,452 12,24 7,51

ATS-4 
PRM-6

2,86 83,57 38,18 1,091 11,38 6,64

ATS-4 
PRM-7

2,50 89,50 27,71 0,693 11,33 6,60

ATS-4 
PRM-8

3,39 82,78 38,31 1,300 12,28 7,55

ATS-5 
PRM-1

71,94 16,08 68,63 49,376 64,59 58,83

ATS-5 
PRM-2

37,19 26,81 48,19 17,921 29,90 24,49

ATS-5 
PRM-3

10,00 62,78 41,62 4,162 15,74 11,18

ATS-5 
PRM-4

9,58 61,49 45,89 4,398 15,97 11,42
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Model 
Code

Percentage 
of 

Propagated 
Delayed 
Flights

Delay 
Recovery 

%

Average 
Propagated 

Delay

Total 
Average 

Propagated 
Delay

Average 
Time 

Difference 
Departures

Average 
Time 

Difference 
Arrivals

ATS-5 
PRM-5

12,50 53,02 49,78 6,222 17,80 13,24

ATS-5 
PRM-6

37,19 26,81 48,19 17,921 29,90 24,49

ATS-5 
PRM-7

3,00 85,97 30,30 0,909 10,97 6,48

ATS-5 
PRM-8

14,17 49,16 51,25 7,261 18,84 14,28

ATS-6 
PRM-1

63,54 12,63 62,79 39,900 50,75 45,67

ATS-6 
PRM-2

44,09 21,52 60,54 26,694 38,97 34,01

ATS-6 
PRM-3

4,64 70,31 62,58 2,906 15,20 9,79

ATS-6 
PRM-4

5,36 68,41 59,32 3,178 15,47 10,06

ATS-6 
PRM-5

22,65 38,82 58,71 13,295 26,92 21,73

ATS-6 
PRM-6

44,09 21,52 60,54 26,694 38,97 34,01

ATS-6 
PRM-7

5,00 77,39 37,52 1,876 12,85 8,30

ATS-6 
PRM-8

11,56 56,88 43,04 4,977 16,95 11,54

ATS-7 
PRM-1

0,18 99,73 6,43 0,011 9,00 4,27

ATS-7 
PRM-2

0,54 99,19 6,82 0,037 9,27 4,53

ATS-7 
PRM-3

0,00 100,00 0,00 0,000 9,09 4,35

ATS-7 
PRM-4

0,00 100,00 0,00 0,000 9,23 4,50

ATS-7 
PRM-5

0,00 100,00 0,00 0,000 9,35 4,61

ATS-7 
PRM-6

0,18 99,02 25,04 0,045 9,28 4,54

ATS-7 
PRM-7

0,00 100,00 0,00 0,000 9,46 4,72

ATS-7 
PRM-8

0,18 98,87 30,04 0,054 9,47 4,74
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APPENDIX B!! ZIMPL MODEL INDEX FILE

# Airline scheduling model

# Mark Silverwood (0512705N)

# University of the Witwatersrand

# 2011

set V	:= { read "profits.dat" as "<1n>" comment "#"};

# of Variables

set VG	 := { 1 to 2304 };# of ground variables

set R 	 := { read "routes.dat" as "<1n>" comment "#"};

# of routes

set RW	 := { 1 to 276 }; # width of routes parameter

set A	:= { read "fleet.dat" as "<1n>" comment "#"}; # of fleets

set ND	 := { read "takeoffs.dat" as "<1n>" comment "#"}; 

# of nodes

set TKW	 := { 1 to 7}; #width of takeoffs parameter

set LDW	 := { 1 to 7}; #width of landings parameter

set TGW	 := { 1 to 1}; #width of takeoffs ground parameter

set LGW	 := { 1 to 1}; #width of landings ground parameter

set CFW := { 1 to 44};

set CGW := { 1 to 8};

param	p[V]	 := read "profits.dat" as "<1n> 2n" comment "#"; 

# cost per flight variable

param	rnum[R]	 := read "routes.dat" as "<1n> 2n" comment "#"; 

# number of flight variables per route

param	air[A]	 := read "fleet.dat" as "<1n> 2n" comment "#"; 

# of aircraft per fleet type

param	tkn[ND] := read "takeoffs.dat" as "<1n> 2n" comment "#"; 

# number of flights taking off at specific node

param	ldn[ND] := read "landings.dat" as "<1n> 2n" comment "#"; 

# number of flights landing at specific node

param	tgn[ND] := read "takeoffsgnd.dat" as "<1n> 2n" comment "#"; 

# number of flights taking off at specific ground node
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param	lgn[ND] := read "landingsgnd.dat" as "<1n> 2n" comment "#"; 

# number of flights landing at specific ground node

param	cf[A]	:= read "countf.dat" as "<1n> 2n" comment "#"; 

# count flights air

param	cg[A]	:= read "countg.dat" as "<1n> 2n" comment "#"; 

# count flights ground

param	pr[R]	:= read "prices.dat" as "<1n> 2n" comment "#"; 

# seat prices

param	dm[R]	:= read "demand.dat" as "<1n> 2n" comment "#"; 

# route demands

include "routes.txt"; 

# Parameter table containing the variable numbers for each route

include "takeoffs.txt"; 

# Parameter table containing flow out of each node in network

include "landings.txt"; 

# Parameter table containing flow into each node in network

include "takeoffsground.txt"; 

# Parameter table containing ground arc flow out of each node in 

network

include "landingsground.txt"; 

# Parameter table containing ground arc flow into each node in 

network

include "countf.txt"; 

# Flight arcs at counting point

include "countg.txt"; 

# Ground arcs at counting point

include "fleetcaps.txt"; 

# Seating Capacities of each Fleet Type

var x[V]	 binary;

var y[VG]	 integer;

var pen[R]	 integer;

maximize	 profit: sum <i> in V: p[i] * x[i]
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	 	 	 - sum <j> in R: pen[j]*pr[j];

subto		 pen: forall <i> in R do

	 	 	 sum <j> in { 1 to rnum[i] } : 

x[routes[i,j]]*fleetcaps[i,j]

	 	 	 - pen[i]

	 	 	 <= dm[i];	 	 	

 subto	 	 flow: forall <i> in ND do

	 	 	 sum <j> in { 1 to tkn[i] } : x[takeoffs[i,j]]

	 	 	 + sum <k> in { 1 to tgn[i] } : 

y[takeoffsground[i,k]]

	 	 	 - sum <w> in { 1 to ldn[i] } : x[landings[i,w]]

	 	 	 - sum <q> in { 1 to lgn[i] } : 

y[landingsground[i,q]] == 0;

subto		 avail: 	 forall <i> in A do

	 	 	 sum <j> in { 1 to cf[i] } : x[countf[i,j]]

	 	 	 + sum <k> in { 1 to cg[i] } : y[countg[i,k]] <= 

air[i];
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APPENDIX C! ! GENERATED FLIGHT SCHEDULE FOR BASE PRM-1 

MODEL

Boeing 737-800

Departure Time! Origin! ! Arrival Time! ! Destination
06:00# # # CPT# # 07:30# # # DUR
08:00# # # DUR# # 09:30# # # CPT
10:00# # # CPT# # 11:30# # # DUR
12:00# # # DUR# # 12:33# # # BFN
13:15# # # BFN# # 14:21# # # CPT
15:00# # # CPT# # 16:06# # # BFN
16:45# # # BFN# # 17:12# # # JNB
17:45# # # JNB# # 19:17# # # CPT
19:45# # # CPT# # 21:17# # # JNB

Boeing 737-800

Departure Time! Origin! ! Arrival Time! ! Destination
06:00# # # JNB# # 07:32# # # CPT
08:00# # # CPT# # 09:32# # # JNB
10:00# # # JNB# # 11:06# # # PLZ
11:45# # # PLZ# # 12:51# # # JNB
13:30# # # JNB# # 13:57# # # BFN
14:30# # # BFN# # 15:03# # # DUR
15:45# # # DUR# # 17:15# # # CPT
17:45# # # CPT# # 19:17# # # JNB
19:45# # # JNB# # 21:17# # # CPT

McDonnell Douglass MD-81

Departure Time! Origin! ! Arrival Time! ! Destination
06:00# # # DUR# # 06:37# # # JNB
08:15# # # JNB# # 08:35# # # NLP
10:15# # # NLP# # 10:35# # # JNB
12:15# # # JNB# # 12:43# # # BFN
14:15# # # BFN# # 14:43# # # JNB
16:15# # # JNB# # 16:52# # # DUR
18:30# # # DUR# # 19:07# # # JNB
20:45# # # JNB# # 21:22# # # DUR
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APPENDIX D!! REAL-WORLD TEST CASE (JETBLUE AIRWAYS)

JetBlue Airways is an American low-cost airline, and is currently placed seventh 

in the North American Domestic market with a market share of 4.4%. It operates 
a hub-and-spoke type flight network with the main base hub of the network being 

JFK Airport in New York City. It operates a fleet of 164 aircraft, consisting of 117 
Airbus A320-200 aircrafts and 47 Embraer E190 aircraft. JetBlue serves 50 

destinations worldwide and 24 destinations with the borders of the United States 
of America (airports served is more since several destinations has multiple local 

airports). 

Presented in Table D-1 are the observations of the JetBlue optimization model.

Table D-1: JetBlue Model Observations
Delay Time Setting
Airports
Fleet Types
Total Aircraft
Solving Time
Model Size
     Rows
     Columns
     NonZeros
Aircraft Used
Unused Aircraft
Flights
Schedule Density %
Delay Recovery %
Total Average Propagated Delay

39 minutes
24
2

164
8,8 seconds

3908
12466
33738

33
131
80

65,8
98,2198

0,0704 minutes
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